

```
V
TRANEACTTON:
OF THE
Ganailan Solithy of Ciil Enginers
JANUARY TÓ JUNE, t89B
CONTENTRS
```


6

3 mi38 Difoustion on Pape foilio.385
Byty ue peakioh N. M,
 L.et of Merabers, Champer aitcorzontons in.
witulitidal
Printed for thi sodeaty by inH LOVELL \& SON 1803

(1)

Hons ven twh
Onmas inomso.

TRANSACTION:

Gue Cracian Suivh of Ciuit Tmginers.

Jushary to dune,

Yaus... but
Phomas Momes

TRANSACTIONS

of

©th Cunadian Sonieln of Civit Tanginers.

VOL. IX., PART I.

JANUARY TO JUNE,
 1895.

eatputreal:
PRINTED FOR THE SOCIETY
BY JOHN LOVELL \& SON.
1895.

The right of publication and translation is reserved.

The Society will not hold itself responsible for any statements or opinions which may be advanced in the following pages.
"The papers shall be the property of the Society, and no publication of any papers ordiscussion shall be made except by the Society or under its express permission." -By-Law No. 47.

CON'TEN'TS.

No.
Portrait, Thomas Monro, President, 1895 Frontispice.
101. The Strength of Canadian Donglas Fir, Red Pine, White Page
Pine and Spruce, by Prof. H.T. Bovey, M.Can.Soc.C.E. 69
Iliscussion on Paper No. 101, by Prof. J. B. Johnson, A. L. Johnson, R. B. Fernow, J. H. Wicksteed, Jas. E. Howard, Prof. H. T. Bovey 223
102. Cement Testing, Part I, by Cecil B. Smith, A.M.Can.Soc.C.E. 237
Discussion on Paper No. 102, by H. F. Perley, Fred. P. Spaldin!, J. G. Kerry, J. L. Allison, Thos. Monro, H. Irwin, C. B. Smith 276
Tables relating to Disenssion on Cement 'lesting, by J. L. Allison, M.Can.Soe.C.E following page 297
103. A Mierometer Attachment for the Transit Instrument, with examples of its use in Surveying, Levelling, etc., by W. T. Thompson, M.Can.Soc.C.E 305
Discussion on Paper No. 103, by G. W. MeCready, H. Irwin, W. T. Thompson 312
104. An Application of the Stoney Patent Sluice to River Improve- mentr, by G. E. Robertson, M.Can.Soc.C.E 316
105. The Barrie Flood of 1890, by Willis Chipman, M.Can.Soc.C.E. 318
Discussion on Paper No. 105, by H. Holgate, W. Chipman.. 326
106. Special Track Work for Electric Street Railways, especially referring to the Montreal and Toronto Systems, by E. A. Stone, A.M.Can.Soc.C.E 330
Discussion on Paper No. 106, by A. E. Childs, E. A. Stone. 361
Statement of Tests of Paving Brick made for the Common Council of the City of Dunkirk, N.Y., by J. K. MacDonald, Stud.Can.Soc.C.E 363
ILLUSTRATIONS.
Half tone cut, illustratung testing machine 72
" illustrating specimen for testing in extension 188

- "t illustrating shearing tests. 218
" illustrating result of compreasion test on a built brick pillar 266
Plate. Curves showing results of tests of cements 298
Photograph of 6 in. Reiteration Transit with Micrometer Attach- ment 312
Zine cut illustrating damage caused by Barrie Flood 320
" " \quad " 321
" " 322
Plan of River Improvement with Stoney Patent Sluice.Facing 316
Plan of Town of Barrie 324
Table of Quaatities and Plan of Cribwork Piers at back
PROCEEDINGS.
Election of Members 304, 329
List of Members, Changes and Corrections in 364

INSTRUC'TIONS FOR PREPARING PAPERS, ETC.

In writing papers, or discussions on papers, the use of the first person should be avoided. . They should be legibly written on foolscap paper, on one side only, leaving a margin on the left side.

Illustrations, when necessary, should be drawn on tracing paper to as small a seale as is consistent with distinctness. They should not be more than 10 inchcs j n height, but in no case should any one figure exceed this height. Black ink only should be used, and all lines, lettering, ete., must be clear and distinet.

When necessary to illustrate a paper for reading, diagrams must be furnished. These must be bold, distinet, and clearly visible in detail for a distance of thirty feet.

Papers which have been read before other Societies, or have been published, cannot be read at meetings of the Society.
All communications must be forwarded to the Secretary of the Society, from whom any further information may be obtained.
The attention of Members is called to By-laws 46 and 47.

CANADIAN SOCIETY OF CIVIL ENGINEERS.
LIST OF OFFICERS FOR THE YEARS 1887 TO 1895.

> Friday, 25th January. Thomas Monro, President, in the Chair.

Paper No. 101.

THE STRENGTH OF CANADIAN DOUGLAS FIR, RED PINE, WHITE PINE AND SPRUCE.

By Henry T. Bovey, M.Inst.C.E., LL.D.

In the present Paper it is proposed to give a statement of the results which have been obtained up to the present time, from the numerous experiments which have been carried out in the Testing Laboratories, MeGill University, on the strength of Canadian Douglas Fir, Red Pine, White Pine and Spruce.

These experiments, which have now extended over a period of more than two years, will still be continued, and it is hoped that the results will be set before the profession in a Paper on some future occasion.

In order that the subject may be treated in as comprehensive a manner as possible, the engincers and lumber-merchants, who must nccessarily be most particularly interested, are earnestly requested to give their co-operation. They can render valuable service by sending to the University Laboratories timbers of any and all sizes. These timbers should, in each case, be accompanied by a history giving the treatment of the timber from the time when the tree was felled, as, for example, the locality in which the tree grew should be specified, the manner in which the \log was brought to the mill, the length of time during which it was kept in water (salt or fresh), the time during which it was kept in the pile at the mill, and, if the timber has already been in service, the length of this service. Any other details respecting the history of the timber may also be given, so that the information may in every case be as complete as circumstances will permit.

The attention of members is specially directed to the tables showing the deflection of beams under transverse loading, and also to tables showing the extension of specimens under direct tension.

These tables tend to prove conclusively the statement made by the author many years ago, i.e., that timber, unlike iron and steel, may be strained to a point near the breaking point without being seriously injured. It will be observed that in almost all cases the increments of
deflection and extension, almost up to the point of fracture, are very nearly proportional to the increments of load, and it scems impossible to define a limit of elasticity for timber. This probably accounts for the continued existence of many timber structures in which the timbers have been and are still continunlly subjected to excessive stresses, the factor of safety being often less than $1 \frac{1}{2}$. Whether it is advisable so to strain timber is another question, and experiments are still required to show how timber is affected by frequently repeated strains.

TRANSVERSE STRENGTH.
The following Table gives in inches the distances between the centres of the end bearings (1), the mean depths (d) and the mean breadths (b) of the Beams I to LXI referred to in this Paper :-

Beams	I 96	$\underset{66}{\text { II }}$	${ }_{66}$	$\begin{aligned} & \text { IV } \\ & 69 \end{aligned}$	V 69	$\begin{aligned} & \text { VI } \\ & 69 \end{aligned}$	$\begin{gathered} \text { VII } \\ 69 \end{gathered}$
	\times						
d	12.125	12.125	5.375	9.125	9.125	6.125	6
b	\times	$\stackrel{\times}{\times 625}$	\times	\times	$\underset{5}{\times}$	\times	$\underset{5.8125}{\times}$
Beams	VIII	IX	X	XI	XII	X III	XIV
1	69	204	198	204	204	204	204
	\times						
d	5.125	14.875	14.375	14.875	14.875	14.75	14.75
	\times	\times	$\underset{6}{x}$	$\underset{8.6875}{\times}$	${ }_{8.8125}^{\times}$	$\underset{6}{\times}$	${ }_{6}$
						XX	
${ }_{1}^{\text {Beams }}$	198	198	138	138	138	138	138
	\times						
d	15	15	15.125	17.8	12.1	12	8.98
	\times						
b	6.125	6.125	9	8.76	9.1	8.88	5.95
Beams	XXII	XXIII	XXIV	X XV	XXVI	XXVII	XXVIII
1	162	186	132	144	210	210	210
	\times	\times	\times	\times	\times	\times	
d	15.6875	14.35	16.2	15.65	13.25	13.125	11.25
b	$\stackrel{\times}{\times}$	\times 8.78	$\stackrel{\times}{\times .75}$	$\begin{gathered} \times \\ 8.2 \end{gathered}$	$\begin{aligned} & \times \\ & 6.375 \end{aligned}$	$\stackrel{\times}{6.1875}$	$\stackrel{\times}{\times} \underset{6.34375}{ }$
Beams	XXIX	XXX	XXXI	XXXII	XXXIII	XXXIV	XXXV
,	210	174	174	180	180	156	156
	${ }_{11} \times$	\times	${ }_{7} \times$	$\stackrel{\times}{8}$	${ }_{11} \times$	${ }_{9}^{\times}$	${ }_{11} \times$
d	11.25	7.25	7.125	8.125	11.125	9.125	${ }_{\times}^{11.15}$
b	$\stackrel{\times}{6.25}$	$\stackrel{\times}{\times}$	${ }_{6.21875}^{\times}$	$\stackrel{\times}{\times .1}$	$\stackrel{\times}{3.1}$	$\underset{3.125}{ }$	3.325

Red Pine, White Pine and Spruce.
71

Beams	XXXVI X	XXXVII	xXXVIII	X XXXIX	XL	XLI	XLII
1	288	288	114	102	120	120	288
	\times						
d	18	18	18	18	18	18	18
	\times						
b	9	9	9	9	9	9	,
Beams	XLIII	XLIV	XI,V	XLVI	XLVII	XLVIII	XLIX
1	120	120	288	120	120	150	150
	\times	\times	\times	\times	\times	\times	
b	18	18	18	18	18	15.1875	+15.375
	\times	\times	\times	\times	\times	\times	
b	9	9	9	9	9	9.375	9.125
Beams	1	LI	LII	LIII		LIV	LV
1	186	192	180	180		288	120
	\times	\times	\times	\times		\times	\times
d	15	15.12	14.85	$\stackrel{\times}{15}$		17.5	17.5
	\times	\times	\times	\times		\times	\times
b	9.0625	$5 \quad 9$	9.05	9.05		8.875	8.875
Beams	LVI	LVII	LVIII	LIX		LX	LXI
1	120	180	180	180		138	186
	\times	\times	\times	\times		\times	\times
d	17.5	15	14.75	15		1.25	14.5
	\times	- ${ }_{9}^{\times}$	\times	\times			
b	8.9375	59	6	${ }_{9}$		8.875	5.625

The transverse tests were carried out with the Wicksteed 100 -to machine by means of a specially designed arrangement shown in the photograph on the opposite page.

By this arrangement the two ends are gradually forced downwards while the centre is supported upon the addle suspended from the lever of the machine. Thus the two halves of the beam are really equivalent to two cantilevers loaded at the ends. By means of a very simple device, the pressure can be increased so regularly as to cnsure an absolute equality in these end loads.

Figures 1 and 2 show the deviee employed to keep the pressure on the ends of the beam always normal to the surface. The spherical

joint allows the bearing to revelve, and by means of the prismatic slot any form of bearing surface may be introduced.

The formula used in calculating the skin-strengths and co-efficients of elasticity have been deduced by means of the ordinary theory of flexure

Which is based upon assumptions which actunl experience shows to be far from being true. These assumptions are :-

(a) That the beam is symmetrical with respect to a certain plane.
(b) That the material of the beam is homogencous,
(c) That sections which are plane before bending remain plane after bending.
(d) That the ratio of longitudinal stress to the corresponding strain is the ordinary (i. e. Young's) modulus of elasticity, notwithstanding the lateral connection of the elementary layers.
(e) That these elementary layers expand and contract freely under tensile and compressive forces.

In each case, the skin stress at the point of fracture in lbs, per sq. in. has been determined by mean $*$ of the formula,

$$
f=\frac{3}{2} \frac{l\left(2 \mathrm{~W}_{1}+\mathrm{W}_{2}\right)}{b d^{2}}
$$

$W_{1}-\mathrm{lbs}$. being the weight at an end, $\mathrm{W}_{2}-\mathrm{lbs}$, half the weight of the beam, l-ins, the length of the beam between the two end centres of pressure, b-ins, the breadth and d-ins, the depth at the section of fracture.

In practice, the breaking weight, $\mathrm{W}_{1}+\frac{1}{2} \mathrm{~W}_{2}$, is usually determined from the formula,

$$
\mathrm{W}_{1}+\frac{1}{2} \mathrm{~W}_{2}=\mathrm{C} \frac{b d^{2}}{l}
$$

C being the co-efficient of rupture. Hence, $f=3 \mathrm{C}$.
It may prrhaps be well to point out that a very small error in estimating the depth of a beam may lead to a considerable crror in the calculated skin stress. Thus from the formula just given it appears that if Δf be the change in the skin stress corresponding to a change Δd in the depth, then

$$
\Delta f=-2 \frac{f}{d} \Delta d
$$

and the skin stress will be increased or diminished by this amount, aceording as the estimated depth is too small or too great by th? amount Δd.

For instance, in the case of the Spruce Beam No, L, the calculated skin stress, disregarding the diminution of depth due to compression, is $5,123 \mathrm{lbs}$. The initial depth (d) of the beam was 17.5 ins ., and the amount of the compression ($\Delta d) 2 \mathrm{ins}$. Thus the error (Δf) in the skin tross is

$$
\Delta f=-2 \frac{5123}{17.5} 2=1171 \mathrm{lbs} \text {. per sq. in., }
$$

and the actual stress becomes $5123+1171=6294 \mathrm{lbs}$, per sq . in., showing an increase of 22.8 per cent.

Now, in every example of transverse testing, the material is more or less compressed at the central support. The central support in the following examples was a hardwood block of 44 ins . diameter. The amount of the compression at this support depends not only \mathbf{u}_{2} on the nature of the material of the beam and upon the character of the support, but also very especially upon the ratio of the length of the beam to its depth. In calculating the skin stress correspon ling to the breaking weight, therefore, three assumptions may be made :-

1st. That the compression at the support may be disrogarded.
2nd. That the effective depth of the bram may be taken as equal to the initial depth minus the amount of the comprassion, and that the usual law may be assumed to hold good for the whole of this effective depth.

3rd. That the compression portion of the bsum is along affectel, so that the so-called neutral pline remains in the same position relatively to the tension face of the beam from the commenecment of the test to the end.

Calculations based upon these three assumptions have been mide in sevcral of the following cases, and it will be observed that in all eases the skin stress calculated upon the first assumption is invariably less than the skin stress determined upon either of the remining assumptions.

Thus any error is on the safe side.
It should be remembered, however, that it is possible, and even probable, that neither of these assumptions is even a pproximately correct, at all events, beyond the limit of elasticity, which in the case of timber. still romains indcfinite. The portion in compression doubtless acquires increased rigidity, and tiwas exerts a continually insreasing resistance, so that there is produced a moze or less porfect equalization of stress throughout the portion of the beam under compression, and this equalization will doubtless materially affect both the elasticity and the strength.

An interesting paper on the surface-loading of beams was presented by Prof. C. A. Carus-Wilson to the Physic il Society of London, (Eing.), and an abstract of this Paper is t, be found in the author's treatise on the Theory of Structures.

The co-efficient of elasticity, as determined by the tranverse loading, is deduesd from the formula

$$
E=\frac{1}{4} \frac{\Delta W}{\Delta D \cdot} \cdot \frac{l_{3}}{b d^{3}}
$$

W baing the increment of weight corresponding to the incremant D of the deflection.

Herc again an error $\Delta \boldsymbol{d}$ in the estimated depth will produce an error ΔE in the calculated co-efficient of elasticity measured by

$$
\Delta E=-3 \frac{E}{d} \Delta d
$$

DOUGLAS FIR.

Beams I to III were sent to the Testing Laboratory by Mr. John Kennedy, Chief Engineer of the Montreal Harbour Works.

Beams I and II were of good average quality.
Beam I was tested on March 1st, 1893, with the annual rings as in Fig. 3. The load was gradually increased until it amounted to 45,000 lbs., when the beam failed by the tearing apart of the fibres on the tension face.

The maximum skin stress corresponding to the breaking weight of $45,000 \mathrm{lbs}$, is $4,897 \mathrm{lbs}$. per square inch.
The co-efficient of elasticity, as deduced from an incremont in the deflection of .23 in . between the loads of 3,500 and $22,500 \mathrm{lbs}$, is $1,138,900 \mathrm{lbs}$.

Table A shows the several readings.
Beam II was tested on March 2nd, 1893, with the annual rings running as in Fig. 4.

The load was gradually increased until it amounted to $36,575 \mathrm{lbs}$., when the beam failed by shearing longitudinally.

The maxiaum skin stress corresponding to this breaking weight is $4,378 \mathrm{lbs}$. per square inch.

In connection with this experiment it is of interest to note that the timber, although it had failed by longitudinal shear, still possessed a very large amount of transverse strength, and similar facts will be subsequently referred to in the case of other beams. After the fracture, the load upon the beam was again gradually increased to 34,000 lbs . before a second failure occurred.

The co-efficient of elasticity, as determined by the increment in the deflection of . 1 in . between the loads 2,000 and $18,000 \mathrm{lbs}$, is 1,146 ,900 lbs .

Table B shows the several readings.
Beam III was tested on March 2nd, 1893, with the annual rings as in Fig. 5.

This Beam was of especially excellent quality, with clear, close, parallel grain, perfectly sound and free from knots.

The load was gradually increased until it amounted to $12,950 \mathrm{lbs}$., when it failed by shearing longitudinally.

The maximum skin stress corresponding to the breaking load is $10,441 \mathrm{lbs}$. per square inch.

The co-efficient of elasticity, as determined by an increment in the deflection of .2 in . between the loads of 500 and $4,500 \mathrm{lbs}$., is 2,178 ,100 lbs .

Table B gives the several readings.
Beams IV to VIII were sent to the laboratory by the British Columbia Mills Timber \& Trading Company through Mr. C. M. Beecher.

These beams were cut out of trees grown on the coast section of British Columbia, and felled in the fall or during the winter. The whole of the beams were free from knots, of good quality, and with the grain running straight from end to end.

Beam IV was tested May 17th, 1893, with the annual rings somewhat oblique as skown in Fig. 6. Under a load of $16,720 \mathrm{lbs}$. it

Figure. 6.
failed by shearing longitudinally along a plane AB at right angles to the annual rings, the distance between the ends of the portions above and below the plane of shear being $\frac{1}{4} \mathrm{in}$. The plane of shear extended to a distance of about 36 ins , from the end of the beam.

The maximum skin stress corresponding to the breaking load is $4,156 \mathrm{lbs}$. per square inch.

The co-efficient of elasticity, as determined by an increase in the
deflection of .14 in . between the loads of 2,000 and $8,000 \mathrm{lbs}$, is $926,500 \mathrm{lbs}$.

Table B shows the several readings.
After the beam had sheared longitudinally, the jockey weight was run back, and the load again gradually applied until it amounted to $15,000 \mathrm{lbs}$., when fracture occurred by the tearing apart of the fibres on the tension face. Under this load of $15,000 \mathrm{lbs}$, an opening of $\frac{1}{2} \mathrm{in}$. was developed in the end at the plane of shear.

On May 11th this beam weighed 56 ibs .13 ozs., or 28.59 lbs , per cubic foot. On May 17th, the weight of the beam was 56 lbs .3 ozs ., or 28.27 lbs . per cubic foot, so that while in the laboratory this beam lost in weight at the rate of, 0533 lb . per cubic foot per day.

Beam V was tested on May 19th, 1893, with the annual rings somewhat oblique as shown in Fig. 7. It failed by the tearing apart of the fibres on the tension face under a load of $23,610 \mathrm{lbs}$.

The maximum skin stress corresponding to this load is $5,869 \mathrm{lbs}$. per square inch.

The co-efficient of elasticity, as determined by an increase in the deflection of .24 in . between the loads of $1,000 \mathrm{lbs}$, and $11,500 \mathrm{lbs}$., is $946,270 \mathrm{lbs}$.

Table \mathbf{B} shows the several readings.
The weight of the beam on May 11th was 59 lbs ., or 29.59 lbs , per cubic foot. The weight of the beam on May 19th was 58 lbs .3 ozs., or 29.18 lbs , per cubic foot, so that the loss in weight in the laboratory was at the rate of .05125 lb . per cubic foot per day.

Beam VI was tested May 22nd, 1893, with the annual rings as in Fig. 8. Under a load of $15,480 \mathrm{lbs}$. it failed by the tearing apart of the fibres on the tension face.

The corresponding maximum skin stress is $7,116 \mathrm{lbs}$,
The co-efficient of elasticity as determined by an increase in the deflection of .3 in . between the loads of 500 lbs , and $8,000 \mathrm{lbs}$. is $1,489,215 \mathrm{lbs}$.

Table B shows the several readings.
The weight of the beam on May 11th was 49 lbs .6 ozs ., or 31.05 lbs. per cubic foot, and the weight on May 22nd was 48 lbs .1 oz ., or 30.23 lbs., showing a loss of weight while in the laboratory at the rate of .0745 lb . per cubic foot per day.

Beam VII was tested on May 19th, 1893. In this beam the annual rings ran somewhat obliquely as in Fig. 9. Under a load of $17,615 \mathrm{lbs}$., the beam sheared longitudinally along the plane AB , Fig. 10, the distance between the ends of the portions above and below the plane of shear being $3-16$ ths of an inch. The plane of shear extended to a distance of 46 -ins. from the end of the beam.

The maximum skin stress corresponding to this breaking weight of $17,615 \mathrm{lbs}$. is $8,712 \mathrm{lbs}$.

The co-efficient of elasticity, as determined by an increase in the deflection of .255 in , between the loads of 500 lbs . and $8,500 \mathrm{lbs}$., is 2,052,250 lbs.

Table B shows the several readings.
Immediately after the longitudinal shear the jockey weight was run back untilit indicated a load of $5,090 \mathrm{lbs}$, when the lever again floated. The weight was then gradually increased until it amounted to 11,840 lbs., when there was a second longitudinal shear along the plane CD at the other end, Fig. 11. The lap at the plane $\mathbf{A B}$ was now increased from 3-16ths in. to 3-10ths in., and the distance between the ends of the portions abjve and below the plane of shear at the other end of the bean was $3-20$ ths of an inch.

After this second shear the jockey weight was run back to $6,840 \mathrm{lbs}$. when the lever floated. The load was gradually increased until it amounted to $8,990 \mathrm{lbs}$., when the beam was fractured by the tearing apart of the fibres on the tension face.

On May 11th, this beain waighed 60 lb 3.4 ozs., or 40.69 lbs . per cubie foot, and the weight on May 19 th was $59 \mathrm{lbz}, 2$ ozs., or 39.92 lbs. per cubic foot, showing a loss of weight in the laboratory at the rate of .09625 lb , per cubic foot per day.

Beam VIIT was tested May 22nd, 1893. In this beam the annuul rings were oblique as in Fig. 12. Uuder a load of $11,700 \mathrm{lbs}$, it failed at the support by the tearing apart of the fibres on the tension face.

The maximum skin stress due to this load is $8,382 \mathrm{lbs}$. per square inch.
The co-cfficient of elasticity, as determined by an increase in the deflection of .32 in . between loads of $1,000 \mathrm{lbs}$. ts $5,500 \mathrm{lbs}$., is 1,559,950 lbs.

Table B shows the scveral readings.
The weight of this beam on May 11th was 44 lbs ., or 36.76 lbs , per cubic foot, and its weight on May 22 nd was 42 lbs. 14 ozs ., or 35.74 lbs , per cubic foot, showing a loss of weight in the laboratory at the rate of .0927 lb , per cubic foot per day.

Beams IX to XVI were sent to the laboratory by Mr. P. A. Peterson, chief engineer of the Canadian Pacific Railway.

Beam IX was grown on the mainland half way between Vancouver and New Westminster, in a flat country not much above the sea level. It was out from a $\log 26$ ins, in diameter and 34 feet in length, which was felled about the month of May, 1892. The log was floated to the mill at Vancouver, and lay in fresh water for ten months.

The timber corresponded to first quality in the market, its grain being straight and running parallel to the axis. It contained a season crack on the widest face, about 11 feet long, $3 \frac{1}{2}$ ins. below the edge, and about $1 \frac{1}{2} \mathrm{in}$. deep. The beam was tested Nov. 13th, 1893, with the annual rings as in Fig. 13, the heart of the tree being in one of the
vertical faees, Under a load of $51,600 \mathrm{lbs}$, this beam failed at the support by the tearing apart at the centre of the fibres on the tension face.

The maximum skin stress corresponding to this load is 7,974 lbs. per square inch.

The co-efficient of elasticity, as determined by an increment in the deflection of . 77 in , between the loads of $1,000 \mathrm{lbs}$, and $20,000 \mathrm{lbs}$., is 1,767,990 lbs.

Table C shows the several readings.
The weight of the beam was 603 lbs ., or 36.49 lbs , per cubic foot on Oct. 3rd, $590 \mathrm{lbs}, 13 \mathrm{ozs}$, or 35.76 lbs . per cubic foot on Nov. 10th, and 590 lbs , on Nov. 13th, showing a loss of weight while in the laboratory at the rate of .0195 lb . per cubic foot per day.

Beam X. This beam was tested Nov. 11th, 1893, with the annual rings as in Fig. 14. It was cut from a $\log 32 \mathrm{ins}$, in diameter grown on the mainland 120 miles north and west of Vancouver, on a hillside about 100 feet above the sea-level. The \log was felled in the winter of 1892-93, and was then towed to the mill, and remained in salt water six months.

The grain in this beam ran crosswise, and it failed by a cross fracture along the plane AB, Fig. 15.

The fracture occurred under a load of $18,000 \mathrm{lbs}$., corresponding to a maximum skin stress of $4,027 \mathrm{lbs}$. per square inch. The co-efficient of elasticity, as determined by an increase in the end deflections of $.84-\mathrm{in}$. between the loads $1,000 \mathrm{lbs}$. and $15,000 \mathrm{lbs}$., is $1,637,806 \mathrm{lbs}$.

Table \mathbf{C} shows the several readings.
The weight of the baam was 407 lbs .2 ozs., or 38.94 lbs , par cubic foot on Oct. 3rd, 406 lbs , 8 ozs., or 37.80 lbs , per cubic foot on Nov. 10th, and $404 \mathrm{lbs}, 13 \mathrm{ozs}$., or 37.79 lbs . per cubic foot on Nov, 13th, showing a loss of weight in the laboratiry at the rate of .03 lbs . per cubic foot per day.

Beam XI. This beam was tested November, 7th, 1893, with the annual rings as in Fig. 16. Its history is the same as that of Beam

X. The timber was of a quality corresponding to first quality in the market, and the grain for the most part was parallel with the axis. It contained a few season cracks. On the tension face of the beam the fibres crossed from back to front in a distance of $3 \frac{1}{2} \mathrm{ft}$., commencing about five feet one end. The beam contained the heart of the tree, the annual rings being as in the Figure.

Under a load of $35,800 \mathrm{lbs}$. the beam failed by the tsaring apart of the fibres on the tension face.

The maximum skin stress corresponding to this load is $5,698 \mathrm{lbs}$. per square inch.

The co-efficient of elasticity, as determined by an increase in the deflection of .545 ins , between the loads of 2,500 and $15,500 \mathrm{lbs}$., is $1,770,563 \mathrm{lbs}$.

Table D shows the several readings.
The weight of the beam was 595 lbs .2 ozs., or 37.76 lbs . per cubic foot on October 3rd, and 583 lbs ., or 36.99 lbs . per cubic foot on Nov. 14th, showing a loss of weight in the laboratory at the rate of .0183 lbs. per cubic foot per day.

Table D shews the several readings.
The time occupied by the test was 29 minutes.
Beam XII was tested Nov. 18th, 1893, with the annual rings as in Fig. 17. This beam was cut from a $\log 28 \mathrm{ins}$. in diameter, grown probably about 30 feet above the sea-level at Port Grey, about eight miles from Vancouver. The tree was felled in August, 1892 ; it remained in salt water nine months, being alternately wet and dry according to the tide ; it was then towed to the mill and cut up.

The grain was straight and parallel to the axis, and the timber was of good quality corresponding to first quality in the market. It shewed several knots of medium size and a few season cracks. The beam contained the heart of the tree, the annual rings being as in Fig. 17.

Under a load of $49,000 \mathrm{lbs}$, the beam failed by shearing longitudinally along the season crack AB .

Under this load the maximum skin stress is $7,645 \mathrm{lbs}$. per sq. in.
The co-efficient of elasticity as determined by an increment in the deflections of . 545 ins . between the loads $2,500 \mathrm{lbs}$. and $15,000 \mathrm{lbs}$. is $1,678,300 \mathrm{lbs}$.

Table D shews the several readings.
The time occupied by the test was 37 minutes.
The weight of the beam was 572 lbs , or 35.65 lbs . per cubic foot on Oct. 3rd, and 558 lbs .4 ozs., or 34.79 lbs . per cubic foot on Nov. 17 th , showing a loss of weight in the laboratory at the rate of .0191 lbs . per cubic foot per day.

Beam XIII. The history of this beam is the same as that of Beam IX. The beam was tested on Nov. 17th, 1893. The heart of the tree was in one of the feces, the annual rings being as in Fig. 18.

The timber was in good condition and of a quality corresponding to first quality in the market ; there were small season cracks along the back of the beam, in the neighbourhood of the neutral plane, and there were also small season cracks along the whole of the front about 3 -ins. above the face in compression.

Under a load of $29,300 \mathrm{lbs}$. this beam failed by the crippling of the fibres on the compression face, commencing at a small knot at the back, Fig. 19.

The maximum skin stress corresponding to this load is $6,912 \mathrm{lbs}$. per square inch.

The co-efficient of elasticity as determined by an increase in the deflection of .805 ins . between the loads $1,000 \mathrm{lbs}$, and $13,000 \mathrm{lbs}$, is $1,643,193 \mathrm{lbs}$.

Table E shows the several readings.

The beam weighed $381 \mathrm{lbs}, 15 \mathrm{oz}$., or 34.56 lbs , per cubic foot on Oct. 3rd, and 375 lbs ., or 34.13 lbs , per cubic foot on Nov, 15th, showing a loss of weight in the laboratory at the rate of .01 lb per cubic foot per day.

The time occupied by the test was 45 minutes,
Beam XIV is in reality Beam XIII re-tested, the second test having been made Dec, 2nd, 1893. The beam was replaced in the machine with the crippled side reversed so as ts be in tension. The lond was then gradually applied until it amounted to $17,600 \mathrm{lbs}$., when the beam failed on the tension side by the tearing apart of the fibres along the surface at which the crippling took place on the previous test.

The maximum skin stress corresponding to this load is $4,082 \mathrm{lbs}$. per square inch as compared with $6,912 \mathrm{lbs}$. per square inch in the first test. The co-efficient of elasticity, as determined by an increment in th) deflection of .51 ins . between the loads of $1,000 \mathrm{lbs}$, and 8,000 lbs ., is $1,513,950 \mathrm{lbs}$, as compared with $1,643,193 \mathrm{lbs}$, in the first test.

Table E shews the several readings.
This experiment therefore shews that although the beam may have been crippled by undue pressure, it still retained a large amount of strength as well as elasticity.

Table E gives the soveral readings.
Beam XV. This beam was tested Nov, 18th, 1893. The timber was excellent in quality, equal to first quality in the market, clear and straight grained and free from knots. Its history is the same as that of Beam XII. The annual rings were oblique as in Fig. 20.

Under a load of $37,000 \mathrm{lbs}$. the beam failed by the crippling of thefibres on the compression face, Fig. 21.

The maximum skin stress corresponding to this load is $8,020 \mathrm{lbs}$, per square inch.

The total compression of the material was .34 in ., and the maximum skin compressive stress, taking $1,466 \mathrm{in}$. as the effective depth, is 8,189 lbs . per sq. in., the corresponding skin tension stress being $8,577 \mathrm{lbs}$, per in. sq.

Assuming the ordinary law to hold good for the whole of the effeetive depth, the maximum skin stress would be $8,511 \mathrm{lbs}$, per sq , in.

The co-efficient of elasticity as determined by an increment in the deflection of .755 ins . between the loads, $2,000 \mathrm{lbs}$, and $18,000 \mathrm{lbs}$, is $1,989,400 \mathrm{lbs}$.

Table E shews the several readings.
The time occupied by the test was 30 minutes,
The weight of the beam was 445 lbs .6 ozs., or 39.99 lbs , per cubio foot on Oct. 3rd, and $433 \mathrm{lbs}, 13 \mathrm{ozs}$., or 38.92 lbs . per cubic foot on Nov. 17th, showing a loss of weight in the laboratory at the rate of .0237 lbs . per cubic foot per day.

Beam XVI. This is really Beom XV re-tested, the second test having been made on Dec, 8th, 1893. In the first test the beam had failed by crippling on the compression face; the beam was now reversed, and under a load of $25,530 \mathrm{lbs}$, it failed by the tearing apart of the fibres on the tension face along the surface at which the crippling had previously taken place. The tensile fracture extended 2 inches below the skin. The jockey weight was now run back until the lever again floated, and the load was gradually increased until it amounted to $32,000 \mathrm{lbs}$., when the beam fractured a second time on the tension side, the fracture extending to a depth of 5 inches below the skin. The first fracture was accompanied by a longitudinal opening (as in Fig.) about 60 inches in extent. A second longitudinal opening, also about 60 inches long, occurrod at the second fracture.
n The maximum skin stress corresponding to the breaking load of 25,580 los. is 5,466 lbs. per square inch.

The co-efficient of elasticity, as determined by an increment in the deflection of . 54 ins , between the loads of $1,000 \mathrm{lbs}$, and $11,500 \mathrm{lbs}$., was $1,825,450 \mathrm{lbs}$.

Table E gives the several readings.
The weight of the beam was reduced to 428 lbs ., or 38.40 lbs . per cubie foot, showing a loss between the test on Nov. 17th and that on Dec. 8 th at the rate of .02476 lbs . per cubic foot per day.

Beams XVII to XXI were sent to the testing laboratories by the

British Columbia Mills Timber \& Trading Company through Mr C. M. Beecher. The whole of these timbers were cut on the coast section of British Columbia. The trees from which Beams XVII, XVIII, XX and XXI were cut, were felled during the summer of 1893, and came from Hartney's Camp, Scymour Creek, while Beam XIX was cut from a tree felled in the spring of 1894, and came from Rowling's Camp, Salmon Arm.
Beam XVII was tested June 24th, 1894. This beam was coarse grained, the grain running very nearly parallel with the axis, and it contained a number of small knots on the compression side. It was cut from the heart of the tree, and was tested with the annual rings as in Fig. 22.

Under a load of $\mathbf{4 8 , 6 0 0} \mathrm{lbs}$. it tanted by the tearing apart of the fibres on the tension face, the corresponding maximum skin stress, neglecting the compression of the timber, being $4,906 \mathrm{lbs}$. per square inch. The tensile fracture was followed immediately by a longitudinal shear, coincident with the neutral plane at the centre of the beam, and extending for a distance of 8 feet from the end, Fig. 25. The distance between the portions of the beam above and below the plane of shear at the end was 3-10ths of an inch. Figs. 23 and 24 are sections at the end and at the centre showing the nature of the fractares.

The total compression of the material was 1.83 ins., and the maximum skin compressive stress, taking 13.295 ins, as the effective depth, is $5,193 \mathrm{lbs}$. per square inch, the corresponding stress in the tension skin being $6,851 \mathrm{lbs}$. per square inch.

Assuming the ordinary law to hold good for the whole of this effective depth, the maximum skin stress would be $6,350 \mathrm{lbs}$. per square inch.

The co-efficient of elasticity as determined by an increment in the deflection of .335 ins . between the loads $10,000 \mathrm{lbs}$. and $30,000 \mathrm{lbs}$,, is $1,259,600 \mathrm{lbs}$.

Table \mathbf{F} gives the several readings.
The weight of the beam, when shipped from Vancouver about April 21 st , was 428 lbs ., or 37.21 lbs . per cubic foot; on reaching the Laboratory on June 9th, the weight was found to be 411 lbs .10 ozs ., or 35.78 lbs. per cubic foot, and on the day of the test, namely, June 24th, the weight was $404 \mathrm{lbs}, 8$ ozs., or 35.17 lbs per cubic foot, showing a loss at the rate of .02918 lb . per cubic foot per day between Vancouver and the laboratory, and a loss at the rate of $.040 \mathrm{f7} \mathrm{lb}$. per cubic foot per day while in the laboratory.

Beam XVIII. This beam was conrse grained, and contained several large and small knots ; it was cut from the heart of the tree. It was tested Sept. 28th, 1894, with the annual rings as in Fig. 26.
The load on the beam was gradually increased to $12,000 \mathrm{lbs}$. The beam was now graduully relieved from strain until the load had been reduced to $1,000 \mathrm{lbs}$. without showing any set. The load was again gradually inereased from $1,000 \mathrm{lbs}$. up to $19,000 \mathrm{lbs}$., when the beam was again relieved from load and the readings were taken for each difference of $1,000 \mathrm{lbs}$!
When the load had been reduced to $1,000 \mathrm{lbs}$, the deflection at the centre was observed to be .015 in . as compared with .005 in . in the forward movement, and as soon as the beam was relieved of this 1,000 lbs , it returned to its initial condition without showing any set whatever.

The time occupied by the firet loading was 10 minutes, by the sccond loading 12 minutes, and by the relieving from load 8 minutes.
In the final test the load was gradually incrensed from nil until it amounted to $69,400 \mathrm{lbs}$., when the beam failed by shearing longitudinally, the shear being immediately followed by the tearing apart of the fibres on the tension face, Figs. 27, 28, 29.

The maximum skin stress corresponding to the breaking load was $5,196 \mathrm{lbs}$. per square inch.

The co-efficient of elasticity, as deduced from an increment in the deflection of 1-10th of an inch between the loads of $2,000 \mathrm{lbs}$, and 12,000 lbs., being $1,329,900 \mathrm{lbs}$.

Table F gives the several readinys.
The weight of the beam at the date of shipment from Vancouver, April 21st, wis 512 lbs ., or 39.08 lbs . per cubic foot. On reaching the laboratory, on June 9th, this weight was 492 lbs .10 ozs., or 37.60 lbs , per cubic foot, and the weight on Sept. 25 th was 466 lbs .6 ozs , or 35.59 lbs , per cubic foot, showing a loss in weight between Vancouver and the laboratory at the rate of .0302 lb . per cubic foot per day, and a loss of weight in the laboratory at the rate of .0181 lb . per cubic foot per day.

Beam XIX. This beam was of exceptionally good quality, with clear close grain and no knots. It was tested Oct. 2nd, 1894, with the annual rings nearly vertical, as in Fig. 30.

The load on the banm was gradually increased up to $16,000 \mathrm{lbs}$. when it was gradually relieved from load, the readings being taken for each diminution of $4,000 \mathrm{lbs}$. The corresponding readings are indicated in Table F.

When it was completely relieved from load, the scales showed readings of .005 in . at the centre, .001 in , and .003 in . at the ends. These readings were probably due to inequalities in the timber or a possible sliding of the scales, as the beam showed no evident sign of set.

The load was again immediately increased gradually from nil until it amounted to $59,540 \mathrm{lbs}$., when the beam failed by longitudinals shear, followed by the splintering of the upper edges on the tension side, Figs. 31,32 . Fracture was also indicated by the crippling of the fibres on the compression side taking place between 58,000 and $59,540 \mathrm{lbs}$.
The distance between the portions of the beam above and below'the plane of shear at the end was .36 in . as in the figure.

The maximum skin stress corresponding to the breaking load is 9,043 lbs, per square inch.

The co-efficient of clasticity, as deduced by an increase in the deflection of .3 in . between the loads of $2,000 \mathrm{lbs}$. and $16,000 \mathrm{lbs}$., is 1,934 , 600 lbs .

Table F shows the several readings.
The time occupied by the first loading was $10 \frac{1}{2}$ mins., by the relieving from the load $6 \frac{3}{4}$ mins., and by the second loading from nil to the max., $15 \frac{1}{2} \mathrm{mins}$.

The weight of this beam on April 21st, the date of its shipment from Vancouver, was 410 lbs ., or 44.99 lbs , per cubic foot. On reaching the laboratory the weight was 392 lbs .8 ozs , or 43.07 lbs , per cubic foot, and the weight on Эet. 2nd, the date of the test, was 375 lbs . 10 ozs , or 41.22 lbs , per cubic foot, showing a loss of weight at the rate of .0392 lb . per cubic foot per day between Vancouver and the laboratory, and a loss at the rate of .0161 lb . per cubic foot per day while in the laboratory.

Beam XX. This beam was cut from the heart of the tree, and was tested Nov. 3rd., 1894, with the annual rings as in Fig. 33.

It was coarse grained, the grain being very nearly parallel with the axis, and contained a number of knots.

The load was gradually increased until it amounted $12,000 \mathrm{lbs}$, and at this point the beam was gradually relieved from load, readings being taken for overy diminution of $2,000 \mathrm{lbs}$. When the load had been reduced to 500 lbs ., the reading at the centre was .001 in ., probably due to a movement of the scale. The load was again gradually increased until it amounted to $40,000 \mathrm{lbs}$., when the beam failed by the crippling of the fibres on the compression side in the neighbourhood of a small knot $1 \frac{1}{4} \mathrm{in}$. above the compression face, Figs. $34,35,36$. The crippling
extended about 4 ins , above this face. The load was still gradually increased until it amounted to $49,600 \mathrm{lbs}$., when the beam again failed by the tearing apart of the fibres on the tension face.

The maximum skin stress corresponding to the load of $40,000 \mathrm{lbs}$,, and disregarding the compression of the timber, is $6,559 \mathrm{lbs}$, and the skin stress corresponding to the load of $49,600 \mathrm{lbs}$. is $8,127 \mathrm{lbs}$. per square inch.

The total compression of the timber was . 345 ins., so that taking the effective depth under this load to be 11.655 ins., the maximum skin compressie stress would be $6,710 \mathrm{lbs}$. per square inch, the corresponding skin tension stress being $7,125 \mathrm{lbs}$. per square inch.

Assuming the ordinary law to hold good for the whole of the effective depth, the maximum skin stress would be $6,936 \mathrm{lbs}$ per square inch.

The co-efficient of elasticity, as deduced from a change in the deflectimon of . 22 in . between the loads $4,000 \mathrm{lbs}$, and $12,000 \mathrm{lbs}$., both forwards and while being relieved from load in the first reading, and also during the second loading, is $1,571,150 \mathrm{lbs}$.

Table G shows the several readings.
The weight of this beam when shipped from Vancouver, April 21st, was 349 lbs , or 41.16 lbs . per cubic foot ; when delivered at the laboratory on June 9 th, it weighed 329 lhs ., or 36.70 lbs per cubic foot, and on Nov. 3rd it weighed $311 \mathrm{lbs} .6 \frac{1}{2}$ ozs., or 3492 lbs . per cubic foot, showing a loss of weight between Vancouver and the laboratory at the rate of .091 lb . per cubic foot per day, and a loss while in the laboratory at the rate of .0121 lb . per cubic foot per day.

The time occupied by the test was 26 ming.
Beam XXI. This beam was tested Nov. 3rd, 1894, with the annual rings as in Fig. 37.

The load upon the beam was gradually increase 3 until it amounted $t_{0} 6,000 \mathrm{lb}$, when it was gradually relieved of oud, at the rate of 1,000

10s. for each observation, and the beam returned to its initial condition without showing any sign of set. The load was again gradually increased until it amounted to $17,960 \mathrm{lbs}$., when a sharp fracture took place by the tearing apart of the fibres on the tension side, and this was accompaniod by a simulta neous crippling of the fibres on the compression side, Figs. 38, 39, 40.

The maximum skin stress corresponding to the load of $17,960 \mathrm{lbs}$, is 7,787 lbs. per square inch.

The total compression of the timber at the centre was. 16 in , so that, taking the effective depth at the centre to be 8.82 ins., the maximum skin comprissive stress at the point of fracture is $7,901 \mathrm{lbs}$. per square inch, the corresponding skin tensile stress being $8,221 \mathrm{lbs}$. per sq. in.

Assuming the ordinary law to hold good for the whole of the effective depth, the max. skin stress would be $8,100 \mathrm{lbs}$. per 8 sq . in.

The co-efficient of elasticity, as deduced by a change in the deflection of, 48 in . between the loads of $1,000 \mathrm{lbs}$. and $6,000 \mathrm{lbs}$., during the first loading, and while being relieved of load, is $1,588,400 \mathrm{lbs}$.

Table G shows the sedveral readings.
The weight of this beam when shipped from Vancouver, A pril 21st, was 164 lbs ., or 38.86 lbs . per enbic foot ; when received at the laboratory on June 9 th, the weight was 151 lbs .4 ozs., or 33.02 lbs . per cubic foot, and on Nov. 13th, the date of test, the weight was $139 \mathrm{lbs} .10 \frac{1}{2}$ ozs, or 30.83 lbs . per cubic foot, showing a loss of weight between Vancouver and the laboratory at the rate of .1192 lbs , per cubic foot per day, and a loss of weight while in the laboratory at the rate of . 0149 lbs, per cubic foot per day.

The time occu pied by the test was $18 \frac{1}{2} \mathrm{mins}$.

OLD DOUGLAS FIR.

Beams XXII-XXV were sent to the laboratory by Mr. P. A. Peterson, Chief Enginecr of the Canadian Pacific Railway.

These beams were four old stringers taken from trestles numbered $428,35,316$ and 789.

Trestle 428 is about half way between Cisco Cantilever Bridge and Lytton. It was erected in the early summer of 1884, and the timbers had consequently been in position for nine years. It is in a dry country, with very little rainfall, and subject to a hot sun in summer. The stringer from this structure was cut out of a log probably grown on a flat about three miles west of Hope, where most of the trees were windshaken.

Trestle No. 35 is about one milo west of Port Moody, and was built in the carly spring of 1887, so that the struger was in position for a period of $6 \frac{1}{2}$ years in a place subject to the heaviest rainfall in the provinee. The stringer was eut from a \log most probably grown at Point Grey, about eight miles from Vancouver.
Trestle No. 316 is two miles enst of Spuzzum. The stringer from this trestle was cut from a \log grown on a bench near Spuzzum about 500 feet above the sea level. It was preparel and framed in 1881, and crected in 1882 , so that it was eleven years in position in a distriet with a climate similar to that of Nova Scotia. As the railway here runs north and south, the sun bad not the same effect upon the stringers as on other parts of the line.
Trestlo No. 789 is on Kamloops Lake, six miles east of Savona, and was erected in the spring of 1835 , so that the timbers had beon in service for a period of eight years. The neighbourhood is dry, but the trestle, being situated under a high bluff, is protected from the afternoon sun. The stringer from this strueture was cut out of a \log probably grown about three miles west of Hopo, at the same place as the timbers used in structure No. 428.
Beam XXII from Trectle 428 was tested Nov, 25th, 1893, with the annual rings as in Fig. 41

There were two vertical 1 in , bolt holes in the timbar,-one near the centre and one at the end. There were also several season cracks in the timber, one being somewhat large.

The load upon the beam was gradually increased until it amounted to $55,400 \mathrm{lbs}$., when the beam failed by a longitudinal shear, as in Figs. 42, 43.

The distance between the portions of the beam above and below the plane of shear at the end was $\frac{3}{8}$ ths of an inch.

The maximum skin stress erresponding to the breaking load is $7,086 \mathrm{lbs}$. per square inch.

The total compression of the timber at the centre was . 63 in., so that, taking the effective depth at 15.0575 ins , the maximum skin compressive stress is $7,264 \mathrm{lbs}$. per square inch, the corresponding tensile skin stress being $7,898 \mathrm{lbs}$. per square inch.

Assuming the usual law to hold good for the whole of the effective depth, the maximum skin stress would be $7,382 \mathrm{lbs}$, per square inch.

The co-efficient of elasticity, as deduced by an increase in the deflection of .39 in . betweeen the loads of $2,000 \mathrm{lbs}$. and $20,000 \mathrm{lbs}$., is $1,639,500 \mathrm{lbs}$., while it is $1,691,620 \mathrm{lbs}$. for an increment in the deflection of .42 in . between the loads $2,000 \mathrm{lbs}$. and $22,000 \mathrm{lbs}$.

Table H gives the readings under the several loads.
The weight of the beam on the day of test was 33.75 lbs . per cubic $f_{\text {oot, }}$ and the total weight on Oct. 3rd was $438 \mathrm{lbs}, 7 \mathrm{ozs}$.

Beam XXIII from 'I'restle No. 789 was tested Nov, 28th, 1893, with the annual rings is in Fig. 44, and showing the heart in one of the faces.

The load upon the beam was gradually increased until it amounted to $47,560 \mathrm{lbs}$., when the beam failed by the tearing apart of the fibres on the tension face, which was immediately followed by a longitudinal shcar, as in Figs, 45, 46.

The maximum skin stress corresponding to the load of $47,560 \mathrm{lbs}$, is $7,339 \mathrm{lbs}$.

The co-efficient of elasticity, as deduced from an increment of .66 in . in the deflection between the loads of $2,000 \mathrm{lbs}$, and $22,000 \mathrm{lbs}$, is $1,878,950 \mathrm{lbs}$.

Table I shows the readings under the various loads.
The total weight of the beam on Oct. 3rd was 654 lbs .12 ozs., or 38.95 lbs . per cubic foot; the total weight on Nov. 28th, the date of test, was $549 \mathrm{lbs} .8 \frac{1}{2} \mathrm{ozs}$., or 38.59 lbs . per cubic foot, showing a loss of weight in the laboratory at the rate of .00643 lbs . per cubic foot per
day. Estimating the weight of this beam from a solid block cut out of the beam, it was found to be 39.13 lbs , per cubic foot, or .54 lb . per cubic foot heavier than the weight deduced from the total weight of the whole beam.

Beam XXIV from Trestle No, 35. This beam was tested Nov. 25th, 1893, with the annual rings as in Fig. 47. It contained two vertical $\frac{3}{4} \mathrm{in}$. bolt holes about half way between the centre and cods, and a few knots of average size appeared on the face. It also contained several season cracks.

The initial load, including the weight of the beam, was $5,000 \mathrm{lbs}$, and the load was gradually increased up to $41,000 \mathrm{lbs}$., when the material at one end of the beam was crushed in. The ends of the beam were found to be very much the worse for wear and in a rotten condition. Releasing the beam from load the ends were sawn off and the beam was replaced at 9 ft . centres, when the load was gradually increased until it amounted to $76,900 \mathrm{lbs}$. Under this load the beam failed by longitudinal shear, which was accompanied by a certain amount of crippling of the fibres on the compression side of the centre, as in Figs. 48, 49.

The maximum skin stress corresponding to the breaking load of 76,900 lbs . was $6,135 \mathrm{lbs}$. per square inch.

The total compression under a load of $41,000 \mathrm{lbs}$, at the centre was 1.7 in ., and taking the effective depth of the beam to be $14.5-\mathrm{ins}$., the corresponding maximum skin compressive stress is $6,495 \mathrm{lbs}$, per square inch, the corresponding skin tensile stress being $8,221 \mathrm{lbs}$. per square inch.

Assuming the ordinary law to hold good for the whole of the effective depth, the maximum skin stress would be $7,662 \mathrm{lbs}$, per square inch.

The co-efficient of clasticity, as determined by an increase in the deflection of .16 in . between the loads of 11,000 and $22,000 \mathrm{lbs}$. , is $1,199,741 \mathrm{lbs}$. ; as determined by an increment of the deflection of .33 in . between the loads $10,000 \mathrm{lbs}$. and $32,000 \mathrm{lbs}$., it is $1,163,334$ lbs. ; and as deduced from an increment in the deflection of .29 in ., the mean between .285 in , and .295 in ., the increments between the loads of 5,000 and $25,000 \mathrm{lbs}$, and 10,000 and $30,000 \mathrm{lbs}$. respectively, it is $1,203,500 \mathrm{lbs}$.

Table H shows the several readings.
The total weight of the beam on Nov. 25th, the date of test, was $331 \mathrm{lbs}, 9 \mathrm{ozs}$, or 32.8 lbs . per cubic foot. After cutting off the ends, the ${ }^{\text {en weight }}$ of a length of 9 feet was 262 lbs .5 ozs., or 33.4 lbs . per cubic foot. The total weight of the beam on 0 ctober 3 rd was 339 lbs . 9 oz .

Beam XXV from Trestle 316. This beam was tested Nov. 28th, 1893, with the annual rings as in Fig. 50, and showing the heart, on one of the faces.

It contained one vertical bolt hole, several knots, and many scason cracks. The grain was straight.

The load upon the beam was gradually increased until it amounted to $42,900 \mathrm{lbs}$., when a large splinter broke off on the tension face, and the beam failed by longitudinal shear, as in Figs. 51, 52.

The maximum skin stress corresponding to this breaking load is $4,613 \mathrm{lbs}$, per square inch.

The co-efficient of elasticity, as determined by an increment in the deflection of .335 in . between the loads of $4,000 \mathrm{lbs}$, and $20,000 \mathrm{lbs}$,, is $949,720 \mathrm{lbs}$.

Table I shows the readings for the scveral loads.
The total weight of the beam on October 3 rd was 422 lbs ., or 34.44 lbs. per cubie foot, and on Nov. 28th, the date of test, the weight was 406 lbs ., or 33.11 lbs . par cubic foot, showing a loss of weight in the laboratory at the rate of .237 lbs , per cubic foot per day.

The time occupied by the test was 30 minutes.
The following table gives a kummary of the results obtained for Douglas Fir:-

Beam.	Dimensions in inclies.			
New Timber, specially selected.				
	; d d b			
III.	${ }^{1} 66 \times 5.375 \times 4125$		10,441	2,178,100
XIX.	$138 \times 12.1 \times 9.1$	41.22	9,043	1,934,500
VII,	69×668.8125	39.92	8.712	2,044,115
XV.	$198 \times 15 \times 6.125$	38.92	8,020	1.989,400
Neif Timber, first quality.				
	$l d{ }^{l} \quad d$			
X	$198 \times 14.875 \times 6$	37.80	4,027	1,629,616
XI	$204 \times 14.875 \times 8.6875$	36.99	5,698	1,770,563
IX	$2(4 \times 14.875 \times 9$	35.76	7,694	1,764,939
VIII	$69 \times 5.125 \times 5.5$	35.74	8,382	1,584,692
XVIII	$138 \times 17.8 \times 8.76$	35.59	5.196	1,329,900
XVII	$138 \times 15.125 \times 9$.	35.17	4.907	1,259,600
XX	$138 \times 12 . \times 8.88$	34.92	6,559	1,571,150
XII	$204 \times 14.875 \times 8.8125$	34.79	7,645	$1.673,300$
XIII	$204 \times 14.75 \times 66$	34.13	6,912	1,643,193
XXI	$138 \times 8.98 \times 5.95$	30.83	7.784	1,588,400
VI	$69 \times 6.125 \times 6$	30.23	7,116	1,489,215
I	$96 \times 12.125 \times 9$.		4,897	1,138,900
II	$66 \times 12.125 \times 5.625$		4,378	1,146,900
V	$69 \times 9.125 \times 5$.	29.18	5,869	946,270
IV	$69 \times 9.125 \times 5$.	28.27	4,156	926,500
Old Timber.				
	$l d{ }^{\text {l }}$ d			
XXIII	$186 \times 14.35 \times 8.78$	39.59	7,339	1,878,950
XXII	$162 \times 15.6875 \times 7.75$	33.75	7,086	1,665,560
XXV	$144 \times 15.65 \times 8.2$	33.11	4,613	- 949,720
XXIV	$132 \times 16.2 \times 775$	32.8	6,135	1,201,620

The following data may be adopted in practice :-
In the case of specially selected timber, free from knots, with sound clear and straight grain, and cut out of the \log at a distance from the heart :

Average weight in lbs, per cubie foot $=40$.

Average co-cfficient of elasticity in lbs . per sq . in. $=\mathbf{2 , 0 0 0 , 0 0 0 .}$
Average maximum skin stress in lbs, per square inch $=9,000$.
Safe working skin stress in lbs. per square inch $=3,000 \mathrm{lbs}$.
In the case of first quality timber, such as is ordinarily found in the market:

Average weight in lbs. per cubic foot $=34$.
Average co-efficient of elasticity in lbs. per square inch $=1,430,000$.
Average maximum skin stress in lbs. per square inch $=6,000$.
Safe working skin stress in lbs. per square inch $=2,000$.
In specifying these data it will be observed that 3 is adopted as the factor of safety. Upon this hypothesis the factor of safety for the stick giving the minimum skin stress is more than 2 , and this, in the opinion of the author, is an ample factor for a material which experience and all experiments show, may be strained without danger very nearly up to the point of fracture.

Further, the results obtained in the experiments with the old stringers shew that the strength of the timber had been retained to a very large extent, and that the rotting had not extended tos such a depth below the skin as to sensibly affect the efficiency of the sticks, which still possessed ample strength for the work they were designed to do.

Thus in Beam XXII a diminution in the skin stress of $1,058 \mathrm{lbs}$, per square inch, which is equivalent to a diminution in the effective depth of $\frac{15.6875 \times 1058}{2 \times 7058}=1.076 \mathrm{ins}$. would still leave $6,000 \mathrm{lbs}$. per square inch as the skin stress. Thus if the rotting had extended to depth of 1.176 ins., the factor of safety would still remain 3.

If 2 is adopted as the factor of safety, and, in the opinion of the author, 2 is an ample factor for the great majority of cases, the rotting might extend without danger to a depth of 3.398 ins .

In the case of Beam XXV, which is the old stringer giving the least co-efficient of strength, namely, $4,613 \mathrm{lbs}$. per square inch, taking 2 as the factor of safety, the effective depth might be diminished by an amount of $\frac{15.65 \times 613}{2 \times 1613}=1.04 \mathrm{ins}$. and rot might safely extend to this depth.

Again, it will be observed that the skin stress and the elasticity are subject to a wide variation. This variation is due to many causes, of which the most important are the presence of knots, obliquity of grain, and, more than all, the locality in which the timber was grown, the original position of the stick in the log from which it was cut, and the proportion of hard to soft fibre, or of the summer to the spring growth.

The tensile shearing and compressive experiments upon specimens cut out of different parts of the same \log all shew that the timber near the heart possesses much less strength and stiffness than the timber at a distance from the heart.

The accompanying photrgraph is given to show the variation of

BEAM IX

thickness in the growth rings from the heart outwards, and a careful study of the results obtained up to date would seem to indicate that the best classification defining the strength of the timber would be found by dividing the section of a \log into three parts by means of two circles, with the heart as the centre, and by designating the central portion as third quality, the portion between the two circles as second quality, and the outermost portion as first quality.

A most interesting paper on the structural characteristics of Douglas Fir from a botanical standpoint was read by Professor Penhallow, F.R.S.C., at the meeting of the Royal Society of Canada in Ottawa, in 1894, in connection with a paper by the author on the strength of the timber.

RED PINE.

Beams XXVI to XXXIII were sent to the laboratory by Messrs. MeLachlin Bros., of Arnprior.

These beams were not specially selected, but were the ordinary scantlings in the market. They were cut from logs felled in February or March, 1893, in the neighbourhood of the Bonnechère River, Nipissing

District, County Renfrew. The logs remained in the water from April until October, when they wero sent to the mill, where they were sawn up and piled.

Beam XXVI. This beam was cut from the heart of the tree, and was tested March 13th, 1894, with the annual rings, as in Fig. 53.

The load upon the beam was gradually increased until it amounted to $13,800 \mathrm{lbs}$., when the beam failed by the crippling of the fibres on the compression face, Figs. 54, 55. The load was still further increased until complete fracture took plice by the tearing apart of the fibres on the tension face under a load of $17,170 \mathrm{lbs}$. The erippling was in line with a knot running through the timber from back to fornt, as in the Figure.

The maximum skin stress corresponding to the load of $13,800 \mathrm{lbs}$. is 3,937 lbs. per square inch.

The total compression of the timber at the eentre was . 2 in., so that, taking the effective depth as 13.05 , the maximum skin compressive stress would be $3,994 \mathrm{lbs}$. per sq. in., the corresponding skin tensile stres leing $4,119 \mathrm{lbs}$, per square inch.

Assuming the ordinary law to hold good fur the whole of the effective deptl, the maximum skin stress would be $4,059 \mathrm{lbs}$. per square inch.

The co-efficient of elasticity, as determinel by an increment in the deflection of .885 in . between the loads 1,000 and $8,000 \mathrm{lbs}$., is 1,235 ,000 lbs , and as determined by an increment in the deflection of 5 in between the loads 2,000 and $6,000 \mathrm{lbs}$, is $1,248,990 \mathrm{lbs}$.

Table K shows the reveral readings.
The weight of this beam on March 10th was 392 lbs. 2 ozs., or 37.56 lbs . per cubic foot, and on March 13 th it was 379 lbs .4 ozs., or 36.39 lbs , per cubic foot, showing a loss of weight in the laboratory at the rate of .39 lb . per cubic foot per day.

Beam XXVII was tested April 5th, 1894, with the annual ringe as in Fig. 56. The beam was cut from the heart of the tree, and the darkened portion in the Figure was sapwood.

The load upon the beam was gradually increased until it amounted to $17,700 \mathrm{lbs}$., when the beam failed by the tearing apart of the fibres on the tension face, Figs. 57, 58, at a resin pocket, the fracture showing a fine resinous surfic:
The maximum skin stress corresponding to the breaking load in $5,219 \mathrm{lbs}$ per square inch.
The total compression of the timber at the centre was . 34 in., so that taking 12.785 ins, as the effective depth, the maximum skin compressive stress would be $5,411 \mathrm{lbs}$. per square ineh, the corresponding skin tensile stress being $5,707 \mathrm{lbs}$, per square inch.

Assuming the ordinary law to hold good for the whole of the effeetive depth, the maximum skin stress would be $5,501 \mathrm{lbs}$. per square inel.

The co-efficient of elasticity, as deduced from an increment in the deflection of .7 in , between the loads $1,500 \mathrm{lbs}$ and $7,500 \mathrm{lbs}$, is 1,418 ,500 lbs .
Table \mathbf{K} gives the several readings.
The total weight of the beam on March 10th was 46 lbs, 12 ozs., or 41.51 lbs. per cubie foot ; the total weight on April 5th, the date of test, was 397 lbs .4 ozs., or 36.50 lbs . per cubic foot, showing a loss of weight while in the laboratory at the rate of .192 lbs . per cubic foot per day.

Beam XXVIII. This beam was cut from the heart of the tree, and was tested April 20th, 1894, with the annual rings as shown in Fig. 59.

The load upon the beam was gradually increased until it amounted to $17,050 \mathrm{lbs}$., when the beam fuiled by the crippling of the fibres or the compression face, Figs. 60, 61. The load was still increased until under $19,140 \mathrm{lbs}$, the beam again failed by the tearing apart of the fibres on the tension face.

The maximum skin stress corresponding to the load under which erippling took place is $6,752 \mathrm{lbs}$, per square inch.

The total compression of the beam under a load of $17,050 \mathrm{lbs}$. was $.24 \mathrm{in} .$, so that taking the effective depth to be 11.01 ins ., the corresponding maximum skin compressive stress would be $6,886 \mathrm{lbs}$. per square inch, the corresponding skin tensile stress being $7,193 \mathrm{lbs}$. per square inch.

Assuming the usual law to hold good for the whole of the effective depth, the maximum skin stress would be $7,050 \mathrm{lbs}$. per square inch.

The co-efficient of elasticity, as determined by an increase in the deflection of 1.435 in . between the loads of 2,000 and $12,000 \mathrm{lbs}$., is $1,786,000 \mathrm{lbs}$. ; it is $1,858,400 \mathrm{lbs}$., as determined by an increment in the deflection of .81 in , between the loads 3,500 and $9,500 \mathrm{lbs}$., and is $1,681,100 \mathrm{lbs}$., as determined by an increment in the deflection of 1.135 in , between the loads of 2,000 and $10,000 \mathrm{lbs}$

Table K shows the several readings.
The test occupied 26 minutes.
The weight of the beam on March 10th was $379 \mathrm{lbs}, 10$ ozs., or 44.20 lbs , per cubic foot ; upon April 20th, the date of test, the weight was 322 lbs .8 ozs., or 37.55 lbs . per cub. ft., showing a loss of weight at the rate of .1622 lb . per cubic foot per day.

Beam XXIX. This beam was cut from the heart of the tree, and was tested March 13th, 1894, with the annual rings as in Fig. 62.

The load upon the beam was gradually increased until it amounted to $11,960 \mathrm{lbs}$., when the beam failed by the crippling of the fibres on the compression face, Figs. 63, 64. The load was still further gradually increased to $12,460 \mathrm{lbs}$, when the beam was completely fractured by the tearing apart of the fibres on the tension face.

The maximum skin stress corresponding to the breaking load of $11,960 \mathrm{lbs}$. is $4,818 \mathrm{lbs}$. per square inch.

The total compression of the timber at the centre was .15 in ., so that taking 11.1 in . as the effective depth, the maximum skin compressive stress would be $4,883 \mathrm{lbs}$. per square inch, the corresponding skin tensile stress being $5,016 \mathrm{lbs}$, per square inch,

Assuming the usual law to hold good for the whole of the effective depth, the maximum skin stress would be $4,949 \mathrm{lbs}$. per square inch.

The co-efficient of clasticity, as determined from an increment of .86 in . in the deflection between the loads of 1,000 and $5,000 \mathrm{lbs}$., is $1,210,100 \mathrm{lbs}$. The co-efficient of elasticity, as deduced from an inerement of 1.315 in . in the deflection between the loads of $1,000 \mathrm{lbs}$. and $7,000 \mathrm{lbs}$., is $1,187,000 \mathrm{lbs}$.

Table L shews the several readings.
The test occupied 27 minutes.
The tetal weight of the beam was 290 lbs ., or 32.89 lbs . per cubic foot on March 10th, and 282 lbs .6 ozs ., or 32.03 lbs . per cubic foot on March 13th, showing a loss of weight in the laboratory at the rate of $.2866-\mathrm{lb}$. per cubic foot per day.

Beam XXX. This beam was tested May 3rd, 1894, with the annual rings, as in Hig. 65. When the beam was placed in position, it showed an upward camber of 24 ins.

The load upon the beam was gradually increased until it amounted to $5,700 \mathrm{lbs}$., when the beam failed by the crippling of the fibres on the compression face, Fig. 66, the crippling extending $2 \frac{1}{2}$ ins. upwards from the skin. The load was still increased, and when it amounted to $6,580 \mathrm{lbs}$., the beam broke right across the tension face about $2 \frac{1}{2}$ inches from the middle of the beam, and vertically above the second line of crippling on the compression side, Fig. 67.

The maximum skin stress corresponding to the breaking load of $5,700 \mathrm{lbs}$. is $4,634 \mathrm{lbs}$. per square inch, and the maximum skin stress corresponding to the load of $6,580 \mathrm{lbs}$, is $5,340 \mathrm{lbs}$. per square inch.

The co-efficient of elasticity is $1,322,000 \mathrm{lbs}$., as determined by an increment in the deflection of 1.69 in . between the loads of 1,000 and $5,000 \mathrm{lbs}$. ; it is $1,329,900 \mathrm{lbs}$., as deduced from an increment in. the deflection of .84 in . between the loads of 2,000 and $4,000 \mathrm{lbs}$.

Table L shows the several readings.
The weight of this beau on May 4th, the day after the test, was 150 lbs .11 ozs ., or 30.96 lbs . per cubic foot.

Beam XXXI. This beam was tested May 4th, 1894. It was cut from the heart of the tree, and the annual rings were situated as in Fig. 68. Season cracks ran intermittently from end to end of the beam

in the neighbourhood of the neutral plane, the cracks extending radially outwards from the heart. The beam was free from knots for a distance of 7 inches on one side and 1 inch on the other, and the grain ran parallel to the axis.

The load upon the beam was gradually increased until it amounted to $6,500 \mathrm{lbs}$., when it failed by a crippling of the fibres on the compression face, Fig. 69. The crippling occurred exactly at the centre and extended 1.5 in , upwards from the skin. The load was then continued, and, when it amounted to $7,900 \mathrm{lbs}$., the beam failed by the tearing apart of the fibres on the tension face, Figs. 70, 71, and a line of erippling on the compression side timber opened upwards for a distance of about 2 ins , or $3 \frac{1}{2} \mathrm{ins}$. The fracture on the tension side took place about $5 \frac{1}{2}$ ins. from the centre, and the timber opened along the annual rings for a distance of 24 ins , on each side of the centre as in the figure.

The maximum skin stress corresponding to the breaking load of $6,500 \mathrm{lbs}$. is $5,442 \mathrm{lbs}$, per square inch.

The co-efficient of elasticity, as deduced from an increment in the deflection of 1.085 ins , between the loads of $2,000 \mathrm{lbs}$, and $5,000 \mathrm{lbs}$, was $1,618,900 \mathrm{lbs}$.

Table L shews the several readings.
This beam when first placed in position, also had a camber of . 35 ins. in a central length of 14 ft .6 ins .

The weight of the beam on May 4th, the date of test, was 165 lbs. 6 ozs ., or 34.97 lbs . per cubic foot.

Beams XXXII to XXXV might perhaps more properly be designated 3 ins, planks.

Beam (Plank) XXXII was tested May 7th, 1894. The heart was in one or the faces, and the annual rings were situated as in Fig. 72.

The load upon the beam gradually increased until it amounted to $5,200 \mathrm{lbs}$., when it faild by a crippling of the fibres on the compression side. The crippling occurred about $1 \frac{1}{2}$ ins, away from the centre of the beam and extended upwards about 1,5 ius. The load was still increased, and when it amounted to $5,860 \mathrm{lbs}$, the beam again failed by the tearing apart of the fibres on the tension side, A line of crippling also extended upwards a further distance of about 2 ins., or about $3 \frac{1}{2}$ ins, from the skin.
The maximum skin stress corresponding to the breaking load of $5,200 \mathrm{lbs}$, is $6,928 \mathrm{lbs}$. per square inch.
The co-efficient of elasticity, as deduced fiom an increment in the deflection of 1.67 ins . between the loads $1,000 \mathrm{lbs}$, and $4,000 \mathrm{lbs}$, is $1,575,200 \mathrm{lbs}$. per square inch.
Table L shews the soveral rendings.
The weight of this beam on May 7th, the date of test, was 102 lbs , or $31,56 \mathrm{lbs}$, per cubic foot.

Beam (Plank) XXXIII was tested May 7th, 1894, with the annual rings as shown in Fig. 73.

The load upon the beam was gradually increased to $9,250 \mathrm{lbs}$, when failure took place by the erippling of the fibres on the compression side, Fiss. 74, 75. There wore two lines of crippling on the front and one at the middle of the beam at the back. The crippling at the back probably occurred first, as the folding of the timber extends across the section of the beam along the central line at the lower edge, but not up to the point where the failure due to compression was apparontly the greatest. In the neighbourhood of the crippling in front, the timber was clear, and the grain ran straight and parallel with the axis; at the back there were three knots, which were primarily the cause of the erippling.

When the load on the beam had been inereased to $9,900 \mathrm{lbs}$., fracture occurred on the tension side.

The maximum skin stress corresponding to the breaking load of 9,250 lbs , is $6,55+\mathrm{lbs}$. per sq. in.
The co-efficient of elasticity, as determined by an increment in the deflection of .76 in . between the loads 2,600 and $6,200 \mathrm{lbs}$., is 1,618,000 lbs.

Table M shews the several readings.
The weight of the beam on May 7th, date of test, was $128 \mathrm{lbs}, 8$ ozs., or 31.87 lbs . per cubic foot.

Beam (Plank) XXXIV. This beam was tested May 8th, 1894, with the annual rings as in Fig. 76.

The load upon the beam was grauuniy ducrased until it amounted to $5,600 \mathrm{lbs}$., when the fibres on the compression face crippled to a small extent. On still further increasing the load, the fibres on the compression face were completsly orippled, Figs. 77, 78, and fracture also simultaneously occurred on the tension side when the load amounted to $8,400 \mathrm{lbs}$.

The grain of this beam was straight and parallel with the axis, and the timber was apparently free from knots for a distance of about 24 inches on each side of the centre.

The maximum skin stress corresponding to the breaking load of $5,600 \mathrm{lbs}$. is $5,079 \mathrm{lbs}$. per square inch, and the skin stress corresponding to the load of $8,400 \mathrm{lbs}$., which caused the fracture on the tension side, is $7,597 \mathrm{lbs}$. per square inch.

The co-cfficient of elasticity, as deduced from an increment in the deflection of 1.14 ins, between the loads of 500 and $5,600 \mathrm{lbs}$, was $1,784,800 \mathrm{lbs}$.

Table M shews the several readings.
The weight of the beam on May 8th, date of test, was 96 lbs .2 ozs., or 36.59 lbs , per cubic foot.

Beam (Plank) XXXV was tested May 8th, 1894, with the annual rings as in Fig. 79. The heart of the tree was very nearly coincident with the axis of the beam, and the grain ran in the same direction. Scason eracks occurred intermittently thro ghout the beam.

The load upon the beam was gradually increased until it amounted to $7,600 \mathrm{ibs}$., when the beam failed by the crippling of the fibres on the compression face, Fig. 80. The load was still increased, and well defined crippling occurred when it amounted to $10,050 \mathrm{lbs}$. When the load had reached $13,700 \mathrm{lbs}$, the beam failed by the tearing apart of the fibres on the tension face, Fig. 80.

The maximum skin stress corresponding to the breaking load of 7,600 lbs. is $4,339 \mathrm{lbs}$. per square inch.

The co-efficient of elasticity, as determined by an increment in the deflection of .92 in . between the loads of 500 and $7,600 \mathrm{lbs}$., is $1,589,250 \mathrm{lbs}$., and as determined by an increment in the deflection of .025 in , for the corresponding increase of 200 lbs . it is $1,642,900 \mathrm{lbs}$.

Table M shews the several readings.
The weight of the beam on May 8th, date of test, was $128 \mathrm{lb}+12$ ozs. or 37.69 lbs , per cubic foot.

The following table gives a summary of the results obtained for Red Pine :-

Beam.	Dimensions in inches.						Co-efficient of tlasticity in lb-.
Neiv Timber.							
	l	d		b			
XXXV.	$156 \times$	$\times 11.15$	\times	3.325	37.69	4,339	1,616,075
XXVIII.	$210 \times$	$\times 11.25$	\times	6.34375	37.55	6,752	1,802,633
XXXIV.	$156 \times$	+ 9.125	\times	3.125	36.59	5,079	1,784,800
XXVII.	$210 \times$	$\times 13.125$	\times	6.1875	36.50	5,219	1,418,500
XXVI.	$210 \times$	+ 13.25	\times	6.375	36.39	3,937	1,241.950
XXXI.	$174 \times$	- 7.125	\times	6.21875	34.97	5,442	1,618,900
XXIX.	$210 \times$	+ 11.25	\times	625	32.03	4,818	1,198,550
XXXIII.	$180 \times$	$\times 11.125$	\times	3.1	31.87	6,554	1,618,000
XXXII.	$180 \times$	8 8.125	\times	3.1	31.56	6,928	1,575,200
XXX.	$174 \times$	$\begin{array}{r}\times \\ \times \quad 7.25 \\ \hline\end{array}$	\times	6.1875	30.96	4,634	1,325.950

Hence,
The average weight in lbs. per cubic foot $=34.61$.

$$
\begin{array}{ll}
\text { " co-efficient of elasticity in lbs, per sq. in }= & =1,520,056 . \\
\text { " } & \text { maximum skin stress }
\end{array}
$$

If, however, the plank results are omitted,
The average weight in lbs, per cubic foot $=34.78$.

$$
\begin{aligned}
& \text { " co-efficient of elasticity in lbs. per sq. in. }=1,434,747 . \\
& \text { " maximum skin stress " } \quad \text { " }=5137 .
\end{aligned}
$$

In general, the following data may be adopted in practice:-
The average weight in lbs. per eubic foot $=34.6$.
" co-efficient of elasticity in lbs, per sq. in. $=1,430,000$.
" maximum skin stress " " \quad =, 100 .
" safe working \&kin stress " " \quad " 1,700 ,
3 being a factor of safety.
In the accounts of the several beamsit will be observed that the failures are almost invariably due to the crippling of the material on the side in compression, indicating that the tensile strength of the timber exceeds its compressive strength, and this was subsequently verified by the direct tension and conuprossion experiments.

WHITE PINE.

Beams XXXVI and XXXVII are two pieces cut out of one large piece of square pine, made and tiken out in the Gatineau Valley, Ottawa County. The timber was brought down via the Gatineau and Ottawa Rivers to Montreal, and remained in the water until late in the fall of 1892 , when it was piled on the land for winter sawing.

This timber was purchased from Messrs. J. \& B. Grier.
Beam XXXVI was tested February 16th, 1893, with the annual rings as in Fig. 81.

The load upon the beam was gradually increased until it amounted to $19,600 \mathrm{lbs}$., when it failed by the tearing apart of the fibres on the tension side.

The maximum skin stress corresponding to this load is $2,993 \mathrm{lbs}$. per square inch.

The co-efficient of elasticity, as determined by an inerement in the deflection of 1.12 ins . between the loads of 5,000 and $10,000 \mathrm{lbs}$., is $503,440 \mathrm{lbs}$. ; as deduced from an increment in the deflection of . 84 in . between the loads of 5,000 and $12,500 \mathrm{lbs}$., is $463,768 \mathrm{lbs}$., and as deduced from an increment in the deflection of 2.13 ins, between the loads of 5,000 and $15,000 \mathrm{lbs}$., is $534,169 \mathrm{lbs}$.

Table N shows the several readings.
The weight of this beam per cubic foot on Feb. 16 th was 37.25 lbs ., and on March 14th, 34.78 lbs ., showing a loss of weight at the rate of .095 lb . per cubic foot per day.

Beam XXXVII was tested on February 24th, 1893, with the annual rings as in Fig. 82.

The load was gradually increased until it amounted to $24,000 \mathrm{lbs}$, when the beam failed by the tearing apart of the fibres on the tension face.
The maximum skin stress corresponding to this load is $3,555 \mathrm{lbs}$. per square inch.

Beams XXXVIII and XXXIX were the two ends of Beam XXXVI which was tested February 16th, 1893, the central portion containing the fracture having been cut out.

Beam XXXVIII was tested on March 14th, with the annual rings as in Fig. 83.

The load on the beam was gradually increased until it amounted to $52,450 \mathrm{lbs}$., when it failed by the tearing apart of the fibres on the tansion side.

The maximum skin stress corresponding to this load is $3,075 \mathrm{lbs}$, per square inch.

The co efficient of elasticity, as determined by an inerement in the deflection of .37 in , between the loads of 10,000 and $25,000 \mathrm{lbs}$., is $622,640 \mathrm{lbs}$.

Table N shows the several readings.
Bea'u XXXLX was tested with the annual rings as in Fig. 84.
The loid was gradually inereased until it amounted to $51,400 \mathrm{lbs}$., when the beam failed by the tearing apart of the fibres on the tension side.

The maximum skin stress corresponding to this load is $2,696 \mathrm{lbs}$. per square inch.

The co-efficient of elasticity, as determined from an incroment in the deflection of .175 in . between the loads of 10,000 and $25,000 \mathrm{lbs}$, is $433,250 \mathrm{lbs}$.

Table N shows the several readings.
Beams XL and XLI are the two ends of Beam XXXVII which was tested on Feb. 24th, 1893, the central portion of the baam containing the fracture having been eut out.

Beam XL was tested on Mareh 17th with the annual rinss as in Fig. 85. The load was gradually increased until it amounted to 53,650 lbs., when the beam failed by the tearing apart of the fibres on the tension side.

The maximum skin stress correspin ling to this load is $3,311 \mathrm{lbs}$, per square inch.

The co-efficient of elasticity, as determined by an increment in the deflection of .19 in . between the loads of 12,000 and $26,000 \mathrm{lbs}$, is $693,090 \mathrm{lbs}$.

Table N shows the several readings.
The weight of the beam per cubic foot on the day of the test was 36.13 lbs,

Beam XLI was tested on March 17th, 1893, with the annual rings as in Fig. 86. The load upon the beam was gralually increased until it amounted to $40,500 \mathrm{lbs}$, when it failed by the tearing apart of the fibres on the tension side.

The maximum skin stress corresponding to this load is $2,500 \mathrm{lbs}$. per square inch.

The co-efficient of elasticity, as deduced from an inerement in the deflection of .19 in . between the loads of $10,000 \mathrm{lbs}$. and $22,000 \mathrm{lbs}$, is $519,820 \mathrm{lbs}$. per square inch.

110 The Strength of Canadian Douglas Fir,

Table N shows the severa! readings.
The weight of the beam on the day of test was $36,13 \mathrm{lbs}$. per cubic foot.

Beams XLIII and XLVI were cut out of one large piece of square pine made on the Pettewawa, a tributary of the Ottawa, in 1888. The piece was driven over 1,300 miles, and lay in water for four years until it was taken out in the fall of 1892 and piled for winter sawing.
'This timber was purchased from Messr 3. Shearer \& Brown.
Beam XLII was tested March 8th, 1893, with the annual rings as in Fig. 87.

The load on the beam was gradually increased until it amounted to $26,350 \mathrm{lbs}$., when the beam failed by the tearing apart of the fibres on the tension side.

The maximum skin stress corresponding to this load is $3,815 \mathrm{lbs}$. per square inch.

The co-efficient of elasticity, ns determined by an increment in the deflcetion of 1.22 ins . between the loads of $2,500 \mathrm{lbs}$. and $13,000 \mathrm{lbs}$,, is $979,220 \mathrm{lbs}$.

Table 0 shows the several readings.
The weight of the beam per cubic foot at the date of test was 41.49 lbs.

Beams XLIII and XLIV are the two ends of Beam XLII tested March 8th, the central portion of the beam containing the fracture having been cut out.

Baam XLIII was tested March 31st, with the annual rings as in Fig. 88.

The load was gradually increased until it amounted to $48,600 \mathrm{lbs}$, when the beam failed by the tearing apart of the fibres on the tension side.
The maximum skin stress corresponding to this load is $3,000 \mathrm{lbs}$, per square inch.

The co-efficient of elasticity, as determined by an increase in the defl ction of . 19 in , between the loads of 10,000 and $25,000 \mathrm{lbs}$., is $649,780 \mathrm{lbs}$. per square inch.

Table O shows the several readings.
Beam XLIV was tested March 31st, 1893, with the annual rings as in Fig. 89.

The load upon the beam was gradually increased until it amounted to $51,870 \mathrm{lbs}$., when it failed by the tearing apart of the fibres on the tension side.

The maximum skin stress corresponding to this load is $3,148 \mathrm{lbs}$. per square inch.

The co-efficient of elasticity, as determined by an increment in the deflection of .19 in . between the loads of 1,000 and $25,000 \mathrm{lbs}$, is $649,780 \mathrm{lbs}$. per square inch, the same co-efficient as in beam XLIII.

Table 0 shows the several readings.
Beam XLV was tested March 11th, 1893, with the annual rings as in Fig. 90.

The load upon the beam was gradually increased until it amounted to $24,850 \mathrm{lbs}$., when it failed by the tearing apart of the fibres on the tension side.

The maximum skin stress corresponding to this load is $3,681 \mathrm{lb}$; per square inch.

The co-efficient of elasticity, as determined from an inerement in the deflection of .81 in , between the loads of 2,500 and $12,000 \mathrm{lbs}$., is $956,540 \mathrm{lbs}$.

Table P shows the several readings.
Beams XLV I and XLVII are the two ends of Beam XLV, tested on March 11th, 1893, the central portion containing the fracture having been eut out.

Beam XLVI was tested March 30th, 1893, with the annual rings as in Fig. 91.

The load upon the beam was gradually increased until it amounted to $44,400 \mathrm{lbs}$., when it failed by the tearing apart of the fibres on the tension side.

The maximum skin stress corresponding to this load is $2,740 \mathrm{lbs}$. per square inch.

The co-efficient of elasticity, as determined by an increment in the deflection of . 23 in . between the loads of 10,000 and $25,000 \mathrm{lbs}$., is $536,770 \mathrm{lbs}$.

Table P shows the several readings.
Beam XLVII was tested March 30th, 1893, with the annual rings as in Fig. 92.

The load upon the beam was gradually inereased until it amounted to $48,650 \mathrm{lbs}$., when it failed by the tearing apart of the fibres on the tension side.

The maximum skin stress corresponding to this load is $3,003 \mathrm{lbs}$, per square inch.

The eo-efficient of elasticity, as determined by an increment in the deflection of . 2 in , between the loads 10,000 and $25,000 \mathrm{lbs}$., is 617,283 lbs.

Table P shows the several readings.
Beams XLVIII to L were sent to the laboratory by Mr. P. A. Peterson. These beams were purchas d from the Pembroke Lumber Company, and are supposed to hive been similar in quality to the timber used on the Pembroke section of the Canadian Pacifie Railway.

Beam XLVIII was tested March 1st, 1894, with the annual rings as in Fig. 93. The darkened portion, Fig. 96, represents sapwood.

The load upon the beam was gradually iucreased until it amounted to $38,100 \mathrm{lbs}$., when the beam failed by the erippling of the material at the support on the compression side, Fig. 94. The load was still
gradually increased until it amounted to $47,960 \mathrm{lbs}$., when a complete fracture took place by the tearing apart of the fibres on the tension side at the centre, and simultaneously by a longitudinal shearing throughout one-half of the length of the beam, as in Figs. 94, 95.

The maximum skin stress corresponding to the breaking load of $38,100 \mathrm{lbs}$, is $3,991 \mathrm{lbs}$. per square inch ; the maximum skin stress corresponding to the load of $47,960 \mathrm{lbs}$. is $5,017 \mathrm{lbs}$. per square inch.

The total compression of the timber at the centre was .93 in ., so that, taking the effective depth to be 14.3875 ins., the maximum compressive skin stress at the support would be $4,161 \mathrm{lbs}$. per square inch, the corresponding maximum tensile skin stress being $4,652 \mathrm{lbs}$, per square inch.

As-uming the usual law to hold good for the whole of the effective depth, the maximum skin stress would be $4,447 \mathrm{lbs}$. per square inch.

The co-efficient of elasticity, as determined by an increment in the deflection of .375 in ., between the loads of $2,000 \mathrm{lbs}$, and $19,000 \mathrm{lbs}$., is $1,164,700 \mathrm{lbs}$.

Table Q gives the several readings.
The total weight of the beam on March 1st, the date of test, was 524 lbs .10 ozs ., or 41.08 lbs . per cubic foot, and on February 1st the weight was 597 lbs ., or 46.73 lbs . per cubic foot, showing a loss of weight at the rate of .209 lb . per cubic foot per day.

The time occupied by the test was 48 minutes.
Beam XLIX was tested March 2nd, 1894, with the annual rings as in Fig. 97. The darkened portions represent supwood.

The load upon the beam was gradually inereased until it amounted to $47,080 \mathrm{lbs}$., when the beam failed by the tearing apart of the fibres on the tension side, accompanied simultancously by a longitudinal shear and a crippling of the material in the compression side, Figs. 98, 99.

The maximum skin stress corresponding to the breaking load is $4,936 \mathrm{lbs}$. per square inch.

The total compression of the material at the centre was 2.8 ins ., so that taking 13.095 ins, as the effective depth, the maximum skin compressive stress would be $5,156 \mathrm{lbs}$. per square inch, and the corresponding skin tensile stress would be $7,353 \mathrm{lbs}$. per square inch.

Assuming the usual law to hold good for the whole of the effective depth, $6,835 \mathrm{lbs}$, per square ineh would be the maximum skin stress.

The co-efficient of elasticity, as determined by an increment of . 435 in., between the loads of 3,000 and $21,000 \mathrm{lbs}$., is $1,052,600 \mathrm{lbs}$.

Table Q shows the several readings.
The weight of the berm was 525 lbs .12 ozs , or 41.33 lbs , per cubic foot February 1st, and 473 lbs .12 ozs ., or 37.24 lbs . per cubic foot on Mareh 2nd, showing a loss of weight at the rate of 141 lbs . per cubie foot per day.

The time occupied by the test was fifty minutes.
Beam L was tested Murch 10th, 1894, with the annual rings as in Fig. 100.
setoo

The load upon the beam was gradually increased untıl it amounted to $32,200 \mathrm{lbs}$., when it failed by the tearing apart of the fibres on the tension side.

The maximum skin stress corresponding to this load is $4,370 \mathrm{lbs}$. per square inch.

The co-cfficient of elasticity, as deduced from an increment in the deflection of .805 in ., between the loads of 1,000 and $19,000 \mathrm{lbs}$., is $1,181,240 \mathrm{lbs}$.

Table Q shows the several readings.
The weight of the beam was 509 lbs .12 ozs . or 33.64 lbs . per cubic foot on March 10th, the dite of test, and 575 lbs .8 ozs., or 37.25 lbs . per cubic foot, on Fibruary 1st, showing a loss of weight at the rate - of .0975 lb . per cubic foot per slay.

OLD WHITE PINE.

Beams LI to LIII are three old white pine stringers sent to the laboratory by Mr. P. A. Peterson. These stringers had been in service since 1885, i.e., for about eight years; they were removed from the trestles during the summer of 1892.

Beam LI was teated Dicamber 1st, 1893, with the annual rings as in Fig. 101.

The load upon the beam was gradually increased until it amounted to $22,730 \mathrm{lbs}$, when the beam failed by shearing, longitudinally as in Figs. 102, 103, the distance between the portions of the beam above and below the plane of shear being $\frac{1}{4} \mathrm{in}$.

The maximum skin stress corresponding to this load is $3,212 \mathrm{lbs}$, per square inch.

The co-efficient of elasticity, as determined by an increment in the deflection of . 55 in ., between the loads of $2,500 \mathrm{lbs}$. and $12,000 \mathrm{lbs}$, is $982,480 \mathrm{lbs}$.

Te ble R shows the several readings.
The total weight of the beam on December 1st, date of test, was 445 lbs ., or 28.3 lbs , per cubic foot. The weight of a length of 14 $\mathrm{ft}, 1 \frac{3}{4} \mathrm{ins}$, was 376 lbs ., or 28.12 lbs . per cubic foot on December 2nd, and 367 lbs . 5 ozs., or 27.47 lbs , per cubic foot on December 8th, showing a loss of weight at the rate of .1083 lb . per cubic foot per day.

Beam LII was tested December 9th, 1893, with the annual rings as in Fig. 104.

The load upon the beam was gradually increased until it amounted to $26,320 \mathrm{lbs}$., when the beam failed by the tearing apart of the fibres on the tension side.

The maximum skin stress corresponding to this breaking load is $3,589 \mathrm{lbs}$, per square inch.

The total compression of the material at the support was .37 in ., so that, taking 14.85 ins, as the effective depth, the maximum skin compressive stress is $3,671 \mathrm{lbs}$. per square inch, the corresponding maximum tensile stress being $3,863 \mathrm{lbs}$. per equare inch. Assuming the usual law to hold good for the whole of the depth, the maximum skin stress per square inch would be $3,774 \mathrm{lbs}$.

The co-efficient of elasticity, as determined from an increment in the deflection of .635 in . betwern the loads of $2,500 \mathrm{lbs}$, and $14,500 \mathrm{lbs}$., is $929,690 \mathrm{lbs}$.

Table R shows the several readings.
The weight of the beam on November 29th was 430 lbs ., or 28.71 lbs, per cubic foot, and on December 9th, the date of test, the weight was $415 \mathrm{lbs} .6 \frac{1}{2}$ ozs., or 26.08 lbs , per cubic foot, showing a loss of weight at the rate of .263 lb . per cubic foot per day.

Beam LIII was tested December 9th, 1893, with the annual rings as in Fig. 105.

The beam was a poor specimen, being full of knots and season cracks, and partly decayed. The grain on the top was parallel, while on the sides it was somewhat oblique.

The load upon the beam was gradually increased until it amounted to $18,600 \mathrm{lbs}$., when it failed by the tearing apart of the fibres on the tension side.

The maximum \leqslant kin stress due to this breaking load is $2,495 \mathrm{lbs}$, per square inch.

The co-efficient of elasticity, as determined by an increment in the deflection of .55 in . betwecn the ioads of $1,500 \mathrm{lbs}$, and $10,000 \mathrm{lbs}$., is $650,930 \mathrm{lbs}$.

Table \mathbf{R} shows the several readings.
The weight of the beam was 450 lbs .12 o2s., or 29.02 lbs . per cubic foot on Nov. 9 th, and 438 lbs .13 ozs., or 28.25 lbs . per cubic foot on Dec. 8th, showing a loss of weight at the rate of .0855 lb . per cubic foot per day.

The time occupied by the test was 20 minutes．
The following table gives the summary of the results obtained for White Pine ：－

New Timber．

Beams．	Dimensions in	inches．			
XIII．	${ }_{288}^{l} \times 18{ }^{d}$	$\times 9^{\text {b }}$	41.49	3，815	979，220
XLV．	288×18	＋$\times 1$	41.49	3，681	956，540
XLVIII．	150×15.1875	＋ 9.375	41.68	3，991	1，164，700
XLVI．	120×18	＋9	39.53	2，740	536，770
XLVII．	120×18	－9	39.40	3，003	617，283
XLIII，	120×18	＋ 9	39.50	3，000	649，780
XLIV．	120×18	＋$\times 9$	39.40	3，148	649，780
XXXVI．	288×18	$\times 9$	37.25	2，993	500,000
XLIX．	150×15.37	＋ 9.125	37.24	4，936	1，052，600
XXXVII．	288×18	＋9	36.43	3，555	1，020
XL．	120×18	＋99	36.13	3，311	693,090
XLI．	120×18	＋ 9	36.13	2，500	519,820
XXXVIII	114×18	＋9	34.78	3，075	622，640
XXXIX．	102×18	＋ 9	34.78	2，696	433，250
1	186×15	＋ 9.0625	33.64	4，370	1，184，240
Old Timber．					
LIII．	180×15	＋9．05	28.25	2，495	650,930
LI．	192×15.12	$\times 9$	28.3	3，212	982，480
LIII．	180×14.85	＋ 9.05	26.08	3，589	929，690

Hence，for the new timber，
The average weight in lbs．per cubie foot $=37.88$ ．
＂co efficient of elasticity in lbs，per sq．in．$=754,265$ ．
＂maximum skin stress＂＂＝3388．
The following data are suggested for practice ：－
The average weight in lbs．per cubic foot $=37.8$ ．
＂co－efficient of elasticity in lbs．per sq．in $,=754,000$ ．
＂maximum skin stress＂＂$=3,300$ ．
＂safe working skin stress in lbs．per sq．in．， 3 being at factor of safety $=1100$ ．
Further experiments will probably show that these data require some modification．In fact，the actual skin stress and co－efficients of elas－
ticity are certainly greater than those given in the preceding table, which have been calculated on the assumption that the amount of the compression at the central support is sufficiently small to be disregarded, but it has been shewn, as for cxample, in the case of Beam XLIX, that the skin stresses are largely affected by this compression. The co-efficients of elasticity are also necessarily increased by the diminution in the effective depth. Similar remarks apply to the other timbers,

From the experiments with the old White Pine stringers, it might be inferred that these timbers have lost considerably in weight, but that they have in a great degree retained their strength and stiffness. Other old timbers will require to be tested, however, before any definite statement can be made on the subject.

NEW SPRUCE BEAMS.

Beam LIV was tested Nov. 2nd, 1893, with the annual rings as in Fig. 106.

This stick was sent to the laboratory by Mr. T. J. Claxton. It was eut out of a tree felled near the Skeena River, British Columbia, on the Pacific Coast, about six hundred miles north of Victoria. The \log was felled in Dec., 1892, or January, 1893, and was over 100 ft , in length, squared 36 ins . at the small end, and would have provided fom 12,000 to 15,000 of market lumber.

The beam in question was sawn from the \log in June, 1893, and was shipped by steamer at the end of June from the town of Claxton, situated at the mouth of the Skeena River, where the mills are located. At Vietoria the beam was transhipped and brought down in August via the C.P.R. to Montreal. It was delivered at the laboratory early in September.

It might, perhaps, be of interest to note that the cost of freight for this beam from Claxton to Victoria was $\$ 4.00$; from Vietoria to Vancouver 82.00 ; from Vancouver to Muntreal $\$ 46.00$; and the cartage to the Uuiversity $\$ 4.00$, making a total cost of freight of $\$ 56.00$.

It is said that the spruce from the Skeena District is of a specially fine quality, having a clear straight grain, and possessing a large amount of toughness.
The load upon the beam was gradually inereased until it amourted to $36,800 \mathrm{lbs}$., when the beam failed by the crippling of the fibres on the compression side, Fig. 107.
The maximum skin stress corresponding to this breaking load is $5,908 \mathrm{lbs}$. per square inch.
The total compression of the material at the central support was .5 in., so that taking the effective depth as 17 ins ., the maximum skin compressive stress is $5,941 \mathrm{lbs}$. per square inch, the corresponding skin tensile stress being $6,301 \mathrm{lbs}$. per square inch.

If it is assumed that the usual law holds good for the whole of the effective depth of 17 ins, the maximum skin stress is $6,260 \mathrm{lbs}$. per square inch.

The co-efficient of elasticity, as deduced from an inerement in the deflection of 1.15 ins , between the loads of 1,000 and $15,000 \mathrm{lbs}$., is 1,528,499 lbs.

Table S shows the several readings.
The weight of the beam on Oct. 3rd was $751 \mathrm{lbs}, 6$ ozs., or 27.206 lbs. per cubic foot, and on Nov, 3rd, the date of test, it weighed 735 $\mathrm{lbs} .2 \frac{1}{2}$ ozs., or 26.614 ibs . per cubic foct, showing a loss while in the laboratory at the rate of . 019 lbs . per cubic foot per day.

Beams LV and LVI are the ends of Beam LIV, the central portion containing the fracture having been cut out.

Beam LV was tested Nov. 3rd, 1893, with the annaal rings as in Fig. 108.

The load was gradually increased until it amounted to $73,000 \mathrm{lbs}$., when it failed ly the crippling of the fibres on the compression side, Fig. 109.

The maximum skin stress corresponding to this load is $4,839 \mathrm{lbs}$. per square inch.

The maximum compression of the material at the central support was 2 ins., so that taking 15.5 ins , as the effective depth, the masimum compressive skin stress is $\mathbf{5}, 123 \mathrm{lbs}$, per square inch, the corresponding tensile skin stress being $6,641 \mathrm{lbs}$. per square inch.

If it is assumed that the usual law holds good for the whole of the effective depth, the maximum skin stress becomes $6,176 \mathrm{lbs}$.

As soon as the beam was relieved of load, the amount of compression at the support was immediately diminished by . 9 in ., and at the end of thirtcen days the amount of compression was .82 in .

The co-efficient of elasticity, as determined by an increment in the deflection of .17 in ., between the loads of $3,000 \mathrm{lhs}$. and $10,000 \mathrm{lbs}$., is $1,070,950 \mathrm{lbs}$.

Table T shows the several readings.
The weight of the beam on Nov. 3rd, date of test, was 26.614 lbs . per cubic foot.

Beam LVI was tested Nov. 4th, 1893, with the annual rings as in Fig. 110.

The load was gradually increased until it amounted to $\mathbf{7 0 , 0 0 0} \mathrm{lbs} .$, when it failed by the crippling of the fibres on the compression side, Fig. 111.

The maximum skin stress corresponding to this breaking load is $4,614 \mathrm{lbs}$ per square inch.

The maximum compression at the centre of support was 1.9 ins ., so that taking 15.6 ins , as the effective depth, the maximum compressive skin stress is $4,916 \mathrm{lbs}$. per square inch, the corresponding tensile skin stress being $6,280 \mathrm{lbs}$. per square inch.

If it is assumed that the usual law holds good for the whole of the effective depth, then the maximum skin stress becomes $5,806 \mathrm{lbs}$, per square inch.

Ten days after this beam had been relieved of load, the amount of the compression of the timber at the centre of support was diminished to .77 in .

The co-efficient of elasticity, as determined by an increment in the deflection of .18 in , between the loads of $10,000 \mathrm{lbs}$, and $30,000 \mathrm{lbs}$., is $1,011,450 \mathrm{lbs}$.

Table \mathbf{T} shows the several readings.
The weight of this beam on Nov. 3rd was 26.614 Ibs. per cubic foot.

```
OLD SPRUCE.
```

Beams LV II-LIX were three epruce stringers sent to the laboratory by Mr. P. A. Peterson.

Beams LVII and LVIII were cut at Galbraith's Mill, three miles from Sherbrooke, in 1886, and grew near the same place. They were used in the construction of the bridge near Lennexville in the winter of 1886-87, and had been in service until the summer of 1894, or for a period of about eight years.

Beam LIX was taken out of Bridge E 61 at Roxton Falls during the summer of 1894 , and had been in service since 1885, i.e., for about eight years. This stringer was purehased by Bridge-master MacFarlane, and no further information has been obtained as to its history. The stringer was boxed $\frac{1}{2} \mathrm{in}$. at the ends on the bearings, and several season cracks were shown on the surface.

Beam LVII was tested on the 21st April with the annual rings as in Fig. 112.

Fig. IIa. Figils.

The load upon the beam was gradually inereased until it amounted to $25,700 \mathrm{lbs}$., when the beam failed by shearing longitudinally along the surface of a season crack, the distance between the portions above and below the plane of shear at the end being $\frac{8}{8} \mathrm{in}$.

Immediately after the fracture the jockey weight was run back until the lever again floated, the load upon the beam being $21,000 \mathrm{lbs}$. This load was then gradually increased until it amounted to $24,700 \mathrm{lbs}$.,
when failure occurred by the tearing apart of the fibres on the teusion side and by a further crippling of the fibres on the compression side. The lap at the end of the plane of shear was also increased to $\frac{5}{8} \mathrm{in}$.

The maximum skin stress corresponding to the breaking load of $25,700 \mathrm{lbs}$. is $3,459 \mathrm{lbs}$, per square inch.

The maximum compression of the material at the support was . 31 in., so that taking the effective depth to be 14.69 ins ., the maximum compressive skin stress is $3,526 \mathrm{lbs}$. per square inch, the corresponding tensile skin stress being $3,678 \mathrm{lbs}$. per square inch.

If it is assumed that the usual law holds good fur the whole of the effective depth, then the maximum skin stress becomes $3,607 \mathrm{lbs}$, per square inch.

The co-efficient of elasticity, as determined by an increment in the deflection of .7 in . between the loads of 1,500 and $12,500 \mathrm{lbs}$., is $1,123,400 \mathrm{lbs}$.

Table U shows the several readings.
The weight of this beam on April 10th was 502 lbs , or 33.82 lbs . per cubic foot; its weight on April 21st, date of test, was $491 \mathrm{lbs}, 4$ ozs., or 33.09 lbs . per cubic foot, showing a loss of weight at the rate of .0645 lbs . per cubic foot per day.

Beam LVIII was tested May 1st, 1894, with the annual rings as in Fig. 113. Season cracks ran intermittently from end to end of the beam.

The load upon this beam was gradually increased until it amounted to $27,470 \mathrm{lbs}$. Under this load the beam failed by shearing longitudinally along a season crack, as shown in Fig. 114, with a partial tension fracture near the end of the beam. The season crack for a distance of about 3 ft . from the centre of the beam appears weathered through the entire thickness of the beam.

Previously, however, to this longitudinal shear, the baam had evidently failed by the crippling of the material, Fig. 114, on the compression side along a line near the centre of the beam where the timber was apparently free from knots and where the fibres were parallel with the axis.

The maximum skin stress corresponding to the load of $27,470 \mathrm{lbs}$, is $5,709 \mathrm{lbs}$. per square inch.
The co-efficient of elasticity, as determined by an increment in the deflection of .575 lbs , between the loads of 2,000 and $12,000 \mathrm{lbs}$., is $1,316,900 \mathrm{lbs}$.

Table U shows the several readings.

The weight of the beam on March 10 th was 267 lbs .1 oz ., or 27.36 lbs. per cubic foot, and its weight on May 2nd was 258 lbs .6 ozs ., or 26.47 lbs . per cubic foot, showing a loss of weight while in the laboratory at the rate of .0163 lb . per cubic foot per day.

Beam LIX was tested June 2nd, 1894, with the annual rings as in Fig. 115.

The load was gradually increased until it amounted to $21,700 \mathrm{lbs}$., when the beam failed by the tearing apart of the fibres on the tension side.

The maximum skin stress corresponding to this load is $2,963 \mathrm{lbs}$, per square inch.

The maximum compression at the centro was .7 in., so that tak ing 14.3 ins. as the effective depth, the maximum compressive skin stress is $3,079 \mathrm{lbs}$. per square inch, the corresponding tensile skin stress being $3,396 \mathrm{lbs}$, per square inch.

If it is assumed that the usual law holds good for the whole of the effective depth, then the maximum skin stress is $3,261 \mathrm{lbs}$, per sq. in.
The co-efficient of elasticity, as determined by an increment in the deflection of . 43 in , between the loads of $2,000 \mathrm{lbs}$, and $10,000 \mathrm{lbs}$., is 905,601 lbs.

Table U shows the several readings.
The weight of the beam on June 1st was 445 lbs .13 ozs ., or 30.12 lbs, per cubic foot. Its weight on Juרe 8th was 440 lbs , or 29.72 lbs . per cubic foot, showing a loss of weight at the rate of .0571 lb . per cubic foot per day.

Beams LX and XLI are two oll spruce stringers sent to the laboratory by Mr. P. A. Peterson.

They had been in use in Culvert E 39 on the north division of the South Enstern Railway, $1 \frac{1}{2}$ miles north of Waterloo Station, since Oct, 1891, or for about three years.

These timbers were cut and sawn at Keene \& Company's mills at the boundary east of Megantic.

EBeam LX was tested on Nov. 10th, 1894, with the annual rings as in Fig. 116.

The upper portion of the stringer, i.e., the part in tension, was partially rotten to a depth of about 1 in ., and the effective depth at the centre of the beam did not exceed $11 \frac{1}{4} \mathrm{ins}$. The remainder of the seetion at the centre was in a perfectly sound and good condition.

The load upon the beam was gradually increased until it amounted to $16,050 \mathrm{lbs}$., when it failed by the tearing apart of the fibres on the tensile side. The load was still increased, and a more complete fracture occurred under a load of $21,240 \mathrm{lbs}$. Immediately after this sccond fracture the jockey weight was run back until the lever again floated, when the load was $15,900 \mathrm{lbs}$. The load was again gradually increased until it amounted to $18,800 \mathrm{lbs}$., when fracture again occurred.

The maximum skin stress corresponding to the breaking load of $16,050 \mathrm{lbs}$. is $2,934 \mathrm{lbs}$.

The maximum compression of the material at the centre was .25 in ., so that taking the effective depth to bo 11. ins., the maximum compressive skin stress is $3,043 \mathrm{lbs}$, per square inch, and the corresponding tensile skin stress is $3,18+\mathrm{lbs}$. per square inch.

If it is assumed that the usual law holds good for the whole of the effective depth, the maximum skin stress becomes $3,118 \mathrm{lbs}$. per square inch.

The co-efficient of clasticity, as determined by an increment in the deflection of .390 in . between the loads of 2,000 and $12,000 \mathrm{lbs}$., is $1,352,250 \mathrm{lbs}$. per square inch.

Table V gives the several readings.
The weight of this beam on Nov. 10th, date of test, was 250 lbs . $12 \frac{1}{2}$ ozs., or 27.26 lbs . per cubic foot.

Beam LXI was tested Nov, 17th, 1894, with the annual rings as in Fig. 117. There were scason cracks from end to end on the front face and numerous ktots of medium and small size on the sides. The darkened portion indicates sapwood.

The load upon the beam was gradually increased until it amounted to $18,400 \mathrm{lbs}$., when the beam failed by the tearing apart of the fibres on the tension face.

The maximum skin stress corresponding to this load is $4,309 \mathrm{lbs}$. per square inch.

The maximum compression of the material at the centre was . 21 in., so that taking the effeetive depth to be 14.29 ins., the maximum
skin compressive stress is $\mathbf{4 , 4 3 2} \mathrm{lbs}$, per square inch, the corresponding tensile skin stress being $4,565 \mathrm{lbs}$, per square inch.

If it is assumed that the usual law holds good for the whole of the effective depth, the maximum skin stress becomes $4,502 \mathrm{lbs}$. per square inch.

The co-cfficient of elasticity, as determined from an increment of .6 in . in the deflection between the loads of $1,000 \mathrm{lbs}$, and $9,000 \mathrm{lbs}$., is $1,250,850 \mathrm{lbs}$.

The weight of this beam on Nov, 17 th, date of test, was 267 lbs ., or 28.85 lbs. per cubic foot.

The following table gives a summary of the results obtained for Spruce:-

New Timber.

Beam.	Dimensions in inches.			
$\begin{aligned} & \text { LIV. } \\ & \text { LV. } \\ & \text { LVI. } \end{aligned}$	l d b 288 $\times 17.5 \times 8875$ 120 $\times 17.5 \times 8.875$ 120 $\times 17.5 \times 9.9 .75$	$\begin{aligned} & 26.614 \\ & 26.614 \\ & 26.614 \\ & \hline \end{aligned}$	$\begin{aligned} & 5,908 \\ & 4,839 \\ & 4,614 \\ & \hline \end{aligned}$	$\begin{aligned} & 1,528,499 \\ & 1,070,950 \\ & 1,011,450 \\ & \hline \end{aligned}$

Old Timber.

| LVII. | 180 | $\times 15$ | \times | 9 | 33.09 | 3,459 | $1,123,400$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| LIX. | 180 | $\times 15$ | \times | 9 | 30.12 | 2,963 | 905,601 |
| LXI. | 186 | $\times 14.5$ | \times | 5.625 | 28.85 | 4,309 | $1,250,850$ |
| LX. | 138 | $\times 11.25$ | \times | 8.875 | 27.26 | 2,934 | $1,352,250$ |
| LVIII. | 180 | $\times 14.75$ | \times | 6 | $\div 6.47$ | 5,709 | $1,316,900$ |

Beams LV and LVI were cut out of Beam LIV as already described. The wide variation in the value of the skin stress and of the co-efficient of elasticity is undoubtedly due to the fact that the amount of the compression at the central support has been disregarded in the calculations. If this compression is taken into account, and if it is assumed that the ordinary theory of flexure holds good for the whole of the effective depth, it has been shewn that the skin stresses in lbs. per sq. in. become 6260 fur Beam LIV, 6176 for Beam LV, and 5806 for Beam LVI, the variation in the magnitude of the stresses being comparatively small.

Further experiments will be made with new spruce beams.
The old spruce stringers were found to possess ample strength and stiffness for the work they were designed to do. The experiments gave :-
29.15 - lbs , as the average weight per cabic foot. $1,189,800$ " " co-efficient of elasticity. 3875 " " maximum skin stress per sq. in.
The fullowing tables \mathbf{A} to V give the end deflections and in some cases the deflections at points dividing the beam into four, six, or eight equal parts, the distance of these points from the ends being stated at the heads of the columns.

Tables A to I show the deflections in inches of Canadian New Douglas Fir Beams (I to XXV) under gradually increased loals.

TABLE A.
Deflections of Beam I at cnds.

Loads in lbs.	Deflection.	Loads in lbs.	Deflec tion.	Loads in lbs.	Deflec tion.	Loads in Jbs.	Deflec. tion.	Loads in lbs.	Deflec tion.
2,000	. 02	9,000	095	16,000	. 18	23,000	. 27	30,000	. 39
2,500	. 03	9,500	. 10	16,500	. 19	23,500	. 28	30,500	. 40
3,000	. 03	10,000	. 11	17,000	. 195	24,000	. 285	31,000	. 41
3,500	. 035	10,500	. 115	17,500	. 20	24,500	. 295	31,500	. 42
4,000	. 04	11,000	. 12	18,000	. 205	25,000	. 30	32,000	. 43
4,500	. 045	11,500	. 125	18,500	. 21	25,500	. 31	32,500	. 445
5,000	. 05	12,000	. 13	19,000	. 22	26,000	. 315	33,000	. 46
5,500	. 055	12,500	. 14	19,500	. 225	26,500	, 37	34,000	. 49
6,000	. 06	13,000	. 145	20,000	. 230	27,000	. 33	35,000	. 51
6,500	. 07	13,500	. 15	20,500	. 24	27,500	. 34	36,000	. 53
7,000	. 075	14,000	. 155	21,000	. 245	28,000	. 35	37,000	. 56
7,500	. 075	14,500	. 16	21,500	. 25	28,500	. 36		
8,000	. 08	15,000	. 165	22,000	. 255	22,400	. 37		
8,500	. 09	15,500	. 17	22,500	. 265	29,500	. 38		

Breaking weight of Beam $I=45,000 \mathrm{lbs}$.

TABLE B.

Loads in lbs.	Deflections of Beams.						
	II	III	IV	V	VI	VII	V III
300	Ends.	Ends.	Ends.	Ends.	Ends.	Ends.	Euds. $.02$
500		. 05		. 005	. 02	. 015	. 03
800							. 05
1,000 08	. 03	. 01	. 04	. 03	. 07
1,300							. 09
1,500 11	. 045	. 02	. 06	. 04	. 10
1,800	035'*						.12
2,000	. 035	. 14	. 05	. 03	. 075	. 06	. 135
2,200 15
2,400 165
2,500 155	. 055	. 05	. 10	. 075	
2,600 18
2,800 195
3,000 18	. 065	. 055	.12	. 10	. 205
3,400	 235
3,500		.21	. 08	. 065	. 14	. 115	
3,800' 26
4,000	. 05	23	. 095	. 07	. 16	. 125	. 28
4,500 25	. 105	. 08	. 18	. 14	. 315
5,000 115	. 09	.20	. 155	. 35
5,500			. 13	. 105	. 22	. 175	. 39
6,000	. 065		. 145	. 11	. 24	. 195
6,500 155	. 125	. 26	. 21	.
7,000			. 165	. 135	. 28	. 22
7,500			. 18	. 145	. 305	. 235	
8,100	. 075		. 19	. 16	. 32	. 25
8,500			. 20	. 17		. 27	
9,000			. 215	. 18			
9,500			. 23	. 195		.	
10,000	. 085		. 245	. 205			
10,500			. 26	. 22			
11,000			. 28	. 235			
11,500			. 30	. 25		
12,000	. 10		. 315	. 26		
12,500	. 105		. 33	. 27			
13,000	. 105		.35	. 28			
13,500	 365	. 29			
14,000	. 110	.	. 38	. 305			
14,500				. 315			
15,000	. 115			. 33			
15,500				. 345			.
16,000	. 12						
16,400 17,000		, 75
17,000 18,000	. 135 \cdot.....
20,000	. 14						
21,000				. 72			.
22,000	.15					
24,000	. 165						
26,000	. 175						
28,000	. 190

Breaking Weight of Beam II $=36,575 \mathrm{lbs}$.

TABLE \mathbf{C}.

.	Deflections of Beam IX.					Deflections of Beam X.				
$\stackrel{9}{8}=$	34 ins.	68 ins.	Ends.	68 ins.	34 ins.	33 ins.	66 ins.	End 4 .	66 ins.	33 ins ,
1000	. 01	. 01	. 02	. 01	. 01	. 02	. 01	. 02	. 01	02
1500	. 03	. 02	. 04	. 02	. 03	. 05	. 02	. 05	. 02	. 05
2000	. 03	. 03	. 05	. 025	. 04	. 07	. 03	. 08	. 04	. 07
2500	. 04	. 03	. 05	. 03	. 05	. 10	. 05	. 11	. 05	. 10
3000	. 10	. 07	. 06	. 05	. 09	.12	. 06	. 14	. 06	12
3500	. 10	. 08	. 12	. 05	. 10	. 15	. 07	. 17	. 07	. 15
4000	. 10	. 08	. 13	. 055	. 10	. 17	. 09	. 20	. 08	. 17
4500	. 10	. 08	. 14	. 065	.11	. 20	. 10	. 23	.10	. 20
5000	. 15	. 10	. 18	. 085	. 15	. 22	. 11	. 26	. 115	22
5500	. 15	. 11	. 19	. 09	. 16	. 25	. 12	. 29	. 12	. 25
6000	. 15	. 12	. 20	. 10	. 17	. 27	. 14	. 32	. 14	. 27
6500	. 19	. 13	. 24	. 11	. 20	. 30	. 15	. 35	. 16	. 30
7000	. 20	.13	. 25	. 115	. 20	. 32	. 17	. 39	. 16	. 32
7500	. 20	. 13	. 25	. 11	. 21	. 35	. 18	. 41	. 18	. 35
8000	. 20	. 13	. 26	. 125	. 22	. 37	. 20	. 44	. 20	. 37
8500	. 22	. 14	. 27	. 135	. 24	. 40	. 21	. 47	. 21	. 40
9000	. 22	. 15	. 28	. 14	. 24	. 42	. 22	. 50	. 22	. 42
9500	. 22	. 15	. 29	. 145	. 25	. 45	. 23	. 53	. 23	. 45
10000	. 26	. 16	. 33	. 16	. 28	. 47	. 25	. 56	. 24	. 47
10500	.33	. 20	. 40	. 19	. 34	. 49	. 26	. 58	. 25	. 49
11000	. 34	. 21	.42	. 20	. 35	. 51	. 27	. 61	. 27	. 51
11500	. 35	. 22	. 44	. 205	. 36	. 54	. 29	. 64	. 29	. 54
12000	. 39	. 23	. 47	. 22	. 40	. 56	. 30	. 68	. 30	. 56
12500	. 40	. 24	. 49	. 22	. 40	. 59	. 32	. 71	. 32	. 59
13000	. 40	. 24	. 50	. 23	.41	. 61	. 33	. 74	. 33	. 61
13500	. 45	. 27	. 54	. 25	. 45	. 64	. 34	. 77	. 34	. 64
14000	. 45	. 27	. 55	. 255	. 46	. 66	. 36	. 80	. 36	. 66
14500	. 45	. 27	. 56	. 26	. 46	. 69	. 37	. 83	. 375	. 69
15000	. 50	. 29	. 60	. 27	. 50	. 71	. 39	. 86	. 39	. 71
15500	. 50	. 30	. 61	. 28	. 51	. 74	. 40	. 89	. 40	. 74
16000	. 50	. 30	. 62	. 29	. 52	. 75	. 41	. 92	. 41	. 76
16500	. 55	. 31	. 66	. 31	. 55	. 79	43	. 96	. 43	. 79
17000	. 55	. 32	. 67	. 3 !	. 56	. 81	. 44	. 99	. 45	. 82
17500	. 56	. 33	. 68	. 32	. 57	. 85	. 46	1.02	. 46	. 85
18000	. 56	. 33	. 69	. 325	. 58*
18500	. 60	. 36	. 75	. 35	. 62	,
19000	. 63	. 36	. 77	. 35	. 64			,	倞.
19500	. 64	. 37	. 78	. 36	65	
20000	, 65	. 37	¢79	. 365	. 66					
40000 $\cdot .$.	1.75						
47000.	2.20	,	

Breaking Weight of Beam $I X=51,600 \mathrm{lbs}$,
$X=1 \boxtimes, 000$ "

TABLE D.

.	Deflections of Beam XI.					Deflections of Beam XII.				
	34 ins.	88	Ends,	68 ins.	34 ins	34 ins	8 ine.	Ende.	88	ins
1000						. 01	. 005	. 01	. 01	. 01
1500	. 02	. 01	. 035	. 015	. 025	. 03	. 02	. 035	. 02	. 035
2000	. 05	. 02	. 05	. 025	. 04	. 05	. 025	. 055	. 03	. 05
2500	. 06	. 03	. 075	. 035	. 06	. 065	. 04	. 075	. 05	. 07
00	. 075	. 04	. 10	. 045	. 08	. 09	. 045	. 10	. 05	. 09
3500	. 10	. 05	. 115	. 055	. 095	. 105	. 06	. 12	. 06	. 105
4000	. 11	. 06	. 135	. 06	. 11	. 12	. 07	. 145	. 07	. 12
4500	. 13	. 07	. 16	. 07	. 135	. 15	. 075	. 165	. 08	. 145
5000	. 15	. 075	. 175	. 075	. 14	. 155	. 09	. 185	. 09	. 155
00	. 16	. 085	. 20	. 09	. 16	. 17	. 10	. 205	. 10	. 17
оe	. 185	. 10	. 22	. 10	. 18	. 19	. 11	. 23	. 11	. 19
6500	. 20	. 105	. 24	. 11	. 195	. 21	. 12	. 25	. 12	. 21
7000	, 215	. 115	. 26	. 11	. 215	. 23	. 13	. 27	. 13	235
00	. 24	.125	. 28	.13	. 235	. 25	. 14	. 295	. 14	.25
000	. 25	. 135	. 30	. 14	. 245	. 27	. 15	. 315	. 15	. 27
8500	. 26	. 145	. 32	. 15	. 265	. 29	. 15	. 34	. 16	. 29
9000	. 27	. 15	. 33	. 155	. 27	. 305	. 17	. 36	. 17	. 305
9500	. 30	. 16	. 35	.165	. 29	. 32	. 18	. 305	. 18	. 32
10000	. 315	. 17	. 38	. 175	. 305	. 35	. 19	. 405	. 19	. 35
10500	. 34	. 185	. 40	. 185	. 335	. 36	. 20	. 425	. 20	. 36
11000	. 36	. 195	. 435	. 20	. 36	. 375	. 21	. 45	. 21	. 38
11500	. 36	. 20	. 435	. 20	. 36	. 39	. 22	. 47	. 22	. 40
12000	. 395	. 215	. 475	. 22	. 395	. 41	. 23	. 495	. 23	. 41
12500	. 40	. 22	. 50	. 23	. 405	44	. 24	. 51	. 24	. 44
13000	. 42	. 23	. 605	. 24	. 42	. 45	. 25	. 535	. 25	. 45
13500	. 45	. 25	. 54	.255	. 445	. 47	. 26	. 555	. 26	. 47
14000	. 46	. 255	. 56	. 265	. 46	. 49	. 27	. 58	. 27	. 49
14500	. 48	. 265	. 57	. 275	. 475	. 50	. 28	. 60	. 28	. 505
15000	. 50	. 275	. 60	. 28	. 50	. 52	. 29	. 62	${ }^{30}$. 52
15500	. 515	.28F	. 62	. 29	. 515	. 55	. 30	. 645	. 305	. 55
16000	. 535	. 295	. 645	. 30	. 53	. 555	. 305	. 665	. 31	. 86
16500	. 54	. 30	. 65	. 30	. 635	. 575	. 32	. 69	. 32	\cdots
17000	. 58	. 32	. 695	. 32	. 575	. 60	. 325	. 71	. 33	. 60
17500	. 585	. 32	. 70	. 325	. 575	. 61	. 33	. 73	. 345	. 615
18000	. 61	. 34	. 735	. 345	. 61	. 63	. 345	755	. 35	. 635
18500	. 61	. 34	. 745	. 35	. 615	. 65	. 35	. 77	. 36	. 65
19000	. 65	. 36	. 78	. 365	. 655	. 665	. 36	. 80	. 375	. 665
19500	. 65	. 36	. 785	. 375	. 655	. 685	. 37	. 82	. 385	69
20000	. 655	. 365	. 80	. 375	. 66	. 705	. 38	. 85	. 40	. 705
20500						. 73	. 395	. 87	. 41	. 725
21000						. 75	. 40	. 89	. 415	. 75
21500						. 75	. 405	. 90.	. 415	. 75
22000						. 78	. 42	. 935	. 435	. 78
22500						. 81	. 435	. 96	. 45	. 805
23000						. 2	. 445	. 98	. 455	. 82
24000			94
26500 28000			1.17.					1.17		
29000								1.22		
32000								1.40		
33000			1.35					1.42		
35800			. 45							
37000								1.67		
39000								1.97		
42000								2.00		
45000								2.28		
48000								2.73		
49000								2.9		

Breaking Weight of Beam XI $=35,800 \mathrm{lbs}$.
$4 \quad \mathrm{XII}=49,000$
table E，

$\stackrel{\text { 官 }}{\underset{E}{E}}$	Deflections of Beam XIII．						Defl	tions	of B	eam	XV．	
9	$\begin{array}{r} 34 \\ \text { ins. } \end{array}$	$\begin{gathered} 68 \\ \text { ins. } \end{gathered}$	$\begin{aligned} & \text { 老 } \\ & \text { a } \end{aligned}$	$\begin{aligned} & 68 \\ & \text { ins. } \end{aligned}$	$\begin{gathered} 34 \\ \text { ins. } \end{gathered}$		$\begin{gathered} 33 \\ \text { ins. } \end{gathered}$	$\begin{gathered} 66 \\ \text { ins. } \end{gathered}$	$\begin{array}{\|l\|l} \frac{i}{4} \\ \dot{y} \end{array}$	$\begin{aligned} & 66 \\ & \text { ins. } \end{aligned}$	$\begin{gathered} 33 \\ \text { ins. } \end{gathered}$	害
7												
1000	25	． 02	． 04	． 02	． 0	． 05		． 01	． 02	． 01	． 02	， 35
1140 1500	． 05	． 035	． 07	． 03	． 05	． 085	． 04	． 02	． 05	． 025	． 04	． 05
1900												． 075
20	． 08	． 05	． 10	． 05	． 08	115	． 055	． 035	． 08	． 04	6	
2300						15	－08			05		09
2500	． 10	． 065	． 14		． 11	． 15	． 08	． 045	． 095	． 05	． 075	
00						7 77						
	． 14	． 08	． 17	． 08	． 14	.19	． 10	． 05	． 115	06	． 10	125
3200				．．．		20	．．．．	．．．．				
3400						． 22						145
3500	． 16	． 10	． 21	． 10	． 16	\ldots	11	． 065	． 14	07	12	．．．
3	．．		．			． 25	．．．．					16
3800 4000	． 20	． 11	． 2	11	． 20	． 255	．13	． 08	． 16		． 14	175
4410						． 275						． 20
4500	． 22	． 13	． 275	． 125	． 22		55	． 095	． 1		16	
00						． 315						215
5000	． 25	． 145	． 31	． 14	． 25	． 32	． 165	． 105	． 21		． 17	225
5200	．．．．					． 345	．．．．					． 23
5400	． 275		． 34		． 275	． 355	19	． 11	24		． 20	
$\begin{aligned} & 5500 \\ & 5600 \end{aligned}$	． 275	． 15	． 4	．	． 275	\ldots	．19	．II	． 24		． 20	． 25
00						． 39						
6000	． 30		36	． 17	． 30	． 40	21	125	． 26			27
6400						．．．	． 3	13				． 29
500	． 33	． 18	40	． 185	． 33	． 435	． 23	． 13	． 28	． 14		
6600 6800	．．．．．					． 465						31
7000	． 36	． 20	． 44	20	． 36	． 485	255	． 145	31	． 15		325
7200	．．．．				．．．．	． 50	．．．					
7400						． 505						34
$\begin{aligned} & 7500 \\ & 7800 \end{aligned}$	． 38	． 2	． 47	． 22	． 39	． 54	27					36
00	． 41	． 22	． 50	23	． 41	． 56	． 295	． 165	． 35	17	． 30	375
00					．．．．	． 58	．．．．	．				40
00				． 245	45	．．．．．．	31	18	38	． 18		
00						． 605						
8800												42
00	． 46	． 255	． 57	26	． 47	． 64	． 34	19	． 40	19	34	． 42
9200						． 66		．．．				
9400						．．						45

TABLE E.-(Continued.)

Loads in lbs.	Deflections of Beam XIII.						Deflections of Beam XV.					
	34 ins.	68 ins.	End 8	\|r 68	34 ins.	Ends	33 ins.	66 ins.	Ends.	\|r 66	ins.	Ends
9500	. 50	. 275	. 605	. 28	. 50		. 35	. 20	. 425	. 205	355	
9600			 69					
9800						. 715						. 475
10000	. 52	. 29	. 64	295	. 53	. 73	. 37	. 21	. 44	. 21	. 375	. 485
10200				 76						
10400						. 765						
10500	. 55	. 305	. 67	. 31	. 55		. 40	. 22	. 475	. 22	. 40	
10600		'	. 80				
10800					\cdots	. 805		-1.7				
11000	. 585	. 32	. 705	325	. 585		. 415	. 23	. 50	. 24	. 415	. 54
11300					\cdots	. 845	.	\cdots				
11500	. 61	. 34	. 745	. 345	. 61		. 44	. 24	. 525	. 25	. 445	. 565
11700		${ }^{3} 5$. 88		2				
12000	. 64	. 35	. 78	. 36	, 84	. 91	. 45	. 255	. 55	. 26	. 45	. 59
12200		 935			
12400		365	1		\cdots	. 95	' ${ }^{\prime}$	…				
12500	. 66	. 365	. 81	. 375	. 67		. 47	. 265	. 57	. 27	. 465	. 61
12600					\cdots	- 950	-		
12800					\cdots	1.00	…				
13000	. 70	. 385	. 845	. 395	. 70	1.00	. 495	. 275	. 60	. 28	. 50	. 65
13200				ii.		1.02	\ldots	- 28	. 6			
13500	. 725	. 40	. 885	. 41	. 735		. 51	. 285	. 62	. 29	. 51	. 68
14000	. 75	. 415	. 915	. 42	. 76	54	. 295	. 64	. 30	. 54	. 71
14500	. 795	. 435	. 96	445	. 795		. 55	. 305	. 66	. 31	. 55	. 73
15000	. 81	. 45	. 99	. 46	. M 2		57	. 32	. 69	. 32	. 575	. 75
15500	. 85	. 47	1.025	. 475	. 85		59	. 33	. 715	. 335	. 60	. 78
16000	. 875	. 485	1.065	. 49	. 875		. 61	. 34	. 74	. 34	. 615	. 81
16500	. 905	. 505	1.10	. 515	. 915 64	. 35	. 765	. 35	. 64	. 83
17000	. 94	. 52	1.135	. 525	. 94		. 65	. 36	. 79	. 36	. 655	. 87
17500	. 97	. 54	1.18	. 545	. 975		. 67	. 375	. 81	. 375	. 675	. 90
18000	1.00	. 55	1.22	. 56	1.01		. 69	. 385	. 835	. 39	. 70	. 93
18500	1.04	. 575	1.265	. 58	1.045		. 71	. 395	. 86	. 40	. 71	. 95
19000	1.06	. 59	1.31	. 60	1.07		. 74	. 405	. 875	. 41	. 735	. 98
19500	1.1	. 615	1.35	. 62	1.1		. 75	. 415	. 91	. 42	. 75	1.00
20.00	1.14	. 63	1.39	. 635	1.14		. 77	.425	. 94	. 43	. 775	1.04
20500	1.165	. 65	1.43	. 655	1.175				1.07
21000	1.21	. 67	1.485	. 68	1.22		1.20			1.10
21500	1.24	. 685	1.515	. 69	1.25 1.29					1.13
22000	1.28	. 71	1.57	. 715	1.29				1.15
22500			1.17
23000			1.20
24000			1.70						
25000				1.30		
26000 26300						\cdots	. \cdot.
27000								1.45		
29000								\ldots	1.55			
29300			2.					...	1.70			
30000						1.90			
32000						\cdots			2.25			
35000							\cdots	2.33			
37000							

Breaking weight of Beam $\mathrm{XIII}=29,300 \mathrm{lbs}$.

The Strength of Canadian Douglas Fir,
TABLE F.
Deflections of Beams XVII, X VIII and XIX.

TABLE F-(Continued.)
Deflections of Beams XV II, XVIII and XIX.

Breaking weight of Beam XVII $=48,600 \mathrm{lbs}$.

$$
\begin{array}{llll}
" & \text { " } & \text { XVIII }=69,400 \\
" & " & \text { " } \\
\text { XIX } & =59,5+0
\end{array}
$$

TABLE G.
Deflections of Beams XX and XXI.

Load in Ibs.	XX,							XXI.						
	1st Loading.				2nd Loading.			lst Loading.				2nd Loading.		
	$34 \frac{1}{2}$ ins.	End	$34 \frac{1}{2}$ ins.	Ends.	$34 \frac{2}{2}$ ins.	Euds	$34 \frac{1}{2}$ in 8.	$\begin{array}{\|l\|l} 34 \frac{1}{2} \\ \text { ins. } \end{array}$	E'ds	(342	Ends,	$34 \frac{1}{2}$ ins.	Ends	$34 \frac{1}{2}$ ins.
0								. 009	. 02	. 014	. 020	. 015	. 020	. 015
500	0	. 0	. 0	. 001	. 003	. 005	. 005	. 025	. 035	. 025				
750								. 0375	. 065	. 045				
1000	. 015	. 016	015					. 055	085	. 060	. 095	. 065	. 095	065
1250								. 075	. 110	. 075				
1500								. 095	. 135	. 090				
1750								. 110	. 115	. 110				
2000	. 035	. 040	. 040	. 045	. 035	. 045	. 040	. 120	. 185	. 125	195	. 120	. 185	125
2250								. 140	. 205	. 140				
2500	. 048	. 050	. 050	 155	. 230	. 155				
3000	. 050	. 080	. 055					. 185	. 275	. 185	280	. 190	285	185
3500	. 055	. 090	. 065					. 220	. 325	. 215				
4000	. 070	. 105	. 080	. 105	. 070	. 105	. 075	. 255	. 370	. 250	. 375	255	. 370	250
4250								. 270	. 405	. 270				
4500	. 084	. 115	. 090					. 285	. 430	. 285				
4750								. 302	. 455	. 300				
5000	. 095	. 125	. 100					. 317	. 470	. 315	. 470	. 315	. 470	. 315
5250								. 335	. 495	. 330				
5500	. 100	. 140	. 105					. 350	. 520	. 345				
5750								. 365	. 545	. 360				
6000	. 110	. 155	. 115	. 160	. 105	. 160	. 110	. 380	. 565	. 375	575	. 380	. 575	. 380
6500	. 120	. 170	. 120											
7000	. 130	. 185	. 135									44	. 665	. 440
7500	. 135	. 200	. 140											
8000	. 146	. 210	. 150	. 215	. 145	215	. 150					. 515	. 765	. 515
8500	. 152	. 225	. 160				...							
9000 9500	. 163	. 240	. 170									. 580	. 870	. 575
9500 10000	. 175	. 255	. 180											
10000	. 180	. 270	. 190	. 270	. 180	. 270	. 185					. 645	. 970	. 640
10500 11000	. 194	. 285	. 200										
11000	. 200	. 300	. 205									. 715	1.075	. 700
12000	. 210	. 315	. 222											
12000	. 220	. 325	. 230	. 325	. 215	. 325	. 235				785	. 170	. 765
14000					. 255	. 380	. 260						
15000													515	
16000					. 285	. 430	. 290						. 670	
17000													1.850	
17400													2.000	
17500													2.40	-
18000					. 320	. 485	. 325							\cdots
26000					. 360	. 545	. 370							
22000					. 400	. 505	. 410						
24000					. 440	. 665	. 450							
26000														

TABLE G.-(Continued).
Deflections of Beams XX and XXI.

$\begin{gathered} \text { Load } \\ \text { in } \\ \text { lbs. } \end{gathered}$	XX.				XXI.				
	1st Loading.		2nd Loading.		1st Loading.		2nd Loading.		
	$34 \frac{1}{2}$ ins.	Ends.	$34 \frac{1}{2}$ ins. Ends	$34 \frac{1}{2}$ ins.	$34 \frac{1}{2}$ ins.	Ends.	$34 \frac{1}{2}$ ins.	Ends	$34 \frac{1}{2}$ ins.
28000	. $\cdot .$.		. 791				
30000 8850	
32000		$\ldots . .920$				-
34000		$\cdots . .990$				-
36000 i. 06
38000 1.50						
40000		 2.40						
42000		 3.60					
44000		 505		….				
46000 6.60		. $\cdot .$.		. .	.	
48000			... 7.03						

Breaiking weight of Beam XX $=49,600 \mathrm{lbs}$. " $\quad \mathrm{XXI}=17,960 \quad$ "

Tables H and I show deflections in inches of Old Douglas Fir, etc.
TABLE H.

Loads. in lbs.	Deflections of Beams XXII and XXIII.									
	XXII.					XXIII.				
	$\begin{gathered} 27 \\ \text { ins. } \end{gathered}$	$\begin{array}{r} 54 \\ \text { ins. } \end{array}$	Ends	$\begin{gathered} 54 \\ \text { ins. } \end{gathered}$	$\begin{array}{r} 27 \\ \text { ins. } \end{array}$	$\begin{aligned} & 31 \\ & \text { ins. } \end{aligned}$	$\begin{aligned} & 62 \\ & \text { ins. } \end{aligned}$	Ends.	$\begin{aligned} & 62 \\ & \text { ins. } \end{aligned}$	31 ins.
1,000	. 02 015	. 01	. 015	. 00	. 01
1,500	. 02	. 01	. 02	. 01	. 01	. 025	. 02	. 025	. 01	. 02
2,000	. 025	. 02	. 03	. 01	. 02	. 04	. 03	. 045	. 02	. 035
2,500	. 04	. 025	. 04	. 02	. 03	. 05	. 045	. 05	. 025	. 045
3,000	. 045	. 03	. 05	. 025	. 04	. 065	. 05	. 065	. 03	. 06
3,500	. 05	. 035	. 06	. 03	. 05	. 08	. 06	. 085	. 04	. 07
4,000	. 06	. 04	. 07	. 035	. 06	. 10	. 065	. 105	. 045	. 085
4,500	. 07	. 04	. 08	. 04	. 07	. 11	. 08	. 12	. 05	. 11
5,000	. 08	. 05	. 10	. 045	. 08	.125	. 09	. 135	. 06	. 115
5,500	. 09	. 055	. 12	. 05	. 09	.14	. 095	. 150	. 065	. 13
6,000	. 10	. 06	. 13	. 055	. 10	. 16	. 10	. 175	. 075	. 15
6,500	. 11	. 06	. 14	. 055	. 11	. 17	. 11	.185	. 075	. 16
7,000	. 12	. 07	. 15	. 06	. 12	. 18	. 12	. 20	. 085	. 175
7,500	. 13	. 075	. 155	. 065	. 13	. 20	. 13	. 225	. 095	. 19
8,000	. 14	. 08	. 16	. 07	. 14	. 21	. 14	. 25	. 10	. 20
8,500	. 15	. 085	.17	. 075	. 15	. 225	. 145	. 255	. 11	. 215
9,000	. 16	. 09	. 18	. 08	. 16	. 24	. 155	. 275	. 12	. 225
9,500	. 17	. 095	. 195	. 085	. 17	. 25	. 160	. 285	. 125	. 245
$\underline{10,000}$. 18	. 10	. 20	. 09	. 175	. 26	. 17	. 305	. 13	. 255

The Strength of Canadian Douglas Fir,
TABLE H.-(Continued.)

$\begin{aligned} & \text { Loads } \\ & \text { in lbs. } \end{aligned}$	Deflections of Beams XXII and XXIII.									
	XXII.					XXIII.				
	$\begin{aligned} & 27 \\ & \text { ins. } \end{aligned}$	$\begin{aligned} & 54 \\ & \text { ins. } \end{aligned}$	Ends	54 ins.	$\begin{gathered} 27 \\ \text { ins. } \end{gathered}$	$\begin{gathered} 31 \\ \text { ins. } \end{gathered}$	$\begin{gathered} 62 \\ \text { inx. } \end{gathered}$	Einds	$\begin{aligned} & 62 \\ & 10= \end{aligned}$	31
10,500	. 19	. 105	. 21	. 095	. 18	. 275	. 185	. 325		
11,000	. 195	. 11	. 22	. 10	. 19	. 29	. 19	. 345	. 145	. 275
11,500	. 20	.115	. 23	. 105	. 20	. 305	. 20	. 355	. 15	. 30
12,000	. 21	. 115	. 245	. 11	. 21	. 32	. 205	. 375	. 16	. 345
12,500	. 22	. 12	. 255	. 115	. 22	. 335	. 21	. 390	. 17	. 32
13,000	. 23	. 125	. 265	. 12	. 225	. 35	. 225	. 415	. 175	. 34
13,500	. 235	. 13	. 275	. 125	. 235	. 365	. 235	. 425	. 18	. 355
14.000	. 25	. 14	. 29	. 13	. 25	. 38	. 245	. 44	. 19	. 360
14,500	. 255	. 145	. 30	. 135	. 26	. 395	. 25	. 455	. 20	. 38
15,000	. 265	. 15	. 31	. 14	.265	. 41	. 26	. 475	. 205	. 395
15,500	. 27	. 155	. 32	. 145	. 27	. 425	. 27	. 495	. 215	. 403
16,000	. 28	. 16	. 33	. 15	. 28	. 44	. 275	. 505	. 22	. 42
16,500	. 29	. 16	. 14	. 16	. 29	. 455	. 2×5	. 525	. 23	. 44
17,000	. 259	. 17	. 35	. 165	. 29	. 47	. 29	. 545	. 245	. 45
17,500	. 30	. 175	.36	. 165	. 31	. 485	. 30	. 555	. 245	. 465
18,000	. 31	. 18	. 37	. 175	. 315	. 50	. 305	. 575	. 25	. 478
18,500	. 32	. 185	. 39	. 175	. 32	. 515	. 313	. 695	. 26	. 485
19,000	. 33	. 19	. 39	- 18	. 33	. 53	. 32	. 605	. 265	50
19,500 20,000	. 34	.195	. 40	. 18	. 34	. 545	.33	. 625	. 275	. 51
20,000 20,500	. 35	. 20	. 425	. 185	. 35	. 555	. 345	. 645	. 28	. 53
21,000	.		43	.		${ }^{5} 560$	${ }_{360} .35$. 675	. 285	. 545
21,500						. 580	. 37	. 695	. 305	. 56
22,000			45			. 605	. 375	. 705	. 31	. 58
22,500						. 625	. 38	. 725	. 2	. 695
23,000 23						. 645	. 395	. 745	. 325	. 61
24.000						. 65	. 40	. 765	. 335	. 625
25,000			51			665	. 41	. 780	. 34	.i4
26,000			. 54					. 85	\ldots	…'.
27,000			. 565					. 8		
28.000			. 57					. 90		
30,000 31								1.00		
31,000 32,000			. 66						...	
$\begin{aligned} & 32,000 \\ & 34,060 \end{aligned}$. 67				1.15		
35,000			. 714					. 15		
36,000			. 76						\ldots	
38,000								1.27		
40,000			86					1.34		
41,000			90							
42,000								1.45		
44,000			. 975					1.53		
45,000			. 02							
46,000 47,000								1.60		
$\begin{aligned} & 47,000 \\ & 49,000 \end{aligned}$. 07							
51,000			1.15							\cdots
53,000			. 20							
55,000			1.27							

Breaking weight of Beam XXII $=55,400 \mathrm{lbs}$.
$\mathrm{XXIII}=47,560$

TABLE I.

Loals in lis.	Weflections of Beams XXIV and XXV.									
	XXIV.					XXV.				
	$\begin{aligned} & 22 \\ & \text { ins. } \end{aligned}$	44 ins.	Ends	44 ins.	$\begin{aligned} & 22 \\ & \text { ins. } \end{aligned}$	$\begin{aligned} & 24 \\ & \text { ins. } \end{aligned}$	$\begin{aligned} & 48 \\ & \text { ine. } \end{aligned}$	Ends.	$\begin{aligned} & 48 \\ & \text { ins } \end{aligned}$	$\begin{aligned} & 24 \\ & \text { ins. } \end{aligned}$
500 01	. 005	. 01	. 005	. 01
1,000 015	. 01	. 015	. 005	. 015
2,000 02	. 015	. 03	. 01	. 02
3,000		\cdots			. 04	. 025	. 05	. 015	. 04
4,000 06	. 035	. 075	. 025	. 06
5,000	. 045	. 03	. 05	. 04	. 04	. 075	. 045	. 095	. 04	. 08
6.000	. 065	. 04	. 065	. 045	. 055	. 095	. 055	. 105	. 045	. 10
7,000	. 08	. 04	. 08	. 05	. 06	. 115	. 065	. 140	. 055	. 115
8,000	. 10	. 05	. 10	. 06	. 08	.125	. 07	. 15	. 065	. 125
9,000	. 105	. 055	. 105	. 07	. 08	. 14	. 08	. 18	. 075	. 14
10,000	. 12	. 06	. 12	. 07	. 095	. 155	. 09	. 195	. 08	. 155
11,000	. 13	. 07	. 13	. 08	. 11	. 17	. 10	. 225	. 085	. 165
12,000	. 14	. 08	. 15	. 085	. 125	.185	. 105	. 245	. 10	. 18
13,000	.145	. 085	. 16	. 09	. 14	. 205	. 115	. 26	. 105	. 21
14,000	. 16	. 09	.17	.10	.15	. 215	. 12	. 285	. 115	. 22
15,000	. 18	. 10	. 20	.11	. 165	. 24	. 125	. 30	. 125	. 235
16,000	. 20	. 105	. 21	. 12	. 17	. 255	. 14	. 325	. 13	. 255
17,000	. 21	. 11	. 22	. 125	. 18	. 265	. 15	. 345	. 145	. 765
18,000	. 22	. 12	. 25	. 13	. 19	. 285	. 155	. 365	. 16	. 28
19,000	. 225	. 125	. 25	. 14	. 205	. 30	. 16	.395	. 17	. 305
20,000	. 24	. 13	. 26	. 15	. 22	. 315	. 17	.410	. 18	. 315
21.000	. 26	. 14	. 27	. 16	. 24	. 340	. 185	.445	. 19	. 335
22,000	. 27	. 145	. 29	. 17	. 25	. 355	. 195	. 465	. 20	. 355
23,000	. 28	. 15	. 31	. 175	. 26			
24,000	. 30	.16	. 32	. 18	. 27	 50
25,000	. 31	. 17	. 335	. 185	. 275			
25,800	39	775	\cdots	195	-...			. 54
26,000	. 32	.175	.35	. 195	. 29				\ldots
27,000	. 34	. 18	. 36	.205	. 31			
28,000	. 36	.18	. 38	. 21	. 32				,
29,000	. 37	. 19	. 40	. 22	. 33			
30,000	. 38	. 20	. 415	. 225	. 34					
30,200	\cdots							. 65	\cdots	.
31,000 32,000	. 39	. 21	. 425	. 234	. 355				
32,000 33,000	. 405	. 22	. 45	. 24	. 37				\cdots
33,200			\ldots					75	
34,000			. 48							
36,000			. 51
37,000	.		. 54						
38,000			. 56						...	
39000			. 575						
39,700								. 95	
40,000			66						

Breaking weight of Beam XXIV $=76,900 \mathrm{lbs}$. for beam of reduced length.

Breaking weight of Beam XXV $=42,900 \mathrm{lbs}$.

Table J showing deflections in inches of two Douglas Fir planks under gradually increased loads.

TABLE J.

Loads	Deflections in ins. of Plank 1.	Deflections in ins. of Plank 2.	
	Ends.	Ends.	
2,000	. 05	. 06	
3,000	. 07	. 10	
4,000	. 10	. 15	
5,000	. 12	. 19	
6,000	. 15	. 23	
7,000	. 16	. 27	
8,000	. 18	. 35	
9,000	. 21	.	

Breaking weight of Plank $1=22,250 \mathrm{Ibs}$.

Tables K to M shew deflections in inches of Canadian New Red Pine Beams.

TABLE K.

$\begin{gathered} \text { Londs } \\ \text { in } \\ \text { lis. } \end{gathered}$	Deflections of Beams XXVI to XXVIII.						
	XXVI.					XXVII.	XXVIII.
	35 ins.	70 ins.	Ends.	70 ins,	35 ins .	Ends.	Ends.
1,000	. 055	. 035	. 065	. 04	. 055	. 08	. 09
1,500 1,800	. 110	. 060	.135	. 060	.110	.15	. 15
1,800 2,000	. 145	. 080	. 175	. 080	. 150
2,000 2,300	. 165	.095 .110	.200 .235	. 09	. 165	. 20	. 225
2,500	. 215	. 125	. 260	. 125	. 215	. 261. ${ }^{\text {a }}$
2,700	. 235	. 130	. 285	. 130	. 240		
3,000	. 265	. 150	. 320	. 150	. 265	. 32	. 36
3,200	. 290	. 160	. 350	. 160	. 295	. . .	
3,500	. 320	. 180	. 385	. 180	. 320	. 37	. 44
3,700	. 345	. 195	. 410	. 195	. 350		
4,000	. 370	. 210	. 450	. 210	. 370	. 44	. 50
4,200	. 395	. 225	. 475	. 225	. 400	
4,500	. 430	. 245	. 510	. 245	. 430	. 49	. 575
4,700	. 450	. 255	. 535	. 250	. 450		
5,000	. 480	. 270	. 570	. 265	. 475	. 55	. 65
5,200	. 500	. 280	. 600	. 275	. 500	.	
5,500	. 535	. 295	. 635	. 290	. 530	. 60	. 72
5,700	. 560	. 310	. 660	. 305	. 550	
6,000	. 580	. 330	. 700	. 320	. 580	. 66	. 79
6,200	. 605	. 340	. 725	. 335	. 600	. . . ${ }^{\text {. }}$.	
6,500	. 635	. 360	. 755	. 350	. 635	. 73	. 86
6,700	. 655	. 370	. 790	365	. 655	
7,000	. 690	. 385	. 825	380	. 685	. 79	. 93
7,200	. 715	. 395	. 855	. 390	. 705		
7,500	. 745	. 415	. 890	. 410	. 740	. 8.85	1.00
7,700	. 765	. 425	. 915	. 425	. 755	. 85	
8,000	. 800	. 445	. 950	440	. 800	. 92	1.07
8,200	. 820	. 455	. 980	. 455	. 815		
8,500	. 850	. 475	1.020	. 470	. 855	. 99	1.14
8,700	. 880	. 495	1.050	. 485	. 875		
9,000	. 915	. 510	1.100	. 510	. 915	1.05	1.21
9,200	. 945	. 525	1.135	525	. 945		
9,500	. 995	. 545	1.185	. 545	. 985	1.13	1.28
9,700	1.015	. 560	1.225	. 560	1.010		
10,000	1.050	. 585	1.265	. 580	1.050	1.20	1.36
10,500		1.43
11,000	,	1.400	1. 36	1.43 1.50
11,500 12,000		1.57
12,000 12,500	1.600	. \cdot.	1.54	1.66
12,500 13,000	.	. \cdot....	1.700	.	\ldots	1.63	1.72
13,500	\ldots	1.63	1.80 1.87
13,800	
14,000	2.050	1.95
14,500	. \cdot.	2.06
15,000	2.00	2.15
15,500		\cdots	2.30
15,600	2.750	\ldots	
16,000	3.000	2.20	2.44
16,500
17,000	2.52	
17.050	2.80

Breaking weight of Beam XXVI $=16,940 \| \mathrm{Is}$.
$\because \quad$ " $4 \quad$ " XXVII $=17,700 *$
tabled.

Loads in lbs.	Deflections of Beams XXIX to XXXII.							
	XXIX.					XXX.	XXXI	XXXII.
	35 in 8	70 ins.	Ends.	70 ins.	35 ins.	Ends.	Ends.	Ends.
2								. 035
500	. 030	. 015	. 04	. 015	. 020	130	\ldots	. 185
600 235
700		\cdots 290
800 245 340
900				\cdots		\%..7	. 385
1,000	. 120	. 050	. 140	. 070	.100	. 320	.29	.430
1,100495
1,200		\ldots	\ldots			. 545
1,300				110	\cdots	. 440	. 385	. 600
1,400	. 185	. 090	. 225	. 110	. 190 650
1,500 505	450	. 700
1,600	'..7		. 750
1,700 1,800			310	150	\cdots	. 590	. 520	. 800
1,800	. 265	. 135	. 310	. 150	. 250 855
1,900	. 300	.150	350	.170	. 290	710	615	915 .960
2,100 15	1.015
2,200	...	\ldots	\ldots		1.075
2,300			\cdots		\cdots	. 835	. 725	1.145
2,400	. 370	. 190	. 440	. 205	. 360			1.195
2,500 905	780	1.245
2,600		1.300
2,700	410			\cdots	435			1.360
2,800	. 440	. 235	. 525	. 250	435	1.040	. 900	1.410
2,900								1.465
3,000	.480	. 250	. 565	. 265	. 460	1.150	960	1.525
3,100	\cdots			1.585
3,200		,	..	1.210	1.035	1.625
3,300 3,400				$\cdots 305$				1.700
3,400 3,500	. 550	. 295	. 650	. 305	. 540			1.750
3,500 3,600	\ldots	.	1.340	1.115	1.800
3,600 3,700		\ldots			\ldots		\ldots	1.865 1.935
3,700 3,800	. $\quad .620$.6.	. 330	.740	. 350	. 610	1.456	1.225	1.935 1.990
3,900 70					2.025
4,000	. 640	. 350	. 775	. 365	. 640	1.550	1.320	2.100
4,100	.							2.170
4,200	\ldots	\ldots	1.640		2.220
4,300	\cdots	\cdots		\cdots	\ldots	1.445	2.290
4,400	. 740	. 390	. 865	. 410	. 730	1765		2,355
4,500 4,600	1.765	1.510	2.420
4,600 4,700	\ldots	\ldots	\cdots	2.470
4,700 4,800810	. 445	. 960	. 450	. 800	1.900	1.615	2.530 2.610

TABLE I --(Montinved.)

Loads in lbs.	Deflections of Beams XXIX to XXXII.							
			XXIX.			XXX.	XXX1.	XXII.
	35 ins.	70 ins.	Ends.	70 ins	35 ins.	Ends.	Ends,	Ends.
4,900								2.680
5,000	. 850	. 460	1.000	. 470	. 835	2.010	1.700	2.755
3, 100	. \cdot...		-..	2.830
5,200	2.120	1.815
5,300 5,400	. 910	. 500	1.085	' 515	. 900		1.815
5,400 5,500	.910 $\ldots .$.	. 560	1.085	515	. 900	2.335	1.895	...
5,700	…	2.515	1.85
5,800	. 985	. 545	1.175	. 560	. 990		
6,000	1.030	. 565	1.225	. 580	1.005	2.900	2.115
6,400	1.110	. 610	1.320	. 620	1.100		
6.500		2.410
6,800	1.170	. 640	1.405	. 660	1.175
7,000	1.220	. 665	1455	. 675	1.210
7,400 7,800	1.290 1.360	. 715	1.555	. 740	1.300	..	\ldots
7,800 8,000	1.360 1.410	. 755	1.660	. 775	1:360
8,000 8,400	1.410 1.500	. 785	1.710	. 800	1.410	\cdots
8,400 8,800	1.500 1.590	. 8380	1.810 1.915	. 850	1.510 1.580
9,000	1.640	. 910	2.005	. 930	1.650			
10,000			2.270	
11,000		...	2.650 \mid	

Breaking weight of Beam XXIX $=11,960 \mathrm{lbs}$.

TABLE M.

Loads in lbs.	Detlections of Beams XXXIII to XXXV.		
	XXXIII.	XXXIV.	XXXV.
	Ends.	Ends.	Ends.
500...... 065	. 080	. 030
800............. .	\cdots	. 145	. 065
$1,000 \ldots \ldots$.	. 160	. 185	. 090
1,200 $\ldots \ldots \ldots \ldots$.205	. 2380	. 125
1,400250	. 275	. 175
1,600............	. 275	. 320	. 175
1,800............	. 325	. 360	. 195
2,000 \ldots.	. 375	. 405	. 220
2,200...........	.410	. 450	. 245
2,400...........	. 465	. 490	. 270
2,600 500	. 535	. 295
2,800 $\ldots \ldots \ldots \ldots$.540 .585	. 580	. 320
3,000 $\ldots, \ldots \ldots \ldots$.	. 585	. 625	. 345
$3,200 \ldots \ldots \ldots \ldots$ $3,400 \ldots \ldots \ldots \ldots$	- .630	.670 .715	.370 .390
3,400............. . .	.670 .710	. 760	.390 .415
3,800 750	. 810	. 445
4,000 790	. 850	. 465
4,200............	. 830	. 900	. 490
4,400 $\ldots \ldots$.	. 870	. 945	. 515
4,600 \ldots.	. 910	. 990	. 545
4,400 950	1.035	. 565
5,000	- 1.000	1.080	. 590
5,200	1.040	1.125	. 615
$5,400 \ldots \ldots$.	1.090	1.175	. 640
5,600	1.125	1.220	. 670
5,800	1.165 695
6,000	1.220720 .745
6,200	1.260 745
6,400.....	1.310*	. 770
6,600 6.	1.3 .15 800
6,800	1.415830 .860
7,000	1.455 860
7,200.............	1.545 885
7,400	1.590 915
7,600	1.640 1.690 950
$7,800 \ldots ~$	1.690 1.790	\ldots

Breaking weight of Beam XXXIII $=9,250 \mathrm{lbs}$.

"	"	XXXIV $=5,600 "$	
"	"	"	XXXV $=7,600 "$

Tables N to \mathbf{Q} show deflections in inches of Canadian New White Pine Beams．

TABLE N．

	Deflections of Beams XXXVI to XLI．											
	XXXVI．							$\left\lvert\, \begin{gathered} \text { XXXVII. } \\ \text { Ends. } \end{gathered}\right.$	$\frac{\text { XXXVIII. }}{\text { Ends. }}$	$\frac{\mathrm{XXXIX}}{\text { Ends. }}$	$\left\lvert\, \frac{\text { XL }}{\frac{\dot{x}}{\frac{\dot{x}}{\text { a }}}}\right.$	$\begin{gathered} \text { XLI. } \\ \hline \text { 蚛 } \\ \text { 至 } \end{gathered}$
	$\begin{aligned} & 108 \\ & \text { ins. } \end{aligned}$	$\begin{array}{\|c\|} \hline 72 \\ \text { ins. } \end{array}$	36	豆	36 ins．	72	ins．					
5000	． 109	． 30	． 30	． 32	． 30	． 29	． 109	．．．．．．．	．．．．．．．	．．．．．．．		
7500	． 375	． 70	． 93	1.02	． 90	． 66	． 344	．．．．．．．				
10000	． 594	1.00	1.33	1.45	1.29	． 95	． 516	．．．．．．	． 10	． 11	． 11	． 13
11000	． 719	1.34	1.78	1.95	1.74	1.28	． 688	． ．	．．．．．．	．．．．．．	．．．	
12500	． 799	1.47	1.96	2.16	1.93	1.42	． 750	．．．．．	． 125	． 14		
15000	． 906	1.68	2.24	2.45	2.20	1.62	． 875	．．．．．	． 15	． 165	． 17	.20
17500	1.125	2.05	2.70	2.97	2.65	1.96	1.047	．	． 19	． 19		
20000	．．．．						．．．．		． 21	． 2255	． 23	． 29
22000	．．．．	．．．		．．．．		． ．	\cdots	．．．．．．	．．．．．		． 25	． 32
22500	．．．．	．．．．				．．．	．．．．	．．．	． 245	． 2555	．	
24000	．．．．						\ldots	．．．．．．		．．．．．．	． 27	． 35
25000	．．．．						．．．．	．．．．．．	． 27	． 285	．	
26000				．．			．．．．	．．．．．．．	．．．．		． 30	． 40
27500				．．．			\ldots	．．．．．．	． 30	． 31		
28060	．．．．					．．．．	\ldots	．			． 33	． 44
30000	．．．．								． 33	． 35	． 36	． 49
32000	．．．．						．．．．		．		． 39	． 53
32500				．．．．			．．．．		． 37			．
34000						．．．	．	．．．	．．．．．．	．	． 42	相
36000	．．．．						，	，	．．．．．．	．	． 45	．

Breaking weight of Beam XXXIV $=19,600 \mathrm{lts}$.

6	，	＊	XXXV	＝	24，000	
	＂	4	XXXVI	＝	52，450	
	＊	＂	XXXVII		51，400	

TABIE O.

$\begin{aligned} & \stackrel{\text { g }}{=} \\ & \text { E } \\ & \text { n } \\ & \text { U } \end{aligned}$	Deflections of Beams XLII to XLIV.								
	XLII.							XLIII.	XLIV.
	108 ins	72 ins	6 ins.	Ends	36 ins. 7	72 ins.	108 ins	Ends.	Ends,
2500	. 0312	. 05	. 07	. 08	. 07	. 055	. 031
3000	. 047	. 095	. 14	. 15	. 14	. 10	. 047
3500	. 078	. 13	. 18	. 19	. 18	.13	. 078
4000	. 094	. 17	. 24	. 26	. 24	.17	. 109
4500	. 109	. 20	. 27	. 30	. 28	. 205	. 125
5000	. 125	. 245	. 33	.37	. 34	. 25	. 141	
5500	. 141	. 275	. 38	. 42	. 39	. 28	. 156	
6000	. 172	. 325	. 44	. 47	. 45	. 33	. 172
6500	. 187	. 35	. 49	. 53	. 49	.35	. 188
7000	. 219	. 39	. 54	. 60	. 34	. 40	. 219	.	
7500	. 234	. 425	. 59	. 65	. 60	. 43	. 234	..	
8000	. 250	. 47	. 64	. 71	. 65	. 47	. 266
8500	. 281	. 505	. 69	. 76	. 70	. 52	. 281	
9000	. 297	. 54	. 75	. 82	. 75	. 55	. 312
9500	. 312	. 59	. 80	. 90	. 81	. 60	. 328	*	
10000	. 328	. 61	. 84	. 93	. 85	. 63	. 344	. 10	. 11
10500	. 359	. 66	. 91	1.00	. 91	. 67	. 359
11000	. 375	. 70	. 97	1.07	. 96	. 71	. 375
11500	. 406	. 75	1.03	1.14	1.04	. 76	. 406
12000	. 422	. 77	1.06	1.17	1.07	. 79	. 422
12500	. 438	. 80	1.11	1.21	1.11	. 82	. 438	. \cdot
13000	. 453	. 835	1.16	1.30	1.17	. 875	. 453
13500	. 484	. 905	1.24	1.37	1.25	. 93	. 484
14000	. 500	. 945	1.29	1.44	1.31	. 97	. 510
14500	. 531	. 975	1.34	1.49	1.355	1.00	. 531	. ${ }^{\text {a }}$	16
15000	. 547	1.02	1.40	1.55	1.415	1.02	. 562	.16	. 16
15500	. 562	1.06	1.45	1.61	1.48	1.10	. 578
16000	. 593	1.105	1.51	1.68	1.53	1.15	. 693
16500	. 609	1.15	1.57	1.76	1.60	1.19	. 625
17000	. 641	1.19	1.63	1.81	1.65	1.23	. 641
17500	. 656	1.23	1.68	1.87	1.705	1.27	. 672
18000	. 687	1.27	1.75	1.96	1.775	1.32	. 687
18500	. 719	1.34	1.84	2.05	1.86	1.39	. 734	
19000	. 750	1.38	1.89	2.11	1.92	1.43	. 750
19500	. 766	1.43	1.95	2.19	1.98	1.47	. 766
20000	. 781	1.48	2.02	2.27	2.05	1.52	. 797	. 23	. 24
20500	. 813	1.53	2.10	2.35	2.13	1.58	. 828	
21000	. 844	1.58	2.16	2.42	2.19	1.62	. 859
21500	. 875	1.665	2.28	2.55	2.31	1.70	. 891
22000	. 924	1.72	2.36	2.65	2.39	1.77	. 938		,
25000	- 29	. 30

$\begin{array}{rlrlrl}\text { Breaking weight of Beam } & \text { XXXVIII } & =26,350 \mathrm{lbs}, \\ \text { " } & \text { U } & " & \text { XXXIX } & =48,600 \\ \text { " } & \text { " } & \text { " } & \text { XL } & =51,870\end{array}$

Red Pone, White Pine and spruce.
Table P.

$\stackrel{i}{\underline{s}}$	Deflections of Beams XLV to XLVII.								
■	XLV.							XLVI.	XLVII.
$\stackrel{\square}{\square}$	108 ins	72 ins.	36 in-	End*.	36 ins.	72 ins.	108 in -	Ends.	Ends.
2500	. 125	. 22	. 30	. 34	. 29	. 21	. 141		. 02
3000	. 141	. 27	. 35	. 39	. 34	. 31	. 156		
3500	. 172	. 29	. 41	. 45	. 39	. 34	. 188		
4000	. 188	. 34	. 45	. 50	. 44	. 36	. 203	
4500	. 203	. 37	. 50	. 55	. 49	. 44	. 219	
5000	. 219	. 42	. 55	. 61	. 54	. 44	. 234		
5500	. 234	.45	. 60	. 67	. 59	. 47	. 250		
6000	. 250	. 49	. 65	. 73	. 64	. 51	. 266		.
6510	. 266	. 53	. 71	. 79	. 69	. 56	. 281		
7000	. 297	. 56	. 76	. 84	. 74	. 59	. 312		.
7500	. 312	. 60	. 81	. 90	. 79	. 62	. 328	
8000	. 344	. 63	. 86	. 95	. 85	. 66	. 344		
8500	. 359	. 67	. 92	1.03	. 90	. 69	. 359
9000	. 375	. 71	. 97	1.08	. 95	. 74	. 391		
9500	. 391	. 75	1.02	1.14	1.00	. 78	. 406		
10006	. 422	. 79	1.08	1.20	1.06	. 81	. 422	. 12	. 10
10500	. 438	. 83	1.14	1.26	1.11	. 86	. 438		.10
11000	. 453	. 87	1.20	1.33	1.17	. 90
11500	. 484	. 92	1.26	1.411	1.24	. 95	. 500	.	\cdots
12000	. 500	. 96	1.31	1.47	1.28	. 98	. 516		
12500	. 531	1.01	1.36	1.53	1.34	1.02	. 53113
13000	. 547	1.05	1.42	1.59	1.39	1.06	. 547
13500	. 563	1.08	1.48	1.66	1.45	1.10	. 578
14000	. 593	1.13	1.55	1.73	1.51	1.15	. 593		...
14500	. 625	1.17	1.60	1.79	1.57	1.18	. 625	
15006	. 641	1.21	1.65	1.86	1.62	1.22	. 641	. 20	.16
15500	. 655	1.25	1.71	1.93	1.69	1.27	. 656		
16000	. 687	1.30	1.78	2.00	1.75	1.31	. 672		
16500	. 703	1.35	1.85	2.08	1.82	1.36	. 687		
17000	. 734	1.39	1.90	2.14	1.86	1.40	. 734
17500 18000	. 766	1.43	1.97	2.22	1.94	1.45	. 750 20
18000 18500	. 781	1.50	2.05	$2 \cdot 33$	2.02	1.51	. 781	,	
18500	. 797	1.54	2.11	2.39	2.08	1.56	. 797	
19000	. 828	1.59	2.19	2.48	2.13	1.60	. 828		
20500	. 924	1.75	2.41	2.63 2.76	2.29 2.38	1.70 1.77	.875 .924	. 26	. 23
21000	. 953	1.82	2.50	2.88	2.47	1.83	. 953		...
22500 25000 26
25000				\cdots			. 35	. 30
27500 30000 34

Breaking weight of Beam XLI $=24,850 \mathrm{lbs}$.
${ }^{\prime \prime}$ XI.II $=44,400{ }^{\circ}$
$\because \quad . \quad$ " XLIII $=48,650 \cdots$ The Strength of Canadian Douglaz Fir,

TABLE Q.

	Deflections of Beams XLVIII to L.								
	XLVIII.			XLIX.			L.		
	$\begin{aligned} & 37 \frac{1}{2} \\ & \text { ins. } \end{aligned}$	$\begin{aligned} & \dot{y} \\ & \text { 畨 } \end{aligned}$	$\begin{aligned} & 371 \\ & \text { ins. } \end{aligned}$	$\begin{aligned} & 37 \frac{1}{2} \\ & \text { ins. } \end{aligned}$		$\begin{aligned} & 37 \frac{1}{2} \\ & \text { ins } \end{aligned}$	$46 \frac{1}{2}$	官	$\begin{aligned} & 462 \\ & \text { ins } \end{aligned}$
100	. 01	. 01	. 01	. 005	. 01	. 005	. 015	. 015	. 01
2000	. 025	. 03	. 02	. 02	. 04	. 02	. 04	. 055	. 035
3000	. 04	05	. 035	. 035	. 06	. 035	. 07	. 105	. 065
4000	. 055	. 065	. 052	. 05	. 08	. 05	. 10	. 15	. 10
5000	. 065	. 085	. 06	. 065	. 10	. 065	. 135	. 195	. 135
6000	. 08	. 105	. 075	. 075	. 125	. 08	. 165	. 245	. 165
7000	. 10	. 125	. 08	. 095	. 15	. 095	. 20	. 295	. 20
8000	. 105	. 15	. 103	. 11	. 17	. 105	. 22	. 33	. 225
9000	. 12	. 17	. 11	. 125	. 20	. 13	. 25	. 375	. 255
10000	. 135	. 195	. 125	. 14	. 22	. 14	. 28	. 43	. 28
10500	. 14	. 215	. 135						
11000	. 15	. 22	. 143	. 155	. 25	. 15	. 30	. 46	. 30
11500	. 155	. 23	. 15						
12000	. 165	. 24	. 155	. 175	. 265	. 165	. 33	. 50	. 33
12500	. 175	. 25	. 16	. 18	. 275	. 17	.35	. 53	. 35
13000	. 18	. 265	. 165	. 19	. 29	. 185	. 36	. 55	. 36
13500	.145	. 27	. 17	. 20	. 30	. 195	. 375	. 57	. 375
14000	. 19	. 285	. 177	. 21	. 315	. 20	. 39	. 60	. 39
14500	. 20	. 295	. 19	. 215	. 32	. 21	. 41	. 615	. 40
15000	. 21	. 305	. 20	. 22	. 35	. 215	. 42	. 645	. 42
15500	. 215	. 32	. 205	. 225	. 355	. 22	. 43	. 655	. 43
16000	. 22	. 33	. 21	. 235	. 365	. 23	. 445	. 67	. 45
16500	. 23	. 34	. 223	. 245	. 875	. 24	. 46	. 70	. 46
17000	. 235	. 355	. 23	. 25	. 89	. 25	. 475	. 72	. 475
17500	. 24	. 365	. 235	. 26	. 4115	. 255	. 49	. 745	. 50
18000	. 25	. 38	. 24	. 27	. 415	. 26	. 51	. 76	. 51
18500	. 25	. 395	. 25	. 275	. 425	. 27	. 525	. 795	. 52
19600	. 265	. 405	. 255	. 285	. 44	. 28	. 54	. 82	. 55
19500	. 27	. 415	. 26	. 295	. 455	. 29	. 55	. 84	. 56
20000	. 275	. 425	. 27	. 30	. 465	. 310	. 57.	. 865	. 58
20500	. 285	. 445	. 2×5	. 31	. 475	. 31	. 585	. 895	. 59
21000	. 295	. 46	. 29	. 32	. 495	. 32	. 60	. 92	. 61
21500	. 30	. 47	. 295	. 325	. 505	. 325	. 62	. 94	. 63
22000	. 31	. 485	. 305	. 34	. 515	. 335	. 635	. 965	. 64
22500	. 32	- 50	. 31	. 345	. 52.	. 34	. 65	1.00	. 65
2300	. 33	. 515	. 32	. 35	. 533	. 345	$\ldots .$.	1.03
23500	. $3: 5$. 53	. 83	. 36	. 555	
24000 24500	. 35	. 54	. 34	. 37	. 57	. 36		1.07	
24500 25000	. 36	. 555	. 35	. 38	. 588	. 37			
25000 25500	. 365	. 565	. 355	. 385	. 685	. 375		1.14
26000	. 3×5	. 60	. 38	. 40	. 61	. 395		1.16	
26500	. 395	. 615	. 385	. 415	. 625	. 405			
27000 625	\ldots	. 42	. 645	. 41		1.25	
${ }_{-27500}$		\ldots	. 43	. 66	. 42			
$\bigcirc 28000$	\cdots	\ldots	${ }^{.445}$. 675	${ }_{.}^{.43}$		1.33	
28500 45	. 69	. 445	

TABLE Q.-(Continued.)

$\begin{aligned} & \stackrel{\dot{3}}{3} \\ & \underset{ }{\equiv} \\ & \frac{\pi}{3} \\ & \frac{3}{3} \end{aligned}$	Deflections of Beams XLVIII to L.								
	XLVIII.			XLIX.			L.		
	$37 \frac{1}{2}$ ins.	号	$\begin{aligned} & 37 \frac{1}{2} \\ & \text { in } 8 . \end{aligned}$	$37 \frac{1}{2}$ ins.	혈	$\begin{aligned} & 37 \frac{1}{2} \\ & \text { ins. } \end{aligned}$	$\begin{aligned} & 46 \frac{1}{2} \\ & \text { ins, } \end{aligned}$	官	$46 \frac{1}{2}$ ins.
29000	\ldots		\ldots	. 46	. 71	. 455		1.41	
29500	\ldots	...	\ldots	. 465	. 725	. 46
30000 69 475	. 74	. 47	. .	1.49
31000	- 78	1.55
32000	\cdots	. 76	1.60
34000	.	. 85	\ldots	\ldots	\ldots
36000	. \cdot.	. 94	.	*...	. 92	
37000 98	
37300	1.00
38100	. .	1.18		.		\ldots	
40000	1.25	\ldots	.	1.20	,
41000	\cdots	1.30	
44000	1.50	\ldots	
45000	1.85	\ldots
46000	1.97		\cdots	1.70	\cdots \cdot.
470001	2.15	1.95	

Breaking weight of Beam XL.VIII $=38,100 \mathrm{lbs}$.

| 4 | $"$ | " | XLIX |
| ---: | :--- | ---: | ---: |$=47,080 \%$

Table R shows deftections in inches of Canadian White Pine Beams which have been in servive.

TABLER.

Deflections of Beams LI to LIII.

Breaking weight of Beams LI $=22,730 \mathrm{lbs}$.
$\begin{array}{llll}" & 4 & " \text { LII }=26,320 " \\ * & " & \text { " LIII }=18,600\end{array}$

Tables S and T shew deflections in inches of Canadian New Spruce Beams (B.C.).

TABLE S.

Loads in lbs.	Deflections of Beam LIV.						
	108 ins.	72 ins.	36 ins.	Ends.	36 ins.	72 ins.	108 ins.
1,000	. 14	. 22	. 30	. 30	. 26	. 20	. 11
1,500	. 15	. 24	. 33	. 34	. 30	. 23	. 12
2,000	. 17	. 28	. 37	. 38	. 34	. 25	. 15
2,500	. 18	. 31	. 41	. 43	. 38	. 28	. 16
3,000	. 19	. 34	. 44	. 43	. 42	. 31	. 18
3,500	. 21	. 36	. 48	. 51	. 45	. 34	. 19
4,000	. 22	. 39	. 52	. 56	. 50	. 37	. 21
4,500	. 24	. 42	. 56	. 60	. 54	. 39	. 22
5,000	. 25	. 45	. 60	. 64	. 57	. 42	. 24
5,500	. 26	. 47	. 63	. 68	. 60	. 45	. 25
6,000	. 27	. 50	. 67	. 72	. 64	. 48	. 26
6,500	. 29	. 53	. 71	. 76	. 67	. 50	. 28
7,000	. 31	. 56	. 75	. 80	. 71	. 52	. 30
7,500	. 32	. 59	. 79	. 84	. 75	. 56	. 31
8,000	. 34	. 61	. 82	. 88	. 79	. 60	. 32
8,500	. 35	. 65	. 86	. 92	. 83	. 61	. 34
9,000	. 37	. 67	. 90	. 97	. 86	. 65	. 35
9,500	. 38	. 70	. 94	1.01	. 90	. 67	. 36
10,000	. 40	. 73	. 97	1.05	. 94 39
10,500	. 41	76	1.01	1.09	. 98	. 71	. 40
11,000	.45	. 79	1.05	1.14	1.02	. 72	. 41
11,500	. 44	. 84	1.09	1.17	1.05	. 75	. 43
12,000	. 46	. 84	1.13	1.21	1.09	. 78	. 45
12,500	. 48	. 87	1.16	1.26	1.14	. 82	. 46
13,000	. 49	. 89	1.19	1.29	1.16	. 83	. 48
13,500	. 50	. 92	1.23	1.34	1.20	. 84	. 49
14,000	. 51	. 95	1.27	1.38	1.24 50
14,500	. 53	. 98	1.30	1.42	1.28 51
15,000	. 54	. 99	1.32	1.45	1.31 53
15,500	. 55	1.00	1.32	1.46	1.32	. 99	. 54
16,000	. 55	1.00	1.33	1.48	1.34	1.01	. 54
16,500	. 55	1.01	1.34	1.50	1.35	1.02	. 55
17,000	. 56	1.01	1.34	1.51	1.36	1.03	. 56
17,500	. 56	1.02	1.35	1.52	1.40	1.05	. 57
18,000	. 56	1.03	1.35	1.54	1.41	1.06	. 58
18,500	. 57	1.03	1.36	1.55	1.43	1.07	. 59
19,000	. 57	1.04	1.36	1.57	1.45	1.09	. 60
19,500	. 58	1.04	1.36	1.58	1.46	1.11	. 60
20,000	. 58	1.05	1.37	1.60	1.47	1.12	. 61
20,500	. 71	1.32	1.52	1.93	1.74	1.30	. 70
21,000	. 72	1.35	1.80	1.98	1.78	1.33	. 71
21,500	. 74	1.38	1.85	2.02	1.82	1.36	. 73
22,000	.76	1.41	1.90	2.07	1.86	1.38	.75
23,400	2.20	
26,200 27,800	2.50	\ldots
27,800 29,000	. \cdot.	2.75
29,900	\ldots	. \cdot.	2.85 3.00 \cdot.	...
30,800	\ldots	\ldots	3.15	\ldots
32,000	3.25
32,500	,	3.35
33,200	3.70	\ldots
33,500 33,800	3.80
33,800	. \cdot.	4.00
34,400 34,800	4.10
34,800 35,600	4.25
35,600 36,200	4.50	\ldots
36,200 36,300	4.60
36,300 36,600	4.75
36,600 36,800	4.90 \cdot.
36,800 38,250 \cdot.	5.00	\cdots	.	\ldots
38,250	5.50

TABLE T.

Loads in Ibs.	Deflections of Beams LV and LVI.					
	LV.			LV1.		
	30 ins.	End.	30 ins.	30 ins.	End.	30 ins,
10,000	. 05	. 09	. 05	. 11	. 07	. 0
11,000	. 06	. 10	. 06	. 11	. 09	. 06
12,000	. 07	. 10	. 065	. 12	. 10	. 06
13,000	. 07	. 11	. 07	. 13	.10	. 117
14,000	. 08	. 11	. 075	. 13	.11	. 08
15.000	. 08	. 12	. 08	. 135	. 12	. 09
16,000	. 09	. 13	. 085	. 14	. 13	. 09
17,000	. 10	. 14	. 09	. 145	. 14	. 095
18,000	. 10	. 15	. 095	. 15	. 15	. 10
19,000	. 11	.16	. 105	. 16	.15	. 105
20,000	. 11	. 17	. 11	. 16	. 16	. 11
21,000	. 12	. 17	. 12	. 17	. 17	. 115
22,000	. 12	. 18	. 125	. 175	. 18	. 12
23,000	. 13	. 19	. 13	. 185	.19	. 12
24,009	13	. 20	. 135	. 19	. 19	.13
25,000	. 14	. 21	. 14	. 195	. 20	. 14
26,000	. 15	. 22	.145	. 2	. 20	. 15
27.000	. 15	. 23	. 15	. 2	. 22	. 15
29,000	. 16	. 24	. 16	-. 215	. 24	. 16
29,000	. 16	. 25	. 165	. 22	. 21	. 16
30000	. 17	. 26	. 17	. 225	. 25	. 17
31,000	. 17	. 27	. 18	. 23	.26	. 17
32,000	. 18	. 28	. 185	. 235	.97	. 18
33,000	. 19	. 29	. 19	. 24	. 28	. 185
34.000	. 20	. 30	. 20	. 245	.29	. 19
35,000	. 20	. 31	. 205	. 255	. 29	. 20
36,000	.21	. 32	. 21	. 267	. 31	20
37,000	. 21	. 33	. 215	. 27	. 32	. 21
38,000	.22	. 34	. 225	. 28	$\cdot 33$. 215
39,000	. 22	. 35	. 23	. 28	. 34	. 225
40,000	. 23	.36	. 24	. 285	. 35	. 235
41,000	. 24	. 37	. 25	. 29	. 36	. 24
42,000	. 25	. 38	. 255	. 30	. 37	. 25
43,000	. 25	. 39	. 26	. 31	. 39	. 255
44,000	.26	.40	. 27	. 32	.40	. 26
45.000	. 27	.41	. 28	. 325	. 41	. 27
46,000	. 27	.42	. 29	. 335	. 42	. 28
47,000	. 28	. 44	. 30	. 34	.45	. 285
4×600	. 29	.45	. 305	.35	.46	. 30
49,000	. 30	.46	. 315	. 36	. 47	. 305
50,000	. 31	. 48	. 32	. 37	. 49	. 315
51,000	. 31	. 50	. 33	. 38	. 50	. 325
52,000	\cdots	. \cdot. 39	. 52	. 34
53,000	\cdots	. 40	. 55	. 35
54.000 41	. 56	. 36
55,000 56,000	. \cdot.42 .44	.59 .60	.37 .39
				. 44	. 60	. 39

Breaking weight of Beam LV $=73,000-\mathrm{lbs}$.
"
$"$ LVI $=70,000 "$

Table U and V show deflections of Canadian Spruce Beams which have been in service.

TABLE U.

Loads in Itis.	Deflections of Beams LVII to LIX.						
	LVII.			LVIII.			LIX
	$45 \mathrm{in*}$.	Endx.	$45 \mathrm{ins}$.	45 ins .	Ends.	$45 \mathrm{ins}$.	At End.
1.000	. 01	. 02	. 01	. 030	. 040	. 040	
1,500	. 02	. 05	. 025	. 050	. 065	. 056
2000	.035	. 07	. 05	. 060	. 100	. 070	. 09
2,500 3,000	. 05	. 09	. 07	. 080	. 130	. 095
3,000	. 06	. 11	. 09	.100	. 160	. 115
3,500	075	. 11	.10 .	. 120	. 190	. 130
4.000	. 13	.15	.115	. 140	. 215	. 150	.20
4,500	. 10	.17	. 135	. 160	. 250	1:0	
5,060 5,500	. 115	. 20	. 15	. 175	. 270	. 190	. 25
5.500	. 13	. 22	. Iti5	. 200	. 300	. 205	
6.000	14	. 24	. 19	. 210	. 330	. 225	. 30
6,500	. 16	. 26	. 20	. 240	. 360	. 248	
7,000	. 17	. 28	. 21	. 255	. 390	.251	. 36
7,500	. 185	. 30	. 22	. 275	. 420	. 285
8,000 8,500	. 20	.33	. 235	. 300	. 450	. 305	. $41{ }^{\text {\% }}$
8,500 9,000	. 21	. 35	. 25	. 315	. 475	. 320
9,000 9.500	. 225	. 37	. 26	. 341	. 500	. 342
9.500 10.000	. 235	. 39	. 275	. 350	. 535	. 362	. $\cdot .$.
10,000 10,500	$\xrightarrow{.25}$. 41	29	$\therefore 75$. 570	. 380	. 52
10,500 11,000	. 265	. 44	. 30	. 400	. 590	. 400	
11,000 11,500	. 275	. 46	. 315	. 410	. 620	. 415
11,500	. 29	. 47	. 33	. 440	. 650	. 440
12,000	. 30	. 50	. 35	. 450	. 675	. 460
12,500 13,000	. 32	. 52	. 36	. 475	. 70.5	. 480
13,000 13,500	. 335	. 54	. 37	. 500	. 745	. 500
13,500 14,000	.35 .36	. 55	. 39	. 510	. 765	. 515
14,000 14,500	. 36	. 57	. 40	. 540	. 800	. 540	\ldots.
14,500 15,000	.37 .39	. 60	. 415	.550 .575	.840 .860	.555 .580	
15,500	. 40	. 6.5	. 45	. 600	.860 .900	.580 .620	- .
16,000	. 415	. 67	. 46	. 615	.900 .920	. 620	
16,500	. 435	. 69	. 47	. 640	. 960	. 645	
17,000 17,500	. 45	. 72	. 49	. 655	. 990	. 665	...
17,500 18,000	. 46	. 74	. 50	1.025
18,000 18,500	. 475	. 76	. 52
18,500 19.000	. 51	. 78	. 54	\ldots
19.000 19,500	. 51	. 80	. 56	...	1.120	
19,500 20,100	. 525	. 83	. 575	
20, 21,000	. 55	.87 .92	. 59	1.180	
22,000	-97	\ldots	1.270 1.350
23,000	.	1.10	. \cdot.	\cdots	1.450 1.430
24,000	1.50			1.570
25.000		2.40		\ldots
26,000	…...	1.850
27,000	,	2.040

The Breaking weight of Beam LVII $=25,700 \mathrm{lbs}$.

TABLE V.

Loads in lbs.	Deflections of Beams LX to LXI.					
	LX.			LXI.		
	34 ins.	At End.	34 ins.	46 ins .	At End.	46 ins.
500 015	. 02	. 01
1,000	. 005	. 015	. 005	. 04	. 05	. 03
1,500	. 005	. 045	. 015	. 06	. 09	. 05
2,000	. 020	. 050	. 020	. 085	. 14	. 07
2,500	. 035	. 070	. 035	. 105	. 17	. 10
3,000	. 045	. 080	. 045	. 135	. 20	. 12
3,500	. 055	. 100	. 055	. 150	. 24	. 15
4,000	. 065	. 120	. 065	. 180	. 290	. 170
4,500	. 070	. 140	. 070	. 20	. 320	. 190
5,000	. 080	. 145	. 080	. 23	. 350	. 210
5,500	. 095	. 165	.160	. 245	. 390	. 245
6,000	. 105	. 185	. 105	. 265	. 430	. 260
6,500	. 115	. 200	. 115	. 29	. 46	. 28
7,000	. 130	. 220	. 130	.31	. 51	. 31
7,500	. 140	. 240	. 145	. 34	. 54	. 335
8,000	. 155	. 255	. 155	. 36	. 57	. 355
8,500	. 175	. 285	. 170	. 39	. 61	. 38
9,000	. 180	. 300	. 185	. 41	. 65	. 40
9,500	. 190	. 320	. 195	. 435	. 70	. 43
10,000	. 205	. 345	. 205	. 455	. 74	. 45
10,500	. 220	. 365	. 220	49	. 76	. 485
11,000	. 230	. 380	. 230	. 51	. 79	. 50
11,500	. 250	. 415	. 255	. 54	. 88	. 54
12,000	. \cdot...	. 440	92
13,000 457 95
14,000		. 510	1.03
15,000 565	1.08	****
16,000 610	1.20
17,000		. 690	1.32	.
18,000 750	1.41
19,000 870	*****	*
20,500 000

Breaking weight of Beam $\mathrm{LX}=16,050 \mathrm{lbs}$.
" 4 " $\mathrm{LXI}=18,400$ "

COMPRESSIVE STRENGTH.

The experiments to determine the compressive strength of the various timbers have been chiefly made with columns cut out of the sticks already tested transversely. These columns were, in the first place, carefully examined to see that they had suffered no injury. The following inferences may be drawn :-
(1) The compressive strength of Douglas Fir and of other soft timbers is much less near the heart than at a distance from the heart.

Attention may be directed to the case of three equal specimens A, B and C (see photograph page 19), cut out of Beam XIII. The compressive strength of C was found to be $7,706 \mathrm{lbs}$. per square inch as compared with $6,653 \mathrm{lbs}$. per square inch, the compressive strength of A. The difference of strength is undoubtedly due to the very much larger proportion of soft to hard fibre, or of summer to spring growth in C, as compared with the proportion in the case of \mathbf{A}. The compressive strength of the timber increases with the density of the annual rings.
(2) When knots are present in a timber column, the column will almost invariably fail at a knot or in consequence of the proximity of a knot.
(3) Any imperfection, as, for example, a small hole made by an ordinary eant hook, tends to introduce incipient bending, or crippling.
(4) When the failures of average specimens commence by an initial bending, the compressive strengths of columns of about 10 to 25 diameters in length agree very well with the results obtained by Gordon's formula, the co-efficients of direct compressive strength per square inch being $6,000 \mathrm{lbs}$. for Douglas Fir and $5,000 \mathrm{lbs}$, for White Pine.

Gordon's formula, however, is not at all applicable in the case of specially good or bad specimens. It is often found that a very clear, sound specimen, of even more than 20 diameters in length, will show no signs of bending, but will suddenly fail by crippling under a load as great as that sufficient to crush a shorter specimen.
(5) The greatest care should be observed in avoiding obliqueness of grain in columns, as the effective bearing area, and therefore also the strength, are considerably diminished.
(6) If the end bearings are not perfectly flat and parallel, the columns will in all probability fail by bending concave to the longest side.
(7) The average strength per square inch, independent of the ratio of length to diameter, is :

5974	lbs. for New Douglas Fir
6265	" for Old " "
4067	" for New Red Pine
3843	" for New White Pine
2772	" for Old " "
3617	" for New Spruce (B.C.)
5136	" Old Spruce

It should be pointed out that none of the old Douglas Fir columns
exceeded 4.4 diameters in length, while the great majority of the new Douglas Fir columns were from 4 to 25 diameters in length. This explains the reason of the greater average compressive strangth of the old Douglas Fir. A similar rem rk applies to the New and Old Spruce.

Table giving in detail the results of the experiments on the different specimens :-

156 The Strength of Canadian Douglas Fir,
$2.85 \times 3.75 \times 12.5$
$2.92 \times 3.79 \times 12.5$
$2.9 \times 437 \times 12.0$

$2.79 \times 3.43 \times 12.0$

2.92	\times	4.42	$\times 12.0$	5262	34.2
2.87	\times	3.39	$\times 12.0$	6784	35.1
2.93	\times	342	$\times 12.03$	5520	33.9
2.80	\times	4.40	$\times 12.0$	5069	36.4
2.78	\times	4.38	$\times 12.0$	6500	35.5
2.32	\times	3.48	$\times 12.02$	6010	35.9

All clear. Failed by crippling.
All clear. Failed by crippling.
One old side; grain straight and parallel ; one side inclined 1 in . in 12 ins.; on other side, two season cracks. Failed by crippling.

One old side; grain straight and nearly parallel; no seasoning cracks. Failed by crippling.

One old side; grain straight and parallel; one season creck. Failed by crippling.

Two old sides; grain nearly parallel; no reason cracks. Failed by crippling.

Clear and straight grained; one old side with deep seasoning cracks; a slight crack through centre of piece. Crippled 4 ins. from end, and bulged along season crack.

Straight grained; one old side with many season cracke. Failed by splitting down season cracks and afterwards crippling.

Straight grained and clear ; one old side with season crack nearly across piece. Crippled 3 ins. from one end.

Grain straight; two old sides ; piece sound, no flawp. Crippled near one end.

Grain straight and clear, except small pin knot on a corner 4 ins. from end; had two bad season cracks the whole length. Crippled 4 ins, from end induced by season cracks; also bulged out.

$3.38 \times$		$\times 13.53$	6816	34.7	Clear ; grain bent out of straight at one end, due to proximity of knot, also somewhat shaken. also somewhat shaken fibres out of parallel.
$2.20 \times$	2.21	$\times 13.78$	5638	34.3	Grain out of parallel for 1 in in length ; knot on one corner of end Burst along shaken fibres out of parallel.
$3.38 \times$	3.45	$\times 13.90$	6861	33.8	Straight grained, ex otplond Failel by crip pling near knot at end.
4.03 in	diar.	$\times 48.01$	5855	31.3	Grain parellel, no knots ; two small spackit and a annual smass nearly ringaled by straight. Failed to bending concave to a high corner.
$2.84 \times$	4.23	$\times 13.12$	5828	31.5	$\begin{aligned} & \text { Straight grained; } \\ & \text { small pin knot } 3 \text { ins, } \\ & \text { from one end; ; season } \\ & \text { cracks from end to end } \\ & \text { through middle, paesing } \\ & \text { through knot. Failure } \\ & \text { by opening, of season } \\ & \text { cracks, and crippling } \\ & \text { through knot. } \end{aligned}$
$4.10 \times$	4.45	$\times 14.47$	7188	39.1	Clear; grain out of pling and shearing of unsupported fibree.
$2.70 \times$	2.90	$\times 15.96$	8365	39.5	Clear, straight grain shaken over a length or from end.
$2.16 \times$	2.20	$\times 16.29$	6442	36.0	Clear, not straight grain ; somewhat shaken; sheared along shake in grain which being cut off parallel had no thottom support.
4.08 in	diar.	$\times 24.12$	6595	31.8	Clear $\begin{aligned} & \text { grained. } \\ & \text { crippling } \\ & \text { end. } \\ & \text { end }\end{aligned}$ Failed
$2.70 \times$	4,20	$\times 16.45$	6349	30.8	Straight grained; season cracks on one side; several small pin knots. Failed by crippling ${ }^{2}$ ins. from one end through one of the pin knots.

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 2.38 \& \times \& 3.56 \& $\times 16.74$ \& 7143 \& 33.0 \& Straight grain ; fome small pin knots. Crippled through the largest one at centre.

\hline 173 \& \times \& 5.98 \& $\times 17.73$ \& 4209 \& 38.7 \& Grain parallel knot on edge 4 ins. from end; also bad season crack and small deficiency in one corner for 6 ins. from one end. Burs at knot and split along season crack.

\hline 17 \& \times \& 2.25 \& $\times 17.42$ \& 7700 \& 35.6 \& Failed by bending and crippling 3 ins. from end.

\hline 3.11 \& \times \& 400 \& $\times 17.49$ \& 4702 \& 33.2 \& Two heavy knots at centre, one ranning from side to side through centre; grain crooked and not parallel. Failed by grain shearing and bursting through knot at centre.

\hline 3.12 \& \times \& 4.03 \& $\times 17.70$ \& ${ }_{14} 4217$ \& 34.2 \& One heavy knot at centre running from corner tocorner, other smaller knots ; grain crooked and out of parallel. Crippled at knot at centre.

\hline 1.75

0.95 \& x \& 5.82

5.81 \& $\times 17.79$

$\times 1780$ \& 5135 \& 37.8

39.1 \& Grain straight and sound ; season cracks in centre. Failed by crippling at both ends and also by bending, which probably first caused failure.

\hline 3.95 \& \times \& 5.81 \& $\times 17.80$ \& 6432 \& 39.1 \& Grain clear and straight, but not paral lel; slight season cracks. Failed by cripple across 4 ins.from one ond.

\hline 3.95 \& \times \& 5.92 \& $\times 17.82$ \& 5359 \& 38.0 \& Grain clear and straight; some season cracks. Crippled 6 ins. from end.

\hline 4.97 \& X \& 4.95 \& $\times 17.83$ \& 4504 \& 37.9 \& Grain straight and parallel; bad knot 7 ins. from end passing through piece. Failed by bursting at knot and along grain.

\hline 1.71 \& \times \& 5.95 \& 5×17.84 \& 5464 \& 36.0 \& Grain parallel and clear; bad season crack through heart. Failed by bending at centre. Crippled on concave side.

\hline
\end{tabular}

1.79	\times	6.00	$\times 17.85$	6034	36.3	Grain straight and clear ; bad season cracks; also chip out on a corner 4 ins, from one end. Failed at, sound end by crippling and by opening of season crack.
395	\times	$5.95 \times$	$\times 17.89$	6225	38.9	Clear and straight grained; slight season checks. Crippled 3 ins. from one end.
4.08	\times	4.45	$\times 19.68$	6437	36.7	Clear, but badly out of parallel. Failed by bursting along fibres out of parallel.
3.02	\times	4.01	$\times 19.97$	3240	30.8	Two heavy knots at centre, one also at one end, eeveral othersmaller ones. Failed ly bursting down centre through knots.
3.85	\times	3.91	$\times 24.65$	5382	35.2	Grain straight ; two knots on adjacent sides, one at 8 ins. from each end ; season cracks running diagonally at one end. Failed by crippling at large knot.
4.35	\times	4.85	$\times 29.75$	3630	28.0	Failed by shearing and crippling; grain clear, but not quite parallel.
2.20	\times	2.24	$\times 21.05$	7424	35.0	Clear, and straight grained; tested before as pillar. Faile.! by bending 4 ins, from end.
292	\times	3.30	$\times 24.27$	4606	34.6	Straight grain; knot 6 ins. from end passing through a corner. Crippled at knot.
2.60	\times	3.23	$\times 25.4$	4416	34.7	Straight grain ; large knot 4 ins, from end on an edge. Failed by crippling at knot.
2.27	\times	2.28	$\times 23.46$	4363	36.91	Straight grained; clear except part of knot on one end. Failed by crippling at knot.
4.20	X	4.36	$\times 27.88$	2622	32.4	Heart ; grain $2 \frac{2}{2}$ ins. out of straight ; heavy season crack8; two large knots. Failed by bulging along season crack and at knots 14 ins. from end.

$\left.\begin{array}{llll}4.05 \times 4.20 \times 24.70 & 5026 & 33.9 & \begin{array}{c}\text { Tested before as pillar, } \\ \text { failed then at 67, 200 lbs, } \\ \text { This portion had straight }\end{array} \\ \text { grain; two knots close } \\ \text { together 8 ins, from one } \\ \text { end going through piece. } \\ \text { Failed by crippling at } \\ \text { these knote. }\end{array}\right\}$

2.89	\times \times	2.90 4. 97	$\times 26.69$ $\times 25.15$	8269	33.4	Clear and straight grained; failed by compression of fibres on a corner.
2.8?	\times	2.97	$\times 25.15$	9104	40.2	Very heavy summer rings ; clear ; fibres bent 12 ins. from one end at one side due to vieinity of a knot. Failed at crooked tibres.
4.77	\times	5.82	$\times 26.15$	7709	36.5	Did not fail.
4.77	\times	4.68	$\times 22.32$	8411		Same as preceding with piece cut off; clear and straight grain.
4.70	\times	5.85	$\times 25.78$	6653	29.2	Straight grained ; one knot from side to side at centre. Failed by crippling and bulging at knot.
2.27	\times	2.27	$\times 31.0$	3823	37.2	Grain not straight ; one pin knot; also knot on one edge 12 ins. from end. Failed by bending at knot on high corner.
3.38	\times	4.33	$\times 32.20$	6425	41.3	Clear, straight urained. Crippled 1 ft .from end.
3.39	\times	4.42	$\times 8.0 .90$	5935	37.8	Clear, straight grained ; external fibre burst ; then crippled near centre.
3.38	\times	4.42	$\times 32.32$	6111	43.3	Clear, straight grain. ed; burst, then crippled at centre.
3.37	\times	4.33	$\times 32.5$	5420	38.9	Clear,straight grained; season crack on one side ; small season crack across end. Crippled near end.
3.35	\times	4.36	$\times 31.55$	6486	43.1	Clear and straight grained. Crippled near end.
3.41	\times	445	$\times 32.4$	5880	37.6	Clear and straight grained. Crippled near end.
3.27	\times	3.42	$\times 31.75$	5760	33.5	Straight grained ; knot $\frac{1}{2}$: in diar, from side to side. Failed by crippling at this knot 8 ins, from one end.
2.65	\times \times	2.86 .88	$\times 30.65$ $\times 31.83$	8047 7607	36.3	Clear, straight grained. Failed by crippling 8 ins. from one end.
2.67	\times	2.88	$\times 31.83$	7607	35.3	Clear straight grained. Failed by crippling and bending at same instant at centre.

Red Pine, White Pine and Spruce.
$3.93 \times 4.30 \times 31.95 \quad 5124 \quad 32.6 \quad$ Heavy knots near

$4.11 \times$	4.92×31.85	7309
$4.22 \times$	4.92×30.84	7167
$2.33 \times$	2.84×28.00	6496
$2.27 \times$	2.27×33.75	5708

$3.96 \times 4.18 \times 35.25 \quad 5015 \quad 36.6$
$4.20 \times 4.50 \times 38.00 \quad 5905 \quad 35.6$

$3.33 \times$	3.40×33.55	7615	33.6
$3.30 \times 3.38 \times 33.54$	7444	35.6	
$3.35 \times 3.40 \times 33.50$	5338	35.4	

$3.30 \times 3.40 \times 33.55 \quad 5909 \quad 35.6$
$3.30 \times 4.00 \times 33.50 \quad 5416 \quad 35.2$
$3.30 \times 4.00 \times 33.50 \quad 5023 \quad 32.8$

4.25	$\times 5.75$	$\times 35$	5729	
4.25	5.87	$\times 41.75$	4090	
$4 \times$	4	$\times 48$	4469	32.75

Heavy knots near centre. Crippled at knots.
Clear and straight grained, except slight wave 1 ft. from end due to vicinity of knot. Failed at this point by direct erippling.

Clear and straight grained. Crippled 8 ins. from end.

Clear and straight grained. Failed by bending 10 ins. from end.
Clear and straight grained. Failed by bending ; sbort specimen failed at $30,000 \mathrm{lbs}$.

Several knots; crippled at one running from corner to corner 12 ins. from one end.

Grain out of parallel ; clear. Failed by bursting and shearing along season cracks.
Clear, straight grain. Crippled near one end.

Clear and straight grained. Failed by crippling 6 ins. from end.

Large knot passing through centre side to side ; piece split end to end through this knot.

Knot near centre, also two small pin knots near end. Crippled through pin knots.
Large knot near centre passing from side to side. Split from end to end through knot.

Large mass of knots near middle. Crippled at these.

Grain parallel; knot at centreat corner; other knots near end; centre of tree 12 ins. away. Bent at centre at knots concave to a high corner.

164 The Str:ngth of Canadian Douglas Fir,

2.86	\times	4.06	\times	40.02	6330	38.1	Straight grain ; small knot 14 ins. from end Failed by bending in middle.
4.10	\times	4.24	\times	41.83	3866	36.3	Straight grain ; three knots. Crippled at knot 12 ins. from end; no bending.
4.25	\times	4.25	\times	54.95	3389	34.6	Straight grain ; many knots. Burst in two opposite directions at knots 11 ins. from one end and 12 ins . from other end.
1.99	X	2.64	\times	52.62	5105	34.3	Straight grain ; clear bent at centre.
4.26	\times	433	\times	60.0	3980	35.5	Straight grain ; failed by crippling at knot passing through corner 13 ins. from end and $1-16 \mathrm{in}$. out of square
4.09	\times	4.34	\times	59.0	3211	34.4	no appreciable effect. Straight grain ; three or four knots ; season crack on one side. Crippled at knot 20 ins . from end and season crack opening.
4.18	\times	4.22	\times	59.75	3190	35.4	Four knots, two each 18 ins. from ends, several other small knots ; grain not straight; large season crack. Failed by shearing and bursting open at season crack across annular rings.
2.46	\times	2.51	\times	60.5	4619	34.5	Straight grain ; several knots. Failed by crippling at knot 12 ins. from end.

RESULTS OF COMPRESSION TERTS ON
OLD DOUGLAS FIR.
Dimension in ins.
Lengths.

RESULI.TS OF COMPRESSIVE TESTS ON
RED PINE.

Failed at knots 26 ins from end; also at another ring of knots 3 ins. from same end; nineteen knots in length.

One knot near one end Failed by crippling atove knot.

Clear. Crippled 6 ins from one end.

4.81	diam		13.75	5092	
388	*	\times	13.5	7602	39.9
3,80	-	\times	13.31	6438	35.8
4.02	"	\times	18.75	4657	
3.90	.	\times	18.20	7222	35.7
3.66	"	\times	22.61	8516	43,2

4.111	$"$	$\times 22.73$	5637	28.7
4.3	$"$	$\times 22.8$	5983	26.7
3.93	$"$	$\times 29.2$	7914	38.1

6.93	"	$\times 36.12$	2698
7.02	$"$	$\times 36.12$	2087
7.01	$"$	$\times 36.12$	2024
3.97	$"$	$\times 3.10$	3287
4.10	$"$	$\times 3.10$	2825

4.04	$"$	\times	3.10	3482
4.03	$"$	\times	3.10	4247
3.98	$"$	\times	3.10	3223
3.96				
$4.75 \times$	\times	3.10	4001	
4.75	$\times 60$.	3104		

Clear grain. Failed by spreading at bottom.
Nearly straight grain ; knot 6 ins. from end passing nearly through centre. Failed at the knot by crippling.
Straight grained; knot on one end. Failed by crippling at knot about $\frac{1}{2}$ in, from end all around
Clear wood; straight grained; spread at end, due to curvature of fibre in locality of a knot.
Clear and straight grained. Failed 6 ins. from end by folding.
Grain parallel; one knot 10 ine. from end. Failed through knot by crippling.
Four knots at 8 ins. from one end. Failed by crippling at knote.
Grain parallel; two knote, one large knot 10 ins, from one end. Failed by crippling at this knot.
Failed by crushing at knot, 4 ins. from end. Fourteen knots in length.
Failed at knot $8 \frac{1}{2}$ ins. from end ; ten knots in length.
Failed at ring of knots 7 ins. from end; fifteen knots in length.
Crushed and failed at knot; straight grain; fairly free from knote.

Failed by crushing and bending. Straight grain; crack down length.

3.97 in diam. $\times 69$.	2585		
4.08	"	$\times 69$.	2593

.985
Not well seasoned. Failed by crushing and bending at a large knot 31 ins. from end; also at 1 in . from end and $4 \frac{1}{2}$ ins. from other end; straight grained ; six knots in whole length.

Failed at ring of knots four in number by crushing and bending at 24 ins, from end; also at 2 ins. from same end; fourteen knots in whole length.

Priled by crushing; straight grained; failed at two small knots 27 ins. from end and also at 16 ins. from same end; large knots 39 ins. from same end, ten knots in lengtb.

Failed by crushing 16 ins. from one end at a knot. Twelve knots in whole length.

Failed chiefly by crushing 12 ins. from one end; four knots in length.

Failed at knot 24 ins. from end ; six knots in length; also crippled 1 inch from same end.

Failed at knots 26 ins. from end; also at another ring of knots 3 ins. from same end; nineteen knots in length.
Failed at ring of knots 36 ins. from end; sixteen knots in length.
Failed by crushing and bending at large knot 28 ins. from end. eight knots in length.
Failed by crushing at knots 5 ins. from end. Four knots in whole length.

results of compressive tests on NEW WHITE PINE.

176 The Strength of Canadian Douglas Fir,

RESULTS OF COMPRESSIVE TESTS ON OLD WHITE PINE.

Dimensions in inches.
Lengths.

$3.5 \times 44 \times 11.75$
$34 \times 43 \times 11.70$
$2740 \quad 28.10$

Remarks.

Large knots on all sides about 2 ins. from an end, otherwise in good condition, except shivered at a corner between two knots. Failed by splintering at shivered corner ; afoo crippled at knots.

A large knot appearing on two faces 3 ins . from end : also a slight reason crack on one face. Failed by splitting longitudinally along season crack.

178 The Strength of Canadian Douglas Fir,

$4.21 \times 4.21 \times 12.00 \quad 2257 \quad 22.3$
$4.20 \times 4.22 \times 12.002438$
23.6
$4.16 \times 4.21 \times 12.00 \quad 2569 \quad 23.4$
$4.19 \times 4.22 \times 12.00 \quad 2030 \quad 28.0$
$4.13 \times 4.20 \times 12.00 \quad 2686 \quad 24.1$
$4.17 \times 4.18 \times 12.00 \quad 2180 \quad 25.3$
$4.20 \times 4.21 \times 12.00 \quad 1853 \quad 24.4$
$4.21 \times 4.23 \times 12.00 \quad 1915 \quad 25.0$
$4.16 \times 421 \times 12.00 \quad 2512 \quad 23.39$
$4.20 \times 4.23 \times 12.04 \quad 2277$

Grain straight ; three fresh sides; one large knot near end; season cracks on old side. Crippled through knot at one end.

Grain straight ; two large knots at opposite ends; season cracks on old side. Crippled on end at a knot.

Grain straight and parallel, except at one end, where it is curled by vicinity of a knot; otherwise sound. Crippled at sound end.
Two large knots at one end, otherwise straight and clear; fresh sawn on all sides. Crippled at knots at end.
Grain straight ; three small knots at centre; two old sides injured by several small boles. Fibre split and crippled at small knots.

Three large knots at centre; grain parallel; full of season cracks on old side ; fibre split. Crippled at knots.

Grain crooked by knots ; two large knots near centre; large sea. son crack on one old side. Crippled across centre at knots.
Four large knots near centre, otherwise clear and straight ; one knot at each coruer. Crippled across centre at knots.

Grain straight ; three sides fresh sawn ; small pin knot; small defect at one end on old side. Crippled at and near small defect.
A large knot hole at an end; three smaller knots near centre; otherwise sound and straight. Crippled at end aided by knot.

180 The Strength of Canadian Douglas Fir,

$4.18 \times 4.23 \times 12.03 \quad 1838 \quad \mathbf{2 7 . 2}$| Two sides fresh sawn; |
| :---: |

$419 \times 4.2 \times 12.05 \quad 217626.4$

$4.20 \times 425 \times 12.04$

$4.17 \times 4.20 \times 12.02$	2752	24.7	
$4.21 \times 4.23 \times 12.02$	1797	26.7	

Four sides fresh sawn ; grain parallel; season cracks are through specimen; one large and two small knots at one end, large one at corner. Crippled at knots.

Three sides fresh sawn ; grain not paralle! , season cracks through body of specimen; slightly decayed on one side ; several small pin knots. Sheared on rot line and crippled at knots.

All sides fresh sawn; two large knots in body; grain parallel ; slight decay ; cracks in medullary rays. Crippled through knots.

$$
4.18 \times 4.20 \times 12.05 \quad 1789 \quad 25.0
$$

Two sides fresh sawn ; grain not quite parallel ; large knot at one end; season cracks on two old sides ; small knot in body. Crippled through knots.

$4.19 \times 4.22 \times 12.05$	2099	24.8	Three sides fresh sawn; grain parallel; season cracks on old side; two small injuries in old side near one end. Crippled through very small knot near one
end.			

182 The Strength of Canadian Douglas Fir,

Grain straight; one old seasoned side; many knots; failed at one large knot in middle of pillar, which passed through from side to side. Failure by bending across narrow dimension.

Grain straight ; one old side; many small knots ; one large knot on old side 15 ins . from one end. Failed by crippling at that knot.
Straight grain ; fairly clear ; some small knots ; one old seasoned side. Failed by bending 18 ins. from one end in clear wood across least dimensions.

Grain straight; two old sides; knot at one end; also knot at centre passing through a corner. Failed by direct crippling which started at knot in middle of the piece.

Grain nearly straight; one old side; various knots, particularly one near centre passing from coraer to corner of section. Failure by bending at this knot on least dimension.
Grain straight; one old side. Failed near centre by bending across least dimension at a knot, which penetrated the heart of piece from one side.

Two knots on one edge, one large knot at centre, another 12 ins. away; on second face five knots, two near centre, others 12 ins. from ends; grain parallel ; centre of tree in corner of specimen, failed by bending at centre knot, induced first by being $\frac{1}{2} \mathrm{in}$. off centre on top bearing.

Red Pine, White Pine and Spruce.

$3.84 \times 3.84 \times 72.0$	3338	26,06	Bad knot $\mathbf{6}$ ins. from centre on one face ; next face knot 2 ins. from end; grain about parallei; many smaller kaots; centre of tree on same corner as large knot. Failed by bending at Failed by bending at large knot.

RESULTS OF COMPRESSIVE TESTS ON

NEW SPRUCE (B.C.)

Dimensions in inchee.
Lengths.

3415
$4.72 \times 2.313 \times 1.94$
$4.77 \times 2.25 \times 1.9$
$\begin{array}{lll}4.75 \times 2.375 \times 1.875 & 3020 \\ 4.72 \times 2.25 \times 1.875 & 3465\end{array}$
$\begin{array}{lll}4.72 \times 2.25 \times 1.875 & 3465 \\ 4.78 \times 2.25 \times 1.97 & 3256\end{array}$
$4.75 \times 2.25 \times 1.94 \quad 3118$
$4.75 \times 2.312 \times 1.88 \quad 3009$
$4.79 \times 2.29 \times 1.9$
$3.75 \times 2.34 \times 162$
3859
$4.812 \times 2.312 \times 1.94 \quad 3210$
$4.375 \times 1.875 \times 2 \quad 4440$
$4.75 \times 2.25 \times 2.50 \quad 3321$
$4.73 \times 4.73 \times 3.9 \quad 3451$
$3.67 \times 3.67 \times 3.64 \quad 5590$
$4.75 \times 4.75 \times 4.0 \quad 3325$
$4.75 \times 4.75 \times 4 \quad 2838$
$4.812 \times 4.812 \times 4 \quad 2986$
$4.65 \times 4.65 \times 5.20 \quad 4540$
$3.00 \times 2.875 \times 6.50 \quad 7566$
$3.00 \times 3.125 \times 6.00 \quad 6036$
$4.7 \times 4.7 \times 7.75 \quad 4299$
$3.125 \times 2.875 \times 7.25 \quad 6812$
$4.687 \times 4.687 \times 8.66 \quad 5305$
$4.75 \times 4.75 \times 11.5 \quad 4656$
$4.2 \times 3.8 \times 11.5 \quad 4806$
$4.0 \times 4.04 \times 11.75 \quad 3898$

Remarks.

Failed by crippling.

Clear and straight.
$29.80 \quad$ Four pin knots; ends not quite parallel.

Clear and sound; cracks along medullary rays.
Clear and straight. Crippled at centre.
Straight grained. Crippled at large knot on edge near centre.

184 The Strength of Canadian Douglas Fir;

410	$\times 4.10$	$\times 1255$	4451	28.3
3.75	$\times 3.75$	$\times 1205$	4907	29.5
4.72	$\times 4.72$	$\times 14.09$	4063	30.2
4.75	in diar.	$\times 14$.	3328	
3.33	$\times 4.18$	$\times 14.97$	4382	33.9
4.35	$\times 4.32$	$\times 20.55$	3757	29.6
4.35	$\times 4.45$	$\times 20.6$	3540	27.1
4.41	$\times 4.45$	$\times 20.6$	3850	29.9
2.5	+ 3.42	$\times 27.5$	8390	26.3

$3.48 \times 3.50 \times 32.25$	4384	
$2.75 \times 4.05 \times 41.0$	3070	28.3
$2.75 \times 4.02 \times 40.95$	3086	28.4
$4.35 \times 4.50 \times 20.55$	3584	27.4
$4.08 \times 4.35 \times 2.97$	3909	27.5
$4.18 \times 4.35 \times 2.99$	3271	27.7
$4.29 \times 4.35 \times 2.96$	3617	25.4

$4.20 \times 4.35 \times 22.95 \quad 283428.2$
$4.25 \times .4 .40 \times 22.9 \quad 3774 \quad 26.1$
$4.24 \times 4.34 \times 29.942973$
25.1
$4.12 \times 4.35 \times 23.003560$

Clear and straight grained; slight axe-cut on one face 3 ins. from end. Failed by crippling at axe cut.
Crippled at a bunch of five knots.

Five large knots and one large season crack.

Olear and straight. Failed by crippling near one end.

Failed by crippling.
Knot near one end. Faited in centre.
Clear.
Clear and straight grained, but heavy season crack from side to side. Failed by bulging on season crack and then bending.

Grain not straight; heavy knot through centre; also ends not square. Burst apart along centre.

Straight grained. Failed at large knot 3 ins. from end by crippling.

Straight grained ; eight large knots. Failed by bending at two knots 19 ins . from one end concave to high side.

Grain clear and parallel. Crippled at centre.

Grain crinkled near one end. Failed there.

Clear ; straight; no knots. Failed at one end.

Grain not quite parallel; knot near centre of one side at which piece failed.

Grain not parallel. Failed by longitudinal shear, which passed through a knot.

Failed at a knot near centre of one side.

Failed by longitudinal shear.

Failed at a knot.

4.10		4.41	\times	23,00	3680	25.7	Grain parallel. Failed by crippling at a knot 6 ins. from one end.
425		+. 10	\times	23.0	3382	27.9	One season crack, did not affect the failure which was by erippling.
4.10		1. 10	\times	2:05	3550	26.4	Knot near one end. Crippled in body of piece at a distance from the knot.
419		435	\times	23.06	4299	25.6	Grain clear and parallel. Crippled on one side.
2.97	\times	4.0	\times	15.1	4908	26.7	Clear and straight grained. Crippled two inches from end.
3.33	\times	4.1	\times	15.4	3370	26.4	Straight grained ; large knot on middle of side. Failed near one end in clear wood.
4.72		in diar.	\times	15.0	3430	30.86	Four deep medullary weathering cracks; a mass of knots at lower end ; small pin knots at centre ; ends not quite parallel. Crippled at lower end at knots.
2.6		4.1	\times	18.5	5253	24.1	$\begin{gathered} \text { Clear and straight } \\ \text { crained: failed } \end{gathered}$
4.75		diar.	\times	60	1862		crippling and bending 6 ins, from one end.
4.75		" 7.		60	2708		
4.75		4.75		60	2351		
4.75		$\times 1.75$	\times	${ }^{6} 0$	2275		
4.75		+ 475	\times	60	3104		
4.75		- 4.75	\times	6^{6}	2660		
4.75		$\times 4.75$	\times	60	2351		
4.75		- 4.75	\times	60	2306		
4.75		+ 4.75	\times	60	2661		
4.62	\times	- 4.63	\times	60	2431		
4.62	\times	$\times 475$	\times	160	2416		
4.63	\times	- 4.62	\times	-60	2420		
4.75		diam.	\times	-60	2483		
4.75		"	\times	-61	2483		
4.75		"		-61	3215		

186 The Strength of Canulian Douglas Fir,
RESULTS OF COMPRESSIVE TESTS OS
OLD SPRUCE.
Dimensions in inches. Lengths. Remarks.

Clear wood, straight grained ; ends ont of square ; bent over.
Clear wood, straight gramed; ends out of square; bent over.
Clear wood, straight grained; failed by bending ; worm eaten.
Clear wood, straight grained ends out of square ; bent over.
Clear wood, straight grained ; failed by bending ; worm eaten-
Clear wood, straight grained ; failed by bending; worm eaten.

Clear ; straight grained ; crippled at centre.

Clear ; straight grained ; crippled at end at a previous injury on surface.

Straight grained; knot at centre. Crippled at knot.

Straight grained; knot on corner at centre. Failed at knot.

Heavy knot through edge near centre. Crippled at knot.

Straight grained ; knots near each endCrippled and burst through large knot.

Clear wood ; straight grained. Failed by bending; worm eaten.
Clear and straight grained. Crippled near end through a small injury like a nail hole.

2.60	\times	2.63	\times	15.45	7339
2.60	\times	2.75	\times	16.25	3664
2.66	\times	2.5	\times	15.57	6809
2.80	\times	3.37	\times	27.95	5116
2.80	\times	3.35	\times	0.6 .26	5096
2.62	\times	2.75	\times	17.72	5625

Clear; straight grained Crippled 5 ins, from end.
One small knot, but badly out of parallel. Failed at knot.

Straight grained; one small knot near end. Crippled first near centre through cant hook holes.

Straight grain ; knot 12 ins. from end. Crippled at knot.

Straight grain; knot 10 ins. frcm end. Crippled at a knot.

Clear, but grain very much out of parallel, as much as 3 ins. in 18 ins. Burst apart by shearing of unsupported fibre.

TENSILE STRENGTH.

The experiments were especially directed to the comparison of the tensile strength and stiffness of portions of the same stick, in different positions relatively to the heart.

In designing the form of the test-piece, it was of importance to make the head of such a depth as would prevent the central portions from being pulled through the head by shearing along the surface BC , and it was also necessary that the depth should not be inconveniently great. Wedge shaped holders (Fig. H) were, adopted which would grip the specimen along the faces $\mathbf{A B}$. This form of holder was intended to increase the resistance to shear which is always much less than the tensile strength. As the tension on the test-picee increases, so also does the normal pressure upon the faces AB, Fig. K, and, therefore, so also does the resistance to shear along the surface $\mathbf{B C}$. At first, the faces of the holders in contact with the specimen were left rough, but it was found that the roughness prevented the specimen from sliding in far enough to be gripped along the whole of the face AB , so that the bearing surface was practically limited to a comparatively small area near the top of the head. Thus it often happened that the specimen still failed by shearing along the surface BC. This difficulty was obviated by planing the faces of the holders.

The test-pieces were prepared from the uninjured portions of the

Fig. H.
beams, which had already been fractured transversely. The extensions of a length of ten inches of the specimen under gradually inereased loads were measured by means of Unwin's extensometer until the total extension exceeded about one eightieth of an inch After this the extensometer was removed, and in many cases additional extension reading x, up to the point of fracture, of a length of sixteen inches of the specimen, were measured by means of a steel rule and indicator clamped to the specimen at points 16 inches apart and allowed to slide over one another.

The results obtained are given in the following tables, and an examination of these will show :-

1st. That the increments of extension up to the point of fracture are almost directly proportional to the increments of load ;

2nd. That the presence of knots is most detrimental both to the strength and to the stiffness, inasmuch as they practically diminish the effective sectional area, and also produce a curvature in the grain;

3rd. That wood near the heart possesses much less strength and much less stiffness than that more distant from the heart ;

4th. That the strength and stiffness are also dependent upon the proortion of summer to spring growth ;
5th. That irregularity of readings, both with the extensometer and with the rule, are chiefly due to the presence of a knot, or to curly or oblique grain caused by a knot.
Again, some of the tables give the effects on various specimens, of alternately loading them and relieving them from their load, and from the experiments carried out up to date the following inferences may perhaps be drawn :-

If the specimen is clear, free from knots, and straight in the grain, and if no interval of rest is allowed, then for any given range of loads :
(a) The total extension is greatest during the first loading ;
(b) The extensions due to the successive loadings continually diminish, tending to a minimum limit, so that the co-efficients of elasticity increase, and therefore so also does the stiffness ;
(c) By the successive unloadings a set is produced, which continually increases, but at a diminishing rate, and which tends to a maximum limit ;
(d) When the specimen is allowed an interval of rest under the minimum load, the first total extension, when the loading is resumed, is greater than at the commencemeat, but coatinually diminishes, tending to a minimum limit, which possibly eoincides with the maximum limit reached previous to the interval of rest.

So also, after the interval of rest, when the first set produced the specimen is from load, is greater than that previously produced, but gradually diminishes, in the succeoding releases from load, tending probably to a minimum limit coinciding with the maximum limit reached before the interval of rest.

These inferences are also in accord with similar experiments carried out by Mr. Kerry, B.A.Sc.

Special attention may be directed to the test of specimen 4, beam XXI. This specimen failed simultaneously at two sections, the wood seeming to be very brittle, and the character of the failure pointed to some inherent weakness in the timber itself. After a microscopic examination of the fractured sections, Professor Penhallow described the fractures as being " very regular and devoid of any fibrous character, having the "exact appearance of a piece of glass. The lines of fracture followed " the variations in thickness of structure longitudinally and trans"versely with great regularity. The peculiar brittleness can only be " referred to some local molecular condition of unknown origin, possibly " to a deficiency in the element of water."

The simultaneous failure at two sections of specimens 2 and 8 from White Pine beam XLVIII may probably be referred to a similar cause, and, as Professor Peohallow says, adequate explanations of such failures are still to be sought.
In the tables the extensometer measurements are given in hundredthousandths of an inch, and the rule measurements in hundredths of an inch.

With eael table a diagrammatie section is also given, showing the part of the stick from which the several specimens have been taken.
dIAGRAMMATIC SECTIONS FOR TENSION SPECIMENG.

Results of tension tests on specimens 1 to 9 cut out of Douglas Fir Beam IX, and of repeatedly loading a specimen cut out of the same Beam. (Fig 118.)

Loads in lbs.	Readings taken by lixtensometer.								
	Specimen.								
	$\begin{gathered} 1 \\ \text { For- } \\ \text { Fard. } \end{gathered}$		$\begin{gathered} 3 \\ \text { For- } \\ \text { ward. } \end{gathered}$	$\begin{gathered} 4 \\ \text { For- } \\ \text { ward. } \end{gathered}$	$\begin{aligned} & \text { For } \\ & \text { ward. } \end{aligned}$	6 Forward.	$\begin{aligned} & \text { For- } \\ & \text { ward. } \end{aligned}$	$\begin{gathered} 7 \\ \text { For- } \\ \text { ward. } \end{gathered}$	
100	0	0	0	0	0	0	0
200	81	79	65	92	80		50	82
400	229	227	194	261	240	259	259	162	252
600	372	379	318	430	393	293	421
800	509	$5: 7$	435	579	549	564	561	403	579
1,000	644	673	547	737	702	\cdots	$5: 0$	736
1,200	779	818	664	870	852	863	868	637	890
1,400	914	960	784	1060	1004	1004	1025	752	1047
1,600	1049	1097	894	1226	1183	869	1200
1,, 100	1105	1241	1008	1395	984 1098	1200
2,000	1323	1124	1098	.
Total breaking weight in Its, i	9270	6890	10,580	8820	6390	10,114	6348
$\left.\begin{array}{r} \text { Break'g weight } \\ \text { in lbw, per sq. } \\ \text { in......... } \end{array}\right\}$.			
$\left.\begin{array}{r} \text { Coefficient of } \\ \text { elasticty in } \\ \text { lhs................. } \end{array}\right\}$,

Results of tension tests on specimens 1 to 7 cut out of Douglas Fir Beam X.

Results of repeatedly loading tension specimens 2 and 5 cut out of Douglas Fir Beam X. (Fig. 119.)

3							2		Readings taken by						5							
.	Extensometer.													Rule	Extensometer.							
旁	$\begin{aligned} & \text { For- Re- For- } \\ & \text { ward turn, ward } \end{aligned}$	$\begin{aligned} & \mathrm{Re-} \\ & \mathrm{Re} \\ & \text { turn. } \end{aligned}$	$\left\|\begin{array}{c} \text { For- } \end{array}\right\|$		For--		$\text { For- } \mid$	$\begin{aligned} & \text { R- } \\ & \text { turn. } \end{aligned}$		$\mathrm{d} \text { Re- } \mathrm{Re}$			Forward	For-	$\begin{aligned} & \text { For- Re- } \\ & \text { ward turn. } \end{aligned}$		$\begin{array}{\|c} \mathrm{Re} \\ \text { turn. } \end{array}$	$\left\|\begin{array}{c} \text { For- } \mathrm{Re} \\ \text { ward turn. } \end{array}\right\|$		Return		For- Ford
100	$\begin{array}{ccc}0 & 26 & 26 \\ 58 & 26 & 48\end{array}$	14 53 58	14 49	3 62	3 5	70	1 62	73	5 67	${ }_{78}^{8}$	8 69	${ }_{7}^{8}$			$\begin{array}{ll}0 & 29 \\ 51 & 91\end{array}$	29	41 103	41 63 98 117	63 109	$\begin{array}{r} 63 \\ 125 \end{array}$	63	
400	$\begin{array}{llll}176 & 778 & 169\end{array}$	190	189		50	19								167215	213	232	$222 \quad 247$	238	253	238	
600	$294 \ldots . .$.	316													283				
800 000	418427423	440	429	448	439	461	445	461	450	467	452	470	450	403456	447	480	458489	480	500	472	
1200	$\begin{array}{llll}540 & & 8 & \\ 675 & 680\end{array}$	701	686	704	695	$\because 13$	701		706	721	706	723			${ }_{652}^{526} 763$	690	T21	700732	71		71	
; 400		704	7.		,						775							
11,00	${ }_{919} 930$														900927	933	955	943966	954	976	961	
1800.	104910491068	1068	1073	1073	1080	1080	1087	1087	1087	1087	1091	1091	1098		1020							
2000													1253	0	1150 1150	176	1176	11841184	1199	1199	12.3	0
2500														6								${ }_{6}$
3000														12								12
3500														18								18
4000 4500														${ }^{23}$								${ }_{29}^{23}$
4500 5000														$\begin{aligned} & 29 \\ & 35 \end{aligned}$								29 35
5500														40								40
6000														46								45
6500																						50
7500																						${ }_{70}$
Total	l breaking																					
	eight in lbs. $\}$,000												7,500							
Break in lb	k'g weight \} bs p. sq.in.		, 145												10,757							
$\begin{aligned} & \text { Co-effi } \\ & \text { elast } \end{aligned}$	fficient of ti'ty in ibs.	2,321,	,600												2,334,850							
Time	of test, in inntes.	49													15							

Results of tension tests on specimens cut out of Douglas Fir Beam X, and of repeatedly loading another specimen cut out of same Beam (Fig. 119).

Readings taken by Extensometer.

Kesmits of tension tests on specimens 1 to 6 out out of Douglas Fir Beam XII, and of repeatedly loading specimen 3 cut out of same Beam. (Fig. 120).

Results of tension-tests on specimens cut out of Beam XIII, and of repeatedly loading other specimens cut out of the same Beam (Fig. 121).
Readings taken by

[^0]Results of repeatedly subjecting to tensile stress a specimen cut out of Beam XV. (Fig. 122.)

Results of repeatedly subjecting to tensile stress specimens 1 to 4 cut out of Beam XV.
Readings taken by.
Specimen.

Results of repeatedly subjecting to tensile stress a specimen cut out cf Beam XV. Fig. 122.

Results of repeatedly subjecting to tensile stress a specimen cut out of \mathbf{B} cam XV. Fig. 122.-Continued.

[^1]Results of tension tests on specimens 1 to 11 eut out of Douglas Fir Beam XVII．（Fig．123．）

Loads in 1bs．	Readings taken by								
	$\stackrel{1}{\text { Extr．}}$		$\begin{array}{c\|c} 3 & \stackrel{\dot{ \pm}}{\vec{y}} \\ \text { Extr. } \end{array}$		$\begin{array}{c\|c\|} 8 & \text { Extr. } \\ \text { Ex } \end{array}$	$\begin{array}{c\|c} 9 & \text { Extr. } \\ \text { Ex } \\ \hline \end{array}$	$\operatorname{lix}_{\text {Extr. }}$	$\stackrel{7}{\text { Extr. }}$ $\mid \stackrel{\otimes}{\underset{\sim}{\Xi}}$	
100	0		0 ．．	$0 .$.	$0 .$.	0 ．．	$0 .$.	$0 \cdot$	0
200	61		56.	$58 .$.	$95 .$.	$71 .$.	$101 .$.	$91 .$.	93
400	185		$165 .$.	177 ．．	289.	210 ．．	266 ．．	$289 .$.	240
600	286		$278 .$.	$301 .$.	471 ．	$344 .$.	419 ．．	$496 .$.	393
800	408		391.	425 ．．	$655 .$.	$481 .$.	$560 \ldots$	$680 .$.	550
1，000	511		$505 .$.	$546 .$.	843.	612 ．．	$708 .$.	$880 .$.	699
1，200	618		$620 .$.	$669 .$.	1，057 0	$745 .$.	$848 .$.	1，073 ．．	854
1，400	735		$734 .$.	787 ．．	．．．．．．．	8770	$996 .$.	1，271 0	1，006
1，600	834		845 ．．	$909 .$.	．．．．		1，144 ．．	．．．．．．．	1，159
1，800	955		960	1，026 ．．	．．	．\cdot	1，285 0	．．	1，313 0
2，000	1，060	0	1，023 ．．	1，153 ．．	－ 12	．． 3	．．． 3	．．．	．． 3
2，200			1，185 0	1，279 0					
2，500			．．．．．．．．． 5	．．．．．．．．${ }^{5}$	．． 20		．．．${ }_{17}{ }^{9}$	．． 19	．．．．$\left.\right\|_{18} ^{10}$
3，000			．．．．．．．．$\left.\right\|_{10} ^{10}$	．．．．．．．．．．${ }_{16}^{10}$	． 30	．${ }^{13} 18$	．．． 17	．．．．．．．．．．	$\left.\cdots\right\|_{25} ^{18}$
3，500	$\stackrel{\text { ¢ }}{\sim}$		．．．．．．．． 14	．．．．．．．． 16		（1） $\begin{aligned} & 18 \\ & 25\end{aligned}$			
4，000	－	2	．．．．．．．． 19	．．${ }_{28}^{22}$	뽀․	इ实 ${ }^{\text {a }}$		C	包
4,500 5,000	0		… \cdot ．．．．． 29.29	．．${ }^{28}$	$\stackrel{-1}{2}$	\cdots	家	家	를
5，500			．．．．．．${ }^{29}$	．． 37	\＃	\＃\＃	\％	$\stackrel{\text { \％}}{ }$	※
6，000			．．．． 38	$\ldots . . . \mid$ 43	\％	－	$\stackrel{\text { 楼 }}{\text { \％}}$	吅	\％
6，500		\cdots	．．．． 42		줄	중	＊	\＃	즐
7，000	ठ		$\cdots{ }^{48}$		$\stackrel{\square}{\square}$	$\stackrel{\square}{\circ}$			$\%$
7，500		\cdots	． 58						
Total breaking ？	5，500		8，150	6，500	3，200	5，180	3，000	2，920	3，000
werght in lbs．	5，500								
Break＇g weight	7，755		11，631	8，933	4，230	7，035	4，320	4，089	4，040
in lbs．per sq．in．									
elasticity in lbs．	2，578，350		2，518，500	2，224，750	1，377，000	2，036，200	1，978，450	1，426，000	2，264，500
Time of test in \}	27		18	23	14	13	23	18	15

Results of tension tests on specimens cut out of Douglas Fir Beam XX (Fig. 125), and of the repeated loading of other specimens cut out of same Beam :-

Results of tension tests on specimens cut out of Douglas Fir Beam XXI., and of the repeated looding of another specimen cut out of same Beam. (Fig. 126.)

Results of tension tests on specimens cut of an old Douglas Fir stringer, Beam XXII., and of the repeated londing of another specimen cut out of the same Beam.

(Fig. 127.)	Readings taken by 2						3		4	
Loads in Ibs.	Exten	someter	.	師	Extr,	$\stackrel{8}{\underset{\sim}{2}}$	Extr.	$\stackrel{\varrho}{\Xi}$	Extr.	咅
	Forward.	$\begin{gathered} \text { Re- } \\ \text { turn. } \end{gathered}$	Forward.							
100	0						,			
200	79	141	141		117	\ldots	90		60	
400 600	231	291	292		289	..	230		190	
800	539	680	439		416		376	...	319	
1,000	690	730	723		518		518	\cdots	450	
1,200	872	872	881		635		849		588	
1,400			1,030		765 895	...	801 929	..	713 847	
1,600 1,800			1,164		1,023		1,077		920	
2,000				0	1,169		1,205	0	1,096	
2,500				${ }_{9}^{2}$	1,304	8		,	1,220	0
3,000				13		$\stackrel{8}{13}$		5		
3,500				20		18		16		13
4,000				24		23		23		19
5,000				30		29		30		23
5,500				40		36		36		28
6,000				50		42		42		33
6,500				55		49		48		39
7,000 7,500				60		62		54		45
7,500 8,000				67		71		68		
8,000 8,500				72		83		${ }^{68}$		
8,500 9,000				80		86				70
						90				78
Total break-)						98				
ing weight in	8,800				10,000		8,320		9,340	
${ }_{\text {Breking wgt. }}$										
in lbs, per sq.	12,115				13,954		11,414		13,169	
${ }^{\text {in. }}$ Co-efficient of										
elasticity in los,	2,139,200				2,199,700		1,969,900		2,190,350	
Time of test										
in minutes.	17				18		14		14	

Results of tension tests on specimens cut out of Od Spruce stringer，Beam LVII．（Fig．128．）

Load：	Readings taken by												
$\begin{aligned} & \text { in } \\ & \text { lbs. } \end{aligned}$	$\text { Extr. }^{\text {en }}$	$\stackrel{\ddot{\text { ® }}}{\underset{\sim}{z}}$	Extr．	$\stackrel{\oplus}{\underset{\Xi}{\#}}$	$\begin{gathered} 1 \\ \text { Extr. } \end{gathered}$	$\stackrel{2}{\text { Extr. }}$	$\stackrel{\oplus}{\underset{\sim}{\#}}$	$\underset{\text { Extr. }}{3}$	关	$\underset{\text { Extr. }}{4}$	$\underset{\text { ® }}{\underset{\sim}{\otimes}}$	$\begin{gathered} 5 \\ \text { Extr. } \end{gathered}$	邑
100	0	－	0	．．	0	0	\cdots	0	．	0	\cdots	0	\ldots
200	132	．．	130	．．．	102	109	．．	100	．．	100	．．	75	\ldots
400	362	\cdots	376	．．．	324	317	．	286	\ldots	263	．．	220	．．．．
600	614	．．	603	．．．	592	535	．．	455	．．	431	．．	369	．．．
800	855	．	843	．．．	949	818	．．	619	．	640	．．	525	－
1，000	1，121	$\stackrel{0}{0}$	1，071	．．．	1，179	1，130	\because	834	\cdots	817	．	678	．．．
1，200	1.442	0	1，303	0	1，416	1，340	0	1，017	．．	1，022	．．	829	．．．
1，400				8				1，060	．	1，169	．．	979	．．．．
1，500		7		8		．．．．．．	9		\because		0		．
1，600	．．．．．．．．	．	．．．．．．．．	．．．		．．．．．．．．	．．	1，239	0	1，356	0	1，124	\ldots
1，800	．．．．．．．．	i9		\cdots		．．．．						1，252	0
2，000	．．．．．．．．	19		18		｜	19		7	．	8	${ }^{\text {a }}$	2
2，500	．．．．．．．．	32		29			31		12	．．．．．．．．．	13	．．．．．．．．	8
3，000	．．．．．．．．	45		39		${ }^{11}$	46		20	．．．．．．．．	20	．．．．．．．．	13
3，500	．．．．．．．．．	57		50		즙	56		29	．．．．．．．．	29	．．．．．．．．	29
4,000	．．．．．．．．	69		62		○ 2			39	．．．．．．．．	38	．．．．．．．．．	27
4，500	．．．．．．．．．	82		75		¢			49	．．．．．．．．	46	．．．．．．．．	32
5,000		99		89					60				39
5，500				105		\underline{z}			71		．		48
6，000						竒			81				56
6，500						－				．．．．．．			64
7,000 7,500						한．							72
7,500 8,000													80
8，500													96
in Total breaking weight	5，500		5，700		6，830	5，660		6，970		7，080		9,000	
in lbs．													
Breaking weight in the per sq，in．	7，662		7，941		9，564	7，739		10，069		10，175		12，626	
Co－efficient of elasti－	1，032，050		，202，350		，025，850	1，069，350		，818，950		，577，900		1，903，200	
city Time of test in minntes．	18		17		16	17		18		16		20	

Results of tension tests on specimens cut out of Old Spruce stringer, Beam LX. (Fig. 129.)

cut out of same Beam. (Fig. 130.)
Readings taken by

	Extensometer.					Rute	Extr.	Rule	Extr.	Rule	Extr.	Rule	Extr.	Rule
Lom!s	1						2				3		5	
	Forward.	Return.	ward turn.	$\left\|\begin{array}{c} \text { For- } \\ \text { ward } \end{array}\right\|$	$\left\lvert\, \begin{array}{c\|c} \mathrm{Re}- \\ \text { turn. } \end{array} \mathbf{\text { For- }}\right. \text { ward }$				1					
160	0	59	$59 \quad 68$	68	$78 \quad 78$		0	..	0	0	0	
200	76						91	...	82	.	70	..	79
400	224	265	$255 \quad 274$	263	293276	233	226	...	198	..	242
600	358		,	3×9	372	338	413
800	492	530	526555	535	559548	529	\ldots	522	475	\ldots	570
1,000	631				671	679		613	729
1,200	774	801	801821	807	834821	819	815		759		881
1,400	913						964	993		892		10.30	
1.500	1051	1051	10741074	1085	10851098	0	1100	0	1175	0	1028	0	1198	.
$1 . \sim 00$													1321	.
2,000 2,410						7		5		7		4	1475	0
2,4180 2,500						7i1		12		\cdots		11.		\cdots
2,800								\ldots			$\because 15$		
3,000						17		18		19				11
3,400						\ldots						22		
3,500						22		23		25			19
3,800							\ldots		\cdots		27		
4,000						27		29		31				25
4,400						\ldots						33		
4,500						32		34		37			31
4,800							38		
5,000						38		39		43		\ldots		38
5,400						\cdot						44		
5,500						44		45		50		\cdots		48
5,800												52		
6,000						50		50		57		53		57
6,400						...				\cdots				\cdots
6,500						56		-		64				64
6,800						\cdots								
7,000						61								
7,500 8,000						67								
8,000 8,500						73								
Total breaking w'st $\begin{array}{r}8,500 \\ \hline\end{array}$						80								
Total breaking w'gt in lbs.	8,980						6,349		6,640		6,900		7,000	-
Brk'g w'gt in Tbw. per sq.in.	12,792						9,157		9,724		9,881		9,905	
Co-eff't of elast'cy in lbs.	2,066,950						1,999,050		1,851,850		2,070,600		1,836,300	
Time of test in minutes...	39						15		14				21	

Results of tension-tests on specimens cut out of a $2 \mathrm{in} . \times 4 \mathrm{in}$. Rel Pine scantling, and also of the repeated loading of another specimen cut out of same scantling. (Fig. 131.)

Readings taken by

	Extr.	Bule	Extr,	Extr	Extr	Rule	Extr.	Fule
libs.			Forward	$\begin{gathered} \mathrm{Re}- \\ \text { turn. } \end{gathered}$	$\begin{aligned} & \text { For- } \\ & \text { ward } \end{aligned}$	Forward		
100	0	0	23	0	.	00	
200	6.0	.	58		55	...	56	
400	190	\ldots	179	187	173	\cdots	182	
600	311	286		279	.	306	
800	432	391	401	396	-	433	
1,000	553	495	\ldots	492	559	
1,200	678	600	614	599	¢82	
1,400	804	708		712	\ldots	812	
1,600	929		816	837	816	942	
1,*00	1053	927		925	1074	
2,000	1179		1035	1045	1083	\ldots	1202	
2,200	1306	1143		1142	1335	
2,400	1429	0	1257	1237	1257	0	1461	0
$3,0 ¢ 0$	-	,			5	,	6
3,500		12			10		12
4,000		18			14		18
4,500		21			19		22
5,000	28			23		28
5,500	. . .	30			29		33
6,000		35			$3: 3$		40
6,500	.. .	41			39		45
7,000	. \cdot	49			43		50
7,500		52				50		55
8,000		57			52		60
8,500 9,000		62			60		69
9,000 9,500						62		74
Total brk'g weight ? in lbs. \qquad							
	9,000		9,280				9,500	
$\left.\begin{array}{l}\text { Breaking weight in } \\ \text { lbs. per sq. in... }\end{array}\right\}$								
Co efficient in elas. ticity in lbs......	12,689		12,775				14,372	
	2,279,850		2,554,150				2,247,350	
Time of test in mins.	24		20				30	

Results of testing specimens cut out of White Pine Beam, and of repeatedly loading other specimens cut out of same Beam. (Fig. 131a.)

Specimen.

Results of testing specimens cut out of White Pine Beam, and of repeatedly loading other specımens cut out of same Beam. (Fig. 131a).-Continued.

Specimen.

Results of repeatedly loading specimens 2, 8 and 9 cut out of White Pine Beam XLVIII. (Fig. 131a.)
Specimen.

Specimens 2 and 8 failed at two sections simultaneously. Specimen 8 , after the reading indicated by a *, was allowed to rest under the minimum load of 400 lbs . for an interval of 2_{4}^{3} hours. When the loading was resumed the reading was 00324 in

Results of testing specimens 1 and 2 cut out of Red Pine Beam XXXI, and of repeatedly loading specimens 2 and 3 cut out of same Beam. (Fig. 121b.)

SHEARING STRENGTH.

In the experiments, to determine the shearing strength of timbers, considerable difficulty was found in preparing suitable test-pieces which would not at the same time be liable to a large bending action. Blocks were prepared as shown by sketches A, B and C ; but unless the sides were sufficiently strongly clamped, as in Fig. A, the specimens almost invariably opened at M, under an effect chiefly due to bending. The clamping, again, introduced a compression, which rendered it impossible to obtain the true shearing stress.

After a number of experiments, more satisfactory and reliable results were obtained by preparing test-pieces as shown by Figs. E and D. The bending action is by no means eliminated, and, generally speaking, it is practically impossible to frame timber joints subjected to a pure shear only. The shearing strengths, which are of importance, are the resistances along planes tangential and radial to the annual rings. An examination of the test-pieces shows that the shears are invariably along these planes.

Thus it will be observed that in the tangential shears, the fibre, both hard and soft, is sheared radially, in the radial shears tangentially, and invariably through the soft fibre.

With test-pieces of the form shown by Fig. D, the shearing strengths along the tangential and radial planos are obtained, while the compound shearing strength, which may be considered as the resultant of the tangential and radial shears, is obtained with the test-pieces of the form shown by Fig. E.

The following tables give the results of experiments carried out with test-pieces and holders of the form described :-

TABLE OF THE TANGENTIAL, RADIAL AND COMPOUND SHEARING STRENGTHS OF DOUGLAS FIR SPECIMENS CUT OUT OF TAE SAME

BEAM.

Specimen.	Shearing stress per 8q. in. in a direction \tan gential to the annual rings.	Specimen	Shearing stress per sq. in. in a direction at right angles to the annual ringa.	Specimen.	Cumpound shears.
No. 1	553	No. 3	560	*No. 13	471
No. 2	568	No. 5	484	*No. 14	536
No. 4	441	No. 7	544	No. 16	629
No. 6	555	No. 8	480	No, 16	657
No. 10	454	No. 9	436		
No. 11,	415	No. 12	480		

TABLE OF THE COMPOUND SHEARING STRENGPHS OF DOUGLAS EIR AND RED PINE SPECIMENS.

Douglas Fir.		Red Pine.	
Specimert.	Shearing strength per square inch.	Specimen.	Shearing strength per square inch.
No. 1	802 lbs.	No, 1	648 lbs .
No. 2	727 "	No, 2	553 "
No. 3	886 "	No. 3	572 "
No. 4	795	No. 4	570 "
No. 5	706 "	No, 5	731 "
No. 6	649 '	No. if	534 "
No. 7	746	No. 7	671 "
No. 8		No. 8	698
		$\text { No. } 9$	740
		No. 10	757 '

Not being altogether satisfied with these results, as the test-pieces did not seem to be of sufficient size to give results which could be considered of stardard practical value, new liolders, with spherical seats, were designed, and are shown in Fig. F.

With these holders, tests can now be made upon specimens in which the shearing surface has a width of 8 ins . and a depth limited by the tensile strength of the timber, the maximum shearing area being 96 sq . inches. The web of the specimens is usually about $\mathbf{7} \mathrm{in}$. in thickness, so that the depth should not exceed $.35 \%, t$ being the tensile and s the shearing strengths in lbs. per sq. in. The depth of the shoulder form-

ing the bcaring for the pressure required to produce the shear is about $\frac{1}{2}$ inch, and is made of only sufficient sectional area to resist failure by compression, as the deeper the shoulder the greater will be the bending action introduced.

From the tables giving the results of the shearing experiments, the following inferences may be drawn :
a. The shearing strength of the timbers is much less near the heart than at a distance from the heart.
b. Generally spaiking, the shearing strength increases with the weight per cubic foot.
c. The shearing strength increaces with the density of the annual rings, or rather with the proportion of hard to soft fibre.
d. A failure sometimes occurs, for which it is difficult to find a complete explanation.

For example, the two specimens from Beam X , and designated in the Table by a *, were precisely similar in dimensions and in weight, and also occupied preciscly similar positions relatively to the heart in the stick from which they were cut. One of these specimens failed under a shear of 470.24 lbs, per sq. in., and the other under a shear of 301.84 lbs , per sq. in., so that the shearing strength of the latter was more than 35 per cent. less than that of the stronger specimen. A carcful examination of the surfaces of fracture showed no visible difference in the specimens, and the only possible conclusion to be drawn seems to be either that one of the specimens might have been drier than the other, and was therefore deficient in the element of water, or that the shoulders of the weaker specimen, at the end at which the failure occurred, were not cut very parallel with each other, and thus the greater part of the load might have been concentrated on one side.
e. As a result of the experiments, the average shearing strength of Douglas Fir in lbs. per square inch is $411.61,377.14$ or 403.605 according as the plane of shear is tangential, at right angles, or oblique to the annual rings.

Iu practice, therefore, it will be safe to adopt as the average co-efficients of shearing strength for Douglas Fir, 400 lbs . per sq. inch for shears tangential and oblique to the annual rings, and 375 lbs , per sq. inch for shears at right angles to the annual rings.

Note.-The numbers in brackets at the end of the total shears in the following table correspond to the numbers in the diagrammatic sections, aud indicate the pusition in the stick from which the specimens are taken. The letter H designates a specimen taken from the leart.

Table of shearing strengths in lbs. of specimens cut out of various Beams.
DOUGLAS FIR.

Beam.	Tangential.		Radial.		Oblique.		$\frac{\text { Av. w'ght in lbs. }}{\text { Per cub ft. }}$
	Total.	Per sq. in.	Totai.	Per sc. in.	Total.	Per sq. in.	
$\underset{\text { (Fig. 132.) }}{\text { IX }}$	$\begin{array}{ll}13,530 \\ 16,610 & \text { (1) }\end{array}$	$332 \cdot 94$ $404 \cdot 59$	20,020 (4)	$413 \cdot 40$	$\begin{array}{ll}16,760 & (2) \\ 17,120 & (2)\end{array}$	$401 \cdot 22$ $412 \cdot 41$	$33 \cdot 52$
	16,610 16,170	$404 \cdot 59$ $375 \cdot 47$			17,120 14,720	$412 \cdot 41$ 393	
	16,200 (5)	$370 \cdot 37$			17,820 (3)	$428 \cdot 05$	
	17,210 (1)	$412 \cdot 48$			15,820 (2)	$372 \cdot 01$	
	16,440 (1)	$400 \cdot 09$			17,630 19,570	$360 \cdot 64$	
	Average	$=382 \cdot 65$	Average	$=413 \cdot 40$	Average	$=455 \cdot 94$	
$\underset{(\text { Fig. 133.) }}{\text { X }}$	19,380 15,868	$435 \cdot 31$ $477 \cdot 24$	14,450 (1)	$361 \cdot 23$	16,156 (3)	$394 \cdot 53$	35-73
	15,868 16,660	$477 \cdot 24$ $406 \cdot 14$			12,424* (1)	$476 \cdot 24$ 301.84
					21,504 (4)	$436 \cdot 36$	
					24,760 23)	$486 \cdot 29$	
$\underset{\text { (Fig. 134.) }}{\text { XII.... }}$	A verage	$=439 \cdot 56$	A verage	$=361 \cdot 23$	Average	$=433 \cdot 44$	
	17,970 19,760	$433 \cdot 64$ 416.51	21,300 21,300	$457 \cdot 50$ $458 \cdot 14$	20,560 (1)	$398 \cdot 17$ $477 \cdot 67$	$34 \cdot 57$
			16,160 (2)	$37 \% \cdot 81$		
	A verage	$=425 \cdot 07$	17,100 (2)	$=\begin{aligned} & 453 \cdot 31\end{aligned}$	Average	$=437 \cdot 92$	
$\underset{\text { (Fig. 135.) }}{\substack{\text { XIII } \\ \text { (F.... }}}$	16,984 (3)	$462 \cdot 15$	17,886 (1)	$464 \cdot 60$			$31 \cdot 81$
	14,552 (3)	$395 \cdot 22$	16,980 (2)	$441 \cdot 04$,		
	15,330 (4)	$414 \cdot 78$	14,954 (2)	$388 \cdot 41$		
	15,210 (4)	$409 \cdot 97$					
	17,440 (3)	$424 \cdot 70$	14,920 (1)	$355 \cdot 18$		
	12,940 (4)	$443 \cdot 79$	15,350 (1)	$367 \cdot 07$			
	12,860 (4)	$428 \cdot 80$	13,260 (2)	$334 \cdot 20$			
	19,600 (3)	$478 \cdot 37$	14,610 (2)	350.55	
	Average	$=432 \cdot 22$	Average	$=385 \cdot 86$			

DOUGLAS FIR-Continued.

Beam.	Tangential.		Radial.		Oblique.		$\frac{\text { Av. w'ght in lbs }}{\text { Per cub. ft. }}$
	Tutal.	Per sq. in.	Total.	Per sq. in.	Total.	Per sq. in.	
$\underset{\text { (Fig. 136.) }}{\text { XV.... }}$	19,280 (3)	$477 \cdot 60$	15,260 (1)	369-49			36-73
	17,176 (3)	$423 \cdot 00$	14,165 (1)	$401 \cdot 50$			
	16,170 (4)	$420 \cdot 00$	17,914 (2)	$431 \cdot 56$			
	16,926 (4) Average	$437 \cdot 40$ $=439 \cdot 50$	16,050 Average	$387 \cdot 31$ $397 \cdot 46$			
$\underset{\text { (Fig. 137.) }}{\text { X V III. .. }}$	$15,272(14)$$\cdots \cdots \ldots \ldots .$.	446-55$\cdots \cdots \cdots \cdots .$.		15,495 (7)	$\begin{aligned} & 359^{\circ} \\ & 411^{\cdot} \cdot 9 \\ & 447^{\cdot} \end{aligned}$	
					15,600 (8)		
		13,120 14,840 (12)		
				12,595 (13)	402.	
					17,180 (11)	$380 \cdot$	
					12,500 (8)	$389 \cdot 7$	
					11,525 (9)	$347 \cdot 2$	
	. ${ }^{\text {a }}$ Average		14,430 (4)		19,420 (10)	$382 \cdot 1$	
		$=446.55$			A verage	$=400 \cdot 15$	
$\underset{(\text { Fig. 138. })}{\text { XIX.... }}$		409.1		$375 \cdot 7$	14,470 (5)	$393 \cdot 2$	$38 \cdot 4$
		$422 \cdot 6$	14,220 (6)	$388 \cdot 9$	20,830 (8)	$442 \cdot$	
	$\begin{array}{rr} 20,390 & (7) \\ 18,470 & (13) \end{array}$	$395 \cdot 3$$3400^{\circ}$	14,590 (7)	$411 \cdot 8$	17,200 (9)	371.	
	$\begin{aligned} & 18,470(13) \\ & 14,650(13) \end{aligned}$		15,700 (4)	$414 \cdot 6$	13,860 (5)	$362 \cdot 7$	
		340 416.5		15,500 (6)	$437 \cdot 6$	
	$\begin{aligned} & 18,865 \\ & 20,760 \text { (13) } \end{aligned}$	$\begin{aligned} & 410^{\circ} \\ & 440 \cdot 8 \end{aligned}$			Average	$\stackrel{\cdots}{=} 401 \cdot 3$	\ldots.
	Average	$=\begin{aligned} & 404 \cdot 90 \\ & 368 \cdot 5 \end{aligned}$		$=401 \cdot 90$			
$\underset{\text { (Fig. 139.) }}{\text { XX..... }}$	20,635 21,190 $21,7)$ (7)	$445 \cdot 0$$360 \cdot 4$	14,270 (1)	$252 \cdot 0$		
			17,630 19,040	$378 \cdot 2$		*
	$\begin{array}{ll} 21,190 & (7) \\ 26,050 & (7) \end{array}$	$360 \cdot 4$ $451 \cdot 1$		$330 \cdot 6$ $-309 \cdot 37$		
$\begin{aligned} & \text { XXI...... } \\ & \text { (Fig. 140.) } \end{aligned}$	Average 18,700 17,400 17,800 17 Average	$\begin{aligned} & 350 \cdot \\ & 307 \cdot 8 \\ & 394 \cdot \\ = & 350 \cdot 60 \end{aligned}$	$\begin{aligned} & 19,040 \quad \text { (4) } \\ & \text { Average } \end{aligned}$	$\begin{array}{r\|} = \\ 309 \cdot 37 \\ 297 \cdot 0 \\ 273 \cdot 2 \\ 307 \cdot 1 \\ = \\ 290 \cdot 43 \end{array}$			
			$\begin{aligned} & 16,840 \\ & 14,900 \\ & 16,560 \\ & \text { (1) } \\ & \text { Average } \end{aligned}$			\qquad	\square

OLD DOUGLAS FIR.

Beam.	Tangential.		Radial.		Oblique.		Av. w'ght in lbs
	Total.	Per sq. in.	Total.	Per sq. in.	Total.	Per sq. in.	Per cub. ft.
$\underset{(\text { Fig. 141) }}{\text { XXII.... }}$	$\begin{gathered} 14,220 \quad(1) \\ 13,370 \text { (5) } \\ \text { Average } \end{gathered}$	$\begin{gathered} 31 \\ 29 \\ =302 \cdot 00 \end{gathered}$	$\begin{aligned} & 12,175 \\ & 14,630 \text { (8) } \\ & \text { A verage } \\ & \text { RED PI } \end{aligned}$	$\begin{aligned} & \quad \begin{array}{l} 287 \cdot 0 \\ 333 \cdot 0 \\ =310 \cdot 00 \\ \mathrm{NE} . \end{array} \end{aligned}$	$\begin{gathered} 17,150 \quad(9) \\ \cdots \text { Average } \end{gathered}$	371 $\ldots \quad 371$ $=3$	$31 * 3$
XXXI....From 2 ins. $x 4$ins. plank...	$\begin{aligned} & 20,780 \\ & 20,450 \\ & 20,700 \\ & 1 \times, 440 \\ & \text { Average } \end{aligned}$	$430 \cdot 22$ (1) 431.67 $386 \cdot 9$ 322 $392 \cdot 77$			13,020 (H) 16,600 18,680 19,270 A verag	$\begin{aligned} & 379 \cdot 59 \\ & 31+\cdot 4 \\ & 347 \cdot 2 \\ & 354 \cdot 2 \\ &= 353 \cdot 85 \end{aligned}$	33-71
					20,680 (H) 21,900 (H) 18,620 (H) 18,090 (H) Average	$\begin{array}{r} 331 . \\ 344 . \\ 293 . \\ 286 . \\ =313 \cdot 5 \end{array}$	
	white pine.						
XLVIII..	22.440 (1)	$408 \cdot \times 9$	12,120 (7)	$270 \cdot 69$		$364 \cdot 60$	$31 \cdot 53$
(Fig. 145 and 145 s.$)$	20,565 16,160 12	$371 \cdot 97$	11,630 (7)	$275 \cdot 30$	14,220 (5)	$373 \cdot 89$	
145A.)	16,160 16,045	$430 \cdot 67$ 317.96			18.500 (6)	$352 \cdot 35$	
	A verage	$382 \cdot 37$	A verage OLD SPRU	$=272 \cdot 99$	Average	$=363 \cdot 68$	
$\underset{\text { (Fig. 142A.) }}{\text { LV11..... }}$	12,100 (6)	$386 \cdot 87$	12,975 (3)	$448 \cdot 96$	8,140 (4)	403.05	$28 \cdot 37$
			11,390 (8)	$408 \cdot 88$	9,280 (7)	$417 \cdot 85$	
					16,075 (2)	$457 \cdot 84$	
					13,200 (9)	$456 \cdot 59$	
	Average	$386 \cdot 87$	Average		$\begin{gathered} 12,480(5) \\ \text { Average } \end{gathered}$	$322 \cdot 00$ $=415 \cdot 33$	
$\underset{(\text { Fig. 142.).... }}{\text { LX..... }}$	16,650 (4)	$302 \cdot 7$			17,130 (1)	292.	
	14,250 (5)	345.4			16,830 (3)	283.	
	16,400 (4)	$297 \cdot 4$					
${ }_{\text {(Fig. 144.). }}^{\text {LXI }}$	${ }_{13,100}^{\text {Average }}$ (3)	$\begin{aligned} & 315 \cdot 16 \\ & 329 \cdot 1 \end{aligned}$	14,800 (12)	$460 \cdot 73$	$\begin{aligned} & \text { A verage } \\ & 14,000(12) \end{aligned}$	$\begin{aligned} &= 287 \cdot 5 \\ & 436 \cdot 78 \end{aligned}$	$28 \cdot 6$
			14,840 (10)	$314 \cdot 6$	12,820 (11)	299-1	
	Average	$=329.1$	12,470 Average	- ${ }_{362 \cdot 44}^{312}$	13,460 (2)	$=\begin{aligned} & 404 \cdot 64 \\ & 380 \cdot 17\end{aligned}$	

N. B.-I wish to express my acknowledgment of the help given to me by Mr. C. B. Smith, Ma.E., in carrying out many of the experiments and in checking the calculations. I have also been ably assisted by Mr. Withycombe, the foreman of the Laboratories, who has devised many mechanical devices which have greatly facilitated the work.

CORRESPONDENCE.

Prof. J. B. Johnson, M.Am.Soc. C.E., Professor of Civil Engincering Prof. J. B. Washington University, St. Louis, Mo., in charge U. S. Timber Tests, said :-

While the writer desires to commend heartily the objects of the investigation here described, and to express his sense of the need of further studies of this kind, he is obliged to take exceptions to the methods and results herein reported in the following particulars.

1. The central load upon the beams was conveyed through a hard wood cylindrical bearing, having a ten inch radius. This offered so small a bearing surface to the timber, that in some instanecs it crushed bodily into the beam which was under test to a depth of two inches. Of course in practice no timber bean would ever be subject to so great a concentration of load as this, and it is therefore entirely unfair to so apply the load in making the test. In all te-ts of timber beams, the central bearing should be a saddle, preferably made of hard wood, being square at the bottom transversely, but curved longitudinally with a very long radius. When such a saddle is used, the distortion or coupression of the upper fibres of the beam is insigniticant, and can be beglected in the computation.
In the opinion of the writer, the abusive action of the central bearing used in these tests lias to a large degree vitiated the results, and it is impossible now to determine what the normal stren_th of the beam was from the results obtained. It would seem that neither of the methods of computation offered by the writer of the paper has any great probability of being correct.
2. A very much more serious ohjection to these experiments is the failure to make any determination of the percentage of moisture in the beam at the time the tests were made. As a result of some fifty thousand tests on timber which the writer has made for the United States Government, reports of which are published by the Forestry Divisiun of the U. S. Agricultural Department, it appears that the strength of wood in nearly all ways increases rapidly as the moisture is exhausted from the timber, and so great is this increase of strength, that on the average it may be said that thoroughly seasoned timber is fully twice

224 Correspondence on Strength of Canadian Douglas Fir

as strong as green timber. A test of any kind, therefore, on timber furnishes us no information as to the strength of that species of timber, unless we are also informed of the percentage of moisture found in the timber at the time the test was made. The absence of any such information as this in the work here under discussion would seem to make it of little value for comparative purposes.

In the work done by the writer for the U. S. Government, the percentage of moisture is found for every test made of every kind, by cutting from the stick an entire cross-section about one-fourth of an inch thick from the vicinity of failure, weighing this disk immediately, then drying it at a temperature of $212^{\circ} \mathrm{F}$., and weighing again. The loss of weight, divided by the dry weight, gives the percentage of moisture in the stick, as compared with the dry weight. Before any comparisons can be instituted even between specimens of the same species, the law of the variation of strength with moisture for that species should be found, and then all the results of tests reduced by applying corrections to their equivalent values at some standard percentage of moisture. Hitherto this standard percentage of moisture has been arbitrarily taken in the U, S. tests as 15 per cent. of the dry weight. Thoroughly seasoned timber has about 10 per cent. moisture, whereas ordinary large timbers seasoned out of doors for several years will have a percentage of moisture of about 15 . All these facts appear fully in the publications of the U. S. Agricultural Department on this subject, where the curves of variation of strength with moisture are all given. As these results have been before the American public since July, 1893, it would s.em that no further tests of the strength of timber should ever be prosecuted without taking account of this greatest of all causes of variation in strength.

Aside from the two serious objections noted above, the work of Professor Bovey seems to have been well and carefully done. These two objections, however, have such great weight that I am persuaded his results have little or no scientific value, although they do give full information of the actual strength of the sticks tested. It is very unfortunate that we are unable to generalize from these terts and apply them to other known conditions. The objections here noted apply equally to nearly all tests made hitherto on the strength of timber, except those which are now being earried out by the U. S. Forestry Department.

Wherever in the results here deseribed the specimen had been thoroughly scasoned, as is the case in several instances, it may be assumed
that the amount of moisture in the stick was about 12 to 15 per cent. if the timber had remained out of doors, or about 10 per cent, if it had been in use for many years inside a building. Such timbers should be expected to have a strength nearly twice as wuch as they themselves would have had if they had been tested green.

Although the bulletins of the U. S. Forestry Division hitherto published on this subject have been entirely exhausted, another bulletin is about to appear, giving results of many thousands of tests on the four principal species of Southern Yellow pine, namely, Long-leaf (Palustris), Short leaf (Echinata), Loblolly (Taeda), and Cuban (Cubensis) Pine. Application for this publication should be made to the Secretary of Agriculture, Washington, D.C.

Mr. A. L. Johnson, of Washington, D.C. said :
Mr. A. L.
Of Mr. Bovey's excellent paper, the most novel and interesting portion, to the writer, is the chapter on

TENSION TESTS WITH REPEATED LOADINGS.
He here enters the unoccupied field of "Fatigue of Timber," and the experiments made are interesting and valuable. One of the first things to be noticed, on careful examination of these tests, is that the extensions obtained on the "Return" series are always greater than on the preceding "Forward" series.

This is natural, since the internal stress follows the external load, the action being a dynamic one.

Consequently the extensions are all too small for the recorded load on the "forward" series, and too large on the " return" series. As a result of this, and the method of making the test, the extension given for the minimum loads are all too large, while those for the maximum loads are all too small.

Hence, in a discussion of these results for the determination of either modulus of elasticity or "set," these values will have to be excluded. This consideration will also serve to explain why the minimum load left on for some hours sometimes gave less extension at the end of the time than at the beginning (see note on pp. 85, 87 and 88), in spite of the fact that timber has practically no elastic limit at all, any load left on for a sufficient time being able to produce a set.

The value of the extension at the minimum load after the period of rest is probably normal, while all the other values at the load are too large.

The first differential of extension, therefore, af:er the period of rest under minimum load, will be too large. The succeeding differentials, however, should not be affected, and on an examination of the tests they will be found perfectly normal. This is true only fur light loads for a comparatively short time.

For heavy loads or long time, the modulus of elasticity seems to be injured.

Also, after a period of rest entirely free from load (sce test on Beam XV, No. 4), the modulus of elasticity seems to be considerably increased.

Very similar, in fact, to muscular action.
To sum up, then, we may say :

1. That successive loadings, not exceeding 20 per cent. of ultimate strength, do in no wise permanently injure the material. Though some set is given it, this seems to disappear when left entirely free from load.
2. When a small load is left on for some time, the modulus of elasticity seems to be diminished.
3. That a period of rest, free from load, greatly assists in restoring the piece to its original strength and shape.

It now remains to try loads of varying amounts left on for different lengths of time, giving a complete discussion of the time element.

Also the effect of releasing the specimen from load. The next series, also, should include a discussion of the effect of these on the ultimate strength of the piece.

This, of course, will have to be done on separate pieces of comparable material, testing, for example, one end of a $3^{\prime \prime}$ stick under repeated load, and the other end without such repetitions ; making enough tests to eliminate lack of comparability due to peculiarities of the individual.

It will be noticed that the modulus of elasticity as determined from direct tension tests is 25 per cent. higher than indicated by the beams on the cross-bending tests.

This is interesting, if a correct relation, since, if the average modulus in direct compression and tension are equal to that in cross-breaking, the compression modulus must be about 25 per cent. weaker than the eross-bending modulus.

BEAM TESTS,
In the beam tests, the author is quite excusably at a loss to know what to do with his data after obtrining it. His use of a $20^{\prime \prime}$ circu-
lar block for centro support has so deformed the original shape of his piece that he is in doubt as to what depth of beam to use in his formula. And, as he himelf says, "a very small error in estimating the depth of a beam may lead to a considerable error in the calculated $k \mathrm{kin}$ stress", citing spruce beam No. L as an example, in which case it made a difference of 22.8 per cent. He concludes to calculate this factor with the original height of beam, and of course gets results very low, but " on the safe side".

The beams are nearly all too deep for their longth, and as a result many of them have slicared. In fact, on examination of table on page 18, taking only the "New Timber", we find that out of 19 beams tested, 9 shcared and 1 failed in a knot. That is to say, what is given as the maximum skin stress is for 50 per cent. of these beams, not the modulus of rupture, but much less. Therefore, considering that each individual value of this function is (due to erushing effeet of centre support) from some per cent. to a maximum of 25 per cent. too small, and that of these values 50 per cent, are again considerably too small (since full skin strength was not developed), it is quite likely the mean given by Mr. Bovey is "on the safe side"! Besidcs, many of these beams had soaked in water-some in salt, and some in fresh-from 6 to 10 months. At least two of these laid on the beach and were alternately wet and dry, according to the tide, for a period of nine months,

To take means from such indiscriminate material is misleading. Toelassify and give means for each is impossible since too little data is left in each.

The above story is repeated in the

CRUSHING ENDWISE TESTS.

Out of 169 tests on New Douglas Fir, there were only 48 which were not manifestly defective before the test, and failed at these points.

That is to say, 72 per cent. of these tests are used to tell you that knots, cross-graining, and season cheeks are a source of weakness.

Of the remaining 28 per cent. of all sorts and conditions of pieces, having nothing in common but species, the mean tells nothing, except that, if you take the above number of pieces of the above number and kind of conditions, the mean thereof will approsimate the mean here given,

The question may well be asked, "What is the object of these tests?"

Is it simply to determine factors of strength for safe design ?
If so, all that is necessary is to get a lot of poor, knotty, cross-grained stuff together and test it.

Or is it to determine factors of strength for economic design ?
If this is the object, it is altogether a different problem.
We must be able to say, not only that the material is strong enough, but that it is not too strong, or too good, for the purpose intended.

The uses, and requirements of these uses, must be classified.
The exact class to which the various kinds of material, underall the various kinds of treatment, belong must be determined.

The various effects of all defects are evaluated, and new rules of inspection determined.

Nor is this all. It should then be the endeavour, by new methods of treatment, to promote a material from a lower to a higher class.

This is the proper ficld of timber testing, or any kind of testing, and anything short of it-except to solve a specific problem for one specific purpose-is hardly worth while attempting.

SHEARING.

The classification of these tests into Radial and Tangential is a good one.

Mr. Bovey, however, gives his figures rather decisively to show that the tangential shearing strength is about 8 per cent. greater than the radial.

It is the opinion of the writer that this conclusion is not warranted.
In the first place, his results are not comparable. The pieces occupy different portions of the cross-section of log from which they are cut, and the variation of strength across the section is great.

The mean of 75 tests on Pinus Palustris made by this division on matcrial as near comparable as possible give 6 per cent. greater strength to the radial than to the tangential shear.

The relative values of these two quantities depends upon the relative ratios of summer to spring wood sheared.
Mr. R. B.
Fernow.
Mr. R. B. Fernow, of Division of Forestry, Washington, D. C.
I have just finished reading-nay, studying-your most interesting and valuable paper on the Strength of Douglas Fir, etc., having spent over five holy hours in acquainting myself with its contents and meaning. You may remember that I heard a part of it at the meeting of the Royal Society for the Advancement of Science last year, and being called upon to discuss it, refrained from doing so at length, only
expressing my doubt whether the generalismions were justifiable on account of several deficiencies which appeared to me to exi-t as I hard the paper.

Now, after careful reading, I am confirmed in my doubts, although I fully appreciate this most acceptable addition to our knowledge of the behaviour of woods, and especially the painstaking work and presentation of the results, being thoroughly convinced that carefub study of all the conditions surrounding any one test is worth more thas the averaning of figures derived from many tests without knowledge or reference to the detail conditions. Yet I cannot help regretting that not more of the details of your test specimens was known or given, son e of them most essential for a true interpretation of the results.

My criticisms then, if you care to have them, will take the form of a series of regrets. I regret thien :

1. In general that so much empiricism still attuches to the series, that the tests are trials rather than experiments in which all the conditions that may have an influence on the result are taken engnisance of, or in part prepared or eliminated. The material under test, althouph an attempt is made to deseribe it, yet is only very partially deseribed.
2. That no distinction of heart or sap, or the proportions of each in the test piece, is given.
3. That the relative moisture conditions of the test pieces is left to conjecture, although it is a well-established fact that small differences of moisture at certain stages of seasoning give differences in strength of thousands of pounds.

In some places, notably on p. 81 (beam XXI) and on p. 107 (tension picces from beam X), it would appear as if a greater degree of seasoning was consid red an element of weakness instead of the reverse. This favourable effect of seasoning secms also overlooked on p. 58, when comparing long and short columns.

The data given of loss of water in the laboratory indicate that much of the material was still green or wet, so that the weights given, which might othcrwise be useful in relating strength to mass, lose this value.
4. That so many of the beams were designed so as not to develop their true transverse strength, failing in shearing. Of the Douglas Fir beams, more than 50 per cent. were thus at fault.

To cvaluate transverse strength from such tests and use the figures in averaging with results from true transverse (tension or compression failures seems to me illogical and unwarranted. There may be value in such evaluations if they are kept separate, and are to refer only to
beams designed to shear (designed for rigidity mainly), which seems in Douglas Spruce to take place invariably, when the ratio of height to length exceeds 1 in 15.
5. That the straight grained condition of some of the test pieces is asserted, presumably from the looks, without giving a basis for the assertion. Very frequently, as we have found, the grain appears straight and yet is spiral, and this can only be made sure of by splitting.
6. That so much of the material used for comptession tests was defective (of the Douglas Spruce 72 per cent.), so that the compression value can hardly be said to have been established.
7. That the proof reader should persistently have allowed the recurrence of "annular" instead of "annual" rings, which jars upon one's eyes or mental ears.

Whether the method of loading at the ends, whereby span and angle of application of load are constantly varying, would appreciably influence results, and whether, on the other hand, with the changing of the effective depth due to the compression at the support the usual theory of flexure maintains, I leave to better mathematicians to discuss, although I am inclined to doubt the correctness of the latter assumption. The amount of compression taking place with the apparatus in use secms excessive.

The deduction that the wood farthest away from the heart is the strongest is in its generality decidedly erroneous. It may be correct with thrifty growing young trees of 60 to 100 years, because the proportion of the strong summerwond in the ring or rather per square inch is probably there at its maximum, but later in life this proportion skins again, and therefore in older trees the outer zone becomes again weaker, the best wood being, in conifers at least, found intermediate between heart and peripheral wood.

Mcst interesting to me, and without any flaw, as far as I can see, for general application, are the results from continued loading after first fracture, and of the repeated loadings and unloadings, although a great many more of the latter series will have to be done to clearly show the law of change in the set, due to " adjustment of parts " after repeated loadings.

Admitting the theory of flexure and the idea of skin or extreme fibre stress, there is nothing remarkable in the fact, that after first failure the same or even a greater strength is developed on sccond loading, provided the depth used in the calculation be reduced to that represented by the uninjured part. But the demonstration that this is really so is most useful.

Again let me congratulate you on this interesting contribution, which, although I have taken the liberty of pointing out its defects, is most suggestive and of much value and interest to me in our own work on similar lines.

Mr. J. H. Wicksteed, of Leeds, England:

Mr.J. H. Wicksteed,

I am complimented and pleased by the advance proof you have sent me of your Paper on the Strength of Certain Timbers.

This paper will be a valuable standard for reference in the future on the strength of timber.

There are several points in the paper which I am very much struck with, and on which I should like to convey my remarks to you.

The striking tendency which the beams shew to shear longitudinally shews the great importance of testing long specimens instead of short ones, in order to arrive at the veritable strength of a beam in astual use, because as the long specimen has more length for cohesion of the fibres in the direction of longitudinal shear, it will be stronger in proportion than a short beam. Is this not your view?

I would therefore congratulate you on having made your experiments on such handsome sizes. I think this point is a rare proof of the superiority of a full sized test piece over a miniature sample.

While on this subject 1 should like very much to know whether you have found $9^{\prime \prime}$ wide sufficient for your requirements, or whether you would not prefer if the machine had been able to admit a beam still wider.

Of course I recognize the further advantage that there is in using a long test piece for transverse straining, owing to the pressure on the central support being less intense, and in this connection I have pleasure in handing you herewith a tracing of a central support which I have recently designed. It consists of two swivelling plattens much on the principle of the thrust pieces you use for the ends of the beam, but arranged in a pair side by side so as to present a very wide surface to take the pressure on the centre of the beam. The point is that as these supports each swivel, they do not interfere with the deflection of the beam. They form a sort of articulated pressure foot, and by placing the end thrust pieces 3^{\prime} farther apart than the nominal span of the beam, you make an allowance for the $3^{\prime \prime}$ distance that there is between the axes of the swivelling supports for the centre.

My friend Mr. Charnock of the Bradford Technical School has worked out this simple problem graphically, and I enclose you a tracing of the proof that the bending moment is the same with this broad foot as if the beam rested upon a theoretical edge.

I think with the use of this broad foot, you would be less bothered by the compression at the centre of the beam, and I shall feel very pleased if you approve this design so as to adopt it.

I notice from the photograph that you have improved the form of the brackets carrying the end thrust rams, doubtless in order to get open windows through them, so as to make the measuring gear accessible. I shall be greatly interested, if ever I find myself within reach of Montreal, to see the improvements you have made, and amongst other things to find exactly the means you have deviscd for ensuring absolu'e equality in the end loads.

Referring to your compression tests, I am greatly interested to see that you qot the same resistance from a strut 20 diameters long as could be got from a short piece.-I suppose a simple cube.

Referring to the tension testr, I very much admire the smooth taper ends working within smooth wedge clips. This seems to me by far the best holding that has as yet been devised for wood.

I am also pleased to see the specd at which you made these tests ; half an hour is not a long time for testing such a large picce and taking so many accurate observations. It implies that you have got the whole

Mr.James E. Howard. apparatus in first rate working order.

Mr. James E. Howard, Watertown Arenal, Mars, :
Prof. Bovey has presented a very imp rtant paper on the strength of timher, and from its comprehensive character it possosses unusual interest.

In the ease of timber, it is perhaps more difficult to judge of the strength of full sized mombers from the tests of smaller samples than with iron and steel, hence the transverse tests of the beams presented claim special attention.

The uniformity in strength found in small and carefully selected sticks can hardly represent the condition of beams of commercial sizes. It is believed furthermore that failures by longitudinal shearing oceur more frequenly with large sticks than with small ones.

The author invites attention to the fact that the ratio of deflection to load remains nearly constant almost up to the time of fracture, having previously stated "that timber, unlike iron and steel, may be "strained to a point near the breaking point without being seriously "injured," and further remarks, while referring to structures that have been heavily loaded, "whether it is advisable so to strain timber is " another question."

Questions of this nature are indeed very difficult to answer satisfac-
torily, and yet they scem to belong to that elass of information most needed for practical use. It must be admitted that ordinary tests supply very little information concerning the probable endurance of the material under different conditions of loading.

The reverence which has attached to the elastic limit is disturbed by experimental demonstration that alternate stresses of tension and compression in rotating shafts eventually rupture the metal, notwithstanding the apparent maximum fibre stresses hardly exceed one-third the elastic limit of the metal, as that limit is commonly ascertained and defined by tensile tests.

Furthermore, material which, under direct tensile stress once applied, will develop 25 per cent. elongation before rupture may, under other conditions of loading, rupture with little or no measurable display of elongation.

These examples of iron and steel naturally awaken interest in the corresponding behaviour of timber.

The hygrometric character of wood, whereby in its unprotected condition it is continually ehanging its dimensions as it follows atmospheric changes, introduced an element of uncertainty, and might bo supposed to assist the material in reaching its limit of rupture.

Owing to the absence of strict uniformity of timber in different parts of its cross scetional area, difficulty may often be experienced in sceuring the uniform distribution of the load on a post, and for the same reasons the disposition of stresses in a timber beam might exist in an equivocal state.

It appears that the compression tests submitted by the author consist of results obtained with small pieces, but illustrative of the strength of the matcrial which comprised the beams. The influence of knots is well shown in the results.

Tests made at Watertown Arsenal have shewn that the presence even of :ound knots is often more injurious than extensive seasoning cracks in the timber.

A somewhat extended series of tests was made at Watertown Arsenal during the fiscal year 1881-1882, in which single sticks of various sizes and lengths were tested and built up; posts of two, three and four sticks were also used. With four sticks trsted together in a form resembling the compression members of a timber bridge, the sectional area aggregated 234 square inches.

These posts of white pinc, which were 15 feet long each, showed a compressive strength in the vicinity of $2,000 \mathrm{lbs}$. per sq . in. At the time
of making these tests, observations were made on the effect of load sustained for short intervals of time, and it was found that during the early stages of the tests the immediate effects of the loads were increased after a short time, and there was a sluggish recovery when the loads were released. And this behaviour became more pronounced as the test progressed.

There was a test made of a sample of white pine after it had been subjected in an hydrostatic cylinder to a pressure of about $90,000 \mathrm{lbs}$. per sq . in.

The water freely circulated through the wood, and the only visible effect of this enormous pressure was a slight swelling, which was apparently due to the absorption of water.

The compressive strength of this sample shewed no material change from the strength of a duplicate sample tested for comparison.

Tensile tests made at Watertown Arsenal have been upon specimens prepared with couical ends. The preparation of such turned specimens is expeditiously done, and no difficulty is experienced in shearing along the grain.

In making shearing tests, as pointed out by the author, difficulties are encountered in developing results uninfluenced by the form of the specimen employed.
It was thought that fairly reliable results were obtained with specimens prepared in the form of a Greek cross, shearing simultaneously two surfaces but rising surfaces of limited area.

Shearing along one surface would be preferred, other conditions being equal.

Prof. Bovey, in making a brief reply to the various criticisms which have been passed upon his Paper, begs to thank those who have so kindly taken such an interest in the matter and have aidded valuable information to the subject matter of the Paper.

In the first place, a great deal of stress seems to be laid upon the very large compression which is supposed to have been occasioned at the bearing. Unfortunately the supposition is entirely due to a misprint in the Advance Proof, in which it is stated that the bearing block has a diameter of only 20 ins ., whereas the diameter is in fact 44 ins . In the opinion of the author this diameter is certainly at least sufficiently large for the timber experiments, and the total compression was in every case, with two exceptions, extremely small. The exceptions are Beams LV and LVI, and these two beams were the two ends of Beam LIV from which the fractured portion had been cut out. The
total compression of this Beam (LIV) was less than $\frac{1}{2}$ in, and the calculated maximum skin stress was $6,260 \mathrm{lbs}$. per square inch. Now, disregarding the compression, the skin stress in the case of Beam LV was $4,849 \mathrm{lbs}$. per square inch, and $4,614 \mathrm{lbs}$. per square inch in the case of Beam LVI, showing a very large difference between the skin stress of these two portions and the skin stress of the main beam. But the reason is not far to seek. The compression in Beam LV was 2 ins, and in Beam LVL was 1.9 in ., and making due allowance for these compressions, the calculated skin stress becomes respectively $6,176 \mathrm{lbs}$, and $5,806 \mathrm{lbs}$. per square inch, showing a very small difference indeed from the stress of the main beam. These results sufficiently prove that when the amount of the compression is taken into account, the ordinary accepted formula for transverse strength gives results which are very approximately correct.

Again, it is stated that the beams were not properly designed, in other words, that the depth was too great as compared with the length, and that consequently some of the timbers sheared longitudinally so that the true transverse strength was not obtained. One of the objects of these tests was to determine the ratio of length to depth which would ensure the timber commencing to fail at the surface before shearing longitudinally. Certain results tending towards the solution of this problem have already been obtained, but further experiments on this point will be made. It must also be remembered that not only is it necesrary that the timber should be sufficiently strong, but also that it should have sufficient stiffness, and this point seems to have been overlooked in the criticisms respecting the proper design of a beam.

In the next place, Mr. Fernow and Professor Johnson have set forth the great importance of determining the percentage of moisture present in a timber at the time of testing. The author quite agrees with these gentlemen as to the important effect of the presence of moisture upon the strength of the timber, and he has by no means neglected the investigation of this subject, but he is not at all prepared to accept the statements made respecting the comparative strengths of dry and moist timber. Further, the drying of a slab at 212° F. cut from the end of a timber will certainly not give the average weight of the whole timber, or the percentage of moisture present in the timber. Even in the sume section the weight per cubic foot of the timber will be found to vary extremely with the distance from the heart. This is very forcibly illustrated in the ease of Beam XIII. The seetion of this timber was

236 Correspondence on Strength of Canadian Douglas Fir, 6491
divided into three equal parts, and they were thoroughly dried at 212° F. for 88 hours.

Before drying :
The portion nearest the heart weighed 30.208 lbs . per cubic foot.
The portion farthest from the heart weighed 36.492 lbs , per cubic foot.

And the intermediate portion weighed 28.512 lbs , per cubic foot.
After drying:
The portion nearest the heart weighed 29.123 lbs . per cubic foot.
The portion farthest from the heart weighed 35.096 lb . per cubic foot.

The intermediate portion weighed 27.028 lbs . per cubic fooc.
The average weight for the whole section was 31.445 lbs . per cubic foot before drying and 30.105 lbs . per cubic foot after drying. Besides, although it will be very important from a scientific point of view to be able to determine the percentage of moisture present, still it should be borne in mind that the structural work, as, for example, in bridges, the timber is taken to the site straight from the mill and is never kiln-dried. Thus the only strength upon which the engineer can depend is the strength as it leaves the mill, when there is usually a large amount of moisture present, and this strength of the timber, it is contended, is the strength which the engineer requires to know, as upon this strength he has to base his calculations.

Exception is taken to the fact that a large number of the compression pieces failed at knots, although the timbers were of first class quality. The auther is not aware that the finding of oceasional knots in first class timber is at all unusual, and the results certainly justify his statements.

Thursday, 14th February.

Thomas Monro, President, in the Chair.

Puper No. 102.

CEMENT TESTING.

By Cecil B. Smitit, Ma. E., A.M. Can. Son.C.E.

This subject has so often been written on, and is being so continually and persistently investigated, that it forms, as it were, an inexhaustible mine.

But this very feature shows how very important and yet how little understood it is, for, when investigators continue to disagree, the presumption is, that there is either a lack of agreemeat as to the basis on which the investigations are made, or else a failure, up to the present, to solve all the intricate mazes of the problem, or indeed a combination of the two.

To illustrate the first point, a tabular synopsis (Table I) is presented, giving the present standard tests in use, in various countries, according to the latest obtainable information. The variations, in many cases, are too great to be reconciled, in others trifling; but it is evidently difficult to compare results obtained in different countries, and a hopeless task to ever bring them to a uniform standard. What it behooves us, as Canadian Engineers, to do is to take such sensible and immediate action on the subject as will commend itself to the good graces of all of us, if pissible, or, if not, of a great majority of those who test the manufactured article.

However, before proposing a mode of conducting such tests as will (according to the author's experience) be of practical utility to practical men, the fullowing Table (Table II) is presented to the Society, as embodying results which have been obtained during the last two sessions, in making ordinary commercial, private an I student tests (chiefly commercial and private).

Many results have been disearded as being inaccurate, and only those are recorded here which are believe 1 to be very elose to the truth, much closer than is ordinarily obtained.

These results have been classified according to country of manufac- . ture, and somewhat on a scale of increasing tensile strength.

Let us consider the various qualities given in their tabular order.
(a) Specific Gravity.

The average of Canadian Portlands $=3 \cdot 11$
The average of English Portlands $=3 \cdot 10$
The average of Belgian Portlands $=3.055$
The average of ail Portlands $(16)=3 \cdot 09$.
It would seem advisable, therefore, to specify a minimum for Portlands of $3 \cdot 10$.

The samples were not dried or prepared in any way ; if they were dried for 15 minutes, according to English practice, it is probable they would go somewhat higher.

It will be noticed that the only two Portlands (?) whose specific gravities were low (Belgians Nos. 16 and 17) were both poor cements. One, No. 16, sets slowly, and the briquettes made for 4 week tests, and immersed in water after 24 hours, were found sloughed down in the tanks, and had evidently run and set over again! They would not give any test to speak of. Evidently the hydraul e property, in 24 hours, was not enough to hold them together, while the other one (No. 17) failed in the blowing test. Altogether, it is doubtful whether these cements are Portlands or naturals, although sold as the former, owing to their colour being gray.

It will be noticed, with satisfaction, that Canadian Portlands stand at the top in specific gravity, judging by the sauples tested, which were, however, all received from manufacturers.

The specifio gravity of natural cements might be placed at 2.95 , although it is not so likely to be under-run, owing to the ease with which this can be obtained.
(b) Water required for standurd consistency.

This is considered, by many, to be very important ; but many tests have demonstrated to the writer that what is especially needed is that there shall be sufficient to make good briquettes; to err, say, 1 per cent, in adding water is fatal if too little, while if too much, it does not seem to affect the strength of briquettes at one week, certainly not at 4 weeks. This is contrary to statements often made regarding the inereased strength given by a minimum amount of water; but probably what is referred to is an excess of water sufficient to make a thin batter or soup. Undoubtedly such an amount not only makes the briquettes shrink and crack in drying, but will seriously affeet the early strengti.

TABLE I.-STANDARD CEMENT TESTS.

Nationality.	$\left\lvert\, \begin{gathered} \text { Date } \\ \text { of } \\ \text { Standard. } \end{gathered}\right.$	$\begin{aligned} & \text { Authority } \\ & \text { of } \\ & \text { standard. } \end{aligned}$	$\begin{gathered} \text { Weight } \\ \text { per } \\ \text { Buehel or C.F. } \end{gathered}$	Specific Gravity.	Chemical Analysis.	Residues or Finenesa	$\begin{aligned} & \text { P. c. of Water } \\ & \text { in } \\ & \text { Mixing. } \end{aligned}$	Constancy of Vol. or Blowing Test.
Canadian.	1894	Recommended by Committee of C.S.C.E.	Considered to be indefinite and of little value.	$\left\{\begin{array}{c} 312 \\ \text { to } \\ 3.25 \\ \text { Portland. } \end{array}\right\} \text { for }$	Not more than 2% Not more than 5% Mc. Not Portland. Natur. Lime 60.05 Lime 37.18 Silica 2431 Silica 28.11 A1\&FeO 10.84 Al. 27.62 Mag. 3.00 Mag. 7.09 Alkalies 1.60	Less than 5% on 50 sieve No. 35 stubbe gauge.	Standard consis. tency, rod $.4^{\prime \prime}$ diar. tte "the to nearly penetrate mortar in a box $3^{\prime \prime}$ diar. $12^{\prime \prime}$ bigh.	24 hours in water at 120° F. and 27 dys. in ordinary water or Final test, 24 hours after setting in boiling water.
English.	1893	Standard Practice no Regulation*.	About 112 lis. per bushel for Portland.	Not less than 3.10 for fresh or 3.07 for 3 month old (dried 15 min.)	Recommented to be made.	$\begin{aligned} & 5 \% \text { on } 80 \text { siev } \\ & 12 \% \text { on } 100 \\ & 25 \% \text { on } 150 \\ & 30 \% \\ & 30 \\ & \text { wire mesh. } \\ & \text { whe } \end{aligned}$	Approximately 25% Neat $12 \% 3$ to 1, Faija mixer.	Same as above, of which this is the original.
United States.	1885	Recommended by A.S.C.E generally used and adopted.	$\begin{aligned} & \text { (Authority of } \\ & \text { Clark.) French, } \\ & \text { Port } 69 \text { per CF, } \\ & \text { English Port } \\ & 78 \text { to } 87 \mathrm{p} . \mathrm{CF} \\ & \text { American Port } \\ & 95 \text { per C F. } \end{aligned}$	Nct specified.	ditto	5 to 10% on 50 sjeve down to 3 to 10% on 176 vieve.	Approximately 25 Neat. Port., 30 $\%$ Neat, Natural, 15 $1 \% 1$ to $1,12 \% 3$ to 1 stiff mortar.	1 pat in air 1 montn for signs of discoloring, 1 pat in air till set, then 1 month in water for checking.
German.	1893	Government regulations.	370 lbs per bbl net.	$\left.\begin{array}{l}3.12 \\ \text { to } \\ 3.25\end{array}\right\}$ forPortland-, in- crease with age. .	ditto	10% on 76 sieve wire $\frac{1}{2}$ of mesh.	Same a- the Canadian, which is a eopy of this one.	23 hours in air, 1 hour boiling, or submerged 28 dys., no checking in either test.
French.	$\begin{gathered} 1884 \\ \text { or } \\ \text { later. } \end{gathered}$	Government regulations.	1 litreto weigh within $3!$ cen of heav'st cenent from satne factory all sifted thro No. 100 sieve.		Not more than 1% Sul. Ac. W. ." $4 \% \mathrm{Fe} \mathrm{O}_{2}$. When Si. and Al. are less than 44% of lime.	None rpecitied, argued that tine -rrinding giver hizh strength it perions of tests chietly, which disappegred later on.	Sea water, standard consistency round ball dropped $20^{\prime \prime}$ on slab to retain its general form withont cracks.	Pat in sea water (i) days, no cracking or bulging.
Austrian.								

TABLE I.-STANDARD CEMENT TESTS.-Continued.

Neat.	Tensile Strength.		Compressive Strength.			Setting Quality.	
	1 to 1.	3 to 1.	Neat.	1 to 1.	3 to 1.	How determined.	How defined.
	Not yet year later.	specified, to be	reported on 1			Gilmores' needles incipient to bear $\frac{1}{12}{ }^{n}$ diar. $\frac{1}{1 b}$. full ret to bear $2^{1, n}$ diar. 1 lb .	-
$\begin{aligned} & 1 \text { week } \quad 300-400 \\ & 1 \text { mo. } 480-650 \end{aligned}$		$\begin{aligned} & 3 \text { davs } 110 \\ & 1 \text { week } 120-220 \\ & 1 \text { mo. 200-350 } \end{aligned}$				Vicat's needles incipient set to bear t6 10s, to not quite penetrate fall ret to hear up same needle.	2 hours or more slow setting, less time quick setting.
Natural 1 day $40-80$ 1 week $60-100$ 1 mo. $100-150$ 1 year $300-400$. Portland 1 day $100-140$ 1 week 250550 1 mo. $350-700$ 1 year $450-800$.	Natural 1 week $30-50$ 1 mo. $50-80$. 1 year 200-300	Portland 1 week $80-125$ 1 mo. $100-200$ 1 year $200-350$				Gilmore's needles.	
		$1 \mathrm{mo} .227 \frac{1}{2}$			$1 \mathrm{mo}$.	Vicat's needles.	Same as English.
Minimum. 1 week 285 1 mo .498 3 months 640 ; to show 25% increase 1 week to 1 month.		$\begin{aligned} & \text { Minimum. } \\ & 1 \text { week } 114 \\ & 1 \text { mo. } 213 \\ & 3 \text { mos. } 2 \text { t. } \end{aligned}$				Vicat's needles.	Incipient to be not less than 30^{\prime} full set to be not less than 3 hre, or more than 12 hre.
		$\begin{aligned} & 1 \text { week } 114 \\ & 1 \text { mo. } 171 \end{aligned}$					

Kind of sand used.	How put in Moulds.	Rate of loading in tensile tests.	Time in air before immersions.	No. of tests used for A verages.	Time of Mixing.	Wearing Qualities.	Adhesive Qualities.
Standard crushed quartz to all pass No. 20 sieve all caught on No. 30 sieve.	10 lbs, per sq. in. steady pressure.	200 lbs. per minute.	24 hrs .	Not stated, probably 5	1 min . for quick setting, 2 minutes for sluw setting, mechanical mixer.		
ditto	10 lbs , on briquette fors min., or shaken in moulds or beaten with trowel for 1 min.	400 lbs . per minute.	24 hrs .	5	1 minute or more, mechanical mixer.		Mr. Mann I week 57) Dis 1 nıo. 78 3 mos 98 (옹 ${ }^{60}$ Fineness has great effect.
ditto	Pressed in with trowel without ramming.	ditto	24 hrs.	5 Smallest section only.	1 minute or more, hand or mechanical mixing.		
Standard crushed quartz, $\frac{1}{2}$ to pass 20 , caught on 30 . $\frac{1}{2}$ to pass 30, caught on 38 sieves.	Bohmes' apparatus, 150 blows with trip hammer weighing 4.4 lbs .	13 lbs. per minute.	24 hrs .	10	1 minute for quick setting, 3 min for slow setting cements.	1 to 1 and 2 to 1 give higher results than neat or 3 to 1 tough at 7 days as at 20 days.	Advised to be still reported on and investigat'd, to be made on ground glass.
Crushed Cherbourg quartz pass No. 20 caught on No. 30 sieves.	Filled in and tamped with rammer weighing 7 oz . till water stands on surface.	Not specifiel.	24 hre, then in sea water of 59° to $64^{\circ} \mathrm{F}$.	Mean of 3 highest taken.	5 minutes by hand on a slab, temp. of air 59° to $64^{\circ} \mathrm{F}$.		

A very peculiar efeet was met with in two Canadian and one English Portlands. They were evidently fresh, and when mixed with a normal amount of water would work into a good plastic mass, but in about 1 to 2 minutes after the water was added, they would suddenly set, so hard that it was useless. to attempt to put them in the moulds.

By inereasing the per cent, of water to about 30, a thin batter was made, which could be got into the moulds before this action took place ; of course this amount of water made the set very slow, and deadened the indurating action in 1 reek tests.

When tests were made, several weeks later, on these cements, this effect had disappeared ; perhaps someone connected with the industry can explain the cause of this netion.
(c) Residues or Fineness.

The variation is enormous, as the following statement shows :-

	Ressufue on No. 50 Sieve $\%$	Residue on No. 80 Sieve.	Residue on No. 120 Sieve.
	$\%$	$\%$	$\%$
Coarsest	$31 \cdot 4$	$52 \cdot 2$	
Finest	$0 \cdot 25$	$2 \cdot 7$	$61 \cdot 2$

The English Portlands are generally very coarse, as will be seen, and the selected Canadiar vios fine.

It is not putting it wo severely to say that specifying a certain residue on No. 50 sieve is a arrect premium on coarse grinding, and so, in fact are neat tensile tests.

Fo: instance, English brands No. 10, No. 11, No. 12, No. 13 and Nos. 14 A, 14 B , are all evidently ground to pass a specification of 5 per cent, residue on No. 50 sieve, and are all very coarse when sifted on finer ones, thus plainly showing the failure of the specification to obtain as good a proluct as possible.

The author would urge thy severest requirements for fineness,
Various papors read and the statements of manufacturers themselves go to show that the increased cost is very slight, not more than 10c. per bbl. between ordinary and fine grinding,

10 per cent. residuc on No. 80 sieve \}
20 per cent. residuc on No, 120 sieve $\}$ as maximums are not too high for present facilities for fine grinding ; this would let in 3 out of 4 Canadian Portlands tested, 1 out of 10 English Portlands tested, 2 out of 4 Belgian Portlands tested, or in all 6 out of 18 brands. There are signs, however, that the English manufacturers are waking up to finer

grinding, and will soon fall into line; there is no reason why educating influences should not bring grinding down much finer still for ordinary brands, but for the present, too much severity would defeat the object in view. For tests on the effect of fine grinding, see Series I of Experiments.)
(d) The tume of incipient and final set, as found by Gilmore's needles, does not seem to affect the strength, except for very short tests, When the slow settings are generally stronger, good cements may be either the one or the other ; but ordinarily, unless for tidal work, a slow setting one has the desirable feature of allowing masons to mix and use good sized batches of mortar, without constant t-mpering, which is the practice with quick setting ones, much to their own hurt.
(e) The blowing test advised by Faija, has detected a "blowey" tendency in several instanees ; but much late evidence seem to throw some discredit on blowing tests, whether made with hot or boiling water, on the ground that manufacturers can, by the addition of sulphate of lime, cause the cement to be so slow setting and set so strongly as to resist the blowing tendency of so much as 3 per cent. of free lime added after the cement had been burnt. If this is a fact, chemical analysis will need to be resorted to more frequently, to detect this dangerous adulteration which is fatal in sea-water and bad in any case, as the great strength which it gives to cements at early dates is apt to decrease at longer periods. Belgian No. 19 cement tested gave higher results at 1 week than at 4 weeks ; this looks a little suspicious.

Cements have been tested usually neat ; the Germans have reached the stage of 3 to 1 mixtures as the deciding test, and this would seem to be the only rational way of testing a cement, i.e., in the same condition as it is used.

The difficulty, however-and it is a very serious one-has been to get anything like uniform results in sand tests, The variation in putting the mortar in the moulds has been so much more than the variation in the cementing value of the cement that the tests were valueless, so that most testers have clung to neat tests as being simple and a fair index of cement i_{i} ng qualities. That this view is in fault, and misleading, every tester will admit, and it is only partly avoiding the difficulty to specify a certain fineness, strength and specifie gravity in combination, and even then the results are not definite, as each cement is different in value. However, for those who have facilities for testing cement neat only,and these will probably be in the majority for some time to come-it would seem that 350 lbs . at 1 week neat and 450 lbs . at 4 weeks neat are easily
obtained, and quito ennugh to specify. 11 brands tested would give this much strengh and stand the blowing test, and of these there are 6 brands fine enough for 10 p.e. residue on 80 sieve and 20 p.c. residue on 120 sieve, with a specific gravity varying from 308 to 313 , while the six brands which are not strong enough are also too coarse.

The tests on natural ecments are not extensive enough to form a good basis, but it would seem easy to get 100 lbs , neat at 1 week and 200 lbs . neat at 4 weeks, and a fineness the same as for Portlands.

The tests on No. 2 natural : nd No. 11 Portland were carried on for 6 months, and show the natural to be gaining on the Portland, although each has evidently nearly reached a maximum. This would seem to bear out the idea which many 'people yet have, that, in time, a natural eement not being so brittle will eatch up to a Portland. Long time tests are very much needed on this subject.

Natural cements being underburnt (usually) have very much less combining power with sand ; the 1 to 1 natural is not as strong as 2 to 1 Portland, according to tests made last year as per Table II, in which the mixtures were made with 15 p.e. of water for 1 to 1 , and 12 p.c. of water for 3 to 1 mistures, the mortars being lightly tamped into the mould with an iron rammer ; the tests made this year, however, ly means of a uniform pressure, give much higher results for 1 to 1 naturals, when 20 p.c. of water is used, which would seem to be nearer to the amount used in practice, making a soft plastic mortar. (See pressure tests.)

Natural cement has many uses. It is being passed aside in many quarters,-why ? because if immersed in water for 1 week or 4 weeks, it will give low tensile tests. That terror of the present day, the testing machine, condemns it.

Now there are many oceasions where it would not be wise to use anything but the best Portlands-such as laying mortar in extreme frost, or where? great immediate strongth is required, or for subaqueous work generally, but, on the other hand, no one doubts the durability of good natural cement. Works in Europe hundreds of years old, and all the work done in the United States at.d Canada previous to 30 years
ago, are built with such mortars, and stand as witnesses of their last. ing qualities.

Moreover, tests made on No. 1 natural cement (see Series III frost tests) show that while it cannot be immediately exposed to extreme cold, yet when it is exposed, after it has set, it will resist frost thoroughly, and become stronger than if immersed in water at an ordinary temperature. There are thuusands of situations, where natural cement mortar, 1 cement, 2 sand, will be found amply strong for the purposes required, in which case it will be found cheaper than Portland mortar, 1 cement, 3 sand. Referring ahead to Series III (frost), it will be seen that if mortars are tested in open air, the Portlands are weaker and naturals stronger than if the briquettes had been under water. This is a point of much importance, because if work is to be done which will not usually be submerged, as in damp foundations, abutments on land, culverts, cte., then tests made in open air will give results more favourable to naturals. In so many words our standard tests say : " Let us test all hydraulie cements under vater ; whether the mortar as used will be so or not, we will be on the safe side." This, as a generality, is doubtless best ; but if we consider what a large proportion of cement is used in situations usually not submerged, it would seem more rational to test cements under conditions similar to those under which they are to be used in cach case, be it in water or air.

As before mentioned, all the sand tests given in the Table (Table II) were made by tamping the mortar lightly into the moulds with an iron rammer weighing about $\frac{1}{2} \mathrm{lb}$. and $\frac{1}{2}$ inch square seetion.

This has been done in as nearly a uniform manner us possible. About 3 layers were tamped, and then a 4th layer smoothed off with a spatula. Every ffort was directed toward uniformity in methol, and, doubtless, some degree of accuracy was obtained ; but it was felt that the best possible would only enable comparisons to be made in this laboratory, it would not enable any to be made with results obtained elsewhere.

The Cement Committee of the Socicty (of which the writer was made a member, by invitation) advised that tests should be made under a pressure of 10 lbs . per sq. inch. It was not defined at the time whether this applied to sand tests only or to neat tests also ; but the neccesity for pressure is not so great in neat tests, because anyone with ordinary skill and practice san make a good neat briquette, and a light pressure will not affect the result mueh, as will be shown farther on.

In November last the moulds for applying pressure (see drawings), which were from a design of the writer's, modifisd by Mr. Withycombe,

Elevation of Pressure Attacht

Plan and Elev of Plunger
 $:$

section on C. .
were completed, and since then several hundred briquettes have been made with them. It would reem a simple matter to mix up mortar, put it under a plunger, and by putting on 10 lbs . per sq. inch, make briquettes ; but theory and practice must be fellow-labourers. Now, 12 p.c. of water is considered the correct thing in 3 to 1 mixtures, but with this amount, the mortar would not pack at all in a closed mould under so light a dead pressure, and it is light dead pressure that is wanted ; even 20 lbs . per sq . inch was of no greater effect, then 15 p.c. of water was tried, with very little better results.

It was finally concluded to try several series with different percentages of water, and thereby determine the best per cent. for making a good briquette.

These series (see Table ILI) ran from 15 p.c. to 25 p.c. of water, and were for 10 lbs , and 20 lbs . pressure per sq, in, for 1 week and 4 weeks, and each result tabulated is the average of 5 briquettes, and the whole table the result of 77 experiments, or 385 briquettes,

The result, to the author's mind, is definite, 20 p.c. of water is just sufficient to make a plastic mortar, so that a good briquette can be formed while more water tends to drown the cement and make it weaker at both the 1 week and 4 week tests, although longer tests would probably show a recovery in this respect.

This 20 p.e. applies to 1 to 1 and 3 to 1 mixtures, and will probably be about right for 2 to 1 also, if it is desired to make such tests, It is conclusive from the table that if any standard test under light pressure is to be adopted for sand tests, 20 p.c. of water must be preseribed as a definite part of the test, and in this way perfect uniformity obtained. It is understood that the sand used is standard sand dry and sharp, a finer or rounder sand would allow less water to be used. This amount of water, while greater than that usually given by authorities whose method of making sand briquettes is by some severe hammering process (e.q. German) is still close to the amount used in practice.

What we want, it scems, is, first of all, a uniform method capable of application in any part of the Dominion ; after that we want it to approach as nearly as possible to actual usage, and fortunately the two conditions are in harmony with each other. Even at the risk of repetition, it is worth saying again, that plastic mortar made with 20 p.c. of water is close to practice, and will give regular and accurate tests if put into moulds under light pressure. The amount of this pressure does not seem to be of such great importance, but 20 lbs , per sq. inch gives

TABLE III.
TESTED IN TENSION. PRESSURE SAND TESTS.

Brand	Mixture.	\% of water	Fressure per sq. in.	1 week tests, 1 air, 6 water.							4 week tests, 1 air, 27 water.						
				lbs. per sq. in.			W't when tested in oz.			$\left\|\begin{array}{l\|} \stackrel{\rightharpoonup}{0} \times c \\ \frac{0}{0} \\ 2 \\ 2 \\ 2 \\ \hline 0 \\ 0 \end{array}\right\|$	lbs. per sq. in.			Weig'twhentestedin oz.			$\begin{aligned} & \stackrel{\rightharpoonup}{3} x \\ & \frac{3}{5}=0 \\ & \frac{2}{2}=\frac{8}{8} \end{aligned}$
				Highest.	Lowest.	$\begin{aligned} & \text { A ver } \\ & \text { age. } \end{aligned}$					High	Lowest.	$\begin{gathered} \text { A ver- } \\ \text { age. } \end{gathered}$				
No. 2	to 1	$\begin{aligned} & 15 \\ & 17 \frac{1}{2} \\ & 20 \\ & 22 \frac{1}{2} \\ & \hline \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & 10 \end{aligned}$	$\begin{array}{r} 45 \\ 165 \\ 130 \\ 123 \\ \hline \end{array}$	$\begin{array}{r} 23 \\ 106 \\ 94 \\ 106 \end{array}$	$\begin{aligned} & 32 \frac{1}{2} \\ & 136 \\ & 117 \\ & 113 \frac{1}{2} \end{aligned}$	$\begin{aligned} & 4 \cdot 56 \\ & 5 \cdot 26 \\ & 5 \cdot 56 \\ & 5 \cdot 54 \end{aligned}$	$\begin{aligned} & 3.98 \\ & 4.84 \\ & 5 \cdot 08 \\ & 4.99 \\ & \hline \end{aligned}$	$\begin{array}{r} 12 \cdot 63 \\ 7 \cdot 98 \\ 8 \cdot 62 \\ 9 \cdot 88 \\ \hline \end{array}$	$\left\lvert\, \begin{array}{r} 410 \cdot 4 \\ 1085 \cdot 3 \\ 1008 \cdot 6 \\ 1124 \cdot 4 \end{array}\right.$	$\begin{array}{r} 71 \\ 282 \\ 292 \\ 258 \\ \hline \end{array}$	$\begin{array}{r} 39 \\ 205 \\ 239 \\ 200 \\ \hline \end{array}$	$\begin{gathered} 59 \\ 2381 \\ 265 \frac{1}{2} \\ >35 \end{gathered}$	$\left\lvert\, \begin{aligned} & 4 \cdot 64 \\ & 5 \cdot 32 \\ & 5 \cdot 52 \\ & 5 \cdot 49 \end{aligned}\right.$	$\begin{aligned} & 4 \cdot 01 \\ & 4 \cdot 95 \\ & 5 \cdot 17 \\ & 5 \cdot 12 \\ & \hline \end{aligned}$	$\begin{array}{r} 13 \cdot 49 \\ 7 \cdot 03 \\ 634 \\ 6 \cdot 74 \\ \hline \end{array}$	$\begin{array}{r} 795 \cdot 9 \\ 1683 \cdot 7 \\ 1683 \cdot 2 \\ 1583 \cdot 9 \end{array}$
No. 2	1t to 1	$\begin{aligned} & 15 \\ & 17 \frac{1}{2} \\ & 20 \\ & 22 \frac{1}{2} \\ & \hline \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \\ & 20 \\ & 20 \end{aligned}$	$\begin{array}{r} 47 \\ 144 \\ 157 \\ 126 \end{array}$	$\begin{array}{r} 42 \\ 111 \\ 90 \\ 110 \end{array}$	$\begin{aligned} & 432 \\ & 1262 \\ & 114 \\ & 119 \end{aligned}$	$\begin{aligned} & 4 \cdot 79 \\ & 5 \cdot 37 \\ & 5 \cdot 67 \\ & 5 \cdot 54 \\ & \hline \end{aligned}$	$\begin{aligned} & 4 \cdot 05 \\ & 4 \cdot 92 \\ & 5 \cdot 13 \\ & 5 \cdot 03 \end{aligned}$	$\begin{array}{\|r\|} 15 \cdot 52 \\ 8 \cdot 38 \\ 9 \cdot 63 \\ 9 \cdot 28 \\ \hline \end{array}$	$\left\|\begin{array}{r}675 \cdot 1 \\ 1060 \cdot 0 \\ 1097 \cdot 8 \\ 1104-3\end{array}\right\|$	$\begin{array}{r} 95 \\ 2: 8 \\ 297 \\ 295 \\ \hline \end{array}$	$\begin{array}{r} 70 \\ 160 \\ 212 \\ 234 \\ \hline \end{array}$	84 $176 \frac{1}{2}$ 264 262	$\begin{aligned} & \mathbf{4} \cdot 99 \\ & \mathbf{5} \cdot 27 \\ & \mathbf{5} \cdot 62 \\ & \mathbf{5} \cdot 56 \end{aligned}$	$\begin{aligned} & 512 \\ & 4 \cdot 22 \\ & 4 \cdot 83 \\ & 5 \cdot 28 \\ & 5 \cdot 21 \end{aligned}$	$\begin{array}{r} 15 \cdot 40 \\ 8 \cdot 35 \\ 6 \cdot 12 \\ 6 \cdot 29 \end{array}$	$1293 \cdot 6$ $1473 \cdot 7$ $1615 \cdot 6$ $1648 \cdot 0$
No. 15 n16:5:	1 to 1	$\begin{aligned} & 15 \\ & 17 \frac{1}{2} \\ & 20 \\ & 22 \frac{1}{2} \\ & \hline \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & 10 \end{aligned}$	$\begin{array}{r} 86 \\ 60 \\ 149 \\ 129 \\ \hline \end{array}$	$\begin{array}{r} 40 \\ 37 \\ 108 \\ 120 \\ \hline \end{array}$	$\begin{array}{r} 62 \frac{1}{2} \\ 52 \\ 133 \\ 125 \\ \hline \end{array}$	$\begin{array}{\|l} 4 \cdot 92 \\ 5 \cdot 14 \\ 5 \cdot 60 \\ 5 \cdot 68 \\ \hline \end{array}$	$\begin{aligned} & 4 \cdot 42 \\ & 4 \cdot 60 \\ & 5 \cdot 12 \\ & 5 \cdot 19 \\ & \hline \end{aligned}$	$\begin{array}{r} 10 \cdot 46 \\ 10.50 \\ 8.46 \\ 8.76 \end{array}$	$\left\lvert\, \begin{gathered} 653 \cdot 7 \\ 546-0 \\ 1125 \cdot 1 \\ 1095 \cdot 1 \end{gathered}\right.$	112	98	104	$5 \cdot 04$	$4 \cdot 41$	$12 \cdot 50$	$1300 \cdot 0$
No. 15	to 1	$\begin{aligned} & 15 \\ & 17 \frac{1}{2} \\ & 20 \\ & 22 \frac{3}{2} \end{aligned}$	20 20 20 20	49 184 146 130	$\begin{array}{r} 42 \\ 145 \\ 114 \\ 108 \end{array}$	45 1663 $135 \frac{1}{2}$ 118	4. 94 $\mathbf{5} \cdot 62$ $\mathbf{5} \cdot 63$ $\mathbf{5} \cdot 72$	$\left\|\begin{array}{c}4 \cdot 18 \\ 5 \cdot 28 \\ 5 \cdot 17 \\ 5\end{array}\right\|$	15-46 6-61 $8 \cdot 20$ $8 \cdot 22$								

TESTED IN TENSION.
PRESSURE SAND TESTS-Continued.

Brand	Mixture.	\% of water.	Pressure per eq. in.	1 week tests, 1 air, 6 water.							4 week tests, 1 air, 27 water.						
				lbs. per eq. in.			W't when tested in oz.			$\left\lvert\, \begin{aligned} & \overrightarrow{3} x \\ & \frac{3}{x} \\ & 2 \\ & 2 \end{aligned}\right.$	lbs. per eq. in.			Weig't when tested in oz .			$\begin{aligned} & \left\lvert\, \begin{array}{l} 0 \\ 0 \\ 3 \\ 2 \\ 2 \\ 8 \\ 8 \\ 8 \end{array}\right. \end{aligned}$
				Highest.	Lowest.	$\begin{aligned} & \text { A ver } \\ & \text { age. } \end{aligned}$					Highest.	Lowest.	A verage.				
No. 15	3 to 1	15 $17 \frac{1}{2}$ 20	10 10 10	20 12 13	$\begin{array}{r} 14 \\ 5 \\ 7 \end{array}$	$\begin{gathered} 16 \frac{1}{2} \\ 7 \\ 11 \end{gathered}$	$4 \cdot 75$ $4 \cdot 59$ $4 \cdot 73$	$\begin{aligned} & 4 \cdot 03 \\ & 3 \cdot 12 \\ & 4 \cdot 17 \end{aligned}$	$\begin{aligned} & 15.21 \\ & 14 \cdot 66 \\ & 11 \cdot 79 \end{aligned}$	$\begin{aligned} & 251 \cdot 0 \\ & 102 \cdot 6 \\ & 129 \cdot 7 \end{aligned}$	$\begin{aligned} & 35 \\ & 48 \\ & 23 \end{aligned}$	$\begin{array}{r} 19 \\ 32 \\ 5 \end{array}$	$\begin{aligned} & 28 \\ & 40 \\ & 15 \end{aligned}$	$\begin{aligned} & 4 \cdot 61 \\ & 4 \cdot 66 \\ & 4 \cdot 86 \end{aligned}$	$\begin{aligned} & 3 \cdot 88 \\ & 4 \cdot 15 \\ & 4.24 \end{aligned}$	$\begin{aligned} & 15 \cdot 88 \\ & 11 \cdot 03 \\ & 12 \cdot 75 \end{aligned}$	$444 \cdot 6$ $441 \cdot 2$ $191 \cdot 2$
No. 15	3 to 1	$\begin{aligned} & 15 \\ & 172 \\ & 20 \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \\ & 20 \end{aligned}$	23 17	$\begin{aligned} & 9 \\ & 2 \\ & 8 \end{aligned}$	$\begin{gathered} 16 \\ \vdots \\ 12! \end{gathered}$	$\begin{gathered} 4 \cdot 64 \\ 4 \cdot 85 \end{gathered}$	$\begin{gathered} 397 \\ \cdots \cdots \\ 4 \cdot 28 \end{gathered}$	$14 \cdot 48$ 11:75	$\begin{gathered} 2: 31 \cdot 7 \\ \because+6 \cdot 9 \end{gathered}$	$\begin{aligned} & 55 \\ & 40 \\ & 28 \end{aligned}$	$\begin{aligned} & 28 \\ & 25 \\ & 19 \end{aligned}$	$\begin{aligned} & 38 \\ & 33_{2}^{2} \\ & 24 \end{aligned}$	$\begin{aligned} & 4 \cdot 56 \\ & 4 \cdot 74 \\ & 4 \cdot 89 \end{aligned}$	$\begin{aligned} & 4 \cdot 01 \\ & 4 \cdot 23 \\ & 4 \cdot 36 \end{aligned}$	$\begin{aligned} & 12 \cdot 15 \\ & 10 \cdot 80 \\ & 10 \cdot 80 \end{aligned}$	$\begin{aligned} & 461 \cdot 7 \\ & 361 \cdot 8 \\ & 259 \cdot 2 \end{aligned}$
No. 9	3 to 1	15 172 20 20 221 25 25	$\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & 10 \\ & 10 \\ & \hline \end{aligned}$	25 35 27 97 11	$\begin{array}{r} 14 \\ 18 \\ 20 \\ 22 \\ 8 \\ \hline \end{array}$	$\begin{aligned} & 19 \\ & 27 \\ & 233 \\ & 24 \\ & 10 \end{aligned}$	$\begin{aligned} & 4 \cdot 37 \\ & 4 \cdot 49 \\ & 4 \cdot 68 \\ & 4 \cdot 85 \\ & 4 \cdot 81 \end{aligned}$	$\begin{aligned} & 3 \cdot 81 \\ & 4 \cdot 07 \\ & 4 \cdot 08 \\ & 4 \cdot 23 \\ & 4 \cdot 13 \end{aligned}$	$\begin{gathered} 12 \cdot 77 \\ 9 \cdot 35 \\ 12 \cdot 91 \\ 12 \cdot 86 \\ 14 \cdot 13 \end{gathered}$	$242 \cdot 6 \mid$ $252 \cdot 4$ $303 \cdot 4$ $315 \cdot 1$ $141-3$	$\begin{array}{r} 71 \\ 106 \\ 134 \\ 88 \\ 53 \end{array}$	$\begin{array}{r} 38 \\ 92 \\ 101 \\ 74 \\ 33 \end{array}$	$\begin{gathered} 63 \\ 96 \\ 120 \\ 79 \\ 46! \\ \hline \end{gathered}$	$4 \cdot 54$ $4 \cdot 72$ $4 \cdot 65$ $4 \cdot 70$ $4 \cdot 73$	$\begin{aligned} & 3 \cdot 89 \\ & 4 \cdot 24 \\ & 4 \cdot 18 \\ & 4 \cdot 16 \\ & 4 \cdot 11 \end{aligned}$	$\begin{aligned} & 14 \cdot 24 \\ & 10 \cdot 17 \\ & 10 \cdot 14 \\ & 11 \cdot 49 \\ & 13 \cdot 18 \end{aligned}$	$\begin{array}{r} 897 \cdot 1 \\ 976 \cdot 3 \\ 1218 \cdot 8 \\ 907 \cdot 7 \\ 6129 \end{array}$
No. 9	to 1	15	20	37	33	34	$4 \cdot 66$	$4 \cdot 05$	$13 \cdot 22$	459	86	62	712	4-69	$4 \cdot 15$	$12 \cdot 22$	
		$\begin{aligned} & 17 \frac{1}{2} \\ & 20 \\ & 22 \frac{1}{2} \\ & 25 \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \\ & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & 33 \\ & 29 \\ & 25 \\ & 27 \end{aligned}$	$\begin{aligned} & 20 \\ & 25 \\ & 22 \\ & 22 \end{aligned}$	$\begin{aligned} & 271 \\ & 27 \\ & 29 \\ & 23 \\ & \frac{25}{25} \end{aligned}$	$4 \cdot 53$ $4 \cdot 8$ $4 \cdot 86$ $4 \cdot 80$	$4 \cdot 19$ 419 4.27 $4 \cdot 18$	$9 \cdot 54$ $12 \cdot 78$ $12 \cdot 06$ 12.89	$\begin{array}{ll} 4 & 262 \cdot 3 \\ 3 & 338 \\ 5 & 277 \cdot 4 \\ 9 & 324 \cdot 4 \end{array}$	$\begin{array}{r} 124 \\ 143 \\ 103 \\ 53 \end{array}$	$\begin{array}{r} \mathbf{1 0 3} \\ 109 \\ 87 \\ 44 \\ \hline \end{array}$	$\begin{array}{r} 114 \frac{1}{1} \\ 127 \\ 95 \frac{1}{2} \\ 49 \\ \hline \end{array}$	$\begin{aligned} & 4 \cdot 75 \\ & 4 \cdot 69 \\ & 4 \cdot 81 \\ & 4 \cdot 70 \end{aligned}$	$\begin{aligned} & 4 \cdot 27 \\ & 4 \cdot 26 \\ & 4 \cdot 28 \\ & 4 \cdot 09 \end{aligned}$	$\left\|\begin{array}{r} \mathbf{1 0} \cdot \mathbf{1 5} \\ \mathbf{9} \cdot 17 \\ 11 \cdot 02 \\ 12 \cdot 94 \end{array}\right\|$	$\begin{gathered} 1162 \cdot 1 \\ 1164 \cdot 5 \\ 1052 \cdot 4 \\ 634 \cdot 1 \end{gathered}$
No. 10	3 to 1	$\begin{aligned} & 15 \\ & 17 \frac{1}{2} \\ & 20 \\ & 22 \frac{1}{2} \\ & 25 \\ & \hline \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & 10 \\ & 10 \\ & \hline \end{aligned}$	$\begin{aligned} & 37 \\ & 43 \\ & 48 \\ & 34 \\ & 33 \\ & \hline \end{aligned}$	$\begin{aligned} & 30 \\ & 22 \\ & 32 \\ & 27 \\ & 15 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathbf{3 4 y} \\ & 311 \\ & \mathbf{3 7 1} \\ & 30 \\ & \mathbf{2 3 1} \\ & \hline \end{aligned}$	$\begin{aligned} & 4 \cdot 70 \\ & 4 \cdot 67 \\ & 4 \cdot 79 \\ & 4 \cdot 95 \\ & 4 \cdot 92 \\ & \hline \end{aligned}$	$\begin{aligned} & 4 \cdot 18 \\ & 4 \cdot 12 \\ & 4 \cdot 24 \\ & 4 \cdot 33 \\ & 4 \cdot 27 \\ & \hline \end{aligned}$	$\begin{aligned} & 11 \cdot 07 \\ & 11 \cdot 69 \\ & 11 \cdot 41 \\ & 12 \cdot 45 \\ & 13 \cdot 14 \end{aligned}$	7 $381 \cdot 9$ 9 $368 \cdot 2$ 1 $427 \cdot 8$ 5 $373 \cdot 5$ 4 $308 \cdot 7$	$\begin{aligned} & 59 \\ & 87 \\ & 65 \\ & 50 \\ & 34 \end{aligned}$	$\begin{aligned} & 51 \\ & 63 \\ & 62 \\ & 38 \\ & 23 \\ & \hline \end{aligned}$	$\begin{aligned} & 55 \frac{1}{2} \\ & 70 \\ & 631 \\ & \mathbf{4 4}: \\ & \mathbf{2 8} \frac{1}{2} \end{aligned}$	$\begin{aligned} & 4 \cdot 72 \\ & 4 \cdot 84 \\ & 4 \cdot 89 \\ & 4 \cdot 88 \\ & 4 \cdot 88 \end{aligned}$	$\begin{aligned} & 4 \cdot 18 \\ & 4 \cdot 35 \\ & 4 \cdot 32 \\ & 4 \cdot 22 \\ & 4 \cdot 15 \\ & \hline \end{aligned}$	$\begin{aligned} & 12 \cdot 27 \\ & 10 \cdot 03 \\ & 11 \cdot 68 \\ & 13 \cdot 48 \\ & 12 \cdot 94 \\ & \hline \end{aligned}$	$\begin{gathered} 681 \cdot 0 \\ 703 \cdot 5 \\ 741 \cdot 6 \\ 3 \\ \hline 600 \cdot 0 \\ 7 \\ \hline \end{gathered}$
No. 10	3 to 1	$\begin{aligned} & 15 \\ & 172 \\ & 20 \\ & 221 \\ & 25 \\ & \hline \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \\ & 20 \\ & 20 \\ & 20 \\ & \hline \end{aligned}$	41 37 42 36 33	$\begin{aligned} & 27 \\ & 16 \\ & 31 \\ & 23 \\ & 27 \\ & \hline \end{aligned}$	$\begin{aligned} & 3 i 3 \frac{1}{2} \\ & 27 \\ & 35 \\ & 29 \frac{1}{2} \\ & 31 \\ & \hline \end{aligned}$	$4 \cdot 68$ $4 \cdot 65$ $4 \cdot 82$ $4 \cdot 90$ $5 \cdot 00$	$4 \cdot 11$ $4 \cdot 08$ $4 \cdot 24$ $4 \cdot 28$ $4 \cdot 35$	$12 \cdot 18$ $12 \cdot 13$ $11 \cdot 96$ $12 \cdot 65$ $13 \cdot 06$	8 $408 \cdot 0 \mid$ 3 $327-5 \mid$ $424 \cdot 5$ $373 \cdot 1$ $403 \cdot 0$	$\begin{aligned} & 67 \\ & 88 \\ & 84 \\ & 85 \\ & 58 \end{aligned}$	$\begin{aligned} & 52 \\ & 47 \\ & 56 \\ & 70 \\ & 34 \end{aligned}$	$\begin{aligned} & 61 \\ & 68 \\ & 71 \\ & 75 \\ & 48 \end{aligned}$		$\left\lvert\, \begin{aligned} & 4 \cdot 40 \\ & 4 \cdot 31 \\ & 4 \cdot 42 \\ & 4 \cdot 35 \\ & 4.27\end{aligned}\right.$	$11 \cdot 04$ $10 \cdot 96$ $11 \cdot 03$ $11 \cdot 23$ $11 \cdot 92$	$673 \cdot 4$ $745 \cdot 3$ $783 \cdot 1$ $842 \cdot 2$ $572 \cdot 2$

rather sharper-edged briquettes, with about the eame variation in uniformity and the same tensile strength per sq. inch. This is equivalent to 20 feet of masonry, which, of course, is more than practice would give ; but the tests do not vary to any extent when compared with those made with 10 lbs . per sq. inch. Therefore it is not deemed of sufficient importance to sacrifice good manual results. Therefore, 20 lbs . per sq . inch pressure and 20 p.c. water was adopted about 1 month ago, and the following results obtained (Table IV); this table wil be completed in a few months, when it is intended to complete this paper by ndditional results on pressure, frost and pler tests.
Whether the future will bring sand tests to greater uniformity than this remains to be seen;; but it is believed that, in this way, the sand combining qualities of cements can be compared with accuracy with one another, and in future such will be the method adopted in the cement laboratory at McGill, subject to the modifications of our cement committee.
It is earnestly to be desired that a code of tests be formulated at once, and all mombers urged to test under this code. Let all cenients stand or fall under it. In the contest it is believed that Cauadian cements can be as good as the best ; but to do this, there must be reform on some sides, so that tests made from outputs will show a greater regularity, and enuse the cement to commend itself to the consumers of the article.

COMPRESSIVE TESTS.

Those are doubtless more vilu ible than tensito ones, in the sense that we use mortar usually in compression. There are several reasons, however, why such tests are not really needed :-
(1) Boonuse tha strong mashinery needed would not be generally available ;
(2) Because the ompressive strength, after all, varies quite regularly with the tensile, being 5 to 6 times as great at 1 week or 4 weeks and gradually increasing to 9 to 10 times as great at a year, because by this time the cement is becoming brittle and has attained its maximum tensile strength. This is more particularly true of Portland cements, as naturals do not get so brittle ;
(3) Beanuse thic compressive strength of cement mortar is so great that we need seldom concern ourselves with it, but should rather know, the adhesive and tensile strengths should they ever be called into play and, moreover, the strength of mortar in thin joints is much greater than

TABLE IV.
CONDENSED SUMMARY OF PRESSURE SAND TESTS.
Put in Moulds with 20% water, 20 lhs. per sq. in.

Brand	Mixture.	1 week tests, 1 air, 6 water.							4 week teste, 1 air, 27 dys, water.								
		lbs. per sq. in.						$\begin{aligned} & \dot{3} 0 \\ & 0.0 \\ & 0.0 \\ & 30 \\ & 3 \\ & 0 \\ & 0 \end{aligned}$	lbs. per sq. in.						REMARKS.		
		Highest.	Lowest.	Average.					$\begin{gathered} \text { High- } \\ \text { est. } \end{gathered}$	Lowest.	Aver age.						
No. 1	1 to 1	75 157	46 90	58	$5 \cdot 2$	4-55	$13 \cdot 33$ $9 \cdot 63$	773-1	102	80	93	5.32 $5 \cdot 70$	$11 \cdot 73$ $6 \cdot 12$	$1090 \cdot 9$	Ten	of a	$60^{\circ} \mathrm{F}$.
No. ${ }^{2}$	1 to 1	157	90	114	5.67	5-13	9•63	1097-8	297	212	264	5.62 $5 \cdot 28$		$1615 \cdot 6$		"	$60^{\circ} \mathrm{F}$.
No. 15	1 to 1	146	114	1352	$5 \cdot 63$	5-17	$8 \cdot 20$	1111-1			-		'6	*	$61^{\circ} \mathrm{F}$.
No. 15	3 to 1	17	8	12.	$4 \cdot 85$	4-28	$11 \cdot 75$	$146 \cdot 9$	28	19	24	4-89 4-36	$10 \cdot 80$	259-2	"	${ }^{6}$	$\left\{\begin{array}{l}60^{\circ} \mathrm{F} . \\ 69^{\circ} \mathrm{F}\end{array}\right.$
No. 3	3 to 1	19	8	13	$4 \cdot 74$	4-17	12-06	156	52	37	47	$4483 \cdot 89$	$13 \cdot 20$	$620 \cdot 0$	"		$63^{\circ} \mathrm{F}$.
No. 9	3 to	29	25	262					143	109		4-694-26	9-17	$1164 \cdot 5$	4		$\left\{\begin{array}{l}65^{\circ} \mathrm{F},(1) \\ 58^{\circ} \mathrm{F},\end{array}\right.$
No. 10	3 to	42	31	35	$4 \cdot 82$		12.96	424-5	143 84	109 56	127 71	4.974 .42	11.03	$1164 \cdot 5$ $783 \cdot 2$			
No. 8	3 to 1	34	25	301					85	75	80	4.994-41	$11 \cdot 55$	924.0	*		$\left\{59^{\circ} \mathrm{F}\right.$. ${ }^{5}{ }^{\circ} \mathrm{F}$ (2)
No. 5	3 to 1	15	12	14	$4 \cdot 78$	4-12	$13 \cdot 70$	$191 \cdot 8$	58	43	50	$5 \cdot 134 \cdot 36$	$15 \cdot 01$	$750 \cdot 6$	"	*	$74^{\circ} \mathrm{F}$.
No. 4	3 to 1	52	30	392	4.94	$4 \cdot 37$	$11 \cdot 58$	$457 \cdot 4$	118	83	103	$5 \cdot 024 \cdot 49$	$10 \cdot 56$	1087-7	*	"	$61^{\circ} \mathrm{F}$.
No. 19	3 to 1	77	58	692	4-79	4-09	$14 \cdot 61$	$1015 \cdot 3$	143	101	129	4.88....	/	c	$65^{\circ} \mathrm{F}$.
No. 6	3 to 1	83	74	78	$4 \cdot 77$	3-97	$16 \cdot 84$	1313-5́	139	118	128	4-904-28	12-65	$1619 \cdot 2$	c	4	$64^{\circ} \mathrm{F}$.
No. 11	3 to 1	25	15	19	$4 \cdot 56$	4-13	$9 \cdot 51$	180.7	46	37	412	$4 \cdot 854 \cdot 18$	13.90	$576 \cdot 8$	4	"	$48^{\circ} \mathrm{F}$.
No.144	3 to 1	15	8	101	$4 \cdot 69$				36	24	30	$4 \cdot 884 \cdot 16$	$14 \cdot 76$	$442 \cdot 8$	*	*	$53^{\circ} \mathrm{F}$.

in cubes. Tests on cubes always go higher for smull cubes than for large ones. (See also Series (IV a) tests of mortar joints in brick piers.)

TRANSVERSE TESTS

Have often been advocated, and the machinery needed may be quite simple; but there are two objections which would preclude there being any great valuo in such tests :-
(1) Because the coefficients of rupture in transverse testing are known to be at fault in not really indicating the tensile strength of the outer layer or fibre ; this could possibly be avoided by determining cortain corrections as a thesis papor to the Engineeriny Neves pointed out ;
(2) The main objection is that a flaw of a very slight amount may be objectionable in such tests if situated near the tension face. Any cement testor knows that bubbles will occur. They may be very minute, or if of any size may be deducted in tensile tests, while in transverse tests, who could determine the correction to be made? Also tests made show that if tested upside down from position moulded, the results are higher than when tested as moulded. Altogether, this method of testing does not seem to commend itself to general use.

To conclade the subject of ordinary testing for commercial purposes, and with the addition of chemical analysic where available for scientific ones also, the following scems to be a good basis to work on, that 4 tests should be made in combination :-
(1) Specifie gravity 3.10 for Portlands, 2.95 for Naturals.
(2) Blowing test. In the absence of really final knowledge on the subject to continue to specify pats in stcam at $115^{\circ} \mathrm{F}$. for four hours, in water at $115^{\circ} \mathrm{F}$. for twenty hours, at which time if the pats are stuck tight to the ground glass, the cement may he considered safe, while if it has loosened from the plate but has not yet eracked or warped, it may be immersed again for 24 hours at $115^{\circ} \mathrm{F}$., or elso placed in water of ordinary temperature for 4 weeks, after which, if no further signs have developed the cement may be considered safe.
(3) Fineness :-

(4) Tensile strength :--

		Portland.	Naturals
Minimum neat	3 days	250	75
$"$ "	1 week	350	100
$"$	4 weeks	450	200

1 to 1 and 3 to 1 sand tests with 20 p.e. water, and 20 lbs . par sq. inch pressure to be determined by tests made and results furnished within the next year.

SERIES I.

SPECIAL TESTS.

On the effect of fine grinding :-
(a) 2 oz , cement passing No, 120 sieve \qquad Cement 2 oz . " eaught on No. 120 sieve 2 oz , "t it is No. 80 sieve 2 oz , sand
tested at 4 weeks gave 165 lbs ., while
2 oz . cement passiug No. 120 Sieve, \qquad Cement
6 oz , sand.
Sand
gave 121 lbs , tested at the same age.
Thus, if in the first instance we consider all but the finest as sand, then our result is only 35 per cent, higher than the 2nd mixture, showing of how little value the coarser particles were.
(b) No. 8 English Portland (very coarse) gave in ordinary test 414 lbs. 1 week neat, 528 lbs. 4 weeks neat ; but when all the particles eaught on No. 80 sieve were rejected, the results were 393 lbs . in 1 week, 484 lbs , in 4 weeks, demonstrating the well-known fact that neat tests of Portlands oporate against fine grinding, and therefore should be considered only in connection with fineness and specific gravity.
(c) Equal portions (same brand) of residues on No. 50 and No. 80 sieve were mixed with $22 \frac{1}{2}$ per cent. water, and gave 262 lbs , in 1 week and 324 lbs. in 4 wecks, which is very surprising, and can only be accounted for on the ground that the dust of cement elinging on to the coarse particles was sufficient to hold them together, or else that the mechanical action of mixing the mortar broke up many coarse particles into fincr ones.
(d) Toshow the superior value of fine cement in sand mixtures, the following results have been obtained :-

These results should be a convineing argument to users of Portland cement, that fine grinding is worth paying for, because the finer the same cement the greater its sand-carrying value is

Tho only partial exception in the above rosults is No. 2 natural. This is either erratic, being, however, duplicated, or if not, is easily accounted for. An underburnt cement is easily ground, and therefore is
not apt to be well ground ; very easy grinding will make it fine enough, and the better burnt particles being a little better burnt are, therefore, harder and escape grinding ; but these particles, not being very hard, are probably bruised up in mixing, and form the best part of the cementing substance ; therefore, when these are sifted out, the underburnt fine particle has not as great a cementing value as the mixture would have unsifted. On the other hand, the coarse particles in Portland cement are much harder, and aréalways a detriment in a sand mixture.

SERIES II.
 HOT WATER TEATS.

(a) No. 1 Natural cement neat, 2 months old, gave when tested the following results :-
(1) Water at temperature $52^{\circ} \mathrm{F}, 226 \mathrm{lbs}$, nverage.
(b) No, 1 Natural cement 1 to 1, 2 months old, gave when tested the following results :-
(1) Water at temperature $47^{\circ} \mathrm{F} ., 125 \mathrm{lbs}$ average.
(2) " " " $118^{\circ} \mathrm{F}$., 129 lbs . average.
(c) No. 4 Portland, neat, 1 month oll, gave when tested the following results:-
(1) Water at temperature $65^{\circ} \mathrm{F}$., 533 lbs , average.
(2) " " " $118^{\circ} \mathrm{F}$, 616 lbs , average.
(3) " " " $186^{\circ} \mathrm{F}$., 556 lbs , average.
(d) No. 4 Portland, 3 to 1, 1 month old, gave when tested the foling results :-
(1) Water at temperature $66^{\circ} \mathrm{F}, 81 \mathrm{lbs}$, average.
(2) " " " $183^{\circ} \mathrm{F}, 81$ lbs, average.

These tests, which are very uniform, indicate that for either natural or Portland cements tested neat or with sand, there is a slight gain in strength, by using hot water in mixing.

The advantage being that for exposure to frost the cement will set quieker and resist the frost action better. By referring ahead to frost tests, it will be seen that cements exposed at about same temperature (natural cement only tested with hot water in frost) gave much higher results when mixed with hot water, being in ratio, 94 to 0 for neat cement No. 1 Natural, and 117 to 44 for 1 to 1 cement No. 1 Natural,

SERIES III.

FROST OR EXPOSURE TESTS.

This series consisted of various investigations into the strength of mortars when mised with different eonditions of water and under different exposures, reference being particularly made to frost. All tests were made in quadruplicate.

The 1st set was submerged, after 24 hours, in water of laboratory tanks;

The $\mathbf{2 n d}$ set was kept on damp boards in a closed tank for the whole period, and never allowed to dry out;

The 3rd set was allowed to set in the laboratory, and then exposed to the severe frost and left in open air for the whole period ;

The 4th set were exposed in from 8 to 10 minutes to the severe frost, and left there for the whole period, except to take them out of the moulds when they were set or frozen.

Table V is here given, showing the results obtained, and accompanying it is a temperature chart showing the weather to which these mixtures were exposed during their whole period.

It will be noticed that these tests were purposely made in cold snaps so as to make the tests as severe as possible.

It would appear improbable that mortar immediately exposed to severe frost would become stronger than that allowed to set in a warm atmosphere, but the results of all the Portland cement tests, both in tension and compression (with one exception) assert it ; and also that those alluwed to set in the laboratory, and then exposed continually, are the weakest of all the 4 conditions treated of. This would go far to dispute the advisability of covering up mortar laid in frosty weather.

TABLE V.

FROST OR EXPOSURE TESTS.
SERIES III.

Mixture.	Age.	Tensile Strength.				Compressive Strength.				Dates of Exposure.				No. of tests.	Remarks.
		W ater test. (1)				1	2	3	4						
No. 11. Portland Neat.	2 mos .	602	471	282	334					Dec. 6th to Feb. 6th.	$+23^{\circ} \mathrm{F} .+22^{\circ} \mathrm{F}$.	30^{\prime} $12^{\prime}(4)$	25^{\prime}	16	
1 to 1.	*	377	276	194	233	3200	1780	1600	1900	$\begin{aligned} & \text { Dee. } 11 \text { th } \\ & \text { to } \\ & \text { Feb. } 11 \text { th. } \end{aligned}$	+5. ${ }^{\circ} \mathrm{F} . \mid+32_{2}{ }^{\circ} \mathrm{F}$.	$\begin{gathered} 40^{\prime}(3) \\ 8^{\prime}(4) \end{gathered}$	35^{\prime}	20	
2 to 1.	${ }^{6}$	168	150	105	111	800	720	660	440	$\begin{aligned} & \text { Dec. 12th } \\ & \text { to } \\ & \text { Feb. } 12 \text { th. } \end{aligned}$	$-\frac{1}{2}{ }^{\circ} \mathrm{F} . \quad 0^{\circ} \mathrm{F}$.	$\begin{aligned} & 40^{\prime}(3) \\ & 10^{\prime}(4) \end{aligned}$	37^{\prime}	24	
3 to 1.	${ }^{6}$	104	86	92	97	300	520	230	300	$\begin{aligned} & \text { Dec. 13th } \\ & \text { to } \\ & \text { Feb. 13th. } \end{aligned}$	$-5^{\circ} \mathrm{F} .-6^{\circ} \mathrm{F}$.	$\begin{array}{r} 1{ }^{\circ} 27^{\prime}(3) \\ 10^{\prime}(4) \end{array}$	$1^{\circ} 25^{\prime}$	24	Nos. 3 and 4 showed irregular and injured fractures.
No. 1. Natural Neat.	${ }^{6}$	226	221	349	0	1600	1500	2300	1390	$\begin{gathered} \text { Jan. 12th } \\ \text { to } \\ \text { Mar. } 12 \text { th. } \end{gathered}$	$+2^{\circ} \mathrm{F} .+5^{\circ} \mathrm{F}$.	$\begin{gathered} 4^{\circ} 15 /(3) \\ 11,(4) \end{gathered}$	$4^{\circ} 15^{\prime}$	24	No. 4 tension completely blown in framents. in fragments.
1 to 1.	*	125	229	187	44			0	800	Feb. 5 th to April 5th.	48 $8^{\circ} \mathrm{F}++_{1} \mathrm{i}^{\circ} \mathrm{F}$.	$\begin{gathered} 8^{\circ} 0^{y}(3) \\ 10^{\prime}(4) \end{gathered}$	$8^{\circ} 00^{\prime}$	22	Some of No. 4 tension injured and No. 3 compression.
Neat.	*	250	281	159	94	2800	2000	3300	1300	$\begin{aligned} & \text { Feb. 13th } \\ & \text { to } \\ & \text { April } 13 \text { th. } \end{aligned}$	$+13^{\circ} \mathrm{F}+5^{\circ} \mathrm{F}$	$\begin{aligned} & 6^{\circ} 0^{\prime}(3) \\ & 10^{\prime}(4) \end{aligned}$	$6^{\circ} 0{ }^{\prime}$	24	Mixed with water at temp. $122^{\circ} \mathrm{F}$.
1 to 1.	*	129	170	80	$\cdot 117$					$\begin{gathered} \text { Feb. 14th } \\ \text { to } \\ \text { April 14th. } \end{gathered}$	$+9^{\circ} \mathrm{F}, 0^{\circ} \mathrm{F}$	$\begin{array}{\|c} 3^{\circ} 0^{\prime}(3) \\ 8^{\prime}(4) \\ \hline \end{array}$	$2^{\circ} 50$	20	Mixed with water at temp. $118^{\circ} \mathrm{F}$.
Neat.	1 m	155	278	217	249					$\begin{gathered} \text { Feb. 26th } \\ \text { to } \\ \text { Mar. } 26 \mathrm{th} . \end{gathered}$	$\left\|+17^{\circ} \mathrm{F}\right\|+7 \frac{1}{2} \mathrm{~F}$	$\begin{array}{\|c\|} 7^{\circ} 01 \\ 91 \\ 91 \end{array}$	$7^{\circ} 0^{\prime}$	20	$\begin{aligned} & \text { Mixed with } 2 \% \\ & \text { brine. } \end{aligned}$

The next deduction from the Portland cement tests is that laboratory tests made with briquettes submerged give higher results than can be expected in open air work, and therefore that engineers should add this to the various other degenerating contingencies, such as bad mixing, dirty sand, ctes A deduction not much evidenced in the Table is that it is not safe to lay Portland cement mortar below $0^{\circ} \mathrm{F}$. because the 3 rd and 4 th series of 3 to 1 Portland exposed at $-6^{\circ} \mathrm{F}$. gave ocular evidence that their structure was injured, and the test-pieces broke most irregularly, while the other exposures at about $0^{\circ} \mathrm{F}$. gave no evidence of any injury at all. Coming to the natural cement mortar in the 5 th and 6 th lines, we find much different results. The first one is decisive, and is that this particular cement mortar cannot be laid in zero weather. The first set were all blown to pieces (except the cube), which surprisingly stood 1390 lbs ., while the 2nd set, although not quite blown to pieces, all showed extreme injury.

The most peculiar result is that this same cement, neat, if given a few hours to set in the temperate air, will on exposure to the frost attain a strength highest of the 4 conditions; this is quite remarkable, that while the Portland cement was strongest when submerged, the natural cement was stronger in damp air and strongest in frost.

Indeed, the Portland cement, in air, for 1 to 1 mixtures, was very little stronger than the 1 to 1 natural.

All of the natural cement specimens exposed to frost showed a disintegrated layer on the outside about $\frac{1^{\prime \prime}}{\prime \prime}$ thick; underneath this the structure was quite sound, and doubtless much of the variations in tests is due not so much to a weakening through the whole mass as to a reduced sectional area.

The last series made with 2 per cent. brine in mild weather for 1 month (exposed at $+7 \frac{1}{2}^{\circ} \mathrm{F}$) showed that salt increased the strength, making them as strong as others were at 2 months when mixed with fresh water, and also again emphasived the advantage to this natural cement of open air tests.

It would seem that either hot water or salt are therefore very strengthening in their effect. Much additional data on this subject is hoped for in Part II of this paper.

SHEARING TESTS.

This series of experiments was carried out with a view of obtaining more information on the shearing strength of mortar. The method adopted was as follows :-

Three bricks placed, as shown in sketch, were cemented together, and tested at the end of one month. It was found that by placing pieces of soft wood at A.A.A., an action as ncarly as possible a shear was obtained, and gave very sati-factory results, the pressure being practically concentrated along the two mortar joints. No side pressure unas applied, because the desire was to obtain minimum results where friction was not assisting.

The combined effect of adhesion and friction can easily be computed if the adhesion and super-imposed load are known.

The results are divided into lime mortar, natural eement mortar and Portland cement mortar, alee into $\frac{1^{\prime \prime}}{}$ and $\frac{1}{2}$ " jointe, also into flat common unkeyed bricks and pressed Laprairie brick keyed on one side. (1) The lime mortar was mixed 1 lime to 3 of standard quartz sand, by weight; (2) natural cement mortar was mixed, 1 of No. 2 natural cement to $1 \frac{1}{2}$ standard sand ; (3) Portland cement mortar was mixed, 1 of No. 5 Portland cement to 3 standard sand. (See exhibits of bricks with mortar attached.) The test-pieces were chiefly allowed to stand in the laboratory at a temperature of 55° to $65^{\circ} \mathrm{F}$., but one set of natural cement mortar and two of Portland cement mortar were duplicated by immersing in water for 29 days, after setting in air 24 hours before submersion,

These results point out many interesting facts: (a) the first fact noticeable is that the results are independent of the thicleness of joint ; this is true of lime and cement mortars. (b) The next one is not evidenced to any extent in the table, but was quite apparent in the testing, viz., that the adhesion of the mortar to the brick was greatest when the mortar was put on very soft, and least when the mortar was dry. This will largely uphold the use of soft mortars by masons, albeit their reason is a purely selfish one, the mortar being easy to handle. The tensile tests of cements mado very soft are lower than when the mixture has the minimum amount of water for standard consistency.

But for adhesive tests the ense is evidently the reverse. It may be here mentioned that in these tests all bricks were thoroughly soaked with water before the joints were laid. (c) Coming now to the tests on lime mortar, the shears were throngh the mortar, except in the 4th experiment, and therefore they are quite independent of the key of the pressed brick on the surface of adhesion. This would point out the fact that keyed brick are superfluous in lime mortar joints, and the shearing strength per sq . inch averages about $10 \frac{1}{2} \mathrm{lbs}$, per sq. inch. The tensile strength of the same mixture at the same age was 30 lbs . per sq. inch, and the compressive strength 102 lbs . per sq. inch. (d) The natural cement mortar showed distinctly that its adhesive strength was not as great as its shearing strength, which is the reverse of the lime mortar tests. It also showed that the keyed brick aided in some unknown way, for the results on them are 3 times as great as with the common flat brick. Of course this may have been, and probably was partly due to the different surface of adhesion. In 5 tests out of 21 made on the natural cement mortar, the mortar sheared through, and the average of these 5 was 97 lbs . per sq. inch, which gives the shearing strength proper, while the average adhesive strength of the 13 tests in air which came loose from the bricks was 26 lbs . per sq. inch in common brick, 48 lbs . per sq. inch on Laprairie pressed brick, and 38 lbs . per 5 q , inch on Laprairie pressed brick for three tests submerged in water for the whole period.

This would show that the adhesive strength is nearly twice as great on pressed brick as common brick, and that submersion in water had a rather harmful effeet than otherwise on the adhesive strength, and was certainly of no benefit.

The tensile strength of the same mortar at the same age was 132 lbs. per sq. inch ; the compressive strength was not obtained, but would have been about 1000 lbs , per sq. inch. The hints to bataken from these tests are that pressed brick keyed on both sides will give much higher results than flat common bricks, and would probably place the shearing strength of such joints at 100 lbs , per sq. in., and make it largely independent of the consistency of the mortar. Also that the shearing strength is very much higher in proportion to the tensile strength than was the lime mortar shearing strength to its tensile streugth, but about the same proportion to its compressive strength, i.e., 10 to 1.

It becoming evident that the thickness of joint had no appreciable effect, the Portland cement mortar tests were made all $\frac{1_{4}^{\prime \prime}}{}$ thick. The results are surprisingly low. The adhesion on the common brick is
about the same for air drying or submorsion in water, and is silightly less than $\frac{1}{2}$ that of natural cement mortar tests of $1 \frac{1}{2}$ to 1 . This is a significant fact, for while a neat tensile test of No. 2 natural cement 4 weeks old is 268 lbs ., the No. 5 Portland is 459 lbs . for the same age, and a 3 to 1 No. 5 Portland is 82 lbs . for same age. (See table of general laboratory results.) Thus while any test of this cement would show that a 3 to 1 mixture of the latter would be nearly equal to a $1 \frac{1}{2}$ to 1 test on the former, yet in their adhesive properties to common brick the heavily dosed sand mixture was only half as strong as the natural cement mortar with a smaller dose of sand. We might easily have expected this ; but the main point is: is it taken account of, in considering the comparative values of these mixtures, that the adhesive strength of a Portland cement mortar heavily dosed with sand is low as compared with a weaker but richer mixture of natural cement mortar ? The shearing of Portland mortar shows that the adhesion to pressed brick is greater than to common brick, but not in such proportion as in natural cements, being $1 \frac{1}{2}$ or 2 to 1 in place of 3 to 1 in the latter. But here again comes out the advantage given to Portland cements by testing them under water ; the submerged specimens are stronger than open air ones, while in natural cements the reverse is the case.

Table VI is given on next page summarising the results obtained.

SERIES IV. (A)

THE STRENGTH OF worman in couptession in brick Masonry.
All engincers realise that the strength of mortar is much less, tested in cubes than in thin layers, but just what proportion they bear to one another is not very well known. The following experiments have been made with a view of obtaining this information. (See table VII, p. 263).

At the same time that these tests were made, mortar was also made into test-picces, and tested at the sarue age. We are thus enabled to form an idea of the relative strengths of mortar in thin joints and in cubes, and also to form an intelligent opinion of the comparative strengths of lime mortar, natural cement mortar and Portland cement mortar. The mort:rs of the 4th, 5th and 6th tests are identical with the mortars of the shearing tests, and show the same clear superiority of the natural cement $1 \frac{1}{2}$ to 1 over the Portland cement 3 to 1 when used in this manner. Table VIlI, p. 265, summarises the results obtained.

TABLE VL

TABLE OF SHEARING TESTS, of MORTAR ADHESION TU BRICK SURFACES (in shear.) SERIES IV.

[^2]TABLE VII.
MORTAR JOINTS IN COMMON BUILDING-BRICK PIERS.

CONTINUATION OF TABLE VIL

MORTAR JOINTS IN BRICK PIERS.

Composition of Mortar and Piers.	$\begin{gathered} \text { Age } \\ \text { of } \\ \text { Test. } \end{gathered}$	Thickness of Joint:	Dimensions of Brick Pier.	\% of water in mortar	Load in lbs. per sq. inch.				Compression per foot under a total load of			
					1 st signs of failure in mortar.	1et signs of failure in brick.	Bricks falling rapidly	$\begin{gathered} \text { Maxi- } \\ \text { mum load } \end{gathered}$	5,000	20,000	$\frac{\text { or }}{35,000}$	
No. 7. ${ }^{1}$ No. 5 Portland. $1 \frac{1}{2}$ Laboratory sand. Common bldg. bricks.	1 week.	$1 "$	$8.00^{\prime \prime} \times 8.00^{\prime \prime}$. $11.5^{\prime \prime}$ high. 4 bricks. 54.0 eq . in. area.	20	1125	1563	\ldots	1734	. 000	. 0045	. 011	
No. 8. 1 No. 11 Portland. 1 Laboratory sand. Laprairie pressed t.rick	12 days.	4"	8. $3^{\prime \prime}$ x $8.3^{\prime \prime}$. $11.8^{\prime \prime}$ high. 14 bricke. 68.9 sq . in. area.	\ldots	1679	1800	1930	1960	. 001	. 006	. 011	
No. 9. 1 Lime. 3 Laboratory sand. Lapraire pressed brick	4 weeks.	$4 "$	$8.2^{\prime \prime} \times 8.2^{\prime \prime}$. $11.5^{\prime \prime}$ high. 4 bricks. 67.2 sq . in. area.	35	260	853	.	1263	. 048	. 115	. 156	
No. 10. 1 No. 2 Natural. $1 \frac{1}{2}$ Laboratory sand. Laprairie pressed brick.	4 weeks.	1"	$8.4^{\prime \prime} \times 8.4^{\prime \prime}$. 11. $0^{\prime \prime}$ high. 4 bricks. 70.6 sq . in. area.	223	1345	1629	1746	1983	. 000	.0027	. 005	
No. 11. 1 No. 5 Portland. 3 Laboratory sand. Laprairie pressed brick.	$\\|^{4}$ weeks.	$4^{\prime \prime}$	$\begin{aligned} & 8.4^{\prime \prime} \times 8.4^{\prime \prime} \text {. } \\ & 11.1^{\prime \prime} \text { high. } \\ & 4 \text { bricks. } \\ & \mathbf{7 0 . 6} \text { sq. in. area. } \end{aligned}$	20	1204	1600	1629	1785	$.002$.011	. 016	

Note:-These results were obtained after the publication of the paper, and are the additional pier tests promised in the text

TABIE VIII.

Roughly speaking, the lime mortar at 1 week 5 to 1 is 6 times as strong; the lime mortar at 1 week 3 to 1 is 14 times as strong; the natural cement mortar at 1 week $1 \frac{1}{2}$ to 1 is 4 times as strong; the Portland cement mortar at 1 week 3 to 1 is twice as strong, as the same mortar tested in cubes, at the same age.

Referring to the amount of compression in Table VII, it will be seen that the amount of compression per foot is much less according as this ratio is less-i.e., the less yielding the mortar, the nearer docs the strength in cubes approach to the strength in joints. This is to be expected, because the more yielding substances will be at a much greater disadvantage when unsupported at the sides than if enclosed in a thin masonry joint.

In the 2nd, 3rd, 4th and 6 th tests at $17,500 \mathrm{lbs}$, the load was released, and the permanent set observed was as given in the 5th column of the preceding table.

It seems probable from this, therefore, that the lime mortars must have yielded to an injurious extent before there were any external signs. But whether this was the case or not, it is impossible to say, because the compression was quite uniform up to and in many eases much past the points of evident failure.

It seems fair to suppose that 1 week and δ weeks are about the minimum and average times which would elapse before the maximum load might be put on a brick wall, and when it is remembered that these joints were less than $\frac{1^{\prime \prime}}{4}$ thick, the amount of compression in a high brick wall under a load of 80 or 90 lbs , per sq. inch is seen to bo very great, and under a load of 300 to 400 lbs . per sq. inch, a brick wall 50 ft . high in lime mortar would not only fail, but compress from 2 to 6 inches in doing so-the compression practically all taking place in the mortar, as in the unyielding Portland cement mortar the compression is seen to be very small.

The second part of this paper will contain tests made on piers built with pressed brick, in which the mortar has had longer time to harden, and interesting results are lookod for.
The brick in this case was, as mentioned in Table VII, common building brick. The photograph given illastrates the methol of tosting
and the iuteresting manner of failure of 5th test, in which the lines of least resistance are clearly defined.

SERIES V.

EVAPORATION AND CRUAHING TEOTG ANB EVADOR UTIOX AND
TENSILE TESTS
(a) Eenporation and crushing tests.

This series had for its first intention, information on the comparative and actual amount of evaporation of moisture from different mortars made with different cements, but it soon developed into an endeavour to obtain some relation between crushing strength and evaporation. Any law on the matter, if there is any general law, will of courso take y ars to demonstrate ; but enough has been done to show that any investigations on this subject will be fruitful of results. The method of procedure was as follows:-Mixtures were kept in damp air 30 days, then immersed 2 days in water of ordinary temperature, then taken out and

TABLE IX.

EVAPORATION AND CRUSHING TESTS.

> No. 11-Portland.

SERIES V.

Mixture	$\begin{aligned} & \text { Evap. \% } \\ & \text { in } 2 \text { days. } \end{aligned}$	O ushing strength per sq. in.	Product.	$\begin{gathered} \text { Max. wt. } \\ \text { of } 2^{\prime 2} \\ \text { Cube. } \end{gathered}$	$\left(\sqrt[3]{w t}{ }^{2}\right)$	Column 4 divided by col. 6.
Neat.	1.48	3925	5×09	$\begin{gathered} 67 . \\ 10.1: 3 \end{gathered}$	22.16	262.1
+ to 1	3.41	2211	7509	10.12	21.71	312.3
2 to 1	6.20	1031	6492	9.99	20.66	314.2
3 to 1	10.30	541	5.54	9.14	20.30	278.4
4 to 1	11.49	431	4982	8.92	19.97	217.9

Cement Testing.
No, 10 -Pottrand,

Mixture	Bvap. \% in 2 days.	Crushing strength per sq. in	Product.	wt.	$\left(\sqrt{w t}^{2}\right)$	Colnun 4 divided by cal. 6.
Neat.	0.97	4367	4231	9.84	21.31	199.0
1 to 1	2.20	: 069	6796	10.93	21.87	308.0
2 to 1	5.59	1079	6032	943	20.72	291.1
3 to 1	8.61	*940	8093	9.15	20.31	308.4
4 to 1	11.68	504	5096	8.86	19.87	296.9

- One day older than others,

No. 3-Pobtland.

Mixture	Evap. \% in 2 days.	Crushing strength per sq. in.	Product.	wt.		
Neat.	4.65	1863	8662	10.00	21.62	400.7
1 to 1	4.10	1875	7687	10.12	21.71	354.1
2 to 1	5.67	1417	80.34	9.60	20.97	383.1
3 to 1	8.11	687	5572	8.95	20.01	276.2
4 1 1	12.56	412	5176	8.88	19.90	260.0

No. 15 -Natural.

Mixture.	Evap. \% \% in 2 days	Crushing strength per sq.in.	Prohluct	wt.		
Neat.	6.76	1888	12762	9.40	20.67	617.4
1 to 1	5.08	1437	7300	9.65	21.02	347.3
2 to 1	6.12	988	6046	9.32	20.57	293.9
3 to 1	8.34	575	4796	9.05	20.16	237.9

No. $2-$ Naturai.

Mixture.	$\begin{aligned} & \text { Evap \% } \\ & \text { in } 2 \text { days. } \end{aligned}$	Crushing strengh per kq. in.	Product.	wt.		
Neat.	5.93	2575	15720	9.43	2072	758.
1 to 1	10.32	703	7254	9.06	2016	:359.9
2 to 1	8.93	810	7233	9.28	2057	352.6

weighed ; they were then kept in the warm dry air of the laboratery at a temperature of about $65^{\circ} \mathrm{F}$. exactly 2 days, when they were again weighed and immediately crushed. The experiments recorded in Table IX were all made on $2^{\prime \prime}$ cubes, and 2 days was cstablished, because it was found that at that time the evaporation was practically complete. Other experiments (not recorded) made on $3^{\prime \prime}$ cubes gave less evaporation per cent. and also less strength. Attached to this are 3 diagrams : the first two show strength and eraporation in different mixtures and with 5 brands of cement. The third diagram is the product of the other two, and is quite worthy of inspection, because it would appear from it that it would be possible to cstimate fairly and accurately, without actually crushing a specimen, what load it would beir.

Reference to the table and diagrams will show that the evaporation iucreases and the strength diminishes with the increase of sand in the mixture. This is, of course, almost self-evident, but the striking difference in the amount of evaporation for different cements neat is unaccountable. This difference disippors as the admixture of sand inereases, and we are led, therefore, to conclude that there is something inherent in the cement itself, which aids it more or liss in holding partieles of water in suspension. The natural cements show high evaporation neat, so also does the No. 3 Portland, which has a high specific gravity (see general tables), and the cubes of which weighed more than those of the No. 10, which evaporated least. We cannot account for it on the ground of Portland and natural, but one thing is evident, that that same quality which enables it to hold water in suspension also aids it in holding particis of sand together, but not particles of itself. The third diagram showing the convergence of lines on the 1 to 1 mixture is very striking. The product of the crushing strength of $a 1$ to 1 mixture and the ev iporation per ceut. und \mathbf{r} conditions named is practically constant. Thisis firone condition only, namely, 32 days, with access of water and 2 days drying. This means in plain words that we may possibly be able to test with a balance instead of a crushing machine.

It is probable that the microscope would reveal a decided difference of structure in various cements. It is, of course, well known that the underburnt natural cements have softer, rounder and more casily pulverised grains than that produced by the highly burnt elinker of the Portland. It is possille, therefore, that the exaporation qualities of a neat cement would indicate more closely than anything else the degree of burning practised, independent of the fin ness. It will be noticed by Table IT, that the residues on sieves afford no clue to the density of the mixture, and no guide to determine bsforehand the evaporat ion. Neither docs the weight of the specimens vary at all regularly either with the erushing strength or evaporation.

It would seem that the coarse, angular laboratory sand had its interstices just about filled up with a 1 to 1 mixture, and the strength of the mixture depended directly on the amount of evaporation, in an inverse ratio. The Eraporation diagram No. 4 is the same as No. 3, except that this product is referred to a uniform section density (i.e.) $(\sqrt[N]{\text { veight }})^{2}$; the diagram is practically the same, showing that the variation in weight of test pieces made practically no difference in the results, i.e., the per cent. of evaporation determines the strength in 1 to 1 mistures, but is no criterion in neat ones.
(8) Evaporation ancl tension tests.

secies. 1).

Diggrams connecting. Weight milt preduct of Anoporation

In Table III, and Table IV. the per cent. of evaporation in 2 days is again given, and diagrams are plotted showing the relation between the tensile strenyth and the wight of the dried briquettes in the pressure tests, and also other diagrams showing the product of tensile strength and evaporation plotted on a base of weights of briquettes.

The X marks in the diagrams show the positions of tests made with 20 lbs . pressure and 20 p . c. of water, and they are seen to stand at prominent and usually maximum points on the diagrams, proving that this is the best point to select of all the tests made.

It will be seen in these diagrams as in those of erushing tests, that in 1 to 1 mixtures the variation of evaporation and strength combined is not very great, but not so close as in the former tests.

The 3 to 1 tests are very erratic, as might have been expected with different per cents, of water and different amounts of pressure. It is evident that each cement has distinctive qualities of its own, because with the same weight of briquette the strengths vary, and this brings up the important point that in sand tests the strength ought to be referred to some basis of weight of briquette, because a slight variation in weigbt seems, from Table IV, to affect the strength very, much. It would not take much evidence to determine the average weight, and all tests could be reduced to this by multiplying by $(\sqrt[5]{\text { weight }})^{2}$ which would change the section density to a standard.

sermes Vt.

sUGAR TEsTS.

Sucrate of lime is soluble in water, and it was chiefly a matter of interest to see the effect of sugar on cements in weakening them, because it has been asserted by several writers that the reverse is the cise ; one investigator several years ago showed by tests that from $\frac{1}{2}$ to 1 p. e. of sugar would in 4 to 6 months give a gain in strength.

Sugar, in these tests, 2 p. c. of the amount of cement (by weight), was used, and the diagrams attached sufficiently indicate the results. In the Portland cement the strength ranges closely at 50 p . c. of the ordinary strength as far as 6 months, while with the natural cements, the sugar effect was overpowering. After one week's immersion the briquettes showed signs of cracking, and as time went on became completely checked, and expanded so much as to give practically no tests. This is further evidenced (sce exhibit of briquettes) by the upper surface, which was protected by a coating of iron deposited from Montreal water, being intact, while the checking was greate-t on the bottom where the water had free access.

The lime mixtures, kept in open air, showed encouraging results for 2 months, and seemed to prove that the use of sugar, in lime, as practised in India, was beneficial ; but the 3,4 and 6 months' tests disprove it. Altogether, it scems evident that this much or more sugar would be damaging in its effects on any kin 1 of mortar in any situation, and it is extremely doabtful whether any sugar whataver would have other than a weakening effect.

In concluding this paper, the author cannot but help feeling that he is, as it were, dipping just on the surface of a vast subject, and that the more one finds out, the larger the unknown fields beyond appear.

In any efforts that have been made, the frequent manual aid and more frequent sound practical advice of Mr. J. G. Kerry have been of much service, and here is the place to acknowledge it.

The endcavour has been to find out anything of practical use to the Engineering profession ; and if any points raised here will fulfill this desire, the object of this paper will be, in the main, accomplished.

In conclusion, the author cannot but acknowledge the opportunity given by the Engineering Equipment of McGill University. In carry. ing out the various tests recorded, every facility has been offered not only for student instruction but for private researeh, and whenever
anything is needed that is not poeseseed, Profeseor Bovey, the Dean of Engineering, is always ready to have the want filled, if possible. In this way many things not feasible in ordinary cases are practicable, and it is hoped that, in due time, other results of value to the profession may be determined and presented to the Society.

CORRESPONDENCE.

$\underset{\substack{\text { Mr. II. } \\ \text { Perley, }}}{ }$

Mr. H. F. Perley said :- Relative to the subject of cement testing, I would state that there bas been, and no doubt still will be, a large amount of information furnished by writers in different countries, for the subject is one in which the mechanical part possesses an amount of interest more or less fascinating, whilst the scientific part can only be indulged in by those whose training and education have fitted them to pursue that line of study. But in spite of all that has been written, and all that wo have been told, experimenters and scientific persons have not yet devised a scheme, a test, or an analysis, wbich will enable a contractor; or a user of Portland cement, to quickly and aceurately determine the value of the article he has procured, or which has been furnished for his use. The tests in vogue are numerous, each giving a different result, but they all require time, and plenty of it, which can ill be spared during the prosecution of a work where " time is the essence of the contract"; for tests and trials at any other time can only be carried on in the laboratory where a "handful of minutes" is not of much importance, and often by those who may be au fait as regards the tests, but whose knowledge of the practical use of cement is but small.

Relative to this matter, the late Henry Fairja, in a letter in the Engineer of 2nd of March, 1894, stated that, "if a cement is unsound and does not comply with the mechanical test specified, let it be rejected, and leave it to the manufacturer to find out where he is wrong; but let the quality of the cement be decided before it is used in the work, otherwise, in the event of failure, complications may arise as to whether such is due to the cement, to the aggregate, or the manner of use. If users could only come to this conclusion, we should hear no more of magnesia or anything else, which would be unspoken secrets known to manufacturers only, and we should hear only of cement being either sound or unsound, which for all practical purposes is sufficient."

In Canada, contractors are often obliged to use imported cements, because those who prepare the specifications under which they
work labour under the impression that cements of foreig.t make give the best results, and they base their opinion on results obtained in the country where such cements are manufactured, forgetting the fact that there, manufacturers are numerous, competition is keen, and vast quantities are required for home consumption, and therefore the quality of the manufactured article must be good, to ensure which the German cement manufacturers have established standards to which all must attain ; and it is to be regretted that standards do not exist in England as well. When cement is manufactured for exportation, it is doubtful if the article is as good as it ought to be. Much of the cement imported into Canada is not obtained under a direct order, but arrives as ballast, and is sold on almost any terms ; and therefore it cannot be expected that the vessel owner would purchase other than the cheapest grade for his purpose. This article is, of course, rightly termed Portland cement, but it is a cement of the poorer class, as evinced by its price in the market. We have a few Portland cements made in Canada, which are suitable for any class of work, but they have not an extended use, simply because they cannot compete with the foreign article brought to our ports, and perhaps distributed on through freight rates by being hampered with (1) high local freight rater, and (2) the cost of barrels and packing, which alone amounts to more than the freight of a barrel of cement actoss the Atlantic. If our engineers would only specify that cement should be bought by weight-with a limit on the weight per cubic foot filled under imposed conditions, - and delivered in bags, then our cement makers would have a greater radius of action, and be better able to compete with the imported article ; and contractors would only have to pay for the use of the bags, which would be returned for further use, for every empty barrel represents loss and absolute waste, which ought to be avoided.

If the committee on cements appointed by the Society can form a set of tests for cements, which will be simple in their application and quick and accurate in their results, they will confer much favour and benefit on the users of cement.

Mr. Fred. P. Spalding, M. Am. Soc. C.E., of Cornell Univer- Mr. Fred, p. sity, said :-The paper of Mr. Smith is a very interesting one, and spalding. raises some rather difficult questions, the final settlement of which will require a much more extended knowledge of the nature and
action of hydraulic cement than we now possese. As most of the questions discussed in this paper have been subjects of inquiry by the writer during the period that he has been in charge of the Cement Laboratory at the College of Civil Engineering of Cornell University, a brief statement of those points upon which he has been led to conclusions differing from those of the author of the paper may be of interest.

There can be no doubt of the wisdom of using sand tests for the tensile strength of cements in so far as they can be made to give uniform and reliable results. The chief difficulty in prescribing a sand test for the quality of cement lies in the variable nature of the sand. Even with the artificial sand now used for standard tests, the quality will not always be found the same, and the results of tests may often be considerably affected in consequence. Tests of the quality of the mortar to be used in any work, by tensile tests with the sand in use for the work, would be of much value, but the advisability of dispensing with neat tests for determining the quality of the cement is questionable. It is true that various cements differ somewhat in their power to " take sand;" it likewise seems to be true that any cement which gives good results, neat, and is finely ground, will show good strength when tested with sand; while no short time test, either neat or with sand, can determine the actual relative values of samples of cement of different brands.

The desirability of using a method in preparing briquettes which shall eliminate the personal error of the operator is unquestionable. This is the most serious difficulty met in testing tensile strength. A single operator may readily obtain even results by any of the ordinary methods, but the results of different men with the same material are likely to differ widely. The problem in devising a specification is to secure uniformity in the work of different experimenters. The results of experiments in the Cornell Laboratory indicate that if a direct pressure be used sufficient to compress the material into a compact and bomogeneous briquette, the average results obtained by different men agree quite closely with each other. This requires a pressure of about 100 lbs . per sq. inch over the surface of the briquette. With small pressures (20 to $30 \mathrm{Ibs}$.) the results were found to differ as much as in ordinary hand work. The heavier pressure therefore seemed preferabie. It requires no expensive apparatus, and is easily applied anywhere.

With reference to the quantity of water to be used in mixing, the experience of the writer is that no definite quantity can be fixed upon as applicable to all material; what is right for one cement is too much or too little for another. It is better to determine the water in each case by a standard of consistency.

The proposition of the author of the paper, that bubbles be deducted from the sectional area in tensile tests, is quite inadmissible. The tensile strength of cement briquettes is not proportional to the area of the section.

In a recent discussion before this Society, the present writer was quoted by Mr. H. R. Lordly as expressing an opinion adverse to the use of hot water for mixing mortar. This was disposed of by the author of the paper then under discussion, by the reply that the writer " must have been unfortunate in his cements." This was a very easy way to settle the question, but unfortunately does not seem a conclusive argument. Mr. W. W. Maclay, from an extended series of experiments upon this matter (see Trans. Am. Soc. C.E., Vol. VI, p. 311), concludes that the use of hot water in mixing is detrimental to the strength of the mortar: The loss of strength when the mortar was mixed with hot water in a cold atmosphere was found by Mr. Maclay to be very serious, and when the briquettes were placed in cold water they lost coherence.

Experiments made in the Laboratory at Cornell University have shown that different brands of cement are affected very differently by the use of hot water in mixing. The writer has experimented upon about a dozen brands of cement in this particular, of which four were but slightly affected by the temperature of the water, giving much the result found by the author of the paper now under discussion. The others were all materially weakened by hot water, and three of them were rendered entirely worthless when the temperature of the water reached 120° to $150^{\circ} \mathrm{F}$., the mortar never setting sufficiently to resist crushing under the prossure of the fingers. All of these cements were of good quality, and satisfactorily resisted the hot bath tests for permanence of volume.

Mixing the mortar with hot water and subjecting it to a cold atmosphere is by no means the same in effect as mixing with cold water and then subjecting it to heat.

The effect upon the rate of setting produced by mixing with
hot water varies as much as that unon the strength. The rule seems to be that those cements which are accelerated in action are injured in strength. With some of the uninjured cements, no acceleration of the rate of setting took place, and in one case there was a decided lessening of the rate of setting as the temperature of the water was increased.

A single example may serve as an illustration of the action of the cements most affected. One brand mixed with water at $40^{\circ} \mathrm{F}$, set in 70 min . ; with water at 70°, set in 30 min . ; with water at 100°, set in 10 min .; with water at 120°, set in 3 min .; with water at 140°, set in 2 hrs .20 min ., but did not get firm. Tensile strength at 100°, about half that at 40° in one week. T'emperature of air 65°.

It has occurred to the writer that there may be a point for some cements at which the process of setting occurs so quickly as that the individual particles fail to combine with each other as in a slower erystallisation.

In giving this brief statement of what seemed to be shown by the few experiments at Cornell University, it is notintended that any conclusion should be drawn from them other than the one already stated, that hot water affects difforent cements very differently, that it is unsafe to draw general conclusions in the matter from a few tests on a particular material, and that the whole sub. ject has yet to be investigated.

Mr. J. G. G. Kerry said he had read with much pleasure Mr. C. B. Smith'e paper on cement testing; and having had the good fortune to be with Mr . Smith while he was making many of bis experiments, wishes to bear evidence to the careful and conscientious manner in which these elaborate series of tests were carried out ; and, knowing perhaps better than anyone else the amount of painstaking labour and self-sacrifice that these tests have necessitated, is ansious to voice the thanks which are due to Mr. Smith, both for these and for the clear and explicit form in which he has presented his results to the Society.

The greater part of the paper, dealing as it does with the history and results of the experiments, is of course beyond discus. sion ; but as Mr. Smith has confined his own comments to those that can be made from a laboratory point of view, he has left a field open for diseussion in the practical significance of some of his results.

As the quality most required in coments is dnrability under ordinary exposures, it is disheartening to read the romarks in paragraph (e), p. 6, on the probable inefficiency of the blowing test. Present evidence scems to point more and more to the necessity of chemical analysis as a part of cement testing, if we are to excape from the often costly appeal to trial and time, which is ofien quoted as the only authoritative test of a cement. A cement may fail in any one of the prescribed tests, and yet prove satisfactory in service; but if it have a dangerons constitution, it must prove unsatisfactory, and while a good chomical analysis is not proof of the excellence of the cement, a bad chemical analysis is certain evidence of its worthlessness ; and in this respect chemical analysis is perhaps more sharply determinative of value than any other single test. The writer regrets that the chemical and manufacturing side of the question has not been more fully taken up in the various papers read before the Society on this subject. The particular facts which would prove useful in practice would be a knowledge of the dangerous ingredients that might possibly be present, and their probable distribution throughout any batch of cement. It is of course well known that in any burning, clinker of varying qualities results, but this is usually attributed to better or worse burning, and not to chemical combination ; and there does not seem to be much information obtainable concerning the ehemical variation of the output. This variation is mainly a manufacturing question, but a knowledge of its extent would furnish a measure of the number of analyses necessary to establish the purity of the cement.

The absolute importance of specific gravity tests is open to question. The other specified tests determine some necessary quality in the cement, but specific gravity is taken as an indication of sufficient burning in the manufacture; and as it is an indirect test, it is doubtful whether an engineer would be justified in condemning a cemeat on specific gravity alone. The testing sheet attached to the paper indicates that high specific gravity is not an indication of a good cement, nor low specific gravity of a very poor one. The writer would like to know from Mr. Smith whether a cement tested at different finenesses shows any variation in its specific gravity; theoretically, the grinding should have no effect on this quality, but the imperfections of the methods usually employed for this test might cause a discrepancy.

The advisability of sand testing, as discussed on p. 6, may prove doubtful by reason of the present rapid improvement of cement manufacture. The strength of a briquette depends upon three main features, -the cementitious activity of the cement, the fineness of its grinding, and the sand used. The results of many experiments make it certain that it is only the cement in form of an impalpable powder that has any cementitious value, and as this fact becomes more generally known the grinding elause in cement specifications will be made much stiffer. It is probable, though not establishod by experiment, that there would be a definite relation betweon the strengths developed by neat and by sandtesting, if only that portion of the cement were used which is known to possess cementitious value. Ifsuch prove the case, the sand test is of uso only as an indirect test of finenoss, an! this quality can be more simply tested with sieves; and as sand testing necessarily introduces a third variableand is more difficult to carry out uniformly, it ean be discarded. The value of sandtesting, as a demonstration of the inefficlency of a coarso ground cement, is beyond question; but the argument that a cement should always be tested with sand, hecause it is always so used, is not of very great weight in view of the tremendous variations between taboratory sands and tho sands of practico, and the further fact that the mortar is not tested for the strengths that are required of it in practico.
The attack on p. 6, on the importanco attached to the rosults obtained by "that terror of" the present day, the testing machine," is well grounded. There are fow structures to day built or building that have or will develop a pressure of 100 lbs . per square inch on a month old mortar, and the attached testing sheot shows that any coment that is at atl good will develop strengths vastly in excess of this. There seems to be no value whatever attachable to the numerical results obtained by tension testing, and it is yet to be proven that a cement that will give materially higher results in tension testing than another is really the better of the two. Undoubtedly all cements should show a certain minimum strength ; but it seems from parayraph (e), p. 6, that attaching any value to the fact that the strength of a ce:nent proves materially greater than that minimum is simply putting a premium upon the introduction of certain dangerous adulterants. If a careful series of testr were made to ascertain the maximum
and minimum strengths of unadulterated Portland cements, it would be possible in some degree to guard against such adulterants by introducing both the maximum and the minimum strengths into the specifications; this idea has been carried into practice occasionally.

Averages of Table III.

	One Week.				Four Weeks.			
	$\begin{aligned} & \text { Tensile } \\ & \text { strength } \\ & \text { lbs. } \end{aligned}$	Extremes of strength, lbs.	$\begin{array}{\|c} \text { Welght } \\ \text { oz. } \end{array}$	$\left\lvert\, \begin{gathered} \text { Evapor } \\ \text { ation } \\ \text { pr'ct } \end{gathered}\right.$	$\begin{gathered} \text { Tensile } \\ \text { strength, } \\ \text { 1bs. } \end{gathered}$	Extremes of strength, ihs,	Weight	$\left\{\begin{array}{l} \text { Evap'r } \\ \text { ation } \\ \mathbf{p}^{\prime} \mathbf{c t}^{\prime} \mathrm{ge}^{2} \end{array}\right.$
Natural 1 to 1								
15	46	23-86	4.80	13.52	82	39-112	4.89	13
171	120	37-184	5.35	8.37	208	160-282	5. 30	69
20	125	90-157	5.61	8.73	225		
$22 \frac{1}{2}$	119	106-130	5.62	9.04			
Natur	al 3 to 1							
15	16	9-2.3	4.70	11.85	33	19-35	4.59	14.02
$17 \frac{1}{2}$	7	2-12	4.59	14.66	37	25-48	4.70	
20	12	7-17	4.79	11.77	20	5-28	4.88	11.78
Porta	nid 3 to	1						
15	30	14-41	4.60	12.31	63	51-86	4.73	12.44
172	28	16-43	4.59	10.68	87	47-124	4.79	10.33
20	31	20-48	4.77	12.27	96	56-143	4.80	10.50
$22 \frac{1}{2}$	27	22-36	4.89	12.50	73	38-103	4.82	80
25	221	8-33	4.88	13.30	4.3	23-58	4.75	12.75

In order to test the conclusion on p. 9 with regard to the percentage of water necessary for pressure testing, the writer averaged the results of Table III, disregarding, in so doing, the fact that the tests were made under two different pressures ; these averages are given in the accompanying table, and indicate that percentages varying from $17 \frac{1}{2}$ to $2: 2 \frac{1}{2}$ will give gool results with the least variation in rosults with $22 \frac{1}{2} \mathrm{P} . \mathrm{c}$, and show that Mr.

Smith's choice of the mean value $\mathbf{2 0}$ p.c. is well made. Disregarding the 15 p.c. results as the briquettes with this percentage were evidently not perfect, the table points out two facts of practical importance, for it will be noted :
(1) That the percentage of evaporation steadily increases with the percentage of water used ;
(2) That the percentage of evaporation diminishes with the duration of set.

If the percentage of evaporation be taken as a measure of the cements imperviousness, it is evident that when it is necessary to construct practically water-tight works with cement mortars, that, up to some unascertained limit, the drier the mortar is, the better the result will be, a mortar being thus preferable to a grout, and that the longer the mortar can be allowed to set before being exposed to water pressure, the less will the liability to leakage be. In this connection Table IX is of great interest, although it must remain an open question for some time to come, whether the fact that Mr. Smith is endeavouring to establish is merely a strange coincidence, or whether it has some physical basis. The percentages of evaporation in the table show that Portland is much superior to natural cement for water-tight work, and that a 1 to 1 natural is about equal in this respect to a 3 to 1 Portland. In the test of No. 15 natural, the percentage for a neat cement is given as considerably larger than for a 1 to 1 mortar. This peculiar fact is more than confirmed by a series of direct percolation experiments made by Mr. F. C. Coffin of Boston, and published in Engineering News, January 3 and 10, 1895. Mr. Coffin found that while neat and 1 to 1 Portland and 1 to 1 natural made good watertight joints, the leakage through neat natural was enormous. Mr. Smith's results do not show as great a diserepancy, but this is probably due to the fact that the Belgian natural used by him approaches Portland cement much more closely in constitution than do the Rosendales used by Mr. Coffin. It is to be remarked, however, that the results given for No. 2 natural are in flat contradiction in this respect to the results of the other experiments, and indeed appear erratic in themselves.

Though agreeing with the general conclusion to be drawn from the remarks on compression testing on p. 11, it does not appear to the writer that statement (2) is borne out by the testing sheet, and he has prepared the accompanying Table from the results
thereon, to indiente the lack of any definite relation between the tensile and compressive strengths of cement mortars. Authoritative deductions cannot be drawn from a table based on so few experiments;

CO-EFFICIENTS CONNECTING TFNSION AND COMPBESSION STRENGTHS OF CEMENT MORTARS CATCULATED FROM THE FIGURES ON THE TESTING SHEET.

	Neat.						1 то 1.			2 то 1.			3 то 1.	
	$\begin{gathered} 1 \\ w k . \end{gathered}$	$\begin{gathered} 2 \\ \text { wks } \end{gathered}$	$\left.\begin{gathered} 3 \\ w k s \end{gathered} \right\rvert\,$	$\begin{gathered} 1 \\ \text { mo. } \end{gathered}$	$\underset{(\mathrm{mos}}{2}$	$\begin{gathered} 1 \\ \text { year } \end{gathered}$	$\begin{gathered} 1 \\ w k . \end{gathered}$	$\left\lvert\, \begin{gathered} 1 \\ \text { mo. } \end{gathered}\right.$	$\begin{gathered} 2 \\ \text { mos } \end{gathered}$	$\begin{gathered} 1 \\ w k \end{gathered}$	$\left\lvert\, \begin{array}{c\|} 11 \\ \text { mo. } \end{array}\right.$	$\left\|\begin{array}{c} 2 \\ \text { mos } \end{array}\right\|$	$\begin{gathered} 1 \\ w k . \end{gathered}$	$\stackrel{4}{4}$ -
1	7.1	\cdots
2	8.5	.	..	8.4	\cdots	.	11.8	811.7	.	.	\cdots
3	\cdots	6.8	6.6
4	\cdots	\cdots	8.0	..
5	3.4	..	\cdots	5.4	-•
6	5.1	\cdots	8.1
7	6.5	..	.	5.2	\cdots	.	..
8	4.8	.	..	5.0	..	.,	.	\cdots	.	\cdots	\cdots	\cdots	.	..
10	.	..	\ldots		..	\cdots	..	10.5
11	13.9	13.0	4.3	..	.
15	6.0	.	.	6.8	15.5	512.4
19	5.5	.	..	8.3	\cdots	5.4	5.8
20	.	..	\cdots	..	.	12.0
21	.	..	11.5	7.5	\cdots	.
22	8.0	5.3	..	8.3
23	\cdots	6.7	.	8.1	\cdots	.	\cdots	\cdots

but it indicates:-
(1) That the compressive strength cannot be elosely predicted from the tension tests ;
(2) That sand mixtures show a higher co-efficient than neat cements ;
(3) That the co-efficient increases with the age of the cement.

The writer has never seen the fact of the greater comparative strength developed by the sand mixtures commented upon; but this result would naturally have been expected. The record of the tension tests shows that cement mortars have reached very closely to their ultimate strength at the age of three months, and the inerease of the co-efficient with age indicates that this does not apply to the compression strength of the mortar, and that we do not yet know when it ceases growing harder, stronger in compression and more brittle.

The value of the results in Series II, p. 13, will be greatly increased, if Mr. Smith will add to them the times of setting at the varying temperatures. This is a point of considerable practical importance, as it has been found, particularly in pueumatie work, that in the high temperature and heavy pressure of a caisson chamber, some cements will set almost iustantaneously, so rapidly, indeed, as to prevent their use, because they are set before they can be deposited in place. The results given in Table V, p. 14, indicating as they do both shortening and lengthening of time of set with higher temperatures, would seem to prove that heat acted differently under almost similar circumstances.

The results of the freezing tests fully confirm the ideas of current practice ; but there is one fiold of this part of the subject which does not seem to have been touched by investigators. Many engineers today are of the opinion that the most dangerous treatment that a cement can be exposed to is to be mixed at very low temperatures. There is no question that a cement mixed with heated sand and heated water will set perfectly in sharp freozing weather ; but will the same cement mixed with water at ordinary winter temperature, which is always within a very small fraction of 32° Fahr., in large streams and with cold sand, set at all, or will the low temperature of the mass more or less completely kill the activity of the cement? There seems to be no definite information extant upon this point, althotigh it is one of great importance.

The ordinary objection to the use of salt is the same as that to the use of sugar, namely, that it remains in the mortar after it is set in a soluble form, and will sooner or later weather out. The writer would like to know whether Mc. Smith exposed any of his specimens to percolation or running water in order to develop such a tendency before testing them.

The results of the pier testing as embodied in Table VII, p. 18, are very interosting and of great practical value ; it is a pity, however, that the strength of the brick itself is not given, that being one of the principal factors in the practical problems ; and the effect of using a stronger building material is as yet unknown, at least in amount, and can only be determined by a series of similar experiments. The comparative strengths developed by the Portland and natural cement mortar in the cubes and in the piers are discordant, and this fact indicates that the duty of cement mortat in joints is not only to transmit compressive strains, but also to resist a tendency to flow sideways out of the joint under pressure. Its power to resist this latter tendency seems to be the actual measure of the practical utility of the cement, and must be closely related to its adhesive strength; and it is noticeable in the adhesion tests of the same mortars that the stronger in the pier tests proved the stronger in adhesion. The distribution and transmission of stress in the joints of a beterogeneous mass like brickwork is not clearly understood ; anl as Mr. Smith has at various times kindly considered and developed crude suggestions of the writers, he would now suggest that the knowledge of this action might be increased by an experiment on piers built with a non-adhesive mortar, such as dry sand, the sand being held in place by a pointing of strong cement mortar. In discussing a paper on the Masonry of the Cheat River Bridge, read by Mr. Smith before the Society in 1893, the writer described some instances of masonry abutments founded on rock, showing some considerable settlement after the banks had been built against them, and asked an explanation of this action from the members then present. None was offered, but as pressures developed in an abutment by a green earth bank are enormous, Mr. Smith's demonstration of the compressibility of natural cement mortars is a sati-factory answer, as the abutments in question were built with natural cement mortar.

Throughont the paper, Mr. Smith comments on the many circumstances under which natural cements are fully as good as Portlands, and protests against the seemingly growing tendency to specify Portlands for everything; and his opinions are well grounded upon the results of his experiments. There is no question but that it is better to use Portlands under the special circumstances mentioned at the head of p. 7; but in the writer's personal practice, fully 75 p.c. of the cement he has used has
been laid under the precise circumstances shown in the paper to be most favourable to natural cements, i.e., laid in summer weather and only liable to occasional submergence, and this piece of experience is probably the rule and not the exception. The variations in the price of cements in different localitios are entirely due to transportation charges, and comparing a 1 to 1 natural with a 3 to 1 Portland mortar the following note of costs per cub. yard of mortar shows that in the score of cheapness the choice is entirely a matter of location, the prices for cements used being the extremes that have come under the writer's notice, sand being taken at 75 cts. per cub. yard.

Cemest. Sand. Labour. Total.

Portla		libl	3.24	. 65	. 50	4.39
"	(a) $3.00{ }^{-}$	-	5.56	. 65	. 50	6.71
Natural	(a) 0.622 ${ }^{\text {a }}$	4	2.56	. 45	. 50	3.51
6	@1.50 6	${ }^{4}$	6.14	.45	. 50	7.09

If the two mortars be compared by their restilts throughout the tests, the natural shows a marked superiority in everything, and it is further claimed that the naturals give promise of being much the more durable of the two. Canadian natural cement is usually condemned offhand because of the uncertainty of the product, and in view of the many trials it has been given, and the frequency of the condemuation pronounced by eminent engineers, it is evident that it will never como into general use until it is manufactured in much better grades ; but it is also certain that there are many firms to-day manufacturing natural cements in the United States that are every bit as reliable as the best Portlands, and Canadian manufacturers should be competent to produce a like result. With regard to this comparison of Portland and natural cements, the results of the table on p. 12 show that the Portlands promise to make a better comparative showing when the standard of fineness is raised. The writer has prepared the accompanying comparative table from the tests in the paper, to show the relative values of the two mortars in so far as they can be shown by the testing machines, and in concluding would draw attention to the remarkable variation in the comparative tension strengths, when tested in the ordinary manner and when tested with Mr. Smith's pressure apparatus. This was first pointed out to the writer by Mr. Smith, in conversation, and has yet to be explained.

COMPARATIVE TABYE--NATURAL AND PORTVAND CRMENTS.

Mr. J. L. Allison, Mem. Can. Soc. C.E., said :-The testing of Mr. J, L. cements for the Soulanges canal was commenced on the 9th October, 1891, and has been continued up to the present date.

Thirty-nine brands of Portlands have been tested, twenty one English, eleven Belgian, five Canadian, and two German. Three brunds of natural cement have also been tested. Over 17,000 briquettes have been made, all by the same man.

Cements have generally been purchased on the Montreal market through a commission merchant. A few barrels have, however, been sent by mannfacturers or their agents, for the purpose of being tested. As a rule, two barrels of each brand have been used, in order to make it moderately certain that the cement was of normal composition.

When received, the barrels are stored in a dry room connected with the office. On the opening of a barrel the contents are removed to a depth of about five inches, and the quantity necessary
for all the tests is taken from the central portion of the barrel, which is then set aside and never again used for tosting purposes. From time to time these opened barrels are removed from the store room. When necessary, cements are air-slacked in this room.

All cements are subjected to the same tests, namely: (1) rate of setting, (2) speeific gravity, (3) tensile strength, neat, and with sand, (4) fineness of grinding, and (5) soundness. The proportion of water required for gauging is also carefully determined.

Immediately on opening a barrel, the time required for setting is found by mixing a sample to a paste with water, and noting the penetration of Vicat's and Gilmore's nevdles.

The paste is placed in a mould $40 \mathrm{~m} . \mathrm{m}$. in depth, and the time of initial setting is taken as being the time at which the Vicat needle ceases to penetrate to a greater depth than $20 \mathrm{~m} . \mathrm{m}$. If initial setting does not take place in less than ten minutes, the full quantity required for making all the tests is placed in glass jars which seal air-tight. These jars are at once labelled and placed on shelves in the testing room. If, however, initial setting is found to have taken place in less than ten minutes, the quantity necessary for all the tests is exposed to the air in the store room in shallow pans, and turned over every day until the time required for setting has reached ten minutes, when it is put in the jars, as stated before. This limit of ten minutes is taken because that length of time is required to properly gauge a paste and fill a dozen moulds, and all work on the paste should be finished before setting has commenced.

The time of setting noted in the accompanying table is that found on opening the barrel.

The density is found by determining the specific gravity. No value is attached to the weight per bushel, or per cubic foot, as the range, within wide limits, depends on the method of filling the measure. Thus, with one brand the weight per cubic foot varied from 81 lbs , unpacked, to 121 lbs , packed, or nearly 50 per cent. The packing was done by jarring the measure, but no pressure was applied to the cement. The weight per cubic foot (both packed and unpacked) of all cements tested has been determined carefully, and the results shew that no reliance whatever should be placed on the weight as a measure of the density. The extreme range in the specific gravity of the cements tested is so small (about 6 per cent.) as to be neutralised by the greater effects due
to differences of grinding, ete. Thus, the Johnson (eonrsely ground), sp. gr. 3.023, weighed 84 and 111 lbs. per e. foot, unpacked and packed, while the Josson (finely ground), sp. gr. 3.174 , weighed only 80 and 105 lbs . per cubic foot.

The specific gravity is determined by the volumetric mothod, the volumeter used being of 200 c.c., capacity. The quantity of liquid used in each experiment is about 125 c.c., and the weight of cement used is always 200 grammes. In order to prevent the setting of the cement in the volumeter, turpentine is used instead of water, and to prevent changes in the volume of the turpentine, the volumeter and its contents are kept at a constant temperature during the test by being kept standing in a jar of water at the temperature of the room. A thermometer is used to insure both readings being taken at the same temperature. Two tests are made with each cement, and the mean taken as the true result. This test is made, in all cases, on the cement as received-that is, without exposure to the air.

All cements, when tested neat, are mixed with water in such proportion as to give pastes of the same consistency. The apparatus used for determining this proportion consists of a brass cylinder of $80 \mathrm{~m} . \mathrm{m}$. diameter and $40 \mathrm{~m} . \mathrm{m}$, in depth, and a round brass rod $10 \mathrm{~m} . \mathrm{m}$, in diameter weighed to 300 grammes. The method of using them is as follows : the cylinder is filled flush with a paste made up with a known percentage of water (by weight). The rod is then placed vertically on the surface and allowed to sink under its own weight. A penetration of $34 \mathrm{~m} . \mathrm{m}$. is taken as indicating the proper consistency, and tests are male with different proportions of water until the proper penetration is secured. This test is made on the cement when ready to be tested,-that is after exposure to the air when necossary.

The water used is the same as that used for making the briquettes for tensile tests. It is taken from the St. Lawrence River, and is without visible impurity. The temperature at which it is used is always between the limits of 60° and 70° Fahr.

Tests of the tensile strength of all cements are made on briquettes of neat coment, and also of cement mixed with sand.

All gauging has been done with Faija's cement gauger. This machine consists essentially of a circular, flat-bottomed, cylindrical vessel, 10 diam, and 5 deep, in which a four-bladed mixer is rotated by a vertical shaft, The blades are in length about one-
half the diameter of the vessel, and the verticat shaft carrying them is, by means of a crank centered over the centre of the vessel, made to travel in a circular path midway between the centre of the vessel and its circumference. An additional rotary motion iu the opposite direction is given to the blades by means of a pinion on the head of the shaft, which engages with the teeth of a fixed annular gear on the under side of the frame carrying the crank. The blades rotate about 2.6 times while making one revolution about the fixed centre, and this relation insures the whole area of the vessel being worked over by the blades. The frame carrying all the working parts can be quickly removed and the vessel left unobstructed for the removal of the paste.

This machine is illustrated and described in Faija's "Portland Cement for Users," and also in Engineering News of 1st March, 1894.

The moulds used have a minimum section of one inch square, and are of the usual shape, furnished by the makers of testing machines. They were procured from the Fairbanks Company.

A sufficient quantity of cement to make 12 briquettes (about 1800 grammes) is put into the gauger, and has added to it the proportion of water previously determined; the gauger is then turned quickly until the mixture is complete, after which the paste is immediately filled into the moulds which have been previously given a film of oil and arranged on thick glass plates. In filling, no pressure is applied to the paste, but it is worked into the moulds with the point of a small trowel moved eduewise. The surplus paste is then remored with the trowel, and the numbers from a prepared list are stamped on the soft briquettes with dies, after which the moulds, on the glass plates on which they were filled, are placed in covered pans containing a little water, the plates being supported above its surface. The time at which they were gauged is entered with the numbers in the record book. The moulds are not removed from the briquettes until the cement is hard set; and, after the removal of the moulds, the briquettes are kept in the moist air until the expiration of twenty-four hours from the time of gauging, when they are immersed in water in pans about $30^{\prime \prime}$ square, arranged on wide shelves occupying one side of the testing room. The briquettes are arranged in the pans according to the dates on whick they are to be broken, and the pans are labeled to shew these dates. The arrangement of
the numbers in the record book is decided on before the briquettes are made, and a list is posted on the testing room each morning, shewing the numbers to be given to the briquettes made during the day, and the tests for which they are intended.

The twelve briquettes in one gauging are distributed in the record forms over six tests ; consequently, the twelve briquettes broken for any one test are made up of two from each of six gaugings. This reduces the effects of differences in the gauging and filling of different batches. The temperature of the room is kept within the limits of 60° and 75° Fahr. The water covering the briquettes in the pans is drawn off at intervals by means of a syphon, and replaced by fresh water.

The neat briquettes are broken at the end of three, seven, fourteen and twenty-eight days, and two, three, six and twelve months, the time in all cases being counted from the date of gauging.

When mortar briquettes are to be made, the proportions of sand and cement, determined by weight, are placed in the gauger and thoroughly mixed dry: The water is then added and the mixing continued until the mass is uniformly moistened. Only enough water is used to moisten the mixture sufficiently to form a stiff paste. This paste cannot be properly filled into the moulds without being slightly compacted or compressed. A certain degree of compression is effected by heaping the mortar about one inch higher than the mould and beating it down with a paddle-shaped tool of iron, about one foot long, weighing about 12 ounces, This method of filling was adopted, in order to avoid lack of uniformity in the strength due to applying pressure with a trowel. The filling has always been done by the same man, and the tests show that the compression is practically uniform, since all the briquettes in a set (twelve) made up from six gaugings break with nearly the same load. The extreme range is quite often within seven pounds, and is in some cases as small as three pounds.

The procedure after filling the moulds is the same as with neat briqueties.

The mortar briquettes made previously to June 13th, 1892, were mixed in the proportions, by weight, of one of cement to two of sand. Washed and screened pit sand was used; only that portion which passed the 20 and was retained on the 30 sieve being
mado use of in the tests. The briquettes were broken after seven, fourteen and twenty-eight days.

Since the above date the proportions used have been (by weight) : one of cement to three crushed quartz and $33-100$ water. The quartz used is known on the market as No, 5. It all passes the 20^{2} sieve, and about 60 per cent, is retained on the 30 sieve. The part passing the 30^{2} sieve contains no dust or very small particles.

The briquettes are broken after seven, fourteon and twentyeight days, and two, three and siz months.

From the date of the commencement of the tests, until January, 1893 , all briquettes were broken on a Fairbanks machine of 1000 lbs, capacity.

In this machine the leverage is constant, while the load is variable, and is applied through a system of compound levers. The load at the beginning of each test is zero, and is increased gradually, by the addition of small shot, until breakage takes place. The breaking stress is found by weighing the breaking load on the same machine, the scale and weights being marked so as to give the breaking stress in pounds. With briquettes of high strength many of the breaks did not occur at the minimum section, but on a line between the points of contact with one of the grips.

Since the above date a Richlé machine of 2000 lbs , capacity has been used. In this machine the weight is constant while the leverage is variable. The test piece is strained by moving the constant weight out on a simple lever until breakage takes place, when the breaking stress is read directly from a graduated seale on the lever, at the point indicated by a pointor attached to the weight. The grips are provided with renewable rubber tips which insure the proper application of the force, as shown by the fact that no briquettes have broken at the points of contact with the grips.

The load has, in all cases, been applied approximately at the rate of 400 lbs . per minute.

A list of briquettes to be broken each day is prepared from the records and posted in the testing room. For the short tests (3, 7, 14 and 28 days) the briquettes are broken at the same time of the day as they were gauged.

The fineness to which cements have been ground has been tested by sifting samples, taken from the centres of the barrels, through sieves of $625,900,2,500,6,400$ and 10,000 meshes per sq. inch.

The accompanying table shows the percentages retained on the $625\left(25^{2}\right), 2,500\left(50^{2}\right)$, and $10,000\left(100^{2}\right)$ sieves, the results given being means of two tests for each cement. The same set of sieves has been used for all the tests. They are nine inches in diameter and two inches deep, with meshes formed of woven brass wire.
The test for soundness, to which most importance is attached, is Faija's hot water test. Two pats (about $4^{\prime \prime} \times 1 \frac{1^{\prime \prime}}{} \times \frac{1^{\prime \prime}}{2}$) of neat cement paste on small glass plates are, immediately after gauging, supported above the surface of water in a closed vessel. The water is kept at the temperature of 114° Fatir.; consequently the pats are subject to the action of a hot moist atmosphere. At the end of $4 \frac{1}{2}$ hours they are immersed in the water, which is kept at the same temperature, for an additional 14 hours. Separation of pats from the glass, cracking, and the presence of blow holes are indications of unsoundness.
In addition to this test, two test tubes ($6^{\prime \prime} \times \frac{6}{8}^{\prime \prime}$) are filled with cement paste ; one is treated in the same way as the pats, and the other left in the air. Swelling of the cement causes cracking of the tubes. In many cases a slight contraction could be noticed after a considerable time, and this could be made more apparent by putling water in the tube above the cement, when, if contraction had taken place, tho water could bo seen passing between the glass and the cement.
The colour of the pats, after exposure to the air, has also been noted, as well as the weathering qualities of the broken briquettes on exposure out of doors.
These tests have generaliy corroborated one another. Any considerable changing of colour to yellow has almost invariably been accompanied by the cracking of test tubes or of pats in the hot water tost.

All the above tests have been taken into consideration when deciding as to the soundness of a cement.
The degree of fineness to which a cement is ground has, after a certain stage, little effect on the strength of neat briquettes; but with mortar briquettes, finer grinding is found to noticeably increase the strength.
In the accompanying table it will be seen that the cements giving the strongest mortars are the most finely ground. The effect of fine grinding is most clearly shown in the case of the Hunter, Taylor \& Spoor (No. 15 b), and the Hunter, Taylor \& Spoor
fine (No, 16). These brands have their specific gravity, rate of setting, and tensile strength neat, practically identical, while their fineness of grinding and strength of mortar briquettes are different. A true measure of the effect is not, however, shown, because the two brands were tested with different proportions of sand, but the fine ground with three times $i^{\text {ts }}$ weight of sand has nearly twice the strength, at twenty-eight days, of the ordinary grinding with only twice its weight of sand. The same tendency is shown in the case of J. B. White \& Bros. (No. 5) and J. B. White \& Bros. fine (No. 10).

As an example of the degree to which fineness of grinding may be carried, attention is drawn to the Addison Potter \& Son extra fine (No. 18), of which the 100^{2} sieve retained only $4-10$ ths of one per cent. This cement, although unsound, and one of the poorest brands of English Portland tested, gives a mortar much stronger up to six months than any other cement tested with the same proportion of sand.

Tests hare been made on sand delivered on the works from two localities, with a view to ascertain i_{ng} the action of the finer particles in affecting the strength of mortar. The following table gives a summary of the results obtained. It will be seen that in all cases a loss of strength accompanies the inclusion of the extremely fine particles.

TABLE SHOWING RESULTS OF SAND TESTS.

Sand tests with "Clover" cement. 7 days	14 days	28 days
Sand as taken from the pit. 76	120	239
Sand retained on the 20^{2} sieve. 128	256	311
Sand retained on the 300^{9} sieve. 153	253	260
Sand retained btween the $20^{2} \& 302$ sieves. 160	245	247
Sand that passed the 30^{2} sieve. 61	114	188
Sand tests with "Burham" cemeut.		
Sand as taken from the pit. 125	116	131
Sand retained on the 30^{2} sieve. 143	155	197
Sand retained between the $20^{\circ} \&{ }^{\circ} 0^{\circ}$ sieves. 151	129	172
Sand that passed the 30^{2} sieve. 43	85	72
Sand tests with "Schifferlecker" cement.		
Sand as taken from the pit. 135	151	162
Sand retained on the 30^{2} sieve. 169	196	214
Sand retained between the 20 \& $\& 30_{2}$ sieves, 153	184	188
Sand that passed the 300 sleve. 148	153	156

J. L. ALLISON,
I. Can. Soc. C.E.

ENGLISH PORTLANDS.

	$\begin{aligned} & \bar{z} \\ & \text { E } \\ & \text { 䓂 } \\ & \text { it } \end{aligned}$	Fixesmss.			trix		neat briquetts $\mathrm{I}^{\prime \prime} \times \mathrm{l}^{\prime \prime}$. Texsine Strexgth.									MORTAR BRIQUETTS $1^{\prime \prime} \times$									
						,																			
		Per et. Residue.					$\frac{\overline{\text { Initialal}}}{\mathrm{n} \cdot \mu}$	$\begin{array}{\|l\|l\|} \hline \text { Hard. } \\ \hline \text { H. } . \end{array}$	Thas.				Montis.				Days.			onths.			Days.		
		25	$50=$	100:	3	7			14	28	2	3		12		7	14	28	2	3	6	7	14	8	
		0.0					455	516	584	639	675	13	746	245		18	148	$\begin{aligned} & 181 \\ & 151 \end{aligned}$	217	267	265	266			
		-0.0			-120	0	${ }_{356}$	${ }_{495}^{506}$		${ }^{625}$	${ }_{663}^{657}$	${ }_{745}$	${ }_{806}^{834}$	791		19	${ }_{1}^{126}$			198	${ }_{192}^{290}$	23,			
	$\begin{aligned} & 3 \cdot 6 \\ & 3 \cdot 6 \end{aligned}$	${ }_{0}$	11.0		${ }_{0}^{0-16}$	${ }_{0.08}^{0.30}$	3088	${ }_{501}^{497}$	577 569	${ }_{502}^{665}$	${ }_{622}^{665}$	${ }_{6}^{659}$	${ }_{729}^{743}$	${ }_{761}^{725}$	${ }_{9}^{20}$	${ }_{126}^{96}$			${ }_{203}^{159}$	${ }_{212}^{210}$	206				
					017	0	376	5 Em	583	657	675	189	705	710	\ddagger	153		117	19x	$18 \times$	205				
			16		${ }_{\substack{0 \\ 0.18}}^{0-18}$	(o-1	${ }_{297}^{297}$	459	${ }^{359}$	${ }_{61 \times}$		65			${ }_{10}^{2}$	${ }_{90}$				1816	95				
	$3 \cdot 1$	-	3.7		3.65	*	${ }_{42}^{27}$	427		59	617	${ }_{6} 645$	${ }_{694}$		15.			119	138	17%	193				
	3-12	0 -10			$0{ }^{0}$	0	312	41.	455	59	$6+6$	692	715	${ }_{6} 6$	6	103	122	40			18				
					0 -		37	46				643													
							26	4	472			43				80	:03	4	14	180					
		${ }^{0.0}$	11					45	4	53	${ }_{6} 69$	62		71	12								2		
	-	0	$9 \cdot 1$		4-010	\%	35	414	460	51		6.4	${ }_{6} 6$	717	${ }_{1}$										
158	3.125	0.6	15		0-1	0-1	37	415		535	515	63	71		1										
	3						31	411		534	602	6isa	\%om										${ }^{\text {a }}$		
	${ }^{3.077}$						31	11	469	54	592	6.26	724										105		
											4×0	56,	551												
								432															81		
													621												

BELGIAN PORTLANDS.

d. L. ALLISON,
U. Cam. Soc. C.E.

Sand tests with "Schifferdecker" cement.
St. Regis sand (not screened), 2 to 1. $181 \quad 197 \quad 232$
Grand Cotean sand (not screened), 2 to 1. $149 \quad 163172$
St. Regis and (not screened), 3 to $1.110 \quad 135 \quad 141$
Grand Coteau sand (not screened), 3 to I. $79 \quad 98$ 99

FIXENESS OF SAND.
Sand $\quad 0 \mathrm{n} 20^{7}$ sieve. Bet. $20^{2} \& 30^{\circ}$. Bet $30^{2} \& 50^{\circ}$. Passed 50°.
St. Regis. $\quad 12.2$ per cent. 25.8 per cent. 51.3 per cent. 10.7 per cent. Grand Coteau. 13.8 per cent. 29.6 per cent. 26.6 per cent. 30.0 per cent.

The accompanying table shows the results obtained from all tests which have been completed, or are well advanced, to date.

The curves show the maximum, minimum, and average strengths of the cements grouped according to the countries in which they are manufactured. In the case of the German cements, howerer, only two brands have been tested, and, as all three curves would fall very close together, only that for the average has been shown.

DISCUSSION.

The President. Mr. Monro, President, observed that the author deserved, in his opinion, great credit for his paper, which showed a large amount of careful and intelligent experiment and research on the subject of which it treats ; and pointed out the fact that owing to the munificence of a gentleman in the city of Montreal, the University of McGill was supplied with the best means obtainable for making elaborate and continuous experiments on this and many other engineering subjects-means which were not within the reach of ordinary persons.

With reference to Thorold cement, he said that it had been exclusively used in the building of some twenty-five locks and weirs, and numerous other structures on the Welland Canal.

There were over one and one-quarter millions of bushels put in the works, all taken from a stratum of the Niagara group, about five feet thick and extending along the face of the "mountain" for several miles. This stratum wastraversed by the line of the canal, and formed part of its excavations. During the progress of the works no instrumental tests were made ; but the stone quarried was examined before being put into the kilns, to see that it was of the proper quality and broken to cubes of about six inches. The burning was determined by the colour, and the grinding by passing the cement through the fingers, by which method, with some practice, a very good idea was formed as to its fineness. The locks and structures were generally finished some years before being brought into use, and as the cement was very slow setting even in the open air, it had ample time to acquire full strength from agethe locks being high and dry along a side hill. He recollected that in removing a farm bridge on section 15 near Thorold, which had been built in connection with the Welland Railway in 1857, it had to be blown down, and in several cases the line of fracture passed straight through the stone and cement. The masonry could not be taken apart with wedges. This was in 1873.

The cement was considered by the late Mr. Page to be a proper article to use in hydraulic works under these peculiar circum-
stances ; and in further proof of its fitness, when the Government decided to change the draft of the Welland Canal from 12 to 14 feet, this was partly done by raising the lock walls, etc., from No. 25 downward towards Port Dalhousie on Lake Ontario. To make proper bond between the new and old masonry, the copings were taken off, and an attempt was made to remove the frost batter of the walls by means of bars. This was found to be impracticable, as the stone and cement formed a compact mass, which had to be drilled and wedged off as if it had been a conglomerate rock.

Nevertheless, this same cement, which was also used in the raising of the locks and weirs, would have been washed out of them had not the joints been well pointed with Portland cement; because there was not time for it to set in the new work where it was used in changing an important waste weir at Allanburgh, and it was washed out of the masonry to such an extent, that when the weir was taken down and rebuilt, it had all the appearance of being laid dry. From this it will be seen that in situations where the water has to be turned on soon after the completion of the structures, natural cements such as that of Thorold are not to be relied upon, whereas a Portland cement of sound quality cannot fail to give entire satisfaction.

As to the question of cement testing, he submits a few remarks prepared at his request by Mr. J. L. Allison, Mem. Can. Soc. C. E., which clearly describes the method followed at the office of the Soulanges Canal, where over 25,000 briquettes have been made and tested by the same man. He may also state that Mr. Leedham White and other experienced persons have examined into the mode of conducting this work, and have expressed their entire satisfaction with the same. He agrees with the general conclusions arrived at by the author, and will at some future time go into further details.

Mr. Irwin said, that unfortunately he had not heen able to read 3r. H. Irwin. Mr. Smith's paper at all as carefully as he would have wished, but that there were a few points he would like to discuss.

As to fine grinding, be thought that there could be no doubt as to its value. On this point, and also on the question of temperature of the water used in mixing the mortar, some light might be thrown by theaction of a sult such as glauber salt (sulphate of soda). This salt, if in small crystals, say from the size of a pin's head to that of a small pen, will dissolve readily in warm water, while if
powdered finely and put en masse into cold water, it will set suddenly into a solid lump. This would seem to shew that possibly fine grinding helps the cement to take up its water of crystallisation more easily and more rapidly, as well as to give it more capacity to cover paticles of sand, and that there is probably some temperature for each kind of cement at which it will sot best, and that if the water in which it is mixed is much colder or hotter, the mortar will be weaker.

He thought that the difference in amount of evaporisation for different cements mixed neat was not altogether unaccountable. The strong Portand cements probably were able to take up more water of crystallisation, being composed of a greater proportion of active ingredients, though the No. 3 Portland was not in line with the others. However, a very extended set of experiments would be needed, in conjunction with chemical tests, before any law could be established from the evaporation of specimens.

He was glad to see that Mr. Smith agreed with his previous statements as to the usefulness of natural cements for structures above water except for winter work.

He thought also, that for rapid examination, a powerful micre. scope would be useful, and had already alluded to its use.

He had made a few experiments on some very different samples of cement, with a view of trying to get a rapid method of testing by treating about one-twentieth of a cubic inch of cement, with $1 \frac{1}{2}$ drachms of hydrochloric acid (B.P. standard), the cement being first moistened with water. All the 6 samples tested filled the acid completely with gelatinous silica, the effervescence from carbonate of lime was very marked in some cases, and a strong English Portland bubbled up as much as a piorer Canadian. Two samples smelt strongly of sulphuretted hydrogen ; both of these were poor.

The poorer cements all had a large insoluble residue, and the only sample which gave a perfectly eiear jelly was a very finely ground, strong, Danish cement.

An extended series of experiments in this line would probably lead to some useful results, especially if the proper proportions of cement and acid were first determined, as tests of this nature can be made in a few minutes.
Mr,C.B, Smith. Mr. Smith, in reply, wished to express his gratification on reading the many interesting and instructive discussions which his
paper had bronght out. This should be one of the chief sims of any paper, to draw out the opinions of practical men by which more may often be learned than from the paper itself. These discussions had brought up some points that might bear further mention.

Mr. Perley had referred to an insufficiency of time at the disposal of men in practice, who wished to judge quickly of the relative merits of a cement. This certainly would be a serious objection if it were deemed absolutely necessary to know the tensile strength of a cement at various periods ranging from 3 days to 1 month or longer ; but if the writer were to range the tests in order of merit as he regarded them, he would place the blowing test first; this, as far as evidence can be adduced, is a severe test of the soundness of a cement to be used under water, and this test can be made in 1 day. The next tests should be those of fineness and specific gravity combined, which can be both made in 1 hourat most; also the times of set can be obtained in a few honss, therefore we can find out practically all that we need to know of a sample in a day. The strength is after all of relatively little importance when these three are satisfactory, although the knowledge is in itself valuable ; because, if these three are up to the mark, many experiments show that the strength will be also. Surely twenty-four hours with apparatus costing from $\$ 5$ to $\$ 15$ cannot be considered very exacting.

Mr. Perley's remarks regarding the sla, ghtering of inferior brands of foreign cement on our markets should incite engincers to be more particular in their specifications, and in actually having tests made. The day is past when the brand is a sufficient guarantee of quality.

The idea of shipping in bags is not new. The American natural cements are largely shipped in 75 lb , paper bags, and the Owen Sound Portland Cement Co., if so desired, will ship in sacks; the suggestion is, however, doubtless a wise one, and would, besides, effect an actual paving of the world's store of energy.

Asan authority on cement testing, Mr. Spaulding's remarks are worthy of attention, and his criticisms seem, in the main, just ones. It is probable, however, that he over-estimates the variations in results attributed to using different samples of standard sand. There is one thing on which all countries seem practically agreed, i.e., that this angular quartz sand, eaught between 20 and 30 mesh sieves,
has very little variation, and gives uniform results. Experiments made by the author on sands of varying fineness all being, however, between 20 and 30 mesh sieves corroborate this belief.
The question of light or heavy pressure per sq. inch is not one of expense or difficulty, it is an endeavour on the part of the author, at loast, to determine the least load which will make good 3 to 1 briquettes of uniform density with soft mortar such as the masons use. The per cent. of variation obtained in groups of 5 has been very satisfactory at 20 lbs , per sq. inch and 20 percent. water, and more pressure woutd merely give higher results and lead us away from actualities where mortar sets under dead loads of only 3 or 4 lbs. per sq. inch.
The question of hot water is a very serious one, for its use is somewhat common amongst builders in cold weather. Since presenting this paper to the Society, the author has tested briquettes made of 2 naturals and 3 Portlands, which were mixed with hot water, cold water, and salt water. Both in the laboratory and in frost tests he has found that the hot water wenkened the Portlands and strengthened the natura is, the reverse being the case with salt water. Mr. J. G. Kerry has made a plea for chemical analysis, and doubtless this is a very necessary thing for some one to make, but it seems probable that, as a test, it will always be confined, in practice, to the manufacturer. Apropos of this is Mr. Perley's quotation from a letter of the late Henry Faija, which will make the point clenr. Mr. Kerry objects to placing any positive value on specific gravity tests, and later on he would seem to place little reliance on strength tests ; but we must really eling to something. It will not do to tear down without building up. In what way are we to satisfy Mr. Perley's demand for expeditious tests and Mr. Kerry's rejections of two of those in most common use? Pineness alone is no criterion. It is necessary to specify either specific gravity or strength. It is probable that either one of them, when coupled with fineness and soundness, is a sufficient guarantee of quality.

The value of 3.10 proposed is such as will insure strength if fineness and soundness are satisfactory, because we cannot get a highly burnt cement, so over-clayed as to be weak, which will not fase in the kiln before getting burnt to a density of 3.10.

Mr. Kerry's ideas on hot water and salt water are not in accordance with many tests, which, as Mr. Spaulding states on the authority of W. W. Maclay, is injurious in the case of hot water
which the anthor has verified, It would seem best to leave it severely alono, whereas salt water seems to be actually a benefit.

In answer to Mr. Kerry's question on the strength of single bricks similar to those used in the pier tests, the average of 6 separate tests on single bricks bedded in plaster of Puris tested on their flat was as follows : -1 st sign of cracks, 1210 lbs . per sq. inch ; final collapse, 1860 lbs . per sq. inch.
Mr. Allison's very full exposition of the methods of testing adopted on the Soulanges canat cannot but be useful to members of the Society as embodying good practice ; but when Mr. Allison goes into $\frac{1}{1000}$ ths in his determination of density, he is open to the accusation of hair-splitting, for two determinations of this on the samo sample will vary as much as $\frac{1}{\frac{1}{0}}$ and often more. Speaking of the Faija mechanical mixer, the author has found it to possess one weak point, the revolving vanes will drive the mortar more or less into the corner. To remedy this, an advanced scraper, throwing the mortar toward the centre in front of the revolving vanes, has been found to remedy the defect. The shrinkage of cement in a tube in air is to be expected, the most delieate determinations by the American Cement Committee showed that the soundest and best cements shrink slightly in air and expand in water.
The question of natural and Portland cements, dealt with by the President, Mr. Monro, scems to be rapidly solving itself in Canada by the construction of Portland cement works. The reason seems to be not that the natural Canadian cements are always poor, but that they are sometimes good and sometimes bad. The United States natural cement product is, on the other hand, holding its own, the rouson being, probably, that the immense quantities made at a given spot allow of such thorough mixing as to give a uniform product, whereas intermittent burning of rock on a small scale is liable to produce a different quality at each " burn," depending on the exact spot from which the cement rock is taken.

> Thursday, 28th February.
> Thomas Monbo, President, in the Chair.

The following candidates having been balloted for were declared duly elected as :-

Member.

John Patrick O'Donnell.

Associate Members.
Peter Ferraba, James Isaac Haycroft.

Associate.

Hamburt A. Bumper.

Student.
Benvand McEextee.

The following was transferred from the class of Associate Member to the class of Member :-

Join Logie Aluison.
The following were transferred from the class of Student to the class of Associate Member :-

Wm. Charles Percival Heathcote, William Murray Reid, Ernest Albert Stone.

The discussion on Mr. Smith's paper on "Cement Testing" and on the Report of the Cement Committee occupied the evening.

Thursday, 14th Mareh.
Thos. Monro, President, in the Chair,
Paper No. 103.

A MICROMETER ATTACHMENT FOR THE TRANSIT INSTRUMENT, WITH EXAMPLES OF ITS USE IN SURVEYING, LEVELLING, ETC.

By W. T. Thompson, A.M.Can.Soc. C.E.

The accompanying photograph represents a 6 inch reiteration transit, with micrometer attachment. The latter was construeted to my order by Mr. James Foster of Toronto, and in connection with a powerful transit telescope affords the means of measuring with great accuracy small vertical angles between the limits of $0^{\prime \prime} .8$ and 3 degrees.

It consists of a metal box firmly attached to the vernier plate of transit in a plane at right angles to the horizontal axis of telescope, and containing a micrometer screw, with divided head and vernier, and two movable nuts N and I. The former has 40 threads to the inch, and bears against the vertical clamping bar B , being kept in close contact by the spring S .

The head of screw is divided into 100 parts, and is read by the vernier V to the $\frac{1}{1000}$ th part of a revolution, and as each complete revolution moves the nut N through $\frac{1}{40}$ th of an inch, the $\frac{1}{1000}$ th part will move it tbrough the $\frac{10000}{400}$ th of an inch, and as the length of the clamping bar B from centre of axis to point of contact with nut N is $6 \frac{1}{2}$ inches, this will move the telescope through an angle of $0^{\prime \prime} .8$, which is the smallest that can be measured with this mierometer.

The index nut I is for recording the number of revolutions made by the serew; it has 20 threads to the inch, and the edge of box is divided into 20 parts to an inch, so that each turn of the screw earries the index nut through one division ; therefore, in making any observation, the number of complete revolutions is read off from the seale, and any fractional part from the divided head and vernier.

The clamping bar B consists of two parts so arranged that the telesope may be moved in altitude either by the mierometer or by the

A Micrometer Attachment for the

ordinary tangent screw T, so that when desired the micrometer may be sot at zero or any reading, and the telescope accurately sut on any object by the tangent T.
In measuring distances with this micrometer, the writor has used for a base a light round rod 30 links in length, about 2 inches in diameter at the bottom, tapering to 1 inch at the top, and provided with a universal spirit level to ensure verticality, with 3 targets, one 5 links from the bottom, one 10 links above this, and one at top of rod, giving a clear distance of 25 links between the outside targets. The targets were formed of bright tio and black rubber tacked on the rod, as shewn in the margin.

The tin reflecting light and the black rubber absorbing it, the division between them was very distinct, specially in winter.

The lower targets 10 links apart were only used in measuring short distances, the outer targets 25 links apart being used in all other cases.

If a distance of say 40 chains be measured on a piece of level ground or upon the ice, and the number of turns of the micrometer serew required to move the horizontal wire of the telescope from one target to another be denoted by n, then as the base is very short as compared with distances to be measured, it may be considered to represent the are which subtends the angle at the instrument, and this angle will vary inversely with the radius or distance. Therefore at one chain the number of turns of the screw would be represented by $40 n=N$. If now the rod be held at any unknown distance denoted by \mathbf{X} chains, and the num. ber of turns of the serew is observed $=n^{\prime}$ then $X=n_{n}^{\prime}$ where the base subtending n^{\prime} is very small as compared with its distance from the instrument, and the effect of differential refraction is assumed to be constant.
As, however, at different distances from the instrument the differ ence of refraction of the targets will vary slightly, it is necessary, in order to prepare an accurate table for reducing the observed readings to distances, to note the actual readings at each chain of distance from 5 chains up to 40 chains, and interpolate the readings for differences of 10 links. The distances corresponding to any observed readings can then be at once obtained by inspection. The condition of the atmosphe re at the time should be noted, and on different days, if one or two distan necs are chained, and the observed readings compared with those given by the table, we shall be able to apply approximate corrections to the tabular distances due to different atmospheric conditions.

The horizontal wire of the telescop) should be very fine, and the object glass und eye-piece must be very carefully focused. It is also important that the axis should be secured with moderate pressure in the Ys, and to obviate as far as possible the tendency to rise, the spring S must be slightly bent so as to grip the stud against which it bears.

The teleccope used has an objective of 1.5 inches clear aperture and 10.5 inches focus, and the eye-piece a magnifying power of 32 diameters.

With this instrument and the 25 link target rod described, distances up to 30 chains may be measured, with an error seldom exceeding $\frac{1}{2}$ link per chain, and with a more powerful telescope it is probable eren closer results could be obtained.

We shall now give some examples of the use of this a tachment in surveying and engiveering operations.

I.

A method of traversing with the transit and micrometer attachment,
In regard to traverse surveys, the Manual of Survey for Dominion Lands provides as follows:-
"The use of the micrometer for such work will be allowed, provided that the closing crror does not exceed one chain in one hundred chains. The micrometer must be of an approved pattern, and must be submitted to the Surveyor Geueral before being used on the survey."

The micrometer attachment deseribed in connection with the transit affords the mens of making traverse surveys with great facility.

The method used by the writer is as follows: the instrument being set up on the shore of a river or lake, and either on one of th3 survey lines or at a point fixed in position with refercnce to the same. It is carefully levelled, and the horizontal circle reading for the north point noted. Then the rod-man proceeding along the shore holds the rod at all points where marked deviations oceur, the position of each point being fixed in direction and distance from the instrumental station, by readings of the horizontal circle and micrometer. At suitable points new stations are taken and the survey continued in the same manner. The notes are entered in the field book under the following headings, and written from the bottom upwards, the topography being shewn in margin. If a repetition instrument is used, the two columns headed H.C.R. and H.C.R. on \mathbf{N} are not required.

It is convenient to have the rod man travel uniformly from left to right, viz., in the direction given by the hands of a wateh, and any topography will then be shewn in left hand margin.

If the initial station be ealled O, then the points fixed from it may be conveniently designated $\mathrm{O}_{1}, \mathrm{O}_{2}, \mathrm{O}_{3}$, etc., 0 to $1: 1_{1}, 1_{2}, 1_{5}$, etc. The reduced notes are placed in three columns, under the headings, Station, Azimuth, Distance, and from this data the points are plotted on a scale of 20 chains to an inch, and the shore line defined by joining these points.

No matter how irregular the shore line may be, a perfect representation of it can be obtained by this method, and in much less time than would be required by the system of chained survey lines and offsets.

Regarding the areas of the broken quarter seetions, they may be readily calculated from the above data ; but it may be stated that as a water boundary is a variable one, depending on variations of the water level, extreme accuracy in determining these areas is generally not necessary, and in many cases the planimeter or some graphical method will give sufficiently close results, especially when the shores are flat and the water line subject to wide fluctuations. The plot in all eases being carefully made.

II.

To determine differences of level and establish grades on preliminary railway and other surveys.

The telescope must be provided with a good spirit level, and the horizontal wire adjusted to define a horizontal line when the bubble is at zero.

Then (in the same manner as with the gradienter) if we note the point on a rod at the distance of say 500 feet where this line strikes, and turn the micrometer screw through one revolution, the distance between the two points on the rod being measured, one-fifth of it is the rise or fall in 100 feet for one turn of the screw, and we can now prepare a table giving the number of turns required for various grades, also of the rise or fall in feet at differect distances. These tables should inelude the effect of curvature and refraction.

We also require a target rod consisting of two pieces sliding upon caeh other, as shewn in margiv, in order that the piece carrying the targets may be pushed up or down, so that the lower target can be set at the height of the telescope above the ground, and clamped in position. The distance between the outside targets may be five or six feet, and a table for

reducing obscrved mierometer readings to distances can be prepared in the manner already deseribed.

We are now prepared for surveying and obtaining the levels and dis. tances along any preliminary line.
The mode of proceeding will be as follows: The instrument being set up at the starting point of the survey, and carefully levelled, the direction of the line is fised by readings of the horizontal circle, the bubble of telescope level brought to zero and reading of micrometer noted ; then the lower target being adjusted to the height of the telescope, the rod-man proceeds along the line and holds the rod at all points where any marked changes of inclination occur, the distance to each point being determined from readings on the targets, also the difference between the micrometer reading for level zero and the reading on tho lower target gives the difference of level by consulting our table.

We may also in open country obtain the direction, dist nee, and difference of level of points on either side of the line referred to the Instrumental Stations, and without planting any stakes except at these stations, collect the necessary data for preparing a plan, profile and cross sections of the line, from which a location can be decided on, which would then be chained, staked and levelled in the usual way.

III.

A very importont use to which this attachmont can be applied is the determination of the latitude by measuring small differences of zenith distance of North and South stars by a method somewhat similar to that by the zenith telescope.

For this purpose a very sensitive spirit level must be attached to the vertical clamping bar B in a plane at right angles to the horizontal axis of telescope, and the bubble should be adjusted to read zero when the index uut I is at the centre of the scale ; this level should read to say $3^{\prime \prime}$ for one mm space, so as to readily show a displacement of $\frac{1}{2}$ ". The time, azimuth, and approximate latitude may be readily obtained from observations on Polaris and another star in the same vertical plane.

Then with the approximate latitude or declination of the zenith point, we select from a Star Catalogue, such as the Berliner Jahrbuch, a pair of stars between the 2 nd and 5th magnitules, which culminate as nearly as possible at equal distances to the north and south of the zenith, and withinsay 30 degress of it, differing not more than two degrees in zanith distance, nor more than say 30 minutes in right as
cension. The telescono, it may be stated, is provided with a diagonal eyepiece with powers of 30 and 60 for star work.

The observer should be supplied with a chronometer or watch adjusted to sidereal time.

Shortly before the time of transit of the first star the telescope will be brought into the meridian plane by readings of the horizontal circle, the vertical finding circle set for the mean zenith distance of the two stars and bubble brought to the centre of its run by inelining the telescope. The latter will now be securcly clamped by the screw K, so that the relation between the telescope and clamping bar B with its attached latitude level will thereafter remain unchanged. The latitude level will then be brought exaetly to zero by turning the micrometer screw, and reading of same noted; the screw will then be turned to the right or lelt, according as it is necessary to depress or elevate the telescope, to set it at the zenith distance of the star, and when it appears in the field, the horizontal wire will be set upon it, and a precise bisection made when it reaches the middle wire ; the micrometer reading will then be noted, the serew reversed and level again brought to zero, the mierometer roading again noted and mean of the two readings taken as the true reading for level zero at the instant of the star's transit. The instrument is then turned 180°, in Azimuth, and similar observations taken on the other star.

With this micrometer, a right hand motion of the screw will inerease the readings and zenith distanees. If, therefore, we denote the reading on the star nearest the zenith by m and the reading for level zero for same star by m_{0}, then the are measured by the mierometer is represented by $m_{0}-m$; and if we denote similar readings for the other star by m_{1} and m_{01}, then the are measured will be represented by $m_{1}-m_{01}$; and the sum will represent the total change of inclination of the telescope, or difference of apparent zenith distances $=m_{1}-m+m_{0}$ - m_{01} which must be reduced to seconds of are by multiplying by R the number of seconds in one revolution of the serew ; this will be determined from observations on Polaris near its elongation, or by measuring the difference of dcelination of close stars at their transit over the Meridian ; the value will vary slightly with the number of turns, and should be tabulated for different intervals. Then using the value corresponding to the observed interval, we shall have for the apparent difference of zenith distance $\pm\left(m_{1}-m+m_{0}-m_{01}\right) \mathrm{R}^{\prime \prime}=\left(z-z^{\prime}\right)$, in seconds of are, where z denotes the apparent zenith distance of southern and z^{\prime} of northern star.

In the dingram let P denote the North. Pole, Z the Zenith, NQ the Equator, S the Southern, and S^{\prime} the Northern Star ; S E and S' E = s and s^{\prime} their declinations; Z S, and Z S', their true zenith distances $=Z$ and Z^{\prime}, and r and r^{\prime} their refractions.

Then denoting the latitude $Z \mathrm{E}$ by ϕ. We have $\phi=(s+Z)=$ $\left(s^{\prime}-Z^{\prime}\right)$. Therefore ${ }^{2} \phi=s+s^{\prime}+Z-Z^{\prime}$, and since $Z=z+r$, and $Z^{\prime}=z^{\prime}+r^{\prime}$, inserting these values, our formula becomes $\phi=\left(\frac{s+s^{\prime}+z-z^{\prime}+r-r^{\prime}}{z}\right)$ and inserting the value of $z-z^{\prime}$ as measured by the micrometer, the final formula is $\phi=$

which the sign of the second term is the same as that of $\left(z-z^{\prime}\right)$, viz., if the southern star has the greater apparent zenith distance it will have the + sign, and vice versa.

By consulting a Star Catalogue it will be seen that in most latitudes several pairs of stars between the 2nd and 5th magnitudes, and differing not wore than 30 minutes in R, \mathbf{A}, nor more than $\mathbf{2}$ degrees in zenith distance, would be available for observation with a good transit telescope.

This method might be found useful in determining latitudes in exploratory surveys, in connection with mierometer work, and should give the latitude within $3^{\prime \prime}$ or $4^{\prime \prime}$ by combining the results of several observations.

DIECUSSION.

Mr, G. W,
Mecread.

Mr. G. W. MeCready said, on receiving a few weeks ago an advance proof of " Λ Mierometer Attachment for the Transit Instrument, with Examples of its use in Surveying, Levelling, etc.," by W. T. Thompson, A.M. Can. Soc. C.E., he became interested in reading Mr. Thompson's description of the instrument, and of the uses to which it might be applied.

It suggested to the writer a very simple device upon which he experimented many years ago, for the purpose of measuring very minute angles, either horizontal or vertical. The instrument which the writer used was a good achromatic pocket-telescope, with compound eyc-piece of about 5 or 6 iuches in lengtl. Having this firmly set up on a stand, for the purpose of making a close inspection of objects on a distant mountain, he removed the eyepiece, and again inserted it just so far as to have a hold within the tube ; in which position he could move the outward end either horizontally or vertically, perhaps 4 or 5 degrees from its normal direction, and still have a good view through the glass. Having spider-lines in the telescope, the writer noticed how slowiy and regularly they appeared to move over the object as the eye-piece was inclined either way,-a deviation of probably a degree or more being required to produce 1^{\prime} in the angle of sight. This led him to devise a graduated are, with index and vernier, or micrometer arrangement,-not merely to read the deflection of the eye-piece, but the exccedingly small angle subtended by the distant object over which the sight appeared to move.

This being a very old contrivance, as above stated, Mr. Thompson's paper has suggested that further experiments might be made to determine whether there is anything in it which can be made practically useful.
Mr, H. Irwin,
Mr. H. Irwin said he thought that it would be better not to attempt any such fineness of measurement as an angle of $0.8^{\prime \prime}$ with a 6 inch transit, this angle subtending only one-seventh of an inch at 3000 feet.

He thought that all who have used a 6 inch transit would agree with him that it was impossible to set the cross-hairs to anything much

closer than an inch at such a distance, which would correspond to about five seconds of are. He had a very heavy English six inch transit, which worked more accurately than any instrument of its size he had ever seen; it was graduated to read to 20 seconds of are, and always gave the same angle between two pickets, and ho thought it was good enough to read to 10 seconds of are, but considered that that was the limit of accuracy for a 6 inch transit.

He said that no doubt the vernier of Mr. Thompson's micrometer read to $0^{\prime \prime} .8$ of are, but the crrors in his micrometer screw probably amounted to 2 or 3 seconds of are, so that it would have been better to use a coarser micrometer serew which could be more accurately made.

He noted that Mr. Thompson stated that distances up to 40 chaius could be measured with a 25 link target rod to within half a link per chain or one-half of one per cent., which amounts to stating that the error in reading the 25 link rod would be about one-half of one per cent., or about one inch, which would correspond to an angle of about seven seconds at 40 chains, so that it would seem quite sufficient to have the micrometer arranged to read to 5 seconds of are, and not to attempt anything so fine as 0.8 seconds. He also thought that it was useless to attempt to read a displacement of $\frac{1}{2}$ second with a level set on a 6 inch transit, as he had an eighteen inch level which had a bubble ground to about five seconds of are to each division of about one-eighth of an inch, and he found it so sensitive that it was almost impossible to keep the bubble from moving constantly.

He thought that a bubble reading to $3^{\prime \prime}$ for one millimeter space or about $9^{\prime \prime}$ to $\frac{1}{8}$ th of an inch was a very fair arrangement, but did not see how it could be depended on to show displacements of half a second when it is remembered that that minute angle is subtended by only one-eighth of an inch at 4,000 feet.

He thought that Mr. Thompson's attachment was somewhat similar to the gradienter, but was better in so far as it had a longer arm and was more firmly attached, and being much interested in instruments was much obliged to Mr. Thompson for bringing his arrangement before the notice of the Society.

He thought that the weak point of all such arrangements lay in having to shift the instrument in reading the two ends of the rod. With stadia hairs this movement is avoided, and he would be glad if Mr. Thompson could give any comparison between the work done by the two methods, as he understood that Mr. Thompson had many years' expe. rience in accurate instramental work.

Mr, W, T.
Thompson

Mr. Thompson in reply said that the form of attachment deseribed by Mr. MeCready was quite new to him.

In reply to Mr. Irwin he said that he was obliged to him for his investigation of the instrument, and that the limit of accuracy of the usual form of 6 inch transit, as stated by Mr. Irwin, was in accordance with his own experience.

He would, however, remark that the accuracy of micrometer measurements by the method dessribed depends upon the power of the telescope and the steadiness of the stand upon which it is mounted, and both these elements are to a great extent independent of the diameter of the horizontal circle of transit. In the case of the reiteration transit the tripod is of a special construction, being of the trussed form, with a broad head upon which the three foot screws rest in grooves, the distance between the bearing points being 5.6 inches, also the instrument having only a single centre has much greater steadiness than one with a compound centre, and the whole forms a very firm stand for the telescope; the latter also is much more powerful than those usually employed, having an eye piece magnifying 60 diameters for star work, and in observing the transit of a star under very favourable conditions a change of one division of the vernier or $0^{\prime \prime} .8$ is perceptible, and two divisions or $1^{\prime \prime} .6$ in sighting on a fine terrestrial mark about 20 chains distant. A star being a fine bright point of light without appreciable dimensions, the wire can be set upon it with much greater accuracy than on a terrestrial mark. In order to obtain close results under general conditions, however, the power of the telescope should be increased so as to make its pointing power equal to the lowest vernier reading of micrometer, and this would be effeeted by using an objective of about 2 inches aperture and 12 to 13 inches focus, so that magnifying powers of from 60 to 80 diameters could be employed to advantage. $0^{\prime \prime} .8$ is certainly a very minute angle, but in the determination of latitude it represents a distance of about 80 feet, and is therefore not too small to be considered. If the micrometer was to be used only for the measurement of distances, however, it would no doubt be an adrantage to use a coarser screw as suggested by Mr. Irwin ; but in regard to the accuracy with which such screws can be made, he would say that serews with 100 threads to the inoh are made with almost perfect accuracy for use with astronomical instruments.

Regarding a displacement of half a second of are the author's meaning is that a change in the position of the bubble of that amount could be seen on the scale; so that in determining the readings for level zero the
bubble could bo bronght to the same position each tine with an error not exceeding $\pm 0^{\prime \prime} .5$.
Regarding the s:eadiness of the bubble this depends upon the form of transit and construction of tripod upon which it stands, as well as in setting up the instrument so as to be as free as posifible from surface vibrations. For example, in setting up the transit for close latitude observations, smali pits would be dug so that the feet of tripod would stand upon the firm subsoil, and any movement of the observer would then not be communiented to the instrument. Whien set up in this way the author has found the bubble of latitude level having a value of $5^{\prime \prime}$ to the sixteenth of an inch to remain quite steady for a considerable time on his instrument.

Pegarding the principlo of its construction, tho author would point out that this form of micrometer is quite different from the gradienter, the divided head having a motion of rotation only ; the use of a vernicr admits of very close readings being taken, It also differs by the use of ant index nut for recording the number of revolutions and of a sliding nut for moving the telescopo.
Regarding the use of stadia wires, the author has not had a very extensive experience ; he has found them useful for short distances as a check on the caloutation of triangulations where on'ly a single dist ince is to be determined ; but where a number of points are required to be fixed from the same station, as in the method of traversing deseribed, they would, in his opinion, ba unsuitable, as the rod man would have to be depanded on to record the tength of base; he therefure thinks it preforable to use a constant base, especially when the angle subtended by it can be accurately measured, which can be done with this form of micrometer, provided the pivots of the telescope are sesured so that they cannot shift when the micrometer sereve is rotated.

Thursday, 29th Mareh.
Wm. Kennedy, Jr., Member, in the Chair.

Paper No 104.

AN APPTICATION OF THE STONEY PATENT SLUIOE TO RIVER IMPROVEMENTS.*

By G. E. Robertson, B.A.Sc., M. Can. Soc. C.E.

Among the more important contributions of late years toward the improvement of canal works is the Stoney Patent Sluice.

This invention renders it possible to raise, by a small expenditure of power, a counter-balanced verticalbulkhead of steel, of unusual dimensions and with a heavy head of water against its fice. The bulkhead bears against rollers set in a moveable frame, and the friction which would otherwise result from the immense pressure is thereby reduced to a minimum.

Under certain conditious of river improvement it has occurred to the writer that these sluices might be employed in such a way that the usual form of lift-lock could be dispensed with. The conditions chosen as an example are as follows: A rapid, in an otherwise navigable river with a fall of ten feet in about a mile in leogth.

Referring to the sketeh, it will be seen a bank is formed on one side of the river for the entire length of the rapid, to form a canal.

At intervals of about half a mile three pairs of gates are placed dividing the canal into two reaches. At each end of each reach are Stoney sluices connecting directly with the rapid. A vessel ascending passes through the first pair of gates, which are then closed, and as she proceeds through the first reach, the sluices at the upper end of it are opened and the water enters from the rapid, raising the reach to the level of the water half way up the rapid.

The second pair of gates can then bo opened, and the vessel passes into the second reach, which is raised in a similar manuer by opening the sluices at the upper end, connecting with the river at the head of the rapid.

[^3]TRANSACTIONS CAN SOC. C E, VOL. IX. PLATE I.

- Rivor Ĩmprovement -- with -- Stoney Patent 5lvices Songithbinal Sections
\qquad

\qquad
\qquad

The third pair of gates can then be opened, and the vessel continues on her way.

The advantages attending this scheme of river improvements may be set forth as follows:

Vessels may pass through the canal without stopping, at the usual rate fixed for canals ; this, particularly in case of long tows of barges, would shorten the time of passage very much.

Vessels would never be near a canal gato when there was a head of water against it ; the dangers attending the usual kind of lockage, tho bringing of large vessels to rest within a few feet of closed gates, as well as the damage done to shipping, would be done away with.

The head of water against banks and structures would never be more than a few fect, thereby lessening the cost of construction.

The length of vessels is not limited.
Under favourable conditions there would be a saving in cost of construction, principally in masonry.

The reason for placing the sluices between the canal and the river is that each reach may thus have an independent supply of water; but when this system is applied in its simplest form, that is, with only one reach and a pair of gates at each end, it is then possible +1. sluices would be placed on the landward side of the gates, which would have the advantage of more accessible foundations, but the disadvantage of causing currents in the entrances.

In cases where the whole discharge of a river is controlled, the adjoiniag reaches, providing they are not of too great an area, might be brought to the same level at suitable intervals of time by means of these sluices, permitting the passage of vessels up or down without the intervention of lift-locks.

Thursday, 11th April.
Thomas Monro, President, in the Chair.
The discussion on Prof. Bovey's paper on "The Strength of Canadian Douglas Fir, Red Pine, White Pine and Spruce," and on Mr. Smith's paper on "Cement Testing," occupied the evening.

Thursday, 25 th April.

> Joun Kenneny, Past President, in the Chair.

Paper No. 105.

THE BARRIE FLOOD OF 1890.

By Willis Citipman, M.Can.Soc.C.E.

The town of Barrie is situated on the northwest corner of Kempenfeldt Bay, an arm of Lake Simeoe, having a width of one mile opposite the main part of the town, the depth at the centre varying from 50 to 100 feet, but increasing to the eastward. The land to the north and to the south rises to a height of from 200 to 170 feet, extending to the west, forming a valley about $1 \frac{1}{2}$ miles wide, which continues to the Notlawasaga River ; the highest point of the valley being only 65 feet above the Bay. This valley may have been at some period in geologic time the outlet of Lake Simeoc. Around the head of the Bay are several small spring brooks, the one with the largest drainage area discharging into it near its northwest corner. During the summer months this stream is apparently smaller than some of the others to the south, but, having a larger drainaze area, the flow during rains and when the snow is melting is much greater.

The total drainage area of this stream is about 1200 acres, or less than two square miles, of which about 1,000 acres or one and one-half square miles is north of and outside of the built up portion of the town, or say northeast of Peel st., this 1,000 acres being entirely cleared farm land. The external limit of the water-shed is approximately a circle one and one-fourth miles in diameter, the rim of which has an clevation of 170 feet, that of the centre of the depression bsing 110 feet, and the out'et at Peel st., 61 feet above the Bay. From the point where the water course crosses Peel st., the first built up street of the town crossed by it, along the stream to its outlet, is about 5,000 feet. For more than half of this distance the bed of the stream is dry during the greater part of the year.

When Barrie was first laid out for a town, this stream flowed westerly from Peel st. to Ross st. in a tortuous channel through a
swampy tract of land lying between the high terrace a little to the north, and a ramarkably narrow and high gravel ridge extenling westerly from Muleaster st, to Bayfield st. After being eleared, this low tract was a skating pond in winter and a wet marshy place in summer. When Sophiast. was laid out, the water course was straightened in such a way as to confine it north of tho street, all the southerly bends being eut off and filled up. The distance from Peel st. to Ross st. is approximately 2,600 feet. For about half of this distance the bed of the stream was north of Sophia st, on private lots, and for the other half of the distance, being from Owen st, to Bayfield st., it was along the north sid of the roadway. The fall in the bed of the stream from Peel st. to Ross st. was found to be 25 ft ., but for half of this distance the fall was only one in two hundred.

From Ross st. the stream flowed southerly 700 feet throush the town park, with a fall of 24 feet, then southerly and south-ea-terly, crossing Park st., 'Toronto st., Elizabath st., and Mary st, to the Bay, a distance of about 1,600 feet, with a fall of 11 feet,

In grading Clapperton st, the high gravel ridge was cut tirrough and removed to the full width of the street. Immediately west of Owen st., the ridge was also removed on several town lots. In 1846 the stream overflowed its banks, and ran down Clapperton st., washing out a channel which was not filled in for several years.
In 1860 another overflow took place, after which the channel was straightened along Sophia st, and the roadway raised to form an embankment about three feet high above the bed of the sircam. About 1870 a timber drain 3 feet wide iŋside and 4 feet high was built from the bay to Sophia st, along Clapperton, the idea being to relieve the stream in time of freshets. The northerly portion of this drain collapsed in 1886, and was repliced by an 18 inch tile pipe for 500 fect.

The top and sides of this drain were of three inch planking laid longitudinally and spiked to bents placed $3 \frac{1}{2} \mathrm{ft}$. centres. The bottom of the drain was of two inch planking. Each bent was built of four picees of timber top and bottom $5^{\prime \prime} \times 8^{\prime \prime}$, verticals $5^{\prime \prime} \times 8^{\prime \prime}$, joints halved and spiked. The planking was outside of the brats. There was no way of inspecting this old drain except by walking up it from its outiet. When the stream at its head raised to about half the height of the Sophia st. roadway, a portion of the water discharged through the 18 inch pipe into the old drain.

A number of culverts were constructed in the town along the course
of the stream, the croes sections varying from 10 to 40 square feet, the average being 20 square feet. Several of the longest culverts were on private property, the street culverts as a ruie being of superior construction to the others.

All those street culverts and culverts on private property were of wood, gencrally with sides of square timbers laid horizontally, ragbolted together or anehored biok at intervals in height to resist side pressure, or oceasionally braeed across inside. All were covered with timber or planking. Some fews of them were buift of round timber in whole or in payt.

With no town engineer to advise the town authorities, and with immunity from damage from flood for 30 years, the water couse had been neglected, the street culverts had not bsen cleared out thoroughly, the open channel or ditch along the north side of Sophia st. had become a dumping ground for old tinware, old boots, ete., while the Council had permitted parties to cover the strcam on private property.
These private culverts were not inspected when built or afterwards; they were irregular in size, crooked in alignment and in shape, and were not repaired or cleaned out except as each owner or tenant might please. Floating boards, timbers, blocks, bruchwond, grass, etc., became lodged in the bends and irregularities in the private culverts, at points where they could not be seen.

During the first week in June, 1890, the corporation labourers were repairing some break in the old timber drain on Clapperton st., and had an opening made in the street near Worsley st. for this purpose.

On Thursday, June 5th, 1890, the day of the Provincial Elections, an unprecedented fall of rain occurred in the vicinity of Barrie as well
as in diffirent portions of the central parts of the Province of Ontario. The heavy rain was not uniformly distributed, as in some places, not five miles from Barrie, there was no rain to speak of. The downpour commenced about 2 o'clock in the afternoon of the 5th, inereasing in intensity until 3 o'elock. The rain was accompanied by heavy thunder and lightuing, and the town was in almost total darkness during the heaviest showers.

At 2.15 n pond of water had formed northeast of Peel st., reported as covering about 10 acres.
This pond could not have been more than 500 fect in length, about 150 feet in width at Peel st., and about 6 feet deep at its deepest point. From these dimensions it is evident that the pond could not have covered 10 acres, but it may have covered three, and the averaje depth could not have been more than two feet.
It is more than probable that the Peel st. culvert became blocked, as the water rose nearly or quite to the surffice of the roadway. The roadway broke away about 2.20 p.w., and it is probable that the channel of the stream below this was about filled by this time by the drainage from Sophia st. and the lands to the north of it.

About 2.30 the stream overflowed Sophia st., for nearly the total distance between Owen st, and Bayfield st. some 1,000 feet, filling cellars and basements and invading the floors of dwellings, the Central Public School, and the business portion of the town on both sides of Dunlop st. from west of Bayfield st. to east of Owen st., a total distance of about 1,300 feet. The post office and railway station were surrounded by the flood, the water rising above tho ground floor of the latter.

The flood down Olapperton st. entered the old box drain at the point where the workmen were repairing it, and in a few minutes a torrent was rushing through it. The street was washed out in places from curb th curb from Worsley st. to the bay, the depth at Worsley st. being 16 feet.

The detached residences and the fences along the south side of Sophia st, so obstructed the current that the greatest flow was along the streets.

Upon reference to the plan, it will be seen that Clapperion st. is 2 or 3 feet lower than Owen to the east or Bayfield to the west, also that the fall from north to south is much greater than at right angles. The gravel ridge before mentioned formed wing walls to concentrate the flow down Clapperton below Worsley. The streams down Bayfield and Owen also did some damage by filling basements and cellars, and by entering on the ground floor of the Public School. The ground floor of this buiiding at the rear is but little above the ground level, but at the front there are several steps from the ground to the floor. The street in front is 40 feet above the Bay and only 800 feet distant, the inclination, therefore, being 1 in 20 , and uniform.

It is not surprising that a panio ensued amons the children and teachers. The darkness, the lightning and the sulden inrush of a torrent of water at that height above the bay would be sufficient to make any heart quail.
The children were rescued by the tire department with some difficulty, as the velocity of the current was such that the smaller children could not in their frightoned condition make headway against it.

On Clapperton st, below Worsley the greatest damigo was done.

The old box drain collapsed, was washed out or filled up. For severa! hundred feet it was not only destroyed, but nearly every trace of it was removed, and the debris washed into the bay. The depth excavated by the torrent at Worsley st. was about 16 feet, decreasing to 7 feet at Collier and 4 feet at Dunlop.
From Worsley to Collier the height of the water did not exceed one foot above the surface of the ground, but at Dunlop st. the flood mark was fully 3 feet above the sidewalk:
From Sophin st, to Worsley st, the surface inclination of Clapperton is 1 in 100 ; Worsley to Collier 1 in 25 ; Collier to Duulop 1 in 50 and below; Dualop about 1 in 50 .
A stream of water a foot deep, 66 feet wide, and flowing down an incline of 1 in 50 , would be consildered a largo stream. Clapperton st. proper ends at Dunlop, meeting Bayfield at an acuteangle. The force of the stream struck the west side of Bayfield helow Dun lop, completely demolishing one rough east house, from which the occupants barely escapod with thir lives. Tho total quantity of earth removed from Clapperton st. by the flood was approximately 7,000 cubic yards. The earth, timbers and debris were depositel along the railway tracks and carried into the bay. Cars were shifted on the tracks by the flood, the tracks undermined, and traffic suspended for some time.

Great difficulty was met with by the writer in sceuring satisfactory detailed deseriptions of the flood on Clapperton st., as all who witnessed it were too interested in their personal safety, or in the saving of life and property, to make many observations of scientific value. The reports of the time at which the flood first rushed down the street and the time it ceased, as given by eye-witnessss, varied most unaceountably, and the reports in the newspapers were of little value except in itemizing the damazes done.

The following facts are, how ever, to be relied upon:

1. The rain began early in the afteraoon, the heavy rain beginning at 2 o'clock.
2. The pond above Pcol st, broke away between 2.15 p.m. and 2.30 p.m.
3. The culverts between Bayfield and John became blocked, eausing the stream to overflow Sophia st. about 2.30 p.m.
4. Very heavy sain continued until 3 p.m., the heaviest downpour occurring at this time.
5. The greatest flow down the street was about 4 o'clock.
6. The oreek continued to overflow its banks on Sophia st, until 5 p.w., if not lo nger.
7. Dunlop st. and Collier st, were flooded from Olapperton to Owen for two hours.
8. The pond formed above Peel st, had an area of about 3 acres, with a maximum depth of 6 feet.
9. The water course was practically dry at noon on the day of the flook.

As previously stated, the drainage area of the stream does not exceed 1,000 acres above Peel. The average slope of the surface of the ground in this area towards the lowest point is 1 in 50.

The following is the reported rainfall for the $3 \mathrm{rd}, 4$ th, 5 th and 6 th June, as given by the Head Master of the Collegiate Institute, who had for miny years aeted as observer for the Meteorological Department:-

Tue. 3rd.Wed. 4th. Thur. 5 th.Fri. 6th.

In 4 days, rain fell to the depth of 4.73 inches.
The observations were taken at a point about three-fourths of a milo easterly from the town hall, the observer being furnished with an ordinary surface rain gauge.

The rainfall, as reported by a corporation employee, was much greater than this, and his statements were corroborated by other witnesses.

The following is his report :-
" Wednesday afternoon and night $2 \frac{1}{2}$ inches of rain fell.
"Thursday, 5th June. $\left\{\begin{array}{lllll}1.45 & \text { p.m. } & \text { to } & 2.15 & \text { p.m. }\end{array} \quad 4 \frac{11}{8} "\right.$
The rainfall as above given was determined by measuring the depth collected in open vessels, barrels, pans, etc., within or near the flooded district.

It is probable that between $1 \frac{1}{2}$ and 2 inches of rain fell during Wednesday and Wednesday night, and that during the afternoon of Thursday the rainfall was between 3 inches and 6 inches over the drainage area of the stream that caused the flood.

Three miles south of Barrie, ten miles north of Barrie, and 15 miles east of Barrie there was but little rain on Thursday.

The distance from the centre of the drainage area of the stream to

BARRIE

7. Dunlop st. and Collier st. were flooded from Clapperton to Owen for two hours.
8. The pond formed above Peel st, had an area of about 3 acres, with a maximum depth of 6 feet.
9. The water course was practically dry at noon on the day of the flood.

As previously stated, the drainage area of the stream does not exceed 1,000 acres above Peel. The average slope of the surface of the ground in this area towards the lowest point is 1 in 50.

The following is the reported rainfall for the 3rd, 4th, 5th and 6th June, as given by the Head Master of the Collegiate Institute, who had for miny years acted as observer for the Meteorological Department :-

Tue. 3rd.Wed. 4th. Thur. 5th.Fri. 6th.

98

In 4 days, rain fell to the depth of 4.73 inches.
The observations were taken at a point about threc-fourths of a mile casterly from the town hall, the observer being furnished with an ordinary surface rain gauge.
The rainfall, as reported by a corporation employee, was much greater than this, and his statements were corroborated by other witnesses.

The following is his report :-
"Wednesday afternoon and night $2 \frac{1}{2}$ inches of rain fell.
"Thursday, 5th June. $\left\{\begin{array}{llllr}1.45 & \text { p.m. to } & 2.15 & \text { p.m. } & 41 \text { " } \\ 2.15 & " & " & 3.45 & " \\ 2.45 & " & " & 3.15 & "\end{array}\right.$
The rainfall as above given was determined by measuring the depth collected in open vessels, barrels, pans, etc., within or near the flooded district.

It is probable that between $1 \frac{1}{2}$ and 2 inches of rain fell during Wednesday and Wednesday night, and that during the afternoon of Thursday the rainfall was between 3 inches and 6 inches over the drainage area of the stream that caused the flood.

Three miles south of Barrie, ten miles north of Barrie, and 15 miles east of Barrie there was but little rain on Thursday.

The distance from the centre of the drainage area of the stream to

VOL: IX. PLATE II.

Clapperton st, is approximately 4,000 feet, the fall being over 50 feet or an average inclination of one in eighty, the water course being very crooked above Peel st. and obstructed by vegetation. The velocity of the stream was not observed, but it was probably not less than $\frac{1}{2}$ feet or more than 5 feet per second.

The writer was engaged to report upon the best means of repairing the damage done to the streets, and the works necessary to prevent a re-occurrence of the disaster.

The works consisted in :

1. Laying a sewer to the full length of Clapperton st., and then re . filling the street.
2. Straightening and enlarging the channel of the stream below Peel and diverting it from private property where possible.
3. Raising the roadway on Sophia st.
4. Construeting culveris of uniform cross-section straight from end to end, and all built to grade.

DISCUSSION,

Mr.H, Holgate.
Mr. Henry Holgate said that for some time previous to the above date he had kept a record of rainfall at Allandale which is adjacent to Barrie, and upon the day above referred to he found that the rainfall was $6 \frac{1}{4}$ inches in three hours. The speaker, however, is unable to say what the fall was during any portion of this time, not having been where tho gauge was during the rainfall; but as the rain was not steady, being a succession of heavy downpours, with intervals of about half an hour, he is sure it will be admitted that the maximum rainfall must be greater than would be given by dividing the total rainfall in inches by the length of time given above.

The speaker regrets that he cannot give the real maximum rainfall. His rain gauge was of such construction as to give accurate measurements, and was located in an open place, in no way interfered with by buildings or trecs.

Should further proof be sought of this extraordinary rainfall from the Meteorological Office at Toronto, he would suggest that at the same time the records of rainfall for Sept. 17th, 1879, within the distriet from Barrie to Toronto be procured.

See elipping from Northern Advance of My 9th, 1895, as to repetition of rainfall, though not so severe as in 1890 :-
: NEARLY A DELUGE.
"History repeats itself, and so do floods, Barrie came near having a " repetition of the flood of June 5th, 1890. Between 5 and $60^{\text {'clock in }}$ "the afternoon of Tuesday, this locality was visited by a thunderstorm " and an unusual fall of rain, and Sophia street creek was filled beyond "the capacity of the culverts to carry the water away, and so flooded "the low lands in its course. Tho uld railway bridge at the entrance "to the old agricultural park and the roadway were washed away, " leaving a wide gap about 12 or 16 feet deep. The water covered "the flats from Toronto to Mary strect, flooding the basement of the " Elizabeth street Methodist church and completely filling the cellar of "Mrs. Hind's store, covering Mr. Scroggie's property and lower part
" of the Water Works grounds. The culverte near the rail way track " becume choked with driftwood, endangering the railway track. One "half hour's more rain and we should have had quite as disastrous a "flool as the one in 1890. Sophia street creek oyerflowed the bank " near Bayfictd street, the water running through the block to the south.
"It is quite evident that the culverts are not large enough for an " emergency such as these storms. The culvert at the corner of Sophia " and Bayfield streets is manifestly defective. The entrance should flare "so that the druin may do all that is required of it, but it is much " narrower at the entrance than the creek channel, and backs the water "instead of carrying it away. The whole bed of the creek should be " widened. The Board of Works has quite a chore on hand to make " things ripht,"-May 7th, 1895.

Mr. Chipman in reply to a communieation from the Secretary said : Mr. W. Chip-
In reference to the rainfall, there is nothing inconsistent in the fact that the quantity observed in the flooded area in 1890 was greatly in excess of that recorted $\frac{3}{4}$ of a mile away. The writer does not say, however, that the fall reported by the Corporation employee is correct.

In a Paper by E. Kuichling, M.Am. Soc. C.E., on Rainfalls and Discharge of Sewers, Trans. Am. Soc. C.E., Jan., 1889, the following recorded raiufills are given :-

Place.	Date.	Amount in inches.	Time hrs, min.
Washington................	1872	1.50	100
Boston.	1888	1.17	30
St. Louis......	1884	${ }^{5} .05$	14
Providence	1878	4.49	100

Rudolph Hering, M.Am. Soc. C.E., in discussing the Paper gives the following :-

Place.	Date.	Amount in inches.	Time hrs. min.
New Lake, Mass..........	1878	6.50	200
New Brunswick, N.J.......	1×87	4.50	100
Auburn, N.H......	1877	3.00	35
Grace, Ohio	1883	7.00	200
Cresco, Iowa.	1883	4,30	100
Des Moines, Iowa	1879	3.00	100
Clear Oreek, Neb	1880	4.80	127
Dodge City, Kan............	1588	3.24	45
Galveston, Texas..........	1871	3.95	14
New Market, Alabama......	1888	4.80	200
Greenville, Tenn..	1885	2.60	15

		Amout	Time
Place.	Date.	in inches.	hrs. mi
Embarras, Texas...........	1881	2.30	15
Galveston, Texas	1873	3.50	30
Keswick, Va.	1881	2.00	30
Norfolk, Va.	1888	2.48	10
Elsworth, N.C.	1880	9.00	330
Aikene, S.C..	1878	4.00	100
Jacksonville, Fa.	1873	3.72	41
Biscayne, Fa..	1874	4.10	30

In regard to the flood on Tuesday, May 7th, 1895, the present Town Engineer, Mr. Ardagh, writes that the registered rainfall was 1.44 inches, all of which fell in 45 minutes, or at the rate of nearly 2 inches per hour.

Below the Park the flooding was caused by the collapse of an abandoned railway culvert in the Park, the debris from which obstructed the culverts below it. One stump removed was 6 feet in length with roots spreading to 7 feet in diameter. It is stated that the flooding of Sophia Street at Bayfield was not eaused by any accumulation of debris, but the evidence is not conclusive. The new culvert at this point constructed in 1890 has more than double the capacity of the old culvert, and more than three times the cross-sectional area of the old culvert on John Street.

In Barrie the matter of first cost determined to a certain extent the size of the new culverts. The professional literature on the proper sizes of culverts is scanty.

Given a watershed as deseribed in the paper, is a culvert with a uniform cross-section of 35 square feet with a grade of 0.66 per 100 considered of sufficient size by the Engincering profession ?

Thursday, 9th May.
Thomas Moveo, President, in the Chair.
The discussion on Mr. Chipman's paper on "The Barrie Fiood of 1890," and on Mr. Thompson's paper on "A Micrometer Attachment " occupied the evening.

Thursday, 23rd May.
P. Alex. Peterson, Past President, in the Chair.

The following candidates, having been balloted for, were declared duly elected as :-

Members.
Edward Z. Duchesnay,
Edward Hesry Keatisg.

Associate Members.
Joseph P. B. Cascmain, Arthur Crumpton.

Students.

Whllam F. Angus,	Hegh C. Baker,
Harbie Miles Dibblee,	Alex. R. Greig,
Archibald McGillivay,	Kekneth Moode,
Sampson P. Robins,	Robert P. Rogers,

John Kimball. Scammell.

The following were transferred from the class of Associate Member to the class of Member :-

John Seabury O'Dwyer.
The following were transferred from the class of Student to the class of Associate Member :-

Robert Biokerdike, Jr.,
George Henry Richardson.

Thursday, 23rd May.
P. Alez. Peterson, Past President, in the Chair.

Paper No, 106.

SPECIAL TRACK WORK FOR ELEOTRIC STREET RAILways, especially referring to the montreal AND TORONTO SYSTEMS.

By F. A. Stone, Ma.E., A.M. Can. Soc. C.E.

Special work is the general term applied to all track work not included in the ordinary straiglit track; its construction for electric railways has undergone great improvements during the last few years, and is still improving. The introduction of electric power for the purpose of city passenger traffic gave rise to the present substantially constructed cars, which, with their additional weight of motors, brought about radical changes in the construction of the track.

Besides electricity as used in the trolley system, other motive powers have been tried to take the place of the horse, such as gas and compressed air motors, cables, electric conduits and storage batteries ; but up to the present time, the trolley system has demonstrated its practical superiority over all others.

The track which had answered all purposes for the old comparatively lightly constructed horse cars became utterly useless for the motor cars. As the special work is subjected to the greatest wear, and consequently requires the most frequent renewal, it changed form completely. The old cast-iron curves, with their short, lightly constructed switches and poor joints, had to give way to the heavier stcel construction, bearing a greater resemblance to that of a steam railroad.

Special track work should be of good substantial construction, with the greatest care paid to the designing of the parts which wear most rapidly. It is most important that track, especially in the central parts of a city, should require renewal as seldom as possible, for such renewals are very expensive, apart from the actual cost of the new track work, as
trafie is interrupted, cansing grent inconvenience and sometimes loss of business to the public, and generally demoralising a whole route of cars, and sometimes the greater part of the entire system. Special work should be made in such a manner as to cause the least possible obstruction to vehicles, no part rising above the level of the paving more than is unavoidable; the necessary recesses, grooves, ete., should be as narrow and shallow as possible, to prevent whels of vehicles from catching Flat surfaces should have a rough top to prevent horses from slipping upon them. All pieces should be finished so as to facilitate the paving, no long, unnecessary projections being left on bolts, ete. The curves should be of as great a radius as the width of the streets will allow. The sharper the curve, the greater is the wear on the track and wheels of cars; the slower the rate of motion, the more power required to drive the cars, the more uneven the motion and the greater liability to derailment.

The track may be laid on longitudinal stringers, on cross ties, or directly on concrete with tie bars connecting the rails. The old tracks of strap rail were laid on stringers, and the rail generally called stringer rail. (Figs. 1 and 2.) The greater part of the new construction is laid on ties, and in many respecus is similar to steam track work. A combination of these two methods, consisting of planks laid longitudinally on cross ties, in order to give a more even surface, has been tried, but the results do not seem to have been so satisfactory as were expected. In several streets in Montreal, where permanent paving has been laid, the rails have been laid directly on concrete, and bound together by flat tie bars with threaded ends and double nuts. This, with the concrete between the ties, and paving, makes a very solid bed ; however, it does not seem to have so much elasticity as track laid on ties in macadam.

The rails used in Toronto and Montreal are " Girder " rails. Those first laid have a height of $6 \frac{1}{2} \mathrm{in}$, with a flinge of $4 \frac{1}{2} \mathrm{in}$., while those laid later are $6 \frac{\mathrm{~K}}{\mathrm{~g}} \mathrm{in}$, high with a flange of 5 in . The web of the rail is not directly below the contre of the head as in the "tce " rail, but nearer the gauge line, while a flangway $1 \frac{1}{4} \mathrm{in}$. wide at the top is provided for by a prujecting lip. These rails average 75 lbs , per yard. This type of rail ($\mathrm{Fi} \% 3$) is used on all straight pieces and outside rails on curves in the special work. The inside rails are made of a section very similar to this, the principal difference being that the lip is much heavier, being one inch in width at the top and rising $5-16$ ths in, above the level of the head of the rail ; this provides an efficient guard for the cars in running round a curve, the groove is $\frac{1}{4} \mathrm{in}$. wider than in the ordinary
girder rail. This rail meighs 84 lbs , per yard. (Fig, 4.) Another section (Fig. 5) is, however, coming into use, and will no doubt largely replace these sections for special work; it is the same as the guard rail seetion, except that the groove is filled up with solid metal to within 9-16ths in. of the top of the head, thus providing a double bearing for the wheels, as both flanges and treads of wheels rest on the metal, so that the cars pass over all points without jolting, nnd the wear on the least durable parts of special work, viz., points, is greatly diminished. This section gives a rail of 89 lbs , to the yard. The peculiar sections of these rails, with their thin flanges and webs, and much thicker heads, cruse a variable amount of toughness in the section; the head having received the least amount of rolling proportionally and taking the

longest time to cool is not so tough as the web and flange. Tests on pieces taken from the guard rail (Fig. 4) have given the following results :-

Head :-Tensile strength-64,300 lbs. per sq. in.
Elastic limit- $\mathbf{7 5}$ per cent, of tensile strength.
Elongation on $4 \mathrm{in} .-31 / 2$ per cent. ; reduction in area-2 per cent., with an even and uniform whitish gray fracture, moderately fine grained.

Web :-Tensile strength- $91,250 \mathrm{Jbs}$. per sq . in.

Elastic limit- $\mathbf{7 5}$ per cent. of tensile strength.

1) isgation on $4 \mathrm{in} . ~-27$ per cent. ; reduction in area- 20 per cent., with a fine graine 1 light gray fraeture.

The necessity for the increase in the weight of the new rails over the old is made apparent when it is considered that the weight of a motor car averagesabout 6 tons, while the weight of the old horse cars averaged only about 2 tons; and whereas horse cars run at the rate of about 6 miles per hour, electric cars frequently have a speed of 15 miles per hour. T'eo rail (56 lbs) is also used largely for this work, but ity use is generally confined to macadamised roads in the suburbs, as its height is not suitable for paving purposes (unless raised on chairs), although otherwise quite as efficient. (Fig. 6.) The girder rail being so high admits of block paving, and by the lip on the inside provides a good edge for the pa vers to work to, whilst the narrow groove offers a very slight hindrance to vehicles.

In tee rail special work, the inside rail on curves is generally guarded by a second rail being bolted to it, the two rails being lield apart by cast iron filling pieces; the space between these rails is afterwards filled with cement to within an inch from the top, so as to cause as little obstruction to traffic as possible. The guard rail is slightly elevated above the running rail. Frequently rails are used in paved streets of insufficient height to admit of a paving block between the tics and the head of the rail ; when th is is the case, the differcnce in height has to be made up by the use of chairs. This leads to rather complicated joints, and requires a longer time to lay than the method of direet spiking to the ties.

main divisions of spectal work.

Special work may be divided into four classes considered with respect to its use and its position when in place, viz. :--intersections, passing sidings, crossovers and turnouts, and miscellaneous combinations,

1. Intersections.-By the term intersection is meant the special work placed at the intersection of two or more streets, and may assume an aluost endless variety of forms as regards number and direction of curves and the aligment of the main tracks. The work must be so construeted as to guide the cars in whatever direction required, without any other exturnal assistance than the moving of the tongues in the switches by the motor men. The cars must ride as smoothly as possible, i.e., there should be no jolting; in placer where a groove is to be crossed that would cause the car to run unevenly, the floor should be raised so as to give a bearing on which the flanges may run. On double
track lines the distanec between tracks is usually from four to five feet, but in order that cars may pass one another on the curves, and not be obliged to wait at the ends, this distance is increased to about seven or eight fcet to provide ample elcarance. This extra width is obtained by striking the curves from different centres, i.e., the curves are not conecntric. The practice in Montreal and Toronto has generally been to make the inner and outer curves of the same radius when the apex angle has been nearly 90°; but when the angle varies greatly from a right angle, the outer curve has generally been made sharper than the inner when running round the obtuse angle. When the centre line of a strect

changes direction, or has a " jog" at the intersection, necossitating a plain or reverse curve on the through tracks, the complications increase very rapidly.
2. Passing Siding?.-These are used on single track lines where cars run in both directions ; they may be divided into two classes, viz.: diamond and thrown-over sidings.

In the diamond siding (Fig. 8) the track diverges like a Y at

FIG. 9.
THMOWX OVER BIDING.
either end, so that the centre line between the tracks in the siding is on line with the ecntre line of the single track; this is the form usually adopted on single tracks running through narrow streets. If it is desired that cars shall run either to the right or left at these points, the switches of the sidings must be provided with movable tongues ; but if the cars always run in the same direction, they may be guided in the direction required by a movable tongue beld to the proper side by a spring, so that a car facing a switch is alwuys guided to the same side, and a car trailing it compresses the spring, and passes on, the tongue of the switch falling back to its proper position. (See Fig. 25.) This guiding of the car in one direction, however, may be provided for much more simply by means of a switch without any movable part, commonly called a blind switch. One side of the switch is straight and the other curved. The front of the switch coincides approximately with the end of the curve of the switch, whilst the curve to the opposite side begins near the back of the switch, as shown in Fig. 10. If the cars always

run to the right (as in Montreal and Toronto) the switch is made left hand, i.e., the P.C. of the curve turning to the left is in front of the P.C. of the curve turning to the right by the length of the switch (approximately). Thus, a car approaching the siding travels straight along on the tangent past the point of the switch, and is then curved out of its path to the side ly the curve in the rail behind, and when leaving the siding runs over the curve of the switch ; this is the best arrangement for such sidings, as it is the simplest, most durable, and causes least delay to the cars.

In the thrown-over siding (Fig. 9) one track is continued straipht through, whil-t the other is thrown over to one side of it ; this is suitable for single track lines on a wide street, or in places where the track is on one side of the street. If cars are to be run to either side, ${ }^{\text {s }}$ witches with movable tongues are necessury; but if the cars always
keep to the same side, the tongues must bo provided with springs, or blind switches used. With the later the problem is not so simple as in the diamond siding, and in order to solve it the main track has a slight reverse curve placed in it extending from the front of the switch to a short distance inside the curve cross ; by introducing this, the general arrangement for the diamond siding holds gook. (Sue Fig. 11.) The radius for the curves of passing sidings in Montreal and Toronto is 300 feet to inside gauge line.

3. Crossovers and Turnouts.-Crossovers (Fig. 12), sometimes called connceting tracks, are used on double track lines for the parpose of transferring cars from one track to the other, and corsequently are placed at the terminations of regular routes and at points which are made temporary terminii to accommodate special traffic. .

Turnouts (Fig. 13) are used where a double track runs into a single track, the centre line of the single track being on line witt the centre line of one of the tracks of the double track line.
These crossovers and turnouts, as well as all special work, should change the direction of the ear's motion from one line into another with the least amount of resistance possible consistent with the data given. Those in Montreal and Toronto have 75 feet radius curves and about 25 feet of tangent, the latter varying with the distance between tracks. This gives a crossover of about 60 feet between extreme ends of switches.

136. 13.

HOOT HAND TURNOUT.

Crossovers and turnouts are said to be either left or right hand, aceording to the direction in which they curve from the track, as seen fiom the switeh when looking towards the cross. Fig. 12 shows a right hand crossover. If a crossover of either hand is suitable at a certain point of the line, one of the same hand as the side to which the cars run should be chosen, i.e., right hand crossovers are preferable for systems on which the cars run to the right and left hand, on those in which the cars keep to the left ; this is on accouat of the faet that cars running always to the right will trail all switches of right hand erossovers and face those of left, so that they eannot possibly take the wrong track in the first case, while they may be suddenly thrown out of their course in the second, and accidents result.

In addition to permanent crossovers it is always necessary to have temporary ones during construction, which are laid directly on top of the paving wherever required. These are so constructed as to be easily and quickly laid in place and readily moved from one part of the line to another by a small gang of men.
4. Miscellaneous Combinations.-Besides the work already mentioned, there are several kinds of diamonds made to fill various requirements; there are also special combinations for car houses, etc. The simplest kinds of diamouds are those used where electric lines eross electric lincs, and only require the running rails. When an eleetric road crosses a steam road, the stcam road track requires guard rails for greater safety, and the electric line should also be guarded either by an additional rail or plate.

SUB-DIVISIUNs.

Intersections, cross-overs, etc., are couposed of several pieces, which may be divided into the following sub divisions, viz. :-Tongue switehes (single and doubie curve), blind switches, mates (single curve, double curve and combination), curve crosses (single curve, double curve and combination), diamonds (for electric and steam crossings), split switches, stub switehes and lengths of rail (curved and straight). (See Figs. 24 to 32.)

1. Tongue-Switches.-The tongue switch is perhaps the most important piece in any combination of special work, as it is subjected to greater and more frequent shocks than any other piece, its duty being to change the direction of the car's motion from one lin: to another. When made of girder rail, it is constructed of the guard rail section to ensure the perfect guidance of the wheels. When made of
tee rail, a guard is formed either by bolting on another piece of rail, or by carrying up the casting on the side to form the required guard. The switch gencrally consists of four main parts, viz.:-the tongue, a casting and two pieces of rail. The tongue is made of steel, and should be of a substantial size, having a eross section near the point, proportioned to resist violent shocks ; at the same time the point must be rather sharp to ensure the car "taking" it exactly; if blunt, the ear may mount the tongue, and drop again, causing a severe jolt. If the top of the tongue rises above the level of the head of the rail, it is sloped at both ends so as to allow the rise and fall of the car to be imperceptible. The pin must be so placed as to make it impossible for a wheel to touch the tongue behind the pin, and so throw the switch bcfore the back wheels have reached the point. If the tongue were made so long that the distance from the centre of the pin to the tongue point were greater than the wheel base of the cars (about 7 feet) this would be impossible ; this method, however, would necessitate a too expensive switch, and the difficulty is easily overcome by rounding the back of the tongue and placing the pin sufficiently far back. The pin should also be placed so that the wheels do not run over it, and so cause it to become loose, and should be so fustened to the casting that the tongue may easily be removed at any time. The top of the casting on which the tongue slides and the bottom of the tongue should be truly even, as, if not, dirt will collect between the two, and after a short time the tongue will tilt when a car runs over it, and may eause the tongue to throw to the opposite side, or the back wheel may strike the point, either of which may be sufficient to throw the car off the track. Single curve switches are those curved only on one side; double curve switches are curved on both sides. (Figs. 24, 25 and 29.)
2. Blind Switches.-The blind switch is used in place of the tongue switch where cars always run off the curve at that point and never enter it. It closcly resembles the wate in gencral construction. In order that the guidance of the car facing the switch may not altogether depend on the fact that the car will naturally take the straight track in the direction in which it is moving, rather than turn into the curve, a ridge is left along the floor on the straight track which acts as a gauge line, to make it practically impossible for the car to enter the curve. (Fig. 30.)
3. Mates.-The mate is the piece opposite the switch, on which the wheels of one side of the car run while the wheels on the other side are being pulled around by the switch; its sole use is to provide a
surface for the wheels to run upon, and has nothing to do with the change in direction of the car's motion. It is made of two pieces of rail, and sometimes there is a casting. One picce of rail extends over the whole length, and is straight if for a single curve mate, and curved if for a double curved mate; the other piece is shorter and always curved, the head terminating in a point. This point should be so designed that the gauge at the point is quite slack, so that a wheel facing the mate may not strike upon it. The width of the point stould not be less than $\frac{1}{2}$-inch, as if made sharper it will wear to this. In girder rail the solid floor section makes the best mate, as it provides a wide floor for the whecls to roll upon, and the depth of the floorbelow the head of the rail being less than the depth of the flange of the wheel, it quickly wears so as to provide a double bearing for the wheels, so that the point is passed without the wheels dropping heavily upon it. If the mate is not made of the floor section, but of the ordinary girder rail as used on the straight track, or if of tee rail construction, a steel casting is necessary to carry the wheels over the point from the long rail on to the short one. This easting is more efficient if carried up on the inside to provide a guard; for in case of the gauge being too slack, the tongue may have a tendeney to jerk the car off the track. This casting must project considerably inside the gauge line of the short rail, the path of the rear wheels on a truck not coinciding with that of the front ones but lying about $\frac{1}{2}$-inch inside, as may be elearly seen on any worn mate. (Figs. 26 and 31).
4. Curve Crosses:-Uurve cross is the uame given in this work to the piece corresponding to the frog in steam railrcad work; it differs considerably from the frog, however : one, at least, of the rails in a curve cross is generally curved to a very sharp curve, whilst the frog is straight on either track. The frog has wing rails, and a wheel crossing a frog runs from one picce of rail across the chanuel on to a nother rail, whi'st in the curve cross a wheel gencrally runs the entire length of the cross on one piece of rail, the channel for the flanges being shaped out of the head of the rail. According as one or both rails are curved, the cross is said to be a single or double curve cross. (Figs. 27 and 32.)
5. Diamonds.- Diamouds are made in various ways, according to the requirements they are to serve. A simple single track diamond for the crossing of two electric lines consists of two main parts, each part being made of five pieces of rail, one long picee with four short picces butting up against it, two on each side ; the long rail is usually made to form part of the track on the street having the greater amount
of trafic. When an eleetric road erosses a steam road, the diationd is usually all made of tee rail, of the same section as the rail of the stean road. If the rails of the steam road are not to be cut, the diamond is made in three parts (Fig, 28), two outside and one inside the steam track, the whole being so constructed as to lift the street car before reacling the rails of the stcam track on to the flanges of the wheels, and running across on them to the other side, and then dropping gradually to the ordinary level again, so that the only place where any jolt can occur to a ear while crossing such a diamond is when it croses the channel of tho steam track rails, notwithstanding the fact that the rails of the steam track are not cut to the smallest extent to provide a passage for the flanges of the street-car wheels.
6. Split Sivitches.-Split switches are used to a comparatively small extent on this class of work. They are more espccially sudapted to suburban traffic where tee rail is used, rather than crowded thoroughfares of cities. They are especially suitable where cars always run to the same side, when the switeh may be made to work automaticaily by means of a spring, and in this way they hare been found very satisfactory.
7. Stub Svitches.-Stub switches are suitable for yard purposes and sidings only occasionally used ; they are cheap, which is always a point in their favour. The usc of a stand prohibits their use in city thoroughfares.
8. Lengths of Rail.-Rails for all special work should be aceurately eut to the required lengths, and earefully bent to the projer template if for uso on a curre, or accurately straightened if roquired for straight track. If part of a rail is to be striight and the remainder curved, the rail must not ouly agree with straight edge and template for the required lengths, but it must be tested, to determine whether the straight part is tangent to the curve, for if not, the piece will not fit correctly when pliced in the work of which it forms part.

THE DETERMINATION OF NECESBARY SPECIAL WORK.

Having laid down the routes of any street railway system necessary for the accommodation of the present traffic and that of tionear future, the special work required becomes apparent. It is most important that curves likely to be required in a few years, but not neceessary at the present, should be laid, if at all possible, during construction, as tho addition of a single curve to an intersection in some cases necessitates the reconstruction of the greater pirt of the whole intersection.

stervers.

A careful survey must be made of the intersection of strects requiring special work, and all measurements of lines and angles taken which are necessary to plot with the greatest accuracy the centre lines of the proposed tracks together with the street and curb lines.

PLOTTING.

These measurements are plotted to a suitable scale (say 10 foet to 1 inch), and the most suitable radii for the required curves determined, which are usually from 40 to 75 feet radius (45 and 50 ft . are most common in Montreal and Toronto).

The attempt is sometimes made to ease these curves as on steam railroad work ; but when it is remembered that the length of most of the curves is about 80 ft ., it will be seen how limited the space is in whish to attempt anything of the kind; however, an improvement may be introduced by making the switches at the ends of curves of a longer radius than the main part of the curves, such as using 75 ft . radius switches on 45 ft . radius curves. This eases the curves for 10 ft , at each end and meets all practical requirements. Any further steps in this direction would seem to lean towards "hair splitting."

It might here be mentioned that although these curves would appear very sharp to engineers accustomed to steam railroad work, yet there is a case on record of a 50 ft , radius curve on a trestle being used on a steam railway, and operated successfully, the speed on it being from 8 to 10 miles per hour. (U.S. Military Railway, Petersburg, Va. ; see Trans, Am. Soc. C.E. 1878.) The Manhattan Elevated Railway in New York city has curves of 90 feet radius.

There should be, if possible, sufficient space between the inside rail of the curve and the curb stone for a vehicle to pass a car easily ; this, however, requires very wide streets. If this cannot bo done, the rail should be at about two fcet from the curb stone at the corner, for if at say four feet, thern would not be sufficient room for a car and velicie to pass, but the attempt might be made and an accident ensue. The radii of the curves should also be determined with a view to sufficient room for the switches ; if this is not looked to, special short switches may be required, which is not desirable. The intersecting points of the gauge lines should also be carefully observed, as, by the slight inieration of a radius, combination pieces of somplicated construction and of an unendurable character may often be avoided. The radii having been fixed,
the gange lines alone may be laid down to a large seale (say 4 feet to 1 inch), and the calculations proceeded with.

CALCULATIONS.

The data on which the calculations are based are :-the gauge, distance between tracks, angle of intersection, radii of curves, and sometimes distances between apexes and deflection angles.
First, tho tangents and lenpths of all curves are found ; next, the distances between the ends of the curves are determined.
In the case of a double track braneh-off, with inner and outer curves of the same radius and equal central distances, this distance, a (Fig. 15), is given by ——distance between P.C:'s, $a=$ (gauge + central distance) $\tan \frac{\text { centre angle. }}{2}$

If the radii are equal, but the central distances on the two streets are unequal, the distances required may be found as follows :-

FIG. 14.
Let $G=$ gauge, (See Fig. :4.)
" D_{1} and $D_{2}=$ central distances.
" $a=$ angle of intersection.
Since the radii of the inside and outside curves are equal, the tangents (for the same angle) are equal. \therefore distance between P.C.'s $=$ distance between apexes. (both measured parallel to gauge lines)

$$
\begin{aligned}
\therefore a & =\left(G+D_{1}^{-}\right) \operatorname{cosec} a+\left(G+D_{2}\right) \cot a \\
b & =\left(G+D_{2}\right) \operatorname{cosec} a+\left(G+D_{1}\right) \cot a \\
c & =\left(G+D_{1}\right) \operatorname{cosec} a-\left(G+D_{2}\right) \cot a \\
d & =\left(G+D_{2}\right) \operatorname{cosec} a-\left(G+D_{1}\right) \cot a
\end{aligned}
$$

When both the eentral distances and radil vary, the distances between P.O.'s are found by adding and subtracting the lengths of the tangents, making allowance for the apex angle if differing very much from a right angle.

Next, the number of pieces into which to divide the intersection is determined, and the proper lengths for switches and mates fixed.
The points where the curves interseet the straight gauge lines are next found ; this may be done by either of the two following methods :

Taking Fig. 15 with distances as marked.

1st Method. Consider the point A,
$H_{1}=\sqrt{\left(R_{1}+G\right)^{2}-R_{1}^{2}}$
$=\sqrt{2 G R_{1}+G^{2}}$
$\sin a_{1}=\frac{H_{1}}{R_{1}}$
$\therefore \boldsymbol{a}_{1}=\sin ^{-1}\left(\frac{\sqrt{2 G R_{1}+G^{2}}}{R_{1}}\right)$
Similarly for $B,{ }^{\prime} H_{2}=\sqrt{R_{2}^{2}-\left(R_{2}-D-G\right)^{2}}$
$\sin a_{2}=\frac{H_{2}}{R_{2}}$
and ${ }^{-}$so on for other points.

$$
\begin{aligned}
& \text { 2nd Method.-For } A \text {, vers } a_{1}=\frac{G}{R_{1}+G} \therefore a_{1}=\text { vers } \\
& \qquad H_{2}=R_{1} \sin \left(\frac{G}{R_{1}+G}\right) \\
& \text { For } B, a_{2}=\text { vers }^{-1}\left(\frac{D+G}{R_{2}}\right) \\
& H_{2}=R_{2} \sin a
\end{aligned}
$$

Similarly for other points.
At a distance s, the spread $v=2 s \sin \frac{a}{2}$ (see Fig. 16), which is

FIG. 16.
the distance between two points at a distance s from the interscotion point, one on the straight gauge line and the other on the tangent to the curve at the intersection point.

The straight lengths of the figure (Fig. 15), i.e., the distances along the straight track between the points A, B, eto., are found by means of the lengths H_{1}, H_{2}, etc., and the distance between the P.C.'s. The are to any point from the P.C. is given by :-

$$
\operatorname{are}=\operatorname{radius} \times * c, m . a
$$

So that the curved lengths, i.e., the distances between the points $\boldsymbol{D}, \boldsymbol{B},-\boldsymbol{F}, \boldsymbol{E}$, etc., are found by taking the differences between the ares to these points ; while the distances beyond A, B, etc., to the other end of the curve are found by takivg the differences between the total lengths of the curves and the ares to these points.

The following tables have been calculated by means of the preceding formulæ :-

Radius of inside gauge $=45^{\prime} 0^{\prime \prime}$ Gauge $=4^{\prime} 81^{\prime \prime}$. . Central distance $=4^{\prime} 0^{\prime \prime}$					Radius of inside gauge $=50^{\prime} 0^{\prime \prime}$. Gauge $=4^{\prime} 81$. Central dist. $=4^{\prime} 0^{n}$			
$\begin{gathered} \text { Points } \\ \text { ain } \\ \text { Fing. } \\ \text { 15. } \end{gathered}$			$\begin{aligned} & \text { Are from } \\ & \text { P. O. to to } \\ & \text { point in } \\ & \text { feet. } \end{aligned}$	$\begin{gathered} \text { Spread } \\ \text { at } \\ \text { at feet. } \end{gathered}$		Angle at sontrended sybence by aro point.	$\begin{array}{\|l\|l} \text { Are from } \\ \text { Po. . . to } \\ \text { point in } \\ \text { feet. } \end{array}$	$\begin{gathered} \text { Spread } \\ \text { at } \\ \text { two feet. } \end{gathered}$
$\begin{gathered} A f \\ { }_{c}^{f} F \\ C \\ D \\ D \\ E \end{gathered}$	$\begin{aligned} & 21.117 \\ & 26.607 \\ & 33.968 \\ & 18.547 \\ & 28.105 \end{aligned}$	$\begin{aligned} & 25^{\circ} 08^{\prime} \\ & 36^{\circ} 15^{\prime} \\ & 43^{\circ} 06^{\prime} \\ & 24^{\circ} 21^{\prime} \\ & 34^{\circ} 26^{\prime} \end{aligned}$	$\begin{aligned} & 21.812 \\ & 28.467 \\ & 37.396 \\ & 19.116 \\ & 29.870 \end{aligned}$	107\% ${ }^{\text {\% \% }}$	22.204 28.196 35.889 19.696 29.614	$\begin{aligned} & 23^{\circ} 505^{\prime} \\ & 34^{\circ} 20^{\prime} \\ & 41^{\circ} 00^{\prime} \\ & 23^{\circ} 05^{\prime} \\ & 32^{\circ} 40 \end{aligned}$	22.863 29.995 39.144 20.137 31.293	

When the intersection has curves branching in both directions, as shown by Fig. 7, the points where the curves intersect as K, L, etc.,

[^4]have to be found, in order to determine the different lengths; the problem thus becomes "to determine the intersection point of two eurves branching in opposite directions from parallel lines." This may be solved by either of the two following methods, the second of which is much the more readily applied. (See Fig 17.)

Let $R_{1}=$ radius of curve with upper P. C.
" $R_{2}=$ " " " lower $P . C$.
" $a=$ distance betweon P. C.'s measurod parallel to gauge lines.
" $b=$ " " centres " perpendicular " "
" $c=$ " " " " in a straight line.
" $x=$ " of intersection point" from upper P. C. measured parallel to mauge lince.
" $\theta=$ angle between a line perpendicular to gauge lines and line joining centres.
" $U=$ angle at upper centre between radius to intersection point and line joining centres.
" $L=$ angle at lower centre between radius to intersection point and line joining centres.
" $B=$ angle at centre subtended by aro between lower P. C. and intersection point.
" $T=$ angle at centre subtended by are between upper P. C. and intersection point.
1st Method: $-x^{2}+y^{2}=R_{1}{ }^{2}$.

$$
\begin{aligned}
& \therefore y=\sqrt{R_{1}^{2}-x^{2}} \\
& (x+a)^{2}+(b-y)^{2}=R_{0}^{2} \\
& \therefore x^{2}+2 a x+a^{2}+b^{2}-2 b \sqrt{R_{1}{ }^{2}-x^{2}}+R_{1}{ }^{2}-x^{2}=R_{2}^{2}
\end{aligned}
$$

which becomes
$4 x^{2}\left(a^{2}+b^{2}\right)+4 a x\left(a^{3}+b^{2}+R_{1}^{2}-R_{2}^{2}\right)=R_{1}^{2}\left(2 b^{2}-R_{1}^{2}-2 a^{2}+2 R_{2}^{2}\right)$
$+R_{2}^{2}\left(2 a^{9}+2 b^{2}-R_{z}^{2}\right)-b^{2}\left(b^{2}+2 a^{4}\right)-a^{4}$

Corollary. When $\boldsymbol{R}_{1}=\boldsymbol{R} \boldsymbol{1}=\boldsymbol{R}$

$$
\text { then } x^{2}+a x=\frac{1}{4\left(a^{2}+b^{2}\right)}\left\{b^{2}\left(4 R_{2}-b^{2}-2 a^{2}\right)-a^{4}\right\}
$$

These formulæ are very laborious to use in practice; however, as in the majority of cases $R_{1}=R_{2}$, the corollary is the more frequently required.

Having found x, the angle; B and T are given by

$$
\begin{gathered}
\sin B=\frac{x+a}{R_{2}} \\
\sin T=\frac{x}{R_{1}^{*}}
\end{gathered}
$$

and the spread at a distance $s=2 s \sin \left(\frac{B+T}{2}\right)$
These formulæ apply also when the two curves branch off in the same dircetion, with the exception that the spread is given by

$$
\text { [spread }=2 s \sin \left(\frac{T-B}{2}\right) \text { (see Fig. 18.) }
$$

2nd Method:

$$
\begin{gathered}
\tan \theta=\frac{a}{b} \\
c=b \sec \theta \\
\cos U=\frac{c^{2}+R_{1}^{2}-R_{2}^{\prime 2}}{2 c R_{1}} \\
\cos L=\frac{c^{2}+R_{2}^{2}-R_{1}^{2}}{2 c R^{2}} \\
T=U-\theta \\
B=L+\theta \\
\text { spread }=2 s \cdot \sin \left(\frac{B+T}{2}\right)
\end{gathered}
$$

Corollary. When $R_{1}=R_{1}=R$
then $U=L$
$\sec U=\sec L=\frac{2 R}{c}$
spread $=2 s \sin U$
When two curves branch ia the same direction (Fig. 18) the above applies with the following exceptions:-

$$
\begin{aligned}
& \qquad=180^{\circ}-(U-\theta) \\
& \text { and spread }=2 s \sin \left(\frac{T-B}{2}\right)
\end{aligned}
$$

Having fixed these points, the straight lengths are found as before by means of the perpendicular heights to the intersection points of the single curve crosses, and the distances to the diamond by means of the tangents. The ares to the intersection points of the double curve erosses are given by :-

For are to intersection point on curve with upper P.C.,

$$
\operatorname{arc}=R^{1} c . m . T .
$$

For are to intersection point on curve with lower P.C.,

$$
\operatorname{are}=R_{2} c . m . B .
$$

so that the distances allong the ares between the points are given by taking the differences between the ares.

In Fig. 7 it may be noted that when the radii of all the curves are equal, the angle θ for the points L, N, O and $P=$ intersection angle $\sim 90^{\circ}$.
that for the points K, L, M and $P ;-R_{1}=R_{2}$
" " " L, N, O and $P ;-a, b$ and consequently θ and c are the same.
that the angle U for the point $N=$ the angle L for the point O, and vice versa.
that $L N=L O, N U=O R, O P=N P$, and $P T=P S$.
The following table has been calculated by the preceding formula from the following data :-(refer to Fig. 7) $\mathrm{D}_{1}=4^{\prime} 9^{\prime \prime}, D_{2}=4^{\prime}$ $0^{\prime \prime}, a=86^{\circ} 33^{\prime}$, gauge $=4^{\prime} 8 \frac{1}{2}^{\prime \prime}$, radius of inside gauge line of all eurves $=45^{\prime} 0^{\prime \prime}$.

Points (Fig. 7).	Perpendicular - from upper P.C. (x).	Angle at centre subtended by arc branching to left.	Angle at centre subtended by are branching to right.	Spread at 2 feet.
$\begin{aligned} & K \\ & L \\ & M \\ & M \\ & N \\ & O \\ & P \end{aligned}$	$\begin{array}{r} 5.313 \\ 10.394 \\ 13.104 \\ 16.851 \\ 17.162 \\ 22.165 \end{array}$	$\begin{aligned} & 24^{\circ} \quad 21^{\prime} \\ & 20^{\circ} 15^{\prime} \\ & 15^{\circ} 17^{\prime} \\ & 29^{\circ} 17^{\prime} \\ & 29^{\circ} 9^{\circ} 43^{\prime} \\ & 33^{\circ} \end{aligned} 3^{\prime}$	$\begin{aligned} & 6^{\circ} 08^{\prime} \\ & 13^{\circ} 21^{\prime} \\ & 19^{\circ} 50^{\prime} \\ & 19^{\circ} 49 \\ & 22^{\circ} 25^{\prime} \\ & 26^{\circ} 29^{\prime} \end{aligned}$	
$\begin{aligned} & \text { Note : }-2\left\lfloor\left(90^{\circ}-86^{\circ}\right.\right.\left.33^{\prime}\right)=6^{\circ} 54^{\prime} \\ &=\text { difference between left and right angles of } L \text { and } P \\ &= \\ &=4 \\ & \text { " } \\ & \text { " } \\ & \text { " of } N \text { and right of } O \\ & \text { righi of } N \text { aad lent of } O \end{aligned}$				

To determine the P.C. of a branch-off curve from a ourved main track:

Let $a_{1}^{\mathbf{y}}=$ defleetion angle of main track tangents
Let $\beta=$ angle between one of these tangents and tangent to branch-off curve.
Let $\theta=$ angle between line joining centres and perpendicular from centre of main track curve to tangent of branch off curve.

Let $a=$ distance between apexes.
Let $R_{1}=$ radius of main track curve.
Let $R_{2}=$ " " branch-off "

It is required to determine the point P.
I Taking x and y as shown by Fig. 19 :

$$
\begin{aligned}
& x=a+R_{1} \tan \frac{a}{2}-y \\
& =a+R_{1} \tan \frac{a}{2}-R_{1} \cot \beta \\
& \quad=a+R_{1}\left(\tan \frac{a}{2}-\cot \beta\right) \\
& =\frac{\left(a+R_{1} \tan \frac{a}{2}\right) \sin \beta-R_{1} \cos \beta-R_{2}}{R_{1} \mp R_{2}}
\end{aligned}
$$

$R_{1}-R_{2}$, when curves branch in the same direction as in Fig. 19.
$\boldsymbol{R}_{1}+\boldsymbol{R}_{2}$, " " " opposite directions.
This determines the point P with respect to either P.C.
To determine the intersecting points of the gauge lines when the main track curve lies wholly butween the P.C. of the branch-off curve and the nearest intersecting points.

P is the point to be determined (Fig. 20), taking lengths as marked.

$$
\begin{gathered}
x^{2}+\boldsymbol{y}^{2}=\boldsymbol{R}^{2} \\
y=b-(x-a) \tan a \\
\therefore x^{2}+\{b-(x-a) \tan a\}^{2}=R^{2}
\end{gathered}
$$

which becomes
$x^{2} \sec ^{2} a-2 x \tan a(b+a \tan a)=R^{2}-b^{2}-a \tan a(2 b+$ $a \tan a$)

When the main track curves in the opposite direction to that of the branch-off, this equation becomes
$x^{2} \sec ^{2} a+2 x \tan a(b-a \tan a)=R^{2}-b^{2}+a \tan a(2 b-$ $\boldsymbol{a} \tan a$)

$$
\theta=\sin ^{2} \frac{x}{R} \text { for both cases, }
$$

and spread $=2 \& \sin \left(\frac{\theta-a}{2}\right)$ when main track and branch-off eurve in same direction,
or, spread $=2 \sin \left(\frac{\theta+a}{2}\right)$ when main track and branch off curve in opposite dircetions.

If the distance (h) from the P.C. of a curve is known, the deflection (d) to the curve at that point is given by

$$
\begin{aligned}
& d=r-\sqrt{r^{2}-h^{2}} \\
& \text { or } d=r \text { vers }\left(\begin{array}{cc}
\sin ^{-1} & \frac{h}{r}
\end{array}\right) \text { (See Fig. 21) }
\end{aligned}
$$

In order to make templates to which the rails are bent, calculations are necessary for flat curves (over 60 ft .) ; but those of a shorter radius may be trammelled out. To calculate these templates, the deflections at every 3 inches from zero up to half the length of the required template are calculated by one of the above formulæ. These deflections are laid off on a board, a curve is drawn through the points so found, and the board is thon cut to the curve. Of course the trammelling process is preferable whenever practicable.

Calculations for Crossovers.-Taking lengths as shown by Fig. 12.

$$
2 R \text { vers } a+\text { tangent } \sin a=D_{+} G
$$

First, a length may be fixed upon approximately as desirable for a tangent; with this length, solve for \boldsymbol{a} (most easily done by trial), having found a approximately, assune an even value for it (ray to near-
est 10 minutes) for simplicity, and with this value solve the equation again for the length of tangent, determining it exactly, which will be very close to the desired length (practically the same).

The distance from centre P.C. to intersecting point of inside gauge is given by

$$
x=D \operatorname{cosec} a-\left(R-\frac{G}{2}\right) \tan \frac{a}{2}
$$

The total length between extreme end P.C.'s is given by

$$
y=2 R \sin a+\text { tangent } \cos a
$$

The distauce from end P.O. to nearest intersecting pointjmeasured along main track is given by

$$
\begin{aligned}
& Z=\left(R-\frac{G}{2}\right) \sin a+x \cos a \\
& =D \cot a+\left(R-\frac{G}{2}\right)\left(\sin a-2 \sin ^{2} \frac{a}{2}\right)
\end{aligned}
$$

By making tangent $=0$, the conditions for a reverse curve are given

$$
2 R \text { vers } a=D+G
$$

$$
\text { and } y=2 R \sin a
$$

When a crossover is required for a width between tracks, D_{1}, the only change necessary in a crossover designed for a width D is in the length of the tangent which is changel by a length $=\left(D_{1} \sim D\right)$ cosec a.

To determine a reverse curve (short tangent between curves) between two tangents not parallel, at an intersection.

$A A$, and $B . B$. are the two tangents not parallel, representing the centre lines of a street with a deflection at the intersection of another street, the centre line of which is represented by C.C.

Take distances as shown in Fig. 22.

Fix upon a point which will be convenient to form one end of the curve, and let its distance from an apex be b.

Then, R_{1} vers $\theta+$ tangent $\sin \theta+R_{2}$ vers $\theta=a \sin a-b \sin$ $(a-\beta)+R_{2}$ vers $(a-\beta)$.

As in the ordinary crossover calculations, fix θ by trial and then solve for the tangent,

$$
\begin{aligned}
\text { tangent }=\frac{1}{\sin \theta}\{ & a \sin a-b \sin (a-\beta)+R_{2} \text { vers }(\alpha-\beta) \\
& \left.-\operatorname{vers} \theta\left(R_{1}+R_{2}\right)\right\}
\end{aligned}
$$

Having determined upon the angle θ, and found the tangent, the other lengths are easily found.

Calculations for Diumond Siding.-Consider end A, Fig. 8.

$$
\text { vers } a=\frac{D+G}{4 R}
$$

total length between extreme $P . C_{s}=2 R \sin a$ cos (angle at centre subtended by are from right hand P, O, to interseo:
tion point $)=\frac{R-\frac{1}{2}(G+D)}{R-\frac{1}{2} G}=\cos B$
angle of curve cross $=2 \beta$
distance from right hand \boldsymbol{P}. \boldsymbol{C}. to intersection point $=\left(R-\frac{1}{2} G\right) \sin \beta$.
These calculations apply when the curves begin at the same point to brauch to either side as in Fig. 8 ; but when the curves begin at different points (for blind switches) as in Fig. 10, the intersecting point does not lie on the centre line, and may be found as follows :-(Fig. 23.)

$$
\begin{gathered}
\tan \theta=\frac{\boldsymbol{R}_{1}-\boldsymbol{R}_{2}-\boldsymbol{a}}{b} \\
\cos \pi=\frac{R_{2}^{2}+(b \sec \theta)^{2}-R_{1}{ }^{2}}{2 R_{2} b \sec \theta} \\
\cos \phi=\frac{R_{1}{ }^{2}+(b \sec \theta)^{2}-R_{2}^{2}}{2 \mathrm{~K}_{1} b \sec \theta} \\
a=90^{\circ}+\theta-\pi \text { and } \beta=90^{\circ}-\theta-\phi \\
x=R_{1} \sin \beta \quad \text { and spread }=28 \cdot \sin \left(\frac{a+8}{2}\right)
\end{gathered}
$$

Calculation for thrown-over siding with blind switches.-The calcuations are generally similar to those already deseribed for crossovers and diamond sidings, except for the eurves in the main track ; these are solved as follows:--(Sce Fig. 11, end A)

$$
\begin{aligned}
& a=\left(R+\frac{1}{2} G\right) \text { vers } a+\text { width of switch at back } \\
& \quad \text { vers } \beta=\frac{a}{2 R}
\end{aligned}
$$

Total centre angle for curve adjoining switch $=a+\beta$.

WORKING drawings.

Having completed the calculations for an intersection, the detail drawings for each piece are made, and vent to the shop, together with a print showing the whole intersection with the distinguishing marks of all pieces and lengths of the connceting rails. A drawing is also made for assembling the work in the street, showing all necessary measurements for laying out the work together with the position and marks of the various picees.

SHOP WORK.

A bill of the rails required and the necsssary new prints and references to old ones having been obtained from the Drawing Office, the manufacture of the work may be proceeded with. The bill of rails required (made out so as to give a minimum amount of serap) is given into the hands of the man in charge of the rail saw, who proceeds to out up the rails into the required lengths, marking the length of each and whether required straightor curved upon the web. The rails next, with few exceptions, go to the rail bender, to be either curved to the required radius, or straightened ; they next procecd to the "marker off," who carefully marks the nccessary lines for all machine work required to be done upon them, he also stamps the rails on the end with their distinguishing marks. The rails afterwards pass on to the machines (milling machines, slotters, shapers, planers, cte.) suited to the work required;
they then go to the fitting shop to be assembled according to the drawings.
In a tongue switch the long rail has to be properly curved, and slotted or bent for the tongue to fall into place. The tongue is made of hammered steel, and the turned pin is shrunk in ; this is dropped into place, and all measurements checked before being considered ready for the track.

In the blind switch and mate, one rail is planed so as to leave a long notch on one side, while the other rail is planed to a point which fits into the notch ; the two are strongly bolted or rivetted together and sometimes finished on a planer.

The curve crosses have usually two picees of rail, one of which has the upper part so shaped at the crossing point as to allow the second one to drop down on the first, and fit accurately into the place allowed for it; while the second has the lower part shaped so as to allow the first rail to pass through, the two rails jointing neatly into one another. Great care is necessary in the fitting to have the angles of intersection exactly as required. In order to obtain the correct angle, the drawing shows the spread, w, at a fixed distance, together with the deflections, d_{1} and d_{2} of the curves at that point ; so that this distance is measured along the rails from the intersection point and the deflections marked from the gauge line, the spread is then measured between the points so marked. (See Fig. 16.)

OHECKING.

When an intersection has been made, it is sometimes advisable to have it assembled as a final cheek before shipping. For this purpose a large piece of ground, as level as possible, is required, and much more than is actually occupied by the work when in place should be available; the tangents of the intersection should be laid out, and a sufficient number of points fixed to accurately check the end of each curve. Having laid out the ground, the picces are assembled, and any errors observed may be corrected; this last step ensures the work being absolutely correct, and is the best cheek on the work that can be adopted.

ASSEMBLING IN THE TRAOK.

In laying an intersection, it makes a great deal of difference whether the whole space required is graded at once and all traffic stopped, or if only part of the intersection is graded, leaving part undisturbed so as not to interrupt traffic. When the work has to be performed in the latter
way, great care is necessary in placing the work, so that the remaining part when laid may fit up to and line in accurately with the first part. If it is necessary to lay out a curve, it is generally most easily performed by tangent and chord deflections or by ordinates from a chord. In grading a corner where al: important intersection is to be laid, care should be exercised in excavating to the correct depth and having the grading done evenly, for if the track has to be lifted say six inches after being laid, it means very much more than the same lift on ordinary track, as the weight of rail is sometimes enormous as compared with the extent of ground it covers ; aiso, if the work has been carelessly done, and presents a very uneven bed, much more time is necessary to couple up the joints than would have been required had the grading been properly performed. The spacing of the ties for this work should receive more attention than is sometimes given to it, as it is a very important matter. The ties should be the very best available, and spaced more closely than those on the straight track.

The centre lines of tracks for both streets are accurately fixed, and if there is no diamond, the ends of the curves must be found ; otherwise, this is not essential. If there is a diamond in the intersection, this is laid first, bolted up and lined necurately. The other picces having been seattered about in their approximate positions are next drawn to place and bolted together. The rails are then securely spiked to gauge, and lifted (if necessary) to grade, when the intersection may be paved and so completed. If there is no diamond to lay, an end of a curve may be taken as the starting point. To lay the intersection soas to have the through straight tracks in perfect alignment requires great care, is the joints are usually very close together.

An idea of the amount of rail that may be used in a single intersec. tion, and the consequent amount of labour required to make one, may be formed from the following figures, for one laid at the intersection of St. Lawrence Main and St, Catherine streets, Montreal (same as Fig. 7). It is built of 75 lbs , and 84 lbs . girder rail (Figs. 3 and 4). It contains 2,150 feet of rail, and has a total weight of about 26 tons: There are 86 built up pieces (switches, mates and curve crosses), and 78 lengths of connecting rails, making a total of 164 pieces in the complete intersection. The extreme length between ends of opposite switches is about 110 fect. The radius of the inside gauge lines of all the curves is 45 feet, and the distance between tracks varies from 4 ft . to 8 ft .6 in . This intersection, as well as all others in Montreal and Toronto, was made by the Canada Switch Manufacturing Co., Lim., of Montreal.

Such work, when properly constructed and laid, represents a large amount of capital, and deserves much more attention and care than the old cast iron work ; but, unfortunately, it seems sometimes to be treated no better. The curves at intersections are necessarily very sharp, and in order to diminish the amount of power required and the wear on the rails (as well as on tires), they require oiling at least once a day for heavy traffic, while the rate at which cars run over special work should be strietly regulated to a low speed. The groove of the rail and the tongue switches require to be constantly cleared of the dirt which inevitably collects, and if not removed causes great inconvenience. The life of such work may be appreciably prolonged by such attention, and when one considers the cost of renewal and the consequent interference to traffie while doing so, it will be readily seen that it pays in the end.

V1G. 95.
toxates switch with spirso.

F1G. 2 N .
DIAMOND FOR CROASISE OF TLTOTRIC AND STEAM RAILROADB.

GIRDER RAIL SPECIAL, WORK.
F1G. 29.
TONQUE sWITCH.

nuwranes.

AECTION A.A.

FIG. 30.
BLIND EWTICL.

ELEVATION.

PLAN.

SECTION A-A.

SECTION R-B.

HTG. 37.
MATE:

section A-A.

DISCUSSION.

Mr. A.E. Childs.

Mr. A. E. Childs said :-
This paper is one which the Society, I am sure, is very glad to have, as it is well written, and contains practically all the latest ideas on special track work for electric railways. It is written logically and clearly, and although there are a number of small points with which we may not all be able to agree, still the main matter of the paper is thoroughly in line with the latest ideas and the latest practice.

I he question of track construction has been studied by steam railway enginecrs for nearly half a century, and although great advances have been made in the practice, still there are many changes going on, which indicate, that although the present system of building railways is a thoroughly good one, it is not yet all that railway men desire.

It is of course well known that the rolling stock of electric railroads, owing to the addition of motors, is much heavier than that of the old horse car lines, and that the speeds are also much greater. These two facts have caused heavier rails to be used and a bigher class of steel to be put into them in order to insure long life and freedom from breakage. Although a few years ago 65 and 75 pound rails were considered to be very heavy, it is now a fact that the elevated railroads of New York are using a section weighing 90 pounds per yard, in an effort to secure the best possible construction. A few weeks ago, the Pennsylvania R.R. decided, at a meeting of its directors, to use in the future nothing but 60 foot rails, each weighing one ton, on the division between Jersey City and Philadelphia. This is the heaviest rail yet manufactured; but although we now consider them to be excessively heavy, there is nothing to assure us that in a few years more heavier rails may not be used.

The American Society of Civil Engineers has considered fully the question of standard sections of rails for steam ronds, as well as a uniformity of method of testing such rails ; and from the fact that steam engineers are giving this question so much attention,
it is advisable for electric railroad men to adopt their practice as much as possible, especially on surburban and interurban lines.

As to the wearing qualities of rails, it is a well-known fact that the higher the percentage of carbon the longer will be the life of the rail, and at the same time it is also well known that too much carbon renders the rail brittle and liable to breakage. This latter fact has usually influenced engineers in specifying a rail to have the carbon low in percentage, as the rolling mills are very liable to exceed the amount specified and thus get too near the limit. The amount of carbon should in each case be proportioned to the weight of the rail to get the best results.

- Owing to the increase in size of the street cars using electric motive power, it has been necessary to make the track as rigid as possible, as the lurching motion of long cars carried on four wheels with a rigid frame is very severe on the track when the cars attain a high speed, and this lurching motion is not only unpleasant to the passengers, but is very injurious to the track ; in fact, in this city (Philadelphia), the result of the pounding motion produced by the ears is already seen on several lines at the rail joints. The fruitful source of bad rail joints is the fact that the steel mills have been furnishing a very soft, low carbon steel for angle and fish plates, and as this steel has a low elastic limit and tensile strength, it takes a set under a blow from a wheel moving at a high speed. To illustrate this, the N. Y. C. \& H. R. R.R. tested some 801b, rail and angle plate steel furnished from the same steel mill. The tensile strength of the rail steel was $120 ; 000 \mathrm{lbs}$. compared with $57,000 \mathrm{lbs}$, for the angle plate steel. The elastic limits were $60,000 \mathrm{lbs}$, and $30,000 \mathrm{lbs}$. respectively. A test was made as to the breaking strength under a blow delivered by a falling weight, and the rail steel stood $2,000 \mathrm{lbs}$, falling 20 ft ., while the angle plate steel only stood $2,000 \mathrm{lbs}$., falling 6 ft ., and thus it would be seen that a track, aithough having good steel rails, may be weak at the joints owing to the inferior metal used at these points. The remedy to this is a higher carbon steel. The present practice is to leave the matter of composition of the rails entirely to the mills, and not to provide an inspector to make tests on the material delivered, and it would no doubt prove a very valuable aid to the railroads for them to appoint inspectors to make tests on the rails delivered to their companies, and thus preventing the mills from
delivering bad material, which they frequently do at present, as it means a loss of thousands of dollars to them to reject their own bad material.
$\mathrm{Mr}, \mathrm{E}, \mathrm{A}$. Stone,

Mr. Stone in reply said :-
Mr. Childs' remarks on rails are very interesting, but when referring to their wearing qualitics, he would seem to lay rather too great an amount of stress on their chemical composition. While this is no doubt very important, yet the mechanical rreatment which they undergo during manufacture is most probably of still greater importance. The tendency at the present time being to lessen the cost of production by quicker rolling at higher temperatures, the altempt is made to bring these rails nearer to the standard of the first steel rails produced by modifying the chemical composition. That the attempt has not been altogether successful is apparent in places where 56 lb . rails, after 10 to 12 years wear, may be seen with as good, if not better, joints than rails, 30% heavier, which have been in the track only 2 or 3 years. To increase the percentage of carbon above a certain point becomes dangerous, as brittle rails in a cold climate are certainly not very desirable.

The long rails referred to have certainly the advantage of requiring f.wer joints, and so cost less for fastenings ; but against this there is the greater difficulty in bandling, higher cost of transport, wider joints for expansion, and greater liability to get erooked during transport.

Statement showing Tests of Paving Brick made for
The Common Council, City of Duntith NY by J.K. MacDonald, C.E. City Engineer.

September 1895.

LIST OF MEMBERS.

OHANGES AND CORRECTIONS.

MEMBERS.

A8s00IATE MEMBERS.

sTUDENTB,

Antlify, J. H Camprell, W.	59 Outhbert St., Montreal. . Care J. R. Campbell, Esq., Ritchie's Bdg St John N.B.
Costigan, J. S	Danville Ashestos Slate Co., Danville, P.Q.
Dawson, A. S.	226 W. Canton St., Boston, Mass.
Dibblee, H. M.	Care Mavor Bros., Byron, Me.
Greig, Alex. R	Can. Atlantic Ry, Ottawa.
Hare, G. G	P.0. Box 166, West Newton, Mass.
Irvine, J	Ont.
Lane, A	Maryland Steel O
	ve., Montreal.

(

[^0]: * After this, the 4 th series of readings, the test-plece was allowed to rest for $2 \frac{1}{2}$ hours. On resuming the testing, the reading was .000182 .

[^1]: * After this the $10 t h$ series of readings, the test-piece was allowed to rest entirely free from load for a period of 46 hours.

[^2]: A. common, flat, unkeyed, salmon brick.
 B. Laprairie pressed brick, key on one side.

[^3]: * Sec plate 1 .

[^4]: * c.m. = circular measure.

