ARIVHMEMC
FOR PUBLIC SCHOOLS 4hen witherw.

 un

Elsie Bremmer giod
91 Carjuga st.
prantfordont.
Kinngeduard School
Clié Bramner Ilayugailt.

From
wherland's
Book Store,
Brantform.

ARITHMETIC

FOR PUBLIC SCHOOLS

AUTHORIZED BY THE MINISTER OF EDUCATION

PRICE 10 CENTS

CANADIAN WATCHMAN PRESS OSHAWA

Copyright, Canada, 1920, by
The Minister of Education for Ontario

CONTENTS

> SECTION I PAGE

Measurement and Number -	-	-	-	-	1		
Notation and Numeration	-	-	-	-	-	3	
Roman Numerals	-	-	-	-	-	-	7
Addition -	-	-	-	-	-	-	-
8							
Canadian Money	-	-	-	-	-	-	12
Subtraction	-	-	-	-	-	-	-
Multiplication	-	-	-	-	-	-	-
19							
Division	-	-	-	-	-	-	-

SECTION II

Checks in Addition, Subtraction, Multiplication,

$$
\text { Division }-\quad-\quad-\quad-\quad-\quad \text { - } 42
$$

Numbers, Factors, and Divisors - - - - 49
Bills, Accounts, Receipts - \quad - \quad - 52
Weights and Measures - \quad - \quad - 59
Canadian and British Money - \quad - 61
Fractions - - \quad - \quad -
SECTION III

Accounts -	-	-	-	-	-	-	-	83
Factors	-	-	-	-	-	-	-	90
Cancellation	-	-	-	-	-	-	-	91
Multiples -	-	-	-	-	-	-	-	93
Fractions -	-	-	-	-	-	-	-	95
Compound Fractions	-	-	-	-	-	-	104	
Complex Fractions	-	-	-	-	-	-	115	
Scale-drawing	-	-	-	-	-	-	-	120
Measurement of Area and of Volume	-	-	-	122				
Cubic Measure -	-	-	-	-	-	-	128	
Board Measure								
Percentage	-	-	-	-	-	-	131	
	-	-	-	-	-	-	134	

Contents

SECTION IV PAGE

Decimals - - - - - - - 142
Percentage - \quad - \quad -

Banks and Banking - - - - - 154
Thrift Stamps and Dominion Savings Certificates - 161
Farm Problems - \quad - \quad - \quad - 163
Household Problems - \quad - \quad - \quad - 166
Practical Measurements \quad - \quad - \quad - \quad - 169
SECTION V

Decimals -	-	-	-	-	-	-	-	186
Bills and Accounts	-	-	-	-	-	-	195	
Percentage	-	-	-	-	-	-	-	198
Profit and Loss -	-	-	-	-	-	-	200	
Commission	-	-	-	-	-	-	202	
Trade Discount -	-	-	-	-	-	-	204	
Taxes -	-	-	-	-	-	-	-	207
Duties -	-	-	-	-	-	-	-	211
Insurance -	-	-	-	-	-	-	-	213
Simple Interest -	-	-	-	-	-	-	215	
Bank Discount -	-	-	-	-	-	-	219	
Measurements -	-	-	-	-	-	-	225	

SECTION VI
Compound Interest \quad - \quad -
Interest Tables - - \quad - \quad - 240
Stocks - \quad - \quad - \quad - 243
Exchange - - \quad - \quad -

SECTION VII
Measurements - - \quad - \quad - 254
SECTION VIII
Tables of Weights and Measures - - _ - 262
SECTION IX
Miscellaneous Problems

- 268

ANSWERS - - - - - -276

THE PUBLIC SCHOOL ARITHMETIC

SECTION I

MEASUREMENT AND NUMBER

In EACH of such terms as: 5 inches, 3 quarts, 7 pounds, $\$ 4,8$ hours, three things are named. For example, in 5 inches there is:

1. A quantity measured, or to be measured, namely, a five-inch length.
2. The unit used in measuring, namely, a one-inch length.
3. The number obtained by counting how many times the unit is contained in the quantity, namely, five, the symbol for which is 5 .
Number comes from measuring some quantity by a unit-that is, from counting how many units the quantity contains.

The unit used depends upon the quantity to be measured. Sometimes it is one pound, sometimes one yard, one dollar, one day, one dozen, one ten, but it is always a part of the quantity measured.

EXERCISE 1

(Oral and Objective)

1. Name some quantities you have measured. What unit did you use in each case?
2. What unit is used to measure: a quantity of milk? of cheese? of potatoes? of eggs? of time?
3. Name some materials, quantities of which are measured by: the peck, the foot, the acre, the pair, the head, the twelve, the hundred, the thousand.
4. Measure a quantity of water, using a pint, a quart. What is the number obtained in each case? How many pints are there in a quart?
5. Measure a quantity of sand by the pint and by the gallon. What is the number obtained in each case? How many pints are there in a gallon? How many quarts?
6. Using the length of a pencil as unit, measure the length of the school desk, of the teacher's table, of the black-board. What is the number obtained in each case?
7. Measure a piece of paper three inches long. Use this as unit and find a quantity of six units. How many two-inch units would there be? How many one-inch units?
8. Name the number and the unit in each of these: 7 cents, 24 couples, 8 twos, 4 ten-dollar bills, 6 groups of five.
9. By measuring, find the number of ounces in one pound. How many pounds in 32 ounces? What unit is used in each case?
10. Measure a peck, using as unit a pint, a gallon, a quart.
11. Measure one yard, using as unit one inch, one foot.
12. Measure these two lines:
(a)
(b)
13. Measure the long line, using the short one as unit.
14. If the short line stands for three feet, for what will the long one stand?
15. Using the length of the short line as unit, draw a line the length of which would be $6 ; 4 ; 9$.
16. The measurement of the length of a string is 4 . Show how to find the length of the unit used.
17. Use objects and measure 12 of them by taking 4 of them as unit; 30 of them by taking 6 of them as unit; 8 by taking 2 as unit; 18 by taking 9 as unit; 40 by taking 10 as unit.

NOTATION AND NUMERATION

Numbers are expressed either in symbols or in words.
The expression of numbers by symbols is called notation.

The expression of numbers in words is called numeration.

The symbols generally used are $1,2,3,4,5,6,7,8$, 9 , and 0 . These symbols are also called numerals, digits, or figures. Each of the first 9 digits has a value of its own, while 0 , which is called zero, or naught, or the cipher, has no value, but is used merely to keep other digits in their proper places.

EXERCISE 2

(Review of Numbers from 1,000 to 999,999)

1. Write in figures to dictation:

Thirty-five, one hundred and thirty-five, seventyeight, one hundred and seventy-eight, ninety-six, one hundred and ninety-six, eighty-three, one hundred and eighty-three, fifty-four, two hundred and fifty-four, sixty-five, two hundred and sixty-five, three hundred and forty-seven, four hundred and twenty-nine, five hundred and seventeen, seven hundred and eighty-one, eight hundred and eighty-eight, nine hundred and forty-three, nine hundred and seven.
2. Read the following numbers: $268,350,489,605,782,948,108,600,930,755,400,801$.
3. Place in order from the least to the greatest the following numbers:
(a) $489,627,268,307$.
(b) $608,900,57,169,475$.
(c) $768,982,750,87,408$.
(d) $490,925,363,704,682,800,78$.
4. Write in order all the numbers from 523 to 541 ; from 597 to 629 ; from 857 to 888 .
5. Write in figures:

One thousand three hundred and twenty-five
Two thousand six hundred and eighty-two
Four thousand eight hundred and seven
Six thousand and ten
Seven thousand nine hundred and seventy
Nine thousand one hundred and ninety-seven
Ten thousand.
6. Read the following numbers:
$1000,1111,1462,1589,1400,2682,3908,4005,7815$, 8694, 9217, 8402, 7000, 9001, 8024, 10,000.
7. Place in order from least to greatest the following numbers:
(a) 1468, 1372, 5468, 4271.
(b) $3927,7000,2601,48,793$.
(c) $6429,8003,2427,9682,3890$.
8. Write in figures:

Twenty-five thousand three hundred and seventy-five
Fifty-eight thousand six hundred and four
Ninety-two thousand eight hundred and twenty-one
One hundred thousand and one
Seven hundred thousand six hundred and fifty
Eight hundred thousand six hundred and fifty
Eight hundred and three thousand five hundred and sixty-two
Nine hundred and ninety-nine thousand nine hundred and ninety-nine.
9. Read the following numbers:

64785, 37901, 168349, 200900, 357469, 400928, 786594, 836493, 207046, 549038, $600400,859427,920001,900046$.

NOTATION AND NUMERATION OF LARGE NUMBERS

To make it easy to read large numbers，the digits in which they are written are separated into groups with three digits in each，beginning at the right．Each group is called a period and is usually separated from the other periods by the use of the comma．Each period has a name．From the right the first period is units，the second thousands，the third millions．In each period the first digit from the right is units，the second tens， and the third hundreds．Each digit has，therefore， two values－its own，or its intrinsic value，and its local value，which is given to it by the place it occupies．For example，in 964 the intrinsic value of 9 is nine，but，as it occupies the third place from the right，its local value is 9 hundred．

Study the following table：

Periods	嚳	$\begin{aligned} & \text { 若 } \\ & \text { 首 } \end{aligned}$		馬 \＃ 品
Places				

The number is 682 billion 975 million 329 thousand 647.
What is the local value of 975 ？of 64 ？of 8 ？of 753 ？ of 7532？of 8297？

EXERCISE 3

1. Read the following numbers:
(a) $865,407,829,630,4652,4092,7001,9830,9400$.
(b) 10000, 12004, 15603, 54987, 68436, 20093, 99827.
(c) 192628, 600503, 417110, 982157, 468392, 948069.
(d) $1000000,1230000,2345400,3684750,9847326$.
2. What is the general name for the three digits in the first period? in the second period? in the third period?
3. Divide the number 543212789 into periods and then read it. Read the second period from the right, giving it its name. Read the first. Read the third.
4. Express the following numbers in figures: nine hundred and four thousand six hundred and eighty; eighty million fifty thousand seven hundred and nine; forty thousand and ten; three hundred and three thousand five hundred and twenty-eight; two hundred and three million seven hundred thousand and eighty-seven.
5. Read the following:
(a) The production of Canadian coal in 1919 was asfollows: Nova Scotia, 5,702,316 tons; New Brunswick, 177,976 tons; Saskatchewan, 381,967 tons; Alberta, 4,983,730 tons; British Columbia, 2,429,211 tons; Yukon, 1,100 tons. Total, $13,676,300$ tons.
(b) In 1916 the Canadian Northern Railway carried $7,574,500$ sacks of flour, $131,978,809$ bushels of grain, 488,809 head of live stock, $1,741,031$ tons of coal, and 286,745 cords of firewood.
(c) The mineral production in Canada for the year 1916 was as follows:
Nova Scotia $\$ 19,963,985$; New Brunswick \$878,446; Quebec $\$ 14,397,909$; Ontario $\$ 80,379,352$; Manitoba $\$ 1,819,921$; Saskatchewan $\$ 583,708$; Alberta $\$ 13,336,-$ 702; British Columbia $\$ 40,191,744$; and the Yukon $\$ 5,805,687$. (Note: $\$$ stands for dollars.)
(d) In 1916 Canada produced $\$ 352,543,470$ of farm products, $\$ 51,271,400$ of forest products, $\$ 22,377,977$ of fish, and $\$ 242,034,998$ of manufactured products.

ROMAN NUMERALS

The symbols $1,2,3,4,5,6,7,8,9$, and 0 , are called Arabic Numerals, but in writing numbers other symbols called Roman Numerals are sometimes used. These are the capital letters I, V, X, L, C, D, and M. These numerals are used in putting dates on buildings, in numbering the chapters of a book, in numbering the hours on the dials of clocks, and for other special purposes.

The value of I is 1 ; of $\mathrm{V}, 5$; of $\mathrm{X}, 10$; of $\mathrm{L}, 50$; of $\mathrm{C}, 100$; of $\mathrm{D}, 500$; and of $\mathrm{M}, 1000$.

All numbers are expressed in these numerals as follows:
(a) The letters I, X, C, and M, may each be repeated as often as three times, and when the letter is repeated its value is repeated. Thus XX represents 2 tens, that is 20 ; MMM represents 3 thousand, that is 3000 .
(b) A letter of less value placed after a letter of greater value adds its value to the greater. Thus XVII is 10 and 5 and 1 and 1 , or 17 .
(c) I placed before V or X takes away its value from that of V or X . Thus IV is 4 and IX is 9 . X placed before L or C takes away its value from that of L or C . Thus XL is 40 and XC is 90 . So, too, C placed before D or M takes away its value from that of D or M . Thus CD is 400 and CM is 900 .
(d) Placing a bar over a letter changes its value into thousands. Thus $\overline{\mathrm{D}}$ is 500 thousand, that is, 500,000 .

EXERCISE 4
(Oral and Written)

1. Read the following and then write each in Arabic numerals:

III, XXX, MM, CC, VII, XXVI, LXXVIII, CLV, CCCXXIII, DCLXI, MMDCXXVII, IV, IX, XL, XC, CD, CM, XIV, XXIX, XLIV, XCIX, CDXLVI, CMLXXIV, MMCDLXXXIV.
2. Express in Roman numerals:
$24,43,79,81,63,68,272,504,813,319,682,879,1746$, 3947.
3. Read the following and write in Arabic numerals:

XII, XVIII, XXIV, XXVI, XXXIV, XXXIX, LIX, LVI, LXIV, XCVIII, CIX, CXXVII, CXLVI, DC, MCM, MCMX, MMCDLIX, MMMCMXLIV.
4. Express in Roman numerals:
$18,36,48,49,54,58,66,69,74,86,89,94,96,99,119$, 133, 134, 139, 187, 236, 475, 523, 684, 739, 815, 936, 998, 1005, 1487, 1896, 2054, 3865.
5. Read and write in Arabic numerals:

XCI, MCDXLIV, LXIX, CCXIX, XXXVIII, MMMI, XVI, DCCCXCIX, CDIV, MMCMXCIX, XXIV, CXVI, DCXLI, CMX.
6. Write in Roman numerals the number of:

The year in which you were born; the year in which your school-house was built; the year in which our first Dominion Day was celebrated; the year in which Columbus discovered America; the year in which the present King began his reign.

ADDITION

The sign + is called plus and is used to indicate that the numbers between which it is placed are to be added.
The sign = is used for the word "equal" or "equals." Thus $27+5=32$ is read 27 plus 5 equals 32 .

Addition is the method or process by which two or more numbers are united or combined to form one number.

The numbers to be united are called addends, and the one number obtained by uniting them is called their sum.

What is the sum of 3 dollars and 4 dollars? of 3 pounds and 4 pounds? of 3 trees and 4 trees? of 3 trees and 4 pounds? of 3 pounds and 4 dollars? of 3 pens and 4 rings?

Like numbers are those which have the same name or denomination, that is, they are numbers which are obtained by using the same unit.

It is evident that only like numbers can be added. What is the denomination of the sum? In written exercises in addition, units are usually placed under units, tens under tens, hundreds under hundreds, and so on. Why?

ORAL EXERCISE

1. The following table contains 45 different combinations of numbers from 1 to 10 . These are known as the 45 "primary facts" of addition. Practise on the table until you can name any of the sums the moment your eye rests upon the numbers to be added:

1	2	2	3	3	4	3	4	5	4	5	6	4	5	6
1	1	2	1	2	1	3	2	1	3	2	1	4	3	2
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

7	5	6	7	8	5	6	7	8	9	6	7	8	9	6
1	4	3	2	1	5	4	3	2	1	5	4	3	2	6
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

7	8	9	7	8	9	7	8	9	8	9	8	9	9	9
5	4	3	6	5	4	7	6	5	7	6	8	7	8	9
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

2. Practise adding the following until you can add the groups in any order at the rate of 60 groups a minute:

2	9	8	5	9	9	5	3	2	7	2	8	7	8	7
5	1	8	6	1	1	1	2	7	2	4	7	5	7	4
6	9	8	4	4	6	5	6	2	5	5	7	9	9	7
-	-	-	-	-	-	-	-	-	-	-	-	-	-	

8	7	8	9	6	5	4	7	5	9	4	8	7	9	7
9	3	9	2	7	3	7	2	4	9	1	1	6	4	3
8	8	9	6	6	5	8	7	5	6	6	6	9	9	4
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

4	8	5	4	6	9	1	2	2	9	8	3	7	8	7
4	1	6	3	2	1	6	3	6	1	4	7	6	4	6
4	7	5	9	6	1	7	4	2	8	8	1	7	9	3
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

6	9	4	3	2	3	9	7	3	6	9	8	9	8	7
6	4	2	6	4	5	2	3	2	5	2	7	7	3	7
6	5	9	8	7	3	9	6	8	8	8	8	7	9	5
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

$\begin{array}{lllllllllllllll}4 & 2 & 8 & 8 & 9 & 6 & 4 & 8 & 4 & 6 & 2 & 5 & 5 & 7 & 6 \\ 4 & 8 & 7 & 3 & 9 & 9 & 1 & 5 & 4 & 6 & 9 & 3 & 5 & 6 & 6 \\ 9 & 8 & 6 & 5 & 9 & 8 & 4 & 5 & 2 & 6 & 7 & 7 & 5 & 2 & 6 \\ - & - & - & - & - & - & - & - & - & - & - & - & - & - & -\end{array}$
3. On the table below practise as follows:
(a) In each column begin at the top and add the first and second numbers; then the second and third; then the third and fourth; and so on.
(b) Add the first, second, and third numbers; then the second, third, and fourth; then the third, fourth, and fifth; and so on.
(c) Continue as above, by adding four numbers, then five, and so on until the whole column is added.
(d) Repeat the practice, beginning at the bottom instead of the top.

1	2	1	2	1	2	1	2	3	3
2	1	1	1	2	2	3	3	1	2
1	2	3	2	1	3	1	1	2	2
2	3	1	2	3	2	1	3	2	3
2	4	3	2	4	4	4	1	2	4
3	1	3	4	2	1	4	3	4	1
4	5	2	2	5	5	2	4	1	5
5	3	6	4	5	2	4	3	6	3
5	6	3	6	1	7	5	6	6	5
7	4	6	5	7	7	3	7	4	6
6	3	8	2	5	1	8	4	8	2
9	7	8	9	3	8	8	9	9	8
8	9	5	7	9	6	5	9	4	7
6	5	3	6	8	8	9	7	9	3

4. Beginning first at 0 , then at 1 , then at 2 , and so on up to 10 , add by twos, by threes, by fours, by fives, by sixes, by sevens, by eights, by nines, and by tens, until the sum in each case is greater than 100.

EXERCISE 5

1. Add:
(a) 3754
2862
1457
(b) 20234
683
4965
68
(c) 275 acres 146
2. In Example 1 (b) above, what figures represent thousands? units? ten thousands?
3. Add 5732, 6721, 3466, 4269, 6535.
4. Add $2768,5329,4605,475,16$.
5. Add 375, 506, 258, 327, 580, 647, 846.
6. Add 625, 494, 742, 673, 574, 654, 638.
7. Add without arranging in columns:
(a) $564,683,684,502,376,726,877$.
(b) $436,47,449,498,736,274,888$.
(c) $4671,272,45,7,625$.
8. From the following time sheet giving the number of hours of work for six carpenters in one week, find the total number of hours each man worked, the number of hours all worked each day, and the number of hours all worked in the week:

| Name | Mon. | Tue. | Wed. | Thu. | Fri. | Sat. | Total |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Jno. Jackson | 8 | 9 | 7 | 9 | 8 | 6 | |
| Geo. Laing | 5 | 9 | 9 | 7 | 7 | 4 | |
| Wm. Graham | 9 | 8 | 8 | 6 | 9 | 5 | |
| Jas. Storey | 7 | 9 | 9 | 8 | 7 | 6 | - |
| Robt. Watson | 3 | 8 | 9 | 7 | 8 | 3 | |
| Thos. Grover | 8 | 7 | 8 | 5 | 9 | 4 | |
| Total | | | | | | | |

9. Without arranging in columns, find the sum of:
(a) $53+74+42$
(b) $29+63+49+36$
(c) $26+32+4+17+9$
(d) $327+295+74+482+6$
(e) $6537+491+836+2964+579$

CANADIAN MONEY

The sign \$ stands for the word dollars, and the letter c. stands for cents. Thus 17 c. is read 17 cents, and $\$ 15$ is read 15 dollars.

When dollars and cents are written together, the cents are separated from the dollars by a point, thus (\cdot). Thus $\$ 42$ and 58 c . is written $\$ 42 \cdot 58$.

When the number of cents is less than 10 , a cipher must occupy the first place at the right of the point. Thus $\$ 8$ and 4 c . is written $\$ 8.04$. Why? In arranging numbers expressing dollars and cents for adding, the dollars must be placed under the dollars and the cents under the cents. Why? The points will then stand under one another.

Thus:
(a) $\begin{array}{r}\$ 376.84 \\ 43.09\end{array}$
(b) $\$ 4397 \cdot 03$
(c) $\$ 53.70$
$69 \cdot 50$
786-10
$706 \cdot 40$
240.84
9.08

EXERCISE 6

1. Read the following: $\$ 2 \cdot 25, \$ 3 \cdot 50, \$ 5 \cdot 04, \$ 6 \cdot 00, \$ 15 \cdot 13, \$ 20 \cdot 04, \$ 0 \cdot 65$.
2. Write the following in figures:

One dollar and ninety-three cents, two dollars, two dollars and five cents, two dollars and fifteen cents, three dollars and twenty-five cents, three dollars and sixty-seven cents, three dollars and ninety-five cents, four dollars, four dollars and thirty-seven cents, five dollars.
3. Find the totals of the following sums of money:
(a) $\$ 3.50$
(b) $\$ 4.75$
(c) $\$ 3.87$
(d) $\$ 2.91$
.37
$1 \cdot 25$ 2.67
$2 \cdot 65$ 3.85 $4 \cdot 25$ $5 \cdot 42$ $\begin{array}{rr}.89 & 6.62 \\ .89\end{array}$
\qquad 4.00 .46 7.38 $5 \cdot 38$

(e) $\$ 4.25$	(f) $\$ 8.00$	(g) $\$ 5.13$	(h) $\$ 9.08$
3.06	2.05	6.85	.75
7.00	6.10	1.08	.92
8.15	.05	.63	.68
.38	.09	.75	1.05
.57	3.46	4.56	3.15
9.02	2.12	.10	8.95

4. Find the totals of the following sums of money:
(a) $\$ 6 \cdot 05, \$ 3 \cdot 08,57 \mathrm{c} ., 5 \mathrm{c}$.
(b) $\$ 2 \cdot 00, \$ 6 \cdot 81,65 \mathrm{c} ., 4 \mathrm{c} ., 17 \mathrm{c}$.
(c) $\$ 4 \cdot 02,75 \mathrm{c} ., 89 \mathrm{c} ., 3 \mathrm{c} ., \$ 4 \cdot 59,28 \mathrm{c}$.
(d) $\$ 6 \cdot 15, \$ 3 \cdot 82, \$ 2 \cdot 95,15 c ., 38$ c., 5 c., $\$ 1 \cdot 08$.
(e) $\$ 7 \cdot 28, \$ 9 \cdot 03, \$ 6 \cdot 57,40$ c., $9 \mathrm{c} ., \$ 1 \cdot 28$.
5. Find the totals of the following:
(a) Three dollars and fifteen cents, sixty-seven cents, nine cents, forty-five cents.
(b) Four dollars and five cents, two dollars and twenty-five cents, twenty-four cents, eight cents, one dollar and six cents.
(c) Seven dollars and three cents, five dollars and forty cents, two dollars and twenty cents, sixtyfive conts, seven cents.
6. Read, arrange, and add the numbers in each of the following sets:
(a) $\$ 4 \cdot 75, \$ 3083 \cdot 09, \$ 72 \cdot 50, \$ 9 \cdot 32, \$ 384$.
(b) $\$ 93 \cdot 48, \$ 406 \cdot 30, \$ 8 \cdot 07, \$ 5709 \cdot 80$.
(c) $\$ 500, \$ 93 \cdot 05, \$ 364 \cdot 05, \$ 47 \cdot 09$.

Accuracy is of the greatest importance. All answers should be tested or checked. This is done by going over the work a second time, but, if possible, in a way different from that taken the first time. To check addition, first add the columns up, and then add down. Inaccuracy is often caused by badly formed figures, lack of neatness, and improper arrangement.

EXERCISE 7

(Rapid Drill and Accuracy)
Add rapidly up and then down:

1. What is meant by "cash"? "change"? "cashier"? "customer"?
2. Explain how a cashier, salesman, or saleslady makes up the right amount of change to be given to a customer.
3. Using the coins and bank bills of the greatest value possible in each case, "make change," orally, for customers purchasing and paying as follows:

Purchase Payment			Purchase Payment		
(a)	26c.	50c.	(n)	\$1-67	\$ 1.75
(b)	\$1.15	\$2.00	(o)	$3 \cdot 62$	$4 \cdot 00$
(c)	$2 \cdot 11$	$3 \cdot 00$	(p)	2.98	$5 \cdot 00$
(d)	$4 \cdot 08$	$4 \cdot 50$	(q)	$4 \cdot 06$	$5 \cdot 00$
(e)	89 c .	$2 \cdot 00$	(r)	$4 \cdot 09$	$6 \cdot 00$
(f)	$1 \cdot 38$	$2 \cdot 00$	(s)	$5 \cdot 28$	$5 \cdot 50$
(g)	$1 \cdot 64$	$2 \cdot 00$	(t)	5.75	$7 \cdot 00$
(h)	$2 \cdot 15$	$3 \cdot 00$	(u)	$7 \cdot 39$	$10 \cdot 00$
(i)	$3 \cdot 49$	$5 \cdot 00$	(v)	$5 \cdot 63$	$10 \cdot 00$
(j)	$4 \cdot 18$	$5 \cdot 00$	(w)	$7 \cdot 62$	$10 \cdot 00$
(k)	1.72	$5 \cdot 00$	(x)	$4 \cdot 44$	$10 \cdot 00$
(l)	58 c .	$2 \cdot 00$	(y)	$6 \cdot 69$	$10 \cdot 00$
(m)	$1 \cdot 31$	$5 \cdot 00$	(z)	$8 \cdot 21$	$10 \cdot 00$

SUBTRACTION

ORAL EXERCISE

In the following examples state quickly what number, in each case, must be added to the lower number in order that the upper number may be the sum:

4. | 15 | 25 | 65 | 85 | 25 | 45 | 55 | 45 | 75 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 9 | 9 | 9 | 9 | 19 | 19 | 19 | 29 | 39 |
| - | - | - | - | - | - | - | - | - |
5. | 14 | 34 | 34 | 64 | 94 | 42 | 62 | 82 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 8 | 8 | 18 | 28 | 38 | 5 | 35 | 25 |
| - | - | - | - | - | - | - | - |
6. $36 \quad 42 \quad 81 \quad 54 \quad 65 \quad 71 \quad 94 \quad 40$

17	14	32	37	26	34	29	24

7. If, in each example above, the lower number were taken out of, or away from, the upper number, what number would be left?
8. What number, added to 2 , will give 100 ? 98 ? 96 ? 94 ? and so on. Begin at 100 and count backward by twos.
9. Begin at 100 and count backward by threes, by fours, and so on up to nines.
10. Begin at 97 and count backward by twos, by threes, by fours, and so on.
11. Begin at 98 and count backward by threes, by fours, and so on.

The number which, added to one number, makes another, is called the difference between the two numbers. Thus, 8 is the difference between 7 and 15 because 8 added to 7 makes 15 .

The number which is left when one number is taken out of, or away from, another number, is called the remainder. Thus, when 7 is taken away from, or, as it is usual to say, subtracted from 15, the remainder is 8 .

It is evident that difference and remainder are really two names for the same thing.

The process, or method, of finding the difference between two numbers, or of finding the remainder when one number is subtracted from another, is called subtraction.

The larger of the two numbers in subtraction is called the minuend, the smaller the subtrahend.

The minuend is the sum of the remainder and the subtrahend.
The sign for subtraction is - and is called the minus sign. It indicates that the number after it is to be subtracted from the number before it. Thus, $62-25$ is read 62 minus 25 and means that 25 is to be subtracted or taken away from 62.
The numbers are arranged as for addition, the smaller being placed under the larger.
Subtraction is only another form of Addition, for in order to find the difference between two numbers it is only necessary to find the number which must be added to the smaller to give the larger.

EXERCISE 8
Subtract and check:

1. | 89 | 786 | 674 | 63 | 84 | 70 |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 53 | 45 | 52 | 27 | 39 | 24 |
| - | - | - | - | - | - |

4. 3245	8164	2001	7000	6111
1679	3275	1009	6006	4789
	-			

5. | $\$ 80 \cdot 00$ | $\$ 90 \cdot 00$ | $\$ 50 \cdot 00$ | $\$ 40 \cdot 00$ | $\$ 75 \cdot 00$ | $\$ 60 \cdot 00$ |
| ---: | ---: | ---: | ---: | ---: | ---: |
| $47 \cdot 16$ | $37 \cdot 28$ | $16 \cdot 59$ | $26 \cdot 54$ | $39 \cdot 52$ | $47 \cdot 64$ |

| 6. $\$ 100 \cdot 00$ | $\$ 200 \cdot 00$ | $\$ 500.00$ | $\$ 600.00$ | $\$ 900 \cdot 00$ |
| ---: | ---: | ---: | ---: | ---: | ---: |
| $65 \cdot 37$ | $134 \cdot 68$ | 256.58 | $381 \cdot 57$ | 489.31 |

7. $\$ 1000 \cdot 00 \quad \$ 427 \cdot 39 \quad \$ 891 \cdot 69 \quad \$ 748 \cdot 39 \quad \$ 823 \cdot 15$ $\begin{array}{lllll}652.68 & 168.57 & 295 \cdot 71 & 299.42 & 284.68\end{array}$
8. Find the difference between 64805 and 37286 ; 59420 and 76905 ; 86056 and 272421.
9. Find the difference between $6037-586$ and 4910 -238 .
10. From $5637-496$ take $4123-1235$.

MULTIPLICATION

How many apples are 4 apples +4 apples +4 apples?

Here 4 apples are repeated 3 times, and the result is 12 apples, which is expressed thus: 3 times 4 apples are 12 apples.

Make pictures showing: 2 times, or twice, 6 leaves; 6 times 3 eggs; 5 times 2 trees; 4 times 5 tops.

How many are two times 6 ? 6 times 3 ? 5 times 2? 4 times 5? How is the result in each case obtained? In the same way find 4 times 687 , thus:

2748
Instead of adding here, the result could be obtained more quickly by using a 4 -times table, that is, by finding and then memorizing the results of 4 times 1,4 times 2 , 4 times 3 , and so on up to 4 times 9 . For in the first column of the addition problem there are 4 times 7 ; in the second column 4 times 8 tens; and in the third column 4 times 6 hundred.

This second process is called multiplication. What two methods can be employed to find 6 times 529 ?

Multiplication is the method, or process, in which certain memorized addition results are used to find the sum obtained by repeating one number, as an addend, as often as there are units in another number.

The repeated number is called the multiplicand. The number indicating the number of times the multiplicand is repeated is called the multiplier. The result obtained in multiplication is called the product.

The sign of multiplication is \times. Thus, 14×4 is read 14 multiplied by 4 , or 4 times 14 , or 14 times 4 .

Read in three ways: $13 \times 6,18 \times 9$, and 16×7.
Find by addition: 2 times 1, 2 times 2 , and so on up to 2 times 12.

This forms the multiplication table of 2 times.

In the same way, make tables for 3 times, 4 times, and so on up to 12 times.

All the tables will be found in the following:

1	2	3	4	5	6	7	8	9	10	11	12
2	4	6	8	10	12	14	16	18	20	22	24
3	6	9	12	15	18	21	24	27	30	33	36
4	8	12	16	20	24	28	32	36	40	44	48
5	10	15	20	25	30	35	40	45	50	55	60
6	12	18	24	30	36	42	48	54	60	66	72
7	14	21	28	35	42	49	56	63	70	77	84
8	16	24	32	40	48	56	64	72	80	88	96
9	18	27	36	45	54	63	72	81	90	99	108
10	20	30	40	50	60	70	80	90	100	110	120
11	22	33	44	55	66	77	88	99	110	121	132
12	24	36	48	60	72	84	96	108	120	132	144

These tables should be so thoroughly committed to memory that answers will be given without hesitation to any of these four types of exercises:
(a) $5 \times 9=$?
(b) $? \times 9=45$
(c) $5 \times ?=45$
(d) $? \times ?=45$

ORAL EXERCISE

1. Answer quickly:

3×2	4×7	6×5	4×9	7×3
9×8	6×4	2×8	12×3	9×7
6×6	7×6	12×9	9×3	7×8

2. Answer quickly:
$? \times 4=36 \quad ? \times 7=49 \quad ? \times 3=12$
$? \times 5=35 \quad ? \times 12=96 \quad ? \times 8=48$
$? \times 9=54 \quad ? \times 10=30 \quad ? \times 6=24$
3. Answer quickly:
$7 \times ?=28 \quad 12 \times ?=84 \quad 5 \times ?=40$
$6 \times ?=36 \quad 9 \times ?=72 \quad 4 \times ?=24$
$8 \times ?=56 \quad 7 \times ?=35 \quad 3 \times ?=18$
4. Answer quickly:
$? \times ?=42 \quad ? \times ?=30 \quad ? \times ?=27$
$? \times ?=108 \quad ? \times ?=55 \quad ? \times ?=63$
$? \times ?=49 \quad ? \times ?=72 \quad ? \times ?=36$
5. Multiply quickly each digit in 93796785 by $2,4,6$, 7,8 , and 9 .
6. What are 8 pencils worth at 5 cents each?
7. A Public School Arithmetic costs 10 cents. What will 6 of them cost?
8. What are 12 chairs worth at $\$ 7$ each?
9. If sugar is worth 8 c . a pound, find the value of nine pounds.
10. How far can a boy ride on his bicycle in 4 hours if he rides at the rate of 7 miles an hour?
11. There are 8 pints in one gallon. How many pints are there in 5 gallons?
12. What would 6 pairs of boots cost at $\$ 8$ a pair?
13. A boy planted 7 rows of potatoes, each 9 rods long. What was the length of all the rows?
14. What is the price of 3 pairs of hockey boots at $\$ 6$ a pair?
15. What is the value of 8 pairs of skates at $\$ 6$ a pair?

The work in multiplication is usually set down thus:

$$
\begin{array}{r}
483 \\
6 \\
\hline 2898
\end{array}
$$

Here 483 is the multiplicand, 6 the multiplier, and 2898 the product.

EXERCISE 9

1. Multiply 6893 by 2 , by 4 , by 6 , and by 8 .
2. Multiply 4715 by 3 , by 5 , by 7 , and by 9 .
3. Multiply 3097 by 3 , by 4 , by 5 , by 7 , and by 9 .

4 . Find the product of eighty-seven thousand four hundred and six by 4 , by 8 , and by 9 .
5. Multiply eighty-nine thousand eight hundred and fifty-seven by 3 , by 4 , by 5 , by 6 , by 7 , and by 9 .
6. Multiply 75087 by 8 , by 7 , and by 12 .
7. Multiply 83009 by 9 , by 7 , and by 6 .

8. $\begin{array}{r}3 \cdot 10 \\ 8\end{array}$	\$ 4.67 3		\$ 5			$\begin{array}{r} 6 \cdot 53 \\ 7 \end{array}$		$\begin{array}{r} 8.63 \\ 5 \end{array}$	\$
$\begin{array}{r} 9.48 \\ 8 \end{array}$	$\begin{array}{r} \$ 12 \cdot 57 \\ 5 \end{array}$					$\begin{array}{r} 14 \cdot 63 \\ 9 \end{array}$		$\begin{array}{r} \$ 15 \cdot 78 \\ 4 \end{array}$	
$\begin{array}{r} \$ 23.69 \\ 8 \end{array}$	$\begin{array}{r} \$ 34 \cdot 65 \\ 9 \end{array}$		\$ 49			$\begin{array}{r} 69 \cdot 53 \\ 11 \end{array}$		$\begin{array}{r} \$ 62 \cdot 75 \\ 12 \end{array}$	
$\begin{array}{r} 34123 \\ 8 \end{array}$	$\begin{array}{rl} 42561 & 4 \\ 5 \end{array}$	$\begin{array}{r} 4876 \\ \hline \end{array}$			09	67		$\begin{array}{r} 52637 \\ 4 \end{array}$	
$\begin{array}{r} 30026 \\ 10 \end{array}$	$\begin{array}{r} 67849 \\ 6 \end{array}$								

9. Multiply each of the following numbers by 10 :

93789, 408537, 39207.
10. Without multiplying, write at once the answers to the following:
$527 \times 10, \quad 38649 \times 10, \quad 4005 \times 10, \quad 8030 \times 10$.

ORAL EXERCISE
Give quickly the products of:

30×8	50×7	60×9	80×6	70×4
40×8	20×7	10×9	100×6	31×4
52×8	51×7	53×9	43×6	42×4
44×8	64×7	62×9	61×6	75×4
73×8	71×7	74×9	85×6	83×4
82×8	84×7	81×9	96×6	95×4
93×8	92×7	91×9	76×6	86×4
36×8	46×7	26×9	103×6	105×4
27×8	56×7	47×9	68×6	77×4
91×4	72×6	76×7	84×11	19×8
57×3	48×7	57×8	39×6	17×9
64×9	36×10	96×2	40×5	16×6
26×12	18×8	13×11	27×4	14×7

EXERCISE 10
(Oral and Written)

1. How many times 2 must be added to 3 times 2 to make 5 times 2?

$$
=3 \text { times } 2 ; \cdot=5 \text { times } 2 .
$$

2. How many times 3 must be added to 2 times 3 to make 6 times 3 ? Use dots to find this out.
3. How many times 4 must be added to 3 times 4 to make 7 times 4 ?
4. How many times 9 must be added to 3 times 9 to make 8 times 9 ?
5. How many times 15 must be added to 3 times 15 to make 10 times 15 ?
6. How many times 25 must be added to 10 times 25 to make 20 times 25 ? Find 10 times 25 . Then find 20 times 25 .
7. How many times 33 must be added to 10 times 33 to make 20 times 33 ? Find 10 times 33 . Then find 20 times 33 .
8. How many times 48 must be added to 10 times 48 to make 20 times 48 ? Find 10 times 48 . Then find 20 times 48 .
9. In what other way besides adding them can the sum of these numbers be found:

150	250	330	480
150	250	330	480

10. Find 20 times 15,20 times 25,20 times 33 , and 20 times 48 in this new way.
11. Find 20 times 38,20 times 46,20 times 67,20 times 78 , and 20 times 89.
12. Multiply $463,827,958,3456,4265$, by 20.

The work is set down thus:

$$
\begin{array}{r}
463 \\
20 \\
\hline 9260
\end{array}
$$

13. How often must 10 times 53 be taken to make 30 times 53 ? Find 10 times 53 , then find 30 times 53 .
14. Multiply 68, $97,492,634,768,347,4568,5876$, by 30 . Set down work as above.
15. How often must 10 times 64 be taken to make 40 times 64?
16. Multiply $376,429,685,5873,4967$, by 40 . Set down work as above.
17. How often must 10 times 76 be taken to make 50 times 76? to make 60 times 76? to make 70 times 76? to make 80 times 76 ? to make 90 times 76 ?
18. Multiply 76 by 50 , by 60 , by 70 , by 80 , and by 90 .
19. Multiply 927 by 50 , by 60 , by 70 , by 80 , and by 90 .
20. Multiply 4853 by 50 , by 60 , by 70 , by 80 , and by 90 .

ORAL EXERCISE

Find the product quickly of:

1. $6 \times 40 ; 7 \times 50 ; 9 \times 80 ; 12 \times 60 ; 11 \times 90 ; 8 \times 70$.
2. $30 \times 10 ; 40 \times 10 ; 50 \times 20 ; 60 \times 30 ; 40 \times 40 ; 50 \times$ 50.
3. $48 \times 30 ; 65 \times 20 ; 75 \times 40 ; 82 \times 60 ; 70 \times 50 ; 74 \times$ 20.
4. $33 \times 40 ; 64 \times 30 ; 82 \times 60 ; 95 \times 20 ; 45 \times 30 ; 85 \times$ 40.

EXERCISE 11
(Oral and Written)

1. How many times 35 must be added to 10 times 35 to make 13 times 35 ?

Find 10 times 35 and 3 times 35 , then 13 times 35 .
2. How many times 35 must be added to 10 times 35 to make 14 times 35 ?

Find 10 times 35 and 4 times 35 , then 14 times 35 .
3. Find 15 times 35,16 times 35,17 times 35,18 times 35 , and 19 times 35 .
4. How many times 35 must be added to 20 times 35 to make 24 times 35 ? Find 20 times 35 and 4 times 35 , and then 24 times 35 .

The work is set down thus:

The 0 in the second product is usually omitted. Why?
5. Find 23 times 35,27 times 35,28 times 35.
6. Multiply 489 by 21,25 , and 29 . The work is set down thus:

489
21
489
9780
10269

7. Multiply 6834 by 31 , by 34 , by 36 , by 39 , by 42 , by 45 , by 47 , and by 48 . Set down work as above, and omit the unnecessary 0 's.
8. Multiply 4279 by 53 , by 55 , by 57 , by 62 , by 68 , by 73 , and by 75 .
9. Multiply 8596 by 81 , by 89 , by 76 , by 94 , and by 95 .

EXERCISE 12

1. How many times must we take 10 times 43 to have 100 times 43 ? Find 100 times 43.
2. Find 100 times 68, 100 times 79,100 times 86.
3. How many times must we take 100 times 57 to have 200 times 57 ? Find 200 times 57.
4. Find 300 times 57,400 times 57,500 times 57.
5. Multiply 863 by 100 , by 200 , by 300 , by 400 , by 500 , by 700 , and by 900 .
6. Multiply 7491 by 200 , by 400 , by 500 , by 600 , by 800 , and by 900 .

The work is set down thus:
7491
200
1498200
7. Find the value of 600 lb . of beef at 32 c . a lb .

8 . Find the value of 800 lb . of pork at 29 c . a lb.
9. Find the value of 700 lb . of lamb at 37 c . a lb.
10. Find the value of 900 lb . of fish at 18 c . a lb.
11. Find the products quickly of:

9×300	12×600	11×800	8×500	9×700
6×400	15×200	20×300	30×600	40×900
22×500	33×600	41×700	60×900	72×400

EXERCISE 13

1. Show that 126 times $75=100$ times $75+20$ times $75+6$ times 75 .

Find 126 times 75.
The work is set down thus:

$$
\begin{array}{r}
75 \\
126 \\
\hline 450 \\
1500 \\
7500 \\
\hline 9450
\end{array}
$$

The numbers $450,1500,7500$, which, added together, give the product, are called partial products. Observe that in the second partial product, the last 0 , and in the third partial product. the last two 0's, may be omitted. Why?
2. Find 138 times 64,147 times 82 , 159 times 93 . Set down work as above and omit unnecessary 0 's.
3. Multiply 6546 by 126 , by 234 , by 405 , and by 563 .
4. Multiply 4987 by 653 , by 748 , by 921 , by 465 , and by 792 .
5. Multiply 5369 by 498 , by 651 , by 796 , by 583 , and by 471 .
6. Multiply 9832 by 532 , by 674 , by 891 , by 758 , and by 496 .
7. Multiply 8173 by 689 , by 546 , by 709 , by 803 , and by 604 .
8. Multiply 9756 by 427 , by 865 , by 407 , by 389 , and by 706 .

Numbers which when multiplied together make another number are said to be the factors of that number. Thus 6 and 4 are factors of $24 ; 2$ and 15 are factors of 30 ; 3,2 , and 7 are factors of 42 .

ORAL EXERCISE

1. Supply the missing factors:

$4 \times ?=16$	$? \times 8=56$	$? \times ?=18$	$? \times ? \times ?=48$
$5 \times ?=35$	$? \times 7=28$	$? \times ?=96$	$? \times ? \times ?=36$
$9 \times ?=72$	$? \times 2=18$	$? \times ?=36$	$? \times ? \times ?=108$
$7 \times ?=42$	$? \times 11=66$	$? \times ?=54$	$? \times ? \times ?=28$
$8 \times ?=40$	$? \times 5=30$	$? \times ?=20$	$? \times ? \times ?=100$
$6 \times ?=48$	$? \times 3=21$	$? \times ?=63$	$? \times ? \times ?=210$

DIVISION

ORAL EXERCISE

1. How much is 3×5 ? What number has to be repeated 5 times to make 15 ?
2. How much is 8×7 ? What number has to be repeated 7 times to make 56? What number should be put in this blank: $\ldots . \times 7=56$?
3. Name the number which should be written in each of these blanks:

$$
\begin{aligned}
& \ldots . \times 4=20 ; \quad \ldots . \times 9=63 ; \quad \ldots . \times 10=60 ; \\
& \ldots . \times 7=35 ; \ldots . \times 6=42 ; \ldots . \times 3=27 \text {; } \\
& \ldots . \times 5=40 ; \ldots . \times 2=14 ; \ldots . \times 9=54 ; \\
& \$ \ldots \times 6=\$ 24 ; \quad \$ \ldots \times 8=\$ 72 ; \quad \$ \ldots \times 7=\$ 49 ; \\
& \ldots \text {...feet } \times 9=45 \text { feet; } \ldots \text {. pints } \times 2=8 \text { pints; } \\
& \ldots \text {.. hats } \times 6=60 \text { hats; } \ldots \text {. . hundred } \times 5=45 \text { hundred; } \\
& \text {....thousand } \times 4=28 \text { thousand. }
\end{aligned}
$$

4. What sum must be repeated 6 times to give $\$ 24$? If 24 dollars are divided equally among 6 boys, how many dollars will each boy get? What is the sixth part of 24 dollars?
5. How many oranges must be taken 5 times to make 30 oranges? If 30 oranges are divided equally among 5 boys, how many oranges will each boy get? What is the fifth part of 30 oranges?
6. If 54 cents are divided equally among 9 girls, how many cents will each girl get? What is the ninth part of 54 cents?
7. If a boy walks 12 miles in 3 hours, how far will he walk in 1 hour? What is the third part of 12 miles?
8. What is the half of 8 ? The third part of 15 ? The seventh part of 56 ? The eighth part of 48 ? The tenth part of 30? The ninth part of 63?
9. Name the numbers which should be written in these blanks:

$$
\begin{array}{r}
\left.5 \times 6=6 \times \ldots ; \quad \begin{array}{l}
9 \times 8=8 \times \ldots ; \\
7 \times 4=4 \times \ldots ; \\
2 \times 9=9 \times \ldots
\end{array}\right) \\
3 \times 5 \times \ldots
\end{array}
$$

10. 4 times $\$ 6$ is how many times $\$ 4$? 5 times 7 men is how many times 5 men? 8 times 7 feet is how many times 8 feet?
11. What number must be taken 3 times to make 24 ? How many 3 's are there in 24 ? Why?
12. What sum taken 9 times makes $\$ 54$? Then $\$ 54$ is how many times $\$ 9$? Why?
13. What quantity must be taken 6 times to give 30 quarts? How many times does 30 quarts contain 6 quarts? Why?
14. 56 feet is equal to 8 times what length? How often does 56 feet contain 8 feet? Why?
15. How often does 18 contain 3 ? 21 contain 7 ? 72 contain 9 ? 36 contain 4 ? 25 contain 5 ? 42 contain 6 ?
16. How many 5 's are there in 20 ? 7 's in 28 ? 9 's in 27 ? 6 's in 48 ? 8 's in 64 ? 3 's in 18 ? 2 's in 14 ? 10 's in 60? 4 's in 32 ?
17. What distance must be taken 3 times to give 12 miles? 4 miles $\times 3=3$ miles $\times \ldots$. ? Then 12 miles is equal to how many times 3 miles? If a boy walks 3 miles an hour, how long will it take him to walk 12 miles?
18. $\$ 56$ is 7 times what sum? $\$ 8 \times 7=\$ 7 \times \ldots$? Then how often does $\$ 56$ contain $\$ 7$? If $\$ 56$ is given to a number of boys so that each boy gets $\$ 7$, how many boys are there?
19. If a pound of sugar can be bought for 8 cents, how many pounds can be bought for 40 cents?
20. How many times is $\$ 3$ contained in $\$ 12$? in $\$ 15$? in $\$ 13$? in $\$ 21$? in $\$ 18$? in $\$ 16$?
21. How many times is 9 contained in 36 ? in 45 ? in 43? in 38? in 40?
22. How often is 8 contained in 35 ? Then $35=\ldots$. $\times 8+\ldots$, also $35=8 \times \ldots+\ldots$.
23. Name the numbers which should be written in these blanks:

$$
\begin{aligned}
54 & =\ldots \times 7+\ldots \\
62 & =\ldots \times 9+\ldots \\
23 & =\ldots \times 3+\ldots \\
47 & =\ldots \times 6+\ldots \\
18 & =8 \times \ldots+\ldots \\
38 & =12 \times \ldots+\ldots \\
7 & =2 \times \ldots+\ldots \\
75 & =9 \times \ldots+\ldots
\end{aligned}
$$

24 . The product of two numbers is 35 . One of the numbers is 7 . What is the other?

25 . The product of two numbers is 12 . One of the numbers is 6 . What is the other?
26. The product is 28 . One of the numbers is 4 . What is the other?
27. The product is 48 . One of the numbers is 8 . What is the other?

It is clear that the answers for the problems in the oral exercise above are found by making use of the multiplication tables. The examples, however, are not exactly like those given in multiplication. In multiplication two factors are given, and their product has to be found. In this oral exercise it will be seen that the product and one factor are given, and the other factor has to be found. The process by which this factor is found is called division.

Division is the process of finding what number is contained a given number of times in another, and (since 4 times 3 is equal to 3 times 4) it is also the process of
finding how many times one number is contained in another.

Division is indicated by writing the sign \div between the numbers, thus:
$8 \div 2$ means " 8 divided by 2 ," the problem being to find the number which taken 2 times makes 8 , or to find the number of 2 's in 8 .

In the Example, $28 \div 7$, the answer is 4 . In division the number to be divided, 28 , is called the dividend, the given factor, 7 , is called the divisor, and the answer, 4 , is called the quotient.

If the dividend is not exactly equal to the product of the quotient and divisor, there will be a remainder. Thus, in $23 \div 4$, it will be seen that $23=5 \times 4+3$. Here 3 is the remainder.

Division is also indicated by writing the dividend above and the divisor below a horizontal line. Thus:

$$
\frac{8}{2} \text { means } 8 \div 2
$$

What is the corresponding term in multiplication for the dividend? the quotient? the divisor?

By what other process could the number of 8 's in 37 be found? To what terms in this process does the dividend correspond? the divisor? the remainder?

ORAL EXERCISE

Practise these exercises in two ways:
(a) State quotients only, thus, for (1) say $12,4,8$, etc.
(b) Give answers, thus, $144=12$ times 12 , or 12 twelves; $48=12$ times 4 , or 4 twelves; $96=12$ times 8 , or 8 twelves, etc.

A

State the quotients rapidly:

1. $144,48,96,36,120,72,24,132,84,108,60 \div 12$
2. $99,27,54,90,108,18,63,81,36,72,45 \div 9$
3. $72,48,24,96,16,80,40,32,88,56,64 \div 8$
4. $70,14,49,63,77,56,28,84,21,42,35 \div 7$
5. $24,42,72,54,36,60,12,66,30,18,48 \div 6$
6. $50,10,20,30,40,60,45,55,35,15,25 \div 5$
7. $44,28,20,48,12,32,40,36,16,24,8 \div 4$
8. $27,18,6,36,24,9,33,21,12,30,15 \div 3$

B

Practise these exercises in two ways:
(a) State quotient and remainder.
(b) Give answers, thus, $20 \div 3=3$ times $6+2$, or $20=3$ sixes +2 .

Answer rapidly:

1. $15,13,7,11,5,21,9,3,17,19,15 \div 2$
2. $17,7,11,19,8,14,23,13,5,16,20 \div 3$
3. $14,19,9,27,31,15,22,25,38,17,39 \div 4$
4. $22,16,38,44,19,7,33,27,39,48,13 \div 5$
5. $23,11,37,45,20,7,34,52,29,17,57 \div 6$
6. $17,32,54,25,13,68,41,29,39,58,61 \div 7$
7. $39,58,19,49,28,62,13,44,69,37,23 \div 8$
8. $119,117,113,17,86,118,90,109,91 \div 12$
9. $65,97,45,110,78,56,32,75,23,85,98 \div 12$
10. $107,68,73,95,25,59,64,28,35,102,80 \div 11$
11. $20,50,40,70,100,60,30,90,85,63,79 \div 11$
12. $89,58,26,67,39,76,16,32,48,83,60 \div 9$
13. $15,34,55,70,80,20,42,64,86,82,75 \div 9$

SHOR'T DIVISION

In the written work for division one of two forms may be used. When the divisor is less than 12, there is generally used the form which is called short division. In other cases long division is employed.

Example 1: Divide 45 dollars by 7. The quotient is 6 dollars and the remainder 3 dollars, and the work is set down thus:

$$
\begin{aligned}
& \text { Divisor) } \frac{\text { Dividend }}{\text { Quotient }} \text { and Remainder } \frac{45}{63} \text { dollars } \\
& \text { dollars }
\end{aligned}
$$

Here the problem to be answered is: What sum taken 7 times will give 45 dollars?
The remainder, 3 , is written with the quotient, but with the divisor under it to show that it has not been divided.

Example 2: Divide 23 hundreds by 5. Here the work is set down thus:

$$
\text { 5) } \frac{23}{4} \text { hundreds }
$$

Example 3: Divide 36 tens by 5. The work is set down thus:

$$
\begin{aligned}
& \text { 5) } \frac{36}{7_{\frac{1}{6}}} \text { tens }
\end{aligned}
$$

Example 4: Divide 15 units by 5 . The work is set down thus:

$$
\text { 5) } \frac{15}{3} \text { units }
$$

Example 5: Divide 2365 by 5. The work is set down thus:
5) $\frac{2365}{473}$

Explanation: There are four problems: (a) What is the number which has to be taken 5 times to give 2 thousand? It is clear that no thousands are repeated 5 times. Hence the 2 thousands and the 3 hundreds are taken together. Then comes problem (b): What number taken 5 times will give 23 hundred? The quotient is 4 hundred, and the remainder is 3 hundred. The quotient, 4 , is written in the hundreds' place, and the remainder, 3 hundred, is taken with the 6 tens. Then comes problem (c): What number taken 5 times will give 36 tens? The quotient is 7 tens, and the remainder is 1 ten. The quotient, 7 , is placed in the tens' place, and the remainder, 1 ten, is taken with the 5 units. Then comes problem (d): What number taken 5 times will give 15 units? The quotient is 3 units with no remainder. The 3 is placed in the units' place, and the complete quotient is 4 hundred +7 tens $+3=473$.

Here $2365=473 \times 5$, and, therefore, also
$=5 \times 473$. So there is found the number which has to be taken 5 times to give 2365 and also the number of 5 's in 2365.

Example 6: $4739 \div 8$
Work thus: 8) $\frac{4739}{592 \frac{3}{8}}$
Multiply 592 by 8 and add the remainder. How may the work in division be checked?

Example 7: How many pints of milk at 7 cents a pint can be bought for 525 cents? In this the problem is to find what sum taken 7 times will give 525 cents, or to divide 525 cents by 7 .

Work thus: 7$) \frac{525}{75}$ cents

Now 525 cents $=75$ cents $\times 7$ and is, therefore, also equal to 7 cents $\times 75$. That is, for 525 cents there can be bought 75 pints of milk at 7 cents a pint.

EXERCISE 14
Divide and prove:

1. 2) 864
1. 9) 718
1. 7)111111
2. 3) 981
1. 7 $\underline{623}$
2. 6 $\lcm{43085}$
3. 9$) 648$
4. 12) $\overline{7000}$
1. 8)532081
2. 8) 1238
1. 4) 916
1. 9) 487050
1. 9) 369
1. 3) 7070
1. 12) $\lcm{82695}$
1. 11) 858
1. 2)5007
2. 10 $\lcm{46250}$
3. 7)504
4. 11)57189
5. 10 983600
6. 6) 3255
1. 9$) 102348$
2. 10 5213
3.
4. 12 $\longdiv { 4 5 9 6 8 4 }$
5. 10 $\lcm{67368}$
6.
4) 2367
20. 8) 300024
1. 10)729364
2. 5) $\lcm{32786}$
1. 10) $\widehat{34020}$
1. Without dividing, write the quotients:
(a) $15640 ; 72900 ; 8205 ; 4793 ; 6452 \div 10$.
(b) $1165 ; 22222 ; 90030 ; 8000 ; 76008 \div 10$.
2. Divide 4780 by 10 and then divide the quotient by
3. Now multiply the second quotient by 20 .
4. Divide 7350 by 10 and then divide the quotient by
5. Now multiply the second quotient by 30 .
6. Divide 8340 by 10 and the quotient by 6. Now multiply the last quotient by 60 .
7. Divide 4750 by 50 .
8. Divide 6439 by 70. The work is set down thus:

$$
\text { 70) } \frac{6439}{91 \frac{69}{70} . \quad \text { Prove. }}
$$

39. In the following, set down the work as shown in Example (38) and prove answers:

$$
\begin{gathered}
4368 \div 90 ; 25820 \div 60 ; \quad 53729 \div 110 \\
8453 \div 120 ; 21486 \div 80
\end{gathered}
$$

40. Divide each of these numbers by 100 and prove answers:

52600; 37500; 84300; 15700.
41. Divide each of these numbers by 100 and prove answers:

$$
5368 ; 72596 ; 13704 ; 21005 .
$$

42. Divide each of the following by 200 , then by 500 , and then by 700 :

$$
82600 ; 47500 ; 84700 ; 15976 ; 24003 .
$$

LONG DIVISION

ORAL EXERCISE

1. Divide 36 by 4 and also by 6 . Which gives the larger quotient?
2. Divide 90 by 5 and also by 9 . Which gives the smaller quotient?
3. Divide 96 by 6 and by 8 . Which gives the larger quotient?
4. If the same dividend is divided by 3 and by 5 , which would give the larger quotient?

5 . If the same dividend is divided by 3 , by 4 , and by 5 , which would give the larger quotient, 3 or 5 ? 4 or 5 ? 3 or 4 ?
6. Test Example (5) by using 240 as the dividend.
7. If the same dividend is divided by 6 , by 7 , and by 8 , which quotient would be the largest? which the smallest?
8. The same dividend is divided by 6 , by 9 , by 4 , by 10 , by 3 , by 7 . Which will give the largest quotient? the next largest? the next largest? and so on.
9. A pupil found that a certain dividend when divided by 20 gives a quotient of 45 , and when divided by 30 a quotient of 30 . If this dividend is divided by 27 , between what numbers will the quotient lie? Why? To which number will it be the nearer? Why?
10. If 600 is to be divided by 28 , name two numbers between which the quotient will lie. To which of these numbers will the quotient be the nearer?
11. If 840 is divided by 32 , name two numbers between which the quotient will lie. To which of the numbers will the quotient be the nearer?
12. For each quotient name two numbers between which it must lie when: $480 \div 37 ; 200 \div 43 ; 630 \div 76$; $420 \div 24 ; 547 \div 65$.

From the foregoing Exercise it is evident that if 14245 is to be divided by 37 , the quotient will be greater than that which is obtained by dividing the dividend by 40 and less than that obtained by dividing by 30 , but it will be nearer the first of these quotients. For this reason 40 may be used as a trial divisor to aid in finding the quotient, when the real divisor is 37 .

Example 1: Divide 14245 by 37 . The work is set down thus:

$$
385
$$

37)14245

111
314
296
185
185

Explanation: It is seen that 142 hundred is the first part of the dividend which can be divided by 37 . The problem then is: What number must be taken 37 times to
give 142 hundred? Using the trial divisor, 40 , instead of 37 , the problem is changed to: What number must be taken 40 times to give 142 hundred? This is found by dividing 142 hundred by 40 , or 14 hundred by 4 , the quotient for which is 3 hundred. Placing the 3 over the hundreds' place, multiplying 37 by 3 , and subtracting the product 111 hundred from 142 hundred, there remains 31 hundred. This taken with the 4 tens gives 314 tens to be next divided by 37 . Here again using the 40 as trial divisor instead of 37 , the problem is: What number must be taken 40 times to give 314 tens? This is found by dividing 314 tens by 40 . The quotient is 7 tens. Placing the 7 tens over the tens' place, multiplying 37 by 7 , and subtracting the product, 259 tens, from 314 tens, the remainder is found to be 45 tens. This remainder is too large, being greater than 37 , hence the quotient figure, 7, is too small. Erase it and try 8. Multiplying and subtracting as before, the remainder is now found to be 18 tens. This with the 5 units gives 185 units to be divided by 37 . Using 40 as a trial divisor, the quotient is found to be 4 units. Placing the 4 over the units' place and multiplying and subtracting as before, the remainder is found to be 37 , which is again too large. So the quotient figure, 4 , is too small. Erase it and try 5 and proceed as before. This will be found to be the correct quotient figure, and the whole quotient is now 385. That is-

$$
14245=385 \times 37=37 \times 385 . \quad \text { Prove }
$$

Practice in the use of trial divisors will in time lessen the number of unsuccessful trials.

Example 2: Divide 27589 by 64. Here 60 may be used as the trial divisor, and the work will be set down thus:

Long Division

$$
\begin{gathered}
\begin{array}{c}
431 \frac{5}{84} \\
64) 27589 \\
256 \\
-\frac{198}{-} \\
\frac{192}{69} \\
\frac{-}{5}
\end{array} \\
\text { That is } 27589=(431 \times 64)+5 \\
\text { or } 27589=(64 \times 431)+5 .
\end{gathered}
$$

Show that the quotients in the above Examples can be obtained quite easily by using 30 for the trial divisor in the first and 70 in the second.

It is evident that there will always be a choice between two trial divisors. Experience has shown that time will be saved by knowing how to make the choice without hesitation. For this reason the smaller of the two pos-s sible trial divisors is the one generally chosen. The trial quotient figure, if not correct, will in that case always be diminished.

EXERCISE 15

Divide, and prove your work:

1. 24384 by 48
2. 16686 by 54
3. 32199 by 57
4. 680096 by 72
5. 430765 by 68
6. 568374 by 59
7. 378096 by 88
8. 24329 by 21 ; by 31 ; by 61 ; by 81
9. 30504 by 42 ; by 52 ; by 62 ; by 72
10. 379830 by 15 ; by 25 ; by 75 ; by 95
11. 593004 by 59 ; by 79 ; by 83
12. 100000 by 56 ; by 68 ; by 77 .

SECTION II

CHECKS IN ADDITION

1. Each column is added up and down. Compare results.
2. Add each column separately, then total the sums of all the columns.

The following Example will show the method:

$$
\begin{array}{r}
\$ 25 \cdot 78 \\
39 \cdot 63 \\
48 \cdot 75 \\
62 \cdot 37 \\
\hline \$ 176 \cdot 53
\end{array}
$$

Adding each column separately, we have these totals:

$$
\begin{gathered}
{ }^{23} \\
23 \\
15 \\
\hline \$ 176 \cdot 53
\end{gathered}
$$

The sum of the separate totals is $\$ 176 \cdot 53$.

EXERCISE 16

1. Add and test these four questions in 4 minutes:
(a) $\$ 475 \cdot 32$
(b) $\$ 763.42$
(c) $\$ 598 \cdot 64$
(d) $\$ 723 \cdot 54$
$69 \cdot 58$
$895 \cdot 85$
$276 \cdot 38$
$895 \cdot 37$
$367 \cdot 42$
$763 \cdot 29$
$493 \cdot 65$
$28 \cdot 69$
9.87
$483 \cdot 65$ $728 \cdot 37$
$5 \cdot 43$
$425 \cdot 34$
$78 \cdot 87$
$89 \cdot 42$
$986 \cdot 59$
$78 \cdot 49$
$946 \cdot 58$
8.69
$473 \cdot 82$
2. Add and test the following four questions in 6 minutes:
(a) $\$ 987 \cdot 65$
$483 \cdot 78$
$695 \cdot 99$
$468 \cdot 37$
$825 \cdot 96$
$748 \cdot 35$
$65 \cdot 84$
$738 \cdot 59$
(b) $\$ 786 \cdot 39$
$594 \cdot 87$
$648 \cdot 32$
$780 \cdot 96$
$478 \cdot 30$
$64 \cdot 82$ $7 \cdot 54$
$896 \cdot 47$
(c) $\$ 985 \cdot 43$
(d) $\$ 467.81$ $293 \cdot 84$ $684 \cdot 79$ 573.68 $264 \cdot 35$ 587-49 $693 \cdot 85$ 468.73
$276 \cdot 98$
$15 \cdot 43$
$879 \cdot 68$
$8 \cdot 57$
$694 \cdot 83$
$725 \cdot 78$
3. Add and test the following questions in 8 minutes:
(a) $\$ 5837 \cdot 29$
(b) $\$ 2938 \cdot 67$
(c) $\$ 5946 \cdot 38$
9407.08
$6835 \cdot 47$ $5286 \cdot 38$
$2759 \cdot 47$
9684-89
$5643 \cdot 75$ $9895 \cdot 49$
4863.89
9859 -48
$6743 \cdot 72$
9834.56
$5987 \cdot 65$
$8743 \cdot 29$
$9384 \cdot 64$
$7865 \cdot 78$
$8939 \cdot 64$
$7654 \cdot 83$
4. Add and test each question in 2 minutes:

(a) \$14962.08	(b) $\$ 363.97$	(c) $\$ 493 \cdot 64$
27589.73	28.54	(c) 280.09
$463 \cdot 29$	758.92	$59 \cdot 60$
$8758 \cdot 46$	$983 \cdot 47$	827.54
98906.53	$655 \cdot 68$	$694 \cdot 73$
$79483 \cdot 75$	$753 \cdot 47$	928.59
$84569 \cdot 48$	9.89	$476 \cdot 68$
	$948 \cdot 65$	829.54
	753.84	$673 \cdot 29$
	296.53	486.58

CHECKS IN SUBTRACTION

To test the correctness of an answer in subtraction, add the remainder (answer) to the subtrahend. The sum should equal the minuend.

EXERCISE 17

1. Subtract and test two questions in 1 minute:
(a) $\$ 5894 \cdot 26$ $2938 \cdot 78$
(b) $\$ 9473 \cdot 72$
(c) $\$ 5475 \cdot 06$
(d) $\$ 4000 \cdot 00$ $\stackrel{4829 \cdot 37}{ }$
$2999 \cdot 39$ $2756 \cdot 43$
(e) $\$ 7948 \cdot 63$
1299.99
$\$ 7478 \cdot 00$
(g) $\$ 2895 \cdot 42$
(h) $\$ 3281 \cdot 63$

-

1297.38
$1289 \cdot 76$
$1899 \cdot 47$
2. Find each balance after the following deposits and withdrawals have been made. Check your last balance in each Example by adding withdrawals and subtracting the sum from the deposit.
(a) Deposit $\$ 100$. Withdrawals, $\$ 25 \cdot 37, \$ 16 \cdot 09$, $\$ 32 \cdot 33$, \$15.06.
(b) Deposit $\$ 1000$. Withdrawals, $\$ 246 \cdot 33, \$ 347 \cdot 20$, \$199•39.
(c) Deposit $\$ 8000$. Withdrawals, $\$ 3415 \cdot 03, \$ 1699 \cdot 48$, $\$ 2543.06$.

ORAL EXERCISE IN THE MAKING OF CHANGE
Make the change in the following transactions orally and by the additive method:

Amount of Purchase
Amount given

1. $\$ 4 \cdot 21$
2. $\$ 1 \cdot 18$
3. .87
4. $\$ 1 \cdot 31$
5. $\$ 1 \cdot 56$
6. $\$ 3 \cdot 42$
7. $\$ 3 \cdot 99$
8. $\$ 4 \cdot 18$
9. $\$ 5 \cdot 03$
10. $\$ 5 \cdot 17$
11. $\$ 6 \cdot 23$
12. $\$ 8 \cdot 19$

	$\$ 5 \cdot 00$
	$\$ 5 \cdot 00$
cheque	
cheque	
cheque	$\$ 2 \cdot 00$
	$\$ 1 \cdot 50$
	$\$ 4 \cdot 00$
	$\$ 5 \cdot 00$
	$\$ 5 \cdot 00$
	$\$ 6 \cdot 00$
	$\$ 6 \cdot 00$
	$\$ 10 \cdot 00$
	$\$ 10 \cdot 00$

CHECKS IN MULTIPLICATION

1. Interchange multiplier and multiplicand and find the product. This product should be the same as the former product.
2. Divide the product by (a) the multiplier, or (b) the multiplicand. If the quotient obtained in (a) is the multiplicand or in (b) the multiplier, the product is correct.

EXERCISE 18

1. Find the value of and test one example in 2 minutes:
(a) 8597×418
(f) 8659×597
(b) 6408×593
(g) 6742×681
(c) 8749×426
(h) 5093×576
(d) 7054×369
(i) 3020×498
(e) 9824×438
(j) 5486×307

ORAL EXERCISE

Find the value of:

1. $8 \times 5 \times 7$	8. $9 \times 8 \times 5$	15. $9 \times 5 \times 10$
2. $8 \times 6 \times 3$	9. $6 \times 5 \times 12$	16. $7 \times 6 \times 8$
3. $7 \times 9 \times 5$	10. $7 \times 9 \times 6$	17. $8 \times 8 \times 8$
4. $11 \times 10 \times 9$	11. $11 \times 12 \times 10$	18. $9 \times 9 \times 9$
5. $8 \times 6 \times 7$	12. $9 \times 10 \times 12$	19. $11 \times 11 \times 11$
6. $12 \times 5 \times 8$	13. $7 \times 4 \times 9$	20. $12 \times 12 \times 12$
7. $4 \times 9 \times 8$	14. $8 \times 6 \times 7$	

Market Quotations, November 13th, 1919

1. Produce:

Eggs-New laid, 78c. per doz.
No. $1 \quad 61 \mathrm{c}$.
Select 65c." "
Butter-Creamery Prints 64c. a lb.
Choice Dairy Prints 55c. "
Oleomargarine-choice 37c. "
Cheese 31c. "
2. Poultry:

Spring chickens-(dressed)	28c. a lb.		
Hens-	"	26 c.	"
Ducklings-	"	28 c.	"
Turkeys-		37c.	

3. Grain, Flour and Feed:

Ontario Fall wheat No. $1 \quad \$ 2 \cdot 06$ per bu. " Spring wheat No. $1 \$ 2.08$ " "
" oats
" barley
" peas
Shorts
Bran
Feed flour
Flour

.95	"	"
$\$ 1.65$	"	"
$\$ 2.50$	"	"

4. Fruit:

Valencia oranges
California lemons
Florida grape fruit
Grapes
Apples (Spy)
$\$ 6 \cdot 50$ per case
$\$ 7 \cdot 25$
$\$ 4 \cdot 75$
$\$ 4 \cdot 50$
$\$ 7 \cdot 50$ "
$\$ 7$
5. Vegetables:

Tomatoes
Potatoes
Carrots
Celery

> .75 per basket $\$ 2 \cdot 35$ " bag $\$ 1 \cdot 25$ " "
> .75 a doz.

EXERCISE 19

Using prices quoted above, find the value of the follow ing purchases:

1. 4 doz. No. 1 eggs

5 lb . of dairy butter
1 spring chicken weighing 4 lb .
2 bags of potatoes.
2. 5 lb . of margarine

2 lb . of cheese
1 turkey weighing 11 lb .
2 baskets of tomatoes
1 cwt. of flour.
3. 47 bu . of Spring wheat

75 " " oats
32 " " barley.
4. 3 cases of oranges 2 cases of lemons 4 bbl . of apples.
5. 15 doz. new laid eggs

12 lb . of creamery butter
2 ducklings together weighing 11 lb .
1 bag of carrots.
6. 3 tons of bran

4 tons of shorts
7 bags of feed flour
1 cwt. of flour.
7. 5 doz. celery

4 bags of potatoes
3 bbl . of apples
2 bu . of peas.
8. 4 dressed chickens, total weight 18 lb .

3		hens				
6	"	turkeys	"	"		
7	"	ducklings	"	-		

CHECKS IN DIVISION

1. The remainder added to the product of the quotient and the divisor should equal the dividend.
2. Take the remainder from the dividend, divide this difference by the quotient, and the answer should be the first divisor.

EXERCISE 20

Divide and test one question in 2 minutes:
(a) 46783 by 267
(f) 48756 by 354
(b) 74365 by 265
(g) 68473 by 378
(c) 94284 by 463
(h) 59506 by 809
(d) 82967 by 349
(i) 40738 by 607
(e) 93825 by 429
(j) 59476 by 833

EXERCISE 21

> (Practical Problems in Addition, Subtraction, Multiplication, and Division)

1. Harry deposited in the Savings Bank $\$ 4.75$ in January, $\$ 8.63$ in February, $\$ 5.91$ in March, $\$ 7.42$ in April, $\$ 3.78$ in May, and $\$ 4.75$ in June. How much did he deposit in the six months?
2. Mary went to the store with a $\$ 20$-bill. She bought 9 yards of cloth for a dress at $\$ 1.35$ a yard. What change should she receive?
3. Find the cost of 13 tons of coal at $\$ 11.50$ a ton.
4. A farmer makes 78 gallons of maple syrup. What should he receive for it at $\$ 1.75$ a gallon?
5. How many lb . of butter at 49 c . a lb . can I purchase with $\$ 31 \cdot 85$?
6. In a bu. of wheat there are 60 lb . How many bushels and pounds are there in a load which weighed 3498 lb.?
7. What is the value of 18 bags of potatoes if each bag contains 2 bushels and a bushel is worth $\$ 1 \cdot 25$?
8. What is the total amount of the following purchases: 2 lb . of butter at 47 c . a lb., 6 lb . of fish at 18 c . a lb., 3 bars of soap at 12 c ., 4 spools of thread at 7 c . a spool?
9. In a bu. of oats there are 34 lb . How many bushels and pounds are there in a load which weighs 3498 lb.?
10. If a man earns $\$ 43 \cdot 75$ in 7 days, what should he earn in 21 days?
11. How many tons of hay at $\$ 14$ per ton must I sell to pay for 200 bushels of wheat worth $\$ 2 \cdot 17$ a bushel?
12. If oranges are worth 48 c . a doz., what are 8 boxes worth, each box containing 30 doz.?
13. A farmer sold a farm for $\$ 7950$. It cost him $\$ 6527$. Find his gain.

NUMBERS, FACTORS, AND DIVISORS

ODD AND EVEN NUMBERS

From the following list of numbers select those into which 2 will divide and leave no remainder: $7,8,11$, $14,18,21,24,29$. These numbers are called even numbers. The others-7, 11, 21, 29, each of which leaves a remainder when 2 is divided into it, are called odd numbers.

FACTORS

What is the product of 3 and 5 ?
3 and 5 are said to be the factors of 15 .
Of what number are 4 and 7 the factors? 3 and 8? 6 and 11? 4 and 9 ? 5 and 12?

Give the factors of the following numbers:

$$
63,84,72,96,75,88,108,125 .
$$

INTEGERS

Whole numbers such as $4,5,7,17,22,98$, etc., are called integers.

Name six numbers which are integers. Name a number which is not an integer.

DIVISOR AND FACTOR

Any integer which will divide another integer without leaving a remainder is an exact divisor of that integer.

Name at least two exact divisors of each of the following numbers:

$$
12,15,16,27,33,42,45,56,64,72
$$

The exact divisors which multiplied together make an integer are called the factors of that integer.

An exact divisor of an integer is always a factor of that integer.

Name a factor of: $10,22,28,32,45,77,81,90$.
Name the factors of: $10,21,28,42,56,63,72,88$.

COMMON FACTOR

The factors of 35 are 5 and 7 .
The factors of 45 are 5 and 9 .
What factor is common to both 35 and 45 ?
Five is said to be a common factor of 35 and 45.

ORAL EXERCISE

1. Select the even numbers from the following list of numbers: $9,14,38,46,53,74,82,85$.
2. Select the odd numbers from the following list: $12,17,34,37,62,65,69,72,79,81,84$.
3. State the factors of: $48,54,72,65,110,108,120$, 144, 240.
4. What common factors have: 32 and $48 ; 25$ and 40 ; $33,55,88 ; 96,108$, and $120 ; 36,45$, and $63 ; 24,56,88$; 110,121 , and 132 ?
5. Factor $32,48,56,84,96$, in as many ways as you can.

PRIME NUMBER AND PRIME FACTOR, COMPOSITE NUMBER

What factors have the numbers: $5,7,11,17,23,29$, 1,47 ?

A number which has no factors except the number 1 and itself is called a prime number.

A prime number which is a factor of a number is called a prime factor.

Name six prime numbers.
Select a prime factor of each of the numbers: $6,8,12$, $14,20,24,36,42,45,48,54,56$.

A number, such as $12,15,18,36$, or 44 , composed of factors other than itself and the number 1 is called a composite number.

Which of the following numbers are prime and which are composite: $3,6,13,23,24,32,37,41,45,49,59$?

TO EXPRESS A COMPOSITE NUMBER AS THE PRODUCT OF ITS PRIME FACTORS

Sometimes it is necessary to express a number which is composite as the product of its prime factors. The following Example will show how this is done:

$$
\begin{aligned}
924 & =2 \times 462 \\
& =2 \times 2 \times 231 \\
& =2 \times 2 \times 7 \times 33 \\
& =2 \times 2 \times 7 \times 3 \times 11 .
\end{aligned}
$$

Explanation:

The factors of 924 are 2 and $462 ; 2$ is a prime factor, while 462 is composite; a prime factor of 462 is $2 ; 924=$ $2 \times 2 \times 231$. The number 231 is composite. 7 is a prime factor of 231 . Hence, the number $924=2 \times 2 \times$ 7×33, and the prime factors of 33 are 3 and 11 .

Hence, $924=2 \times 2 \times 7 \times 3 \times 11$.

EXERCISE 22

1. Express each of the following numbers as the product of its prime factors:
(a) 324
(d) 392
(g) 605
(j) 1962
(b) 336
(e) 420
(h) 840
(k) 4335
(c) 390
(f) 495
(i) 882
(l) 5390

DIVISION BY FACTORS

If a divisor is composite and can easily be resolved into factors, these factors, instead of the divisor itself, may be used to make the division. The following Example will illustrate the method:

Divide 4284 articles into groups of 84 .

1. Dividing in the usual way:

51
84)4284

420
84 There are 51 groups
84 with 84 in each group.
2. Dividing by factors:

The factors of 84 are 7 and 12.
7) 4284 articles
12) $\overline{612}$ groups of 7 "

Explanation:
The problem is to divide 4284 articles into groups of 84. The 4284 articles are first divided into groups of 7. There are 612 of these. To make the groups of 84 , it is necessary to put together 12 groups of 7 as often as possible out of the 612 groups of 7. Twelve is contained in 612, 51 times. Hence, there are 51 groups of 84 .

EXERCISE 23
Divide, using two factors-Examples (1-9); using 3 factors-Examples (10-12):

1. 1305 by 15
2. 8631 by 63
3. 4257 by 33
4. 6264 by 72
5. 5754 by 42
6. 12042 by 54
7. 40032 by 48
8. 30912 by 84
9. 19096 by 56
10. 3720 by 30
11. 96915 by 105
12. 91960 by 110

BILLS

Mrs. Wm. Stone of 500 Grace Street, Toronto, went to Mr. F. Manning's grocery store, 910 West Street, Toronto, on Oct. 21st, 1919, to make a purchase. Mr. Manning wrote in his order book a list of the groceries which Mrs. Stone wished to buy, and then filled the order. Suppose Mrs. Stone bought the following gro-
ceries and paid cash for them: 3 doz. eggs @ 65c. a doz., 1 lb . of cheese @ 39 c . a lb., 2 lb . of butter @ $57 \mathrm{c} . \mathrm{alb} ., 1 \mathrm{lb}$. of tea @ $50 \mathrm{c} . \mathrm{alb}$. She received from Mr. Manning along with the goods a bill of the goods which she bought. This was the form of the bill which she received. Mr. Manning kept a copy of it. Why?

Toronto, Oct. 21st, 1919.
Mrs. Wm. Stone, 500 Grace Street, Toronto.

This bill is footed (totalled) and receipted.
If Mrs. Stone had not paid for the goods, the word "Charge" would have taken the place of "Paid," and Mr. Manning would then have entered the items in Mrs. Stone's account.

EXERCISE 24

1. Make out in proper form the following bills. In each Example suppose one of your class-mates is the salesman and you the buyer. Receipt the bill in each case.
(a) 1 Reader 15 c .

1 P. S. Arithmetic 10c. pencils 5 c .
2 work books @ 5 c.
1 pen and penholder 7c.
1 bottle ink 10 c.
(b) 4 lb . ham @ 65c.

3 lb . butter @ 55 c .
1 can tomatoes 25 c .
1 pk . potatoes 60 c .
(a) 2 packages breakfast food (a) 15 c .

2 lb . cheese @ 37 c .
3 lb . fish @ 18c.
1 bottle catsup 30c.
1 can corn 25 c .
(d) 1 fishing-tackle $\$ 1.90$

1 doz. hooks @ 30c. a doz.
1 fish-line @ $\$ 1.25$
1 basket $\$ 1 \cdot 75$
1 fishing-pole $\$ 2.50$
(*) 2 suits of clothes @ $\$ 27$
2 hats @ $\$ 3.25$
3 ties (a) $\$ 1 \cdot 25$
4 collars @ 25c.
6 handkerchiefs @ 20c.
2. Make out in proper form a bill such as might be made out by the bookkeeper of a hardware store. Make the bill contain 4 items. Foot and receipt the bill.
3. Make out in proper form a bill such as might be made out by the bookkeeper of a fruit store. Make the bill contain 5 items. Charge the bill of goods.
4. Make out in proper form the bills that the bookkeepers of the following stores might make out: A cloth-
ing store, a furniture store, a meat store, a drug store, a stationery store, a dry-goods store. Make each bill contain 6 items and receipt it.

ACCOUNTS

It has already been shown that in a bill there are given the details of a business transaction between two persons, which has taken place on a certain date. In an account there is usually a record of a number of transactions between the same persons, which have taken place on different dates during a period of time, say a month.

The following Example will explain the meaning of an account and illustrate the difference between a bill and an account.
Suppose Mrs. Stone buys from Mr. Manning on different days the following groceries and asks him to charge each purchase to her account:

$$
\begin{aligned}
\text { 1919, Nov. 3rd. } & \begin{array}{l}
3 \text { packages breakfast food @ } 15 \mathrm{c} . \\
\\
3 \mathrm{lb} . \text { oatmeal @ } 10 \mathrm{c} .
\end{array} \\
\text { Nov. 8th. } & \begin{array}{l}
3 \mathrm{lb} . \text { ham @ } 68 \mathrm{c} . \\
2 \mathrm{cans} \text { tomatoes @ } \\
\\
5 \mathrm{lb} . \text { butter @ } 60 \mathrm{c} .
\end{array} \\
\text { Nov. 15th. } & 2 \text { doz. eggs @ } 65 \mathrm{c} . \\
& 1 \mathrm{lb} . \text { chesese @ } 40 \mathrm{cc} . \\
& 3 \mathrm{lb} . \text { biscuits @ } 30 \mathrm{c} .
\end{aligned}
$$

At the time each purchase is made, Mr. Manning makes out a bill of the goods purchased and gives it with the goods to Mrs. Stone. He also keeps a copy of each bill and enters the items of it in Mrs. Stone's account. If on Nov. 20th. she pays $\$ 3$ on her account and on Nov. 28th. she pays $\$ 2$, the following is the form of the account which Mr. Manning would send her on Dec. 1st.:

EXERCISE 25
Make out the following accounts in good form. In each Example suppose you are the merchant and one of your class-mates the buyer.

A April 5th. 3 yd. ribbon (a) 60c.
4 yd. dress goods @ $\$ 1 \cdot 50$
April 12th. 1 hat $\$ 6.50$
1 coat $\$ 27 \cdot 50$
April 18th. 1 pair boots $\$ 14.00$
1 pair rubbers $\$ 1 \cdot 75$

On April 28th, $\$ 25$ was paid on account. Account rendered April 30th.
8. Jan. 3rd. 1 pair skates $\$ 5 \cdot 50$

1 pair boots $\$ 4 \cdot 50$
Jan. 9th. 1 hockey stick 75c.
1 puck 75 c .
Jan. 15th. 1 breast pad $\$ 7.75$
1 pair gloves $\$ 3.50$
On Jan. 25th, $\$ 10$ is paid. On Jan. 30th, $\$ 5$ is paid. Account rendered Jan. 31st.
2. Feb. 2nd. 1 suit of clothes $\$ 38.00$

1 overcoat $\quad 32.00$
1 cap $\quad 2 \cdot 25$
1 pair gloves $\quad 1.75$
Mar. 15th. 1 tie 1.75
1 neck scarf $\quad 2.50$
On March 30th, paid $\$ 25$. On April 20th, paid $\$ 25$. Account rendered April 30th.
A. May 1st. 3 lb . pork @ 40c.

1 chicken 4 lb . @ 26c.
May 30th. 2 lb . beefsteak (a) 35c.
2 lb . cold tongue @ 65 c .
June 15th. 5 lb . roast @a) 42c.
2 lb . tenderloin 52 c .
On June 30th, account is paid in full. Render account receipted.

RECEIPTS

John Hill pays James Burns $\$ 37 \cdot 50$ for work done and asks Mr. Burns for a receipt. The following is the form which the receipt might take:

\$37.50 Kingston, Oct. 15th, 1919.	
Received from.	John Hill.
Thirty-seven..	.50/100 Dollars
	James Burns

EXERCISE 26

1. What kind of receipt does a postman take when he delivers a registered letter?
2. Write the receipt a grocer would give in payment of a monthly account of $\$ 47 \cdot 75$.
3. James Smith receives from Henry Brown $\$ 125$ for 5 months' rent. Write the receipt.
4. Arthur Mann pays his coal bill- $\$ 137 \cdot 50$-to James Squire, the coal-dealer. Write the receipt.
5. Samuel Perry pays to Amos Farrell $\$ 150$ balance due on his automobile. Write the receipt.
6. Assuming that you are a collector for a newspaper, make out a receipt to a subscriber who has paid you $\$ 4 \cdot 00$ for a year's subscription to a Toronto daily paper.
7. Write out a receipt which one might receive from a family doctor for medical services rendered.

EXERCISE 27

> (Aggregates and Averages)

1. Find the sum of the 5 numbers, $6,7,8,9,10$.
2. What number taken 5 times is equal to that sum? 8 is said to be the average of the 5 numbers, and 40 is said to be the sum, or aggregate, of the 5 numbers.

3 . Find the average of the 4 numbers, $7,11,15$, and 19.
4. Find the aggregate and the average of the following weights: 38 lb ., 54 lb ., and 73 lb .
5. The weights of 4 boys are: $78 \mathrm{lb} ., 84 \mathrm{lb}$., 69 lb ., and 92 lb . What is the aggregate and average weight of the 4 boys?
6. In six working days of a week Mary earned the following amounts: 75 c ., $\$ 1 \cdot 10,85 \mathrm{c}$., 60 c ., 95 c ., and 55 c . How much did she earn altogether? What is the average daily amount which she earned?
7. Five boys earned by the sale of vegetables from their school gardens the following amounts: $\$ 6 \cdot 32, \$ 4 \cdot 61$, $\$ 3 \cdot 75, \$ 5 \cdot 02$, and $\$ 2 \cdot 60$. What was the aggregate amount from the five gardens? What was the average amount obtained from each garden?
8. Grace put in the Penny Savings Bank in 4 weeks the following sums: $\$ 2 \cdot 57, \$ 3 \cdot 62, \$ 1 \cdot 89$, and $\$ 2 \cdot 24$. What was the average sum put in each week?
9. Harry purchased 7 school books and paid as follows for them: 15 c ., 25 c ., 18 c ., 9 c ., 14 c ., 10 c ., and 7 c . What was the aggregate and average price of the books?
10. A man delivered 4 loads of coal. The weight of the first load was 2150 lb ., of the second 1975 lb ., of the third 2260 lb ., and of the fourth 2315 lb . What was (a) the aggregate weight of the 4 loads? (b) the average weight of the loads?

LIQUID MEASURE

Find out, by using the pint, quart, and gallon measures, and some water, the number of pints in one quart and the number of quarts in one gallon.

Fill in the blanks in the following table:

$$
\begin{aligned}
& .2 \text { pints }=1 \text { quart } \\
& .4 \text { quarts }=1 \text { gallon. }
\end{aligned}
$$

EXERCISE 28

1. A pail of milk contains 2 gal. How many quarts does it contain? How many pints? What is the value of the pail of milk at 7 cents a pint?
2. How many pints are there in 10 quarts? in 12 quarts? in 9 quarts? in 15 quarts? in 25 quarts?

3 . What is the value of a 10 -quart pail of milk at 6 cents a pint?
4. How many pint bottles can a milkman fill from a 5 -gal. can of milk?
5. A grocer buys a barrel of vinegar which contains $31 \frac{1}{2} \mathrm{gal}$. What does it cost him at 8 c . a quart?
6. The gasoline tank in an automobile holds 8 gal. What will it cost to fill the tank with gasoline at 42c. a gal.?
7. What is a bbl. of coal-oil (42 gal .) worth at 24 c . a gal.?
8. What is the value of a 3 -gal. can of maple syrup at 70c. a quart?
9. Three casks of wine hold, respectively, 40 gal., 35 gal., and 27 gal. How many quart bottles can be filled from the three casks?

DRY MEASURE

Name some dry articles purchased by the pint, by the quart, by the gallon, by the peck, by the bushel.

Use sawdust or grain, and the pint, quart, gallon, peck, and bushel measures to find the number of pints in a quart, the number of quarts in one gallon, the number of gallons in one peck, and the number of pecks in one bushel.

Fill in the following blanks, then memorize the table:

$$
\begin{aligned}
& .2 \text { pints = } 1 \text { quart (qt.) } \\
& .4 \text { quarts }=1 \text { gallon (gal.) } \\
& .2 \text { gallons }=1 \text { peck (pk.) } \\
& .4 \text { pecks }=1 \text { bushel (bu.). }
\end{aligned}
$$

ORAL EXERCISE

1. How many pints in 6 qt? in 9 qt.? in 11 qt. 1 pt.?
2. How many quarts in 22 pt.? in 32 pt.? in 46 pt.?

3 . What is the value of 5 qt . of currants at 12 c . a pt.?
4. What is the value of 33 pints of cherries at 8 c . a qt.?
5. A basket contained 15 qt. of raspberries. What are the berries worth at 15 c . a pt.?
6. How mapy quart boxes can be filled from 4 baskets of strawberries, each basket containing 16 quarts? What is their value at 30 c . a box?
7. How many gal. in 2 pk .? in 3 pk ? in 4 pk . 1 gal.? in 5 pk. 1 gal.?
8. How many pk. and gal. in 10 gal.? in 14 gal.? in 22 gal.? in 25 gal.? in 31 gal.?
9. A farmer feeds a team of horses 3 pk . of oats each day. What is the cost of feeding the team for 1 week if oats are worth 10 c . a gal.?
10. What is the value of 3 pk .1 gal . of oats at 24 c . a pk.?
11. How many pk. in 3 bu.? in 7 bu.? in 12 bu.? in 6 bu. 2 pk.? in 9 bu. 3 pk.?
12. How many bu. and pk. in 8 pk.? in 12 pk ? in 20 pk .? in 33 pk .? in 46 pk .?
13. What is the value of a bag of potatoes, $1 \frac{1}{2}$ bu., (a) 40 c . a pk.?
14. A grocer purchases 3 bu. of plums. What are the plums worth at 6 c . a qt.?

CANADIAN MONEY

1. Ask your father the rate of his taxes for last year, also for this year. What is his answer?

Canada has no coin the value of which is 1 mill. But it has a unit called a mill; 10 of these units are equal in value to 1 cent.

Fill in the following blanks and then memorize the table:
\ldots. mills $=1$ cent (c.)
\ldots. cents $=1$ dollar (\$)
One half of 1 dollar $=\ldots$. cents $=\ldots$. quarters of 1 dollar
One quarter of 1 dollar $=\ldots$. cents
Three quarters of 1 dollar $=\ldots$. cents.

ORAL EXERCISE

1. How many mills are there in 1 cent? in 2 cents? in 3 cents? in 5 cents? in 10 cents?
2. How many cents are there in 20 mills? in 40 mills? in 60 mills? in 100 mills? in 1000 mills?
3. How many mills in $\$ 2$? in $\$ 3$? in $\$ 11$? in $\$ 20$?
4. How many dollars are there in 1000 mills? in 5000 mills?
5. What are the taxes on a house worth $\$ 3000$ if the taxes are 30 mills on every dollar?
6. How many dollars and cents are there in each of the following number of mills: 4500 mills? 4560 mills? 5790 mills? 9260 mills? 15460 mills?
7. Find the sum of the following in dollars and cents: $\$ 4,37 \mathrm{c}$., $\$$?, 700 mills, $\$ 9 \cdot 28$.

BRITISH STERLING MONEY

Note to Teacher.-Procure, if possible, an English farthing, a penny, a shilling, and a pound sterling.

1. Compare the value of the English penny with a Canadian cent.
2. To what Canadian coin is the English shilling almost equal?
3. What is the value of the English pound in Canadian money?
4. Complete the following table, then memorize it:
\ldots. farthings $=1$ penny (d .)
\ldots pence $=1$ shilling (s .)
\ldots shillings $=1$ pound ($£$).
5. Complete the following table:
```
1 farthing = ....cent (nearly)
    1 penny = .... cents (nearly)
    1 shilling = ....cents (nearly)
    1 pound = ....dollars and ....cents.
```

 EXERCISE 29
 1. How many pence in 2 shillings? in 5 shillings? in 20 shillings? in 1 pound?
2. How many shillings and pence in 24 pence? in 36 pence? in 30 pence? in 50 pence? in 100 pence?
3. How many pence in 756s.? in 12s. 3d.? in 15 s . 9 d .?
4. How many shillings in $£ 1$? in $£ 5$? in $£ 12$? in £25?
5. How many shillings in £5 6s.? £12 7s.? £25 2s.?
6. Reduce $£ 125$ s. 3d. to pence.
7. Reduce 985 pence to $£$ s. d.
8. Find the value in $£$ s. d. of 157 yards of ribbon @ 6c. a yard.

LONG, OR LINEAR, MEASURE

Complete the following table and memorize it:

$$
\begin{aligned}
& . / 2 \text { inches (in.) }=1 \text { foot }(1 \mathrm{ft} .) \\
& 3 . \text { feet (ft.) }=1 \text { yard }(1 \mathrm{yd} \text {) } \\
& 1760 \text { yards (yd.) }=1 \text { mile. } \\
& 5 \frac{1}{2}
\end{aligned}
$$

ORAL EXERCISE

1. Express the width of your school-room in feet and inches.
2. Express the length of your school-room in feet and inches.
3. Measure the length and the width of your school-room in yards, feet, and inches.
4. Measure thelength and the width of the school grounds in yards and feet. How many feet in the length? How many feet in the width?
5. Measure the width of the road or street in yards. How many feet wide is it?
6. How many inches in 6 ft .3 in .? in 7 ft .8 in .? in 9 ft .5 in ? in 12 ft .2 in.?
7. How many feet and inches in 27 in ? in in.? in 56 in.? in 75 in.? in 87 in.? in 100 in.?
8. Measure in inches the length of the black-board in the front of the room. How many feet and inches in its length?
9. How many feet in 9 yd .? in 13 yd .? in 17 yd .? in 24 yd.?
10. How many yards and feet in 32 ft .? in 68 ft ?? in 76 ft .? in 85 ft ? in 93 ft ?
11. A field is 220 yards long. How many feet long is it?
12. How many yards in 1 mile? in 2 miles?

EXERCISE 30

1. How many yards in 3 miles? in 7 miles? in 4 mi .220 yd .? in 5 mi .440 yd .?
2. What part of a mile is 880 yd .? is 440 yd .?
3. If a field is 220 yards de, how many such fields would there be along a road 1 mile 440 yards long?
4. What will it cost to pave a street 1540 yards long at $\$ 3.50$ a foot?
5. What will it cost to dig a ditch $1 \frac{1}{2}$ miles long at $\$ 1 \cdot 25$ a yard?
6. How long will it take a boy to run 100 yards if he runs 20 feet a second?
7. Find how many feet in 1 mile.
8. An aeroplane flies 88 yards a second. How many miles will it fly in 1 minute? in 1 hour?

9 . Find the cost of 20 miles of telephone wire at 35 c . a lb., if a lb. will stretch 80 feet?
10. An automobile is travelling at the rate of 24 miles an hour. How many yards does it travel in 1 minute?

AVOIRDUPOIS WEIGHT

Name some articles that are bought by the ounce, by the pound, by the hundredweight, by the ton.

Find out by experiment how many ounces there are in 1 pound.

Fill in the blanks of the following table, then memorize it.

$$
\begin{aligned}
& \text { 16. ounces }=1 \text { pound (lb.) } \\
& 20 \text { pquyds }=1 \text { hundredweight (cwt.) } \\
& 200 \text { pounds }=1 \text { ton (T.) }
\end{aligned}
$$

EXERCISE 31

1. How many ounces in 1 lb .? in 3 lb .? in 4 lb ? in 6 lb .? in $2 \frac{1}{2} \mathrm{lb}$.? in $3 \frac{1}{4} \mathrm{lb}$.?
2. How many pounds and ounces in 32 oz .? 48 oz .? 60 oz .? 84 oz .?
3. How many ounces in 3 lb .5 oz .? 5 lb .9 oz .? 7 lb . 4 oz .?
4. How many pounds and ounces in 42 oz .? 69 oz .? 88 oz.? 114 oz.?
5. What is the value of 32 oz . of butter at 65 c . a lb.?
6. What is the value of 48 oz . of margarine at 36 c . a lb.?
7. What is the value of 56 oz . of coffee at 50 c . a lb.?
8. What is the value of 600 lb . of flour @ $\$ 10.50 \mathrm{a}$ cwt.?
9. What is the value of 800 lb . of coal @ 65 c . a cwt.?
10. What is the value of 3 beef cattle, total weight 3950 lb ., at $\$ 14 \mathrm{a}$ cwt.?
11. A load of hay weighs 3000 lb . What is its value at $\$ 16$ a ton?
12. What is the value of 4000 lb . of bran at $\$ 54 \mathrm{a}$ ton?

In business it is generally more convenient to use the weight of a bushel than it is to use the measure of a bushel, hence the following weights have been fixed by law:

1. A bushel of wheat, of peas, of clover seed, of beans, or of potatoes weighs 60 lb .
2. A bushel of rye, of Indian corn, or of flax seed weighs 56 lb .
3. A bushel of barley, of timothy seed, or of buckwheat weighs 48 lb .
4. A bushel of beets, of carrots, of onions, or of turnips weighs 50 lb .
5. A bushel of oats weighs 34 lb .

The following facts are also important:
1 barrel of flour weighs 196 lb .

$$
1 \text { " " pork " } 200 \mathrm{lb} \text {. }
$$

ORAL EXERCISE
What is the value of:

1. 180 lb . of wheat @ $\$ 2 \cdot 10 \mathrm{a}$ bu.?
2. 150 lb . of wheat @ $\$ 2 \cdot 00 \mathrm{a}$ bu.?
3. 96 lb . of barley @ $\$ 1 \cdot 25 \mathrm{a}$ bu.?
4. 360 lb . of peas @ $\$ 3 \cdot 20 \mathrm{a}$ bu.?
5.102 lb . of oats @ 85c. a bu.?
5. 90 lb . of clover seed @ $\$ 36 \cdot 00 \mathrm{a}$ bur.?
6. 112 lb . of flax seed @ $\$ 8 \cdot 00 \mathrm{a}$ bu.?
7. 144 lb . of timothy seed @ $\$ 12 \cdot 00$ a bu.?
9.300 lb . of beans @ $\$ 8.40 \mathrm{a}$ bu.?
8. 150 lb . of potatoes @ $\$ 1 \cdot 20 \mathrm{a}$ bu.?

EXERCISE 32
What is the value of:

1. A load of wheat weighing 3360 lb . @ $\$ 2.05$ a bu.?
2. A load of barley weighing 2976 lb . @ $\$ 1.35$ a bu.?
3. A load of oats weighing 2448 lb . @ $\$ 1.02$ a bu.?
4. A load of peas weighing 3240 lb . @ $\$ 3 \cdot 50$ a bu.?
5. A load of potatoes weighing 3540 lb . @ $\$ 2 \cdot 50$ a bu.?
6. A load of beans weighing 3420 lb . @ $\$ 8.75 \mathrm{a}$ bu.?
7. A load of flax seed weighing 3024 lb . @ $\$ 8.50$ a bu.?
8. Three loads of wheat weighing $3090 \mathrm{lb} ., 3210 \mathrm{lb} .$, and 3420 lb . if wheat is worth $\$ 2 \cdot 12 \mathrm{a}$ bu.?

9 . Four loads of oats weighing $2482 \mathrm{lb} ., 2550 \mathrm{lb}$., 2669 lb ., and $2771 \mathrm{lb} .$, @ 98 c . a bu.?
10. What is the value of a bin of barley containing $5760 \mathrm{lb} ., @ \$ 1 \cdot 40$ a bu.?

TIME MEASURE

Complete the following table, then memorize it:

$$
\begin{array}{ll}
\text { Co. seconds (sec.) } & =1 \text { minute (min.) } \\
.60 \text { minutes (min.) } & =1 \text { hour (hr.) } \\
.2, \text { hours (hr.) } & =1 \text { day (da.) } \\
\ldots 7 \text { days (da.) } & =1 \text { week (wk.) } \\
12 \text { months (mo.) } & =1 \text { year (yr.) } \\
3 . \text { days } & =1 \text { common year } \\
\ldots . \text { days } & =1 \text { leap-year } \\
\ldots \text { years } & =1 \text { century. }
\end{array}
$$

Note 1.-The standard unit for measuring time is the mean solar year, which is equal to 365 days, 5 hr .48 min .46 sec ., or nearly $3651 / 4$ days.
Nore 2.-Commit to memory the following lines:

> Thirty days have September, April, June, and November; February has twenty-eight alone-All the rest have thirty-one; But leap-year coming once in four, February then has one day more.

Note 3.-Every year whose number is divisible by 4 is a leapyear, unless the number of the year ends in two ciphers (as 1600, 1900), in which case the date must be divisible by 400 .

Note 4.-Time before noon is indicated by a.m., noon by m., time after noon by p.m.

EXERCISE 33

1. How many hours from 10 a.m. to 3 p.m.?
2. How many hours and minutes from 7 a.m. to 2.30 p.m.?
3. How many hours and minutes from 8 a.m. to 3.15 p.m.?
4. How many hours and minutes from 2.30 p.m. to 8.45 a.m.?

5．How many days from：
（a）Aug．9th．to Aug．25th．？
（b）July 5th．to Sept．4th．？
（c）March 21st．to June 30th．？
（d）Jan．23rd．to Oct．9th．（1919）？
（e）Jan．5th．to Dec．26th．（1920）？
Note．－In finding the time between such dates，leave out the first day；for example，from the 3rd．to the 28th．is 25 days．

6．From a calendar find how many working days there are in the month of March？of April？of July？ of September？of November？

7．A carpenter is at work from 7 a．m．to 12 m ．，and from 1 p．m．to 6 p．m．each day for 6 days in the week． If he earns 75 c ．an hour，how much will he earn in a week？

8．A plumber is engaged on a piece of work from 10 a．m．on Monday till 2 p．m．on Thursday of the next week．His work day is from 8 a． m ．to 12 m ．and from 1 p．m．to 5 p．m．，except on Saturday when it ends at 12 m ．If he charges 75 c ．an hour，how much should he receive？
9.

Time Sheet

Name of Workman	芝	ジ	ت80	吕	品	๗゙ٌ		
John Smith	9	$91 / 2$	8	0	$91 / 2$	8		
James Grant	$81 / 2$	9		9		71／4		
Robt．Jones	10	$91 / 2$		71／2	10	91／2		
Richard Owens	$71 / 2$	9		8	9	10		
Wm．Main	61／4		0		83／4	0		
A．A．James	0		10		9	7		
S．F．Nash	10	10	10	10	10	10		
A．B．Nelson	7	8		10	10	10		

(a) Find the week's wages for each workman.
(b) Find the total wages paid to the eight men.
(c) How much did Wm. Main lose by not working full time?
Note.-The working day is 10 hours.
10. Make out a weekly time sheet for 5 bricklayers. Wages paid $\$ 1 \cdot 25$ an hour, 9 -hour day, double pay for overtime.

MISCELLANEOUS TABLE

12 things. 1 dozen (doz.)
12 dozen things.... 1 gross (gro.)
12 gross. 1 great gross
20 single things..... 1 score
24 sheets of paper... 1 quire (qr.)
20 quires........... 1 ream (rm.)

1. What is the value of 156 eggs @ ${ }^{1} 58 \mathrm{c}$. a doz.?
2. Find the cost of 66 lemons @ 40c. a doz.
3. How old is a man who says he has lived three-score and ten years?
4. What will a gross of lead-pencils cost @ 36 c . a doz.?
5. What is the cost of a great gross of buttons @ 15 c . a doz.?
6. A stationer buys paper @ 40c. a quire and sells it @ 3c. a sheet. What is his gain on a ream?
7. A dealer gets a dozen boxes of pens, each containing one gross. What are the pens worth (a) 1c. each?
8. At a public school promotion examination there are 40 pupils writing. If each pupil is examined in 8 subjects and uses 3 sheets for each subject, how many reams of paper are used?
9. A dealer buys 5 gross of copy-books @ 25c. a doz. and sells them @ 3c. each. What is his gain on the lot?
10. A stationer buys 6 doz. writing tablets @ $\$ 1.75$ a doz. and sells them @ 25c. each. What is his gain on the 6 doz.?

FRACTIONS

ORAL EXERCISE

1. Read the following fractions:
```
\frac{1}{3}},\frac{3}{4},\frac{2}{5},\frac{5}{7},\frac{3}{6},\frac{4}{9},\frac{5}{8},\frac{3}{7},\frac{7}{9},\frac{9}{10},\frac{6}{11},\frac{4}{10},\frac{3}{5},\frac{8}{10},\frac{7}{15},\frac{9}{20}
    \frac{95}{100},\frac{47}{100},\frac{75}{100},\frac{27}{100}.
```

2. Write the following fractions in figures:

Two thirds; three fifths; four sevenths; five ninths; six tenths; seven eighths; seven fifteenths; nine tenths; eight twentieths; twelve twenty-fifths; forty-two hundredths; sixty-seven hundredths; fourteen fiftieths; eighty hundredths.
3. Take the following numbers for denominators, choose a numerator for each denominator, and read the fractions formed:

$$
5,8,7,6,9,12,15,14,17,20,25,100
$$

4. Take the following numbers for numerators, choose a denominator for each numerator, and read the fractions formed:

$$
3,6,4,7,8,9,10,11,14,17,15,18,20
$$

5. Into how many equal parts does each of the following fractions show that the whole has been divided?
$\frac{7}{8}, \frac{5}{9}, \frac{4}{7}, \frac{8}{11}, \frac{3}{9}, \frac{1}{1} \frac{1}{2}, \frac{3}{8}, \frac{4}{8}, \frac{5}{11}, \frac{9}{20}, \frac{7}{25}, \frac{6}{50}, \frac{82}{100}, \frac{47}{100}, \frac{85}{100}, \frac{93}{100}$.
6. How many of the equal parts are taken in each of the fractions in Question (5)?
7. State what each of the following fractions means: $\frac{3}{5}, \frac{4}{9}, \frac{7}{12}, \frac{8}{15}, \frac{9}{16}, \frac{6}{13}, \frac{7}{20}, \frac{8}{25}, \frac{11}{5}, \frac{65}{100}, \frac{83}{100}$.
8. Make a diagram to show $\frac{2}{3}$ of a rectangle, $\frac{4}{5}$ of a rectangle, $\frac{3}{4}$ of a rectangle, $\frac{3}{5}$ of a rectangle, $\frac{9}{10}$ of a rectangle.
9. What part of a foot is 6 inches? is 2 inches? is 8 inches? is 10 inches?
10. What part of a yard is 1 foot? is 2 feet? is 3 feet?

11. What part of $\$ 10$ is $\$ 3$? is $\$ 5$? is $\$ 8$? is $\$ 9$?

12. What part of an hour is 10 min .? is 15 min .? is 20 min .? is 30 min ? is 45 min .? is 50 min .?
13. What is $\frac{2}{3}$ of 12 ? $\frac{3}{4}$ of 20 ? $\frac{2}{5}$ of 14 ? $\frac{3}{5}$ of 25 ? $\frac{4}{8}$ of 27 ? $\frac{3}{11}$ of 33 ? $\frac{4}{7}$ of 35 ? $\frac{5}{12}$ of 48 ? $\frac{9}{11}$ of 66 ?
14. What is $\frac{5}{6}$ of $\$ 60$? $\frac{2}{5}$ of 40 acres? ${ }^{\frac{5}{2}}$ of 48 ft ? $\frac{8}{7}$ of 63 hr .? ${ }^{4} \mathrm{t}$ of 66 dy .? $\frac{3}{4}$ of 36 c .? $\frac{2}{3}$ of 36 tons? $\frac{7}{8}$ of 56 mi .? $\frac{3}{8}$ of $\$ 72$? $\frac{9}{1 Y}$ of $\$ 88$? $\frac{8}{8}$ of $\$ 64$?
15. What is the value of:
(a) $\frac{3}{4} \mathrm{lb}$. of butter @ 44c. a lb.?
(b) $\frac{.}{8} \mathrm{lb}$. of margarine @ 32c. a lb.?
(c) 2 pk . of potatoes $(\$ 1 \cdot 60 \mathrm{a}$ bu.?
(d) $\frac{2}{3}$ of a ton of coal @ $\$ 9$ a ton?
(e) $\frac{5}{6}$ of a bu. of oats © 84 c . a bu.?
(f) $\frac{6}{7}$ of a yard of cloth @ $\$ 1.40$ a yard?
(g) 3 gal. of oats @ 88c. a bu.?
(h) $\frac{3}{4}$ of an acre of flax @ $\$ 140$ an acre?
(i) $\frac{4}{5}$ of a day's work @ $\$ 4 \cdot 50$ a day?
(j) $\frac{3}{5}$ of a barrel of flour (a) $\$ 10 \cdot 50$ a barrel?
16. A farmer had 200 bu . of wheat. He sold $\frac{2}{5}$ of it at $\$ 2$ a bu. How much did he receive for the wheat he sold?
17. A farmer had 100 acres on his farm. He had $\frac{1}{5}$ of it in hay, $\frac{1}{4}$ of it in pasture, and $\frac{1}{10}$ of it in hoed crop. How many acres of hay did he have? of pasture? of hoed crop?

ORAL EXERCISE

1. How many halves in $1 \frac{1}{2}, 2 \frac{1}{2}, 3 \frac{1}{2}, 5 \frac{1}{2}, 4 \frac{1}{2}, 8 \frac{1}{2}, 6 \frac{1}{2}, 9 \frac{1}{2}$, $7 \frac{1}{2}, 10 \frac{1}{2}, 12 \frac{1}{2}$? Why?

Write these mixed numbers as improper fractions.
2. How many thirds are there in:
$1 \frac{1}{3}, 2 \frac{2}{3}, 3 \frac{1}{3}, 4 \frac{2}{3}, 5 \frac{1}{3}, 6 \frac{2}{3}, 7 \frac{1}{3}, 7 \frac{2}{3}, 8 \frac{2}{3}, 9 \frac{1}{3}, 9 \frac{2}{3}, 10 \frac{1}{3}, 11 \frac{2}{3}$? Why?
Write these mixed numbers as improper fractions.
3. How many fourths are there in:
$2 \frac{1}{4}, 3 \frac{3}{4}, 4 \frac{2}{4}, 5 \frac{3}{4}, 6 \frac{1}{4}, 7 \frac{2}{4}, 8 \frac{3}{4}, 9 \frac{2}{4}, 10 \frac{3}{4}, 11 \frac{1}{4}, 11 \frac{2}{4}, 11 \frac{3}{4}$? Why?
4. How many fifths in $2 \frac{3}{5}$? How many sixths in $3 \frac{5}{6}$? How many sevenths in $7 \frac{4}{7}$? How many eighths in 47? How many ninths in 69 ? How many twelfths in $7 \frac{5}{19}$? How many fifteenths in $3_{\frac{3}{15}}$?
5. Reduce each of the following mixed numbers to improper fractions:
$3 \frac{4}{5}, 4 \frac{2}{8}, 7 \frac{3}{6}, 6 \frac{4}{7}, 11_{1 \frac{3}{10}}^{2}, 14 \frac{2}{5}, 16 \frac{2}{3}, 9 \frac{1}{11}, 8 \frac{7}{8}, 9 \frac{5}{7}, 12 \frac{2}{6}, 13 \frac{3}{4}$.
6. Write the following improper fractions as mixed numbers:
$\frac{11}{8}, \frac{15}{4}, \frac{48}{8}, \frac{82}{9}, \frac{73}{6}, \frac{95}{11}, \frac{94}{12}, \frac{79}{14}, \frac{89}{18}, \frac{79}{12}, \frac{107}{18}, \frac{290}{18}, \frac{149}{12}, \frac{280}{9}$.
7. Jack had three half-dollar pieces. How much money did he have?
8. Mary had five quarter-dollar pieces. How much money had she?
9. A gardener had 15 plots of ground all of the same size, with $\frac{1}{8}$ of an acre in each plot. How many acres of land had he?
10. What is the value of:
(a) $1 \frac{7}{8}$ acres of land @ $\$ 80$ an acre?
(b) $2 \frac{3}{4} \mathrm{bu}$. of wheat @ $\$ 2.00 \mathrm{a}$ bu.?
(c) $3 \frac{2}{3} \mathrm{yd}$. of cloth © 60 c . a yd.?
(d) $4 \frac{1}{4}$ pints of milk © 12c. a qt.?
(e) $2 \frac{1}{3} \mathrm{lb}$. of meat © 30 c . a lb.?
(f) $3 \frac{1}{2} \mathrm{lb}$. of butter © 40 c . a lb.?

EQUIVALENT FRACTIONS

1. Take a square piece of paper 4 in . to the side. Fold it into two equal parts. What is each equal part called?
2. Fold each half into two equal parts. How many equal parts? What is each part called?
3. Fill in the blanks:

$$
\frac{1}{2}={ }_{4}, \frac{2}{2}={ }_{\Phi} .
$$

4. Fold a square piece of paper 6 in . to the side into 3 equal parts. What is each equal part called?
5. Fold the paper again so that each third is divided into two equal parts. How many equal parts are there? What is each equal part called?
6. Fill in the blanks:

$$
\frac{1}{3}=\frac{{ }_{6}^{6}}{}, \quad \frac{2}{3}={ }_{6}, \quad \frac{3}{8}={ }_{\overline{6}}, \quad \frac{1}{2}={ }_{6} .
$$

7. Fold the paper again so that each sixth is divided into two equal parts. Into how many equal parts is the square now divided? What is each equal part called?
8. Fill in the blanks:

$$
\begin{array}{lll}
\frac{1}{3}={ }_{\overline{6}}=\overline{12} & \frac{1}{6}={ }_{12} & \frac{1}{2}=\overline{6}={ }_{1 \overline{2}} \\
\frac{2}{3}={ }_{\overline{6}}=\overline{12} & \frac{3}{6}=\overline{12} & \frac{1}{4}=\overline{12} . \\
\frac{8}{3}={ }_{\overline{6}}=\overline{12} & \frac{5}{6}=\frac{12}{12} &
\end{array}
$$

9. Fill in the following blanks:

$$
\begin{aligned}
& \frac{1}{3}={ }_{\overline{5}}={ }_{1 \overline{2}}={ }_{\overline{15}}={ }_{{ }_{18}} \\
& \frac{2}{5}={ }_{10}={ }_{15}={ }_{20}={ }_{25} \\
& \frac{3}{7}={ }_{{ }_{14}}=\frac{{ }_{21}}{}=\frac{{ }_{28}}{}={ }_{\frac{55}{5}}={ }_{4 \overline{5}} \\
& \frac{5}{9}=\frac{{ }_{18}}{18}={ }_{2 \overline{7}}=\frac{{ }_{3}}{}={ }_{4}^{45} \overline{5}_{6}={ }_{5 \overline{4}}={ }_{63} \\
& \frac{2}{1 \mathrm{I}}=\frac{{ }_{2} \overline{2}}{}=\frac{{ }_{3 \overline{3}}}{}=\frac{{ }_{44}}{}=\frac{{ }_{5 \overline{5}}}{}={ }_{66}=\frac{{ }_{8 B}}{}
\end{aligned}
$$

10. $\quad \frac{24}{86}={ }_{\overline{9}}={ }_{\overline{3}}$
${ }_{\frac{3}{6} \frac{2}{4}}={ }_{\overline{1} \overline{6}}={ }_{\bar{\delta}}={ }_{\overline{4}}={ }_{\overline{9}}$

ORAL EXERCISE

1. How many eighths are there in $\frac{1}{2}$? in $\frac{3}{4}$? in $\frac{8}{16}$? in $\frac{12}{3}$?
2. How many twentieths are there in $\frac{1}{2}$? in $\frac{3}{4}$? in $\frac{2}{5}$? in $\frac{9}{10}$? in $\frac{1}{40}$?
3. Change each of the following fractions to twelfths:

$$
\frac{2}{3}, \quad \frac{3}{4}, \quad \frac{2}{6}, \quad \frac{5}{6}, \quad \frac{1}{2} .
$$

4. Change each of the following fractions to thirtieths:

$$
\frac{3}{5}, \quad \frac{2}{3}, \quad \frac{5}{6}, \quad \frac{7}{10}, \quad \frac{8}{15} .
$$

5. Change each of the following fractions to hundredths:

$$
\frac{3}{4}, \quad \frac{7}{20}, \quad \frac{9}{10}, \quad \frac{3}{50}, \quad \frac{2}{5} .
$$

6. Change each of the following pairs of fractions to equivalent fractions having the same denominator:

$$
\begin{array}{ll}
\frac{1}{2} \text { and } \frac{3}{4}, & \frac{1}{4} \text { and } \frac{5}{6}, \quad \frac{1}{2} \text { and } \frac{2}{5}, \quad \frac{2}{3} \text { and } \frac{3}{4}, \\
\frac{3}{4} \text { and } \frac{5}{8}, & \frac{3}{7} \text { and } \frac{3}{5} .
\end{array}
$$

7. Put in the right numerators in the following:

$$
\begin{aligned}
& \frac{3}{5}=\frac{2}{2 \sigma}, \quad \frac{2}{7}=\frac{{ }_{21}^{21}}{}, \quad \frac{5}{6}={ }_{4 \pi}, \quad \frac{7}{8}={ }_{\bar{\delta} \overline{6}}, \\
& \frac{7}{6}={ }_{63}, \quad \frac{4}{15}={ }_{\overline{65}}, \quad \frac{7}{10}=\frac{{ }_{80}}{}, \quad \frac{4}{25}=\frac{{ }_{100}}{} .
\end{aligned}
$$

8. Put in the right denominators in the following:

$$
\begin{aligned}
& \frac{5}{7}=\underline{30}, \quad \frac{4}{6}=\underline{2} \text { 8 }, \quad \frac{3}{8}=\underline{15}, \quad \frac{9}{12}=\underline{86}, \\
& \frac{8}{11}=\underline{56}, \quad \frac{8}{10}=\underline{21}, \quad \frac{4}{100}=\underline{12}, \quad \frac{7}{8}=\underline{35} .
\end{aligned}
$$

ADDITION OF FRACTIONS

EXERCISE 35

1. Find the value of:
(a) $\frac{1}{2}+\frac{2}{2}$
(b) $\frac{2}{3}+\frac{4}{3}$
(c) $\frac{2}{5}+\frac{3}{5}$
(d) $\frac{3}{7}+\frac{2}{7}$
(e) $\frac{4}{9}+\frac{5}{8}$
(f) $\frac{5}{10}+\frac{4}{10}$
(g) $\frac{2}{12}+\frac{3}{12}+\frac{6}{12}$
(h) $\frac{4}{20}+\frac{3}{20}+\frac{7}{20}$
(i) $\frac{3}{50}+\frac{8}{60}+\frac{3}{60}$
2. Find the value of:
(a) $\frac{1}{2}+\frac{1}{4}$
(b) $\frac{1}{2}+\frac{3}{4}$
(c) $\frac{1}{3}+\frac{1}{6}$
(d) $\frac{1}{4}+\frac{3}{8}$
(e) $\frac{1}{5}+\frac{3}{10}$
(f) $\frac{3}{4}+\frac{2}{8}$
(g) $\frac{2}{3}+\frac{4}{9}$
(h) $\frac{3}{5}+\frac{7}{10}$
(i) $\frac{1}{5}+\frac{3}{10}+\frac{7}{20}$

Example:

$$
\begin{aligned}
& \text { Find the value of: } \frac{2}{3}+\frac{3}{4} \\
& \frac{2}{3}=\frac{4}{6}=\frac{6}{8}=\frac{8}{12}=\frac{1}{1} 0=\frac{12}{1} \frac{2}{8} \quad \text { etc. } \\
& \frac{3}{4}=\frac{6}{8}=\quad \frac{9}{12}=\frac{1}{1} \frac{2}{8}=\frac{1}{2} \frac{5}{6} \quad " 1 \\
& \therefore \quad \frac{2}{3}+\frac{3}{4}=\frac{8}{12}+\frac{9}{12}=\frac{1}{1} \frac{7}{2}=1 \frac{5}{12} .
\end{aligned}
$$

3. Find the value of:
(a) $\frac{3}{4}+\frac{5}{6}$
(b) $\frac{4}{5}+\frac{2}{3}$
(c) $\frac{3}{5}+\frac{a}{4}$
(d) $\frac{5}{6}+\frac{4}{5}$
(e) $\frac{2}{7}+\frac{1}{2}$
(f) $\frac{3}{5}+\frac{4}{7}$
(g) $\frac{5}{8}+\frac{2}{3}$
(h) $\frac{8}{7}+\frac{2}{9}$
(i) $\frac{4}{5}+\frac{6}{11}$
4. Find the value of:
(a) $\frac{1}{2}+\frac{1}{5}+\frac{1}{3}$
(b) $\frac{1}{4}+\frac{1}{3}+\frac{1}{6}$
(c) $\frac{2}{3}+\frac{1}{4}+\frac{2}{5}$
(d) $\frac{3}{4}+\frac{2}{3}+\frac{1}{6}$
(e) $\frac{4}{5}+\frac{1}{2}+\frac{3}{10}$
(f) $\frac{3}{4}+\frac{2}{3}+\frac{1}{8}$
(g) $\frac{2}{3}+\frac{3}{4}+\frac{5}{6}$
(h) $\frac{1}{2}+\frac{3}{5}+\frac{2}{7}$
(i) $\frac{1}{4}+\frac{2}{3}+\frac{5}{7}$
(j) $\frac{4}{9}+\frac{2}{3}+\frac{1}{2}$
(k) $\frac{5}{7}+\frac{1}{2}+\frac{9}{14}$
(l) $\frac{2}{5}+\frac{1}{4}+\frac{2}{3}$
5. Find the sum of:
$\$ \frac{3}{4}, \$ \frac{7}{8}, \$ \frac{3}{6}$, and $\$ \frac{3}{8}$.
6. Jack had $\frac{1}{4}$ of a dollar. Alex had $\frac{6}{8}$ of a dollar. How much money did they together have?
7. A grocer sold $\frac{5}{8}$ of a lb . of sugar to one customer and $\frac{3}{4}$ of a lb. to another. How many lb . did he sell?
8. A boy had $\$ \frac{4}{5}$ left after paying $\$ \frac{3}{3}$ for a book. How much money had he at first?
9. A gardener had $\frac{1}{\frac{1}{2}}$ acre of tomatoes, $\frac{1}{6}$ acre of beans, and $\frac{1}{3}$ acre of peas. How much land did he have altogether?
10. A milkman sold $\frac{1}{4}$ gal. of milk to one customer and $\frac{2}{3}$ gal. to another. How much milk did he sell?
11. A boy spent $\$ \frac{3}{4}$ for a hat, $\$_{10}^{9}$ for a ball, and $\$ \frac{4}{8}$ for a glove. How much did he spend?

EXERCISE 36

1. To add $\$ 5 \frac{1}{2}$ and $\$ 3$:

$$
\begin{array}{ll}
\$ 5+\$ 3=\$ 8 \\
\$ 8+\$ 3 & =\$ 83 .
\end{array} \quad \frac{1}{2}+\frac{1}{2}=\frac{2}{4}+\frac{1}{2}=\$ 3
$$

2. Find the value of:
(a) $4 \frac{3}{4}+2 \frac{7}{8}$
(b) $5 \frac{3}{7}+4 \frac{8}{9}$
(c) $4 \frac{5}{6}+3 \frac{7}{9}$
(d) $2 \frac{1}{2}+3 \frac{3}{4}+4 \frac{1}{6}$
(e) $3 \frac{2}{3}+2 \frac{1}{7}+4 \frac{1}{2}$
(f) $2 \frac{3}{5}+1 \frac{4}{5}+5 \frac{3}{8}$.
3. A farmer sold 2 stacks of hay, in one of them there were $8 \frac{1}{2}$ tons and in the other $6 \frac{1}{3}$ tons. How many tons of hay in the two stacks?
4. There are $82 \frac{3}{3}$ acres left in a farm after $9 \frac{1}{2}$ acres were sold. How many acres were in the farm at first?
5. A playground is $16 \frac{1}{3} \mathrm{yd}$. wide and $25 \frac{2}{3} \mathrm{yd}$. long. Find the distance around it.
6. A dealer bought oats at $83 \frac{1}{2} \mathrm{c}$. a bushel, and in selling it made a gain of 9 a c. a bushel. What was the selling price a bushel?
7. Harry worked $11 \frac{1}{4}$ hours on Saturday and Jim 123. How many hours did they both work?
8. A lady bought three pieces of ribbon. The first contained $2 \frac{1}{3} \mathrm{yd}$. , the second $3 \frac{1}{4} \mathrm{yd}$. , and the third $4 \frac{5}{8} \mathrm{yd}$. How many yards of ribbon did she buy?

SUBTRACTION OF FRACTIONS

EXERCISE 37

1. Find the value of:
(a) $\frac{4}{5}-\frac{2}{5}$
(k) $\frac{3}{4}-\frac{1}{3}$
(b) $\frac{8}{8}-\frac{8}{8}$
(l) $\frac{4}{5}-\frac{1}{2}$
(c) $\frac{8}{12}-\frac{5}{12}$
(m) $\frac{6}{7}-\frac{2}{4}$
(d) $\frac{1}{2} \frac{9}{0}-\frac{1}{2} \frac{3}{6}$
(n) $\frac{8}{8}-\frac{3}{7}$
(e) $\frac{90}{100}-\frac{65}{100}$
(o) $\frac{7}{12}-\frac{2}{5}$
(f) $\frac{3}{4}-\frac{1}{2}$
(p) $\frac{11}{15}-\frac{3}{6}$
(g) $\frac{7}{8}-\frac{3}{4}$
(q) $\frac{7}{8}-\frac{2}{3}$
(h) $\frac{11}{1} \frac{1}{2}-\frac{8}{6}$
(r) $\frac{4}{5}-\frac{2}{7}$
(i) $\frac{8}{15}-\frac{2}{5}$
(s) $\frac{11}{12}-\frac{8}{11}$
(j) $\frac{1}{2} \frac{8}{6}-\frac{3}{5}$
(t) $\frac{7}{8}-\frac{3}{4}$.
2. What must be added to $\frac{3}{7}$ to make $\frac{1}{1} \frac{1}{2}$?
3. What is the difference between $\$ \frac{8}{8}$ and $\$ \frac{5}{6}$?
4. In one lot there is $\frac{3}{5}$ of an acre, in another $\frac{3}{8}$ of an acre. How much larger is one lot than the other?
5. Find the difference between $\left(\frac{2}{3}+\frac{1}{6}\right)$ and $\left(\frac{3}{4}+\frac{1}{6}\right)$.

EXERCISE 38 (MISCELLANEOUS)

1. Add and check:
(a) $\$ 47259 \cdot 63$ 28754-37 $97568 \cdot 46$ 85947•38 29568-48 48936-74 $98765 \cdot 33$ 49876-54 $38295 \cdot 73$
(b) $\$ 56437 \cdot 82$
$9642 \cdot 75$
$908 \cdot 36$
(c) $\$ 476385 \cdot 79$
28946.43
$70 \cdot 08$
89375-42
$8 \cdot 07$
48639-59
$63925 \cdot 03$
$875 \cdot 98$

- $9376 \cdot 43$
82965•78
$146893 \cdot 62$
784327-59
$5936 \cdot 46$

2. Subtract and check:
(a) $\$ 408960 \cdot 36$
289794-29
(b) $\$ 820400 \cdot 38$ 265948.71
(c) $\$ 786500 \cdot 32$
297643•87
3. Find the value of and check:
(a) 86593×468
(b) 92764×589
(c) 468325×673
4. Find the value of and check:
(a) $632897 \div 364$
(b) $9383654 \div 2946$
(c) $476389 \div 5863$
5. Find the value of, using factors:
(a) $594036 \div 18$
(b) $768375 \div 45$
(c) $4763808 \div 24$
(d) $1989204 \div 42$
6. Find the value of:
(a) $15 \times 18 \times 23$
(b) $16 \times 14 \times 36$
(c) $14 \times 23 \times 56$
(d) $29 \times 23 \times 39$
7. Make out a bill for the following sales. Supply name of purchaser, seller, date, place, etc. Receipt the bill:
$1 \frac{1}{2} \mathrm{lb}$. ham @ 42c. a lb.
9 cans of tomatoes @ $\$ 1 \cdot 20$ a doz.
21 lb . tea @ $56 \mathrm{c} . \mathrm{a} \mathrm{lb}$.
$3 \frac{3}{4} \mathrm{lb}$. cheese @ 24c. a lb.
8. Make out a bill containing 5 items such as one would receive from a hardware merchant.
9. Mary made a strawberry shortcake for which she used 3 cups of flour ($1 \frac{1}{2} \mathrm{pt}$.) @ 6 c . a pint, 2 teaspoonfuls of baking-powder worth $\frac{1}{8} \mathrm{c}$. each, $\frac{1}{4} \mathrm{lb}$. of butter @ 44 c . a $\mathrm{lb} ., \frac{1}{2} \mathrm{pt}$. of milk @, 6c. a pt., $\frac{1}{2} \mathrm{pt}$. of cream @ 60c. a qt., and 1 box of strawberries @ 23c. a box. Find the cost of the cake.
10. A coal dealer delivered 5 loads of coal weighing: $2867 \mathrm{lb} ., 3232 \mathrm{lb} ., 2964 \mathrm{lb} ., 3105 \mathrm{lb}$., and 3002 lb . Find the average weight of the loads.
11. A grocer's sales for 6 days of a week were: $\$ 74 \cdot 38$, $\$ 65 \cdot 92$, $\$ 87 \cdot 45, \$ 75 \cdot 59, \$ 69 \cdot 32$, and $\$ 83 \cdot 64$. Find the average daily sales for the week.
12. Find the difference between the value of a load of wheat containing 52 bu . @) $\$ 2 \cdot 20 \mathrm{a}$ bu. and a load of oats centaining 68 bu. © 82c. a bushel.
13. How many pence in $£ 35 \mathrm{~s} .6 \mathrm{~d}$.?
14. Find the value of:
(a) A load of barley containing 2976 lb . @ 95 c . a bu.
(b) A load of oats containing 2499 lb . © 80c. a bu.
(c) A load of potatoes containing 2655 lb . @) $\$ 1 \cdot 20$ a bu.
(d) A load of wheat containing 2910 lb . @ $\$ 2 \cdot 00$ a bu.
(e) A load of flax seed containing 2800 lb . @ $\$ 6 \cdot 00$ a bu.
(f) A load of hay containing 3500 lb . © $\$ 12$ a ton
(g) A load of peas containing 2670 lb . @ $\$ 3$ a bu.
15. Quart bottles are filled from a $54-\mathrm{gal}$. cask of wine. How many bottles will be filled and what are they worth at $\$ 2.50$ a bottle?
16. A horse is given 3 feeds of oats a day, each consisting of one gal. How long will 27 bu. feed him?
17. A farmer's wife sold $15 \frac{3}{4} \mathrm{lb}$. of butter @ 32c. a lb. and got in exchange for it molasses @ 63c. a gal. How many gal. did she get?
18. Find the cost of 4 pk .5 qt .1 pt . of berries @ 14 c . a quart.
19. In 2940 lb . of flour, how many barrels?
20. A grocer bought potatoes @ $\$ 1 \cdot 20$ a bu. and sold them @ 50 c , a pk. How much did he gain on 425 bu .?
21. Find the cost of the beans required to plant 5 acres, allowing 12 quarts to the acre, the beans being worth $\$ 1.50$ a pk.
22. If a woodpecker eats on an average 100 insect pests in a day, how many will 250 woodpeckers eat during the month of May?
23. What is $\frac{7}{8}$ of a bu. of wheat worth @ $\$ 2.08 \mathrm{a}$ bu.?

24 . What is $\frac{1}{1} \frac{1}{2}$ of an acre of land worth (a) $\$ 84$ an acre?
25. How many lb. in $\frac{13}{1}$ of a bu. of oats?
26. Find the amount of the following threshing bill:

760 bu. of wheat (a) 5 c . a bu. 2250 bu. of oats @ 3c. a bu.
525 bu. of barley @ 4 c. a bu.
90 bu. of peas @ 5 c . a bu.
2 tons of coal @ $\$ 11 \cdot 50$ a ton
8 men for $1 \frac{1}{2}$ days at $\$ 3 \cdot 00$ per day.
27. A farmer had 220 bu. of wheat. He sowed 75 bu., sold $26 \frac{1}{6}$ bu., and used $15 \frac{3}{6}$ bu. How many bu. has he left?
28. Make out in proper form the following account:

James Smith of Winnipeg buys of Simon Grey, merchant of the same city, the following goods:
May 3rd, 1919:
12 yards dress goods @ $\$ 1.75$ a yd.
May 10th. 25 yards linen (a) 85c. a yd.
" " 15 " gingham @, 27c. a yd.
On May 28th. James Smith pays $\$ 25$ on account.
On May 31st. James Smith pays the balance of the account.
29. Reduce $3 \frac{1}{2}, 5 \frac{1}{4}, 6 \frac{2}{3}, 7 \frac{\pi}{8}$, and $8 \frac{2}{5}$ to improper fractions.
30. Supply the correct numerators for the following fractions:

$$
\frac{g}{3}={ }_{1 \pi}, \quad \frac{6}{4}=\frac{\pi}{2 I}, \quad \frac{5}{8}=\frac{\pi}{23}, \quad \frac{7}{8}={ }_{58} .
$$

31. Add $7 \frac{2}{3}, 5 \frac{4}{6}$, and $2 \underset{6}{ }$.
32. Find the value of (a) $\frac{5}{5}-\frac{8}{6},(b) \frac{9}{6}-\frac{7}{1^{7}}$, (c) $\frac{1}{1} \frac{1}{7}-\frac{6}{6}$.

SECTION III

ORAL EXERCISE
To add 32 and 43 proceed as follows:

$$
32+3=35 ; 35+40=75 .
$$

Find the value of:

1. $32+43$
2. $68+52$
3. $43+25$
4. $49+75$
5. $26+33$
6. $54+25$
7. $63+68$
8. $63+24$
9. $47+24$
10. $64+37$
11. $59+27$
12. $38+48$
13. $56+45$
14. $68+53$
15. $56+78$
16. $85+47+20$
17. $93+89+30$
18. $39+69+45$
19. $47+63+68$
20. $85+75+33$

ORAL EXERCISE
Use the foregoing method to add two columns of the following addition questions at the same time:
(1) 42
(2) 53
(3) 46
(4) 74
(5) 85
(6) 65
38
(7) 74
(8) 64
(9) 75
(10)

94
53
76
84

(11) 39
(12) 59
83
72 -74

(13)	56	(14)	49	(15)	54	(16)	74
47	38	63	(17)	65	(18) 78		
38		67		75		89	

EXERCISE 39

1. Subtract and test the following six problems in three minutes:
(a) 542836
(b) 493624
(c) 928473
289789
289768
(d) 8427635
(e) 2840050
(f) 8400206 2989948
1968249
2759478
2. Find the value of and test one problem in two minutes:
(a) 4897×6854
(d) 9876×6543
(b) 7593×8574
(e) 9278×5937
(c) 8794×6547
(f) 8792×3456

3 . Find the value of and test:
(a) 6894739 by 74638
(b) 9276839 by 82965
(c) 7864938 by 95876
(d) 8279643 by 94673

ACCOUNTS

THE CASH ACCOUNT

Every person, whether in business or not, who receives and pays out money, should keep a cash account. Even school-boys and school-girls who are earning or receiving money should keep a strict account of their receipts and expenditures. It is a good lesson in business to keep such an account.

The following is a convenient form for a cash account:
Harry Williams' Cash Account
Receipts Payments

Nores.-1. That a double line in the middle of the account divides it. On the left hand side of this line are entered the cash receipts, and on the right hand side the cash payments.
2. For each item we require the date, the amount, and for what the cash was received or paid out.
3. A cash account should be balanced at least monthly. The balance should be written in red ink, and should be carried forward to the next month.

EXERCISE 40

1. Make out cash accounts for each of the following months:

February-

(a) Feb. 1. Cash on hand- $\$ 7 \cdot 67$

Feb. 3, Ran errands, 55c.; Feb. 4th, Paid for having skates sharpened, 15c.; Feb. 7th, Received for work after school, $25 \mathrm{c} . ;$ Feb. 10th, Bought pair of skate straps, 20c.; Feb. 10th, Received for delivering papers, $\$ 3 \cdot 00$; Feb. 18th, Received for sawing wood, 35 c ; Feb. 24th, Bought a pair of gloves, $\$ 1.45$; Feb. 28th, Shovelling snow, 15c.
(b) March-

March 1. Cash on hand- What is the balance for February?
March 4th, For shovelling snow, 40c; For running errands, 25c.; March 6th, For delivering papers, $\$ 2 \cdot 80$; March 10th, For sawing kindling wood, 50 c .; March 12th, Bought a cap, $\$ 1 \cdot 00$; March 20th, Bought a hockey stick, 60c.; March 29th, Bought a knife, 45 c .; March 31st, Bought a pair of socks, 35 c .
(c) April-

April 1. Cash on hand-
April 2nd, Selling papers, 30c.; Delivering papers, $\$ 2 \cdot 80$; April 5th, For work, 90 c.; April 9th, Bought a book, 65 c .; April 15th, For splitting wood, 75 c .; April 20th, Bought a fish-line and hooks, 35c.; April 30th, Bought fireworks, 50 c .; For running errands, 25 c .
(d) May-

May 1. Cash on hand-
May 3rd, Delivering papers, $\$ 3 \cdot 25$; Running errands, 15c.; May 6th, Bought fireworks, 75c.; May 10th, For work done, 80c.; May 18th, For cleaning yard, 50c.; May 22nd, For digging garden, 75c.; May 26th, For planting potatoes, 60c.; May 28th, For mowing lawn, 25c.; May 30th, Bought a pair of baseball boots, $\$ 1 \cdot 35$; May 31st, Bought a baseball, $\$ 1 \cdot 25$.
(e) June-

June 1. Cash on hand-
June 2nd, Delivering papers, $\$ 3 \cdot 50$; June 3rd, Delivering handbills, 25c.; Mowing lawn, 15c.; June 5th, Weeding in garden, 35 c .; June 10th, Hilling potatoes, 20c.; June 20th, Bought a suit, $\$ 9.50$; June 25th, Bought a straw hat, $\$ 1 \cdot 10$; June 28th, Bought 6 handkerchiefs @ 15c.; June 30th, Spraying garden, 50 c .; mowing lawn, 25 c .; Bought a pair of boots, $\$ 3 \cdot 75$.
2. Supply your own items for a cash account for the month of July.
3. Make out the following farmer's cash account for the months of July and August. Balance the account on July 31st and Aug. 31st.
(a) July 1st. Cash on hand- $\$ 324 \cdot 75$

3rd. Paid cash for a binder, $\$ 215.00$
5th. Received ash for eggs, $\$ 19 \cdot 65$
7th. Received for load of wheat, cash $\$ 135 \cdot 75$
10th. Paid month's wages to hired man, $\$ 45 \cdot 00$
14th. Paid cash for groceries, $\$ 26 \cdot 35$
18th. Received cash for eggs, $\$ 25 \cdot 19$
22 nd. Received cash for milk sold, $\$ 139 \cdot 60$
28th. Paid for extra help, $\$ 9 \cdot 00$
29th. Sold for cash a load of hogs, $\$ 362 \cdot 75$
30th. Paid cash for 2 cows, $\$ 225 \cdot 00$.
(b) Aug. 1st. Cash on hand-

3rd. Paid for one day's threshing, $\$ 22 \cdot 00$
7th. Paid for extra help, $\$ 11 \cdot 50$
9th. Received cash for eggs, $\$ 18 \cdot 75$
10th. Paid month's wages to hired man, $\$ 45 \cdot 00$
15 th. Received cash for milk sold, $\$ 128.95$
19th. Paid for provisions, $\$ 39.75$
20th. Received cash for eggs, $\$ 22 \cdot 32$
21st. Sold beef cattle, $\$ 524 \cdot 50$
25th. Paid cash for a horse, $\$ 137 \cdot 00$
30th. Paid cash for repairs to barn, $\$ 139 \cdot 47$
31st. Paid for extra help, $\$ 15 \cdot 75$

PERSONAL ACCOUNTS

A merchant who does not do a strictly cash business must keep a set of books. One of these books is called the Ledger. In it he will have an account for every one to whom he has sold goods on credit. For instance, if the merchant sells goods to John Smith, who does not pay cash for them, the merchant will mark charge on the
bills of goods received by Mr. Smith and will afterwards enter each item of the different bills in Mr. Smith's account. A Ledger account headed by a person's name is called a personal account. One form of a personal account has already been shown in Section II. The following account of John Smith's will illustrate another form which is very often used:

The above is John Smith's account at a hardware store for the month of March, 1920. On the debtor side (Dr.) of the account are placed the items of goods purchased by Mr. Smith, and on the creditor side (Cr.) are placed the amounts paid by Mr. Smith for the goods which he bought.

These personal accounts are balanced at regular intervals, by footing the debit side and the credit side and subtracting the smaller from the greater. The difference, called the balance, is then entered on the side having the smaller amount and carried forward on the opposite side, to the account of the following month. Why?

The person who sells the goods is the creditor; the person who purchases the goods is the debtor.

In common usage, the term debtor meaus any one who owes a debt, and the term creditor means any one to whom a debt is owed.

When you give a person credit, you are said to sell on account.

EXERCISE 41

From the following transactions make out N. Moyer's personal account. Balance the account on June 30th.

Stratford-June 1st. Sold N. Moyer 75 bu. oats @ $\$ 1 \cdot 05$
10th. Sold N. Moyer 5 bu. wheat (a) $\$ 3 \cdot 20$
15th. Received from N. Moyer cash $\$ 90$
16th. Sold N. Moyer 1 ton bran, $\$ 54 \cdot 00$
17th. N. Moyer did draying for me, $\$ 25 \cdot 00$
20th. Sold N. Moyer 10 bu. barley (a) 95 c .
28th. Received from N. Moyer cash, $\$ 15 \cdot 00$.
2. Make out C. Mills' account. Balance it on Oct. 31st.

Hamilton-Oct. 1st. Bought from G. Mills 10 bags potatoes at $\$ 2 \cdot 25$
12th. Bought from G. Mills 25 chickens @) \$1.00
15th. Sold G. Mills 2 calves @ $\$ 35 \cdot 00$
16th. Bought from G. Mills 1 bbl. apples @ $\$ 3 \cdot 50$
21st. Bought from G. Mills 10 bu. wheat @ $\$ 3 \cdot 25$
28th. Sold G. Mills a cream separator, $\$ 67 \cdot 50$
31st. G. Mills paid cash, $\$ 25 \cdot 00$.
3. Make out N. Smith's account. Balance it on July 31st.

Peterboro-July 1st. Sold N. Smith 1 binder, $\$ 230$
15 th. N. Smith paid me cash $\$ 100$
16th. Sold N. Smith 1 hayloader, $\$ 125$
18th. Received from N. Smith 100 bu. oats $@ \$ 1 \cdot 08$ and 1 horse $\$ 130$
27th. Sold N. Smith a hayrake, $\$ 47.00$ 30th. N. Smith paid in cash, $\$ 150$.
4. Make out A. McCabe's account. Balance it on Nov. 30th.
Ottawa, Ont.-Nov. 1st. Sold A. McCabe 1 set tires, $\$ 125$
7th. Sold A. McCabe 6 spark plugs (a) 90 c .

10 th. Sold A. McCabe 8 gal. gasoline (a) 36 c .

13th. Bought a cow from A. McCabe, $\$ 118$
15th. Sold A. McCabe repairs for his car, \$27.50
18th. Vulcanized a tire for A. McCabe, $\$ 7 \cdot 30$
27th. A. McCabe paid in cash, $\$ 40$
30th. Sold A. McCabe a spring for car, $\$ 18 \cdot 00$.
5. Make out F. Hill's account:

London-Dec. 1st. Sold F. Hill groceries, $\$ 17 \cdot 55$
2nd. Bought of F. Hill 12 bags of potatoes @ $\$ 2.75$
6th. Sold F. Hill meat, $\$ 10.85$
10th. Sold F. Hill 2 bu. timothy seed (a) $\$ 8.75$
11th. Bought from F . Hill 25 lb . butter (a) 65c.

15 doz. eggs @ 70c.
12 chickens @ $\$ 1 \cdot 25$
28 th. Sold F. Hill groceries, $\$ 18 \cdot 95$.
Balance the account on Dec. 31st.

FACTORS, COMMON FAC'TOR, HIGHEST COMMON FACTOR

What is the common factor of 21 and 35 ?
What are the common factors of 16 and 24 ?
Which of these common factors is the greatest?
The greatest factor common to two or more numbers is called their highest common factor (H.C.F.) or greatest common measure (G.C.M.)

When two numbers have no common factor greater than 1 , they are said to be prime to each other.

What is a prime number? A prime factor?
Name the prime numbers less than 15.
Name the prime factors of $36,42,54,72$.
By using the prime factors of numbers we can readily obtain the H.C.F. of these numbers.

To find the H.C.F. of 36 and 48.

$$
\begin{array}{rlrl}
36 & =2 \times 18 & 48 & =2 \times 24 \\
& =2 \times 2 \times 9 & & =2 \times 2 \times 12 \\
& =2 \times 2 \times 3 \times 3 . & & =2 \times 2 \times 2 \times 6 \\
& & =2 \times 2 \times 2 \times 2 \times 3 .
\end{array}
$$

It is easily seen that the highest common factor of these two numbers is $2 \times 2 \times 3=12$.

EXERCISE 42

By using prime factors, find the H.C.F. of :

1. 45 and 75
2. 72 and 108
3. 84 and 132
4. 153 and 374
5. 272 and 425
6. 13,52 and 91
7. 60,84 and 96
8. 455 and 728
9. 928 and 1073
10. 1536 and 3584
11. 2108 and 3813
(12) 112,128 and 192 .

DIVISION BY FACTORS

In Section II of this book it was shown how to divide by the factors of a divisor instead of by the divisor itself, when no remainders occur. It remains to show how to divide by the factors of a divisor when remainders occur.

Example: To divide 73205 by 72 , using factors:

$$
\begin{aligned}
& 9) 73205 \\
& 8) \overline{\overline{8133}-8}-5 \\
& 1016-5
\end{aligned}
$$

The division by 9 gives 8133 groups of 9 and a remainder of 8 ones.

The division of 8133 groups of 9 by 8 gives 1016 groups of 72 and a remainder of 5 groups of 9 .
\therefore The complete remainder is 5 groups of 9 plus 8 ones

$$
=45+8=53 .
$$

The quotient is 1016 and the remainder is 53 .

EXERCISE 43

Using factors, divide:

1. 12409 by 21 ; by 22 ; by 24 ; by 25 .
2. 70054 by 36 ; by 40 ; by 42 ; by 44 ; by 48 .

3 . 46279 by 27 ; by 33 ; by 56 ; by 72 ; by 84 .
4. 70654 by 105 , using 3 factors.
5. 359240 by 385 , using 3 factors.

CANCELLATION

Divide 84 by 28 , the quotient is 3 .
Now divide 84 and 28 each by a common factor 7 . The quotients are 12 and 4.
Divide 12 and 4 each by the common factor 4 . The quotients are 3 and 1 .

Dividing 3 by 1 , the quotient is 3 , the same as the first quotient.

This work might be put down as follows:

$$
84 \div 28=\frac{84}{28}=\frac{84 \div 7}{28 \div 7}=\frac{12}{4}=\frac{12 \div 4}{4 \div 4}=\frac{3}{1}=3
$$

Or in shorter form as:

$$
\begin{array}{r}
3 \\
12 \\
84 \\
\frac{38}{4} \\
4 \\
1
\end{array}=\frac{3}{1}=3 .
$$

This method of obtaining a quotient is called cancellation. This method is used in the solution of many problems, because it is easy, quick, and accurate.

EXERCISE 44

1. By cancel tion find the quotients of the following:
(a) $\frac{105}{35}$
(h) $\frac{560}{420}$
(o) $\frac{81 \times 56}{63 \times 36}$
(b) $\frac{132}{66}$
(i) $\frac{1080}{810}$
(p) $\frac{7 \times 9 \times 12 \times 15}{8 \times 15 \times 18 \times 14}$
(c) $\frac{256}{64}$
(j) $\frac{204}{85}$
(q) $\frac{12 \times 14 \times 25}{24 \times 35 \times 28}$
(d) $\frac{189}{21}$
(k) $\frac{63 \times 78}{42 \times 36}$
(r) $\frac{33 \times 48 \times 56}{22 \times 30 \times 44}$
(e) $\frac{225}{45}$
(l) $\frac{84 \times 60}{35 \times 48}$
(s) $\frac{95 \times 105 \times 150}{19 \times 35 \times 50}$
(f) $\frac{192}{72}$
(m) $\frac{96 \times 99}{36 \times 88}$
(4) $\frac{8 \times 48 \times 56 \times 81 \times 52}{78 \times 112 \times 27 \times 32}$
(g) $\frac{320}{280}$
(n) $\frac{75 \times 49}{35 \times 21}$
2. How many bushels of wheat at $\$ 2 \cdot 40$ a bushel will pay for 2 automobiles, each worth $\$ 1200$?
3. How many bushels of potatoes (a) $\$ 1 \cdot 50$ per bushel should be given in exchange for 35 bushels of barley (a) 90 c. a bushel?
4. How many bushels of oats (a) 84c. a bushel should be given in exchange for 72 bushels of wheat (a) $\$ 2 \cdot 10$ a bushel?
5. There were 9 farms, each containing 72 acres and worth $\$ 75$ an acre, which were exchanged for houses worth $\$ 1800$ each. How many houses were required?
6. How many tubs of butter, each containing 56 lb . and worth 55 c . a lb ., are equal in value to 7 tons of hay (a) $\$ 22$ a ton?

MULTIPLES

Name a number which contains 3 an integral number of times; a number which contains 5 an integral number of times; a number which contains 6 an integral number of times.

When one number contains another an integral, or an exact, number of times, the former is said to be a multiple of the latter.
Thus 15 is a multiple of 5 , because $15 \div 5=3$, and 3 is an integer; 24 is a multiple of 6 , because $24 \div 6=4$, and 4 is an integer.

Name some multiples of 4 , of 5 , of 7 , of 9 , of 12 .
Name a multiple of 3 which is also a multiple of 4 , a multiple of 5 which is also a multiple of 7 , a multiple of 6 which is also a multiple of 8 .

A number which is a multiple of two or more numbers is called a common multiple of those numbers.

Write out the first twelve multiples of 3 .

Write out the first nine multiples of 4.
Select the common multiples of 3 and 4.
Which of these common multiples is the least?
The least common multiple (L.C.M.) of two or more numbers is the smallest number which will contain each of the numbers an integral number of times.

ORAL EXERCISE

1. Name the first 6 multiples of 5 , of 7 , of 3 .
2. Name the first 8 multiples of 4 and of 6 .
3. Name the first 3 common multiples of 4 and 6 . What, therefore, is the L.C.M. of 4 and 6?
4. Name the L.C.M. of 5 and 3. Name their next two common multiples.
5. When the L.C.M. of two or more numbers is found, how can other common multiples be found?
6. What must be the prime factors of the L.C.M. of 2,3 , and 5? Why? Winat must be the prime factors of the L.C.M. of 4,7 , and 9 ? Why? Thes how can the L.C.M. of numbers which are prime to each other be found?
7. What is the L.C.M. of $2,4,6$, and 8 ? Why is this the same as the L.C.M. of 6 and 8? What is the L.C.M. of 3,5 , and 10 ? Why is this the same as the L.C.M. of 3 and 10 ? Then in finding the L.C.M. of $3,4,8$, and 9 , of which of these numbers is it necessary to take account? Why?

The prime factor method, therefore, can be used to find the L.C.M. of two or more numbers.

Example: To find the L.C.M. of 24,30 , and 36 :

$$
\begin{aligned}
& 24=2 \times 2 \times 2 \times 3 \\
& 30=2 \times 3 \times 5 \\
& 36=2 \times 2 \times 3 \times 3
\end{aligned}
$$

It is evident that the L.C.M. of these three numbers must contain all of their different prime factors 2,3 , and 5 , and that each of these factors must be repeated as many times and no more, as it is repeated in that number in which it occurs the greatest number of times. Thus 2 must be used 3 times, 3 twice, and 5 once. Hence the required L.C.M. is $2 \times 2 \times 2 \times 3 \times 3 \times 5=360$.

The work may be set down thus:
2) $24,30,36$
2) $12 \quad 15 \quad 18$
3) $6 \quad 15 \quad 9$
L.C.M. $=2 \times 2 \times 3 \times 2 \times 5 \times 3=360$.

EXERCISE 45
Find the L.C.M. of the following:

1. $16,18,20$	7. $12,15,16,18$
2. 12,28 and 64	8. $22,77,143$
3. 27,36 and 42	9. $8,12,16,24,36$
4. $22,25,30$ and 33	10. $26,39,52$ and 65
5. $15,30,42$ and 75	11. $36,60,65$ and 78
6. $12,14,16,32$ and 50	12. 240,480 and 960.

FRACTIONS

DEFINITIONS

A fraction is one or more of the equal parts of a unit, thus $\$ \frac{3}{6}$ means that the unit $\$ 1$ has been divided into 4 equal parts (each $\$ \frac{1}{4}$), and that three of these are taken.

What is the meaning of $\$ \frac{7}{8}$? of $\frac{9}{11}$ of an apple? of $\frac{1}{2} \frac{4}{0}$ of an acre? of $\frac{24}{25}$ of a bushel?

A fraction may also be considered a denominate number, the unit for which is one of the equal parts of a
larger unit. Just as we call three quarts a denominate number for which the unit is one quart, so three fourths is a denominate number for which the unit is one fourth.

A fraction may also be considered as a quotient, for example, $\frac{4}{5}$ means $4 \div 5$.

Fractions may be written in several ways. For instance, instead of writing "seven eighths" we may write 7 eighths, or $\frac{7}{8}$, all of which are read in the same way. The form " $\frac{7}{8}$ " is the one generally used.

In a common fraction there are two numbers, one above and the other below a horizontal line.

These two numbers are called the terms of the fraction.

The term below the line is called the denominator and the term above the line is called the numerator.

Name the terms-the numerator and the denominator -of each of the following fractions:

$$
\frac{4}{7}, \quad \frac{3}{8}, \quad \frac{7}{8}, \quad \frac{41}{1}, \quad \frac{1}{2} 5, \quad \frac{42}{100}, \quad \frac{75}{100} .
$$

IMPROPER FRACTIONS AND MIXED NUMBERS

A fraction whose numerator is less than its denominator is a proper fraction, for example,

$$
\frac{2}{9}, \frac{1}{16}, \frac{1}{1} \frac{6}{7} .
$$

The value of a proper fraction is always less than one.
A fraction whose numerator equals or exceeds its denominator is an improper fraction, for example,

$$
\frac{5}{5}, \frac{9}{8}, \frac{24}{1} .
$$

The value of an improper fraction is either equal tc or greater than one.

A number which is composed of an integer and a fraction is a mixed number, for example,

$$
3 \frac{1}{2}, 5 \frac{3}{4}, 6 \frac{2}{3} .
$$

EXERCISE 46

Reduce to improper fractions:

1. 17 高
2. $15^{\frac{3}{4}}$
3. 291_{13}^{3}
4. $25_{1 \frac{5}{5}}^{3}$
5. $59 \frac{7}{8}$
6. $171 \frac{3}{5}$
7. $26_{15}^{\frac{3}{15}}$
8. $45 \frac{10}{1}$
9. $57{ }_{14}^{\frac{3}{14}}$
10. $61 \frac{7}{8}$
11. $125 \frac{1}{30}$
12. $167 \frac{5}{6}$
13. $1299_{1 /}^{4}$
14. $55 \frac{35}{4}$
15. $248 \frac{5}{6}$
16. $383{ }_{7}^{\frac{7}{6}}$
17. $74 \frac{8}{9}$
18. $138 \frac{1}{1}$ 운

EXERCISE 47

Reduce to mixed numbers:

1. $\frac{456}{25}$
2. $\frac{393}{14}$
3. $\frac{117}{27}$
4. $\frac{785}{41}$
5. $\frac{1}{\frac{e}{2}}{ }^{2}{ }^{2}$
6. $\frac{989}{45}$
7. $\frac{879}{87}$
8. $\frac{838}{18}$
9. $\frac{902}{88}$
10. $\frac{5979}{68}$
11. $7 \frac{79}{7} \frac{3}{9} 4$
12. $\frac{847}{2} \frac{7}{8}$

EQUIVALENT FRACTIONS

1. With the help of the above diagram, fill in the blanks in (a) to (g).

(b) $\frac{1}{4}={ }_{\overline{8}}={ }_{19}$
(c) $\frac{3}{4}={ }_{8}=18$

(f) $\frac{5}{8}=\frac{18}{18}$

2. How do $\frac{1}{2}$ and $\frac{2}{4}$ compare in value? Why?

How are the terms of the fraction $\frac{8}{4}$ obtained from the terms of the fraction $\frac{1}{2}$?
3. How do $\frac{2}{3}$ and $\frac{6}{6}$ compare in value? Why?

How are the terms of the fraction $\frac{6}{9}$ obtained from the terms of the fraction $\frac{2}{3}$?
4. How do $\frac{9}{12}$ and $\frac{3}{4}$ compare in value? Why?

How are the terms of the fraction $\frac{3}{4}$ obtained from the terms of the fraction $\frac{9}{12}$?
5. How do $\frac{10}{1} \frac{0}{2}$ and $\frac{5}{6}$ compare in value? Why?

How are the terms of the fraction $\frac{5}{6}$ obtained from the terms of the fraction $\frac{1}{1} \frac{0}{2}$?

From the examples in Questions $2-5$ it is seen that:
Multiplying or dividing both terms of a fraction by the same number does not change the value of the fraction.

When one fraction is equal in value to another, the two fractions are said to be equivalent.

The fraction $\frac{2}{3}$ is equal in value to the fraction $\frac{8}{8}$. Hence $\frac{2}{3}$ and $\frac{6}{6}$ are equivalent fractions.

When the numerator and the denominator of one fraction are greater than those of its equivalent, the first fraction is said to be in higher terms than the second, and the second is said to be in lower terms than the first.

The fraction $\frac{8}{8}$ has higher terms than its equivalent $\frac{1}{2}$. Hence $\frac{4}{8}$ is said to be the fraction of higher terms and $\frac{1}{2}$ the fraction of lower terms.

The change of $\frac{1}{4}$ to the equal fraction $\frac{3}{12}$ is called changing or reducing $\frac{1}{4}$ to higher terms.

The change of $\frac{6}{12}$ to $\frac{8}{6}$ is called reducing $\frac{5}{1^{2}}$ to lower terms, and the change of $\frac{6}{12}$ to $\frac{1}{2}$ is called reducing $\frac{6}{12}$ to its lowest terms.

A fraction is in its lowest terms when the numerator and the denominator of it are prime to each other, that is, have no common factor, for example, $\frac{3}{4}, \frac{7}{8}, \frac{1}{2} \frac{5}{3}, \frac{6}{35}$.

EXERCISE 48

Change the following fractions to their lowest terms:

1. $\frac{88}{8} \frac{8}{4}$	10. $\frac{1}{2} \frac{0}{2} \frac{0}{5}$	19. $\frac{99}{132}$
2. $\frac{1}{3} \frac{5}{6}$	11. $\frac{12}{120} 4$	20. $\frac{14}{15} 5$
3. $\frac{1}{4} \frac{4}{2}$	12. $\frac{90}{135}$	21. $\frac{218}{26}{ }^{\text {a }}$
4. $\frac{58}{185}$	13. $\frac{75}{115}$	22. $\frac{72}{108}$
5. $\frac{1}{1} \frac{1}{2} \frac{5}{0}$	14. $1 \frac{108}{13}{ }^{\frac{8}{2}}$	23. $\frac{1}{1} \frac{21}{3} \frac{1}{2}$
6. $\frac{8}{6} \frac{6}{6}$	15. $\frac{1}{3} \frac{05}{6}$	24. $\frac{1}{1} \frac{5}{6} \frac{8}{8}$
7. $\frac{1}{1} \frac{20}{60}$	16. $\frac{8}{4} \frac{20}{00}$	25. $\frac{1}{2} \frac{7}{\frac{5}{5}}$
8. $\frac{81}{144}$	17. $\frac{1}{10} \frac{9}{20}$	26. $\frac{1}{5} \frac{80}{40}$
9. $\frac{80}{144}$	18. $\frac{14}{1 \frac{4}{2} \frac{4}{8}}$	27. $\frac{85}{169}$
		28. $\frac{88}{98}$

LEAST COMMON DENOMINATOR OF FRACTIONS

Fractions whose denominators are alike have a common denominator. For example, 12 is a common denominator of:

$$
\frac{5}{12}, \frac{8}{12} \text {, and } \frac{1}{1} \frac{1}{2} .
$$

A common denominator of two or more fractions is a number which contains the denominator of each of the fractions an integral number of times.

Thus 12,24 , and 36 may be made common denominators of the fractions $\frac{1}{2}, \frac{1}{3}$, and $\frac{1}{4}$.

The least common denominator (L. C. D.) of two or more fractions is the least number which contains the denominator of each of the fractions an integral number of times.

Thus 12 is the least common denominator of $\frac{1}{2}, \frac{1}{3}$, and $\frac{1}{4}$.
To find the L. C. D. of a number of fractions we simply find the L. C. M. of the denominators of these fractions. For example:

The L. C. D. of the fractions, $\frac{2}{3}, \frac{3}{5}$, and $\frac{7}{10}$ is the L. C. M. of 3,5 , and 10 , which is 30 .

The fractions $\frac{2}{3}, \frac{3}{5}$, and $\frac{7}{10}$, expressed as fractions with the least common denominator will become $\frac{20}{30}, \frac{18}{3} \frac{8}{0}$, and $\frac{2}{3} \sqrt{6}$.

EXERCISE 49

Change to fractions having the least common denominator:

ADDITION AND SUBTRACTION OF FRACTIONS

In the addition and subtraction of whole numbers, only numbers which have the same denomination or name can be added together or subtracted from one another.

This is also true in the case of fractions.

Only those fractions which have the same name or denomination can be added or subtracted.

For instance, the sum of 3 fourths and 2 fourths is five fourths, but the sum of 3 fourths and 2 thirds is neither thirds nor fourths. If, however, both these fractions, $\frac{3}{4}$ and $\frac{2}{3}$, are changed to fractions of the same denomination or name (twelfths), the sum of 9 twelfths and 8 twelfths is 17 twelfths.

The least common denominator of the fractions $\frac{3}{4}$ and $\frac{2}{3}$ is 12 .

$$
\begin{gathered}
\frac{3}{4}=\frac{9}{12}, \frac{2}{3}=\frac{8}{12} \\
\frac{3}{4}+\frac{2}{3}=\frac{9}{12}+\frac{8}{12}=\frac{17}{12}=1_{12}^{5} .
\end{gathered}
$$

Again, to find the value of $\frac{5}{6}-\frac{3}{8}$, we obtain the least common denominator of $\frac{5}{6}$ and $\frac{3}{8}$, which is 24 .

$$
\begin{aligned}
& \frac{5}{6}=\frac{20}{24}, \frac{3}{8}=\frac{9}{24} \\
& \therefore \frac{20}{24}-\frac{9}{24}=\frac{11}{24} .
\end{aligned}
$$

EXERCISE 50

Find the value of:

1. $\frac{1}{2}+\frac{1}{2} \quad 1$	15. $\frac{3}{4}+\frac{5}{16}$	29. $\frac{3}{4}+\frac{2}{5}$
2. $\frac{2}{3}+\frac{2}{3} 1$	16. $\frac{1}{1} \frac{3}{6}-\frac{1}{2}$	30. $\frac{8}{2}+\frac{4}{5}$
3. $\frac{3}{4}+\frac{1}{4} \quad 1$	17. $\frac{5}{8}-\frac{7}{82}$	31. $\frac{3}{4}-\frac{2}{5}$
4. $\frac{7}{8}-\frac{5}{8} \quad 1$	18. $\frac{2}{3}+\frac{5}{6}$	32. $\frac{8}{7}+\frac{5}{10}$
5. $\frac{8}{9}-\frac{4}{8} \quad 1$	19. $\frac{2}{3}-\frac{2}{5}$	33. $\frac{2}{3}+\frac{5}{8}$
	20. $\frac{3}{2}+\frac{5}{8}$	34. $\frac{5}{9}+\frac{4}{5}$
	21. $\frac{4}{3}+\frac{8}{18}$	35. $\frac{5}{6}-\frac{3}{4}$
8. $\frac{9}{20}+\frac{1}{2} 1$	22. $\frac{5}{16}-\frac{8}{82}$	36. $\frac{3}{8}+\frac{7}{10}$
9. $\frac{15}{150}+\frac{75}{100}$	23. $\frac{7}{8}+\frac{3}{4}$	37. $\frac{5}{8}-\frac{7}{12}$
10. $\frac{7}{10}+\frac{6}{10}+\frac{8}{10}$	24. $\frac{3}{4}+\frac{5}{8}+\frac{7}{12}$	38. $\frac{5}{6}+\frac{3}{10}$
11. $\frac{9}{18}+\frac{8}{12}-\frac{7}{12}$	25. $\frac{4}{9}+\frac{5}{18}-\frac{1}{6}$	39. $\frac{5}{6}+\frac{4}{9}-\frac{2}{3}$
12. $\frac{7}{8}-\frac{3}{8}+\frac{5}{8} 2$	26. $\frac{3}{4}-\frac{1}{8}-\frac{3}{16}$	40. $\frac{2}{5}+\frac{3}{4}-\frac{1}{2}$
13. $\frac{1}{2}+\frac{1}{4}$ 2	27. $\frac{2}{3}+\frac{3}{4}$	41. $\frac{5}{8}+\frac{4}{5}-\frac{1}{4}$
14. $\frac{3}{4}-\frac{1}{2}$	28. $\frac{1}{5}-\frac{1}{6}$	

42. A grocer sold $\frac{5}{8}$ of a barrel of sugar to one customer and $\frac{3}{4}$ of a barrel to another. How many barrels did he sell altogether?
43. A farmer gave to one of his sons $\frac{1}{6}$, to another $\frac{1}{3}$, and to a third $\frac{3}{10}$ of his farm. How much of the farm did he give away? What part had he left?
44. Between Ned's house and the school there is $\frac{1}{2}$ of a mile of board walk, $\frac{1}{4}$ of a mile of cement walk, and $\frac{7}{16}$ of a mile of gravel walk. What is the total distance?
45. A boy who had $\$ \frac{4}{5}$, paid $\$ \frac{3}{4}$ for a book. What part of a dollar had he left?

ADDITION AND SUBTRACTION OF MIXED NUMBERS
Example: Find the value of $\left(4 \frac{1}{b}-2 \frac{3}{4}\right)$.

$$
\begin{aligned}
4 \frac{1}{5}-2 \frac{3}{4} & =\frac{21}{6}-11 \\
& =\frac{84}{2}-\frac{5}{4} \frac{5}{2} 5 \\
& =\frac{2}{2} \frac{9}{0}=1 \frac{9}{20} .
\end{aligned}
$$

EXERCISE 51

1. Find the value of:
(a) $12+\frac{5}{6}$
(b) $3-\frac{4}{5}$
(c) $4 \frac{1}{2}+1 \frac{2}{3}$
(d) $6-2 \frac{2}{3}$
(e) $3 \frac{1}{6}+2 \frac{1}{4}$
(f) $5 \frac{4}{9}-3$
(g) $5 \frac{2}{3}+2 \frac{5}{6}$
(h) $4 \frac{5}{8}-1 \frac{1}{2}$
(i) $3 \frac{1}{3}-2 \frac{7}{9}$
(i) $3 \frac{4}{5}-\frac{9}{10}$
(k) $5 \frac{3}{4}+2 \frac{1}{6}$

(n) $9 \frac{2}{7}-2 \frac{7}{10}$
(a) $15 \frac{8}{8}-9 \frac{7}{12}$
2. A farmer sold two stacks of hay, in one of which there were $9 \frac{3}{4}$ tons and in the other $6 \frac{2}{3}$ tons. How many tons were there in the two stacks?
3. From a pole $23 \frac{2}{3} \mathrm{ft}$. long there was cut off $4 \frac{5}{8} \mathrm{ft}$. What was the length of the remaining part?
4. A dealer bought oats at $86 \frac{3}{4} \mathrm{c}$. a bu. and sold them at $92 \frac{2}{3} \mathrm{c}$. a bushel. What was his gain on 1 bushel?
5. A plumber worked on a job for $8 \frac{5}{12}$ hours one day and for $6 \frac{4}{5}$ hours the next day. How long did he work on the job?

MULTIPLICATION OF A FRACTION BY A WHOLE NUMBER

What does $\frac{3}{7} \times 3$ mean?
It means $\frac{2}{7}$ is taken 3 times, that is, $\frac{2}{7}+\frac{2}{7}+\frac{2}{7}=\frac{9}{7}$.
What does $\frac{3}{8} \times 5$ mean?
It means $\frac{3}{8}$ is taken 5 times, that is,

$$
\frac{3}{8}+\frac{3}{8}+\frac{3}{8}+\frac{3}{8}+\frac{3}{8}=1 \frac{15}{8} .
$$

What does $\frac{4}{5} \times 4$ mean? $\frac{\theta}{7} \times 8$? $\frac{8}{8} \times 7$? $\frac{4}{10} \times 6$?
Find the result in each case.
Find an easy way of multiplying a fraction by a whole number?
Example 1: Multiply $\frac{5}{6}$ by 4.

$$
\frac{5}{6} \times 4=\frac{20}{6}=\frac{10}{8}=3 \frac{1}{3} .
$$

Instead of dividing the 20 and the 6 by 2 , it is found to be more convenient to divide the 4 and the 6 by 2 before multiplying.

Thus:

$$
\frac{5}{6} \times \frac{2}{4}=\frac{10}{3}=3 \frac{1}{3} .
$$

The cancellation is not necessary in order to find the product, but it saves work, for it at once reduces the product to its lowest terms.

The product is $\frac{20}{6}$, which is equivalent to $\frac{10}{8}$.
Example 2: Multiply $2 \frac{5}{8}$ by 12.

$$
2 \frac{5}{8} \times 12=\frac{21}{8} \times 12=\frac{21}{2} \times 3=\frac{88}{2}=31 \frac{1}{2} .
$$

Another solution:
$2 \frac{5}{8} \times 12$ means 2 taken 12 times $+\frac{5}{8}$ taken 12 times $=$

$$
24+\frac{5}{8} \times \stackrel{3}{12}=24+\frac{16}{2}=24+7 \frac{1}{2}=31 \frac{1}{2} .
$$

ORAL EXERCISE
Find the value of:

1. $\frac{1}{4} \times 4$	8. $\frac{3}{10} \times 5$	15. $12 \times 2 \frac{3}{4}$
2. $\frac{3}{4} \times 8$	9. $\frac{5}{7} \times 21$	16. $22 \times 6 \frac{5}{11}$
3. $\frac{3}{5} \times 7$	10. $\frac{9}{25} \times 100$	17. $24 \times 3 \frac{5}{8}$
4. $\frac{5}{8} \times 6$	11. $\frac{7}{86} \times 24$	18. $20 \times 5 \frac{2}{5}$
5. $\frac{7}{12} \times 9$	12. $\frac{4}{49} \times 63$	19. $28 \times 3 \frac{2}{7}$
6. $\frac{4}{15} \times 10$	13. $3 \frac{2}{3} \times 6$	20. $2 \frac{5}{12} \times 24$
7. $\frac{7}{8} \times 80$	$14.8 \times 5 \frac{1}{2}$	21. $35 \times 2 \frac{1}{7}$

EXERCISE 52

1. A wheat field containing 16 acres yields an average of $23 \frac{3}{4}$ bu. an acre. Find the total number of bushels yielded.
2. At $68 \frac{1}{4} \mathrm{c}$. an hour what will a man earn in 2 days, working 8 hours a day?
3. A ton of coal sells for $\$ 12 \frac{1}{2}$. What is the value of 15 tons?
4. At $\$ 2 \frac{2}{5}$ a bushel what will be the value of 5 acres of wheat, if each acre yields 25 bushels?
5. A boy lives $1 \frac{7}{8}$ miles from school. How far will he walk in one week-going to school in the morning and home in the evening?
6. A farmer's hens lay on an average $3 \frac{1}{3}$ doz. eggs a day. How many dozen eggs will they lay in the month of April?

COMPOUND FRACTIONS

Point out $\frac{1}{5}$ of the figure ABCD .
Point out $\frac{4}{5}$ of the same figure.
Point out $\frac{1}{3}$ of the figure AEFD.
Point out $\frac{2}{3}$ of the same figure.
Then point out $\frac{2}{3}$ of $\frac{4}{5}$ of the figure ABCD.
Into how many equal parts is the figure ABCD divided?
How many of these equal parts are there in the figure AEGH?

What fraction of the figure ABCD is the figure AEGH?
To what single fraction is $\frac{2}{3}$ of $\frac{4}{5}$ equal?
How is the numerator of the single fraction related to the numerators of the two fractions $\frac{2}{3}$ and $\frac{4}{5}$?

How is the denominator of the single fraction related to the denominators of the two fractions $\frac{2}{3}$ and $\frac{4}{5}$?

By drawing figures similar to the above, show how to get a single fraction for $\frac{1}{2}$ of $\frac{1}{3}$, for $\frac{3}{4}$ of $\frac{5}{8}$.

How are the single fractions in each case obtained from the compound fractions?

Without using a figure, state to what single fraction $\frac{4}{7}$ of $\frac{3}{5}$ is equal.

How can a fraction of a fraction, that is, a compound fraction, be changed to a single fraction?

Example 1: Simplify $\frac{10}{1} \frac{0}{1}$ of $\frac{14}{1}$.

$$
\frac{10}{21} \text { of } \frac{14}{15}=\frac{2}{\frac{10}{21 \times 14} \times \frac{2}{3}}=\frac{4}{3} .
$$

Here again the cancelling is done before multiplying, in order that the answer may be given in its lowest terms.

Example 2: Find the value of $\frac{4}{9}$ of $\frac{8}{7}$ of $\frac{5}{8}$.

$$
\begin{aligned}
& 6 \text { of } \frac{5}{7} \text { of } \frac{5}{8}=\frac{4}{3} \text { of } \frac{6 \times 5}{7 \times 8} \\
& \quad \frac{1}{4} \times \frac{4}{6} \times 5 \\
& =\frac{9}{9} \times 7 \times \frac{8}{2}=\frac{5}{21} .
\end{aligned}
$$

It will be found more convenient to do the work thus:

$$
\begin{aligned}
& \frac{1}{4} \\
& \frac{4}{9} \text { of } \frac{6}{7} \text { of } \frac{5}{8}=\frac{5}{21} \text {. } \\
& \frac{2}{2} \\
& \frac{1}{2}
\end{aligned}
$$

By what common factors have the numerator and the denominator of this compound fraction been divided?

When mixed numbers occur in examples on compound fractions, what change must first be made in the mixed numbers before cancellation and multiplication can take place?

ORAL EXERCISE

Find the value of:

1. $\frac{1}{2}$ of $\frac{1}{3}$	9. $\frac{3}{10}$ of $\frac{9}{11}$	17.
2. $\frac{1}{5}$ of $\frac{1}{6}$	10. $\frac{1}{15}$ of $\frac{6}{15}$	18. $\frac{4}{5}$ of $\frac{1}{18}$
3. $\frac{1}{4}$ of $\frac{1}{6}$	11. $\frac{1}{10}^{10}$ of $\frac{5}{7}$	19. $\frac{6}{7}$ of $\frac{1}{1}$
4. $\frac{1}{3}$ of $\frac{8}{7}$	12. $\frac{2}{3}$ of $\frac{3}{4}$	20. $\frac{1}{3}$ of $2 \frac{1}{4}$
5. $\frac{1}{8}$ of $\frac{2}{2}{ }^{\text {b }}$	13. $\frac{7}{8}$ of 27	21. $\frac{1}{8}$ of $5 \frac{1}{3}$
6. $\frac{1}{10}$ of $\frac{80}{81}$	14. $\frac{3}{25}$ of 40	22. $\frac{1}{6}$ of $2 \frac{2}{5}$
7. $\frac{3}{5}$ of $\frac{4}{7}$	15. $\frac{1}{2} \frac{1}{6}$ of 36	23. $\frac{1}{5}$ of $7 \frac{1}{2}$
8. $\frac{7}{8}$ of $\frac{5}{8}$	16. $\frac{9}{14}$ of $3 \frac{1}{2}$	24. $\frac{1}{7}$ of $2 \frac{3}{6}$

1. How many pints in $\frac{8}{16}$ of a bushel?
2. How many minutes in $\frac{5}{24}$ of a day?
3. How many pounds in $\frac{3}{5}$ of a ton?
4. How many yards in $\frac{3}{4}$ of a mile?

5 A house was sold for $\$ 1850$; what was $\frac{2}{5}$ of the selling price?
6. I had $\$ 45$ and I spent $\frac{\pi}{9}$ of it for a watch; how much money had I left?
7. A lady spends $\frac{3}{5}$ of her income for board and $\frac{1}{3}$ of the remainder for clothes. What fraction of her income does she spend in clothes?

Of a 45 -mile journey, $\frac{3}{7}$ is by rail, $\frac{3}{4}$ of the remainder by boat, and the rest by coach. What is the distance travelled by rail, by boat, and by coach?

DIVISION OF A FRACTION BY A WHOLE NUMBER

1. If the number 12 is divided by 3 , what is the quotient?

What fraction of the number 12 is the quotient?
It is $\frac{1}{3}$ of 12 .
2. If the number 15 is divided by 5 , what is the quotient?

What fraction of the number 15 is the quotient? It is $\frac{1}{5}$ of 15 .
3. If a number is divided by 6 , what fraction of the number will the quotient be? If the number is divided by 7 , what fraction of the number will the quotient be? If divided by 8 , by 9 , by 10 , by 11 , in each case what fraction of the number will the quotient be?
4. If the number or dividend is $\frac{3}{4}$ and the divisor is 5 , what fraction of $\frac{3}{4}$ will the quotient be?

It will be $\frac{1}{5}$ of $\frac{3}{4}=\frac{3}{20}$.
5. If the dividend is $\frac{4}{5}$ and the divisor 7, what fraction of $\frac{4}{5}$ will the quotient be?

It will be $\frac{1}{7}$ of $\frac{4}{5}=\frac{4}{35}$.
Example: $\frac{5}{7} \div 4=\frac{1}{4}$ of $\frac{5}{7}=\frac{5}{28}$.

EXERCISE 54

1. Divide:

(a) $\frac{24}{2} \frac{1}{5}$ by 18	(k) $2 \frac{22}{2} \frac{2}{5}$ by 48
(b) $\frac{15}{2} \frac{5}{6}$ by 12	(l) $5 \frac{1}{2} \frac{8}{6}$ by 23
(c) $8 \frac{8}{8}$ by 20	(m) $28 \frac{4}{7}$ by 25
(d) $9 \frac{1}{11}$ by 40	(n) $32 \frac{8}{11}$ by 21
(e) $\frac{72}{75}$ by 36	(o) $18 \frac{7}{9}$ by 26
(f) $\frac{17}{2}$ by 51	(p) $19 \frac{1}{11}$ by 45
(g) $\frac{17}{25}$ by 68	(q) $29 \frac{2}{5}$ by 42
(h) $\frac{10}{1}$ by 48	(r) $19 \frac{1}{2}$ by 26
(i) $\frac{81}{60}$ by 62	(s) $28 \frac{1}{8}$ by 18
(j) $10 \frac{2}{13}$ by 24	(t) $5 \frac{13}{2} \frac{3}{5}$ by 46

2. Divide the sum of $\frac{3}{8}$ and $\frac{7}{18}$ by 10 .
3. Divide the difference between $\frac{3}{8}$ and $\frac{7}{12}$ by 10 .
4. A farmer owns $\frac{3}{4}$ of a section of land and divides it into 5 farms of equal size. How many acres in each farm? (A section of land contains 640 acres.)
5. Find the average of the following sums of money:

$$
\$ 3 \frac{4}{5}, \$ 8 \frac{8}{10}, \$ 7 \frac{3}{4}, \$ 9 \frac{2}{5} .
$$

6. If 8 yd . of cloth cost $\$ 2 \frac{4}{5}$, what is the price of 1 yd .?

MULTIPLICATION OF A FRACTION BY A FRACTION
6 times $\frac{5}{8}=5$.
$\therefore 5$ is 6 times $\frac{5}{6}$.
7 times $\frac{6}{7}$ is 6 .
$\therefore 6$ is 7 times $\frac{9}{7}$.
8 times $\frac{3}{8}$ is 3 .
$\therefore 3$ is 8 times $\frac{3}{8}$.
Compare in value 4 and $\frac{4}{5}, 3$ and $\frac{3}{4}, 6$ and $\frac{6}{1 T}, 5$ and $\frac{8}{6}$, 7 and $\frac{7}{12}, 9$ and $\frac{9}{13}$.
Multiply 8 by 3, the product is 24 .
Multiply 8 by 9 , the product is 72 .
In these two problems how do the multiplicands compare?

How does the multiplier 9 compare in value with the multiplier 3?

How does the product 72 compare in value with the product 24 ?

Provided that the multiplicand is not changed, but the multiplier is multiplied by 3 , how is the product changed?

If the multiplier is made 3 times what it was, then the product becomes 3 times what it was.

If a product is 3 times what it should be, how can the product be corrected?

If the multiplier is made 5 times what it was, how is the product changed?

If the multiplier is made 7 times what it was, how is the product changed?

If 9 times, if 10 times, if 12 times, how in each case is the product changed? How can the product in each case $\underset{8}{\text { be corrected? }}$

Example 1:

Multiply $\frac{2}{5}$ by $\frac{2}{3}$.

$$
\frac{2}{5} \times 2=\frac{4}{5} .
$$

The multiplier 2 has been used instead of the multiplier $\frac{2}{3}$.

$$
\text { Now } 2 \text { is } 3 \text { times } \frac{2}{3} \text {. }
$$

\therefore the multiplier 2 is 3 times the multiplier that should have been used.

Hence the product $\frac{4}{5}$ is 3 times the correct product.
\therefore The corrected product will be $\frac{4}{5} \div 3$.

$$
\begin{gathered}
\frac{4}{5} \div 3=\frac{1}{3} \text { of } \frac{4}{5}=\frac{1}{3} \times \frac{4}{5}=\frac{4}{16} \\
\therefore \frac{2}{5} \times \frac{2}{3}=\frac{4}{15} .
\end{gathered}
$$

How is the numerator 4 obtained from the numerators of the two fractions? How is the denominator 15 obtained?

Example 2:
Multiply $\frac{5}{12}$ by $\frac{8}{10}$.

$$
\frac{s}{12} \times \frac{3}{10}=\frac{\frac{1}{\tilde{p}}}{\frac{12}{4}} \times \frac{\frac{1}{2}}{10}=\frac{1}{8} .
$$

Example 3:

$$
2 \frac{1}{3} \times 3 \frac{1}{3} \times 4 \frac{9}{7} .
$$

The mixed numbers being brought to improper fractions, the question becomes:

$$
\begin{gathered}
\frac{7}{8} \times \frac{28}{9} \times \frac{30}{7}=\frac{7}{3} \times \frac{4}{98} \times \frac{10}{9} \times \frac{30}{7}=\frac{7 \times 4 \times 10}{9} \\
=\frac{280}{9}=31 \frac{1}{9} .
\end{gathered}
$$

EXERCISE 5.5

1. Find the value of each of the following in its lowest terms:
(a) ${ }_{21}^{25} \times \frac{10}{21}$
(k) $8 \frac{2}{3} \times 4 \frac{1}{2}$
(b) $\frac{1}{2} \frac{3}{6} \times \frac{15}{26}$
(l) $2 \frac{4}{7} \times \frac{5}{8} \times \frac{27}{40}$
(c) $\frac{8}{15} \times \frac{25}{85}$
(m) $6 \frac{2}{9} \times \frac{25}{42} \times 2 \frac{5}{8}$
(d) $\frac{27}{32} \times \frac{44}{65}$
(n) $2 \frac{1}{3} \times 3 \frac{1}{3} \times 4 \frac{2}{7}$
(c) $\frac{19}{35} \times \frac{14}{2}$
(o) $2 \frac{8}{8} \times{ }_{15}^{4} \times 1 \frac{11}{34}$
(f) $2 \frac{1}{5} \times \frac{1}{2} \frac{5}{2}$
(p) $5 \frac{1}{8} \times 4 \frac{3}{4} \times 8 \frac{1}{2} \times \frac{1}{2}$
(g) $6 \frac{2}{3} \times \frac{9}{10}$
(q) $4 \frac{2}{3} \times \frac{9}{4} \times \frac{3}{8} \times \frac{3}{5}$
(h) $\frac{10}{21} \times 8 \frac{3}{4}$
(r) $3 \frac{1}{3} \times 4 \frac{1}{5} \times \frac{7}{10}$
(i) $5 \frac{4}{9} \times 2 \frac{4}{7}$
(s) $4 \frac{23}{25} \times \frac{10}{41}$ of $2 \frac{3}{3} \frac{3}{5}$
(j) $9 \frac{2}{7} \times 3_{1 \frac{8}{18}}$
(t) $\frac{6}{7}$ of $\frac{11}{12} \times \frac{9}{17}$ of $6 \frac{1}{8}$.
2. At $\$ \frac{4}{5}$ a yd. what will $15 \frac{5}{8} \mathrm{yd}$. of cloth cost?
3. At $\$ 10 \frac{1}{2}$ a cwt., what will $2 \frac{1}{2} \mathrm{cwt}$. of flour cost?
4. If a train runs at the rate of $22 \frac{1}{2}$ miles an hour, how far will it run in $8 \frac{1}{4}$ hours?
5. Find the cost of:
(a) $12 \frac{1}{5} \mathrm{bu}$. of potatoes © $\$ 1 \frac{3}{4} \mathrm{a}$ bu.
(b) $25 \frac{1}{4}$ gal. of milk (a) $37 \frac{1}{2} \mathrm{c}$. a gal.
(c) $36 \frac{3}{4} \mathrm{lb}$. of nails @ $27 \frac{1}{2} \mathrm{c}$. a lb .
(d) $8 \frac{1}{3} \mathrm{lb}$. of butter © $60 \frac{1}{2} \mathrm{c} . \mathrm{a} \mathrm{lb}$.

DIVISION OF A FRACTION BY A FRACTION

Compare in value $\frac{2}{3}$ and $2 ; \frac{1}{4}$ and $1 ; \frac{5}{8}$ and $5 ; \frac{7}{8}$ and 7 ; ${ }_{10}{ }^{2}$ and 9 .

Divide 48 by 3. Quotient is 16 .
Divide 48 by 12. Quotient is 4 .
How do the dividends compare?
How does the divisor 12 compare in value with the divisor 3?

How does the quotient 4 compare in value with the quotient 16 ?

Provided the dividend is not changed, but the divisor is multiplied by 4 , how is the quotient changed?

If the divisor is made 4 times what it was, then the quotient becomes $\frac{1}{4}$ of what it was.

If the quotient is $\frac{1}{4}$ of what it should be, how can the quotient be corrected?

ORAL EXERCISE

1. Divide 45 by 3 .

Divide 45 by 15 .
If the divisor is multiplied by 5 , how is the quotient changed?

How can the quotient be corrected?
2. Divide 96 by 8 .

Divide 96 by 16 .
If the divisor is multiplied by 2 , how is the quotient changed?

How can the quotient be corrected?
3. Divide 120 by 5 .

Divide 120 by 40 .
If the divisor is multiplied by 8 , how is the quotient changed?

How can the quotient be corrected?

Example 1:

Divide $\frac{4}{5}$ by $\frac{3}{4}$.

$$
\frac{4}{5} \div 3=\frac{1}{3} \text { of } \frac{4}{5}=\frac{4}{15} .
$$

The divisor 3 has been used instead of the correct divisor $\frac{3}{4}$.

$$
3 \text { is } 4 \text { times } \frac{3}{4} \text {. }
$$

\therefore A divisor has been used which is 4 times the correct divisor $\frac{3}{4}$.
\therefore The quotient ${ }^{4} \frac{4}{15}$ is only $\frac{1}{4}$ of what the quotient should be,
\therefore The correct quotient is 4 times $\frac{4}{15}=\frac{1}{1} \frac{6}{5}$.

$$
\begin{gathered}
\frac{16}{15}=\frac{4}{5} \times \frac{4}{5} . \\
\text { Hence } \frac{4}{5} \div \frac{3}{4}=\frac{4}{5} \times \frac{4}{3} .
\end{gathered}
$$

That is, to divide one fraction by another fraction, invert the fraction which is the divisor and then use it as a multiplier.

Another method:
Divide $\frac{4}{5}$ by $\frac{3}{8}$.

$$
\begin{aligned}
\frac{4}{5} \div \frac{3}{8}= & \frac{3}{4} \frac{2}{0} \div \frac{25}{4} \\
= & 32 \text { fortieths } \div 15 \text { fortieths } \\
= & 32 \div 15 \\
= & \frac{82}{15} \\
= & \frac{4}{5} \times \frac{8}{8} . \\
& \text { Hence the rule. }
\end{aligned}
$$

Example : :
Divide $\frac{5}{9}$ by $\frac{10}{6}$.

$$
\frac{5}{9} \div \frac{10}{6}=\frac{5}{8} \times{ }_{10}^{6}=\frac{\frac{1}{5}}{9} \times \frac{\stackrel{1}{2}}{3} \times \frac{\frac{6}{10}}{\frac{2}{2}}=\frac{1}{3} .
$$

Example 3:
Divide 8 by $\frac{3}{7}$.

$$
8 \div \frac{3}{7}=8 \times \frac{7}{3}=\frac{56}{3}=18 \frac{2}{3} .
$$

EXERCISE 56

Find the value of:

1. $\frac{1}{2} \div \frac{1}{2}$	11. $\frac{7}{15} \div \frac{9}{10}$	21.	$9 \div \frac{6}{7}$
2. $\frac{1}{2} \div \frac{1}{4}$	12. $2 \frac{1}{4} \div \frac{8}{8}$	22.	$12 \div \frac{3}{4}$
3. $\frac{1}{2} \div \frac{3}{4}$	13. $2 \frac{2}{9} \div \frac{4}{15}$	23.	$8 \div \frac{8}{10}$
4. $\frac{1}{3} \div \frac{1}{2}$	14. $3 \frac{1}{7} \div 2 \frac{1}{5}$	24.	$16 \div \frac{8}{8}$
5. $\frac{1}{3} \div \frac{1}{4}$	15. $5 \frac{3}{8} \div 7 \frac{1}{6}$	25.	$8 \frac{2}{3} \div 2$
6. $\frac{5}{6} \div \frac{1}{2}$	16. $6 \frac{1}{4} \div 2 \frac{1}{2}$	26.	$62 \frac{1}{2} \div 6$
7. $\frac{4}{9} \div \frac{2}{3}$	17. $7 \frac{1}{7} \div 4 \frac{1}{6}$	27.	$\frac{9}{24} \div \frac{5}{10}$
8. $\frac{5}{8} \div \frac{5}{8}$	18. $\frac{1}{14} 5 \div 1_{1}{ }^{\frac{3}{r}}$	28.	$\frac{1}{15} \div \frac{11}{1}$
9. $\frac{11}{24} \div \frac{7}{8}$	19. $4 \frac{3}{8} \div 9 \frac{2}{7}$	29.	$\frac{1}{5} \frac{7}{2} \div \frac{5}{8}$
10. $\frac{9}{16} \div \frac{5}{12}$	20. $6 \div \frac{3}{5}$	30.	$5{ }_{5}^{2} \div\left(\frac{7}{8}\right.$

31. At $\$ \frac{3}{8}$ a yard, how many yards of ribbon can be purchased for $\$ 7 \frac{1}{8}$?
32. If for $\frac{3}{4}$ of an acre of land there is paid $\$ 37 \frac{1}{2}$, what is the price of one acre?
33. At the rate of $3 \frac{1}{3}$ miles an hour, how long will it take a man to walk $11 \frac{2}{3}$ miles?
34. How many bags will be required for $31 \frac{1}{2}$ bu. of grain if each bag will hold $2 \frac{1}{4}$ bu.?

COMPARISON OF QUANTITIES

What fraction of $\$ 6$ is
The fraction of $\$ 6$ to which $\$ 2$ is equal is $\frac{\$ 2}{\$ 6}=\frac{2}{6}=\frac{1}{3}$.

$$
\text { Proof- } \quad \frac{1}{3} \text { of } \$ 6=\$ 2
$$

What fraction of $\$ 3$ is $\$ 5$?
The fraction of $\$ 8$ to which $\$ 5$ is equal is $\frac{\$ 5}{\$}=\frac{5}{8}$.

$$
\text { Proof- } \quad \frac{5}{8} \text { of } \$ 8=\$ 5
$$

What fraction of $\frac{4}{5}$ is $\frac{2}{3}$?
The fraction of $\frac{4}{5}$ to which $\frac{2}{3}$ is equal is $\frac{\frac{2}{3}}{\frac{4}{4}}$.

$$
\frac{\frac{2}{3}}{\frac{4}{5}}=\frac{2}{3} \div \frac{4}{5}=\frac{2}{3} \times \frac{5}{4}=\frac{5}{6} .
$$

Proof-

$$
\begin{array}{ll}
\frac{1}{5} & 2 \\
\frac{5}{6} & \\
\frac{4}{4} \\
3 & 1 \\
3
\end{array}=\frac{2}{3} .
$$

What fraction of $3 \frac{1}{3}$ is $2 \frac{1}{2}$?
The fraction of $3 \frac{1}{3}$ to which $2 \frac{1}{2}$ is equal is:

$$
\begin{aligned}
& \frac{2 \frac{1}{2}}{3 \frac{1}{3}}=\frac{\frac{5}{2}}{3}=\frac{5}{2} \div \frac{10}{3}=\frac{5}{2} \times \frac{3}{10}=\frac{3}{4} . \\
& \text { Proof- } \frac{3}{4} \text { of } 3 \frac{1}{3}=\frac{3}{4} \text { of } \frac{10}{3}=\frac{5}{2}=2 \frac{1}{2} .
\end{aligned}
$$

EXERCISE 57

1. What fraction of $1 \frac{1}{2} \mathrm{ft}$. is 7 in .?
2. " " " 3 dy . is 8 hr .?
3. " " " 2 wk . is 3 da .12 hr ?
4. " " " £3 is 10s. 6d.?
5. " " " 6 ft .3 in . is 2 ft .9 in .?
6. " " " 10 lb .12 oz . is 4 lb .8 oz .?
7. Express:
(a) $\frac{5}{6}$ of 8 yd . as a fraction of $\frac{3}{8}$ of 4 rd .
(b) $\frac{5}{8}$ of 9 s .4 d . as a fraction of $\frac{2}{3}$ of $£ 410 \mathrm{~s}$.
(c) $\frac{2}{3}$ of 1500 lb . as a fraction of $\frac{3}{4}$ of 2 tons, 8 cwt .
(d) $\frac{5}{7}$ as the fraction of $\frac{1}{2}$.
(e) $\frac{7}{12}$ as the fraction of $\frac{3}{8}$.
(f) $1 \frac{1}{2}$ as the fraction of $2 \frac{1}{2}$.
(g) $4 \frac{5}{7}$ as the fraction of $6 \frac{2}{7}$.

COMPLEX FRACTIONS

Express $4 \div 5$ as a single fraction. Ans. $\frac{4}{8}$.
$\begin{array}{llllll}\text { " } & 3 \div \frac{4}{5} & \text { " } \frac{3}{\frac{7}{8}} \\ \text { " } & \frac{2}{4} \div 4 & \text { " } \frac{\frac{7}{7}}{4}\end{array}$
" $5 \frac{1}{3} \div 2 \frac{1}{8}$ as a single fraction. Ans. $\frac{5 \frac{1}{3}}{2 \frac{1}{6}}$.

A fraction such as $\frac{4}{5}$, whose numerator and denominator are whole numbers, is called a simple fraction.

Firactions such as $\frac{3}{\frac{4}{5}}, \frac{2}{4}$, and $\frac{5 \frac{1}{3}}{2 \frac{1}{9}}$ are called complex fractions.

A complex fraction is a fraction which has a fraction in its numerator or in its denominator or in both.

EXERCISE 58

Simplify:

1. $\frac{6 \frac{2}{8}}{8}$
2. $\frac{7 \frac{1}{7}}{25}$
3. $\frac{2 \frac{1}{3}}{4 \frac{1}{6}}$
4. $\frac{8 \frac{1}{8}}{5 \frac{1}{5}}$
5. $\frac{\frac{1}{2}+\frac{3}{4}}{\frac{3}{4}-\frac{1}{2}}$
6. $\frac{1}{1} \frac{1}{2}$ of $\frac{8}{80}+\frac{2}{5}$ of $3 \frac{2}{3}$
7. $\frac{8 \frac{3}{4}}{70}$
8. $\frac{4_{11}^{1}}{7 \frac{7}{8}}$
9. $3 \frac{3}{4}-\frac{2}{5}$ of $2 \frac{1}{2}$.
10. $\frac{9}{4 \frac{1}{2}}$
11. $\frac{\frac{2}{3} \text { of } \frac{15}{16}}{1 \frac{1}{2}-\frac{3}{8}}$
12. $\frac{18}{7 \frac{1}{6}}$

13. $\frac{64}{9^{\frac{5}{1}}}$

EXERCISE 59 (REVIEW)

1. Reduce to their lowest terms:
(a) $\frac{89}{91}$
(b) $\frac{57}{190}$
(c) $\frac{117}{27}$
(d) $\frac{69}{230}$
(e) $\frac{84}{144}$
(f) $\frac{19}{40} \frac{5}{6}$
(g) $\frac{2110}{3} 0$.
2. Reduce:
(a) $\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{5}{6}$ and $\frac{7}{12}$ to sixtieths
(b) $\frac{3}{7}, \frac{4}{12}, \frac{2}{3}, \frac{5}{6}, \frac{9}{14}, \frac{1}{4} \frac{1}{2}$ to eighty-fourths
(c) $\frac{5}{10}, \frac{4}{20}, \frac{4}{5}, \frac{7}{60}, \frac{8}{25}$ to hundredths.
3. Reduce these fractions to equivalent fractions having the lowest common denominator:
(a) $\frac{2}{3}, \frac{5}{6}, \frac{3}{4}, \frac{7}{6}$
(b) $\frac{8}{7}, \frac{1}{2} \frac{1}{1}, \frac{9}{14}, \frac{2}{3}$
(c) $\frac{1}{3}, \frac{31}{4}, 4 \frac{1}{5}, \frac{8}{20}, 2 \frac{7}{16}$.
4. Add:
(a) $\frac{2}{3}, \frac{3}{4}, \frac{5}{12}$
(b) $\frac{4}{5}, \frac{7}{10}, \frac{9}{20}, \frac{1}{3} \frac{1}{7}$
(c) $1 \frac{3}{5}, 2 \frac{3}{8}, 3 \frac{8}{10}, 4 \frac{9}{50}$.
5. Subtract:
(a) $\frac{3}{4}$ from $\frac{7}{8}$
(b) $\frac{8}{9}$ from $\frac{11}{1} \frac{1}{2}$
(c) $4 \frac{3}{5}$ from $7 \frac{9}{10}$
(d) $5 \frac{9}{9}$ from $7 \frac{5}{18}$.
6. Find by the method of cancellation the value of the following, each in its lowest terms:

$$
\begin{aligned}
& \text { (a) } \frac{75 \times 63 \times 27}{100 \times 48 \times 72} \\
& \text { (b) } \frac{42 \times 57 \times 26}{21 \times 91 \times 19} \\
& \text { (c) } \frac{32 \times 38 \times 39 \times 45}{80 \times 95 \times 91 \times 60} \text {. }
\end{aligned}
$$

7. Find the value of -
(a) $\frac{5}{6}$ of $\frac{2}{7}$
(b) $\frac{5}{8}$ of $\frac{4}{8}$
(c) $\frac{1}{2} \frac{5}{1}$ of $3_{13}^{\frac{3}{3}}$
(d) $\frac{11}{7} \frac{1}{6}$ of $1 \frac{1}{2} \frac{9}{2}$.
8. Multiply:
(a) $\frac{1}{2} \times \frac{2}{3}$
(d) $4 \frac{2}{3} \times 9$
(g) $8 \frac{2}{3} \times 9 \frac{3}{4}$
(b) $\frac{2}{4} \times \frac{3}{4}$
(e) $8 \frac{3}{4} \times 12$
(h) $9 \frac{3}{4} \times 12 \frac{2}{3}$
(c) $\frac{8}{6} \times \frac{5}{8}$
(f) $20 \frac{5}{6} \times 18$
(i) $15 \frac{4}{5} \times 10_{5}^{2}$.
9. Divide:
(a) $\frac{12}{12}$ by 6
(d) 12 by $\frac{3}{4}$
(g) $\frac{5}{8}$ by $\frac{1}{3}$
(b) $\frac{6}{8}$ by 3
(e) 15 by $\frac{2}{3}$
(h) $\frac{1}{7}$ by $\frac{5}{6}$
(c) $\frac{9}{10}$ by 4
(f) 10 by $\frac{1}{2}$
(i) $3 \frac{4}{6}$ by $4 \frac{4}{7}$.
10. How many ribbons $\frac{2}{3}$ of a yard long can be cut from $46 \frac{2}{3} \mathrm{yd}$. of ribbon?
11. An automobile ran $63 \frac{1}{3}$ miles in $3 \frac{1}{6}$ hours. Find the average rate per hour.
12. James weighs $160_{4}^{\frac{3}{4}} \mathrm{lb}$., Sarah 108 lb ., John $135 \frac{3}{4} \mathrm{lb}$., Mary $120 \frac{5}{8} \mathrm{lb}$., and Henry $124 \frac{7}{8} \mathrm{lb}$. Find their average weight.
13. $\frac{4}{5}$ of the length of a flagpole is 60 ft . What is the length of $\frac{2}{3}$ of the pole?
14. A man who spent $7_{1}^{7} 0$ of his money found that he had $\$ 17 \frac{1}{2}$ left. How much had he at first?
15. A farmer sells $\frac{2}{5}$ of his farm and gives his son $\frac{1}{2}$ of the remainder. In what he now has there are 75 acres. How many acres were there in the farm at first?
16. A mixture contains $33 \frac{1}{2} \mathrm{lb}$. of corn, $25 \frac{5}{8} \mathrm{lb}$. of oats, and $17 \frac{3}{4} \mathrm{lb}$. of barley. How many cows will it feed if $5 \frac{1}{8}$ lb . is given to each cow?
17. From $232 \frac{1}{2}$ yd. of cotton, $185 \frac{2}{3}$ yd. were sold. What will the remainder be worth at 24 c . a yd.?
18. Make out a bill for the following:

555 lb . wheat @ $\$ 2.80 \mathrm{a}$ bu. 289 lb . oats @ $\$ 1 \cdot 10 \mathrm{a}$ bu. 432 lb . peas @ $\$ 3 \cdot 30 \mathrm{a}$ bu.
19. Make out a bill for the following: 288 lb . timothy seed @ $\$ 8 \frac{1}{2}$ a bu. 444 lb. barley @ 88c. a bu. 1560 lb . hay @ $\$ 25$ a ton.

LINEAR MEASURE

The following table has already been learned:

$$
\begin{aligned}
12 \mathrm{in.} & =1 \mathrm{ft} . \\
3 \mathrm{ft} . & =1 \mathrm{yd} . \\
1760 \mathrm{yd} . & =1 \mathrm{mile} .
\end{aligned}
$$

There is another unit of length longer than the yard, which is very often used to measure the length of fields, and distances which may be less than one mile. This unit is called therod.
If there are 320 rods in 1 mile, find the number of yd . in one rod.

Re-write the table of linear measure including the new unit, the rod.

EXERCISE 60

1. How many rods in 2 miles? in 3 miles? in 23 miles? in $3 \frac{3}{4}$ miles? in 4 miles, 110 rods?
2. How many miles in 640 rods? in 160 rods? in 40 rods? in 1280 rods? in 2240 rods?
3. How many miles and rods in 1400 rods? in 1560 rods? in 1760 rods?
4. If a farm is 80 rods wide, how many farms of the same width will it take to make a distance of 5 miles?
5. From one concession to another is $1 \frac{1}{4}$ miles. How many rods in that distance?
6. A field is $\frac{1}{8}$ of a mile long. How much will it cost to build a fence along the field at $\$ 1.75$ a rod?
7. How many yd. in 2 rods? in 6 rods? in 14 rods? in 11 rods? in 15 rods?
8. How many rods in 22 yd.? in 33 yd ? in 55 yd ? in 88 yd .?
9. How many rods and yd. are there in 8 yd.? in 12 yd.? in 19 yd.? in 27 yd .?
10. What will it cost to pave a street 160 rods long at $\$ 12.25$ a yd.?
11. A ditch 77 yd . long cost $\$ 2.25$ a rod. What was the cost of the ditch?
12. How many yd. in 2 miles, 67 rods, 4 yd.?

SCALE-DRAWING-PERIMETER

If a distance of one foot is represented in a drawing by a line one inch in length, the scale used is said to be 1 in . to the foot.

If the distance represented by one inch is one yard, the scale used is 1 in . to the yard.

If a distance of 10 feet is represented in a drawing by a line $\frac{1}{2}$ inch in length, the scale used is $\frac{1}{2}$ in. to 10 feet.

EXERCISE 61

Draw a line to represent the distance:

1. 100 ft ., if the scale is 1 in . to 20 ft .
2. Draw a line to represent a distance of 50 yd ., if the scale is 1 in . to 20 yd .
3. Draw a line to represent a distance of 75 rods, if the scale is 1 in . to 30 rods.
4. Draw a diagram on a scale of 1 in . to 8 ft . for a room 16 ft . long and 12 ft . wide.
What is the distance in inches around the diagram?
What is the distance in feet around the room?
5. Draw diagrams on a scale of 1 in . to 8 ft . for rooms of the dimensions given below, and find the perimeter of each room in feet:
(a) 24 ft . long, 16 ft . wide,
(b) 18 " " 12 " "
(c) 20 " " 14 " "
6. Draw a diagram on a scale of 1 in . to 16 yd . for lots of the dimensions given below, and find the perimeter of each lot in yards:
(a) 32 yd . long, 24 yd . wide
(b) 48 " " $362^{\text {m }}$ "
(c) 56 " " 42 " "
7. Draw diagrams on a scale of $\frac{1}{4}$ in. to 5 rods for fields of the dimensions given below, and find the perimeter of each field in rods:
(a) 40 rods long, 40 rods wide
(b) 80 " " 20 " "
(c) 60 " " 30 " "
8. What will it cost to plant a hedge around a lot 12 rods long and 8 rods wide, if the plants are placed 1 foot apart and cost $\$ 4 \cdot 25$ per hundred?
9. The length of a rectangular lot is 100 yd. , and its width is 40 yd . What will it cost to fence it with wire netting at $\$ 7 \cdot 20$ per hundred feet and posts set 10 ft . apart and costing 75c. each?
10. A barn is 80 ft . long and 60 ft . wide. How many boards 8 in . wide, placed upright, will it take to go around the barn?
11. A trunk is 2 ft . wide and $1 \frac{1}{2} \mathrm{ft}$. high. What length of strap will be necessary to go around it and leave one foot of strap over?
12. A playground is 18 rods long and 16 rods wide. What will it cost to fence it at 75 c . a yd.?
13. How many posts placed 10 feet apart will be required for a fence around a field 40 rcds long and 40 rods wide?
14. How many posts will be required for a fence along the front and one side of the field in Question (13)?
15. What length of fence in miles is required to go around a farm 160 rods wide and 100 rods long?

MEASUREMENT OF AREA

The surface of a solid is that part of it which can be seen and touched. It is the outside of the solid. In your school-room, note that there are two kinds of sur-faces-flat, or plane, surfaces, and round, or curved, surfaces. Note a few examples of each.

The size of a surface is called its area. This area is generally measured in units which are squares-the square inch, the square foot, the square yard, the square rod, and the square mile. The acre which is used for measuring fields and farms is not a square.

Draw (a) upon your work book a square inch.
(b) upon the black-board a square foot and a square yard.
(c) upon the floor a square rod.

Measure off an acre on a field which is 40 rods in length. Draw an acre to the scale of 1 in . to 10 rods.

Define a square mile. Draw a square mile to scale.

THE AREA OF A RECTANGLE

Draw a rectangle 4 in . long and 3 in . wide. Divide each side of the rectangle into inches. Join corresponding points on opposite sides of the rectangle.

How many squares in each row?
How many rows? How many squares altogether?
Express the number of squares as a product

$$
=4 \times 3
$$

What is the area of each square?
What is the area of the rectangle?
$4 \times 3 \times 1$ sq. in. $=12$ times 1 sq. in, $=12$ sq. in.

From these examples it is evident that the number of square units in the area of a rectangular space is equal to the number of linear units in its length multiplied by the number of linear units in its width. All linear units must be of the same denomination.

ORAL EXERCISE

1. Express and find the area of each of the following rectangles.
(a) 8 in. long, 6 in. wide
(b) 9 in. long, 8 in. wide
(c) 15 in . long, 20 in . wide
(d) 7 ft . long, 9 ft . wide
(e) 6 ft . long, 8 ft . wide
(f) 25 ft . long, 20 ft . wide
(g) 12 yd . long, 5 yd . wide
(h) 9 yd . long, 11 yd . wide
(i) 20 rods long, 15 rods wide
(j) 40 rods long, 40 rods wide
(k) 6 mi . long, 6 mi . wide.
2. Find the number of square feet in a lot 25 ft . wide and 120 ft . deep.
3. How many square miles of land in a township which is 6 mi . long and 6 mi . wide?

SQUARE MEASURE

EXERCISE 62

A. THE SQUARE FOOT AND THE SQUARE INCH

1. Draw a square foot upon the black-board. Divide it into sq. in. Find how many sq. in. in a square foot,
2. How many sq. in. in 2 sq , ft .? in 3 sq . ft .? in 5 sq. ft.? in 2 sq. ft. 12 sq. in.? in 3 sq. ft. 18 sq. in.? in 4 sq. ft. 100 sq. in.?
3. How many sq. ft. in 288 sq. in.? in 432 sq. in.? in 864 sq. in.? in 2880 sq. in.?
4. How many sq. ft. and sq. in. in 450 sq. in.? in 382 sq. in.? in 875 sq. in.? in 900 sq. in.?
5. A table is 96 in . long and 48 in . wide. How many sq. ft . of surface has it?
6. A rug is 10 ft .10 in . long and 8 ft .4 in . wide. How many sq. ft. in its area?
7. A verandah is 22 ft . long and 7 ft . wide. How many sq. in. of flooring will it require?

B. THE SQUARE YARD AND THE SQUARE Foot

1. Draw a square yard upon the black-board. Divide it into sq. ft. Find how many sq. ft. there are in a square yard?
2. How many sq. ft. in 8 sq. yd.? in 12 sq. yd.? in 15 sq. yd.? in 25 sq. yd.?
'3. How many sq. $\overline{\mathrm{ft}}$. in 5 sq. yd. 2 sq. ft.? in 7 sq. yd. 3 sq. ft .? in 15 sq. yd. 6 sq. ft.?
3. A floor is 9 yd . long and 8 yd . wide. How many sq. ft. of floor space does it contain?
4. How many sq. ft. of glass in a window that is 3 yd . 2 ft . wide and 2 yd .2 ft . high ?
5. A black-board is 4 ft . wide and 36 ft . long. How many sq. yd. in it?

C. The square rod and the square yard

1. Mark off on your school ground a square rod. Divide it into square yards, half square yards, and one quarter square yard. Find how many square yards $=$ 1 sq. rod.
2. How many sq. yd. in 2 sq. rods? in 3 sq. rods? in 4 sq. rods? in 4 sq. rods, 12 sq. yd.? in 6 sq. rods, 25 sq. yd.?
3. A field is 40 rods long and 40 rods wide. What is its area in sq. yd.?
4. What are the areas in sq. yd. of the following rectangular lots?
(a) 10 rods long, 8 rods wide
(b) 15 " " 6 " "
(c) 12 " " 9 " "

D. THE ACRE AND THE SQUARE ROD

1. On a field which is 40 rods long mark off a width of 4 rods. How many sq. rods in this area?

An area which contains 160 sq. rods is called an acre.
8. Give the dimensions of 4 dissimilar fields each of which contains an acre.
3. How many acres in a field which is 40 rods long and 40 rods wide?
4. Find the area in acres of the following rectangular fields:
(a) 60 rods long, 80 rods wide

(b)	20	$"$	$"$	120	$"$	$"$
(c)	80	$"$	$"$	100	$"$	$"$
(α)	320	$"$	$"$	320	$"$	$"$
(e)	45	$"$	$"$	32	$"$	$"$
(f)	72	$"$	$"$	48	$"$	$"$

E. the square mile, the section, and the acre

1. A rectangular area of land which is a mile long and a mile wide is called a square mile. In western Canada it is called a section of land.
2. How many acres of land are there in a square mile? in a section? in 2 sections? in $\frac{1}{2}$ section? in $\frac{3}{4}$ section? in $2 \frac{1}{4}$ sections? in $3 \frac{3}{4}$ sections? in $4 \frac{1}{2}$ sections?
Fill in the blanks in the following table and memorize the facts:

.f. sq. in. $=1$ sq. ft.	\ldots... sq. rod $=1$ acre
\%.sq. ft. $=1$ sq. yd.	A./.).acres $=1$ sq. mil
.sq. yd. $=1$ sq. rod	sectio

EXERCISE 63

1. How many acres are there in rectangular fields of these dimensions: 38 rd . by 20 rd .? 48 rd . by 30 rd .? 60 rd . by 32 rd .? 54 rd by 72 rd .?
2. Find the dimensions of your school grounds, and find the number of acres in them.
3. For a farm 240 rd . long and 144 rd . wide a man paid $\$ 65$ an acre. What did the farm cost him?
4. A city bought a street 66 ft . wide and 180 rd . long (a) $\$ 100$ an acre. How much did the street cost?
5. At 23c. a sq. ft . what will be the cost of building a cement walk $\frac{1}{4}$ mi. long and $4 \frac{1}{2} \mathrm{ft}$. wide?
6. Around the outside of a block of land 40 rd . by 20 rd . there is a cement walk 4 ft . wide. What did the walk cost @ 27 c . a sq. ft.?
7. At $3 \frac{1}{2} \mathrm{c}$. a sq. ft. what will it cost to sod a strip of ground 10 rd . long and 36 ft . wide?
8. Find the width of a field which contains 2 acres and which is 20 rods long?

9 . Find the cost of painting the floor of a room 24 ft . $\times 18 \mathrm{ft}$ @ 36 c . a sq. yd.
10. Around a 2 -acre lot which is 20 rd . long the owner builds a wire fence with posts 22 ft . apart. How many posts are required?
11. Find the cost of painting both sides of a tight board fence 50 ft . long and 6 ft . high @ 25 c . a square yard.
12. If it requires 72 rods of fence to inclose a square field, how long is a side of the field?

How many acres does the field contain?

MEASUREMENT OF VOLUME

The volume of a solid is the amount of space it occupies. Volume is usually measured in units which are cubes, for example, the cubic inch, the cubic foot, and the cubic yard. The cord, however, which is used as a unit to measure wood and stone, is not a cube.

ORAL EXERCISE

1. Build up a rectangular solid from inch cubes. Put 4 cubes in the length, 3 cubes in the width, and 2 cubes in the height.
2. How many cubes in each layer? How many cubes altogether?

$$
4 \times 3 \times 2
$$

3. What is the volume of each cube? What is the volume of the rectangular solid?
$4 \times 3 \times 2 \times 1 \mathrm{cu}$. in. $=24$ times $1 \mathrm{cu} . \mathrm{in} .=24 \mathrm{cu} . \mathrm{in}$.
4 . How many cubes in a rectangular pile which has 5 cubes in the length, 4 cubes in the width, and 3 cubes in the height?

If each cube is a cu. in., what is the volume of the solid?

$$
5 \times 4 \times 3 \times 1 \mathrm{cu} . \mathrm{in} .
$$

5. How many cubes in a rectangular pile which has 6 cubes in the length, 5 cubes in the width, and 4 cubes in the height? If each cube is a cu. ft., find the volume of the pile.
6. How many cubes, each of which is a cu. in., are there in a rectangular pile which is 4 in . long, 3 in . wide, and 3 in . high? Find the volume of the pile.
7. How many cubes, each of which is a cu.ft., are there in a pile 6 ft . long, 4 ft . wide, and 3 ft . high? Find the volume of the pile in $\mathrm{cu} . \mathrm{ft}$.

From these examples it is evident that the number of cubic units in the volume of any rectangular solid is equal
to the number of linear units in its length, multiplied by the number of linear units in its width, multiplied by the number of linear units in its height.

All the linear units must be of the same denomination.

ORAL EXERCISE

1. Find the number of cubic inches in rectangular blocks whose dimensions are:
(a) 3 in. $\times 2$ in. $\times 1$ in. (c) 6 in. $\times 5$ in. $\times 3$ in.
(b) 4 in. $\times 3$ in. $\times 2$ in.
(d) 10 in. $\times 8$ in. $\times 5$ in.
2. Find the number of $\mathrm{cu} . \mathrm{ft}$. in rectangular solids whose dimensions are:
(a) $9 \mathrm{ft} . \times 5 \mathrm{ft} . \times 3 \mathrm{ft}$.
(c) $6 \mathrm{ft} . \times 24 \mathrm{in} . \times 12 \mathrm{in}$.
(b) $8 \mathrm{ft} . \times 6 \mathrm{ft} . \times 3 \mathrm{ft}$.
(d) $4 \mathrm{ft} . \times 18 \mathrm{in} . \times 8 \mathrm{in}$.
3. Find the third dimension when the other dimensions are 4 in . and 3 in . and the volume is 36 cu . in.
4. How many cubic inches of earth can be put in a box 8 in. $\times 4$ in. $\times 3$ in.?
5. How many cu . yd. of earth must be removed to leave a rectangular hole $9 \mathrm{ft} . \times 3 \mathrm{ft} . \times 2 \mathrm{ft}$.?
6. How many cu. ft. of grain will a bin 5 ft . wide, 8 ft . long, and 7 ft . high hold?
7. How many cu. ft . in a pile of wood 8 ft . long, 4 ft . wide, and 4 ft . high ?

CUBIC MEASURE

THE CUBIC INCH AND THE CUBIC FOOT

1. Find the number of $\mathrm{cu} . \mathrm{in}$. in a rectangular pile 12 in. long, 12 in . wide, and 12 in . high.
2. Express the dimensions of this pile in feet. Find its volume in $\mathrm{cu} . \mathrm{ft}$.

How many cu. in. in $1 \mathrm{cu} . \mathrm{ft}$.?

EXERCISE 64

1. How many cu. in. in $2 \mathrm{cu} . \mathrm{ft}$.? in $3 \mathrm{cu} . \mathrm{ft}$.? in 4 $\mathrm{cu} . \mathrm{ft}$.? in $2 \mathrm{cu} . \mathrm{ft} .36 \mathrm{cu} . \mathrm{in}$.? in $5 \mathrm{cu} . \mathrm{ft} .72 \mathrm{cu} . \mathrm{in}$.?
2. A solid contains $10368 \mathrm{cu} . \mathrm{in}$. How many $\mathrm{cu} . \mathrm{ft}$. does it contain?
3. A tank holds 31104 cu . in. of water. How many $\mathrm{cu} . \mathrm{ft}$. of water will it hold?
4. A block of cement contains 33654 cu . in. How many $\mathrm{cu} . \mathrm{ft}$. and $\mathrm{cu} . \mathrm{in}$. does it contain?

THE CUBIC FOOT AND THE CUBIC YARD

1. A rectangular solid is 3 ft . long, 3 ft . wide, and 3 ft . high. How many cu. ft. does it contain?
2. Express the dimensions of this solid in yards. What is its volume in cu. yd.?

How many cu. ft. in $1 \mathrm{cu} . \mathrm{yd}$.?

EXERCISE 65

1. How many cu. ft. in $2 \mathrm{cu} . \mathrm{yd}$.? in $3 \mathrm{cu} . \mathrm{yd} .18$ $\mathrm{cu} . \mathrm{ft}$.? in $5 \mathrm{cu} . \mathrm{yd} .16 \mathrm{cu} . \mathrm{ft}$.? in $7 \mathrm{cu} . \mathrm{yd} .11 \mathrm{cu} . \mathrm{ft}$.?
2. How many cu. yd. must be removed in digging a cellar 36 ft . long, 24 ft . wide, and 7 ft . deep?
3. In digging a drain, 3429 cu . yd. of earth were taken out. How many cu. ft. of earth were removed?
4. How many cu. yd. of gravel will be required to gravel a road 1890 yd . long, 3 ft . wide, and 1 ft . deep?
5. If a load of gravel contains $1 \mathrm{cu} . \mathrm{yd}$., how many loads of gravel will be required in Question (4)? What will the gravel cost at 75 c . a load?
6. How many cu. ft . of wood are there in a pile 8 ft . long, 4 ft . wide, and 4 ft . high?

A pile of wood or stone containing $128 \mathrm{cu} . f t$. is said to contain 1 cord.

EXERCISE 66
How many cords in each of the following piles of wood? Use the cancellation method.

1. 12 ft . long, 8 ft . wide, 6 ft . high
2. 16 " " 12 " " 8 " "
3. 24 " " 16 " " 4 " "
4. 72 " " 12 " " 6 " "
5. 96 " " 24 " " 8 " "
6. 84 " " 8 " " 5 " "
7. 108 " " 12 " " 7 " "
8. Find the value of the piles in each of Questions 5 , 6 , and 7 if wood is worth $\$ 15$ a cord.

Fill in the blanks in the following table and memorize the facts:

$$
\begin{aligned}
& 1728 \mathrm{cu} . \mathrm{in} .=1 \mathrm{cu} . \mathrm{ft} . \\
& 2.7 \mathrm{cu} . \mathrm{ft.}=1 \mathrm{cu} . \mathrm{yd} . \\
& \ldots . \mathrm{cu} . \mathrm{ft} .=1 \text { cord. }
\end{aligned}
$$

The following facts are also important and should be memorized:

1. A ton of hard coal occupies about $35 \mathrm{cu} . \mathrm{ft}$.
2. A ton of soft coal occupies about 42 cu . ft.
3. A ton of hay occupies nearly $500 \mathrm{cu} . \mathrm{ft}$.
4. Four bu. of grain occupy nearly $5 \mathrm{cu} . \mathrm{ft}$.
5. There are about $6 \frac{1}{4} \mathrm{gal}$. in $1 \mathrm{cu} . \mathrm{ft}$.
6. One cubic yard of gravel, or of sand, or of earth, is equal to a standard load.

EXERCISE 67

Note.-Use the cancellation method wherever possible.

1. A school-room is 32 ft . long, 25 ft . wide, and $12 \frac{1}{2} \mathrm{ft}$. high. How many cu. ft. of air does it contain?
2. If a coal bin is 14 ft . long, 10 ft . wide, and 6 ft . high, how many tons of hard coal will it hold? How many of soft coal?
3 . Find the cost of digging a ditch 150 yd . long, 4 ft . wide, and 3 ft . deep @ 75 c . a cu. yd.
3. Find the cost of digging a cellar 42 ft . long, 36 ft . wide, 9 ft . deep @ 25 c. a cu. yd.
4. How many tons of hay are there in a mow which is 50 ft . long, 24 ft . wide, 15 ft . deep if the mow is full?
5. How many gal. will a rectangular tank 8 ft . deep, 4 ft . wide, and 4 ft . long hold?
6. How many bu. of wheat will a bin which is 5 ft . wide, 8 ft . long, and 7 ft . high hold?
7. Measure the length, the width, and the height of your school-room. Find how many cu. ft. of air it contains. How many cu. ft. of air are there for each pupil?
8. What is the value of a pile of wood 24 ft . long, 8 ft . wide, and 6 ft . high @ $\$ 14$ a cord?

10 . A bin 5 ft . wide, 5 ft . deep, and 7 ft . high is full of wheat. What is the value of the wheat @ $\$ 2 \cdot 80 \mathrm{a}$ bu.?
11. How many gal. of water are there in a tank which is 16 ft . long, 4 ft . wide, and 4 ft . deep if the tank is $\frac{3}{4}$ full of water?
12. A wagon box is 2 ft .9 in . wide, and 10 ft . long. How high must the sides be to hold $1 \mathrm{cu} . \mathrm{yd}$. of earth?

BOARD MEASURE

The unit used in the measurement of lumber is the board foot, by which is meant the amount of lumber contained in a rectangular piece of board 1 foot long, 1 foot wide, and 1 inch thick.

A board of other dimensions which contains the same amount of lumber as the board $1 \mathrm{ft} . \times 1 \mathrm{ft} . \times 1 \mathrm{in}$. also contains a board foot, for example, a board 4 ft . long, 3 inches wide, and 1 inch thick contains a board foot.

A board 12 ft . long, 12 in . wide, and 1 in . thick contains 12 board feet. A board 12 ft . long, 8 in . wide, and 1 in . thick contains 8 board feet, and a board 6 ft . long, 6 in . wide, and 1 in. thick contains 3 board feet.

If each of these boards were 2 in ., $2 \frac{1}{2} \mathrm{in}$., or $1 \frac{1}{4} \mathrm{in}$. thick, it would contain $2,2 \frac{1}{2}$, or $1 \frac{1}{4}$ times as many board feet.

Boards less than one inch thick are generally sold as inch lumber.

The dimensions of a board are given as follows:

$$
11^{\prime} \times 8^{\prime \prime} \times 1 \frac{1}{4}^{\prime \prime}
$$

which means 11 ft . long, 8 in . wide, and $1 \frac{1}{4} \mathrm{in}$. thick.
Lumber is bought and sold by the board foot, and the price is usually quoted at so much per M., which means per 1000 ft . board measure.

How many cu. in. in a board foot?

ORAL EXERCISE

Find the number of board feet in boards 1 in. thick whose other dimensions are:

1. $8^{\prime} \times 4^{\prime \prime}$
2. $15^{\prime} \times 12^{\prime \prime}$
3. $12^{\prime} \times 6^{\prime \prime}$
4. $9^{\prime} \times 3^{\prime \prime}$
5. $10^{\prime} \times 6^{\prime \prime}$
6. $12^{\prime} \times$
$5^{\prime \prime}$
7. $8^{\prime} \times 3^{\prime \prime}$
8. $4^{\prime} \times 3^{\prime \prime}$
9. $12^{\prime} \times 7^{\prime \prime}$
10. $9^{\prime} \times 4^{\prime \prime}$.
11. $6^{\prime} \times 4^{\prime \prime}$
12. $12^{\prime} \times 11^{\prime \prime}$
13. $10^{\prime} \times 12^{\prime \prime}$.
14. $12^{\prime} \times 9^{\prime \prime}$.
15. $8^{\prime} \times 6^{\prime \prime}$

Find the number of board feet in planks or scantlings whose dimensions are:

1. $12^{\prime} \times 6^{\prime \prime} \times 2^{\prime \prime}$
2. $12^{\prime} \times 3^{\prime \prime} \times 4^{\prime \prime}$
3. $12^{\prime} \times 5^{\prime \prime} \times 2^{\prime \prime}$
4. $2^{\prime} \times 2^{\prime \prime} \times 2^{\prime \prime}$
5. $12^{\prime} \times 5^{\prime \prime} \times 4^{\prime \prime}$
6. $12^{\prime} \times 6^{\prime \prime} \times 1 \frac{1}{2}^{\prime \prime}$
7. $12^{\prime} \times 10^{\prime \prime} \times 2 \frac{12^{\prime \prime}}{}$
8. $12^{\prime} \times 8^{\prime \prime} \times 1 \frac{1^{\prime \prime}}{}{ }^{\prime \prime}$
9. $12^{\prime} \times 6^{\prime \prime} \times 1_{4}^{\prime \prime}$
10. $12^{\prime} \times 7^{\prime \prime} \times 2 \frac{1^{\prime \prime}}{}$

EXERCISE 68

1. Find the number of board feet in boards, planks, or scantlings of the following dimensions:
(a) $15^{\prime} \times 8^{\prime \prime} \times 1_{\frac{1}{4}}{ }^{\prime \prime}$
(f) $9^{\prime} \times 3 \frac{1}{2}^{\prime \prime} \times 4 \frac{1}{2}^{\prime \prime}$
(b) $14^{\prime} \times 10^{\prime \prime} \times 1 \frac{1}{2}^{\prime \prime}$
(g) $12^{\prime} \times 5^{\prime \prime} \times 2_{4}^{1^{\prime \prime}}$
(c) $8^{\prime} \times 6^{\prime \prime} \times 4^{\prime \prime}$
(h) $16^{\prime} \times 2 \frac{1}{2}^{\prime \prime} \times 23_{4}^{\prime \prime}$
(d) $16^{\prime} \times 15^{\prime \prime} \times 4 \frac{1}{2}^{\prime \prime}$
(i) $14^{\prime} \times 4^{\prime \prime} \times 4^{\prime \prime}$
(e) $10^{\prime} \times 5^{\prime \prime} \times 3 \frac{1}{2}^{\prime \prime}$
(j) $15^{\prime} \times 3 \frac{1}{2}^{\prime \prime} \times 2 \frac{1^{\prime \prime}}{}$
2. How much lumber is there in a stick 24 ft . long, 15 in . wide, and 12 in . thick?
3, A man bought 24 planks 15 feet long, 18 in. wide, and $3 \frac{1}{2} \mathrm{in}$. thick. How much did they cost at 6 c . a board foot?
3. What will be the cost of 30 pieces of pine scantling $12^{\prime} \times 4^{\prime \prime} \times 5^{\prime \prime}$ @ $\$ 75$ per M.?
4. What will be the cost of inch maple for a hardwood floor for a room 25 ft . by 20 ft . (a) $\$ 65$ per M.?
5. Make out a bill for the following lumber @ $\$ 50$ per M.:

PERCENTAGE

exercise 69

Change each of the following fractions to an equivalent fraction with 100 as its denominator:

1. $\frac{1}{2}$	8. $\frac{1}{10}$	15. $\frac{2}{23}$
2. $\frac{1}{4}$	9. ${ }^{\frac{8}{10}}$	16. $\frac{18}{5}$
3. $\frac{3}{4}$	10. $\frac{7}{10}$	17. $\frac{81}{81}$
4. $\frac{1}{1}$	11. $1 \frac{8}{8}$	18. $\frac{80}{88}$
5. ${ }^{6}$	12. $\frac{8}{20}$	19. 78
6. $\frac{3}{5}$	13. $\frac{1}{2} \frac{7}{0}$	20. $\frac{1}{3}$
7. $\frac{8}{8}$	14. $\frac{9}{25}$	21. $\frac{2}{3}$

Simplify ieach of the following:
$\frac{\frac{8}{10} 0}{}$ of $\$ 243, \frac{3}{5}$ of $\$ 243, \frac{8}{40}$ of $\$ 243$.
Which of these results is most easily obtained? Why?
The fractions with 100 as denominator are so convenient for calculating that business men use them a great deal. These fractions, known as hundredths, are given a special name-per cent.-and are denoted by a special symbol- \%.

For instance, $\frac{5}{10}$ is called 5 per cent. and is written 5%; $\frac{25}{100}$ is called 25 per cent., and is written 25%; $\frac{12 \frac{1}{2}}{100}$ is called $12 \frac{1}{2}$ per cent., and is written $12 \frac{1}{2} \%$.

It is often necessary in business to obtain per cent. fractions which are equivalent to other fractions, for example,

Again, it is often convenient to reduce some per cent. fractions, when making calculations with them, to their lowest terms, for example,

$$
\begin{gathered}
20 \%=\frac{20}{100}=\frac{1}{8} ; \quad 25 \%=\frac{25}{100}=\frac{1}{4} ; \quad 12 \frac{1}{2} \%= \\
\frac{12 \frac{1}{2}}{100}=\frac{25}{200}=\frac{1}{8} .
\end{gathered}
$$

EXERCISE 70

1. Read the following:
$3 \%, 5 \%, 6 \%, 8 \%, 10 \%, 11 \%, 15 \%, 18 \%, 20 \%$.
2. Write the per cents. in Question (1) as fractions, and reduce each fraction to its lowest terms.
3. Read the following:
$25 \%, 27 \%, 30 \%, 40 \%, 45 \%, 50 \%, 60 \%, 80 \%$.
4. Write each of the per cents. in Question (3) as a fraction, and reduce each fraction to its lowest terms.
5. Read the following:
$22 \frac{1}{2} \%, 33 \frac{1}{3} \%, 37 \frac{1}{2} \%, 62 \frac{1}{2} \%, 66 \frac{2}{3} \%, 75 \%, 87 \frac{1}{2} \%, 100 \%$.
6. Write each of the per cents. in Question (5) as a fraction, and reduce each fraction to its lowest terms.
7. Reduce the following percentages to fractions in their lowest terms:
$5 \%, 10 \%, 20 \%, 25 \%, 30 \%, 40 \%, 50 \%, 60 \%, 70 \%, 75 \%$,

$$
80 \%, 90 \%, 100 \% \text {. }
$$

8. Reduce the following percentages to fractions in their lowest terms:

$$
33 \frac{1}{3} \%, 37 \frac{1}{2} \%, 62 \frac{1}{2} \%, 66 \frac{2}{3} \%, 87 \frac{1}{2} \%, 95 \%
$$

Example 1: Find $12 \frac{1}{2} \%$ of $\$ 1600$.

$$
\begin{gathered}
12 \frac{1}{2} \%=\frac{12 \frac{1}{2}}{100}=\frac{25}{200}=\frac{1}{8} \\
12 \frac{1}{2} \% \text { of } \$ 1600=\frac{1}{8} \text { of } \$ 1600=\$ 200 .
\end{gathered}
$$

Example 2: What per cent. of $\$ 45$ is $\$ 1 \cdot 50$?

$$
\begin{aligned}
& \frac{81.50}{8150}=\frac{150}{4500}=\frac{1}{80} \\
& \frac{1}{30}=\frac{3 \frac{1}{3}}{100}=3 \frac{1}{3} \% .
\end{aligned}
$$

ORAL EXERCISE
Find:
(a) 10% of $\$ 1200$
(f) $33 \frac{1}{3} \%$ of 900 bu.
(b) 20% of $\$ 4000$
(g) $66 \frac{2}{3} \%$ of 1200 automobiles
(c) 25% of $\$ 600$
(h) $12 \frac{1}{2} \%$ of 720 yd .
(d) 75% of 200 acres
(i) $62 \frac{1}{2} \%$ of $\$ 1600$
(e) 100% of 450 tons
(j) $11 \frac{1}{6} \%$ of $\$ 2700$

EXERCISE 71 (REVIEW)

1. Add and check each of the following Questions in 4 minutes:
(a) $\$ 167 \cdot 34$
$43 \cdot 26$
$67 \cdot 58$
$987 \cdot 53$
$49 \cdot 76$
$8 \cdot 39$
$657 \cdot 61$
$748 \cdot 16$
$62 \cdot 39$
$822 \cdot 16$
$721 \cdot 50$
$18 \cdot 52$
$15 \cdot 17$
$274 \cdot 38$
$135 \cdot 86$
$333 \cdot 33$
(b) $\$ 436 \cdot 74$
(c) $\$ 829 \cdot 94$

$234 \cdot 62$	$4752 \cdot 85$
$6758 \cdot 41$	$661 \cdot 54$
$98 \cdot 75$	$8675 \cdot 83$
$497 \cdot 61$	$672 \cdot 44$
$839 \cdot 84$	$29 \cdot 73$
$15 \cdot 28$	$456 \cdot 19$
$755 \cdot 18$	$5841 \cdot 28$
$2639 \cdot 43$	$75 \cdot 41$
$288 \cdot 65$	$746 \cdot 39$
$7215 \cdot 94$	$3824 \cdot 67$
$3589 \cdot 28$	$127 \cdot 05$
$81 \cdot 25$	$436 \cdot 23$
$4728 \cdot 93$	$8830 \cdot 47$
$13 \cdot 49$	$921 \cdot 11$
$6 \cdot 78$	$5342 \cdot 39$

2. Subtract and test two questions in a minute:
(a) 9500832
5362834
(b) $\$ 28050 \cdot 72$
$8493 \cdot 84$
(c) 3684021
986518
(d) 970005
609099
(e) $\$ 79002 \cdot 31$ $57220 \cdot 90$
(f) $\$ 27054 \cdot 20$
$6474 \cdot 23$
3. Multiply and test one question in two minutes:
(a) 8984 2169
(b) 7564
6034
(c) 8056
6907
(f) 5829
(d) 6528
(e) 8463
2765
4783
4. Find the quotient and test each of the following questions in two minutes:
(a) 534$) 9268638$
(b) 890)62752120
(c) 489$) \$ 443388.81$
(d) 989$) \$ 540401 \cdot 80$
5. Find the value of:
(a) $(36 \times 217 \times 528 \times 75) \div(84 \times 396 \times 155 \times 27)$
(b) $(49 \times 75 \times 156 \times 95) \div(108 \times 105 \times 171 \times 39)$
6. Find the prime factors of:
(a) 4235
(b) 2142
(c) 5145
(d) 1331
7. Find the G.C.M. of (a) 408 and 544

$$
\text { (b) } 396 \text { and } 693
$$

8. Find the L.C.M. of (a) 32, 52, 65

$$
\text { (b) } 38,95,133
$$

9. Reduce the following fractions to their lowest terms:
(a) $\frac{1}{2} \frac{65}{31}$
(b) $\frac{18}{\frac{1}{2} 8}$
(c) $\frac{7}{8} \frac{2}{8} 8$
(d) $\frac{88}{85} 5$
10. Simplify:
(a) $\frac{1}{3}+\frac{3}{4}-\frac{5}{8}$
(b) $\frac{2}{5}+\frac{5}{8}+\frac{7}{12}$
(c) $\frac{7}{8}-\frac{2}{3}+\frac{3}{4}$
(d) $18 \frac{7}{8}+9 \frac{1}{6}$
(e) $29 \frac{1}{4}-14 \frac{2}{5}$
(f) $\frac{14}{2} \times \frac{109}{8} \times \frac{4}{4} \frac{4}{8}$
(g) $\frac{4}{7}$ of $\left(\frac{3}{8}+\frac{5}{7}\right)$
(h) $\frac{7}{15} \times \frac{4}{21} \div \frac{28}{38}$
(i) $\frac{49}{25} \times \frac{75}{42} \times \frac{108}{26} \times \frac{78}{18}$
(j) $\frac{7 \frac{7}{15}}{8 \frac{1}{6}} \times \frac{5 \frac{2}{3}}{9 \frac{5}{7}}$
11. Find the area in sq. ft. of each of the following rectangles:
(a) 6 ft .4 in . by 3 ft .
(b) 9 yd. 2 ft . by 3 ft .6 in .
(c) $152 \mathrm{in} . \times 11 \mathrm{ft}$.
12. Find the length in feet of each of the following rectangles:
(a) Area $720 \mathrm{sq} . \mathrm{ft}$. , width 30 ft .
(b) " 365 " " $18 \frac{1}{4} \mathrm{ft}$.
(c) " 372 " " 8 yd .
13. Find the vol. in cu. ft . of each of the following:
(a) A rectangular block of stone $18 \mathrm{ft} . \times 7 \mathrm{ft}$. $\times 4 \frac{1}{2} \mathrm{ft}$.
(b) A pile of wood 25 ft . long, 8 ft . wide, 7 ft . high. Find also the number of cords.
(c) The amount of gravel in a pit 27 ft .6 in . long, 11 ft .3 in . wide, and $12 \frac{1}{2} \mathrm{ft}$. deep.
14. Find the number of feet, board measure, in the following:
(a) 8 planks 2 in . thick, 10 ft . long, 12 in . wide
(b) 2 sticks of timber 18 ft . long, 10 in . wide, 9 in. thick
(c) 8 beams $10 \mathrm{in} . \times 12 \mathrm{in}$. and 14 ft . long.

15 . Find the number of gallons which rectangular tanks of the following dimensions will hold:
(a) $6 \mathrm{ft} . \times 2 \frac{1}{4} \mathrm{ft} . \times 1 \mathrm{ft} .8 \mathrm{in}$.
(b) $12 \frac{1}{2} \mathrm{ft} . \times 15 \frac{1}{2} \mathrm{ft} . \times 6 \frac{1}{2} \mathrm{ft}$.
16. Find the number of tons of hard coal which bins of the following dimensions will hold:
(a) $13 \mathrm{ft} . \times 7 \mathrm{ft} . \times 5 \mathrm{ft}$.
(b) $10 \mathrm{ft} .6 \mathrm{in} . \times 6 \mathrm{ft} .6 \mathrm{in} . \times 6 \mathrm{ft}$.
17. Find the number of tons of hay which mows of the following dimensions will hold:
(a) 50 ft . long, 18 ft . wide, 14 ft . deep
(b) 36 ft . long $\times 20 \mathrm{ft}$. wide, 15 ft . deep.
18. Find the number of bu. which bins of the following dimensions will hold:
(a) $12 \mathrm{ft} . \times 6 \mathrm{ft} . \times 5 \mathrm{ft}$.
(b) $15 \frac{1}{2} \mathrm{ft}$. $\times 8 \frac{1}{2} \mathrm{ft} . \times 5 \mathrm{ft}$.
(c) $16 \frac{3}{4} \mathrm{ft} . \times 9 \frac{1}{2} \mathrm{ft} . \times 5 \frac{1}{2} \mathrm{ft}$.
19. Find the number of tons of soft coal which a bin 9 ft . $\times 5 \frac{1}{4} \mathrm{ft}$. $\times 6 \frac{1}{2} \mathrm{ft}$. will hold.
20. Find the number of cords of wood in piles of the following dimensions:
(a) $24 \mathrm{ft} . \times 12 \mathrm{ft} . \times 6 \mathrm{ft}$.
(b) $48 \mathrm{ft} . \times 16 \mathrm{ft} . \times 5 \mathrm{ft}$.
(c) $32 \mathrm{ft} . \times 20 \mathrm{ft} . \times 7 \mathrm{ft}$.
21. To what fraction in its lowest terms is each of the following percentages equal?
(a) $6 \frac{1}{3} \%$, (b) $37 \frac{1}{2} \%$, (c) 25%, (d) $33 \frac{1}{3} \%$, (e) $62 \frac{1}{2} \%$, (f) $83 \frac{1}{3} \%$, (g) $87 \frac{1}{2} \%$, (h) $97 \frac{1}{2} \%$?
22. To what per cent. is each of the following fractions equal?
(a) $\frac{3}{4}$, (b) $\frac{7}{8},(c) \frac{3}{8},(d) \frac{5}{8},(e) \frac{6}{7},(f) \frac{5}{6},(g) \frac{7}{12},(h) \frac{2}{3},(i) \frac{1}{4}$ (j) $\frac{3}{6}$?
23. What is:
(a) $12 \frac{1}{2} \%$ of $\$ 720$?
(d) $62 \frac{1}{2} \%$ of $\$ 968$?
(b) $14 \frac{2}{7} \%$ of $\$ 840$?
(e) $87 \frac{1}{2} \%$ of $\$ 648$?
(c) $33 \frac{1}{3} \%$ of $\$ 573$?
24. A binder costs an agent $\$ 175$. If he sells it to gain 30% of his cost, find the selling price.
25. A real estate agent sold a house for $\$ 3750$ and received 2% of the selling price for his services. How much did the owner of the house receive?
26. A grocer marks his goods so as to receive a gain of 15% on the selling price. If the grocer's sales for a week are $\$ 356 \cdot 75$, find his gain for the week.
27. E. Murray bought of Sherwin and Ball, March 1st, 1919:

8 lb . Rio Coffee @ 45c.
4 lb . tea @ 65 c .
$8 \frac{1}{2}$ doz. eggs @ 72c.
$5 \frac{3}{4} \mathrm{lb}$. butter @ 68 c .
$\frac{1}{2}$ gal. maple syrup @ $\$ 2 \cdot 40$
$4 \frac{3}{4} \mathrm{lb}$. cheese @ 36 c .
$\frac{3}{4}$ doz. cans tomatoes @ $\$ 2 \cdot 60 \mathrm{a} \mathrm{doz}$.
Make out Murray's bill and receipt it.
28. Harry decided on Sept. 1st. to keep an account of his earnings and expenses. His mother gave him $\$ 5 \cdot 00$ in cash. He worked at a store on Saturdays, Sept. 5, 12,19 , and 26 , and earned $\$ 1 \cdot 00$ each day. After school hours, on Sept. 7, 10, 14, and 25 he ran errands and earned 25 c. each day. On Sept. 3rd, he paid for a book, 50 c. On Sept. 8th, he paid $\$ 1 \cdot 00$ for a ball, on Sept. 11th, 75 c . for a tie. On Sept. 21st, $\$ 1 \cdot 25$ for a cap.

Make out his account and find his balance on Oct. 1st.
29. You have had the following transactions with Murray Keith and Co. Make out your account as Murray Keith and Co. would:

Debits: April 4th, groceries $\$ 15 \cdot 90$; April 5th, lumber, $\$ 190 \cdot 72$; April 11th, dry-goods, $\$ 23 \cdot 15$; April 12th, wagon, $\$ 90 \cdot 00$; April 27 th, sugar, $\$ 20 \cdot 70$; a buggy, $\$ 129 \cdot 00$; May 7th, groceries, $\$ 40 \cdot 05$; May 12th, coat, $\$ 100$; May 20th, lumber, $\$ 189 \cdot 00$.

Credits: April 10th, labour, $\$ 129 \cdot 71$; April 14th, cash, $\$ 25 \cdot 00$; April 21st, labour, $\$ 29 \cdot 70$; April 28th, cash, $\$ 147$; May 7th, labour, $\$ 270 \cdot 20$; May 19th, stone work, $\$ 175 \cdot 39$; May 28th, cash, $\$ 70 \cdot 00$.

30 . Find the total cost of $1 \mathrm{cu} . \mathrm{yd}$. of cement wall.
$1 \frac{1}{8} \mathrm{cu}$. yd. of gravel @ $\$ 2$ per cu. yd.
2 bbl . of cement @ $\$ 2.80 \mathrm{a}$ bbl.
Labour, $\$ 2 \cdot 00$.
31. Find the cost of a cement wall which is 44 ft . long, 8 ft . high, and 10 inches thick at $\$ 9.85$ a cu. yd.
32. Find the cost of the footing for a cement wall, if the footing is 18 in . wide, 6 in . high, and 46 ft . long @ $\$ 9 \cdot 85$ a cu. yd.
33. Find the number of loads of earth removed in excavating for a cellar 27 ft . wide, 39 ft . long, and 5 ft . deep, if each load contains $1 \frac{1}{2} \mathrm{cu} . \mathrm{yd}$.
34. Estimate the number of cords of wood in 3 piles each 18 in . wide, 60 ft . long, and 6 ft . high. If 4 -foot wood is worth $\$ 15 \cdot 00$ a cord, what should the $18-\mathrm{in}$. wood be worth per cord?
35. How many cubical boxes 3 ft .6 in . to a side can be placed in a store-room $14 \mathrm{ft} . \times 14 \mathrm{ft} . \times 14 \mathrm{ft}$.?
36. At $\$ 1 \cdot 25$ a sq. $y d$. find the cost of a tin roof each side of which is 36 ft . by 22 ft .6 in .
37. What will it cost to put a fence around the outside of a farm which contains 120 acres and is 60 rods wide, at $\$ 2.75$ a rod?
38. Find the cost at $\$ 45$ per M. of:
(a) 50 boards 16 ft . long, 12 in . wide, $1 \frac{1}{2} \mathrm{in}$. thick
(b) 75 boards 18 ft . long, 10 in . wide, $1 \frac{3}{4} \mathrm{in}$. thick
(c) 120 studding $2^{\prime \prime} \times 4^{\prime \prime} \times 11^{\prime}$
(d) 125 sleepers $3^{\prime \prime} \times 10^{\prime \prime} \times 28^{\prime}$
(e) 325 planks $3^{\prime \prime} \times 14^{\prime \prime} \times 16^{\prime}$
(f) 70 sills $10^{\prime \prime} \times 12^{\prime \prime} \times 30^{\prime}$.

SECTION IV

DECIMALS

Give the place name for each digit in the number 44444. Compare the value of the 4 representing units with the 4 immediately to the left of it, with the 4 two places to the left of it, with the 4 three places to the left of it.

If a digit, 4 , be put to the right of the 4 representing units, its value should be what fraction of the value of the 4 units?

If a digit, 4 , be placed two places to the right of the 4 representing units, its value will be what fraction of the value of the 4 units?

Hence, digits to the right of the units' digit represent fractions. What is the denomination of the fraction represented by the 4 immediately to the right of the units' digit? Of the fraction represented by the digit two places to the right of the units' digit? Three places to the right?

Ordinary notation is, therefore, extended to include fractions whose denominators are 10 or some power of 10 , that is $10,100,1000,10000, \& c ., \& c$.

Such fractions are called decimal fractions or simply decimals.

All other fractions are called common or vulgar fractions.

In order to show whether a digit represents an integer or a fraction, a dot (\cdot) called the decimal point is placed to the right of the units' digit. All figures to the left of this point will represent integers, and all to the right, fractions.

Thus in $36 \cdot 45$ the 3 is tens，the 6 is units，the 4 is tenths，and the 5 is hundredths．The value of each digit depends，as in whole numbers，upon the place it occupies．

NOTATION AND NUMERATION OF DECIMALS

To read and write decimals the Table for ordinary numeration and notation is extended as follows：

			$\begin{aligned} & \text { 采 } \\ & \text { 苟 } \\ & \text { 号 } \end{aligned}$	$\begin{aligned} & \text { g } \\ & \stackrel{y y}{*} \end{aligned}$	$\begin{aligned} & n \\ & \text { 品 } \\ & \hline \end{aligned}$	$\begin{gathered} \frac{a}{5} \\ \underset{y}{5} \\ \end{gathered}$					$\begin{aligned} & \text { 告 } \\ & 0 \\ & \text { H } \\ & \text { n } \end{aligned}$
			5	6	7	3 0	1	2 9	4		

In the number $\cdot 3124$ ，what is the place value of the 3 ？of the 1 ？of the 2 ？of the 4 ？

Expressing the value of each of these digits in the form of a fraction the results are：

$$
\frac{3}{10}, \frac{1}{100}, \frac{2}{10^{2} 0 \sigma} \text {, and } \frac{10}{10000} \text {. }
$$

These fractions，when brought to the same denominator， become

$$
\frac{3000}{10000}, \frac{100}{10000}, \frac{20}{10000}, \frac{100400}{} .
$$

And when summed，the result is $\frac{3124}{10000}$ ．
Hence，the number 3124 is read as：
Three－thousand one hundred and twenty－four ten thousandths．
The number 567.069 is read as：
Five hundred and sixty－seven and sixty－nine thou－ sandths．
A number which is a decimal，therefore，is read by giving it the place name of its right－hand digit．

Note that the reading of the whole number and the reading of the fraction is connected by the word and．

ORAL EXERCISE

1. Read the following: $3, \cdot 7,1 \cdot 3,24 \cdot 6,306 \cdot 8,2001 \cdot 4$.
2. Read the following: $\cdot 42, \cdot 75, .08,3 \cdot 51,2 \cdot 04$, $18 \cdot 63,27 \cdot 01,30 \cdot 87,60 \cdot 03,218 \cdot 42,500 \cdot 05,30001 \cdot 08$.

3 . Read the following: $\cdot 825, \cdot 416, \cdot 307, \cdot 006,2 \cdot 412$, $3 \cdot 005,64 \cdot 157,309 \cdot 043,700 \cdot 009,6020 \cdot 075$.
4. Read the following: $\cdot 4165, \cdot 0216, \cdot 0035, \cdot 0008$, 756•3168, $4218 \cdot 0032$.
5. Write: Six-tenths, five and three tenths, seventy and two tenths, six hundred and three tenths, eighty hundredths, seven and fifty-six hundredths, nine hundredths, three hundred and four and five hundredths, seven thousandths, eleven and eight hundred and fiftyseven thousandths, six thousand two hundred and eight ten-thousandths, five thousand two hundred and nine and twenty-seven ten-thousandths.
6. Express as tenths: 5 units, 3 units, 4 units and 3 tenths.
7. Express as hundredths: 9 units, 7 units, 3 tenths, 8 tenths, 5 units and 7 tenths, 3 units 6 tenths 4 hundredths.
8. Express as thousandths: $4, \cdot 03,5,3 \cdot 2,92 \cdot 01,12$.
9. Write in decimal form:
$\frac{7}{100}, \frac{15}{1000}, \frac{4}{1000}, \frac{32}{10}, \frac{895}{10000}, \frac{327}{100000}, 16 \frac{7}{100}, 365 \frac{8}{1000}$.
10. Examine: $6 \cdot 3,6 \cdot 30,60 \cdot 3$, and $6 \cdot 03$.

State what change is made in the value of a number when a cipher is placed before the integral part; after the decimal part; between the decimal point and the first significant digit to the left; between the decimal point and the first significant digit to the right.

Notr.-The digits 1, 2, 3, 4..... 9 are called significant digits.

ADDITION AND SUBTRACTION OF DECIMALS

In the addition of integers how are the addends placed with respect to one another? In subtraction how is the subtrahend placed with respect to the minuend?

The same placing is observed in the case of addition and subtraction of decimals. Units are placed under units, tens under tens, tenths under tenths, hundredths under hundredths, \&c. This arrangement will be carried out most easily by placing the decimal points in a perpendicular row.

Example 1: Find the sum of $6 \cdot 32,45 \cdot 817, .09$, 867-8256, 3•14.

These numbers are placed for addition as follows:

$$
\begin{gather*}
6 \cdot 32 \\
45 \cdot 817
\end{gather*}
$$

$867 \cdot 8256$
$3 \cdot 14$
$923 \cdot 1926$
The digits in the same columns are added, 10 units of any order being equal to 1 unit of the next higher order.

Example 2: From $365 \cdot 04$ take $98 \cdot 736$.
The work is set down thus:

$$
\begin{gathered}
\begin{array}{c}
365 \cdot 04 \\
98 \cdot 736
\end{array} \\
\hline 266 \cdot 304
\end{gathered}
$$

From what has the 6 thousandths been taken?

Find the value of:

1. $\cdot 6+.9+.46+.38+.834+.416$.
2. $9 \cdot 3+18 \cdot 7+625 \cdot 4+3 \cdot 8+53 \cdot 8$.
3. $29 \cdot 84+15 \cdot 83+26 \cdot 37+69 \cdot 45+37 \cdot 98$.
4. $34 \cdot 46+87 \cdot 5+9 \cdot 432+78 \cdot 6+6 \cdot 7$.
5. $439 \cdot 6+5376 \cdot 84+6397 \cdot 882+3261 \cdot 984$.
6. $\$ 3 \cdot 90+\$ 87+\$ 14 \cdot 04+\$ \cdot 015+\$ 26+\$ 9 \cdot 875$.
7. $\$ 28 \cdot 5+\$ 37 \cdot 876+\$ 715+\$ 0 \cdot 46+\$ 6 \cdot 218+$ $\$ 0 \cdot 75$.
8. $49 \cdot 4-3 \cdot 86217, \quad 1003-5 \cdot 846, \quad 10-.00423$, 937.436-488.679. .
$9.53 .8+8.64-46.008-3.4+19-.0547$.
9. $\$ 64 \cdot 20+\$ 38 \cdot 124-\$ 0 \cdot 85-\$ 23 \cdot 1+\$ 5-\$ \cdot 0575$.
-11. From Montreal to Ottawa is $115 \cdot 7$ miles, from Ottawa to North Bay $244 \cdot 3$ miles, from North Bay to Sudbury 79.2 miles, and from Sudbury to Fort William is 556.3 miles. How far is it from Montreal to Fort William?
10. In the first of three farms there are 87.6 ac . of land, in the second there are 14.9 ac . more than in the first, and in the third there are 42.57 ac . less than in the first and second together. How many acres of land are there in the three farms?
11. A steamship goes 385.4 miles the first day, $296 \cdot 7$ mi . the second day, 347 mi . the third day, 398.875 mi . the fourth day, and 286.35 mi . the fifth day. How far has it yet to go to complete a voyage of 2000 mi .?
12. Out of 100 parts of bread, $8 \cdot 9$ parts are nitrogenous matter, 56.7 parts starchy, 4.1 parts fatty, and $1 \cdot 1$ parts salty. The rest is water. How many parts of water are there?
13. Of apple pie $\cdot 031$ is nitrogenous, .428 starchy, . 018 salty, and $\cdot 425$ is water. The rest is fatty. How much of apple pie is fatty?

MUL'TIPLICATION OF DECIMALS

$$
\begin{aligned}
& \cdot 6 \times 7=\frac{6}{10} \times 7=\frac{42}{10}=4 \frac{2}{10}=4 \cdot 2 . \\
& \cdot 6 \times \cdot 7=\frac{5}{10} \times \frac{7}{10}=\frac{4 .}{100}=\cdot 42 . \\
& 6 \times 7=42 . \\
& .37 \times \cdot 5=\frac{37}{100} \times \frac{5}{10}=\frac{185}{1000}=\cdot 185 . \\
& 37 \times 5=185 . \\
& 64 \times \cdot 36=\frac{64}{100} \times \frac{38}{100}=\frac{2304}{10000}=\cdot 2304 . \\
& 64 \times 36=2304 . \\
& 3.52 \times 1.43=\frac{352}{100} \times \frac{143}{100}=\frac{50336}{10000}=5 \cdot 0336 . \\
& 352 \times 143=50336 .
\end{aligned}
$$

It is evident from these examples that the only difference between the multiplication of whole numbers and the multiplication of decimals is that in the latter the decimal point has to be placed.

Compare the number of digits in the decimal part of each of the above products with the number of digits in the decimal parts of the multiplicand and the multiplier.

Example 1: Multiply 37.85 by 4.7 .

$$
37.85
$$

4.7 What is the number of decimal places in
\qquad
$26 \cdot 495$
151 -40 How many decimal places should there be in the product?
$177 \cdot 895$
Explanation: In the multiplicand 37.85 the 5 is hundredths, $\frac{5}{100}$, and the 7 of the multiplier is tenths, $\frac{7}{10}$, $\frac{5}{100} \times \frac{7}{10}=\frac{35}{1000}=\cdot 035$.
\therefore The 5 of the product is thousandths, the 9 is hundredths, the 8 is tenths, and the first 7 is units.
\therefore The decimal point is placed between the 7 and the 8 .

exercise 73

1. Multiply:
(a) $3 \cdot 7$ by 8
(i) $\cdot 348$ by $\cdot 05$
(b) $4 \cdot 59$ by 9
(j) $476 \cdot 54$ by $3 \cdot 62$
(c) 78.643 by 67
(k) 354 by $\cdot 726$
(d) 5816 by $\cdot 45$
(l) 4375 by 5.77
(e) 8.3 by 7.6
(m) 819 by $6 \cdot 14$
(f) 9.42 by $5 \cdot 1$
(n) 12.28 by 3.9
(g) 92.77 by 34.8
(o) 2.43 by $\cdot 008$
(h) $\cdot 273$ by 9.5
(p) $\cdot 0842$ by $1 \cdot 364$
2. Multiply 4.32156 by 10 , by 100 , by 1000 . What change does each of these multipliers make in the position of the decimal point? How, then, can the product be written down at once for a decimal multiplied by 10 ? by 100 ? by 1000 ? by 10000 ?
3. Write the product of 5.4637 by $1000,137.846$ by $100,29 \cdot 7836$ by 10000 .
4. The length of a metre is $39 \cdot 37 \mathrm{in}$. How many inches are there in 7.5 metres?
5. How many oz. are there in $\cdot 4375 \mathrm{lb}$.?
6. How many feet are there in $\cdot 525$ miles?
7. How many pounds are there in $\cdot 348$ tons?
8. Reduce 625 bu. to gal.

9 . Reduce 34 wk , to hr .
10. A merchant sells goods at a gain of $\cdot 125$ of their cost. What will he receive for goods which cost him \$480?
A. One pound of milk makes $\cdot 1087 \mathrm{lb}$. of cheese. How many lb. of cheese can be made from 360 lb . of milk?

[^0]18 A teacher paid $\cdot 35$ of his salary for board, $\cdot 18$ for clothing, $\cdot 07$ for travel, $\cdot 1$ for incidentals, and had $\$ 300$ left. What was his salary?
14. If the value of the English pound sterling is $\$ 4 \cdot 8665$, what is the value in our money of $£ 27$?
15. The normal value of the English pound in Canadian money is $\$ 4 \cdot 8665$. If after-war conditions have decreased the value of the pound to $\$ 3 \cdot 975$, what difference would this loss make in the value of $£ 75$?
16. If the two sides of a rectangular field are, respectively, 96.8 ft . and 137.6 ft ., what is the perimeter of the field?

EXERCISE 74 (REVIEW)

1. During 8 hr . a freight train made the following mileages: $32 \cdot 15,28 \cdot 375,15 \cdot 687,20 \cdot 2,15 \cdot 63,17 \cdot 5,8 \cdot 95$, and $21 \cdot 3$. How far did the train run during the 8 hr .?
2. A coal dealer received 9 carloads of coal of the following tonnages: $24 \cdot 6,28 \cdot 785,29 \cdot 6375,24 \cdot 95,25 \cdot 125$, $27 \cdot 137,31 \cdot 038,30 \cdot 456,28 \cdot 555$.

What was the total tonnage received? What was the average tonnage in each car?
3. 54 cu . in. of soil in its natural state weighed 1.94 lb . After being thoroughly dried, it weighed 1.459 lb . How much moisture passed off in drying?
$4.1 \cdot 135 \mathrm{lb}$. of dry beans soaked for 24 hr . weighed 2.212 lb . What was the weight of water taken up by the beans?
5. Find the cost of 8475 cu . ft. of gas at $\$ 1.50$ per thousand $\mathrm{cu} . \mathrm{ft}$.
6. Find the value of $7 \cdot 642$ tons of coal @ $\$ 13 \cdot 50$ a ton.
7. Find the value of a load of hay weighing 2.543 tons @ $\$ 22.50$ a ton.
8. Find the value of 689 M board feet of lumber (a) $\$ 45.75$ per M.
9. Find the cost of roofing a barn containing $25 \cdot 47$ hundred sq. ft. @ $\$ 4 \cdot 75$ per 100 square feet.

PERCENTAGE

ORAL EXERCISE

1. Express the following fractions as per cents.:

$$
\frac{1}{2}, \frac{1}{4}, \frac{3}{4}, \frac{1}{5}, \frac{2}{5}, \frac{3}{5}, \frac{4}{5}, \frac{9}{10}, \frac{7}{20}, \frac{1}{20} .
$$

2. Express the following fractions as per cents.:

$$
\frac{1}{2} \frac{1}{2}, \frac{1}{26}, \frac{8}{6} 7, \frac{1}{3}, \frac{2}{3}, \frac{1}{6}, \frac{5}{8}, \frac{1}{8}, \frac{3}{8} \text {. }
$$

3. Express the following per cents. as fractions in their lowest terms:

$$
5 \%, 12 \frac{1}{2} \%, 10 \%, 14 \frac{2}{7} \%, 9_{11}^{11} \%, 20 \% \text {. }
$$

4. Express the following per cents. as fractions in their lowest terms:

$$
25 \%, 33 \frac{1}{3} \%, 37 \frac{1}{2} \%, 62 \frac{1}{2} \%, 66 \frac{2}{3} \%, 83 \frac{1}{3} \%, 87 \frac{1}{2} \% \text {. }
$$

Find the value of:
5. 20% of $800,7 \%$ of $900,12 \%$ of 1200
6. $8 \frac{1}{3} \%$ of $480,11 \frac{1}{3} \%$ of $729,12 \frac{1}{2} \%$ of 648
7. $33 \frac{1}{3} \%$ of $396,87 \frac{1}{2} \%$ of $568,62 \frac{1}{2} \%$ of 728
8. $16 \frac{2}{3} \%$ of $366,75 \%$ of $968,2 \%$ of 750 .

Men in business, at different times in the year, advertise "Bargain Sales." To induce people to buy, these business men reduce the regular selling price of their goods by a certain per cent. This reduction is called a discount, and goods are said to be sold at a certain per cent. discount. For example, suppose the regular selling price of an article is $\$ 25 \cdot 00$ and the rate of discount is $20 \%=\frac{1}{5}-$ the reduced selling price is $\frac{4}{5}$ of $\$ 25=\$ 20$.

EXERCISE 75

1. Find the reduced selling price from the following sales as advertised:

Regular price

(a) Overcoats	worth	\$75	$33 \frac{1}{3} \%$
(b) Men's suits	"	\$84	163\%
(c) Boys' suits	.	\$36	122\%
(d) Boys' overcoats	"	\$27	$33 \frac{1}{3} \%$
(e) Hats	,	\$8.40	122\%
(f) Caps		\$2.50	25\%
(g) Socks		\$1.75	20\%
(h) Ties		\$2.25	10\%

2. Find the gain or loss and the selling price:
(a) Cost is $\$ 75$, gain is 20%.
(b) Cost is $\$ 96$, loss is $33 \frac{1}{3} \%$.
(c) Cost is $\$ 225$, gain is $12 \frac{1}{2} \%$.
(d) Cost is $\$ 132 \cdot 50$, gain is 10%.

TO FIND WHAT PER CENT. ONE NUMBER IS OF ANOTHER NUMBER

Example 1: What per cent. of $3 \frac{1}{2}$ yd. is $\frac{1}{2}$ yd.? $\frac{1}{2} \mathrm{yd}$. is the fraction $\frac{\frac{1}{2}}{3 \frac{1}{2}}$ of $3 \frac{1}{2} \mathrm{yd}$.

$$
\frac{\frac{1}{2}}{3 \frac{1}{2}}=\frac{1}{2} \times \frac{2}{7}=\frac{1}{4}=14 \frac{2}{7} \% \text {. }
$$

$$
\therefore \frac{1}{2} \mathrm{yd} . \text { is } 14 \frac{2}{9} \% \text { of } 3 \frac{1}{2} \mathrm{yd} .
$$

Example 2: What per cent. of 1 bu .2 pk . is 3 qt .?

$$
1 \mathrm{bu} .2 \mathrm{pk} .=6 \mathrm{pk} .=12 \mathrm{gal} .=48 \mathrm{qt} .
$$

$$
3 \mathrm{qt} . \text { is } \frac{3}{38} \text { of } 48 \mathrm{qt} \text {. }
$$

$$
\frac{8}{48}=\frac{1}{16}=6 \frac{1}{4} \% \text {, }
$$

$\therefore 3$ qt. is $6 \frac{1}{4} \%$ of 1 bu. 2 pk .

EXERCISE 76

1. What per cent. of:
(a) 25 is 15 ?
(g) 4 is $\frac{3}{5}$?
(b) 32 is 20 ?
(h) $2 \frac{1}{2}$ is $1 \frac{3}{4}$?
(c) 65 is 52 ?
(i) 11 gal. is 4 qt.?
(d) 96 is 60 ?
(j) $\$ 3 \cdot 20$ is 64 c .?
(e) 25 is $6 \frac{1}{4}$?
(k) $\$ 5 \cdot 40$ is $\$ 1 \cdot 40$?
(f) $\frac{7}{8}$ is $\frac{5}{8}$?
(l) $\$ 42 \cdot 90$ is $\$ 7 \cdot 15$?
2. Find the per cent. discount offered in selling:
(a) Ladies' coats price $\$ 27 \cdot 75$ for $\$ 18 \cdot 50$
(b) Girls' " " $\$ 20.50$ " $\$ 16.40$
(c) Ladies' shoes " $\$ 16 \cdot 50$ " $\$ 11 \cdot 00$
(d) Girls' " " \$ 9.75 " \$7.80
(e) Ladies' hats " $\$ 26 \cdot 50$ " $\$ 21 \cdot 20$
(f) Girls' ". " $\$ 9.60$ " $\$ 8.40$.
3. A grocer marks his goods so that he can reckon his profit as $12 \frac{1}{2} \%$ of his sales. What is his profit for each of the three days when his sales were $\$ 39 \cdot 75, \$ 47 \cdot 55$, $\$ 62 \cdot 78$?
4. A man owns a farm valued at $\$ 9600$. His annual taxes are $\$ 86 \cdot 40$. How much must he make each year to clear 8% on the value of his property after paying taxes?
5. A boy's salary was increased from $\$ 45$ to $\$ 55$ a month. Find the per cent. of the increase in his salary?
6. One cow in a dairy gives 28 lb . of milk daily, which tests $3 \cdot 1 \%$ of butter fat. Another cow gives daily 24 lb . of milk, which tests 3.7% of butter fat. If butter fat is worth 75 c . a lb., what is the difference in the returns from these two cows in one week?

TO FIND A NUMBER WHEN A CERTAIN PER CENT. OF IT IS GIVEN

ORAL EXERCISE

1. Find the total if:
(a) $12 \frac{1}{2} \%$ of it is $\$ 4 \cdot 80$
(b) $14 \frac{2}{7} \%$ of it is $\$ 1 \cdot 32$
(c) $37 \frac{1}{2} \%$ of it is $\$ 39$
(d) $33 \frac{1}{3} \%$ of it is $\$ 42$
(e) 12% of it is $\$ 84$
(f) $62 \frac{1}{2} \%$ of it is $\$ 75$.
2. If $\$ 150$ is $8 \frac{1}{3} \%$ of A's salary, find A's salary.
3. After a battle, 71% of a regiment, or 639 men, were left. How many men were in the regiment before the battle?
4. I withdrew from my savings deposit $\$ 175$, which is $83 \frac{1}{3} \%$ of my deposit. What was my balance before the withdrawal?
5. A teacher's expenses are $\$ 39 \cdot 50$ a month. This is $16 \frac{2}{3} \%$ of his monthly salary. What is the amount of his monthly savings?
6. The number of pupils in attendance at school is 768 , which is 96% of the enrolment. What is the enrolment?

EXERCISE 77 (REVIEW)

1. What is the percentage increase in price in each of the following:
(a) Milk goes up from 5c. a pint to 8c. a pint.
(b) Butter goes up from 45 c . a 1 b . to 75 c . a lb .
(c) Bread goes up from 7c. a loaf to 12c. a loaf-
(d) Sugar goes up from 5 c . a lb . to 14 c . a lb .
(e) Ham goes up from 30c. a lb. to 75c. a lb.
(f) Cheese goes up from 18c. a lb. to 38 c . a lb.
(g) Potatoes go up from $\$ 1.75$ a bag to $\$ 2 \cdot 75$ a bag.
(h) Apples go up from $\$ 3 \mathrm{a}$ bbl. to $\$ 7 \mathrm{a} \mathrm{bbl}$.
2. By paying cash Mrs. Hay gets cheese for 25c. a lb. instead of 28 c . a lb . What per cent. of the 28 c . does she save by paying cash?
3. The material for a side-walk costs $\$ 240$, the labour costs $\frac{2}{3}$ as much. If the work completed costs $\$ 600$, what per cent. of the cost of material and labour is the profit?
4. A merchant has invested in his building and store $\$ 9000$. After paying all expenses, he finds he has cleared $12 \frac{1}{2} \%$ on the cost of the building and store. What are his profits?
5. How much butter fat is there in 375 lb . of milk brought to a creamery, the creamery test showing that 3.9% of the weight of the milk is butter fat?
6. A farmer takes 340 lb . of milk to a creamery and is paid 75 c . a pound for the butter fat. The tests show that the butter fat is 3.8% of the weight of the milk. How much does the farmer receive?

BANKS AND BANKING

Tell what you know of the Penny Savings Bank.
Give the names of Canadian Banks which you know.
Of what service to the public are banks?
A bank is a business institution for the receiving and safe-keeping of money and for the making of loans. It also cashes cheques, collects accounts, exchanges money of our country for the money of other countries, and issues notes (bank bills) which circulate as money.

Examine a five-dollar or ten-dollar bill. Who issued the note?

The Banks of Canada are corporations chartered by law and are subject to supervision by the Government of Canada, as a means of protecting the interests of depositors.

A person may open two kinds of accounts with a bank: the Savings Account, on which interest is allowed on the minimum monthly balances, and the Current Account, on which no interest is allowed.

Note.-Interest is money paid for the use of money.

OPENING AN ACCOUNT WITH A BANK

Suppose you have saved from your earnings 25 dollars, made up as follows:

2 five-dollar bills; 4 two-dollar bills; 5 one-dollar bills;
 two dollars in silver.

You wish to deposit this money in a bank for safe keeping and for the interest allowed.

In order to open with a bank either a Savings Account or a Current Account, you first fill out a deposit slip, as is here shown, and give it, with the 25 dollars, to the $\mathrm{Re}-$ ceiving Teller. He counts the money and examines the slip to see that it and the money correspond. If they do, he initials the slip and passes it on to the Ledger Keeper, who opens an account
for you in the Bank's Ledger Book. You are then given a small Pass Book which should always be presented to the Teller or Ledger-keeper when a deposit or a withdrawal is made, in order that the dates and amounts of all deposits and withdrawals may be entered.

Examine this book whenever you deposit or withdraw money. This will prevent raistakes being made.

When you open an account with a bank, you are asked to write your name and address in a book kept by the bank, so that the bank may have your signature for identification.

EXERCISE 78

Make out deposit slips for the following deposits, in any bank you wish:

1. Jan. 3rd, 1920
$7 \times \$ 5,4 \times \$ 2,9 \times \$ 1$, silver $\$ 6.45$
2. Jan. 17th, 1920
$2 \times \$ 10,6 \times \$ 5,7 \times \$ 2,23 \times \$ 1$, silver $\$ 15 \cdot 75$
3. Jan. 31st, 1920
$1 \times \$ 20,4 \times \$ 10,9 \times \$ 5,35 \times \$ 1$, silver $\$ 8 \cdot 90$
4. Feb. 14th, 1920
$2 \times \$ 50,4 \times \$ 20,15 \times \$ 2,13 \times \$ 1$, silver $\$ 19 \cdot 35$
5. Feb. 28th, 1920
$1 \times \$ 100,3 \times \$ 50,5 \times \$ 20$
Cheques, $\$ 74 \cdot 48, \$ 15 \cdot 62$, $\$ 39 \cdot 75$
6. Mar. 13th, 1920
$2 \times \$ 500,7 \times \$ 2,9 \times \$ 1$
Cheques $\$ 5867 \cdot 32$, $\$ 289 \cdot 75$

THE BANK CHEQUE

You have learned how to deposit money to your credit in a bank. You also need to know how to withdraw money from your bank account. This is done by means of a cheque, which is a written order to the bank signed by yourself to pay you the sum which you desire. Cheque forms are usually made up into small books, of which the following is a sample page:

Stub Cheque

No. 29	No. 29 Stratford, Dec. 5, 1919		
Date Dec. 5th, 1919	The Dominion Bank		
Favour of	Pay	Myself	or Bearer
Myself	Fifteen............. ${ }^{\frac{75}{100}}$ Dollars		
For Expenses	\$15 ${ }_{15}^{700}$		
Amount $\quad \$ 15^{75}$. Fuller

Detach the right-hand portion of the cheque and present it to the teller of the bank, who will give you cash to the amount of $15_{\frac{7}{1} 0^{5}}$ dollars. The left-hand part, called the "stub," is not detached from the cheque book, but is kept by you for reference.

You may use a cheque for another purpose besides withdrawing money for yourself. If you owe money to another person, you may pay your debt by issuing a cheque in his favour against the balance to your credit in the bank. The form of such a cheque is as follows:

No. 30	No. 30
Date Dec. 6th, 1919	Stratford, Dec. 6th, 1919
Favour of	The Dominion Bank
F. M. Allen	Pay F. M. Allen or Order
For Book-case	Thirteen............ $\frac{50}{100}$ Dollars
Amount \$13-50	\$13.50 R. J. Fuller

The detached part is given to F. M. Allen, the person whom you owe. He presents it at the bank and receives the cash.

The above cheque, No. 30, differs from No. 29 in that the name of F. M. Allen is substituted for "myself" and the word "Order" replaces the word "Bearer." Why?

Cheques which you issue against the balance of your current account are returned to you by the bank. They serve as receipts for debts paid.
Cheques issued against a Savings Account are not returned. Hence receipts for payments should be asked for.

EXERCISE 79
Write the cheques, with stubs attached, for the following transactions. Select your own dating and name of bank for the cheques.

1. You draw $\$ 2 \cdot 75$ from your bank account for spending money.
2. You purchase a suit of clothes from R. S. McIntyre, Clothier, and give him a cheque for $\$ 37 \cdot 50$.
3. For repairs to his automobile, Wm. Fuller gives Arthur Hale a cheque for $\$ 17 \cdot 85$.
4. J. W. Chalmers buys a binder from S. B. Irwin for $\$ 225 \cdot 00$. J. W. Chalmers pays for it by cheque.
5. Richard Fuller sends a cheque for $\$ 27 \cdot 89$ to John Hill to pay for groceries purchased.
6. F. W. Mercer sells Douglas Fraser an automobile for $\$ 1200$. Fraser gives a cheque in payment.
7. You purchase a pair of boots for $\$ 7.50$ from J. W. Robb. You give in payment your cheque.
8. You draw $\$ 17 \cdot 50$ from your bank account to meet ordinary expenses.

THE PASS BOOK

All deposits and cheques issued against your balance are entered in your pass book, the form of the first page of which appears below:

> The Scholastic Bank Savings Bank Department

Account No. 752 at Toronto Branch

$\begin{aligned} & \hline \text { Date } \\ & 1919 \end{aligned}$	Particulars	Initials	Dr.	Cr .	Balance
Sept. 1		G_{G}	1208	31538	315138 30330
			860		29470
" 8		G	22500		6970
" 15		G		17300	24270
" 16		G	7500		16770
" 19		G	1248		15522
" 26		G	7280		8242
" 30		G	970 :		72172

Note:

1. You are credited with all deposits. Hence, all deposits are entered in the Cr . column.
2. You are debited with all withdrawals. Therefore, all cheques which you issue appear in the $D r$. column.
3. The differences between the amounts in the Dr. and Cr. columns go in the column for balances. There should be a balance for every debit or credit entry.

Examine the balances. Select the smallest one. This one is called the minimum monthly balance for the month of September. It is on this balance that the chartered banks will allow interest at 3% per annum for that month.

EXERCISE 80

Find the minimum monthly balances:

1. Balance May 1st. $\$ 619 \cdot 38$

May	8th.	withdrew	$\$ 25 \cdot 00$
"	9th.	"	$500 \cdot 00$
"	11th.	deposited	$183 \cdot 00$
"	13th.	withdrew	3.00
"	22nd.	"	$12 \cdot 50$
"	23rd.	"	$75 \cdot 00$
"	26th.	"	$100 \cdot 00$
"	27th.	"	$25 \cdot 00$

2. Balance Sept. 1st. $\$ 315 \cdot 38$

Sept.	3rd.	withdrew	\$ 12.08
"	4th.	"	$8 \cdot 60$
"	7th.	,	225.00
	14th.	deposited	$173 \cdot 00$
,	16th.	withdrew	$75 \cdot 00$
	19th.	"	$12 \cdot 48$
"	26th.		$72 \cdot 80$
	30th.		$9 \cdot 70$

3. Balance Nov. 1st. $\$ 172 \cdot 52$

Nov.	2nd. withdrew	$\$ 25 \cdot 00$
"/	9th.	"
"	$15 \cdot 00$	
"	10th. deposited	$31 \cdot 20$
"	13th.	"
"	$234 \cdot 50$	
"	25th.	withdrew
"	29.75	
"	26th.	$110 \cdot 00$
"	27th.	$100 \cdot 00$
"	28th.	$14 \cdot 50$
		$10 \cdot 00$

4. Balance Mar. 1st. $\$ 251 \cdot 32$

March 3rd. withdrew \$ 38.15

"	5th. "	$20 \cdot 00$
"	17th. deposited	$90 \cdot 00$
"	18th. withdrew	$50 \cdot 00$
"	23rd. deposited	$100 \cdot 00$
"	24th. withdrew	$75 \cdot 00$
"	26th.	"
"	25th.	250
		$116 \cdot 75$

THRIFT STAMPS AND DOMINION SAVINGS CERTIFICATES

The Dominion Government has prepared a plan to encourage the boys and girls of Canada to save their earnings and to invest them profitably. The plan is as follows:
The Government sells thrift stamps at 25c, each. Seventeen of these are exchanged for a Dominion Government Savings Certificate. At the end of three years from the date of exchange or purchase, the Government will pay $\$ 5$ for the certificate.

At any time during 1920, a Dominion Savings Certificate of a maturity value of $\$ 5$ can be purchased for $\$ 4 \cdot 25$ in cash. The purchase price and the maturity values of
these certificates, which are of different denominations, are shown below:

Purchase price at any time during 1920	Value three years from date of purchase
$\$ 4 \cdot 25$	$\$ 5 \cdot 00$
$8 \cdot 50$	$10 \cdot 00$
$21 \cdot 25$	$25 \cdot 00$
$42 \cdot 50$	50.00
$85 \cdot 00$	$100 \cdot 00$

The special features of the Dominion Government Dominion Savings Certificates are:

1. Interest is added to the value of these certificates every six months.
2. The certificates will be the same price throughout the year.
3. The certificates can be cashed at any time at any Money-Order Post-office, but no interest will be paid unless they have been held six months from date of purchase.
4. The certificates are automatically registered at Ottawa immediately after they have been purchased.

EXERCISE 81

1. A girl agreed to pick fruit for a farmer at 3 c. a box. Her record for one week was as follows:
Mon. 55, Tues. 65, Wed. 75, Thur. 75, Fri. 75, Sat. 80.
What value of Dominion Savings Certificates and Thrift Stamps can she purchase with her savings if she spent $\$ 1.75$ of her earnings?
2. A boy sold from his garden vegetables to the value of $\$ 29 \cdot 75$. If he invested this money in Dominion Savings Certificates, what will be the value of these Certificates when due?
3. Harry and Jack each earned $\$ 42.50$ during the holidays. Harry with his earnings bought a bicycle for
his own pleasure, but Jack bought Dominion Savings Certificates. If at the end of three years Harry's bicycle is worth $\$ 25 \cdot 00$, compare the value at that time of the holiday earnings of these two boys.
4. The weekly family savings for the month of March, 1920, were as follows:
1 st. week, $\$ 7 \cdot 53$, 2nd. week, $\$ 8 \cdot 11$, 3rd. week, $\$ 6 \cdot 37$, 4 th. week, $\$ 9 \cdot 59$, 5 th. week, $\$ 3 \cdot 65$.

If the monthly savings were invested in Dominion Savings Certificates and Thrift Stamps, how many Dominion Savings Certificates were purchased? What will the value of these Certificates be when due?

How many more Thrift Stamps will be needed to exchange for a $\$ 4 \cdot 25$ D. S. Certificate?

EXERCISE 82

FARM PROBLEMS

1. How many 3 -gal. cans of water are needed for a garden plot 4 ft . $\times 12 \mathrm{ft}$., in order to get the equivalent of rainfall of 1 inch? (1 gal. of water weighs 10 lb ., $1 \mathrm{cu} . \mathrm{ft}$. of water weighs 1000 oz .)
2. In the drainage of a 6 -acre field, 50 rods of ditch are laid with 6 -in. tile costing $\$ 60$ per M., 20 rods with 4 -in. tile costing $\$ 36$ per M., and 40 rods with 3 -in. tile costing $\$ 24$ per M. If the ditching cost 50 c . per rod and a tile is 1 ft . long, find the total cost of the drains.
3. In Question (2), if the yield of barley on the field is raised from 31 bu. per acre to 46 bu . per acre by the drainage, and if barley is worth $\$ 1.50$ a bu., how much more than the cost of the drainage is made out of the increase in the crop for the year?
4. Find the net gain from the following 10 -acre field of wheat:
(a) Costs:
(i) Ploughing the field 3 times (a) $\$ 4$ an acre each time
(ii) Disking the field twice @ 60c. an acre each time
(iii) Putting on 120 loads of manure @ 75c. a load, and spreading it at 10c. a load
(iv) Harrowing the field 3 times @ 30 c. an acre each time
(v) 20 bu. of seed @ $\$ 2 \cdot 15$ a bu. $\$ 1$ for treating the seed and $\$ 7$ for sowing it
(vi) Twine $\$ 8$, cutting $\$ 10 \cdot 00$, shocking $\$ 8 \cdot 00$, hauling in $\$ 20 \cdot 00$, threshing $\$ 30 \cdot 00$.
(b) Receipts:

300 bu. of wheat worth $\$ 1.95$ a bu., and 12 tons of straw worth $\$ 12$ a ton.
5. A flock of 100 hens averaged 125 eggs each a year. Another flock of 100 hens averaged 88 eggs each a year. If the average price of eggs for the year was 45 c . a doz., how much more profitable was the first flock than the second one?
6. Keep an accurate account of the feed given your flock of hens for one month, and the number of eggs laid. At the local price of feed and eggs, find the profit or the loss on the flock for the period.
7. The following is the milk record of a herd of 8 cows for the month of June:

No. 1 gives 560 lb . milk testing 4\% butter fat

(a) Find the total weight of butter fat produced during June.
(b) Find the weight of butter testing 85% butter fat that could be made from the milk.
8. How much more are the returns from a Jersey cow, which gives 550 lb . of milk a month, testing $5 \frac{1}{2} \%$ butter fat, than those from a Holstein giving 750 lb . and testing $3 \cdot 2 \%$ of butter fat if butter fat is worth 75 c . a lb.?
9. In a dairy where the cream was skimmed from the old-fashioned shallow pans, the skim milk tested $\frac{4}{5} \%$ butter fat. When a separator was used, the skim milk showed only $\frac{4}{100} \%$. Assuming that the annual average weight of skim milk per cow is 7500 lb ., find the weight of butter fat saved annually per cow by the use of a separator.
10. From the data in Question (9), estimate the annual gain from the possession of a separator with a herd of 16 cows, if 6 lb . of butter fat make 7 lb . of butter and the butter sells @ 65 c . a lb.
11. If a bottle of cream weighing 10 oz . and testing 25% butter fat sells for 20 c . and a lb . of butter 84% butter fat sells for 70 c ., find how much more profitable it is for a dairyman to sell 200 lb . of cream testing 50% butter fat, than it is to sell the butter which he can make from the cream.
12. Keep an accurate account of the costs and the receipts in connection with a field of oats raised on your father's farm. Estimate the profit or the loss from the field.

Commercial Fertilizers

The following is a list of commercial fertilizers, with their composition and price:
(a) Nitrate of soda....... 15% nitrogen....... $\$ 150$ ton
(b) Superphosphate. $\cdot \ldots .14 \%$ phosphoric acid 42
(c) Dried blood.......... 14% nitrogen....... 70 "
(d) Bone meal... 22% phosphoric acid 55 "
(e) Basic slag. 12% phosphoric acid 120 "
(f) Barnyard manure. . $\left\{\begin{array}{l}5 \% \text { nitrogen } \\ 5 \% \\ 5 \% \\ .5 \% \text { phosh......... phosphoric acid }\end{array}\right\} 2$ "
(g) Chloride of potassium 50% potash........ 150
(h) Ammonium sulphate. . 20% nitrogen. 100

Note.-A mixed fertilizer labelled 4, 9,2 , is understood to contain 4% nitrogen, 9% phosphoric acid, 2% potash.
14. How many 1 b . of nitrogen in a ton of each of the following: Nitrate of soda, ammonium sulphate, dried blood, barnyard manure.
15. How many lb. of phosphoric acid in a ton of superphosphate? in a ton of bone meal? in a ton of basic slag?
16. What weight of nitrate of soda will be needed to provide as much nitrogen as a ton of barnyard manure?
17. At the prices quoted above, find the price of nitrogen a lb . in nitrate of soda, in dried blood, in barnyard manure.
18. What is the composition of a fertilizer labelled $3,10,6$? $4,7,8$? $0,6,9$?

How much nitrogen in a ton of each of these fertilizers?
19. Bordeaux mixture consists of 6 lb . of bluestone, 4 lb . of lime, and 40 gal . of water. Find the cost of spraying a 5 -acre field of potatoes five times in a season if it takes 75 gal . of the spray per acre each spraying. Bluestone costs 40 c . per 1 b . and lime 2 c . per 1 b . If the increase in yield from spraying is 60 bu . per acre, find the net gain on the field, reckoning the labour at 50 c . per acre per spraying, and the price of potatoes at $\$ 3.00$ per bushel.

EXERCISE 83

HOUSEHOLD PROBLEMS

1. What is the price paid for 4 chickens weighing as follows: $2 \frac{1}{2} \mathrm{lb}$., $2 \frac{3}{4} \mathrm{lb}$., $3 \frac{5}{8} \mathrm{lb}$., and $3 \frac{1}{4} \mathrm{lb}$. @) 28 c . a lb. ?
2. Find the cost of the family fuel bill for the year 1919:

15 tons of furnace coal @ $\$ 12 \cdot 50$ a ton
500 lb . of cannel coal @ $\$ 7.50 \mathrm{a}$ ton
2 tons of stove coal @ $\$ 12 \cdot 25$ a ton
1 cord of kindling wood @ $\$ 13$ a cord
2 cords of wood @ \$17 a cord.
3. The tax bills for last year were as follows: Property tax, $\$ 210 \cdot 75$; income tax, $\$ 37 \cdot 62$; busiriess tax, $\$ 162 \cdot 25$. If 5% was allowed off the property and business taxes for paying them promptly, find the amount of the taxes paid.
4. For a certain house lighted by the Hydro current, a flat rate of 60 c . a month is charged. In addition, $2 \frac{1}{2} \mathrm{c}$. a kilowatt hour is charged. If the number of kilowatt hours used in a month is 153 , find the light bill for the month if a discount of 10% is allowed for prompt payment.

Write a cheque for the amount. Write a receipt for the bill paid.
5. The cost of clothing for a family for 3 months was as follows:

Dressmaking 15 days @ $\$ 2 \cdot 50$ a day, 1 overcoat $\$ 62$, 1 suit $\$ 85$, less 5% off, 16 yd . of dress goods (a) $\$ 1 \cdot 85$ a yd. Miscellaneous items $\$ 35 \cdot 47$. Find the total amount.
6. If the reading of a gas meter on Jan. 5th. was 125280 $\mathrm{cu} . \mathrm{ft}$. and on Feb. 5th. $128560 \mathrm{cu} . \mathrm{ft}$., find the cost of the gas for the month @ $\$ 1.35$ per thousand cu. ft., less 10% for being paid before Feb. 15th.

Write the cheque for the gas bill.
7. Find the amount of the following family meat bill for one week:
$3 \frac{3}{4} \mathrm{lb}$. steak @ 48c.
$5 \frac{1}{2} \mathrm{lb}$. rib roast (a) 42c.
$3 \frac{1}{2} \mathrm{lb}$. pork @ 46 c .
2 lb . ham @ 75c.
Write the cheque in payment of the bill.
Write the receipt which the payer should receive.
8. Find the cost of the following furnishings for a living-room: A chesterfield, $\$ 125$; a table, $\$ 75$; a reading lamp, $\$ 32 \cdot 50$; curtains, $\$ 45$; two cosy chairs, $\$ 45$ each; 3 other chairs, $\$ 15$ each; 3 pictures, $\$ 17 \cdot 50$ each; a bookcase, $\$ 45$. A discount of 15% was allowed off for cash.
9. Make out and receipt the following grocery bill: $10 \frac{3}{4} \mathrm{lb}$. of butter @ 68c.; 5 bu .3 pk . of apples @ 75 c . a pk.; 8 bu .1 pk . of potatoes @. 50c. a pk.; $3 \frac{1}{4} \mathrm{lb}$. of cheese @ 36c.; 31 lb . of nuts @ 40c. a lb.

Prices of Food

Butter...60c. a 1 b .
Flour... . 8c. a 1 b .
Sugar.... 15c. a lb.
Baking-powder 60c. a lb.

Milk..... . . 12c. a qt.
Cream. . . 60c. a qt.
Eggs...... 60c. a doz.

2 cups of butter weigh 1 lb .
2 cups of sugar " 1 lb .
4 cups of flour " 1 lb .
1 cup $=16$ tablespoonfuls.
2 cups of milk $=1 \mathrm{pt}$.
In $\frac{1}{4} \mathrm{lb}$. of baking-powder there are 30 teaspoonfuls.
10. One pint of milk, $1 \mathrm{egg}, 1 \mathrm{cup}$ of sugar, and 1 qt . of cream will make 3 qt . of ice-cream. Allowing 15 c . for flavouring and ice for freezing, what will the profit be if the ice-cream sells at 10c. a serving? (1 qt. $=9$ servings.)
11. What is the cost of a cake made from the following recipe: $\frac{1}{4}$ cup of butter, $\frac{1}{2}$ cup of sugar, $1 \mathrm{egg}, \frac{1}{2}$ cup of milk, $1 \frac{1}{2}$ cups of flour, $2 \frac{1}{2}$ teaspoonfuls of baking-powder?
12. 1 qt . of milk yields 976 calories or food units, and costs $12 \mathrm{c} . ; 1 \mathrm{lb}$. of beefsteak yields 1559 calories, and costs 45 c . What is the difference in the food value of $\$ 1 \cdot 00$ worth of milk and $\$ 1 \cdot 00$ worth of steak?
13. The following recipe will make 60 cookies: $\frac{1}{2}$ cup of butter, 1 cup of sugar, 1 egg, $\frac{1}{4}$ cup of milk, $2 \frac{1}{2}$ cups of flour, 2 teaspoonfuls of baking-powder. Calculate the cost of 1 doz. cookies.

PRACTICAL MEASUREMENTS

PAVING

The cost of laying concrete floors, walks, and pavements is estimated by the square foot or the square yard.

EXERCISE 84

1. Find the cost of a concrete floor for the cellar of a house 36 ft . long and $28 \frac{1}{2} \mathrm{ft}$. wide @ 32c. a sq. ft.
2. What will be the cost of a cement walk 5 ft .6 in . wide and 90 ft . long @ 39c. a sq. ft .?
3. A corner lot is 66 ft . wide and 125 ft . deep. Find the cost of laying a cement side-walk 5 ft . wide along the front and side of it @ $\$ 3.75 \mathrm{a}$ sq. yd .
4. A walk 6 ft . wide and 64 ft . long is made of bricks laid upon the face $2 \mathrm{in}, \times 8 \mathrm{in}$.

If the bricks are worth $\$ 17$ per M. and the labour is worth $\$ 37 \cdot 50$, find the cost of laying the walk.
5. Find the cost of paving a street $38 \mathrm{ft} . \times 350 \mathrm{ft}$. (a) $\$ 6 \cdot 75$ a sq. yd.
6. A street 41 ft .4 in . $\times 422 \mathrm{ft}$. is paved @ 75 c . a sq. ft. Find the cost of the pavement.
8. A city wishes to put a side-walk 6 ft . wide around the outside of a public square 175 ft . long and 125 ft . wide. How much will it cost (a) $\$ 5.85$ a sq. yd.?

PAPERING

Wall-paper is put up in single rolls 18 inches wide and 8 yards long, and in double rolls 16 yards long. The paper is put upon the walls in strips. Borders are sold by the linear yard.

For rooms not more than 10 feet in height, the following rule is used to approximate to the amount of paper required for the room:

Find the perimeter of the room, less the sum of the widths of the doors and the windows. Allow a single roll for every $3 \frac{1}{2}$ feet in this result.

Nore.-If the room is 12 ft . high, allow 1 roll for every 3 ft .
Since the room is not more than 10 feet in height, the length of each strip of paper will not be more than 8 feet, after we allow for the width of the border at the top of the room and the width of the baseboard at the bottom. From a single roll, therefore, three strips can be cut, each of which is 18 inches wide, making a total width of 54 inches, or $4 \frac{1}{2}$ feet. But we have to make allowance for matching and for the spaces to be covered above the doors and windows, and so it is necessary to reduce the width covered by a roll from $4 \frac{1}{2}$ feet to $3 \frac{1}{2}$ feet.

Example: How many single rolls are required to paper the walls of a room 10 feet high, 16 feet long, and 14 feet wide if the room has 2 doors and 3 windows, each 4 feet wide?

$$
\begin{aligned}
& \text { Perimeter of room } 2(16+14) \mathrm{ft}= \\
& \text { Width of doors and windows. }
\end{aligned}=\begin{aligned}
& 60 \mathrm{ft} \\
& \text { Reduced perimeter. }
\end{aligned}
$$

Number of single rolls $=40 \mathrm{ft} . \div 3 \frac{1}{2} \mathrm{ft} .=11 \frac{3}{7} . \quad$ As a fraction of a roll cannot be purchased, it will be necessary to buy 12 rolls.

EXERCISE 85

1. How many rolls of paper will be required for the walls of a room 15 ft . $\times 13 \mathrm{ft}$. and 10 ft . high with 1 door and 3 windows, each 3 ft .6 in . wide?
2. How many rolls of paper will be required for the walls of a room $17 \mathrm{ft} .6 \mathrm{in} . \times 14 \mathrm{ft} .6 \mathrm{in}$. and 10 ft . high with 2 doors and 2 windows, each 3 ft .6 in . wide?
3 . Find the cost of papering the ceiling of a room $14 \mathrm{ft} . \times 12 \mathrm{ft}$., if the strips run lengthwise and 6 in . is

wasted in matching each strip except the first one, and the paper is worth 35 c . a single roll.

Find the cost of the border (a) 18c. a yard.
4. Measure the length, the width, and the height of your school-room, also the width of the openings.
(a) Calculate the number of single rolls required for the walls of the school-room.
(b) Calculate the number of single rolls required for the ceiling of the school-room.
(c) Find the cost of the paper at 55 c . a roll and the border at 25 c . a yard.

SHINGLING

Shingles are put up in bunches of 250 . Four bunches are supposed to cover 100 sq . ft., that is, one square of roof.

Note.-If an answer comes to, say, $5 \frac{1}{4}$ bunches, make it 6 bunches, as part of a bunch cannot usually be purchased.

EXERCISE 86

1. How many bunches of shingles are required for roofs of the following areas or dimensions:
(e) 1800 sq. ft.?
(c) $80 \mathrm{ft} . \times 64 \mathrm{ft}$.?
(e) $84 \mathrm{ft} . \times 65 \mathrm{ft}$.?
(b) 1650 sq. ft.?
(d) $72 \mathrm{ft} . \times 58 \mathrm{ft}$.?
(f) $78 \mathrm{ft} \times 68 \mathrm{ft}$.?
2. At $\$ 2 \cdot 75$ a bunch, how much will the shingles cost to cover a roof with an area of 1960 sq. ft.?
3. If nails are worth 9 c . a 1 b ., if the putting on of 1 bunch of shingles is worth 75 c ., and the shingles are worth $\$ 2 \cdot 50$ a bunch, what will be the cost of shingling a roof of two sides, each 40 ft . $\times 30 \mathrm{ft}$. if $1 \frac{3}{4} \mathrm{lb}$. of nails are required for each bunch?
4. A roof has two sides, each $60 \mathrm{ft} . \times 25 \mathrm{ft}$. What will it cost to shingle this roof if a bunch of shingles is worth $\$ 2 \cdot 40$, if $1 \frac{3}{4} 1 \mathrm{~b}$. of nails at 9 c . a 1 b . are required for each bunch, and if the putting on of 1 bunch is worth 65 c .?

LATHING AND PLASTERING

In estimating the cost of lathing and plastering, the following quantities of materials are allowed for 100 sq . $y d$. :

1400 laths, 10 lb . of nails, 500 lb . of lime, $1 \frac{2}{3} \mathrm{cu} . \mathrm{yd}$. of sand, and 4 bu . of hair.

If laths are worth $2 \frac{1}{2} \mathrm{c}$. each, nails 15 c . a lb., lime 2 c . a lb ., sand $\$ 2.00 \mathrm{a} \mathrm{cu}$. yd., hair 75 c . a bu., and the labour for each sq. yd., is worth 50c., find the cost of lathing and plastering 100 sq. yd. Find to the nearest cent the cost of lathing and plastering 1 sq. yd.

In plastering, the allowance made for openings is a matter of arrangement with the workman, but it is usual to deduct one half of the area of the openings.

EXERCISE 87

1. At $\$ 1.03$ a sq. yd. what will it cost to lath and plaster a wall 9 ft . high and 27 ft . long?
2. At $\$ 1.05$ a sq. yd. what will it cost to lath and plaster the 4 walls of a room 12 ft . high, 18 ft . long, 16 ft . wide?
3. At $\$ 1.05$ a sq. yd. what will it cost to lath and plaster the walls and ceiling of a room 11 ft . high, 15 ft . long, 12 ft . wide?
4. At $\$ 1 \cdot 05$ a sq. yd. what wili it cost to lath and plaster the walls and ceiling of a room 12 ft . high, 16 ft . long and 14 ft . wide, if there are 2 doors 7 ft . $\times 4 \mathrm{ft}$. and 3 windows 6 ft . $\times 3 \frac{1}{2} \mathrm{ft}$. in the room?
(Deduct $\frac{1}{2}$ of the area of the openings.)
5. At 96 c . a sq. $y d$. find the cost of plastering the walls and ceiling of a room 18 ft . long, 14 ft . wide, and 6 ft . above the wainscot; one half the area of one window 3 ft . $\times 5 \mathrm{ft}$, and of one door $7 \mathrm{ft} . \times 3 \mathrm{ft}$. being deducted.
6. Find the cost of painting the walls and the ceiling of your class-room @ 75 c . a sq. yd.
7. Measure the dining-room in your home. Estimate the cost of lathing and plastering the walls and the ceiling at $\$ 1.05$ a sq. yd.

FLOORING

Contractors usually allow $1 \frac{1}{4}$ feet, board measure, for every foot of floor to be covered, because there is a loss on account of the tongue and groove matching of the boards. If the boards are less than 3 in . in width, $1 \frac{1}{3}$ board feet for every square foot of floor is allowed.
Example: How many feet of flooring $2 \frac{1}{4} \mathrm{in}$. wide and 1 in . thick will be required for a room $18 \mathrm{ft} . \times 16 \mathrm{ft}$.?
The number of square feet in the floor $=18 \times 16=288$. \therefore the number of board feet $=288 \times \frac{4}{3}=384$.

EXERCISE 88

1. Find the number of feet of flooring $2 \frac{1}{4} \mathrm{in}$. wide needed for rooms of the following dimensions:
(a) $18 \mathrm{ft} . \times 12 \mathrm{ft}$.
(b) $21 \mathrm{ft} \times 15 \mathrm{ft}$.
(c) $14 \mathrm{ft} .6 \mathrm{in} . \times 11 \mathrm{ft} .8 \mathrm{in}$.
2. Find the number of feet of flooring 3 in. wide needed for rooms of the following dimensions:
(a) $13 \mathrm{ft} .6 \mathrm{in} . \times 12 \mathrm{ft} .4 \mathrm{in}$.
(b) $12 \mathrm{ft} .4 \mathrm{in} . \times 10 \mathrm{ft} .9 \mathrm{in}$.
(c) $15 \mathrm{ft} .3 \mathrm{in} . \times 12 \mathrm{ft} .8 \mathrm{in}$.

What is the cost of laying a floor $24 \mathrm{ft} . \times 18 \mathrm{ft}$. with maple boards 3 in . wide and 1 in . thick, the labour costing $\$ 12 \cdot 50$, and the lumber being worth $\$ 125$ per M.?
4. What is the cost of laying a floor $25 \mathrm{ft} . \times 28 \mathrm{ft}$. with maple boards $2 \frac{1}{2} \mathrm{in}$. wide and 1 in . thick if the lumber is worth $\$ 135$ per M. and the labour costs $\$ 22 \cdot 75$? 12

FLOOR COVERING

Carpet is usually either 27 in . wide or 1 yd. wide. In estimating the amount needed for a room, allowance must be made for matching the pattern. There will, of course, be no loss on the first strip, as the other strips are made to match with it. Unless otherwise stated, the strips run lengthwise of the room.

Example: How much will it cost to carpet a room $15 \mathrm{ft} . \times 14 \mathrm{ft}$., if the carpet is 27 in . wide, worth $\$ 3.50$ a yd., and 6 ir . is allowed for matching on each strip except the first?

$$
14 \mathrm{ft} .=168 \mathrm{in} .
$$

\therefore no. of strips required $=\frac{168 \mathrm{in} .}{27 \mathrm{in} .}=6 \frac{2}{9}$.
This means 7 strips. Why?
Length of each of 6 strips is 15 ft .6 in .
Length of carpet required is $6 \times 15 \mathrm{ft} .6 \mathrm{in} .+15 \mathrm{ft}$.
$=108 \mathrm{ft} .=36 \mathrm{yd}$.
\therefore Cost is $36 \times \$ 3 \cdot 50=\$ 126$.
A floor is very often covered with a rug instead of a carpet laid in strips. The value of the rug is estimated by the number of square yards which it contains. Around the outside of the rug a border is left uncovered, which, if the floor is of hardwood, is generally polished.

Example: A room is $18 \mathrm{ft} . \times 12 \mathrm{ft}$. On the floor is a rug which leaves uncovered a border 18 in . wide all around the room. What will it cost to polish the border (a) $\$ 1.75$ a sq. yd.?

$$
\begin{aligned}
& \text { Area of room }=18 \times 12 \times 1 \text { sq. } \mathrm{ft} .=216 \mathrm{sq} . \mathrm{ft} \\
& \text { Area of rug }=15 \times 9 \times 1 \mathrm{sq} . \mathrm{ft} .=135 \mathrm{sq} . \mathrm{ft} \\
& \therefore \text { area of border }=81 \mathrm{sq} . \mathrm{ft}=9 \mathrm{sq} . \mathrm{yd} . \\
& \text { Cost of polishing border }=9 \times \$ 1 \cdot 75=\$ 15 \cdot 75
\end{aligned}
$$

EXERCISE 89

1. Find the cost of covering a porch floor $9 \mathrm{ft} . \times 30$ ft . with plain matting @ $\$ 2 \cdot 25$ a sq. yd.
2. The living-room of a summer cottage is $17 \mathrm{ft} . \times$ 24 ft ., and the floor is covered with plain matting 1 yd . wide laid so as to leave no waste. Find the cost of it (a) $\$ 1 \cdot 25$ a yd.
3. A floor 18 ft . $\times 15 \mathrm{ft}$. is covered with carpet 27 in . wide running lengthwise. How many strips are there? How many yd. long is each strip? How many yd. of carpet are there altogether? What would the carpet cost @) $\$ 2.50$ a yd.?
4. Measure your school-room and compute the cost of carpeting a room of the same size with carpet 27 in . wide, the waste allowed on each strip except the first one to be 6 in ., and the carpet to cost $\$ 3$ a yard.
5. A room is 36 ft . long and 27 ft . wide. On the floor is a rug which leaves uncovered a border 18 in. wide all around the room. What will it cost to polish the border (a) $\$ 1 \cdot 65$ a sq. yd.? What will the rug cost at $\$ 4 \cdot 65$ a sq. yd.?
6. A room is $15 \mathrm{ft} . \times 12 \mathrm{ft}$. What will be the dimensions of a rug for it which leaves uncovered a border 9 in . wide all around the room? What will the rug cost @ $\$ 7 \cdot 50$ a sq. yd.? What will it cost to polish the border at $\$ 2.75$ a sq. yd.?

BRICK WORK AND STONE WORK

Bricks are measured and sold by the thousand. A standard brick is 8 in . long, 4 in . wide, and 2 in . thick, and has a volume of 64 cu . in., or $\frac{1}{2} \tau$ of a cu. ft . When allowance is made for the mortar in a brick wall, it is reckoned that there are 22 bricks in every cubic foot of a wall.

In estimating the cubical contents of a cement wall under a building, the contractor, to get the length
of the wall, measures around the outside of it. He, therefore, counts the corners twice. This is considered fair, because of the extra trouble in laying and shaping the corners.

Under a cement foundation there is always a footing. For ordinary walls 10 in . to 12 in . thick, this footing is 18 in . wide and 6 in . high. The wall rests centrally on the footing.

The cost of a cubic yard of cement wall at the present time is made up as follows:

$$
\begin{aligned}
& 1 \frac{1}{8} \mathrm{cu} . \text { yd. of gravel @ } \$ 2 \mathrm{a} \mathrm{cu} . \mathrm{yd} \text {. } \\
& 2 \mathrm{bbl} \text { of cement @ } \$ 2 \cdot 80 \mathrm{a} \text { bbl. } \\
& \text { Labour, } \$ 2 \cdot 00 \\
& \text { Total cost- } \$ 9 \cdot 85 \mathrm{a} \mathrm{cu} . \mathrm{yd} .
\end{aligned}
$$

Example: Find the number of cu. yd. in the footing for a cement foundation under a building 33 ft .long and 29 ft . wide, if the wall is 1 ft . thick and the footing is 18 in . wide and 6 in . high. The footing will extend 3 in . outside the wall. The length, therefore, is 33 ft .6 in ., and the width 29 ft .6 in .

Measuring around the outside of the footing, the length of it will be $2(33 \mathrm{ft} .6 \mathrm{in} .+29 \mathrm{ft} .6 \mathrm{in})=.2 \times$ $63 \mathrm{ft} .=126 \mathrm{ft}$.

The cubical contents of the footing will be : $126 \times \frac{19}{2} \times \frac{1}{2} \times \frac{1}{2}$ times $1 \mathrm{cu} . \mathrm{yd} .=3 \frac{1}{2} \mathrm{cu} . \mathrm{yd}$.

EXERCISE 90

1. How many thousands of bricks will be required for a wall 25 ft . long, 20 ft . high, and 2 ft . thick ?
2. At $\$ 9.85 \mathrm{a} \mathrm{cu} . \mathrm{yd}$. what will be the cost of a cement wall 40 ft . long, 1 ft . wide, and 8 ft . high ?
3. What would the footing for such a wall be worth if the footing is 40 ft .6 in . long, 18 in . wide, 6 in . high, and costs $\$ 9.85 \mathrm{a} \mathrm{cu} . \mathrm{yd}$.?
4. Find the number of cu. yd. of cement in the foundation under a building 30 ft . long and 24 ft . wide if the wall is 1 ft . thick and 8 ft . high and rests on a footing 18 in . wide and 6 in . high.
5. A wall is made up of three sections as follows:
(a) A cement footing 100 ft . long, 2 ft . wide, and 10 in. high
(b) A cement wall 99 ft . long, 18 in . thick, and 7 ft . high
(c) A brick wall 99 ft . long, 12 in . thick, and 15 ft . high.
(i) Find the cost of the footing © $\$ 9.75$ a cu. yd.
(ii) Find the cost of the cement wall © $\$ 9.75$ a cu. yd.
(iii) Find the cost of the brick wall, allowing $485 \mathrm{cu} . \mathrm{ft}$. for openings if the bricks are worth $\$ 25$ a thousand and labour for laying one thousand bricks costs $\$ 3 \cdot 50$.
(iv) Find the total cost of the wall.

BOARD MEASURE

In estimating the number of board feet in a board lumber-men use a rule of which the following diagram is a representation:-

The lower part of the rule is graduated in inches so that the numbers opposite 12 represent inches as well as the number of board feet in boards which are 12 ft . long.

EXERCISE 91

By reading from the rule, find the number of board feet in each of the following boards:

1. $1^{\prime \prime} \times 3^{\prime \prime} \times 12^{\prime}$
2. $1^{\prime \prime} \times 3^{\prime \prime} \times 16^{\prime}$
3. $1^{\prime \prime} \times 5^{\prime \prime} \times 12^{\prime}$
4. $1^{\prime \prime} \times 6^{\prime \prime} \times 12^{\prime}$
5. $1^{\prime \prime} \times 6^{\prime \prime} \times 14^{\prime}$
6. $1^{\prime \prime} \times 9^{\prime \prime} \times 12^{\prime}$
7. $1^{y} \times 6^{\prime \prime} \times 16^{\prime}$
8. $1^{\prime \prime} \times 6^{\prime \prime} \times 10^{\prime}$
9. $1^{\prime \prime} \times 11^{\prime \prime} \times 12^{\prime}$
10. $1^{\prime \prime} \times 4 \frac{1}{2}^{\prime \prime} \times 16^{\prime}$
11. $1^{\prime \prime} \times 44^{3 \prime} \times 10^{\prime}$
12. $1^{\prime \prime} \times 7^{\prime \prime} \times 16^{\prime}$

EXERCISE, 92 (REview)

1. Add at the same time two columns of the following addition questions.
Check each answer.

(a)	(b)	(c)	(d)	(e)	(f)	(g)
82	76	94	88	94	86	5894
97	48	76	94	78	53	8937
68	93	29	73	62	92	4658
47	78	74	29	99	78	7392
65	69	93	87	87	65	8946
83	47	85	76	46	49	7393
97	58	49	48	39	83	8276
46	73	73	93	87	27	4998
59	99	82	78	49	93	6874
-	-	-	-	-		

2. Use a short method to do the subtraction work in each of the following questions.

Check each answer.

3. Use short methods to do the following. Check each result.

(a) Multiply	$\$ 952 \cdot 75 \times 1000$	
(b)	"	693×99
(c)	"	88×82
(d)	$"$	95×95

4. Use short methods to find the value of the following. Check each result.
(a) 48 tons of coal at $\$ 12 \frac{1}{2}$ a ton
(b) 65 head of cattle at $\$ 65$ each
(c) 56 yards of cloth at $\$ 1 \cdot 87 \frac{1}{2}$ a yard
(d) 72 doz. pencils at $62 \frac{1}{2}$ c. a doz.
5. (a) Divide $\$ 3865 \cdot 43$ by 1000
(b) " $\$ 8 \cdot 64$ by $33 \frac{1}{3}$
(c) " 726 by $83 \frac{1}{3}$
(d) " $\$ 84 \cdot 75$ by 25
6. Write as decimals:
(a) Seven-hundredths
(b) Twelve and thirty-six thousandths
(c) Four hundred and twenty-five and nine tenthousandths
(d) Four thousand three hundred and sixty-five and one hundred and thirteen-thousandths.
7. If the distance from Toronto to North Bay is $227 \cdot 238$ miles, from North Bay to Cobalt is $104 \cdot 156$ miles, and from Cobalt to Cochrane is $149 \cdot 579$ miles, find the distance from Toronto to Cochrane.
8. How many yards are there in $15 \cdot 75$ miles?
9. The value of the English pound sterling was, on a certain date in 1920, because of war conditions, equal to $\$ 4 \cdot 425$ in Canadian money.

If a person in Canada, on that date, received a cheque for $£ 7510$ s., what would be the value of this cheque in Canadian money?
10. Find the value of 6973 feet of lumber at $\$ 75 \cdot 50$ a thousand feet.
11. Express the following percentages as fractions in their lowest terms:
$\mathbf{2 5 \%}, 33 \frac{1}{3} \%, 14 \frac{2}{7} \%, 37 \frac{1}{2} \%, 62 \frac{1}{2} \%, 87 \frac{1}{2} \%, 83 \frac{1}{3} \%, 66 \frac{2}{3} \%$.
12. If an article which costs $\$ 27 \cdot 75$ has advanced in price to $\$ 37 \cdot 00$, to what per cent. increase on the former price is the latter price equal?
13. Find the rate of discount in selling a suit for $\$ 59 \cdot 50$ which was marked $\$ 68$.
14. There are 875 pupils in a school. Find the enrolment if this is $87 \frac{1}{2} \%$ of it.
15. How many Thrift Stamps will $\$ 3 \cdot 75$ buy? will $\$ 6 \cdot 25$ buy? will $\$ 9.50$ buy?
16. How many Dominion Savings Certificates and Thrift Stamps will $\$ 6 \cdot 00$ buy? will $\$ 7 \cdot 50$ buy? will $\$ 10 \cdot 00$ buy? will $\$ 15 \cdot 00$ buy?
17. What will be the return in 3 years from $\$ 85 \cdot 00$ invested now in Dominion Savings Certificates? from $\$ 51$ invested? from $\$ 63.75$ invested?
18. Make out a deposit slip for the following deposit. Use any bank you wish. Suppose you are the depositor and J.R. the teller's initials.
$4 \times \$ 10 ; 7 \times \$ 5 ; 11 \times \$ 2 ; 27 \times \$ 1 ;$ coin $\$ 11 \cdot 65 ;$ cheques $\$ 15 \cdot 00$.
19. J. S. McEwen of Toronto issues a cheque for $\$ 75 \cdot 25$ in payment of account to S. M. Ewart. Write the cheque.

Write the endorsement necessary when S. M. Ewart cashes the cheque.
20. Find the minimum monthly balance for the following bank account for the month of March, 1920:

Balance Feb. 29th, $\$ 74 \cdot 86$

arch	3 5	Deposited.	$\$ 9 \cdot 89$
"	10	Withdrew	$3 \cdot 25$ $5 \cdot 00$
"	20	Deposited.	6.19
"	28	Withdrew	8.00
"	30	Deposited.	5-60

21. A flock of 50 hens are fed daily $7 \frac{1}{2} \mathrm{lb}$. of wheat worth $\$ 2 \cdot 00$ a but. If the hens average 90 eggs a year each, and eggs sell at an average of 36 c . a doz., what is the year's profit?
22. Make out a market ticket for each of 2 loads of oats if they are worth 95 c a bu.:
(a) Gross weight 2900 lb . Wagon " 1193 lb .
(b) Gross weight 2876 lb.
Wagon
$\quad 1235 \mathrm{lb}$.
23. Find the amount of the following threshing bill: 2500 bu. of oats (a) 3c. a bu. 1500 bu. of wheat @ 5 c . a bu. 600 bu. of barley @ 4c. a bu. 4 teams for 3 days @ $\$ 5 \cdot 50$ a day for each team 8 men for 3 days @ $\$ 3$ a day for each 2800 lb . of coal @ $\$ 9 \cdot 50$ a ton.
24. How much more are the monthly returns from a Jersey cow which gives 650 lb . of milk a month, testing $5 \frac{1}{2} \%$ butter fat, than those from a Holstein giving 840 lb . and testing 3.5% of butter fat if butter fat is worth 75 c . a lb.?

25 . At 30 c. a 1 b ., what is the value of the cream containing 30% butter fat taken from 300 lb . milk containing 4% butter fat?
26. (a) Find the number of board feet in a board 14 ft . long, 7 in . wide, and 1 in . thick.
(b) Compare your result with that obtained from reading the lumber-man's rule.
27. Find the cost of paving a street 220 yd . long and 36 ft . wide @ $\$ 7 \cdot 25 \mathrm{a}$ sq. yd.
28. A room is 32 ft . long and 28 ft . wide. On the floor is a rug which leaves uncovered a border 18 in . wide all around the room.
(a) What will it cost to polish the border @ $\$ 1.50$ a sq. yd.?
(b) What will the rug cost @ $\$ 4 \cdot 75$ a sq. yd.?
29. How many rolls of paper will be required for the walls of a room 18 ft . by 14 ft . by 10 ft . with 2 doors and 4 windows each 3 ft .6 in . wide?
30. At 95 c . a sq. yd. what will it cost to lath and plaster the 4 walls of a room 10 ft . high, 12 ft . long, and 11 ft . wide, $4 \frac{1}{9}$ sq. $y d$. being allowed for openings?
31. Find the cost of the footing for a cement wall if the footing is 75 ft . long, 18 in . wide, and 6 in . high?
32. Find the cost of a cement wall under a building 28 ft . long and 27 ft . wide if the wall is 7 ft . high and 10 in. thick and costs $\$ 9.75$ a cu. yd.
(Do not include footing.)
33. Find the cost of the family fuel bill for the year 1920:

$$
\begin{aligned}
& 14 \frac{1}{2} \text { tons of cual@ } \$ 13 \cdot 50 \text { a ton } \\
& 3 \frac{1}{4} \text { tons of stove coal @ } \$ 12 \cdot 80 \text { a ton } \\
& 3 \text { cords of wood@ } \$ 7 \cdot 75 \text { a cord } \\
& 1 \text { load of kindling wood @ } \$ 9 \cdot 50 \text {. }
\end{aligned}
$$

34. Find the cost of the following furnishings for a living-room:

Table, $\$ 65 \cdot 00$; lamp, $\$ 37 \cdot 50 ; 5$ chairs at an average price of $\$ 27 \cdot 50$; a book-case, $\$ 47 \cdot 50$; and a chesterfield, $\$ 135$. A discount of $12 \frac{1}{2} \%$ was given for cash.

35 . Find the cost of flooring a room 14 ft . by 12 ft . with oak worth $\$ 175$ per M., allowing $1 \frac{1}{4}$ feet, board measure, for every square foot of floor.

SECTION V

EXERCISE 93 (REVIEW)

1. Write down every factor of: $154,432,667$, and 945 .
2. Find the prime factors of: 684, 841, 1331, 2520, 19635 , and 48204.
3. State which of the following numbers are prime and which composite: 117, $351,269,1729$, and 1367.
4. The product obtained by multiplying a number by itself is 1764 . Find the number.
5. Find the prime factors of 3375 and combine them so à to get three equal factors.
6. The product of three consecutive numbers is 4896 . Find them.
7. Find the Highest Common Factor of:
(a) 675 and 1125
(b) 928 and 1073
(c) 2037 and 6598
(d) 390,910 , and 1365
(e) 432,720 , and 864
(f) 1404,1512 , and 1638
(g) 1540,5005 , and 6545.
8. A, B, and C invest $\$ 3500$ in a business. A invests $\frac{3}{4}$ as much as B , and C invests as much as A and B together. How much did each invest?

9 . What is the length of the longest cord which will exactly measure both the length and the width of a rectangular lot which is 154 yd. long and 132 ft . wide? How many times the length of the cord is the length of the perimeter of the lot?
10. Find the Least Common Multiple of:
(a) 36,104 , and 351
(b) $33,44,55$, and 132
(c) $119,136,252$, and 280
(d) $64,72,80,84$, and 96
(e) $54,72,108$, and 168
(f) 403 and 961,361 and 437
(g) 1403 and 1189.
11. Find the least number which contains $156,168,208$, and 432 as divisors.
12. What is the lowest number which when divided by 15 , by 20 , or by 36 , will leave a remainder of 7 in each case?
13. If the dividend is $\frac{3}{4}$ of $21 \frac{2}{3}$ and the quotient $\frac{2}{3}$ of $6 \frac{1}{2}$, what is the divisor?
14. Find the quotients:
(a) $\frac{56 \times 27 \times 50}{21 \times 40}$
(b) $\frac{25 \times 84 \times 32 \times 36}{30 \times 48 \times 80}$
(c) $\frac{69 \times 45 \times 63 \times 54}{46 \times 81 \times 21 \times 27}$
(d) $\frac{74 \times 64 \times 57 \times 48}{8 \times 38 \times 96 \times 111}$.
15. How many chests of tea, each containing 63 lb . worth 75 c . a lb ., can be bought for 72 bu . of wheat worth $\$ 1.75$ a bu.?
16. Find the value of:
(a) $3 \frac{10}{10}+5_{18}^{7}-2 \frac{9}{22}-4 \frac{9}{10}$
(b) $\frac{11}{17}$ of $21 \frac{9}{7}-\frac{11}{13}$ of $10 \frac{5}{8}+\frac{1}{21} \div \frac{33}{8}$
(c) $12 \frac{19}{36}-6 \frac{8}{15}-3 \frac{33}{56}+7 \frac{4}{5}-\frac{1}{2} \frac{1}{5}+8 \frac{9}{10}$
(d) $5 \frac{2}{5}+3 \frac{1}{5} \div 1 \frac{1}{3}-4 \div 1 \frac{9}{11}$
(e) $\left(2 \frac{1}{2}-1 \frac{3}{8}\right) \times\left(4 \frac{1}{3}+5 \frac{4}{9}\right)$
(f) $17 \times 4 \frac{5}{11} \times \frac{4}{4}$ of $\frac{2}{61} \times\left(\frac{3}{28} \div \frac{17}{23}\right)$
(g) $\left(\frac{8}{18}\right.$ of $1 \frac{7}{25}+\frac{9}{8}$ of $\left.1 \frac{5}{12}\right) \div\left(\frac{4}{8}\right.$ of $\frac{\frac{1}{10}}{10}-\frac{8}{8}$ of $\left.\frac{8}{18}\right)$.
17. Find the value of:
(a) $\frac{2 \frac{3}{5}}{4 \frac{1}{4}}$
(b) $\frac{56}{3 \frac{3}{6}}$
(c) $\frac{4 \frac{7}{8}}{52}$
(d) $\frac{\frac{32}{8}}{\frac{80}{147}}$.
18. What fraction is:
(a) 18 of 42 ?
(c) $3 \frac{3}{4}$ of $4 \frac{1}{2}$?
(e) $\frac{39}{80}$ of $8 \frac{1}{18}$?
(b) 24 of 24 ?
(d) $7 \frac{3}{7}$ of $4 \frac{9}{11}$?
(f) $\frac{5}{11}$ of $\frac{2}{2}$?
19. The difference between $\frac{2}{3}$ and $\frac{\frac{1}{6} \text { is what fraction }}{}$ of their sum?
20. (c) 1 bu .3 pk . is what fraction of 3 bu .2 pk .?
(b) 2 qt .1 pt . is what fraction of 3 gal .?
(c) 4 gal. 1 pt. is what fraction of 7 gal. 2 qt.?
(d) 3 yd .2 ft . is what fraction of 1 rd. ?
(e) $£ 32 \mathrm{~s} .6 \mathrm{~d}$. is what fraction of $£ 25$?
21. (a) $\frac{20}{27}$ is $\frac{8}{18}$ of what sum?
(b) $\frac{5}{4}$ of $\frac{1}{2} \frac{1}{5}$ of $\$ 10$ is $\frac{44}{4} \frac{1}{8}$ of what amount?
(c) $\frac{3}{5}$ of $22 \frac{1}{2} \mathrm{yd}$. is $\frac{9}{10}$ of what quantity?
22. If a man pays out $\frac{1}{2}$ of his money, then $\frac{1}{3}$ of what remains, and then $\frac{1}{4}$ of what still remains, what fraction of the whole amount has he now left? If he has $\$ 80$ left, how much money had he at first?
23. Divide $\frac{5}{6}$ by $\frac{3}{4}$. If in $\frac{3}{4}$ of a farm there are 120 acres, how many acres are there in $\frac{5}{8}$ of it?
24. Divide $6 \frac{2}{3}$ by $3 \frac{3}{4}$. If $3 \frac{3}{4} 1 \mathrm{lb}$. of tea cost $\$ 1 \cdot 80$, what will $6 \frac{2}{3} \mathrm{lb}$. cost?

25 . If $\$ 625$ is given to two men so that one receives $\frac{2}{3}$ of what the other receives, how much does each get?
26. A man with $\$ 22,500$ wills $\frac{1}{3}$ of it to his wife, $\frac{1}{2}$ of it to his son, and the rest of it to his daughter. The wife then wills $\frac{3}{8}$ of her share to the son and the rest to the daughter. How much more will the son have than the daughter?
27. If 16 horses require $8 \frac{3}{4}$ bu. of oats for $3 \frac{1}{3}$ days, how many bu. will 12 horses require for $5 \frac{1}{3}$ days?
28. A merchant bought $16 \frac{1}{2} \mathrm{yd}$. of cloth at $\$ 3 \frac{2}{3}$ a yd. and sold it at $\$ 4 \frac{1}{4}$ a yd. What was his gain?
29. A farmer sold the north half of the north-east one-quarter of his 160 -acre farm for $\$ 3600$. What is the remainder of the farm worth at the same rate?
30. The chest expansion of six boys at a certain school was as follows:

$$
1 \frac{3}{4} \mathrm{in} \text {., } 1 \frac{5}{8} \mathrm{in} \text {., } 1 \frac{7}{10} \mathrm{in} \text {., } 2 \frac{2}{5} \text { in., } 1 \frac{1}{2} \mathrm{in} \text {., } 2 \frac{1}{4} \mathrm{in} .
$$

What was the average expansion?
31. A woman who had $\$ 240$ spent $\frac{1}{5}$ of it for coal, $\frac{1}{2}$ the remainder for rent, and $\$ 56$ for furniture. What fraction of her money had she left?
32. If to make corn bread for 15 persons it requires $1 \frac{1}{2} \mathrm{lb}$. of corn meal, $\frac{3}{4} \mathrm{lb}$. of flour, $\frac{3}{8} \mathrm{oz}$. of sugar, 2 oz . of lard, and 2 oz . of baking-powder, make out a recipe for corn bread for 12 people, and find what it would cost at $\$ 2 \cdot 50 \mathrm{a} \mathrm{cwt}$. for corn meal, $\$ 7 \cdot 50 \mathrm{a} \mathrm{cwt}$. for flour, $\$ 6.40 \mathrm{a}$ cwt. for sugar, 32 c . a lb. for lard, and 30 c . a lb. for baking-powder.
33. A man who has a sum of money on deposit in a bank draws out $\frac{8}{9}$ of it. With $\frac{3}{4}$ of this sum he buys a house, and with the remainder, $\$ 1800$, he buys an automobile. How much money has he still in the bank?

ECIMALS

EXERCISE 94 (REvIEW)

1. Add:
(a) $3 \cdot 405,50 \cdot 76,301 \cdot 632,90 \cdot 09$, and $1 \cdot 003$
(b) $43 \cdot 587, \cdot 6093, \cdot 0008,132 \cdot 9$, and 406.
2. Subtract:
(a) $4 \cdot 637$ from $19 \cdot 859$
(b) $\mathbf{1 7} \cdot 1825$ from 210
(c) $13 \cdot 60411$ from $34 \cdot 012$.
3. Find the value of:
(a) $421 \cdot 37-9 \cdot 085+\cdot 815-63 \cdot 2$
(b) $27-11 \cdot 26+3 \cdot 842+79 \cdot 0483$
(c) $105 \cdot 47+39 \cdot 748-23 \cdot 1097-84$.
4. Multiply:
(a) $83 \cdot 04$ by $\cdot 0625$
(b) $57 \cdot 3246$ by $\cdot 0065$
(c) 67 by 4.819
(d) $23 \cdot 57$ by $3 \cdot 048$.

DIVISION OF DECIMALS

In the division of integers by integers, how is the first digit in the quotient obtained? How may its place value be known?

If 65879 is divided by 53 , what is the first digit in the quotient? What is its place value? What, then, must be the place value of the second digit in the quotient? of the third? Again, if 658.79 be divided by 53 , what will the first digit in the quotient be? What is its place value? What is the place value of the second digit? of the third? of the fourth?
$658 \cdot 79$ may, therefore, be divided by 53 as follows:

$12 \cdot 43$
$53) 658 \cdot 79$
53
$\frac{128}{106}$
227
212
159
159

If the divisor had been $5 \cdot 3$ or $\cdot 53$, how could it be changed to the integer 53 ? What change must then be made in the dividend to leave the quotient unchanged?

It is clear, therefore, that in the division of decimals the divisor can always be made a whole number. For instance, $16 \cdot 37 \div 4 \cdot 2=163 \cdot 7 \div 42$ and $\cdot 00378 \div \cdot 64=$ $\cdot 378 \div 64$. Hence the division of decimals can always be performed as in the foregoing Example. It will be seen that in dividing by a whole number the decimal point in the quotient comes immediately above that in the dividend.

EXERCISE 95

1. Divide:
(a) $87 \cdot 5$ by 35
(f) $55 \cdot 1862$ by 387
(b) $32 \cdot 68$ by 19
(g) $1 \cdot 10166$ by 427
(c) $\cdot 1518$ by 46
(h) $286 \cdot 9061$ by 83
(d) 7.504 by 56
(i) $\cdot 00427638$ by 789
(e) $\cdot 03381$ by 147
(j) $6941 \cdot 902$ by 2134 .
2. Divide:
\rightarrow (a) 35209 by $25 \cdot 7$
(e) $\cdot 348336$ by $\cdot 492$
$\rightarrow($ b) 5658 by $\cdot 0123$
(f) 24 by $19 \cdot 2$
(c) 59.4204 by 5.86
(g) $8 \cdot 31183$ by 23.0 5
(d) 461071 by $12 \cdot 23$
(h) $2 \cdot 5346304$ by $4 \cdot 632$.
3. Divide $437 \cdot 25$ by 10 , by 100 , by 1000 , by 10000 . What change is made in the position of the decimal point by each of these divisions?
4. What is the quotient when 4368 is divided by 100 ? When 37.5 is divided by 10000 ?
5. Divide 4 by 5,3 by 60,8 by 500,7 by 8,1 by 16 , 2 by 25,9 by 20 .
6. Divide, to four places of decimals:
\rightarrow (a) 64.375 by 9.573
(d) 3 by 7
\rightarrow (b) 4.50775 by 123.5
(e) 1 by 13
-(c) 6 by 17
(f) 14 by $1 \cdot 9$.
7. Divide:
(a) 35209 by $25 \cdot 7$
(b) 15.812 by 23.6
(c) 8.547 by 077 .
>8. Divide, to three places of decimals:
(a) 64.375 by 9.573
(b) 759.56 by $43 \cdot 01$.
8. Simplify, using cancellation where possible:
(a) $\frac{7.2 \times 8.4}{5.6}$
(b) $\cdot 1 \times \cdot 02 \times 2.3 \times \cdot 007$
(c) $\frac{630}{.35} \div \frac{700}{1.75}$
(d) $\frac{.12}{.049} \times \frac{.28}{.0045} \times \frac{.0035 \times 18}{.96}$.
9. Divide 15.04 by 47 and then write down the value of $150 \cdot 4 \div 4.7$ and of $1.504 \div \cdot 47$.
10. If a cwt. of sugar costs $\$ 16 \cdot 75$, how many lb. can be purchased for $\$ 2261 \cdot 25$?
11. How many bu. of wheat at $\$ 1.95$ a bu. must a man sell to pay a debt of $\$ 637 \cdot 65$?
12. A train runs 49.32875 mi . in 1.273 hr . What is the rate in miles per hour?
13. How many cwt. of flour are there in 3625 lb .? What is the flour worth at $\$ 13 \cdot 65$ a cwt.?
14. Find the value of 4357 board feet of lumber (a) $\$ 45 \cdot 50$ a thousand feet.
15. Find the value of $625 \mathrm{cu} . \mathrm{ft}$. of gas @ $\$ 1 \cdot 35 \mathrm{a}$ thousand $\mathrm{cu} . \mathrm{ft}$.
16. In the Imperial gallon there are 277.274 cu . in. Find to two decimal places the number of gallons of water in a rectangular tank 3 ft . wide, 4 ft . deep, and 9 ft . long if the tank is full.
17. The total attendance at a certain school for the month of March, in which there were 23 teaching days, was 652 . Find to two places of decimals the average daily attendance.

19 A base-ball team played 78 games, of which it won 53. Find to three places of decimals its winning average.
20. What is the width of a sheet of paper the length of which is 12.5 in., and which contains 92.5 sq. in.?
21. A dealer receives a shipment of stoves, the total weight being 9.75 thousand pounds. He pays $\$ 70 \cdot 20$ freight. What is the freight per thousand?

TABLES

A very practical application of decimals will be found in the construction of tables for making rapid calculations.

For example, the treasurer of a Cheese Company, by comparing the number of pounds of milk used with the money received for the cheese made, is able to estimate the value of 1 lb . of milk, and from this can make the following table:

	Value	No.	Value	No.	
1	. 25336	4	\$. 101448	7.	\$. 177534
2	.050724	5	- 126810	8	- 202896
3	$\cdot 076086$	6	-152172	9	22825

If, now, he wishes to find the value of 12375 lb . of milk, he may proceed thus:

What is the practical value of such a table?

EXERCISE 96

1. The Cook Cheese Manufacturing Company, during the month of June, 1919, used 614095 lb . of milk in making cheese, which was sold for $\$ 16763 \cdot 82$. If the month's expenses amounted to $\$ 2193 \cdot 08$ -
(a) Find in dollars to 6 places of decimals the price which they could pay for a pound of milk.
(b) From the value of 1 lb ., find the value of $2,3,4$, $5,6,7,8$, and 9 lb .
2. Find, from the results in (a) and (b) above, the amounts of the cheques which the patrons who sent the following weights of milk for the month should receive:
(a) 8456 lb .
(c) 11482 lb .
(e) 27893 lb .
(b) 9473 lb .
(d) 13562 lb .
(f) 34265 lb .
3. The Riverside Cheese Manufacturing Co., during the first two weeks in September, 1919, used 174232 lb . of milk in making cheese, which was sold for $\$ 3730 \cdot 97$. If the expenses for the two weeks amounted to $\$ 275 \cdot 33$ and the net proceeds are divided among the patrons according to the amount of milk each of them sends to the factory, find in dollars to six places of decimals:
(a) How much can be paid for 1 lb . of milk.
(b) How much 2, 3, 4, 5 $\ldots \ldots 9 \mathrm{lb}$. are worth.
(c) What the patrons should receive for the following weights of milk:
(i) 8427 lb .
(ii) 11468 lb .
(iii) 18467 lb .
4. A Farmers' Co-operative Society sold a load of hogs weighing 30653 lb . in Toronto and received for the load $\$ 5670 \cdot 81$.
(a) If the expenses in connection with the shipment amounted to $\$ 89 \cdot 65$, find in dollars to six places of decimals the price per lb. received.
(b) Make out a table from which the amount due to farmers whose hogs weighed $1587 \mathrm{lb} ., 3542 \mathrm{lb} ., 6847 \mathrm{lb} .$, $1242 \mathrm{lb} ., 5492 \mathrm{lb}$., can be easily calculated,

192

REDUCTION OF DECIMALS TO VULGAR FRACTIONS

Example: Express 32 as a vulgar fraction:
$\cdot 32=32$ hundredths $=\frac{32}{100}=\frac{8}{25}$.
Again $6 \cdot 32=\frac{\frac{93}{100}}{10}=6 \frac{32}{100}=6 \frac{8}{28}$.
exercise 97
Express as vulgar fractions in their lowest terms:

1. $\cdot 3, \cdot 6, \cdot 8, \cdot 37, \cdot 45, \cdot 64$
2. $\cdot 05, \cdot 025, \cdot 001, \cdot 675, \cdot 317, \cdot 144$
3. $\cdot 7375, \cdot 0112, \mid \cdot 0175, \cdot 0674, \cdot 3225$
4. $4 \cdot 75,10 \cdot 25,12 \cdot 064,7 \cdot 275,15 \cdot 12$.

REDUCTION OF VULGAR FRACTIONS TO DECIMALS

Regarding a vulgar fraction as the quotient obtained by dividing the numerator by the denominator, $\frac{3}{4}=$ $3 \div 4$.

To express $\frac{3}{6}$ as a decimal, divide 3.00 by 4 and the result is $\cdot 75$.
Example: Reduce $\frac{3}{7}$ to 4 places of decimals:

$$
\frac{3}{7}=3 \div 7=\cdot 4285
$$

EXERCISE 98

1. Doing the work mentally, reduce to decimals:

$$
\frac{1}{2}, \frac{1}{2}, \frac{3}{4}, \frac{1}{5}, \frac{2}{5}, \frac{3}{5}, \frac{4}{5}, \frac{1}{8}, \frac{3}{8}, \frac{5}{8}, \frac{7}{8}, \frac{1}{10}, \frac{3}{10}, \frac{7}{10}, \frac{9}{10},
$$

$$
\frac{7}{20}, \frac{3}{20}, \frac{7}{20}, \frac{9}{20}, \frac{1}{25}, \frac{2}{25} 5, \frac{3}{25}, \frac{4}{26}, \frac{6}{25}, \frac{7}{26}, \frac{8}{26}, \frac{9}{28} \text {. }
$$

2. Reduce to decimals:
$\frac{3}{18}, \frac{7}{16}, \frac{17}{25}, \frac{9}{82}, \frac{15}{84}, \frac{23}{26}, \frac{69}{125}, \frac{7}{5} 5, \frac{17}{46}, \frac{39}{80}, \frac{57}{260}$.
3. Reduce to four places of decimals:

$$
\frac{2}{3}, \frac{5}{6}, \frac{7}{11}, \frac{9}{18}, \frac{7}{15}, \frac{14}{14} \frac{11}{18}, \frac{1}{2} \frac{9}{3}, \frac{9}{14}, \frac{61}{112} .
$$

4. Find to four places of decimals the value of:

$$
\frac{5}{12}+\cdot 173-\frac{1}{4}+\cdot 9624-\frac{1}{2} \frac{6}{2} .
$$

5. Find to the nearest cent the value of:

$$
\$ \frac{3}{5}+\$ \cdot 55+\$ \frac{3}{8}-\$ 1 \cdot 38+\$ \frac{5}{11} .
$$

6. A man who owns $\cdot 625$ of a stock of goods sells $\frac{3}{4}$. of his share. What decimal of the stock has he left? What will be the value of what he now owns if the whole stock is worth $\$ 6400$?
7. If a work day is 12 hr ., what fraction of a work day is 10 hr .30 min .? To what decimal is this fraction equal? At $\$ 2 \cdot 40$ a day of 12 hr ., how much would a man earn in 10 hr .30 min ?
8. What decimal of 1 bu. is 2 pk. 3 qt .1 pt.? What will 2 pk .3 qt . 1 pt. of chestnuts be worth at $\$ 3 \cdot 20$ a bushel?
9. What decimal of 11 lb .9 oz . is 2 lb .5 oz .? If 11 lb. 9 oz . of butter are worth $\$ 3 \cdot 70$, what will be the value of 2 lb .5 oz .?
10. Express $2 \frac{1}{2}$ qt. as a decimal of 1 gal . What will 3 gal. $2 \frac{1}{2} \mathrm{qt}$. of wine cost at $\$ 4$ a gal.?

EXERCISE 99

1. A cubic foot of water weighs $62 \frac{1}{2} \mathrm{lb}$. If cast-iron is $7 \cdot 2$ times as heavy as water, how many cubic feet of cast-iron will weigh as much as $3060 \mathrm{cu} . \mathrm{ft}$. of water?
2. Find the number of pounds in $\cdot 175$ of a ton $+\cdot 235$ of a hundredweight $+\cdot 35$ of a pound.
3. Add together • 029 of 1 da. 3 hr ., 45 of 11 hr . 10 min ., and $\cdot 89$ of an hour, and then express the answer in minutes and the decimal of a minute.
4. Express, in inches, the difference between $\frac{3}{8}$ yd. and $\cdot 875 \mathrm{ft}$.
5. A base-ball player's "batting average" is calculated by finding what decimal the number of his "safe hits" is of the number of times he was "at bat." Find the batting average, to three decimal places, of the player who, out of 59 times "at bat," made 18 "safe hits."
6. A cricketer made 1148 runs in 68 innings. Calculate to 2 decimal places the average number of runs an innings.
7. Find to two decimal places the average weight of 7 boys whose individual weights were: $88 \mathrm{lb} ., 95 \mathrm{lb}$., 93 lb., 110 lb ., $102 \mathrm{lb} ., 87 \mathrm{lb}$., and 101 lb.
8. Divice $\$ 35 \cdot 36$ among 4 men and 3 boys, giving to each boy 14 of a man's share.
9. Find the cost of 6250 laths at 32 cents a hundred.
10. Out of 100 parts of rice $\cdot 3$ parts are fat, $\cdot 4$ parts are ash, 7.8 parts are proteid, and 79.2 parts are starch. The rest is water. How much water will there be in 60 lb . of rice?
11. At a certain mine a ton of iron ore yields $\cdot 55$ tons of pure iron. How much pure iron will there be in 86.4 tons of ore?
12. A gentleman finds that he spends $\cdot 15$ of his salary for insurance, $\cdot 48$ for living expenses, and $\cdot 10$ for charity. He invests the remainder, $\$ 810$. Find his total salary.
13. A railway time-table shows Kenora 1289.4 miles and Winnipeg 1414.9 miles west of Montreal. An express leaves Kenora at $5 \cdot 30$ a.m. and arrives at Winnipeg at $9.45 \mathrm{a} . \mathrm{m}$. Find the average rate of the express in miles an hour.
14. Find the value of: $\cdot 3 \times \cdot 03-\cdot 01 \times \cdot 002 \times 10 \cdot 4$.
15. By cancellation find the value of: $6.6 \times 2.24 \times$ 1.56×1.08 divided by $3 \times .44 \times 2.8 \times 81$.
16. By cancellation find the value of: $11.52 \times 1.04 \times$ 3.36 divided by $\cdot 48 \times 2.6 \times 76.8$.
17. A farmer sowed 2.5 bu. of oats an acre on 10.25 acres, which yielded a crop averaging 38.4 bu. an acre. If his seed grain cost him $\$.56$ a bu. and his other expenses amounted to $\$ 3.60$ an acre, how much will he gain by selling his oats at $\$ \cdot 48$ a bu.?
18. An adult who requires only $\cdot 25 \mathrm{lb}$. of meat a day actually consumes 193.5 lb . a year. How much money might he have saved if meat is worth $\$ \cdot 37 \mathrm{a} \mathrm{lb}$.?
19. The average temperature of the Province of Ontario for each month of 1918 was as follows:
$8 \cdot 5^{\circ}, 16 \cdot 5^{\circ}, 31 \cdot 1^{\circ}, 42 \cdot 7^{\circ}, 57 \cdot 2^{\circ}, 61 \cdot 2^{\circ}, 68 \cdot 2^{\circ}, 69 \cdot 4^{\circ}$, $54 \cdot 3^{\circ}, 49 \cdot 9^{\circ}, 39 \cdot 3^{\circ}$ and $27 \cdot 7^{\circ}$. Find the annual mean temperature.
20. The average rainfall (in inches) for the Province of Ontario for each month of 1918 was as follows:
$0 \cdot 02,1 \cdot 50,0 \cdot 54,1 \cdot 38,2 \cdot 62,2 \cdot 69,2 \cdot 18,2 \cdot 94,4 \cdot 31$, $3 \cdot 18,2 \cdot 03$, and $1 \cdot 37$. Find the average for the year.
21. A steam pump at each stroke pumps 3.49 gal . of water and makes 51.4 strokes a minute. How many gal. of water will it pump in a day?

BILLS AND ACCOUNTS

(See pages $52,55,83$)
EXERCISE 100

1. Write in correct form the following account:

John White Lumber Co., Kingston, sold to Samuel Rodd, Portsmouth, lumber as follows:

May 3rd.- 1225 ft . spruce @) $\$ 35$ per M., 2360 ft . maple @) $\$ 72$ per M., 1800 ft . hemlock @ $\$ 37 \cdot 50$ per M.; May 5th. -1710 ft . oak flooring (a) $\$ 125$ per M., 1600 ft . pine @ $\$ 62.25$ per M.; May 12th.- 2500 ft . maple @ $\$ 72$ per M., 1240 ft . hemlock @ $\$ 37 \cdot 50$ per M. Mr. Rodd paid by cheque May 5 th, $\$ 275$, May 12 th, $\$ 325$, and the balance on May 31st. Make out the cheques on the Bank of Montreal, Kingston.
2. On June 10th, 1920, Miss Emily Rose bought of Geo. Fair \& Co., Dry-goods Merchants, Belleville:
$3 \frac{3}{4} \mathrm{yd}$. lining @ $25 \frac{1}{2} \mathrm{c}$., $2 \frac{3}{4} \mathrm{yd}$. insertion @ $19 \frac{1}{2} \mathrm{c}$., $3 \frac{1}{2} \mathrm{yd}$. cambric @ $12 \frac{1}{2} \mathrm{c}$., $2 \frac{1}{4}$ yd. silk @ $\$ 1 \cdot 87 \frac{1}{2}$, $4 \frac{1}{4}$ yd. lace @ 35 c ., $\frac{5}{6}$ doz. spools thread @ 50 c . a doz., $3 \frac{1}{2}$ doz. buttons (a) $\$ 2 \cdot 00$ a gross. Write out a receipted bill for the above.
3. Make out a cash account for the month of September, 1920, showing receipts, expenditures, and balances for the following:

Sept. 1st.-Have on hand $\$ 25 \cdot 60$; Sept. 3rd.-Paid for clothing $\$ 8.25$; Sept. 5th.-Paid church dues $\$ 2 \cdot 50$; Sept. 9th.-Paid for shoes $\$ 6 \cdot 50$; Sept. 11th.-Paid for books $\$ 2 \cdot 35$; Received wages $\$ 36 \cdot 00$; Paid for laundry $\$ 2 \cdot 40$; Sept. 18th.-Paid ticket to Toronto $\$ 4 \cdot 85$; Paid ticket to theatre $\$ 1.50$; Sept. 19th.-Paid hotel bill $\$ 4 \cdot 50$; Sept. 20th.-Paid car tickets $\$ 1 \cdot 00$; Sept. 25th.Received wages $\$ 36 \cdot 00$; Paid laundry $\$ 3 \cdot 10$; Sept. 26th.Paid church dues $\$ 3.75$; Sept. 28th.-Paid for music lessons $\$ 6 \cdot 00$; Sept. 30th.-Paid board $\$ 30 \cdot 00$
4. Make out a statement, showing the receipts and expenses, for the month of September for the following data: A milk dealer has 60 cows, each of which produces on an average 16 qt . of milk daily. He delivers the milk for 15 c. a qt., having two men for this purpose at $\$ 2 \cdot 75$ each a day. His expenses for feed, horse-hire, rent, and such like, average $\$ 1 \cdot 75$ a day for each cow.
5. Make out a bill, supplying names and dates, for the following supplies for a banquet given by the Parents' Association of Queen Mary School: 6 cans of tomatoes @ 20 c .; 18 qt . of milk @ 14 c ., $5 \frac{1}{4} \mathrm{lb}$. of flour at $\$ 7 \cdot 50 \mathrm{a} \mathrm{cwt}$.; $2 \frac{3}{4} \mathrm{lb}$. of butter @ $62 \mathrm{c} . ; 12$ loaves of bread @ $22 \mathrm{c} . ; 6$ bunches of celery @ $8 \mathrm{c} . ; 2 \mathrm{lb}$. of salt @ $8 \mathrm{c} . ; 4 \mathrm{lb}$. of salmon @ 22 c .; 33 eggs @ 52 c. a doz.; $12 \frac{1}{2} \mathrm{lb}$. of sugar @ 8 lb . for $\$ 1 \cdot 00$; $8 \frac{1}{4} 1 \mathrm{~b}$. of beef @ 32c.; $2 \frac{1}{4} \mathrm{pk}$. of potatoes @ $\$ 1 \cdot 25 \mathrm{a}$ bu.; 8 cans of peas @ $\$ 2 \cdot 40$ ă doz.; $2 \frac{1}{4} \mathrm{lb}$. of coffee @ 52 c . a lb. 10 grape fruit @ 4 for $25 \mathrm{c} . ; 3$ bottles of olives @ 30 c .
6. Make out a statement, supplying dates and naraes where necessary, to show the result of the following transactions: On April 1st, 1919, Fred Jones started a cartage business and bought on that date 2 horses for $\$ 165$ each; 2 sets of harness at $\$ 48.75$ each; 2 wagons at $\$ 95$ each; and paid for other necessaries $\$ 125$. He paid two drivers $\$ 65$ each a month; paid $\$ 18$ a month for feed for each horse; and $\$ 34$ a month for rent, repairs, and incidentals. His wagons are employed 26 days each month, and from the first wagon his receipts are $\$ 7.75$ a day and from the second $\$ 9 \cdot 25$ a day. On June 1st, 1920, he sells out, receiving for the business and outfit $\$ 725$.
7. Make out a statement, showing the profit or loss on a school-garden plot, from the following particulars:

The ground was ploughed for $\$ 2 \cdot 00$. It required 125 lb . fertilizer @ $\$ 32$ a ton; 3 oz . of beets (a) 8 c . an oz.; 2 qt. of peas @ 80 c . a bu.; 3 pt . of beans @ $\$ 3 \cdot 60 \mathrm{a}$ bu.; 4 packages of lettuce @ 10c. a package; $3 \frac{1}{2} \mathrm{qt}$. of corn (A) $\$ 1.60 \mathrm{a}$ bu.

The yield was 96 bunches of beets @ $5 \mathrm{c} . ; 2$ bu. of peas @ 45c. a pk.; $2 \frac{1}{2}$ but. of beans @ ${ }^{2}$ 7c. a qt.; 210 head of lettuce @ 6 for 25 c .; and 1500 ears of corn (a) 20c. a doz.
8. Make up a bank account, showing deposits, withdrawals, and balances, for the following entries:

July 1st, 1920-Balance on hand $\$ 128.75$; July 3rd.Deposited a cheque from A. E. Miller $\$ 37 \cdot 05$; July 5 th. -Withdrew by cheque to R. Hicks \& Son $\$ 62 \cdot 19$; July 8th.-Deposited salary cheque $\$ 175 \cdot 00$; July 10th.Deposited in cash $\$ 148.64$; July 14th.-Withdrew by cheque to S. Mills $\$ 16 \cdot 29$; July 17th.-Withdrew in cash $\$ 95$; July 21 st.-Withdrew in cash $\$ 17 \cdot 50$; July 26th. Deposited cheque from T. Martin $\$ 54 \cdot 36$; July 28th.Withdrew in cash $\$ 28.75$.
9. Make out the cheques from A. E. Miller and to R. Hicks \& Son.
10. Make out a deposit slip for the $\$ 148 \cdot 64$ cash entry-if there were 9 two-dollar bills, 15 ones, 4 tens, the rest being in fives and coins.
11. A doctor charges patients $\$ 5$ for a first examination, $\$ 2$ for each house visit, and $\$ 1$ for each office treatment. Make out a doctor's bill, supplying names, for a patient who was examined, visited at his house 8 times, treated at the office 7 times, and received $\$ 6$ worth of medicine.

PERCENTAGE

EXERCISE 101

1. Express in vulgar fractions: 175%; $43 \frac{3}{3} \% ; \mathbf{7 . 5 \%}$; 96%; $\frac{2}{3} \% ; 3 \frac{1}{8} \%$; $\cdot 725 \%$.
2. Express as a per cent.: $\frac{1}{18} ; \frac{2}{2} \frac{2}{25} ; \frac{3}{40} ; \frac{7}{5} ; \frac{3}{880} ; \frac{7}{285} ; \frac{31}{82} \frac{9}{2}$.
3. What is 140% of $\$ 8 \cdot 25$? $58 \frac{1}{3} \%$ of $£ 148 \mathrm{~s}$.? $\frac{5}{4} \%$ of $6 \cdot 28$? $.55 \%$ of $19 \frac{1}{11}$? $21 \frac{3}{7} \%$ of 105 ?
4. What is the number or quantity of which $4 \cdot 14$ is 9% ? 35 ft .9 in . is 75% ? $\$ 2 \cdot 48$ is 62% ? $\frac{5}{4}$ is $62 \frac{1}{2} \%$? $\frac{8}{2} \frac{8}{25}$ is $\frac{4}{8} \%$?
5. What per cent. is 2 ft .8 in . of 8 ftJ ? 28 pk .1 qt . of 9 pk .3 qt.? $\$ \frac{3}{5}$ of $\$ 8 \cdot 40$? $6 \cdot 25$ of $37 \cdot 5$? $4 \frac{1}{6}$ of $13 \frac{1}{3}$?
6. A merchant sells goods valued at $\$ 450$, but is able to collect only 80% of the amount. Find the amount collected.
7. At a certain examination the marks given were 4200. How many marks did a student receive who got $65 \frac{1}{2} \%$ of the total?
8. The population of a town is found to have increased 20% every 10 years. Its population in 1891 was 6250 . What was its population in 1901? in' 1911?
9. The average daily attendance at a school for the month of October was 92% of the number on the roll. If the number on the roll was 325 , find the average attendance.
10. A casting which weighs 480 lb . contains $96 \frac{1}{2} \%$ of copper, and the rest is tin. How many pounds of tin are there?
11. A man receiving a salary of $\$ 1200$ a year spends 14% of it for board, 10% of it for clothing, and $13 \frac{1}{2} \%$ of it for other expenses. How much can he save in 6 years?
12. A library contains 4800 volumes, of which 1440 are fiction. What fraction of the library is fiction? What per cent.?
13. Of 8280 candidates who wrote on a certain examination 3925 passed. What per cent. failed?
14. To 63 gal . of wine there are added 12 gal . of water. What per cent. of the mixture is the water?
15. Of $51,000,000 \mathrm{bu}$. of wheat sent out of Canada, all but 850,000 was sent to Great Britain. What per cent. of the wheat exported did Great Britain receive?
16. Cloth when sponged shrinks $1 \frac{7}{8} \%$ of its length. It is found that a piece of cloth after sponging measures 13 yd .3 in . What was its original length?
17. A man's salary is $\$ 3250$ and his expenses are $\$ 2340$. What per cent. of his salary does he save?
18. (a) If in a Base-ball League a Toronto team wins 84 games and loses 51 , while at the same time a Buffalo team wins 82 games and loses 54 , what is the respective standing of the two teams?
(b) If each team has still 8 games to play, and Toronto wins 6 and loses 2 , while Buffalo wins 4 and loses 4 , what will be their final standing?
19. Sulphate of ammonia contains 25% ammonia, acid phosphate contains 14% phosphoric acid, and muriate of potash contains 50% potash. By mixing certain quantities of these three substances with sand, a ton of a potato fertilizer is produced. If this fertilizer contains 4% ammonia, 8% phosphoric acid, and 4% potash, how many pounds of each of the substances named above did it take to make the mixture?

20 . The food value of a quart of milk is equal to that of $\frac{3}{4} \mathrm{lb}$. of beef, or to that of 8 eggs. If milk sells at 15 c . a quart, beef at 36 c . a lb ., and eggs at 54 c . a doz., what per cent. is saved by buying milk instead of betf? milk instead of eggs? beef instead of eggs?
21. Three cowaroduce, respectively, 20, 23, ath 27 lb . of milk a The first supply contains 4.6% of butter fat, thesecod 5%, and the third 4.5%. If all the milk is mixed together, what will be the percentage of butter fat in
22. (a) The Factory Inspection Bureau for Ontario reports that of the 4900 industrial accidents in 1918, 2% were caused by saws, 4% by burns, 5% by scalds, 6% by falling bodies, 8% by shafting, 9% by explosives, 10% by electricity, 12% by elevators, and 15% by machines. What was the number of accidents in each class?
(b) If 25% of the above accidents were due to the carelessness of the workmen themselves, how many accidents might have been avoided by reasonable care?

PROFIT AND LOSS

Practically all business transactions are carried on directly or indirectly for profit, or to prevent or reduce loss. The business man is continually inquiring of himself-"Does my business pay?" Percentage is found a convenient means for making comparisons and measuring results between income and outlay.
Profit and Loss, unless otherwise stated, is always expressed as a per cent. of cost.

EXERCISE 102

1. An article which cost $\$ 2 \cdot 60$ was sold for $\$ 4 \cdot 20$. What fraction of the cost was the gain? What per cent.?
2. I buy a horse for $\$ 150$ and sell it so as to gain $\$ 30$. For what per cent. of the cost do I sell it?
3 . The cost of a farm was $\$ 4500$, and the selling price was $\$ 4960$. What was the gain per cent.?
3. By selling a carriage for $\$ 138$, a man makes a profit of 15%. What did it cost him? At what stould he sell it to make $33 \frac{1}{3} \%$? What fraction of the cost is the selling price in each case?
4. Goods damaged by fire were sold at a loss of 16%. If the total loss was $\$ 3600$, find the original cost of the goods.
5. A grocer sold oranges for $\$ 16 \cdot 50$, gaining thereby 10%. What would have been his loss per cent. had he sold them for $\$ 12 \cdot 75$?
6. A tea merchant mixes 40 lb . of tea at 45 c . per lb . with 20 lb . at 30 c . per lb . What is his gain per cent. by selling the mixture at 50 c . per lb .?
7. If $16 \frac{2}{3} \%$ is gained by selling a sewing-machine for $\$ 42$, for what should it be sold to gain $33 \frac{1}{3} \%$?
8. A sold goods to B at a profit of 10%, and B sells them to C at a profit of 15%. If C paid $\$ 506$ for the goods, what did they cost A ?
9. A merchant sold goods at a profit of 30% and cleared $\$ 385 \cdot 35$. What was the selling price of the goods?
10. A dealer bought 180 bbl . of flour at $\$ 7 \cdot 20$ a bbl. He sold 60 tbl . at a loss of $8 \frac{1}{3} \%$. At what price a barrel must he sell the remainder so as to gain 20% on the entire transaction?
11. If 291% is lost by selling goods for $\$ 137 \cdot 70$, what per cent. would be gained by selling them for $\$ 267 \cdot 30$?
12. A grocer mixes 12 lb . of tea worth 75 c . a lb . with 15 lb . worth 84 c . a lb . At what price a lb . must the mixture be sold to yield a profit of 20% ?
13. For making a hat a milliner's expenses were as follows:
$1 \frac{1}{2}$ yd. velvet, @ $\$ 1 \cdot 50$ a yd.
$\frac{3}{4}$ yd. fur band, @ $\$ 4 \cdot 00$ a yd.
1 ornament, @ $\$ 3 \cdot 00$
hat frame, 50 c .
wire, 15 c .
lining, 35 c .
labour, $\$ 2 \cdot 75$.

If she sells the hat for $\$ 16$, what per cent. of profit does she make? What per cent. of selling price?

15, A housewife buys apples at 50 c. a peck. What per cent. could she save by buying them at $\$ 2 \cdot 75$ a barrel if a barrel contains $2 \frac{1}{2}$ bu.?

COMMISSION

Commission is the amount received by an agent, factor, collector, or commission merchant for transacting business for his employer or principal.

It is usually a certain per cent. of the amount received when selling or of the amount paid when buying goods.

The sum which remains after paying commission and other charges is called the net proceeds.

EXERCISE 103

1. For collecting accounts an agent receives a commission of 5%. What will be the amount of his commission for collecting $\$ 750$?
2. A book agent receives 25% on his sales. What will be his commission for selling 6 sets of books at $\$ 12.50$ a set?
3. An agent sells 450 bbl . of apples at $\$ 4$ a bbl. on a commission of $3 \frac{1}{4} \%$. How much will his principal receive from the sales?
4. How much shall I have to send my agent in order that he may purchase for me 600 bu . of oats, at 35 c . a bushel, after deducting his commission of $4 \frac{1}{2} \%$?

5 . For renting a house a real estate agent charges 2% of the annual rent. What will be his commission for renting a house at $\$ 18$ a month?
6. For selling $\$ 6200$ worth of goods an agent receives a commission of $\$ 155$. What was the rate charged?
7. A commission merchant bought goods worth $\$ 3650$ and received $\$ 54 \cdot 75$ as his commission. What was the rate charged?
8. A dealer sent his agent $\$ 1842 \cdot 75$, instructing him to retain his commission and purchase goods with the balance. The agent's commission was $\$ 22 \cdot 75$. What was the rate charged?

Note-It is customary to deduct the commission for buying from the money received, and to invest the balance.
9. For selling goods on a commission of $3 \frac{1}{2} \%$ an agent received $\$ 39 \cdot 90$. For what amount did the goods sell? How much did the agent's principal realize from the sale?
10. An agent received $\$ 24.80$ for purchasing goods on a commission of $2 \frac{2}{3} \%$. What was the value of the goods bought? How much did they cost the agent's employer?
11. A canvasser for a newspaper is allowed $22 \frac{1}{2} \%$ of all subscriptions received by him. 'How many subscriptions at $\$ 4$ each must he secure in order to earn $\$ 135$ commission?
12. A machine agent sold twelve binders on a commission of 15%. If his employer received, as net proceeds, the sum of $\$ 1632$, what was the selling price of each binder?
13. An agent remits to his principal $\$ 2488 \cdot 50$ as the net proceeds from the sale of 2800 bu. of wheat. Find the agent's commission if he charges at the rate of $1 \frac{1}{4} \%$. Find also the selling price of the wheat a bushel.
14. An agent bought for his employer 20000 bu. of corn at 58 c . a bushel and sold it next day at 60 c. Find his total commission if he charges $\frac{1}{2} \%$ for buying and also $\frac{1}{2} \%$ for selling. Find also his employer's net gain.
i5. An agent sold 782 cwt . of flour on a commission of $2 \frac{1}{2} \%$. If he paid $\$ 97.75$ for freight and remitted his employer $\$ 2189 \cdot 60$, find the selling price of the flour.
16. I send my agent $\$ 2790$ with which to buy cotton at 9 c . a yard, after retaining his commission of $3 \frac{1}{3} \%$. How many yards of cotton did he buy? What was his commission? What fraction of the cost of the cotton was the money sent?
17. A commercial traveller was offered: (a) a commission of $7 \frac{1}{2} \%$ on his sales, or (b) a salary of $\$ 30$ a week with a 3% commission on his sales. He accepted the first offer, which he found to be $\$ 1140$ a year better than the second. What amount of goods did he sell?
18. A man having bought 3000 lb . of tea, instructs his agent to sell it at 51 c . a pound and invest the net proceeds in sugar at 5 c . a pound. How many pounds of
sugar were bought if the agent's commissions for buying and for selling were each 2% ? What was the agent's total commission?
19. An article which cost $\$ 10.80$ to manufacture is sold at a price to yield the manufacturer 20% profit after allowing his agents 25% commission. At what price do the agents sell the article?
20. An agent sold some goods for his employer. He retained $3 \frac{1}{2} \%$ commission, paid $\$ 16.80$ for freight, $\$ 9.75$ for storage, and remitted his employer $\$ 1594 \cdot 65$. Find for what amount the goods were sold.
21. A farmer having disposed of his farm, sells by auction his stock, produce, and farm implements. He employs an auctioneer, who charges him 5% on the first $\$ 250$ and $2 \frac{1}{2} \%$ on all sales after that. The sales were: 3 horses at $\$ 135$ each; 6 cows at $\$ 87.50$ each; 12 young cattle at $\$ 40.25$ each; 9 pigs at $\$ 28.75$ each; 25 hens at 65 c . each; 1 wagon $\$ 35 ; 2$ ploughs at $\$ 7 \cdot 25$ each; 1 harrow $\$ 14 ; 1$ hay rake $\$ 24$; and 15 tons of hay at $\$ 16 \cdot 25$ a ton. What did the sale net the farmer?

TRADE DISCOUNT

It is a custom among certain manufacturers and wholesale dealers to issue catalogues containing a list of prices as well as a description of the goods they are offering for sale. These catalogues are intended for the use of the trade, that is, for the retail merchants who handle the merchandise described. The prices given are called the list, or catalogue prices, and a reduction on them is usually allowed to the trade. This reduction is called trade, or commercial discount, and is quoted as a per cent. of the list price.

When the manufacturer or wholesale merchant wishes to change his prices, he does so either by changing the rate of discount or by giving additional discounts.

If two or more discounts are allowed, the first one is a discount off the list price, the second off the remainder, the third off what then remains, and so on.
The price remaining after all discounts are deducted is called the net price.

Retail merchants fix for their goods a selling price, just as the wholesale merchant has a list price for his goods. This is usually called the marked price, and is a per cent. of the cost price. Customers are sometimes given a discount off this marked price.

EXERCISE 104

1. Find the discount and net price for each of the following amounts at the rate given : $\$ 12 \cdot 50$ with 10% off, $\$ 15 \cdot 25$ with 8% off, $\$ 25 \cdot 75$ with 20% off, $\$ 50$ with 15% off, $\$ 225$ with 30% off, $\$ 626$ with 25% off, $\$ 4250$ with $37 \frac{1}{2} \%$ off, $\$ 627 \cdot 25$ with 4% off, $\$ 982 \cdot 80$ with $33 \frac{1}{3} \%$ off, $\$ 3264 \cdot 80$ with 3% off.
2. Find the net prices for each of the following: $\$ \$ 25$ with 20% and 10% off, 33275 with 40% and 5% off, (84000 with 25% and 20% off) 1640 with $37 \frac{1}{2} \%$ and 10% off, $\$ 2160$ with 15% and 5% off.)
3. Find the net prices for: $\$ 800$ with $30 \%, 10 \%$, and 5% off) 8680 with $20 \%, 20 \%$, and 3% off) $\$ 4650$ with $33 \frac{1}{2} \%, 10 \%$, and 5% off; 53400 with $10 \%, 10 \%$, and 10% off) $\$ 765$ with $20 \%, 10 \%$, and 5% off)
4. The net price of an article listed at $\$ 16$ was $\$ 12 \cdot 80$. What was the rate of discount? (Discount $=\$ 3 \cdot 20=$ $\frac{320}{1000}$ of the list price $=20 \%$.)
5. A customer paid $\$ 3 \cdot 60$ for an article of which the marked price was $\$ 4$. What rate of discount did he receive?
6. Goods for which the list price was $\$ 90$ were sold to a retail merchant for $\$ 58 \cdot 50$. What was the rate of discount?
7. Mr. Tillson pays cash for a bill of goods and gets a discount of 5%, which amounts to $\$ 12 \cdot 50$. What was the amount of the bill?
8. The list price is $\$ 500$. What is the difference between a discount of 40% and two discounts of 20% and 20% ?
9. The catalogue price of certain goods was $\$ 1575$, off which there were given two discounts of $33 \frac{1}{3} \%$ and 6%. How much less would they have cost if there had been a single discount of 40% ?
10. A florist sells a fern which is marked $\$ 6.00$ at a discount of 8%. If he still makes a profit of 38%, what did the fern cost him?
11. A merchant buys from a manufacturer cloth which is cätalogued at $\$ 3 \cdot 20$ a yard. He gets a discount of 25% and sells the cloth at a gain of 20%. At what price did he sell it?
12. What is the list price of knives for which a retail merchant pays $\$ 3$ a dozen, after getting a discount of $33 \frac{1}{3} \%$?
13. A wholesale merchant gives 25% and 10% discount. What was the list price of goods for which he received $\$ 445 \cdot 50$?
14. A manufacturer can make a table for $\$ 8 \cdot 40$. If he is going to sell it at a profit of 20% after giving a discount of 20%, at what price must he list it?
15. A retail bookseller to whom the wholesale merchant allows discounts of 20% and 15%, buys a book of which the catalogue price is $\$ 2 \cdot 50$ and sells it at a profit of 30%. What does he get for it?
16. A merchant, who sells goods on 60 days' credit, allows 3% discount off all bills for cash. How much does a customer sáve by paying cash for a bill of $\$ 265$?
17. A merchant allows a customer 5% off his bill for cash. What is the amount of a bill for which a customer pays $\$ 39.90$ cash?
18. If, in the preceding Question, the merchant was marking his goods at a profit of $33 \frac{1}{3} \%$, what was the cost of the goods for which he received $\$ 39 \cdot 90$?
19. A dealer sold a plate glass for $\$ 150$ less discounts of $20 \%, 10 \%$, and 5%, and made a profit of 30%. What did the plate glass cost him?
20.

Toronto, (17th. Dec.), 1919.
Mr. J. D. Winch,
Orillia.
Bought of The Furniture Co.
Net-60 days.
Terms- 3% discount if paid in 30 days.

24 1 2 2		8 60 20 36 35 151 69	c. 00 50 00 00 50 69		

Note:-\# means number. Thus \#795 means No. 795 in the catalogue issued by The Furniture Co.

Is the above bill correct? What amount would settle the bill on December 29th, 1919?
21. Supply names and date, and make out bill in the above form for the following:

Bought 3 account books @ $\$ 3 \cdot 50$ each, 5 doz. exercise books (a) 25c. each, 10 Morocco-bound notebooks @ $\$ 1 \cdot 25$ each, 5 gross penholders @ 60 c. per doz., 4 double inkstands @ $\$ 1 \cdot 25$ each. Discounts 20% and 5%.

TAXES

A tax is a sum of money levied upon the person, real estate, personal property, or income of an individual for public purposes. In every city, etc., it is usual to appoint officers, called assessors, whose duty it is to value
all taxable property, such as land, buildings, stock, income. The total of these values is called the assessed value, or the assessment, of the city, etc. The amount for which each individual is assessed is made known to him by a notice from the assessor. Try to obtain one of these notices.

The total taxes are then levied on the total assessment, and each ratepayer pays a share which is the same fraction of the total tax that his assessment is of the total assessment. The amount to be paid is calculated, usually, at the rate of a certain number of mills on each dollar of assessment. This rate is called the rate of taxation.

Each ratepayer receives a tax bill in some such form as this:
No. on Roll.............
\qquad
TO THE MUNICIPAL CORPORATION OF NORTH MONAGHAN, Dr.

To amount of Taxes levied for 1919
On \qquad
total assessed value \$ \qquad
 RECEIVED PAYMENT

EXERCISE 105

1. What is the rate of taxation when $\$ 9$ taxes are paid on an assessment of $\$ 4500$?

Example: $\$ 4500$ pays 9000 mills
therefore rate $=2$ mills on the dollar.
2. What is the rate of taxation when the taxes and the assessment are respectively : $\$ 19 \cdot 80$ and $\$ 3600$? $\$ 178 \cdot 20$ and $\$ 21600$? $\$ 6875$ and $\$ 550,000$? $\$ 141,750$ and $\$ 7,875,000$?
3. What amount of taxes can be raised when the assessment and the rate on the dollar are, respectively, $\$ 2500$ and 6 mills? $\$ 3560$ and 7 mills? $\$ 4800$ and $12 \frac{1}{2}$ mills? $\$ 8822218$ and 20 mills? $\$ 166880$ and 19 mills?
4. What is the assessment when the rate on the dollar and the taxes are, respectively, 4 mills and $\$ 1640$? $7 \frac{1}{2}$ mills and $\$ 1125$? 5 mills and $\$ 13750$? 16 mills and $\$ 146000$? $20 \frac{1}{4}$ mills and $\$ 982125$?
5. A man has an income of $\$ 1900$. If $\$ 700$ is exempt from taxation, what amount of taxes will he be required to pay at the rate of 15 mills on the dollar? What will be his net income?
6. A municipality decides to build a bridge to cost $\$ 15000$. If the assessment of the municipality is $\$ 10000000$, what will a man who is assessed for $\$ 4000$ have to pay toward the cost of the bridge?
7. A school section is assessed for $\$ 280000$. What amount will a ratepayer who is assessed for $\$ 5200$ have to contribute toward a teacher's salary of $\$ 700$?
8. Mr. Henderson bought a house for $\$ 7500$ on which he pays $\$ 105$ taxes. If the rate of taxation be $17 \frac{1}{2}$ mills on the dollar, for what per cent. of the cost of the house is he assessed?
9. A city assessed for $\$ 12000000$ levies a rate of $13 \frac{3}{4}$ mills. What amount of taxes will the city thus obtain after paying $2 \frac{1}{2} \%$ for collection?
10. An Ontario city had an assessment on real property of $\$ 7769128$, a business assessment of $\$ 659210$, and an income assessment of $\$ 210180$. Find to the nearest cent the amount of money collected for school purposes if the total school rate was 8.9 mills on the dollar.
11. A township is assessed for $\$ 630000$. The taxes are $3 \frac{1}{2}$ mills for county purposes, $2 \frac{4}{5}$ mills for township purposes, $2 \frac{1}{2}$ mills for school purposes, $1 \frac{2}{5}$ mills for other purposes, and a poll-tax of $\$ 1 \cdot 50$. If 120 persons pay the poll-tax, find the total taxes raised.
Nore.-A poll-tax is a tax of a specified sum on the individual.
12. Examine the following Tax Table for a rate of $5 \cdot 25$ mills on the dollar and use it to find the tax paid on property assessed for $\$ 7365$.

Tax Table for Rate of 5.25 Mills

$\begin{aligned} & \text { Assess- } \\ & \text { ment } \end{aligned}$	Tax	$\begin{gathered} \text { Assess- } \\ \text { ment } \end{gathered}$	Tax	$\begin{aligned} & \text { Assess- } \\ & \text { ment } \end{aligned}$	Tax
\$1	\$0.00525	\$4	\$0.02100	\$7	\$0.03675
2	0.01050	5	0.02625	8	$0 \cdot 04200$
3	0.01575	6	0.03150	9	$0 \cdot 04725$

The tax on $\$ 7000$ or $\$ 7 \times 1000=\$.03675 \times 1000=\$ 36.75$

13. Using the above Table, find the tax at $5 \frac{1}{4}$ mills on $\$ 5825$. on $\$ 690$.
14. Make out tax tables like the above for rates of 24 mills, $3 \frac{1}{2}$ mills, and $8 \frac{1}{4}$ mills.
15. Using the tax tables, find the tax on $\$ 950$ at 24 mills, $\$ 6275$ at $3 \frac{1}{2}$ mills, and $\$ 9725$ at $8 \frac{1}{4}$ mills.

DUTIES

The preceding section explained and dealt with taxes levied for local public purposes. There are, however, other taxes levied for the support of our federal and provincial governments.

These taxes are called duties, and are of three classes: those levied on commodities (1) brought into the country, (2) sent out of the country, and (3) produced or manufactured in the country.

The first are called import duties, the second export duties, and the third excise duties.

The import and export duties, sometimes called customs duties, are payable at a Customs House; the excise duties are payable at an Inland Revenue Office.

For the purpose of duty, goods or commodities may be divided into four classes:
(1) Those which are admitted free.
(2) Those which are subject to an ad valorem duty, that is, a certain per cent. of their invoiced value.
(3) Those subject to a specific duty, that is, a certain amount a pound, a yard, a piece, etc., without reference to the value.
(4) Those subject to both an ad valorem and a specific duty.
At present goods manufactured in Great Britain and in some British colonies receive, in the matter of duty when imported into Canada, a preference over the goods imported from other countries.

A list of goods with their duties is called a tariff.

EXERCISE 106

1. Find the duty on the following:
(a) 250 bbl . of apples, the duty being 90 c . a bbl.
(b) 625 lb . of molasses, the duty being 50 c . a 100 lb .
(c) $\$ 375$ worth of silk, the duty being 30%.
(d) 6 carriages invoiced at $\$ 110$ each, the duty being 35%.
(c) 560 lb . of steel rivets invoiced at 6 c . a lb ., the duty being 75 c . a 100 lb . and 25% ad valorem.
(f) 80 gal . of japan invoiced at $\$ 1.15$ a gal., the duty being 20 c . a gal. and $22 \frac{1}{2} \%$ ad valorem.
2. A jeweller imports 2 doz. watches invoiced at $\$ 7 \cdot 50$ a watch. The duty being 30%, find the amount paid. Find also the total cost of the watches to the jeweller.
3. Knitted goods manufactured in England are subject to a duty of $22 \frac{1}{2} \%$, those manufactured in the United States to 35%. How much will be saved by importing $\$ 320$ worth of such goods from Great Britain instead of from the United States?
4. The duty on dress goods imported from Great Britain is only 60% of that on dress goods imported from other countries. What will be saved by importing from Great Britain dress goods valued at $\$ 1600$ if the regular duty imposed on such goods from other countries is 25% ?
5. Find the duty on an importation of 6 tons of sugar invoiced at $\$ 3.50 \mathrm{a} 100 \mathrm{lb}$., the duty being $31 \frac{1}{2} \mathrm{c}$. a 100 lb . What will be the total cost to the purchaser?
6. An implement dealer imports the following: 6 ploughs invoiced at $\$ 20$ each; 3 binders at $\$ 125$ each; 4 cultivators at $\$ 40$ each; 8 wagons at $\$ 75$ each.
(a) Find the amount of duty paid, if on ploughs and cultivators there is a duty of 20%, on binders $17 \frac{1}{2} \%$, and on wagons 25%.
(b) For how much must the whole be sold to yield a profit of $12 \frac{1}{2} \%$ of the selling price?
7. A grocer imports 60 boxes of raisins containing 25 lb ., each invoiced at 8 c . a lb . He pays a specific duty of $\frac{2}{3} \mathrm{c}$. a lb., $\$ 7 \cdot 50$ for freight, and $\$ 2 \cdot 50$ for warehouse charges. If he retails the raisins at 3 lb . for 35 c ., how much does he gain? What is his gain per cent.?
8. A bookseller imports a set of books invoiced at $\$ 12$ and pays a duty of 25%. If he sells the books for $\$ 18$, what will be his gain per cent. of the selling price?
9. An automobile invoiced at $\$ 1200$ is imported into Canada, and the following duties are paid: (a) the general tariff duty of 35% on 105% of the invoice price; (b) a customs war revenue duty of $7 \frac{1}{2} \%$ on 105% of the invoice price; and (c) a special war excise tax of 10% on $142 \frac{1}{2} \%$ of the invoice price.
(a) Find the total duty.
(b) Find also at what price the automobile must be sold to make a profit of 20%.
(c) What difference would there be in this price if there were no duty?

INSURANCE

Every year much property is destroyed or damaged by fire. So seriously do most persons fear the loss which they might suffer from this cause that it is now an almost universal custom for property owners to enter into an agreement with certain companies by which, in return for a stated annual payment, the companies will pay a specified sum for any loss sustained.

These companies are called Fire Insurance Companies. The agreement to compensate for loss is called insurance.

The written contract between the property owner and the company is called a policy.

The sum specified to be paid in case of loss is called the amount, or face, of the policy, or the risk.

The cost of insurance, that is, the payment made by the property owner to the company, is called the premium, and it is a per cent. of the risk.

Rates for insurance vary for different locations, for different businesses, for different kinds of property. Why?

EXERCISE 107

1. What is the premium on a $\$ 500$ policy at $\frac{3}{4} \%$?
2. What is the premium on a $\$ 2200$ policy at 65 c. for $\$ 100$?
3. An hotel worth $\$ 12500$ is insured for $\frac{4}{5}$ of its value at $1 \frac{4}{5} \%$. What is the premium?
4. Find the face of the policy on which $\$ 19 \cdot 20$ is paid as a premium at $\frac{3}{4} \%$?
5. What amount of risk can I get for $\$ 25 \cdot 60$ at 80 c. per $\$ 100$?
6. A dealer insured his stock of goods for $\$ 64000$, paying as premium $\$ 96$. Find the rate of insurance.

Note.-What fraction is the premium of the amount of the policy? What per cent.?
7. A manufacturer insured his factory valued at $\$ 12000$ for $87 \frac{1}{2} \%$ of its value and paid a premium of $\$ 280$. What was the rate of insurance?
8. A building worth $\$ 6000$ is insured for $\$ 4500$ at 9%. In case the building is destroyed, what will be the owner's net loss?
9. A factory worth $\$ 8000$ is insured for $\$ 5000$ at $2 \frac{1}{2} \%$, and is damaged by fire to the extent of $\$ 6000$. What is the owner's net loss?
10. A farmer insures his house for $\$ 1200$ and its contents for $\$ 750$, his barn for $\$ 1400$ and its contents for $\$ 800$. Find the total premium paid at $\frac{4}{5} \%$.
11. If brick houses are insured at 75 c . a $\$ 100$, while frame houses are charged 1%, what is the difference
between the premium paid for insuring a brick house and a frame house for $\$ 1840$ each?
12. Mr. Leslie insured some property at $\frac{9}{10} \%$, and found that in case of loss he would recover the value of the property as well as the premium paid. If the premium was $\$ 45$, what was the value of the property?
13. For what sum must grain valued at $\$ 2485$ be insured at $\frac{3}{5} \%$, so that in case of loss the owner may recover the value of the grain together with the premium paid?
14. Mr. Hay insures at $1 \frac{1}{4} \%$ his goods invoiced at $\$ 23800$ for 80% of their value. If they should be destroyed by fire, what would be Mr. Hay's total loss?
15. A stock of goods is insured in the London Assurance Co. for $\$ 5400$, in the Queen Assurance Co. for $\$ 3600$, and in the Mutual Assurance Co. for $\$ 6000$. If the goods are damaged to the extent of $\$ 9000$, how much of the loss will each Company have to pay?
16. An insurance company which charged a rate of $\frac{8}{5} \%$, received $\$ 60$ for insuring a house for $3 / 4$ of its value. Find the value of the house.
17. Samuel Long insured property as follows: House valued at $\$ 12,000$ for $\frac{2}{3}$ of its value at $1 \frac{1}{2} \%$; plate glass windows for $\$ 750$ at $1 \frac{3}{5} \%$; furniture for $\$ 6000$ at $\$ 1 \cdot 20$ for $\$ 100$ for 3 years; garage for $\$ 1500$ at $\$ 1 \cdot 40$ for $\$ 100$ for 3 years; and an automobile for $\$ 1750$ at 2%. What annual rate is he paying for his insurance?

SIMPLE INTEREST

Just as one who lives in a house or on a farm which is not his own has to pay for the use of that house or farm, so a person who borrows money has usually to pay for the use of that money.

Money paid for the use of borrowed money is called interest. The money borrowed is called the principal.

The total sum paid to the person or persons from whom the money is borrowed is called the amount. Of what two sums is the amount made up?

The interest for one year is a certain per cent. of the principal. This per cent. is called the rate of interest per annum.

When one buys goods on credit he is, in reality, borrowing money, and is, therefore, sometimes charged interest on the value of the goods bought. So, too, a banker with whom money is deposited uses borrowed money and usually pays interest on it.
It is the custom for the borrower to give to the person from whom he borrows a written acknowledgment of his debt as well as a promise to repay the money. This written document is called a promissory note, the form of which is as follows:
$\$ 250 \cdot 00$
Ottawa, November 1st, 1919.
Three months after date I promise to pay James H. Broadbent, or order, Two Hundred and Fifty. . 00/100 Dollars for value received, with interest at 5% per annum.

J. D. Crawford.

The person who signs the note (J. D. Crawford) is called the maker.

The person to whom the money is to be paid (James H. Broadbent) is called the payee.
The sum borrowed ($\$ 250$) is called the face of the note.
When dates are given, interest for a part of a year is usually calculated by days. For instance, a $\$ 250$ account due on November 1st. but not paid until February 1st.
would be 92 days overdue, and interest on it for that period at 5% would, therefore, be $\frac{92}{965}$ of the interest for one year, or $\frac{92}{365}$ of $\frac{5}{100}$ of $\$ 250$.

EXERCISE 108

1. Find the interest on $\$ 640$ for 3 years at $5 \frac{1}{2} \%$ per annum. [Interest $=\left(\frac{11}{200}\right.$ of $\left.\$ 640\right) \times 3$.]
2. Find the interest on $\$ 200$ for 1 year at 6% per annum; $\$ 350$ for 2 years at 4% per annum; $\$ 50$ for $2 \frac{1}{2}$ years at 3% per annum; $\$ 280$ for $1 \frac{1}{4}$ years at $3 \frac{1}{2} \%$ per annum; $\$ 75 \cdot 50$ for $6 \frac{2}{3}$ years at $4 \frac{1}{2} \%$ per annum.

3 . Find, to the nearest cent, the interest on, and the amount of, $\$ 428 \cdot 25$ for 2 years and 3 months at 6%. (Interest $=\frac{27}{200}$ of principal. Therefore amount $=\frac{237}{2076}$ of principal.)
4. Find, to the nearest cent, the interest on, and the amount of, $\$ 562 \cdot 85$ for 3 years and 73 days at 5%, $\$ 4200$ from May 5 th, 1917 , to September 8th, 1917, at $4 \frac{1}{2} \% 1 \$ 3725$ from June 10th, 1917, to May 8 th, 1918 , at $3 \frac{1}{2} \% ; \$ 6250$ from January 8th, 1918, to March 6th, 1919, at $4 \% ; / \$ 10000$ from April 30th to October 8 th at $5 \frac{1}{2} \%$.

5 . On what principal is the interest $\$ 45$ in $2 \frac{1}{2}$ years at 6% ? $\quad \frac{15}{100}$ of principal $=$ interest.)
6. On what principal is the interest $\$ 60$ in 2 years at 6% ? $\$ 144$ in $1 \frac{1}{3}$ years at $4 \frac{1}{2} \%$? $\$ 25 \cdot 50$ in 6 months at $4 \frac{1}{4} \%$? $\$ 198$ in 90 days at $5 \frac{1}{2} \%$?
7. In what time will $\$ 250$ give $\$ 75$ interest at 6% ? (Interest for 1 year $=\frac{6}{100}$ of $\$ 250=\$ 15$.)
8. In what time will $\$ 625$ give $\$ 12 \cdot 50$ at 4% ? $\$ 4280$ give $\$ 748$ interest at 5% ?
9. Find the rate per cent. per annum when the interest on $\$ 840$ for $2 \frac{1}{2}$ years is $\$ 105$. (Interest for 1 year $=$ $\$ 42=\frac{42}{840}$ of principal $=5 \%$ of principal.)
10. Find the rate per cent. per annum when the interest on $\$ 6000$ for 1 year is $\$ 240$; on $\$ 1600$ for 9 months is $\$ 72$; on $\$ 2190$ for 80 days is $\$ 16 \cdot 80$.
11. At what rate per cent. per annum will $\$ 1000$ amount to $\$ 1030$ in 8 months? $\$ 620$ to $\$ 713$ in 3 years? $\$ 360$ to $\$ 403 \cdot 20$ in 4 years?
12. On January 5th, 1918, Mr. Jackson borrowed $\$ 250$ and agreed to pay interest thereon at $4 \frac{1}{2} \%$ per annum. How much did he owe on April 5th, 1918?
13. On June 6th, 1918, Thomas Black of Sarnia bought from Henry Stone goods valued at $\$ 125$ and agreed to pay for them in four months with interest at 6% per annum. On what day was the account due? How much did Mr. Black owe Mr. Stone on that day?
14. Write a receipt for the interest on a loan of $\$ 80$ for 5 months with interest at $5 \frac{1}{2} \%$ per annum.
15. If you deposit in a Savings Bank $\$ 120$ on January 1st, and $\$ 180$ on February 3rd, how much should there be to your credit on March 31st. if the bank allows you interest at the rate of $3 \frac{1}{2} \%$ per annum?
16. A Savings Bank which pays interest at the rate of 4% per annum makes up its interest on June 30th. If the interest on any account is equal to the difference between the interest up to June 30th. on all sums withdrawn and the interest on all sums deposited, find the amount of Henry Rust's account on June 30th, if on January 10th. he deposits $\$ 200$, on February 15th. withdraws $\$ 150$, on February 25 th. deposits $\$ 250$, on April 4 th. deposits $\$ 400$, on May 8th. withdraws $\$ 200$, on June 30th. deposits his interest.
17. On January 6th. a customer buys goods valued at $\$ 136$, but does not pay his bill until June 4th. How much should he then pay if the merchant charges 4% interest on all accounts?
18. On September 4th. I buy goods worth $\$ 200$, and am allowed 30 days in which to make payment. After that time I agree to pay 3% interest from date of purchase. How much shall I owe on December 10th.?
19. Bankers allow interest for any month on the minimum balance for that month. Using this balance,
find the month's interest at 3% per annum and also at $3 \frac{1}{2} \%$ per annum on each of the following bank accounts:
(a) Balance Feb. 1st. $\$ 465 \cdot 75$; Feb. 3rd. deposited $\$ 72$; Feb. 10th. withdrew $\$ 264 \cdot 50$; Feb. 17 th. deposited $\$ 110$; Feb. 21st. withdrew $\$ 69$.
(b) Balance May 1st. \$625; May 11th. deposited \$435; May 17th. withdrew \$208; May 26th. withdrew $\$ 150$; May 30th. deposited $\$ 400$.
(c) Balance Sept. 1st. \$1250; Sept. 6th. withdrew \$375; Sept. 16th. deposited $\$ 415$; Sept. 24th. deposited $\$ 590$; Sept. 29th. withdrew $\$ 1536$.

BANK DISCOUNT

A great deal of a bank's business consists in discounting notes, that is, in cashing or paying them before they are due.

If a person, say, Mr. Sidney Johnston, wishes to borrow money from a bank, he may do so on one or more of several kinds of notes, but the form of the one commonly used is as follows:
$\$ 1000 \cdot 00$
Chatham, Dec. 10th, 1918.
Ninety days after date I promise to pay to the order of Timothy Newton One Thousand.00/100 Dollars at the Standard Bank, Chatham.

Value received.

Sidney Johnston.

Mr. Newton endorses this note by writing his name across the back of it, and so becomes responsible for its payment by Mr. Johnston or by himself.

Mr. Johnston, or Mr. Newton for him, may then take the note to the Standard Bank and receive cash for it,
provided the bank officials are satisfied that both men are reliable.

The bank, however, will not pay the full amount of $\$ 1000$, but will deduct a percentage of it; and the sum so deducted is called bank discount.

If the note is presented at the bank on December 10th, 1913, and the bank's rate of discount is 7% per annum, the discount will be $\frac{98}{365}$ of $\frac{7}{100}$ of $\$ 1000$, or $\$ 17 \cdot 84$.

The amount which the bank would pay on the note would be $\$ 1000-\$ 17 \cdot 84$, or $\$ 982 \cdot 16$, which is called the proceeds of the note.

Although the time named in the note, that is, the nominal time, for payment is 90 days, the discount for 93 days is taken, because in Canada a note is not legally due until three days after it is nominally due.

These three extra days are called days of grace, and banks always include them in the term of discount.

If the note is not presented at the bank until, say, January 1st, 1919, the bank will then deduct only 73, that is, $93-20$, days' discount.

The number of days from the day on which the bank gets a note to the day on which the note is legally due, is called the unexpired time or the term of discount.

Since the above note was not worth $\$ 1000$ until it was due, this sum is called the value of the note at maturity. In interest-bearing notes the value at maturity includes the interest due on the legal date for payment.

The bank discount on a note is a percentage of its value at maturity for the term of discount at the bank rate of discount. The proceeds are the value at maturity less the bank discount.

EXERCISE 109

1. On January 4th, 1919, William Lynch gives to the Bank of Montreal his note, endorsed by John Lawrence, for $\$ 300$ payable in 3 months without interest. Write the note, dating it January 4th, 1919. On what day is it legally due? Find the proceeds if the bank's rate of discount is 6%. (Bank discount $=\frac{98}{365}$ of $\frac{6}{100}$ of $\$ 300$. Proceeds $=\$ 300-$ bank discount.)
2. Find the date of maturity, the term of discount, the discount, and the proceeds of the following:
(a) A 60-day note dated October 4th, 1918, for $\$ 400$ without interest, and discounted on the same day at 5% per annum.
(b) A 90-day note dated May 3rd, 1919, for $\$ 1000$ without interest, and discounted immediately at $5 \frac{1}{2} \%$.
(c) A 4-month note dated June 7th, 1919, for $\$ 6000$ without interest, and discounted July 3rd, 1919, at 5%.
(d) A 90-day note dated July 6th, 1918, for $\$ 6000$ without interest, and discounted July 26th, 1918, at $5 \frac{1}{2} \%$.
(e) A 6-month note dated June 16th, 1919, for $\$ 1500$ without interest, and discounted July 26th, 1919, at 6%.

3 . If a 60 -day note without interest is immediately discounted at 7%, what fraction of its value at maturity would the discount be? What fraction of its value at maturity would the proceeds be? If the proceeds were $\$ 3605 \cdot 90$, what would be the value of the note at maturity?
4. For what sum must a 90 -day note be drawn, so that when it is discounted immediately at 5% the proceeds may be $\$ 1441 \cdot 40$?
5. For what sum must a 3-month note dated May 10th, 1919, be drawn, so that if it is discounted on June $2 \mathrm{nd}, 1919$, at $6 \frac{1}{4} \%$, the proceeds may be $\$ 3605$?
6. On February 6th, 1920, R. T. Sutton borrowed $\$ 600$ from M. L. McBain on a 6 -month note bearing interest at 5% per annum. Write the note. On what day was it legally due? What was its value on the day of maturity?
7. If $\mathrm{Mr} . \mathrm{McBain}$ endorsed the note in the preceding Example and sold it to the Royal Bank on May 26th, 1920, what did he get for it if the bank's rate of discount was $5 \frac{1}{2} \%$?
8. Find the day of maturity, the value at maturity, the term of discount, the discount, and the proceeds of the following:
(a) A 90-day note dated May 17th, 1919, for $\$ 2500$ with interest at 5%, and discounted at the bank on June 3rd, 1919, at 7\%.
(b) A 4-month note dated August 14th, 1920, for $\$ 1200$ with interest at 5%, and discounted at the bank the same day at 5%.

EXERCISE 110 (REVIEW)

1. A man buys two farms. For the one, containing 65 acres, he paid $\$ 48$ an acre, and for the other, containing 85 acres, he paid $\$ 64$ an acre. If he sells the first at a gain of $12 \frac{1}{2} \%$ and the second at a loss of $6 \frac{1}{4} \%$, will he gain or lose or the whole, and how much?
2. A collector receives on a certain day payments for the following: $\$ 360$ and interest for 3 mo . at $6 \% ; \$ 150$ and interest for 1 yr . at $5 \% ; \$ 800$ and interest for 4 mo . at $4 \frac{1}{2} \%$; $\$ 250$ and interest (simple) for $1 \frac{1}{2} \mathrm{yr}$. at 4%. Write a receipt for the full amount paid in each case.
3. In a certain season a ball team won 54 games and lost 16. Find its winning average, that is, the per cent. of games won.
>4. A gentleman bought a $\$ 1200$ automobile at 15% discount, and, after using it for two seasons, sold it for $33 \frac{1}{3} \%$ less than he paid for it. How much did he receive for it?

5 . Three persons are partners in a business in which the first invests $\$ 1200$, the second $\$ 1600$, and the third $\$ 800$. What per cent. of the business does each own? How should a profit of $\$ 2400$ be divided among them?
6. Mr . Saunders insures a stock of goods worth $\$ 14,000$ for 80% of its value at $1 \frac{1}{8} \%$. If the goods are entirely destroyed by fire, what is the loss, including the premium paid?
7. A manufacturer sells an article for $\$ 3 \cdot 24$. The material cost him $\$ 1.55$, the labour 55 c ., and other expenses 40 c . Find his gain per cent.
8. For selling some property on a commission of $2 \frac{1}{2} \%$, an agent received $\$ 29 \cdot 50$. For what amount did he sell the property? What did his employer receive for it?
9. A dealer bought 600 tons of coal at $\$ 8$ a ton. He sold $33 \frac{1}{3} \%$ of it at an advance of 25%. He then sold 20% of the remainder at an advance of 20%, and the rest he sold at $\$ 9$ a ton. Find his average gain per ton.
10. An agent receives $\$ 1,624$ to invest after deducting a commission of $1 \frac{1}{2} \%$ on the amount invested. Find his commission.
11. The sum of the principal and the interest for 4 mo. at 6% per annum was $\$ 326 \cdot 91$. Find the principal.
12. At $\frac{1}{2} \mathrm{c}$. a 1 b . and 35% ad valorem, what will be the duty on 280 lb . of candied orange-peel invoiced at 15 c . a lb.?
13. Make out a 90 -day note for $\$ 600$, dated to-day and payable to Henry Martin at your nearest bank. Discount it immediately at 6% and find the proceeds.
14. A roll of 120 yd . of cloth was sold for $\$ 216$ at a loss of 10%. For what should it have been sold a yard to give a profit of 20% ?
15. On a demand note for $\$ 1000$, dated Jan. 15th, 1919, and drawing interest at 6%, the following payments were made: Feb. 26th, 1919, \$125; March 28th, 1919, \$220; June 17th, 1919, \$400. How much was due on Sept. 6th, 1919?
16. A premium of $\$ 66$ is paid for insuring a cargo of grain for $\frac{3}{4}$ of its value. If the rate of insurance is $1 \frac{1}{4} \%$ and the grain worth 80 c . a bushel, find the number of bushels in the cargo.
\rightarrow 17. How much tax must be paid by a man whose property is assessed for $\$ 8500$ if the rate is $6 \frac{1}{2}$ mills?
د 18. Make out a bill for the following:
Bought of the Red Book Co.: 4 gross lead-pencils @ $\$ 3 \cdot 25 ; 6$ doz. qt. ink @ $\$ 7 \cdot 20 ; 40$ reams foolscap @ $\$ 1 \cdot 20$; 10 gross pen points @ 35c.; 120 1b. blotting-paper @ $\$ 7.50$ a 100 lb . Discounts $10 \%, 5 \%$.
19. A note for $\$ 300$ was dated October 1st, 1919, and drawn for 3 mo . If it was discounted at the bank on November 10 th, 1919 , at 6%, find the proceeds.
20. A merchant buys a book, the list price of which is $\$ 7 \cdot 50$, at a discount of 30%, and sells it for $\$ 8$. What is his gain per cent.?
21. A grocer buys 45 doz. eggs at 20 c . a doz., but finds that 15 eggs are broken. At what price a dozen must he sell the remainder to clear $16 \frac{2}{3} \%$ on the total cost?
≥ 22. In selling a hat which was marked at $\$ 36$, a milliner found that it was marked 60% above cost. How much can she reduce the price and still make a profit of 40% ?
23. How many pounds of cream of which 30% is butter fat can be taken from 600 lb . of milk of which 4.5% is butter fat?
24. The protein in food forms muscle, while the carbohydrates and fats form fat. What per cent. is the muscle product of the fat product of each of the following: Eggs which contain 12.7% protein and 8.8% fat? Beef which contains $15 \cdot 6 \%$ protein and $16 \cdot 6 \%$ carbohydrates? Potatoes which contain 1.5% protein, 0.1% fat, and 14% carbohydrates? Wheat which contains $7 \cdot 8 \%$ protein, $1 \cdot 2 \%$ fat, and 52% carbohydrates?
25. Mr. Stinson wants to rent a house which cost him $\$ 6000$ at such a rate as will yield him a clear income of 6% a year on his investment. He pays a tax of 18 mills on the dollar on $\frac{3}{4}$ the value of the house and insurance on $\frac{1}{2}$ its value at $\frac{3}{5} \%$. What monthly rate must he ask.
>26. Goods were bought for $\$ 1200$ subject to discounts of 25% and $16 \frac{2}{3} \%$. They were sold at an advance of $33 \frac{1}{3} \%$ on actual cost. Find the gain if 10% of the sales were bad debts.
27. The food which plants obtain from the soil consists chiefly of nitrogen, phosphorus, and potash. If wheat contains 2.4% of nitrogen, $.9 \%$ of phosphorus, and $\cdot 6 \%$ of potash, how many lb . of each of these elements will be taken from the soil of a ten-acre field of wheat yielding 30 bu . to the acre?
28. A dressmaker imported 75 yd . of lace invoiced at $\$ 120$. She paid 35% duty and sold the lace at a gain of $37 \frac{1}{2} \%$. What was the selling price of one yard?
29. Find to the nearest cent the interest on $\$ 720 \cdot 50$ from June 4th, 1919, to Nov. 7th, 1919, at 4\% per annum.
30. An agent sold for a cloth manufacturer 1020 yd . of cloth at $\$ 2.00$ a yard, on a commission of 2%. He invested the net proceeds in wool at 40 c . a pound, on a commission of 2%. How many pounds of wool did he buy?

MEASUREMENTS

EXERCISE 111

1. A rectangular field is 5 chains 17 links long and 3 chains 8 links wide. Find its perimeter in feet.
2. The perimeter of a rectangular plot is $7 \frac{1}{2}$ rods. The length is $1 \frac{1}{2}$ times the width. Find the dimensions in feet.
3. A field 120 rods long and 80 rods wide is inclosed by a wire fence 7 strands high, with posts every 15 ft . Find the cost of the posts at 25 c . each and of the wire if one strand costs $\$ 1.75$ for 40 rods.
4. In a field 440 yards long and 200 yards wide tile drains are laid the full width of the field, 4 fods apart, the two outer drains being each 4 rods from the edge of the field. What will the tiles cost at $\$ 35$ a hundred, each tile being 1 foot long?
5. Find the area of a rectangle 36 ft . long and 216 in . wide.
6. How many acres in a farm 400 rods long and 320 rods wide?
7. Find the area of the whole surface of a rectangular block $7 \frac{1}{2} \mathrm{ft}$. long, 4 ft . wide, and 18 in . high.
8. What will it cost to paint the external surface of a closed box 8 ft . long, 4 ft . wide, and 2 ft .9 in . high, at 15c. a sq. ft.?
9. Find the cost of plastering the ceiling and walls of a room 20 ft . long, 18 ft .3 in . wide, and 10 ft .8 in . high, at $62 \frac{1}{2} \mathrm{c}$. a sq. yd., making no allowance for openings.
10. If a bundle of 100 laths will cover 5 sq. yd. of surface, how many bundles will be required for the walls and ceiling of a room 15 ft . long, 12 ft . wide, and 10 ft . high, allowance being made for a door 7 ft . by 3 ft . and a window 8 ft . by 3 ft .?
11. How many yards of carpet 27 in. wide will it take to cover the floor of a room 20 ft .8 in . long and 13 ft . 6 in. wide?
12. It is estimated that 1000 shingles will cover 100 sq. ft . of surface. At $\$ 4.50$ a thousand what will be the cost of the shingles for a barn roof each side of which is 30 ft . wide and 60 ft . long?
13. The perimeter of a square field is 64 rods. How many acres does it contain?
14. A lot 176 ft . deep and 66 ft . frontage was sold at $\$ 40$ a foot frontage. How much was this an acre? .
15. At the rate of 3 miles an hour, how long will it take to walk 8 times round the outside of a rectangular plot which contains $3 \frac{1}{2}$ acres and the length of which is 35 rods?
16. What will be the perimeter of a rectangular plot the width of which is 18 yd .2 ft .3 in ., and the area of which is equal to that of a square the perimeter of which is 120 yd .?
17. For the floor of a living-room 30 ft . long and 24 ft .6 in . wide a lady purchased a raug 26 ft .4 in . long, and found that it left a uniform margin of the room uncovered. What was the width of the rug?
18. How many cubic yards of earth are removed in excavating for a cellar 36 ft . long, 24 ft . wide, and $4 \frac{1}{2}$ ft . deep?
19. How many cubic feet of concrete are there in the walls of a root cellar the inside dimensions of which are 14 ft ., 10 ft ., and $7 \frac{1}{2} \mathrm{ft}$., the walls being 8 in . thick?
20. How high is a rectangular solid containing 693 cu . ft . if the dimensions of its base are 9 ft . and 7 ft .?
21. A farmer places in the attic of his house a rectangular water-tank having a capacity of 800 gal., and the end of which is 4 ft . square. What is the length of the tank if a cubic foot holds $6 \frac{1}{4}$ gal.?
22. The weight of a cubic foot of iron is 7.53 times that of a cubic foot of water. If a cubic foot of water weighs 1000 oz ., what is the weight of a bar of iron 9 ft . long, 4 in . wide, and 6 in . thick?
23. Water flows into a rectangular tank at the rate of 15 gal. a minute. How high will the water rise in the tank in one hour if its dimensions are 9 ft . by 18 in . and a gal. contains $277 \cdot 27$ cubic inches?
24. A bushel contains $2218 \cdot 2$ cubic inches. How many bu. of oats are there in a bin 11 ft .6 in . long, 6 ft . wide, and 5 ft . deep?
25. A carpenter constructs a coal-bin $10 \frac{1}{2} \mathrm{ft}$. long, 8 ft . wide, and $7 \frac{1}{2} \mathrm{ft}$. deep. How many tons will it hold if it takes 35 cubic feet for one ton?
26. A cow requires 3953 cu . ft. of fresh air an hour. If a ventilating flue, the opening of which is 6 in . square, admits air at the rate of 250 feet a minute, how many of these flues would be required to supply a stable with the air necessary for 24 cows?
27. How many paving bricks $7 \frac{1}{2}$ in. long and 4 in. wide will it take to pave 2 miles of street 45 ft . wide?
28. A rectangular garden 64 ft . long and 35 ft . wide is divided into 4 equal rectangular plots by two paths, each 2 yd . wide, running through its centre, one from end to end, the other from side to side. How many square yards are there in the area of the paths?
29. How many blocks of ice 3 ft . long, 2 ft . wide, and 2 ft . thick, will it take to fill an ice-house 40 ft . long, 28 ft . wide, and 16 ft . high, if there are 2 ft . of sawdust between the ice and the floor, walls, and ceiling?
30. A dealer has in his yard a pile of wood 42 ft . long, 32 ft . wide, and 10 ft . high. What is this wood worth at $\$ 12$ a cord?
31. (a) How many board feet are there in:

120 boards each $12 \mathrm{ft} .6 \mathrm{in} . \times 8 \mathrm{in}$. $\times 1 \mathrm{in}$.
65 planks each $16 \mathrm{ft} . \times 10 \mathrm{in} . \times 2 \frac{1}{2} \mathrm{in}$. 48 scantlings, each $16 \mathrm{ft} . \times 2 \mathrm{in} . \times 4 \mathrm{in}$.?
(b) How much will this lumber cost at $\$ 45$ a thousand?
32. How much 2 -in. lumber will it take to make a box without a cover, the outside dimensions of which are: 5 ft .4 in ., 2 ft .8 in ., and 1 ft .8 in .?
33. Find the sum of the following expenses for opening a new street 4 rods wide and 60 rods long:

Constructing sewer, @ $\$ 1 \cdot 25$ a linear ft .
Levelling and grading whole street @ $\$ 1 \cdot 50$ a sq. rd.
Paving- 36 ft . wide, @ $\$ 1 \cdot 20 \mathrm{a}$ sq. yd.
Two side-walks-each 6 ft . wide, @ 15 c . a sq. yd.
Trees on each side 30 ft . apart, @ 75c. each.

EXERCISE 112 (GENERAL REVIEW)

1. (a) In 1919 the number of automobiles in Canada was as follows: Ontario 139,288; Saskatchewan 56,402 ; Quebec 31,777; Alberta 34,362; Manitoba 33,896; British Columbia 19,161; Nova Scotia 10,030; New Brunswick 8,142; and Prince Edward Island 1,132. Find the total.
(b) Taking the population of Canada as $8,835,000$, what is the average number of persons for each automobile?
2. On June 15th, 1919, Captain Alcock and Lieutenant Brown crossed the Atlantic from Newfoundland to Clifden, Ireland, in an aeroplane, in 16 hr .12 min ., at an average rate of 120 miles an hour. Find the distance.
3. During the navigation season of 1919 on the Great Lakes, it is said that for 216 days an average of one vessel passed Windsor every 20 min .45 sec . Find the number of vessels.
4. In canning raspberries or blackberries, 1 pt . of sugar is required for 2 qt . of berries, and for currants, 1 qt . of sugar is required for 3 qt . of currants. At $\$ 7 \cdot 50$ a cwt. find the cost of the sugar required to can one crate ($24 \mathrm{qt}$. .) of each of these fruits if a pt. of sugar weighs one lb .
5. (a) If a clean field produces 62 bu . of corn to the acre while a weedy one produces only 35 bu., what is the loss caused by weeds on a 10 -acre field if corn is worth $\$ 1 \cdot 10$ a bu.?
(b) For how many days would this loss pay for a hired man at $\$ 2 \cdot 25$ a day?
6. In 25 gal. of a mixture for spraying, there are 5 lb . of unslaked lime worth 5 c . a lb ., and 3 lb . of copper suiphate worth 40 c. a pound. Of this mixture 400 gal . will spray 2 ac . of potatoes, and the yield of potatoes is thereby increased from 87 bu . an ac. to 174 bu . an ac. If potatoes are worth $\$ 1 \cdot 60$ a bu., what is the net gain per acre due to spraying?
7. (a) Divide 143689 by 231 , using three factors.
(b) Find the H.C.F. and the L.C.M. of 1656 and 3087.
8. (a) Find the sum of:

$$
\left(\frac{1}{2}+\frac{1}{3}\right),\left(\frac{2}{5}-\frac{1}{4}\right),\left(\frac{1}{2}+\frac{1}{3} \times \frac{1}{4}\right) \text { and }\left(\frac{2}{3}-\frac{1}{6} \div \frac{2}{5}\right) \text {. }
$$

(b) Simplify:

$$
\left(4 \frac{2}{6}+2 \frac{1}{3}+3_{12}^{12}+1 \frac{5}{6}\right) \div\left(4_{18}^{5}-3 \frac{5}{6}\right) .
$$

9. (a) Simplify:

$$
6 \frac{1}{4} \times 3 \frac{1}{2}-2 \frac{1}{3} \div \frac{5}{4} \times 1 \frac{2}{4}+1 \frac{3}{5} .
$$

(b) Simplify:

$$
(6 \cdot 842+3 \cdot 158) \div \cdot 125
$$

10.(a) Reduce to 4 places of decimals: $\frac{3}{16}, \frac{17}{126}, \frac{2}{13}, \frac{4}{23}, \frac{5}{31}$.
(b) Express 82 sq. yd. 4 sq. ft. as a fraction and then as a decimal of 97 sq. yd. 2 sq. ft.
11. Which has the faster rate-a train which runs 120 yd . in 5 seconds, or one which runs a mile in 75 seconds?
12. Two men are to divide $\$ 54$ between them in such a manner that one is to get $\$ 1 \frac{1}{2}$ as often as the other gets $\$ 1 \frac{3}{4}$. How is the money divided?
13. A piece of goods is shortened by tucking. It was originally $\frac{3}{4}$ yd. long, but after tucking it was only $\frac{1}{2}$ yd. long. How many $\frac{1}{8}$-in. tucks were put in it?
14. Make out in proper form, supplying names and date, a bill for the following:
$22 \frac{1}{2} \mathrm{lb}$. sugar @ $\$ 9 \cdot 60 \mathrm{a}$ cwt.; 32 lb . tea @ 65 c .; 12 lb . coffee @ $42 \frac{3}{\mathrm{~s}} \mathrm{c}$.; 15 lb . biscuit @ 3 lb . for 50 c .; 20 lb . cheese @ $27 \frac{1}{2} \mathrm{c}$.; 5 pkg. oatmeal @ 35 c .; 2 doz. grape fruit @ 4 for 25 c .; $6 \frac{1}{2} \mathrm{lb}$. bacon @ $62 \frac{1}{2} \mathrm{c}$.; 5 gal . coal-oil @ $32 \frac{1}{2} \mathrm{c}$.; 2 bbl. salt @ $\$ 1 \frac{3}{4}$.
15. Make out the account of Morris Bros., Hardware Merchants, against J. D. Gay, from the following items:
Nov. 1-Account rendered $\$ 50 \cdot 35$; Nov. 5-Nails $\$ 5 \cdot 60$; Nov. 6-Tin roofing $\$ 22 \cdot 40$; Nov. 10 -Shovels $\$ 2 \cdot 50$; Nov. $12-\mathrm{Mr}$. Gay paid on account $\$ 65 \cdot 00$; Nov. 17-Cement $\$ 14 \cdot 00$; Nov. $24-\mathrm{Mr}$. Gay gave cheque on account $\$ 25 \cdot 00$; Nov. 28-Glass $\$ 15 \cdot 00$.
16. At a school examination the paper in history was valued at 150 marks. On this paper 4 pupils obtained, respectively, the following marks: $144,135,125$, and 120 . What per cent. of the total marks did each pupil take, and what was the average per cent. for the four pupils?
17. Mr. Jones bought a city lot having a frontage of 340 ft . at $\$ 45$ a foot. He borrowed the money at 5% per annum and, at the end of one year, sold the lot at a gain of 20% on the original cost. Find his net gain.
18. Mr. Byer bought for 60 c . on the dollar a bankrupt stock valued at $\$ 10,000$. He sold $\frac{1}{4}$ of it at 20% advance on what it cost him, $\frac{2}{5}$ of it at an advance of 25%, and the remainder at an advance of $33 \frac{1}{3} \%$. If 5% of the sales were not collectible, find his total net gain, allowing $\$ 400$ for expenses.
49. A tax of $\$ 4000$ is levied on a school section of which the assessment is $\$ 250,000$. Find the rate. Find also the tax paid by a ratepayer having an income of $\$ 1900$, of which $\$ 700$ is exempt from taxation.
20. A man borrowed $\$ 320$ on May 16th, 1919. What sum would cancel the debt on Oct. 9th, 1919, if interest was at the rate of $5 \frac{1}{2} \%$ per annum?
21. An agent collected for his employer 80% of debts amounting to $\$ 2000$. How much did he remit to his employer after deducting a $4 \frac{1}{2} \%$ commission?
22. A dealer in real estate buys a house for $\$ 2400$ and rents it expecting to make $6 \frac{1}{2} \%$ interest on his investment. His annual expenses are: Taxes on $\frac{5}{6}$ of the value at 16 mills; insurance on $\frac{2}{3}$ of the value at $\frac{2}{5} \%$, and $\$ 21 \cdot 60$ for repairs. What monthly rent must he charge?
23. A merchant imports goods invoiced at $\$ 2.00$ a yd., and pays thereon an ad valorem duty of $12 \frac{1}{2} \%$ and a specific duty of 5 c . a yd. At what price a yd. must it be marked so that a discount of 8% will still leave a profit of 20% ?
24. At simple interest a sum of money amounts in 2 yr. to $\$ 330$ and in 4 yr. to $\$ 360$. Find the principal and the rate.
25. A man borrowed $\$ 600$ at 5% interest and paid back $\$ 150$ at the end of each year, to pay the interest and reduce the debt. How much will he owe at the end of the third year?
26. A 70 -day note for $\$ 250$ is dated July 1st, 1919, and bears interest at 6% per annum. If it is sold to the bank at 7\% discount on Aug.4th, 1919, what will the proceeds be?
27. What will it cost to fence a school ground 16 rd. long and 10 rd . wide with woven wire costing 27 c . a rod, posts 11 ft . apart costing 30 c . each, and a top scantling $2 \frac{1}{2}$ in. by 4 in . costing $\$ 32$ a thousand?
28. How much 1 -in. lumber will it take to make a closed box with butt joints if the outside dimensions are: 5 ft .2 in ., 4 ft .8 in ., and 3 ft .6 in .?
29. A cubic foot of soil is dug up and is found to weigh 120 lb . It is then dried and now weighs only 104 lb . How many tons of water would there be in an acre of this soil 1 ft . deep?
30. What depth of rain would have to fall on an acre of ground to give moisture equivalent to that in Question 29 , if a cubic foot of water weighs 1000 oz .?

SECTION VI

EXERCISE 113 (GENERAL REVIEW)

1. Find the prime factors of 7392 and of 24720 .
2. Find the H.C.F. of:
(a) 5325 and 8307.
(b) 5210 and 5718.
(c) 805,1311 , and 1978.
3. Find the L.C.M. of:
(a) $12,14,20,24,54$, and 63.
(b) 144,186 , and 496.
(c) $255,289,1023$.
4. Find the value of:
(a) $\frac{84 \times 63 \times 75 \times 105}{81 \times 35 \times 50} \times 28$.
(b) $\frac{64 \times 57 \times 48 \times 54}{36 \times 76 \times 72}$.
5. Simplify:
(a) $5 \frac{1}{5}+2 \frac{5}{8}-3 \frac{3}{10}+6 \frac{1}{2}-10 \frac{1}{4}$.
(b) $\left(3 \frac{1}{5} \times 4 \frac{1}{6}-5 \frac{7}{7} \div 3 \frac{3}{5}\right) \div\left(4 \frac{4}{4}-3 \frac{4}{7}\right)$.
(c) $\frac{3 \frac{3}{4}}{4 \frac{2}{4}}-\frac{3 \frac{2}{5}}{4 \frac{1}{4}}+\frac{\frac{4}{2}}{2 \frac{1}{2}}$.
(d) $\frac{44 \times 1 \frac{3}{5} \times 3 \text { 采 }}{5_{11}^{5}-4 \frac{2}{5}}$.
6. (a) Divide $2 \frac{4}{5}+\frac{2}{7}$ of $8 \frac{3}{4}$ by $2 \frac{3}{4} \times 2 \frac{9}{9}+\frac{3}{10}$.
(b) By how much does $\frac{5}{8}$ of $\frac{4}{10}-\frac{7}{3}$ of $\frac{1}{2} \frac{1}{2}$

$$
\text { exceed } \frac{5}{8} \text { of } \frac{2}{15}-\frac{3}{8} \text { of } \frac{4}{18} \text { ? }
$$

7. Find the value of:
(a) $4.37 \times 83.62 \times .074$.
(b) $\frac{7.35 \times \cdot 0143}{15.015}-\frac{.152 \times \cdot 033}{2.09}$.
(c) $\frac{21.7 \times \cdot 087}{2.03}+\frac{101.01 \times \cdot 319}{2.639}$.
8. (a) Express $5 \mathrm{ft} .9 \frac{3}{4} \mathrm{in}$. as a fraction of $3 \mathrm{ft} .2 \frac{1}{2} \mathrm{in}$.
(b) If a man $5 \mathrm{ft} .9 \frac{3}{4} \mathrm{in}$. in height casts a shadow of $3 \mathrm{ft} .2 \frac{1}{2}$ in., what is the height of a steeple which at the same time casts a shadow of $88 \mathrm{ft} .6 \frac{1}{2} \mathrm{in}$.?
9. A man experimented with seven hogs to ascertain how many pounds of corn it would require to produce 100 pounds of pork. The result for the different hogs was as follows:
$586 \mathrm{lb} ., 540 \mathrm{lb} ., 587 \mathrm{lb} ., 579 \mathrm{lb} ., 530 \mathrm{lb}$., 500 lb ., and 479 lb .
(a) Find the average number of pounds required.
(b) At this average, what should be the price of pork a hundredweight if corn is selling at $\$ 1 \cdot 28$ a bushel?
10. A cow requires annually 3 tons of hay worth $\$ 18$ a ton; 1000 lb . of chopped grain worth $\$ 38$ a ton; and pasture worth $\$ 15$. If a Jersey cow gives 25 lb . of milk daily for 300 days in the year and a "scrub" cow gives only 15 lb ., find the yearly profit from each of these cows if milk is worth 5 c . a lb .

11. Find the amount of the following:

3258 lb . of wheat @ $\$ 2 \cdot 10 \mathrm{a}$ bu.; 1768 lb . of oats @ $\$ 1.02 \mathrm{a}$ bu.; 1836 lb . of barley @ $\$ 1.56$ a bu.; 729 lb . of peas @ $\$ 2.90 \mathrm{a}$ bu.; 2820 lb . of corn @ $\$ 1.82 \mathrm{a}$ bu.; $4 \frac{1}{2}$ bu. of clover seed @ 55c. a lb.
12. A man and team can till thoroughly 3 ac . a day or carelessly 5 ac . a day. If careless tilling produces 38 bu. of oats an acre and thorough tilling 56 bu., what is the loss due to careless work on a 30 -acre oat-field, when oats
are worth 90 c . a bushel and a man and team are worth $\$ 6 \cdot 50$ a day?
13. The statement of the Spring Brook Cheese and Butter Company for the year 1919 gives the following information:

$$
\begin{aligned}
& \text { Lb. of milk received. 1,547,524 } \\
& \text { Lb. of cheese manufactured. } 128,278 \\
& \text { Lb. of milk for } 1 \mathrm{lb} \text {. cheese........... } 11 \cdot 36 \\
& \text { Lb. of butter manufactured. } 4,322.75 \\
& \text { Average price for } 1 \mathrm{lb} \text {. cheese....... } 27.805 \mathrm{c} \text {. } \\
& \text { Average price for } 1 \mathrm{lb} \text {. butter....... } 45 \cdot 10 \mathrm{c} \text {. } \\
& \text { Other receipts...................... } \$ 63 \cdot 51 \\
& \text { Cost of manufacturing } 1 \mathrm{lb} \text {. cheese } \cdot \text {.. } 2 \mathrm{c} \text {. } \\
& \text { Cost of manufacturing } 1 \mathrm{lb} \text {. butter... } 10 \mathrm{c} \text {. } \\
& \text { Other expenses. } \$ 5019 \cdot 40
\end{aligned}
$$

Calculate: (a) Amount of milk used for cheese; (b) Amount of milk used for butter; (c) Amount of milk to make 1 lb . butter; (d) Total receipts; (e) Total expenditure; (f) Balance for profits; (g) Amount of profit for 1 lb . of milk.
44. Reduce 4 yd .2 ft .6 in . to the decimal of one mile.
15. A sum of money is divided among A, B, and C. A gets $\frac{1}{4}$ of it; $B \frac{2}{3}$ of the remainder, and $C \frac{1}{2}$ of what then remains. There is still left $\$ 75$, which is equally divided among the three. Find the total sum received by each.
16. A steam dredge removes $3 \mathrm{cu} . \mathrm{ft}$. of dirt every minute durirg a working day of 9 hours. How long a ditch will this dredge dig in 30 days if the ditch is 12 ft . wide and $7 \frac{1}{2} \mathrm{ft}$. deep?
17. A wall 180 ft . long, 6 ft . high, and 15 in . thick, is built of concrete made up of 1 part of cement to 8 parts of gravel. Find the cost of the material if the gravel costs $\$ 1.00$ a cubic yard and the cement 50 c. a cubic foot.
18. A well-ventilated class-room should supply 2500 cubic feet of pure air for each pupil every hour. How often
in one hour should the air be changed in a class-room 30 ft . long, 24 ft . wide, and $12 \frac{1}{2} \mathrm{ft}$. high, if there are 36 pupils in the room?
19. A bushel of wheat takes from the soil 2.4% of its weight in nitrogen, $\cdot 9 \%$ in phosphorus, and $\cdot 6 \%$ in potash. A bushel of potatoes takes 2% of its weight in nitrogen, $\cdot 1 \%$ in phosphorus, and $\cdot 3 \%$ in potash. If an acre of ground produces on an average 14 bu . of wheat or 85 bu. of potatoes, find the total weight of plant food removed by each of these crops from 10 acres of ground.
20 . If flour is 82% of the wheat used and bread is $133 \frac{1}{3} \%$ of the flour used, how many $2-\mathrm{lb}$. loaves can be made from 75 bu . of wheat?
21. A coal merchant buys coal at $\$ 7$ a long ton (2240 lb.) and sells it at $\$ 8 \cdot 50$ a short ton (2000 lb .). Find his gain per cent.?
22. On 450 yd . of imported goods invoiced at $\$ 2 \cdot 40$ there was an ad valorem duty of $12 \frac{1}{2} \%$ and a specific duty of 5 c . a yd. For what amount must the goods be marked to make a profit of $33 \frac{1}{3} \%$, after allowing a discount of $16 \frac{2}{3} \%$?
28. On a bill of goods amounting to $\$ 640$, a cash discount of 10% was allowed. The goods were sold at a profit of 25% on their actual cost. Find the gain if 5% of the sales was uncollectible.
24. A city assessed for $\$ 13,600,000$ builds a bridge costing $\$ 300,000$. What will a taxpayer who is assessed for $\$ 8400$ pay toward the bridge?
25. How much money must a man send his agent to buy for him 750 cwt . of sugar at 12c. a pound, to pay the agent's commission of $2 \frac{1}{2} \%$, and to pay freight charges at the rate of $\$ 10$ a ton?
26. An insurance company pays an agent 2% of all premiums collected by him. How much will the company receive from a premium on a house valued at $\$ 8000$ and its contents valued at $\$ 6000$ if each is insured for 80% of the value ait 90 c . on each $\$ 100$?
27. A man wishes to borrow from his bank $\$ 480$, and gives a six-month note without interest, which the bank discounts at 8% per annum. What will be the face of the note provided no account is taken of the days of grace?
28. A commission agent sold some mining property on the understanding that he was to receive 5% on the first $\$ 25,000$ of the sale and 2% on the remaining amount. His total commission was $\$ 2750$. Find the amount for which the property was sold.

COMPOUND INTEREST

If Mr. Longford borrows from Mr. Sinclair $\$ 200$ for which he is to pay interest at 5% per annum, he will owe at the end of the year $\$ 200$ and $\$ 10$ interest. If, now, he is unable to pay the interest, he is really borrowing $\$ 210$ from Mr. Sinclair for the second year, the interest on which will be $\$ 10 \cdot 50$, and the amount Mr. Longford will owe at the end of two years is $\$ 220 \cdot 50$. The difference between this amount and the original principal is called the compound interest on that principal for the two years. That is, $\$ 20 \cdot 50$ is the compound interest on $\$ 200$ for 2 years at 5% per annum.

The ordinary interest on $\$ 200$ for 2 years at 5% is $\$ 20$, which is called the simple interest. In what respect does compound interest differ from simple interest?

The method of finding compound interest is the same as that used for simple interest.

Example: Find the amount of, and the interest on, $\$ 1500$ for $1 \frac{1}{2}$ years at 4% per annum, the interest to be compounded semi-annually.

FIRST SOLUTION

$\$ 1500=$ first principal.
. 02
$\$ 30=$ interest for first $\frac{1}{2}$ year.
1500
$\$ \overline{1530}=$ amount after first $\frac{1}{2}$ year.
. 02
$\overline{\$ 30 \cdot 60}=$ interest for second $\frac{1}{2}$ year.
$\frac{1530 \cdot 00}{\$ 1560 \cdot 60}=$ amount after 1 year.
$\frac{\cdot 02}{\$ 31 \cdot 21}=$ interest for third $\frac{1}{2}$ year.
$1560 \cdot 60$
$\$ \overline{1591 \cdot 81}=$ amount after $1 \frac{1}{2}$ years. \quad Interest $=\$ 91.81$.

SECOND SOLUTION
Amount after any $\frac{1}{2}$ yr. $\quad=1.02 \times$ principal at the beginning of that $\frac{1}{2}$ year.
Amount at the end of first $\frac{1}{2} \mathrm{yr} .=1.02 \times$ first principal
$=$ second principal.
Amount at the end of second $\frac{1}{2} \mathrm{yr} .=1.02 \times$ second prin, cipal
$=1.02 \times 1.02 \times$ first principal
$=$ third principal.
Amount at the end of third $\frac{1}{2} \mathrm{yr} .=1.02 \times$ third principal
$=1.02 \times 1.02 \times$ first principal
$=1.061208 \times \$ 1500$
$=\$ 1591.81$.
Interest for $1 \frac{1}{2} \mathrm{yr}$.

$$
\begin{gathered}
=\$ 1591 \cdot 81-\$ 1500 \\
=\$ 91 \cdot 81 .
\end{gathered}
$$

Note.-For brevity it is usual to write 1.02^{2} instead of $1.02 \times$ 1.02 , and 1.02^{3} instead of $1.02 \times 1.02 \times 1.02$, and so on. The small figure placed above and to the right of the number indicates the number of times the factor is repeated, thus: $3 \times 3 \times 3 \times 3 \times 3$ is written 3^{5}.

Since the amount at the $1 \frac{1}{2} \mathrm{yr} .=1 \cdot 061208 \times$ principal, what fraction of the principal must the interest be?

What was done in the Second Solution was to find the amount of, or the interest on, $\$ 1$ for the given time at the given rate, and multiply this by the number of dollars in the principal.

EXERCISE 114

(In these exercises find results to the nearest cent.)

1. Find the amount and the compound interest of $\$ 500$ for 3 years at 4%. [Interest $=\left(1 \cdot 04^{3}-1\right) \times \$ 500$.]
2. Find the amount and the compound interest of $\$ 200$ for 2 years at $5 \% ; \$ 3000$ for 4 years at $6 \% ; \$ 2000$ for 3 years at $5 \frac{1}{4} \% ; \$ 4800$ for 4 years at $3 \frac{1}{2} \%$.
3. Find the amount and the compound interest of $\$ 300$ for 2 years at 4% per annum compounded half-yearly. (Amount $=1 \cdot 02^{4} \times \$ 300$.)
4. Find the amount and the compound interest of $\$ 800$ for $1 \frac{1}{2}$ years at $3 \frac{1}{2} \%$ per annum compounded halfyearly; $\$ 2000$ for 1 year at 4% per annum compounded quarterly.
5. Find the amount of $\$ 1$ in 4 years at 5% compounded yearly. Use the result to find: (a) The amount of $\$ 650$ for 4 years at 5% compounded yearly; (b) the sum which in 4 years at 5% compounded yearly will amount to $\$ 7250$.
6. Find the principal which will amount to $\$ 3800$ in $1 \frac{1}{2}$ years at 5% compounded half-yearly; $\$ 4750$ in 1 year at 4% per annum compounded quarterly.
7. A savings bank which pays 4% per annum compounds its interest half-yearly on June 30th. and December 31st. How much will a man have to his credit on December 31st. who deposits $\$ 300$ on February 1st. and $\$ 900$ on August 1st.?
8. Find the difference between the simple interest and the interest compounded half-yearly on $\$ 1$ for $1 \frac{1}{2}$ years at 6%. Use the result to find:
(a) The difference between the simple interest and the interest compounded half-yearly on $\$ 900$ for $1 \frac{1}{2}$ years at 6% per annum.
(b) The sum for which the difference between the simple interest and the interest compounded half-yearly is $\$ 28 \cdot 30$ for $1 \frac{1}{2}$ years at 6% per annum.

INTEREST TABLES

Banks and othet financial institutions calculate interest on their accounts by means of Interest Tables. By way of illustration, the following has been selected from one of these Tables:

TABLE FOR SIMPLE INTEREST

Dollars	67 Days		143 Days		231 Days	
	$3 \frac{1}{2} \%$	4%	5%	51%	61%	7%
100	-64.2	-73.4	1.95.9	2.15.4	4.11.4	4.43.0
200	1.28. 5	1.46.8	3.91.8	$4 \cdot 31 \cdot 0$	8.22.7	8.86.3
300	$1 \cdot 92 \cdot 7$	$2 \cdot 20 \cdot 3$	$5 \cdot 87 \cdot 7$	6.46.4	$12 \cdot 34 \cdot 2$	13. $29 \cdot 0$
400	$2 \cdot 57 \cdot 0$	2.93.7	7.83.6	$8 \cdot 61 \cdot 9$	$16 \cdot 45 \cdot 5$	17-72.1
2100	$13 \cdot 49 \cdot 2$	15.41.9	$41 \cdot 13 \cdot 7$	$45 \cdot 25 \cdot 1$	$86 \cdot 38 \cdot 8$	93.03.3
2200	$14 \cdot 13 \cdot 4$	16.15.3	$43 \cdot 09 \cdot 6$	$47 \cdot 40 \cdot 6$	$90 \cdot 50 \cdot 1$	$97 \cdot 46 \cdot 3$
2300	14.77.7	16.88.8	$45 \cdot 05 \cdot 5$	$49 \cdot 56 \cdot 0$	$94 \cdot 61 \cdot 5$	101.89-3
2400	15-41.9	17.62-2	47.01.4	$51 \cdot 71 \cdot 5$	98.72.9	106.32.3
6500	41.76.1	47•72 6	127-32 9	140. $66 \cdot 1$	267-39-1	287.95.9
66C0	$42 \cdot 40 \cdot 3$	48.46.0	$129 \cdot 288$	$142 \cdot 21 \cdot 6$	271-50:4	$292 \cdot 38 \cdot 9$
6700	$43 \cdot 04 \cdot 5$	$49 \cdot 19 \cdot 5$	$131 \cdot 24 \cdot 7$	$144 \cdot 37 \cdot 2$	275.61.8	296-81.9
6800	$43 \cdot 68 \cdot 8$	49-92-9	$133 \cdot 20 \cdot 5$	146.52.6	$279 \cdot 73 \cdot 1$	301-24-9
7300	46-90.0	$53 \cdot 60 \cdot 0$	$143 \cdot 00 \cdot 0$	$157 \cdot 30 \cdot 0$	$300 \cdot 30 \cdot 0$	323.40.0
7400	47-54 2	$54 \cdot 33 \cdot 4$	144.95.9	159-45-5	$304 \cdot 41 \cdot 4$	$327 \cdot 83 \cdot 0$
7500	48-18.5	55.06.8	146-91.8	161.60.9	308.52.7	$332 \cdot 26 \cdot 0$
7600	48.82-7	$55 \cdot 80 \cdot 3$	$148 \cdot 87 \cdot 7$	163.76.4	$312 \cdot 64 \cdot 2$	$336 \cdot 69 \cdot 0$

The Table is self-explanatory. It will be observed that in the numbers given in the interest columns there are two decimal points. The part before the first point is to
be read as dollars, the part before the second point as cents, and the last part as a decimal of a cent.

It is clear, too, that when the interest for $\$ 7300$ is given, the interest for $\$ 730, \$ 73, \$ 7 \cdot 30,73$ c. can be found by shifting the decimal point; and that the interest on $\$ 7323$ can be found by adding the interest on $\$ 23$ to the interest on $\$ 7300$.

EXERCISE 115

1. Using the above Table, find the interest on $\$ 2441 \cdot 65$ for 143 days at $5 \frac{1}{2} \%$.

$$
\begin{aligned}
& \text { Interest on } \$ 2400=\$ 51.715 \\
& \text { " " } 40=.8619 \\
& \text { " " } 1 \text { = . } 02154 \\
& \text { " " } \cdot 65=\quad .0140061 \\
& \text { " " } \$ 2441 \cdot 65=\$ 52 \cdot 61 \text {. }
\end{aligned}
$$

2. What is the interest for 67 days at $3 \frac{1}{2} \%$ on $\$ 6800$? $\$ 680$? $\$ 6 \cdot 80$? $\$ 2365$? $\$ 430$?
3. What is the interest for 67 days at 4% on $\$ 423$?$\$ 366$? $\$ 224 \cdot 75$? $\$ 6741 \cdot 24$?
4. What is the interest for 143 days at 5% on $\$ 7410$? $\$ 6524$? $\$ 2368$? $\$ 140 \cdot 20$?
5. What is the interest for 143 days at $5 \frac{1}{2} \%$ on $\$ 7673$? $\$ 2123$? $\$ 210$? $\$ 2 \cdot 40$?
6. What is the interest for 231 days at $6 \frac{1}{2} \%$ on 40 c .? $\$ 6 \cdot 50$? $\$ 23 \cdot 00$? $\$ 4 \cdot 75$?
7. What is the interest for 231 days at 7% on $\$ 24 \cdot 00$? $\$ 4000$? $\$ 68,421$? $\$ 24,321 \cdot 40$?

COMPOUND INTEREST TABLES

The following is an example of a Table used for compound interest. It shows the amount of one dollar at compound interest at the given rates for the specified number of years. The amount of any other number of
dollars will be found by multiplying the amount of one dollar for the given time at the given rate by the number of dollars on which the interest is to be determined.

Yr.	$1 \frac{1}{2} \%$	2%	$2 \frac{1}{2} \%$	3%	$3 \frac{1}{2} \%$
1	1.015000	1.020000	1.025000	1.030000	1.035000
2	1.030225	1.040400	1.050625	1.060900	1.071225
3	1.045678	1.061208	1.076891	1.092727	1.108718
4	1.061364	1.082432	1.103813	1.125509	1.147523
5	1.077284	1.104081	1.131408	1.159274	1.187686
6	1.093443				
etc.	etc.	etc.	etc.	etc. etc	etc. etc.

The compound interest on any principal sum for 2 years at 5% per annum payable half-yearly is, of course, the same as the interest on that sum for 4 years at $2 \frac{1}{2} \%$ payable yearly.

EXERCISE 116

1. Find the amount and interest, at $3 \frac{1}{2} \%$ per annum on: $\$ 300$ for 2 yr .; $\$ 400$ for 3 yr .; $\$ 750$ for 5 yr .
2. Find the amount and interest at 2% per annum when the principal and time are $\$ 640$ for 3 yr .
3 . Find the amount and interest at $2 \frac{1}{2} \%$ per annum when the principal and time are: $\$ 800$ for $3 \mathrm{yr} . ; \$ 250$ for 4 yr .
3. Find the amount and interest at 3% per annum when the principal and time are: $\$ 235$ for 2 yr.; $\$ 480$ for 5 yr .
4. Find the principal when the amount, time, and rate are: $\$ 1500,3$ yr., $3 \frac{1}{2} \% ; \$ 2000,5$ yr., 3%.
5. On July 1st, 1920, Mr. A. Brown bought ten D. S. Certificates for which he paid $\$ 42 \cdot 50$ each. At the end of three years the Dominion of Canada will redeem these certificates at $\$ 50$ each. How much more will Mr. Brown then have than he would have had if he had deposited his money in a bank which pays interest halfyearly at the rate of 4% per annum?

STOCKS

It often happens that a business undertaking may be too large for one or two individuals to supply all the money which may be needed, and so a number of persons unite and form what is called a stock company or corporation. They arrange to raise the money necessary for the business by fixing the capital of the company at a settled amount, not of money but of stock. This stock is then divided up into an equal number of shares, and each share is valued at a fixed amount, usually $\$ 100$, which is called the par value of a share of stock. These shares are then sold.

A person becomes a member of the company by buying one or more of the shares of its stock. He is then a stockholder, or shareholder, and is given a stock certificate.

The profits of the company are called its dividend and are divided at regular periods among the shareholders according to the number of shares each possesses.

Stock is not money, but it can be bought and sold for money, and a shareholder can get money for his stock only by selling it to some person who is willing to buy. The price paid for it will depend largely upon the success of the company and upon the amount of the dividend.

Although, as stated above, stock is usually divided into $\$ 100$ shares, there are stocks with shares of different amounts, such as $\$ 1, \$ 5, \$ 10, \$ 50, \$ 200$.

With the exception perhaps of some mining stocks, the market value of the shares is quoted in stock-lists, newspapers, and elsewhere, as a percentage of the par value. Thus, Bank of Toronto stock listed at 193 means that a $\$ 100$ share sells for $\$ 193$.

Stock is at par, at a discount, or at a premium, according as its shares sell for, below, or above their par values. The market value of stock must be clearly distinguished from its par value.

Stock is generally bought and sold through a stockbroker. He charges for his services a percentage of the par value of the stock. This charge is called brokerage.

EXERCISE 117

1. What is the par value and the market value of 25 shares of Dominion Bank stock at 241 ? of 60 shares of Dominion Steel stock at $74 \frac{1}{4}$? of 57 shares of Toronto Street Railway at $63 \frac{1}{4}$? of 23 shares of Lake Superior at 27?
2. How many shares can be bought of Twin City Railway stock at $56 \frac{1}{2}$ for $\$ 3,390$? of Imperial Bank stock at 230 for $\$ 9,430$? of Mexican Light and Power stock at $66 \frac{1}{2}$ for $\$ 3,657 \cdot 50$?
3. What is the annual dividend obtained from 36 shares of stock which pays 6% ? from 92 shares of stock which pays $12 \frac{1}{2} \%$? from 44 shares of stock which pays $3 \frac{1}{2} \%$ half-yearly?
4. How many shares of the par value of $\$ 100$ will there be in a total capital of $\$ 50,000$ stock? of $\$ 362,500$ stock?
5. What will be the dividend on each share of stock when the capital and total profits are, respectively, $\$ 250,000$ and $\$ 11,250$? $\$ 1,500,000$ and $\$ 123,750$?
6. What is the rate of the dividend when:
(a) $\$ 11,000$ stock gives an annual income of $\$ 495$?
(b) $\$ 9000$ stock gives an annual income of $\$ 382 \cdot 50$?
(c) $\$ 7500$ stock gives an annual income of $\$ 400$?
7. The holder of 58 shares of railway stock sells at 65 and invests the proceeds in a bank stock at 145. How many shares of bank stock does he buy?
8. A man invests $\$ 6150$ in a bank stock at 123. If the stock pays a dividend of 7% per annum, what is the man's income from his stock?
9. Mr. Thornton instructs a broker to buy for him 25 shares of Lake of the Woods stock at $135 \frac{3}{4}$. If the broker charges $\frac{1}{4} \%$ commission, what does the stock cost Mr. Thornton? How much does the broker receive?
10. I instruct my broker to sell for me 18 shares of Nova Scotia Coal stock at 69. If he charges $\frac{1}{2} \%$ brokerage, what do I receive for the stock?
11. A man invests $\$ 3,780$ in stock at $94 \frac{1}{4}$ and sells when the stock rises to $110 \frac{3}{4}$. How much does he gain by the transaction if he has to pay $\frac{1}{4} \%$ brokerage for buying and the same for selling?
12. What annual income will be obtained from investing $\$ 10,010$ in a 6% stock at 125 , brokerage being $\frac{1}{8} \%$?
13. The holder of $\$ 7,200$ stock which pays an annual dividend of 5% sells at $96 \frac{1}{2}$ and invests the proceeds in an 8% stock at $119 \frac{1}{2}$. What will be the difference in his annual income, brokerage for buying and selling being $\frac{1}{2} \%$ in each case?
14. A man invests $\$ 3,820$ in a 3% stock at $95 \frac{1}{2}, \$ 6,000$ in a 4% stock at par, and $\$ 8,660$ in a 5% stock at $108 \frac{1}{4}$. How many shares of stock has he? What is their total par value? What is his total income from his stocks?
15. Mr. Riddell invests $\$ 4,800$ in a 6% stock at 120. How many shares of stock does he buy? What will be his annual income? What fraction is this income of the money invested? What per cent., therefore, is the rate of interest on the money invested?
16. If I invest $\$ 5000$ in an 8% stock at 125 , what rate of interest do I receive on the money invested?
17. If I pay $\$ 75$ for a share of 6% stock, what rate of interest shall I get on the money invested?
18. A man has $\$ 4200$ which he can loan at $5 \frac{1}{2} \%$ per annum or invest in a 6% stock at 105 . How much larger will his income be by taking the better investment?
19. How much money must be invested in a $7 \frac{1}{2} \%$ stock at 115 to give an annual income of $\$ 300$?

20 . How much 4% stock must I have to give me an income of $\$ 360$? What would it cost at 80 ?
21. A man who invests in a 10% stock finds that he is getting $6 \frac{1}{4} \%$ interest on the money invested. What is the price of the stock?

EXCHANGE

The buying and selling of goods is constantly going on between all parts of the world, and, as a result, it is necessary to have some means by which the payment of money can be made between places distant from each other.

The settling of accounts between persons residing at a distance from each other by means of written orders is called exchange. These written orders, such as cheques, drafts, express money-orders, etc., are called bills of exchange.

If Mr. James Kay, living in Peterborough, owes $\$ 50$ to Mr. William Wye, living in Ottawa, in what different ways may Mr. Kay pay his debt?

Paying by cheque: In the example above, if Mr. Kay has money to his credit in any bank, he may make out a cheque for $\$ 50$. Write the cheque.

This cheque he will send to Mr. Wye, who can get it cashed at some bank in Ottawa. The bank wiil probably deduct a small sum from the face of the cheque.

Paying by bank draft: Instead of sending the above cheque, Mr. Kay might go to a bank and buy a bank draft.

This draft is sent by Mr. Kay to Mr. Wye, who gets it cashed for its full value in Ottawa. Mr. Kay would probably have to pay for the draft a little more than $\$ 50$.

Commercial draft: The account between Mr. Kay and Mr. Wye may also be settled by Mr. Wye making a draft on Mr. Kay. Write the draft.

Some bank in Ottawa pays Mr. Wye on this draft $\$ 50$ less the cost of exchange, and sends the draft to a bank in Peterborough, which collects the money from Mr. Kay.

The sum to be paid for drafts or bills of exchange is usually a certain per cent. of their face value, and the difference in percentage between the face value and the amount paid is called the rate of exchange.

Post-office, express, and bank money-orders are in form much like bank drafts. They are bought and cashed at post-offices, Express Companies' offices, and at banks, respectively. They are sold for a slight advance over their face values.

In the case of Post-office Orders issued in Canada for payment in Canada and United States, the advance above the face value is as follows:

For $\$ 5$ and under, 3 c . Over $\$ 30$ and up to $\$ 50,15$ c. Over $\$ 5$ and up to $\$ 10,6$ c. Over $\$ 50$ and up to $\$ 75,25$ c. Over $\$ 10$ and up to $\$ 30,10$ c. Over $\$ 75$ and up to $\$ 100,30$ c.

For small sums the post-office also sells postal notes of the following denominations:

1. 20 c ., 25 c ., 30 c ., 40 c ., each of which costs 1 cent extra.
2. 50 c., 60 c., 70 c., 80 c., 90 c., $\$ 1, \$ 1 \cdot 50, \$ 2$, and $\$ 2 \cdot 50$, each of which costs 2 cents extra.
3. $\$ 3, \$ 4, \$ 5$, and $\$ 10$, each of which costs 3 cents extra.

The odd cents are made up by attaching postagestamps to the note; for instance, 38 cents would be made up by a 30 c . postal note and 8 c . in postage-stamps.

The extra charges for express and bank money-orders up to $\$ 50$ are the same as those for Post-office Orders.

In case of Foreign Exchange, that is, exchange between two places which are in different countries, we shall have to consider, not only the rates of exchange, but also the value of the coins used in the two places.

The normal values of the coins of a few countries are here given:

Country	Coin	Canadian Value
Great Britain.	1 pound.	\$4.86 ${ }^{2}$
Fratce..	1 franc (100 centimes)	19.3 cents
Switzerland Germany.	1 mark (100 pfennige)	23.85 cents

EXERCISE 118

1. At the rates quoted above, find the cost of postoffice money-orders for: $\$ 4 \cdot 10, \$ 14, \$ 26 \cdot 50, \$ 30 \cdot 08$, $\$ 47 \cdot 75, \$ 74 \cdot 99, \$ 93 \cdot 30$.
2. For each of the following sums what postal notes would you buy, and what would be the total cost in each case: 45 c., 95 c., $\$ 1 \cdot 65, \$ 2 \cdot 93, \$ 3 \cdot 79, \$ 4 \cdot 85, \$ 5 \cdot 92, \$ 26$?
3. What is the difference in cost between money-orders and postal notes for: 85 c ., $\$ 3 \cdot 30, \$ 6 \cdot 40, \$ 18, \$ 30, \$ 40 \cdot 15$?
4. The rate of exchange being $\frac{1}{8} \%$, find the cost of a bank draft for $\$ 360$, for $\$ 2000$, for $\$ 236 \cdot 50$.
5. Mr. James Wilkinson, St. Thomas, buys $\$ 1200$ worth of goods from Brown Bros., Toronto, and sends them a draft, issued by the Merchants Bank, for the
amount. What will this draft cost Mr. Wilkinson, exchange being at $\frac{1}{8} \%$?
6. The Atlantic Lumber Co., Halifax, sold $\$ 2400$ worth of lumber to R. Higgins \& Co., Montreal, and drew on them for the amount through the Bank of Nova Scotia. How much would the Lumber Company get from the bank, exchange being at $\frac{1}{4} \%$?
7. F. Davis of Simcoe sends Mr. R. Carter, Belleville, a cheque on the Bank of Hamilton in payment of an account of $\$ 160$. Write the cheque. What will Mr. Carter get for it, exchange being at $\frac{1}{8} \%$?
8. What will a Toronto merchant pay for a draft on Chicago for $\$ 3200$, exchange being at $\frac{1}{4} \%$?
9 . What will be the face of a draft for which $\$ 720 \cdot 90$ is paid, when exchange is at $\frac{1}{8} \%$?

10 . What must be the face of a cheque, so that when it is cashed at a bank the proceeds will be sufficient to pay a bill for $\$ 319 \cdot 20$, the bank's charge for exchange being $\frac{1}{4} \%$?
11. What must be the face of a cheque, so that when the bank's charges of $\frac{1}{2} \%$ for exchange are deducted, the proceeds will be sufficient to pay a bill for $\$ 139 \cdot 30$?
12. When $\$ 1565 \cdot 20$ is paid for a $\$ 1560$ draft, what is the rate of exchange?
13. What is the value in Canadian money of: $£ 1240$, 3500 f:ancs, 4800 marks?
14. $\$ 6400$ is equal to how many pounds? $\$ 4530$ to how many francs? $\$ 8000$ to how many marks?

SQUARE ROOT

When a number is multiplied by itself, the product is called the square of the number, and the number is called the square root of the product. For example, 16 is the square of 4 , and 4 is the square root of 16 .

It is evident that, when a number can be factored and its factors arranged in two groups each containing the same factors, the product of the factors in one of these groups is the square root of the number.

$$
\text { Example: } \quad \begin{aligned}
324 & =2 \times 2 \times 3 \times 3 \times 3 \times 3 \\
& =(2 \times 3 \times 3) \times(2 \times 3 \times 3) .
\end{aligned}
$$

The square root of 324 is $2 \times 3 \times 3$, or 18 .

EXERCISE 119

1. What are the squares of: $3,4,8,9,10,7$, and 6 ?
2. What are the squares of: $12,15,18,45$, and 90 ?

3 . What are the square roots of: $9,16,49,121,1600$, and 8100 ?
4. What are the square roots of: $\cdot 25$, $\frac{1}{36}, \cdot 49,1 \cdot 44$, and $\frac{81}{109}$?
5. What are the lengths of the sides of squares whose areas are $\cdot 64$ sq. in., $\cdot 09$ sq. yd., 3600 sq. rd., $\frac{1}{4}$ sq. mi.?
6. What is the perimeter of each of the squares whose area is given in Question (5)?
7. Find, by factoring, the square root of: 324,1089 , 7569, 9801, 15625, 65536, $\cdot 2601,125 \cdot 44,527076$.
8. A lot is 81 ft . wide and 169 ft . long. What is the length of the side of a square that has the same area?
9. The width of a lot is $\frac{3}{4}$ of its length. If the lot contains 30 acres, find its perimeter.

The numbers $9,64,169$, and 625 , are perfect squares, but the numbers $10,27,85$, and 113 are not. Why?

Square the numbers 1 and 9, 10 and 99, 100 and 999, 1000 and 9999 , and the decimals $\cdot 1$ and $\cdot 9, \cdot 01$ and $\cdot 99$, $\cdot 001$ and $\cdot 999$. From the results it will be seen that there are twice as many, or 1 less than twice as many digits in the square as in the number itself. Hence, if the digits of a number be separated into periods of two digits each, beginning at the decimal point, the number of periods will be the same as the number of digits in the square root of the number. Thus, the square root of:
$5 / 59 / 32 / 25$ will have 4 integral places, and the square root of: $41 / 43 / \cdot 49 / 69$ will have 2 integral and 2 decimal places.

If this is known, the value of the highest digit in the square root of any number can be found by inspection.
Example: What is the highest digit in the square root of 4761 .

Separating the digits into periods, we get $47 / 61$, which shows that there will be 2 places in the square root.

Therefore, the highest digit in the square root is a tens' digit. Now 6 tens, or 60 , is the greatest ten whose square is contained in 47 hundred. Hence, the ten's digit in the square root is 6 .

ORAL EXERCISE

1. How many digits will there be in the squares of integral numbers containing $3,4,5,6,7$ digits, respectively?
2. How many digits will there be in the squares of numbers containing 1 integral and 1 decimal place? 2 integral and 1 decimal place? 1 integral and 2 decimal places? 3 integral and 4 decimal places?
3. How many digits will there be in the square roots of numbers containing $3,4,5,7$, or 10 integral places?
4. How many digits will there be in the square roots of numbers containing $3,4,5,7$, or 8 decimal places?
5. How many digits will there be in the square roots of numbers containing 3 integral and 1 decimal place,

4 integral and 3 decimal places, 5 integral and 5 decimal places?
6. What will be the value and the place of the highest digit in the square roots of: $265,3708,69214, \cdot 2618$, $432 \cdot 15$?

When a number is not easily factored, or when the factors cannot be arranged into two equal groups, the square root is found as follows:

Example: Find to one decimal place the square root of $3246 \cdot 5$.
$\frac{3246 \cdot 50(56 \cdot 9}{106) 746}$

$\frac{636}{112 \cdot 9)}$| $\frac{110 \cdot 50}{101 \cdot 61}$ |
| :---: |
| $8 \cdot 89$ |

Explanation:

The steps in the method are as follows:

1. Begin at the decimal point and separate the digits, left and right, into periods of two figures each.
2. Find the greatest number whose square is contained in the left-hand period, place it at the right as if it were the first digit of a quotient, subtract its square from the left-hand period, and to the right of the remainder add the next period for a dividend.
3. Double the part of the square root already found, and place the product at the left for a trial divisor; divide the dividend, leaving out the right-hand digit, by this trial divisor, and the quotient will be the second digit in the square root.
4. Place the second digit to the right of the trial divisor, and multiply the whole divisor thus formed by this second digit; subtract the product from the divi-
dend; and to the right of the remainder place the next period to get the next dividend.
5. Again double the part of the square root now found; use the product for a trial divisor, and find the third digit of the square root as before. So proceed until all the periods are taken down.

EXERCISE 120

Find the square root of each of the following numbers:

1. $3844,4096,5329,8464$.
2. $19881,24336,37249,65536,97969$.
3. $173056,277729,356409,654481,772641$.
4. 2819041, $7387524,38576521$.
5. •1296, 3249, •6241, $\cdot 7744, \cdot 0289, \cdot 0729$.
6. $7 \cdot 29,11 \cdot 56,146 \cdot 41,49 \cdot 1401,341 \cdot 1409$.
7. $\cdot 150544, \cdot 327184,1218 \cdot 7081,5 \cdot 774409$.
8. Find the square roots of the following, correct to three places of decimals:

$$
2,3,5,10,17,123, \cdot 9, \cdot 51,6 \cdot 2,4 \cdot 25
$$

9. Find the square roots of the following fractions: $\frac{361}{87}, \frac{78}{84} \frac{4}{1}, \frac{1}{24 \frac{4}{0} 1}, 3 \frac{1}{16}, 25 \frac{1}{1 \frac{1}{4}}, 32 \frac{1}{6} \frac{4}{25}$.
10. Find to three places of decimals the square root of each of the following:

$$
\frac{3}{4}, \frac{5}{7}, \frac{3}{11}, \frac{4}{27}, 4 \frac{1}{2}, 3 \frac{2}{3} .
$$

11. At what rate per cent. per annum will a sum of money amount to $1 \cdot 1025$ of itself in two years if interest is compounded annually?
12. A rectangular field is 45 rods long and 25 rods wide. Find the length of the side of a square field whose area is the same as that of a rectangular one.

SECTION VII

MEASUREMENTS

1. PERIMETERS AND AREAS

(1) The Rectangle

For measurements of rectangles and squares see pages 122-124.

> (2) The Triangle

The area of a triangle $=\frac{1}{2}$ the area of a rectangle which has the same altitude and length of base as the triangle.

EXERCISE 121

1. Find the area of a rectangle whose base is 15 ft . and whose altitude is 8 ft . What will be the area of a triangle having the same base and altitude as the rectangle?
2. Find the area of a triangle whose base is 22 ft . and whose altitude is 11 ft . What will be the area of a rectangle having the same base and altitude as the triangle?

3 . Find the area of a triangle whose base is 13 ft . and whose altitude is 7 ft .4 in .
4. Find the number of feet of inch lumber which will be required to make a triangular floor having a base 18 ft . long and an altitude of 14 ft .2 in .
5. Look at the walls of your house or barn. What parts of them are triangles? Get the measurements of these triangles. Find how many feet of inch lumber it
will require to cover the gable end of the barn; also how much it will cost to paint it at 15 c . a sq. yd. How much inch siding will it require for the four walls of your house or barn? How much will it cost to paint the barn?
6. The area of a triangle is 12 sq. yd.; its base is 9 ft . Find its altitude.
7. The area of a triangle is 135 sq. in.; its altitude is 1 ft .6 in . Find the length of its base.

(3) The Right-angled Triangle

In the right-angled triangle the side opposite the right angle is called the hypotenuse. What names have been given to the other two sides?

On each of the sides of a right-angled triangle, ABC , construct a square. Place the two small squares as shown by the heavy lines and the large square as shown by the dotted lines in the figure. You will see by placing the triangle (1) on the triangle (4) and the triangle (2) on the triangle (3) that:

The area of the square on the hypotenuse $=$ the sum of the areas of the squares on the other two sides.

EXERCISE 122

1. The base of a right-angled triangle is 4 ft ., the altitude is 3 ft . What is the area of the square on the hypotenuse? What is the length of the hypotenuse? Construct the triangle and measure the sides.
2. Find the length of the hypotenuse of a right-angled triangle whose base is 12 ft . and whose altitude is 9 ft .
3. A wall is 15 ft . high and 20 ft . long. Find the distance from the upper right-hand corner to the lower left-hand corner.
4. Find the length of wire which will reach from the top of a telegraph pole 20 ft . high to a point on the ground 24 ft . from the foot of the pole.

5 . The hypotenuse of a right-angled triangle is 16 ft . and the base is 6 ft . Find the altitude, correct to 2 places of decimals.
6. Mention lines in your school-room which will be the sides of right-angled triangles. Measure two of the lines for any triangle and then calculate the length of the third. Check your answers by measuring the lines.

(4) The Circle

(a) Circumference.-What is meant by the diameter of a circle? By the radius?
 By the circumference? Mention some objects about you whose surfaces are circles. Measure their diameters and their circumferences. By division find, to two decimal places, the number of times the circumference contains the diameter.

It will be found that approximately:

The circumference of a circle $=3 \frac{1}{4}$ times its diameter.

EXERCISE 123

1. What is the circumference of a circle whose diameter is 14 ft ? 8 ft .? 6 ft .? 20 in .?
2. What is the circumference of a circle whose radius is $6 \frac{1}{2} \mathrm{ft}$? 9 ft ? 12 ft .?
3. What is the diameter of a circle whose circumference is 33 ft .? 18 ft .? 75 ft .?
4. A wheel 4 ft . in diameter will make how many turns in going 2 miles?
5. The diameter of a circular garden is 21 yd. How much farther will a man have to walk to reach the opposite side, if instead of crossing the garden he goes around it?
6. A locomotive runs at the rate of 42 miles an hour. The diameter of the driving-wheel is 6 ft . How many turns does the wheel make in a minute? in a second?
(b) Area.-Cut out a circle of leather or stiff paper. Divicle it into halves and
 place one half on top of the other. Now, by cutting from the centre of the circle to, but not through, the circumference, divide the two halves into the same number of triangular shapes as small as possible. Then open out each half and insert the parts of one half between those of the other, as shown in the figure below.

It will be seen that, if there are parts enough, the figure will become a rectangle.

The area of a circle is equal to $\frac{1}{2}$ the area of a rectangle of which the base is equal to the circumference and the altitude equal to the radius of the circle.

EXERCISE 124

1. Find the area of a circle whose radius is $7 \mathrm{ft} ., 5 \mathrm{ft}$. 3 in., 19 yd., 24 ft .6 in .
2. Find the area of a circle whose diameter is 8 ft ., 15 ft ., 10 ft .2 in ., 12 yd .
3. Find the area of a circle whose circumference is 22 ft ., 33 yd ., 40 rd .
4. How many acres of land will be inclosed by a circular race-track 1 mile long?
5. Find in yards, correct to two decimal places, the circumference of a circular garden containing $\frac{1}{4}$ of an acre.
6. Find the area of a circle whose diameter is 14 feet. Give dimensions for rectangles having the same area as the circle.
7. Measure the diameter of a 25 -cent piece, of a $50-$ cent piece. Find the area of each.
(5) The Cylinder

How many faces has a cylinder? Name objects which are cylindrical in shape. Is your pencil a cylinder? Is a 5 -cent piece a cylinder?

How is the area of the two ends of a cylinder found? If a piece of paper be fitted about the curved face of a cylinder and then unrolled, as shown in the foregoing Figure, what would be the shape of the paper? How is its area found?

The area of the curved face of a cylinder equals that of a rectangle of which the base is equal to the circumference and the altitude equal to the height of the cylinder.

EXERCISE 125

1. Find the area of the curved surface of a cylinder whose circumference is 10 ft . and altitude is 8 ft .; circumference $15 \frac{1}{2} \mathrm{ft}$. and altitude $5 \frac{1}{2} \mathrm{ft}$.; circumference 3 ft . and altitude 18 in .
2. Find the area of the curved surface of a cylinder, of which the altitude is 20 ft . and the diameter is 4 ft .8 in .

3 . What will it cost at $1 \frac{1}{2} \mathrm{c}$. a sq. ft . to paint the outside of a cylindrical silo the radius of which is $6 \frac{2}{3} \mathrm{ft}$. and whose altitude is 21 ft .?
4. A lawn roller is 3 ft .6 in . long and 21 in . in diameter. How many square yards of lawn will it cover in making 225 turns?
5. Find the difference, in square inches, between the total area of the surface of a cube 7 in . long and that of a cylinder 7 in . in diameter and 7 in . in height.
6. The area of the curved face of a cylinder is 396 sq. ft . The altitude is 12 ft . Find the diameter.
7. Find the area of the curved surface of a cylinder the base of which contains $9 \frac{5}{8} \mathrm{sq}$. in. and the height of which is 16 in.

2. VOLUMES

(1) Prisms and Cylinders

We have here the figures of three solids. The first is known as a rectangular (in this case square) prism; the second is a triangular prism; and the third is a cylinder.

How is the volume of the rectangular prism found? How can the volume of the triangular prism be found? In both cases, the number of cubic units in the volume equals the number of square units in the ared of the base multiplied by the number of linear units in the height. The same is true of the cylinder.

EXERCISE 126

1. What is the volume of a square prism whose altitude is 15 ft .6 in . and the side of whose base is 4 ft .? Find also the area of its lateral surface.
2. What is the volume of a triangular prism 30 ft . high, one side of whose base is 8 ft ., and the length of the perpendicular on it from the opposite angle is 5 ft .?
3. What is the volume of a cylinder whose diameter is 12 ft . and whose height is 32 ft .?
4. How many cubic feet of water will a circular cistern hold if the diameter is 6 ft . and the depth $10 \frac{1}{2} \mathrm{ft}$.? How many gallons will it hold, there being $6 \frac{1}{4} \mathrm{gal}$. in 1 cu . ft .?
5. The water from a flat roof is carried into a rectangular cistern 6 ft . square. If the whole roof is 36 ft . long and 28 ft . wide, how high will a rainfall of $\frac{1}{4} \mathrm{in}$. raise the water in the cistern?

EXERCISE 127 (REview)

1. A flagpole 48 ft . high casts a shadow 64 ft . long. How far is it, in a straight line, from the top of the pole to the end of the shadow?
2. If there are $1 \frac{1}{4}$ bu. in a cubic foot, how many bushels of grain can be stored in a circular tank whose diameter is 30 ft . and whose height is 63 ft .?
3. If a tor of coal measures 40 cu . ft., how many tons can be storeu in a rectangular coal shed 60 ft .4 in . long, 24 ft . wide, and 10 ft . high?
4. There are $6 \frac{1}{4}$ gal. in a cu. ft . In 20 min. how many gallons of water will flow through a $3 \frac{1}{2}$ - in. pipe if the water is running at the rate of 3 mi . an hour?
5. Find the difference in rods, correct to two decimal places, between the perimeter of a square field containing 10 acres and the circumference of a circular field of the same area.
6. How many square inches of cardboard will it take to make a triangular prism 18 in . long, the end of which is a right-angled triangle whose base is 8 in . and whose altitude is 6 in.? What will be the volume of the prism?
7. How many cubic inches of lead will it take to make 3 ft . of $2 \frac{1}{2}-\mathrm{in}$. pipe, the lead being $\frac{1}{4} \mathrm{in}$. in thickness?
8. Find the total surface area and the volume of a cylinder whose diameter is 14 in . and whose altitude is 30 in .
9. A church steeple 72 ft .6 in . high casts a shadow 58 ft . long. What will be the height of a flagpole which at the same time casts a shadow 64 ft .8 in . long?
10. Using a scale $\frac{1}{8}$ of an inch to a foot, draw on a sheet of paper a plan of the whole of the ground floor of your house. At present prices, find the cost of 1 -in. lumber which would be required to make the flooring.
11. A silo should provide a base area of 5 sq . ft . for each cow to be fed therefrom. If a ton of ensilage occupies $50 \mathrm{cu} . \mathrm{ft}$., find the diameter and the height of a round silo for 30 cows, each cow to get 40 lb . daily for 180 days.

SECTION VIII

TABLES OF WEIGHTS AND MEASURES

VALUE

1. Canadian Money:

The standard unit of value is the dollar.

10 mills	$=1$ cent (c).
100 cents	$=1$ dollar $(\$)$

2. United States Money:

10 mills	$=1$ cent
10 cents	$=1$ dime
10 dimes	$=1$ dollar
10 dollars	$=1$ eagle.

3. British Money:

$$
\begin{aligned}
& 4 \text { farthings }=1 \text { penny (d.) } \\
& 12 \text { pence }=1 \text { shilling }(\mathrm{s} .) \\
& 20 \text { shillings }=1 \text { pound }(£) \\
& 5 \text { or } 1 \text { sovereign } \\
& 5 \text { shillings }=1 \text { crown } \\
& 21 \text { shillings }=1 \text { guinea. }
\end{aligned}
$$

$$
£ 1=\$ 4 \cdot 86 \frac{2}{3} .
$$

LENGTH

The standard unit of length is the yard.

$$
\begin{aligned}
12 \mathrm{inchies}(\mathrm{in} .) & =1 \text { foot (ft.) } \\
3 \text { feet } & =1 \text { yard (yd.) } \\
5 \frac{1}{2} \text { yards } & =1 \mathrm{rod}(\mathrm{rd.}) \\
320 \text { rods } & =1 \text { mile (mi.) }
\end{aligned}
$$

$1 \mathrm{mi} .=320 \mathrm{rd} .=1760 \mathrm{yd} .=5280 \mathrm{ft}$.
$6 \mathrm{ft} .=1$ fathom; $4 \mathrm{in} .=1$ hand
$1 \mathrm{mi} .=8$ furlongs; 1 knot $=1.15 \mathrm{mi}$. (nearly)
1 chain $=100$ links $=22 \mathrm{yd}$.

AREA OF SURFACE

144 square inches (sq. in.)	$=1$ square foot (sq. ft.)
9 square feet	$=1$ square yard (sq. yd.)
$30 \frac{1}{4}$ square yards	$=1$ square rod (sq. rd.)
160 square rods	$=1$ acre (ac.)
640 acres	

$$
\begin{aligned}
10 \text { square chains } & =1 \text { acre } \\
1 \text { square mile } & =1 \text { section } \\
36 \text { square miles } & =1 \text { township } \\
100 \text { square feet } & =1 \text { square of roofing, flooring, etc. }
\end{aligned}
$$

VOLUME

1728 cubic inches (cu. in.) = 1 cubic foot (cu. ft.)
27 cubic feet $\quad=1$ cubic yard (cu. yd.)
128 cubic feet $=1$ cord (cd.)

CAPACITY

The standard unit of capacity is the gallon, which is equal to the space occupied by ten pounds of distilled water at a temperature of $62^{\circ} \mathrm{F}$., and which contains $277 \cdot 274$ cubic inches.

1. Dry Measure:

2 pints (pt.)	$=1$ quart (qt.)
4 quarts	$=1$ gallon (gal.)
2 gallons	$=1$ peck (pk.)
4 pecks	$=1$ bushel (bu.)
8 bushels	$=1$ quarter (British market)
1 bushel	$=2218 \cdot 192$ cu. in.

2. Liquid Measure:

4 gills	$=1$ pint
2 pints	$=1$ quart
4 quarts	$=1$ gallon
$31 \frac{1}{2}$ gallons	$=1$ barrel (bbl.)
63 gallons	$=1$ hogshead (Hgd.)

$1 \mathrm{cu} . \mathrm{ft}$. of water contains almost $6 \frac{1}{4} \mathrm{gal}$. and weighs nearly $62 \frac{1}{2}$ pounds.
3. Apothecaries' Fluid Measure:

Used in filling medical prescriptions 60 minims (m.) $=1$ fluid drachm (f^{3})
8 fluid drachms $=1$ fluid ounce ($f_{\frac{\xi}{5}}$)
18 fluid ounces $=1$ pint (0)
8 pints $\quad=1$ gallon.

WEIGHT

The standard unit of weight is the pound avoirdupois.

1. Avoirdupois Weight:

16 ounces (oz.)	$=1$ pound (lb.)
100 pounds	$=1$ hundredweight (cwt.)
	or 1 cental
2000 pounds	$=1$ ton (T.)

196 pounds $=1$ barrel of flour
200 pounds $=1$ barrel of beef or pork
280 pounds $=1$ barrel of salt
14 pounds $=1$ stone
2240 pounds $=1$ long ton, used sometimes to measure coal, iron, etc.
2. Troy Weight:

$$
\begin{array}{ll}
24 \text { grains (gr.) } & =1 \text { pennyweight (dwt.) } \\
20 \text { pennyweights } & =1 \text { ounce (oz.) } \\
12 \text { ounces } & =1 \text { pound (lb.) }
\end{array}
$$

1 pound Troy $=5760$ grains
1 pound Avoirdupois $=7000$ grains.
The unit used for weighing diamonds, gems, etc., is the carat, which is about $3 \cdot 2$ grains Troy.
The carat is also used to express the fineness of gold. For instance, 18 -carat gold is $\frac{18}{2}$ pure gold, and 10 -carat gold is $\frac{12}{2} \frac{1}{8}$ pure gold.
3. Apothecaries' Weight:

Used in filling medical prescriptions

$$
\begin{aligned}
20 \text { grains } & =1 \text { scruple (sc. or } 9) \\
3 \text { scruples } & =1 \text { drachm }(\text { dr. or } 3) \\
8 \text { drachms } & =1 \text { ounce }(\text { oz. or } 3) \\
12 \text { ounces } & =1 \text { pound (bb.) }
\end{aligned}
$$

MISCELLANEOUS WEIGHTS

Grains, Vegetables, Etc.
$60 \mathrm{lb} .=1 \mathrm{bu}$. of wheat, beans, clover-seed, peas, potatoes
$56 \mathrm{lb} .=1 \mathrm{bu}$. of Indian corn, rye, flax-seed
$50 \mathrm{lb} .=1 \mathrm{bu}$. of onions, beets, carrots, turnips
$48 \mathrm{lb} .=1 \mathrm{bu}$. of barley, buckwheat, timothy-seed
$45 \mathrm{lb} .=1 \mathrm{bu}$. parsnips
$44 \mathrm{lb} .=1 \mathrm{bu}$. of hemp seed
$40 \mathrm{lb} .=1 \mathrm{bu}$. of castor beans
$36 \mathrm{lb} .=1 \mathrm{bu}$. of malt
$34 \mathrm{lb} .=1 \mathrm{bu}$. of oats
$14 \mathrm{lb} .=1 \mathrm{bu}$. of blue grass seed.

TIME

The standard unit of time is the Mean Solar Day.

60 seconds (sec.)	$=1$ minute (min.)
60 minutes	$=1$ hour (hr.)
24 hours	
7 days	$=1$ day (dy.)
12 months	
$=1$ year (yr.)	
365 days	
366 days	
10 common year	
10 years	
100 years	
	$=1$ deap yeare

The true solar year is 365 dy., 5 hr ., 48 min ., 46 sec .
Every year the number of which is exactly divisible by 4 is a leap year, except those years the numbers for which end in two ciphers. These are leap years only when the numbers are exactly divisible by 400 .

ANGLES AND ARCS

Used for angles, direction, latitude, longitude, etc.

60 seconds $\left({ }^{\prime \prime}\right)$	$=1$ minute $\left(^{\prime}\right)$
60 minutes $\left({ }^{\prime}\right)$	$=1$ degree $\left(^{\circ}\right)$
360 degrees	$=1$ circle or circumference
90 degrees	$=1$ quadrant or right angle.

MISCELLANEOUS

Counting
12 articles $=1$ dozen (doz.)
12 dozen $=1$ gross (gro.)
12 gross $=1$ great gross
20 things $=1$ score.

$$
\begin{aligned}
24 \text { sheets of paper } & =1 \text { quire } \\
20 \text { quires } & =1 \text { ream. }
\end{aligned}
$$

Paper is frequently sold by the pound or in pads of parcels of 100,500 , or 1000 sheets.

FOREIGN COINS

Normal Values

Coin	Country	Value
Rouble	Russia	$\$ 0.515$
Franc	France	0.193
Lira	Italy	0.193
Mark	Germany	0.238
Yen	Japan	0.498
Peseta	Spain	0.193
Peso	Chile	0.365
Crown	Sweden	0.268

THE METRIC SYSTEM

The following relations selected from the Metric Tables of weights and measures will be found useful:

1. Length. The unit of length is the metre, which is equal to $39 \cdot 37$ inches.

$$
\begin{aligned}
& 10 \text { millimetres }(\mathrm{mm} .)=1 \text { centimetre } \\
& 10 \text { centimetres }(\mathrm{cm} .)=1 \text { decimetre } \\
& 10 \text { decimetres }(\mathrm{dm} .)=1 \text { metre } \\
& 1000 \text { metres }(\mathrm{m} .)=1 \text { Kilometre }(\mathrm{Km} .) \\
& \text { Approximately, } 8 \text { Kilometres }=5 \text { miles. }
\end{aligned}
$$

2. Volume.

1000 cubic millimetres $=1$ cubic centimetre 1000 cubic centimetres $=1$ cubic decimetre 1000 cubic decimetres $=1$ cubic metre.
Approximately, 1 cubic centimetre $=\cdot 06103$ cubic inches.
3. Capacity. The unit of capacity is the litre. It is equal to a cubic decimetre, and is nearly equal to $1 \frac{3}{4}$ pints.
4. Weight. The unit of weight is the gramme. The gramme is the weight of a cubic centimetre of pure water at its greatest density.

$$
\begin{aligned}
& 1000 \text { grammes }=1 \text { kilogramme } \\
& 1000 \text { kilogrammes }=1 \text { metric ton. }
\end{aligned}
$$

A kilogramme is about $2 \frac{1}{5} \mathrm{lb}$., and a metric ton about $2204 \cdot 6 \mathrm{lb}$.

SECTION IX

MISCELLANEOUS PROBLEMS

EXERCISE 128

1. Fill in the following statement of seven weeks' cash receipts, and prove the correctness of your work by adding horizontally and vertically:

Week	Mon.	Tues.	Wed.	Thurs.	Fri.	Sat.	Total
1st.	\$65.91	\$88.74	\$41.82	\$33.60	\$44.18	\$29.41	
2nd	$54 \cdot 36$	$70 \cdot 29$	36.42	84.72	$63 \cdot 18$	98.72	
	81.27	29.82	26.71	21.90	29.16	23.18	
	54.77	86.41	21.86	90.82	80.27	36.87	
	81.29	43.81	87.90	21.44	24.33	20.09	
6 th	29.04	63.83	27.60	86.92	36.81	74.71	
7th	$40 \cdot 01$	28.42	72.89	27.34	$27 \cdot 42$	$64 \cdot 13$	
Total							

- 2. A grocer has a tub of butter on which he would gain $\$ 2 \cdot 24$ if he sold it at 64 c . a pound, but he would lose $\$ 1.68$ if he sold it at 57 c . a pound. Find the weight of the butter and the cost of one pound.

3. (a) Find the value of: $(36 \times 217 \times 528 \times 75) \div$ $(84 \times 396 \times 155 \times 27)$.
(b) Divide 4682973 by 378 , using the factors 6,7 , and 9 , and show how to get the complete remainder.
4. A man owing $\$ 9260$ is able to pay only 48 c . on the dollar. What is his property worth?
5. Pure milk is worth 7 c . a quart. If 2 quarts of water be mixed with every 3 gallons of milk, what will a quart of the mixture be worth?
6. How many bushels of barley worth 62c. a bushel must a dealer mix with 135 bushels worth 53c. a bushel, in order to make a mixture worth 59 c . a bushel?
7. Find the cost of the poles and wire required for a telephone line 9 miles long, measured from the first
to the last pole, if the poles are placed 44 yd . apart and cost $\$ 1.10$ each and if there are two wires each weighing 180 lb . to the mile and costing $4 \frac{1}{2} \mathrm{c}$. a pound.
8. Mrs. Libby has a flock of 60 hens, each of which lays on an average 100 eggs a year. All the eggs but 25 doz. are sold at 55c. a dozen. From the 25 doz . are hatched 270 chickens which are sold at 20 c. each. Find the net profits for the year if it costs 20c. a month to feed each hen.
9. The product of four consecutive numbers is 143640. Find the numbers.
10. Find the G. C. M. of: 3127,3551 , and 3975.
11. Find the L. C. M. of: 1185, 1580, and 1975.
12. Find the length of the longest unit that will exactly divide 88 yd .2 ft .5 in ; and 119 yd .2 ft .1 in.
13. A boy on being asked what $\frac{1}{1} \frac{2}{3}$ of a certain fraction was, made the mistake of dividing the fraction by $\frac{1}{1} \frac{2}{5}$, and so got an answer which exceeded the correct answer by $\frac{25}{182}$. What was the correct answer?
14. Find the value of:
(a) $\left(4 \frac{5}{8}+1 \frac{1}{2} \frac{1}{6}+5 \frac{1}{13}\right)-\left(2 \frac{1}{3} \div \frac{2}{7}\right) \times 1 \frac{2}{4}+1 \frac{3}{5}$.
(b) $1 \frac{4}{4}-\frac{3}{4}$ of $\left(\frac{1}{15}+\frac{1}{5}\right)+\frac{3}{104} \div \frac{2 \frac{3}{18}}{3-\frac{8}{6}}$.
(c) $\left(7 \frac{1}{8}+5 \frac{6}{7}-6 \frac{1}{4}\right) \div\left(\frac{1}{4}\right.$ of $\left.8 \frac{2}{3}\right)$ of $\left(7 \frac{4}{8} \div 8 \frac{3}{8}\right)$.
(d) $\left(2 \frac{2}{8}+3 \frac{11}{2}+4 \frac{3}{8}+2 \frac{5}{6}\right) \div\left(3 \frac{7}{18}-2 \frac{5}{16}\right)$.
15. If a boy buys peaches at the rate of 5 for 2 c . and sells them at the rate of 4 for 3c., how many must he buy and sell to make a profit of $\$ 4.20$?
16. A merchant bought 3 boxes of soap, each containing 112 lb . He kept the soap all summer, and it lost $\frac{1}{4}$ of its weight. He then sold it at 13c. a lb. Find his gain if the soap cost him 25 c . for 3 lb .
17. A man spent $\frac{1}{3}$ of his money, then $\frac{1}{4}$ more than $\frac{5}{8}$ of the remainder. He then found out that he had still $\$ 16$ left. How much money had he at first?
18. Find the cost of making a road 4 mi .120 rd .11 yd . long at $\$ 760$ a mile.
19. A Canadian dealer imported 210 yd. of tweed at 6 s .3 d . a yd. Find the cost in Canadian money if $£ 1=$ $\$ 4 \cdot 86 \frac{2}{3}$.
20. For every cent which A gets, B gets $2 \frac{1}{2} \mathrm{c}$.; and for every dollar B gets, C gets 25 c . If among them they get $\$ 132 \cdot 00$, what is each man's share?
-21. A farmer sells a merchant 6 loads of potatoes, weighing with the wagon $3567 \mathrm{lb} ., 3375 \mathrm{lb} ., 3742 \mathrm{lb}$., $3827 \mathrm{lb} ., 3664 \mathrm{lb}$. , and 3149 lb . If the wagon weighs 1568 lb . and the potatoes are worth 65c. a bushel, how much should the farmer receive?
21. In canning a bushel of peaches, 12 lb . of sugar are used and 20 quart jars of canned fruit are obtained. Find the cost per quart if the peaches cost $\$ 2 \cdot 25$, the sugar $\$ 1$ for 15 lb ., the jars $\$ 1.05$ a dozen, and the labour $\$ 1 \cdot 25$.
22. A calf fed on fresh milk will gain 1 lb . in weight for every $1 \frac{1}{4}$ gal. of milk. If milk is 10 c . a quart, what will it cost to increase the weight of a calf from 90 to 165 lb .?
23. A contractor undertakes a job that requires the work of 18 men for 15 days. At the end of 5 days, 6 of the men stop work. How many additional men must he employ at the end of the twelfth day, in order that the job may be finished within the contract time of 15 days?
24. A man bought 24 head of cattle. The average weight of the first three was 975 lb .; that of the next four, 1218 lb .; of the next nine, 1124 lb .; and of the remainder 967 lb . What was the average weight of all the 24 , and what did they cost at $8 \frac{1}{2} \mathrm{c}$. a 1 b .?
25. A farmer sells a grain merchant $33,630 \mathrm{lb}$. of wheat at $\$ 1 \cdot 20$ a bu., $6,817 \mathrm{lb}$. of oats at 40 c . a bu., $16,814 \mathrm{lb}$. of rye at 80 c . a bu., $12,600 \mathrm{lb}$. of potatoes at 60 c . a bu. Make out the bill, inserting names, place, and date, Also receipt the bill.
26. At the beginning of the year 1918 the assets of Messrs. Reed, Henry \& Co., were: Cash, $\$ 2368.25$; Merchandise, $\$ 8372$; Accounts outstanding, $\$ 1364.87$. Their liabilities were: Notes, $\$ 2385$; Accounts unpaid, $\$ 1694 \cdot 50$. At the end of the year their assets were: Cash, $\$ 4576 \cdot 25$; Merchandise, $\$ 9465$; Accounts outstanding, $\$ 2425 \cdot 90$. Their liabilities were: Notes, $\$ 3000$; Accounts unpaid, $\$ 1267 \cdot 75$. Did the firm gain or lose during the year, and how much?
27. Find the value of:
(a) $39.216 \times \cdot 428 \div \cdot 0642$.
(b) $\frac{5 \text { of } \cdot 4}{\frac{2}{5} \text { of } \frac{1}{2}}+\frac{\frac{7}{2} \text { of } 2 \frac{2}{5}}{3-\cdot 2}$.
(c) $\frac{(55 \cdot 1-41 \cdot 98) \times 4.31}{(6.842+3.158) \div \cdot 125}$.
28. Reduce 240 rd .4 yd .2 ft . to the decimal of a mile.
29. The average age of the pupils in a school of 300 pupils is $9 \cdot 75$ yr. If 20 new pupils are admitted whose average age is 10.35 yr ., what is now the total average age?
30. In 1919 the Champlain Cheese Factory received $\$ 18,591.41$ for cheese, and $\$ 63.43$ for interest on deposits in the bank. The factory paid $\$ 1828 \cdot 39$ for manufacturing and other expenses. George Crane, one of the shareholders, had, at the end of the year, $71,430 \mathrm{lb}$. of milk to his credit. If the total amount of milk manufactured was $1,742,323 \mathrm{lb}$., how much of the factory's profits would Mr. Crane receive?
31. A railway passes through John Miller's farm for a distance of 130 rods, the right of way being 75 ft . wide. At $\$ 120$ an acre, what is the value of the land taken by the railway?
32. If it costs $\$ 150$ to fence a square field at 75 c . a rod, what will it cost to plough the field at $\$ 1.25$ an acre?
33. A map is drawn on a scale of one inch to 10 miles, and a township is represented on it by a square whose side is $1 \frac{1}{2} \mathrm{in}$. How many acres are there in the township?
34. The average person inhales 30 cubic inches of air at a breath and breathes 18 times in a minute. When one tenth of a given volume of air is breathed, the whole volume is unfit for breathing. In what time would two persons vitiate the air in a bed-room 15 ft . long, 12 ft . wide, and 10 ft . high?
35. A freight car is 36 ft . long, 8 ft .6 i.n. wide, and 9 ft . high. How many cubic feet does it contain? If its capacity is $60,000 \mathrm{lb}$., to what height can it be loaded with wheat?

Note.-A bushel $=2218^{\circ} 2 \mathrm{cu}$. in.
37. A well-ventilated poultry house should furnish $5 \mathrm{sq} . \mathrm{ft}$. of floor space and $30 \mathrm{cu} . \mathrm{ft}$. of air space for each fowl. If the house is 15 ft . wide, what should its other dimensions be to house 60 fowls?
38. If a cubic foot of water contains $6 \frac{1}{4}$ gal., find how much sediment will be removed from a 40 -acre ploughed field after a 2 -in. rainfall, assuming that $\frac{1}{4}$ of the water runs off and that every 300 gal. carries with it 1 lb . of sediment.
39. At $\$ 20$ a thousand find the total cost of 55 scantlings 18 ft . long, 4 in . wide, and 3 in . thick; 9 scantlings 14 ft . long, 5 in . wide, and 4 in . thick; 8 scantlings 12 ft . long, 6 in. wide, and 5 in . thick.
40. A farmer sent to market 120 lb . of cream containing 25% butter fat. From how many pounds of milk containing 3.75% butter fat was this cream taken?
41. A man sold $\frac{1}{2}$ of a lot of lumber for $\frac{5}{8}$ of what the lot cost. What per cent. was gained on the part sold?
42. The owner of a house was offered $\$ 2500$ for it. If the offer had been accepted, the loss would have been $16 \frac{2}{3} \%$. The house was afterwards sold for $\$ 3500$. Find the gain or the loss per cent.
43. A dressmaker bought 75 yd . of white lining for $\$ 41 \cdot 25$. She sold 60% of it at a gain of $33 \frac{1}{3} \%$, and the remainder at 50 c . a yard. Find her total gain or loss per cent.
44. A miller pays 50 c. a bushel for barley, 70 c. a bushel for peas, and 75 c , a bushel for corn. He mixes together 5 bushels of barley, 15 bushels of peas, and 10 bushels of corn, and sells the mixture at $\$ 1 \cdot 50 \mathrm{a} \mathrm{cwt}$. Find his gain per cent.
45. A client gave his lawyer an account for $\$ 600$, instructing him to collect what he could of it and agreeing to pay him a commission of $2 \frac{1}{2} \%$ of the amount collected. If the lawyer's commission amounted to \$12, what per cent. of the account did he collect and how much did the client receive?
46. A wholesale firm gives its salesmen a choice of two contracts. The first is a salary of $\$ 2500$, with $\$ 1500$ for expenses and $2 \frac{1}{2} \%$ on all sales over $\$ 60,000$. The second is a single commission of $5 \frac{1}{2} \%$ on all sales. How much will a salesman gain or lose by taking the second offer if his annual sales are $\$ 100,000$?
47. A dry-goods merchant sold some cloth at 20% less than the marked price and still made a profit of $8 \frac{1}{3} \%$. At what price was the cloth marked if it cost him $\$ 240$?
48. The following Figure shows the four dials of a gas-meter. Dial No. 1 records the number of hundred cubic feet of gas; dial No. 2, the number of thousand cubic feet; dial No. 3, the number of ten-thousand cubic feet, etc.

Note.-Read the last number which the hand has passed, or that on which it rests.

(a) How many cubic feet of gas does the gas-meter register?
(b) Find the net cost of the gas at $\$ 1.50$ a thousand cubic feet with a discount of $16 \frac{2}{3} \%$.
(c) Draw the Figure to show the position of the hands when $86,900 \mathrm{cu} . \mathrm{ft}$. more gas has passed through the meter.
49. The assessed valuation of the real estate of a municipality is $\$ 2,350,640$, and that of the personal property is $\$ 876,500$. The year's expenses are: For schools, $\$ 10,000$; for interest, $\$ 2579.96$; for roads, $\$ 8500$; for salaries, $\$ 6400$; for sinking fund, $\$ 8500$; and for other expenses, $\$ 15,000$. The municipality receives $\$ 5800$ from licenses. What tax must be levied on the dollar to meet the net expenditure?
50. What was the duty on 1250 gallons of spirits invoiced at $\$ 6 \cdot 40$ a gallon, there being a specific duty of $\$ 1.75$ a gallon and an ad valorem duty of 35% ? What was the total cost including the duty?
51. A shipment of grain was insured at $\frac{4}{5} \%$ to cover 75% of its value. The premium paid was $\$ 33 \cdot 12$. If the grain was worth 92 c . a bushel, find the number of bushels.
52. Frank pledged his watch to a pawnbroker for $\$ 25$. At the end of 40 days he redeemed it for $\$ 26 \cdot 50$. What rate of interest did he pay?
53. How much money must be put at simple interest at 8% per annum on Jan. 1st, 1918, so that on March 15th, 1921, there will be $\$ 198.85$ interest due?
54. In 1919 L. Thompson made deposits in his bank as follows: Jan. 1st, Balance $\$ 306$; Jan. 20th, $\$ 480$; Feb. 3rd, $\$ 95$; Feb. 26th, \$375; Mar. 8th, \$260; Apr. 10th, $\$ 508$. His withdrawals were as follows: Jan. 10th, $\$ 100$; Feb. 10th, $\$ 210$; Mar. 17th, $\$ 125$; May 16th, $\$ 105$. Using the minimum monthly balance, find the total amount of interest at 3% per annum which the bank should add to this account on June 30th, 1919.
55. A farmer has 400 bu . of beans which he can sell at once at $\$ 1 \cdot 20$ a bushel. By storing for 6 months at a cost of $\$ 15$ paid in advance, he can realize $\$ 1.30$ a bushel. He
takes the latter course. Money being worth 4% per annum, find his gain or loss at the time of sale.
56. On May 10th, 1920, Wm. Turner gave Henry Sills his note for $\$ 425$ for four months, with interest at the rate of 5% per annum. Write the note and find its value when due.
57. If in 146 days $\$ 370$ amounts to $\$ 376 \cdot 66$, what is the rate of interest per annum?
58. A 3-month note, dated December 10th, 1919, for $\$ 1600$, with interest at $4 \frac{1}{2} \%$, was discounted at the bank Jan. 3rd, 1920 at 6%. Find (a) the day of maturity, (b) the value at maturity, (c) the term of discount, (d) the discount, and (c) the proceeds.

59 . For the benefit of his son a man invests $\$ 4000$ at 5% per annum, interest compounded half-yearly. How much will there be to the son's credit in $2 \frac{1}{2}$ years?
60. What rate of interest does a man receive on his money who invests it in a $4 \frac{1}{2} \%$ stock at 120 ?
61. How much money must one invest in a 4% stock at 102 , in order to have a net income of $\$ 1685$ after paying an income tax of 15 mills on the dollar on all over $\$ 700$?
62. On February 5th, 1920, the value of $£ 1$ was quoted at $\$ 3 \cdot 19$ in New York.
(a) Find what a New York merchant would pay in New York on that date for a bill for $£ 250$ payable in London.
(b) Find what a London merchant would pay in London on that date for a bill for $\$ 800$ payable in New York.
63. Find to two places of decimals the square root of 3762 and of 68,253 .
64. How many rods of fence will inclose an acre in the form of a square? In the form of a circle?
65. The water that falls upon a flat roof $45 \mathrm{ft} . \times$ 66 ft . is carried by pipes into a cistern 10 ft .6 in . in diameter. What will be the depth of the water in the cistern after a rainfall of $3 \frac{1}{2}$ in.?

ANSWERS

SECTION I

All exercises in this Section are to be carefully checked by the pupils. Therefore, no answers are given.

SECTION II

EXERCISE

16.- 1. (a) $\$ 1426 \cdot 02$, (b) $\$ 3931 \cdot 66$, (c) $\$ 2195 \cdot 15$, (d) $\$ 3113 \cdot 44$.
2. (a) $\$ 5014 \cdot 53$,
(b) $\$ 4257 \cdot 67$
(c) $\$ 4533 \cdot 29$, (d) $\$ 4034 \cdot 54$.
3. (a) $\$ 66611 \cdot 07$, (b) $\$ 54502 \cdot 37$, (c) $\$ 62145 \cdot 57$.
4. (a) $\$ 314733 \cdot 32$,
(b) $\$ 5552 \cdot 96$,
(c) $\$ 5750 \cdot 28$.
17.- 1. (a) $\$ 2955 \cdot 48$, (b) $\$ 4644 \cdot 35$, (c) $\$ 2475 \cdot 67$, (d) \$1243•57, (e) \$6648•64, (f) \$6180.62, (g) \$1605•66, (h) \$1382•16.
2. (a) $\$ 74 \cdot 63, \$ 58 \cdot 54, \$ 26 \cdot 21, \$ 11 \cdot 15$; (b) $\$ 753 \cdot 67$, $\$ 406 \cdot 47, \$ 207 \cdot 08$; (c) \$4584.97, \$2885.49, $\$ 342 \cdot 43$.
18.- 1. (a) 3593546,
(b) 3799944,
(c) 3727074,
(d) 2602926,
(e) 4302912,
(f) 5169423,
(g) 4591302,
(h) 2933568,
(i) 1503960 ,
(j) 1684202 .
19.-1. $\$ 11 \cdot 69$. 2. $\$ 17 \cdot 64$. 3. $\$ 221 \cdot 81$. 4. $\$ 64$. 5. $\$ 23 \cdot 71$. 6. $\$ 377 \cdot 10$, 7. $\$ 40 \cdot 65$. 8. $\$ 50 \cdot 93$.
$20 .-$ (a) 175, R. 58 ; (b) 280 , R. 165 ; (c) 203, R. 295 ;
(d) 237, R. 254; (e) 218, R. 303; (f) 137, R. 258;
(g) 181, R. 55 ; (h) 73, R. 449 ; (i) 67, R. 69.
21.-1. $\$ 35 \cdot 24$. 2. $\$ 7 \cdot 85$. 3. $\$ 149 \cdot 50$. 4. $\$ 136 \cdot 50$. 5. 65 lb . 6. $58 \mathrm{bu} .18 \mathrm{lb} . \quad$ 7. $\$ 45$. 8. $\$ 2 \cdot 66$. 9. 102 bu .30 lb 10. $\$ 131 \cdot 25$. 11. 31 T.
12. $\$ 115 \cdot 20$. 13. $\$ 1423$.

EXERCISE

$$
\begin{aligned}
& \text { 22.- 1. } \begin{array}{ll}
(\text { a }) & 2 \times 2 \times 3 \times 3 \times 3 \times 3, \\
2 \times 2 \times 3 \times 7, & (\text { c) } 2 \times 3 \times 5 \times 13, \\
& 2 \times 2 \times \\
\times 2 \times 2 \times 7 \times 7, & (\text { d }) \\
2 \times 2 \times 3 \times 5 \times 7, \\
\text { (f) } 3 \times 3 \times 5 \times 11, & \text { (g) } 5 \times 11 \times 11, \\
\times 2 \times 2 \times 3 \times 5 \times 7, & \text { (i) } 2 \times 3 \times 3 \times 7 \times 7, \\
\text { (j) } 2 \times 3 \times 3 \times 109, & \text { (k) } 3 \times 5 \times 17 \times 17, \\
\text { (l) } 2 \times 5 \times 7 \times 7 \times 11 . &
\end{array}
\end{aligned}
$$

23.-1. 87. 2. 137. 3. 129. 4. 87. 5. 137. 6. 223. 7. 834 . 8. $368 . \quad$ 9. 341 . 10. 124 . 11. 923. 12. 836 .
24.-1. (a) 57 c .
(b) $\$ 5 \cdot 10$,
(c) $\$ 2 \cdot 13$,
(d) $87 \cdot 70$,
(e) $\$ 66 \cdot 45$.
25.- 1. Bal. $\$ 32 \cdot 55$. 2. Bal. $\$ 7 \cdot 75$. 3. Bal. $\$ 28 \cdot 25$. 4. Bal. 0 .
26. - No answ/ers are necessary.
27. - 3. 13. 4. $165 \mathrm{lb} ., 55 \mathrm{lb}$ 5. $324 \mathrm{lb} ., 81 \mathrm{lb}$. 6. $\$ 1 \cdot 80,80 \mathrm{c}$. 7. $\$ 22 \cdot 30, \$ 4 \cdot 46$. 8. Av. $\$ 2 \cdot 58$. $9.98 \mathrm{c} ., 14 \mathrm{c}$. $10.8700 \mathrm{lb} ., 2175 \mathrm{lb}$.
28.-7. $\$ 10 \cdot 08$. 8. $\$ 8 \cdot 40$. 9. 408 .
29.- 1. $24 \mathrm{~d} ., 60 \mathrm{~d} ., 240 \mathrm{~d} ., 240 \mathrm{~d}$ 2. $2 \mathrm{~s} ., 3 \mathrm{~s} ., 2 \mathrm{~s} .6 \mathrm{~d}$., 4s. 2d., 8s. 4d. 3. 9072d., 147d., 189d. 4. 20s., $100 \mathrm{~s} ., 240 \mathrm{~s} ., 500 \mathrm{~s} .5 .106 \mathrm{~s} ., 247 \mathrm{~s}$., 502 s .6 .2943 d . 7. $£ 42 \mathrm{~s} .1 \mathrm{~d} . \quad 8 . £ 318 \mathrm{~s} .6 \mathrm{~d}$.
30.- 1. $5280,12320,7260,9240$ 2. $\frac{1}{2}, \frac{1}{4}$. 3. 10. 4. $\$ 16170$. 5. $\$ 3300$. 6. 15 sec 7. 5280 . $8.3 \mathrm{mi} ., 180 \mathrm{mi}$. 9. $\$ 462$. $\quad 10.704$.
31.-7. $\$ 1 \cdot 75.8 . \$ 63 . \quad 9 . \$ 5 \cdot 20$. 10. $\$ 553$. 11. $\$ 24$. 12. $\$ 108$.
32. - 1. $\$ 114 \cdot 80 . \quad$ 2. $\$ 83 \cdot 70$ 3. $\$ 73 \cdot 44$. 4. $\$ 189$. 5. $\$ 147 \cdot 50$. 6. $\$ 498 \cdot 75$. 7. $\$ 459$. 8. $\$ 343 \cdot 44$. 9. $\$ 301 \cdot 84$. 10. $\$ 168$.
33.- 1. $5 \mathrm{hr} . \quad 2.7 \mathrm{hr} .30 \mathrm{~min} . \quad 3.7 \mathrm{hr} .15 \mathrm{~min}$. 4. 18 hr. $15 \mathrm{~min} . \quad$ 5. (a) 16 dy., (b) 61 dy., (c) 101 dy., (d) 259 dy., (e) 356 dy. 7. $\$ 45$. 8. $\$ 53 \cdot 25$. 9. (a) $\$ 36 \cdot 72, \$ 34, \$ 37 \cdot 40, \$ 36 \cdot 38$, $\$ 21 \cdot 08, \$ 28 \cdot 56, \$ 40 \cdot 80, \$ 36 \cdot 72 ; \quad$ (b) $\$ 271 \cdot 66$; (c) $\$ 19 \cdot 72$.
34.- 1. $\$ 7 \cdot 54$. 2. $\$ 2 \cdot 20$. 3.70 yr 4. $\$ 4 \cdot 32$.
5. $\$ 21 \cdot 60$.
6. $\$ 6 \cdot 40$.
7. $\$ 17 \cdot 28$.
8. 2 rm .
9. $\$ 6 \cdot 60$. 10. $\$ 7 \cdot 50$.
35.- 1. (a) $1 \frac{1}{2}$, (b) 2 , (c) 1 , (d) $\frac{5}{7},(e) \frac{7}{7},(f) \frac{9}{10},(g) \frac{1}{1} \frac{1}{2}$, (h) $\frac{7}{10},(i) \frac{41}{50}$.
2. (a) $\frac{3}{4}$, (b) $1 \frac{1}{4}$, (c) $\frac{1}{2}$, (d) $\frac{5}{8}$, (e) $\frac{1}{2}$, (f) 1 , (g) $1 \frac{1}{6}$, (h) $1 \frac{8}{10}$, (i) $\frac{17}{2}$.
3. (a) $1_{1 \frac{7}{12}}$, (b) $1_{\frac{7}{15}}$, (c) $1_{1 \frac{1}{10}}$, (d) $1 \frac{19}{36}$, (e) $\frac{11}{4}$, (f) $1_{\frac{8}{35}}$, (g) 1_{24}^{94}, (h) $1_{6 \frac{5}{6 B}}$, (i) $1_{\frac{1}{5} \frac{9}{5}}$.
4. (a) $1_{3 \frac{1}{6}}$, (b) $\frac{3}{4}$, (c) $1 \frac{19}{6}$, (d) $1_{1 \frac{7}{2}}$, (e) $1 \frac{3}{5}$, (f) $1 \frac{13}{24}$, (g) $2 \frac{1}{4}$, (h) $1 \frac{37}{5}$, , (i) $1 \frac{53}{8}$, (i) $1 \frac{1}{8}$, (k) $1 \frac{9}{7}$, (l) $1 \frac{19}{6}$.
5. $\$ 2 \frac{1}{2}$ 6. $\$ 1$. 7. $1 \frac{3}{8} \mathrm{lb}$. 8. $\$ 1 \frac{1}{2} \frac{1}{0}$. 9. $\frac{3}{4}$ ac. 10. $\frac{11}{1} \mathrm{gal}$. 11. $\$ 2 \frac{8}{20}$.
36.- 2. (a) $7 \frac{5}{8}, \quad$ (b) $10 \frac{20}{3}, \quad$ (c) $8 \frac{1}{18}, \quad$ (d) $10 \frac{1}{2}, \quad$ (e) $10 \frac{1}{4} \frac{9}{2}$, (f) $9 \frac{8}{4} \frac{8}{7} . \quad$ 3. $14 \frac{7}{12} . \quad$ 4. $92 \frac{1}{4} . \quad$ 5. $84 \mathrm{yd} . \quad$ 6. $93 \frac{1}{4} \mathrm{c}$. 7. $23 \frac{7}{12}$ hr. 8. 10_{12}^{52}.
37.- 1. (a) $\frac{2}{6}$, (b) $\frac{5}{6}$, (c) $\frac{1}{4}$, (d) $\frac{3}{10}$, (e) $\frac{1}{4}, \quad(f) \frac{1}{4}, \quad($ g $) \frac{1}{8}$, (h) $\frac{5}{12}, \quad$ (i) $\frac{2}{15}, \quad$ (j) $\frac{3}{25}, \quad$ (k) $\frac{5}{12}, \quad$ (l) $\frac{3}{10}, \quad(m) \frac{8}{14}$, (n) $\frac{19}{3}, \quad$ (o) $\frac{1}{6} \frac{1}{6}, \quad(p) \frac{7}{30}, \quad(q) \frac{5}{24}, \quad(r) \frac{18}{3} \frac{8}{5}, \quad(s) \frac{25}{\frac{25}{32}}$, (t) $\frac{1}{38}$.
2. 告.
3. $\$ \frac{5}{24}$.
4. $\frac{9}{80}$ ac.
5. $\frac{1}{12}$.
38.- 1. (a) $\$ 524972 \cdot 66,(b) \$ 269875 \cdot 14,(c) \$ 1535778 \cdot 16$.
2. (a) $\$ 119166 \cdot 07$, (b) $\$ 554451 \cdot 67$, (c) $\$ 488856 \cdot 45$.
3. (a) 40525524 , (b) 54637996 , (c) 315182725.
4. (a) 1738 , R. 265 ; (b) 3185 , R. 644 ; (c) 81, R. 1486.

EXERCISE
38.- 5. (a) 33002, (b) 17075, (c) 198492, (d) 47362.
6. (a) 6210,
(b) 8064 ,
(c) 18032,
(d) 26013,
7. $\$ 3 \cdot 69$. 9. $61 \frac{1}{4} \mathrm{c} . \quad$ 10. 3034 lb . 11. $\$ 76 \cdot 05$. 12. $\$ 58 \cdot 64$. 13.786d. 14. (a) $\$ 58 \cdot 90$, (b) $\$ 58 \cdot 80$, (c) $\$ 53 \cdot 10$, (d) $\$ 97$, (e) $\$ 300,(f) \$ 21,(g) \$ 133 \cdot 50$. 15. $216, \$ 540$. 16. 72 dy . 17. 8 gal. 18. $\$ 5 \cdot 25$.
19. 15 bbl. 20. $\$ 340$. 21. $\$ 11 \cdot 25$. 22. 775000 .
23. $\$ 1 \cdot 82$. 24. $\$ 77$. 25. 26 lb . 26. $\$ 190$.
27. 103 bu. 28. $\$ 28 \cdot 86$, Bal. 29. $\frac{7}{2},{ }_{4}^{21}, \frac{20}{3}, \frac{81}{8}, \frac{42}{6}$.
30. $\frac{8}{12}, \frac{1}{2} \frac{2}{1}, \frac{20}{2} \frac{4}{4} \frac{4}{4}$. 31. $15 \frac{1}{3} \frac{9}{0}$. \quad 32. (a) $\frac{1}{8} \frac{3}{5}$, (b) $\frac{25}{8} \frac{5}{8}$,
(c) $\frac{17}{8} \frac{7}{4}$.

SECTION III

39.- No answers necessary.
40.- 1. (a) $\$ 10 \cdot 17$, (b) $\$ 11 \cdot 72$, (c) $\$ 15 \cdot 22$, (d) $\$ 18 \cdot 17$, (e) $\$ 8 \cdot 12$. 3. (a) $\$ 487 \cdot 34$, (b) $\$ 771 \cdot 39$.
41.- 1. $\$ 28 \cdot 25 . \quad$ 2. $\$ 29$. 3. $\$ 86$. 4. $\$ 28 \cdot 08$. 5. $\$ 9 \cdot 90$.
42.-1. 15. 2. 36. 3. 12. 4. 17. 5. 17. 6. 13. 7. 12. 8. 91 . 9. 29 . 10. 512. 11.31. 12. 16.
43.-1. 590 , R. 19 ; 564, R. $1 ; 517$, R. $1 ; 496$, R. 9. 2. 1945, R. $34 ; 1751$, R. $14 ; 1667$, R. $40 ; 1592$, R. 6 ; 1459, R.22. 3. 1714, R. $1 ; 1402$, R. $13 ; 826$, R. 23 ; 642, R. 55 ; 550, R.79. 4. 672 , R. 94 . 5. 933 , R. 35
44.-1. (a) 3 , (b) 2 , (c) 4 , (d) 9 , (e) 5 , (f) $2 \frac{2}{3}$, (g) $1 \frac{1}{7}$, (h) $1 \frac{1}{3}$, (i) $1 \frac{1}{3}$, (j) $2 \frac{2}{5}$, (k) $3 \frac{1}{4}$, (l) 3 , (m) 3 , (n) 5 , (o) 2 , $(p) \frac{3}{8},(q) \frac{5}{28},(r) 3_{6}^{\frac{3}{6}},(s) 45,(t) 12$. 2. 100 bu . 3. 21 bu . 4. 180. 5. 27. 6. 5.
45.- 1. 720. 2. $1344 . \quad 3.756$ 4. $1650 . \quad$ 5. 1050. 6. 16800 7. $720 . \quad$ 8. $2002 . \quad$ 9. $144 . \quad 10.780$. 11. 2340. 12. 960.

```
EXERCISE
```



```
        16. }\frac{81895}{16}\mathrm{ . 17. S7% 4. 18, 15 % 28
    47.- 1. 18\frac{f}{25}
        \begin{array} { l l l l l } { 6 . 2 1 \frac { 4 } { 4 } . } & { 7 . 2 3 \frac { 2 } { 5 } \frac { 9 } { 7 } . } & { 8 . 1 8 \frac { 7 } { 9 } . } & { \text { 9. 104} . } & { 1 0 . 9 0 \frac { 1 } { 2 } } \end{array}
        11. 100 \frac{3}{7}\frac{4}{8}. 12. 292 \frac{7}{29}}\mathrm{ .
    48.- 1. \frac{2}{3}.}\begin{array}{llllll}{\frac{5}{19}.}&{\mathrm{ 3. }\frac{1}{3}.}&{4.\frac{1}{2}\frac{1}{7}.}&{\mathrm{ 5. 7}}&{\frac{7}{8}}&{\mathrm{ 6. }\frac{3}{8}.}\end{array}\quad7.\frac{3}{4}
```



```
        14. \frac{0}{11}. 15. \frac{3}{10}. 16. \frac{4}{5}. 17. \frac{17}{2}.}\mathrm{ . 18. }1\frac{1}{8}
```



```
        25.7.7. 26. \frac{1}{3}. 27. \frac{5}{13}. 28. \frac{8}{7}.
    49.- 1. \frac{4}{6},\frac{2}{8},\frac{1}{8}.}\quad\mathrm{ 2. }\frac{20}{60},\frac{15}{6},\frac{12}{60}. 3. 3. \frac{6}{18},\frac{3}{18},\frac{2}{18}
        4. \frac{5}{10},\frac{2}{10},\frac{1}{10}.
        7. }\frac{1}{3}\frac{5}{0},\frac{20}{30},\frac{24}{30}
        8. }\frac{4}{65},\frac{4}{6}\frac{9}{5},\frac{50}{60}
        9. }\frac{35}{40},\frac{12}{4},\frac{20}{40}\mathrm{ .
        10. }\frac{6}{12},\frac{10}{12},\frac{9}{12}.\quad11.\frac{1}{42},\frac{1}{4}\frac{5}{2},\frac{2}{4}\frac{2}{2}.\quad 12. \frac{40}{72},\frac{29}{72},\frac{3}{7
        13. }\frac{15}{100},\frac{18}{100},\frac{18}{100}.\quad14.\frac{40}{100},\frac{35}{100},\frac{41}{100}.\quad15. \frac{75}{100}
        900
    50.-1
```

```
\[
\begin{array}{llllll}
\text { 8. 1. } & \text { 9. } \frac{4}{6} . & \text { 10. } 2 \frac{1}{10} . & \text { 11. } \frac{5}{6} . & \text { 12. } 1 \frac{1}{8} . & \text { 13. } \frac{3}{4} .
\end{array}
\]
\[
\begin{array}{lllll}
\text { 14. } \frac{1}{4} . & 15.1 \frac{1}{16} . & 16 \cdot \frac{5}{16} . & 17 . \frac{13}{32} . & 18.1 \frac{1}{2} .
\end{array}
\]
\[
\begin{array}{llll}
\text { 19. } \frac{4}{15} . & \text { 20. } 2 \frac{1}{8} . & \text { 21. } 1 \frac{13}{15} . & \text { 22. } \frac{1}{16} .
\end{array} \text { 23. } 1 \frac{5}{8} .
\]
\[
\begin{array}{lllll}
\text { 24. } 2 \frac{1}{6} . & \text { 25. } \frac{5}{6} . & \text { 26. } \frac{7}{16} . & \text { 27. } 1 \frac{5}{12} . & \text { 28. } \frac{1}{30} .
\end{array}
\]
\[
\begin{array}{lllll}
\text { 29. } 1 \frac{3}{20} . & \text { 30. } 2 \frac{3}{10} . & \text { 31. } \frac{7}{20} . & \text { 32. } \frac{13}{14} . & \text { 33. } 1 \frac{7}{24} .
\end{array}
\]
\[
\text { 34. } 1 \frac{18}{46} . \quad \text { 35. } \frac{1}{12} . \quad \text { 36. } 1 \frac{8}{40} . \quad \text { 37. } \frac{1}{24} . \quad \text { 38. } 1_{1 \frac{2}{15}} .
\]
\[
\begin{array}{lllll}
\text { 39. } \frac{11}{18} . & \text { 40. } \frac{1}{2} \frac{3}{0} . & \text { 41. } 1 \frac{7}{40} . & \text { 42. } 1 \frac{3}{8} \mathrm{bbl} . & \text { 43. } \frac{4}{5}, \frac{1}{5} .
\end{array}
\]
\[
\text { 44. } 1 \frac{3}{16} \mathrm{mi} . \quad \text { 45. } \$ \frac{1}{20} .
\]
51.- 1. (a) \(12 \frac{5}{6}\), (b) \(2 \frac{1}{5}\), (c) \(6 \frac{1}{6}\), (d) \(3 \frac{1}{3}\), (e) \(5 \frac{5}{12}\), (f) \(2 \frac{4}{9}\),
```

(g) $8 \frac{1}{2}$,
(h) $3 \frac{1}{8}$,
(i) $\frac{5}{8}$, (j) $2 \frac{9}{10}$,
(k) $7 \frac{1}{12}$,
(l) $4 \frac{13}{4}$,

``` \(\begin{array}{lll}\text { (m) } 15 \frac{9}{40} & \text {, (n) } 6 \frac{4}{7} \frac{1}{0}, ~(o) ~ & 6 \frac{1}{4} . \\ \text { 2. } 16 \frac{5}{12} & \text { 3. } 19 \frac{1}{2} \frac{\mathrm{f}}{4} \mathrm{ft} \text {. }\end{array}\) 4. \(5 \frac{11}{12} \mathrm{c}\). 5. \(15 \frac{13}{60} \mathrm{hr}\).
```

EXERCISE
52.-1. 380 .
2. $\$ 10 \cdot 92$.
3. $\$ 187 \cdot 50$.
4. $\$ 300$.
53.- 1. 20 pt. 2. $300 \mathrm{~min} . \quad 3.1200 \mathrm{lb} .4 .1320 \mathrm{yd}$. 5. $\$ 740$. 6. $\$ 20$. 7. $\frac{2}{15}$. 8. $19 \frac{2}{7} \mathrm{mi} ., 19 \frac{2}{7} \mathrm{mi} ., 6 \frac{3}{7} \mathrm{mi}$.
54.- 1. (a) $\frac{4}{76},(b) \frac{5}{155},(c) \frac{4}{8},(d) \frac{5}{22},(e) \frac{2}{75},(f) \frac{1}{80}$, (g) $\frac{1}{100}, \quad(h) \frac{1}{\delta 1}, \quad(i) \frac{1}{100}, \quad$ (j) $\frac{11}{26}, \quad$ (k) $\frac{3}{60}, \quad(l) \frac{6}{25}$, (m) $1 \frac{1}{7}$, (n) $1 \frac{4}{4} \frac{8}{7}$, (o) $\frac{13}{18}$, (p) $\frac{14}{8}$, (q) $\frac{7}{10}, \quad(r) \frac{3}{4}$,
(s) $1 \frac{9}{16},(t) \frac{3}{25}$.
2. $\frac{23}{240}$. 3. $\frac{1}{48} . \quad 4.96 \mathrm{ac}$.
5. $\$ 7 \frac{5}{16} . \quad 6.35 \mathrm{c}$.
55.- 1. (a) $\frac{2}{105},(b) \frac{3}{8}, \quad(c) \frac{10}{2}, \quad(d) \frac{33}{40}, \quad($ e $) \frac{4}{15}, \quad(f) \frac{1}{2}$, (g) 6, (h) $6 \frac{2}{3}$, (i) $14,(j) 30,(k) 39$, (l) $\frac{1}{8},(m) 91 \frac{3}{8}$, (n) $31 \frac{1}{8}$, (o) 1 , (p) $103 \frac{59}{128}$, (q) $\frac{3}{10}$, (r) $9 \frac{4}{5}$, (s) $3 \frac{5}{15}$, (t) $3 \frac{3}{32}$.
2. $\$ 12 \frac{1}{2} . \quad$ 3. $\$ 26 \frac{1}{4} . \quad$ 4. $185 \frac{5}{8} \mathrm{mi}$.
5. (a) $\$ 21 \cdot 35$, (b) $\$ 9 \cdot 46 \frac{7}{8}$, (c) $\$ 10 \cdot 10 \frac{5}{8}$, (d) $\$ 5 \cdot 04 \frac{1}{6}$.
56.-1.1. 2. 2. 3. $\frac{2}{3}$. $4 . \frac{2}{3}$. 5. $1 \frac{1}{3} . \quad$ 6. $1 \frac{2}{3} . \quad$ 7. $\frac{2}{3}$. $\begin{array}{llll}\text { 8. } \frac{3}{4} . & \text { 9. } \frac{11}{21} . & 10.1 \frac{7}{20} & \text { 11. } \frac{1}{2} \text {. }\end{array} \quad$ 12. $2 \frac{17}{3}$. 13. $8 \frac{1}{3} . \quad 14.1 \frac{3}{7} . \quad 15 . \frac{3}{4} . \quad 16.2 \frac{1}{2} . \quad 17.1 \frac{5}{7}$. $\begin{array}{lllll}\text { 18. } \frac{1}{16} & \text { 19. } \frac{49}{104} . & \text { 20. } 10 . & \text { 21. } 10 \frac{1}{2} . & \text { 22. } 16 .\end{array}$ 23. $26 \frac{2}{3}$. 24. 18. 25. 4. 26. 10. 27. $1 \frac{1}{5}$. $\begin{array}{lllll}\text { 28. } 1 \text { 万8. } & \text { 29. } \frac{1}{3} . & \text { 30. } 29 \frac{4}{25} . & \text { 31. 19. }\end{array}$ 33. $3 \frac{1}{2} \mathrm{hr}$. 34. 14.
$\begin{array}{llllll}\text { 57.- 1. } \frac{7}{18} & \text { 2. } \frac{1}{8} . & \text { 3. } \frac{1}{4} . & \text { 4. } \frac{7}{40} & \text { 5. } \frac{1}{2} \frac{1}{6} . & \text { 6. } \frac{1}{4} \frac{9}{5}\end{array}$
7. (a) $\frac{80}{80},(b) \frac{7}{72},(c) \frac{5}{18},(d) \frac{10}{7},(e) \frac{14}{4},(f) \frac{3}{5}(g) \frac{3}{4}$.
58.-1. $\frac{4}{5}$. 2. $\frac{2}{7} . \quad$ 3. $\frac{1}{8} . \quad$ 4.2. \quad 5. $2 \frac{1}{2} . \quad 6.6 \frac{1}{3} . \quad$ 7. $\frac{5}{8}$.
 14. $2 \frac{3}{4}$.
59.- 1. (a) $\frac{8}{7},(b) \frac{3}{10},(c) \frac{8}{7},(d) \frac{3}{10},(e) \frac{7}{12},(f) \frac{13}{2},(g) \frac{5}{8}$. 2. (a) $\frac{80}{60}, \frac{40}{60}, \frac{45}{65}, \frac{50}{60}, \frac{35}{60} ;$ (b) $\frac{30}{84}, \frac{28}{84}, \frac{56}{84}, \frac{70}{84}, \frac{54}{84}, \frac{29}{84}$; $\begin{array}{lll}\text { (c) } \frac{50}{100}, \frac{20}{100}, \frac{80}{100}, \frac{14}{100}, \frac{82}{100} . & \text { 3. (a) } \frac{24}{8}, \frac{20}{36}, \frac{27}{36},\end{array}$ $\frac{4}{36}$; (b) $\frac{18}{42}, \frac{22}{42}, \frac{27}{32}, \frac{28}{62}$; (c) $\frac{20}{60}, \frac{465}{60}, \frac{252}{60}, \frac{9}{60}, \frac{148}{60}$.

EXERCISE
59.- 4. (a) $1 \frac{5}{8}, \quad$ (b) $2 \frac{1}{8} \frac{9}{6}, \quad$ (c) $11 \frac{91}{200} . ~ 5 . ~(a) \frac{1}{8}, ~(b) \frac{1}{36}$,
 7. (a) $\frac{5}{21}$, (b) $\frac{5}{18}$, (c) $\frac{24}{\frac{4}{18}}$, (d) $\frac{1}{4}$. 8. (a) $\frac{1}{3}$, (b) $\frac{8}{14}$,
(c) $\frac{29}{2}$, (d) 42 , (c) 105 , (f) 375 , (g) $84 \frac{1}{2}$, (h) $123 \frac{1}{2}$,
(i) $164 \frac{9}{95}$. 9. (a) $\frac{2}{15}$, (b) $\frac{1}{4}$, (c) $\frac{9}{40}$, (d) 16 , (e) $22 \frac{1}{2}$,
(f) 20 , (g) $1 \frac{7}{8},(h) \frac{6}{85}$, (i) $\frac{21}{287}$. 10.70. $\quad 11.20 \mathrm{mi}$.
12. 130 lb . 13. 50 ft . 14. $\$ 58 \frac{\mathrm{~s}}{\mathrm{~s}}$. 15. 250.
16. 15 . 17. $\$ 11 \cdot 24$. 18. $\$ 59 \cdot 01$. 19. $\$ 78 \cdot 64$.
60.- 1. $640,960,800,1200,1390$. 2. 2, $\frac{1}{2}, \frac{1}{8}, 4,7$. $3.4 \mathrm{mi} .120 \mathrm{rd} . ; 4 \mathrm{mi} .280$ rd.; 5 mi .160 rd. 4. 20 . 5. 400 . 6. $\$ 70$. 7. $11,33,77,60 \frac{1}{2}$, $82 \frac{1}{2}$. 8. 4, 6, 10, 16. 9. 1 rd. $2 \frac{1}{2}$ yd.; 2 rd. 1 yd.; 3 rd. $2 \frac{1}{3}$ yd.; 4 rd. 5 yd. 10. $\$ 10780$. 11. $\$ 31 \cdot 50$. 12. $3892 \frac{1}{2}$.
$61 .-1.5$ in. . $2.2 \frac{1}{2}$ in. $3.2 \frac{1}{3} \mathrm{in} . \quad 4.2 \mathrm{in} . \times 1 \frac{1}{3} \mathrm{in}$, $7 \mathrm{in} ., 56 \mathrm{ft}$. 5. (a) $3 \mathrm{in} . \times 2$ in., 80 ft .; (b) $1 \frac{1}{3}$ in. $\times 2 \frac{1}{4} \mathrm{in}$., 60 ft .; (c) $2 \frac{1}{2} \mathrm{in} . \times 1 \frac{3}{4} \mathrm{in} ., 68 \mathrm{ft}$. 6. (a) $2 \mathrm{in} . \times 1 \frac{1}{2} \mathrm{in}$., 112 yd .; (b) $3 \mathrm{in} . \times 2 \frac{1}{4} \mathrm{in}$., 168 yd.; (c) $3 \frac{1}{2} \mathrm{in}$. $\times 2 \frac{5}{8}$ in., 196 yd. 7. (a) 2 in. $\times 2$ in., 160 rd.; (b) 4 in. $\times 1$ in., 200 rd.; (c) 3 in. $\times 1 \frac{1}{3}$ in., $180 \mathrm{rd}$.$\quad 8. \$ 28$. ก5. \quad 9. $\$ 123.48$. 10. 420 . 11.8 ft . 12. $\$ 280 \cdot 50$. 13. 264. 14. 133. $15.1 \frac{5}{8} \mathrm{mi}$.
62. - A- 4.3 sq. ft. 18 sq. in.; 2 sq. ft. 94 sq. in.; 6 sq. ft. 11 sq. in.; 6 sq. ft. 36 sq. in. 5. 32 . 6. 90_{18}^{5}. 7. 22176. B-4. 648. 5. 88 . $\mathbf{6 . 1 6 .}$ C-2. $60 \frac{1}{2}, ~ 90 \frac{3}{4}, 121,133,206 \frac{1}{2} . \quad$ 3. 48400. 4. (a) 2420 , (b) $2722 \frac{1}{2}$, (c) 3267.

D-4. (a) 30 , (b) 15 , (c) 50 , (d) 640 , (e) 9 , (f) $21 \frac{3}{5}$: E-2. 640, 640, 1280, 320, 480, 1440, 2400, 2880.
63.- 1. $4 \frac{3}{4}, 9,12,24_{\frac{8}{10}}^{8} . \quad$ 3. $\$ 14040$. 4. $\$ 450$.
5. \$1366-20.
6. $\$ 2155 \cdot 68$.
7. $\$ 207 \cdot 90$.
63.-8. 16 rd. 9. $\$ 17 \cdot 28 . \quad$ 10. $54 . \quad$ 11. $\$ 16 \cdot 67$. 12. $18 \mathrm{rd} ., 2_{\frac{1}{40}}$.
64.- 1. $3456,5184,6912,3492,8712$. 2. 6. 3. 18. 4. $19 \mathrm{cu} . \mathrm{ft} .822 \mathrm{cu} . \mathrm{in}$.
65.- 1. $54,99,151,200$. 2. 224 . 3. $92583 . \quad$ 4. 630. 5. $630, \$ 472 \cdot 50$.
66.- 1. $4 \frac{1}{2} .2$ 2. 12. 3. 12. 4. $40 \frac{1}{2} . \quad$ 5. $144.6 .26 \frac{1}{4}$. 7. $70 \frac{7}{8}$. 8. $\$ 2160, \$ 393 \cdot 75, \$ 1063 \cdot 12 \frac{1}{2}$.
67.- 1. 10000. 2. 24,20 . 3. $\$ 150$. 4. $\$ 126$. 5. 36. 6. 800 . 7. 224 . 9. $\$ 126$. 10. $\$ 392$. 11. 1200. 12. $\frac{54}{85} \mathrm{ft}$.
68.- 1. (a) $12 \frac{1}{2}$, (b) $17 \frac{1}{2}$, (c) 16 , (d) 90 , (e) $14_{1} \frac{7}{2}$, (f) $11 \frac{1}{1} \frac{9}{6}$, (g) $11 \frac{1}{4}$, (h) $9 \frac{1}{8}$, (i) $18 \frac{2}{3}$, (j) $10 \frac{1}{1} \frac{5}{6}$. 2. 360 bd . ft. 3. $\$ 113 \cdot 40$. 4. $\$ 45$. $5 . \$ 32 \cdot 50$. 6. $\$ 117 \cdot 83 \frac{1}{3}$.
69. - No answers are necessary.
70.-6. $\frac{9}{40}, \frac{1}{3}, \frac{3}{8}, \frac{5}{8}, \frac{2}{3}, \frac{3}{6}, \frac{7}{8}, 1$. 7. $\frac{1}{20}, \frac{1}{2}, \frac{1}{5}, \frac{1}{4}, \frac{8}{10}, \frac{7}{5}$, $\frac{1}{2}, \frac{3}{5}, \frac{7}{10}, \frac{3}{6}, \frac{4}{5}, \frac{9}{10}, 1 . \quad 8 . \frac{1}{3}, \frac{3}{8}, \frac{5}{8}, \frac{2}{3}, \frac{7}{8}, \frac{1}{20}$.
71.-5. (a) $2 \frac{2}{6}$, (b) $\frac{175}{245}$. 6. (a) $5 \times 7 \times 11 \times 11$, (b) $2 \times 3 \times 3 \times 7 \times 17,(c) 5 \times 3 \times 7 \times 7 \times 7$,
(d) $11 \times 11 \times 11$.
7. (a) 136, (b) 99.
8. (a) 2080, (b) $1330 . \quad$ 9. (a) $\frac{5}{7}$, (b) $\frac{2}{8}, \quad$ (c) $\frac{6}{7}$,
(d) $\frac{5}{7} .10$. (a) $\frac{1}{4}$, (b) $1 \frac{49}{60}$, (c) $\frac{23}{24}$, (d) $28 \frac{1}{24}$, (e) $14 \frac{1}{2} \frac{7}{6}$,
(f) $\frac{3}{10}$, (g) $\frac{61}{88}$, (h) $\frac{16}{125}$, (i) $75 \frac{3}{5}$, (j) $\frac{7}{13}$. 11. (a) 19 sq. ft., (b) $101 \frac{1}{2}$, (c) $139 \frac{1}{3} . \quad 12.24,20,15 \frac{1}{2}$.
13. (a) 567 , (b) $1400,10 \frac{1}{1} \frac{5}{6}$, (c) $3867 \frac{3}{\frac{3}{6}}$. 14. (a) 160 ,
(b) 270 , (c) 1120 . 15. (a) $140 \frac{5}{8}$, (b) $7871 \frac{3}{39}$.
16. (a) 13 , (b) $11 \frac{7}{10} . \quad$ 17. (a) $25 \frac{1}{5}$, (b) $21 \frac{3}{5}$.
18. (a) 288, (b) 527, (c) $700 \frac{3}{20}$. 19. $7 \frac{8}{16}$.
20. (a) $13 \frac{1}{2}$, (b) 30 , (c) $35 . \quad$ 21. (a) $\frac{19}{800}$,
(b) $\frac{3}{8},(c) \frac{1}{6},(d) \frac{1}{8},(e) \frac{5}{8},(f) \frac{5}{6},(g) \frac{7}{8}$, (h) $\frac{39}{6}$.

EXERCISE
71.- 22. (a) 75 , (b) $87 \frac{1}{2}, \quad$ (c) $37 \frac{1}{2}, \quad$ (d) $62 \frac{1}{2}, \quad$ (e) $85 \frac{5}{4}$, (f) $83 \frac{1}{3}, \quad$ (g) $58 \frac{1}{3}, \quad$ (h) $66 \frac{2}{3}, \quad$ (i) $50, \quad$ (j) 60. 23. (a) $\$ 90$, (b) $\$ 120$, (c) $\$ 191$, (d) $\$ 605$, (c) $\$ 567$.
24. $\$ 227 \cdot 50$.
25. $\$ 3675$.
26. $\$ 53 \cdot 51_{4}^{\frac{1}{4}}$.
27. $\$ 21 \cdot 09$. 28. $\$ 6 \cdot 50.29 . \$ 48 \cdot 48 \mathrm{Cr} .30 . \$ 9 \cdot 85$.
31. $\$ 107 \cdot 01$.
32. $\$ 12 \cdot 58 \frac{1}{18}$.
33. 130.
34. $12 \frac{21}{5} \frac{1}{2}, \$ 5 \frac{5}{8} . \quad 35.64$. 36. $\$ 225$. 37. $\$ 2090$. 38 (a) $\$ 54$, (b) $\$ 88 \cdot 59 \frac{3}{8}$, (c) $\$ 39 \cdot 60$, (d) $\$ 393 \cdot 75$, (e) $819,(f) 945$.

SECTION IV

72.- 1. 3.59. 2. 711. 3. 179.47. 4. $216 \cdot 692$. 5. 15476-306. 6. \$140•83. 7. \$788•804.
8. $45 \cdot 53783, \quad 997 \cdot 154, \quad 9 \cdot 99577, \quad 448 \cdot 757$.
9. $31 \cdot 9773$. 10. $\$ 83 \cdot 3165 . \quad 11.995 \cdot 5 \mathrm{mi}$.
12. $337 \cdot 63 . \quad 13.285 \cdot 675 \mathrm{mi} . \quad 14.29 \cdot 2$.
15. 098.
73.- 1. (a) $29 \cdot 6$, (b) $41 \cdot 31$, (c) $5269 \cdot 081$, (d) $2617 \cdot 2$, (e) $63 \cdot 08$, (f) $48 \cdot 042$, (g) $3228 \cdot 396$, (h) $2 \cdot 5935$, (i) $\cdot 0174,(j) 1725 \cdot 0748$, (k) $257 \cdot 004$, (l) $25243 \cdot 75$, (m) 5•02866, (n) $47 \cdot 892,(o) \cdot 01944,(p) \cdot 1148488$. 2. $43 \cdot 2156,432 \cdot 156,4321 \cdot 56$ 3. $5463 \cdot 7$, $13784 \cdot 6,297836$. 4. $295 \cdot 275$. 5. 7. 6. 2772 . 7. 696. 8. 5. 9. $57 \cdot 12$. 10. $\$ 540$. $11.39 \cdot 132$. 12. $\$ 924 \cdot 60$. 13. $\$ 1000$. 14. $\$ 131 \cdot 3955$.
15. $\$ 66 \cdot 8625$. 16. $468 \cdot 8 \mathrm{ft}$.
74.- 1. 159.792 mi .
3. $\cdot 481 \mathrm{lb}$.
6. $\$ 103 \cdot 17$.
9. $\$ 120 \cdot 98$.
75.- 1. (a) $\$ 50$, (b) $\$ 70$, (c) $\$ 31 \cdot 50$, (d) $\$ 18$, (e) $\$ 7 \cdot 35$, (f) $\$ 1 \cdot 87 \frac{1}{2},(\mathrm{~g}) \$ 1 \cdot 40,(h) \$ 2 \cdot 02 \frac{1}{2}$.

ExERCISE
75.- 2. (a) $\$ 15, \$ 90 ;(b) \$ 32, \$ 64 ;(c) \$ 28 \cdot 12 \frac{1}{2}, \$ 253 \cdot 12 \frac{1}{2}$; (d) $\$ 13 \cdot 25, \$ 145 \cdot 75$.
76.- 1. (a) 60, (b) 62 $\frac{1}{2}$, (c) 80 , (d) $62 \frac{1}{2}$, (e) 25 , (f) $71 \frac{3}{7}$, (g) 15 , (h) 70 , (i) $9 \frac{1}{1}$, (j) 20 , (k) $16 \frac{2}{3}$, (l) $16 \frac{2}{3}$. 2. (a) $33 \frac{1}{3}$, (b) 20 , (c) $33 \frac{1}{3}$, (d) 20 , (e) 20 , (f) $12 \frac{1}{2}$. 3. $\$ 4 \cdot 96 \frac{7}{8}, \$ 5 \cdot 94 \frac{3}{8}, \$ 7 \cdot 84 \frac{3}{4}$. 4. $\$ 854 \cdot 40$. 5. $22 \frac{2}{6} \%$. 6. $10 \frac{1}{2} \mathrm{c}$.
77.- 1. (a) 60, (b) $66 \frac{2}{3}$, (c) $71 \frac{3}{7}$, (d) 180 , (e) 150 , (f) $111 \frac{1}{\square}$ (g) $57 \frac{1}{7}$, (h) $133 \frac{1}{3} . \quad$ 2. $10 \frac{5}{7} . \quad$ 3. $50 . \quad$ 4. $\$ 1125$. 5. $14 \cdot 625 \mathrm{lb}$. $6 . \$ 9 \cdot 69$.
78.-1. $58 \cdot 45$. 2. $\$ 102 \cdot 75$. 3. $\$ 148 \cdot 90$. 4. $\$ 242 \cdot 35$. 5. $479 \cdot 85$. 6. $7180 \cdot 07$.
79.- No answers are necessary.
80.-1. $\$ 61 \cdot 88$. 2. $\$ 69 \cdot 70$. 3. $\$ 132 \cdot 52$. 4. $\$ 116 \cdot 42$.
81.- 1. 2 D.S.C., 10 T.S. 2. $\$ 35 . \quad$ 3. $\$ 25, \$ 50.4 .8$ D.S.C., \$40, 12 T.S.
82.- 1. $8 \frac{1}{3}$. 2. $\$ 132 \cdot 22 . \quad$ 3. $\$ 2 \cdot 78$. 4. $\$ 359$. 5. $\$ 138 \cdot 75$. 7. $199 \cdot 1 \mathrm{lb} ., 234 \cdot 235 \mathrm{lb} .8 . \$ 4 \cdot 68 \frac{3}{4}$. 9. 57 lb . 10. $\$ 691 \cdot 60$. 11. $\$ 44 \cdot 67$. 14. 300 , $400,280,10$. 15. 280, 440, 240. 16. $66 \frac{2}{3} \mathrm{lb}$. 17. 50 c ., $25 \mathrm{c} ., 20 \mathrm{c} . \quad 18.60 \mathrm{lb} ., 80 \mathrm{lb} ., 0$. 19. $\$ 116 \cdot 25, \$ 771 \cdot 25$.
83.- 1. $\$ 3 \cdot 39 \frac{1}{2}$. 2. $\$ 260 \cdot 87 \frac{1}{2}$. 3. $\$ 391 \cdot 97$. 4. $\$ 3 \cdot 98 \frac{1}{4}$. 5. $\$ 245 \cdot 32$. 6. $\$ 3 \cdot 9852$. 7. $\$ 7 \cdot 22$. 8. $\$ 433 \cdot 50$. 9. $\$ 43 \cdot 63$. 10. $\$ 1 \cdot 76 \frac{1}{2}$. 11. 22c. 12. 4668 昌 calories. 13. $6 \frac{1}{2} \mathrm{z}$ c.
84.- 1. $\$ 328 \cdot 32$. 2. $\$ 193 \cdot 05$. 3. $\$ 408 \cdot 33 \frac{1}{3}$. 4. $\$ 96 \cdot 25$. 5. $\$ 9975$. 6. $\$ 13082$. 7. $\$ 2433 \cdot 60$.
85.- 1. 12. 2. 15. 3. $\$ 1 \cdot 75, \$ 3 \cdot 12$.
86.- 1. (a) 72, (b) 66, (c) 205, (d) 168, (c) 219, (f) 213. 2. $\$ 217 \cdot 25$. $3 . \$ 327 \cdot 12 . \quad$ 4. $\$ 384 \cdot 90$.
87.- 1. $\$ 27 \cdot 81 . \quad 2 . \$ 95 \cdot 20$. 3. $\$ 90 \cdot 30$. 4. $\$ 103 \cdot 19$. 5. $\$ 65 \cdot 92$.
88.- 1. (a) 288 , (b) 420 , (c) $225 \frac{5}{\frac{3}{9} .}$ 2. (a) $208 \frac{1}{8}$, (b) $165 \frac{95}{\frac{5}{8}}$, (c) $241 \frac{1}{24}$. 3. $\$ 80$. 4. $\$ 148 \cdot 75$.
89.- 1. $\$ 67 \cdot 50 . \quad$ 2. $\$ 56 \cdot 66$. 3. 7, 6, 42, \$105. 5. $\$ 33, \$ 409 \cdot 20$. 6. $13 \frac{1}{2} \mathrm{ft} . \times 10 \frac{1}{2} \mathrm{ft}$; $\$ 118 \cdot 12$; \$11.68.
90.- 1. 22. 2. $\$ 116 \cdot 74 . \quad$ 3. $\$ 11 \cdot 08$. 4. $35_{\frac{1}{18}}$. 5. $\$ 60 \cdot 19, \$ 375 \cdot 38, \$ 627, \$ 1062 \cdot 57$.
91.- 1. 3. 2. 4. 3. 5. 4. 6. 5. 7. 6. 9. 7. 8. 8. 5. 9. 11. 10. 6. 11. $4-$. 12. $9+$.
92.- 5. (a) 3.86543, (b) \$.2592, (c) 8•712, (d) \$3.39. 7. 480.973 mi . 8. 27720 yd . 9. $\$ 334 \cdot 09$. 10. $\$ 526 \cdot 4615$. 11. $\frac{1}{4}, \frac{1}{3}, \frac{1}{4}, \frac{7}{8}, \frac{5}{8}, \frac{7}{8}, \frac{5}{8}, \frac{2}{3}$. $12.33 \frac{1}{3} \%$. 13. $12 \frac{1}{2} \%$. 14. 1000 . 15. 15, 25, 38. 16. 1 D.S.C., 7 T.S.,; 1 D.S.C., 13 T.S.; 2 D.S.C., 6 T.S.; 3 D.S.C., 9 T.S. 17. $\$ 100, \$ 60, \$ 75$. 18. $\$ 150 \cdot 65$. $\begin{array}{lll}\text { 20. } \$ 74 \cdot 86 . & 21 . ~ \$ 43 \cdot 75 . \quad 22 \text {. (a) } \$ 47 \cdot 69 \text {, }\end{array}$ (b) $\$ 45 \cdot 85 . \quad 23 . \$ 325 \cdot 30 . \quad 24, \$ 4 \cdot 76 \frac{1}{4} . \quad 25 . \$ 12$. 26. $8 \frac{1}{6}$. 27. $\$ 19140$. 28. (a) $\$ 28 \cdot 50$, (b) $\$ 382 \cdot 63 \frac{8}{6}$. 29. 13.
32. \$231.71.
30. \$44-65.
35. $\$ 36 \cdot 75$.

SECTION V

93.- 1. 2, 7, 11, 14, 22, 77, 154; 2, 3, 4, 6, 8, 9, 12, 16, $18,24,27,36,48,54,72,108,144,216$; 23, 29 ; $3,5,7,9,15,21,27,35,45,63,105,135,189,315$. 2. 2, 2, 3, 3, 19; 29, 29; 11, 11, 11; 2, 2, 2, 3, 3, 5,$7 ; 3,5,7,11,17 ; 2,2,3,3,13,103$. 3. Prime 269,1367 . 4. 42 , 5. $3,3,3,5,5,5 ; 15,15,15$.
93.-6. 16, 17, 18. 7. (a) 225; (b) 29; (c) 1; (d) 65; (e) 144; (f) 18; (g) 385. 8. A, \$750; B, \$1000; C, $\$ 1750$. 9.22 yd., 18 times. 10. (a) 2808; (b) 660; (c) 42840; (d) 20160; (e) 1512; (f) 12493, 8303; (g) 1668167. 11. 39312. 12. 187. 13. $3 \frac{3}{4}$. 14. (a) 90 , (b) 21, (c) 5 , (d) 4 . 15. $2 \frac{2}{3}$. 16. (a) $2 \frac{1}{15}$, (b) 9 , (c) $18_{1 \frac{67}{150}}$, (d) $5 \frac{3}{5}$, (e) 11 , (f) $\frac{9}{34}$, (g) $3 \frac{1}{3} \frac{1}{3}$. 17. (a) $\frac{4}{6} \frac{9}{5}$, (b) $14 \frac{2}{5}$, (c) $\frac{3}{32}$, (d) $\frac{14}{\frac{1}{5} . ~ 18 . ~(a) ~} \frac{8}{7}$, (b) $\frac{8}{28}$, (c) $\frac{5}{6}$, (d) $\frac{11}{7}$, (c) $\frac{8}{85}$, (f) $\frac{125}{24} \frac{5}{2} .19$. $\frac{7}{11}$. 20. (a) $\frac{1}{2}$, (b) $\frac{5}{24}$, (c) $\frac{1}{2} \frac{1}{3}$, (d) $\frac{2}{3}$, (c) $\frac{1}{8}$. 21. (a) $2 \frac{2}{3}$, (b) $\$ 3 \cdot 50$, (c) 15 yd. 22. $\frac{1}{4}$, $\$ 320$. 20. $\frac{10}{9}$, $133 \frac{1}{3}$ ac. 24. $\frac{18}{9}, \$ 3 \cdot 20$. 25. $\$ 250$, $\$ 375$. 26. $\$ 9000$. 27. $10 \frac{1}{2}$ bu. 28. $\$ 9 \frac{5}{8}$. 29. $\$ 25200$. 30. $1 \frac{20}{2 \frac{1}{0}} \frac{8}{\mathrm{in}}$. 31. $\frac{1}{6} . \quad 32.1 \frac{1}{5} \mathrm{lb}$. cornmeal, $\frac{3}{5} \mathrm{lb}$. flour, $\frac{8}{10}$ oz. sugar, $1 \frac{3}{5} \mathrm{oz}$. lard, $1 \frac{3}{5} \mathrm{oz}$. bakingpowder. Cost 13 $\frac{4}{5} \frac{1}{6} \mathrm{c}$ c. $33 . \$ 900$.
94.- 1. (a) $446 \cdot 89$, (b) $583 \cdot 0971 . \quad$ 2. (a) $15 \cdot 222$, (b) $192 \cdot 8175$, (c) $20 \cdot 40789 . \quad$ 3. (a) $349 \cdot 9$, (b) $98 \cdot 6303, \quad$ (c) $38 \cdot 1083$. 4. (a) $5 \cdot 19$, (b) $\cdot 3726099$, (c) $322 \cdot 873$, (d) $71 \cdot 84136$.
95.- 1. (a) 2•5, (b) 1•72, (c) $\cdot 0033$, (d) •134, (e) •00023, (f) 1426 , (g) $\cdot 00258$, (h) $3 \cdot 4567$; (i) $\cdot 00000542$, (j) $3 \cdot 253$. 2. (a) 1370, (b) 460000, (c) $10 \cdot 14$, (d) $\cdot 0377$, (e) • 708, (f) 1•25, (g) • 3606, (h) $\cdot 5472$. 3. $43 \cdot 725,4 \cdot 3725,-43725,-043725$. 4. $43 \cdot 68$, $\cdot 00375$. 5. $\cdot 8, \cdot 05, \cdot 016, \cdot 875, \cdot 0625, \cdot 08, \cdot 45$.
6. (a) $6.7246+$, (b) $\cdot 0365$, (c) $\cdot 3529+$, (d) $\cdot 4285+$,
(e) $\cdot 0769+$,
(f) $7 \cdot 3684+$ 7. (a) -0137, (b) 67 , (c) 111. 8. (a) $6 \cdot 724+$, (b) $17 \cdot 660+. \quad$ 9. (a) $10 \cdot 8$, (b) $\cdot 0000322$, (c) $4 \cdot 5$, (d) 10. 10. $32,32,3 \cdot 2$. 11.13500 lb . 12. 327 bu. 13. $38 \cdot 75 \mathrm{mi}$. 14. $36 \cdot 25, \$ 494 \cdot 81+$.
15. $\$ 198 \cdot 24+$. 16. $\$ \cdot 84+$. $17.673 \cdot 10+\mathrm{gal}$.
18. $28 \cdot 34$ +. 19. $\cdot 679$ +. 20.7.4 in. 21. $\$ 7 \cdot 20$.

EXERCISE
96.- 1. (a) \$.023727, (b) ——. 2. (a) \$200.62, (b) \$224•76, (c) \$272•41, (d) \$321•77, (e) \$661•80, (f) $\$ 812 \cdot 98$.
3. (a) \$•019833,
(b) \qquad
(c) (i) $\$ 167 \cdot 11$, (ii) $\$ 227 \cdot 42$, (iii) $\$ 267 \cdot 06$. 4. (a) $\$ \cdot 182075$, (b) $\$ 288 \cdot 93, \$ 644 \cdot 89, \$ 1246 \cdot 66$, \$226-12, \$999.94.

 $10 \frac{1}{4}, 12 \frac{8}{1255}, 7 \frac{1}{46}, 15 \frac{3}{25}$.
98.-2. $\cdot 1875, \cdot 4375, \cdot 68, \cdot 28125, \cdot 234375, \cdot 92$, $\cdot 552$, $\cdot 0112, \cdot 425, \cdot 4875, \cdot 228$. 3. •6666......, •83333......., -6363......, •6153......, •4666......, •8235......, •6111...., .6956......, •6428......, .5446....... 4. 8574....... 5. 60 c. 6. $\cdot 15625$ of stock left, $\$ 1000$. 7. $\frac{7}{8}$, $\cdot 875, \$ 2 \cdot 10$. 8. $\cdot 609375, \$ 1 \cdot 95$. 9. $\cdot 2$, \$•74. 10. $\cdot 625, \$ 14 \cdot 50$.
99.- 1. $425 \mathrm{cu} . \mathrm{ft}$. 2. 373.85 lb . 3.6 hr .41 .88 min . or 401.88 min . 4.3 in . 5. $\cdot 305$....... 6. $16 \cdot 88 \ldots . . .$. . 7. $96 \cdot 57 \ldots \ldots$. lb. 8. Each man $\$ 8$, each boy $\$ 1 \cdot 12$. 9. $\$ 20$. $\quad 10.7 \cdot 38 \mathrm{lb}$. 11. $46 \cdot 42$ tons. 12. $\$ 3000$. 13. $29 \cdot 529+\mathrm{mi}$. 14. $\cdot 008792$. 15. $8 \cdot 32$. 16. $\cdot 42$. 17. $\$ 137 \cdot 678$. 18. $\$ 37 \cdot 83$. 19. $48 \cdot 83^{\circ} . \quad 20.2 \cdot 06+$ in. 21. $258315 \cdot 84 \mathrm{gal}$.
100.- 1. Balance $\$ 220 \cdot 15$. 2. $\$ 8 \cdot 65$. 3. Balance $\$ 20 \cdot 90$. 4. Balance $\$ 1005 \cdot 00$. 5. $\$ 20 \cdot 61$. 6. Balance $\$ 466 \cdot 50$. 7. Profit $\$ 42 \cdot 71$. 8. Balance $\$ 324 \cdot 97$. 10. $\$ 10 \times 4, \$ 5 \times 15, \$ 2 \times 9, \$ 1 \times 15$; coins 64 c. 11. $\$ 34 \cdot 00$.
101.- 1. $\frac{7}{3}, \frac{7}{16}, \frac{3}{40}, \frac{24}{2 b}, \frac{7}{160},{ }_{3} \frac{2}{2}, \frac{89}{4} \frac{9}{6} 0 . \quad$ 2. $73 \frac{1}{3} \%, 1 \cdot 6 \%$, $7 \frac{1}{2} \%, 87 \frac{1}{2} \%, \cdot 857 \%+, 3 \frac{1}{2} \%, 50 \cdot 56 \%$. 3. $\$ 11 \cdot 55$, $£ 88 \mathrm{~s} ., \cdot 0785, \cdot 105,22 \cdot 5$. $\quad 4.46,47 \mathrm{ft} .8 \mathrm{in}$., $\$ 4,17,4 \frac{4}{9}$. \quad 5. $33 \frac{1}{3} \%, 300 \%, 7 \frac{1}{7} \%, 16 \frac{2}{3} \%, 31 \frac{1}{6} \%$.

EXERCISE
101.-6. $\$ 360 . ~ 7.2751$ marks. 8. 7500, 9000. 9. 299. 10. $16 \frac{4}{5} \mathrm{lb}$ - $11 . \$ 4500 . \quad 12 . \frac{8}{10}, 30 \%$. 13. 52.59% +. $\quad 14.16 \%$. $15.98 \frac{1}{3} \%$. 16. 13 yd .1 ft 17.28\%. 18. (a) Toronto $\cdot 622+$, Buffalo $602+$; (b) Toronto $\cdot 629+$, Buffalo $\cdot 597+$ 19. Sulphate of ammonia 320 lb ., acid phosphate 1142.8 lb ., muriate of potash 160 lb ., send $377 \cdot 2 \mathrm{lb}$. 20. $44 \frac{4}{9} \%$, $58 \frac{1}{3} \%, 25 \%$. 21. $4 \cdot 69 \%$ +. 22. (a) 98,196 , 245, 294, 392, 441, 490, 588, 735; (b) 1225.
102.- 1. $\frac{1}{8}, 16 \frac{2}{3} \% . \quad$ 2. 120%. $3.10 \frac{2}{3} \%$. 4. $\$ 120$, $\$ 160$, $\frac{23}{20}$, $\frac{4}{3}$. 5. $\$ 22,500$. 6. 15%. 7. 25%.
8. \$48. 9. \$400. 10. $\$ 1669 \cdot 85$. 11. $\$ 9 \cdot 66$. 12. $37 \frac{1}{2} \%$. 13. 96 c. $14.33 \frac{1}{3} \%, 25 \%$. 15.45%.
103.- 1. $\$ 37 \cdot 50$. 2. $\$ 18 \cdot 75$. 3. $\$ 1741 \cdot 50$. 4. $\$ 219 \cdot 45$. 5. $\$ 4 \cdot 32$. 6. $2 \frac{1}{2} \%$. 7. $1 \frac{1}{2} \%$. 8. $1 \frac{1}{4} \%$. 9. $\$ 1140$, $\$ 1100-10.10$. $\$ 930, \$ 954 \cdot 80$. 11. 150. 12. $\$ 160$. 13. $\$ 31 \cdot 50,90$ c. 14. $\$ 118$, $\$ 282$. 15. $\$ 3$. 16. 30,000 yd., $\$ 90, \frac{3}{81}$. 17. $\$ 60,000$. 18. $29,400 \mathrm{lb}$., $\$ 60$. 19. $\$ 17 \cdot 28$. 20. $\$ 1680$. 21. $\$ 1962 \cdot 52$.
104.- 1. $\$ 1 \cdot 25, \$ 11 \cdot 25$; $\$ 1 \cdot 22, \$ 14 \cdot 03 ; \$ 5 \cdot 15, \$ 20 \cdot 60$; $\$ 7 \cdot 50, \$ 42 \cdot 50 ; \$ 67 \cdot 50, \$ 157 \cdot 50 ; \$ 156 \cdot 50, \$ 469 \cdot 50$; $\$ 1,593 \cdot 75, \$ 2,656 \cdot 25$ / $\$ 25 \cdot 49, \$ 611 \cdot 76$; $\$ 327 \cdot 60$, $\$ 655 \cdot 20$; $\$ 97 \cdot 94, \$ 3,166 \cdot 86$. 2. $\$ 450, \$ 1,866 \cdot 75$, $\$ 2,400, \$ 922 \cdot 50, \$ 1,744 \cdot 20$. 3. $\$ 478 \cdot 80, \$ 422 \cdot 14$, $\$ 2,650 \cdot 50, \$ 2,478 \cdot 60, \$ 523 \cdot 26$. 5. 10%. 6. 35%. 7. $\$ 250$. 8. $\$ 20$. $9 . \$ 42$. 10. $\$ 4$. 11. $\$ 2 \cdot 88$. 12. $\$ 4 \cdot 50$. 13. $\$ 660$. 14. $\$ 12 \cdot 60$. 15. $\$ 2 \cdot 21$. 16. $\$ 7 \cdot 95$. 17. $\$ 42$. 18. $\$ 31 \cdot 50$. 19. $\$ 78 \cdot 92$ +. 20. $\$ 70 \cdot 19$. 21. $\$ 60 \cdot 04$.
105.- 2. $5 \frac{1}{2}, 8 \frac{1}{4}, 12 \frac{1}{2}, 18$.
3. $\$ 15, \$ 24 \cdot 92, \$ 60$, $\$ 176,444 \cdot 36, \$ 3170 \cdot 72$. 4. $\$ 410,000, \$ 150,000$, $\$ 2,750,000, \$ 9,125,000, \$ 4,850,000$. 5. \$18, $\$ 1882$. 6. \$6. 7. \$13. 8. 80\%. 9. $\$ 160,875$. 10. $\$ 76,882 \cdot 81$. 11. $\$ 6,606$. 13. $\$ 30 \cdot 58, \$ 3 \cdot 62$. 15. $\$ 22 \cdot 80, \$ 21 \cdot 96, \$ 80 \cdot 23$.
106.- 1. (a) $\$ 225$, (b) $\$ 3 \cdot 125$, (c) $\$ 112 \cdot 50$, (d) $\$ 231$, (e) $\$ 12 \cdot 60$, (f) $\$ 36 \cdot 70$. \quad 2. $\$ 54, \$ 234$. 3. $\$ 40$. $\begin{array}{lll}\text { 4. } \$ 160 . & \text { 5. } \$ 457 \cdot 80 & \text { 6. (a) } \$ 271 \cdot 62 \frac{1}{2} \text {, }\end{array}$ (b) $\$ 1744 \cdot 71+. \quad 7 . \$ 35,25 \%$. $\quad 8.16 \frac{2}{3} \%$. 9. (a) $\$ 706 \cdot 50, \quad$ (b) $\$ 2287 \cdot 80$, (c) $\$ 847 \cdot 80$.
107.- 1. $\$ 3 \cdot 75$. 2. $\$ 14 \cdot 30$ 3. $\$ 180$. 4. $\$ 2550$. 5. $\$ 3200$. 6. $\frac{3}{20} \%$. 7. $2 \frac{2}{3} \%$. 8. $\$ 1905$. 9. $\$ 1125$. 10. $\$ 33 \cdot 20$. 11. $\$ 4 \cdot 60$. $12 . \$ 4955$. 13. $\$ 2500$. 14. $\$ 4998$. 15. $\$ 3240, \$ 2160, \$ 3600$. 16. $\$ 10,000$. 17. $1_{10}^{10} \%$.
108.- 1. $\$ 105 \cdot 60$. 2. $\$ 12, \$ 28, \$ 3 \cdot 75, \$ 12 \cdot 25, \$ 22 \cdot 65$. 3. $\$ 57 \cdot 81, \$ 486 \cdot 06$. 4. $\$ 90 \cdot 06$ int. $\$ 652 \cdot 91$ amt., $\$ 65 \cdot 24$ int. $\$ 4265 \cdot 24$ amt., $\$ 118 \cdot 59$ int. $\$ 3843 \cdot 59$ amt., $\$ 289 \cdot 04$ int. $\$ 6539 \cdot 04$ amt., $\$ 242 \cdot 60$ int. $\$ 10242 \cdot 60$ amt. 5. $\$ 300$. 6. $\$ 500$, $\$ 2400$, $\$ 1200, \$ 14600$. $7.5 \mathrm{yr} . \quad 8.6 \mathrm{mo} ., 3^{\frac{88}{\mathrm{~g} / \mathrm{g}}} \mathrm{yr}$. 10. $4 \%, 6 \%, 3 \frac{1}{2} \%$. $11.4 \frac{1}{2} \%, 5 \%, 3 \%$. 12. $\$ 252 \cdot 77$. 13. Oct. 6th, 1918, $\$ 127 \cdot 51$.
14. $\$ 1 \cdot 83$.
15. $\$ 301.99$.
16. $\$ 507 \cdot 60$. 17. $\$ 138 \cdot 22$. 18. $\$ 201 \cdot 10$. 19. (a) \$.63, \$.73; (b) $\$ 1 \cdot 59, \$ 1 \cdot 86$; (c) $\$ \cdot 85, \$ \cdot 99$.
109.- 1. April 7th, 1919, \$295•41. 2. (a) Dec. 6th, 1918, 63 da., $\$ 3 \cdot 45$, $\$ 396 \cdot 55$; (b) Aug. 4th, 1919, 93 da., $\$ 14 \cdot 01, \$ 985 \cdot 99$; (c) Oct. 11th, 1919, 99 da., $\$ 81 \cdot 37, \$ 5918 \cdot 63$; (d) Oct. 7th, 1918, 73 da., \$66, \$5934; (e) Dec. 13th, 1919, 146 da., \$36, \$1464.

EXERCISE
 6. Aug. 9 th, $1920, \$ 615 \cdot 21$. 7. $\$ 608 \cdot 26$. 8. (a) Aug. 18th, $1919, \$ 2531 \cdot 85,76$ da., $\$ 36 \cdot 90, \$ 2494 \cdot 95$; (b) Dec. 17th, 1920, $\$ 1220 \cdot 55$.
110.- 1. Gain $\$ 50 \cdot 00$. 2. $\$ 365 \cdot 40, \$ 157 \cdot 50, \$ 812 \cdot 00$, $\$ 265 \cdot 00$. 3. $\cdot 771$ or $77 \cdot 14 \%+$. 4. $\$ 680$. 5. $33 \frac{1}{3} \%, 44 \frac{4}{3} \%, 22 \frac{2}{9} \%, \quad \$ 800 \cdot 00, \$ 1066 \cdot 67$, $\$ 533 \cdot 33$. 6. $\$ 2,926 . \quad$ 7. $29 \frac{3}{5} \%$. 8. $\$ 1180$, $\$ 1150 \cdot 50$. $\quad 9 . \$ 1 \cdot 41 \frac{1}{3} . \quad 10 . \$ 24 \cdot 00$. 11. $\$ 320 \cdot 50$. 12. $\$ 16 \cdot 10$. 13. $\$ 590 \cdot 83$. 14. $\$ 2 \cdot 40$. 15. $\$ 278 \cdot 78$. 16. 8800 bu. 17. $\$ 55 \cdot 25$. 18. $\$ 99 \cdot 78$. 19. $\$ 297 \cdot 29$. 20. $52 \frac{\text { e }}{21} \%$. 21. 24c. 22. $\$ 4 \cdot 50$. 23. 90 lb . 24. $144 \frac{7}{22} \%$, $93 \frac{8}{8} \frac{8}{3} \%$, $10 \frac{30}{4 \%} \%$, $14 \frac{\text { 星 }}{183} \%$. 25. $\$ 38 \cdot 25$. 26. $\$ 150$. 27. 432 lb . nitrogen, 162 lb . phosphorus, 108 lb . potash. 28. $\$ 2 \cdot 97 . \quad 29 . \$ 12 \cdot 32 . \quad 30.4900 \mathrm{lb}$.
111.- 1. 1089 ft . 2. $37 \frac{1}{8} \mathrm{ft} . \times 24 \frac{3}{\frac{3}{4} \mathrm{ft}} \quad$ 3. Posts $\$ 110$, wire $\$ 122 \cdot 50$. 4. $\$ 3990$. 5. $648 \mathrm{sq} . \mathrm{ft}$. 6. 800 ac . 7. $94 \frac{1}{2}$ sq. ft. 8. $\$ 19 \cdot 50$. 9. $\$ 82 \cdot 01$. 10. 15 bundles. 11. $41 \frac{1}{3} \mathrm{yd}$. 12. $\$ 162$. 13. $1 \frac{3}{5} \mathrm{ac}$. 14. $\$ 9900$. 15. $51 \mathrm{~min} . \quad 16.133 \mathrm{yd} .1 \mathrm{ft} .6 \mathrm{in}$. 17. $20 \mathrm{ft} .10 \mathrm{in} .18 .144 \mathrm{cu} . \mathrm{yd} .19 .253 \frac{3}{3} \mathrm{cu} . \mathrm{ft}$. 20. 11 ft . 21.8 ft . $22.705 \mathrm{lb} .15 \mathrm{oz} .23 .10 \cdot 69$ + ft. 24. $268.758+$ bu. 25.18 tons. 26. 26 flues. 27. 2280960 bricks. 28.62 sq. yd. 29.864 blocks. 30. $\$ 1260$. 31. (a) $3678 \frac{2}{3}$ bd. ft.; (b) $\$ 165 \cdot 54 . \quad 32.74 \frac{4}{6}$ bd. ft. 33. $\$ 6,598 \cdot 50$.
112.- 1. (a) 334190 , (b) $26 \cdot 43+$. 2. 1944 mi . 3. $14989+$ 4. $\$ 3 \cdot 00$ 5. (a) $\$ 297$ loss, (b) 132 da. 6. $\$ 127 \cdot 60$ gain. 7. (a) Quotient 622, Remainder 7; (b) H.C.F. 9, L.C.M. 568008. 8. (a) $1 \frac{49}{60},(b) 15 \frac{23}{5}$. 9. (a) $18 \frac{?}{10} ;$ (b) 80.

EXERCISE

112.- 10. (a) $\cdot 1875, \cdot 1360, \cdot 1538, \cdot 1739, \cdot 1612$; (b) $\frac{1}{1} \frac{09}{26}, \cdot 848$. 11. The former. 12. $\$ 24 \cdot 92 \frac{4}{18}$, $\$ 29 \cdot 07 \frac{9}{18}$. 13. 36 tucks. 14. $\$ 48 \cdot 48 \frac{1}{4}$. 15. Balance $\$ 19 \cdot 85$. $16.96 \%, 90 \%, 83 \frac{1}{3} \%, 80 \%, 87 \frac{1}{3} \%$. 17. $\$ 2295$. 18. $\$ 820$. 19. 16 mills, $\$ 19 \cdot 20$. 20. $\$ 327 \cdot 04$. 21. $\$ 1528$. 22. $\$ 18 \cdot 00$. 23. $\$ 3 \cdot 00$. 24. $\$ 300,5 \%$. 25. $\$ 371 \cdot 70$. 26. $\$ 251 \cdot 11$. 27. $\$ 60 \cdot 32$. 28. $112 \frac{2}{3} \mathrm{bd} . \mathrm{ft}$ 29. $348 \cdot 48$ tons. $30.3 \cdot 072 \mathrm{in}$.

SECTION VI

113.- 1. $2^{5}, 3,7,11$; $2^{4}, 3,5,103$. 2. (a) 213 ; (b) 2 , (c) $23 . \quad$ 3. (a) 7560, (b) 4464, (c) 1478235. 4. (a) $10 \frac{1}{2}$, (b) $48 . \quad$ 5. (a) $\frac{5}{69}$, (b) $23_{1 \frac{5}{117}}$, (c) $\frac{17}{8}$, $\begin{array}{lll}\text { (d) } 28 . & \text { 6. (a) } \frac{9}{14}, \text { (b) } \frac{2}{2 \pi} \text {. } & \text { 7. (a) } 27 \cdot 0410356,\end{array}$ (b) 0046, (c) $13 \cdot 14.8$ 8. (a) $\frac{8779}{154}$, (b) 160 ft . 4 in . H. 9. (a) 543 lb ., (b) $\$ 12 \cdot 41 \frac{1}{7} .10 . \$ 287, \$ 137$. 11. $\$ 502 \cdot 12 \frac{1}{2}$. 12. $\$ 460$. 13. (a) $1,457,238 \cdot 08$ lb., (b) $90,285 \cdot 92 \mathrm{lb} ., \quad$ (c) $20.88 \mathrm{lb} .+$, (d) $\$ 36,757 \cdot 17$, (e) $\$ 8,017 \cdot 24$, (f) $\$ 28,739 \cdot 93$, (g) $\$ \cdot 0185+$. 14. $\cdot 002746+$. 15. $\$ 175, \$ 325$, $\$ 100$. 16. 540 ft . 17. $\$ 119 \cdot 45$. 18.10 times. 19. $327 \frac{3}{5} \mathrm{lb} ., 306 \mathrm{lb} . \quad 20.2460$ loaves. 21. 36%. 22. $\$ 19 \cdot 80$. 23. $\$ 108$. 24. $\$ 185 \cdot 29$. 25. $\$ 9600$, 26. $\$ 98 \cdot 78$. 27. $\$ 500$. 28. $\$ 100,000$.
114.- 1. $\$ 562 \cdot 43$, $\$ 62 \cdot 43$. 2. $\$ 220 \cdot 50$, $\$ 20 \cdot 50$; $\$ 3787 \cdot 43, \$ 787 \cdot 43$; $\$ 2331 \cdot 83, \$ 331 \cdot 83$; \$5508•11, $\$ 708 \cdot 11$. 3. $\$ 324 \cdot 73, \$ 24 \cdot 73$. 4. $\$ 842 \cdot 74, \$ 42 \cdot 74$; $\$ 2081 \cdot 21, \$ 81 \cdot 21$. 5. (a) $\$ 790 \cdot 08$, (b) $\$ 5964 \cdot 58$. 6. $\$ 3528 \cdot 68, \$ 4564 \cdot 66$. 7. $\$ 1226 \cdot 10$. 8. (a) $\$ 2 \cdot 45$, (b) $\$ 10,377 \cdot 70$.
115.- 2. $\$ 43 \cdot 69, \$ 4 \cdot 37,4$ c., $\$ 15 \cdot 19, \$ 2 \cdot 76$. 3. $\$ 3 \cdot 11$, $\$ 2 \cdot 69, \$ 1 \cdot 65, \$ 49 \cdot 50$. 4. $\$ 145 \cdot 15, \$ 127 \cdot 80$, $\$ 46 \cdot 39, \$ 2 \cdot 75$. 5. $\$ 165 \cdot 34, \$ 45 \cdot 75, \$ 4 \cdot 53,5$ c.

EXERCISE
115.- 6. 2c., 27 c., 95 c., 20 c. 7. $\$ 1 \cdot 06, \$ 177 \cdot 21$, $\$ 3031 \cdot 14, \$ 1077 \cdot 47$.
116.- 1. $\$ 309 \cdot 07, \$ 9 \cdot 07$; $\$ 418 \cdot 27, \$ 18 \cdot 27$; $\$ 807 \cdot 96$, $\$ 57 \cdot 96$ 2. $\$ 679 \cdot 17, \quad \$ 39 \cdot 17$; $\$ 1324 \cdot 90$, $\$ 124 \cdot 90 ; \$ 460 \cdot 03, \$ 35 \cdot 03$. 3. $\$ 861 \cdot 51, \$ 61 \cdot 51$; $\$ 275 \cdot 95, \$ 25 \cdot 95$; \$141•43, \$16•43. 4. \$249•31, $\$ 14 \cdot 31 ; \quad \$ 556 \cdot 45, \quad \$ 76 \cdot 45 ; \quad \$ 530 \cdot 68, \quad \$ 30 \cdot 68$. 5. $\$ 1352 \cdot 91 ; \$ 1725 \cdot 22 ; \$ 3226 \cdot 98$. 6. $\$ 21 \cdot 38$.
117.- 1. $\$ 2500, \$ 6025$; $\$ 6000, \$ 4455$; $\$ 5700, \$ 3605 \cdot 25$; $\$ 2300, \$ 621$. 2. $60,41,55$. 3. $\$ 216, \$ 1150, \$ 308$. 4. 500,3625 . 5. $\$ 4 \cdot 50, \$ 8 \cdot 25$ 6. (a) $4 \frac{1}{2} \%$, (b) $4 \frac{1}{4} \%$, (c) $5 \frac{1}{3} \% . \quad$ 7. 26. 8. $\$ 350 . \quad$ 9. $\$ 3400$, $\$ 6 \cdot 25$. 10. $\$ 1233$. 11. $\$ 640$. 12. $\$ 480$. 13. $\$ 100 \cdot 80$. 14. 180 shares, $\$ 18,000, \$ 760$. 15. 40 shares, $\$ 240, \frac{1}{20}, 5 \%$. 16. $6 \frac{2}{5} \%$. $\mathbf{1 7 .} 8 \%$. 18. $\$ 9$ larger. 19. $\$ 4600$. 20. $\$ 9000, \$ 7200$. 21. $\$ 160$.
118.- 1. $\$ 4 \cdot 13, \$ 14 \cdot 10, \$ 26 \cdot 60, \$ 30 \cdot 23, \$ 47 \cdot 90, \$ 75 \cdot 24$, $\$ 93 \cdot 60$. 2. A 40 c . note and 5 c . stamp, total 46 c .; a 90 c . note, total 97 c .; a $\$ 1.50$ note, total $\$ 1 \cdot 67$; a $\$ 2 \cdot 50$ note and 40 c. note, total $\$ 2 \cdot 96$; a $\$ 3$ note and 70 c. note, total $\$ 3 \cdot 84$; a $\$ 4$ note and 80 c . note, total $\$ 4 \cdot 90$; a $\$ 5$ note and 90 c. note, total $\$ 5 \cdot 97$; two $\$ 10$ notes, a $\$ 5$ note, and a $\$ 1$ note, total $\$ 26 \cdot 11$. 3. 1c., 1c., 0,1 c., 1c., 3 c. 4. $\$ 360 \cdot 45, \$ 2002 \cdot 50, \$ 236 \cdot 80$. 5. $\$ 1201 \cdot 50$. 6. $\$ 2394.7 . \$ 159 \cdot 80$. 8. $\$ 3208$. 9. $\$ 720$. 10. $\$ 320$. 11. $\$ 140$. 12. $\frac{1}{3} \%$. 13. $\$ 6034 \cdot 46, \$ 675 \cdot 50$, $\$ 1144 \cdot 80$. 14. $£ 1315 \cdot 10,24471 \cdot 40$ francs, $33542 \cdot 97$ marks.
119.- 2. 144, 225, $324,2025,8100$. 3. 3, 4, 7, 11, 40, 90 . 4. $\cdot 5, \frac{1}{8}, \cdot 7,1 \cdot 2, \frac{8}{18}$. 5. 8 in., 3 yd., 60 rd ., $\frac{1}{2} \mathrm{mi}$. 6.32 in ., $1 \cdot 2$ yd., 240 rd ., 2 mi .

ExERCISE
119.-7. 18, 33, 87, 99, 125, 256, .51, 11•2, 726. 8. 117 ft 9. 280 rd .
120.- 1. 62, 64, 73, 92 . 2. 141, 156, 193, 256, 313.
3. $413,527,597,809,879 . \quad 4.1679,2718,6211$.
5. $\cdot 36, \cdot 57, \cdot 79, \cdot 88, \cdot 17, \cdot 27$. 6. $2 \cdot 7,3 \cdot 4$, $12 \cdot 1,7 \cdot 01,18 \cdot 47$. 7. $\cdot 388, \cdot 572,34 \cdot 91,2 \cdot 403$.
8. $1 \cdot 414,1 \cdot 732,2 \cdot 236,3 \cdot 162,4 \cdot 123,11 \cdot 090, \cdot 948$, $\cdot 714,2 \cdot 489,2 \cdot 061 . \quad$ 9. $\frac{19}{2}$, $\frac{29}{2} \frac{8}{8}, \frac{89}{8}, 1 \frac{3}{4}, 5_{12}^{2}$, $5 \frac{1}{2}$. 10. $\cdot 866, \cdot 845, \cdot 522, \cdot 384,2 \cdot 121,1 \cdot 914$.
11. 5%. 12. 33.541 rd .

SECTION VII

121.- 1. 120 sq. ft., 60 sq. ft. 2. 121 sq. ft., 242 sq. ft. 3. $47 \frac{2}{3}$ sq. ft. 4. $127 \frac{1}{3} \mathrm{bd}$. ft. 6. 24 ft . 7.15 in .
122.-1. 25 sq. ft., 5 ft 2. 15 ft . 3. 25 ft . 4. $31 \cdot 24$........ft. 5. 14.83........ft.
123.- 1. 44 ft ., $25 \frac{7}{7} \mathrm{ft}$., $18 \frac{8}{\mathrm{ftt}}, 62 \frac{9}{7} \mathrm{in}$. 2. $40 \frac{9}{7} \mathrm{ft}$. $56 \frac{\mathrm{ft}}{} \mathbf{~}$, $75 \frac{3}{7} \mathrm{ft}$. 3. $10 \frac{1}{2} \mathrm{ft}$., $5_{\text {年 }} \mathrm{ft}$., $23 \frac{1}{2} \frac{9}{2} \mathrm{ft}$. 4. 840 turns. 5. 12 yd . 6. 196 turns, $3_{\frac{1}{1} \text { f }}$ turns.
$124 .-1$. 154 sq. ft., $86 \frac{5}{8}$ sq. ft., $1,134 \frac{4}{4}$ sq. yd., $1,886 \frac{1}{2}$ sq. ft. 2. $50 \frac{2}{7}$ sq. ft., $176 \frac{1}{4}$ sq. ft., $11,694 \frac{4}{4}$ sq. in., $113 \frac{7}{7}$ sq. yd. 3. $38 \frac{1}{2}$ sq. ft., $86 \frac{5}{3}$ sq. yd., $127 \frac{\mathrm{~s}}{\mathrm{II}}$ sq. rd. 4. $50 \frac{1}{1} \frac{1}{1}$ ac. 5. $123 \cdot 33 \ldots \ldots .$. yd. 6. 154 sq. ft .; 1 ft . by 154 ft ., 2 ft . by 77 ft ., 7 ft . by 22 ft ., 14 ft . by 11 ft .
125. -1.80 sq. ft., $85 \frac{1}{4}$ sq. ft., $4 \frac{1}{2}$ sq. ft. $2.293 \frac{1}{3}$ sq. ft. 3. $\$ 13 \cdot 20$. 4. $481 \frac{1}{4}$ sq. $\mathrm{yd} . \quad 5.63 \mathrm{sq}$. in. 6. $10 \frac{1}{2} \mathrm{ft}$. 7. 176 sq. in.
126. $-1.248 \mathrm{cu} . \mathrm{ft}$., 248 sq . ft. 2.600 cu . ft. 3. $3620 \frac{\mathrm{f}}{}$ cu. ft. $4.297 \mathrm{cu} . \mathrm{ft}$., $1856 \frac{1}{2} \mathrm{gal}$. 5. 7 in .

EXERCISE
127.- 1. 80 ft. 2. $55687 \frac{1}{2}$ bu. 3. 362 tons. 4. $2205 \frac{35}{\frac{3}{8}}$ gal. 5. $18 \cdot 176 \mathrm{rd}$. 6. 480 sq . in., 432 cu . in. 7. $63_{\frac{9}{14}} \mathrm{cu}$. in. 8. 1628 sq. in., 4620 cu . in. 9. 80 ft .10 in . $11.13 .8 \mathrm{ft} ., 36 \mathrm{ft}$.

SECTION IX

128.-1. $\$ 2152 \cdot 37 . \quad$ 2. $56 \mathrm{lb} ., 60 \mathrm{c}$. 3. (a) 2 , (b) quotient 12388 , remainder 309 . 4. $\$ 4444 \cdot 80$. 5. 6 c . 6. 270 bu. 7. $\$ 542 \cdot 90$. 8. $\$ 171 \cdot 25$. 9. 18,19 , 20, 21. 10. 53. 11. 23,700. 12. 3 yd .2 ft .7 in . 13. $\frac{8}{6}$. 14. (a) $2 \frac{7}{9} \frac{1}{6}$, (b) $1 \frac{2}{5}$, (c) $6 \frac{18}{12}$, (d) $12 \frac{2}{6}$. 15. 100 doz. 16. $\$ 4 \cdot 76$. 17. $\$ 149 \frac{1}{3}$. 18. $\$ 3329 \cdot 75$. 19. $\$ 319 \cdot 37 \frac{1}{2}$. 20. A $\$ 32, \mathrm{~B} \$ 80, \mathrm{C} \$ 20$. 21. $\$ 129 \cdot 09$. 22. $30 \frac{1}{4}$ c. 23. $\$ 37 \cdot 50$. 24. 20 men. 25. $1068 \frac{1}{2} \frac{7}{4}$ lb., $\$ 2180 \cdot 16 \frac{1}{2}$. 26. $\$ 1119$. 27. $\$ 4173 \cdot 81$ gain. 28. (a) $261 \cdot 44$, (b) 15 , (c) $\cdot 70684$. 29. $\cdot 752651+$. 30. $9 \cdot 7875$ yr. 31. $\$ 689 \cdot 83$. 32. $\$ 443 \cdot 18_{1}^{2} \mathrm{I}$. 33. $\$ 19 \cdot 53$ +. 34. $144,000 \mathrm{ac}$. 35. 4 hr ., 48 min . 36. 2448 cu . ft., $4 \cdot 195 \mathrm{ft}$. 37. 20 ft . and 6 ft . 38. $1512 \frac{1}{2} \mathrm{lb}$. 39. $\$ 28 \cdot 80$. 40. 800 lb . 41.25%. 42. $16 \frac{2}{3} \%$ gain. 43. $16_{11}^{4} \%$ gain. 44. $24 \frac{1}{4} \frac{9}{1} \%$. 45. 80%, $\$ 468$. 46. $\$ 1000$ gain. 47. $\$ 325$. 48. (a) -, (b) $\$ 310 \cdot 62 \frac{1}{2}$, (c) -. 49. 14 mills. 50. $\$ 4987 \cdot 50, \$ 12,987 \cdot 50$. 51. 6000 bu. 52. $54 \frac{3}{4} \%$. 53. $\$ 776 \cdot 76$. 54. $\$ 14 \cdot 35$. 55. $\$ 15 \cdot 10$. 56. $\$ 432 \cdot 34$. 57. $4 \frac{1}{2} \%$. 58. (a) Mar. 13 th, 1920 ; (b) $\$ 1618 \cdot 35$, (c) 69 da.; (d) $\$ 18 \cdot 35$; (e) $\$ 1600$. 59. $\$ 4638 \cdot 77$. 60. $3 \frac{3}{4} \%$ 61. $\$ 43,350$. 62. (a) $\$ 797 \cdot 50$; (b) $£ 25015 \mathrm{~s} .8 \mathrm{~d} .+$. $\quad 63.61 \cdot 33+, 261 \cdot 25+$. 64. $50 \cdot 596 \mathrm{rd} ., 44 \cdot 848 \mathrm{rd}$. 65. 10 ft .

[^0]: *19. What will be the cost of $80 \cdot 4$ tons of coal at $\$ 11.50$ a ton?

