## IMAGE EVAI.UATION TEST TARGET (MT-3)



Photographic
Sciences Corporation


# CiHM/ICMH Microfiche Series. 

## CIHM/ICMH Collection de microfiches.



The Institute has attempted to obtain the best original copy available for filming. Features of this copy which may be bibliographically unique. which may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below.Coloured covers/
Couverture de couleur

## Covers damaged/

Couverture endommagéeCovers restcred and/or laminated/
Couverture restaurée et/ou pellicuiéeCover title missing/
Le titre de couverture manque

Coloured maps/
Cartes géographiques en couleur

Coloured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bleue ou noire)

Coloured plates and/or illustrations/
Planches ot/ou illustrations en coulour

Bound with other material/
Relí avec d'autres documents

Tigh: binding may cause shadows or distortion along interior margin/
La reliure serrée peut causer de l'ombre ou de la distorsion le long de la marge intérieure

Blank leaves added during restoration may appear within the text. Whenever possible, these have been omitted from filming/
Il se peut que certaines pages blanches ajoutées lors d'une restauration apparaissent dans le texte. mais, lorsque cela était possible, ces pages n'ont pas été filmées.

L'Institut a microfilmé le meilleur exemplaire qu'il lui a été possible de se procurer. Les détails de cet exemplaire qui sont peut-ètre uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de filmage sont indiqués ci-dessous.

Coloured pages/
Pages de couleur
Pages damaged/
Pages endommagees
Pages restored and/or laminated/
Pages restaurées et/ou pelliculées


Pages discoloured, stained or foxed/
Pages décolorées, tachetees ou piquèes

Pages detached/
Pages détachees

Showthrough/
Transparencs

Quality of print varies/
Qualité inégale de l'impression

Includes supplementary material/
Comprend du masériel supplémentaire

Only edition available/
Seule édition disponible

Pages wholly or partially obscured by errata slips, tissues, etc., have been refilmed to ensure the best possible image/
Les pages totalement ou partiellement obscurcies par un feuillet d'errata, une pelure. etc., ent été filmées à nouveau de fac̣on à obtenir la meilleure image possible.

Additional comments:/
Commentaires supolémentaires:

Pagination is as follows : [197]-225 p.

This item is filmed at the reduction ratio checked below/
Ce document est filmé au taux de reduction indiqué ci-dessous.


The copy filmed here has been reproduced thanks to the gene osity of:

Library,
Geological Survey of Canada
The images appearing here are the best quaity possible coneidering the condition and leglbiiity of the originai copy and in keeping with the fllining contract specifications.

Original copies in printed paper covars are filmed beginning with the front cover and ending on the last page with a printed or iliustrated impression, or the back cover wion appropriate. Aif other originai copies are flimed beginning on the flrst page with a printed or illuetrated impression, and ending on the last page with a printed or illustrated impression.

The laet recorded frame on each microfiche shail contain the symboi $\rightarrow$ (meaning "CONTINUED"), or the symboi $\nabla$ (meaning "END"). whichever appiies.

Maps, platee, charts, etc., may be filmed at different reduction ratios. Those too large to be entirely included in one exposure are filmed beginning in the upper left hend corner, left to right and top to bottom, as many frames as required. The foliowing diagrame illuatrate the method:

L'exempiaire filmd fut reproduit gràce à la générooité de:

Bibliothèque,
Commission Géologique du Canada

Lea images suivantes ont ded reproduites avec lo pius grand soin, compte tenu de la condition et de la nettete de l'exemplaire filme, ot en conformité avec lea conditions du contrat de filmage.

Lee exempiaires originaux dont la couverture en pepier eat Imprimíe sont fiimds on commençant per le premier plat et en terminant soit par la dernidre page qui comporte une emprainte d'impression ou d'iliustration, soit par le second plet, selon le cas. Tous les autres exemplaires originaux sont filmés en commençant par la premidre page qui comporte une emprainte d'imprestion ou d'iilustrazion ox on terminant par In dernidre pege qui comporte une telle ompreinte.

Un der symboles suivants apperaitra sur la dernidre image de chaque microfiche, selon le cas: le symboie signifie "A SUIVRE", le symbole $\nabla$ signifie "FiN".

Les cartes, pianches. tabieaux, otc., peuvent itre filmde à des taux de reduction differ ents. Lorsque le document est tsop grand pour âtre reproduit er un seul clichd. ii est fllmé à partir de i'angie suptriess gauche, de gauche à droite. et de haut en bas, en prenant le nombre d'images núcessaire. ins diegrammes suivants iliustrent le méthode.


| 1 | 2 | 3 |
| :--- | :--- | :--- |
| 4 | 5 | 6 |

## THE FOOT-PRINTS

## occurring in the

## POTSDAM SANDSTONE OF CANADA.

BY W. E. LOGAN, Esq., F.G.S.
[From the Quarterly Journal of the Geological Society of London for August 1852, Vol. VIII.]

1. On the Foot-prints cecurring in the Potsdam Sandstone of Canada. By W. E. Logan, Esq. F.G.S.
[Plates VI, to VIII.]
Since the reading of the paper communicated to the Society last year on the track and footsteps of an animal in the Potsdam Sandstone of Lower (East) Canada*, the lowest member of the Lower Silurian meks, farther investigation by my assistants on the Provincial Survey and myself have brought to light a considerable number of similar tracks in the same rock; and, although quite convinced in my own mind of the age of the rock, the importance attached to these impressions has induced me to search for additional evidence on the point, in order that others as well as mysclf might be satisfied that no mistake had been made in regard to it.
In my previous paper it was stated that a sandstone formation, resting unconformably on a metamorphic series of gneiss and interstratified limestone, and occupying a narrow strip at a variable distanct on the north side of the St. Lawrence, swept round from the valley of this river to that of the Ottawa, the turn forming an obtuse angle and occurring on the Rivière du Nord: that a similar rock, proceeding from Keesville in New York, turns from the Valley of Lake Champlain to that of the River St. Lawrence, and, forming at the bend a sharper angle, is projected out across Beauharnois towards the previously mentioned bend in a long tongue of sandstone, pierced near the extremity by Mont Calvaire, a protruding mass of

* Quart. Journ. Geol. Soc. vol. vii. p. 247 et seq.
the subjacent gneiss. From Beauharnois the rock has been traeed in New York in a nearly straight south-west line, and at a distance of five to thirty miles from the south-east bank of the St. Lawrence, to Hammond and Alexandria on that river. Crossing the river then to Broekville, it was last summer followed in Canada through the Johnstown and Bathurst Distriets in a tortuous course to the townships of M'Nab and Nepean on the Ottawa; and on this river it has been seen again once, below Bytown, trending to a junction with the exposure on the Rivière du Nord. Between Mont Calvaire and the Bathurst Distriet it may thus be considered to form the perimeter of a peninsulashaped arca, the isthmus to which, between the cxposures at Mont Calvaire and Rivierre du Nord, is about ten miles wide. Around the whole of this peninsular space the sandstonc rests upon the gneissoid metamorphic roeks, and it is succeeded by an interior zone of cal-careo-arenaceous beds, bearing the fossils which characterize the Calciferous Sand-rock scries of New York. Within this is another zone consisting of limestone corresponding in a considerable degree in its fossil contents with the Chazy Limestone; the organic remains of a large area in the centre can be identified with thosc of the Bird's-eye, Blaek River, and Trenton Limestones, and restiug on the latter a trough of the Utica Slate with its characteristic Trilobites and Graptolites extends from Bytown some distance eastward. This concentric geographical arrangement of the rocks, even without the evidence of the dips, leaves little doubt that the more organic formations rest on the sandstone. Where the dips are appreciable, they give a general confirmation of this; but they are for the most part small, and strata over large areas have often to the eye the appearance of being quite flat. The east side of the Beauharnois tongue of sandstone is bounded by the same suecession of formations.
The sandstone in Beauharnois County and the neighbouring part of the State of New York is from 300 to 700 feet thick. In the lower part it contains many beds of conglomerate with quartz-pebbles, and it has some red layers; but towards the top it becomes a finegrained, hard, white sandstone, and at the summit it is interstratified with calcareous layers forming a passage to the rock which overlies it. In this part it is abundantly marked over considerable surfaces by what the geologists of New York have called Scolithus linearis, which consists, where the rock is weathered, of straight, vertical, cylindrical holes, of about an eighth of an inch in diameter, descending several inches, and, wherc the rock is unweathered, of corresponding solid cylinders, composed apparently of grains of sand, cemented by a slightly calcareous matrix, more or less tinged with peroxide of iron. $\mathbf{M r}$. Hall and other American geologists include them among the Fucoids of the rock, but they appear to me more like Worm-holes. In onc or two instances I have perceived that the tubes are interrupted in their upward course by a thin layer of sand, of a portion which descends into them and stops them up; and from this it ineumbent sand was spread over them were hollow when the superof the tubes, they strongly marl them. Whatever may be the origin of the tubes, they strongly marl. many beds in the upper part of the
sandstone throughout the Canadian portions of its distribution already mentioned; and it is stated by Mr. Hall that the same characteristic accompanies the Potsdam sandstone in New York and Pennsylvania, and as far as Teunessee.

With this part of the formation also are associated many indieations of what have been considered as Fucoids. One form among others presents a reticulated arrangement of stem-like bodies spreading over some of the surfaces, the interspaces of the network being four-, five-, and six-sided, and sometimes, when largest, measuring 14 inehes in diameter; while the ridges whiel divide them are an inch und a half wide, and stand out lalf an ineh in relief on the sandstone. The compartments are sometimes filled witl shale, and the low ridges, a good deal resembling crack-casts, might be taken for such, were not similar forms oceasionally traceable on splitting open closely joined surfaces of sandstonc where no shale intervenes, and were not smooth surfaces of arenaceo-bituminous limestonc in the succeeding formation met with presenting blaek bituminous pellicles arranged in similar reticulated figures-both large and small.

At Beaularnois, in the locality in which the first Track was discovered, and on a bed in the samc quarry, the trail of a Worm or of a Mollusk was very beautifully displayed; and in the Johnstown District not only do Scolithus and Fueoids exist in abundanee, but my associate, Mr. Murray, has there met with Lingula antiqua, characterizing this part of the forr ation, as it does also at Hammond on the south side of the river.

The new localities in whieh foot-prints have been met with are five in number. In nonc of them is Lingula found immediately near, bui Scolithus abounds in them all, as well as the Fucoids. Two of the new localities are in the vicinity of Beauharnois (see Map, Pl. VI.) ; one of thesc, in the field of Mr. Henault, is about half-a-mile westward of that in which the first impressions were discovered; the other about two-and-a-half miles still furtleer westward, and about 500 yards from the mouth of the Beauharnois Canal. Scolithus and Fucoids are seen in beds a few feet above and a few feet below those having the foot-prints, and 7 feet below one of them the Worm-holes are accompanied by a thin band of interstratified limestone. Along the shore of Lake St. Louis, between the two localities, the sandstone, with the occasional appearanee of a calcarcous layer, can be seen nearly the whole distance, and a careful admeasurement of the distance and of the minute changes that occur in the very moderate dips prevailing enables me to bring the track-bearing beds to wiohin 3 feet of one another in stratigraphical place, while geographically their positions are equivalent in relation to the Calciferous Sand-rock which on each side bounds the more siliceous formation.

Proceeding eastward from the exposures in Henault's field and the tracks on the St. Louis River (those first discovered), the sandstone, marked by Scolithus, can be followed along-shore for about a mile, and is very nearly flat. Then there is an interval of about a mile without any exposure, beyond which the Calciferous Sand-rock first makes its appearance. Thin interstratified bands, more arenace,sis
than others, are still characterized by Seolithus, and the more massive beds hold abundance of two species of Maclurea,-M. matutina of Hall, and a new species. The strata are nearly flat; and, seen at intervals, they continue so for about six miles to the bridge on the Chateauguay River, in the first two miles of which the same two specics of Maclurea are met with in sevcral exposures, while the lithologieal character of the rock varies little the whole way. An exposure near the bridge displays Pleurotomaria rotuloides of Hall (a Trenton species). In beds of good limestone*, three miles farther cast, and in the Caughuawaga quarry two miles beyond these, oceur Atrypa plena and Orthis pectinella. Four miles farther on, at St. Louis Rapids, the rock eontains nine specics belonging to the Trenton formation. They are Leptrena sericea, L. deltoidea, Orthis striatula, Lingula quadrata, Murchisonia bicincta, Glyptocrimus decadactylus, Echino-encrinites anatiformis, Calymene senaria, Isotelus gigas, besides the gencra Stromatopora, Orthoceras, and an unfigured specics of Encrinurus. Beyond this the Utica slate appears below the St. Louis Rapids, and, crossing the St. Lawrence, can be traced aling the shore of the Island of Montreal to the city, displaying Triarthrus Beckii and Graptolithus bicornis in many places.
Passing westward from the track-bed near the mouth of the Beauharnois Canal, the sandstone can be followed with little intermission for a distance of three miles up the St. Lawrence, where it becomes interstratified with calcareo-arcnaceous layers ; but at St. Timothy, three miles farther, sandstonc beds, holding Scolithus, are still met with, and Raphistoma occurs in Calciferous Sandrock. For between four and five miles farther up the river the strata are concealed by drift, until reaching Grande Isle, where quarries expose good limestone beds, resting horizontally on others of an arenaccous character, and containing Raphistoma (two species), Murchisonia, Euomphalus, and Leperditia canadensis $\dagger$ (Jones, MS.), all unfigured; and at the head (western end) of the Beauharnois Canal, three miles farther up, besides Raphistoma there is a Phacops, allied to P. Downingia, and Isotelus gigas (the latter belonging to the Chazy limestone). All

[^0]TY. [Mar. 24,
e more massive M. matutina of ; and, seen at bridge on the same two spevhile the lithoAn exposure Iall (a Treuton er east, and in oecur Atrypa at St. Louis e Trenton forthis striatula, decadactylus, lus gigas, begured species below the St. traced alling g Triarthrus of the Beauintermission e it becomes St. Timothy, are still met For between oneealed by od limestone aracter, and phalus, and and at the $s$ farther up, ningia, and tone). All

## 6,1852 , it is

 hetween the removed to however, to so observes, Rivière du the unrepreand he înds in (green on epes part isWhite Horse designated gly spelt on
1852.] LOGAN-POTSDAM SANDSTONE FOOT-PRINTS.
Fig. 2.-Section from Isle Jesus to River St. Louis Section No
Distance about 23 miles.
 b. Pot:dam Sand tune with the Trexcruerinn $f$ ed
these loenlities, both to the east and west of the for; wrints, ure inchaded in the line of scetion given with last yar's c.t.s.manation*. Another of the truck-bed localities is in the vicinity of Point Cavagnol, on the sonth side of the Lake of the 'l'wo Mominins, abont fifteen miley from the lacality near the month of the Bemunamois Cunal. Both of these localities are on the western side of the axis of the flat mutielinal areh, formed by the projeeting tongne of sandstone between Beauharnois med Mont Calvaire, as descrihed in my former paper. To the westwurd of the tracks of Point Cavagnol the country is so covered with drift and forest, that no traverse, starting immediately from the bed, has been attempted in that direetion beyoad a few miles, in which no exposire was met with; lut an the lake side of the trueks, and a short distmee beneath them, a hed of red sandstone oceurs.

The fourth new locality is on one of the islands of St. Gencevieve, between two and three miles east of St. Am, at the mpler end of the Island of Montreal. This spot is about seven miles from the Beanharnois village exposures, and, with them, is on the east side of the anticinal axis. If a line be followed obliquely across the antielinal from the Canal truck-bed to that of St. Génevieve Island, and pursued to the White Sorse Rapids between the Islands of Montrenl and Jesus, a little below Isle Bizard, coarser sandstones would cone from beneath the Canal track-bed about a mile out in Lake St. Lonis (see fig. 2, \& Scetion 2 of the Map). They are represented by the sandstones and conglomerates of Cascade Point and Casende Istand close by, of which they would be in the strike. A thickness of 65 feet of these coarser strata can be made out at the Point, and they are probably as much below the track-hed. The traverse-line would cross Isle Perrot, which is all underlaid by the sandstone, and on reaching the track-bed of St. Généviève Island, not a mile on the north side of Perrot, we again find the rock marked by Scolithus, with which it is in some spots completely honeyeombed to the depth of 3 feet, while it is also interstratified with thin irregular caleiferons bands. St. Ann's Point may be considered in the strike of the St. Génévieve Island, and here we still find the sandstone marked by Scolithus; ident on Isle Perroit, opposite, there oceurs a bed of red sandstone ments of tharacter with that of Point Cavagnol, and angular fragnorthwards, we find strew the shore above St. Amn. Proceeding the outcrop of the Calciferous Sely behind the village of St. Amm's and in a quarry to whieh resort has been had geodes of calc-spar ; meet with a Murchisonia, like M. gracilis, but for building-stone we Pleerotomaria, like P. subeouica, gracilis, but flat in the whorls, a Anna (Jones, MS.), and Orthoceras. more depressed, Leperditia half a mile, a Raphistoma occurs in ealeurther on the road, about with thin geodes of calc-spar are met with-arennecous beds, which on. We then, in a low esearpment, with in several places firther almost entirely of Atrypa plenpment, come upon a rock complosed Limestone. The rock usually affordles characteristic of the Chazy

* Loc. cit. p. 249, and repeated here (food building-stone as well as
1852.] LOGAN-POTSTAM SANDSTONE FOOT-PRINTS.
briuts, are infannication*. inity of Point mutains, about e Beanharmois le of the axis ngue of saudsscribed in my Cavaguol the verse, starting liat direction 1 ; but on the hem, $n$ bed of
t. Gćućviève, er cind of the om the Beanst side of the the antielinal and pursued Iontreal and d come front St. Lonis nted hy the seade İsland ess of 6.5 feet nd they are would cross on reaching e north side with which th of 3 feet, rous bauds. - Géućvicive Scolithus; d sandstone gular fragProceeding St. Am's calc-spar ; g-stone we e whorls, a Leperditia ond, about eds, which ces farther composed the Chary as well as Map).
stone for lime-burning, and it has been mueh quarried at the village of St. Géuévic̀ve, just opposite the mid-length of Isle Bizard. The White Horse Rapids are situated abont three miles to the cast, and here, on both sides of the livierc des Prairies (a branch of the Ottawn), black limestone-beds, lying in the form of a shallow trough, and displaying fifteen species of 'Trenton and onc of Clazy fossils, are surmounted by black bituminous shales holding Triarthrus Beckii and Graptolithus bicornis of the Uticn Slate, while loose fragments of black limestone (possibly Trenton limestone) at no great distanee are characterized by Leperditia gracilis (Jones, MS.) nad Serpulites. The Trenton Limestone of this part is probably continuous with that of the south side of Montreal Island, where, about three miles W. of Lachine, on the road to St. Aun, fifteen Trenton speeies have been met with; and in the quarries of Point St. Claire, six miles nearer St. Ann, we get five species characterizing the Bird's-cyc Limestonc, with one usually found in the Chazy, and four given by IIall to the Tienton.

> Point St. Claire*.

| Favistella (Columnaria) | Trentop |
| :---: | :---: |
| Sictopora renta. |  |
| $\xrightarrow{\text { Leptana secricla }}$ | ", |
| Plcurotomaria umbilieata |  |
| Murelisonia perangulata | Birds s-eye. |
| Modiolopsis obtusa | " |
| Pavosites alvcolaris? |  |
| Phytopsis cellulosa | " |
| Atrypa plena ?.......... |  |

## Three Miles above Lachine.

Favosites (Chætctes) lycoperdon .................................... Trenton.
Orbicula lanellosa
terminalis ? ...................................................................... "
Leptena serieca ..................................................................... "

- deltoiden ; plentiful ........................................................ "

Orthis (testudinaria) striatula (Emmons) ......................................... ",
— peetinella ............................................................. .
Modiola (Tellinomya) anatiformis? .......................................................
Bellerophon bilobatus .............................................. "
Oneoceras constrictum ...................................................... "
Cyrtolites trentonensis ...................................................... "
—ornatus "
Calymene senaria; plentiful................................................. "
Isotelus gigas ..................................................... "
Leperditia (L. Canadensis?), a speeies $\frac{1}{\text { inch long. }}$............. "
Orthoceras.
Serpulites, allied to S. dispar (Salter).
Conularia.
Encrinurus, the same as at White Horse Rapids.
White Horse Rapids.
Favosites (Chrtetes) lyeoperdon .................................... Trenton.
Stictopora acuta.................................
Stictopora acuta

* These lists, and the names of the other fossils mentioned in the paper, are furnished by my friend Mr. Salter, of the Geological Survey of Great Britain. vol. vih.-parti.

Leptana sericea; plentiful


Raphistous, with purctured checks. Cbazy
Raphistoma, two indescribed species, fonnd also at Poquettes trapa, Almettes 1sland.
Atrypa, allied to $\Lambda$. extans.
the or Rlyuconclla, allied to A. navicula, but with a sinus in the front of the larger valve. Fenestella, Lingula, Bellerophon, Orthoceras.

The fifth new locality in whieh the foot-prints ocenr is on the Riviere du Nort, in the Seignory of Argenteuil, along whieh river the sandstone aggia crops ont, and runs in a W.S.W. tirection almost in a line with the Valley of the Ottawa (see Map, Seet 3; and fig. 3). The
Fig. 3.-Section across the Riciire du Nord in the Seignory of Argentewil. Seetion No. 3 on the Map.

Distanee about 5 miles.
N.

a. Gneiss, interstratified witin limestone and traval/
b. Potsdam Sandstone with the Track-bed. c. Caticiferous smadick.
dip of the strata is here a little more decided than we have yet had it, the inelination being south at an angle of about $4^{\circ}$; and in the spaee of a mile and a quister the stratigraphical relations of the rocks ean be well made ont. We have first the gneiss and its interstratified limestone; then the sandstone, not seen in aetual contact with it, but forming an esearpment of between 30 and 40 feet in height, between whieh and the gueiss there is a flat sandy valley, varying in breadth from one quarter tc half a mile, in which the stream winds tively to the exstward, and is linen traeed thirteen miles eonseenverse seetion was measured the know far beyond; and where a transesearpment at a height of probably 100 oed oceurs at the top of the South of the sutcrop of the traek-bed or 200 feet over the gneiss.
y. [Mar. 24,
.. Trenton.
$"$
$"$
$"$
$"$
$"$
$"$
$"$
$"$
$"$
$"$
$"$
Cbazy.
r is on the eh river the on almost in fig. 3). The
of Argentenil.
surface, another escarpment rises to the height of 70 feet. The white sandstome, perforated with Ncolithus, is seen ut the base, interstrutified with calcareo-arcuaceons beds for about 25 feet up, and these calcareoaremaceons beds, holding geodes of eale-spur, compose the remainder of the rise. About 300 yards firther, nfter a very gentle slope, there is a smaller step, composed of the same deseription of ealeareons sandstones, and from this a ievel surface, of about 11 quarter of a mile broad, in whieh similar strata are seen once, reaches n sumall rise of 5: feet, composed of marenaccons limestone, which is cumaried for burning. In the quarry ocenrs Ophileta levata of Vamisem (a Calciferons Sand-rook sprecies) and Raphistome (the same as that of St. Amens section) ; and the general dip in the section is such as to leave no room to doubt the place of the track-bed, which would be sionat 160 feet beneaih the limestone.

Farther sonth this iine is covered up by sandy drift for several miles, but, if we go about five or six miles to the westward, and ugain starting from the gueiss, tuke a conrse nt right angles to the strike (Section 4 of the Map), three and a half miles will hring us to a twofeet bed of good limestone. This rock, from its having been quarried for lime-burning in several phees, has been followed from Carrillon to Grenville (thirteen miles). The dip of the limestone from its ontcrop to the river (two miles) is about 75 feet in un mile. That it overlies the beds of the previons scetion is not considered meertain ; from the pancity of exposures, however, between it and the guciss, and the inereased dip near the gneiss, it is not easy to deternine its relative position. It may be at least 1.50 feet higher ; for there are seen in some of the maturally exposed seetions of the Ottawa very nearly 100 fect of underlying ealearcons claystone, wenthering more or less yellow or brown, and in some parts bituminous and in others arenaceous, and often presenting in the hatter case geodes of cale-spar and heavy-spar ; mul none of these beds appear in the livicire du Nord section. Immediately bencath the 2 -feet limestone there is a singular and extensively spread concretionary layer, in some large exposures of which, surfaees of half an aere show these coneretions, consisting of eonecntrie layers, ent in half and elosely packed together, some of them being 2 to 3 fect in diameter. I'he linestone bed is fossiliferons, and displays Muchurea sordida (a Caleiferons Sand-roek species), 1'eurotomaria nodulosa? (a Bird's-eye species), Murchisonia bicincta, mad mother species, ans Atrypa allied to A. extans, Raphistoma, Turbo, Morliola, Orthoceras, Leperditia Camadensis (Jones, MS.), and Reyrichia Loguni* (Jones, MS.), in nbundance, and a new species of Paradoxides $\dagger$; and at a short distanee above the bed there are about 50 feet of sandstone, with bands of green shale, holding a vast eollection of Fucoids, of whieh a bilobated speecies is most conspicuous. Some of the sandstone beds are

[^1]porous and moderately fine-graincd and yield good fire-stones, whil others are coarse, and, in addition to quartz-pebbles, hold a mult tude of phosphatic nodules, mingled with small fragments of what appear to be Lingula. At Grenville, wherc these beds have been most exposed by the eutting of the earal, they arc found to cross the Ottawa to Hamiltonville in Hawkesbury, and to extend half a mile back from the river ; and half a mile beyond them a low esearpment presents the base of the Clazy Limestone, composed, as in the St. Ann's seetion, almost entirely of Atrypa plena. In this roek also small phosphatic nodules exist in some abundance, a few of which hold small fragments of shells.
Phosphatie nodules lave also been met with higher up on the Ottawa, at the Allumettes Rapids, in a conglomerate bed oecupying the same stratigraphical position as the Grenville beds, but there resting on the gneiss. Great numbers of one large speeies of Lingula, very like L. parallela of Phillips, and a few of Pleurotomaria or Holopea, occur with the nodules. Every one of the Lingula is imbedded in a coating of the phosphate, and in one instanec a fragment of a Lingula was found lying across the length of the nodule. The speeimen of Pleurotomaria is a phosphatic cast of the interior of the shell.
I may here mention also, that much higher in the Lower Silurian series of strata, in faet, just above the Hudson River Group, but eonsiderably removed from this locality, phosphatie nodules occur in great abundance, and one of them, obtained at Rivicre Ouelle, on the south side of the St. Lawrence, seventy-five miles below Quebee, whence the limestones and sandstones in which they oecur are traceable to Point Levi, opposite the Capital, so mueh resembles a fragment of a cylindrieal bone, and is so like bone in chemical composition, that I have had it slieed, fully expecting it would show bony strueture. This, however, is wanting; but the specimen suggests the inquiry, whether, confined in its stony mould, any chemical aetion may have been exerted to obliterate its original strueture without destroying its form.
I append to this paper the analyses, with whieh my friend Mr. Hunt, the chemist attached to the Canadian Survey, has furnished me, of four phosphatic specimens, two of them from the Rivicire Ouelle, one of these being the bone-like fragment ; the third is from the Chazy beds of Hawkesbury, and the fourth, from the Allumettes Rapids. By these analyses it will be perecived that the speeimens yield from 36 to 67 per cent. of phosphate of lime, and that they all, on being heated, give out ammonia and an animal odour like that of burit horn. One of the Grenville nodules was tested for phosphate of lime, and found to contain it largely, and it also gave out the animal odour, but it was not quantitatively analysed.

Examinations of Phosphatic matters, supposed Bones, and Coprolites, occurring iu the Lower Silurian Rocks of Canada. By T. S. Hunt, Chemist to the Canadian Geological Survey.
Supposed coprolite from Lac des Allumettes, in sandstone, with Lingula.-Porous, having a specific gravity of $2 \cdot 875$. By ignition gave out water and an animal odour like burnt horn, and the vapours temporarily browned turmeric paper. It dissolved in acids with slight effervesccuce, leaving a residue of pure granular silica, which was in grains distinctly visible on fracturing the mass. 100 parts gave on analysis-

$$
\begin{aligned}
& \text { Phosphate of lime (PO5, 3CaO) . . } 36.38 \\
& \text { Carbonate of lime. . . . . . . . . . . . . } \quad 5 \cdot 00 \\
& \left.\begin{array}{l}
\text { Magnesia .. } \\
\text { Oxide of iron }
\end{array}\right\} \text { by loss. . . . . . . . . . . } \quad 7 \cdot 02 \\
& \text { Insoluble siliceous grains . . . . . . . . } 49 \cdot 90 \\
& \text { Volatile ......................... . . . } 1 \cdot 70 \\
& 100 \cdot 00
\end{aligned}
$$

Another fragment gave 42.54 of siliccous matter. The brown matter replacing or filling the Lingula in the bed was found to be phosphate, with a little carbonate of lime and animal matter, with siliceous particles.

No. 2. Coprolite from Chazy limestone, Hawkesbury.-Yellowish within, but penetrated for a little depth by a blackish matter (probably infiltrated oxide of iron). The powder when heated in a tube gives off so much ammonia as to produce white fumes with acetic acid. 100 parts gave-

$$
\begin{array}{lr}
\text { Phosphate of lime . . . . . . . . } & 44 \cdot 70 \\
\text { Carbonate of lime . ......... } & 6 \cdot 60 \\
\text { Carbonate of magnesia ....... } & 4 \cdot 76 \\
\text { Oxide of iron .............. } & 8 \cdot 60 \\
\text { Insoluble siliceous matter ..... } & 27 \cdot 90 \\
\text { Volatile matter (water in part) } & 5 \cdot 00 \\
& \boxed{97.66}
\end{array}
$$

No. 3. Fragment of supposed cylindrical bone from Rivière Ouelle. -It was blackish brown and compact. Within it was filled with earthy matter (the imbedding sandstone), which was not entirely detached before the analysis. Its analysis gave, for 100 parts, as follows:-

> Phosphate of lime
> $\left.\begin{array}{l}\text { Lime .. } \\ \text { Magnesia }\end{array}\right\}$ as carbonates and fluorids $\left\{\begin{array}{r}67.53 \\ 2.44 \\ 1.65\end{array}\right.$
> Oxide of iron 2.95
> Iusoluble (in part, the adherent matrix) $21 \cdot 10$
> Volatile................................ . . $2 \cdot 15$
> 9782

The loss arises from the carbonic acid which is not here represented as combined with the excess of lime and magnesia.
The compact ivory-like fragment from livicre Ouelle had a sp. gr. of $3 \cdot 035$ to $3 \cdot 150$. It gave out ammonia and water with an animal odour when heated, and with sulphuric acid the vapours corroded glass, indicating a fluorid. It contained a larger proportion of carbonate of lime and magnesia, and more oxide of iron, than the hollow bone from the same locality. 100 parts of it gave-

> Phosphate of lime
> Carbonate of lime and some fluorid .............. . $40 \cdot 34$
> Carbonate of magnesia . . . . . . . . . . . . . . . . . . . . . . . $\quad 5 \cdot 14$
> Oxide of iron, with a little alumina and manganese $12 \cdot 62$
> $\begin{aligned} & \text { Insoluble siliceous matter . . . . . . . . . . . . . . . . . . . } \\ & \text { Volatile . . . . . . . . . . . }\end{aligned}$
> 2.13
> The aualysis is defect $95 \cdot 37$ quantities actually fouve from a loss of over 4 per cent., but the the substance where scientific accuracy is nell the composition of

Before returning to the foot-prints, I would further state, on the subject of phosphatic nodules, that last season my associate, Mr. Murray, in examining the rocks on which the Lower Silurian unconformably rests in the Johnstown District, met with altered conglomerates interstratified with limestone not distinguishable from the highly crystalline rock which is interstratified with the gneiss; and associated with the quartz-pebbles of the conglomerate are soft white nodules containing phosphatc of lime. In the beds of the crystalline limestone, separating the masses of gneiss, imperfect crystallizations of phosphate of lime are of very frequent occurrence. They are usually small, but in some parts they become large and so thickly disseminated as to give the rock an economic value. On Lake Huron the Lower Silurian group rests unconformably upon a siliceous series with only one known band of limestone, of about 150 fect thick, with leaves of chert in abundance, but as yet without discovered fossils. This scries is supposed to be of the Cambrian epoch. It comprehends the copper-bearing rocks of that district, and with its igneous interstratified masses has a thickness of at least 10,000 feet. The gneissoid group, of which mention is made, is probably still older than this. Its conditions appzar to me to make it reasonable to suppose that it consists of aqueous deposits in an altered state, and the origin of the phosphatic nodules and crystals in some of its members, with refercnce to a possible connexion with life in such ancient strata, becomes a question of great interest.

Having shown, I hope conclusively, the stratigraphical relations of the track-beds, I have only farther to state that, with the vie. . . submitting to competent authority as large an amount of evidence as
convenient to illustrate the nature of the animal or animals by which the foot-prints were impressed, I have brought over and temporarily placed in the Museum of the Society the original slab of sandstone, $12 \frac{1}{2}$ feet in length, from which the casts of last year's communication were taken (No. 7 of Prof. Owen's description); a second slab of the original stone, from Mr. Henault's field, measuring 8 feet (No. 3 of Prof. Owen's description) ; and a third slab, with two tracks and ripple-mark upon it, from the Island of St . Généviève. These are accompanied by about 100 slabs of plaster-casts, taken from various tracks as they are naturally exposed in the field. Adding one track to another they measure about 350 feet. Two of the casts are from tracks immediately near the one first discovered, and one of them shows the groove running out of the centre (No. 4 of Prof. Owen's description). The remainder are from Henault's field. In it four areas are comprehended within a distance of four chains, three of which are exhibited in their true relation to one another in Pl. VII. $A, B, C$; and each of these is displayed on a larger scale, 3 inches to 16 feet, in Pl. VIII. A, B, C.
In Pl. VIII. A. there are ten tracks, seven of them on a smoothsurfaced bed, which has been rubbed by ice moving in a direction S. $40^{\circ} \mathrm{W}$. These tracks are indicated by lines of different colour, and are numbered 1 to 7. Their measurements are,-


On a surface 2 inches lower, showing ripple-marks (the ridges of the ripple-mark running $\mathrm{N} .75^{\circ} \mathrm{E}$.), there are two tracks, numbered 9 and 10, measuring,

|  | ft. | in. |  |  |
| ---: | :--- | :--- | :--- | :--- |
| 9. | 5 | 4 | long, |  |
| 10. | 4 | 6 | $"$ |  |
|  |  | 9 | 10 |  |

And there is another, on a surface still lower by about 1 inch, but showing no ripple-mark,

$$
\text { 8. } \frac{\text { ft. in. }}{46}{ }_{6}^{\text {in. }} \text { long by } 5 \frac{1}{2} \text { wide. }
$$

Pl. VIII. B. shows seventeen tracks, twelve of which are on a smooth surface, which has been rubbed by ice moving in a S.W. direction. They are numbered 1 to 12 , and measure


The remaining five, numbered 13 to 17 , are upon a ripple-marked surface, the ridges of the ripples running in the direction N. $71^{\circ} \mathrm{E}$., and this surface is 2 inches below the smooth one. The measurements are-

|  | ft. in |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| 13. | 146 |  |  | wide. |
| 15. | $\begin{array}{r}3 \\ 15 \\ \hline\end{array}$ |  |  |  |
| 16. | 204 | ', | $4{ }^{4}$ |  |
| 17. | 83 |  | 5 | " |
|  | 617 |  |  |  |

Pl. VIlI. C. shows six tracks, which are represented by coloured lines without numbers. One of them is very narrow, not exceeding three-quarters of an inch in breadth. Their measurements are-


The tracks are upon a smooth surface (marked b), which, like the other smooth surfaces, has been rubbed by the ice. On the same surface there is ripple-mark, the natural edge or termination of which to the edge of the tracks are obliterated. Three of them come up general line of the edge a and are not traceable upon it. From the is marked across oy the ripple up to the a spur or triangle, which ducing the ripple had reache up to the apex, as if the cause prolettered $d$ also shows ripplened that far and no farther. The part surface marked $c$, which runsarks, and is 6 inches higher than the the ripple-lines on $d$ is $S$

[^2]1852.]
part lettered $a$ there is also ripple-mark. It is an inch or two below $b$, and the ripplc-ridges on it run $\mathrm{N} .15^{\circ} \mathbf{E}$. The interence which I wish to draw from these facts is, that the ripple-ridges on succeeding surfaces, only a few inches above one another, being in different directions, and the limit of the producing cause of the ripple being indicated in one example, it appears probable that the ripple was produced by tide rather than by a current in deep water; that in the same area one part of the surface was dry when the wave was acting close by on another part; and that the direction of the wave was towards the apex of the triangular space.

The fourth area, of which no plan is given, is removed a few yards to the cast of that lettered C in Pl. VII., and on the casts of this surface it will be seen that there are ten tracks, measuring -

| ft. in. |  | in . |
| :---: | :---: | :---: |
| 60 | ng by | $5 \frac{1}{2}$ wide |
| 106 | ," | $5 \frac{1}{2}$ |
| 80 | " | 5 |
| $2{ }^{\circ} 5$ | ", | $5{ }_{5}^{1}$ |
| 59 | ", | $6 \frac{1}{2}$ ", |
| 27 | ", | $4 \frac{1}{2}$ ", |
| 69 | ," | $5 \frac{1}{2}$ ", |
| 57 | ", | $5 \frac{1}{2}$ |
| 48 | ," | 4 |
| 40 | " 5 | 5 ", |
| 565 |  |  |

The geological importance given to these tracks by the opinion expressed by Professor Owen in regard to the specimens produced last season, has induced me to spare no pains in bringing cvidence to bear on the subject; and the materials having been submitted to the examination of the Professor, he has kindly undertaken to lay before the Meeting a description of them.

At the Evening Meeting, March 24, M. E. Desor exhibited an engraving of a slab with Foot-prints bearing a general resemblance to Protichnites. These Tracks are from the vicinity of the Niagara Falls, and belong to the "Clinton group." Prof. Owen has supplied the following note on these Foot-prints.
The plate exhibited by M. Desor gives a view of a series of prints on each side a median track, of about 18 inches in extent. The foot-prints on one side of the modian track are in successive groups of three prints, the two next the track being most approximated. Only the pairs of prints corresponding to those median pairs are shown on the other side of the track. The plate gives no indication of successive groups of three sets of prints; but it would be unsafe to rely upon it for the precise charncter of the impressions.
[Note.-The casts of surface A, Pl. VIII. (including the tracks, $\boldsymbol{P}$. 7-notatus, $P$. lineatus, and $P$. alternans), together with charactcristic impressions of the remaining spccies, will be deposited in the British Museum.]
2. Description of the Impressions and Foot-prints of the Proticinites from the Potsdam Sandstone of Canada.
By Prof. Owen, F.R.S.,

## [Plates IX. to XIV. A.]

Of the extensive series of foot-prints found under the eircumstanees deseribed in the preceding eommunication, the originals of some and good plaster-easts of more have been brought over with much labour and expense by their diseoverer, Mr. Logan, and of these I have selected the best-marked and most intelligible portions for the following
deseriptions.

## 1. Protichnites septem-notatus, PI. IX.

 The subject, which for the convenience of reference I have so named, consists of a scries of well-defined impressions, continued in so regular suceession along an extent of 4 feet; and traceable, with an inferior degree of definitiou, along a further exteut of upwards of 2 feet. These impressions (see Plan, Pl. VIII. A. 6) are represented by plaster-casts.In the first-selected extent of 4 fect there are thirty suecessive groups of foot-prints on each side of a median furrow, which is alternately deep and shallow along pretty regular spaces of about $2 \frac{1}{2}$ inches where they are best group, $a, a^{\prime}, a^{\prime \prime}, 2$ priurked, as in Pl. IX. $1 L$, we see 3 prints in one which is followed by a repetite next, $b, b^{\prime}$, and 2 in the thir.l, $c, c^{\prime}$, But, in some instances, the outer po the group of 3 prints, $a, a^{\prime}, a^{\prime \prime}$. at $1 R, c^{\prime}, c^{\prime \prime}$, making the numbers int of the third set is divided, as 2,3 instead of $3,2,2$ : the three gro in the three suceessive groups 3 , notwithstanding this oceasiourec groups of impressions are, however, eession along the whole series variety, recognizably repeated in suegroove*. The principal foot-priuts are disposed in pairs, placed with different degrees of obliquity, in each of the three groups, towards the median track; the innermost print in the second, $b$, and third, $c$, pairs, which outer print, $b^{\prime}$ and $c^{\prime}$. The two fond $c$. each other, in the three the same pair are a little further apart from cially in the second and third groups of as at $a^{\prime}, a^{\prime \prime}, b, b^{\prime}, c, c^{\prime}$, espethe pair $a^{\prime}, a^{\prime \prime}$ again approximating in of each set; the two forming $b, b^{\prime}$ and $c, c^{\prime}$ diverging in the sange in the next series, and the pairs alternate approximation and diane direction and degree; and this entire series of the present tracks.

[^3]But what strikes the iehnologist, heretofore conversant chietly with
the foot-prints of hipeds or quadrupeds, is the oceurrenee in the present series of the third impression, $a$, which complieates the inost approximated pair, being placed in front and a little to the inner side of the imermost impression, $a^{\prime}$, of that pair. The superadded impression, $u$, is about the same size as the imermost in cach pair, the average diameter of that impression being 5 lines.

Taking this view of the impressions, it appears that, whilst the innermost in each pair, $a^{\prime}, b, c$, are of equal size, the outermost, $a^{\prime \prime}, b^{\prime}, c^{\prime}$, $1 L$, progressively increase in size, from the most approximated to the most divergent of the three pairs; that of the first, $a^{\prime \prime}$, being narrow in proportion to its leugth, that of the second, $b^{\prime}$, as broad as long, and the outermost, $c^{\prime}, c^{\prime \prime}$, of the third pair being oblong, but larger than that in the first pair. In some plaees where the most approximated pair of impressions, $a^{\prime}, a^{\prime \prime}$, are deeply marked, they are complicated by a fourth shallow and very small pit, $a^{\prime \prime \prime}, 2 I$, midway between the third, $a$, and the outerinost, $a^{\prime \prime}$, of the pair of impressions.

The deepest parts of the middle track usually occur between the second, $b, b^{\prime}$, of each of the three groups of foot-prints.
The first pair of impressions, $a^{\prime}, a^{\prime \prime}$, are inelnded within a spaec of 1 inch 3 lines in diameter; the third pair within a space of 1 ineh 9 lines in diameter. The longitndinal extent of the three groups of inpressions, measured along the outermost, averages 3 inches 6 lines, and along the innermost 3 inches 3 lines: the extreme extent of the three sets of impressions averages 4 inehes. The transverse interval between the imermost impressions, $a$, $a$, of the first pair is 3 inches, and between those of the third pair, $c, c, 2$ inches, measured from their innermost borders. The distance between the two outermost impressions of the first pair is 5 inches, and it is the same between the corresponding impressions of the third pair, measured from their outer borders; so that a line drawn along the outer margin of the impressions of one side would be parallel to the line drawn along the same parts on the opposite side, the difference in the distance from the midspace being presented by the innerinost impressions.

The average breadth of the median groove is 5 lines, its depth at the deepest parts between 1 and 2 lines; the regular alternation of the decp and shallow parts of the median impression indientes the part that made it to have been alternately raised and depressed, an alternation which might affect a tail as well as the trunk, but is more likely to have affected the latter in an undulating mode of progression.

There are no clear or unequivocal marks of toes or nails on any of the impressions which form the lateral pairs or triplets. Their margins are not sharply defined, but are rounded off and sink gradually to the decpest part, which is a little behind the middle of the depression. There is a slight variation in the form and depth of the answerable impressions, but not such as to prevent their correspondence being readily appreciable through the whole of the extent here described; that is to say, the innermost of each of the three pairs here described as first, $A$, , scoond,,$B$, and third, $C$, may be identified with the corresponding innermost impression on the opposite side and
with the same impressiou of the same pair in the three preeeding and the three succeeding pairs.

This power of determining the homologies, so to speak, of the several impressions is a strong evidenee of their having been made by the suecessive applieation of the same instruments; whilst the equal distanees at which they recur proves them to have been made in regulnr succession, as in the ordinary progression of an animal walking, by means of limbs.
The question next to be resolved is,-how those instruments were disposed in the body of the ereature that made and ieft the impressions?
It caunot be supposed that two limbs, answering to the fore and hind legs of a quadruped, eould have made impressions so different in form and in their degrees of approximation as we see in each pair of the series of three sets on oue side. In a quadruped we are acenstomed to see the suceessive pairs of the same side resembliug eaeh other, difference between the two impressions of sueh pairs indieating the belonged; but in the present and hind feet of the side to which they suceessive series of three so differs of impressions each pair in the form and size of the impressions, from the other two pairs in the to render it seareely possible to suppose thegree of divergence, as formed, either along the inner or the outer seris eould have been suecessive steps of the same limb; and, were it of impressions, by animal by some peenliarity of gait mond, were it contended that the fore limbs in making three suegit more and more approximated its to comnience another series of the steps, and then divarieated them the immer impressions were formed steps, on the supposition that eaeh series of three steps, the diffieulty the same pair of fore limbs at ing for the third superadded impleulty would still remain of aecountbeing formed by a quadruped, withon, an the hypothesis of their difference in shape and size of the the additional difficulty of the three pairs.

The first or pairs of impressions approximated pair, $a^{\prime}, a^{\prime \prime}$, in eaeh set of three $b, b^{\prime}$, which are nearly equally approximated, In the second pair, manifestly larger and broade approximated, the outer impression is most divergent pair, $c, c^{\prime}$, the than the inner one. In the third and as in breadth, and is oeeasionully sube is still larger, in length as well each series of three, $A, 1 L$, plainly next series of three, $A, 2 L$, and the likswers to the same pair in the and the third pair, it follows that the inm regard to the second pair made the first pair in each of the thre same instruments must have of the third pairs ; or, in othe three pairs, and so of the seeond and must have been made by differ words, eaeh pair in a series of three bers; and the same must be inent members, or divisions of memsion, $a$, which is superadded to it may be concluded either that the first pair in each triplet: whence latory limbs, or that it had the the animal had seven pairs of ambuthe third trifid at the impressing exts, of which two were bifid and The impressions whieh are so extremity. described are eontinued less so elearly marked in the extent above described are eontinued less distinctly but uninterruptedly for more
than 6 feet. The most constant of the small impressions are those which are nearest the median track, $c$, and which have been deseribed as the innermost of the third pair, but which first arrest the eye as superadded foot-marks, oecurring pretty regularly at intervals of from 4 inches to $4 \frac{1}{2}$ inches along the whole track.

There are three other series of tracks referable to the Protichnites 7-notatus.

## 2. Protichnites octo-notatus. PI. X.

The series of foot-prints, liere deseribed as the Protichnites 8-notatus, exteuds for 5 feet 5 inches along a surfaee of hard sandstone, which has been rubled by the iec. This track is represented by plaster-easts. It is seen on the Plan, PI. VIII. B. 6. In this series the impressions of the feet are deeper and the median track is mueli fainter, yet it continues to show the alternately deep and shallow character, its traees being visible at regular intervals, which are, however, longer than those that divide the deeper parts of the same groove in the first-deseribed series of impressions.
In the present serics the small innermost impressions, $c$, are repeated at intervals of 5 iaches; the distanee between the right and the left of these impressions is 2 inehes, being less than half their longitudiual interval; whereas in the former slab the transverse interval is exactly half the longitudinal one.

The larger and more exterior depressions present also a somewhat different arrangement from those first described. Where they are most elearly and regularly impressed it is as follows :-on the outside of the small innermost impression, $c$, there is a pair of larger impressions, $c^{\prime}, c^{\prime \prime}$, elosely approximated one behind the other, in the direction of the traek, the longitudinal extent of this pair of impressions being 1 ineh. The next pair of impressions, $b, b^{\prime}$, answering to the middle pair before deseribed, and here notieed in the contrary or retrograde course, are placed nearly transversely and are wider apart than the longitudinal pair, the innermost being the largest, and the diameter of the pair 1 inch 8 lines. Then follow three impressions, $a, a^{\prime}, a^{\prime \prime}$, forming an inequilateral triangle, with a broad base turned inwards and the apex outwards, the impression forming which ( $a^{\prime \prime}$ ) is the largest of the three, although they are of nearly equal size, having a diameter each of about half an ineh. These three impressions answer to the three, $a, a^{\prime}, a^{\prime \prime}, \mathrm{Pl}$ IX., which have been deseribed as forming the first pair of impressions with the aceessory impression in the Protichnites 7 -notatus; but the three are here so distinet and remote that the pair could only be ehosen arbitrarily. The middle or seeond pair, $b, b^{\prime}$, answers to the same in the impressions first described, with the difference of direction above noted : the third pair differs in the more constant and complete division of the larger outermost impression into two pits, $c, c^{\prime}$. In none of these impressions are there distinct and unequivocal traces of elaws or digital divisions; they seem rather to have been impressed by one limb, or division of a limb, terminating in a hard, obtuse, subangular point.

The arrangement of the impressions just deseribed is repeated with little modification throughout this scries of tracks; that is to say, taking them in the order in which those of the first series were de-
seribed, we have the group of three impressions, $a, a^{\prime}, a^{\prime \prime}$, the transverse pair, $b, b^{\prime}$, and the widest pair, $c, c^{\prime}$, in which the onter and larger impression is divided into two, $c^{\prime}, c^{\prime \prime}$.

Neither in this nor in the preceding series does any impression appear to be modified or in any degree obliterated by the print of another foot eoming into the same place.
The median interval between the right and left of the first pit in the group of 3 impressions, $a^{\prime}$, is 3 inches 9 lines; between the two pits in the same sets forming the apex of the triangle, $a^{\prime \prime}, 4$ inches 8 lines, and between the third, $a, 3$ inches 2 hines. These measurements are taken from the inner border of the right and left imprestransverse pair of impressions inal between the imermost, $b$, of the outerinost, $b^{\prime}$, from theirnouten is 3 iuehes 2 lines, and between the between the longitudinal pairs werders 5 inehes 8 lines: the interval inehes 3 hines. The longth of each series on their outer border is 5 is from 5 inches to 5 inches 3 lines, and the three sets of impressions preserved throughout the series of traeks distanee is very regularly eight distiuet inpressions on eneh side, $1 L$ This each series presents sions of each of the eight ean be determ, $1 / 2$, and tallying impres$2 L, 2 R$.

From this it is to be inferred that they were made by the same parts respectively ; that is, that the impressions were repeated by the same limbs or impressing instrumeuts at each suceessive serics. Consequently if we regard each series as indicating the nature of the sessed either cieht pairs of impressinust conclude it to have poslimbs so divided as to leave 3 pressing instruments, or three pairs of tudinal succession on both thrints, 2 prints, and 3 prints in longiciently long and flexible to the right and the left sides, and suffioccupied by the entire series of such a step co-extensive with the space rally presenting characters so distinct in the these impressions seveas to forbid the conclusion that they we seme series of $A, B, C$, ments differently applied at regularly were made by the same instruin such series. of animal in the present, as in the preceding the same kind or genus difference in the proportions and preceding series of tracks, but the pressions in the determinable groups angements of the individual imThere are two other series of tracks of ties a difference of speeies. repeating very recognizably the chacks of the Protichnites 8 -notatus

## 3. Protichnites latus. Pl. XI.

$\therefore$ slab of the sandstone 8 feet long* by 2 feet wide shows three series of the impressions, two extending lengthwise and crossing ench other very obliquely, and the third crossing both the others transversely. In the track which traverses the whole length of this slab the impressions of the feet are deeper and larger, whilst the median

[^4]impression is much shallower and fainter than in the foregoing footprints, but it still shows the alternate deep and shallow parts, Although the impressions are less regular than in the before-described scries, and the small innermost ones are less recognizable, yet they are discernible in certain parts, as at $c, c$, and they, in like manuer, mark the boundarics of threc sets of impressions on each side of the median onc.
The first set consists of a pair, $a^{\prime}, a^{\prime \prime}$, of nearly equal impressions, with occasional indications of a third print forming an inequilateral triangle. The seeond set of impressions is a transverse, more widely parted, pair, $l, b^{\prime}$, the innermost being the smallest, the outermost the largest and sometimes, as in $1 L$, divided into two, which are, however, included in a common circumference. Then that impression, $c^{\prime}, c^{\prime \prime}$, which has been described as the outermost of the pair to which the small innermost impression, $c$, belongs, is very large and more distinctly bilobed than the outermost of the preceding pair, and its long axis is turned at right angles to that of the preceding outcrinost impression. The longitudinal extent of the three sets of impressions on one side is 5 inches. The transverse interspace between the two small innermost impressions, $c, c$, is 2 inches 2 lines, between the outermost, $a^{\prime \prime}, a^{\prime \prime}$, of the three sets of impressions from their outer borders 7 inches. The general resemblance of these successive series of three sets of impressions with those of the betterdefined tracks before described leave no doubt of their having been made by the same genus of animal, but it would seem to be by a different species having a body broader in proportion to its length.

The sandstone allows a character of the lateral impressions to io seen which was not so distinctly recognizable in the casts, namely the great depth and angular figure of the bottom of the impressions, with some irregular angular notches towards its eircumference, indicating them to have been made by a limb shod with a hard substance terminating in a somewhat obtuse point with angular prcuisses from its basc. This charaeter of the impressions is irreconcileable with their having been formed by the convex sole of the foot of a Chelonian or by the more flattened foot of a Batraehian or Saurian reptile, or by the hoofed or padded foot of any mammal.

## 4. Protichnites multinotatus. Pl. XII. ( $\frac{1}{2}$ nat. size.)

Casts of impressions along an extent of $4 \frac{1}{2}$ feet, forming part of a series which was traced for an extent of 10 feet uninterruptedly, exhibit a strong devintion of the intermediate continuous groove from the mid-line between the two lateral series of impressions. The breadth of this traek from the outer border of the outer impressions nowhere excceds $3 \frac{1}{2}$ inches. The impressions are subcireular with smooth, rounded, ill-defined borders, of varying depth, but most of them faint and shallow. Commencing at the end of the series, where they are least distinct, the intermediate groove inclines to the left and soon gets upon the innermost of the impressions along the left side. At about halfway from the other end it becomes deeper, obliterates many of the prints on that side, and has been impressed so strongly as te force up a ridge of the sand upon its left side. Some faint
impressions of the outer prints may be seen on this ridge. The impressions of the right side opposite the deeper part of the ridge are unusually deep, and are more numerous and closer together than in the shallower parts of the tracks. In no part of the series are the impressions so distinct and well-defined as to allow a recognition of the groups of threes repcating each other; but in a few parts, as they approach the deep excentric groove, the small innermost pits may be observed. There are few places where two contiguous pits are divided foot-prints on thequal to their own breadth. Although many of the of three occur not unfrequently in pairs, more or less oblique, groups sions can be discerned where ty. Nothing like claws or digital divitermediate groove becomes she impressions are deepest. The inlast two feet of the present series. and gains the mid-space in the the tracks bend slightly in a differenere the impression is deepest part, making about an angle of $162^{\circ}$. direction from the preceding impression would seem to indicate that it deviation of the middle appendage which continued to incline to had been formed by some begun to bend to the right side, and the the left after the body had sion where the bend is greatest would greater depth of the impresincreased exertion on the part of the show that there had been an that bend.

## 5. Protichnites lineatus. PI. XIII. ( $\frac{1}{2}$ nat. size), and Pl. VIII. A. 3.

 In a continuous track of the median impression, traceable along an extent of 13 feet, this impression preserves in some parts for an extent of between 2 and 3 feet a considerable and equable depth; it is also accompanied by a remarkalle modification o. the lateral impressions, which are rather represented by continuous grooves than by a succession of pits, although these are sufficiently evident in many parts of the lateral grooves, forming partial depressions in the grooves. Along distant from thehes, where the decp median impression is equithe outermost of the narrow and shallow impressions on each side, the innermost is deepest on the right. deepest on the left side, and grooves become broken up into right: a little further on the lateral then again become continuous in a series of shallow foot-prints and rupted course of 5 feet from in shallow grooves. After an unintermiddle groove, after bending sightly this series of impressions, the point, the impressing part appearing to the right, terminates in a liquely above the sand; but thearing there to have been raised oband a little behind this point and impression recommences to the left becoming shallower, it seems to somewhat moreobtusely, and, again the right of this, and then to to have been partially rcimpressed to varied in its depth, for some feet funtinued uninterruptedly, a littleNone of the impressions in thet further. the borders both of the grooves extent of tracks are sharply defined, if they had been partially grooves and pits being much rounded off, as water, or by water having effaced, either as having been made under made. They give the idea of thed over them soon after they were ported by water whilst making the animal having been partly sup-
Y. [Mar. 24,
dge. The imthe ridge are gether than in series are the recognition of parts, as they t pits may be its are divided many of the olique, groups $r$ digital divist. The inspace in the on is deepest e preceding the middle ied by some he body had the impresaad been an of making
VIII. A. 3. le along an or an extent ; it is also npressions, y a succesy parts of es. Along n is equieach side, t side, and the lateral prints and n unintersions, the lates in a raised obo the left nd, again ressed to $y$, a little defined, ed off, as de under ney were rtly supasionally
dragged its lateral appendages along, and thercby to have made a continuous groove with faint impressions, interrupted where the fect have been applicd to the sand in the usual successive way.

The breadth between the outcr margins of the outermost tracks is 5 inches 6 lines; betwecn the inner border of the innermost tracks 3 inches 10 lincs; the breadth of the median track is 10 lines. For a short distance therc is a slallow longitudinal depression on the left border of the median track, and here and there are faint indications of small impressions inside of the innermost of the lateral tracks. The name indicative of this series of tracks is one of convenience only, and is not to be regarded as the sign of a species recognized as actually distinct from the differently-marked and better-defined impressions of the same size and breadth.

## 6. Protichnites alternans. Pl. XIV. ( $\frac{1}{2}$ nat. size), and Pl. VIII. A. 7.

In a series of impressions in which the middle groove is represented by a succession of interrupted shallow longitudinal channels, with unimpressed or slightly marked intervals of nearly their own extent, the lateral impressions are deep, small, and more or less of an angular character. In some parts there appears only a single impression, as at $a$ on the left side, $1 L$; an inch in advance of this there will be a pair, $b, b^{\prime}$, placed rather obliquely, the innermost much larger than the outer one. One inch and a half in advance of this is a third more widely parted pair, $c, c^{\prime}$, also placed obliquely, the inner impression being smaller than the outer one. Then at the same distance follows a triplet, $d, d^{\prime}, d^{\prime \prime}$, or a pair, $d, d^{\prime}$, of nearly equal size, and on the same transverse line, but wider apart than the rest. About 2 inches in advance of this is a pair, $e, e$, which are nearcr together, and then comes either a very large single impression or one composed of a confluent pair, $f$. The outer impressions of the serics describe a curve, with the convexity turned outwards, but the opposite impressions of the series are not symmetrical ; for where the impressions are widest apart on the left side, those of the right, $n s$ in $1 R$, are nearest together, or, being confluent, appear single ; and where the right pair of impressions are widest apart, those of the left side are nearest together. The innermost impressions of both lateral scries preserve best their regular distance from the middle tracks. The outer impressions differ most in this respect, and consequently describe an undulating line, but so that when the convexity is turned from the middle line on the left side it is turned to the middlc line on the right, and vice versa. Some of the innermost implessions are elongated transversely and become gradually slallow outwards, as if the foot impressing them had been moved from within outwards.
'These impressions indicate a waddling gait, or an alternate oblique movement from side to side of the animal, with an alternate raising and depressing of the part of the animal which has left the middle impression. Here and there groups of threc impressions are interposed between the impressions in pairs. The shape of the impressions indicates them to have been made by hard, pointed, subangular extremities.

The average breadth of the track from the outermost side of the outer impressions is 5 inches. From the median track to the outermost of the outcr impressions is 3 inches, and to the innermost of the same pair of impressions 1 inch 3 lines. The longitudinal extent of one of the curves which includes five sets of prints is 7 inches. The interrupted impressions of the median track show a slight deviation from the straight line.
The modifications presented by this series of impressions equally militate against their having been left by a vertebrate animal, but differ so much from those already described as to clearly indicate a distinct genus of many-limbed animal.

There are four scries of im mirked sandstones, in one of whissions on a great extent of ripplethe ripple-marks aloag an undulatin the median track has cut through considerable depth, not showing the curved line of ncarly equal and seen in so many of the other sets of alternate rise and fall which is this anedian track are rounded off impressions. The margins of bottom. The lateral tracks are off, and it is morc rounded at the had been partially obliterated by the arge, shallow, and faint, as if they can be still distinctly traced, indicating a of 6 inches across the whole of the impressions and regular breadth Along another extent of apressions. impression cuts throught of ripple-marked slab, a narrower median nearly a straight line. He ripple-risings for an extent of 7 feet in indicated, their borders being also the lateral impressions are faintly showing a total breadth of 5 rounded off and as it were expanded, appears to have been of a dinches, across the tracks. As the sand could have only been ploughed thiliceous character, the ripple-marks impressions, by a pretty considerobough to the depth shown by these of weight, occasioned by the moving animal. Along a third exten animal. pressing part of the moving ripple-marked surface the median imimpression upon the summits ofy has left only a narrow and shallow tion of the animal being shown the successive sand-waves, the direcpushed into the intervening valleys of the ripples. the sand had becn o valleys of the ripples. grouping, and arrange well-marked evidences of the number, form, Potsdam sandstone, in the of the foot-prints impressed upon the submitted, both in the original more clearly impressed specimens, now our inspection, we may readily sandstones and in good plaster-casts, to them, of those comparatively discern a general correspondence with impressions (PI. XIV. A.), more confused aud obscurely marked over by Mr. Logan during the precedin which were first brought casionally occurring on the inn preceding year. The foot-print ocbe recognized as answering to thate of the pairs of prints, may now the innermost impression of the regularly $c$ in Pl. X., which forms viz. $c, c^{\prime}, c^{\prime \prime}$. It is not, as I at first regularly recurring group of 3 , leg being applied to the ground a supposed, the result of the forcthe first step, during a temporary a seeond time, on the inner side of

The recognition of the real nature of this superadded print also leads to the reeognition of the succession of the prints in progressive scries of three groups, two of which seem to consist of a pair of prints, as in the Protichnites 7-notatus*: That peculiarity eould not, I belicve, have been rceognized, or satisfactorily confided in, without the aid and light of the analogics furnished by the more numcrous and extensive, clearer and better-marked, impressions which have now been submitted to us by their zealous and indefatigable discoverer and collector. I need scarcely say, therefore, that although the foot-prints of a Tortoise are those to whieh the original series of the Potsdam sandstone impressions bore the elosest resemblance, I have now the conviction that they were not made by a Chelonian reptile, nor by any vertebrated animal.
The impressions selected for Plates IX. and X. clearly demonstrate that the animal, progressing in an undulating course, made at each action of its locomotive members, answering to the single step of the biped, and the double step of the quadruped, not fewer than, in Protichnites 7-notatus, fourteen impressions, seven on the right and seven on the left ; and in Protichnites 8 -notatus sixteen impressions, eight on the right and eight on the left ; these seven and eight impressions respeetively being arranged in three groups; viz. in $P$ rootichnites 7 -notatus, 3, 2, and 2 ; in Protichnites 8 -notatus, 3,2 , and 3 ; the groups being reimpressed, in successive series, so similarly and so regularly as to admit of no doubt that they were made by repeated applieations of the same impressing instruments, capable of being moved so far in advanee, as to clear the previous impressions and make a series of new ones at the same distance from them, as the sets of impressions in the series are from each other. What then was the nature of these instruments? To this three replies may be given, or hypotheses suggested:-they were made, either, 1st, as in the case of quadrunedal impressions, each by its own limb, which would give seven and eight pairs of limbs to the two species respectively ; or, 2ndly, certain pairs of the limbs were bifurcate, as in some insects and crustaceans, another pair or other pairs being trifureate at their extremities ; and eaeh group of impressions was made by a single so-subdivided limb, in which case we have evidence of a remarkably broad and short hexapod ereature ; or, 3rdly, threc pairs of limbs were bifureate, and the supplementary pits were made by small supcradded limbs, as in some crustaceans ; or, 4thly, a single broad fin-like member, divided at its impressing border into seven or into eight obtuse points, so arranged as to leave the lefinite pattern described, must have made the series of three groups, by successive applieations to the sand.

The latter hypothesis appears to me to be the least probable ; first, as being most "mote from any known analogy, and seeondly, because there are oecasional varieties in the groups of foot-prints which would hardly aecord with impressions left by one definitcly subdivided instrument or nomber. Thus in the group of impressions marked $1 L$,

[^5]in Pl. IX., the outcr impression, $c^{\prime}$, is single, but in the preceding set it is divided : whilst the impressions $a, a^{\prime}$, are confluent in that set, and are scparate in $1 I$. The same variety occurs in the outer pair, $c^{\prime}, c^{\prime \prime}$, in Protichnites 8-notatus.

Yet, with respect to the hypothesis that each impression was made by its own independent limb, I confess to much difficulty in conceiving how seven or eight pairs of jointed limbs could be aggregated adopt as the most of the sides of one animal. So that I incline to left these tracks and imple hypothesis, that the creatures which have shores belonged to an articulate on the most ancient of known seaeither with three pairs of limbs emple probably crustaceous genus, divided to accord with the number of in locomotion, and severally groups, or bifurcated merely, the supplementary and usually three impressions being madc by a small and simple fourth, usually smaller fifth pair of extremities.

The Limulus, which has the small anterior pair of limbs near the middle line, and the next four lateral pairs of limbs, bifurcate at the free extremity, the last pair of lateral limbs with four lamelliform appendages, and a long and slender hard tail, comes the nearest to my Potsdam sandstone* The shape of the pits, so clearly shown in the ice-rubbed slabs, impressed by Protichnites 8-notatus, accords best with the hard, subobtuse, and subangular terminations of a crustaceous ambulatory Birgus; and may be reen in the blunted legs of a large Palinurus or moved directly forwards that the animal of the Potsdam sandstone sura, and not sideways, like the Branner of the Macrura and Xipho-
The appearances in the sla Brachyurous Crustaceans. tatus favour the view of the mefiased by the Protichnites multinocaudal appendage, rather than by a track having been formed by a face of the trunk.

What further conjectures the contemplation and comparison of thee several series of foot-prints from the Potsdam sandstone have originated at present to record.
The imagination is baffled in the attempt to realize the extent of time past since the period when the creatures were in being that moved upon the sandy shores of that most ancient Silurian sea; and we know that, with the exception of the microscopic forms of $1=$ fe, all very recent in comparison with the into being at a period geolcsically The deviations from then with the Silurian epoch. become greater as we descend into exemplars of animal types usually Plesiosaur and Ichthyosaur are the depths of timc past ; of this the the Pterichthys, Coccosteus, and $C$ ances in the reptilian class, and the Vertebrate type has undergonephalaspis in that of fishes. If *[This paragraph was added whilst the paper inconceivable modifications May 13, 1852.-R.0.]

TY. [Mar. 24, e preceding set ent in that set, the outer pair,
sion was made ficulty in conbe aggregated at I incline to es which have of known seaaceous genus, and severally of the three ually smaller or fourth and
mbs near the urcate at the lamelliform earest to my ions on the abbed slabs, c hard, subambulatory alinurus or a sandstone and Xiphoes multinormed by a under sur-
ison of the originated erstanding
extent of cing that sea; and of life, all olcsically
usually this the lass, and hes. If fications the press.
1852.] OWEN-POTSDAM SANDSTONE FOOT-TRACKS.
during the Secondary and Devonian periods, what may not have been the modifications of the Articulate type during a period probably more remote from the Secondary period than this is from the present time! In all probability no living form of animal bears such a resemblance to that which the Potsdam foot-prints indicate, as to afford an exact illustration of the shape and number of the instruments and of the mode of locomotion of the Silurian Protichnites.

These most precious evidences of animal life, locomotive on land, of the oldest known sedimentary and unmetamorphosed deposits on this planet, have been, I am well aware, far too inadcquately described in the paper which I have had the honour to submit to the Society. They offer characters which require more time for their due scrutiny and greater acumen and powers of interpretation than have hitherto been bestowed upon them. The symbols themselves are distinct enough. Old Nature speaks as plainly as she can do by them; and if we do not fully thereby read her meaning, the fault is in our powers of interprctation. In the present attempt I can, however, truly aver, that I have bestowed upon it all the leisure at my command, and have applied my best abilities in the endeavour to fulfil my obligations to their discoverer, and to satisfy the generally expressed wishes of the Society.



## A

## 

 with Rock-surfaces bearing Ripple-marks and Foot-tracks Co Plewtiating. HO'M. B. Loguni' CPapice if fowev Ganeratu.


5in
i is i．．s $\quad$ rf $\boldsymbol{f}$ e e


B


Cerelé
20 Lintis or $16 \frac{12}{2}$ feet $=1$ ineh





 aflimurr I'murstas.




```
        MB.
    B of Pale Mo.
```



" /hun/ A
$\qquad$
$\qquad$






$$
\frac{-3+50}{-2 x+30-5}
$$

$$
\frac{03073}{-50252}
$$



Now
+

Uh $18+2$ 8












等










 What

## 

ProTichiniges mulinotatus


Furd \& Thest, 1athographimes 54. Matuon Givalen










， 1


203（b）



4 4tandyang

 ＊3 N気納

F

$\because \quad 1$

or

 $2+4 x^{2}+4-3+4$



13 Thatav

TMA)






 ?


Cinteride int in



## (Hat


wom



"nxemy








[^6]

$$
\longrightarrow
$$


[^0]:    * In a communication from Mr. Logan, dated at Montreal, July 6, 1852, it is directed that the boundary-line of the Chazy and Trenton limestoras between the bridge on the Chateauguay River and the St. Louis Rapids should ve removed to about a mile east of the position of Caughnawaga. It being too late, however, to wirect the map, this emendation is here referred to. Mr. Logan also observes, with regard to the Island of Montreal and the district eastward of the Riviere du Nord, where the colour is made to die out, that he is now examining the unreprethat the Chazy limestontry which is in the vicinity of this shading off, and he unds the Map), thus displaying very nearly up to the Montreal Mountain (green on under the Utica Slates of the White Horse Rapids. By too much colour the White Horse Rapids. Rapids is shaded off into the Chazy limestone of Montreal. We have also to remark that the listrict of Montreal.
    as "Hudson River Group, covered with Tertiaries and Drift", should be designated $\dagger$ Occurring also at Hawkesbury, Grenville, the Map), on the Castor River.

[^1]:    * Occurring also at Hawkeshury.
    $\dagger$ The head is not perfect, hut, from the general charaeter of the glahella and eyes, Mr. Salter has little doubt that it belongs to Paradoxides. That genus, however, has not yet heen noticed in America.

[^2]:    * Rather less of this track appears in the plan than on the plaster-casts.
    $\pm$ A the plan this track extends further than on the plaster-casts.
    temporarily placed in the Society's Museum by Mr. 5 fet, on the saudstone slab, is

[^3]:    * Should these descriptions express more or less than is shown in the Plates, the reader will be kind enough to bear in mind that they were penned after repeated cxaminations of the originals by varied applications of artificial and natural lights, and express the sum of the results of sueh comparisons articial and natural shade only, as seens; whilst the able artist has given the effects of ofed over the shade only, as seen on ore portion of the track.

[^4]:    PI. VIII. B. 12.

[^5]:    * This will be seen, on a comparison of the original and entire series of footprints, more satisfaetorily than in the small portion figured in Plate XIV. A.

[^6]:    
    

