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PREFACE.

Tliis w,.rk «i,„.s to c»v.r tl,o course i„ Kleinentary M,..l,anics
prescribed for the Upper Scliool.

An effort ]ms l,ee„ „m,le to combine «„ expcri.i,e..lal witb a
iimthematical trentinent of the subject.

Tlie apparatus illustrated in Fij-ures 12, 22, 32, ;M 39 50
an<l 65 has been selected from an excellent set of mechanical
apparatus d, signed by Profes.sor W. J. London, of the Depart-
ment of Physics, Toront.. University, and Professor C H C
Wright, of the School „f Practica' Science, Toronto

F. W MERCHANT

London, Juli/ 12th, 1906.
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- I ELEMENTARY MECHANICS

CHAITEK I.

VKI.O0ITV.
1 1. PtMitlon.

Positio.» iH relative, not abiolnte. Tho position of a
point P 18 aeteni.ini-d when its diatance and itH direction
fro.n «„„,e other point, taken an a point of reference, are
known.

The hne OP (Fig. 1) repre.sents by its length and its
<ln-oction the position of the point P with reference to the
p<>n.t O. Similarly, QP repre.sents the position of tho
point P with reference to the point Q. That is P l,a.s
one position with reference to O, and another with refer-
ence to Q. In the same way, Q has one position, repres-
ented by the line OQ, with reference to O, and another
1-epre.sented by the line PQ, with reference to P.

'

1



a ELEMEITTART MEORANICa.

2. Uotioii.

Ajpoint Js sud to be in motion when its position ja
_bdnfc_cliangBd continnonaly.

Motion, like position, is relative. A point is moving
relatively to any point of reference when its position
with respect to that point is changing continuously.

If the position of a point P with respect to a point of
reference remains unchanged for a given time, P is said
to be at rest with respect to this point of reference during
that time; but, during the same time, the point F may
be in raotioi^ with respect to another point of reference.

A seat in a railway carriage in motion is at rest with
respect to another seat in the same carriage, but in motion
with respect to any object which has not the same motion
as the carriage.

Two points are at rest relatively to each other when
their motions are identical.

3. Displacemant.

. ?^^-!^*?S? vil» t'le position of a point for any specified
intgrva,i[of time is called the displacement of the point
for that interval.

~ —

Pio. 2.

If the point P is in motion relatively to the point A in
the line AD (Fig 2), and if at any instant it is at B, and
at a subsequent instant at C, BC is the displacement of
the point for the interval of time between these instants.



VELOCITY.
3

|iw direction aro known.

The niagnituJe of the displacement is „,ea«„red by thenumber of units of length contained i„ the line joh.in^pie two positions of the point.
^ ^

kP," i'r-^°!r'
^ ''*' «"'=«'^««i^'« displacements BC. CD

EJlials
'" """" '^'"^"''""' ""' '"'''' displacement

no + (;i),

fhe sum of tliese displacements; but if the point ha-s'

feet::,
""'''

''''' ?'' ^^ ^^'»"- ^>- -- ^» -

fcl
••'«P''«=«>"ent ill the positive direction

BO + CD - DE - KF,

the algebraic sum of the displacements.

Velocity.

bfrZrr' "V™*^
'"'""' ^'^^ -^ ^^- displacement

WsX" ,?''%*""-™t-^-t which the displacement*kes phice is, therefore, an important quantity

-Hu. tim^rate of motion ^f a body^^wiUiput referene^ -

r ° .'' ''T
"• "'^ " ''"'^'"'y *••'"» without reference|o direction of motion.

it-ierence

lir^feS^-^^"°° ^""^ * <>««""« »"«. whoseHrection ig given, '«_^led_ve2^ft:r_ TiToTw^vonS^
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6. Vnifom Velocity.

6. Measure of Velocity.

oi a velocity i« ...erurrr
«""'''"• ^he magnitude

contains 8o,ne,lefi^rveli^ """^^^ °^ «">«« 't

.
unit velocity is the rJ„^u

^;"'"""'^^ «''
" ""it- The

- The unit i., a derS unTr^'°*.'" * nnitofISif:-
the unit of len,.thl!:j ^^ ' ''"•''" '* ''' determined^
when the «n t o w'htth

"'^
l-"'"^" ^^ --P^.

of ti«.ethesecond!r;ro;S;1rr ^''•^ ""'*
per second.

velocity is the centimetre

placement of 1 cm in 1^ }' '^^^'^ ^* ^a^ » dis-

displacement of 2 cm in . '^\ ^' '"''i™ 't has a

displacement in a nnit of tZe
""^ °^ '*«



VET.OCITy.

intfiival, tlu. iiicisiir.. ..f tlie .liKpliwcnirnt in
. . . «
tiiiio is -

f

1 unit iif

Tlieii, if (,• is t)u! iiioasnre of tlio velocity.

t

or S = t V,

That is the measure Of the velocity of a point ...oving
unifonnly durinj; a jrivcn interval of tin.e, is obtained
by dividing the measure of the displacement durina
that interval by the measure of the interval, .

or

the measure of the displacement equals the measure of
the velocity multiplied by the measure of the interval.
7. Bepresentation of Velocity.

The motion of a point at any instant is completely
determme.1 where its direction and rate are known A
velocity may, therefore, be completely represented bv
a straight line, because the direction can be represented
by the direction of the line, and the magnitude by the
length of the line, a certain unit length being taken to
represent a unit velocity. For example, if one centimetre
in length is taken to repre.sent a velocity of one cenu-
metre per second, the line A B (Fig. 3) which is 4 cm. in

*^
B

Fig. 3.

length, may be taken to represent a velocity of 4 cm per
second in a horizontal direction.

EXEBOISE I.

(i) IfX) yards per minute. '

2. A point moves at the rate of 50 miles in U honrs Wlmt i,ics velncily in feet per Hecimd I



KLEMISSTAnr MRCHAWC8.

7- How many times does a veiooitv nf ion .
e..nta.„ a velocity of 20 cm. per seetTdT

'^ ^' ™""'«

8. What is the measure of a velocitv of dnn"hen the unit velocity is (1) « cendZ *""• P" ^°"^
metre per 2 seconds, (3) a cent.metre2 f ^' T^"^' (2) • centi-

per second, (5)ice.;tLt:epr:e::n7;*^

-:^:::;-^—--rI;:-:^----
-.ne:^:^:S:^;^;^-;----......

thelnirvrh^-ey L^;;;;::;;,:
-'-'^

ff >»«« per ho,, when
^>ot per 2 minuL.S 2'rt^Cf> " '""^ "^ —". (3) a

is ^"..tSn^:: • a'i'h"""''^
•" ' '-' "- --<•• What

-{•(^:^:^-^-:Z.---m.per

How-fatr:i:\:::K:r'^ - '-'^ -« -^ ^ «„.. in , secmd.

will take to go 25 feet ' ^ ' """' "^'V seconds it



VJtLOCITT. y

8. Velocity at an Instant.

An instant of time has no duration and therefore
while a point may be said to have a velocity at any
given instant, an interval of time is necessary to produce
a hnite displacement, however small. For example a
falling body may be said to have a velocity of 10 fet-t Lr
second at the instant it comes in contect with the earth,
but at that instant its displacement is nothing. What is'

meant is. that if the body were to continue to move for
one second with the velocity which it has at the instant
It strikes the ground, it would have a displacement of 10
feet

9. Average Velocity.

When a point is moving with a variable velocity, its
average velocity for any given instant of time equals
the uniform..VslocitjLajf_another joint which has an
equal total jiisplacementjn^the intervaT

— "'

Hence the measure of the average velocity during a
given interval is obtained by dividing the measure of
the distance traversed during that interval by the
measure of the interval.

Thus, if s is the number of units in the total displace-
ment, t the number of units of time in the interval, and

'• the measure of the average velocity, v=—

.

If the velocity is increasing or decreasing uniformly
the average velocity for any given int.;rval is the'
velwity at the middle instant of the interval This
oquals half the sum of the velocities at the initial and
the final instants of the interval.
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If it. is the incusure of the velocity ,it the Ji.ltiHl, and f
the numuiv of the vel.Kiity iit the Hnai instant,

tliu average velocity = !ii!',

ami if tin the n.oasure of the interval, and « the measure
ol the displiicenient,

10. Measure of Variable Velocity.

If a point is moving with a varying velocity, its actual
ve ocity at a given instart nuiy he defined as the average
velocty during an infinitely shorb interval containinjr
that instant. ^

A variable velocity may, the. .fore, be approximately
measured by determining the average velocity for an
interval containing tl>e instant. It is manifest that the
accuraxjy of the determination will depend upon the
length of the interval. The shorter the interval the
more accurate is the result. For example, the speed of u
trolley car at a certain instant cannot be accurately
determined by taking the avera.^e velocity between two I

stopping places; but, if the space traversed by the car in
a very short interval containing the instant is observed
and the average velocity for the instant calculated, the'
result will be approximately the velocity of the carat
the instant. I

Experiment.-Determination of Average Velocity
Prepare a straight, stiff plank about three metres Ion-- 0„

one side fasten lengthwise two narrow strips (is in Fi- i\
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g

Iplace the plank on a table with this si.h, upward, an.l withone end enough higher than the other to cause a sphere
a large glass marble answers well) to roll down the channel

llwtween the two strips readily but not too rapidly.

I Adjust a metronome (Fig 5, to tick seconds, and set thesphere free at the instant a tick

lis heard. Mark with a piece of
chalk its position at each surces-

Isive tick.

With a graduated ruler or tape
determine the distance traversed
by the marble during the follow-

ling intervals
: (a) 1st second, (6)

1
2nd second, (<;) 3rd second, (d)

list and 2nd seconds, (e) 2nd and
l3rd seconds, (/) 1st, 2nd and 3rd
seconds, etc.

1. Find the average speed during
leach of the foregoing intervals.

2. Carefully compare the average
speeds in the first three ca.ses.

Fio. 6.

EXEscnsE n.
1. A ,K,i„t has displacements of 3 feet, 4 feet, 5 feet, and 6 feet

I", four consecutive seconds. What is its average velocity!

in, \ ')
''"'"' *"*' ^'"P^^"""^"'' of 9 cm- 10 cm., 11 cm., and 12juu. ,n four consecutive seconds. Find its average velocity (1) fortr •

^'^ '" "" '''' *"« »«»"<"' (''>
'» "- >-t th^e

3. A point is displaced 5 c,„., 3 cm., 1 cm., -1 cm -3 cm
i... hve consecutive seconds. What is itsaverage vel..city(l) forthj

Nccuds, (4) f„r the nuddlo three seconds '(
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4. A jKiint hu (IwplacBments „f 2 feet, fi fciit, 10 feet, 14 feet,
«nd 18 feet in five consecutive .oc.nds. Hlum that the average
vel,«,t,eg fnr the five seconds, the middle second, and .the three
middle seconds, are all eiiual.

6. A iM)iMt moving with a uniformly increasing velocity has a
velocity of 10 feet per second at the heginning of a curt,iin interval
of 5 seconds, an.l a velwity of 20 feet per second at the end of the
n.terval. Find (1) its average vel,«ity, (2) its displacement, during
the interval.

-f 6. A point moving with a uniformly decreasing velocity has a
velocity of 00 cm. per second at the hoginning of a cer.ain interval
of 10 seconds, and a velocity of 10 cm. per second at the end of the
mtenal Find (1) the velocity at the middle instant of the interval,
(2) the displacement during the interval.

7. A point has a velrwity of 10 cm. per second at the l)cginnirig,
and 12 cm. per second at tlie end of a certain secnd. If its velo-
city is incre,«ing uniformly, find (1) its velocity at the end of three
seconds more, (2) its average velocity for the four seconds, (3) its
displacement for tlie four seccmds.

8. In one hour the velocity of a point decreases uniformly from
200 feet per second to 100 feet per second. What is the velocity
at the end of each quarter of an hour, and what is the total dis-
placement during the hour.

_t. 9. At 9 A.M. a i)oint is moving with a velocity of 40 cm per
second, and at 1 p.m. it has a vehwity of 120 cm. per second. If
It moves with a uniformly increasing velocity, what velocity will it
have at 11.30 A.M.?

10. At 1 P.M. a ],oint has a velocity of 60 feet per second and
in one minute it velocity increases to 65 feet per second. If the
velocity continues to increase uniformly at the same rate find (1)
Its vel.wity at 2.15 p.m., (2) how far it goes between 1.15 and 1.20
P.M., (3) how far it goes between 2.10 and 2.15 p.m.

-^ 11- ^ point is moving with a uniformly decreasing motion. At
the beginning of a certain second its velocity is 20 feet per second,
and at the end of the same second its velocity is 18 feet per second'
When wm it come to rest ? How far will it go during the second
before it comes to rest ?
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12. A point U moving at . given in.tant with , velocity of 8 feet
,.er .econd^ At the end of 6 «,cond. it» velocity i, 19 feet ,H>r

7Z',J^ ""i?"™ " ^"'"^"y "' <^) 16.8 feet per.Jnd
[i) JO feet per second ?

13 A point, rtarting from rest, han velocity increwed uniformly
5 feet ,»r .econd each second. Find (1) the vel,„ity at the end of
10 .eoonda, (2) the displacement of the point during that time.

IV, ":/ '";""' '^^'"^ •"" " ''"'""'y "' *> centimetre, per .econd
l.»» lU vel<«,ty uniformly decreased hy 4 c.n. per second each»econd How long hefore it will come to rest, and how far will itmove during the time ?

fro^' Jn°
""'"""^ °^ * *'"' '""^"" unifonnly in 10 secondsfrom 150 cm. per second to 200 cm. per second. Find (1) the rateof incraaae in velocity, (2) the displacement during the 10 seconds.

.
16 A train moving with a velocity of 60 kilometres per hour i.pulled up with a uniformly decreasing velocity in 30 seconds.What 1. the decrease ii; velocity during each second in centimetre.



CHAPTER II.

ACCELERATION.

1. VoUbm Aeeelantlon.

If the motion of a point is clianging, the point is said
to be accelerated positively or negatively, according as
lUi velocity is increasing or diminishing.

Rate of change of valonity i. «all,^ AccalnnLMn^

Tlie acceleration is npiform when equal changes of
velocity take phw-e in e.|u«,l intervals of time, however
short these intervals may be.

2. Maainre of Uniform Aecelontlcn.

Since acceleration is the rate of change of velocity or
the change of velocity in a unit of time, acceleration is
nieasured by a unit of acceleration derived from the unit
of velocity and the unit of time.

ThejgltjMMeratioR is the acceleration of a point,
the motion of which is such that its velocity is in-
creased or diminished by the unit of velocity in each
vWut of time.

«»«<"

For example, if the centimetre is taken as the unit of
length and the second as the unit of time, the unit
velocity is the centimetre per second, and the unit
acceleration the centimetre per second per secondAn ^^celeration of 1 cm. per second per second is a change
in velocity, during one second, of one -entimetre per
second

;
an acceleration of 2 cm. per second p .. second is

a change m volfjcity, during one second, of U^ centi-
metres por sew.Kl; -nd an acceleration of a cm per

IS
^



ACCtLKRATIOlr. .

xeeond per second, a clmnire in vel.».it„ j •

of a centimetre, per secol^d
^' """« """ '*«'•«'

ineBHure of the phiin„«. „r i
•

"'"C" w «, f m tlie

'iM •. .

cange of velocitv in a imU ,.f *•

or V = a t

That is tl... meMwe of the nniform accel«r»««n t

-• .oil,

»™ond per minute ?
*° «cceler«ti„n in feet ,»r

3- What velocity will « I^ly -wuire in J.„If ..-ce er„tio„ is (i) jo centin.etro, p^Tco "l ^ -*"""""
'' "">

cont.metre,i«r second per secondr ' """"'"' ^2) 10

p-.^rtt;a;::;rr,r;::r'"" ----second
--'« -^u^e ..n. „cee,™.,,:::.trt::---^-~^
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B. A tniii »<i.,uir«M « vol.KJty ,.f :i(| f„et ,„, „„,^ ;„ „„, ^„^,
If iU,v«I.K.ityii, uniformly «ec«l«r»t«.l. Hnd (I) -ho v.l.^ity whioh
» will »c.,i..r« ill Olio iiiinuto, (2) the ni<«.iir« „f iu «oo.l«i»tion in
feflt jwr aecnnd |ier wcmid.

«. A iioint i. tmveUing with «ii Hccelomtion of 18 fiiet iwr Hoond
|H,r hour. How long will it toke to iio|!iin> . velocity of 8 feet per

, \ 7. A train, moving with n uniform ncceloration, naiuirw •v« .wity of 76 feet jwr Hocon.l in » .(""ter of . minute. How long
Will It titke to ndiuiro a velocity of 100 yard, per mini»« ?

8. A point, moving with a uniform acceleration, acquire, s
vol.«ity of 60 feet per aecond in 10 minutea. What ia the meaaure
of ita acceleration in (1) feet per iecond per minute, (2) yatda per
.econd per minute, (3) feet per second per Mcond, (4) yard, per
aecond per second 1

> ' * r-

I 9. A point, travelling with a uniform acceleration, ha. its velocity
/increase.! 60 metres per second each minute. What is the measure
of the acceleration in (1) metres i«r second per minute, (2) centi-
metres per second per miuute, (3) metres per second per second
(4; centimetres per second per second ?

10. A train, moving with a uniform acceleration, acqnir«« an
additional velocity of 60 feet per second each minute. Find (1) themeasure of its acceleration in feet per second per second, (2) the
measure of the velocity it acquires each minute in feet per minute
(3 the measure of the acceleration in feet per minute per minute
(4) the measure of the acceleration in feet |wr minute per Mcond.

'

H. A point is moving with a uniform acceleration and acquires
an additional velocity of 20 cm. per second each second. Find the
moasuro of the acceleration in (1) centimetres per second per
minute, (2) centimetres per minute per minute, (3) metres per
minute per minute. (4) metres per minute per second, (6) metm
por second pet second.

12. What is the measure of an acceleration of 30 feet per aecond
per second when the units of displacement and of time are respec
tively (1) the foot and the second, (2) the f,.ot and the minute 1

13. The m.,H„re of thfi a™. l,.,ati<,„ „f a falling body i« 32 when
the foot is th<. unit KpHoe and the s,.c„n.l I he unit of velocity. What
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•iwoe and thn miiiiilK m unit nf tjnii' ?

p. »c«n3 when' iT^T "' "" "'«''''™«™ "' " '-' I*'' "-..„.

^Cfon, " '"' P"' """"'" »«' """'" " "•« unit ./

18. Con.i»rei.n««»lerationof which the meuure i, 150 whenthe y.rf „ the unit di.pl.ce.nent and the „ inute ""e u„ t , f Hw.th an accekration of which the n.e«.„„ i« .^ when h ,1^

'

":the unit of du-pUcement and the ««o„d the unit of th.'

e

\ 19. What u the me.«.ure of an acceleration of 150 vard. n.r

=u^;e"ur.:;::L:or""-"' -^^-^^^z
We have m the preceding exerxjises given a seriesof queshons which illustrate the relation^ which Ti!among he quantities involved in pr.hlen.s relating toumfonnly ac«.!er.ted velocities. We shall now deriveequations wh.ch state in a general way these relatione
i^t a be the measure of the acceleration of a point

moving with a uniform acceleration.
t. the measure of any interval of time in its motion
«. the measure of the .lisplacement for the interval
«. the measure of the velocity of the point at the

beginning of the interval.

.
", the me,us„re of the velocity of the point at the
end of the interval.

y
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Then,

f-u = thc change in velocity in t units of timev—u '

t
= the change in velocity in one unit of time,

= the rate of change in veloci ty,
= a,

or
• V = n + <.t

(,y
If the point starts from rest, u = o and «= „ <.

Therefore, if the acceleration remains constant.

V X t.

fortly!"'
'"""' "" "'"''^ '"'""'*'' "• '•«''••«"•''- »ni-

the average velocity= the velocity at the mi.l.Ile in-
stant of the interval,

= half the sum of the initial and
the final velocities,

9=(^)* (11).

J^u^tituting the value for . given in (:) for . in („),

veltilvTs't'r'"'""^;*''' *'^-^*^'''- "-^^''i'^'

tlmTil whon
?P°"'' '^"''''"°" *° ""^ acceleration,that ,s when n and a ,,ro of opposite signs, the value of
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s giveuin tl.is e.,uation .ioo.s not always in.licato tl,c
whole distance travelled by tl.e point during the interval
of time, but simply the distance between its positions at
the beginning and at the end of the interval.

If the jjoint starts from rest, u = o, and

s = J a ^'.

Therefore, if the acceleration is constant,

8 o: t-.

or, t = I'JIL'*

a

From (II) g ^ r'_'+Jl1 t

Substituting the value for t given in (l) for t in ,n).
we have

2 a 2a
"

or '=n'+2<>g. (nr).
If the point starts from rest, u= o, and

»;2= 2a«.

Tlierefore, if the acceleration is constant,

8°: V-.

It will be noticed that each of the equations,

T=ll + nt /jN

*-r2 J* (II)-

S=Ut + i«t'' ([„)

'=0^218
(,V^.

Kivos tin relation among four of the live quantities u, v
t, a, and 8, and that, if any three of these are known!
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I'll
iiia

the values of the other two may be derived from the
equations.

a Oeometrical Eepresentations.

The results expresHu.] in the foregoing fonuulas may
be represented geometrically. Take, for oxau.ple. the
lol lowing CiLses :

(1) To find the displacement of a point which has been
moving with a uniform velocity of v for a time t.

Taking convenient units of length to represent time
C and velfH-ity, draw a hori-

zontal line AB to represent
the time t, and a vertical line

AD (Fig. 6) to represent the

B uniform Velocity v, then the

. .„ nrea of the rectangle ABCD
vt, will represent the displacement.

(2) To find the displacement of a point which has

XTnif'r '

^'^^""•^^ ^'•°'" --^ '"-''' ^ -^^-

ti-^iraijxij:!:?^
°^ '-^''-^ -p--^-i^of

the horizontal line AB
(Fig. 7) to repre.sent the
time, and the vertical

line BC to represent the*
terminal velocity, then

the area of the triangle ABC. ±^\ will represent the

displacement, and the vertical line DE, drawn from I)

veLcit"^'''^
P"'"^ °f AB, will represent the average!

y^at
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(3) Find the terminal velocity and the displacement of
ii point which, starting with a velocity u. has a uniform
acceleration a for a time t.

Draw a horizontal line

OP (Fig. 8) to represent t

and a vertical line OA to

rejn'esent u. Complete
the rectangle OPBA, and
lay off on PB produced,

BC to represent the in-
^''' ^

crea.se in velocity during the time t. Then BC, u+ at
will represent tlie terminal velocity ; and the are.'i of the'
figure OPCA, ut+ iat\ will represent the displacement

liZESCISE IV.

1. What is the initial velocity .,f a point wliicl., moving with a
uniform aecelorati.m of 10 centimetres per second per second
acquires in 10 seconds a velocity of 200 centimetres per second ?

'

;< 2. A body, moving at a certain instant with a velocity of 30 miles
per hour, is subject to a uniform acceleration in the dp,K.site
direction, and comes to rest in 11 seconds. What was tlie measure
of Its velocity, in feet per second, 5 seconds before it stopped ?

3. Find the initial velocity of a point which moves with a uniform
acceleration of 20 centimetres per second per second, and acquires a
velocity of 15 centimetres per second in 10 seconds. Interpret the

-~ 4. The velocity of a point increases uniformly in 20 seconds^om 100 centiuietres per second to 200 centimetres per second.
*md (1) the measure .,f the acceleration in centimetres per secmd
l«r second, (2) the velocity.-! seconds after it was 150 centimetres
per second, (:!) when the body was at rest.

• 5. A point, which has an .icceKiati..,, of ,12 feet per second per
second, is moving with a velocity of 10 feet peS- second. At the .same

': il
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with a velocity of 170 fletZ 1 T'"^
'" *•««.«.« direction

IK>int, will have equa vetrri I'"'V'^
*''^" *•" »*"

will be double that of thelT' " '"'"""^ "' ""^ ««=»"•'

in the direction of its n,oi.^ CmT ''"/''"'"'''*' ''™''''''-

— i.. the o„.o.. direction. C^^:!^- -::! -

^ of^t^ r^.!::::^ "r.t> r-t™ "-^«™"-
in 4 seconds, (2) how far i ^ • ^ ^ '

'"'"' '"" "'« '"«'y g"""
in the 5th second ' '" ' """'"'»' <'") '"- f"^ it go^

.^ 9. A body starts with a velocitv of ft f-^f
. uniform accelemtiou of 3 uTZJ. J^

'""" ""'""'' «"'' ^as a
' of its motion. At IL J^ «' «»0""d per second i„ the direction

How far does the CJlo '
."n loT™ .' 1^ ''"'"^""""—

'

its motion ?

^ " ^" '^''""'^ f'"™ "'e beginning of

-^anni^f^irsr:^"- ^°^^ ^ •»'-• --»« '-

^e.^tt.rC;tSem:::;^^^ rt ^'"" » -'form ac-

- the measure of the IcXti ,n1n T .'" '" ^"'""^- ^"^
and what is its displacementtre ^h relT*

^'"'" ''' '-""'

-nd 64 feet respL^ely '%
a mi'l '^7" T"' "' ^

' f«-
velocity,

(..,) the displacement L /hi 7t,: ltd "' ^'^ ""• '"""'

The acceleration then l^I aLd h T f
"'=™"'' °' "' '"""-•

seconds is 20 ce,.tin,etrerr\,n ?"""*"" *'" '*"' ""''' ^

acceleration.
*""""''"^- *"<* 0) th" initial velocity, (2) tl«
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vel,«ity of 30 miles ,,er h.,„r „ p,.»„ing „v„r 128 feet. If tl.e train.s moving with a uniform acceleration, what i, it, acceleJltion ?!!
16. A trolley oar, moving at the rate of 24 feet per second kst.,pped w,th a unifonnly deerea»ing motion in a ,pLe

"
9 ftWhat 18 the acceleration of the car ?

I««-e oi » leet.

16. A particle starts with a velocity of 23 feet per second andts velocity .s nn.'n.mly decreased at the rate of 8 feet Zr
dmtance of 30 feet, and how much longer to come to rest ?

17. The displacement of a- point moving with a uniformlydecreasmg mofon is 100 metres in 10 seconds, and 100 ne es

Ltr '' """'^'-
'" "'"' *'"- "'" ^' ^ loo~

^
18. What is the velocity of a particle which, starting from restandmovmg w.th a uniform acceleration of 8 feet per seco"i persecond, has tn.versed 100 feet? Find also the time requ^d forthis displacement.

•"4uinju lor

Jr \^"'^ '"'''* ''*' * "*Sative uniform acceleration of 10

the end of 15 centimetres farther on it has a velocity of 10 centi-metres per second. Find (1) its velocity at the point, 2) i, hotmany seconds it will return to this point.

t.on If IS displacement is 90 feet in the 5th second of its

iTsTonds
'"' ""^ ""^"'"'"°"'

^'> '""^ -'-''^ "^ the^Vlft::

I«sfseol!S''"f'r""''"''"'
" """""^ '«=<'«''^-''«''n, describes in the«st second of its motion ^ of the whole distance. If it sf.itedfrom rest, how long was it in motion and through wha dd.d It move. If It descried 4 centimetres in the Ut second ?

forml/frl!";'it!"""""'
•"

'r'
"'"'^ "' ^"'"''"y'"~ »"-

fu tWw it '•'f '"^r™"'•
'" 1« f-' P«' ''-™'l. Low muchfurther will it go before it attains a velocity of 12 feet per second ?

"^. A i«rtioIe moves with a uniform acceleration through 80 feet

(-!) the average velocity during each second.

^

/
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direction, H„d the ,K.i,, eoZt^ r\"" 'T''"'"""'
"' >'» op,K«i,,

the beginning of the 4th .econd ?

'"" "'* ""'""''y '"

of 'ts moti„„, and a .Hs,,lHceme„ri. H ^'T" ""*" "'" ^"J «eco,„l

"0 cm. Find the initil. vZ J .d'lf 'T'"'
"' ''" "'"«"" '"

27 Th«=,. ,
^'""'"'«»«<'e'«™tiui. of the point

«ith the supposition thaUt "snlwL '

fK
''"• '' ^''" «""-'-"

28. A particl„
*

^

^
"

""''"''" ««=«l«»tion /

-tres pi::x:L?d \:r" "-^"'"'«- ^^ ^» --
velocity of 40 centimetres per,;e^nd Z ' ''"'° P""" "''h a

another particle starts from the
"1 """.*'«« ^^o-'d-'fterwar,!,

w.th a vel.H,ity of 30 centin etrerBer
'"' T ">«-"« ^-ectio..

uniform acceleration of iS^tnuZ '^' ""'' '""^«'' "*"> »
When and where will the sec„ d I ?'- "'' '"""'' >*' ^''°"''-second particle overtake the first?



CHAPTER III.

WORK, ENERGY AND FORCE.

1—Work and Energy.

1. The Natnr* of Work and Energy.

Experiment 1.

Take the plank used in the experiment described on page 8,
and two glass spheres an inch or more in diameter. Elevate
one end of the plank so that if one of the spheres is very
Sently started to foil down the plank it will not stop, but
do not elevate it enough to cause it to start from rest. Call
the spherec A and B.

Start A down the plank and send B after it at a greater
velocity. Observe what takes place when B overtakes A.

1. How is B's velocity changed ?

2. How is A's velocity changed ?

The above experiment illustrates in a typical way
I

bow the motion of a body may be altered. If the
motion of one portion of matter is accelerated it is
believed that, as in this case, the velocity of some other
portion must in consequence be decreased. The body
which produces the motion in the other is said "to do
work" on it, while the body whose motion is accelerate.l
IS said to have work done on it. Wlien work has been
done on a body, it, in turn, acquires an increased power
of doing work.

This capacity^f a body to do workjs called energy.
Knergy must be regarded as an entity, somethhir'

a.ssociated with matter in virtue of which it can do work



94
BLEMKNTARY MECnAWICR

it.^trn, t: 'Lf;^'1 "P- "- «-' «P- and
comes in e„„t::;^,"P7,;'---d -sphere when it

Whenever energy 1 L„ f T
'"''"''^'' ^^^ " done

another. ^ ' transferred from one body to
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I

^1 *'"'. e'^amples given above, work consists in *!,«

I

acceleration of the n.otion of son.e b<xiy, lut"L w„ k.s clearly done wl.ere this acceleration is not so eviZt
' Ezpiriment 2.

Place a lu,„p of lead on an anvil »„,! strike if »i..

Experiment 3.

Is there any tmiisferenoe ..f enercv while th...l- i .

•""ved at a unifor,.. rat« ?

^^ tho-bmly ,„ lH,i„g

It is evide>_^ that in each of the above eases work is

But there are cases more difficult than these to explain

ot even the molecules are accelerated.

sJI/ ^-''T^
** P"""*^ ^''SK is lifted at a uniform

acceleration of the body as a whole, nor have we reason

pnd weight js not stored up in the pound weight'tself, but mvolves the acceleration of tL n,otion „-ne matenal sys.en. not evident to o„r ..„."t . t". -me way .nHuenced by the lifting of the wei^I



36
BLUII5WTAHT MKCHANICg.

A cl,K;k Hpnng furninhen another example. Work isdone dunng the proce«. of winding it „p, „'„., «.«
° ' "

which m apparently tranmuitted to it in avuiluhle ft,^work whenever it in allowe.l to uncoil it.,lf H . ./^the case of the ifted weight, it U in.,K^ible forri

Hithongh ut rent, are roa.ly to „c,,uire energy whenevereft free to n.ove. Since, however, the nom-ce wlcthey reccve ,t is not apparent, it i.s customary to peakof U em as .f jessing the energy which the^havTthepower of acqumng. What i.. apparent in such cases i!

Tatirri ^'.t"
"' ""^ "^y '- been £;«

IS lifted from the earth or a piece of iron is separatedfrom a „,,g„ t
;
or there has been a change in the JeU ^pos.tjons of the parts of the san.e Ixxly, „s i„ the cZothe clock spring when wound up or of"; bow ttrblnt

.4!!li;!?!SL2!iisyi>a-bQiiy is thus said to nossess in^^^"OH^iiilati^^
-wfi^^le actual energy:::;:VlS;;;^3i^^
m virtue of Its motionJscalledTgfcj^eF^^
2. Upon what do«i the Kinetic Energy of a Body Depend?
Experiment 4.

Kepeat Experiment 1, substituting in place of B a sphere Chaving a greater mass.
" a spnere (.

Cause C to increase the sDeprf ,.f A ;,., ii

in tlio fi^f
^ "y *'"' ^™e amount as

l^lX Jr^"™^"'-
•'"' --'"">• "•-'- '"e change of
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2. r» the «i„c w,>rk .l.„,e „„ a j,, ,„„, ,.^, ,

.(. How diK.H the onorgy .if A, Iniforo w..rk ,. i

|..ifl. it. energy .ft„rw«nl« ,

''""" '"" "• '"•'""l"'"'

IvutaeofiU maMandif velocity ' SK-S^

n.- Force.
1 3. Nature of Force.

In conrf-ection will, the tra„Hfore,.ce of enorffv there

(pHge 23), that when B d.H^s work on A the velrxjity of AU .ncrease.
.
while that of B is .Iecrease.1, the inc 1 o1Z 'the
r.''/':^"-•7-

"f --«y i" H takin, placl

UctSOn.of H o„ A, anJ a re-action^of A on B. This

r, 1

" r '^"'"°" «""'^"tute what is call..rl a Stress

r rl '

y'h •

°^ '^^ «^-~i'^--J by itself is^gr^

.1 tendency to acceleration, while that to which B is

"! nllr
"

*'^"''r"=y.*°
'•«t»>-'>-tion. that is, a tendency

d«n™^ ' T''™*'°"- ^^'"=' '^tl.er force is a ten-
[
aency to acceleration.

tl.c ..-action be.„g eqnal and opposite. The force whichA . saul to exert on B is e.,nal and opposite to the fo ce
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li

which B exerta on A. While two belies »t least arc
alwiiys c.>iic«rne,l in every force, yet it h often con-
venient to conHider only the effect on one of the bodien
without leffi-ence to the Hgrucy l.y which it ih pro<luced'

ihein-e for.!« ih UHUiiJIy <l,.fine<l tia any CftUe Whloh twds
to prodOM «r to modify motion.

4. PreHiire, Tanaion.

A Htre*w iH culle,! a prewnre if the foroes are actin.-
towaidH ...ich oH...r. and u teniion if they are actin-'
iiwiiy from faeh other.

6. Attraction, Orayity, Weight, HaM.
A Iwdy limy exert a force on imother with which it

appem-H to be in no may connected. Such a force i.s

™lled un Jlttraction, The moHt familiar example in tl...
force of gravity, or the attraction between a b*xly n„,|
the eaitli. The nie,i«,m,jufJlie foi-co of ^rarity on ,i

b,H y ,s called its weight The quantity of matter in a
body .s called its mass,. — '

6. Law of Qravitatlon.

The tendency of bo<lies to move towards the earth in I

hut a particular example of a more universal law ol'
nature All the evidence poes to show that each portion
of matter in the univerae influences the motion of everv
other portion. This i« generally known as thejjriaciBre
..^Uttttfirgal^ra^tation.

JttUHdEie

Sir Isaac Newton. frW~experiments and from obsei-
vaions of the motion of the moon, etc., arrived at th.
tollowing conclusion :

—

m^-« *'*'. -"^^ ^^^^ *° **>« universe there is a
.

P^nJniUj^ttraction jo^nttyjiroportional tojthe; masses

'
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III.—Measure of Force.

Uewnre of Maai.

We cannot compare n.«MN,.s ,« we ,1., len-rtlm l.y pitteimr

II matter. An nuhrect na-tlnxl n,u«t 1« ,.„od. Tl.e lawK K.uv,ta on f„rnisl.e« the n.,«t convenient«
The e,vuality of ti.e. wei^htB is usually deterM.in..,! by2t-po..n. tbe n-asses at the ends of an ciual-arnu^d

I
Units of Uass.

lnM.1 S"f '
";"\1 """^ '' ' *''"•'""' 1'«"'tity called a

!
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The metric unit of mass is the j;rainiiie, generally now
written in English, gram. It is eiiual to the mass of ono
cubic centimetre of water at four degrees centigrade
The French standard is a block of platinum which con-
tains 1,000 grams, or one kilogram, preserved in the
French archives.

II i!' 9. aravitation Units of Force.

Since the weight of a body varies as its ma.ss when its

distance from the centre of the earth remains constant,
it has been found convenient to estimate the magnitude,
of forces by observing the masses which they will suppoit
against gravity at the earth's surface.

In this case we take as our unit force, the force that I

will support the unit mass, n.g., the pound or the grain.!
Thus a pound force means the force that will suppoitf
the pound mass at the surface of the earth, etc.

10. Units of Mass and Units of Force Distinguished.

It will be .seen that we use the word " pound " in al

double sense. We use it as the name of a particular!
mass, and also as the name of the foree required to bu|i-

port that mass at the surface of the earth. Whenever!
there is any chance of being misunderstood, it is well tol

use the phrase pound mass or pound force, accordiiij

to which is intended. The same may be said of tli(

words " gram," " kilogram," etc.

11- The Absolute Units of Force.

Experiment 1.

Arranjve apparatus as shown in Fig. 10. Tl.e track shouliil

be alwut 10 feet long, as smooth as possible, and a perf.ctl
plane. The cart should be about five or six inches Ion" aii
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I

tl,ree .„• four incl.es wide, with well-turned met,, 1 .,, impels tv,.
". three inches in dian.eter. The grooved metal „H,„y si.,,,],,
1« wel -turned and truly mounted, and the string .should U,
parallel with the track.

Ca efully „,1 the wheehs and the pulley. R„i,e „„« end of

-e It far enough to make the cart .start itself. Now loTde ea.t .,th some heavy material, such as a large lump
1' •'<i, and place a much smaller ma.s,s in U,e scale pan
Adjust a metronome to tick seconds, and set the cart free at.e mstant a tick is heard. M„rk with a piece of clLrit1- t,o„ at each successive tick. Measure the dLsta^ce t «T "'""" '""" '''' '" '' 2. 3, 4, etc. .seconds, and alcull1- average .peed d„,.i.,g („) the 1st second, (6) thetid-<nnd, (c) the 3rd second, (d) the 4th second. ^

It will be found that the excess of /l,\ «1^„„ / \ •

(<)_^tl,at IS, the cart is moving with a unifoi-m acceleration
J'jora the aliove experiment, if carefully performed

« a.„ t,at^^flI,.UnUb«a,(i„ our exJeHment thj
«. f,d, of the body in tlie scale pan) actin£^_oa.ii.Con^

Experiment 2.

Arrange once „,„re the cart, scale pan, etc as in the
previous experiments. Load the cart wi.^. s'hot Jr Id 2;^^
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place a small quantity of the same in the scale pan. Carefully
ascertain the acceleratio.. resulting. Transfer from the seal,pan to the cart until the mass supported by the string as
ascertained by the use of a balance is reduced one-half, and
again carefully ascertain the acceleration resulting. It willbe found that the acceleration in the second case is appr^xi.
mately one-half the accele.ation in the first ca.se. But the
force producing the acceloralion in the secon.I case is onlv
one-half the force producing acceleration in the first caseHence the acceleration is proportional to the force actin.when the mass accelerated is constant.

fhJt'^f H^^r' "^Jl"""^
«""•'"• experiments we learn

that If different forces act on the same mass, or on i

equal niasspA^thfiy produce accelerations directly
proportional to-H» forcer aci^. ^ '

Experiment 3.

By means of a balance prepare two masses, A and B of Isome heavy material such as lead, making the mass of A
double that of B. Place A and B on a book, and, holding it
at a few feet above the floor, very suddenly pull the l»ok
aside, thus allowing both to drop from the same height at the Isame mstant. Carefully observe A and B as they fall.

It will be found that they reach the ground at the same I

time. In other words, the acceleration of A is the same as
that of B. But the forc-e of gravity acting on A is twice that
acting on B, because the mass of A is twice that of B, hen, e
the product of the ma.ss of A into its acceleration is also twice
that of the mass of B into its acceleration.

From the foregoing experiments we see that if two I

different forces act on two masses the product of the
measure of the first mass into the measure of its accel-
eration is to the product of the measure of the second
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second mass, or ^ ^'""* '^^^ "^ the

The magnitude of a force « the product of the n.easureof^the .ass accelerated into the ...ea^ure of thTre,!

of Sr::as!
^j^'^'— -^ ^^e force, ,. the n.asure.nasH, and a the u.eusure of the acceleration,
P OS ma
P = kma, where A is some constant

"'"* '^' *^ P=l when m = l ami a = l

the constant i must be equal to unity and
P = »ia

1

unliTf/iT'
°" "'." ''""'' «°"^"«°"«- the number of

Which it acts intHhe nuiVuSo? *'''

J'"'^
°"

produced in that -ass "bytelrr,u"tn"*'""

J^ Ins unit is called the Aync.
Hence, ' * -* ^

P (in dynes) = m (in <trim^\ ^ r' ""'""'
^ «<•" c'"- per sec. per sec.).

^
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In the English system the unit of force is that force
wluch acting on one pound imuu produces an ueceleratioj.
of one foot per second per second. The unit is called
the poondaL

r'7l.fr-j-'- ^ r • >L (' pi-J ) .<. (X> i
^y-- A^" ki-" '. ii-C *.t<-* ^ ' f -

EXEEOISE V.

1. Two miwses, 3m ai.,1 5m, ,i,e acted .m by forces which jm^uce
in their motions accelerations of 7 anil !) respectively. Comuare
the inagiiitiide of the forcea.

2. A force acts on' a mass of m grains. Compare the acceleration
with tliat pi-oduced by the same force acting on a mass of (1) „„,

grams, (2) ~- grams.

3. A force is capable of producing in a certain mass an accelera-
tion of / cm. per sec per sec. and in another mass an acceleration
ot <(/ cm. per soc. per sec. Compare the masses.

4. Two forces whose magnitudes are in the j-atio 35 act on two
b<Kl,es and communicate velocities 5 and 11 in 3 seconds. Com-
pare the masses of the bodies.

5. Of two forces, one acts on a mass of 5 pounds and in one-
eleventh of a second produces in it a velocity of 6 ft. per second,
and the other acling on a imiss of 625 pounds, in ooe minute
produces in it a velocity of 18 miles per hour. Comi«re the forces.

0. Find the magnitude ot the forcn expressed in dynes in each
of the following cases :

—

(1) The force whicli will produce in a mass of 20 grams an
acceleration of 10 cm. per sec. per sec.

(2) The force uhicli will produce in a mass of 5 kgm an
acceleratnm of 5 cm. jier sec. per sec.

(3) The force which will produce in a mass of 30 gi-ams an
acceleration of 10 metres per sec. jwr .sec.

(4) The force which will produce in a mass of 10 kgm. an
acceleration of 20 cm. per min. i«!r min.
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7. Find the acceleration exnressail in ^n,
-«!. of the following cases .J^"""""^

'" ""'• l-"' »«<=• Per sec. in

(1) A force of 10 dyne.s acts on a „,uss of ,0 gran.,
(2) A force of IS dynes ,,cts on a n.ass of 5 kgm
(3) A force of 9,800 dynes acts on a n,»ss of 5 gram,

thellE;':::::!'
"'" """>' -^^^ -P"- ^y ".« f-rce in each of

^' vi^^trrinf;j:::r"^ "- ^—
^
—

- - - "^^^

r. ...It;:::.". Zf^ "-^-^ ^" » "--^^ - -.eration of

thefolE"!::!!!''^''"''"'^^'' ^"•' *'-'' "'^P'—t in each of

.i.vnes\or5:l"'
-"^^ " «"™« '« -'- ".- *.y a force of 4«

p'v^fa^d^l^rra;!'" r""
""^ ™

"
-"'"" "--•"«•

- conds,
''^"'" ""'' "P"" " «'""« the plane for 68

-"ocity of 3n,„,:::;:;;,:j::;7™- " "'^^
'- ^•"•""^ "> " <*



CHAPTER IV.

ACCELERATION DUE TO ORAVITV.

We have learne.l (Chap, m) tl.at there i« in all bodies

uniform acceleration toward the earth's centre.

masaiHLSf.lhe kind ofJnatterSS^^SL
^ The tendency to acceleiation in a body at the

earths surface is proportional to its mass; hence
all bodies, whatever their masses, fall in vacuo with
the same acceleration. This may be illustmted by
the tollowmg experiment.

Experiment 1.

Place a coin an.l a feather or small piece of paper in a

vertT 1 'r^"'
'"*"" <^'« '>) <"-« "- '^l-e. in-vert >t, aiid observe the motion of the coin and of the

feather. Partially exhaust the air, invert the tube, amiobserve he motion of each. Now exhaust the air as
con,pletely as possible, again invert the tube, and observe
tne motion.

velocities of the cum and the featlier ?

2. Why is the one i-i>farded more by the air than n
Fio.li. other? ' """^ '"*" ""
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2. Measure of the Acceleration due to Gravity.

Expariment 2.

Take two electro-magnots A an.l B of the form shown inF.g. U and connect then, in one circuit with a battery C a^d

Fio. 18.

that'it'ti,,''''" ? ^'^''*™-'"''«-' A in such a positionuiai It will suppfirt an iron l.nll V ^t i- ^ .

eeiitiineties from tlip fl,^.. t i"""' "'e Hoor. To make certa n that Hip kollW..1 leave the magnet the instant that the circuit is o^S

1
ih ';

It

II
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ami the tml By me«„s of a thrcul suspen.l a ifra*.pendulum b..l. F, which ha, Wn pierce,! horizoLly with^
«mgnet B. The centre of the bob should be exactly 248 mmbelow the po,„t of suspension, and the iron wL should

u^ otleTv
*" """ '" *''" •""«"•'*• BHng the W.

by the attraction between the electro-magnet and the iron wire.
Open the circuit, with the key and immediately close it

It will be found that the ball is heard to strike the floor atthe same instant that the pendulum bob returns and strikes
the core of the magnet. But a pendulum 248 mm. long n.akesone complete «wi„g i„ one secon.l approximately, hence a Inxly
f. Ihng freely under the action of gravity passes over 16 feetor 490 centimetres in the first second from rest.

Applying the formula,

we Imve

490 cm. = 1 a X 12,

wh.r„ ».
'"' ?

° ^^^ '"""*'"'«"•'«
P""- second per second,where g is the acceleration due to gravity.

3 To find the velocity of a body and the space de-scnbed by it at the end .fan interval of tin.eVwhe„
the body has been thrown vertically downward^S
an initial velocity of u.

«« wiia

Taking g as tho measure of the acctjleration due to
gravity, and substituting in

wehave
^-^+ -t .... (,),pagel7,
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If the body fulLs from rest, w = o, ami v^.y >.

To Hiid the space describe.!, substitute y for a in

therefore,
«=-«-i-<^ • • •

(u.). page 17,

If the b<xly falls from rest, u = o, and «= '
f/f:.

4. To find the time t required for a body to come
to rest, and the distance s, which it wiU rise when
thrown vertically upward with an initial velocity

When the bofly is thrown vertically upward it will
lose in each unit of time ,j unita of velocity, or in t unit«
of tnne it will lose y t units of veltKiity

; but in the t units
of time the body comes to rest, and t'lorelore loses u
units of velocity.

,
Therefore

or t =

9
Again, since the initiar^ir>city is u and terminal

velocity = 0,

The average velocity = "^1'
or

"
2 2

But the distance the body rises

= average velocity x time,

5. To find the displacement s and the velocity v at
the end of an interval of time t, when a body is thrown
verticaUy upward with an initial velocity of u

u=gf.

< = !'
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When tI,o Kxly i« tl.rown vertically upward it will

'^ = "^*^«-
• (i). page 17,

we l.nvo v= u-yt.

Ami substitutin;; in

'= "'+ *-'' .... (m). page 17,we have a= ti,t-l,,ti.

>Sub8titUtill<r _ ,, f„„ I I r•^ '*• i/ 'f>r a, aticl /i for « in

7,- ' • • ("0. page 17,

!/t'4-2ut'^2h =

the gJter the tin. r^ L^ bTi
'

toT"'l
^'"'' """

fall back to thi« point.

' ^ ^ '" '^"'^ '° "-^"t »°d

- jLtlr.LlTi'2^
''^ "'« ^^--^ "-•«»•*. -«»«tute

we have

Therefore,
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£ZSSOISE VI.

41

length ami the «,e„„d j^ .. u,J,, ,

'" "" """ "'

4. A iKKly fall,, f„„„ rest fnr 4 HHoni„l« Vi,. i .i j- ,

- A b,Kly i, thrown vertically d,.w„w,r,l with an initial veWity
' 1,47U centimetres oer HOC I ir:...! »i i-

•"• voiinny

l-i.th secr-na.
^ "'" '''"''"'"^'' t™v«r«»l in the

^^^--ar^t^r^-irStriiiir'- '" •'°"°--

i«'Lfr/!.l'"/"?'""f
"'''"""y ""'"'^'l «ith a velocity of

1
»«!i.i)na, ^.s; will Its displacement be 144 feet ?



•tKMMTABV MKCHANIOI.

! I'll

V

^

4S

^2. A .tone » projaoM v„rtio»lly .l..w„w»r.l with n velocity .,f
100 fuet ,M,r «.c-.>,„l. Pi„,| (1) when it, vd.city i. m feet ,«,
»ec.n.I, (2) when it in 900 f™t fr.,... the p..i„t .,f j,r.,j„ctiu„

(1) that .t nmy „-„ f,.r a Hecn.U. (2) th«t it m.y h»ve » vel.Ji.y „f

m flT'
"'

"'"' "' "'" ^"' """"''• <3^ """ " "'•/"-«

14 Wit^, wh.t velocity „„„t « Uxly be thrown verticlly down-

A Vl,""*''','""^
'""" " "''"""y '' "» '*-*' I'^f «"-'"n'l «t theend of 1,„ 2nd .econd, (2) th»t it may do«crilK, 204 feet in 3

16 A b.Kly thrown vertically upwanl, ,«,«,, « ,«i„t 173 f^^
n,„. the po.„t of projection with a v«l.K=ity of 60 feet ,„r necond.How n.uch further will it «.,, and wh.t waa the velcK-ity 'with which

1' ivaa projecto<l ? >

i". A .tone ia dropped from a height of 5 n,etre», and at thv«me .natant another atone i. thrown vertically upward, an.l th..
.tone, meet half-way. Find the velocity of projection of the latter

17. A particle ia projected vertically upward, and it i. foundha, when .t .. juKt at a point *.2 metre, from the ,«.int of ,.„,.
eotion .t take. 2 ««ond, t<, return to the «,me point. Find (1)the velocity of pr..JBCtion, (2) the whole height Mcended.
18. A particle ia projected verticilly downward, and it. dia

placement n, a certain interval of time i. 720 feet. In the next
interval of the «.tne length the diaplace.neiit i. 1,520 feet Findthe velocity of projection and the measure of the interval.

,

19. A balloon ha. been ascending with a uniform velocity for 3«cond.; and a atone let fall from it reache. the ground in 5
aecond,. Find 1) the velocity of the balloon, (2) iU height whenthe atone wag let fall.

20 A .tone fall, from a height, and three wcond. after it begina
to fall another .tone i. thrown vertically downward from the^int
from which the farst .tone fall., with a velocity of 44.1 metre, per
second. When and where will the .econd atone paaa the firat ?

RT^; ^Y^ '^'^^"^^ "'"""'"y "''*"•'• <=•""» to ™'t «' » point
676 foot above the point of projection. When will the body be
144 feet above the point of projection 1
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" ""' •«. «2::^r:tr:rr """ ""' """"•

-ine with , V£!.H.ity „f 2f, f„,.t .'^ hcc I| .
"" "' "

"::p:' ^"" •':"«' "'^•'' -y • « si:.':!":' i^!:;;!!;:'
'""

-'5. A ,ton'e iH thr-.w„ v„rtic..'lly „,,„„,.,l «it,, , ,„,,^i

2fi. A IxHly i. lot M\ frnin thu top „f « t„„„ ,„« .,. .

I-. »««,i. wi,.„ .III n. I..II,. „,„, ,
'•"»'' "' '»• -'"•

.lu.r::ri:s;;:; ;„:;;;«;"•„?"'? " "
'r

--

•a A b,xly after having fallen 3 seconds break, a j,«ne of .!.«"ul thereby loses one-third of its velocity Find th. \u *T
which it falls in 4 seconds.

^' *^'"'' ^''^ «!«" through

coi ol glass, and in consequence loses one-half ..',.. ;,„ i,Nie stone re.iches the ground in 2 seconds after r . „ i .u
.».», find the height of the glass from tl,e grlu"

'
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\

thf fl^U IT '".u'
" *!'™"'" '*''''="'"' "' '" " eiven height and

."4. A stone is dropped into the shaft of a nnne and is heard to..nke the bottom in ,2.70 second,. If sound travels at th "t Jt
1 .100 feet per second, what is the depth of the u.ine ?
'5 A stone dropped int., a well reaches the water with a vel.^ity

'

M eot per second, and the sound of its striking the water i.

:::::; ^r""'"'"'""'"'^"- ^-'- vi^t, did^:

t«^!il
-^"'''''"1 ':'""" """"«'' " '«"' ^l""' '"•-"'«^ body begins

latter lK,dy will fall before it will be passed by t!,e former ?

^whL"
''

m"'''
'" ^"'^""''"^ ""'"'-••'"^ "•'"""' '"* " velocity „„(w erei^.s the me.«ure of the acceleration due to gravity) when> wJl .ts height be ,uj, and what will then be its velocityT

When a body drops freely in vacuo under the action
<> ymvty uione it moves witl. an acceleration of ",/
therefore the u.eusure of the force of gravity actingo,,
a unit mass is

' o

1 X g absolute units.

But the gravitation unit force is the force which will
sui)port the unit ma.ss.

Hence, the gravitation unit tW = l xj, absolute units.
Ui, m the metric system,

One gram force = I x g <lynes.

9r^ p^y .

''''^^t
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EXEB0I8E vn.

4fi

1. Express

(1) A force of 10 kgm. in dynes.

(2) A force of 10 dynes in gr«„« f„,e„.

2. A certain force acta on a mas, of IflO crams for 1oand produce!, in ifc a velocity nf Rf. „ t

*" "' «'<""'<'8.

the force with the .o^^Z srH,!.
" '"' "'"=""'•

<^^"'"l-«

.-i^ir':"i?::r ;r.:' - r?
: "-" ''"-^*^^ - ^^ »•

M,,,|K.rt.
" """^ "''"=•' ""^ f""" would statically

ri"- -•--«---vr:::~:

^.~^:ZiS;r::;t;i::^"^^

acceleration of the Innly ' '" '*" "•"• *'""» ""

.;.«t:T,:;° i-j; «---:- ;.-* ., . ,™
wliieh it will acquire. - ."" grauia ?ind the momentum

unit of force with the dyne.
«on.pare the

a v^lo^Lr^tirtlt'";''^"^™"'''^ .o«tand«e„e.tes

-«.oo„,.ret.:::;rrr;r;;::i::d'::i:i:""*"'-

."^«.;::"::;:!^^::;:n:7
* -onds„„amas,or.^m,

i- f« the mas's ^o^^stctdlZrer"'^ '^^"'•^"''-

'
''"^

J- JO cm. per sec, is acted on by a force of 32 dynes in »

.of
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direction opixwite to the velocity. When will U K. !•»
.Up™ition»tthatin«t..t..nU witS^^^^
vewitMi'"^^ ::" r:r:r "' ** «""-

'" *""»- '"'
./ ">j 1,111. jier SBC. to ao cm. per sec whilo tha v^«i

iwsses over 120 cm. ?
'"* "^y

\ ^t.^ Y^' ""'*'' "P™ ''y » "'"fo™ force, in 10 second. d«

moves over 128 on.. i-i„7the Ce —d but one it

...n£r?L^e=^ni.^^—i:n^-
:i"r.o:r'™"- '-' ^- '-''»' --tyj-ji;:

next two scLds. ^^,^::^ ^^ tC^Z" "
""• '" ""^

20. A force which would suppc l „ mass of nn« m

..—„cst't "?'"'",-" -««i ". b, . i™ .bi.,,
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engine with theliTZJj'"" ""'' '""» ^^"'^ "' «>»

gramr^
l.uug on the sp„„«-W„„,e i« fo„„d ^ indicate 1,100

26. A spring-lialance is craduatB.) «( „i .

Another place, where «-fl8n,i, ^ ""^ ''''^"' ^'''Sl
i »'

c^te. 490 gra™ What" if!;,
''

T
''''"'' *"'' "'" '«''"«« "»»*-grams. What 18 tho correct mass of the iKjdy!

^.,-s..re^n^,5r?,^rnar.t'''"'^
^''"''-

'''"'' "^ -"^''

elevator is goingZm Ih ' >
'"'"'*"" "'" """' ^^^ ''''«'' "«

"f 490 cm. ^r^ '^et si *^"""' """"• *'"* «" '-*''-«"«

Examples.

Fio. 13.

'^ndtle "^^ ''r """ '^ ™> ^™""'' -'^-'' '>-?'• freelynat-r the action of gravity FinH n\ fi,«. i
* ^

the tension of the string.
*^ "" '''"=«'«""'°". (2)

-/

V
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Let the tension of the string be T dynes.

(1) Consider the forces acting on the mass m,. These are
(o) Gravity, OTiJ^ dynes, acting vertically downward,
(6) The tension of the string, T dynes, acting verticaUv

upward. '

Therefore the resultant of the forces acting on m, =
("•i^-T) dynes.

^ '

Let this resultant force produce in the mas. m, an accelera-
tion of a cm. per sec. per sec.

Then the measure.of the resultant force = m.a dynes
««>""-. m,^ - T = m,a

or, rp '

1 = m,y - mjo
(1)

(2) Consider the forces acting on the mass »,,.

(a) Gravity, acting vertically downward. Since this
force is balanced by the re-action of the toble il

will not affect the horizontal motion of the Ijody.

(6) The tension of the string, acting horizontally. Since
the string i". light, it may be regarded as withouf,
ma.ss and as exerting the same pull on m„ as on
m,, viz., T dynes.

Also, since the string connecting the two masses is ine,-
temtb/e, the acceleration of m, is the same as m„ viz, a cmper sec. per sec.

But the force necessary to produce an acceleration of a cm
per sec. per sec. in a n.ass m, is m.^a dynes.

Therefore,

But

Uenoq

or

and

T T m.^a

T = m^g

a »h__
»»j -f TO,

TO, a

(2)

(l)'abov

m, + TO.;
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determine nU),r \
^^ .*^- " "'i '« «™'ter than m,,

oftheZlg^'"^
"""'""""" °' "•' ^^^^""•(^) "- t-sio;;

Since the pulley is ,„^th the tension of the string will J«,
"'" '""^ "'""8''°"' "- «'""« ^.et this tension be T dyner

'iu«nwai-ais the same as m unuttirl r^t n,' , .
'

be a cm. per sec. per see.
" '«'*^''l«™"°»

(I) Consider the forces actiiij. on m,.
These are

(a) Oravity, m^g dy„es, acting ver-
tically downward.

(*) The tension of the string, T.lynes
acting vertically upward.

Therefore, si«> - ^^ ,„ ,lescon.ling, the
resultant of ,he forces acting
on »(j

°

= (m,9 - T) dynes.

But tliis force is al,so «,« dynes.
Kence,

"^9 - T = «,„
or, m

1 = m,.7 - TOj,.

(2) Consider the force, acing on „v These are
' '

ill
;,::7'^'."'^'^:'^"-' -""S -rticaHy downward

^ ' ;::!" "' "-' ''"-" '^ 'y^-' "-•-« vertical,.

Therefore, since m, is a.scen,l;n„ .1

icting on ,«,

*«-e>"l'ng, the resultant of the forces

= (T - m.^) dynes.

(I)

I'-il
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But this force is also m.ja. dynes.

Hence,

or

Bat

Hence,

or

and

T - m^ = m^a

T = JBjJ^ + Wjo

T = ^l»^g - »jjO

m^g - m^a = m^ + m^a
_ m, - TO

" ~ nTVm ^ •""• P"' *^- I*"" cm.

(2)

(1) above.

= m,y - TO,

2m,

S'-

* ~ ']_ '- y dynes.
»>, + TO„ ' '

EZEBOISE Vm.

mass of 1,800 grams ly,„g „„ „ .^^^^ ^^^ ^^y^
«

acceleration and the tension of the string.

Tt a mJ'nTTt
°' \'""".- " '^™"" "'""8 " ""'""'' horizontal table hy

dHtence of 16 cm from iU edge, and is connected by a strin,

F,nd (i) the time that elapses before body reaches the edge oTThetable, (2) Its velocity on leaving the table.

\^ 4. A mass of 10 grams hanging freely draws a mass of 60 grams>«Wg a smooth table. Find (1) the dis„Iace„.ent in 5 secondrTathe displacement m the 8th second, and (a) the vel«=ity acquire,
^ between the 7th and the 12th seconds.

> tiestfl7rr"'
"' "* "'"' '"" «™'"'' "'^ "''^•'«* »- ">e e.tren.i-

y ties of a string passmg over a smooth pulley. If the v.due of , is
975 cm. per sec. per second, find the velocity after 8 seconds
i

6. A mass of 52 giams is drawn along a table by a mass of 4gr*™ hanging vertically. If at the end of 4 seconds the strin.
breaks, find the space described by each body in 4 seconds more
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J

61

Sth.ecoSr'^'
*^""' """"««»•>«-"¥ 'Ml) 6 seconds, (2) the y

11. If bodies whose masses aro «> .„,i

-er .ha. each „a. pass^oJ"J":;^.t^^Z^^

asJlfrT' **' ^™"" "'"* *» 8"""' "o »"•<=••«<> to one end of

J il
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17 _If two m««e« „f 50 a„,l 48 gmm. „„ f,„tene<I to the ends of

itnlt L?
'^'"'' ""^" "' ^ ^"" ^'«'' »^'' """"•"""'l V « light.tnng h,„K,„g„,„ . ,„„,.^h p„^ , if „ ^,,i^j ^, 3 gran, be

19. Two mawes „f 520 and 480 gmnm are connected hy a .trin>,Z "rr""
""''"'•'" ' """•"'» f-" -"' "« heavier 12de«e«dH 7« ce.c.metreH. What is the accele™ti„„ due t„ gravty"

21. A Htring i, ju,l ,trong enough t„ support a tension equal to
i o aun. of the weights of the nu««es at tirextren.i.ies „Z , ,

^c ™ io'^hat^tr" :
"' """" *"'" '"- -"' "•"«"'acceleration tliat the string may not break.

22 A smooth pulley is supported by a hook, and over it ,«sses aflexib e string, to the ends of which are attached two . a«iZ b5and 4o grams respectively. Show that wLen the .„,u,se "Tf^e
'

move, the pull on the hook is e^ual to the weight of Tgrams "



CHAPTER V.

MEASUItEME.VT OK ENEROV, WORK, AND POWER.

1- Energy-Maas.

We h,vvo nlrea,ly seen (page 2(J) that a bcly possessesenergy by v,rt„e of its ...ass a.ul its velocity ^.7,!!
exa.„,„e the connection Ix^tween th.. amount of energya body possesses an<l its mass.

Imagine B to be divided into two equal parts.

of B s the same as ,„ the other part, or that t.,e eneVgyof B ,s double the energy of one of its e.pml parts. Inother words, the energy of B is donble that of A or ingeneral terms :-
'

its'lass""*^
°^ * ^^ " '•^"""y proportional to

2. Eneixy-Space

Consider a clock's weight. As the weight falls work is .loneon the weight by the energy which causes g.avita.ionM
fa^t as It ,s ac,,u,red (smce the weight is not accelerate,]) innov.„„ the works of the clock, that i.s, i„ overco.^g l^fnction among the wheels, etc.

*

Now the weight falls the same distance each unit ofof t>u.e. and .t .s evident that the work done ea<:h unit
S3
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of time is also the same; hence the work which theenergy causing gravitation does on t»ie weight is pm-

£. W«Lt!IjV;f
""^ ""•'' * ^""''."'to'generaL.

JlVSL^^ *•'• •"•'«y «"»»»« gravitation doeion a fkUlng body near the earth's surface ii dlrwtJ^
proportional to the distance the body flT ThTKbrought into action in this case is the wtight of Th

say that the work done in any case is dir^iy «„^^ *"
*^i/°!^

''~"«»'* »»t» action.^d STodirectly proportionkl to the distance throijrh wSmotion takes place in the direction of the fJrce
S. Oravltation, Unit of Energy, and Work.
From the foregoing it will be seen that a con-

'TnZr' °^
r''^f

•' '^"^ ^"^•^y ^"'-f^-^d whena unit fo.-ce is l?n.ught into action and motion results

falls vertically one foot, we say that one ^it of eneL
rTn«^" . f''^- '"" ^'"^ •""-•^* °f «nergy1I
transferred, of course, if a pound fo«» acting i„ any

footin the direction of this fon^ This unit is calleda foot-pound. We shall have, of course, a unit Ttenergy corresponding with every ombination of unit
forceandu„.td,8ta„ce,forexample,thegrani.centimetre,
he talogram-metre. As doing work is simply tran^!femng energy, we take as our unit of work the work

tsZZXTtl"""^ " ""'' °* *"^'-«'- '^' ""'* °f workIS called by the same name as the the unit of enei^.
4. AbMlnte Units of Work.

When a unit force ,s brought into action and motion



. >''uliA;
(J-:. ^XV ^•KP

9S

1** — u*

/ Th£iJlJLLheener^tmwferred whenafon.„„f

Hence, .

* ('" "^g") = F (in dynes) . . (i„ eentimet.^.,)

-fts which rXZont"*^^^ '""'f
"*-'^ "' --''-

ployed Tl,« .n^
""'"P'«« °f the eig are fre.,uently ein-

EXBBOISE IX.

\y

the force. •
' '""' "'« »<'rk donb by

'ol^l'dtp""'
'"'"' •" ™'^"« ^''^ "'™'' "' water fro,.. . .el,

4. Suppoeing that a n.an, whose woi»ht i» ino ifi'isex hi, whole ,„^ „ ,,;„„„_ ,! rf"""' '" 1«> ''gn.., in walking
the length of the .tep iVw cm 1 d h"' "."^ "'"P' "'"' "»"
walking 600 mctrei ' ''*'" '"""'' """k »>« d-** m

z;-^

-/<

)
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^

/' H.« p..t.,n ,„„ve, tl.i-.„iKl, „ .ii„(„,„„ „f .^„ Pi,,,,
,,°

.

6. Measnre of Kinetic Energy.

It wa...how„, Art. 2, ,,aj.o 26, that a body posHeHse.s-cy m vrtuu of it« „..ss and velocity. tL amount

at any ,„«ta„t will be the amount of e„er,,y trunsfej

2Z ^"^ ^"^'" *" ^"^* ''^ ""^ «'«- °« » --tant

Let P be the constant force, v the velocity, m it« n.ass
- the accelorHUon which the force I' would produce in"



Then
"""''''^ twoMferif.!.

«nd ,>

' ™"
'

'^''- "page 33.

But t.. enorg, t,../e....eU U-,.,™ «„ M/e„„.^ ^ ^^
* '^''- *, page as.

Hencfl, m <•'

2

)« t>»

EXEBOISE Z.

'-"ward »„«„,. h„ the bulletK '""^ """"^'^ "' '•"'"^

u.Lirtr.rx'rrr,^"'""r r"""^
"'" -""- -^-f-.

f 10 .noti^s ner second Hn!"
'" *" '""""« ""'' " ''^''X'i'y

upon it? '
^•'"""'*"y«'-8»-'f''"rk have been done



o
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- ? f ""i^i"
*""' *''"™ '""" '" ^^^ S^™*- » given by « blow a

-, 7. Calculate the kinetic energy possessed by a stone whose mass

1 metre*™'
" """ ''^''" '""" '''"' *''""«'' " «'»«« *-'

8. If two bodies, moving with the «,me velocity, p,«ses. between
then, e units of energy, show that if tlieir masses 1« m and m. tt.cnumber of units of energy possessed by m is

"'
.^ «+m,

r 9. Find the energy re.,uired to project a golf ball whose mass is
10 grams a distance o« 100 metres-^vertically upwanls.

n.1^ t ^^'
"^"""" '^' " """"« "'* * ^«'™'''y »1- 'he ""ita ofmass, length and time being the pound, the f.K.t, and second

respectively. Express its momentum and its kinetic energy whenthe nniU are the gram (= .035 o..), the centimetre ( = .:«) i„ ) a„dthe second. '"

JJ'
^'J"*' /""=•": "'fo' the »«n,e time upon unequal masses Mand m, what ib the relation between (1) the momenta generatedby the forces, (2) the amounte of work done by them ?

12. The kinetic energy of a raindrop is increased fourfold, whilelU momentum has increased threefold; in what ratios have its
velocity and its mass increased ?

13 A shot travelling at the rate of 200 cm. per second i. just
S
able to pierce a plank 4 cm. thick. What vel,«ity is required to
pierce a plank 12 cm. thick, assuming the resistance p^o^rtional
to the thickness of the plank ?

• 14. If a bullet moving with a velocity of 150 metres per second '

»». penetrate 2 cm. into a bl..k of wo.k1, through wlJt distance

Il^ld?
"""""* "' *'"' "•* "' ^ "'«'"»

P*^"-

just penetrate a plank 3 cm. thick
; it is forced through a plank

5 cm thick, with a vel.«ity of COO metre, per second. Find thevelocity with which it emergen
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kuIeVen*5^'."Th„" ':hTr"'
"'' * v„looit^..eh th»t itsorgy IS e. Show that its nionientum is ^^iii^

when it strikes a floor, breaks throuL-h In ™"""'''''

fourths of its velocitv Tn 1 . , ,
' ™"'' '"'»''"'«'•. throe-

next floor and 1^: .'ere Z^, XT' "7 " ^"^""- '""
'

striking the lower floor fo^Z ,
"^""' '^"*'«^ "»

floor.
' ^^^ "* ^'""^y '"»' through the first

6. Power.

Uoj^or activity, i. the t.i...^.,,.. .. -:i±iM_Tl..«n,t of power ,« one unit of .work in one .^^^Ffc-

the^r ?!r'^ "^ "°'"'' " ""^ ""-^ '"^'l '•-' ""it of timethe second, the un.t of power is the erg-aeoond.

power ^r.^"-"'-*'
/'"-P"-". tl-e ".ore con^mon unit of

f^^'^^ "'"'' '^ one jo„.e-«eco„d or ^ .

For practical puT,ose.s also, the home-power is frequently en.ployed as a unit of power. It is 5 45 x iS^erg-seconds, or 745 watts.

EXEBOISE XI. •

i..^.to:r°^^::;^rs:r"*^'"''-""^------

"
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.ix tnn T ""* ' •*'"'"»'"°'"«'- to • -'"et c„ it i. found tht«x m 1I,„„ dyne, „ ^„i,^ ^ .^^ .^
«»t

oveM k.Wre .„ 10 »i„„t«.. Datemine the ^^ „,wol^
6. A force of ten mUlion dynes i, «q„i,ed to draw a car »lon«

dyne, "tirr'T "'"'7 " *"'" P""" "" » '""« <" « >< ^o"ayne, and travels over 149 kilometres in 3 hours Wh.tWse^power doe. the ,oeon.otive exert in the dll^ of^S:

working?
"**• """""^ m watts, i. he

1.2^ W™ 'o^lT'"""
"' » "*«- -«*- "'•"'h will ^isi

bighVir:^:!? "^a? "^i*^
•'"" "p

'
"*" "«« -«"-

compared with a hoJ^^U ,
"""^ '"''" ""'<"' "«• ««*•

nign. What » the power of the fall ?

11. An engine is drawing . train whose luaa. i« 300 nnokIo^..» up a smooth inclined plane of 1 inTat t^of 22,350 metre, per how wL. „, tl \ "**

st-eam engine?
<»'• W»»t « the hone-power of the

«OkUogr«n.. At what rate is he working?
""••—*"'"'»

whl ^'i^ «(ST™'" "'. "" ""«*-'' -"-'' keep. » tn.in

uniform «te of «Toe
t^,""""* T ' "'^"'^ '^^ «' "

tt«ion.^l^'J ," ^' '""'• '^'»*i*«?« *" k.
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14. Find the horse-nower „r -.,

™te of 36,000 metre, p^h '„;:?"; "";' "*" '™^«' «' "'«
•he engine and .«.d b!;i„« 6 ^ k^rr^ 1' '" '"' *« """" "'

'Hction, etc.. being ^omeCtTf'tLtl!: "'"''"'' ""« "
16. An engine, whow horw-power is 4<)n .lepth of 22.35 metre.. Find^C „ 1!^'

^'"'"^ '"'"" '""" «
hour.

""'' ">» •"""ber of litre, rai«id ,„.r

»uppiie,;,zi:;r,H\Te:rrH^ '' '""- « ''»^-

---• -- .e .ve™r:;;;tiri:r •"^" '-^' -^



CHAPTER VI.

COMPOSITION OF FORCES.

1. Bepresentation of a Force.

A force is completely determined when (1) it;i magni-
tude, (2) its direction, (3) its point cf application are
known. These elements of a force may be completely
represented by a line. The length of the line may be
made to represent the magnitude of the foice ; the direc-
tion of the line, the direction of the force; and an ex-
tremity of the line, the point of application of the force.

,B For example, if a line

one centimetre in length

is taken to represent a

gram force, a force of S

grams, acting at a point

denoted by A, and in

a direction denoted by
AB, will be represented by the line AC (Fig. 15), 3 cent!
metres in length. An arrowhead is frequently used to
indicate the direction in which the force acts.

AC represents a force acting in the direction AC, an<l
CA a force acting in the direction C.A.

Flo. 1».

EZEBOISE Xn.
1. Taking a line one centimetre in length to represent a grai i

force, draw a line to represent a force of 12.3 grams acting (1) in i

liorimntal direoti,.,,, (2) i„ a vertical direction, (3) iu a diiecti,.

,

making aa angle of 46° with the horizontal

es
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2. Taking A line three-qnarte™ of an inch l-mL- torepreaent aP..«nd fo„e draw a line which m^resenU, .!„roo77r2uljl
act,„g m a direction making an angle of 60- with tho vertifaL

Pla. 18.

3. If AB (Fig. 16) represents a force of 60 grams, what force will
be represented by (1) AC, (2) BC, (3) BD, (4) AD, (5) CD ?

4. If BC (Fig. 16) represents a force of 24 pounds, what force
"111 be represented by (1) AB, (2) AC, (3) AD, (4) BD, (5) CD ?

•ifl
^' ^° ^* ^^^ represents a force of 3 kilograms, what force

will be represent by (1) AB, (2) AC, (3) AD, (4) BC, (5) BD 1

A

Plo. 17.

maetitudl""f l!! 'T^''
"P^""*"'* » f'"<^ of 3 grams, what are themagnitudes of the forces represented by AB, BC, CA the sides ofthe triangle ABC 1 (Fig. 17.)

'

raJnit^ndl" fTjf"
}^^ "P™^"'« « '"'•^ °f 2 PO"nds, what are themagnitudes of the forces represented by AB, AE and ED ?

na.I&
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a Besnltant and Component Forces.

^BeBt»-Fo.-ce8 are said to be COmpouHded wirentwo

to them, tha is. when tlie resultant is substituted forte components. A force is said to bo resolved when a
8 ngle force is replaced by two or more equivalent to it

•

"TultT^t
"'^•«'"P°»«"t« '"- Bubetituted for the

point when their directions are in the sameXight

If two forces P and Q. represented by AB and BCact ,n the sa...e straight line, it is manifest that their
resultant R will be represented by

AB + BC (Fig. 19)

->

Fro. ig.
that is,

R = P + Q
when the forces act in the same direction

._, AB-BC

A * r—

^

Fio. ao.

and by
(Fig. 20)

that is,

E=P-Q
when the forces act in opposite directions.

4. Equilibrium.

Whenever two or more forces act upon a particle, and
their individual tendencies to acceleration so count^racf.



Pl8. tl.

COUPORtTIOW OF FOROM. g5

It is evident that if two forces P and Q (Fig 2n kp^n
a particle in equilibrium, they must be equal in magnituSand act in opposite direc-

"lagnituae

tions in the same straight
line.

*

If sevreral forcesP.Q.R^.T,
in the same plane, acting
at a point (Fig. 21), keep a
particle in equilibrium, any
one of them must equal in

magnitude the resultant of
all the others, and this force
and the resultant of the others must act in opposite
directions m the same straight line.

5. To find the resultant of two forces actiiur at a
point when the direction, of the forces we^ot ijthe «une straight line-Parallelo»ram of FoJci
Expariiaeiit.

dialTr 'r~*'''.f''*'
=•"»'»• ^^ -bout three feet indumoter and rule ,t with crosMection ruling in inchesMo^ the board on . wall with its surface 7n a vertSi

£^ plane and with oi>e series of lines horizontal,m « shown in Fig. 22. Obtain three pulleys of

-SfH^ *« '°™ "hown in Fig. 23. Each pulley should
FIB. a.

"^ '°°"* ^""^ inches in diameter and mountec'

H.- • 1 .
""" ball-bearing axle. Clamp the pulleys tothec.„ular boarf at th«e poiuta. Tie one end o' eJh Sthree stnn^ of «uiuble lengths to a small ring, and attach armg to each of the th«» free «ds of the strings. ^ I
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SuTThir'r"*'';•"' """•""' '••"" "•' ^-"'^ «- -«•'•

(Kg 22).

-»•"""""' will ..e„,ai„ ,„ e,,uiHt,riua.

the^force aot.ng ulong .t. Let P. Q and H do..ote tl.eso

Note the poBition on the board of the iK>int of junction

^^ Btnngs. and take a co„v,spo„di„« ^.int O Jn c2-section paper or on cross-section ruling on a hlaekboard^'to repent this position. Draw line: OL. OM and ONto represent the directions of the forces P, Q and R-pectwely. The directions of those linos 'c^. b^ detennined by locat.nsr .he positior.s of points L, M andN relative y to C by use of the crarsection ruhWFor example, a point under the string to which P £
thtttt oV-^"T *°r^

'''' ""^ « divisions aL
dlut lLl^""f""' °^ *'^'' ^'""g« '« ""ted on the

Ztr ^ .*"' * '""-P«""-« point L the ^menumber of d.v.s.ons to the left and above O ismarked on the paper or blackboard. Now chlin. a
suitable unit of longtt. to ropre.sent a unit of fZIy
off on the hne OL. OA containing^P units, on the line
Oil. OB contammg Q „„its, and on the li„„ ON OCcontaining E units.

^ ,
^^

By means of a ruler and a pair of compasses construct
aparallelogramj^av^^ and OB a. a-Uacont side!.

•h«uld b. «tw wiU. h<«,k. ,„, ,ZZi„„y
' '• '• •*• *• ' " » '". '-'. 1» o«. They

' A firood plan ii tn have eofh stuH >. < i^
«~oh„,„ «,r«*i„g .,, exl'^to I'k.t h""

^"'"°" "»»-"«" P'P^r. th.

i.''\

iii
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Dniwt).e diaKonal OD, meaHuro its lengtJi. and deter-
mine with a. 8tn.i«l,t edge whether it k in the san.e
straight hne with OC.

If the experiment i« performed with care, it will be
found ihat OD eqnals OC. and that it in in one and the
same straight line with it.

Therefore, when OA represents the force P. and OB
the foice Q. OD represents a force which is equal and
opposite to R; but since P. Q and R are in equilibrium
the resultant of P, and Q is equal in magnitude and
opposite in dii-ection to R Therefor* OD represents the
resultant of P and Q. Hence.

When two forces acting st a point are represented in
magnitude and direction by two acyacenTsidTS aparaUelogram. the resnitant of these two forces willbe represented in maffnitnde and direction by thediagonal of the parallelogram passing through the^tjf junction of the two side. whi^repreSt S!

-^.Tlf^v*
*•>« "«^t<«t 0' two forces P and Q which

act at right angles to each other.

iC Draw the line OA to repre-
sent the force P, and the line
OB to represent the force Q
(Fig. 24).

Complete the parallelogram
Fie. 24. AOBC.

Then the resultant of Pand Q will be represented by
OO, the diagonal of the parallelogram.

Let R denote the resultant



coHfotnios or roRoig. j-

Since the angle OAC in a right angle,

OC-OA'+ AC"
-OA'+OB'

.•. R'= P«-f Q»
or B = V^F+ QT

11 * denotes the nnirlo wlnVl. H. i- .•

WHultant nmke, will, H V ''"^«'on of the

rented by ol "" '"" "^ ""' '""''' ''^P'-

. MJ OB ytun ( :

EZEBOISE Xni

«on i. 1.3 P. What UZXrl^r ""'"' '" "" -"'-'^ <»-«-

the force.!
""*'"""' "K^t angle, to each other. What are

a--

>
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r
II Two forces «oliiiK in Hie muw (lir«ctioii in the mine (traight

I11.0 h»ve » r.,.HlU.,t ..f :i4 gr»,n». Wl.e., .!,««, f„rce» ^i ,t riKhl
«iigle« to .,«h other thmr rwiiltant i. iM «r»iii». Wh«t »ro th«
force* 7

12. Determine the resultAnt of the following force* acting oon-
r/ currently at the »me point :-12 iK,un.I» N., 24 inmnU. E.. 7 pound.

• H., and 36 |>ountlH Weat.

13. A weight i. Hupi»)rt«d by two atringa. it the atringa make
..11 angle of W with each other, and the tenaioi. of the one ia (t

|«MMid«, while that of the other ia 12, what ia the weight /

14. A boat ia moored in a stream l>y • rope faatened to each
l>ank. If the ropea make au angle of »0» with each other, and the/ force of the stream on the lK«t is 600 pounds, Hiid the tentlon of
one of the rope* if that of the other ia 300 pound*.

7. To find the renltant of two forces P and Q
inclined to each other at an angle A

Draw OA and OB to represent the forces P and Q
rMpectively. Uonipleto tlie parallelogram AOBC. and
join OG. Then the diagonal OC will represent the
resultant of P and Q.

Let R denote the resultant of P and Q.

FlO. 26«.

Draw CD perpendicular to OA (Fig. 25i) or OA
produced (Fig. 25a).

* '



coMMmioN or roRcH.

In Fig. 26.t

<>C'-0A« +AC«+2 0A.AD
-0A'+AC» + 2X)A. ACc DAO
=OA«+OB» +2 OA. OB cuh »

•inoo ACxOB

In Fifj, 25^

OC»-0A«+A0«-2OA.AD
- 0A« +AC - 2 OA. Ap c<« DAO
-0A«+0B' + 2 0.V OBco.»

sincu AC:=OB
and 0(M DAC=. -coi (180°—DAC)

~ - cos *.

71

Kuc. 11. 12.

(',cl.'. 1 i

Therefore,

or,
R«- P«+Q«+2PQo.«».

« -l^-{P'+Q»+2PQcot#}.
/T;

EZEBOISE ZIV.
1. FiiKl the resultant of the following forces

:

(1) 36 pounds and 60 pounds at an angle of 60*. -

(2) 10 pounds and 10 pounds at an angle of 46-. tV
(3) 10 pounds and 10 pounds at an angle of ISO". -fV
(4) 30 pounds and 80 pounds at an angle of 120°. '

\
(6) 2 pounds and 7 pounds at an angle of 30°.

'^

(«) 2 pounds and 3 iiounds at an angle of 1,35°. .^
(7) 3,H)unds and 16 pounds at an angle of 16^_t^ -'''?-*

(8) 4i»,und8andll,Hmndsatan»ngloof 75°. ^,, Vt.Jv'
(9) P acting toward the west and P^2 t.,war,l the north.e.;T

2. Prove that the resultant of two forces. P nn.l Pj.fi .•
an angle of ,20°, is e^ual to the resu.tanroTtwotZ:^lTpV*Jacting at the same angle.

> V »na i-+ y,

3. Find the resultant of two foree, of 10 pounds and 9 ooundsMmg at an angle whose tangent is f
"Pounds

c,
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L

W.U1..wK*i.^""
""'"""' *" ""»." "VS.

.. !'»:= r'? »,r:„7s:: ,ir- • "• »«•«

V xo grams when they act at an angle of 60°

of the magnitudes of the forces ?
°

'^^•'^3- What « the ratio

hav!-tlTe'':m:Tel:LXT*' "f;
^"^ "* »" "»«'' «' <^.

What is the mTXrort.:: 2::Lf^ "'""^ " -*'•"" "^'-

with a force of 60 pound, J^n.^T
"'"""^ '•«"' '"'d "etched

of the resultant pCu™ on2 ^i;""'^""'"^^
-<> '"« <•-«»»

thei":: M atrstr;:::^^ rrr;t " f
""-«""''• -'•

w.«„dthema..it„deaTd::;re:ti7:;\riT,r/r""''"

i::;r^i:ra:'s;:;itt=f^—
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!:Zt
''"""•" "" ""«"''""" •" «" Wer force and the re-

18. The resultant of two forces P and O !. n /<i j . ,•

tion makes .„ angle of 30" with tkfdtcl 'o^^'' tow t :;^p
i» either equal to Q or 2 Q.

"' ^

always nearer the greater force, and the greater the nngle betweenthe forces the less is their resultant.
* between

and that of their resultant is not greater than 30°
"'««»"»>

24. If AB and AC represent two forces, and if D is the mirt,ll„

C"i:uKr '':::,''"™"''*"°^ '*'«'-- "^''-^^^^^^^anu wiu be represented in magnitude by 2 AD.
25. If D is the middle ,«,int of the side BG of a trianirle ABPs^ow that the resultant of the forces represented b; e tes abAC, DA 14 represented by the Jiue AD.

'
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-Q

•M. The side BC of nn wjuilateral triuigle ABC ia biueted i^; D,
and AD is bisected at O. Two forces, each equal to ^7 pa4inda,

act along OB, <)C. Find tlie niaKnitudo and the direction of the
resultant.

27. ABDC in a parallelogram, and AB is bisected in E. Show
that the resultant of the forces represented by AD, AC is double of

the resultant of the forces represented by AE, AC.

ri i 28. Show that the resultant of the forces represented by AC,
(V DB, the diagonals of the imtallelogram ABCD, is represented by

2 AB or 2 DC.

29. If ABC is a triangle and AB is bisected at D, AC at E, and
BC at F, show that FA represents the resultant of the forees

represented by BE and CD.

30. If two forces acting at a point are represented in magnitude
and direction by the sideH AB, BC of the triangle .*BC, prove that
the side AC representa the resultant.

31. Midcc use of the proposition stated in the last question to

solve the following :

—

(1) The side BC of an e<iuilateral triangle ABC is bisected at

D, and forces are represented in direction and raufpatude
by AB, BD. Find the magnitude of their lesuKant, if

the force along BD is jqual to a weight of 1 pound.

. (2) Find the resultant of three forces represented by the sides

AB, BC, CD of a rhombus ABCD.

(3) The sides AB and AC of the trianjjie ABC are bisected at

the points D and E. Show that the rusuIUiit of the
forces repreaoutod by DB, BC, CE is equivalent to the
resultant of those representetl by DA, AE.

{i) If the sides BC, CA, AB, of a triangle ABC are bisected

at D, E and F rosiwctively, show that the resultant of

the fovce.s roprosuuted by AB, AC, BE wdl 1)8 represented

by 3 FD.

32. A point is tjiljun within or without a quadrilateral, and lines

are drawn from it to tlie angular points of the quadrilaterd.

ir"':..
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Prove tl»t the re.,.lt«„t „f the force, repre^nted by the.e Ii„e« i.™p«»e„ted l,y the «„„ of the line. j..i„i,.g th« point wh themiddle points of the side, of the quadrilateral

.t^et^U E F
?,"''^"''"*™''.»"'> -^B' BC, CD, DA are W»cted

of T,r ' ' • :
™''l'™"™'y- P'-ve ( 1 ) that the resultant

^2Uh T" "Pr""""' "^ ""^ ""«• ^ '" represented by 2 HF
(2) that the resultant of the forces represented by EG and HF iirepresented by AC.

•J)C . C I' - K>f=



CHAPTER VII.

RESOLUTION OF FORCES.

In the preceding chapter the parallelogram of forces
was employed to determine the resultant of two forces
«<:t.ng at a point. We shall now apply it to resolving a
single force into two components which act in assigned
directions. °

^'

^SiSm'
CoapfcMnts of a Oiven Force in Two Given

Let R denote the given force, and a and P the angles
which the components make with it.

Draw the line OC
(Fig. 26) to represent

R; at the point O make
the angle COL = a,

and the angle COM
= P ; and from the

point C, draw CA
parallel to OM, and
CB parallel to OL.

F^a.m. Then since AOBC is
a parallelogram and OC represents R, OA and OB will
represent the forces P and Q respectively, where P and Q
denote the required components.

2. SesolTed Part

Wl)en a force is resolved into two eoniponente at right
angles to cm-Ii other, e;ich coitiponent is eiillwl tlir

Resolved Part of the force in its own direction ; that is.

7K
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le Resolved Part of a Force in a g^yen direction i.
tejorce in that di^ectinr. whi^.^. together with nn« atnght angles to itjaa the given force for a rB«nTg^
The expres,sion resolved part calls special attention

to one of ti.e eomponeMts of a force, but it should not be
loijotten that another force acts in conjunction with it
and at right angles to it. For example, if a body luw a
tendency to acceleration in a north-easterly direction it
ha.s a tendency in a northerly direction accompanied by
a tendency in an easterly.

^
'^Dlr^ctton'"'

^'"''*'* ^^^ "^ " ***''° ^"^ ^ * O"""

Draw the line OC to represent the given force in ma-r-
nitude and direction (Fig. 27). From O draw the line OL

Fis. 27.

m the given direction, and the line OM at rl.rht an.des
to ,t. From C <lraw CA parallel to OM, and CB parallel
to <)L. Then the forces represented by ()A and OB at
nght angl.-s to each other have for their .vsultaiit the
,'iven force represented by 0(1

0.\, therefore, represents the resolv.-d , : ,t of the triven
iurce ill the given direction.
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Let F.lenoio (he }jiv,.„ force, and a tl.e anj;1e which
the {fiven direction makes with tJie direction of the (riven
force. "

Then. |IA^c«AOC = o„,„

Of, OA = OC cos a,

therefore, the resolved part of a force F in a direction
making nn anjjlo a with it

Hence,
='•"""

The resolved part in a given direction is obtained by
multiplyinif the given force by the cosine of the anglebetween the given force and the given direction.

The component perpendicular to tlie resolved part
- F cos (90 •ma)

= F sin re

and the two components, therefore, are

F cos rt and p sin re.

EXERCISE ZV.
1. Find the resolved p.rt of « force of 10 po.mds in » directionm»kmg .-.n angle with the direction of the force of (1) 30°, (2) 45»,

2. Find the horizontal and the vertical resolved parts of a fo«eofM pounds, maknig an angle of 30° with the horizontal.
a Find the resolved part S.W. of a force of 12 pounds S.

ri,.h*;

^
f"r

"^ 100 pounds is resolved into l„o equal forces atright angles to each other. What is the magnitude <,f either force ?

5. The resultant of two for.es acting ai right angles is IfiIKmnc s and n.akes an angle of 30^ „it,. „„« of the cot.ponents.
I'uid the ni,ignitude of the components.

wl.h' J''!
''""^""'''' '•''»"'™'» P'"-fc of « force nuiking an angle of 30°

with the h„r,™,t«l ,H 4 p„„„i,. Find the ve. ti.„l ..^.fved part.
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>v,th he direct,™ of the canal, find the majjnitude of the fol thatw,.ld have to .» applied in the di»ctio„ of the canal toZw the

8. A hor»e draw, a load i,lace<l upon a .leigh. If he p„ll„ „ith.fo«eof 100 pound, when the trace, n.ake an an.Ie o o" ^^h

^vr^ui'tr^
^""''

" ^•"'"«*' '" '-» ^-"-«™
"' '-^ -"

a Sho^ that the pre«„re of a perfectly sm.H^th Wy resting onH perfectly amooth surface i, at right angles to the surface
'^

h^ Jtif^rwin'r
''

"
'^''"'' '"'

"
^«-' " -" -' •«»^-' »

AcTinn r^ ^ ""^!:f
'^"^ "^ ""' '"'"« W along the sideAl^, (J) ni a direction parallel io CB ?

12. AB represents a force, and a circle is described on AB.I.»n,eter. Show that the resolved part of this forcr", any dilW.S represented by the chord of the circle drawn in the dfr^^n

4. To Find the Eesnltant of any Nmbor of Forces Acting at
» Point in given Directions Lying in one Plane.

If the forces act in the same strai.rht line it is
.^v^dent that their resultant is the algebraic su,n 'of the

If the forces do not .ict in the same straight line, let O-present the given point, and through it draw t.i lines'X and yy at right angles to each other.

u^*' «'
^"-' ^•''

;
"
'^''"°^ *'"' magnitude of the forces,

•"»d ".Ay... the angles which they make with Or.

,^\^'^

Vv
.A
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Draw linc^ to .vprenent tho di«,ction of tl.e forces a«sliown in Pig. 28.
•ureeu, an

I
/'r

Let X denote the algebraic sum of tho resolve.! partsof the given forces in the direction 0.r,

Y denotes the algebraic sum of the resolv'ed part*of the given forces in the direction O3,
and R denote the resultant of the given forces

Substituting for each of the given forces its resolvedparts m the directions O., O,. we have (Art. H. pl^ 7«
'

X = P, cos « + P, cos/? +P, cosy
. . .

Y = P. sino+Pjsin^j+p^^jnj,

The resultant of the given forces

= the^sultant of the equivalent forces subsftuted for

Therefore R = i/XT+Vi /" V..t c

Ytan # =
X
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5. Ezunpla.

Four force, of 2 pounds, 4 pounds, ,/ 3 pounds, and 8 pounds
lift at a point. If tlie angle between the fiint and second is
GO

,
between the second and third 'JO", and between the thii-d

and fourlh 150", find the magnitude and the .lirection of their
resultant.

Let O be the given point, and through it draw two lines™' a'"l
'Jl/'

at right angles to each other (Fig. 29).

Suppose the 2-pound force to act along 0.r, and draw lines
to represent the directions of the others, a,s shown in Fig. 29.
Ut X = the algebraic ku,„ of the resolved parts of the forces

iu the direction Ox,

and Yithe algebraic sum of the resolved parts of the forces
in the direction Oi/,

Substituting for each of the forces its resolved parts in the
directions Ox, Oy, we have,

X = 2+4 cos 60° - 6i/3 cos 3p°4-s .-us 60"

=2+2-9+4=-!
V = 4 cos .S0°+6 v^ .3 cos 60° - 8 cos 30°

= 2^'3+.S,/3-4^3=,/3



*' MmiTTAHY MTOHAltlOB.

The renultant of the four forces

'ttLr"'""*
°' "" '^"'"''''"' '""^ ««brtitnted for

- the r^nlUntotX and Y at right angle, to each other
= »/X>+Y>

= 1^ (-!)•+(• 3)"=. /-4=2 pounds
If tf denote, the angle which the resultant make, with Ox.

or the resultant make, an angle of 120- with the first fo«,e.

EZEBOISE rvi

at:r„retsr^ '^'-^ «^' - --i -t:

\75 and b„e«een the third and the fourth 120', find the resultant

order. F.nd the magnitude and the direction of the resultant

CB AR 7r 'T'
'^'' •* •o'""' point in direction parallel to AC.
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ciJ. ThTlT""'
'"""" "' ^ P"""''" •"«'•' »'' •""'« the r«Iii ..f .

«.L.*;iS;,
"'."', ° ^ "" '»•"•••" "1 .1.. diK™.!. <

.

10. Five equal forcH ,ct „„ a ,«rticle in .lirection, ,«„Ilel toflvec„,.«cuuv.«de,
,.f , regular I,„,ag„„ taken in orr, Fi.^2h, magnitude and the directi.m of their reaultant

If a number of forees in the name plane act at a pointthey W.11 be m equilibrinn, when the resultant is LS!
That is, when

R = ^XJ7y5=0 (Art. 6, page 69). Ibut the sum of the squares of two real quantities^ bl ^ {f=ero only when each ,,ua„tity is separately zero. >>
Therefore, the forces are in equilibrium when V

x=o I

7. Bxunples.

J ttr™ e°r' f '^ " '""'^"'^'"' '•^ ""• '"""'^'' «"« """^nt*!

n,





»«aoconr rboiution test cha«t
(ANSI ond ISO TeST CHART No. 2)

il

1.0 "^l^ 1^
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1.8

i^i^^

^Ss l^^? ^°'' Moin Street
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Let T, ,111(1 T., ilcncite tl.o tensions of tl,e strings, T, acting
along OA, and T,, acting along OIJ. Draw two lines =c.v andW at right anglfis to each other in the position shown in
Fig. 30.

Vi

B\

Three forces keep the ina.ss at rest ; its weiglit, which is 3
pounds, tension Tj, and tension T.,.

Substituting for these forces their resolved parts in the
directions O.ir and Oy,

X = T, - Tj ooa 60'

= T, -JT,
Y = T, cos 30° - a

i v/3 T, - :t

But since the forces are in eijuilibrium

X = and Y = 0.

T, - 4 T, = O

iy/S T., - 3 = U .

Hence,
(1)

(2)

From (•_')

Substituting fur

T., = r>

- |/ 3 pounds.
v/3

T, in (I)

T, - ^ 3 = O or T, = ,/ 3 pounds.
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2. A f«,.Iy wl,.,,s. „,a.s.s is 5 kilng,vu„s rusts „|,„„ ,. snmntl, „U„«

ts wo,al.t
; (2) tl,e re-acti..n of tl,„ „l,„,o

; (S) ,. f,,,™ e.iu.l t,,' ,h«w«igh of 2 k.logra„,s,-aetina 1""h11.1 to tl>o plan. h.uI „[.w,-.rd •

and 4) a force P acting at an angle of SO- to the plane. Detera,inef wlien tlie body is at rest.

Let K denote the re-aclion of tlie phuie. Since the pla.ie is
smooth the pressure upon it will be at right angles to it
therefore H will make a right angle with A15.

Kepresent the directions of the four forces by lines, as
•ihowu in Kig, .{I.

mh

Through O ilraw ,r,.:' an.l yy' at right a.,gles to each other.

Substituting for the forces their resolved parts in the direc-
tions O.r and <)//.

Welllave,
X = 2 + I- ooa 30° - r> cos B(l°

= 2+ J /:!!•- 5 = .5,/3P- i

V = 1' «« 00" + I! - D cos :)ll=

4P + R i»/3
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But since UiH forofs are in ei|iiili)ii'iuiii

X ^ O and Y = O
Hence,

J j/ 3 ! -
i = O

J
1* + R S y' 3 ^ (J .

P = • - v^-'

Sul>9tituting for V in (*2)

From (1)

ti

) li -
.^ v/3 =

R = 5 1/»

O

,/3,

cli

(1)

Hence P =:: the weight of a nia»auf '
\

kilograiiiH

and R — the weight^ of a mass of I |/3 kilograni».

EXERCISE XVn.
1. Three forces acting at a point are in Ofjuilibriuni when tlie

angle between the Hrst and the sectmd is 120^ aiul the angle

between the second and the third 150°. If the first force is 20

pounds, what is each of the others ?

2. Three forces acting at a point are in e(][uilibrium. If the

angle between any two is 120°, show that tiie forces are ec^ual.

3. Three forces acting at a point are in equilibrium when the

angle between the first and the sectHid is 00°, and the angle betweeji

the second and the third is 150°. Compare the forces,
.

4. Two forces acting on a particle are at right angles, and are

lialanced by a third force making an angle of 150° with one of them.

If the greatest force is 10 pounds, what are tlie others ?

5. A weight of 10^3 pounds luings at, tlie end of a string

attaclied to a peg. If the weight is held aside by a horizontal

force, so that the string makes an angle of 30° witli the vertical,

find the horizontal force and the tension of the string.

6. A weight is hung at the end of a string attaclied to a pug. If

the weigl^t is held a^i'le by a horizontal force, so tliat tlie string

makes an angle of CO" with the vertical, ci'mjinre the tension of the

Btriug i^nd the weight.
*
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. 7. A weight i>( 10 pounds is siijipm-tod l)y twi> strinjjs, one of
wliich makes an angle of 30' ivitli the vertiail. If the (,ther string
makes an angle of 45° with the vertical, what is the tension of each
string ?

8. A string fixed at its extremities to two ]ioints in the same
horizontal line supports a smooth ring weighing- 2 pounds. If the
two parts of the string contain an angle of tJO^, what is the tension
of the st-ing ?

9. A w Mght of 12 pounds is suppi>rtcd hy two strings, each of
which is four feet long, the ends being tied to two points in a
horizontal line 4 feet apart. What is the tension of each string ?

10. A picture hangs symmetrically by means of a string jjassing
over a nail and attached to two rings fixed to the picture. What
is the tensi.m of the string, if the picture weighs pounds and the
angle contained by the two parts of the string is 45° ?

11. A uniform bar, the weight of which is 100 pounds, is supported
ni a horizontal position by a string slung over a peg and attached
to both ends of the bar. If the two p.irts of the string contain an
angle of 1 20°, find the tension of the string.

12. A b.ill weighing 20 pounds sliiles along a perfectly smooth
rod inclined at an angle of 30° with the vertical. What force
applied in the direction of the rod will sustain the ball, and what
is the p/essure on the rod i

13. A body, the weight of which is 20 piunds, rests on a smooth
plane, inclined to the horizon at an angle of 60°. Find (1) what
fiircu acting horizontally will keep the bcnly at rest, (2) the re-action
of the plane.

U. A b(Kly, the weiglit of which is 100 pounds, rests on a smooth
plane inclined to tlie horizon at an angle of 30°. What force acting
at an angle of 30° to the piano will keep the body at rest ? What
is the pressure on the plane 1

15. Two weights of 2 pounds and v/6 pounds respectively rest,
one on each of two inclined planes which are of the same height
and are i)laced back to hack. The weights are connected by a
string which (lasses over a smooth pulley at the connnon apex of

i

hiff
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the )>liincn. It tlio' first plaiiu iii.ikuK nn angle of fiO° with, the
horizon, find (1) the tension of tlie Hiring, (2) tlio

plnne, (3) tlie inclination uf

])resHure o

3 horizon.

I each
} Hecond plane t

Ifl. A mass of 12 grams hanging freely draws a mass of 8 grams
up a smootli plane whose inclination to the horizon is 30". Find
the acceleration up the plane and the tension of the string
connecting the masses.

17. A mass of 15 grams hanging freely draws a mas.s of 20 grams
up a sniiHith plane whose inclination is 30°. Find the space
described 'a the third second from rest.

18. A mass of 11 grams hanging freely draws a mass of 10 grams
up a smooth inclined plane rising 3 feet in 5 feet. Find the
acceleintiun.

^
^ '

*

—f- 19. A heavy particle slides froin rest down a smooth inclined
piano which is 25 cm. long and 20 cm. high. What is its velocity

. when it reaches the ground and how long does it take ?

20. A particle slides without friction down an inclined jlaiie,

and in the 6th 3ocond after starting passes over a distance of
2,2(B cm. Find the inclinatiuu of the plane to the horizon.

21. A mass m on a smooth inclined plane is connected by a
string over a pulley with a mass | m hanging freely. Find the
inclination of the [Jane when i« moves up a distance'^ g in the first

(econd.

\ 22. A mass of 46 grams hanging freely draws a mass of 62 grams
;wnp a smooth inclined plane wlioso inclination is 30°. After 1

second the string breaks ; how far will the 52 gram mass ascend
after that ?

23. A particle wh ise mass is 10 grams is projected up « smooth
inclined plane which makes an angle of 30' with the horia.n with an
initial vehicity of 1,960 cm. per second. Find (1) ita kinetic energy
at the end of 3 seconds, (2) its momentum at the end of 2 seconds,
(.i) when its kinetic energy will be zero.



CHAPTER Viri.

TRIANGLE AND POLYGON OF FOKCES.

The conditions sufficient for equilibriu.n when anynnmber of forces n, one plane act at a point, are jrivon
in Art. 6, page 83.

^

We shall in this chapter consider another statement of
these conditions.

Experiment.
^-Triangle of Forces.

Suspend three weights, P, Q, ^a K by strings, as in theexpenment on page 65 (Fig. 32).

o„?«'.T>i^^r.
cross-section paper or cro-ss-section rulingon the blackboard to represent the point of junction of tbl

tr.ng« and draw the lines O A and A B to represent respec!
.vely the forces P and Q in magnitude and direction. Zdirection of A B ,s determined by locating on the cross-section

rih r> \
"""""^ '™'" "" '" '^' '"""' '''""=^-'' «« that inwhich the string attached io Q runs from the point ofjunction of the strings. From B draw a line to rVpresent

in magnitude and direction the force R. The line will .«o„nd to be B O Hence the three forces in equilibrium ar^
presented by the three lines O A, A B, B 0,7he tln^ side"

of a triangle taken in order.

Repeat the experiment several times, changing the magni-tudes and directions of weights P, Q and R each time
This proposition is generally known as the Triangle OfForces. Itmay.be thus state<l.

*"angle or

1. Triangle of Forces.

If three forces acting at a point can be representedm magmtude and direction by the sides of a^r^Staken in order, they wiU be in equilibriwn.
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Thi.s is in r..«lity h„(. ....other stat..,u.nt ..f tho paml-
.;.«,.,., ot lorces, and the proiK..sition ,„ay Ix, derived
directly imm it.

P A

Let AB. BC. CA (Fi.. :«), tho sides ..f the triangleA B(, taken ,n order, represent in n,a;,n.itude an.l ,liree-tmn the tl,ree forces, P, Q, R. ..ctinj; at O.

Complete the parallelojfraui ABC]).
Since AD and BC are e,|uul an.l parallel they l„,th

represent I ho .same force.
^

^^

Tlu^refore the forces P an.l Q will b.. repre.sented by

But. by the parallelogram of forces, the resultant of
the forces rej .-esente,! by AB, AD, is represented by AC

But the forces represented, AC, CA.are in equilibri.nn
Hence the three forces, P. Q, and R, are in e.,uilibriun.
The student should carefully observe

(1) That the sides of the triangle are not the lines of
action ot the forces, but that the forces act at a point.

(2) That the forces must be parallel to the sides of
the tnangle taken m order. P in the direction AB. Q inthe direction BC. R in the -lirection CA. not AC.

(3) That AC represents the resultant (,f the forces
represented by AB, BC; that is, of the forces P and Q.

'

I '
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t Converse of the Triangle of Forces.

TlM- ,.„„v.Ts,. of t|„, -IVian;;!,. „( Fu.r.s is ,t,.., tr.,,.
It limy 1),. t)iUH Nlatnl :—

iin?*S«?
°"'"' f*'."«^ ** * P°*°* »'« « equilibriumand any tmngle is constructed having its sides

parallel to the direction of the forces, the forces are
proportional to the sides of the triangle taken in order

II.—Polygon of Forces.

Til.. stat,.„i..nt „r tl,. ciiKlitions of ..|nilil,n„„, of dnro
ore... ^nv,.n M, th,. 'IV .|,, of Fo„..,.s „„.,>• 1«. ..xt-n,!,.,!
"' ...eludo Hi.y iiuu.bcrof fores in tl„. sai,,.. piano actin,,
.it a point. =

Experiment.

Arranging apparatus as in the ..xp,.ri,iK.n, on pago 65suspeml hve weiglit, as shown in Fig, .-ll.

;« a bi.iokhoanl to rt-piesent the p,.sitio„ of the ,„.int of,unct,„„ of the strings, a.i.l .Iraw the lines OA, AH, HO 'i^d<^U to represent resj-ctively the forc(.s P, Q R ,i,„| s in
niagiiitmle and direction. From ]> dinv ^ U.[ >

'Ue force T in magnitu,, ,^^1. ^T^ :r~-.ndtoheDO. Hence the Hve forces in el ..i'lil'-iila^
l.resente,l I,y the five lines OA, Alt, HO, CD, D the side'

"t a polygon talien in order.
'

Repeat the experiment several times, changing the numl«r
'lie magnitudes and directions of the ,» eights

In all oases it will he found that whenever i,: is ,,ossihlP *<•
||r.vsent the ^,n.es l,y ,he si,les ,,f a p,,lvg,,n tad in onlei'
I lie forces are in e<iuilil,rium.

;i'i|
^1
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Tlir i>in|H.,siii„n is kunwu as tlh' Polygon of Forces.
It, riiiiy 1m- IIiiih .stiilcil

:

If any number of forces acting at a point can be
represented in magnitude and direction by the sides of
a polygon taken in order, they will be in equUibrium.

ItiiLiy l«.,l..iiv...l .liivftly from tl„. i.an.ll,l„.;.a.n .,f
flH-ITS IIH I'lllldWH:-

hi any iminKr „|- f,„c,.s, I', Q, J!, ,s, T, artin- a. (!,.

point (), 1m' iv|.ivsciitc<l hy Al!, H(;, ("I). I)K, KA, tli.'

Ni'K takuii ill uidur, of tliu i)olygoii AliCDIi (Fij;. ;J5).

D

Join AC, Al).

Tlu! resultant of tlii' forces icpreHciited liy AH, HC is

rcpri'sontud by AC, Art. (3), |m<;i^ 91.

Similarly tlie rosultaiit of tlio foiw.s roprcsciiti;.! by
AC;, CD is representtMl hy AD.

Ami thu rt'-sultiiiit of tlio forces represented by Al),
J)E is reproseiiteil by Ai"].

Therefore the resultant of all the forces is represented
by AK, KA.

Hnt tlie fuicrs ivpre.seiited by AK, KA are in e.|ui-

libniim.

Hence the forces are in e(|uilibriuni.
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in. Examples

J

I. Tliruo f.,m... III-. 71', H^, a.ii,,., „ „,„„. ,,lun..Hi , i„t
are III t'.,iiilil.riiiin. l)i»»- li„.., „ |,„.i, „m ,,.|,ri-,..„t i|„.ir ,l„w,i„iiM.

Coiistriu-t II triangli- AIM', liminy
tlui sillc All li IllliUnf Ifiij-tli.

lie = 7 uiiilD of Ipiiglli.

CA ^ 8 units of li'iifTih. ( Ki«. :\f<).

Tlicn tli« foicnn will Im- ri'picwnti.d

Ipy tilt- sides of llii' triimjjlc AliC liiki'ii

ill order.

Supjwwo the forces to net at tlie

point A.

Draw AD piuttllel to l!C, un.I prixluie CA lo K.

Then AI>, Al!, AK, «ill represent tl.e .lireetions of the
forces l*ca„se these lines arc parallel to the sides of the
triangle which represent the forces.

2. A pe.i.I,.l,i,„, consisting of „ ,„,,, „,.,,, ^ ^ ),il,.f,r^,„, ^, j,,,,CMlof as riiigoiic ,„etro long, is .hv^u, ,.,i,,„ „,„;, „.e 1,„1, is ,«,
c.n. from the vertical thro.igl, ,l,e ,,„i„t of «„,,,„„,, an.I is hel.l in
position l.y a liorizuntal-striiiK. Find the forces actiiiy „„ ,|,„ l,„i,.

Let A represent the iM.iiduIn.n l,ol,,

and B the point to which tlie string is

attached (Kig. 37). Then if T, "le-
notes the lension of the peMluluni
string, and T^, il,„ tension of the hori-
zontal str.iig, the foires acting on the
IhiI) are T,, T,, ai»l 4 kilograms, acting
in the din>ctioiis .shown in the ligme.

Draw the vertical line BO and the"

horizontal line AC.

_.„. ^
Then the foices will he proportional

to tlie sides (,f the triangle Al'.(! l,e.
cause the sides of the triangle are parallel to the directions of
Uie forces.

'
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Hence,

aud

T,

4

T:

T
4

^ Al!_ 100

BU ~ 80

= 5 kgm.

^ CA _ CO
ilC ~ 80

'" T, = 3 kgm.

i« the ..„...ct,„,. ,:; ui:;;:.: r " '"'""' ™'"^' ^ '""' '" '
'

^^''-

An inclined pl.ino ri'iincr o «„, r •

.en«u. A. is .L .Cl;^;;;^^,:-;-'''^'-'"'
Let D represent the body (Fig. 38). If P denote, the hori-

zoDtfil force, an,l R the re-action of
the plane, the Iwdy is kept in
etjuiHl)rium by

P, iicting liorizontally,

R, acting ,it riglit imgles to AT!
a"d 100 pounds, acting vertic-dly

-i downward. Pr.«Juce ]il) to nieJt

ilence

100

FE

But

unil

m = T,T
^"""' "'" '"""Sle EDP i, .similar

AC to thn triangle BAC
^- _ 3

100 4

" = 7.5 pounds

R KD AB r,

100 DF ~ aWJ
"' It = 12r. pounds.
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EZEBOIBE XVIII.

1. Can a particle be kept at rest by each of tlie folIowinK
.systems of forces acting at n point ?

(1) 4 ixmncls, 3 poumls, 7 pounds.
. ^ . ,

"

(2) 1 gram, 3 grams, 5 grams. > ,

(3) 4 pounds, 3 pounds, 2 jiounds. -q j

(4) P+ Q, P-Q. p, ,vl„,„ p i., greater tban Q.

2. Draw lines to represent tlu> directions of the foHowins; forces
acting >n one place at a ,K,iMt, uhen each systen, is in cquilibriun,.;

(1) 4 grams, 5 grams, 3 grams.

(2) Throe forces each eipial to I>.

(3) 2P, P, v/3P.

(4) 5 grams, 9 grams, 4 grams.

3 Forces 5P, 12P, 13P keep a particle at rest. Show that the
directions of two of the forces are at right angles to each other.

) 4. Find the directions in which three e.iual forces must act at a
IHimt to produce equilibrium. i

•;/' ';:.JL..^;^

6. Forces A + B. A - B, and ,'^(1^^^) keep a particle at'
.est Show that the directions of two of the forces are at rijjht
angles .to each other.

*

C. Forces of 20 pounds, 10 pounds, and 10/3 pounds act on a

'Tm r"jl
'''

i'
"' """ ^'"'' *'"' ""=''" ''«''-«^- th" 'li-eHons

of (1) the 20-pound force and the 10-p„„„d force, (2) the lO-pound
force and the 10^/3-poHnd force.

fino^', Jno' ?^? '"T
"'""'' ''"''"

"
•"""<='" •" """' "'=''''' »•"!'«« "f

60°, 150 150° with one another. In what proportions ...e the
magnitudes of the forces I

8. Two forces acting at a point are at right angles and are
balanced by a third force, making an angle of 150= with one of
them. If the greatest force is 12 grams, what is the magnitude of

^
each of the others^?

». A mass of 4 lbs. is suspended from a fi;jed point by means ofa string 3o inches in length, and rests at a distance of 28 inches

(L--

i

M

M\
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^D iiKl thi8 force and tl.e tension of the string.

11. A string fixed at its extremities to two points in H,» „.„

l.J. A mass of C5 lbs. is suspends by t„.« strin,-, wh.v.),

2o„ta4,pIane 13 feet apart. F>„d tl,.. tension of each string

12 .nches below the horizontal li„., ,i,.d .he tension of the string
15. A picture hangs symmetrically by n.eans of a strinu .«Jin,,over a nad and .attached to two rings fixed to .he pictu e.

'
VV , itthe tension of the string when the picture weigl s 10 p««„d h

s:i:;:hXr•'-'"'
^

^^----- "'^^-

ri...t angles to the strt.g wiU h:;;"theT4 in • p s Z^tcr'Mow a „ri.onta. line drawn through the p'oint oV^Xfo:/^'
in5f.!; V"""""

""""^ '""*"''' '•^ "^ ""=li"e<l plane rising 3 feet

What is the press:..lll'^lrt ' "
"""' ' '''' '" " '^«"
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19. What m,«, will l,e 8„p,,„rte,l l.y ,. h..ri.n„tal force of 9P""-lH up.... an inclined „o risi,,,- ;) f„,.,, i„ 5 feet (

20. A smooth l„«r,l i, fixed at an incline of 1 in 2. A n.ass of

anjile with the vertical that the board niakeH wifl. .1,
What is the ten.,ion of the string ?

'' "'" «'""'"'•

" Al^CB^CDi^.r^n'"'"'" """ *'"" ""- '"---Pr-o^ted byAa, I.B, OU an,l AD are in equilibrium.

22. ABCD is a parallelogran.; and three forces aftinjj at a ooint

:;u:c "^ ""- "'^ "- ^^^^^ ^""-^ "- •"•' ^"- -

"

23. Three forces are represented by AB, AC, two cliords .,f anrcle drawn at ri,ht angles to each other and DA, a d am erShow that the forces are in equilibrium.
«>a>neter.

a fwt,?^
""'' ^^ '"''' '*''""''^"« "f ' "i'^le. Three forces acting at

: IK.„.t are represented by AB, DC and 2BD. Show tl»t theforces are m equilibrium.
*

25 Three forces are represented by the li.fes joining the angular

CVh t"th:r''^-
"'

"r,""*"""
""'"' "' '"" "PPol ' -nnowthat they are ni equilibrium.

of RP "/^'
.^'^ .eprcseut two forces, and D is the middle point

le^d S";Dr
"'" '"" '""'' "'" '- '" '-^ ''^ •' '"- "P-

1 u iiy Aij, A^, JAJl, 2CA, are m equilibrium.
28. Four forces represented by AB BC CD T>V «^f .f

and are balanced by a single foL «p~d by Ix "\;!;7 ^the position of X ?
i '^^^ «»n.it i»

I li

N



CHAPTER IX.

PARALLEL FOIICES.

In Chapters vi und vil we have considered the
methods of dotenniniMj; the resultant of any number of
forces act.ng at a point. W. have now to in>estigate tl,e
methods of .letenuinin;; the resultant of parallel fowes.

DeflnitioQ.

Parallel forces are s,-,id to be like when they act in

itcZ:. '"''°".' '""''' ^^""' ^•'^'^' "^' »' °PP°-"''^

' ^Snjon'a" Sd^^BoSr""""* " '^'' ""*""' ^''""

Take a light unifor,,, bar and attach to the centre o, andpomt „ 6, ., d, e,f, along the rod at equal distances on ea,^hm\e of the centre, strings ending in rings, as shown in Pig .39

na. 30.

Clamp one of th, pulley, u.sed in the experiment on page 65
to an upright support and suspend the bar ai .shown in the

100
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figure. Hang a wnijfht., sav I

:

101

by trial what weiglits

(t) e and i, (c)/an(l /t,

ozs., fniM) n, and dutcrininp

experiment, suspending the first

1) and c.

iiiu.st 1.0 suspended fr..rn (a) rf and k
to maintain equilibrium. Repeat 11

weight successively fr

Now if R denotes the weight (in addition to the wei..ht

denote the weights suspended » " Y
from the Imr, it will he found
that in each case

P + Q = K,

.-.nd Z _ CB,

Q CA
where A, B, C (Pig. 40) are ^''

Iq
respectively the points of

''°- "•

application of P„ Q, an.l K. But it is evident that fl„.
resultant of P and Q is a fore, e,ua. and opp^^to R atthat Its line of action passes through C.

Hence tjje DwgBitudeoftheresuLtant of two paraUel
forcea^acting in the same direction i^the sum of themagmtudes of the components, and its polntTf appScab^dindes the line joinirJ the points ofapSS„
f^ ''°"'"*'' "'^^"^ly a" tlie magnitudes of thS

The general prop.,sition may be deducted from the
parallelogram of forces as follows :—

Tlie following principles may be assumed

:

(1) If a force act at any point of a rigid body, it may
l.e considered to act at any other point in its line o^action provided that this latter point be rigidly con-

"inraple of the Tl-ansmissibijity of Force.

i' 'I
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(2) If two ec|iml opposite foiccs l)e introdiiccfl into n
syKtfiii of foi-ci'S uctiii;,' on ii Ixwly, or removed from unch
a system, the system of forces will not be disturbed.

Case I. When the forces are like.

liCt P and Q (Fig. 41) bo the forces, und A and B their
points of application ; let AH and BK represent them in
direction and magnitude. At.A and B apply two eijual

and opposite forces S, S, acting in the line AB. These
will balance each other and will not disturb the system.

Let AD represent one force S, and BE the other force
S. Complete the parallelograms AHFD and BKGE.

Let tjio diagonal^ FA and GB be produced to meet in O.
Draw OC parallel to AH or BK to meet AB in C.

Fio. «1.

Now the forces P anJ S at A may be replaced by their
resultant Ki, whieli is i-cpresented by AF, and which may
be supposed to act at O.

Similarly the forces Q and S at B may be replaced by
their resultant R.,, wln'ch is represented by BG, and
which also may be supposed to act at O.

The force R, at O may be resolved into two forees,

S parallel to AD, and P in the dii-ection OC.
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Also tl,e force H, ut O „my Ik, resolved into two
forces, S parullij to BE, aud Q in the direction OC.

Thus finally; instead of the two like forces P, Q applied
to the rijjid lK«ly at A a..d B respectively, we now have
the four fo.-ces applie.! at O; nan.ely, two e.iual and
opposite forces each e<iual to S, and the two like forces I'
H"<I Q actinj; in the line OO. The two forces each e.,uul
to S are m e(iuilibriuni and may be onn'tted.

Hence the resultant of the two orifjinal forces P and
Q >s (P+ Q) actinjr alonjj OC, that is, actinfj at C in a
droction parallel to that of either of the forces.

If this resultant is R, then

R=P+Q.

We have now to .letennine th... po.«il|o„ of the point C
P AH
S'Wiy (Art. 2,pa{;e93)

But the triangle AHF is si>nilar t« the triangle OCA
Conseijuently

therefore

Similarly

Divide (1) hy (2).

Hence,

AH OC ,r, ,.,

mZUA ('^"'^'"J v.. 4)

POC
S~CA
Q^OC
S CB

(1)

(2)

P^CB
Q CA'

or .livides the line AB internally in the invei^e ratio
01 the forces.
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Cnsf II. When the forces nid nnlike.

L..t P ,trul Q (Fij;. 42) bo the forces (P hein-^ the
greater). a„d A and B their points of applieatio„: h"J

Fio. 42.

let AH ami BK repre.sent then, in direction and n,a,n.it„de.A A and B apply two e.,nal an.l oppo.sito forces S SHctmg n, the n.e AB. The.se will Wance each othe;and not disturb the .system.

Let AD repre-sent one force S and TE the other force S.

Complete the parallelograms AHFD and BKGE.

O. ^Braw OC parallel to AH or BK to n.eet BA pn>d„ced

Now the forces P and S at A n,ay i,e replaced bv
resulUnfc R,. ^uich is represented by' AF, and wi.ichmay be supposed to act at O.

Sin,ilarly tho forces Q and S at B n.ay be replaced by
the.r resultant R, which is represented by BG andwhich ahso may be supposed to act at O.

Th force R at () n.ay Ix- resolvo.1 into L, forces
.S parallel to AU, and P in the direction CO p.^uced.

'
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now have the four forces applied at O; L,..;. "t o

fo.ce.s P and Q act.ng ,„ tl.e line CO. Tl.e two forces
e.u=l. e,,ual to S are i„ e,uilibriun. und ...ay 1. o,!.itU.d

Hence the re.sultant of the two original forces i„P-Q) «.tn.g along CO, that is, acting at C in adirection parallel to that of either of the forces.

If this resultant is B, then

R = P - Q.

We have now to determine the position of the point C
P AH

(Art. 2, p. 93)8 ~ HF
But the triangle AHF is .similar to the triangle OCAconsequently "

AHOC
HF" - CA
P _ OC
N - CA

Q _ OC
S CB-

TEuclid VI, 4.)

therefore

'Similarly

Divide (1) by (2).

Hence,

0)

(2)

P_^CH
Q CA

;'• the p.,in(, c di^id,.« the ii,„. HH externally i„ ,i„.
"ive.-se ratio of the forces.

:l.il

I u
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Snmmary. \Vh.,u two p.uullol fom-H „ct on « lijfi.j
b^xly. *

1. TIh! ma-nitu,Io of tl.o rosultur.t is the ttlgchraic
Hlim of tho iimjfiiitij.Irs of thu foinponoiiU

2. Tho lino of action of tho ro«iiltHnt ih pnmllol to tho
'M.osof action of tho con.pononts

; nl.-o. whon tho com-
l-onont forces nro liko, its direction is tho sa.no as that
of tho two fore,.s, Hn<l, whon tiio forces are unlike, its
direction IS tho sa.no as tliat of tho jjivater component.
a The point of application of t ho resultuntdivides tho

line jonnnjc H'o points of application of the components,
internally whon tho forces are like, an.l oxternally when
the forces aro nnlikc, inversely m the ma.mitudes of the

^ forces.

1. Couple

Jf the forces P and Q (Fi^.. 42) bo o.,.ml, R = 0,andAF and OB lH,-inj; parallel, J!C= .. This indicates that
when two equal unlike parallel forces act on a body they
cannot be replaced by any single force acting at a finite
distance. Such a system of Jnliko parallel forees is

-called a conple.

a Eesultant of a Number of ParaUel Forces.
When a number of parallel forces act on a ri-d.l b<«ly

their re.sult.,nt can be found by taking two of then, and
finding the magnitude and line of action of their result-
ant and then combining this resultant with a third force
and so on. It is evident that if R is the re.sult.int of the
par. lei forces P„ ?.„ P^, . . . ^,^^.

R = P, + P, + H,+ .... =2^P|..
If ono or more <,f the forces act in (1,,. .,p;.„site direc-

tion Its sign must, of course, be changed.
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EZEBOUE ax.
:

I. Fiml the n,»Knit.i,Ii. »...! ,„,i„t „f »,,,,|ic„tin:, ,„- ti.e «HuItant

6 iiiutnM njinrt. * I""iiihi

2. Fi,„l tl,„ nmgnituje »i..l |H,int nf ,,|,,,|ic«,i„„ „f „,„ re,..Ita«t

a .iilIc:.r4''r'':'V''
'"" ":"""• '"™" '- '» •«"""•••' «"<• «»- »»

F,„,l the ,,«,„.„. «n,I MmKnitmle „f the »ec.,i„l f.,rce, when (1) theforces are like. (2) when unlike.
* '

4. Two men, of the «,n,o height, carry on their .houlder. a pole

6. Two «,cn »up,H,rt a weight of 112 ponnH. on » weightlew

XILr. " '""" "'" """'^- *"""' *'"" -'ght each

6. A n.a„ Carrie, two bucket, of water by „„,„„„ „f „ pok which

nc Uh rM'"' "! " P""" "'^™-«'"'" "f "« >-«*'^ro„.one

l.l.Jk If"."^""""'
".":,"''""««• """' "'« ""'cr, have to remove aWock of stone we,ghn,g 270 ,,o„„,l.s by n.ean, of a light ,,,„„k«lK«e length .s 6 feet, the stronger „..n is able to c,.rry 1^

r:^ tl^eiX"'^
'''•'' •'"''""^''^" -'""'"'' ^^'" "-

•md one of 20 dyne, i, applied downward at a point I»=tween '

oSibri!:;
"'"^ "" "" "^"^ -'-^"^ "•"'' »>« «"•-•> *" "'»"'*«"'

9. The ratio of the magnitudes of two unlike ,«rallel force. ., »,

I ;,:
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-K Ift Tliu ant i.f tw.i unlike |iHrall«l forcw ia 2 dyiieii and
»ct» nt rliittuiiLtn (I cm. iiiiil 8 cm. fnmi tlieiii. Find the foron.

U. A iiliink wwigliing 10 iwiniiU rtaU on it iiinglo pn.p at iti
niiiWIo iN>int ; if It ia rt'plii.uil l,y two c.tliun., one i>n o-ioh aide of
it, 3 feet and 5 f.ut from the middle |M>int, find the |>reaiiure on
>)ach.

12. Break up .> force P into two like |«mllel foreea in the ratio
wi.ii

;
if one acta at a diatance >i from P, find the diatance at which

tlio otluT force acta from P.
r *

,1

i;i. .\ Hlniijjlit wei«htlc»a nnl 2 fcft in Ivnutli i-eaU in
.
Iiorizontul poaition iHtWfcn two fixwl [lega placed t a diatance
of 3 inches aiMirt, one of the iwga beina "» <'»« end of the nal.
A weight of 5 poiinda ia aiiaiiended at the other end. Find the
preaaure on each of the jiega.

14. A light rigid r™! 20 feet long ia aupiairted in a horizontal
position tin two |H.Ht8 9 fcot aiwrt, one |Mwt ia 4 feet from the end
of the hkI

i
fr.ini tlic midiUo |Kiint of the rial a weight of 63 jmunda

ia auapended. Find the presaurea on the jK-sta.

15. A uniform r.. I 2 f-rt long, whcwe weight ia 7 [wunda, ia

placed upon two n.iila, whicli are fixed at two jiointa A and B in a
verticiii Willi. AH ia li.irizontal and S inchua long. Aa.nming thiit
the wci«lil I.f the rod acta at its middle point, find the diatjince to
whi.Ii tl.o tnda of tlio rod e.';t,nd lu.jond the naila, if the differoiico
""' '*

• ' ounda.

1«. tinliko imrallid forcea i>f 3 (ly

a Itar 10 (

'I"

nea and 7 dynea act at jaiinta of
. ajmrt. Fiiiil the lenal l,.nj:tli of the Iwr that it may

CHp.il.lB of bciiig kept in eiiuilibrium by a single force acting



CHAPTEK X.

rw.Mi

, „ MOMEOTN.
] Momant Daflsad.

If H nxl OA is fruo to rotate about a (Ix.d i)<)iiit <) in
It, u.kI a fom. F act on the ro,l at tl.u ,)oint A, an hI.owm
in Ftg. 43, tho ixxl will turn uUjut O under the action of
the force, unless () and A are coinci-
dent. It is evident that the jx.wer of
the force to proiluce rotation will de-
pend upon :

—

(1) The niagnit- do of F, and

(2) Tlie lengtli of the perpendicular-
drawn from the point on the line of
action of the force.

The niea,sure of tiie power of the force to pr«luce
rotation about the iK)int will, therefore, bo the pnxluct of
the nuttfnitiide of the force into the pe,-pcndicular drawn
from the given point upon the lino of action of tho force.

Tliis product, is called the Moment of the Force with
respect to the point, or,

l^e mome8t._of a force about a given point is the
product of tU force into the le;iffth of thepirpen-
dU5ular_-drawn fr^ the given point on the fine of
action of the force.

If rotation in one direction is regarded us pi^sitive
rotation in the ..pp„site direction is nc^rative. Rotation
eontni-clockwis,. (Vuj, 4:{) is -..nwillv e<,nsid,..vd t« be
i)ositive;. hut this is, „r .-oims,., .-i mere"convention.

100
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Thu iiiomcnt of tin? force about the givpn point
vanislifs only when oitlier the force vanishes, or the line

of action of the force passes through the given pointy

Experiment 1.

Arrange apparatus as in the experiment on page 100, and
suspend any weight, say 6 oz»., from b.

1. What weights must be suspended from d to maintain
equilibrium?

2. What is tlie moment of each of the forces acting on the
rod about each of tlie points «, 6, c, d, e,/, and o1

\ EZEBOISE XX. ^

1. ABCD is a square, whose side is 2 ft. long. Find the moments
about Ijoth A and D of the following forces : (1) 3 pounds along
,AB, (2) 9 pounds along CB, (3) 2 pounds along DA, (4) 11 iwiinds
along AC, (5) 1 pound along DB, (6) 20 pounds along DC.

2. A force of 12 acts along a median of an equilateral triangle
whose sicie is 18. Find the measure of the moment of the force
aI)out each angle of the triangle.

3. A force of 6 acts along one side of an equilateral triangle
whose side is 10. Find the measure of its moment about the
opposite angle.

4. ABCD is a rectangle, the side AB being 12 cm. and the side
BC 6 cm. long. O is the intersection of the diagonals. Find the

\ algebraic sum of the moments about (1) A, (2; O, of the'following
forces : 14 dynes along BA, 19 dyue.i alongiUC, 3 dynes .ilong CD,
4 dynes along AD, 10 dynes along AC, and 9 dynes ahaig DB.

5. A force of 20 acts shu.g a diagonal of a S(iiiiiro whose side is

8|/2. Find the me.isiiro of i.E moment about each of the tour angles.

6. At what point of a true nuist one end of a rope whose length
is m fcot bf HnwI, so that a iikui pulling ;it the other end may
exert the greatest force to pull it over.

A

-m^. -^
..^.

^'^» r-'
#-s-*.4t:„.^^ ti
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i

^^^^^^^'"•"'"'n''UH, tl>o side AB ),«ing 8 cm. long, m.,1 the
angle .\BC, 00»

; O is the intersection of the di.«onaI». Find the
algebraic sum of the moments about ()) A, (2) (), ,.f the following
forces

: 9 dynes along AB, 2 dynes along CD, 5 dynes along DA,
13 dynes along AC, 7 dynes along BC, 1 dyne along BD.

8. A and B are two points 1 metre apart ; a force of 5 dynes
acts at A perpendicuUr to AB, and a force of 7 dynes acts at B
parallel to the first force. Find the point in AB about « hich the
moments of those forces are equal in magnitude.

\,
9. The connecting-rod of an engine is inclined to the crank-arm

\ at an angle of 30". Compare the moment of the force to turn the
shaft when ni this position with the moment when in tjie m.«t
favorabla position.

— ~ —

10 ABC is an equilateral triangle each side of which is 18 cm
long, and forces <,f 4 dynes and 5 dyne.s act at A along AB and AC
respectively. Find the point in BC aln.ut which the moments of
these forces are eijual.

2. Oeometrical Bepresentatioii of a Moment.

Fia. is.

Let the given force F bo represented in magnitude
direction, and line of action Ijy AB, and let O bo any
given point. Draw OC perpendicular to AB (Kig. 44)
or AB produced (Fig. 45). Join OA and OB.

The moment of F about O = F x OC
= AB X OC.

U-tU
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But AB X OC = twici' tli.^ area of llie triangle OAB.
Thereforu tlio uioiiieiit of tlio force F about O w rupiu-
sentcd by Iwico tbu area of tlio triaiiylo OAB. Hence,
the moment of a force aboat a given point is repre-

HJ- sented by twice the area of the triangle whose base is
S\i ^^theline representing theforce and whose vertex is the

point about which the moment is taken.

3. Principle of Moments.

Experiment 2.

Arrange apparatus as in the experiment on page 100
Suspend any weight from c, and weight-s to balance it from
yand k.

If P, Q and R deriote the weights suspended from c, f and
h respectively, compare the moment of R about the points a,
h, c, rf, e,/and o with the sum of the moments of P and Q
about the same point. In making the calculation, include the
weight of the bar in R, and take the moments in one direction
as positive, and those in the opposite as negative.

Repeat tlie experiment several times, hanging different
weights from different points.

//^^^^*^'" ^^ *°'""1 *•>»* >n a'l tases the algebraic sum of

^ ^ the moments of any two forces about any point in
\ their plane is equal to the moment of their resultant
\gbout the same point.

This proposition is generally known as the manciple
.-24_^S™ent. A general d(!uionstration -may be <n\":Srri«

follows :

—

"

(1) When the forces act at a point.

Let AP an<l AQ (Figs. 4() and 47) he the directions of
the two forci's Pnmi Q .leting at A, .and AR th.M!irrctioii
of tlieir resultant R.



Monevn

-r^

113

Let O be any point iu tlieir plmie.

Through O draw OD parallel to AV, meeting AQ andAR in C and D respectively.

^- " Fio. 47.

Througli D draw DB parallel to AQ.
Then AB, AC, AD will completely represent P, Q, R

respectively. (Art. 5, page 65).,

Join OA, OB. "

Then Moment of P about, = 2^0AB
Q =2A0AC
R =2AOAD.

0) When O is without the angle DAC, an in Fig. 46.
Moment of R = aAOAB

= i'AACD + 2A0AC
-i.'ADAB + 2A0AC
=-2aOAB + 2AOAC
=- moment of P + moment of Q.

(2) When O is wii iiin the angle DAC, as in Fig. 47.

Moment of R 2AOAD
- 2ADAC - 2AOAC
= 2ADAB - 2A0AC
= 2AOA»-2^©Ae
= moment of P - moment of Q.

Hence, in either ca.se the moment of tlio resultant is
tile algebraic .sum of the moments of the forces.
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(II) WI.en tl.o lines of action of tlie foix:eHa.-« parallel
Let P and Q be the two parallel forces R their

result,int. an,i O any point in their plane about wl.ich
moments are to he taken (Fig. 48).

From O draw tlie 11

of i

OACB
i.s nieetii

perpendicular to the
line.s of action of the

C, respectively.

Then iK = P + Q
and P..4C_y,BC. Art. 1, page 101.

(1) When the point 6 is not between the lines of
action of the forces.

The moment of R about O =^ R.OC
= (P + Q)OC
= P.OC + Q.OC
= P(OA + AC) + Q(OB - BC)
- P.OA + Q.OB + P.AC -ii.BC
" ROA + Q OB, siMCi P AC = Q.BC
= moment of P + muinent of Q.

(2) When the point O is hetwe,,, the lines'of action of
the lorces, or O..

The moment of R about O^ B.O o
= (i' + QlO,C
= PO,C + Q.(),C

= P(0,A-AC, + Q(BC-0,B)
= P.(),A-Q,0,B-P.AC + (.BG
= P.O,A-y.()jB

= moment of P - moment of g.
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4. Oenorallaed Theorem of Moments.
Experiment a

l..ila..ce tl.e,„ from the p«i„t» « nn.l /t.
° '"

Show that tlio al"ebr:iic Kiiin r.t t\

-out..,o.ofth;pi:::::::,;tr;:r''"^'—
Repeat tl,e experiineut several times chin-in.r .1

.l-H..„i„ations and p^iuon, of the weight "' """""
'ri,is expen,ue.,t tends to «h..w "ihat if any number

resXnt '^^T^'^'^''^^ "^ ^ "^<» boJ/ha"e a

any 2; ^n thf'T '"^°' °^ *''"'• '"°°'«''t« about

The general demonstration given above may be ex-tended to venfy this proposition, as follows-

Twint in M ;.

^',•
• • •

bo the forces, and O be a.iy

Let P, be the resultivnt of P and Q,
P. l>e the resultant of P^ and li,

Pj be tlie resultant of P, and S
'

and so on until the final resultant is 'obtained

t..Ji2^;rrpr^-^-^ "="- ^'-^-'-"-^

Also the moment of P, = algebnaie s„m of n,o,nontsof P, an.l H
So the moment of P I i''«f

''."=-'" "f,""""- fP.Qandll
±-3 -alarljraic^uniot in.Hncnl^ if P., and S
= "'gB'>'-ai.: sum of niouimts tif P,Q K SAnd so on until all the forces luuo been taken.
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If the forces are i.i equilibrium, tlieir resultant m zero.
Therefore the nioniei.t of the resultant' aboUt any point
in their plane is zero. ^

Hence,

Jlf J!;/""'"'^
"* '°'"^" i|u«iiM>lane Mtiag on ar^d body are m equ^rium, the algebraicTum of

their moments about any point In their plane is sero.

6. Conditions of Eqnilibrinm.

It is evident that the co..vense of this la.st proposition
18 true only under lin.itation, because there is always a
senes of points about any one of which the algebraic
sun. of the n.„n.ent8 of any jfiven system of forces in one
plane is zero; viz^ the series of points which lie in the
line ot .jction of the resultant of the given system of
torces. 1 he followi:.g is a statement of the converse.

If the ul^braic sum of the moments of any number of
forces >„ one plane about any point in their plane

. vanishes, then, either

(1) Their resultant is zero, in which case the forces
are m equilibrium,

w(2) Tlie resultant passes through the point about
whicli the moments are taken.

The following are the sufficient Conditions of equi-hbnnm when a number of forees act on a rigid bo<ly in
the same plane.

/I. The algebraic sum of the forces resolved in any
two directions must vanish, and

2. The alorebraic sum of the moments of the forces
\'/about any point in their plane must vanish.

,

It is to be noted th.at both the alx.ve con.litions are to
be siitistied.
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Examples.

A uniform iron ro.1 in „f length 6 feet and masH 9 pounds,»nd from ,tH extremities are suspended masses of 6 Vnd l^pounds- respectively. From what point must the ro.i Ih-suspended that .t .nay ren.ain in a horizontal position?
Let AB (Fig. 49) represent the rod, and let the mass of

r
*a

^9
Fio. 49.

6 pounds be suspended at A ani the mass of 12 pounds at B
Since the rod is uniform it maybe assumed that its weight
acts at C, tht middle point of AB.

Let a; = the distance of the point of suspen.sion D from A
Smce the forces are parall..], the tension of the string bywhich the rod IS suspended will be 6 + 9 + I L> = 27 pounds
The forces being in equilibrium, their resultant is zero, and

the algebraic sum of moments of the forces about any point in
their plane is zero.

Hence, taking moments about A,

-9x3 + L'7a'-I2x 6=
27a!=27 + 72 = 99

XmZi
Experiment 4.

"'

Support a uniform Ix-am AB, whose weight is, say 9 ozs
"n kn.le edges C and 1) attached to upright supports of the

ii
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form shown in Fig. 50. Suspen.l weights from p..inU in the
beam a» sliown in the figui-e. Determine liy u calci.hiti»n the
re-actu.n of the knife edges. Repeat the experiment NCVerol

Flo. 60.

times, changing tlie number, denominations end positions of
the weights and verifying the answers each time by suspending
weights from the string running over tlie pulleys.

Before proceeding with the following exercise the student
will fii,d it to his a<lvantage to work out a nun.i«!r of practical
questions based on the use of the apparatus described in
Experiments 1-4.

"~, EXEEOISB XXI.
1. A uniform beam is of length 12 metres and nuiss 50 kgmsmd from its ends are suspended bodies of nm.sses 20 .iiul 30 kgms

respectively. At what point must the beam b^; supported that itmay remain in equilibrium ?

2. A lever with a fulcrum at one end is 3 feet in lem'th A
mass .f 24 pounds is suspended from the other end. If the mass
of the lever is 2 pounds and acta at itn ,„i,ldk. point, .u what
distance from the fulciuui will an upwai-d force of 50 pounds
preserve equilibrium 1

^3-e

.-JX
^\
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3 Three pamllel f.,rce», 10, - jr., 40, act at ,K,i„t» .3 f™t, 4 feet
6 fuct from one eii.l of a rwl and «t ri(;lit

their reHultnnt act ?

anj{lo« to it. Whore tloet

4. Mamoa of 7 Iba., 1 lb., 3 Um., and 5 IhH are plaeed on a rod

On the righ am. are .u»i«n.l«l 4 gran,, and 3grun„ at .listancc,of 5 cm. and 7 en,. r„H,,eotivoIy from the Idlt, and on the "eftarm 5 gran.» at a distance 5 cm. from the middle and „ at the end

8 A light rigid I»ir 30 feet long ha, suspended fr.,m its middle

jr:rirr; /"• ""• ""' '""" -" "'- -"" '^ f-^ai'"" 1that I foot of It project, over one of them. A n,as. of ia2 ll» i..uBpended from a p t 2 feet fron. the other end. What i. th"pressure borne by each of the walls ?

7. Six parallel forces of 7 dyne., 6 dynes, 6 dynes, 4 dynes

Lw""r ..^"'" ""' "''''""'' '" " "«»' ""' »' P"'"nt« 1 metr^apart. Fmd the magnitude and jHwition of tlie resulUnt.

traght hor.»nt«I rol. What force n.ust .«, ad.led to the 1 dyne,

ll^^ortlu
'"" " ^""""^ "'-« the 3 dynes act i/m»;

an.!;
!""

Pf"^'/"'-'''^''
'' 2- 5, 7 dynes act at distance, of 6 cm

Tee '7.' "'^"'S"".""' "«• "' "Sht angles to it. Where nn.st aforce of 17 dynes act i,f order to maintain e,iuilibrium ?

mZAlf^^l^'fT '""'^ ""^ "f le"«tl.d feet has masses of
15 and 22 lbs. a tached to ,ts ends, and rests in c,,„ilil,ri,„„ ,vhe„

,placed aer,«s a fulcrum distant 2i feet from the 221b. ma.ss. Finthe mass of the rod.

between two fixed i.e™. ,.l»oed at a distance of
of tlie pegs being at

suspended at the other en<I, tind""th'e
pegs.

lies apart, one
lie end of the rod. If a nia.s of 5 lbs. is

Jireisure on each of the

Ij

^
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Ci

c

la A unifom t-kI 2 feet long, whcme mitM in 7 Ih<i., in placed
upon two naili, which are fined nt t»o p.,mt» A ami B in a vertical

1

witll. AB ia horizontal and 8 incliea long. Find the diitance t<i
which the endn of the bhI «,tend lH;y.>nd the naili if the difference
betwe-n the preunreH on the nailH in 6 |M>und«.

;. A li!;ht f<Kl All, 20 cm. lona, nntn on two pegs whoae di«-
Hince ai«rt in 10 cm. How niii.t it Ik. placed ». that the piwiin,
on the iKigH nmy l>e e<|iiiil when mnweH of 2 \V and 3W reapectively
are auapended from A and B?

14. A heavy uniform Iwam, whose niasn in 40 kgni., is auaponded
in a horizontal position l.y two vertical Ntrings attached to the end*
each of which can ^nxtain a tennion of .-(o kj-m. How far from thJ
centre of the hwiui nnist a Iw.ly, of niaiw 20 kgm., be placed so that
one of the strings nmy just break /

15. A heavy tapering r<Kl, having a mass of 20 lb*, attached to iu
smaller end, balances *al»)ut a fulcrum i>lacod at a distance of 10
feet from the end. If the mass of the ro<l is 200 lbs., find the
lioint aljout which it will balance when the attachetl masa is
removed.

16. A rod fi inches long and 1 lb. mass is supported by two
vertical strings at its ends. A luaHs of 3 iK)unds is attached to the
rod at a distance of 1 inch from one end. At what distance from '

the other end must a nviss of 4 Uis. be attached in order that the
tensions of the two strings may be eciual ?

17. A light horizonbil rod 3 metres long has a masa of 15 kgm.
- susiHjnded from a point on it, and it is supported by strings which
*- apply forces to it which are in the ratio of 1:2:4:8, and which are

fastened to the rod at points each 1 metre aiiart. Where is the
mass attached, and what force does each string apply to the r«l ?

18. A uniform rod, whose weight is W, when suspended at a

..^ certain point rests in a horia.ntal position with vertical forces of
^ W„ and \V, at its extremities, or W„ and W„ at the same ends.

What vertical force nt one end will keep it horizontal when sus-
pended at the same point, W„ lieiiig greater than W, ?

:!!. A r.xl. 10 cm. bmc;, rests „ii t«„ p.-.^ !) ™i. apjirt »iili iu
centre midway between them. The greatest ma».se» that can Ir^

(^^
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T.m?
•"<»«»'-' '"'m th« two „,„U without .IiHturl,i„B

™ght „f md „.a the po«ti..„ ..f ,he point .t whfch iU wUhl

20. A unifo™. U, „, i,„„ 10 ,e„t j.,,,^ .^
^

edge of .wharf, there lH.i,.g . „.,.„ ,,,.„„, „„ .^^ „„,^^ ^^

the point of fnlhiig ovir. Find iU niiuii. f- i
,

In Holvinjr probleiiiN i.. whicl, it is necessary U, deter-
niine the lelaticns ainonjr the forc.s wliich me iiiinresse.]
... one phine on « riKid b.Kly u„.l keep it at rest, the
following rules may Ije fou.id t<. Ik.- of value.

1. O^nstruct a .Jiagrmn of the Dysten. of forces which
keep the boly at rest, representing eacli force by a
straight line an.l its .lirection by an arrow. In drawing
I..C8 to represent the lines of action of the variout
lorces the following points may I* observed.

(rt) The re-actions of s.nooth surfaces are at right
a..gle8 to the surfaces, for example, if a s.nooth l«am
.ests agamst a smooth Mall the re-actio.. of the wall is at
right angles to the surface.

(/>) When thieo fo.-ces, not parallel, are ii. e.,uilibrium
the.r lines of action must meet in a point. Pi-ove.

2. Denote all unknown forces by letters.

3 Equate to zero the algebraic sum of the components'
ot the foi-ces in two convenient directions at right an.des
These relations will furnish two equations.

In choosing the directions for re.solution, the .solution
.s generally simplified by resolvinir al.,„g ,tnd at ri-^ht
angles to the directions of unknown forces. J-'o.ces not
to be determined may thus be eliminated.
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4. E<|iinln t() wri) tho iiljjolmiic Hiim of the nirimimlH
of tho forcfs alHMit Home convenient jMiint. A third
equation is tliUH furnixhwl. If nfl-liuoniil ^luntioim urn
nxiiiired, they hi-o obtained from the gt-oinotricttl rel»-
tions of the figure.

In choOHinj; tho point about whieli moniente are to Ix-

taken, it in generally advisable to chinme a jioint common
to the (liifctionH of an many forces as pDssiliJo. In this
way also unknown forces not to bo determined may Jx>

eliminated.

In the solutions of the following examples some of the
above artifices will be found to be employed.

Ezunplai.
I

I. A Htraight rod, supposid weigh tlasn, is hinged at one
end, and makes an nnwle of .30" with the vertical. If a
mass of 7 lljs. han,«8 from the other cud, what force acting
perpendicularly to the roil at it* middle point will preserve
equilibrium 1

I.«t AB (Fig. 61) l)e the nxl hinged at A.
The forces acting on it are

( 1

)

A force of 7 lbs., acting vertically down-

I

ward af U.

(2) A force P, acting at right angles to the
ro<i at it« middle point 0.

(3) Tlie re action of the hinge, ^, acting at A.
The line of action of tliis force will be EA, be-

cause the forces being in equilibrium, their lines

of action meet in a point.

Since Q is not rei|uiri'<l, e<(iiate to zero the algebraic sum of
tlip m..mp^t^ of tlie forcer, .-thout A, .i point in its line .,f action.
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Px AC -7k ad-o
"xlAB-7x AB.in.W-0
P>ciAB-7xJAB-0
P-7.

Find th« re-action of the hinge.

2. A uniform l»«,n AB, 17 feet long, ,ho«, m«« iH 120 lb.
re.U *,th one end »g»in.t a ,m.».th vertical wall, a.id the
-therend on a .mooth horizontal fl.K.r, thi.. end l*ing tied l.y
a «tring 8 feet long to a peg at the lK,tt..m of the wall. Find
( )

the ten.ion of the string, (2) the re-action of the wall, (3)
the reHwtion of the floor.

The forces acting on AB (Fig. 02) are

(1) Its weight, 120 Jbs., acting vertically
downward at its middle point C.

(2) The re^Mjtion of the floor, U,, acting per-
pendicularly to the floor at A.

(3) The re-action of the wall, R^, acting
perpendinularly to the wall at B.

{*) liie tension of the string, T, acting
parallel to the floor at A.

Equating to zero the algebraic sum of the
horixontal forces,

T-R,.0
(,,

Equating to zero the algebraic sum of the vertical forces,

Ki- 120 =
(2)'"

Ri = 120.

Equating to zero the algebraic sum of the moments of the
forces about A,

RjX AD-120x AE = . ... (3)
R,xl5 -120x4 =

Pr<wi(l)
B» = 32.

T = R,-32.

-
I
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3. A uniform ladder, 40 feet long, whose mass is 160 11

rests with one end on the top of a v ill and is prevented fr,

slipping by a peg driven into the ground at its lower end. li-

the inclination of the ladder to the horizon is 30°, find the
pressure at the base and on the wall.

Let AB (Fig. 53) 1« the laddm-.

The forces acting on it are ;

(1) Its. weight, acting vertically

downward at its middle point C.

(2) The re-action of the wall, li,,

acting at right angles to the ladd.r
(the ladder resting on the top of the

wall) at B.

(3) The pressure at the peg, acting
at A. The line of action of this force

will be AD because the forces beiii"
in equilibrium their lines of action meet in a point.

Equating to zero the algebraic sum of the vertical components,
RiCos30° + R2sinDAE-lC0 = . . . (l)

Equating to zero the algebraic sum of the horizontal
components,

Rj cos DAE - Uj sin 30° = m
Equating to zero the algebraic sum of the moments of the

forces about A,

Rix40-160xAF = O ,31

From (3)

40R, -160x20 cos 30° =
"" R, = 40y3.

Transposing, and dividing (1) by (2)

Ra sin DAE _ 160 - R, cos .lO*

Rj cos DAE Rj^in 3(?

pr tan DAli;- '60-60 '6

20j/3 ^'3"
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(3)

Therefore, coa DAE = iiL-

and, substituting in (2)

B^ = 40^/7.

4. A uniform rod, 16 feet long, whose mass . 100 IKs i.
placed on two smooth planes whose inclinations tc tl,^ ho.iron
are 30° and 60° respectively. Find the pressure on each
plane and the inclination of the rod to the liorizon when in
equilibrium.

Let AB (Fig. 54) be the rod. The forces acting on it'are:

(1) Its weight, acting vertically downwai-d at its middle
point C.

(2) The re-action of the plane at A, acting at right angles
to the plane.

(3) The reaction of the plane at B, acting at right angles
to the plane.

Since the forces are in equilibrium their
lines of action meet in a point D.

The figure ADBE is a rectangle.

Equating to zero the algebraic sum of
the moments of the forces (1) about A,
(2) about B, we have

Rj xAD-100xAF = . (I)

100 xBG -R, xBD = .
(O)

.Prom (1)

Kj X AD - 100 X AD cos 30' =
'"• R2= 50V3.
From (2)

1 00 X BD cos 60° - R, X BD =
;"• Ri = 50.

The inclination of the rod to the horizon

-

. CAF=CAD-DAF=CDA-DAF
. = 60° -30° = 30°.
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EXEBOISE XXn.

1. A uniform rod whose mass in 60 lbs. is movable about a hinge
at one end. It is Icept in equilibrium in a position making austngle
of 30° with tho horizontal by a force making an angle of 30° with^ the rod at its other end. Find the re-action of the hinge and the
direction of its line of action.

-p

2. A unfomurod is suspended from a peg by two strings, one
attached to each end. The strings are of such lengths that the

V angles between tliem and the rod are 30° and 60° respectively.
Find the tensions of the strings, the mass of the rod being one
kilogram.

3. A straight lever is inclined at an angle of 60° to the horizon,

^
and a mass of 360 lbs. hung freely at the distance of 2 inches from
the fulcrum is supported by a force acting at an angle of 00° with
the lever, at the distance of 2 feet on the other side of the fulcrum.
Find the force.

4. A rod AB movable about a hinge A has a mass of 20 lbs.

^ attached at B. B is tied by a string to a point C vertically above
A and such that CB is six times AC, Find the tension of the
string BC.

V 5. A heavy uniform rod AB whose mass isW is hinged at A to a
fixed point, and rests in a position inclined at 60" to the horizon,
being acted on by a horizontal force F applied at the lower end K
Find the re-action of the hinge and the magnitude of F.

-^ 6. A uniform rod AB of mass W. free to turn about the end A
which is fixed, issupported in a position inclined to the vertical )>y

means of a string which is attached to B, and after passing over a
pulley C vertically above A, supports a mass of i W. If AC= BA,
find the inclination of the rod to the horizontal.

7. A uniform rod AB of mass W is movable in a vertical plane
about a hinge A, and is sustained in equilibrium by a mass P
attached to a string BCP passing over a smooth peg C, AC being
vertical. If AC=AB, show that P=W cos AOB, and that the
le-action of the hinge is W sin ACB.
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8. A light rod ia hinged at ime end and load d at the other end
with a weight of 6 pounds. The rod is supported in a horizontal
IMsition by a string which is attached to the loaded end and which
makes an angle of 30° with the rod. Find the tenaon of the .tring
and the re-»ction of ilie hinge.

9. ACB is a bent lever with its fulcrum at C. Tlie arms CA CB
are straight, equal in length, and inclined to each other iit an angle
of 136°. When CA is horizontal a mass of P att.iched at A sustains
a mass of W attached at B

; and when CB is horizontal the mass of
VV at B requires a mass Q attached at A to balance it. Find the
ratio of P to Q.

10. ACB is a bent lever with its fulcrum at C. The angle ACB
IS a right angle, the arm AC is 10 feet and BC 7 feet long andAC IS in a vertical position. ' If a horizontal force of 21 pounds
actmg at A is Imlanced by a vertical force P, acting at B, find the
magnitude of P and the pressure on the fulcruf> .

11. A uniform beam, 32 feet long, whose mass is 200 lbs., rests
with one end on a smooth horizontal jilaiie and the ther end
agaimt a smooth vertical wall. If a string, 16 feet long, connects
the lower end with the foot of the wall, find (1) the tension .,f tlic
string, (2) the pressure against the wall, (3) the pressure on the
plane.

12. A ladder, the weight of which is 90 pounds, acting at a point
one-third of its length from the foot, is made to rest against a
smooth -vertical wall, and inclined to it at an angle of 30° by a
force applied horizontally at the foot. Find the force.

13. A uniform ladder, 40 feet long, whose mass is 180 lbs., rests
with one end against a smooth vertical wall and is prevented from
shppmg by a peg in the ground. Find the pressures against the
wail and at the groun ' if tlie inclination of the ladder to the
horizon is 60°.

U. ACB is a uniform rod, of mass W ; it is supported (B being
uppermost) with its end A against a smooth vertical wall AD by
means of a string CD, DB being horizontal and CD inclined to the
wall at an angle of 30°. Find the tension of the string and the
pressure on the wall, ,iiid prove that AC =

| AB.
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16. A uniform benm, 12 feet Iodk, whose maw is 60 lbs., raits
with one eiul A at the bottom of a vertical wall, and a point C inthe beam 10 feet from A is connected by a h.,rizontal string CD
with a pom

t D in the wall 8 feet above A. Find (1) the te„«on of
the string, (2) the pressure against the wall.

16. A ladder, 14 feet long, whose mass is 50 lbs., resta with one
end against the foot of a vertical wall ; and from a point 4 feet
from tho upper end a cord which is horizontal runs to a mint e
feet above the foot of the wall. Find the tension of the cord and
the re-action at the lower end of the ladder.

17. A uniform heavy beam AB, whose mass is W, rests against a^smooth horizontal plane CA and a smooth vertical wall CB the
lower extremity A being attached to a string which passes over a
smooth pulley at C and sustains a mass P. Find the pressure on
the phtne and the wall.

^f ^ "i!i!°""
"^ ^^' *""* """ " !<» ''«'- i» inelin^d at an

angle of 60° to the vertical with one end A resting against a
smooth vertical wall, being supported by a string attached to a
point C of the rod, distant 1 foot from B, and also to a ring in the
wall vertically above A. If the length of the rod is 4 feet, find the
position of the ring and the inclination and tension of the string.

19. A uniform ladder rests against a smooth wall, the ground
being also smooth. Compare the horizontal forces which must be
applied to the bottom of the ladder to preserve equilibrium, when
a weight equal to the weight of the ladder is phiced on the ladder
at the top and bottom respectively.

20. A uniform ladder, 36 feet long, rests with one end on a
V^ smooth wall, and the lower end is prevented from slipping by a

. peg. If the inclination of the ladder to the horizon is 30°, find the
P™»"re on the wall and on the peg, the mass of the ladder beine
100 Iba. *

21. A uniform ladder, whose mass is 20 kgm., reste with its
lower end upon a siu,K.th horizontal plane, and its upper end on a
slope inclined at an angle of 60° to the horizon ; the ladder makesan angle of 30' with the horizon. Find the pressure on the plane
and the slope respectively and the force which must act hori»nt&lly
at the foot of the ladder to prevent sliding.
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22. A ladder, the weight of which may be regarded a. a fowe

acting at a point one-third of the length from the fo<,t, re.ta with
one end against a peg in a .n.ooth horizontal plane, and the other
...d on a wall. The point of contact with the wall divides the
adder into ,«rt8 which are aa 1:4. If the ma., of the ladder is
1-0 lb.., and It make, an angle of 45" with the horizontal plane,
hiid the pie.8ure on the peg and the re-action of the wall.

23 The lower end of a uniform pole rests on the ground, and a
P".Mt 2 feet from ita upper end rest, again.t a smooth rail, the polehemg inclmed at an angle of 60° to the horizon. If the length of
l.e rod 1. 7 feet and ,ts mas. 21 lb.., find tl.e direction and iLni-

tiule of the re action of the ground on the pole.

24. A carriage wheel, whose mas. i. W and radius r, rests upon
» level road. Show that the least force F which will be on the
point of drawing the wheel over an obstacle of height ft i.

F^^V(grft-ft2)

• 25: A apherical shot, whose mass is 60 lb.., rests between two
planes which are inclined at angles of SO" and 60° to the horizon
r ind the pressure on each plane.

26. A spherical shot, whose maM is 30 kgm., rest, between a .mooth
vertical wall and a smooth plane, the ihclination of the lutter to the
horizon being 45°. Find the pre.sure on the wall and the plane.

27. A smooth sphere of radius « and mas. W is supported on asmooth plane inclined at an angle of 30° to the horizon by a stringone end of which is fastened to a point on the plane and the otherend t^ the surface of the sphere. If i„ the position of equilibrium
the string is horizontal, find the length of the string and the
pressure on the plane.

"

28. A solid sphere rests on two parallel liars which are in the
sanie horizontal plane, the distance between the bars being equal
o the ™dius of the sphere, if the mass of the sphere is TO lb,hnd the re-action of each bar.

29. Two smooth spheres, the mass of each of which is 10 kcm
are strung on a thread which is then suspended by it. extremW;
.. that the uppe,- portions are parallel. Find the pressure between

flip spheres, thj holes being smooth.
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. 80. Two .phere., each of ,n«« W and r»diu« r, r«it inside a
Hollow gphere. of radius 3r. Find the pressure between (1) tho
two spheres, (2) a solid sphere and the hollow one.

31. A smooth sphere, whose mass is 9 kgm., u supported in
contact with a smooth vertical wall by a string fastened to a point
on Its surface, the other end being attached to a point in the wall
If the length of the string is equal to the radius of the sphere, find
(1) the mclmation of the string to the vertical, (2) the tension of
the strmg, (3) the re-action of the wall.

VA 32. A ring, mass 9 lU., slides freely on a string of length o»/2
I' whose ends are fastened to two points at a distance a apart in a
line making an angle of 45° with the horizon. Find the tension of
string m the position of equilibrium.

33. Two posts, one of which is a(y3-1) feet higher than the^ other, stand at a horizontal distance <l(^/3+ l) feet apart. A body
whose mass is T« !bs. hangs by two strings, of length 2ay/2 feee
attached each to the to^) of one of the posts. Find the tensions of
the strings.

34. A string is tied to two jroints. A ring, mass W, can slip
V_. freely along the string, and is pulled by a horizontal force P If

the parts of the string when in equilibrium are inclined at 90° and
45 respectively to the horizon, find the value of P.

35. If a string ACDB is 21 inches long
; C and D two points in

--|t«uch that AC=6 inches, CD=7 inches
; and if the extremities

be fastened to two points in the same horizontal line at a distance
of 14 inches from each other; wlmt must be the ratio of the tw,.
masses, which, hung at C and D, will keep CD horizontal?

36. A horizontal rod is supported by two strings, each 1 yard
iong passing over a smooth peg placed 1 foot vertically above the
middle of the rod. The ends of each string are attached respec-
tively to one end and the middle of the rod. Show that the
-ansion of each string is one-third the weight of the rod.

A 5' ^ "f°"" ^' ^" '**' '""»• » !''«'«'» "n two "»ooth phnes^wh<«e mclmations to the horizon are 30° and 60° respectively
Find the pressure on each pkne and the incUnation of the rod to
the honzon when in equilibrium, the mass of the rod being 40 lbs
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38 A uniform rod AB, 18 feet long and of 20 Ibg. „,a» i,hinged »t A, and a ma.» of 5 lb., is .U8i«,iided from B. It is keotatre.t by astring 13 feet long, one end of which i, attached to apomt D on the rod 13 feet from A, and the other end to a jx-int O
10 feet vertically above A. Find the tension of the string and the
re-action of the hinge.

"

39. Two equal rods OA, OB, each lOJ feet long and mas. 10 lb,.,
.re connected at O, and their end. are placed on a smooth hori-
zontal plane, A, B, O being in the same vertical plane. If a string
20J feet long connect A and B, find (1) the prewure at O, (2) the
pres.ure at A and B, (3) the tension of the .tring.

40. Two legs of a light step ladder are connected by a smooth
joint at the top and a cord at the lH,ttom. The ladder stands on asmooth floor with one leg, which is 3 feet long, vertical. A manw^ose mass .. 180 lbs,, stands on the other leg at a height of 2 feet
above the groimd. Find the pressure on the vertical leg and the
tension on the cord.

41. To upper end A of a heavy uniform rod CA, which can turn
freely about a hinge C, is attached a string which passes over a.mooth pulley P (the distance CP being horizontal and equal toC.n and supports a heavy particle whose mas, is half that of the
rod. SIiow that the rod can re.t at an angle of 30^ to the verticaland determine the re-action of the hinge if the mass of the rod is

42. A unifonn beam of mass 3 tons is suspended in a horizontal
position by two ropes attached at the ends ; one of the r«pe,, of thesame length as the beam, is attached to a peg; the other rope
paase, over a pulley and is attached to a mass W; the pulley is
fixed m the same horizontal line as the peg, and at a distance from
It equal to twice the length of the beam. Find W.

_, (.»' "i'J "> , ,

..- J i-*^ tL^

t- ,^. li H t - -^-



CHAPTER XI.

CENTRE OF OKAVITY.

1- Oentra of FwaUel Forcat.

It wfts sliown (Art. 1, page 101) that if two parallel
forces act at points A and B the line of action Iqt their
resultant divides AB at C inversely as the forces. It is

evident that so long as the forces remain parallel the
position of C will not be altered by deflecting at the
points of application of the forces their lines of action
through any angle.

In general, the point of application of the resultant
of any number of parallel forces having fixed points of
application will not be altered if the lines of action <rf

the forces be deflected through any angle at their points
of application, provided that the lines of action remain
parallel.

This point is called the centre of the^uraUel forces.

The centre of any number of paraUel forces having
fixed points of application is the point through which
the direction of their resultant passes, whatever be
the directions of the parallel forces

2. Centre of Mass.

If we conceive of a systemof parallel forces impressed
respectively on each of the particles of a rigid body, each
force being proportional to th .- mass of the particle on
which it is impressed, the centre of the parallel forees is
called the centre of mass of the body.

132
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It .8 evident (Art. 1 above) that tl.e position of
the centre of ,na« depends only on the amounU of
the parallel forees »nd the points nt which they are
impressed, and ,s independent of their direction ; that
IS, so long as the forces ren.ain parallel and p.x)por-
twnal to the masses of the particles on which they are
.mpressed the line of action of their re: nltant»through the same point in the body, whauver be its
position.

3L Oantre of Oravltr.

There is a n.utual attraction between every particle of
matter and the earth, and the amount of this ^traction
the weight of the particle, is proportional to its mass'
(Art. b. page 28).

Now any body may be regarded as an agglomeration
of particles. The weight of the body is the resultant of
the weights of its particles.

/
If the body is small compared with the earth, the lines

Joining Its constituent particles with the centre of the
fear h are approximately parallel. The weights of the
ft.art,cles therefore, form a system of like parallel forces:
and a« these forces are proportional to the masses of the
particles, their centre will be the centre of ma.ss of the
ibody (Art. 2, above).

\ This point is called the centre of gravity of the body.

tM^^^ °^ '^'*^*y °^ " ^y- <"• ^^tem. flf Ear-

which the line of action of the weight of the bodv

SSl
^""'' *" ''*"'*«^«'" I«»i«°n «ie body ^
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4. To And the Omtr* of OoMtf of » Unifom Stnlfht Bod.
Let AB (Fij{. 55) be the uniform nid. The centre of

gravity is evidently the middle point, Q, of the rod,

A-J! ? "

Fis. a.

because the rod may be regarded as made up of equal
particles equidistant from this point and the centre of
gravity of each pair of particles, for example of M and
N, is at the middle point of the line joining them, that
is, at O.

6. To find the Centre of OniTitj of a Uniform FaraUelognun.

Let ABCD (Fig. 56) be the parallelogram, composed of
some material of uniform thickness and density. Let

Pio. Ml.

the middle points of AB, BC, CD, and DA be E, H, F,
and K respectively.

Consider tlie lamina to be made up of a series of very
thin parallel rods, such as LM, each parallel to AB
and DC.

The centre of gravity of any one of these rods, LM,
is at its middle point g ; but EF bisects all such rods

;
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therefore the centre of gravity of each rod lies in EF
he^nce the centre of gravity of the parallelogram lien in

In a similar manner the parallelogram may be regarded
a« ma.Ie up of a series of rt^ls parallel t.. AD ami BCand .t« centre of gravity shown to lie in the line HK
jomnig their centres.

Hence the centre of gravity of the parallelogran. is at
a, the pon,t of mtet^ection of EFand HK, the dian.etere
ot the parallelogram.

6. To And the Omtre of Oravlty of a Triaagnlar Lwaiaa.
I^t ABC (Fig 57) be the triangular lamina, and let

the middle points of AB, BC and
CA be D, E and F respectively.

Consider the lamina to be made
up of a series of very thin parallel
rods such as LM, each parallel to BC.

The centre of gravity of each of
these rods is at its middle point </;

but the median AE bisects all such
rods

;
therefore the centre of gravity

of each rod lies in AE; hence the centre ot gravity of
the lamina lies in AE.

In a similar manner the lamina may be regarded asmade up of a series of rods parallel to AB or AC and its
centre of gravity shown to lie in the medians CD or BF.
Hence the centre of gravity of the triangular lamum

18 at O, the point where the medians intersect, that ia in
the line joining the middle point of any side to Uie
opposite vertex at one-third its length from that side
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BZXBOIBB ZZm.

frum uoh of the angular pointi.
'

3. If tl,. angular p„inu of on« triangle lie at the middle poinU

ItiiV '"'
*"" ''" """ "' ""'"' "' "'^""

3. The e,,ual aide, of an i«,«ele. trUngle are 10 feet, and the
»«. .a 16 f„„t .„ length. Find the diatance of iu centre of g^vityfrom each of the sidei.

U^viij

X^ 4 The aide, of a triangle are 3, 4, and 6 f«,t in length Find
^^^ The dutance of the centre of gravity from each aide.

^7 * """ "'*•' "' triangular Uinina are n 8 and 10 »-^*

^rST" "'•'?"- "'--- <"-iJf^ iir, ::

6. The .idea AB, AC of a triangle ABC, right-wigled at A arerS f'rom c'
"'""'"™ '°"«' *''"" "«^''-™ 071::^;^

' 7. Show that the centre of gravity of a Umina in the form <rf a
,

.

parallelogran. i, at the point of i„te,«cti„„ of it, diagonal.

/, ,}
Show that the distance between the centre, of g™, fof !he

f
-,^ ,• tnanglea ABD and ACD i« J BO.

' *

9. If a parallelogram ia divided into four triangle, by i„
- diagonal., and the centre, of gravity

of these triangles are joined, show that
}
these joining Uues form a parallelo-
gniin.

10. If the centre of gravity of a tri-
angle coincide, -with the centre of
gravity of the Wcribed circle, show
that the triangle is equilateral.

^*' S''"* that the locus of the can^of gravty of all .ight-angled triangles which can I« dZ-ird

^iZ' ""'*'"'" " * ""'* *"™"' •^'" » -*»«'» «'-'

Pis. s8.
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7. <M*M th« wtlfht ud th« emtrw of mTltr of th. t».

Let W,. W, b« the weightN of tl.e portions, and O, G
their centres of jfravity. (Fig. 6«.)

*

Then the centre of gravity „f the whole in the centre
of the two parallel forces W„ W,. and is therefore at a
point a m the line Q, 0., such that

0,G:0G,::W,:W. (Art. l. page loi)

°' O.G-JjxGO^

In solving the problems in the following exercises it
IS to be noted that the weights of uniform lamina, a«
proportional to their areas.

V'"-EZEBOIBE XXIV.
1. An equilateral triangle i. described ..p„„ one .ide of « g„u,rewho.e ..de ., 16 inche. Find the distance of the centre n, gTv'^of the figure « forn.ed from the vertex of the triangle, the vertexbeing without the »quare.

^iLJ!"l^'^\ "' ™" "^'"" " '~'"°8'« » '"""e that of an«i]acent «de. and on one of the longer aide, ,„ ciuilateral triangle
« desonbed extenially. Find the centre of gravity of the whole

3. A piece of cardboard i. in the shape of a ^juare ABCD withan ..oaceles right-angled triangle described on the side BC. If theside of the square is 12 inches, find the distance of the centre ofgravity of the cardboard from the line AD.
4. An isosceles right-angled triangle U described externally on

the rL" fi^z"" "
'''"'*""''• ^'"' '"^ »"'"• "' «™-^ <"

tI«,^U ,™ . ^u'"""**""
*'" '"""K'" »" i" 1»" whenth,^ of gravity of the whole figure is at th. middle point of
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r\ '

6. Two isoMeles triangles are on the same base but on oppoidte
aides of it, and the altitude of the one ia 6 inches and of the other
2 niches. Find the distance of the centre of gravity of the whcrfe
figure from the common base.

7. Two triangles are on the same base and between the same
jiarallels, prove that the distance between their centres of (rravity
IS one-third the distance between their vertices.

8. A cross is made up o£ six eoual squares. Find its centre of
gravity.

"<' 'k

r^

9. A uniforAi rod, 1 foot in len^h, is broken into two parts of
lengths 6 and 7 inches which are placed so as to form the letter T

t the longer portion being vertical Find the centre of gravity of
the system.

10. Two rectangular pieces of cardboard, of lengtlis 6 and 8
^ inches and breadths 2 and 2* inches respectively, are placed

touching but not overlapping each other, on a table to form^
T-shaped figure, the former piece forming the cross-bar. Find the
centre of gravity.

11. ABCD is a square whose side = 2o. On CD, as base, an
>^l««celes triangle GED is described eiteniaUy, whose altitude = h.

Find the distance of the centre of gravity of the. whole figure
from AB. ,

"

v^ 12. Two squares, of which one is four times the other, are placed
so that the jides about an angular pcint of the one are co-linear
with those about an angular point of the other. Find the centre
of gravity of the figure so formed.

13. Sqmres are described on the three sides of an isosceles right-
angled trwngle, outside the triangle. Find the centre of gravity of
the figure so formed.

U. Prove that the centre of gravity of the two complements
which are about the diagonal of any paraUelogram ia in that
diagonal.

15. Find the centre of gravity of « quadrilateral, two of whose
•sides are parallel to each other, and re»,,ectively 6 inches and 14
incl^ long, while the other sides are 8 inches long.

-^ .• ^'
'"'* "''*' °f » qnodrifsteral lamina are 3, B, 4 and 10 respec-

^tively. The side 6 is jmrallel to 10. Find the distance of^e

N.
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/ .Tdt
°' '^'"' °' "' q"adril.te»l from each of the .ide. 3

17. ABCD is a trapezinm, the angles at B and hein^'riMir
.ngle.. Show that the distance of the' centre of;ravitySBTi:

Afl'*AB.CD+CD«
3(ABtCD)

.u^f'J^ " ""'^ * "'*"'"* *''« P*™"el «ides of a ttaneziani sho-^a. the centre of gravity of the figure lies on the 13;^";. tZpomts of bisection of „ and b, and divide, it in the ratio H^+b^l+a
19. ABCD 18 a trapezium, AB is paraUel to CD, and AB=iCDSW hat the distance of the centre of gravity of'the fl^SiAB IS H times that from CD.

*

20. In a quadrilateral ABCD, the sides AB AD.™ is u
.nd BC CD are 20inches. If BD=24 tZ^^t^Zl^:^^^
the centre of gravity from A.

««wnee of

21. The Sid™ of a five-sided board ABCDEare each=a, «,d theangles A and E are right angles. Prove that the distal o1 the
centre of gravity from the side AE=i^±^'a

26
22. G is the centre of gravity of a triangle ABC. A line is

^hat the centreof gravity of PBCQ divide. 6D in the »tio of SJ,u being the middle point of BC. '

23. ABCD is a square plate, E and F being the middle noint. nf

8. aiTen the weight and centre of
«i»Tlty of a body, and the weight
and centre ofgravity ofa portion
of it, to And the centreof gravity
of the remaining portion.

I*t W be the weight of the body
and G its centre of gravity, and let

'

W, be th. weight and G, the centre of gravity of thegiven potion. (Fig. 59.)
J' "^ we

y

v/

y



^:%
must be in G.G produced at such a distance that

(W_W,)xGG,=W,xGG.

V^ EZEBOISE XXV.

2. B and F are the middle points of the sides AB, AC of anequilateral triangle ABC. If the portion AEF is removed, fiZ^ the centre of gravity of ,the remainder.

AB^An^» ^™'^."^' ° '" •^"*"' *= ""1 1^ ">e middle point, of

>
4 From a «iuare piece of paper ABCD a portion is out away inthe orm of «. .sosoeles triangle who«, b.«, is AB «,c' aS

> Sn """"^^*- ':-«'«'<'»»t«">'«™vityoftherin;

^ ADE « cutaway. Find thecentre of g„vity of theremwndT^
e. From «rect«nguUr lamina the triangle formed by joining its«.ntre of gravity G to the ends of one of the side. U c^Zly

f!lm tV: ?a "l"""
"""•" "' «~"'' "' *« -"""ning^rtfrom the point G, when a i. the length of the adjacent side.

:^ 7. An equilateral triangle ha. each .ide=4 inohe.. From the

Find the duitance from A of the cen .re oi gravity of the iMni^r.

»o^ tr»„gle right-angled at A, and having the dTSc oflength a If the portion GBC is cut away, findLdi^^thl
centre of gravity of the remaining piece ftwn A

' '**'*^^ **-
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^

». If three equ.1 triangle. «te out off from , given tri««le bv
y

me. d,.w„ p.„UIeI to the .id.^ prove that the centre of^wrftt^B^n»mmg hexagon wiU coincide with that of the ori^

^^ZT"Z''^ "*"*«' P i. in AD, prove that whateveTbe

fixed^ne
~°'" "^ '^""'^ "' **"* "»"•«»«««• «» a

II. A quarter of a triangle is cut off by a line drawn parallel to
; one of .U .ide. bi^cting each of the other side.. FindZZ^of gravity of the remainder.

""utre

^ fh^ K
"""* ''!'*!'' f ' *'™*'''' ' ""* °* I*' » ""« <J'»»n parallel to

third. Find the centre of gravity of the remainder.

13 From ttie corner of a square piece of cardboard whose side is
6 inches another «,u»re whose side is 2 inches is cut away. Findthe centre of gravity of the remaining piece.

14. Through the centre of gravity of a triangle ABC, a line DK is

Srr^B""^ ^- ^'"' "'•' »»'"of g„.vityof the

16. A circular hole 1 foot in radius is cut out of a circular diw 3

tiM" "i"^J *" **"'" °' "'* •"•'« " ^8 "'<=•» '«>>» that ofthe disc, find the centre of gravity of the remainder.

16. Out of a circle of radius 12 inches is .ut another circle whosediameter ooincdes with the radius of the first. Find the centre ofgravity of the remainder.

17. A ««»1««- boaM of radius « ha. a hole of radius b cut out of
It Show that the centre of gravity of the remainder must lie
wiHua a circle whose radius is JL
"i •+'

Jl ^*" "»»' a hole, of 1 foot radius, be punched out of a
ir due, of 3 feet radiu., so that the centre of gravity of the

^^^^w may be 2 inches from the centre of the disc ?

jT^fT^"}^^ ^ **" '^""'" •'"'»« «"t in it. the <»nti«sof thai-, bole, being ,n the middle point, of two radu of the boaid

v^

V
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at right angles to ouch other. If the radius of each hole is one-
third the radius of tlie board, find the centre of gravity of the
remainder.

20. A uniform plate of metal, 10 inches square, has a hole of
area 3 square inches cut out of it, the centre of the hole being in a
diameter of the plate at a distance of 2i inches from the oenti«.
Find the centre of gravity of the remainder. ^ '/

9. To find the centre of gravity of a number of particles in a
(traixbt line.

G. o flj a..

n
Let G„ Gj, . . . G. (Fig. 60) be the positions of the

particles and m,, m.^, . . . m, their masses. Take any
point O in the line, and let «„ x^. . .x,he the distances
of the partitles, and x the distance of their centre of
gravity, G, from O.

Then G is the point of application of the resultant of
s series of parallel forces proportional to mj, m^, . . . m.,
acting at G„ G^, . . . G„.

The moment of the resultant of these forces about O
is equal to the algebraic sum of the moments of the
forces about the same point. (Art. 4, page 115.)

Hence,

(»»i+»»s+ • • • +»»„)x = »»jaj-f-mja:j+ +m,a!,.

or . m,gj+By^-f. . . . m.!.
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«„L^T'
°

• * ""•• * "*• « "«•• '"> P^^ 'o that theiroentreB of gravity .re m a .traight line, and .ix im=he. apart. Find

^TZ "™"°" "*"*" "' <^'"y '«"- «"t of the

'

a untfol"CT ?? ":r-f " """ """«'"'''"' "t the end. of

Fi^dlrce'^^nC^;;'"-' •""• ' '^ '*" """ '-''"^ ' ''•

'.«ffir^^ I
*^\'" '*"«';" '""^ ""^ ^ <»"««. hao an ounce of•oad fastened to .t at one end, and another ounce fastened to it at a"

distance from tho other end equal to on.-thiri of it. length Kndthe cenlTO of gravity of the system.

4 Four masses of 3 lb.., 2 lbs., 4 lb.., and 7 lbs., respectively
are at equal mtorvals of 8 inches on a lever without weight 2 feem^en^h. Pmd where the fulcrum must be, in oMer'that thTy

5 A uniform bar, 3 feet in length and of m«» 6 ounce., ha.three nngs, each of maw 3 ounce., at distances 3, 15, and 21 inchesfrom one end. AboutwW point of the bar wUl tie system uJTtl

)
men

,
one Wts ,t at one end, and the other at a point 2 feet from

«cond do«
.

Where i. the centre of gravity of the ladder ?

7. A pole, 10 feet long and maw 20 lbs., has a mass of 12 lbs

from that end. Where is the centre of g«vity of the pole ?

8. Four masses, 1 !b., 4 lbs., 6 lbs. and 3 lb.., respectively, ar,placed 2 feet apart on a rod 6 feet long, whose mji, 316^.,"

* md the centre of gravity of the whole.

^. A cylindrical vessel whoM maw i. 4 lb., and depth 6 inchesW.U j.„t hold 2 lb,, of water. If the centreof g^vity ofthe v^Swh». empty „ 3.39 in from the top, detennine'tile .Lition of1ceatre of gravity of the ve«el and it. content, when full of wrter.
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10. A oylmdrioal venel, without Ud, one foot in diameter andone foot in height, i. made of thin dieet metal of uniform tMclt-
ne«. M ,t i» half filled with water, where wiU be the common
oenteeof gnjvity of th.,e«el «>d the water, ««uming the ma«
of the ve«el to be one-fifth the mass of the contained water ?

^*
'°i^ **" ****"" '^^*' **' * ""«'«^ PMtletai

Let a, G„
. . . a. (Kg. 61) be the positions of

the particles, and w.„ m,, . . . m,, their masses.

ina
I

Let O be any fixed point in the plane of the forces
and OX and OT two lines at right angles.

Leta,=a,M..a^=G,M„
. . . a:.=G.M„ the per-

pendiculars on OX; and y.=OA. 3^2= GoL,
y.=Q.L., the perpendiculars on OY.

- ^\? ^ ^^^ ''*''*'* °* ^^'''^y "* *•>« particles, and let
x=QM, the perpendicular on OX; and y=OL, the per-
pendicular on OY.

Then G is the point of application of the resultant of
a series of paraUel forces proportional to to,, «^, „.
acting at G„Gj. . . . G., respectively.



CBuniK or ORAvmr. 145

The point of application of the resultant ia the aame
whatever be the direction of the forces, provided that
they remain parallel. Let them act perpendicular to the
plane of the paper.

The moment of the resultant about OX and OY is
equal to the algebraic sum of the moments of the forces
about these linea

Hence, taking moments^^ut Mi^

or _+mj^

and, taking moments about «!lf oY.

or y„^iiJVt"'2y2+ • • + W.V.

»»i + '»2+ .... +»,,
The position of G is determined from these two

equations.

Example.

Four heavy particles whose masses are 4, 6, 5 and 3 lbs.
respectively, are placed at the comers of a square plate whosesides a« 26 inches, and mass 8 lbs. Find I disLce of tlcentre of gravity of the whole from^he centre of the plat<,.

Fi3. 82.

Let ABCD be the square ami O its centre, and let themasses be placed a. shown in Kg. 62.
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Let O be the centre of gravity, and let <r be ita dUtance
from OY, a line drawn through O parallel to AD and BC •

•ndy .UdUtan^from OX, a line drawn through O parallel
to AB and DC.

Then, taking moments about OY,

(4 + 6 + B + 3 + 8)x- 8x0 + 6x13 + 5x13-4x13-3x13
or x-2 '

Again, taking moments about OX,

(4 + 6 + 6 + 3 + 8)y- 8x0 + 4x13 + 0x13-3x13-6x13
y-1

Hence LG = 2, and GM = 1, and 00. the distance of the
centre of gravity of the whole from the centre of the square= V inches. ' '

BZEfioisE zzvn.

of a square. Fmd their centre of gravity.

r«.L"T'^.f ^ '^• ^ '*'•• ^ '•"•• ^ ""•' "" P'««J »' A, B, C, DX respectively the angular points of a square. Find the dirtaice ofthe centre of gravity from tlie centre O.

3. Masse, of 1, 4, 2, 3 lbs. are placed at the come™ A, B, 0. D
X rf a rectangle; a mass of 10 lbs. is „Uo placed a the intersect on ofthe diagonals. If AB=7 inches, and BC = 4 inches, find thedistance of the centre of gravity of the whole from A. ^
^ ™r^ll f f

**" "'?.'" '"'"*' °' " '^'"'"' "'"«' '» ""'«^. *'2»^'!t'
l»rallel forces ,n the ratio 1:3:5:7. Find the dist„„c; from the

'

centre of the square of the point at which their ™,mta„t acta

X 6.
Masse, 6 7, 10 are placed at the three angles of a squarewho» side = 4 ft. Find the distance of their centre of g^Z^

^Tteral'^.rr ^' .^ »"^ "« P'^^J"* the angle, of «i e^ui-Uteral triangle whose side, are 12 inches. Find the dishuibe of thecentre of gravity of the whole from the least nuu».

\
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7. ABO i. a triangle right-angled at A, AB being 18 and AC 16.nohea ... length. M««e. i„ the ™tio 2:3:4 are plac^ at A C

la;;in»^°™ '!?" "IV*"''*
«>' <n»"ty of an equilateral triangular

maTof elh i

•"«"'"''"'"'• A- »• ^ of a triangle .uch that the

the circle inaoribed in the triangle. +

10 Show that the centre of g»vity of three uniform hhI. fomj?
^

ngatr»„gleABC « at the cent™ of the in«=ribed circle of2wangle form^by jommg the ^^dle of t^e aide, of the triangle

A- A/3 ^-
11. Three particle, placed at the anguir poinU A, B, C of atnangle are proportional to the areas of the triangle. OBO, OCA.

circle. Show that their centre of gravity i« O.

rJi.J* r™' ^.P^'^'^ «' «'« ""gol" P«i»t. of a trianglereapectively proportional to the sum of the tides which mZ .1

h.TofTel"""':
*",'

It""
""'" "' «™^"' ''" -"""J" wi'h

tliat of the iienmeter of the triangle.

N^, «- and w are placed at A. B, and C respectively. If G is thecentre of gravity of the triangle, show that the whole will Jan«about a point O such that AO = i AG.

14. ABC U an equiUten,! triangle of side 2 feet. At A, B and

24. «. «.„„ IT.,. ' ' •
""^*' proportional to

Si. *«, Show that their centre of gravity is distant 16 inches

centre of

Poin** *• quadrilateral

gravity of a plane quadrilateral

_ 1 particles '

parallelogram.

equal
1 placed at the angular
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^ 16. A regular hexagon ia inaoribed in a oir«la, and maane of
^ 1 IK each are placed at five of the angular pointa of the hexagon,

and 3 Iba. at the oeutr* of the circle. Find the centre of gravity of

the ayitem,

X 17. A uniform bar 8 feet long ia bent ao a* to form four of the
iidea of a^ regular hexagon. Find the diitance of the centre of

gravity from the centre of the oimunuoribiog circle.

U. If a bodyii nupmdtd flrealr from ou point tha entn of
tniTltjr of the body ia in tht TwrtiMl lino pMainc throngli
tho point ofuponiion.

The forces acting on the body are

#
(1) The weight of the body acting vertically through

the centre of gravity G (Figs. 63, 64).

(2) The force exerted at the point of support O.

Since these two forces are in equilibrium their lines of

action must coincide. Hence the point of support must
be in the same vertical line as the centre of gravity.

12. Stable, UutaUe aad KentnU Eqnilibri x.

It is evident that if the centre of gravity of the body
is vertically below the point of support (Ji'ig. 63) and
the body is slightly displaced, it will tend to return to

its original posftion. In this case the equilibrium is

said to be 8tald«.
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If the centre of gravity of the body is vertically

above the point of support (Fig. 64) the body, if dis-

placed, will not return to its original poeition. The
equilibrium is then said to be mutable.

In both of the above cases tlieTwws acting on the

body in its new position are not in equilibrium but have
a resultant which, in the first case, tends to restore the

body to its original position, and in the second to move
it farther from that position.

If the forces acting on the body in its displaced

poeition are in equilibrium, the body tends neither to

return nor to recede. The equilibrium is then said to be

For example, a cone standing with its circular base on
a horizontal plane is in stable equilibrium ; if balanced
with its vertex on the plane, it ia in unstable equili-

brium; while if placed with its slant side in contact

with the plane, it is in neutral equilibrium.

I>

W
H

The condition.1 of stable, unstable and neutral equi-

librium can be well illustrated by the use of the

apparatus shown in Fig. 65. When the weight A and B
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are so adjiuted that the centre of gravity of the com-
bination if) below the axis as in Fig. 66a, and the weights
ore displaced, they tend to return to their original
positions. When they are so adjuste.1 that the centre
of gravity is above the axis, as in Fig. C6i. the slightest
displacement of the weights causes them to move away
from their positions of rest If the weights are so
adjusted that the centre of gravity of the combination
18 at the centre of the axis, they will remain wherever
placed (Fig. 66c).

By giving one of the weights an impulse, rotate them
on the axis, (a) when the centre of gravity is at u
distance from the axis, (6) when it coincides with axis.
Compare the motions.

IS. BtmUbrinm of a Body rertiiix on a Horisontal Rnrfluse.

When a body rests in equilibrium on a horizontal
surface it is acted upon by two forces.

r». n. tn. 07.

(1) Its weight, which acta vertically downward
through its centre of gravity.

(2) The resultant of the upward pressure at the
pointe of contact.

Since this resultant must balance the weight, it must
act vertically upward through the ceiiire of gravity of
the body (Figs. 66, 67).
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Since the raulUnt of two like parallel forces always
acta at » point between the forces (Art 1. p»re 103) it
follow, that the resultant of the upward pressures at the
points of contact n.ust fall within the dosed polyifon
formed by joining the extreme points of contact of the
body and the plane (Fig. 66). This polygon is generally
known as the bu« of the body, and the conditions of
equilibnnm are stated as follows:—

4 -rigid body PBder th» jMtJon of gravity ««iy

pro^d that the.verMMJi linftihroagklhitttttaLS""

^^^^:^^^J^3^i.^!LJiiBU^.on.. point"

'*
^uS?'

•*'*^«»*'^ tha centre ofnmTity ofa tUa pUaa

Fis. aa

Attach a string to any point A (Fig. 68) of the body
and suspend it by a string fioni a sujjport.

By means of a plumb line suspended from the same
point of support, draw a vertical line on the surface of
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the lamina. The centre of gravity lie, in this line.
(Art. 11, page 148.)

Now suspend in the same way the lamina from
another point B and draw another vertical line, and the
centre of gravity of the lamina will be at g, the point of
intersection of these lines. To verify this, tliJlamina
inay be suspended from other points and it wil/be found
that the vertical lines through these poinS all paas
yiroughsf.

~

EXEBCISE ZXVm.

\ 1. If a he,vy uniform Umi.ia, in the .h.pe of an equilateral
tri«.gle « 8u.i»ndc^ from any of iU angles, .bow that the oppoaite
side IS always horizodtal.

pj™""!

\^
2. A triangular lamina i. hung up by one of its angular point,and when m eqml.brinm the opposite side is horizontal. Prove

that the triangle is isosceles.

3. A system of three equal particles connected by rigid wires
without weight forms a triangle, and when hung up by the middle
point of one side rests with that side horisontal Prove that the
trungle is uoaoeles.

*• Apiece ofjvire is bent to form three side, of a rectangle, md
.. then hung up by one of ita angles. If the side, containing that
angle be equally inclined to the horizon, show that the i»tio of thearms will be i/ 3 - 1 ; 1.

6. An iWeles triangle is suspended (1) from the vertex, (2)frr,™ one of the equal angles. The angle between the two poritions
of the base IS 60°. Find the angles of the triangle.

6. If a riRht-angled triansle is suspended from either of the
points of tnsection of the hypotenuse, show that it wiU rest withone side honzontaL.

7. A right-angled isosceles triangle is suspended (I) from the
vertex^ (2) from one of the equal angles. Find the tangent of the
angle between two positions of any one of the sides.

8 A trianguUr lamina when suspended from a point P in the
«deAB,rert. with the MdeBC vertical. Show that AP-2BP.
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\ 9. The wheeb of « hay cart are 10 f«<.t .~>^ j xv
gravity of the cart and IJdTineet 1 ^ """ "*"*"• "^

way between the wheela^^n. t ,?
"" 8««"'«1 «nd mid-

without thecTfX „vefr "** """ """' '""«' >« "^-l

wMchth;he,httA:ff?rs:in\:rpptr ^•'"' -^

Ho,.a„y „„,^eh^^Xwilt^^;Sr "' '" "*•""''''

the Hdt'S tu'Xt" 'T^' "' "« •-««• P^i^t-nS over

.half laid o„TSroaV^*v?thf:*"''""'' ""'"'"' »""

.i.b.that. e.e«ft:-^^rrrt.:r^-trse"r

^.hd^^byas^aU obstacle placed at thf;;^^ ^.Tj^

ittSfniTL'rloiir«'i r .^'
•'•"'^"«'

middle point of AC K ^ ^^- » hona-ntal plane
j D U the

ehe boa^wm LZ^X^TZ^Zr "*^' ""- '^^

P^vented fZ^H ^by ^nttt:^'' '"Zd°tt'"'^
'^ "•" -"* "

which the phme can be ll^Zty, . T'^'' "'8'*' *^

over.
*;«<»»'>« rawed without causing the brick to fall

17. A brick, whoae dinienuomi are 8 x 4 v <i ~_i. ,

in anch a wav tll»^ it -» T ™ ^ *
'^^"^ o" « n»«gh plane

.inepa'r^lZte'^TTtle^'SSr;tdl""Jl^ t'''"
ansU^ofinc.i.^Honlrwh^htTL/::;!;^;^:^'-'''-'
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?

/'-.

><

18. A aquara toble, whose man ii 10 kgm., stends on four legs
.^placed respectively »t the middle points of iU sides. Find tho
greatest mass which can be put at one of the cornets without
upsetting the table.

19. A circular table, of mass 60 lbs., resU on three legs attached
s^ three points in the circumference at equal distances apart.
When tho Uble rests on a horizontal plane what is the least mass
which when placed on it will be on the point of upsetting it 1

20. A square table, of mass 20 lbs., has legs at the middle points
of lU sides, and three equal masses.^each 20 lbs., are placed at
three angnUr points. What is the greatest mass that can be placed
on the fourth comer so that equilibrium may be preserved I

21. The radius of the base of a cone is to ito altitude as 2 : 15
the cone is placed on iU base on a smooth inclined pUne, and i^
kept from slipping by

f string\fastened to a point on the plane and
to the^m of the base. Find the greatest inclination of the plane
consistent with equilibrium. (Centre of gravity of a cone is in the
line joining the vertex with the centre of the base at one-fourth of
its length from the base.)

^'^ " '" iw«celea triangle, of mass W, of which the angle
A IS 12(r>, and the side AB rests on a smooth horiiontal table, the
pkne 6f the triangle being vertical. If a mass ^ be huag at C,
show that the triangle wiU be jiist on the point of toppUng oyen

2a, A uniform triangular kmina ABO lies on a horiiontal table
with? the side BC on the table, and parallel to the edge, and one-
ninth ..f the area of the triangle overhangs the table. Showthat if
a mass be placed at A greater than the mass of the triangle itablf
the triangle will upset -

'

24. The side CD of a uniform square plate ABCD, whose mass isW IS bisected in E and the triangle AED i. out out. The pUte
ABCK is placed in a vertical position, with the side CE on a hori-
amtal plane. What is the greatest liuus that can be placed at A
consistent with equilibrium ?

25. A five-sided figure consisting of a square ABCD, with an
isosceles triangle upon the side BC as base, is cut out of om piece
of board. Find the greatest height of the triangle, that tlie figure

\v /-may stand ia a vertical po«tion, with iU side DO .^ a horisgatsl
/\4>lMie, witiioot tumbling over.

A



CHAPTER XII.

FRICTION.
1. Friction.

.kY!.'"''"'J"
*'"' P"'^'""' '° '"' considered, H.ssumed

that he surfaces of two bodies in contact were perfectly
sr..ooth, and that consequently the stress between tKo
bodies was at right angles to the surfaces in contact. A
perfectly smooth surface, like a perfectly straight line or
a perfectly fluid body, is but an ideal conception.

•uroteervations teach us that, while the surfaces of
bodies differ widely in smoothness, it is passible to apply
to a,iy b^y resting upon another a small fonse parallel
to the surfaces in contact without producing motion,
liiis shows the existence of a balancing force.

The stress, therefore, between two bodies resting in
contact along a plane 8urfa«> i/not necessarily at right
angles to this plane, but may be resolved into two r4t-
angnlar components, one, called the jfflanaLOTMsnre
acting at right^ngles to this plane i'lhTotWr^dWl
mction, acting parallel to it.

^^ l^HMi of Friction.

t.Tw''- ''"'^"r*
^"""°" "^""^ "P"" »^y « opposite

to that in which motion would take place if there were
no tnction.

When there is equilibrium, the magnitude of friction is
eqmyalent to the magnitude of the least possible force
required to maintain equilibrium.
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EZEBOISE ZXIZ. ^

y 1. A body rests on h hominititl plane, and U acted on by a fonw
of 12 pounds, making an angle of 60° with the plane. What ii the
magnitude of the friction called into play 1

'

2. A body rest* on a horizontal plane, and ia acted upon by a
force of 20 pounds, making an angle of 30° with the plane. What
iH the magnitude of the friction callcj into play ?

3. A blixsk of wood is in equilibrium on a rough horizontal table,

when a force of 3 grams acts due north, and a force of 4 grams acts

/ due east on it. Find the magnitude of the friction exerted.

4. A body is in equilibrium on a rough horizontal plane, when
forces of 7 pounds and 8 pounds act upon it. li the forces are

;^
parallel to the plane, and^ make an angle of 60° with each other^ find
the magnitude of the friction exerted, d - \rp'\ rx' ^ > P tX. '

6. A mass of 60 lbs. rests on a rough plane inclined to the
horizon at an angle of (1) 30°, (2) 46°, (3) 60° to the horizon. Find
the magnitude of the friction exerted.

6. A mass' of 10 lbs. rests on a rough plane inclined to the
horizon at an angle of 30°, and a force of 12 pounds acts upon the
body parallel to the plane (1) upward, (2) downward. What is the
amount of friction called into play 1

Id' 7. A mass of 100 lbs. rests on a rough plane inclined at an au^e
^'

u»\
"^ **" *° *^^ horizon, and two men push against it—one up the

,, ^ A^pl«>>«. with a force of 60 lbs.; the other down the plane, with a

y ,1 *^ ,1^ '""* "f *• pounds. What is the amount of friction exerted ?

8. A mass of 100 lbs. rests on a rough plane inclined at an
angle of 60° to the horizon, and is acted upon by a horizontal force
of 10 pounds (1) toward the plane, (2) away from the plane. Find
the magnitude of the friction exerted.

9. A mass of 10 lbs. is in equilibrium on a rough inclined pUne
^

of 1 foot in 4 feet. Find the friction exerted when the force of 6
y.^ pounds is applied to tiw mass (1) up the pUne, (2) down the phuM,

(3) horizontally toward the plane.

I'H^
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3. Limitlas Friction.

Experiment 1.

Arrange apparatus as shown in Fig. 69. The h.uH»o.,.I
board AB is about 50 cm. in length and 20 cm. in width, au.l
18 provided with some device for holding it at any an;,'lo when
turned on its hinge. (Fig. 69). The npp<>.- .su.face of the
Lx.ard w matle as smooth as possible. A vertical scale CD is
placed at a given distance AC, say 30 cm., from A

Several small pieces of board of different sizes should be
provided. These should be cut from a hardwood board one
surface of which lias been made as uniformly smooth as
possible. Pieces 16 x 5 cm., 15 x 10 cm., 16 x 15 cm. are con
venient sizes. Into each a vertical rod for holding weights in
position is fastened, and an eye or hook to which a cord can
be attached is screwed. It will te found convenient to make
them all of the same weight, say one pound, by running lead
into holes in their upper surfaces.

Rest the board AB in a horizontal position, and lay on it
one of the small pieces of boai-d. Upon this place any weight
say four pounds, and attach the ord and scale pan as shown
in the figure. Place a small weight in the -icale pan and add
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others in succession until motion takes place. Gently tap the.
board each time a weight is added to the scale pan.

It will be found that by adding weights the tension of the
string may be increased to a certain limit without pnslucing
motion, but if that limit is exceeded the boai'd begins to move.

-.When a hndy iajaat on the point of sUding along:
another, the body is said to h« in HmmnK^ eqniUbrinm.
and the friction exerted is called limiting fMction.

4. Laws of Umlting Friction.

Experiment 2.

Arrange the apparatus used in Experiment 1, Fig. 6!*.

Lay one of the small boards on AB and on it place a weight
Note the total weight supported by the board, including the
weight of the board itself. This will then be the measure of
the normal stress between the boards. Now add weights to
the scale pan until the board just begins to move. Note the
total weight suspended. Repeat the experiment several times,
placing different weights on the board.

Denoting the normal pressures by Rj, R.^, R.,, etc., and the
limiting frictions by F„ F^ F,, etc., fill" up the following
table from your observations :

—

r
NoUfAL PEEHURn. LlMITIKO FxiCTIOKa. Qoonufffi.

-

R.= F,.=

Ri

'
R2 = F,= F..

r',°

,

R,- F.=
R."

Ktc. Etc. Etc.

; ,

• \



miCTION. 169

M tha experiment, is carefully performed the quotients

F, F„ F,
R.' R=' R,

will be found to be approximately equal ; tliat is, the ratio of
the limiting friction to the normal pressure between the boards
IS constant.

Repeat the experiments, using the other pieces of board
and making the normal pressures a., before, R,, R„, R,, etc.
It will be found that, althono-h the .h.p., „.^ fll—Alnf
jhejuga^in contact are different, H,» H...;>;^g ,^.~:^„^

~
approximately F„ F^, F,, etc.

^
The limiting friction, therefore, i.s independent of the

shape and the area of the surfaces of the boards in con-
tact when the normal pressure remains unaltered.

The experiments of Coulomb and Morin, who have
investigated this subject, show that the relations infer-
red from the above experiments hold approximately for
different bodies in contact. The law.s must not be looked
upon as the statements of absolute truths, but rather as
more or less accurate expressions of results determined
by careful experiments. They may be thus stated :—
Law I-The ratio of the limiting fHction to the

nwmal greggnreja IcMs^tairwleii thelrabatancM in
contact turgjmaltered.

"~

Law IL—The limiting friction is independent of the
y°*jgg.*^g_j'ape of the surfaces in contact when

~
tbenormal pressure aSSTfie iubstancesln ronfiict"
remain"Snalterea:

" '^^
.

To which is sometimes added the following law of
kinetic friction, the verification of whicti does not lie
within the province of this work.
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Law III.—When motion takes place by one body
sliding over another, the direction of friction is oppo-
site to the direction of motion ; the magnitude of the
friction is independent of the velocity, but the ratig
flf the fHction to the normal pra»snre is

""_"
"^ " _

^j^agjhe constant ratjg ^f thy
]Sittfay fricSon to the

normaT force when the bodies are at rwtT ~

6. Ootfllcieiit of Frietijn.

The constant ratioof_tUe4ieaitini>friction_to th«jpiTnal
preasui-^QT a particular jwir of HuhHtances incontact'is
pallnH H|^ Ooeacient of Friction. It is generally de-

"

noted by /i.
i

Hence, if F denotes the limiting friction, and B tlie

normal pressure,

or P = /i E.

The values of /* differ widely for different substances,
depending on the nature of the substances and the
degree of polish of their surfaces.

One method of determining the coefficient of friction

is given in Experiment 2, page 158. The following ii-

«D another method of determining

this coefficient, and of verifying

the laws of limiting friction. If

a body is supported upon an in-

clined plane and the equilibrium
c is limiting, the forces which keep

it at rest are (Fig. 70)

Its weight (W), acting vertically downward.
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The limiting friction (F), acting along the plane,
upward.

The noniial presKure (Reacting at right angles to the
plane, upward.

If * denotes tile angle D^AC,

The resolved part of W along the plane =W sin 6,

And the resolved part of W at right angles to the plane

=W cos ». (Art 8, page 78.)

Substituting for W itn resolved parts along the plane
and at right angles to it, the forces acting on the body
are

(i) W sin «, acting along the plane, downward.

(ii) F, acting along the plane, upward.

(iii) W cos «, acting at right angles to the plane,
downward.

(iv) R, acting at right angles to the plane, upw-i".

Since (i) and (ii) are at right angles to (iii) and (iv),
and the body is in equilibrium,

(i)=(u) and (iu)= {iv) Art. 6, page 83.

thatis F=W>in«

R=Wco»0,

But jg may be determined in the following manner

with the apparatus used in Experiments 1 and 2.
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xptdauat 3.

PUoe one of the imall bo^rdg on AB and by • weight apon
the board. Orodually raise th« end of AB turning it upon
the hinge*, and at the same time tap it gentler. When the
small board just begins to slide, (itsten AB in position and
observe the height CD indicated by the vertical scale. (Fig. Tl.)

DC
Thus -_- ia determined

and since

AC
DC
AC

tan e

g, or /i, the ooeflacient of friction of the board is determined.

Repeat the experiment, changing (1) the small boanU,
(2) the weights, (3) both boards and weights.

1. Does the ratio — remain constant?B .

2. How does this experiment verify the laws of limiting friction ?

6. Limitiiig Aggli of Friotion.

The ftnglfi wliirh tihajMrecUgnofthe^resnltftnt of the
normal pmvsnre^ndJJiaJjmi^^ friction makes with t^
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.»f'
For exompIiTTf VFHiTi a body

reBta upon an inclined plane,
R is tlie normal pressure, F
the limiting friction, and S the
resultant of F and R, the angle
o which S makes with R is the
angle of friction. (Fig. 72.)

Since S is the resultant of F and R

Fm. 7i

Uwrafore

But

thenfore

8 sill a =: p
8 ooa a = R
8 Kin a
jj— = ten >
8 cos a

ten a s ten f

<• = ».

F
n

Art. 3, fage 7s.

Art S, page 161.

Hence, When a body rests upon an inclined plane under
the action of gravity and the r^-action of the plane
only, and the equilibrium is limiting, the Uffle of the

"™^nraigl8 of niction.
,_JtBiiu«i.w «•

the^fi^T""*^
°^ ^^' *"^'"' """^ ^ '"^^ ^'"^^^y ^"""

JlV'l^^an'd
;;^;''"'"''"-' -"- "'« -«on of th.

The resultant of F and R is S, which is the re-action oftie plane.

orW^S "' **'"'^'"^'
'" '^'^''''""•» ""''^r the action
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Thewfoi-n W «n.l S «r.' i>.,iihI nn<l net in oppoaite
directioiiH in tho maiiic Htniighl lint-.

Hence tli« aufr\e a — the angle 6.

7. Sample

A mww of 12 Uw. reHU on • rough pUne inolined at an
angle of 30° to the horizon. WUt force niiut be applied to
it at an angle of 30° to the vertical that it may be on the
point of moving up the plane, the coettcient of friction
being j )

Tlie force* acting on the body are (Fig. 73) ;

(i) ItR weight, 12 pounds, acting
vertically downward.

(ii) The normal prennre of the
plane, R, acting at right anglea to
the plane, upward.

(iii) Friction, F-/iR.^R, aot-

i. u.^
'*"' »«>«»•<»>« the phuie downward iiaoe

the body a on the point of moving upward.

(iv) The required force, P, acting at an angle of SO" to the
vertical - 30° to plane.

Resolve the forces along the plane, and at right angles to it.

Then, if X denotes the algebraic sum of the components
along the plane, and Y the algebraic sum of those at right
anirlAA fn it *

\^>
>^ \^ \

\ n \.

angles to it.

and

X=P CO. 30- - J R - 12 CM ar

Y=P COS 60*
-t- R - 12 oos 30"

=iP + R-«^S
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SiiKK the hf.Ijr i, tn «,uilihriuni

XaO, V^ll Art. II, |»g, M.
thtnrfon J|/»l'- JR-«=(» . . (I)

4H+R-Bj/3 =
(2)

KlimintiiiK R from (I) an<l (2) l,y taking (I) x 2 + (2)

I'CJ + v'D-li-VS^)

1+ 2k »

3. Two bodies, of moiues »i, gramg «nd m, grBios, are i..t.
nected by • light iiiextensible «trin«

; ,«, i. pUewl on a re .i „
pUne inclined at an angle 6 to the horizon, and the itriur

TOtmi

Omu

m

after passing over a small smooth pnlley at the top of the
plane (Fig. 74), supports m„ which hangs vertically. If the
coefficient of friction of the plane is ^, and m, descends, deter-
mine (1) the acceleration of the system, (2) the tension of the
string.

Let T dynes be the tension of the string and a the accelera-
tion of the masses. Now, considering the forces acting on m,,
we have, as in examples 1 and 2, pages 48 and 49,

T'=mj/-m^a
(1)
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Consider the forces acting on m,. These are ;_
(a) Gravity, m^ dynes, acting vertically downward.

~

(b) Norma, pressure, acting, at right angles to the plane
upward. Let this be R dynes.

(c) Tension of the string, T dynes, acting along the plane
upward.

(./) Friction, F = ^ R dynes, acting along the plane down-
ward (since the mass is moyiiig upward).

Resolve these forces along the plane and at right angles to it.

Then if X denote the algebraic sum of the components
along the plane, and Y the algebraic sum of those at right
angles to it,

°

X = T - m^ sin 6 - fiR
Y = R - iBjj^ cos 6.

Now, since m^ has no acceleration perpendicular to the plane

R - m^ cos 6 =
"' R = m.ji cos e.

The resultant force acting up the plane is

T-m,j sin e-^n^T-m^ sin tf-/x»i,^ cos fl,

*"«=« R = OTj^0OSft

But the i-esHltant force acting up the plane is also to^o.

Hence T - Bijjr sin « - fim^ cos fl=m^
or T = TOjC + 7»j^(sinfl-|.^co8fl) .... (2)

But T = m,gi-mjO.

Hence m,y - to,o = m^a -i- m^ (sin «+ ^ cos fl)

mi-jn^l^ine + /n cos fl). =^

and

-</ cm. per sec. per sec.

m, + OTj
OT,y

_ m,TO; (1 + sin fl +M cos fl^ ,
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I
* ^ EXERCISE XXX. ^ J

1. A m«8ono pound. re.te on a rough horizontal pUne. Tf^ .. /the coefficient of fr.ct.on » .2, find the Ie«.t horizontal force which / >
W.11 move the maHs. Find .1«, the re.«=tion of the plane. V^\ 2. A force of 5 pou.,d. i, the greatest horizontal force that can
1« apphed to a „«„ of 75 pounds re.ti..g on a rough horizontal ^plane w.thout moving it. What ia the coefficie..t of friction ?

1 /;
^ TT "' f P"""**' '" ""'"8 "" » '""8'' horizontal piano,and .» acted on by a force which makes an angle of 45» with the

plH.ie. If the coefficient of friction is .5, find the force.

> 4. A body resting on a rough horizontal plane is on the point ofmov.ng when acted on by a force equal to its own weight i^Jined
to the phine at an angle of 30°. Find the coefficie.it of friction. •

.5. A body placed on a rough plane is just on the point of sliding

^, (2) 45 , (3) 30°. What .s the coefficient of friction in each

,
. > 6. A body placed on » rough inclined plane is on the point of

offSr """' ^ '*"'
'" ^ '""' '^''*' " *''* o-^fficieat

•of :^ ^r^.."'-^ ""Jr" "' " '""«' »•'"'"= "«=""«» "' «" •ng'e
to the horu«,n. What force must be applied parallel to thepUne that .t may be on the point of moving up the pl«,e, the

coeffic.ent of friction being. 1!
i-

.

w

, 8. A body the mass of which is 30 lbs., rests on a rough in-
clined plane the height of the plane being J of ita length. What
force must be applied to the body parallel to the plane that it may

bling 75*r'"'
"""""^ "'* ""' P"™"' "•* '"'•fioient of friction

wu"l -^ ?"*'' •*'*"* " '""•'"'"* *" "" horizon at an angle of 00°
What « the greatest mass which can be sustained upon it by a force
..f^3^po,,nd.^acting^parallel to the pUne, if the coefficient of

fhll
* "T°^ '* ""• "''*" P'*^ °" " """Kh pUne inclined to ii

the horizon at an angle of 60° slides down unless a force of at least
7 pounds acta up the plane. What is the c,«fficie..t of friction ? r

^.
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11. A niafw of 29 IHk. in mi the jH.int of muviiig up a rough pUiw
iiicliiie'l to the horizon »t an aiiglo of 46° when a horiaontal forco
is applied to it. Fiml the horizontal force, if the coefficient of
friction ia .1.

12. A body, the mass of which is 4 Ilw., rests in limiting
V«|uilibriuni when tlie inclination of the plane to the horizon is ,10°.

Kind the force which acting parsillel to the plane will support the
iMxIy when the inclination of the plane to the horizon is flO°.

13. A body placed on a rough plane inclined to the horizon lit an
f«ngle of SKf is jiwt on the point of moving upward when acted
uiMiii l>y a horizontal force equal to its own weight. Find the
coeflioient of friction.

14. If the smallest force which will move a mass of 3 lbs. along a

^ horizontal plane is y^i pounds, Hiid the greatest angle af which the
plane may be inclined to the horizon before the mass begins to
slide.

16. Show that in order to relieve a horse ill drawing a sleigh the
trsices should be so phtced as to make the angle of friction with the
ground.

1«. How would you place a brick on an inclined plane so that it

would be tin least likely to iMmble. merf Would it be less likely
io didt d»wn with one face in contact with the plane than another ?

GKve reasons for your answer.

17. A particle, whose mass is »i, slides down a rough pUiie
^^incliued to the horizon at an angle of W

; if ;i is the coefficient

of friction, det.ermine the acceleration.

18. A particle slides down a rough inclined plane whose inclina-
tion to the horizon is 45° and whose coefficient of friction is j.

\ Show that the time of descending any space is twice what it would
be if the plane were perfectly smooth.



CHAPTER XIII.

FLUID PRE8BURE AT A POINT.

1 The OliaTaeterlBUe Properties which Diitiiignieh the BOiA
State of Hatter from the Fluid.

Bxperlment I.

Take any solid body, guch an a piece of wood or iron, lift it
and place it on tlie table.

1. Does the whole move when a part moves?

2. Is its shape changed 1

3. What ii, necessary to change its shape? •

Ssperiment 2-

Put your fingers into a vessel containing water and try to
I.^'t the. water out. With a spoon dip the water out of one
vessel and place it in another of a diiferent shape. Pour
water on a horizontal surface. Try to grasp a handful of air.

1. Is the whole of the water lifted out when a part i. raised 1

2. Has it a definite shape of its own 1

3. MTiat shape does it take ?

another ? Has any portion of air a shape of its own ?

Water and air belong to the class of bodies known >m
Fluids.

A goKdiji a body that posaesses rigidity, that is tie
power to resist change of shape.

4Jlaidis a body which possesses no rigidity what-
ever, but which is drformed by the action of any force
howevwr small
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2- TheOhai»ct«ri«tlc Propertiei thmt DlrtinguWi Uqnid from
GaaeoiM Flnids.

Experiment a

Take a glaxM t„be (Fig. 75) closed at one end, fill it nearly
full of water or any other liquid, insert a piston and push in
on It.

Is there any change in the volume of the liquid ?

Pl«. 75. p,„ „

Esperiment 4.

Repeat Experiment 3, having the tube filled with air instead
of water.

1. What change takes place in the volume of the air?

2. What causes tlio. change ?

Experiments.

Place an elastic rubber balloon partially filled with air
wider the receivf^r of an air pump (Fig. 76;. Kxhaust the air
from the receiver.
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ti> which the balloon is subjected 1

pn»ure

biootf'

'""**' "" "*""*' '" *^* ^"'"™ "' "•« "^ '" '•••

On tlie basis of compressibility and expansibility,
fluids are divided into two classes, liquids and gans.

AJ^l^iiJa a highly imcompressible fluid, that i« itU a body which poBsesses a definite volume but no
definite Bhape, moulding itself into the shape of the
containing vesseL

A m» is a compressible and expansible fluid, that is,
It IS a body which possesses neither definite shape nor
deflmte volume, taking not only the shape but also thevolume of the containing vesseL

3. Meanire of the Plnld Pressure at a Point.

It is a matter of common experience that a fluid exerts
a pressure upon the surfaces with which it is in contact

i * P''^" '" '"''^^^ "'t° the bottom (Fig. 77) or side
(l-ig. 78) of a vessel and the vessel filled with water a
force must be exerted on the piston to prevent its being
pushed out. If an upward pressure of '

100 pounds is required to hold the
piston in position, the pressure of the
water on the surface of the piston
must equal 100 pounds. Now if the
area of the piston is 5 .sq. inches, and
tlie square inch is the unit of area, the
pressure of the water on each unit-area of the surface of
the purton is ij« = 20 pounds. The pressure a( every

F». 77
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point in the surface is said to be 20 pounds per square

inch.

Hence, the preunre of a fluid at a point in a plane-
area ii meainred when the preunre ia uniform over
the plane bj the force exerted on each unit of area.

When the piston is inserted into tlie side of a vessel

filled with water (Pig. 78), tlie

pressure of the water on the

surface of the pi(>tun differs at

different pointu, but is measured

at any point P in the surface by
the force which thi^ water would exert on a unit-area if

the pressure on this unit-area were uniform, and the
same as at P, or if the preunre over the plane is

variable, the pressure at a point is measured by the
force which would be exerted on a unit-area if the
pressure were exerted over the whole unit-area at
the same rate as at the point.

It should be carefully noted that the statement that

the pressure at a point is 20 pounds per sq. inch does not
imply that the area of the point is one square inch, or

that the pressure upon the point is actually 20 pounds.
The fact is that both the area of the point and the

pressure upon it are infinitely small. When it is stated

that the velocity of a train at a certain instant is 20
miles per hour, it is not inferred that the instant is an
hour, or that the distance tiie train moves in the instant

is 20 miles. It means that at a point of time the train

was moving at the rate of 20 miles per hour ; that is,

if the train were to continue to move for an hour, and if

its velocity each histant during the hour were the same
as at the given point of time, it would pass over 20 miles.
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Similarly, pressure at a point is 20 pounds to the square

5 a /mS^ ^ ^"^^ *° *^* '»"• i^ch; that

at every pomt in it the same as at the given poSthe premre would be 20 pounds.
^

4. PrMnn at a Point Within the Mu, of a Flnid.To .Measure ti.e pressure of a Huid at any point within
.ts „.ass, „na«,ne an indefinitely .„,all rij^ plane 2placed as to contain the point (Fig. 79). The plan . nm no way affect the pressure of - P^''^^'!!

the iluid because it introduces
no new foi-ces, nor destroys
any of those already existing,'.

Now conceive the fluid re-
moved from one side of the
plane; and instead of the pressure of the fluid on th.U

then :rrr
'"" "" '° "^^^p "- 1"-- - p--then the fluid pressure on the other side of tl e nluumust equal X. If the area of surface pressed t f'tl

pressure at a point in it is

' "'^^^^^'^^^^^^-^^^^^^^^
The following, laws of pressure follow .lirectlv fromfundamental properties of fluids.

^

18 ^IrtA^^--'^-^^-''-^^^ Of ft fl"i«t >t root

cont.u:t «,th ,t must be peri...,di..„|,, ,„ t|,,t surface

Fio. 7l».
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Thw may be indirectly illustrnteJ ax follows:—
If possible at tlie poii t A in the side of a vessel (Fig.

80), lot the pressure R of the fluid be not perpendicular
Resolve R into two forces, P and Q, P acting along the side

of the veasel, and Q at right angles to it.

(Art. 1 , page 76. ) 'he effect of Q is bal-

anced by the re-acM' of the side of the
vessel; but since P in.opposed asliding
•"ot'«n of the piu i.^.es of the fluid must
be taking place in the direction AB.

This is impossible, Ijecause by hypothesis the fluid is at
rest; therefore the pressure of the fluid at A does not act
in the direction RA. In the same WHy it can be shown
that it does not act in any direction except in one per-
pendicular to the surface.

Law II. —Law of trangmission of Pressure—Pascal's
Thaoiy. Pressure exerted anywhere upon a mass of
fluid is transmitted nndiminisfaed in all directions, and
acts with equal intensity upon all equal surfaces, and

„iB directioBs-afriril^ vngla to IBese surftcw.

It may be experimentally verified thus :

Take a vessel ABC of any shape (Fig. 81), fill it with
any fluid and insert pistons A, B
and C; then it will be found that if

the piston A is pressed by a force

P, to keep them in position tlit-

pistons B and C must be pressed by
forces which have the same ratios

to P that tlie aieas of the pistons

B and C respectively huvo to the

area, of the piston A. ^„ gj
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8. Maehanicftl AppUcation Hydratatic Ptm.
Thee,,,ml tnu,M,„i,«,iuM«f fl.,Ul ,„...s„„rei« the principle"pon wh,ch .Ul ,.,,drostatic presses are eonstnZ

'ig- 82 represents one of tlie

simplest forms of these presses
D and E are two hollow cylin-
ders connected by u tube C, an.l
partly filled with water; A an.l
B are two pistons fitted into D
iind E respectively. Any force
applied to A is transmitted
through the fluid to B, and the
pressures upon A an.l B are in
the ratio of their areas. Thus, if ,„ „
the area of A is one s.,uare inch when that of B is ten
«<|uare inches, a weight of one pound placed upon A will
Hustani a weight of ten pounds placed upon B.

7. Hydrostatic Paradox.

By decreasing the area of A indefinitely and increas-
>ng that of B indelinitely. any force however small

r^fl M V
""^' ^^ ^^' transn.ission of pressure throu.rh

the fluid, be ma.le to support upon B any weight how-

Jtoado?-'
^''" *' "°'"«*™'*-^ «'»"«•' a "Hydrostatic

Law 111 --Pres.sure at any point of a fluid at rest is
...|ual m all directions. It follows fron, the prineinl.. of
transmission of fluid pressure that the prp..n...

„t, nnv
point within a fluid maaaJa the «ame for aU directianll

I^t the piston A (Fi^r. 8.3) contain some unit of area
tor distmctness say „„e s.juare inch, and let C be any li
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Fw. 8S.

point within the uiaw ».f tho flni.I ; i.na^tine it to be ^the
*^ centra of a circulHr plane, nre» one

minim.' inch ntvl tlianiclt.r mn. If the
E>«t<>n iMpiiKhcl inwai-d with a foree
of P pouiulN, tho pressnro on every
Nipiare incli of the Murface of the vessel
will be P poun.l»; anil, for (he same
reason, e.icli face ,.f the cireuUr plane
which contains will be subjected to
aforoeof Pijounds. It is evident that

on account of the uniform nature of the fluid the magni-
tude of these forces will remain unchanged if the circniar
plane is turned rourid to take ditTerent positions in the\ fluid mass; therefore the pressure at the point which it
contains must be the same for all directiona

EZEEOISE XXZI.
1. A fluid prewure of 1,?28 pounds 18 uniformly distributed over

.surface whose are. is S^sq. ft Find the measure of the pressure^ .t
. pomt in the surface (1) when the unit-area is 1 «,. in^(^Z

«t » 1 sq. ft., the unit of fo«e in each case being 1 ^u„^.
^^

2. The pressure is uniform over the whole of » sq. yard of aphmearea in contact with a fluid, and is 7,776 p„und«: Find themeasure of the pressure at a point (1) when the unit of length is 1

^unl
'* '" ^ '"• "" """ "' '""' '" ^^ '^ •*'"« ">«

)
when ti,e un.t-area is 1 sq. mm.', (2) when it is 1 «,. 4cm.- ithe unit of force is tlie gram.

>•"•,«

4^
A rectangular surface, length 50 cm. and width 4 cm., is «„b-ected to a uniformly distributed fluid pressure of 4 kg,,, Findthe measure of the pressure ..t a point (,) uhen the unii of length

>
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« th:^'^
"'""' "" -" "' '""•«•" " ' "•"'• " ««. unit ..f ,„™,

«. If the «*• of . pi,t„„ i,uM,rt«d in , cl.w«l vewl i. -U ^n.. .nd ,f it i, pr««d with » fore of 3S v,mlTfil7Tu ^ ^
which it ,in tn.n.mit to . .„rf^ „, 7?., Inch^

' """"""

whlll^'T"
"""' " """' "'"• ""''' "'d '"o circuU,pi.ton.whoM diameten are mueetivalv « .•« j • •

/""••"" P»K>n«

.,,*- u, .u. ,r^„riJS'c,.;: '- -^ "" »-

"

8. If the diamet«r of the anull pi«ton (Fiif 88\ i. n

p'l„, "' "* ' »™- "'-* '•"- -» " '"-»it to th'^

piatonl" s'rr ""^j"" '»" j-orizonUI =««..«ctio„ of th. .mJlputon M 3 «q. cm.
; with what force miwt it be Dre»»H »!..» i^^

-uaUin a force of 7.26 kgm. applied to a pilST^ h^^lZCToea-Motion is 7 »q. dcm. ?
horuontal

10. If the area of the small piaton i» 2 6 «o H™. -a ; •/ •

P»to„ when a p™„„„ „, 3.76 grams i. tram^mitteTTit
^

".A prwaure of 6 ton. on the large piston diameter 21w

,;S4prx'-.IS- ""^^Tr™ : ?.

"..I p««tment. If a prcwure of 2.0 centigrams is applied to the

y

v/

i M

i

(T fl
'

r
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13. A piston area 4fM,. in., is inserted into a rectangidar l,o.w o.,e ,,„..n,.l cl„„..n«i„ns ,uu, length « ft., wi.Uh 3 ft., depth 3 „
4 n If

, ,e ve.ssel ,, fa l.,i witl. „„ter «„d the piston pressed wi, Ia force of 10 o.., fand the total pressure on the inside of the h,ndue to the i.ressure on the piston.

14 A cubical box whose edge is 6 cm. in length is closed by .horuontal hd, and filled with a fluid supposed weightless. A„
oi«n,ng of i «,. nnn. in area ia made in the lid. and a piston whos.
«'e,ght,s4gran,s m in.serted. Find the least weis,d>t which nn,„
« placed upon the lid to keep it down, if the weight of the lid i.
lyti grams.



CHAI'TKli XIV.

Egr-iUBun-M nv KLni.s vsw.n tiik a.ti.in- „k
(iitAvnv.

Tlie forces so far reprcsonteJ as actinjr o„ fl„i,Is h„vf
been prossm-es apj.lied to tl,eir surfaces, .,„,1 tl,e pri,,-
c.p es of fluul pressure alr,...ly inv,.,stij,at,.,l are the resuir
of the peculiar coustitutiou of ti„i,ls, ,„„| a,,^ ,„,,,,,,.,„
ot the acf.MX of gravity. We sl,al| ,„.„ .-slahhsh certain
propos,t.,ms whicli result from the action of .navitv on
nuids. •'

1 Pr«ssnre3 at Points in the same Horizontal Plane
Experiment 1.

Cut the funnel-shaped end £,,.,„ a tlusMe tul.e, leaving about

the mouth of the funnel a piece of thin sheet ruhl.,.r. Thisnay be done by warnnng the lip of the funnel and pressing it

sheet rubber. Pp„eure a U-shapod tube, which for conveniencem emptymg. should have an offset at the botto.n closed with
a rubber tube and pineh-cock. Connct the U-,ul,e bv n.eans

nnel and suppc,rt the wbolo at such a bei,,ht above the table
hat a tall glass jar can l>e slid under the „.outh of the funnel

(rig. 04^.

Partially fill the IJ-tube with wate,- and p.-ess the ™b..rmembrane with the finger.

^^_tW,^cha„,e takes;,,., i,. ,„„ p„siti f „« „..,, „ „,

2. Howis{n)«ni„crcase,(/,)a .leeiease i,, ,1„. ,„,ss,„o „„ the"lerahraao indicated hy the vater in ,he tul,. '

3. How does the taho when Hlled act as ,, |„essu,v-au«e ?

179

'''SI

ii

I



180 ri-emevtahy mkciianics.

All.in- tliM water to run nut iif (hr. pressiirpgauxf. Fi!! tin-

jar Kith water, plare it unrler tlip funnel anrl raise it np unti^

its bi.ttoni is near tlie mouth of the funnel. Observe the
sliape of the rublwr nieuibrane.

What is the cause of the clinnge in shape I

Pour water into the pressure-ora ige until tlie membrane
resumes its original plane contour.



KQI'ILIIIIIII'M i)F Kl.lllns. ISI

MovP il,,. ,,,, f„„„ ,i,|„ ,„ ^.
,^ ^^^^^.^^^ ^1^^ „,c.n,l,r«„n i„he s.une h„n»,n,„, p|,.n.. On,. „,. pn.s,,,.-,,,.,,,-^ indioa.c

.u,y d.fferen.e ,n ,„vss„„. f,,,- .iifternnt positi-„s „f tl,.. jar?
The experiment te.uls to shoNv tlmt_ t!iemvssim^.x»£-^-

;N>l!liali-ost„MUuL«,.,vi.,3:j.s t|,e «an,e at all point, of
I he .same lioi-izontaj pl;iiic\ "^

^

TMs lav,- ,^fh,r^;^,^ to~ follow .lirectly from the
•ict ot Ki'iivity on Ii(jui(is a.s follows .—
Takeany twopoa.,s A- an,| 1! (Fi^r. 85) in the sanie

horizontal ,,lane; consi-Lr a very thin eylinder of fluid
wliose axis is AH.

The cylinder is kept at rest by
(i) The fl.ii.l pressures on the curved surfaces per-

pendicular to the axis.
'

(ii) The weiVht of the cylinder, acting vertieallv
'lownward and hence perpendicular to the axis.

(iii) The fluid pressures on the en.ls A and B, j.einen-
'licular to these ends.

'

Since (i) and (ii) have no tendency to move the
(•ylinder m a horizontal direction, and since the cyiinN at rest, the pressure on the ond A must eoual the
jiiessure on the end B.

iVow if p denotes the mcisme of t|„. p,„ssure at a
point in the end A, and j.^ the m..,.snre of the pres.sure at
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a IMiint ill til,. ru,\ H, .iimI if „ is llir .tiva <,f .wh ,m.1
lakfii v.Ty Hiiiiill tlmt tlu; iiressiiiv on .vicli .•ii.l may li.

very iK^iily iiiiiloiiii mid of the Mtiiie intfimity as at tlu
middle point, tlion-foie the prcssmv at the end A is ym and
that at tiie end B is ;>,« ; hut these pressures are ecjual,

tlierefore y,u = y, „

2. Relation between Pressure and Depth.
Experiment 2.

Aii:ii,!>oappiirjitu' .is in Exi«.riinput 1, pn^re 17'J, fill tlir

jar with war«r, place it im.lei- the fumiel and raise it up until
its l«,tt..iii is near tl,e mouth of the funnel. Support it in
this position upon a serins of hl.Rks. Pour water into the
pressure-gauge until the nienihiaiie heconies horizontal.

Now measure with a scale, (I) the depth al. of the meni-
hrane l)elow the surface of the water, (2) the ditterenee in
level c(/ of the water in the limlis of the pre.saure-gauge.

Bemove the supimrting hloeks one at a time. After the
removal of each hlock a<ljust the water level in the pressure
gauge and take the measurements noted aljove. Tabulate the
result-s thus;

Plot a cui ve showing the n lation of pressure to depth.

This experiment tends to prove that tlie pre.ssurejit
any point yf a licpiid at rest under gravity' varSs^as tile
•lepth. This law may T)e shown to follow directly from
the action of gravity on a liipiid.



cylinder, acting vertically

EQUILIBRIUM OP Kf.I.IIH.

Take any point \ in the li,|„i,| (Fi„
AB flrawn veitioilly to the
Mnfiice. Consiiler a thin ^
lyliniier of li(,ui.l wliuse t-
ixis is AB. £^;

The cylinder is kept at ^^^^Ji
rest by ~^^- ^^^

(i) The Huid pressures g^ . ^
on the curved surfaces of ^^^^^La^^S^^^
llie cylinder, perpendicular^ ^ ^" "

to the axis.

(ii) The weight of the
downward.

(iii) The fluid pressure on the end A, acting vertically
upward. '

Since (i) has no tendency to move the cylin.ler in a
vertieal direction, and .since the cylinder is at rest, the
P''';<s,.r, on the end A must e.jual the weight of the
(yliiider.

If p denotes the measure of the pressure at a point in
the end A and a is the area of that end, the fluid pre.s,sure
upon It ,s^a; and if , is the .lepth of the point, i.e.. the
length of the cylinder, and , ,he wei,h, of ,, unit volume
of the liquid, the weight of the cylin.ler is ,»= : but the
liuid pressure on the end A equals the weight of the
cylinder,

therefon; pa = paz
'"

p = ps .

Since p is constant for the .same liquid, anv change in s
uill cause a coi lesponding change in /<. Hence the
pressure at a point varies as the depth.

*?.'
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For example, if tliu pressure at a point iH 10 pound
per s<i. in. at a depth of 2 ft., it will be 20 pound.s per
sii. in. at a depth of 4 ft, 30 pounds per .sii. in. at a depth
of ft., etc.

*

a The Snrface of a Liquid at Rest ^ "der Gravity.

I!zperinient 3.

Pour enough mercury into .i

bowl or a dinner pliile to oovir

its l)OtU)ni. Hold a plumb line

over the surface of the mercury
(Fig. 87).

1. What direction does a plunili-

lin'i always take I

2. What direction does the image of

the line take with regard to the line

itself ?

3. What then must Iw the position

Kio. 87. ' "f the surface of the mercury '/

Experiment 4.

Pour water into a series of

connecting tubes of various sizes

and shapes. An apparatus for

this purpose can be made l>y

cutting the bottom off a glass

l><>ttle, inverting it and inserting

tubes through a cork as shown _
in Fig. 88. Very small tubes ^
should not be used. ^^^^

—

1. Does the water reaoli

same level in each tube?

2. What would 1)6 the result if

some very small tulies were iisi.il '

The surface of a liquid at rest is horiaontal.

the



"WIUBRIUM OK yivws.
,j,g

I'nes AC, HI) U, Ik, dmwn
to the 8urtiic-e (Fig. ad).

Then the pressure at A
=/>xACand the pre.ssure
«t B = p X BD. (-Art 2\- -• -

points are m the same horizontal pl„,.e (Art ]

)

or . ^AC-BD

Hence C and D;..ufK^^T"*^'
'° ^^ (J^-'-'i I. 33>''"•'

^
"'"«t be m the same horizontal plane

AC an,I BD when at a ^ •. . / " ^''''"'•'' '"««

'--.ed„po:::::;xs;s:s^^^^^^^

Experiment 5.

P..ur mercury into the U-tube unUI if V ' <*^'«- ''" '

•collar. Screw one nt\h \u *'"^'"'''
""^^'-b- "P to tl,..

t With waJ up t^ at ti:,7 ^'
"'" *''« -"-. -• «-I

Note the hei,ht^%7,.,S! 'tT' ^^
^
^^^^ ^

--. --^ep-ethetu:\.;t-;-^;;:

1^1
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»UL.,-o,si.,„, tilli,,^ tl.om to Ui« s,ime linight, „„,1 notinR the
lieiglit of tilt! mercury in tlio IT Iii1,p.

CoiiipHiB fnr tho .liHiTuiit oisfH („) tlu.. i.ros8urH» on the .urfuce
of til,, iii.rniiy duo tci tliu water poiiml int.. tlio tulws, (fc) tlio
limimus (if tliu wiitel' incssiiij;.

Tlie uliove experiiiuMit toii.Js to .leiiioiistrate the follow-
ing law :—
-^?jressure in a given liquid is dependent only

"P.?'?.*.^ ^efitlu It ig independent of the form oTflie
VMsel^and of the amount of liqaidwhich it contains.

EXEBCISE ZXZII.
J. If tlw ].rcssiirc of a li,|uia at » cleptli of 14 ft. .T in. is 6 iwunds

to tliu sq. ill., liiiil tlie piissiuB at a lioptli of 21 ft. 8 in.

2, If tlie pressure at a depth of o.fi metres is 2.8 gm., what in

the pressure at a ilepth of ".5 em. ?

.?. If the pressure on a s,,. in. at a depth of 40 cm. is 10 lbs., find
the pressure 6 cm. loner down.

4. If the pre.ssiire on a sq. mm. at a depth of 6 meties .» Ho gm.,
find tho prcKsiire 4 deiii. Iiigher up.
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6. T.U«..u„if„r,„ Ii,,„i,lM tl,., ,,rt.«M.r..s an, ,h„ ., »t .l.,,,„„

'f 12 ami 18 inutrcs ru»i.uctiv.ly.
'

«. I..t«r,.u„if,,n,. Ii,„.i.„ „,., ,.r..»»,„vH „r,. .1,., „„„,„«, .|,.,,„„
•. n.B„. H,„l 1 ..,„. ,.,..,p..e,iv,.b-. (,- .,., t|„. ,,„.«.,.. at
'leptllH of 1 ,klM. »ll,l 1 ,„„„,, rusi'ictivdj-.

,
././" 'I"?"

""''"'•"' "'I"'''" •'"' '••"""•"« "•-' '1... ™m..u. .l.,„h,
"f i,

.
,
«m 4 ,„, ,...,,...tiv.|j, Co,,, V tl,„ ,„v™„r.« nt .k,,tli» ..f

u, J, iiiid (> 1,1. luspuctivfly.

ratio ofa
""'"'""'' '"'" "'"" "'" '''"""''" "'= "' "'"

9. Fi.,d tl,„ depth of a ,,„oI of wat.T i„ „l,icl, a stick 15 ft. Io„«
« a.uls.c.rfcally „po„ th. U.n , if tl„. pr.s,s,.ro at tl,e toj. of thestick IS to tl,« pre8s„ie at the l»,ttoi>, of it i„ r,.lio .•i:4.

10. The pressure at the botton, of a «,iek „ta„,Ii„« vertically in a
,»K.l.of watc^ 15 „,„,„. deepi.s to the pre»H„re at the top in the
ratio o: 2. F,nd the length of the stick.

11. Find the measure of the pr.,»»„re at a point 72 ft. bohnv the
urface of a pool of water, when the unit of length is 1 in., the unit

force I lb., and the density of water (il'i lbs. per cubic foot.

12. A reservoir of water i, 100 n,etreH al)ovt the level of theground fl,K,r of « I,ou.se. Find the pressure of the water at » point
in a water.p,pe at a height of 10 metres above the grounJ. fl„,rwhen the umt-are.t is 1 ,s.,. en., and the weight of 1 c.cm. of w„ter
IS 1 gram.

13. The pressure at a point within a boily of water niuler the
»ct.on I gravity ,s 100 lbs. per .„p.are inch. If the weight of acu ft.of water .8 1,000 o:., find the dej.th of the point l^low the
surtace.

14. A reservoir is 200 ft. above the level of the ground fl,«,r of ahouse, and the pressure of the water at a , t in a faucet in „„upper room o the house is 73 HJ pounds per 8.,uare inch. Find
the homhtof the faucet uIk.vo tl„. griund fl„ur if 1 cu. foot of water
Weighs 1,000 oz.
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15 Fimll„Kr«!„M,H.r«,„Hr« c..„ti„„.,r„ tlm prewur. .t . point

iMiiiK 13.0 Brain. ,HT cubic ««iiti.„„tr«.
"""">

10. Wh»t n..i>it )« th« h.,iKl,t nf „ ,.„1 f ,„„„„„ t„ „g„ ,
liro«.nro of 1 kilogram |H,r»,,u«ro oentinictiu /

17. The .Immi.y of „„« w«t»r is 1.025 gr«„„ per c.l.ic „„„li,„etre
Cnlc,ilat« th« pr.«„r« i„ g,,,„„ ,„,,r H,,u,.r, coi.tin.utro at » .lopth „f40 inutre. below the hurfuce of tbo .en.

'

18. A Rpl,.,ric«l l„,iler 4 feet i,. height i, half full of water andh«l fuUof Htea,.,. What i, the .litferenee, i„ ,,o„„.|, „.., .,„;.;!
f.».t lH3twee„ the |,re,»,„e at a ,K,i„t at the bot.o,,, | ,„ ,„„ top
of the boiler f (A cubic toot of water weigh, baj pound..)

'

j

il^'.cl.,



CHArTKR XV.

WHOLE I'UtSSlTRE.

We have seen tlmt «l,en any surface jh in contact

;;
«"•". tho flni,i .X..H at ..„oh ,..i„;T;

"'" '""^"^'-' l«'n'-"ii<-..lar f, it. Th. mum ,.f all those

n.TS."' "" """"' P""""' "" "- --^-e

Siipposf tl,.. Nurfnoe l„ Ik. ,livid,.d int.. a nun.lH.-r „f
t.|..,M.ntss.,H,„allthattl„. ,,n.ssur.. may In. re.-anl .,1 as
"."for... ovor ..ad. Let . I. tl... a.-ea of ..„e .,f tl.c4,e
flL.n..,.nts an.l z Ix; itM depth k-low the Nurface.
The pre8s,„e „„ ,hi, „,,.„ „ = ,„, „.,,^„ ^ .^ ^,^^.

iif a unit volume ot the li.juid.

N..W si,.ce the Hurfaco is plane the pressures „„ the
var.„UH elen.e>.ts are all pantllel. The whple pressure is
therefore, the sum of the p>e.ssures .n, the elements.

'

Then if a„ a,
. . . „„ „„ the nre«.s <,f the elements

»"'" •„ «, . . . z. me their depths, and P is U.e whole
p.-es.,ure, P = p(„, j,+„„-^,+ ^^_^_^^

But if :- i„ the depth .,f the oeatrc „r gravity of a number
"t particles a,, « „

, +o. + "« s„

«, + a, +

"•«i«,+n.js.,+ ... +„^.
Therefore, P = ,,• (T,, + „„ +

'
Th« teruu Pressure-resultant «nirre«ultan77hi^» ^^

189

• • +"„
(-Alt. 10, page 14.5)

= :(«,+«,+ . . .+aj.

+ «„).
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But
«, + Oj + . . + a„ is the area of the plane surface.

Hence, P=p«A, where A is the area of the surface.

• Hence,

The whole pressure on a plane = area of the plane x
|deEth_ofjts^entre of gravity below the sutface of
lHaa^d X density of Jiqnid.

Examples.

1. Find the whole pressure on a rectangular surface 8 ft. by 6
ft., inimur.sed vertically in water with the longer side parallel to,
and 2 ."t. below the surface of the water.

Area of the surface pressed = 8 x 6 = 48 sq. ft.

The centre of gravity of the surface is 3 ft. below the upper
horizontal side, or 5 feet below the surface of the water.

Ti.en the volume of the column of water pressing on the
surface = 48x5 cubic ft.; and, since 1 cubic ft. of water
weighs 62J pounds, the total pressure on t'le surface = 48 x
5 x62| = 15,000 pounds.

2. What is the whole pressure exerted against a mill-dam whose
length IS 100 ft., the part submerged being 10 ft. wide and the
water being 6 feet deep ?

Area of part submerged = 100 x !0 = 1,000 «]. ft.

Depth of the centre of gravity of the part submerged from
the surface of the water = J the depth of the water = 3 ft.

Then the volume of the column of water pressing on the
part submerged = 1 ,000 x 3 = 3,000 cubic ft. Therefore, the
whole pressure = 3,000 x 62J = 187,300 pounds.

3. The flood-gate of a canal is

20 ft. wide and 12 ft. deep, and is

placed verticslly in the canal, the

water being on one side only, and
level with the upper edge of thu

gate
; find the wliole pres.sure on

. (i) the upper one-half of the gate,

(ii) the lower one-half of the gate,
(iii) the lowest one-third of the gate.

A P B

T

E

G ^^

R
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Let ABCD represent the gate (Fig. 91),
^S^E •<

uppgr one-half,

EFCD .. ,„„„ ..

GHCD ..
lowest one-third,

»nd let T, S and R denote the centre, of gravity of upper onehalf, lower one-half and lowest one-third fespecfively
"^

(i) Area of ABFK = 20 x 6 = 120 sq. ft
Distance FT of the centre of gravity of ABFE below

the surface of the water = 3 ft.

Therefore the whole pressure on ABFE= lOQ v 3 y floi= 22,500 pounds.
i.wxjxb.^

(u) Area of EFCD = 20 6 = 1 20 sq. ft.

Distance PS of the centre of gravity of EFCD below
the surface of the water = 9 ft.

Therefore the whole pressure on EFCD= 120 x 9 y fioi
= 67,500 pounds.

x i* x o.j

(Jii) Area of GHCD = 20 x 4 = 80 sq. ft.

Distance PR of the centre of gravity of GHCD below
the surface of the water= 10 ft.

Therefore the whole pressure on GHCD = 80 x 10 x 621= 50,000 pounds.
"X'"xbJj

II

EXEBCISE XXXin.
1. Find the whole pressure .,n a rect»ngular plane 2 ft l>v 4. ffwlien imiuersetl in water so H.ot ;.. .. r ^ * "•

>i -
vnwr so tliat its centre of cravitv k in ff i.„i

tlie surface of the water
fe™vity is 10 ft. below

/
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4. A reotanguUr plane 10 metres hy 6 metres is immened inwater with one of it. sides horizo,«al, the upper being 2 metre, a„d
the lower 2.3 metres below the surface of the water. Find thewhole pressure on it.

5. A circular surface whose radius is 7 feet, Is immersed (1)honzontally (2) vertically in water. If the depth of the centre
.,

of the circle in each case is 8 ft., find the pressure on the
surface.

6. The water in a canal lock rises lo a height of 10 ft. aaainstone side of a vertical flood-gate whose breadth is 12 ft. Find the
pre.ssure against it.

7. Find the whole pressure ai^ainst a mill dam 40 metres long
and 2 metres wide when the water is level with the up,,er ed-e of
the dam. the lower edge.of the dam being 1.8 metres beneath the
surface.

8. The water in a canal lock rises to a depth of 20 ft. against a
vertical flood-gate whose width is 20 ft. Find the pressure on (1)the whole gate, (2) the upper half, (3) the lower half.

in If"^ 'TwI!''";
'"'^''™ ^^ " ^^ ^* *'• " i"""*""! ™rti««Ilym water with the longer sides horizontal, the upper bein? 8 feet^low the surface. Find the pressure on (1) the whole su.f»ce,

(2) the lowest one-quarter, (3) the upper two-thirds, (4) the lowest
one-tnira,

10. A rectangular surface 12 ft. by 8 ft. U immersed in water
with ite short sides horizontal, the upper being 2 ft. and the lower
being 12 ft. below the surface. Find the pressure on (1) the whole
surface, (2) the highest one-fifth, (3) the lowest two-fifths.

11. A mill-dam is 8 metres long an,l 3 metres wide. If the water

Ltivl". ; .k"'' "V" ^"^ ""** "'^ '"--edge of the dam is
2 metre, below the surface of the water, find the pressure on (1)the whole dam, (2) the upper one-half, (3) the lowest one-quarter.

12. The water in a canal loc:. rises to a height of 6 metre, againstone side, and to a height of 4 metres against the other side of a
vertical flood-gate whose breadth is 7 metres. Find the wholu
pressure against the gate.
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tJ!'^''^^?^^!""^'^^''
'' »"»P«"<led in water with its up^r«>e horizontal an.l at a depth of 2J feet below the surface fZthe pressure on each face of the cube.

°

14- A dyke to shut out the sea is 100 ff U„„ . j • t •, .

courses of masonry 2 ft. hi.h iTthe Z * ^^ " '""'" '"

height of 20 ft fiml *1
***' "** "e*"'«' 't to »

pressure upon one side of it.
"'®

16. An isosceles triangular plate whose nase is 8 ft and each of

the pressure upon one side of it

i tne water. Find

1
M iUJ in. Xf the sp. gr. of the mercury is 135 finH H,<.» ^

pressure on the base of the vessel
' ''*

'

22. A closed cubical box 12 inches hiah ;« fin 7 .•,
SD ITT II K o„j • 1 ,

"'*f" '^ """d with mercury of

WhaTm't 'J h'; dt^h oTth"
«'",'-"''"•''».>"" of waLr.tne aepth of the jkh>I m order that the whole

\ ^

:^
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^

p««8u« from within n„ „„« of the vertical face, „«y eq,»l thewhole pe,.„re from w.thout, assuming that the external and
internal faces are of the same area ?

23. How deep must a 3-i„ch cube be 8„„k in water with two of

wL^H '";!i\^'^^
*" "'"t «» 6 -lunre inches of the .op,What then will be the whole pressure on each of the faces ?

Fnid the ratio of the pressures against the botton, and one of the

^ is fin ^ "*,f
^"'*' ^^ 2 cm. long, 1.6 cm. wide, and 8 mm. deep,

sid'SaTenl"'^'- ^""' "" '"— -' ''^ '"« ^°'-'"' (^'^

^ ' v^il «nT".^''* ^"l"^'"'^''
™ ""* •'"""" »"• » »i'l« «f » cubical

27. A cubical vessel is' filled with two li,,uids whose specific
gravities are 1 and 0^8 respectively. They do not ...ix, and their
volu, ,es are equal Find the ratio of the pressure on the upper to
that on the lower half of one of the vertical faces of the cube

•

fin f
"y'!"**""*' ™'»«'' '^'ght 200 cm. and radius of base 70 cm

IS filled with water. Find the pressure on (1) the bottorfi, (2) the
curved surface.

K-^'
'^/y'""^"''''' '"^»«el with smooth internal surfaces 40 cmhigh and 14 cn> ,n diameter, is filled with water and closed by a

^ piston weighing kgm. Find the £resau«. «Hi)^ b«ro^;(2)" the curved surface. -^--,^^ -

^^ '^'

30. A vessel is in the shape of a pyramid which is 4 ft. high andhasasquare tese, each edge of which is 6 ft. Find the pressure on
^*n»«-t»Hei (2) a side, when it is filled with water. If the vessel

.8 suppose<l weightless, find the pressure on the table upon which
the vessel stands.

'^

31. A con_ical vessel, supposed weightless, 8 cm. high and radius

.,^(2) the curved airfkce, (b, the table,upon which the veiel

Tf U
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32. A pi.ton, 2 sq. mm. in area, and weiBhinu in „~™. •

sorted into the up,».. side of a oWd ouZt1 "
^h e'dLe"wh.ch measure, 8 cm. If the box is filled with wat" Vnd thewhole pressure on the entire internal surface of the box

a<~tS::itr::::;r^-^r-2:„-;^

iti^irrur^ac— "' -^-csrtr
water. Fmd the total pressure on ita curved surface, the diameterof the base bemg 1 metre, and the height being 1.2 metres

lK,ftrbl'""/";'\"'™' " """''^ ^ P""'"' •"'" « rectangularbox, the b,«e of wh.ch m a square whose side is 4, that the sum ofthe^pressures on the sides may be four times the pressure Ilhe

thaT'tf"''
**" '""*'" "^ " "''""''*'' '•" ••'""'^'^r °f which is 12 in.

pressure on the base, when the cylinder is filled with any liquid.
37. A tube whose internal cross-section U 1 sq. cm opens freelv".to a water tank whose internal cross-sectionisT«, m Whtressure must be exerted against a piston which work^ i" iheTutWXS •" *•' '-'' '^ ^ '"^'^ "^ * -- "'•ove th^

38. A rectangular vessel 80 cm. long, 20cm. wide and fin.™
eep, supposed weightless, is placed ou'a hori^ltaluble Jnttpper fa.e .s let perpendicularly a straight tube which rises to a^h' of 2 metres above this face, the : .ternal cross-sect'mofle

,

Fin, th'"^
"' """• "^^ '"^'^ »"<' *« *"'«' «™ filled with waterFmd the pressure on (1) the bottom of vessel, (2) a side, (3) Jend

(4) the upper surface, (5) th^ table,
^

'^
'

39. A cylindrical vessel, radius of base 8 in. and height 12 in« placed vertically on a hori»,„tal table. Into its upper end 11;

cirT!^ Z ^'
u

^°'"P*''-' """ I"'""""' "" 'he base and on theeurved surface, when the cylinder and the tube are filled with ^y
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40 A oubici vewel «uppo,ed weightiest who«e edge u 4 in inlen^tl, „ pl«ed on « horizontal table. Into it, ,.,.^r .urf^ i^

r I 1 ^. I y*"™' ""•• '"'"' "* '"'"'l "ith » liquid. Fi«.lthe length of the tube (1) that the pressure on the side of the cit

inserted, (2) that the pressure on the table) may be twice 11>hpr^sureuu the basa before the tuh« was inserted

vertie,l7rr'f'i'"tl: ' '"•• "™'"'"' *" '«""""» "-•'"edvertc-ally ma liquid with one of its long side, in the surface ofthe liqiiid. Divide it by a horizontal line into two part. up<^„ whichthe pressures are equal.
^

a BinlUbrium of Liquids of Unequal Denary In » Bent Tube
If two liquids of,unequal density which do not mix

' I

'
are poured into a bent tube, they rest in
equilibrium in the position sho -n in Fig
92, where A and B. represent their free
surf(ice|and C their common surface. Let

i p{ and pj'^be the densities of the liquids, and
ac and be the heights of their free surfaces
above the horizontal plane CD drawn

^

through C their common surface.

Since the liquids are in equilibu'um.

«9. m.
'^^^ pressure at C = the pressure at D.

But the pressure at C=--p, xac x ar,i*

and the pressure at D= p., X 6c v xvo
PiXac = p.,xbc

I or PJ=^

Uiqnids are in eqnUibrinm. their den«it.i«a

rselyas thehei^Tof their respecti^^^diSEi
above theirccSnIhon sn^Qer
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1

'

EZEBOISE XXXIV

height of l,e fir„t abovlri
respectively, »nd the

'.he'hei«ht..;theotht
""'""'" "*'"' " ^« '••<"-. «na

2. Ii, a bent tube a column of mercury (,p. „ 13 6^ i. I,„l.n aby a column of alcohol (sp. „ 8\ If thih-xf'.t'
''"'"""e'l

latte" ?
• '^^ ^^ """• *'"" "' "-"«'' «-« - the height of the

3. Two tanks are connected )iv a ninp Tnf„ i •

Mlt water (sp. gr 1 0:i) an.l intnTl !^' " '""'' '" P'""'^'

The oil i« found to be 5 ft Ibov" i"
"" '"'"''""" ""(»''• S'- &)

height of the waler
'"'" '='""""'" '"'^''-- ^-'--l «'«

.el^fXlr^t^— «,-»-- tube. The

common surface. If the density of tl ^ ,« "t";.."'"'"'
""''-

cub,c cenrimcre, what is the do.fsity of the merely ' '"'""' "^^

»We their cou.mon surface is r^Z^m^^^"' '

the differel^ he r evr^Lrrrr';" " " '"•" '^ ^ ^"- ™'-'

=:::si?:b:-LSe:^':;^^^^^^^^ >^

xuialler tube by one inch ?
""-"'""""J' '" "'«

;;;ri:r;tr;' "
' '"- - '* - -—r;^

i
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^u^\"^T^ '"'" ""^ '"""='' «•»' »lc"l>ol (.p. „. .8) into the

10. Water i, poured into a Ctube, the branche. of which are 6

he„"«ll 7' T'.'""^
"" '"^' '""• ""« "' ">" branchri!

XJ' " " ^"'' '" '' """" "'"'^'' "' '"« ""» «•«» "

n. A uniform bent tube con,i8U of two vertical branche. and of

tion.. Enough water „ poured in to .„cupy 6 cm. of the tube a^d

nd "irth r 1:l'- t ^^^ *"'"'' ^ "• -^ "--«« » «' "«« oth"'

where L c
'^

J"""
''.""^''"'"' P"' "' "•« ""» " 2 <"»•. AndWhore tlie common surface is aituated.



CHAPTER XVI.

BUOVANCY.
!• Nature of Bnorancy.

When these presMures are resolved into horizontal andvert,cal components, the horizontal compon ^"
"L^^

part of the body ,s greater than that on the upper part^e ..sultant o all theWs acting upon the Zyl^l
'^atMtjgfirticaLprfiaanre.or buoyancy of the fluid.

Ezperiment.

To answer this question, take a brass cylinder A which fif.

In general terms, the buoyant force exerted bv a

I
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llSfS?*'?
'
"^t'""?* ^ •PI««nt weight an amountequal to the weight of the flnid which it dl^iUcei

y

Flu. sm

This is known as the principle of Archimedes.
This conclusion may be arrived at in another way.

(Fig. m) or which has the part abed (Fig. 94«) immeraed

Flo. 94n.

al>^lfl
""* -Trt *'*"^ ^y "''"^'^- ^"d :t« place

a(>cflj failed up with fluid, c-- • -
*^

Since the fluid body in the space
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^^^^>£::^'zz::r:;:::^:^^

(i) It« weight.
*'" »"•

(ii) The resultant fluid preH«u.-o upon iu surf.u^e

EZESOISE XXXV.
1- A cu. ft. of marble which w.iiuh. -w^i « .

'4
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/

A

6. A milmta.ie* whnw) vnlume jh 3J c.dom. weight TJ kgm. Fiml
it* weight when J cif i luma i« iminerwl in a liquid uiia-hulf nn

heavy m water.

7. Five ou. metre* of k metal weigh in niewi 80,000 kgm. Willi

;vhat force wiiuld it Iw buoyed up if it were HiMiHiiiiled in air ' Fiml
its weight in air. 1 com. uf air weighii .0013 grainik

8. Thriio and one-half ou. ft. of granite weigh 7f(0 p<iundi in

water. Find ita weight.

9. A body whose volume ia 4^ cdcm. weighs in water 6} kgm.
Find ita weight.

10. A aubHtancu whom volume ia m ou. foet weigh* n fiounda in

air. Find ita real weight, that ia ita weight in menu, if a cu. iiicli

of air wuigha p oz.

11. Seven and oiio-half c. inetreHof a aubfitance weigh 9,000 kgm.
^when J of ita volume ii) iminerHud in water. Find ita weight.

12. A iHidy, the volume of which ii SJ cu. fuel, weighs 76 [lounilH

when Y^ of ita volume is immersed in a liquid g as heavy as water.

Find ita weight.

/ 13. Find the volume of a body that weighs 10 kgm. in air and
8 kgm. in water.

14. Find the volume of a cube of iron which woighs 2,800 pounds
in air and 2,426 pounds in water.

^ 18. Find the ei^c of a cube of lead which weighs 90.8 kgm. in

air and 84.8 kgm. when f of its volume is immersed in water.

16. A cu. in. of one of two li({uids weighs j oz., and of the other

J oz. A body immersed in the first weighs 7 oz., and in the secoiiil

12 oz. Find the weight and the volume of the body.

17. A c.cm. of wnter weighs 1 gram and a com. of air weighs
0.0013 grams. A body weighs 100 grams in air and 40.078 grama
jii water. Find (1) its weight m mcuu, (2) its volume.

13. The mass of a piece of limestone (sp. gr. =2.637) is 266.34
gm. What is its apparent weight in water !

19. The apparent weight of a mineral when weighed in water is

196.46 gm. If ita specific gravity is 2.878, what is its mass ?

20. Find the apparent weight of 5 ccm. of gold (sp. gr. = 19.3) in

mercury (sp. gr.= 13.6).
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(2 when b^th- /h. . , , f"' " """'"«' '""" «'« ""tor,W when both the met.1 «„cl the pUtinum are removed, from the

' °"^"«r'
^'^'"*"" "'

'
^"^^ -*•" "PO" by n«,d

When a bo,ly is placed i,. a fluid and left to itself twoforces act upon it.

(i) The force of gravity, acting vertically downward
through the centre of gravity of the b,Kly.

ni) The resultant fluid pressure, acting verticallyupward through the centre of buoyancy (the centre o^

S'aTed
''' '"'' <'i^P>-i)= the\vei'ghl of Tfl^d

m
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If the body is in equilibrium under the action of these
forces, they must be equal and act in opposite directions
in the same straight line. The following are, therefore,

the conditions of equilibrium when a body floats wholly
or partially immersed in a fluid.

1. The weight of the body equals the weight of the
fluid displaced by it.

2. The centre of gravity of the body is in the same
vertical line as the centre of buoyancy. <

EXERCISE XX.XVI.

1. A cubic in. of pine floats with J of its volume in water.
Find its weight. ,

2. A com. of poplar floats with of its volume out of watern
Find its weight.

3. The weight of 2J cu. feet of elm is 124 pounds. What part
of its volume will be immersed if it is allowed to float in water (

/ 4. The weight of 6§ o.dcm. of cork is 1§ kgra. If it is allowed
/to float in water, how man^ c.dcm. will remain above the surface ?

5. A piece of wood weighing 100 pounds floats in water with J
of its volume above the surface. Find its volume.

fi. If a piece of aah (sp. gr. =.8) is allowed to float in water,
/what part of its volume will be immersed ?

7. A cylinder 12 in. long made of larch (sp. gr. = .63) floats in
water. How many inches will remain out of water ?

8. If a body whose specific gravity is 4 float in a liquid whose
specific gravity is 5, what portion of the body will be immersed ?

y 9. Seven and one-half cu. ft. of ixii.Ia.- floats with | of its volume
/out of a liquid (sp. gr. = .8). Find its - jight.

10. A piece of pine weighs u n grams and floats with - of its

volume in water. Find its volume.
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water 1
t~ »d ii, may be wholly immersed in

bottom of the vr.e.co„tXr':«2 "
^Z^'T"":'

'" '"^

strmg. ** 'owactr. fmd the tension of the

ij™.^:j:!'::^ts:t^rnf^r7*^"'^"'»' --"- »-"•«

::^--.wL.diL![:i^'z^tx^r-^

ventuyt warer^lrtrt',!
'",

'^"f
«'" -'e'""« ^^ pounds, floats

« the trnsio„trth''s;rinrwh:h
:?;,\"'m

^^^^ ^""^
water? ^ "'' ^'" ''"'<' "^ J"st immeraed in

volume in sea-water fiiTfL V ,''"'* *'* """-'"'" °f it»

ft. Of sea-water Ce^hs'^ Xtl'""
'^ ''"'"'" ""^'" ^^ ™- ^

when the weight is remove'^, find t'hTeJe "^^ "-' ' ^

4ht^^:^r::crt.:» ri^;r^ -^ ^ '- --

»

section Of the cylinder.
*''" '"'"^''tal cross-

With one-half ofL ^ol<St^:U:£:^Zr'' " '" "^^ ^

whose Bpecifi'c gravhy is 9? '
""' '"'^^ '"^""^ '» » '^1'^ ^

^
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^ 22 What u the least weight that must be placed upon a piece of
wood weighing 20 pounds and floating with % of its volume immeraed

Ik-. ,---S^"'d ?

'*'°" "^°'''° *""'''
" ^'\ '*"" '' ""^ "" '°*^y

^i
A cylinder of cork weighs 10 grams, and its specific gravity

IS. 25. Fnid the least force that will immerse it (1) in water, (2)
in a liquid whose specific gravity is .75.

24. A body (sp. gr.-.5) floats on water. If the weight of the
body 18 1 kg»,., find the number of cubic centimetres of it above
the surface of the water.

25 If a cube floats on water with one of its faces horizontal, an<!
a body the mass of which is 9 granus when placed upon it makes it
sink 1 cm., find the size of the tube.

26. A cylinder of wood floats in water with three-fourths of its
volume above the surface ; when a cylinder of metal half as large
again is attached to the first, the two float just immersed. Com-
pare the densities of the wood and the metal.

27. A hollow cubical metal box of which the length of an edge
uone inch and the thickness one-eighteenth of an inch, will just
float m water when a piece of cork of which the volume is 4 34
c. in. and the specific gravity .5, is attached to the bottom of it.
Find the density of the metal.

28 A cylinder of larch 19 cm. in height is joined to a cylinder of^ iron (sp. gr. =7.8) 1 cm. in height so as to form one cylinder 20
cm. in height. This is found to float in water with two cm. project-mg above the surface. Find the density of larch.

29. A rod of uniform section is formed partly of pktinum (sp
gr.=21) and partly of iron (sp. gr. = 7.6) the platinum portion
being 2 in. long. What will be the length of the iron portion
when the whole floats in mercury (sp. gr. = 13.5) with the iron 1 in
above the surface ?

30. A Uquid (sp. gr. = l,6) is poured into a vessel containins
mercunr (sp. gr. =13.1), and a cylinder of zinc (sp. gr. =7) allowed
to sink through the liquid floats with its axis vertical in the mer-
cury. If the cylinder is 6 dcm. long, find the length of the part
unmersed in the mercury.
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31. Taking 7.67 pounda as the WBinhf nf inn .. . .

approximately the volun.e of h7drl?„
° ^ "" "^ "[ "^'^ «""

.07) which a ..„..«.„ ™.„t con^lTorrItiS "'"' ""

"nay b« equal to a weight of 713 lbs.
« P"**""

32. A iHxIy floats i„ » fluid /.,, „, „. .^,

volu„.e out of the fluid as would hf ° ^^
""f

"' ""•"'' "' ''*•

fluid (sp. gr 1 2) Fiml r «
"'"ersed if it fl„.te.l i„ aV V gr. 1.^;. iiind the specific gravity of the body.

3.3. A cubical block of wood <m ,rr - fl\ i, , .

floats, with two faces l."ri.o„tal l^ra'LfIV'^^ " ' '""'

sea, where a fall of snour t h
', "'*" ''"'-''' ""' '"

the san.„ dept^ "1
Tiv " 'nTbe:""'"^

''" "'""' "' ^'"^ "'

water is 1.025, find the weight of^lbflTrLXl "' "" ^^

wat.^ft',t laTf'tJr t""^' rr ''"- '™^'' -'- '" »"
15,000 s,, f and her. d!s

:;'">'" ,"" """ "' "'" -'""-"•-'.

how ...uc'h she wni r e tuinrthe 11 ""^ ""' "'" ""*'-• «""

1.026.
'

'^ '* 'P™'"" 8"""ty "f sea water as

35- A piece of iron fsi) nr -7 fi^ ti,„ . ...
placed on the top of a cuhflrJ 1 / "' "' "'""'' '' ^C lbs., is

ainks it so that the UD,.err , "I
"""^ """'"S in water, and

face of the water T^i V^
""^ "°°'* '^ •«^''' -'"> "'« »"'-

the in,„ that „ts'; bit tctd"'to J," T""'''.
^'"" "'" ""'»« "'

-at the top „.ay be as ..^1:^L^^^J^," ''"" ^

exLtdSr'VuhT,T'r'"1 '—•?•-<. under an

forced into th" ;«",':: if d'
"" """ """"""" ^'^ '^ "'-

at the atmospher?;i™ '^/?"7 ''.SO «"- that of the air

the water wi1 the'iCTo ih , \
"" ^"'"'"" '"""«"«• "'

gravity of air at the atilh "
"''""'° '"™"""S "'« ^P^^B"

O'
"^ " """Atmospheric pressure to be .00125

«nd is balanced rya";™! ;:;':• '',
^''"^

'" ''«'"« -'«"«"
is placed in the othe. aj^ p^J'^-ptd

"" \ *-'" " '' '^'"^'

glass.
•*"• *^""' ">« real weight of the

eu with water, and a leaden ball, the volume of which is 72 cu. in.,



208

i

LBMBNTART MECHANICS.

is lowered into the water by a string. Find the increase in pres-
sure on (I) the l»we, (2) a side of the }k,x.

39. A cylindrical bucket, 10 in. in diameter and one foot hiu-h is
half filled with water. A half.h,.ndre,l weight of iron is suspended

,. by a thin string and held so as to be completely immersed in water
without touching the bottom of the bucket. Subse,,uently the
string 18 removed and the iron allowed to rest on the bottom of thi-
bucket. By how much will the pressure on the bottom be increased
in each case by the presence of the iron 1 (A cu. ft. of iron weighs
440 lbs.) "
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CHAPTER XVII.

ATMOSPHEBJC PHESSURK.

1- Hag air weight?

Experiment l

Take a vessel A (Fig. 95^ which
can be attache,} to an air-pun.p,
weigh It, exhaust the air from it
close the stop-cock, and weigh it
again. "

obs'erL'r
''"^''-'-

'" -•«-' '

2. What causes this difference?

Allow the air to re-enter and
observe the result.

1. Has air weight ? \
Oases, like soUds and liquids, possess Weight.

2- Pressure dne to weight.

We have seen that, on account nf fl,
•

exert pre.s.su.e on tie ho^ f
"^ ^«'S''t. «ol'Ms

liquid., exert p,.es"u'ro,!^rT, d '

"'P'"'' "'""• ^J
Do gases eJn prlL^re

" " '" ""'^'^^ ^''"' ''-'

Experiment 2.

Tie a piece of .sheet rubber ovo,. fi

209 ^

^IQ. 9S.

>s?iir
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oonnectinK it by means of a piece of heavy rubber tubing
with an air-pump or an aspirator

(Fig. 96).

1. What chmige takes pluce in t' ii

position of tho rublier membrane 1

2. What causes this change ?

Turn the tube so that the mem-
brane may face upwards,downwards,
and in various directions.

1. Does the position of the mem-
brane cliange as tlie tulie is turned
in different directions ?

_
2. What does tliis prove with regard

F'"- M. 1 to the intensity of the pressure of the sir

Experiment 3
'" '''®*''*"' direction-s at the same point (

Place a receiver on tlie plate of an air-pump, and exhaust
the air from tlie receiver (Fig. 97).

Try to separate the receiver from tlie plate.

Flo. t7.



ATlCOgPBBRIO PRI1I80RE. jH

Oa.es, like Uquld«, on account of their weight, exertpressure on the surfaces of bodies in»mer.ed^nSand this pressure is equal in aU directions at the same

3. Premre Due to the Expansive Force of « Ow

pre«sure on the surfaces of the vessels that 2 the"Th,s ucfon may be illustrated by additional experimeX
Experiment i.

Fill a bottle partly full of water, cork it with a perforatedcork and connect it Ky a bent tube with an unco'k^t^tt^aa shown .n Fig. 98. Place both bottler under the rlitr ofan air-pump, and exhaust the air from
the receiver.

1. What movement takes place in the
water ?

2. What must have caused it ?

3. Why did not this force cause the
movement in the water before the air was
exhausted from the receiver ?

Let the air into the receiver again.
What takes place 1 Why ?

Experiment 6.

Take a long glass tube A, closed at one end, and fitted at theother w.th a stop-cock which screws into tl. plate o^al^

Fio. S8.

I

>4 I



213 LKMENTARr IIICHANtOa.

A

pump. (The tube known as the Ouineanrnd-Feather Tube(answer, well.) Stand the tube in a vertical
position, with the open end of the tap in water
(Fig. 99). Open the tap.

\ Does the water rise in the tube ?
'

Take the tube out of the water, screw it to
the air pump and partially exhaust the air
close the tap, unscrew it from the pump an.l
place It as before in water. Open the tap.

1. What is the cause of the movement in the
water ?

2. Did the pressure which caused this movement
exist before the air was removed from the tube ?
If so, why did not the movement take place ?

3. Is this pressure equal to the expansive force of
the air within the tube when the water comes to
rest ? Give reasons for your answer.

4. When the tube was placed in the water and
the tap opened, what change took place in (a) the
density of the air remainmg in the tube, (6) its

, (c) its expansive force.

Oases, on account of their tendency to expand
indefinitely, exert an expansive force, which is of equal
intensity at aU points both within the mass of the gas
itself and upon the internal surface of the vessel
which contains it.

*
'''a^mete?*

^** of Pressure of the Atmosphere.-The

The pressure of the atmosphere may be measured as
other forces often are, by measuring some counter-
uaiaMctug force.

Ta.m.
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Bxpttrlment 6.

Connect a gloss tube A closed at one end with
another B of the same gi?e, but open at both ends,
by a piece of stout ruliljer tubing C (%. 100).
Each glass tube should Iw about 80 cm., and the
rubber tube about 15 cm. in length and 4 mm
in diameter. Hold the tul«s in the position
shown at the left hand, and fill A and the rubber
tulie with mercury. Now invert A and place the
connected tubes in the position shown at the
right hand, thus forming a U-shaped tube, of
which the branches are A and B.

1. What is the length of the column of mercury in
A above the level of the mercury in B 1

The weight of this column of mercury is just
Ulanced by the wnight of the column of air press-
mg on t' surface of the mercury in B. Hence
the pressure of the air on the surface of the mer-
cury in B may be measured by the weight of the
mercury in A above tht level of the mercury
in B.

'

313

Flo. 100.

1. What is the length of the cohmm of air which weighs th«
san^e » the column of mercury in A al«.ve the lev.l of the mercury

2^
What transmits the air pressure on the surface of the mercury

111 B to column of mercury sustained by it ?

a Devise an experiment to show that the column of mercury

"LtulyZT '
*" """"" "' "'" "' ""«—'-"f the

the difference in levels of the „,.r™ry in the t„o tubes bet^same as m this case, where the tubes are of e.,ual diameter ?

r*^
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A tube of thiH fonn permanently mounted «nd
supported w.th scales for determining the differences
in level beti^een the mercury in the two branche. in
one form of the. barometw, an instrument used for
deteni. -Vig the pressure of the atn.osphere. Fie 101
shows a oarometer of tliis form.

Tlie upper scale gives the height of tJie
mercury in tlie dosed branch above a fixed
point, and tliu lower scale the distance of the
mercury in the op^n branch below the same
fixed point. The Sum of the two readings
IS the height of the barometer column.

Instead of a U-shaped tube, a straight tube
IS frequently used to contain the mercury ih
measuring the pressure of tlw atmosphere

Fio. 101
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SO^-nH*
«'""'"'"• •'^"" ""o centimetre i„ dUmeter and

80 ce„t.„,etreK o„g, clo««d »t one .„d, fl„ H with „,ereuryand, Htopp,n^ tho open end with the Bnger. invert it a.^place .t m » vertical position with the o^,^ end unJer t osurface of the mercury in another ve«el (Fig^ 102)
1. What takes ]>I«-e wh«n the finger u removed? KxnUm .1,

n.«H.n. See Experiment 5, page 211
""""""^^ Kxplwn the

When a straight glass tube is used as a baro-
meter, the cistern which contains the mercury
uus usually a flexible leather bottom which can
IH) move<l up or down by a screw C (Fig. 103yA scale is attached to the si.le of the tube by
uieans of which the height of the surface of
the mercury in the tube above a fixed point
ni the cistern may be observed.

To read the barometer the screw C is turned
until the surface of the niereury in the cistern
comes to the fixed point. The scale will then
indicate the difference in tlie mercury levels in
the tube and the cistern.

coiu„.?'r
"""" ^r "" "'' p™» *•>'"• «»«'»*•"' thecoJuniii of mercury ?

2. Would the height -
' this column l« changed if thetulw were not of uniform bore 1 Why ?

a What change in the height of the colunm wouldnd,eate a„ „,c.ea,e .„ the pressure of the atm,«phere ?» Imt change a decreii.se ( Why?
4. What i8 there in the tube alwve the mercury ?

air'i, 7''X-
"'^""' ?"'' '"-' P''"'"™'' '-y '"^•""'"S » little«.r into thi. space? What force produce, this effect ?

Flo. 103.
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H.

6 Which would be the more ...iublo for »n »ccur.U Urometer.
» tube of fine lN>re or one of wide Imre ? Kxplun.

7. KxpUin why . Urometer fnll. when cm..! aj. • niountMn.

& Ptad th* fttmm of the Atnuwidiert on • Burfbeo thoAre* of which U «. whan tho Halfht of • Baromttor
Uotaf • Liquid of Doniltr ,, l» h.

""mwor

Tho presHure of the atnio»phe^,n the Nurfaoe equals thr
weijfht of a culi.uin of the li.,.iid,4«l i„ the Urometer whoee
baiM) in of area a and whose height in A.

But tlie weight of the liijuid

= its volume x itw drniiity

=- (a X A) X p.

Hence the atmospheric pressure on the surface

' akp.

EXEBOIBE ZXZVII.

^

Note. -In the following questions tliu density of niCury is to bo
token as 13.« grams per cubic centimetre, or as 13,600 o«. |wr cubic

1. Find the atmospheric pressure per sq. inch when the mercurv
'Urometer stands at 30 inches.

^ 2. Find the press .re of the atmosphere on a square centimetre^hen the mercury Urometer stands at 76 cm.

3 Three barometers are constructs to use li.,uids whose
specific gravities are respectively 7.2, 2.9, and 11.8. Find the
atmospheric pressure on a sq. inch (1) when the first Urometer
stands at 4,8 ft., (2) when the second stands at 11.62 ft (3) wlien
the third stands at 5.76 cm. ' ^

'

4. Three Urometers are constructed to use liquids whose
specific gravities are respectively 13.6, 6.17. and 2.06. Find the
atmospheric pressure on 1 s.,. c.n., (1) when the first Urometer
stands at 70 cm., (2) when the second stands at 2 metres. (3) when
the third stands at 5 metres.

f

)
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mietar,

rhoso

t the

iioter

»lien

hnac

the

leter

rhen

6 If the i.tm.-,,heric ,,re-«ur„ iH IR pound, per 11.1. in H,,d th.

whu«, ,,««,fic gr«»itle. nre reHpeotively I.44, a6. m.! 4.8

F.nU tl.
.

heiahu .,f the c,1,„„„h fa Uron.eter. cn.Vruct..
"

,^li.....u. wh.»e .,K,c.ific grHvitic, .re ro.,«ctiveIy 13.6. e.sinV.'.i.

8. Find the h«i«htH of the o.J„«„„ i„ l«ron.eteni cnHtructed
1" """• ';' *'"'"« "l-'fio 8™viti«. „r„ re.,«,,iv„ly 1.6 1 7 tdwhen the niMXJury Imn.n.eter .t«nd. «., 30 hi.

"•" '-^^ '""'

•of.l?;;!?^^'""""""""'"'"'*"'"'- ^'-'-"•' height

10.' A mercury buonieter .tni.d. .t 28.8 i„. Find the ... „r 1

' rsr4;i.";:i"'
" «" "- *- <--^^ ;

>! ^ r r "r
"*"'""« "' "-K'^-meter when it i.su.tk in thewater to a depth of 100 ft.?

u..k in me

-talfd at^t' 7^^^'""^''
•"'''^ "' " """' "'" "» '»«'»<"«iiaim at BO in., if at the surface it •Und« at 30 in ?

re«,U „J.18 4i. whB" it. free .urface i. 3 fb. l«l„w the .urface off the water while out.,ide the reacting i» 29.3 ;„. Co„^rt edensity of mercury with that of water.

15. Solve the following ,,ue,tion. in Exercise xx«„, taking theatmospheric pressure into account :-(„)N„s 1 8 li 18 i? M.'urometer stand, at 30 in. (fc) No„ 2 and 28 if Vh. ^
stands at 76 cm. ' ^ ""^ '«"^"'«t«'

a s\L';t"MrT'"'''"r'""'''"'
'''™''''"'" I-P™<»--Mr

rhl. £.
''*^''' '" «""'Pl<>t«ly tilled with water andthe tube 1. also filled to a height of U ft. 4 in. Find the upwa;3



318 KLEMBNTART MECHANICS.

pressure of the water on 1 an ft in fj,«

« the height of the watl CoLLVu ^^T
"""^ "' ''"' ^^'•

bewr::rTthrzirwrn'trp"'^ ''•
- r'-'

""'
».. a be .0.206 pounU. wheXul^:^ri"'It''^^t^

"' '

Experiment 8.

Take a tube about 25 cm lnn» „„j <. i

diameter one en. of .biehHloXlCir ir,,?—7 'f
^""

Vvr^-"^
"---- Connect h tmeans of a heavy rubber tube not le.s than 50 cm lone witha glass tube, also about 60 cm lon^ TK • • . T^

wrapned with fino
^' ''^ J"'"'^ ^ho"'*! bewrappea witli hne wire or strin?. place tho f„i^ •

as shown in Fi.^ 104 onen tl
/'""^^^ '""«""» S"PP"'I

Height of barometer (H)= }

~erb;:" *" ^'''=' ^'^^ •'-•^'-^ »'^ ^^ -yectea is

(I) barometric reading (H)
when the mercury surfaces are at the same level. Why?

when these surfaces are not at the same level Why ?

the surface of the mercury i„ the closed tube; and me^„„
^
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0) The lengths of tl,„ air eolu,..„ in the elosHtul.;

ino two tubes.

219

flo. J H.
t'lo. 105.

'
'-'^ H the reading of the barotBeter; and that
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"V V
- -. ^", ^'' *'"' '•^present the volumes of this air atsuccessive observations; and that H., II,, H, H, representhe d fferences ,n mercury levels for these observations, fill upthe following table :

*^

^If the experiment is carefully performe,!, the pro,lucts

the case it';

"^

",

"'"' 7'" ^^ ^'"""^ "' '* ''<l""i- ^his being

c eased at the same rate a^ the pressure is decreased. That istl e volume of a given portion of air varies inversely as tl,e'pressure to which it is subjected.
^

ahclin TT'^f
researches of careful experin.e.iters have

to tiirs law
^^''"' ""'""" '"'''"" '""itations, confo.ni

ma?L'fr
''.''"7" *"' ^"^''^''^ orMariottes Law. Itmay be thus .stated :

/ 7. Boyle's or Marlotte's Law.

a i^vif **°'P^'"f'^e " kept constant, the volume ofa given mass of gas varies inversely as the rate of^^sure to which it is subjected.

The gases which most clo.sely follow this law arethose ,.-^„ch are farthest removed, both .as to tempera-
ture md pressure, fwm their points of liquefaction
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When a gas nears its liquefying point, the reduction

EXEEOISE XXXVra.

tubes when the volume of thi. air ocoupie, („) 5 co^yL:';

«.e V
.

eo, ,, ^^^ auh^r;:-,::!::; ::t. ;r
itzrrrf/or; "'

-" " "- -"-—^ ^

(3) the expansive force of the enclosed air ?

^•

com., »hat IS the pressure when the volume is 150 c cm ?

when the barometer sJds aTsO cm ?
™ "" "' "^ <^

6. If a gas occupies a volume of 25 c cm whm fl.. i
stands at 76 cm., what must be the reading f , u

'«™"'<"«^

the gas measures 30 ccm. ?
*" *

"'" '^"'"«"" ^J"""

7. A gas holder contains 2a.4 litres of r .,». „ j ,

barometer stands at 72 cm WharTill 1^ ^h T'"^
*'"'" *•"

when the baron.eter stands at 70 Im.T ^ "' ™"""'' "' "*« «-

prel,t, wSrim'thlTo^^m' T r"""- f "'' »' '"« """-P"'""

..'thewa.rupo„it, The water b^lZlt::;!':/^--
"'""

cushion '"
"" """""^ "" ""«' - W "-yOe tires, (6) air-

fi



c

J'

J222 BLEMENTAHY MECHAWICS.

8. Air-Pninp,

Tlie air-pump is used for removing the lur from
enclosed vessels.

Fig. 107 sliows one of the most common forms of the
a.r-pump. A cylindrical barrel AB is connected bymeans of a p,pe C with a receiver R, from which the air
13 to be removed. A piston D, in which there is a valve
opening upward, is worked in the barrel by a rod whichpa^es through the air-tight collar at the top of the
barrel. At A and B. the ends of the barrel, are valves
opening upward. A gauge G for testing the extent of
ine exhaustion is sometimes connected with the tube Cby means of a tap f

.

Suppose D at its lowest position. As it ascends the
compression of the air in AD closes the valve in the
p.8ton (Fig. 107) and opens the valve A, and the enclosed

Fis. lor
no. lOS.

A and B are closed (Fig. 108), and the air in DB flows
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up through the vulve i„ D. Thus at each double stroke

recei " ""°" "' ''^ ""' ^ ^^^'^"^ f-» "-

1. Of what use ia tha valve A ?

3. What cau.e8 the valve in D to o,,e„ a,„l
the valve B to shut when the piston deacends ?

9. Condenser.

It is frequently necesanry to pump
air into a receiver, as in filling the
tubes of ,. bicycle. In this case the
v-alves of the pump operv downwards as
shown in Fig. 109 instead of upwards
as m the pump for withdrawing the air
from the receiver.

1. Explain the action of the valves E and Don («) the down-stroke, (6) the up-strofee, and"how how the density of the air in the v^sel Ca increased by the working of the pump. .

2. Obtain a small bicycle pu»,p, take it apaWand study its construction and action. \

PUton.
Air-Pump. after m i^tiokeg of the

Let V and v denote the volumes of the reeeixer andthe barrel respectively, P the nressin-.. ,.f M !
P P P D *i

""'P'^'^*^"'«"i the air at first,
! ^2. ^3 • - .

P.. the pre.ssure8 of the air after 1 2 tn strokes of the piston, '
'
^

'
'

When the piston is first raised, the air in tl,.
expands and occupies both the reee.ler Id :h:\;:;,:™\
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Thus a volume V of air becomes V + ».

But by Mariotte'sW the p™«,u^ of the air varie. inr.™.!,M volume. (Pane 220.^
•"""oiy

ThWifore _P
P.

Similarly P,= "^ P,

Hence finally P. =. f ^ -j
-

I V + ,J
^

Andso (.^J^

if ?H«nT t .'"" ^''*' '"•'^"y «" *e p^ssvre, hence.f P denotes the density of the air at first, and A 1^,P« the densities after 1, 2, 3 ... „ strokes
'

yv + pj IK

of"S^rptpl
""' "'' ""^ *""» ""> -iver by „._

EXEBCISE XXXIX

with th^dlu^rc:
""•"''

"' "* "• -*'*'' """ «'" «*-"«

1 •. ; ' " '"^ '""'*• dens ty of the air ia 1 fi..^ *i.

rir ^'^ '" '-' ""*- ^^> «'-•'«"'<'. (3) sth^'sttL?,

t that of the Wl"' AfZh"^""""
°' """''-P"™? « seven times

" air in the rec':;:::-het LZ^r r'!!VH^^^^ »' ^^^
'
»ir i„ H, • .

"'°' """ roany strokes will the d(air m the receiver be to the initial density as 343-612 1

.«w'!:;rr::t';rcur'c™"''*T-'^^iTer IS 72 cu. m. The expansive force of the air
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in 'he receiver supports « column of n.eroury 30 incl.es in hei,,hf

8. If tl.e receiver „f an air-pump holds 100 gm of air at tl,«ordnjary pressure and tl.e barrel l.olds 10 «„., wl at Im ll L-e.ght of the air in'the receiver after the thi«l ^t^ke ,

within?""^'"'"
'"/'"* *'""'«"«'y ""d the pressure of the airwithin a condenser after n strokes

sustli^g a p'll7J ,7'='"' 7"" '" '»- t-e i-t capable of

11. Oonunon Pump.

cisS ^Th^
" 7^ ^ '^'"""" ""'«^ ^•-" - -«" orcistern. Tl.e construction is shown in Fig no A

pipe BC. the other end of which is placed in the water-to be drawn. A piston D. in which there i., a valvl

piston rod. At B there ,s a valve opening upward.
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At G tt hole is iniuJo in tlie buriel ,i,hI a spout is
inserted.

Suppose tlie piston D at its lowest
position. As it iiscends tlie viilve in
D is closed, while the air in the
suction-pipe expands, opens the valve
B (Fig. 1 10), and a part of it occupies
the vacuum formed below IX Now,
HJnce the air which was in the suction-
pipe BC occupies a larjjer space DC,
its pressure on the water in the tube
will be less than that
of the external air upon

I the surface of the water
at C ; consequently this

external pressure will

cause the water to rise

until equilibrium is re-
stored, that is, uiilil the expansive force of
the air below D, tojfether with the prossuro
at C due to the weijjht di the column of
water above it, equnh the external pres-
sure of the atmosphere at C. (See Exp. 5
page 211.) When the piston descends, tl'ie valve B is
c osed an.l the valve in D op.n.ed by the compre.ssion oftheairm DB (Fig. 110«).and the air in the lower part
of the barrel passes through the valve in B, while the
water remanis at the .same level in the suction-pipe.
At each subsequent stroke th, water rises still furtherm the suction-pipe, and at length forces open the valve

B. enters the barrel, passes up through the valve in the
piston when it is descending, and is carried forward and
thrown out at the spout G when the piston is reascending

Fio. 110(1.
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1. What i. the gre.te.t le igth which BC can have ? Why 1

de!p wein""''
" ''""""°" "'""'• *" "•"* *" "" *•'" '«•» • v„y

thk I'"*. mT
"'

',
*'" " ""'"'^ ""•> »«••«» "'-tight- How will

water, (2) when it » partially filled ? Explain.

12. Force Pomp,

The construction is shown in Fig.
111. A eylin.Irieiil bivrrel AB is
joined to one end of a suction-pipe
BC, tlie other end of wliich is placed
in tJie water to be drawn. A sqlid ^,
piston is worked in tlie barrel by

'

a piston-rod. At D a liole is made
in t!ie barrel and a pipe E inserted.
At B atid D are valves opening
outward.

Suppose the piston at its lowest
position. As it a.scends the air in
BC expands, opens the valve B and
a part of it occupies the vacuum
formed below tlie piston, the water
being forced up into the pipe BC
by the pre.ssure of the air upon the
surface of the water in the well. f«>- "i-
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s

When the piston descends, the air in AR K„i

M;W «lve D. At each sub«ec,uent st«ke „fthe piston the water rises higher in the
«'.et,on-p,pe, and at length flows into the
"..rel, whenby the descent of the pis«,n
I'e va ve B is closed and the water
forced through the va.ve D (Fi.. Ill)
."totl,etubeE If the pipe O ts con'
iiected directly with the pipe E the
stream flowing through it will be inter-
nnttent as it is only on the descent of
V he piston that the water is forced
thr6ugh D. To produce a continuous

r.. nj'^ ^'l^"-"
«" "-tcrruptinn i. „,ade in the

air-tight essel F W^ '.

'" '"""""'^'^ ''^ * ^'^^

ve^ef^dSii^s^Tn^^rrrrrf

the water thr^^^^ih^^^pe^olrX: u'^'^r''''
ascending. thuspLlucinL^contirLIt'^l^rFrm^^

13. Tension of the PUton-rod In a Oomn.™ i^.
Forpe Pump.

« ™» m « Ooaunon Pnmp and to a

The tension of the piston-nxl is the ijifference between^e pressures on the upper and the loweV. surfaces JS
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is fl.

2[::.^'i"T'"" '':M^
-•>"« ••-t c. the wt

the ten8ion of th« pi,ton-«xl i^ '^
^'''•"^"'*

Hence,
f"+A.)-(«-A,) = A.+A„

£Z£BOISE XL.

the .p. gr. t^inTlaer ~'' '"'"'"*"" '""«''' " 76 cm^

«.d being 1.8 .„a that „f n.^^ Cgis'eT
"" *'' "' '"'P""™

Pipe -t a ,..gH. „,^,. ;e"ji:r:r::rt;r "- -"""

.nd the tension of the Ato^.^ Jj;,;;"""™ P""'P '" « on...

« fullof water. Find the di«Jn ,
'

f^
*'''""' "'"'" ""e pump

the water in the well
'" '''°"' "•" ^P™' "" ">e surface of

pouL-^herrXtthtrt-'"* "' ' """»»" ""-P ^' ^
'- Of the water in tre:r 'c:rj „\^t'pto:

- "-
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11 BimMtk'i Tnm.

^_The^co„,truetio„ of Br.m„,.', P„« i, ,h„w„ |„

Plo. 112.

bodies To be p e 2 i

"
H "1"! ^^ ^ ^'''''^ ^ ''"''^ "-

ra.n. Above thslf f"^
.'" "" "PP^"" «°'l °f '''«

the WrS^^^^^^^^^^^ b,
"s worked by a lever.

P "'^ P"'"?

When the water is pumped into the cylinder th- „P. . forced upward and the bo<iy ^ p^^ttlt^
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ero^^ection of the ..„ P, .« tuJoTlZ^.r^^lt:,

IS, Siphoii.

The co„Htr„ctio„ of the siphon i, «hown in Fig. 1 13.
'11

It conNiHb, „f o bent tube open
'

at both eii.ls, uw^l f^r tmns-
ferrpr.g a Ii,|„ifl fr„,„ o„g y^^^,,
to another. It !« fillej ^it,, j,,^.

hquKl. both branches closed, in-
verted, and one branch placed in
the liquid to be transferred The
end of the other branch must be
below the surface of the liquid
>n the vessel from which the
liquid IS to be withdrawn.

When the ends are unstopped
the hquid will run in a con-
tniuous stream through the tube.

Flo. 113.
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and the prewure at B tending to move the liquid in the
siphon m the direction BC

i

= the atmospheric pressure -the pressure due to the
weight of the liquid in BC.

But since the atmospheric pressure is the same in both
«wes and the pressure due to the weight of the liquidm AC IS less than that due to the weight of the liquid
in BC the force tending to move the liquid in the direc-
tion AC IS greater than the force tending to move it in
the direction BC; consequently a flow takes pla<:e in the
direction ACB. This will continue until the vessel from
which the hquid flows is empty, or the liquid comes to
the same level in ei^h vessel.

EXEBOISE XLI.

th«L!\f' ^I^Tu"" '" **" **'«'" "' ">" ™*" '" AC equal tothe actual weight of the water in AC ? If „ot, to what i, it equaU"
2. Upon what doe, the rapidity of flow i,. the siphon depend ?
3. Will a siphon work in a vacuum ? Explain.

h« ^i^*""
»''»'<»<«« the limit of the height to which a liquid canbe raised m a siphon depend ? , '

" "*"

h.,nt
^""^

!"*!?
«"> water be raised in a siphon when the mercurybarometer stands at 30 in., the sp. gr. of mercury being 13.6?

6. How high can sulphuric acid be raised in a siphon when the

rZ7i, r7t'
"*^"^ "' "" '"- "« 'P- ^- "f '»« -i-l "• ngl.Sand that of the mercury 13.6? •

*

rJiJ'"^-
'!'* P^'t"

''"«''* <»'«'*'"''•• » liquid of density p,can be carried when the height of the baromeJ is h, the dei^it^of the liquid used in the barometer being ,,.

'

a What would be the effect when the siphon is working ofmaking a hole in t (Fig. 113), (1) at C, (2) betLn A and C, (I) aA', (4) between At and C, (5) between Ai and B?
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9. Will any change in the action of a
siphon be coincident with a faU in the
barometer? Explain.

10. Make a piece of apparatu. similar
to that shown in Fig. 114, by cutting the
bottom off a bottle, I^ndins; a glasa tube
«nd inserting it into a perforated cork
placed in the bottle. Let water from a
tap run 8I0WI7 into the bottle. What
takes pUce 1 Explain.

wWchfr*""*'.
""*""" '" sometime, found in the earth fromwhich the water can n.n by natural siphons faster than il fl^ws

^.mmim^^-^-' W^_

Fio. lis.
i

into them from above (Fig. I15).
through the siphons is intermittent.

Explain why the discharge





ANSWERS.

EZEBOISE I.

3. 2:i; 11:6.
i. 5:56.
5
6
7

8. (1) 400, (2) 800, (3) 200,

(4)200,(5)800.

10. 0.98.

Pages.

^^^^\^^\^^>^'^' (3)7040,
(4)29J.

12. 60 miles.
13. 7200.
14. JJo6.

15. 36 iim.

16. (1) A, (2) I^,.

17.
..3 Ik
rs —

a

4J ft. prfr «ec.

. (1) 10.5cm. per sec., (2) 10
cm. per sec, (3) U cm.
per sec.

(1) l.cm. per sec., (2) 3 cm.
per sec, (3) 1 cm. per
sec, (4) 1 cm. per sec.

(1) 15 ft. per sec, (2) 75 ft.

(1) 35 cm. per sec, (2) 350
cm.

(1) 18 cm. per sec, (2) 14
cm. per sec, (3) 56 cm.

175 ft. per, sec j 150 ft. per
sec. ; 125 ft. per sec.

;

100 ft. per sec ; 540,000
ft.

EZEBOISEn. Page 9.

(2)

9. 90 cm. per sec
10. (1) 435 ft. per sec, ,.,

44,250 ft., (5)126,750 ft!
11. In 10 sees, from the instant

its velocity was 20 ft. per
sec. i 1 f

u

12. (1) 4 sees, from the instant
it was 8 ft. per sec, (2)
10 sees, from the instant
it was 8 ft. per. sec.

13. (1) 50 ft. per sec, (2) 250

14. 20 sees.
J 800 cm.

15. (1) 5 cm. per sec. per sec.
(2) 1750 cm.

10. 55f.

600 units of velocity ; 600
600 ft. per sec ; 600.
(1) 300 cm. per sec, (2)

18,000 cm. per sec.

(1) 0.5 ft per sec, (2) j^j.

EXEEOISEni. Page 13.

6. 10 minutes.
7. 1 sec.

8. (1) 6, (2) 2, (3) ,V, (4) ^.
9. (1)^50, (2) 5000,'(Vr (4)

10. (1)1,(2)3800,(3)3600,(4)60.
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11. (1) 1200, (2) 72,000, (3) 720,
(4) 12, (5) i.

12.(1)30,(2)10^000.
13. 38,400.
14. 36)280.

16. 2:1.
16. 1000.

17. 1000.
18. l;2.

mi

EZEBOISE IV. Page 19.

1. 100 cm. per aeo.
2. 20.

3. - 186 cm. per sec.
4. (1) 5, (2) 165 cm. per sec.,

(3) 20 sec. before its
velocity was 100 cm. per
per sec.

5. (1) 10 sec, (2) 3i sec.
B. (1)550 cm., (2)1 sec".

7. (1) 1.6 sec., (2) 11.26 cm.
from starting point

a (1) 180 ft, (2)1250 ft, (3)
yo ft.

9. iseft
10. 20 ft per sec. per sec.
11. (1) 12, (2) 78 ft.

12. (1) 8 ft. per sec. per sec..

(2)^ilOftper.ec.. (3)

13. (1) 20 cm. per sec., (2)

, . „ ~^ ""• Pe' sec. per sec.
I*, b ft. per see. per sec.

16. - 32 ft per seo. per sec.
lb. 2 sec

; } sea
17. 10.12 seo. ot 81.88 sec.
18. 40 ft per sec. ; 5 sec.
19. (1) 20 cm. per sec., (2) 4

sec.

20. (1) 20 ft. per sec. per sec.
(2) 200 ft. per i^r

21. (1) 6 sec, (2) 144 cm.
22. 44 ft
23. (1) 40 ft per sec, (2) 35 •

26 ; 16 ; 5 ft per sec. '

24. 2.1.
25. 23f ft per sec.
26. 20 cm. per sec ; 20 cm.

per sec. per sec.
27. Yes, if the body starU

from rest.
28. 18 sec from the time the

first particle was at the
given point ; 72 m. from
the given point

EXBBCnsi! V.

1. 7:i5.
2. (l)a:i, (2)l:a.
3. all. Q
4. .33:25.

5. Forces are equal.
6- (1) 200 dynes, (2) 26,000 9

dynes, (3) 30,000 dynes,
(4) 55J dynes, (5) 3Q

dynes, (6) ^^ dynes.

7. (1) 1 cm. jier sec. per sec, 30.

(2) j;ftn cm. per sec per

Page 34.

«ec., (3) 1960 cm. per sec
per seo.

(1) i gram, (2) 2J grams.
(3) 216 grams, (4) 3920
Kilograms,

^1) 15 cm. per sec. ; 37i
cm., (2) 102 cm. per seo.

";

3468 cm., (3) 4.9 kilo-
metres per sec ; 24.5 kilo-
metres.

1 hr. 23 min. 20 sec.



1. (1) 160 ft. per sec., (2) 320
R. per sec.

2. (1) 420 ft. per aec., (2) 280
ft. per sea

^"
^^^oi?*'

""^ I*' •«<=. (2)woO cm. per sec.

*• ^^\^,^' <2) "2 ft., (3)

6. 49 in.

6. 156J ft.

7. (1) 400 ft, (2) 16 ft.
o. 25 ft.

9. 100 ni.

10. (1) li sec. and 4^ sec, (2)

12. (1) 6 sec., (2) 5 sec.
13. (1) 96 feet per sec., (2) 126

ft. per sec., (3) 80 ft.
per sec.

14. (1) 36 ft per see., (2) 20
ft. per sec.

15. (1) 39A ft, (2) 116.49 ft
per sec.

*o. 7 m. per sec.

ANBWIBt.

BZEBOnS VI. P«ge 41.

937

17

EZEBCnsE vn.

2. 3750:49. y
, am
^8™nis.

4. lOmin.
5. 37.5 dynes.
6. 786 cm. per soc. per hcc.
7. 7,360,000 units. '

8. Forces are ecjiiaj.

9. 10 cm. per sec. per sec.
10. 2.1; 12.
11. 612 cm.
12. 2 sec .32 cm. per sec. j 4 sec,

~"2om. per see.
13. 900 dynes.
14. 5:98 ; 5 metres per sec.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

26.

26.

27.

28.

(1) 29.4 m. per me., (2) 44.1
m, per sec.

64 ft. per sec. ; 6 sec.

ft****

'' ^' **"•' ^^^ ^^
6sec.

; 176.4 m. from point
of projection.

6±3/3 sec.

12 sec.

(1)204 ft, (2) 3 sec-.

1.647 sec. ; 38.28 ft.

4 sec. more.
In T sec. from instant of

projection.
(I) 114 ft, (2) 144 ft
67j ft
622 ft
224 ft
160 ft
2 sec.

1936 ft.

1200 ft. per sec. * '

6*
4«ft- _
»+ |/ii» - 2nsec ;3(/,;jr2„;

Page 4S.

64 dynes.
12 dynes.
9800 units ; 18113

21,777i on.. "^
36 cm. per sec. ; 320 dynes.
duo dynes.
49 kilograms.
20 grams.
5:7.

1 :490.

^^^iS;^ ^^^ (2) 9,613,.
800 dynes.

98 cm. per sec. per sec.
490.5 grams.
107,800 dynes.
(I) 117,600.000 dyma, f2)

39,200,000. ^ '

18,

19.

20.

21.

22.

23.

24.

26.

26.

27.

28.

29.

30.

31.

32.

34.

36.

36.

37.

cm.
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BZBBOIBB Vm.

2. 2620 cm.
3. I aeo. ; 66 cm. per sec
*• <^> i/S" «">•. (2) 1060 cm

,

(3) 700 cm. per aec
B. 709.1 cm. per »eo.
fl. 8980 cm. ; 1120 cm.
7. 14.01 cm. per aeo.
8. 7066 dynes.

in <J?J'«>om.,(2)2790cm.
10. 886 grama.

11.

12.

13.

14.

16.

17.

18.

19.

20.

FkgaSO.

6:a
8:3.

I

-J,

7A ™o-
J 864,Vt em.

*'^ «.

96,000 dynes.
1060 dynes.
960 cnL per aeo per aeo.
490 cm.

21. _£
^3"

1. 940.8 xlO'eros.
2. 1,000 orgs.
3. 98,000 joules.
4. 98,000 joules. i

6. 3,920 joules.

EXESOISB IX. Pig. 68.

6.

7.

8.

9.

10.

144 joules.

21.316 joules.

1,886,600 joulee.
10 metres.
1609.2 jouleai

1. (1) 4,802,000 ergs, (2) 1,200,
600 ergs, (3) 0, (4) 4,802,
000 ergs.

2. 12,600 joules.

3. 7,203 joules.

4. 8 000 joules.

6. 2,600 joules.
6. 20 joules.

7. 9,8 joules.

9. (1) 9.8 joules.

10. 832xl0»; 11,648x10'.

SZEBOISE X. Page 87.

11- (1) Forces are equalj (2) in
ratio m^M,

12. Velocity in the ratio 4.3-
maaa in the ratio 9.4. '

13. 346,4 cm. per sec.
14. 18 cm.
16. 468.26 metres per sec.
17. 15 units of *eight ; 8 unite

of velocity.
18. (1) 16,611,000 unite of

momentum, (2) 8,139.39
joules.

1. 60 erg-seconds.
2. 100 erg-seconds.
3. 10,000 eig-seconds.
4. 100.
B. 1,000.
6. 100.

7. 30.
8. 39.2.

EZEBOISE XI. Page 60.

9. 0.28 horse-pow^,
10. 784 horse-power.
11. 980.

12. 70 watte.
13. 196.

14. 192fft.
16. 6,000,000.
16. COO litres.



Amrna.

1. 36 gm.
J 6 Km.

2. 2P; 2Q
3. 39 pds.
4. 37tgr.'.
6. 18 pds.
6. 12 P.
7. 12 pd». and 16 pds.

EXEBOISE
^' ^^\^ ^h' (2) 18.477 pd..,

(3) 6.170 pds., (4) 70
pds., (5) 8.789 pds., (6)Xl25 pds., (7rii916^
pds-, (8) 12.64 jhIs., (9)P pds. north.

a 17 pds.
4. 20 pds.
6. Forces are equal.
6. 8 gin.

7. 12 pds.
>•• 12 pds. and 20 pds.
9. 10 pds. and 10^/2 pds.

10. 3 gm.; 1 gm.

EZEBOIBE Xm. Page 80.

SM

8. 20gm. and4«gm.
0. 6pas. and3j/5,Kl,.

10. 16 pds. and 20 pds.

19
J28m.»nd24gm.

iJ. 13 pds.
13. 16 pds.
14. 400 pds.

XIV. Page 71.

11. 2:1.
12. v'epds.
13. 50 pds. acting toward the

centre.
14. 6j/2 kgm. at 135° with fint

force.
15. 5:4.
16. 10 and 26 pds.
17. i 1/7 times the aide of the

triangle.

26. Resultant is represented by
„ ,,

OD=2,/3pJ8. '

31. (l)»/3 pds., (2) Resultant!.
represented by AD.

EZEBOISE XV.

2 10^3 and 10 pds.
3. 6t/2 pds.
4. 50/2 pds.

Page 78.

6. 8(/3 and 8 pd».
6- 4/3 pds.
7. 199.23 pds.
8. 98.48 p5s.

11. (1) 6 pds., (2) 6 pds.

1. 3/3 pds.
2. 22.2 or 10.56 pds.; makes

with the first force an
angle whose tangent is

3. 14 pds.
4. 28 pds. nearly.
6. 3v/3 pda. at 30° with third

force.

EXEBOISE XVI Page

7. 7.464 pds.
8. 5.477 pds.

9- 10 P toward opposite an-
gular point.

10. Equals one of the forces in
the direction of the sixth
side.
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BnBouBzvn. p^ssai
1. 40u>d90|/'3p.-b.
3. l:l:j/3.
*. 5 and Si/S pds.
6. 10 and 80 pds.
0. 8 : 1.

•"" , . ,„ nd*.

<'^

''
1+73 '

8. ^pds.
9. 4^3 pdi.

- 10. 3^2 pdg.
11. 100 pdi.
12. ?0/3andl0pda.
13. (l)20v'3pd..,(2)40pdi.

14 l?9™i. .100 200 V
•3' '3-

"
70Md^:.'~- ^ ""•'

17. 360 cm.
18. 233^ cm. per lec. per aao.

19. 140/2 om. per Ma; V2
wooii .8. 28

ao. 30°.

28. It metrea.
23. (1) 1.200,600 erga, (2) 9,800

units of momentum,' (3)
in 4 seconds.

4. 120" between any two for-
ces.

6. (1) 120°, (2) 90°.
7. i:i.va
8. 6gm.,6|/3gm.
». 6i pds. ; 6J pds.

10. lUd*. : 12i pds.

11. iOpds.

12. 38.4 pds.; 2a8pds.

EXEBOISE XVm. Page 97.

13. 60 pds.; 26 pds.
14. 74 pds.
16. ejpda.
16. 6 pds.
17. 6 pds. ; 8 pds.
18. 6 pds. ; 13 pda
19. 12^ *™
20. |/3 pds. A
28. X lies in K.

that AX^
>roduced so

1

.

6 dynes acting 3 metres from
smaller force.

2. 8 dynes acting 25 metres
from smaller force

3- (1) 8 pounds, 7i ft from
7 pound force, (2) 22
pounds 2ft ft. from 7
pound force.

4. 70A pounds, 60,\ pounds.
6. 37i pounds, 74| pounds.
»• 24 and 16,pound«.

EZEBOISE XIX. Page 107.

8.

9.

10.

11.

12.

13.

14.

15.

16.

2 ft from the stronger man.
74 ft from fixed point
40 mches from greater force
8 dynes and 6 dynea
6i pounds ; 3| pounds.
"tP nP nw
»»+»' m+n' n'
35 and 40 pounds.
42 and 21 pounds.
llf inches and 7finohea.
17.6 cm.



ANSWKHg,
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BZBBOISE XZ
(1)0, -6; (2) 18, 18; (3)

0, 0; (4)0, -11^2;(C)
1/2, ; (6) 40, 0.

2. ; 108
J
- 108.

3. 30j/3.
4. (i) 201.47, (2) 62J.

Page 110.

6. ; IfiO
; ; - 160.

6. 26|/2 ft. from the ground.
7. (1)««.362, (2)79.672.
8. /j niutreg from A.
9. l;2.

10. 10 cm. from B.

EZEBOISE ZXI.
1. 6.6 metres from the 20 kilo-

gram inasa.

2. lA ft. frcm fulcrum.
3. 4f ft. fr mi »ame end.
4. Ig ft, from 7 lb. mass.
5. 2 grama.
6. 267f pounds ; 624^ pounds.
7. 27 dynes at a point 1^

metres from end.
8. 6 dynes.
9. 11U cm. from 3 dyne force.

10. 6 lbs.

11. 36 lbs.; 40 lbs.

12. llif inches ; 7J inches.

Page 118.

B is 3 cm. from nearest peg.
One quarter»of the length of

the beam.
11 ft. from smaller end.
1; inches.

2,V metres from end ; 1
Kgm.

; 2 kgm. ; 4 kgm.;
o kgm.

18. ^'fWi+w.-aw,-)
2 ( w,, - \y;—

J
•

19. 3J grams ; 84 cm. from 6
gram mass,

20. 12 ewt.

13.

14.

Ifl.

16.

17.

EZEROISE XXU
16.1. 30 lbs. ; 60° with rod.

2- i kgm. ; ^ kgm.

3. 10 v'3 11m.

4. 120 lbs.

5 I/13.W jyy
2,/3 2^/3'

6. 30°.

8. 12 pouiids ; 6i/3 pounds.
9. 1:2.

10. 30 pounds ; 36.61 pounds.

11- (1) -^ pounds
; (2) 12?

k3 ^3
,„

,„P"«>n'J»
: (3) 200 pounds.

12. 10,/ 3 pounds.
13. 30t/3 pounds

; 30i/39 nds
"•|W/3j JWv/3.

^

16.

17.

1&

19.

20.

21.

22.

23.

25.

26.

27.

28.

29,

Page 126.

(1) 22J pounds; (2) 84.8
rimnds nearly.

^ iwunds ; 68.4 pounds.

3ft. aWe A ;?^ pounds;
V «>

30° with the w»ll
3:i

25/3; 25/7.
16 kgm.; 10 kgm.: 5i/3
kgm.

26 i>ounds
; 25/2 pounds.

30 pounds; 30/3 pounds.
30 kgm.

; 30^2 kgm.

"'73'
30^/3 pounds.
10 kgm.
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3 v'3 kgm.
32. 3 ^3 poundi.
83. 6^3 pound*; 3(3^2-^0)

pound*

37. 20 pound* ; 30»/8 pound*
j

"* (1) *th poundd, (2) 10

41. 80/7 pound*.
42. ^Stoii.

1- 2| cm.
J a283 cm.

3. aft.j3tft.-;3ift
*• « ft. ; 1 ft. i t ft.

EZBBOISE ZZm. Page 136.

6. 3J ft.
; 6.698 ft. ; 4.807 ft.

o. 10 inches.

1. 18.04 inche*. I

2. -At the centre of the base of
the triangle.

3. 7J inche*.
4. il of the ^ide of the aquare

from the middle point of
the base.

•3:1.

1^ inche*.

8. 2} o from the foot of the
OTOM (n = aide of the
*(}Uare).

*• fA inches from the joint.
10. 6i mches from the middle

point of the lower side of
the figure.

EZESOISE XZIV. Page 137.

6.

&

"3(4a+ 4)
12. Divide* diagonal of larger

"quafe in the ratio 7-13.
13. Divides iwrpendicular fnmi

right angle on hypotenuse
in the ratio 26; 1.

15. In the line joining the
middle points of the 6-in.
and 14-in. sides, at a dis-

distanceofi5il?in.from
15

the latter.
16. 35 ; 2i.
20. 11^ inches.
23. IJ of BD from D.

EXEBOTSBXXV. Page 140.

from E.

2. j height from base.
3. OG=Jlt OC.
4. In the straight line drawn

parallel to BC from the
middle point of AB and
at a distance |j of the
side of the square from
this point

5. Distan. i from AD and AB
ore J, AB and IAD.

8. In the diameter of the rect-
anale parallel to side o
and at a distance I a
from O.

7. ^inchea

6.,\a.



II. I of the line from middle of
the bane to the vertex.

18.
-fyi

of the medikn from the
hue.

13. if of the diagomtl from that
comer.

14. /j of the medinn from the
' baee.

16. In line joining their centre*
at a diitance of 1 ft. 81
inches from the centre of
the hole.

16. In line joining centre* 2

Axnrm. §4$

inohe* from the centre of
the larger circle.

Centre of hole 16 inch**
from centre of diac.

Di«tant ^ of the radiii*

biaecting the angle be-
tween the two radii fn)m
the centre.

I'A inche* from centra of
plate in line joining
centra of plate with
centra of hole.

18.

19,

20.

BZEB0I8B ZZVI. Page 14.1.

1. 6 inche*.

2. 10 inche* from the 12 lb.
ma**.

3. 4| inche* from the end.
4. 8} inche* from the 7 lb.

ma**.

6. 16 inche* from end.
6. 28J ft. from first man.
7. 6} feet from 12 lb. inaaa.
8. 3^ feet from 1 lb. maa*.
9. 3.20 in. from the top.

10. 3,3 inches from the baae.

EXEROISE XZVn. Page 146.

1. J of diagonul from 2 lb. mass.
2. OG=f OD.
3. 4.34 inches.
4. i of the aide of the square.
6. 8.6 feet nearly.
6. 7 8 inches nearly.
7. 8^ in. ; Hi in.

10. On the diameter of the cirole
drawn from angular point
at which no weight i*

S
laced at a diatance A of
iameter from that point

17. 9 inches

EZEBOISE XZVni. Page 152.

6. 60°.

7. 3.

9. 3Uft

la ."Jj/afeet.

16. 6(,/3-l)om.
la Ttai-»^.

17. Tan-"}; tan-'}.
18. lOkgm.
19. 60 pounds.
20. 120 pounds.
21. T«n-'A.

24. :«:.

6
26. ai/Swheraa—sideofsqnara.
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Aatwin.

OBOISBXXIX. P.^,«

4. l/pdn «

EZEBOISEZZX
1- « P<U. J 10.198 pdi

a J^u
4. »/a
6. y'3; 1- t^

6. -L
3"

?• 11.732 pdi.
"

a
9.

10.

11.

12.

la
14.

17.

:n)^P«J-.(8)32pd.

Phi* 167.

sepda.
lOpdi.

"-pda.

J-
0)4, (2) 876.

«• (1) 6. (2) 64.

3-
Jl) 60. (2)600,000.

EZEBOISE XXXI.

6.

i>n(2)0.8.

8.

9.

la

pds.

1- 9.122 pd..
8. 0.0376 gni.
3. 11.6 pdl

6. i:i6o.
7. 6:2:3.
8. 4:5.
9. 60 ft.

12. 36437.;
13. 1919} I

14. 7 kgi.'

EXEBOISB XXXn. P.ge

30°.

P»ge 176.

30 kgm.
31 iV gm.
1.6 i«q. m.

in.

186.

10. 9i„.
11.

31i.
12. 9 kgm.

13.a)230Ht.,(2)l„,

16. 1360.
16. 73.53 cm.
17. 4100.
18. 125 pda.

1- 6000 pds.
2. 30,000 kgm.
3. 3750 pds.
4. 107,600 kgm.

BMBOISE XXXm. Pag,

6. 77,000
6. 37.500 pdl

191.

pds.

7. 72,000 gm.



AWIWIM.
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&

».

10.

11.

18.

1&

U.

16.

16.

17.

18.

19.

20.

n-

23.

(I) 880,000 pdi, (8) 88,000
pd»., (3) 187,800 pdii.

(1) 147,000 pdn, (2)48,8621
P«l»y(3) 84,000 pda., (4)
63,000 Ddi.

•—•*'

(1) 48,000 pdii., (2) 3600
^,^pd«., (3) 24,000 pdi.
(1) 24,000 kgm., (2) 80OO

kjgn., (3) l5,600 kgni.
188,000 kgm.
On wch vertioal face 187.6

pd«. ; on upper face
166.86 |idi. ; on lower
face 218.75 ixln

(1) 212,500 dJh., (2) 137,-
600 pd«., (5) 87,600 pd^

5s7 kffm.

1600 pcb.

31.26 pds.
100 ft.

8 m.
288 ft
I'pper tide 2J in. below

surface.

7.25 ft.

16 in. ; top, 4.88 pdi. ; ver-
tical aide, 6.37 pda.

:

bottom, 6.860 pds.

34. 8;i.

88. (i) k4 gm., (8) 0.64 gm., (3)
0.48 gm.

86. 8.1.
87. 4:13.
28. (1) .%60 kgm., (8) 880O

kgm.
29. (1) 11,160 gm., (2) 92,3424

gm.

32. 193-526 gm.
*'

^'\»'g:f^*«^
"«'"••

34. 8171 kgm.

36. 18 in.

37. 400 gm.
38. (1)416 kgm., (2) 1104 kgm.,

(3) 27tt kgm., (4) 319.8

^ ^^k^...,(5)fl«.2kgm.

40. (1) 14 in., (2) 64 in.
41. 2^2 in. from the surface

of the liquid.

BZEB0I8E XZZIV Page 107.

1. 10 in.

2. 68 cm. ; 170 cm. ; 866 cm.
3. 2.427 ft
4. 13.619.

6. 11:7.
6. 16 cm.
7. 14.96 ou. in.

8.

9.

10.

11.

ilj of height of one arm.
Water 6 047 in. ; alcohol

6.963 in.

4iin.
At the bottom of the vor-

tical tube containing the
oil.

Jil>62.5pd«.,(2)237.6pda.
£. 4.HD pds,
3. 2.6 kgm.
4. 6 gm.
6. 296 pds.

0- 7k^.

EZEBOISE ZXZy. Page 201.

7. 6.5 kgm. ; 19,99.3.5 kgm
8. 968.75 pds.
9. 10 kgm.

10. n-H08pm.
11. 14,000 kgm.
12. 100 pds.
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AmwiM.

13. 2 cdoin.
14. 6 «u. ft
16. SO cm.
18. 16 ox. ; 12 cu. m.
17. (1) 100.078 gm., (2) 60 c

on.

18.- 189.14 gm.
19.311.9™.
20. 28.6 gi.
22- 1.6 jpa pUoed with the

weight*.

24(l)lio.om..(2)lo.om.

1. 0.413 oz.

n-m
2- -^pgm.
3. 0.88L
4. 6 cdcm.
6. 4| ou. ft.

7. 6.a4.-\

9. 226pda.
10. n* com.
11. 32ind(.
12. 620 gm.
13. 42 gm.
14. 9 pdn.
16. 4*pdB.
16. 41isein.
17. 816 80. in.
18. 201h8.
19. 126,000.

BXEBOISE Xxrvi. P»ge 204.

20.

21.

23.

24.

26.

26.

27.

28.

29.

30.

31.

32.

33.

34.

36.

37.

38.

39.

1. 14.766 pd«.
3. 1033.6 gm.

6. 7083JpdB.
^

6. 24 ft. ; 9j ft.
,
71 ft

ft S,""' L^2<»»-i3b4cm.

Ifc'm**""'«^»-
10. 1.43.

11 1307.9 OS. per cu. ft
la 11823 in.

13. sefft

BXBBOMB XXXVn. Pi^je 216.

J"oree« are equal.

13|lb8.

(J>*>Pn-.(2)20gm.

3 cm. edge.
1:6. "

10.66 gm. per ccm.
0.636 gm. per c.cm.
4.75 m.
23.48 cm.
10,000 oil. ft.

0.614.

16 ot
0.64 in.

SOlbg.
1.468 pd«.

(1) 2.604 pde., (2) 2.007
pda

7.102 pd«.
i 60 pda.

14. 12.5:i.

16. (o) 1, 22,000 pda. j 8 «>
U00,000 pT, (2) -Ji^l
°^ Pd»., (3) 612,600
P*^.; 13, 2,3124 pda. on
vertical face, 2,58]J pda
on upper face, 2,343*
J^.^on lower face

j l"?

99.766.8 kgm. ' *
^

19.87 ft



unwnm.
2i7

1. {a)70(
(6) 36 cm.

i. 6 cm., 4 cm., 3 cm.
4. 6| gram per sq. cm.

EZBBCnCSE ZZZVni. Pag. 221.

6. 176 com.
6. ea^om.
7. 21.22 ccm.
8. 50 om.

J 60 gram.

1- (6)':(8)».

2- (l)(*)».(2)(t)»,(3)(i)-
*k 3.

EZEStnSE ZZnZ. Pa«e2!M.

6. 4.

«. ii;i.

7. 3:1.
4. (1) (|)»x30 in (2) (i)i. a 75.12x30 m., (3) (|)»»x30 10. 32

"»•
11. 10.

gm.

1. 10.336 m.
2. 17 ft.

3. 20}pda.

5. 34, ft.

6. 17 ft.

EZEBOISE XL. Page 229.

*. a4Apd«.
5. 4864 om.
6. 43i gq. in.

tXBBXnSEXId. Page232.

7. h^.





INDEX.

The re/ereneet are to pages.

Aocelention, defined, 12 j uniform,
12; unit of, 12; geometrical
repreaentation of, IS; tendency
to, 27

Acceleration due to gravity, mea-
sure of, 37

Air-pump, 222

Angle of repose, 163

Atmospheric pressure, 209; mea-
sure of, 212

Attraction of gravity, defined, 28
Barometer, ofatem, 214 ; siphon
214

Boyle's law, 218
Bramah's press, 230
Buoyancy, law of, 189; of fluids,

199 ; centre of, 203
Centre of buoyancy, 203
Centre of gravity, 132, of a un-.
form straight rod, to find, 134;
of a uniform parallelogram, to
find, 134; of a triangular
lamina, to find, 135; of a
number of particles in a straight
line, to find, 142; of a number
of particles in a plane, to find,
144

;
of a thin pUne lamina, to

find experimentally, 151
Centre of mass, 132
Centre of parallel fonies, 132

249

Components, of a given force in
two directions, to find, 76 -

Composition of forces, 62
Condenser, 223
Couple, defined, 106

IHspIacement, definition of, 2;
determination of, 3

nyns, definition of, .13

Energy, nature of. 23; kinetic
and potential, 20 ; possessed by
a bwly in virtue of its mass and
its velocity, 26; relation to
mass, S3 ; relation to space, 53;
gravitation units of, 64 j Bb«>-'
lute ..nits of, 54; relation to
mass aul velocity, 67

Equilibrium, 64; conditions of
»ny number of forces at a point,
83 ; three forces at a point, 89;
condition of any number of
forces acting in plane up a
rigid body, 116; stable, un-
stable and neutral, conditions of,
148: of a body resting on a
horizontal surface, 150; limit-
ing, 158 ; of fluids under grav-
ity. 179; of liquids of unequal
density in bent tube, 196; of a
body acted upon by fluid pi«s.
sure, 203

I Erg. definition of. 64



an non.

•**««*«rirtto properti.WbMi
\m

Jlwoe, aMan vt.ati mnninof,
») graviUtion nnito of, SO;
•bnlnte onita of, SO ; lepraaan-
tatioo ot a, 621 raraltant and
oompomnt foroM, 64 ; relation

betwoengTaTitatkmaiidalwoIuto
oniU of, 44

ffnet, cqniUbriom of, 68 j paral-
Wogmm of. 6«;n»ol«tionof,
7«j nnlTsd purt of, 78; tri-

»ngla of, 89; triangh of, oon-

"^.•»» polygon of, 83;

Riotion, 16S s dinction and mag-
nitndao^ 1«; limiting. 167-
Uw. of limiting, IM;' coefficient
ot 160 ; limiting angle of, 162

0-.^olia«oteriitio propertie. of.

Gravitation, Uw ot 28
GraWty. defined, 28; «mt« of,

Hono-power. definition of. 60
"^^'^.Pn^. 178; p«dox.

Joule, definition of, 8S

^??70'**~"^'"'' P"**"'"

Uariotte'a lav, 218
*fa», defined, 28; me.^ „,_
2? ; Bnit of, 29

**on«>t. of a force, defined, 109 •

^J'»«»'»»«
repreeentation of,

^^^J"*"^' "*• "2
: gener.

•liwd theorem of, lis
Motion, defined, a, relative, 2«»!•• theory, 174
Polygon of foroea,9S
foritkn, darignatioQ of, 1

Poimdal, doflBltton of, 84
Power, definition of, 89 \

Pnw, Bramah'i, 230 ^ ' i

fnnan, defined, 28; floid, at
point, mearon of. 171 , ,t a
point within a fluid mau, 173

,

«nid, law. of, 173 ; wholM89

;

"«»ltai,t verMoal. 199 ; atmoe-
Pherio, S09; due to expansive
foroeof aga«, 211

P""?. air. 222, oommon. 228,
force, 227 ; common, teniion of
^ton-rod of. 228 ; foroe, tan-
non of piston-tDd of, 228

R"nltant, force, 64 ; oftwo force,
•oting at a point, to find, 68;
of any number of force, acting
at a point in given direction,
lying in one plane, to find,
79

;
of two p«>aUel force, acting

npon a rigid body, to find, 100;
of a number of paralW foroea
to find, 106

Siphon, 231

Solid, characterirtio propertie. rf,

Snrfaco of liquid at teet under
gn^vity, 184

Tennoo, defined. 28
Triangta of force., 89, convene

of, 83
.

Velocity, 3; defined, 3, uniform,
*

; meaaare of, 4 ; unit ot 4 j

reprewntation of, 8 ; at an in-
atant, 7 ; average, 7 ; variably
meaenre of, 8

Watt, definition of. 59
Weight, defined. 28
Whole prewure, 189
Work, nature of, 28; abMlute
. nnit. of, 54



t a

173 {

in of

ting

iom

nd,

iing

DO;




