1roctedings and edransactions
OF THE
NOVA SCOTIAN
INSTITUTE OF NATURAL SCIENCE,
FOR
1879, 1880, 18811882
VOLUME V
HALIFAX, NOVA SCOTIA: PROVINCIAL MUSEUM. WILLIAM GOSSIP, GRANVILLE STREET

$$
1882 .
$$

INDEX TO VOLUME V.

Anniversary Address, 1879, Whalmm Gossip, F. R. M. S., President p. 999

List of Mrybers... $117,225,317$

TRANSACTIONS.

GEOLOGY AND MINERALOGY

On the Ankerite Veins of Lon!onderry, N. S.itl. 47
Nova Scotian Geology:- Palaoutological Notes. By Rev. D. Honbyman,
I. C. L, F.S. A., \&c....................................... 16

Kings County.. 21
Notes to Retrosprect of 1878id. 64
Annapolis County, Part II...............................id. 119
Geological Waifs from the Magdalen Islands... 136
Nova Scotian Geology. - Notes on a New Geological Progress May of Dic-
tou County. By Rev. D. IIonerman, D. C. L....
Digby and Yarmouth Counties...................... 227
Archean Gneisses of the Cobequid Mountain-
Magnetitic.......................................id. ${ }_{271}$
Superficial Genlogy of Halifax and Colchester
Counties... 819
Metalliferous Sands................ id. 334
The Limonite and Limestonas of Pictou County, N. S. By Edwin
Gilpin, A.M., F.G.S., de.. 31
On the occurrence of Lievrite in Nova Scotia...id. 253
The Trap Minerals of Nova Scotia.. 283
The Northern Outcrop of the Cumberland Coal Field.........id. 387
Notes on the Geology of Point Pleasant. By A. G. Cameron, B. Sc........ 307
Notes on the Geology of Belford. By Alfred A. Hare... 309
Note on some Palæozoic Entomostraca. By Prof. T. Rupert Jones.
F.R.S., F. G.S...

313
Geological Notes - Sable Island. By Simon D. Macdonald, F. G. S....... 337

PROCEEDINGS

J. Mat-
iy John
_........id.

By Joun
\qquad
\qquad
\qquad

OF THE

glowa scotian ynstitute of ghatural sifuce.

VOL. V. PART I.

Provincial Museum, Oct. 9, 1878.
Anniversary Meeting.
William Gossip, Esq., Vice-President, in the Char.

Inter alia.

The following Gentlemen were elected Office-bearers and Council for the ensuing year:-

President-William Gossip.
Vice-Presidents-Frederick Allison, A. M., Prof. G. Lawson, Ph. D. LL. D.

Treasurer-W. C. Silver,
Secretaries-Prof. D. Honeyman, D. C. L., John T. Mellish, A. M.
Council-J. B. Gilpin, B. A., M. D., M. R. C. S., Prof. A P. Reid, M. D., Prof. J. Sommers, M. D., Ion. L. G. Power, John Matthew Jones, M. L. S., Robert Morrow, Augustus Allison, Andrew Dewar.

Resolved, That the thanks of the Institute be expressed to the late President, Dr. J. B. Gilpin, for his able and efficient discharge of the duties of President, ituring his long tenure of office.

Ordinary Meeting, Dalhousie College, Nov. 11, 1878.
Wm. Gossip, Esq., President, in the Chair.
The Secretary announced that the Council had elected as members of the Institute, Colonel Drayson, R. A., Lieut. Col. Cockburn, R. A., Lieut. Murray Dunlop, R. A., Lt. Cockerill, R. A, and John R. Mcleod, Merchants' Bank, Halifax.

Resolved, That the thanks of the Institute be given to the Governors of Dalhousie College for the excellent accommodation afforded for the Meetings of the Institute for the present session.

Resolved, That the Institute record its expression of deep regret at the great loss that the Institute and science have sustained by the death of Thomas Britt.
F.G.S., M.E., "The Naturalist of Nicaragua," who was one of the Founders of the Institute, an active member, and a contributor to its Transactions.

The following notice of Mr. Belt's death, appears in the Sept. 26, 1878, No. of "Nature," an illustrated Journal of Science, published in London:-
"The Scientific world will hear with regret the recent death of the wellknown naturalist and geologist, Mr. Thomas Belt, F. G. S., which has just been telegraphed from Colorado. It is believed to have been caused by mountain fever. Elected a Fellow of the Geological Society in 1866, the geological world owes to him the division of the Lingula flags into Maentwrog, Ffestiniog, and Dolgelly flags, proposed in 1867. In 1874 appeared his well-known and deservedly popular "Naturalist in Nicaragua," in which he showed how his professional avocations as an engineer, had lent keenness to his observing faculties, and how an acute reasoner can utilize his observations. The work conveyed much information on protective mimicry, plant fertilisation, sexual selection, and the other collateral issues of the theory of evolution."

Dr. Sommers gave an interesting account of Observations "On Nova Scotian Musses." Illustrative specimens were exhibited.

Dr. Lawson directed attention to a Communication from the Rev. E. Ball, Corresp , iding Member of the Institute, "On Certain Nova Scotian Ferns." The Communication was illustrated by specimens of Ferns from Dr. Lawson's Herbarium.

Mr. J. M. Jones gave an account of important additions made to the list of Nuva Scotian Fishes, by the United States Fishery Commissioners. Mr. J. also intimated his intention to prepare s catalogue of the Fishes of Nova Scotia, as far as known, for publication in the Transactions of the present Session.

Ordinary Meetlng, Dec. 9, 1878.
The President in the Chair.
The Smcretary announced that the Council had electod V. G. Harris a member, and Wong Kien Shoon, of the Chinese Imperial Navy, on board of H. M. S. Bellerophon, an Associate Member of the Institute.

Dr. Honeyman described and figured a new gigantic Trilobite from the Iron Mines of Clements, Annapolis County.

Dr. Sommers read a letter from the Rev. E. Ball, in reference to his observations on the varieties of Aspidium Spinulosum, Gray, which was communicated at a preceding meeting by Dr. Lawson.
"The Analysis of a new Mineral from Blomidon," by H. Louis, Assoc. R. S. M., was read by the Secretary.

An interesting specimen of fossiliferous sandstone was exhibited and described by the Secretary. The specimen was from Mira Ridge, Cape Breton. A letter was read from the Rev. Donald Sutherland, of Gabarus, describing the locality where he found the specimen.

Ordinary Meeting, January 13, 1879.
The President in the Chair.
Mr. J. M. Jones gave an interesting account of certain exotic fishes sometimes found on the Coast of Nova Scotia.

A paper "On the Geology of King's County," was read by Dr. Honeyman.

The Secretary elected by the Count

Mr. Edivin Gili of Pictou County."

Dr. J. B. GILpI!
The paper was illust
The President
Professor of Physics
Mackenzie was a nati he graduatec as Back of M. A. He afterwa studying at the Cnivt Physical Laboratory on the Absorption of graduation thesis wh moval at an early age usefulness, is deplore

$$
\mathrm{O}_{1}
$$

Mr. Henty Lout donderry Mines."

The President co lege, Montreal, "On N

The C'ommunication in last year's Transac Naturalist.

A paper "On Magn
A paper was also re of 1878-9."

Before the Minutes r tute had recently sustait lingering illness,-as fol
"Mr. Allison had be the time of his death he character and attainme one of its Governors, anc
the Foumders of sactions. ept. 26, 1878, No. ndon:ath of the wellch has just been sed by mountain geological world Ffestiniog, and i-known and dered how his proiserving faculties, work conveyed sexual selection, * * - On Nova Scotian rom the Rev. E. in Nova Scotian © Ferns from Dr. aade to the list of ners. Mr. J. also If Nova Scotia, as ut Session.

I V. G. Habris a yy , ou board of H .
, bite from the Iron
eference to his obwhich was com-

Louts, Assoc. R. S. exhibited and dedge, Cape Breton. us, describing the

3xotic fishes some-
i Dr. Honeyman.

Ordinary Meeting, February 10, 1879.
The President in the Chair.
The Secretary announced that Charles R. F. Twining, C. E., had been elected by the Council as a member of the Institute.

Mr. Edwin Gilpin, M. E., read a paper "On the Limonites and Limestones of Pictou County."

Dr. J. B. Gilpin also read a paper "On the Salmonida of Nova Scotia." The paper was illustrated by numerous drawings and sketches.

The President announced the death of J. J. Mackenzie, M. A., Ph. D., Professor of Physics in Dalhousie College, and a Member of the Institute. Dr. Mackenzie was a native of Pictou County, and studied at Dalhousie College, where he graduateu as Bachelor of Arts in 1869, subsequently taking the higher degree of M. A. He afterwards proceeded to Europe, where he spent several years in studying at the Universities of Berlin, Liepzic and Paris. In Prof. Helmholtz's Physical Laboratory in Berlin, he conducted an elaborate series of investigations on the Absorption of Gases by Liquids, the results of which were published as a graduation thesis when he took the Degree of Doctor of Philosophy. His removal at an early age, when entering apparently upon a career of great public usefulness, is deplored as a great loss to Science.

Ordinary Meeting, March 10, 1879.
The President in the Chair.
Mr. Henry Louls, Assoc. R. S. M., read a paper "On the Ankerite of Londonderry Mines."

The Parsident communicated a paper by Principal Dawson, McGill College, Montreal, "On Nova Scotian Geology."

The C'ommunication was the proof sheet of a reply to Dr. Honeyman's article in last year's Transactions, and intended for publication in the Canadian Naturalist.

Ordinary Meeting, April 14, 1879.
The President in the Chair.
A paper "On Magnetism" was read by Andrew Dewar.
A paper was also read by Dr. Honeyman, " Notes to Geological Retrospect of 1878-9."

Ordinary Meeting, May 12, 1879. The President in the Chair.

Before the Minutes were read the President referred to the loss the Institute had recently sustained by the decease of Frederick Alfison, Esq., after a lingering illness,-as follows:-
"Mr. Allison had been a Member of the Institute for a number of years. At the time of his death he was one of its Vice-Presidents. He was a man of high character and attainments, M.A. of the University of King's, Windsor, and one of its Governors, and held the important position, of Provincial Meteorolo-.

atisfaction to the
sonspicuous. He om we were forf Natural Science. 3 gentlemen, and the stucy of the he Dominion, by ears, of carefully the climate and
in, of unassuming able advocate of hich he had made ends in their beus of an associate

Communication in which it was the time being, a :quested.

Lundon, E. C., !nd April, 1879.
; you will see from . afficio Fellows of
d I shall be much o accept the nomi-
mqe.
VK CRISP,
Secretary icroscopical Society.
by the President, age of publications

tre."

on, hatched in the
te microscope, and frog.

LIST OF MEMBERS.

Date of Admission.
1873. Jan. 11, Akins, T. B., D. C. L., Halifax.
69. Feb. 15. Allison, Augustus, Halifax.
77. Dec. 10. Bayne, Herbert E., Ph.D., High School, Halifax.
64. April 3. Bell, Joseph, High Sheriff, Halifax.
64. Nov. 7. Brown, C. E., Halifax.
75. Feb. 11. Brunton, Robt., Halifax.
78. Feb. 10. Brurton, John, Halifax.
78. Nov. 11. Cockburn, Lieut. Col.
67. Sept. 10. Cogswell, A. C., D. D. S., Ialifax.
72. April 12. Costley, John, Dep. Pro. Secretary, Ialifax.
63. May 13. Cramp, Rev. Dr., Wolfville.
75. Jan. 11. Dewar, Andrew, Architect, Halifax.
63. Oct. 26. DeWolfe, James R., M. D., L. R. C. S. E.
63. Dec. 7. Downs, Andw., Corr. Memb. Z. S., London, Halifax.
71. Nov. 29. Egan, T. J., Taxidermist, Halifox.
74. April 13. Forbes, John, Manager of Starr Works, Dartmouth.
72. Feb. 12. Foster, Janes, Barrister-at-Law, Daitmouth.
63. Jan. 5. Craser, R. G., Chemist, Halifax.
78. Feb. 11. Geldert, J. M., Barrister at Law, Halifax.
73. April 11. Gilpin, Edwin, F. G. S., Inspector of Mines, Malifax.
60. Jan. 5. Gilpin, J. Bernard, M. D., M. R. C. S., Halifax.
63. Feb. 2. Gossip, Wm., F. R. M. S., President, Halifax.
63. Jan. 16. Haliburton, R. G., Barrister-at-Law, Halifax.
78. Dec. 9. Harris, V. E.
63. June 17. Hill, Hon. P. C., Barrister-at-Law, Halifax.
66. Dec. 3. Honeyman, Rev. David, D. C. L., Secretary, Italifax.
78. Feb. 11. Harrington, W. M., Halifax.
74. Dec. 10. Jack, Peter, Cashier of People's Bank, Halifax.
79. Jan. 11. James, Alex., Judge of Supreme Court, Halifax.
63. Jan. 5. Jones, J. M., F. L. S., Halifax,
66. Feb. 1. Kelly, John, Dep. Chief Com. Mines, Halifax.
77. Nov. 19. King, Major R. A., Halifax.
64. Mar. 7. Lawson, George, Ph.D., LL.D., Professor of Chemistry and.

Natural History, Dalhousie College, Halifax.
75. Jan. 11. Mellish, John T., M. A., Secretary, Halifax.
72. Feb. 5. Mckay, Alex., Principal of Schools, Dartmouth.
77. Jan. 13. Morrow, Godfrey, Halifax.
66. Feb. 3. Morrow, James B., Halifax.
72. Fel. 13. Morrow, Robert, Halifax.
73. Mar. 10. Moseley, E., Dartmouth.
70. Jan. 10. Murphy, Martin, C. E., Provincial Engineer, Halifax.
65. Aug. 29. Nova Scotia, the Rt. Rev. Hibbert Binney, Lord Bishop of.
78. Feb. 11. Outram, Jos., Halifax.
72. Nov. 11. Poole, II. S., F. G. S., Superintendent Acadian Mines. Pictou.
76. Jan. 20. Power, Hon. L. G., Senator.
71. Nov. 19. Reid, A. P., M. D., Superintendent of Lunatic Asylum, Dartmouth.
66. Jan. 8. Rutherford, John, M. E., IIalifax.
78. Feb. 11. Scott, Seymour, Halifax.
68. Nov. 25. Sinclair, John A., Halifax.
75. Jan. 11. Sommers, John, M. D., Halifax.
74. April 11. Sterling, W. Sawers, Cashier of Union Bank, Halifax.
79. Feb. 10. Twining, Charles R., C. E., Halifax.
66. Mar. 18. Young, Sir William, Knight, Chief Justice of Nova Scotia, Halifax.
77. Jan. 13. McGregor, J. G., A. M., D. Sc., Bristol, England.

ASSOCIATE MEMBERS.

1863. Oct. 6. Ambrose, Rev. John, A. M., Digby.
1864. May 14. Burwash, Rev. Prof., Wesleyan College, Sackville, N. B.
1865. Nov. 9. Kennedy, Professor, Acadia College, Wolfville.
1866. Feb. 11. Louis, Henry, Assoc. R. Sch. of Mines, London.
1867. Jan. 11. McKay, A. I., A. M., Principal of Pictou Academy.
1868. Nov. 9. McKinnon, Rev. John, P. E. Island.
1869. Dec. 8. Morton, Rev. John, Trinidad.
1870. Mar. 13. Patterson, Rev. George, D. D., New Glasgow.

CORRESPONDING MEMBERS.

71. Nov. 29. Bell, Rev. E., Maccan.
72. Nov. 25. Bethune, Rev. J. S., Ontario.
73. Nov. 1. Cope, Rev. J. C., President of the New Orleans Academy of Science.
74. Oct. 27. Harvey, Rev. Moses, St. John's, Nfld.
75. Nov. 1. King, Dr. V. C., Vice-President of the New Orleans Academy of Science.
76. Oct. 11. Marcou, Jules, Camuridge.
77. Jan. 10. Mathew, G. M., St. John, N. B.
78. Feb. 5. Tennant, Prof. J., F. G. S., F. Z. S., \&c., Mineralogist to H. M. the Queen and the Baroness Burdett Coutts.

LIFE MEMBER.
Hon. Dr. Parker, M. L. C., Nova Scotia.

Talifax. rd Bishop of.

1 Mines. Pictou.
c Asylum, Dart-

Ialifax. of Nova Scotia,
nd.
ville, N. B.
\because lemy.
ins Academy of
rleans Academy
alogist to H. M. tts.

TRANSACTIONS

of the

Art. 1.-A Contribution towards the study of Nova Scotian Mosses.-By John Sommers, Mt D., Professor of Psychology and Microscopy, Halifax Medical College; and Lecturer on Zoology in Technological Institute. (Real November 11, 1878.)
The present contribution is a continuation of the study of N. S. Mosses, published in last year's Transactions.

It will be observed that both the present and previous papers exhibit a want of systematic arrangement, inasmuch as there will be found a repetition of genera and orders; a necessary result this of the manner of their preparation, and representing, as they do, the work of successive seasons, the species collected being various, their description as a whole will appear irregular, a difficulty which it is hoped will be overcome at a later stage by the formation of a catalogue of all the species described in these contributions.

Order Neckerei. Mont.

Neckera. pinnata. Hedw.
Stems pinnate flat, leaves ovate-lanceolate acuminate, nearly entire, nerveless sporangium ovate, oblong, immersed, growing on trunks of trees, fruiting in September.

Ord.-Hypner. Br. \& Schimp, Mont.
 Hypnum. Schreiberi. Willd.

Leaves imbricated crowided, stems irregularly branched, the mranches pinnate, sub-erect, sporangium oblong, ovate cernuous, lid conical, forming yellowish or golden green patches in pine woods, and on exposed banks very abundant, but rare in fruit ;
the stems are of a beautiful shining red colour, the leaves are two nerved concave and obtuse, fruiting in Autumn.
H. blandovil. Webb \& Mohr.

Leaves ovate papillose, sharply toothed margins recurved, nerved to the top, stem divided, with paraphylla, branchlets crowded, sporangium curved cylindrical, lid conical apiculate.

A beautiful Moss, with many characters of Thuidium, forming dense cushions on rocks and stumps in bogs and swampy places, stems feathery, tall, pale green, sub-erect, fruit stalk long reddish common, fruiting in April and May.

H. splenders. Hedw.

Leaves imbricated, ovate, concave, serrated, pointed, two nerved sporangium, ovate cernuous lid, rostrate ; stem sub-erect, more or less bipinnate or sometimes tripinnate, sporangium ovate cernuous lid beaked, common in damp woods, forming large tufts, fruitstalk tall, fruiting in early Spring.

H. triquetrum, L.

Stem ascending with fasciculate branches,stem-leaves squarrose, branch-leaves spreading, acuminate, cordate, serrate, two nerved sporangium, ovate cernuous. Forming coarse yellowish patches in exposed banks, generally occupying dry situations, fruiting in March and April.

H. chista. castrensis, L.

Stem sub-erect, feathery leaves, secund ovate lanceolate, plicate acuminate, toothed two nerved below, sporangium curved, oblong, cernuous, lid conical. The most beautiful of our mosses, very common and easily distinguished, forming golden green patches on rocks in wooded hills, fruiting in July and August.

H. molluscum. Hedw.

Leaves crowded, secund, serrate lanceolate, toothed acuminate, two nerved or nerveless, sporangium, ovate, short, lid conical, resembles crista castrensis in general appearance. The habit is smaller, sporangium smaller, lid more acute, the stems have not the abrupt termination of castrensis.

Leaves hamul cumbent pinnate ate, forming darl boles of trees, be:

Stems procum falcato secund, ec gium, oblong cur in swampy wood:

Stem creeping somewhat erect, nerved sporangiu dark green patche May and during t

Stem creeping, the upper side of acuminate, faintly oblong, curved, fris of trees, fruiting i

O1
F
Leaves crowder fruitstalk long rad Bearing fruit in S

Teaves short, dis culate, sporangium stalk arising from in August, growin damp woods, not si
the leaves are
an.
gins recurved, fla, branchlets 1 apiculate. dium, forming wampy places, k long reddish
ed, two nerved -erect, more or ovate cernuig large tufts,
aves squarrose, e, two nerved lowish patches ins, fruiting in
seolate, plicate urved, oblong, mosses, very green patches ust.
ed acuminate, t, lid conical,
The habit is ems have not

H. hamulosum, Frol.

Leaves hamulose ovate lanceolate serrate, nerveless, stem procumbent pinnate sporangium, subcylindrical, lid conical acuminate, forming dark green patches, closely matted on rocks, and the boles of trees, bearing fruit in summer.

> H. scorpoides, L.

Stems procumbent, irregularly branched leaves imbricated, falcato secund, concave entire, nerveless or two nerved, sporangium, oblong curved cernuous, lid conical, beaked. Not common, in swampy woods, fruiting in spring and early summer.

H. arcticum. Somm.

Stem creeping, branching irregularly, procumbent, branches, somewhat erect, leaves spreading, not squarrose, rigid entire nerved sporangium oval, cernuous, lid conical obtuse, forming dark green patches on rocks in running brooks, bearing fruit in May and during the Summer.

Prlaisia. polyantha. Schimp.
Stem creeping, much branched, branches arched growing from the upper side of the stem, leaves secund turned upward, ovate acuminate, faintly two nerved or nerveless, entire, sporangium oblong, curved, fruitstalk long. Common on trunks and boles. of trees, fruiting in September.

Order.-Drepanophyllei. Mont.
Fissiders. taxifolius. Hedw.
Leaves crowded, lanceolate, mucronate, margin crenulate, fruitstalk long radical, sporangium oblong cernuous, lid beaked. Bearing fruit in September. In moist woods common.

F. tamarindifolius. Donn.

Teaves short, distant, spreading, elliptic, bordered entire, apiculate, sporangium ovate, curved, lid conical, acuminate, fruitstalk arising from the base of the barren shoots, found in fruit in August, growing on roots of beech and other hardwood in damp woods, not so common as the lasi.

Ord.-Bartramiel Br. \& Schimp.

Bartramia. pomiformis. Hedw., var. crispa.
Leaves spreading, crisped, linear lanceolate toothed, sporangium on a short stalk globose, forming soft yellowish patches, very common on granite boulders, fruiting in April and May, the collections have a dessicated appearance due to the peculiarities of the leaves.

> Order.--Bryei. Br. \& Schimp.
> Minum. cuspidatum. Hedụ.

Stem simple erect, lower leaves obovate, upper ovate lanceolate, both acuminate, sporangium pendulous oval, lid convex, obtuse, sporangium solitary, nerve not reaching the tip, fruiting in early summer, growing on the banks of water courses in shady places, sometimes in company with M. punctatum loc. woods back of Melville Island, ditto near Byers Road, D. Vill, Hx.

M. stillare, Hedw.

Leaves toothed, not bordered, stems erect sporangium cernuous, ovate, lid hemispherical obtuse, forming soft, deep green patches on moist, shady banks, leaves increasing in size from below upwards, fruitstalk long, arising from the midst of a budlike collection of leaves at the top of the stems, leaf cells smaller than in punctatum, bearing fruit in May and June. The leaves shrivel speedily in dry weather, when the fruitstalk and sporangium become the most prominent characteristics of the plant. Plants of this genus are the most beautiful objects of the whole Bryological series, presenting in their ordinary appearance the nearest approach to vascular plants. They are worthy of the attention of the horticulturist. Being very sensitive to atmospheric conditions, they require shade and moisture for their successful cultivation

- M. punctatum, Br., common on banks of shady brooks.

Leptobry'm pyriformi, Schimp.

Leaves lower lanceolate, entire, upper spreading toothed nerve, reaching the tip, sporangium large pearshaped, pendulous, lid convex, mamillary, common on turfy ground, roadsiaes, and places
exposed to sunlig and through thes

O_{1}

Polytri P. JU

Atrichum, undula

OR:

Very common is in summer and au peristome and the gems.

Schis?
Leaves rigid, crowded erectopat large, shortly rost boulders, dark oliv

Branches fastigis angium globose imı lid plano convex, v granite boulders, lu through the winter

Art II.-On Nov.
Maccas

I have been exa ium Spinulosum (G my more matured o peculiarities of
vate lanceolate, :onvex, obtuse, uiting in early 1 shady places, woods back of x .
gium cernuous, green patches rom below upof a budlike Is smaller than e leaves shrivel sporangium beint. Plants of hole Bryologice the nearest \& the attention nospheric conheir successful
ly brooks.
toothed nerve, dulous, lid conies, and places
exposed to sunlight, leaves inconspicuous, fruiting in early spring and through the summer.

Order.-Polytrichiei, Brid. \& Sch.
Polytrichum, commune, L., fruiting in June.
P. junipirinum, Hedw., fruiting in June.

Atrichus, undulatum, P. Beauv., common, fruiting in autumn, forming dense green patches.
Order.-Tetraphidei, Br. \& Schimp.
Tetraphis, pellucida, Hedw.
Very common in shady woods and on roots of trees, fruiting in summer and autumn, easily recognized by the four-toothed peristome and the cup-shaped cluster of leaves surrounding the gems.

Order.-Grimmiei, Br. \& Schimp.
Schistidium, maritimum, Br. \& Schimp.
Leaves rigid, strongly acuminate nerve excurrent, much crowded erectopatent, sporangium obovato truncate, lid very large, shortly rostrate, fruiting in autumn, growing on granite boulders, dark olive green, pulvinate.

> Order-Hedwigiacei, Br. \& Schimp.
> Hedwigia, ciliata, Hook \& Wils.

Branches fastigiate, leaves imbricated, oblong lanceolate, sporangium globose immersed, veil hairy perichetial leaves ciliated, lid plano convex, with a central papilia, variable, common on granite boulders, lurid green pulvinate, fruiting in autumn and through the winter.

Art II.-On Nova Scotian Ferns.-By Rev. E. N. Ball, Macean, Communicated by Dr. Lawson.
(Read November 11, 1878.)
I have been examining more closely the varieties of Aspidium Spinulosum (Gray) this Summer, and offer the following as my more matured observation.

Aspidium spinulosum (Gráy).

Though in our Nova Scotian plants the scales cannot be said to be deciduous (for they are retained by the fronds even when past maturity), yet this fact will scarcely perhaps warrant my calling the indigenous plant a variety-obliquum, and, as the plant in all other respects answers to Gray's description, if I were to revise my paper, I should drop the idea of the variety and give it as Gray does.
A. spin. var. intermedium. Early in the Spring I noticed many plants of spinulosum so completely covered with glands as to render them, from this fact, markedly conspicuous to the naked eye even, and very distinct from other plants of same species, growing side by side with them in some instances, so that from a distance of 20 feet the unrolled glandulous fronds eould be distinguished from the shining smooth ones. Marking several of these as yet undeveloped fronds, I find that the glandulous are intermedium and the smooth Gray's N. American typical Aspid. spinulosum. I had not noticed this to be the case before.
A. spin. var. dilatutum. This is a very distinctly marked variety. The fronds, by their broader growth, the pinne wider in the centre than at their bases, and at this season of the year, both in young. and old plants, mottled with decay spots. But the most singular distinction is the long creeping rhizome, with the stumps of old fronds very stont, shorter than in var. intermedium and not overlapping so much. Intermedium has a more or less assurgent rhizome. The same characteristics mur\% both young and old plants, nor are these peculiarities owing to different habitats, for 1 find specimens of these two varieties most markedly distinct and yet with their rhizomes in contact with each other.

I have sent specimens of the three to the Halifax Nursery, and have asked Mr. Harris (the younger J. H.) to keep one of the roots of dilatata for you.

If you should deem this worthy of bringing to the notice of the Institute, with the rhizome and frond (from Minudie, Cumberland Co .) to illustrate, it is respectfully submitted.

What I have h confirmation of f

Art. III.-A Nei
By F
$\mathrm{H} .=6.5 \quad \mathrm{G}$. Streak and po Diff. B. B. In : brown. On platis It gelatinises in acid.

The formula app $3 \mathrm{Si} \mathrm{O}_{2} \mathrm{Ca} \mathrm{O} 2 \mathrm{H}_{2}$ Considering the written. $3 \mathrm{Si} \mathrm{O}_{2} \mathrm{R}$ $\mathrm{Mg} \mathrm{O}=\mathrm{H}_{2} \mathrm{O} \mathrm{K}_{2} \mathrm{O}$ The latter is, I t Note.-The Mineral was the Geology of Blomidon. kindness in undertaking to a if all the silica in it is combl Mr. Louis says that the silic

Mr. Louis exhibi

What I have here stated is for the most part not new, but a confirmation of former notice.

Art. III.-A New Mineral (Louisite), from Blomidon, N. S., By H. Louis, Assoc. Royal School of Mines, London.
(Read December 9, 1878.)
$\mathrm{H} .=6.5 \quad$ G. 2.41. Vitreous. Leek-green. Translucent. Streak and powder white. Fracture splintery. Brittle. Diff. B. B. In an open tube yields water and becomes pale brown. On platinum wire fuses to a white vesicular enamel.

It gelatinises in and is completely decomposed by hydrochloric acid.

ANALYSIS.

$$
\mathrm{Al}_{2} \mathrm{O}_{3} \ldots \ldots \ldots \ldots \ldots \ldots . .
$$

$\mathrm{Fe} \mathrm{O} . .$. 1.25
Mn O. .
Ca O. 17.27
Mg O. 0.38
$\mathrm{K}_{2} \mathrm{O} \ldots . . .$. 3.38
$\mathrm{Na}_{2} \mathrm{O} \ldots .$. 0.08
$\mathrm{H}_{2} \mathrm{O} \ldots .$. 12.96
99.63

The formula appears to be, $12 \mathrm{Si}_{2} 4 \mathrm{CaO} 9 \mathrm{H}_{2} \mathrm{O}$ or perhaps, $3 \mathrm{Si}_{2} \mathrm{Ca} \mathrm{O}_{2} \mathrm{H}_{2} \mathrm{O}$.

Considering the water as basic, the latter formula may be written. $3 \mathrm{Si} \mathrm{O}_{2} \mathrm{RO} \mathrm{O} .2 \mathrm{M}_{2} \mathrm{O}$ where $\mathrm{RO} \mathrm{O}=\mathrm{CaO} \mathrm{Fe} \mathrm{O} \mathrm{MgO} \mathrm{O}$ and $\mathrm{Mg} \mathrm{O}=\mathrm{H}_{2} \mathrm{OK}_{2} \mathrm{ONa}_{2} \mathrm{O}$.
The latter is, I think, the better wiew to take of its composition.
Note.-The Mineral was picked up by Mr. Robert Starr, of Cornwallis, when I was examining the Geology of Blomidon. I have suggested the name Louisite, in consideration of Mr. Louis's
kindness in undertaking to analyse it. Prof. Dana remarks in ref kindness in undertaking to analyse it. Prof. Dana remarks in reference to its composition, that if all the silica in it is combined, and none of it free, there is nothing like it in mineralogy.Mr. Louis says that the silica is all combined.
Mr. Louis exhibited a beautiful specimen of Crystallization in
a tap-cinder from Londonderry Iron Mines. The multitude of Crystals thus formed are considered to be Olivine.
D. H.

Art. IV.-Nova Scotian Geology. By the Rev. D. Honeyman, D. C. L., Fellow of the University of Halifax, Curator of the Provincial Museum, Professor of Geology in Dalhousie College and University, and Lecturer on Geology in the Technological Institute.
(Real Dec. 9, 1878,)
I have received from the Rev. D. Sutherland, of Gabarus, (near Louisburg,) Cape Breton, an interesting specimen of fossiliferous sandstone. The locality where he found it is described as "At a fine spring of water that boils up out of the rock, at the roadside, on A. Walker's farm, Big Ridge, on the road from Marion Bridge, (Mira River,) to Gabarus, at about $1 \frac{1}{4}$ miles, as laid down on Church's map, direct south from Marion Bridge." I have referred to Marion Bridge in my "Retrospect" of last session as the locality where Mr. H. Fletcher, of the Dominion Geological Survey, discovered interesting fossiliferous strata, which I referred to the horizon of the Upper Lingula Flags of Wales, on account of the occurrence of the Trilobite Olenus alatus, associated with Agnostus. Mr. Sutherland's specimen of fossiliferous sandstone indicates the width of a fossiliferous band $1 \frac{1}{4}$ miles. If the series descends towards Gabarus, we may now have reached the horizon of the Lower Lingula Flags. The specimen of sandstone before me measures $2 \frac{1}{4} \times 3$ inches; its thickness is from 5 to 4 tenths of an inch ; it is metamorphic and subcrystalline. One of the siles is weathered ; the other is fresh ; both are covered with fossils. On the fresh side they are very beautiful. The forms are Lingulellce. They are acuminate and subcircular. . The acuminate forms range from a length ${ }_{10}^{1}$ and a width ${ }_{40}^{3}$ to ${ }_{40}^{10}$ in length and ${ }_{40}^{7}$ in width. The subcircular are in the proportion of ${ }_{40}^{6}$ to ${ }_{50}^{5}$; one appears to be circular, ${ }_{40}^{3}$ in diameter.
*Mr. Sutherland has sent to me, two other specimens. One is a

[^0]piece of sandstone has on one side questioned as sucl described. The r with microscopic designated a quar gillite having four described.
Mr. Sutherland same Ridge, (Mira sandstone. One o another shows to Their length excee The length of two are no muscular or of the existence of tending from Mari intervening betwee line and suberystal
Mr. Sutherland which are forms, w

These discoveries consequence of their Some of which havi Canada to "Snowd and to the Huronia: them to my " Middl
My investigation papers last Session : tention to a specime vincial Museum.

When I received : I found in it a slab o I then considered it in the lowest positi led me to infer no Limestones. I also
ye multitude of e.
D. H.
ev. D. Honeyty of Halifax, ssor of Geology ad Lecturer on
id, of Gabarus, cimen of fossiit is described the rock, at the the road from t $1 \frac{1}{4}$ miles, as Larion Bridge." spect" of last the Dominion iferous strata, guula Flags of ilobite Olenus l's specimen of siliferous band we may now a Flags. The 3 inches; its ; metamorphic ; the other is 1 side they are are acuminate a length ${ }_{10}^{10}$ and sircular are in ${ }_{80}^{3}$ in diameter. rens. One is a
piece of sandstone from the same strata as the preceding. This has on one side impressions of Lingulellce, which might be questioned as such if not associated with those I have already described. The rock itself is interesting; its edges are coated with microscopic crystals of quartz, and the whole might be designated a quartzite. The second specimen is. a piece of argillite having four fossils of larger dimensions than those just described.
Mr. Sutherland found this specimen in the rock, on the same Ridge, (Mira,) a mile nearer Gabarus, than the Lingullelce sandstone. One of the specimens has fine concentric lines, which another shows to be lines of growth. They are inequilateral. Their length exceeds their width in the proportion of 4 to 3 . The length of two of the specimens is ${ }_{10}^{6}$; of another, ${ }_{10}^{4}$. There are no muscular or pallial impressions. We have thus evidence of the existence of a fossiliferous band of $2 \frac{1}{4}$ miles in width extending from Marion Bridge, southwards, towards Gabarus, and intervening between the carboniferous of Mira and the crystalline and subcrystalline rocks of Gabarus.

Mr. Sutherland has also sent a specimen from Gabarus, in which are forms, which might be mistaken for fossils.

These discoveries of Mr. Sutherland's are very interesting, in consequence of their approach to the Louisburg and Gabarus rocks. Some of which have been referred by the Geological Survey of Canada to "Snowdon and Cader Idris, voleanic accumulations," and to the Huronian age of Canada. I have elsewhere referred them to my "Middle Arisaig Series," i. e. Cambrian.

My investigations in Annapolis and King's Counties, vide papers last Session and this (next paper), have directed my attention to a specimen in the "Webster Collection," of the Provincial Museum.
When I received and arranged this collection some years ago, I found in it a slab of sandstone thickly studded with Lingulellae I then considered it as a Potsdam Sandstone rock and placed it in the lowest position in the collection, as "Acadian Geology" led me to infer nothing lower in the collection than Niagara Limestones. I also concluded that the specimen was not Nova

Scotian. My own investigations and conclusions regarding the Geology of King's and Annapolis in connection with the discoverics of Mr. Fletcher, of the Geological Survey of Canada, and the Rev. D. Sutherland in Cape Breton, just noticed, have led me to suspect that the specimen after all is Nova Scotian, and that possibly it belongs to King's County, and is indicative of the existence of rocks of the Potsdam formation in this region. An examination of the specimen seems to indicate; 1st. That it was not found in situ but was a section of a boulder. 2nd. That it came from a region where granites or gnessoid rocks exist. The side of the specimen with fewest fossils is rather micaceous, In this it differs from the Mira specimen. It is also less hardened, the Mira specimen being subcrystalline.

The Lingulellue of both are identical, even the proportions are nearly the same. The Lingulellae of the Webster specimen measure from ${ }_{40}^{4}$ to ${ }_{40}^{10}$ of an inch. Their forms are generally acuminate.

A New Trilobite.

Asaphus ditmarsiae (N. Sp.)

The specimen is a pygidium. Widin 5.8 inches; the length about 5.4 inches. It is semi-oval and gibbous.

The mesial lobe is rounded and tapering. It is fragmentary and partly indistinct. Its apex is semi-oval. 43 inches of the lobe remains. At the top it is two inches wide ; $3 \frac{1}{2}$ inches from the top the width is $1 \frac{1}{4}$ inches; there is one almost entire ridge at the top and two parts succeeding, having portions of two intermediate furrows, the apical part is in length $1 \frac{3}{4}$ inches.

Side lobes. The left is lengthened one inch by distortion The right appears to be unchanged. Each lobe has 8 ribs with deep intermediate furrows. The ribs when regular are strong and rounded, and extend the whole width of the lobes as far as the margin. The upper one of the left lobe is bevelled, an has a flat pleuron of the thorax attached, its surface is alsc granulated. This lobe has a short and narrow supplementary rib next the apex, the corresponding one is obscure. On the right lobe four of the ribs are widened and flattened. A smooth and slightly convex margin, 4-10 of an inch in width, is round the lef
lobe. It partially 1 broken off the ape Isotelus gigas mus accompanies, the bling. that of Asay is imbedded is hea the iron which it (whose kindness I , it was found in th his suggestion I ha secured it from the of the trilobite f_{i} Scotia. It is one c quote authorities t, the Family Asaph
"The genera Tri tected, even in the being essentially , -Siluria, 1872, pas

Asaphidae, a larg are characteristic st tions to this geologi it does not rise out even in Llandovery cephalus, Asaphus, these genera are cha Llandeilo, or Carado Asaphus or Isotel doxides, among the Wales, page 310 .

Fannes Silurienn Boheme.

s regarding the 1 with the disy of Canada, and ced, have led me rotian, and that rative of the exhis region. An 1st. That it was

2nd. That it id rocks exist. ather micaceous. so less hardened,
proportions are ebster specimen is are generally
hes ; the length
is fragmentary 43 inches of the $3 \frac{1}{2}$ inches from ost entire ridge tions of two in$\frac{3}{4}$ inches.
ι by distortion has 8 ribs with ;ular are strong lobes as far a s bevelled, an ; surface is alst supplementary e. On the right

A smooth an is round the lef
lobe. It partially remains on the right. It is wanting, having been broken off the apex. The whole trilobite, if proportioned like the Isotelus gigas must have been 1 foot 3 inches in length. There accompanies, the cheek of a smaller individual, nearly resembling. that of Asaphus gigas. The fragment of rock in which it is imbedded is heavy in proportion to its size, in consequence of the iron which it contains. It is Magnetite. Dr. J. B. Gilpin, to whose kindness I am indebted for the specimen, informs me that it was found in the Iron Mines of Clements, Annapolis Co. A't his suggestion I have named it after Mrs. Laura Ditmars, who secured it from the collection. This is by far the largest member of the trilobite family that has yet been discovered in Nova Scotia. It is one of the Anakim of the Silurian period. I shall quote authorities to show the distribution and range in time of the Family Asaphidue.

Evgland.-Murchison.

"The genera Trinucleus, Asaphus and Ogygia; are never dètected, even in the lowest part, of the Wenlock group, therefore, being essentially characteristic of the Lower Silurian rocks."' -Siluria, 1872, page 114.

Salter.

Asaphidae, a large unwieldy group of great trilobites; which are characteristic strictly of Lower Silurian rocks. The exceptions to this geological position are very rare. Except Illanus. it does not rise out of the Lower Silurian, and it is very rare even in Llandovery or Middle Silurian rocks. Niobe, Prilocephalus, Asaphus, Ogygia and their sub-genera; one or other of these genera are characteristic of every locality where Tremadoc, Llandeilo, or Caradoc strata are found.
Asaphus or Isotelus is the largest, excepting of course Para-doxides, among the Olenidae. Ramsay's Geology of North Wales, page 310 .

Bohemia.-Bariande.

Trilobites.

"Fannes Siluriennes-Distribution verticale des Trilobites en.

Boheme.

Groupe II. D. Asaphus, d 1, 3, d 2, 1, d 3, 1, d 4, 1, d 5, 1. Asaphus ingens Carr., d 2.
Asaphus nobilis, Barrande, d 1, d 3, d 4, d 5, totaux, 7 especes."
The genus does not appear at all in Groupe II. Divs. E. F. G. H. They are all Lower Silurian forms in Bohemia.

America-Hall.

"We have a sufficient number of Trilobites identical with those of the Silurian rocks of Europe to institute a comparison of the correlation of the ancient ocean in both hemispheres.

That remarkable and characteristic Lower Silurian form, Trinucleus, is among the most common, while Illænus and Iso. telus or Asaphus, no less characteristic, are obtained in the earliest limestone."

Palæontology of New York, Vol. I., page 21.
Isotelus gigas. DeKay. Chazy Limestone. Trenton Lime. stone. Utica Slate. Hudson River group (all Lower Silurian), Table of Species, page 529 .

> Meek.

Asaphus (Isotelus), megistus?
Palreontology of Ohio.
Fossils of Cincinnati Group, page 139.
Miller.
Asaphus (Isotelus gigas).
DeKay, 1825. Ann. Lic. Nat. Hist. N. G., Vol. 1. Trenton and Hudson River Gr.

Isotelus megistus, Locke, 1841. Proc. Am. Asoc. Trenton and Hudson River Gr.

Miller's American Palæozoic Fossils.
Cincinnati, Ohio, 1817.
Canada-Billings.

- Geology of Canada, 1863.

Catalogue of Lower Silurian Fossils of Canada.
Asaphus megistus. Black River. Bird's Eye. Trenton Hudson River (Lower Silurian) and Middle Silurian.

Asaphus platycephalus. Chazy. Black River. Bird's Eye Trenton. Utica. Hudson River. (Lower Silurian.)

In England a Middle Silewian.

It is not knowl urian, much less

The pygidium I. C. R., strata.

Art. V.-Nova: Rev. cial 1

One morning ir ation of making King's County.
I took the direct with the expectati passing look at thi them as the possil quaintances. Rea fied to find a good rocks, I deferred o -scenery in view. Town of Wolfville, brilliant garb of s with its serpentine lages. Towering o looming and advan Channel, Cape D'C water, bounding G_{m} tant north as Mina range of Cumberlan beyond.

Having thus indi first starting point, tions under three co
$\mathrm{L}, \mathrm{d} 4,1, \mathrm{~d} 5,1$.
,taux, 7 especes.'
Divs. E. F. G. iia.
; identical with te a comparison mispheres.
Silurian form, llænus and Isostained in the

Trenton Lime. Lower Silurian)

Vol. 1. Trenton
c. Trenton and
i.

Eye. Trenton trian.
er. Bird's Eyt rian.)

In England and Canada the genus Asaphus rises into the Middle Silewian.
It is not known to appear higher, not even in the Upper Silurian, much less in the Devonian.
The pygidiam of a small asaphus occurs in the Wentworth, I. C. R., strata. Museum Collection.

Art. V.-Nova Scotian Geology-King's County.-By the Rev. D. Honeyman, D. C. L., Curator of the Provincial Museum, \&c.
(Read January 3, 1879.)
introduction.
One morning in June, 1877, I left Halifax with the determination of making an intimate acquaintance with the rocks of King's County. Arriving by the train at the Wolfville station, I took the direct road, past Acadia College, to the high land, with the expectation of meeting with rock exposures. I took a passing look at the amygdaloid boulders in the drain, regarding them as the possible fellow travellers of our Halifax drift acquaintances. Reaching the height above Wolfville, I was gratified to find a good exposure of solid strata. Standing on these rocks, I deferred operations until I had admired the interesting scenery in view. Below lies old Acadia College, the beautiful Town of Wolfville, and Grand Pre, of Evangeline fame, with its brilliant garb of summer green. Beyond stretches Cornwallis, with its serpentine streams, its fertile fields, and numerous villages. Towering on the north is North mountain, with Blomidon looming and advancing into the Minas Basin, hiding the Minas Channel, Cape D'Or, and Cape Chignecto. This fine sheet of water, bounding Grand Pre and Cornwallis, extends to the distant north as Minas Basin and Cobequid Bay. The Cobequid range of Cumberland and Colchester rising to the dim distance beyond.

Having thus indicated the sphere of our operations, and our first starting point, I shall arrange my remarks on these operations under three comprehensixe divisions.:-

1. Pre-carboniferous,
2. Carboniferous,
3. Post-carboniferous.
4. The examinations, as far as made, divided the pre-carboniferous formations into two areas, viz.: the Wolfville and Kentville, the two respective starting points of the examinations made.

The 1st area is about 20 square miles in extent. Its N. E. corner lies in Wolfville; its N. W. at the entrance of the Deep Hollow road. The distance between these two points is $3 \frac{1}{4}$ miles. The S. E. corner is at Vaughan's Mill, Greenfield, on the Halfway River, Church's map. The S. W. corner is at Bezanson's Mills, on the Black River. The distance between these two points is about 3 miles. Greenfield is about 5 miles distant from Wolfville. The greatest width of the area is about $2 \frac{2}{2}$ miles from Wolfville, south, and 5 miles west of the falls of Black River, where the pre-carboniferous and carboniferous appear in close connection, on the Halfway River road and side of the mountain. The rocks in this area are largely obscured, still, there are many and interesting exposures around Wolfville and in the Deep Hollow road. In certain elevated positions, and in the Gaspereaux River, Black River, and Halfway River, the great desideratum is the evidence of fossils. None were observed in this area although strictly searched for. Lithological evidence of age and diversity of formation was all that was observed. This seemed to divide the rocks into two series. At Vaughan's Mill and Bezanson's Mill, and on the road intervening, the exposures seemed to indicate Upper Cambrian age. The exposures around Wolfville, the Deep Hollow section, and sides of the Gaspereaux River, the Falls of Black River, and outcrops farther up the river, seem to indicate another, probably Lower Silurian.

The whole aspect of the rocks at Wolfville is so different from anything that I had observed elsewhere, that I was altogethe perplexed. The rocks are Argillites, grey and red, in a state of metamorphism more decided than any Middle or Upper Silurian in Antigonish, Pictou, or Colchester. They approximate 80
nearly to the $\mathrm{Ar}_{\text {; }}$ disposed to refer and obscure str pyrite and quar Hollow, seemed 1 feature was the The great quart: Gaspereaux roads great beds ; the tiful dendritic an more striking t deepen the first i
The magnificen presented anothei in reference to th failed me in the e have been the sig search as hopeless great obligations : Black River, as w Starr's Point, Cor:

On consulting (siderably back in kindly undertook old mountain road the area about the boniferous areas 1 great exposure of Before reaching H boniferous areason the road with (We evidently co and the County lir came to Bezanson except large masse we observed a sect of the road. Aft
the pre-carboniville and Kentee examinations
itent. Its N. E. see of the Deep o points is $3 \frac{1}{4}$ eenficld, on the er is at Bezan; between these 5 miles distant rea is about 2 ? of the falls of urboniferous apoad and side of y obscured, still, Wolf ville and in jons, and in the River, the great : were observed jithological evis all that was two series. At , road interven. Cambrian age Hollow section, 3lack River, and tother, probably o different from was altogethe: 3 d, in a state of Upper Silurian approximate 80
nearly to the Argillites of Halifax in all but colour, that I felt disposed to refer them provisionally to the same age. The tilting and obscure stratification, the occurrence of large crystals of pyrite and quartz veins, here and elsewhere, as in the Deep Hollow, seemed to favor this view. The only seeming doubtful feature was the occurrence of Diorites in the Deep Hollow. The great quartzites at the meeting of the Deep Hollow and Gaspereaux roads, near the great saw mills; the quarries in these great beds; the various blocks of quartzite dislodged ; the beautiful dendritic and moss-like figuring in the cleavage joints, even more striking than in the Halifax quartzite;-all tended to deepen the first impression.
The magnificent exposure of rocks of the Falls of Black River presented another aspect, which tended to confuse and unsettle in reference to the age of the preceding. My usual good fortune failed me in the examination of this area. How welcone would have been the sight of a familiar fossil. I came to regard a search as hopeless as in the slates of Halifax itself. I am under great obligations for guidance to the Deep Hollow and Falls of Black River, as well as to other localities, to Mr. Robert Starr, of Starr's Point, Cornwallis.

On consulting Church's Map, I observed certain saw-mills considerably back in the County. Mr. Thomas DeWolf, of Wolfville, kindly undertook to guide me to these localities. Traversing the old mountain road to Half-way River and Windsor, we entered the area about the middle where the Pre-carboniferous and Carboniferous areas meet (already referred to). Here we found a great exposure of Black Argillites of very ambiguous character. Before reaching Half-way River we found ourselves in the Carboniferous areas-a considerable outerop of sandstones appearing on the road with Carboniferous flora.
We evidently continued in this area as far as Half-way River and the County line. Taking the road leading up the river, we came to Bezanson's Mill, where nothing particular was observed except large masses of granite. On reaching Willet's Saw-mill, we observed a section of Carboniferous strata on the right side of the road. After this we observed nothing but drift, we
seemed, however, to have re-entered the Pre-carboniferous area. Reaching Vaughan's Mill, Greenfield, we found a magnificent exposure of pre-carboniferous rocks, having lithological characters widely different from the other rocks of the area. The resemblance of these to the black argillites of Halifax and Dartmouth, is sufficiently ubvious. I felt no hesitation in regarding them as the north side of the great Cambrian series of our gold fields. Looking to the heights beyond we observed massive granites which seemed to indicate solid granite underneath. Traversing these in passing on from Vaughan's Mill to Bezanson's Mill, on Black River below the lake, we found outcrops of black argillites, the enormous and frequent occurring blocks of granite being only transported rocks, derived from granite outside of area, and not yet examined. At Bezanson's Mill the black argillites were seen outcropping. Gneissoid and granite specimens were collected from rocks not in situ-precisely like the Halifax-granite and gneissoid rocks.

We then followed nearly the course of the Black River, observing the fine exposure of argillites at Payzant's Mill, and occasional outcrops between this and the Falls. Before reaching the Falls we ascended the mountains on the right observing occurring outcrops of metamorphic rocks, and thus crossed the area to its border at Gaspereaux River Bridge. We then proceeded along the road that leads up the river, on the Wolfville side, towards the Deep Hollow, observing the extent of the quartzites already referred to. We passed through the Deep Hollow and emerged from the area described at its N. W. Corner. This examination led to the conclusion that there are two series of pre-carbonifereus rocks in the area, viz. : Cambrian and Lower Silurian, which may be locally characterized as Greenfield, Wolfville.

The second area examined is about $\frac{\pi}{4}$ of the size of the preceding one and much more irregular. It begins at Kentville, the first strata being exposed at the mills, a little above the bridge, on the side and in the bed of the brook. At the great dam a little farther up, they are considerably exposed on either side; a little above this they disappear in the brook giving place to outcrops of another formation. They are again seen in a limited section
on the Beech Hi the right is forme bridge the contin sure in the bed al high lands on the of the brook, the upper, the one at of the height of $]$

The rocks of t arenaceous beds. times it is beautif low, fawn coloure metamorphic as th cation is more obv the series. In the low with beautifu woody structure (deep red (ochrey). of carbonate of coj coloured slates of with a vesicular stı a part of the faw named after the di the Upper Falls ar height and arrang waterfall when the

The Dictyonema ped to the Niagara slender palæontol, Others are dispose Silurian age, so the be regarded as doul able Upper Siluris Dictyonema is a I Quebec. It occurs revelations of Nicta at Clement's tend
boniferous area. d a magnificent ogical characters a. The resemind Dartmouth, yarding them as our gold fields. lassive granites th. Traversing inson's Mill, on black argillites, f granite being ide of area, and : argillites were s were collected x-granite and
\& River, observl, and occasional ching the Falls ; occurring outthe area to its roceeded along : side, towards urtzites already \checkmark and emerged is examination e-carboniferous zilurian, which :lle.
\Rightarrow of the preced-
Kentville, the e the bridge, on at dam a little ar side ; a little ice to outcrops limited section
on the Beech Hill road. This shews that the high ground on the right is formed by these pre-carboniferous rocks. Above the bridge the continuation of these rocks is manifest by the exposure in the bed and sides of the brook, and in outcrops on the high lands on the right. Below the bridge are several branches of the brook, the most important has two falls, the lower and upper, the one at Mr. Webster's farm, the other near the summit of the height of New Canaan.

The rocks of the area are slates and shales with occasional arenaceous beds. Their colouring is sufficiently varied, sometimes it is beautiful and ornamental. The colours are red, yellow, fawn coloured, black and grey. They are not so highly metamorphic as the rocks of the preceding area, and their stratifieation is more obvious. There are also fossils in one member of the series. In the brook at Kentville some of the strata are yellow with beautiful red, wavy lines, having the appearance of woody structure (pine). At the dam the slates are black and deep red (ochrey) with occasional green, being coloured by films of carbonate of copper. At Webster Falls there is a set of fawn coloured slates of considerable thickness, having sandy strata with a vesicular structure. I was fortunate enough to come upon a part of the fawn slates having Dictyonema Websteri (Hall), named after the discoverer, the late Dr. Webster. The strata of the Upper Falls are black slates, almost like roofing slate. The height and arrangement of the strata must form a beautiful waterfall when the brook is well filled with water.

The Dictyonema and other strata of the area have been referred to the Niagara Limestonos (Upper Silurian Period), on the slender palæontological grounds of Dictyonema occurrence. Others are disposed to regard this as an evidence of Lower Silurian age, so that the age of the rocks of this area may also be regarded as doubtful. I have not observed any unquestionable Upper Silurian rocks of similar aspect. In Cape Breton Dictyonema is a Lower Silurian form, the same is the case at Quebec. It occurs in the Upper Lingula Flags of Wales. The revelations of Nictaux and the occuryence of Asaphus ditmarsiae at Clement's tend to shake faith in received opinions. The

Diorites noticed are regarded like the Nictaux Division, as of Devonian age.
2. Carboniferous.-The carboniferous area of this county is about 25 square miles in extent. Its first appearance on the west is at Wolfville, where it is found overlying rocks of the pre-carboniferous area. Its next appearance is at the back of Wolfville where it is well seen on the road to Gaspereaux and in an adjoining hollow. The strata here are very coarse grits, overlying the pre-carboniferous argillites. It next appears in the Gaspereaux River at the bridge adjoining pre-carboniferous rocks. I have already noticed its next appearance on the mountain road, where the rocks are coarse grits overlying pre-carboniferous argillites. Its next appearance is at Willet's Mill, where the pre-carboniferous strata áre observed. It is thus only seen in contact with the Wolfville series. On the old mountain road sandstones have already been observed. Geologically hightr than the strata in contact. These show the formation to be carboniferous by the debris of fossil flora. Higher in the area outcrops of grits and sandstones are of frequent occurrence and sandstones extensive, but uninteresting. When we reach within a mile of the shore of the estuary of the Avon, outcrops of black shales appear, and on the shore about five miles distant from the junction of the pre-carboniferous and carboniferous, there is a magnificent section-Horton Bluff and Blue Beech. This section is lofty and extensive, in common with sections on the Minas Basin shores, it is sharp and comparatively free of debris. Here I found sandstones with matted kelp surface. Clay-ironstone and abundance of beautifully shaped Septaria, Fossil Flora, Lepidodendra and Stigmaria and Sporangites, Fauna, Reptilian footprints, scales and teeth of Palconiscus, and a half of the lower jaw of Palconiscus with teeth in place. No carboniferous strata were observed west of the point indicated at Wolfville. Still it is possible that concealed or overlapped strata may exist in the valley. During the Carboniferous period there was no North Mountain or Blomidon narrowing the Bay of Fundy. It then extended as far as the Wolfville, Kentville and Nictaux pre-carboniferous, or nearly so. Conditions similar to those now existing in the Bay of

Fundy seem then able to the denud littoral deposits. the waters seems Wolfville, which s period. This seel accumulation (Gri shingle forming sl
3. Post Carbon area north of thi They are first obst area. Here they : no great distance 1 ing pre-carbonifer carboniferous. Tl: wanting the coml much different in a Brook, near Kentr mill. On the west exposure is seen of and copper coloure appear up the Broo al appearance as far At Elderkin Brook sandy strata of dec beautifully exposer Point onward to th seen rising to the b Blomidon on the ea similar to the lower and the compactnes the latter available At Starr's point the of these are of cor cient size and trans refraction. At Blon of selenite and fib

Division, as of this county is earance on the g rocks of the at the back of pereaux and in y coarse grits, st appears in e-carboniferous e on the mounng pre-carbonit's Mill, where thus only seen mountain road lly higher than to be carboni: area outcrops and sandstones ithin a mile of of black shales :rom the juncre is a magnifisection is lofty is Basin shores, I found sandte and abundLepidodendra an footprints, e lower jaw of us strata were
Still it is post in the valley. h Mountain or iended as far as rous, or nearly n the Bay of

Fundy seem then to have prevailed. Conditions rather favourable to the denudation of shores, than for the accumulation of littoral deposits. The first littoral check given to the sweep of the waters seems to have been the pre-carboniferous rocks of Wolfville, which seem to have been a cape of the Carboniferous period. This seems to have been favourable to a coarse sandy accumulation (Grit), while at the same time the Cobequids had a shingle forming shore (Conglomerate).
3. Post Carboniferous.-Triassic Sandstones, \&c., occupy the area north of the pre-carboniferous from Wolfville westward. They are first observed at the united corner of the Carboniferous area. Here they are seen overlying the carboniferous strata, at' no great distance they are then seen at Jessup's; directly overlying pre-carboniferous argillites without the intervention of the carboniferous. These overlying strata are loose and incoherent, wanting the compactness of the carboniferous strata, and not much different in appearance from banks of drift. At Elderkin Brook, near Kentville, a fine section is seen on the site of a sawmill. On the west side of the Dam up Kentville Brook a fine exposure is seen of the same formation, overlying the ochreous and copper coloured slates described in this locality. They reappear up the Brook at the Shooting Range, and make an occasional appearance as far up as the mouth of the Webster Falls tributary. At Elderkin Brook they appear in their chaiacteristic manner, soft, sandy strata of decided red colour. The east side of the area is beautifully exposed in sharp and clean sections from Starr's Point onward to the extremity of Blomidon. The north side is seen rising to the brow of North Mountain and terminating with Blomidon on the east (apparently). In this area conglomerates similar to the lower beds of the Cobequid Triassic do not appear, and the compactness of bedding which make the sandstones of the latter available for building purposes, is notably wanting. At Starr's point the beds contain veins of calcareous spar, some of these are of considerable thickness. Crystals are of sufficient size and transparency to shew the phenomena of double refraction. At Blomidon foot were observed considerable masses of selenite and fibrous gypsum dislodged from the Triassic
sandstones. Irregular beds of impure manganese were seen in a road section near Starr's Point. The red colour of these sandstones are an obvious feature. Theories have been indulged in to account for its existence. At the close of the Carboniferous period conditions of deposition appear to have changed, so as to favour the formation of the Triassic sandstones at Kentville and elsewhere, but not so as to form conglomerate as in the Triassic of the Cobequids. The pre-carboniferous area of Kentville seems to have formed a breakwater in the Triassic Period.
4. Truppean Area.-My acquaintance with this area is derived from the Blomidon cape and shore, a traverse from Lower Pereau to Scott's Bay, an examination of the rocks on the shore of Scott's Bay, and a return with a diversion leading to the junction of the Ross Creek Road (Church's Map). The rocks observed are Basalt, Trap, Amygdaloid and Ash. Among the fragments of Basaltic rocks on the Blomidon shores the prismatic structure is of frequent occurrence. The Amygdaloids correspond with the boulders abounding in our superficial drift. Ashy beds are represented by boulders occuring in the same drift. Minerals from the Amygdaloid traps of Blomidon collected are, Jaspers in great variety, Agates, Mesolice and Natrolite. These are of usual occurrence. A specimen found here is the new mineral, Louisitc. At Scott's Bay, in the Trap, were collected Agates, Jaspers, Amethysts and Natrolite. Fine specimens were rare in this locality; Mr. Steele, the local collector, being on the constant look out for choice minerals. In his collections were seen, besides beautiful agates from this locality, an exquisite collection of varieties of Natrolite, many of them of rare beauty, and the striking mushroom like Mordenite var. Steelite (How) with bristling Stilbite). They were collected at Cape Split. They subsequently came into the possession of Professor How, who has given a good account of them.

Some of these have found their way to the Provincial Museum. The Webster collection in the Museum fully represent the minerals of Blomidon. We often designate these igneous rocks as of Triassic age. As they are intrusive they might be called Post Triassic rocks, as it seems a rather difficult, matter to prove their age.
5. Post Plioce cutting east of Act ferred to. In the the junction of th already noticed, th ing, that it appear Gaspereaux Valley also discovered the is no doubt but the if looked for. Mr. in the drift at Ard, drift cuttings of th the Superficial Geo I pointed them out tween the Beaver I the Windsor Juncti They occur in the Bedford Basin, in t Hill, in the Dartme Island, Point Pleas\& Devil's Island, and Fathom Harbor. I suffered from the es agencies. Its heig greater than we nor have risen to a gre: highway for the t having been subsequ The remains of thes area, and the sectior with the Trap eleva the south side of the of this highway. If must have differed ereeks and sections tween Blomidon a Estuary of the Avo
were seen in a of these sand. en indulged in : Carboniferous anged, so as to ss at Kentville erate as in the s area of KentTriassic Period. this area is dese from Lower is on the shore ling to the junc; rocks observed the fragments matic structure aspond with the y beds are relrift. Minerals, ed are, Jaspers

These are of : new mineral, , llected Agates, ns were rare in ig on the conjions were seen, uisite collection eauty, and the [ow) with brist.

They subseHow, who has
incial Museum. represent the ; igneous rocks night be called cult, matter to
5. Post Pliocene.-The boulders of Amygdaloid in the drift cutting east of Acadia College, Wolfville, have already been referred to. In the hollow over against the Gaspereaux Valley; at the junction of the Pre-carboniferous and Carboniferous strata already noticed, the occurrence of similar boulders was so striking, that it appeared as if the rocks must be in situ. In the Gaspereaux Valley they were seen in sufficient abundance. r. also discovered them at Greenfield on the Halfway River. There is no doubt but that they are to be found in intermediate drift, if looked for. Mr. Ellershousen informed me that they occurred in the drift at Ardoise. They are to be found all along in the drift cuttings of the Windsor Railway. In previous paper, "On the Superficial Geology of Halifax Co,"-Transuctions, 1876-7I pointed them out in great abundance in the drift cuttings between the Beaver Bank Station and the Windsor Junction. At the Windsor Junction they are found in abundance at the drift. They occur in the drift at Bedford, in the Navy Island, in Bedford Basin, in the drift cuttings at Richmond, in the Citadel Hill, in the Dartmouth drift beds, in George's Island, McNab's Island, Point Pleasant; apparently at Ketch Harbor, Sambro, Devil's Island, and along the Eastern shore as far as Three Fathom Harbor. Thus notably has the Blomidon area of rocks suffered fiom the exactions of posti trappean and post pliocene agencies. Its height must therefore have been considerably greater than we now find it. The sandstone of the valley must have risen to a greater elevation than at present, forming a highway for the transit of the mountain debris; the valley having been subsequently formed, and the pathway destroyed. The remains of these sandstones on the sides of the Trappean area, and the sections on the shore, running almost on a level with the Trap elevation, as well as the elevation of the drift on the south side of the valley, tend to prove the former existence of this highway. If Minas Basin then existed, its boundaries must have differed greatly from those now apparent. The creeks and sections of new red Sandstone now extending between Blomidon and Grand Pre were unformed, and the Estuary of the Avon unknown. These were doubtless exten-
sions of the great highway. Even the new red Sandstone of the Minas Basin itself, between the Cobequids and Hants, was not exempted from similar service, as the extensive Syenite transported to the Atlantic coast in like manner indicates. "That all parts of the valley were considerably elevated is evident from the appearance of Cleveland Mountain, Nictaux, and the Nictaux and Atlantic Railway sections. In these drift sections we have Amygdaloids from the North Mountain, and on the northern edge of the Cleveland Mountain, at the junction of the new and old road I observed a beautifully polished and striated surface of strata at an elevation equal to the greatest height of North Mountain, indicating the elevation of the former sandstone highway over which the amygdaloids of the railway drift must nave passed.

Last of all, I would notice another transportation which may have happened in this period, at its close.

I have already referred to the enormous and abundant masses of Granite observed at Halfway River and on the heights at Greenfield. These have apparently been transported in N. E. direction, while the amygdaloid transportation has been to the S. E. A similar occurrence of granites was observed at Nictaux. Restoring all the material referred to as transported in pre-post-pliocene, post-trappean and post-pliocene time, as well as more recently, I would connect, widen and heighten the trappean regions of North Mountain, Digby Neck, Long Island, and Briar Island. I would also connect these with Isle Haute, Cape D'Or, Partridge Island, Parrsboro, Two Islands, Five Islands, thereby elosing up the Minas Channel between Cape Split and Cape D'Or, and bridging the space between the North Mountains and the Cobequids. I would fill up Annapolis Valley and the Minas Basin and Cobequid Bay. I would increase the bulk and possibly heighten the Cobequids. I would contract the Bay of Fundy by connecting the red sandstones of Quaco with those of Nova Scotia. Pre and post-pliocene agencies, especially the latter, are then set to work transporting and effecting changes. At the close of the pre-pliocene period, the Annapolis Walley, the Basin of Minas and Cobequid Bay are formed, and
the existing agenı close of the post-p polis Valley, the g

Art. VI.--The Li: N. S.-

I purpose this e Limonite or Browr relation to the assc at my disposal, to : and their derivativ generally considere supposed sources of to the great dynan ally been overlook, in the formation of

The most superfi correct conjecture a over in this county ground, a bird's ey by the hand of the of soil the material:

The light sandy the Permo Carboni reddish loam of the laden clays of the S yards, the passage f

In an equal des Springville, spreads scape, marking the On the one hand th hundred feet above weather-worn knoll: birch and maple, an repaid the husbandr

Sandstone of nd Hants, was e Syenite transtes. "That all vident from the d the Nictaux ctions we have the northern of the new and iated surface of eight of North sandstone highvay drift must
on which may
undant masses the heights at orted in N. E. as been to the served at Nie. transported in time, as well as hten the trap. Long Island, ith Isle Haute, Islands, Five between Cape a between the 11 up Annapolis
I would in. uids. I would 1 sandstones of iocene agencies, ting and effect. 1, the Annapolis e formed, and
the existing agencies generally commence their work. At the close of the post-pliocene period, and the scooping of the Annapolis Valley, the granite transportation may have been effected.

Art. VI.-The Limonite and Limestones of Pictou County, N. S.-By Edwin Gilpin, A. M., F. G. S.
 (Read Feb. 10, 1879.)

I purpose this evening laying before you a few notes on the Limonite or Brown Iron ores of Pictou County, their source and relation to the associated Limestones; and, from the information at my disposal, to show that there is a possibility of these ores and their derivatives being much more widely spread than is generally consilered to be the case; and in connection with the supposed sources of these ores, I will briefly draw your attention to the great dynamic changes in the district, which have generally been overlooked, and which have played an important part in the formation of the Limonite.
The most superficial student of Geology can hardly avoid a correct conjecture at the comparative ages of the strata he passes over in this county. Were the turf and wood removed from the ground, a bird's eye view would present each formation, colored by the hand of the Great Architect, and showing in its covering of soil the materials it is composed of.
The light sandy soil of the Upper, or (as it has been called), the Permo Carboniferous, the clays of the Coal measures, the reddish loam of the Lower Carboniferous, and the meagre boulder laden clays of the Silurian, all mark, with an interval of a few yards, the passage from one set of measures to another.
In an equal degree, the valley of the East River, above Springville, spreads before the traveller the distinctive landscape, marking the contact of two dissimilar rock systems. On the one hand the Silurian hills rise abruptly three or four hundred feet above the River, projecting here and there in bare, weather-worn knolls, or covered with a dense growth of gnarled birch and maple, and showing in places farms which have ill repaid the husbandman's labour. On the other hand, the Lower

Carboniferous measures rise to a lesser height, in gentle undula. tions, and present a pleasing succession of well cultivated fields backed by the dark wall of the hemlock and spruce woods.

Between these two landscapes, so widely differing, runs the East River in graceful curves, presenting alike to each broad elm shaded intervale, as if desirous of hiding the fact that ages ago it must have cut its channel chiefly in the softer Carboni. ferous measures.

However, we must leave these lighter studies of the Geologist and confine ourselves to the more prosaic subject of Iron ores and Limestones.

On entering the County of Pictou by the Intercolonial Rail. way, the Lower Carboniferous are met near Glengarry Station, and from that point their line of contact with the Silurian runs in a general N. E. course, toward the Gulf, with a long funnel. shaped arm following the valley of the east branch of the East River, toward the south.

The Lower Carboniferous measures of Pictou County, as met in the various natural exposures, are largely made up of highly arenaceous red shales, breaking with a conchoidal uneven fracture and seldom holding fossils. These shales pass on one hand into massive bedded white and grey Sandstones, yielding many fray. ments of Carbonized plants, and on the other, into fine fissile clays, frequently calcareous, full of fossils, and holding nodular bands of impure Limestone. There are also beds of Gypsum red and purple marls, and Limestones of various thickness and purity, and a few beds of black bituminous shales.

At one point these measures are penetrated by Diorite dykes and in many places the traces of metamorphic action are shown by veins of specular ore.

Conglomerates are rare in the district more immediately undes consideration, and one insensibly imagines that the beds belong. ing to the shores of the Lower Carboniferous ocean have all been in great measure swept off.

These measures rest unconformably on the edges of the Silurian strata, with a general dip varying from N. E. to N. W.r or away from the older rocks. This inclination is preserved, with occa
sional undulations the same group, in

One is at once s Pictou Carboniferc been subjected to, tithe of its origina Silurian rocks, wh later formed strat have been swept troughs have disap

The two followit as examples of whe Thus, in the Pict of outcrop correspo 3450 feet, which hi Similarly, in the have at Bridgeville swept away. Thes the inillstone grit, t and perchance have which the sounding Atlantic.

At first sight it n mous masses could in action around us Huntington and Ce Lower Silurian mea 40 thousand feet ab feet above it, and thousands of cubic 1 ceous and tertiary d

We have now rea the origin of the Lir mass of Lower Carb shales and Limeston ground which now 1

Everywhere in th
a gentle undula. cultivated fields ruce woods.
fering, runs the e to each broad
a fact that ages softer Carboni.
of the Geologist ect of Iron ores
tercolonial Rail. engarry Station, te Silurian runs a long funnel. ich of the East

County, as met de up of highly uneven fracture 1 one hand into ling many frag. into fine fissile holding nodulat eds of Gypsum s thickness and s.

Diorite dykes :tion are shown
mediately under he beds belong. an have all been
s of the Silurian
N. W., or away ved, with occa
sional undulations, until they pass beneath the later members of the same group, in the vicinity of Stellarton and New Glasgow.

One is at once struck, when examining the sections of the Pictou Carboniferous, by the tremendous denudation they have been subjected to, which has dwarfed the Pir tou Coal field to a tithe of its original dimensions, and in many places bared the Silurian rocks, which were once covered by thousands of feet of later formed strata. We find that the summits of anticlinals have been swept away, and that in places whole synclinal troughs have disappeared.
The two following instances of this denudation are presented as examples of what has been going on all over the county.
Thus, in the Pictou Coal field, we have in one section a breadth of outcrop corresponding to a thickness of strata not less than 3450 feet, which has disappeared.
Similarly, in the Lower Carboniferous under discussion, we have at Bridgeville a thickness of 25010 feet, which has been swept away. These great masses of matter have gone to form the millstone grit, the Coal measures, the Upper Coal measures, and perchance have swelled the volume of that new continent which the sounding lead has discovered bencath the waves of the Atlantic.
At first sight it may seem almost incredible that such enormous masses could be swept away by the agencies we now see in action around us; but from the surveys of Prof. Lesley, in Huntington and Centre Counties, Pennsylvania, it appears that Lower Silurian measures, formerly towering to a height of 30 or 40 thousand feet above the present sea level, are now but 2000 feet above it, and that they have yielded to denuding forces thousands of cubic miles of material which compose the cretaceous and tertiary deposits of New Jersey and Delaware.

We have now reached a point of importance, with regard to the origin of the Limonite ores, when we imagine that this great mass of Lower Carboniferous sediments, containing ferruginous shales and Limestones, formerly spread over a great part of the ground which now presents to our gaze strata of Silurian age.

50 to 500 yards from the Silurian slates, runs a bed or series of beds of Gypsum. This is prominently exposed at Glengarry, West Branch, Springville, McLellan's and Irish Mountains, and Sutherland's River. Between the Silurian and the Gypsum are numerous beds of Limestone, the thickest continuous one that I have seen being about 135 feet. The total thickness must be very much greater, as the section of denudation already referred to, at Bridgeville, appears to hold an almost unbroken series of Limestone beds.

The points of contact of these Limestones with the older slates afford many instructive sections bearing directly on the subject matter of this paper. One of them is as follows :-A bed of ferruginous Limestone rests on the Silurian slates, having at the point of contact a breccia of clay slate, cemented by a Calcareous paste. The fragments of slate are very close together in the im. mediate vicinity of the slates, but become more and more scat. tered until they disappear. Other beds of Limestone, shale and Gypsum complete the section.

In another section the ferruginous Limestone is replaced by a dark Carbonaceous one holding many fossils, followed by 100 feet of ordinary gray Limestone.

In another the pebbles appear rounded and the change to Limestone is quite abrupt. These Limestones are worn into caves and sink holes, frequently large enough to engulf good sized brooks fur a portion of their course.

There is also another point to be considered in connection with this set of Limestones. Near Sutherland's River, in the same Lower Carboniferous horizon, is exposed a bed of Spathic ore, associated with Limestones and Gypsum, and only a few yards distant from the Silurian rocks. Fragments of Spathic ore occur in French River, one mile to the east. And on Sutherland's River, McLellan's Mountain and Brook, East and West Rivers, frag. ments of Spathic ore are also found in connection with this set of Limestones and Gypsums ; and at one point on the East River there is exposed asemi-spathose Limestone holding $24.1 \mathrm{p} . \mathrm{c}$. of Carbonate of Iron. Eight analyses of the Limestones of this dis. trict, made by myself, gave on an average 3 p . c. of this mineral.

We are, perbaps in the formation 0 conjectured to hav Limestones, and as means of the decor present at that tin If now we imagi formerly overlappi Silurian slates of t calculated for the D:........ th

1st p . of Cover, and 9th read Professor of Physiolos 1st p. of Cover and 47 of Mines.
Last p. of Cover and p. 3 Matthew Jones, F. L. S.
List of Members,- insert
Corresponding Members,of Canada."

Transactions,--p. 29, line for "pre-pliocene" read p Salmonidæ. p. 65, line 27,

The water, charge Iron in the strata through the faults as part with a portion (stone, and then, depc take up Limestone a Some of the Bicarl in the cavities and fis acid, and the resultir The Carbonates of Ir
a bed or series d at Glengarry, Mountains, and he Gypsum are nous one that 1 canes must be already referred woken series of
the older slates on the subject wa :-A bed of s, having at the by a Calcareous sher in the in. and more scat. tone, shale and
; replaced by a lowed by 100
the change to are worn into to engulf good
\qquad :onnection with r , in the same of Spathic ore, le a few yards pathic ore occur serland's River, t Rivers, frag. with this set the East River vg 24.1 pec. of mes of this disof this mineral

We are, perhaps, not fully informed in the processes involved in the formation of the beds of Spathic ore. The Iron may be conjectured to have been deposited during the growth of the Limestones, and as a ferrous salt, to have been Carbonated by means of the decomposing organic matter which must have been present at that time.

If now we imagine this great mass of ferruginous sediments formerly overlapping, more or less, the present exposures of Silurian slates of the district, we have a compound admirably calculated for the formation of the Limonite ores of the East D:

ERRATA.

1st p. of Cover, and 9th p. of Transactions, for "Professor of Psychology" read Professor of Physiology.
dst p. of Cover and 47 of Transactions, for "Society of Mines" read School of Mines.

Last p. of Cover and p. 3 Proceedings, for "J. M. Jones, M. L. S." read John Matthew Jones, F. L. S.
List of Members.- insert " 64, Mar. 7,-W. C. Silver, Treasurer, Halifax."
Corresponding Members,-insert " 77, May 14, T. C. Weston, Geological Survey of Canada."

Transactions,-p. 29, line 16, for "at the drift" read, in the drift. p. 30, line 36,
for "pre-pliocene" read post-pliocene. p. 38, line 9, for "Salmonide" read Salmonidæ. p. 65, line 27, for "steps" read step. p. 68, line 26, comma after "there." p. 72, line 11, for "Forrestere" read Forresteri ; and line 32, for "was" read were. p. 81, for "Somers" read Sommers.
For "Minum," p. 12, read Minium. For "Pyriformi," p. 12, read Pyriforme. For "Defiraas," p. 83, read DeGraff. For " Kercher," p. 83, et seq, read Kircher.

The water, charged with Carbonic acid, would take up the Iron in the strata as Bicarbonate, and filtering downward through the faults and meridional planes of the measures, would part with a portion of its Carbonic acid when it met the Limestone, and then, depositing its insoluble Carbonate of Iron, would take up Limestone and pass away as Bicarbonate of Lime.

Some of the Bicarbonate of Iron would also be decomposed in the cavities and fissures of the strata, with loss of Carbonic acid, and the resulting insoluble Iron salt would be deposited. The Carbonates of Iron thus thrown down as a distinct deposit,
and as a substitute for the Limestone, would be gradually oxy dised and hydrated, as the air and water obtained access to it and the same action would also change the beds of Spathic ore.

The action being continuous, and extending over a long inter val of time, the deposits would gradually assume proportions economic importance, in spite of the large quantities whic would be removed by the various physical changes the distric has undergone. In places which were not so much broken b faults, or where the strata were more compact, the Spathic of would escape the oxydising process and remain to the preser day as the Carbonate.

Gradually, as the erosion went on, these deposits would kee forming, and be more or less swept away. A large quantity the ore would naturally rest on the comparatively dense Siluria slates and the edges of the Lower Carboniferous strata. Othe bodies would become consolidated in the hollows formed in th Limestones. The beds of Spathose ore would become oxydise more or less generally, and the lines of fracture in the Siluria slates would also become receptacles for the ore.

Although as yet nothing beyond exploratory work has bee done at these deposits, the sections attainable furnish instanct of all the above effects, which we would theoretically expec The oxydation of the Spathic deposits is shown by a sectic forming the counterpart of the one already referred to.

In this section we find a gore of argillaceous ochre or cld resting on the Silurian slates and replacing the breccia, and it Limonite replacing the ferruginous Limestone.

In another exploration a deposit of the Limonite was m : under peculiar circumstances, which at first appeared to be di cordant with the preceding sections and theories. It ws apparently, a bed in the Silurian clay slates, but this idea cou not long be entertained, as it was in a perpendicular positio while the neighboring slates had a uniform dip of about 50° at cut it obliquely in their strike. The deposit pursued a cour parallel to that of the valley, and the enclosing slates were mu fissured and filled with veins of Limonite and Calcspar.

It appeared to me that this was a fault which had perhaps fo
merly passed up in have already show charged with iron, sented in the form mixture of clay, ets

These deposits è the width of the or yet they have bee the two systems, w] detecting them witl At Whitehaven a the Lower Carbonif pying positions pre their sections will a these Limestones ar posed to have been mined and furnish 8
At several places ferous formation ho are, by some, consid manner. The Limo are believed to have

I have now detain but before closing, w deductions which m been able to collect.

This is, that there Limestones of this cc Spathic ore, and that bably show valuable them in other localit The Spathic ores a very valuable as a fl_{1} Jron present is too lo
The search is impe nite and Spathic ore, met everywhere on t]
se gradually oxy ned access to it s of Spathic ore. over a long inter ne proportions quantities whic anges the distric much broken b the Spathic or in to the preser
osits would kee large quantity ely dense Siluria us strata. Othe Ns formed in th become oxydise e in the Siluria
work has bee furnish instanct oretically exper wn by a sectio rred to.
us ochre or cla breccia, and
imonite was m : seared to be di leories. It wa it this idea coul ndicular positi of about 50° at pursued a cour slates were mut Jalcspar. h had perhaps fo
merly passed up into the Carboniferous Limestones which, as I have already shown, once covered this locality. In it the waters, charged with iron, would readily deposit their burden, now presented in the form of a cellular fibrous ore, very free from any mixture of clay, etc.

These deposits extend over a considerable extent of country, the width of the ore ground being in places 800 yards, but as yet they have been tested only near the points of contact of the two systems, which is owing to the facility thereby given for detecting them without much preliminary work.

At Whitehaven and Furness, and the Mendip Hills, in England, the Lower Carboniferous or Marine Limestones, are found occupying positions precisely similar to those described above, and their sections will answer for those we are now considering. In these Limestones are immense deposits of ore, which are supposed to have been formed in the same way. They are largely mined and furnish an important supply of pure ore.
At several places in Pennsylvania the Lower Silurian Calciferous formation holds large deposits of Limonite. These ores are, by some, considered to have been deposited in a similar manner. The Limonites of Artzberg and the Thuringian Forest are believed to have been formed in the same way.
I have now detained you long enough with these dry details, but before closing, would briefly lay before you the important deductions which may justly be drawn from the facts I have been able to collect.
This is, that there probably exists in the Lower Carboniferous Limestones of this country important and extended deposits of Spathic ore, and that a proper and systematic search will probably show valuable deposits of Limonite in connection with them in other localities besides the East River Valley.
The Spathic ores are highly prized by Iron makers, and are very valuable as a flux when the per-centage of Carbonate of Jron present is too low for them to rank as ores.

The search is impeded by the perishable nature of both Limonite and Spathic ore, and by the heavy covering of soil which is met everywhere on the strata of this age.

This, however, would not prove a serious impediment we: any demand to arise for iron ores: at present there is so litt inducement held out, that there has been bardly any sean made for them in this Province.

Art. VII.-On the Salmon of Nova Scotia.-By J. Bernal Gilpin, A. B., M. D., M. R. C. S.
(Read February 10, 1879.)
It is more than ten years since I read a paper before the I stitute on the Salmonide of Nova Scotia. Since that time have had greater opportunities of studying their habits, and in opinions are somewhat modified as regards the new facts I ha obtained. Although this paper will be almost a repetition what has been told, yet I have thought the importance of t subject may well allow it to be re-told-to be verified by person observation, and to be put in proper order, and to be shown hic this order is modified by the natural features of this Provin Thus this paper will be not upon the Salmon in general, but up the Salmon of Nova Scotia.

If we examine the map of this Province we will find a narrow peninsula scarce seventy miles wide, whose int ior is filled by numerous lake basins of about four hundr feet elevation, from which flow the various salmon riv streams to the ocean. Thus our Salmon in seeking the spawning grounds have only an elevation of four hundred fe to overcome, and at farthest scarce thirty miles to ascend. know further, from personal observation, that they rarely asce so high, or so far, but are often seen spawning four or five mil from the tide, and scarce fifty feet elevation. This fact is important with me in modifying their habits that I shall veri it presently by formal statements and dates. We also recolle our climate is cold, and that our lakes are frozen towards the of November, attaining a thickness of nearly four feet of which is broken up and descends the streams by, the middle April. This is the general average, though varying in differe seasons. Now compare these facts with the genial lakes of Er

PIN.

impediment we there is so litt bardly any sean
-By J. Bernat
per before the Since that time eir habits, and new facts I ha st a repetition importance of t erified by person to be shown hy of this Provin: general, but up we will find ide, whose int out four hundr ous salmon riv in seeking the four hundred f s to ascend. they rarely asce four or five mi This fact is hat I shall veri We also recolle en towards the four feet of by, the middle rying in differe nial lakes of Er

1st.-A Pink, or Salmon six months old.
2nd.-A portrait of a Smolt half size. Taken 9th May, 1878, Digby, N. S., in a weir. In trying to escape he scaled himself, thus showing half Smolt, half Parr.

3rd.-A portrait of a ten pound Salmon in highest condition. Halifax Fish Market.
4th.-Head and jaws of a spawning male taken September, Shubenacadie River, and given me by M. Brown, Esq., Halifax.
he had them replenish on Sept. 15, 1865. Tl colour greenish with d self, at Annapolis, see within a few yards of considered as having thus nearly five month but rather Pinks. Fı through myself and m; but have never succeed
ber it is probable that 1
ember compel them to
to the lakes, which are
Parrs unnoticed during
of Fisheries, State of $]$
saying he could never o
By the first of May 1
waters, that is to say, t]
the lakes still ice-bound
bars, and present thems
taning the vermillion s
miles from the sea, on M
land, seldom frozen on the toilsome passage to and from the sea, as some believe that the Lake Ontario fish have to perform. We must immediately admit that however valuable all these facts and personal observations may be, they can only be called the natural history of the Salmon of Nova Scotia.
Should any one diligently examine the shallow bottoms of our inland lakes or small streams, nay even the overflooded cart-ruts of an old road, he will find them filled with small fish or fry. On examining them they will be found of various sizes, but all differing from other minnows, by lateral bars upon their sides, and by having a rayless fin on the back near the tail. Some of these may be young trout, others young salmon. It is very hard to determine betwixt them. The sketches I show you came from Cole Harbour. Mr. Webb, Druggist, Water Street, had many of them in a vase in his window. They died very fast, and when tee had them replenished, he was kind enough to procure me some, on Sept. 15, 1865. The eye is very large and the nose blunt,

878, Digby, N. S., ng half Smolt, half
ion. Halifax Fish ber, Shubenacadie colour greenish with dusky bars and reddish fins. I have, myself, at Annapolis, seen the children catching them in brooks within a few yards of the tide, during October. These may be considered as having been hatched during April and May, and thus nearly five months old. They can not yet be called Parr, rather Pinks. From that time I have been endeavoring through myself and my friends to obtain a Nova Scotia Parr ; but have never succeeded. As these were taken late in September it is probable that the increasing frosts of October and November compel them to leave their shallow haunts and retreat to the lakes, which are soon frozen over, and thus they pass into Parrs unnoticed during early winter. Mr. Atkins, Commissioner of Fisheries, State of Maine, wrote me upon the same subject, saying he could never obtain Parrs.
By the first of May the Smolts become frequent in our lake waters, that is to say, these Parrs have now, in the early Spring, the lakes still ice-bound, cast off their greenish yellow with dusky bars, and present themselves in silver laced with blue, but still retaining the vermillion spots. Mr. Silver gave me one taken three miles from the sea, on May 1st, 1864, still retaining red spots. On

20th May, 1865, the one from which the sketch was made, I shor you, was taken at Bedford, in my own presence, and within : few yards of tide. On 1st of June, 1864, Mr. Morrow gave mt a Smolt taken six miles from the sea, but having no red spots These dates are sufficient to show that in his Smolt form the Salmon is numerous now in our streams.

On 10th May, 1878, my son took a Smolt from a river in Digby Basin. He had travelled ten miles in the tide waters, and th nearest lake he might have been spawned in, may have been fiv or six miles from tide. In his efforts to free himself from the weir, he had scaled himself, and thus was one-half a smolt, the other half a parr.

Extreme length $7 \frac{1}{2}$ inches, head contained four and half times in body, fro: nose to end of caudal fin. The opercle had the round edge peculiar to Salmot and the fin end of maxilla-the round point-one opercular spot, nose a litt blunt. There were teeth upon intermaxilla, maxillæ, and palatines, none a vomer. The silvery scales remained upon fore part of body. On the rest of t b body where the scales had been rubbed away, the lateral bars of it 4 Parr sta were very apparent. There were six, I juiged the silver scales covered thre more. The sketch I show you is from my sketch book, and though it is only repetition of Sir Humphrey Davy's beautiful drawing in the Salmonia, doo many years ago, yet it was a satisfaction to have it, and to fix it by a date and drawing as occurring in Nova Scotia.

These Smolts are all taken going seaward, and during sprin, and early summer, and well known to the young fishermen wh take them by bait and in greater numbers than they should allowed to do. During the latter part of August and Septembe formerly, our inarkets were supplied from the Shubenacadie t small Salmon weighing two or three pounds called Grilse. late years, owing I suppose to the fishing act being carried of more strictly, I scarcely see them.

Mr. A. B. Wilmot, in his report dated 31st Dec., 1877, speakin of Bedford River, writes :-"I placed a small trap at the head the first ladder over the dam immediately above the hatchin house, and succeeded in capturing about sixty, mostly Grils They were taken about the latter part of September." Mr. Wi mot was obtaining Salmon for spawning purposes. Thes π find that young Salmon ascend our rivers during the fal and not for spawning purposes. The Commissioner of Mair

Fisheries wrote m Grilse in Maine, I could only refer are taken in the S_{f} real reason is, I yet some physical , a place of better ob in the breeding sti the Smolt of a few to sea in May, with and a foot and a ha The enormous gro

The next stage ir attention, will be as the Halifax marke about Yarmouth or in February ; indee through the ice in a ocean-run Salmon o me it was an ocear would almost prove by fly in January, Forest and Stream, May and June they supplied until July. repeat from my pap
"The description of a from our markets, would small, body very deep, a muscular and tail strong The free end of the uppe: from trouts, the eye ratl tip of nose, the nostril d then runs gradually upw The adipose fin commen opposite its last ray. Tl dorsal to tail, descendin, belly runs in an outline back running into steel 1 gilvery. The head and
was made, I shom ce, and within Morrow gave me ng no red spote Smolt form the n a river in Digb waters, and the ay have been five himself from the half a smolt, the
times in body, fro: , peculiar to Salmot ar spot, nose a litt d palatines, none y. On the rest of th lars of it + Parr stat scales covered thre d though it is only the Salmonia, dot fix it by a date and
id during spring g fishermen wh I they should it and Septembe Shubenacadie t alled Grilse. jeing carried on
c., 1877 , speakin tp at the head ve the hatchin r, mostly Grilx nber." Mr. Wi poses. Thus π during the fal ssioner of Mair

Fisheries wrote me to explain why he had never captured Grilse in Maine, whilst we took them in the Shubenacadie. I could only refer him to Couche's British Fishes. No Grilse are taken in the Severn, but many in the Scotch rivers. The real reason is, I fancy, that though they ascend all rivers, yet some physical difference in each river makes it more or less a place of better observation. Thanks to the marking of Smolts in the breeding stations, we have long been enabled to connect the Smolt of a few ounces and about six inches long running. to sea in May, with the Grilse weighing three or four pounds, and a foot and a half long running to fresh water in September. The enormous growth during that period is remarkable.
The next stage in the Salmon life to which I will point your attention, will be as he appears during spring and summer in the Halifax market. The first sea-run fish is usually taken about Yarmouth or Mahone Bay, in March. I have heard of one in February ; indeed an Indian told me whilst fishing for trout through the ice in a mill-pond a mile from tide-way, he caught an ocean-run Salmon of ten pounds on New Year's day. He assured me it was an ocean fish, and indeed the fact of its taking bait would almost prove it. The Indian Saul took ocean-run Salmon by fly in January, Shelburne River, according to the Editor of Forest and Stream, New York, in a letter to me. During April, May and June they continue to run, and our markets are well. supplied until July. As I wish this paper: to be complete I will repeat from my paper of 1866 , the description:
"The description of a fresh run of fish from the ocean as they appear in Spring, from our markets, would be : Weight from six pounds up to twenty. Head very small, body very deep, and at the same time ruund or thick through, back very muscular and tail strongly based. The opercle is circular on its outside edge. The free end of the upper maxilla also rounded. In both these parts they differ from trouts, the eye rather small and about two and one-half diameters from tip of nose, the nostril double. The outline of back round up from the head then runs gradually upwards to dorsal fin, the dorsal is irregularly rhomboidal. The adipose fin commences opposite the fifth ray of the anal, its posterior edge opposite its last ray. The tail is very strong, and the outline of back runs from dorsal to tail, descending in an equal curve with the rise anterior to dorsal. The belly runs in an outline similar to the back. The colour is hlack along the back running into steel blue with green reflections to lateral line, all below is gilvery. The head and, opercle are on the upper part dark blue, on the lower.
silvery. On the opercle and pre-opercle one or two black spots. The colour of the fins are-dorsal lavender with irregular black spots, rays dark blue, adipose dark blue, caudal base and edges dark, the rest pale yellowish white, anal pale yellow, ventral yellowish, rays and anterior edge dark, pectoral pale bluish white, anterior edge and rays dark blue, a number of dark irregular blotches occur along sides and belly. Teeth upon intermaxilla, maxillæ, palatine bones, one to three upon vomer, and about nine or ten upon tongue.
"Rays P 11, A 9, C 20, V 9, D 12, Gill rays 11 each side a large axiliary scale to V.
"In counting fin rays I may state this as only an approximation, that the dorsal and anal may be said to have strictly proper webs, that in the dorsal the first ray is short and joined to second without webb, that the anal has also the first very thick, and that in the rest the rays starting as in the caudal from many irregular bases, and in the pectoral and ventral from one, the web being all but obliterated, it makes a count exceedingly difficult and varied by each counter. At the same time these rays vary in different specimens even in the dorsal, and are not typical."

I have presented you now with a description and portrait of a Nova Scotia Salmon in the full glow, strength and beauty of his magnificent proportions. His rounded back and powerful tail, the glorious steel blue of his back and sides, the opal lights ever reflecting on his silvery belly, tinged as it sometimes is with the warm pink of his blood-red flesh showing through, and the fair lavender of his'fins cannot be described, must be seen to be realized. Formerly, after the season was over, Salmon were often brought to Halifax from the Shubenacadie river, during the middle of July. They were always out of season fish, blackish, with reddish 'blotches over them. On the 10th July, 1865, I purchased from about two dozen, the fish I now show you the sketch of. 'They all resembled each other. Both jaws were curved, the teeth were gone, the tongue exposed, and they were all out of season. On 26th November, 1865, Michael Brown Esq, sent me a Salmon, a male, weighing perhaps sixteen pounds, a sketch of which I now offer you. The intermaxilla articulation was very loose, and much enlarged, the intermaxilla bone itself had grown at least two inches in length, formed into a beak like an eagle's, and filled with large teeth. The lower jaw had also grown to correspond in length, and was also armed with large teeth, a cartilaginous knob projected upwards from the tip, which fitted into a groove above in the intermaxilla. The new jaws
were so arched, tha centre, and the tee than usual. Mr. St head of a male muc large ulcer upon the now dropping off.
at least some of the there, and as early changes in colour, al in November. Dur place.
Mr. A. B. Wilmot, facts from him. Th of fresh water. Th changes in Septemb seeming only to shr: never seen the imme: from Shubenacadie. perforated by a large has never known the some have asserted. that he has known ${ }_{5}$ all winter, in the mi but this formed rath the body of Salmon i which he has opened him to suppose the n This corroborates Mr English Salmon. Th in the spring. In the in November, and fro absence of nacre or sl
It is necessary for be deposited on a gra Province these spaw four miles of the tide My friend, W. C. Silv
pots. The colour of s dark blue, adipose ish white, anal pale pectoral pale bluish s irregular blotches Ilæ, palatine bones, de a large axiliary
roximation, that the lat in the dorsal the he anal has also the n the caudal from one, the web being and varied by each imens even in the
ind portrait of a ad beauty of his d powerful tail, opal lights ever imes is with the rh, and the fair 3 seen to be reanon were often ver, during the n fish, blackish, uly, 1865, I purshow you the ioth jaws were and they were ael Brown Esq., iteen pounds, a lla articulation illa bone itself nto a beak like r jaw had also ned with large n the tip, which The new jaws
were so arched, that it was impossible for them to close in the centre, and the teeth were much larger and with wider bases than usual. Mr. Stayner also gave me on March 14th, 1866, the head of a male much like the last, but with the appearance of a large ulcer upon the pre-opercle, as if the increased growth was now dropping off. From these facts we gather that our Salmon, at least some of them, enter the rivers in early spring, remain there, and as early as the middle of August, commence those changes in colour, and in the male of the jaws, which culminate in November. During November, the spawning season takes place.

Mr. A. B. Wilmot, Bedford, allows me personally to state these facts from him. That he has retained Salmon all winter in ponds of fresh water. That the jaws of the male commence their changes in September and finish in November, and after that seeming only to shrink till dismissed in spring. That he has never seen the immense jaws I have figured from a portrait taken from Shubenacadie. That he has seen the upper jaws entirely perforated by a large hole made by a knob from the lower, but has never known the lower jaw to drop off before the upper, as some have asserted. That they take no food during winter, and that he has known Salmon retaining the bright and silver scale all winter, in the midst of others entirely blackish and reddish, but this formed rather the exception than the rule. He thinks the body of Salmon in Nova Scotia winter in the lakes, the Parrs which he has opened having melts developed and not ovas, leads him to suppose the male parr matures sooner than the female. This corroborates Mr. Anderson's letter, and also agrees with the English Salmon. The Parrs run to sea late in the fall as well as in the spring. In the manipulations of fish, he finds those taken in November, and from the sea, much easier to manage, from the absence of nacre or slime which soon covers those in fresh water.

It is necessary for the preservation of the eggs that they be deposited on a gravelly bottom of a running brook. In the Province these spawning grounds occur often within three or four miles of the tide, and at an elevation of scarce sixty feet. My friend, W. C. Silver, Esq., allows me to say he has frequently
seen them spawning in Salmon River, three or four miles from tide, and about five miles from Halifax. Here the male, conspicuous by his hooked jaw, and the female with the spawn streaming from her, were seen furrowing up the gravel in water so shallow that their tails flapped out of water. Charles Anderson, Esq., Magistrate, informs me he has seen the same at the Musquodoboit River, and that the male makes furious rushes at other males approaching him, and that he is often surrounded by young males, scarcely seven inches long, but with hooked bills like the adults. This is corroborated by melt being found in Smolts before going to the sea, and also by the accounts of Sal. mon in English waters. Mr. John Duncan, Ingraham River, St. Margaret's Bay, told me he once saw Snake Lake filled by hundreds of spawning fish. This lake is one of the sources of In. graham River, and can be but only a few miles from, or a fer feet elevation above tide. Mr. James V. Buskirk saw daring November, at least seventy Salmon spawning in pairs, in a shal. low gravelly run from the Shubenacadie lakes, their tails lashed the surface, the stream was turbid by the white melt of the mak which he emitted from above the female and shed upon the ova Both sexes covered the ova with gravel, and attending trom were eating what the stream washed away. His dog rushed int the water, when they all disappeared, but returned immediately This was about 14 miles from, and two hundred feet elevation above tide.

The spawn now shed and impregnated by the males, mus soon be ice-covered, and remains till about the last of Aprii when the young fish escapes, but with a placenta attached to it body. From Mr. A. B. Wilmot's excellent report, we learn the various stages of artificial hatching. The black dot, the signs o life in the embryo, the escape from the egg, and the final div charge of the young fish to its native waters. I have alread said that in March, (rarely in January and February,) the Salmo: commence to run from the ocean up our rivers, and that this ruw continues till July, when the markets are closed. In Mr. Joh Mowat's report (Government Report, 1877) we find him takin, Salmon for hatching purposes in the Metapedia, 24th August
and again Mr . Wi them in Septembe males, and nany was very low fro thirty Salmon we we have records o cember, and we m Salmon bred in or lakes; with the ex record of Salmon one scems to havi belief, even among ed immediately to the sea in spring.

Some ten years : who brought lis brought to my not acadie River, in A_{1} ice in such number and might have fi Salmon, but perfec silvery scale. On boit River was su being my informas Hants, Horton, an through the Avon, Every spring we] Province, of the wa ties, and the easine cord of their desce own Province, the vember, some rem re-ascend again; tl remain all winter a early spring. That ice covering conceal true as regards ott further investigatio
four miles from o the male, conwith the spawn g gravel in water Charles Ander. the same at the furious rushes at en surrounded br vith hooked bills
being found in accounts of Sal. raham River, St ke filled by hun. he sources of In. is from, or a fet kirk saw during 1 pairs, in a shal their tails lashel melt of the matr ed upon the ova I attending trow is dog rushed int ned immediately ed feet elevatio
the males, mus 1e last of Aprii is attached to it rt, we learn the dot, the signs 0 nd the final div

I have alread uary,) the Salmo: and that this ru ed. In Mr. Joh ${ }_{3}$ find him taking ia, 24th August
and again Mr. Wilmot in the Musquodcboit and Bedford, taking them in September and October, males more numerous than females, and inany grilse. In the year 1865, the Sackville River was very low from the November droughts, and as many as thirty Salmon were seen at flat rock, unable to get up. Then we have records of fish going up from every month except December, and we must suppose that for various reasons, all the Salmon bred in our waters, are, during November, held in our lakes; with the exception of the Smolts going to sea, we have no record of Salmon returning to the ocean. I say record, for no one seems to have studied our rivers, and it was the common belief, even amongst naturalists, that after spawning they returned immediately to the sea, principally because they came from the sea in spring.
Some ten years ago the Rev. Mr. Williams, stationed at Truro, who brought lis fondness for fishing from his native Wales, brought to my notice some fish which he caught in the Shubenacadie River, in April. They were descending beneath the loose ice in such numbers, and so ravenous, that he took two at a cast, and might have filled a boat in a few hours. They were true Salmon, but perfectly discoloured, reddish-black, spotted, and nosilvery scale. On further enquiries, I found that the Musquodoboit River was subject to the same exodus, Mr. C'. Anderson being my informant, and also those streams flowing from the Hants, Horton, and Cornwallis Basins, into the Bay of Fundy, through the Avon, were all thus crowded during early spring. Every spring we hear, especially from the eastern parts of the Province, of the warton destruction of this fish, of their quantities, and the easiness of their capture. As we have no other record of their descending, we must conclude that as regards our own Province, the Salmon ascend our rivers from Mareh to November, some remaining all summer, or perhaps returning to re-ascend again; though of this we have no proof, that they remain all winter and return in vast multitudes to the ocean in early spring. That our facts are scanty, must be allowed, the iee covering concealing our researches, and that they may not be true as regards other countries, is equally conceded, but until further investigation, I think they must be admitted.

I have now shown you our Salmon from his almost first appearance as a minnow, explained how in our rivers his changes into a Parr and Smolt are obscured by the ice; exhibited him going to sea for the first time as a Smolt, and also by a rare chance shown him to you in his form of half parr, and half smolt, and that produced by his own efforts. I have pointed him out as a grilse, shown him again in his grand proportions, and glorious flashings of silver light, as he is exposed in our markets, and have lastly given you some drawing of his degeneration in colour, of his leanness, and the singular and almost grotesque changes in the jaws of the male during spawning. In this I have given you nothing new, but only, as it were, given you old things, stated from original and new material, yet it is well to fix all these with a sketch and a date. In fixing the dates of his prolonged journey up river from the sea, and his rapid exodus downwards, I cannot deny that they still require confirmation. That they may be found to vary not only in the different rivers of the Province, but at different seasons in each river, why some ascend early, remain long in fresh water, and perform the function of spawning thoroughly degenerated, and others perform the same functions with all the strength and health of ocean run fish-(we find, Report Fisheries, 1877, that at one hatching station, the fish taken for spawning purposes were kept till wanted in tide way basins)-remains to be explained. If we compare our short streams with the St. Lawrence, or even the St. John, of New Brunswick, our shallow lakes, lying so close to sea-board, with Ontario, or even our ice-bound streams with the never frozen waters of England, or the arctic winters of Greenland and Labrador, and remember that the same species frequent all, we can only wonder that these vast physical differences have produced so little changes. In regard to the only new fact I have put before you, the retention of all the Salmon in our waters during the winter, in the inland lakes, I think I am justified in asserting it, or at least of drawing the attention of observers to it ; but such observation should only be made where the physical features correspond with our own. If I have succeeded in giving you the itinerary of a Nova Scotian Salmon, with his biography attached, only approximately even, the object of this paper is effected.

ANKEF

We find also, 1 ing facts:-That fertile, that have in tide-way reser tablishment). T go to salt water, reports,) and that changes. These they do, so strons locked Salmon, b! Fishery Commis: exact and scienti made with little breeding establish the discolouration jaws in the male, in fresh water an a member of our I all fresh water, al with exact dates the attempt, and men of science.

Art. VIII.-On Tf Scotia London

Extending alon quid mountains, an axis, is a remarkab of interesting mine plentiful and the veins, which I shal although Ankerite occur in a band of blue to a pale olive
almost first apvers his changes ; exhibited him 1 also by a rare $;$ and half smolt, ointed him out tions, and gloriur markets, and ration in colour, otesque changes his I have given you old things, s well to fix all ates of his pros rapid exodus e confirmation. different rivers iver, why some rform the funceers perform the h of ocean run re hatching sta:ept till wanted we compare our te St. John, of ;e to sea-board, he never frozen land and Labrant all, we can have produced I have put bewaters during ied in asserting to it; but such ysical features giving you the raphy attached, is effected.

We find also, principally from the Fishery Reports, the following facts:-That Salmon are more vigorous, and their ova equally fertile, that have never been in fresh water, but have been kept in tide-way reserve ponds. (Reports of Tadousac Breeding Establishment). That the Ontario Salmon on the contrary never go to salt water, but are equally vigorous, (see Mr. R. Wilmot's reports,) and that a few in Nova Scotia resist the fresh water changes. These facts are all comparatively new, and bearing as they do, so strongly upon the question of what are called landlocked Salmon, by many scientific men, still in the United States Fishery Commission, they are well worthy of a most minute, exact and scientific series of new observations, which might be made with little expense, if connected with the various fish breeding establishments of the Dominion. The growth of scale, the discolouration of flesh and of body, the changes of teeth and jaws in the male, and the peculiar changes in the pyloric cœeca in fresh water and ocean fish (lately pointed out by R. Morrow, a member of our Institute) as taking place in the three forms of a.ll fresh water, all salt water, and partly fresh and salt water, with exact dates and minute comparisons, would well reward the attempt, and be a small boon from the Government to her men of science.

Art. VIII.-On the Ankerite Veins of Londonderry, Nova Scotia.-By Henry Louis, Assoc. R. Society, Mines, London.

(Real March 10th, 1879.)
Extending along the base of the southern slope of the Cobequid mountains, and parallel, roughly speaking, to the mountain axis, is a remarkable series of fissure veins, filled with a number of interesting minerals, of which, as at present known, the most plentiful and the most characteristic is the Ankerite. These veins, which I shall in this paper designate the Ankerite veins, although Ankerite is not by any means their sole constituent, occur in a band of slate and shale, varying in colour from a dark blue to a pale olive green, and forming apparently the topmost
beds of the Silurian formation. They are found of all thick. nesses from about the tenth of an inch up to fifty feet; the larger deposits are very variable in thickness, much faulted, and approximately parallel to each other and to the general strike of the strata, whilst the rocks between them are frequently traversed in every direction by a network of the smaller veins These veinlets appear to occur for the most part in the blue slates but the walls of the larger deposits most frequently consist of greenish-grey shale. I have not been able to make out any de finite relations between the modes of occurrence of these two classes of Ankerite veins.

Wherever I have been able to examine these deposits, I have found them to present very similar characters. Most of my observations have been made on the large deposits of Ankerite in the right bank of the west branch of Great Village river, which has been very extensively quarried : I have, however, no doubt but that they will apply equally well to any portion of the scries of Ankerite veins.

The following descriptive list includes all the minerals that have up to the present met with in these veins :-

1st.-Ankerite. This mineral occurs most frequently in the massive crystalline state, readily cleavable into rhombohedra, the cleavage planes being often very large; sometimes, but mors rarely, it is cryptocrystalline and granular. I have, howeve: also found it in true crystals, lining the walls of a small fissur: in the vein. The crystalline form is the simple primary rhombohedron, very minute, the largest crystal not being over $\frac{1}{8}$ ind: in length, and the faces too dull for measurement. The colourd Ankerite before it has been exposed to the atmosphere is pur white, but, owing to the rapidity with which its protoxide d iron is per-oxidized, it is usually found of a yellow or brownist colour.

Its specific gravity is 2.998 .
The following are analyses of three specimens of the pur mineral ; Nos. I and II were white, and No. III of a brownist tinge:-

ANKERI

Insoluble Siliceou: Calcic Carbonate. Ferrous
Manganous Magnesic
Ferric Oxide

By taking the m deduce the followi disregarding the in

Calci
Ferry
Manદ
Magı

This would dema $\mathrm{Co}_{3}+4 \mathrm{Mg} \mathrm{Co}$ by Manganese. Tt is :-

Calcis
Ferro
Magn
'The corresponder found is sufficiently kerite. It must, ho ates composing Ank of replacing each ot course precludes the plicable formula for ties produced by is
und of all thick o fifty feet; the nuch faulted, and : general strike of 1 are frequently he smaller veins in the blue slates uently consist d rake out any de ice of these two
deposits, I havt Most of my of s of Ankerite in lage river, which ,wever, no douk y portion of the
minerals that

$$
-
$$

equently in the thombohedra, the times, but mon have, howeve: f a small fissur , primary rhom eing over $\frac{1}{8}$ incl t. The colourd rosphere is pur its protoxide d low or brownis
ans of the pun of a brownis

	I.	II.	III.
Insoluble Siliceous Matter	0.57	0.12	0.19
Calcic Carbonate.	53.64	49.32	54.96
Ferrous "	23.29	23.11	21.92
Manganous "	0.77	0.68	1.29
Magnesic "	21.48	26.29	21.42
Ferric Oxide....	trace.		1.05
	99.75	99.52	100.83

By taking the mean of these and numerous other analyses, I deduce the following for the average composition of Ankerite, disregarding the insoluble matter :-

This would demand for Ankerite the formuia $8 \mathrm{CaCo}_{3}+3 \mathrm{Fe}$ $\mathrm{Co}_{3}+4 \mathrm{Mg} \mathrm{Co}_{3}$; a small proportion of the Iron being replaced by Manganese. The composition corresponding to this formula is :-

$$
\begin{aligned}
& \text { Calcic Carbonate } \ldots \ldots \ldots . . .53 .90 \\
& \text { Ferrous } \quad \text { " } \\
& \text { Magnesic } \\
& \\
&
\end{aligned}
$$

The correspondence of this composition with that actually found is sufficiently close to warrant the above formula for Ankerite. It must, however, be borne in mind that all the Carbonates composing Ankerite are isomorphous, and therefore capable of replacing each other in any proportions; this circumstance of course precludes the possibility of obtaining any universally applicable formula for Ankerite. As an example of the irregularities produced by isomorphism, I may instance the following
analysis of a specimen of white cryptocrystalline Ankerite which contains much more Lime, and also less Magnesia in pro portion to the Iron than the normal mineral :-

$$
\begin{aligned}
& \text { Insoluble Matter } 0.53 \\
& \text { Calcic Carbonate } 71.23 \\
& \text { Ferrous "16.41 } \\
& \text { Manganous" } 2.65 \\
& \text { Magnesic " } 9.34 \\
& 100.16
\end{aligned}
$$

The formula for this structure is $13 \mathrm{Ca} \mathrm{Co}_{3}+3 \mathrm{Fe} \mathrm{Co} 3+$ $\mathrm{Mg} \mathrm{Co}_{3}$. It appeared to be perfectly homogeneous in structur and may possibly be Ankerite altered by the action of wate carrying Calcic Carbonate in solution.

2nd.-Sideroplesite.-(Classed by Dana as a variety of $\$$ derite)-This mineral occurs in the Ankerite quarry in sma veinlets penetrating the mass of the Ankerite, but appears to t. come more abundant in the deeper lying parts of the deposit thus, in the upper levels of the West Mines, Sideroplesite an Ankerite are found in irregularly interlacing veins and masse in about equal proportions, as will be shown by an analysis be given below, while in the lower levels of the same mine ver large deposits occur, containing only here and there small veit lets and patches of Ankerite; so extensive indeed are the deposits, that if they hold in depth, as they now promise to, the will become of high economic importance. I have never sef any crystals of Sideroplesite, but it is always highly crystallin although the cleavage planes are smaller than in Ankerite, an instead of being continuous through large masses, are inclined: all directions, so that a fractured surface shows a number small and irregularly divergent cleavages. Its colour is pea grey, but on exposure to the air it oxidises with great rapidit assuming a brownish tinge.

Its specific gravity is 3.523 .
The following are analyses of some characteristic spet mens:-

Insoluble Siliceous Calcic Carbonate. . Ferrous
Manganous Magnesic
Ferric Oxide

The average com rived from several : Calcic Ferro Mang Magn

Evidently, the M accidentally present
stalline Ankerite Magnesia in pro
0.53
1.23
6.41
2.65
9.34
0.16
${ }_{13}+3 \mathrm{Fe} \mathrm{Co}_{3}+$ eous in structur action of wate
a variety of s quarry in sma but appears to b. ; of the deposit Sideroplesite an reins and masse y an analysis a same mine ver ;here small veit indeed are the \checkmark promise to, the have never set ighly crystallin in Ankerite, an es, are inclined: ws a number is colour is pea h great rapidit
racteristic spet

	I.	II.	III.
Insoluble Siliceous Matter	0.43	0.47	0.25
Calcic Carbonate.	1.03	0.59	3.14
Ferrous "	67.96	69.20	68.47
Manganous "	2.19	1.37	2.08
Magnesic "	27.87	28.73	26.02
Ferric Oxide.		0.08	
	99.48	100.44	99.96

The average composition, exclusive of insoluble matter, as derived from several analyses, is :-

Calcic Carbonate

1.92

Ferrous "68.15
Manganous" 1.87
Magnesic "28.06

Evidently the Manganous and Calcic Carbonates are only accidentally present, the main constituents being:-

$$
\begin{aligned}
& \text { Ferrous Carbonate } 70.02 \\
& \text { Magnesic "29.98 } \\
& 100.00
\end{aligned}
$$

The formula that most nearly corresponds to this composition is $5 \mathrm{Fe} \mathrm{Co}_{3}+3 \mathrm{Mg} \mathrm{Co}_{3}$. The per centage composition required by this formula is:-

$$
\begin{array}{ll}
\text { Ferrous Carbonate } & \ldots69 .72 \\
\text { Magnesic } & \ldots . . .630 .28 \\
& \\
& \\
& \\
& \\
&
\end{array}
$$

This may also be written for the sake of comparison :-
Carbonic Anhydride. 42.30
Ferrous Oxide 43.28
Magnesia 14.42
100.00

1

52

Breithaupt gives $2 \mathrm{Fe} \mathrm{Co}_{3}+\mathrm{Mg} \mathrm{Co}_{3}$ as the formula for Sideroplesite, and the following as its composition :-

Carbonic Anhydride. 41.93
Ferrous Oxide 45.06
Magnesia 12.16
99.15

Thus, the composition as well as the physical characters our Nova Scotian minerals approach very nearly to those Breithaupt's Sideroplesite, more nearly in fact than to those any other mineral that I know of, and I think that there can little doubt but that it should be referred to this variety. H_{8} ing regard, however, to the very large quantities of this mine lately discovered at Londondery, to its well defined chemis composition and physical characters, I would venture to sugg that Sideroplesite is fully entitled to be classed as a well defir mineral species, rather than as a mere variety of Siderite.

The following is an analysis of a sample of mixed Anker and Sideroplesite, taken from a large deposit of mineral, which both species were present, in one of the upper levels the West Mines:-

> Insoluble Matter
> 0.31
> Calcic Carbonate27.52
> Ferrous "46.09
> Manganous" 2.28
> Magnesic "23.80
> 100.00

This composition corresponds to the formula $2 \mathrm{Ca} \mathrm{Co}_{3}+3$ $\mathrm{Co}_{3}+\mathrm{Mg} \mathrm{Co} 3$; equal to a mixture of about five parts of kerite and six of Sideroplesite.

These two are by far the most abundant of the miner occurring in these veins, the rest being present only in sm quantities, and usually near the walls.

3rd.-Barytes.-This mineral occurs in fissures in the Anker: veins, occasionally in small tabular crystals, but more often

ANKERITE
highly cleavable mas coloured.

4th.-Calcite.-Thi well known form of] scalenohedra. It is n the following analyse: Dogtooth Spar, and tl

Insoluble M\& Calcic Carbo Ferrous Manganous Magnesic

5th.-Aragonite.-I or cavities in the Ank cite. The crystals var down to microscopic been one of the last m : invariably found inves 6th.-Iron pyrites (nated crystals, near the

7th.-Specular ore o Ankerite, and in some thickness between the Veinlets of Specular (shales on the same side This list comprises al present known, but in : tities in the upper parts of Ankerite and Siderol nection with the origin high degree of interest. rived from the decompo
that shows in its actual known as "Red ore."
e formula for tion :-
41.93
45.06
12.16
99.15
ical characters early to those than to those : that there can is variety. H_{2} es of this mine
defined chemi renture to sugg I as a well defir: of Siderite.
mixed Anker it of mineral, ; upper levels present known, but in addition to these we have in small quantities in the upper parts of the veins the decomposition products of Ankerite and Sideroplesite, which, from their intimate conof the minen nection with the origin of the Londonderry Iron ores, acquire a it only in ${ }^{{ }^{5 m}}$ high degree of interest. Whilst all these ores are probably derived from the decompositions of the Carbonates, the only one es in the Anker that shows in its actual structure any proof of such origin is that t more often known as "Red ore."

This ore occurs in deposits having the same average diree as the Ankerite veins, (namely, from 5° to $10^{\circ} \mathrm{N}$. of W.,) an mostly runs out in descending into Ankerite or, more freque Sideroplesite. Rounded boulders of both of these minerals not uncommon in the "Red ore."
Red ore is amorphous and earthy in fracture. It is very distinctly pseudomorphous, after Ankerite or Sideropla when the cleavage planes of the original mineral are very dent in the Red ore and are indicated by a strong satiny lu The hardness of the ore is between 2 and 3: its colour from deep red through all the shades of reddish-brown to brown, the red colour being by far the most common, and clear brown comparatively rare. The following analyses serve to indicate its general character. Analysis No. I was on a deep red specimen, and No. II on a brown specimen of ore, both showing distinctly the cleavage planes of the ori mineral :-

	I.	II.
Insoluble Matter	2.71	3.73
Alumina	trace.	trace.
Ferric Oxide	87.21	83.21
Trimanganic Tetro	1.67	1.83
Lime	trace.	trace.
Magnesia	0.45	0.65
Combined Water	8.01	10.18
Phosphoric Acid	trace.	trace.
	100.05	99.60

It will be seen that the composition of these, like all the donderry ores, is approximately that of Goethite, namely, F $\mathrm{H}_{2} \mathrm{O}$; they are, however, not only very different from the a ary brown Hæmatites of this locality in appearance, but also in containing less siliceous matter and phosphoric acid is very difficult to assign these Red ores to any definite mi species, the characteristics of the bright red variety being cially puzzling. While it differs from Turgite, in conta nearly twice as much water of hydration, and in not decref
ing when heated, its d from all the other hyd though they are, there classed.

As regards the origil posits, the following a present limited Geolog. read it. The close of t this region by the elev quid Mountains. This dislocation and fractur series of clefts was pro base of the Cobequids least resistance to fract Ankerite and Siderople in water. It has bees were introduced into tl rate, under conditions o feasibility of fusing eit] tion has ever yet been has been fused under pu might be obtained with is the correct one, their sufficient depth in the i sary pressure as well as how, at so great a deptl least have been softened have been produced. I ought to be traceable i walls of the very narrov morphic slate, but I fou of the large Ankerite v when ground fine and n as much as 8.15 p.c. of c not been exposed to a te ehydration in such a walls with sharp edges,
te average direct 1° N. of W.,) an or, more frequen these minerals
cture. It is ite or Sideropl neral are very trong satiny lu : its colour dish-brown to f common, and owing analyses ysis No. I was vn specimen of nes of the orig

II.

1
 3.73

 trace.83.21
$7 \quad 1.83$
3. trace.
$5 \quad 0.65$
$1 \quad 10.18$
e. trace.
$5 \quad 99.60$
se, like all the hite, namely, F ent from the pearance, but hosphoric acid ny definite mis variety being not been exposed to a temperature above red heat, unless indeed gite, in conta rehylration in such a case were possible. Fragments of the I in not decrefwalls with sharp odges, and apparently differing in no respect
from the wall itself, are occasionally found embedded in Ankerite. The general appearance too of the vein, its weds like shape, narrowing downwards, and the mode in which minerals are arranged in it, all appear to me to suggest its fo mation by aqueous agency.

As to the other minerals present, they are evidently of t later date than the vein itself, and have been formed by action of water percolating through the fissures of the Ankeri I may here mention as an instance of such action, that I ha found near the Ankerite quarry conglomerates consisting pebbles of Ankerite and other rocks united by a calcaren cement. In this connection too, it is interesting to note the whenever Aragonite and Calcite are present in the same fissm the former invariably invests the latter, but never vice ven The most generally accepted theory regarding these two minen ter present in the Lon is, that Aragonite was deposited from hot water and Calcite frn have all the appearanc cold; this theory, if true, would lead us to infer that the Ank position; at times, too ite vein was exposed to the action first of cold, and at a la Ankerite, as would be period, of heated waters.
When a mass of Ankerite or Sideroplesite is left exposed the atmosphere for a number of years, a thin crust of brown red hydrate of Iron forms upon its surface, the Calcic and M Na nesic Carbonates being superficially carried off in solution. He may be readily illustra we have reproduced before our eyes the chemical phenomena some experiments on which we owe the Red ore. This ore has been produced finely ground was susp the joint action of air and moisture upon the Carbonates in t anhydride passed thro Ankerite vein. The air and Carbonic acid, dissolved in comm Ankerite was dissolvec water, would probably suffice for this reaction, which mig tion, the Iron present perhaps be aided by a low degree of heat ; but at a red heat, brown hydrate. On I have ascertained by experiment, anhydrous Ferric oxide, (a plesite, I obtained simi not Ferric hydrate,) is produced, even when steam is passed or anhydride was only ke the heated mineral. So gradual has the decomposition of t p.e. of the mineral. original minerals been, that their shape and cleavage have be In conclusion, I once perfectly maintained during the course of the metamorphism. logical relations of thes

As to the Brown Hæmatites forming the bulk of the Lond very obscure, and that derry ores, their mode of formation is somewhat more obscure, t here attempted to prod is probably as follows: At a period subsequent to the formation thes when an exhausti, have been made.

1 embedded in t le vein, its wed node in which to suggest its fo e evidently of t n formed by ss of the Ankeri ction, that I ha ates consisting
by a calca the lis it sting to note th turn decomposed, oxidised, and deposited in the form of a bog I the same fissu ore, together with some of the comminuted shales derived from never vice ver the surrounding rocks, this being the source of the siliceous matthese two miner ter present in the Londonderry Brown Hæmatites. These ores r and Calcite fr have all the appearance of bog ore, and also resemble it in comer that the Ank position ; at times, too, they show small boulders of shale and Id, and at a lat Ankerite, as would be expected from such a mode of origin.

They are thus second?ry products of decomposition and solution, is left exposed while the Red ore is the product of the primary decomposition srust of brown
Calcic and M_{2} in solution. H may be realily illustrated in the laboratory In the couse of sal phenomena some experiments on this subject, I found that when Ankerite een produced Jarbonates in solved in comm on, which mig at a red heat, 'erric oxide, (a am is passed or mposition of t p.c. of the mineral.
avage have be In conclusion, I once more wish to remind you that the georetamorphism. logical relations of these veins to the surrounding strata are yet
s of the Londo very obscure, and that the sketch of their history which I have more obscure, t o the formation in situ of the original Carbonates.
The mode in which the Brown Hiematites have been produced finely ground was suspended in water, and a current of Carbonic anhydride passed through it for about 10 hours, 13.5 p.c. of the Ankerite was dissolved. On blowing air through the clear solution, the Iron present was deposited in the form of a yellowish brown hydrate. On repeating the experiment with Sideroplesite, I obtained similar results, hut the current of Carbonic anhydride was only kept up for about six hours, dissolving 8.2 here attempted to produce, may at any time be liable to correcthes when an exhaustive geological survey of the district shall have been made.

Art. IX.-Magnetism, the Life of the World.-By Andrer Dewar.
(Read April 14th, 1879.)
In commencing I may say that I quarrel with no religion bodies or opinions. In saying that Magnetism is the Life of the World, I mean in its broadest sense and as a physical fac only.

By life, I mean the life foree, or vital principle, which animate aad regulates everything, from the crystals in the rocks to the spreading of the tree and the breathing of the animal. One lat (and is it not a grand and likely idea,) one law pervades thr world, and regulates itself and everything connected with it \& one body, even such a body as our own is. Thus, what we con sider space, may be to the planets as firm and compact a materia as our flesh is to our bones or blood veins.

Before we indicate the comnection between life and magnetisn we must show first what maghetiom is, accoreling to our ideas d it, the properties it possesses, and the extent of its domain.

Magnetism was, and still is supposed to be a property belong ing peculiarly to iron. Certain particles of iron were seen t attract and repel one another, and this force was called magnet: ism. We observe, however, that other materials attract an repel one another, although not in so marked a manner.

For instance, there are layers of slate, freestone, shale, coal granite, etc., all separate and distinct, each material by itself The question arises, how came each material to be so stratified It could only be done in two ways. Either it was brought and placed there by physical means, through some superhuma: agency; or, which is the more likely, the attraction of lik materials, and the consequent repulsion of unlike material formed these beds, when, possibly, everything was in a state solution.

All matter then, (and innumerable examples and facts wil occur to every one to prove the assertion,) is governed by a lar of the attraction of like materials.

But, as iron particles exhibit polarity, so we believe do the atoms of all other materials. Qur reason is, that we find a con
structive principle a guided by some law. any of the earth's m phain the crystalizat: in accepting it, inste

Such a law is that which, for the sake ' negative. When at positive pole of each and the negative pol regularity which cau

In solution, similas one another, while of

The Law of Polarit similar material corn seatter, reduce, dissol poles in solution, attr

Every permanent I either in or by water, natural production ha ficial one is by fire.
From these two lav and the law of polarit ism, which we hav universe. In connect in mind that the law a void in physical st Going deeper than gra matter, it also absorbs tent beyond it.

The law of atomagn earth are all divided ir or hydrogen and oxyg component parts, form vegetation and animal teraction or connection Matter and Polarity, e and built up, or dissol
0.-By Andren
ith no religiow ; the Life of the a physical fac
which animate he rocks to the imal. One lat w pervades the cted with it a 3, what we cor mpact a materia
and magnetism ; to our ideas is domain. roperty belong 1 were seen called magnet. als attract an sanner.
ne, shale, coal erial by itself e so stratified as brought ant te superhumat action of lik like material s in a state
and facts wi erned by a lar
believe do th we find a con
structive principle among all materials. This principle must be guided by some law. If then we can find a law which controls. any of the earth's materials, and which in its action would explain the crystalization of others, we think we would be justified in accepting it, instead of searching out some entirely new law. Such a law is that of Polarity, viz.: Every atom has two poles which, for the sake of illustration, may be called positive and negative. When at rest, as in a block of stone or metal, the positive pole of each atom has hold of the negative pole above it, and the negative pole a hold of the positive below it. It is this regularity which causes many materials to scale so easily.

In solution, similar poles of similar material repel and scatter one another, while opposite poles attract and accumulate.

The Law of Polarity, generally stated, is, that similar poles of similar material coming together in solution or in fire, repel, scatter, reduce, dissolve and destroy one another, while opposite poles in solution, attract, increase, reform and rebuild.

Every permanent production of the earth has been formed either in or by water, or by fire ; and, generally speaking, every natural production has been formed by water, while every artificial one is by fire.

From these two laws, the attraction and repulsion of matter, and the law of polarity, we have deduced the law of Atomagnetism, which we have announced as the law governing the universe. In connection with this enunciation, it must be bornein mind that the law is not given to supplant another, but to fill a void in physical science which has never yet been filled. Going deeper than gravitation into the constitution and force of matter, it also absorbs it and witens itself to an indefinite extent beyond it.

The law of atomagnetism is as follows: The materials of the earth are all divided into two great classes, mineral and vegetable, or hydrogen and oxygen. Each class has innumerable distinct component parts, forming the different minerals or varieties of vegetation and animal life. By these two classes and their interaction or connection, according to the above given laws of Matter and Polarity, everything in the world is either formed and built up, or dissolved and destroyed.

60

Magnetism is thus the life of the law, and consequently, the life of matter.

We will give a few facts showing that matter has polarity. If water freezes gently on a pond, the ice is perfectly transparent:; but if a wind blows while it is being congealed, the ice is whitish and opaque. In the former case the atoms were not disturbed, and thus they arranged themselves in perfect polar order. In the latter the poles were disturbed, and congealed in a disturbed state.

In making sugar-candy, if the material is gently poured out, the candy will be comparatively transparent; but if it is pulled before it hardens, it soon becomes opaque, and becomes whiter with every pulling. It is sometimes said that the air mixing the water or sugar produces the opacity ; but why should air, a transparent substance, mixing with water, also a transparent body, produce opacity, unless there were some constitutional law such as we have stated to cause it. In crushing many transparent or semi-transparent bodies they become whiter. We believe that in these facts is to be found the solution of the phenomena of light and flame, and the mystery of the comet's tail. The greater the friction of disorganized poles among suitable material, the more brilliant the light.

In frost ferns on window panes we see another instance of the polarity of matter, and this time in distinct magnetic action. Just as filings placed on the end of a magnet arrange themselves in distinct lines or feelers, so do the particles of ice array themselves, and each frond starting from the same centre, repels every other frond. If two similar magnetic poles are brought together, with iron filings on each, the repulsion is so great that the filings drop off. We have observed a similar effect with the frost ferns, for the points of the two fronds on nearing one another were seen to be shattered by some invisible force into utter confusion.

These frost ferns may be said to be links between roek and plant life, and the little frost bush which grows on ice under peculiar circumstances of thaw and frost is another. The bushes, which are from a half inch to two inches high, are per-

MAGNETIS

fect samples of veg on every side. Th rising piece of ice 1 snow or ice conges force from the pole.

The lead tree hu: it is our belief tha formed entirely ind sider only a parasit as justified in sayin the coral insect mal

All matter then h stone, but change it suitable solution an by the exercise of it have been dealing w

In tracing the con it must be borne in before the world. I man. In suggesting least are not irrevert nature; and, as we 1 controls some materi its action can explair ism is the only force class of matter, and necessarily be control duty to test the law any other ; and in ou

In examining all p stalk, roots, and bran observing that the rc leaves from the other, the centre either way according to magnetic iron, and scattering fi
sequently, the
has polarity. ectly transpaled, the ice is ms were not perfect polar congealed in y poured out, if it is pulled comes whiter te air mixing should air, a a transparent titutional law tany transpa-

We believe e phenomena t's tail. The suitable ma-
sstance of the gnetic action.弓e themselves array themsentre, repels are brought so great that fect with the nearing one le force into
sen rock and on ice under nother. The ligh, are per-
fect samples of vegetation, with feathered branches shooting out on every side. The construction is by the same polar law. A rising piece of ice forms a pole, on which the drifting particles of snow or ice congeal and arrange themselves by the magnetic force from the pole.

The lead tree hung in solution is formed in a similar way, and it is our belief that coral is only a similar mineral growth, formed entirely independent of the coral insect, which we consider only a parasite of it. In fact, we think we would be quite as justified in saying that the aphis makes the rose bush, as that the coral insect makes the coral.

All matter then has life. It may be inert, as in a block of stone, but change its condition by crushing it and put it in a suitable solution and position, and it will give life to a lofty tree by the exercise of its inherent atomagnetic law. Thus far we have been dealing with what may be called mineral life.

PLANT LIFE.

In tracing the connection between plant life and magnetism, it must be borne in mind that there is no theory of plant life before the world. It is considered an enigma undiscoverable by man. In suggesting magnetism as the life of the plants, we at least are not irreverent in doing so, as magnetism is a law of nature; and, as we have said before, if magnetism guides and controls some materials, why should we look for another law, if its action can explain all the phenomena of plant life. Magnetism is the only force we know of which directly controls any class of matter, and as plant life as well as any other must necessarily be controlled by some law, it is surely our bounden duty to test the laws of magnetism first before we seek for any other ; and in our opinion, there is no need to do so.

In examining all plants, we find them to have a trunk or stalk, roots, and branches. Holding a plant in our hands, and observing that the roots are dispersed from one end and the leaves from the other, we naturally say the force must be from the centre either way; that is, from the trunk or stalk. Is this according to magnetic law? Yes. Taking a magnetised bar of iron, and scattering filings over it, we find they adhere princi-

MAGNETI
pally to the poles, and, as far as the material will allow them, they are there formed into roots and branches. Moreover, as each branch and root fibre follows an individual course and repels its neighbours, so do the roots and branches of the filings. Again, if two leaves on the same tree are forced to meet and touch one another, in a few days chey begin to fade and wither, thus seeming to repel and kill one another; so, in a magnet, if we force the filings on similar poles to meet, they also drop off, and, as it were, fade.

A seed, again, is as much a magnet with two poles as the magnetised iron bar; and as the bar does not scem to be a magnet until the filings are seattered over it, so, neither does the seed until it is placed in a position to show its poles, viz, in the earth, where, with heat and moisture, its magnetic character is apparent, for a root and a leaf is at once thrown out, thus showing its indestructible polarity.

Besides being governed by its own inherent magnetism, a tree is also influenced by the magnetism of the earth. If a tree was loft to its own magnetism it might grow in a slanting direction, and, especially on a hill side, a forest might become entangled in inextricable confusion. We find, however, a wonderful regularity in the growth of trees, and even on the steepest hills they never vary from the exact vertical. This is eaused by the magnetic force of the earth, which is continually in action, and must necessarily be vertical.

Summing all the evidence together, the similarity between the action of a magnet and plant life is such that we see not how it can possibly be overlooked or set aside. Enough it is for us that finding plant life a mystery, we see no mystery in it when read by the light of magnetism, and our only desire is that botanists may test it for their own satisfaction.

ANIMAL LIFE.
To prove the connection between animal life and magnetism may seem more difficult than in the previous divisions of the subject, but it is not so in reality. It is well known that men and animals are possessed of magnetism. The teaching of the present day tends to separate material, from animal magnetism,
but the force is $t l$ different ways, ac under its influene different conditior or labour, accordin

A man can dra nose, and some me finger. We might sessed of magnetis magnet, then the (guide and control mineral or vegetal in a-comparative

The great and e and an animal is, t supplied to it, whi The former is, co the latter is pliable huge feeding grour supplies both of fo off from this suppl: apparatus which w carry about with it battery of the anin The Electric Tele the nature and wor of this apparatus w in diluted sulphuris sessed of enormous known.

In the stomach o process is continual force thereby devel, the blood and the w move wherever it d and locomotion.

Nor does the rese
allow them, Moreover, as urse and reℓ the filings. o meet and and wither, a magnet, if lso drop off,
; as the mage a magnet jes the sced in the earth, ter is appahus showing
etism, a tree f a tree was $1 g$ direction, become ena wonderful teepest hills used by the action, and
between the not how it is for us that when read at botanists
magnetism ions of the n that men hing of the magnetism,
but the force is the same. It may exhibit itself in a hundred different ways, according to its condition, position, and materials under its influence. Safficient attention is not often paid to the different conditions under which a force may either work easily or labour, according as they are favourable or the reverse.

A man can draw a spark of electricity from another man's nose, and some men after a brisk walk light the gas with their finger. We might, as a preliminary, argue that if a body is possessed of magnetism, that body must be a magnet, and if a magnet, then the certainty is that the principles of magnetism guide and control that body. But a man is not like either a mineral or vegetablo magnet. He is a more compact body and in a-comparatively speaking-state of solution.

The great and essential difference, however, between a plant and an animal is, that the former is stationary and has its food supplied to it, while the latter is migratory and seeks its food. The former is, comparatively speaking, hard and solid, while the latter is pliable and soft. The former is connected with one huge feeding ground and galvanic battery, from which it draws supplies both of food and magnetic force, while the animal is cut off from this supply, and must consequently be endowed with an apparatus which will answer the same purpose, and which it can carry about with it. This apparatus is the stomach, the galvanic battery of the animal, where life is originated and sustained.

The Electric Telegraph supplies us with a grand illustration of the nature and working of this animal battery. In the battery of this apparatus we see two metals, zine and copper, dissolving in diluted sulphuric acid, and the action produces a force possessed of enormous capabilities, which are only beginning to be known.

In the stomach of man, or other animal, a similar dissolving process is continually going on with the food put into it, and the force thereby developed causes and keeps up the circulation of the blood and the whole life action of the body, enabling it to move wherever it desires, and to perform all kinds of exercise and locomotion.

Nor does the resemblance end here, for there is a wonderful
similarity between the telegraph switch and the animal brain. From the battery only two wires, one from either pole, lead the force to the switch; yet from this switch any number of wires may radiate, each one endowed with equal magnetic force, or the whole may be concentrated in one. From our stomach two cords also lead up the spine to the base of the brain, (which may be compared to the telegraph switch,) and from the brain the whole nervous system of the human body proceeds.

The inference to be deduced from this wonderful coincidence is, that the body is merely a machine, whose brain is controlled by the magnetism of the body; the mind being the telegraph operator.

An animal is thus as much a magnet as a plant, and its life is magnetism.

In concluding our argument that magnetism is the life of the world, if we have proved that minerals, plants and animals all live and grow by magnetism, then it only remains to show that the earth is a magnet; but this is a well established and acknowledged fact, and thus it is only making more certain what is sure, by proving plants and animals magnets; for the invariable law of magnetism is, that every atom of a magnet, no matter how connected, is also a complete magnet as well as a part of the whole.

Art. X.-Nova Scotian Geology.-Notes to Retrospect of 1878.-By Rev. D. Honeyman, D. C. L., Hon. Memb. Geol. Assoc., London, \&c., Fellow of the University of Halifax, Curator of the Provincial Museum, Professor of Geology Dalhousie College and University. (Read April 14th, 1879.)
After I read my essay "On the Fossiliferous Rocks of Arisaig," before the Halifax Literary and Scientific Society, in April, 1859, a notice appeared in the Presbyterian Witness newspaper, in which the erlitor stated "that I had settled questions that had puzzled Lyell and Dawson," regarding the age of the Arisaig rocks.

The author of Witness, and alway: Geology of Nova ! Montreal, in which . attention to the inte rocks were " probab replying, I said that age, and that my res would be seen from when published.
I was not then the had only seen and re its publication. I d were considered to 1 Devonian.

In now regarding U. S.," the author hai that the opinion expr the Presbyterian Wit "simultaneously and : edition.

I did not refer to tl only referred to prin author was committed pressed, until it appea vain to find any evide be found in the cataloz

On this ground I pr first steps onward."

I find that, trusting some of the reasons the of the Arisaig fossilifer author of "Acadian Ge forgot that he made th Naturalist in 1860 .

At the time the divis
nimal brain. ole, lead the ber of wires force, ol the stomach two , (which may se brain the
coincidence is controlled he telegraph nd its life is
e life of the animals all o show that hed and acrtain what is e invariable i, no matter s a part of
:ROSPECT OF Hon. Memb. 'niversity of um, Profes. iversity.
of Arisaig," April, 1859, wspaper, in is that had the Arisaig

The author of Acadian Geology, who is a reader of the Witness, and always on the qui vive in matters relating to the Geology of Nova Scotia, shortly after sent me a letter from Montreal, in which he expressed his gratification at my directing attention to the interesting rocks of Arisaig, observing that the rocks were "probably" of Lower Helderberg age. In a letter replying, I said that they were "certainly" of Upper Ludlow age, and that my reasons for regarding them to be of that age would be seen from the abstract of my paper, then in the press, when published.

I was not then the owner of a copy of Acadian Geology. I had only seen and read a copy of it in Pictou immediately after its publication. I distinctly remembered, however, that they were considered to be of Hamilton and Chemung age, U. S., Devonian.

In now regarding them as "probably Lower Helderberg, U. S.," the author had adopted the only alternative. I suspected that the opinion expressed was suggested by the observation in the Presbyterian Witness. This may be what the author calls. "simultaneously and independently" in Acadian Geology, second edition.

I did not refer to the correspondence in my "Retrospect." I only referred to printed documents, not considering that the author was committed to the opinion, somewhat cautiously expressed, until it appeared in printed form. I have searched in vain to find any evidence of this kind until 1860. It is not to be found in the catalogue of "Acadian Geology."

On this ground I preferred the claim to having taken "the first steps onward."

Corrections.

I find that, trusting my memory, I was led into error in some of the reasons that I assigned as objections to the division of the Arisaig fossiliferous rocks into Upper and Lower by the author of "Acadian Geology." When I wrote the objection, 1 forgot that he made the division in his paper in the Canadian Naturalist in 1860.

At the time the division was made it seemed altogether pro-
per, while at the time of the publication of "Acadian Geology, 1868, it had become objectionable by reason of the further deve lopment of the series and Salter's determinations of the several members. My proper reasons were then given, when I had occasion to inake a "Middle Arisaig series." Vide paper "on the I. C. R. in the Cobequids," pp. 390, 392, Trunsactions of the In. stitute, 1873-4.

I shall quote these: "After the lapse of ten years, and a great amount of labour and research, I consider that the alphabetical division is the only unobjectionable one that has been proposed and that the only modification of the British division required is the omission of the 'Lower Ludlow,' which was not suggestei by Mr. Salter. Previous to Mr. Salter's examination and correlation, I had correlated D with the Upper Ludlow of Wales Dr. Dawson, at the same time, correlated C and D with the Lower Helderlberg, U. S., and B' with the Clinton, U. S. D and © are further distinguished by Dr. Dawson 'Upper Arisaig,' and B^{\prime} ، Lower Arisaig.' Extensive observation has proved that Mr: Salter was correct in giving the Arisaig series a greater range in time than that given by Dr. Dawson. I have referred to anothe division of the Arisaig series into Upper and Lower, the Lowe Helderberg equivalent being the Upper, and the Clinton the Lower Arisaig. There are two applications of the word Arisaig There is the Avisaig township and the locality Arisaig. In the former sense it is much too restricted, as it ignores a great par of the Arisaig series, besides a typical series of Crystalline rock which I have elsewhere designated as 'Lower Arisaig,'-Trans actions, $\mathbf{1 8 7 2}$,-and Carboniferous rocks. In the latter sense includes too much, as the 'Lower Arisaig' of the division alon lies in Arisaig, while the 'Upper Arisaig' is in the Moidart.
"On these grounds I consider these divisions as untenable."

Acadian Geology. Maps.

In my remarks upon the Maps of the two editions of Acadis Geology, I did not make sufficient allowance for necessary in perfections, so that my remarks seem to be somewhat hypercrit cal; still, it cannot be denied that on some very importas
points the map of the : provement on that of t

Much has been done exact surveying and m since 1868. The publi than the maps of Acad complished, is certainly

Maps Maps of Nova Scotia of Geological Survey of Robb \& Fletcher's. Prof. Hind's Maps, Mines.
The Author's Maps is illustrate papers on Nos ute, which were exhib bition.
To these have been 'ounty and a Map of a made to illustrate paper

I have referred to the ban Rocks of Arisaig," Geological Society. Th made by the authors, ser aper; still, I regard the escription of this inte purnal. I regard the na and useful.
I would observe that t
ed to the production of : nes, on Entomostrece had given to him in 18

Centennial
When I saw the admir: 5
ian Geology, further deve of the several when I had paper "on the ms of the In. 3, and a great a alphabetical een proposed ision requirel not suggested on and corre ow of Wales

D with the U.S. D and r Arisaig,' and sed that Mr : eater range in red to anothe ar, the Lowe e Clinton the , word Arisais isaig. In the a great par ystalline rock saig,--Tiane latter sense division alon Moidart. untenable."
ns of Acadia necessary in hat hypercrit ery importa:
points the map of the second edition is the reverse of an improvement on that of the first.

A New Map.

Much has been done by the Geological Survey and others in exact surveying and mapping in Nova Scotia and Cape Breton since 1868 . The publication of a progress map on a larger scale than the maps of Acadien Geology, indicating the work thus accomplisheel, is certainly a great desiclerctem.

Maps Cosstructed since 1868.
Maps of Nova Scotia and Cape Breton, accompanying Reports of Geological Survey of Canada.

Robb \& Fletcher's.
Prof. Hind's Maps, published by the N. S. Department of Mines.

The Author's Maps in the Museum portfolio, constructed to illustrate papers on Nora Scotian Geology read before the Institute, which were exhibited at the American Centennial Exhibition.

To these have been added a Map of a part of Annapolis County and a Map of a part of King's County, which were also made to illustrate papers read.

Geological Society.

I have referred to the abstract of my paper"on the Laurentian Rocks of Arisaig," which appeared in the Journal of the Geological Society. This, like many abstracts of papers not made by the authors, seemed to me not to do justice to my paper; still, I regard the abstract as valuable, as it is the first description of this interesting series of rocks in a scientific journal. I regard the nature of the discussion as also interesting and useful.

I would observe that the publication is also to be valued, as it led to the production of a very valuable note by Prof. T. Rupert Jones, on Eintomostrece from Arisaig, "D. Upper series," which I had given to him in 1862.

Centennial Exhibition Phil., 1876.

When I saw the admirable stratigraphical collection of rocks 5
of the Canadian Geological Survey arranged in the Canail ceived a letter from the Mineral Department, I was somewhat surprised to find a suith a copy of the Transactic specimens from George's River, Cape Breton, (the Cape Brymonth auong the Geold representative of iny "Lower Arisaig series,"-vide Tru and "Geology of Antigo arranged with others from C. B. in the Laurentian division was led to believe that the Geological Survey still followed the wake of "Acadian Geology." I was therefore not at all prised to find Mr. Selwyn, the distinguished Chief of Survey, describing to the International Judges of Class 100 Laurentiun uxis delineated on a sketch map of Nova Sci and including in it George's River, Arisaig, and the Cober Mountains, as well as the Laurentian series of rocks of . Brunswick.

Pre-silutilan Rocks of Cape Breton

August, 1876, I received the Cancedion Journul contail Prof. Chapman's admirable "Outlines of the Geology of Cana In the Cape Breton section I took particular notice of Geology of Campbellton, Victoria County. Here the Pre boniferous rocks are described as Pre-silurian. These had examined by the author, accompanied by Mr. Fletcher of Geological Survey. In the vicinity of these are the Pre-silu rocks of St. Ann, from which Mr. Hendry, Dep. Comnr. of Cr Lands, took the specimen of Ophicalcite which was exhibited the Nova Scotian Department of the Exposition de Paris, 1 This was the specimen referred to in which Sir C. Wyi Thompson found eozonal structure. There were also the rit which Mr. Hartley, of the Geological Survey, considered to b Laurentian age. Mr. Robb considered the Campbellton rock be of Quebec age.

Every Geologist that examined the Cape Breton Pre-carl ferous Crystalline rocks had thus come to form an opir different from that expressed by the author of "Acadian logy," who seemed still determined to maintain their Devor or Upper Silurian age.

Correspondence.

Not long after the receipt of the Canadian Journal, 1
in the Canai ceived a letter from the author of "Acadian Geology," requesting 1 to find a suite a copy of the Transactions of $1875-6$, containing my papers, "A 'the Cape Bry month anong the Geological Formations of New Brunswick," ,"-vide Tru and "Geology of Antigonish County."
entian division On receipt of the Transuctions, another letter was sent, in still followel which he made some objections to my use of the terms Lower, ore not at all Middle, and Upper Arisaig, stating that Geologists would never ed Chief of concede to one locality all the formations that I had assigned to of Class 100 it , at the same time proposing that I would call my "Lower of Nova Sc Arisaig series" the "Cobequid Mountain series," and then he nd the Cobeg would accept of it.* I had adopted the nomenclature after disof rocks of X posing of the "Acadian Geology" division, and as a convenient and, to me at least, satisfactory method of indicating my operaETON. urnel contaii logy of Cana ir notice of fere the Pre These had Fletcher of the Pre-silu Comnr. of Cr was exhibitei n de Paris, Sir C. Wy re also the ro nsidered to b obellton rock
ton Pre-carb orm an opir "Acadian their Devor

Journal, I tions in Pre-carboniferous Geology, especially at Arisaig, I could not see any valid reason for substituting any other local nomenclature in its stead, especially that preferred. If I were to consider it expedient to adopt any other, I would adopt "George's River, C. B.," which I associated with Arisaig in my paper of 1872, following the example of the Geological Survey in its maps and reports of Cape Breton. For the Middle Arisaig I wonld adopt Wentworth, I. C. R., Cobequid, A, (B being employed to represent the Wentworth fossiliferous series.) It was. here that I first found occasion to adopt the term " Middle AriMy "Upper Arisaig series" I would then call the "Arisaig and Moyda't series," the last being the "Lower and Upper Ari' of Acadian Geology.
Considering that the Pre-silurian age of the "Lower Arisaig series" has now been established, and that it may be an open question for some time to come, whether the series be of Laurenfian, Huronian, or Lower Cambrian age, I have no objections Whatever to discontinue the use of the term "Lower Arisaig series," and to imitate the example of American Geologists in udopting the term "Archæan," under which Prof. J. Dana has Hready placed the typical Arisaig series. "Manual of Geology,"

* It appears, according to his own account, in his address as President of the Natural History lociety of Montreal, the author of Acadian Geology in his last Elition-Third, has acted on his Hggtion, and made a "Cobequid Series" and described it. He seems to have described my
ghdile Series" but certainly not my "Lower Series" nor the George's River, C. B. Series, ddress Canadian Naturalist, New; Series, Vol. 9, No. 3,
lust edition. I would reserve "Middle" and "Upper Aified bands of calcareous, a for further use.

Archean.
 George's River, C. B.

The Arisaig Crystalline rocks were per se correlated wit Laurentian by comparison with the fine series of Laur rock specimens in the Canadian Department of the Exposit Paris, 1867. Shortly after I thus correlated them I showe cimens to Sir W. E. Logan, who considered them to be of age. When I found the corresponding series at George's C. Breton, I came to the conclusion that both were of age, which was then regarded as corresponding with the ferous (Lower Silurian), and designated the typical series Arisaig." The discovery of an intermediate series in the quids, which I designated " Middle Arisaig," led me to lom horizon of the "Lower Arisaig." The subsequent exami of the Saint John, New Brunswick, Laurentian, led to th clusion that the two were perfectly identical,-vide paper, "A month among the Geological Formations of Brunswick," 1875-6.

Mr. Fletcher's very interesting discoveries of Primordial in strata overlying the Crystalline rocks of George's River Lower Arisaig, tended to confirm the correlation with St Laurentian. Additional evidence is also furnished by 1 covery of Upper Lingula flag forms at Marion Bridge River, C. B. To these I have to add the Rev. D. Suthe discovery of Primordial sandstone, with Lingulella sp., of ridge, C. B.

I have just received from Mr. Selwyn, Director of the D Geological and Natural History Survey, a brochure giving interesting account of his examinations of the Quebec tions of Canadian rocks. He proposes to adopt the fo divisions of systems to include the groups enumerated.
I.-Laurentian. To be confined to all those clearly low conformable granitoid gneisses, in which we never find int

II--Huronian. To int Luronian ; 2nd, the Hast renville group; 3rd, th forian ; 4th, the altered Qt cotia, and New Brunswicl neissoid group.
It thus appears that wh ries" as Laurentian, and t cal with the New Brunswi t diverted very much fron The Canadian Naturali before the Natural CeFarlane, Esq., in answer t e chaims precedence in aser: etamorphic rocks. It seen pressed by him in a report rly as 1862 . If I had be iis report when comparison B, with the Quebec rocks evented from making so g 1 an to the Calciferous, (Low

Annap

Fossili Silurian, Gesner, 1849.
Devonian and Lower Held
Middle Silurian, Honeymas When I examined the Nict on of the existence of the cor Zophentis, and referred to in a note to my pap calities in Eastern N. S.," C "Acadian Geology," ed. 18(anything that I had read a
"Upper Arfified bands of calcareous, argillaceous, arenaceous and conglomrates.
II.-Huronian. To include, 1st, the typical or original turonian; 2nd, the Hastings, Templeton, Buckingham and frenville group; 3rd, the supposed Upper Laurentian or
forian ; 4th, the altered Quebec; 5th, the Cape Breton, Nova cotia, and New Brunswick pre-primordial sub-crystalline and neissoid group.
It thus appears that when I regarded the "Lower Arisaig sries" as Laurentian, and then Quebec, and last of all, as idencal with the New Brunswick, and therefore, Laurentian, I had ot diverted very much from first to last.
orrelated wi ries of Laur f the Exposit hem I showe em to be of at George's h were of ig with the pical series" eries in the ad me to low puent examir in, led to the cal,-vide n smations of

f Primordial

 sorge's River ion with St aished by his xion Bridge v. D. Suthe ulella sp., oror of the D_{0} shure giving he Quebec opt the fol merated. ever find int
clearly lon" "Acadian Geology," ed. 1868. I had only a faint recollection

The Canadian Naturalist of July, 1879, contains a paper before the Natural History Society of Montreal, by CeFarlane, Esq., in answer to Mr. Selwyn's pamphlet. In this eclaims precedence in ascribing a Cambrian age to the Quebec letamorphic rocks. It seems that this view of their age was xpressed by him in a report to the Director of the Survey as urly as 1862. If I had been fortunate enough to meet with lis report when comparison of the Arisaig and George's River,

1. B, with the Quebec rocks was instituted, I would have been revented from making so great a change as from the Laurenan to the Calciferous, (Lower Silurian.)

Annapolis County.
Nictaux.
Fossiliferous Rocks.
Silurian, Gesner, 1849.
Devonian and Lower Helderberg, Dawson, 1868.
Middle Silurian, Honeyman, 1878.
When I examined the Nictaux formations, I had no recollecon of the existence of the coral there, which had been considered Zophientis, and referred to by the author of "Acadian Geo-
" in a note to my paper "on new Fossiliferous S.lurian pealities in Eastern N. S.," Canadian Naturalist, 1860, and also f anything that I had read about the Nictaux fossils, and I did.
not wish to refresh my recollection, as I wished to examine the in the light of my own experience. This led me to identify t rocks with others with which I was well acquainted without as reference to the coral in question. The lithology and stra epo graphical relations and familiar forms of fossils found in certa noticed by Mr. Hartley c strata, enabled me to correlate the strata with the Mill position where they have Silurian formations of Eastern Nova Scotia, and led me to se by Dr. J. W. Dawson, w] for other familiar forms, and to find them ; Petraia was notal age, and on his authority one of the number.

It is noteworthy that the Devonian Zaphrentis of Dawson 1 the Petraic Forrestere of Salter, occurring in strata refen th by him to Mayhill Sandstone, (Intermediate Silurian of Rams and Salter). This is eminently characteristic of all the Meyli colouring. Now this arc Sandstone localities in Eastern Nova Scotia, which are eight number. In one of these localities in the Marshy Hope, in t County of Antigonish, the Petraia strata seem to stand alor In Barney's River, French River, and Sutherland's River, the are associated with Clinton and underlie it, other members the Upper Arisaig series being absent.

At Lochaber the same strata are associated with C and Upper Arisaig, and underlie them.

At Irish Mountain and McLellan's Mountain they are ass ciated with B^{\prime} and D Upper Arisaig and underlie them. Arisaig the Petraia strata (A) are associated with and underi B, and the B' Clinton of Hall and Dawson, C Aymestry Lim" stone, and D Upper Ludlow, or Lower Helderberg. In Iri Mountain and McLellan's Mountain the Petraia strata are Ce tral Mountain strata in common with the extensive Diorites Devonian age.

It is also peculiarly noteworthy that the author of "Acadis Geology," on the faith of "one indistinct specimen of Zaphre tis," concluded that the Petraia strata of Lochaber was Devonian age, and re-asserted the same opinion about 1874.

PRE-CARBONIFEROUS ROCKS OF THE PICTOU COAL FIELDS, OR DEVONIAN AGE.
In the Report of Progress of the Canadian Survey from 1866-

7, Sir W. E. Logan ous rocks underlying sobserved by me on ch these older rocks 1 In my criticism of this paper, I said: "I presume t the area indicated on the S W. Logan's Report, v colouring. Now this arc Sutherland's River, and it son's Mills, so that in addi Mountain, (range,) the al Sutherland's River."
In my second paper of t I wrote: "The supposed I
River, which are consider
similar" to those of McL
W Logan's map, by a Dev
Here the Pre-carboniferou:
Dr. Dawson as "probably Acadian Geology" 1st Ed ous expression hardly wa
W. Logan derives from When the question of th MeLellan's Mountain had
"Acadian Geology," it woul reference. In 1855 the roc allogether problemutical "I metamorphosed,"-"Acadia had succeeded in finding er Logan examined them and determine their age. i. e., 18 It was in the summer of
to examine the帾 identify sted without logy and stra: epoch these older rocks belong, but masses somewhat similar are found in certa noticed by Mr. Hartley on the west side of the East River, in a ith the Midi position where they have been mentioned in his Acadian Geology, led me to se by Dr. J. W. Dawson, who considered them to be of Devonian aia was notul age, and on his authority they will be so distinguished."

In my criticism of this conclusion in Transactions 1870-1, 1st 's of Dawson paper, I said: "I presume that this language is intended to apply to strata refem the area indicated on the S. E. corner of the map which accompanies rian of Rams Sir. W. Logan's Report, which is distinguished by the Devonian all the Mayh colouring. Now this area has its N. E. corner at the Falls of ch are eight Sutherland's River, and its S. E. corner at the bridge at McPhery Hope, in ti son's Mills, so that in addition to the northern part of McLellan's to stand alor Mountain, (range,) the area in question includes also a part of l's River, the Sutherland's River."
er members fr my second paper of the same session, Transactions page 141,
I wrote: "The supposed Devonian rocks on the west side of East with C and River, which are considered by Sir W. Logan to be "somewhat similar" to those of McLellan's Mountain, as indicated on Sir they are ass W Logan's map, by a Devonian coloured area on the north west. rlie them. Here the Pre-carboniferous rocks of Waters' Hill are regarded by 1 and underl Dr Dawson as "probably of Devonian age,"-vide page 319 of ymestry Lim "Acadian Geology" 1st Ed. It will be observed that this cautiberg. In Iri ous expression hardly warrants the positive conclusion which rata are Ce Sir W. Logan derives from it."
ve Diorites When the question of the age of the Pre-carboniferous rocks of MeLellan's Mountain had to be referred to the authority of " of "Acadia "Acadian Geology," it would have been as well to make a direct 2 of Zapher reference. In 1855 the rocks in question were referred to the haber was altogether problematical "Devonian and Upper Silurian, mostly out 1874. metamorphosed,"-_"Acadian Geology," 1855, map,-and no one had succeeded in finding evidence up to the time that Sir W. FIELDS, of Logan examined them and found no evidence by which he could determine their age. i. e., 1868.
y from 1866- It was in the summer of 1869 when Mr. Hartley was working
alone in the Picton Coal Field that I succeeded in identifying A B^{\prime} and D of my Upper Arisaig series, (i. e, A Mayhill Sandstone B' Clinton, and D Upper Ludlow or Lower Helderberg), in Iris Mountain, McLellan's Mountain, and Sutherland's River, and it discovering characteristic fossils in them all. It was on thit occasion that I identified the Mayhill Sandstone of Frasel Mountain, (McLellan's Mountain range), and found Petraii afterwards in the same way that I identified Nictaux correspond ing strata and found Petraia in them.

I also identified the same formation at Sutherland's River by the occurrence of Petraiu, the rocks being unlike and the relar tions doubtful and found characteristic, Athyris and Orthe of A in like abundance, and of the same genera and species (un determined) as at Lochaber, Arisaig, and Marshy Hope.

About the time that Sir W. Logan was writing his report, read a paper before the Institute which I concluded thus:-"l may seem strange that during my deseription of the area under. lying the Pictou Coal Field, I have made no mention of the Der onian formation which is so often spoken of in connection with the strata underlying the coal field. The reason why is this,--there it no Devonian to be found there."-Transuctions, 1870-1, page 75 I felt called upon the following session, 1871 2, to maintain the conclusion arrived at, after the appearance of Sir W. Logan Report on the Pictou Coal Field, which I did by adducing the evidence which I had discovered in Irish Mountain, McLellan: Mountain, and Sutherland's River, in opposition to Sir WI Logan's views, evidence which has not yet been called in ques tion, but which the author of "Acadian Geology," in accordane with his views on Lochaher and Nictaux, would have regardel as confirming the opinion expressed by Sir William Logan founded on his authority.

An application of the preceding to views entertained regarding Nictaux is obvious, but as the Devonian age of the Lochaber Petraia strata was inferred by the author of "Acadian Geology from a specimen of Petraia which was Zaphrentis, "a cast no sufficiently perfect for specific determination, but not unlike im. perfect specimens from the Devonian of Nictaux."-Canadian

Naturalist, Aug., 186 cation as of much imp

I used the expressio of Sir W. E. Logan. word to Sir W.'s view: ence to the views ente it was my own observ: onian at McLellan's M

In the typical "Low been found. Quartz vi Petrosiliceous rocks of tes are of very frequer In the Cobequid Mount tocks of this series corr Saint John, New Bruns oldest in Nova Scotia, i.

HAL1
"The Granite of No Mica slates are among t "Acadian Geology," 186
"As the Granite is its cy," page 500.
Sir Wm. E. Logan, the the present Director of t the Granites as all of th
Professor H. Y. Hind Scotian Granites to be L
I have shown in my p -Nictaux," that the Gra
*Notr,-I have just examimed t kontirm my opiuiou regruding Nictul
| identifying 1 hill Sandston rberg), in Iris
River, and t was on thit one of Fraser found Petraí ux correspond
nd's River br and the rela is and Orthi id species (un hy Hope.
his report, ed thus:-" le area under on of the Der ection with the this,--there $70-1$, page 7 , to maintaiir ;ir W. Logan! adducing the n, McLellan: n to $\operatorname{Sir} \mathbb{W}$ olled in ques n accordane ave regardel lliam Logan
aed regarding the Lochabe an Geology
"a cast no: st unlike in.
--Canadian

Naturelist, Aug., 1866, page 199. I do not consider the applieation as of much importance.*

CORRECTION.

I used the expression "antiquated" in characterizing the views of Sir W. E. Logan. This was an improper application of the ford to Sir W.'s views as expressed in 1870. I then had reference to the views entertained in 1855, and did not consider that it was my own observations in 1869 that disposed of the Devonian at McLellan's Mountain.

granttes.

Archacan.

In the typical "Lower Arisaig series" granites have not yet been found. Quartz veins with mica are found penetrating the Petrosiliceous rocks of the series. In Cape Breton coarse grantes are of very frequent occurrence among rocks of the series. In the Cobequid Mountains they also oceur. In this respect the rocks of this series correspond with the Laurentian formation of Saint John, New Brunswick. I consider these granites to be the oldest in Nova Scotia, i. e., according to present appearances.

halifax, shelburne, etc.
 Granites.

"The Granite of Nova Scotia and its associated gneisses and Mica slates are among the oldest rocks found in the Province." "Acalian Geology," 1868, page 622.

NICTAUX.

"As the Granite is itself of Devonian Age." "Acadian Geolosy," page 500 .
Sir Wm. E. Logan, the late Director, regarded, and Mr. Selwyn, the present Director of the Geological Survey of Canada, regards the Granites as all of the same age-Devoniun.
Professor H. Y. Hind considers the Cape Breton and Nova Scotian Granites to be Laurentian Gineisses.
I have shown in my paper " on Geology of Annapolis County -Nictaux," that the Granites underlie (almost unaltered) Middle

[^1]Silurian-possibly Lower Silurian strata, and therefore that that they are of "pre-Middle Silurian" age. I have also demonstrated that a Gneissoid connection of this Granite and phenomena are precisely similar to what are observed at Halifax, and that there is not sufficient grounds for assigning one age to one and another age to another.

All our Granites seem to be of Archacen Age. In the case of the Halifax Granites, as well as those of Nictaux, there seems to have been a re-metamorphism effected during Upper Cambrian and part Lower Silurian time.

In a paper which I am preparing "on the Geology of Halifax" I will give my reasons for the conclusion stated.

Art. XI.-Fish Culture.-By John T. Mellish, M. A., Pirincipal of Albro Street School, Halifax, N. S. (Rend May 12, 1879.)
The subject of fish culture, or the propagation of various kinds of fish by artificial means, has within the past few years received considerable attention on both sides of the Atlantic. As a branch of economic industry, the culture or breeding of trout, shad, oysters, salmon and other kinds of fish used by man as food, cannot be too carefully attended to by the State, and especially so, when such artificial breeding seems to be the only remedy for re-stocking depleted rivers and streams. My object in preparing this paper is to place on record in connected form a short history of fish culture in our own country. In doing this, I shall touch very briefly on the subject as referring to other countries. The culture of the salmon, and, to some extent, the white fish, is all that has been attempted as yet in Canada. As the Institute was favored a short time since with a most excellent paper on the Salmon by a distinguished member of this body, Dr. J. B.Gilpin, it is not at all necessary that on the present occasion I should refer, except incidentally, to the various stages of growth and development through which the fish passes, from the time it leaves the ova till it becomes the full grown salmon, beautiful to the eye, delicious to the taste. The peculiar instinct of the
salmon, shad, and s they emerged from hatched, in order to ful growth in salt w: a depleted river, but inally frequented tl water, even if only a of the ova is lost whi that $90 \mathrm{p} . \mathrm{c}$. is hatch breeder.

Fecundated fish spa the Chinese from t their old writers infor kinds and of the choir supply thie demand.
Tusculum, on the shor fish ponds to the sea ; these canals ; that sea deposited their ova we flood gates; and that ponds amounted to a s the Roman Republic 1 practiced until the 14 t the Abbey of Reome, b who expressed the ova of these boxes were of with sand on which the to have ensued when n Jacobi, a German, begぇ thirty years. Others s about the year $1834 \mathrm{M}_{1}$ salmon in wooden boxe cessfully experimented many depleted rivers years salmon culture ha Scotland and Ireland. accumnulated in the busi
erefore that also demonphenomena x , and that 3 to one and
the case of re seems to r Cambrian
of Halifax"
A., Piiny.
of various few years e Atlantic. reeding of d by man te, and esthe only My object red form a loing this, ; to other xtent, the nada. As ost excelthis body, it occasion of growth re time it beautiful ct of the
salmon, shad, and some other fish, in seeking the river where they emerged from the egg and were deposited after being hatched, in order to spawn, after having acquired their wonderful growth in salt water, renders it possible not only to re-stock a depleted river, but to introduce a larger run of fish than originally frequented the river. Salmon will seek their native water, even if only a small stream. It is computed that $90 \mathrm{p} . \mathrm{c}$. of the ova is lost when the spawn is deposited in the river, and that $90 \mathrm{p} . \mathrm{c}$. is hatched when deposited in charge of the fish breeder.

Fecundated fish spawn has been an article of traffic mong the Chinese from time immemorial. The Romans, who, as their old writers inform us, used fish at their tables of various kinds and of the choicest quality, resorted to artificial culture to supply thie demand. We are told that Lucullus, at his house at Tusculum, on the shores of the Bay of Naples, dug canals for his fish ponds to the sea; that fresh water streams were led into these canals; that sea fish having passed up into the ponds and deposited their ova were prevented from returning to the sea by flood gates; and that the yearly value of the fish kept in these ponds amounted to a sum equal to $\$ 250.000$. After the fall of the Roman Republic fish culture does not seem to have been practiced until the 14th century, when Dom Pinchon, a monk of the Abbey of Reome, bred fish in wooden boxes. He was the first who expressed the ova and applied the male milt to it. The ends of these boxes were of wicker work, their bottoms being covered with sand on which the ova were deposited. An interim seems to have ensued when no interest was taken in the art. In 1763, Jacobi, a German, began experiments which he carried on for thirty years. Others soon took an interest in the matter, and about the year 1834 Messrs. Shaw and Young, of Scotland, bred salmon in wooden boxes. Joseph Remy, a French peasant, successfully experimented in 1849 in re-stocking with young fish many depleted rivers and streams. During the past twenty years salmon culture has been carried on with great success in Scotland and Ireland. In many cases large fortunes have been accumulated in the business by private individuals. Consider-
able attention has also been given to the sulject in the United States, but the Americans are free to confess that the facilities in Canada for salmon culture are much greater than in their own country. In several of the Eastern States the culture of the common brook tront has been carried on successfully.

Artificial fish culture was first introduced into Canada by Mr. Samuel Wimot, a native of the Province of Ontario. Having been brought up in the immediate vicinity of a once famous salmon producing river, and having observer the gradual decline in the numbers of this fish entering the stream, Mr. Wilmot conceived the idea of endeavoring to re-stock it by artificial means, somewhat after the manner practised at Stormontfield in Scotland, and at Huningen in Germany. His first attempt was made in the year 1866. Having then no practical knowledge of the details of the work, his operations were necessarily limited and rather unsuccessful. The art of manipulating the fish and of impregnating the ova obtained from them required close study and experience. Mr. Wilmot, being exceedingly ingenions and a man of great determination, was nothing daunted by failare, but continued year after year to renew his attempts to overcome the difficulties before him, and was highly gratified to find in the year 1870 that he had mastered the art and was able to take the ova from the mother fish without injuring her, and after fecunding them by the milt or impregnating fluid obtained from the male fish, was able to keep them safely duing their long period of incubation, and finally to deposit them safely in the river. Having accomplished this much entirely at his own expense, and being convinced of the practical utility of the work in re-stocking the almost depleted rivers of his native Province, he brought the matter before the Dominion Government and asked for a small appropriation which would enable him to perfect and extend his scheme. Up to this time Mr. Wilmot's operations and experiments had been carried on in his own cellar, through which a small stream of water passed, but as no extensive results could be secured in so limited a space, he was anxious to obtain more suitable accomolation. Mr. Wilmot then succeeded in obtaining a sufficient sum from the Dominion Government
to permit of his secute his experi saluon hatchery, near the village number of hatchi impregnated ova, water supplied fro of the building. ments had been ea but now, having anxious to deal w most determined t curing about 2.50 hatching this nur rivers in the vicin nished him still fu the work. The t convinced of the g work into the Mar eries existed. He placed in the estin ways, and in 187: these Provinces. souche river, the b New Brunswick. menced at Gaspe is the Miramichi in S lishments were ft have turned out couraged by the s eries Department and erected on the Basin, another est Mr. Sannel Wilmot intendent of Fisher opened ly Mr. A. B work. Mr. A. B. W
he United facilities 1 in their culture of ly.
da by Mr. wing been is salmon ne in the conceived ns, someScotland, made in f the deiited and nd of imtudy and nd a man but concome the d in the take the r fecundfrom the g period he river. ense, and re-stockbrought ed for a and exons and through sive rexious to ıcceeder ermment
to permit of his erecting a suitable hatchery in which to prosecute his experiments on a more extensive scale. The first salum hatchery, built in 1870, was located on Wilmot's creek, near the village of Newcastle, Ontario. In this building a number of hatching troughs were placed, in which were laid the impregnated ova, each trough being fed by a small stream of water supplied from a large tank or reservoir placed at one end of the building. Previous to this time Mr. Wilmot's experiments had lieen contined to comparatively small numbers of ova, but now, having increased space and better facilities, he was anxious to deal with hundreds of thousands of them. By the most determined effort and diligent labour, he succeeded in procuring about 250.000 ova. Having been very successful in latching this number and depositing them in several of the rivers in the vicinity of the hatchery, additional means were furnished him still further to increase the facilities for carrying on the work. The then Minister of Marine and Fisheries being convinced of the great utility of the scheme, decided to carry the work into the Maritime Provinces, where the most valuable fisheries existed. He accordingly, in the year 1872, had $\$ 20,000$ placed in the estimates for the year for fish breeding and fish ways, and in 1873 was completed the first hatchery built in these Provinces. This was situated on the far faned Rertigouche river, the boundary between the Provinces of Quebee and New Brunswick. Duning this year another hatchery was commencel at Gaspe in the Province of Quebec, and still another on the Miramichi in New Brunswick. In 1874 these three estab. lishments were fully completed, and each year since they have turned out their quota of salmon and other fish. Encouraged by the success attending these hatcheries, the Fisheries Department in 1875 extended the work to Nova Scotia, and erected on the Sackville river, at the head of Bedford Basin, another estallishment. This hatchery was located by Mr. Samuel Wilnot who had previously been appointed superintendent of Fisheries for the Dominion, and was completed and opened ly Mr. A. B. Wilmot, one of the oldest apprentices at the work. Mr. A. B. Wilnot's extensive and varied experience gained
while in the work at the older institution in Newcastle, . Ontario, and afterwards while in charge of the hatcheries at Gaspe and Miramichi, has enabled him to introduce into the Bedford establishment the most improved and serviceable appliances for prosecuting the work on a large scale. Among these appliances which are as yet only used in his establishment, but which will shortly be introduced into the others, are 1st, a set of filterers for preventing the foul sediment from coming in contact with the ova, and thereby injuring them ; 2nd, a new description of tray or hatehing grill, upen which the ova are placed during the season of incubation; these trays are of the ordinary earthenware, covered with a thin salt glazing, and were introduced to prevent the possibility of any chemical action which might injure the young fish, between the iron and sulphur contained in the water and the zinc of the trays previously introduced by Mr. Samuel Wilmot, and which up to this date were the only trays used ; 3rd, a simple but most serviceable escape or overflow pipe, which will permit any required quantity of water to pass through the hatchery trough, while no young fish can possibly escape. Aided by these improvements, Mr. A. B. Wilmot has been enabled to achieve a degree of success comparatively greater than that attained in any of the older establishments. As it was impossible to obtain from the Sackwille River a sufficient number of the parent fish, from which to obtain a full stock of ova, recourse was had to some remote rivers of this province, principally River Philip in Cumberland county, West River in Pictou county, and the Annapolis and Musquodoboit Rivers. Those rivers producing the largest salmon were chosen in preference to the others, the object being to restock the depleted rivers with a larger run of fish than formerly frequented them. At convenient points auxiliary establishments or reception tanks and spawning sheds are erected, in which to confine the salmon and perform the delicate and important work of manipulating. The result of Mr. Wilmot's labours for the three years this establishment has been in operation, has been the hatching and distributing among thirty-five rivers of this Province, the large number of $3,000,000$ Salmon, 160,000

White Fish, and 80 tained from the lak (April, 1879) 1,800,0 commence to distril within reach of the salmon distributed f four years. The Bc smallest in the Dom There are at presen Dominion : two in O wick, one in Nova S tional one, during th E. Island is certainl distributed during th in operation, within 1 of which about 30,00 of the west. No dou the Shad will receive

Art. XII.-Experim
Professe Medical

This short essay or members of the Counc

It contains nothing the use of the Microse prepared to accompany members, and it does r these, nor of the specin

The writer feels con to fill at the final mee occurred for the first failed to present the re ing of the session, has (was to us all, not only
itle, .Ontario, es at Gaspe the Bedford pliances for e appliances t which will f filterers for cet with the tion of tray ing the scaarthen ware, l to prevent ight injure intained in roduced by were the : escape or uantity of no young ments, Mr. e of sucf the older the Sack1 which to ne remote imberland polis and sts salmon ing to reformerly lishments in which mportant bours for tion, has rivers of 160,000

White Fish, and 8000 Salmon Trout, the latter having been obtained from the lakes of Ontario. He has at the present time (April, 1879) $1,800,000$ Salmon hatched, and in a few days will commence to distribute them among the most suitable rivers within reach of the hatchery. This will make a total of $4,800,000$ salmon distributed from this one hatchery, in the short space of four years. The Bedford Establishment, although one of the smallest in the Dominion, has a hatching capacity of $2,500,000$. There are at present eight fish-breeding establishments in the Dominion : two in Ontario, four in Quebec, one in New Brunswick, one in Nova Scotia; and it is proposed to erect an additional one, during the present summer, in New Brunswick. P. E. Island is certainly entitled to one. There will probably be distributed during the next four weeks from the hatcheries now in operation, within the Dominion, about $40,000,000$ young fish, of which about $30,000,000$ are the White Fish of the great lakes of the west. No doubt the culture of the Trout, the Oyster and the Shad will receive attention in Canada at an ear'y day.

Art. XII.-Experimental Microscopy.-By J. Somers, M. D., Professor Physiology, Microscony, \&c., Halifux Medical College.
(Read May 12th, 1879.)
This short essay owes its existence to a wish expressed by members of the Council of the Institute.
It contains nothing original, or what any person familiar with the use of the Mieroscope, does not already understand. It was prepared to accompany a series of experiments presented to the members, and it does not pretend even to explain the nature of these, nor of the specimens exhibited.

The writer feels complimented in that he has been requested to fill at the final meeting of this season, a vacancy which has occurred for the first time for many years. One who never failed to present the results of his observations at the final meeting of the session, has closed his earthly labors. Endeared as he was to us all, not only for his zeal and arduous toil in the cause

EXPERIME
of science, but also for possessing those qualities of head an heart which constitute the true gentleman; his death has cause a vacancy in our ranks, which time will scarcely obliterate. The memory of his scientific and personal worth will ever recurt remind us of the loss which science and our Institute has sho tained.

Our subject for to-night is appropriate, in riew of the honow recently confersed upon us by the Royal Microscopical Society London. The fellowship which comes to our President, while his iss in office, is a tribute to work which has been done by om bory, and every member should feel a reasonable pride in the distinction, inasmuch as it is given in appreciation of work whid all have tended to forwarl ; furthermore we have reason for con gratulation in the circunstance that the honour has fallen upor right worthy shoulders, those of a pioneer in the cause of science

It would be out of place to take up your time in describing the construction, or even the history of the Microscope. Its beginnings, like that of many uscful inventions, were very simple ; the lenses with which Leuwenhoeck discovered the blood corpuscles and Malpighi the capillary circulation, when compared with the compound Microscope of to-day, tells at a glance of the vas strides which microscopy has made within the two centuric which have passed since it began to be applied to the study did Biology. It will enable us also to comprehend and appreciate it value to the stadent of science, in opening to his bodily an mental vision fields of observation, which without it could neve be explored.

A glance through the instruments before you will reveal that sublime sight which the immortal Harvey is said to have neve beheld, "the circulation of the blood in the capillary blood ves sels." This discovery was made twenty-six years subsequent to Harvey's publication of his discovery of the circulation through the heart and great vessels.

The development of the young Salmon from the ova can now be easily observed; and the various changes, from the swelling of the blastoderm to the formation of the perfect minnow, ant very interesting. Embryology may be said to date as a scientifir
study from the time, 11 Microscope to its eluci The infusorix, so cal pist. The multitude of of the position of mar animal or vegetable kin study. They afford an partly explored. Here Evolutionist and Panspe The Microscope has r false ideas and crude the taneous generation theor whose generation is unk spontaneous efforts of matter, the extent of its the sum of our knowledg by division ; hence, in lo theory, we find it always ed by the ancients, it suff fishes, insects, and all of re-production was unk

The study of the embryc doubts relative to their re the position of the scien heterogeny is still receives being shifted to a stithelow reproduction is obscure or atises, have we really a spe is there a possibility of the anongst them, of which w ϵ question extends, in the po the discovery of the Micros istence of a Bacterium by generated spontaneously, if lieved. Writing to Redi, he facturing snakes :-
'Take some snakes, of \mathbf{v} 6
s of head ani -ath has cause ,bliterate. Tl
ever recurt titute has stlo
of the honow dical Society ident, while lit 1 done by 010 e pride in the of work whid reason for con is fallen upoz use of science in describing spe. Its begin y simple ; the od corpuscles ured with the of the vass wo centurie the study appreciate it is bodily an t could neve

1 reveal that

- have never y blood ver ubsequent to ion throug
iva can noti the swelling ninnow, alt s a scientifi
study from the time, 1672, when Regnerus De-Graaz applied the Microscope to its elucidation.
The infusorie, so called, are very interesting to the Microscopist. The multitude of forms, variety of structure, uncertainty of the position of many of them, whether they belong to the animal or vegetable kingdom, increase their value as objects for study. They afford an immense field for original research, but partly explored. Here we find the battle ground where Vitalist, Byolutionist and Panspermatist can wage intellectual warfare.

The Microscope has rendered invaluable service in exploding false ideas and crude theories. If we take for example the spontaneous generation theory. Assuming all animals, the mode of whose generation is unknown or obscure, owe their origin to the spontaneous efforts of nature acting by force upon inorganic matter, the extent of its application would be proportionate to the sum of our knowledge of sexual generation, or of generation by division; hence, in looking backward at the history of this theory, we find it always resting on an ever shifting base; accepted by the ancients, it sufficed to explain the generation of reptiles, fishes, insects, and all animals of whatever kind, whose mode of re-production was unknown.
The study of the embryology of these creatures have satisfied all doubts relative to their re-production, yet are we very much in the position of the scientific world in the time of Aristotle, heterogeny is still received by many as a scientific fact, the base being shifted to a stithlower stratum of life, where the process of reproduction is obscure or not yet known. The question then arises, have we really a spontaneous origin of minute beings; or is there a possibility of the existence of a process of generation anongst them, of which we are ignorant? We are, so far as this question extends, in the position of our predecessors, previous to the discovery of the Microscope. We cannot account for the existence of a Bacterium by reproductive generation, therefore it is generated spontaneously, if so, why not a snake? as Kercher believed. Writing to Redi, he gives the following recipe for manufacturing snakes:-
"Take some snakes, of whatever kind you want, roast them, 6

EXPERIME
"and cut them into small pieces, sow these in an oleaginous soil " sprinkle from day to day with water, taking care that the piee " of ground be exposed to the spring sun, and in eight days you "will see the earth strewn with little worms, which, bein, " nourished with milk diluted with water, will gradually increa* "in size till they take the form of perfect serpents."-Kerchet Mund. Subterran.

Redi deternined to prove the recipe, and in doing so, explode his friend's theory. He says:-
"Moved by the authentic testimony of this most learne "author, I have frequently tried the experiment, but I coul "never witness the generation of those blessed snakelets made t " hand."-Redi, Generut, Insectorum, 1686.

Redi however found an abundant progeny of Maggots, which being confined in a covered box, were in a short time transformed into flies. To Redi's observations science is indebted for some d the earliest definite knowledge of the generation and metamor phoses of insects.

If one of the ablest men of his time, which Kercher undoubt edly was, will to us appear at a disadvantage, because he to readily accepted a false theory, how careful we should be les our successors a century or so hence may be in a position to subject our theories and experiments to the criticism of ridicule The substitution of infusions of chopped hay or turnips in wate and exposure to sunlight, for chopped snakes, milk, and sunlight is startlingly like a repetition of the old process, and is likely t. be followed by equally satisfactory results.

The revelations of the microscope in all that relates to the process of generation so far as positive facts are concerned, teni to prove the truth of the proposition that every living organism has been generated or produced by a pre-existing living orgars ism. The theory of spontaneous generation had fallen int disregard until certain observations of Pouchet, put forwaid in the year 1847, caused its revival. Pouchet in his experiment seemed to show that certain infusorial animalcules were genc rated spontaneously, but subsequent experiments of Balbiani, is 1861, demonstrated the existence of sexual generation in thee
organisms, heterogens ganisms were needed t the front.

The theory of sponta y the question: Do li eous aggregation of par the resalt of the devel lefined to be that arisis ackination, or without ewsigned for its product All that is positivel. beings points to sexus nature attains that ol of the process. If we 1 beings are formed by organic or inorganic, we example in nature by ar of demonstrating. We or combination of molect lefinite and uniform cha
If we on the other har orders of beings to be o ova, separated from livi suitable conditions, we re what occurs in all cases v lue seen and followed, con demonstrate the process 1
The conclusion we arri organisms reproduce bein generations, and life passe reproducing itself; that living matter, like that m and often, when supposin! linear course, finds that it to me that the only true tion is to assume that thea taneous generation, admiti duction of the lowest form
oleaginous soi that the piee ight days you which, bein, lually increase its."-Kercher
g so, exploded
most learne , but I coull celets made t
ggots, which e transformet d for some nd metamor.
her undoubt scause he tof sould be les sition to sub1 of ridicule aips in wate and sunlight 1 is likely t
lates to the cerned, tem ng organisw iving organ fallen int forward in experiments were genc Balbiani, is on in thex
erganisms, heterogenists had then to recede a step,-new organisms were needed to uphold the theory. Bacterize came to the front.

The theory of spontaneous generation may perhaps be resolved ly the question: Do living organisms come from, $1,-$ a spontaneous aggregation ef particles, diving or inorganic ? 2.-Are they the result of the development of ova? Spontaneous action is lefined to be that arising from natural disposition, tendency or faclination, or without external cause, that is, no cause can be assigned for its production-a confession of ignorance.
All that is positively known of the reproduction of living beings points to sexual generation as the means by which nature attains that object, even accepting certain variations of the process. If we reason from the supposition that living beings are formed by the fortuitous aggregation of particles, organic or inorganic, we assume a fact of which we have no example in nature by analogy, and one which we are incapable of demonstrating. We assume likewise that such aggregation or combination of molecules is capable of producing beings of a definite and uniform character, for which we have no basis.
If we on the other hand suppose the production of the lowest orders of beings to be owing to the development of germs or ova, separated from living beings of their own kind, finding suitable conditions, we rest upon a basis which is analagous to what occurs in all cases where the process of reproduction can be seen and followed, confessing merely our inability as yet to demonstrate the process by which it is brought about.

The conclusion we arrive at from the foregoing is that lising organisms reproduce beings like themselves, through successive generations, and life passes down the pathway of time always reproducing itself; that the mind of man, also a product of living matter, like that matter, is constantly reproducing itself, and often, when supposing it has arrived at the termination of a linear course, finds that it has only travelledin a circle. It seems to me that the only true philosophic view to take of the question is to assume that there is in nature no such thing as a spontaneous generation, admitting, however, the exact mode of production of the lowest forms is net at the present time understood.

Al

LIST OF TH

The following list co occurring in our waters exist in the more remot we may look forward t, boreal marine forms o there under the influenc annually its burden of number of southern mar tervals, by errant exam course, along the heated
In the preparation of generous assistance of hi: Goode, of the Smithsoni Commission, who has k known species, procured 1 sion during the past thret clature.

Fam.

1. Gasterosteus acule Common.

Fan
2. Perca fluviatilis, Common in mo
3. Roccus lineatus (S lineatus, Guntl
4. Morone americana (l rufus, Gunth.

APPENDIX.

LIST OF THE FISHES OF NOVA SCOTIA.
 (Corrected to date, 1879.)
 By J. Matthew Jones.

The following list comprises all the Fishes recorded to date as occurring in our waters. A few other fluviatile species doubtless exist in the more remote lakes and streams of the interior, and we may look forward to the occasional occurrence of additional boreal marine forms on our northern fishing banks, brought there under the influence of the cold arctic current which bears amually its burden of icebergs from Davis' Strait; while the number of southern marine forms may also be augmented at intervals, by errant examples, thrown off during their northerly course, along the heated waters of the Gulf Stream.
In the preparation of this list the author has received the generous assistance of his much esteemed friend, Prof. G. Brown Goode, of the Smithsonian Institution, Assistant U. States Fish Commission, who has kindly furnished a list of hitherto unknown species, procured from our fishing banks by the Commission during the past three years, and revised in part the nomenclature.

Fam. GASTEROSTEIDE.

1. Gasterosteus aculeatus, L. Two-spined Stickleback. Common.

Fam. PERCIDE.
2. Perca fluviatilis, L. Perch. Perca flavescens, Stor. Common in most lakes and streams.
3. Roccus lineatus (Scln.) Gill. Striped Bass. Labrax lineatus, Gunth. Common.
4. Morone americana (Gmel.) Gill. White Perch. Labrax rufus, Gunth. Common.

Fam. TRIGLIDÆ.
5. Sebastes marinus (L.) Lutken ; S. Norwegicus. Gunth Common; taken on the banks while fishing for col
6. Cottus scorpius, L. Sculpin. Very common.
7. C. octodecim-spinosus, Mitch. Not common.
s. Centridermichthys uncinatus, Reinh. Fishing banks off the coast (U. S. F. C.)
9. Triglops pingelii, Reinh. Fishing banks off the coast, (U. S. F. C.)
10. Aspidophoroides monopterygius, Bloch., Stover. Ob. tained from fish stomachs.

Fam. SCOMBRID风.

11. Scomber scombrus, L. Mackerel. Scomber scomber, Gunth. As on other coasts this fish is more abundant some seasons than others ; attributable no doubt to the ample food supply, or scarcity, as the case may be. It generally consists of the minute fry of other fishes; but when that particular food fails, they appear to resort to the minute crustacea. Dr: Gilpin carefully describes this species in Trans. N. S. Inst. Nat. Science, vol. I., Pt. 4, p. 11.
12. Orcynus thynnús (L.) Goode. Albicore. Thaymus thynnus, Gunth. Common in the bays and harbous during the months of July and August.
13. O. alatunga, (L.) Gill. Themnus alalonga, Gunth. According to Messrs. Goode \& Bean's admirable List of Fishes of Massachusetts Bay, (1879) a specimen was obtained by Capt. William Thompson, of the schooner "Magic" of Gloucester, in the Summer of 1878, on Banquereau, at a depth of 300 fathoms.
14. Sarda pelamys (L.) Gunth, Cuv. Bonito. Pelamys sarde. Not common. A young example captured at the mouth of Halifax Harbour is now in the Museum collection.
15. Echeneis \qquad ? Suck-fish. A specimen in the Hali. fax Museum not yet determined.
16. Poro:
17. Lamp
18. Para]
19. Argyi
20. Pomat
21. XIPHI/
22. Cyclo
23. C. SPI:
24. Lipari
$25 . \quad$ L. Mos
25. L. RAN
gicus. Gunth. fishing for col. m.
I. Fishing banks off the coast,

Storer. 0 b.
nber scomber: s more abund. table no doubt y , as the case minute fry of lar food fails, srustacea. Dr: in Trans. N. S
re. Thymms s and harbous
, Gunth. Acairable List of specimen was of the schoonet or of 1878, on i.
'elamys sarde ptured at the I the Museum
in in the Hali
16. Poronotus triacanthus (Peck.) Gitl. Stromateus triacanthus, Gunth. Common.
17. Laypris luna, Riss. Very rare. A specimen was taken at Sable Island some years ago, a rough sketch of which, with the colours well depicted, was made by one of the men belonging to the establishment there, and given to Dr. Bernard Gilpin, in whose portfolio I saw it and carefully examined it. Although the sketch was rude in the extreme, the peculiar form and brilliant colours left no doubt as to the fish. The man had never seen one before.

Fam. CARANGIDE.

18. Paratractus pisquetus (Cuv. \& Val.) Gill. Caranx chrysos, Gunth. Not uncommon.
19. Argyriosus vomer (L.) Cuv. \& Val. Not common. Specimens are occasionally taken in shore waters.
20. Pomatomus saltatrix (L.) Gill. Blue-fish. Temnodon saltator, Gunth. Inserted on the authority of Dr. Bernard Gilpin, who bas seen specimens taken on this coast.

Fàm. XIPHIID $\underset{\text {. }}{ }$

21. Xiphias gladius, L. Sword-fish. Occasionally taken in the bays and. harbours.

Fàm, DISCOBOLI.

22. Cyclopterus lumpes, L. Lump-fish. Very common.
23. C. spinosus, Fabr: Very rare. Trawled off Halifax Harbour by the "Speedwell" Expedition, August, 1877. (U. S. F. C.)
24. Liparis vulgaris, Flem. Common.
25. L. Montagui, Don. Rare. Taken off Halifax Harbour by the "Speedwell" Expedition, Aug., 1877. (U.S.F.C.)
26. L. ranula, Goode \& Bean. Very rare. One specimen only has been obtained by the "Speedwell" Expedition off Chebucto Head, Halifax Habbor, at a depth. of 52 fathoms. (U. S. F. C.).

Fam. PEDICULATI.
27. Lophius piscatorils, L. Devil-fish. Common.

Fam. BLENNIDE.
28. Anarrhichas lupus, L. Cat-fish. Common.
29. A. minor, Olaf. Fishing banks off the coast (U. S. F. C:
30. A. latifrons. Steenst \& Hallg. Fishing banks off the coast (U. S. F. C.)
31. Leptoclinus aculeatus (Reinh.) Gill. Stichaus aculdatus Gunth. Fishing banks off the coast (U. S. F. C.)
32. Eumesogrammus subbifurcatus (Stover) Gill. Pholie subbifurcatus, Stor. Taken off Halifax Harbour hy the "Speedwell" Expedition (U. S. F. C.)
33. E. unimaculatus (Reinh.) Goode \& Been. Stichous umi. maculatus, Gunth. A specimen was forwarded by Mr. Whiteaves from the vicinity of Anticosti to the Smithsonian Institution. See Goode \& Bean's List of Fishes of Mass. Bay.
34. Murenoides gunnellus (L.) Goode \& Bean. Common in shore waters. Described by the author, Trans. N. S. Inst. Nat. Sc. vol. I. Pt. I. p. 50.
3.). Cryptacanthodes maculatus, Stor. Wrymouth. Oceasionally taken. The variety C.inornatus, Gill-is not uncommon.
36. Zoarces anguillaris (Peck.) Storer. Common.

Fam. ATHERINID Æ.
37. Chirostoma notatum (Mitch.) Gill. Atherinichthys notatu, Gunth.

Fam. FISTULARIIDA.

38. Fistularia tabaccaria, L. Occasional specimens taken in shore waters during the summer months. A specimen in the Halifax Museum.
39. F. serrata, Cuv. Like the last species this is occasionally taken in shore waters. The author examined a fine specimen 31 inches in length including caudal filament in Sept. 1863, which had been taken at Portu-
40. LyCO
41. L. VE
42. L. PA:
43. Gadú
44. G. тоз
45. G. EG
46. G. POL
guese Cove, Halifax Harbour. A small specimen is in the Halifax Museum. There can be hardly a doubt as to the distinctness of these two species.

Fam. LABRIDE.

ast (U. S. F. C g banks off the chaus aculcatus (U. S. F. C.)

Gill. Pholis fax Harbour br ${ }^{\prime}$. C.)
Stichaeus uniorwarded by Mr: nticosti to the \& Bean's Cist of
n. Common in or, Trans. N. S.
mouth. Occa $u s$, Gill-is not
mon.
ichtleys notatu,
cimens taken aths. A speci-
is occasionally amined a fine ig caudal filaken at Portu.
40. Tautogolabrús adspersus (Wall.) Gill. Sea Perch. Ctenolabrus burgall, Gunth. Very common during the summer months in harbours and bays. The variety uninotutus, having a black spot at the base of the two anterior soft dorsals rays, mentioned by Gunther, Cat. Fishes, vol. iv., p. 90, is found in company with it.

Fam. LYCODID ※.

41. Lycodes vahlit, Reinh. Fishing banks off the coast, (U. S. F. C.)
42. L. Verrillii, Goode \& Bean. Fishing banks off the coast, (U. S. F. C.)
43. L. paxillus, Goode \& Beair. A single specimen obiained between La Have and Sable Island Banks, recorded in Messrs. Goode and Bean's List of N. E. Am. Fishes (1879) p. 9.

Fam. GADIDA.

44. Gadus morrhua, L. Cod. Very common.
45. G. tomcodus, Mitch. Frost-fish. Very common.
46. G. EGlefinus, L. Haddock. Very common.
47. G. pollachius, L.. Pollack. Very common. Large schools come into Halifax Harbour about the latter end of June or beginning of July, to feed upon the fry of the common hake.
48. Merluclus bilinearis (Mitch.) Gill. Whiting. Merluccius vulgaris, Gunth. Not common.
49. Phycis chuss (Walb.) Gill.
50. P. tenuis (Mitch.) De Kay. Hake. Phycis americanus, Gunth. Very common.
51. P. regius (Walb.) Jord. \& Gilb. Plycis regalis, Gunth. Sir John Richardson gives Halifax as a locality for this species. Faun. Bor. Am.
52. Haloporphyrus viola, Goode \& Beam. Fishing banks the coast (U. S. F. C.)
53. Onos (Rhinonemu's) cimbriuts (L.) Goode \& Bean. M. tella cimbria, Gunth. Fishing banks off the cos (U. S. F. C.)
54. Brosmius brosme (Mull.) White. Cusk. Common.
5.5. Ammodytes americanus, De Kay. Sand Eel. Common buying in the sand at ebb of tide, and going schools at high water.

Fam. PLEURONECTIDE.
56. Hippoglossus vulgaris, Flem. Halibut. Very commo on the fishing banks off the coast.
57. Hippoglossoides platessoides (Fubr.) Gill. Arctic Flour
66. Crist der. Hippoglossoides limandoides, Gunth. Not w common. Of two specimens forwarded by the Re J. Ambrose from St. Margaret's Bay, the large measured twenty-two inches in length.
58. Pseudopleuronectes americanus (Wulb.) Gill. Flounde Plutessa plana, Stor. Ve;y common in shore water Described by the author, Trans. N. S. Inst. Nat. Sc Vol. I., Pt. I., p. 51.
59. Limanda ferruginea (Storer:) Goode \& Beam. Pletin nectes ferrugineus, Gunth.
60. Platysomatichthis hippoglossoides (Will.) Goode Bean. Turbot. Hippoglossus gromlandicus, Gunt Occasional specimens are brought in from the northen fishing banks, but it is more common off Newfoum land. It is a very oily fish when cooked.
61. Glyptocephalus cynoglossus (L.) Gill. Pleuromect cynoglossus, Gunth. La Have fishing bank (U.S.F. Fam. SILURIDÆ.
62. Amiurus catus (L.) Gill. Not common. This fish is ver tenacious of life, for a specimen survived being camio wrapped up in paper in a pocket for two hours.

Fam. SALMONIDAE.
63. Saimo salar, L. Salmon. More abundant some year

Fishing banks
de \& Bean. anks off the coa

Common.
1 Eel. Common ile, and going
t. Very comma
ill. Aretic Flour , Gunth. Not 1 l ded by the Re Bay, the large ;th.
Gill. Flounte 1 in shore water S. Inst. Nat. S

Bean. Plewn Tulb.) Goode landicus, Gunt 'rom the norther n off Newfoul oked.
l. Pleuronecto ; bank (U.S.F.

This fish is ver ved being carrio two hours.
than others. Described by Dr. Gilpin, Trans. N. S. Inst. Nat. Sc., Vol. I., Pt. 4, p 76.
64. S. canadensis, Hamilton Smith. Sea Trout. Very common at the mouths of rivers, May to August. Dr. Gilpin has described the species, Trans. N. S. Inst. Nat. Sc., Vol. I., Pt. 4, p. 84.
0\%. S. gloverif, Gir. This fish under the name of "Grayling" is known in most rivers and lakes. It is probably from its light colour that it obtained the name, for it does not belong to the genus Thymallus. Described by Dr. Gilpin, Trans. N. S. Inst Nat. Sc., Vol. I., Pt. 4, p. 86.
66. Cristivomer namaycush (Penn.) Gill \& Jordan. Lake Trout. Sulmo namaycush, Gunth. Common in the larger lakes where it is known to the countrymen as the "pickerel." It is well described by Dr. Gilpin in Trans. N. S. Inst. Nat. Sc., Vol. I., Pt. 4, p. 88.
67. Salvelinus fontinalis (Mitch.) Gill \& Jordan. Brook Trout. Salmo fontinalis, Gunth. Very common in all lakes and streams. Described by Dr. Gilpin, Trans. N. S. Inst. Nat. Sc., Vol. I., Pt. 4, p. 81.
68. Osmerus mordax, Mitch. Smelt. Osmerus viridescens, Gunth. Very abundant in January and February, when they are taken through holes in the ice in great quantities.
69. Mhllotus villosus, Cuv. \& Val. Capelin. Occurs as far south as Halifax only occasionally, when the temperature of the shore waters is lower than usual. Its proper habitat is further north, on the coasts of Newfoundland and Labrador. Described by the author, Trans. N. S. Inst. Nat. Sc., Vol. I., Pt. 2, p. 5.

Fam. SCOMBRESOCIDA.

70. Scombresox saurus, Flem. Bill Fish. Not uncommon during the summer months. A specimen preserved in the Halifax Museum jumped out of the water into a fishing-boat. The fishermen say it comes with
the mackerel. We are informed by Mr. Role Morrow that it is seen on the coast of Cape Bret in schules during the month of August.
71. Exocetus \qquad ? Flying-fish. A spec. nen was tak at Sable Island in 1859, but the species was not termined.

Fam. CYPRINODONTIDE.
72. Fundulu sp.? Minnow. A species not yet termined ; in all lakes and streams.

Fam. CYPRINIDA.

73. Catostomus teres (Mitch.) Les. Sucker. Common in mo. streams.
74. Erimyzon sucetta (Les.) Joidan. Moxostoma sucett Gunth.

Fam. CLUPEIDA.
75. Clupea harengus, L. Herring. More plentiful som seasons than others. Described by Dr. Gilpin, Tran. N. S. Inst. Nat. Sc., Vol. I., Pt. 1, p. 4.
76. Alosa sapidissima (Wilson) Storer. Shad. Abundant on the west coast Bay of Fundy. Described by Dr Gilpin, Trans. N. S. Inst. Nat. Sc., Vol. I., Pt. 4, p. 107
77. Pomolobus vernalis (Mitch.) Goode \& Bean. Gasperean Very abundant.
78. Brevoortia tyrannus (Latrobe) Goode. Menhaden. On the authority of Dr. Gilpin.

Fam. MURANIDE.
79. Nemichthys scolopaceus, Rich. Nemichthys scolopacee, Gunth. Fishing banks off the coast, (U. S. F. C.)
80. Synaphobranchus pinnatus (Gronow) Gunth. Fishing banks off the coast (U. S. F. C.)
81. Anguilla vulgaris, L. Eel. Very common.

Fam. SYNGNATHIDE.

82. Srngnathus Peckianus, Storer. Pipe-fish. Common in shore waters.

Mola 1
d by Mr. Role st of Cape Bret gust. Jec. nen was tak ecies was not
ecies not yet

Common in mos xostome sucett
plentiful som. Jr. Gilpin, Tran t.

1. Abundant or scribed by Dr L. I., Pt. 4, p. 107. in. Gasperean

Menhaden. On
hys scolopacee, U. S. F. C.) unth. Fishing
in.

Common in

Hippocampes antiquordm, Leach. Occasionally taken during the summer months; a Gulf-stream migrant no doubt.

Fam. SCLERODERMI.

Balistes capriscus, Gm. A specimen taken at St. Man garet's Bay, is in the Halifax Museum.
Stephanolepis setifer, Bean. Monocanthus setifer. Gunth. Occasional specimens are taken in shore waters. The Rev. John Ambrose kindly forwarded one to the author about twelve years ago which was secured at St. Margaret's Bay. It is described in Trans. N. S. Inst. Nat. Sc., Vol. I., Pt. 1, p. 53.

Fam. GYMNODONTES.

Mola rotunda, Cuv. Sun-fish. Orthagoriscus mola, Gunth. Rare. A specimen five feet six inches in length taken in Halifax Harbour, October, 1873. Described by Dr. Gilpin, Trans. N. S. Inst. Nat. Sc., Vol. III., p. 343.

Fam. ACIPENSERIDE.

Acipenser sturio, L. Sturgeon. Occasionally taken.

Fam. LAMNIDE.

Alopias vulpes (L.) Bon. Alopecias vulpes, Gunth. Thresher. Occasionally taken in fishing nets, to their great detriment. A fine specimen in the collection of King's College, Windsor, N. S.
89. Cetorhinus maximus (L.) Blaine. Basking Shark. Selache maxima, Gunth. From descriptions given by different observers we have no doubt as to the occurrence of this species on the coast.

Fam. SPINACIDE,
90. Squalus acanthias, L. Dog-fish. Acanthias vulgaris, Gunth. Common on the fishing grounds.
Centroscyllium Fabricii (Rein.) Mull. \& Henle. Fishingbanks off the coast (U. S. F. C.)
92. Centroscymnus celolepis, Bocage \& Capello. Abundan on the fishing banks off the coast (U. S F. C.)
Q3. Lemargus borealis, Mull. \& Henle. Greenland Shar The only specimen of this rare nothern form th author has had the opportunity of examining, wa taken off Halifax Harbour in February, 1863, an afforded the following description.-Body fusifon narrow at the tail. Extent from tip of snout to car dal extreme 11 ft .3 in . Depth at ${ }^{\prime}$ eepest part, distance of 1 ft . from posterior branchial apertury 2 ft .4 in ; at posterior extreme of first dorsal 1 f 10 in .; from posterior extreme of second dorsal $8 \frac{1}{2}$ in at caudal base, 6 in. Skin covered with osseon tubercles. Snout obtuse, bearing above a series small mucous pores, extending back 11 inches from snout, over which lay the transparent jelly-like fluif they usually emit. Head ; breadth over eyes, 1 f 5 in . Eyes, diameter 2 in ., bearing no pupillary ap pendages, and distant from point of snout 11 in ., an from temporal orifices, $3 \frac{1}{2} \mathrm{in}$. Temporal orifice situate on a line with upper rim of eye cup, and dis tant from point of snout 1 ft .3 in . ; extent $1 \frac{1}{2}$ ins width $\frac{3}{4} \mathrm{in}$. Bronchial apertures, five in number, the posterior opening situate at the base of pectorals, an distant from fror ${ }^{+}$al extreme 2 ft .4 in ., is 4 in . long and situate 14 in. from the eyes. Nostrils : situat beneath and distant from snout point, 6 in ; extemi 3 in. Mouth: vertical gape, $8 \frac{1}{2} \mathrm{in}$. ; horizontal gape 12 in . Back: carinated from anterior base of firs dorsal to an extent of 1 ft .4 in . forwards. Pectoral commence immediately behind posterior branchia aperture; width at base, 9 in . ; extent 1 ft .4 in Ventrals commence 3 ft .6 in . from posterior base pectorals ; width at base, 6 in.; extent, 8 in. Firs dorsal commences 4 ft .7 in . from snout point ; widt at base, 11 in ; extent from anterior base to extremi ty, 18 in ; from posterior base to summit, $5 \frac{1}{2} \mathrm{in}$

Raia R. GRA

APPENDIX.

pello. Abundar U. S F. C.) Treenland Shart orthern form th t examining, wa tuary, 1863, an - Body fusifon of snout to can ; reepest part, anchial apertur first dorsal 1 f ond dorsal $8 \frac{1}{2}$ in ed with osseor thove a series 11 inches from it jelly-like fluif over eyes, 1 ff no pupillary ap snout 11 in ., an emporal orifice ye cup, and di. . ; extent $1 \frac{1}{2}$ in. e in number, the of pectorals, ani in., is 4 in . lons Nostrils : situat it, 6 in . ; extent horizontal gape ior base of fik ards. Pectora terior branchia :tent 1 ft .4 s osterior base nt, 8 in. Firs ut point ; widt base to extremi summit, $5 \frac{1}{2}$ in
loose, flapper-like extreme of fin extends 7 in . beyond the posterior base, and lies close upon the back. Second dorsal commences 2 ft .2 in . from posterior base of first dorsal ; height at posterior base, 4 in .; length, $14 \mathrm{in} . ;$ width at base, 7 in .; loose flapperlike extreme extends $6 \frac{1}{2} \mathrm{in}$. beyond the posterior base, and lies close upon the back, as the first. Caudal commences 12 in. from posterior base of second dorsal; extreme span, 2 ft .7 in ; upper lohe, extent, 23 in ; lower lobe, $16 \frac{1}{2} \mathrm{in}$. Lower lobe commences 3 in . in advance of uppe, carinated at base ; carinal ridge, two inches from lower surface, and four inches from the upper surface.
Fam. RAIID.E.
94. Raia radiata, Don.
95. R. granulata, Gill. M. S. This new species is given in Messrs. Goode \& Bean's List of N. E. American Fishes (1879) as occurring on LaHave fishing-bank.
96. R. levis, Mitch. Barn-door skate. Dr. Gilpin informs us that this species occurs on the west coast; Bay of Fundy.

Fam. . PETROMYZONTID.E.

97. Petromyzon marinus, L. Lamprey. Not uncommon; generally found as a parasite on the gadoids.

INNIVERSARY ADDRESS, 1879.

By War. Gossip, F. R. M. S., President.

Two years have elapsed since I had the honor of addressing the Institute on our anniversary, with reference to its proceedings and prospects. Then, in the absence of the worthy President. bing next in office, 1 thought it right that one of our rules bearing upon this duty shou'd be observel, lest it might be lost sight of altogether. Since that time you have done me the honor to Ghonse me your President, and now it is more than ever a duty imposed upon me not to allow a rule deemed essential to the wellbeing of the Institute to remain inoperative, although what has o he said may not, on every occasion, be specially interesting, or argely instructive.
Science is ever progressive. True science is never lost. What he mind of man has once conceived and practically realized is almost always retained, and is never entirely forgotten. Indeed, the empire of science is so widely extended, and its influence so general, as to be beyond the possibility of decay or extinction. All nations interest themselves in its advancement, and by generons impulses contribute to its resources. Knowledge has wonderfully increased, and we may well be proud that our own mother land lends the van in the cause, and more than all others, has largely aided and encouraged the almost universal enlightenment.
When the world is prepared for great discoveries they are sually vouchsafed. The art of Printing, which is now so expansive, perpetuates invention; and steamships and railways, ectricity and magnetism, annihilate space, and bring to a focus of general utility the scientific conceptions of every clime. Euman intellect has so far mastered the arcana of nature as to be able to control, to a certain extent, some of her most subtle . 2 encies, and make them obedient to its own guidance. With a pparent facility, an electric current is conducted thousands of piles, through air and water, and causes a message to be deliver-
ed with exactness and truth in intelligible language. The san subtle fluid, by the same agency, bids fair to be an useful auxit ary of the less mighty steam-engine-a mechanical power, and means of propulsion; and will, perhaps, in a short time, be ceor omizel to dispel the darkness of night in our large cities. Th telephone enables individuals to converse, each one from his on chamber, over widely intervening spaces; and ere long sotut may rival electricity in instantaneous communication. Excs in imagination there is no power that thus mocks at distance. we would find something analogous we must invade the reals of fiction. The authors of the Arabien Nights Entertaiment do no more, who send princes and princesses through the airg enchanted horses, by the twist of a peg, thousands of miles in moment-literally with the speed of thought; and our own in mortal Shakspeare, perhaps dreaming of an occan cable, evoks madventurous sprite, able to "put a girdle round the earth in font minutes." These were the wildest vagaries of imagination, whif have become in the nineteenth century sober realities.

The imaginative standard of the past having thus been reduce to a fixed value, I may be permitted further to illustrate th practical necromancy of modern times.

Daguerre, in 1839, after years of experiment, at length by wonderful but simple process, transmitted the human portrai from life to plates of silvered copper, made sensitive to solar ligt by the vapour of iodine. Soon thereafter, the principle thus full developed, improvements sprang up on every hand, and the ro sults so far are beautiful photographs, made permanent by auts type, which give the most accurate delineations of works of ar as well as natural objects. It is not to be supposed that they wi stop here, or that science has done with them. Genius will in tim be able to fix the colours of the camera, as well as its sha low

Again, experiments on light, following a growing knowled of the laws by which it is governed, have produced the speetn scope, and now scientists assume, from careful analysis of th solar atmosphere, that they have a clue to ascertain the substank of the sun.

In connection with this subject, the experiments of Mr. Lod yer, a distinguished savant, and editor of Nature, a journal we known in the world of sciense, with reference to the solar an stellar spectra, are of mucis interest. He has started an hyp thesis, and justified it by experiment---that the elements thers selves, or at all events some of them, are compound bodies, an that hydrogen is the principal elementary substance represente

these spec

 at he goes ribune of A in New Y clitor, ba ted, in w "that in ns-- the on ckyer hasn all events, me for the this friend themen have I that all prime regetable, wh Lockyer, as s were it substa able. The wi hypothesis as 1 is not a lumin motion, and, b of a still more aeting upon it into play Mes: megnetic polar sclentists to ac inducing the po mption by meal positive ans element d uncombines Thus the theory diference. I d haye promptec Neither appears enquiry, and wt further investig would recommeicuage. The sar an useful auxi ical power, ani ort time, be cou large cities. Tl one from his on I cre long solu rication. Exer is at distance. ivarle the realt Entertaimen rough the air nds of miles in and our own in an cable, evolk the earth in fort agination, whi lities.
hus been redue to illustrate ti
t, at length by human portrai ive to solar ligh nciple thus full and, and the n manent by autt of works of at ed that they wi nius will in tin as its shalow wing knowledg iced the spectr analysis of ti in the substant
ats of Mr. Lod e, a journal we oo the solar at ;tarted an hyp elements them , und bodies, al ince represente
in these spectra. I cannot find in what Mr. Lockyer has written that he goes farther than this, if quite so far But the Medical Tribme of April 15-a journal of scientific pretensions, published in New York-contains a well written article, by Dr. Wilder, it clitor, based upon the Papers in the No. of Nuture I have quoter, in which the argument of Prof. Lockyer is asserted to "that in hydrogen we have matter reluced to its lowest tems-the only one element." I do not think myself that Prof Lock yer has made this a distinctly definite conclusion, but it afforde, at all events, to the writer in the Tribune, an opportunity to assume for the hypothesis, or theory, of our associate, Mr. Dewar, ant his friend Dr. Fraser, a like degree of credence. These genthemen have long since announced, in their ato-magnetic theory, that all primal atoms are either hydrogen or oxygen, mineral or vegetable, which approaches the hypothesis or theory of Prof Lockyer, as stated by the Tribune, but is of earlier date, and were it substantiatel by experiment, would be as little objectionable. The writer in the Tribune, favorable to Mr. Lockyer's hypothesis as to the principle involved, objects " that as hydrogen is not a luminous substance, and, therefore, is of itself without motion, and, being molecular, must have been built up from atoms of a still more elementary character, there must be some force acting upon it to set its atoms in motion." Here again comes into play Messrs. Dewar and Fraser's plausible theory of the magnetic polarity of atoms. He quotes the suggestions of other selentists to account for this motion; also, that electricity, by inducing the primal atoms to assume polarity, may cause the first motion by means of the attraction and repulsion of the two poles, the positive and the negative; and gives a reason to show that the element denominated hydrogen, when negatively electric and uncombined, is identical with the substance known as oxygen. Thus the theory is similar to that of Prof. Lockyer, but with a diference. I do not pretend to understand the processes which prompted these several speculations, generally alike Neither appears to have advanced much beyond the confines of enquiry, and we may be content to await with patience their futher investigation. To those interested in its progress, I wauld recommend a study of the articles in Nature of January, 18.9, and to supplement them with that in the Medical Tribune of April 15, following. Perhaps in time the spectroscope may help us to a satisfactory solution of the difficulties.

0 the spectrum and the microscope we may look for some of the most valuable discoveries ever made in the realms of science

At the riok of being thought discursive or digressive, I beg lad to refer to an event of great interest, with which we may bes more or less familiar, which makes us hetter acquainted wi microscopic revelations, and brings us so close to the beginning life, that the power to produce it from lifeless elements appe to 0° be almost within our grasp.
The English papers, by the royal mail steamship which arrin carly in September, are occupied with lengthy accounts of anniversary mecting of the British Association at Sheffield the 20th August. These anniversaries have lost none of the intere t for the British people. We learn from them the imper ance attached by all classes to scientific investigations. IT Press uses its powerful combinations to spread abroad, with 4 utmost rapility, over all the Empire, and to foreign countrie full details of the proceedings, cmploying for that purpose it energies which art and science have placed at its disposal. railway and locomotive, the marine engine and screw propelf the ocean cable and electric telegraph, all triumphs of scier and genius within a century, engage in the work. Photogray also, takes the portraits of the President and other scientiste the Association, and then by electro-mectallurgy makes them try graphy, placing before us in a newspaper correct likenesses of it men who, in Great Britain, contribute to the scientific advam ment of the nation. Do we desire to know the subjects whif nglage the minds of these men? The press communicates the in twenty-four hours after their delivery. They reach us Hectric telegraph as quickly on this side of the Atlantic. twelve days at farthest, loy steam navigation. I may call all it the artistic application of Natural Science. The sulistance of President's address is before me. It treats of Protoplasm. describes "Protoplasm, or living matter, as lying at the base all living phenomena." ** "a tangible and visible reality, whi the chemist may analyse in his laboratory, the biologist scrutinif beneath his microscope and dissecting needle. All over the wow in fresh water and in salt, minute particles of protoplasm may detected. In the famous amceba, which has arrested the atia tion of naturalists, almost from the commencement of microser cal observation, we have the essential characters of a cell, t morphological unit of erganization, the physiological sonre unicellular existence. But cells combine into organs, and orga into animals. Yet in the most complex animal the cell retai its individuality.

This, though not entirely new, is a lucid description
essive, I beg las ich we may be acquainted wi o the beginning ; elements appe
hip which arrive y accounts of in at Sheftield ost none of the I them the imper restigations. TI 1 abroad, with foreign countris that purpose it its disposal. T d screw propelle iumphs of scies rk. Photograp other scientists makes them tyl at likenesses of scientific advant he subjects whis mmunicates the They reach us the Atlantic. I may call all ti e substance of t Protoplasm. ng at the base ble reality, whi iologist scrutini 11 over the wof rotoplasm mar rested the atto ent of microser ers of a cell, logical source rgans, and org il the cell retai
d description
great interest, and what follows ought to command carnest at tention besides:-

Examine under the microscope a drop of blood freshly taken fom the human sulyece, or from any of the higher animals. It is seen to be composed of a multitude of red compuseles, swimming in a nearly colom'ns liquid, and along with these, but in much smaller numbers, somewhat larger colourless corpuscles. - red corpuscles are modified cells, while the colourless corpusare cells still retaining their typical form and properties. \therefore last are little masses of protoplasin, each enveloping a cenal nuclens. Watch them. They will be seen to change their They will project and withdraw psemopodia, and creep ut like an anceba. But more than this, like an amoba, they ill take in solis matter as nutriment. They may be fed with, lomed food, which will then be seen to have accumulated in interior of their soft transparent protoplasm; and, in some s, the colourless blond corpuscles have actually been seen to our their more diminutive companions the red ones."
All this is very wonderful, and to many whose opportumitics microscopic observation are rare must appear entirely new: Phey may have been prepared for the modified cell of the red corpuscle, but the protoplasmic- the living condition of the whit. -feeding as it were, upon itself, has only been revealed by the bighest powers of the mieroscope. We have it on Supreme. anthority as to the anmal, that "the blood is the life thereof," but whoever could have supposed that this Divine truth would be provel to the senses after this manner. I should imagine that he knowledge is of the highest importance. Our M. D.s are alled upon now to aljust the equilibrium between the red and Thite corpuscles - to lessen or increase the cannibal instincts of the white, and so to cleanse the impurities that interfere with a healthy circulation, and which are the fruitful generators of disease.

The instances quoted illustrate the phenomena of the protoplasmice cell, which is the basis of the physical life in animals. But there are other wonders. It is precisely the same in the rectable kingdom. The President proceeds to give a number of examples to show that the primary cell in plants is identical with that in animals, and undistinguishable from it. "The spores which swim about in the field of the microscope, driven Wh viluating cilia, and avoiding collision with obstacles in their Way, behave exactly like the amceba." Dr. Fraser may tell you that this motion and careful avoidance of obstacles is due t,
their magnetism and polarity. "But the most curious illustrati of the identity of the elementary life in plants and animals, found in the fact that the former as well as the latter are subjer to the influence of anæsthetics. A sensitive plant confined und a bell-glass, with a sponge filled with ether, soon ceases to man fest any sensibility. Withdraw the sponge, and it will speedii recover germination. Fermentation may be arrested by th same means. Seeds of cress kept under the influence of ethe for five or six days, remained quite passive. But they were ont sleeping, and not killed. As soon as the ether was removed, g_{0} mination set in at once with activity. The same thing is true fermentation." It was stated as the results of all these invest gations, "that in protoplasm we find the only form of matter which life can manifest itself, and that though the outer cond tions of life - heat, air, water, food - may be all present, prott plasm would be still needed, in order that their conditions ma be utilized. It would, however, be a mistake to suppose that a protoplasm is identical. Of two particles of protoplasm, betwee which we may defy all the power of the microscope, all th resources of the laboratory to detect a difference, one can develo only to a jelly-fish, the other only to a man, and one conclusio alone is here possible,-that deep within them there must be fundamental difference which thus determines their inevitall destiny, but of which we know nothing, and can assert nothing beyond the statement that it must depend upon their hidde molecular constitution.

And here I would venture a crude idea-that if protoplas as revealed by the microscope, is really the beginning of life, it ultimate development may depend, less upon a hidden molecula constitution in the cell units, in which no differences can be dis covered, than upon cell aggregation. Or, is it produced according to Dr. Fraser's theory, by the atoms assuming polarity, beine vivified by magnetic action. The last would not be spontaneor generation, but something analogous. Really, all we know that like in the animal and veretable proceeds from like. But is an important admission by Dr. Allman, to which I would jcii the idea just expressed, "that his assertion does not in the leas diminish the vast difference which separates lifeless from living matter, nor lessen the mystery of life itself. No chemist has yo built up one particle of 'iving matter out of lifeless elements Or, as I understand it, no chemist, or magnetist, or electrician has yet made a protoplasm, or brought together atomic condi tions necessary to create unicellular existence, much less to endor
:urious illustratio its and animals, a latter are subjer int confined und on ceases to man d it will speedi arrested by th influence of ethe ut they were on? was removed, get te thing is true all these invest orm of matter a the outer cond all present, prote ir conditions ma
, suppose that a toplassi, betwet icroscope, all th 3, one can develo d one conclusio there must be their inevitab. n assert nothin, son their hidde
at if protoplas: nning of life, it sidden molecula ences can be dis duced accordin polarity, bein be spontaneor all we know is orn like. But ich I would jcin not in the leas less from living chemist has yt 'eless elements' or electrician r atomic condich less to endor
aggregate" of cells with the direction of a positive animal -a reason for which I think is satisfactorily given in the Book of Genesis, chap. 3, v. 22 to 24.

The foregoing are a few short extracts from the President's didress, interspersed here and there with some passing observations; for I have felt, in the relation, that I may not only be too dffusive, but that I ain trenching somewhat on the province of orr talented associate and microscopist, Dr. Sommers. I have aly further to hope that our Institute will soon possess microopic instruments of sufficient power to enable him to show us al those microscopic experiments and microscopic life, the Wonders of which have been for some time known to the sientists of other countries. From these anticipated resources we may, I think, reasonably expect, that in this to us new field of investigation, discoveries will be made that will prove our Fostimation of this valuable branch of Natural Science, and prhaps enable us, in an hitherto untried zone of research, to contribute a little to what has been already realized.
Yet, after all the wealth of scientific discovery of our day, and for pride in it, which sometimes amounts to inflation, I think it Hust be conceded by sober reason that human progress, great as II is, has reached no further than the threshold of the temple of Gience, the golden pinnacles of which seem now and then to Tect our vision high above the clouds of obscurity. The motto its votaries must still be "Excelsior!" Still it is not as in the past ages, that speculative science, assuming the general ignorance, sands for truth, or is received without strict examination. The Forld has had much to unlearn of what had been for long periods pecived as indisputable. The earth, without further controVersy, rolls round the sun, and is no longer a flat surface girdled Iy an unknown ocean. Even within a century revealed religion Ins been placed, I think, upon a surer basis by scientific interretation. Geology, with yet much to unfold, so far shows us that the world (I say it with reverence) was not made in six atural days, although the sequence of creation corresponds more dactly with a reasonable and no doubt a more correct interpreWtion of the Divine record; and crude deductions with respect the effects of the Noachian deluge, are fast giving way before vestigations which, without ignoring that great event, or any its phenomena, reasonably attribute much that was presuposed to belong to it, to other and remoter causes. These truths e intimately connected with and lie at the foundation of many the grand discoveries of the age. Some of them are dogmas
now, and all will be so with succeeding generations. The diffe culty with them is the self-sufficiency and scepticism thee engender, and to restrain their assertion within the bounds propriety. Science and religion ought to dwell in perfect har mony. True science can do no more than accommodate eacht each by the operation of the laws of eternal truth. This is being done gradually but surely. If some of the most celelnate searchers into nature of our own day could wake up a centur hence, they would without doubt be as much astonished at the stride of knowledge meanwhile, and the consequent disturhang of previous belief, as those would be who have lived a centur before our era, could they now start into living consciousness if the past and present.

It may excite a smile that I should imagine so curions a event; but we may still consider it certain, that a comparisong notes would realize to all their minds the practical truth enar ciated by one of the wisest among them, as true as when it wa uttered, as to all that has been done, to wit: that we are onlys chilhen picking up pebbles from the shore, while the great ocee of truth lies unexplored before us.

But it is time that I should come nigher home. In Nova Scotiz within ten days' distance by steam of the mother country, an adjoining the great republic,-where we have unsurpassed facil ities for acquiring a knowledge of and utilizing the latest scien tific progress and discoveries,--it might be supposed that f would be practically acquainted with and profit by them, and with everything recognized as improvement. The necessity however, is conceded but slowly, and we have not much to boa of in this respect. Our scientific pursuits are nearly all limite to a college curriculum,- to a course of chemistry, electricity botany, and cognate sciences. This is doubtloss an excelletit preparation, but as yet, so far as we know, no further fruits hap been produced. It is a college education - nothing more. Thee may be various reasons for this. Nova Scotia, though early set tled, has never been very well known in the world, especiall in the world of science. Capital and enterprise have not beed largely employed to call her material resources (not to mentioc those which are inert) into active operation. She has looked t other means of wealth which were more readily procurable, bo which, whatever they may have been, are not now stealliy profitable. She is, in fact, so far as science is concerned, mud behind the age. The urgency is, however being rapidly forer upon her, that resources but partially used, or not used at all
tions. The diff scepticism the in the bounds 11 in perfect hat mmodate eacht th. This is bein most celelrat we up a centur astonished at th Iuent disturbane lived a centur consciousness:
ne so curious a t a comparison stical truth eniut re as when it wis at we are only: le the great ocee

In Nova Scotiz her country, an insurpassed facil the latest scien upposed that fit by them, and

The necessity of much to boa carly all limite istry, electricity ess an excellen ither fruits hav ing more. Thee hough early st world, especiall: have not bee (not to mentic ie has looked to procurable, br t now steallif soncerned, mud ${ }_{3}$ rapidly fored not used at all
must soon be called into action, if we would play our part as an integral portion of British America. There is enough of talent and ability amongst ourselves to take secondary action in their development, although neither speculation nor capital at present appears very eager to make them available. It certainly does se.m strange, that we cannot even point to the existence of a cotton-mill, with a chief city which is the Atlantic entrepot of a Dominion stretching from Halifax to the shores of the Pacific, posseving as we do railway commmication for a long distance Finland, and, as we shall do in a few years, from hence to British Columbia, to say nothing of the limitless coal and iron in Nova Scotia, and a cotton-growing country within twenty days' sail of an chice port. A reason may be found on the part of our own peopeintlo want of capital for so expensive and important an underTaing, and ignorance of its management. But that our unsurpassel groertaphical position, and the acknowledged decadence of British mamfactures, through rivalry of foreigners, should not have terned the attention of the cotton lords of England to Nova Scotia, from whence to supply the growing Dominion, and to arry the war into the enemy's territory, is something not easily understood. I may be pardoned this allusion. It is not so far beyon the domain of natural science, involving as it does many of its branches, that our wishes and hopes may not centre in such an enterprise.
Of our other industries connected with natural science, I will speak briefly. Coal is inexhaustible, and I hope to see the dy when cotton and sugar and iron, and other manufactories at home, shall preclude the necessity of looking for a market abroal r this valuable minetal; and when our own Dominion, the estem part of it especially, shall be more ready to buy from us than we to sell to them. This is the true solution of the problem of coal mining as a source of national wealth. The time Will surely arrive, and we hope is not far distant, whoever may live to witness it. Strange that even now our interests should be diverse, or not to be reconciled, and that we cannot work toGether as an united people.
Iron is as inexhanstible as coail, and more valuable. One blast finace is at work for the reduction of its ores, requiring scientific knowledge and practical industry and economy to sustain it, and these will no doubt multiply as markets are realized and mand increases.
The rocks of the Atlantic coast line, from Canso to Yarmouth, and for a considerable breadth inland, are prolific in gold, which,
even now, is worked profitably, and would be much more so science and capital were largely employed in its deyelopment. Promising indications of Copper are frequent, even within short distance of the capital, but they have not tempted eage speculation or scientific research. Copper, which requires patier and expensive exploration, is as yet only talk d about as a Pro vincial enterprise. The same may be said of Silver and Lead whish are believed to exist in workable quantities, only awaiting capital and skill, as employed in other countries, to make then largely profitable.

It is high time that we knew the extent of our nature resources. I would like to be able to state that an exhaustir geological survey of the Province had been made, and its minere riches mapped with some degree of certainty. We should know by this time if they are as valuable as they have been assume to be, or otherwise. All doubt upon this subject ought lon, since to have been set at rest. The geological survey of Canada provided for by the Dominion Government, began at the wron end.

It will be expected, I presume, that I should, before I conclud make some reference to the work of the Institute during the past year. I shall do so as shortly as possible. I make no com parisons, and do not claim for it any great originality, or super lative merit. It is but an humble follower in the wake of mon richly freighted argosies. I shall merely assert, therefore, tha it has furnished a large amount of information on the geology mineralogy, zoology, botany and meteorology of Nova Scotia which otherwise would not have been generally known. In the branch of science first mentioned I will take the liberty to allude to the articles of the Rev. Dr. Honeyman, which of late hare been directed to a correction of the geology of our own Province On the evidence of position and paleontology, strata which prot viously were supposed to be widely extended, are proved not t exist, or to belong to lower formations. I recommend thes papers, which will be found in our published Transactions, to the careful attention of all acquainted with the science, who takea interest, for economic purposes or otherwise, in the succession and deposition of the rocks, as a guide to the mineral resoures of Nova Scotia. A careful study of them may prevent many mistakes of scientific importance. The department of geology I regret to say, was badly represented at the Provincial exhibi: tion; but even there was some encouragement, and those why sought might have found very fine specimens of coal from the

Gittle Glace Olaam at tance of eig monthis wol the "Rose" galena and syenite, free industry ane In like m: friend, Dr. . Jova Scoti mammals of intil he has poted. It i: ge native of Transact quce as a mi gives us a call it) in col in the jaws o gainst pree Wilmot, of t our salmon onland wates J. Matthev whom we as contribut ist of the Fi paration of w he generous Brown Goode ish Commis: aformation g
Dr. Somme Haccan, fumi ormer on N pidium Sp paper on Mi Mr. H. Lou our Institu ew Mineral with reference marks that
much more so s deyelopment. nt, even within ot tempted eag h requires patie d about as a Pro Silver and Leat ies, only awaitin es, to make the
of our natura lat an exhaustio 3 , and its minery We should know ve been assume ject ought lon rivey of Canad an at the wron
efore I conclud itute during the
I make no com nality, or super re wake of mon therefore, tha I on the geolog of Nova Scotia known. In the liberty to allud h of late have r own Provine rata which pre proved not commend thes sactions, to th ice, who take a 1 the succession ineral resoures prevent many ent of geologit ovincial exhibi and those whin f coal from th

Gittle Glace Bay, Pictou, and other mines; gold specimens from Oldam and Montague, and from the latter, within a distance of eight miles from Halifax, a brick (so called) of gold, a month's work of fourteen men, alued at $\$ 7,666.92$, taken from the "Rose" lode. Also sulphuret of and native copper, and galena and silver,--with some fine specimens of granite and 5 yenite, freestone and other rocks and minerals, awaiting science, industry and capital for their complete development.
In like manner I desire to draw attention to the papers of my friend. Dr. J. Bernard Gilpin (now absent), on the Zoology of Sova Scotia. Dr. Gilpin has successively drawn upon the pammals of Nova Scotia (Indians included) for description, matil he has left none remaining the history of which he has not moted. It is almost the same with the fishes that frequent or gre native of our coast and inland waters. In a recent No. of he Transactions he shows us the salmon "from his first appearance as a minnow, and through all his changes, until lastly he gives us a drawing of his degeneration (degradation I should call it) in colour and leanness, and the almost grotesque changes in the jaws of the male during spawning. He is also of opinion, against preconceived belief, (in which he is supported by Mr. Wilmot, of the fish-breeding establishment at Bedford, that all fur salmon are retained during the winter in our lakes and fland waters.
J. Matthew Jones, F. L. S., formerly President of the Institute, 0 whom we are much indebted for papers on various subjects, fas contributed, in an Appendix to the Transactions of 1879, a Fst of the Fishes of Nuva Scotia, corrected to date, in the preparation of which he manifests great research, and acknowledges he generous assistance of his much esteemed friend, Prof. G. Brown Goode, of the Smithsonian Institute, Asst. United States ish Commissioner. This paper will be much valued for the aformation given, and for future reference.
Dr. Sommers, Prof. of Microscopy, and the Rev. E. Ball, of haccan, furnish botanical papers of merit and usefulness-the priner on Nova Scotian Mosses, the last named gentleman on spidium Spinulosum-Grey. Dr. Sommers has also furnished paper on Microscopy.
Mr. H. Louis, Assoc. Roy. School of Mines, (a recent member f our Institute,) communicates a paper on "The Analysis of a Few Mineral from Blomidon." For this contribution to science, with reference to which Prof. Dana, to whom it was submitted, marks that there is nothing like it in Mineralogy, (meaning
that it is an original discovery, Dr. Honeyman has suggestel the name of "Louisite," by which it will henceforth be known Also, a valuable paper" On the Ankerite Veins of Londonderry Nova Scotia," with copious analyses. This gentleman, frou whose talent much was expected, on behalf of the Institute, an the country especially, has left our shores to fill a more respons ble situation in England.
"The Limonite and Limestones of Pictou County," is the tith of a paper bearing upon the economic mineral resources of Nor Scotia, by Elwin Gilpin, A.M., F. G. S. The processes of naturby which these minerals were formel, are lucidly accounted if and described, ant their value shown to be considerable. A cording to the author they appear to occupy positions similar t the marine limestones at Whitehaven, and Fuine sa, and the Mis dip Hills, in England,-and are, by some, considered to have beet deposited in a similar manner to the large deposits of Limonite the lower silurian calciferous formation in Pennsylvania. Th limestones of Artzberg and the Thuringian Forest are believed have been formed in the same way.

Mr. Dewar has a paper on his favorite subject of Ato-mugnt ism-which I have previously noticed in connection with th: spectrum discoveries of Prof. Lockyer, and the article in the Medical Tribunc.

Mr. Mellish, a secretary of the Institute, placed on record at the close of last session, an interesting description of fish cultur in Nova Scotia, statinc that a total of $4,800,000$ salmon had beta distributed from the hatchery of Bedford Basin daring the shor space of four years.

On other matters concerning the Institute and its working, I shat be very brief. We have friendly correspondence with many sister societies in various parts of the world. The Royal Microscopica Society of London, recently passed a resolution, which recogniza for your President, for the time being, the honour of appendin, F.R.M.S. (Fellow of the Royal Microscopical Society) to his nam: of which honour, however unworthy, your humble servant has bee the first recipient. This recognition of the Institute is of som value, and has been suitably acknowledged; and I hope befor long we shall be able to show, by practical illustration, that it not undeserved. We exchange our Transactions with the valuall. monthly publications of the R. M. S.

Best of all, perhaps, is the statement I am able to make-that we owe no man anything.

I would fain have closed with this gratifying announcement
ut a sormos he past ye: nust zealou rill find ob It is again : hereavemen King's Colle tut a frequi t Windsor cientist, an es in Nova to himself a tudents, by requetted.
Windser, wl will not be a minent deg I have no work like th form a dut: have wearie the kind, on tar ling hyt to show that in stimulatir my highest you that ou comparativel work of the Scotia we ha as highly apl it seems to mature, and Instead, we n of science in enter into an
o has suggeste forth be know of Londonderm centleman, fros he Institute, an a more respons nty," is the titt. sources of Nor cesses of natury accounted for asiderable. A itions similart s, and the Mis ed to have bee ts of Limonit syylvania. Th are believed
of Ato-mugnet ction with the article in th
ed on record a of fish cultur ulmon had beat uring the shor
working, I shat rith many sister 1 Microscopica hich recogniz r of appendia, y) to his nam: ervant has bee tute is of som I hope befon ation, that it i th the valuald
to make-tha
innouncement
ut a sorrowful task still awaits me, viz., to notice that, during the past year, we have had to lament the decease of three of our most zealous and useful members, and very good friends. You will find obituary notices of them in the published Transactions. It is again a painful duty imposed upon me to mention a fourth bereavement in the death of Dr. How, Professor of Chemistry, King's College, Windsor (not latterly a member of our Institute, fut a frequent contributor to its Transactions), which took place at Windsor on the 27 th September last. Dr. How was an able Fcientist, and had made some interesting mineralogical discoveres in Nova Scotia. He filled the professorial chair with credit to himself and the University, and with much advantage to the tudents, by whom he will be long remembered, and his death reqretted. His loss must be deeply felt by the Institution at Windsor, which he adorned by his talents and amenities ; and it will not be easy to fill a chair, the duties of which require in an minent degrce high qualifications and systematic order.
I have now, anid avocations which leave me little leisure for work like this, endeavored (imperfectly enough, I know) to perform a duty prescribed by the rules of the Institute. I fear I have wearied you with an address which, like many others of the kind, on similar occasions, has not the merit of propounding atar ling hypotheses or original theories. It may, however, serve to show that we are in earnest, and if it has the slightest effect in stimulating pursuits and studies within our reach, it will fulfil my highest expectations. I would have liked to be able to tell you that our people take as much interest in natural science comparatively, of course - as the people of England do in the work of the British Association, or that the knowledge of Nova Seotia we have conveyed, which is by no means unimportant, is as highly appreciated among ourselves in this our own home, as it seems to be in other countries. This desire, however, is premature, and many of us may not await the better time coming. Instead, we must, I suppose, rest content with being the pioncers of science in Nova Scotia, and leave it to future generations to enter into and profit by our gratuitous and disinterested labors.

PROCEEDINGS

OF THE

VOL. V. PART 2.

Dathousie Cullege, Oct. 8, 1879.
Anniversary Meeting.
Willam Gossip, Esq., President, in the Chair.

Inter alia.

The following Gentlemen were elected Office-bearers and Council for the nsuing year:-
President-William Gossip.
Iïce-Presidents - Prof. John Sommers, M. D., Prof. Georgr Lawson, Ph.D., LL.D.

Treasurer-W. C. Sillver.
Secretaries-Rev. Dr. Honeyman, and John T. Melihsh.
Council-Dr. Gilpin, Hon. L. G. Power, J. M. Jones, Robert Morrow, ndrew Dewar, Augustus Allison, Alfex. McKay, iv. S. Stirling.
On motion the President was requested to deliver an Address at the next meeting of the Institute.

> Ordinary Meeting, Dalhousie College, Nov. $10,1879$. The President in the Chair.

A larger, than usual, number of persons were present. Among them were Gis Honor the Lifeltenant-Governor, Miss Archibalid, and Col. Stewart, aidecamp.

The President delivered a lengthy and interesting Address, which will be found in the Transactions.

Mr. Morrow drew attention to an error in the published Transactions of 1878-1879. Appendix, page 94, Mr. Jones states that Mr. R. Morrow informs lim that "Scomberesox Storeri"-bill fish-is seen on the coast of Cape Breton furing the month of August. Mr. Morrow stated that he had seen them in Pictou Harbor.

Dr. Honeyman, the Secretary, gave a popuiar and interesting description of the Geology of Annapolis County, especially that of the Moose River Iron

Deposits. This was the substance of a paper which will also be found in Trensactions.

His Honor the Lifutranant Governon then made some compliment observations on the Addresses delivered, and referred to the valuable work the Institute, as illustrated by its Volumes of Proceedings and Transactig published. By means of its publications the Institute has been instrumental disseminating reliable information on the Natural History of Nova Seotia in its branches. He had just been enabled to meet the demands of Kew Gardens: infurmation regarding the Botany of the Province, by the gift of a serie Papers published in the Transcctions.

> Ordinary Meeting, Dalhousie College, Dec. $8,1879$. The Prasident in the Chair.
> Inter alia.

Dr. J. Bernard Gillpin made some observations on specimens of suph rude pottery found in and around Grand Lake. The specimens belong th Provincial Museum. Their forms are so singular as to occasion a diversity "pini n regarding their character and origin. Dr. Hoseyman, who furms. the specimens, has no doubt whate ver that they were made by man, and that th are prehistoric remains. Some of them are of regular and rather elegant shat The basis on which they have been formed are stones-quartzite or argillit The other material seems to have been constructed by successive layers clay (:) so that the intorior of the articles have a concentric appearance-t outside is somewhat smonth. They are somewhat firm when wet, when diy tio are very fragile. When the Lake has the water at the usual height they are ad to le seen lying at a depth of six feet or more. Some consider them to concretionary, or matural forms. The stony nucleus or basis is always expese when the form is sancer shaped it constitutes the buttom. Their mode vecurrence and other matters will be fully investigated in the next dry if favorable seavon.

Dr. Ginirin also exhilited a drawing of an unknown mammal. It π suppesed to be an albino dormouse. It was found at Annapolis last summer.

Dr. Lawson gave an interesting account of his investigation of a very thir deposit of diatomaceus clay found in the Lakes of Halifax Water Works illustrated the character of diatom structure and mode of growth on blackboard, and by the microscope.

He also exhibited specimens of Cotton, Rice, and Palmetto which had be brought lately from the Southern States by Mr. Andrew Jack.

It was announced that Prof. DeMhlee and W. H. Neal had been electe members.

> Ordinary Meeting, Dalhousie College, Jan. 26, 1880. The President in the Chatir. Inter alia.

Dr. Gilpin exhibited the Cub of a Bear, which was regarded as of peculii interest. An account of it will be found in the Transactions.

Prof. Laws Sative Speries The Paper $\mathbf{~}$ the blackboard followed the re Dr. SOMMEF This Paper was

A discussion

The Preside lected a membe " I deem it a recent decease o deprived of anot loses will be deef with which he lived. It is but The was esteemed are very popular nown than amol miversities. Alt Thetitute had bee thook much intere piten as his more have no doubt wl kervice. As it is afllictive diepensa add to the genera ment."

It was resolvec in the Records of Dr. Sommers Seal from the Mag

Dr. Honeyma: Ilands, suggested vincial Museum.

Mr. Fox, who Customs, gave inte
also be found in:
some complituent the valuable work ugs and Tran-actig been instrumental of Nova Sestia in Is of Kew Garden: he gift of a serie

8, 1879.

cimens of sum rimens belongt ca*ion a diversity MaN, who furnst y man, and that th rather elegant tha nartzite or argill uccessive layers ric appearance-t wet, when dry ti height they are aid insider them to - is always exprest im. Their mode n the next dry is
mammal. It mit , lis last summer. tion of a very thie Water Works of growth on
tto which had bet ск.
had been elects
i, 1880 .
rded as of peculin

Prof. Lantson was then called on by the President to read his Paper "On Sative Speries of Viola of Nova Scotia."

The Paper was lengthy and interesting. It was well illustrated by means of the blackboard, and numerous dried specimens of the Viola. A conversation tollowed the reading of the Paper.

Dr. Sommers also gave the substance of a Paper "On Nova Scotian Fungi." This Paper was illustrated by dried specimens.
A discussion followed.

Ordinary Meeting, Dalhousie College, Feb. 9, 1880.
The President in the Chair.
Inter alia.
The President alluded to the death of Prof. DeMille, who had recently been lected a member of the Institute. He said :-
" I deem it a duty, melancholy though it be, to announce to you that by the fecent decease of Prof. DeMille, after a short illness, the Institute has been deprived of another of its members, one of whom it may be truly said, that his loss will be deeply felt, not only by the Institutions of learning and Science with which he was connected, but generally by the community in which he lived. It is but little to say of Prof. DeMille that wherever he was known he was esteemed and respected. As an author he ranked high, and his works are very popular in the neighboring Republic, where perhaps they are better known than amongst ourselves - his Rhetoric has become a text book in several universities. Although Prof. Demillef's more intimate connection with our Institute had been somewhat recent, I have good reason for believing that he took much interest in its proceedings, and that he attended its meetings as often as his more pressing avocations permitted; and had he been spared I heve no doubt whatever that his talents would have been freely exerted in its service. As it is there is only left to us to acknowledge, with humility, an afllictive diepensation which might not be averted by human wisdom; and to add to the general expression our sympathy with his family in their bereavement."

It was resolved that this tribute to the memory of the deceased be inserted in the Records of the Institute.

Dr. Sommers gave a minute and interesting account of the Anatomy of a Seal from the Magdalen Islands.

Dr. Honeyman then read some remarks on the Geology of the Magdalen Llands, suggested by specimens of Rocks and Minerals presented to the Provincial Museum.
Mr. Fox, who had resided on those Islands for twenty years as Collector of Customs, gave interssting information relating to the inhabitants and products.

Ordinary Meeting, Provincial Museum, March 15, 1880.

Robert Morrow, Esq., in the Chair.

inter alia.

Specimens of the Corals, primnoa reseda, and Paragorgea Arborea ms exhibited from the Museum collections. These had been found by fishermen the Halibut fishery at Little Banquereau, north of Sable Island. They was regarded with p culiar interest as being Nova Scotian products.

Dr. Gilpin then read a long and interesting Paper, "On the Wild Ducks Nova Scotia."

The Paper was illustrated by the extensive and beautiful collection of W_{i} Ducks in the Museum.

Ordinary Meeting, Dalhousie College, April 19, 1880.
The President in the Chair.
Dr. Somмers read some remarks "On a new Nova Scotia Trillium."
The specimen was found by Miss Godfrey, of Clementsport, Annapl County, near the Victoria Bridge, Bear River.

Mr. Morrow then read the first part of an interesting Paper " 0 n Osteology of Salmo Salar."

The Paper was illustrated by carefully prepared skeletons.
Ordinary Meeting, Dalhousie College, May 10, 1880.
The President in the Chair.

Inter alia.

Dr. James Walker was elected an Associate member.
Mr. Morrow read the second part of his Paper "On the Osteology of : Salmo Salar."

Dr. Honeyman then read a Paper eatitled "Notes on a new Geologit Progress Map of Pictou County."

Adjourned until October next.

Date of Admi
1873. Jan. 1
69. Feb. 1:
77. Dec. It
64. April 3
64. Yov. :
78. Nov. 11
67. Sept. 1(
72. April 1s
63. May. 13
75. Jan. 11
63. Oct. 26
63. Dec. 7
71. Nov. 29
74. April 13
72. Feb. 12
63. Jan. 5 .
73. April 11.
60. Jau.
63. Feb. 2
63. Jan. 16.
78. Dec. 9.
63. June 17.
66. Dec. 3.
74. Dec. 10.
79. Jan. 11.
63. Jan. 5 .
66. Feb. 1.
77. Nov. 19.
64. Mar. 7.
75. Jan. 11.
72. Feb. 5.
77. Jan. 13 .
66. Feb. 3 .
72. Feb. 13.
70. Jan. 10.

LIST OF MEMBERS.

Date of Admission. .
1873. Jan. 11. Akins, T. B., D. C. L., Halifax.
69. Feb. 15. Allison Augustus, Halifax.
77. Dec. 10. Bayne, Herbert E, Ph.D., Professor of Chemistry, Royal Military College, Kingstun.
f64. April 3. Bell, Jcseph, High Sheriff, Halifax.
64. Nov. 7. Brown, C. E. Halifax.
78. Nov. 11. Cockburn, Col., R. A.
67. Sept. 10. Cogswell, A. C., D. D. S., Halifax.
72. April 12. Costley, John, Dep. Pro. Secretary, Halifax.
63. May. 13. Cramp, Rev. Dr., Wolfville.
75. Jan. 11. Dewar, Andrew, Architect, Holifax.
63. Oct. 26. DeWolfe, James R., M. D:, L. R. C. S. E.
63. Dec. 7. Downs, Andw., Corr. Memb. Z. S., London, Halifax.
71. Nov. 29. Egan, T. J., Taxidermist, Halifax.
74. April 13. Forbes, John, Managor of Starr Works, Dartmouth.
72. Feb. 12. Foster, James, Barrister-at-Law, Dartmouth,
63. Jan. 5. Fraser, R. G., Chemist, Halifax.
73. April 11. Gilpin, Edwin, F. G. S., Inspector of Mines, Halifax.
60. Jan. 5. Gilpin, J. Bernard, M. D., M. R. C. S., Halifax
63. Feb. 2. Gossip, Wm, F. R. M. S., President, Halifax.
63. Jan. 16. Haliburton, R. G., Barrister-at-Law, Halifax.
78. Dec. 9. Harris, V. E. Rev., Land and Mines.
63. Juиe 17. Hill, Hon. P. C., Barrister-at-Law, Halifax.
66. Dec. 3. Honeyman, Rev. David, D. C. L., Secretary, Professor of Geology, Dalhousie College, Halifax.
74. Dec. 10. Jack, Peter, Cashier of People's Bank, Halifax.
79. Jan. 11. James, Alex., Judge of Supreme Court, Halifaz.
63. Jan. 5. Jones, J. M., F. L. S., Halifax.
66. Feb. 1. Kelly, John, Dep, Chief Com, Mines, Halifax.
77. Nov. 19. King, Major, R. A., Halifax.
64. Mar. 7. Lawson George, Ph.D., LL.D., Professor of Chemistry and Natural History, Dalhousie College, Vice-President, Halifax .
75. Jan. 11. Mellish, John T., M. A., Secretary, Halifax.
72. Feb. 5. McKay, Alex., Principal of Schools, Dartmouth.
77. Jan. 13. Morrow, Geoffrey, Halifax.
66. Feb. 3. Morrow, James B., Halifax.
72. Feb. 13. Morrow, Robert, Halifax.
70. Jan. 10. Murphy, Martin, C. E., Provincial Engineer, Halifax.

Date of Admission.
1865. Aug. 29. Nova Scotia, the Rt, Rev. Hibbert Binney, Lord Bishop of
72. Nov. 11. Poole, H. S., F. G. S., Superintendent Acadian Mines, Pictou.
76. Jan. 20. Power, Hon. L. G., Senator.
71. Nov. 19. Reid, A. P., M. D., Superintendent of Lunatic Asylum, Dart mouth.
66. Jan. 8. Rutherford, John, M. E., Halifax.
64. May 7. Silver, W. C., Treasurer, Hollis street, Halifax.
68. Nov. 25. Sinclair, John A., Halifax.
80. April 12. Neal, W. H., Halifax.
75. Jan. 11. Sommers, John, M. D., Professor of Physiology and Zoology Medical College, Vice-President, Halifax.
74. April 11. Stirling, W. Sawers, Cashier of Union Bank, Halifax.
79. Feb. 10. Twining, Chas. R., C. E., Halifax.
66. Mar. 18. Young, Sir William, Knight, Chief Justice of Nova Scotig Halifax.
77. Jan. 13. McGregor, J. G., A. M. D. Sc., Bristol, England, Professor, Physics, Dalhousie College, Halifax.

ASSOCIATE MEMBERS.

1863.	Oct.	6.	Ambrose, Rev. John, A. M., Digby.
77. May	14.	Burwash, Rev. Prof., Wesleyan College, Sackville, N. B.	
75.	Nov.	9.	Kennedy, Professor, Acadia College, Wolfville.
78.	Feb. 11.	Louis, Henry, Assoc. R. Sch. of Mines, London.	
75.	Jan. 11.	McKay, A. H., A. M. B. Sc., Principal of Pictou Academy.	
75.	Nov.	9.	McKinnon, Rev. John, P. E. Island.
65.	Dec.	8.	Morton, Rev. John, Trinidad.
76. Mar.	13.	Patterson, Rev. George, D. D., New Glasgow.	
80.	May	10.	Walker, Jas., M. D., St. John, N. B.

CORRESPONDING MEMBERS.
71. Nov. 29. Ball, Rev. E., Maccan.
68. Nov. 25. Bethune, Rev. J. S., Ontario.
71. Nov. 1. Cope, Rev. J. C., President of the New Orleans Academy of Science.
70. Oct. 27. Harvey, Rev. Moses, St John's, Nfld.
71. Nov. 1. King, Dr. V. C., Vice-President of the New Orleans Acedeng of Science.
71. Oct. 11. Marcou, Jules, Cambridge.
71. Jan. 10. Matthew, G. M., St. John, N. B.
72. Feb. 5. Tennant, Prof. J., F. G. S., F. Z. S., \&c., London, Mineralogis to H. M. the Queen and the Baroness Burdett Coutts.
77. May 14. Weaton, I. C., Geological Survey of Canada.

LIFE MEMBER.

Hon, Dr. Parker, M. L. C., Nova Scotia.

Lord Bishop of

 lian Mines, Pictou.atic Asylum, Datr
ifax.
iology and Zoology Halifax.
k, Halifax.
ce of Nova Scotir gland, Professor
kville, N. B.
ille.
lon.
ctou Academy.
w.
rleans Academy

- Orleans Acondens

Idon, Mineralogis rrdett Coutts.

TRANSACTIONS

OF THE

ghora siotian Ilustitute of chatural scimut.

Art. I.-Nova Scotian Geology-Annapolis County continued. - By the Rev. D. Honeyman, D. C. L., Curator of the Provincial Museum and Professor of Geology in Dalhousie College and University.
(Read Nov. 10, 1870.)

INTRODUCTION.

About the middle of July last I resumed my investigations in the Geology of Annapolis county. My main object, however, was the investigation of the geological relations of the Iron deposits of Moose river. They have already been connected and correlated with the Iron deposits of Nictaux. Both have been assigned to the Devonian period.
I have in a preceding paper referred the Nictaux deposits to the Middle Silurian age (Transactions, 1877.9), and for the time in a manner separated them from the Iron deposits of Moose river. I was prepared, however, for a reunion of both. The fact that the gigantic trilobite, Asaphus ditmarsice, was found in the magnetite of Moose river had led to the belief that it too was pf Middle or possible Lower Silurian age.

DIARY.

Tuesday, 15th.-On my way to Moose river I observed grantes to the south of the Lawrencetown Railway station. This is almost due north of the approximate western limit of the Nictaux Iron bearing strata. From Lawrencetown onward to Annapolis the only rocks observed outcropping are granites.
I had an opportunity of observing the granites to a distance
four miles south of Annapolis Royal. Through the kindness of one of Dr. Gilpin's friends we had a delightful carriage ride int the South Mountain. Reaching, apparently, the highest elevation on turning, the panorama beheld, on the north, was enchanting and extensive. The granite is known to extend 50 miles south of Annapolis. Dr. Gilpin has observed it thus far, and he believe that it connects with the Granites of Shelburne, on the Atlantic coast. This is important testimony, in its relation to the iden tity and age of the Annapolis and Shelburne Granites, as well a those of Halifax and other localities on the Atlantic Coast.

I found also a kind invitation awaiting me, from the Rev. Mt Godfrey, of Clementsport, through his brother-in-law, Dr. Gilpin offering me the hospitalities of the "Rectory." This was found to include very efficient assistance in the prosecution of my most important investigations. I have also to acknowledge my obli gations to Mr. Church, for a copy of his excellent map of Anna polis county, plain and unvarnished. This was of very great as sistance in prosecuting and locating my work.

Wednesday, 16 th, Dr. Gilpin took me to Moose River, by the South Mountain Road, a very rough, but admirable geologica road. Here I had an opportunity of observing the transition from the Granites to the stratified rocks, containing the Moose River Iron ores. We passed from the one into the other, about Beiler's Lake (Church's Map). The transition did not appear in outcrops, but from the contour, and the change from granit boulders, debris and roughness, to slaty, clayey and soft roads.

There were occasional outcrops of stratified rocks seen, before reaching the "New Mines" of Moose River ("Iron quarry" of Church's Map).

At the New Mines were observed considerable excavations, al perfectly dry and fresh in appearance. Great piles of slaty material with Magnetite, were exposed, so as to be satisfactorily examined. Several hours were spent collecting specimens oi fossils. Dr. Gilpin showed me the situs of the Asaphus ditmar sice, as indicated to him by the superintendent of the mines. The rock and the matrix of the Asaphus correspond, both being largely composed of magnetite.

We after observing n in the rives of the rivel Rector and my head que convenient f
The same of $\mathrm{H} . \mathrm{M}$. cust As I expecter once a specir a part, one 0 oruciform al this very int yet refer to i I was then ed, a fine exl water fall.
are said to br Thursday, works and t of the erectic arch, was " A the works thi Forenoon.at Milner's, (Gilpin and I I examined tl noticed in pas a mile, crossir New Mines, v again to the three quarters tion about a c Mine.

No rocks w Moose river r
the kindness of trriage ride int ighest elevation was enchanting 50 miles south and he believe on the Atlantic on to the iden. nites, as well a tic Coast. m the Rev. Mr -law, Dr. Gilpin This was foun ion of my mot ledge my obli. map of Anna. f very great as
e River, by the able geological the transition ing the Moose he other, about 1 not appear in e from granite id soft roads. ks seen, before [ron quarry"
excavations, all piles of slaty e satisfactorily specimens of aphus ditmar. the mines. The h being largels

We afterwards proceeded through the Valley of Moose River, observing numerous outcrops of rocks on the road side and in the river, and at length reached Clementsport, at the mouth of the river. I received a hearty welcome from the worthy Rector and his family. It surprised me agreeably to find, that my head quarters were beside the Iron works, and consequently convenient for work.
The same evening I went to call upon Mr. Ditmars, the collector of H. M. customs, and of geological and other interesting curiosities. As I expected of a collection, of which the Asophus ditmarsice was once a specimen, other objects interesting to the geologist formed a part, one of these was a large piece of quartzite, with a singular oruciform and other organisms. Mr. Ditmars kindly presented this very interesting specimen to the Provincial Museum. I shall yet refer to it in the sequel.
I was then taken to see the "Ditmars Falls." Here was observed, a fine exposure of metamorphic rocks and a really picturesque water fall. When the brook is well supplied with water, they are said to be somewhat imposing.
Thursday, 17th, the morning.-Examined the ruinous Iron works and the interesting section of rocks adjoining. The date of the erection of the Furnace, as seen from the keystone of an arch, was "A. D. 1831." The most extensive and useful part of the works that survives is the great dam and viaduct.
Forenoon.-Went with Mr. Godfrey to the "Old Iron Mines," at Milner's, (Church's map), traversed the same road which Dr. Gilpin and I travelled on the day before, a length of three miles. I examined the numerous outcrops of rocks, which I had already noticed in passing. Turning to the right we travelled upwards of a mile, crossing the extension of the Iron bearing rocks of the New Mines, without observing any outcrop of rocks. Turning ggain to the right, we travelled the Hessian Line road about three quarters of a mile. We then walked in a northerly direcfion about a quarter of a mile, and reached the Old or Milner Mine.

No rocks were observed in situ from the time we left the Noose river road until we came to the Mines I examined the
old trenches, which are two in number, running parallel on tr outcrop of rc beds of ore, twenty feet apart.

These have the same course as the trench of the New Min lected a few and are one or other doubtless a continuation of the Iron beariu rocks became strata of the latter. Fossils were collected, of forms similar graite bould those of the Asapleus ditmarsice strata, and others not fous bridge and be there. Returning we kept on the Hessian Line road until was examine reached the Moose river road, by which Dr. Gilpin and I came port by the v the New Mine. I had thus an opportunity of examining ti Saturday, other outcrop already referred to, also of re-examining the Ne_{e} at and north Mine and of adding to my collection of fossils. I thus found ti orposite the 1 Moose river road presenting a good cross section of the great river road to part of the rocks of the area under examination. the outcrops c

Friday, 18th, Morning.-Engaged in locating on Church's mą understanding the positions of the several outcrops examined, and in studyin \$abbath, 20 their relations.
at Clementspo
Forenoon.-We went to Bear River Village, travelling thevening ; atte: Digby Road at a distance of two and half miles, Strata, deepr Monday, 2: and soft of considerable thickness, were observed and examin branches from in "Deep Brook." Half a mile farther, on the left, we came mentsport ; ob the Bear River Road, at the Temperance Hall and School How exposed on the Proceeding along this road we found an interesting outcrop posed in a dee] rocks; just before reaching the summit of the mountain (Purdy Bear river and other outcrops were observed, especially after reaching the raobserved intere which follows the course of Bear River on the east. Ouport by the Di_{i} crops were observed occurring very frequently between the crr Tuesday, 221 roads and the village. Still keeping on the east side of Be'examining cert River, a short distance above the bridge, I found and examined about half wa interesting outcrop of rocks, on the river side. The rocks a briage ; observi black slate with limestones, much metamorphosed and very haito (Friday, 19tl This is particularly the case with the limestones, which found the rocks fossiliferous. I could only get fossils out of them, where the collected fossils. were weathered, I collected some at the southern side of the on clear section of crop, consequently in the lower strata. On the Digby counserred the rocl side of the river, the same strata are seen outcropping in a shim came. yard where a large ship was being built. Farther up the riv Wednesday, 2 we crossed at the bridge at Rice's mill; here we found a splend side of Clement:
ag parallel on tr outcrop of rocks, which at first sight seemed gneissoid, on closer

If the New Min of the Iron beariu f forms similar others not fous ine road until lpin and I came of examining th amining the Ne_{e}

I thus found ti ion of the great n. g on Church's ma und d , and in studyil
at Clementsport and Bear river village; went to Digby in the ge, travelling thevening; attended services at Mr. Ambrose's.
s, Strata, deep re Monday, 21st.-We travelled the road to Waldee, which 'ed and examin branches from Moose river road about half a mile from Cleleft, we came mentsport; observed several outcrops of rocks similar to those and School Hone exposed on the Moose river road, and examined the strata exesting outcrop posed in a deep brook at Waldee ; proceeded to the mouth of rountain (Purdy Bear river and Digby road by the old post road, on which were reaching the ruobserved interesting outcrops of rocks. Returned to Clements। the east. Ou port by the Digby road.
between the crr Tuesday, 22nd-We returned to Bear river for the purpose of east side of Bue exmining certain rocks exposed in a brook and on the river side, !and examined about half way between Bear river village and the Victoria - The rocks a briage; observed strata between the cross roads already referred sed and very har to (Friday, 19th), and the rocks of which we were in quest We itones, which afound the rocks in the brook, somewhat obscured by debris, but hem, where theollected fossils. On the side of the river we examined a fine n side of the or clear section of the same rocks; collected fossils, and also obhe Digby counserted the rocks underlying. We returned by the road we opping in a shite her up the rive found a spleni
ednesday, 23rd.-In the morning I went to the point, east of Clementsport, with the expectation of finding strata ex-
posed at low water. I passed over the beach, teeming with liz searched for strata among luxuriant sea vegetation, and foun only a great accumulation of rock masses and boulders, fru the mountains on the north side of the basin (Annapolis). I der a pouring rain I made a collection of marine founa, which ha in my way. I reached the rectory after a walk of a mile, m , enough. The rain was very much desiderated by the farmer and upon the whole a rainy day was not very objectionable myself. I had thus leisure to make up my notes, locate ni work on the map, run my lines into, and even to forecast ti geological arrangements of Digby county, especially on the core of Saint Mary's bay, to await confirmation in another season.
Thursilay, 24th.-I proceeded to revise and complete the Moo River section by making probable additions, whose existem was inferred from occurrences at Bear River, i.e., I expected find the extension at Moose River of the fossiliferous rocks, fom above the Bear River Bridge and Rice's Mill.

Friday, 25th.-About a mile S. E. of the New Iron Mine found a fine exposure of the rocks sought for. From this outen to a sawmill on the west branch of Moose River, $1 \frac{1}{4}$ mill nothing was to be seen but the evidence of Granite. i e. a chang of contour, granite debris and boulders. Under the guidance Mr. Godfrey, I believe that I have examined every importan exposure of rocks in the district. The whole area traversed $7 \times 5 \frac{1}{2}$ miles $=38$ square miles. The greatest width of the strua examined seems to be from Digby to some point west of Bee River, along the line of strike of Bear River strata, being miles. Along Bear River, the width is 4.3 miles; along Now River and road extension, 4.3 miles (the measurements are accor ing to Chureh's map).

PETRA.

1. Granites.-We have seen that the stratified rocks of t region are bounded on the east and south by granites. \mathbb{T} granites are a continuation of those of Nictaux, and the sam as to general character and age, i. e. in age they are Lower Car brian with Lower Silurian alteration. Here they have not be observed in contact, or even in close proximity to the strata as

Nictaux, cons matter of mui Gnessoi of oneissoid ro not far from tl he has riven n pond with th of the same a similar rocks v of the masses I evidently tran vene between 1 Moose River se pearance by ou Dionites. The erreatest Bear River, (I first of the Be served on the (Diorite (4) is n . Diorite (5) is or from Clementst an eighth of a a third of a r Bear River Vill three and a hall not far below tl sane locality river its positio the New min tended, we shou] number of times section.-Vide 1 4. Quartzites to befirst in or river, about oneThesday). Mr. (
eeming with lif ation, and foun d boulders, fro Annapolis). Ti fauna, which of a mile, \mathbb{m} by the farmer objectionable notes, locate 1 to forecast ially on the coas nother season. mplete the Moo whose existen $e .$, I expected rous rocks, four
w Iron Mine ${ }^{2}$ rom this outern River, $1 \frac{1}{4}$ mila itte. i e. a chan, the guidance every importan rea traversed lth of the strat int west of Be itrata, being ss; along Mou nents are accor
led rocks of t. ${ }^{7}$ granites. \mathbb{T} and the sam are Lower Can y have not bee , the strata as

Nhctaux, consequently this element has not been available in the matter of mutual correlation.

Gnessoid rocks.-Dr. Gilpin informed me of the existence of gneissoid rocks in the Granite Mountain, south of Annapolis, not far from the point of Panorama, (Diary Tuesday). Since then he has given me specimens of the rocks referred to. They correspund with the gneissoid rocks at Nictaux and are doubtless of the same age, (Upper Cambrian). Masses and boulders of similar rocks were observed in the region of Moose River. Some of the masses looked as if they might be in situ, but they were evidently transported. It is possible that the rocks may intervene between the fossiliferous quartzites of the extreme south of Moose River section and the granites, without making their appearance by outcrops.

Diorites.-As at Nictaux these are of frequent occurrence. The greatest exposure of Diorite (1) is on the Digby side of the Bear River, (Victoria) Bridge. This may be regarded as the first of the Bear River section of rocks. Diorite (2) was observed on the Old Post Road near Bear River. (Diary, Monday,) Diorite (4) is near the summit of Purdy's Hill. (Diary, Tuesday,) Diorite (5) is on the Moose river road about a mile and a half from Clementsport. Diorite (6) is on the same road section about an eighth of a mile from the preceding. Diorite (7) is about a third of a mile from Diorite (6), and at the lower end of Bear River Village, (Diary, Thursday,) at a distance of about three and a half miles from Diorite (1), at Victoria bridge. It is not far below the extension of the strata of the New mines in the same locality. If this Diorite 7 were to be extended to Moose river its position in the section would not be far to the north of the New mine. If the others were in like manner to be extended, we should have Diorites occurring in the section the same number of times as in the Nictaux river and Cleveland mountain section.-Vide Paper.
4. Quartzites and Sandstones.-The Quartzite which seems to be first in order is exposed on the Annapolis side of Bear river, about one-eighth of a mile from Diorite [1] (Diary, 2nd Thesday). Mr. Godfrey informed me that an attempt had been
made to improve the river road, which is certainly very sto where it passes over this quartzite and its associate rocks, b had to be abandoned on account of the hardness of the rods The outcrop on the river certainly indicates considerable thice ness and flinty hardness. The second quartzite is exposed at Bogart's, in great masses on the east side of the road. The ro makers seems to have shunned this. It is of equal hardness wi: the preceding. It occurs 1.1 miles from it. The third quartii is at Rice's mill. This is fossiliferous (Diary, Thursday, 17th). is more like a sandstone. It is metamorphic, but not in the san degree as the two preceding. It has cleavage but is of inferi hardness. Its extension is at Moose river, which is also fosii ferous (Diary, Thursday, 24th). This is highly metamorphicat of equal hardness with Quartzites (1 and 2).
5. Micaceous Slate.-A thick band of highly micaceous black Slate succeeds the first diorite (3) of the Moose river roa section. The outcrop of this is very striking. It looks lik roofing slate and divides very regularly into rhomboidal form When split the surfaces are coated with scales of mica, givin an unctuous touch.

Another micaceous black slate was observed in connection wi: the great quartzite of Bear River.

These slates very much resemble the micaceous strata of N taux Falls, except in compactness. As this properly may viewed as accidental, the resemblance may be regarded as int cating the co-temporarity of the Nictaux slates, which I was to regard as of age prior to the strata with which they a associated. Vide Paper in Transactions.

STRATA.
Argillites.-In describing these I shall sketch the Moose Rir section.

1st.-We have the red and grey strata north of the wharf Clementsport. The same appears in sections on the Digby si of Bear River, at the Victoria Bridge. This is above diorit (1.) They are also seen in Deep Brook, at Ditmars farm, tween Victoria Bridge and Clementsport. Here they exter from the post road to the beach of Annapolis basin. The
are all very re as red ochie. soap when use position leads from denudati doubtless add Sindstone (Tri speculations" Annapolis anc of this colourir red slates of K In the outcrop iuterbedded qu thickness of th shades of grey The next in other (E.) side according to th slaty cleavage pled. Their ec Beyond the E Wednesday).
cuttings. This to Waldec. Ab outcrop is seen appearance, and slate, already dt we have the s] extend to Milne lis side of Bea Diorite. As the River section, hi iferous sandstor that the outcrop ite are of strata, between Rice's that I may alsc
tainly very sto ociate rocks, zss of the rod nsiderable thide is exposed at road. The ro ual hardness wiz e third quartai ursday, 17th). t not in the sar rut is of inferi :h is also fossit metamorphicar
τ micaceous an Hoose river ra

It looks li nomboidal form of mica, givis
connection wit
us strata of Ni roperly may regarded as int which I was which they of
the Moose Rir of the wharf a the Digby sif is above dioin itmars farm, re they exter is basin. The
are all very red, so much so that when ground they may be used as red ochre. Part of the strata of light colour are said to act like soap when used in washing. The softness of the band and its position leads to the inference that it has suffered very much from denudation in previous periods as well as the present. It doubtless added its quota to the formation of the New Red Sondstone (Triassic). Its colour should be taken into account on speculations "On the colouring of the New Red Sandstone" of Annapolis and Kings Counties. I have already credited a part of this colouring to the Red hematite of Torbrook, Nictaux. The red slates of Kentville and Wolfville should not be overlooked. In the outcrop at Clementsport the red and grey argillites have iuterbedded quartzites and quartz veins, the latter attaining to a thickness of three inches. Following these are slates of various shades of grey and black, on them the wharf is built.
The next in order are the strata of the Iron works on the other (E.) side of the harbour. These extend as far as the Bridge according to the outcrops. They are highly metamorphic, having shty cleavage joints. They are very hard, micaceaus and crumpled. Their colours are grey and black.
Beyond the Bridge are the slaty strata of Ditmars's Falls (Diary Wednesday). On the road the outcrops of these are often bold cuttings. This is especially the case at the beginning of the road to Waldec. About a seventh of a mile beyond the Bridge a fine outcrop is seen in the river. They present a beautiful banded appearance, and are very hard. After this comes the micaceous slate, already described. Beyond these, after an obscure interval, we have the slates of the New Mines, also described. These extend to Milner's Mine, westward they outcrop on the Annapolis side of Bear River, and also on the Digby side above the Diorite. As the quartzite with fossils, at the end of the Moose River section, has been shewn to be the extension of the Fossilifrous sandstones at Rice's Mill, Bear River, we may assume that the outcrops extending between New Mines and the Quartzite are of strata, which are the extension of the fossiliferous strata between Rice's Mill and Bear River (village) Bridge. I think that I may also assume that Bogart's Quartzite (No. 2), Bear

River, extends eastward to the north of Milner's Mine, and ma even be concealed in the obscure interval noticed in the Io River section. My additional reason for supposing its existen near Milner's is, that the specimen of quartzite containing singular forms already referred to (Diary Wednesday), as receirfrom Mr. Ditmars, was found there. On comparing the specins with others from Bogart's quartzite, I find that they are ident cal even in accidental structure, such as quartz veins. position of this quartzite relative to the Asuphus ditmurs strata, according to this analogy, will be about a quarter of mile north, and therefore (geologically) considerably lower. Sut posing the former to be of Middle Silurian, the latter may assigned to the Lower Silurian period.

There is considerable variety in the strike and dip of the strie of the area.

The red slates in Deep Brook (Ditmars's) have a strike N. E., S. 55 W ., and a vertical dip.

The red and grey slates of Clementsport have a strike N. 60 S. 60 W ., and a dip 43 S .

The strata of the Iron works have a strike N. 55 E., S. 50% and a dip S. 51 S., also a strike N. 40 E., S. 40 W., and a dip, N. They seem to be folded.

The same below the Bridge of Moose River have a strike N. E., S. 45 W., and a dip 48 S.

The strata in Moose River have a strike N. 60 E., S. 60 W., \& a dip 65, S. 30 W .

The strike of the micaceous slates in the vicinity of Diof (3) is N. 75 E., S. 75 W., dip 74°.

The strata of the outcrop of Purdy's Mountain (diary Frilut have a strike N. 50 E., S. 50 W., and a vertical dip.

The black fossiliferous slates of the outcrop in Bear Ris above bridge, have a vertical dip, and also a dip 68, N. 30 W .

The fossiliferous sandstones at Rice's Mill, Bear River, hare strike S. 60 W., N. 60 E., and a vertical dip.

The formation of these crystalline Diorites here, as elsewhe e.g., and East river, Pictou, and Nictaux, Annapolis, have beent cause of the prevailing metamorphism and disturbance of th
stratified roc nomena at tl the localities Diorites wer talline and u condition (m: assigned.
Quentzose. manner the o ciated rocks. impress the e ated granite. the uncrystal Vide Paper ©
Red and g_{T} and Deep bro of similar str: palaontologic: Wolfville (Pa
's Mine, and min ced in the Mo sing its exister e containing sday), as recelir ing the specim they are ident artz veins. TT phes ditmurs t a quarter of ibly lower. Su se latter may
dip of the stra
ve a strike N
a strike N. 60
55 E., S. 5 " N., and a dip ve a strike N
E., S. 60 W.. inity of Diof a (diary Fridat lip.
in Bear Riry 68, N. 30 W . or River, hati
re, as elsewhe is, have beent turbance of
tratified rocks. Two of the Diorites present the same phenomena at their point of contact with the strata, as are found in the localities specified, coalescense as if from contact while the Diorites were in fusion. There is in fact a blending of the crystalline and uncrystalline rocks. To the same cause the peculiar condition (magnetic) of some of the bedded ores is also to be hasigned.
Quentzose and Micuceous.-This seems to indieate in a peculiar manner the origin of the strata as well as their relation to the associated rocks. The material has such a granitic character as to impress the conviction that it has been derived from the associated granite. It thus teaches the same lesson as the condition of the uncrystalline rocks in contact with granites at Nictaux.Vide Paper on Nictaux, Transactions, 18\%\%-S.
Red and gray argillites of the Moose river section, Bear river and Deep brook, seem to throw light on the geological relations of similar strata at Wolfville and Kentville. Here we have paleontological aid, which was much desiderated, especially at Wolfville (Paper in Transactions, 1878-9.)

FAUNA.

Coelenterata.

Corals.

1. Stenoporc.
2. Petraia sp?

Annuloida.
3. Crinoidea.

Annulosa.
4. Cormulites flexuosus.
5. Beyrichia 2 sp .

Trilobita.
6. Asaphus ditmarsice.
7. Dalmanites gilpini.
8. Calymene?

Mollusca.
Brachiopoda.
9. Strophomena alternata.
10. Athyris sps.

11. Spirifera sps. Lamelli branchicute.

12. Modiolopsis sp?

Gasteropoda.
13. Pleurotomaria?
14. Maclurea?

Heteropoda.
15. Bellerophon trilobatus.

Pteropoda.
16. Theca sp.
17. Tentaculites $s p$.

Cephalopoda.
18. Orthoceras?

Incerta sedes.
19. A ithrostauros golfreyi.

Notes on Fauna.
2. Petrcice sp? This coral is small, having a diameter $\mathrm{m} . \mathrm{m}$. It seems to be a cast of the top of the calyx. The sept are numerous, being distinct around a fourth of the circumfer ence, where the number is twelve, making a total of 48. carapace valve of a Beyrichice covers the half of it.
5. Beyrichia 2 sps. These are numerous. We have Curu pace valves of at least four distinct forms, representing, possibly two species. At Nictaux two indistinct valves were found whic were supposed to resemble Beyrichia kloedeni.

Here they are decidedly different and undetermined.
6. Asaphus ditmarsice.-This trilobite, which I described ani named in the last year's Transactions, is one of those gian forms which appear and culminate in the Lower Silurian, anf survive to the middle or intermediate Silurian period. Its bel ding here is magnetyte.
7. Dalmanites gilpini is also from the mines, of this I har only a glabella. This however is in goad preservation. It broken off at the occipital furrow. From this to the front, the length is $19 \mathrm{~m} . \mathrm{m}$. This is equal to the width of the frontal lobe The width of the anterior lobes is $16 \mathrm{~m} . \mathrm{m}$. of the median 14 m

ii. of the pos

 back part of tIt is preprillose the lateral fur enve of the fi been found in Dulinumiallogn
Begaving the gilpili.
a diameter yx. The sep the circumfer stal of 48 . it.
Ne have Cun nting, possibly re found whic
ained.
[described an of those gian r Silurian, anf miod. Its bet
of this I har srvation. It the front, the te frontal lobe median $14 \mathbb{I M}$
of the posterior $12 \mathrm{~m} . \mathrm{m}$. There is a deep fossette on the back part of the frontal lobe, a little above the anterior furrow. It is puitlose or coarsely granular except in the space between the lateral furrows, there being only two tubercules from the curve of the fossette to the occiput. All the species that have ben foume in the "Upper Arisaig serics" with the exception of Durmemintogumi occur in B' or' 'linton, none of them are papillose. Reganting the species as new, I have named it Dalmanites gilpini.
9. Strophomenu "ltermuta does not occur in our " "Pper Ari-
but it is of frequent occurence in the "Wentworth derice" of the Coberquid mountains, which I have correlated with the Hulson river or ('incinnati period (Lower Silurian).
10. Alligris of several species are found in the forms of casts. This genus prevails in the lowest pait of the "Upper Arisais serics," boing generally associated with corals, which were re-
ferred to the genus Petraice by Mr. Salter. The Athyris then disappears to reappear in great force in the Lower Carboniferous Limestone.
11. Spiriferce are abundant here as at Nictaux, especially in the Iron mines. It is the prevalence of Spiriferce that makes me hesitate in placing the Asaphus stratu lower than the middle Silurian. In the "Upper Arisaig series" Spirifera are most numerous in the Middle Silurian division.
14. Meclureu, s. p.-The form which I referred to the genus Meclurea occurs in the specimen of quartzite referred to in my Diary (Tuesday, 15th), associated with the Cruciform organism. It is a cast of the top of the shell or whorl. The width of the cast is 2.7×2 inches, its depth .7 inches.

Bellerophon trilobatus. Several specimens of this Heteropod were found at the mines. It differs from the Bellerophon irilobutus of Arisaig in the form of its middle lobe. It is not so frounded, being rather acute, so that it may be regarded as an older variety. Bellerophon trilobatus is not found in the Middle Silurian of the " Upper Arisaig series." Its first appearance is in ttrerinoid strata, at the base of C, the Upper Silurian.
16. Theca, $s p$. is very much like Theca triangularis of the

Upper Silurian. This is its first occurrence in Nova Scotia, arrat
Paleontolo from Arisaig. It appears to be a prior occurrence.
17. Tenteculites, s. p.-This is a small species like that of? " Upper Arisaig," Middle Silurian.
19. A ithrostucros godfiegi.- This is the Cruciform orgunis associated with Maclurea. Its obvious form is that of a Roma cross, not altogether straight in the boly, the lower part of being bent to the left. It is jointed. The number of joint: eleven. The ninth has two branches or arms of equal leng proceeding from it in opposite directions. The right one has tendency upward, not being altogether at right angles to to straight part of the stem. The joints are compressed bead shat and are generally half an inch in diameter. The only form t I have seen figured, which has any thing in common with it the Aitherclemen pulchelle, Billings. Of this the joints differently shaped, and the branches are more numerous. Whit Clemu signifying 'u twig is sufficently appropriate as representir the shape of the latter, Stouros is more appropriate to the spo men before us.

The Maclurea and A ithroclema are Lower Silurian forms Canada.

Localities.

The localities in the Moose and Bear rivers area, having fois are: 1st the New Mines. 2nd the Old Mines. 3rd Beaver rif above the bridge and at Rice's mill. 4th the continuation Rice's mill strata, at Moose river. 5th Bear's river midway tween the Village bridge and Victoria bridge.

Inferences.
We are thus led to the conclusions-

1. That the magnetyte strata of Moose River are not ner than the Middle Silurian Period.
2. That the Quartzites at Bogart's and their eastern extens are of Trenton, if not Calciferous, age.

I have already on lithological considerations, regarded the g4 quartzites of Gaspereaux River, Kings County, and their a ciated argillites as possibly of Lower Silurian age.-Transacti 1878-9.
ova Scotia, ama се.
\& like that of
iform orgunis hat of a Roms lower part of inber of joint of equal leno? right one ha hit angles to iseel bead share only form t mon with it
the joints: merous. Wh c as representif ate to the spot tilurian forms
ea, having fos 3rd Beaver in , continuation iver midway
eastern extens mountain with its traps, converge; the valley narrows and the Annapolis river widens into the French and Annapolis Basins. egarded the ${ }^{g}$ Between these lies Annapolis Royal on a peninsula.
and their ${ }^{2}$
Its Triassic strata, if such there be, lie concealed; no outcrop e.-Transadt appearing all around to give evidence of their existence. The Archean granite and Triassic Traps are only evident. The two.
periods, separated by time of duration inconceivable are thus space, brought into close contiguity.

From Annapolis the Basin begins to widen, and the mountain to separate. The route is continued along the south side of the Basin over the border skirting the granite rising ground an mountains on the south, which at length abruptly terminate an retreat, to make room for the area of stratified and igneous rock which has been examined.

Approaching Clementsport, the flat border is widened ant becomes on the east side of the port, an area with farms of cont siderable extent adorned with large and elegant houses

On the back of this area the ground rises-the soft, red, gref and black slaty strata, as I have observed, being succeeded the hard strata of the Iron Works. The Episcopal Church seen crowniug the height, while the Rectory is seen peeping o among the beautiful trees on the less elevated ground below.

From the Rectory front through an opening among the acacia pines and fruit trees, the prospect is beautiful. The port an mouth of Moose River, with its village, wharves and wo crowned heights, is seen extending into the basin, whose wit expanse is bounded on the north by the North Mountain. Ore the woody point on the east side of the river mouth Digh town is well seen, and its wonderful mountain gap (Gut) whif opens into the Bay of Fundy. The inmates of the Rectory, wi: the aid of a neat little Dollond spy-glass, are able to render th view still more interesting by bringing the distant mountai nearer, by seeing steam boats and ships on their way to andfry Annapolis, and by bringing Digby, its churches, residences \% inhabitants within sight of the observer.

Going from Clementsport to Bear River the flat and fert border is still farther traversed.

At Mr. Ray's farm it has its greatest width, his elegant dence seeming at a great distance. The width here is little shy of a mile. A great beauty is the abundance of cherry trees mid a good crop of cherries. This is the introduction to a celebraz product of this part of Annapolis and Digby Counties.

The story of the early settlement of the district is interestin

A few Refug ϵ tween Clemeı tending to thi were afterwa we have the r It appears thi vailed betweel On the road the main road first summit tl indicate the mountain, and parts of the m and ridge of th east and nortl Digby, its gut The mountains in the brooks, i The road on millage and mc river somewha mountainous, tl argillite rise abr seen spannir part of Annapol Bounding the which rises pal granitic from boulders, withor ranite from the At the Bear R bounding m This village is r either side of inence. It be has its wharve nsiderable trad
able are thus
d the mountain outh side of the ing ground anf y terminate an ad igneous roch
is widened an h farms of con houses
e soft, red, gro g succeeded copal Church een peeping round below. nong the acacia

The port an rves and wo isin, whose wi Iountain. 0 r mouth Digt gap (Gut) whis he Rectory, wit le to render tit stant mountai way to and frit 3 , residences 2
flat and ferfi
his elegant ere is little shm cherry trees mi a to a celebrat unties. ict is interestiu

A few Refugees-four in number-had all the flat country between Clementsport, as a grant, and part of the hilly region extending to the distance of a mile from the shore. The back hills were afterwards granted to disbanded German soldiers. Hence we have the names Waldec and Hessian Line in the mountains. It appears that a feeling somewhat akin to Jew-Samaritan prevailed between the two classes of settlers.
On the road to Bear river village which turns to the south of the main road, an ascent is made into the mountain. Near the first summit the outcropping rocks diorite, quartzite and slate indicate the origin, age and constitution of this part of the mountain, and its continuation. From this elevation and various parts of the mountain road, (Waldec) which runs on the tract and ridge of the mountains. A panorama to the north, northeast and north-west of Annapolis, the Basin, North mountain, Digby, its gut and neek with St. Mary's bay is truly enchanting. The mountains of course have their vallies, the rocks outcropping in the brooks, in these, account for their existence.
The road on the east side of Bear river, half way between the pllage and mouth of the river, presents a lovely view. The river somewhat broad winds beautifully on either side, it is mountainous, the heights over the quartzite with its fossiliferous argillite rise abruptly, covered with forest, the long Victoria bridge is seen spanning the river near its mouth, beyond which is a pert of Annapolis basin; North mountain closes the view.
Bounding the south side of the district is a long valley, behind which rises parallel after parallel of mountains, which seem to granitic from the all prevailing spread of granite masses and boulders, without any other rock appearing, or are seen to be granite from the prevalence of solid granite.
At the Bear River end of the great valley, Clements Vale, and e bounding mountain parallel, is situate Bear River village. his village is remarkably beautiful and picturesque. It is set either side of the beautiful river, among hills of considerable aninence. It belongs to two counties-Annapolis and Dighy. It has its wharves, drawbridge and shipyard, and is the seat of onsiderable trade. A large and beautiful barque, just launched,
lay at one of the wharves alongside of piles of lumber. This mas associated with other vessels. In a shipyard above the bridg another barque was on the stocks. This shipyard is a placed Geological interest. The ship stands on one of the outcrops fosiliferous rocks already reforred to. Its numerous churches and elegant houses are worthy of notice. A great charm is the pre valence of ancient and noble oaks, and great, beautiful and prodne tive cherry orchards. The last was an important element in th pleasure of our visit. It was cherry time-there was bustle is cherry picking for export, and local enjoyment. The followin, Sunday was "Cherry Sunlay." Visitors from distant townsan villages were expected to aid the robins, who were remarkably numerous and busy in enjoying and disposing of the cherrie Bear River is evidently a paradise for robin.

Art. II.-Geological Waifs from the Magdalen Islands.-BB Rev. D. Honeyman, D. C. L.
These islands are situate in the Gulf of St. Lawrence, betwee long. $61^{\circ} 23^{\prime}$ and long. 62°, and lat. $47^{\circ} 13^{\prime}$ and lat. $47^{\circ} 52^{\prime}$,

They have a trend N. 45 E., S. 45 W , corresponding with ther of Nova Scotia and Cape Breton.

Amherst islands, Grindstone island, Entry island and Allrigt island, the south-west islands of the group, are all peculiart elevated according to the Admitalty charts.

In Logan's Geological Map of Canada the formation of t island is indicated as Lower Carboniferous.
My attention has been specially directed to the geology of th Magdalen islands, by specimens brought from time to time to t Provincial Museum.
1.-I received, three or four years ago, two pretty large spei mens of Manganese ore, Pyrolusite, from Mr. William Johnstor of Halifax. These are identical in character with our specime from the Lower Carboniferous Limestone of Hants, N. S., Tem Cape, N. S., and North River, Colchester, \&c. From these Im led to infer the existence of Lower Carboniferous Limestones the Magdalen islands, having Manganese.
2.-Specin Ir. Joln Bo ilentical wit 3.-Lately Tucker, of S arate, with e benutiful jas These are : nincrals.
From these slands are of posible econ Their geolo subnerged ar Canala, and 1 Breton, Nova On a parto selli to rest.
Mr: Fox, th the island for Anherst islan hundred to six lands, that this.
The first loo e transported The Jasper 1 bout six years bay, which lies
The Gaspe p Canada, 1863, 1
"Associated, ellow and gre probably been Sandstones.
collectors as 'Ga ase can only b
mber. This was bove the bridge rd is a place of the outcrops if ous churches and narm is the pro iful and prodne t element in the e was bustle in

The following istant towns and vere remarkabli ; of the cherrie
en Islands.--B
wrence, betweef lat. $47^{\circ} 52^{\prime}$. mding with the nd and Allrigh e all peculiart srmation of t e geology of the ne to time to th
etty large speaf lliam Johnstor h our specime ints, N. S., Tear 'rom these I Im s Limestones
2.-Specimens of Gypsum were subsequently received from Mr. Jolin Boak, of Halifax. These are of character and quality ilentical with the Nova Scotia Lower Carboniferous Gypsums.
3.-Lately other specimens were received from Mr, John Tucker, of San Francisco. There are, fir t, a specimen of coarse agate, with cavities containing quartz crystals. Second, three beautiful jasper specimens, blood red, green and yellow.
These are all from Grindstone island; and are evidently trap minerals.
From these observations we are led to infer that the Magdalen slands are of some geological importance, and its minerals of possible economic value.
Their geology appears to indicate the existence of an enormous submerged area of Carboniferous strata lying between Gaspe, Canada, and Port au Port, of Newfoundland, extending to Cape Breton, Nova Scotia and New Brunswick.
On a part of this Prince Edward Island's Triassic Sandstones seem to rest.
Mr. Fox, the collector of customs, who has been a resident of the island for twenty years, informs us that the elevation of Amherst island, Grindstone island and Entry island is from five hundred to six hundred feet; that trap is prevalent, on these blands, that one of the specimens is undoubtedly derived from this.
The first looks like a specimen found in situ; the others may be transported boulders.
The Jasper pebbles are identical with some that I received about six years ago, with beautiful agate pebbles, from Gaspe bay, which lies to the N. E. of Grindstone island.
The Gaspe pebbles are thus referred to in Logan's Geology of Canada, 1863, page 404.
"Associated with these are others (pebbles) of agate and of red, yellow and green Jaspers, often brilliant in colour, which have probably been derived from the Conglomerates of the Gaspe Sandstones. These Jaspers and agates are known among collectors as 'Gaspe pebbles.'" Of course the conglomerates in this ase can only be regarded as the secondary source of the 'Gaspe
pebbles,' just as the Carboniferous Conglomerates of the Cobe. quid mountains in Nova Scotia are the obvious secondary souroof many of the rounded boulders and pebbles of Syenite, Diorit and Porphyries which are found in our post pliocene drift.

The Jasper pebbles are supposed to come from the post-pliocent so that they may have come from Gaspe.

Gypsum was once an article of export to Canada. It is nu now exported; Nova Scotian Gypsum is preferred.

Art. III.-On the Semii-Annual Migration of Sea Fowl Nova Scotia.--By J. Bernard Gilpin, A. B., M. d M. R. C. S.
(Read March 15, 1880.)
In this paper I wish to call the attention of the Institutet that part of the great semi-annual migration of sea fowl whid passes the whole eastern coast of North America, belongingt the coasts of Nova Scotia ; of the separate genera and specia of which it is composed ; of the monthly periods of their pass ing; and of the modifications both in time, in frequency and in species, which advancing civilization has prodaced. From the earliest writers and voyagers, not only along the New Englan coasts, but also of our own Province, we notice mention of thes migrations, and are amazed by their numbers, darkening the ai and blackening the shores along which they passed. Witho enemy save those natural ones, which the economy of natur always provides, they passed north and south without fearo molestation. For the last three hundred years, an advancing population at almost every point on their passage, from Labrada to Florida, has thinned their numbers, altered their route, an perhaps, in one or two instances, changed their route entirely, w destroyed a species. The small part which the shores of on Province of Nova Scotia take in these migrations, or indeed the still smaller part that has come beneath my own personal obses. vation, aided by one or two friends, will be the subject of this paper.

List of water fowl and sea fowl personally noticed in Nors

Scotia. N Birds :-

Bran Bran Bran Anas Anas Dafil Mare Quen Quer Quen Spatı Aix
Fulig Fulig Fulig Fulig Buche Buche Buche Harel Camtc Histri Somat Somat Oeden Oedem Oedem Of this list find that nine one species o Appearing in not seen. I h Swans being from Sable Is which I put d
is of the Cobe iecondary soure Syenite, Diorith rene drift. he post-pliocente
ada. It is not d.
f Sea Fowl Pin, A. B., MI. D
the Institute t sea fowl whid ca, belongingt era and specia s of their pass equency and in sed. From thi e New Englant sention of thex urkening the ait ssed. With n nomy of nature without fear a an advancin from Labrada heir route, an rute entirely, e shores of on i, or indeed the personal obser subject of this
ticed in Noris

Scotia. Non nclature of Dr. Coues, Key. North American Birds:-

Branta . luecopsis, Barnacle goose.
Branta bernicla, Brant.
Branta canadensis,
Anas boschas,
Anas
Dafila
Mareca
Querquedula
Querquedula
Querquedula
Spatula
Aix
Fuligula
Fuligula
Fuligula
Fuligula
Buchephala
Buchephala
Buchephala
Harelda
Camtolæmus
Histrionicus
Somateria
Somateria
Oedemia
Oedemia
Oedemia
obscura, acuta, americana, netion, carolinensis, discors, clypeata, sponsa, marila, affinis, collaris, valisneria, clangula, islandica, albeola, glacialis, labradoreus, torquatus, mollissima, spectabilis, anericana, fusca, perspiliata,

Wild goose.
Mallard.
Black duck.
Pin tail.
Widgeon.
English teal.
Green-winged teal.
Blue-winged teal.
Shoveller.
Wood duck.
Scaup.
Little Scaup.
Ring-neek duck.
Canvas back.
Golden-eye.
Barrow's Golden-eye.
Buffle-head.
Oid wife.
Pied duck.
Harliquin.
Eider.
King Eider.
Scoter.
White-wing.
Surf duck.

Of this list of fourteen genera and twenty-seven species we find that nine genera, with the exception of the genus Aix, and one species obscura of the genus Anas, are more or less rare. Appearing in some years tolerably numerous and then for years not seen. I have never seen myself or heard from others of any Swans being seen in our Province. Of Geese, I had sent me from Sable Island, in the year 1870, an immature specimen which I put down to Leucopsis, especially from the dark line
running through the eyes and on the nape of the neck, the dark wing coverts, and black bill and feet. In 1874, I saw two specimens of the same shot on Halifax common, and in the collection of my friend, Mr. Downs, who considered them the young of the snow goose. With every respect for one who may be called the best field naturalist in the Dominion, I cannot reconcile the black bill and legs with Wilson's description of the pale lake or reddish purple of the bills and fect of the young snow geese shot on the Delaware river, and must maintain my opinion. These are the only specimens I have seen.

Of the Canada goose, his migrations may be said to be regular in the Spring. From after the middle of March to about the middle of April, numerous flocks pass over the land, going north. eastwards, and scattered parties, of half a dozen or more, are found feeding along the shores of the tide ponds and salt estuaries of the Bay of Fundy, the Atlantic coasts, and especially the shores of Cape Breton. Should heavy north-easters prevail these flights are driven down in numbers to the land, and thus every fers years wild geese are plentiful in Halifax market during April. I have noted 10th April, 1879, one being shot at Digby, near the Bay of Fundy. The Brants also pass about the same time of Spring, but are less noticed, except during a long period of foggy weather, when they seem bewildered, and cover the flats in hundreds, and are easily shot. The autumn migration of the geese and brants is less noticed. I have no notes of their alight. ing, but several of the peculiar note of the wild goose beard in October, November, and indeed midwinter. During one Spring about 1870, the brants remained about Digby, N. S., till the middle of May, becoming very fat though arriving very lean. That these geese, as well as the snow goose, once bred in num. bers on the salt marshes of Annapolis County, and that their habits have been altered by advancing population, is well provel by old writers. The early French writers notice the abundance of "outards," both white and grey, that bred on the Port Royal marshes, the white being no doubt the snow goose ; and those bred from wild eggs, and carried to France as a royal present, still existed in their descendants, which thronged by hundreds,
in Buffon's 1 densis." Tr Brants bred children. I now, or scar the individu breeding gre having attac still, during
Of the ne exception of curiously enc widgeon, the never to ab ter, and chis books of nat white collar, Jones." Pint Young collec mage. Of tl 1880, Halifax male, full plı mounted by of species; w Mr. Egan ; ar my son ; and, Mr. Egan. F individuals, al full plumage. casual visitin§ true type of t slender neck, so closely allie resident, in co also, yet it is : mouths, just a August, the m
neck, the dark saw two speci. a the collection te young of the γ be called the meile the black lake or reddist ese shot on the These are the

1 to be regular I to about the l, going northa or more, are 1 salt estuaries ially the shores il these flights hus every ferr during April ligby, near the same time of eriod of foggy r the flats in gration of the f their alight. oose beard in ıg one Spring N. S., till the ag very lean. bred in num. nd that their is well provel he abundance дe Port Royal se; and those royal present, by hundreds
in Buffon's time, the royal waters of Versailles, as the "A Canadensis." There are people still alive who recollect that the Brants bred in abundance in St. Mary's Bay when they were children. I scarcely need say that none are found breeding there now, or scarcely alighting, except in some years. This power in the individual bird of prolonging its existence by altering its hreeding grounds must perpetuate its race, whilst other races having attachments stronger to one place have died out, and are still, during our own time, diminishing.
Of the next family of true duck or fresh water fowl, with the exception of the black or blue wing duck, and wood duck, which, curiously enough, are resident, consisting of the mallard, pintail, widgeon, the teals and shovellers, they may be said to be rare; never to abound in market, to appear during fall and winter, and chiefly to be found in private collections or in note books of naturalists. Thus I note, "Mallard, young male, no white collar, shot Sept., 1875, Cole Harbor, near Halifax-J. M. Jones." Pintails rather more numerous. Halifax Museum, Young collections,-Mr. Downs and Mr. Egan, males full plumage. Of the teals, blue winged, male full plumage, shot Jan'y, 1880, Halifax ; green winged teal, Halifax market, 12 Dec., 1871 ; male, full plumage, myself ; English teal (Q. netion), very rare, mounted by Mr. Downs, with American, to show the difference of species ; widgeon, female, full plumage, Jan., 1880, Halifax, Mr. Egan ; and a shoveller, exceedingly rare, shot at Digby by my son; and, shot April, 1879, Halifax, male in full plumage. Mr. Egan. From these extracts we find this family rare in individuals, and occurring during winter sometimes, and then in full plumage. Whilst those birds thus make our Province a casual visiting place, it is singular that the blue-winged duck, a true type of the fresh water duck, with its long and low bill, slender neck, legs brought forward, a poor diver but good walker, 80 closely allied to these genera in all these respects, should be a resident, in company with the wood duck, nearly as closely allied also, yet it is so. Down in the salt marshes bordering the river mouths, just above tide way, we find him nesting in May. In August, the mower with his scythe cuts the young brood scarce-
ly able to fly. At the same time others are nesting along the rush fringed sides of our inland lakes, and the young are pro. tected by their mother seeking their food in the shallow rapids, In 1854, I found them nesting on the low banks of the salt lake or lagoon which makes the centre of Sable Island, some eighty miles seaward from the Province. The nests were very inartif. cial, more like the circular folding or twisting of the long grass by the duck's body and legs with a few scattered feathers. The eggs were a light bluish green and about ten in number. Whilst in June I saw the mother duck leading her young flock on the lake, I have seen others sitting patiently during the last of July on, perhaps, a second or third robbed nest. If undisturbed they would doubtless remain on these salt marshes till the ice drove them out. Disturbed by sportsmen, they seek the lakes. In September they are found feeding upon the bluebenties covering our barrens, and as winter advances, and the frost drives them, they return to the salt marshes, and at last, in deep winter, to the bays of the ocean ; thus returning to marine molluses that furnished their first food. In deep winter he is found nestling beneath the snow, waiting for the ebb tide to bare the rocks from which, being no diver, he collects his scanty supplies of frozen molluses. On Sable Island he remains as long as the salt lake keeps open from the ice, but returns in the early Spring. This duck may be caller both resident and abundant in the Province Although often and long ago described, yet I cannot forbear describing again a male in full piumage shot at Digby, N. S., 9th February, 1880 :-
" In colour, top of head obscure line running down back of neck; shoulders, upper back axillaries and wing coverts blackish, but as almost every feathet had its edges brown, the general appearance was brownish. On the top of the head the brown appears in lines, on shoulders and other parts as scales, the lower back and rump black, the tail sooty black, but each feather emanginated. The primaries sooty black, the secondaries having a speculum of blue with purple reflections, hordered above with velvet black and edged with greyish white: the tertiaries having the outside edges velvet black. Beneath the colour and shading of feathers like the upper parts, but lighter. Edge of shoulder spotted black and brown. The upper part of inside wing pure white, but shading off to bluish ash, darker towards the extremities; beneath tail, dark ash. Returning to the head, there is an obscure line passing from behind eje
to back of he: neck, for abou numprons dar male, the bor liecomes very tumid fenther female and y frontal feather colour of the each tij. The line tuns along this, from the the webs scarel aily scutellated T Let

Iri
Ta
In some y feather; the versified by resident duel last sombre c by the most alien upon ot here, I have 17th, $1877, \mathrm{n}$ having the w maintain he i between our confirmed by beside theses abundant or 1 myself. Our the Ringneck stand immed They are at h divers but bas
ting along the young are pro. shallow rapids f the salt lake d, some eighty very inartifi the long gras: eathers. The mber. Whilst ${ }^{3}$ flock on the e last of July listurbed they the ice drove he lakes. In ries coverin! t drives them ep winter, to molluses that ound nestling are the rocks olies of frozen the salt lake Spring. This the Province. innot forbear by, N. S., 9th
leck; shoulders, st every feather the top of the ts as scales, the er emanginated. m of blue with ed with greyish reath the colour dge of shoulder sure white, but neath tail, dark om behind eye
to hack of head. All below the eye, the cheeks, the chin, throat and sides of neek, for alout four inches, may be called very pale fawn, as a hack ground to numary, dark pencillad dots or lines. In the full muptial plumage of the male, the border between this lighter neck and the deep brown of the breast leemenes very di-tinct, indeed, with his pouting cheeks, sweling neck and tumid fenthers, he looks as if he hat an awhey white neck and head. The female and young, are less distinctly marked. The hill is long and low, the frutal feathers coming down in a prak, the side feathers in a semi-circle. The coleur of the bill is greenish hirn with the tips Whack and a sulcircular nail on ench tif. The lammella very tine in both mandildes; the nostrils high up. A line runs along the upper mandible from rictus to tip, and a second line above this, from the tip, passes it. The legs are a ducky orange, with a red wash; the webs scarcely black; the soles dusky. The tarsi and toes are uninterruptanlly seutellated on their front; on other parts, olscurely reticulater.

Total length, 2 feet.
Length of spread wings, 3 feet 3 -10 inch.
of upper mandible, $2 \frac{1}{2}$ inch.
of tarsus, 2 inch.
of longest tue, $2 \frac{1}{2}$ inch.
Irides, dark lirown.
Tail feathers, 16 -
In some young birds shot 1st August, 1880, and still in finc feather, the plumage was much darker than adult, and less diversified by fawn or brownish edges to the feather. The other resident duck we have cannot be called abundant. Unlike the last sombre colored but still very beautiful bird, he is adorned by the most beautiful metalic tints of the tropics, and seems an alien upon our frozen streams. Of the wood ducks breeding here, I have had several specimens of the young, shot August 17th, 1877, near Annapolis Royal, in their first plumage, and not having the white forked collar of the adult. The Indians all maintain he is found mid-winter about the rapids and low falls between our inland lakes, which never freeze. This has been confirmed by sportsmen, and also lumberers, who camp all winter beside these streams, yet he seems out of place, and I fancy not abundant or long to remain. I have never seen him in winter myself. Our next group of ducks, consisting of the Scaups. the Ringnecks, Canvasbacks, the Goldeneyes and Buffleheads, stand immediate between the freshwater and the sea ducks. They are at home equally in lake and ocean. They are expert divers but bad walkers, having the leg thrown far back. Their
bills have become short and high, their forms more robust, nech shorter, and bodies losing the long oval form of the typical back duck, and becoming round and humped, and the hind toe lobur lated. With the exception of the Canvasback, of which I have noted two specimens, and the Ringneck, (F. collaris), the only specimens of which I have noted were kept alive by Mr. Dowas and I think were originally young taken in the eastern part of the Province, the other members of this group may be called common. The scaups, bluebills or blackheads, as they are variously called, come into the Bay of Fundy about the last of October and leave us in April. The specimens noted by me were all marilla, but a mounted specimen in Halifax Musem of affinis shows both forms to be present with us. The next group, which Dr. Baird has justly mited in his new genus, Bucephala, the goldeneye and buftcheals, are common, coming to the Bay of Fundy in October and leaving us in April. Though not so numerous as the common goldeneye, yet in some seasons the Ice. land species may be said to be plenty, in others rare. After a careful study of many specimens of each, both males and females and immature birds, I have been enabled to generalise that both males have the violet wash in the green of the head, though Richardson makes it typical in the Iceland species; that both females have the snuff yellow wash upon their heads, which my friend Mr. Boardman makes typical in the female Iceland; that there is a tendency in both females for the brown to run to dingy duck green on their heads, and that the party coloured bills in both females are very few in comparison with leaden coloured ones; that it appears in some young males, and their fewness can only be-accounted for by considering them transient and becom. ing effaced by adult age. The anatomical difference in the trachea of the males, (paper read March 12, 1878,) must prove them distinct species. Before we notice the next group of purely pelagic duck, which never seek fresh water, are still shorter and rounder in figure, legs further behind, much better divers, but scarcely walkers at all, we may note that both these groups of pure freshwater fowl, and the intermediate one of partly fresh and sea fowl, although they do no doubt perform the semi-an.
ninal migrat it, or are a inland lake carcely kn' We have on wing of the freshwater our rarer sl pressed tow group of mi living ly di inlant. Th rather searee duck. Of tl ago the thre One of them Mr. Boardm: tained by M from Novas specimens in known by t skunk duck, species is bec now perman noted three s which is now and though a of having no nently pelagi less driven in as it is here c and immature watched a pa instance that of the harleqt of scoters, an gratory sea fo
'e robust, neeh e typical black hind toe lobur. which I have mis), the only by Mr. Downs eastern part may be called as they are at the last of ed by me were iseam of affimis t group, which Bucephala, the o the Bay of gh not so nusons the Ice are. After a is and females lise that both head, though that both Is, which my Iceland; that in to run to coloured bills aden coloured ir fewness can t and becom. rence in the 1 must prove oup of purely 1 shorter and r divers, but lese groups of partly fresh the semi-an.
tillal migration along our coasts, yet are never seen performing it, or are a scene in the landscape. We find them feeding in our inland lakes or dallying about our salt-tide marshes, and we scarcely know if they are successive flights or the same flocks. We have only what may be called stragglers from the eastern wing of the great migration, which doubtless makes the great freshwater streams and lakes their tumpikes further inland, and our rarer species must be the involuntary stragglers that are pressed towards the sea coast by westerly gales. The third group of migratory sea fowl are purely pelagic and procure their living hy diving. They never affect the freshwaters or are seen inlant. They include the heralds, the scoters, the eiders, the rather searce harlequin, and the almust extinct Labrador pied duck. Of this last species Mr. Downs seeured about thirty years ago the three or four last specimens known in the Province. One of them is in the collection of Col. Drummond in Scotland; Mr. Boardman has one, and the thid must be the specimen obtained by Mr. Brewster, of C'ambridge, Mass., lately, and marked from Nova Scotia. Wilson, in 1818 , speaks of examining many specimens in the market of Philadelphia, and in 1830 it was well known by the gunners of Newport, R. I., who called it the skunk duck, from its black and white colors. It is probable this species is becoming extinct, as the canses of its scarcity appear now permanent. Of the king duck, (S. spectabilis), I have only noted three specimens, in market, Halifax, Dec. 11, 1871, one of which is now in the collection of Mr. Boardman, St. Stephen's, and though a male in full nuptial plumage, has the peculiarity of having no frontal plates to the bill. This species is so eminently pelagic in our latitudes as never to seek our shores unless driven in by gales of wind. The common eider or sea duck, as it is here called, is plenty, especially in the form of the female and immature birds. I note that Mr. Egan informed me he once watched a pair nesting near Halifax, N. S., but this is the only instance that has come beneath my notice. With the exception of the harlequin, which are rare, the old wives, the three species of scoters, and the common eider ducks, make up our true migratory sea fowl.

I note a surf scoter (O perspitiata), a young male, as early a August 8, 1879, shot at Digby, evidently a young bird of the year's; a very carly date. From this date to November, the surf scoter, the velvet scoter (O fusca) and yellow-billed or bot. the-nosed scoter (O americana) come flying in the Bay of Funds in small flocks, and remain all winter. I have never noticed the black scoter (O nigra), though given in Wilson, Nuttall and Baird. The American student must feel obliged to Dr. Coves for returning these species to one genus, and in studying their common halits, forms, and especially common colour, and pro tuberance at base of bills, wonder how any naturalist, either cabinet or field, could ever have divided them into two or three gencra. The old wife, or old squaw, comes to us about the same dates with these, and is often seen in company, either flying or pressed to a lee shore by heavy weather, sitting upon the waters. The eiders come in rather later, but are sometimes numerous in Spring. Whilst the semi-annual Fall migration of these sea disek are scarcely noticed, except by naturalists and gunners whilst in the pursuit of food or warmer seas, they seem leisurely to fill our shores and pass our rocky promontries, whilst some remain all winter, seemingly, as we are unable to say they may not be successive flocks in passing, the returning Spring seems to awake new thoughts and new feelings in all these migratory fowl. Sometimes in February, oftener during March, the garrots cease their perpetual diving; the males, with tumid heads and throats, and more brilliant and purple green reflections, swim in restless circles around the sombre female which, half buried in water, with extended neck and flattened body, evade his ap. proach. The glass-like water is thrown into mimic surf by their play. Or the male throws his purple head far backward till it rests upon his back, and a short shrill cry comes across the water from his upturned bill. The old wives, a little seaward, are play. ing the same antics, and a prolonged note, much like a distant bell-buoy, directs you to the male, with creamy and pouty head long snowy axillaries falling athwart a velvet black back, and long tail carried straight and high, is circling around his greyish mates. The coloured gentry in these magic reels, the scoters,
with lake darkness of hardy fishe Thus it apI of migratio is strongest Beginning i strikes our along Yam western hea eastern pass north-caster many days i and cider dt low upon tl From many Hash after fli or four victi eiders seem 1 billed scoters cause they p have said bef scene in the 1 escape our no as it were un tions on inla years ago, it stream as it fl spectable and fowlers in law and Fishers' A had unwritten position on th They owned a fish house, wit towards the se titanic, and loc
ale, as early ng bird of the November, thin v -billed or bot. Bay of Fundy ver noticed the 1, Nuttall and 1 to Dr. Couse studying their lour, and pro. uralist, either , two or three bout the same ither flying or on the water s numerous in of these sea and gunners seem leisurels s, whilst some say they may Spring seems se migratory h , the garrots id heads and ions, swim in alf buried in svade his ap. surf by their kward till it oss the water ırd, are play. ike a distant pouty head ck back, and d his greyish the scoters
with lake or orange bill, and scarlet leg gleaming from the velvet darkness of their suits, play this game so stoutly that among the hardy fishermen they have gained the name of courting coots. Thus it appears that pairing takes place long before the instinct of migration moves the whole mass northwards. This migration is strongest during April, and lasts into the middle of May. Beginning far away southward and west, Florida perchance, it strikes our westernmost point, Westport, Brier Island, passes along Yarmouth, Shelburne, Lunenburg, strikes Sambro, the westem head of Halifax harbour, and pours its tide all along the castern passages, Canseau, and finally leaves our shores at the north-castern cape of Cape Breton. For all day long and for many days in fine weather, flock after flock of heralds, scoters, and cider ducks, every few minutes come scattering along, flying low upon the occan, but rising when passing a rocky point. From many a rocky ledge, or boat anchored to a buoy, comes Hlash after flash, followed by the roar of a duck gun, and three or four victims falling headlong into the sea. The heralds and eiders seem to perform their flight first, followed by the yellow lilled scoters and the velvet ducks, called May whitewing, because they prolonged their migration until May. Thus, as I have said before, these flights are obvious and make a pretty scene in the landscape, whilst the geese, flying high in the air, escape our notice, and the true ducks and their allies disappear as it were unnoticed, but no doult performing the like migrations on inland routes and fresh water streams. Some fifty years ago, it was my delight as a boy to watch this feathery stream as it flowed ly the beadlands of Newport, R. I. A respectable and grave set of men called gunners locally, but termed fowlers in law, and having common rights under the "Fowlers and Fishers' Act:" pursued this sport with great ardour. They had unwritten but severely respected law, of every boat's exact position on the water, and every man's right of fire on land. They owned a weather stained old grey granite hut called the fish house, with its boats chained all round it, and further away towards the sea, a stone duck fort, a circular wall of dry stone, titanic, and looking so like what I have in after years seen the

Miemacs dwelling in, on the rough shore of the Bay of Fund They shot from long ducking guns, with buccaneer stocks, (t) front of stock very convex,) flint locks, and every man mea uring his charge in his palm, from a long curved powder hom and yet they were good shots ; and on the evening of a soft April day, the fog elinging around Brenton's reef, it was a pleasant sight to see them slowly following homeward, with their biy paniels and lusty Newfoundlands, two or three horse loads full of game, each horse piled high with a feathery pyramid of black and grey, gleaming with scarlet bits of leg or bill. It was rare then to ste fors wheeled waggons; a manlier generation used horseback, sometimes the old two wheeled chaise. These men knew the Labrador duck, now nearly extinct, and taught me t identify the Huron scoter, for which I vainly sought in Buona parte's catalogue, N. Y. Lyceum, and which in after years wat first scientifically described by Herbert in American wild sport allowed by Baird, but denied by Coues. Whether this spoit still carried on, by brech-loaders and patent shell, I know no but must return to our own part of the stream, and the modifica tion time and civilization has wrought in it, not referm, again to the ancient voyagers. The opinion of those most inter ested in it steadily maintain its rapid decrease, or at all even its alteration of route: Wilson speaks of lirds now almostes tinct as found in the markets. M. Audubon, speaking of th sea ducks in the Bay of Funly, says "that ly the 10th Augine they (eiders and scoters) are so naked of feathers and destitut of quills as to be unable to fly, and are clubbed by the Indians sometimes to the mumber of two hundred and fifty in one foray being unpaired linds remaining from the previous winter." Wit a fair knowlealge of the southern coasts of the Bay of Fundy and of the Inlians about them, I can say these are the stories of former days, and that no such hunts are marle now. Even i Labrador their numbers are declining. In the official reports of the Dominion of Camada for 1878 , it is stated that the Mingan Indians, during the summer of that year, were reduced to coinparative starvation from the absence of feathered game on the ea coasts. We may take the fate of a kindred species, the grat
nak, now the fate loseph J 1672, wa then user haped bi the reason complete san do. pushed ba vrqanizati - pecies no luck, difi and is alli this resper of its inal around it wuillimets, hores of t lectors that heldrakes, hreed here and none of of grulls whi I had scaree ing gull (L. from my fri on the St. time. Of v tioned the t mule, from t and all after dieted by Sa lays after th Boston "was survived.
I have th
iay of Fund? er stocks, (th ry man mea powder horn - of a soft April as a pleasant vith their big rse loads full amid of black

It was rar neration used

These men taught me t ht in Buona ter years wa n wild spont this spoit I know no I the modifica not referm se most intu at all event w almost es aking of t 10th Augu and destitu: the Indian in one foras inter." Wit y of Fund the stories ,w. Even ial reports the Ningan uced to coingatne on the cies, the graw
ank, now universally admitted to be extinct, as a forewarning of the fate of others. If we almit, as indeed every one must, that foseph Josselyn Gent, when writing of "N. England's varieties," 166^{2}, was describing under the name of woblle, the great auk, then used as food and common in New England in June, "an illhaped bird having no long feathers on their pinions, which is the reason they cannot fly, not much unlike the penguin," the (omplate extinction of this lind shows what the presence of man an do. A bird organized for existence in temperate zones is puiled back wards to arctic lands, and those unable to alapt their organization to its new habitat perish. It is singular that the -pecies now supposed to be becoming extinct, the Labrador piel duck, differs from all its co-genera in having a membranous bill, and is allied (Cones) to a soft-billed species in New Z aland in this respect. May we not look to this feature among the causes of its inability to maintain that position which other species around it seem able to do. There is a growing tendency in the guillimets, the puffins, and razor-bills, to become searec about the hores of the Province, and they are less easily obtained by col. lectors than formerly. The family of gulls and terns, with tho Weldrakes, both mergansers and groosanders, including the hooded, hreed here; all the species of sheldrakes, and many of the gulls, and none of them diminishing. Yet in early autumin the numbers of gulls which arrive show that we owe their presence to migration. I had scarcely noted, Tusket, Bay of Fundy, Sept., 1879, a laughing gull (L. atricilla) for the first time, before a letter reached me from my friend Mr: Boardman, St. Stephen's, saying it appeared on the St. Croix with other southern species about the same time. Of very rare species that have reached us may be mentioned the tropic bird, the frigate pelican and the purple gallimule, from the south, and the pomerine jagger from the north, and all after very heavy storms; the jagger after the one predieted by Saxby, Oct., 1869, and the gallinule Feb., 1870, a few days after the hurricane in which it was supposed the "City of Boston" was lost, and which the transport "Orontes" barely -urvived.

I have thus in this paper made a study of that portion of
these semi-migrations that touched the shores of Nova Scotia endeavored to show the different families of sea and fresh water fowl which compose it, their various routes, and the causes that produce this variety. Some passing over the land, aerial, scarcely notice? save by the fowler or naturalist, others taking the inland water courses, and those which visit us being almost involuntary stragglers from this great western flow. Others again making the sea their pathway, and whose numbers make them common in our markets and observed by ali. I have only stated what came personally to my notice or from a few friends, thinking that the narrowness of the range might be made up by the more exactness of the matter, and that perhaps others on other parts of the route may, or perhaps are now doing the same, and thus a complete account of the entire migration from personal facts be obtained. Whoever studies it is now aware he is studying a feathery stream that no longer overflows its banks, but is ever growing narrower and narrower, species dropping out, individuals diminishing, its route altering, perhaps lengthening. It is beyond doubt that that amazing feathery stream, that darkened the air, blackened the coasts it alighted upon, that had streamed on for ages, indifferent to the arrows of the thinly scattered red man, made its breeding quarters far to the southward of their present home. It is certain the snow and the Canadian goose once visited Nova Scotia, and the extinct auk spent his June in Connecticut. These, perhaps, are the most arctic species now, and we have a right to infer that the less arctic ones followed their habits. The very presence of man, with his boats and ships, has done much towards this; but the alteration of their food from the ocean, caused also by his presence, his works, his wharves and docks, his pollutions, have driven away their food fisti, and made them seek it in northern climes.

By whatever means, however, this feathery stream has been diminished, altered or shortened, it leaves us some speculations of the past and for the future. Are those arctic forms now breeding at Hudson's Bay the same as once bred in sunny Connecticut ; have they changed in three hundred years, or are we
wrong in zone, and or may it ing to ev these wa being pus

0 A Ce
ox the hunting in a bear's roots of His gun 1 arousing t charge the the forest again. It, shot her, Missing his el throwin cub he toot sent it to when stretc ten and ele Whack upon and inside the tongue, teeth, but From the ut it, I judged measured lif gain nothine yet we ver which have repeated by

Jova Scotía fresh water causes that rial, scarcetaking the sing almost w. Others nbers make I have only few friends made up by ; others on doing the migration ; it is now r overflows wer, species ng , perhaps og feathery it alighted e arrows of rters far to e snow and the extinct ns, are the er that the presence of s this; but also by his tions, have in northern
m has been peculations forms now ;unny Conor are we

ON A CUB FOUND in a bear's den-Gilpin.
Wrong in asserting that an especial form is necessary for every zone, and that one form would not be sufficient for both places; or may it not have been that the great auk, with a form according to every naturalist of the purest arctic, flourished better in these warm seas, with this form, and owes his extinction to being pushed to where it was not adapted for existence.

On a Cub Found in a Bear's Den, Jan. 12, 1880.-By Dr. J. Bernard Gilpin.

On the 12th January, 1880, Stephen Bradford, an Indian, hunting moose in the County of Digby, Nova Scotia, discovered a bear's den,-seeing the dark skin of the bear beneath the roots of an overturned tree, covered by its mantle of snow. His gun being foul, he exploded many caps, and succeeded in arousing the bear from her hibernation. Before he could discharge the gun, she left her den, and he then tracked her through the forest in the snow for a mile and a half, when she denned again. He returned to camp, cleaned his gun, and returning shot her, for she proved a she bear, in her temporary den. Missing his coat, he returned to the first den, where he recollected throwing it off, and there found a cub dead and frozen. This cub he took to my son, who was in camp at the time, and who sent it to me. Its weight was eleven ounces. It measured, when stretched out, from tip of nose to end of hind toe, between ten and eleven inches. It was covered by very fine close hair, hack upon the back and head but bluish slate towards the belly and inside of limbs. The ears were naked; the eyes closed; the tongue exposed, and the jaws slightly open. There were no teeth, but the claws were much developed, and the tail long. From the umbilicus being entirely healed, and no cicatrix upon it, I judged it to be about ten days old. After a careful and measured life-size sketch, it was placed in alcohol. Though we gain nothing new by the possession of this most rare specimen, yet we verify personal observation, and by date, statements which have come down to us since the days of Pallas, and repeated by Richardson, Godman, and Audubon. Allowing the

1.5 ON A CUB FOUND IN A BEAR'S DEN-GILPIN.

cub to have been ten or twelve days old when taken, fron reasons I have before stated, it puts its birth about the first of January. Our snows rarely fall to any depth before the middle of November, and our bears usually seek their dens about that period for hibernation. The male bear is easily satisfied ; berind the root of an uptumed tree, a mass of tangled wood, or a hollow cliff' in a rock serves him, and the snows soon cover him in lis ragged sleep. Not so the female, if parturient. She selects the most obsenre amd hidden places, lining them oftentimes with layers of sproce fir branches. It is an unquestioned maxim with Indians, that no one has ever taken a she bear with young This is both owing to the obsemity of her hiding place, and the asserted fact that if disturbed she will always abort. My son in hunting some years ago, catme upon many sproce firs with their lower branches tom off and strewed about the snow. Hi, Indian told him it was the work of a she bear lining her den Hard by they found a crevice in a ridge of rock, which, after aseertaining it had no occupant, he entered, crawling upon handand feet, with his Indian holding his leg. The interior was a comfortable apartment in which he could sit upright, floored by spruce boughs, and which no tired hunter would refuse as a resting place. But it is not usual to find so comfortable quarters as these. Richardson quoting from Pennant, and Godwin, both attest to the truth of our Indians assertions regarding the deep privacy of the female in denning. The former saying, in very severe winters many bears migrate south, but no females found atmongst them; and the latter asserting that out of many hundreds of males only two females were found, and those not with young. The hard and carly winter had prevented the males from obtaining that condition of fat necessay for hibernation and therefore they became what our Indians call wandering bears, never denning. Instinct compelling the female to do so, as well as her being always in the proper condition, when the male is wasted by the September rut. A party with whom I was hunting in 1841, met and killed one of these wandering bears on the first of March. Our Indians also corroborate the assertions of the older naturalists, that though the bear comes
at of win () the deg marlative
tame bears
some nevel
()thers yot contining t coming out he covered
the vapour the Indian pwed by a and it requi foril's bani p thus, as on modern res naturalists : never rearl: consideratio drawn our a womb and it

That so hi to retain muscuiar stı food whatev in this time, haps of anim there is wast and its gro Taking the the individa: quarters abot her a feetus o diminated exterior resou over all organ 1st of Janua
aken, fron the first of the middll. about that ied ; betind d, or a holwer him in She selects itimes with eed maxim rith young e, and the t. My sons firs with now. Hi, og her den hich, aftel ıpon hand. rior was a floored ly e as a restfuarters as both attest ep privacy ery severe lles found of many those not ented the for hiber11 wandermale to do tion, when ith whom wandering porate the ear comes
wit of winter quarters very fat, it all wastes in a few days. As th the degree of hibernation attained to, Stephen Bradford's marrative is verified by other Indians, and by observation of tame bears. In captivity, especially if well fed and housed, some never hibernate, but sleep much more during the winter. (thers you may force into hibernation by want of food, and contining them in a dark cellar. They have been noticed in coming out of their houses into an atmosphere nearly at zero, to Ie covered by a thick mist of condensed invisible sweat; this is the vapour hanging over their dens in the forest, and conducting the hadian to them. They are never entirely unconscious, being p.kel by a stick they will growl but relapse immediately again. and it requires much poking to arouse them, as Stephen Bradforl's ban powder and dirty gun did in his narrative. Having thus, as one may say, re-verified by personal observation and modem research, what are the recorded facts of the older naturalists as well as the traditions of our Indians, who have never read a book or heard of a naturalist, we may pass to those considerations which the finding of this most rare specimen has drawn our attention to, as regards its condition both within the womb and its mutrition after birth.
That so highly organized an animal as a bear should be able to retain not only his vitality but his animal heat, and his muschiar strength for the space of four months, without any food whatever, is sutficiently wonderful, knowing as we do, that in this time, if there be no supply there is no waste, save perlaps of animal heat. But when we consider the female, we find there is waste and no supply. The material for a second life, and its growth, must be taken from an accumulated fund. Taking the middle of September as the time of conception of the individual before us, and allowing she went into winter quarters about the middle of November, she then carried within her a fuetus of two months old. This foetus she sustained, and diminated substance for its growth for six weeks, with no exterior resources, and in a profound torpor. This torpor spreads over all organs of the body, save those of the womb. About the 1st of January, as most certainly is proved by the conditions of
the cub, it must have been born. An atmosphere, saved only by the animal heat of the mother from that without the den, often approaching zero, and a torpid mother, awaits this blind bom feeble offspring. As no personal observation can ever assist us we may only conjecture that some instinct leads it to the mamma where, like certain marsupials, it retains a firm hold upon the nipple; and now a change comes over the still torpid parent,-the blood that thus far carried nutrition to the fuetus must, as it were, change its base.-the circulation of the uterus shrinks and becomes obliterated, whilst that of the mamma must correspondently increase and allow the lacteal glands to secrete milk. And all this performed with no assistance without, but from sources accumulated nearly two months ago. To suppose the parent is roused during parturition scarcely accords with the analogy to the facts which we do know, that is, her torpor during lactition. Besides, modern science has caused, by the use of esthetics, the whole phenomena of birth to be performed without the knowledge of the parent; and, moreover, the care during lactition, which we know is performed during torpor, is more wonderful. The most wonderful fact is, that no food is taken by the parent during both operations. Dating the birth at the first of January, three and a half long dark months must this torpil mother secrete milk before she emerge into light or procure food for herself. The appearance of the cub at ten days old, its leanness, its weight (eleven ounces), the parent sometimes weighing five hundred pounds, attests that the amount of uterine nourish. ment it had then received was of the smallest quantity. It was scarcely the size of a pup, one say of six or seven the litter of a bitch weighing thirty or forty pounds. That after birth it receives but little food, and passes the most of its life in semi. torpor, and scarcely grows until the parent emerges, we can only prove by their extreme smallness when found in early Spring Unfortunately I have no dates to those I have seen at that age or to a pair of young Polar bears I once saw, in whose instance the retreat must have been doubled in length and severity by the Arctic latitude and ice formed den. We may here remark, that in our bear hibernation destroyed all maternal instinct
fled from 1 mid it to 1 her in M caped with h In its produr privacy durin! opossum, out s pouch: and fro pacity of sus may justly be first mamm cial submerg walfus, mic mmer months ks, or swaml clothing these peared. his dest regetable riet, t drown for t this struggle pidity, perhap destined as 1 e been of wo miceted by the Irt. V.-Notes IsLan torpor, and scarcely grows until the parent emerges, we can
u. PIN .
saved only by the den, often his blind born, l ever assist us. eads it to the ns a firm hold the still torpid in to the foetu, 1 of the uterus e mamma must inds to secrete e without, but

To suppose cords with the ler torpor dur, by the use of ormed without e care during r, is more wons taken by the at the first of 1st this torpil r procure fool s old, its lean. imes weighing erine nourish: ntity. It was the litter of a after birth it s life in semi. s, we can only early Spring n at that age hose instance id severity by - here remark rnal instinct
she fled from her cub; it seems probable no maternal duties had bound it to her. Had Stephen Bradford, with his dirty gum, met her in May, he would have been only too happy to have apel with his life instead of going to camp with her skin.
In its production of young so comparatively small, and in its privacy during parturition, our bear has an affinity to the opossum, our sole North American marsupial, but without the pouch: and from these facts, as well as its hibernation, and its apacity of sustaining life either as a vegetarian or a carnivora, - justly be considered in its Polar or fishing variety one of he first mammals that occupied this continent on rising from its ghacial submergence. The Polar variety, but few shades above the walrus, might easily have sustained life for the few short funmer months on fish and seals, ere yet the emergence of rock peaks, or swampy terraces; and when a tardy vegetation was clothing these plateaux, and before the herbiferous races appered. his descendants straying landward thrived upon this regetable riet, till these races appearing after their natural food hai grown for them, allowed him again to become a carnivora. In this struggle of fish, vegetable and flesh life, his prolonged fonidity, perhaps at first much more prolonged in arctic regions, and destined as he advanced to warmer climates to cease, must we been of wonderful use in his struggle for existence.-Com1 ninicuted by the Author, Jan. 26, 1880.
latr. V.-Notes on the Anatomy of a Seal from Magidalen Islands.-By J. Sommers, Mi. D.

(Read Feb. 9, 1880.)

Abringing to your notice the following points on the anatomy of a seal, I take occasion to express my sincere thanks to the entleman through whose kindness I have become indebted for e opportunity to conduct an interesting investigation.
The Seal was sent fiom Magdalen Islands ly J. B. F. Painhand, Esq., to Rolt. Morrow, Esq., who conjointly with nysself e the dissection. I wish also in this place, and feel that I y the members of the Institute with me, to express the feel. of regard that I entertain for the spirit which actuated our
friend Mr. Painchaud, in that he had voluntarily underta trouble to aid us in the promotion of the objects for which Institute has been established. Could we infuse the sames into the minds of many friends less remote from us, whore of tunities are probably not less than his, our Transactions w before long, suply to investigators all material knowledge quired for acquaintance with the extent of our natural ductions.

SOTES O fine dark pr in the dea ohe, nostrils stemal car with ture upon the in. the meatus .
It is right also that I should makeexplanation here of what :ndjoined motes will rendor apparent, viz: that our study of seal was far loss minute and less perfect than it might ba been. When it arrived in July, decomposition had set in, the ha of the weather at that time increased the process, which went with great rapidity, notwithstanding it hall been carefully injet by Mr. Skelly, the Janitor of the Medical College, who was cand also to keep it surounded with disinfectants, yet the chang were not checked to any extent. The above circumstances cessitated a speely dissection, and although the vessels were tif fillel with injected matter and under other conditions could ha been casily followed out, we were compelled to confine work to the stuly of our sulbject, more from a zoological th from an anatomical stand point.

The following are the notes taken July the end, 1579.4 sulsequently on days when the dissection was carried on-: subject, a young specimen of Phoca Grenlandica, supposed as thitd or fourth month, length from muzze to tip of tail this feet, weight eighty pounds, the cuticle having pecled in mat places a description of the pelage was not admissable, colorir hair was a dirty yellowish white, the skin viewed as a whe presenting where the caticle remained, the dark markings spots commonly observel on seal skins from Newfound'and a Labrador, the anterior and posterior extremities had each t digits, the nails on the anterior fingers were strongly develop those on the posterior not so large.

The animal had been caught in a net and despatched by a lif on the skull which had fractured the bones, general shape head broad oval, length from muzale to occiput, ten inde
arily undertat ts for which se the sames In us, whoee opry ransactions Wou ial knewledee our natural plo here of what our study oft an it might ha ad set in, the le s, which went carefully injecte ', who was care yet the chang -ireumstances: vessels were of itions could las 1 to confine a zoological th

2nd, 1579. carried on-* ca, supposed a dip of tail this pecled in max sablule, colomi wed as a wh rk markings wfound'and a ; had each ongly develop itched byabl general shape out, ten inch
fine lark prominent, with a strong nictitating membrane, hin the dead animal could be made to cover two-thirds of lote, nostrils closed by valves or folds of mucous membrane, Gmal ear without appendages, the meatus opening by an oral perture upon the skin of the head in the position usual in mamWhin, the meatus was beset with soft bristles, clepth of canal of ex--mal ear, i. e. from meatus to tympanum one and one half inches, hody on the removal of the intugument presented a well purished appearance, the sternmm was prolonged upwards to the of the laryn. by a cartilaginous extension, this measured three -done half inches above the clavicles, and wave origin in its de length to portions of both pectoral muscles, these museles e as in the human smbjece from the stemmand ribs in front, the great pectoral was comtinued downward to the point of giphoid cantilage, their insertions the same as in man, viz: to edavicle hamerus and scapula, the prest of other thoracie -asces are so similar to tho corresponding parts in human tomy I deem it to be umecessary to proceed with their

The developenent of these musches in the seal corresponls more Ge sam: in binds than in land mammais, the shoulder muscles also comespondingly developed, the trapezius very thick, Dtoil and biceps short, thick, and strongly attached to the , thes prints in the myology of the seal can be seen only section, they are covered ly the general integument nearly to the wrist joint, as however the integument is loose ones short and articulated at opposing angles, there is much an of movement in the anterior limbs. emolification of the bones at the extremities, furnishes a striking pecnliarity in the anatomy of the seal ; in the superthe scapula is broad, rounded at the edge, bearing some reblance to the same bone in man, the fosse for the supra and spinati muscles are deep, the under surface of the bones ceply concave for the lotgement of the large sub-scapulars. bumerus very short and thick, the ulna and radius also short the olecranon process of the ulna is much prolonged to afford whment for the powerful extensors of the arm, the metacarpa.
and phalangeal bones are developed out of proportion bones of the forearm, taken together they have a much length, the flexors and extensors of the wrist, \&ce, are short thick, the tendons are long and well developed.

The inferior extremities of the seal are also confined in general integument, the bones being shortened and othen moditied as in the anterior extremities, yet every bone is pros as in man, the gluteal muscles are short and well developel it is evident from dissection that the other muscles of the limbs in the seal are not so well developed as the corresponi organs in the anterior members, the articulation of the feut bones, and the insertion of their muscles are such that the it jor extremities are twisted so that the tibial bones are este to the fibula, owing to this the palmar surfaces of the become opposed to each other in a position similar to which can be produced in the hands of man by the partial tion of the radius upon the ulna.

The phalangeal bones of the feet are longer than those of forclimb, the claws are not so large, the tegumentary corfa hroader and looser allowing great freedom of movement in th parts which are readily observed to be specially adapted for gression in the water, while comparatively useless for the purpose on land. The tibie and fibule were free.

Opening the thorax, the viscera were examined; laryns trachea same as in other animals, the rings of the latter be however, complete; right lung, upper lobe distinct; middle lower imperfectly divided or marked off from each other; lung distinctly two-lobed ; weight of lungs and heart, 1 t heart large, notched at the apex, denoting imperfectly the sep between the ventricles, four-chambered; the foramen ovale Eustachian valve not more marked than in the heart of a human subjects: ductus arteriosus not present. The aorta off separate subclavian and carotid arteries for cither side. anatomy of the vascular system in other respects differs not that of man.

Of the abdominal viscera, the stomach was large, having bagpipe shape of the organ in carnivora, being also simplet

-sommers

if proportion we a much gre \&c., are short d. also confined in ned and othere ery bone is pro well developed nuscles of the the correspon ion of the fen nch that the it bones are exte rfaces of the on similar to y the partial
than those it umentary core movement in t ly adapted for less for the free. ined; laryns f the latter itinct ; middle : each other: ad heart, $1!$ rfectly the orp ramen ovaler the heart of ${ }^{2}$

The aorta
either sile. ts differs not:
large, having g also simple
asured when distended about 14 inches in length, by $a^{+} 5 \frac{1}{2}$ in width. There is a permanent constiction at the etion of the middle with the pyloric third due to the muscufibres dividing the organ into two imperfect cavities. The testines measured in length 42 feet, 3 inches; diameter, about of an inch. Mucous membrane of both stomach and intestines, quamating, was not examined microscopically. There were valvule in the intestines. The stomach, \&e., contained fimps, partly dige sted herrings and bones. The liver had so decomposed, its dissection or examination was rendered practicable, no gall bladder was observed, although some ention was given to its discovery. The spleen and pancreas enot noticed; the kidneys were moderate in size; the uribadder small, oval shaped; ureters much larger, "thrice, in man; urethra measured from neck of bladder to tip of about thirty inches. The animal was a young male; the rative organs small. The penis was contained in a sheath pouch of the integument of the abdomen, this sheath extends the vent upwards towards the umbilicus, enclosing rgan so completely that a supericial glance would lead to upposition of its being entirely absent. The penis is pro with a long bone, situated or in connection with the ora cavemosa; the diameter in this young animal being about fat of an ordinary lead pencil. The testicles are within the dominal cavity. The spermatic cords and vessels on either epass through a very long abdominal canal, with internal extemal rings, as in man. They pass up the abdominal to join the root of the penis. The testicles contained no pematozoa. The penis could be made to protrude from its lominal sheath.
Any remarks which I au inclined to make in reference to the will refer only to the organs of progression, and taking the ence afforded by their anatomical structure, it is easy to IF the following conclusion, viz.: so far as the two pairs are derned, their uses are entirely different. The shortness and ficted movements of the anterior extremities renders them of little moment in swimming. The great osseous and mus
cular development of these organs, along with the strength the claws, renders them adaptable for climbing. The seal nie its own weight out of the water by means of its fore limbs: uses them also, when on land, as a means of progression. moving in the water they are at rest, held tightly against body, upon the ice or solid surface the palmar surfaces of anterior flippers are underneath. The tips of the fingers appo from side to side, and the olecrenon processes peint outre The posterior limbs under like conditions are not brought ase, they trail out behind, their edges resting upon the suft They may be said to be practically useless as organs of low tion on land, but their shape and structure eminently fits t for swimming. They present broal, flattened surfaces to water, the regular contraction of the extensor muscles of the and foot causes the latter to flatten and spread; by contrat and relaxation of the hip and thigh mascles, the thighs drawn towards the abdomen and then suddenly projected fi it ; the broad feet striking the water, drives the animal's forward by a succession of jumps. The seal moving in water does not swim smoothly like a fish; on the contrary, propulsion is due to successive arching and straightening inf ments of the lower portion of the body, resembling very the movements of a shrimp propelling itself by its tail. must not forget that the hind limbs of the seal are somewhed the condition of those of a human being, whose legs being closed in a bag, with his feet free, the only movement he accomplish would be that of leaping, by drawing his thi toward, the ablomen, thowing his boly forward from the s of his feet. The hummocky motion of the seal on land deseff by many, is due to their being used in such a way as deseif above; but as the soles of their feet cannot be brought upon ground or ice, the animal rests upon his knees or heels, attempts to use them as the moving point. The natural tion of the organ renders them facile in threading water, makes them awkward and inefficient for like purposes on or ice.

Of the whole family, the sea lions are the only ones that
ith the strenct ng. The seal its fore limls: progression. tightly against nar surfaces of the fingers appo sses peint outtre not brought ig upon the supt organs of loce minently fits red surfaces t - muscles of thr ead; by contray es, the thighs nly projected the animal's eal moving in the contrary. raightening mit nbling very by its tail. al are somertay se legss heing ovement he rawing his the ard from the I on land deseri way as deseif brought upon rees or heels, he natural cading water purposes on lly ones that
t with the palmar surfaces of their extremities upon the land, feuse there is greater freedom of \log and arm than in our als. They move more frecly and with greater rapidity when land, nevertheless their movements are on the whole very fuilar to those of our own species.

Yore - The tentorium cerelellum partly of bone as in cat, falx cerebri at its junction with
toram also formed of bone.

Art. VI. - Tubes in the Flet of the Moose. - By R .
Morrow. Rend May 10th, 1880.
In April, 1877. I real to you some "Notes on the Caribou," ee vol. 4, Tiransactions N. S. I. N. S., page 281, et seq.,) in hich I drew your attention to the tubes in the feet of the pose. I shot last December an old cow moose, in the hind feet which the tubes were fully developed, hut differed from those the hind foet of the bull described by me (ssee page 292 , ii.) in being more perfect in shape, closely resembling the Pres in the hind feet of the old doe caribou, that is, being much arower and more perfectly defined in their mouths, and of manly equal diameter to their inferior extremities, also being Iy strongly marked, as in the caribon, by the coarse, bristly fits of hair which issue from their mouths. The inferior exFimities of the tubes are attached, as in the caribou, by strong fia to the superior surface of the skin of the web, or soles of

efcet.

In the fore feet the tubes were nearly obiterated, existing Il as a slight depression in the skin, about one inch in length, tube proper being so reducel as scarcely to be perceptible; b depression, lying between the phalanges, is attached as in lind feet, by fascia to the sole, but the fascia extends to biddle of the depression, marking what was originally the rer extremity of the tubes, and it is therefore of greater length in that in the hind feet. There were no bristly tufts marking tubes in the fore feet of this cow moose, as are in the fore

162 NOTES ON SALMO SALAR SPECIMEN-MORROW.

> Art. VII.-Notes on the Bones of Salmo Salar Specil from Labrador. By R. Morrow.

Read April 19th and May 10th, 1830.
Spinous Rays, \&c. Beginning at the junction of the dons ridge with the occiput there is a bony process in advance of first spinous ray; flattened vertically, semewhat broader abor but stouter below, it is attached to the dorsal region by ste tibrous tissue, its ventral extremity at about midway to the spinous ray, and it is the first interspinous bone;* it is entire different in form, from its representative in the ubiquitous pers and were it cut out and looked at merely as a fish bone, i would recognize it as an interspinous bone, from the descriptis of stich bones as usually given.
$\therefore \& \in$. The 2 nd $\& 3$ rdspinous says have each a short intersig ons bone attached to their extremities, overlapping posteriorly. \%. This ray is without the intersp. bone. \dagger
\therefore The 5th spinous ray has its interspinous bone overlapping front, and rather longer than those belonging to $2 \mathbb{E} 3$.
(i-1.\%. All these sp. rays have their intersp. bones overlappin anteriorly, but the 15 th spinous ray curves posteriorly rate more than Nos. 12, $13 \& 14$, and at the 15 th sp. ray there is extra interspinous bone $\begin{array}{l}0 \\ \hline 1\end{array}$ (making 2 bones, $\left.\begin{array}{ll}1 \\ 14 & 2 \\ \hline\end{array}\right)$ which does 4 reach, but its end is opposite the front of the 15 th spinous distant about one-quarter of an inch from it ; it does not rises high in the dorsal region as the other interspinous bones, sar of an inch less than $i_{4}^{1}\left(y_{1}^{2}\right.$ lies immediately behind ${ }_{14}^{14}$, from whit it is distant about : an inch) $;{ }_{14}^{1}$ and the preceding intersp. bor are nearly equidistant from each other ; $\underset{11}{2}$ is very nearly straight bone, tapering slightly from its dorsal to its ventral tremity. The dorsal ends of the 14 interspinous bones hif somewhat broad heads+ for the attachment of the muscular tise and all are curved anteriorly.
16 . This spinous ray is without an intersp. bone, but 4th intersp. fin bone of the dorsal is slightly in front of it.

[^2]$16 \& 1 \%$.
intersp. fin low in the s 1\% \& 18 . 1 19. Opposi 7th intersp. 19820 . 31. Nearly is the 9th in Nearly the 10th int $\therefore \& \therefore B$的\&年 B Opposit $2 \neq 5 . B$ sh \dagger Slight posterior jun attached to t its lower extı $26,24,28,29$ is rather stron The height of at right angle face of the do length of do and, including inches.
29-4. From, ous rays are w sp. rays; from 4.-53. equal, and their dors: 34-55. At the portion of the the 54th). Th
*The shortening of cimens of the Cape \mathbf{B}
©The hollow for t.

GORROW.

Salar Specine
tion of the dons in advance of th at broader abon region by stor nidway to the 1e;* it is entine ubiquitous pery a fish bone, fre n the descriptis
i shor't intersoii ing posterionly.
re overlapping: $2 \& 3$.
ones overlappiit osteriorly rathe p. ray there is which does 4 ith spinous ray does not rise ous bones, sar d ${ }_{14}^{1}$, from wlif ng intersp. bos ; very nearly o its ventral ous bones hat muscular tise
bone, but ront of it.
ntral extremity yine ; more solid, thie int
e 5th is without.
$16 \& 17$. Between the points of these spinous rays* is the 5th intersp. fin bone, and at the 17 th begins the shortening or hollow in the sp. rays for the insertion of the dorsal fin.
If 818 . Between 17 and 18 is the 6th intersp. fin bone.
19. Opposite the point of 19 , perhaps slightly in front, is the 7 th intersp. fin bone.
19 \& 20 . Between 19 and 20 is the 8 th intersp. fin bone.
21. Nearly opposite the point of 21, slightly in advance of it, is the 9th intersp. fin bone.
\therefore Nearly opposite the point of 22 , perhaps a little anterior, is the 10 th intersp. fin bone.
$\therefore \& \therefore$ Between these, slightly in front of 23 , is the 11 th.
$\because \&: \%$. Between these, slightly in front of 24 , is the $12 t_{\mathrm{i}}$.
if. Opposite 24 is the 13 in intersp. fin bone.
${ }^{2}+435$. Between these, slightly in front of 25 , is the 14 th.
Sit Sightly in front of 26 is the 15 th intersp. fin bone; at the posterior junction of these intersp. fin bones with the fin rays, and attached to the prolongation of the 15 th intersp. fin bone from its lower extremity, the fibrous tissue descending and attached to $36,24,28,39,30$ - the 26 th, 27 th, 28, 29th and 30 th spinous rays is rather stronger than that which is attached to the other sp. rays. The height of the intersp. column from the centre of the vertebre; at right angles to the junction of the fin rays, is at the anterior face of the dursal fin $3 \frac{1}{2}$ inches ; at the posterior face, 3_{4}^{1} inches ; length of dorsal from anterior to posterior edge is 3_{4}^{3} inches, and, including the prolongation of the 15 th intersp. fin bone, $4 \frac{1}{4}$ inches.
29-4.. From, and including 29 to 42 , the superior caudal spinous rays are wider at their dorsal ends than are the other dorsal sp. rays ; from 26 to 42 , the height of the dorsal sp. rays is nearly ?.5-53. equal, and from 42 to 53 they rapidly decrease in length, and their dorsal ends are comparatively narrow.
5.4-55. At the point of this sp. ray begins the upper or dorsal portion of the caudal fin (the ventral portion begins also at the 54 th). The 54 th and 55 th sp. rays are anchylosed at their
*The shortening of the spinous rays for the insertion of the dorsal I do not find in some specimens of the Cape Breton Salmon,

TThe hollow for the dorsal is here completed and the sp:nous rays begin to rise.
bases, and towards the anterior dorsal edge of 55 the bony plate nearly touches 54 .
$55,56,5 \%$. Are anchylosed, and on 57 is the last dorsal spinots ray proper; bat in addition, and anchylosed with the three spinous rays above named, are two or three other rays, whid may be termed representative. I cannot decide their number they are so confused. These three rays unite with a short bone which is attached to the 57th sp. ray, and lies nearly paralle with the 57 th and 58 th spinous centra. The 57 th spinous cen trum begins to rise, that is, to curve upwards towards the dorsed edge of the caudal fin, and with the 58 th and 59 th centra and the lower Y shaped bone between the forks of which the notochord passes, forms an angle with the anterior part of the spina column of about 35 degrees.
Saddle bones. Beginning at the posterior edge of the 56th cen trum are a pair of bones of irregular and peculiar shape, one on each side of the spine. They are attached to the dorsal edge of the spine, and are joined by strong cartilage in this specimen, b their ventral anterior edges to the posterior edge of the 56th cen trum, covering the ventral end of the 57 th sp. ray, anteriort about $\frac{1}{8}$ of an inch, nearly at the middle of its height; their dor sal edges pass over the 57th sp. ray, posteriorly they cover and attach the three rays which do not reach the spinous centra, is and 59. These bones, which, for lack of a better name, I wil call suddle bones, attach the three rays which I have already spoken of as representative rays, by cartilaginous union to the spinal column. When these bones are in their proper position the spinous rays appear to be all perfect; but the 58th and jorti centra have no dorsal spinous rays. Close to the posterior end of these saddle bones, protecting the notochord, and lyins under the anterior edge of the short caudal fin ray, $\mathrm{N}_{0} .10$ reaching nearly to the dorsal edge of the spinous centra, is on each side a short irregularly shaped bone, about $\frac{5}{8}$ of an inch in length, somewhat pointed at either end. On the outer sidesi. the posterior extremities of these two short bones, the pointsif the short caudal rays next to the first perfect dorsal caudal fir rays, right and left side, have a slight attachment.
-MORROW.

5 the bony plate it dorsal spinots with the three ther rays, which le their number ith a short bose ; neariy paralle 'th spinous cen wards the dorse 59 th centra and which the notowrt of the spina

If the 56th cen r shape, one on dorsal edge of is specimen, b of the 56 th cen ray, anteriorly sight; their dos they cover ani nous centra, : ${ }_{3}$ name, I wil I have alreadr is union to the proper position 58th and cotid e posterior end ord, and lying in ray, No. 10 is centra, is on $\frac{5}{8}$ of an inch in a outer sides s , the points rsal caudal for

The next bone we meet has its anterior edge divided, that is, it is Y shaped, so as to admit between its points the passage of the notochord, together with its protecting tissues, and the posterior edges of the saddle bones nearly touch the points of this bone. Its posterior or outer edge is united, but in a younger specimen would probably be found as two separate bones. This bone is of the same shape, but about half the size of the Y shaped bone to be noticed in the ventral aspect of the spinal column.
I have thus reached the dorsal extremity of the spinal column, not including the spongy centrum to which the fourth or upper hypural bone is attached, and which makes, if included, 60 vertebree.
Spincel Column, Ventral aspect-Ribs.

C18.2. There are no ribs on the 1 st and 2 nd centra, these being so situate as not to require them, but there are their representatives in the shape of processes.
Irt pair on 3rd. From the 3rd centrum, at its lower edge spring the first pair of ribs, which are somewhat crooked in bhape, and naturally shorter than the others. They are comparatively round bones, and in length from articulation to point 2 inches.
C. 4. The second pair of ribs, measured in a direct line, that is, not following their curve, are 23 inches in length and slightly deeper measured transversely than they are laterally, and taper to a point.
C. 5.* The third pair are $3 \frac{1}{4}$ inches long.
c. 6. The fourth pair are 33 inches long.

It is not necessary to give the lengths of the remainder of the fibs, but it may be remarked that I find in the salmon, that the first two pair of ribs may be termed short, and that from and including the 3rd pair, to and including the 13th pair, they re of much greater transverse than longitudinal diameter, de* reasing in the length of the transverse breadth as they succeed ach other posteriorly - 7 to 12 are the longest and broadest ribs. The remaining ribs are widest at their attachment and gradually decrease in size towards their points.
C. 2%. At the 25 th pair of ribs on the 27 th centrum are a pair of

NOT
very short spinous processes lying in front of their articulation with their centrum.
C. 2S. The 26th pair of ribs have spinous processes about $\frac{1}{8}$ of inch in length, to which they are attached and pass posteriv to their asticulation.
C. 23. The 27 th pair are united by cartilage to the end of, 24 behind spinous processes $\frac{1}{2}$ an inch in length on the 29th centmes their ends do not reach the centrum but are attached pesteriut to the sp. processes. 'This pair are not so flat as their preculit ribs.
C. 30. The 2sth pair: The spinous processes to which this are attached are 8 of an inch in length, and their attachase rather more than a quater of an inch.
C. © 1. The 29 th pair are attached posterionly to strong sp. cesses 5 of an inch in length, which are united tiansversely for ing the first hemal arch.
C. . .2. The 30th pair. Their spinous processes are also about ; an inch in length to which the attachment of the tibs is alma ${ }_{10}^{3}$ of an inch,
C. 33.31 st pair of ribs, have sp. processes $\frac{3}{4}$ and ${ }_{16}^{15}$ of an in C. 34. 32 nd do. $\quad \int$ in length, and have short attachmet to their processes.
C. 8.5 . On this centrum, the last of the abdominal centra tached to spinous processes, which are united at their venf ends, are the 33 rd and last pair of ribs. A hasty examingtion this specimen might lead one to say that it has only 32 pairs ribs ; but the dorsal ends of the 33 rd pair are attached cloy together and to the narrow point of their sp. processes, and anchylosed. The examination of younger fish makes this of tain. This pair of united ribs forms the support of the anteff interspinous fin bone of the anal fin, which in this case it orf lapped, and was attached on the right hand side about $\frac{3}{8}$ of inch.*

The ventral ends of the last five or six pairs of ribs gradulal approach each other until they touch in the last or 33rd p.

[^3]producing valmon.
C. .s\% On
the spinous teriorly for divergence 1 pair of ribs. are all of tl ays, that is of the arch fish may be. chylosed ans the sp. proce eparation 6 An cxamina bones) origit this keleton be a single b of the spinot rentral spine the 3rd inter: laps, say 'in you will fin! short straight 37 th centra; does not tone about 1_{1}^{1} of on of the spinou does not reacl bable that it : ventrally, but extremity.

On tl 3 3th ventral s having the us terior extremi das springin
their articulatis
sses about $\frac{1}{8}$ of I pass posteriv
o the end of at the 29 th centmu ached postering their precelie
o which thista their attachur
oo strong sp. pros ransversely foi
are also about : the ribs is alm
and ${ }_{16}^{15}$ of an in hort attachmet
ainal centra), 2 at their veniz jy examination only 32 pairs attached claso rocesses, and a makes this t of the anteri his case it or le about $\frac{3}{8}$ of
of ribs graduax ast or 33 rdp
r of ribs, are tramata
producing the beautiful outline of the posterior part of the valunon.
C. $\begin{aligned} & i f \text {. On this centrum, (the first of the caudal centra proper), }\end{aligned}$ the spinous processes are 1_{8}^{1} inches in length, and attached posteriorly for 16 of an inch is a bone or bones having an extreme divergence from the normal angle, which might be taken for a pair of ribs. The sp. processes, of which mention has been made, are all of the same character as the dorsal and other spinous ars, that is formed of two bones, one springing from each side of the arch and united more or less strongly, as the age of the fish may be. This bone, or if you choose pair of bones are anchylosed and appear as one, their length from the junction with the sp. processes is 2^{3} of an inch; in the skeleton before you the separation of their rentral ends is a consequence of their dryness. An examination of younger fish will show you that this bone (or bones) originates in a different way from the ribs; looking at this keleton of what may be called a mature fish, it appears to be a single bone and to have originated and grown from the end of the spinous process, passing and uniting with its next posterior ventral spinous ray having its ventral end attached to the end of the Brd interspinous fin bone of the anal fin which it slightly overlaps, say inch on the outer or right hand side. In a young fish you will find the spinous processes, but the long bone is merely a short straight bone lying between the processes on the 36 th and 37 th centra; in the skcleton of the young fish before you the bone does not touch the posterior elge of the 36 th sp. process, but is about $\frac{1}{6}$ of one inch from it and it just touches the anterior edge of the spinous process of the 37 th centrum, the end of which it does not reach by nearly half an inch; it is therefore most probable that it grows from a centre each way, that is dorsally and ventrally, but that its growth is most rapid towards its ventral extremity.
(.). On this centrum (counting the ribs as sp. processes) the 30th ventral sp. ray is attached, and is the first ventral sp. ray laving the usual form ; it is 1_{4}^{1} inches in length, its ventral anterior extremity is united by cartilage to the bone just mentioned as springing from the end of the 34 th sp . process, the great
divergence of which will be perhaps better understood by men tioning that while it lies at an angle of about 14° with the sping column, the ventral sp. ray springing from this centrum forme its angle about 65°.
C. 38. The spinous ray No. 36 is about 1_{4}^{3} inches long (being sudden increase of length) and is free-that is, only attached the tissue to the interspinous fin bones of the anal fin. It and thr succeeding four spinous rays have wide ventral ends for similar attachment, and are of about equal length.
C.39. The end of the 37 th sp. ray has opposite its point the 4th intersp. bone of the anal fin.
C. 40. The 38th sp. ray has opposite its anterior edge, the th intersp. anal fin bone, and opposite its point, the 6th intery fin bone.
C. 41. Slightly in front of the 39th sp. ray is the 7th intery fin bone, and the 8th is opposite its point.
C. 42. The 40 th sp. ray has opposite its centre, the 9 th interm fin bone; and the dorsal extremity of the 10th and last intervo C. 43 fin bone of the anal lies exactly between this and the 41 s sp. ray, which is about the same length as the five preceding rass but its ventral end is somewhat narrower.
C.44. The 42 sp. ray. The ventral extremities of these 4 spi 45. " 43 " nous rays are about the same breald 46. " 44 " as the 41 st, but the tissue attaching tt 47. " 4. " " them, the posterior edge of the lotit intersp. fin bone of the anal, which curves posteriorly, (its ventra end being opposite at right angles to the end of the 44th spinon ray, in order to afford sufficient support), is stronger than thatio some other parts of the fish. The total depth of the skeleton a the anterior edge of the anal fin to the edge of the dorsal sp. rans is 5 inches, and at its posterior edge 3_{8}^{1} inches.
C. 48. The 46 sp . ray. These sp. rays are regular in shape, ber 49. " 47 " their ventral ends are not expanded 50. " 48 " they show a gradual decrease in length 51. " 49 " which begins from the 41 st sp. ray, the 52. " 50 " 50 th ray being 1_{8}^{1} inches long.
C. 53 51. This ray is stronger than those immediately prom
ceding it. some hat
slight holl begimning the cautlal
C. $\% \mathrm{Op}$
tral rays of
the 5 fith ce
tp. mys ap
have sprea
articulated
53 r , 54 th,
posterior er
edge of $5: 3$
towards the
C. \therefore. The
va) I a!n un
you a clear
$.5-56$ th sp to the 55 th
on it poste
an inch fron
lower hypur
In shape thi
is somewhat side at its ju cluded in a forming the with the two pear to me mammals.

* The foramina in men pumes to the le communicating fora There is also a foral in this specimen, of

-MORROW

erstond by men 4° with the sping s centrum forms es long (being only attached b fin. It and the ends for simila
te its point the or edge, the otid the 6th intery
the 7th intery
the 9th inters ond last inters is and the 4 ls o preceding rass
of these 4 sp e same breaitd ue attaching t ge of the 10 i orly, (its ventra he 44th spinow ger than that is the skeleton dorsal sp. rap ar in shape, bur not expandel rease in length 1st sp. ray, the long. mediately pm
ceding it. Its breadth is about equal throughout. It has a some hat blunt ventral end, and it is $1 \frac{1}{4}$ inches long; in the shight hollow between this and the 49th sp. ray, is attached the beginning of the caudal muscle which envelopes the short rays of the cautal fin.
C. $\%$. Opposite the end of the 52 sp . ray begin the short ventral rays of the caudal fin at right angles to the posterior edge of the 56 th centrum. The character of the attachment of the ventral op. rays appears to change with this centrum, their dorsal ends have spread and are in one sense flattened and seem to have an articulated surface as may be noticed by looking at the 52 nd , $53 \mathrm{~d}, 54$ th, 55 th and 56 th ventral sp. rays on this skeleton. The posterior edge of this ray (52) is anchylosed with the anterior edge of 53 for about two-thirds of their length from their dorsal towards their ventral extremities.
C. $\begin{aligned} & \text {. } \\ & \text {. }\end{aligned}$ The $5: 3$ s. ray., these bones are more or less perfectly 54 " \}anchylosed, their shapes are so irregular 55 ") that only a drawing (which I regret to (sy. I am unable to make) or reference to the skeleton can give you a clear understanding of them.
is-5lith sp. ray. This ray is anchylosed on its anterior edge to the 55th sp. ray for about half its length, say ${ }_{8}^{5}$ of an inch, and on it- posterior edge rather more than half its length, say half an inch from its foramina* towards its ventral extremity, to the lowe hypural bone; on its ventral end it is free, say io of an inch. In hape this ray differs from all the others, at its dorsal end it is somewhat triangular, having a cup-like projection on each side at its junction with its centrum, and its ventral end is incluted in a cartilaginous rim which passes round the bones forming the termination of the column. This bone, together with the two saddle bones on the dorsal aspect of the spine, appear to me to be the representatives of the pelvic bones in mammals.

[^4]$59-\frac{1}{\mathrm{H}}$. To this vertebral centrum is attached the lower hypural bone, which has a somewhat narrow neck, caused by a foramen on its anterior edge, which passes between it and the ray on the 58th centrum, and a double foramen passing between the pos. terior edge of this hypural bone and the anterior edge of the second; this double foramen appears to be for the passage of vessels uniting the (pulsating ?) sacks. Also attached to this centrum is the second hypural bone; it is notched on its ventral anterior surface by the foramen above mentioned, the division of which is nearly parallel with the centrum; this division is caused by a slight projection in the centre of the foramen on this, as well as on the bone already described. At the posterior extremities the adjacent faces of the above two bones are partially rounded, that is, their adjoining corners are rounded off, and in the hollow thus formed, which is slightly above a line drawn through the centre of the spinal column, is a nervous corpuscle, so shrunken in this skeleton as now to be scarcely observed, but when fresh, it measured three sixteenths of an inch in diameter. This corpuscle projects slightly beyond the edge of the hypural bones. 60. Attached to the ventral surface of a spongy centrum is the third hypural bone, and to its end, if indeed it does not belong to it, is attached the fourth hypural bone, terminating the sixty centra of the spinal column. We have therefore four hypural bones, which being strongly connected together as well as to the posterior ventral rays, form a broad solid plate for the attachment of the muscles, and the strengthening of the rays of the caudal fin. The bone lying next above this is the larger Y shap. ed bone, the notochord passes between the forks of this bone as in the smaller bone of similar shape.

Prof. Huxley's drawing, representing the tail of the Salmo published in his "Manual of the Anatomy of Vertebrated Animals," page 20, is incorrect if the Sulmo of England are the same as ours. He makes the vertebral column in this drawing to end in a line common to the anterior vertebra, and at the end of the last centrum which is drawn of greater diameter than those which precede it, is attached at an angle nearly equal to that formed by the posterior part of the spinal column in the skeleton before you, a terminating bony plate,

RRow.
wer hypural a foramen ray on the sen the pos. edge of the passage of ched to this n its ventra! the division division is foramen on he posterior are partially off, and in line drawn corpuscle, so 3d, but when neter. This pural bones. strum is the not belong ig the sixty our hypural ell as to the the attachrays of the rger Y shap. is bone as in

E the Salmo Vertebrated England are tmn in this srtebree, and of greater at an angle f the spinal bony plate,
and to the ventral edge of this are attached two hypural bones. The are also some other bones which do not corvespond to some in our sct'mo. On page $1: 31$ of the same work he says, "the ypinal "column appearing to terminate in the centre of a welge-shaped hypura bone, to the free edges of which the caudal fin rays are attabed, so as to form an upper and a lower lobe, which are - equalorsub-equal. This characteristically Teleostearestructure of the tail-fin has been termed homocercal-a name which may - br manel, though it originated in a misconception of the re-- lation of this structure to the heterocereal condition."

The candal fin-rays in my specimen are not attached to the "frew clees of the hypural bones," but their divided emb overlap the hypmal bones on each side; on the dorsal part about fivedghth of an inch; a quarter of an inch on the central, and from a quarter to half an inch on the inferior or ventral part. Is the draving refered to one of the fin-rays is inserted in a notel ... the p terior edge of the upper hypural bone, nearly in the place whe the corpuscle alrearly mentioned should be.

Transeerse Processes.

The transverse processes are attached dinectly to the centra, and herin on the lst centrum. The first four are nearly at right angle; to the colmm, and project posteriorly into the fleshy tisste, and are say $1,1 \frac{1}{1}, 1,1_{4}^{1}$ inches in length, from 4 to 25 . their onter extremities msing eradually towards the doreal line. They are of variable length, 1 to 1_{2}^{1} inches, not gradually decereasing, hit some long, others shorter-including 26 to 32 , they rise rapidly towards the dorsal line, so that their dorsal ends are near to the spinous rays ; all the transverse processes arise from their centra posterior to their corresponding ray. Besides the transverse processes enumerated, which aro bony, there are som. that appear to be attached by tissue to their centra, having soft bony extremities: these have their attachment gradually rising on the dorsal spinous rays, but soon they lose their bony texture, and appear only as threads attached to the muscular tissue.

Dorsal Fin.

The dorsal spinous rays make an angle with the spinal colump (speaking generally) of from 35 to 42 degrees, and the first inter. spinous fin-bone of the dorsal fin consists of three bones anchry losed, appearing at the articulation of the dorsal fin ray as ont bone expanding into three. The anterior edge of these bones has a somewhat broad face, three-sixteenths of an inch at its wides part, and it is seven-eighths of an inch in length; from the dor sal end of ${ }_{1}^{1}$ interspinous bone, springs a very strong fibrou attachment, embracing the inserted ends of the triple intersp fin bone ; it then passes downward and is strongly attached to th end of the 4th intersp. fin bone, (counting the short bones abont mentioned, as three), which is the first long intersp. fin bone the dorsal fin. This bone is slightly in front of the 16 th spinon ray, which has no extra interspinous bone. The 16 th sp. ray i a little less in length than 15, and from it, to and including the 25 th ray, a gradual curve is formed by the extremities of thr dorsal spinous rays for the insertion of the dorsal tin and its ap pendages.*
$\left.\begin{array}{lllll}\text { 1st intersp. fin bone, } \\ 2 & \text { " } & \text { " } & \text { " } & \text { in length. } \\ 3 & \text { " } & \text { " } & \text { " } & 1_{4}^{3} \\ 3 & \text { " }\end{array}\right\}$
these $\mathbf{3}$ bones anchylosed.
4 intersp. fin bones, is $2{ }_{10}^{11}$ inches in length, and forms an angt of 42 degrees with the vertebral column, while the sp. ray (16) t which it is opposite makes an angle of 35 degrees.

5 intersp. fin bone 2_{8}^{5} inches lies between the points of 16 \& 1 *p. rays, angle 40 degrees.

6 intersp. fin bone $2 \frac{1}{2}$ between $17 \& 18$, angle 43 degrees.
7 " " " 2' slightly in front of 19 , angle 54 degrees
8 " " " 2 between $19 \& 20$, angle 5.5 degrees.
9 " " " 18 slightly in advance of 21 , angle 5.5 degrex
10 " " " 1_{4}^{3} slightly in front, of 22 , angle 55 degree
11 " " " 1_{4}^{3} between 22 \& 23 , angle 56 degrees.
12 " " " 1_{4}^{3} slightly in front of 24 , angle 55 degrees
13 " " " 1_{8}^{3} opposite the point of 24 , angle 52 degree
14 1_{8}^{5} slightly in front of 25 , angle 51 degrees
*This is much more apparent in the skeleton of the young Salmon.

15 and last longation po with the dot ment which
The fin-ra would be cou counting the lst Rey. Th young specim its intersp. bo of it reaches (its bony regul short one of t sud rey. Th ind ray. the these first thre integument as

The fourt even-eighth i ventral extrem erspinous bon to 10. are a oten, which n The eleves The twelf
The thirte \& \& 15. Alth separate fin-ray: s set within thr posterior extrefI free short ray mounted as two, each is a comple
The height of anction of its fir angles to the ant the posterior
he spinal colum ad the first inte ce bones anchy al fin ray as onte f these bones has ach at its widest 1 ; from the dor strong fibrow - triple interisa - attached to the ort bones abonet srsp. fin bone of he 16 th spinon 16th sp. ray i ad including the tremities of th 1 tin and its a
is anchylosed.
I forms an and ie sp. ray (16) ints of 16 ©

3 degrees. gle 54 degrees ; degrees. ngle 5.5 degrex gle 55 degne ; degrees. gle 5 5. degrees ngle 52 degrex yle 51 degrees

13 and last intersp. fin bone is $1!$ inches in length. It has a prolongation posteriorly for the attachment of the last single together with the double fin ray, and also for the strong fibrous attachment which connects it with the dorsal muscle.
The fin-rays of the dorsal fin are in number 15. By some they would be counted as 14 , but further on I will give the reason for counting them as 15 .
lst Ruy. This ray is so small as to be easily overlooked in young specimens. In this one from its root or articulation with its intersp. bone it is five-sixteenths of an inch in length : the point of it reaches only through the skin, but it is a true ray, having its bony regular articulation just above the anterior face of the short one of the triple bone.
Sud ray. The second ray is five eighths of an inch, and
ind ray. the third ray is one and three-eighth inches in length, these first three rays are covered or as it were included in the integument as one ray.

The fourth, or first ray having its full length, is three and seven-eighth inches from articulation to point; divided at its rentral extremity to form its articulation on each side of the interspinous bone, as are all the fin-rays.
\$to 10. are all of the same type gradually decreasing in length bo ten, which measures two and three-eighth inches.

The eleventh ray is two and one-eighth inches.
The twelfth ray is one and seven-eighth inches.
The thirteenth ray is one and five-eighth inches.
14 \& 15. Although apparently so closely united, 14 \& $15 \check{a r e}$ separate fin-rays, having each an articulation, that is, the 15th ray is set within the 14th. They are attached as before stated to the posterior extremity of the 15 th intersp. fin bone, and if the first Fifree short rays are to be counted, then should these rays be mounted as two, for though they are articulated to one base, yet each is a complete ray.
The height of the interspinous bones of the dorsal fin, to the netion of its fin-rays, from the centre of the vertebre at right argles to the anterior edge of the fin, is three and a half inches; at the posterior edge, three and a quarter inches ; length of dorsal

174 sotes on the salmo s.alar splecmen-morrow.
fin from anterior to posterior edge, (rays only) thee and the quarop inches, and including the end of the last interyis bone fon! and a quarter inches.

Adipose ? ${ }^{2} \mathrm{~A}_{1}$
(1) the adipose fin there is little to say. Its anterior abs apmeit the posterion elge of the base of the anal fin, it hav attachment through the dorsal musele to the general mane tiwn. It appars to the an expansion of the integument, amil its has ia the cond of the domal muscle, which is somen thick ond and of firmer structure, (more like a cord), when aphens more so anteriorly than posterionly. There dom appar (o) he in it anything which can be called a fin-ray. If
 gon 1 ghes without discovering any trace of what might het ad a mey, hat I camot say that the mieroscope would not them (e) view. The only difterence observed by me is that of mon ane shouth and romded ofi at the dorsal edge, some pre a fow of what might be temed raylets, forming a dell feathered edge

Condel Firs.

At the pint of the 5 the spinons ray hewins the up dorsal protion of the musele of the tail rays: this begimume the candal fin, which is enveloped by the muscle consist deven shom rays or spines, filling in and giving to the tail a Whole its line of beanty, strengthened by the anchylosed ins 1) Mys, and adding to the propelling power of the tail. Th shon rays are all dividet at their anterior ends (or V shap unitan on cach side to the gencral structure, presenting at doral cdeces the appearance of single rays
1% 1-4 are short and straight.
If if. is (i) are somewhat curved, the 6ith more pointed at outer extremity than the sth.

7 is single at its insertion and divided into two rays at extremity, and from its division to outer end somewhat cur and peinted.
s.d.9. The sth \& 9 th are single at their insertion as well a their dorsal ends. 9 js one and a balf inches long.
10. Th eleven, about $1 \frac{1}{2}$ inch in 1 11. Thi the shap end; its The fir The el, The ca tion in th begin to ly after t first and : opposite that there 1 to 8 . T ti-sue to t 8 to 9. B space of is some dista ${ }_{15}^{3}$ of an in $9 \& 10$. inch and a $11 \% 11$ $11 \& 12$
The 9th ends by ca $1 ? \& 1\}$. of an inch, inserted in twelve.

All the and nine a tend into t he expande

[^5] ray of the cauda
10. The 10th short ray is nearly straight. Between ten and eleven, attached to the upper edge of the 11th short fin-ray, at alout $1 \frac{1}{2}$ inches from its inferior end is an extra bone ${ }^{\prime}$ of an incl in length.
11. This ray is nearly straight, curving at its outer end to follow the shape of the long rays; it has a very thin pointed ventral enl ; its length is two and a half inches.
The first short fin-ray is about is of an inch long.
The eleventh short fin-ray is about two and a half inches long.
The caudal fin has nineteen long or perfect rays, (their insertion in this specimen will average about one inch in length,) which beyin to divide or split up into a great number of fin rays, shortly after the exit of the tail from its root or body of the fish. The first and second rays counting from the dorsal region are exactly opposite to the centre of the elevation of the spinal column, so that there are seventeen whole rays beneath it.
1 to 8 . The first eight rays are closely united by strong fatty ti-sue to their emergence from the integument.
8 to 9. Between the inferior ends of eight and nine there is a space of irregular outline filled with fatty tissue which extends some distance between these rays, at its widest part it measures ${ }_{16}^{3}$ of an inch.
$9 \& 10$. The inferior extremities of these rays meet for ${ }_{8}^{3}$ of an inch and are then separated for about $\frac{5}{8}$ of an inch.* 10\& 11. Are separated at their emergent ends.
$$
11 \& 12 . \quad \text { do. do. }
$$

The 9th, 10 th, 11 th \& 12 th rays are broader on their inserted ends by cartilaginous matter, than are the other rays.
$1 ? \& 13$. The inserted ends of 12 and 13 join for about a quarter of an inch, but are then widely separate, and the ray thirteen is inserted into the root of the tail an eighth of an inch more than twelve.

All the spaces enumerated above, beginning between eight and nine and continuing to that between twelve and thirteen extend into the tail proper as a sort of web by which the tail may he expanded and contracted in its width.

[^6]
176

 NOTES ON THE SALMO SALAR SPECIMEN-MORROW.$13 \& 14$. Are close together to the beginning of the tail proper. $14 \& 15$. Are close at their inserted ends, slowly separating until divided for the expanse of the tail, when they appear as close together.
$15 \& 16$. Almost unite for one inch, they then appear as slightly separate.
$16 \& 17$. Inserted ends close, then very slight separation.
$17 \& 18$. Same as above.
$18 \& 19$. Close together, nineteen being the ventral ray. The first three outer rays of both aspects of the caudal fin, dorsal and ventral are very strong.

The short rays of the caudal fin on the ventral side beginning at the end of the fifty-fourth spinous ray, are eleven in number

1st. This short ray which is next the nineteenth caudal ray proper, is $2 \frac{1}{2}$ inches long.

2nd. The second short ray is 2 these two are nearly straight and pointed at either end. inches long.

3rd. The third short ray is $1 \frac{3}{4}$ inches long; pointed and slightly curved laterally.

4 th. The fourth short ray is 1_{10}^{1} inches long; more curved laterally than the third.

5th. The fifth short ray is 1 inch long ; slightly curved.
6 th to 11th. These are all curved more or less, and the eleventh is a quarter of an inch long. The points of these short rays are united as the spinous rays, and enveloped as the dorsal short fin-rays by the tail muscle; they have a little more separation than the dorsal short fin-rays, and are deeper than their breadth.

> Anal fin.

The anal fin begins, or rather the anterior end of the first intersp. fin bone is attached, as before stated, to the end of the 33 rd pair of ribs (on the 35 centrum). This intersp. bone is $2 \frac{5}{8}$ inches long, and has upon its ventral anterior surface a heart-shaped shield, half an inch wide at its dorsal edge, and in depth $\frac{3}{8}$ of an inch, which is attached by cartilage to the intersp. fin bone. On the lower face of this shield or plate is a short cartilaginous ray, (half an inch long) having a bony base. It has no articulation
but cartilaginc This soft ray is be noticed unle Ist ray. Direc frit short fin-ra ata short distal one half passing posteriorly beil length of this r : tough fatty end. The secor the end of $t l$ is 1_{4}^{3} inches lo The third pedge of the thire the end of the sixth centrum, i thirty-fifth ven erm that as tl the Anal, son which is attained with this long slis, between the thir more than one-fot gle of the rema med by the fi which intersp. fin thirty degrees, firty-seven degre The fourth ersp. fin bone. Same attach
he $3 \mathrm{rd}, 4 \mathrm{th}, 5$
The eighth fi
tow.
ail proper. separating appear as
' as slightly
;ion.
ray. The dorsal and
beginning in number
are nearly pointed at
inted and re curved
rrved. re eleventh t rays are orsal short separation ir breadth.
le first inof the 33 rd ; $2 \frac{5}{8}$ inches art-shaped th $\frac{3}{8}$ of an bone. On ;inous ray, rticulation

Int cartilaginous matter between it and its suspending plate. his soft ray is so closely covered with fatty tissue as scarcely to enoticed unless by dissection.
lot rey. Directly in a line with the first intersp. fin bone is the firs short fin-ray, which (as do all the remaining fin-rays) divides ata short distance from its articulation with the intersp. fin bone. half passing to each side of it, the foot shaped joint pointing posteriorly being comparatively shorter than the others. The length of this ray is 1_{8}^{1} inches, and its anterior face is attached by tough fatty tissue to the rudimentary ray first described.
?nd. The second short fin-ray is directly opposite, and attached to the end of the second intersp. fin bone, shaped like the first t is 1_{1}^{3} inches long.

The third or first perfect fin-ray is attached to the anterior of the third intersp. fin bone, and this in its turn is attached to the end of the peculiar spine, which springs from the thirtysixth centrum, and to which as before noticed the end of the thirty-fifth ventral sp. ray is united. And here it would seem that as this is the first perfect or full length fin-ray of the Anal, some provision was required to add to its strength, which is attained by the junction of the thirty-fifth spinous ray with this long slight bone. The thirty-sixth sp. ray being directly between the third and fourth intersp. bones, leaves a space rather more than one-fourth of an inch in width and thereby changes the angle of the remaining intersp. fin bones. Thus the general angle orned by the first intersp, fin bone with the spinal column, rhich intersp. fin bone is attached to the thirty-third pair of ribs, thirty degrees, while that formed by the fourth intersp. bone is birty-seven degrees.
The fourth fin-ray is attached to the centre of the fourth rsp. fin bone.
Same attachment to five.
$\left.\begin{array}{llll}\text { " } & \text { " } & \text { " six. } \\ \text { " } & \text { " } & \text { seven. }\end{array}\right\}$ intergp. fin bones.
The 3 rd, 4 th, 5 th, 6 th and 7 th fin-rays are thicker than the hers.
The eighth fin-ray is not so strong as its anterior five rays,

17 N NOTES ON THE SALMO SALAR SPECIMEN-MORROW
and is attached to the eighth intersp. fin bone. As the length of the rays of the anal decrease so does their strength, but muct more in proportion in this and the remainder of the rays. 9th. The ninth fin ray is on the 9th intersp. fin bone, which slighter in proportion than the Sth or 10th intersp. fin bones. Th tenth intersp. fin bone, the end of which lies between the Htat and 42md spinous rays, with its posterior ventral extremity opposit at right angles to the end of the 44 sp . ray, is, as will be motiem by you, differently shaped from all the other intersp. fin homed this fin, somewhat resembling the posterior intersp. fin home the dorsal fin) having a strong posterior curve at its ventral es themity, and an increase in brealth presenting a broad face (o) end) for the articulation of three fin rays, counting, as on the dorsal fin and for the same reason, the last rays as two. It "xtreme posterior edge is furnished with the usual attachment for the muscular tissue which supports the posterior colge of the fin.
10th. The tenth fin-ray is attached to the anterior edge of the tenth intersp. fin bone, which as just noticed has a slight projec tion for its articulation. IIth d 1 ith. These two fin-rays lie closely together, but as they have a double articulation, (as the two on the dorsal fin, ther clearly must be called two distinct rays. They are also (as in the dorsal) articulated one within the other, and attached to a slight depression closely in front of the posterior edge of the tenth in terspinous fin bone.
Mem. - 1 intersp. fin bone 2, inches long.

2	$"$	$"$	$"$	2^{3}	"	"
3	$"$	$"$	$"$	$2!$	$"$	$"$
4	$"$	$"$	$"$	2^{1}	$"$	$"$
5	$"$	$"$	$"$	2_{1}^{1}	$"$	$"$
6	$"$	$"$	$"$	2	$"$	$"$
7	$"$	$"$	$"$	1_{8}^{7}	$"$	$"$
8	$"$	$"$	$"$	1_{4}^{3}	$"$	$"$
9	$"$	$"$	$"$	1_{8}^{5}	$"$	$"$
10	$"$	$"$	$"$	1_{4}^{3} inches long to depression for at		

The 1s ted from ea Betw Betw Betw Betw, eir articulat (1). Betu 1) \& 11 . Bet ine and ten. \& 12. touc These fins a: e strong fatty ar on its surf and are attache Ilel the pelv ength, measure termination of i which it is uni temination. F ones. You will s a stout trans terally on its o til it is about pect and proje y plate ${ }_{8}^{5}$ of al asing anterior cas far as i two inche: of an ine tral aspect th
lateral ridge
t projection is, in this :

HORROW

s the length of gth, but muct te rays.
bone, which fin boncs. Th en the 41 th ant emity opposit will be noticen sp. fin lomest sp. fin home of its ventral ex. broad face ing, as on the as two. It al attachament terior eltre of
r ertge of the a slight projec
:1, but as the orsa! fin, the also (as in the red to a slight the tenth in.
ession for at

The 1st, 2nd, 3rd, 4th and 5th fin-rays are slightly sepaated from each other.
5is. Between 5 and 6 there is nearly ${ }_{x}^{1}$ inch of space.
Between 6 and 7 a little more, say ! inch of space.
Between 7 and 8 a little more than! inch of space.
Between 8 and 9 a full $\frac{1}{}$ of an inch of space, just below ir articulation.
:10. Between 9 and 10 not quite $\frac{1}{4}$ of an inch of space.
II. $\mathcal{L} / 11$. Between 10 and 11 just perceptibly more than between nine and ten.
11 \& 12. touch but are not united, and are therefore separate

Ventral Fins.

These fins are attached to two bones which are imbedded in the strong fatty muscular tissue in the belly of the fish. They appear on its surface opposite at right angles to the 12th dorsal ray. and are attached to the two bones already referred to, commonly callel the pelvic bones, which in this specimen are $3 \frac{1}{4}$ inches in length, measured from the centre of the left bone to its point or termination of its junction with the bone of the right side to which it is united* by cartilage, forming a somewhat rounded termination. For convenience I will take one, the left of these bones. You will notice at once its peculiar shape, its posterior end bas a stout transverse ridge; extending and springing from this laterally on its outer edge is a ridge increasing a little in size atil it is about ${ }_{5}^{\prime}$ of an inch in thickness, rounded on its dorsal ect and projecting rather more than $\frac{1}{6}$ of an inch above a thin y plate ${ }_{8}^{5}$ of an inch in breadth at its posterior extremity; deeasing anteriorly to a point which is united to the transverse dge as far as its inner end, and extending along the lateral e two inches, this lateral ridge being prolonged anteri${ }_{4}^{3}$ of an inch beyond the thin plate or blade. On the antral aspect the plate or blade rises, following the curve of lateral ridge which in consequence does not show any brupt projection. The posterior end of the bone or transverse is, in this specimen, one inch in breadth, and to it the

[^7]fin-rays are attached. The outer head of the transverse rider projects a little beyond the lateral ridge, the space so formel being filled with cartilaginous matter from which springe ligamentous attachment running some distance along and tying this bone with the muscles of the belly. On the inner edge of the bony blade and attached to the cartilage on its antetior edge, strong fibrous tissue passes enveloping the blade as well 2 s the anterior ends of the lateral ridge, from thence passing to the general muscular tissue. A similar attachment passes posteriorly from the cartilage between the pelvic bones, having attachment to the inner ends of their transverse ridges, with divergent connections to the integument covering the rays immediately under the point where the inner fin-rays appear upon the surface of the fish, from thence continuing some distance as a stron, band down the centre of the belly. The pelvic bones are no: always parallel with a line drawn through the centre of the belly but are occasionally somewhat distorted, that is each forming a different angle with such central line.

The ribs from and including No. 15 \& 22 are shorter in poportion than the others; this is in order to allow for the insertion of the pelvic bones, thus preserving the line of beauty. The space so afforded by the shortening of these ribs is 4 inches in length: (that is from the end of $1+$ to 22 ,) the length of the pelvic bones leing 34 inches, and from them to the extreme posterior end of the long fin-ray is 3_{4}^{3} inches, making a total length of the fin and their attachments 6_{8}^{5} inches average, allowing for the over. lapping of the fin-rays upon the pelvic bones. It must howeverte lorne in mind that the fin-rays owing to their curves, are of eccentric lengths, there being a difference in the measurements as they are taken from the dorsal or ventral aspects; in the lengths above I have taken the dorsal aspect in a straight line nd round the curve of the ray), the measurement of the ventral aspect of the same ray is 3_{2}^{1} inches.

The ventral fins each contain 9 rays and each fin has a ventral appendage, in this case they are 1_{2}^{1} inches in length.
$18 t$. The first or outer ray divides at 1_{4}^{1} inches from its attachmemid to the pelvic bones (that is visibly) ; on its ventral aspect it isat-
lached to th mination: or heel each ${ }_{8}^{3} \mathrm{o}$ tached by fil the inner he with the flat of Dr. Gilpir the general n cle is attache tioned that t forward from cular attachn are in motion which appear went of any f must be a sen these append their outer eds
Dorsal aspe ist. The first
?nd. " seco ord. " thir thl. " four bth. " fifth 6th. " sixtl潮. " sever crowded. eight
The heel of mentioned rays towards the dor the heels of the under the heel o th. The ninth light upward el other rays, its le
ransverse ridge ace so formed which springs long and tying the inner edge on its anterior blade as well as passing to the sses posteriorly ing attachment with divergent is immediately pon the surface :e as a strong bones are not tre of the belly rach forming a
shorter in pros. or the insertion uty. The space ches in length: he pelvic bones osterior end did gth of the fing z for the over. rust howeverte curves, are of measurements aspects ; in the raight line (nd of the ventra
fin has a ver. length. 1 its attachmenf 11 aspect it isat
lached to the pelvic bones by fibrous tissue and has a curved termination: on the dorsal aspect it curves strongly, forming a double heel each ${ }_{5}^{3}$ of an inch in length. The dorsal aspect is strongly attached by fibrous tissue to the outer head of the pelvic bone; and the inner heel is also embraced in similar attachment, together with the flat bony root of the ventral appendage ("axillary scale" of Dr. Gilpin,) from the outer side of which passes a muscle into the general muscular tissue. From the outer heel a strong muscle is attached passing in the same way. It may here be mentioned that there is a strong band of muscular fibre passing forward from the ventral appendage, which, with its other muscular attachments, causes these appendages, when the ventral fins are in motion, to pass under them so as to protect the hollow which appears at the root of the ventral fin, preventing the lodgment of any floating material, such as sawdust or chips in what must be a sensitive part. As soon as the ventral fins are at rest these appendages withdraw themselves and lie parallel with their outer edge.
Dorsal aspect ventral:
ist. The first ray measured in a straight
line from heel to extremity is 3_{2}^{1} inches in length.
ind. " second
Frd. " third

$"$	3_{2}^{1}	$"$	$"$
$"$	3_{4}^{1}	$"$	$"$
$"$	3	$"$	$"$
$"$	2_{4}^{3}	$"$	$"$
$"$	2_{2}^{1}	$"$	$"$
$"$	2_{8}^{1}	$"$	$"$
$"$	2_{8}^{1}	$"$	$"$

The heel of the eighth is not like those of the previously mentioned rays, as its anterior end is very slightly raised towards the dorsal aspect, and slightly curved in opposition to the heels of the other rays; it passes very close to, and almost under the heel of No. 7 and near to the pelvic bone.
Pth. The ninth ray has no heel on the dorsal side, but it has a light upward curve in its line of direction tending towards the ther rays, its length is 1_{4}^{3} inches, its anterior extremity passes

182 NOTES ON THE SALMO SALAR SPECTMEN-MORROW.
also close to the heel of No. 7 giving a crowded appearance to the last three rays, which are attached by strong fibrous tissur to the dorsal side of the inner ventral heel or broad plate of N 0 9 , which is turned inwards towards the outer side of the fin in opposition to the heels of the other rays, (it being the only ray havin. this peculiar form); this broad plate is in its turn attached to the stout transverse process of the pelvic bone upon which its vential surface moves; in addition to this broad plate it has upon the ventral side the usual termination. The rays No. 2, to and including 8 are nearly of the same shape.

Ventral aspect, Ventral fin.
Here the rays, may, at their anterior ends be said all to curve towards the centre of the fish.
1 st ray. The curve of the first ray fits upon the ventral aspect of the enlargement or head of the outer edge of the pelvic bone. having very strong ligamentous attachment.
and. The second has the same attachment, its curved end terminating on the inner edge of the ventral aspect of the outer hean of the pelvic bone.
3-9. The remaining rays have all a similar attachment, their anterior curves becoming less, until No. 9 is almost straight, and the ends of all gradually receding.

The dorsal heel of the 2 nd ray is opposite to its ventral extremity, but the other rays gradually recede on the dorsal side until the anterior extremity of the 9th ray ventral aspect is one quarter of an inch in advance of the dorsal side of the sa ne ray

When the ventral fins are in motion or extended, all the anterior ends of the fin-rays appear closely crowded together, more so on the ventral than upon the dorsal aspect.

You may perhaps remember that in describing to you the dorsal aspect of the spinal column, your attention was drawn to two bones lying above the 57 th centrum, covering it together with the 58 and 59 th and partially that which may be called the 60th centrum, leaving on the dorsal aspect three centra unprovided with spinous processes ; on the ventral aspect your attention was also directed to a conical process different from all the other spinous processes which I said together represent in my view the

NOTES
pelvic bones. tral fins, toge limbs, but it a alled pelvic b hind legs of m The saddle helow them, a

The contra
The large h:
The pelvic 1 tached; the ti feet.

At the jane plate, appears the fore frame at about two-t] pecimen of th pears primarily and looking a division (righ with the post, and throwing plate, which supra-clavicles inter-clavicles, the attachment

Taking, as removel from clavicle viewed posterior fork] attachment, in1 base to point less than 5_{5}^{5} of clavicle; at
*Three-fold, if looke t1 could not tind any
ppearance to fibrous tissut plate of No the fin in op ly ray having ttached to the ich its vential has upon the 2 , to and in-

I all to curve
tentral aspect pelvic bone. reed end terof the outer achment, their straight, and
is ventral exhe dorsal side aspect is one the sa ne ray d, all the antogether, more
to you the dor; drawn to two together with called the f0th tra unprovided r attention was
all the other in my view the
pelvic bones. The bony plates to which are attached the ventral fins, together with the fins are usually called the pelvic limbs, but it appears to me there can be little doubt that the so alled pelvic bones with the fins are the representatives of the hind legs of mommals, thus :

The saddle bones aid the bone with the cup shaped orifices helow them, are the pelvic bunes.

The contra without spinous processes, the sacral vertebre.
The large hypural bone, the femur.
The pelvic bones, or the bony plates to which the fins are attached: the tibia and fibula and the ventral fins generally the feet.

The Shoulder girdle and Pectoral fins.

At the janction of the body with the head under the opercular plate, appears on each side of the fish a series of bones forming the fore frame and support of its body, and from which spring at ahout two-thirds of their total length the pectoral fins. In the specimen of the salmon before you on their outer sides each set appears primarily to be formed of three bones. Reversing these bones and looking at their inner surfaces there appears to be on each division (right and left side) another bone now anchylosed with the posterior edges of each midale bone or inter-clavicle, and throwing off from their anterior edges a thin process or plate, which passes partially over the lower edges of the supra-clavicles and united to the anterior edge of each of the inter-clavicles, serving as a base for the supra-clavicles and for the attachment of their tissues.

Taking, as in the ventral fins, the shoulder-girdle, left sideremovel from the body of the fish, the upper portion the supraclavicle viewed from the outside has a two-fold* termination, the posterior fork passes freely, apparently without any ligamentous \dagger attachment, into the fleshy tissue; measured in a direct line from base to point it is 2_{4}^{1} inches in length, and its base is a little less than ${ }_{5}^{5}$ of an inch in breadth. It overlaps the interclavicle; at ${ }_{8}^{5}$ of an inch from its base, anteriorly, arises

[^8]

184 Notes on the salmo salar specimen-morrow.

another process having a cartilaginous attachment to it, thi, process is somewhat irregular in shape and rough upon its edges for the attachment of the tissue which unites it to the bones of the skull. It penetrates beyond the marginal point of the pre operculum and its tissues are connected with the edge of the supporting bone above the fleshy cheek benind the eye, in shape it is nearly straight, slightly curved laterally; from its junction with the supra-clavicle to its point it is about 1_{8}^{7} inches in length; on the anterior edge of its proje ion or root this small bone is attached by cartilage to the bone which supports the operculum. To enable you to understand this junction I have cut off a small portion of bone from the skull leaving the cartilage entire. Let us turn this bone over and look at its inner face, at the point of junction of the small bone already noticed as supporting the upper portion of the supra-clavicle and diverging from it dorsally in a line with the centre of the root of tho small or supra-clavicular bone is a short bone having a very strong ligament connecting it with the skull bone at the base of the brain, (it is this short bone which makes in the Col fish the forked supra-clavicular bone, but it differs from the sal. mon inasmuch as it is throughout a bone and is not a representa. tive of the process in the salmon which springs from the supraclavicle,) a pin in the skull of the large skeleton marks the point of connection.

Of the middle piece or inter-clavicle there need not much be said, it is as the supra-clavicle thin and flat and its upper end is inserted under the edge of the supra-clavicle, on its anterior face for nearly ${ }_{8}^{5}$ of an inch, posteriorly it has a thickened striated edge; its lower extremity which is flat, thin and oval shaped orerlaps and is attached to the clavicle, presenting the appearance of nearly concentric plates, the growth of which has taken place apparently from the inner side. In specimens freshly taken this bone has considerable freedom of motion upon the clavicle.

The Clavicle, Coracoid, Scapula, \&c.
It is almost impossible for me to describe the shape of the clavicle and the bones connected with it, but I will make the attempt.

The clavicle sior horn is in length, from I through its cel inches, measur of its superic inferior extren posterior edge bony plate, te which it is a unites with the rounded end i midway on the the division of it; it becomes ! and then decre: largement for i this part of th the clavicle, an bone passes in: it is entirely di as attachment. (pectoral fin, cla upon the upper
The scapula the clavicle, and sion of the corar attached by cart represent the ro
The coracoid edge is united w limb, which is t central ridge of ach of considere latter being the this lower limb i lows on the one

IORROW.
nt to it, this upon its edges o the bones of nt of the pre e edge of the I the eye, in ally ; from its
it is about its proje ion the bone which tand this junce skull leaving nd look at its
bone already ra-clavicle and tre of the root bone having a ll bone at the ses in the Cod s from the sal. ot a representa. com the supra. ton marks the
d not much be its upper end is ts anterior face skened striated val shaped over
appearance of as taken place shly takon this e clavicle.
se shape of the will make the

NOTES ON SALMO SALAR SPECIMEN-MORROW.

The clavicle from its inferior ealge to the extremity of its anteqior horn is in this specimen : -2_{4}^{3} inches in height; 3_{4}^{3} inches in length, from posterior to anterior end, and measured on a line through its centre; the inter-clavicle is attached to it for about 1_{4}^{1} inches, measured from the top of its anterior horn, and the shape of its superior extremity neariv corresponds to that of the inferior extremity of the inter-clavicle; on its inner side, near its posterior edge, there is slightly projecting from it a thin bony plate, terminating at the lower edge of the clavicle to which it is anchylosed, it has a narrow rounded end, this unites with the posterior edge of the accessary bone-its lower rounded end is close to it. The accessary bone arises about midway on the posterior edge of the clavicle, at the junction of the division of its thin posterior plates, and is anchylosed with it; it becomes gradually thicker for nearly one-third of its length and ther decreases to its inferior end where it has the usual enlargement for its attachment to the strong muscular tissue in this part of the fish, its interior edge projects 1_{8}^{1} inches below the clavicle, and its posterior edge ? of an inch. This accessary bone passes inside of the pectoral fin, and gives support to it; it is entirely different from that of the cod-fish in shape as well as attachment. In the cod, as you will see by the specimen (pectoral fin, clavicle, etc., shown), it is a free bone, lying loosely upon the upper posterior edge of the clavicle.
The scapula joins at its superior extremity the upper edge of the clavicle, and its inferior extremity the upper posterior division of the coracoid bone; its posterior inferior extremity is also attached by cartilage to the posterior edge of the bones, which represent the rodius and ulna.
The coracoid at its posterior extremity is divided. Its upper edge is united with the scapula, as already mentioned; its lower limb, which is the longest, has its point attached to the inner central ridge of the clavicle, and it is pierced by two foramina, each of considerable size, one on either edge, outer and inner, the latter being the largest and oval in shape; the posterior edge of this lower limb is united by a band of very thin bone, which folWows on the one side its shape, and on the other the outline of
the two nearly circular bones which represent the radius and ulna The anterior extremity of the coracoid is somewhat twisted, that is, its inner and superior edge rises for its union by cartilage with the clavicle, which sends out from its central ridge a flat process for this purpose.

The Humerus.

If you will look at the under side of the coracoid bone, which on this aspect appears to be nearly flat and somewhat curved from its posterior extremity to its junction with the clavicle: between the foramina already noticed you will perceive a central ridge, which expands towards its posterior extremity; about midway of its length there appears to be a transverse joining, or symphysis, and following this ridge posteriorly you will sce that one edge of it forms the outer side of the inner foramen, and that there is a line or indentation which passes by the elge of the outer foramen to the transverse division from whence we started this appears to me to be, withont doubt, the humerus, but to be positive on this point requires the examination of very young specimens of the salmon, which I regret to say my sight will not permit me to undertake.

Carpal Bones and Pectoral Fin.

The pectoral fin is attached to four ossicles, or carpal benes with the exception of the upper or long ray, which is directly articulated with the radius-the upper one of these ossicles and the shortest is attached to the ulna; the three lower to the por. terior extremity of the coracoid, at the lower part of the bone which I regard as the humerus-all cartilaginously. The lowet ossicle is ${ }_{3}^{3}$, the upper about ${ }_{66}^{5}$ of an inch in length.

The rays of the pectoral fin are fourteen in number. Thes first or upper ray is in length, from attachment to posterios extremity or point, 4_{8}^{3} inches, the others gradually decreasing in length until the lowest and shortest is 1_{3}^{3} inches. Looking at the fin on either side the rays are crowded, and set ond within the other after the manner of a venetian blind when turned to keep out the rays of the sun, the inner inferior mangin being the lowest. The upper or long ray, at its attached extre mity is very much stronger than the others, and at this point it
has a wide ar union with th nished with th inner to outer Outer side ray is, of an i the heel incli same time to The heels of tl or have less when their cu creasing, but nearly the nor supporting oss very stout, an termination fo heels of the ne curves until th
12th and 13 th together, and t most overlaps t side to outside rays are on by strong cart between the ra which at presen a more particu At the junct lage and closel. tissue, is the u length, and ${ }_{4}^{3}$ of this point begin its length it attains ${ }^{3}$ of an i pendicular to t attached to the
This brings

yorrow

NOTES ON THE SALMO SALAR SPECIMEN-MORROW.
radius and ulna lat twisted, that y cartilage with ye a flat process
roid bone, which. newhat curved, ith the clavicle erceive a central itremity; about verse joining, or rou will see that ramen, and that the ellge of the rence we started merus, but to be 1 of very young uy sight will not
or carpal bone thich is directly rese ossicles and ower to the pos. oart of the bone isly. The lowet th.
in number. The ient to postecios lly decreasing in nches. Lookin, led, and set one tian blind when r inferior mangin s attached extry at this point it
has a wide articulating surface on its inner side or heel for its mion with the radius upon which it moves, this surface is furnished with the usual lining and ligaments of such joints ; from its inner to outer heel transversely it is in breadth ${ }_{8}^{5}$ of an inch.
Outer side of the pectoral fin.-The heel of the first or upper ray is of an inch in length, and nearly at right angles to its shaft, the heel inclining away from its supporting bone, and at the same time turned towards the ventral aspect of the fish. The heels of the remaining rays gradually increase their angles or have less abrupt curves until the last two or three rays, when their curves again become sharper, the lengths of all decreasing, but the outer heel of the lowest or short ray preserves nearly the normal shape, and projects an ! of an inch below the supporting ossicle. On its inner side the heel of the long ray is very stout, and its edge inclining downwards gives it a broad termination for the accommodation of the articular joint. The heels of the next six rays gradually decrease in their length and curves until the Sth ray is nearly straight; the 9th, 10th, 11th, 12th and 13 th rays are also nearly straight, bat closely crowded together, and the inner heel of the 14 th is curved upvard and almost overlaps the end of No.13; the suter heel of 14 is, from outside to outside, ${ }_{4}^{1}$ of an inch below the inner extremity. All the rays are on each side attached to the base of the fin, by strong cartilage, which fills the division of or the space between the rays, so much so that without destroying the fin, which at present cannot be spared, it is impossible for me to give a more particular description of it.
At the junction of the clavicles, which are connected by cartilage and closely attached to their united ends by strong fatty tissue, is the urohyal bone, in this specimen it is 1_{4}^{3} inches in length, and ${ }_{4}^{3}$ of an inch in beight at its posterior extremity; at this point begins its ventral transverse plate, for half an inch of its length it is very narrow, but it rapidly widens until it attains , of an inch, taking a lanciolate form. This bone is perpendicular to the body of the fish, and by its anterior end it is attached to the hyoid bones.
This brings is now to the head of the fish on the ventral
aspect, and my present task is done. I have endeavored to des. cribe to you the bones of the salm n (Sulmo-Sular) as they appear to me to be. I have no theory to advance or support, and it is too much to expect that in what I have read to you there is no error, but it may serve to help some enquirer on his way, and if such be the result my time will not have been spent in rain (For Figures see Appendix.)

Art. Vili.-Nova Scotian Fungi. By J. Sommers, M. D. (Read Jtm. 26, '80.)

The present paper affords a very short list of some of the more common species of our mycological flora, the result of a three months' study of a local botanical region.

During the time very many specimens have passed through our hands. Difficulties in diagnosis, want of sufficient time, and the evanescent characters of many of them, have been important factors in determining the length of our list, but we have observel enough to convince us that the fungi are capable of affording 8 field for study which will take many years of patient and labori ous investigation to render complete.

Viewed either from scientific or economic point, the fungi furnish us with interesting matter for study and comparison Their organization, growth and reproduction afford matter for originality in their treatment by scientists. Their medical and nutritive properties-their parasitical and destructive tendencies supply matter for reflection on the part of the economist.

To the student of nature they are of interest, as situate on the border line between the dead and living things of earth--maintair. ing the balance of power, devourers of dead organic matter,destror. ers of decaying organisms; they supply, also, a bountiful store for hosts of highly vitalized, organized beings, and are not even disdained by man himself.

The local peculiarities of our Province now existing, viz, its dense woods and extensive swampy barrens, furnish favorable conditions for the development of thisclass of vegetables, which our dry atmosphere would, under other conditions, seriously interfere
with. The prog them, as in the disappearance, and record thein

1. Agaricu: pine, N. W. A.,
2. Agaricus Pleasant, Hx .
3. Agaricus situation as abo
4. Agaricus spuce. Oct.
5. Agaricus Park woods. O
6. Agaricus ituations. Aug
7. Agaricus Oct; on decaying
8. Agaricus inder spruce fir.
9. Agaricus
10. Agaricus roods. Nov.
11. Agaricus ated land, and p
leavored to iles. Suler') as they or support, and to you there is on his way, and t spent in rain
mmers, M. D.
ome of the mon esuit of a three
passed through ficient time, and : been important e have observel e of affording a tient and labori.
oint, the fung and comparison. fford matter for seir medical and ctive tendencies sonomist.
is situate on the sarth--maintain matter,destror: bountiful store and are not even
xisting, viz, its trnish favorable tables, which ou riously interfere
with. The progress of arts and agriculture in the future, will with them, as in the case of ou: higher indigenous plants, cause their disappearance, the present is therefore the time to classify them and record their existonce.

Ord. I.-Agaracini.
Serdes-Leucospori.
Sub. Gen.-Amanita.

1. Agaricus (Amanita) vaginatus, Bull. Under hemlock and pine, N. W. A., Hx. Sept.
2. Agaricus (Amanita) adnatus, Smith. Under spruce; Point Pleasant, Hx. Sept.
3. Agaricus (Amanita) muscarius L. Not uncommon in same situation as above. September and October. Poisonous.

Sub. Gen.-Tricholoma, Fr.
4. Agaricus (Tricholoma) columbetta, Fi Park woots; under pruce. Oct.
5. Agaricus (Tricholoma) crassifolius, Berk. Under spruce Park woods. Oct.

Sub. Gen.-Clitocybe, Fi:
6. Agaricus (Clytocybe) laccatus, Scop. Common in most bituations. Aug. to Oct.

Sub. Gen.-Colybia, Fries.
7. Agaricus (Collybia) dryophilus, Bull. Point Pl. Park, Hx Oct; on decaying leaves, etc.

Series-Dermini, Fi:
Sub. Gen.-Naucoria, $F r$.
8. Agaricus (Naucoria) nuceus, Bolt. In the Park woods; ander spruce fir. Oct.
9. Agaricus (Naucoria) pediades, Fr. In open spaces. Oct. Sub. Gen.-Galera, $F r$.
9. Agaricus (Galera) ovalis, $F r$. On cattle droppings in roods. Nov.

Series-Pratellie, Fr.
Spores-Purple or intense Brown.
Sub. Gen.-Psalliota, Fr
10. Agaricus (Psalliota) campestris, L. Everywhere in cultiated land, and pastures. Common mushroom.

Sub. Gex.-Pilosace, Fries.
11. Agaricus (Pilosace) eximius? Peck. On a decaying los: the Dingle, N. W. A., Hx. Sept.

Series-Coprinarii, Fir; Spores Black.
Sub. Gev.-Psathyrella, Fri
12. Agaricus (Psathyrella) gracilis, Fr. On cow dropping Sept. In pasture ; Dutch Village.

Genus-Coprinus, Fries.
13. Coprinus micaccous, Fr: Common on dung and compos Aug., Nov.

Genus-Cortinarious, Fi:
Sub. Gen.-Dermocybe, Fr.
14. Cortinarious (Dermocybe) cinnamoneus, Fir. In glawy spaces in the Park, Hx. Sept.

Genus-Lepista, Smith.
15. Lepista personata, Fr. Park woods, Hx. Sept.
16. Lepista cinerascens, Bull. Under spruce and pine ; Pak Oct.

Gen.-Hygrophorus, Fi
17. Hygrophorus eburenus, Fr. Stem swollen; volva per sisting; pileus $4 \frac{1}{2}$ inch. Under pines in the Park, Hx. Oct.

Genus-Gomphidius, Fi
18. Gomphidious glutinosus, Fr: Common about Hx . Seft and Oct. Growing on the soil.

Genus-Russula, Fr.
19. Russula vaternosa, Fr: Pine grove; Pt. Pleasant. Stpt
20. Russula alutacea, $F r$. Under pines; Point Pleasant, Ht Nov.

Genus-Marasmius, Fr.

21. Marasmius oreades, Fr. "Fairy-ring champignon." Bu lers of woods and roadsides. Oct.

Gevus.-Schizophyllum, Fi_{i}.
22. Schizophyllum commune, Fir On dead wood; comme Aug.

Genus-Lenzites, $F r$.
23. Lenzites betulina, Fr. Common on birch and stumps perennial.
24. Boletus
25. Boletus
26. Polyport Jnly: Polypore
27. Trum, N. S. Jt gins velvety, of indefinitely mar provided with p ing one substan of upper mass ex Hrace of this Margins sinuous in thickness; ler wo masses, view thick stipe; widt inches; length, : cters in detail,
28. Poloporu: 2on. On larch,
29. Hydnum Pleasant Park, H
30. Sistotrem
31. Cynophal drain on his pr
32. Lycoperd
a decayin; los
lack.
1 cow dropping
ung and compost

Fir. In grawy

Sept. and pine ; Pat
llen; volva per k, Hx. Oct.
about Hx . Seq

Pleasant. S_{pl} int Pleasant, Hy
ampignon." Br
wood; comma
reh and stump

Order-Polyporei.
Gencs-Boletus, Fr:
24. Boletus lividus, Fr Common. Poisonous. Ang. to Oct. 25. Boletus pachypus, Fr. In woods; common. Aug.
Genus-Polyporus, Fir
26. Polyporus fomentarus, Fr. On birch; near Truro, N. S. Inly.
27. Polyporus annosus? Fr. On fallen hemlock trunk; near Truro, N. S. July. Persistent, poies? rich umber brown; margins velvety, of a deeper shade; cuticle dense sooty, spotted or indefinitely marked; slate colored; consists of two masses, both provided with pores, etc., one resting above the other, but forming one substance, attached? its whole length at one side; body of upper mass extends one inch beyond the lower, the free under Wrface of this mass provided with pores like the lower one ; Margins sinuous; pileus about five inches in width, by three inches in thickness; length, about four inches; very solid; woody; the two maseses, viewed as a whole, resemble an agaricus with a very thick stipe; width of lower portion, three inches; thickness, three juches; length, about one and one-half inches. I give its characters in detail, because my diagnosis is a doubtful one.
2s. Poloporus versicolor, Fi: Resupinate; persistent; comfron. On larch, hemlock, birch, etc.

$$
\begin{aligned}
& \text { Order-Hydnei. } \\
& \text { Genvs-Hydnum, Linn. } \\
& \text { Sect.-Mesopus. }
\end{aligned}
$$

29. Hydnum repandum, L. Near the roots of pines. Point Pleasant Park, Hx. September.

$$
\text { Genus.-Sistotrema, } F i
$$

30. Sistotrema confluens, Pers. In the Park. Oc. Order-Phalloidei.
Genus-Cynophallus, Fi:
31. Cynophallus caninus, Fr. Found by Mr. R. Morrow in adrain on his property.

$$
\begin{gathered}
\text { Order-Trichogastres. } \\
\text { Genus-Lycoperdon, Tourn. }
\end{gathered}
$$

32. Lycoperdon colatum, Fr. Common in pastures. Aug.,
33. Lycoperdon gemmatum, $F r$. In fields and pastures Common. Aug., Sept.
accompanying of Canada, is

I am indel for the corred
Art. IX.-Nova Scotlan Geology.-Notes on a New Geological Progress Map of Pictou County. By the Rev. D. Honeyman, D. C. L, F. S. A., Hom. Member of the Geol. Assoc., London, dec; Curator of the Procinciel Museum, and Profcssor of Geology in Dulhousie Collegn and University.
(Read May 10, 1880.)
Introduction.
The map exhibited is the first of a series which I have been engaged for some time constructing.

They are all on a scale one inch to the mile. Church's county maps are generaily used for topography. Occasionally the Ad. miralty charts are used in the delineation of harbours and portions of coasts of geological importance. From these and railway section books elevation measurements are !argely obtained.

The various papers that I have submitted to the Institute and these maps may be regarded as mutually illustrative.

Additional notes, however, seem to be required, in the case of some maps, for the following among other reasons:

1st. Railways ha ve been, or are being, constructed which are df more or less geological importance. These, in their nature, could not be referred to in papers already communicated.

2nd. New facts may have come to light.
3rd. Certain old facts may have to be brought into connee tion with these new facts for specific purposes.

The following notes on the progress map of Pictou county seem to be required on considerations as above.

Great Coal Field.

A prominent feature of our map is an irregular polygon colored black. This is the Pictou coal field as defined by Sir W.E Logan and E. Hartley. I have simply transferred it from the map
map. Passeng of rock cutting boundary of th many points of easy access a d imperfectly cor
Leaving the side of Sir W. conglomerate o eastward we pt tones while er continue to tra Yalley. Enteri to be somewhat cal leap. Whe siding at Dew cended from th period. The g Upper Silurian of Barney's Riv orer the middle Still farther on Here strata are bottom strata branches of Bar elsewhere, inclu , equivalent tc ing to Salter.
B intermediate, pical series in A state that B^{\prime} is t Still proceeding
on A NEW Geor unty．By the Hon．Member of f the Procincial ）alhousie Collegy
hich I have been

Church＇s counts sionally the Ad． f harbours and From these and are largely ob
he Institute and ative．
ed，in the case of is：
cted which are of eir nature，could ed．
ight into connee
f Pictou county
－polygon colored d by Sir W．E l it from the map
accompanying the Report of Progress of the Geological Survey f Canada，1868－9．

Eastern Extension Rallway．
I am indebted to M．Murphy，C．E．，Government engineer， for the correct delineation of this line of railway on my map．Passengers cannot fail in observing the great scarcity of rock cuttings along the line from New Glasgow to the eastern boundary of the county．Still it has been the means of reaching many points of interest to the geologist，and it has rendered of easy access a district of great interest，whose geology has been imperfectly comprehended and partly misunderstood．
Leaving the New Clasgow station，we start from the northern side of Sir W．Logan＇s coal area，traverse the lower carboniferous conglomerate of New Glasgow and succeeding grits．Turning eastward we proceed through drift cuttings and occasional sand－ stones while crossing Sutherland＇s River and French River．We continue to traverse the Lower Carboniferous through Piedmont Valley．Entering the basin of Barney＇s River the geology＇egins to be somewhat obscure．In fact，we are taking a great geologi－ cal leap．When we pass from the Barney＇s River strata to the siding at Dewar＇s furniture factory，we find that we have des－ cended from the Lower Carboniferous to the Middle Silurian period．The geological gap between represents Devonian and Tpper Silurian time．We have just crossed the Western branch of Barney＇s River．Proceeding a short distance we cross a bridge over the middle branch，descending lower in Middle Silurian time． Still farther on we cross the eastern branch of Barney＇s River． Here strata are seen partly covered by a dump．These are the bottom strata of this Middle Silurian series of the several hranches of Barney＇s River．The Middle Silurian series here，as elsewhere，includes A，B and B＇of the＂Upper Arisaig series．＂A is equivalent to the＂Mayhill Sandstones＂of Wales，accord－ ing to Salter． B^{\prime} is of Cl⿳⺈⿴囗十一日寸ton age，U．S．，according to Hall，and B intermediate，according to my own determination，of the ty－ pical series in Arisaig Township of Antigonish County．I may state that B＇is the＂Lower Arisaig series＂of＂Acadian Geology．＂ Still proceeding on the line of railway，we pass from the base of
the Middle Silurian to a base of strata of Lower Carboniferous age. We thus take a greater leap upwards than was done downwards on our entering upon the Barney's River Basin. The difference is measured by our descent geologically in passing through the Middle Silurian series. Proceeding onward we pass from the Lower Carboniferous into a great Metamorphic series which enters largely into the constitution of the mountains through which passes the remarkably picturesque "Marshy Hope."

Through this pass flows the eastern branch of Barney's River. and procceds the line of Railway, in two sub-parallel lines.

A beautiful section of a part of the metamorphic strata is seen on the side of the railway. The latter proceeds onwards through the Valley without any other rock exposures being ap. parent. About a mile from the County line, strata A. (Middle Silurian) are observed on the side of Barney's River. These extend onward into the County of Antigonish, and are cut by the railway before it reaches the county line. We discontinue our journey until I read notes on the map of Antigonish County. General Sections.

On the map.
Section line, No. 1.-This section commences on the Pictou and Antigonish Co. line, 2 miles from Northumberland Strait and the same distance from the N . west corner Arisaig Township, the county line being the western boundary of the township. The portion indicated is 3 miles distant from the top of the upper. most member (D) of the typical "Upper Arisaig Series," situate near the mouth of McAra's Brook in the county of Antigonish, and on the Northumberland Strait. This line is zigzag, consist. ing of three straight lines, which I shall designate respectively $1,2,3$.

Line 1.--P ginning at the starting point proceeds in a direc. tion S. 25 W. to Sutherland's Mountain, Kenzieville, a distanee of 9 miles. In its course it traverses, 1st. The metamorphic rocks of the Antigonish, and Pictou Mountains. 2d. A carboniferons band of rocks of the same mountains. 3d. A. B. \& B. of eastem and middle branches of Barney's mountains, and ends at strata with Diorite, of Sutherland's mountain at the west branch of

Barney's Rive the rocks of t amination of t
Traversing Furniture Fac welcomed and Factory. Exa west branch of rata where eursory observ boniferous are y the eastern mountain whic Hope, which is continuation outh of Piedm Silurian strata oad was a cont Hope at the cot Accompanied the factory o a search of the tains without su Ile branch, wh railway bridge. way, and, there Carboniferous 1 hen ascended rance of the Ma Lower Carbonife We afterward e fiver and found mountains, being us rocks. The omparison with he road. The (asialso found to

Carboniferous was done down. jer Basin. Th ally in passing onward we pass amorphic series the mountains "Marshy Hope. Barney's River allel lines. orphic strata is oceeds onwards isures being ap. rata A. Middle ver. These ex1 are cut by the discontinue our nish County.
in the Pictou and d Strait and the Township, the township. The ? of the upperSeries," situate f of Antigonish zigzag, consist ate respectively
eeds in a diree. ville, a distance tamorphic rocks A carboniferous 3. \& B. of eastem ad ends at strata west branch of

Barncy's River. I have already incidentally referred to some of the rocks of this section. Having recently made a thorough examination of the Basin of Barney's River, I shall give the results. Traversing the line of railway, I was led to make Dewar's Furniture Factory siding my halting place. Here I was kindly welcomed and hospitably entertained by the proprictor of the Tactory. Examining the dam and race which are situate on the west lranch of Barney's River, I was interested to find siluridu whete where I had expected to find Carboniferous rocks. From eursory observations I had been led to infer that this was a Carboniferous area, and that the Silurian of the east was bounded ly the eastern branch of the River. I had supposed Cameron's mountain which was on the right of the road entering the Marshy Hope, which is formed of lower carboniferous conglomerate, to be a continuation of the carboniferous mountains which run on the south of Piedmont Valley. I had also supposed that the Middle Silurian strata (A) which occur on the left side of the same roal was a continuation of other strata, occurring in the Marshy Hope at the county line. See the railway traverse proceeding. Accompanied by A. Dewar, I examined the fields to the south of the factory onward to the New Glasgow and Antigonish road in search of the supposed connection of the Carboniferous Mountains without success. We thenobservedSilurian strata in the midWhe branch, which led us to follow its course northward to the railway bridge. We found Middle Silurian strata (B) all the way, and, therefore, no connection between the Marshy Hope Carboniferous Mountain and the Mountains of the west. We then ascended McPhee's Mountain on the north side of the enrance of the Marshy Hope and found that it also was formed of Lower Carboniferous Conglomerate, like Cameron's, on the south. Ve afterward examined rocks in the east branch of Barney's fiver and found that they were the connection between the two pountains, being also conglomerates with the addition of igneus rocks. The latter were found to occupy a central position, by omparison with the other passage conglomerate outcroppings on ie road. The continuation of these mountains on the north tasalso found to be of Lower Carboniferous age, Cameron's moun-
tain is there connected with the Carboniferous of Merigomish, the north rather than on the west. It then appears that thre metamorphic rocks of the Antigonish and Pictoa mountains are altogether bounded on the west by Carboniferous rocks of mometains. It at the same time appears that the Middle Silurian strata, on the left side of the road, are completely disconnected with the similar strata (A) toward the county line. Tlese art two note-worthy considerations.

I shall now direct attention to the disconnected Silurian strate They are brownish quartzose slates, much metamorphosed. Tley are fossiliferous. The fossils are the usual ones of A of the "t p per Arisaig series." Petruia, Athyris, Cyclonema. They are al casts-external and internal. On the east branch of Barnery River, where the railway enters the Marshy Hope, I have refer. ed to similar strata partly covered ly a dump. These lie toth north of the preceding, and are also cut off from any connef tion with Eastern Silurian strata by the carboniferous and glomerates and igneous rocks of the same branch of Barnef River. We are thus led to follow a northern course, i. e., dorr the river. We find them proceeding in this direction, crosinf the river at McPhee's, and apparently terminating 3' miles fromtt entrance to the Marshy Hope. I collected fossils in part of these the road before reaching McPhee's. Two of the specimens lie befig me. I shall describe them. The one is a quartzose rock, colond brown with iron oxide. It has a sharp cast of the exterion a good sized Cyclonema. One side of the specimen has ery tals of quartz. The second specimen is of the same charad being from the same mass of rock. It is larger, having a vein quartz with beautiful quartz crystals. On a corner is expoed large Cyclonema, showing the internal cast entire, also a consild able part of the surrounding external cast. The shell spacef entirely vacant. The last specimen is a beautiful and convini illustration of rock formution.

Examining the high ground south of the Marshy hope ref and west of Cameron's mountain of lower carboniferous age, ferred to above, we found the southern continuation of oursil ian (A) strata outcropping extensively ; after a time it ceass appear.

We proceed mountain, no Brook procee able distance, were found t c the brook to Sutherland's ı ness of A, has mountain stra and quartz ve A great pro well exposed c summit. This west. In Ar strata A of th with intrusive these contrast very soft furni Noca Scotia, и contains my " tricated a gre These contain usual furnish: our Clinton per fozsils in the se approximate bo honiferous begi Silurian (A) stı tended beyond McKeehan's, tI Valley, have th into the Middle with Caineron's

From McPhet the Middle : the old moun
of Merigomish, appears that the toa mountains are ,us rocks of mounddle Silurian stely disconnectel a line. Tliese ars
ted Silurian strata morphosed. Ther s of A of the " T ema. They area ranch of Barner Lope, I have refter p. These lie to the from any commet carboniferous cur ranch of Barner course, i. e., dorit direction, crossing $\mathrm{ng} 33_{4}$ miles fromth Is in part of theser specimens lie befor zzose rock, colonne of the exterion specimen has ery the same charade ${ }^{2}$, having a vein comer is exposel tire, also a consila

The shell space iful and convine

Marshy hope me rboniferous age, ruation of oursib - a time it cease

We proceeded onward to Mr. McIver's at the back of Cameron's mountain, no outcrops appeared. We then descended McIver's Brook proceeding northward, no strata were seen for a considerable distance, at length strata appeared in great mass, which were found to be our Silurian (A) strata succeeded by B, crossing the brook to proceed westward as mountain strata, including Sutherland's mountain of our section. Their boldness, and hardness of A, have constituted them mountain rocks. Sutherland's mountain strata are tilted ; fossils abound in them, such as Arisaig, and quartz veins are also abundant.
A great proportion of the mountain consists of Diorite. It is well exposed on the back of the mountain reaching nearly to its summit. This is the usual association in Nova Scotia, east and west. In Antigonish, Pictou, Annapolis and Digby counties, strata A of the upper Arisaig series are invariably associated with intrusive Diorite. Succeeding this band are B. \& B'. strata, these contrast strikingly with the preceding. They are generally very soft furnishing the pencil stone of How's Mineralogy of Sora Scotia, when exposed they become clay. The lower strata contains my "Lingula nodule bed." As usual at my last visit I extricated a great number of nodules from its two exposures These contain beautiful lingule of several species. B strata as "sual furnish a great variety of genera and species peculiar to our Clinton period. They will be found included in our lists of forsils in the sequel. The west branch of Barney's River is the approximate boundary of this Middle Silurian area. The Carhoniferous begins in the river at the mill north of McPhee's Silurian (A) strata. At Dewar's Furniture Factory strata B extendel beyond the river. Between Robertson's and the Rev. Mr. McKeehan's, the carboniferous mountains south of Piedmont Valley, have their extremity on the east. This apparent intrusion Finto the Middle Silurian originally led me to infer a connection with Caneron's mountain already referred to.

Antigonish and Pictou Mountains.

From McPhee's extremity of A (Middle Silurian strata) I crossd the Middle Silurian and then the Carboniferous, and reachd the old mountain road at Bailey's Brook. At the bridge and
fulling mill ruins, Igneous rocks were observed, of lower carton iferous age.

A short distance above the bridge I examined a mass of lime stone of lower carboniferous aspect. J. McLellan who point. ed it out to me, assured me that similar limestone had been quarried in the high ground to the east of the mountain roal and used for building purposes. Farther on the road side and mountain siles and summit, outcrops of metamorphic rocks ap. pear, they are quartzites and argillites. No member of the Upper Arisaig series has thus far been seen on the side of this metamor. phic series. The carboniferous bands along it from the Antigonish county line to the Marshy Hope road. We shall now exanine the south on Marshy Hope side. On the road below W. Robert. son's and at the watering place for horses, the felsites of the mountains appear after the carboniferous outcrops, on the let side of the line of railway opposite. At Pushie's is an interesting section of a steep side of the mountain, the rocks of this section are felsites and argillite, the felsites containing micaceous hemettio with pyrite. Beyond this there do not appear any rock exposuns until we come opposite the Marshy Hope station. Here at a bridge over Barney's River, of the road entering the Sutherland settlement, Middle Silurian strata (A) outcrop. Entering the settlement we find argillites with quartzites on the side of a tributary of Barney's River. On the summit of the mountain ti Sutherland's Argillite outcrops. These resemble the James Rire Fall rocks. The latter are in Antigonish county-9 miles ent from the Sutherland mountain outcrop. The Middle Siluim (A) strata of the bridge extend into Antigonish county as fare Lindsay's stables. At McLean's they are cut by the line of rail. way, after this the railway passes them on the south. I discorem these many years ago with them. Lingule, Petraice and Cir nulites were also found in them from time to time. I was at companied by the Rev. Mr. Goodfellow and son, when I mav my recent examination. We found Petraia forvesteri (Salter)in the strcete at Lindsay's stables. At McLean's we found abmbt ance of Cyclonema, Orthis and Lingula associated with the characteristic Athyris (casts) and Crinoidea. From the mow
tain side above was found to b most identical Wentworth, I. al me to prope tains, and to di Archrean Dana Slarian, by m ith Professor istance from t McLean's is 5 n

My attention le of the Mars) strata last e trates these mo that I met with fi clayey shales posures of met investigate thes son recgarding th tinuation of wha and, therefore, Piver Middle Sil west behind Sut tion, so that they herefore, Loweer Section line 1 , French River begins in the trata of the mc whe nodele bed, ith its Graptoli elia, Strophome iver (a Lower C This Middle Si section. It is
tain sile above, Mr. Goodfellow brought a piece of rock which was found to be a conglomerate of peculiar character. It is almost identical with the dioritic conglomerate which I found at Wentworth, I. C. R., with other conglomerates and rocks, which fel me to proper views of the age of rocks of the Arisaig mountains, and to distinguish them from the "Lower Arisaig series," (Archaran Dana) and "Upper Arisaig series," (Middle and Uppei Silurian, by making a "Middle Arisaig series" and correlating it with Professor Ransay's "Cader Itris" (Lower Silurian). The listance from the north side of Bayley's Brook to the south side NreLean's is J miles.

Other Mountuins.

My attention was also directed to the mountains on the south Gille of the Marshy Hope railway: Opposite the Middle Silurian (i) strata last examined, is a Brook (Bryan Daley's) which penetrates these mountains. Ascenling this brook the first rocks that I met with were apparently carboniferous strata consisting of clayey shales and conglomerates. Succeeding these are exposures of metamorphic slates - argillites. I shall have to finestigate these before I can arrive at any satisfactory conclusion regarding their age. In the meantime I regard them as a confinuation of whatever rocks may form the mountains at McIver's, and, therefore, as underlying the strata A, B of the Barney's Piver Middle Silurian area. The same doubtless extend farther West behind Sutherland's Middle Silurian Mountain of our seefion, so that they may be regarded as Pre-Middle Silurian and, therefore, Loverer Silurian.
Section line 1, division 2 extends from Sutherland's Mountain 0 French River-a distance of 6 miles. Its course is N. 80 W . begins in the diorite of Sutherland's mountain, coosses A trata of the mountains, passes through B strata with its LinW'u nodule bed, traverses B' south of Cooper's and at 'Turner's with its Graptolithus clintonensis (priodon), Dalmanites, Lepto*elia, Strophomena, etc., and ends at an igneous rock in French River (a Lower Carboniferous rock).
This Middle Silurian area is intersected diagonally by the line section. It is bounded on the north by the Carboniferous
mountains-these have been already referred to as on the south of Piedmont valley and the line of railway. The mountains on the south are an extension of the strata of Sutherland's mountain. Strata B and B' lie between.

Division 3 extends from French River to the west side of Irish Mountain, a distance of twenty-seven and a half miles. Its course is S. 5.5 W . It traverses first an area of Lower Carboniferous rocks, then the Middle and Upper Silurian of Sutherlands's River, McLellan's Mountain and Brook, and Irish Mountain, terminating in the Lower Carboniferous of East River.

The Silurian formation retreats after it reaches the west braneh of French River, and forms the compound curve which connects the Silurian area of the Barney's and French basins with those of East River basin. The connection is very complicated, consisting of Anticlinals, Synclinals and Monoclinals; yet there is no great difficulty experienced in resolving the complications in consequence of the constant recurrence of well known characteristic fossils and obvions structure. Vide Papers in Transac. tions 1870-1-2.

Section and.

This section begins where the preceding section ends. D)vision No. 1 proceeds S. 19 E., a distance of 4.3 miles to Fraser's (sadler). Beginning in the Gypsum it passes through the Lower Carboniferous to the Limestone of McLean's Lime Kiln at Spring. ville, a little farther it enters D strata, with abundance of characteristic fossils. At the late Rev. Angus McGillivray's pasture it enters C strata with fossils characteristic of this horizon. It then passes through an obscure region, in which we may presume that B^{\prime} (Middle Silurian) strata are to be found according to the analogy of the preceding section (No. 1). We then come toa hill having fossils, which show that C strata have been left be hind. Reaching Fraser's (sadler) we come to the first discovered outcrop of the iron ore of this division, or series, which we woull, for future reference, name Iron Ore, No. 1. Division No. 2 of the section running N. 59 E., 0.6 of a mile, passes through the lowest strata of this series, which we shall, in the meantime, designate A strata. It then traverses a wide dyke of igneols

Diorite. Divis John McDonal، rimn strata A. fid strata (Up No. 4 pasies N. tion it cuts the ons red hemat strata have foss call thi : I ron tance of 3 mile through Middle metamorphic ra ses these a diste side of East Ri S. 4. E., a dista ing into a banc These have an ϵ miles, west, we due south of Bl

Remarks c
The series of : sa typica! serí daim. I shall c its development. attention on ace their order of oc: typical D at Mo: The fossils are anl species; the ably corresponds and to the north acorresponding l uosus, Homalom honeymumi, assc ence is in the de: vation. All the:
s on the south mountains on ind's mountain
est side of Irish alf miles. Its Lower Cartbonof Sutherland: Mountain, terer
the west branel which comnects sins with thow mplicated, conaals; yet there e complications known charac rers in Transac
tion ends. D). niles to Fraser's ough the Lower Kiln at Spring. ndance of charvray's pasture, it horizon. It then ay presume that ccording to the then come to ave been left be :first disconerem which we woull)ivision No. 2 ed sses through the I the meantime lyke of igneols

Diorite. Division No. 3 runs N. 82 E., a distance of 2.2 miles to John McDonald's Hill, Blanchard, passing through Middle Silutinn strata A. At McDonald's hill it cuts an intersecting outcrop afD strata (Upper Silurian) with characteristic fossils. Division No. 4 prsise N. 59 E., a distanes of 0.6 of a mile, at its termination it cuts the Blanchard Iron Ore. This is a bed of fossiliferous rel hematite 3') feet thick. The ore and the containing strata have fossils characteristic of A (Middle Silurian). I will all this Iron Ore. No. ?. Division No. 5 runs S. 4.5 E., a distunce of 3 miles. The half of this distance, 2.5 miles, it passes through Middle Silurian strata and then it reaches crystalline metamorphic rocks of Archem age (Lower Arisaig). It traveress these a distance of 2.5 miles to McPhee's, still on the north side of East River division. It continues in the same direction S. 4.5 E, a distance of 0.6 of a mile, crossing the river and passing into a band of black metamorphic Middle Silurian strata. These have an east an 1 west strike. At a farther distance of 6.8 miles, west, we reach the first outcrop of Iron ore at McDonald's, die south of Blanchard. I shall name this Iron Ore No. 3.

Remarks on the Divisions of Section Line No. 2.

$$
\text { Division } 1 .
$$

The series of Silurian rocks of this division might be regarded as a typical series, if Arisaig did not put in a prior and superior daim. I shall consider the series of Springville in the order of its development. D. strata at McLean's have received the most attention on account of the abundance of fossils. The fossils and their orler of oceurrence correspond in a striking manner with the typical D at Moydart, Arisaig Township.
The fossils are, with a few exceptions, of the same order:, genera anl species; the mode of their occurrence and association remarkably corresponds. A ledge on the height at the back of McLean's and to the north of David's lake, has precisely the same fauna as arorresponding ledge at Moydart. The fauna are Cornulites flexnosus, Homulonotus diversoni, Spirifer subsulcatus and Avicule loneymeni, associatel and in abundance. The only difierence is in the degree of metamorphism and in the state of preservation. All the strata of the series of Springville are more highly
metamorphic than in the type, and the fossils, generally, are less perfectly preserved. C strata here correspond and differ in like manner when compared with the typical strata at Knoydart, Arisaig Township. The Cephulopodu are as large as in the type An orthoceras at Springville is the largest found in Nova Scotia. Similar species appear in groups, as in the type. They occur in the same relative position. Remarkable forms are also found in the two localities. Here the strata are more highly metamorphic. This action has also affected the state of presei ration of the fossils. They are generally casts. Strata D may be regarded as extending from the north end of Hrish Mountain to Holmes' Brook. Before reaching McLean's, however, they seem to lreak anl their course to change. At Macintosh's brooklet they make a sort of a water-fali, near their junction with the Carboniferous Sandstones that underlie McLean's Limestone. Trom this brook to Holmes' brook we have the D strata of division (1). Their width is considerable. Their outcrop, with fossils, was followed to some distance behind David's Lake. At the back of Iribl Mountain C strata possibly exist among the strata of the abrupt descent to Cross Brook. They were not detected from want of fossils. At Holmes' brook their upper part becomes distinct in closest contact with Lower Carboniferous Limestone. Their inmediate contact forms a breccia. Here the water sinks, leaving the remainder of the brook dry in summer. The water that has disappeared after a subterranean flow, reappears at Holmes' sluice and flows sub diu to the river: Limestone and C strata are seen in approximate contact at the opening ; in the strata east of the sluice the large orthoceras was found and other characteristic fossils. In an outcrop not far from the road crossing, on the same side of the sluice, other characteristic fossils were found. The same strata are found in contact with the limestone on the river side at McPhee's. These strata passing along N. E. on the Y side of the river form mountains of steep ascent and considerable elevation. In some places the strata are bare, especially towand the mountain summit, resembling a house top of high pitch. The lower strata of McGillivray's pasture continue their rampent course with a depression on the left onwards to the end of the
nountain, havi the beginning ; athough not ir (PED I.ETTER

On the top on the line of t ared, on the pature of strata much resemble that I was led a a day evel the Prince of II sland. Few w ways and mean I continued my specimens belon nown in my c Prince of Wales dso a discina a

Cand D strata motus. The n found in our ne ucteristic. Hom motus sulteri, M. This was cons vgidium to be I him the head cad were afterv rcephtulus. I I Iter the late aurey of Great The thorax tomalonotus Sil the genus, being that of Homulon.
crally, are less d differ in lik at Knoydart as in the type und in Nova re type. They forms are also e more highly ate of preseivaa D) may be reh Mountain to er, they seemto brooklet the ith the Carbonone. From this ision (1). Their was followed back of Irish t of the abrupt I from want of mes distinct in one. Their insinks, leavin, water that has t Holmes' sluice strata are seen ata cast of the r. characteristic ng , on the same re found. The ne on the river
E. on the N nd considerable pecially towand igh pitch. The their rampert the end of the
mountain, having the same characteristic fossils at the end as at the begimning; limestone is seen here in the river as at McPhee's, athough not in contact with the strata.
I red hetter day in the History of Pietou and Geologiy of bivision C.
On the top of a hill at the end of the C strata mountains, on the line of the depression of the mountain summit alrealy of ared, on the right of the MeGillivray strata I found an exwastre of strata lithologically distinet from D. \& (: These so wueh resemble the B' strata of Doctor Brook, Arisaig Township, that I was led to search in them for fossils. This happened a a day ever to be remembered in Pictou, when H. R. H. the Prince of Wales was in Pictou en route to Prince Edward Whand. Few were in the country that day who could find the ways and means of getting to the town, these not being available I continued my search for fossils and found them. I collected 4 specimens belonging to a new species of Homalonotus which is known in my collection as Homalonotus Siluriae PrincipisPrince of Wales Homalonotus, two large lingulee were discovered, aloo a discince and a form Incertue sedis. DESCRIPTION.
Cand D strata as at Arisaig have each their charact ristic homalonotus. The number of specimens of a species of homalonotus found in our new strata of the mountain seems to form a characteristic. Homulonotus dawsoni is characteristic of D. Homelo utus sulteri, M. S. is characteristic of C.
This was considered by Salter from the appearance of the prgidium to be Homalonotus delphimoceplulus. When examined yhim the head of the form was unknown. Specimens of the lead were afterwards found which showed that it is not delphimecphulus. I have regarded it as a new species and named it after the late distingnished Palæontologist of H. M. Ceological Survey of Great Britain.
The thorax and pygidium are all that is known of the Homalonotus Siluriae Principis. The thorax has the character of the genus, being level backed; the pygidium is different from that of Homulonotus salteri in not having a terminal spine. From
this and Homalonotus dursoni it differs in being distinctly trilobute; the others have their furrows deep and continais from side to side; this has the side furrows coming opposite to the ridges of the axis. It is much stouter than the others. Thio specimens are more or less distorted by metamorphism, the containing strata being highly metamorphic.

The first appearance of homelcnotus in the typical Arisaig series is in B', where it is associ..ted with casts of pentumerus whlongus.

This leals me to refer the strata in question to B'. The ass, ciation of the large lingula seems to indicate the same horizon, as they are found in the same position at Arisaig. These are the only lingule found as far as I know at East River. Discina is larger than discina of D Springville; it more resembles the discina of B', French River. The form referred to incerte sedis resembles the valves of a pholus open. It is finely striated across,

These considerations led me to consider the mountain strata as the upper part of B ' of the serics

On the McLellan's mountain road, at the back of McGillivrays is a deserted farm, succeeding an obscure forest area. Herel observed strata which resemble fossiliferous A strata highly metamorphic. I did not succeed in finding fossils in them. I found a petraia forresteri in the bed of Holmes' Brook which might have come firom a part of these strata, as this brook passer not far from the said old furm. The strata of this farm extendel in the line of strike, cross the section line, near the position of Iron Ore No. 1.

This Iron ore is now an old acquaintance. It is 2.5 years less six weeks, since I was first introduced to it by the late Rer. A. McGillivray. Then it was scattered all around his mountain farm. Every cairn of stones had its large masses and small pieces of beautifully crystallized brown Hematite. This led lir McGillivray naturally enough to suppose that the vein of ore was situate within the bounds of his farm, and that its discorery would add to the value of his property, especially as the General Mining Association was supposed to have no reservation exeeph for Gold, Silver, and Lapis Laculi. Every year, about the sane
cason, we had a freshet, I con of its position, 1 the same positi ing Association great accumula the midge that This led to tl Limestome strat gieal survey for was pointed out difificulty in rec Hartle: of the fond the ore i Middle Silurian to the conclusio from Fraser's or
I am just wa of Mr: Gilpin's course of the ve map.
The carbonife posite Fraser's, likely overlaps, as it does the C

This ore corre the reel ore of I the ore under e: only found in A indiented on the tions seem to c Ross'. Its cours cropping in Squi
of Dahmanites
The extension o
eing distinctly and continuois ing opposite to he others. Tha phism, the enn-
typical Arisain of pentamerus.

B'. The ass same horizon, These are the er. Discina is resembles the to incerte seli striated acros, nountain strata

of McGillivras

 t area. Herel strata highly sils in them. s' Brook which his brook passec is farm extendel r the position ofIt is 2.5 yeals by the late Rer ad his mountain asses and small

This led Mr e vein of ore was lat its discorery y as the General servation excep , about the sume
season, we had a search for the hidden treasure. In 1869, after a freshet, I considered that I had found unmistakable evidences, of its position, near the upper outcrop of strata C. In apparently the same position, I came upon the trenches of the General Mining Association, at the end of the C. Strata Mountains, with a great accumulation of masses of ore on the sides of the road, near the bridge that crosses East River.
This led to the conclusion that the vein traversed A ymesting Limestone strata. In 1864, when making a preliminary (ieologieal survey for the N. S. Government, vide Bluo Book, Fraser's ore was pointed out to me in a sinall brook. There was not the least difficulty in recognising this as approximately in situ. Mr. E. Hartley, of the Geological Survey of Canada, sank a pit here and fond the ore in situ. Considering the strata of Fraser's site as Niddle Silurian I was only perplexed by the indications, and led to the conclusion that we must wait until the vein was traced from Eraser's onwards.
I am just waiting for an opportunity of examining the course of Mr: Gilpin's excavations, to satisfy myself in reference to the course of the vein, so as to indicate its geological relations on the map.
The carboniferons approaches the river on the south side opposite Fraser's, as is indicated by limestone or gypsum pits. It likely overlaps, or otherwise joins the ferriferous Middle Silurian as it does the C stiata farther down the river.

> Division (4.)
> Iron Oie No..

This ore corresponds very closely in character and age, with the red ore of Nictanx, both are fossiliferous and siliceons. In the ore under examination, Athyris is found, which is elsewhere only found in A strata. Its geological horizon has therefore been indicated on the map as Middle Silurian. Mr. Gilpin's explorations seem to confirm this view, as he found its extension at Ross'. It course is therefore approximately in the strata, outcropping in Squire Campbell's marsh, in which I found a pygidium of Dalmanites of B^{\prime} Arasaig and other fossils (Crinoidea). The cxtension of these at Ross's also produced fossils. They were
sent in my collection of fossils to the Museum of the Surcey Canada.
exposires on the course of Springrille u

Division (4.) Aicheren.

I found and examined these rocks outeropping in all directions along the road which leals to Blue Mountain. I have examinet them to a distance of two miles. These are separatel from the river by a band of Middle and Upper Silurian? strata, which borders on the north side of the river, and comes into contact with a considerable bed of Lower Carboniferous Limestone.

The archean rocks are felsites. In some places they have ap. pearance of copper and micaceons iron ore. An outcrop of these appears at McPhee's giving the series a width of 2.5 miles. This may be the west side of the cecheen of the Keppoch and Ohio, Antigonish County. I have not had an opportunity of tracing a connection between the two areas of crystalline rocks.

Division 5.

Iron Oie, (Mo. 3.)

The rocks of this division contain the specular Iron ore at MoDonald's on the south side of the river and S. of Blancharl's. This ore in situ was first shown to me by Mr. Donald Fraser in 1861, when I collected specimens of the valious ores of the ditrict for the London Exhibition of 1862 . It seemed to indicatea deposit of economic importance, subsequently in 1869 when I investigated its geology the outcrop was obscured by an enormons pile of stones on its top, and it was with difficulty that I secured a passable specimen of the ore for our Muscun collection. I examined the containing strata and found them to be dark coloured metamorphic strata. On emerging from the woods on my return to the river;, crystalline rocks were observed in a field on the right. The outcrop of these is of considerable extent. The rock are igneous and intrusive, like other rocks of the section on the north side of the river. We had thus the appectrance of a monoclinal, the dip being sontherly and the strike east and wet. The extreme metamorphism of the rocks and the general aspect gave no encouragement for the search for palaontological evidence of agge in the rocks themselves. I therefore searched for other
separate the s Ore (No. 1) or amined the st in the river north and sout In this way th on the one sid fossiliferous : semel to be westward, dow with a mill-da examination. aceurs havins trata. In adr greater compac frequent occurn branches, whel lifficulties. Tl and B B', midd thing in correla whict even at th
The next lion ore, (No. posiure of the sti considerable dis the Iron ore wit lam having stri ceding, indicati till along the b val of obscurity trata are hard in the joints. rad running slates having ob

1 all direction ave examinel rated from the strata, which s into contact imestone. they have ap. aterop of these of 2.5 miles. Keppoch and pportunity of stalline rocks.
ron ore at Me. of Blanchard's. nald Fraser in res of the died to indicatea 1869 when I y an enormons that I secured llection. I es. e dark colourel Is on my retum a field on the nt. The rock section on the ence of a monoeast and west. general aspect logical evidence ched for other
xpowres on the line of strike. I found the rocks exposed in the course of an adjoining brook. I followed these towards Spinguille until I came to lower carboniferons rocks, which apparate the strata under examination from the strata of Iron (1re (No. 1) on the north sile of the river. Afterwards I exanined the strata of the division 5 of the section which I found in the river without any cartoniferons intervention between noth and south, and in proximity to McPhee's archecen outcrops In this way the arcas of pre-carboniferous rocks having Iron ore on the one side of the river, were connected directly with the fossiiferous and pre-carloniferous rocks on the south side. This semenel to be one important element in correlation. Proceerling veetward, down the river on its south side, I found one brook with a mill-dam ; here is another exposure of the strata under camination. Still farther at Pleasant Valley another breok ncenrs laving a mill-dam, and an exposure of the same stata. In addition I observed strata of lighter colour and sreater compactness, I readily recognized a lithological feature of frequent occurrence at mill seats on Sutherland's river and its lranches, where paleontology is available for the solution of dificulties. There I liad to refer the corresponding strata to A and B B', middle siturian. If lithological evidence is worth anyChing in correlation, it surely is of some weight in the same district even at the distance of 9 or 10 miles.
The next exposure is in the brook east of the situs of Iron ore, (No. 3,) McDonald's brook. Here we have the best exposture of the strata. Along this brook I examined the strata to a consilerable distance southward in search of a continuation of the Iron ore without success. Returning I reached an old milllam having strata of the same lithological character as the preceding, indications of A, B and B^{\prime}, middle silurian. Proceeling till along the bed of the brook, I found, after a considerable interval of obscurity, compact strata, having a southerly dip. These strata are hard and jointed with films of micaceous oxide of iron in the joints. Succeeding these at the bridge which crosses the mad running up the south side of the river, I found black slates having obscure fossils, but which I have little doubt are of

Clinton age, farther on where the brook enters the river is a green marble of lower carboniferous age, and on the north side of the river opposite, in close connection with an igneous dyke is the continuation of the Blanchard strata, middle silurian, havin, lower carboniferous limestone in contact, I have no doubt what ever that there is a connection of the strata of the north and south areas of fossiliferous rocks under the bed of the river. Thee exiension of the igneous rocks observed on the road to the Iron ore, No. 3, would occupy the obseure interval in the brook between the two sets of strat forming a complete untidinel instead of the apparent monoclinal.

All this seems sufficient to determine the approximate age of the strata containing Iron ore, No. 3. This is consequently indicated on the map as middle silurian, which may be called the "uppet series of the Cobequids." Geologists have had to call in the ail of the iron divisions of section No. 2 of our map, and to regard the fomeras devonian, upper or middle silurian, according to the views entertained regarding the age of the latter.

> Palamontology of the negion mapped.

The sign ff is of frequent, occurrence on the map, in A, B, B (', D) of the "Upper Arisaig series" having fossils, that belong 1st to the Middle Silurian period.
2nd to the Upper Silurian period.
Brl We have ffoccurring in limestones of the Lower Carbonift ous period.

4th In the south and north side of the coal measure polygun
I shall briefly collate and examine the Middle and Uppa Silurian Faunas; and then examine the fauna of the Carbonifer ous period.

Regarding the Silurian series of the Springville division di section ten as representative of the Typical series. I shall grong the scattered fauna around its members. Our passage will the be direct into the lower an 1 int, the mid lle carboniferous age

Fossils of
posel ${ }^{2}$
e river is a green orth side of the ous dyke is the silurian, havin, no doubt what of the north and f the river: Thi, the road to the ral in the browk aphete unticlinel
ximate age of the quently indicate alled the "uppor call in the aid of and to regard tin according to the r.

PPED.
map, in A, B, ils, that belong

،ower Carbonift
neasure polyman iddle and Uppa of the Carbonife
${ }^{\text {g ville division d }}$ s. I shall grom assage will the boniferous age

Fobsils of A. from the Pictou and Antigonish County hine and Divisions of Section 1. Nos. $1,2,3$ and Sutherlund's river. Coelenterata.
Petraia forresteri.
Petraia, sp.
Anmuloide.
Crinoidea.
Amulose.
Cornulites.
Comulites, trumpet shaped., Salter M. S.
Trilubite.
Calymene, sp.
Molluscoidu.
Brachiopoda.
Strophomena corrugata.
Orthis, species.
Athyris, species.
Spirifer, like striatus
Spirifer, sp.
Rhynchonella, sp.
Lingulee.
Mollusca.
Gusteropecta.
Cyclonema.

Fossils B.

Sction No. 1. Division No. 1 \& B^{2} Lingalar of several species chiefly in nodules.

Fossils B'.
Setion Mo. A. Die. No. A, Springrille and e Bluasued Suct. No. 1 Division No. 3: 6.

Coelenterata.
Graptolithus.
Graptolithus elintonensis, (prioton).
Crinuidea.
Cornulites.
Tentacultes.

Crustacer.
Beyrichia.
Trilobitrs.
Homalonotus Silurie Principis.
Dalmanites. several species.
Molluscoicle.
Brectiopoder.
Strophomena depressa abumiant.
Leptiena, sp.
Orthis elegantula, abundant.
Leptocolia intermedia, abundant.
Spirifer, sp.
Lingule, species large.
Lingule, sp. small.
Discina, sp. large.
do. sp. intermediate.
do. sp. small.
Mollusce.
Ceplablopoda.
Orthoceras, small.
Conularia.
Incertae sedis.

> FauNa of C. Springivible
> Mollused.
> Cepleclopocte.
> Orthoceras lurge
> Orthoceras, sp.
> Orthoceras, sp.
> Molluscoidu.
> Brechiopode.

Strophomena, sp.
Strophomena, sp.
Strophomena, sp.
Strophomena, sp.
Rhynchonella saffordi. abundant.
Rhynchonella wilsoni.
Rhynchonella, sp. abundant.

Rhynchonella, sp.
Meristella didyma, abundant.
Atypa reticularis, coarse.
Spirifer crispus?
Crania, sp.
Crustacea.
Trilobita.
Calymene blumenbachi.
Homalonotus salteri.
Sutherland's river in boulders,
Homalonotus Salteri.
Crinoidea.
Cornulites. large species. Coelenterata.
Favosites fibrosa.
Stenopora.
Mollusca.
Cephalopoda.
Ascoceras.
Ormoceras, sp.
Orthoceras, sp.
Heteropoda.
Bellerophon, trilobatus.
Gasteropoda.
Holopoea.
Pleurotomaria.
Acroculia haliotis.
Lamellibranchiata.
Clidophori.
Avicula honeymani.
Modiolopsis.
Brachiopoda.
Spirifer subsulatus.
Chonetus, nova scotica.
Crania acadiensis.
Rhynchonella, various.
Discina, sp ?

Calymene blumenbachii,
Homalonotus dawsoni.
Dalmania logani.
Phacops stokesii?
Proctus stokesii?
Entomostruca.
Beyrichia.
Crinoidea.
Cornulites flexuous.
Tentaculites.
The greater part of the organisms of D Springville are idet tical with those of D Arisaig. Still only a very small proportion dif the species in the type have yet been found here. The same may be said of C, the other Upper Silurian member of the "Upper Arisaig series." When I make notes on my new map of Antig. nish County this will be made manifest. It is evident however even from the Springville series, that the fauna of Nova Scotir silurian had in C and D attained their maximum developmenir especially in cephalopoda, pteropoda, heteropoda, gasteropods lamellibranchiata, brachiopoda of certain genera trilobites anf crinoids. The exceptions are as follows, viz: Brachiopoda, oith athyris, spirifer, these have their beginning and climax in A, lingura in A and B^{\prime}, are rare in B^{\prime} and very rare in C and D . Thy trilobite, dalmanites, is characteristic of B , Calymene is in A, and D. The graptolithus expires in B'. The pteropod conularin is peculiar to B^{\prime}. Petraia have their beginning, climax and af in A.

Marine vertebrates do not appear ; all are invertebrates. The cephalopoda are of the highest order, and at the same time cas nivora of the period.

Carboniferous (f f.)
The fauna of the Lower carboniferous limestones succeed the Upper Silurian, in the County of Pictou and elsewhere in Non Scotia as far as is known. This makes a large break in the sur cession of life. To fill up the gap the Devonian or Old Red Sand stone is required, with its fishes, crustacea, mollusea, \&c.

The Carboniferous formation may be seen from the map to (ane into contact again and again with every member of the Tpper Arisaig series, and even with the intrusive rocks that give trike and lip. It is foum overlying these strata and intrusive Froks, and overlapping them a latere and a tergo. The CarboniferWII strata in these positions are respectively conglomerates, sandfones, claystoness and limestones. These have been formed Fultaneously by mechanical and organic agencies, in various Fonditions of furmation. We then have alternations of conditions, anl sanlstones and claystones are made to succeed limestones, and limestone to succeed sandstone and clays.
ingville are idetr. mall proportion if e. The same may ser of the "Upper :w map of Antig. evident howevef a of Nova Scotia num developmen poda, gasteropoid iera trilobites anf rachiopoda, orther limax in A, lingura n C and D. Th alymene is in A, O pteropod conulariz g, climax and en
avertebrates. the same time eras
stones succeed tiv elsewhere in Sor e break in the sur n or Old Red Smis , llusca, \&c.

The oldest limestone at Springville is that which is in contact thth the strata of C. in Holmes' Brook and River. This is as far s seen non-fossiliferous; the nect is that of McLean's quarry Whil Lime brook. Sandstone strata intervene between this and Dtrata; this is fossiliferous. the fossils are corals of the genus Fithostration. At Grant's factory on the river are limestones fth clayey strata; these are next in order; they have a richer 3ma. Others on the river farther down and on the West Branch e also fossiliferous. In the last the peropod, comulerice is and. This genus has already been recognized in B' Clinton Firench river.
The collated fauna of the Springville limestones, are :
Localities. Culentesutu.
Actimozou.
Lime brook. Lithostrotion pictornse.
Factory, E. river: Crimoidec.

Molluscoidu.

Producta cora.
do. martini.
Spirifer, sp.
Lamellibranchiats.
Nucula?
Giesteropodu.
Gicnus?
Heteropode.
Bellerophon decussatus.

Pteropoda.
Conularia.
W. B., E. River. Cephaloporla.

Orthoceras.
Pisces.
Cochliodus sp. Salter:
In my London Exhibition collection, Mr. Salter recognized twi teeth of Cochliodas. I was puzzled to know what they were. He at the same time detected specimens of Bellerophon decise. satus. I believe this is the first recognition of Fishes of so early date in Nova Scotia, and the first identification of Bellerophon in the Lower Carboniferous Limestone.

The Silurian Fauna have totally disappeared. As far as Nora Scotia is concerned, this is no great marvel, when we considet the character of the agencies that were at work during the lajw of the Devonian Period, and their stupendous operations. Thus and then Nova Scotia became largely subrerial, had its form well defined, and its mountain systems established. Its coant presented to the seas of the Lower Carboniferous period reck arrangements to a large extent corresponding with those norf existing. Hence we have the carboniferous rocks directly un Archæean, Cambrian and Silurian systems, just as the marin accumulations of shingle, sand, clay, dead shells, and their debis now rest, or are in process of formation. We should take this int account, as explanatory of rock arrangements which are realily by some referred to fault occurrence. Faults there are of coure and enough of them, without an unnecessary multiplying of thei number.

The conditions of the Carboniferous Perion were greatly wifi ferent from those of the Periods preceding, the character of lif differed in accordance. The preceding were invertebrate, nor it is vertebrate, Cephalopoda are rare, reptiles appear, fishes becur associated with such as do occur, to regulate the number of th mollusca that now begin to exist, increase and multiply.

The Cochliodus of Springville is akin to the Port Jachy Shark, which is also a cochliodont. The Cochliodus is palaz forming a mouth pavement adapted to the grinding of molluseal
or molluscan

The last fau The localites

1. I
2. L
3. C

At 1 and 2
of Diplodus. one lanceolate
el. The root I
belong to fishe:
The localities
north sides of
same time from
its owner a H_{0}
The teeth of ation as in the
Mackay mine
fully striated
ford, seeing the
of 1862 , remark and British fau that the N. S: t
refer to anothes
N.S. had just i
limestones of K
for ilentification
stlie (Phillipsia
er recognized tw what they were ellerophon dectus. Fishes of so early n of Bellerophen

As far as Nova when we conside : during the laps operations. Thu had its form well shed. Its coat rous period rok with those nur rocks directly on st as the marine s, and their dethi ould take this int which are readily here are of course ultiplying of thein
were greatly dif. e character of lif invertebrate, non pear, fishes becaur the number of the multiply. the Port Jachev chliodus is palataz ding of molluscol?
or molluscan shells. The Cochliodus of East River does not seem o have been a large species; the teeth are not over a half of an inch in size. Our Cochliodus seems to have been an approximate cotemporary of the Gyrecanthus mugnificus of Cape Breton. A formilable and predaceous race of fishes, that pervaded the Nova scotia seas of the Lower Carboniferous Period. Whence they came we are unable to discover. The Ichthyodorulite of Cape Breton in the Provincial Museum is regarded as unique; its length is about 22 inches, it is stout in proportion.

Middle Carboniferols.

The last fauna is found in the coal formation polygon.
The localites are:

1. Turnbull's mine, McLellan's Brook.
2. Deacon McKenzie mine, New Glasgow.
3. Crown Pottery mine, New Clasgow.

At 1 and 2 I found, a number of years ago, a number of teeth of Diplodus. They are so-called from their form which is double, one lanceolate is upright the other is recurved, both are crenulatcl. The root has a heart-shaped prominence on its front. They belong to fishes of the shark family (Hybodont).
The localities where I found them are situate on the south and north sides of the area; from No. 3 mine I received about the same time from a miner the cast of a tooth of large size, with its owner a Holoptychius.
The teeth of Diplodus are of various sizes, showing a graduation as in the mouth of the shark. Associated with these, at Mackay mine were large and small ganoid scales and beautifully striated spines. The late Professor John Phillip of Oxford, seeing these specimens in my London Exhibition collection of 1862 , remarked upon the coincidence between the Nova Scotian and British faunas in both having diplodus. He also observed that the N. S. teeth were much larger than the British. I would refer to another coincidence ; the late Professor How of Windsor, X. S. hat just discovered a trilobite in the Lower Carboniferous linestones of Kennetcook, N. S. and forwarded me a specimen for ilentification. I showed it to Professor Phillips as his nameFolhe (Phillipsia Howi ; Billings). He also remarked upon the
coincidence of the N. S. Carboniferous faunas with that of the mountain limestone of G. B.

We have thus examined the marine fuunc of the formations of Pictou County, and found an interesting and beautiful succession of life, with only one serious break, from, the Mayhill Sandstone, Intermediate Silurian-of Salter, to the Middle CarbonifcrousCoal measures, i. e.

Beginning with Uprer Arisaig A. Mayhill Sandstone, or the possible equivalent of the Medina Sandstone, U. S., we have pro. ceeded upwards through B Arisaig, where equivalence (British or American) is doubtful ; then B' Arisaig (which is considered by Hall as of Clinton Age, U. S.) next we have passed through the C. Arisaig Aymestry Limestone, (according to Salter) Upper Silurian ; then the Upper Ludlow (Salter) or the Lower Helder. berg and "Upper Arisaig" of Acadian Geology. We have bridged the Devonian Gap succeeding, and passed through the Lower Carboniferous into the Middle.

AT a meetin was directed to to the Provinci Dr. J. B. Gil Institute.
He agreed w of pottery of a The first sp Museum was is acter and const The bottom is ε the basis on v is a sort of clay The interior is 1 smooth. There one exceptionstones are qua generally confor structure is unif mens of ancien Desbrisay in Lu Pictou County, : appearance of g_{1}
Mr. J. T. Buln al Library, on a States, after a se: in the Museum (These are believe
Our large find only considered
ith that of the
he formations of atiful succession cyhill Sandstone, Carboniferous-
andstone, or the S., we have pro. llence (British or is considered by ssed through the , Salter) Upper e Lower Helder. ogy. We have ised through the

APPENDIX.

Nova Scotian Archeology.

Ancient Pottery.

AT a meeting of the Institute December 8th, 1879, attention was directed to specimens of supposed ancient pottery, belonging to the Provincial Museum.
Dr. J. B. Gilpin at my request brought the subject before the Institute.
He agreed with me in regarding the specimens referred to as of pottery of a rude and very ancient character.
The first specimen of our collection, when brought to the Nuseum was in fragments. When restored, its singular character and construction rendered it interesting and perplexing, The bottom is a piece of quartzite, flat and subcircular. This is the basis on which the rest is formed. The other material is a sort of clay. The whole is symmetrical and saucer-shaped, The interior is banded concentric. The outside is plain but not smooth. There are now 27 specimens in the Museum, all with one exception--a small one--have stone bottoms. The stones are quartzites and argillites. Their several shapes generally conform to the stones selected for the bases. Their tructure is uniform. They are altogether different from specimens of ancient pottery which have been found by Judge Desbrisay in Lunenburg County, and the Rev. Dr. Patterson in Pictou County, associated with stone implements, and have every appearance of greater antiquity.
Mr. J. T. Buliner, the Librarian of the Legislative and Historical Library, on a recent visit to the Public Museums of the United States, after a search for corresponding pottery; found 3 specimens in the Museum of the Smithsonian Institution at Washington. These are believed to be productions of the Esquimaux.
Our large find in Nova Scotia, of which our 27 specimens is only considered to be a representation, thus tends strongly to
confirm the opinion of archrologists, such as Mr. Robert Morrow who has long maintained that the Esquimaux inhabited Nova Scotia in the 10th or 11th century.

D. HONEYMAN,
Curator of the Provincial Museum.

Halifax, Oct. 14, 1880.
Bridgewater, Decr. 6, 1879.
Dear Sir,
I received by to-night's mail your card asking for a few notes on the finding of pottery, of which I sent you specimens.

In July 1877, I heard that Indians had found pieces of pottery by the "La Have," not far from this Village, where people of their race had an encampment in early times. I went to the place with one Venall, who told me that having found an arrow heal near the surface, he, and other Indians had removed the ground and discovered pottery. We searched and found arrow heads and pottery, nearly all at a depth of two feet and more. One of the pieces I retained, has a round foot, as if originally part of the bottom of a pan or vessel. Another has a round hole, through which a string may have passed for carrying or hanging up the vessel. The pieces are of varying thickness, and differ in the making or designs. In some the latter appear as if made with a finger nail, in others with a stick. The marks on the upper edge, or what was the top of the vessel, are in some as if male with a round-edged stick, while others have marks like tally notches and close together.
M. D. DesBrisay.

Rev. Dr. Honeyman.

Appendix to notes on the Bones of S. Salar.

Plate 1.-Skeleton of Salmon from Labrador, showing side. Length of Fish $35 \frac{1}{2}$ inches from end of snout, when the jans were closed, to the centre of the caudal fin. The shoulder ginlly and pectoral fin, together with the ventral fin, saddle bone, ani

Robert Morrow, nhabited Nova

NEYMAN
incial Musenm.

Decr. 6, 1879.
king for a few ou specimens. pieces of pottery vhere people of vent to the place an arrow heal ,ved the ground nd arrow heads d more. One of iginally part of ind hole, through hanging up the nd differ in the s if made with a ks on the upper ;ome as if male marks like tally

DesBrisay.
S. Salar.
lor, showing let ut, when the jans he shoulder girll saddle bone, an
pait of the 9th, 10th and 11th dorsal short caudal fin-rays removed.
Plute 2.-Skeleton of young S. Salar, left side, hatched at the Breeding Establishment, Bedford, near Halifax. Length of fish from end of snout to the centre of the caudal fin 21_{16}^{16} inches. Right shoulder-girdle and pectoral fin remaining, ventral fins removed. A marked fish, part of the three first dorsal fin-rays laving been cut off. Muscular fibres of the anterior attachment of the anal fin to the general structure remaining.
Plate 3, page 162.-Interspinons lones. The thid interspinous bone was broken off in handling, and, unfortumately, lost.
Plute 4 , pages $1(62,163,172$ to 174 - Dorsal fin and interspinous fin-bones.
Plute 5 , pages 166 to 168,176 to 178 . - Anal fin and interspinous fin-hones.
Plute 6, pages 163, 164, 169 to 171, 174 to 176.—Showing caudal fin, saddle bone, hypural bones, bone with cup-shaped dorsal extremity. The saddle bone is removed to show the three (Ifint this to be the number in another fish from Labrador) representative rays, and is shown in this plate above the place it oceupies in the fish.
Plute 7, pages 179 to 1833.-Left side, upper, or dorsal aspect.
Fig. 1.-Pelvic bone, with part of right pelvic bone.
Fig. 2.-Ventral Fin.
Fig. .j.-Ventral appendage, with ligaments to left.
Fig. 4.-Ventral fins from young Salmon,--lower or ventral apect.
Fig. 3.-Ventral fins Codfish-upper or dorsal aspect.
Plute 8, pages 183 to 187.-Left shoukler girdle, onter side.
Fig. 1.-Supra-clavicle.
Fig. 2.-Inter-clavicle.
Fig 3.-Clavicle.
Fig. 4.-Pectoral fin.
Fig 5.-Urohyal bone. In the plate this lone is rather close the clavicle, owing to the shrinking of the integument.
Plute 9, pages 183 to 187 .-Left shoulder girdle, inner side, numbered as plate 8.

Plate 10, pages, 183, 184.
Fig. 1.-Bones from Colfish, (outer side) corresponding to figures 1 and 2 , plates 8 and 9 .

Fig. 2.-Remainder of shoulder girdle, Codfish-outer sidelower part of accessory bone, page 185, showing to the left of ".2.

Fig. 3.-Codfish—Pectoral fin.
Fig. 4.-From a Salmon, left side-same fish as plate 11.
a. Shows where spinal chopd (myelon) divides.
b. The notochord where it passes out between the Y shapel bones.
c. Branch of spinal chord (myelon) lying upon the notochorit
d. End of the notochord.
e. Bone,-one of a pair between which the notochor! passes and by which it is protected-the anterior end supported on a pin, the posterior end is attachel by fascia to the notochord This pair of bones are of curved, irregular shape.

Below ϵ is the short, irregularly shaped bone (also one of a pair) mentioned on page 164 , the posterior end (right hand in plate) is attachel by fascia to the anterior end of e; when these bones are in their proper position, they protect each side of the notochord, nearly to its extremity.
f. The nervous corpuscle.
In the centre of fis. 4, the pulsating ? sack is shown; the outer surface being turned upwards, and marked by a wire loop.

Plate 11.-Shows the right side of the caudal fin of a Salmon. The dorsal spinons rays are removed to show the spinal chorl (myelon). One hyparal boae, an l part of the central candal rays rem oved to expose the nervous corpuscle and part of cartiaginous rim (page 169). One long and two short fin-rays lail transversely, to show notochord.- See end of this Appendix.

Plate 12, page 179 to 183.-Left sile.
Fig. 1.-Left pelvic bone, with part of right; lower or ventral aspect.

Fig. 2.-Left ventral fia, ventral appendage and ligaments.
Fig. 3.-Ventral fini, C llish; lower or ventral aspect.
Fig. 4.-Veatral fins from young Salmon-apper or dorsal aspect.

Fig. 5.--L Right of $\overline{5}$ is
Fig. 6.-Le
Right of 6 is from same fis
In order to
The spinal centra, covere ventral extrer end of the ver which are incl upper or small the notochord, minutely divic or posterior do I have not att The notocho centrum (page lying upon the stends follow uperior edge, ays (in this sp a distance of exactly half an in plate 11 it is issues from the specimen is nea ,ize until near i has a somewha atructure or ra the fish form th
The wire loo column, plate 11 receives filament chord.
On the left sic rifices of the pu
plate 11.
the Y shapel
the notochoris.
ochor? passes upported on a he notochord
(also one of a (right hand in \therefore; when these tch side of the
s shown; the y a wire loop. n of a Salmon. e spinal chord entral candal part of cartit fin-rays lail Lppendir.
wer or ventral
ligaments. aspect. per or dorsal

Fig. 5.-Left of 5 is the small or superior Y shaped bone. Right of 5 is the larger or inferior Y shaped bone.
Fig. 6.-Left of 6 is the short bone (one of a pair) page 164. Right of 6 is the bone e, plate 10, page 175.-[Figs. 5 and 6 are from same fish as plate 11.]
In order to make plate 11 more clear, I have to add:
The spinal chord (myelon) passes upon the dorsal aspect of the centra, covered by a very strong sheath, which lies between the ventral extremities of the dorsal spinous rays antil it reaches the end of the vertebrae, it there divides into two principal filaments which are inclosed in a wire at the anterior extremity on the upper or small Y shaped bone. One of these filaments lies upon the notochord, following it to its extremity, where it becomes minutely divided and lost in the general structure. The second or posterior dorsal wire, incloses the notochordal branch ; the other I have not attempted to follow.
The notochord passes from the posterior edge of the spongy centrum (page 170) between the forks of two Y shaped bones, lying upon the upper edge of the superior and shorter one, and extends following the curve of the dorsal long fin ray at its superior edge, being overlapped by the longest of the short fin ays (in this specimen 2 inches in length) next to the long fin ray, a distance of 1_{10}^{1} inches. The centre of the notochord being exactly half an inch from the dorsal edge of the caudal fin, where in plate 11 it is markel by a wire. The notochord where it issues from the forks of the superior Y shaped bone, in this specimen is nearly $\frac{1}{8}$ of an inch in diameter, decreasing a little in ,ize until near its extremity, where it is slightly enlarged and has a somewhat blunt rounded termination; it is jointed in structure or rather shows the divisions which in the body of the fish form the centra.
The wire loop nearly in a line with the centre of the spinal column, plate 11, incloses the nervous corpuscle (page 170,) which receives filaments from a ganglion by a branch from the spinal chord.
On the left side of the tail, plate 10 , figure 4 , is shown the mifices of the pulsating? sack (page 170); the outer part of the
sack being turned up and marked by a wire. This sack is supplied by the vessel which passes through the orifices of the cup shaped bone mentioned on page 169 .

Figure 4, plate 10, plate 11 as well as figures 5 and 6 plate 12 are taken from one fish, but not the fish from which my notes have been made and represented in the other plates. Between the bones protecting the notochord in these specimens, I find the following difference: in those of plate 1 the anterior bone (page 164) did not touch the posterior bone (page 175) but was separate some distance from it, the space between them being occupied by fascia; and the posterior bone was much shorter in proportion and much more strongly curved than that of the fish represented in plate 11 .

The Artotypes illustrating this paper, are the work of Mr. W. D. O'Domell, to whom the writer is much indebted for the care which he has bestowed upon them.

Dr. Sommers presented a specimen of Trillium sessile, collectel by Miss Godfrey, of Clementsport, Digby County; he believed it was the first recorded instance of finding of the species in our Province. Trillium cerectum, T. erythrocarpum grows abundantly in many localities. T. cernuum not so frequent, and now Miss Godfrey has the honor of adding a fourth to the species of Trilliun growing with us.
nis sack is sup. fices of the cup
and 6 , plate 12 vhich my notes lates. Between mens, I find the rior bone (page but was separate eing occupied by ar in proportion fish represented
'Donnell, to whom the

1 sessile, collected y; he believed it e species in our rows abundantly it, and now Niss o the species of

momer

$$
-x_{2} r \operatorname{cic}^{2}=
$$

$$
\cdot
$$

$$
\infty
$$

\qquad

$$
N^{2}
$$

1

$$
9
$$

dova sit

John Somers, J
The Secretary opold McClint
A letter was rea anked the Institı miversary meeting
The following w
President-John
Iïc-Presidents-
Treasurer-W. C Secreturies--Prof
Council-J. B. B. Gi
L. S., Augustu
lnephy, C. E.

Ordina

It was intimated the Council
The President 11
Dr. Honeyman t
unties." The pap
recmens.

Ordina:
RobI
The President, I
sillustrated by a

PROCEEDINGS

OF THE

2lova siotian

VOL. V. PART 3.

Dalhousie College, Oct. 13, 1880.
Anniversary Meeting.
John Somers, M. D., Vice-President, in the chair.
The Secretary reported that the Council had elected Vice-Admiral Sir :opold McClintock, Knt., F. R. S., \& 3., a Corresponding Member.
A letter was read by the President, Wm. Gosstp, F. R. M. S., in which he banked the Institute for electing him to the office of President at the last niversary meeting, and expressing a desire to retire from that office.
The following were then elected Officers:-
President-John Somers, M. D., F. R. M. S.
Tïce-Presidents-Robt. Morrow, George Lawson, Ph. D., LL. D., F. I. C.
Treasurer-W. C. Silver.
Secreturies--Prof. D. Honeyman, D. C. L., F. S. A., and J. T. Mellish, A. M.
Council-J. B. Gilpin, M. D., Wm. Gossip, Hon. L. G. Power, J. M. Jones, l. S., Augustus Allison, W. Sawers Stirling, Alex. McKay, M. lurphy, C. E.

Ordinary Meeting, Dalhousie College, Nov. 8, 1880. The President in the Chair.
It was intimated that Lieut.-Col. Price Lewis had been elected a Member, the Council.
The President made appropriate observations on the work of the Institute.
Dr. Honeyman then read a paper " On the Geology of Digby and Yarmouth ounties." The paper was illustrated by a large map and a collection of vecimens.

Ordinary Meeting, Dalhousie College, Dec. 10, 1880.
Robt. Morrow, Vice-President, in the Chair.
The President, Dr. Somers, read a paper "On Fungi of Nova Scotia." It sillustrated by a large collection of dried Fungi.

Ordinary Meeting, Dalhousie College, Jan. 17, 1881.
The President in the Chair.
" Notes on the occurrence of Lievrite in Nova Scotia "were read by E. Gith, pin, M. E., F. G.S.

Dr. J. B. Gilpin read a paper "On the Rapacious Birds of Nova Scotia."

Ordinary Mefting, Dalhousie College, Feb. 14, 1881. Robt. Mornow, Vice-President, in the Chair.
1)r. Somers, the President, gave the substance of a paper "On Nora Scotian Mosses." The paper was illustrated by a large number of specimens from different parts of the Province, and microscopic preparations.

Dr. Gilpin made observations upon three fishes from the Prorincia Museum, which were considered to be new to Nova Scotia.

Ordinary Mefting, Dalhousie College, March 14, 1881.
The President in the Chair.
It was announced that Sinon Macdonald had been duly elected a Member by the Council.

Also that Thomas G. Strarns, of Nictaux, had been elected an associate member.

Dr. Honeyman then read a paper "On the Geological Formations of the Cobequid Mountains."

The paper was illustrated by specimens and "A Geological Progress Map which had been exhibited by the author at the Centennial Exhibition of Pliih delphia, 1876. The map contains additional observations by the author,als reductions of the maps of the Geological Survey of Canada.

Ordinary Mfeting, Dalhousie College, April 11, 1881. The President in the Chair.

Dr. Gilpin read a paper "On the Dwellings of the Beaver and Muskrat." Tu paper was illustrated by sketches from nature by the author.

Ordinary Meeting, Dalhousie College, May 9, 1881. The President in the Chair.

A paper "On the Ice Storm of Jan. 24, 1881," by H. S. Poole, F. G. S., m - read by Augustus Allison.

A paper "On the Lichens of Nora Scotia," by A. I. Mackay, B. A., B. S was read by the President.

Notes "On the Geology of Point Pleasant," by A. G. Cameron, and
Notes "On the Geology of Bedford, Sackville and Hammond's Plains," Alfred Hare, were read by Dr. Honeyman.

These two papers were illustrated by maps.
were read by E. Git
; of Nova Scotia."

14, 1881.
hair.
f a paper "On Yora ber of specimens from ons.
from the Prorincial
h $14,1881$.
uly elected a Member
on elected an associate
cal Formations of the
ogical Progress May 1 Exhibition of Plite ns by the author, als a.
il 11, 1881.
ver and Muskrat." T. hor.
ay 9,1881 .
S. Poole, F. G. S., mi

Mackay, B. A., B. So
Cameros, and fammond's Plains,"

LIST OF MEMBERS:

Date of Admission:
1873. Jan. 11. Akin, T. B., D.C.L., Halifax.
69. Feb. 15. Allison, Augustus, Meteorologist, Halifax.
77. Dec. 10. Bayne, Herbert E., Ph. D., Professor of Chemistry, Royal Mili. tary College, Kingston.
64. April 3. Bell, Joseph, High Sheriff, Halifax.
64. Nov. 7. Brown, C. E., Halifax
78. Nov. 11. Cockburn, Colonel, R. A.
67. Sept. 10. Cogswell, A. C., D.D.S., He,iifax.
2. April 12. Costley, John, Deputy Prov. Secretary, Halifax.

6i3. May 13. Cramp, Rev. Dr., Wolfville.
75. Jan. 11. Dewar, Andrew, Arehitect, Halifax.
63. Oct. 26. DeWolfe, James R., M.D., L.R.C.S.E.
63. Dec. 7. Downs, Andrew, Cor. Memb. Z. S., London, Halifax.
73. April11. Gilpin, Edwin, F.G.S., Govt. Inspector of Mines, Halifax.
60. Jan. 5. Gilpin, J. Bernard, M.D., M.R.C.S.L., Halifax.
63. Feb. 5. Gossip, William, Halifax.
63. June 17. Hill, Hon. P. C., Barrister-at-Law, Halifax.
56. Dec. 3. Honeyman, Rev. David, D.C.L., F.S.A., \&c., Secretary, Curator of Provincial Museum, and Professor of Geology and Palæontology, Dalhousie College, Halifax.
7t. Dec. 10. Jack, Peter, Cashier of People's Bank, Halifax.
79. Jan. 11. James, Alex., Judge of Supreme Court, Halifax.
63. Jan. 5. Jones, J. M., F.L.S., Halifax.

6t. Mar. 7. Lawson, George, Ph. D., LL.D., F.C.I., Vice-President, Professor of Chemistry and Mineralogy, Dalhousie College.
81. Mar. 14. Macdonald, Simon, Halifax.
75. Jan. 11. Mellish, John T., M.A., Secretary, Halifax.
72. Feb. 5. McKay, Alexander, High School, Halifax.
77. Jan. 13. Morrow, Geoffrey, Halifax.
72. Feb. 13. Morrow, Robert, Vice-President, Halifax.
70. Jan. 10. Murphy, Martin, C. E., Provincial Engineer, Halifax.
65. Aug. 29. Nova Scotia, the Rt. Rev. Hibbert Binney, Lord Bishop or
79. Nov. 11. Poole, H. S., Assoc. R. S. M., F. G. S., Superintondent of Acadie Mines, Pictou.
76. Jan. 20. Power, Hon. L. G., Senator.
71. Nov. 19. Reid, A. P., M.D., Sup't. of Prov, Lunatic As'ylum, Darmouth
!..) Jan. 8. Rutherford, Jas., M,E., Halifax

Date of Admission:
64. May 7. Silver, W. C., Treasurer, Halifax.
75. Jan. 11. Somers, John, M.D., F.R.M.S., President, Prof. of Physiology and Zoology in the Medical College of Halifax.
74. Apl. 11. W. S. Stirling, Cashier Union Bank, Halifax.
79. Feb. 10. Twining, Chas. F., C. E., Halifax.
66. Mar. 18. Young, Hon. Sir William, Knt., late Chief Justice of Nova Scotia.
77. Jan. 13. MacGregor, J. G., A.M., D. Sc., F.R.S.E., Prof. of Physics, Dalhousie College, Halifax.

ASSOCIATE MEMBERS.

63. Oct. 6. Ambrose, Rev. John, M.A., Digby.
64. May 14. Burwash, Rev. J., A.M., Professor of Chemistry, Wesleyan College, Sackville, New Brunswick.
65. Feb. 11. Louis, Henry, Assoc. R.S.M., London.
66. Jan. 11. McKay, A. H., B.A., B. Sc., Principal of Pictou Academy.
67. Dec. 8. Morton, Rev. John, Missionary of the Presbyterian Church of Canada, Trinidad.
68. Mar. 13. Patterson, Rev. George, D.D., New Glasgow.
69. Mar. 14. Stearns, T. G. (of New York), Middleton, N. S.

So. May 10. Walker, Jas., M.D., St. John, N. B.

CORRESPONDING MEMBERS.

71. Nov. 29. Ball, Rev. E., Maccan.
72. Nov. 25. Bethune, Rev. J. S., Ontario,
73. Dec. 11. DeWolf, Dr., Tintern, England.
74. Oct. 17. Harvey, Rev. Moses, St. John's, Newfoundland.
75. Oct. 11. Marcou, Jules, Cambridge, Mass.
76. June 10. McClintock, Sir Leopold, Knt., F.R.S., \&c., Vice-Admiral.
77. May 14. Weston, Thomas C., Geological Survey of Canada.

LIFE MEMBER.

Hon. Dr. Parker, M.L.C., Nova Scotia.
of. of Physiology lifax.

Justice of Nova
. of Physics, Dal-
try, Wesleyan Cul-
ju Academy. yterian Church of
3.

Id. ce-Admiral. aada.

TRANSACTIONS

OF THE

Allowa sixotian Institute of ghatural §ritucc.

Art. I. - Nova Scotian Geology. - Digby and Yarmouth Counties.-Rev. D. Honeyman, D. C. L., F. S. A., de., Curator of the Provincial Museum and Professor of Geology and Palcontology in Dalhousic College and University.
(Read Nov. 8, 1880.)

Introduction.

As the investigation of the Geology of the Counties of Digby and Yarmouth is an extension of the work already done in the Counties of King's and Annapolis, I deemed it advisable, as I found it convenient, to take a second look at the fossiliferous rocks lying between Moose River and Bear River.

Iron Mine.

The Rev. Mr. Godfrey and I revisited the Iron Mine of Moose River, sometimes called the New Iron Mine. The ore here is Wagnetyte. Its fossils, especially the gigantic trilobite Asaphus ditmarsice, and those of the associate strata are considered to be unquestionable evidence of Pre-Devonian and Pre-Upper Silurian and therefore Middle Silurian age. Vide Transactions, 1878-9-80. Here, as formerly, I collected fossils, e. g., additional specimens of the Cyathophylloid coral. Petraia sp? South of these mines and of the Hessian Line (road) fossiliferous quartzites were previously observed, apparently lying next to the Archæan Granites. These are considered to be an extension of fossiliferous
rocks at Bear River, on the north side of the bridge. The latter are seen to be synclinal to the extension of the iron mine strats at Bear River. Trans. 1879-80.

Greenland.

South of the "Old Mine" (Milner's) the Greenland road branches off the Hessian Line road. Traversing the former we descend and then ascend a ridge having outcropping strata, Here there is abundance of fossils, but the metamorphism and extreme hardness of the rock interfered materially with the collecting of fossils, so that no remarkable forms were secured. These are undoubtedly passage rocks of the Bear River and Moose River sections, already referred to. Crossing the strata of the ridge, we reached Greenland. This Greenland is a settlement evidently overlying granites. The analogy of the Moose River section, the soil and the abounding granite boulders scattered on the fields and on the surface of the ground as far as the eye can reach, are sufficiently convincing. Proceeding westward through the settlement toward Bear River, nothing was observed but granite masses. Turning northward we crossed 1st fossiliferons strata, the extension of Rice Mill strata, Bear River W, or of the Moose River quartzite E, and of Greenland road crossed on the way to Greenland. 2nd, A great and interesting exposure of strata which I noticed in my paper of last session as occurring on both sides of Bear River (Annapolis and Digby). These and the first met on this road are synclinal to the continuation of the New Mines' strata already noticed. The second or upper outcrop produced specimens of Petraia $s p$, similar to that of the New Mines. These, therefore, may be regarded as of the same age as the Asaphus ditmarsice strata (middle silurian). The latter succeeds the Archæan granites.

Bear River.

Proceeding up the river (south) on the Annapolis side, we recrossed the fossiliferous strata, already crossed and recrossed, until we came in front of Rice's Mill. Crossing the bridge over to the Digby side of the river, I re-examined the massive quartzose rocks at Rice's Mill but did not succeed in securing any well
marked fossils bing otherw their strike E lave, on the D found is at a polis side of t The next or sundine. He the Yew Mine larly noticed i the same side olserve any ro the great quar is succeeded b! of the same ag The quartzite might claim tl Godfiryi and several outcrop on the opposit the same age! other outcrops sile, and then I examined Digby side of rocks to be qua width. I cons: referred to, of rocks of Devor distance of the was observed a brilge near Dis

The first apt near the Jorda:
je. The latter on mine strata reenland road the former we :opping strata, morphism and ially with the s were secured. ear River and ag the strata of is a settlement e Moose River ors scattered on as the eye can stward through ; observed but tst fossiliferons er W, or of the crossed on the ng exposure of as occurring on These and the inuation of the d or upper outto that of the as of the same silurian). The
marked fossils from them. The rocks are only exposed in a section, bing otherwise covered with soil. Their dip is nearly vertical ; their strike E. and W. Between Rice's Mill and Bear River village, on the Digby side of the river, the only exposure of strata found is at a ship yard. These, like the strata on the Annapolis side of the river, are of Middle Silurian age.
The next outcrop is on the north side of the village, and of the wndine. Here we have the western extension of the strata of the Yew Mines, with an intrusive diorite. These were particulatly noticed in my Paper of last session.-Trans. Keeping to the same side of the river and proceeding northward, I did not olserve any rock exposures until we came to the hill opposite the great quartzite on the other side of the river. This quartzite is succeeded by slates having fossils, which were considered to be of the same age as Asaplus ditmursice-loc. cit. (middle silurian). The quartzite is not distinguishable from Bogart's quartzite, and might claim the specimen which has the fossils-Aithrosturros Godfiryi and Maclurea sp. The strata on the hill exposed by sereral outcrops, may be considered to be a continuation of those on the opposite side just referred to, and, consequently, to be of the same age (Lower Silurian). Still farther on we meet with other outcrops of strata, corresponding with those on the other sile, and then come to the Victoria Bridge, Digby road.
Iexamined the fine section of rocks below the bridge, on the Digloy side of the river and towards its mouth. I found the rocks to be quartzites of enormous thickness and diorite of great width. I consider the quartzite to be, like the quartzite already referred to, of Lower Silurian age, and the diorites as intrusive rocks of Devonian age. We found the diorite outcropping to a distance of three miles, towards Digby. Another set of strata was observed at our turning point. These also appear at the brilge near Digby. They lie on the north of the Diorite.

Digby and Yarmouth Rallway.

Jordan Station.

The first appearance of Silurian rocks on the railway occurs near the Jordan station-black shales appear in a small cutting.

North Range Station.

Abundance of quartzite and diorite masses were obsecred on the sides of the railway. These led me to infer that the quartzites and diorites of Victoria Bridge extend thus far and pass onward.

Weymouth.

About a mile short of the station a cutting of rocks aprears. They seem to be quartzites of which there are considerable ex. posures to the left, which I subsequently examined. Thus far the examination was rather cursory. It was evident that the rock, are an extension of the Moose and Bear River formations. The course of the railway being to a large extent in the generalstrike of the rocks, only a comparatively small width of the seriss was crossed, consequently little variety occurred.

From Weymouth onward to Yarmouth I had an exvellent opportunity of making a satisfactory examination of any ex. posures that occur on or near the line of railway. Through the kindness of Mr. Murphy, Government Engineer, and Mr. Murphy, contractor, I made an examination by trawley.

Between Weymouth and Church Point we passed through three cuttings of slates and quartzites on three several grads.

Meteghan Station.

Here and about a mile beyond are cattings of slates still belonging to the series which I regard as Middle and Lower Silurian. Succeeding are three and a half miles of obscurity then we came to a fine cutting, having the rocks bold on eithel side of the road. This is the familiar quartzite of our Halifax metamorphic rocks. Its associate on the north side is a fine micaceous argillite. The obscure interval occurring between this and the Meteghan slates is disappointing. I had anticipated a more satisfactory state of things in my railway examination. Believing that the granites did not extend thus far westward, I had expected that the railway would reveal some approach to a junction of the two grand series of metamorphic stratified rodks with manifest conformability or unconformability.

I shall revert to this subject.

Proceedini Yarmouth) observing an showed that schists. Mas rocks. They masses of qu considerable served and hornblendic.

On the da station, for th the formation section on the by the $3 \frac{1}{2} \mathrm{mil}$ Meteghan I cı posures of the ticularly invit Point on the sl desired. On t Here the rock outer and an resisting than cove are forme by the sea, anc over two hund I searched in They are high veins. These 1 Cape St. Mary's character simil were also freque not follow the 1 miles. I took a road to Cape Cc
The first rock

Proceeding onwards we crossed the county line (Digby and
s were observed o infer that the nd thus far and
of rocks aprears. considerable exed. Thus far the it that the rock, formations. The the generalstrike of the seriss was
ad an exsellent ation of any exy. Through the and Mr. Murphy,
passed through ;everal grads.

3 ss of slates still ddle and Laver les of obscurity ks bold on either ite of our Halinorth side is a scurring between I had anticipated vay examination. far westward, I ne approach to a © stratified rocks y.

Yarmouth) coming to Salmon River and Lake Annis, without observing anything remarkable. Near Four Mile Lake a cutting showed that we had passed from quartzites into coarse mica schists. Masses show the micaceous character of the underlying rocks. They also show garnets and staurolites. After this masses of quartz were observed indicating a vein or veins of considerable thickness. At Ohio and Hebron rocks were observed and specimens secured. The rocks are more or less hornblendic. This is their character onward to Yarmouth.

Meteghan.

On the day following I returned by railway to Meteghan station, for the purpose of investigating the transition between the formations already noticed, supposing that there might be a section on the shore which might aid in filling up the gap made by the $3 \frac{1}{2}$ miles of obscurity already referred to. Proceeding to Neteghan I crossed a branch of Meteghan River, where bold exposures of the station strata were observed in a position not particularly inviting. Their extension was found near Meteghan Point on the shore, exposed in a manner that left nothing to be desired. On the south side of this point is a cove, Turk's Cove. Here the rocks are seen in great magnificence. There is an outer and an inner band. The one is much harder and more resisting than the other. Of the former the two points of the cove are formed. The north side of the cove has been penetrated by the sea, and a cave has been formed which is said to extend orer two hundred feet. This is constantly occupied by the sea. I searched in both bands of rocks for fossils without success. They are highly metamorphic and contain numerous quartz reins. These bands continue exposed along the shore toward Cape St. Mary's, making a rugged coast with numerous coves of character similar to that already described. The same strata were also frequently observed, exposed on the road side. I did not follow the rock exposures on the shore beyond two or three miles. I took a short cut to Cape St. Mary's by following the road to Cape Cove.
The first rock met with of decided character, on the Railway,
after leaving the diorites of North Range, was the grey quartzite which followed the obscurity, on which I am now endeavouring to throw some light. Beyond adding a certain quota to the filling up of the gap of rocks, of a like undecided character, the Meteghan section did little additional service. The lithological character of the rocks is so different from that of Moose and Bear River rocks, that the two, when viewed separate, might be regarded as belonging to different series and different periods.

My observations at Moose and Bear Rivers led me to forecast the occurrence of rocks of corresponding age as far south as Cape Cove, on the coast of St. Mary's Bay, and to regard this as their probable termination. My hypothetical line, extending S. 40 W . from the end of Moose River section through the corresponding point on Greenland road, Bear River road and Rice's mill to Cape Cove, also indicated the probable southerly position on the Digby and Yarmouth Railway, in the obscurity beyond Meteghan station.

When coming near Cape Cove I was agreeably surprised to meet an old acquaintance, the familiar diorite of Nictaux, Moose and Bear River. This diorite outcropping boldly on the left side of the road, with a very hard quartzite in contact on its south side, is seen to extend in high elevation eastward (towand the line of railway,) about half a mile. Westward in Cape Core it is seen exposed, but not so compact as in the west, having a somewhat slaty aspect, yet coarsely crystalline. Here it is seen to occupy the normal position as at Nictaux, Moose River and Bear River. The quartzite observed on its south side at the roal does not appear at the cove. All the strata exposed are on its north side. There are slates and shales of varying colours, farn, grey and black. The strike of the strata is S. 70 W., N. 70 E, the dip is vertical. This is precisely as at Nictaux and Moose River where strata occur in contact, or approximately so, with diorite e. g., Bloomington Road, Nictaux.

The black slates at the extremity of the cove or Cape St. Mary's are elevated and very picturesque. On the shore belor the light house milky quartz is scattered profusely, contrasting with the black slaty debris. It is evident that the existence of
ape St. Mary fower of the d Last as it is in pats, swamps al fround become ontaining vein at distinguish wilky quartz ah their true chara Cape St. Mary's Hinal having th iler the Cape hack slates of J rith Deveu's bla © Dr. Selwyn 1 my the lowest fries of Moose wned to Yarmo love, with a vie he extension of tsappearance or

I have to ack laker and S. M Hich I was enal considerable ex ligby in a compa This was the Ir. Ryerson took teresting, they a This is the first our auriferous de Archean and fontains, McLel
e grey quartzite ,w endeavouring in quota to the d character, the The lithological t of Moose and parate, might be erent periods.
1 me to forecast ar south as Cape ard this as their jending S. 40 W . he corresponding d Rice's mill to y position on the reyond Meteghan
tbly surprised to f Nictaux, Moose Idly on the left n contact on its jastward (toward urd in Cape Core re west, having a Here it is seen to Loose River and 1 side at the road posed are on its ng colours, fawn, 70 W., N. 70 E, ctaux and Moose simately so, with sove or Cape St. the shore belor asely, contrasting the existence of

Cape St. Mary and Meteghan is dependent upon the resisting pwer of the diorite. It has been an effective breakwater in the Wast as it is in Cape Cove at the present. Beyond the cove are ats, swamps and meadows. About a mile from the cove the Hound becomes elevated, and black slates are seen outcropping gutaining veins of white quartz. As seen at Z. Deveu's they are not distinguishable from the black slate of Cape St. Mary with Willy quartz already referred to. At this time I was not aware of heir true character, I supposed that they corresponded with the Cape St. Mary's strata, considering that the two formed an antithal having the diorite for its centre. Dr. Selwyn seems to conWiler the Cape St. Mary's slates as corresponding in age with the Lhack slates of Jebogue Point. In regarding them as corresponding with Deveu's black slates, I was unwittingly and indirectly doing : Dr. Selwyn had done, while I was regarding both as occupywh the lowest position in the Middle and Lower Silurian (yies of Moose and Bear River. On the following day I rewned to Yarmouth expecting to resume investigations at Cape lore, with a view to the further filling up of the railway gap, be extension of the quartzite succeeding not yet having made ts appearance on the shore.

Yarmouth.

I have to acknowledge my obligations to the Hon. Loran E. Paker and S. M. Ryerson, Esq., for making arrangements by lich I was enabled to make a very satisfactory examination of considerable extent of the interesting rocks of Yarmouth and lighy in a comparatively short time.

Sunday Point.

This was the first place near Yarmouth that I examined. Ir. Ryerson took me there. The rocks at this point are very treresting, they are Porphyrite and Diorite.
This is the first time that I have seen porphyrites and diorites - aur auriferous formation. They have been frequently found in Archean and later formations, at Arisaig, the Cobequid bountains, McLellan's, Sutherland's River Mountains. Diorites
are also of frequent occurrence as noticed in this and preceding papers in our Middle and Lower Silurian. They are here per. vaded by quartz veins of varying thickness.

They have also abundance of mica in their constitution. In this they differ from porphyrites and diorites observed elsewhere. I have no doubt that these, like most others, are igneous rocks, and intrusive if not contemporaneous.

The rocks of Sunday Point have a strike N. E. and S. W. An exposure of these with their numerous veins of quartz N.E from Sunday Point is a reputed gold field.

We also examined outcrops of black quartzose rocks in the cemetery. These have the same strike, N. E. and S. W.

Cranberry Head.

Next day Mr. Ryerson took me to this point to see the gold mines. I examined outcrops of hornblendic rocks on the way Some of these have been already referred to as occurring at Hebron and Ohio, on the line of Railway, the extension of the rocks of the latter running in this direction.

Before reaching the mine we visited the quartz crushing mill which was undergoing repairs. Large quantities of quartz frou the mines were there ready for operations. The mines wer found to be interesting. The quartz containing the gold didno appear different from what I had seen elsewhere. The contain ing rock is decidedly different ; it is very soft magnesian (?) slate Arsenopyrite is very abundant in crystals. The quartz is singu larly free from this mineral, and the gold is rarely visible. received from the uperintendent of the mines four specimen showing gold very distinctly, associated with Calchopyritean Galenite.

Jebogue Point.

Mr. Ryerson next took me to this locality, where I found very interesting series of rocks, beautifully exposed. I observe

1st. The grey quartzites, compact and shaly with quart veins. These have a strike N. $30^{\circ} \mathrm{E} ., \mathrm{S} .30^{\circ} \mathrm{W}$., and a higg northerly dip.
rMAN.
this and preceding They are here per r constitution. In ibserved elsewhere are igneous rocks
E. and S. W. An is of quartz N.E izose rocks in the and S. W.
nt to see the gol. rocks on the war to as occurring a e extension of th artz crushing mil ies of quartz from

The mines wer ig the gold didno iere. The contain nagnesian (?) slata 'he quartz is sing ; rarely visible. nes four specimen । Calchopyrite an
where I found posed. I observe haly with quart 1° W., and a higy

2nd. A basaltic dyke compact and amygdalotdal. Of this Te have a vertical and a horizontal section. On either side of this drke the strata are tilted and much contorted. The dyke is parted in the middle. On the sides of this parting the rock is mygdaloidal. The amygdals are of quartz. The rock appears to be a dolerite. On either side between the dyke and the grata is a soft tuff. This crystalline rock is unquestionably of meous origin, and it is plainly intrusive. The rock has much he appearance of a North Mountain (triassic) trap. I have seen to rock like it elsewhere. Queries.-When did this eruption necur? It is evidently an occurrence posterior to the metamorphism of the associate strata. Was the eruption in prewildle or post-carboniferous time? Did it happen before the ormation of the Arthrostauros Godfreyi quartzites and the bsephus ditmarsice iron deposit? Did it occur after the metaמorphism of the latter by the dioritic eruptions, and prior to the prmation of the conglomerates and Chester limestones or other 4posits of lower carboniferous age, or after, when the auriferous fck and associate lower carboniferous conglomerates quartz and mestones were brought into their present position?
3rd. Grey argillites with quartz veins large and small.
4th. Black argillites, very pyritous with quartz veins, numerss and occasionally of great thickness.
A black substance like impure graphite occurs in the shaly yillites.
jth. A granitoid hornblendic rock with grey shaly argillite a either side.
Returning to Yarmouth we took a road that led us to the for House. Here I examined an imposing outcrop of white partz which had been operated upon by gold hunters. On ther side of the quartz, which is thirty feet thick, are black aly argillites. It is evidently a continuation of one of the rat veins which I have already referred to as occurring in the ack argillites of Jebogue Point.

Bear River.

The Hon. L. E. Baker took me to Bear River on the following
day. I expected to find this a region of peculiar interest Her we have the county line of Yarmouth and Digby and the junc tion of the formations which I am now investigating, accoriling to " Map of Acadian Geology," Ed. 1868.

Passing Cranberry Point I observed an inviting outcrop on the road at "John Cann's Farm," the strike was found to be N. 50 E S. 50 W . We then proceeded to "High Head" in search of rock section. Reaching the shore at J. Trask's I found a section extending from High Head to Trask's, a distance of about half mile. It consists of grey quartzites in ledges with alternatin, shales. The strike at Trask's is S. $69 \mathrm{~W} ., \mathrm{N} .69 \mathrm{E}$, dip $45^{\circ} \mathrm{s}$ 21 E . As far as I could see beyond this section to the north mi other outcrop appears.

On the shore at Bear River there is a magnificent exposure d strata. The rocks are quartzites and schists. The strike S. 69 W., N. 69 E. North side of the wharves and shipyard outcrop of micaceous quartzite was reached, and a specimend the rock secured just before it was covered by the tide.

I supposed, at the time, that this might be the lowest rock the series, as no outcrops of rocks were visible beyond.

Lake George.

In Yarmouth Mis. S. M. Ryerson showed me a quantity beautiful sand, which was supposed to be amethystine. One amination I found the sand to consist of myriads of small garnet a great proportion of which were perfect crystals-rhomb duodecahedrons. It was said to have come from Lake Geoory Being anxious to see the deposit and ascertain its origin I quested Mr. Baker to return by Lake George. Taking in account the facts that all the strata observed on and towardst shore had a N. E. and S. W. strike, and that the rocks outero ing on and near the line of railway are extensions of the rof on the shore, I concluded that the micaceous schists found ne Four Mile Lake on the line of railway holding quartz af staurotide, which seemed to belong to a band of consideral width, must be the bed rock of the lake and the source of garnet sand.

Coming to ing. I had and collected miea schist s of the sand found havin rock that I_{p} it the garnet shows the n other side i garnets.
We called formed, relat He had a nu amined with the shore wh of them are o
There can 1 chief rocks of lake is large the debris acc nets is greate garnets are se action of the Artificial s said to be bea Masses of b tered about th hardly distin peculiar chara are very hort micaceous-schi arranged in st
On our retu of the railway

I examined

YMAN.
liar interesh. Hera igby and the junce itigating, according
ting outcrop on the sund to be N. 50 E ad" in search of 's I found a section nce of about half es with alternating N. $69 \mathrm{E}, \operatorname{dip} 45^{\circ} \mathrm{s}$. ion to the north n?
nificent exposure sts. The strike es and shipyard and a specimea y the tide.
3 the lowest rock e beyond.
me a quantity nethystine. One ids of small garne crystals-rhomb from. Lake Geory in its origin I orge. Taking in on and towardst the rocks outern isions of the rod schists found n tolding quartz a and of consideral 1d the source of

Coming to Lake George I could not find any rocks outcroping. I had therefore to have recourse to stones scattered around and collected into heaps. Among these I found abundance of mica schist stones replete with garnets, generally small like those of the sand that I had seen. Sometimes, however, stones were found having common garnets of large size. One specimen of rock that I picked up is a most beautiful cabinet specimen. In it the garnets are pretty large; one side is light colored and shows the numerous garnets in relief to great advantage; the other side is dark micaceous schist with numerous rubbed garnets.
We called upon Mr. Winter, who is said to be the best informed, relating the place of occurrence of the sand in question. He had a number of barrels filled with the sand, which I examined with interest. According to his account the places on the shore where the sand occurs are increasing in number; none of them are of easy access so that we did not see them.
There can be no doubt that garnetiferous mica schists are the chief rocks of the lake, and that the sand is their debris. The lake is large and is frequently agitated by great storms, so that the debris accumulates rapidly. The specific gravity of the garnets is greater than that of the mica or quartz, and therefore the garnets are separated readily from the debris and sorted by the action of the water.
Artificial stone has been made with the garnet sand. It is said to be beautiful.
Masses of brownish crypto crystalline quartzite are found scattered about the lake. There are quartz veins in these which are hardly distinguished from the rock. Hornblendic rocks of a peculiar character are also represented by masses. Some of these are very hornblendic, hard and tough; others are horblendic-micaceous-schists, having the crystals of hornblende singularly arranged in stellar and plumose forms.
On our return to Yarmouth we passed over outcrops of rock of the railway and harbour.

Harbour.

I examined the rocks of the harbour, accompanied b

Cowan of Digby Neck. On the way to the light-house I observed outcrops of strata whose strike is in the direction of Cape Point.

Mr. Cowan informed me that these are exposed in a fine section at the point.

Not having an opportunity of examining the said section when with Mr. Cowan, I made a subsequent attempt with Mr: Johns, of the Yarmouth Bank, but did not succeed owing to rainy weather.

The rocks exposed on the road are hornblendic, being identical with the rock masses met with at Lake George. The light-house band which lies on the south of these is a singular schist. It is hornblendic and micaceous on the north side of the harbour; towards the light-house it becomes light green in colour and homogeneous in appearance. The strike of these is N. 35 E , S. 35 W . These rocks are evidently a continuation of rocks seen outcroping toward the line of railway. At the head of the harbour beside the railway station I examined a slaty rock which is soft and fine grained. This is an outcrop of the harbour strata. Specimens of slaty rock, having hornblende beautifully plumose, were brought to me when I was on the point of leaving. Masses pointed out to me as the rocks that produced the specimens, were seen to abound in similar hornblendic figures. These are evidently derived from the Yarmouth underlying strata.

Beaver River to Cape Cove.

Uniting Church's maps of Yarmouth and Digby Counties, I found that there were several miles intervening between Beaver River and Cape Cove which I had not examined; this was by no means satisfactory. Mr. Johns readily offered to aid me in this work. Considering it advisable to resume my former investiga. tions where I had discontinued them, we made direct for Z. Deveu's at Cape Cove. Following the strike of the black argillites, with quartz veins exposed at Deveu's, towards the shore, we found a great section extending southward toward a distant point. Before reaching the point the colour changed from black to grey. I was at once convinced that I had misunderstood the character of Deveu's strata in regarding them as
corresponding an anticline
I have bef Wack argillite strike of Devt ㄷ. 50 E., anc writous, cubic ing beautifull characteristic noticed the o pritous argil pritous argill nearly analogo rocks is the di Cape Cove stra esresponding , and at Gordon King's County While we no fllowing point the diorite is se wo formations curity betwees fosiliferous str nneissoid strata fie south. At Wing's County bonding fossilife ance of obscuı licated gneisso n the locality ontact with th ape Cove, whil reen the diorit vmation.

There is yet an
ouse I observed 1 of Cape Point. ad in a fine see-
he said section tempt with Mr: cceed owing to
being identical The light-house ar schist. It is If the harbour; n in colour and ese is N. 35 E uation of rooks the head of the jlaty rock which a harbour strata atifully plumose. leaving. Masses specimens, were ese are evidently
igby Counties, 1 between Beaver ed ; this was by to aid me in this ormer investiga. de direct for 2 . e of the black i's, towards the hward towarda ur changed from [had misunderarding them ${ }^{2}$
conresponding with Cape St. Mary's black strata, and as forming an anticline with the latter.
I have before shewed that the strike of the Cape St. Mary Wack argillites is S. $70 \mathrm{~W} ., \mathrm{N} .70 \mathrm{E}$., and the dip vertical. The strike of Deveu's argillites, as observed on the shore, is S. 50 W ., $\therefore 50 \mathrm{E}$., and their $\operatorname{dip} 45^{\circ} \mathrm{S}$., 40 W . The latter are very fyritous, cubical crystals occupying the lines of bedding and making beautifully brilliant lines in the sunshine. This is not a claracteristic of the black argillites of Cape St. Mary. I have poticed the occurrence of milky quartz in the latter. The prritous argillites are replete with quartz veins. The black pryitous argillites of Jebogue Point with quartz veins are more nearly analogous. The division between the two great series of rocks is the ciorite already noticed as intervening between the Cape Cove strata and Deveu's strata. We have thus a division erresponding with the Bloomington Road division at Nictaux, and at Gordon's on the King's County side of Annapolis and King's County line. Transactions 1877-8.
While we note this point of resemblance I would also note the fillowing points of difference: At Bloomington Road, Nictaux, the diorite is seen to occupy nearly the entire space between the ITo formations, there being only a very narrow interval of obcurity between the diorite which immediately underlies the iosiliferous strata of the ferriferous on the north and the meissoid strata at Wheelock's, of the auriferous formation, on he south. At Gordon's, near the New Canaan Road on the bing's County side of the county line, the diorite has corvesponding fossiliferous strata on the north, and only a short disance of obscurity between the diorite and the singularly licated gneissoid strata, of the other formation on the south. In the locality under examination the diorite is in immediate ontact with the lowest strata of the ferriferous formation in lape Cove, while there is an obscure interval of one mile bereen the diorite and Deveu's black argillites of the auriferous vimation.

Carboniferous.

There is yet another point of interest to which I would direct
attention. When I was examining the interval between the cove rocks and the black pyritous argillites, I observed a singular section which occupies a large part of the obscure interval; on the north side of this, next the flats of Cape Cove, the soil is, underlaid by a coarse ferruginous gravel. It then becomes more compact, cemented by iron oxide it becomes conglomerate, grit and breccia, arranged in beach form. It is then seen overlying unconformably the black pyritous argillites at a considerable height, and with a northerly dip. The greater part of these is derived from the black argillite which supplies rock material and iron cement. A small stream of water flows down the fac: of the highest part of the section-chalybeate water. I recognisel the strata of the section as a counterpart of the carboniferous, auriferons, conglomerates and breccias of Gay's River, Colchester County. This section fills up about a third of the interval. How far this formation extends inland cannot be ascertained except by sinking or boring.

We have thus three formations meeting or nearly so in this locality, which is distant 5 miles from Beaver River and county line. I have thus added to the geological formations of Dighy County a carboniferous formation, and 5 miles of auriferons formation.

Salmon River.

Returning we observed an outcrop of grey slates on the roal side, about opposite the point on the shore referred to when examining the sections of black slates. Near Salmon River we directed our course to the shore for the purpose of examining the southern extension of the preceding section. Here I was gratified by finding great ledges of rocks, solid groy quartzites having pyrite in large crystals, the exact counterpart of the Bedford Basin quartzites, Halifax County. Towards the point referred to, the quartzites become less solid and are succeeded by grey argillites. These in turn are succeeded by Deveu's black argillites Consideing the grey quartzites with the argillites of the railway section, to be an extension of the shore section grey quartzites and argillites, south of the point south of Cape Cove, it seems to require the grey argillites extending northward beyond the
sail point I interval bet Cape St. Ma Cove, to fill examined st These are qu wese outero tance these : from Digby

When I pr just beginnis region, and u teristics. Inc light of exper to re-conduct With a vie the rocks on reached the f shore, about a with interbed posire and gel I soon found a lelges, having umistakable. senre it. Th proper toolswere difficultic ance and a g c specimen. The might pass for landed ; two o: is obsemed as i lines of the sul figured by Sir I reyosa. It is n
ral between the bserved a singubscure interval; Cove, the soil is then becomes es conglomerate, then seen overat a considerable part of these is es rock material vs down the face iter. I recognisel he carboniferous, River, Colches. of the interval. it be ascertained nearly so in this Siver and county nations of Dighy les of auriferons
ates on the road red to when esSalmon River we of examining the Here I was gratiquartzites having t of the Bedforl he point referred ucceeded by grey is black argillites tes of the railway n grey quartzites pe Cove, it seems ward beyond the
sail point Deveu's black pyritous argillites, the rocks hid in the interval between Deveu's and Cape Cove, and Cape Cove and Cape St. Mary's rocks to a distance of $\frac{3}{4}$ of a mile north of Cape Cove, to fill up the obscure gap on the line of railway. I also csamined strata outcropping to the south of the grey quartzites. These are quartzites with interbedded argillites. At the last of liese outcrops great masses of basalts were examined. At a distance these appeared as solid. They are only masses transported from Digby Neck, Long Island or Briar Island.

Cranberry Head.

When I previously visited Cranberry Head gold mines, I was just beginning to make acquaintance with the rocks of the region, and was somewhat perplexed with their singular characteristics. I now wished to examine the gold bearing strata in the light of experience since acquired. Mr. Ryerson readily consented to re-conduct me to the locality.
With a view to connect my observations with those made on the rocks on the north, we went beyond the mines until we reached the end of the outcrops of the Mines' section on the shore, about a mile distant. The first rocks are grey quartzites with interbedded soft argillites. The position, alternation, exposure and general appearance led me to expect fossils in them. I soon found a mass of quartzite detached from the strata of the lelges, having on it forms whose resemblance to stromutopora is umistakable. Considering it as interesting I determined to scure it. The size of the stone, the want of assistance and proper tools-Mr. Ryerson had left me to meet at the mineswere difficulties in the way. However, by patience, perseverance and a good hammer, I succeeded in making a portable specimen. The picture in "Geology of Canada, 1866. page 49," mimht pass for a figure of it, if partly obscured on the top. It is landed; two of the bands amastomose, a large part of the top is olsenred as if rubbed or pressed by the overlying rock, outlines of the sub-parallel bands being preserved. The specimen figured by Sir William Logan was compared with stromatoporce rugosa. It is now known as the Eozoon canadense. Our speci-
men strikingly resembles a museum specimen of stromatopore $s p$, from the Niagara limestones of Buie de Chaleurs, New Brunswick. The specimen is not a cast. The organism, if it was one, has been replaced by qua"tzose material so as to preserve the form. The specimen may only represent a certain rock structure ; if so it illustrates the possibility of a striking imitation of organic structure being only rock structure. I give the specimen the name Stromatoporoid, $s p$.

Several of the grey quartzite strata which are overlaid by the shaly argillites have had their faces partially exposed. These look so like fossiliferous rocks that I was led to search in them for fossils. I succeeded in finding in one of the quartzite strata peculiar forms which were certainly made by organisms. In shape they are discoid and eliptical. One specimen which I succeeded in securing is oval with an interior depression. The only thing that can compare with them are roots of ButhotrephisHall's Palacontology of New York, vol. 2, plates 7, fig's 2, 6, 10, fig's 9,10 . It is certainly interesting to find such forms in proximity to gold producing strutu. Proceeding I found next an enormous exposure of crystalline rocks-diorites. These are of a character different from the dionites of Cape Cove. Like the porphyrite of Sunday Point the diorite here is very micuceous. Crossing this enormous outcrop of diorites I came to another great exposure of grey quartzites, and reached the Cream-Pot with the auriferous quartz of the gold mine.

Cream-Pot.

Is so called as the sea is said, in violent storms, to fill the recess with froth. This pot is geologically interesting. The strata within succeeding the quartzite last described as reaching to the point, has some resemblance to soap-stone; they are light grey, soft and unctuons argillites. In these the auriferons quartz vein is found. This is beautifully exposed on the side of the Cream-Pot, and can be studied to great advantage. This vein is very peculiar, it swells out and narrows in turns, being in the one case often of considerable thickness, on the other very narrow. The great softness of the rock which includes it
renders mi on my for assenopyrit for the mill From thi

Between 1 At Jegroggin chiefly micar small. One ticular mass tellar form. This series of a section of The strike of time to colle sand.
I have thus important ou Meteghan Poi atcrops in th
stromatopore Thaleurs, New organism, if it so as to pre sent a certain jy of a striking ucture. I give
overlaid by the xposed. These search in them quartzite strata organisms. In cimen which I ession. The on-Buthotrephis7 , fig's $2,6,10$, i forms in prosfound next an 3. These are of Jove. Like the very micaceous. ame to another the Cream-Pot
orms, to fill the iteresting. The bed as reaching ; they are light the auriferous 1 on the side of lvantage. This in turns, being 3, on the other hich includes it
renders mining easy and comparatively inexpensive. I have on my former visit noticed the stratum underlying with its "rsenopyrite crystals. Large quantities of quartz were ready for the mill.

From this we went to

Jegoggin Point.

Between this and the mines no rock exposures were observed. At Jegoggin is found an interesting exposure. The rocks are chiefly micaceous schists. In these are quartz veins, large and small. One of the former is 10 feet thick. Interbedded are lenticular masses of hornblendic rock with cystals arranged in stellar form. Some of these schists are fuif of small garnets. This series of garnetiferous and hornblendic schists is evidently a section of the schists of Lake George and the line of railway. The strike of the strata is N. 50 E., S. 50 W . We did not take time to collect the sand among the rocks. It must be garnet sand.
I have thus, in a somewhat irregular manner, examined every important outcrop of rocks from Jebogue Point on the south to Neteghan Point on the north. I would now arrange the several vutcrops in the form of a general section, thus:

1. Jebogue Point.
2. Sunday Point.
3. Town of Yarmouth.
4. Lighthouse Point.
5. West Point.
6. Jegoggin Point.
7. Cranberry Head.
8. Red Head.
9. Beaver River (County Line).
10. Salmon River to Cape Cove.
11. Meteghan.

Boundury Line of the two metamorphic series, auriferous and fussiliferous, in the Counties of Yarmonth, Digby and Annapolis, I begin at Cape Cove, making the extensive diorite with prartzite the starting point. Passing on to the line of railway
we have a point in the line 21 miles north of the grey quartzite and argillite cutting. Following our lypothetical line to Bear River N. 40 E., we have the approximate boundary south of the village and Rice's mill. From Bear River to Moose River it lim between the granites and fossiliferous quartzites. It then fol lows the granite line from Moose River to Beale's Lake, and the Dighy and Annapolis shore road, 6 miles from Annapolis. It follows the same line to Annapolis River, Paradise River and Lawrencetown. It passes south to the diorites which are on the sonth of the westward continuation of the Nictaux forsilifuroustrata. Touching Nictaus it comes between the diorites, fossilifer ous strata and the granites on the Lawrencetown and Allamy road. At the back (S.) of Cleveland Mountain it lies between the granite and the overlying magnetite and fossiliferous strata. On the Albany road it lies between the gneissoid and the mas. netite strata on the Nictaux and Albany road. It passes on th the division between the diorite and gneissoid rocks on the Bloomington Road. It then comes between the fossiliferous and quartzite and gneissoid rocks at Wheelock's, south of the New Canaan road, and then between the diorites and contorted gnci-. soid strata at Gordon's, south of the same road and east of the Amapolis and King's County line.

Correlation.

In Acalian Geology, Ed. 185.5, pages 346-7, the following occurs regarding the age of the "Metamorphic district of the Atlantic Coast": "Hitherto each successive formation has been proved to be older than that which preceded it, by the evidene of direct contact, in such a way that the older could be seen to underlie the newer." Here we lose this chain of evidence. I have found no section in which the Devonian or Upper Silurian rocks, described in the last chapter, could be seen to rest on thowe now described. Yet I believe the group of rocks now under consideration to be the older of the two for the following reasons. On the St. Mary's River, fragments of slate and quartz rock from this formation are found in the lower carboniferons conglomerate, proving that these rocks were metamorphosed before
the comme therefore b however, so be assigned hack at leas tion : and I series whiel there is evit hill. was et widence wh qranite grou equently th ent group Silurian rocl

In a pape the Gold Fie the Lower S from the con Tpper and M as any of the were probabl

In the dise William Loga were Devoni time, on the our gold fiel was the corre Sulsequent rocks are of C as he had dise of the Luner view: i. e., to Cambrian ag Silurian time, expressive of the age of the terin C'embrie
e grey quartzitu al line to buar ry south of the ose River it liw It then fol. Lake, and the Annapolis. It ulise River and bich are on the aux fossilifurou. corites, fossilifer ,wn and Alhany it lies between siliferous strata. id and the mas. It passes on t. I rocks on the fossiliferous and ith of the New sontorted gncis and east of the
the following district of the mation has been by the evidence sould be seen to of evidence. I - Upper Silurian to rest on thowe ocks now under , llowing reasons. nd quartz rock boniferous conrarphosed before
the commencement of the Carboniferous period. They must therefore belong at least to the Mevonian group. They differ, however; so materially from rocks of that age that they cannot be assigned to it with any probability. We must therefore go lack at least to the Silurian period for the time of their deposition : and possibly they may belong to that still older or Azoic serics which has been recognized in Canada. Farther, that while there is evidence that much of the igneous rock of the Devonian hill was erupted during the carboniferous period, there is no widence whatever that any igneous action occurred within the qranite group as late as the commencement of that period, conequently the igneous as well as the stratified rocks of the pre*ent group are older than the last described (Devonian or Upper Silurian rocks).
In a paper which I read before the Geological Socicty, "On the Gold Fields of Nova Scotia," Journal 1862, I was led to infer the Lower Silurian age of the stratified rocks of the Gold Fields, from the consideration that they differed so much from Devonian, Lpper and Middle Silurian rocks, that they could not be regarded as any of these, and as they could not be newer, therefore they were probably Lower Silurian metamorphic.
In the discassion that followed the reading of this paper, Sir William Logan maintained the opinion that the rocks in question were Devonian metamorphic. Sir R. I. Murchison at the same time, on the ground that gold had been discovered in quantity in our gold fields, considered that the opinion which I maintained was the correct one.
Subsequently Dr. Selwyn came to the conclusion that the said rocks are of Cambrian age, on certain considerations, particularly as he had discovered the Cambrian fossil Eopleytom in the rocks of the Limenburg Ovens. I had come to entertain the same view: i. e., to consider the formation of the rocks to be of Cambrian age, and to refer their metamorphism to Lower Silurian time, and to adopt the term Cambro-Silurian (Lower) as expressive of the age of the rocks metamorphosed, thus referring the age of the gold deposits to the Lower Silurian period. The terin C'ambrian, as here used, is, as understood by H. M. Geolom.
gical Survey of Great Britain, being applied to the formation next below the Lower Silurian. I make this explanation as the term Cambrian is now sometimes used differently.

The Devonian and Upper Silurian of Nictaux, according to "Acadian Geology," was transformed into Middle and Upper Silurian ; and the Devonian granites were observed, at the back of Cleveland Mountain, at a point in the above described boundary line, in contuct with Middle Silurian strata, without any metamorphism of the latter as the result of the contact. This indicates that the granite existed before the formation of the Middle Silurian strata. At some considerable distance south of the boundary line, at the Bloomington Road, granite is seen including fragments of the associated garnetiferous rocks, showing that the latter were formed and consolidated before the granite was prepared to enclose the gneissoid fragments. It was inferred that this condition was induced in the pre Miccule and Lower Silurian, or pie Silurian period, (Cambrian) the gneissoid rocks being referred to early Lover Silurian or Cambrian time. Transactions 1877-8.
At Moose River the new mines, considered by "Acadian Geology" to be of the same age as the iron deposits of Nictaux, produced the giant trilobite Asaphus ditmarsice of a Lower and Middle Silurian race. The Bear River strata corresponding on the south side of the syncline have produced evidence of like age with the iron deposits. The underlying quartzites with fossils which intervene between the preceding and Greenland granites indicate a thickness too great to be included in any Middle Silurian series. I have run the boundary line between these and the granites.

The highly metamorphic quartzite specimen with a vein of quartz having the singular organism Aithrostauros godfreyi and a cast of Moclurea, described in Tians. 1878-80, indicates that three great bands of quartzite on the north side of the magnetyte strata may be fossiliferous. The specimen might be derived from any of the three, although I assigned it to Bogarts quartzite, which occupies a position relative to the Asaphus magnetyte, like that which Rice's mill quartzite and continuation
lears to Mid There quartz probably Calı lave the Pot and Archeean ous series as .

Article II

The followi r., part 2nd, collected durin the vicinity of Polyporei, kind the latter there growing here. from the study American dese almost solely up prehensive also. the characters o sencra. It will necessary to ina
2. A. (Trichol
o the formation planation es the i.
x , according to dle and Upper red, at the back described bouna, without any contact. This mmation of the istance south of mite is seen in; rocks, showing ore the granite It was inferred chle and Lower gneissoid rocks mbrian time-
by "Acadian sits of Nictaus, of a Lower and rresponding on vidence of like 1uartzites with and Greenland acluded in any y line between
with a vein of auros godfreyi 78-80, indicates rth side of the simen mighle be d it to Bogatt oo the Asaplew ad continuation
lears to Middle Silurian series on the south side of the syncline. There quartzites may all be regarded as of Lower Silurian age, protably Calciferous, as Maclerea seems to indicate. This would luave the Potsdam period for metumorplism, and the Cambrian and Archean for formution. In this way I regard the Auriferous series as Archæo-Cambro-Silurian (Lower).

Article II.-Nova Scotian Fengi.-By J. Somers, M. D. (Rend Dec. 10, 1880.)
The following additions to the list of Fungi published in vol. T., part 2nd, Transactions of the Institute, 1879-80, have been collected during the past season, the greater number are from the vicinity of Halifax, the remainder are specimens principally Polyporei, kindly sent to me by A. H. McKay, Esq., of Picton ; of thic latter there are several which I have not yet identified as growing here. Allowing for errors in diagnosis not inseparable from the study of a class of vegetables of which we lack a good dmerican descriptive text book, we are compelled to depend amost solely upon Cook, no mean authority 'tis true, and comprehensive also. Yet one finds many species that depart from the characters of those described by Cook under their common sencra. It will not therefore be surprising that we may find it necessary to make corrections in a future revision of the list.

Order Agaricini.
Sub-Gen. Amanita.

1. Agaricus (Amanita) spissus, F^{\prime} ', clammy Amanita, under Larch, Willow Park, Sept., 1880.

Sub-Gen. Tricholoma, Fr :
2. A. (Tricholoma) sejunctus, Sow., N. W. A. woods, Aug. and Sept., 1880.

Sub-Gen. Clitocybe, F :

3. A, (Clitocyhe) candicans, Fr', Park woorls, Nov. 1850 .
t. A. (Clitocybe) opacus, With
A. (Clitocybe) fumosus, P
4. A. (Clitocybe) giganteus F, N. W. A. woods, Nov., 1880.
5. A. (Clitocybe) Sp., Willow Park woods, Oct."80, approaches flaccilus, Sone. Not being satisfied with the diaynosis I append the following description : pileus 1 th $1 \frac{1}{2}$ inches convex at first, then plane with a small well marked umbo, at length depressed umbilicate or infundibuliform, the umbo. disappearing, colour of pilens, bright orange, shining mucus, the umben darker, redish, with lines passing therefrom to the margin, lines delicate formed by tearing or separation of the scales. When the pileus becomes depressed, the colour pales; gradually, the red fading out, the orange becoming lemon, margin slightly wavy always invo. lute, stem 3 to $3 \frac{1}{2}$ inch, somewhat flexuous stuffel, cortex fibrous, attenuated upwards rooting, colour lemon yellow, paling towards the apex and base, usually eccentric, spores white, gills decurrent, straight, narrow, white at first, becoming pale yellor, more especially towards their free borders, very abundant in swampy places, growing under larch spruce, upon decaying leaves.
6. Agaricus (Clitocybe) bellus, Fri, Poiat Pleasant, under pines. Nov., 1880.

Sub-Gen. Pleurotus, $F r$:
9. Agaricus (Pleurotus) salignus, Fi', willow pleurotus, on trunks of living poplars. Oct., 1880.

Sub-Gen. Collybia, Fi:
10. Agaricus (Collylia) radicatus Relh. On dead wood, Wii low Park, Oct., 1880.

Sub. Gen. Omphalia, $F r$.
11. Agaricus (Omphalia) hepaticus, Butsch. Willow Park, Sept. 1880.
12. Agaricus (Omphalia) umbelliferous, L. Willow Park, Sept 1880.
13. Agaricus (Omphalia) fibula, Bull. Willow Park, Sept, 1880.
14. Agaric
15. Agaric
16. Agaric
17. Agaricı
1). Agaric
19. Agaricu

18
20. Agarjeu
21. Agaricu
22. Agaricus
23. Agaricus

Wi
24. Coprinus
25. Coprinus
26. Coprinus
27. Bolbitius

Sep
2). Cortinari
ds, Nov., 1480 st."80, approache 1 with the diay tion : pileus 1 to me with a small sed umbilicate or saring, colowr of ucus, the umbn herefrom to the ing or separation nes depressed, thr. g out, the orange wey always invoflexuous stuffel ; rooting, colour apex and base gills decurrent, ming pale yellow, se borders, very ing under lareh

Pleasant, under
low pleurotus, on).
dead wood, Wil

Villow Park, Sept.
Villow Park, Septu
llow Park, Sept

Sub-Gen. Clitopilus, F : .
1t. Agariens (Clitopilus) prunulus, Scop. Willow Park, Sept., 1880.

Sub-Gen. Claudepus, Sm.
15. Agaricus (Claudopus) depluens, Butsch. Near Melville, in a pasture, Sept., 1850.

Sub-Gen. Pholiota, Fi:
16. Agaricus (Pholiota) squarrosus, Mull. On stump, Halifax Common, Oct., 1880.

Sub-Gen. Naucoria, F;
17. Agaricus (Nancoria) semiorkicularis, Bull. Willow Park, Oct. 1880.
19. Agaricus (Naucoria) melinoides, Fr: Willow Park, Oct. 1880.

Sub-Gen. Psalliota, F : :
19. Agaricus (Psallinta) arvensis, Schetff. Camp Hill, Sept., 1880.

Sub-Gen. Psilocybe, $F i$:
20. Agaricus (Psilocybe) feenisecii, P. Willow Park, Sept., 1880.

Sub-Gen. Panæolus, $F r$.
21. Agaricus (Panæolus) separatus, L. Om. loc. Sept., 1880.

Sub-Gen. Psathyrella, F;
22. Agaricus (Psathyrella) gracilis, Fí. Willow Park, Oct, 1880.
23. Agaricus (Pathyrella) disseminatus. Among sphagnum, Willow Park, Oct. 1880.

Gen. 2, Coprinus, $F r$:
2t. Coprinus comatus, Fi: Public Gardens, Hx., Sept., 1880 .
25. Coprinus ovatus, Fi :
26. Coprinus plicatilis, F_{i}. In pastures. July, Aug. 1880.

Gen. 3, Bolbitius, $F i$.
27. Bollitius fragilis, F r. On cow droppings, Willow Park, Sept. 1880.

Gen. 4, Cortinarius, Fi:
Sub-Gen. Phlegmacium, Fr
25. Cortinarius (Phlegmacium) turbinatus, F. Pictou, Sept, 1880.

Sub-Gen. Myxacium, Fi:
29 Cortinarius (Myxacium) collinitus, Fi: Willow Park Sept. 1880.

Sub-Gen. Inoloma, F_{i}.
30. Cortinarius (Inoloma) callisteus, Fr. Willow Park, Sept 1880.
31. Cortinarius (Inoloma) sublanata. Willow Park, Sept. 1880, and Pictou.

Sub-Gen. Hygrocybe, F_{i} :
32. Cortinarius (Hygrocybe) armeniacus, Fi: Omne loc. Sept. 1880.
33. Cortinarius (Hygrocybe) castaneus, Fi. Willow Park Sept., 1880.

Gen. ${ }^{\text {I, }}$, Lepista, Sm.
34. Lepista nuda, Bull. Willow Park, Sept., 1880.

Gen. 10, Russula, F_{i} :
35. Russula adusta, Fir., "scorched russula" In Pine Wook Sept., 1880.
36. Russula sanguinea, Fri, Blood-red russula. In Pine Wools, (common), Sept., Oct., 1880.

Gen. 13, Masrasmius, F :
37. Masrasmius alliaceous, Fi: N. W. Arm woods, Sept., 1880,
38. Masrasmius terjinus, $F_{i}:$: Willow Park and Picton, Sept. 1880.

$$
\text { Gen. 15, Panus, } F i \text {. }
$$

39. Panus stypticus, Fi: Pictou, Oct., 1880.

Gen. 17, Schizophyllum, $F i$:
4(). Schizophyllum commune, Fr. On a spruce stump, Willor Park, Oct., 1880.

Gen. 18, Lenzites, $F i$.
41. Lenzites betulina, $F i$: On old trees, willow, poplar and birch. Sept., 1880. North West Arm woods.
42. Lenzites sepiaria, $F r$. On pine stumps. Sept., 1880.
43. Lenzites flaccida, Fi: On stumps and dead trees. Sept, 1880.

Willow Park.
low Park, Scpt.
ow Park, Sept.

Omne loc. Sept.
Willow Park
1880.

In Pine Wools,
In Pine Wools,
oods, Sept., 1850. ad Pictou, Sept.
e stump, Willow
llow, poplar and m woods.
Sept., 1880. id trees. Sept..
tt. Boletus lutens, L. Under spruce. Willow Park, Sept., 1880.
45. Boletus flavus, With. Common. Sept., Oct.
t6. Boletus badius, Fr. Under pine and hemlock. Willow Park woods, Sept., 1880.
47. Boletus ampliporus, Beck. Pictoti. Oct., 1880.
ts. Boletus palustris, Beck. Pictou and Willow Park, Oct., 1880.

Gen. 21, Polyporus, $F r$.
49. Polyporus leptocephalus, Fr: On dead wood, Willow Park, Sept., 1880.
50. Polyporus saligenus, Fr. On Willows, Halifax Common, Oct., 1880.
51. Polyporus spumeus, Fr: On poplars. Oct., Nov., 1880.
52. Polyporus vulgaris, Fis. On rotten wood, Willow Park, Oct., 1880.
i3. Polyporus incarnatus, Fi. Willow Park, Oct., 1880, and Pictou.
it. Polyporus radiatus, Fir. Near Melville Island, Hx., and Pictou, Oct., 1880.
7i. Polyporus hirsutus, Fir Common. Melville Island and Pictou, Oct., 1880.
ij. Polyporus abietinus, Fr. On spruce and hemlock. Oct., 1880.
57. Polyporus perennis, Fr: Pictou, Oct.
is. Polyporus cinnabarinus. Pictou, Oct.
Gen. 23, Drdalia, F r :
79. Diedalia confragosa, P. On dead willows. Oct., 1880 .
60. Diedalia unicolor, Fí. On stumps. Oct., 1880.

Gen. 24, Merulius.
61. Merulius lachrymans, Fr: On rotten plank in a cellar. Aug. Gen. 26, Prothelium, F_{i}.
62. Prothelium friesii, Mont. Pictou, Oct., 1880.

Order III.-Hydnei, Liz. Gen, 28, Hydnum, Linn.
(i3). Hyinum zonatum, Butseh. Picion, Oct., 1880. Gen. 34, Olontia, Fis
64. Odontia fimbriata, Fi. On dearl wood, Willow Park. Oct 1880.

Order IV.-Auricularini.
Gen. 36, Craterellus.
(6.). Craterellus, sp! Willow Park, Oct., 1880, on the grount Gen. 3s, Stereum, F_{i}.
(;7. Stereum purpureum, Fir. On dead branches, Willow Park Oct., 1880.
68. Stereum hirsutum, Fi: Common on stimps, \&ec. Oct. 1880.

Gen. 39, Hymenochate, Seo.
69. Hymenochate rubiginosa, Sev. Omne loc. Oct., 1880. Gen. 42, Cyphella, Fi .
70. Cyphella fulva, B \& \& R (u). On dead sticks. Sept.. 1850 W. P.

Order V.-Clavariei.
Gen. 46, Clavaria, L.
71. Clavaria coralloides, L. On the groumd. Common. Sept. 1880.
72. Clavaria rugosa, Bull. Pine Woods, Oct., 1880.
73. Clavaria inequalis. Pine Woods, Oct., 1880.

Order VI.-Tremellini.
Gen. 49, Tremella, $F 7$.
74. Tremella mesenterica, Retz. On dead wood. Oct., 1880).

Fam II.-Gasteromycetes.
Order IX.-Trichogastres.
Gen. 69, Bovista, Dill.
7.5. Bovista plumbea, P. North Common, Hx., Oct., 1880. Gen. 70, Lycoperdon, Tourn.
76. Lycoperdon gigantum, Butsch. Giant puff-ball from Dlt R. Morrow's grounds, Sept., 1880.
7. Lycope
i). Lycope A
7\% Lycope st
S. Sclerod

1. Lycogal

Art. III.-On

WISH to b Nova Scotia sir Williain Loi The mineral : the Island of C e If a man who t On examinati wive tinge ; frac nos, 6; specific ras faintly mas rongly manife Wow-pipe to a di mactions. It ge My analysis of omparison, is p cited above :

Oct., $18>0$.
ks. Sept.. 1850

Common. Sept.
1880.
s0.
,d. Oct., 1850
s., Oct., $18>0$.
iff-ball from Dl
77. Lycoperdon, pusillum, Fi.. Little puff-ball, at the roots of willows, North Common, Hx., Oct., 1880.
7. Lycoperdon saccatum, Vald. Elongated puff-ball. N. IV Arm, Oct., 1880.
7). Lycoperdon pyriforme, Scheffi. Pear-shaped pufi-ball. On stumps in various places. Oct., 1880.

Gen. 71, Scleroderma, F.
4). Seleroderma vulgare, F_{i}. On roadsides. Common. Aug.

Order X.-Myxogastres.
Gen. 74, Lycogala, Mich.
61. Lycogala epidendrum, Fi: On rotten willow stumps Oct., 1880.
lrt. III.-On the occurrence of Lievrite in Nova Scotia. By Edwin Gilpin, A. M., F. G. S., Inspector of Mines.

(Real January 17, 1ES1.)

I Wish to bring to the notice of the Institute the occurrence Nova Scotia of a mineral resembling Lievrite, as described by air William Logan in his Geology of Canarla, p. 465.
The mineral as found in this Province came from Gabarus, in he Island of Cape Breton, and was given to me some years ago I' a man who thought it was an ore of Morybdenum.
On examination I found the colour to be black, with a faint wive tinge ; fracture uneven, glistening, and subvitreous; hardnos, 6 ; specific gravity, 3.75 ; streak greyish. The specimen ras faintly magnetic, but this property may have been more strongly manifested when it was fresh. It fused before the Wow-pipe to a dark magnetic slag, and gave the ordinary iron mactions. It gelatinised slightly with Hydrochloric acid. Dy analysis of the specimen is as follows, and for the sake of omparison, is placed beside that given by Sir W. Logan, as cited above :

The specimen brought me was stated to have come from a bed a few inches thick on the south shore of Gabarus Bay. I do not know the exact locality ; consequently, some doubt may arise as to its proper geological age. Mr. Fletcher, of the Canalian Geological Survey, states in his Report of Progress, 1875-76, that this part of Gabarus Bay is occupied by felsites of Laurentian age, which is confirmatory of the age assigned to the mineral by Sir W. Logan.

The description in the Geology of Canada is as follows:
"It contains some black mica, and portions of red garnet, and forms a mineral of a velvet black colour, weathering rusty red, but having within a shining submetallic lustre. Its hardness is 5.5 , and specific gravity 4.15 . Powder, yellowish ash-gray. Slightly translucent on the edge, and strongly magnetic. Brittle with an uneven fracture, and cleavage imperfect in two directions oblique to one another. Before the blowpipe it intumesces and yields a black slag; with hydrochloric acid it gelatinises. From its composition (given above) not less than its physical characters, this substance is regarded as a variety of Lievrite. It probably forms a bed in the Laurentian series, as a boulder of it, nearly a foot thick, was found near Ottawa, but the rock has not been observed in situ."

The analyses of this mineral from Elba, as given by Dana, all show the presence of 11 to 15 per cent. of Lime, which is present in small quantities, only in that from Canada. And he ash-gray. c. Brittle wo directtumesces elatinises. ; physical Lievrite. soulder of : rock has

Dana, all h is preAnd he
regards the specimen described in the Geology of Canada as representing rather a variety of Fayalite. The occurrence of a mineral, however, in Nova Scotia, resembling it so strongly, would show thot it may be most properly considered a variety of !ieorite.
The mineral is principally found in Elba, at Rio la Marina and Cape Calmite, where it occurs in disseminated and grouped erystals. At one time the crystals were abundant, the finer specimens are now rare, and bring extravagant prices. On this Wland it occurs in dolomite with pyroxene, etc. It has been found in Siberia, Silicia, and Norway.
In America it was formerly obtained in Cumberland, Rhode Island, and Somerville, Mass, in long slender slightly rhomoboidal prisus, longitudinally striated and sometimes presenting terminal faes. These prisms are implanted on granular quartz with minute crystals of magnetite, but the supply now appears to be exhausted.
The mineral I have shown you this evening is not considered to exist in quantities which would lead to any hope of its finding an economic value. Its decomposition, however, would supply percxides of iron, and compounds such as these may have formed a most important source for many valuable iron ore deposits oceurring in strata succeeding the Laurentian.

Art. IV.-On the Birds of Prey of Nova Scotia.-By J. Bernard Gilpin, A. B., M. D., M. R. C. S. (Read 10th Jan., 1881.)
Is making this list I have personally identified, with one or two exceptions, every species in it. I will not say that no other specimen may be added, but that if hereafter noted, it will be a Very rare one to have escaped my notice of more than thirty Years. Personal identification of each species also by the writer, tere if in a narrow limit, adds always to the interest and value of a paper. In classification I have used Key to N. American Birds, by Dr. Coues, 1872, of the value of which it scareely needs
any mention from me. I have found, with one or two excep tions, all the birds of this order common to North Eavtem America, in Nova Scotia, and noticed those I expected to find and failed. From their nature and food they are rare everywhere, and one who has witnessed the scarcity of all anmal life in our forest, and the little bird life even in our cultivated fields, is n t surprised by finding a greater scarcity of this order. The innumerable flights during the autumn of what are callord shore birls, chiefly composed of the genera Tringa Totanus and closely allied species in their autumn migrations, attracts numbers of the genus Falco. Our marshes, especially after mowing, which lays bare the runs of field mice, and the hausts of froga, snakes and other reptiles, attracts the harriers and burzards, and the sea shores of the Bay of Fundy, at ebb tide, left in far-reaching and muddy flats abounding in stranded tish. bring the eagles and fish hawks for their prey, the latter seizing its living prey from the shallow pools, whilst the former, when not plundering the fish-hawk, contents himself with the deal and stranded fish. Except the gronse, the hare, and perhaps shrews in the depth of the winter forest, or a white weasel of jay lird, or a red squirrel now and then, the stern winter ha* locked in snow and ice everything that makes food for the few owls that hybernate with us. The few eagles and fish-hawks I have dissected I have found fat, even in winter; the hawk generally thin I have never identified any kites in Yora Scotia, but my son has observed fork-tail hawks in the air, which I have also seen, but very rarely, most probably the genus Nauclerus.

List of Rapacious Birds of Nova Scotia.
Family Strigide- (Owhs).
Bubo, virginianus-Great horned owl.
Otus, vulgaris (var. Wilsonianus)-Long-eared owl.
Braclyyotis, palustris-Short eared owl.
Syrnium, laponicum (var. Cinerium)-Great grey owl.
Syrniam, nebulosum-Barred owl.
Nyctea, nivea-Snowy owl.
two excep th Ea-tem ted to find are everyall animal cultivated ity of this f what are ga Totanus is, attract, sially after the hau.ts is and buz, b tide, left anded fish. tter scizing rmer, when h the dead nd perhap. e weasel on winter hafor the few sh-hawks I the hawk, s in Xova in the air, cobably the

Surnia, ulula (var. Hudsonia)—Hawk owl.
Nyctale, tengmalinis (var. Richardsoni)--Tengmalmi's owl.
Nyctale, acadica-Saw wet owl.

Femily Falconide.

Circus, cyaneus (var. Hudsonius)--Marsh hawk.
Accipter, fuscus-Sharp shia.
Accipter, cooperii-Cooper's hawk.
Astur, atriccapilhus-Goshawk.
Falco, sacer-Jerfalcon.
Palco, comınunis-Duck hawk.
Falco, columbarius-Pigeon hawk.
Falco, spaverius-Sparrow hawk.
Bateo, borealis-Red tail hawk.
Bateo, lineatus-Rel shoulder hawk.
Archibuteo, lagobus (var. Sancti Johannis)-Rough legged buzzard.
Pandion, halieetus-iish hawk.
Aquilla, chrysaetus-Golden eagle.
Haliaetus, leucoccephalus-Balıl eagle.
You will find in this list, taken as regards it nomenclature from Coues' Key, that many generic as well as specific names are changed from Wikon, Audubon, Nuttall, Richardson, and, even Baird, or other recent writers. The greatest change is with the specific. Whilst we accept the changes from the older authors as the necessary progress in the science, yet we can see in the differences from the modern ones that one principle rules them, a nearer retuin to truth, to the principle of returning to the specific given by the first discoverer of the species, allowing lim the exclusive right of naming, and finally in birds almost ilentical in both continents the allowance of geographical variation from one common origin. This of course is the most plilosophical way of settling points beyond our reach. Field naturalists can scarcely be allowed the privilege of criticising, which must be the result of intimate knowledge of large collections and libraries, and, as respects the author of the Key, still arger experience of field life. Yet one may be allowed to say
 t be hailed aily of owly rith the exis an excel iyself. The County, and cCulloch, of know of its is common. lick forests. n its youn, r. A speciblack duck, and barrel mained une examinel. een altered aght it may racted themin igby county, e kept them oifting frolls was pitched. , be known. wed by this its claws in he village at leeping now" der the eave whose eave ne calm millbird of prey the grass bethal prowler: g. cared orf
0. vulgaris), they may be said, though not rare, still not very common, I have Mr. Downs' authority that the short eared ne,ts in Nova Scotia, near Halifax. Probably both do, yet the number of both that appear during winter proves migration to be the chicf cause of their presence with us. Of the barred owl S. nehahosmm), my notes give May as the month I identified him in the breeding season. I have no doubt he winters with us, but my notes have no monthly dates. The hooting of this owl comes down oa the night wind to you like the loud broken langhter of many men. A stranger would easily suppose he was near a large logging party. The majestic snow owl (N. nivea) I do not think nests with us. He is usually a winter visiter, though I saw him onee, August, 18.5, on Sable Island, with all lis feathery alpine plumage, sitting upon the hot sand, the nowy, thick muffled claws reposing on sand that heated your turch. A few years after the Island had been stocked by Whestic rabbits, this bird made his appearance, in 1527 , an 1 ever after paid it an annual visit. I saw him patiently watching the burow mouth, instantaneously to seize its emerging owner He is usually our winter visiter, and like othe: species sometimes comes in flocks. In the winter of 1876 Mr . Egan, at Halifax, had fourteen specimens at one time. The settlers told we they sat like pigeons upon their barns, coming out of the forest at dusk. There had been no storms or leeal reasons for this migration which extended into New England. The hawk owl (S. ulula), is also a winter visiter. He shows himself sometimes in flocks. Some years ago there were more than a dozen hrought into Halifax, then not seen for years, and of late returning singly. Of Tengmalmi's owl (N. tegmalmi) 1 have seen but few opecimens, and believe it very rare. Four are the utmost I have seen in Nova Scotia. The saw wet (N. acadice) is common and resident, keeping the deepest forests as his abode, frightening the Indian at his bivouack, who never will answer him or allow any one to in his camp, for fear of impending misfortune. Yet he, too, appears sometimes in flocks in the open. During the spring of 1879, Mr. Egan had numerous specimens offered lim. The little red owl (S. asio), so common in New England
and also in Newfoundland (Reek's Zoologist, 1869,) I have never seen here, in which Mr. Downs joins me. In its migrations it passes perhaps north of us. In ending my rema.k on our owl. I may say that about four I have identified as nesting with us the others winter visitants, and that with the exception of the great grey owl, there are excellent specimens of each specius in the Halifav musem.

In passing to the diumal birds of prey, the Falconida, we fim more power and strength developed in each individual, thong denuded of its soft coating, the hind toe (in the owls very small) comparatively greatly increased, a greater propensity to use the claw than bill, and a greater ardor of temperament, and powel of wing action. This fainily naturally separates itself into the harriers, the falcons, the hawks, the buzzards, and the eaglo. 1 mean as regards Nova Scotia, since the kites and vultures never come to us. Of the harriers, resembling the owls in : facial circle, we have one species (C. cyaneus), a geographica! varicty of the old world hariers. He is common, and most prolably breeds with us, as he is seen during that season, but I have no note of his nesting. He leaves us during November, the swamps then being frozen, and the mice, reptiles and snakes, his usual food, hybernating. He is seen beating our new mown fields and swamps, but never hunting the shores abounding with shore birds. The females and young are much more aboundant than the slate grey male. In his habits he resembles the burzard, as he does somewhat in lill and claws. In the next family of hawks we have the sharp shin (A. fuscus), Cooper's hawk (d. cooperii), and the goss hawk (A. atricapillus); this family including two genera, Astur and Atricapillus. The sharp shin i. perhaps, our most common hawk. I have noted him in May aml in December. Little doubt he breels with us, though I do not know his nest. Though slendere: than the falcons, his bill lighter, and upper mandible scarcely notched, he is by no mean their inferior in atdacity and headlong pounce. Onc broke the glass of Mr. Downs' aviary in attacking a canary, seen through He will often attack caged birds hanging in country houses, ami even enter the city for the same game. Cooper's hawk (A)
cooperii), an delted to M_{1} wif and aftel my celf. Thu daring the b pair winteres is unsual.
they lived u are seen aft, would suppos thene, and oun never heard liawk what m type of the g out in the ope and harriers, alout the hol the gale from very feet of it in the deadly ever keeps hin the Falcons; keener ardor prey with a po air, rather that and peculiarly a, it were abru ot excellence o America, four ing, the others risiters. In F naturalists to tl gives to the fir pecific name. medieval princ hawking, with : Downs for my s
have never nigrations it on our owl. ing with us ption of the 1 species in
idac, we find lual, though ; very small y to use the and powel elf into the
the eaglo. nd vulture e owls in : eographical d most pro, but I have vember, the I snakes, hi, new mown maling with e abumdant les the buznest family: \therefore hawk d. family in arp shin i. in May and gh I do not as, his lill y no mean ce broke the en through houses, and hawk (A.
cooperii), an enlarged model of the last, is very rare. I am indelted to Mr. Egan for notes of one specimen mounted by himudf and afterwards sent home to England. I have never seen it my-elf. The goshawk (A. atricapillus) is common, and seen Wring the breeding season, though I have no notes of time. A pair wintered near the light-house at Digby Gut, 1880 ; but this i, musmai. The vicinity to the sea would make one suppose they lived upon fish. Few hawks of any species, save eagles, are seen after December, even the fish hawks leave us. One would suppose a duck upon the water would be an easy prey for then, and our winter shores are covered by them; but I have never heard or have read of any hawk making like the fish lawk what may be called a water pounce. The goshawk is the type of the great hen hawk of the farmers' wives. He comes out in the open, is not seen beating marshes like the buzzards, and harriers, or the sea sands like the smaller falcons, but prowls alout the homesteads, coming suddenly vith the swiftness of the gale from nowhere, and sweeping a hen or chicken from the very feet of its owner, gone as suddenly as it came, and losing in the deadly rush for a time that caution and wariness which erer keeps him from the vicinity of man. The next family are the Falcons; a more powerful organisation comparatively; a keener ardor and untamed spirit; the habit of taking their prey with a pounce from a tall tree, or perpendicularly from the air, rather than hunting along the surface; a stronger, shorter, and peculiarly notched bill, and pointed wing, define this family as it were abruptly from the others. It is the type of the highat excellence of the whole order. Of six species inhabiting North Anerica, four are found in Nova Scotia; two probably nesting, the others rare, and as respects the jerfalcon accidental risiters. In F. sacer we miss the old name so long given by naturalists to the falcon of antiquity, but bow to the law that gives to the first scientific discoverer (Foster) the right of the pecific name. Of this historical bird, the companion and pet of medieval princes, the subject of the ancient pseuo science of hawking, with all its complex phraseology, I am indebted to Mr. Down for my sole note. One specimen was mounted by lim
some twenty years since, being taken by a vessel on the coast and brought to Halifax, and a second specimen is exhibited this evening by himself. They are not uneommon at Newioundland, being called white hawks, and sometimes stray south of us, into New England, doubtless taking the inland route. The duck hawk (F. communis), and here again we lose the fine old lame peregrinus, a bold and beautiful bird, with the eye, toothed bill. and powerful claw of its race in the highest beauty and perfec. tion in my experience, is very rare. There was a good specimen in the Halifax Museum 1870, and Mr. Downs has noted it. This falcon is the anatum and great footed hawk of American writers. The pigeon hawk (F. columbarius) is perhaps the most common hawk of our Province. My notes are September and November: but still I believe he nests with us or is found during the tine of incubation. He is a true falcon, in dash, temerity and force. He will strike a duck upon the wing and lacerate and tear up the whole back and neck region so as to produce death. He occurs here with a variation of colour. In the Provincial Museum are specimens with four obscure whitish bars upon tail, A specimen in Mr. J. M. Jones' collection agrees with this; the bars broader. Another, shot by Mr. Alfred Gilpin, has five white bars, the fifth obscured by tail coverts. Another specimem, shot by John Baxter, Nov. 4, 1880, has five dark bars crossing the tail, the fifth hid by tail coverts. In this specimen the colour was more plumbeous on back and rump and tail, and more whitish below. I have not specimens enough to show any analogy between the plumbeous coloured back and darker tail bars, and whiter colour below. Coues asserts the female has white bars. Reeks (Zoologist, 1869,) describes it at Newfoundland, as having dark bars. The question is also complicated by Richardson's merlin or Aesalon of the old world, very allied to this species, being found in America, though denied by Coues. We find this very active and bold falcon on the flats of the sea shores, pouncing arially upon the tringa totani and other shore birds in their autumn migration. He lingers into November before he leaves us. There is no prettier sight than on a warm September day, in the Digby Basin, when the great Bay of

Fundy tide ctuanies and nowy drifts , the herons, co forest lake sid pines and bire obs; then an ell by an insta the tops of th are watching 1 the majestic 11 ays, "May be turn your eyes des around as herons, recover Wowly their r The sparrow hes of him are in S wen them dur: all the habits beatiful colour lim everywhere zands, I have id than the last sitting for hours mammals and re pornce upon, as of the red sho Downs' notes. larobus) is seen I agrees with Ric varcely so bright Roue's collection, conld not be exal ize and figure migritism of that to call it a true
in the coast ibibed this fioundland, of us, into Tho duck old name oothed bill and perfecd specimen ed it. This :an writers. est common November: ig the tine and force. and tear up death. He
Provincial
s upon tail.
h this; the five white cimer, shot rossing the the colour more whitny analogy il bars, and white bars. , as having ichardson's his species, e find this sea shores, ,hore birds ber before n a warm at Bay of

Funly tide has filled up to the very rushes the salt water wtualies and creeks; when the peeps and shore birds are like nowy drifts on the edge of the tide, waiting for the ehb; when the herons, coming full twenty miles from their heronry by the forest lake side, are roosting in awkward groups on the spruce pines and birches overhanging the tideway, also waiting for the db; then an instant alarm of shrieks from the herons, followel by an instant barking of the crows, rising and falling about the tops of the pines, disturb your, as floating in your canoe you are watching how a feathery gull, or an early scoter, is beaking the majestic mirror all around you. Malti Pictou your Indian, ays, "May bee herons don't like the hawk"; and then, as you turn your eyes landward, you see the hawk sailing in short cirdes around and then with a sweep fetching down upon the herons, recovering himself and passing with lazily flap of wing Sowly their roosting trees. He, too, is waiting for the ebb. The sparrow lawk (F. sparverius) is not rare with us; my notes of him are in Sopt., bat Mr. J. M. Jones allows me to say, he has sen them during the summer in the valley of Annapolis, with all the habits of a resident bird, and probably nesting. Its brautiful colouring and bold upright form and audacity makes him everywhere a marked species. Of the next family of buzzarls, I have identified three species. This family, more robust than the last and more powerful in form, have less audacity, sitting for hours listlessly on a dead tree, living on the smaller mammals and reptiles, which flying low they snateh rather than pounce upon, are still audacious plonderers of the farm yard. Of the red shouldered hawk (B. lineatus) I have only Mr. Downs' notes. I have never seen it. The winter falcon (A lagobus) is seen rarely here. A specimen in the Halifas Museum agrees with Richardson's figure and description, the colours varcely so bright. I saw one specimen of a black hawk in Mr. Roue's collection, at Halifax, 1870 . It was alive and therefore could not be examined closely, but it looked so very unlike in ize and figure the lagobus that I could scarcely call it a nigritism of that biri. But still I have nothing explicit enough to call it a true species, especially as the best writers unite in
not considering it such. I can not but think there is a lost hawk in this family. The red tail hawk (B. borealis) is a common hawk with us. My notes give him the middle of April. Summer and November, resident bat laving us in winter. Our specimens, in the finest nuptual plumage, differ from Rich. ardson's description both in the colour of tail and breast. They have very much more brown and fermonons on breast, and the tails of the brightest chestnut red, the two outer tail feathers obscurely barred. Richardson says of his specimen, killed Carleton house, May, 1827. "The tail is brownish orange, \&ipped with soiled white, with a subteminal band of blackisin hown. there are also traces of thirteen other brownish bars." These markings do not accord with the bight chestnat red with no lars, of ours, excepting the broxd subterininal one. At the same time, Mr. Downs kept in confinement for several years a pair of red tails which always kept the brownish bars on bownish rel tails, resembling Richardson's. Thus we have this buzzard in two forms. The warm southern form of Wilson and the palet arctic one of Richardson. The specimens in the Halifax Musemm and private collections are all young birds, but agree exactly to Richardson's description in bill, length of primaries and legs and feet. I kept one of the southern forms in confinement for several years. The second year he lost the brown tail of the immature bird and developed a bright chestnut one. I fed him upon livers and raw meat, which he received on his bill, but im. mediately transferred to his feet, tearing it, from which he fed. On giving him a dead bird he instantly became excited, sprad. ing ont his wings and tail and bending over it, with erect crest and head plumage, as it was fixed to his pereh hy his claws. He usually tore the sides open, thrusting in his hooked bill and drawing out the intestines. His blood stained bill and feathers, with his continuous, guttural, angy cries, and piercing eye underaeath its bony brow, showed for the time he was no pool captive tied with a string. The fish lawk (I. halieetus) stands ont from the family so broadly that he almost, deserves a family alone. Eagles are almitted carrion eaters, and there are ugl! stories told about the noblest falcon, of preying on vermin and
deal animals. He, of all, kills his living prey. Should he drop a fish from his claws, his instincts are never to pick it up. His limis are muscular to the extreme, searcely covered by the short est feathers, and his legs and claws immense for his size ; the joints are so loose in their articulation as to have a side motion, aml the toes so aljusted that they may work in pairs, like the parrots, two before and two behind; the proper hind toe small, in this particuiar approaching the owl. The very peculiar scales they are coveled with, and the rongl!ness of the sole, still further recedes it from the typical foot of the falconide. They breed in our forest some miles from the sea, but do not winter with us.
re is a loot s) is a com. le of April. in winter? from Rich. east. They ist, and the ail feathers men, killem! mge, tippel ¿isi hown rs." These ed with mo It the same uts a pair of rownish rel buzzard in d the paler ax Musenu e evactly tu nd logs and nemient for 1 tail of the

I fed him sill, but im. hich he feel. teid, spreat.
erect erest y his claws. el bill and nd feathers, ng eye unvas 10 poor etus) stanls es a family se are ugly verminamb

He may be seen regularly hunting our estuaries and forest lakes. Sow gracefully soaring, and now falling prone as a stone into the water, and then emerging with a fish in his claws, heavily larlen and seeking the forest. I never could observe if he went beneath the water, as everything was covered by the splash of water caused by his fall. It is asserted that he does, by men of cience and by the practical observer. It must be a very powerful hird to rise loaded from beneath the wave. The rising sm caught me amongst the hills of St. Clements, one morning after a long night ride. The air was filled by dismal sereeches, and I nearly broke nyy back twisting in my saddle till I saw right wer my head a fish hawk heavily laden with a fish in his claws and a bald headed eagle continually soaring above and pouncing down upon his back. In a moment the fish came diagonally falling, the level beams of the eally sun glinting it with silver. The eagle dropt like a stone beneath it, catching it on its uptwnel claws, and flapped away, whilst the poor plundered hawk was heard sereaming long after out of sight. The eagles are the last upon our list. The golden eagle (A. crysactus), the eagle of the ancients, the bind of dove, remains the whole yar, and nests, with us. They are more rare than the bald heads, a pair dominating over a very wide country. I have seen four, three of them alive, taken in traps, the fourth killed by a woman in Pictou County. One in captivity was a very bold lind, attacking everybody that approached him with his clavs. This attack was so fierce that a calfskin boot would have soon
been torn from your foot. The boll granden of its masuive head, supported liy a neck arched like a horse and adomed by shining and golden hackles, imposed itself upon you as the type of force and pride; and yet he was trapped. He was seeking dead meat, which he devours as well as canion. In beanty and severity of expression he far surpasses the bald head (F. lencocephalus), the only other eagle we have. Though he will eat carrion, and gorge himself over the carcase of a deal horse: though he will enter your gardens, and strike a pea fow! or Brahma pullet: yet he adds deal and stranded fish to his larder. Hence his abundance, and his fatness. He remains all year with us, especially about the shores of the Bay of Funds: building his nest sometimes in trees, at other times on scragey rocks. As asual, the perfect adults with milk-white tail and head are few in comparison with the brown and splotched white young, and what is singular those young are larger in their dimensions than the adults. I have known them six inches longer than old male adults. An immature bird shot near Halifax, in January, 185.5, measured nearly eighteen feet wins spread, with tail of sixteen inches. He was shot rising from the carcase of a dead horse upon which he had gorged himself. These dimensions exceed the dimensions of the Washington eagle. In studying many specimens, both adults and young as pegrade scutillation of tarsus, I found them to vary so much, not only among indisiduals lout in the individual itself, in number, as to be of no use as a typical mark. Audubon makes it a differential mark in the Washington cagle. An eagle about two weeks old, now in Halifax Museum, has twelve on tarsus and twenty on middle toe. The legs of an adult, shot at Dighy, 1880, and mounted as candlesticks, has none upon tarsus. One must conclude that they are shed and renewed. In all my examinations of grey or splotched white and brown specimens, I have neter seen any but what were tue young of the bald. In the list of rapacious bids I have presented to the Institute as inhabiting Nova Scotia, identified by myself or friends, we find that with the exception of the screech owl (S. asio), we have all the New England species of owls as visitants or residents, and this as a
rather rema and Newfou fanily, and and lake cor B. virginian short eared (Sacadica): laving been all periods of risitants, bre wh S. lapon the hawk oil winters, almo howing grea wen approac whi'st Teng, them searcely either winter air summer horned, or the the stridulons lis grouse or snow, when he watelful prow roured them. one of the cha thack in early , you will find y ly the tracks o foxes and the b the intruders, a in the dark fo cide, we find or Set there are a the broal winge niens), nor the garis), or the sh
its masive id atomed upon you tpped. He as carrion. is the bain
\therefore Though of a deal ${ }^{\text {a }}$ pea fowl fish to hif remains all of Fundy, on scragey te tail and ched white x in their six inches shot near 1 feet wing Ig from the al himself. Vashington 1 young, a , mucl, not in number, , it a differ. two weck, mid twenty , 1850, and must coll. aluinations have neter the list of inhabiting that with 11 the New 4 this as a
rather remarkable exception, as being abundant io New England and Newfoundland, and migratory. Owls are a peculiarly forest family, and our still remaining pine spruce forests, our barrens and lake country, give them shelter and food. The great horned (B. virginianus) owl, the barret owl (S. nebolosum), the long and thort eared owl (O. vulgaris and B. palustris), and the saw wet (acadica) are resident breeding with us, their nests and young laving been taken, or they themselves having been seen during all periods of the year. The more arctic species are our winter risitants, breeling and nesting to the far north. The great grey wil (S. laponicum) is a very rare visitant. The snow owl and the hawk oil (Nyctea nivea, and S. ulula) appear during some wintere, almost in flocks, a thing unusual for birds of prey, and howing great scarcity of food. The saw wet (N. acadica) is, seen approaching the clearings during winter, also in flocks, whilst Tengmalmi's owl (N. tengmalmi) is very rare. One sces them searcely ever during the day time in our solitary forests either wifter or summer. During the night we hear them in aur summer or fall camp. The fierce feline cry of the great horned, or the broader sounding hoots of the barred, as well as the stridulous squeaks of the saw wet. Unless the hunter hides lis grouse or hares he may have shot, cumningly beneath the snow, when he returns to them he will find that an unseen but watehful prowler has stripped of feathers or fur, torn and deroured them. This feeling of being watched by the unseen is one of the chatms of ow alpine forests. If you take your back thack in early morning after coming to camp late in the evening, you will find you have been stealthily followed for many a mile ly the tracks of the lyns or wild cat. During the night the foxes and the bears, nay even the moose, is warily reconnoitering the intruders, and the owls coming to the camp fire, all prowlers in the dark for what they may pick up. Of the diurnal rapacide, we find our Province has the usual New England species, vet there are a few noteworthy exceptions. I have never seen the broad winged or Pennsylvania buzzard here (B. pennsylvanicus), nor the common English buzzard of Richardson (B. vulgaris), or the short winged buzzard (B. butoides). The kites also

I have never seen. If they migrate north of us, as it seems they do, they go inland and not along the sea coast. Neither are they winter visitants. A stray red tail hawk (B. borealis) is seen during winter: But the gosshawk (A. atricapillus) may be cillel a persistent winter visiter. Specimens of him are brought to Halifax frequently at that time. He and his mate, all winter long, perched on the scrubly pines overlooking the Bay of Fumly Irom the North mountain, and the moose hunters see him fecel. ing on the white snow upon the grouse he has struck in the thick forest. Though this family do naturally resolve themselves into harriers, buzzards, hawks, and falcons, some pursuing live game, whers pouncing upon it, others picking it from the ground, and taking lizards, frogs, and even insects, yet with the exception of the timid fish hawk, the only one who takes his live meat, they all will descend to dead meat and carrion. The imperial eagle; being the nearest in this to the vultures who neve: take their game alive. I have never heard of the bald heads taking their fish alive, whilst the fish hawk, if he drops his fish, will never seek to reclaim it, seemingly having no instinct to eatch fish except from the water. To him alone is due, if it is an honour, never to sit, except to the Abbyssinian banquet of quivering meat.

There are many traditions and stories of children being carried away by eagles; they are usually the traditions of former times, and of spectators and eye-witnesses long since relieved of the burden of flesh. But there is one instance which happened in Lubrador, where the purties are still living. An English mission. ary was visiting a fisherman's family in their hut by the shore: the father of the family came stumbling in for his gin, all but unutterable; he handed it to the missionary, saying, "I can't kill my own child, do your best." Cun in hand the clergyman stood upon the shore, and saw an eagle about eight feet in the air slowly rising weighted by the living, child held by its clothirg; he covered his bird, fired, and it dropt so gently to the ground that the child was unhurt, though the slugs by which the gun was loaded had done their work. This gentleman, the Rev. Mr. Wainwright, now holds a good position in the diocese of Honolulu, in the Pacific.

Article V.-
Scotian

The followi see "Vol. IV, been collecterd

For
Sporangium, keeled, the mar hrooks, near '] Emropean speci
$H y_{1}$
Stem prostrat narow, lanceola vender beak. 1
$H_{y} \mathrm{~m}^{\prime 2}$ Leaves compl lervel, toothed acute. On banl

Clim Dendroid, rhi ingabove like a above; nerve rea porangium ; lar: marshy places (T I have examin
ems they are they seen dur. e cilled a oug'it to 11 winter of Fundy nim feed. the thick sves into ive crame, ound and eeption of neat, they ial eagle; ake their :ing their will never h fish exour, nevel meat. ng carried ner times, ed of the ppened in h missionthe shore: in, all but I can't kill man stool in the air its clothntly to the which the 1, the Rev. diocese of
article V.-A Contribution towards the study of Nova Scotian Mosses.-By John Somers, M. D., F. R. M. S.
(Real February 14, 1E81.)
Trie following additions to the Moss Flora of the Province, se "Vol. IV, V, Transactions, 1877, 78, 79 ard ' 0 ," have been collected during the past season:

$$
\begin{gathered}
\text { Sect.-Pleurocarpi. } \\
\text { Ord--Fontinalei. } \\
\text { Genus-I. Fontinalis. } \\
\text { Fontinalis, antipyretica, } L .
\end{gathered}
$$

Sporangium, immersed, stems triquetrous, leaves sharply keeled, the targin reflected on one side; on stones in running hrooks, near Truro, Sept. 1889: essentially the same as the European species.

> Order-Hypnei.
> Genus-Hypnum.

Hyp пит, demissum, Wils.
Stem prostrate, branched, more or less divided; leaves secund, narrow, lanceolate, sporangium small, cernuous; lid with a long, sender beak. On quartzite rocks, Truro, Sept. '80.

Hypmum, denticulatum, L.
Leaves complanate, ovate, apiculate; margin recurved, twonervel, toothed sporangium; oblong curved, cernuous; lid conical, acute. On banks of brooks in damp, shady places. Aug. '80.

Order-Isothecii.
Genus-Climacium.
Climacium, dendroides, Web. \& Mhor.
Dendroid, rhizome, creeping stem, naked below ; erect, dividingabove like a miniature tree; leaves ovate, lanceolate, toothed above; nerve reaching the tip; fruitstalks strong, red; aggregated porangium ; large, erect, lid rostrate. By banks of brooks in marshy places (Truro), bearing fruit abundantly. Sept.. '80.
I have examined this species very closely, and find no differ-
ence between it and the description and plate of the British species in Berkley. My friend, A. H. McKaye, of Pictou, has found C. Americanum, and thinks all our species are of the latter form.
C. dendroides has been described as occurring in British Columbia and eastern slope of Rocky Mits.

SEct.-Acrocarpi.
Ord.-Bartramiei.
Gen.-Bartramia.
Beríumiu, ithyphylla, Brid.
Leaves from a sheathing base; lanceolate, rigid, strong nerved, stem dichotomous; sporangium oblique. July, 1880; on granite in elevated places, near Halifax.

Ord.-Bryei.
Gen.-Mnium.
Mnium, rostratum, Scheveg.
Stems erect, simple; lower leaves ovate or rounded; upt oblong, obtuse, with an apiculus; margined; simply toothe fruitstalks aggregated ; sporangium oval, pendulous; lid rostra very handsome. Growing on sandstone, margins of shady brool Truro, 's1.

> Ord.-Tetraphidei.
> Gev.-Trematodon, $H d w$. Tiematodon, ambiguus, Hedw.
Stem short; seta 1 inch, with an apophysis peristorme of 16 lanceolate teeth cleft, but apparently cohering by fine trans. verse articulations; operculum rostrate, calyptra; cucullate long beaked; leaves oblong, acuminate, concave margins; entire nerve strong excurrent ; cells large, oblong at the base; crowded above. Hx., Sept., 1880. - Not described in Berkley's book. An European but not a British species. A. H. McKaye, to whom I submitted specimens, diagnosticated it as above. Not described in Sullivant's Icones., and rare in U. S.; only other Canadian locality; so far given, Kent County, N. B., where it was found ly James.

Art. VI.-Art

The rocks t my second pap Tran. 1873-4, (Colchester anc These exposur on the Intercol beautifully ban cally) diorites 1 These exposur

Laurentian (hit
The special $]$ which I intend green gneissoid four inches thicl ing myself regaı which pervade t tation I found th hornblende and : the green associa The magnet rea from the pulveri
The finding of
he British ?ictou, has of the lat-
in British
mg nerved, on granite
art. VI.-Archean Gneisses of the Cobequid Mountains. -Magnetitic.-By Rev. D. Honeyman, D. C. L., F. S. A., \&c.
(Read March 14, 1881.)
The rocks to which attention is directed were first noticed in my second paper on the Geology of the Cobequid Mountains.Tran. 1873-4, Vol. III, page 385 . "South of the County line (Colchester and Cumberland) we have outcrops of the next band. These exposures exhibit much greater variety than was seen on the Intercolonial Railway. In one exposure the strata are beautifully banded. The dark green homogeneous (mjcroscopically) diorites having interbedded red and green gneissoid strata. These exposures show massive homogeneous (m/croscopically)
torme of 16 \rangle fine transcullate long ins; entire ;e; crowded :ley's book. je, to whom ot described ir Canadian t was found

The special part of the rocks described in the quotation to which I intend to direct attention, is the "Interbedded red and green gneissoid strata." Specimens of the " red " from a stratum four inches thick were closely examined with a view to satisfying myself regarding the hornblendic character of the dark lines which pervade the red feldspar (orthoclase). Contrary to expectation I found the lines to consist of magnetite in grains. A little hornblende and mica also occur. Thinner red strata as well as the green associated, have also grains of magnetite in abundance. The magnet readily and beautifully separates the magnetite from the pulverized rock.
The finding of magnetite in the gneisses in situ, led me to
ence between it and the description and plate of the British species in Berkley. My friend, A. H. McKaye, of Pictou, has found C. Americanum, and thinks all our species are of the latter form.
C. dendroides has been described as occurring in British Columbia and eastern slope of Rocky Mits.

$$
\begin{array}{r}
\text { SEct-Acrocarpi. } \\
\text { Ord.-Bartramiei. } \\
\text { Gen.-Bartramia. } \\
\text { Bertramiu, ithyphylla, Brid. }
\end{array}
$$

Leaves from a sheathing base; lanceolate, rigid, strong nerved, stem dichotemous; sporangium oblique. July, 1880; on granite in elevated places, near Halifax.
Ord.-Bryei.

ERRATA.

Page 271: for " microscopically" read " macroscopically." Page 273, 7th line from botte... of page, and in page 275 : for " magnetite" read "magnetyte."

Tiematodon, ambiguus, Hedw.

Stem short; seta 1 inch, with an apophysis peristorme of 16 lanceolate teeth cleft, but apparently cohering by fine transverse articulations; operculum rostrate, calyptra; cucullate long beaked; leaves oblong, acuminate, concave margins; entire nerve strong excurrent ; cells large, oblong at the base ; crowded above. Hx., Sept., 1880. - Not described in Berkley's book. An European but not a British species. A. H. McKaye, to whom I submitted specimens, diagnosticated it as above. Not described in Sullivant's Icones., and rare in U. S.; only other Canadian locality, so far given, Kent County, N. B., where it was found ly James.

Art. VI.-Arr

The rocks t_{1} my second pap Tran. 1873-4, (Colchester anc These exposur on the Intercol beautifully bar cally) diorites $]$ These exposur diorites and ot] last exposures, road, show dar for uncrystalli: characteristical uncrystalline ri the rocks conta crystalline rocl I. C. R., I hav Laurentian (Ar The special which I intend green gneissoid four inches thic ing myself rega which pervade । tation I found t$]$ hornblende and the green associ The magnet re from the pulver The finding of
orme of 16 fine transcullate long ns; entire e; crowded ley's book. 'e, to whom ot described r Canadian was found

Art. VI.-Archean Gneisses of the Cobequid Mountains. -Magnetitic.-By Rev. D. Honeyman, D. C. L., F. S. A., \&c.
(Read March 14, 1881.)
The rocks to which attention is directed were first noticed in my second paper on the Geology of the Cobequid Mountains.Tran. 1873-4, Vol. III, page $38{ }^{\circ}$. "South of the County line (Colchester and Cumberland) we have outcrops of the next band. These exposures exhibit much greater variety than was seen on the Intercolonial Railway. In one exposure the strata are beautifully banded. The dark green homogeneous (mjcroscopically) diorites having interbedded red and green gneissoid strata. These exposures show massive homogeneous (m/croscopically) diorites and others show gneissoid and quartzite strata; and the last exposures, a little below the bridge, on the east side of the road, show dark green diorite, which may readily be mistaken for uncrystalline rock. The hammer, however, shows that it is characteristically hard and crystalline. These are succeeded by uncrystalline rocks on the Intercolonial Railway. The last are the rocks containing the Londonderry Mines iron deposits. The crystalline rocks on the south side of the central band of the I. C. R., I have correlated with the "Lower Arisaig Series"Laurentian (Archæan).
The special part of the rocks described in the quotation to which I intend to direct attention, is the "Interbedded red and green gneissoid strata." Specimens of the "red" from a stratum four inches thick were closely examined with a view to satisfying myself regarding the hornblendic character of the dark lines which pervade the red feldspar (orthoclase). Contrary to expectation I found the lines to consist of magnetite in grains. A little hornblende and mica also occur. Thinner red strata as well as the green associated, have also grains of magnetite in abundance. The magnet readily and beautifully separates the magnetite from the pulverized rock.

The finding of magnetite in the gneisses in situ, led me to
examine the gneissic boulders in my "Boulder Collection." Superficial Geology.-Trans. 1876-7.

In one boulder from the drift of the west side of McNab : Island, Halifax Harbour, I also found grains of magnetite. The specimen has a decided gneissic structure with the lines much contorted, whereas the lines of the specimens already noticed are sub-parallel. The boulder consists of red orthoclase and green hormblende, with a little quartz and mica. Grains of mag. netite are scattered throughout. This boulder is, beyond doubt, from the Cobequid gneisses, having travelled at least 65 miles to reach McNab's Island. The proof of this is to be found in the paper cited.

The occurrence of magnetite in these gneisses enables me to indicate precisely the southern limit of the Archean formation The associated diorites extend southward to the bridge abore Acadia mines. A northern limit point is evidently the north side of Smith's cutting, Wentworth, I. C. R. Here there is a great development of diorites with porphyrites, instead of gneises of the south side. This gives the whole Archæan, according to the I. C. R. plans and section books, before me, a width of five miles.

Other Pre-carboniferou's Formations.

These occur on both sides of the Archean, north and south, in the Intercolonial Railway section.

Although the position of the first on either side and apparent sequence might lead to the supposition that the formations cor respond, lithology makes a decided distinction. As neither is fossiliferous, paleontology lends no aid, pro or con, in the cor relation of the two.

The lithology and sequence of the formation on the north Wentworth, side led me, when I first examined the rocks of the I. C. R. section, to recognise a correspondence with a peculia formation in the Arisaig Mountains, which had caused consider able perplexity on account of its position and peculiarity. occupies an intermediate position between the Archaean, whid I had designated the "Lower Arisaig Series," and the fossilifer ous middle and upper silurian, which I had named the "Uppet

Arisaig Seric formation in Cader Idris and adopted Tirensactions
In my ex: Railway, in the south sid correspondins side. This i Member A, of Geological P 1879-80.
This led me to be of pre-m 1879-80.
While the quid Mountai their relations of the former of sub-crystal
A fossilifero of the Cobequ the "Upper A) the paleeontol strata of "A" crypto-crystall alternating wit
The only otl enything like a magnetgtes anı King's, Annapc But even thes crystalline rock paleentology o Hudson River t intermediate si

Tollection,"
of McNabis netite. The : lines much eady noticel thoclase and rains of may. eyond doubt, east 65 miles be found in enables me to an formation bridge above he north site re is a great of gneisee in, according e, a width
xs.
th and south
and apparent mmations cor As neither is n, in the cor
on the north rocks of the ith a peculia ased considat eculiarity. chean, whic the fossilifet d the "Uppe

Arisaig Series." In my paper on the I. C. R., I compared the formation in question to Professor Ramsay's Snowdon and Cader Idris formation, wl ich it seems strikingly to resemble, and adopted the local designation "Middle Arisaig Series."Trensactions.
In my examination of the geology of the Eastern Extension Railway, in its course through the Marshy Hope, I found that the south side of the mountain range had lithological characters corresponding with the Cobequid series, as well as the northern side. This is followed, too, by the "Upper Arisaig Series," Nember A, of the middle silurian age.-Paper, "Notes on a new Geological Progress Map of Pictou County." - Transactions 1879-80.
This led me to consider the mountain formations thus bounded to be of pre-middle silurian-Lower Silurian Age.-Transactions 1879-80.
While the Arisaig and Marshy Hope Mountains and the Cobequid Mountains thus possess so much in common as to make their relationship unquestionable; the "middle Arisaig series" of the former differs from the latter in having a predominance of sub-crystalline rocks.
A fossiliferous series succeeds both. The fossiliferous series of the Cobequids is much different from the "A " member of the "Upper Arisaig series." Its lithology is different as well as the paleontology. Its strata are clayey and soft, while the strata of "A" are quartzoze-often very hard. Igneous rocks-crypto-crystalline diorites and porphyrites-occur frequently, alternating with soft strata in the one, bat not in the other.
The only other formation occurring in Nova Scotia which has mathing like alternating igneous diorites, are the middle silurian magnetgtes and associate middle and lower silurian strata of King's, Annapolis, and Digby counties.-Vide preceding papers. But even these are much different from the fossiliferous and crystalline rocks of the I. C. R. As I have shown elsewhere the paleontology of the strata in question is of the Cincinnati or Hudson River type, while that of A. was regarded by Salter as intermediate silurian. The Cobequid fossiliferous series thus
seems to make the "Middle Arisaig series" of the Cobequids older than the time to which the Type was referred by the Arisaig and Marshy Hope sequence. The Llandeilo period of British Geology is that to which the supposed equivalent of Prof. Ramsay belongs. The combined width of these two lower silurian series is two miles. The formation on the south side of the Archæan in the Cobequids is that which contains the iron deposits of the Londonderry Mines. This is, as far as known, non-fossiliferous. It has beretofore been correlated with the iron bearing formation of East River, Pictou-middle and upper silurian. There seems to be no sufficient reason why they should not now be so regarded.

The strata of this series have a width of one mile. These are succeeded by strata of the lower and middle carboniferoushaving a width of three miles. This sequence might lead to the inference that the iron bearing formation is of Devonian age. The two mixed crystalline series on the north side of the Archæan, are also succeeded by carboniferous strata, having a width of seventeen miles; extending to Northumberland Strait, On the south side, the Triassic formation succeeds the carboniferous. This extends to Cobequid Bay; a distance of 4 miles.

It is quite evident from the above that sequence here can not be regarded as a proof of age.

MEASUREMENTS.

The distance between the Cobequid Bay, N., and Northumberland Strait, N., is. 32 miles.
The Triassic extends................................... 4 "
Carboniferous . 3 "
Upper and Middle Silurian 1 "
Archæan 5
Lower Silurian 2 "
Carboniferous 17 "

Magnetites.

In a collection of rock and mineral specimens, received at the Provincial Museum from the Rev. Donald Sutherland, of Gaba-

Cobequids red by the lo period of quivalent of e two lower ;outh side of ins the iron r as known, dd with the e and upper they should

These are soniferoust lead to the evonian age. side of the a, having a land Strait. the carbon. of 4 miles. ice here can

1d
.. 32 miles.
.. 4 "
.. 3 "
.. 1 "
.
.. 5
.. 2 "
.. 17
seived at the nd, of Gaba.
${ }_{r}$ ris, Cape Breton, is one specimen which seems to merit special notice.
The weight of the specimen is $2 \frac{\mathrm{lb}}{} \mathrm{lbs}$. It is an ore of iron, alled by Dana Magnetite. It very much resembles some of the magnetites of Nictaux. It is evidently part of a bed in metamorphic rocks. The rocks of the region where it is said to have been found are of lower silurian and pre-silurian age (Archæan).
The specific gravity of the Cape Breton magnetite is....4.3
That of Moose River. 3.6
Of Blomidon and Extension rocks. 5.0
The Nictaux and Moose River magnetites are of middle silurian age ; of Blomidon, post triassic.

Art. VII.-On the Dwellings of the Muskrat and Beaver of Nova Scotia. By J. Bervard Gilpin, A.B., M.D., M.R.C.S. (Read April 11, 1881.)
The constructive mammals are very few, throughout the world. To say nothing of the burrowers which construct winding holes, or galleries by digging beneath the earth, the most part, are content for a home with what nature gives them ; a hollow tree, a den amongst rocks, or a form hollowed by the possessor itself, from the thick grass, is sufficient for their nests, from the strong lion down to the timid hare. And so it was from ancient times, as the bones of the lion and cave bear wrapt with the gnawed relies of their victim, in one stoney mantle, still mark the feasting spot and home of their all but mythic forms. In opposition to this, our Province of Nova Scotia possesses two mammals, each of whom construct dome houses, standing in and out the rater still, in our Alpine lakes, and broken streamlets, and which now unseen except by the woodsman, the hunter or Indian, may be readily visited and studied by the naturalist and student. I have thought the members of the Institute would be interested in this paper, in which I have given a few not new facts, but facts old enough, but looked at with new eyes and in perhaps new combinations of seene and climate. The muskrat, (Fiber
zibethicus, Lim.,) is very common over the whole northern part of North America. Formerly he was classed with the Beaver, but lately more justly, with the sub-family Arvicolinæ, or field rat. Still his habits, his tail, and his hind foot so allied to the lobipes in the class of birds, and webbed by ciliated hairs, causes him to stand prominently forward in any classification. But it is of his building habits, I wish this paper to be. In our Province they are divided into those who live in holes, and those who build. The far greater number live in holes; not from any difference in habit, or form, or species, which I could discover, but from an instinctive adaptation of external circumstances. In rumning streams connected with our estuaries, they burrow holes in the muddy sides of the stream, the mouths of which are submerged at high tide, and probably bared at ebb. These burrows must slant upwards, so that the extreme end should lie above high-water mark, and here he rudely constructs his sleeping form. lining it with dried grass. The tides are too rapid, and the difference of level between high-water and ebb, too far as well as the angle of the bank-slope too great for him to found a house. Hence though he abounds any where along the deep estuaiies of the Province connected with Bay of Fundy tides, his house is rarely seen. A few years ago one stood solitary in Steel's pond, in the suburbs of Halifax, whilst a pair had sought refuge in Griffin's pond on the Halifax common, making no houses, but living in the drains and giving amusement to the many loiterers there about, in watching their fluvial gambols, ending with a dive, preceded by a splash of water caused by a sharp slap of their tail upon its surface. Here we had the dome builders. and the dwellers in holes close before us for our study. I think I saw a dome near Marshal's on the second Dartmouth lake, and again one at Yarmouth. But in all the wide Annapolis valley where they abound, I know none save in Winslow's lake, on the top of the north mountain, as that huge barrier of Triassic trap elevated to about six hundred feet, and bounding the whole north - west or Bay of Fundy edge of our Province, is called. There is a narrow valley in the centre ridge of this whole formation, with hills on either side ; a few
lakes or rather rains of the adja four miles from or one hundred lightly fringed 1 raved with rus with rushes, af lave colonized the hills betwix lis rest there, ar the gaudy purp roung, always d boy from the to lis quiet. We , anoe over the erling its wate lones ; about th tanding amongs ones from two leet diameter, for is inches, conic contained from grass they were at the lake botto lee shores of the maters by the aut it resolved itself three inches long about three inche for me, as (Erioca son grounded u wy son with his about a foot, we of the muskrat, ize. It looked i ing squirrel founc moss gathered in
hern part te Beaver, $\mathfrak{æ}$, or field ied to the irs, causes n. But it n our Prothose who n any difcover, but ances. In trow holes h are sube burrows lie above ping form, d the difas well as d a house. stuaiics of house is el's pond, : refuge in ouses, but y loiterers ng with a rp slap of ilders. and

I think juth lake Annapolis Winslow's ge barrier nd boundce of our le centre de : a few
lakes or rather large ponds naturally are formed here from the ains of the adjacent hills, one of which is in Winslow's lake, about four miles from Digly town. This alpine lakelet of about eighty or one hundred acres, hidden by sterile hills of columnar trap, lightly fringed by spruce, fir and pine, scrubly bushes, its shores paved with rugged trap boulders, and its clear waters fringed rith rushes, affords a secluded home for the muskrats which lave colonized it for years. A wounded scoter unable to rise the hills betwixt the Bay of Fundy and the Digby basin finds lis rest there, and an annual flock of spirit ducks (B. albeole.) the gaudy purple male, dusky female with obscurely marked roung, always during autumn make a halt there. Save an idle loy from the town, or prying naturalist added, no others disturb lis quict. We visited the lake in Nov. 11th, 1880, conveying a anoe over the mountain with us; a cold November wind was enling its waters into tiny wavelets, and we soon reached their lomes ; about twenty yards from shore, in two feet water, and sanding amongst the thick rushes and tall grasses. We found ones from two and a half to three feet high, and about four feet diameter, formed of sods of water grass in masses of five or is inches, conical heaps of sodded grass. The lake may have contained from twenty-five to thirty within its borders. The grass they were constructed from was very abundant, growing at the lake bottom, and spread in heaps and festoons, along the le shores of the lake, being torn by the roots from the shallow raters by the autumn gales. Separated from its sods and wreaths, it resolved itself into distinct rootlets, very fibrous and about three inches long, surmounted by a tussock of grass with leaves about three inches in length. My friend Dr. Somers classified it for me, as (Eriocaulon septangulare Pipeworth). Our canoe was son grounded upon one of these grass made conical heaps, and my son with his paddle tore off its head. After tearing away about a foot, we came to a cavity roughly formed by the body of the muskrat, lined with grass, and scarcely double his own ize. It looked in its careless roughness like the nest of the flying squirrel found often in the interior of a mass of grasses and moss gathered in the forks of a pine tree. Proceeding in our de-

278

struction, we came to a hole on one side, plunging the paddle into which, we soon came to the waters beneath. Here now was the whole design complete; a dry bed about a foot and a-half above the surface of the lake, covered by about a foot of roof, and having a submarine approach from below, into which the owner entered by diving. The whole cone was solidly constructed from the bottom of the lake, leaving only a narrow hole from the bottom to the nest. The inmate must breathe through the loose top of the cone, as it stands surrounded by water. In another larger cone we pulled to pieces, we found two cavities unconnected with each other, but each having a separate passage to the water below, although the majority were symmetrically conical, yet we found two uneven, one with a perpendicular side, most probably unfinished, as they had not done building for the winter. In building they must place their material on the bottom of the lake, where it soon becomes water sodden, and having a passage open, built up above the surface of the water. They build at night and very rapidly, as one is surprised at seeing cones standing out of the water where none were the day before. November finds them well housed for the winter, and as the ice is never frozen so soon where rushes grow, they no doubt can keep water holes open around them during December, but towards March their houses-the ice often at that period attaining a thickness of two feet and a-half,-are covered by at least two feet of snow. We must suppose that during this period they hybernate as it is impossible for them to reach the surface from beneath the ice; towards the end of April the spring freshets elevate and sweep the ice to the lee side of the lake, carrying with it all their houses, relegating them back to their summer holes, where they breed and raise their young-remaining all summer. Other climates, the warmer ones, where he is said to be common, must modify all his habits, perhaps his building instincts; but in our Nova Scotia variety, we find him almost as marine an animal as the seal, never seeking the land for choice, save for rest, fairly holding his own as the country becomes populous, and getting his dry nest above water, by the strictest and most instinctive means.

Our other constructive mammal, the historical beaver, differs
widely from 1 powerful teet ger and mor constructs on across. thus g apart from th have come d Yet no one them as they where the labc few, but to con tion, and the \dot{d} least, equal, if to different ob: pure thought.
streams, narrov bottoms, or mu Scotia, is worth canoe over a s Sissiboo river, s the stream tied and almost imm to the stream. flattened cone li in endless conf side, the upper r neath the water. but still thatche water so as to m whole was built , it being carried white and peeled like a cart of rub and the canoe day and moss 1 which we opened through two feet mosses; we then ci
the paddle 'e now was and a-half not of roof, which the ,lidly conarrow hole he through water. In wo cavities ite passage metrically icular side, ng for the on the botdden, and the water. sed at seee the day vinter, and w, they no December, that period 'ered by at uring this n to reach d of April te lee side tting them raise their le warmer his habits, ia variety, ever seekhis own as nest above
ver, differs
widely from the muskrat. A far more powerful frame, armed by powerful teeth, more terrestrial in its habits, and constructing larger and more durable houses, and of stronger materials. He constructs on running streams, which he has already dammed across. thus giving to his work a perpetual bead of water. It is apart from this paper to describe these dams, accounts of which have come down to us clothed with magnificent exaggeration. Yet no one can stand over and inspect the workman of them as they appear on the small streams of our Province, where the labor is little and the natural obstacles of water flow few, but to confess that the simplest truth is above all exaggeration, and the design of instinct labor, or the appearance of it at least, equal, if not beyond, that adaptation of labor and material to different obstacles to be overcoine, that is supposed belong to pure thought. The adaptation of beaver work to broad running streams, narrow streamlets and sluggish water courses, to rocky bottoms, or mud-timbered banks, even still remaining in N . Scotia, is worthy of a paper by itself. Sweeping softly in your canoe over a slight expanse of the many head waters of the Sissiboo river, slowly falling towards the Bay of Fundy, you find the stream tied by a beaver dam some half mile ahead of you, and almost immediately you pass a grey granite rock sloping into the stream. There upon the down stream slope you find a very flattened cone like an inverted saucer of white and peeled sticks in endless confusion, thatching its shallow convex roof. One side, the upper rests upon the grey rock, the other descends beneath the water. This one had two processes, slightly elevated but still thatched, dividing, as it were, the mass entering the mater so as to make two ridges running into the stream. The whole was built on the down stream slope of the rock to prevent it being carried away by the ice. Were it not for the milkwhite and peeled sticks standing everywhere outwards, it looked like a cart of rubbish shot down a slope. A sweep of the paddle and the canoe grated upon the sticks, and we saw grasses, day and moss betwixt their interstices. In another dome Which we opened from the top by our axes and hands, we cut through two feet of layers of clay, dried hay, a few stones and mosses; we then came to a narrow, sloping shelf edge, around a
central hole. The angle of slope was about fifteen degrees, and about one foot from the water. It was neatly lined with grass, far more neatly than the nest of the muskrat, and the projecting ends of the white sticks into the sides were neatly gnawed smooth. Through the central hole we could see the water flowing beneath. The upper part of the shelf, near the sides of the dome, was much drier and better lined than the edge near the water, which seemed wet and damp. The galleries to the water in this one were two, and though we did not discover them, there must have been towards the rock side air-holes, as no air could come through the two feet of mud thatch. The height of the structure was about three feet; the long diameter about twelve, and the short one about six feet.

Another which I opened in Annapolis County in the head waters of the Allen river, was somewhat larger, and gave greater trouble in breaking open. I put my feet through the opening and stood upon the floor of the internal nest. It seemed so solid beneath me that I supposed it rested partly upon the shelving rock. The structure, both of these domes and the muskrats, will be understood far easier by the sketches and sections I show you. They differ in some respects from the description of Hearne, a most accurate describer, and others. Hearne speaks of them as eight feet in thickness and composed of many cavities, added afterwards to the central nest with which they communicated ; other writers speak of double stories. Without for a moment disbelieving their accounts of buildings, modified by differences of climate, and of seclusion, found near the Polar circle, I can only describe the less pretentious dwellings of our own Province, where numbers are less, and complete solitude, bringing with its wants a greater need of concealment, is never found. On the bottom of the stream, near the houses, are narrow and deep grooves in the mud usually formed, these connect with the submarine water galleries. These marine trenches serve, when the water is low upon the stream, for the beavers to swim in without exposing themselves above water, and are, no doubt, caused by their excavating the mud and water grasses in building their domes, They are also very well seen about the muskrat houses. The Indians tell us that their trenches as well as the galleries on the way
to their nests trees, gnawed store-house of Indeed, the ar but of the stic loosely around assertions. T greens of the lacing, joined dender barrier: pet, and the r whole, as it w Our Indians tel all trees of the poplar wood se lave seen very roots of the ye] foand growing leaver for its s. rorking by niz b known only b houses he constr for two or three armills erected vent signs for hil cuntry for long. darming home f ralue. I have kı that spoilt his wa lis meadows, and the white-peeled, dis log-rafts float lave him long wit thatch from him, : Indians, for so ma they have become hat is, no skins a 840, old hunter. h grass, ojecting gnawed ter flowis of the near the he water er them, s, as no se height er about
id waters ar trouble and stood 1 beneath ock. The be underu. They ie, a most a as eight led aftered; other ent disbeerences of I can only nce, where its wants bottom of Jves in the ine water ater is low t exposing 1 by their neir domes. s. The Inon the way
to their nests inside are filled with sticks and twigs of various trees, gnawed very short, and dragged below the surface as a store-house of food for the winter, the beavers eating the bark. Indeed, the appearance not only of the thatch of their houses, but of the sticks and twigs of the entire dam, and others lying loosely around, all nicely peeled, well prove the truth of these assertions. Their cream-like color contrasted with the dark greens of the waving grasses, as well as their inextricable interlacing, joined to the trill of the falling waters, through their dender barriers, the lilly pads, coating the stream like a rich carpet, and the back-ground of rugged spruce firs wrapping the whole, as it were, in a frame, form a sylvan scene few forget. Our Indians tell us each house contains about five or six inmates; all trees of the forest serve them in their barks as food, but the poplar wood seem the favorite rather than birches or maples. I lave seen very large oaks stumped by them, but it is rare. The roots of the yellow water lily are a very favorite food, and are found growing in abundance around their houses. Though the leaver for its size is an extraordinarily cover-keeping animal, morking by night, never seen by fair day-light, his presence bknown only by his works; the tree-stumps he leaves, or the bouses he constructs, or his dams, sometimes sending back water for two or three miles, and cutting off working water from small armills erected in the woods. It is impossible from these promipent signs for him to retain his presence even in a half cultivated ountry for long. Indian hunters and the idlers will invade his darming home for the skin he wears, now very much fallen in ralue. I have known the indignant millwright tear up the dam that spoilt his water; a set tler waging war with him for flooding lis meadows, and even the lumbermen sweep away with axes, the white-peeled, beautifully interlaced brush weir that stayed His \log-rafts floating down to salt tide. Hence it is we will not are him long with us ; civilization will sweep his wood-gnawed fatch from him, as well as the less-laboured bark wigwam of the Inlians, for so many years his idle neighbors. For many years they have become extinct from the eastern parts of the Province, hat is, no skins are brought to market from these parts. In $18+0$, old hunter Hardwicke was supposed to have trapped the

282

last beaver in Annapolis County. A few years afterwards they recuperated themselves so that there were fifty skins brought to market during one year from one section of country alone, and within a range of twelve miles from Annapolis Royal I visited five of these stations in more or less stages of repair or desertion. They are now diminishing again, and notwithstanding their resolute attempt of holding their own, must inevitably fade away before that army of lumberers who invade their silent homes with crash of axe and loud cry to toiling cattle, and who, worse than all, by artificial dams, alter the level of the inland lakes, so that no sheet of water of any magnitude may be found that has not its waters deepened by dams to create a higher head, which is used at stated times in making artificial freshets, carrying with them the stores of lumber to the sea.

In this paper I have endeavored to put before you the dwellings of our two constructive mammals, the first of aquatic grasses alone, yet a beautiful example of instinctive labour, formed of the simplest materials and nearest at hand, regular cones-reminding us, with their submarine entrance, of the ancient lake dwellings of a prehistoric race, or of the conical ant hills of Africa, and certainly more perfect constructions than those still inhabited by the degraded Melanasian in Australia. The other constructions are of a less perishable nature, and with their dams constructed of timber, oftentimes nearly three feet in diameter, and varied so often by external circumstances that we must allow instinctive, in some cases, to precede skilled labour. No one coming upon the beaver dams still remaining in our forests, seeing heavy timbers felled by gnawing, to fall at a certain point; seeing upright posts standing in the running stream; seeing parallel logs gnawed to certain lengths and interlaced between these uprights, and the boles of living trees on the stream sides; and again, seeing the top horizontal bars loaded with stone to prevent them from floating, but must admit the narrow margin betwixt instinct and reason; and yet I give all these facts as to be seen by the idlers on the stream flowing down the Valley of Annapolis, N. Scotia.

Art. VIII.-
 GILPIN,

We cannc Fundy, but : turers was d its tides and
We know, the early par by numerous and the hope covery of mi
In the pat DeMonts, he mines of gold, paid in royalty Champdor vis value, they for amethyst. A and presented and set in som some of these and they form fondly dreamed on the Americe During the s mineralogist, aı probably at Cal Lescharbot $\mathbf{f}_{\mathbf{c}}$ which was smel casite of copper native copper of stone," and ado which do say tl mine, which is \mathbf{v} Sir Humphrey
ards they rought to lone, and I visited or deseristanding ;ably fade eir silent and who, he inland be found ;her head, ets, carry-
the dweltic grasses zed of the -remindlake dwelof Africa, I inhabited construcheir dams 1 diameter, t we must ur. No one or forests, , a certain ream; seeed between ream sides; th stone to oov margin facts as to e Valley of

Art. VIII.-The Trap Minerals of Nova Scotia. By Edwin Gilpin, A. M., F. G. S., Government Inspector of Mines.
(Rend March 7th, 1881.)
We cannot now say positively who first sailed the Bay of Fundy, but as soon as the attention of the early European adventurers was directed to America we find numerous references to its tides and treasures.
We know, however, that for nearly one hundred years before the early part of the seventeenth century, its shores were visited by numerous daring sailors lured by the charm of the unknown, and the hope that they might acquire fortunes by a lucky discovery of mines of gold and silver.

In the patent granted by King Henry of France in 1603 to DeMonts, he is directed to carefully seek and mark all sorts of mines of gold, silver and copper, the tenth part of which was to be paid in royalty to the King. In 1604, DeMonts, Pontrincourt and Champdor visited Minas, and among other treasures deemed of value, they found at Blomidon great store of jasper, agate and amethyst. A number of these amethysts were carried to France and presented to the King, who ordered the choicest to be cut and set in some of the state crowns and swords. I believe that some of these jewels are still to be seen in the Paris museums, and they form an interesting memorial of those bold spirits who fondly dreamed that they were destined to found a second France on the American continent.
During the same day Champdor visited St. Mary's Bay with a mineralogist, and it is related that they found "pure copper," probably at Cape D'or.
Lescharbot found in 1606 "steel" in the rocks near St. John, which was smelted and made into knives. He also found "marcasite of copper" at LaHave. Writing in 1609, he speaks of the native copper of the Bay of Fundy as being "very pure in the stone," and adds, "many goldsmiths have seen it in France, which do say that under the copper mine there might be a gold mine, which is very probable."

Sir Humphrey Gilbert and others among the more celebrated
of the early sailors, commonly carried in their ships a few "rare refiners of mines."

Passing from these romantic explorers, whose dreams were of empires and gold mines, forts and Governorships, we cone down to those who have studied the trap minerals in our own days. Among those may be mentioned Titus Smith, whose views on geological subjects were, for his day, sound and well sustained, although the modern geologist congratulates himself that his beloved study has passed such a rudimentary stage. In 1833, Messrs. Jackson and Alger visited the Bay of Fundy, and collected immense quantities of the trap minerals.

The late Dr. How and Dr. Webster also devoted much attention to this subject, and we are indebted to the former gentleman for many valuable analyses of these minerals and for the discovery of several new species. The labours of the latter are best known to you by the beautiful Webster collection now in the Provincial Museum, and by many specimens presented by him to the Museum of King's College. The study of these minerals also claims its, list of martyrs, for a Professor of Acadia, with several students, was drowned in exploring the cliffs of Blomidon.

Their description of the Bay of Fundy minerals has directed the attention of mineralogists to the rich harvests its shore presents, and now there are few cabinets in America or Europa which do not contain specimens from its basaltic cliffs.

I purpose this evening to lay before you a brief outline of the process of formation of the measures related to these minerals, and to give the various analyses, etc., that I have been able to collect from the writings of Dawson, Dana, How and others. am aware that my list cannot be considered complete, but will feel that the work has not been thrown away if others who have been enabled to devote more time to the study of these interesting minerals will kindly supply the deficiencies of my paper.

I may say to you that a visit to the trap districts of the Bay of Fundy will amply repay the lover of picturesque scenery. From Economy to Five Islands, Parrsboro and Cape D'or, there are presented continuous variations of fertile valleys and rugged cliffs. The shore, composed of strata varying from the almost incoherent triassic sandstones to the granite-like columnart
basalt, has bold outline Those wh cliffs of Blo of Cape Spl who attemp one of the 1 coast, from $]$
The narro Islands, and named by a and embowe: ing in its sh encireling hil the painter's Nowhere o before the sot ocean, burst v they encounte frequently the for several day of his enforce ing in clouds o

The geology triassic and th former as quite sequence. We triassic strata c closely resembli The detrition effected by tides that now excit, away by these t the valleys of thi and at numerous. manner of their foing on outsic exposed, are aln
a few " rare
ms were of we come in our own rhose views 1 sustained, If that his

In 1833 , and collec-
eh attention ntleman for re discovery best known e Provincial the NIuseum ;o claims its ral students,
has directed s shore preor Europe Ps. thline of the ese minerals, been able to ad others. ete, but will ors who have rese interestny paper. of the Bay of nery. From or, there are and rugged a the almost ke columnar
basalt, has been worn by the fierce tides into every curve and bold outline which can charm the artist's eye.

Those who have wandered under the beetling, forest-crowned cliffs of Blomidon, and watched the tides foaming in the ledges of Cape Split, and bearing in endless circles the luckless coaster who attempts the passage without favoring winds, have enjoyed one of the boldest and most picturesque views on the Atlantic coast, from Florida to the Labradors.

The narrow entrance to Annapolis Basin, the passage of the Islands, and the beautiful little cove that should have been named by a fairy, the site of an ancient crater, adorned by a lake and embowered in mingling verdure of field and forest, luxuriating in its shelter from every rude blast under the protection of encircling hills, all form landscapes which would amply repay the painter's art.

Nowhere on the Atlantic coast do the waves, accumulating before the southerly gales on their unimpeded march across the ocean, burst with more fury and afford a nobler sight than when they encounter the precipitous clifts of Briar Island. Not unfrequently they maintain so steadily their furious attacks that for several days the unfortunate traseller can so'ace the tedium of his enforced detention only by watching their masses scattering in clouds of driving spray.
The geology of Nova Scotia presents a great void between the triassic and the boulder clays, so that here we look upon the former as quite a youthful representative of the long geological sequence. We learn that at the time when the deposition of the triassic strata commenced the Bay of Fundy presented an outline closely resembling that of the historical era.
The detrition of the carboniferoas rocks surrounding it was effected by tides of great force, not, however, so powerful as those that now excite our curiosity. The fine sand and mud worn away by these tides was deposited in beds which we now see in the valleys of the Annapolis, Cornwallis, Avon and Salmon rivers, and at numerous other points along both sides of the Bay. The manner of their deposition was closely analogous to that now going on outside our dyked lands. These measures, as now exposed, are almost entirely composed of reddish sandstones,
with layers having greenish and purple tints, and have in the lower part beds of conglomerate. The sandstones are soft and not well adapted for the builder's art, although they are sometimes quarried for hearth and chimney stones.

They are frequently traversed by fissures filled with fibrous and translucent gypsum and calcspar, and have, as a rule, a calcareous cement. The presence of these salts of lime is readily accounted for when their abundance in the Lower Carboniferous measures is remembered ; their particles carried into the newly formed beds have been dissolved by water and concentrated as veins and masses in the fissures and open spaces.

The soil of these sandstones, enriched by these two fertilisers, and the decomposed ingredients of the volcanic material about to be described, is of an excellent farming quality, so that Cornwallis and the valley of the Annapolis river are justly called the " Garden of Nova Scotia."

While these beds were forming, or shortly after their deposition, great subaqueous outbursts of volcanoes occurred. Enormous masses of scoriæ and dust were poured out and settled in extensive beds; these were succeeded by, or accompanied rivers of lava which rapidly consolidated into the basaltic masses now presented to our view. The history of the succeeding oscillations of level of the trias and its associated trap is not yet ascertained. The denudation has doubtless been very great, and both sandstone and trap have apparently once extended a long distance south of their present boundaries. The foci of these outbursts are still unknown, no systematic examination having yet been made of the courses of the trap, or of the effect of the tides on the submarine beds of scoriæ, etc., while they remained unconsolidated.

The most striking section of these measures can be seen at Blomidon. Here the sandstones dip at an easy angle to the north-west, and are succeeded by an immense bed of amygdaloidal trap, generally of a greyish color, but with tints of red. This bed is full of cavities and fissures holding the minerals to be noticed further on. In places the lower part of the amygdaloid appears to be very intimately mixed with sand, as if it had settled in the unconsolidated strata forming at the moment of
the volcanic dark, roughly On the nort appear on the finally attain a hardness has I indications of sandstone are expected, the f As the tides amygdaloid and along the shore noble cliff, 400 winter, and maı lide its losses, p sene hardly to There is a stre and that which (ered to be of Tri of one species al tially of Labrado magnetic oxide o: could exactly reI rock.
We may first n under considerati

Magnetite.-Th aunount varying i pasing a magnet anong which maj and Blomidon, it i bickness, frequen ther forms of sil
tequently of a ver nalysis of a samp
ave in the e soft and are some-
ith fibrous rule, a calis readily boniferous the newly intrated as
fertilisers, rial about that Corn. called the
ıeir deposiEnormons d in extend rivens of nasses now oscillations iscertained. both sandIg distance e outbursts g yet been tides on the unconsoli-
be seen at agle to the of amygdaints of red. nerals to be amygdaloid s if it had moment of
the volcanic outbursts. Above this comes a mass of compact dark, roughly columnar trap.
On the north shore of the Cape of Blomidon the sandstones appear on the beach; as they gradually rise to the south they finally attain a height equal to that of the trap, which by its hardness has preserved them from being washed away. Similar indications of the conformability of the trap, amygdaloid and sandstone are presented at other points, although, as might be expected, the former frequently alternate.
As the tides wear away the sandstones immense masses of the amygdaloid and trap, loosened by the rain and frost, are spread along the shore, and open a rich field to the mineralogist. This noble cliff, 400 feet in height, torn by the storms and frosts of winter, and mantled by trees and shrubs which vainly try to lide its losses, presents, with its dark walls and waving woods, a scene hardly to be expected in our usually tame landscapes.
There is a strong resemblance between the Nova Scotia trap and that which occurs along the Atlantic coast, in strata considered to be of Triassic age, as far as South Carolina. All being ff one species and forming varieties of dolerite made up essentially of Labradorite and Pyroxene, with more or less disseminated magnetic oxide of iron, etc. No single analysis or set of analyses could exactly represent the composition of this great mass of rock.
We may first notice the economic minerals found in the rock inder consideration :-

IRON ORES.

Magnetite.-This ore is frequently present in the trap, the mount varying in different localities, and may be detected by pasing a magnet through the powdered rock. At certain points, mong which may be mentioned Digby Neck, St. Mary's Bay and Blomidon, it is concentrated in veins up to a few inches in dickness, frequently associated with amethystine quartz and ther forms of silica. The composition of this ore, which is drquently of a very high grade, will appear from the following malysis of a sample from the North Mountain :

$$
\begin{array}{llr}
\text { Quartz . } & 4.94 \\
\text { Magnesia } & 25.19 \\
\text { Oxygen. } & 65.03 \\
\text { Metallic iron } & \\
& & \\
& & 100.00
\end{array}
$$

Red Hematite.-This occurs in a similar manner as a micaceous ore at many points on Digby Neck and at Cape D'Or, frequently as brilliant crystalline plates in a quartzose matrix. At some points in Hants County it is found in crystals, apparently showing its derivation from Magnetite.

Titaniferous Iron Oie.-This occurs as a sand on the north shore of St. Mary's Bay, apparently concentrated from the trap hills.

The above ores of iron, although of excellent quality, have nowhere been found to exist in quantities which will permit of systematic mining.

Copper.-As already mentioned, this metal is found native at Cape D'Or, Parrsboro', Five Islands and Margaretville, in irregrlar masses up to 50 lbs . in weight. It presents itself imbedded in the trap, or associated with jasper, zeolites, red copper oxide and carbonate. Operations have been frequently undertaken inf the hope of finding deposits suitable for working, but hitherto without success. The occurrence of large and valuable deposite of copper in the Lake Superior trap has naturally raised expec tations of similar treasures in this Province. The copper whid appears to be derived from the strata with which the trap is as sociated is not so abundant in the containing measures here as Lake Superior, and both trap and associated strata are of differen age.

So long, however, as the copper continues to be found in plate masses, etc., attempts will be renewed to prove their vall and it is quite within the possibilities that valuable amour may be found. Any development in this district will p bably be based on a discovery of large masses or layers of rock containing the copper disseminated in minute grains.
me localities or Lalf of one per ing and washir directed to our t present under th Dr. Dawson m Indian Point. Antimony. I ille in small qui Our attention as whose preser male our trap ce Wrsore in India is minerals.
These belong sygen compounc mpounds of th inns of the silica 0xides of the (Quertz. The mo groups. The lie second the ma First group. 1 mp lining cavitie wals.
Amethyst. Thi ate, and in the c rith magnetite, in fom a faint viole we to the presenc bence of this ele rise from minute Smoky quartz or athe trap, but th te granite of Par Some of the qua
a micaceous r, frequently x. At some rently show. on the north rom the trap fuality, have ill permit of and native at lle, in irreguselt imbedded copper oxide indertaken is but hithert uable deposit raised expeo copper whic the trap is a tres here as ure of differen
ound in plate e their valu abale amoun trict will pt r layers of ate grains.
me localities on Lake Superior, I believe that rock holding onehalf of one per cent. of copper is successfully treated by stamping and washing. I am not aware that attention has been lirected to our trap with a view of determining if the metal be present under these conditions.
Dr. Dawson mentions the gray sulphuer of copper as occurring at Indian Point.
Antimony. The sulphide of this metal occurs at Margaretfille in small quantities in trap.
Our attention is now more partcularly directed to those mineris whose presence in great numbers and beautiful forms has wade our trap celebrated among mineralogists. It is stated that Nysore in India alone rivals it in the variety and abundance of its minerals.
These belong to the Fifth division of Dana's mineralogyasgen compounds-and may be subdivided into Binary oxygen mounds of the carbon-silicon group-and various subdiviions of the silicate section of the Ternary oxygen compounds. 0xides of the Carbon Silicon group-series 2.
Quertz. The varieties of this mineral may be divided into ** groups. The first comprising all ordinary vitreous quartz, he second the massive flint-like varieties.
First group. Rock crystal. This form frequently occurs in map lining cavities, by itself, or forming a basis for other miperals.
Amethyst. This is found at many places both in the massive rate, and in the characteristic crystals. It is frequently found rith magnetite, in some cases penetrating it. Its colour varies fom a faint violet to deep purple, and is generally considered we to the presence of manganese. But analyses have shown the bsence of this element, and the colour has been considered to wise from minute qualities of compounds of iron and soda.
Smoky quartz or Cairngorm stone. This occurs with amethyst athe trap, but the largest and best known specimens are from te granite of Paradise, Annapolis County.
Some of the quartz crystals of Nova Scotia are said to show
cavities holding liquids, probably water holding some mineral ins solution, or some hydrocarbon compound.

Among the second group may be mentioned-Chelcelony, This is a wax-like translucent variety of quartz, frequently found filling fissures in the trap and in botryoidal forms, and containing minute cavities lined by pellucid quartz crystals of almost microscopic size. When of a clear red colour it is called Carnelian. It is also found gray, brown and faint shades of blue and green, and is presented under various names, such as Plasma, Prase, Heliotrope, etc.

In Pliny's time, the Jasper included all these varieties excepting Cannelian.

Agate. This may be considered a variegated chalcedony, the colours being banded, clouded, or due to visible impurities, and are caused by traces of organic matter, iron, manganese, etc. Specimens of great beauty are found at nearly all points along the Bay shore, and sometimes weigh as much as 100 lbs . It is fre. quently noticed in little veins and strings.

Onyx and Jasper also occur abundantly, beside many varieties arising from mixtures of these substances.

Opul. This variety of quartz is a form of lower hardness, leseer specific gravity, and not possessed of capability of crystallization. The precious opal has been occasionally found here, but of small size; When of good colour it forms a valuable jem.

Cucholong is a softer variety frequently occurring as a lining of cavities. Semi or common opal is also frequently met. common form of the opal is that of the accumulation and pa tial consolidation by resolution of the silicious shells of infusoria which consist essentially of opal silica.

Among the Hydrous Silicates we may mention first the Pecto lite group of the Bisilicates, represented by-

Laumontite. This mineral is generally flesh coloured, soral times red, and both massive and crystalline. It is met here Peter's Point, Port George, Long Point, and at Margaretvil coloured green by copper: Port George :

Gyrolite. Fou ut George. Tl Si. 0. - Al $51 \cdot 90-{ }_{1}^{2}$ Centrallasite. curs with Cyaı liated and lamı stre.
The following Si. 0. -Al $1 \cdot 8_{6}^{2}-1 \cdot \frac{2}{1}$. Cymolite. Am occurs at Blach by Dr. How :

Si. 0 -

$74 \cdot 15$ 7252 — Dana remarks *impure with sil Louisite. This, 4. may be insert the vitreous lustr The following ar Si 0—Al 0-F $574-{ }^{2} \cdot 57$ — It is apparently werals, and may Chirysocolla. A asionally found : The Unisilicutes wite groups,

PIN.
te mineral ins
-Chelcetony. z, frequently al forms, and z crystals of ir it is called nt shades of ames, such as ieties excerth
alcedony, the apurities, and ese, etc. Speints along the bs. It is free any varicties ardness, lesier of crystallizasund here, bu luable jem. ing as a lining tly met. ation and p a ls of infusoria first the Pecto soloured, soin is met hera Margaret

The following analysis is by Dr. How, of a specimen from Port George :

$$
\begin{aligned}
& \mathrm{Si} 0 .-\mathrm{Al} 0 .-\mathrm{Ca} 0 .-\mathrm{H} 0 . \\
& 57 \cdot 43-21_{2} \cdot 64-12 \cdot 07-1526 .
\end{aligned}
$$

Gyrolite. Found on apophyllite between Margaretville and Port George. The following is an analysis of it :

Si. O. - Al 0. - Mg. 0. - Ca. $0-\mathrm{K} 0-\mathrm{H} 0$ $51 \cdot 90-{ }^{2} \cdot 27$ 3 $\quad .08-29 \cdot 95-1 \cdot{ }^{3} 0-{ }^{2}{ }^{2} \cdot 05$
Centrallasite. This mineral, regarded as a variety of Okenite, curs with Cyanolite and Cerinite in amygdaloid. It is of a aliated and lamellar form and of a whitish colour with pearly stre.
The following is the composition of a Nova Scotia specimen:

Cymolite. Amorphous of a bluish gray colour, and little lustre -octurs at Black Rock and vicinity. The following analyses by Dr. How :

$$
\begin{aligned}
& \text { Si. } 0-\mathrm{Al} 0-\mathrm{Ca} 0-\mathrm{K} 0-\mathrm{H} 0 \\
& 74 \cdot 1^{2}-{ }^{2} 8_{4}^{3}-17.52-{ }^{2} 53-7 \cdot 39 \\
& 7252-11.24-18.19-61-6.91
\end{aligned}
$$

Dana remarks that it is probably the same as Centrallasite *impure with silica, or it is the same mineral with Chalcedony. Lovisite. This, the latest addition to our list of trap mine\& may be inserted here. Its colour is leek green, translucent *h vitreous lustre.
The following analysis is by Mr. H. Louis:
Si 0-Al 0-Fe 0-Ca 0-Mg 0-K 0- Na 0-H 0 9974- ${ }^{2} \cdot 57-1 \cdot 25-17 \cdot 27-38-3^{2} 38-3.38 \sim^{2} \cdot 08-{ }^{2} 2 \cdot 96$
It is apparently intermediate between the two last named arrals, and may perhaps be considered a variety of Okenite.
Orrysocolla. A silicate of copper holding water and iron is asionally found as an incrustation.
The Unisilicutes are represented by the Calamine and Apolite groups,

The first group is represented by
Phrenite. A hydrated silicate of alumina and lime holding iron, occurring as firm, hard encrusting masses usually mamillated; among the localities yielding it may be mentioned Black Rock.

The second group is represented by
Apophillite. This mineral has been found at the same localities as Laumontite, and also at Chute's Cove, Swan's Creek, and Blomidon. It is presented both massive and crystalline, with white, red and green colours, and associated with zeolites. It is named from its exfoliation before the blow-pipe flame, and is also called fish eye from its resemblance to the eye of a boiled fish.

The following analysis of a Nova Scotia specimen is by Keakirt :

$$
\begin{aligned}
& \mathrm{Si} 0-\mathrm{Ca} 0-\mathrm{K} 0-\mathrm{Fe} 0-\mathrm{H}_{2} 0 \\
& 52 \cdot 60-24 \cdot 88-5 \cdot 14-1 \cdot 71-16 \cdot 67=101 \cdot 00
\end{aligned}
$$

The Zeolite section of the hydrous silicates however claims most attention. Dana divides them into eight groups, and remarks that the resemblance to the Feldspar group in oxygen ratios seems at first thought to imply resemblance in the schemo of composition at least. But there is wide divergence of crys. talline form and physical character, while these points aro grounds of unity in the Feldspar group. The water present has produced a wide divergence from the Feldspars, and it is therefore probable that it is in part at least basic.

They are composed essentially of silica and alumina with some alkali and more or less water, and generally gelatinise in acids.

1. Mesotype group.

Thomsonite. This occurs at Peters Point, and North mountain of Kings Co., in long and slender crystallisations of a gras. ish white colour, and as globular masses of radiated and interwoven crystals.

Mesole. This variety occurs in sperical concretions a ferr miles west of Blomidon. The following analyses are of Nora Scotia specimens:
me holding ally mamilioned Black
same locali; Creek, and talline, with lites. It is e , and is also ooiled fish. simen is by
$=101 \cdot 00$
vever claims ups, and rein oxygen t the schemo nce of crys points aro - present has 1 it is there-
(a. with some se in acids.

North mounns of a gray. 1 and inter
stions a fetr are of Nora

Si. $0-\underset{2}{\text { Al. }}{ }_{3}^{0}-\mathrm{Ca} .0-\mathrm{Na} .0-\mathrm{H} .0-\mathrm{K} .0$
41.26-29.60-11.71-5.29-12.63—— $=100 \cdot 59$ How. $41 \cdot 64-30 \cdot 52-9 \cdot 21-4 \cdot 95-13 \cdot 11-44=99 \cdot 87$ Marsh.
Natrolite. This occurs at Gates mountain, Cape d'Or, Two I.lands, etc., often in bunches of transparent crystals. The following analyses are by Prof. Marsh :

Si. $0-\underset{2}{\text { Al }} .0-\mathrm{Ca} .0-\underset{2}{\mathrm{Na} .} 0-\underset{2}{\mathrm{~K} .} 0-\underset{2}{\mathrm{H} .} 0$.
(1) $46.84-27 \cdot 19-\quad 24-1489-1.50-979$.
(2) $48.43-28.38-\quad-\quad 14.23-1.16-10.11$.
(1) Five Islands. (2) Cape Blomidon.

Scolecite, so called from its curling up like a worm before the Vlowpipe, also occurs with the above-named minerals.
Mesolite is found in the North mountain of Kings Co., and Gates mountain with Farœlite, in masses up to the size of a man's head, usually having the interior of fine pibrous radiated and somewhat plumose crystals.
Si. 0 - Al. ${ }_{2} 0$ Ca. $0-\mathrm{Na} .0-\mathrm{Ka} 0-.\mathrm{H} . \mathrm{D}$. 1) $46.66-26.48-9.63-483-$ - How.
2) $46.71-26.48$ - $9.55-5.68$ — - "
3) $45 \cdot 89-27 \cdot 55-9 \cdot 13-5.09-\quad 48$ Marsh.
4) $4539-28.09-7.55-5 \cdot 28-\quad 49$
(1) \& (2) Gates mountain. (3) Blomidon. (4) Sandy Cove.

1. Levynite group.-Not represented here.
2. Analcite group.-Represented in Nova Scotia by the mine-
ala of the same name.
Analcite-So called from its weak electric power when beated. t is found at Martial's Cove, Five Islands, Cape D'or, Swan's treek and McKenzie Head, as trapez ohedrons. It is generally presented in crystals in amygdaloid, sometimes an inch in diameer. A curious variety is described by Dr. Jackson, as occurring n the south shore of the Bay of Fundy. The crystals were erdigris green outside, and paler green within, from holding 2 i) 3 per cent. of carbonate of copper. It is sometimes found *tached to plain cuts of copper holding it to the rock or susending it in cavities.

4. Chabazite Group.

Chabazite. This is one of the most characteristic of our trap minerals, and occurs usually in rhombohedrons of gray or winecolour tints, with Heulandite, Analcite, and Calcite at Five Is. lands, Swan's Creek, Mink Cove, and Williams Brook. This mineral occasionally contains Baryta, and Strontia.

The following are analyses of specimens from Parrsboro':
Si. $0-$ Al. $0-\mathrm{Ca} .0-\mathrm{Na} .0-\mathrm{K} .0-\mathrm{H} .0-\mathrm{Fe} .0$
$51 \cdot 46-17 \cdot 65-8 \cdot 91-1.09-17-19 \cdot 66-85$ Hoffinan.
$52 \cdot 14-19 \cdot 14-7 \cdot 84-71-98-19 \cdot 19-\quad$ Ramelsberg.
Acadialite is a reddish coloured variety, so named from its having been first found in Nova Scotia. In some specimens the colouring matter is arranged in layers and bands in the boly of the crystals.

The following analyses are by Hayes:

The difference being chiefly in the greater amounts alkalies and lessened percentage of lime in the latter mineral. Among the localities yielding it most abundantly may be mentioned Two Islands.

Gmelinite. This species is not very common here, it being met principally at Blomidon (as Ledererite) and on the north shore nearly opposite Cape Sharp, in geodes with analcite, and frequently implanted on quartz.

Ledererite (mentioned above) is ordinary Gmelinite impure with free silica. Marsh has shown that it does not differ in the percentage of water, and Descloiseaux that its crystalline angles are the same.

The following analyses by Prof. Marsh are of specimens from the vicinity of Cape Blomidon. The two first show an excess of silica due to visible quartz which was separated in the third analysis:
f our trap y or wineat Five Isook. This
;boro':
offinan. melsberg. d from its specimens a the body
its alkalies

1. Among ioned Two
e, it being the north alcite, and
te impure iffer in the line angles
mens from n excess of the third

Si. 0 - Al. 0 - Ca. 0 - Na. $0-$ K. $0-$ H. 0.
$53.71-17.63-6.52-3.10-80-17.98$
$51.32-1845-641-20.35$
$47.19-20.13-744-354-91-2053$
5. Phillipsite Group.

This group as represented by Phillipsite is reported to have been found in this Province, but I have not seen any specimens myself. It is well known as showing beautiful cruciform crystals, of three twinned prisms crossing each other at right angles.

6th. I am not aware of the occurrence of members of the 6 th or Harmotome, or of the 7th, or Stypostilbite, groups among our Nova Scotia varieties.
Sth. Stilbite group.
Stilbite.-This is the most common of our trap minerals. Its colour's usually white and lustrous, whence its name, and it is presented in sheaf-like, lamellar and radiated forms. At Partridge Island it occurs as a perpendicular vein from three to five inches wide and 50 feet long, intersecting amygdaloid. Also found at Isle Haute, Gulliver's Hole, Digby Neck, Black Rock, Hall's Harbor, Blomidon, etc.

Epistillite. - This variety occurs in small reddish crystals, nearly or quite opaque, at Margaretville, associated with stillite.
The following analysis are of specimens from this locality:
$\mathrm{Si} 0-\mathrm{Al} 0-\mathrm{Ca} 0-\mathrm{Na} 0-\mathrm{K} 0-\mathrm{Fe} 0-\mathrm{H} 0$ How
$5557-15.34-7.00-99-99-1.58-1542$
5835-1673-7.87-2.10-_- ——1498 "
Houlendite--This mineral occurs at Peter's Point in white and reddish colours, with Laumontite, Apophyllite and Thompsonite, also at Blomidon and Black Rock in crystals, colourless and Alesh-coloured, frequently an inch and a half long, and at Two Nlands as yellow erystals, and at the localities mentioned under the head of Stilbite.
Cerinite is of a similar composition, but massive with waxy
lustre. It was first described, I believe, by Dr. How, who gave the mean of two analyses :

$$
\begin{aligned}
& \text { Si } 0-\mathrm{Al} 0-\mathrm{H} 0-\mathrm{Mglod}-\mathrm{Ca} 0 \quad \text { K } 0 \quad \mathrm{H} 0 \\
& 57.57-12.60-1 \cdot 14-1.87-9.82-37-15^{2} 69
\end{aligned}
$$

It has been noticed forming the thin outer crust of amygdules in trap near Black Rock.

Mordenite.-This mineral, also a discovery of Dr. How, occurs near Morden in tıap with Apophyllite, Barite, and a Phrenite like mineral, also with Gyrolite at Peter's Point, eight miles west of the preceding locality.

The following is his analysis:

$$
\begin{aligned}
& \text { Silica - Alumina - Lime - Soda - Water. } \\
& 68 \cdot 40-12.77 \text { - } 346-235 \text { - } 13.02
\end{aligned}
$$

It is presented in small cylindrical and reniform masses, with a whitish yellow and pink colour. It is the most highly silicated of the Aluminous non magnesian hydrous silicates, yet described.

Steelite.-This variety occurs at Cape Split, and is so well defined that it is proposed to give it a place as a variety of Mordenite.

Among the better known minerals, outside the zeolite, may be mentioned :

Chloropheeite, a dark green to brown mineral, found imbedded but generally as a lining in cavities.

Delessite, or Ferruginous Chlorite, has been reported from Partridge Island, where it is said to fill cavities in the amygdaloid.

Glauconite.-This hydrous silicate of iron and potash, belonging to the class found in cavities in eruptive rocks, occurs at several points.

Gypsum.-This mineral occurs fibrous, massive and foliated, at numerous localities.

Calcspar is frequently met with. Fine specimens are met as rhombohedral, white-yellow crystals, and as dog-tonth spar, at Partridge Island, Two Islands and Black Rock.

Barite is also met accompanying many of the above mentioned minerals, in the massive, lamellar and crested forms.

Авт. IX.-T

The ice st Scotia, that On Friday the bushes w glistens in th rays into all a mist with to the icy ca The accumul and wires wa atmospheric , tinuing, the force on all sl

On Monday across the cour seemed so, for met at one mol that were trav within a few h as to be almost Having read duced were wa especially, were telegraph wires. size-the ice fo posed to the sto next formed ici for accretion. the wires, for th hesion to the wi neath, and the i being even rever
ho gave

Art. IX.-The Ice Storm of January, 1881, by H. S. Poole, F. G. S.

The ice storm of January 24th, 1881, was so unusual for Nova Scotia, that it is, perhaps, worthy of note.

On Friday, three days before, an ordinary silver thaw covered the bushes with the well-known casing of ice that so attractively glistens in the morning sun, and where cracked refracts the bright rays into all the colours 'of the rainbow. On the following day a mist with occasional showers of rain, freezing as it fell, added to the icy coating and bent the tops of trees with its weight. The accumulation of ice on buildings, fences, telegraph posts and wires was then sufficiently heavy to cause remark, but the atmospheric conditions necessary for such an ice growth continuing, the coating grew thicker, and increased with telling force on all slender trees and wide spread branches.
On Monday the showers returned, and they seemed to sweep across the country with alternate bodies of colder air, at least it seemed so, for when driving along the country roads one was met at one moment by gusts of hail, and the next by rain. Roads that were traversed without difficulty in early morning became within a few hours so obstructed with bowed and broken trees as to be almost impassable.
Having read of similar storms in Russia, the phenomena produced were watched with more than ordinary interest, and especially, were the curious forms taken by the ice coating the telegraph wires. At first the wires appeared merely increased in size - the ice forming on the top of the wire and on the side exposed to the storm, which came from the north-east. The showers next formed icicles, which in their turn offered further surface for accretion. But the icicles did not long hang vertically from the wires, for the accumulations on the top overcoming the adhesion to the wire slowly turned round until they were underneath, and the icicles made to take various angles, some rows being even reversed and vertical. On some sections other rows
of icicles formed pendent from the wires, or from the points of the first, but at fresh angles.

The weight of the ice coating was so great that it broke the wires in many places; its surface was uneven, averaging in its greater diameter over an inch in thickness, and in the lesser diameter about three quarters of an inch ; the icicles first formed stood about an inch and a half apart, and were about two inches long, and up to three quarters in thickness ; the second formation of icicles were longer and slighter. This ice remained on the wires for days, and when it became detached, as it did in places, it was interesting to note that it slowly sagged or beat down as its crystalline structure reformed under the pressure of its own weight.

One phenomenon in connection with this storm has yet to be told. The bending of the trees beneath the weight of ice that formed upon them has been mentioned. It might be added that whole groves of young birch bent over until their tops became attached to the snow beneath, even trees of fifteen and twenty inches in girth succumbed to the weight and bent to the ground. On Monday, about noon, the wind had ceased, and no other sound was to be heard than that of the steadily falling rain, except when the weight of fast forming ice overcame the strengt ${ }_{i}$ of some tree top or branch, and with clashing ice-laden twigs it slowly bent over or more rudely snapped with loud report. So frequently did this occur that one stood in open spaces eagerly watching to catch the first rustle that foretold the destruction of some sturdy tree that broke rather than yield to the overpowering weight. Simultaneously over a large tract of country was this noticed, and lumberers from Middle Musquodoboit reported that there at the same hour the woods resounded with the sounds of crushing trees and falling branches.

Note to Mr. Poole's Papar on the Ice Storm of January $24,1881$.
In the latter part of May I was passing up the Valley of the East River of Pictou, and on the road beyond Hopewell Station,
from which I star described ice storn branches, and nun but as higher grou torn, showing that was there anything upper part of the Mary's, nor upon t showed that the ict Caledonia Settleme in the woods on the ing, and he, as well in consequence of f
Returning up the of the storm were st suffered from the we birches and other tr broken off close to bent to the earth by for a day or two, or 1 this branch of the St sun shone on the ic beautiful, particular! which St. Mary's Riv

Art. x.-Lichens of B. Sc., P_{I}

Lichenology is the told of beantiful bluc grasp and mastery of live without them. F Baranetzky, Schmende
from which I started, met with the first signs of the result of the described ice storm, many trees being denuded of their tops and branches, and numerous small trees being still in a bent position; but as higher ground was reached the trees were not broken or torn, showing that snow, and not rain, had fallen upon them, nor was there anything in the trees on the cross road between the upper part of the East River and the west branch of the St. Mary's, nor upon the head waters of the Liscomb River, which showed that the ice storm had there prevailed. My driver from Caledonia Settlement to St. Mary's informed me that he had been in the woods on the Lower Liscomb during this storm, lumbering, and he, as well as other men, were afraid to leave their camp in consequence of falling limbs rendering it dangerous to do so.

Returning up the east branch of the St. Mary's river the effects of the storm were strongly visible, a great number of trees having suffered from the weight of their unusual burden, large limbs of birches and other trees, some fully six inches in diameter, being broken off close to the stems. In this district small trees were bent to the earth by the weight of the ice, and the roads were for a day or two, or until the trees were cut off, impassable. On this branch of the St. Mary's after the storm, the scene when the sun shone on the ice-laden trees mast have been exceedingly beautiful, particularly on the borders of the long lake through which St. Mary's River flows.
R. Morrow.

Art. x.-Lichers of Nova Scotia. By A. W. Mackay, B.A. B. Sc., Principal of Pictou Academy. (Read May 9, I881.)
Lichenology is the botanical field of romance, in it tales are told of beautiful blue and green algals under the tyrannous grasp and mastery of fungi which live upon them and cannot live without them. From the researches of DeBary, Famintzin, Baranetzky, Schmendener especially, Barnet and Reese, a lichen
appears to be a compound plant consisting of a parasitic fungus infesting, enveloping and modifying an algoid host. The fungus is the dominant element, the alga is the omnipresent gonidial layer of the older lichenologists.

The reproductive system of the lichen is essentially fungoid ascomycetous group. The gonidice on the other hand, have in many cases been shown to be a species of algæ ; analytically, by freeing them from the investing fungi, when they develop into well known forms of algre ; synthetically, by sowing the spores of a lichen ; fungus on an appropriate species of algae ; when a genuine lichen-thallus is produced.

According to Schwendener, Peltigera, Pannaria, Leptogium and Collema are ascomycetous fungi parasitic on species of the Nostocacece; Graphis and Verrucaria on Chroolepida; Uonea, Evernia, Physcia and Cladonia on a species of Palmellacere.

Lichens are found everywhere, and they can be preserved in the Herbarium with the least possible trouble. These facts should be a great stimulus to collectors. Many of them can also be easily determined with nothing more than the assistance of an ordinary lens; although among the crustaceous and pustular species in particular, high powers are required to make out the characters of the reproductive organs upon which the classification is based.

In the following pages, I give, at the request of our honored President, simply, a list of species with the localities in which they have been observed. It will be seen that my work in this department has been nearly exclusively, as yet, confined to western Pictou. There are two or three doubtful species included and so marked, several others are withheld.

Lichens of Pictou, et al., Nova Scotia. (Provisional list, arranged according to Tuckerman's Genera Lichenum.)

TRIB. I.-PARMELIACEI (Fr., Eschw.) Tuck.
Fam. 1.-Usneet, Fr.
Gen. I.-Ramatina, Ach. DeNot.

1. R. calicaris, Fr. Common on trees, old fences, \&c., Pictou. Also, var. fastigiata, Fr. and var. farinacea, F.

LIC
2. R. pusilla,

GE
3. C. ciliaris,
4. C. lacunoso Dalhousie. Pictou. Var. Atlar Conifera
5. C. glauca A
6. C. juniperi

Gen
7. E. prunast,

Gen
8. U. barbata, vai. flori var. dasy Gen.
9. A. jubata, F var: chaly mon on portions of

Gen.
10. T. parietin ern exposure of n \&c. Pictou.

Gen.
11. P. perforata 12. P. perlata, Pictou.
13. P. tiliacea, 1
14. P. Borreri,
15. P. Saxatilis, rocks, Pictou.
16. P. Physodes,
17. P. caperata,
18. P. conspersa, Halifax and Pictou.
2. R. pusilla, Poir. Not common on forest trees, Pictou. Gen. II.-Cetraria, Ach., Fi .
3. C. ciliaris, Ach. Common on old bark, P.
4. C. lacunosa, Ach. Frequent on old hemlock bark, North Dalhousie. Pictou.

Var. Atlantica Tucl. Frequent on withered twigs of Coniferce, Pictou.
5. C. glatect Ach. Common on old fence logs, \&c., Pictou.
6. C. juniperina, Ach. Rare. On twigs of some conifere, Gen. III.-Evernia, Ach., Mann.
7. E. prunastri Ach. (?) Very rare. On dead wood, Pictou. Gen. IV.-Usnea (Dill.) Ach.
8. U. barbata, Fr: Very abundant. On coniferous trees, etc. vai: florida, Fi: Common, Pictou.
var. dasypoga, Fr. Not uncommon, P.
Gen. V.-Alectoria, Ach., Nyl.
9. A. jubuta, $F i$. Common on dead dead wood, Pictou.
var. chalyheiformis, Ach. On fence logs, Pictou, common on portions of the Magdalen Islands.

FAM. 2.-PARMELISI.
Gen. VI.-Theloschistes (Norm.) Tuck.
10. T. parietinus (L., Duff.) Nyl. Very common. On northern exposure of neglected wooden buildings, on fences, trees, $\&$. Pictou.

Gen. VII.-Parmelia, Ach., De Not.
11. P. perforata Ach. On maple trees, Pictou.
12. P. perlata, Ach, (?) On maple trees, North Dalhousie, Pictou.
13. P. tiliacea, Ach. On trees, Pictou.
14. P. Borreri, Ach. On spruce trees, Pictou and Truro.
15. P. Saxatilis, Ach. Common on old fences, trees and rocks, Pictou.
16. P. Physodes, Ach. Very common on trees, \&c., Pictou.
17. P. caperata, Ach. On old bark, on trees, Pictou.
18. P. conspersa, Ach. On granite boulders, N. W. Arm, Halifax and Pictou.
19. P. ambigua, Ach. On trees, Pictou.
20. P. olivacea, Ach. Very common on bark of trees, Pictou. Gen. VIII.-Physcia (D.C.) Fr.) Th. tr.
21. P. stelleris (L.) Nyl. Common on trees and sometimes on rocks, Pictou. Also, vari. hispidu, Fr. On trees and rocks, Pictou. 22. P. obscuia, (Eboh.) Nyl. On trees, North Dalhousie, Pictou; Truro.

FAM. 3.-UMBILICARICI.

Gen. IX.-Umbilicarici (Hoffm.)
23. U. pustulate, Hoffm. On rocks. Bedford and North West Arm, Halifax.
24. U. Dillenii, Tuck. On rocks, North West Arm, Halifax.
25. U. erosa, Hoffm. On a granite boulder, Pictou.
26. U. Michlenbergii, Ach. On rocks, Bedford, N. W. A., Halifax.

FAM. 4.-PELTEGEREI.

Gen. X.-Sticta (Schreb.) Delis., Fr:
27. S. crocuta, Ach. Rare. On elm trees in intervale, North 1)alhousie, Pictou. Very pretty.
28. S. pulmonaria, Ach. Very common, on trees. Pictou.
29. S. scrobiculata, Ach. Not uncommon, on trunks of trees, Pictou.
30. S. glomerulifera, Delis. Frequent on maple trees, Pictou. Gen. XI.-Nepherome, Ach.
31. N. luevigatum, Ach. With mosses on damp rocks, N. W. Arm, Halifax.

Gen. XII.-Peltigera (Willd., Hoffm.) Fee.
32. P. aphethosa, Ho.tim. Common with mosses on shady moist banks in the wood. Pictou.
33. P. canina, Hoffm. Frequent; with the preceding. Pictou and Halifax.
34. P. polyductyla, Hoffm. Not rare. Found in situations similar to those of aplethosa and Conina, Pictou.

FAM. 5.-PANNARIEI.
Gen. XIII.-Pannaria (Del.) Tuck.)
35. P. hypnorum, Fr. On decaying mosses, North Dalhousie, Pictou.
36. P. tric tophyalla, ch. (?) On bark of a maple tree, North Dalhousie, Picto
37. P. brunnea (Sw.) Muss. On the ground, Pictou.

FAM. 6.-COLLEMEI.
Gen. XIV.-Collemei (Hoffm.), Fa. Fe.
38. C. leptalium, Tuck. On trees, North Dalhousie, Pictou.
39. C. flaccidum, Ach. On trees, Pictou.
40. C. nigrescens (Huds) Ach. On trees, North Dalhousie, Pictou.

Gen. XV.-Leptogium, Fr. Nyl.

41. L. tremelloides, Fr: On trees, North Dalhousie, Pictou; N. W. Arm, Halifax.
42. L. myochroum (Ehrh.) Schar). var. saturninum (Dicks), Tuck. On trees, North Dalhousie, Pictou.

FAM. 7.-LECANOREI.
Gen. XVI.-Placodium (D.C.) Naeg \& Kopp.
43. P. vitellinum. Eboh.) Ach. On granite boulders, Pictou.
44. P. cerinum, Ach. On trees, North Dalhousie, Pictou.
45. P. aurantiacum (Lightf.) Not uncommon on trunks of willows and poplars, North Dalhousie, Pictou ; and on old board fences, Pictou.

Gen. XVII--Lecanora, Ach.

46. L. rubina, Ach. (?) On exposed dead wood, Pictou.
47. L. pallescens, Fr. On hemlock bark, Pictou.
48. L. subfusca, Ach. Very common. On bark of trees verwhere.
49. L. Hageni, Ach. On exposed and weathered bones, shore of Pictou Island. On calcareous boulders, Pictou.
50. L. Pallida, Scheer. On bark of maple, North Dalhousie, Pictou ; common.
sı1. L. varia, Fr. On weathered wood and boulders, Pictou. Also, var. polytropa. Fr.
51. L. albella, Ach. On bark of maple, N. Dalhousie, Pictou.
52. L. elatina, Ach. On old bark, Pictou. Also, var. ocrophaea, Tuck.
53. L. cinerea, (L.) On granite boulders, Pictou. Also var. discreta, Fr.
54. L. cervimu (Pers.) Smf. On boulders, Pictou. Gen. XIX.-Rinomina. Mass. Stitz.
55. R. sophodes (Ach.), Mass. On bark of trees, North Dalhousie, Pictou. Also,
var. polysporce. (Th. Fr.) Pictou.
Gen. XX. - Pertlsaria, D. C.
56. P. pertusu, Ach. Common; on bark of trees, Picton.
57. P. leioplace, Ack. Not uncommon; on bark of treen Picton, Halifax.
58. P. velutu, Turn. Common on bark of trees, Pictou Gen. XXI.-Conotrema, Tuck.
59. C. urceolutum, Tuck. Not iare; on bark of trees (maphe Pictou.

Gen. XXII.-Thelotrema, (Ach.) Eschew.
61. T. lepodinum, Ach. On all bark of trees, N. Dal., Pictou.

TRIB. II. - Lecidiacei. (Fr.)
FAM. I.-CLADONIEI (Zenki, Kbr.) Th., Fi:

> Gen. XXIII.-Stereocaulon, Schar.
62. S. tomentosum, Fr. On boulders. P.
63. S. corralloides, Fr. On boulders. P.
64. S. paschale, Lour. Common; on rocks and boulders Pictou.
65. S. condensatum (Laur). On granite boulders. P. Gen. XXIV.—Cladonia, Hoffim.
66. C. pyxiauta, Fr. On decaying wood. P.
67. C. fimbriate, Fr. On decaying wood. P.
var. radiata, $F r$. Also.
68. C. gracilis, F_{i} r. On decaying wood and vegetable mould, Pictou and Halifax.
69. C. turgida, Hoffm. On a ridge of gravel, called "Boar's Back," Pictou.
70. C. furcatu, F'lk. On the ground Pictou, Halifax.
71. C. squamosa, Hoffim. Very common; on decaying wood Pictou.

Var caspiticia. Decaying wood. P.

LICHENS

72. C. rungiferinu Var: alpest
73. C. uncialis, Fr
74. C. cormucopioi Pictou.
7.). C. macileuta, 1
75. C. cristutella, would ; common.
FAM. ..--LECIDE] Gen.
76. B. voseus, Pers.
77. B. byssoides, F, and Picton.
78. Einuginosus, S_{1} Gen.
so. B. decolor'anzs,
s1. B. vernalis, Fr:
79. B. exigua (Chat Dal. and P.
80. B. atropurpures
st. B. rubella, Fr.

Pictou.

8.5. B. umbrina, $A c i$
s(6. B. chlorantha, T
Gen. XXVII
s7. H. pezzizoideum S. Dal., P.
88. H. grossum (Per Gen. XX ${ }^{1}$
89. L. contigua, Fr and P.
90. L. melanchheima 91. L. spilota, Fr. (Gen. XXIX
92. B. parasema (Aci tone, Pictou.
72. C. rangiferina, Hoim. Very common; on ground P., Hx. Var. alpestris. Also, Pictou.
73. C. uncialis, Fr. On the ground N. W. Halifax.
74. C. cornucopioides, Fi: On decaying wood and mould Pictou.
7.). C. macileuta, Hotim. On decaying wood, Pictou.
76. C. cristutella, Tuck: On decaying wood and vegetable would ; common.
FAM. ..--LECIDEEI.
Gen. XXV.--Beomycee, Fee.
77. B. roseus, Pers. Very common ; on barren ground, Pictou.
78. B. byssoides, Fr: On granite boulder in shade, N. Dal. and Pictor.
79. Eruginosus, Scop. On decaying wood in shade, Pictou. Gen. XXVI.-Biatora, Fi:
so. B. decoloranzs, Fr. On ground, N. Dal., Pictou.
s1. B. vernalis, $F r$. On calcareous boulders, Pictou.
52. B. exigue (Chaub), Fr: Common; on bark of trees, N. Dal. and P.
83. B. atropurpurea, Mass. On bark of trees, Pictou.
84. B. rubella, Fi. Var schweinitzii,T'uck. On bark of trees Pictou.
8.5. B. umbrina, Ach. On granite boulders, Pictou.
86. B. chlorantha, Tuck. On hemlock bark, N. Dal., P.

Gen. XXVII. - Heterothecium (H). Tuck.
57. H. pezzizoideum, (Ach.) H. Oi birch and hemlock bark X. Dal., P.
88. H. grossum (Pers). Tuck. On bark of trees, Pictou.

Gen. XXVIII.-Lecidea (Ach., Fr.)
89. L. contigua, Fr. Common; on stones and rocks, N. Dal. and P.
90. L. melanchheima, Tuck. On old weathered wood, Pictou.
91. L. spilota, Fr. On rocks, N. W. Arm, Hx.

Gen. XXIX.-Buellia (DeNot). Tuck.
92. B. parasema (Ach.), Kbr. Common; on bark, wood and tone, Pictou.
93. B. Petraa, Fl. Tuck. On granite boulders, Pictou.

TRIB. III.-Grapidiacei (Eschw., Nyl.)
FAM. I.-OPEGRAPHEI. Stitz.
Gens. XXX.-Opegrapha (Humb). Ach., Nyl.
94. O. varia (peis.), Fr. On the bark of the maple, Pictou.
XXXI.-Graphis Ach., $N y l$.
95. G. scripte, Ach. Common; on birch and hemlock bark Pictou.

FAM. 2.-ARTHONIEI. $K b r$.
Gen. XXXII.-Arthonia. Ach., Nyl.
96. A. patellulutu, (Nyl.) Rare; on bark of trees, Pictou.

TRIB. IV.-- Caliciacei.
FAM. 1.-SPH EROPHOREI.
Gen. XXXIII.-Spherophorus. Purs.
97. S. globiferous $(L), D . C$. Common, especially on the rough bark of the trunks of Abies Canadensis, Pictou and North Dalhousie, P.

FAM. 2-CALICIEI.
Gen. XXXIV.-Acolium (Fee.) DeNot.
98. A. tigilare (Ach.) DeNot. On weathered wood, fence palings, Pictou.

Gen. XXXV.-Calicium, Pers., Ach., Fr .
99. C. lenticulare (Hoffm, Ach.) On weathered wood, North Dalhousie, Pictou. Rare.

Gen. XXXVI.-Coniocybe, $A c h$.
100. C. furfuracea (h) Ach. Found growing on the roots of an overturned tree in a moist spot in the forest: Carriboo, Pictou.

TRIB. V. - Verrucariacei (Fr., Fee). Slitz.
FAM. 1.-VERRUCARIEI.
Gen. XXXVII.-Verrucaria (Pers.) Tuck.
101. V. maura (Wahl), Th., Fr. Sandstone rocks on seashore, Cape John, Pictou Co.
102. V. rupestris, Schrad. Conglomerate rocks, N. Dal., Pictou Co.

NOTES ON
Gen. XXXI
103. P. pu
N. Dal., P.
104. P. gla Dal., P.

Art. XI. -N

The formatio
I. Cambrian ation of Novas
II. Post Plioc
I. Cambrian which extend or

The first exp Pleasant Street.

1. Lines of be
2. Slaty cleav
3. Jointed strı
4. That the di cast and west.

In the shore battery we find Before we reach here we find the south we find t ? and southerly dij the lines of strata Proceeding farth larly to the north

No remains of

Gen. XXXVIII.--Pyrenula (Arch., Neglee, Nepp. Tuck.)
103. P. punctiformis (Ach.), Neg. On the bark of maple trees, N. Dal., P.
104. P. glabrata (Ach.) Mass. On the bark of the birch, N. Dal., P.

Art. XI.-Notes on the Geology of Point Pleasant. By A. Cameron.

FORMATIONS

The formations described in these notes may be stated thus:
I. Cambrian Metamorphic, belonging to the great gold formation of Nova Scotia.
II. Post Pliocene, or glacial drift.
Rocks.
I. Cambrian Metamorpluic. The rocks of this series are slates, which extend over the whole peninsula.

The first exposure we notice is at the old "Lime Kiln," Pleasant Street. In this we note the following points :-

1. Lines of bedding.
2. Slaty cleavage.
3. Jointed structure, result of metamorphism.
4. That the dip is to the south, and the strike approximately cast and west.

In the shore exposure of the bank below the old three gun battery we find the most interesting exposure of the series. Before we reach this the strata dip regularly to the south, but here we find the strata much disturbed, and just a little to the south we find the synclinal axis, with strata having northerly and southerly dips, the argillite strata in the middle being bent, the lines of strata being shown by a number of parabolic curves. Proceeding farther to the south we find the series dipping regularly to the north.

LIFE OF PERIOD.

No remains of life have been found in these rocks. On "Black

308 notes on the geology of point pleasant-CAMERON.
Rock" are marks, supposed to have been made by Annelids,
now. The tracks are called Helminthites.

GLACIAL DRIFT.

The most interesting subject connected with the geology of this district is the glacial drift. There is a beautiful example of striation in rear of Prince of Wales' Tower. The lines are distinctly marked and remarkably uniform in direction. The average course of a number measured is S. $20^{\circ} \mathrm{E}$. A very few have a different course, S. $35^{\circ} \mathrm{E}$.

COURSE OF STRIATION.
That the direction was from north to south may be inferred in the following way :

We notice several deep grooves which abruptly break into small ones. These keep the same course as the larger ones. Now it is much more likely that the "graver" was broken and formed a uniform large one. Hence we infer that the course was from the larger towards the smaller grooves.

Following the course of striation we reach the shore near the N. W. A. Battery, and proceed to examine the bank below the old fort. One of the most interesting objects to be seen here is a large quartzite boulder, a scarred veteran, of the glacial drift, bearing the marks of the difficulties it has gone through, on its face. That it has been moved over another stone surface can easily be seen. We see on it a sharp edge that has been produced by being rubbed first one side and then the other on another surface. The lines of abrasion are quite distinct. The boulder weighs over half a ton.

DRIFT ROCKS.
The drift rocks collected here include Gneises, Granites, Sijenites, Diorites, Quartzites, Porphyries, Schists and Amygdaloids. The region they have come from is the shores of the Bay of Fundy. The magnetic course of striation, as we have have seen, is $\mathrm{S} .20^{\circ} \mathrm{E}$., which aded to 20° var. gives a direction of 40 from the true meridian, This just grazes Blomidon. They have come from here or from some point on the shore of Cobequid Bay and in the Cobequids as far east as Economy Point, the

NGTES ON
Londonderry Iro the Cobequids w

Alit. XII.-Noti
AN

During the col in an examination mond's Plains, on three formations,

The Archeean or the Birch cove lak about three quarte below Wright's lal not followed it any tified. It is very are very large, so tl I have only traced extend much farthe This formation al lake being about th

This formation i argillites, it runs clo are the only ones county. It contains in some places whe season of the year it so as to induce some soid rocks, the argil north than I have ,

Londonderry Iron Mines and I. C. Railway at Blomidon and in the Cobequids we find the rocks in situ.

Art. XII--Notes on the Gbology of Bedford, Sackville and Hammond's Plains. By Alfred Hare.

Read May 9, 1881.
During the course of the last Session, I have been engaged in an examination of the rocks of Bedford, Sackville, and Ham-
din
into
Now
med
from
r the
re is
lrift,
n its
can
uced
ther
alder
ijen-
loids.
y of
seen,
40
have
Bay
the mond's Plains, on the days that were not class days. I found three formations, namely Archaran, Cambrian and Pleistocene.

1. Archean.

The Archean or what is believed to be Archeean, extends from the Birch cove lakes westward, crossing the Margaret's Bay road about three quarters of a mile below Pulsifer's and continues to below Wright's lake, westward to Saint Margaret's Bay. I have not followed it any further. The granite appears to be unstratified. It is very feldspathic ; some of the crystals of feldspar are very large, so that we are quite safe in calling it porphyrytic. I have only traced it so far as Indian River, but it appears to extend much farther.

This formation also extends north-west of Halifax; Pockwock lake being about the most northerly point.

2. (a) Cambrian.

This formation includes the gneissoid rocks, quartzites and argillites, it runs close up to the archaean. The gneissoid rocks are the only ones that touch the archæan in this part of the county. It contains pyrite in such quantities as to colour the soil in some places where there is a wash from the hills. At this season of the year it forms quite a deposit of iron oxide, so much so as to induce some to search for iron beds north of the gneissoid rocks, the argillites come in and continue much farther north than I have examined ; next to the gneissoid rocks the

310 NOTES ON THE GEOLOGY OF BEDFORD, ETC.-HARE.
argillites appear to be much finer and of a brighter blue than farther away.

North of Wright's lake the strike of the gneissoid strata is north 80° east. At English's corner five or six miles east, the strike is N. 75° E. South-cast of Pockwock lake there is a vein of quartz, about four feet and a half wide; here, some years ago, there was a shaft sunk about one hundred and eighty feet deep, in the hope of finding gold, without success.

By pacing the gneissoid rocks I found that they were a mile and a half wide. On account of the quantity of snow in the woods, which obscured them, I could not find out how much farther they extended.

Along the strike the gneissoid rocks extend from Pockwock lake about seven miles to the eastward. They may continue a long distance either east or west, but on account of the snow it was impossible to follow them.

I found a great many quartz veins which were cross leads; most of them were over four inches thick.

There is said to be gold in Hammond's Plains, but not in paying quantities. Thousands of dollars have been spent in sinking shafts, and although I took a great deal of trouble to find out what quantity of gold had been taken out, I did not succeed.

On the hill to the south-east of English's corner, I found a small vein of granite where they had been prospecting for gold: it contains a great quantity of mica of a gold colour in curiously wrinkled masses; it also contains black tourmaline.

The gneissoid strata are all vertical and very regular ; breaks being very scarce.

The essential minerals which I found in the gneissoid strata are quartz, sometimes there is a little mica and feldspar.

The accidental minerals which I discovered were black tourmaline, pyrite and andalusite.

(b). Cambrian.

Argillites.-The argillites come in about a quarter of a mile above the road to Hammond's Plains and near the gneissoid strata. They are finer and of a brighter blue than they appear farther

NOTES ON
morth ; as alrearly much pyrite as t a long distance nor tion. Their dip is , quarts in the vein. gneissoid strata, but only the case in thi

Quartzites.--The The Pleistocene doe gheissoid rocks. Tl 22. The strike d to N. and S. maga disturbed than eith: appear to be very fr

This formation ove great part of the yenite, porphyrite, , chist, chert and cong At Pulsifer's some which Dr: Honeyman and it has been satis by the striation and Were diorites, syenite which were very ho (लllspar). One specin ontained a little mica fom the Cobequid M_{0} The specimen of bra s, the Londonderry iro my test. The specimen nd a quarter. It is b nammillary, very coml At Indian River, St. granite which very
north ; as already noticed the argillites do not contain nearly as much pyrite as the gneissoid strata. The argillites continue a long distance north, but are covered by the Pleistocene formation. Their dip is vertical. There appears to be more crystals of guarts in the veins of this part of the Cambrian than in the gneissoid strata, but perhaps this may not be the general rule but only the case in this locality.

(c). Cambrian.

Quartzites.--The quartzites occupy a large part of the district. The Pleistocene does not cover them as it does the argillites and gneissoid rocks. The dip of the quartzites is about from 18° 22°. The strik. differs a great deal, varying from N. $15^{\circ} \mathrm{E}$. to N . and S. maga i. They appear to have been much more disturbed than either the gnei-soid rocks or argillites. Faults appear to be very frequent.

Pleistocene.

This formation overlies the Archean in some places and covers great part of the Cambrian. It consists largely of granite, yenite, porphyrite, diorite, dolerite and quartzite, amygdaloid, chist, chert and conglomerate boulders.
At Pulsifer's some years ago was found a beautifu' hematite, which Dr. Honeyman said had come from the Londonderry Mines, and it has been satisfactorily proved that he was correct, both y the striation and by the boulders accompanying it, which were diorites, syenites and amygdaloids, especially the diorites, which were very hornblendic and contained oligoclase (soda (eldspar). One specimen which I found is very beautiful and ontained a little mica and pyrite. These, without doubt, came from the Cobequid Mountains.
The specimen of brown hematite has exactly the same streak st the Londonderry iron, and cannot be distinguished from it by ny test. The specimen is a very fine one, weighing five pounds nd a quarter. It is beautifully crystalized. The structure is ammillary, very compact.
At Indian River, St. Margaret's Bay, I found great quantities it granite which very much resemble syenite. At North-East

River there was a great scarcity of them. All have red feldspar: Overlying the Archean are great quantities of porphyritic granite boulders, rather darker than the Archean granite in situ.

The amygdaloids have been found westward as far as the School House lake, but not found farther.

Pleistocene.

Striation.-The striation occurs in the gneissoid strata at Pockwock lake. It runs north and south, and N. $35^{\circ} \mathrm{E}$. It also occurs in the gneissoid strata on the Margaret's Bay road, running north and south and S. $10^{\circ} \mathrm{W}$. I found it also on the argillite on the Hammond's Plains and Sackville road, running S. 20 E., also on the old Windsor road S. 18 E.; also at Sandy lake, on the Hammond's Plains road, and on the shore south of Bedford, north and south and south and north 10 east. The S. 20 E. iine produced north-west passes Blomidon, and cuts a little to the eastward of Cape Sharp, where trap rocks and amygdaloids are in situ (Partridge Island and Parsboro'). The S. $10^{\circ} \mathrm{W}$. striation produced north-east meets the Wellington station S. 25 W. striation at the Gore. The latter striation produced northerly passethrough the Londonderry iron deposits, and the archean diorites, syenites, etc., of the Cobequids.

Not being able to of the Intestinal Car ing note may be wor

On the 8th Nove of a full grown cow it to be 211 feet 2 in and about $3 \frac{1}{2}$ inches intestine for 14 inche was of the normal s testine where the foe of the year, to the an

The length of the ally given as about 15

Notes on some Palet T. RU

Beyrich

In his papers on th before the Geol. Soc. I Honeyman, D.C.L., ref traca from that distric quoted as Beyrichia pusi 2 spp., and Leperditia s saig left with me by my nation were described it Beyrichia tuberculata (I coyiana, Jones ; and P

APPENDIX.

Intestinal Canal of the Moose.

Not being able to find in any work accessible to me the length of the Intestinal Canal of the Monse (Cervus alces) ; the following note may be worth recording.

On the 8th November, 1880, I measured the intestinal canal of a full grown cow Moose which had been just killed and found it to be 211 feet 2 inches in length. The ceecum was 2 feet long and about $3 \frac{1}{2}$ inches in diameter, its outlet narrow, below it the intestine for 14 inches was quite large, but the succeeding 60 ft . was of the normal size ; the "fat gut" or that part of the intestine where the freces are separated into pellets, at this season, of the year, to the anus measured 10 feet 6 inches.

The length of the intestinal canal of a full grown ox is usually given as about 150 feet.
R. Morrow.

Notes on some Paleozoic Bivalved Entomostraca. By Prof. T. Rupert Jones, F.R.S., F.G.S.

Beyrichia tuberculata (Kloeden).
Length, $1-7$ and 1.6 inch.
In his papers on the Geology of Arisaig, Nova Scotia, read before the Geol. Soc. Lond. in 1864 and 1870, the Rev. Prof. D. Honeyman, D.C.L., referred to some Upper-Silurian Entomostraca from that district. At p. 344, Q.J.G.S. vol. xx. they were quoted as Beyrichia pustulosa, Hall; B. equilatera, Hall; Beyrichia 2 spp., and Leperditia sinuata, Hall. Some specimens from Arisaig left with me by my friend Dr. Honeyman in 1862 for examination were described in the Q.J. G. S. vol. xxvi. p. 492, as being Beyrichia tuberculata (Kloeden) ; B. Wilckensiana, Jones; B. Maccoyiana, Jones ; and Primitia concinna (?), Jones. There are
also other Primitic associated with the foregoing. One resembles P. ovata, J. and H. They occur more or less abundantly in a highly fossiliferous dark-grey limestone.

Fig. 8 is an inside cast of a right valve, devoid of the test ; the main lode and the postero-dorsal angle are broken. Fig. 9 shows a perfect left valve; and Fig. 10, a fine right valve, still partly imbedded in the matrix along the dorsal edge. In the latter the anterior lobe is not divided into two as it usually is.

Probably these specimens may be the same as the form described by Prof. James Hall and Principal Dawson as B. pustulosu, Hall ("Canadian Nat. and Geol." vol. v. p. 15̌8, fig. 19, woodcut ; and " Acadian Geol." 2nd edition, p. 608, fig. 216, woodcut; but I find no essential difference between the very fine large specimens before me and the Scandinavian specimens of B. tuberculate described and figured in the "Ann. N. Hist." ser: 2, vol. xvi. p. 86, pl. 5, figs. 4-9.

Mear
Maxi
Minis
Mont
Mear
Mear
High
Lowe
Mear
(ireat
Mean
Maxi!
Minit
Mont
Highı
Lowe
Mean
Mean
Mean
Preva
Mean
1)r. Somers, exhibited the
\qquad
1)r. Somers, exhibited the Heart of a Moose, and explained its Anatomy.
also other Primitic associated with the foregoing. One resembles P. ovata, J. and H. They occur more or less abundantly in a highly fossiliferous dark-grey limestone.

Fig. 8 is an inside cast of a right valve, devoid of the test ; the main lode and the postero-dorsal angle are broken. Fig. 9 shows a perfect left valve; and Fig. 10, a fine right valve, still partly imbedded in the matrix along the dorsal edge. In the latter the anterior lobe is not divided into two as it usually is.

Probably these specimens may be the same as the form described by Prof. James Hall and Principal Dawson as B. pustulosu, Hall ("Canadian Nat. and Geol." vol. v. p. 158, fig. 19, woodcut ; and " Acadian Geol." 2nd edition, p. 608, fig. 216, woodcut; but I find no essential difference between the very fine large specimens before me and the Scandinavian specimens of B. tuberculate described and figured in the "Ann. N. Hist." ser. 2, vol. xvi. p. 86, pl. 5, figs. 4-9.

Mean Ts Maximuı Minimur
Monthly
Mean M
Mean N
Highest
Lowest I
Mean D:
(ireatest
Nean W
Maximur
Minimun
Monthly
Highest
L.owest I

Mean Pr
Mean Rt
Mean An
I'revalent
Mcan Ve
Imount
Number
Imount
Number,
Total Pre
Number,
Number

GENERAL METEOROLOGICAL REGISTER FOR 1880.

HALIFAX, NOVA SCOTIA.
Latitud. $44^{\circ} 38^{\prime} 25^{\prime \prime} \mathrm{N}$. Longitude $63^{\circ} 34^{\prime} 0^{\prime \prime} \mathrm{W}$. Height above Sea Level 118.2 feet. Calculated from Tri-homily Observations.

1880	January.	February.	March.	April.	May.	June.	July.	August.	Sept'r.	October.	Nov'r.	Dec'r.	$\begin{aligned} & \text { Year. } \\ & \text { I } 880 . \end{aligned}$
Mean Temperature	27.15	25.28	24.18	37.18	47.89	57.79	64.83	63.00	59.77	48.65	34. 12	26.27	43.01
Maximum Temperature	47.0	48.8	$+5.4$	61.8	88.0	86.3	83.4	90.0	85.0	70.0	34.12 60.4	45.0	90.0
Minimum Temperature	$3 \cdot 4$	3.4	0.0	18.0	29.2	40.1	49.0	$44 \cdot 3$	38.0	31.2	11.7	7.0	-3.4
Monthly and Annual Ranges	43.6	52.2	45.4	43.8	58.8	46.2	34.4	45.7	47.0	38.8	48.7	38.0	93.4
Mean Maximum Temperature	35.95	33.95	31.91	46. 17	57.85	68.88	74.78	74.16	69.06	57.38	41.22	31.79	51.93
Mean Minimum lemperature	17.30	17.16	16.12	28.71	38.65	47.72	56.57	53.74	51.38	39.84	27.38	20.39	34.58
Highest Daily Mean Temperature	41.17	39.87	38.00	48.56	66.60	69.35	71.72	74.65	71.30	63.54	54.80	39.16	74.65
Lowest Daily Mean Temperature.	8.34	2.54	10.97	25.46	38.96	48.92	6 I .20	54.64	49.00	36.79	18.50	32.37 12.3	74.65 2.54
Mean Iaily Range of Temperature .	18.65	16.79	15.77	17.46	19.20	21.16	18.21	20.42	17.68	17.54	13.84	11.40	17.34 17
(ireatest I)aily Range of 'Temperature	34.0	31.0	23.3	28.8	44.7	35.6	28.3	34.7	32.0	31.7	29.2	26.5	44.7
Mean Whole Pressure Corrected	30.120	29.995	29.928	29.949	30.019	29.929	29.947	30.025	30.011	30.059	30.127	29.836	29.995
Maximum Whole Pressure	30. 775	30.590	30.530	30.467	30.344	30.287	30.199	30.377	30.326	30.477	30.641	30.472	30.775
Minimum Whole Pressure	29.374	29.177	29.153	29.275	29.191	29.373	29.624	29.672	29.694	29.396	29.349	28.917	28.917
Monthly and Annual Ranges.	1.401	1.413	1. 377	1.192	I. 153	0.914	0. 575	0.705	0.632	1.051	1.292	1. 555	1.858
Highest Daily Mean Whole Pressure	30.588	30.532	30.483	30.418	30.321	30.244	30.178	30.326	30.276	30.430	30.614	30.399	30.614
Lowest Daily Mean Whole Pressure.	29.552	29.518	29.303	29.484	29.596	29.438	$29.68+$	29.758	29.769	29.629	29.731	29.466	29.303
Mean Pressure of Vapour			. 114	. 173	. 274	. 371		. 479	. 435	. 300	. 177	.$^{1} 32$. 269
Mean Relative Humidity	89.25	89.00	83.21	77.26	80.29	77.57	82.76	82.51	83.22	$8+3.3$	82.82	87.85	83.34
Mean Amount of Cloud	$5 \cdot 44$	5.89	5.69	5.20	6.34	5.75	6.50	4.89	$5 \cdot 32$	4.67	4.80	6.86	5.61
I'revalent Direction of Wind	N W	W	N W	W	S E	N	S W	S W	W	W	W	W N W	W
Nean Velocity of Wind	7.80	8.40	8.89	8.25	6.99	5.96	5.40	5.00	6.08	6.28	$7 \cdot 45$	8.76	7.10
Amount of Rain	$5 \cdot 393$	3.242	I. 125	4.097	4.088	1.343	3.086	3.920	5.712	4.590			44.043
Number of I ays Rain	${ }^{16}$	10	3	12	${ }_{1} 6$	12	20	13	15	11	10	10	148
Imount of Snow	23.4	18.8	23.5	7.0	-	\bigcirc	-	,	-	-	3.6	II. 8	88. 1
Number of Days Snow	11	15	17	5	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	7	14	69
Total Precipitation	7.738	5.122	3.365	4.797	4.088	I. 343	3.086	3.920	5.712	4.590	4.710	4.403	52.874
Sumber of Dry Days	1 I	10	13	15	I 5	18	11	18	15	20	17	12	175
Number of Auroras	\bigcirc	\bigcirc	1	2	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	1	1	\bigcirc	5
" Gales	\bigcirc	2	1	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	1	2	\bigcirc	1	7
" Fogs	8	5	3	3	10	6	8	9	4	5	3	4	68
" Dews	-	-	\bigcirc	\bigcirc	-	4	6	10	10	16	,	-	48
" Hoar Frosts	\bigcirc	\bigcirc	2	3	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	2	7	2	18
" Thunders	1	\bigcirc	\bigcirc	-	5	2	1	1	\bigcirc	\bigcirc	\bigcirc	\bigcirc	10
" Lightnings	I	\bigcirc	\bigcirc	\bigcirc	6	I	I	3	-	\bigcirc	-	\bigcirc	11
" Hails	\bigcirc	1	\bigcirc	1	-	-	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc	2
" Rainbows	-	-	-	\bigcirc	\bigcirc	1	2	2	1	\bigcirc	\bigcirc	\bigcirc	6
" Lunar Halos	\bigcirc	\bigcirc	3	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	-	\bigcirc	1	- I	5
" Coronæ	I	I	1	\bigcirc	3								
" Solar Halos	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
" Days Sleighing .	31	25	9	\bigcirc	7	72							

2lowa!

John Somer The following

President-_Jo
Ïce-President
I'reasurer-W
Secretaries- R
Council J. I
PoWer, J. M.

1. R. IeWolfe.
1)r. Honeymat "ounty, \&c." Tl

$$
\mathrm{O}_{\mathrm{RD}}
$$

It was announce Hare as member,
Dr. Somers rea various species des

It was announce Cuuncil.
Dr. Honeyman r
cend Geological 1
sable Island.
Ir. Somers, exhi

PROCEEDINGS

OF THE

2lowa sootian ilnstitute of zefatural stience.

Vol. V. Part 4.
Provincial Museum, Oct. 12, 188 r.

Anniversary Meeting.
Iohn Somers, M. D., President in the Chair.
The following were elected Officers:-

Council.

President-John Somers, M. D., F. R. M. S.
ITie-Presidents-Robert Morrow, Esq., Augustus Allison, Esq.
Ireasurer-W. C. Silver.
Secretaries-Rev. D. Honeyman, D.C.L.,F.S.A.,F.R.S.C., and Alex. McKay.
Council J. Bernard Gilpin, M. D., M. R. C. S. L., Wm. Gossip, Hon. L. G.
Power, J. M. Jones, F. L. S., W. S. Stirling, Martin Murphy, C. E.,
I. R. DeWolfe. M.D., L. R.C. S. E., Edwin Gilpin, M. A., F. G. S., F. R. S.C.

Ordinary Meeting, Provincial Museum, Nov, 14, 188i. The President in the Chair.
Ir. Honeyman read a Paper " on the Superficial Geology of Halifax City and ounty, \&c." The Paper was illustrated by a map.

Ordinary Meeting, Stairs' Building, Dec. 12, 188ı. The Presinent in the Chair.
It was announced by the Secretary that the Council had elected Mr. Alfred A Hare as member, and Mr. F. H. Gisborne an Associate member.
1)r. Somers read a Paper " On Fungi of Nova Scotia."-Dried specimens of the arious species described were exhibited and examined.

Ordinary Meeting, Provincial Museum, Jan. 9, 1882.

The President in the Chair.
I/ was announced that Mr. J. D. Burbidge had been elected a member by the 'ouncil.
Dr. Honeyman read a Paper "Geological Notes-Metalliferous Sands." He also real " Geological Notes" - By Simon D. McDonald, F. G. S., on Cape Rosier, and sable Island.
ir Somers, exhibited the Heart of a Moose, and explained its Anatomy.

PROCEEDINGS

Ordinary Meeting, Provincial Museum, Feb. 13, 1882.
 The President in the Chair.

Mr. Robert Morrow, V. P., read a paper "On the Osteology of the Lophius Pisca torius." The Paper was illustrated by beautifully prepared skeletons ofthe Lophiu., and of a Codfish head, and by duplicate sints of bones.

Ordinary Meeting, Provincial Museum, March 13, 1882. The President in the Chair.
Mr. Wm. B. McKenzie was reported as having been elected an Associate member by the Council.
Martin Murphy, C. E., read a paper "On the Teredo navalis, and the meanadopted in other countries for preventing its attacks on submerged timber." The Paper was illustrated by a large collection of specimens.

Ordinary Meeting, Provincial Museum, April io, 1882.

The President in the Chair.
The Secretary intimated that the Council had elected as members E. W. Plunkett. C. E., Wm. Gossip, C. E., E. H. Keating, C. E., W. Harrington, M. D.

Dr. Gilpin read a Paper "On the Shore Birds of Nova Scotia." The paper was illustrated by specimens from the Provincial Museum collections, and drawings by the author.

Ordinary Meeting, May 8, 1882.
The President in the Chair.
The following were proposed as members :-Mr. John Douglas, and Mr. John James Fox.
Edwin Gilpin, F. G. S., Inspector of Mines, read a Paper " On the Cumberland Coal Field." The paper was illustrated by a sketch map.

Robt. Morrow, V. P., read the second part of his paper "On the Osteolgy of the Lophius Piscatorius."

The President read a communication from the Rev. E. Ball, Corresponding member, describing a Fern which was considered new to Nova Scotia. The President concluded with remarks upon the Society's Proceedings.

Date of Admissic
1873. Jan. I
69. Feb. I
77. Dec. I
64. April
" Nov.
78. Nov. II
67. Sep. ıо
72. April 12
73. Jan. II
63. Oct. 26-
73. April II-
60. Jan.
63. Feb.
82. April Io-
8. Dec. 12-
82. April io-
63. June $17-$
66. Dec. 3-
74. Dec, 10-
79. Jan. II-
63. Jan. 5-.
82. April $10-1$
64. March 7-1
81. Mrch 14-1
75. Jan. 11-)
72. Feb. 5-1
77. Jan. $13-1$
72. Feb. 13-1
70. Jan. 10-M
65. Aug. 29-N
82. April :o-P
79. Nov. $1 \mathrm{I}-\mathrm{P}$
76. Jan, 20-P1
phius Pisca the Lophiut

13, 1882
iate member
d the meannber." The
w. Plunketh.).
le paper wan wings by the
ad Mr. John
Cumberland
e Osteolgy of
onding memThe President

LIST OF MEMBERS.

Date of Admission.
1873. Jan. II-Akins, T. B., D. C. L.
69. Feb. 15-Allison, Augustus, Vice-President, Meteorologist, Halifax.
77. Dec. 19-Bayne, Herbert E., PH. D., I ofessor of Chemistry, Royal Military College, Kingston.
64. April 3-Bell, Joseph, High Sheriff, Halifax.
" Nov. 7-Brown, C. E., Halifax.
78. Nov. II-Cockburn, Colonel, R. A.
67. Sep. 10-Cogswell, A. C., D. D. S., Halifax.
72. April 12-Costley, John, Deputy Provincial Secretary, Halifax.
73. Jan. 11-Dewar, Andrew, Architect.
63. Oct. 26-DeWolfe, Jas. R., M. D., L.. R. C.s. E.
73. April II-Gilpin, Edwin, F. G. S., F. R. S. C., Government Inspector of Mine:, Halifax.
60. Jan. 5-Gilpin, J. Bernard, M. D., M. R. C. S. L., Halifax.
63. Feb. 5-Gossip, William, Halifax.
82. April ıо-Gossip, Wm., Junr., C. e., Halifax.
81. Dec. 12-Hare, Alfred, D. C. L., Bedford.
82. April Io-Harrington, Wm., M. D., Halifax.
63. June 17-Hill, Hon. P. C., D. C. L., Barrister-at-Lav, Halifax.
66. Dec. 3-Honeyman, Rev. D., D. C. L., F. S. A., F. R. S. C., Secretary, Curator Provincial Museum, \&oc., Halifax.
74. Dec, 10-Jack, Peter, Cashier People's Bank, Halifax.
79. Jan. 11-James, Alex., Fudge of Supreme Court, Halifax.
63. Jan. 5-Jones, J. M., F. L. S., F. R. S. C., Halifax.
82. April 10-Keating, E. H., C. E., City Engineer, Halifax.
64. March 7-Lawson, George, PH. D., LL.D., F. C. I., F. R. S. C., Profcssor of Chemistry and Mineralogy, Dalhousie College.
81. Mrch 14-Macdonald, Simon D., F. G. s., Halifax.
75. Jan. II-Mellish, John T., A. M., Halifax.
72. Feb. 5-McKay, Alexander, Secretary, High School, Halifax.
77. Jan. 13-Morrow, Geoffrey, Halifax.
72. Feb. 13-Morrow, Robert, Vice-President, Halifax.
70. Jan. 10-Murphy, Martin, c. E., Provincial Engineer, Halifax.
65. Aug. 29-Nova Scotia, the Rt. Rev. Hibbert Binney, Lord Bishop of
82. April :O-Plunkett, E. W., C. E., Halifax.
79. Nov. II-Poole, H. S., Assoc. R. s. M., F, G. S., Sup't. Acadia Mines, Pictou.
76. Jan. 20-Power, Hon, L. G., Senator.
71. Nov. 19-Reid, A. P., M. D., Sup't. Prov. Asylum for Insane, Dartmouth
65. Jan. 8-Rutherford, John, m. E., Sup't. of Albion Mines, Pictou.
64. May 7-Silver, W. C., Treasurer, Halifax.
75. Jan. II-Somers, John, m. D., F. R. M. s., President, Professor of Physiolosy and Zoology, Halifax Medical College.
79. Feb. Io-Twining, Chas. F., C. E., Halifax.
66. Mar. 18-Young, Hon. Sir Wm., knt., late Chief fustice of Nova Scotia.
77. Jan. 13-MacGregor, J. G., D. Sc., F. R. S. E., F. R. S. C., Prof. of Physia Dalhousic College, Halifax.

ASSOCIATE MEMBERS.

63. Oct. 6-Ambrose, Rev. John, A. M., Rector of Dighy.
64. May 14-Burwash, Rev. J., A. M.
65. Dec. 12-Gisborne, F. N., Ottawa.
66. Feb. 11 --Louis, Henry, Assoc. R. s. M., London.
67. Jan. 11-McKay, A. H., B. A., B. sc., Principal of Pictou Academy.
68. Nov. 9-Kennedy, Prof., Wolfville.
69. Dec. 8-Morton, Rev. John, Missionary of the Presbyterian Church of Can ala, Trinidad.
70. Mar. 12 - Patterson, Rev. George, D. D., New Glasgow.
71. Mar. 14-Stearns, T. G., (of New York), Middleton, N. S.
72. May io-Waiker, Jas., M. D., St. John, N. B.

CORRESPONDING MEMBERS.

71. Nov. 29-Ball, Rev. E., Maccan.
72. Nov. 25 -Bethune, Rev. J. S., Ontario.
73. Oct. 17-Harvey, Rev. Moses, St. John's, Newfoundland.
74. Oct. 12-Marcou, Jules, Cambridge, Mass, U. S.
75. June $10-M c C l i n t o c k$, Sir Leopold, knt., F. R. s., \&c., Vice-Admiral
76. May 14-Weston, Thomas C., Geological Survey of Canada.

LIFE MEMBER.
Parker, Hon. Dr., M. L. C., Nova Scotia.

zllova

ART. I. -NC

In H. M. Intercolonial Hill." The summer in fi mirable oppo my residence superintender boulder expos taque" is it: was just an u coarse sand a: scattered from by Mr. Nolan there were thi car-track ; nin other boulders porphyries anc tains, and dole this accumulat acres; its heigl remains.

TRANSACTIONS

OF THE

zona Scotian Innstitute of ghatural science.

Art. I.-Nova Scotia Geology (Superficlal.) Continued from Transactions 1875-6. By Rev. D. Honeyman, D. C. L., F. S. A., F. R. S. C., Curator of the Provincial Museum.

(Read Nov. 1881.)

Part I. - Halifax County.
In H. M. Dockyard, opposite the North street Station of the Intercolonial Railway, is an elevation known as "Observatory Hill." The removal of a considerable part of this during the past summer in filling up an extensive and deep pond, afforded an admirable opportunity of examining its interior. Its proximity to my residence enabled me to note the progress of operations. The
niral superintendent, Mr. Nolan, kindly took note of every massive boulder exposed, observing its position and size. "Rudis indigestaque" is its general description ; structure, it had none. It was just an unloaded heap of rubbish. Its chief materials were coarse sand and clay. Through this masses of quartzite were scattered from top to bottom. The weight of one was estimated by Mr. Nolan at 13 tons. I was present at one fall in which there were three enormous boulders. One of them fell upon the car-track; nine men were required to remove it. Among the other boulders were syenites, gneisses, granites, diorites, jaspers, porphyries and diorite-amygdaloids from the Cobequid Mountains, and dolerite-amygdaloids from Blomidon. The form of this accumulation was oblong; its base occupied an area of 18 acres; its height was about 50 feet, more than the half of it still remains.

Glaciation was observed on the side of Water street, near the Dockyard, before the I. C. R. was extended to North street. Opposite the Sugar Refinery and on the same street, striation was observed last summer. The course of this was, N. 30 W., S. 30 E., mag.; N. 48 W., S. 48 E., true. This is in the direction of Blomidon and Observatory Hill. In my first paper I pointed out another course of glaciation at Wellington Station, on the I. C. R., made by the transportation of the Cobequid Mountain contingent on its way to unite with that of Blomidon for the formation of Observatory Hill and corresponding accumulations. The direction of Wellington Station glaciation is nearly N. and S. true The Cobequid Mountain boulders have travelled overland from 65 to 70 miles ; the Blomidon 60 miles. The massive quartzite houlders have travelled between $\frac{1}{2}$ a mile and 8 miles.

Fort Needham.

The elevation so-called has a constitution similar to that of Observatory Hill. This, too, has Archæan syenite boulders, as well as Triassic amygdaloid. I collected specimens of these in exposures not far from the glaciation opposite the Sugar Refinery. In passing to the west side I ascended the hill. On the top I observed quartzite boulders of dimensions not inferior to those of Observatory Hill. In the western exposures on Gottingen street I collected Archæan syenites and diorites, and Triassic amygdaloids.

On the same street, opposite the Wellington Barracks, exposed glaciation is extensive. The general direction corresponds with that of Water street, S. 48 E., N. 48 W.

Citadel Hill
furnished Archæan and Triassic boulders. On the east side there is glaciation having the same direction as the preceding. The glaciation of Point Pleasant Park is generally S. 38 E., N. 38 W. Eastern Extension.
Accompanied by Mr. Bell, High Sheriff of Halifax, I proceeded last summer to extend my acquaintance with the geology of the eastern part of Halifax County. I now give the results of my examination of the Superficial Geology.

Coming 1 A. short di having a fer my former Preston roa Waverley V bles I had c tion. Here We proceed horo' Road. transportatic in this route about four At Sullivan's and examine is N. S. mag. ders, syenite showed consi of Triassic a found about : thus far east. as far as Mea coulders, with similar to tho on the road carboniferous and diorite. over solid grar we left the gra ohscured by t taken the plac cepted by the Harbour, on it and diorite.
de there g. The ก. 38 W .
-oceeded y of the s of my

PART II.

Waverley Gold Mines.

Coming to Dartmouth we proceeded on the road to Waverley: A short distance from the road to Preston drift was observed having a few Archæan Syenites without Triassic amygdaloids. In my former paper I noticed the occurrence of the latter on the Preston road. No more drift was seen until we reached the Waverley Mines. In an exposure of drift at the back of the staHes I had collected Triassic amygdaloids on a former examination. Here they were collected a second time-two specimens. We proceeded farther and reached what is called the Old Guyshoro' Road. This road runs easterly and crosses the direction of transportation. I consequently expected interesting revelations in this route. Drift was first observed near Rutherford's Mill, about four miles along the road. In it were syenite boulders. At Sullivan's (see Map of Halifax County) glaciation was seen and examined. The rock is argillite ; the course of the striation is N. S. mag. (N. 18 W., S. 18 E. true). At Goff's archæan boulders, syenite and diorites are numerous. The sinking of a well ,howed considerable thickness of red clay. A beautiful specimen of Triassic amygdaloid with amygdals of radiating stilbite was found about a mile beyond this, which was evidently a rare one thus far east. Cuttings and other exposures of drift continued is far as Meagher's Grant. In these I found syenitic and dioritic noulders, with other amygdaloids (dioritic, with calcite amygdals) similar to those found in Observatory Hill. In Meagher's Grant, on the road to Musquodoboit Harbour, at an outcrop of lower carboniferous limestone, I observed drift with boulders of syenite and diorite. We then lost sight of the drift, our course being over solid granite. About a mile before we reached the harbour, we left the granite and entered upon argillites. These are largely ohscured by the granite transportation, which has evidently taken the place of the syenite, which seems to have been intercepted by the granite belt over which we have passed. At the Harbour, on its west side, I found a few small boulders of syenite and diorite. It required close observation to find these among
the abounding granite boulders. I suppose they may have reached this point by travelling along the course of the Musquodoboit River.

Jeddore.

We observed only granite transportation until we came to Jeddore. Then road cuttings gave promise of something different; but as we intended to go as far as Clam Harbour, we left the examination of this drift until our return. Approaching our destination we observed on the road a considerable outcrop of quartzite with glaciation. At the entrance of the Clam Harbour road, a large outcrop of argillite, which is beautifully glaciated, was passed, and we came soon to our terminus.

Clam Harbour.

Looking around this locality, I observed some exposures of the familiar drift of the usual reddish colour, and found syenitic and dioritic boulders. This led me to expect other exposures on the shore. We made for Clam Bay. The impression made by the first view of this Bay will not readily be effaced. It has a sweep of about 11 miles, as far as Jeddore Head, and is washed by the broad Atlantic. It was ebb-tide, showing the greatest extent of its wide beach and white sands. On the bank was observed an exposure of red drift. In this I collected syenites, diorites, \&c. From this point, the similarity of the several drift banks extending to Jeddore Head was readily recognizable. Not having an opportunity to examine these, I resolved upon doing what was next best,-upon examining carefully the exposures already referred to as occurring upon the road, regarding these, as corresponding with the lofty banks on the side of the bay. Connected with our drift bank, and partially overlying it, a marine formation is in progress, washed and heaped up by the Atlantic waves and storms. This sand is beautifully white, being chiefly formed of the siliceous and micaceous detritus of the transported granite.

In this formation we have-
1 Ripple marking.
2 Rill marking.
3 Worm tracks. pliocene drift. The ment corresponds, h of the bay, and ot Thrum Cap, at the n of the Champlain these or their equiv pose. That the Re are the extremities I rather believe that tance, and that it ha Glacial period, by th supposition the Plei and be overlaid by clays and sands of the two glacial expo the two are parallel S. 8 E., true.

The drift cuttings expected, boulders of amygdaloid boulder, quartz (chalcedonic). bour no drift cuttings place syenite and dior About a mile fart

4 Worm burrows.
5 Bird tracks. Tringa minuta.
6 Imbedded egg cases of Raia. (Pisces.)
7 Mollusca. Natica heros.
8 Moactra solidissima.
9 Mya arenaria.
10 Saxicava (
Crustacea.
11 Crabs.
12 Shrimps.
13 Echinoidea. Echinus. Echinarachnius, \&c.
We have thus the "Recent" (Cené) lying directly on Postpliocene drift. The succession is seemingly irregular. The arrangement corresponds, however, with that occurring at the other parts of the bay, and other drift accumulations on the shore, on to Thrum Cap, at the mouth of Halifax harbour. The clays andsands of the Champlain period appear to be wanting. That either these or their equivalents are absent, we have no reason to suppose. That the Red Heads and other drift banks of the shore are the extremities of the drift transportation, I do not believe. I rather believe that it may have extended to a considerable distance, and that it has been denuded to a great extent since the Glacial period, by the ceaseless action of the Atlantic. On this supposition the Pleistocene drift may now underlie the Banks, and be overlaid by Champlain clays and sands, with overlying clays and sands of the present period. Returning I examined the two glaciel exposures already referred to. The courses of the two are parallel, being S. 10 W., N. 10 E. mag., or N. 8 W., S. 8 E., true.

The drift cuttings on the road side at Jeddore yielded, as was expected, boulders of syenite and diorite, also a beautiful diorite amygdaloid boulder, having sub-spherical amygdals of reddish quartz (chalcedonic). Between Jeddore and Musquodoboit Harbour no drift cuttings of this kind were observed. At the latter place syenite and diorite boulders were again collected.

About a mile farther, at Petpiswick, extensive outcrops of
strata were observed. These are much glaciated. The very ferruginous character of the argillites affected the compass so much that I was unable to take the course of the striation. The accompanying drift cuttings on the road side showed the usual syenite and diorite boulders. In a cutting of drift at the Chezzetcook road, I found similar boulders and a large agate.

Porter's Lake.
Between this and Chezzetcook I expected most certainly to find drift corresponding with that of Three Fathom Harbour point and Half-Island, where I found Triassic amygdaloids on my first examination. (Paper 1875-6.) I found neither amygdaloid drift nor glaciation. About a mile beyond Porter's Lake we found very distinct glaciation, and of considerable width, without any appearance of drift. The course of the former is N . E. magnetic ; S. 18 E., N. 18 W. ., true. The transportation is granite. One immense boulder near a glaciated surface, attracted particular attention. It had interfered with the growth of a tree of considerable size. By it the trunk of the tree was indented half way. Proceeding, we arrived at Big Salmon River. At the beginning of Preston, drift was well exposed in the bed of a brook on the right side of the road. I here found a Triassic amygdaloid boulder of considerable size. The granite transportation ended before we reached Salmon River. I had thus certain evidence that this belt of granite which had not heretofore had a place in our geological maps, extended in width from Meagher's Grant to Musquodoboit Harbour, less one mile,-i.e., about 6 miles in length, from Ship Harbour, next Clam Harbour, to Lake Major, near the Waverley Gold Mines, 28 miles. We have now reached ground described in the previous Paper.

Part III.
Resuming our investigations, Mr. Bell and I proceeded directly to Meagher's Grant. From this we took the road to Litthe River Settlement; course N. E. Syenite boulders were observed along the road and in the settlement. From this we proceeded to Middle Musquodoboit; course N. E. Syenite boulders were observed all the way. They abound at the bridge
which crosses th boit we proceed cuttings of drift small, were obse Gold Mine, we t South side of t Musquodoboit, o but not in so gre by which we wen

From Middle N. W. On this and very deep cu great and small b with amygdals of chester County as road syenitic bou same road to Hali old road; S. W. the way. A short boulders were par very singularly ru of the syenitic bou intervening elevati
From Elmsdale Between Elmsdale with syenitic bould transportation fron Intercolonial Railw pass by Railway f Station." We now which we have alre
$P_{A R}$
I resumed my in the Hon. Samuel Cre Scotia. We procee This station is distan
which crosses the Musquodoboit River. From Middle Musquodoboit we proceeded to Upper Musquodoboit; course, E. Deep cuttings of drift and vast numbers of syenite boulders, large and small, were observed. Reaching the road leading to the Cariboo Gold Mine, we turned in the direction of the mine; \mathbf{S}. On the South side of the Musquodoboit River we returned to Middle Musquodoboit, observing syenite boulders all the way through, but not in so great a number as we observed on the north side, by which we went.

From Middle Musquodoboit we went to Gay's River ; course, N. W. On this road we found the drift banks very numerous. and very deep cuttings, showing abundance of syenite boulders; great and small boulders of dioritic amygdaloids were also found with amygdals of calcite. At Gay's River we advanced into Colchester County as far as the "Gay's River Gold Field." On this road syenitic boulders were also observed. Returning by the same road to Halifax County, we proceeded to Elmsdale by the old road; S. W. Drift, with syenitic boulders, was observed all the way. A short distance beyond the road to Milford, syenitic boulders were particularly noticed beside a " roche moutonnee" very singularly rutted. Here the Cobequid Mountains, the source of the syenitic boulders, were seen in the distance, without any intervening elevations.
From Elmsdale we returned to Dartmouth and Halifax city. Between Elmsdale and Waverley we missed the familiar drift, with syenitic boulders. Instead of these we had another granite transportation from the belt of granite which is seen from the Intercolonial Railway, on the east side of Fletcher's Lake, as we pass by Railway from "Windsor Junction" to the " Wellington Station." We now come to the end of the old Guysboro' road, which we have already travelled twice.

Part IV.-Colchester County

I resumed my investigation in this County, accompanied by the Hon. Samuel Creelman, Chief Commissioner of Mines of Nova Scotia. We proceeded by railway to the Brookfield Station. This station is distant from Three Fathom Harbour 43 miles ; from
the Cobequid mountains, 17 miles. Here syenitic boulders art found in abundance. From this we went to the Brookfield iron (hematite) deposit; thence to the lead mines of Smithfield and Pembroke, and then to the "Cross Roads" of Upper Stewiacke and " Round Bank," Mr. C.'s residence, our course being generally easterly. In all this tortuous route syenitic boulders were seen in abundance. Like Mr. Bell, Mr. Creelman had become greatly interested in my investigations, and he now regards the boulders of life-long acquaintance in a new and interesting light. The "Cross Roads" just referred to are noted on our maps. The striation of Clam Harbour extending northerly passes through this point, and cuts the Cobequid mountains in the vicinity of "Mount Thom," Pictou County, where the Archæan belt seems to terminate. I consequently expected the syenite and associate boulders to diminish in number and gradually disappear to the east of the "Cross Roads." Standing in front of Mr. C.'s residence we see Berry-hill on the south side of the Stewiacke River. On either side of it there is a depression. The Clam Bay line of transit would seem to run along the left depression, while the Jeddore would traverse the other. We went to the top of this hill (S.). On the table land are several extensive farms. The Archeean boulders which abound below seem to have almost disappeared. After a diligent search among stone cairns collected out of the cultivated fields, I found only half-a-dozen diorites, We traversed a summit road to some distance westward, toward the Jeddore line, without observing the looked for boulders. Descending northwest on the side of this depression, we came to the line of boulder passage (Jeddore line), and reached the region of abounding boulders. Afterwards I investigated the region to the N. E. of the "Cross Roads." Contrary to expectation, I found Archrean boulders in abundance, as I went along the course of the Stewiacke River, toward the Pictou and Colchester County line. In the river the abundance of boulders, both large and small, was particularly observed as well as their variety and beauty. I advanced to within two miles of the County line, and found large boulders still occurring. I left off the search for their termination at this time.

We afterward pr railway, i. e., in a Archæan boulders road, except where stone to raise its he north of Salmon Ri and at no great dist miles N . of Clam E Riversdale we retur

I returned to Riv Un both sides of t observed. I stoppec examination. Hert station are occasion one is granite, being, and resembling the from the other gran although it is unqu series. I then walke S. E. of the station. way,- $1 \frac{1}{2}$ miles. I diorites and dioritic direction is deferred stopped at Milford sta moutonnee, referred t search of this rock, I travelled about thirt These wanderings, ho Archæan boulders in houlders where I expe I observed five well-de N. 10 W. Besides th 40 E., N. 40 W. Twc tion S. 30 E. The ch 13 miles east of the \mathbf{H}

We afterward proceeded to "Riversdale station," of the Pictou railway, i. e., in a northerly direction, toward "Mount Thom." Archrean boulders were seen in abundance occurring along the road, except where the mud and mire were too deep for any stone to raise its head They were seen at the station, and on the north of Salmon River, in sufficient abundance and magnitude, and at no great distance from the mountain. We were now 47 miles N. of Clam Bay, and 3 miles S. of Mount Thom. From Riversdale we returned by railway to Halifax.

Part V.-Pictou County

I returned to Riversdale station and thence proceeded onward. On both sides of the line of railway, Archæan boulders were observed. I stopped at West River station for the purpose of examination. Here boulders abound. Those in front of the station are occasionally of large size, most of them are syenite, one is granite, being composed of quartz, muscovite and orthoclase and resembling the granites of Halifax. It is much different from the other granites which I have found in the Cobequids, although it is unquestionably derived from rocks of the same series. I then walked along the road which leads to settlement S. E. of the station. The usual boulders were observed all the way, $-1 \frac{1}{2}$ miles. I collected at the end of the road, syenites, diorites and dioritic amygdaloid. Further examination in this direction is deferred to another season. Returning to Halifax I stopped at Milford station for the purpose of examining the roche moutonnee, referred to in Part III. Starting from Milford in search of this rock, I had some difficulty in finding it, so that I travelled about thirty miles before I succeeded in my search. These wanderings, however, were of service, as they showed me Archæan boulders in all directions, and the want of triassic houlders where I expected to find them. On the roche in question I observed five well-defined parallel lines having a course S. to E. N. 10 W . Besides these are parallel ruts, having a course S . 40 E., N. 40 W . Two of these were bent and turned in a direction S. 30 E . The character of this rock, quartzite, its position 13 miles east of the Halifax meridian, north side of the band of
metamorphic rocks, in sight of the Cobequid mountains, and its very distinct glaciation, led me to regard it as a very interesting object. In my paper of 1875-6, I quoted an observation from a table in " Acadian Geology," a position at the Gore having striation with a course S .20 E . I had resolved to search for this striation. This roche saves me the trouble, and seems to furnish a sufficient reason, in connection with other observations, to which I shall yet refer in a future paper, for the distribution of boulders to the east of Clam Harbour line. It also gives occasion to modify certain conclusions at which I had arrived in my first Puper. Coming from the N. E., I searched as far as Elmsdale for boulders and minerals from the Triassic eruptive rocks, which extend as far east as Five Islands, without finding any. In my Paper of $1875-6$, I stated that I had found specimens in the clays of Ennield. Last summer I found a specimen as I was approaching the top of Grand Lake from the Enfield station. Enfield, therefore, seems to be the limit of their distribution in this direction. The other extreme points seem to be half-a-mile beyond Gore. On the old Guysboro' road, the east end of Preston and the west point of Five Fathom Harbor. These two seem to be a sort of outliers, while extreme points of the main triassic amygdaloid transportations are Fletcher's station on the Intercolonial, Navy Island, on the east side of Bedford Basin, Dartmouth Cove and Laurencetown, at Half-Island.

Grand Lake-(Cene Formation.)

While investigating the Pleistocene Geology around Grand Lake, I directed attention to the Lacustrine forms which I believed, in common with others, to be "Prehistoric Pottery." (Proceedings 1879-80.) I examined these in situ, and secured several specimens. I was therefore led to entertain some doubts in regard to their artificial formation. A chemical examination showed me that the supposed plastic portion of the article was Hydrous iron sesquioxide, and that the supposed pottery was "Lacustrine hematite concretions," We have therefore in Grand Lake a new formation in progress of a singular construction.

Rocking Stone.
 Roche Perché.

The Rocking Stone of Spryfield has long been regarded as an object of interest ; it is situate about 11 miles north of Pennant Head, and 5 miles west of Sandwich Point, which lies between York Redoubt and Herring Cove. I had long heard of it, but had not seen it until the last Saturday of last October. I was astonished at its imposing appearance. Having reached its top by a ladder, which is placed against it for the convenience of visitors, I enjoyed a strange rock in this wonderful cradle. My conductor and companion, Simon D. Macdonald, F. G. s., seeing me seated on the top, went to the end of a lever, also placed in position, and commenced operations. The mass began to move, the motion increased and the rocking commenced, and was continued until I was satisfied. Mr. Murphy, c. e., Provincial Engineer, informed me that he had measured the boulder and calculated its weight, which is about 200 tons. It must be wonderfully set and balanced. It is placed in the forest, a beantiful little lake is on its west side. The sun setting in the west, the scene was beautiful and romantic. The boulder has a venerable look. It is coated with lichens, so that its lithological character is not at all apparent. This has led to the belief that it is not like the rocks around. My hammer soon satisfied me regarding its true character. It is a mass of coarse, porphyritic granite. Its constituent mineials are glassy-brown quartz, black mica and beautiful white orthoclase. The rock upon which it is poised is of the same character, and so are the other granite boulders in the locality. It may have travelled 9 or 10 miles, or it may not be far removed from its original position. As we walked to and from, I made observations on our way which I shall briefly describe:

Halifax to Dutch Village.

Our starting point is North Street, opposite Railway Station and H. M. Dockyard. Along North Street we proceeded westward. Beyond Agricola Street crossing is an outcrop of argillites, beautifully glaciated. The course of this striation is S. 20
E., N. 20 W., mag. ; or S. 38 E., N. 38 W., true. This is 10° different from the course already observed at the Sugar Refinery opposite Wellington Barracks, and at Brunswick street, Citadel Hill. Part I. This striation corresponds with that of Pleasant Park, which is generally S. 20 E., mag. Paper of 1875-6. Coming to Leahy Villa, we find another glaciated exposure. It is 30 years since I first discovered this. The appearance is not now so striking as it was then. I had heard of Agassiz's glacial theory and glaciation before leaving Scotland. This was the first glaciation that I had seen. Since then it is very much defaced ; the glaciation has largely shelled of. I would remark that the position of the argillites is vertical. It would be impossible for me to cut off either with hammer or chisel, a piece of unstriated surface, as the weather has done, or as I could do this if striated. This would seem to indicate that a thin stratum had been formed on the ends of the tilted argillites by the pressure of the striating agency. Here the prevailing course is S. 10 E., mag. Feeble and small striae diverge from this course; grooves occasionally run to 30° and return to 20°. Faults are very numerous here and elsewhere, varying from 2 to 9 inches. The course is not interrupted by these. The north side ascends and then at a considerable angle, and then it becomes level. Two granite boulders lie on this exposure; of these, the largest is $3 \frac{1}{2} \times 3 \times 2$ feet. The extent of exposure is 300×150 feet. Farther on in the drain on the north side of the road, is another exposure, having a width of 30 feet, and striation course S. 20 E . There are still two others before reaching the Bridge. The striation of one has been shelled off, the other has a steep northern inclination on the surface. Coming to the North West Arm, our course was changed from W. to S. W. Here we observed great sections of drift. The boulders were granite, gneissoid and argillites, syenites and diorites and amygdaloids, dioritic and doleritic were absent. We entered on a road which I had not previously travelled. We were now among granites. Coming into line with Williams's Lake, we suddenly passed into gneissoid rock, and then into granite. I recognized an old acquaintance, and was on familiar grounds, having followed the gneissoid rocks on
this side of th into the grani Halifax harbo porphyritic ; t cate transporta vive ; air, ice a as to efface fine the right and a altogether satis Saturday and c going along the the right side gneiss boulder seen west of H . nut noteworthy the granites wh ward to the roa soid rocks.
four mile post, road, scooped o The position of t rock, made it im the compass. It large granite bou phyritic as that i stituent minerals No. 3. The amy Hare reports on -Paper by Mr.

In the lake at t Engineer, reports is largely compose
differpposite Part which Leahy since I ing as glaciain that ciation of the cut oft , as the

This ned on riating Feeble ionally ss nere : is not a consulders The e drain ving a ce still me has on the ie was ions of , syenc were riously to line rock, ce, and cks on
this side of the harbour, in all their windings and dovetailings, into the granite, and defined them on the Admiralty Charts of Halifax harbour, years ago. Here the granites are strikingly porphyritic ; these are roches moutone's. The ruts in these indicate transportation and its direction. The deep ruts only survive ; air, ice and water have so affected the material of the rock as to efface fine striation. Coming to a cross road, we turned to the right and at length reached the " Rocking Stone." Not being altogether satisfied, I returned to the N. W. Arm the succeeding Saturday and continued the westerly course beyond the brid going along the St. Margaret's Bay road. Rocks outcropping on the right side are gnessoid. I found one beautiful syenitic gneiss boulder on the road. This is the only one that I have seen west of H. M. Dockyard. Drift cuttings are observed withput noteworthy boulders. Approaching the Halifax water works the granites which extend south to the Atlantic coast came forward to the road. They are seen in conjunction with the gnessoid rocks. At a distance of four telegraph poles beyond the four mile post, a gnessiod rock is seen on the left side of the road, scooped out, with striation on the side of the scooping. The position of the striation and the ferruginous character of the rock, made it impossible to observe the course accurately with the compass. It seemed to be about S. $20 \mathrm{E} ., \mathrm{N} .20 \mathrm{~W}$. , mag. A large granite boulder rested above. The granite here is not porphyritic as that in the vicinity of the Rocking Stone; the constituent minerals are the same. This is granite transportation No. 3. The amygdaloidal and syenitic transportation, which Mr. Hare reports on the north, seems to have been intercepted. --Paper by Mr. Hare, Transactions, 1879-80.

Cene.
In the lake at the Halifax water works, Mr. Keating, the City Engineer, reports the existence of an argillaceous deposit, which is largely composed of diatoms. Its thickness is about 6 feet.
(To be continued.)

Art. II.-Nova Scotian, Fungi-J. Somers, M.D., F.R.M.S. (Read Dec. 12, 1881.)
I have been enabled during the past season to make the following additions to our mycological Flora; before proceeding therewith, I wish to record an expression of thanks to Professor Chas. H. Peck, of the State Museum of Natural History, Albany, N. Y., for very great kindness in diagnosticating and naming several species of which I had no description, I trust that students of Botany who ai working in this branch will soon have from the pen of the protessor a work which in its own department will rival the celebrated Text-book of Dr. Gray,

Order-Agaracini.

1. Agaricus (Mycena) galericulatus. Scop. com. Sept. '81.
2. A. (Pluteus) cervinus, Schoeff, com. Sept. '81.
3. A. (Entoloma) strictor, P. K., W. P.,
4. A. (Eccilia) carnogriseus, $B r$.
5. A. (Leptonia) lampropus, Fr., in pastures.
6. A. (Hebeloma) fastibilis, Fr., com. Sept. '81,
7. A. (Galera) Hypnorum, Fr., Oct. '82.
8. A. (Psilocybe) spadiceus, Scoceff, Oct. '82.
9. A. (P.) cernuus, Mull, under willow, Oct. ' 81 .
10. Coprinus micaceus, Fr. common.
11. Cortinarius (Inoloma) lilacinus, Peck, Willow Park, Sept., Oct. '81.
12. Lactarius torminosis. Fr., Aug. '81.
13. L. quietus, Fr., in woods, Nov. '81.
14. L. Cyathula, Fr., Fir woods, Sept.
15. Russula depallens, Fr., under spruce.
16. Cantharellus, floccosus Schw under pine trees, N. W. A., Oct. '81.
17. Lenzites abietina, Fr , on larch stump.

Oral II.-Poliporef.
18. Polyporus picipes, Fr. Oct. '81.
19. P. chioneus.
20. P. albellus, Peck, Willow Park, Oct. '81. Gen. Dadalea. Fr.
21. Dædalea, quercina, P., on old trunks, Oct. '81.
22. Irpex Oct. '81.
23. Hymen
24. Clavari
25. C. Pulel
26. Athaliu
27. Crucibul on de.
28. Leotia, lt
on t
29. Hypomyc
30. Hypoxylo
28. Leotia, lubrica. Pers.,
on the ground under Birch, 3 mile House, Sept. ' 81
Order.-Spheriacet.
Gen. Hypomyces.
29. Hypomyces, lactifluorum. Schw.

Parasitic, on fungi, Willow Park, Sept. '81.
Gen. Hypoxylon.
30. Hypoxylon, concentricum. Grev., on dead Birches 3 mile House woods, Oct. '81.

Article III.-Geological Notes. Metalliferous Sands. By the Rev. D. Honeyman, D. C. L., F. S. A., F. R. S. C. (Read January 9, 1982)
I would direct attention to certain Metalliferous Sands, specimens of which have been added to the collections of the Provincial Museum, and to their affinities.

1.-AURIFEROUS.

This is a specimen from Jegoggin Point. Vide Paper "On the Geology of Digby and Yarmouth Counties." Trans. 1880-81.

In this Paper I directed attention to the Garnet sand of Lake George, and its origin. I also noticed Jegoggin Point as a locality where rocks are largely micaceous schists, replete with garnets. These were considered to be a continuation of the Lake Georgrocks, from which the garnet sands were derived. When I was examining Jegoggin Point, with Mr. S. M. Ryerson, I observel great veins of quartz pervading the garnetiferous schists. Mr. R. informed me that gold had been found in them. I was therefore not at all surprised when I heard that Mr. Cowan had found gold in the sands of Lake George. The fact of the existence of a gold mine at Cranberry Point, adjoining Jegoggin Point, and in the same singular belt of rocks. in a manner prepared me for the report. So when Mr. Cowan showed me his gold washings in the Museum, I was convinced of their genuineness by seeing the garnets associated with the gold. He told me at the same time that his washings were not from Lake George. As the other alternative, I suggested Jegoggin Point. He answered that that was the place. When I examined Jegoggin Point I did not take time to examine its sand, as it was down among the rocks; but I inferred that this, too, would be found to be garnetiferous, as well as the sand at Lake George. This inference is sufficiently obvious. The existence of gold in the sand seems to confirm Mr. Ryerson's statement that gold had been found in the quartz veins. Description of specimen: The most striking part of it are numerous scalen of gold ; these are associated with beautiful crystals of garnet, having sharp angles; there are also grains of magnetite and
vilica. The m other black g seen in the sch he derived fror ist in the schis neisses of th Gineisses of the ciation of gol "Archeo-Camk additional inter foreign auriferc ite are seen ass the " Nova Scot W yoming, U. S. Hance" to "cha Canada." " T] Range have as hende, mica, ch erals there oce gold and calcit above, were dete Geology. Medic United States C Clarence King, g
We have all constituents of cognized, with In the place of tourmaline, arser I use the term Ca Survey of Great Silurian (lower), to Archæan, app and Huronian be observe also that t Colorado and Med I make between c

Sands. C.
silica. The magnet readily separates the magnetite. There are other black grains which may be hornblende. Hornblende is seen in the schists as well as garnets. The gold and silica may be derived from the quartz vein. Grains of magnetite may exist in the schists in the same way as it occurs in the Archæan gneisses of the Cobequid mountains. Vide- Paper " Archaran Gneisses of the Cobequids Magnetitic." Trans. 1880-81. The association of gold with garnets and magnetite in the auriferous " Archæo-Cambro Silurian (lower) of Nova Scotia seems to be of additional interest, as it suggests relationship with distant and foreign auriferous formations where gems and gold with magnetite are seen associated. It certainly has a tendency to correlate the "Nova Scotia Gold Fields" with the "Medicine Bow Range,' Wyoming, U. S. This is regarded as having a "strong resemHance" to "characteristic beds" of the "Huronian formation in Canada." "The rock masses which form the Medicine Bow Range have as constituents quartz, orthoclase, plagioclase, hornhende, mica, chlorite and carbonate of lime. As accessory mincrals there occur garnet, epidote, magnetite, pyrite, cyanite, gold and calcite; under the microscope, in addition to the above, were detected, zircon, apatite and titanite." Descriptive Geology. Medicine Bow Range. By Arnold Hague. Page 109. United States Geological Exploration of the Fortieth Parallel, Clarence King, geologist in charge. Vol. II. Page 109.

We have all the constituent minerals above enumerated as constituents of our rocks, and all the accessory minerals recognized, with the exception of cyanite, zircon and apatite. In the place of these we can substitute staurolite, andalusite, tourmaline, arsenopyrite, calchopyrite and molybdenite. As I use the term Cambrian, as it is understood by H. M. Geological Survey of Great Britain, my nomenclature, Archæo-CambroSilurian (lower), will be considered by some as equivalent to Archæan, applied to the Medicine Bow Range, Cambrian and Huronian being regarded as convertible terms. I would observe also that the distinction made by Mr. Hague between his Colorado and Medicine Bow "Archæan," is precisely the same as I make between our great Gold Field series of rocks, an l the

Arisaig "Archæan," or the Archæan of Cape Breton, the Cobequid Mountains, \&c.

2.-Magnetitic.

Through William Ross, Esq., Collector of Customs, Halifax, I have received a specimen of magnetitic sand from Cape Breton. Of 100 grains, the magnet separated 15 . The remainder largely consists of garnets and amethyst (?), and possibly titanite ; gold is wanting. It is possibly derived from the Archæan crystaltine rocks of Coxheath. The locality where it is found being Ball's Creek. It is said to be in considerable quantity. I have not yet seen any garnets in the rocks of this series, either in Nova Scotia or Cape Breton. Magnetite is found. Paper " Archerun Gneisses of the Cobequid Magnetitic, 1880-1."

3.-Magnetitic.

I am indebted to S. D. Macdonald, F. G. S., for the specimen which I am now to describe. It is from Cape Rosier, P. Q. Its weight is 65 grains. Of this, about 10 grains are taken up by the magnet. The remainder conaista chiefly of garnets and amethystine grains. It is very like the Cape Breton specimen. Boulders were collected in the same locality. These are of granitic and syenitic gneisses. In the one garnets are seen, and in the other grains of magnetite. So that the rocks that furnished these boulders, in all probability, are the sources of the sand of our specimen. It is therefore of Archæan (Huronian) origin, like the Cape Breton magnetic sand.

4.-Magnetitic.

There is yet another specimen in the Museum collection to which I would refer. It is several years since I received it. It was brought for the purpose of getting my opinion of its value. Its mineral constituents are the same as of the three last described, but it far excels these in the proportion of magnetite. It covers the magnet very readily. I think that this was the reason why I did not receive definite information regarding its locality. If the locality is not in Newfoundland, it is in some part of the Labrador coast. There is a piece of magnetite in the specimen. It is doubtless of Archæan origin.

There are also Attention was de years since I rece cluded this sand i of London, 1862. Cape Rosier, and magnetic sand of men. Prof. How mens that I hav Breton. Mr. Mac presenting to the 1 a recent visit to th

Sable Island is underlaid by an ex Cape Breton of an magnetic sands are they are glacially dor, where the Arc garnetiferous and with its ice freigh along the south sid ings. This may ha the magnetic sand t

Art. IV.-Geolog

Having carefully of the main station, as yet being disapp hummocks that I co tification as visible along the shore, I gradual ascending el curvature to the nor

5.-Magnetitic.

There are also deposits of magnetite sands in Sable Island. Attention was devoted to these long ago. It is more than 20 years since I received specimens. The late Professor Howe included this sand in his collections at the International Exhibition of London, 1862. It corresponds with the sands of Cape Breton, Cape Rosier, and also No. 4, and is difterent from the auriferousmagnetic sand of Joggin Point. I never saw gold in any specimen. Prof. Howe, in his analysis, found titanium. Any specimens that I have seen are less magnetic than that of Cape Breton. Mr. Macdonald has anew directed my attention to it by presenting to the Museum a specimen of what he collected during a recent visit to the Island.
Sable Island is 95 miles south-east of Cape Canso, and may be underlaid by an extension of the rocks of either Nova Scotia or Cape Breton of any formation. There can be no doubt that its magnetic sands are of Archean extraction, and in all probability they are glacially transporion, and that from the coast of Labrador, where the Archæan is like that of Cape Rosier, granite and garnetiferous and syenitic and magnetic. The Arctic current, with its ice freight, according to the Admiralty charts, passes along the south side of Sable Island bank, outside of the soundings. This may have been the agency employed in transporting the magnetic sand to Sable Island.

Art. IV. - Geological Notes. By Simon D. Macdonald,F.G.S.
SABLE ISLAND.
(Read January 9, 1882.)
Having carefully examined the different points in the vicinity of the main station, where gold was said to have been found, and as yet being disappointed in not finding an opening among the hummocks that I could call an average section, showing the stratification as visible on a small scale in the several indentations along the shore, I turned eastward, feeling assured from the gradual ascending character of the Island in this direction, and is curvature to the north-east, that I should yet find among the hills
sheltered from the prevalent south-west winds,a section that would reveal the internal arrangements of this remarkable formation. Nor was I disappointed, for while plodding along the landwash in company with the south side patrol, at a slight turn in the coast, we came suddenly upon a beautiful escarpment some 80 feet high and reaching inland about 500 feet.

The late southeast gales had undermined the embankment at this place causing a downfall, and thereby had produced a fresh exposure of the sand cliff.

The section of this exposure is as follows :-

1. A strata of dark ferruginous sand. 2 feet.
2. Dark mottled Ferruginous, Siliceous and Garnetiferous sand

50 feet.
3. Garnetiferous and Siliceous only 20 "
4. Siliceous sand, light buff colour, with few garnets 10 "
On comparison with another exposure seen subsequently, I considered this as a typical section of the whole formation of this Island.

Here my friend, the patrol, kinuly offered to take me to a place on the south side of the lake where he informed me there was an exposure of jet black sand. Thither we turned our steps when a recall from our steamer somewhat abruptly terminated our expedition in that direction. A sudden shift of wind and a fast rising sea necessitated our presence aboard, and in a few hours we were heading towards the coast in the teeth of a northwester.

CAPE ROSIER.

From Grand Greve to the summit west of Cape Bon Ami the road tends north-eastward across the Gaspe limestones, which are here obscured by drift.

The summit is of grey calcareous shale. From this point the scenery is grand and imposing.

A few feet from the right of the road the precipice is perpendicular about 700 feet. On the left is an escarpment of upwards of 1200 feet, in many places overhanging the tide.

Along the side 45°, in many pla

This formation ches in thickness shattered. In m a grand castellat

During the sp circuitous route hazardous from t the mountain.

From the foot is low and shelvin

From the viole tween those Cape at Cape Rosier lig the finest in the G alternate bands of tain.

The whole is int
At the base of 1 of calcareous spar, these contain cube

From this poin changes to that of of Archæan age.
At several places it is possible to re black ferruginous At Mr. Whalen's a large pan of this spection, on my ret

From the magnet under the glass, I river deposit, show: It is probably deri

Along the side of the cliff the road descends at an angle of about 45°, in many places cut in the face of the rock.

This formation is grey limestone, in layers of from 6 to 8 inches in thickness, separated by bands of greenish shale, and much shattered. In many places it rises in sharp pinnacles, presenting a grand castellated appearance.

During the spring months the road is abandoned for a more circuitous route by boats around Cape Gaspe, travel being too hazardous from the continual falling of debris along the face of the mountain.

From the foot of Cape Bon Ami towards Cape Rosier the coast is low and shelving.

From the violence of south-east gales the entire distance between those Capes is covered with grey limestone shingle, except at Cape Rosier lighthouse. This magnificent structure, which is the finest in the Gulf, is built upon strata of grey limestone, with alternate bands of conglomerate resembling that of Perce Mountain.

The whole is interstratified with black and grey shales.
At the base of the light house I counted upwards of 20 veins of calcareous spar, from one to three inches in width. Some of these contain cubes of galena.

From this point north-west the character of the shingle changes to that of granitic gneiss and shales, which are probably of Archæan age.

At several places along the shore toward Griffin Cove, where it is possible to remove the shingle, there are seen deposits of black ferruginous sand.

At Mr. Whalen's, in the vicinity of Cape Rosier, I was shown a large pan of this material, taken from an embankment for inspection, on my return from Griffin Cove.
From the magnetic character of this sand, and its appearance under the glass, I believe it to be same as that of the Moisie river deposit, shown to me by Capt. LeMeasuer, at Cape Gaspe. It is probably derived from the granitic gneiss.

On the Bones of "Lophius Piscatorius,"-Angler Fish, Devil Fish, Goose Fish, \&c., \&c.
(Read 13th Feb'y. and 8th May, 1882.)

1. Beginning with the frontal bone. You will notice that in this fish it is divided by a serrated suture into two parts, each having on its outer edge a peculiar dentated margin ; looking at the two parts as one bone, its central upper surface is depressed, and at about two-thirds of the length from the anterior ends it has two so-called spines on each outer edge.
2. The prefrontals of this fish, when compared with those of the Cod, have the appearance of being reversed, the side which is down in the Lophius appears to be uppermost in the Cod, this is in consequence of the attachment of the palatine bone to the anterior edge of the prefrontal, so that the palatine bone, with its teeth, follows nearly the line of curvature of the premaxillary. The long arms of the prefrontals are attached to the frontals underneath their outer anterior margins, and are largely supplemented with fibro-cartilage, extending between the anterior forks of the frontals.
3. The ethmoid is absent.
4. Post-frontals-each has upon it two short spines, and on its outer edge, between the spines, two depressions, the anterior the largest, and on its under side, at about the middle of the anterior depression, the bone forms an angular ridge, above the anterior edge, and in advance of which lies the orbitosphenoid.

5 . The basioccipital, at its under posterior extremity, is wide, owing to the presence of thin bony plates for its attachment to the exoccipitals, and is somewhat contracted at its anterior extremity.
6. The basisphenoid is a mucb broader bone than that of the Cod, and has upon its lower side two arms projecting upwards and posteriorly, the wings being attached to these arms, and reaching nearly to the anterior extremity of the presphenoid. The vomer is inserted in a cavity within the presphenoidal portion of this bone.
A. Between the parietals and the posterior extremities of the frontals, lies a bone somewhat oval in shape and depressed in its
centre, it is attal by fibro-cartilag it carries upon it with its equivale
7. The pariet near their poster spine, and are joi
C. Immediate their anterior ex their length, also transversely, unit ure of the pariet serve in the Loph fish; they are sep a delicate membre and somewhat cor deep angular dep rough and cancel margins a bar rur margin of the surfaces; this bat size. I have not b in time to make a
8. The supra-o rise from, and is Atlas, which toge magnum, at the s a semi-circular cov you may see by ref
9. The parocci skull, for the pecul upon their under blade of the arrow of the skull.
10. The exoccipi Cod, but are each p mina of equal size.
centre, it is attached to the parietals by suture, its anterior end by fibro-cartilage to the posterior extremities of the frontals, and it carries upon it the isolated ray of the first dorsal fin, together with its equivalent interspinous ray. It is a " wormian" bone.
7. The parietals-this fish, having no median crest, unite; near their posterior extremities they have each a small, so-called, spine, and are joined to the supraoccipital.
C. Immediately beneath the parietals, and extending from their anterior extremities, posteriorly, a little more than half their length, also supported by the exoccipitals, and extending transversely, united by a serrated suture directly under the suture of the parietals, are a pair of bones which would seem to serve in the Lophius the same purpose as the otoliths in the Cod fish; they are separated from the parietals in the dried skull by a delicate membrane, and on their superior surfaces are smooth and somewhat conical, having in each, on their outer margin, a deep angular depression; on their inferior surfaces they are rough and cancellated, and from the centre of their posterior margins a bar runs across each obliquely outwards to the lower margin of the depression which appears on their superior surfaces; this bar is perforated by a foramen of considerable size. I have not been able to obtain a fresh specimen of this fish in time to make a further examination of these bones.
8. The supra-occipital appears to be anomalous; it takes its rise from, and is anchylosed with, the neurapophyses of the Atlas, which together with it forms the very large foramen magnum, at the same time it forms, almost perpendicularly, a semi-circular cover to the upper posterior part of the skull, as you may see by reference to the skeleton.
9. The paroccipitals project nearly at right angles to the skull, for the peculiar attachment of the supraclavicles; looked at upon their under surfaces they are arrow-shaped, the longer blade of the arrow being on the outside, the shorter on the top of the skull.
10. The exoccipitals are very similar in shape to those in the Cod, but are each perforated by two comparatively large foramina of equal size.
11. The alisphenoids of the Lophius are largely supplemented with fibro-cartilage, in their attachment to the adjacent bones, and they are comparatively flat on their upper surfaces.
12. The mastoids, which are deep, short bones, together with the prefrontals, form the seat of the hyomandibulars; upon each there is a spine, and the points projecting from the outline of the skuli are quite short.
13. In the Lophius I cannot find the squamosal.
14. The orbitosphenoids are extremely small and delicate membrane bones which lie beneath the posterior extremities of the frontals, immediately in front of the post-frontals; in their structure they are very beautiful.
16. The vomer has, in the one exhibited, at present only two teeth, one in each extremity or arm, but it may have had at one time three on each arm, most probably only two at the same time; the large skeleton before you has, as you will observe, two teeth on each arm. On its upper side, curved backward from the teeth, the vomer has a projecting bony plate forming a groove for the reception of the prefrontals, and its posterior extremity, as already stated, is inserted in the cavity of the presphenoid.
17. The inter or premaxillaries are armed on their anterior edges, to their extremities with a row of teeth; those near the median line being five or six long teeth of a character similar to those on the dentary, the remainder are small but gradually increase in size toward the extremity of the bone. On their posterior edges there is a row or rows of teeth extending about half the length of the bones, and speaking generally, decreasing in size from their superior extremities. These bones are from the enormous size of the gape, long and somewhat thin plates; from their superior extremities gradually narrowing for about half their length, their breadth then increases and they terminate inferiorly in a somewhat (posteriorly) scymeter shaped edge. The processes for their attachment to the maxillaries and nasal bones are flat, and in a line following the general line of the top of the skull, but their extremities are oblique, receding from the central line.
18. The n what length intermaxillar inferior surfa also articulat nection with their length tioned, so tha superior term from their su tremities, wh
19. The L
20. The having the sa extremities al of the premax capable of cor the premaxill: the axis of the anterior extre form, and gra sustained by t spine which sı sal fin.
22. The pa the prefrontal these bones tl about six sho they tend tow with those on bones are two the maxillarie outside of the attached to th
23. The hy their articulati at their upper
pplemented cent bones, es. rether with upon each tline of the
id delicate remities of Is; in their it only two had at one the same ill observe,
backward the forming s posterior of the pre-
ir anterior e near the r similar to adually in1 their pos; about half creasing in e from the lates ; from about half rminate inedge. The nasal bones 3 top of the the central
18. The maxillaries have upon their superior extremities somewhat lengthy depressed processes for their attachment to the intermaxillaries, so that their superior surfaces lie beneath the inferior surfaces of the processes of the intermaxillaries, and they also articulate with the vomer. That they may form their connection with the articularies they are twisted at one-third of their length from the extremities of the processes already mentioned, so that their inferior are nearly at right-angles to their superior terminations. These bones gradually increase in breadth from their superior until a short distance from their inferior extremities, when they taper to a point.
19. The Lophius has no suborbital ring.
20. The turbinal bones (nasal-Owen) are strong and firm, having the same structure as the premaxillaries; their anterior extremities articulating with the posterior superior extremities of the premaxillaries; at this point in the living fish they are capable of considerable lateral motion, and they are attached to the premaxillaries by flat terminations in a line perpendicular to the axis of the fish; at about one-third of their length from their anterior extremities they each assume an irregular triangular form, and gradually taper to a point ; at their centres they are sustained by the prefrontals, and between them lies the peculiar spine which supports the first and second rays of the first dorsal fin.
22. The palatine bones articulate between the maxillaries and the prefrontals, close to the toothed arms of the vomer, and on these bones the teeth, of which there are four to six long, and about six short (these latter generally increasing in size as they tend towards their inferior extremities), lie nearly in a line with those on the vomer. On the superior extremity of these bones are two of the so-called spines, which, as they rise above the maxillaries, are generally enumerated in descriptions of the outside of the fish. The inferior extremities of these bones are attached to the inferior edges of the pterygoids.
23. The hyomandibulars have very broad double surfaces for their articulation with their bases, and are very much enlarged at their upper posterior edges. An examination of these bones
will show you that this is essential to the support of part of the opercular apparatus. On their interior inferior terminations there are no prominent surfaces for the articulation of the stylohyals but they rest in a groove and have thin ligamentous attachment.
24. \& 25. The pterygoids and entopterygoids are represented in the Lophius by single bones, one on each side, which are of an irregular oval form at their posterior, assuming a subtriangular shape at their ante ior extremities, and have small processes which connect them with the quadrate bones. They are very thin membrane bones, and the portion below their processes may be taken to represent the pterygoids, for to them are attached primarily the palatines. The upper portion of these bones will represent the entopterygoids.
26. The quadrates, as well as the other bones connected with them, are, for such large fishes, very delicate. The condyles, for their union with the articularies, are exceedingly small, and appear on the inner sides of the bones; rising from them are ridges, folded posteriorly, against which abut the preopercular bones: below the condyles, extending posteriorly and downwards, at a small angle, these bones present somewhat broad surfaces, having at their posterior edges sharp points or spines, which, when the fish closes its mouth, are easily seen.
27. The metapterygoids are very delicate fan-like plates, having narrow thickened edges, which, at their upper arms connect with the hyomandibulars nearly in their centres. These edges are a little wider, and have projecting processes for the attachment of the ligaments which tie them to the prefrontals.
28. The opercula are long and narrow, nearly straight, bones, which articulate with the hyomandibulars just below their junction with the mastoids and prefrontals, they are almost flat on their inner, and have ridges on their outer surfaces ; beginning at the centre of their superior and terminating at their anterior edges on their inferior extremities, these ridges support the subopercula; at their superior extremities, they throw out posteriorly each a long slender fin-like ray.
30. The preopercula are small and narrow curved bones, angular at their posterior edges, having ridges upon them which show
on their oute the hyomandi flattened, and than half the condyles of th
32. The s are attached t bones for rath decrease in siz lie close to the cesses to whicl between these they are produ number,connec blance to a fin. two of the so-c cula bones ext and to about fin-like rays.
33. The int ing upon their cesses, to which connecting ther the opercula bo of these bones which thickener angular extremi and from their to the posterio sides, envelopin: the angulars. percula, the ossa terior part of th
31. Ossa syn between the me the quadrates. I tion of the meta
part of the tions there stylohyals ttachment. epresented h are of an striangular 1 processes \& are very cesses may e attached hese bones
ected with indyles, for small, and I them are reopercular and downbroad surines, which,
ike plates, r arms conres. These ;es for the refrontals. ight, bones, their juncnost flat on beginning eir anterior upport the jw out pos-
rones, angu-
which show
on their outer surfaces, and which support the posterior arms of the hyomandibulars; on their inner surfaces they are irregularly flattened, and terminate in an acute angle, abutting for more than half their length against the ridges which rise from the condyles of the quadrates.
32. The subopercula: these are of very peculiar form, and are attached to the anterior faces of the ridges on the opercula bones for rather more than one-half the length of the latter ; they decrease in size as they rise, terminating in flatted points which lie close to the opercula; from them extend anteriorly long processes to which fibrous tissue is attached, forming the connection hetween these bones, the subopercula and epihyals; posteriorly, they are produced into long, fin-like rays, sixteen to eighteen in number,connected by membrane, which gives them a strong resemblance to a fin. At the bases of their anterior processes there are two of the so-called spines. The inferior extremities of the opercula bones extend a little beyond the solid part of these bones, and to about one-third of the breadth, when extended, of the fin-like rays.
33. The interopercula are somewhat triangular in shape, having upon their superior outer extremities peculiarly-shaped processes, to which, at their inner edges is attached the thin tissue connecting them with the preopercula and with the long arms of the opercula bones (not plates). From the superior outer edges of these bones descend their attachment to the epihyals from which thickened branches are sent out to support the anterior angular extremities of the singularly-shaped subopercula bones, and from their anterior extremities strong ligaments attach them to the posterior extremities of the articularies on their inner sides, enveloping at the same time the posterior extremities of the angulars. These bones lie immediately beneath the preopercula, the ossa sympletica (mesotympanic-Owen) and the posterior part of the quadrates.
31. Ossa sympletica (mesotympanic-Owen). These bones lie between the metapterygoids, the preopercula and the forks of the quadrates. They have double anterior margins for the reception of the metapterygoids and the anterior margins of the forks
of the quadrates. They are very thin narrow plates, single at their posterior edges and nearly smooth on their outer surfaces, with an irregular outline. On their under surfaces, at their superior extremities, they have short ridges nearly in their centres, extending downwards about one-third of their length. Against these ridges rest the stylohyals, which are at their upper extremities attached to grooves in the hyomandibulars.
34. The dentaries are long and narrow; at their anterior extrerities they are united by symphysis, and support two rows of teeth upon their inner surfaces, one of full size, and the other in various stages of growth; on their lower anterior extremities there are processes for muscular attachment, and on their posterior inner surfaces is the space for Meckel's cartilage.
35. The articularies fit into the spaces or grooves of the dentaries. On their upper surfaces the superior anterior faces join the dentaries in sharp points and widen posteriorly to a considerable breadth; at nearly their superior posterior outer edges each has a projecting spine, and on the inner inferior edge processex for connection by ligament with the quadrates; immediately posterior to the spines is the articulation for the condyle of the quadrates. The heads or posterior extremities of these bones extend about one and a quarter inches beyond the anterior edge of the articulation, and upon them rest the spine and the superior part of the broad inferior extremity of the quadrates. Fron the superior posterior extremities of the dentaries the posterior extremities of the articularies reaching to the anterior edge of the articulation for the condyles of the quadrates rapidly fall, and form a triangular surface, which appears to be for the attachment and play of the maxillaries.
36. The angulars are exceedingly small and thin flat bones, situated on the inner sides of the posterior extremites of the articularies. They have small heads, which are turned outwardly and overlap the articularies.
29. Stylohyals. These bones, as already mentioned, lie in grooves in the hyomandibulars, and are small and somewhat tapering towards their superior extremities and have a ligamentous attachment.

BON

37. Epihya tremities they towards their their anterior ${ }^{\text {e }}$ bony plates. ench a splint, w
38. Ceratoh lones, have at which connect t appearance of h on their lower and of equal wi their length, mi for the reception on the inner sid groove mentione superior surface: attachment by 1 this point the be at right angles t
39, 40. Basih base of the hyoi shape, and the u_{1} unite them by sq hyals at their u small, thin and sc to the lower ant Cod the lower pa
39. The glosse
40. Urohyal, , Iy small bones.
41. The brancl are six on each sic the large abdomin 53. There are i Iranchials.*

[^9]s , single at er surfaces, es, at their a their cen. eir length. their upper rs.
anterior extwo rows of the other in extremities
1 their posre.
of the denor faces join to a considor edges each ge processes immediately adyle of the these bones nterior edge ad the superates. From the posterior r edge of the dly fall, and attachment

in flat bones,

 s of the artid outwardly ioned, lie in d somewhat з a ligament-37. Epihyals: these bones are long. At their posterior extremities they are narrow and curved inwards and upwards fowards their junction with the stylohyals. They widen out at their anterior extremities, where they present themselves as thin bony plates. Un their upper inner anterior edgs there is on erch a splint, which unites it with its
38. Ceratohyal: these, which are comparatively very long hones, have at their superior anterior extremities processes which connect them with the epihyals, giving to them in situ the appearance of having thickened superior edges. The Ceratohyals on their lower posterior extremities present the same thin edges and of equal width with the epihyals. In the anterior third of their length, midway in these bones, on the outer side, is a groove for the reception of part of the branchiostegal rays, of which two on the inner side of the bones are the anterior, and four on the groove mentioned the posterior. At about half their length on the superior surfaces there is on each of these bones a process for their attachment by ligament to the angulars and dentaries, and at this point the bones are twisted so that their inferior are nearly at right angles to their superior extremities.
39, 40. Basihyals: these bones, two on each side form the base of the hyoidean arch; in the Lophius they are of irregular shape, and the upper pair present long posterior processes which unite them by sqamuous suture to the inner side of the ceratohyals at their upper anterior extremities; the lower pair are small, thin and somewhat triangular plates, which are attached to the lower anterior extremities of the ceratohyals. In the Col the lower pair are much the larger bones.
39. The glossohyal, which lies between the basihyals and the
40. Urohyal, which is directly beneath it, are both extremeIy small bones.
41. The branchiostegals are very long and thin bones. There are six on each side, and in the absence of ribs they serve to form the large abdominal cavity of the Lophius.
42. There are in the Lophius no representatives of the basihranchials.*

I have not yet found any; but will make further examination as soon as a new yecimen is obtained.
56. The lower pharyngeals are flat, and have at their posterior extremities a somewhat spatulate shape, gradually tapering to their anterior extremities, from which points to about one-half of their length they are strengthened by lateral ridges; on their outer and inner edges it may be said there are two rows of teeth occupying the anterior two-thirds of their length, the posterior third is for the attachment of the muscles, and between the rows of teeth the bones are somewhat rough.
57. The hypobranchials are not represented in the Lophing as in the Cod by three bones, but the inferior (anterior) extremities of the ceratobranchials of the three first branchial arches are prolonged curving inwards and posteriorly, and tapering to points they rest in, and are supported by the fibrous tissue of the floor of the mouth.
58. Ceratobranchials-the first three pairs of these bones are thin and delicate and there is a comparatively wide space between their inferior extremities; the fourth pair are longer than the others, but their inferior (anterior) extremities are slight and a short distance apart, but tied together by tough fibrous tissue which aiso serves to support the inferior extremities of the lower pharyngeals.
61. The epibranchials-the first pair in the Lophius ars only short representatives of these bones and they do not rise to the support of the upper pharyngeals, but are attached to the ceratobranchials of the first arch in the usual manner, and to the epibranchials of the second arch, of which they are about onethird the length, their superior extremities fitting into a groove in the epibranchial to which they are also attached by ligament. At about their centres they throw out anteriorly, processes. which are slightly curved inferiorly, for their attachment to the muscies which govern the branchial arches. The seconl pair of epibranchials are long and slender bones having expansions for the junction of the first pair, and at each extremity for their attachments inferiorly to their ceratobranchials, and superiorly to the anterior division of the upper pharyngeals, immediately beneath the process for the muscular attachment of this division. The third pair of epibranchials taper slightly from their junc-
tions with length, they pharyngeals, support; at t with the four in fact formi extremities o upper pharyn The fourth pe the others, be the others as somewhat thi size until they shaped proces bones of the t ryngeals they also tend to st geals, while t sustained by t 62. The up sions (anterior curved posteris twelve teeth, a extremities for sions are somes (the bases of th of either of the edges a process from eleven to narrow plates ; under and con second divisions muscular attach fourteen teeth.
46. In the L post temporal) upon its edges, g
their postely tapering ,ut one-half is; on their ,ws of teeth re posterior en the rows
the Lophiug rior) extrechial arches tapering to cissue of the
;e bones are e space belonger than e slight and brous tissue of the lower

Lophius ars o not rise to ,ched to the r, and to the : about onento a groove ed by ligaly, processes. iment to the con 1 pair of spansions for ity for their (d) superiorly immediately this division. their junc-
tions with their ceratobranchials to about midway of their length, they then gradually enlarge until they reach the upper pharyngeals, to the median division of which they give partial support; at their upper third these bones are closely connected with the fourth pair, and are for a short space enveloped by them, in fact forming on each side a nearly rigid pair. At the superior extremities of these bones on the anterior faces of the median upper pharyngeals are processes for their muscular attachment. The fourth pair are longer and very much stronger bones than the others, being at their inferior extremities in proportion to the others as ten to three; on their posterior edges they are somewhat thin with double anterior ridges; they decrease in size until they reach the third pair, where they expand with shell shaped processes, which as already stated, partially envelop the bones of the third pair; at the junction with their upper pharyngeals they are less in size than at the enveloping process, and also tend to support the median division of the upper pharyngeals, while the posterior division may be said to be entirely sustained by them.
62. The upper pharyngeals contain each three plates or divisions (anterior, median and posterior), armed with teeth strongly curved posteriorly. The anterior divisions contain each ten to twelve teeth, and are narrow, having processes on their superior extremities for attachment of their muscles. The median divisions are somewhat triangular in shape, and their superior edges (the bases of the triangles), are more than four times the breadth of either of the other divisions; they have each on their superior edges a process for their muscular attachment, and each contains from eleven to fifteen teeth. The posterior divisions are also narrow plates; at their anterior inferior edges they are curved under and connected with the under posterior surfaces of the second divisions; on their superior edges there are processes for muscular attachment. These divisions contain each from ten to fourteen teeth.
46. In the Lophius the supra clavicle (sometimes called the post temporal) is on each side a broad spatulate plate, thin upon its edges, gradually rising to form a ridge along its anterior

350

centre: at about one-third of its length from its proximal extremity, the ridge mentioned becomes reduced, and this extremity droops so as to form its articulation immediately beneath the paroccipital and against the exoccipital, thus lying nearly at right angles with the vertebral column.
47. In this fish the interclavicle is not represented.
48. The clavicle is very difficult to describe; from the proximal extremity of its upper limb to midway of the lower limb, lines drawn through the centres of these portions of the bone would in general terms form a right angle; they are not unlike the wooden knee of a ship in the curve formed by the upper and lower limbs, the lower half of the lower limb curving towards the centre of the fish. Upon its proximal superior extremity the bone curves upward, and projecting above the supraclavicle, forms one of the spines of the head. A very long and strong spine rises just above the point of junction with the distal end of the supraclavicle. Upon the outer edge of the clavicle there is also a process for the attachment of the muscles, and at about one-third of the length (from its inferior extremity) of the lower limb of the clavicle, rises the ligament which serves for the attachment of the pelvic limbs.
49. Accessary bone: at the base of the long spine at the upper outer posterior edge of the clavicle, and attached to it, is the accessary bone (post clavicle, of some) ; it is thin and delicate.
52. Scapula: close to the accessary, and upon the clavicle, and close to its outer edge, is the very small fenestrate scapula, and immediately beneath the scapula, attached to its inferior edge, but lying, its central limb in the centre of what may be called the junction of the upper and lower limbs of the clavicle, is the (51) coracoid, which is an irregularly oval cup-shaped bone, the edges of which are attached to the clavicle, and from its apex a thin process projects angularly towards the outer edge of the clavicle, to which it is attached by cartilage.
53. The carpals, or brachials, in the Lophius, are (on each side) two in number, they are very long and are attached to the scapula, the coracoid, and to the clavicle. The upper carpal being about half the length of the lower, does not hear fin rays,
but serves much strons superior eds posterior he mity of the tinues to its junction wis inferior edg attached.
80. The 1 attached by at its upper enters and is so be called, tened at its centre, from ments, on the the posterior a comparativ a slight upw: 67, 68, 69. The Atlas as: occipital ; the wider on theil first named, t the caudal ex edges by ang are inter!ock succeeding ct preceding net until about t nearly of the eighth and cesses very s of the normal column, being than half its 1
nal extreextremity reath the nearly at
the proxiwer limb, the bone not unlike upper and y towards extremity raclavicle, nd strong stal end of le there is at about the lower for the at-
at the upoo it, is the delicate. เe clavicle, te scapula, ts inferior at may be clavicle, is d bone, the its apex a dge of the
e (on each ched to the per carpal ar fin rays
but serves for the support of the lower carpal, (which is also much stronger than the upper), as well as to the fin rays of the superior edge of the pectoral fin. The lower carpal at its lower posterior half, at the point of junction with the inferior extremity of the upper carpal, has a thin posterior edge which continues to its distal extremity, and round which, beginning at the junction with the upper carpal and continuing to its anterior inferior edge, the twenty-seven rays of the (65) pectoral fin are attached.
80. The pubic bones which support the ventral fins are each attached by a strong ligament to the clavicle (see 48) of its side at its upper edge, about the point where the posterior cartilage enters and is covered by the bone. The iliac portion, if it may so be called, being a shaft (containing cartilage), somewhat flattened at its anterior extremity, decreasing in size towards its centre, from whence it widens out to form the ischio-pubic elements, on the outer edge of which the six fin rays are attached, the posterior (82) five being soft rays, and the anterior ray (81) a comparatively short and strong spine, which has in most cases a slight upward and outward curve.

67, 68, 69. The vertebral column contains twenty-nine vertebre. The Atlas as already mentioned (ander No. 8), supports the supraoccipital ; the atlas, axis and the third and fourth centra are wider on their superior and inferior surfaces, particularly the two first named, than the remaining centra which gradually taper to the caudal extremity. The vertebre interlock on their inferior edges by angular processes, while their superior anterior edges are interlocked or supported by the neurapophyses of each succeeding centrum overlapping the posterior edge of its preceding neurapophyses, and they gradually decrease in size until about the nineteenth centrum, from this point being nearly of the same size to the twenty-seventh. The twentyeighth and twenty-ninth centra have their superior processes very small, but the inferior interlocking processes are of the normal size. The axis is the shortest centrum in the column, being about half the length of the atlas, and not more than half its height at its outer edges. The twenty-eighth cen-
trum is about the same length as the twelfth, and the twentyninth is double the length of any other centrum.

The neurapophyses and neural spines. The processes rising fromt the atlas and supporting the supraoccipital may probably be looked upon as modified neurapophyses ; those of the axis and third centrum at their inferior extremities having a greater space between them as these centra are wider than the others, the remaining neurapophyses conforming to the centra to which they are attached. The neural spines rise in height gradually from the axis to the ninth centrum, slightly fall at the tenth, maintain their height to the fourteenth, and diminish gradually to the twenty-first; the twenty-second and twenty-third meet with somewhat rounded points; the twenty-fourth, fifih, sixth and seventh are again slightly prolonged, but the structure of their posterior extremities is much like that of their centra. The posterior edge of the twenty-seventh centrum shows slight increase in median diameter, but the form of the twenty-eighth centrum is different from that of the others, it is marked by a prominence on its median line at each side, and at its posterior extremity the neural spine overlaps the twenty-ninth centrum for about one-half of its length. The twenty-ninth centrum has, extending for nearly two-thirds of its length from its anterior edge, on each side, a broad wing-like prucess beginning below the prominences on the twenty-eighth centrum, slightly rounded at its outer edge and drooping a little towards its posterior extremity ; near its superior posterior extremity this centrum is rounded somewhat and flattened, and at its extremity, it is transverse to the vertical line: the termination of this centrum which supports the caudal fin is vertically narrow and perpendicular to the column. The neural spine appears in this centrum to be represented by an intercalated curved bone, the centre of which lies just posterior to a line drawn through the posterior edge of the anterior third of the centrum, and there are two foramina at the base of the neural canal, below the anterior extremity of the intercalated bone.

The two centra twenty-eight and twenty-nine, appear to be the analogues of the sacrum.
e twenty. ising from be looked third cene between ning neuattached. xis to the sir height nty-first lat roundare again r extremidge of the an diame. rent from ts median ural spine alf of its for nearly ach side, a ominences outer edge ; near its somewhat se vertical the caudal unn. The ted by an t posterior erior third ase of the itercalated
pear to be

The Ventral aspect of the vertebral column: The Axis has no parapophyses, but at its anterior inferior edge a rounded ridge for its articulation with the basi-occipital, and from the posterior edge of this ridge there is an upward curve, which causes the posterior to be in vertical height to its anterior edge as three to five; the curve mentioned is continued in the axis and third centrum, making the vertical height of the three named less than that of the remaining centra, and not affecting the dorsal line.

The centra, from the axis to the fourteenth, gradually increase, and from the fourteenth to the eighteenth, decrease in vertical height; the remainder are nearly of the same height. It may be observed that while in most of the centra the conical cavities are of greater transverse breadth than vertical height, the reverse is the case in some of the posterior centra, with the exception of that between the twenty-eighth and twenty-ninth centra.

Between the basi-occipital and the anterior face of the atlas, the usual conical cavities exist, but the atlas taken by itself is neither amphicelous nor procolous, the conical cavity is found in its anterior face, extending deeply into the centrum, and the posterior facet has transversely a small anterior curve, but vertically at its central line it has a straight surface, inclining anteriorly, which causes a slight difference in the length of this centrum, hetween its upper and lower surfaces, the latter or inferior aspect being the shortest. The axis, which is very short, and the remaining centra, are amphicœlous.

The parapophyses of the axis and third centrum are very minute, if even they can be said to exist; "hey begin to appear on the fourth, and continue to and upon the *ninth centrum.
The hæmal arches are completed upon the tenth and eleventh centra oy the coalescence of the hæmapophyses. The hæmal spines appear on the twelfth, thirteenth and fourteenth centra, and following the general line of the vertetral column, each lies in the anterior space between its posterior hæmapophyses. The spine of the ${ }^{*}$ fifteenth centrum at its posterior extremity has a

[^10]
354

slight downward curve, and on the sixteenth it has attained its normal length and angle, and from this, to and including the twen-ty-seventh centrum, the spines gradually decrease in length and angle. The hæmal spine* of the twenty-eighth centrum is much elongated, and is almost parallel with its neural spine, it extends posteriorly beneath the twenty-ninth centrum for two-thirds of the length of the latter.

On the twenty-ninth centrum there is no hæmal spine, unless a somewhat thick and flattened edge on its posterior extremity may be said to represent it. In the wing-shaped processes at each side there is a foramen for the vessels, slightly posterior to the termination of the hemal canal proper.
$74 \& 75$. Dorsal fins. This fish has two dorsal fins, the first containing six spines, two of which are close together and near the nostrils, and are supported by a very peculiar dermal longitudinal spine situated between the turbinal or nasal bones ; looking upon the superior surface of this spine, at its anterior extremity there is a narrow perforated projection which joins the apex of a flat kite-shaped process, the posterior extremity of which terminates in a sharp point curved slightly above the general line of the spine, and beneath which the spine has a flattened superior edge widening to its posterior extremity where it is quite thin and flat. On its anterior half the spine has at its anterior extremity, vertically, a very thin and deep plate, which is strengthened by the flattened edge and process above mentioned ; this thin plate at its anterior inferior extremity is rounded, and curves posteriorly towards the middle of the spine and there disappears. As already mentioned the anterior portion of the longitudinal spine lies between the turbinal bones, and its anterior extremity is slightly in advance of the superior processes of the maxillaries; its posterior extremity extends to nearly the centre of the forks of the frontals. The length of the spine varies in different specimens, a small fish having sometimes a proportionately longer spine than a large one. The spine is enveloped by muscles which control its movements, as well as

[^11]those of the
The first the longitud link-joint, bu are tied toget perforation o joint. Usual lappet, which attract its pre fish when it is fish and is sai specimen was that old age m
The second spine at the p is partially su ray are much
The third or the depression upon it a small shorter than th six inches beh maining, or the space of about half incles in fourth ray (in t third, four and tebral column ; fourth centrum ray above that o column a small almost in its ce articulates.
The second d twelve (74) inter the eleventh an second and twent g the twenlength and um is much 3, it extends vo-thirds of
pine, unless - extremity processes at ly posterior
ns, the first gether and aliar dermal asal bones ; its anterior which joins r extremity I above the spine has a emity where spine has at deep plate, ocess above xtremity is of the spine nterior porbinal bones, the superior extends to ength of the g sometimes The spine is i, as well as

[^12]those of the first and second spinous rays of the first dorsal fin.
The first spinous fin ray articulates with the perforation in the longitudinal spine by what at first appears to be a bony link-joint, but the bifurcated inferior extremities of the fin ray are tied together by a firm cartilage, which, passing through the perforation or ring of the longitudinal spine completes the linkjoint. Usually the first fin ray has upon it a fleshy looking lappet, which is supposed to be the bait this fish displays to attract its prey, but another use of it appears to be to warn the fish when it is in shallow water. This lappet is often lost by the fish and is said to be reproduced in a short time ; when the large specimen was caught, it was without this bait, and it is possible that old age may put a stop to the process of recuperation.

The second spinous fin ray articulates with the longitudinal spine at the posterior extremity of the kite-shaped process, and is partially supported by it; the bifurcated extremities of this ray are much closer together than those of the first ray.

The third or isolated spinous fin ray, rises from the centre of the depression in the bone already referred to as "A," which has upon it a small longitudinal spine for its articulation; it is much shorter than the first two spinous rays, and in a large specimen, six inches behind the second spinous fin ray. The three remaining, or the fourth, fifth and sixth spinous fin rays cover a space of about three inches, the fourth being about three and a half inches in height, the two others successively shorter ; the fourth ray (in the specimen above mentioned) is distant from the third, four and one-half inches, and all three lie above the vertebral column ; the fourth ray above the neural spine of the fourth centrum, the fifth above that of the sixth, and the sixth ray above that of the seventh centrum, each having also above the column a small and nearly longitudinal spine which carries almost in its centre a small crest, behind which the fin ray articulates.

The second dorsal contains twelve soft rays, supported by twelve (74) interneural spines; the first spine is inserted between the eleventh and twelfth, and the twelfth between the twentysecond and twenty-third neural spines, and they are strongly bent
posteriorly, their anterior faces lying against the posterior edge of their anterior neural spine, while their superior extremities rise above their posterior neural spine. The first ray of the second dorsal is supported by the superior posterior extremity of the first interneural spine, and the anterior face or angle of the second, and so on until the twelfth, which is sustained by the posterior extremity of the twelfth interneural spine, slightly in advance of the posterior extremity of the twenty-fourth centrum ; this last interneural spine is attached by its posterior extremity to the neural spine of the twenty-fourth centrum. The fin rays of the second dorsal, increase in length from the first to the sixth, and then decrease to the twelfth ray.
71. The caudal fin contains eight soft rays, the centre two of which are the longest, and about of equal length; the upper and lower rays, also of about equal length, are the shortest, and the fin when spread, presents at its posterior extremity a rounded outline. The two divisions of the upper ray on their superior edges, as well as those of the lower ray on their inferior edges, unitc, and form each an angular edge, but that of the upper ray is much the stronger.
83. The anal fin and interhæmal spines.
79. The interhæmal spines of the anal fin, are ten in number ; the first lies between the fifteenth and sixteenth, and the last two or ninth and tenth, between the twenty-third and twentyfourth hæemal spines, that is both on the twenty-fourth centrum. The fish described has eleven anal rays, the first of which articulates with the anterior edge or angle of the first interhæmal spine; the second with the anterior angle of the second interhæmal, and is also supported by the posterior extremity of the first, and thus they continue to the tenth; the eleventh fin ray is attached to the posterior extremity of the tenth interhæmal spine, immediately beneath the centre of the twenty-fifth centrum. The rays of the anal fin increase in length to, and including the seventh, and decrease slightly to the eleventh. In most specimens, the Lophius presents in the anal fin only ten rays ; in these the first interhæmal spine may be inserted between the fourteenth and fifteenth, or between the fifteenth and six-

TERE
teenth, and twenty-third, hæmal spines, fourth centrun case the last in the extremity ,
72. The Lo]

In conclusior read, was illus \&c., as well as a ticulated bones girdle of a codfi

Art. VII.-On :
NOR
IN I
OTH
Mar
Among the qui time Provinces o greater importanı Teredo Navalis c say that here, a tions of nature only remedy the: causes, a knowle least to avoid, s that innumerable lifeless trunk of t wharves, pierciņ like so many auge until they actually

N.

srior edge of remities rise : the second y of the first e second, and terior extrevance of the this last into the neural of the second sth, and then
entre two of he upper and jest, and the y a rounded heir superior ferior edges, re upper ray
a in number; and the last and twentyurth centrum. which articut interhæmal second interemity of the nth fin ray is 1 interhæmal nty-fifth cenh to, and ineleventh. In fin only ten arted between enth and six-

TEREDO NAVALIS IN NOVA SCOTIA -, MURPHY.
teenth, and the last two between the twenty-second and twenty-third, or between the twenty-third and twenty-fourth hæmal spines, in other words upon the twenty-third or twentyfourth centrum, (I have specimens of both before me), in this case the last interhæmal spine is very short and does not reach the extremity of its posterior hæmal spine.
72. The Lophius has no ribs.

In conclusion, I would mention that the foregoing paper when read, was illustrated, by the disarticulated bones of the skull, \&c., as well as a skeleton of a Lophius, together with the disarticulated bones of the skull, and a skeletal head and shouldergirdle of a codfish (Gadus morrhua).

Art. VII.-On the Ravages of the Teredo Navalis, and Limnoria Lignorum, on Piles and Submerged Timber in Nova Scotia, and the means being adopted in other Countries to Prevent their Attacks. By Martin Murphy, Esq., Provinoial Engineer.
(Read Monday evening, I3th March, 1882.)
Among the questions which interest the engineer in the Maritime Provinces of the Dominion of Canada, there are none of greater importance than the means whereby the ravages of the Teredo Navalis can be checked or prevented. I think I may say that here, as in many other instances, where the operations of nature interfere with the designs of man, we can only remedy these difficulties by a precise knowledge of their causes, a knowledge which may enable us, if not to check, at least to avoid, some of the evil consequences. We know that innumerable boring animals establish themselves in the lifeless trunk of the piles and other submerged timbers of our wharves, piercing holes in all directions into their interior, like so many augers, penetrating the timber in every direction, until they actually destroy its solidity, and dissolve its connec-
tion with the ground. But however efficient these borers may be, science comes to the rescue, and means are being successfully adopted in both Europe and America to not only resist, but to effectually destroy their attacks.

I need only allude to the universal knowledge of the danger to be apprehended, arising from the growth and development of the Teredo within the bearing timbers which support our railway bridges; to the annual loss to both the Dominion and Provincial Governments arising from their destructive powers upon our public road bridges, wharves and breakwaters, to satisfy the most sceptical that a study of this subject is worthy of the deepest scientific interest; and that a minute knowledge of the extent and mode of formation of those belonging to our own shores must be of paramount importance, were it only with reference to the preservation of timber from their attacks. For although efforts are being made to replace our *inber bridges by iron, still, when it is remembered that owing to our great extent of sea coast, to the many indentations of the sea, or harbours which run far inland, and that are necessarily crossed over tidal water, and that timber is within easy distance, and labour, skilled in fashioning it into desirable form, is always available, it may yet be a long time before all the timber bridges in this country will be superseded by more permanent materials. The same remarks will more fully apply to the wharves and breakwaters of the Maritime Provinces of Canada; for until timber in this country becomes much more expensive than it is at present, it will be more economical to adopt in many situations the class of wooden structures, or stone and wood, as at present existing.

These facts suffice to show that the reasons so far given for the necessity of investigating the ravages of the Toredo, and the other destructive species of its class, are in themselves a subject well worthy of investigation; and the author of this paper would respectfully solicit the aid of the President and members of this Institute, many of whom are much more conversant with nature and its fauna and flora than he could pretend to be, the object in view this evening being more to explain what is being done by Engineers to prevent, or at least to lessen, the evil consequences

TEREI
of their attack which perpetra Let us now first, of the abo From a serie the author is le do Norvegica, e zone or area of the shore bounc Strait of Canse Island. South remarkable, the its depredations to Cape Sable a very remarkabl, where its ravag very noticeable, are frozen orer Cape Sable to C diversity of clim of the gulf stre milder and more year round. Th Lawrence on our opposite effect. from agitation seemingly the pla destroy.
At Shediac I h a fender pile to t combed so that it it from 4 to 6 i enough at the til guish the species. At Pictou the I harbour, almost e' its ravages.

PHY.
se borers may ig successfully resist, but to
the danger to opment of the it our railway and Provincial vers upon our to satisfy the y of the deep3 of the extent ,ur own shores th reference to For although s by iron, still, t extent of sea ours which run dal water, and lled in fashionmay yet be a suntry will be same remarks ikwaters of the in this country ;ent, it will be class of wooden ing.
o far given for Coredo, and the selves a subject iis paper would rembers of this int with nature o be, the object t is being done vil consequences
of their attacks, than to discuss the several species of molluses which perpetrate them.

Let us now return from this digression to the consideration, first, of the abode of the Teredo in Nova Scotia.

From a series of investigations for the purpose of this paper, the author is led to believe that the Teredo Navalis, or the Teredo Norvegica, exists all along the shores of this Peninsula. The zone or area of its active operations is, however, confined along the shore bounded by Northumberland Strait, St. George's Bay, Strait of Canseau, Chedabucto Bay, and all round Cape Breton Island. South and West of these places its attacks are not very remarkable, the Limnoria Lignormm being more conspicuous for its depredations along the Atlantic Coast, from Chedabucto Bay to Cape Sable and along the shores of the Bay of Fundy. It is very remarkable that in Nova Scotia the haunts of the Teredo, where its ravages are greatest, indeed where its destruction is very noticeable, are confined to bays, harbours or estuaries that are frozen over from four to five months of the year. From Cape Sable to Cape North, 370 miles, we have a much greater diversity of climate than is due to latitude alone. The influence of the gulf stream on the southwestern promontory gives a milder and more tepid atmosphere, with harbours open all the year round. The influence of the ice floes in the Gulf of St. Lawrence on our northern and more eastern coast, has quite the opposite effect. Here where our harbours or rivers are sheltered from agitation of the sea, they are frozen over, and here is seemingly the place where the Teredo appears to live, thrive and destroy.
At Shediac 1 have seen a spruce stick, that had been driven as a fender pile to the wharf one year previously, completely honeycombed so that it floated to the surface. I saw living teredos in it from 4 to 6 inches in length. I am sorry I did not know enough at the time, to notice the shell or pallets which distinguish the species.
At Pictou the Teredo is very destructive on both sides of the harbour, almost every piece of submerged timber bears traces of its ravages.

The specimens of its borings obtained from Pictou, which I place before you, leave no doubt that it is the work of the Teredo.

At the Pine Tree Gut, about six miles from New Glasgow, and eight from Pictou, where the railway crosses the tidal estuary, the Teredo has attacked the piles of the railway bridge, which we shall hereafter refer to.

At the marine slip, Strait of Canseau, distinct traces of the work of the Teredo are quite visible.

At Sydney, C. B., every wharf suffers by their depredations, except the pier of the Sydney and Louisburg Railway, which is an example of how their attacks can be prevented. I shall hereafter refer to this structure.

At Louisburg, and at Margaree, they are also quite active, so that I think we may fairly assume that they are to be found in the other harbours intermediate between those places.

Returning to the Strait of Canseau, and proceeding westwardly towards Halifax, we are in the region of the Limnoria Lignorum, and although traces of the Teredo may be found at the ship yards and marine slips all along our shores further south, yet they are neither numerous nor destructive. The wood eating Limnoriæ now become the active agents of destruction. Myriads of them are visible on the piles of our wharves, and on every piece of submerged wood within the zone of their attack. From Whitehaven to Halifax, at Mahone Bay, Lockeport, Shelburne, Yarmouth, St. Mary's Bay and at Digby the attacks of these little borers are vexatiously conspicuous. A pile at the old yacht club house in Halifax Harbour, 12 inches in diameter, was reduced to 6 inches in seven years. Along the Atlantic shore they destroy timber over its submerged surface within the limits of its workings at the rate of about one inch per annum. Specimens from Digby, which I submit, show a much less degree of destruction. Those four specimens of piles, taken from Digby wharf, 13 years submerged, were, when driven, $10,12,13$ and 15 inches respectively, they are now $6 \frac{1}{2}, 5,7$ and 6 in the order in which they are first named. Along St. Mary's Bay, Annapolis Basin, and Minas Channel, inlets of the Bay of Fundy, the average rate of destruction seems to be about the same as at Digby, namely,
about one-hal one-half as 1 Atlantic coast which crosses Basin, toppled Lignorum. It was erected th 1st. Cribs and there sunl

2nd. Arou was driven at
3rd. On th erected, which superimposed
Many of the crustacea, that ing the pier t with it into th.

At the lowest er trunk of the of having it re tide to about tl tion became so posed weight al pine,-the attar ive of kind. I ply to hardwoo I will now bn Dr. E. H. Vc Exhibition fron Science Monthly the translation : teresting descri Navalis, as extr from the report your considerati
"Teredos pent
tou, which I if the Teredo. Glasgow, and tidal estuary, oridge, which
traces of the depredations, vay, which is I shall heresite active, so o be found in zes.
g westwardly
ia Lignorum, id at the ship ger south, yet wood eating ion. Myriads and on every ittack. From rt, Shelburne, tacks of these , the old yacht r, was reduced pore they dere limits of its 1. Specimens ree of destrucDigby wharf, and 15 inches rder in which mapolis Basin, e average rate Jigby, namely,
about one-half inch on the exposed surface per annum, or about one-half as much as at Halifax, and some other places on the Atlantic coast. In 1877 one of the piers of the Victoria bridge, which crosses Bear River near its confluence with Annapolis Basin, toppled over, owing solely to the borings of the Limnoria Lignorum. It had been constructed about 10 or 11 years, and was erected thus:

1st. Cribs were built of logs, floated to the site of the piers, and there sunk by stone.

2nd. Around the submerged crib-work a single row of piles was driven at a distance of three feet apart centres.

3rd. On the rectangular single row of piles the piers were erected, which then, stilt-like, supported the whole weight of superimposed pier and superstructure.

Many of the piles suffered so much from the attacks of these crustacea, that several of them floated away with the tide, causing the pier to tilt over and carry the bridge superstructure with it into the stream below.

At the lowest spring tides known for that year, I visited the lower trunk of the pier which still remained standing, with the view of having it renewed. Every pile was eaten at the level of low tide to about three inches from the former surface, until its section became so reduced as not to be able to support the superimposed weight above. The timber consisted of spruce, hemlock and pine,-the attacks seemed to be just the same on each, irrespective of kind. I would here mention that the same remarks apply to hardwood, such as black maple and oak.

I will now briefly advert to the animals themselves.
Dr. E. H. Von Baumhauer, Commissioner to the Centennial Exhibition from Holland, in papers published in the "Popular Science Monthly" for August and September, 1878, gives, through the translation of Mr. Andrews, the following very full and interesting description of the habits and workings of the Teredo Navalis, as extracts from the "Archives of Holland" or extracts from the report of the Dutch Commission, on the subject under your consideration.
"Teredos penetrate wood naturally by very small openings in
a direction perpendicular to the surface (Figs. 12 and 15-C); then they generally turn about in order to follow the direction of the woody fibres, usually upward, but somedimes downward. Although they do not enter into the earth or mud, one generally finds the first traces immediately above the line of the mud in which pile; are driven ; it is at this point that piles destroyed by the teredo generally break off.
"When the teredos are lodged in a piece of wood, one recog. nizes them by very small holes on the surface, and the extremely delicate tubes which project from them (Fig. 10, e, d). These are the siphons, only one of which shows at first, the other appearing later. These siphons are generally kept outside the wood in the water, but the slightest touch causes the animal to retract them. One of them is shorter and larger than the other, but they both seem to serve for the expulsion of the fæeces, which largely consist of particles of wood reduced to a very fine powder. It is known that the teredo does not perforate wood for nourishment, but only to procure a suitable abode; the woody substance detached in the boring, passes through the intestinal canal, and then is expelled in the form of a very fine white substance by one of the siphons, generally, according to M. Vrolik, by the shorter, but sometimes by the longer. The long siphon appears to serve principally for the introduction of food, which consists of infusoriee diatoms, and other inferior animalcule which the sea-water brings with it into the siphons. It is nevertheless still uncertain whether the matter expelled through the longer siphon comes directly from the intestinal tube, or is at first introduced from outside with inflowing water to be expelled again after a short sojourn inside.
" The Teredo requires for respiration a clear, pure water. It has often been remarked that piles piaced in dirty, muddy water, near drains, for example, are protected thereby. The water should have, moreover, a certain degree of saltness; the teredo cannot live in brackish water: that is a point to which we shall return later.
"The Teredo continues to grow in the wood; while the gallery which it forms presents near the surface a diameter of only
and $15-\mathrm{C})$; ie direction downward te generally the mud in s destroyed
, one recog. e extremely d). These e other apde the wood al to retract a other, but eces, which fine powder. for nourishy substance i canal, and ibstance by lik, by the hon appears ich consists 3 which the nevertheless t the longer - is at first be expelled
water. It uddy water, The water ; the teredo ich we shall
ile the galster of only
one quarter to half a millimetre, it enlarges little by little, until it reaches a diameter of five millimetres and more; as regards his length, and consequently that of the tube which incloses him, we have sometimes found it to be thirty to forty centimetres. He never goes upward more than half way between the flow and ebb of the tide; although the teredo is thus, for a short time, partially above the water, yet it appears that the wood holds a sufficient amount of moisture to sustain his life temporarily.
"The researches of Kater have still further shown, what had already been remarked by Sellius, that the Teredo can hibernate in the wood, and that it is those individuals, thus preserved, which in the spring go through with all the phenomena of reproduction -i. e., the formation of eggs, fecundation, development, and expulsion of the young.
"The part of the external integuments which constitutes the mantle deposits a calcareous matter, forming an interior lining to the gallery in the wood (fig.12. f.) Between this calcareous casing and the body of the animal there remains a space sufficient to prevent any inconvenience, at least during the act of respira. tion, for it is possible that when the Teredo absorbs water, which serves for respiration, his body is distended, and fills exactly the calcareous tube. The form of this tube, secreted little by little, corresponds exactly with that of the gallery, which has been slowly perforated in the wood; it has the appearance, also, of a series of rings placed one against the other. As the animal progresses a new ring is added to those which existed before, so that when the tube is closed at its extremity by a calcareous film, its length represents the total length of the animal. (fig. $12 ; b$ to c) Among the segments of the tube, those which are nearest the surface of the wood are the oldest and hardest; in the interior of the wood, where the gallery ends (fig. 12, g), the calcareous ring, newly formed, is at first soft, flexible, and of slight consistency ; later, it becomes solid, and closes up the tube, as has been remarked by Sellius.
"The calcareous tube, once formed, constitutes for each Teredo his own abode, where he isolates himself from his companions,
and has nothing to fear from their close proximity. One never sees a Teredo pierce the tbue of another. The tubes make their way side by side, and cross each other in every direction, but, be the wood ever so worm-eaten, there always remains a woody wall, often very thin, it is true, between two adjoining tubes."

I think this description by the Dutch Commission is so full and comprehensive, that it leaves but little to add to the mode of sustenance and attack of the animal, which is all I shall advert to here. Suffice it to say, that the characteristics so explicitly described are largely if not fully applicable to the species of Teredo inhabiting our shores.

Let us now return to a review of the habits and attacks of the Limnoria Lignorum, so destructive from Chedabucto Bay westerly and along our Atlantic coast and the shores of the Bay of Fundy.

The piece of pile alluded to taken from the old Club house wharf at Halifax, was sent to me by Mr. Peter Archibald, C. E., Resident Engineer of the Intercolonial Railway. It had been in the water seven years,-was 12 inches in diameter when placed there, and was reduced to six inches by the action of the Limnoria. I received it just as it was taken out; one could observe with the naked eye the crustacea then living. I had it placed in sea water, and sent to Notman's Photographic establishment here to be photographed. The operator found no difficulty in obtaining a negative of the piece of wood which I produce, and enlarging it about four diameters. It was very difficult, however, to find a single perfect specimen; they all died when about one day from their abode in the harbour, and owing to their diminutive size, they had so shrivelled up as not to be recognizable. Fortunately, Rev. Dr. Honeyman had a specimen which I obtained, and which is shewn enlarged about four or five diame. ters; it is procured from the same neighbourhood. Two views are shewn, the dorsal and ventral.

Owing to the vrey able and comprehensive description of the Limnoria Lignorum given by Professor Baird, in his Report of the sea fisheries of the south coast of New England in 1871-72, we are able to place this wood borer in the order of its species as one of the crustacea. At page 379 Dr. Baird says :
"Of Crus (p. 370 Plat covered witl for itself in These burro sixteenth of all angles, ar so numerous tions betwee or is washed is immediate moved, and tl in a few year ones ; but all in the softer ers, and avoic them, as wel driven in ; an its attacks, th abundant it w or more ever: about an inch
"Generally, half this; but destroyed, esp aiding in this zone, extending mark. It occu Nova Scotia.
to the timbers hrush fish-weir it was formerly wharves. The protected by bri chiefly affects. I er, this zone is b does great dama

One never s make their irection, but, ins a woody ng tubes."
on is so full to the mode 11 I shall adristics so exo the species
ttacks of the to Bay westif the Bay of

Club house hibald, C. E., ; had been in when placed 1 of the Limcould observe ad it placed stablishment difficulty in produce, and lifficult, howd when about g to their di, be recognizamen which I or five diame.

Two views
ription of the his Report of Id in 1871-72, f its species as
"Of Crustacea, the most important is the Limnoria Lignorum. (p. 370 Plate VI, fig. 25) This little creature is grayish, and covered with minute hairs. It has the habit of eating burrows for itself into solid wood to the depth of about half an inch. These burrows are nearly round, and of all sizes up to about a sixteenth of an inch in diameter, and they go into the wood at all angles, and are usually more or less crooked. They are often so numerous as to reduce the wood to mere series of thin partitions between the holes. In this state the wood rapidly decays, or is washed away by the waves; and every new surface exposed is immediately attacked, so that layer after layer is rapidly removed, and the timber thus wastes away and is entirely destroyed in a few years. It destroys soft woods more rapidly than hard ones ; but all kinds are attacked except teak. It works chiefly in the softer parts of the wood, between the hard, annual layers, and avoids the knots and lines of hard fibre connected with them, as well as rusted portions around nails that have been driven in ; and, consequently, as the timbers waste away under its attacks, the harder portions stand out in bold relief. When abundant it will destroy soft timber at the rate of half an inch or more every year, thus diminishing the effective diameter about an inch annually.
"Generally, however, the amount is probably not more than half this; but even at that rate, the largest timbers will soon be destroyed, especially when, as often happens, the Teredos are aiding in this work of destruction. It lives in a pretty narrow zone, extending a short distance above and below low water mark. It occurs all along our shores from Long Island Sound to Nova Scotia. In the Bay of Fundy, it often does great damage to the timbers and other wood-work used in constructing the hrush fish-weirs, as well as to the wharves, \&c. At Wood's Hole it was formerly found to be very destructive to the piles of the wharves. The piles of the new Government wharves have been protected by broad bands of tin plate, covering the zone which it chiefly affects. North of Cape Cod, where the tides are much greater, this zone is broader, and this remedy is not so easily applied. It does great damage, also, to ship timber floating in the docks, and
great losses are sometimes caused in this way. Complaints of such ravages in the Navy Yard at Portsmouth, New Hampshire, have been made, and they also occur at the Charlestown Navy Yard, and in the piles of the wharves at Boston. Probably the wharves and other submerged wood-work in all our sea ports, from New York northward, are more or less injured by this creature, and if it could be accurately estimated, the damage would be found surprisingly great.
"Unlike the Teredo, this creature is a vegetarian, and eats the wood which it excavates, so that its boring operations provide it with both food and shelter. The burrows are made by means of its stout mandibles or jaws. It is capable of swimming quite rapidly, and can leap backward suddenly by means of its tail. It can creep both forward and backward. Its legs are short and better adapted for moving up and down in its burrow than elsewhere, and its body is rounded, with parallel sides, and well adapted to its mode of life. When disturbed it will roll itself into a ball. The female carries seven to nine eggs or young in the incubatory pouch at one time.
"The destructive habits of this species were first brought prominently to notice in 1811, by the celebrated Robert Stephenson, who found it rapidly destroying the wood work at the Bell Rock light house, erected by him on the coast of Scotland. Since that time it has been investigated, and its ravages have been described by numerous European writers. It is very destructive on the coasts of Great Britain, where it is known as the " gribble."

If we contrast the destructive powers of the two most remarkable wood borers inhabiting our shores we find a great diversity in size, form, mode of operation, mode of existence and attack.
The Teredo, as we find it, is from four to six inches long, and about $\frac{1}{8}$ to $\frac{1}{4}$ inch in diameter. The Limnoria is about 1-16 to $1-8$ of an inch in length, and about one half that thickness. The Teredo is long and vermiform; the Limnoria is short and ovate. The Teredo bores to make itself a house. The Limnoria bores for existence. The Teredo lives on the infusoria of the water; the Limnoria on the substance of the wood itself.

The Teredo attacks from the cutside, and penetrates into the
heart of th and rarely troyed by t From the to be take classes of 1 means to b tacks of thi different (p1 ployed in t going on by as to perme only to be a ties or cells ers may be them from a That the lier than ou land, 12 feet a series of st mations at I the remains,
An idea p through vess is said to be here, that it same means, vious that tl southern and
One of the said to be salt here ; and ow than 100 mile and the small hours, we cam where observe

The Teredo
aplaints of Iampshire, own Navy obably the sea ports, o this creaaage would
nd eats the provide it y means of ming quite of its tail. e short and than else; and well 1 roll itself r young in
rought proStephenson, e Bell Rock Since that in described tive on the ibble." ost remarkat diversity id attack. es long, and sout 1-16 to kness. The t and ovate. ria bores for the water; tes into the
heart of the timber; the Limnoria attacks from the outside only, and rarely more than one half an inch, until the cells are destroyed by the water, when it renews its efforts and destroys again.

From these facts it will be seen that the preventive measures to be taken in order to counteract the attacks of these two classes of borers, should be quite different. For instance: the means to be devised for the preservation of wood from the attacks of the Teredo in the harbour of Pictou should be entirely different (preventively considered) to those which should be employed in the harbour of Halifax. To arrest the destruction going on by the Limnoria Lignorum, one means must be used so as to permeate every pore of the wood internally; the other need only to be applied externally, so as to fill up the half inch cavities or cells visible on the outside of the timber, or both destroyers may be warded off by a metallic covering, so as to prevent them from attacking the wood at all.

That the Teredo existed in Europe, in a geological period earlier than our own, does not admit of a doubt. At Belfast, Ireland, 12 feet under the surface in a blue argillaceous soil beneath a series of strata of shells, in the London clay, in the Eocene formations at Brussels, and also near Ghent, fossil wood containing the remains of the Teredo has been found.

An idea prevails that the Teredo was imported from abroad through vessels coming from the East Indies to Europe; but this is said to be an erroneous impression. The same idea prevails here, that it was imported from the West Indies through the same means, and it may be found equally fallacious. It is obvious that the Teredo in Nova Scotia does not seek the most southern and warmest haunts.

One of the circumstances favoring the ravages of the Teredo is said to be saltness of the water; it is not found in brackish water here; and owing to the narrowness of our Peninsula (not more than 100 miles at the most) the small consequent water sheds, and the small volume of water poured from them into our harhours, we cannot say much on this point. I have, however, nowhere observed the Teredo active near fresh water.

The Teredo finds himself exposed to the attacks of an anne-
lide which is constantly found wherever the Teredo exists. His eggs and embryos are met with in the midst of those of that molluse.

Kater has remarked that the adult annelide leaving the muidy bottom where he has hibernated, and in which the piles fre driven, climbs along the surface of the wood toward the opening made by the teredo; there he sucks away the life and substance of his victim; then, slightly enlarging the aperture, he penetrates and lodges in place of the teredo. All the early writers on this subject state that they have found this annelide in wood at the same time with the teredo. It is remarkable that a similar annelide, and perhaps the same, has been found in the cavities hollowed out in stone by the pholades.

We have an annelide in Nova Scotia that hibernates in winter as represented, and is busy in our mussel beds in summer. I cannot say whether it is the species or not alluded to by M. Andrews. I have not heard of its being found in the cells of the teredo.

Experiments in the preservation of wood from the attacks of the Teredo.

The trials made by the Commission may be placed under three principal groups:

1. Coatings applied to the surface of wool, or modifications of the surface itself.
2. Impregnation of wood with different substances, which modify the interior as well as the surface of the wood.
3. Employment of exotic wocds, other than ordinary woods of construction.

Coatings applied to the surface of wood. The methods belonging to this group; which have been examined by the Commission, are the following :

1. Method invented by M. Clawren, and kept secret by the inventor.
2. Metallic paint, invented by M. Clawren, and likewise kept secret.
3. Method of M. Brinkerink, consisting of a mixture of Russian talc, resin, sulphur, and finely powdered glass, applied hot
on wood pr application
4. Meth
5. Paraf from the far
6. Coal layers, or al carbonized. first bored i closely to th the tar pene with a mixt turpentine, o
7. Painti oil, among ot
8. Singin

The pieces the end of M the end of S these method Teredo. The of wood trea the Tere to he autumn of 18 half, these we the Teredo.

The result mission that modification guarantee of one or anothe from attachin of the water the wood suffi

This seems in Holland fo wood with a c
xists. His ose of that
g the muie piles wre he opening I substance
he penerly writers de in wood hat a simiin the cavi-
is in winter summer. I d to by M. cells of the

- attacks of under three odifications aces, which 1. nary woods
nethods behe Commis-
seet by the kewise kept ure of Rusapplied hot
on wood previously roughened by a toothed instrument; this application was two millimetres thick.

4. Method of M. Ripurjk, analogous to the preceding.
5. Paraffine varnish, obtained by the dry distillation of peat, from the factory of M. M. Haages \& Co., at Amsterdam.
6. Coal tar applied cold on the wood in several successive layers, or applied hot on wood whose surface had been previously carbonized. Some pieces were treated as follows: Holes were first bored in them and filled with tar; then plugs were fitted closely to the holes and driven in with sufficient force to make the tar penetrate the wood; other pieces still were painted over with a mixture of tar with sulphuric acid, or sal ammoniac, or turpentine, or linseed oil.
7. Painting with colours mixed with turpentine and linseed oil, among others, with chrome-green or with verdigris.
8. Singing or superficial carbonization of the wood.

The pieces of wood thus prepared were placed in the water at the end of May, 1859, and the first examination, made toward the end of September of the same year, showed that neither of these methods afforded any protection from destruction by the Teredo. There was one partial exception, and that was the piece of wood treated according to No. 6; these showed only traces of the Tere lo here and there. But at a later examination, in the autumn of 1860 , when the wood had been exposed a year and a half, these were also found to be equally severely attacked by the Teredo.

The results of these experiments strongly convinced the Commission that no exterior application of any nature whatever, or modification of the surface merely, would give any efficacious guarantee of protection against the teredo. Even supposing that one or another of these means would prevent the young teredo from attaching themselves to the wood, yet the constant friction of the water or ice, or any accident, might break the surface of the wood sufficient to give access to the teredo.

This seems a proper place to mention a practice in general use in Holland for warding off the teredo; this consists in covering wood with a coat of mail made of nails. This operation is very
costly ; for, to really protect wood in this way, it is important that the square heads of the nails join exactly; for insuring the best results, the armoured piles are exposed in the open air for some time before being placed in the water, that rust, forming on the surface of the iron, may close up the interstices inevitably remaining between the heads of the nails. But this precaution is not infallible, as the Commission examined piles more than once, in the course of its investigation, which had been several years in the water, and whose surface was entirely incrusted with rust more than a centimetre thick, but which were, nevertheless, eaten in the interior by the teredo.

Impregnation of wood with different substances. The Commission examined in this category the following methods:

1. Sulphate of Copper.
2. Sulphate of Protoxide of Iron (Green vitriol).
3. Acetate of Lead.
4. Soluble Glass and Chloride of Calcium.
5. Oil of Parafine.
6. Oll of Creosote. This is, as is very well known, a produet of the dry distillation of coal tar, separated by distillation from the more volatile parts, which serve for the preparation of benzole and naptha, the residuum being pitch. Experiments had already been tried abroad, as well as in Holland, with this substance, and from the beginning of their experiments the Commission paid especial attention to this very important method of preparation.
Wood of various kinds, prepared with creosote oil, at the works of the Society for the Preservation of Wood, at Amsterdam, was placed in the sea in the month of May, 1839, at Flessingue, Harlingin, and Stavoren, the pieces of oak, pine and red fir, were found intact, while those unprepared were perforated. In the month of October, of the same year, the pieces of creosoted pine and fir at Harlingin showed a perfect state of preservation. At Harlingin the treated and untreated pieces were fastened together; the teredo penetrated the latter, but had not touched the creosoted wood. The same was true of the creosoted wood at.Stavoren, when visited in 1859 .

At Nieuw pine, and re the sea. Tr They had be wood; it wa ture of these sometimes h others he pe oak, he work the surface w

Experimen 1860 , with te indicated in Diep and Sta intact the pr their surface August, 1861, with pieces of Mr. Boulton, a pieces were ex while the unp proof, were fo discover any t in the oak found that the A third examir ly Mr. Boultor August, 1861, could not show withdrawn fro scraped to a del water. They ri Conclusions. periments, tried were as follows

1. The differ the design of cor
s important insuring the sen air for ast, forming ices inevitas precaution ; more than eeen several y incrusted were, never-

The Con:hods:
n, a produet lation from: ion of beniments had th this subs the Com: method of
oil, at the at Amster39, at Flessine and red perforated. ses of creoe of preseres were fasat had not ie creosoted

At Nieuwendam in March, 1859, three pieces each of oak, pine, and red fir, all creosoted at Amsterdam, were exposed in the sea. They were examined in September of the same year. They had been fastened together by cross pieces of unprepared wood; it was found that the teredo had penetrated, at the juncture of these cross pieces, even into the creosoted wood, and that sometimes he stopped immediately beneath the surface; at others he penetrated to a depth of several millimetres; in the oak, he worked his way into the interior through those parts of the surface which were not in contact with the unprepared wood,

Experiments with creosote oil were recommended in July, 1860, with ten pieces each of oak and red fir, following the plan indicated in paragraph 5 ; the localities chosen were KieuweDiep and Stavoren; in the latter place the pieces which remained intact the previous year were again placed in the water after their surface had been removed by tiee adze. Still later in August, 1861, a further trial was made at these same places, with pieces of pine, beech and poplar, sent to the Commission by Mr. Boulton, and prepared at his works in London. All these pieces were examined toward autumn in 1862,1863 and 1864 ; while the unprepared pieces, placed near the others as counterproof, were found each year filled with teredos, one could not discover any traces of the teredo in the creosoted pieces except in the oak creosoted at Amsterdam ; in cutting these it was found that the creosote had penetrated them very imperfectly A third examination in 1864 , showed that all the pieces prepared by Mr. Boulton, and which had been exposed in the sea since August, 1861, were entirely intact; the most careful examination could not show the slightest trace of the worm, even in the pieces withdrawn from the water in 1862 and 1863 , and each time scraped to a depth of several millimetres and again placed in the water. They resisted the attacks of the teredo perfectly,

Conclusions. By way of recapitulation, the result of the experiments, tried by the Commission during six consecutive years, were as follows:

1. The different coatings applied to the surface of wood, with the design of covering it with an envelope on which the young
teredo camnot attach itself, offer only an insufficient protection: these coverings are likely to be injured either by mechanicat means, such as the action of the water, or by being dissolved by the water. Just so soon as a point of surface of the wood is uncovered, be it ever so small, the teredo, still microscopic, penetrates into the interior. Covering wood with sheets of copper or zinc, or with nails, is a too expensive process, and only protects the wood so long as they form an unbroken surface.
2. Impregnation with inorganic, soluble salts, generally considered poisonous to fish and animals, does not protect wool from the attacks of the terelo.
3. Although we do not know with any certainty if among exotic woods there may not be found these which will resist the teredo, we can affirm that hardness is not an obstacle which prevents the molluse from perforating his galleries; the ravarges ohserved in wood of guaiacum and mamberlak prove this.
4. The only means which can be regarded with great certainty as a true preservative against the injury to which wool is exposed from the teredo, is the oil of creosote; nevertheless, in employing this means care is necessary that the oil be of good quality, that the impregnation be thorough, and that such woons be used as will absorb oil readily.

The conclusions arrived at by our Commission are confirmed by the experience of a large number of engineers in the Netherlands, and also in England, France and Belgium. M. Crepin, a celebrated Belgian engineer, expresses himself thus, in a Report on experiments tried at Ostend, under date of February 5, 1864
"The result of our experiments now seems decisive, and we think we can draw from them this conclusion : that soft woons, well prepared with creosote, are protected from the attacks of the teredo, and are in a condition to assure a long duration. The whole matter, in our opinion, is reduced to a question of therough impregnation with good creosote oils, and the use of such woods as are adapted to the purpose. It has been found that resinous woods are impregnated much better than other varieties."

Mr. Fourtier, a French engineer at Napoleon-Vendu, in a report dated March 3, 1864, makes a resumé of experiments con-
ducted by hin words:
"These rest it seems to ns Ostend and Sa testable mann creosoted."
"Under dat haur, writes deferred answ had correspond to the results o timber in all ot some tens of ye will not penetra but that, to obt as they had obs superficially inf
"Fir, if the s ed with hot oils creosoted ; but ، heavy oak piles heart."

In a paper Engineers, Lon with a descriptio after reviewing and Payne's pro
"One lundre distillation, 6.5 p : naptha, and 5 of tion is the creose preparing timber: appear to be thre
First. It prevel under any change
"Secondly. It mechanicat lissolved by wood is unscopie, peneof copper or mly protect.
nerally conrotect wool
ty if among ill resist the which preravages obhis.
reat certainwond is exertheless, in be of gool such wools
e confirmed the NetherM. Crepin, il , in a Report lary 5, 1864 sive, and we soft wools,) attacks of ration. The tion of the e use of such 1 found that er varieties. ondu, in a reriments con-
ducted by himself in the port of Sables d'Olonne, in the following words :
"These results fully confirm those established at Ostend, and it seems to us difficult to refuse to almit that the experiments at Ostend and Sables d'Olonne are decisive, anl prove in an incontestable manner that the teredo will not attack wood properly creosoted."
"Under date of Haarlem, April 20, 1878, Prof. Von Baumhaur, writes to Edward R Andrews, of Boston: 'I have deferred answering your favor of the 22nd of February, until I had corresponded with the chief engineers of the Waterstatat as to the results obtained in their experience in the use of creosoted timber in all our marine works, in large quantities, and during some tens of years. They all unanimously agree that the teredo will not penetrate timber thoroughly impregnated with creosote ; but that, to obtain the best results, the work must be thorough, as they had observed that the teredo had destroyed piles only superficially infected.'
"Fir, if the sap be first withdrawn in a vacum and then treated with hot oils under a heavy pressure, can be most thoroughly creosoted; but oak is more difficult. Still, I have often seen heavy oak piles where the creosote had entered into the very heart."

In a paper read by Mr. Burt, before the Institute of Civil Engineers, London, upon the nature and properties of timber, with a description of the methods then in use for its preservation, after reviewing John Howard Ryan's, Sir William Burnett's, and Payne's process, then in use, he proceeds to say :
"One hundred parts of coal tar contain, when submitted to distillation, 65 parts of pitch, 20 of essential oil (creosote), 10 of naptha, and 5 of ammonia. The oil produced from this distillation is the creosote of commerce, now so extensively used for preparing timber. The preservative properties of this material appear to be threefold.
First. It prevents the absorption of moisture in any form, or under any change of temperature.
"Secondly. It is noxious to animal and vegetable life ; there-
by repelling the attacks of insects and preventing the propagation of fungi.
"Thirdly. It arrests the vegetation or living principle of the tree, after its separation from the root, which is one of the primary causes of dry rot, and other species of decay.
"The attention of the author of the paper referred to, was first called to this subject in 1841, in consequence of having practiced the process, to some extent, for Mr. John Braithwaite (M. Inst. C. E.), on the Eastern Counties Rail. way. The works, in that case, were of the most primitive and incomplete description; nevertheless they answered the purpose, and the sleepers, prepared at Heybridge, eleven years ago, are as soun 1 and perfect as the day they were laid down, although they are of Scotch fir, and not of very good quality. Since that time, being extensively engaged in preparing timber, many improvements have been made in the machinery and apparatus, and in the method of preparation.
"Creosote is at present used for preparing timber, either under pressure in strong closed cylinders, or by placing the timbers in open tanks, and keeping the solution up to a temperature of 120° to 150° until the required quantity is absorbed. Creosote has the property of crystallizing when the temperature is below 35°, and it becomes a hard compact mass of salts. It was in consequence of this peculiarity, and the difficulty of using it in the winter season, that peat was resorted to ; and was done in the first instance by making a common fire-place at one end of the reservoir, and running a flue under the bottom. This system was, however, exceedingly dangerous, because the oil came in contact with the heated iron plate, and the temperature could not be raised beyond 70° or 75°, or only just sufficient to enable the work to be continued conveniently during the cold weather. The experiment was then tried of allowing high pressure steam to blow into and upon the creosote in the reservoir; by this means the temperature was raised as high as was required, and it has continued to be used. Where a steam engine is used for working the pressure pumps, the waste steam can be employed to heat the creosote, by passing it through a coil of pipe laid in

TERE
the bottom o adopted at M admirably.
"The cylind steam engine long. Former riety of ways, grooves, and ot ing, however, size of the cyli curately turne an area is enor that great care run on rails ins merly ran out siding and un making the ir stronger truck can be run on without shiftin
Since 1853 tl ing under press one to adopt to cess, with slight Europe and Am

The Dutch Co
English engir speak of it from of the Society American engine
But no better osote to prevent Harbor of Sydne destructive, if no here, about ten y ciently large tha the same time.
; the propaga-
rinciple of the ne of the pri-
referred to, insequence of 'or Mr. John ounties Rail. oost primitive inswered the eleven years ere laid down, good quality. paring timber, inery and ap-
e, either under she timbers in smperature of ed. Creosote ature is below It was in conssing it in the is done in the ne end of the
This system e oil came in perature could sient to enable cold weather. ressure steam tvoir; by this squired, and it re is used for a be employed of pipe laid in
the bottom of the reservoir. This mode of heating was first adopted at Mr. Bethell's works at Battersea, and it answers admirably.
"The cylinder now used in the ordinary process is similar to a steam engine boiler, 6 feet diameter, and from 20 feet to 50 feet long. Formerly the end or charging doors were made in a variety of ways, some to open inwards, some to slide in air-tight grooves, and others similar to the cover of a gas retort. Nothing, however, answers so well as to have the cover of the full size of the cylinder, with proper fastenings, and all the joints accurately turned and fitted together, for the pressure on so large an area is enormous, and the heated oil is so exceedingly subtle, that great care is necessary to prevent leakage. Small trucks run on rails inside the cylinder and carry the load. These formerly ran out upon a long switch, and were then turned into a siding and unloaded. A different plan is now adopted, by making the inside lorries run out upon another larger and stronger truck of the ordinary gauge, so that by this means they can be run on to any of the adjacent sidings, to be unloaded without shifting a second time.
Since 1853 the process then described by Mr. Burt, as creosoting under pressure in strong cylinders, has become the favorite one to adopt to resist the attacks of the teredo. The sa me process, with slight modifications, is carried out to this day, both in Europe and America.
The Dutch Commission speak most favorably of it.
English engineers, such as Hawkshaw, Burnett, and others, speak of it from time to time in the Reports of the Transactions of the Society of Civil Engineers, ia a very favorable manner. American engineers generally recommend its adoption.

But no better example could be desired of the efficiency of creosote to prevent the attacks of the teredo, than we have in the Harbor of Sydney, Nova Scotia. Here the teredo is seemingly as destructive, if not more so, than at any place on our coast, and here, about ten years ago, a coal-loading pier was erected sufficiently large that three ocean-going steamers could load coals at the same time. The pier runs out into the harbor ; it was erect-
ed entirely of pine timber, creosoted in Creat Britain, and sent out here. It has most effectively withstood the ravages of the teredo, whilst all other piles in the neighborhood had to be renewed twice.

Not satisfied with reports about its permanency, so far, I requested that the Sydney and Louisburg Coal and Railway Company would have an examination made for the purpose of this paper. I have to-day a telegram from Mr. D. J. Kennelly, Q. C., managing director of that Company, in which he says: "Creosoted pier absolutely sound ; ten years erected. Timber not creosoted twice renewed."

One of the objects of this paper is, firstly, to point out the necessity which exists for a creosoting apparatus to be placed in Nova Scotia, somewhere in the region of the 'Teredo's most active operations; and, secondly, that experiments be conducted by some responsible parties, as to the best means to adopt to arrest the ravages of the Limnoria Lignorum.

Considering the interests at stake and the great annual loss to the Department of Public Works, Canada, from these destructive animals, one would think that something should be done in the public interests, by at least investigating the matter, and with the view of proper remedial measures being taken so far as practicably possible, to mitigate or prevent their ravages in the future.

Art. VII.-Shore Birds of Nova Scotia. By Bernard Gilpin, A. B., M. D., M. R. C. S.
(Read April 10th, 1882.)
In studying the immense flocks of what are called Shore Birds, which yearly appear during July, August and September of each year upon the flats of the Bay of Fundy, St. Mary's Bay, the Tuskets, and Dighy Basin, in Nova Scotia, we must consider them as migratory birds, breeding, with few exceptions, in the Polar regions, and now returning with their young to wamer latitudes, reaching even the Gulf of Mexico, and thus passing our

Britain, and sent te ravages of the ood had to be re-
ney, so far, I rend Railway Compurpose of this Kennelly, Q. C.,促 says: "CreosTimber not creos-
point out the neto be placed in redo's most active be conducted by o adopt to arrest
at annual loss to these destructive I be done in the natter, and with in so far as pracravages in the

3ernard Gilpin

Iled Shore Birks, ptember of each Mary's Bay, the e must consider ceptions, in the oung to warmer thus passing our

Fig. 14.-Spruce submerged two years in Conl Mining
Company's wharf, Middle River, Pictou, N. S.,
four feet helow low water.

5ve

Fig. 15.-Hemlock from Yacht Club wharf, Halifax
Harbor, N. 8., attacked by Limnoria Lignorum. Enlarged $\mathbf{4}$ diameters. Fig. 15.-Hemlo
Harbor, N. 8 .
Enlarged $\mathbf{4}$

shores. They are generally in imperfect moult, having lost their nuptial plumage, which is not yet replaced by their winter one. Few full plumaged males appear, but females, imperfect males and young. Hence the difficulty of classing them. The pursuit of food alone urges them on their migration southward, whilst that of reproduction swept them onward in the spring to the fierce North. The spring route is more direct, more inland, and more quick. We see nothing of them during spring. The most obvious, and those which from numbers and from sight most modify our landscape, are the sand peeps (sand pipers, tringa), and next them the ring necks (the plover). These two speck the feathery margins of our salt-estuaries, whitening our flats and flashing like silver clouds in the air. Next in number come the larger plover, golden plover and beetle heads, which migrate in sufficient numbers to modify our landscape. The other species must be looked for by the naturalist, and from their numbers are scarcely noticed, save by the sportsman, or naturalist, and yet in their aggregate great numbers pass us. I have thought the members of the Institute would be interested in a description and classification of all these birds, the numerous as well as the more rare, and therefore in this paper shall give only what I have seen personally myself, of all the various shore birds that pass our shores during the autumn. I do not doubt that some have evaded my notice, or that I have found a difficulty in classification in others, yet the work of an eye-witness is always valuable. I shall use the Smithsonian nomenclature (Dr. Coues), thinking it the best, but finding some difficulty even in it, to say nothing of Nuttal, Wilson, and the older naturalists, in properly arranging all my species. Of the vast flocks which, as I said before, modify our landscape, I have found from a study of years, from minute measurements and accurate coloured drawings, that they are composed of two species of ring neck plover, and three distinct of sand peeps, or sand pipers, all in common in huge flocks.

The ring necks are the American ringed plover, \mathbb{E} semipalmatus, and Æ melodus, piping plover. Of the sand peeps, with the utmost study, I have only found three species, the less sand
piper (Tringa minutela), the greater sand piper (Tringa Bairdii), and the semipalmated sand piper, E pusillus. It is with the greatest doubt I make this classification, as I think Tringa Bairdii too recent a nomenclature for a bird so well known. In Nuttall's work, so singular for its truth, he marks the Stint, a bird that I have never seen here or any sand peeps with any lateral tail feathers white. Besides in his descriptions and measurements he confounds at least four species. I shall minutely describe the two species of the Ring plover as I find them here, only saying that they as well as the sand peeps were selected from a heap of dead, brought in from shooting, and containing all five species of Ring plover and sand peeps in one stiffened mass.

Common Ring Plover shot at Digby, N. S., August 12, 1876 : Length, $7 \frac{1}{6}$ inches.
Wing to wing, 15 inches
Bill, $\frac{5}{8}$ inch.
Tarsus, 1 inch.
Toes, $\frac{7}{8}$ inch.
The bill was high at base, nostrils basal black at tip, dull orange at base, legs and tocs dull orange, nails black, joints pencilled black, no hind toe, toes joined at base with webs, outer web nearly double the inner. In colour, forehead, chin, neck running behind the head, all below and inside the wing, white. Above head, hind head, back, shoulders and wing coverts, olive brown. The forehead is black, holding within it a white spot, and running beneath the cye to the lores. A deep black collar, nearly an inch broad and rumning insensibly at the back into brown, surrounds the neck. Tail, when closed, black, sides of rump lightest; tail of twelve feathers. Outside feather white outer edge, more or less white on tips of four outside feathers, middle feathers black at ends ; primaries, secondaries, and tertiaries more or less dark with white shafts, coverts tipped obscurely with white. Some specimens had scarlet rings around the eyes, some not The olive brown colour and the semipalmated and orange foot, determine their species very easily, as the semipalmated plover of Wilson, and the Egialites semipalmatus of Coues. Another Ring neck shot in August, 1876, differed from these in
colour of be feet. In c with no bre the neck feathers w white strip lill and fee the whole they went classed the Nuttall an difference o We may g very comm hrown, yell assorts witl shores, wai spreads hin ously in Aı cies you th them seare these birds our shores ing on Sabl mining the choice, may made for in

After wri opportunity tis melotus in fuil nup adult binds with us, tho prove it als
inga Bairdii), is with the Tringa Bairwn. In NutStint, a bird h any lateral neasurements y describe the ;, only saying om a heap of five species of
ust 12,1876
colour of boly, size and colour of legs,and not having semi-palmated feet. In colour it was white below, and pale bluish ash above, with no brown or olive tint. The signs of black or of ring about the neck were very slight, and light dusky. The middle tail feathers were black, tipped white at the end, and there was a white stripe through primaries, secondaries and tertiaries. The bill and feet black and shorter than in the true ring plover, and the whole bird smaller. On searching for these birds I found they went by themselves, were scarcer, and hard to get. I have classed them, with some doubts, with the charadius melodus of Nuttall and Wilson, and Egialitis melodus, Coues, thinking the difference of leg, bill and colour were from imperfect or young birds. We may generally conclude that the semi-palmated variety is very common, and individually found in brightest colour of olive brown, yellow feet and red ring about the eye; that he always assorts with the peeps; is found at high water, emarginating the shores, waiting for the ebb to bare the flats, over which he spreads himself ; and that he appears sparingly in July, numerously in August, and leaves in September. Of the second species you think them plenty; but searching for them, you find them scarce-though found in company with the peeps. All these birds have doubtless lived at the north, and are passing our shores with their females and young. As I saw a few breeding on Sable Island with the peeps and terns, though not determining their species, I think that increasing population, and not choice, may send them so far north. All due allowance must be made for imperfect moult and young birds.

After writing a description of these Fall birds I have had an opportunity of examining three specimens of this plover, Egialitis melolus (Cones), shot April 24th, 1882, at Digby, N. S., and in fuil nuptial plumage. Mr. Downs also has a group of the adult liirds and young, shot near Halifax, proving that it breeds with us, though the greater numbers that appear in Fall must prove it also to be migratory.

> Extreme length, 6 6-10 inch.
> Wing spread, 14 inch.
> Length of bill, $\frac{1}{2}$ inch.
> Length of tarsus, 7-10 inch.

Colour of bill yellow, with hack tip; toes and legs yellow, but palms and toes slightly pencilled dark, yellow ring about the eye. Head, back, wing coverts and rumps ashey grey, but coverts with slight black shading, each feather with a white edge. Forehead white, with a black band above, a black collar going round the back, but more or less incomplete in front. The cheeks whitish with ashey wash, showing small black spots beneath and behind eye. In one specimen the black collar was entire around the throat; chin, hind neck, breast, belly and all below white. Sides of rump white, middle tail feathers black with light tips; lateral tail feathers white, 2nd lateral tail feathers white, 3d inner white, with a black spot in it, the other lateral ones having black bands on the extremities, but near the body white. Shaft of the primaries and secondaries white. The primaries black upon the outer van, but having a white streak running through them and the secondaries, and joining the lower edges of the greater wing coverts and tertiaries. The tips of primaries and secondaries were black, the wings not reaching the end of tail in dead bird. The eye was black with yellow ring. No hind toe, inner toe cleft to base, scarcely a web between outer and middle toes. This is the nuptial plumage of the piping plover, differing sharply in colour, and not having semi-palmated feet, from the semi-palmated species, and agreeing with the imperfect Fall birds. I have not noticed Wilson's plover in Nova Scotia.

Of the sand peeps I have been able after years of study, measurement and coloured drawings, to determine but three species. It will better serve the interests of truth for me to describe these species from my own note book, rather than attempt a classification with the older or more modern naturalist. Those who are willing to wade through my paper will, I am certain, have a true history of the Nova Scotian Species.

Small Sand Peep, Aug. 23, 1876, Digby :
Extreme length, $5 \frac{3}{8}$ inches.
From wing to wing, 115 g inches.
Length of bill, $6-8$ inch.
Length of tarsus and toes, 15 inch.
Toes not connected by membrane at base, hind toe small ; legs
pale greeni dark sepia rufus brow tail, which tertiaries b the appear: coverts edg the eye; a t_{0} end of t_{2}

Another

Colour: for less, but e: neck and h tertiaries, tl ruginous w little white feathers fer ones. Chin dusky line forming dist in the first 1

A Sand P sured :-

Though \mathbf{t} yet I could the wing cor broadly edg black nostril way to tip.
; yellow, but bout the eye. but coverts white edge. collar going The cheeks beneath and ntire around elow white. 1 light tips; white, 3 d inones having hite. Shaft naries black ing through dges of the imaries and nd of tail in No hind toe, - and middle cer, differing et, from the et Fall birds.
study, meahree species. escribe these a classificaose who are rtain, have
pale greenish-yellow. General colour, head, neck, back and coverts dark sepia, the edges of each feather margined with a lighter or rufus brown. The rump sooty-black, reaching to end of closed tail, which is margined with rufus. Primaries, secondaries and tertiaries blackish, edges light, which, with white shafts, give ${ }_{S}$ the appearance of a faint white line down each feather. Wing coverts edged with white; faint dark line from mouth through the eye; a broad faintish-brown collar about the breast ; beneath, to end of tail, white; bill blackish.

Another shot 20th September, 1880, at Digby, gives-
Length, $6 \frac{1}{4}$ inches.
Length of bill, $\frac{3}{4}$ inch.
Of tarsus, $\frac{3}{4}$ inch.
Wings spread, $11 \frac{1}{2}$ inches.
Colour : forehead, neck, back of neek, shoulders black, more or less, but each feather with an edging of light ferruginous, on neek and head less, but greater upon shoulders, wing coverts and tertiaries, the whole effect being black spots with a decided ferruginous wash. The rump and middle tail feathers black, a little white showing on either side of rump ; the edging of tail feathers ferruginous, the side tail feathers lighter than middle ones. Chin, and obscurely above eye, whitish, a very obscure dusky line from bill to eye; neck to breast grey, pencilled black, forming distinct colour. Below white to vent. The outside shaft in the first primaries white.

A Sand Peep shot at same time, 20th September, 1881, measured :-

Length, 8_{4}^{3} inches.
Length of tarsus, 15-16 inch.
Length of bitl, 1 inch.
Stretch of wing, $16 \frac{1}{8}$ inches.
Though the greater size showed directly a different species, yet I could find no difference in colour betwixt these than that the wing coverts above the secondaries in the smaller were more broadly edged with white. The bills in both were alike and black nostrils basal, upper mandible with a sulcus running half small; legs
palmated; hind toe slight and inserted above the palm. In their figures coloured they resemble each other in the well stained neck and front, absence of ash and hoariness, and presence of ferruginous tints. Thus I must conclude that I have two species akin in all but size, one ranging fiom five to five and a half inches, the other from seven and one-half to eight inches, both fourtoed and without webs. Richardson, under the species pusilla, may mean the last one as well as Wilson, by the size.

But amongst these flocks I found a third sand peep, which was not only semi-palmated, but different in colour from the others.

Shot 5th Sept., 1881. Bay of Fundy :-
Length, 6 inches.
Spread of wing, $11 \frac{1}{4}$ inches.
Length of tarsus, nearly 1 inch.
Length of bill, 3_{4}^{1} inches.
Colour on back and top of head, shoulders and wing coverts greyish, interspersed with black streaks and spots, spots more on back and shoulders; rump black, tail greyish, the upper and lower tail coverts nearly as long as the tail. A small white streak behind the eye, and spotted line of dusky from bill to eye; throat and all beneath white, bill black, legs black with olive wash; toes palmated, inner web smaller than outer. In comparing this species with those shot 20th Sept., and nearly of the same dimensions, but not semi-palmated, we find no ferruginous tints, rump not so black, breast whiter, and with very slightly marked collar, colour of legs more olive. In this specimen the shafts of both primaries and secondaries are white, also the tips of the wing coverts. But upon the nonsemi-palmated, both greater and less, we find the white bar upon the wing, broader and formed not only by the wing coverts, but also the primaries and secondaries, as it was joined in the white mark. This bird has come down to us "semi-palmatus," from Hutchins, Wilson, Richardson, Nuttall, and Buonaparte; yet Coues gives it as pusillas, without giving his reasons. It certainly is the only semi-palmatus I have found frequenting the Nova Scotia shores in a study of years; is very well marked, which shows more when the coloured drawings of each are opposed to each othe

The next b our landsea larger beetl seen with u November. them in nut fields and or the smaller in full plum spotted gre Coues denie cies, but my their backs. near the sho toe, or nail, mark to dete each in colou plumage, wit Halifax Must which annu found one.

Of the vari bers, there ar serves them. at Digby I no Killdeer very at Halifax. are seen at D John, killed tl ferent kinds billed Curlew Esquimau Cu guished from neath barred a My notes gi Curlew I hav Schinss sand p

Im. In their I stained reek see of ferrugi, species akin a half inches, s , both fourpecies pusilla, Z".
ep, which was n the others.
wing coverts spots more on e upper and I white streak bill to eye; k with olive r. In comnearly of the o ferruginous very slightly specimen the also the tips Imated, both ing, broader the primaries

This bird hins, Wilson s gives it as
is the only Scotia shores shows more o each othe

The next birds which may be said from their numbers to modify our landscape are the plover, the green or golden plover, and the larger beetle heads. They usually migrate together, and are seen with us from August and September, a few lingering till November. Heavy south-west gales confuse them, and mass them in numbers as they prepare to light, during the gale, in the fields and on the shores. The large kind rather affect the fields, the smaller kind the shores. It is very seldom you meet a male in full plumage, or black breast and belly. Their usual colour is spotted greenish on the back, with black splotched beneath. Coues denies the greenish or yellow wash upon the larger species, but my note, Sept. 20th, 1881, gives this yellow wash upon their backs. I have also observed a black spot beneath the wing, near the shoulder; as typical of the larger species. The fourth toe, or nail, in the larger, wanting in the smaller, is the best mark to determine the young from each other as they approach each in colour and size. A very handsome male in full nuptial plumage, with deep black breast and vent, may be seen in the Halifax Museun, of the larger species. Though in the thotsands which annually pass us during the autumn, I never have found one.

Of the various other birds of this family that pass us in numbers, there are so few that the sportsman or naturalist only observes them. We may notice the Sanderling whose appearance at Digby I note during September, in his usual grey dress. The Killdeer very rare, having a single notice of him during March, at Halifax. The Turnstone cosmopolites, appearing everywhere, are seen at Digby during September. The Avoset I saw at St. John, killed there, and in Mr. Carnal's collection. The three different kinds of Curlew I have determined. The larger great billed Curlew seen by myself Sept., 1870, at Windsor, N. S. ; the Esquimau Curlew, and the smaller Esquimau Curlew, distinguished from the last by its size, and not having the wings beneath barred as in the last.
My notes give September for all these species. The cape Curlew I have noted Halifax, October. Tringa subarquata, Schinss sand piper, I note Halifax, Oct., 1864 but I am not cer-
tain. The pectoral sand piper Sept., 1865, Halifax, and afterwards at Digby. The buff breasted sand piper I note Provincial Museum, Halifax, and the purple sand piper at Halifax. The knot or ash coloured sand piper, Sept., 1880 and 1881, in winter plumage. The semi-palmated Snipe or Willet, Digby, June, 1877. Both species of the yellow shanks, the larger and the lesser, are both common in September. Of the tattlers, the solitary or green rump tattler is common; barn snipe as it is called from its solitary haunts about barn pools, and the spotted tattler, is common everywhere. Of Bartram's tattler, or the grass plover, I note one specimen, and that from Sable Island, 1868. This brings us to the Godwits, both species of which, Marbled and Hudsonian, I have noted, the Hudsonian shot, in August. The brown or red breasted snipe is the last autumn visitor I will mention as noted in September.

I have never met with the Dunlin or Ox bird in Nova Scotia, nor do I mention the Phaloropes, though I have seen them and think we have two species, certainly the rose colored one, but am not able to identify them. Wilson's snipe and the Wondcock are common residents, breeding here, the latter plenty, though it requires a good dog, gun, and quick shot to find them. I have seen a bag of twelve or thirteen couple made by my son in a few hours, besides grouse and hares, when he combined all these attributes at one time. A wounded woodcock that I kept by me was lively at night, and always kept its tail spread and crested like a fan over its back. In this paper I have given only my own personal observations of what was seen in Nova Scotia. No doubt many species of North American birds do not pass our shores. In endeavouring to clear the vexed story of the peeps or sand pipers I have thought it best to describe the only three well marked species that I have noticed; and to say that however numerous or varied other North American species may be, I have not found them here. To attempt to class our species here with those of Wilson, Nuttall, or Richardson, is to immediately fall into a crowd of stints, pigmies, lesser pusilla, minor sand peeps, all of which seem to have the same measurement and colouring. Amongst these the semi-palmata seems to stand out boldly.
in differen bird unde giving his known car son and B put the fir the generic very usefu the too nu win calls t like in col

Squ Cha Agi ※gi ※gi Stre Rec Mac Ereu Trin Trin Trin Trin
Trins
Calic Limo Limo Tota Tota Tota Total Tring Actit Tryn Num
\therefore and after e Provincial alifax. The 31, in winter ; June, 1877. te lesser, are solitary or lled from its ttler, is comuss plover, I 1868. This Marbled and ugust. The risitor I will

Nova Scotia, on them and red one, but 1 the Wonditter plenty o find them. : by my son sombined all that I kept I spread and , given only Nova Scotia. not pass our of the peeps e only three y that howies may be, I species here immediately minor sand ent and colnd out boldly
in different colour and semi-palmated feet; yet Coues returns this bird under the name of pusilla to the old group, and without giving his reasons, which no doubt are good, if known, but unknown cannot stand before Hutchens, Nuttall, Richardson, Wilson and Buonaparte. In his key of North American birds had he put the first discoverer's name to the specific, as he has done to the generic name, it would have added much to the value of a very useful work. Naturalists owe him much for sweeping away the too numerous genera in the gulls and penguin ducks as Darwin calls them. I mean the very restricted genus of Scoter so like in colour, bills and habits.

List classea after Dr. Coues.
Squartolinas helvitica-Beetle head.
Chavadius fulvus-Golden plover.
Agialitis vociferus-Kildeer.
Egialitis semi-palmatus-Ring neck.
Ægialitis melodus-Piping plover.
Strepsilus interpres-Turnstone.
Recurvirostra Americana Avoset.
Machtoramphus griseus-Red breasted snipe.
Ereunictes pusillus-Semi-palmated peep.
Tringa minutella-Least peep.
Tringa bairdis-Baird's peep.
Tringa maculata-Pectoral sand piper.
Tringa maritina-Purple sand piper.
Tringa subarquata-Curlew sand piper.
Calidris arenaria-Sanderling.
Limosa fedora-Marbled godwit.
Limosa Hudsonia-Hudson Bay godwit.
Totanus semi-palmatus-Willet.
Totanus melanolcucus-Great yellow shank.
Totanus chloropus-Lesser yellow leg.
Totanus solitarius-Solitary tattler.
Tringoides maculata-Spotted tattler.
Actiturus bartremius-Bartram's tattler.
Tryngites rufessens-Red breasted sand piper.
Numenius longirostres-Long billed curlew.

Numenius Hudsonius-Hudson's curlew.
Numenius borealis-Esquimaux curlew.
I have not mentioned in this list Schinze's sand piper, although my notes give him at Halifax, August, 1864. I have no distinct recollection of the bird, or of seeing Dunlin's, an enlarged copy of it, in Nova Scotia. It is very rare here or not a true species. I think there is Dunlin immature bird in the Halifax Museum. Of all the shore birds that grace our landscape, as I have before said, the peeps are the most pleasing. The great Bay of Fundy tide that has rushed in almost cataract force through the oppossing traps in the gut, now expanded in the Basin fills to the utmost brim with a power though unseen yet quite as great, ever rushy estuary, and every silver sand flat of the ereat basin. All is steeped in one bright glancing and quivering calm. The peeps are lining the edges of the flats waiting for the ebb. The great herons have come from their heronry twenty or thirty miles on the borders of a tangled spruce lake, waiting for what the ebb may leave them. The barking, and rising and falling of the crows, and squeaking of the herons from their roosts on the overhanging trees tells that the hawk (F. Columbarius), like a privateer, is backing and filling and waiting his ebb, too nearthem. These sights and sounds come down upon you as the first soft ebb floats your canoe down the bay. If you are out pot shooting, the noiseless current floats you down towards the flats, now rapidly showing out of water, and covered by thousands innumerable of creeping forms. The whole host, scared by your approaching canoe, with a sharp whistle rive, stretch landward a few rods, then rise in the air and open into a white sparkling cloud, reflecting the bright sumbeans. Now is your time ; both barrels of your breech loader, and the mitraille of mustard seed shot cover the water around with the dead and dying. To slowly pick up the dead and secure the living you turn homewards. From twenty-five to thirty birds, ring necks and plover. of several species, are enough to vex your cook and serve for a pot-pie. But if you are out for a pic-nic, and stowed beneath the bear robes, on the very bottom of your canoe, are your wife and little ones, and camp kettles and tea, breal, milk and sugar, and

Northe
the charmin of the basin Fundy tides canoe grits । other Indian shady spot 1 two parallel between, pic the nearest t branch over | with its roast with the othe of this Abyss derness and j ened the dead passes off afte your tramp, f_{o} they are, but i you find them the almost liv

Article 1

My object th of the work wl seams of the C is new and of it early date I ha

The Cumberl and unpromisin gins only, to a Pictou. The p points, but the , attempt to open
the charming July sun tempts you, you give way for the mouth of the basin, where the huge boulders of traps stem the Bay of Fundy tides, heaping great sand beaches at their bases. Your canoe grits upon Indian beach, you run it up amidst dozens of other Indian canoes, and sean half way up the rocky barrier a shady spot for your bivouac. Here your Indian builds his fire, two parallel lines of stones eighteen inches high, with a trench between, picks and cleans his birds, and cutting branches from the nearest tree, impales a bird on every twig, resting the whole branch over his fire. Gravely he hands to each grest a branch with its roasted fruit, who, holding the branch in one hand pulls with the other the birds from the twigs. To one who has eaten of this Abyssimian lanquet there is no need to tell , wis thenderness and juicy delicacy. The rigor mortis has not yet stifened the dead biris. This comes on after a few hours and then passes off after a day or two. If you cook the grouse shot upon your tramp for your night's supper, you are surprised how tough they are, but if you hang them in your camp for a day or two you fimd them tender. The Indian, like the Abyssinian, chooses the almost living flesh for his feast.

> Article IX.-"The Northern Outcrop of the ('umberland Coal Field." By Edwin Gilpin, a. m. F. G. S., F. R.S. C., etc.
> (Read May 8th, 188..)

My object this evening is to lay before you a brief summary of the work which has been done on the northern outcrops of the seams of the Cumberland Coal Field. Some of the information is new and of importance, but for much of the work done at an carly date I have had recourse to official sources.

The Cumberland coal field was for many years an unknown and unpromising district. It was accessible by water at the Joggins only, to allow competition with the coals of Sydney and Pictou. The presence of coal seams was known at several other points, but the want of any means of transportation forbade an attempt to open them.

Under the influence of a temporary demand for coal in the United States, several mines were opened between Maccan and the Joggins; but they were abandoned as soon as the necessity ceased that called them into operation.

When, however, the long dreamt of Intercolonial Railway was opened through the centre of the field, a fresh and more lasting impetus was given to the coal trade. A large and flourishing mine was opened at Springhill, through the energy of some merchants of St. John, who have been well rewarded for their enterprise in taking hold of a property which was rejected by the people of Halifax. The demand for fuel at the Londonderry iron works has led to the opening of another colliery, and other properties are being prepared to meet the revival of business in the mineral we are now considering.

In view of this encouraging state of affairs, it may not prove uninteresting to you to learn not only what progress in development has been already effected, but to consider what additional stores of mineral wealth may be contained in the district treated of in this paper.

The key to the general structure of the Cumberland coal field is found at the Joggins, presented in a beautiful and unbroken section of the various divisions of the carboniferous system. This has been carefully studied and minutely described by Dr. Dawson and the late Sir Charles Lyell, and I shall refer to it so far as may be necessary to show its bearing on the distribution of the productive measures over a district 25 miles in length. On referring to Dawson's "Acadian Geology," we will find the Joggins coal-mpasures bounded above (geologically speaking) by a set of massive sandstones (the upper coal measures), and below by a series of sandstones, grits and conglomerates (the Millstone grit). These massive covers, like the pasteboard of the book-binder's art, serve not to hide, but to preserve the material contained between them. The following summary, in descending order, will show the relative thickness of these great layers of sediments: UPPER COAL MEASURES.
Upper part. 650 feet. Lower

Upper
Lower

Upper Middle Lower

The lowe ged Reef, w and white sa red and gra
The uppe about 1000 of gray and all of which and will not
The lower workable sea gray sandsto
The Millst to the measu shales and re grits and con shows very f
The follow Measures sho tions:-

Strata.
Mai Strata.

Que Strata.

Coal Ștrata. . New Strata. .

-GILPIN

coal in the Maccan and the necessity
iial Railway more lasting rishing mine ne merchants enterprise in he people of y iron works er properties a the mineral
ly not prove is in developat additional strict treated
and coal field nd unbroken system. This y Dr. Dawson it so far as rution of the yth. On rethe Joggins c) by a set of 1 below by a (illstone grit). book-binder's sontained beig order, will sediments:

2267 feet.

PKODUCTIVE COAL MEASURES.

MILLSTONE GRIT.
Upper part......................... 2000 feet.

Middle " 3240
Lower
640
5880 feet.
The lower part of the Upper Coal Measures is exposed at Ragged Reef, where it is made up chiefly of hard and massive gray and white sandstones, with occasional beds of a reddish colour, and red and gray shales.
The upper part of the Productive Coal Measures comprises about 1000 feet of gray sandstone, and nearly the same thickness of gray and reddish shale and tire clays. It contains 22 coal beds, all of which are thin and of poor quality as exposed on the shore, and will not be again referred to in this paper.

The lower part of the Productive Measures, holding all the workable seams yet known on the shores, is characterised by gray sandstones, and gray and dark coloured shales.

The Millstone Grit series forms an abrupt change in appearance to the measures holding the coal beds. It consists of reddish shales and red and gray sandstones, the latter passing into fine grits and conglomerates. It is, moreover, destitute of coal, and shows very few fossils beyond a few drifted pieces of wood.

The following section of the lower part of the Productive Measures shows the principal coal beds and their relative posi-tions:-

	Feet.	In.	Feet.	In.
Strata.	339	7	-	-
Main Seam.		-	7	7
Strata.	75	0	-	
Queen Seam..		-	4	10
Strata.	968	0	-	-
Coal bed.		-	4	0
Strata..	18	-	-	-
New Mine Seam		-	3	0
Strata.	1160	-	-	-

390 NORTHERN OUTCROP, CCMBERLAND COAL FIELDS-GILPIN.

Only two of the above seams, namely, the main and new mine, are considered workable at the Joggins. We therefore have this vast thickness of strata, comprising 4757 feet, yielding in its upper half no seams worth mentioning, and in its lower part only four beds meriting the miner's attention.

In considering this great mass of sediments, with its alternating layers of coal, clay, sandstones and limestones, it must be borne in mind that the various changes chronicled at the Joggins did not necessarily extend over the whole of the Cumberland coal field. But, as Dr. Dawson remarks, had we visited the district during the coal period, we might, by changing our position a few miles, have passed from a sandy shore to a peaty swamp. or the margin of a lagoon. The evidence of similar districts at the present day, and the sections of their coal fields, show that, although these changes would be visible in passing over the ground, still the horizons of deposition, whether of vegetable matter or of sandstone, etc., vary very little, and that the persistence and regularity of the coal beds is greater than that of the associated measures. We thus find in Cape Breton coal seams preserving over considerable areas a uniform size and relative position while marked variations are observed in the thickness of the containing beds. Had we visited the district we are considering at a period coinciding with the formation of one of the coaly beds, we would have seen on all sides vast swampy plains covered with dense forests of strange shapes and unknown hues; calamite brakes and peaty bogs, traversed by sluggish streams and shallow lagoons, impeded and changed in their course by the luxuriant and encroaching vegetation. Again, a visit at the time of deposition of some of the great beds of barren sandstones would have shown us a wide and shallow sea filled with sandbars and low islands, on which grew straggling calamites, fighting for an existence amid the shifting sands.

We may now briefly pass in review the sections of the seams presented at the various mines which have been opened on the eastern extension of these strata.

Near the shore the Joggins main seam presents the following section recently measured by myself :-

NORTH

Coal Shale

At the fa diminished

The New

Coal an
Firecla
Co

At the Vi mgree with a

No. 1
Str
No. 2
Str

No. 3

A mine is seam únderly 900 feet. Tl

> Coal.
> Shale. .
> Coal. .

This seam i ine section, in

GILPIN. l new mine, re have this lding in its er par't only
ts alternat, it must be the Joggins Cumberland ted the disour position aty swamp districts at ;, show that, Ig over the retable matpersistence f the associms preservive position ness of the considering of the coaly ains covered ues ; calamstreams and urse by the at the time sandstones ith sandbars fighting for
f the seams ned on the se following

Coal	Fect.	$I n$
Coal and shale (holing)	2	10
Shale........	0	5
Coal	2	6
	1	10
Total.	7	-
he face of	7	7

At the face of the most easterly workings, the parting has diminished to 4 inches.

The New Mine seam presents the following section :

Coal	Feet.	$I n$.
Coal and shale	1	4
Coal. .	0	4
Fireclay.	1	1
Coal.	0	4
	0	3
	-	-

At the Victoria Colliery, a section is presented which does not mgree with any seen on the shore three miles distant, viz :-

No. 1 Coal.	Feet.	$I n$.
Strata	1	10
No. 2 Coal	15	0
Strata	3	0
	50	0

No. 3 Coal $\left\{\begin{array}{lcr}\text { Coal. } & 0 & 1 n . \\ \text { Shale. } & 1 & 4 \\ \text { Coal..... } & 1 & 2 \\ \text { Shale..... } & 0 & 10 \\ \text { Coal. } & 1 & 4\end{array}\right\}$ $5 \quad 2$

A mine is being opened by the Minudie Coal Company, on a seam underlying those worked at the Victoria Collicry by about 900 feet. This seam presents the following section :-

This seam is apparently the same as that shown in the preceding section, intervening between the Quen and New Mine seam:

392 NORTHERN OUTCROP, CUMBERLAND COAL FIELDS-GILPIN.
NORTHI
At the next colliery, the Lawrence, there are two seams, each \geq feet 6 inches thick, separated by 20 feet of strata.

At the Maccan Colliery there are three seams, presenting the following section :-

$$
\begin{aligned}
& \text { Feet. In. } \\
& \text { Feet. In. } \\
& \text { No. } 1 \text { Seam }\left\{\begin{array}{lll}
\text { Coal, coarse. . } & 0 & 8 \\
\text { Coal, good... } & 1 & 8
\end{array}\right\} \ldots \begin{array}{rrr}
2 & 4
\end{array} \\
& \text { Strata . } 100 \text {. } 0 \\
& \text { No. } 2 \text { Seam. } 1 \text { 8 } \\
& \text { Strata . } 300 \quad 0 \\
& \text { Feet. In. }
\end{aligned}
$$

At the Scotia mine two seams have been worked. The upper one is 2 feet 9 inches thick. The lower one, separated from the other at the slope by 10 feet of rock, presents the following section :-

$$
F t . \quad I n
$$

This parting of ten feet rapidly diminishes to the eastward. and the seams unite on the Chignecto area.

At the Chignecto mine, now being opened by the Steel Company of Canada, the same seam presents the following section :--

Ft. In.

Coal	0
Shale.	02
Coal	10
Shale.	0
Coal	06
Shale.	01
Coal	03

At the St similar secti

$$
\begin{aligned}
& \text { Coa } \\
& \text { Sha } \\
& \text { Coa } \\
& \text { Sha } \\
& \text { Coa } \\
& \text { Sha } \\
& \text { Coa } \\
& \text { Sha } \\
& \text { Coa }
\end{aligned}
$$

At the St J proved in ase Mr. James Hi

1st Se
Str

2nd Se
Str
3rd Sea
Stre
4th Sea
Stra
5th Sea
This section

At the St. George mine the same seam presents a somewhat similar section, viz :-

	Ft. In.
Coal (several thin partings).	36
Shale	20
Coal	03
Shale	011.
Coal	13
Shale	$0 \quad 2$
Coal	19
Shale	110
Coal	$0 \quad 11$
Total. .	119

At the Styles' mine the following section of seams has been proved in ascending order, and is from information given me by Mr. James Hickman :-

$$
\begin{aligned}
& \text { 1st Seam . } 20 \\
& \text { Strata } \\
& 120 \\
& \text { 2nd Seam }\left\{\begin{array}{rrr}
\text { Ft. } & \text { In. } \\
\text { Coal } \ldots 1 & 10 \\
\text { Shale ... } & 6 \\
\text { Coal .. } & 2
\end{array}\right\} \\
& \text { Strata. } 18 \text { 0 }
\end{aligned}
$$

Strata. 30 0

5th Seam . 110
This section represents the seams extending from the Styles

394 NORTHERN OUTCROP, CUMBERLAND COAL FIELDS-GILPIN.
Brook to the St. George mine, a district about five miles in length. This end of the coal field will, from its proximity to the railway, and the regularity of the strata, prove an important future source of coal.

These sections differ widely, and in addition to this there are numerous faults known on the River Herbert areas. A heary fault is also reported on the west line of the Styles area. We thus find that the seams cannot with any show of reason be correlated with either of the coal-beds worked at the Joggins, so far as their sections are concerned, and the presence of heavy fauls prevents a satisfactory comparison between those of areas separated by a short distance.

Dr. Dawson considers the seams at the Victoria Colliery (already referred to) as representing the New Mine seam, the coal bed (given in the section) lying eighteen feet above it, and another coal bed 3.5 feet below it, containing three feet of coal and shale as represented in the Joggins section. He also compares the Chignecto seam with the bed lying eighteen feet above the New Mine seam, and he further suggests that the equivalent of the main seam is yet to be found in the eastern pat of the district.

The work of the Geological survey has brought out new facts, which support his opinion as to the probable position of the Joggins main seam, while they oppose his correlation of the seams already given.

On approaching the Styles mine from the north a band of fine grained conglomerate is met, composed largely of syenitic, quartzite, and slate pebbles, the whole having a greenish and red colour: The thickness of this conglomerate and some associated beds of red shale is about 1,500 feet, and it is underlaid by about 1,000 feet of chocolate coloured shales and sandstones.

This bed of conglomerate has been tracel from a point several miles east of the Styles mine nealy to the Maccan River, ant throughout this distance it preserves the same characteristics, and appears to form the summit of the Millstone G:it. There is also, as mentioned by Mr. McOuat, another point supporting this vier, that is, the undenlying chocolate colon 1 , Males are setlon
exposed, : the congl between t it which 1

The St at a vertic We thus 1 coal field, endeavour considerab district.

On refeı be noticed on the sam feet above seams four sought for seam and t There is Millstone \mathbf{G}

C
Sl C

This may, st of the east, tions necesst in the easter workable co the New Mi above the M seams know ditions have would, as the
iles in length. o the railway, future source this there are A heary fault We thus find be correlated so far as their aults prevents separated by a
a Colliery (alseam, the coal e it, and anoet of coal and : also compares feet above the e equivalent of yait of the dis-
out new facts, ossition of the clation of the
a band of fine syenitic, quart\%and rad colour: sociated lieds of by about 1,000
a point several ccan River, an! macteristics, and

There is also, supporting this whes are schlor
exposed, and have been eroded into a depression to the north of the conglomerate, recalling the great mass of soft strata lying between the upper part of the Millstone Grit and that section of it which furnishes the Joggins grindstones.

The Styles, St. George, Chignecto and Scotia seams all occur at a vertical distance above this conglomerate of 450 to 500 feet. We thus find ourselves provided with a clue at each end of this coal field, and the conclusions to be drawn from the facts I have endeavoured to give you in the briefest possible manner, are of considerable importance in their bearing on the coal values of the district.

On referring to the section of the Productive Measures, it will be noticed that the New Mine seam, which Dr. Dawson considered on the same horizon as the Victoria and Chignecto seams, is 1,100 feet above the Millstone grit. The equivalents, therefore, of the seams found at the Styles and other eastern mines must be sought for in the Joggin section, half way between the New Mine seam and the Millstone Grit.

There is a coal bed found at the Joggins 520 feet above the Millstone Grit, presenting the following section, viz :-

	Ft. In.
Coal	0
Shale	16
Coal	06
Shale	13
Coal	0
	38

This may, so far as our data extend, be considered the equivalent of the eastern seams. It would then appear, that, if the conditions necessary for the formation of coal beds were as favourable in the eastern part of the district as they were at the Joggins, workable coat beds would be expected to exist on the horizons of the New Mine and main seams, respectively 1180 and 2289 feet above the Millstone Grit. Judging from the thickness of the seams known in the district east of the Maccan River, these conditions have been more favorable than at the Joggins; and there would, as the thickness of the measures and their characteristics

NORT
most prom Productive below the far as I an explored, a cal. How horizon in anticipate t conditions coal have o

Having t ble future g me to draw of the seam found in the than those r

The distan
east point ye dually dimin and traverse: ready outlet Maccan.
The Mace: lities for vess loaded into \mathbf{v} I regret to Institute of I was unable lysis. I give $\log y$ " and otl: seams :-

Moistu
Volatilf
Fixed (Ash...

GILPIN.
r expecting iner's work aes forming ; sandstone, shales and rom the recrosses the 'orks River e course of l. een the base ggins, 4757 t the latter tally. From south about eat distance - the officers upthrow to re other me-
Productive I make this
rinciple that ividuals conrried on for e Productive rawn clearly tinct barrier mately exer-
eld, for some is it has been reen given to , plainly be-
most promising coal beds are confined to the lower part of the Productive Measures; while the upper half lying immediately below the Ragged Reef sandstones appears to be worthless. So far as I am aware, this set of rocks has not been systematically explored, and its coal contents east of the Joggins are problematical. However, as we have seen that the coal values of a certain horizon in the lower portion have improved to the east, we may anticipate that it is quite within the bounds of possibilities that conditions favorable to the accumulation of workable seams of coal have occurred through this long stretch of coal measures.

Having thus briefly discussed the known seams, and the possible future greatly enhanced value of the district, it remains for me to draw attention to the qualities and transportation facilities of the seams already noticed, with the proviso that any seams found in the future will be more favourably situated for outlet than those now proved.

The distance from the Intercolonial Railway to the furthest east point yet proved in the district is 3 miles. This distance gradually diminishes until the Railway enters the productive belt, and traverses it for a distance of about $1 \frac{1}{2}$ mile. By this road a ready outlet is furnished to shipping at Dorchester, 29 miles from Maccan.

The Maccan and Herbert Rivers furnish good shipping facilities for vessels up to 300 tons burden, and at the Joggins coal is loaded into vessels directly from the mines.

I regret to say that at the time I prepared for the Newcastle Institute of Mining Engineers, my paper on "Canadian Coals," I was unable to procure a set of samples of these coals for analysis. I give the following from Dr. Dawson's " Acadian Geology" and other sources, which show the general character of the seams :-

JOGGINS.
Moisture. $2 \cdot 50$
Volatile Combustible Matter $36: 30$
Fixed Carbon. 56.00
Ash. $5 \cdot 20$
cooking qu factorily or

I do not sketch of a will feel sat mately to t to draw att on record , plorers

The Dominion Government have made arrangements for surveying a line of railway from Maccan to Barnes' Creek, on the river Herbert, and thence to the Joggins, a total distance of about nine miles. This line of road would prove a valuable feeder to the Intercolonial Railway, and an important outlet to the whole Cumberland coal district. It passes across and skirts the productive belt nearly the whole way. By it, in winter, the Joggins, Minudie and other mines would find an outlet to New Brunswick and the Upper Provinces. In summer, the Maccan, and Springhill, and other mines, would find by this road an outlet to a shipping port much nearer than Dorchester and Parrsboro', and open for a longer portion of the year.

The Joggins coal, I presume almost unknown in Halifax, is wheñ carefully prepared a good steam coal. During this year the company have contracted to supply coal for a line of steamers calling at St. John. I am not in possession of any data as to its qualifications for gas and coke making.

The coal from the Scotia and Chignecto seams has found a ready market as a good lasting house coal, and its adaptability for that important use, iron making and working, is shown by the selection of the Chignecto property by the Steel Company of Canada as a fuel supply. The coal from the Styles seam is also well adapted for domestic use, while from trials made on the Intercolonial Railway, it would appear to be a good steam coal. From its action while burning it should also possess good

ILIPIN.
its for sursek, on the tce of about le feeder to o the whole
I skirts the in winter, I an outlet In summer, find by this , Dorchester year.
1 Halifax, is this year the of steamers data as to its has found a adaptability is shown by el Company tyles seam is als made on 1 good steam possess good
cooking qualities. This point however can be settled satisfactorily only by practical tests.

I do not know that there is more that I can add to this brief sketch of an important, but still almost unknown district, but will feel satisfied if I have been able to convey to you, and ultimately to the general public, any information which will serve to draw attention to the resources of our Province, and to place on record data which may possibly be utilized by future explorers

[^0]: *May 10, 1879.

[^1]: * Notr,-I have just examined the Geology of the Muose River Iron deposits. They amply vonfirm my opiuiou regarding Nictuux deposits.

[^2]: *In yourger specimens this ist intersp. bone has almosi IWays its rentral extremity gion t ween the superior extremities of the lst spinons ray; as th ray becomes more solid, the inta bube verms to le pathed out

 IIn a fish from Cape Breton the 4 th his an interspinous bone, but the 5 th is without.
 ;More perceptible in smaller zpecimens.

[^3]: ${ }^{*}$ The sp. processes of the $29 t h$, to and including the 33 rd and last pair of ribs, are transeas iunited, making five abdominal hæmal arches.

[^4]: -Tlue toramina in this bone are for the passige of the blood vessels. The strperior in this specimen pases to the left, the inferior to the right side, each opening into a sack or sinus having a communicating foramen which lies between the first lower and second lower hypural bones There is also a foramen at the junction of this bone with the anterior edge of the lower hypuraj in this -pecimen, of considerable size, in others smaller in proportion.

[^5]: * loth ray. -A

[^6]: *ioth ray.-A line drawn through the centre of the spinal column touches this ray, the centre ray of the caudal fin.

[^7]: fingung specimens they can scarcely be said to be united.

[^8]: *Three-fold, if looked upon as the same bones in the cod are usually accepted.
 $\dagger 1$ could not find any in three specimen.

[^9]: I have not yet foun vecimen is obtained.

[^10]: *This is variable, as smaller and likely younger specimens show. In one the hæmapophyses do not coalesce until the fifteenth certrum; in another upon the eleventh, and in both of the above the parapophyses continue to and upon the tenth centrum, and also these two specimens show the curved hemal spine upon the fourteenth centrum, these fish had ouly ten rays in the anal fin.

[^11]: * In one specimen before me, the length of the spine is nearly one and a quarter inches, while that of the twenty-nlnth centrum is one and tive eighdis inches.

[^12]: I a quarter inches,

