

Photographic Sciences
Corporation

23 WEST MAIN STREET WEBSTER, N.Y. 14580 (716) 872-4503

CIHM/ICMH Microfiche Series.

CIHM/ICMH Collection de microfiches.

The Institute has attempted to obtain the best original copy available for filming. Features of this copy which may be bibliographically unique. which may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below.

Coloured covers/
Couverture de couleur

Covers damaged/
Couverture endommagéeCevers restores and/or laminated/
Couverture restaurée et/ou pelliculée
Cover title missing/
Le titre de ccuverture manque
Coloured maps/
Cartes géographiques en couleur
Coloured ink (i.e. other than blue or black),
Encre de couleur (i.e. autre que bleue ou noire)
Coloured plates and/or illustrations/
Planches et/ou illusfrations en couleurBound with other material/
Relié avec d'autres documents
Tight binding may cause shadows or distortion along interior margin/
La reliure serrée peut causer de l'ombre ou de la distorsion le long de la marge intérieure

Blank leaves added during restoration may
appear within the text. Whenever possible, these have been omizted from filming/
Il se peut que certaines pages blanches ajoutées lors d'une restauration apparaissent dans le texte, mais, lursque cela était possible, ces pages n'ont pas été filmées.

L'Institut a microfilmé le meilleur exemplaire qu'il lui a èté possible de se procurer. Les détails de cet exemplaire qui sont peut-ètre uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de filmage sont indiqués ci-dessous.

Coloured pages/
Pages de couleurPages damaged/
Pages endommagéesPages restored and/or laminated/
Pages restaurées et/ou pelliculéns

Pages discoloured, stained or foxed/
Pages décolorées. tachetées ou piquèesPages detached/
Pages détachèes
Showthrough/
TransparenceQuality of print varies/
Qualité inégale de l'impression
Includes supplementary material/
Comprend du matériel supplémentaire
Only edition available/
Seule édition disponible

Pages wholly or partially obscured by errata slips, tissues, etc., have been refilmed to ensure the best possible image/
Les pages totalement ou partiellement obscurcies par un feuillet d'errata, une pelure. otc., ent été filmées à nouveau de fac̣on à obtenir la meilleure image possible.

Additional comments:/
Commentaires supplémentaires:

This item is \%ilmed at the reduction ratio checked below/
Ce document est filmé au taux de réduction indiqué ci-dessous.

The last recorded frame on eech mlcrofiche shall contaln the symbol \rightarrow (meaning "CONTINUED"), or the symbal ∇ (meening "END"). whichever applies.

Maps, plates, charts, otc., mey be flimed at different reductlon retios. Those too lerge to be entirely Includied In one exposure are filmed beginning In the upper left hand corner, left to rlght and top to bottom, ss many frames as required. The foliowing dlagrams illustrete the method:

L'exempleire flimé fut reproduit grâce à ie générosité de:

> D. B. Weldon Library
> University of Western Ontario
> (Regional History Room)

Les images suivantes ont été reprodultes avec le plus grend soln, compte tonu de la condition et de le netteté de l'exemplaire flimé, ot en conformlté evec ies condltions du contrat de flimagu.

Les exemplaires originaux dont la couverture en papier est imprimbe sont flimés en commençar: par le premier plat et en terminant soit par la dornidro page qul comporte une empreinte d'Impression ou d'llustration, soit par le second piet, selon le ces. Tous les autres exemplaires orlgineux sont flimós on commençant par le premidre page qui comporte une empreinte d'impression ou d'lliustration ot en terminant par la dernldre page qui comporte une teile empreinte.

Un des symboies suivants apparaitra sur le darnière image de chaque microflche, selon ie cas: le symbole \rightarrow signifie "A SUIVFE", le symboie ∇ slgnifle "FIN".

Les cartes, planches, tableaux, etc., peuvent être filmés à des taux de réduction dlfférents. Lorsque le document est trop grand pour être reproduit en un seui cilché, li est filmé à partir de l'angle supérleur gauche, de gauche à droite. et de haut en bes, on prenant ie nombre d'Images nécessaire. Les dlagrammes suivants illustrent ia méthode.

NEW BRUNSWICK SCHOOL SERIES.

THE

ELEMENTARY
 ARITHMETIC.

Gompiled and arramged by

W. R. MULHOI」LAND.

REVISED EDITION.

With Metric System of Weights and Measures.

Preschimd by the board of Edecation for phe Provinge: of New Bhunswick.

HALIFAX, N. S.: A. \& W. MACKINLAY.
SAINT JOHN, N. B.: T. H. HALL.
1882.

Province of New Brunswick.
The Board of Education has prescribed "Mulholland's Elementary Arithmetic" as a text book for use in the Schools of this Province. THEODORE H. RAND, Chief Superintendent of Education.

PREFACE.

The "Elementary Arithmetic" is intended to occupy an intermediate position, coming between the concrete and thr. advanced stages, and is adapted for the junior classes in our common schools, for securing the mental development, as well as the accuracy and expedition in calculation of the pupils between seven and eleven years of age.

The plan consists of such a delineation of the principles that the pupils are enabled, by induction, to form the appropriate rules.

After the accuracy of their knowledge is tested by a few mental exercises, the examples are reduced to practice on the blarkboard or slate.

A number of self-testing exercises to many of the rules are introduced, which will save the teacher much labour, and be of benefit to the pupils.

The definitions and tables have been interspersed through the work, thereby rendering them more available to the student.

After Practice, the Unitary Method is explained, and some exercises given thereon. Proportion is introduced in a way not usually found in works of the kind ; and several operations generally included under Interest and other rules, are grouped together, by which means the pupils are enabled to solve all questions where ratio is involved.

Under each rule will be found a large number of well graded exercises, many of which have been selected trom real occurrences in business.

The compiler has availed himself of the best works in the New and the Old World, viz., Dr. Robinson's, edited by Fish, Dr. Thomson's, Greenleaf's, Barnard Smith's, Currie's, Hay's and others, but especially that of Dr Robinson.
(15s) In the Appendix will be found a short and complete aecount of the Metrie System of Weights and Measures, with practical exercises. This system was legalized by the Parliament of Canada in 1879.

Nots.-In this Work, $\mathfrak{£}$ s. d. mean Storling Money; $\$$ and cte mean Canada Currency

THE

ELEMENTARY ARITHMETIC.

DEFINITIONS.

1. Anything which can be multiplied, divided or measured is called Quantity. Thus, lines, weight, time, number, \&e., are quantities.
2. Arithmetic is the science of number, and teaches how to represent numbers by symbols or signs, and the various methods of using these in calculation.
3. Numbers are expressions for one or more units. Thus, the words onc, two, three, four, \&c., or the characters $1,2,3,4, \& c$., are expressions by which we indicate how many single things, or units, are to be taken.
4. Numbers are divided into two classes, Abstract and Concrete or denominate. If the units represented have no reference to any particular object, as when we say seven and two are nine, they are called abstract numbers. If the units have reference to particular oljects, as two days, seven men, \&c., they are called concrete or deriominate numbers.

NOTATION AND NUMERATION.

Art. 1. Notation is the writing or expressing of numbers by characters; and

Numeration is the reading of numbers expressed by haracters.
2. Two systems of notation are in general use-the Roman and the Aralic.

The LRoman Notation

3. Wmploys seven eapital letters to express nambers. Thus, Letters- I V X J C I) M Values-one, fiee, ter, fifty, one five one handred, hundred, inousand.
By combining these letters, the aneient Romans formed the following

Table of Notation.

This system of notation is principally confined to the numbering of chapters of books, public doeuments, de.

Express the following numbers by letters:

1. Eleven.
2. Fifteen.
3. Seventeen.
4. 'Twenty-five.
5. Thirty-nine.
6. One thousand and one.
7. Ninety-nine thousand, four hundred.
8. One thousand, nine hundred and ten.
9. Express the present year

The Arabic Notation

4. Employs ten thavacters, or figures, to express numbers Thus,
Figures, $\begin{array}{lllllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 0\end{array}$ $\left.\begin{array}{c}\text { Names } \\ \text { and } \\ \text { values, }\end{array}\right\} \begin{array}{r}\text { one, two, three, four, five, six, seven, eight, nine, } \begin{array}{c}\text { nought } \\ \text { ove } \\ \text { cipher. }\end{array} \\ \hline\end{array}$
The first nine characters are called significant figures, because each has a value of its own. They are also called digits, a word derived from the Latin word digitus, a finger, it being supposed the ancients first counted by their fingers.

The nought or cipher is also called nothing or zero. The cipher has, of itself, no value, but is used to indicate the order of the significant figures which precede it.
The ten Arabic eharacters are the Alphabet of Arithmetic; and by combining them according to certain orinciples, all numbers can be expressed.
5. 'To facilitate the reading of large numbers they ane divided into periods of three figures each, beginning at thes right-hand side, ascording to the following
 III. Millions........ $\left\{\begin{array}{l}\text { e Units of Millions, } \\ \text { o Tens of Millions, } \\ \text { o Mundreds of Millions. }\end{array}\right.$

4 IV. Billions $\left\{\begin{array}{l}\text { a } \\ \text { is Units of Billions, } \\ \text { is }\end{array}\right.$
" V. Trillions. $\left\{\begin{array}{l}\text { es Units of Trillions, } \\ \infty \text { Tens of Trillions, } \\ \sim \text { Inndreds of Trillions }\end{array}\right.$

* VI. Quadrillioms... $\left\{\begin{array}{l}i \text { Units of Quadrillions, } \\ 10 \text { Tens of Quadrillions, } \\ \text { is Hundreds of Quadrillions }\end{array}\right.$

6. Figures occupying different piaces in a number, as Enits, tens, hundreds, \&c., are said to express different orders of units.

Simple units are ealled units of the first order.

Tens	$"$	$"$	seconil "
Mundreds	$"$	$"$	thiril
Thousands	$"$	"	
foirth			

and so on. Thus, 327 contains 8 units of the third order, 2 units of the second order, and 7 units of the first order.

Exercises for the Slate.

Write and read the following numbers:

1. One unit of the third order, four of the second.
2. Eight units of the fifth order, three of the second.
3. Two units of the seventh order, five of the sixth, thre of the fourth, pine of the thind, cight of the firat.
4. Four units of the tenth order, six of the eighth, four of the seventh, three of the fifth, seven of the fourth, nine of the second, one of the first order.

7. Srinciples of Notation and Numeration.

1st. Figures have two values, Simple and Local.
The Simiple Value of a figure is its value when taken alone. Thus, $3,4,5$.

The Local Value of a figure is its value when used with another figure or figures in the same number. Thus, in 472 the simple values of the several figures are 4,7 , and 2 ; but the local value of the 4 is 400 ; of the 7 is 7 tens, or 70 ; and of the 2 is 2 units.

Note.-When a figure occupies the first place, its simple and local values are the same.

2nd. A digit or figur if used in the second place, expresses tens; in the third place, hundreds; in the fourth place, thousands? and so on.

3rd. As 10 units make 1 ten, 10 tens 1 hundred, 10 hundreds 1 thousand, and 10 units of any order, or in any place, make 1 unit of the next higher order, we readily see that the Arabic form of notation is based on the following

GTENERAL LAWS.
I. The different orders of units increase from right to leít, in a ten-fild ratio.
II. Every removal of a figure one place to the left, increases its local value ten-fold and every removal of a figure one place to the right, diminishes its local value to one-tenth of its previous value. Thus,

6 is 6 units.
60 is 10 times 6 units.
600 is 10 times 6 tens. 6000 is 10 times 6 hundreds.
4th. Every period contains three figures, (units, tens, and hundreds,) except the lett hand period, which sometimes contains only one or two figures, (units, or units and tens.)

RULE FOR NOTATION.

I. Beginning at the left hind, write the figures belong. ing to the highest period.
II. Write the hundreds, tens, and units of each successive neriod in their order, placing a cipher wherever an order of figures is wanting.

RULE EOR NUMERATION.
I. Sepaiate the number into periods of three figu is each, commencing at the ighe hand.
II. Becinning at the left hand, read of the number of units of each order in cach period separately, and add the name of the period.
Note.-In reading numbers the name of the last, or right-hand period, is usually omitted.
8. Until the pupil can write numbers readily, it may be well for hinn to write several periods of ciphers, point them off, and over each period write its name. Thus,

Trillions, Billions, Millions, Thousands, Units. $000,000,000,000$, 000
And then write the given numbers in their appropriate places.

Exercises for the Slate.

Express the following numbers by figures -

1. Thirty-six.
2. Three hundred and thirty-six.
3. Five thousand, three hundred and thirty-six.
4. Fourteen thousand, two hundred and forty-seven.
5. Four hundred and fifty thousand, and fifty-nine.
6. Ninety-six thousand and four.
7. Nine hundred thousand, and cinety.
8. Sixty-one billions, four millions, and ninety-seven.

Point off, and read the following numbers:

9.	489	14.	3786	19.2987654300
10.	586	15.	20900	20.4783006001
11.	4070	16.	57631	21.3456789012
12.	307	17.	37000	22.6830428301
13.	16010	18.	94000554	23.7932643162

24. Write seven millions and thirty-six.
25. What orders of units are contained in the number 10370500?

ADDITION.

Explamatory Exercises.
9. 1. John gave 5 dollars for a vest, and 9 dollars for a coat; how many dollars did he pay for both?

Analysis.-He gave as many dollars as 5 dollars and 9 dollars, which are 14 dollazs.
2. A farmer sold a lamb for 3 dollars, and a calf for 4 dollars; how many dollars did he receive for both?
3. Jot a got 3 apples from his mother, 2 apples from his sister, and 1 apple from his brother; how many apples did he get altogether:'
4. How many are 4 and 5 ? 4 and 7 ? 3 and 6 ?
5. How many are 5 cents, 6 cents, and 7 cents ?
10. From the preceding operations we perceive that

Addition is the process of uniting several numbers into one equivalent number.
11. The Sum or Amonnt is the resolt obtained by the process of addition.

Nere-Conerete numbers, that is munbers of objects, cannot be added together unkess the objeets are of the same kind. Thus, 4 grammars and 5 geographies cannot be added together. If, however, we drop the distinctive names of the objects, and use in their stead a more general tern, which will inelude the several kinds in one class, the addition can be performed. Thus, if we consider geographies and grammars merely as books, we may say 4 grammars (books) and 6 geographies (books) are 10 books. 'This priaciple applies to all operasions with eoncrete numbers.
12. The sign + , is called plus, which signifies more. When placed between two numbers, it denotes that they are to be added together. Thus, $6+3$, shows that 3 is to be added to 6 .

CASE 1.

18. When the amount of eoch column is less then 10.

Example 1.-A farmer sold a horse for 103 dollars, seven cows for 271 dollars, and some hay and oa 3 for 124 dollars; how much did he receive for all?
operation. Analysis.-We arrange the numbers so that units of like order shall stand in the same codumn. We then add the columns separately, for convenience commeneing at the right hand, and write each result under the column added. Thus, we have 4 and 1 and 3 are 8, the sum of the units; 2 and 7 are 9 , the sum of the tens; 1 and 2 and 1 are 4 , the sum of the hundreds. Hence, the entire Ampunt 498 amount is 4 lmodreds 9 tens and 8 units, an 498 , the Auswer.

Exereises for the Slate.

SECTION I.

1.	2.	3.	4.
Dollars.	Miles	Cents.	Days.
172	437	361	245
116	140	227	321
101	321	410	132

Ans. 389
5. What is the sum of 126,321 and 232 ? Ans. 679
6. What is the amount of 521,142 and 231 ? Ans. 894.
7. A stock farmer bought three droves of sheep. The first contained 225 , the second 301 , and the third 463 ; how many sheep did he buy in all? Ans. 989.

CASE II.
14. When the amount of any column equals or exceeds 10 .

Example 2.-A gentleman pays 596 dollars a year for house rent, 366 dollars for servants' wages, and 989 dollars for other expenses; what is the amount of his expenses?
operation.

5	96
3	66
9	89
	21
2	3

Sum of the units
Sum of the tens Sum of the hundreds 17

Total amount

Analysis.-Arranging the numbers as in Case I. we first add the column ot units, and find the sum to be 21 units. We write the 1 unit in the place of units, and the two tens in the place of tens. The sum of the figures in the column of tens is 23 tens, which is 2 hundreds, and 3 tens. We write the 3 tens in the place of tens, and the two hundreds in the place of hundreds.We next add the column of hundreds, and find the sum to be 17 hundreds, which is 1 thousand and 7 hundreds. We write the 7 hundreds in the place of hundreds, and 1 thousand in the place of thousands. Lastly, by uniting the sum of the units with the sum of the tens and hundreds, we find the total amount to be 1 thousand 9 hundreds 5 tens and 1 unit, or 1951 .

This example may be performed by another method, which is the cue in common use. Thus,
operation. Analysis.-Arranging the numbers as be-
596 fore, we add the first column and find the sum 366 to be 21 units; writing the 1 unit under the 989 column of units, we add the two tens to the 1951 column of tens, and find the sum to be 25 tens; 1951 writing the 5 tens under the colunn of teans, we dreds, and find the two hundreds to the column of huncolumn, we write $d m m$ to be 19 hundreds; as this is the last amount, 1951, as beforn its amount, 19, and we have the whole amount, 1951, as before.

Note.-Units of the same order are written in the same column; and when the suin in any column is 10 , or more than 10 , it produces one or more units of a higher order, which must be added to the next column. This process is sometimes called "carrying the tens."
15. From the preceding examples and illustrations we deduce the following
RULE. I. Write the numbers to be added so that all the units of the same order shall stand in the same column; that is, units under units, tens under tens, \& c .
II. Commencing at uni ${ }^{\circ} \mathrm{s}$, add each column separately, and write the sum underneath, if it be less than ten.
III. If the sum of any column be ten, or more than tien, write the unit figure only, and add the ten or tens to the
next column.
IV. Write the entire sum of the last column.

Mental Exercise.

1. How many are 6 and 7 ? 6 and 9 ? 6 and 13 ?
2. How many are 6 units, 9 tens, and 15 units ?
3. How many are 8 dollars, and 13 dollars, and 15 dollars?
4. How nany are $6+7+8+9+12+13+8$?
5. A man rave 12 dollars for some oats, 8 dollars for a ton of hay, and 7 dollars for a barrel of flour; how many dcllars did he pay for all?
6. A man bought a sleigh for 26 dollars, paid 10 dollars for lining it and 11 dollars for painting it; what did it cost him?
7. A tailor bought three pieces of cloth, the first containing 29 yards, the second 27 yards, and the third 42 ; how many yards did the three pieces contain?
8. A man bought a barrel of flour for 7 dollars and sold it so as to gain 3 dollars ; how much did he sell it for?

Exercises for the Slate.

Note.-All the Exercises for the slate, given in this work, which have not the answers at ached are self-testing, the Key to which may be found in the appendix.

SECTION II.			
(1)	(2)	(3)	(4)
3456	4563	5787	35109
3456	4563	5787	35109
6912	9126	11574	70218
10368	13689	17361	105327
17280	22815	28935	175545
(5)		(6)	(7)
67896	24687	84906	(8)
67896	24687	84906	54639
135792	49374	169812	109.278
203683	74061	254718	163917
339480	123435	424530	273195

16. The sign $=$, is called the sign of equality. Wher placed between two numbers, or sets of numbers, it signifies that they are equal to each other. Thus, the expression $6+4=10$, is read 6 plus 4 is equal to 10 , and denotes that the numbers 6 and 4 laken together, equal the number 10.

SECTION III.

[A part from all other methods, the pupil should be required to test the accuracy of his work in addition, by adding from the top of the columns dournwards.]

In the following exercises take the given number for the first and second lines or rows, their sum for the third, the sum of the third and second for the fourth, and so on, adding the last two for the next row. Finally, add the whole.
Note.-5 r. means 5 rows, 6 r. means 6 rows, \&c.
Example.-What is the sum of 3456 extended to 5 rows. OPERATION. First row 3456 Second " 3456 Same as first row. Third " $6912=$ Sum of second and first. Fourth " $10368=$ Sum of third and second. Fifth "17280 = Sum of fourtl and third

Ans. $41472=$ Sum of all the rows.

	6 r.	6 r.$$				6 r.	6 r.
(1)	63	(8)	171	(15)	1233	(22)	109872
(2)	72	(9)	621	(16)	4581	(23)	234531
(3)	45	(10)	531	(17)	6543	(24)	901827
(4)	54	(11)	432	(18)	7632	(25)	728109
(5)	27	(12)	135	(19)	8901	(26)	879102
(6)	36	(13)	252	(20)	9342	(27)	512361
(7)	18	(14)	801	(21)	1899	(28)	987642
(29)	632781		(34)	1234584	(39)	240357897	
(30)	547182	(35)	2781093	(40)	304578927		
(31)	987606	(36)	3765789	(41)	457028973		
(32)	875871	(37)	4572171	(42)	758203434		
(33)	767808	(38)	5706018	(43)	987645312		

SHOW THAT

(1) 45 extended $8 \mathrm{r} .=18$ extended $8 \mathrm{r} .+27$ extended 8 r .
(2) 54 " $8 \mathrm{r} .=36$ "
(3) 153 " 6
(4) 162
$\begin{array}{lll}\text { (5) } & 549 & \text { ، } \\ \text { (6) } & 5 \mathrm{r}=261 & \text { " } \\ & 089 & 4 \mathrm{r}=531\end{array}$

SECTION IV.

1. Find the sum of $1247+91679+27+1987+1800$ $+1796$. Ans. 98536. -
2. What is the sum of $250120+30402+7850+$ $465000+10046+65045$. Ans. 828463 ,
3. Add together 786, 840, 910, 403, 783, 650, 809, 670 408, 310, and 652.

Ans. 7221.
4. Add together 16075, 250763, 7561, 830654, 293106, 2537104 , and 316725. Ans. 4251988.
5. Find the sum of $629405,7629,31000401,263012$, 1300512,390217 , and 13268.

Ans. 33604444.
6. A man gave 5460 dollars to his eldest son, to the next 4065 , to the next 6750 , to the next 8000 , and to the youngest 7276; how much did he give to all. Ans. 31551 dollars.
7. A merchant on settling up his business, found he owed one creditor 176 dollars, another 841 dollars, another 1356 dollars, another 2370 dollars, another 840 dollars; what was the amount of his debts?

Ans. 5583 dollars.
8. Find the sum of the following numbers: scven hundred and fifty-six, four hundred and twenty-five, six hundred and
thirt sixt thre thre daus his s wha and muc
cow:
A
whi
2. how

A
mor
has
3.
then
4.
muc
proc
1
2
2
obta
Wh
thirty-three, five hundred and forty-one, nine hundred and sixty-nine.

Ans. 3324.
9. Add together six, sixty-five, six hundred and fifty-five, three thousand six hundred and fifty-five, twenty-six thousand three hundred and fifty-nine.

Ans. 30740.
10. A man willed his estate to his wife, two sons, and four daughters. To his daughters he gave 2630 dollars apiece, to his sons, each 4647 dollars, and to his wife 3595 dollars or what value was his estate?

Ans 23409 dollars.
11. A man bought three houses and lots for 15780 dollars, and sold them so as to gain 695 dollars on eaeh lot; for how much did he sell them?

Ans. 17865 dollars.

SUBTRACTION.

Explanatory Exercises.

17. A farmer having 8 cows, sold 3 of them, how many cows lad he left?

Analysis.-He had as many left as 8 cows less 3 cows, which are 5 cows. Therefore he had 5 cows left.
2. David has 9 peaches, and George has seven peaehes how many more peaches has David than George ?

Analysis.-Here, as in the former case, he has as many more as 9 peaches less 7 , which are 2 peaches. Therefore he has 2 peaches more than George.
3. A merchant having 14 barrels of flour, sells nine of them; how many has he left?
4. Paid 19 dollars for a coat, and 4 dollars for a vest; how much more did the coat cost than the vest:
18. We see from the foregoing that Subtraction is the process of finding the difference between two numbers.
19. The Minuend is the number to be subtracted from.
20. The Smbtralinend is the number to be subtracted.
21. The Difference or Remainder is the result obtained by the process of subtraction.
129. The sign -, is called minus, which signifies less. When olaced between two numbers, it denotes that the one
after it is to be taken from the one before it. Thus, 7 - 3, is read 7 mimus 3 , and means that 3 is to be taken from 7.

CASE I.

28. When no figure in the subtrahend is greater than the corresponding figure in the minuend.

Example 1.-From 697 take 432.
operation. Analysis.-We write the less num-

Minuend 697
Subtrahend 432
Remainder 265
ber under the greater, with units under units, tens under tens, \&c., and draw a line underneath. Then, beginning at the right hand, we subtract separately each figure of the subtrahend fiom the figure above it in the minuend. Thus, 2 from 7 leaves 5 , which is the difference of the units; 3 from 9 leaves 6 , the difference of the tens; 4 from 6 leaves 2 , the difference of the hundreds. Hence, we have for the whole difference 2 hundreds, 6 tens, and 5 units, or 265.

Exercises for the Slate.

SECTION 1.

	(1)	(2)	(3)	(4)
Minuend	543	876	367	978
Subtrahend	212	334	152	725
	$\overline{3 n}$	$\overline{542}$	$\overline{215}$	$\overline{253}$

5. From 98765 take 74251
6. From 201852 take 170341

Remainders.
24514
7. Subtract 291352 from 895752

121011
8. A man bought a property for 3724 dollars, and sold it for 4856 dollars; how much did he gain? Ans. 1132 dollars.
9. A drover bought 1598 sheep, and sold 473 of them; how many had he left?
10. A merchant sold flour to the amount Ans. 1125 sheep. and by so doing gained 2426 dollars; how much did he pay Ans. 4152 dollars.

CASE II.

24: When any figure in the subitrahend is greater than the corresponding fiqure in the minuend.

Thus, be taken
than the
ess numits under draw a nning at parately fom the eaves 5, es 6 , the ce of the rence 2
ainders. 24514 121011 604400 sold it dollars. them; sheep. dollars, he pay dollars.

Example 1.-From 846 take 359.
operation. Analysis.-Since we cannot take 9 units

Δ	∞	∞ Hundreds.
∞	0	A Tens.
\sim	0	∞ Units.

$487 \quad 1$ hundred from the 8 hundreds we have only 7 hundreds left, and 3 hundreds from 7 hundreds leave 4 hundreds; we therefore lave for the total remainder 487.
25. From the preceding examples and illustration we have the following general

RULE. I. Write the less number under the greater, placing units of the same order in the same column.
II. Begin at the right hand, and take each figure of the subtrahend from the figure above it, and write the result underneath.
III. If any figure in the subtrahend be greater than the corresponding flgure above it, add 10 to that upper figure before subtracting, and in subtracting the next left hand figurs remember that the figure above is 1 less.

Mental Exercises.

1. A man, having 25 dollars due him, received a ton of hay worth 11 dollars, and the remainder in money; how much money did he receive?
2. A farmer sold a cow for 23 dollars, that cost him 31 dollars; how much did he lose by the bargain?
3. From a piece of broadcloth containing 72 yards, 26 yards were cut; how many yards remained?
4. A boy found 8 apples under one tree, 10 under another, and 6 under another; he ate 4 , gave away 6 , and carried the remainder home; how many did he take home?
5. A farmer had 43 sheep in one lot, 39 in another, and 40 in another; from the first he sold 20 , from the sccond 15, and from the thrird 17 ; how many had he at first, and how many had he left?

Exercises for the Nlate.

Note.-To test the accuracy of the work, require the pupil to subtract the answer from the minuend; the result, if correct, will give the subtraliend.

SECTION II.

(1)	(2)	(3)	(4)
203688	10368	13689	17361
135792	6912	9126	11574
			-
(5)	(6)	(7)	(8)
74061	254718	163917	2367468
49374	169812	109278	1578312

(9)	$18717-$	12478	(16)	$239596137-159730758$
(10)	$703701-$	469134	$17)$	$243401058-162267372$
(11)	$1037016-$	691344	(18)	$272729889-181819926$
(12)	$1281933-$	854622	(19)	$111056292-74037528$
(13)	$6131016-4087344$	(20)	$259237071-172824714$	
(14)	$2017035-1344690$	(21)	$16931349-11287566$	
(15)	$2412072-1608048$	(22)	$19313505-12875670$	

SECTION III.

1. From 7238469153 take 4298376593.

Ans. 2940092560
2. From 9758354961 take 4938297562 .

Ans. 4820057399.
3. From 9738426549 take 9423689284.

Ans. 314737265.
4. Take 6428395823 from 9035482762 .

Ans. 2607086939.
5. Take 729384 from 220376842.

Ans. 919647458.
6. From $9784+3968$, take $326 \dot{8}+5274$.

Ans. 5210.
7. From $8764+398+41$, take $39+481+6324$.

Ans. 2359.
8. A man owning a block of buildings worth 155265 dollars, keeps it insured for 109240 dollars; how much would he lose in case the buildings should be destroyed by fire?

Ans. 46025 dollars.
9. A merchant paid 17894 dollars for a steamboat, and
afterwa by nis
10.
thousan
11. barrels another how ma
28.

Ana 15 cent instead cents, 3
2. I cost?
3.
4. tons co 27. given n

』8.
29.
many t
30.
of mult
31.

Note plier are
2. M the num
32. that th 3 multi

1 to sub-

 vill give
;

afterwards sold it for 16985 dollars; how much did he lose by nis bargan?

Ans. 909 dollars.
10. What sum added to 13678 will make twenty-six thousand and twenty-three? Ans. 12345
11. A torwarding merchant had in his warehouse 7560 barrels of tlour; he shipped at one time 1970 barrels, at another time 1150 barrels, and at another time 1685 barrels; how many barrels remained?

Ans 2755 barrels.

MULTIPLICATION.

Explanatory Exercises.

26. 27. What will 3 melons cost at 15 cents apiece?

Analysis.--Three melons will cost as much as the price, 15 cents, taken 3 times. Thus, $15+15+15=45$. But, instead of adding, we may say,-since one melon costs 15 cents, 3 melons will cost 3 times 15 cents, or 45 cents.
2. If a ream of paper cost 3 dollars, what will 12 reams cost?
3. What will 5 hats cost at 2 shillings each ?
4. When hay is selling for 16 dollars a ton, what will 8 tons cost? 9 tons? 12 tons? 15 tons?
27. Multiplication is the process of taking one of two given numbers as many times as there are units in the other.
28. The Multiplicand is the number to be taken.
29. The Multiplier is the number which shows how many times the multiplicand is to be taken.
30. The Produet is the result obtained by the process of multiplication.
31. The Factors are the multiplicand and multiplier.

Note.-1. Factors are producers, and the multiplicand and multiplier are called factors because they produce the product.
2. Multiplication is a short method of perfurming addition when the numbers are equal.
32. The sign, X, placed between two numbers, denotes that they are to be multiplied together. Thus, 9×5, is read 3 multiplied by 5, or 5 times 9.

Multiplication Table.

case 1.
33. When the multiplier does not exceed 12. Example 1.-Multiply 484 by 4.
operation. Analysis.-In this example it 18

Multiplicand	484
Multiplier	4
Units	
Tens	32
Hundreds	16
Product	1936

The other v OPER

19
tens, a 33 ten in the add to and 3 in the for the
34. have t
RUL placin:
II. 1 of the carryir

1. $]$ how m 2. of 11 h 3 . as man
2. day, a earn in 5. 6 dolla dollars the ves obtain the entire product, 1936

The operation in this example may be performed in another way, which is the one in common use
operation. Analysis.-Writing the numbers as before, 484 we begin at the right hand or unit figure, and 4 say: 4 times 4 units are 16 units, which is 1
$\overline{1936}$ ten and 6 units; write the 6 units in the product in units' place, and reserve the 1 ten to add to the next product. 4 times 8 tens are 32 tens, and the 1 ten reserved m the last product added, are 33 tens, which is 3 hurdreds and 3 tens; write the 3 tens in the product in tens' place, and reserve the 3 hundreds to add to the next product. 4 times 4 hundreds are 16 hundreds, and 3 hundreds added are 19 hundreds, which being written in the product in the places of hundreds and thousands, gives, for the entire product, 1936.
34. From the preceding example and illustration we have the following

RULE. I. Write the multiplier under the multiplicand, placing units of the same order under each other.
II. Beginning with the unit figure multiply each figure of the multiplicand by the multiplier, writing down and carrying as in addition.

Mental Excreises.

1. If a man can dig 28 bushels of potatoes in one day how many can he dig in 7 days? in 9 days? in 12 days?
2. At 81 dollars apiece, what will be the cost of 4 horses? of 11 horses? of 9 horses?
3. In an orchard there are 16 cherry trees, and 9 times as many apple trees; how many apple trees are there?
4. If one boy earns 15 cents a day, another 22 cents a day, and another 30 cents a day; how much can the 3 boys earn in 5 days?
5. A man bought 9 yards of cloth for a suit of clothes, at 6 dollars a yard: he paid 5 doilars for making the coat, 2 dollars for making the pantaloons, and 1 dollar for making the vest ; what did the suit cost him?

Exercises for the Slate.

SECTION I.

1. Multiply 543216573 by $2,3,4,5,6,7$
2. Multiply 345678921 by $9,8,7,6,11$.

Verify the following-

Note.-Instead of 2 as multiplier take anccessively $3,4,5,6,7,8$ 9, 10, 11, and 12 as multipliers, using the exercises in the section.Thus,

$$
\text { (10) } 196 \times 9=94 \times 3+102 \times 9, \text { \&c. }
$$

11. What will be the cost of 344 cords of wood at 4 dodars a cord?

Ans 1376 dollars.
12. In one day are 86400 seconds; how many seconds in 7 days?

Ans. 604800 seconds.
13. In one bushel there are 256 gills; how many gills are there in 12 bushels?

Ans. 3072 gills.

CAsE II.

35. When the multiplier is a composite number, none of whose factors is greater than 12.
36. A Compssite Number is one that may be produced by multiplying together two or more numbers. Thus, 18 is a composite number, since $\times 3=18$; or $9 \times 2=18$; or $3 \times 3 \times 2=18$.
37. The Component Factons of a number are the, several numbers which, multiplied together, produce the given number. Thus, the component factors of 16 are 4 and $4,(4 \times 4=16)$; or, 8 and $2,(8 \times 2=16) ;$ or, 2 and 2 and 2 and $2,(2 \times \cdot 2 \times 2 \times 2=16)$.
Note.-The pupil must not contound the factors with the parts of a number. 'ilus, the fictons of which 14 is composed are 7 and 2 $(7 \times 2=14)$; while the parts of which 14 is composed are 8 and 6 $(8+6=14)$, or, 10 and $4,(10+4=14)$. The factors are multewlied, whice tive jurts are added.

Examuan 2.-W nat will 36 cows cost, at 196 dollars cach? Multiplicand 196 cost of 1 cow.
ist factor

2nd factor
784 cost of 4 cows.

Product
7056 . ost ef 36 cows.

Analysig.- The factors of 36 are 4 and 9. If we multiply the cost of 1 cow by 4 , we obtain the cost of 4 cows; and by multiplying the cost of 4 cows by 9 , we obtain
the cost Hence

RULI more fa II. N and tha have be prodine

Find
(1)
(2)
16. how inu
17. and, se
18. piece did the
38.

Exal
Multipli
Muftipl

Product
the mul the 2 t
tens, equ
the cost of 9 times 4 cows, or 36 cows, the number bought. Hence we have the folloning

RULE. I. Separate the composite number into two or more factors.
 II. Multiply the multiplicnad by one of these factors, and that prcduct by another, and so on until all the factors have been uscd successively, the last product will be the prodact required.

GYCTION 15.

Find the prodvet of -

	1236454×15	(8)	87645231×32
(2)	2345679×16		18765432×35
(3)	4571325×18	(10)	33236775×36
(4)	7235469×21	(11)	21876543×42
(5)	9876519×24	(12)	54670104×44
(i)	8297568 ン 27	(13)	32336775×54
(7)	9726354×35	(14)	68206986×55

15. What will 573 oxen cost, at 63 dollars each?

Ans. 36099 dollars.
16. If an army consume 1645 pounds of bread in a day, how much will they consume in 96 days?

Ans. 157920 pounds.
17. How many are 84 times six hundred and four thousand, seven hundred and fifty-six?

Ans. 50799504.
18. A merchant bought 145 pieces of broadcloth, each piece containing 48 yards, at 4 dollars a yard; how much did the whole cost ?

Ans. 27840 dollars

CASE III.

38. When the multiplier consists of two or more figures.

Example 3.-Multiply 646 by 29.

Multiplicand 646

Mugtiplier
29
58149 times the multiplicand. 129220 times the multiplicand.

Product 1873429 times the multiplicand.

Analysis. Writing the multiplicand and mul tiplier as in Case I, we first multiply each figure of the multiplicand by the unit figure of the multiplier, exactly as in Case I. We then multiply by the 2 tens. 2 tens times 6 units, or 6 times 2 tens, are 12 tens, equal to 1 hundred, and 2 tens we place the two tens
under the tens' place in the product already obiained. 2 tens times 4 tens are 8 hundreds, and 1 humbed or the last product added are 9 hundreds; we write he 9 under the hundreds' place in the product. 2 tens times 6 hundreds are 12 thousands, equal to 1 ten thousand and 2 thousands, which we write in their appropriate places in the product. Then adding the two products we hive the entire product, 18734.
Note.-1. When the multiplier contains two or more figures, the several products obtained by multiplying by each figure are called partial products.
2. When there are ciphers between the significant figures of the multiplier, pass over them and multiply by the significant digures only, remembering to put the results in their proper places.
39. From the preceding examples and illustrations we deduce the following general

RULE. I. Write the multiplier under the multiplicand, placing units of the same order under each other.
II. Multiply the multiplicand by each figure of the multiplier successively, beginning with the unit figure, and write the first figure of each partial product under the figure of the multiplier used, writing down and carrying as in Addition.
III. If there are partial products, add them, and their sum will be the product required.

Note.-To multiply any number by 10 , annex 0 to the number, thus: $64 \times 10=640$; to multiply by 100 annex 00 , thus: 64×100 $=64100$; to multiply by 1000 amex 000 , and so on.
40. When there are ciphers at the right hand of one or both the factors.

RULE. Multiply the significant figures of the multiplicand by those of the multiplier, and to the product annex as many ciphers as there are on the right of both factors.

SECTION III.

Multiply and add together the products of-
(1) 1678583214 by 701 and 299
(2) 7843221567 by 679 and 321
(3) 8976510234 by 348 and 652
(4) 2190678093 by 959 and 41
(5) 3672815490 by 869 and 131
(6) 912837654 by 827 and 173
(7) 764583912 by 531 and 469
(8) 837654219 by 204 and 796
(9) 376542198 by 304 and 696
(10) 6354819027 by 801 and 199

SECTION IV.

ained. 12 i the last under the dreds are ads, which ct. Then ct, 18734.
igures, the are called
ures of the ant figures ations we
tiplicand, the mulrure, and the figure ing as in
and their
number, $: 64 \times 100$
of one or
multipliet annex actors.

27 and 173 31 and 469 44 and 796 4 and 696 01 and 199

546372

$\begin{array}{r} 546372 \\ 47 \end{array}$	$\begin{array}{r} 546372 \\ 19 \end{array}$	$\begin{array}{r} 546372 \\ 28 \end{array}$
3824604	4917348	4370976
2185488	546372	1092744
25679484	10381068	15298416
	15288416	

Work the following as the preceding example-

section v.
Divide each of the following exercises into two periods of three figures each, use these as multipliers, and test the results as m the following example :

134865 thus divided gives the multipliers 134,865 , then $134865 \times 134=18071910$ $134865 \times 865=116658225$
Sum or products
The multiplicand
134730135
134865
Sum of products and multiplicand $134865000=1000$ times thlicand.

(1)	134865	(11)	309690	(21)	892107
(2)	296703	(12)	327672	(22)	807192
(3)	237762	(13)	427572	(23)	735264
(4)	380619	(14)	456543	(24)	702297
(5)	523476	(15)	502497	(25)	586413
(6)	491508	(16)	617382	(26)	475524
(7)	357649	(17)	694305	(27)	486510
(8)	463536	(18)	264735	(28)	390609
(9)	375624	(19)	763236	(29)	420579
(10)	705294	(20)	789210	(30)	614385

(1) 134865
(3) 237762
(12) 327672
(22) 807192
(4) 380619
(5) 523476
(6) 491508
(7) 357649
(8) 463536
(18) 264735
(20) 789210
(30) 614385

Let the following questions be worked and their accuracy tested by casting out the 9 's as follows:

Add together the figures in each factor, casting out the 9 's as they arise in summing, and multiply the remainders together; then if the excess oi" the 9 's in the product is equal to the excess of the 9 s in the total product, the work, unless errors are made which counterhalance each other, is correct.

EXAMPLE.

Multiplicand Multiplier	$\begin{array}{r} 5468 \\ 74 \end{array}$
	21872
	38276

Product $\quad 404632$
The excess of the 9 s in the multiplicand is 5 , and in the multiplier is 2 , their product is 10 , and the excess of the 9 's is 1 , which is equal to the excess of the 9 's in the total product.
(1) Multiply 7482695 by 598 . Ans. $4,474,651,610$
(2) Multiply 6574189 by $679 . \quad 4,463,874,331$
(3) Multiply 5394628 by 786 . $4,240,177,608$
(4) Multiply $598+783$ by $203 . \quad 1,214,910,949$

For further exencises take the examples in: Section III, page 26 , using the first multiplier only in each question, and doubling the first figure of the multiplicand.

SECTION VI.
1 What is the product of 71476×9187 ?
Ans. 656650012
2. Multiply 8010700 by 9000909 . Ans. 72103581726300.
3. In 1 mile there are 63360 inches; how many in ${ }^{\prime}$ les in 45 miles? Ans. 2801200.
4. If in one year there are 8766 hours; how many hours in 72 years?

Ans. 631152 hours.
5. What cost 97 oxen at 29 dollars each ?

Ans. 2813 dollars.
6. If a person deposit annually in the Savings' Bank 407 dollars; what will be the sum deposited in 27 years ?
7. Multiply 875946 by 807004
8. Multiply 948657 by 908070 .

Ans. 10989 dollars. Ans. 706891925784. Ans. 861446961990.
cir accuracy g out the 9 's nainders toluct is equal work, unless r, is correct. s of the 9 's e total pro-

Ans. 2117785929.
10. If a hogshead of sugar contains 1096 pounds; how many pounds in 27 hogsheads? Ans. 29592 pounds.
11. Find the continued product of 186,396 and 56.

Ans. 4124736.
12. Multiply eight thousand and nine by nine thousand and sixteen.
13. Multiply one million one thousand one hundred by nine thousand nine hundred and ninety. Ans. 10000989000
14. If a railroad car moves 33 miles an hour; how far would it go in 30 days, of 24 hours each, allowing 2 hours each day for stopping? Aus. 25080 miles.
15. If 9 men can do a piece of work in 13 days; how long would it take one man to do the same work? How many men would do it in one day? Ans. 117 days. 117 men.
16. A merchant bought 563 barrels of shoe pegs, each barrel containing 4 bushels, at 5 shillings a bushel ; how many shillings did he give for the whole? Ans. 11260 shillings.

DIVISION.

Explanatory Exercises.

41. 42. A boy has 32 cents which he wishes to give to 4 of his companions, to each an equal number how many cents must each receive?

Analysis.-Since there are four companions each must receive as many cents as 4 is contained times in 32 , which is 8 times. Therefore, each boy will receive 8 cents.
2. How many barrels of flour, at 8 dollars per barrel, can you buy for 56 aollars?

Analysis.- Since 8 dollars will buy one barrel, 56 dollars will buy as many barrels as 8 is contained times in 56 , which is 7 times. Therefore 7 barrels of flour, at 8 dollars each, can be bought for 56 dollars.
3. If a man can dig 6 rods of ditch in a day, how many days will it take him to dig 96 rods?
4. A farmer bought 49 shecp for 106 dollars; what did they cost a piece?
42. Division is the process of finding how many times one number is contained in another.
43. The Dividend is the number to be divided.
44. The Divisor is the number divided by.
45. The Quotient is the result obtained by the proeess of division, and shows how many times the divisor is contained in the dividend.
Note.-1. When the dividend does not contain the divisor an exact number of times the part of the dividend left is called the remainder, and it must be less than the divisor.
2. As the remainder is always part of the dividend, it is always of the same name or kind.
3. When there is no remaindel th division is said to be cumplete.
46. The sign, \div, placed between two numbers, denotes division, and shows that the number on the lef f is to be divided by the number on the rught. Thus, $39 \div 3$, is read 39 divided by 3.

Division is often indicated by writing the dividend above and the divisor below a short horizontal line. Thus, $\frac{88}{3}$

case 1.

47. When the divisor does not exceed 12.

Example 1.-How many times is 3 contained in 936 ?
operation.
Dividend.
D visor
3)936

Qu tient 312
Analysis.-After writing the divisor on the left of the dividend, with a line between them, we begin at the left hand and say: 3 is contained in 9 hundreds, 3 liundreds times, and write 3 in hundreds' place in the quotient: then 3 is contained in 3 tens 1 ten times, and write 1 in tens place in the quotient; then 3 is contained in 6 units 2 units times; and writing the 2 in units' place in the quotient, we nave the entire quotient, 312.
2. How many times is 4 contained in 1684 ?
opfration. Analysis.-As we cannot divide 1 thousand
4)1684 by 4 , we take the 1 thousand and the 6 hun421 dreds together, and say, 4 is contained in 16 421 hundreds 4 hundreds times, which we write in hundreds' place in the quotient; then 4 is contained in 8 tens 2 tens times, which we write in he tens' place in the quotient; and 4 is contained in 4 units 1 unit time, which we write in the units' place in the quotient, and we have the entire quotient, 421.

3 п
sion
3. How many times is 7 contained in 2835? operation. Analysis.-Beginning as in the last ex7) 2835 ample, we say, 7 is contained in 28 hundreds

405
process ontained 4 hundreds times, which we write in the humdreds' place in the quotient; then, 7 is contained in 3 tens no times, and we write a cipher in the tens' place in the quotient; and taking the 3 tens and 5 units together, 7 is contained in 35 units 5 units times, which we write in the units' place in the quotient, and we have the entire quotient, 405.
4. How many times is 8 contained in 987 ?

OPEIRATION.
8) 987

1233 Rem. or $123 \frac{3}{8}$

Analysis.-Here 8 is contained in 9 lumdreds 1 hundred times, and 1 humdred, or 10 tens, over, which, united to the 8 tens, make 18 tens; 8 in 18 tens, 2 tens times and 2 tens, or 20 units, over, which, united to the 7 units, make 27 units ; 8 in 27 units 3 units times and 3 units over. The 3 which is left after performing the division, should be divided by 3 ; but the method of doing so cannot be explained until we reach fractions; so we merely indicate the division by placing the divisor under the dividend, thus, $\frac{3}{8}$. (46). The entire quotient is written 1233, which may be read, one hundred and twenty-three and three-eighths, or one hundred and twenty-three and a remainder of three.

From the foregoing examples and illustrations, we deduce the following

RULE. I. Write the divisor at the left of the dividend, with a line between them.
II. Beginning at the left hand, find how many times the divisor is contained in the fewest number of figures of the dividend that will contain it, and write the result under the dividend.
III. If there be a remainder after dividing any figure, regard it as prefixed to the figure of the next lower order in the dividend, and divide as before.
IV. Should any figure or part of the dividend be less than the divisor, write a cipher in the quotient, and prefix the number to the figure of the next lower order in the dividend, and divide as before.
V. If there be a remainder after dividing the last figure, place it over the divisor at the right hand of the quoticnt.

Mental Exercisen.

1. If 4 casks of lime cost 12 dollars, what is the cost of 1 cask?
2. If a man perform a certain piece of work in 30 days, how long will it take 5 men to do the same? How long will it take 6 men? How long will it take 7 men?
3. If 24 pounds of tea can be purchased for 12 dollars, how much can be bought for 1 dollar? How much for 9 dollars? How much for 5 dollars?
4. Gave 96 cents for 6 pounds of raisms, what cost 1 pound? What cost 7 pounds?
5. A man gave 15 dollars for 3 barrels of apples; what was the cost of each barrel? What would 5 barrels cost at the same rate?

Exercises for the Sliate.

SECTION I.

(1) $42240 \div 2,4,6,8,10,11$
(5) $30888 \div 9,3,8$
(2) $14784 \div 3,7,11,2,4,8$
(6) $13608 \div 7,3,9$
(3) $76032 \div 4,3,2,8,9,11$
(7) $34668 \div 6,9,3$
(4) $20960 \div 5,7,6,4,8$
(8) $363285 \div 5,9,3$

SHOW THAT

SECTION II.

(1) $42544830 \div 6=$ Quotients.
(2) $14284263 \div 7=2040609$
(3) $24486456 \div 8=3060807$
(4) $67879284 \div 6=11313214$
(5) $78485617 \div 7=11212231$
(11) $7341568 \div 7$ $3179632 \div 5$ $19038716 \div 8$ $84201763 \div 9$ $2947691 \div 12$ $42084796 \div 6$
Sum of Quoticnts and Remanders 20680083

Quotients.
(i) $49368768 \div 6=8228128$
(7) $28949076 \div 12=2412423$
(8) $59987688 \div 12=4998974$
(9) $23935734 \div 6=3989289$
(10) $98765711 \div 11=8978701$

Quotients.
Rew.

CASE II.

48. When the divisor is a composte number.

Example 1.-If 5376 dollars be divided equally among 42 men, how many dollars will each receive? operation. Axalysis. - If 5376 dollars be divided

Ars. 128 equaliy among 42 men, each man will receive as many dollars as 42 is contaiped in 5376 dollars. 42 may be resolved into the factors at cost 1
les; what els cost at have 896 , the ing the 5376 by 6 , the number of groups, we and dividing 896 byer of dollars to be given to each group; have 128 , the number 7 , the number of men in each group, we Hence,

RULE. Divide the dividend by one of the factors, and the quotient thus obtained by another, and so on if there made a divisor. The last quotient will fetor has been required.

SECTION IIT.

1. Divide 985768545 by $15=3 \times 5 \quad$ Quotients.
2. Divide 687698464 by $16=4 \times 4$
3. Divide 931684770 by $45=4 \times 4.42981154$.
4. Divide 945328608 by $56=8 \times 7 \quad 20704106$.
5. Divide 3948767388 by $108=12 \times 9 \quad 16880868$.
6. Divide 3176823672 by $132=12 \times 11 \quad 36562641$.

49. To find the true remainder.

24066866.

Example 2.-Divide 1143 by 56, usiry the factors 7 and 8 , and find the true remainder.

$$
56 \begin{cases}\sqrt[7]{1143} \\ \sqrt{8} 163 & 2 \mathrm{rem} . \\ -20 & 3 \mathrm{rem} .\end{cases}
$$

$7 \times 3=21$, to which is added the first remainder 2 , which makes the true remainder 23.
Explanation.-Suppose the dividend in the example to be pencils and to be divided into parcels each to contain 7 pencils, there will be 163 parcels and 2 pencils over. If we

DIVISION.

divide these parcels into larger ones each containing 8 of the smaller, we shall have 20 large parcels, and 3 small parcels over; but each small parcel contains 7 pencils, the second remainder is therefore equal to 21 pencils, or 7×3, to which is added the 2 pencils which remained after the first division. Hence the

RULE. Multiply the first divisor by the second remainder, to which add the first remainder, if any.
Note.-Dividing by three factors is seldom practised. SECTION IV.

1. $234567 \div 18$	6. $751113 \div 63$
2. $345672 \div 27$	7. $804024 \div 78$
3. $427311 \div 36$	8. $887625 \div 81$
4. $453672 \div 45$	9. $999999-99$
5. $672345 \div 54$	10. $723456 \div 108$

1. $958768461 \div 27$	Ans. 3
$2_{3} 726894784 \div 32$	
3. 729368465 ± 35	20839099
4. $675487368 \div 36$	18763538.
5. $945328608 \div 56$	16880868.
6. $1796842688 \div 64$	28075667.
7. $897684192 \div 72$	12467836.
8. $910364312 \div 88$	10345049.
9. $3948767388 \div 108$	36562661.
10. $3176823672 \div 132$	2406684

CASE III.

50. To divide by a number consisting of several figures.

Note.-To illustrate the method of operation more clearly we will take an example usually performed by Short Division.

1. How many times is 6 contained in 564 .
opreration. Analysis.-As 6 is not contained in 5 hun6)564(94 dreds, we take 5 and 6 as one number, and 54° consider how many times 6 is contained in this partial dividend, 56 tens, and find that it is contsined 9 tens times, and a remainder. To find this remainder, we multiply the divisor, 6 , by the quotient figure, 9 tens, and subtract the product, 54 tens, from the partial dividend, 56
tens, and there reman 2 tens. To this remainder we bring down the 4 mits, and consider the 24 mits the secom partial divideud. Then, 6 is contained in 24 units 4 units times. Multiplying aud subtracting as before, we find that nothing remains, and we have for the entire quotient, 94.
2. How many times is 23 contained in 4807 ? Divisor. Dividend. Quotient. 23) 4807 (209 46°

Analisis.-We first find how many times 23 is contained in 48, the least number of figures that will contain 23, and place the result in the quotient on the right of the dividend. We then multiply the divisor, 23 , by the quotient figure, 2 , and subtract the product, 46, from the part of the dividend used, and to the remainder bring down the next figure of the dividend, which is 0 , making 20 , for the second partial dividend. Then, since 23 is contained in 20 no times, we place a cipher in the quotient, and bring down the next figure of the dividend, making a third partial dividend, 207; 23 is contaned in 207, 9 times : multiplying and subtracting as before, nothing remains, and we have for the entire quotient, 209.
Notes.-1. When the process of dividing is performed mentally and the results only are written, as in Case : the operation is termed Short Division.
2. When the whole process of division is writen, the operation is
termed Long Division.
From the preceding illustrations we derive the following general

RULE. I. Write the divisor at the left of the dividend, as in Short Division. II. Divide the least number of the left hand figures in the dividend that will contain the divisor one or more times, and place the quotient at the right of the dividend, ith a line between them.
III. MIultiply the divisor by this quotient figure, subtract the product from the partial dividend used, and to the remainder bring down the next figure of the dividend IV. Divide as before, until all the figures of the dividend have been brought down and divided.
V. If any partial dividend will not contain \dot{t}_{1} e divisor, place a cipher in the quotient, and bring down the next figure of the dividend, and divide as before.
y/J. If there be a remainder after dividing all the figures the divisor underneath. be written in the quotient, with

Note.-1. If ary remainder be cquet to, of ifrenter than the ciivisor, the quotient figore is teas small, mull innst be ineremed.
2. If the product of the divisor by the quotient ligure be grenter than the partial dividend, tle quotient figure is too lerge, and must be diminished.
3. Work fle questions in section II, page 32, by long division, before working the following questions.
(1) $79865379 \div 702$
(2) $81133(8403 \div 801$
(3) $90900 \cdot 9963 \div 117$
(4) $236593345 \div-124$
(5) $37018764 \div 135$

AECTION Vi.

(6) $501468897 \div 459$
(7) $613327548 \div 558$
(8) $128713536 \div 567$
(11) $700005474 \rightarrow 882$
(9) $123456780 \div 576$
(12) $407049570 \div 918$
(1:3) $9812: 34567 \div \div 891$
(10) $987654321 \div 585$
(14) $900664200 \div 9099$
(15) 111777111 -9009

SECTION VII.

1. Wivide 5560804464 by 7846 ,
2. Divide 1747071255 lyy 6483 .
3. Divide $828786.45: 2$ by 8594.
4. Divide 85265114332 by $938 \$ 6$.
5. Divitle 520090972756 hy 654321 .
6. Divide 7428927415293 by 8496427 .
7. Divide 936864880704 lyy 987654 .

Ans. 756984. fins. 269485.
Ans. 964378 .
Ais. 376842.
Ans. 794856.
Ans. 874359.
Ans. 948576.

8 The number of post offices in the United States in 1853 was 22320 , and the revenue of this department was 5937120 dollars; what was the average revenue of each ollice ?
9. A bac coutaining three hundred and Ans. 266 dollars. was divided among nine boys; how many did each boy get?

Ans. 36.
10. Find the 17 thi part of 5508 .

Ans. 324.
11. How many miles ay ho ir does a train go which travels 1692 miles in 47 hours? Ans. 36.
12. A gentleman left $£ 5000$. By his will he directed that after paying lis lebts, amounting to $£ 275$, the rest should be divided equally among his seven children; what was the share of each?
13. The product of two numbers is 31383450 , Ans. $£ 675$. the numbers is 4050 ; what is the other number? Ans. 7749 .

CASE IV.

51. To divide \quad !! 10, 100, 1000, \&c.

Example 1.-Divide 486 acres of land equally among 10
operation. Antrysis.-According to the decimal sys-
$10) 486$ $1 \mid 0) 486$

486 rem. tem of notation if we remove a fignre one place toward the left by ammexing ia cipher, its value is increased ten fold, or is multiplied by 10 , so on the contrary, by cutting off, or taking away the right hand firme of a number, each of the figures is removed one place toward the right, and consequently reduced to one-tenth its former value, or divided by 10 .

For similar reasons, if we cut off two figures we divide by 100 , if three, we divide by 1000 , and so on. Hence the
RULE. Frol the right hand of the dividend cut off as many figures as there are ciphers in the divisor. Under the the quotient off, place the divisor, and the whole will form
52. To divide by a number having ciphers on the right hand. Example 1.-Divide 587618 by 400.

OPERATION. $4 \mid 00) 5876 \mid 18$

146918 rem.

Analysis.-In this example we resolve 400 into the factors, 4 and 100 , and divide first by 100 , by cutting off the two right hand figures of the dividend, (51) and we have a quotient of 5876 , and a remainder of 18 . We next divide by 4 , and obtain 1469 for a quotient; and the entire quotient is $1469 \frac{18}{400}$.
555. When there is a remainder atter dividing by the significant figures, it must be prefixed to the figures sut off from the dividend to give the true remainder.

SECTION VIII.

1. Divide 48600 by 100 .
2. Divide 59673 by 1000 . Ans. 486.
3. Divide 34716 by 900 . Ans. 59 rem .673 or $59 \frac{678}{1} \frac{8}{0}$.
4. Divicle 178930 by 10 . Ans. 38 rem. 516 or $38 \frac{5}{9} \frac{1}{6}$. Ans. 38 rem. 516 or $38 \frac{51}{9} \frac{1}{0} 0^{\circ}$
Ans. 17893.
5. Divide 47321046 by 45000 .
6. Divide 1047634 by 2400 . Ans. 1051, rem. 26046 Or $1051 \frac{26046}{4500}$.

Ans. 436 , rem. 1234
Or $436 \frac{1}{2} \frac{3}{4} \frac{3}{6} \frac{4}{0}$.
7. The sum of 40000 dollars is paid to 1600 men ; what does each man receive?
8. The circumference of the Ans. 25 dollars. miles. How many hours would a the equator is 24898 travel that alistance, going at the a train of cars require to travel that distance, going at the rate of 60 miles an hour?

$$
\text { Ans. } 414 \frac{5}{6} .
$$

MULTIPLICATION AND DIVISION GY FRACTIONAL NUMBERS.

Note.- The pupil shonk have a clear idea of the value of simple fractions before commencing these exereises. A few oral illustrations will suffice.

Example 1.-Multiply 1482 by 1235.
OPERATION. ANALYSLS-Here we multiply 1.483 hy
1483
1235
4449 2966
1483 123 in the nsual way; hut before adding the partial products we find the 5 eighths of 1483 , namely 9267_{8}^{7}, and write it under the partial products, as in addition, then adding the four lines we obtain the required product.

183335 ?
We multiply by $\frac{5}{8}$ (or any other fyaction) by multiplying the given number by the upper number of the given fiaction and dividing the product by the lower. Thas, 1483×5 (the upper figure) $=7415$ which divided by eight (the lower figure) $=926 \frac{7}{8}$.

Example 2.-Divide 1234 by $4 \frac{3}{4}$.
operation. Analysis.-We first bring both divisor 43) 1234
$4 \quad 4$
$19) 4936(25915$
38° and dividend to the same name as the given fraction-that is (in this instance) to fourths, then proceed as in division.

Exercises for the Slate.

	Cxercises	Slate.
(1)	$18947632 \times 5 \frac{1}{2}$	Ans. 104211976
(2)	$46738479 \times 6 \frac{1}{2}$	$303800113 \frac{1}{\frac{3}{4}}$
(3)	$94327865 \times 30 \frac{1}{4}$	$2853417916 \frac{1}{4}$
(4)	$29768342 \times 10 \frac{2}{3}$	$317528981 \frac{1}{3}^{4}$
(6)	43796284×200610	$595023097{ }^{81} 4{ }^{8} \mathrm{i}$
(7)	$49625483 \div 301 \frac{1}{4}$	1640511
(8)	$876587938 \div 1438$	

promiscuous extrcises in the priteding rules.

1. One school contains 60 pupils, a second 83 , a third 125, a fourth 234, a fifth 672, and a sixth 1003 ; how many prpils are there in the six schools Ans. 2177.
2. The Clyde is 100 miles long, the Forth 115, the Thames 215 , the Shamon 224, and the Severn 240 ; what would be the length of a river equal to them all? Ans. 89.4 miles.
3. Two factors are 57682 and 8493 ; what is their product?
4. How much less is 7289 than 8723 ? Ans. 489893226.
5. There are 4 cheth than 8723 ?

Alis. 1434. 12 . There are 4 chests of drawers; in each chest there are how many, and in each drawer there are placed 12 dollars ; how many dollars are there altogether in the chests?
6. Multiply 94836 by 768 , and divide Ans. 576 dollars. 9216.
7. From the snm of 189649 , Ans. 7903. 693284 and 256893 subtract $48,283726,542893,248567$, by 84762 . and divide the pre 48972 , multiply the remainder
8. A man commenced business when 22 Ans. 19494360 . retired at the are of seventy with a foren 22 years old, and Required how nuch he cley with a fortune of 48768 dollars.
9. A wood of 6723 Ans. 1016 dollars. down one tree in nine; hecs is to be thimned by cutting clearing? Ans. 5976.

PRIME NUMBERS.

54. A Prime Number is one that cannot be resolved into two or more integral factors; thus $7,3,11, \& \mathrm{c}$., are prime because they are not divisible by any number greater than 1 , without a remainder.
55. To find the prime factors of any composite number.

Example 1.-What are the prime factors of 30 ? oprration. Analysis.- We divide the given number by 2 , the least prime factor; this gives an odd number for the quotient, divisible by the prime factor, 3 , and giving the quotient 5 ; this being a prime number, the division cannot be carried any further. The divisors and the last quotient, 2, 3 and 5 , are all the prime factors of proof $2 \times 3 \times 5 \times 1=30$.

RULE. Divide the given number by the least prime factor; divide the quotient in the same manner, and so continue the division until the quotient is a prime, number. The several divisors and the quotient is a prime number. prime factors required.

Mental Exercises.

1. What are the prime factors of $9,12,15,16$ and 18 ?
2. What are the prime factors of $39,26,34,38$ and 42 ?
3. What are the prime factors of $65,85,95,105$ and 115 ?

Exercises for the Shate.

Find the prime factors of the following numbers and prove he results.
(17) 120
(21) 1492
(2) 18
(6) 42
(10) 69
(14) 91
(18) 144
(22) 8032
(3) 24
(7) 45
(11) 78
(15) 99
(19) 714
(23) 4604
(4) 36
(8) 49
(12) 88
(16) 108
(20) 836
(24) 1728

G] eatest common measure.

56. A Commmon Divisor of two or more numbers is a number that will exactly divide each of them.
57. The Greatest Common Divisor of two or more numbers is the greatest number that will exactly divide each of them.

Numbers prime to each other are such as have no common divisor.

Note.-A common divisor is called a common measure; and the greatest common divisor, the greatest common measure. The latter is usually indicated by the initial letters G. c. м.
58. To find the greatest common measure of two numbers. Ex.-Find the greatest common measure of 105 and 165.

Analysis.-Here we divide the greater number, 165 , by the less, 105 , and thus obtain a remainder, 60 , which we now make a divisor, and 105 , the former divisor, the dividend, and so on. When the remainder, 15 , is used as a divisor it leaves no remainder, and is therefore the greatest common measure required. Hence,

15) $45(3$ 45
prime and so umber. be tho
$18 ?$ 142 ? d 115 ?
prove
1492
8032
4604
1728
rs is a
wo or divide latter mbers. 165. e the less, nder, visor, div:-reor it efore re-

Greatest common measure.

RUI,E. I. Divide the greater number by the less.
II. Divide the preceding divisor by the last remainder, and so on till nothing remains. The last divisor will be
59. To find the greatest common measure of three or more given numbers.

RULE. I. Find the greatest common measure of any t wo of the given numbers, by the last rule.
II. Then, that of the common divisor thus obtained and of another of the given numbers, and so on through all the given numbers.
III. The last common divisor found whe oe the greatest common measure of all the given numbers.

Exercises for the slate. section 1.

Find the G. C. M. of
(1) 12 and 18.
(2) 21 and 28.
(3) 39 and 52 .
(4) 42 and 77 .
(5) 28 and 126.

1 (7) 1624 and 14500.
13 (8) 714 and 1176.
7 (9) 21 (71 42
14 (10) 11256 and 19899 . prime
11. What is the sreatest common divisor of $\dot{7} 2,120,240$, and 384 ?
12. What is the greatest common Ans. 24. 225 , and 375 ? Example 2.-Find the greatest common Ans. 75. 63 , and 105 .
OPERATION.
$42=2 \times 3 \times 7$
$63=3 \times 3 \times 7$
$105=3 \times 5 \times 7$
3
10

The factors common to the thres given numbers are 3 and 7 . Therefore $3 \times 7=21$, the greatest common measure. Hence, RULE. I. Resolve each number into its prime factors. II. Select those which are common to all the numbers, and their product will be theirgreatest common measure,

SECTION II.

Find the G. C. M. of
(1) 12, 36, 60 and 72. Ans. 12
(2) $18,24,30,36$ and 42 .
(3) $36,126,72,216$.
(4) 32, 80 and 256 .
(8) 468 and $118 \dot{4}$.

LEAS'T COMMON MULTIPLE.

60. A Multiple is a number exactly divisible by a given number; thus 16 is a multiple of 4 .
61. A Common Multiple is a number exactly divisible by two or more given numbers; thus, 16 is a common multiple of 2,4 , and 8 .
62. The Least Common Mulliple is the least number exactly divisible by two or more given numbers; thus 24 is the least common multiple of $2,4,6$, and 8 . It is usually indicated by the initial letters L. C. M.
63. To find the Least Common Multiple of two or more given mumbers.

Example.-Find the L. C. M. of 4, 6, 7 and 9.
opreation.
2) $4,6,7,9$
3) $2,3,7,9$

2, 1, 7, 3

Example. - If these numbers were prime to each other, their product would be their least common multiple. If two of the numbers or three, \&c., which compose this produet have a common measure it must be thrown out or neglected in order to find the least common multiple. These common measures may be thrown out gradually by means of the suceessive divisions as above. 2 is a measure of 4 and 6 , and 3 is a measure of 6 and 9 . These measures should therefore be thrown out of these numbers in order to make them prime numbers. When we divide by 2 which is the smallest measure that divides as many of then as any other divisor would, we obtain for quotients, $2,3,7,9$, the 7 and 9 are written down because they are not divisible by 2 without a remainder. These numbers are not yet prime to each other, and we divide by 3 the smallest mumber that divides as many of them as any other divisor would, and we obtain $2,1,7,3$, the 2 and the 7 are taken down for a like reason as before-that they cannot be divided equally by 3 . The numbers are now prime to each other, and their product with the divisors used $=252$ the least common multiple. From this example we deduce the
RULE. Write the given numbers in a line; divide by the smallest number that will measure as many of them as any othcr divisor would, or that would measure more of them; write the quotients and the numbers not divided
in another line under the former; divide the numbers in tients are prime to manner, and so on till all the quoquotients with the divich other. 'I hen multiply these the least common multiple. used and the product will be

Note.-The work is often shor number that is a measure of shortened by rejecting in any line any in $3,6,7,12$. 3 and 6 may other mumber in the same line, $e,!$, measure of 12 ; the remaining bumberjected since they are each a other, their product would be the lears 7 and 12 being prime to each numbers.
Find the L. C. M. of the following numbers.

1. 7,35 and 98 .
2. 4, 9,6 and $8 . \quad$ Ans. 490.
3. 8, 15,77 and $385 . \quad 72$.
4. 12, 15,42 and $60 . \quad 9240$.
5. 21, 35 and 42.
6. 4, 16, 20, 48, 60 and $72 . \quad 210$.
7. $5,10,15,20,25,30,35$ and 40 . 720.
8. $3,6,9,12,48,21,24$ and $16 . \quad 4200$.
9. $15,12,128,30,16,4,320$ and $96 . \quad 1008$.
10. $2,4,6,8,10,12,14,16,18,20,22,24,26,28,1920$. , Ans. 1441440. purchase an exact manest sum of money for which I could or 4 dollars, or 6 dollars each?

Ans. 60 dollars.

DECIMALS.

64. Decimel Fractions are the decimal divisions of

 a unit; thus a unit is divided into ten equal parts called tenths; each of these tenths is divided into ten other equal parts called humdredths; and so on. Since the denominators of decimal fractions increase and decrease by the seale of 10 , the same as simple numbers, in writing decinals the denominators are generally omitted.65. In simple numbers the unit's place is the starting point of notation and numeration; and so also is it in decimals. 66. The Decimal Point is a period, (.) which must always be placed before the left hand figure of the decimal. Thus,
$\frac{\frac{5}{17}}{\frac{5}{6}}$ is expressed . 6

$$
\frac{567}{1000} \text { " . } 567
$$

67. The names of the different orders of decimals, or places below units, may be easily learned from the following

44 NOTATION AND NUMERATION OF DRCIMALS

Decimal Table.

By examining this table we se that Tenths are expressec by one figure. Hundredths " two figures. Thousandths " three figures.
68. Every cipher on the left laand of a decimal reduces it to one-tenth its previous value. Thus, .5 is 5 tenths, .05 is 5 hundredths, and .005 is 5 thousandths.

Ciphers on the right do not alter the value, for .5, .50, .500 are the same as $\frac{5}{10}, \frac{50}{100}, \frac{500}{100 \pi}$, and these are all equal.

NOTATION AND NUMERATION OF DECIMALS.

69. Rule for decimal notation.
I. Write the decimals as a whole number, placing ciphers where necessary to give each significant figure its
II. Place the decimal point before the first figure.
70. Rule for decimal numeration.

RULE. I. Numerate from the decimal point, to determine the denominator.
II. Numerate towards the decimal point, to determine the numerator.
III. Read the decimal as a whole number, giving it the
uni

Hxercises for the Slate.

2. Write 265 ten thousandths.
3. Write six hundred and thirteen thousandths.
4. Write 365 thousands, and 4 billionths.
5. Write seven hundred thousandthr.
6. Write one hundred, and 2 tenths.
7. Read the following wumbers:

1.265	4.0005	6.0007
3.898	17.2006	1267.9876543
.5967	119.3200	3.0000678
$\boxed{2.7325}$.5000	123.45607890

ADDITION OF DECEMALS.

 benths, and 265 thousandths. operation. Analysis.-As in simple numbers, we write . 3 dredths, see. This brings the decimal points2.715 Whode numbers, and in column, and carry as in whose numbers, and in the result we place a point between the units and tenths, or directly under the decimal point in the numbers alded. Hence the RULE. I. Write the numbers so that the decimal points shall stand directly under each other.
II. Add as in whole numbers, arid place the decimal boint, in the result, dinectly under the points in the num-

Mental Lerercises.

1. Add .6 and $.06 ; 10$ and $.01 ; 3.6$ and $5.607 ; .8$ and .9
2. Add 6 hwadredths and 56 thousandths; . 06 and .056 .
3. Add 20 cents and 156 cents; . 20 and 1.56. $+4$.

Exercises for the Slate.

gection 1 .
(1) $27.655+78.784+98.687+84.769$.
(2) $219.373+376.458+848.847+591.738+456.158$.
(B) $26.3756+74.5673+56.844+74.7355+53.1052$
(4) $254.172+889.627+508.296+756939+531.704$.
(5) $214.785+607.434+669.758+496.376+730.242$.

SECTION II.

1. Add 25.7, 8.389, 23.056.
2. Add 36.258, $2.0675,382.45$.

Ans. 57.145.
3. Ald 39764,58,16.0037 and 40.3046 Ans. 220.875
4. Add 1152.01, $14.11018,152348.21,9.006083$.

Ans. 153523.330263.
5. Add $37.03,0.521, .9,1000,4000.0004$. Ans. 5038.4514 .
6. What is the sum of twenty-six, and twenty-six hundredths; seven tenths; six, and eighty-three thensandths; four, and four thousandths?

Ans. 37.047.
7. How many yards in three pieces of cloth, the first piece containing 18.375 yards, the second piece 41.625 yards, and the third piece 35.5 yards?

Ans. 95.5 yards.

SUBTRACTION OF DECTMALS.

72. Exapmple 1.-From 31.63 take 27.85.

OPERATION.
31.63
27.85
3.78

Ex. 2.-From
3.8674 take 1.36 .
operation.
3.8674
1.36
2.5074

Ex. 3.-From
15.36 take 8.1234

OPERATION.
15.36
8.1234

Analysis.-In each of these three examples, we write the subtrahend under the minuend, placing units under units, tentlis under tenths, \&c. Commeneing at the right hand we subtract as in whole numbers, and in the remainders we place the decimal points directly under those in the numbers above. In the second example the number of decimal places in the mimuend is greater than the number in the subtrahend, and in the third example less. In both cases, we reduce both minuend and subtrahend to the same name, or number of decimal places, by annexing ciphers; or we suppose thein to be annexed before performing the subtraction.Hence,
7.2366

RULE. Place the numbers as in addition, subtract as in simple numbers, and insert the decimal point directif under the points in the given numbers.
7.145 20.7755 03.8523 .
. 330263. 38.4514 . six hunsandths; . 37.047. rst piece rds, and 5 yards.
se three end uns under Comsubtract remaindirectly ve. In of decigreater rahend, In both nd subnumber ciphers; mexed ction.

Mental Exercises.

1. From five tenths take forty-nine liundredths.
2. From . 63 take $.496 ; 2.19$ take $.63 ; .5$ take .005 .
3. From 16 take $.006 ; 12.34$ take $2.345 ; 100$ take .001 .
4. From one take two hundredtlis.
5. From 3.10 dollars take 75 cents; 3.10 take $\mathbf{7 5}$.

Exercises for the Slate.

SECTION I.

1. From 20.34 take 13.56
2. From 40.68 "، 27.12
3. From 16.272 " 10.848
4. From 6.5088 " $\mathbf{4 . 3 3 9 2}$
5. From 52.0704 take 34.7136
6. From 430.2816 " 286.8544
7. From 2603.52 " $\quad 1735.68$
8. From 983.9607 " 655.9738

SECTION II.
Find the value of -
(1) 111.1116-22.22222. Aps. 88.88938
(2) $279.00906-117.916$.
(3) $8.135-2.6875$.
(4) 627.4-91.7469
161.09306
5.4475
535.4531
(5) 21.004-. 75 Ans. 20.254
535.6531
(7) $2-.298$
713.084

1702
399.999

multiplication of decimals.

78. Example.-What is the product of 25 multiplied
opration.
.25 Analysis.-We perform the multiplication
. $5 \quad$ the same way as in whole numbers. Since the multiplicand is 25 hundredths, and the nul.125 tiplier 5 tenths, and hundredths multiplied by tenths give thousandths, and thousandths being ${ }^{\circ}$ places of decimats experd by three figures, we must have three contains as many decimal plact. Hence we see the product multiplicald any decimal places as are contained in both multiplicand and multiplier. Hence,

RUT,E. Multiply as in whole numbers, and from the right hand of the product point off as many figures for de cunals as there are decimal places in both factors.
Note 1.-If there are not as many figures in the product as there are decimals in both factors, supply the deficiency by prefixing ciphers.
2.-To multiply by $10,100,1000$, 太e, remove the decimal point as manyr blaces to tine right as there are ciphers on the right of the mul-
tiplier.

Mentr! Exercise s.

1. If n man can reap .96 of an acre in a day, how muxh can he reap in .5 of a day?
2. If 1 pound of coffee cost .3 of a dollar, what will 4 ponads cost?
3. Add $3.6+.26+.0 c 6+3.006$, and multiply the pro. duct by .8
4. From 3.606 take 1.4, and multiply the result by .09
5. If 1 ton of hay cost 8.75 dollas, what will .25 adi a tom cost?

Exercises Lor the Slate.

SECTION I.

Multiply and add together the products of -
(1) 1234.56789 by 78.91 and 91.09
(2) 345.789612 by 35.79 and 64.21
(6) by 550.8 aud 449.8
(33) 406.783089 by 60.09 antl 39.91
(4) 2492.67339 by 42.82 and 57.18
(5) 5063.48001 by .99 and 99.01
(7) by 900.9 and 99.1
(8) by 428.6 and 5714
(9) by 624.8 and 375.2
(10) loy 99.73 and .27

SECTION II.
Fire the product of-
(1) $.15 \times .241$

Ans. .0000norta
(2) $23 \times .009$
(3) 21.716×2.06
(4) $11.111 \times 9: 316$
.0䚗07
44.73496
307.9055876
.1 .00000336
(8) $10004 \times .004$
.0320016
(9) $178.0006 \times 1.00 .001$
2112.61624
7800.778006
(5) $.2 \times .7 \times .06 \times .004 \times .1 .00000336 \mid(10) 43.1 \times .6 \times 100 \times .01 \quad 25.86$
11. Multiply four lundred, and four thousandths by thirty and three handredths.
12. If a cord of wood be worth 2.37 bushels of wheat, dow many bushels of wheat must be given for 9.58 cords of wood?

DIVISION OF DECMMALS.

24. Example.-What is the quotient of .156 divided by 6
operation. Analysis.- We perform the division as in .6). 156 whole numbers. Since the dividend, which is the product of the divisor and quotient, contains three places, and the divisor contains one place, the quotient must contain two places of
Ans. 26 aiscimals for, $2+1=\overline{3}$, or $3-1=2$, (78.) Hence,

RULE. Divide as in whole numbers, and from the right hand of the quotient point off as many places for decimals, divisor.

Note 1.-The dividend must always contain at least as many places of decimals as the divisor, before commencing the division.
2.-If the number of figures in the quotient be less than the excess of the decimal places in the dividend over those of the divisor, the deficiency must be supplied by pefixing ciphers.
many places to the left as there are cipherso the decimal point as divisor.

Mental Exercises.

1. How many bushels of oats at .2 of a dollar a bashel, can be bought for 84 of a dollar?
2. If 15 pounds of coffee cost 4.50 dollars, what cost 1 pound?
3. If a team can plough .75 of an acre in .5 of a day, how much will it plough in one day?
4. How many boxes will be required to pack 49.5 pounds of butter, if you put 5.5 pounds in each?
). If a man can walk 16.5 miles in a day, how long will it take him to walk 36.30 miles?

Exercises for the Slate.

Find the value of -
(1) $34481161269 \div .3349$
(2) $5096.49732 \div 3.726$
(3) $50964.9732 \div 1367.82$
(4) $2.1805605 \div 1233$
(5) $.007513866909 \div .001467$
(6) $75.13866909 \div 5.121927$

SECTION I.

(8) $218.05505 \div 17685$
(8) $7513.866909 \div 146.7$
(9) $75138.66909 \div 5.121927$
(10) $2568.047328 \div 55.44$
(11) $.000292572 \div .001 \div .004 \div .3$
(12) $29.2572 \div .36$

SECTION II.

What is the quotient of -

11. If 25 men build 154.125 rods of fence in a day, hov many does each man build?
12. How many coats can be made Ans. 6.165 rods. cloth, allowing 2.7 yards for cach coat? from 16.2 yards of cloth, allowing 2.7 yards for cach cont? Ans. 6 coats.

REDUCTION.

65. A Concrete Number is a number of but one name, or denomination; thus, 5 pounds, 27 bushels, 72 dollars, are concrete numbers.
66. A Comporind Number is a concrete number of two or more denominations; thus, 5 dollars 23 eents, 14 bushels 3 peeks, 9 days 7 hours, are compound numbers.

7\%. Reduction is the process of changing a number from one denomination to another without altering its value. Rednction is of two kinds, Descending and Ascending.
78. Reduction Descending is changing a number of one denomination to another denomination of less unit value $;$ thus 1 dollar $=10$ dimes $=100$ cents $=1000$ mills.
89. Rednction Ascending is changing a number of one denomination to another denomination of greater unit value; thus 1000 mills $=100$ cents $=10$ dimes $=:$ dollar.

CURlency.

80. Currency is coin, bank bills, \&c., in circulation as a medium of trade.

ENGLISH OR STERLING MONEY.

$$
\begin{array}{lll}
2 \text { Farthings make } 1 \text { Half-penny, } & \text { marked } & \frac{1}{2} / . \\
2 \text { Half-pence } & \text { 6 } & 1 \text { Penny, } \\
12 \text { Pence } & \text { " } & 1 \text { Shilling, } \\
20 \text { Shillings } & \text { " } & 1 \text { Pound, } \\
\text { 2 } & 6 & £ .
\end{array}
$$

Note. - A Crown is a silver coin equal to 5 shillings. A Sovereign is a gold coin equal to 20 shillings, and a Guinea is a gold coin equal to 21 shillings.
CASE I.
81. To perform Rcduction descending. Example.-Reduce $£ 2316 \mathrm{~s} .7 \frac{1}{4} d$. to farthings.
oftration.
£2:3 $16 \quad 71$ 20

476
12
5719
4
22877

Analysis.-Since in $£ 1$ there are 20s., in $£ 23$ there are $20 \mathrm{~s} . \times 23=460 \mathrm{~s}$., and 16 s . in the given number added, nake 476 s. in $\mathfrak{£ 2 3} 16 \mathrm{~s}$. Since in 1 s . there are 12 d ., in 476 s . there are $12 \mathrm{~d} . \times 476=5712 \mathrm{~d}$, and 7 l . in the given number added make 5719 d . in $£ 23$ 16s. 7d. Since there are 4 farthings in 1d., in 5719 d . there are 4 far. $\times 5719=22876$ firr., and 1 far in the given nmmber added makes 22877 far. in £23 16s. $7 \frac{1}{4} \mathrm{~d}$.

Nore.-When two numbers are to be multiplied together, it is a matter of indifference, so far as the product is concerned, which of them is taken as the multiplicand or multiplier. For convenience we multiply. $£ 23$ by 20 and call the product shillings, and so with the
pence, \&cc.

Hence the following general
RULE. I. Multiply the highest denomination of the given number by that number in the table which will reauce it to he next lower denomination, and add to the tion.
II. Proceed in the same manner with the results obtained in each lower denomination, unntil the reduction is brought
to the denomination required.

CASE II.

82. To per:form Reduction ascending.

Example.-Reduce 228:- farthings to pounds.

OPERATION.

4) 22877
12)5719d. +1 far.
$2 \mid 0) 47 \mid 6 \mathrm{~s} .+7 \mathrm{~d}$.

$$
£ 23 \text { i } 3 \mathrm{~s} .
$$

Ans. £23 16s. $7 \frac{1}{4} \mathrm{~d}$.

Analysis.- We first divide the 22877 far. by 4 , because there are onefourth as many pence as farthings, and we find that 22877 fir. $=5719 \mathrm{~d} .+1$ far. We next divide 5719 d . by 12 , because there are one-twelfth as many shillings as pence, and we find that $5719 \mathrm{~d} .=476 \mathrm{~s} .+7 \mathrm{~d}$. Lastly, we divide the 476 s . by 20 , becanse there are one-twentieth as many pounds as shillings, and we find that $476 \mathrm{~s} .=£ 23+16 \mathrm{~s}$. The last quotient with the several remainders annexed in the order of the succeeding denominations gives the answer $£ 2316 \mathrm{~s}$. $7 \frac{1}{4} \mathrm{~d}$. Hence the following general
RULW. I. Divide the given number by that number in
thit table which will reduce it to the next higher denom.
ination.
II. Divide the quatient by the next higher number in tho tablo; and so proceed to the highest denomination Fequired. The last quotient, with the several remainders annexed in a reversed order, will be the answer.

Mental Exercises.

1. How many farthings are there in 4d.? in 9r. ? in 11tad.? in 15L ?
2. How many pence are there in 4 s .? in 12 s .? in 15 s .? in 12s. 6d. ?
3. How many pounds, \&e., are there in 27s.? in 28s.? in 156s.?
4. How many shillings ane there in $\mathfrak{L 6}$? in $\mathfrak{L} 57 \mathrm{~s}$.? in £6 17s.? in £12 5 s .?
5. Five yards of cloth cost $£ 12 \mathrm{~s}$. 6d.; what was the cost of one yard, in pence?
6. Reduce 960 farthings to pounds. In 690 s. how many pounds?
7. What cost 85 pairs of gloves at 7 pence per pair?

8. In $£ 71$ 13s. $6 \frac{1}{2} d$. how nizany farthings? Ans. 68810. 20. In $£ 29518$ s. $3 \frac{3}{3}$ d. bow many farthings. Ans. 284079.
9. In 95 guineas, $17 \mathrm{~s} .9 \frac{3}{4}$ d., how many farthings?
10. Reduce $£ 15$ i5s. 6 d . to sixpences.
11. Reduce $£ 1514 \mathrm{~s}$. 3d. to three pences.

Ans. 96615.
Ans. 631.
Ans 1259.

SECTION IH. Reduce to Pounds.

(1) 17448 far.	(6) 34904 far.	(11) 21816	harf pence.
(2) 43632 "	(7) 785366	(12) 21600	(1)
(3) 138657	(8) $198786{ }^{\prime \prime}$	(18) 99393	"
(4) 156113	(9) 302547 "	(14) 224726	pence
(5) 182889	(1シ) 103753 "	(15) 270060	\%

No (\$) of and co would cents.
2. ten, th dimes.
85.
make
85 . amnex

To
T's
To
milits to
91. ? in
in 15s.? in 28s.?

5 7s.? in sthe cost ow many pair?
s. \mathbf{D}.

0	$8 \frac{1}{4}$
6	5
6	$1 \frac{1}{2}$
1	$6 \frac{1}{4}$
4	$2 \frac{1}{4}$
5	$0 \frac{8}{4}$

s. 68810. - 284073. ?
s. 96615. ns. 631. ns 1259.

Reduce
(16) 197424 far. to shillings. \mid (20) 6480 far. to crowns. (17) 171504 half pence
(18) 756 shillings to grineas.
(19) 4536 three pences
24. How many pounds, shillings, \&e., are there in 3678.41 fartoings?
25. In 1059120 pence low many sove Ans. £383 3s. $4 \frac{1}{4} d$.
26. A farmer, during the year, sold 1367 ? Ans. 4413. at 3 pence per quart, what did it all amount quarts of milk Ans. $£ 17$ 1s. 9 d.

EDUCTION OF DECIMAL CURRENCY.

83. A Decimal Currency is a currency whose denominations increase in a ten-fold ratio, and each denomination is one-tenth the value of the next higher.

The curreney of the Doninion of Canada, the United States, France, Barbadoes and some others of the Windward Islunds, and Demerara, is decimal.
84.

CANADA CURRENCY.

TABLe.
10 Mills (m) make 1 Cent, marked Ct. or C.
10 Cents $\begin{array}{lllll}10 \text { Dimes } & \text { " } & 1 & 1 \text { Dime, } & \text { Dollar, } \\ 10 & \text { d. }\end{array}$
Note 1.-It is usual in writing dollars and cents, to place the sign (\$) of dollars in front of the sum, and a point (.) between the dollars and cents. Thus, fifty.six dollars, four dimes, six cents, and five nimills would be written $\$ 5 \dot{6} .465$, or $\$ 0 \mathbf{6} .46 \frac{1}{2}$, and read 56 dollars and $46 \frac{1}{2}, ~$
cents cents.
2. If the sum consists of dollars, and a number of cents less than ten, there must be a cipher between the dollars and cents in place or dimes. Thus, 5 dollars and 4 cents must be written $\$ 5.04$.
85. By examining the above table we see that 10 mills make 1 eent, and 100 cents, or 1000 mills one dollar; hence
85. To change dollars to cents, multiply by 100 ; that is, amex two ciphers.

To change dollars to mills, annex three ciphers.
To chanye cents to mills, annex one cipher.
To change dollars and cents to cents, or dollars, cents and milits to mills, remove the decinal point and the sign \$.

		Exereises f	the	Slate.
1.	Change	\$196 to cents.	Ans. 1	19600.
2.	6	\$ 1325 to mills.	"	1325000 .
3.	6	\$1.46 to cents.	"	146.
4.	6	56 cents to mills.	"	560.
5.	6	\$19.425 to mills.	"	19425.

87. To change cents to dollars, divide by 100 ; that is, point off two figures from the right.

To change mills to dollars, point off three figures.
To chanye mills to cents, point eff one figure.

Exercises for the Slate.

1. Change 1967 cents to dollars. " 1432 mills to "
2. In 34567 mills how many dollars?

Ans. $\$ 19.67$. Ans. \$1.432. Ans. 34.567. Ans. \$3.191
88. As the above currency is on the same principle as decimal notation, any operation, as addition, subtraction, multiplication, \&c., may be performed upon it in the same manner as upon decimals.
Nots.-The exercises in Section I of Addition and of Subtraction of Decimals, should be reviewed as exercises in Canadian currency.
89. Accounts are kept in sterling pounds, shillings and pence in Great Britain, Newfoundland, Australia and New Zealand.
90. To reduce sterling pounds, shillings, pence, and farthings to Canuda currency,

TABLE.
1 Farthing, marked $\frac{1}{4}=\frac{78}{147} \mathrm{C}$.
4 Farthings make 1 Penny, " $\quad d=2 \frac{1}{36} "$ 12 Pence " 1 Shilling, 20 Shillings " 1 Pound, " $\quad . \dot{\text {. }}=\$ 4 . \frac{1}{3} 6 \frac{2}{3}$
Example.-Reduce $£ 510$ s. $1 \frac{1}{4}$ d. to Canada currency
operation. £5 10s $1 \frac{1}{4}$ d $=5285$ far.

73
15855
36995
144)385805(\$26.79

Analysis.-Since pounds shillings and pence are composed of farthings, multiplying by 20,12 and 4 , reduces the whole amount to farthings $=5285$ farthings. And since one farthing is equal to ${ }^{733}$ of a Canadian cent, 5285 farthings are equal to $5285 \times \frac{7^{3}}{4} \frac{1}{4}$, (p. 38 ex. 1), or $\$ 26.79$. Hence,

RULE. Reduce pounds, shillings and pence sterling to farthings, and multiply by 73 and divide by 144 . The quotient will be the equivalent in Canada currency.

Note 1.-In a final remainder reckon over $\frac{1}{2}$ as a cent, less than $\frac{1}{2}$ reject.

Nore 2.-When there are only pounds in the exercise multiply by 486 2-3, the number of Cimadian cents in a pound sterling. See Appendix II.

Mental Exereises.

1. How many Canadian cents are there in a three-penny piece? in a four-penny piece? in a sixpence? in a shilling?
2. How many Canadian dollars and cents are there in 2 s , or a florin? in 5 florins? in 5 s, or a crown? in 10 crowns? in 3 florins +2 crowns?
3. How many Canadian dollars and cents are there in 10 s , or a half-sovereign? in $\mathfrak{£} 1$, or a sovereign? in 10 sovereigns? in $£ 11$ s, or a guinea? in 2 guineas +3 half-sovereigns?

Exereises for the Slate.

Reduce the following to Canadian currency :-

91. To reduce Canadian currency to pounds, \&.c., Stg.

RULE. Reduce the dollars and cents to farthings by multiplying by 144 and dividing by 73 . Reduce the farthings to pounds, shillings and pence. See Appendix II,

Example.-Reduce $\$ 110.12 \frac{1}{2}$ to pounds, \&e., sigy
OPERATION.
$\$ 110.12 \frac{1}{2} \times 144=1585800$, and $1585800 \div 73=21723$ farthings = £22 12s. $6 \frac{3}{4} \mathrm{~d}$.
Note.-For exercises under this rule the pupil may prove those of the former one.

EXAMPLES.

1. $\ln 18$ po. 1 ft .6 in. how many inches?

ODERATION.
18 po. 0 yd .1 ft .6 in .
$\frac{5 \frac{1}{2}}{90}$
$\frac{9}{99}=y d s . ~ i n ~$
3
$298=\mathrm{ft}$. in 18 po. 1 ft . 12
$3582=$ in. in 18 po. 1 ft .6 in.

Mental Exercises.

2. Reduce 5373 inches to poles, \&c.

OPERATION.
12)5373
3) 447 ft .9 inches.
$\left.5 \frac{1}{2}\right) \overline{149} \mathrm{yds}$.
$\overline{2} \overline{11} \widetilde{298}$

27 po. $\frac{1}{2}$ yd.; and $\frac{1}{2}$ yd.
$=1 \mathrm{ft} .6 \mathrm{in}$.
+9 in .
27 po. 0 yd .2 ft .3 in

No no pr

1. to in

27
4
5. 4 dind yards, feet and inches?
5. At 9 dimes a foot, how many dollars will 4 yds. 2 ft . of iron railing cost?

Exercises for the Slate.

(1) Reduce 71280 in. to fur.
(6) Reduce 36 po. 3 ft . to inclues.
(2) " 3564 in. to po.
(3) " 63360 yds. to miles.
(4) " 570240 in. to miles.
(5) " 190080 ft to miles.
(7) " 45 m .8 po. 1 yd . to yds.
(8) " 27 m .1 po. $3 \frac{1}{2} \mathrm{yd}$. to feet.
(10) " 72 m .13 po. $\frac{1}{2}$ yd. to yds .
(10) " 74 m .5 fur. 1 po. $\frac{1}{2}$ yd. to $y d s$
11. In 9768042 inches how many miles?

Ans. 154 m .1 fur. 13 po. 3 yds.
12. In 897682 yards how many miles?

Ans. 510 m .0 fur. 14 po. 5 yds.

1. F
2. I
3. R
4. I

0.

144 S
9 S
13. Reduce 103 m .5 fur. 32 po. 5 yds. to feet.
93.
cloth measure-table.
Ans. 547683.
$2 \frac{1}{4}$ Inches make 1 Nail.
4 Nails " 1 Quarter, qr. 4 Quarters " 1 Yard, yd.

SUE.

73 inches to
and $\frac{1}{2} y d$.
in.
in.
. 2 ft .3 in
in 10 ft .?
gds.? in
in 6 m .3
les?
ls. 2 ft . of
shes.
to ads.
d. to feet.
l. to ids.
yd. to yd
po. 3 yds .
o. 5 yds .
. 547683.

REDUCTION OF LiNEAR OR LONG MEASURE. 57
Note.-English, French and Flemish Ells are omitted, as being of no practical value.

EXAMPLES.

1. Reduce 27 yards 3 qr. to inches

OPERATION. $27 \mathrm{yds}$.3 qr.
$111=$ prs. in $27 \mathrm{yds}$.
$4{ }_{2 \frac{1}{4}^{\circ}}=$ nils. in $27 \mathrm{yds} 3 qr.$.
888
111
$999=$ in. in $27 \mathrm{yds} 3 qr.$.
2. Reduce 153 nails to gds, \&c.

OPERATION.
4) 153
4) 38 frs. 1 nl .

9 gds. 2 prs. 1 nl.

Mental Exercises.

1. How many inches are there in 3 ns.? in 2 qr. 1 nl. ? in 2 yrs. 1 nl . ? in 5 qrs ?
2. How many quarters are there in 5 gds.? in 3 gds. 3 que.? in 6 yes. 2 que.?
3. How many yards are there in 5 prs.? in 17 nls ? in
123 nus.? in 196 prs.?

Exercises for the Slate.

1. Reduce 648 inches to yards.
2. Reduce 2268 inches to quarters.
3. Reduce 127 gds. 3 prs. 2 nils. to inches. Ans. $4603 \frac{1}{2}$.
4. In 39678 inches how many yards? Ans. 1102 gds. 2 ils. $1 \frac{1}{2}$ in.
5. REDUCTION OF SQUARE MEASURE.

TABLE.
144 S (square inches make 1 Square foot, marked $s q \cdot f t$.
9 Square feet " 1 Square yard, " sq. yd.
$30 \frac{1}{4}$ Square yards
40 Square poles
" 1 Square pole,
"6 1 Square rood,
"6 1 Acre,
" 1 Square mile,
sq. po.
4 Rooms
640 Ares

EXAMPLES.

1. Reduce 135 ac. 3 ro. 15 po. to poles.
operation.
135 ac. 3 ro. 15 po.
4
543 ro. in 135 ac. 3 ro. 40

21735 po. in 135 ac. 3 ro. 15 po
2. Reduce 261414 yards to acres. OPERATION. $\left.30 \frac{1}{4}\right)$
4

4) 216 ro. 1 po. 54 ac. 0 ro. 1 po. $23 \frac{3}{4}$

Mental Exercises.

1. How many square feet are there in 6 square yards? in 19 yds. 3 feet? in 15 yds. $₹ \mathrm{ft}$.?
2. Low manv acres are aiere in 880 poles? in 160 poles? in 320 poles? in 1240 poles?
3. At $\$ 4$ per acre what will 920 poles of land cost?
4. Find the cost of 12 yards 3 feet at 7 dimes per foot.

Exercises for the Slate.

(1) Reduce 126 ac. 4 po. 5 yds. to yds. |(5) Reduce 1411380 in . to poles. (2) " 162 ac .5 po. 10 y yds. to yds
(3) " 9 po. 9 in. to inches.
(4) " 90 ac. 18 yds. to yards.
(6) " 304983 yds.to acres.

9 In 36 ac. 3 ro. 28 po. 5 yds., how many feet?
Ans. 1608498.
10. Reduce 29 ac. 3 ro. 38 po. $15 \frac{1}{2}$ yds. 8 feet to inches.

Ans. 188122032.
11. In $646376 \frac{1}{2}$ feet how many acres?

Ans. 14 ac. 3 ro. 14 po. 6 yds. 1 foot.

reduction of cubic or solid measurpe.

95.

solid measure-table.
1728 Cubic inches
make 1 Cubic foot, marked cu. ft.
27 Cubie feet
128 Cubic feet
" 1 Cubic yar!, " cu. yul. " 1 Cord of fire wood.
po.
e yards?
n 160 poles?
cost?
s per foot.

80 in. to poles. 3 yds.to acres.童yds. to yds. 4 yds.to acres.
as. 1608498. to inches. 188122032.
yds. 1 foot.

UR̨E.
arked cu.ft. " cu. yd. wool.

Note.-The ton is omitted from the table as being of little practical value in at clementary treatise. In buying and selling, the cord of containing a solid nass equ 8 ft . long. 4 ft . Wide and 4 ft .4 in . high, as John, usage allows 5 ft. in to 128 cubic feet. In the city of Saint ight instead of 4 ft .4 in .

1. In $125 \mathrm{cu} . \mathrm{ft} .840 \mathrm{cu}$. in. how many en. in. ?
2. Reduce 5224 cubic feet to cords. Ans. 216840.
3. In 216840 cubic inches how many cubic fees. $40 \frac{13}{16}$.
4. In Ans. 125 cu. ft., 840 cu, ini:
5. In 94 cords 6 cubic feet how many cubic feet?
6. Ans. 12038 cu. ft. 4 Gills (g) make 1 Pint, marked pt.
2 Pints " 1 Quart, " qt.
4 Quarts " 1 Gallon, " gal.
2 Gallons "، 1 Peck, " pal. 8 Bushels " 1 Bushel, " Uush.
Note. - 36 busheis are disuse.

EXAMPLES.

1. Reduce 27 bus. 1 pk. 2. Reduce 594 gills to gal. $_{\text {. }}$ 1 gal. 1 qt .1 pint to pints. oberation. 27 bus. 1 pk. 1 gal. 1 qt. 1 pt.

109 pks. 2
$\frac{219}{} \frac{4}{877}$ gals.
1755 pints.
4) 594
lons.
OPERATIOIT.
2) 148 pts. 2 gills.
4) 74 qts. 0 pts .

18 gals. 2 qts. 0 pts. 2 gills.

Nore. - The above Measure of Capacity is now nsed both for Likpuids and for Dry Goods.

Mental Excreises.

in 6 (fts. 3 pots. 1 gill ? are there in 4 pts. ? in 3 (is. 3 pts.?
2. How many quarts are there in 6 gals.? in 3 gals. 2 qts. ? in $2 \mathrm{pks} .{ }^{-1} \mathrm{qt}$. ?
3. How many gallons are there in 8 qts.? in 8 pts.? in 24 pts.? in 38 qts. ?
4. What will be the cost of 7 gals. 3 qts of burning fluid at 15 cents a quart?

Exercises for the Slate.

(1) Reduce 19 gals. 1 pt. to gills.
(2) " 11 pks. 1 gal. 1 qt. 3 gl. to gills.
(3) " 3 bus. 1 gal. 1 gill to gills.
(4) " 2 bus. 1 pk. 3 qt .3 gils. to vills.
9. In 4983265 gills how many quarts ?

Ans, 622908 qts. 1 gill.
10. Reduce 126 bus. 3 pks .1 pt . to pints.

Ans. 8113.
11. Reduce 1467896 quarts to chaldrons ?

Ans. 1274 ch. 7 bus. 3 pks.
12. An innkeeper bought 50 bushels of oats at 65 cents a bushel, and retailed them at 25 cents a peck; how much did he make on the lot?
97. TROY WEIGHT-TABLE.

- 24 Grains make 1 Pennyweight, 1 dwt. 20 Pennyweights 12 Ounces
" 1 Ounce,
1 oz .
" 1 Pound,
1 lb.
This weight is used in weighing the precious metals and stones.

EXAMPLES.
$\begin{array}{ll}\text { 1. Reduce } 31 \mathrm{lbs}, 10 \mathrm{oz} .8 & \text { 2. Reduce } 28197 \mathrm{dwt} \text {. to }\end{array}$ dwts. 12 grs. to grains.
operation.
31 libs. 10 oz .8 dwt. 12 grs . 12

382 oz .
20
7648 dwt.
24
30604
15296
183564 grains.

98.

JRE.
als. 2 qts.? 8 pts.? in ning fluid
3. 1 gt to qts . 18 to pks. lis to bus. s to bush.
qts. 1 gill Ans. 8113,
bus. 3 pks. 65 cents a much did ns. \$17.50.

wht.

z. netals and

7 dwt. to

REDUCTION OF WEIGIITG.

Mental Exercises.

1. How many grains are there in 5 dwts.? in 6 dwts. 7 grains? in 15 dwts. 3 grs.?
2. How many ounces are there in 120 dwt ? in 200 dwt ? in 240 diwts. ?
3. What will a gold chain weighing 9 dwt. 15 grs. cost at 3 cents a grain?

4, What is the value of a silver cup, weighing 5 oz .4 dwts. at 15 cents per pennyweight?
5. In 5 ingots of gold, each weighing 9 oz .5 dwt . how many divts.?

Exercises for the Slate.

(1) Reduce 9 oz. 12 dwt .18 grs. to grs. ${ }^{\text {(2) }}$ (5) Reduce 207396 grs . to lbs.
(3) " 1 lib. 1 oz. 19 dwts. to grs. ${ }^{(1)}$ (6) $\begin{array}{lll}\text { (6) } & 4338 \text { dwts. to llss. }\end{array}$
(4) " $20 \mathrm{lbs}, 10$ oz. 13 d c wts. to dwts. $\left\lvert\, \begin{array}{lll}\text { (8) } & \text { (7) } & 155520 \text { grs. to los. }\end{array}\right.$
(8) " 17280 dwts. to los.
9. Reduce 37 lbs .11 oz .19 dwts. to dwts.
10. Reduce 87 lbs 19 grs to grains.

Ans. 9119 dwts.
Ans. 501139.
11. Rednce 578096 grains to pounds.

Ans. 100 lbs. 4 oz. 7 dwts. 8 grs.
12. A miner had 14 lbs .10 oz .18 dwt. of gold dust : how much was it worth at 75 cents a dwt.? Ans. $\$ 2683.50$.

98.

APOThecaries' weight-table.

school text.
09.

16 Drams
16 Ounces
25 Pounds
4 Quarters
20 Hundredveight
avoirdupois weight-table.
make 1 Ounce, marked 1 oz.
" 1 Pound, " 1 lb .
" 1 Quarter, " 1 qr.
"، 1 Hundredweight 1 cwet.

$$
\text { " } 1 \text { Ton, "، } 1 \text { ton. }
$$

Note 1.-In Great Britain 28 lbs. make one quarter; a hundred Weicht, therefore, is, in Great Britain, 112 lbs. Throughout this book is called "long weight."
2. The pound avoirdurois is equal to 7000 grains Troy.

EXAMPLES.

1. Reduce 81 cwt. 2 qis. $25 \mid$ 2. Reduce 72 ewt. 2 qrs. lbs., lung weight, to pounds. OPERATION. 81 cwt. 2 qris. 25 lbs. 4 326 qrs. 28

2633
652
9153 lbs.

$$
o r,
$$

81 cwt. 2 qris. 25 lbs.
$8100=81 \times 100$
$972=81 \times 12$
$56=$ pounds in 2 qrs.
$\begin{aligned} & 25=\quad " \\ & 9153=\quad \text { given. } \\ & \text { required. }\end{aligned}$

22 lbs., to pounds.
OPERATION.
72 cwt. 2 qr. 22 lbs.
4
290 qrs.
25
147%
580
7272 lbs.
Ur,

72 cwt. 2 qrs. 22 liss | $\overline{7200}=$ pounds in $\overline{7} 2$ ewt |
| :---: |
| $50=$ |
| $22=$ |
| $7272=$ |

Mesial Exercises.

1. How many ounces are therc in 3 lbs. ? in 5 lbs. 10 oz . ? 6 lbs. 13 oz . ?
2. In 3 cwt. 5 lbs. how many pounds? How many ounces?
3. What will 1 ton 5 cwt. of hay cost, if 5 cwt . cost $\$ 3$?
4. What will 2 cwt. 12 lbs. of beef cost at 6 cents a pound?
5. If 8 ounces of tea cost 40 cents, what is the cost of 2 lbs.?

- Exercises for the Slate.

Note.- -In the following exercises where the answers are not given let the work be tested by reversing the process.

1. Reduce 8 cwt. 2 qrs. 19 lbs. 4 oz. 12 drs., to drs.
2. " 1 ton 2 cwt. 3 qrs. 7 lbs. 9 oz. 13 drs., to drs.
3. " 22 tons 13 cwt .1 qr .5 lbs. 9 oz ., to drs.
4. " 25 tons 2 cwt. 1 qr .13 oz ., to oz.
5. " 42 tons 14 cwt. 2 qrs. 3 lbs. 5 oz ., to ounces.
6. in 5 2. 3 day 3. in 63 4. 10th in
cwt. 2 qrs.

N.

lbs.

lhs

in $\overline{7} 2 \mathrm{cwt}$. " 2 qrs. given. required.
lbs. 10 oz . ? any ounces? wt. cost \$3? t 6 cents a the cost of are not given
to drs. lrs., to drs. 0 drs.
o ounces.
6. " 7 cwt. 1 qr. 4 lbs. 7 oz .5 drs., to drs.
7. " " 6939 drams to pounds.
8. " 9.1032228 drams to cwt., long weight.
9. " 3 qrs. 15 lbs. 15 oz .15 drs., long weight, to drs.
10. " 94 tons 19 cwt. 2 Ans. 25599 drs. weight, to drams. 2 qrs. 24 lbs. 10 oz. 15 drs., long 11. ، 493865 lbs to tons. Ans. 54468783. 12. " 204250 oz . to cwt. Ans. 220 tons 9 c. 2 qr. 1 lb . Ans. 127 cwt. 2 qr. 15 lb .10 oz.

100.

REDUCTION OF TIME.

TABLE.
1 Second is written thus: $1^{\prime \prime}$
60 Seconds make 1 Minute, marked 1^{\prime}.
24 Hours
7 Days
28 Days
$28,29,30$, or 31 Days
12 Calendar months
365 Days
366 Days

"	1 Hour,	"	1 hr.
"	1 Day,	"	1 day.
.6	1	Week,	"
1	wh.		

" 1 Lunar month.
" 1 Calendar month.
" 1 Year.
" 1 Common year.
" 1 Leap year.
Note.-Seven of the months contain 31 days. Four contain 30 days, viz., September, April, June and November. Eebruary has 28
days, but in leap-year it has 29 days.

Mental Exercises.

1. How many seconds are there in 3 hrs ? in 4 hrs 20 ? in 5 hrs. $9^{\prime \prime}$?
2. How many hours are there in 4 days 5 hrs . in 2 wks ,
3 days 12 hrs.?
3. How many weeks are there in 72 days? in 85 days? in 63 days?
4. How many deys are there from April 15th to August

Exercises for the Slate.

REDUCE

(1) 18 days 27 min .18 sec to sec.
(2) 27 days 36 min .27 sec . to szc .
(3) 720 d .11 h .37 min .30 sec to sec.
(4) 36 yrs. 9 hrs .36 min . to min .
(5) 9 yrs. 2 hrs .45 min .9 sec . to sec.
(6) 365 dys. 5 hrs. 48 min .45 sec. tosec.
(7) 8 yrs .5 days 45 min . to seconds.
(8) $283824(\mathrm{~m}) \mathrm{sec}$. to years.
(9) 9460800 min . to years.
(10) 103680 min . to days.
11. Reduce 48 days 17 sec . to seconds. Ans. 4147217 sec .
12. Reduce 53 days 23 hrs. 26 min . to minutes.

Ans. 77726 min.
13. How many times does a clock pendulum, beating seconds, vibrate in one day? Ans. 86400.
14. How much time will a person gain in 30 years, by rising, each day, 42 minutes earlier than his usual time?

Ans. 319 days 9 hours.

MISCELLANEOUS TABLE.

12 individual things	ake	1 dozen.
12 dozen	"	1 gross.
12 gross	"	1 great gross.
20 individual things	"	1 score.
24 sheets of paper	"	1 quire.
20 quires	"	1 ream.
112 pounds	"	1 quintal.
200 "	"	1 barrel of pork or beef.
6	"	1 barrel of tlour.
14	"	1 stone.

Exercises for the Slate.

1. In 365 gross 11 doz. 9 units, how mary individual things?

Ans. 52701.
2. A person bought 219 cwt. 2 qrs. 2 lbs., short weight, ot codfish at $\$ 5$ a quintal, what did the whole amount to?

Ans. \$980.00.
3. What will 6 tons 6 cwt., long weight, of flour cost at \$7.75 a barrel?

Ans. \$558.00.
4. What will 15 reams of paper cost at one cent per sheet? Ans. $\$ 72.00$
5. It is said Mr. Jos. Gillott, of Birmingham, manufactures annually 150 millions of different kinds of pens; how many boxes will it require to hold them, each box holding one gross?

COMPOUND ADDITION.

101. Componnd Adelition is the method of collecting several numbers of the sume kind, but containing different denominations of that kind into one number.

102. To Add Compound Number;

Fxample.-A merchant paid $\mathfrak{E 1 6} 3 \mathrm{~s}$. 91 d d. for tea; $\mathfrak{E} 46$ $11 \mathrm{~s} .1 \frac{1}{4} \mathrm{~d}$. for sugar; $\mathfrak{E} 1013 \mathrm{~s}$. 5 d . for flour ; £13 14 s . $2 \frac{1}{4} \mathrm{~d}$. for molasses, and $£ 108$ 11s. $4 \frac{3}{4} \mathrm{~d}$. for dry goods; what was the amount of his bill?

OPERATION.		
£	s.	d.
16	3	$9 \frac{1}{2}$
46	11	14
101	3	5
13	14	$2 \frac{1}{4}$
108	11	$4 \frac{8}{4}$
$\mathfrak{£ 2 8 6}$	3	$10 \frac{3}{4}$

RULT. I. Write the numbers so that those of the same unit value will stand in the same column.
II. Beginning at the right hand, add each denomination as in simple numbers, carrying to each succeeding denomition added, to manany units as it takes of the demonina-

Mental Exercises.

1. 'tild together $5 \frac{1}{4}$ d., $6 \frac{1}{4} d ., 3 \frac{1}{2} d$. , and 2 s. $6 d \frac{1}{4} d$.
2. Find the sum of $1 \mathrm{~s} .2 \mathrm{~d} ., 1 \mathrm{~s} .3 \frac{1}{2} \mathrm{l} ., 4 \mathrm{~s} .6 \frac{1}{4} \mathrm{~d}$.
3. A firmer sold 4 bundles of hay, weighing as follows, 1 st, 2 ewt. 3 (1rs., 2 nd, 1 cwt. 2 prs. $14 \mathrm{lbs} ., 3 \mathrm{rdl}, 1$ ewt. 3 (fr., and the 4th, 2 cwt. 0 gr. 14 lus. ; what was the weight of the whole?

Excreises fer the slate.

COMPOUND SUBTRACTION.

103. Compound Subtraction is the method of find-

 ing the difference between two numbers of the same kind containing different denominations of that kind.104. To subtract compound numbers.

Example.-A merchant bought 15 cwt. 3 qrs. 14 lb . (long weight) of sugar and sold 9 cwt. 2 qrs. 18 lbs. ; how much had

OPERATION. cwt. qris. lus.
$15 \quad 3$ ' 14
$\begin{array}{lll}9 & 2 & 18\end{array}$
Ans. $6 \quad 0 \quad 24$

Analysis.-Writing the subtrahend under the minuend, placing units of the same denomination under each other, we begin at the right hand, or lowest denomination; since we earmot take 18 lbs . from 14 lls., we add 1 qr. or 28 lbs., to 14 making 42 lbs .; and taking 18 lbs. from 42 lbs. , we write the remainder, 24 lbs ., underneath the column of pounds. Since we took the 1 gr. firon the 3 qrs., 2 qrs. remain ; and 3 (frs. from 3 qrs. leaves 0 qrs., which we write in the remainder, under the column of quarters. Lastly, we take 9 ewt. from 15 cwt. and write the remainder, 6 cwt., under the column of hundreds weight. Hence,

RULT. I. Write the subtrahend under the minuend, so that units of the same denomination shall stand under each other.
II. Beginning at the right hand, subtract each denomination separately, as in simple numbers.
III. If ther number of any denomination in the subtrahend exceed that of the same denomination in the minuend, take 1 from the next higher denomination in the minuend and add as many units to this lower denomination as make one of the higher, and then surbtract; in this case it is to be renembered that the number above is one less than before subtracting. Procecd in the same manner with each denomination.

Mental Exercises.

From $3 \frac{1}{2} \mathrm{~d}$. take $1 \frac{3}{4} \mathrm{~d} . ; 1 \mathrm{~s} .9 \mathrm{~d}$. take 11d.; 2s. $9 \frac{1}{2} \mathrm{~d}$. take $1 \mathrm{~s} .6 \frac{1}{2} \mathrm{~d}$. 2. Λ man having 4 ac. 2 ro. of land sold 1 ac. 3 ro., how much land had he left?
3. A person having $£ 3$ 6s. 3il., bought 14s. 8d. worth o. tea, how mueh money was left after paying for it?
4. A miner having 5 dwt. 12 grs. of gold, sold 2 dwt. 20 grs., how much had he left?

Exercises for the Slate.

SECTION IT.

The following exercises are to be worked as the given example.

Note.- - 1 . The teacher may require the pupil after finishing the sub. traction in each exercise, to add all the lines together.

Fxample. $\begin{array}{cccc} & \mathcal{L} & s . & d . \\ 10 & 18 & 2 \frac{3}{4}-M i n u e n d .\end{array}$
$\begin{array}{lll}6 & 10 & 11 \frac{1}{4} \text {-Subtrahend. }\end{array}$
 £26 $3 \quad 9$ sum=12 times 5 th line.

29: From 546 lbs. 10 oz .2 dwt. 8 grs. take 397 lbs .11 oz . 15 dwt. 14 grs. Ans. 148 lbs. 10 oz. 6 dwt. 18 grs. 30. From 486 years take 395 years 8 mo. 3 wks. 5 days. 31. From 310 tons $13 \mathrm{cwt}$.2 Ans. 90 yrs. 3 mo. 2 days. tons 13 cwt. 1 qr .14 lbs . four times. 2 qrs , long weight, take 77
32. From 481 acres 1 ro. 18 po 14 po. 18 yds. four times. 18 po. $11 \frac{1}{2}$ yds. take 120 ac. 1 ro.
33. What is the difference between 108 Ans. 0. 2 yd .1 ft .10 in . and 800 miles? Ans. 101 m .14 po. 2 yd. 2 ft .8 in.

34．A person having 63 gallons of wine，drank，on an average，for five years，including two leap years，one gill of wine a day；how much remained ？

Ans． 5 gals． 3 qts． 1 pt． 1 gill．
35．A man having dug from a trench 126 cub．yds． 16 cub． ft．，from a cistern 18 cu．yd． $18 \mathrm{cu} . \mathrm{ft} .196 \mathrm{cu} . \mathrm{in}$ ．，and from other places $126 \mathrm{cu} . \mathrm{yd} .26 \mathrm{cu}$ ．ft．，was paid for $196 \mathrm{cu} . \mathrm{yd} .26$ cu．ft． $1714 \mathrm{cu} . \mathrm{in}$ ．；how much remained unpaid？

Aus． 75 cub．yd． 6 cub．ft． 210 cub．in．

COMPOUND MULTIPLICATION．

10．5．Compornal Multiplication is the method of multiplying a quantity consisting of several denominations by a given number．

106．To Multiply a Compound Number．
case 1.
107．When the multiplier is under 12.
Example 1．－A man sold 6 lots of land，each lot con－ taining 4 ac． 2 ro． 14 po．：how much land is there in all？
operation．Analysis．－In 6 lots there are 6 times as ac．ro．po．much land as in 1 lot．We write the multi－
$\begin{array}{lll}4 & 2 & 14\end{array}$ plier under the lowest denomination of the 6 multiplicand，and procced thus； 6 times 14 $\begin{array}{llll}27 & 2 & 4 & \text { po．are } 84 \\ 84\end{array}$ poles，equal to 2 ro． 4 po．；and we write the 4 po．under the number multiplied，and carry the 2 ro．to the next product．Then， 6 times 2 ro．are 12 ro．，and 2 ro．added make 14 ro，equal to 3 ac .2 ro．；and we write the 2 ro． under the number multiplied．Again， 6 times 4 ac．are 24 ac．， and 3 ac．added make 27 ac ．，which we write under the number multiplied．

From the above example and illustration we deduce the following general rule

RULE．I．Write the multiplier under the lowest denom－ ination of the multiplicand．

II．iñultipiy as in simpie numbers，and carry as in addi－ tion of compound numbers．
on an gill of . 1 gill. 16 cub. d from . yd. 26 cub. in.
hod of nations
t con11 ? mes as multiof the nes 14 ; and umber e next added e 2 ro. 24 ac., er the ce the

Mental Excreises.

1. Find the cost of 5 lbs . of tea at 3 s . 9d. per pound.
2. What will 9 lbs. of coffee cost at 1s. 6 d . per pound ? pair?
3. Uow ane ing 2 ac. 3 ro. 10 po.?
4. If' a tailor requires 3 yds .1 qr . 1 nl . of cloth to make a same size ?

Exercises for the Slate.

SECTION 1 .
Examile.-Multiply £ 12 s. $9 \frac{1}{4}$ d. by 4 , and £S 7s. $2 \frac{3}{4} d$. by 4.

Multiply each of the following couplets by $2,3,4,5,6,7$, $8,9,10,11,12$. Multiply them all first by 2 , then all by 3 , then all by $4, \& c$. , and test the products as above.
(2) $3 \quad 4$ and $16 \quad 8$
(3) $4 \quad 5 \frac{3}{4}$ and $15 \quad 6$
(4) $7 \quad 94$ and $12 \quad 29$
(5) 6 8 and 13 3 3 솔
ac. ro. po. yds , ac. ro. po. yds.

case II.
108. When the Mrultiplier is a Composite m nber:

Example.-What is the weight of 42 bundles of hay each weighing 3 cwt. 2 qrs. 12 lbs ?
operation. cwt. qr. Ibs.
$3 \quad 2 \quad 12$
6
21222 weight of 6 bundles. 7

Analysis.-Multiplying the weight of 1 bundle by 6 , we obtain the weight of 6 bundles, and the weight of 6 bunclles multiplied by 7 , gives the weight of 42 bundles.

15204 weight of 42 bundles.
SECTION II.
Example.-Multiply $\mathbb{E}^{4} 4613 \mathrm{~s} .10 \frac{1}{2} \mathrm{~d}$, and $£ 53$ 6s. $1 \frac{1}{2} \mathrm{~d}$. by 48 .

Multiply each of the following couplets by $14,16,18,20$, $21,22,24,27,28,30,32,36,40,42,45,48,50,54,56,60$, $64,72,81,96$, testing the products as above.

Multiply each of the above by $100,110,120,121,132,144$, using two factors, and by $112,144,420,441,504$, using three factors, e. g.

$$
\begin{aligned}
& 420=10 \times 6 \times 7 \\
& 504=8 \times 9 \times 7
\end{aligned}
$$

CASE III.

109. When the multiplier camnot be rerluced to factors.

Example.-How many bushels of oats in 47 barrels, each contining 3 bus. 1 pik. ?
 minille veight the s muls the

COMPOUND MULTIPLICATION.

$47=(5 \times 9)+2$ bus. pks. $\begin{array}{ll}3 & 1 \\ & 5\end{array} \times 2$

5
$16 \quad 1$ in 5 barrels.
$\begin{array}{rlll}146 & 1 & \text { in } & 45 \\ 6 & 2 & 6 & 2\end{array}$

ANAIYSis.-Mnltiplying the contents of 1 barel by 5 , ind the resulting product by 9 , we have the contents of 45 barrels, which is the composite number next less than the given prime number 47 . Nextmultiplying the contents of 1 barrel by 2, we have the contents of 2 barrels, which added to the contents of 45 barrels, gives us the contents of $45+2=47$ barrels.

SECTION JII.

Multiply each of the following couplets by $19,29,31,43$. $67,76,53,91,97,111,113.127,131,143,139$, and test the results as in the preceding section.
$\begin{array}{ccccccccccc} & \text { bus. } & \text { pks. } & \text { gal. } & \text { qts. } & \text { pts. } & \text { bus. } & \text { pks. } & \text { gal. } & \text { qts. } & \text { pts. } \\ \text { (1) } & 135 & 3 & 1 & 3 & 1 \text { and } 864 & 0 & 0 & 0 & 1 \\ \text { (2) } & 635 & 1 & 0 & 2 & 1 & \text { and } 364 & 2 & 1 & 1 & 1 \\ \text { (3) } & 299 & 0 & 1 & 1 & 1 & \text { and } 700 & 3 & 0 & 2 & 1\end{array}$
SECTION IV.

110. When the multiplier exceerls 156.

Example. What is the price of 428 articles at $£ 317 \mathrm{~s} .9 \frac{1}{2} \mathrm{~d}$. each.

OPERATION.

1st line

$£$	s.	d.
3	17	

$\begin{array}{lll}3 & 17 & 9 \frac{1}{2} \\ & & 10^{2}\end{array}$
3rd line
$\begin{array}{rr}38 & 17 \\ & 11 \\ 10\end{array}$ Product by 10
5 th line

$988 \quad 19 \quad 2$

Product by 100

Multiply 1st line by $8=\begin{array}{rrr}3 & 15 & 10 \\ 31 & 2 & 4\end{array}$ Product by 20
Add last three results $\overline{16641410}$

Explanation.-We see from the above example that there are three figures in the multiplier, and that we have multiplied successively*by 10 twice, and then multiplied the last product by the figure of the highest order of the multipier, the preceeding product by the next lower orler of figure, and the first line by the lowest order; we then added the three last products to find the answer. Hence the

> RULE. -Multiply successively by 10 as many times less one as there are figures in the multiplier, then multiplir the last product by the figure of the highest order of the muliiplier, the preceding product by the next lower order of figure, and so on with the other figures. 'then the sum of the new products will be the answer.

Note.-It is semetmes more convenient to reduce the multiplicand to the lowest denomination and then-multuply; and afterwards reduce the product to the highest denomiaation.

1. Multiply 16 bush. 3 pks. 1 gal. by 678.

Ans. 11441 bush. 1 pk.
2. Multiply 23 m .6 fur. 33 rods 4 yds. by 247.

Ans. 5892 m .2 fur. 10 rods $3 \frac{1}{2} y d s$.
3. Multiply $\mathfrak{£} 316 \mathrm{~s} .5 \frac{1}{4} \mathrm{~d}$. by 3178 . Ans. $\mathfrak{E} 1055618 \mathrm{~s} .4 \frac{1}{2} \mathrm{~d}$.

SECTION V.
Find the value of-

1. 37 tons 13 cwt. 3 qrs. 12 lbs., long weight, $\times 6$

Ans.: 226 tons 3 cwt. 16 lbs.
2. 39 m .7 fur. 28 po. 4 yds. $\times 6$.

Ans. 239 m .6 fur. 12 po. 2 yd.
3. 92 yd. 3 qr. 1 nl. 2 in. $\times 765$. Ans. 71044 yd. 0 qr. 1 nl. 4. 27 y. 54 days $15 \mathrm{~h} .29 \mathrm{~m} . \times 921$.

Ans. 25004 y. 323 d. 4 h. 9 m.
5. If 1 acre of land produce 45 bus. 3 pks. 6 qts. 1 pt. of corn, how much will 64 acres produce?

Ans. 2941 bus.
6. If $\$ 80$ purchase 4 ac .3 ro. 26 po. $20 \mathrm{sq} . \mathrm{yd} .3 \mathrm{sq} . \mathrm{ft}$. of land, how much will $\$ 4800$ buy? Ans. 295 ac .10 sq. yd.
7. What will 16 tons of hay cost at $£ 319 \mathrm{~s} .6 \frac{1}{2} \mathrm{~d}$. per ton? Ans. ${ }^{2} 63$ 12s. 8 d.
8. What is the cost of 8 bus. 3 pks. of beans at $5 \frac{1}{2} \mathrm{l}$. per quart? Ans. £ 6 8s. 4 d .
3. If 1 pt. 3 gills of wine fill 1 bottle, how mueh will be recquired to fill a great gross of bottles of the same capacity? Ans. 378 gals.
le that e have ied the multirder of added
es less ultiply of the corder on the iplicand s reduce

1 pk . $3 \frac{1}{2} \mathrm{yds}$. 8s. $4 \frac{1}{2} \mathrm{~d}$.

16 lbs. . 2 yd. [r. 1 nl.
h. 9 m . 1 pt . of 41 bus. 1 ft . of sq. yd. er ton? 12s. 8 d . 8s. 4 d. will be pacity? 78 gals.
10.

Mr. C. Clarke, 25 lls. Sugar, 5 lbs . 'Tea, 4 gals. Molasses, $30-y \mathrm{ds}$. White Cotton,

Saint John, March 17th, 1866. Bo't of J. C. Smith \& Co. at \$0.11 \$
". . $62 \frac{1}{2}$
". . 49
" . 27

Received payment,
J. C. Smitil \& Co. per John Newcomb.
11.

William Jones, Esq.,
Jan. 1. To 15 lbs Tea, at 50 c . W. P. Juffus, Dr.
Dec. 6. " 25 llbs . Sugar, at 10 c .
Feb. 5. " 1 bll. Flour, at $\$ 9.50$,
Mar. 14. " 26 yds. Grey IIomespun, at $62 \frac{1}{2} \mathrm{c}$.
Halifax, March 19th, 1866.
$\$ 15.93 \frac{1}{2}$

$$
17
$$

$\overline{\$ 35.75}$
12.

Mr. James Crowe,
17 lbs. Sugar, $3 \frac{1}{2} \mathrm{lbs}$. Tea,
13 lbs. Coffee,
3 gals. Burning Fluid, 15 lbs. Brown Soap,

Fredericton, Feb. 22nd, 1866.
Bought of S Joinson. at $6 \frac{1}{2} d$.
" 2 s . $7 \frac{1}{2} \mathrm{~d}$.
" 1s. 9d.
" 7s. 6d.
" $4 \frac{1}{2} \mathrm{~d}$.

$$
\begin{array}{llll}
\text { £3 } & 9 & 3 \frac{1}{4}
\end{array}
$$

13. Saint Stephen, Feb. 17th, 1866--Mr. Andrew Bryden, bought of John Fraser, $17 \frac{1}{2}$ yde. superfine cloth at 22s. 6d. per yd., $27 \frac{1}{4}$ yds. drab cloth at 12 s . $8 \mathrm{~d} ., 34 \frac{1}{4}$ drugget at 7 s .10 d ., $18 \frac{1}{8}$ yds. broad cloth at 17 s .4 d ., $29 \frac{3}{8}$ yds. serge at 2 s .10 d .

Ans. $£ 704 \mathrm{~s} .7 \frac{1}{4} \mathrm{~d}$.
14. Chatham, Feb. 22nd, 1866.-Mr. James Scott, bought of John Young, 24 yds. white cotton, at 27 cents per yard, $17 \frac{3}{7} \mathrm{yds}$. flannel at $\$ 0.45,26 \frac{1}{2}$ yds. shalloon at $\$ 0.37,5 \frac{1}{4} \mathrm{yds}$. hroal cloth at $\$ 4.75,15$ yds. broad cloth at $\$ 1.82,27 \mathrm{yds}$. lining cotton át $7 \frac{1}{2}$ cents.
15. Moncton, Sep. 1st, 1880.-Mr. Robert Jones bought of Thomas Fraser, 65 bbls. of flour, at ${ }^{\text {Wh}} 6.50$ per bbl., $38 \frac{1}{2}$ cwt. of sugar at the rate of 9 cents per lb., 3 boxes of tea, each containing 65 lbs. at 45 cents per lb., $16 \frac{1}{2}$ yds. of cloth at $\$ 3.50$ per yd., 14 gals. of oil at the rate of 10 cents per quart.

Ans. \$920.10.
Note.-Questions 13,14 and 15 should be written out in the same form as the three previous examples.

COMPOUND DIVISION.

111. Compound Division is themethod of dividing a quantity consisting of several denominations.
112. Compound division is divided into two cases1st, When the divisor is an Abstract number. 2nd. When the divisor is a Compound number.

CASE I.
Example.-If 6 acres of land produce 153 bushels 3 pks. 3 qts of oats, how much will 1 acre produce?
operation. Analysis.-One acre will produce $\frac{1}{6}$ bus. pks. qts. pts. as much as 6 acres. Writing the divisor 6) $153 \quad 3 \quad 3 \quad 0$
$\begin{array}{llll}25 & 2 & 4 & 1\end{array}$ ination of bushels, We write the 25 bus. under the denom12 pecks, and the 3 pecks of the 3 bus. to pecks, making pecs. Dividing 3 pecks of the dividend added make 15 pecks. Dividing 15 pks . by 6 , we obtain a quotient of 2 pks . and ar remainder of 3 pks.; writing the 2 pecks under the order of pecks, we next reduce 3 pks to quarts, adding the 3 qts. of the dividend, making 27 qts., which being divided by 6 gives a quotient of 4 qts. and a remainder of 3 qts. Writing the 4 qts. under the order of quarts, and reducing the remainder, 3 qts., to pints, we have 6 pints, which divided by 6 give a quotient of 1 pt., which we write under the order of pints, and the work is finished.

Exampre 2.-When 98 acres produce 2730 bush. 1 pk. 5 qts. of grain, what will 1 acre produce?

Ans. 27 bu. 3 pks. 1 gal. 2 qt. 1 pt.
RULE. I. Divide the highest denomination, as in simple numbers, and each succeeding denomination in the same
II. If there be a remainder after dividing any denomination, reduce it to the next lower denomination, adding in the given number of that denomination in the dividend, if
III. The several partial quotients will be the quotient

Notes.-1. When the divisor is large and is a composite number, we may shorten the work by dividing by the factors.
2. When the divisor contains a fraction, as $54, \mathbb{\& c}$., proceed as directed in Simple Division. See page 38 .

Nental Exereises.

1. How much sugar at 9 d . per lb. may be bought for 117 pence?
2. How much white sugar at 8 d. per lb. may be bought for 1 s .8 d. ?
3. How much cloth at 7s. per yard, may be bought for £3 17s.?
4. If 9 boxes of figs weighed 28 lbs .2 oz ., what was the weight of 1 box?
5. If 7 bags of rice weighed 12 cwt .3 qrs. (long weight), what was the weight of 1 bag ?
6. How much molasses, at $7 \frac{1}{2} d$. per quart, may be purchased for £1 17s. 6d.

Excreises for the Slate,

SECTION F .

Answers to be tested by multiplying the gnotient.

SECTION IL.

In the following exercises the remainders (if any) ase divisible by 9 .
tons. cwt. qrs. lbs. oz. drs. (long weight.)
(1) $\begin{array}{lllllll} & 0 & 82 & 0 & 27 & 3 & 8 \div 45,81 \\ & \text { and } 171\end{array}$
(2) $101 \quad 0 \quad 2 \quad 3 \quad 11 \div 54,63$ and 164
(3) $\begin{array}{lllllll}181 & 2 & 1 & 13 & 15 & 0 & \div 243,423 \\ \text { and } 432\end{array}$
(4) $1631 \quad 18 \quad 2 \quad 8 \quad 10 \quad 15 \div 621,162$ and 261
(5) $72036 \quad 1 \quad 1 \quad 27 \quad 10 \quad 9 \div 765,675$ and 999
(6) $801630 \quad 3 \quad 2 \quad 0 \quad 7 \div 4392,5904$ and 9045
llbs. oz. dwt. grs.
(7) $46 \quad 5 \quad 11 \quad 0 \div 18,27$ and 36
(8) $326 \quad 4 \quad 10 \quad 9 \div 126,261$ and 396
(9) 7008 \% $221 \div 576,729$ and 895
miles. fur. po. yes. ft. in.

dys. hrs. min. sec.
$\left\{\begin{array}{lrll}14) & 1314 & 0 & 2 \\ 4 \varepsilon \div 45,72,81 \text { and } 99 \\ (15) & 32626 & 10 & 8 \\ 164 \div 612,711,549 \text { and } 279 \\ 3 \Sigma 627 & 2.2 & 4 & 21 \div 3 \Sigma 4,981,117 \text { åd } 819\end{array}\right.$
yrs. noo. wks. dys. hrs. nein. sec.

(17)	353	0	0	188	6	46	$48 \div 68$ and 117
(18)	1278	0	9	199	10	37	$12 \div 972$ and 714
(19)	7878	6	0	4	17	84	$48 \div 567$ and 756
$20)$	8274	1	1	4	10	10	$48 \div 576$ and 657

case if.
113. When the aivisor is a compound nander.

Example.-How many times are $£ 510 \mathrm{E} .1 \mathrm{de}$. centained in $£ 537$ 10s. 10d.?

OFENATIOX.
$\begin{array}{llllll}\text { E. } & \text { s. } & \text { d. } & \text { E } & \text { s. } & d . \\ 5 & 10 & 10) & 557 & 10 & 10(37 \text { tinees. }\end{array}$

20	20
110	10750
12	12
1820	129010
	11970
	9310
	9310

Axalishis.- Here we reduce both divisor and dividend to pence, that being the lowest denomimation contained in either. We then find the divisor, 1330, is contained in the dividend 87 times.

RULE.-Reduce both divisar and dividend to the lowest denomination in either, then proceed as in gimple numbers.

SECTIGN IIT.

1. How ofter is £2 10 s. contained in $£ 1710 \mathrm{~s}$.

Ans. 7 times.
2. If a gold ring cost fis 12s. ©ui., hew nany of the same kind may I have for £130 10s.?
3. How many yards of cloth worth 4s. Gịd. a yard, must be given in exchange for 36 yards at $£ 1$ 2s. $9 \frac{3}{4} d . ?$ Ans. 180.
4. How many barrels are there in 151 bus. 3 pks. 1 gral. of oats, if 1 barrel contain 3 bu. 1 pk. 1 gal.?

Ans, 4., in. rels.

section iv.

General Exercises.

Divide

1. 69 miles 4 fur. 4 po. 2 yds. by 8.

Ans. 8 mm .5 fur. 20 po. 3 yd.
2. $31 \mathrm{lbs} 11 \mathrm{oz}$.15 dwt., by 5. Ans. 6 lb .4 oz .15 dwt.
3. 35 days 22 h. 52 m .48 sce., by 6 .

Ans. 5 d. 23 h .48 m .48 sec.
4. 6429 miles 6 firr. 2 po. 1 yd. 1 ft. 8 in., by 76.

Ans. 84 m .4 fiur. 32 po. 3 yds. 1 ft .11 in.
5. 646 yds. 3 qis., by 26.
6. $£ 4683 \mathrm{~s} .7 \frac{1}{2}$ l., by $4 \frac{1}{2}$.

Ans. 24 yds. 3 qres. 2 nls. Ans. $\sum_{1040 \text { s. } 9 \frac{1}{2} \text { d. } \frac{6}{7} \text {. }}$
7. $£ 42918 \mathrm{~s}$. $3 \frac{1}{4} \mathrm{~d}$. ly $49 \frac{5}{6}$. Ans. £9 16s. $1 \frac{3}{4} \mathrm{~d}$. $\frac{15}{26 \frac{7}{3}}$.
8. 8921 tens 15 cwt. 24 (frs. 18 hbs. 15 oz. 15 drs., long weight, by 599. Ans. 14 tons. 17 cwt 3 qrs. 15 lbs .9 oz .9 dr .
9. 7154 days 16 h. 52 m .48 sec., by 57.

Ans. 125 d. 12 h. 30 m .24 sec ,
10. How often is $£ 510$ s. contained in $£ 3810 \mathrm{~s}$,

Ans. 7 times.
11. How many yards of cloth worth 7 s. $8 \frac{1}{2} d$. a yard, can be bought for $£ 327 \mathrm{~s} .6 \mathrm{~d}$. ?
12. If a single article cost 4s. 61 d, how Ans. 84 yards. be bought for $£ 196$ 4s.?

Ans. 72.
13. How many yards of cloti worth $4 \mathrm{~s} .6 \frac{3}{4}$ d. a yard, must be given in exchange for 36 yards at 112 ss . $9 \frac{3}{4} \mathrm{~d}$. per yard ? Ans. 180.
14. A man travelled by railroad 1000 miles in one day; what was the average rate per hour?

Ans. 41 m .5 fur. 13 po. 5 ft .6 in.
15. If a fanily use 10 bbls. of flour in a year, what is the average amount each day? Ans. 5 lib. 5 oz. $14 \frac{50}{73}$ dr.
16. A tailor put 276 yds. 3 qrs . of cloth into 20 cloaks; how much cloth did each cloak contain ?

Ans. 13 yds. 3 qrs. $1 \frac{2}{5}$ nls.
17. A clothier bought 4 pieces of cloth, each containing 60 yds .2 .25 qrs.; after selling $\frac{1}{3}$ of the whole, he had the remainder made into suits containing 9 yd .2 qr. each; how many suits did it make?

PROMISCUOUS EXERCISES IN THE PRECEDING RULES.

When going over these and subsequent exercises, the pupil should be required to state in general terms-1st. What is fiven and whei is required in each problem. 2nd. How it is proposed to wo it, giving each step clearly and briefly in its proper order.

If a pupil be thoroughly subjected to this training, day after day at the black-board, clearing up every diflichlty in each problem before the teacher and class, his suecess in arithmetie is in a great measure certain

1. A merchant bought a quantity of sugar for ? 90 guineas, but paid for it with half-crowns, required how many he gave?
2. How many feet will a boy walk to sehons. 3276 . distant 1 m .7 fur. 38 po. 4 yds. 2 ft . ?
3. If $36 \frac{1}{2}$ bushels of corn crow ? Ans. 10541 feet. acres will produce 657 bushels?
4. A man wishes to ship 1560 bushels Ans. 18 acres. barrels containing 3 bus. 1 pk 1560 bushels of shoe pegs in he require?
5. A farm consisting of 4 fields, has in Ans. 480. in another 27 ac. 2 ro. 26 yds ., in another one 28 ac. 37 po., 5 ft ., and in another 17 ac .3 ro. 14 yd. 142 inch. 2 ro. 39 po. how many inches are in the 3 ro. 14 yd. 142 inches; required
6. From the sum of $£ 217 \mathrm{~s} .6 \frac{1}{2} \mathrm{~d}$. + Ans. 722817646. $16 \mathrm{~s} .10 \frac{1}{2} \mathrm{~d} .+\mathfrak{£} 410 \mathrm{~s} .1 \frac{3}{4} \mathrm{~d} .+£ 716 \mathrm{~s} .61 \mathrm{~d} . \mathrm{d}^{2} 11 \mathrm{~s} .4 \frac{1}{2} \mathrm{~d} .+£ 5$ multiply, the remainder by 11 , and divide take $£ 1815 \mathrm{~s} .11 \mathrm{~d}$.; multiply the remainder by 11 , and divide the produet by 13 .
7. A merchant bought goods for $£ 456$ Ans. $\mathfrak{E} 612 \mathrm{~s}$. $5 \frac{1}{2} \mathrm{~d}$. them for $£ 5300 \mathrm{~s} .6 \mathrm{~d}$. ; what did he $£ 45617 \mathrm{~s} .3 \frac{1}{4} \mathrm{~d}$. and sold .
8. Suppose the pulse to beat once in Ans. $\mathscr{L}^{2} 73$ s. $2 \frac{3}{4} \mathrm{~d}$. will it beat during a year of 365 days?
9. A jeweller bought 35 cold wates. 31536000 times. 49 silver watches at $£ 615 \mathrm{~s}$. cach watehes at £24 10 s . each, each, 97 brooches at 17 s 6 d . each, 85 gold rings at $£ 16$ s. pay for the whole? 17 s .6 d . each; how much money did he 10. Supposincr a pair of trousers requir Ans. £ 1426 2s. 6 d . how much cloth will it require to mequire 2 yds. 2 qrs. 3 nls.; how much eloth will it require to make 3 doz. pairs?

$$
\text { Ans. } 96 \text { yds. } 3 \text { qrs. }
$$

11. What distance will a train travel in 24 hours at the rate of 19 miles 7 fius. 39 po. 5 yds. per hour?

Ans. 479 miles 7 fur. 37 po. $4 \frac{1}{2}$ yas.
12. If seven horses cost $\dot{L} 69$ 6s., what will one cost?

Ans. $£ 9$ 18s.
13. If 3 yds . cost $£ 126$. what will 27 yds . cost ?

Ans. $£ 918 \mathrm{~s}$.
Note. -27 yds. will oost 9 times more than 3 yds .; therefore C1 2 3. $9 \mathrm{~d} . \times 3=$ Ans.
14. The wages of 8 men amount to $\$ 28.48$, what will the wages of 128 men amount to ?

Ans. \$455.68
Nove.-The wages of one man will be $\$ 28.48 \div 8=\$ 3.56$, which multipliea by $128=$ Ails.
15. If 56 sheep cost $\$ 316.80$, what will 7 cost ?

Ans. \$39.60.
16. How long wouki 36 labourers take to dig a field which 12 men can dig in 2π days?

Ans. 9 days.
17. A farmer bought 3 score of lambs at 17 s . 6 d . each, 2 score of sheep at $\mathfrak{£ 1} 19 \mathrm{~s} .11 \mathrm{~d}$. cach, 24 cows at $\mathfrak{£} 915 \mathrm{~s} .8 \mathrm{~d}$. each, 6 horses at 39 guineas each, the expenses of getting them all home amonnted to 25 gineas; how much woney must he draw from his banker to meet the outlay?

Ans. $\mathscr{2} 62811 \mathrm{~s} .8 d$.
18. If 85 sheep cost $\$ 508.90$, what is the eost of 5 ?

Ans. $\$ 72.70$.
19. When eggs are selling 5 for 2 pence, what should 12 אoz. and $\$$ eggs cost?

Ans. 4s. 6d.
Note - - 'lihe price of ene egg $=\frac{2}{5}$ d.
20. I went to a shop and bought 7 yds . of cloth at 7 s . 6 d per yd., 20 yds. white cotton at 35 cents per yard; what change did I get out of £́t?

Ans. 18s. 8 3 d.
21. An estate consisting of 1977 acres 3 roods is divided into firms containing on an average 98 acres 3 ro. 20 poles each; required the number of farms in the estate?

Ans. 20 farms.
22. If a bushel of barley cost $\$ 0.80$, what will 21 hus. 2 pks . cost at the same rate?

Ans. ${ }^{*} 17.20$.
23. Mr. Fliat has two shares in a shoe factory, the capital of which is made up of one hundred and six equal shares, there is a clear gain of \$2098.80 at the end of the year. How much fhould Mr. F. receive? Ans. \$39.60.

VULGAR OR COMMON FRACTIONS.

Definitions, Fotation and Numeration.

114. If a unit be divided into 2 equal parts, one of thesa parts is called one holf:
If a unit be divided into 3 equal parts, ons of the parts is called one third, two of the parts two thirds.
If a unit be divided into 4 equal parts, one of the parts is called one feurth, two of the parts two fourths, three of the parts three fourths, \&e.

The parts are expressed by figures; thus,

One half is written $\frac{1}{2}$	One forrth is written $\frac{1}{4}$		
One third	"	$\frac{1}{3}$	Two fourths
Two thirds	"	$\frac{2}{4}$	
Tw	$\frac{2}{3}$	Three fourths	"
$\frac{8}{4}$			

Hence we see that the pirts into which a unit is divided sake their name and their value from the number of equal parts into which the unit is divided. Thus, if we divide an apple into three equal parts, the parts are called thirds; if into 4 equal parts, fourths, \&e.; and each fourth is less in value than each third, and the greater the number of parts the less the value of each.

When a unit is divided into any number of equal parts, one or more such parts is a fractional part of the whole numher, and is called a fraction. Hence,
115. A Fraction is one or more of the equal parts os a unit.
116. To write a fraction we require two integers, one to express the nunber of parts into which the whole number is divided, and the other to express the nmmber of parts taken. Thus, if one orange be divided into 5 equal papts, the parts are called fifths, and three of these parts are called thres fifths of an ozange.

These may be written

> 3 she number of parts salien. 3 the mumber of parts into which the orange is dividited.
717. The Demominator is the number below the line。 It denominates or names the parts; and
It shows how many parts are equal to a unit.
118. The Numerator is the number above the line.

It numerates or numbers the parts; and
It shows how many parts are taken or expressed by the fraction.
119. The Terms of a fraction are the numerator and denominator taken together.
120. Fractions indicate division, the numerator answering the dividend, and the denominator to the divisor. Henee,
121. The Value of a fraction is the quotient of the numerator divided by the denominator.

Exercises in Notation and Numeration.

Express the following fractions by figures:-

1. Seven cighthis.
2. Three twenty-fifths.
3. Twenty-seven ninetf-sixths.
4. Sevẹ pne hundred and twenty-sevenths.
5. Two hundred and four four hundred and fifty-thirds.
6. Nine hundred one thousand and fifty-fourths.
7. To analyze a fraction is to designate and describe its numerator and denominator. Thus, $\frac{3}{4}$ is analyzed as fol-lows:-
4 is the denominator and shows that the unit is divided into 4 equal parts; it is the divisor.

3 is the numerator, and shows that 3 parts are taken; it is the dividend, or integer divided.

3 and 4 are the terms, considered as dividend and divisor. The value of the fraction is the quotient of $3 \div 4$, or $\frac{3}{4}$.
Read and analyze the following fractions:-
7. $\frac{8}{7} ; \frac{11}{12} ; \frac{5}{6} ; \frac{13}{2} ; \frac{16}{156} ; \frac{19}{8} 7 ; \frac{11}{151} ; \frac{125}{16}$.
8. $\frac{17}{104} ; \frac{19}{10 \mathrm{I}} ; \frac{355}{4867} ; \frac{51}{1000} ; \frac{3867}{100017}$.
123. Fractions are distinguishea as Proper and Improper, and as Simple, Compound, Complex.

A Proper Traction is one whose numpator is less than its denominator. As $\frac{3}{4}, \frac{5}{6}, \frac{11}{12}$.

An Impropere Faction is one where numerator equals or exceeds its denomimator. As $\frac{8}{8}, \frac{17}{2}, \frac{85}{82}, \frac{39}{8}$.

A simple paraction has bat one numarator and one denominator, ass $\frac{3}{4}$.
line.
d by the ator and inswering Hence, at of the
on.
-thirds.
describe d as folided into en ; it is d divisor. or

A Componnd Fraction is a fraction of a fraction, as $\frac{2}{3}$ of $\frac{5}{5}$

A Complex Fraction is that which has a fraction either in its enumerator or denominator, or in each of them, as, $\frac{2 \frac{1}{3}}{2}, \frac{3 \frac{1}{5}}{4 \frac{1}{3}}, \frac{2}{\frac{3}{7}}$
124. A Mixed Number is a number expressed by a whole number and a fraction. As $14 \frac{1}{2}, 11 \frac{9}{15}$.

1:25. Since the value of a fraction is, the quotient obtained by dividing the numerator by the denominator, by the laws of Division we have the following

Gencral principles of Fractions.

126. PRIN. I. Multiplying the numerator multiplies the fraction, and dividing the numerator divides the fraction.
PRIN. II. Multiplying the fenominator divides the fraction, and dividing the denominator multiplies the fraction.
PRIN. III. Multiplying or dividing both terms of the fraction by the same number does not alter the value of the fraction.

REDUCTION OF FRACTIONS.
 case 1 .

127. To recluce firactions to their lowest terms.

A fraction is in its lowest terms when its numerator and denominator are prime to each other; that is, when both terms have no eommon divisor.
Example.-Reduce the fraction $\frac{30}{18}$ to its lowest terms. first operation. ${ }^{8} \frac{30}{48}={ }^{2} \frac{10}{16}=\frac{5}{8}$ Ans. the fraction or quotient numiner does not alter the value of both terms of 30 by 3 , buth teinis ain. Mi..) hence, we divide the terms of $\frac{5}{8}$ are prime to carl or the result, $\frac{10}{16}$, by 2 . As are $\frac{5}{8}$. We have, in effert rancelled all the factors common $\frac{38}{48}$ to the numerator and duminator.
second operation. In this operation we have divided 6) $\frac{30}{4}=\frac{5}{8}$, Ans. the terms of the fraction by the greatperformed the reduction common divisor, (isfy) and thus RULE. I. Canceĭ or reject all ractors common to both numarator and demeninator, or, IJ. Diviche both terms by their greatest common measure,

Mental Exercises.

Reduce the following fractions to their lowest terms:$\frac{8}{5}=\frac{3}{8}: \frac{17}{82} ; \frac{21}{27} ; \frac{18}{36} ; \frac{5}{55} ; \frac{9}{34} ; \frac{8}{82} ; \frac{16}{7} \frac{6}{2} ; \frac{26}{8} ; \frac{28}{112} ; \frac{16}{112} \frac{19}{8} ; \frac{105}{10}$ and $\frac{11}{12} \frac{2}{2}$.

Exercises for the Slate.

1. $\frac{155}{150}$
2. $\frac{288}{3} \frac{8}{0}$
3. $\frac{4}{4} \frac{1}{2}$
4. $\frac{675}{810}$
5. $\frac{1155}{126}$

Ans. $\frac{31}{36}$
$\begin{array}{r}36 \\ \frac{4}{6} \\ \frac{21}{2} \\ \frac{5}{6} \\ \frac{1}{6} \\ \frac{1}{1} \\ \hline 1\end{array}$
6. $\frac{3080}{5940}$
7. $\frac{172}{1118}$
8. $\frac{5643}{5940}$
9. $\frac{315}{345}$
10. ${ }^{6884} 5$
case II.

12s. To rerluce an improper fraction to a whole or mixea number.

Example.-Reduce $\frac{32}{7}$ to a whole or mixed number. oprration.

Axalysis.-Since 7 seventlis $\frac{82}{7}=32 \div 7=4 \frac{4}{5}$, Ans. equal 1, 32 sevenths are equal to as many times 1 as 7 is contained in 32 , which is $4 \frac{4}{5}$ times. Hence the following-
RULE.-Divide the numerator by the denominator.
Notes.-1. When the dencminator exactly divides the numerator, the result is a whole nu*
2. In all answers, ntair ng fractions, the fractions should be reduced to the.r lowest . me

Mental Exercises.

1. How many whole things are in 12 halves? 16 halves? 24 halves?
2. How many whole things are in 15 thirds? in 18 thirds?
3. Reduce $\frac{7}{3}, \frac{5}{4}, \frac{14}{5}, \frac{21}{5}, \frac{54}{5}, \frac{125}{7}, \frac{121}{4}, \frac{144}{12}, \frac{118}{11}, \frac{199}{19}, \frac{1678}{10}$, to whole or mixed numbers.

Wacreises for the Slate.

1. In $\frac{113}{13}$ of a month, how many months?

Ans. $16 \frac{1}{7}$
2. In $\frac{11 i}{5}$ of a bushel, how many bushels? $23 \frac{2}{5}$
3. In $\frac{563}{3}$ of a doilar, how many dullais? 187委
4. In $\frac{179}{8}$ of a ton, how many tons? 22
5. Reduce $\frac{\frac{48}{801}}{81}$ to a mixed number. $2 \frac{85}{701}$
6. Reduce $\frac{5570}{292}$ to a mixed number. $22 \frac{1}{2}$
7. Change $25 \frac{31525}{36}$ to a whole number.

CASE IIT.

129. To rectuce a whole nuinber to a fraction having a given Ienominator.

Example.-Reduce 15 bushels to sevenths of a bushel.
ofrration.

15
7 Analysis.-Since in 1 bushel there are 7 sevenths, in 15 bus. there are 15 times 7 sevenths, which are 105 sevenths $=105$.
105 Ans. In practice we multiply 15 , the number of moshels, by 7 , the given denominator, and taking the product 105, for the numerator of a fraction, and the given denominator, 7 , for the deaminator, we have $\frac{105}{7}$. Hence we have the
RULE. Multiply the whole nuraber by the given denominator, take the product for a numerator, under which write the given denominator.
Note.-A whole number is reduced to a fractional form by writing 1 under it for a denominator. Thus $12=\frac{12}{1}$.

Mental Dxercises.

1. Reduce 25 bushels to 4 ths of a bushel.
2. Reduce 7 yards to 4 ths of a yard.
3. In 56 dollars how many 10 ths of a dollar?
4. A man distributel 3 dollars among some poor persons, giving $\frac{1}{5}$ of a dollar to each; how many persons received the money ?

Exercises for the Slate.

1. Change 126 to a fraction whose denominator shall be 19.
2. Reduce 145 pounds to 16 ths of a pound. Ans. $\frac{239{ }^{3} 4}{9}$
3. Change 365 to the form of a fraction.
4. In 196 gallons how many 8 ths ? Ans. $\frac{1568}{8}$
5. Change 187 to a fraetion whose denominator shall be 23.

> CASE IV.

Ans. $\frac{4301}{23}$
130. To reduce a mixerl number to an improper fraction.

Example.-In $6 \frac{1}{8}$ dollars, how many eighths of a dollar? operation. Analysis.-Since in 1 dollar there are 8 $\begin{array}{ll}6 \frac{1}{8} & \begin{array}{l}\text { eighths, in } 6 \text { dollars there are } 6 \text { times } 8 \\ \text { eighths, or } 48 \text { eighths, and } 48 \text { eighths }+1\end{array} \\ \frac{8}{49} & \begin{array}{l}\text { eighth }=49 \\ \frac{4}{8}\end{array} \\ \begin{array}{l}\text { derive the following, or } \frac{49}{8} . \text { From this we }\end{array} \\ \text { der }\end{array}$
RULEF. Multiply the whole number by the denominator of the fraction; to the product add the numerator, and under the sum write the denominator.

Mental Lererises.

1. Ilow many times $\frac{1}{7}$, or how many sevenths, are in $6 \frac{3}{3}$? in 5 5 ? in $18 \frac{3}{7}$? in 16侤?
2. How many times $\frac{1}{10}$ are in $5 \frac{1}{10}$? in $8 \frac{3}{10}$? in $15 \frac{4}{10}$? in $22 \frac{8}{10}$?
3. In $16 \frac{1}{3}$ how many thirds?
4. In $9 \frac{7}{12}$ how many twelftlis?
5. Reduce $20 \frac{2}{3}$ to an improper fraction.
6. How do you change a whole number to a fraction
7.
8.
9.
10.
11.
12.
13.
14.
15.

Rednce the following mixed numbers to improper fractions

1. $71 \frac{8}{5}$
2. $161 \frac{21}{4}$
3. $27 \frac{19}{3}$
4. $39 \frac{13}{3}$
5. $126_{1} \frac{3}{8} 1$
6. 567 T $\frac{4}{2} \mathrm{~T}$

7. $225 \frac{1}{2} \frac{4}{5}$
8. $21 \frac{7}{60}$
9. $131 \frac{2}{2} \frac{1}{9}$
10. $156 \frac{1}{1} \frac{3}{5}$
11. $1111{ }_{1}^{1}{ }_{1}^{11} \mathrm{~T}$
12. $1234 \frac{1}{1} \frac{23}{4}$

CASE V.
13. Io reduce a fraction to a given denominator.

As fractions may be reluced to lower terms by division, they may also be reduced to higher terms by multiplication; and all the higher terms must be multiples of the lowest terms.

Example.- Reduce $\frac{5}{6}$ to a fraction whose denominator is 24. operation. $24 \div 6=4$ $\frac{5}{6} \times{ }_{4}^{4}=\frac{2}{2} \frac{0}{4}$

Analysis.-We first divide 24, the required denominator, by 6 , the denominator of the given fraction, to ascertain if it be a multiple of this term 6 . The division shows that it is a multiple, and that 4 is the factor which must be used to produce this multiple of 6 . We thercfore multiply hoth terms of $\frac{5}{6}$ by 4 , ($\mathbf{T} \mathbf{E}, \mathrm{P}$, P. III.,) and obtain ${ }_{2} \frac{0}{4}$, the desired result. Hence tive

RULT.-Divide the required denominater by the denominator of the given fraction, and multiply both terms of tho fraction by the quotient.

188 inator.

A to two tor of Ex OPERA $\frac{3}{4} \times{ }_{6}^{6}$
$\frac{5}{6}$
must r new do mators.
RUL nomina

Note

Redu nator.
1.
2.
3.
4. $\frac{5}{6}$

Mental Dxercises.

1. In $\frac{1}{5}$ of 1 how many tenths?
2. In $\frac{3}{4}$ of 1 how many twentreths?
3. In $\frac{7}{8}$ of 1 how many thirty-sixths?
4. In $\frac{5}{7}$ of 1 how many fourtcenths?
5. In $\frac{2}{9} 5$ of 1 how many one hundred and eightieths?

Exercises for the Siate.

1. Reduce $\frac{3}{8}$ to a fiaction whose denominator is 264 .
fraction
improper
fractions
Ans. $\frac{5639}{2} \frac{9}{5}$
126 上

- $\frac{8}{2} \frac{2}{9} 9$
$2 \frac{35}{5} \frac{3}{3}$
123332
15318.2
division, plication; est terms.
ator is 24 .
24 , the the dection, to is term 6. 4 is the f6. We II.,) and as of the

Ans. $\frac{99}{267}$
2. Reduce $\frac{12}{1} \frac{2}{7}$ to a fraction whose denominator is 51 .
3. Reduce $\frac{125}{4} \frac{5}{66}$ to a fraction whose denominator $\frac{36}{51}$
4. Reduce $\frac{5}{0}$ to a fiaction whon Ans. $\frac{1090}{3} \frac{10}{48}$ Ans. $\frac{1}{3}$
i $6: 00$.

CASE Vi.

Ans. $\frac{35}{63} \frac{0}{0}$
1:3. To recluce two or more fractions to a common denominator.

A Connmon Denominator is a denominator common to two or more fractions. Thus 4 is the common denominia tor of $\frac{1}{4}, \frac{3}{4}$ and $\frac{2}{4}$.

Example.-Reduce $\frac{3}{4}$ and $\frac{5}{6}$ to a common denominator. operation. Analysis.-We midtiply the terms of $\frac{8}{4} \times{ }_{6}^{6}=\frac{18}{2} \frac{8}{4}$ the first fraction by the denominator of the $\frac{5}{6} \times{ }_{4}^{4}=\frac{20}{2} \frac{1}{4} \quad$ second, and the terms of the second fraction must reduce by the denominator of the first, (126.) This new denominator will be the same denominator, for each nators. Hence the

RUILE. Multiply the terms of each fraction by the denominators of all the other fractions.
Note.-Mixed numbers must first be reduced to improper fractions

Enercises for the Slate.

Reduce to equivalent fractions having a common denominator.

1. $\frac{1}{2}, \frac{3}{4}, \frac{5}{6}$ and $\frac{1}{9}$.
2. $\frac{4}{5}: \frac{7}{12}$, and $\frac{5}{6}$.
3. $\frac{9}{16} \cdot \frac{1}{3}$ and $\frac{2}{9}$.
4. $\frac{5}{6}, 2 \frac{1}{2}, \frac{3}{4}$ and $\frac{1}{3}$.
5. $1 \frac{7}{8}, 1_{0}^{3}$ and 4.

CASE VII.

138. To renlure fiactions to the least common denominator.
'The Least Connmon Denominator of two or more fractions, is the least common denonimator to which they can all be reduced, and it must be the least common multiple of the lowest denominators.

Note.-. \cdot. stands for therefore.
Example.-Reduce $\frac{1}{6}, \frac{3}{4}$ and $\frac{5}{8}$ to the least common denominator.

OPERATION.

$$
3 \times 4 \times 2=24
$$

Therefore $2 \times 2 \times 2 \times 3=24$
Since $244^{3} \div 6=4 \therefore \frac{1}{6} \times \frac{4}{4}=\frac{4}{2} \frac{4}{2}$
" $24 \div 4=6 \therefore \frac{3}{4} \times \frac{6}{6}=\frac{18}{2} \frac{8}{4}$
" $24 \div 8=3 \therefore \frac{5}{8} \times \frac{3}{3} \div \frac{15}{24}$

Analysis.-We find the least common multiple of the given denominators, which is 24.This must be the least common denominator to which the fractions can be reduced. We then divide this least common multiple, 24, by the denominator of the given fraction, and multiplying each term of that fraction by the quotient, (126,) we have the answer. Hence the
RULE. I. Find the least common multiple of the given denominators, for the least common denominator
II. Divide this common denominator by each of the given denominators, and multiply each numerator by the corresponding quotient. The products will be the new numerators.

Note. 1. Mixed numbers must first be reduced to improper fractions.
2. If the several fractions are not in their lowest terms, they should be reduced to their lowest terms before applying the rule.

Cxercises for the Slate.

Reduce the following to their least common denominater. 1. $\frac{2}{2} 5, \frac{3}{10}, \frac{47}{50}$ and $\frac{4}{75}$.

Ans. $\frac{1}{152}, \frac{45}{150}, \frac{141}{150}, \frac{8}{150}$
2. $\frac{1}{2}, \frac{3}{4}, \frac{5}{6}, \frac{7}{8}, \frac{9}{20}$, and $\frac{11}{12}$.

Ans. $\frac{60}{120}, \frac{90}{120}, \frac{10}{1} \frac{0}{20}, \frac{10}{1} \frac{5}{2}, \frac{54}{120}, \frac{1}{12} \frac{18}{2}$ $\frac{1}{3} \frac{68}{36}, \frac{1}{3} \frac{92}{36}, \frac{68}{3} \frac{8}{36}, \frac{82}{3} 37$
3. $\frac{1}{2}, \frac{4}{7}, \frac{8}{16}$, and $\frac{2}{2}$.
$\frac{12}{28}, \frac{18}{28}, \frac{11}{28}, \frac{15}{28}$
4. $\frac{3}{7}, \frac{9}{14}, \frac{11}{2} \frac{1}{8}$ and $5 \frac{3}{7}$.
5. $\frac{4}{9}, \frac{2}{3}, \frac{1}{3}, \frac{1}{4}, \frac{1}{6}$ and $\frac{1}{12}$.
$\frac{16}{36}, \frac{24}{26}, \frac{12}{36}, \frac{9}{3}, \frac{6}{36}, \frac{3}{36}$
6.
zominator. or more they can ultiple of mon de--We find mon multin denomis 24 . the least rominator fiactions ed. We this least tiple, 24, inator of ction, and ach term on by the
the given r
the given ie corresw nume-
improper erms, they e rule.
minatcr. $, \frac{141}{1} \frac{1}{60}, \frac{8}{150}$
, $\frac{54}{120}, \frac{121}{12} 8$, $\frac{68}{336}, \frac{82}{33}$ $\frac{8}{8}, \frac{11}{2} \frac{1}{8}, \frac{15}{28}$ $3^{7}, 3^{6} 6^{3}, 3^{8} 6$
6. $7 \frac{3}{4}, 5_{\frac{6}{11}}^{6}, 7$, and 8 .
7. $\frac{25}{40}, \frac{25}{20}$, and $\frac{14}{64}$.
8. $\frac{4}{15}, \frac{5}{75}, \frac{32}{56}$, and $4 \frac{1}{3}$.
9. $1 \frac{1}{2}, 2 \frac{1}{3}, 3 \frac{1}{6}, 5 \frac{1}{6}$, and $\frac{7}{0}$.
10. $\frac{4}{1 \mathrm{~T}}, 7 \frac{1}{2}, \frac{20}{3}$ and 5 .

To relluce a compound fraction to a simple $\frac{24}{68}, \frac{495}{6}, \frac{49}{66}, \frac{380}{68}$

Example.-Reduce $\frac{5}{6}$ of $\frac{3}{7}$ to a simple fraction.
Explanation.-To take $\frac{1}{6}$ of $\frac{3}{5}$ we divide by 6 , that is we multiply the denominator 7 by 6 , and obtain $\frac{3}{42}$; and if $\frac{3}{42}$ is $\frac{1}{6}, \frac{5}{6}$ will be 5 times $\frac{3}{42}$, that is $\frac{3}{24} \times 5=\frac{15^{42}}{42}$. We see from this operation that we have multiplied the 7 by 6 and the 3 by 5 , thus $\frac{5 \times 3}{6 \times \frac{3}{7}}=\frac{15}{42}=\frac{5}{14}$. Hence we have the following-
RULE. - Multiply the numerators together for the numarator, and the denominators for the denominator.
Note.-The work is shortened hy cancelling all factors common to both numerator and denominator before multiplynge, thus

$$
\frac{5}{6} \text { of } \frac{8}{7}=\frac{5}{2} \text { of } \frac{1}{8}=\frac{5}{1} \frac{5}{4} \text {. }
$$

Exercises.

1. Rerluce $\frac{9}{1 \mathrm{I}}$ of $\frac{13}{18}$ to a simple fraction.
2. Reduce $\frac{1}{2}$ of $\frac{3}{4}$ of $\frac{5}{6}$ to a simple fraction.
3. Reduce $\frac{7}{16}$ of $\frac{5}{14}$ of $\frac{8}{10}$ to a simple fraction.
4. Reduce $\frac{5}{6}$ of $\frac{3}{8}$ of 9 to a simple fraction.
5. Reduce $\frac{4}{7}$ of $3 \frac{1}{2}$ of $\frac{5}{6}$ to a simple fraction.
6. Reduce $\frac{1}{3}$ of $4 \frac{1}{5}$ of 5 to a simple fraction.
7. What part of a yd. is $\frac{1}{5}$ of $\frac{1}{8}$ of 1 yd ? Ans. $\frac{1}{40} \mathrm{yd}$.
8. What fraction of 1 cwt . is $\frac{8}{3}$ of $\frac{1}{5}$ of $\frac{4}{9}$ cwt.? Ans. $\frac{8}{135} \mathrm{cwt}$.
To reduce a complex fraction to a simple fraction.
Example.-Reduce $\frac{3 \frac{1}{4}}{5 \frac{2}{3}}$ to a simple fraction.
Explanation.-To reduce the fraction to a simple one we have to get rid of the fractional part in the numerator and denominator. This can be done by multiplying the terms of the fraction by the least common multiple of the denominators of the fraction parts, thus $\frac{3 \frac{1}{4} \times 12}{5 \frac{2}{3} \times 12}=\frac{39}{6}$ Ans.

ADDITION OF FRACTIONS.

2nd Exampie.-Reduce $\frac{\frac{4}{6}}{\frac{3}{4}}$ to a simple fraction.
Enflanation.-The least common multiple of the denomnators 5 and 4 is 20 . Multiply the terms by 20, thus $\frac{\frac{4}{6}}{\frac{3}{4}}=\frac{\frac{4}{3} \times 20}{\frac{3}{4} \times 20}=\frac{10}{15}=1 \frac{1}{15}$. Hence the-
RULE.-Multiply the terms of the fraction by the least common multiple of the denominators of the fractional parts.

Exercises.

1. Reduce $\frac{4 \frac{1}{2}}{2 \frac{1}{4}}$ to a simple fraction.

Ans. 2
2. Reduce $\frac{11 \frac{3}{7}}{\frac{4}{7}}$ to a simple fraction.

Ans. 20
3. Reduce $\frac{\frac{1}{2}}{\frac{1}{6}}$ of $\frac{3}{4}$ of $\frac{5}{7}$ to a simple fraction.

Aus. $3 \frac{3}{2} \sigma$
Nors.- Reduce the compound fraction to a simple one before applyinğ the rule.
4.-Reduce $\frac{\frac{2}{5} \text { of }}{\frac{2}{9} \text { of }} 4 \frac{5}{6}-\frac{1}{2}$ a a simple fraction.

Ans. $\frac{1}{3}$
5. Reduce $\frac{\frac{7}{7} \frac{7}{20}}{15^{\frac{2}{4}}}$ to a simple fraction. Ans. $\frac{1}{27}$
6. Reduce $\frac{17}{18 \frac{1}{2}}$ to a simple fraction.

Ans. $\frac{34}{3}$
Note.-Complex fractions are sometimes reduced to simple fractions by means of division of fractions. The above method will generally be found more convenient.

ADDITION OF FRACTIONS. Case I.

184. To ald fractions having a common denominator.

Example.-What is the sum of $\frac{1}{9}, \frac{2}{9}, \frac{3}{9}$ and $\frac{7}{9}$?
oferation.
Analysis.-Since $\frac{1}{9}+\frac{2}{9}+\frac{3}{9}+\frac{7}{9}=\frac{13}{9}=1 \frac{4}{9}$, Ans. the given fractions have a common denominator, 9 , their sum may be found by adding their numerators, $1,2,3$, and 7 , and placing the sum, 13 , over the common denominator. We thus obtain $\frac{13}{3}=1 \frac{4}{9}$, the required smm. Hence the
the side
RULI

1. A
2. A
3. Λ
4. A

5 A,

RULE．Add the numerators，and place the sum over the common denominator．

Exercises for the Slite．

1．Addl $\frac{3}{10}, \frac{5}{10}, \frac{6}{10}, \frac{7}{10}, \frac{8}{10}$ and $\frac{8}{10}$ ．
2．Add $\frac{1}{12}, \frac{8}{12}, \frac{4}{12}, \frac{7}{12}$ ，and $\frac{1}{12}$ ．
3．Add $\frac{1}{2 \sigma}, \frac{3}{20}, \frac{7}{2 \sigma}, \frac{9}{20}, \frac{1}{21}$ and $\frac{1}{2} \frac{7}{0}$ ．
4．Find the sum of $\frac{5}{27}, \frac{7}{2}, \frac{1}{2} \frac{1}{4}$ and $\frac{2}{2} \frac{1}{4}$ ．
5．Find the sum of $\frac{13}{2 \frac{3}{5}}, \frac{72}{2} \frac{1}{2}, \frac{1}{2} \frac{1}{2}$ and $\frac{1}{2} \frac{5}{2} 5^{\circ}$

Ans．3名

Ans． 2

Ans． 20

Aus． $3 \frac{3}{20}$
one before

Ans．$\frac{1}{3}$

Ans．$\frac{1}{27}$

Ans．$\frac{34}{3}$
mple frac－ ethod will
nator．
s．－Since fiactions amon de－ eir nume－ the com－ required

CASE II．

13．－To add fractions heving different denominators． Erample．－What is the sum of $\frac{4}{5}$ and $\frac{7}{9}$ ？

FIRST OPERATION．
$\frac{4}{6}+\frac{7}{9}=\frac{30}{45}+\frac{35}{45}=\frac{71}{4}=1 \frac{26}{4}$ Ans． bers only，or those of the same unit valnefan add like num－ ean add the nume nator，but not otherwise． denominator，we first reduce the $\frac{4}{5}$ and $\frac{7}{9}$ have not a common
 the same as whole numbers，and minerators， $36+35=71$ ， mon denominator．
SECOND OPERATION．
$\left.\begin{array}{l}\frac{4}{5}=36 \\ \frac{7}{9}=35\end{array}\right\} 45$ L．C．M．

$$
\frac{71}{45}=1 \frac{26}{46} \mathrm{Ans} .
$$

Analysis．－Since it is easier to perform addition when the num－ bers are in columns，we therefore place the new numerators as in addition of simple numbers and write the common denominator at the side．From the above examples we have the following RULE．I．Reduce the fractions to a common or to their least common denominator．
II．Add the numerators，and place the sum over the common denominator．

Exercises for the Shate．

1． $\operatorname{Add} \frac{1}{2}, \frac{3}{4}, \frac{5}{6}, \frac{7}{8}$ and $\frac{9}{10}$ ．
2．Aild $\frac{3}{4}, \frac{1}{8}, \frac{2}{7}$ and $\frac{5}{12}$ ．
3．Ald $-\frac{4}{1} \frac{2}{4}, \frac{9}{7 \pi}, \frac{7}{2} \frac{12}{8}$ and $\frac{1}{1}$ ．
4．Add $\frac{7}{8}, \frac{11}{12}, \frac{17}{1}, \frac{23}{2} 4$ and $\frac{26}{2}$ ．
5 Ald $\frac{8}{9}, \frac{9}{10}, \frac{10}{11}, \frac{1}{12}, \frac{1}{1} \frac{2}{3}, \frac{13}{1 \frac{3}{4}}$ and $\frac{1}{1} \frac{4}{5}$ ．

Photographis Sciences

Corporation

CASE III.

188. To add mixed numbers

Example.-Add $3 \frac{1}{2}, 5 \frac{3}{4}$, and $7{ }^{7}{ }^{6}$.
OPERATION.
$3 \frac{1}{2}=31^{\frac{8}{6}}$
$5 \frac{8}{4}=5 \frac{1}{8}$
$7 \frac{1}{16}=7 \frac{1}{16}$
$15 \frac{21}{16}=16 \frac{5}{16}$ Ans. $16 \frac{5}{16}$. Hence the following-
RULE.-Add the fractions and intsgers separately, and then add their sums.

Exercises for the Slate.

1. Add $5 \frac{1}{2} 3 \frac{1}{3}, 4 \frac{5}{8}$ and $6 \frac{1}{4}$.

Ans. $19 \frac{17}{4}$
2. Find the sum of $\frac{7}{8}, 1 \frac{7}{12}, 10 \frac{5}{6}$, and 5 .
3. Find the sum of $186 \frac{1}{4}, 183 \frac{8}{8}$, and $196 \frac{8}{16}$.
4. Wlat is the sum of $3 \frac{1}{\frac{1}{2}}, 126 \frac{1}{8}$, and $144 \frac{5}{28}$.
5. Bought 5 lots of land containing $12 \frac{7}{8}$ acres, 105_{10}^{9} acres, $18 \frac{1}{4}$ acres, $15 \frac{1}{12}$ acres, and $5 \frac{1}{6}$ acres; how many acres are in the 5 lots?

Ans. $158 \frac{18}{128}$
6. A grain merchant bought $126 \frac{3}{4}$ bushels of wheat for $136 \frac{9}{10}$ dollars, $367 \frac{1}{4}$ bushels of barley for $219 \frac{3}{4}$ dollars, $506 \frac{1}{1} \frac{1}{2}$ bushels of oats for $236 \frac{3}{16}$ dollass; how many bnshels of gran lid he buy, and how much did he pay for the whole?

$$
\text { Ans. }\left\{\begin{array}{r}
1000 \frac{1}{2} \text { bushels. } \\
592 \frac{27}{8} 7 \\
\text { dollars. }
\end{array}\right.
$$

SUBTRACTION OF FRACTIONS.

CASE 1.
187. To subtract fractions having a common denominator. Example.-From $\frac{7}{10}$ take $\frac{8}{10}$.

operation.

$$
\frac{9}{10}-\frac{8}{10}=\frac{7-8}{10}=\frac{4}{10}=8
$$

Analusis.- Since the given fractions have a common denominator, 10 , we find
the difference by subtracting 3 , the less numerator, from 7 , the greater, and write the remainder, 4 , over the common denominator, 10. We thus obtain $\frac{4}{10}=\frac{2}{5}$, the required difference. Hence the following-

RULE Subtract the numerator of the subtrihend from the numerator of the minuend, and place the difference over the common denominator.

Exereises for tike Slate.

1. From $\frac{5}{8}$ take $\frac{8}{9}$
2. From $\frac{6}{18}$ take $\frac{5}{18}$.

ว. From ${ }_{11}^{15}$ take $\frac{81}{11}$.
4. From $\frac{689}{163}$ take $\frac{854}{163}$.
5. From $\frac{75}{106}$ take $\frac{4 \pi}{108}$.
6. From $\frac{19}{34} \frac{2}{6}$ take $\frac{110}{345}$.

Ans. ${ }^{3}$
4
7 ${ }^{79} 8$ 168 ${ }^{38}$

CASE 17.
138. To subtract fractions having different denominators. Example.-From $\frac{5}{8}$ take $\frac{3}{7}$.

OPERATION.
Analysis.-$\frac{5}{8}-\frac{2}{7}=\frac{25}{38}-\frac{24}{58}=\frac{35-24}{56}=\frac{11}{68}$, Ans. Asinwholenum-

$\frac{11}{66}$, Ans.
have a common denominator. As 5 and only when they mon denominator, we first reduce them to $\frac{7}{7}$ have not a cominator, and then subtract the less numerator, 24 , from the greater numerator, 35 , and write the difference, 11 , over the common denominator, 56 . We thus obtain $\frac{11}{68}$, the required difference. Hence the following-
denominator.
Since the have a comor, 10 , we find
rator, from 7, the common required dif-

RULIT. Reduce the fractions to a common denominator and subtract as in the former rule.

Excrcises for the Slate

1. From $\frac{7}{8}$ take $\frac{5}{6}$.
2. From $\frac{19}{31}$ take $\frac{5}{62}$.
3. From $\frac{84}{120}$ take $\frac{4}{86}$.
4. From $\frac{85}{80}$ take $\frac{14}{200}$.
5. From $\frac{18}{86}$ take $\frac{31}{196}$.

CASE III.

139, To subtract mixell numbers.
Example.-What is the difference between $18 \frac{1}{4}$ and $7 \frac{1}{3}$.
operation. $18 \frac{1}{4}=18{ }_{1}^{8}{ }^{8}$
$7 \frac{1}{3}=7 \frac{4}{12}$
$101 \frac{1}{2}$

Analysis.-We first reduce the fractional parts, $\frac{1}{4}$ and $\frac{1}{3}$, to a common denominator, 12. Since we cannot take $\frac{4}{15}$ from $\frac{3}{12}$, we add $1=\frac{12}{2}$ to $\frac{3}{12}$, which makes $\frac{1}{15}$, and $\frac{4}{12}$ from $\frac{15}{3}$ leaves $\frac{11}{1}$. Having taken 1 from the 18 there remain 17 , from which the 7 in the subtraliend is taken away, leaving 10. We thus obtain $10 \frac{1}{1} \frac{1}{2}$ the difference required.-Hence the following-

RULE.-Reduce the fractional parts to a common denominator, and then subtract the fractional and integral parts separately. Or,

We may reduce the mixed numbers to improper fractions, and subtract the iess from the greater by the usual method.

Exercises for the Shate.

i. J'rom $8 \frac{1}{4}$ take $5 \frac{1}{8}$.
2. From $27 \frac{5}{6}$ take $19 \frac{7}{10}$.
3. From $5 \frac{1}{2}$ take $4 \frac{3}{4}$.
4. From 27 take $18 \frac{1}{9}$.
5. From $3 \frac{17}{30}$ take $1_{\frac{4}{4}}^{25}$.
6. From a barrel of Kerosene oil containing $56 \frac{1}{8}$ gallons $27 \frac{1}{4}$ gallons were drawn; how many gallons remained?

Ans. $28 \frac{7}{8}$
7. If flour, which cost $\$ 6 \frac{7}{8}$ per barrel, be sold for $\$ 7 \frac{3}{4}$ per barrel, what will be the gain per barrel? Ans. $\$ \frac{7}{8}$
8. From the sum of $5 \frac{1}{4}, 3 \frac{1}{8}$ and $8 \frac{1}{16}$ take the sum of $2 \frac{1}{8}$, $7 \frac{7}{9}$ and $\frac{13}{2}$.
9. What fraction added to $\frac{13}{13}$ will make $\frac{19}{20}$? Ans. $\frac{3}{140}$
10. A man having $368 \frac{1}{8}$ dollars, paid $\$ 100 \frac{7}{10}$ for a horse, $\$ 25 \frac{1}{4}$ for a set of harness, $\$ \frac{3}{16}$ for a whip, and $\$ 175 \frac{7}{1 / 2}$ for a waggon; how much had he left? Ans. $\$ 66 \frac{97}{240}$

MULTIPLICATION OF FRACTIONS.

CASE I.

140. To multiply a fraction by an integer.

Example 1.-If 1 yard of cloth cost $£ \frac{3}{4}$, how much will 7 yds. cost?

OPERATION
$\frac{3}{4} \times 7=\frac{21}{4}=5 \frac{1}{4}$ Ans.
Analiysis.-Since 1 yd. cost 3 fourths of one pound, 7 yds . will cost 7 times 3 fourths of one pound, or 21 fourths, equal to $£ 5 \frac{1}{4}$.

A fraction is multiplied by multiplying its numerator (123.)

Example 2.-If 1 pound of Tea cost $\frac{9}{20}$ of a dollar, how much will 4 lbs. cost?
operation.
$\frac{9}{29} \times 4=\frac{9}{5}=1 \frac{4}{5}$ Ans. 5

Ans. ${ }^{11}$

Ans. $28 \frac{7}{8}$ $\$ 7 \frac{3}{4}$ per Ans. $\$ \frac{7}{8}$ um of $2 \frac{1}{8}$, Ans. $6 \frac{23}{432}$ Ans. ${ }^{\frac{8}{4} 0}$ r a horse, $5 \frac{7}{1}$ for a S. $\$ 66 \frac{97}{24} \sigma$
7. Multiply $17 \frac{1}{8}$ ly 5.

Ans. 85 夏
8. Multiply $\frac{81}{12}$ by 7 .
$1 \frac{90^{\circ}}{}$
9. Multiply $16 \frac{5}{8}$ by 16.

266
10. Multiply $\frac{10}{1} \frac{1}{8}$ by 544.

404
11. If 1 ton of hay cost $\$ 8 \frac{8}{10}$, what will 12 tons cost?

Ans. \$105 ${ }^{\text {z }}$
12. What will 14 yds . of silk cost at $1 \frac{7}{8}$ dollars per yard? Ans. \$26

CASE II.

141. To multiply a whole number by a fraction.

Example.-At 83 dollars an acre, how much will $\frac{8}{6}$ of an acre cost?

OPERATION.
83 price of 1 acro. 3
5) $249=$ cost of 3 acres.
$494=" \frac{3}{8}$ of an acre.

Analysis. - Multiplying the price of 1 acre by 3 , we have the price of 3 acres; and as $\frac{1}{5}$ of 3 acres is the same as $\frac{3}{5}$ of 1 acre, we divide the cost of 3 acres by 5 , and we have the cost of $\frac{8}{5}$ of an acre.

Hence the following-
RULW. Multiply the given number by the numerator and divide the product by the denominator.

Note.-When the denominator is exactly contained in the given number, it will be found easier to first divide by it, and then nultiply the quotient by the numerator.

Exercises for the Slate.

1. Multiply 4 by $\frac{5}{9}$.

Ans. $2 \frac{2}{9}$
2. Multiply 165 by ${ }_{3}^{4} 3$.
3. Multiply 457 by $\frac{7}{12}$. $266 \frac{7}{12}^{\frac{7}{2}}$
4. What is $\frac{11}{28}$ of 4261 .
5. What is $\frac{7}{12}$ of 1644 .
6. Multiply 26 by $5 \frac{3}{8}$.

OPERATION.

139_{4}^{3}, Ans.

Analysis. - We multiply by the integer and fraction separately, and add the products ; or reduce the mixed number to animproper fraction, and then multijly by it.

Ans． 85 咅 of 1 acre， cost of 3 I we have an acre．

7．Multiply 83 by $7 \frac{1}{5}$ ．
8．Multiply 45 by $8 \frac{1}{3}$ ．
9．Multiply 156 by $\frac{3}{3}$ ．
10．If a man walk 16 miles in one day，how many will 108 travel in $112 \frac{3}{8}$ days？

11．At 18 dollars per ton，Ans． 1798 hay？
$18 \frac{7}{9}$ tons of Ans．\＄338
CASE III．
142．To multiply a fiaction by a fraction．
Example 1．－At $\frac{8}{8}$ of a dollar per yard，how much will $\frac{3}{4}$ of a yard cost？
operation．Analysis．－Since 1 yard cost $\frac{8}{8} \times \frac{1}{4}=\frac{3}{32} \quad \frac{8}{8}$ of a dollar，$\frac{1}{4}$ of a yard will cost $\frac{1}{4}$ of $\frac{3}{8}$ ，which is $\frac{8}{82}$ of a dollar； and $\frac{3}{32} \times 3=\frac{9}{32}$ Ans．and as $\frac{1}{4}$ of a yard costs $\frac{8}{32}$ of a times as much，or $\frac{8}{82} \times 3$ dollar，$\frac{3}{4}$ of a yard will cost 3 that we have multiplied toget ${ }^{32}$ ．It will readily be seen 3，for a new numerator，and ther the two numerators， 3 and for a new denominator，as the two denominators， 8 and 4， operation．Hence for multiplication of fractions we the this general

RULE．I．Reduce all integers and mixed numbers to improper fractions．
II．Multiply together the numerators for a new numera－ tor，and the denominators for a new denominator．
Note．－Cancel all factors common to numerators and denominators．

Exercises for the Slate．

1．Multiply $\frac{2}{3}$ by $\frac{3}{4}$ ．
2．Multiply $\frac{5}{8}$ by $\frac{17}{10}$ ．
3．Multiply $\frac{88}{65}$ by $\frac{100}{250}$ ．
4 Multiply $\frac{1}{2}$ of 75 by $\frac{2}{3}$ of 28 ．$\frac{188}{48}$
5 Multiply $\frac{4}{5}$ of $10 \frac{3}{4}$ by $\frac{2}{8}$ of $8 \frac{1}{4}$ ．
6．Multiply $\frac{7}{8}$ of $\frac{9}{10}$ of 20 by $25 \frac{1}{2}$ ．
7．At $\frac{8}{8}$ of a dollar per pound，what will $401 \frac{6}{8}$ cost？
Ans．$\frac{1}{8}$ of a doll．
8．What cost $125 \frac{1}{2}$ bbls．of flour at $\$ 7 \frac{3}{4}$ per bbl．？
Ans．\＄972亘
9. If a man travels $40 \frac{3}{6}$ miles per day, how far will he travel in $135 \frac{1}{2}$ days?
10. Bought $126+$ barrels of flour at $\$ 8 \frac{3}{8}$ per barrel ; and sold $58 \frac{1}{2}$ barrels at $\$ 7 \frac{5}{8}$ per barrel, and the balance at $\$ 81_{1}^{1} \frac{1}{6}$ per barrel; how much was the gain?

Ans. \$61 $\frac{1}{6} \frac{9}{4}$

DIVISION OF FRACTIONS.

CASE \mathbf{I}

143. To divide u fraction by a whole number.

Example.-If 4 yards of cotton cost $\frac{8}{9}$ of a dollar, what will 1 yard cost?
operation. Analysis.-If 4 yards cost $\$ \frac{8}{9}, 1$ $\frac{8}{9} \div 4=\frac{2}{9}$. Ans. by dividing its numerator (126), we divide the numerator of the fraction, $\frac{9}{9}$, by 4 , and we have $\frac{2}{9}$, the answer

Example 2.-If 5 bushels of apples cost $\frac{11}{1}$ of a pound, what will 1 bushel cost?

> operation.
$\frac{11}{1} \div 5=\frac{11}{12 \times 5}=\frac{11}{60}$, Ans.
Analysis. - Here we cannot divide the numerator by 5 without leaving a remainder ; but since a fraction is divided by multiplying the denominator, (126), we multiply the denominator of the fraction, $\frac{1}{1} \frac{1}{2}$, by 5 , and we have $\frac{11}{6}$, the required result. Hence the following -
RULE. Divide the numerator by the whole number, when it can be done without leaving a remainder; but when this cannot be done, multiply the denominator by the whole number.

Exercises for the Slate.

1. Divide $\frac{18}{2}$ by 9 .
2. Divide $\frac{24}{31}$ by 8 .

Ans. $\frac{2}{23}$
3. Divide $\frac{75}{125}$ by 25 .
$\frac{8}{81}$
4. Divide $\frac{64}{121}$ by 16.
$\mathrm{I}^{\frac{8}{25}}$
5. Divide $\frac{13}{1} \frac{3}{7}$ by 14 .
$1^{\frac{4}{2} 1}$
6. Divide $\frac{51}{8} \frac{1}{2}$ by 6 . $\frac{13}{238}$
7. At 18 dollars per ton, what part of a ton of hay can be bought for $\$ \frac{7}{8}$?
8. If 9 bushels of oats eost $7 \frac{1}{8}$ dollars, how much will 1 bushel eost?

$$
\begin{aligned}
& \text { OPERATION. } \\
& 7 \frac{1}{8}=\frac{57}{8}=\frac{57}{8}=\frac{19}{2}, \text { Ans. }
\end{aligned}
$$

Note.-We reduce the mixed number to an improper fraction and divide as before.
9. If 8 barrels of flour eost $126 \frac{5}{8}$ dollars, how much will 1 barrel eost? operation. Analysis.-Here we first divide as in sim-
8) $126 \frac{5}{8}$ ple numbers, and we have a remainder of 65 . $15 \frac{58}{8}$ which uce this to an improper fraction, $\frac{58}{8}$, the result, 58 , to the 10. If 1268 , price of each ?
11. If 22 horses eat $\frac{1}{8}$ of $1126 \frac{1}{8}$ Ans. $31 \frac{1}{3} \frac{9}{2}$ how mueh does each horse consume? Aus. 6.561 pounds

CASE II.

144. To divide a whole number by a fraction.

Example.-How many pounds of tea at $\frac{3}{4}$ of a dollar can be purehased for 15 dollars?
first operation. 15 4 of a dollar, the price of 1 pound is contained times in 15 dollars. Whole numbers eannot be divided by fourths, because they are not of the same denomination. Reducing 15 dollars to fourths by multiplying by 4 , we have 60 fourths; and 3 fourths is contained in 60 fourths 20 times, the required number of pounds.
Ans. $\frac{2}{23}$ SECOND OPERATION.
3) 15

5
4

20 pounds.
RULE. Multiply by the denominator and divide the

Exercises for the Slate.

1. Divide 21 by $\frac{3}{7}$.

Ans. 43
2. Divide 63 by ${ }^{9}$.
8. Divide 316 by $2^{9} 5^{\circ}$ 877
4. Divide 75 by $\frac{5}{9}$. 135
5. Divide 120 by $10 \frac{3}{4}$. $11 \frac{7}{43}$
6. Divide 145 by $12 \frac{1}{6}$. $11 \frac{187}{3}$
7. Divide $\frac{5}{8}$ of 320 by $\frac{5}{6}$ of $9 \frac{1}{3}$. $25 \frac{5}{7}$
8. Divide $\frac{1}{4}$ of $\$ 32$ by $\frac{1}{3}$ of $7 \frac{1}{2}$. $\$ 3 \frac{1}{6}$

CASE III.

145. To divide a fraction by a fraction.

Example.-At $\frac{2}{3}$ of a dollar per pound, how much tea can be bought for $\frac{4}{5}$ of a dollar?

OPERATION.
$\frac{4}{5} \times 3=\frac{12}{5}$
$1_{5}^{2} \div 2=\frac{1}{10}=1 \frac{1}{5}$ Ans.

Analyeis.-As many pounds as $\frac{2}{3}$ of a dollar is contained times in $\frac{4}{5}$ of a dollar. 1 is contained in $\frac{4}{5}$, $\frac{4}{5}$ times, and $\frac{1}{3}$ is contained 3 times as many times as 1 , or 3 times $\frac{4}{5}$, which is $\frac{12}{5}$ times, which is the number of pounds that can be bought at $\frac{1}{3}$. of a dollar per pound; but $\frac{2}{3}$ is contained $\frac{1}{2}$ as many times as $\frac{1}{3}$, and $\frac{12}{5}$ divided by 2 gives $\frac{1}{1} \frac{2}{0}$, equal to $1 \frac{1}{5}$ times, or the number of pounds that can be bought at $\frac{2}{3}$ of a dollar per pound.

We see in the operation that we have multiplied the dividend by the denominator of the divisor, and divided the result by the numerator of the divisor. Hence for division of fractions we have this general

RULE. I. Reduce whole and mixed numbers to improper fractions.
II. Invert the terms of the Divisor, and proceed as in multiplication.

Notes.-1. The dividend and divisor may be reduced to a common deaominator, and the numerator of the dividend be divided by the numerator of the divisor; this will give the same result as the rule.
2. Use cancellation where practicable.

Exercises for the Slate.

1. Divide $\frac{5}{6}$ by $\frac{8}{9}$.
2. Divide $\frac{5}{9}$ by $\frac{1}{6}$.
3. Divide $\frac{1}{3}$ by $\frac{7}{12}$.

Ans． 43

ILEDUCTION OF DENOMINASE FRACTIONS．

4．Divide $\frac{4}{5}$ 年 by $\frac{2}{3}$ ．
5．Divide $\frac{1}{2}$ of $\frac{3}{4}$ of 6 by $\frac{2}{3}$ of $\frac{3}{4}$ of 5 ．
6．Divide $\frac{8}{4}$ of $\frac{5}{7}$ of $\frac{1}{8}$ by $\frac{1}{2}$ of $\frac{2}{3}$ of 6 ．
7．How many times is $\frac{4}{6}$ contained in $\frac{5}{6}$ ？
8．How many times is $\frac{1}{2}$ of $\frac{3}{4}$ contained in $\frac{3}{7}$ of $2 \frac{1}{2}$ ？
Ans． $2 \frac{1}{7}$
9．What is the quotient of $\frac{1}{6}$ of $\frac{5}{8}$ of 36 divided by $1 \frac{8}{6}$ times $\frac{8}{6}$ ？

10．Divide $\frac{\frac{1}{2}}{\frac{3}{4}}$ by $\frac{2 \frac{1}{3}}{2 \frac{1}{4}}$
Ans． $23^{\frac{2}{4}}$
11．At $18 \frac{3}{4}$ cents a dczen，how many dozen of eggs can you buy for $87 \frac{1}{2}$ cents？

12．A grocer sold $15 \frac{3}{2}$ pounds of soda for $93 \frac{3}{3}$ Ans． $4 \frac{2}{2}$ doz． much was that per pound？
13．If $\frac{2}{3}$ of a yard cost $\frac{5}{6}$ of a dollar，what will Ans． $6 \frac{3}{62}$ ets．
14．How many times will $11 \frac{1}{3}$ gallons of Ans．$\$ 1 \frac{1}{4}$ which holds $\frac{1}{8}$ of $\frac{5}{6}$ of 2 gallons？

REDUC＇IION OF DENOMINATE FRACTIONS．

146．A Denominate Fraction is a fraction whose

 integral unit is one of a denomination of some compound number．Thus，$\frac{3}{7}$ of an lour is a denominate fraction，the integral unit being one hour；so are $\frac{3}{5}$ of a mile，$\frac{2}{3}$ of a bushel，\＆c．，denominate fractions．
CASE I．

147．To reduce a fraction of a nigher denomination to an quivalent fraction of a lower denomination．
Example．－Reduce $£_{\overline{7}{ }^{\frac{\rho}{2}} \boldsymbol{\sigma}}$ to the fraction of a penny．
$\stackrel{£}{ }$ operation．Analysis．－To $7_{20}^{2} \times \frac{20}{1} \times \frac{12}{12}=\frac{480}{20}=\frac{2}{3}$ d．Ans．reduce pounds to

$$
\left.3 \underset{\pi \angle \emptyset}{\varnothing 9}\right|_{2 \sim}
$$

pence，we must mul－ tiply by 20 ，and 12, the numbers in the table of money．And since the given num－ ber is a fraction of a pound，we indicate the process as in，mul

104 REDUCTION OF DENOMINATE FRACTIONS.

tuplication of fractions, and after cancelling, obtain $\frac{2}{3}$ the answer. Hence the following-

RULE. Multiply the fraction of the higher denomination by the numbers in the table, successively, between th. given and required denominations.

Exercises for the Slate.

1. Reduce $\frac{\sigma^{4} 1^{4}}{}$ of 1 lb . avoirdupois to the fraction of an ounce.

Ans. $\frac{{ }_{2}^{f} 14}{217} \mathrm{oz}$.
2. Reduce $\frac{25}{5}$ of a day to the fraction of an hour.
3. Reduce $\frac{{ }_{2}{ }^{6} 84}{}$ of 1 mile to the fraction of a pole.

Aus. $\frac{20}{2}$ pole.
4. Reduce $\frac{1}{8 \delta}$ of 1 bushel to the fraction of a pint.

Ans. $\frac{1}{6}$ pt.
5. Reduce $\frac{1}{8}$ of $\frac{2}{9}$ of 1 pound, avoirdupois, to the ira ion of an oupce.

Ans. $\frac{8}{2} \frac{2}{7}$ or $1 \frac{5}{27} \mathrm{oz}$.
6. Reduce $\frac{2}{9}$ of $\frac{1}{8}$ of 2 pounds to the fraction of an ounce Troy.

Aus. $\frac{2}{3} \mathrm{oz}$.

> CASE II.
148. To reduce a fraction of a lower denomination to an equivalent of a higher denomination.

Example.-Reduce $\frac{2}{3}$ of a penny to the fraction of $£ 1$.
operation. $\frac{2}{8} \times \frac{1}{12} \times \frac{1}{20}=\frac{2}{72 \sigma}=\frac{1}{3 \text { ED }}$ £, Ans.

the answer. Hence the following-
RULE. Divide the fraction of the lower denominaticn by the numbers in the table, successively, between the given and required denominations.

Exercises for the Slate.

1. Reduce $\frac{1}{6}$ of a foot to the fraction of a yard.

$$
\text { Ans. } \frac{1}{18} \mathrm{yd} .
$$

2. Reduce ? of a yard to the fraction of a mile.
3. Reduce $\frac{3}{4}$ of a pound to the fraction Ans. 17 $^{\frac{8}{8} 80}$ mile.
4. What part of a pound is $\frac{8}{6}$ of a dram?

5. What part of a bushel is $\frac{4}{5}$ of a pint?
6. What fraction of a day is $6 \frac{7}{8} \frac{8}{7}$ hours?

Ans. $\frac{3}{28}{ }^{3} \mathrm{lb}$.
Ans. $\frac{1}{80}$ bus. Ans. $\frac{25}{8} \frac{5}{7}$ days.
148. To find the value of a fraction in whole numbers of a ioner denomination.
Example.--Find the value of $\frac{1}{2} \frac{7}{5}$ of a cwt.
operation.
cwt. cwt. qrs. lbs.

10 25

250
232

18

RULE. Consider the numerator of the given fraction as so many units of the given denomination, and divide by the denominator.

Exercises for the Slate.

Find the value of the following fractions.

1. $\frac{3}{8}$ of a week.
2. $\frac{5}{6}$ of a month.
3. $\frac{6}{4}$ of $\frac{3}{4}$ of 4 cwt .
4. $\frac{3}{4}$ of $\frac{1}{2}$ of 6 cwt .
5. $\frac{5}{6}$ of an acre.
6. $\frac{1}{2}$ of $\frac{8}{5}$ of $£ 2$.
7. $\frac{3}{8}$ of $3 \frac{2}{3}$ acres.
8. ${ }^{2}$ of $1 \frac{1}{1}$ ac. 1 ro. 20 po.
9. $\frac{11}{26}$ oí a day.

Ans. 2 da. 15 h.
3 wk .2 da. 8 h . 2 cwt .2 qrs. $7 \frac{1}{7} \mathrm{lbs}$. 2 cwt. 1 qr. 3 ro. $13 \frac{1}{3}$ po.
${ }^{2} 0^{1} 12 \mathrm{~s}$.
$2 \mathrm{oz} .3 \mathrm{drs} .2 \mathrm{scr} .16 \frac{68}{\frac{8}{7}} \mathrm{grs}$. $16 \mathrm{~h} .36 \mathrm{~min} .55 \frac{5}{13} \mathrm{sec}$.

CASE IV.
150. To reduce a compound number to a fraction of a higher denomination.

Example.-What part of $£ 2$ is 6 shillings and 3 pence?

OPERATION.
$6 \mathrm{~s} .3 \mathrm{~d} .=75$ pence. $£ 2=480$ pence. $\frac{75}{480}=\frac{5}{32}$ Ans.

Analys: s.-To find what part one compound number is of another, they must be reduced to the same denomination. In 6s. $3 d$ there are 75 pence, and in $£ 2$ there 480 pence. Since 1 penny is $\frac{1}{480}$ of $\mathfrak{f} 2,75$ pence is $\frac{75}{480}=3 \frac{5}{2}$ of $£ 2$. Hence the following rule :
RULE. I. Reduce both quantities to the lowest denomination contained in either.
II. Then place that quantity which is to be the fraction of the other as numerator, and the remaining quantity as denominator.

Exercises for the Slate.

1. Reduce $4 \frac{2}{3}$ shillings to the fraction of a pound.
2. Reduce 4 s .7 d . to the fraction of $£ 1$.
3. Reduce 9 s . $7 \frac{1}{2}$ d. to the fraction of $£ 712 \mathrm{~s}$. 6 d . $£_{\frac{7}{2} \frac{7}{2} \frac{4}{8}}$
4. What part of 1 lo . Troy is 16 dwt. 3 grs. ?
5. What part of 1 yd . is 2 ft .4 in .?
6. What part of 2 po. 4 yd . is $1 \frac{1}{2}$ feet?
7. Reduce $\frac{4}{5}$ of 1 qt . to the fraction of 1 gal . $\frac{1}{30}$
8. Reduce $\frac{5}{8}$ of 1 hour to the fraction of ${ }^{\frac{1}{5}}$ gal.
9. What part of 10 bu . is 10 qts . ?
10. Wrom a piece of land contain 4 a $\frac{1}{32}$ took 1 ro. 15 po. for a garden; what part of the whole did he take?
11. What fraction of 1 lb . avoirdupois is 1 lb . troy?

Nore.--See note on tainle of avoirdupois weight.

REDUCTION OF DECIMALS.

CASE I.

151. To reduce a decimal to a common fraction.

Example.-Reduce. 125 to its equivalent common fraction.

OPERATION.
$.125=\frac{125}{1000}=\frac{1}{8}$.

Analysis.- We omit the decimal point, supply the proper denominator. to the decimal, and then reduce the
common fraction thus formed to its lowest terms. Hence the following-
RULE. Omit the decimal point, and supply the proper

Exercises for the Slate.

Reduce the following to common fractions-

1. . 1674
2. . 125
3. . 468
4. . 008
5. . 725
6. . 9375

Ans. $\begin{gathered}887 \\ 8080\end{gathered}$	7. . 625	Ans. $\frac{5}{8}$
$\frac{1}{8}$	8. . 00375	$8{ }^{\frac{8}{00}}$
$\frac{117}{250}$	9. . 875	$\frac{7}{8}$
1 $\frac{1}{25}$	10. . 0095	$\frac{1}{2 \frac{1}{0} \frac{9}{0}}$
$4{ }^{29}$	11. . 1876	$\begin{array}{r}469 \\ 4500 \\ \hline\end{array}$
$\frac{1}{7} \frac{5}{6}$	12. . 1005	201 2000

152. To reduce a common fraction to a decimal.

Example 1.-Reduce $\frac{5}{8}$ to its equivalent decimal.
first operation.
$\frac{5}{8}=\frac{50}{8} 0000=\frac{625}{1000}=.625$, Ars. SECOND operation.
8) 5.000
.625
nificant figure of the denomingter, to teris by 8 , the sigdenominator, to obtain the decimal denominator, 1000 . Then the frection is changed to the decimal form by omitting the denominator. If the intermediate steps be omitted, the true result may be obtained as in the second operation.
Example 2.-Reduce $\frac{9}{32}$ to its equivalent decimal. Ophration. Anarysis.-Dividing as in the form-
32) $3.00000 \quad$ er example, we obtain a quotient of 4 er exanple, we obtain a quotient of 4
figures, 9375 . But since we annexed 5 ciphers, there must be 5 places in the required decimal ; hence we prefix one cipher. From these illustrations we derive the following RULE. I. Annex ciphers to the numerator and divide by the denominator. II. Point offas many decimal places in the result as are equal to the number of ciphers annexed.
Note.-A common fraction can be reluced to an exact decimal When its lowest denominator contains only the prime factors 2 and 5 ,

Analysis.-We first annex the same number of ciphers to both terms of the fraction, this does not alter its value. We then divide both result-
o. a farmer ${ }^{32}$ whole did
Ans. 14 troy?
on fraction. he decimal enominator. reduce the
 I

 8 Ans. $\begin{array}{r}£ \frac{7}{31} \\ \text { £ } \frac{11}{4} \\ \text { 6d. } \\ £_{1} \frac{7}{2} \frac{1}{8} \frac{1}{0}\end{array}$

Troy.
$\frac{7}{8} \mathrm{yd}$. d 3 pence? what part s of another, to the same $3 d$ there are there 480 is $\frac{75}{480}=\frac{5}{32}$ he fraction quantity as

md.

Exercises for the Slate.

Reduce the following fractional quantities to decimals-

1. $\frac{1}{2}$	Ans. . 5	6. $\frac{17}{256}$	Ans. . 06640625
2. $\frac{3}{4}$. 75	7. $\frac{19}{128}$. 1484375
3. $\frac{7}{8}$. 875	8. $\frac{13}{6} \frac{3}{4}$. 203125
4. $\frac{8}{16}$. 1875	9. 5^{512}	. 009765625
5. $\frac{1}{15}$. 375	10. $\frac{3}{128}$. 0234375

1.1. Reduce $\frac{1}{6}$ to a decimal.
12. Reduce $\frac{41}{333}$ tn a decimal.

Ans. $0.1666+$

Note. 1. The answers to the last two examples are called repeating decimals. The figure 6 in the 11th example, and the figures 123 in the 12 th , are called repetends, because they are repeated, or occur in regular order. The sign + indicates that there is still a remainder.
2. A repetend has a point placed over tie first and last figures to mark where it begins and ends.

CASE III.
158. To reduce a denominate decimal to whole numbers of lower denominations.

Example.-Reduce $£ .675$ to shillings and pence.

OPERATION.
.675
20
13,500
12
6,000

Analysis.- We first multiply by 20 to reduce the given number from pounds to shillings, and the result is 13 shillings and the decimal .500 of a shilling. We then multiply this decimal by 12 to reduce it to pence, and get 6 pence. Hence the answer is 13 s .6 d .
Ans. $£ 013 \mathrm{~s} .6 \mathrm{~d}$.
RULE. I. Multiply the given decimal by that number in the table which will reduce it to the next lower denomination, and point of as in multiplication of decimals.
II. Proceed with the decimal part of the product in the same mynner, until reduced to the required denominations. The integers on the left of the decimal point will be the answer required.

Exercises for the Slate.

Find the value of the following decimals.

1. £.725.
2. 125 cwt.
3. . 435 lbs. (avoir.)

Ans. £0 14s. 6d.
12 lb .8 oz.
$6 \mathrm{oz} .15 \frac{9}{25} \mathrm{drs}$.
4. 4826 gal.
5. . 845 hours.
6. .67 of a league.
7. .78875 of a long ton.
8. . 965625 of a mile.
9. . 815625 of a pound Troy.
10. . 07 of $£ 210 \mathrm{~s}$.
11. . 0474609375 of $£ 1013 \mathrm{~s} .4 \mathrm{~d}$.
12. . 875 of $£ 35 \mathrm{~s} .6 \mathrm{~d}$.

1 qt. 1 pt. 3.4432 gi. 50 min .42 sec.
2 m .3 po. $1 \mathrm{yd} .3 \frac{8}{5} \mathrm{in}$. 15 cwt. 3 qrs. 2 lb .12 .8 oz. 7 fur. 29 po.
9 oz .15 dwt. 18 grs.

$$
\text { 3s. } 6 \mathrm{~d} \text {. }
$$

$$
10 \mathrm{~s} .1 \frac{1}{2} \mathrm{~d} .
$$

£2 17 s . $3 \frac{3}{4} \mathrm{~d}$.

Case iv.
154. To reduce a compound number to a decimal of a higher denomination.

Example.- Reduce 3 qts. 1 pt. 3 gills to the decimal of a gallon.

OPERATION.

$$
4 \longdiv { \frac { 3 . 0 0 } { 1 . 7 5 0 } } \frac { \frac { 3 . 0 0 } { 3 . 8 7 5 0 0 } } { . 9 6 8 7 5 \text { gal. Ans. } }
$$

3 qts. 1 pt. 3 gills $=31$ gills. 1 gal. $=32$ gills. $\frac{\frac{2}{3}}{2}=.96875$ gal. Ans.

Analysis.-Since 4 gills make 1 pint, 2 pints make 1 quart, and 4 quarts 1 gallor:, there will be $\frac{1}{4}$ as many pints as gills, $\frac{1}{2}$ as many quarts as pints, and $\frac{1}{4}$ as many gallons as quarts. Or we may reduce 3 qts . 1 pt .3 gills io the fraction of a gallon (as in 150), and we have $\frac{31}{32}$ of a gallon, which reduced to a decimal equals . 96875 . Hence

RULF. I. Divide the lowest denominaton given by that number in the table which will reduce it to the next higher, and annex the quotient as a decimal to that higher.
II. Proceed in the same manner until the whole is reduced to the denominaton required. Or,
Reduce the given number to a fraction of the required denominaton (150), and reduce this fraction to a decimal.

Cxercises for the Slate.

Reduce

1. $£ 07 \mathrm{~s} .4 \frac{4}{5} \mathrm{~d}$. to the decimal of $£ 1$.

Ans. .£. 37
2. 10 s. $0 \frac{3}{4} d$. to the decimai of $£ 1$. £. 503125
3. 3 pks. 1.12 qt. to the decimal of a bushel. 785 bu
4. 10 oz .13 dwt .9 grs . to the decimal of 1 lb . Troy.

Ans. . 8890625 lb .
5. 2 oz .13 dwt . to the decimal of 1 lb . 22083 lb .
6. 4 da. 18 hrs . to the decimal of 1 week. . $6785714 \dot{2} \mathrm{wk}$.
7. $2 \frac{1}{8}$ inches to the decimal of $2 \frac{1}{5}$ miles. $.000015+$
8. $3 \frac{1}{2}$ acies to the decimal of $3 \frac{1}{4}$ sq. yards. 5212.307692 .
9. $\frac{5}{8}$ of a crown to the decimal of 21 s . . 148809523

Notw.-After working the precering exercises, require the pupil to reduce the sterling money on page 55 to Canada currency, at the rate of $\$ 486$.

PROMISCUOUS EXERCISES IN THE PRECEDING RULES.

1. Reduce $\frac{1}{3}, \frac{1}{4}, \frac{1}{5}$ and 6 to fractions having a common denominator. Ans. $\frac{20}{6}, \frac{15}{6}, \frac{12}{62}, \frac{868}{60}$
2. What is the value of . 75 of a yd ? Ans. 3 (gr.
3. Ald $4 \frac{1}{2}, 3 \frac{1}{3}, 5 \frac{1}{5}, \frac{3}{8}$ of $3 \frac{1}{2}$, and $\frac{1}{1 \frac{1}{2}}$.

Ans. $15 \frac{2}{8} \frac{1}{0}$
4. What number multiplied by $\frac{3}{8}$ will produce $1141 \frac{11}{64}$?

Ans. $3043 \frac{1}{8}$
5. If the dividend be $\frac{3}{4}$ and the quotient $\frac{1}{8}$, what is the divisor?

Ans. 6
6. If $\frac{3}{10}$ of a barrel of flour cost $\$ 2.34$, what will be the cost of a whole barrel.

Ans. $\$ 7.80$
7. If the smaller of two fractions be $\frac{24}{31}$, and their difference $\frac{7}{93}$, what is the greater?

Ans. $\frac{79}{83}$
8. Find the difference between $\frac{9}{3}$ of 6_{10}^{7} and $\frac{5}{9}$ of $4 \frac{8}{15}$.

Ans. $1 \frac{123}{3} 5$
9. Reduce $\frac{\frac{4}{\frac{1}{6}}}{}$ and $\frac{2 \frac{1}{3}}{1 \frac{1}{4}}$ to their simplest form.

Ans. 24 and $1 \frac{18}{18}$
10. Find the difference between $\frac{3}{4}$ of $5 \frac{1}{5}$ and $\frac{1}{8}$ of $2 \frac{3}{4}$.

Ans. $3 \frac{89}{160}$
11. Reduce $\frac{2}{3}$ of 13 s .6 d . to the decimal of $£ 1$.

Ans. £. 45
12. Reduce 7 grineas to the decimal of $£ 510 \mathrm{~s} .11 \mathrm{~d}$.
13. From the sum of $\frac{1}{4}, \frac{1}{6}, \frac{8}{8}$, and $3 \frac{1}{4}$ take the sum of $\frac{1}{5}$, $\frac{1}{5}$, $\frac{1}{9}$, and $\frac{1}{6}$ of $\frac{5}{8}$ and multiply the difference by $\frac{1}{5}$ of $3 \frac{1}{2}$.

Troy. 890625 lb . .22083 lb . $85714 \dot{2}$ wk. $.000015+$ 212.307692. 148809523
re the pupil ency, at the

G RULES.
a common $\frac{5}{0}, \frac{12}{6}, \frac{868}{68}$ Ans. 3 qr . Ans. $15 \frac{2}{8} \frac{1}{0}$ $1141 \frac{11}{64}$?
Ins. $3043 \frac{1}{8}$ hat is the

Ans. 6 vill be the Ans. \$7.80 heir differ-

Ans. $\frac{79}{8} \frac{3}{3}$ of $4 \frac{8}{15}$.
Ans. $1 \frac{12}{3} \frac{3}{5}$

4 and $1 \frac{18}{18}$ of $2 \frac{3}{4}$.
Ans. $3 \frac{89}{167}$
Ans. £. 45 11d.
$1.3251+$ m of $\frac{1}{5}$, $\frac{1}{6}$,
ns. $2 \frac{3}{2} \frac{1}{2} \frac{57}{7}$
91 forita Ans. $\frac{65}{87}$
15. At $\frac{1}{8}$ of $3 \frac{1}{2}$ dollars per bashel, how many bushels of apples can be bourght for $\$ 6 \frac{1}{2}$? Ans. $14 \frac{6}{7}$ bu.
16. A man owning $\frac{2}{6}$ of a factory sold $\frac{1}{3}$ of his share for $\$ 901 \frac{1}{4}$; what was the whole value of the factory?

Ans. $\$ 4055 \frac{5}{8}$
17. What number diminished by the difference between $\frac{3}{4}$ and $\frac{3}{6}$ of itself, leaves a remainder of 34 ?

Ans. 40
18. Find the sum of $\frac{2 \ddagger}{5}$ of $7 \frac{3}{4}$ and $1 \frac{3}{4} \div 2 \frac{1}{8}$. Ans. 4_{13}^{958}
19. Simplify $\left\{\frac{3}{4}+\frac{7}{6}\right.$ of $\left.5 \frac{1}{2}\right\} \times\left\{\frac{5}{8}+\frac{2}{3}+3 \frac{3}{4}\right\}$

Ans. 37点
Notr.-- Each of the quantities withou the brackets $\left\{\quad\left\{\begin{array}{l}\text { is first to }\end{array}\right.\right.$ be worked as indicated therein, before being multiplied together.
20. Simplify $\frac{4}{5}$ of $\frac{1}{2}-\frac{2}{8}$ of $\frac{9}{7}+\frac{8}{5}$ of $1 \frac{1}{19}$.

Ans. 1
21. If $\$ 7 \frac{1}{4}$ will buy $3 \frac{1}{4}^{3}$ cords' of wood, how many cords can be bought for $\$ 10 \frac{1}{2}$?
22. What is the sum of $\frac{1}{4}$ of a yard, $\frac{1}{7}$ of a foot, and. $\frac{4}{4} \frac{41}{5}$ of an inch ?
23. If 3 tons of hay cost $\$ 49$, what will $7{ }_{14}^{4}$ tons cost?

Ans. $\$ 120.27 \frac{3}{1 \mathrm{~T}}$
24. A man sold . 15 of an estate to one person and then did the remainder to another person; what part of the estate did he still retain?
25. Express $\frac{1}{2}\left(6 \frac{1}{2}+2 \frac{2}{3}-3\right)$ as a decmal. Ans. 8.083
26. Add together $\frac{8}{5}$ of a day, $\frac{2}{3}$ of an hour, and $\frac{4}{5}$ of 6 hours; and express the result as the decimal of a week.

Ans. 11825399^{6}
27. A man sold 1 ton of hay for $\$ 12$, and received $\frac{1}{2}$ the anount in sugar, at $\$ \frac{1}{8}$ a pound, $\frac{1}{3}$ in money, and the remainder in molasses at $\$ \frac{2}{5}$ a gallon; how many pounds of sugar, and how many gallons of molasses did he receive?

$$
\text { Ans. } 48 \mathrm{lb} \text {. sugar. }
$$

5 gal. molasses.
28. A man gave $\frac{2}{3}$ of $1 \frac{1}{5}$ times his ready money for a buggy, $\frac{3}{4}$ of what was left for a set of harness, and had $\$ 12$ remaining; what did he pay for the buggy? Ans. $\$ 192$
29. Express $\frac{3}{8}$ of a crown $+\frac{4}{3}$ of a shilling as a decimal of 7 shillings.

Aus. . 511

PRACTICE.

Example.-Find the price of 286 yards of cloth at $£ 1$ 5s. $7 \frac{1}{2}$ d. per yard.

If we first find the price at $£ 1$, then at 5 s ., and at $7 \frac{1}{2} \mathrm{~d}$., and add these three results, we shall have the price at $£ 15 \mathrm{~s} .7 \frac{1}{2} \mathrm{~d}$.

Now the price of 286 yards at $£ 1$ being $£ 286$, the price at 5 s . will be $\frac{1}{4}$ of that, or $£ 7110 \mathrm{~s}$, ; and the price at $7 \frac{1}{2} \mathrm{~d}$. will be $\frac{1}{8}$ of the price at 5 s ., that is $£ 818 \mathrm{~s} .9 \mathrm{~d}$. Adding these three results, we find the price at $£ 15$ s. $7 \frac{1}{2} \mathrm{~d}$. to le $£ 366$ 8 s .9 d . The operation may be written thus:-

$$
\begin{array}{lllllll|rlll}
\text { Price of } 286 & \text { yards } & \text { at } & £ 1 & 0 & 0 & £ 286 & 0 & 0 \\
\text { Price } & \text { " } & \text { " } & \text { " } & 0 & 5 & 0 & \frac{1}{4} & 71 & 10 & 0 \\
\text { Price } & " & " & " & 0 & 0 & 7 \frac{1}{2} & \frac{1}{8} & 7 & 8 & 18 \\
\hline
\end{array}
$$

The answer to this question might be found by compound multiplication : but the process is longer. The method of finding prices by aliquot parts is therefore commonly practised; hence it is called "Practice."
155. From the preceding operation we perceive that Practice is a short, or compendious, method of finding the value of any quantity, or number of articles, when the price of a unit of any denomination is given.
156. An Aliquot part of a quantity is such a part as, when taken a certain number of times will exactly make that quantity.

Preliminary Exercises.

1. Make a table of aliquot parts of a penny, a shilling, and a pound.
2. In the following list of aliquot parts name what part each is of another denomination. Thus--What is 3s. 4d. ? One sixth of a $£$.

3s. 4d., 2s. 6d., 10 s ., 2 s ., 3d., 4d., 6d., $1 \frac{1}{2} \mathrm{~d}$., 先., 2 s . 6d., 5 s ., $7 \frac{1}{2} d ., 2$ cwt., 15 cwt.; 5 lbs., 2 qrs., 2 gals., 4 pks.
3. What part of

4. What is the

4. of 8 s .	16 s .		
$\frac{1}{6} " 10 \mathrm{~s} \text {. }$	$\frac{1}{12}$ " 4 s .		
\% 3s. 4	${ }^{\frac{1}{2}}{ }^{\text {c }}$ • 7 s .9 d .	都" 7s.	5
	${ }^{\frac{3}{4}}{ }^{1} 66$	$\frac{2}{3}{ }^{\text {c }}$ 1	

5. Give the aliquot parts for

6. To find the value, when the given quantity is a simple number, and the price less than 1 shilling.

Example 1.-Calculate the price of 44 articles at 7d. operation.
44 at $1 \mathrm{~d} .=3 \mathrm{~s} .8 \mathrm{~d}$.
44 at $7 \mathrm{~d},=7$ times $3 \mathrm{~s} .8 \mathrm{~d} .=£ 15 \mathrm{~s} .8 \mathrm{~d}$.

$\begin{array}{lll}£ 1 & 5 & 8=\text { price at } 7 d\end{array}$
From the above illutiation we have the following-
RULE. - Find the price at 1 penny, and multiply by the pence in the price. Or,
Find the price by means of aliquot parts.

Exercises for the Slate.

Calculate the value of the following articles.

1. 24 at 3 d . and at 9 d .
2. 36 " 7 d , and " 5 d .
3. 126 at 10 d . and at 2 d .
4. 46 " 8 d . and " 4 d .
5. 63 " 10 d . and " 2 d .
6. 72 "ild. and " 1d.
7. 65 " 5 d . and " 7d.
8. 133 " 11d. and " 1d
9. 237 " 9d. and " 3 d .
10. 187 " 8d. and " 4d.
11. 483 " 7d. and " 5 d .
12. 209 " 5d. and " 7d.

Example 2.-Find the price of 126 at $7 \frac{1}{2} d$ each. OPERATION. 126 at $1 \mathrm{~d} .=10 \mathrm{~s} .6 \mathrm{~d}$. 126 at $7 \frac{1}{2}=7 \frac{1}{2}$ times 10s. 6d. $=£ 0 \quad 10 \quad 6$ $7 \frac{1}{2}$

0	5	3
3	13	6
-	18	9

OR,
126 at $7 \frac{1}{2} \mathrm{~d}$.
6d. is $\frac{1}{2}$ of $1 \mathrm{~s} .-\overline{63} 0=$ price at 6 d .
$1 \frac{1}{2} \mathrm{~d}$, is $\frac{1}{4}$ of $6 \mathrm{~d} . \quad 15 \quad 9$ = price at $1 \frac{1}{2} \mathrm{~d}$.
£ $318 \quad 9=$ price at $7 \frac{1}{2} \mathrm{~d}$.
13. 48 at $7 \frac{1}{2} d$, and at $4 \frac{1}{2} d$. 19.246 at $1 \frac{3}{4} \mathrm{~d}$. and at $10 \frac{1}{4} d$.
14. 89 " $9 \frac{1}{2} \mathrm{~d}$. and " $2 \frac{1}{2} \mathrm{~d}$.
15. 72 " $7 \frac{3}{4} \mathrm{~d}$. and " $4 \frac{1}{4} \mathrm{~d}$.
16. 126 " $1 \frac{1}{4} \mathrm{~d}$. and " $10 \frac{3}{3} \mathrm{~d}$.
17. 173 " $5 \frac{3}{4}$ d. and " $6 \frac{1}{4} d$.
18. 365 " $8 \frac{1}{2} d$. and " $2 \frac{1}{2} d$.

Nowe.-All the exercises given under this and subsequent rules should be worked by dollars and cents also, and thes verify the
results.

CASE II.

158. To find the value when the given quantity is a simple number, and the price given in shillings.

Example 1.-Find the price of 322 yds. at 6 s . per yard. OPERATION.
322 at 1 s . $=£ 162 \mathrm{~s}$.
322 at $6 \mathrm{~s} .=6$ times $£ 162==£ 9612 \mathrm{~s}$.
Multiplying by half the price and doubling the unit figure for shillings thus, 322 at 6 s .

3
£96 12 Ans. as before

Example 2.-Find the price of 137 yards at 17 shillings per yard.

OPERATION.
137
$8 \frac{1}{2}=\frac{1 \pi}{2}$
68 rem. $=1$.
1096 twice $4=8$.
£116 $9 \quad 0$ Answer.
From the above we derive the following
RULE:-Multiply by hali the number of shillings ; double the units figure of the product for shillings and take the others as pounds.

Exercises for the Slate.

Find the value of

1. 126 at 16 s . and at 4 s .
2. 182 " 15 s . and " 5 s .
3. 689 " 14 s . and " 6 s .
4. $128{ }^{6} 18 \mathrm{~s}$. and " 2 s .
5. 136 " 17 s . and '. 3 s .
6. 384 at 4 s . and at 16 s .
7. 596 " 9 s. and " 11 s .
8. 1832 " 11 s . and " 9 ş.
9. 1596 " 12 s . and " 8 s .
10. 1118 " 13 s . and " 7 s .
11. 1896 at 16 s .
12. 1346 " 17 s .
13. 1284 " 3 s .

Ans.
$£ 151616$.
$£$
$£ 1144$
2.
$£ 192$
12.

14. 48 at 9 s .

15. 327 " 11 s .

Ans. £21 12.

CASE III.

159. To find the value when the price consists of pounds and shillings.

Example.-What is the cost of 187 tons at $£ 611$ s. per ton OPERATION.
187
$65 \frac{1}{2}=$ half the number of shillings in the price.
9,3 remainder $=1$
93,5 twice $8=16$
1122

$$
\begin{array}{llll}
£ 1224 & 17 & 0 & \overrightarrow{17}
\end{array}
$$

Exercises for the Slate.

Find the value of
(1) 426 at $£ 78 \mathrm{~s}$. and at $£ 212 \mathrm{~s}$. ${ }^{(6)} 563$ at $£ 67 \mathrm{~s}$. and at $£ 313 \mathrm{~s}$.
(2) 446 " $£ 43 \mathrm{~s}$. and " $£ 517 \mathrm{~s}$. (7) 851 " $£ 813 \mathrm{~s}$. and " $£ 17 \mathrm{~s}$.

(5) 684 " $£ 91$ is. and " $£ 07 \mathrm{~s}$. ${ }^{(10)} 339$ " $£ 515 \mathrm{~s}$. and " $£ 45 \mathrm{~s}$.
11. 183 at $£ 213 \mathrm{~s}$.
12. 129 " £ 715 s .
13. 486 " 818 .
14. 596 " 919 s .

Ans. £484 19s.
£999 15 s .
$\$ 17301.60$.
$\$ 23720.80$

CASE IV.
160. To find the value of any number of articles, when the price is given in stillings and pence, or in pounds, shillings and pence.

Example 1.-If 1 yard cost 16 s. 3d., what will 127 yards cost at the same rate?

OPERATION.

10 s . is $\frac{1}{2}$ of $£_{1}$	127 at 16s. 3d. per. yard.						
	6	10	0		£)	10	0
5 s . is $\frac{1}{2}$ of 10 s .	3	15	$0=$	"	0	5	0
1 s .3 d . is $\frac{1}{4}$ of 5 s .	7	18	9	"	0	1	3
£103 3 9-price at £0 16							

Example 2.-Find the price of 187 yards at $£ 2$ 13s. 4 d . per yard.

OPERATION.

187 at £2 13s. 4 d .
2

From the foregoing we have the following
RULF.-Multiply the quantity by the pounds, if any, and take aliquot parts for the shillings and pence.

Exercises for the Slate.

(1) 132 at 3 s .9 d . and at 16 s 3 d . (7) 127 at $5 \mathrm{~s} .7 \frac{1}{2} \mathrm{~d}$. and at $14 \mathrm{~s} .4 \frac{1}{2} \mathrm{~d}$.
(2) 156 ". 3s. 4d. nd " 16 s .8 d .
(3) 909 " 18 s .4 d . and " 1 s .8 l .
(4) 365 " 12 s .6 d . and "
(5) 831 " $17 \mathrm{~s} .5 d$. and "
(6) 144 " 11 s .7 d . and "
13. 2436 at 15 s .
14. 2759 at 10 s .10 d .
15. 4938 at $15 \mathrm{~s} .7 \frac{1}{2} \mathrm{~d}$.
16. 9852 at 15 s . $11 \frac{1}{4} \mathrm{~d}$.
17. 3482 at $19 \mathrm{~s} .11 \frac{1}{4} \mathrm{~d}$.
18. 9584 at 11 s .63 d .
19. 7947 at $18 \mathrm{~s} .0 \frac{1}{4} \mathrm{~d}$.
20. $\quad 543$ at £ 18 s . 8 d .
21. 296 at £2 13s. 4 d .
(7) 127 at $5 \mathrm{~s} .7 \frac{1}{2} \mathrm{~d}$. and at $14 \mathrm{~s} .4 \frac{1}{2} \mathrm{~d}$.
(8) 295 " $12 \mathrm{~s} .2 \frac{1}{2} \mathrm{~d}$ and ${ }^{4} 7 \mathrm{~s} .9 \frac{1}{2} \mathrm{~d}$.
(9) 987 " $12 \mathrm{~s} .1 \frac{1}{2} \mathrm{~d}$. and " $7 \mathrm{~s} .10 \frac{1}{2} \mathrm{~d}$.
(10) 1118 at $14 \mathrm{~s} .8 \neq d$ and at 5 s .3 ? 1 .

7s. 7 d . ${ }^{2}$ (11) 5639 " $18 \mathrm{~s} .4 \frac{1}{2} \mathrm{~d}$. and " $1 \mathrm{~s} .7 \frac{1}{2} \mathrm{~d}$.
8s. 5d. (12) 3017 " 16s. 2 4 d. and " 3s. 94 d.
Ans. £1827 0s. Od. £1483 12s. 6 d . £3857 16s. 3d. $£ 785016 \mathrm{~s} .3 \mathrm{~d}$ £3471 2ss. $4 \frac{1}{2} \mathrm{~d}$. $£ 5540-15 \mathrm{~s} .0 \mathrm{~d}$. £ 7160 11s. $6 \frac{3}{4} \mathrm{~d}$. £778 6s. 0 d . £789 6s. 84.

CASE V.

161. To find the value of a compound quantity when the price of a unit of the quantity is given in dollars and cents.

Exampief 1.-Find the value of 126 cwt. 3 qrs. 14 lbs. (long weight) at $\$ 14.62 \frac{1}{2}$ per cwt.

OPERATION.
126 cwt. 3 qrs. 14 lbs. at $\$ 14.625$
126

\$.1855.546875 = price of 126 cwt.,\&c. Example 2.-What will 13 cwt. 2 qrs. 15 lbs. (short weight) of oatmeal cost, at $\$ 3.75$ per cwt.?

OPERATION. 13 cwt. 2 qrs. 15 lbs. at $\$ 3.75$ per 100 lbs.

13

2 qrs. $=\frac{1}{2}$ of 1 cwt. 10 lbs. $=\frac{1}{5}$ of 2 qrs.
$5 \mathrm{lbs}=\frac{1}{2}$ of 10 lbs.
$\$ 48.75=$ price of 13 cwt .
$\begin{aligned} 1.875 & = \\ .375 & = \\ & 6 \\ & 10 \mathrm{qrs} .\end{aligned}$
$.1875=\quad 6 \quad 5$ lbt.
$\$ 51.1875=$ price of 13 cwt, \&c.

OR,
13 cwt. 2 qrs. $15 \mathrm{lbs} .=13.65 \mathrm{cwt}$ at $\$ 3.75$

$$
3.75
$$

6825
9555
4095
$\$ 51.1875=$ price as before.
FFExamile 3.-Find the price of 14 ac. 3 ro. 35 po. at $\$ 22.16 \frac{1}{5}$ per acre.

> OPERATION.

14 ac. 3 ro. 35 po. at $\$ 22.162$ per acre.
14

OR,
14 ac. 3 ro. 35 po. $=148 \frac{1}{2}$ ac. $=14.96875$ ac. at $\$ 22.16 \frac{1}{5}$ $22.16 \frac{1}{5}$

299375
8981250
1496875
2993750
2993750
$\$ 331.7374375$ Ans. as before.
From these illustrations we deduce the foliowing general
RUIE. Multiply the price by the integral part of the quantity, then separate the remainder into aliquot parts of 1 of the quantity whose rate is given, or successively of each other, as the case may require. Or, which will often be found more convenient,

Rosuce the quantity to a decimal of the same denomination the quantity whose rate is given, and multiply as in deginasi。

Exercises for the Slate.

as before.
o. 35 po. at
f 14 ac.
2 ro.
1 ro.
20 po.
10 po.
5 po.
f 14 ac., \&c.
t $\$ 22.16 \frac{1}{5}$
as before.
ng general
part of the uot parts of essively of will often be

RULES.

162. In calculating the price of

1. Hundreds, quarters and pounds, long weight, at \&1 per cwt., multiply the pounds by $2 \frac{1}{7}$ for pence, and the quarters by 5 for shillings.
2. Tons, hundreds and quarters, at $\mathfrak{£} 1$ per ton, take the tons and hundreds as pounds and shillings, and multiply the quarters by 3 for pence.
3. Acres, rood: and poles, at $£ 1$ per acre, multiply the poles by $1 \frac{1}{2}$ for pence, and the roods by 5 for shillings.
4. Yards, quarters and navls, at £ 1 per yard, take each quarter at 5 s . and each nail at 1 s .3 d .
5. Oz., dwots. and grains, Troy weight, at £1 per ounce, take the ounces as pounds, the pennyweights as shillings, and half the grains as pence.
6. In calculating by means of aliquot parts, it will often be more convenient to use the decimal form of remainder instead of the common fractional. It will be suffeient to earry the decimals to two places, as in the following example.

Example 3.-What will 126 ac. 3 ro. 15 po. cost at £2 11s. 3d. per acre?

OPERATION.

126	3	15
	5	$1 \frac{1}{2}$

$\begin{array}{cc}£ 126 & 16 \\ & 10.50=\text { price at } £ 1 \text { per acre } . ~\end{array}$

$$
\begin{aligned}
& 10 \mathrm{~s} .=\frac{1}{2} \text { of } £ 1 \\
& 1 \mathrm{~s} .3 \mathrm{~d} .=\frac{1}{8} \text { of } 10 \mathrm{~s} .
\end{aligned} \begin{array}{rrrrrr}
253 & 13 & 9.00=\text { priceat } £ 2 & 0 & 0 & \text { peracre } \\
63 & 8 & 5.25= & 4 & 0 & 10 \\
7 & 18 & 6.66= & 6 & 0 & 1 \\
\hline
\end{array}
$$

Note.-In working by this method the penny is supposed to be divided into 100 equal parts. Hence $.25 \mathrm{~d} .=\frac{1}{4}, .50 \mathrm{~d} .=\frac{1}{2}, .75 \mathrm{~d} .=\frac{3}{4}$

In valuing the decimal in the answer we consider to which of these it is nearest and value it eccordingly.

App'r the above rules to such of the preceding exereises as can a solved by them.
164. The Unitary Methodi.-1. In the foregoing exercises on the Rules of Practice as well as in several of the promiscuous excrcises following the Compound Rules, there are three things or terms given. Of the three terms given two are always of the same kind, and the remaining term is always of the same kind as the term required for the answer. For example : If 1 yd . cost $\$ 4.25$ what is the price of 46 yds . The two terms of the same kind here are 1 yd . and 46 j ds., and the remaining term $\$ 4.25$ is of the same kind as the term required for the answer.

It is clear that since we have the price of 1 jd . we have only to multiply that price by the number of yards given to find the answer.
2. If 6 lbs . cost $\$ 54$ what will 16 lbs . cost? Here 6 lbs . and 16 lbs are the two terms of the same kind and the remaining term $\$ 54$ is of the same kind as the term required for the answer. Though we have not in this example got the price of 1 lb . we can very readily find it by dividing $\$ 54$, the price of $6 y \mathrm{ds}$., by 6 , and if we multiply the price of 1 yd . by 16 we obtain the price of 16 yards.

We thus see that if in any question we have three terms
po. cost at
per acre.

0 peracre $0 \quad$ " $3 \quad$ "

3 per acre
pposed to be $\frac{1}{2}, .75 \mathrm{~d} .=\frac{3}{4}$
ch of these it
g exercises
foregoing eral of the ules, there erms given ng term is he answer. of 46 yds . d 46 yds., s the term
we have given to 6 lbs. and emaining de answer. f 1 lb . we of 6 y ds., ve obtain ec terms
given with two of them of the same kind, and the remaining term of the same kind as the one required for the answer, we can reasor from the given numbers to unity and from unity to the required result. Hence

The process of solving arithmetical questions by reasoning from the given numbers to unity and from unity to the required result is called The Unitary Methorl. (It is sometimes called Analysis.)
Example 1.-If 8 yds cost $\$ 48$, what should be the price of 11 yds ? If 8 yds. cost $\$ 48,1$ yd. will cost $\frac{1}{8}$ of $\$ 48$ which is $\$ 6$, and if 1 yd . cost $\$ 6,11 \mathrm{jds}$. will cost 11 times $\$ 6=\$ 66$ Ans.; or shortly $\underset{\varnothing}{4 \AA_{\phi}^{6} \times 11}=\$ 66$.

Example 2.-If 16 cwt cost $\$ 54$ what will 64 cwt cost? If 16 cwt. cost $\$ 541 \mathrm{cwt}$. will cost $\frac{1}{16}$ of $\$ 54=\frac{54}{18}=3 \frac{3}{8}$; and if 1 cwt. cost $\$ 3 \frac{3}{8}$, 64 cwt. will cost 64 times $\$ 3 \frac{3}{8}=\$ 216$; or shortly

$$
\frac{54 \times \sigma^{4}}{\lambda G}=\$ 216
$$

We see from the short method of this second example that it is sometimes more convenient to find how many times more one quantity will cost than another quantity. In this example 64 cwt . wiil cost 4 times more than 16 cwt.

Example 3.-If $\frac{3}{4} \mathrm{lb}$. cost 36 cents what will 5 lbs. cost? If $\frac{3}{4} \mathrm{lb}$. cost 36 cents $\frac{1}{4}$ will cost $\frac{1}{3}$ of 36 cents $=12$ cents, and $\frac{4}{4} 1 \mathrm{~b}$. or 1 lb . will cost 4 times 12 cents $=48$ cents, and if 1 lb . cost 48 cents 5 lbs. will cost $48 \times 5=\$ 2.40$; or shortly $\frac{3}{4} \mathrm{lb} .=36$ cents.

$$
\begin{aligned}
& \frac{4}{4} \mathrm{lb}=12=" \\
& \frac{4}{4} \mathrm{or} 1 \mathrm{lb} .=48 \text { cents. } \\
& \therefore 5 \mathrm{~Kb} .=48 \times 5=\$ 2.40 \text { Ans. }
\end{aligned}
$$

Example 4.-If $\frac{17}{25}$ of a ton cost $\$ 4.25$ what will $1 \frac{7}{2} 5$ tons cost ? $\frac{17}{25}$ cost $\$ 4 \frac{1}{4} \therefore 1$ ton will cost as many dollars as $\frac{17}{25}$ is contained times in $4 \frac{1}{4}$ that is $4 \frac{1}{4} \div \frac{17}{25}=\frac{25}{4}$; and if 1 ton cost $\$ \frac{25}{4}, 1_{2}^{7} 5$ tons will cost $\frac{25}{4} \times \frac{1}{2} 5=\frac{25}{4} \times \frac{32}{25}=\$ 8$.

EXERCISES.

2. When 4 men can do a piece of work in 23 days in what time will 15 men do it? Ans. $6{ }_{1}^{2}$? lays.
3. If $\frac{1}{2} \mathrm{lb}$. of tea cost $22 \frac{1}{2}$ cents what will 8 lbs . cost ?

Ans. \$3.60.
4. If 25 lbs . of tea cost $\$ 16$, how many lbs. can be bought for $\$ 56$?
5. How many lbs. of coffee can be bought for $\$ 15$, if 40 lbs. cost $\$ 8$?
6. If $\frac{5}{8}$ of a yard cost $\$ 4$ what will 7 yards cost?

Ans. $\$ 44.80$.
7. If $\frac{2}{3}$ cost 14 cents what will $\frac{5}{6}$ cost? Ans. $17 \frac{1}{2}$ cents.
8. If $\$ 16$ buy 20 lbs . what quantity will $\$ 40$ buy?

Ans. 50 lbs .
Note.-The Unitary Methed is the more natural and philosophical method of solving arithmetical questions, and is now generally practised when it is applicable. There are, however, certaill classes ot examples where the principles of Proportion are best appiied.

1 PROPORTION.

165. Ratio. When we compare two numbers of the same kind, the quotient which is obtained by dividing the first by the second is called the ratio of the first to the second; thus the ratio of 20 to 5 is 4 , and the ratio of 9 to 36 is $\frac{9}{36}$ or $\frac{1}{4}$.
166. The Terms of a ratio are the two numbers compared, and when spoken of together are called a Couplest.
167. Two dots are generally used to separate the terms of a ratio ; thus the ratio of 20 to 5 is expressed by $20: 5$, and that of 9 to 36 by $9: 36$. This sign is an abbreviated form of \div and has a like meaning
168. The Antecedent is the first term of a ratio.
169. The Consequent is the second term.

When the antecedent is equal to the consequent, the ratio is called a ratio of equality, as 12 to 12 ; when the antecedent is greater than the consequent, it is called a ratio of greater inequality, as 12 to 7 , when the antecedent is less than the consequent, it is called a ratio of less inequality as 7 to 12.
170. A Simple Ratio consists of a single couplet as 4:12.
171. A Compound Ratio is the product of two or more simple ratios. Thus,

The simple ratio of 8 to 4 is 2 The simple ratio of 9 to 3 is 3

The compound ratio of these is 72 to $12=6$
Ratios are compounded by multiplying all the antecedents together for a new antecedent, and all the consequents together for a new consequent.
179. In comparing numbers with each other, they must be of the same kind, and of the same denomination. Thus, shillings have a ratio to shiilings. A foot has a ratio to a yard; for one is three times as long as the other; but a foot has not properly a ratio to an hour, for one cannot be said to be longer or shorter than the other.

Fxercises for the Slate.

1. What is the ratio of 3 to 27 ?
2. What is the ratio of 32 to 8 ?
3. What is the ratio of 4 oz . to 3 lbs . ?

$$
\text { Ans. } 4 \mathrm{oz} .: 3 \mathrm{lbs} .=4 \mathrm{oz} .: 48 \mathrm{oz} .=\frac{1}{12}
$$

Required the ratios of the following numbers-

1. 7 to $14 \left\lvert\, \begin{aligned} & \text { 5. } 6 \mathrm{lbs} . \text { to } 18 \mathrm{lbs} . \mid \\ & 9\end{aligned}\right.$
2. 9 to 36
3. 108 to 18
4. 136 to 17
5. 28 lbs . to 4 lbs . 10.60 m . to 4 fur.
6. 9 oz . to 63 lbs . 11. 45 bus. to 3 qts .
7. 17 yds. to 68 yds. 12. 3s. to 15 shillings
8. Which is the greater, the ratio of 9 to 63 , or that or 8 to 72 ?
9. Which is the greater, the ratio of 120 to 85 , or that of 24 v to 170 ?
10. What is the ratio compounded of $8: 10$ and $20: 16$?
11. What is the ratio Ans. 1 and 21:19?
12. What is the ricio of 19 lbs .5 oz .8 dwts. to 58 Ans. $\frac{1,47}{\frac{145}{8}}$ lbs. sy. 4 dwts.
i8. If the antecedent be $\frac{8}{5}$ and the ratio 6 , what is the con- $\frac{1}{8}$ sequent?
13. If the antecedent be 14.5 and the ratio $\frac{1}{3}$, what is. th $^{\frac{1}{10}}$ consequent?
14. What sum of moner 43.5 32 yards contain 8 yards?

Ans. £26
21. To how many acres of land will 7 ac . have the same ratio that $£ 16$ has to $£ 112$?

Ans. 49 ac.
22. 'To how many yards of cloth will 3 yds. 2 grs. 2 nls. have the same ratio that $£ 216 \mathrm{~s} .3 \mathrm{~d}$. has to $£ 916 \mathrm{~s} .10 \frac{1}{2} \mathrm{~d}$. ? Ans: 12 yds. 2 qrs. 3^{2} nls.
23. What number compared with 8 will form a ratio equal to that of 4 to 6 ?

Ans. $5 \frac{1}{3}$
173. When the ratio of two numbers is equal to that of two other numbers, they are said to be proportional. Thus, the ratio of 4 to 6 is equal to the ratio of 8 to 12 ; and the four numbers are on that account said to be proportional, or to form a simple, proportion.
174. Proportion is usually indicated by placing a double colon (::) between the two ratios. Thus, $4: 6: 5: 8: 12$, and are read, As 4 is to 6 so is 8 to 12 .
175. Since each ratiu cousists of two terms, every proportion must consist of at least four terms.
173. The Extremes are the first and fourth terms. The Means are the second and third terms.
177. In every proportion the product of the extremes is equal to the product of the means. Thus, in the proportion $4: 8:: 5: 10$ we have $4 \times 10=5 \times 8$.
178. From the preced n principles and illustrations, it follows that, any three terms of a proportion being given, the fourth may readily be found by the following

RUIE. I. Divide the product of the extremes by one of the means, and the quotient will be the other mean. Or,
II. Divide the product of the means by one of the extremes, and the quotient will be the other extreme.

Note.-When the first and second terms are not both of the same name they must le reduced. The fourth term is always the same as the third term.

Exercises for the Slate.

Find the term not given in each of the following proportions:

1. $48: 20::(): 50$. Ans. 120
2. $42: 70:: 3:()$. 5
3. $16: 129:: 112:(\quad)$. 903
4. 48 yd : ($):$: $\$ 67.25$: $\$ 201.75$.
5. $17 \mathrm{yd} .: 221 \mathrm{yd}::$ () : £1 1s. $11 \frac{1}{4} \mathrm{~d}$.
6. () : 160 yd. $:: 8 \mathrm{~s} .5 \frac{1}{4} \mathrm{~d}: 13 \mathrm{~s}$, 6 d .
7. 3 s . $4 \frac{1}{2} \mathrm{~d}$. : () :: $17 \mathrm{yd} .:: 187 \mathrm{yd}$.
8. $\frac{5}{16}:():: \frac{1}{3}: \frac{2}{5}$. 144 yd . $1 \mathrm{~s} .8 \frac{1}{4} \mathrm{~d}$. 100 yd . £1 $17 \mathrm{~s} . \mathrm{J}_{\frac{1}{2}} \mathrm{~d}_{3}$
the same ns. 49 ac. rs. 2 nls . $10 \frac{1}{2} \mathrm{~d}$. ? rs. 3 nls. tio equal Ans. $5 \frac{1}{3}$ at of two Thus, the the four $a l$, or to a double 12 , and
y propor-
ms. The remes is oportion ations, it iven, the
y one of , the ex-
the same e same as

SIMPLE PROPORTION.

179. Nimple Proportion is an equality of two simple ratios, and consists of four terms, any three of which being given, the fourth may readily be found.

Example 1.-If 8 yds. of cloth cost $\$ 96$, how much will 20 y ds. cost at the same rate?
operation.
yd. yd.
As, $8: 20:: \$ 96$
20
8) 1920
$\$ 240$ Ans.

Analysis.- Since 8 yards have the same ratio to 20 yds. as $\$ 96$, the cost of the former has to the cost of the latter, we have the first three terms of a proportion given, namely one of the extremes and the two means. Now to arrange the given numbers in the order of a proportion, or state the question, we make $\$ 96$ the third term, because it is of the same kind, and has the same ratio to the required answer, or fourth term, as the first las to the second. From the uature of the question, since the answer will be more than $\$ 96$, or the third term, the second term must be larger than the first; we therefore put 20 , the larger number, for the second term, and 8, the smaller, for the first term, and then the product of the means divided by the given extreme, gives the required extreme.

Example 2.-If 35 men consume a certain quantity or flour in 20 days, how long would it take 50 men to consume a like quantity?

> OPERATION.
men men days As $50: 35::{ }_{20}$
50) 700

14 Ans. OR,

$10 \quad 7 \quad 2$
14 as before.

Analysis.-Having stated the question as in the last example, we perceive that the first and second terms have a common factor, 5 , we therefore cancel it, which leaves 10 and 7 as the new ratio. Again the factor 10 is common to the first and last terms, and we cancel it also, then multiplying 7 by 2 we have the answer as before.

Exercises for the Slate.

1. 13 yds. : 143 yds. :: $3 \mathrm{~s} .4 \frac{1}{2} \mathrm{~d}$. :
2. 39 yds. : $432 \mathrm{yds}:.: \mathfrak{£ 1} 1 \mathrm{~s}$. $11 \frac{1}{4} \mathrm{~d}$. :
3. $8 \mathrm{~s} .5 \frac{1}{4} \mathrm{~d} .: 13 \mathrm{~s}$. $9 \mathrm{~d} .:$: 50 yds :
4. $13 \mathrm{~s} .6 \mathrm{~d} .: £ 217 \mathrm{~s} .4 \frac{1}{2} \mathrm{~d} .:: 68 \mathrm{yds}$:
5. 48 men : 12 men : : 20 days :
6. 5 bu.: 470 bu.: : $£ 3 \mathrm{ss}$:
7. 136 cwt. : 51 cwt. : : $\$ 9.86$.
8. £13 18. $5 \frac{1}{4} \mathrm{~d} .: £ 958 \mathrm{~s} .6 \frac{3}{4} \mathrm{~d} .:: 165$ tons:
9. 144 days : 89 days:: $£ 6015 \mathrm{~s}$. :
10. $\$ 41.87: £ 5819 \mathrm{~s}$. $6 \frac{3}{4} \mathrm{~d}$. : : 34 years. :
11. 9 ac. 2 ro. 38 po. : 14 ac .2 ro. 17 po. : : $\$ 8.45$.

Ans. $\$ 12.67 \frac{1}{2}$
12. 27 ac. 1 ro. 8 po. : 16 ac. 3 ro. 24 po. : : £ 223 s. $7 \frac{1}{2}$ d. : 3 Ans. \$66.8
13. £146s. $11 \frac{3}{4}$: $\$ 27.92 \frac{1}{2}:: 19$ yds. 2 qrs. 3 nls.

Ans. 7 yds. 3 qrs. 2 nls.
14. 2 days : 3 years : : $\$ 1.10$:

Ans. £124 6s. 63 ${ }_{4} \mathrm{~d}$.
15. 6 weeks: 68 years :: $£ 415 \mathrm{~s} .4 \frac{1}{2}$:

Ans. £2810 7s. 8d.
16. 2 oz .3 dwt. $21 \mathrm{grs}: 4 \mathrm{oz} .17$ dwt. $18 \mathrm{grs},:$: $£ 12 \mathrm{~s}$. $9 \frac{1}{2} d$.

Ans. \$11.09
180. From the preceding illustrations and principles, we deduce the following general

RULTE. I. Write for the third term that number which is of the same name as the required fourth term.
II. Of the other two numbers, write the larger for the second term, and the smaller for the first, when the answer should exceed the third term ; but write the less for the second term, and the greater for the first, when the answer should be less than the third term.
III. Multiply the second and third terms together, and divide their product by the first.

NoTE.-To shorten the work factors common to the first and second terms, or to the first and third terms, may be cancelled.

Exercises for the Slate.

1. If I get 60 yards of cloth for $\$ 486.66 \frac{2}{3}$, how many yards will I get for $£ 40$?
2. If 36 men earn $\$ 192$ in a week, what will 72 men earn in the same time?

Ans. $\$ 384$
3. If a railway train can run 525 miles in 15 hours, how far would it run in 7 hours?

Ans. 245 miles.
4. If a grass field maintain 34 cows for 6 months, how long will it maintain 51 cows?

Ans. 4 months.
ma

7s. $1 \frac{1}{2} \mathrm{~d}$ 3s. Od. 80 yds. 289 yds. 5 days. 2s. 0d. ès. $2 \frac{1}{4} \mathrm{~d}$. 31 tons. s. $11 \frac{1}{4} \mathrm{~d}$. 3 years.
\$12.67 $\frac{1}{2}$ 71 $\frac{1}{2}$ d. : 3 s. \$66.8
rs. 2 nls. $6 \mathrm{~s} .6 \frac{3}{4} \mathrm{~d}$.

7s. 8d. 2s. $9 \frac{1}{2} \mathrm{~d}$. . $\$ 11.09$ iples, we
r which for the answer for the answer
er, and
nd second months.
5. If 17 cwt. long weight be bought for £14, how many mar De bought for \$116.80?
6. A silversmith pays 141 Ans. 29 ewt. 16 lhs. ought he to get for £234?
7. A lump of gold weighing 154 oz . costs $\$ 2258.14$, what will be the weight of a nugget which costs £290?
8. I bourht 24 ewi. of sugar \quad Ans. 96 oz .5 dwt. price of 16 ewt.?
9. The wares of 6 men amount to $\$ 18$ wages of 9 men ?
10. Three score of sheep cost $£ 6616$. Ans. \$27 sheep eost?
11. A truekman charges $\$ 15.471$ for 84 Ans. $\$ 195.16$ is that for 56 miles?
12. If $4 \frac{1}{2}$ yds. cost $£ 216 \mathrm{~s}$. 3 d ., what will 9 yns. £2 11 s . 7d. sume rate?
13. A snail travels ans. $\$ 27.38$ 3 hours, how far will he have rate of 16 po. 2 yds. 2 ft .9 in . in and day?
14. A sehool-room contain. Ans. 6 fur. 24 po. 2 yds. 2 ft . area, how much is that 120 pupils is 92 yds. 2 ft . in
15. If 243 barrels for each pupil? Ans. 6 ft. 132 in. cost?
16. If $2 \frac{3}{4}$ tons of coal cost $\$ 13.33$, requir Ans. $\$ 13.09 \frac{1}{6}$ $19 \frac{1}{4}$ tons?
17. A person saves each Ans. £19 3s. $5 \frac{1}{2}$ d. square pole of pround each week as much money as buys a a farm containing 21 ae. 7 po. ?
18. If 2 yds. 2 qrs. cost 16 s . $7 \frac{1}{2}$ d, Ans. 64 yrs. 39 wks. cost?
19. A boy who lives 455 yds. from the sehool Ans. 20.23 6 min .30 sec how miles 6 fur 26 , how lorg would he take to go, if he were 2 miles 6 fur. 26 po. 1 yd. irom it? Ans. 1 h .11 min .12 see. 20. If a man mow 6 ac. 2 ro. 36 po. of barley in 5 days 8 hours, working 10 hours a day, in what time would he mow 16 ac. 3 ro. 10 po.?
21. If 13 ewt. 0 qr 9 lbs Ans. 14 da. 5 ho. what will 20 cwt. 3 qrs. 20 lb . cost?
22. A farmer draws a net profit of $£ 23 \begin{aligned} & \text { Ans. } £ 367 \mathrm{~s} .2 \mathrm{~d} \text {. } \\ & 17 \mathrm{t} \text { d. from } 2 \text { ae. }\end{aligned}$ 17 po.; how much should he receive at the same rate from 38 acres 3%. 32 po. ?
23. If $8 \frac{3}{4}$ bushels of corn cost $\$ 4.20$, what will be the cost of $13 \frac{1}{2}$ bushels at the same rate?

Ans. \$6.48
24. If $1 \frac{3}{4}$ yds. of cotton cloth cost $\$ 0.10 \frac{6}{12}$, how many yds. can be bought for $\$ 100$?

Ans. $16 \frac{2}{3} \mathrm{yds}$.
25. If $15 \frac{5}{8} \mathrm{bu}$. of clover seed cost $\$ 156 \frac{1}{4}$, what will 9 bu. 2 pk. $2 \frac{2}{5}$ qt. cost?

Ans. $\$ 95.75$
26. If $\frac{7}{8}$ of a barrel of apples cost $\$ \frac{9}{1}$, how many can be bought for $\$ \frac{8}{7} \frac{9}{7}$?

Ans. $\frac{5}{6}$ of a barrel.
27. A butcher selling meat sells $14 \frac{11}{16} \mathrm{oz}$. for a pound; how much does he cheat a customer who buys of him to the amount of $\$ 30$?

Ans. \$2.46-3 $\frac{3}{32}$
28. If I pay $\$ 6$ for the loan of $\$ 100$ for 1 year, what should I pay for $\$ 493$?

Ans. \$29.58
29. If I borrow $\$ 2000$, and keep it 1 year 4 mo., how long should I lend $\$ 240$ as an equivalent for the favour?

Ans. 11 yr. $1 \frac{1}{3}$ mo.
30. If $\frac{3}{4}$ of $\frac{5}{6}$ of 4 ac. cost $\frac{1}{7}$ of $\frac{5}{12}$ of $\$ 140$, what is the cost of 11 acres?

Ans. $\$ 36 \frac{2}{3}$
31. If I pay $\$ 4 \frac{1}{8}$ to a person for buying $\$ 100$ worth of goods for me, what should I pay for buying $\$ 189.75$ worth?

Ans. \$7.823 nearly.
32. If a merchant makes a reduction of 1 penny in each shillings' worth of goods sold, how much is that in $£ 100$? Ans. £8 6s. 8d.
33. An insolvent debtor fails for $\$ 2000$, of which he is able to pay only $\$ 860$, how much is that in each dollar, and how much will a person receive whose claim is $\$ 900$?

Ans. \$0.43 and \$387
34. If $£ 100$ gain $£ 3$ in one year, what will $£ 25610 \mathrm{~s} .6 \mathrm{~d}$. gain in the same time?

Ans. £ 7 13s. 11 d. nearly.
35. Find the interest of $£ 126$ for one year at $£ 5$ per cent. Ans. $£ 66 \mathrm{~s}$.
Note.-In this exercise there are apparently only two terms. $£ 5$ per cent, however, just means $£ 5$ for $£ 100$. The above may thereSore be written thus:-

If $£ 100$ gain $£ 5$ in one year, how much will $£ 126$ gain in the same time?
36. Find the intercst of $\dot{\alpha} 126$ 14s. 6d. for 1 yeat at $8 \frac{1}{3}$ per cent.
oe the cost ans. \$6.48 many yds. 3. $16 \frac{2}{3} \mathrm{yds}$. will 9 bu. ns. $\$ 95.75$
any can be f a barrel. ound; how he amount s. $\$ 2.46 \frac{3}{3}$ hat should ns. \$29.58 , how long yr. $1 \frac{1}{3} \mathrm{mo}$. the cost of Ans. $\$ 36 \frac{2}{3}$ 0 worth of worth? $32 \frac{3}{4}$ nearly. ay in each in £ 100 ? £ 8 s .8 d . h he is able r, and how 3 and $\$ 387$ 56 10s. 6d. 1d. nearly. 5 per cent. ins. £6 6s. terms. $£ 5$ may there-

26 gain in

OPERATION. ${ }^{2} 12614 \quad 6$ at $8 \frac{1}{3}$ $8 \frac{1}{3}$
$42 \quad 410$
$101316 \quad 0$
£ $10,56 \quad 0 \quad 10$
20
11,20
12
2,50
2
1,00
$£ 10$ 11s. $2 \frac{1}{2} \mathrm{~d}$., Ans. OR,
£ £ S. D. £
As $1 \not \varnothing 0: 12614 \quad 6:: \not \subset \frac{1}{3}$ 12
£126 $146 \div 12=$
£10 11 2 $\frac{1}{2}$ as vefore.

Avalysis.-Here, and in all similar cases, the first term being 100 , we make no formal statement but merely multiply the second term by the third and divide by 100 as in 50.

Here the third term is con tained exactly 12 times in 100 , we therefore cancel it. Dividing the second term by 12 we obtain the answer.
37. Find the interest of $\$ 186$ for 1 year at 8 per cent. operation.
\$. \$ \$ As $19 \varnothing: 186:: \$$

1 . 08 . 08
\$14.88 Ans.
Analysis. - Here, dividing the first and third terms by 100 we have the quotients 1 and .08. We therefore multiply the second term by 08 , and obtain the required interest. In a similar manner we may find the interest for one year at any given per cent.
Write out and solve the following exercises-
38. Find the interest of $£ 18610 \mathrm{~s}$. for 1 year at $6 \frac{1}{4}$ per cent. Ans. $£ 1113 \mathrm{~s} .1 \frac{1}{2} \mathrm{~d}$ 39. At $5 \frac{1}{8}$ per cent., what is the interest of $£ 19616 \mathrm{~s} .8 \mathrm{~d}$. for 1 year?
40. Find the interest $\$ 196.78$ for Ans. $£ 10$ 1s. $9 \frac{1}{2} d$. Ans. $£ 101 \mathrm{~s} .9 \frac{1}{2} \mathrm{~d}$.
per cent. for 1. year.
41. What is the interest for 12 Ans. $\$ 16.72 \frac{1}{2}$ nearly. cent?

$$
\text { Ans. } \$ 110.16
$$

42. What is the interest of $\$ 1234.87 \frac{1}{2}$ for 1 year at $7 \frac{1}{8}$ per cent? Ans. $\$ 87.98$ 各
43. Borrowed $\$ 500.10$ for 3 months, at 7 per cent; what will be the interest ?

Ans. $\$ 8.75$
44. Gave a note for $\$ 88.96$ due in $2 \frac{1}{2}$ years, at $6 \frac{1}{4}$ per cent ${ }_{F}$ what will be the interest? Ans. $\% 13.96$
45. Borrowed $\$ 988.65$ for 2 years and 9 months, at 6 per cent; what will be the interest?

Ans. $\$ 163.1272 \mathrm{~s}$
Note.- I.et the pupil apply the Enitary Method to suek of the preceding questions as can be readily solved thereby.

COMPOUND PROPORTION.

181. Componnd Propertion is an equality betwcen x compound ratio and a simple one.

Thus $6: 3$ \}
Finto $4: 2\}: 12: 3$
That is $6 \times 4: 3 \times 2:: 12 \times 3$; for $6 \times 4 \times 3=12 \times 3 \times 2$
Nots.-Compound proportion is chiefly applied to the sotution of questions whieh would require two or more statements in simple proportion.

Example p.-If 8 men ean reap 32 acres in 6 days, how many acres can 12 men reap in 15 days?

$$
\left.\begin{array}{c}
\text { statemert. } \\
\text { As } 8 \text { men }: 12 \text { men } \\
6 \text { days }: 15 \text { days }
\end{array}\right\}:: 32 \text { ae. }
$$

Analysis.-In this example it is supposed that 8 men can reap 32 acres in 6 days; this being the case, it is asked or demanded how many acres 12 men ean reap in 15 days. The question may therefore be divided into two parts, supposition and demand.

In order to state the question in the form of a proportion, we take from the supposition that quantity, 32 aeres, which is of the same kind as the answer required, and place it for the third term. Then, taking the next namber, 8 men, in the supposition, and 12 men, the corresponding number in the demand, and considering these with reference to the third term only, as in simple proportion, we find the answer is to exceed
ar at $7 \frac{1}{8}$ per As. $\$ 87.98$ cent; what A ms. \$8.75 $\frac{1}{4}$ per cent Ans. ${ }^{4} 13.90$ ths, at 6 per \$163.12725 such of the
ty between
means.
$=12 \times 3 \times \%$ e solution of simple pro

6 days, how
In this exosed that 8 acres in 6 the case, can reap in d into two
proportion, es, which is e it for the in the supin the dethird term to exceed

The third term, and therefore place 12 men for the second term and 8 for the first. Again, comparing the remaining quantity, 6 days, in the supposition with the corresponding quantity, 15 days, in the demand with reference to the third term, 32 acres, wo observe that if the time be increased the number of acres will also be increased; we therefore place 15 days in the scond terna and the 6 days in the finst, and the question is stated.

OPERATION.
As $8: 12\}:: 32$
48:180
32
360
540
48) 5760 (120 Ans. 48..

96
96
0
Example 2.-If 12 horses can plough 11 acres in 5 days, how many horses can plough 33 acres in 18 days?

Dividing the question into supposition and demand we have

$\left.\begin{array}{c}\text { As } 11 \text { acres : } 33 \text { acres } \\ 18 \text { days }: 5 \text { days }\end{array}\right\}:: 12$ horses.
198 : 165
165×12
-108 horses.
198

Analysis. - Since the product of the antecedents has the same ratio to the product of the consequents, as 32 las to the answer, we multiply 8 oy 6 and 12 by 15 to form a sinonle ratio. The remainder of the work is the same as simple proportion.

Stating and working as in the former example we obtain 10 horses for the answer.
by cancellation. 31
Aㄷ11: 73
$\left.\begin{array}{cc}18 & 5\end{array}\right\}: \begin{gathered}12 \\ 2\end{gathered}$
$\overline{0} \times 2=10$ as before.
quotients 1 and 6. For similar reasons we omit 6 and write 2 instead of 12 . We then multiply 5 and 2 together and find the answer as before.

From these examples and illustrations we have the following
RULE. I. Take from the supposition that number which is of the same kind as the answor required, and place it for the third term.
II. Take the remaining numbers in pairs, one from the supposition and a corresponding one from the demand, and arrange them as in Simple Proportion.
III. Finally, multiply together all the second and third terms, divide the result by the product of the first terms, and the quotient will be the fourth ierm or answer.

Note. -When the first term has factors which are common to the second or third terms, cancel the factors which are common, then divide he proluct of those remaining in the second and third terms by the prouct of those remaininy in the first, and the quotient will be the answer.

Exercises for the Slate.

1 If 18 masons can build a wall 120 feet long in 3 days, m what time will 24 men build a wall 480 feet long?

Ans. 9 days.
2. If the wages for 8 men for 12 days be $\$ 64$, what will be the wages of 10 men for 6 days?

Ans: \$40
3. If $\$ 100$ gain $\$ 4$ of interest in 12 montlis, how much will $\$ 60$ gain in 15 months?

Ans. \$3
4. If $£ 100$ gain $£ 5$ of interest in 10 months, how much would $£ 250$ gain in 8 months?

Ans. $£ 10$
5. The wages of 8 enen for 4 days are $\$ 19.50$, what will be the wages of 12 men for 2 days?

Ans. $\$ 14.62 \frac{1}{2}$
6. If 12 reapers cut 71 ac .2 ro. 8 po. in 6 days, how many acres will 8 reapers cut in 10 days?

Ans. 79 ac .2 ro.
7. If 16 horses in 9 days plough 110 aeres, how many acres will 97 horses plough in 6 days. Ans. 123 ac. 3 ro.
8. If 208 families consune 6 cwt . of tea in 42 weeks, how much will 63 families consume in a year.

Ans. $2 \frac{1}{4} \mathrm{cwt}$.
9. If 18 men plant 29 ac. 2 ro. $26 \frac{2}{3}$ po. of potatoes with the spade in 15 days, how many men would plant 17 ac. 3 ro. 8 po. in 6 days.

Ans. 27 men.
10. If 69 yards of cloth 3 qrs. wide, make 24 pairs of trousers, how many pairs will 301 yds. 3 qrs. 2 nls., which is 1 yard wide, make?

Ans. 140 pairs.
11. If a man walk 170 miles in 6 days, walking 15 hours a day, how many miles will he walk in 5 days, walking 12 hours a-day?

Ans. 113 miles 2 fur. 26 po. $3 \frac{2}{3} \mathrm{yds}$.
nd write 2 r and find e following

ber which

 lace it for
from the

 mand, and
and third

 rst terms, r.mon to the , then divide s by the prothe answer.
in 3 days,
ns. 9 days. hat will be Ans: \$40 much will Ans. \$3 how much Ans. $£ 10$ hat will be s. $\$ 14.62 \frac{1}{2}$ how many 79 ac .2 ro. nany aeres 23 ае. 3 ro. veeks, how ns. $2 \frac{1}{4} \mathrm{cwt}$. atoes with t 17 ac. 3 s. 27 men. irs of trouh is 1 yard 140 pairs. 15 hours a g 12 hours po. $3 \frac{2}{3} \mathrm{yds}$.
12. If 18 reapers cut 30 acres of barley in 6 days, working 10 hours a-day, how many reapers will it take to eut 40 acres in 4 days, working 12 hours a-day? Ans. 30 reapers.
13. If 16 men earn $\$ 62.40$ in 18 days, how many men will it take to earn $\$ 140.40$ in 24 days? Ans. 27 men.
14. If a fanily of 8 persons spend $\$ 200$ in 9 months, how much will 18 persons spend in 12 months?

Ans. $\$ 600$
15. If 15 men working 12 hours a-day, can hoe 60 acres in 20 days, how long will it take 30 boys working 10 hours a-day, to hoe 96 acres, 6 men being erfual to 10 boys? Ans. 32 days.
16. If 125 men can make an embankment 100 yards long, 20 feet wide, and 4 feet high in 4 days, working 12 hours a-day, how many men must be cinployed to make an embankment 1000 yards long, 16 feet wide, and 6 feet high, in 3 days, working 10 hours a-lay?
17. A log of wood 60 feet long, 4 broad, 2 thiek cost $\$ 128$, what would be the price of one 45 feet long, $3 \frac{1}{2}$ broad, and $2 \frac{3}{4}$ thiek?

$$
\text { Ans. } \$ 115.50
$$

18. If $42 \frac{1}{2}$ yards of eloth, whieh is 18 in . wide, cost $\$ 238.83 \frac{1}{3}$, what will $118 \frac{1}{4}$ yards of yard-wide eloth of the same quality eost?

Ans. $\$ 1329.04$.
19. If 400 men ean make a canal which is to be a mile long, 40 feet broad, and 12 feet deep, in 20 days, working 8 hours a day, what length of eanal, 30 feet wide and 16 deep, could 300 men make in 45 days, working 10 hours a day?
20. Forty men engaged to finish a road, Ans. 2 miles 35 po. mile long, in 60 days, but after three-fourths of was to be a they left off. How many men would it take to finish the remainder in 6 days?
21. If 5 horses require as much oats as 8 ponies, and 120 bushels iast 12 ponies for 64 days, how long may 25 horses be kept for $\$ 165$ when oats are selling at $\$ 0.55$ per bushel?
22. If $\$ 250$ gain $\$ 30$ in 2 years, what will be the interest of $\$ 750$ for 5 years?
23. If $\$ 100$ gain $\$ 5$ in 1 year, what will be the interest of $\$ 575$ for $3 \frac{1}{2}$ years?
24. What will be the interest of $£ 125$ for 4 years, if $£ 100$. 10 will gain $£ 1010$ s. in 1 year?

2\%. If £ 100 gain £ 310 s . in 1 year, what will Ans. £ 85 in 3 years and 8 months? 1 year, what will $£ 375$ gain
26. If $\$ 100$ gain $\$ 4.50$ in 1 year, what $\$ 426.66 \frac{2}{3}$ gain from June 15th, 1865, to Sept. 18th, 1865 ?

Ans. \$4.99
27. If $£ 100$ gain $£ 4$ in 365 days, what will be the gain on $\mathfrak{£} 69010 \mathrm{~s} .6 \mathrm{~d}$. for 85 days? Ans. $\mathfrak{£} 68$ s. $7 \frac{1}{2} \mathrm{~d}$.
28. Find the interest of $\$ 2737.50$ for 56 days at $3 \frac{1}{2}$ per cent.

Ans. $\$ 14.70$
Note.-The pupil may suppose that the full number of terms are not given in this exercise: but it will be readily seen that $3 \frac{1}{2}$ per cent is in reality $\$ 3 \frac{1}{2}$ ios the loan or interest of $\$ 100$ for one year or 365 days. The above question may be written thus:--

If $\$ 100$ gain $\$ 3 \frac{1}{2}$ in 365 days. how much will $\$ 2737.50$ gain in 56 days?
Note.-The terms per cent, interest, foc., have not been explained in the preceding pages: but as the illustrations of per centage in general depend on proportion, the pupii should, at this stage, be made acquainted with the principles involved. This will enable him to solve almost every question relating to per centage without considering them under any special rule.
29. Find the interest of $£ 8126 \mathrm{~s} .8 \mathrm{~d}$. for 7 years 3 months at 5 per cent.

Ans. £294 9s. 5 d .
30. Lent $\$ 2400$ for 4 months, and received $\$ 24.60$ for interest; what was the rate per cent?

Ans. $3.07 \frac{1}{2}$
31. Find the interest or $\$ 3311.50$ for 292 days at $2 \frac{1}{2}$ per cent.

Ans. $\$ 66.23$
32. What is the interest of $£ 660$ for 8 months at $4 \frac{1}{2}$ per cent? Ans. £ 19 l 6 s .
33. The value of a share in a railway is $\$ 300$, and the half yearly dividend is $\$ 16.80$; required the rate per cent?

Ans. $11 \frac{1}{5} \mathrm{p} . \mathrm{c}$.
34. Bought $\$ 6000$ worth of goods, and at the end of 70 days sold them for $\$ 6200$, what was the gain per cent?

Ans. $17 \frac{8}{21}$ p.c.
35. A person having borrowed a certain sum of money at 5 per cent., at the end of 3 months paid $\$ 15$, the amount of interest then due; how much did he borrow? Ans. \$1200
36. A person having mortgaged his property, pays $\$ 40$ of interest every three months; for what amount was the mortgage drawn, interest being charged at 6 per cent?

Ans. $\$ 2666.66 \frac{2}{3}$
37. Dec. 18th, 1865 -I borrowed $\$ 6866.46$. with which I purchased flour at $\$ 6.66$ a barrel. March 17 th, $1866-I$ sold the flour for $\$ 7.37 \frac{1}{2}$ a barrel, cash. How much did I gain by the transaction, interest being reckoned at 6 per cent?

Ans. $\$ 636.71 \frac{1}{2}$
gain from Ans. \$4.99 he gain on 6 8s. $7 \frac{1}{2} \mathrm{~d}$. at $3 \frac{1}{2}$ per ns. \$14.70 of terms are $3 \frac{1}{2}$ per cent year or 365
37.50 gain n explained tage in gene, be made ible him to ut consider-
s months 949 s .5 d. $\$ 24.60$ for Ans. $3.07 \frac{1}{2}$ at $2 \frac{1}{2}$ per ins. \$66.23 at $4 \frac{1}{2}$ per 3. £19 16s. ad the half ent?
s. $11 \frac{1}{5}$ p.c. end of 70 nt?
. $17 \frac{8}{21}$ p. c. f money at amount of Ans. \$1200 oays $\$ 40$ of s the mort-
$\$ 2666.66 \frac{2}{3}$ the which I 866-I sold d I gain by ent?
s. $\$ 636.71 \frac{1}{2}$

PERCENTAGE.

182. Per Cent. is a term derived from the Latin words per centum, and signifies by the hundred, or hundredths, that is, a certain number of parts of each one hundred parts, of whatever denomination. Thus, by 4 per cent., is meant $\$ 4$ of every $\$ 100,4$ bushels for every 100 bushels, \&c. Therefore, ${ }_{8}^{4}$ per cent equals 4 hundredths $=.04=\frac{4}{100}=\frac{\sigma^{2}}{6_{0}}=\frac{1}{25}$. 8 per cent equals $.08=\frac{8}{100}=\frac{2}{25}$.
183. Percentage is such a part of a number as indicated by the per cent.
184. The Base of percentage is the number on which the percentage is computed.
185. Since per cent. is any number of hundredths, it is usually expressed in the form of a decimal; but it may be expressed either as a decimal or a common fraction as in the following table.
Note.-In business, per cent is usually indicated by the sign \%.
TABLE.

Decimals.	Common fraction.			Lowest terms.
1 per cent. . 01		T $\frac{1}{0} 0$	$=$	$1 \frac{1}{100}$
2 per cent. $=.02$	$=$	$\underline{1} \frac{2}{100}$	=	5
4 per cent. $=04$	$\underline{=}$	$1{ }^{\frac{4}{0} 0}$	=	1
5 per cent. $=.05$	=	\% 1	$\underline{=}$	$\frac{1}{20}$
6 per cent. $=.06$	$=$	$\frac{1}{100}$	=	2
7 per cent. $=.07$	$\underline{=}$	$\frac{7}{100}$	$=$	
10 per cent. $=.1$	$\underline{=}$	10 100 100	=	1
$12 \frac{1}{2}$ per cent. $=.125$	=	- 125	=	$\frac{1}{8}$

Exercises for the Slate.

1. Express decimally 3 per cent. ; 4 per cent. ; 6 per cent. 9 per cent. ; 11 per cent. ; 15 per cent.; 20 per cent. ; 25 per cent. ; 130 per cent. ; 375 per cent.
2. Express decimally $5 \frac{1}{2}$ per cent. ; $6 \frac{1}{4}$ per cent. ; $7 \frac{1}{8}$ per cert. ; $9 \frac{1}{2}$ per cent. ; $13 \frac{1}{2}$ per cent. ; $16 \frac{1}{8}$ per cent. ; $11 \frac{\frac{8}{8}}{8}$ per cent. ; $33 \frac{1}{3}$ per cent. ; $62 \frac{1}{2}$ per cent.
3. Express decimally and as a vulgar fraction $1 \frac{1}{4}$ per cent. $2 \frac{1}{2}$ per cent. $25 \frac{1}{2}$ per cent.
4. Express decimally $\frac{1}{4}$ per cent.; $\frac{3}{4}$ per cent. ; 58 per cent.
5. Express in the form of common firactions, in their lowest terms, 6 per cent. ; 5 per cent. ; $33 \frac{1}{3}$ per cent. ; $31 \frac{1}{4}$ per cent. ; 113 per cent. ; $18 \frac{5}{8}$ per cent.

CASE I.

186. To find the percentage of any number.

Example.-A man having 125 bushels of wheat, sold 25 per cent. of the quantity, how much did he sell?
operation. Analysis.-Since 25 per cent. is $\frac{25}{100}$

125
.25
625
250 $=.25$, he sold $.25 \times 125$ bus., or 125 bush. $\times .25=31 \frac{1}{4}$ bhshels. Or, 25 per cent. is $\frac{25}{10}=\frac{1}{4}$, and $\frac{1}{4}$ of $125=31 \frac{1}{4}$. Hence the following-

$$
31.25=31 \frac{1}{4}
$$

RULE. Multiply the given number or quantity by the rate per cent., expressed decimally, and point off as in deci-- nals. Or,

Take such a part of the given number as the number expressing the rate is part of 100 .

Exercises.

1. What is 5 per cent. of $\$ 18940$? Ans. $\$ 947$
2. What is $8 \frac{1}{2}$ per cent. of $\$ 1248$? \$106.08
3. What is $7 \frac{1}{4}$ per cent. of $\$ 56.75$?
$\$ 4.11 \frac{7}{16}$
4. What is $6 \frac{3}{4}$ per cent. of 1967 bus. ? 132.7725 bus.
5. What is $9 \frac{4}{5}$ per cent. of 275 miles? 26.95 mules.
6. What is 25 per cent. of $\frac{6}{8}$?

$$
25 \text { per cent. }=\frac{8}{200}=\frac{1}{4} \text {, and } \frac{5}{8} \times \frac{1}{4}=\frac{5}{32} \text { Ans. }
$$

7. What is $\frac{1}{4}$ per eent. of $\$ 2526.40$?

Ans. $\$ 6.316$.
8. What is $\frac{1}{3}$ per cent. of $\$ 75.900$?
$\$ 250.00$
9. A farmer having 1500 sheep, sold 25 per eent. of them; how many did he sell?

Ans. 375 shcep.
10. A merehant imported 1500 boxes of oranges, and $12 \frac{1}{2}$ per cent. of them decayed; how many boxes did he lose, and how many had he left?

CASE II.

187. To find what per cent. one number is of another.

Example.-A man having purchased a horse for $\$ 170$, sold him for $\$ 17$ less ; what per cent. of his money did he lose?
$\frac{5}{8}$ per cent. heir lowest per cent. ;
cat, sold 25 ent. is $\frac{25}{100}$ 125 bush. er cent. is Hence the
tity by the as in deciumber ex-

Ans. $\$ 947$
\$106.08
$\$ 4.11 \frac{7}{16}$ 2.7725 bus. 26.95 mıles.
$=\frac{5}{32}$ Ans.
ns. \$6.316.
$\$ 250.00$
at. of them; 375 shcep. res, and $12 \frac{1}{2}$ lid he lose, 87.5 lost. 312.5 saved.

nother.

e for $\$ 170$, did he lose?

OPERATION. $17 \div 170=.10==10$ per cent. OR, $1_{170}^{17}=\frac{1}{10}=.10=10$ per cent.

Analysis.-We multiply the base by the rate per cent. to obtain the percentage (188) ; conversely, we divide the per centage by the base to obtain the rate. Or, since $\$ 170$ is 100 per cent. of his money, $\$ 17$ is $\frac{17}{1} \frac{7}{0}$, equal to $\frac{1}{10}$ of 100 per cent., which is 10 per cent. Hence the following-
RULE. Divide the per centage by the base, and the quotient will be the rate per cent., expressed decimally. Or, Take such a part of 100 as the per centage is part of the base.

Exercises for the Slate.

1. What per cent. of $\$ 9876$ is $\$ 2469$?
2. What per cent. of $\$ 7656$ is $\$ 957$?
3. What per eent. of 4 tons 16 cwt . is 3 tons. 12 cwt ?

Ans. 75 per cent.
4. What per cent. of 6 bushels 1 peck is 4 bushels 2 pecks 6 quarts? time and $\frac{1}{}$ athe $\frac{1}{3}$ of it at one remained unsold?

CASE III.

188. To find a number when a certain per cent. of it is given.

Example.-A man sold $31 \frac{1}{4}$ bushels of wheat, being 25 per cent. of all he had; how much had he at first?

$$
\begin{aligned}
& \text { operation. } \\
& 31.25 \text { bushels } \div .25=125 \\
& \text { or, } \\
& \frac{31 \frac{1}{4}}{25} \times 100=\frac{125}{100} \times 100=125
\end{aligned}
$$

Analysis.-We are here required to find the base, of which $31 \frac{1}{4}$ bushels is the percentage.Now, percentage equals base multiplied by the rate per cent.; conversely, base equals percentage divided by the rate per cent. Or, $31 \frac{1}{4}$ bushels is 25 per cent. of all he had; $\frac{1}{25}$ of $31 \frac{1}{4}$ bushels, or $\frac{125}{1} \frac{25}{0}$ equals 1 per cent. of all he had, and 100 times $\frac{125}{100}$ equals 100 per cent. of all he had. Hence the following-
RULE. Divide the percentage by the rate per cent., expressed decimally, and the quotient will be the base, or number required. ${ }^{0}$,
Take as many times 100 as the percentage is times the rate per cent.

Exerenses tor the Slate.

24 is 8 per cent. of what number?
Ans. 300
2. 42 is 7 per cent. of what number? 600
3. $39 \frac{1}{2}$ is 5 per cent. of what number? 790
4. A man, owning 30 per cent. of a shoe factory, sells $33 \frac{1}{3}$ per cent. of his share for $\$ 1111.275$, what is the value of the whole factory?

APPENDIX I.

KEY TO THE SELF-TESTING EXERCISES.

ADDITION.
All the exereises given in this Rule as self-testing are formed as shown in section 3 .

To test the sum of any number of rows or lines we may use any of the three following methods.

1st. As the first line of each exereise is a multiple of 9 , the sum of any number of lines must also be a multiple of 9 ; therefore casting the 9 's out of the sum, if the work is correct, there will be no excess.

If there be an error in any of the lines it may also be deteeted by casting out the 9 's in the same manner.

2 nd . If the exercise is composed of 5 rows, the sum of all the rows will be 12 times the first line. If composed of 6 rows it will be 20 times the first line, and so on as may be seen in the following examples.
(1)

(2)

1467 First line	$=1$
1467 Second "	
2934 Third	$=2$
4401 Fourth "	$=3$
7335 Fifth "	$=5$
11736 Sixth	$=8$
29340 Sum	$=20$ times 1st line.

3 rd . The sum of a required number of lines added to the first line will be equal to the line that is two more than the required number of lines. Thus let 6 be the required number of lines. The sum of six lines added to the first line will be equal to the eighth line. Let 11 be the required number of lines. The sum of eleven lines added to the first line will give the 13 th line.

Example.--Find the sum of 162 extended to 8 rows, and test the result by the tenth line.

OPERATION.
1si line 162
2nd " 162
3rd " 324
4th " 486
5th ". 810
6th" 1296
7th " 2106
8th " 3402
$8748=$ sum of eight lines.
9th " $5508 \quad 162=$ first line.
Tenth line $8910 \quad 8910=$ line that is two more than the required number of lines, i.c., $(8+2) 10$ th line.

Note.-As soon as the pupil fully understands the principlea of addition he should be required to test his work as above, and thus facilitate his progress.

SUBTRACTION.

The exercises under this rule are to be worked by the pupil as shown in the following example.

18717 minuend.
12478 subtrahend.
6239 difference.
6239 difference betwen 2 d and 3 d line.

Analisis.-We first take the subtrahend from the minuend, then this difference from the subtrahend. If the two last lines are alike, the work is correct.

MULTIPLICATION.

Section 1.-The test of the exercises in this section may be seen from the construction of each.

Section 2.-In the exercises in this section the teacher will observe that every line in the working, and every product, is a multiple of nine, and by adding the digits in any line or product he can aseertain if it is correct. and thus
d by the
is.-We the subfrom the then this from the d. If the

Sections 3,4 and 5.--The manner of testing the exercises in these sections may be readily seen from their construction.

DIVISION.

Sizction 1.-Each dividend is a multiple of its divisor, consequently, if worked correctly there will be no remainders.

Sections 4 and 6.-In the exercises under these sections etach dividend is a multiple of nine, also cach divisor, and the remainders, if any, are divisible by 9 , and each dividend is divisible by all the divisors given with remainders as above.

ADDI'TION OF DECIMALS.

Increase each figure of the second line by unity, and prefix the first figure of the exercise. The effect of 9 occurring in the second line should be particularly noted.

Note.-The second line may be varied at pleasure.
SUBTRACTION OF DECIMALS.
Same as Simple Subtraction.

MULTIPLICATION OF DECIMALS.
Same as Section 3 of Simple Multiplication.

DIVISION OF DECIMALS.

The quotients are without remainders, and each is a multiple of 9 .

COMPOUND ADDITION.

Thest exactly the same as in addition of decinals, with the exception that unity must be added, not to each figure, but to each denomination excepting farthings.

COMPOUND SUBTRACTION.
Section 2.-May be seen in example worked.
The exercises under Division, and Practice are sufficiently explicit.

APPENDIX II.

Table I.

LQUIVALENT OF CANADA CURRENCY IN

 FENCE STERLING.| | d. 493150684 |
| :---: | :---: |
| \% 0 | . 986301364 |
| E 3 | 1.47945205 |
| | 1.97260273 |
| 05 | 2.46575342 |
| 6 | 2.95890410 |
| \% | 3.45205479 |
| $\overline{3} 8$ | 3.9452054 7 |
| | 4.43835616 |

NeTE-
For any number of Cents from 1 to 9 , point as in the Table.
" 10 to 90 move the point 1 place to the right.

For	Dollars	$\$ 1$ to $\$ 9$
"	"	$\$ 10$
to $\$ 90$		
u	"	$\$ 100$ to $\$ 900$
"	"	$\$ 1000$ to $\$ 9000$
"	"	$\$ 10.000$ to $\$ 90,000$
"	" $\$ 1,000,000$ to $\$ 900,000$	
		$\$ 9,000,000$

move the point $2 r^{\prime}$ 'aces to the right

『isp In working exercises, if the figures to the right of the point range from-

.13 to .38	reckon them	$1 d$
.39	to .63	6
.34 to .88	4	$\frac{1}{2} d$
.89 to .99	6	$\frac{31}{3 d}$

Examples.-Convert the following amounts, Canada euryency, to pounds, shillings and pence, stg:-(1) $\$ 0.08$; (2) $\$ 0.10 ;(3) \$ 10$; (4) $\$ 100$; (5) $\$ 1,000$; (6) $\$ 10,000$; (7) $\$ 1,000,000.10$; (8)\$225.55
(1) $8 \mathrm{cts}=4 \mathrm{~d}$
(2) 10 ets $=5 \mathrm{~d}$
(3) $\$ 10=12) 493.15$
(4) $\$ 100=12) 4931.50$

$$
\frac{2,0) \frac{1,1.1 \frac{1}{4}}{£ 2.151 \frac{1}{3} d}}{(1)}
$$

(却 $\$ 1,0^{\circ} 0=12$) 19315.
(7) $\$ 1,060,000.00=49815068.44$

$$
.10=4.93
$$

$81,608,000.1012 y 49315073.37$

$$
\frac{2,0) 410958,9.5 \frac{1}{4}}{£ 205479.955 \frac{5}{4} 1}
$$

$$
\text { (8) } \$ 200 . \quad \text { 8868.05 }
$$

$$
!2 \theta=986.20
$$

$$
\text { 5. }=246.57
$$

$$
.50=24.65
$$

$$
.65=2.46
$$

$6225.55 \quad 12311123.98$
2,0, $92,6.11$
ct6es. 12d

$$
\begin{aligned}
& \frac{2, \overline{0(410,9.7}}{£ 205.9 \mathrm{~s} 7 \mathrm{~d}} \\
& \text { (6) } \$ 10,000=12) 493150.68 \\
& \frac{2,0) 4109,5.103}{\mathcal{L 2 0 5 4} 15 \mathrm{~s} 10 \frac{3}{4} \mathbb{4}}
\end{aligned}
$$

Table II.

EQUIVALENT OF POUNIS, SHILLINGS \& PENCE S'TG., IN CANADA CURRENCY.

1				d.	
	\$4.86666666	1	\$.243	1	\$. 02
2	9.73333333	2	. 486	2	. 04
3	14.59999999	3	. 729	3	. 06
4	19.46666666	4	. 973	4	. 08
5	24.33333333	5	1.216	5	. 10
6	29.19999999	6	1.459	6	. 12
7	34.06666666	7	1.703	7	. 14
8	38.93333333	\%	1.946	8	. 16
9	43.79999999	¢	2.189	9	. 18
		10	2.433	10	. 20
		11	2.676	11	. 22
		12	2.919	-	
		13	3.163	1.	
		14	3.406	,	. 005
		15	3.649	2	. 010
		16	3.893	3	. 015
		17	4.136		
		18	4.379		
		19	4.623\|		

Note-For shillings, pence and farthings, point as in the table
" pounds from $£ 1$ to $£ 5$
$£ 10$ to $£ 90$ move the point 1 place to right
$£ 100$ to $£ 900$
$£ 1000$ to $£(9000$
$£ 10,000$ to $£ 90,000$
$£ 101,000$ to $£ 900,000$
$\mathfrak{E} 1,000,000$ to $\mathfrak{x} 9,000,000$
6
6
6
6

2	phaces
3	"
4	6
5	"
6	6
0	6

PTP If the mills reach 6 or over reckon them as 1 cent.
Examples.-Convert the following amounts, sterling money, to Canadian currency:-
(1) $£ 1=\$ 4.87$
(2) $£ 100=\$ 486.67$
(3) $£ 1000=\$ 4866.67$
(4) $£ 10,000=\$ 48666.67$
(5) $£ 100,000=\$ 486666.67$
:6) $£ 1,000,000=\$ 4,866,666.67$
(7) £4 10s $9 \frac{1}{2} \mathrm{~d}$
$\mathfrak{£ 4}=\$ 19.466$
$10 \mathrm{~s}=2.433$
$9 \mathrm{~d}=.18$
$2 \mathrm{f}=\quad . .01$
$\$ 22.09$

APPENDIX III.

THE METRIC SYSTEM.

The metric system of weights and measures has been used in France to the exclusion of all others since 1840. It is now also in use in many other countries of Europe as well as in several countries of South America. It has been legalized in Great Britain, the Dominion of Canada, and in the United States, though not enforced or as yet generally adopted. Being a decimal system all calculations are by it rendered extremely simple, which has brought it into general use amongst the scientific men of all countries. The present generation of schoolbovs will probably witness its adoption for commercial purposes in most of the eivilized countries of the world.

A length equal to the one ten millionth part of a quadrant, or the distance from the North Pole to the Equator, was taken as the measure of the unit of length and as the base of the system. This length is called a metre (meé-ter) and is equal to 39.37 English inches nearly.

Upon the metre are based the following primary units.

1. The Gramme (gram) The unit of weight.
2. The Litre (leé-ter) The unit of capacity.
3. The Are (ar) The unit of surface.
4. The Stere (stepr) The unit of solidity.

From these primary units the higher and lower order of units are derived decimally. The names of the higher order of units are formed by prefixing to the name of the primary unit, Greek numerals :-deca (lec'-a) 10, hecto (hec'-to) 100, kilo (ki-lo) 1000, myria (myr-ia) 10,000 . For example, -

A decametre (dec'a-mēter) $=10$ metres.
A hectolitre (hec'to-leeter $=100$ litres.
A kilogramme (kil'o-gram) $=1000$ grammes.
A myriametre (myria-meter) $=10000$ metres.
The names of the lower orders of units are formed by prefixing to the name of the primary unit Latin numerals :-
deci (deste) 10 h l $_{1}$ part, centi (sen-te) 100 hit part, milli (mini'-le) 1000 th part. For example,
\boldsymbol{A} decimetre (desi-mēter) $=1$ metıe.
A centilitre (sent'e leeter) $=01$ litre.
A milligramme (mil'-le-gram) =.00í gramme.

measure of weight.

The Gramme which is the unit of weight is equal to $\mathbf{1 5 . 4 3 2}$ English grains It is the weight of a cubic centimetre (senti-mê-ter) of distilled water, that is, a quantity of water whiche Galls the cube of the hundredth part of a metre.

TABLE.
10 milligrammes $=1$ centigramme .
10 centigrammes $=1$ decigramme.
10 decigrammes $=1$ Graname.
10 decagrammes $=1$ hectogramme.
10 hectogrammes $=1$ kliogramme.
10 kilogrammes $=1$ myriagranme.
The kilogramme is considered the unit in weighing heavg articles. It is of course equal to 15432 grains or $22045+$ lbs. avoirdspois, there being 7000 graiss in a lb. avoirdupois.

EXERCISES.

1. Express each of the following quantities in grammes; (1) 7.4 decagrammes, (2) 984 centigranmes, (3) 386 lecigrammes? Aıs. (1) 74 , (2) 9.84 , (3) 38.6 grammes.
2. How many kilogrammes are contained in each of the following quantities; (1) 7.4 hectogrammes, (2) 9342 grammes, (3) 14 myriagrammes?

Ans. (1) 74 , (2) 9.342 , (3) 140 kilogrammes.
3. How many centigrammes are contained in 4387 kilo grammes ?

Ans. 438700000 centigrams.
4. How many kilogrammes are contained in 4.76432 milligrams? Ans. . 00000476432 kilog.
5. Reduce 25 grammes to (1) centigrammes, (2) decagrammes, (3) hectogrammes?

Ans. (1) $25,(2) 250,(3) 2500$.
6. What is the value in Englisi weight of (i) i decigramme, (2) 1 centigramme, (3) 1 milligramme?

Ans. (1) 1.5432 , (2) 15432 , (3) . 015432 grains.
7. Find the value in English weight of (1) 3 decagrammes, (2) 5 hectogrammes, (3) 4 kilogrammes ?

Ans. (1) 46296, (2) 716 , (3) 61728 grains.
8. How many Ibs. avoirdupois in 20 kilogrammes?

Ans. 44.08 lbs. avoir.
a 15.432 e (sentir whicies

TABLE.

10 millibitres $=1$ centilitre.
10 centilitres $=1$ decilitre.
10 decilitres $=1$ Litre .
10 decalitres $=1$ hectolitre. 10 hectolitres = 1 kilolitre.
The hectolitre is the common measure for grain, and is equal to .3439 imperial quarter or nearly $2 \frac{3}{4}$ imperial bushels.

EXERCISES.

1. Reduce (1) 347 centilitres, (2) 98 decalitres, (3) 574 millilitres to litres? Ans. (1) 3.47, (2) 980, (3) .574 litres.
2. In 15 hitres find (1) how many centilitres, (2) how many hectolitres? Ans. (1) 1500, (2). 15 .
3. How many centilitres are contained in 45 decalitres?

Ans. 45000 centilitres.
4. In 3 hectolitres, 6 decalitres, and 2 litres, how many millilitres? Ans. 362000 millilitres.
5. In 4 millilitres how many (1) decalitres, (2) hectolitres? Ans. (1) .0004, (2) . 00004.
6. From a cask containing 4 hectolitres of oil there were drawn off 38 litres, 5 centilitres, how much remained?

Ans. $361.9{ }^{\text {E }}$ litres.
7. How many imperial gallons are contained in 19 bectolitres?

Ans. 2.64108.
8. Fiow many hectolitres are contained in 2.64108 innperial gallons:

measure of Lengit.

The Metre is not only the primary unit of length, but is, as has been stated above, the basis of the metric system. Its length is 39.37 inches nearly.

TABLE.
10 millimetres $=1$ centimetre.
10 centimetres $=1$ decimetre.
10 decimetres $=1$ Metre .
10 metres = 1 decametre.
10 decametres $=1$ hectometre.
10 hectometres $=1$ kilonetre.
10 kilometres $=1 \mathrm{myriametre}$.
In measuring long distances, the kilometre, which is about $5-8$ of a mile (39370 inches) is regarded as the unit.

EXERCISES.

1. How many centimetres in 17.36 metres?

Ans. 1736 centimetres.
2. Reduce 25.86 metres to kilometres ?

Ans. 02586 kilometres.
3. Find how many kilometres are in 376 decimetres?

Ans. . 0376.
4. How many inches in 10 kilometres? Ans. 393700 inches.
5. In 393700 inches how many kilometres?
6. How many millimetres in one inch?

Ans. 25.4 millimetres.
7. In two kilometres how many miles? Ans. 1.24 miles.
8. How many metres in a furlong? Ans. 201.168 metres.

MEASURE OF SURFACE.

The Square Metre is the primary unit in the measurement of small surfaces. In the measurement of large surfaces, such as a field, the Are is regarded as the primary unit. A square inetre is 10 decimetres in length and 10 in breadth, hence a square metre is equal to 100 decimetres. For a similar reason a square decimetre is equal to 100 centimetres. The Are is a square, whose side is 10 metres, and hence it is equal to 100 square metres $=1076 \mathrm{sq}$. feet, or 119.55 sq . yds., or about 1-40 of an acre.

TABLE.
but is, m. Its

100 sq. millimetres $=1$ sq. centimetre. 100 sq. centimetres $=1$ sq. decinetre. 100 sq . decimetres $=1$ sq. metre. 100 sq. metres $=1 \overline{\mathrm{~A}}$ re. 100 äres $=1$ hectare.

A square metre is called a centiare (sen'ti-are) in land measure, hence 100 centiares $=1$ äre. The names centiares, ares, and hectares only are used in land measure.
Note.-While measures of length increase and decrease by a scale of tens, it will be seen from the table above that measures of surface increase and decrease by a scale of hundreds. Hence it is necessary in writing numbers denoting surfaces to allow two decimal places for square decimetres, \&c., e. g. 9 sq. metres, 4 sq. decimeters are written 9.04 sq. metres.

EXERCISES.

1. Express the following in sq. metres (1) 8 decimetres, (2) 26 centimetres. Ans. 08, (2). 0026.
2. Express the following in square metres and add them: 25 sq . decimetres, 49 sq . metres, 58 sq . centimetres, 6.7 sq . metres ?

Ans. 55.9558.
3. How manysq. metres are there in a surface 7 metres long and 25 metres wide? Ans. 175.
4. Find the cost of polishing a surface 3 metres, 6 decimetres long and 2 metres, 4 decimetres wide at $\$ 2.50$ per sq. metre?

Ans. $\$ 21.60$.
5. Express the following in ares and add them:-2.4 hectares, 243.4 ares, 58 hectares, 15 centiares?

Ans. 6283.55 ares.
6. How many hectares in (1) 425.3 ares, (2) 48 centiares?

Ans. (1) 4.253, (2) . 0048 hectares.
7. Sold 9 hectares, 4 ares, and 6 centiares of land at $\$ 6.25$ an are, how much was received for the land?

Ans. $\$ 5650.37 \frac{1}{2}$.
8. How many ares in 1 English acre? Ans. 40.48 ares.

MEASURE OF SOLIDS.

The cubic metre is the primary unit in the measurement of solids; but in the measurement of firewood, stone, \&c., the stere is the primary unit. A cubic metre is a cube which is

10 decimetres in length, 10 decimetres in breadth, and 10 decimetres in height or depth, and hence it contains 10×10 $\times 10=1000$ cubic decimetres $=35.3165$ cubic feet or 1.308 cubic yards. The stere is of the same value.

TABLE.

1000 cubic millimetres $=1$ cubic centimetre. 1000 cubic centimetres $=1$ cubie decimetre. 1000 cubic decimetres $=1$ cubic metre or stere.

10 decisteres = 1 stere.
10 steres $=1$ decastere.
Where the measures inctease and decrease by a scale of thousands, three decimal places must be allowed in writing decimetres, \&e, e. g. 9 cubic metres, 4 cubic decimetres are written 9.004 cubic metres.

EXKRCISES.

1. How many cubic metres in 76.4 cubic metres, 3.6 cubic decimetres?

Ans. 76.4036.
2. How many cubic metres in 57 cubic centimetres?

Ans. . 000057 cubic metres.
3. How many cubic metres in a cube whose scale is 3.5 metres?

Ans. 42.875.
4. How many cubic metres of air will a room contain whose height is 4.3 metres, breadth 3.5 metres and height 43 decimetres?

Ans 64.715.
5. In 14 steres how many (1) decasteres, (2) decisteres?

Ans. (1) 1.4 decasteres, (2) 140 decisteres.
6. In 7 decasteres, 5 steres, 7 decisteres, how many decistercs? Ans. 757 decisteres.
7. How many steres in a pile of wood 2 metres wide, 6.34 metres lor g , and 5 decimetres high ?

Ans. 6.34 steres.
8. How many steres in 726 cubic yards? Ans. 555.04.

miscellaneous exercises.

1. How many square centimetres are thiere in 248 millimetres?
2. How many litres are contained in 3789 millilitres? Ans. 3.789.
3. How many centigrammes are contained in 5.346 kilogrammes"?

Ans. 534600 .
scale of n writing etres are
3.6 cubic 76.4036 tres?
c metres. ale is 3.5 s. 42.875 . 1 contain ad height 64.715. ecisteres? lecisteres. any decisdecisteres. wide, 6.34 .34 steres. s. 555.04
4. How many milligrammes are contained in 6 cubic centimetres of water?

Ans. 6000.
5. In 96.5 grammes of gold how many cubic centimetres, gold being 19.3 times as heavy as water?

Ans. 5 cubic centimetres.
6. If merrury is 13.5 times as heavy as water, how many grammes will a vessel contain whose capacity is 20 centimetres?

Ans. 270 grammes.
7. How many litres of wheat can be put into a bin that is 2 metres long, 1.4 metres wide and 1.6 metres high ?

Ans. 4480 litres.
8. In 6 metres how many inches? Ans. 236.22.
9. How many feet in 8 metres? Ans. 26.246.
10. How many square yards are the in 20 āres?

Ans. 2391 sq. yds.
Ans. 40 ares.
11. In 4782 sq. yds. how many āres?
12. How many aeres in a field of 7 hectares, 2 ares?

Ans. 17.546 acres.
13. How many imperial gallons in 24 kilolitres?

Ans. 5282.16 imp . gais.
14. In 15846.48 imperial gallons, how many kilolitres?

Ans. i2 kilolitres.
15. In 23 kilogrammes how many lbs. avoirdupois ?

Ans. 50.705 lbs avoir.
Note.-The superiority of the metric system above that in use with us will readly be seen from the foregoing exercises, but one or two additional questions will present the matter to the pupil in a clearer light.

How many square feet are there in 346 square inches?
By our pree ent method we have to divide 346 by 144 ; $\frac{345}{14} \frac{5}{T}=2.402 \mathrm{sq}$. feet.

How many square centimetres are there in 346 square millimetres?

By the metric system we have only to divide by 100 , i.e., point off two figures to the right $; \frac{346}{10}=3.40 \mathrm{sq}$. centimetres.

How many cubic yards are there in 537 cubic fect?
By our present method we have to divide 537 by 27 ; $\frac{537}{27}=19.88$.
How many litres are there in 43584 millilitres?
By the metric system we have only to divide by 1000, i.e., cut off three figures to the right; ${ }^{4} \frac{5584}{10}=43.584$ litres.

Further illustrations need not be given since a like sim plicity characterizes every operation in the system.

CONTENTS.

SIMPLE NUMBERS. PAGE
DEFINITIONS 7
NOTATION AND NUMERATION 7
Roman Notation 8
Arabic Notation 8
Principles of Notation and Numeration 10
General Laws 10
ADDITION 11
When the amount of each column is less than 10 12
" exceeds 10 13
SUBTRACTION 17
When no figure in the subtrahend is greater than the corres- ponding figure in the minuend. 18
When any figure in the subtrahend is greater than the corres- ponding figure in the minuend. 18
MIULTIPLICATION 21
When the multiplier does not exceed 12. 22
When the multiplier is a composite number 24
When the multiplier consists of two or more figures. 25
DIVISION 28
When the divisor does not exceed 12 29
" " is a composite number 32
" consists of several figures 34
To divide by $10,100,1000$, \&c. 36
To divide by a number having ciphers on the right hand. 37
MULTIPLICATION AND DIVISION BY FRACTIONAL NUMPERS 38
PROMISCUOUS EXERCISES 39
PRIME NUMBERS 39
GREATEST COMMON MEASURE. 40
LEAST COMMON MULTIPLE 42

DECIMALS.

NOTATION AND NUMERATION of.44ADDITION of 45
SUBTRACTION of. 46
MULTIPLICATION of. 47
DIVISION of. 48
COMPOUND NUMBERS.
REDUCTION 50
Definitions, 50
Sterling Money 50
Decimal Curreney 53
Sterling Money to Canada Currency 54
Canada Currency to Sterling Money 55 55
Long Measure 55
Cloth Measure 56
Square Measure. 57
Cubid Measure 58
Liquid and Dry Measure 59
Troy Weight 60 60
Avoirdupois Weight 61 61
Time
Time 63 63
ADDITION of Compound Numbers 65 65
SUBTRACTION 67
MULI'IPLICATION of Compound Numbers. 70
When the Multiplier is under 12 70 70
" " is a composite number 71
" " cannot be reduced to factors 72
" exceeds 156 73
DIVISION of Compound Numbers 76
When the divisor is an abstract number. 76
" $"$ a compound number. 79
General Exercises in Division 80
PROMISCUOUS EXERCISES 81
VULGAR OR COMMON FRACTIONS.
definitions, notation, and numeration 83
GENERAL PRINCIPLES OF FRACTIONS 85
REDUCTION OF FRACTIONS
REDUCTION OF FRACTIONS 85 85
To reduce fractions to their lowest terms 85 85
To reduce improper fractions to whole or mixed numbers 86
To reduce a whole number to a fraction having a given deno- minator. 87
To reduce a mixed number to an improper fraction 87
To reduce a fraction to a given denominator 88
To redace fractions to a common denominator. 89
To reduce fractions to their least common denominator 90
To reduce a compound fraction to a simple fraction. 91
To reduce a complex fraction to a simple fraction 91
ADDITION OF FRACTIONS 92
To add fractions having a common denominator. 92
To add fractions having different denominators. 93
To add mixed numbers. 94
SUBTRACTION OF FRACTIONS 94
To subtract fractions liaving a common denominator. 94
To subtract fractions having different denominators. 95
To subtract mixed numbers. 96
MULTIPLICATION OF FRACTIONS 97
'io multiply a fraction by an integer. 97
To multiply a whole number by a fraction. 98
'To multiply a fracticn is a fraction 99
DIVISION OF FRACTIONS 100
To divide a fraction by a whole number. 100
To divide a whole number by a fraction. 101
To divide a fraction by a fraction. 102
REDUCTION OF DENOMINATE FRACTIONS 103
To reduce a fraction of a higher denomination to an equiva- lent fraction of a lower denomination 103
To reduce a fraction of a lower denomination to an equivalent of a higher denomination. 104
To find the value of a fraction in whole numbers of a lower denomination 105
To reduce a compound number to a fraction of a higher de- nomination 106
REDUCTION OF DECIMALS 106
To reduce a decimal to a common fraction 106
To reduce a common fraction to a decimal 107
To ieduce a denominate decimal to whole numbers of lower denomination 108
To reduce a compound number to a decimal of a higher de- nomination. 109
PROMISCUOUS EXERCISES 110
PRAC'TICE 112
Preliminary Exercises 112
To find the value when the quantity is a simple number, and the price less than a shilling 113
To find the value when the quantity is a simple number, and the price given in shillings. 114
To find the value when the price is given in pounds and sliil- lings 115
To find the value of any number of articles when the price is given in shillings and pence, or in pounds, shillings and pence 116
To find the value of a compound quantity when the price of a unit is given in dollars and cents 117
Additional Rules in Practice. 119
The Unitary Method 120
PROPORTION 122
Ratio 122
Simple Proportion 125
Compound Proportion. 130 130
PERCENTAGE 135
To find the percentage of any number. 136
To find the percent one number is of another 136 136
To find a number when a certain percent of it is given. 137
APPENDIX I, Key to Selt-Testing Exercises 139
APPENDIX II, Tables of Canada and Sterling Currency 142
APPENDIX III, The Metric System 145
her de-

$$
\begin{array}{r}
\ldots . . .109 \\
\ldots . . .110 \\
\ldots . .112 \\
\ldots . . .112
\end{array}
$$

er, and
er, and
ice of a

$$
\text { } 117
$$

$$
\text { } 119
$$

$$
\ldots . . .
$$

$$
\text { } 122
$$

$$
\text { } 122
$$

$$
\text { } 125
$$

$$
\text { } 130
$$

$$
\text { } 135
$$

$$
\text { } 136
$$

$$
\text { } 136
$$

$$
\text { n. } 137
$$

$$
\text { } 139
$$

$$
\text { } 142
$$

$$
.145
$$

