IMAGE EVALUATION TEST TARGET (MT-3)

Photographic Sciences Corporation

CIHM Microfiche Series (Monographs)

ICMH
 Collection de microfiches (monographies)

Canadian Institute for Historical Microreproductions / Institut canadien de microreproductions historiques

The Institute has artempted to obtain the best original copy available for filming. Features of this copy which may be bibliographically unique, which may alter any of the images in the :eproduction, or which may significantly change the usual method of filming, are checked below.

Coloured covers/
Couverture de couleur
Covers damaged/
Couverture endommagée
Covers restored and/or laminated/
Couverture restaurie et/ou pelliculbe
Cover title missing/
Le titre de couverture manqus
Coloured maps/
Caltes géographiques en couleur
Coloured ink (i.e. other than bluz or black)/
Encre de couleur (i.e. autre que bleue ou noire)
Coloured plates and/or illustrations/
Planches et/ou illustrations en couleur
Bound with other material/
Relié avec d'autres documents
Tight binding may cause shadows or distortion along interior margin/
Le reliure serróe peut causer de l'ombre ou de la distorsion le long de la marge intérieure

Blank leaves added during restoration may appear within the text. Whenever possible, these have been omitted from filming/
II se peut que certaines pages blanches ajoutoes lors d'une restauration apparaissent dans le texte, mais, lorsque cela était possible. ces pages n'ont pas èté filmées.

L'Institut a microfilmé le meilleur exemplaire qu'il lui a été possible de se procurer. Les détails de cet exemplaire qui sont peut étre uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale da filmage sont indiqués ci-dessous.

Coloured pages/
Pages de cculeur
Pages damaged/
Pages endommagéesPages restored and/or laminated/
Pages restaurées et/ou palliculbes

Pages discoloured, stained or foxed/
Pages décolorées, tachetées ou piquíes

Pages detached/
Pages détachóes
Showthrough/
Transparence
Quality of print varies/
Qualité inégale de l'impressionContinuous pagination/
Pagination continue

Includes index(es)/
Comprend un (des) index
Title on header taken from:/ Le titre de l'en-tite provient:Title page of issue/
Fage de titre de la livraisonCaption of issue/
Titre de départ de la livraison
Masthead/
Générique (périodiques) de la livraisonAdditional comments:/ Coinmentaires supplémentaires:

Pages wholly obscured by tissues have been refilmed to ensure the best possible image.

This item is filmed at the reduction ratio checked below/
Ce document est filmé au taux de réduction indiqué ci-dessous.

The copy filmed here has been reproduced thanks to the generosity of:

National Library of Canada

The images appearing here are the best quality possible considering the condition and legibility of the original copy and in keeping with the filming contract specifications.

Criginal copies in printed paper covers are filmed begirining with the front cover and ending on the last page with a printed or illustrated impression, or the back cover when appropriate. All other original copies are silmed beginning on the first page with a printed or illustrated impression, and ending on the last page with a printed or illustrated impression.

The last recorded frame on each microfiche shall contain the symbel \rightarrow (meaning "CONTINUED"), or the symbol $\boldsymbol{\nabla}$ (meaning "END"), whichever applies.

Maps, plates, charts, etc., may be filmed at different reduction ratios. Those too large to be entirely included in one exposure are filmed beginning in the upper left hand corner, left to right and top to bottom, as many frames as required. The following diagrams illustrate the method:

L'exemplaire filmé fut reproduit grâce à la générositè de:

Bibliothèque nationale du Canada

Les images suivantes ont étế raproduites avec le plus grand soin, compte tenu de la condition et de la netteté de l'exemplaire filmé, et en conformité avac les conćitions du contrat de filmage.

Les exemplaires originaux dont la couverture en papier est imprimée sont filméci en commençant par le premier plat et en terminant soit par la dernière page qui comporte une empreinte d'impression ou d'ilustration, soit par le second plat, selon le cas. Tous !es autres exemplaires originaux sont filmés on commençart par la première page qui comporte une empreinte d'impression ou d'illustration et en terminant par la derniàre page qui comporte une telle empreinte.

Un des symboles suivants apparaître sur la dernière image de chaque microfiche, selon le cas: le symbole \rightarrow signifie "A SUIVRE", le symbole $\boldsymbol{\nabla}$ signifie 'FIN".

Les cartes, planches, tableaux, etc., peuvent être filmés à des taux de réduction différents. Lorsque le document est trop grand pour être reproduit en un seul cliché, il est filmé à partir de l'angle supériaur gauche, de gauche à droite, et de haut en bas, en prenant le nombre d'images nécessaire. Les diagrammes suivants illustrent la méthode.

D. MCl, nutintian Smirih.

$$
\begin{aligned}
& \text { MANUAL } \\
& \text { Enginijirs Calculations. }
\end{aligned}
$$

anis Amich : Yi4s

MANUAL

Or

ENGINEERS' CALCULATIONS.

BY

D. McLaughlan Smith,

Late Clerk of Steamboat Inspection Office, St. John, N. B.

TO WHICH IS ADDED MUCH INTERESTING AND LSEFUL INFORMATION, TABLES, DRAWINGS, ETc., PREPARED AND COMPILED BY THE AUTHOR.
\qquad

ALSO
A Sketch of the Life and Works of WM. M. Smith, M.E.,
For Thirty-two Years Steamboat Inspector of
Maritime Provinces.

ST. JOHN, N. B.:
PRINTED BY BARNES AND COMPANY. 1886.

TA 330
555
1886
P**

Entered according to Act of Parliament of Canada, in the year 1856, by D. McL. Suith, in the office of the Minister of $\mathbf{A g r i c u l t u r e . ~}$

AFFECTIONATELY DEDICATED

MY FATHER,

WILLIAM MORGAN SMITH.

PREFACE.

THE AUTHOR, after many solicitations from engineers, has been persuaded to publish this book, giving to the public, now, the subject-matter taught by him for years to his pupils, of engineering, having for several years been teacher of engineers' calculations at St. John, N. B.

This work is intended for the use of engineers desirous of passing the Board of Steamboat Inspection to obtain certificates of competency, and is drawn up with a view to self-instruction. It contains the rules for working and answering the kied of questions usually presented to candidates, with drawings, diagrams and specimen examination papers; also much miscellaneous matter of interest to engineers, containing notes, extracts, questions, calculations and tables.
In any book on the steam engine, or pertaining thereto, there can be little originality, so many have written on the subject, and the Author is, of course, indebted to many sources for his information. Still, there are many rules, explanations, and other matter, regarding the examination for a Canadian certificate, that has never been published before, besides many of the Author's own rules, articles and methods.

For the benefit of those who desire to become more fully intormed as to all that pertains to steam engineering, I have given a selected list of works
useful for study.

[^0]
MANUAL OF ENGINEERS' CALCULATIONS.

TABLE OF CONTENTS.

PART I.

Heliotype Portrait of Wm. M. Smith, M. E., Frontispiece. PAGE
The Qualifications that every Engineer should have. ...
Air, Water, Heat and Combustion,

Air, Water, Heat and Combustion,		
Relative Volune of Steam and Water, with Table	$\ldots .$.	- -17

$\begin{array}{llll}\text { A Chapter on Combustion and Water, with Table, "Steam Making," } & \cdots & \cdots & 18-17 \\ & \cdots-19\end{array}$

Specimen Papers on Coal and Combustion,"	...	$20-27$
18			

Miscellancous Calculations for Engineers, $\quad . .$.
Tables, 30
A Short History of the Steam Engine, $\quad \quad . .$.
PART II.
Inaugural Address.
Qualifications of Candidates for Certificate, … 133-150
Rules for Nominal Horse-power,
Arithmetieal Definitions, Signs and Quantities,...
Viva Voce Examination of Engineers, 153-154
Specimen Paper Chief Engineers' Examination, 157-159
Engineers Examination in Calenlations, 18:5-188
General Examination for Certificates of Higher Grades, 130-236
Furnace Draught; Thermometer: Snioke; Seale;
Indicator,
The Principal Fuels used on Steamers in Canadn, $\quad \ldots . .2424245$
Notes on the Steam Propeller,

PART III.
Sketch of the Life and Works of Wm. M. Smith, Esq., (first
S. B. Inspeetor of the Maritime Provinces,) Esq., (first

Canadian S. B. Inspection Act, \ldots Provinces,) 267-270
British Board of Trade Rules, $\quad . .$. 271-325
Proceedings of United States S. B. Inspection Act, 326-335
List of Books for Engineers, etc.,
Index,
$\begin{array}{ll}\text {... } & 336-340 \\ \ldots . . & 341\end{array}$
[For list of Plates, Drawin 343-346

ERRATA.

Page.

For "Gororit" read "Gowrie," 267
" "Surgeons" read "Surveyors,"". 160
" "infusion" ": "inversion,", 15
" "produce" ": "production," 31
" 330000 read 30000 , 11
Insert a comma (,) aiter conduction, 30
 " "Weight of lever 24 lbs. $8 \mathrm{oz}$. ; valve $3 \mathrm{lbs}, 6 \mathrm{oz}, " .$.
"Weight of lever 27 lbs 8 cz ; valve 3 lbs. 6 oz., $\ldots .$.
Same sum, for $29(25+41)$ read $29(25+4)$, 39
For 5660 read 5760 , 39
" 4636×8^{2} read $4636 \times 8^{3} \quad \ldots .$.
" $15 \times 33 \times 45^{3}$ read $15 \times 33 \times 45^{2} \quad \ldots .$.
" " 14 ," answer; in the flexture give greatest diameter, read 12 , Circumferential tubes $\times \mathrm{h} \times$ No. tubes
" 144
Circumferential tubes $\times \mathrm{L} \times$ No. tubes
read
For $\stackrel{4-4 \ddagger \times 100}{ }=68 \%$ read $\frac{4-14 \times 100}{4}=68 \% \quad \ldots . \quad \ldots .203$
For "member" read "number" of blades,
Note.-Pages in reference to the "S. B. Inspection Act (1882) of Canada" refer to the official issue of that "Act," but may be found in this volume by the number of section when given or known:

Example.-Page 25 SS. 4th (page 19 õ of "manual") ="Act" this volume, page $31 \tilde{5}$.

Page,

THE QUALIFICATIONS THAT EVERY ENGINEER SHOULD HAVE.

$H E$ should be able to write a good legible hand and understand the first five rules of arithmetic thoroughly, decimals, decimal fractions; also fractions, proportion, square root, cube root, Euclid and drawing.

He should understan? the construction, principle and use of such instruments as Bourdon steam, vacuum and water ganges, thermometer, barometer, and the salinometer.

Ee should thoroughly understand incrustation and corrosion, their cause, effect and remedy, also the principal causes of boiler explosions, and the effect of water making steam when suddenly liberated from a high pressure.

He should have a knowledge of how repairs are made to engine and boiler, in cases of emergency, or when laid up for the season.

He should understand the use of indication, its principles, and the method of taning cards, and the means of calculating them, also the meaniag of the diagrams.

He should understand valve-motion and how to explain the same by means of drawing diagrams.

He should be conversant with surface condensation, and the working of steam expansively.

AIR.

AIR is a mechanical mixture of nitrogen and oxygen gases. weight nor clastic force.

One of the collorce
Hero, was the pump; inventions of Ctesibins, the teacher of those accustomed to that it soon came into general use; and above its ordinary level in soon noted the fact that water rose withdrawn the air from the pump tube when the bucket had led him to the conclusion that part. Galileo's reflections soon Torricelli was the ho that air had weight, and to his pupil and of finding out the relative of constructing the barometer Air has both weight and fo weight of air. in the ratio of $2,124 \mathrm{lbs}$ force, pressing in every direction, attempts have been made per square foot of surface. Many atmosphere into use like stem bring the elastic force of the
Pascal first applied the barom heights of elevated places, on theter to the measuring of the air diminishes as we ascend, thereby cary that the pressure of
The action of the baromet ereby causing the mercury to fall. the air, which is heavimeter is regulated by the weight of weather, or when contrary during serene, settled, or frosty It is lightest when satury winds blow it toward any locality. when contrary winds bated with vapor to the rainy point, or northern climates the variatit away from any locality. In
The atmospherio variations are greatest. that is necessary to life that surrounds us contains the oxygen oxygen to four-fifths of nitroguted condition of one-fifth of
An ordinary iron fur nitrogen. air in twenty-four hours or is estimated to require 310 tons of

That it is oxygencurs, or enongh for 20,000 men.
ordinary combygen gas of air that is consumed in supporting lighted, in a bell gion may be shown by covering a candle, in water to prevent a further supply of air of the glass resting glass, and as the enclosed supply of air $z^{2 /}$ ting inside t'e enclosed oxygen being exh oxygen of the air :onsumed (ulls until it goes out, and the cousted) the flame grows less and less nitrogen (apparently unaltentents of the glass are found to be

One cubic foot of air, at $32^{\circ} \mathrm{F}$., weighs 1.29 ounces. Air rushes into a void with the velocity a heavy body would acquire by fulling in a homogencous atmosphere. Air is eight hundred and forty times lighter than water. The atmosphere supports water at thirty-thrce feet; homogencons atmosphere, therefore, $33 \times 840=27,720$ feet.

A heary body falling one foot acquires the velocity of eight feet per second.

Velocities are as the square-roots of their heights; therefore to find the velocity corresponding to any given height, expressed in feet per second, inultiply the square root of the height in fcet by cight.

For air we have $V=\sqrt{ } 27,720=166,493 \times 8=1,332$ feet per second. This, therefore, is the velocity with which common air would rush into a void, or, 79,020 feet per minute; some say 80,880 ditto.

The thermometer, when first invented, about two hundred years ago, air, spirits of wine, and oil were made use of ; but all these have given way to quicksilver.

Fahrenheit is used in England; Reaumur and the Centigrade thermometers on the continent. The thermometer is on the principle of the expausion and contraction of quicksilver: Plonge it into boiling water, it stands at 212°, and 32° denotes the freczing-point. Between these the space is divided into 180.

Zero (0) is extremely cold; 32° frcezing-point; 55° for temperate heat ; ${ }^{7} 6^{\circ}$ summer heat; 98° blood heat; 112° fierce heat; 176° spirits of wine boils; 212° water boils; $1^{1} 0$ of an inch in a yard is $\frac{1}{20^{2} 0}$ for 90° Fahrenheit.

Mercury is fourteen times heavier than water ; therefore, if the pressure of the atmosphere will balance thirty-four feet of water, it will only balance $\frac{1}{14}$ part of that height of mercury, viz., a little more than twenty-nine inches.

In the barometer, if the air be dense, the mercury rises in the tube and indicates fine weather ; if the air becomes lighter the mercury falls and indicates rain. Standard altitude in England varies between twenty-eight and thirty-one inches; the difference is called the state of variation. hich common ninute; some
two hundred use of ; but
d the Centinometer is on quicksilver. 2°, and 32° te space is
55° for tem112° fierce ls ; $\frac{1}{10}$ of an
therefore, if four feet of of mercury,
ury rises in mes lighter altitude in one inches;

WATER.

STEAM, to be understood, requires a knowledge of water and heat; in the present prper, the first will be considered.

Water, in its ordinary state, is a fluid; it occupies the greatest part of our globe and performs most important duties; it is also found in a combined state in animal and vegetable nature. Chemically considered, an ordinary man would bo about made up of one hundred and fire pounds of water and thirty-five pounds of carbon and nitrogen, aud that five-sixths of his daily food is water.

One volume of oxygen and two volumes of hydrogen, or, by weight, one part of hydrogen and eight parts of oxygen, are required to form water.

Water is thirty times hearjer than oxygen gas, four hundred and seventy-eight times heavier than hydrogen, and thirtyfour times heavier than air.

Water freezes at $3 \geqslant^{\circ} \mathrm{F}$., when its expansive force is exhibited. The expansive power of water is supposed to be derived from the re-arrangement of crystallizing particles in an angle of 60°, or 120° to each other, requiring more space than when in a fluid state, and thas re, requiring more space

Water, being almost incompressible, ing confinement. great power, as in Bramah's dranlic ram, whereby the strengdranlic presses, and the hyand other materials are tested, that require force.
Water is the standard of comparison of weights of othe liquids and solids; a cubic foot of water weighs one thonsand or orees and the Imperial gallon one hundred and sixty ounces, or ten pounds.
In pounds, the weight of a cubic foot of water is sixty-two and one-half pounds, and the cubic contents in fect of any watertank, or boiler, multiplied by sixty-two and one-half, given the weight of water required to fill it, and this divided by ten gives one cubic foot. gallons. There are 62.355 gallons of water in decimal 341 , or by $3 t$, this inches and melhes, the height in height; therefore, mult, this gives the weinultiplying by the gives the pounds, multinlying by the numght of one foot in If the base bo square, mult. Works, take the urea of the tiply by the decimal $43+$. in pee equare, and if circular 49.108 bise in feet, multiply 43 ; in great 10.5 and that by the height in fect.

HEAT.

THERMOMETER is the instrument used to measure heat, and the degree of the temperature is indicated by a scale of equal degrees, and the distance between freezing and boiling points is by Fahrenheit divided into 180 parts, und by Celcius Centigrade scale into 100 parts; the first is mostly used for ordinary purpeses and the other for scientific subjeet.

Heat is communicated by direct contast, or conduction by right lines, or radiation, and by carrying, or convection. An English heat unit is that wnich is required to raise the temperature of one pound of water one degree Fahrenheit, the expenditure of heat is the same whether two pounds of water be raised one degree, or one pound of water be raised two degrees.
The English unit of work, which consists of the sustanined exertion of pressure through space, is one foot-pound ; that is, a pressure of one pound exerted through a space of one foot.

The unit of heat, then, is capable of raising seven hundred and seventy-two pounds weight one foot high, and its meehanical equivalent is expressible by seven hundred and seventy-two fout-pounds; then one English thermal unit, or one degree, or' ote degree Fuhrenheit, in one pound of water, $7 \% \%$ footpounds; one degree Centigrade in one pound of water, 1,389 foot-pounds. A French thermal unit is nearly cqual to four English thernal units; 1. to 4.
Theory of all gases, or vapors, is that of atoms moving or vibrating in all ways, with rapidity and pressure, being the impact of the numerons atoms striking agaust the sides of the vessel containing the gas and vapor.

When the piston in the cylinder yields to the pressure of steam, the atmosphere rebounds from it with the same velocity with which they strike, but will return after each succeeding blow, with a velocity continually decreasing as the piston continues to recede, and so the temperature diminishes. Water descending seven hundred and seventy-two feet acquires a velocity of two hundred and twenty-three feet per second, and

COMBUSTION.

Combustion is one of the many sources of heat, and it denotes the combination of a body with any of the substances generation of steam, we may say ; with reference to the because of the small quality say we are restricted to oxygen, when intensely heated quality of hydrogen in fuel. All bodies produced by combination with luminous; when the heat is ignited, and when the body heoxygen they are said to be forms what is termed flame. heated is in a gaseous state it Carbon exists in nearly a In its combustion one pound state in charcoal and in soot. to increase the temperature of it produces sufficient heat degree.

The volatile pounds of water one gen and carbon, the union the combustion of coal are hydrofiants gases; which upon combining in the furnace are oleacid, or carbonic oxide, etc. Carbonic oxide is
carbonic acid that of perfect of imperfect combustion and One (1 lb .) pound of carboct combustion. oxygen and produces 3.66 pound combines with 2.66 pounds of Smoke is the combustible evolved in the combustion of fund incombustible products of a furnace, and it is composed of such pass off by the flue gen and carbon of the fuel gas as bach portions of the hydrocombined with oxygen, and gas as have not been supplied or verted either into steam or carbequently have not been conits gaseons character and returns to acid; the hydrogen loses black body and as such becomes visible. elementary state of a Bituminous portion becomes visible.
state alone; the carbonaceons is converted into the gaseon 3 It is partly combustible and portion not in the solid state. To effect the combustion partly incombustible. quired, ten feet of atmosphef one cubic foot of oxygen is requantity of oxygen. an excessive supply a waste of causes imperfect combustion,

MECHANICAL EQUIVALENT OF HEAT.

The mechanical equivalent of heat is the quantity of heat required to raise the temperature of one pound of water onedegree, or will raise seven hundred and seventy-two pounds one foot high ; or the weight of one pound descending seven hundred and seventy-two feet is equal to one degree of heat.

Then, seven hundred and seventy-two foot-pounds is what is called the mechanical equivalent of heat, the number expresses the whole work due to the quantity of heat which is able to raise one pound of water one degree of heat.

Heat is a peculiar motion of the particles which prevents. their contact. Heat and mechanical power are convertible forces. The force of the heat that raises one pound of water one degree F. will lift a weight of seven huudred and seventytwo pounds one foot high. The power of a weight of sevenhundred and seventy-two pounds descending one foot if applied to a small paddle-wheel turning in one pound of water, will by friction, raise the temperature of the water one degree Falnrenheit. A heat unit is the amount of heat that raises a pound of water $1^{\circ} \mathrm{F}$. or that lifts a weight of seven hundred and seventy-two pounds one foot high.

Then, seven hundred and seventy-two foot-pounds equals one heat unit-one heat unit equals seven hundred and. seventy-two foot-pounds.

Mandal of engineers' calculations.

COAL IEAT AND COMBUSTION.

HEAT is stored up in coal, and is liberated from it by comcarbon, hydrogen, nitro burning of coal, which consists of they have a relative progon. sulphur, oxygen and ashes; and having carbon as its, or thon, in different averages, but all chemically consider what their, principal part; now let us 1st. Carbon, which is an extremements are that compose coal: ant element ; all organic substuely important and very abund. contain it. In the mineral per cent.) and its different and chalk, marble, etc. All regetable forms, also limestone, upon the presence of the compound of is directly dependent which exists in the atmosphere. Carbond carbon, carbonic acid, distinct modifications, namely, (1) Carbon is divided into three or graphite ; (3) ordinary chace (1) the diamond; (2) plumbago, there are many sub-varieties. cailon is an infusible, non-volatile each of the above forms smell, and in whatever they may diffelid, devoid of taste and unite with it strongly heated in the presence of agree in this: carbon (CO^{2}.) and form the same compound, anygen they Coke and antion an oxide of which from a chemical point impure sub-varicties of carbon, with the graphites or charcoals, of view may be classed either Coke is the residue resulting from still better between them. of soft (bituminons) coal, as in the the destructive distillation ing gas.
Bituminous coal is a subs appears to have been formed fance of vegetable origin which decay going on without access from plants by a process of slow of heat, moisture and great pressur and under the influence in general, it is composed of carbore. Like vegetable matter, with small proportions of of carbon and hydrogen together quantity of earthy and saline substond nitrogen and a certain as inorganic matter. On being heances commonly spoken of almost completely, after awhile leaving the air it burns away ganic components as ashes. But whing nothing but the inor-
with the air, that is to say, when subjected to a destructive distillation, the volatile hydrogen is all driven off in combination with some of carbon, either as a gas or as a tarry liquid, and the residue, or coke, contains only carbon contaminated with inorganic matter of the coal.

Anthracite or hard coal is supposed to have been formed like soft coal from slow decay of vegetable matter and then to have been subjected to some sort of natural distillation by which it has been deprived of all the lyydrogen, nitrogen and oxygen of the original wood. It is thus a coke formed by natural agencies.

Oxygen is the most widely spread and most important of all the elements; was diseovered by Priestly and Scheele $17 \% 4$. It constitutes one-fifth of the atmosphere, eight-ninths of the weight of water, and at least one-third of the materials composing the solid crust of the earth ; it is a tasteless, colorless, inodorless gas.

Combustion is simply chemical combination, and when the combination is violent, sufficient heat is developed to produce fire: the affinities of oxygen are remarkably strong, and it is capable of entering into combination with everything in nature except Flourine ; therefore fire is generally oxygen entering into combination with the body burning.

In the fires in our louses the oxygen of the air is combining with the coal, which is carbon, to form an invisible gas, carbonic acid gas, which passes up the chimney; hence, we say that oxygen is the great supporter of combustion; of course combustion will be more violent in pure gas than in the air when it is diluted with nitrogen.

Nitrogen is the chief element of the air of which it forms four-fifths. From being an element of nitric acid, Chatal gave the gas the name of azote from its inability to support life. It exists in almost all vegetable and animal nature.

The simplest method of preparing nitrogen is to deprive air of its oxygen by passing it through a porcelain tube containing copper turnings which is surround od by red-hot charcoal. The heated copper combines with the oxygen and the nitrogen is received in a gas-holder.

Sulphur is a yellow mineral, solid, which burns with a blue flame, giving off suffocating fumes, and is found mixed with the soil in many volcanic districts; it also appears in combination with metals, etc., forming a large class of ores named sulphides.

Sulphur is brittle, without taste or smell in its native state, but when rubbed emits a peculiar odor.

The following is a proportional representative table of the amount of each element contained in coal :

$\underset{\text { Name }}{\substack{\text { Nam }}}$	NAME OF COAL.				
	Welsh.	Lancashire.	Newcastle	Scotch	
				Scotch.	The Mean.
		80	81		
	5	5	$5 \frac{1}{2}$	$\stackrel{1}{51}$	81
	1	1	$1 \frac{1}{2}$	12	$5 \frac{1}{2}$
	1	2	2^{2}	12	1
	${ }^{3}$	7	6	1	$1 \frac{1}{2}$
	5	5		97 4 4	64
	100	100			
			100	100	100

The air (which is composed of oxygen and nitrogen mixed in the proportion of four measures of N. to one of 0 .) must be air mixes with the carb will burn, that is, the oxygen of the portion of one hundred and fift., of the coal, also in the propound of coal, but in practice it is cubic feet of air for every this is required, or say one pound of usually found that twice of air. so much more gives out part for part of heat, but as there is amount of heat from that carbongen in coal we get the greater coal fields of the United States not proportionally. The enibracing an area more than dates are the largest known, These immense deposits lie chicf double that of Great Britain. of the Alleghany region, Whiefly within the western slopes and in the peninsular tract of Pennsylvania, Ohio, Virginia, basins of Michigan, Huron and country between the great lake ing across the Missouri and And Erie, and in the region extendThese vast stores of coal Arkansas Rivers, etc. the produce of the United Ste but little worked, however, and Britain. In Canada the laurentes is nothing like that of Great ing the chief part of the river valle and siluvian deposits formthe appearance of coal, but Nalley of the St. Lawrence, show both now included in Canada brunswick and Nora Scotia, other side coal of an excellent have worked mines, and on the of Vancouver, of the Province quality is procured in the Island been found in the Northwest British Columbia; coal has also

IONS.
ive table of the

cotch.	The Mean.
78	81
$5 \frac{1}{2}$	$5 \frac{1}{2}$
$1 \frac{1}{2}$	1
1	$1 \frac{1}{2}$
$9 \frac{1}{2}$	$6 \frac{1}{4}$
$4 \frac{1}{2}$	$4 \frac{3}{4}$
0	100

rogen mixed (0.) must be xygen of the in the proir for every d that twice een pounds
t as there is the greater aally. The st known, at Britain. tern slopes , Virginia, great lake on extend-
vever, and t of Great sits formnce, show Fa Scotia, ad on the he Island l has also long the
valley of the Saskatchewan River, also along the McKenzie River of the North.

TABLE OF PRODUCTION OF COAL IN DIFFERENT COUNTRIES DURING SEVERAL YEARS.

Name Country.	Year $180^{\circ} 0$. Tons.	Year 1871. Tons.	Year 1875, Tons.	Year 1880. Tons.	Year 1881. Tons.
Great B_{1} itain....) ${ }^{\text {a }}$ (12,000,000 $117,352,028$ 131,867 10					
1reland........	112,000,000	117,352,028	131,867, 10_{5} \cdot
United States. Germany	28,000,000			
France.	$26,744,000$ $13,509,000$			42,161,000	
Belgium	12,943,000			18,825,000	
Austria.	4,100,000			$14,000,0011$ $6,000,0 \cup 1$	
Russia,	588,000 550,000			2,200,000	
Canada.	550,000			750,000	
				1,032,713	1,338,391

The probable quantity of coal in the coal fields of the United Kingdoms is about 146,480 millions of tons, of this 90,207 millions of tons in fields and probable exists under the (permian) and other superincumbent strata $56,2^{\prime 7} 3$ millions of tons.
Some give the probable period of the exhaustion of these fields, etc., at two hundred years from the present time.

THE RELATIVE VOLUME OF STEAM AND WATER.

THE relative volume of steam is the quantity of steam gen-
erated from a given quantity of water, etc.
water divided by that absolute volume of volume of steam is the quetient of the water. is obtained by dividing foot of steam at various temperatures of water, by its relative volume. A cubic inch of water volume. sure is converted into $1 \% 00$ and andinary atmospheric presof measure nearly one cubic cubic inches of steam, or in a unit force equal to the rising of 2120 , and it exerts a mechanical Steam rising from water at its 2120.14 pounds one foot high. pressure of the atmosphere, which boiling point is equal to the

The velocity of steam when which is 14.7 pounds. 1550 feet per second, that, at ong into a vacuum is about the atmosphere. When at ten an expansive power, equal to is increased to but 1780 feet per (10) atmospheres the velocity air under a similar pressure, is increasing to 1600 per second is about 650 feet per second, pheres. The volume of a cubic foot of water when evaporated into steam is 1700 cubic feet; then water when evaporated into $1 \div 1700=.000588 \% 3$, then at the pressure of the atmosphere.

TIONs.
manual of engineers' calculations.
19

TABLE OF TIIE PRESSLRE, TEMPERATLRE, VOLLME ANI) MECIIANICAL EFFECT OF STEAM.

Total pressure in pounds per square inch.	${ }_{\text {coser }}^{\substack{\text { Corresponding } \\ \text { temperature. }}}$	$\begin{aligned} & \text { Volume of steam } \\ & \text { compressed } \\ & \text { with } \\ & \text { volume ot water. } \end{aligned}$	Mechancal effect of a cubic inch of water raised one foot hlgh
1	102.9		
2	126.1	20868 10874	1739
3	141.0	$1{ }^{7} 43^{4}$	1812
4	152.3	4617	1859
5	161.4	${ }_{5685}^{4617}$	1895
15	212.8	9685	1924
20	$2 \cdot 8.5$	1669	2086
25	241.0	1281	2135
30	251.6	1044	2175
35	260.9	883	2209
40	269.1	767	2238
45	276.4	669	2264
50	286.4 283.2	610	2287
55	289.3	554	2308
60	28.5	508	2327
65	301.3	470	2347
70	301.3 305.4	437	2365
75	311.2	418	2397
80	311.2 315.8	383	2411
85	315.8 320.1	362	2425
90	332.1	342	2438
100	3.	325 495	2464

\triangle CIIAPTER ON COMBUSTION.

(From "Steam Making or Boller Practise," by the late Prof. C. A. Smlth, C.E., M.E.)

${ }^{6} 1$HE process of combustion is well known to be due to the act of uniting carbon and hydrogen with oxygen ; develop heat when such as sulphur and phosphorous, also purposes carbon and hydrog with oxygen, but for our practical
In fact, hydrogen is a although forming but a very small part by element in fuel, coal, the fuel most in use as a com part by weight of ordinary
The first question use as a combustible. supplied to our fuel in order to is, how much air must be the air being required for to to produce complete combustion,
The quantity of air required oxygen therein contained. the fuel, but if we say that faries with the composition of supply twelve pounds of air, we each pound of fuel we must truth. The volume of air will, of be sufficiently near the , of course, depend upon its
Now, the quantity of heat which can be developed by the combustion of one pound of pure carbon, is sufficient to boil fifteen pounds of water from and at a temperature of 212° Fahrenheit if none of the heat was lost ; but there are many are as follows :

First. - Variations in the chemical constitution, affectin quality of the coal as to its

SECOND.-Impurit, afecting thereby its calorific power. affecting the actual quatound with and mixed in the coal,

Third.-Imperfect or ing of pure coal in any given amountr Fourth.- Losses of heat incomple combustion of the fuel. metal of the boiler. utilized in the creation of off in the stack, more or less 1. Variations in the quality chemical analysis, the quality of fuel. - From the results of fuel, expressed in the evaporative power of various kinds of fuel, expressed in poimd of water per pound of fuel evaporated

from and at $212^{\circ} \mathrm{F}$., which we will call E., have average values which are given in the following table:

KIND OF luel. E.
Pure carbon completely burued to CO^{2} 15
Pure carbon incompletely burn
CO completely burned to CO^{2} 4.5
Charroal from wood, dry 3.9 3.9
Charcoal from peat, dry
Charcoal from peat, dry 14 14
Coke, good, dry 12
Coke, average, dry 14
Coke, poor, dry 13.2
Coal, anthracite 12.3 12.3
Coal, dry, bituminous, best 15.3
Coal, bituminous 15.9
Coal, caking, bituminous, best 14
 16 12 12
Peat, dry 12. 1
Peat, with one-fourth water 10
Wood, dry 7.5
Wood, with one fifth water 7.25
Wood, best, dry, piteh-piue 5.8
Mineral oils, about 10Impurities in the coal being earthy matterfires of low temperature, and earthy matter, forms ashes intemperature ; water is also and slag or cinders in fires of highforming steam, and even present which has to be evaporated,oxygen, thereby absorbing heat whichnace ; in the latter case a re-combinasses off from the fur-whereby the beater case a re-combination may take place,in changing water into somposition is given up, but that usedthe stack.Imperfect Combustion.-Some coal is usually lost with the ashes by falling through the grate bars, especially with such kinds of coal as split in the fire. In some cases this is prevented by wetting the small coal, thus holding it together till when on the fire it swells and coal, thus holding it together till doubtful if this remedy is cakes by the heat ; it is, however,
Taking all thingedy is an economical one.
coals are the English and Pittsbe find in practice that the best the anthracites, which Pittsburg soft coals; next in value greater proportion of refuse and inferior by reason of their greater proportion of refuse, and the results are nearly the
same for the best soft coals and anthracites.
near St. Lonis is 80 per cent. in theory but The Illinois coal found in pructice to exceed 64 in theory, but has ravely been.

Wood has about balf the evapor cent. of the best coals. usual comparison is to rato evaporative power of coal, and the one ton of coal. The wood is cord, 128 cubic feet, equal to or pitch-pine, and weighs about sposed to be dry hard-wood of the master mechanics in this tons. This is the practice locomotives.

Indian corn has sometimes been burned and fonnd when dry to be about equal to the same weight of wood. Corn-cobs coal, or say one-fourth of goon to one-third by weight of Illinois by weight. Incomplete combustion produces a very great loss, and this Enest explained by a ruotation from "" Rankine's Steam. "The page 270: " to say, one pound carbon is always complete at firs', that is " 6 thirds pounds of oxygen, and combines with two and two"'pounds of carbonic aeid, and makes three and two-thirds
" imrnediately before the combustion, it the carbon is solid
" bustion into the gascous state and tit passes during the com-
"s this terminates the process when the carbonic acid is gaseous,
"s so thick can get direct accessen the layer of carbon is not
" quantity of heat produced is 14500 the solid carbon. The
"s stated. But in other cases part of thermel units as already
"s supplied directly with oxygen, but the solid carbon is not:
"dissolved into the gascous state by the first heated and then
"f thom the other parts of the furnace. hot carbonic acid gas
"capis pounds of carbonic acid from one The third and two-
"four and two-thing an additional pound of carbon, carbon are
"volume of this gas is pounds of carbonic oxide gas, and the
"which produces it. double that of the carbonic acid gas "In this
" the complete the heat produced, instead of being that due
" heat units, 14,500 , falls to of one pound of carbon, equals
"combustion of two pounds of amount, due to the imperfect
"'units 8.800 , showing a loss carbon, or 2×4400 equals heat
" heat units, which disappears in wat to the amount of 5.700
'' of carbon. Should the process volatizing the second pound
"naces ill supplied with aircess stop there as it does in fur-
"But when the four and two-third waste of fuel is very great.
"containing two pounds of carbs pounds of carbonic oxide gas:
"supply of fresh air, it burns with a blue flame combining
" with an additional two and two-thirds pounds of oxygen,
"" making seven and one-third pounds of carbonic acid gas, and
"giving additional heat of double the amount due to the com-
"bustion of one and one-third pounds of carbonic oxide. That
" is to say, $10,100 \times 2$ equals heat units, 20,200 . To which
"s add the heat produced by the imperfect combistion of two
" pounds of carbon 8,800 .
There is obtained the heat due to the complete combustion of two pounds of carbon $2 \times 14,500$ heat equals units 29,000 .

With coal that has little flame, n thin fire, with exactly the right draft, has been found to give the best results, producing exactly the effects in the first part of the quotation.

It may be doubted if such a bad state of affairs is often found in a boiler furnace of the present day as indicated in the middle of the ruotation, thongh a tendency to an insufficient supply of air may exist in internally fired boilers, such as locomotives, if there is a very thick fire and no air admitted about the grate ; and, althongh not approaching renotely the case where no carbonic acid is produced, some of the carbonic oxide may pass off unburned, in such cases the admission of air about the fuel will be found beneficial.
In all soft coals there are found compounds of curbon and hydrogen known as hydro-carbons, which must also pass into the gaseous condition before being burned. "If these hydrocarbons, such as pitch, tar, naphtha, etc., are mixed on first issuing from the coal with a large quantity of air, these inflammable gases are completely burned with a transparent blue flane, producing carbonic acid and stam, but if raised to a red heat before being mixed wioh air enough, then disengage carbon in fine powder and the higher the temperature the more carbon they disengage. If this disengaged carbon is cooled below the temperature of ignition before "coming in contact with oxygen it constitutes while floating in gas smoke," and when deposited on solid bodies is soot.

But if this disengaged "carbon is maintained at the temperature of ignition, and supplied with oxygen sufficient for its combustion, it burns while floating in the inflammable gas with a red, yellow or white flame. The flame from fuel is the larger the more slowly its combustion is effecterl," and with the colors of flame given above as the combustion of smoke is less or more completc. An example of this is found in the use of common illuminating gas when burned with a " Bunsen" or a common burner. The chilling of the gaseous hydrocarbons, which are driven off from the solid pieces of zoal by
the heat developed, may take phace in two was-either by coming into con:act with a cold borly, as the jron of the boiler, or by finding too much cold air in the furnonce. To fully sustain the latter statement, only a little consideration fully be given to somo of the fundamental princindesteration need well known that, if a certain amount of her of heat. It is to a body of certain weight innd givent of heat communicated perature a definite number of given material ruises its temamonnt of heat communicated to degrees thereby, the same material will only raise its temperuce the weight of the same of degrees that it was in the first case To apply this to combure case. with twelve pounds of air gires the ponud of carbon burned temperature of $4580^{\circ} \mathrm{F}$. [aboves thirteen pounds of gas at a it is found that this rarely, if ever that of the extermal air ; but oxygen in plenty to the hot carbon sppens, and that to supply to 100 per cent. more air is used, surrounded by gas from 50 teen pounds of gas at a temperature the result is from ninepounds of gas at a temperature of $3215^{\circ} \mathrm{K}$. to twenty-five external air ; but if forty-eight pound $2440^{\circ} \mathrm{F}$. [above] the coal were admitted, the resulting pounds of air per pound of nine pounds of gas wonld be temperature of the fortyexternal air. With authracito coabont $1250^{\circ} \mathrm{F}$. [above] tho of temperature is not accompanied and coke, snoh a lowering bituminous and semi-bituminous cod by serions loss, but with temperature of the fire is always proal, such a reduction of the To examine this more closely, productive of great waste. free carbon and one-half hydre, suppose a coal with one-half If such a coal were burned with twot on fire by the heat. pound of coal, the temperature of twelve pounds of air per carbon ignited wonld be $2440^{\circ} \mathrm{F}$, the gas before the hydro-hydro-carbon wonld burn if suppliave the air, and the and complete the combustion. supplied with oxygen enongh twenty-four pounds of air per Now. if we burn this coal with about $1300^{\circ} \mathrm{F}$., as temperature pound of coal, we have only is a question whether the pare of the smoky product, and it air than this a great proporis wonld ignite; while with more other evils are incurred. We find, then anthracite and soft marked point of difference between the completely with a thin fire as fuel. While the former burns it, and the free quantity of aditting an excess of air through resulting temperature is of heat is developed, though the contrary, absolutely requires very high, the soft coal, on the temperature and plenty of reom a perfect combustion a high

L.ITIONS.

J way-cither by iron of the boiler, Hinte. 'to fully onsideration need les of heat. It is at communicated ial ruises its temerely, the same riglit of the sume half the number
f carbon burned ands of gas at a xterual air ; but I that to supply by gas from 00 It is from nine; to twenty-five - [above] the per pound of of the forty[above] the uch a lowering loss, but with duction of the great waste. with one-half by the heat. ds of air per e the hydrolir, and the gen enough his coal with e have only duct, and it with more 1 is lost and
the iron of the boiler, and any deviation from these conditions prodaces smoke and great loss of heating power ; and that while with hard conl too great a draft only wastes a small quantity of heat in the stack, with soft coal too great a draft may be as bad, or even worse in its effects, than too little.

With soft coni the required high temperature over the fire may be produced by intercepting the radiant heat of the fire by a fire-brick arch or dome, which radiates back again to the fire, heating the products of combustion from both sides.

This was first introduced by Mr. (J. Wye Williams, many years ago, and has been frequently revived in different forms since. In some devices air is introdaced at the bridge, or at the edges of the arch or dome.

The great trouble with such arrangements has always been the lack of durability of the brick, used in the arch or dome. In fact, the more refractory the material the hotter the fire, and the destruction of the arch becomes only a question of, what is comparatively, a short time. One of the satisfactory ways of obtaining a high temperature is by using so thick a bed of coul that the passage of too great a quantity of air is prevented by its friction upon the fuel, the thickness of fire being regulated by the size of the coal used, and kept so that it will not clinker too much. This effectually raises the temperature of the fire; it may also be done by the use of a damper, but not in so satisfactory a manuer, although there is found to be in many cases a marked improvement by decrease in the draft. The generul opinion in this country is decidedly in favor of thin fires, and the experiments of Professor Johnson at Washington favor this practice ; bat the experiments ac Wigan, England, gave generally "the thicker the fire the better the result." Experiments with a pyrometer are needed in each case. but we may safely say that great improvement can be made in our practice in this respect, and that the only secret in smoke prevention is to have a hot fire with room und time to let all the gas hurn before coming to less than a red heat, and to fire in small quantities over a part of the grate at one time only.

Losses of heat by radiation and conduction from the furnace and ush-pit of externally fired boilers are to be provided against by making the walls, if of brick, in two thicknesses, with an air space between them; by keeping the ash-pit doors partially closed, and covering all radiating surfaces of metal with some good non-conducting material, such as thick felt faced on the inside with one-quarter inch of asbestos.

The amount of heat which may be lost by radiation from
uncovered iron surfaces, exposed to air on one
per squarer, may be estimated as two and one side and steam. perature beot per hour per degree F. of six-tenths heat units. room be still, thi the steam and the air. difference of tem. to violent winds it mount may not be reached the air in the
The heat passing may be exceeded. useful in passing up the chimnoy. chimney wherecing a draft ; and is not wholly lost, but is. of the outside aire draft is produced by be shown that in a the greatest quantity of that of the hot gy the excess of weight when the temperature of gas by weight will pass up the chimey, that F. hotter than the extern of gas in the chimuap the chimney velocity of flow external air. With chimney is abont 625° weight will be less, we greater, and the gher temperature the as a means of burninging to its greatest quantity of gas by that can be burned to coal for making volume. Looked at furnace is when the to advantage in a given steam, the most coal not exceed, that of temperature in the stack time in a boiler this means that the melting lead. A higher is near, but does the gas, and points to an has not been propemperature than meaus of improving than increase in the properly taken out of ing the yield of steam, performance of the boiler surface as a. tion; a less temperature well as the the boiler and increasthe required quantity of than the above is emy of its produc-twenty-four pounds of steam can be mainays desirable if perature of stack of air per pound of fuel iained. In case requires a little more the maximum quantity used, the temmaintain the draft and than one-fourth of the heat coal burned, into the water of the bud the other three-quart generated to. twelve pounds of air boiler. If we could geters should pass. heat generated would ber pound of fuel, only get ang with only With forty-eight pound required to maintain one-eighth of the draft heat generated would be per pound of fuximum draft. cated. Here again the importased in maintaining one-half of fire mond there is yet another of hot fires is plainlymm fire, leave of the heat generated reason for them plainly indi-. ature aving the products of passes into the wath a hot boiler traverse the remainder combustion at a lower near the. therefore a lower temperature. of the surface and to leaverA simple above the relation between the fire is not so hot. above the grate, its between the height of thot.

LATIONS.
one side and steam x-tenths heat units. difference of temIf the air in the. ed, but if exposed
vholly lost, but is. shown that in a excess of weight he chimnoy, that ${ }^{3}$ up the chimney ey is about 625° temperature the atity of gas by ne. Looked at , the most coal me in a boiler near, but does aperature than taken out of surface as a. r and increasof its producs desirable if led. In case ed, the temcoal burned, generated to. should pass. g with only ghth of the num draft. one-haif of maximum ainly indi-. With a hot - near the - temperleave the lerated is. in feet. mber of
pounds of coal per minute burned, is the following equation, where :
$h=$ beight in feet of the stack.
$A=$ Area in square feet of stack.
$\mathrm{F}=$ Number of pounds of coal burned per minute.

$$
h=\left\{\frac{5 F}{A}\right\}^{2} \quad A=\left\{\frac{5 F}{\sqrt{ } h}\right\} \quad F=\left\{\frac{A \sqrt{ } h}{5}\right\}
$$

It is understood, however, that A is the "least flue area" in the passage of the hot gas.

The effects of changing the flue area, or as it is called the "calorimeter," and the proportions of heating surface and calorimeter to grate area are seen in my table of boiler trials. Gas has been employed as a fuel in boiler furnaces to a limited extent for some years past, principally in Europe. As little data on this subject is extant, we do not consider it. advisible to embody it in this work.

SPECIMEN PAPER ON COAL AND COMBUSTION.

 BITUMINOUS, ANALYSIS :
hyd The coal burns, throwing out light and heavy carburetted as it produces heat will gas, carbonic oxide, etc., each of which tion of oxygen; therefore, if more mly with its proper proporinternal surfa air, it does injury, not supplied by introducing temperature is of the flues, but remo only by cooling the ing loss of gas necessary to produce conbering that a high weight for weight has been proved that hystion, by preventfore $4 \frac{4}{4}$ parts of hydrogen times as much heat hydrogen furnishes of heat to the cardrogen in coal will produt as carbon, thereThe so pounds can's 75 t. of oxygen fornds (say) of carbon will eubic feet of ats combustion which will require 252% cubic feet 473 cubic feet of oxypen wic air. The hydrupplied by 12635 of air, making a total which will be found in in will require for combustion of 100 of $32635+2365=15000$ in 2365 cubic feet
The foregoing calcul pounds of coal. 15000 cabic feet of air we may segoing calculation is beol. ($=20$ per cent per cent. of coal is on, say in round numbers,
Out of 100 pounds oft is hydrogen in 100 and five per cent. parts are hydrogen,

Then, \quad parts are carbon and five
Hydrogen $5 \times 4=$.
parts of heat.

Lations.

OMBUSTION.

rbon.

drogen.
rogen. es.
vy carburetted each of which oroper propory introducing cooling the that a high by preventgen furnishes arbon, there$<4=1 \%$ parts

7 cubic feet d by 12635 will require 5 cubic feet feet of air
l numbers, per cent.
and five
manual of engineers' calculations.
29
80 parts of carbon requires 252% cubic feet of oxygen. 5 hydrogen.

12635
473 cubic feet oxygen for hydrogen. 5 hydrogen.

2365
Then,

$$
2365
$$

12635
15000 cubic fect of air required for the. combustion of one hundred parts of coal.

MISCELLANEOUS calculations For Engineers.

${ }^{4}$ 'THE derivation of •

tat period of the Calculation,' alludes to that rudimenor stones (calculi) were used, as of Numbers, when pebbles often are to facilitate the practice now, among savages, they ce of counting," etc. - Trench NAME.

One-tenth,

 One-hundredth, One-thousandth, Ten-thousandth, One-hundred-thousandth, One-millionth, One-eighth $=0$, One-quarter one hundred and twenty 00001 One-thirder=thirty-th-five hundredth One-half $=$ five-tenths Seven-sixteentenths hundredths. enths=five thousand the....................................... Nine-sixte seventy-five ten thousandths hundred and twenty-five thousand six hundred..... Fire -eighth twenty-five ten thousandth hundred and (.5375) $\frac{7}{16}$ Threequas $=$ six hundred and twenty -f Three-quarters=seventy-five twenty-five thousand \because. \cdot (.5625)and a circular inch:

[^1]1
.7854
.2146
square inch
circular inch.
difference.

The difference between a circular (or decimal) inch and a square inch is $\mathbf{2 1 4 6}$; and the difference is a square with one for its diameter and a circle with one for its diameter ; so then

$$
4: 3.1416:: 1=7854:-
$$

The constant number or multiplier for the horse-power of an engine, instead of using. 7854 to multiply with and 3300 to divide with, is found by dividing. 7854 by 330000 , which will equal . 0000238 constant multiplier for lorse-power of an
engine, etc.

Example:

$$
\begin{gathered}
33000) .78540000(.0000238 \\
\frac{\begin{array}{l}
1254000
\end{array}}{99000} \\
\frac{264000}{26400}
\end{gathered}
$$

Then we find that in the calculations where .7854 is used to multiply with and 33000 to divide with, the same result will Be attained by multiplying by the constant multiplier . 0000238 .

AMERICAN RULE FOR THE PRESSURE ALLOWABLE ON BOILERS OF GIVEN DIMENSIONS.

Rule.-Multiply one-sixth ($\frac{1}{b}$) of the lowest tensile strength found stamped on any plate in the cylindrical shell, by the thickness expressed in inches, or parts of an inch (decimally), and divide by half the diameter (expressed in inches), the sum will be the number of pounds allowable for single riveted boilers, and for double riveted boilers add 20% (twenty per cent.)

Taking 50400 pounds as the lowest tensile strength of any plate and diameter of boiler 42 inches, of $\frac{1}{4}$ inch plate:

50000 lbs . tensile strength.
6)50000
\cdots

8400 one-sixth of plate.

. 25 thickness.
42000
diam
16800
2)42 \qquad

\section*{| 0 |
| ---: |
| 0 |
| 0 |
| -0 |
 }

Taking 60000 lbs . tensile strength and $42^{\prime \prime}$ diameter $\frac{1}{4}$ of an inch plate: pressure per square inch for single riveted boiler and 120 lbs . for double
riveted boiler.
strength of any
neh for single bs. for double
imeter $\frac{1}{4}$ of
and 142.8 oiler.

BRITISH BOARD OF TRADE RULE.
To find the pressure that may be carried on a circular boiler of 12 feet diameter, $\frac{7}{8}$ of an inch thickness of plate and 51520 51520 lbs . tensile strength:

$\begin{array}{r} 515: 0 \\ 7 \end{array}$	
8) 360640	
45080	
$\begin{gathered} 144) 90160(626 \\ 864 \end{gathered}$	$\begin{aligned} & 626 \\ & .70 \end{aligned}$
376	100) $\overline{43820}$
288	--
	6)438.2
8 SO	
864	73 lbs. working pressure per
- 16	square inch.

Taking tensile strength at 60000 lbs . per square inch, and a $\frac{1}{4}$ of an inch plate, 42 inches diameter boiler; find pressure that may be carried according to the above method.
4) 60000

15000
2
42) 30000 (${ }^{2} 14$

294
.. 60
42
180
168
83.3 lbs. working pressure per square inch.

MANUAL OF ENGINEERS' CALCULATIC NS.
Taking 50400 lbs. per square inch tensile strength $7^{\prime \prime}$ plate, 12 feet dianieter:

50400	
8)352800	
44100	
2	
$144) 88.00$	
864	612
-	. 70
180	(2)
144	6) 428.40
360	71.4 lbs per
288	did per square inch working
72	pessure.
72	

USEFUL QUANTITIES.

The following are sufficiently correct for all practical pur-
One gallon equals not scientifically accurate: one cubic foot. One gallon cubic foot, or $6 \frac{1}{2}$ gallons equals pounds. Thirty-five (35) cubic feet of water weighs ten (10) (1) ton. One cubic foot of fresh feet of sea water weighs one 1,000 ounces. One cubic foot of water weighs $62 \frac{1}{2} \mathrm{lbs}$., equals four pounds. One ubic foot of salt (sea) wat $62 \frac{1}{2}$ los., equals cubic inches make one an sea water weighs make one cubic yard one cubic foot; tweughs $10 \frac{1}{4}$ lbs. 1,720
he ratio of expansion of steam, etc. A short rule for the ratio of guins of expansion is, add 37 to steam pressure of gauge, and divide by 22 , equals the proper ratio of the expansion. divide Cy 22 , equals the proper
Example. $-90+37=127 \div 22=5.77$ best ratio of expansion.
ulaticns. θ strength $7^{\prime \prime}$ plate,
per square inch orking pressure.
practical pur-
rallons equals ighs ten (10) r weighs one $\frac{1}{2} \mathrm{lbs}$., equals weighs sistylbs. 1, 72\%8 1 cubic feet
manual of engineers' calculations.
Tensile strength: If a bar, $1^{\prime \prime}$ square, of iron is torn asunder by a strain of 4,500, what force will be required to break a bar
3^{3} square?

$$
\begin{array}{lllll}
1^{\prime \prime} & : & 3^{2} & : & 4,500 \\
1 & : & 9 & : & 4,500
\end{array}
$$

9

1) 40,500
$40,500 \mathrm{lbs}$.

Calculate the weight of an iron ball six inch by six inch diameter.

$6^{\prime \prime}$	
6 '	. 1377 constant number 216
36	
6	8262
	1377
216 culbe of ball.	2754
	29.7432 lbs weight.

Now as this is only a little over one quarter of a pound too heary, it may be used with a good deal of certainty when scales are not handy, or the ball not easy to remove, etc.; for a $6^{\prime \prime} \times 6^{\prime \prime}$ iron ball weighs by scale 20.484 lbs. and by calculation 29.7432 lbs., showing a little over a quarter of a pound in error.

To what height must a safety-valve, $s^{\prime \prime}$ diameter, be lifted to allow a free escape of steam equal to area of valve?

Rule :

$$
\begin{gathered}
\frac{d^{2} \times .7854}{l} \times \frac{d}{3.1416}=\frac{-}{4} \\
.8 \times 8=\frac{64 \times .7854}{8 \times 3.1416}=\frac{50.2656}{25.1328}=2^{\prime \prime} \text { or } \frac{8}{4}=\frac{48}{2^{\prime \prime} \text { height. }}
\end{gathered}
$$

To what breadth of opening must a five-inch safety-valve riseto allow the escape of $9,200 \mathrm{lbs}$. of steam per hour at 72 lbs.. pressure per square inch? Then

72 : $60:: 87$
Total pressure, $\overline{87}$!bs. por sq. inch. $\quad \frac{87}{4 \% 0}$
480
$7 2 \longdiv { 5 0 2 0 }$
74.57

60 per min.
$44 \% 4.2: 9200:: 1 \mathrm{sq}$. inch $=2.05 \mathrm{sq} .20 \mathrm{lbs}$. per hour.
$2.0501 \quad . .1$ sq. inch $=2.05$ sq. inch escupe.
$3.1416=1.308$ of an inch lift, o. fof an inch.
Then, $4474.2: 9200:: 1=2$ square inches $=1^{\prime \prime}$ in opening.
rule in full for the Weigilt on tire enj of Method of calculating the. . 7854 ; the product will be t of the diameter of the valve by 2nd. Multiply the area the area of valve. inch ; the product is the are of valve by the pressure per square
3rd. From this product or ure on valve, or upward pressure. the sum of the weight of or upwald prossure (2nd) subtract downwards; the remainder is the lever and valve or pressure.
4th. Multiply the reinainde tffective pressure on the valve. crum to valve and divide by dier (3rd) by distance from fulthe quotient is the weight required from fulcrum to weight;
Example. - Required the weight to be pate a safety-valve lover to be equal to 25 be placed on the end of the valve, the distance from the folbs. per square inch of valve to weight $2 \overline{5}$; valve $37^{\prime \prime}$ fulcrum to valve $4^{\prime \prime}$, from lbs., 8 oz . ; valve, 3 libs. 8 oz. 8 diameter. Weight lever, 24 $3.875^{2} \times .7854=11.7932$. 294.83 lbs . pressure on valuea of valve $\times 25 \mathrm{lbs}$. pressure $=$. pressure on valve -27.875 lbs . Weights of lever $=$

MaNCAI OF ENGINEERA' CALCULATIONS.
37
nnd valve $=266.955 \times 4=106 \% .820 \div 29(25+41)=36 \frac{3}{2} \mathrm{lbs}$. weight required.

How to calculate the weight on a direct weighted safetyvalve when its diameter is $34^{\prime \prime}$; pressure 70 lbs . per square inch:
$3.25 \times 3.25 \times .7854 \times 7 \mathrm{C}=580.7 \mathrm{lbs}$. weight. Being very nearly $580 \frac{4}{4}$ lbs. direct weight required.

To find the weight to be placed on a double beat-valve to be equal to a given number of pounds, having diameter of valves given:

Rule.--Multiply the sum of the dianeters by their differences multiplied by. 7854 plus pressure equals answer.

Required the weight to be placed on double beat-valve to 8 equal 32 lbs. per square inch; the diameter of valves being

Then, $28 \times 6=2$ and $8+6=14 \times 2=28$
Then, $28 \times .785 \tilde{4}^{2}=21.9912 \times 32=70.3 \mathrm{lbs}$. required.

molworth's rule for the area of safety valve.

The grate surface in feet multiplied by 8 , what is the area of a safety valve for a boiler with 23.6 square feet of area of grate surface?

Then, $23.6 \times 8=18.88$ square inches, area of safety-valve by Molworth's Rule.

The following table of proportion of safety-valves gives areas, diameters, openings ard dimensions:

Area of valve...............	5	10	15	20	25	30
Diameter of upenings.....525	3.37	4.371	5.447	5.642	6.781	
Diameter of valve........76	3.77	4.58	5.28	5.86	$6.3 \% 5$	
Length of lever........25	30	35	40	45	47.5	
Distance of fulcrum.....2.5	3	3.5	4	4.5	4.75	

420

$$
\begin{gathered}
45^{2} \times .7854=15.904350 \text { area of valve. } \\
60 \\
9
\end{gathered}
$$

A safety-valve is loaded to 65 lbs . by direct weight of 990°
to 50 lbs ?

$$
\begin{aligned}
& 65 \\
& \frac{50}{15}
\end{aligned} \quad 65: 15:: 900=228 \frac{1}{2} \mathrm{lbs} .
$$

What is the stroke of an engine, the diameter of which is
30 inehes, pressure 23.2 lbs., revolutions 58, H. P of which is

$$
\frac{30^{2} \times .7854}{3.3000} \times \frac{23.2}{125} \times 58 \times 2=\frac{1902301}{41250.00}(\text { invert })=2^{\prime} 2^{\prime \prime}
$$

To compute the diameter of a stay bolt. Pressure 70 lbs. per square irch; distance apart of bolts 8 inches. What.
shond the diameter be?

$$
\begin{aligned}
& \frac{70}{530}=\sqrt{ } .01205=.1125 \times 8
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\frac{s_{0} 9}{70^{2}}=1.8 .5-889 \times 9=8 \text { inches apart. } \\
\\
9.26=8 \text { inches apart. }
\end{array}
\end{aligned}
$$

> 310 159
> 1510
> 1431
> 79

Ulations.

arety-valve. ed, with six 70 lbs . is 9 lbs. and spindles.
f valve.
(61.9 lbs. pressure.
weight of 990
reduce pressure
Is.
of which is P. 1:5?
$=2^{\prime} 2^{\prime \prime}$
ssure \%o lbs. les. What.
manual of engineers' calculations. 39
To find the boiler pressure. Diameter of cylinders being $23^{\prime \prime}$ and $45^{\prime \prime}$; length stroke $33^{\prime \prime}$; diumeter crank shaft $8^{\prime \prime}$. Rule :

$$
\mathrm{Sd}^{3}-15 \mathrm{SD}^{2} \mathrm{~S}-4936 \text { cr. and } 5660
$$

. $\mathrm{SH}^{2} \quad$ D dia. L. P. cylinder, II dia. of II. P. $5636 \times 8^{2}-15 \times 33 \times 45^{3}=2527 \% 32-10023 \%$ cylinder.
$=87.3 \mathrm{lbs}$. ; the answer.
Required the area of a circle the diameter of which is $1,(\mathrm{D})$. Rule.-Multiply radius by circumference aud halve the
Note.-The circumference of a circln being its diameter in the proportion to the radius as is 3.1416 (a number that we shall designate by H the Greek letter Pi) to $\frac{1}{2}$ and henco the truth of the above rule.

$$
\text { Here R. }=\frac{\mathrm{D}}{2} \text {, or } \frac{1}{2} \text {; the area is } \frac{1}{2} \times \frac{\mathrm{H}}{2} \text {, or } \frac{3.1416}{4}=.7854
$$

Then we find that .7854 is the area of a circle whose diameter is one inch ($1^{\prime \prime}$).
.7854 is called a decimal of an inch, or the decimal of a circular inch, a decimal inch, or a circular inch. It is used in all calculations containing area, etc.; as, $4: 3.1416:: 1=.7854$.

When you square a number and multiply it by . 7854 , you are getting its area.

If you double a number you increase its area four times. Any number to be multiplied by the decimal .25 if divided by 4 will give same result, cutting off two figures for decimal

How to calculate the diameter of a shaft, submitted simultaneously to torsion and flexure: from Prof. Mark's "Steam Engine." First.-Calculate the diameters for torsion and flexure singly.

Second.-If the diameter due to torsion be the greater, divide it by the sixth root of the expression, unity minus the quotient of the cube of the diameter dno to the torsion, and the result will be the required diameter.

Thirdly.- If the diameter die to flexure be the grcater, divide it by the cube root of the expression. Unity minus the quotient of the sixth power of the diameter due to torsion and the result will bower of the diameter due to flexure, Claudel gives the the required diameter. of the shaft to resist each lowing rule: "Calculate the diameter of the two value; if the largest siparately. Take the greatest of torsion, augment it by $\frac{1}{8}$ to diameter is given by the effort small value. The algebraic formula would stand thus:
$\begin{array}{l}\left\{1-\left\{\frac{d^{4} f}{d^{4}}\right\}^{3}\right\}^{-\frac{1}{6}}=\left\{1+\frac{d^{4} f^{3}}{d^{43}}+7^{7} 2\right.\end{array}\left\{\frac{d^{4} f}{d^{4}}\right\}^{6}+$ etc. $\}$
When flexure gives the $d^{4}=d^{4} t\left\{1+\frac{d_{4}^{3} f}{d_{4}^{3} t}+\frac{7^{7}}{2}\left\{\frac{d^{4} f}{d^{4} t}\right\}^{6}+\right.$ etc.
When flexure gives the greater diameter: inch of the safety valve, the that is on the valve per square weight of ball at end of lever valve being 5 inches diameter, inches, 3 inch fulcrum, 4 lbs. weigh lbs., length of lever 30 13.75 lbs . weight valve, etc., lever, etc.: 30 lever
Ful. 4)412.50
137.50

4
$32 \times .7854=7.0686) \overline{141.50}$
$141372(20 \mathrm{lbs}$. steam pressure per sq.
The weight 1280
inches fulcrum, effective weight of 16 inches long and 6

Culations.

xure be the greater, ion. Unity minus the meter due to torsion neter due to flexure, ter.
lculate the diameter 7. Take the greatest 8 given by the effort this rule gives too

$\left\{\frac{d^{4} f}{d^{4}}\right\}^{6}+$ etc. $\}$

$\left\{\frac{d^{4} f}{d^{4} t}\right\}^{6}+$ etc.
$\left.\frac{d^{4} t}{d^{4} f}\right\}^{14}+$ etc.
alve per square aches diameter, th of lever 30 etc., lever, etc. :

MANUAL OF ENGINEERS' CALCULATIONS.
:spindle, lever and spindle, etc.), and the area of valve 19.6350 what pressure, per sq. inch, of steam would be on valve.

Weight 112.7625 lbs , or little over $112 \frac{3}{3} \mathrm{lbs}$.
16 lever

Fulcrum 6) \begin{tabular}{c}

6765750
1127625

300.7000
\end{tabular}

92 lbs . effective weight.
Area valve 19.6350)392.7000(20 lbs. pressure steam per sq. $39: 700 \quad \begin{gathered}\text { pressure steam p. } \\ \text { inch on valve. }\end{gathered}$

0
0
Formula $W \times L+D W$
FA

Rule.-Weight multiplied by lever add dead weight and divide by fulcrum and area equals pressure.

What quantity of water will a feed pump deliver per hour, size pump $3^{\prime \prime}$ diameter, $14^{\prime \prime}$ stroke, 25 strokes per minute, $\frac{5}{8}$ full each stroke:

$$
\begin{aligned}
& 3^{2}=9 \times .7854=7.0686 \times 14=98,9604 \times \frac{5}{8}(\times \tilde{5} \div 8) \times 25 \\
& \times 60 \div 1728=53.689 \text { cubic feet. }
\end{aligned}
$$

What pressure would a smoke box $\frac{3^{\prime \prime}}{8}$ thick, stayed every '7", stand as a working pressure:

$$
\begin{aligned}
& 7 \times 7-6=43 \text { 咅 } \times \frac{6}{16} \\
& 6+1=7 \times 7=49 \times 100=4900
\end{aligned}
$$

$$
\frac{}{43}=114 \mathrm{lbs} . \text { (uearly) }
$$ length $6^{\prime} 9^{\prime \prime}$, plate $\frac{8^{\prime \prime}}{8^{\prime}}$ thick.

$$
\begin{aligned}
& 6^{\prime} .9^{\prime \prime}+1=7^{\prime} .9^{\prime \prime}=7.75 \times 37=286.75 \\
& 90000 \times 3 \div 8=33750 \times 3 \div 8=\overline{12656.20} \\
\therefore \quad & 12656.20 \div 236.75=44 \mathrm{lbs} . \text { per sq. inch. }
\end{aligned}
$$

Calculate the area of safety valve and diameter from thegrate surface, the area of grate surface being 25 square feet, the area will be just half $=125 \mathrm{sq}$. inches.
$\therefore .7854) 12.5000(15.91$
7854
46460 15.91
9 (3.98 diameter of valve. 39270

621 70686
788). 7000

12140
6304
7854

25 square feet grate surface $=12 \frac{1}{2}$ sq. inches area $=3.98$
ch diameter of valve.

rankine's rule for capacity of feed pump (abridged).

To provide for leakage of water and steam priming, blowing off and loss by the safety valves, the feed pump of a land engine should be of such capacity as to discharge from double to two and a half times the net feed of water required by the
engine according to

$$
\frac{.08: 85}{2.875}
$$

Temperature being. 257°, pressure $33.71 \mathrm{lbs}=4854 \mathrm{lbs}$. per square foot, ratio of cut-off 2.875 , and .08285 weight of a cubic foot in pounds, then the net feed water per cubic foot swept through by the piston would be .0248 lbs. $=.00046$ cubic foot mean effective pressure 18.25 lbs. square inch or 2629 los. square foot $\div 33000=12.55 \times 60=753$ cubic feet per hour for each indicated horse-power.
Then the net feed per indicated horse-power per hour:$.0288 \times 753=21.7 \mathrm{lbs} .=0.347$ cubic foot.
In marine engines a further addition to the capacity of the feed pump must be made to provide for the brine that is blown off or pumped out. Ordinary sea water contains $\frac{1}{32}$ of its weight of salt. Brine in boilers should never be allowed to rise much above double the strength of the ordinary sea water;
and for this the brine discharge should be equal to half the volume of the net feed water. The discharge capacity of the feed pumps of a marine engine, three or four times the volumeof the net feed water.

SOME EXERCISE IN DECIMALS FOR PliACTICE AND EXAMPLE.
Sometimes in reducing vulgar to decimal fractions the quotient never comes, as $\frac{1}{6}=.166666^{\circ}$-called a repeating decimal is written 16 and the 6 is called a repeater. Sometime instead of one figure repeating itself, as above, you will find two or more as $\frac{1}{3}=, 385 \% 14285 \dot{\%}$. This is called a circulating decimal and is $\quad 14285 \%$.

Bring $\frac{1}{3}$ to a decimal.

Bring $\frac{15}{16}$ to a decimal $=.9375$
4) 15.0000
4)5.7500
$.93 \% 5$ answer.
How many eighths are there in .114
$.114 \times 8=.912=$ near $\frac{1}{8}$ (one eighth).
How many sixteenths are there in .198-answer 3.
$.198 \times 16=3.168$ or a little over $\frac{3}{16}$.
Multiply .00072 by $.0502=.050036144$.
Multiply $.0002 \times .00101=.000000202$.
To reduce 8 inches to a decimal of a foot.
Rule.-Add a cypher and divide by 12.
$12) 8.00$

$$
.666+\text { or } . \dot{6}
$$

Reduce 7 feet 7 inches to decimal of foot equals 7.583 feet.
To find the Mean Pressure throughout the stroke, steam working expansively.

Sum: Steam is admitted into the cylinder at 65 lbs. per square inch, abuve the atmosphere and is cut off at $\frac{2}{3}$ the stroke required, the mean pressure on piston throughout the stroke, supposing the vacuum to be perfect.

Cut off $\frac{2}{6}=\frac{4}{10}$ and also .4 decimally expressed.
Then,

10)613.aั9440
.768253

Value of ordinates above the cut off are each $=.1$ except first $=.05$.

Value of ordinates below cut off found by divide crit off decimally expressed by numcut off.
$61.3 \ddot{6} 944 \mathrm{lbs}$. mean pressure
15 vac. +65 lbs. sieam $=80$ lbs. total pressure per sq. inch. 61.460240 lbs. mean pressure per sq. inch throughout stroke.

NOMINAL HORSE-POWER.

What is the nominal horse-power of an engine when the diameter of cylinder is 54 inches, stroke 35 , revolutions per
minute 30 .

$$
\begin{aligned}
& \mathrm{D} 2 \mathrm{~V}\{\mathrm{D} 2=\text { square of diameter of cylinder. } \\
& \overline{6000}\left\{\begin{array}{c}
\mathrm{V}=\begin{array}{c}
\text { velocity, or travel of piston per minute } \\
\text { in feet. }
\end{array} \\
\hline
\end{array}\right. \\
& 54^{2} \times 180 \\
& \overline{6000}=87.48 \mathrm{~N} . \mathrm{H} . \text { P. }
\end{aligned}
$$

This for
wheel steamers.
How many bolts $1 \frac{1}{2}$ inch diameter are required for a cylinder cover 60 inches diameter, the boiler pressure 50 lbs. per square
inch, the strain (bolts measuring from thread) not to exceed 2000 pounds.

$$
\frac{60^{2} \times .7854 \times 50}{15^{2} \times 7854 \times 2000} 40 \text { Bolts. }
$$

Tensile strength: If a bar of iron one inch square is tornasunder by a strain of 23 tons, what force will be required tobreak a bar 3年":

$$
3.75 \times 3.75 \times 51520(-2240 \times 23\rangle=7245021 \mathrm{lbs} .
$$

How many cubic feet of water will be extracted in an hourby a brine pump 3 ins. diameter, and 10 inches stroke, making 18 revs. per minate, the pump being $\frac{2}{3}$ full each stroke.
$3^{2} \times .7854 \times 10 \times 2 \div 3 \times 60 \times 18 \div 1728=29.45$ cubic feet of water extracted by this size pump in an hour.

How many gallons of water are required for a steam boiler per horse-power, per hour, say at 60 lbs. pressure.

At the Centennial Exhibition, Philadelphia, at tests, trials, etc., thirty (30) lbs. of steam per horse-power per hour was taken as the standard. This is a little less than half a gallon, but it depends much on the character and condition of the engine throngh which the steam is worked. The quantity of water may vary from one third ($\frac{1}{3}$) of a gallon to two-thirds $\left(\frac{2}{3}\right)$ of a gallon and even one gallon in a very bad engine.

STAYs.

A boiler $10^{\prime} 6^{\prime \prime}$ long $9^{\prime} 7^{\prime \prime}$ wide, how many stays $1 \frac{1^{\prime \prime}}{}$ diameter will be required, each stay to bear 6000 lbs. per square inch, steam pressure 24.34 lbs.

$$
\begin{array}{r}
10^{\prime} 6^{\prime \prime}=126 \\
9^{\prime} 7^{\prime \prime}=115
\end{array}
$$

14490
24.34
6000)352686.60

Area stay 1.769)58.78
1.767 area of stay.
33.26 number of stays. 20.8% ins. centro tays. 6000 lbs. prese to centre.
on stay. pressure allowed 24.34 steam
square inch. pressure per
408)3560

3264
4167)29600

29169

RULES for the nominal horse-power of engines.
Rules in general commercial use:-
Low pressure engine, Diameter cyldr. in inches ${ }^{2}$ velocity piston.

$$
\begin{aligned}
& \text { or, } \frac{D^{2} \times V}{6000}=\text { N.H.P. } \quad \text { Siay } \frac{54^{2} \times 180}{6000}=87.48 \text { N.H.P. } \\
& \text { the speed of the niston. }
\end{aligned}
$$

As the speed of the piston increases
th proportion, nearly, as the cube roses with length of stroke horse-power can sum, and any low pressure length of stroke, following method: calculated correctly engine's nominal $D^{2} \times$ cube root of stroke $q u i c k l y$ by the $D^{2} \times$ cube root of stroke High pressure engine: diam. cyldr. ${ }^{2} \times$ cube root stroke

Compound Engine:- $\quad 15.6$
Rule-Squar the
N.H.F
the square of the high diameter of low pressure and add to it and it will give the nominal horse-power, divide by 30 , or by 32

Watt's Rules for engines:-
Diameter of cylinder ${ }^{2} x$
which may be abbreviated 33000

HORSE－POWER．

The following remarks on horse－power，abridged from an excellent little work by Robt．Grimshaw，M．E．，will be interest－ ing and somewhat novel．
＂In order to calcuiate the horse－power of an engine we must have，or know the following elementa：

Mean effective pressure，length of stroke，area of and piston rotation，（or，number of revolntions per minute）．The deduction from friction，leakage，cylinder condensation，etc．， varies．The larger and better the engine and the better its condition，the less the allowance．As a rough figure，say from 20 per cent．down to $12 \frac{1}{2}$ per cent．；or $\frac{1}{5}$ to $\frac{1}{8}$ ．
＂As the horse－power＇of an engine depends upon so many elements，this question cannot be answered in a gencral way．＂ （How large an engine will give，say， 18 horse－power．）
＂The following list shows a number of engines and con－ ditions that will yield in theory， 18 horse：

				$\begin{aligned} & \text { 4i } \\ & \text { 픙 } \end{aligned}$							
6	18	209）	． 05	． 625		10.4	60.22				
6	18	$\because 00$	． 02	． 25		818.4	60.22 60.2%	988		52． 5	18
9	9	190	． 0 \％	．（\％）5		290	（	（60	4	ご2．5	18
9	9	190	． 02	．ヵ．）	3.78	¢1．i		66	\％． 7	32． 7	18
10	10	180	． 05	． 625	156	20．8		66 35	4.6	39．7	18
10	10	180	． 02	． 2 i	3\％	－30．8 34	32．11	35	7.7	25.2	18
9	9	190	． 05	． 25	3.8 1.56	－ 4934		5． 4	\％ 7	$\because 52$	18
7	12	97	．（12）	． 25	1.50 378	3934 80.	87	O2	17． 7	35	18
	12	J	．02	． 25	378	80.	87	9＋．7	7.7	17	17.98

MEAN EFFECTIVE PRESSURE．

Mean effective pressure is generally expressed in pounds per square inch，length of stroke in feet，piston area in square inches and rotation speed in times per minute．

The＂factor of horsc－power＂is a conventional term not much used in the East，and means the products of mean effective pressure and area，and speed of the steam piston by 33000．Thus when the area of piston is expressed in square inches，and its speed in feet per minute，the so－called＂factor

48

of horse-power" multiplied by the mean effective pressure in pounds per square inch gives the horse-power of the engine. required to raise 33000 lbs. such as we reckon by, is the power lbs. one foot high in a second, or 1,980 high a minute, or 550 . One cubi ing inch and making 1.641 er evaporating at $14 . \% \mathrm{lbs}$. per squa would in a vertical cylinder of inches of steam, at $212^{\circ} \mathrm{F}$, lbs. $16415-1=1640.5$ inches $=13$ onqure inch bore raise 14. 7 $=2009$ foot pounds of work; supposing feet, doing 14.7×1367 acid, 14000 its complete and perfosing one pound of coal to $=11008000$ heat units, this is the equivalention, to carbonic Equal 11008000 pouds, aud this quivalent of 14000×772 Equal \qquad
$33000 \times 60=5.56$ horse-power if exerued in 1 hour. If exerted in one minute it would be 11008000 $33000=333.6 \mathrm{H} . \mathrm{P}$.

HOW to calculate the external pressure on flues, etc. The Steamboat inspection Act and Rules, 188:, give the following data to work from:
'The external working pressure to be the furnaces and flues subjected to such to be allowed on circular tudinal joints are welded, or made wressure, when the longidetermined by the following formula:-
"The product of 0 wing formula:thickness of the plate in inches-diplied by the square of the or furnace in feet plus 1 , multiplied bed by the length of flue will be the allowable working pressur by the diameter in inches, provided it does not exceed that pressure per square inch in lbs." "The product of 8000 innltiplind by the following formula: plate in inches, divided by the diam by the thickncss of the inch in pound be the allowable wiameter of the furnace or flue inch in pounds." being the distance the furnace to be used in the first formula, rings; and that one of the two ring, if the furnace is made with pressure being the one by which the torm which gives the lowest page 8, section 17, sub-section 7 .

$$
\text { Formula } \frac{90000 \times t^{2}}{D \times L+1}=P=\frac{90000 \times .25}{39.6}=96.15 \text { lbs. pressure. }
$$

Rule.-Multiply the decimal thickuess of plate by it,elf and this product by 90000 (or 60000 , etc., as case may be, vile s. 13 Inspection Act of 1882, page 28, section 27), and divide the amount by the product of the diameter of flue or furnaco in inches multipled by the length in feet with one added to it. Example:-Thickness of plate being $\frac{1}{2}$ inch and the furnace 3 feet 3 inches diancter, 5 feet long, what pressure is allowable, according to "'S. I. I. Act '82.",

oressure.
$=333.6 \mathrm{H} . \mathrm{P}$.

J FLUES, ETC. 38%, give the on circular uthe longirap, shall be
lare of the igth of flue r in inches, oh in lbs. g formula: CSs of the ace or flue er square
formula, ade with he lowest guided:
ations.
ective pressure in of the engine. by, is the power minute, or 550 is. one foot high
lbs. per squa:e am , at $212^{\circ} \mathrm{F}$, 1 bore raise 14.7 ing 14.7×1367 und of coal to on, to carbonic of $14000 \times 7 \% 2$
din 1 hour.

Second Example:- What is the pressure allowable on a flue, plate, mado in best mammer, etc.: 9 feet 9 inches long, of $\frac{8}{8}$ inch

$\begin{aligned} & \text { 2nd melhod. } \\ & 8000 \\ & .3 \% 5 \end{aligned}$
40000
56000
24000
37) $3000000(81 \mathrm{lbe}$
296
40
37
-
3

35500
28675

68250
57350
109000
114600

Candidian rule for nominal honse-power. How to calculate the nominal horse-power as applien to grading of engineers, in Act of 1882 . Rule for ordinary condensing engines: square the diameter, nominal horse-power of cylinders and divide by 30 , equals the Calculate the power. engine.

Formula $\frac{D^{2} \times N}{30}=$ nominal horse-power
Then, diameter cylinder $25^{\prime \prime} \times 25 \times 1 \div 30=20.8$ nominal
horse-sower.

Lations.
allowable on a flue, es long, of of incl
and method. 8000 .375
40000
56000
24000
3000000 (81 lbs.
96 pres.
40
37
3

OWER.
applied to de diameter, , equals the
condensing
noninal

$$
\begin{aligned}
& 30 \times 30=900 \\
& 17 \times 17=289
\end{aligned}
$$

30) ${ }_{90}^{1189(39.6}$ nominal horse-power. 90 289 270 190
MANUAL OF ENGINEERS' CALCULATIONS.
Rule for compound condensing engines: the square of the low pressure cylinder in inches added to the square of the high pressure cylinder in inches or by the following:

$$
\frac{\left(D^{2} \times N\right)+d^{2} \times u}{30}
$$

$\mathrm{D}=$ Diameter of low pressure cylinder in inches.
$\mathrm{d}=$ Diameter of high pressure cyliader in inches.
$\mathrm{N}=$ Number of low pressure cylinders.
$\mathrm{n}=$ Number of high pressure cylinders.
What nominal horse-power would a compound engine be, low pressure cylinder 30 inches, high pressure cylinder 17 inches: 180 10

NOMINAL HORSE-POWER.

The following extract from Turubull's "Short Treatise on the Compound Steam Engine" explains the nominal horsepower of steam engine in a sensible and comprehensible

[^2]spe feet per minute. But as both the working pressure and speed of piston have been greatly increased gine pressure and the actual capacity of the ents to carry any adequate idea of connected with the purche engine. Still, in all negotintions it is nominal horse-power alone a steam engine, it is as a rule, and anderstood that with a pre that is referred to, although times the nomeed of abont 400 fe, say of about 60 pounds, engine. Dominal horse-power is per minnte, fully six
got from a condusing speaking of the steam enginorse-power' is only used when particulur size of cylinder may a marketable commodity, a and unfair comaker, and different called a certain nominal turers, offering for sition often takes planal powor by another, engine one of whom say an eighty horse by two manufacdiameter, whilst the means to give a cylinder condensing nominal power. The other ealls a 40 inch eylinder 50 inches in country to determine rules now gencrally eylinder the same of steam engines are as fominal power of theded in this "Rulo to find the as follows:- of the different kinds non-condensing steam eningal horse-power of a high pressure ing inches, and divide by twelve, syuare the diameter of cylinder called a 75 with a cylinder equal to 30 say, a non-condensof giving out at power engine nominal, althehes diameter, is of say 60 pounds icast three tinues the pownongh it is capable feet per minute. piston speed equal to 400 condensing engine: syominal horse-power of a single cylinder engine with an 24, that is to say, ther of cylinder in inches, power engine nominal to 30 inch cylinder a condensing steam six times its nominal but is capable of wolled a $37 \frac{1}{2}$ horsespeed of piston equal power with 60 working to at least "The rule now equal to 400 feet per minute pounds pressure and the nominal now generally adopted by nute.
of the diameter of a compound en marine engineers fordivide the sum by 30 each cylinder in ins: add the square condensing cylinder is that is with a com inches together, and cylinder 17 inches is 30 inches diameter and engine whose compound engine nomiameter; is called, and high pressure at least six times nominal, and is also cap a 40 horse-power speed of piston equal tower with 60 pounds of working to er piston equal to 400 feet per minute." pressure and

ULATIONS.

orking pressure and ased since the above ny adequate idea of , in all negotiations ngine, it is as a rule ferred to, althongh of about 60 pounds, r minute, fully six from a condunsing
8 only used when ble commodity, a a certain nominal power by another, by two manufac ower condensing ider 50 inches in rlinder the same adopted in this θ different kinds
a high pressure eter of cylinder a non-condenses diameter, is gh it is capable hen a pressure equal to 400
ingle cylinder der in inches, ensing steam a $37 \frac{1}{2}$ horseto at least ressire and agineers for the square gether, and gine whose h pressure orse-power vorking to ssure and

The following eircular issued by the Board of Stemmboat Inspection, of Camada, in regard to rules for calculating nominal horse-power as therein abridged explains itself:
" Inspectors of steamboats are to substiteto tia Imperial Board of Trade rules for estimating the nommal hors?-power of marine engines in place of Bourne's ru es heret pore in

For ordinary condensing engines,
$\mathrm{D}=$ diameter of cylinder in inches.
$\mathrm{N}=$ number of cylinders.
Then, $\frac{D^{2} \times N}{30}=$ nominal horse-power.

For compound eondensing engines,
$\mathrm{D}=$ diameter of low pressure cylinder in inches.
$\mathrm{d}=$ diameter of high pressure cylinder in inches.
$\mathrm{N}=$ number of low pressure eylinders.
$\mathrm{n}=$ number of high pressure cylinders.
Then, $\frac{\left(\mathrm{D}^{2} \times \mathrm{N}\right)+\mathrm{d}^{2} \times \mathrm{n}}{30}=$ nominal horse-power.

How to calculate the horse-power from grate surface.

There are three boilers with three furnaces each, the diameter of each fire grate is 3 feet 3 inches: how many tons of coal will be consumed per day? how many horse-power will be indicated?

This question depends upon the fact that 1 ton of coal is considered to be burnt for every font's width of fire-bars and that $2 \frac{1}{2}$ pounds of coal per hour equals one horse-power.
$291 \times 2240 \div 24=2730 \mathrm{lbs}$. per hour.
\therefore I. H. P. $=2730 \div 2.5=1092$ I. H. P.,

2.5)2730.00(1092 indicated horse-power. 25

230 225

50
50

Answer: $: \begin{aligned} & 294 \text { tons of coal per day. } \\ & 2730 \text { lbs. per hour. } \\ & 653: 0 \text { lbs. per day. } \\ & 1092 \text { indicater horse-power. }\end{aligned}$

PRESSURE ALLOWAD ON COMBUSTION BOX.
How to calculate the pressure allowable per square inch on combustion box or chainber.

When the top of combustion chamber, bozes, or other parts.
of a boiler, are supported by solid rectangular girders, the following formula, which is used by the Board of Trade, will be useful for finding the working pressure to be allowed on the girders, assuming that they are not subjected on the, or, to a greater temperature than ordinary heat of stean and are further sustained by hanging stays as provided by section 12 of the Act and in case of "combustion," that the ends are fitted to the edges of the tube plate and the back plate of the combustion box.

$$
\frac{\mathrm{O} \times \mathrm{d}^{2} \times \mathrm{T}}{\mathrm{~W}-\mathrm{P} \times \mathrm{D} \times \mathrm{L}}=\text { working pressure }
$$

$\mathrm{W}=$ width of combustion box in inches.
$\mathbf{P}=$ pitch of supporting bolts in inches.
$D=$ distance between the girders from centre to centre in inches.
$L=$ length of girders in feet.
d = depth of girders in inches.
$\mathbf{T}=$ thickness of girders in inches.
$\mathbf{C}=500$, when girder is fitted with 1 supporting bolt.
$\mathbf{C}=750$, when girder is fitted with 2 to 3 supporting bolts.
$\mathrm{C}=850$, when girder is fitted with 4 supporting bolts.

The working pressure for the supporting bolts and for the plate between them shall be determined by the rule for ordinary stays.

Depth girder in inches, 5 ; thickness of girder 2 inches, width of combustion chamber 36 inches, distance between girders 8 inches, length of girder 3 feet, pitch 8 inches:-
56
mantal of engineers'
$\begin{aligned} \text { Then } C & =\frac{750 \times 5^{2} \times 2}{36-8 \times 8 \times 3} \\ 36 & =W 5.8 \mathrm{lbs} . \text { pressure. }\end{aligned}$

$$
\frac{51840}{81600}
$$

$$
\begin{array}{r}
81600 \\
7 \geqslant 5 \% 6
\end{array}
$$

$$
\overline{90240}
$$

$$
8: 944
$$

$$
72960
$$

$$
7 \because 576
$$

What quantity of water will a feed pump deliver per hour; size of pump 3 inches diameter and 14 inches stroke, 25 strokes per minute, 学 full each stroke:
$3 \times 3=9 \times .7854=7.0686$ area of pump.
7.0686 area $\times 14=989604$ contents.
98.9604 contents of pump in cubic inches $\times \frac{5}{8}$ (which is $98.9604 \times 5 \div 8) \times 25 \times(6 \div 1728=53.68$ cubic feet per hour.

What diameter should the safety-valve be for a boiler containing two furnaces three feet diameter and $5 \frac{1}{2}$ feet long:

$$
5 \frac{1}{2} \mathrm{ft} .=5.5 \text { length of grate surface. }
$$ 3 feet diameter grate surface.

$16.5 \mathrm{sq} . \mathrm{ft}$. grate surface in one furnace. 2
2) 33.0 sq . ft. of grate surface in boiler.
16.5 area in sq. inches for safety-valve.

Area of safety-valre:
.7854)16.5000000(21.0084
$15 \% 08$

$\begin{aligned} & 7020 \\ & 7854 \end{aligned}$	$\sqrt{21.008}$ 16
66000	85) 500
62832	425
31680	908)7584
31416	7264
264	320

Abbreviated: $-5 \frac{1}{2} \times 3 \times 2 \div 2 \div .7854=\sqrt{ } 21.0084=4.58$; or, $4 \frac{1}{2}$ inches diameter of safety-valve for a boller with above area of valve or 33 square feet of grate surface.

IIOW TO CALCULATE THE THROW OF THE ECCENTRIC,

The size of steam port and lap of valve being given. What is the throw of the eccentric, the steam port being one inch and lap half inch:

$$
\begin{aligned}
& 1+\frac{1}{2} \times 2=3 \text { inches throw of the eccentric, etc., which is: } \\
& \text { ouble port and lap. } \\
& \text { Red's "Handbook" formula fors. }
\end{aligned}
$$

double port and lap.
Rced's "Handbook" formula for rectangular cross bars for combustion chamber crewns:-
$B=$ boiler pressure .
$D=$ distance apart of bars.
$L=$ length of bars.
$d=$ depth of bars.
$t=$ thickness of bars.
Then, $\frac{12000 \mathrm{~d}^{2} \times \mathrm{t}}{\mathrm{DL}^{2}}=\mathrm{B}$

$$
\text { Or, } \frac{12000 \times 8^{2} \times 17}{16 \times 30 \times 30}=100 \mathrm{lbs}
$$

WHAT IS POWER.
Power, in mechanics, is the prodnct of pressure and! velocity, etc.
pressure acting at a certain The effect produced by running motion is power.
steel for safety-valve spring. spring safety-valves, if found of which the spring is made in. $3 \sqrt{ } \mathrm{~S} \times \mathrm{D}$ $S=$ the load on the spring $\quad=d$
$D=$ the diameter of spring in pounds.
$d=$ the diameter of the spring in inches.
$\underset{C=8000 \text { for round steel. }}{\mathbf{C}=10000 \text { square of wire in inches. }}$ $C=10000$ for square steel.
The diameter of are steel. inches, pressure sixty pring loaded safety-valve is to be five spring five inches; what musts, mean diameter of the se fire $\left(.7854 \times 5^{2} \times 60 \times 5\right) \frac{1}{3}$ the diameter of the steel?
$8000-9$ of an inch.

ITIONS.
c, etc., which is:
ar cross bars for.

ressurs and at a certain

 is made ine rmula:-Page is.

USEFUL INFORMATION ON HYDRAULICS.

A gallon of water (U. S. standard) weighs $8 \frac{1}{3}$ pounds and contains 231 cubic inches.
A. gallon of water (British standard) weighs 10 pounds aac contains 277 cubic inches.

A cubic foot of water weighs $62 \frac{1}{2}$ pounds, contains 1728 cubic inches, or $7 \frac{1}{2}$ gallons; 64 gallon in a cubic foot.

Each nominal horse-power of boilers require one cubio foot. horse-power.

In calculating horse-power of steam boilers consider for
Tubular boilers 15 sq . ft. of heating surface equal to $1 \mathrm{~h} . \mathrm{p}$. Flue boilers 12 sq. ft. of heating surface equal to $1 \mathrm{~h} . \mathrm{p}$. Cylinder boilers 10 sq . ft. of heating surface equal to $1 \mathrm{~h} . \mathrm{p}$.

Salt water weighs more than fresh according to density.

BOILER-MAKING BY A BOILER-MAKER.

To get the thickness of plate for a given pressure the formula is, $\overline{C J}=t$; which means to multiply the pressure by the diameter and divide by the sum of the constant multiplied by the per cent.
$78.125=$ pressure
$48=$ diam.

The formula to get the per cent. of rivet to solid plate, is $n a$ $\overline{p t}=Z$, which means to multiply the number by the area and divide by the sum of thickness of plate, multiplied by
pitch of rivets. Example : pitch of rivets. Example :
$.3125=$ thickness.
$2=$ pitch.
.6200
.6250)

20796
56250
546
These rules give a low per cent. of joint and rivet, bat there
is no doubt, if they were followed un, that rivet, but there safe; but I am sure there are but few, that think would be could get 97^{7} lbs. pressuription. By United States law we sile strength $(44,800)$. Tho same size boiler with same tenof plate in inches by one-sicule is to multiply the thickness vide the product by the radius of the tensile strength and dimany rules, and all different, a man is. Where there are so judgments are work according to his own very apt to throw them made by "judgment", Witness the b judgment, but some from ten to fifteen in You will find them (how much stress brehes apart and often (the braces) spaced tween centers: Theaces will have to bear more. Let us see by the pressure will square of ten is 100 , and ten inches bewill be intended, perhat the strain on the brace multiplied gives 10,000 ; ten thaps, to carry 100 lbs . Thace. The boiler tain. If 150 lbs . is onsand pounds that the Then, 100×100 Possibly the brace will the boiler, there would bee has to susnot to have more will be of $\frac{3}{4}$ or $\frac{7}{3}$ round brace. Now the than 6000 lbs . to the square. The rule is quite half a square inea of $\frac{3}{4}$ round iron is only inch of area of over half a square inch for the $\frac{3}{4}$ round branly 4417 , or not men, they will "pooh for a $\frac{7}{8}$. If this is pace, and but little feet, or angle, or pooh-pooh" at it, and aspointed out to some angle, or tee-irons take up some of the space! whow-

TIONS.
o solid plate, is ber by tho area multiplied by
s.
ompared lid plate.
at, but there y would be k anything tes law we same tenthickness th and dilere are so row them but some ne boiler's es) spaced et us see tehes beultiplied de boiler 00×100 s to sus000 lbs. rule is area of or not t little 0 some crowWhat
if it does? The strain goes through the brace first and last, and if it does not hold, the erowfeet won't keep the head in. If boiler-makers would adopt some one safe rule, and work by it, their boilers would be better. Supposing we take 6000 as the standard (Wilson gives 4000), and, as most all stationary and portablo boilers are tested to 150 lbs . cold water pressure, use that pressure to work by. Now, if $1^{\prime \prime}$ round iron is used for braces, we ean put them $6^{\prime \prime}$ apart, and be safe. The square of 6 is 36 , and that multiplied by 150 gives 5400 lbs. per square inch, and as the square of one inch round is . 7854 we would have the brace about right-that is, with iron of good
quality.
There are some who will not believe that there is any more on the braces than what the gango shows, or that there is any more in the whole boiler. There are other times when you will see braces put close together about the eentre, or just. above the tubes, and a space of $9^{\prime \prime}$ to $12^{\prime \prime}$ between braces and flange of head. That is, I consider, robbing Peter to pay Panl. Many think if the centre of pressure is seeured, the boiler is all right. I got taken in on that plan myself, once, but only onee. It was at a timo when we were rushed with work, and thought I would try it, for one boiler, to see how it would work, but before I got the full test on I wished I had not done it. When there was only 120 lbs. on, I could seethe space above the braces dishing out. I did not wait to measure how much it came ont, but put five more braces on each head, where, if I had had common sense, I would have saved four braces, or two on each head; but I was made to understand that there was as muoh pressure near the flange as there was in the middle, to the square inch. The flange certainly stiffens around the heel and a little away from it, but unless it is properly done it does not strengthen, but quite the reverse. Some flange-turners may be seen knoeking the flange in and out abont a half dozen times before it suits them, and they only stop because it is too cold. Even when the flange is cold they take a heavy sledge and drive the flange out or in. If the head broaks under this usage it is the fault of the iron or steel, rnd? chose heads will be sent back to the mill and others had is their place. The mill has. to replace stuff that won't stand working! The greatest care should be taken with all flanging, as it is generally the weakest that has to stand the most strains, and as domes, drums, and boiler-heads, are never proportionate to the strength of ${ }^{-}$ shell, they should be well braced.
calculations.
(atind the clbic feet of steam used in cylinder. Example. - How many cubic feet of storia whil be used per hour by a pair of engines malcing forty-seven whil be used per
minute, the diameter of the cylinder beine the stroke forty-two inches, cylinder being forty-two inches, from the beginning.

328184353.728 cubic ing.

328184353.728

JLATIONS.

USED IN CYLINDER.
in whil be usod per en revolutions per forty-two inchos, ig $\frac{1}{2}$ of the stroke

MANUAL OF ENGINEERS' CALCULATIONS.
63
FIND THE WEIGHT OF BOILER PLATE.
Example.-A boiler plate 6 feet 9 inches long, 4 feet 6 inches wide and $\frac{\pi}{8}$ of an inch thick, find the weight:

Length 6 feet 9 inches \times width 4 feet 6 inches \times thickness.

Length 81 inches. Width 54 "

$$
\begin{aligned}
& 3.6\left\{\begin{array}{l}
6) 1640.25 \\
6 \lcm{273375}
\end{array}\right. \\
& 28\left\{\begin{array}{l}
\text { 4) } 455.625 \\
7) 113-3
\end{array}\right. \\
& \text { 4)16-1 } \\
& \text { 4. } 07 \frac{1}{2} \\
& \text { cwt. qr. lbs. }
\end{aligned}
$$

Since the plate in questi contains 1640.25 cubic inches, and 3.6 inches of wrought ir. weighs 1 lb ., on dividing the former quantity by the latter, the weight in pounds of the plate is found as above; since one square foot of wrought iron weighs 5 lbs. for every $\frac{1}{8}$ of an inch of thickness; then $\frac{3}{8}$ inch of plate will weigh 15 lbs. per square foot; hence, by multiplying the square feet of plate by 15 we obtain the weight in pounds.

$$
\begin{aligned}
& 9 \text { inches }=9 \frac{1}{2}=.75 \\
& \therefore 6 \mathrm{ft} .9 \text { ins. }=6.75 \mathrm{ft} \text {. } \\
& 4.0 \\
& 33 \% 5 \\
& 2 \% 00 \\
& 30375 \text { sq. feet. } \\
& 15 \\
& 151875 \\
& 303 \% 5 \\
& \text { Weight of piate }=455625 \mathrm{lbs} \text {. }
\end{aligned}
$$

64

Manual of fawners' calculations.

HLLE For AMOUNT OF heating surface in boiler. Example. -Required the heating surface in the tubes and 8 feet 3 inches in boiler, the tubes being st it inches in diane and 19 feet 8 inches long, by 8 feet 7 inches wide. and the plates
Heating surface of tubes $=2.5$ inches $\times 3.1416 \times 90$ inches
$462=5.1416$ $\times 462=$

$$
3.1416
$$

2.5 inches diameter.

157080
6283:
7.85400

3068600

 T0686007\%\% 54600 heating surface of one tube. 462 number of tubes.

$$
\begin{gathered}
1555092 \\
4665276 \\
3110184
\end{gathered}
$$

359220.252 heating surface in tubes.

To find the area of plates:
Length 19 ft. 8 ins. $=$
Width 8 ft . 7 ins. $=$

> Area of plates, Area of tube's mouth,

Heating surface 1 plate,

Heatiug surface 2 plate,

CLEATIONS.

ACE IN HOILER.
co in the tubes and inches in dianietor, iber and the plates
ide.
$3.1+16 \times 90$ inches
feet 8 inches.)
ne tube.
$0.5=6.25$
$4=4.908750$
$50 \times 462=$
2425 area of be mouths.

ManUal of heqineers' calculations.
Heating surface in tubes $\mathbf{= 3 5 9 2 2 6 . 2 5 2}$ sq. ins. Heating surface in plates $=44080.315$
403306.567 square ins.
of heating surface or 403306.567

$$
144=2800.74 \text { squaro feet. }
$$

How to culculate the pressure to be allowed on plate forming flat surfaces.

The working pressure allowable on flat surfaces shall not exceed 6000 pounds to each cffective square inch of soctional area of the stay supporting it. The pressure to be allowed on plates forming flat surfaces shall be that found by the following formula:

$$
\frac{\mathrm{C} \times(\mathrm{T}+1) \mathrm{E}}{\mathrm{~S}-6}=\text { working pressure in lbs. per sq. inch. }
$$

Which means, equal to constant \times (thickness of plate in sixteenth of an inch add 1) $\times 2 \div$ surface supported in square inches $-6=$ working pressure.
C equal to constant equal to 100 ; but when plates are exposed to the impact of heat or flame, and the steam only is in contact on the plates on the opposite side, then \mathbf{C} is to be reduced to 50 :
 spindle, lever, etc., 90 poure inch 25 pounds; weight of valve, weight of ball 76.34 pounds. 4 inch length of the fulcrum; 19.6350 area of valve $=5^{\prime \prime}$ diameter.

25 lbs. pressure per sq. inch.

$$
\begin{gathered}
981750 \\
392700
\end{gathered}
$$

$$
\overline{4908750}
$$

$$
\frac{90}{4008750} \text { effective weight of parts. }
$$ 4 fulcrum.

Ball 76.34)1 $\overline{6035000}$ $15268{ }^{1}$ (21 inches length of lever.

To find the length of the safety-valve fulcrum for a lever 21 diameter of valve, 76.34 preusure per square inch, 5 incher 21 end of lever. \quad pounds weight of ball required for Rule \quad area \times pressure $-d W_{t}$

$$
\begin{aligned}
& 16031400 \text { (} 4 \text { inches is nearly cor- } \\
& 16035000 \\
& \text { rect length in this } \\
& \text { case for the length } \\
& \text { of fulcrum. }
\end{aligned}
$$

JLITIONS.

area of valve being ts; weight of valve, th of the fulcrum;
meter. ich.
ts.
for a lever 21
ch, 5 inches
required for
ulcrum.
early corh in this le length

ENGINES.

Taking into consideration the proportionate load, large engines are niost economical.

The best possible results can be got out of a non-condensing engine by keeping the full pressure clear up to the point of cat-off and expanding down nearly to the atmospheric pressure (supposing free exhaust and admission and minimum clearance, friction, leakage and condensation).
The water consumption of an engine in pounds per hour, may be calculated: 859375 by the volume of steam at the termal pressure and by the mean effective pressure.

The "economy" or "duty" of a steam engine ought to be expressed in pounds of water consumed per hour per horsepower and not in pounds of fuel per hour per horse-power.

High-pressure is the most economical for initial cylinder pressure.

The advantage of dry steam is on account of it lessening the danger to cylinder head by water being in the steam, etc.

CONDENSERS.

Explain the difference between a jet and a surface condenser? A jet condenser is one in which exhaust steam is condensed by coming in contact with a spray of cold water from a pump; and a surface condenser is a condenser in which the exhaust steam is condensed by contact with tubes kept cold by circulation of water, and a good condenser should add twelve to fifteen pounds to the effective result of the pressure, and the advantage of using one of the surface type is, it allows the same feed water being used over many times, which is a great advantage when pure, good, soft water is scarce, and the objections are chiefly because it is apt to cause corrosion in the boiler when animal oils are used in the cylinder and steam chest, ete.

Twenty or twenty-five times the weight of water is necessary for the injection of a jet, to maintain a good vacuum, with a medium temperature.
The greatest gain in using the condenser is largest when the piston area is greatest. The gain depends upon the effective pressure mean and back, before adding condenser upon degree of vacuum obtained and amount of power expended in operating the condenser.
It takes from one to two gallons of water per minute to each horee-power to operate a condenser. boiler pressure, cylinder diameter times the squa of indicated horse-power times the square root square root of strokes per minute. 80 pounds pressure: 20 inches diameter of cylinder, 48 stroke, First method: $20 \times 48: .0179 \times 20 \times \sqrt{ } 80=3.22$ or 34. . 20

$$
.3580
$$

9 the square root of pressure.
$20^{2} \times 4 \times 50 \times 8$

$$
\begin{aligned}
& 3.2220=34 \text { thickness connecting rod. } \\
& \text { d: }
\end{aligned}
$$

$48 \times 50 \times 12.753=3$ 2 $"$. inches stroke, 75 strokes inches diameter of cylinder, 48 required for connecting-rod ber minute, calculate thickness. First method:

$$
\begin{aligned}
& .0179 \text { constant multiplied. } \\
& 18 \text { inches fiamoton }
\end{aligned}
$$

18 inches diameter of cylinder.

$$
1432
$$

$$
179
$$

$$
.3222
$$

$$
9=\sqrt{ } 81
$$

Second method:
48 stroke in inches.
75 strokes per minute.

ULATIONS.
ng rod:-
the square root of oot of the quotient oke in inches, and
ylinder, 48 stroke,
$=3.2 \%$ or 34 .
sure.
ting rod.
$.753=3 \frac{1}{2} "$.
f cylinder; 48
cylinder; 48.
late thickness.
linder.

MANUAL OF ENGINEERS' CALCULATIONS.
:3600) $140.000(.0388888$
10800

$\begin{aligned} & 32000 \\ & 28800 \end{aligned}$	$.03888888(.197$ sq. root.
32000	29)288
28800	$\stackrel{21}{ }$
32000	387)2788
28800	2789
32000	
$=2^{\prime \prime} .5$	ickuess connecting rod.

Calculate the proper thickness of a cylinder.
Rule.- 00033 times the boiler pressure in pounds per square inch, plus .8 inches, or .8 plus ito the cylinder

Sum:-16 inches diameter of cylinder, 130 pounds boiler pressure:

First method: . 00033 constant number.
130
990
33
.04290
16
25740 4290
. 68640
8
1.48640 or $1 \frac{1}{2}$ inches thickness cylinder.

By second method: 100)16.00(.16

$$
\frac{100}{600} \frac{8}{600} .96 \text { or nearly } 1^{\prime \prime} \text { thickness }
$$

Cylinder heads, if flat, should have as thicylinder. the bore, times the square root of the boiler pressure. This
neirs' calclelations. inches, which is 16 -inch cylinder 130 pounds pressure, . 5473 engine 81 ponnds press than the cylinder pressure, 5473 allowance fiself would be 1.29 equal to .432 inch, while the head bolts should boring, etc. The inches of which 8 is the between head and fe close enough distance between cylinder be in diameter half the of cylinder, and to permit leakage Calculate the widh of the cylinder flangess should Rule. - Calculate apart of cylinder head bolts. square of the culate the above as follows: cylinder diameter, timer diameter, times .0001571 times the one bolts. \quad times the boiler pressure the square of the Sum:-Cylinder 16 . inch bolts, calculate the number of bounds pressure, 16 in of an
\qquad
12065280 4021\%6
$4.3289850) \overline{5.22633880}$
432828500 (12 number of bolts.
90000300
86565600

3434800

clelations.

ounds pressure, .5473 inder walls; 16-inch 432 inch, while the of which .8 is the ce between cylinder to permit leakage the thickness should der flange.
head bolts.
0001571 times the the square of the , divide by area of
oressure, $\frac{3}{4}$ of an

MANUAL OF ENGINEERS' CALCULATIONS.
71
sq. D clydr $\times .00015 \% 1 \times P$
Formula:

$$
\text { area of bolts. }=\text { number bolts. }
$$

Or, taking the Canadian standard, 6000 ,

$$
\frac{256 \times 130}{6000 \times .5625}=9.8 \text { or say } 10 \text { bolts. }
$$

How to calculate the diameter of a stay.
Rule.-The square feet of flat surface in boiler multiplied by 144 to bring to square inches, divide this by number row stays plus 1, divide this product by number stays plus 1 , and multiply by pressure and divide by 5000 , or 6000 as allowed by law.

Sum:-A boiler with 186 square feet of flat bottom, a pressure of 30 pounds per square inch, 7 row of nine stays each, 5000 allowed by English law,

186 square feet flat surface. 144

744
744
186
$\left\{\begin{array}{c}6.000 \text { allowed by Canadian } \\ \text { law, to each square inch }\end{array}\right.$ law, to each square inch of iron in stay.
$(7+1)=8) \overline{26784}$
$(9+1)=10) 3348$
334.8

30 pounds pressum.
$5000) \overline{1004.40}(2.0088 \div .7854=2.56(1.6$ diam. of stay.
10000
44000
40000
-40000
40000
26)156

156

MANUAL OF ENGINEERS' CAICULATIONS.
Or, $1004.40 \div 6000=1.00073$ area stay $=1.12$ diam. stay. Formula: $\frac{\text { FS } \times P}{\text { R. S. constant }} \quad \frac{\sqrt{\text { area }}}{.6854}=$ diameter of stay. Formula Rule:
Flat surface in sq. inches \div No. row No. stay \times pres.
$5000-=$ area stay. Area of stay $\div .7854$, the square root of this is diameter of stay.

How to calculate the heating surface for boiler from the tubes.

Circum.tubes $\times \mathbf{h} \times$ No.tubes
Rule-formula:
$=$ H. S.
Tube $=3^{\prime \prime}=9^{\prime \prime} .4248$ circumference of one $3^{\prime \prime}$ tube. $120^{\prime \prime}$ length of tube $=10$ feet.
1130.9760

45 tubes.
56548900 45239040
144)508940200(353.4307 or $353 \frac{1}{2} \mathrm{sq}$. feet heating surface.
am. stay. stay.
rea stay.
meter of
rom the
S.
ing

MANUAL OF ENGINEERS' CalCULATIONS. $2^{\prime \prime}$ diameter tube $=6$." $28: 32$ circumference tube.

$$
120^{\prime \prime}=10 \text { feet length tube. }
$$

1256640
92834
753.9840

71 tubes.
7539840
52778880
144)53532.8640(371 sq. feet heating surface.

432
1033
1008
272
1.44

288
TIIE CIRCLE.
The diameter of a circle equals the circumference multiplied by 0.31831 .

The diameter of a circle equals the square root of the area mnltiplied by 1.12838 .

The side of an inscribed equilateral triangle equals the diameter of the circle multiplied by 0.86 .
The side of an inscribed square equals the diameter of a circle multiplied by $0.70 \% 1$.
the circle multiplied by 0.225 equals the circumference of The circumference by 0.225 . one side of a square of the circle multiplied by 0.282 equals The side of a square equal area.
same area multiplied by 0.8862 . The area of a triangle one-half its altitude. The area of an ellipse equals the product of both diameters
The solidity of a sphere equals its surface multiplied by

The surfaco equals the product of the diameter and circumference.

The surface of a sphere equals the square of the diameter multiplied by 3.1416 .

The surface equals the square of the circumference multiplied by 0.3183 .

The solidity of a sphere equals the cube of the diameter multiplied by 0.5236 .

The diameter of a sphere equals the square root of the surface multiplied by 0.56419 .

SQUARE AND CUBE ROOT.

The first essential for the learner is to make himself familiar with the following properties of numbers:

1. A square number multiplied by a square number, the product will be a square number.
2. A square nurnber divided by a square number, the quotient is a square.
3. A cube number multiplied by a eube, the product is a 4. A cube number divided by a cube, the quotient will be a cube.
4. If the square root of a number is a composite number, the square itself may be divided into integer square factors; but if the root is a prime number, the square cannotors; seperated into square factors without fractions.
5. If the unit figure of without fractions. multiply by the square fore a square number is 5 , we may square, whose unite period will be and we shall have another 7. If the unit figure of will be eiphers. the cube number 8 , and produce is 5 , we may multiply by period will be ciphers. produce another cube, whose unit
6. If a supposed cube, whose unit figure is 5 , be multiplied the number is not a cube.

TO Find the square root of a number.

Rule 1. Seperate the given number into periods of two figures each, beginning at the anit's place.
2. Find the greatest number whose square is containe in the period on the left; this will be the fquare is contained in Subtract the square of this figure from first figure in the root. to the renainder annex the next period to period on the left;
3. Divide this dividend, omitting the figure on the right, by double the part of the root already found, and annex the quotient to that part, and also to the divisor; then multiply the divisor thus completed by the figure of the root last obtained, and subtract the product from the dividend.
4. If there are more periods to be brought down, continue the operation in the same manner as before.

Note 1. If a cipher occurs in the root, annex a cipher to the trial divisor, and another period to the dividend, and proceed as before.
2. If there is a remainder after the root of the last period is found, annex periods of ciphers, and continue the root to as many decimal places as required.
Example.-Find the square root of 1016064.

$$
\frac{\frac{1,01,60,64(1008}{2008)}}{\substack{016064 \\ 16064}}
$$

Note. - The square root of a fraction luay be found by extracting the square root of the numerator and denominator seperately.

CUBE ROOT, ETC.
Remarks on the method of extracting cube root:-
By observing the table we see the entire part of the cube root of any number below 1000, will be less than 10 , and will contain but one figure. The entire part of the cube root of a number containing four, five and six figures, will contain two figures and so on with the larger numbers.

TABLE
Comparing the natural numbers with the unit figures of their squares and cubes. By the use of this many roots may be extracted by simple observation:

Numbers,	1	2	3	4	5	9	\vdots	8	9	10
Squares,	1	4	9	16	25	36	49	64	81	100
Cubes,	1	8	24	64	125	216	343	512	729	1000

EXPERLMENTS ON PLATE WITH AND ACROSS FIBRE.

 Ultimato strength when drawn in the direction of fibre is 16.93 tons to 17 tons; one sample broke at 16.7 tons.The nltimate extension was also twice as great when the The best serap rivet, ironection of the fibro. per square inch, mean intim, broke on an average with 24 tons $\&$ of the length.
Mr. E. Clark observes that we may generally assume wrought iron strength of wronglit irou bars at assme the this latter limplate at 20 tons per square in at 24 , and of lengtl per It is per ton square inch of section. of tw said, on good authority, that districts, classes-Yorkshire, and the boiler plate arsed as Stafforisivire. Tho ultimature of other berages as folirkt: Best Yorkshire, per square shet
Best Staffordshire, " Amerjcan best, " \quad. $\quad .$. American ordinary, " 6 31 tons. Some experiments by Mr. averages 20.6 tons per square inch. Woolwich dockyard pare inch. average 20 tons per square inch.

SS FIBRE.
on of fibre is

e fibre is from

 tons.eat when the
with 24 tons was uniform
assume the 24, and of and within $\frac{8}{10000}$ of the or plates are re of other strength of
. . 25 tons.

- . . 0 tons.
.31 tons. . 27 tons.
ire plates, ire plates

TABLAS.
MELTING POINT OF METALS.

Name.
Platina, Antimony, Bismuth, Tin, Lead, Zinc, Cast Iron, Wrought Iron, Copper,

Fahr.
4593°
842 to 955 48% to 507 average 475 average 622

722
$2786\left\{\begin{array}{l}1922-2012 \text { white } \\ 2012-2192 \text { grey }\end{array}\right\}$
$\begin{array}{ll}\text { a55 2-2733 } & \text { welding heat, } \\ \text { Pouillet. }\end{array}$ average 21%

Authority.
J. Lonthian Bell.
J. Lnnthian Bell.
J. Lonthian Bell.
J. Lonthian Bell.
J. Lonthian Bell. Pouillet.

DIMINUTION AND TENACITY OF WROUGHT IRON AT HIGII TEMPERATURES.
(Experiment at Franklin Institute, 1839, Johnson \& Reeves, Com.)

C.	Falr.	Diminution p.c. of maximum tenacity.	C.	Fahr.	Diminution p.c. of maximum tenacity.
$271{ }^{\circ}$					
299	520°	0.0738	440 500		0.2010
313		0.0869	500	732°	03324
316		0.0869 1.0899	508	932	0.3593
330	630	1.0899 0.0964	508		0.4478
350		0.1047	699		0.5514
378	${ }_{732}$	0.1155	626	1154	0.000
389		0.1436	626 669		0.6011
390		0.1535	699 674		0.6622
408		0.1535 0.1589	674 708	1245	0.6715
410		0.162'\%	708	1506	0.7001

IMAGE EVALUATION TEST TARGET (MT-3)

Photographic Sciences

0

Mancal of enoineers＇calculations．
TABLE OF FRESSURES．－I．
CALCULATED ACCORDING TO RULE，FOR DIFFERENT DIAMETERS AND THICKNESSES，WHEN MADE IN THE BEST MANNER IN EVERY RESPECT．

$\mathrm{TS}(60000) \times .70 \times 2 \mathrm{t}$

$\mathrm{D} \times \mathrm{FS}=\mathrm{P}$ ．
Boilers are not allowed to carry over 150 lbs．for Iron and 17．5 lbs．for Stenl．

	®®	
	$\stackrel{\dot{n}}{\underset{=}{2}}$	
	$\stackrel{ \pm}{=}$	
	$\stackrel{\dot{\theta}}{\stackrel{~}{2}}$	
：माण4 J0．tना + tur！ вацы！«	$\stackrel{\infty}{2}$	
	$\stackrel{\square}{\square}$	
	$\underset{\omega}{\dot{\omega}}$	$\begin{gathered} 10 \\ 0 \\ 0 \\ 0 \end{gathered}$
	$\stackrel{\circ}{\square}$	
	$\stackrel{\dot{0}}{\mathscr{0}}$	かけ ※心
	$\stackrel{\oplus}{\sim}$	
	®்	
	ஜ்	
	$\stackrel{\text { ® }}{\text { ® }}$	
	$\stackrel{\text { ®n }}{\sim}$	
＇ม씽 ฐо дәุнич！р вәџ삐 98	$\stackrel{\dot{\infty}}{\stackrel{1}{=1}}$	 ヨコニ人゚゚ำ

Iİ.
 TABLE OF PRESSURES.

TABLE OF AREA DLAMETER AND EQUIVILENT IN INCHES OF RUUND IRON.

Decinal equivalent in parts of an ineh.	Dlameter of Iron.	Area.
. 0695	$\frac{1}{16}$ inch.	. 00307
. 125	1	. 01227
. 25	${ }^{3} 16$. 02761
. 3125	$\frac{1}{4}$. 04909
. 375	${ }^{1} 16$. $0 \% 67$
. $43 \% 5$	\%	. 11045
. 5		.15033
. 5625		. 19635
. 685	$\begin{array}{ll}\frac{9}{16} & 6 \\ 56\end{array}$. 2485
. $68 \% 5$	11. ${ }^{\frac{5}{8}} 6$	$.306 \% 9$
. 75	11 $i 8$ $i 8$.37122
. 8125	$\begin{array}{rl}\frac{1}{4} & 6 \\ 13 & 66\end{array}$. 44178
. 875	${ }^{1} \frac{1}{6}$ \% 6	.51848
. 93%	$\frac{7}{8}$ $\frac{1}{16}$.60132
	16	.69029

FRACTIONS AND EQUIVALENT DECIMALS.

Fraction of inch.	Declmal value.	Fraction of inch.	Deelmal value.
(+)			
$\frac{8}{3}{ }^{\frac{7}{4}}$ and $\frac{3}{32}$. 46875	$\frac{1}{4}$. 25
${ }_{\frac{8}{3}}^{8}$ ، ${ }^{\frac{1}{16}}$. 4375	$\frac{1}{8}+\frac{3}{32}$. 21875
$\frac{8}{\frac{3}{8}} \times 6{ }^{\frac{1}{32}}$	${ }^{.40625}$	$\frac{1}{8}+\frac{1}{16}$. 18%
$\frac{8}{8}$ \% $\%$	$13=40625$. 15625
$\stackrel{\frac{8}{8}}{+}$. 375	${ }_{8}^{18}$. 125
$\stackrel{7}{4}+6{ }^{\frac{3}{4}}$. 34375	$\frac{8}{32}$. 09375
$\frac{4}{4} \times{ }^{\frac{7}{4}}{ }^{\frac{18}{6}}$. 3125	${ }_{1}^{16}$. 0625
	-28120	3^{12}	. 03125

TABLE I.

TENSILE STRA!N OF IRON AND STEEL RIVET BARS.

Partieu'ars.		家家			
Diameter in inches,					
Area in equare inches,	0.30\%	0307	0.442	0.75	0.75
1. Breaking strain, tons of	885	6.90	10.15	0.442 9.70	0.442 9.70
3....................... 2240 lbs	8.84	6.95	10.18	9.90	9.00
Average	${ }^{8.90}$. 8.7			
Breaking stress per sq. in.		6.84	10.16	980	9.25
Reduced diameter,	0.343	$\xrightarrow{22.406}$	22.99	22.17	20.95
Reduced area, ...	0.092	0.406	0.500	0.531	0.515
Reduced to original p. ct.				0.22:	0.208
A, Elongation per sq. in.,	0.343	0.416	+440		
B, Elongation per sq. in.,	0.2015	0.879	0.278	0.343	0.437
, Elongation per sq. in.,	0.171	0.244	0.238	0.195	0.250 0.179

A. is within the 2 inches in which the fracture occurred. B, is within the 10 inches in which the fracture took place. C , is outside the 2 inches in which the fracture took place. for iron; the ducility less:-

TABLE II.

SHEARING TEGTS OF RIVETS, IRON AND STEEL.

	In Tons of 2240 lbs .		
	Actual Shearing Strain.	Average.	Shear per square inch
1. Yorkshire Iron (Taylor's).			
2. Yorkshire Iron,	11.825	
3. Yorkshire Iron,			
1. Steel (Brown), .	11.575	11.665	19.01
2. Steel,	13.45		
3. Steel,	13.65 13.725	13.61	$\ddot{22.10}$

Mandal of engineers' Calculations.
TABLE III.
BCRRs LEFT (Dimensions in Inc:les.)

No. 1. .	Iron.		Steel.	
	Long Axis.	Short Axis.	Long Axis.	Short Axis.
	0.616			
No. 2.	0.615	0.588	0.616	0.583
No. 4.	0.621	0.587	0.617	0.588
	0.61%	0.586	0.616	0.586
			0.816	0.581

TABLE IV.
SHEARING RIVETS.
(Rivets $\frac{5}{8}$ inch diameter: Holes $\frac{11}{16}$ inch in diameter: Area sheared, . 7424 square inch.)

Material.	Kind of work.	In tons of 2240 ibs .		
		Shear on piece.	Average.	Shear per sq. inch.
Yorkshire Iron	Hand	14.95		
	Hydraulic	14.95 15.425	\cdots	
Steel ${ }_{6}$	Steam	16.01	.	
	Hand	18.925	10.4	20.8
	Hydraulic	19.320		
	Steam	20.4	19.485	$\cdots 26$

The pressure on the heads of $\frac{5}{8}$ rivets, in pounds:Steam rivetted, Hydraulic stationary,
Hydraulic portable, 86,360
Power light blow,
Power light blow, 44,018 44,018
Power heavy blow, 69,384
Referring to the following table:-

TABLE VII.

RIVET TESTS.
(Rivets 5 inch diameter: Holes it inch diameter: Area
sheared .7424.)

Kind of work.	1	2	3	4	5
	steam.	Hydrlic,	Hydr'ile	Power.	Power.
Pressure on head.	83280	86360			
Shearing strain	42717	86360	42018	69384	115640
Frictiong strain	3688.	${ }^{3} 68885$	3.811 3688.	37341 36885	39424
Frietion strain surf. . . .	5832	${ }^{2} 606$	- 926	36885 456	36885
Ftain strain sturace.	2916	1303	${ }_{4}(631$	208	2539 1269

Engineers, who ms arrived at by the American Board of ton Navy Yard, are as follows, taking the tat the Washing"Report of the Bureau of Steam Engine tables from the Department, 1879 .
plates and tie bolis screwed tilerern.

Thickness of sheet.	Diameter of bolt.	Thread per Inel.	Bolt projected,
$\frac{1}{4 \prime}^{\prime \prime}$ $\frac{4}{8 \prime}$ $\frac{1}{\prime \prime}^{\prime \prime}$ $\frac{1}{2}^{\prime \prime}$ $\frac{1}{8 \prime}$	$\begin{aligned} & 1^{\prime \prime} \\ & 1_{8}^{\prime \prime} \\ & 1^{\prime \prime} \\ & \mathbf{1}^{\prime \prime} \\ & \mathbf{1}_{8}^{\prime \prime} \end{aligned}$	14 14 12 12	$\frac{1}{\prime \prime}$ $2^{\prime \prime}$ $\frac{1}{2 \prime}$ $\mathbf{1}^{\prime \prime}$ $\mathbf{2}^{\prime \prime}$ $2^{\prime \prime}$

FOR PLATES AND TIE BOLTS SCREWED THERIN.

Ons.	
remeter: A	
4	5
Power.	Power.
$6938+115040$	
$3 \% 31$	39424
36885	36885
4.56	2539
$2: 8$	1260

ManUAL of engineers' calculations.
TABLE VIII.-Rivetted Joints.
Board of
Washing-
from the
of Naval
REIN.
it projected.
[N.
$\frac{1}{2}^{\prime \prime}$
$\mathbf{1}_{2}^{\prime \prime}$
$\frac{1}{2}$
$\frac{1}{2}$
$\frac{1}{2}$
$\mathbf{1}^{\prime \prime}$
ed out to a
tape of

Professor Kennedy's conclusion concerning the strength of rivet joints, etc., imade on steel plates and rivets, are as
follows:

For single rivetted lap joints the best proportions are:-
Diameter of rivets $=2.27 \times$ thickness of plate.
Piteh of rivets $=2.22$ diameter.

For double rivetted lap joints:
Diameter of rivets $=2.21 \times$ thickness of pinte. Pitch of rivets $=3.54$ diameter.

The rivets can be $\frac{1}{35}$ of an inch smaller than the hole. Tho conchasion was that with steel plates and rivets the diameter exclude their singlo rivetted lap joints was such as wonld than half inch plates the diameter seams and that with more and the strength of the joint of the rivet gets too large strength of a single riveted lap of is thereby reduced. The above is 55%, and the doup of the proportional size given plate.

The strength of plate was 70000 pounds tensile, and the

The following tuble male in Leeds, England, by Mux Eyth and David Greig, afford some comparative inata, in regad to steel mad iron as given in " Eingineering" 18 it!, an necount of
their experiments.

TAHLE OF THE RECIDROCAI OF NUMILERS, OH THE EQt'IVALENT DECIMAL FOK A FHACTION, 1 TO is.

Fracilon Or^{-} nimber:	$\begin{aligned} & \text { Deciman } \\ & \text { or } \\ & \text { reciprocal. } \end{aligned}$	$\begin{aligned} & \text { Fractlon } \\ & \text { or } \\ & \text { ormber. } \end{aligned}$	Decimal or reciprocal.	Fraction or number.	$\begin{aligned} & \text { Dedimal } \\ & \text { or or } \\ & \text { ormeal. } \end{aligned}$
2	. 5	9^{17}	. $03 \% 03 \%$		
+	.3333:3:3:3	27 28	.03.7143	\%	. $119 \% 308$
$\frac{1}{4}$. 25	218080	. $03.3+4 \times 3$	31	. $01 \times 85{ }^{\text {a }}$
$\frac{1}{5}$. \because	1010	.10333:334	31	018.18518
1	. 166666%	311	-03005!	8.5	.018181!
1	. $14285 \% 14$	31	-030	816	.017ns\%
$\underset{\sim}{*}$.12.5	3.	(1)3100	it	.01754386
1	.1111111	1.1	(\%)3	; ${ }^{1}$. $0172+14$
${ }^{111}$. 1	${ }^{3} 4$	285	\%	. 01666%
\therefore	.09091	314		611	0113668;
1	.08333:34	1	0: $0 \cdot 69 \%$	61	. $016: 393$
13	.0761.0)4	1\%	.020 0 (3)	8	.01612!
14	. $07142!$	3.1 3 3	.1) 25 (i4 4	${ }^{1 \%}$.01.88
$1:$. 0666667	3	.025	$4{ }_{1}^{1}$	0150
116	. 0 (\%) ${ }^{\circ}$	${ }^{11}$.02439)	0	01583
$1 \frac{1}{7}$.058824	+2	.023\%5		. 01515
$1{ }_{1}^{1}$. 05.5050	4	. 023×338	$6:$. $01+9058$
19	.11521332	44	(1229\%	His	. 014493
211	. 05	4	. 12.22	8.1	.014\%1
21	. $0+76191$	4.1	.021\%394	"11	014286
2.2	. 045.56	$4{ }^{6}$.0212*(66	?	. 014085
23	. 043447	$1{ }^{1}$		\%	. 01388
24	. 041666%	48 4 4	.020408	${ }_{1}^{1 / 3}$. 013698
$2{ }^{1} 5$. 04	6	. 02	i	.01351\%
26	. 038462	11	. 010608	i	.013335

CHCDMFERENCK OF CHECHOS-ADVANCING HY RHGHTHS.

MANUAL, OF ENGINEELS' CABCULATHONS.

AREAS OF CHBCLES-ADVANCING BY BLGIITIAS.
AREAS.

Name of substance.	WEIGHTS.			Specifle gravity.
	Per cubic foot.	Per square foot 1 inch thick.	Per. cubic inch.	
Water, pure.	$6 \cdot 3$			$\underline{\square}$
Water, sea.	64.3	5.19	. 036	1.000
Wrought iron	480	5.36 40.00	. 0387	1028
Steel ...	450	$4 \% .00$ 37.50	. 277	7.70
Lead	490	3.00 $40.8 t$.260	7.20
Copper, rol	710	50.8士 59.16	. 283	7.84
Brass, roller	548	5.956 45.66	. 410	11.36
Sand.	524	4:366	. 317	8.80
Clay:	98	4.366 8.23	. 302	8.40
13rickwork, co	120	10.00	. 057	157
Brickwork, close joints	120	1000	. 069	1.92
Limestone joints	140	11.66	. 089	1.92
Glass.	168	18.00	. 081	2.24
Pine, white	150	13.00	. 124	2. 18
Pine, yellow.	30	13.00 2.50	. 090	2.49
Hemlock.	35	2.91	. 01.019	. 48
Maple	25	2.08	. 015	. 56
Oak, white.	49	4.08	. 010	. 40
Valnut.	50	4.16	. 630	. 78
\cdots	41	3.41	.02:3	. 80

1.000

1028
7.70
7.20
7.84
11.36
8.80
8. 40

157
1.92
1.92
2.24
2.18
2.49

48
.56
.40
.78
80
COAL PRODUCTION OF TILE WORLD.
(By James MacFarlane, author of "The Coal Regions of America.")

$\begin{aligned} & \text { year. } \\ & 187 \% . \end{aligned}$	counthics.	TONS.
18\%9.	- United State	41,000,000
18%	Nova Scot	880,950
$18^{\circ} \mathrm{O}$	Great Bri	123,386,758
1871		15.000,000
$18 \% 0$.	Austr	13.773,176
$18 \% 0$	Prinss	6.44.3.575
186\%.	Poland	23,316,238
186\%	Russia	112,500
1869	Spai	250, 5
1868.	India	693,0iv
186!)	New South W	$\begin{aligned} & 54 \%, 971 \\ & 919,5 \% 2 \end{aligned}$

Total ieports.
Chili, China, NewZealand, Pacific Coust, $226.233,244$
Total of the World
$228,033,244$
ANNUAL MAKE OF IRON ANI) STEEL IN THE WORLJ.

tear.	countries.	
1872.	. Great Britain	Tons.
1873	. United State	6,741.920
1871	- Germany	2,695,000
1873	.France..	1 : 664,802
1872.	. Belgium	1,381,000
18:1.	. Austria with	$65 \cdot 565$
$18 \% 1$.	. Russia	424,606
18%	. Sweden	354,000
18\%2.	. Luxenburg	$322 ; 000$ 300,000
18\%	Canada. . .	100,000
18%	Italy	73,709
	Spain..	54,00\%
	Norway	20,000
1871.	South A	15,000
18\%\%.	Switzerla	9:370
	Asia	7.500
	Asia	40,000
	Afri	20,000
	Australasia	10,000
Total		885, 188

AREAS OF ClRCLEES, FROM 7. TO : 6. EIGHTII

Areas of Circles, From ${ }^{1}$ to 26 . Adlvancing by an Eighth. (Continued.)

Diam.	Area.	Diam.	Area.	Diam.	Area.	Dlam.	Area.
. $\frac{7}{8}$	250.948	20.	314.16	. 1	384.466	1	
18.	254.47	. 1	318.099	-	384.466 388.826	- 1	457.115
. ${ }^{1}$	258.016	. 4	322.063	. $\cdot \frac{1}{8}$	388.822 393.203	- ${ }^{\frac{1}{4}}$	461.864
$\cdot \frac{1}{4}$	261.58%	. 3	326.051	. 1	393.203 $39 \% .609$	\%	466.638.
-3	265.183	. $\frac{1}{2}$	330.064	. 2	402.0:38	,	471.436
$\cdot \frac{1}{2}$	268.803	. ${ }^{4}$	334.102	-	406.494	-8	476.259
. 3	272.448	. 3	338.164	- $\cdot \frac{7}{8}$	406.494 410.973	. 7	481.10\%
- 3	276.117	. 7	342.25	23.8	410.973 415.477	25.	485.979 490.875
. $\frac{7}{8}$	$2 \% 9.811$	21.	346.361	23.	415.477 420.004	25.	490.875 495.796
19.	283.5\%9	- $\frac{1}{8}$	350.497	. $\frac{1}{4}$	424.558	. $\cdot \frac{1}{4}$	495.796 500.74%
. $\frac{1}{4}$	287.279	. 1	$354.65{ }^{\text {ry }}$	- $\cdot \frac{3}{4}$	424.058 429.135	- 4	500.74% 505.712
- $\frac{1}{4}$	291.04	. $\frac{3}{8}$	358.84	- $\cdot \frac{1}{2}$	48.135 433.73%	. 8	505.712 510.706
- $\frac{3}{8}$	$294.83:$. $\frac{1}{2}$	363.051	. ${ }^{2}$	433.38 438.364	. $\cdot \frac{1}{8}$	510.706 515.726
- $\frac{1}{2}$	298.648	. 5	$36 \% .285$.88	443.015	.88	515.726 520.769
-	302.489	. $\frac{3}{4}$	371.543	. 7	$44 \% .69$. 7	525.838
- 3	306.355	. $\frac{7}{8}$	375.826	. 24^{8}	452.39	$26^{.8}$	530.93
- $\frac{1}{8}$	310.245	22.	380.134				

IRON RIVETS.

Length of rivet required to make one head $=1 \frac{1}{2}$ diameters
round bar.

Ns.

WEIGIIT OF WROLGHT IRON.
(TRAUCWINE.)

Thickness or diameter.		Weight of a square foot. Lhs.	Weight per foot square bar. Lbs.	Weight per foot round bar. Lbs.
Inches.	In deeimals of a foot.			
	. 2604	1263	3289	2583
	. 2708	1314	25.57	27.94
	. 2813	1364	3837	30.13
	. 2917	1415	4126	3241
	. 3021	1465	4426	34.76
	. 3122	151.6	4737	3720
	. 3229	1566 161.7	5057	39.72
4	. 3438	161.7 166.7	5389	4233
	. 3542	1718	67.31 6084	4501 4788
5 ${ }^{\text {che }}$. 3646	176.8	6447	5063
	. 3750	181.9	¢8.20	5357
	. 3854	1869	7205	5659
	. 4063	1920	95.99	5969
	. 4063	197.0	80.05	6287
	. 4271	202.1	8420	6613
18 8 4 8	. 4375	212.2	8847	6948
	. 4479	217.2	9283	7291
$\frac{8}{8}$ $\frac{8}{8}$. 4583	222.3	101.9	7643 80.02
$6^{\frac{3}{8}}$. 4688	227.3	106.6	83.70
	.4742	232.4	111.4.	87.46
	. 4896	237.5	116.3	9131
${ }^{\frac{1}{4}}$. 5208	242.5	121.3	95.23
	. 5417	252.6	1316	103.3
$\begin{array}{r}\frac{1}{3} \\ \frac{3}{4} \\ \hline\end{array}$. 5625	2728	1423	111.8
7	. 5833	2829	153.5	120.5
$\frac{1}{4}$. 6042	2930	177.0	1296
	. 6250	303.1	1895	1390
8	. 6458	3132	202.3	1488
	. 6667	3233	2156	168.9 169.3
$\stackrel{8}{\frac{1}{4}}$. 6875	3334	2293	180.1
	. 7083	343.5	2434	191.1
㐌	.7292	3536	247.9	2025
9	. 7700	3198	272.8	2143
	. 7708	3739	288.2	226.3
\% ${ }^{\frac{4}{\frac{1}{2}}}$.7917 .8125	384.0	3040	$2: 88$
	. 8125	394.1	3202	251.5
10	.8730	404.2	3368	2645
11^{2}	.8700 .9167	424.4	3713	291.6
$12^{\frac{1}{2}}$. 9583	444.6 464.8	407.5	220.1
	1 Foot.	485.8 48	445.4 485	349.8
		485	485	3809

Linear expinsion of metals.

Zinc.
Lead,
Tin,
Copper, yellow, red,
*Forged iron, \dagger Steel.

* Cast iron.

For a change of $100^{\circ} \quad 0.00111 \quad .0000111 \quad .00000633$ extend 1 foot. Similaly bar bar of iron $14 \%^{\circ}$ ' long will .0678 foot, or 8136 inch , n bar 100 feet long will extend
According to the experiments of DuLong \& Petit, we have the mean expansion of iron, copper and platinum between 0° and $100^{\circ} \mathrm{C}$., and 0° and $300^{\circ} \mathrm{C}$., us below:

Fromin 0° to $100^{\circ} \mathrm{C}$.
Copper,
0.00180
0° to $3.30^{\circ} \mathrm{C}$.
Platinnm,
0.001 \%1
0.00144

The 1
0.00884
0.00188
0.00918 very high temper

Iron, Steel, Cast iron,

Iron, Steel, Cast iron,

From 250 to 5200 C .
red heat $=5100^{\circ} \mathrm{C}$.
. 00714
.01071
.01250
From 25° to 1300°
nascent white $=125^{\circ} \mathrm{C}$.

$$
\begin{array}{cl}
.01250 & .00000981=.00000545 \\
.01787 & .00001400==.00000777 \\
.02144 & .00001680=.00000983
\end{array}
$$

Iron, Steel, Cast iron,
difference. . $=1000^{\circ} \mathrm{C}$.
$.00535^{\circ}$
.00714
.00893

$$
\begin{gathered}
\text { For } 1^{\circ} \mathrm{C} . \quad 1^{\circ} \text { Fahr. } \\
.0000143=.0000080 \\
.0000214=.0000119 \\
.0000250=.0000139
\end{gathered}
$$

dull red to white heat $=1000^{\circ} \mathrm{C}$.
$.00000893=.0000050$
iron to pansion in hundred parts, assuming forge

Iron,	Fromn 0° to 100	$2{ }^{20}{ }^{\circ}$ to 525°		䢒
Steel,	100 per ct.	$11 \% \mathrm{pel}$ ct.	80 per ${ }^{\circ}$	5100° to 15000°
Cast Iron,	93	175 "	114.	± 4 per ct.
	1	205	13; ،	${ }_{3} 98$

For 1° Fahr.
........
.
.
........
$.000006{ }^{3} 7$
.00000633 .00000616 '75' long will will extend
etit, we have im between

$1300^{\circ} \mathrm{C}$.

 $014 ;$0188
0918
sast iron at. follows:

- Fahr. 000080 000119 J00139

000545 00077% 000933

00030 00040 00050

G FORGE. 122.

- to 1500° per ct. ${ }^{6} 6$

WEHiHT OF FLAT B.AR IRON.
PER FOOT.

TABLE OF HYPERBOLIC LOGARITHMS.

MANUAL OF ENGINEERS' CALCULATIONs.
Table of IIyperbolic Logarillims.-(Coutinued).

Lognrithmis.

. 8822156 .58\%\%866 . $59.33 \div 68$. 5988365 . 60431.39 .60976 .5 .5 .615185\% . $6205 \% 64$. 63 B a! 1384 .631った17 . 6365% .6418538 .64\%103: -652:305 . $65 \% 200$. 6096379 . $667829: 3$. 67×1144 $.6781,335$. 6830978 6881:346 .693147 . 6981347 $.70309 \% 4$. 080357 7120497 ${ }^{417} 178397$ $722 \% 059$ ~ 275485 7323678 7316470 $\checkmark 419373$ 466879 - 54160 561219 608058 654678 701082 747271

Table of Myperbolic Logarithins-(Contimued.)

TAHLES OF SIZES OF SQUARE AND HHXAGON NUTS. Franklin Institute standurd sizes Srame and Hexagon Nots, Number of euch size in 100 lbs . These Nuts are chamfered and trimmed.

1. $667 \% 068$
1.6690918
1.6714333
2. $6733: 12$
1.64\%2056
3. $19700 \% 5$
1.6\%8:4;39
4. $6808: 78$
5. $68:(5882$
1.6845453
6. $68633!189$
7. $688: 4!1$
. 69009.58 . $6919: 3!1$.693:390 . 6957155 . $60 \%+87$. $609 \div 38$.7011051 $702!1882$ 704:481 706isf46 708:3:78 $71018 \% 8$ 7119! 44 713で! 79 155! 81 173950 '191887 209\%92 223666 245.307 263316 281004 298840 316055 $33+338$ 51891 69512

Width,	Thickness.	Hols,	Slue of bult.	Number of sipuare.	Number of Hexagon.
$\frac{1}{2}$	4	13.1	1	8140	
18	16	1	${ }^{4} 5$	3010	9390 8900
$8{ }^{16}$	8	\%	$4{ }^{6}$	$\because 320$	6200 3120
$\frac{32}{2}$	1^{16}	3.1	18	$1!40$	9600
$\frac{7}{4}$	$\frac{1}{2}$	$3{ }^{3}$	1^{18}	1180	2200
31.	46	3\%	2	1180	1350
11^{1}	$2^{\frac{1}{6}}$	${ }_{3} 18$	$1{ }^{16}$! 30	1100
$1 \frac{1}{4}$	4	5^{4}	\%	:38	830
$1{ }^{1} 7_{6}$	4	8	4	420	488
1\%	$1{ }^{\text {a }}$	3	$\frac{1}{4}$	380	309
113	14	45	11	180	216
2	1.	$1{ }^{16}$	11	1:30	148
$2{ }_{16}$	13	1.5	1	96	111
23^{3}	11	18	11	©	85
	12	$13:$	12	10	80

HEXAGON NLTS, REGLLAR SIZES'SQUARE NUTS, REGULAR NIZES.

 HEDPA ANO NU'TS.

BOLTS.-Weight of 100 of the Enumerated Sizes.
Mom

STANDARD SIZES OF WASHERS.
Number in 100 Lbs.

Diam.	Size of Hole.	Thlekness Wire Gauge	Size of		Diam.				
Inci.	Inch.	No.	Inch.	100 lbs .	Diam.	Hole.	Wire Gauge.	Nize of Boit.	${ }_{100}^{\mathrm{No} \mathrm{lbs}_{2} \text { in }}$
\%	$\frac{5}{16}$	16	$\frac{1}{4}$	2!erc,	Inch.	Inch.	No.	Inch.	
$\frac{3}{4}$	$\frac{3}{8}$	16	$\stackrel{4}{4}$	1814	${ }^{1}$	$\frac{1}{1} \frac{3}{6}$	11	4	
1	$\frac{7}{16}$	14	${ }^{16}$	1814	$?$	- $\frac{3}{8}$	10	4	1680
11	$\frac{16}{16}$	14	$\frac{8}{4}$	769		11^{2}	10	$\frac{8}{8}$	1140
$1 \frac{1}{4}$	$\frac{5}{8}^{\frac{1}{8}}$	11	$\frac{1}{2}$	330 9	\cdots	8	8	,	580
12	$\stackrel{8}{11}$	11	${ }^{16}$	21804		18	4	11.	470
12	16	11	5	2350		1	7	14	360
				2.550	31	12	6	$1 \frac{18}{8}$	360

Tillfes of stanhahil si\％es，hoIleh TUlles， Lip welded American Charcoal Iron Boiler＇L＇ubes，standard si\％es：

		Thicliness	\|						$\begin{aligned} & \text { む } \\ & \text { H. } \\ & \text { 荷 } \end{aligned}$
，	0.850	Heh：		Inch	Fuet．	Feent．			
114	1.106	0072	3） $0: 28$	2.888	4.460	\％ 810	（19．11	$0.78 i$	
$11{ }^{11}$	1．333	0.0883	4.712	3.474 4.101	3 8is．	30.00	0.900	1.228	
19，	1.560	0095	5．498	4.1801	2．863	2.0 .47	1.31196	1763	1.250
$\stackrel{2}{21}$	1.804	0.088	B．283	－1）169		2．18i3	1.011	2.405	1.605
	2.054	0.098	7.068	8．48．	1． NiO_{0}	1.909	2.556	3.142	1.981
2，	2．2883	$0.111)$	7.854	7．172	1.1573	1．528	3.314	3.976	2.238
3	2．783	0．10！）	8.6819	1．9\％7	15188	1．390）	5.0		2.755
31.	3.112	$0.111)$		8， 348	1.833	1.283	8．08：	7．060	5
31.	3.262	0.119	10．093	110．462	1.968	1.175	7.125	4.069 8290	3.333 3.058
311	3.512	0.119	11.781	1110：34	1.171 1.088	1.091	8 83il	9.621	4.278
	3.741	0．130	12.6063	11 \％ 118	1.088 1.023	1.018	08×7	11．04\％	4.500
$4{ }^{12}$	4.241	0） 1380	14．13i	18383	1．023	0．95i\％ 10	10．09： 1	2.560^{\prime}	5，320
i	4.72	0． 140	15.708	14.818	0.901 0.801 0.010	0.8491	14．120 1	5． 904	6．010
1	6．609	0.1 .11	18.849	17.818 17.804	0.819 0.670	（） 7641	174117	0．635	7.220
i	965%	（0．1\％	21.091	11.904 20.014	0．650	0.683%	25．509	8254	9．348
K	7．1036	0.182	25． 183	${ }_{2}^{2} 3.0189$	0.6104	0.545%	84.80 .5	8．484	12.435
1	8.615	0.193	28.284	27．05．7	0.500	11.4784	45.795	0． 2 i 19	1．5．100
1	9.573	（0，214	$31 .+16$			04 P1 is	－8．un	（1）	18．002

WROLGIIT IRON WELDEE TUBES．
EXTRA STRONG．

Numlual biamet＇r．	Actual ont． slde Diau	Thlekness Extra Strong． \qquad	Thickness， Doulse Extra Strong．	Actual Inslde Dinmattry， Extra Strong．	$\begin{aligned} & \text { Acmal Inside } \\ & \text { D/ameier, } \\ & \text { Double, } \\ & \text { Cxita Strong } \end{aligned}$
	． 405	． 100			
${ }_{3}^{1}$	． 74	． 123		805	
1	． 67.	．127		4） 29	．．
管	． 84	． 149	（1）	． 51.	
1^{+1}	1.05	．13i	． 314	－i＋2	944
11.	1.315 1.66	．182	． 364	． 931	． 428
112	1.9	． 1984	．388	1.2%	． 888
$\underset{\sim}{2}$	2.375	． 221	． 406	1.494	1.088
212	2.85	． 280	． 440	1083	1.411
3	3.5	.304	． 560	2．315	1．75\％
312	4.5	． 821	． 608	2．802	$2{ }^{2} 284$
4	4.5	． 341	． 642	3388	2816
	－		．682	3.818	3．124

104

 mandal of enginembs calculations.TABLE OE THE PROPERTIES FOR SATCRATED STEAM.

17\% 0
$1 \% 20$
1175
896
\%2.1;
61.2
52.!
46.7
41.8
37.8

346
31.8

295
$\because \% .6$
263
243
23.0
21.8
20.7
19.7

188
18.0

1\%.2
16.6
16.0
15.4
14.9

144
$1: 3!$
134
130
$1: 7$
12.3
12.0
11.6
11.0
10. 1 10
96

TABLE OF THE COMPARATIVE EVAPORATIVE POWER OF DIFFERENT KINDS OF roAL.
Name and description
The best Welsh $\begin{gathered}\text { Water evaporatex } \\ \text { per lb. of coal. }\end{gathered}$
Anthracite. 493 lbs l
Pittsburg.
9.14 "

Pennsylvanian
Coke, from gas works .
Average, large, Neweastle.is "
Derbyshire . 6. \%i̊

Wallsend Elgin . 5.46
Slievardagh (Irish Anthracite) 9.85 . 8.48
Conception Bay, Chili. $5 . \%$. $\%$

CIIEMICAL COMPOSITION OF VARIOLS KINDS OF COAL (BRITISI).

$261 \ldots \ldots .50 * \ldots\left\{\begin{array}{l}\text { Violet, Purple and dull Blue; between } \\ 261^{\circ} \text { C. to } 370^{\circ} \text { C. it passes to bright } \\ \text { Blue, to Sea Green, and then disap. } \\ \text { pears. }\end{array}\right.$
$\tilde{0} 00 \ldots .032 \ldots\left\{\begin{array}{l}\text { Commences to be coated with a light } \\ \text { coating of oxide; loses a good deal of } \\ \text { its harduess, becomes a good deal more } \\ \text { impressible to the hammer and can be } \\ \text { twisted with ease. }\end{array}\right.$

HELT.

Color. ale Yellow. ull Yellow. rimson.
e; between es to bright then disap-
th a light ood deal of 1 deal more and can be

TABLE Of TOTAL IIEAT OF combustion OF fUEL AND AIR REQLIRED PER LIJ.


```
TENSILE STRENGTII OF PLATE AND RIVET IHON,
```

 (By I)r. Falrbaira.)

PROPORTION OF PARTS OF ENGLNES.

Value NHI.-Modern engines work to four to five times NHP

Grate surface.-Grate surface required per NHP, equal to about three-guarters of a square foot.

Heating surface.-Heating surface equal to abont twentytwo square feet.

Coal lurnt.-Coal burnt on grate equal to about sixteen pounds per square foot per hour, which is abont twelve pounds per hour per NHP; and if engines work up to five times the indicated horse-power. \qquad
Weight water.-Weight of water evaporated by each pound of coal equal to from eight to fourteen pounds. In practice ten is goud.
Boiler space.-The boiler space abont one cubic yard per NHP, of whieh not more than one-half should be water space, and not less than one-half steam space.

Water per NHP. - Water required to turn into steam per NHP, equal to from one and-a-half to two cubre feet.
Ara of lubes. -Tho sectional area of tubes equal to ten
uare inches. Area of bridges.-The area above the bridges equal to fourteen square inches.

Safety valve.-Area of safety valves equal to half square inch for every square foot of grate surface; three-eighths square inch equal to one NHP.
Chimncy.-Area of chimney equal to seven square inches.
Piston.--Area of piston for low-pressure condensing engine about twenty-two square inches; and for a high-pressure (non-condensing) engine equal to eleven square inches.
Shaft.- Size of shaft equal to diameter, a little less than one-eighth diameter of low-pressure cylinder.
Crank:-The crank-pin should be one-quarter diameter less than the shaft.

Steam pipe. -The main steam pipe should be about the same diameter as the shaft.
Eduction.-Eduction pip equal to about one-third the diamster greater than the steam pipe.
Piston rod.-The piston rod about one-tenth the diameter of the low-pressure cylinder.
Pump. -The air pump capacity between one-sixth and oneeighth of that of low-pressure cylinder.

THE METHODS OF FINDINQ THE MEAN PRESSURE THROUGIIOU'S THE STROKE WHEN WORKING EXPANSIVELY.

In calculating the work done by the expansion of steam, it is necessary to have a knowledge of Marriotte's iaw, according to which, is the principle the diminutions take place; and in regard to steam, it may be given in the following words: "If a given weight of steam be made to vary its volume without changing its temperature, the elastic force of the steam will vary in the inverse ratio of the volume it is made to occupy;
that is, if its volume is increased two times, its pressure will be about one-half of what it was at first, and so on."
Four or more different methods exist for determining "the mean pressure thronghout the stroke when working expan-
sively."

Simpson's Rule is :
(1) Divide the cylinder into any number of equal parts,
(for cut-off at one-half, one-third, one-quarter, one-sixth, etc., twelve parts ; if cut off at fifths, ten parts; if at sevenths, fourteen parts; if at eighths, eqnal to sixteen.)
(2) Divide that part of the stroke through which expansion takes place into any even number of equal parts, and calculate the pressure per square inch upon the piston at each division of the stroke, by Marriotte's law.
(3) Take the sum of the extreme pressures in pounds, per square inch, four times the sum of the even pressure, and twice the sum of the odd pressures : then, this sum multiplied wh one-third of the distance between the consecutive points at sively per square inch are taken, will give the work done expanand one third this sum is the area of the piston in one stroke,
(4) To this add the the total pressure during expansion. divide the sum by the number pressure before expansion, and is divided ; the result is the of parts into which the cylinder stroke. The method by using work done during a single Naperian curve) is probably the shortest.

Rule:

(1) Divide the whole length of the stroke by the distance through which the piston moves before the steam is cut off, the quotient is the ratio of expansion.
(2) Divide the rressure of the steam in pounds, per square inch, by the ratio of expansion found by (1).
(3) Find the hyperbolic logarithm (see table) of the ratio of expansion, to which add one; the resnlt represents the increase of efficiency duo to expansion.
(4) Finally multiply this result (3) by the quotient obtained by (2), which gives the mean pressure thronghont the stroke in pounds per square inch.
The next is a short, quick, and easy method, when yon have an expansion table with multipliers, but which can be found by adding one to the hyperbolic logarithms of the relative expansions, and then dividing the sums by the relative expan-
sion.
pressure will on." mining " tho rking expan-
equal parts, e-sixth, etc., at sevenths,
sh expansion nd calculate ch division

pounds, per

 essure, and multiplied ve points at lone expanone stroke, expansion. nsion, and de cylinder ng a single thms (thee distance is cut off, er square the ratio sents the obtained he stroke you have be found relative e expan-

Rule using expansion table :
(1) Divide the length of the stroke by the distance the piston moves before the steam is cut off, the quotient will express the relative expansion it undergocs.
(2) Take from the expansion table of multipliers the minltiplier corresponding to this number, and multiply it by the fall pressure of steam per square inch on entering the cylinder; the froduct will be the mean pressure per square
McFarlane Gray gives the following arithmetical rule:
(1) Take eleven ordinates, making as below the numbers 0, $1,2,3,4,5,6,7,8,9$ and 10 under one another.
(2) Reduce the ratio of expansion to a decimal, if it is not already so expressed.
(3) Note the first figure of the decimal, and draw a line to mark the "cut-off" below the same figure in the column of ordinates.
(4) Opposite each number (except the first) above the line (sce 5) put 1 , but for first 05 .
(5) Divide the decimal of the ratio of expansion, found as uhove (2), by each of the other numbers below in succession; but for the last write down half an ordinate found.
(6) Find the sum of all these lines, and multiply it by the given pressure; the result is the mean pressure on the piston thronghout the stroke.

Strength of matertals.

(From Appleton's " Applied Mechanics.")

Tensile strenyth of cast iron.-The ultimate strength of east tron ranges from five to seven and-a-half tons per square inch, first meltings; specimen under one inch in thickness.

For thicker castings the strength dimiuishes. The ultimate strength is increased by repeated meltings to from fifteen to twenty tons per square inch. Factor suffety equal to quarter, sixth, eighth.

Wrought iron.- The ultimate tensile strength of rolled bar iron varies from twenty-two and-a-half to thirty tons; rivet iron from twenty-four to twenty-seven; plates from twenty to twenty-threc tons, about one ton less crosswise than lengthwise the fibre. The strength is reduced more than one ton by annealing. For a wrought iron round rod of any diameter, the square of the diameter in square inches is about the breaking weight in tons : five tons per square inch of section
distance the puotient will
ltipliers the ultiply it by entering the per square ll rule : he numbers er.
if it is not
aw a line to column of
ve the line
, found as uccession ;
it by the the piston
th of east are inch, ultimate Gifteen to quarter,
olled bar s ; rivet venty to length3 ton by ameter, out the section
for faetor of safety, and one-fifth of ultimate tensile strength for boilers.

The elastic strength is the strength exhibited by any material without being permanently altered in form, for as a piece of iron is finally broken by being bent backward and forward, so by applying under strain, ete., to any materinl it will be finally broken with a much less strain than would suffice to break it at once.

The elastic strain of iron, if wrought iron, is from one-third to one-quarter its ultimate strength, tensile, aud to this point the material might be proved without any injury, but in twice or three times to make the proving pressure more than considered runs no risk of working pressure, such proot it is adequate to the detection straining the material while it is The tenacity or tensile streng accidental flaws if such exist. pression or crushing strength of various the resistance to comthe following table:

Name cf material.	Tenslle strength per square Inch section.	Crushing strength per square in
Wrought iron bars.	${ }^{60000}$	
Cast iron, average.	${ }^{2} 20000$	37000
" " toughened	${ }_{25764}^{1600}$	
Steel.	$\{100000$	
	\{ 130000	260000

Table of strength of plate, riveted joints, etc.-Cohesivo strength of the plates; breaking weight in pounds per square inch, 52.486 (mean) ; leugth of double riveted joint of equal section to the plate through centre of rivets, breaking weight in pounds, 53.635 (mean) ; strength of single riveted joints of equal section of plate through the line of rivets, breaking weight in pounds per square inch, 41.59 (mean).

Steel.-'Ihe ultimate tensile strength of rolled steel bars varies from thirty to fifty tons. The average tensile strength may be taken at thirty-five tons. T'he ultimate strength of to the proportiom twenty-two to thirty-two tons, according The strength is of constituent carbon.
The strength is the same lengthwise or crosswise; annealing
reduces the tensile strength of steel plates one and-a-half to two tons: nine tons per square inch for factor of safety-mild steel quarter of ultimate tensile strength.

The metals which are found to longest retain heat are brass and copper, next iron, and lastly lead.

SOME USEFUL KNOWLEDGE Ahutt MARINE hoillers,

One square foot of fire grate consumed twenty poinds (rearly) per hour.

One square foot of fire grate requires thirty square feet of fire place and tube surface.

One square foot of fire grate with the above surface would evaporate 170 pounds of water per hour.

One square foot of flue surface would evaporate 5.66 pounds of water per hom:

One pound of coal would evaporate 8.5 pounds of water.
One horse power of 33,000 pounds, lifted one foot high per minute, required about four and-a-quarter pounds of coal per hour.

MILD STEEL.

> (Part of a paper read before the "Iron and Steel Institute, 'F. B.," by
> Mr. Richards, F. I. C., A. R. S. M.)

The anthor has the honor to place before the members of the Iron and Steel Institute the results of a few experiments made in the Kirkcaldy testing machine at the Barrow Hematite Steel Company's Works. Although these experiments are not perhaps of the most practically useful character, they may be of interest as affording an explanation of some phenomena which do not appear to be generally well known or thoroughly understood. For the purpose of experiment, a hammered billet of steel of soft quality, made by the Siemens-Martin process, was rolled to the form of a bar one and seven-eighth analysis, and gave the following results: from the bar for

Carbon.	
Silicon.	0.192
Sulphur.	Trace
Phosphorus.	0.040
Copper.	0.048
Manganese.	0.021
Iron.	0.430
	99.269

The bur was divided into eight portions, which were numbered consecutively one to eight. The pieces were turned to the desired form for testing-

Nos. 1 and 4 being finished to the cylindrical form for ordinary tensile test ;

Nos. 2, 5 and 8 being grooved transversely to illustrate the effect upon the tensile strength;

No. 3, to uscertain the effect of a long-continued tensile strain appronching the elastic limit;

No. 3, to determine the tenacity of steel which has been previonsly subjected to a tensile strain approaching the masimum load.
No. 7, to ascertain the tenacity of steel which has been previously subnitted to a compressive strain.

The form and dimensions of the specimens were shown by the author by drawings.

Where practicable, the transverse sectional area was made to equal one square inch. The specimens for ordinary tensile test were marked carefnlly with fine centre-punch marks placed a distance of eight inches apart, this being the length of specimen usually taken for the measurement of elongation by the Admiralty and by Lloyd's surveyors, and it is approximately the same as that used by most continental engineers (two hundred millimetres). The experiments on tension were made in the following manner: The specimen was strained until an extension equal to 1.100 inch was observed; the tension was then noted. The specimen was then pulled until a further small extension was observed ; the strain borne was again noted, and so on, these observations being made at frequent intervals during the elongation of the specimen until fracture took place. In some instances the strain a'd extension were observed forty times during the progress o:" one test. The diameter of the specimen was also measured at each successive extension. A considerable number of data was thus obtained, sufficient to enable a diagrammatic representation to be made, not only of the extension and varying etrain on the specimen, but also of the mechanical work done in breaking of the highest importe late Dr. Fairbairn regarded as being of metal best suited to in the consideration of the quality impact. Another quantity was a strain analogous to that of viz., the real tenacity or was also calculated from these data, the elongation of the specimive force of the metal. During maximum load is reached, a u to the point when the
tenacity or cohesive force of the metal measnred on the diminished area is, therefore, manifestly greater than the tensile strain per square inch of the origiral sectional area. The nltimate cohesive foree is determined with some difficulty, and which is perhaps netitude that may be desired. It is a quantity but it is impossible great interest to the practical enginecr, remarkably high struins compreheud the rationale of the specimens of mild steel without a grooved, drilled, or punched force of the metal. 'The excess of tensilge of the cohesive ever, easy to understand when the cohe resistance is, howrestricted flow of the metal are cohesive force and the together.

Referring to the specimen No. 1, no change visible to the naked eye was observed in the length of the specimen on the measured with fine a moderate tensile strain, even when. punch marks placed eight dividers udjusted to fine centrenot yielr perceptibly, the inches apart. As the specimeu did strokes of the pump, and the mon increased rapidly with a few testing machine was run out moveable balance weight of the order to counterpoise the tut quickly from the fulernm in \boldsymbol{a} strain of nearly fourteen tosion on the specimen. Under of .01 inch was observed, but there wase inch an extension yielding or weakness in the but there was no sign of further floating, and would have conecimen. The steelyard remained period, balancing the tension of fourto do $\mathfrak{\varepsilon} 0$ for an indefinite When the strain was increased to seen tons on the specimen. the bar suddenly elongated, and the strain and-a-half tons, fifteen tons, the weight on the steelyard haninished to about back towards the fulcrum, in order yard having to be movedthe tension. That point at which the in equilibrium with relaxes in tension (in this case at ach the specimen suddenly commonly termed the "elastic limit"" and-a-half tons) is extension, aniounting to one, two, although some little inch, usually takes place bor or three-hundredths of an microscopic extensions which this point is reached. The "elastic limit" are of wich take place before the so-ealled very fully described by Profiderable interest, and have been paper on the results of experimor Kennedy in his admirable the Institution of Mechanical limit was passed, the tensile Engineers. After the elastic fluctuating slightly, but rising from gradually inereased, previous highest strain of sing from fifteen tons until the reached, the elongation meanwhile band-a-half tons was again

No other sudden relaxation of tension was experienced whilst the actual extension was going on up to the point of rupture, but a gradual dimination of the load tuok place after the a reduction of stain worne. A similat although not so large may be observed strain as that experienced at the elastic limit test if the extension be interery succeeding stage of the taking the indications of tension for formoment. When sion of the specimen, it was of course necessury eath extenworking the mamps so soons of conrse necessary to cease attained. It was noticed thas each desired extension was dropped at once, and the strain dimon doing so the steelyard square inch in the course of a few seconded abont one ton per would sustain this slightly reduced londs ; but the specimen time without further extension. On for a considerable again, the tension rose rupidly to the working the pumps when the pumps were stopped, and the same load as was on slowly as before. The stopped, and then continued to increase of a bar to tension is made up of opinion that the resistance is the pure elastic sude up of two quantities, one of which frictional or other tension of the metal, and the other the in passing each other to tate which the molecules experience is by far the larger quantity up new positions. The former of the diminntion of strain when would explain the reason momentarily stopped; there bein the process of extension is or motion of the particles, the frictionel no further extension and the strain decreases to the elastional resistance vanishes, The maximum strain, 28.35 tons elastic tension of the material. when the specimen had 18. $\% 5$ per cent., the secticengated one and-a-half inches or .8168 scuare inch, a reduction of a little become reduced to per cent. As the maximum strain istle more than eighteen section, it follows that the cohesive is borne by this rednced tons, or about eighteen per cent e strain at this point is 34.32 per square inch of the original are more than the tensile strain of the specimen, as is well area. The ultimate extension different portions of its lengt known, varies considerably in the fracture. The extension and is, of course, greatest near periods of the test. although the bar is perfectly anifferent diameter. It does not take place simultancously through in the length of the bar; for instance, with an onsly throughout tenth of an inch the specimen ince, with an extension of onenear to one end, the diameter becoming vis drawn in one place, to give one the impression that the bar visly smaller, tending in any other part. Iuring the next tenth or two-tenthe of an
inch extension the bar will often draw in the larger part, sothat the diameter may again become nearly uniform ; afterwards the bar may elongate at the other end of the specimen. Occasionally the sectional arca will become reduced in two places at the same time with a larger part intervening, and the fracture often occurs at some point which was the least extended in the early period of the test. This behaviour explains how it happens that the reduced areas recorded in the tables sometimes remain constant during two or three successive extensions. It therefore appears that when one part elongates more than another, it may become so much stronger at the small part under the strain, that it will not manner further until the larger part has drawn in a similar the smallest diame No. 3 there is a column for the position of foregoing remarks.

When the maximum strain is passed "local extension" takes place, that is, the specimen elongates only in the neighbourhood of the smallest part; the sectional area continues to reduce, but the tensile strain also diminishes as the specimen point of rupture ishing slowly at first, and more rapidly as the often a difficult mapproached; in fact, so rapidly that it is metal immediately before fracte the exact strain borne by the the strain diminished dure fracture. In the specimen No. 1 28.35 tons just before breut local extension from the maximum cent. The sectional area also diminution equal to 11.78 per inch to . 5541 square inch, a reductioned from .8168 square the contraction of area goes on in a greater per cent. As: diminution of strain, a peculiar in a greater ratio than the metal becomes evident, viz., that the in the behaviour of the per square inch of reduced area the tenacity or cohesive force maximum strain is passed area does not diminish after the largely until the bar is marked manner in Table Nactured. This is shown in a very maximum strain is 34.32 tons. The cohesive force at the 45.21 tons. Some experimentalists the finish of the test it is . of recording in tables of results the quve followed the practice "tensile strength per square ts quantity termed by them. quantity is misleading square inch of contracted area." This. that are not coincident being obtained by the use of two data not on the area at the moment thaximum strain is calculated, but on a subsequent smaller area maximum strain is reached, is not capable of bearing the maxime fractured area), which obtained does not therefore maximum strain. The quantity-
or cohesive force of the metal, except in the case of the hardest and most brittle quality of steels, which usually break at the maximum load. According to this method of calculation it is 51.16 tons in this specimen as against 45.21 tons determined by the author. The extension of this specimen on eightinches was 2.20 inches equal to 27.5 per cent. The contraction of sectional area was 44.59 per cent., and the fractured surface was silky in appearance. The work expended in producing rupture of the specimen is represented on the diagram by the area of the irregular figure ABCDEF, enclosed by the thick line marked "tensile strain per square inch." It is 55.85 inch-tons, or 125,115 inch-pounds, equal to an average of 6.98 inch-tons, or 14,639 inch-pounds for each lineal inch of the specimen.
The formula which Dr. Fairbairn used for calculating the mechanical work is-

$$
u=\frac{1}{2} \mathrm{P}, l,
$$

where $u=$ the mechanical work, $P=\frac{P}{K}$ the strain in pounds reduced to unity of section, P being the tension in pounds, and K the area of the specimen in square inches, and $l,=\frac{l}{l}$ the corresponding clongation reduced to unity of length. L

Applying this formula to specimen No. 1, the mechanical work is found to be 8736. This is a very large amount compared with the results obtained by Dr. Fairbairn in his experiments on steel, and even this is far belnw the real mechanical work 15,639 for unity of length determined by actual experiment. The formula would only be correct if the material of the specimen were so elastic as to permit of the total temporary extension of 2.20 inches without any permanent elongation, in which case the total work done would be represented geometrically by the triangle AGF. As used by Dr. Fairbairn for obtaining a comparative measure of the power of resistance of different bars to impact, this formula would afford reliable although not exact resuits. Other engineers have used the simple formula $u=P, l$, which is in excess of, but does not deviate so much from, the exact quantity. The formula deduced from results obtained in testing this specimen by the author should be $u=.90 \mathrm{P}, l$, . Another sample of very soft ingot metal made for till bar.
purposes, and having a tensile strength of twenty-five tons per square inch, gave results which would agree with the formula $u=.90 \mathrm{P}, l$,. Soft Bessemer steel having a tensile strength of thirty-one tons per square inch gave the formula $u=89 \mathrm{P}$, l,. The mean of the three soft qualities of steel gives .90 as the coefficient ; and this was confirmed by the results obtained in testing some Siemens steel plate laving a tensile strength of thirty-two tons per square inch. It is curious to observe the change in the appearance of a turned specimen, fiuished smooth and bright, when tested up to fracture. The external surface loses its beautiful brilliant lustre and acquires a frosted appearance, becoming rough to the touch, and offering some frictional resistance to the callipers used for measuring the diameter. Examined under a magnifying lens, it resembles a number of blunt pin-points projecting outwards from the surface; under the microscope it has a crystalline appearance somewhat like the fracture of grey iron.

Referring back to the author's opinion that the tensile strain is made up of elastic tension and resistance to change of position of molecules, it may be of interest to quote the following experiment: A specimen of tin bar steel having a tensile per cent. of 25.35 tons per square inch was extended thirty-two having diminishgth of eight inches, the strain at that moment contracted 51.6 per cent of tons, and the specimen having stopping the pumps, the strain figinal sectional area. On tension, 20.44 tons, the differencen at once to the clastic frictional resistance of mifference, 1.34 tons, being due to Wis so near the point of rupture and thongh the specimen afterwards found to be only 18 and the breaking load was sustained the strain of 20418.48 tons, yet the specimen any further extension ta. $4 \pm$ tons during two hours without men could be made to yield place ; in fact, before the specithe strain to 21.70 tons specimen when the pumps nearly the same load as was on the cohesive force of any particular puality Presuming that the same, temperature and other quality of steel remains the evident that if, by any mer conditions being constant, it is be altogether prevented, the, the flow of this mild steel could and the tensile strength would would be no reduction of area, exerted over the whol of equal to the cohesive force $n o$ elongation of the of the original area. There would be square inch would be specimen, but the tensile strength per It is almost impossible to entirom 28.35 tons to 45.21 tons. inetal under tension, but the specimen may be so shap of the
five tons per the formula streugth of - $u=89 \mathrm{P}, ~ \imath,$. es .90 as the obtained in strength of observe the on, finished Che external res a frosted ering some asuring the resembles a from the appearance
nsile strain ge of posifollowing s a tensile thirty-two at moment on having area. On be clastic g due to specimen load was specimen without the speciincrease as on the that the aains the ant, it is eel could of area, ve force vould be gth per 21 tons. of the ed as to
admit of but a small reduction of area, and the tensile strength of such a specimen, compared with a specimen of the ordinary form, is found to be very lurgely increased.
Specimen No. 2 was prepared to illustrate the truth of this proposition. The central cylindrical portion was turned to a diameter of one and three-quarter inch for a length of eight inches, and a groove of 3.32 inch in width was turned with a round-nosed tool at the middle of the bar to a depth sufficient to leave the diameter at the bottom of the groove one and one-eighth inch or one square inch in area. This specimen bore a strain of 26.50 tons at .01 inch extension. No sudden relaxation of strain corresponding with the elastic limit was observed, and the strain gradually increased, as shown in the diagram, at each extension of $\frac{1}{105}$ inch up to 40.48 tons per square iuch. when the specimen broke suddenly, the fractured surface being of a dark crystalline appearance at the centro and silky near the circumference. The shortness of the extended portion precluded the observation by ordinary dividers of ia "breaking-down" period when the elastie limit was reached, and for the same reason no gradual diminution of strain was observed, even if it took place after the maximum strain was reached. In dealing with groored specimens of the softest class of mild steel, it is, however, possible to observe both the elastic limit and the diminution of load after the maximum strain. This may be done by extending the specimen at an extremely slow rate, and by the aid of a suitable apparatus for measuring very minute extensions. The extension at the moment of fracture was 0.09 inch, equal to one hundred per cent. The reduction of area measured after fracture was 13.45 per cent. only, against 44.59 per cent. in the ordinary tensile test specimen No. 1. The strain was so great as to cause a small contraction (2.82 per cent.) of the sectional area of the large portion of the specimen; and there can be no doubt that the extraordinary high percentage of extension, accompanied by so small a reduction of sectional area in the grooved part, is to be accounted for by the metal being drawn from the large part on either side into the constricted portion.
The cause of the difference in flow and the increased tenacity of the grooved specimen may be explained by the following theory : Let a filament or single chain of molecules or atoms of ductile metal be imagined to be submitted to tensile test, and let the length of the chain be eight inches. Under tension each molecule would become separated from its neighbor so far as their cohesive attraction would permit. On releasing
the strain the molecules wonld return to their originali positions, and no permunent extension of the chain wonld greatest distance, the chain being perfectly elastic. The its neighbor would be one molecule could be separated from total of the numerous extensionitely small quantity, and the would probably not exceed 0.03 of the intermolecular spaces chain (eight inches). This extension on the full length of the limit of elasticity, beyond extension would represent the real strain borne under this greatest rupture would ensue. The the elastic limit, the cohesive formporary extension would be If the extension were pushed borce, and the tensile strength. thereabonts on eight inches, beyond this limit of 0.03 inch or break, but each broken port, the chain of molecules wonld indication of permanent set. mild steel may be regarded as a w, a cylindrical test-bar of molecules, each link having the vast aggregate of chains of tension, of leaving its own che pecnliar faculty, under high between the two zearest links of and taking up a position cules. The chains of molecuks of an adjoining chain of moleelongated by the addition of new thas become permanently same time reduced in number. The pe, but they are at the a specimon is an indication that such permanent clongation of has occurred. The direction of the flow flow of the molecules. from the extewior to the interior, and the of the molecules is. in diameter. Each chain in the and the specimen diminishes to be capable of bearing the same aggregate may be supposed as if it had not become eiongated strain as if tested nlone, or ing molecules; but as the chnins the addition of neighbortotal strain carried by the whole mase fewer in number, the than if tide flow of the links or mass prior to rupture is less. prevented. For a simile, it is or molecules could have been iron chain, having a tensile strength 1000 feet of ordinary divided into a hundred equal strength of one ton, may betheir combined tension, muyl lengths of ten feet, which, by hundred tons; but if the muy be made to supportt a load of cne. twenty feet long, the unite thain be divided into fifty parts, each. fifty tons. In the case of a test ength of the fifty parts is only each molecule, however, is test specimen of ductile material, longitudinal direction, but not only a link of a chain in a stituent link of moleonlar it may also be regarded as a conof course, the transverse : this in all directions, including, tenacity of speeimens of steel plate evident from the equal longitudinally, transversely, or in cut from the plate eitherordinary eight-inch cylindrical specimen, the direction. In an
transverse molecular chains come to the surface and are free. They, therefore, offer no tensile resistance to the flow of the molecules in a transverse direction. In a grooved specimen the transverse molecular chains are not free, but are united to the ring of external metal; and if this ring be of sufficient strength to resist the transverse tension, the reduction of area will be so slight that the tensile strength per square inch of the specimen will approximate to the cohesive force.
Although a high strain is required to break a grooved specimen, yet the extension before rupture is so small (0.09. inch), owing to the shortness of the extended part, that the mechanical work done in breaking the bar is trifling. The units of work done in breaking the specimen are only 2.79 . inch-tons, or about one-twenticth part of the energy consumed in breaking the eight-inch cylindrical specimen. If tension were applied to these specimens by means of a very heavy weight moving at low velocity, the relative energy of the blow required to break the specimens would be as one to twenty. It must not be supposed that tie author would advocate, under any circumstances, the grooving of a bar of metal with. a view to gain strength. A duetile or a hard cylindrical test. specimen having a transverse groove in it must always break. in the grooved part, provided the metal be in a normal condi-tion-that is, of homogenious quality and free from undue internal strain. General experience would lead one to observe. that large and abrupt variations in the dimensions of pieces of machinery, or portions of structures subject to blows or vibrations, should be avoided. The contour of all forgings, etc., varying in dimensions in different parts should be rounded and not angular. This is a maxim that cannot be too often impressed upon those who are engaged in construction work

A SHORT IISTORY OF THE STEAM ENGINE.

The early history of steam is wrapped in obscurity, being used by the priests for to create the marvelous in the idolatrous religions and altar rites.

Hero, supposed to have existed about 225 to 150 B. C., is the first to mention the use of steam, althongh it appears to have been incidentally referred to by such ancient authors as Homer and Plato.

Hero's inventions consisted of a display of his knowledge of the properties of steam, air and water, and among the most useful are a fire engine, pump, water clock and steam engine, the invention of primitive style. Hero may be credited with motion to machinery. Stotaty engine, capable of giving cylindrical vessel, with a steam was generated in a hollow of which was freely suspend passing out of top, on the end holes on one side of an arm; th a globe with two arms, with the air produced the rotation of steam in issuing ont against centre part of globe, motion could be, and by a pulley on machinery. could be communicated to

Anthemus, Gubert and Alberti made use of water and heat for frivolous purposes.

In Spain, LeGaray put a boiler on board of a vessel and propelled it by paddle-wheels; the ressel was about 200 tons, and made three miles per hour, and was probably driven by one of Hero's style of engines.
The force of steam, and the rapid racuum produced by its condensation, are both ably treated by Cardan, who also invented the smoke-jack as still used to illustrate the power of Math; he lived about the year 155%. years later a rotary, refers to the use of steam, and seven a great and clean improe was used to turn a roasting-spit, Ramilli, Bressen of steam and its uses, and attis works show quite a knowledge DeCaus and Ramsay.

In 1629, Branca gives a description of a rotary engine, the top of the boiler was like the head of a man, in form, with a pipe in his mouth, blowing a jet of steam against the arms. of a wheel to cause it to rotate on its axis, and by the pinion. give motion to a machine.

The Marquis of Worcester, about 1660, made use of steam. to work engines for pumping water.
Hantefeulle tried to work engines by gunpowder and alcoholic vapor. To Isaac Newton many of the later inventors were indebted for the correct theory of steam.
Papin flourished about 1680-1707, he was the inventor of the steam digester; and to regulate the force of the steam in the digester he invented and employed the steelyard safety:
valve.
In 1687, Papin constructed an atmospheric engine for raising water, to drive a wheel which also worked an air pump for producing a vacuum in mine pipes; and to render the action continuous two cylinders were joined together by a two way cock, which alternately opened each cylinder with the air pump. and the atmosphere.

Papin soon learned that a good vacuum was a requisite. thing, but abandoned his own invention to perfect Savary's, engine.
Papin also used two or more cylinders for his steam vessels; he was the first to systematically try to save fuel by improved. boiler, and in which he succeeded.
In 1699, Daguet propelled a boat at Havre by steamrevolving oars.

Great energy was displayed by Savary in improving the steam engine; his engine was the same as those formerly used, with the exception of pouring cold water over cylinder, to produce a rapid vacuum cach stroke. He improved steam admission valve and construction of his boilers. It is of Savary that it is related that he accidentally discovered the force and condensation of steam, from a wine flask not quite empty being thrown on a fire and producing steam, when he took it off the firc and immersed its mouth below cold water, which condensed the steam and filled the flask by atmospheric pressure.
Newcomen's atmospheric engine dates about 1720. Newcomen was a blacksmith, he introduced the beam or balancelever. At first Newcomen adopted Savary's plan, but a faulty cylinder having admitted water internally, the condensation was more rapid, with increased effect from the engine. Since
that discovery internal injections has genernlly, but not always, been adopted. The varions cocks and valves were all opened by hand uatil a young lad, attending one of the engines, ingeniously connected them with the beam by strings and catches, so as to open them with much regularity ; this was the means of introducing the self-acting hand geur.

Desaguleir improved Savary's engine, and Brighton improved the hand gear, etc. Lcopold, in 1720 , recalled attention to the high-pressure steam engine.

Dicken and Allen, about 1725 , proposed an engine to raise water, move mills and ships. Allen propelled by a jet of water forced through the stern of the vessel below the surface of the water, same as Fitch in 1788 .
Allon proposed n fire box boiler, with spiral flue through the water and a bellow blust to urge the sluggish vapour through the tubes.

Gensame, in 1730, by the gravity of water and impulse of a falling weight, made the stean valve and injection cock selfcting.
In 1736, Jonathan Hull made an effort to apply a single acting steam engine to propel ships. This plan was to produce rotation by rachet wheels aided by a weight, whereby to move a central paddle-wheel in deep water, or two poles alternately thrust against the ground by a double crank axle in shallow water.
Λ few years later Payne investigated the cunsity of steam, and Blake discovered the proportion of cylinders. Fitzgerald was the first to make use of the fly-wheel, 175%. T'o Dr. Black, 1762 , we owe the doctrine of latent heat. Blakey introduced a kind of tubular boiler in 1756. Smeaton's experimental engine of one horse-power evaporated six and-aquarter pounds of water by one pound of coal, and required eleven times more water for condensing than generating the pounds above effect was produced with a pressure of eight relative steaming value of different He also determined the The seaming value of different coals. being the principal motive nower same as Newcomen's, air Smeaton inclosed the fire and supplis some of his boilers, tube.

Cagnot, a French engineer, constructed a steam locumotive in 17\%1, the piston worked downwards, as afterwards adopted in Cornwall, England, by Bull, to evade Watt's patent, and now in pendulous engines by various makers.

The distinguished and world-renowned mechanical engineer,

Watt, was born at Greenock in 1730, and died at Birmingham, Eingland, after a most successful and busy life, aged eightynine. At Glasgow, in 1759, he received a suggestion from his friend, Dr. Robison, as to the application of steam to propel wheeled carriages, but for a time all his energies wore, with a success that astonished the world, rendered to apply steam to clearing mines of water.

Watt so vastly improved the steam engine that he has stamped his name on it, as if he had been the original inventor.

After several trials on condensing steam in another vessel connected with the cylinder, in 1769, Watt successfully added a eeparate condenser to Newcomen's engine, und the double aeting cylinder was added and a conical valve was used to open and close the steam passages, worked from the beam; and in 1784 he patented his beautiful parallel motion, an arrangement by levers to correct the vertical motion of the piston rod; and to guard against irregular generation of steam affecting the motion of the engine, Watt introduced the throttle valve, worked by the governor and combined with the fly-wheel. These admirable inventions made the steam engine so regular in its working as to make it very useful; and in 1780 Pickard applied the crank and connecting rod to the steam of his design, however, complained that the crank was part but he invented anfly obtained through one of his workmen, planet rotary, for use during the existence, the sun and patent.

After the first successful application of the steam engines to machinery, more graceful forms and superior finish were given to parts, etc., by Watt, until the steam engine became a beautiful as well as useful machine. With such able rivals as Smeaton, Hornblower, Trenthick, Bramah, Wasbraugh, and others, often disputing the validity of his patents or seeking to evade them, Watt's ultimate success has imperishably associated him with the steam engine.

About this tino Compte Auxiem and Piene, of France, proposed a screw propellor for ships which gave a backward or forward motion by reversing the revolution of screw.
In 1776, Wasbraugh, of Bristol, a rival of Watt's, proposed to propel ships, raise water or drive mills by steam engines with the screw.
The following names of improvers, etc., of Watt's engine, with a short notice of each, may be interesting :

[^3]an additional cylinder to employ the expansive forees of steam after it had done its duty in a small cylinder, on the plan of two cylinders for the expunsive action of steam. Hornblower's rotary engine had two moveable pistons, aiternately moving round the steam cylinder and actiug as abutment valves to ench other; a tappet valve in each piston was opened as it. came in contact with the abutment, one of which was set at liberty and the other arrested by sliding levers behind it, and so on, alternately.

Bramati, 1783-1797. He was another rival of Watt. He improved construction of two way cock of Papin by making it turn quite round to equalize the wear. He is eliciefly remembered for his hydraulic press and his celebrated lock. Fitcin, 1783-1788. An American. He moved a boat by paddles on the Delaware, 1783 , and on a trial trip to Philadelphia, in 1789, a speed of right miles an hour was made.

Olivizk Evans, 1784-1804. He introduced the cylindricai boiler, with an internal flue and leading back below the boiler to the chimney. To further economize fuel the exhaust steam was made to pass specially through a pipe in a cistern of water to heat it for the boiler. In 1804, he showed the practical use of his engines by fitting one of them on a rough wagon and afterwards in a boat.

Murdock, 178t-1789. This able assistant of Watt serviced him about twenty years, earniag a name intimately associated with Watt's steam engine in Cornwall, where he was much respected. The eccentric motion and long D slide valve vere his inventions.
Trenthick, 1790-1816. He, like Evans, preferred high pressure steam; his name is connected mostly with the perfecting of the locomotive.

Symington, 1785-1804. He constructed a crude style of steamer of the modern stern or centre wheel steamboat.

CARTWRIGHT, $1 \% 9 \%$. He patented an ingenious parallelt motion, metallic piston, an air pump, and an external condenser ; power looms and carriages without horses, etc. Fuiton, 1793-1807. This able and persevering man had long been engaged in promoting varions plans of steam navigation. He visited Scotland, acquainted himself with Symington's neglected steamboat, returned to America and successfully introduced it on the Hudson. To Fulton is due the credit of going to Great Britain and carrying into practice with the best results to mankind a British combination neglected by that nation. Fulton's first steamboat, the "Clermont," built in 180%, was 130 feet long, $16 \frac{1}{2}$ feet wide.

MANUAL of ENGINEERS' CALCUlations.

7 feet deep, and 160 tons burden ; worked by one of Watt's double-acting engines.
American river steamboats are now celebrated for their size, superior accommodations, number, low fares and speed, over those of any other nation. On the Hudson, for instance, where stean navigation for hire was just introduced, besides. many smaller vessels averaging 200 feet long, there are in length a dozen floating steam palaces averaging 325 feet them travel twener a 1,000 tons burden each, and inany of Bell, $1800-181$ miles an hour. service, that averaged nbout two small steamboats for outside Stevens, 1804. With a Six miles an hour. half inch cylinder and nine inats engine of only four and-afrom a boiler consisting of eighty stroke, supplied with stcam one inch in diameter and two feet N. J., U. S. A., propelled a feet long, Ntevens of Moboken, screw, on the principle of the steamer four miles an hour by a boiler deserves notice from tho tubes, bcing similar to the the number and position of the Ericsson, 1853. In Enoderin locomotive boiler.
steamboat, with great velocity in designed a rotary engine consumption of fuel.
An American captain, with a Ericsson propoller named Stockton, built a larger boat. where it plied with great at Liverpool, and sent it to America
From the earliest great success on the Delaware. the steam engine covers a the present time the history of rotary has been left in the rear by of over 2,000 years; the

The first modern engine by the reciprocatory engine. mechanic, Watt; to Cuynot and Trenthick work of a Scottish locomotive; the first modern trenthick we owe the steam Symington, a Scottish mechanic type of steamboat was built by stcamer by an American, Fulton; and the first regular river to the Scottish engineer, Bell. For a more extended will be found very interestint of their lives and work, which Thurston's work, "'Thesting and instructive reading, Prof. Clark's "Steam and the Steam Eng the Steam Engine," and tain all that is necessary, coupled Engine," will be found to conprincipal names in the foregoing account. bination pat, the. et wide,

PART II.

INAUGURAL ADDRESS.

(Delivered by the Author at the opening of the Engineers' School, St. John, N. B.)
I wish to address a few words to you this evening, in the first place as to the reason why we are gathered here to-night, and secondly, on technical and theoretical education and engineering in general.

I think you all understand that our work, first, is to get an insight into the calculations and theory of engineering, to everyone will haveceed to work, prepared in this manner : which will be simply a blay be called a common-place book, interest, as notes from the lectures, for entering anything of of same, with tables and resulting, rules, data, and examples so you may always have it as a help to memolved therefrom, The tirst subject treated in help to memory. and more particularly decimals our course will be arithmetic, and cube, because these rules occur the roots, such as square work pertaining to engineering, theot often in all arithmetical knowledge is necessary; and, hat at least an elementary formula and rules, then'we will hereafter, a few words on and questions required by law for pass on to the calculations for a Chief Engineer's Parchment Canadian engineer to pass all the work necessary to pass any Certificate, which involves present, that is the highest grade grade ; of course, as at Engineer" grade as in England, there being no "Special pointed out and specified accordi ; the minor grades will be tion requisite.

After a thorough grounding has been received in the examination calculations, and questions have been obtained, up; and after calas of general interest to engineers will be taken I wili then comm have formed an acquaintance with all these explain to you theore, by a series of articles and diagrams, to slide-valve, screw eccentric the working of the indicator,
require a knowledge of mathematics beyond arithmetic, and which will, therefore, have to be dealt with; by a number of lectures I hope to be able to make you all conversant with the properties of materials of construction, coal, combustion and steam, and the elements related to or connected with them.
I may say here, once for all, that a great deal depends on yourselves and your interest and work, as to the permanent good achieved by this winter's school, so I advise you to take note of everything, and set down in black and white in notes and figures as much as you can, and study during your leisure moments those subjects, for education combined with practice of phenomena than the Formerly the he phenomena themsclves. the understanding of theory with lay in genius, now more in versant with all the laws pry with practicc, and being con-
From what was once pertaining thereto. vagaries, has now in practice sprung Treadwell's pardonableand the spinning of corduge yarng the single track railroad cannon; therefore, you will yarn; also the best and latest plication of a sober, laborious the result of the steady applans from theory, formulated scholar, adducing practicali of physics, mathematics, and kiny the established principles , and kindred sciences. common things, which has illustrations of the change in is the rail of the railroad. Formerly it about by knowledge, supported by chains, and havingerly it was an iron edge rail the head. Clumsy as the rail more iron in the base than only form for the purpose; was, it was claimed to be the defined tread web and base the the rail is of steel with well where it is most needed, and the principal weight of metal is physical tests.

In fact, the short and long of it is: now is the age of engincering, as the past was one of invention and the study and mastery of the principles of mathematics and physical science; the ability to express those things in drawings and clear descriptions, and to apply to the solution of practical problems in machinery and handicraft, are the essential qualities to be combined with practical experience in a good mechanical engineer.

Men are born just as ignorant as they ever were, and thesame steps from ignorance to even the elements of knowledgemust be taken at some time by all who wish to become intelligent men ; but all it really requires is the beginning, and then stick to it and half the battle is over.

A man must understand intelligently the thing he is working at, or he cannot obtain the best results : we all have leisure enough to acquire many things.

The cultivation of reading and keeping notes of the same is very productive of good results; for instances, the works of Edwards, Rankine, Wilson, Haswell, Read, Ansley, Roper, Bourne, Clark, etc., must, of courso, produce a lasting impression of facts, adduced from practice and theory combined, on the mind of the engineer that understandingly reads them.

The United States naval engineer, King, says in his book:
"Having had many difficulties to surmount in our earliest studies of the steam engine, we were led to the course of keeping a steam journal, in which we noted from time to time, as we progressed, whatever ec thought important and was made clear to our mind: wn this course we would recommend, for however well j , be to study books containing other men's thoughts, when we write we are led to the habit of thinking for ourselves, which is of the highest importance, and by keeping a journal we have also the very great advantage of having always at our command, in a condensed form, those things which are the most important." Mueh has been said about theoretical versus practical education, and the working at hard work as well as hard facts, and though no ono will deny the great advantage of how to do a thing from practical knowledge and skill, still no one minst run away with the idea that theoretical exposition of many things are not practical, for much of such conclusions have been drawn from the practical experience of many heads and hands; for instance, see what Professor Rankine says in the introduction to his "Manual of the Steam Engine and Prime Mover": "In the history of mechanical art two modes of progress may be distinguished-the empirical and the scientific. Not the practical and the theoretic, for that distinction is fallacious; all real progress in mechanical art, whether theoretical or not, must be practical. The true distinction is this : that the empirical mode of progress is purely and simply practical ; the scientific mode of progress is at once practical and theoretic.
"Empirical progress is that which has been going on slowly and continually from the earliest times to the present day, by means of gradual amelioration in materials and workmanship, of small successive augmentations of the size of structures and power of machines, and of the exercise of individual ingenuity in matters of detail. The mode of
progress, though essential to th perfecting of mechanical art existing details, is confined to making small alterations on its effects.

號 lange of continuously, brogress in the mechanical arts takes place, not efforts. When the results of expten distant, and by great the properties of the materiaperience and observation on actions which take place in a which are used, and on the reduced to a science, then the a class of machines, have been is no longer confined to annendmprovement of such machines of previously existing examples ; but enlargements in detai] science practical rules are deduce ; but from the principles of bring the machine to theduce ? showing not only how to consistent with the available matition of greatest efficiency, also how to adapt it to any combinials and workmanship, but different soever from those which lion of circumistances, how When a great advance has tius been previously occurred. gress, empirical progress again comes made by scientific proresults in their detail." again comes into play to perfect the Mechanics is that of force and applicanch of natural philosophy which treats resistance and velocity play in machiues, in which motion, find a very inte"esting play a very active part ; this you will of gravity, the mechanical embracing gravity and the centre giving you such knowledge as powers, hydrostatic, etc., and things as to guard you from the even trifling and common tried to raise himself over a the mistake of the man who straps, or the no less ingenious cence by pulling at his boot in the stern of his sailboat so hone who rigged a huge bellows 1 ind, for yo will know that action and ways command a fair Friotion you will find also treated, and re-action are equal. the cause of loss of power, still it is not although it may be even nails would be useless, as thev not without its use, for friction ; the band, cog, crown and would draw out, but for may be also mentioned in connection wheols of machinery general law of friction may be said to with friction. The which a given pair of solid bodiesid to be: "The friction given condition, are capable of es, with their surfaces in a tional to the force with which exerting, is simply propor-: The power of an engine is the they are pressed together." the useful work performed by energy exerted, as the effect is power of an engine is 550 by it in a given time : the horseper minute, or $1,980,000$ per pounds per second, or 33,000 the power, multiplied by the efficiency. airsing from water at its bciling point is equal to the pressure of the atmosphere, which is 14.72322 pounds per square inch, which is equivaleut to a pressure of a column of mercury 29.9212 inches in height. Under this pressure fresh water boils at $212^{\circ} \mathrm{F}$. The 212° is not the total number of degrees of heat in the steam, but simply that which is indicated by the thermometer, and which is termed sensible heat ; for we all know that to raise water from the freezing to the boiling point requires a certain time and a certain amount of facl; and we know further that when the water commences to boil it does not all evaporate at once, but that the evaporation goes on gradually all the time, hence the fuel required to eraporate it is much greater than that required to raise it from the freezing to the boiling point; this extra heat must have gone off somewhere and must be in the steam, but as it is termed latent heat. When the steam is reconverted into water, the latent heat becomes again sensible, which is evident by the large amount of water required to condense a small amonnt in the shape of steam.

The leat contained in vapor, above that necessary for producing the temperature, is what is meant by the latent heat of stearn.

It requires as much heat to raise one pound of boiling water at 212° into steam as is required to raise five and-a-half pounds of water from the freezing point ($32^{\circ} \mathrm{F}$.) to the boiling point ($212^{\circ} \mathrm{F}$.)

In steam at $212^{\circ} \mathrm{F}$. there are 212° of sensible heat and about 1000° of latent heat, being 1212°; as one-increases the other decreases. A cubic inch of water evaporated under the ordinary atmospheric pressure is converted into, say nearly one cubic foot, and exerts a mechanical force eqnal to the raising of 2120.14 pounds one foot high-27.2222 cubie feet of steam, at the pressure of the atmosphere, weighs one pound.
The velocity of steam, when flowing into a vacuum, is about 1550 feet per second when at an expansion power equal to the atmosphere; when at ten atmospheres 1780 feet; when flowing into air under the same pressure 680 feet, and increases to 1600 feet for twenty atmospheres.

Water contains a certain amount of air, and when it is converted into steam this air is mixed with it, and when the steam is condensed it is left in a gaseous state. If means were not taken to remove this air or gaseous matter from the condenser of a steam engine it would fill it and the cylinder, and obstruct their operations; but, rotwithstanding the ordinary means of removing it (by air pump) a certain quantity of it always remains in the condenser ; twenty volumes of water absorbs one volume of air.

Having taken a glimpse of some of the subjects I intend to treat ${ }^{-1}$ full in the future lectures and lessons, I may recommend to your consideration a completo encyclopædia of elementary, advanced and technical education, called the "Popular Edacator," issued in monthly parts, or two bound volumes, by Cassell \& Company, London and New York ; a work intended for those who wish to become self-educated, and therefore its special fitness for engineers and mechanics, who will find their vocation in life has not been forgotten in the multitudes of interesting things in its pages; and whe. they master these they may add the two additional volumes of the "Technical Educator," having then a complete library for study and reference that will not cost over a week's wases.
The following extract from an article on heat is from its. pages, minus the illustrations :
"A simple experiment, which may be easily tried, will enable us to determine exactly the quantity of heat which becomes latent when ice is converted into water, or water into
steam.
" Let a uniform source of heat be procured, and let a pound of water be placed over it, so as to ascertain exactly the amount which its temperature rises in a given time. We will assume that it is found to rise 10° in one minute. Now remove this vessel and substitute one containing a pound of ice at a temperature below $32^{\circ} \mathrm{F}$, and having a thermometer placed in it. The temperature will rise 32°, and will remain at that point a trifle over fourteen minutes, at the end of which time the ice will all be melted. Now in this time the amount of heat received is evidently sufficient to raise a pound of water a little over $14 \times 10^{\circ}$; or say 142°, yet the water is still only 32°. This amount of heat, then, has been rendered latent. Let the vessel still remain exposed to the heat, and. in eighteen minutes it will have attained the boiling point, for $18 \times 10^{\circ}+32^{\circ}=212^{\circ}$. Now, without disturbing anything, wait and see how long elapses before it is entirely boiled away;
it will be found to be about ninety-five minutes, or nearly five and-a-half times as long as it took to rise frum 32° to 212°, and yet the temperature of the steam has at no time exceeded. 212°. All this amount of heat, then, has been rendered latent, and is, viz., $5 \frac{1}{2} \times 180^{\circ}=$ or, nearly 1000°.
"We can, however, easily recover it by the arrangement shown in fig. 13. The steam which is given off is condueted by glass tubing into a vessel, A, filled with a given weight, say five and-a-half ponnds of water at 32°. After some t me the water in A will boil, and then it will be found that the amount of water in it is just six and-a-half pounds, showing that one pound of steam has been condensed, and the latent heat (viz., $5 \frac{1}{2} \times 180^{\circ}$, or nearly 1000°) has been sufficient to raise five and-a-half pounds of water 180°.
"It is this large amount of latent heat in steam that renders. it so useful as a heating agent, for it must be remenibered that heat cannot be destruyed or annihilated, but is rendered: sensible again r:hen the steam beconjes condensed.
"The great degree of heat to which the human tody may be exposed without danger has often excited much attontion. Meat and eggs have been cooked by being placed in a heated room in which men have remained all the time, and suffered no evil effects. The temperature of their bodies, even, has searcely been at all increased by the high temperature around them. The reason of this is now, however, clear ; the heat, instead of being employed in raising the temperature of the blood, is experded in preparing the perspiration and converting it into vapour, and in this way the whole of it is expended. The perspiration acts, in fact, as a natural safety-valve toregulate the temperature.
"The addition of salts to water lowers its freezing point ; hence, sea-water does not freeze till 4° or 5° below 32°; when, however, it sinks to this the salts are left in the water around and the ice is perfectly pare. If all the air be driven out of water by boiling, and it is then allowed to cool without being disturbed, and is exposed to a low temperature, it will not freeze till several degrees below 32°; but as soon as any iceforms, the rest of the water will at once rise to that point, clear!'y showing that the latent heat of water is given off as it freezes. This fact clearly explains why a coat of ice forms so slowly. Were it not for this provision, as soon as any mass of water had sunk to the temperature of 32° it would become a mass of ice ; but now every particle as it freezes gives out its latent heat, and thus raises the temperature of the rest. "In the same way, were it not for the laterit heat of steam,
the moment when water attained the boiling point would be a very dangerous one, for it wonld then be immediately converted into steam with an explosive force greater than that of gunpowder, since a cubic inch of water occupies nearly a ic foot when converted into steam.
temperature soluble salt into water, und ensily be seen by throwing some duced on a thermomer, and carcfully observing the effect poduring liquefaction is turned placed in it. This absorption of heat freezing mixtures for the to account in the preparation of these, two or more substup production of artificial cold. In for each other, and of which which have a chemical affinity together, and during the solution least is a solid, are mixed heat is rendered latent.
"Many different ini
which we give here: \quad ontures have been used, one or two of "A mixture of ubo
one of salt will reduce two parts of snow or pounded ice to "This point, in fact , temperature to $0^{\circ} \mathrm{F}$. (zero.) of his scale, as ho beliered chosen by Fahrenheit, as the zero attainable.
the lowest temperature
water be placed in rapidy liquefies, and if a small vessel of mixture of six parts of water will be speedily frozon. A ammonia, and four of sulphate of soda, five of nitrate of greater reduction of temperature
"As we hare scen, wator, 212°, enters into a stater, on attaining the temperature of bubbles of steam are produced cbullition; a large number of is exposed to the source of hed at the part of the vessel which violently agitating it as they burse thise through the liquid, ebullition commences is that burst. The point at which this becomes sufficient to overcome which the tension of the steam and hence, if this pressure be the pressure of the atmosphere; be raised.
, boiling point will this is only truen the boiling point of water is said to be 212°, when it is lower than this, watereter stands at thirty inches;
"In an open vessel the water boils at a lower temperature. be raised above its boiling mperature of a liquid can never received is employed in evap point, as all the surplus heat "If, however, a closed evaporating the water. may be increased, and a ressel be employed, the pressure
"The apparatus uscally
as Papin's digester, and is rupresented in Fig. 14. It consists of a strong iron vessel, D, the lid of which is fixed on tightly by means of a screw. B. A safety-valve, S is also provided, $s o$ as to allow of the escape of the vapour when its
el force greatly exce becomes too great. In this way a temperature. are thus dissolved which are attained, and many substances "The fact that water are otherwise insoluble. pressure on it be diminished, may be easily perature, if the mentally. Pour some water into a flask a proved experispirit lamp until it boils; when the steam is place it over a remove the lamp, and cork the flask tightly issuing freely minutes pour a stream of thask tightly. After a few ebullition will immediately cold water on the outside and expelled the air, the upper part of the fle. The steam had watery vapour of the same of the flask being filled with condensed this, and this a partial the pressure diminished, in partial vacuum was produced and began to boil. (frequently used in this way the porous water bottles, contents slowly percolates the from the surface, absorbing unglazed ware and evaporates to convert it into vapour.
"If ether, or any volatile liquor be dropped on the hand, a sensation of cold will be at once produced, and this will be felt more distinctly if the hand be waved about or a current of air driven over it, so as to accelerate the evaporation. The same thing occurs to a less extent with water. An important fiplication of this fact is now made in surgery. A stream of . finely-divided ether spray is blown upon any part of the body and by its rapid evaporation produces cold enough to freeze. the flesh, and thus render it insensible to the cut of the surgeon's knife. In minor operations this plan of producing ocal insensibility is frequently adopted.
frozen by the arrangement shown in Fig. 15, water may be strong sulph own evaporation. A shallow vessel, filled with pump, and ing water. As it is supported a thin metal vessel, A, containrise, and the soon as the air is exhausted, vapour begins todid not the acid absorb it speedily become charged with it, portion of vapour lowers it as fast as formed. Each fresh, abstraction of heat soon the temperature, and this continued attained. is known
"Some vapour is given off at temperatures far below the boiling point. The air, in faet, is always more or less charged with it. There is, however, a certain limit to the amonnt it can contain at any temperature, and if, when it is fully charged, the temperature fall, a portion of the vapour is precipitated in the form of rain. The point at which this vapour, in the air begins to be precipitated is called the "dew point," and the temperature of this depends upon the amount of vapour present. When on a clear night any objects become cooled below this point, the air in contact with them deposits its moisture, and they become wet with dow. Hence, deposits as will bo seen, form on those objects which radiate heat most freely.
"Fig. 16 shows the instrument used for ascertaining the dow point. A glass tube has a bulb blown at enth end and one of them, A, is partly filled with ether. This has been boiled and the tube sealed while tho vapour was issuing, so that no air is present. Inside this limb is a delicate thermometer; the other limb, B, is wrapped around with muslin. Ether is now dropped upon this, and by its evaporation lowers the temperature. A portion of the ether in A, therefore, distils over, and its temperature, therefore, diminishes likewise. As it sinks, the bulb is watehed, and the thermometer read at the moment when vapour begins to form on it. To make this more clearly visible, the bulb is often made of black glass. An ordinary thermometer on the stand of the instrument shows the temperature of the air, and the difference between the two is thus easily noted. By means of pressure and cold, several gases have been liquefied. Carbonic acid, when exposed to a pressure of about thirty atmospheres, becomes a licuid, and if this be allowed to escape into the air, it freezes by its own evaporation and becomes converted into flakes resembling snow. When these are mixed with ether the evaporation is very rapid, and an intense degree of cold is produced, so that mercury may easily be frozen by means of it.
"Another effect of heat is to produce light. Ordinary flame affords an illustration of this fact, the heat arising from the chemical combination being the source of the light. Metals, too, when exposed to a high temperature become luminons. A low red heat is usually assumed at from 1100° to 1300°, with a dazzling white of 2500° to 3000° as it increases. There is, however, great difficulty in measuring these high temperatures with any degree of accuracy. Wedgewood's pyrometer is sometimes employed for this purpose ; it consists of metal bars placed about half an inch apart at one end, but a little nearer
at the other. Clay cylinders are then made of such a size that when baked at a temperature of 212° they just fit the wider end. When exposed to a very high temperature they contract, and the extent of the contraction is shown by the distance they pass between the bars.
"The air thermometer is, however, more reliable in its indicators. A platinum vessel filled with air is exposed to the source of heat, and the temperature is cusily scen by expansion, and ascertained by suitable means, so from this the exhanstion. If a powerful electric current be to pass along a thin platinum wire, it will render it white-hot, and a considerable amount of light will be produced, showing again the luminous effect of heat. We must not, however, suppose that heat is always accompanied by light, or light loy licat.
"The clectric lamp furnishes us with a very brilliant light, and at the same time an intense heat, so that we have both the luminous and calorific rays in a beam from it. If, now, we cause this beam to pass through a glass filled with a solution of alum, the luminous rays will pass on as before, but all or nearly all the lieat will be intercepted. The alnm solution scrves, in fact, as a filter to remove the thermal rays. Now remove the glass and substitute for it a slab of rocksalt thickly covered with lamp-black, so that no light can penetrate it. On placing a differential thermometer, or thermo-electric pile, in the place where the luminous rays had previonsly been brought to a focus, we shall find that nearly all the heat has passed through the rocksalt, thongh the liminous rays have been intercepted.
"By suitable arrangements we may actually succeed in iguiting various substances by means of this non-luminous heat. We see, thus, that the luminous and the heat-giving rays may be now noticed, entirely separated from one another. "We have now to notice the mechanical effects of heat, and to learn how it may be converted into work. To ascertain the mechanical equivalent of heat-that is, the amount of work that can be ascertained and accomplished by a giren equivalent of heat-is a difficult proposition. It has, however, been solved, mainly by the researches of Drs. Joule and Meyer.
"The following experiments will give an idea of the process adopted by the latter:
"Take a tube closed at one end, having a sectional area of one square inch, with a piston fitting it air-tight, and capable of moving up and down without friction. Ale a weight sup= posed to weigh fifteen pounds, twelve ounces, and to be 492 inches from the bottom, the air being at the freezing point.

Now raise the tempern ure of the air one degree, and since the co-efficient of expansion is la, the piston will rise one inch, and be 493 inchos from the bottom ; and thas, for overy degreo the tomperatire is raised, the piston will riso an additional inch. If, then, the temperatiure is mised $40 \pi^{\circ}$, the volume of hir will be donbled. In this case work has been done by the the air above it, which has consisted in raising the piston and $15 \mathrm{lbs} .120 \%$ or 4920%, to a height of 402 force of $15 \mathrm{lbs} .+$ "Now try the expri, ${ }^{\text {N }}$ a height of 492 inches. the additional weight requisite adifferent way, and ascortain while the temperature varies. We shat tho piston in its place, perature is 1°, ons ounce must be added to tho that if the temstationary ; if ${ }^{2}$, two ounces, and so on.
" Hence, if the temperatare be so on. be placed on the piston to keep the velum $402^{\circ}, 492$ ounces must pare now these two experimonts volume the same. Comthe temperature, the pressure constant case we have raised increased; in the other cese the volumetant while the volume The same amonnt of air the volume has beon kept constant. temperature : but a differenten raised in each to the samo required ; for investigation quantity of heat has been combustible material are shows that if ten grains of any constant, 14.21 grains of the gred when the volume is kept when the pressure remains umaltered. The extru be required then, has been employed in raising the The extria 4.21 grains, been converted into work. raising the weight, and has thus
"Now suppose we have a vessel of air one square foot in area, and raise it 492° in temperature, the air will occupy double the space; and as the pressure on its surface is $144 \times$ $15 \mathrm{lbs}=2160 \mathrm{lbs}$., it will have lifted this weight one foot, or, in other words, performed work amounting to 2160 foot-pounds. The weight of the cubic foot of air is 1.29 ounces, and, as will be explained shortly, the amount of heat required to raise this to any temperature would only raise 0.31 ounces of water to the same temperature, the air having less capacity than the water. The total amount of heat, then, which has received by the air is sufficient to raise 0.31 ounces of water 492°, which is the same as raising nine and-a-half pounds one degree. Of this amount $4^{4} 4^{2}$ is, as explained above, employed in driving back the air, while the rest serves to raise the temperature.
"Now ${ }^{4} 421$ of nine and-a-half pounds is about 2.8 pounds, and thus we find that the amount of heat required to raise 2.8 pounds of water 1°, is sufficient to elevate 2160 pounds to a
of 7 in nearly, that is, the quantity of heat required to raise a pound of water one degree will perform work eqnivalent to 772 foot-pounds. As, however, the thermal unit is nsually taken as the quantity reyuired to raiso a pound of water one degreo in the centigrade scalo, the equivalont must be inerensed by four-ffiths, and will be found to bo 1390 foot-pounds.
" By a number of varions oxperiments, conducted with is, eat care and patience, Dr. Joulo urrived at a very similar result, and wo may, therefore, safoly tako this as the true equiv dont. The amount seems very large, especially when wo consid an the great amount of heat prodnced by the combustion of varmas substances. A pound of charcoal, for instance, produces 8 c , units of heat, and thus generate a foreo sufliciont to raise a weight of neurly 5000 tons to a height of one foot.
"Wo do not wonder, sinco this is the caso, that means should have been songht of utilizing the heat of the sun's ruys, which on a bright summer's day mo enleulated to import about five thermal anits per minute to each spuaro foot of surface, placed so as to receivo them perpendicularly. No important practical results have, howevor, been obtained at presont from these results, and attompts through several inventors havo claimed for their mathines the power of turning this force to good account.
"It is, however, scarcely probable that, in any economical point of viow, they would be able to compete with coal and other fuel."

I think that it is Professor Rankine that says that we owe to George Stephenson the remark that the original sonree of the power of heat engines is the sun, becauso the sun's boums furnish the energy that enables plant life to decompose carbonic acid, and so to form carbon and combustible compounds that are afterwards used as fuel.
Having been associated with engineers for several years in business, teaching, etc., I will always have their welfaro at heart, and will do everything in my power to advance, elovate and promote their progress in their chosen profossion, which is one of the most useful, interesting, and intelligent, as well as honourable, of all the arts that the world of work affords.

I will bring this evening's address to a close by reading you a few leisure moment sketches, from the pen of the colebrated British engineer, Bessemer, and which might aptly be termod an arithmetical romance, and which you will all, I hope, find interesting, showing you he could write with genius even on trivial subjects, as well as inrent tho most facile process of
steel-making, and do with world-renowned credit the many other engineering enterprises connected with his name.
" It would be curious to know how many have brought fully home to their conscionsness the significance of that little word billion. Its arithmetical symbol is simple, and withont much pretension. There are no large figures, just a modest one, followed by a dozen ciphers, and that is all. Let us briefly take a glance at it, as a measure of time, distance, and weight.
"As a measure of time, I would take one second as a unit, and carry myself in thought through the lapses of ages back to the first day of the year one of our era; remembering that in all these years we have 365 days, and in every day just 86400 seconds of time. Hence in returning in thought back again to this year of grace $18 \% 8$ one might have supposed that a billion of seconds had long since elapsed. But this is not so. We have not even passed one-sixth of that number in all these eventful years, for it takes just 31687 years, seventren days, twenty-two hours, forty-six minutes and five seconds to constitute a billion of seconds of time.
"It is no easy matter to bring under the cognizance of the human eye a billion objects of any kind. Let us try in imagination to arrange this number for inspection; and for this purpose I would select a sovereign as a familiar object. Let us put one on the ground and pile upon it as many as will reach twenty feet in height. Then let us place numbers of similar columns in close contact, forming a straight line, and making a sort of wall twenty feet high, showing only the thin edges of the coin. Imagine two such walls running parallel to each other, and forming as it were a long street, wo must then keep on extending these walls for miles, nay, hundreds of miles, and still we shall be far short of the required number. It is not till we have extended our imaginary street to a distance of $2386 \frac{1}{2}$ miles that we shall have presented for inspection our billion of coins.
"In lieu of this arrangement we may place the flat upon the ground, forming one continuous line, like a golden chain with every link in close contact. But to do this we must pass over land and sea, mountain and valley, desert and plain, crossing the equator and returning round the southern hemisphere, through the trackless ocean, retrace our way again across the equator, then still on and on till we again arrive at our starting point, etc.; and when we have thus passed a golden chain around the whole bulk of the carth we shall be but the beginning of our task. We must drag this imaginary chain no less than 763 times round the globe. If, however, we can imagine
dit the many name. brought fully at little word rithont much modest one, et us briefly , and weight. nd as a unit, of ages back abering that ary day jnst rought back pposed that t this is not unber in all s, sevent en e seconds to
zance of the us try in n ; and for object. Let lany as will numbers of the, and ly the thin ng parallel t, wo must tundreds of d number. st to a disinspection

It upon the chain with t pass over , crossing misphere, across the ut starting len chain the beginin no less a imagine
all these rows of links laid closely, side by side, and every one in contact with its neighbour, we shall have formed a golden band round the globe fifty-six feet six inches wide; this will represent oue billion coins. Such a chain, if laid in a straight line, would reach a fraction over $18,328,445$ miles. The weight of it, if estimated at a quarter of an ounce each sovereign, would be $6,9 \% 5,44 \%$ tons, which would require for their transport no less than 2,325 ships, each with a full cargo of 3,000 tons. Even then there would be a residue of 447 tons, representing $64,081,920$ sovereigns.
"For a measure of height, let us take a much more familiar unit as our measuring rod. The thin sheets of paper on which the "Times" is printed, if laid out flat, and firmly pressed together as in a well-formed book, would represent a measure of about ${ }_{3 \frac{1}{35}}$ of an inch in thicinness. Let us see how high a dense pile, formed by a billion of the thin paper leaves would reach. We must, in imagination, pile them vertically upward by degrees, reaching to the height of our tallest spires; and passing this the pile must grow higher, topping the Alps and Andes and the highest peaks of the Himalayas ; and shooting up from them through the clear clouds, pass beyond the confines of our attenuated atmosphere, and leaps up into blue ether, with which the universe is filled, standing proudly up far beyond the reach of all terrestrial things, still pile on your thonsands and millions of thin leaves, for you are only beginning to reach the mighty mass. Add millions on thousands of millions on these, and still the number lacks its due amomnt. Let us pause to look at the neat ploughed edges of the book before us; see how closely those thin flakes of paper lie; how many of them are in the mere width of a span; and then turn our eyes in imagination upward to see the mighty column of accumulated sheets.
"It now contains its appointed number, and our one billion sheets of the "Times" superimpose upon each other, and meressed into a compact mass has reached an altitude of 47,348
Another specimen of Sir H. Bessemer's writings is as interesting to us as it is materially beautiful, bearing as it does on the great production of coal in Great Britain in one year:
"The Easter holidays have come round once more, and our boys, with their bright beaming faces, full of mirth and cheerfulness, have been flocking home from school to dear old London, all unmindful of its murky atmosphere, and intent only on the many wondrous sights they hope to see.

[^4]some amusement to my grandsons on their return, when, looking up from my task, I noticed a stream of small bright objects flitting by. The sharp east wind was breaking up the large seed pods on the great Occidental plane tree near my study window, and its taper seeds, with their beautiful little gold-coloured parachutes, were being wafted far away, falling into little chinks and unknown out-of-the-way places; some resting on the bare earth may, perchance, be secured by some blind worm, and made to close the door of its lowly habitation; now live gerninating there, may, in after years, when all who now live have passed away, spread its huge arms, and afford a grateful shelter to those who are to come after us.
"Just so the broad sheet you daily publish conveys to every civilized part of the world the thoughts and sentiments of those who lead and form public opinion, while it never fails to give the latest expression of science, literature, and art. Much of all this may, like the flying plane tree seeds, fall on unproductive soil. Yet, who shall say, in that ceaseless stream of intelligence, how many a sympathetic chord of the heart may be touched, or how many thoughts and sentiments soimbibed may germinate, and gaining strength with years may change the whole current of a life, and form the statesman, the scientist, or the man of letters.
"Thus masing, it occurs to me that the statistical results I had arrived at might, perhaps, interest other boys than those for whom they were intended, and if thought worthy of a place in the "Times" might inspire a more than passing interest in an otherwise most uninviting subject.
"The statistics of the coal trade show that during the year 1881 the quantity of coal raised in Great Britain was no less than 154,184,300 tons. When the eye passes over these nine figures it does not leave on the mind a very vivid picture of the reality-it does not say much for the twelve months of incessant toil of the 495,000 men who are employed in this vast industry ; hence, I have endeavoured, in a pictured form, to convey to the mind's eye of my young friends something like the true meaning of those figures; for mere magnitude to the youthful mind has always an absorbing interest, and the gigantic works of the ancients fortunately supply us with a ready means of comparison with our own. Let us take, as an exanıple, the great pyramids of Geeza, a work of human labour which has excited the admiration of the world for thousands of years. Though in itself inaccessible to my young friends, we fortunately have its base clearly marked out in the metropolis. When Inigo Jones laid out the plan of Lincoln's Inn.

Fields, he placed the houses on opposite sides of the square just as far from each other as to enclose a space between them of precisely the same dimensions as the base of the great pyramid. Measuring op the front walls of these houses this space is just equal to eleven acres and four poles. Now, if my young friends will imagine St. Pail's Cathedral to be placed in the centre, and having a flagstaff ninety-five fect in height. standing up above the cross, we shall have attained an altitude of 499 feet, which is precisely equal to that of the great pyramid. Further, let $n s$ imagine that four ropes are made to extend from the top of this flagstaff, each one terminating at one of the foir corners of the square and touching the front walls of the house, we shall then have a perfect ontline of the pyramir, exactly the same size as the original. The whole space enclosed within these diagonal ropes is equal to $79,881,417$ eubic feet, and if occupied by one solid mass of coal it would coutain $2,781,381$ tons-a mass less than one-fifth part of the coal raised last year (1881) in Great Britain.
"Higher up the Nile, Thebes presents us with another example of what may be accounted wonderful to have been accomplished by human labour. The great temple of Rameses, at Carnac, with its hundred columns of tweve feet in diameter and over 100 feet in height, cannot fail to deeply impress the imagination of all who, in their mind's eye, can realize the magic colonnade. It may be interesting to ascertain what size of column and what extent of colonnade we could construct with the coal we laborionsly sculpture from its solid bed this rery year. Let us imagiue a plain cylindrical colnmn seventy-five feet in diameter and 500 feet in height, then one year's production of coal would suffice to make no less than 4,511 of these gigantic colunıns, which, if placed only at their odrn diameter apart, would form a colonnade which would extend in a straight line to a distance of no less than enough to placed urteen of these tall and massive columns, which. if "But there is yet aner, would reach an altitude of 700 feet. boys will not fail to remer great work of antiquity which our they have all heard of the as offering itself for comparison; erected more than 2,(100 years great wall of Chima, which was the Chinese Empire. This argo to exclude the Tartars from 1,400 miles, is twenty feet higreat wall extends to a distance of contains $3,548,160,000$ cubigh and twenty-four feet thick, and year's production (1881) of eet of solid matter. Now, our last and is sufficient in bulk to coal was $4,42 \%, 186,8: 0$ cubic fect, 100 feet high, forty-one to build a wall of 200 miles in length, 100 feet high, forty-one feet eleven inches thick-a mass not
only equal to the whole cubic contente of the great Cbina wall but sufficient to add 346 miles to its length.
"'These imaginary coal structures can scarcely fail to impress the mind of youth with the enormous consumption of coal; and when they are told that in many of its applications the useful effects obtained is not one-fifth of its theorevic capabilities, they will be enabled to form some idea of the vast importance of the economic problem which calls so loudly forsolution. They must not, however, fall into the too common error of supposing that the electric light by superseding, is to do away with the use of coal in the production of light, or that the dynamo electric machine will largely replace the steam engine and boiler. Although coal is still our great agent in the production of motive power, it must not be forgotten that Sir W. Thompson has clearly shown that by the use of dynamo electric machines, worked by the falls of Niagara, motive power could be generated to an almost unlimited extent, and that no less than 26,230 horse-power so obtained could be conveyed 300 miles by means of half inch copper wire with a small loss in transmission, what a magni vista of legitimate mercantile enterprise this simple fact opens up for our own country. Why should we not at once connent London with one of our nearest coal fields by means of a copper rod one inch in diameter, and capable of transmitting 84,000 horse-power to London, and thus bring up coal by wire instead of rail.
" Let us see what is the equivalent in coal of this amount of water power. Assuming that each horse-power can be generated by the consumption of three pounds of coal per hour, and that the engines work six and-a-half days per week, we should require an annual consumption of coal equal to $1,012,000$ tons to that result. Now all this coal would, in the case assumed, be burned at the pit; worth six shillings per ton, for large, two shillings for small, less than one-fourth cost of coal in London. This would immensely reduce the cost in Loudon, and of the motive power now used in London, and at the same time save us from smoke and foul gas. A one inch. copper rod would cost $£ 533$ per mile, and if laid to a colliery 120 miles away the interest at five per cent. on first cost would be less than one penny per ton on the coal, practically conveyed by it direct to the house of the consumers.

China wall

il to impress ion of coal ; ications the oreíic capaof the vast o loudly for ioo common seding, is to of light, or replace the great agent forgotten the use of of Niagara, unlimited so obtained copper wire ii vista of pens up for ent London copper rod ing 84,000 ire instead

amount of

 an be genper hour, week, we equal tould, in the illings per ourth cost. he cost in on, and at 1 one inch a colliery :ost would cally con-
QUALIFICATION OF CANDIDATES FOR CERTIFICATE.

Any person clainning to be qualified to perform the duties of an engineer in steamboats may apply to the Chairman of the Board of Inspection. or to the Inspector of the district in which the applicant resides.

Proofs of service as engineer in the engine room, as engineer on the watch, as apprentice employed on the making and repairing of marine engines, or of employment as journeyman mechanic in sonve workshop, on the making and repairing of marine engines, must be verified.
No person shall be qualified for a Fourth Class Engineer's Certificate, who is not over twenty-one years of age, and who has not served an apprenticeship of not less than thirt, ix months in a steam engine shop, and been employed on tise making and repairing of steam engines; or, if he has not served such apprenticeship, he must prove that he has been employed for not less than thirty-six months as a journeyman mechanic in some workshop on the making and repairing of stean engines; or he must have served at least thirty-six months in the engine room of a steamboat as engineer on the watch; or he must have served not less than fouy-eight months in the fire-hold of a steamboat of not less than thirty nominal horse-power, as fireman on the wateh; and in any of the above mentioned cases twelve months of the time prescribe: may have been served in a boiler shop on the mal, : . nd repairing of steam boilers; he mast be able to red. aud must write a legible hand; he must understand the cohstra ciun and operation of the feed water-pump, walergaie 3 and safety-valves; he must know when a boiler is foaming, and how to stop the foaming; also the danger from neglect to keep a boiler clean, and the nsual methods of cleaning it.
A candidate for Third Class Engineer's Certificate must lave served an apprenticeship of not less than three years in a
marine engine shop, and been employed on the making and repairing of such engines; or, if he has not served such apprenticeship, he must prove that he has been employed for not less than three years as a journeyman mechanic in some workshop on the making and repairing of such engines; in either case he must also have served twelve months in the engine room of a steamboat as engineer on the watch; he rnust be able to give a lineal deseription of boilers, the methods of staying them, and the requisite strength of their several parts, and must know the means of repairig them ; he must know the method of lining the engine, sotting the eccentrics, and adjusting the slides or valves, also the cansa of any derangement and the means of remedying it ; ln mast write a legible hand and understand the first five rules arithmetic.

A candidate for Second Class Engineer's Certificate shall have the qualifications of a third class eugineer, with not less than two years' experience as such in the engine room of stemmonate of not less thar thirty nominal horse-power, as enginear on the watch.

A candidate for First Class Engineer's Certificate shall have the qualifications of a second class engineer, with not less than three years' experience on one or more steamboats of not less than 100 nominal horse-power ; he must be competent to calculate the thickness of plates required for a boiler of given dimensions and construction to carry a fixed pressure of steam. and also, the dimensions and construction of the boiler being given, the pressure that it may be allowed to carry; he mnst be able to calculate the strength of its stays, connections, joints and other parts, and the tensile and crushing strength of the materials used in its construction ; he must be able to calculate the required capacity of the feed-pumps, the area of the safr'y-valves for a boiler of given dimensions, also the power of the engine from a diagram of its working, and to define the position of the crank and eccentrics as indicated by diagram; he must know the relative volumes of steam and water at different temperatures, the chemicai constituents of each, its heating and mechanical equivalents and the quantity of air required for its combustion ; he must be competent to make a working drawing of any part of an engine, and explain the operation of the engine or any of its parts in connection with the whole ; he must be conversent with sievice condensation and the working of steam expansively.

Examinations may be upon oath, which any inspector may administer.
aking and rved such ployed for ie in some gines; in ths in the ; he raust aethods of eral parts, ust know tries, and derange3 a legible c. sate shall h not less room of power, as
hall have less than f not less petent to of given of steam. ler being he must nections, strength e able to e area of also the , and to cated by sam and uents of quantity etent to explain mection ndensaor may

RULES FOR ESTIMATING THE NOMINAL HORSEpower of marine engines.

FUR ORUINARY CONDENSING ENGINES.

$D=$ Diameter of cylinder in inches, $N=$ Number of cylinders. $D^{2} \times N$
Then $\frac{\times 1}{30}=$ Nominal horso-power.
FOR COMPOUND CONDENSING ENGINES.
$D=$ Diameter of low-pressure eylinder in inehes.
$d=$ Diameter of high-pressure cylinder in inches.
$N=$ Number of low-pressure cylinders.
$n=$ Number of high-pressure cylinders.
Then $\frac{\left(L^{2} \times N\right)+l^{2} \times n}{}$

ARITHMETICAL DEFINITIONS, SIGNS AND QUANTITIES.

Arithmetical signs are characters indicating operations to be performed, and are indispensable for briefly and clearly stating a problem.
+, plus, and more, siguifying add.
minus, less, signifying subtract.
aultiplied by, as $2 \times 2=4$;
$\div o^{2}:$ divided by, as $6 \div 3=2$, or $6: 3=2$, or $\frac{6}{3}=2$;
\therefore, equality, or is equal to, as $6+2 \times 2=16$, and is read thus,
"plus 2 , multiplied by 2 , equals 16 ";

- or () etc., the vituculum : used to show that all the numbers united by it are to be considered as one; thus, $6 \times 1+3 \bar{x}+1$ means the product of 6×4 is to be added to
the product of 3×2, and the sum of the products to be added to 1.
$\sqrt{ } 9$, sign of the square root, read "the square root of 9 "; for cube ${ }^{3} \sqrt{ }={ }^{3} \sqrt{ } 9$;
4^{2}, sign of the square, read "the square of 4 ";
$\%$, per cent.
An anale is the corner formed by two lines where they meet.

Base, the lower, or side upon which a figure stands; the foundation of a calculation.

Concrete number, used with reference to some particular object or quantity, as 640 acres, 500 dollars.

Circle, a plain figure comprehended by a single curved line, called its circumference, every part of which is equidistant. from its centre.

Cincumference, the line that goes around a circle orsphere.

Cylinder, a body bounded by a uniformly curved surface, its ends being equal and parallel circles.

Cube, a solid body with six equal square sides. A product formed by multiplying any number twice by itself, as $4 \times 4 \times$ $4=64$, the cube of 4 .

Cube Root is the number or quantity which twice multiplied into itself produces the number of which it is the root, thus 4 is the cube root of 64 ; sign ${ }^{3} \sqrt{ }$.

Currency, the current medium of trade authorized by government.

Division determines how many times any one number is. contained in another.

Discount, the sum deducted from an account, note, or bill of exchange, usually at some rate per cent.

Denominator, the number placed below the line in fractions, thus, in $\frac{7}{8}$ (seven-eights) 8 is the denominator.

Decimal, a tenth; a fraction having some power of 10 for its denominator.

Decimal Currency is a currency whose denominations increase or decrease in a ten-fold ratio.

Dividend, the number to be divided.
DIVISOR, the number by which the dividend is to be divided. A common divisor, is a number that will divide two or more numbers without a remainder.

Diameter, a right line passing through any object.
Multiple, a quantity which contains another a certain number of times without a remainder. A common multiple of two or more numbers contains each of them a certain number- of times, exactly. The least common multiple is the least 3 number that will do this; 12 is the least common nultiple of 3 and 4.
Number, a number is a unit, or a collection of units. A prime number is one that cannut be resolved, or separated intotwo or more integral factors.

Notation, writing numbers.
Numeration, reading numbers.
Numerator, the number placed above the line, in fractions; thus, $\frac{5}{\theta}$ (five-ninths), five is the numerator.

Power-A power is the product arising from multiplying a number by itself, or repeating it several times as a factor; thus, $3 \times 3 \times 3$, the product, 27 , is a power of 3 . The exponent of a pouser is the number denoting how many times the factor is repeated to produce the pover, and is written the factor : 2^{1},
$2^{2}, 2^{3}$.

$$
\begin{aligned}
2^{1} & =2^{1}=2, \text { the first power of } 2 . \\
x^{2} & =2^{2}=4
\end{aligned}
$$

$2 \times 2=2^{2}=4$, the second power of 2. $2 \times 2 \times 2=2^{3}=8$, the third power of 2.
Principal, the sum lent on interest, or invested.
Per Cent., from per centum, signifying by the hundred; hence, 1 per cent. of anything is one-hundredth part of it, 2 per cent. is one-fiftieth, etc.

Square Root is the number which multiplied into itself, produces the number of which it is the root. 4 is the root of $16 ; 4 \times 4=16$.
Specie, coin.
Scale-A scale is a series of numbers regularly ascending or descending.

A solid or body has length, breadth and thickness.
Sphere, a body in which every part of the surface is equally distant from the centre.

Triangle, a figure with three sides.
Term-The terms of a fraction are numerator and denominator taken together.

Unit-A unit is one thing.
Vertex, the top of a pyramid or cone.
Zero, a cipher, or nothing.
In arithmetic, the answer in each operation has a distinctive name. In addition it is called the sum: ia substraction, difference or remainder; in multiplication, the product; in
division, the quotient.

tensile strength of plate iron.

(By Mr. Edwin Clark-Briltannia and Conway experiment.)

No, of Plate.

1. Plate 11 inch thick, neck $1 \frac{1}{2}$ long, selected as bad iron; fracture brightly and crystallic brittle, broke readily with a blow from a haminer

2. From same plate
3. Plate $\frac{1}{2}$ inch thick, neck 6 inches, selected talline metal, one-third of whole section.. $\}$
4. Plate $\frac{1}{2}$ inch thick, neck 5 inches, selected as good plate; about $\frac{1}{10}$ of the section crystalline.
.....................................
5. Plate $\frac{1}{2}$ inch thick, neck 4 inches, iron perfectly uniform and fibrous, supported the weight 15 minutes
6. Plate $\frac{17}{18}$ inch thick, neek 5 inches, iron $\}_{19}$ good, $\frac{1}{40}$ of the section crystalline........ \},
7. Plate $\frac{1}{2}$ inch thick, neck 5 inches, iron fibrons 18.0
8. Plate $\frac{1}{2}$ inch thick, neek 50 inches............ 19.6
9. Plate $\frac{5}{8}$ inch thick, neek 50 inches........... 19.3
10. Plate $\frac{1}{2}$ inch thick, neek 7 inches............ 80.2
11. Plate $\frac{1}{2}$ inch thick, mook 7 inches............ $19.6 \left\lvert\, \frac{1}{12}\right.$
12. Plate $\frac{1}{2}$ inch thick, neck 50 inches...... ... 18.7 $\frac{1}{8}$

In all the above the iron was drawn in the direction of the fibre.

Viva voce examination of engineers.

Question. -What would you do, supposing at any time 心 could not find any water in the glass gauge or try-cocks?

Answer.-Draw fircs immediately, let boiler cool down, then put on the pump and get up steam.
Q.-What is the construction of a feed-pump, concisely told?
A.-Working barrel, solid plunger, suction and discharge valves, etc.
Q.- Tor what reason will not a pump work when it is hot?
A. -When hot will not finm a vacuum.
Q.-On what principle $\iota^{\prime}+3$ a feed-pump lift water?
A.-Atmospheric pressure will force the water to follow the plunger.
Q.-What is the effect prouuced on a pump by derangement of the check valve?
A.- When check valve is out of on, hot water will back out of boiler, which will cause the pump to stop working until all hot water is displaced, which destroys the vacuum.
Q.-Where should the manlole and mudplates be placed, and why? A. - On the inside, becuuse the pressure is on the inside, they are safest and more easily secured.
Q.-Explain what is meant by a surface blow-off ?
A.-A surface blow is a cock and pipe fitted on boiler about. six inches below the water line, to blow out supersalted water or dirt, in order to prevent the deposition of salt or scale upon the plates.
Q.-On what part of a boiler should the main blow-off be? boiler.
Q.- Explain the manner of cleaning the scale from a boiler?
A.-Draw the fires all out, and blow the water ont of the boiler, take off manhole do rs, take scaling hammers, go inside. and knock off all scale upon the plates, and wash out with. hose and force-pump.
Q.-How often should a boiler be cleaned and scaled?
A.-As often as required; it shonld, if possible, be attended to once a week, so as to keep the seale off and the iron from injury.
Q.- What are the dangers of not keeping the boiler clean and well scaled?
A.-Scale will collect and burn the boiler, as the water will not get to the iron, the bottom of the boiler will decay soonest, the furnace tubes and uptake wear out before the other parts.
Q.-What often causes boiler explosions, also injures them, and in what way should an engineer goard against them?
A.-A defective boiler, und carrying too high a pressure, and not keeping the boiler clean inside and out, getting steam too quiekly from cold water, etc. Care, attention, knowledge and experience.
Q.-Explain what foaming and priming are?
A.-Foaming is when the water becomes very much agitated, caused by mixed or dirty water ; priming is when the steam and water mixes and go into the engine.
Q.-What style of boiler require more watchfulness than others?
A.-Badly constructed boiler will require the most watching, so as to keep the water to a uniform height, and prevent foaming.
Q. - What danger may there be in raising the safety-valve of a boiler suddenly?
A.-Raising the safety-valve too suddenly is dangerous, as the pressure being relieved on that particnlar area the rest of the steam rushes to take its place, and escape by the outlet, carrying water with it, may injure the boiler by its action.
Q. - What make of boiler primes badly ?
A.-A boiler with bad circulation, and not enough steam space.
Q.-What height of water should be carried over top of heating surface in a boiler?
A.--From five to nine inches; of course it all depends on style of boiler.
Q.- What is the danger of coming to a wharf with a foaming boiler?
A.- The danger is when the engine is stopped the water will fall too low.
Q.-When your boiler is foaming how do you find what water you really have in boiler?
A.-Stop the engine and the water will come to the level of what is in the boiler.
Q.-What may cause the glass or try-cocks to deceive the engineer?
A.-The water gauge-glass may deceive the engineer by the top or bottom cock getting stopped; try-cock by not blowing long enough.
Q.- Explain the construction of the glass und try-cocks, also the principle of the steum gange?
A.-They are brass cocks, screwed into the boiler; water gange-glass is attached to boiler with two brass cocks and packing glands and drain cock; the steam gange is an elliptical tube, connected at one end to a steam pipe and the other to a pointer.
Q.-How would you lay an engine up for the winter?
A. - Blow off boiler, cleun out all dirt, clean bright parts of engine, paint with white lead and tallow, and pat in a dry place ; empty all pipes.
Q.-What is the manner of lining an engine ?
A.- With line, straight edge and square; start from cylinder centre.
Q.- Explain the mode of setting the eccentric?
A.-Put crank on top of centre, give valve lead required, turn eccentric round to place, bottom centre same way.
Q.-How would you find out if the crank pin is sct true in crank; and if conuseting rod is properly hung?
A.--With straight edge and square, working from face of crank if true; if not from shaft, disconnect from crank pin will show if hung true.
Q.- What rule is used for calculating the area of safetyvalve?
A.- British Board of Trade rule, which is, "Half a square inch to every spuare foot of grate surface."
Q.-How would yon calculate the throw of the eccentric? A.- $\mathrm{P} \times \mathrm{L} \times 2=\mathrm{T}$;-size of steam port one inch, lap of value one-eighth of an inch, the throw of the eccentric would equal two and a quarter inches.
Q.-Give the formula for to calculate the horse-power of a steum engine?
$A,-D^{2} \times \mathrm{S} \times 2 \mathrm{R} \times \mathrm{P} \times$ constant multiplier equal to HP . Example: $36^{\prime 2} \times 6 \times 50(25 \times 2) \times 40 \times .0000238$ equal to 370 horse-power ; . 0080238 equal to 33000 , divided into decimal .7854 , so save multiplying by .7854 and dividing by 33000 .
Q.-How would you work an engine with broken air pump and foot valve.
A.-High-pressure.

ENGINEERS' EXAMINATION.

"Multiply twenty-five hundredths by twenty-five hun-
The above ponderous calculation is still on the examination paper for engineers for Canadian certificates to work ont.

Notice is hercby called to it, to explain that its former use, that of trying, by its calculation, to gange the applicant's knowledge of multiplication of decimals, is now nearly gone, for two reasons: First, nearly all engineers now understand and work their calculations by decimals; Secondly, having been in use as a set calculation question since 1867, it has been handed from one to another, and so every engineer, or applicant, knows the "dodge" of prefixing the cypher to the left hand side before pointing off, whether he understands multiplication of decimals or not.

Example: . $25 \times .25$.

.0625 six hundred and twenty-five ten thousandths.
Rule.-Multiply as though there were no decimals and then remove the decimal point in the product as many places to the left as there are decimals in both the multiplicand and the multıplier.
Examples: $5.63 \times .0005=.0002815: .012 \times .012=.000144$.
Calculate the thickness of plate required for a boiler of given dimensions. See plate No. 1.

This calculation can bo figured according to the old rule of
imals and any places licand and
$=.000: 44$. boiler of ld rule of

42: $100:: \frac{1}{4}$, as in constructing a boiler, the best manner is now generully followed, but a rule adduced from the rule for the pressure allowable on shell of boiler of the Steamboat Inspection Act of 1882, by infusion, is the best and most
approved method, and the approved method, and the answer can be bronght struight by of dividing the result by 2 , because of theire boiler, instead to a boiler.

Examples with answers proportioned:

Diameter.
80
85
84
Pressure.
655^{3}
70
$62 \frac{1}{2}$ Thickness.
$\frac{5}{16}(.3152) \cdot 80: 42:: 63.75=\frac{6}{16}$
$\frac{6}{16}(.3541) \cdot 85: 42:: 70=\frac{6}{6}$
$\frac{5}{16}(.3152) . \ddots 84: 42:: 62.5=\frac{5}{16}$

Calculate the thickness of plate required for a boiler $36^{\prime \prime}$ diameter and 145 lbs. pressure.

RULE. - Inside diam. of boiler \times pressure \times factor safety
$60000 \times .70$
$\div 2=$ thickness of plate for boiler.
36 diameter of boiler. 145 pressure per square inch.
180
144
36

$\frac{36}{5220}$	
60000	5 factor of safety for iron when made
.70	in the best manner.
-42000	

90000
84000
60000
42000
8000
For steel boiler, taking same dimensions as preceding sum, it would be $\frac{1}{4}$ of an inch thickness required.
162 manual of engineers' calculations.
5220
4 factor of safety for steel when made in best $42000) \overline{20880.0(.4971421}$ 16800
408000 378000
300000
294000
60000
42000
180000
168000

2)4971421 decimal.
 .24857015 thickness plate.

$\overline{149142630}$
3.97713680 nearly \ddagger of an inch.
120000
16
84000
46000 42000
4000

What thickness of plate for an iron boiler 9 feet diameter, 112 lbs. pressure, made in best manner?

$\frac{108 \times 112 \times 5}{60000 \times .70} \div 2=\frac{3 " 1}{4}$ plate.
$\frac{112}{108}$
$\frac{1120}{1209}$
60000
70
42000$) 60480.0(1.44 \div 2=7 \%$

s.

ade in best
ss plate.
: of an inch.
t diameter,

Mandal of engineers' calculations.
$42000) 60480.0(1.44 \div 2=$
42000

$\overline{184800}$	$\overline{432}$		
168000		\quad	72
:---			
-16800	\quad	11.52	
:---			
16800	$\quad \overline{16} \quad$ nearly $\frac{3}{4}$		

Formula of rule for iron boilers:

$$
\frac{\mathrm{D} \times \mathrm{P} \times \mathrm{FS}}{\mathrm{TS} \times .70}=2 \mathrm{~T} \div 2=\mathrm{T}
$$

Factor of safety for iron 5 and for steel 4 ; rule the same for thickness of plate with this exception.

Calculate the thickness required for a boiler $42^{\prime \prime}$ diameter and 75 lbs . pressure per square inch, made of iron in best

> 42 diameter boiler. 5 factor safety.

210

75 pressure.
1050
1470

315000
294000
210000
210000

Second method, same sum:

```
    21 radius boiler.
    5
105
    75
        82.
        735
    42000)7875000.1875 = 咅 thickness plate.
        4 2 0 0 0
        367500
        236000
        315000
        294000
        210000
        210000
    .....
```

The letters signify the following expressions:
D-Diameter.
FS-Factor of safety.
BM-Best manner.
TS-Tensile strength.
T-Thickness.
2 T-Twice the thickness.
.\cdot-Then.

Calculate the thickness of plate required for an iron boiler-forty-two inches diameter and 150 pounds pressure:

$$
\begin{array}{r}
6000 \times .70=42000) \overline{31500.00\left(.75 \div 2=375=\frac{3}{8}\right.} \begin{array}{r}
29400.00
\end{array} \frac{9}{16} \\
20.3
\end{array}
$$

$$
210000
$$

$$
210000
$$

Calculate the thickness of plate required for an iron boiler forty-two inches diameter and 100 pounds pressure, made in
best manner :
$\frac{42}{\frac{100}{4200}}$
$\frac{5}{42000)} \underset{\frac{21000.0}{21000.0}}{\ldots \ldots \ldots .5 \div 2}$

Same dimensions, punched holes, not good and fair in longitudinal seams, lap seams, and double riveted $=C$ Cis., E $.75 ., \mathrm{K} .2,=1.25$ total to be added to factor safety $=6.25$.
6. 25 factor of safety in this case. $42000=42 \times 100$

$$
\begin{aligned}
& 1250000 \\
& 250000 \\
& 105000 \\
& 18750 \\
& 3125 \\
& 210000 \\
& 210000 \\
& 5.0000
\end{aligned}
$$

Calculate the thickness of plate required for a boiler fortytwo inches diameter and 100 pounds pressure, made in best manner :

> 42 inches diameter of boiler.
> 100 pressure per square inch in pounds.
> 60000
> 4200
> $.70 \quad 5$ factor of safety for iron.
> $4200.00) 210000\left(.5 \div 2=.25-\frac{1}{4}\right.$ " thickness of plate.
> 210000

Rule formulated :
Inside diameter of boiler \times pressure \times factor safety.
60000 lbs . I'S \times percentage strength (.70). thickness of plate (two sides of boiler) $\div 2=$ thickness of plate required.

Above sum abreviated:

$$
\frac{42 \times 100 \times 5}{60000 \times .70}=.5 \div 2=.25=\frac{1}{4}{ }^{\prime \prime} \text { plate. }
$$

Second method :

21 radius of boiler.
$\frac{100}{}$ pressure.
2100

$\frac{5}{\frac{5}{105000}}$| $\frac{84000}{210000}$ |
| :--- |
| $\frac{210000}{\ldots \ldots}$ |

iler fortyde in best
in pounds.
of plate.
$=$ double.
ss of plate

MANUAL OF ENGINEERS' CALCULATIONS.
167 Foregoing method abbreviated :

$$
\frac{21 \times 100 \times 5}{60000 \times .70}=.25=4 \text { thickness. }
$$

Second method of how to calculate the thickness of plate for boilers ofdifferent diameters and pressures, etc.:

$$
\text { Formula }: \frac{(\mathrm{d} \div 2) \times \text { FS } T}{\mathrm{TS} \times .70}=
$$

Rule. -The radius or half the diameter of boiler, multiplied by factor of safety, multiplied by the working pressure per square inch, in pounds, divided by the tensile strength of the iron or steel, in pounds, per square inch, multiplied by the percentage of strength of plate equal to thickness.
Factor of safety for iron 5 ; for steel 4 ; tensile strength of plate, per square inch, 60,000 pounds ; percentage of strength of joints . 70 .
These are standard for boilers made in the best manner, according to Act of 1882.

Example. - Boiler seven feet diameter, pressure 100 pounds; find thickness :

7 ft .
12
2) 84 diameter of boiler, in inches.

42 radius, or half diameter of boiler. 5 factor safety for iron, B.M.

$$
\begin{gathered}
\left.\frac{.70}{42000.0}\right) \\
\frac{210}{\frac{1000}{210000}\left(.5=\frac{1}{2}\right.} \\
\frac{210000}{\prime 2}
\end{gathered}
$$

By first method it would stand :

$$
\frac{84 \times 5 \times 100}{60000 \times 70}=1^{\prime \prime} \div 2=.5=\frac{1}{2^{\prime}} \text { plate. }
$$

How to calculate the pressure allowable on boilers of different diameters and thickness of plate :

Taking iron at 60,000 pounds, tensile strength, per square inch, and using. 70 ; when made in best mauner, and using, therefore, 5 as factor of safety for iron, and 4 factor of safety for steel.
$60000 \times 70 \times$ twice the thickness of plate
Inside diam. of boiler in inches \times factor $\quad=$ pres. per sq. in.
See "Rules and Regulations" of Stemmone Inspection Act, 188\%, page 23.

The working pressure of a boiler is tyrived at by a series of calculations of the strengths of the rarious parts, their workmanship, materials, and dimensions.

Rule for getting the pressure allowable on boilers made in best manner, is in its results similar to the proportion. $42: \frac{1}{4}:: 100$ pounds, but defective workmanship, material, etc., require the rule given in "Act," on account of the difficulty of applying the percentages for defects in the old rule of proportion for comparative strength.

Rule, according to "Act," as adduced from Board of Trade Formula, and made to meet Canadian standard:

Rule.-Tensile strength of iron in pounds, multiplied by calculated percentage of joints (taking the smaller percentage) then multiply by twice the thickness of plate in inches, and divide by the inside diameter of boiler in inches, nulultiplied by the factor of safety equal to pressure to be allowed per square inch on the safety-valve, as a working pressure.

$$
\text { Formula }: \frac{\mathrm{TS} \times .70 \times 2 \mathrm{~T}}{\mathrm{D} \times \mathrm{FS}} \mathrm{P}
$$

$\{$ Tensile strength $48000 \mathrm{lbs} \times .70$ percentage of $\}$ Being

$$
\left\{\begin{array}{l}
\text { Inside diameter boiler in inches } \times \text { the safety } \\
\text { factor (whatever it may be). }
\end{array}\right.
$$

Egual pressure allowed for the boiler to carry according to the Steamboat Inspection Act of $188{ }^{\circ}$.

$$
\begin{aligned}
& \text { TS. in lbs. p. c. } 2 T(3 / 4 \text { in. } \times 2) \\
& 60000 \times 70 \times .5 \\
& \begin{array}{l}
{ }^{42} \times 5 \times 100 \text { lbs. pressure per square. } \\
D=15 \text { equals } P
\end{array}
\end{aligned}
$$

Inch, when made in best manner, vide S. B. Inspection Act, pages 23-4.

Calculate the pressure allowable on a boiler sixty $\left(60^{\prime \prime}\right)$ inches diameter, seven-sixtecnths ($\frac{7}{16}^{11}$) of an inch thickness of plate. $\begin{aligned} & \mathrm{T}_{6}=.4445 \times 2=880=\text { twice thickness of plate. } \\ & 60000 \times .40=42000, \text { value of plate } \text {. }\end{aligned}$ $60000 \times . \%=42000$, value of plate.

		$\begin{aligned} & 1 \% 78000 \\ & 3556 \end{aligned}$
	D60×5	-
		37338.000 300
		300
		73.3
		600
		1338
		1200
		1380
		1200
		--
		1800
		1800
		. .

Proof.-Calculate the thickness of plate, according to the rule laid down in the Act, for a $60^{\prime \prime}$ diameter and $1: 24.46$ lbs. pressure :

$$
\frac{60 \times 124.46 \times 5}{60000 \times .70}=8 \frac{8}{2} 9=.4445={\frac{\mathrm{T}^{7}}{}{ }^{\prime \prime}}^{\prime \prime}
$$

> IMAGE EVALUATION TEST TARGET (MT-3)

Photographic Sciences
Corporation

Diameter of boiler $28^{\prime \prime}$ plate, $\frac{1}{4}^{\prime \prime}$ thickness of plate; compute the pressure allowable per square inch, as working pressure. 60000 tensiie strength in lbs. per square inch.
Diameter 70 percentage.
boiler $=28^{\prime \prime}$
Fac. saf'y 5
42000.00 value of boiler plate.
$.5=$ double the thickness of plate.
140) 21000.000 (150 lbs . pressure per square inch. 140

700
700
0
0

Diameter of boiler 84 inches, $\frac{1}{4}$ inch thickness of plate.
60000 lbs. tensile strength of iron per sq. inch.
. 70
Diam. $84^{\prime \prime} 42000.00$ value of iron.
$F S=5$ \qquad $.5^{7 \prime}$ double thickness because of the two. sides of boiler.
$420) 21000.000(.50 \mathrm{lbs}$. pressure per square inch.
2100

Comparative strength of boilers of different diameters madein best manner of $\frac{1}{}$ of an inch thickness of plate:

ONS.

late; compute king pressure.
square inch.
plate.
are inch.
of plate.
per sq. inch.
of the two inch.

MANUAL OF ENGINEERS' CALCULATIONS.
171
Diameter ${ }_{5}^{78}$ inches ${ }_{56}^{\frac{8}{4} "}$ thickness of plate $=161$ lbs. pressure.

$$
\text { Rule abbreviated } \frac{60000 \times .70 \times 70^{\left(\frac{8}{8} 2\right)}}{56 \times 5}=112.5 \text { lbs. pressure. }
$$

Calculate the pressure allowable on a boiler eighty-four (84") inches diameter, thickness of plate on 9 -half inch $\left(\frac{t^{\prime}}{}{ }^{\prime \prime}\right)$, made in best manner:

$$
\begin{aligned}
& 60000 \\
& \text {. } 70 \\
& 84 \overline{42000.00} \\
& \text { 5 } \quad 1=\frac{1}{2}=5 \times 2 \\
& \text { 420) } 42000.00 \text { (} 100 \mathrm{lbs} \text {. pressure. } \\
& 420 \\
& 00 \\
& 00 \\
& \text {-- } \\
& \text {.. } \\
& \text { Abbreviated }=\frac{6000 \times 70 \times 1}{84 \times 5}=100 \text { lbs. pressure. }
\end{aligned}
$$

Second method for calculating the pressure allowable:
Rule. - Tensile strength of iron, minus the percentage, multiplied by the decimal of the thickness of plate, divide by radius or half diameter of boiler in inches, multiplied by factor safety $=$ pressure per square inch, allowable.

$$
\text { Formula: } \frac{\mathrm{TS} \times .70 \times \mathrm{T}}{\text { radius } \times \mathrm{FS}}=\mathrm{P}
$$

Example.-A boiler $\frac{7}{18}$ inches thickness of plate and 60 inches diameter; compute pressure allowable for a boiler when made in best manner:

$$
\begin{aligned}
\mathrm{T}^{7} & =4445 \\
& 42000=60000 \times 70
\end{aligned}
$$

$$
\overline{8890000}
$$

:2)60 17780
$-30 \times 5=150) \overline{18669.0000}$ (124.46 pressure lbs. per square inch. 150

$\overline{366}$
300
$-\overline{669}$
500
690
600
900
900
\ldots

GENERAL EXAMINATION QUESTIONS FOR ENG!NEERS.

Question.--Give the rules for computing the nominal horsepower of engines?
Answer.-For compound ongine, square the cylinder of high-pressure, and add the square of the low-pressure, and divide by thirty; for condensing or non-condensing engines, cylinders to be expronder, and divide by thirty; diameter of
Q.-Give the rule for the inches in all cases. the thickness of boiler-plate required:
The tensile strength plate required? sixty thousand to forty-eight thenanged as follows, from inch with the grain, forty-two thousand pounds per square g.ain. plied by doubhousand multiply by seventy per cent. multiboiler in inches multiplied of plate, divide by diameter of pressure per square inch, and for factor of safety equal to $\quad \mathrm{D} \times \mathrm{P} \times \mathrm{FS} \quad$, reverse of this proceeding, which gives: $\frac{D \times P \times F S}{60000 \times .70}=\frac{2 T}{2}=\mathbf{T}$
Q. - What is the tensile strength of iron and steel?
A.-Cast iron about 15,000 pounds or six and three-quarter tons; wrought iron from 50,000 to 65,000 pounds; best steel, twenty-seven tons; pounds; good bar iron 60,000 pounds, or tons.
A.- Cast iron the crushing strength of iron and steel? malleable iron $2 \%, 000$ pounds, or forty-four and-a balf tons; strength of steel is about doubs, or twelve tons; the crushing strengths the strain is per square inch, ire strength; in all great ranges, according to make, ete inch; iron and steel has.
Q.--What pressure is allowed etc.
Q.--What pressure is allowed per square inch on stays?
A.-"Six thousand pounds to each effective square inch of section of the stays supporting it."
Q. - What is the rule given in the Act for the area of diagonal stays? (Canadian Act of 1882.)
A.-" Find the area of a direct stay needed to support the surface, multiply this area by the length of the diagonal stay, and divide by the length of a line drawn at right angles to the surface supported to the end of the diagonal stay, the quotient will be the area of the diagonal stay required."
Q.- Give the rule for computing the contents of a pump?
A.-Arca of pump multiplied by stroke in inches.
Q.-What is heat?
A.-That property of bodies by which they grow hot, and is thought to consist of motion of the molecules of which the bodies consists.
Q.-How is heat generally produced?
A.-By chemical, mechanical and electrical action.
Q. -In what three ways is it conveyed?
A.-By connection, conduction and radiation.
Q.-What is the mechanical equivalent of heat?
A.-Heat and mechanical energy are mutually convertible, and heat requires for its production by its disappearance mechanical energy in proportion of 772 foot-pounds for each British unit of heat.
Q. - What is a British heat unit?
A.-The quantity of heat which corresponds to an interval of one degree of Fahrenheit's scale in the temperature of one pound of pure liquid water at and near its temperature of greatest density ($39^{\circ} \mathrm{F}$.)
Q.-Explain the action that ensues when a fire is lighted under a boiler containing cold water?
A.-The heat generated by the chemical action of combustion passes from the fire, and the guseous products of combustion to the iron of the boiler, through the iron of the boiler to the surface in contact with the water and thence into the water.
Q.-Whose tables are generally used to obtain the quantity of heat required to evaporate a given quantity of water and the volume of steam and water, etc.?
A.-Regnault and Fairbairn's and Tate's.
Q.-How much heat is needed to boil a pound of water at 200 pounds per square inch, boiler pressure, than at five pounds, feed $60^{\circ} \mathrm{F}$. in each case?
A.-At 5 pounds it would require 1,123 units, viz. :

IONS.
e square inch of for the area of I to support the e diagonal stay, right angles to gonal stay, the required." nts of a pump? nches.
grow hot, and es of which the
action. at?
ly convertible, disappearance unds for each
to an interval erature of one emperature of fire is lighted on of combusproducts of he iron of the d thence into
the quantity of water and
d of water at than at five
viz.:
manual of engineers' calculations. 175

Heat required to raise 1 lb , water from 30° UNits. at $5 \mathrm{lbs}=$. water from 32° to boiling Deduct heat to raise from 32° to 60° not nsed $=. .$.
28Heat to raise from 60° to boiling
Internal work of evaporation. 168
External work of evaporation. 882
At 200 pounds it would be 1,171 , viz. : Heat required to raise 1 lb 1,171 , viz.: 1,12373
200 lbs . per square inch from 32° to boiling atDeduct heat to raise from 32° to 60° not used35928
Internal work 331
External work 756
Heat to boil 1 lb . water at 60° at 200 lbs. $\overline{1,171}$84
$1171-11 \% 3=48$ units.
48 48
$1123=4$ per cent. nearly.
Q.-How much fuel can be saved by raising the temperatureof the feed-water from $100^{\circ} \mathrm{F}$. to by raising the temperature
being $1200^{\circ} \mathrm{F}$., the boiler pressure
A.-Total heat for 120 lbs UNITS.
1188
68
Required from $100^{\circ} \mathrm{F}$. to boil at 120 lbs
1120
1120
In the other case deduct for not using 169
Required to boil at 120 lbs. from water @ $2^{\circ}=$ 1,019
Difference $1120: 1019=101$ units $=9$ per cent.
Q.-Why is so much difficulty experienced in maintaining high-pressure than low-pressure?
A.-High-pressure steam leaves the boiler more easily and, therefore, if employed in an engine, the engine can be made to do more work thereby. If, in running a boat, the boat
going faster the engines use more steam; if, in heating a building, the radiators act more energetically with higher pressure, transmit more heat and condense more steam.
Q. What causes boiler explosions?
A.-Steadily accumulating pressure; stean, etc., formed from sudden contact of water with red hot metal, electrical; the decomposition of water or steam into hydrogen and oxygen, etc.
Q.-In what manner does priming and foaming occur in boilers?
A.-" As bubbles of steam formed on the hot iron of a boiler rise through the water to the surface, breaking and scattering spray, a portion of water thus thrown up into tho steam room is carried along with the steam, and unless more heat be supplied to evaporate this water it increases the volume caused by the steam condeused in the pipes in the upper portion of the boiler. This water carried with the stean is said to be entrained with it, and is called 'priming, by many writers. When the proportion of water becomes solarge as to be evident in the action of the engine, it is called by some foaming. This last occurs from dirty water, etc."
Q.-What is the rules for external pressure on flues?
A.-"The product of 90,000 , multiplied by the square of the thickness of the plate in inches, divided by the length of the flue or furnace in feet, plus 1 , multiplied by the diameter in inches, will be the allowable working pressure per square inch in pounds, provided it does not exceed that found by the following formula: The product of 8,000 , multiplied by tho thickness of the plate in inches, divided by the diameter of the furnace or flue in inches, will be the working pressure per square inch in pounds."
Q.-What is a steam engine indicator?
A.-It is an instrument designed to register automatically upon paper the pressure of steam, etc., in the cylinder at every point of the piston's stroke; the information drawn from its cards afford a variety of useful facts relating to the condition and working of the engine.
Q.-What can be ascertained by the use of the indicater?
A.-The proportion of boiler pressure utilized, also if steam and discharge passages are of correct size; whether the piston is tight, the pressure on piston and average throughout the stroke, also if it is well drawn and the final pressure and the amount of vacuum, the consumption of steam for engine and machinery or any part of machinery, effective work of lubricants.
in heating a with higher 3 steam.
etc., formed tal, electricul; ydrogen and
ling occur in
ot iron of a reaking and 1 up into tha unless moro ncreases the pipes in the ed with the d'priming' - becomes so , it is called ater, etc." flacs? he square of de length of he diameter per square ound by the plied by the diameter of pressure per
tomatically der at every vn from its. e condition adicator? lso if steam. the piston aghout the re and the engine and k of lubri-
Q.-What is the method of calculating the average or mean pressure from an indicator card? A.-Divide the diagram into ten equal numbers of spaces by lines drawn at right angles to the atmospheric lino, and measuro spaces between the lines of diagram or between atmospheric line aud diagram outlines, both up and down, separutely, and divide by ten, equal to mean pressure or average 1 ressure, add before dividing, and where the vacuum and steam are computed, separately add and divide hoth by ten, and add the results for the mean total pressure; use the scale corresponding to spring used, or take a narrow strip of a straight edged paper, place it across the diagram, and lot one end of strip come directly over the atmospheric line, then with a sharp pencil, mark the length of first space, etc., and so proceed until the length of each space has been added to
the first; the last pencil mark; divide with a rule from end of paper to the multiply by the number of spriy the number of spaces, and average impelling pressure per sing in use, and the result is the manner to get resisting pressquare inch. Proceed in like densing engines to find pressure, etc. It is usual in conpressures separately. Q.-What is meant by a boiler of a given number of horsepower? A. - One capable of evaporating that number of cubic feet of water per hour. Q.-What is mechanics?
A.-It is the science of force applied to a material body or bodies.
Q. - What is meant by force in mechanics?
A.-Foree is the power or agent, whatever?
which motion is produced in a accompanied by strains or pressure, or a tendency to motion Q.-What is meant by powsures in its parts.
A.- Power is the product of in mechanics? result of a certain product of pressure and motion; or the
Q.-Into what two brare acting at a certain velocity.
d.-Statics, at rest or branes is mechanics divided?
having motion or velocity.
Q.-How many kinds of levers are there?
A.-Three orders: 1st, When the fulcrum is between the When fulcrum is ing weight: as spade, pump, handle. 2nd, power; oar of boat, nute end, and the weight nearer to it than is again at one end, but prackers, etc. 3rd, When the fulcrum 12
the safety-valve. Compound levers are used to increase the power.
Q.-What pressure is allowed on plates forming flat surfaces?
A. - Rule given is $\frac{\mathrm{C} \times(\mathrm{T}+1)^{2}}{\mathrm{~S}-1 ;}=$ working pressure in pounds per square inch.
$\mathrm{T}=$ Thickness of plate in sixteenths of an inch;
$\mathrm{S}=$ Surface supported in square inches;
$\mathrm{C}=100$; but when the plates are exposed to the impact of heat or flame, and steam only is in contact with the plates on the opposite side, C is to be reduced to fifty.
Q. - What is the rule for the area of safety-valves?
A.--"The area of any locked safety-valve, or the joint areas of any locked safety-valves to any boiler, made or placed on board after the passing of the Act of 1882, shall not be less than half a square inch for each square foot of grate surface in or under the boiler."
Q.- What is the formula for the working pressure to be allowed on girders?

$$
\text { A.-Formula given in Actis } \frac{\mathrm{c} \times \mathrm{d}^{2} \times \mathrm{T}}{(\mathrm{~W}-\mathrm{P}) \mathrm{D} \times \mathrm{L}}=\text { working pressure. }
$$

$\mathrm{W}=$ Width of combustion box in inches;
$\mathrm{P}=$ Pitch of supporting bolts in inches;
$\mathrm{D}=$ =Distance between the girders from centre to centre in inches;
$\mathrm{L}=$ Length of girders in feet;
$d=$ Depth of girders in inches;
$\mathrm{T}=$ Thickness of girders in inches;
C 500 , or 750 , or 850 , according to number of supporting bolts used.
Q.-What rules are given for the strength of joints?
(Pitch-Diameter of rivets) $\times 100$
A.—— Pitch $=$ Percentage of strength of plate at joint as compared with solid plate.
(Area of rivets \times No. of rows of rivets) $\times 100$
Pitch \times thickness of plate. $=$ Percentage of strength of plate at joint as compared with the solid plate.
Q. - In what mancer are steam gauges constructed?
A.-Steam gauges for indicating the pressure per square
inch in the boiler are made either with diaphragm or as a bypring against which the steam pressure acts or presses, or bection with increase of pressure.
Q.-Explain what gauge cock and glasses are used for, and where and how placed?
A.-"Gange cocks are put in at different levels near the water line. The lowest is usually put in so that a full gange of water lies over the danger point, or highest metal exposed to the direct action of the hot gas on the second return thereof. The cocks are in number from two up, three or four in all, being the common number. The upper one is placed at as high a level as it is thought can be used. The brass fittings in which the latter are inserted should be provided of the tube, and one at each end in the and boiler at each end can be cleaned by washing from either end of the tube, so it run through it. The tube is packed in place by a rod can be and donble nuts. Specially packed in place by gum washers great care taken not to sep soft glass has to be used, and break is sure to happen. By she and scratch the glass, or a boiler it can be easily replaced." Prof. Chas. Smith, C. E., M. E. From "Steam Making," by Q. -What manner of safety-valves are generally used on steam boilers?
A.-Direct loaded, weight and lever and spring 'pop', valves.
Q.- What may be said as regard to the application of steam jets to induce a current of air for a draft?
A.-"Application of a steam jet to induce a current of air for draft is nearly as old as the locomotive with which it originated and to which its use now is almost restricted, and to boilers of the same clas.s where a sudden call for steam can be rapidly met. In the most simple form, a pipe is led from the boiler to the stack, if of iron, if not, to some of the flues, inch or quarter is terminated by a reducer with a three-eighth twenty to ninety pound in sufficing to raise the gange from power engine. Chimney used in this case was a a 100 horsediameter and twenty-five feet in this case was eighteen inches by Prof. Chas. Smith, C. E., M. E. Mrom "Steam Making." I. C. E., comes to the following conclur. I. A. Langridge, M. jets and nozzles: 1. The action is due the regard to plain Hluid on the other, and that by dividine the friction of one of contact of the fluids is much increase the jets the surface
of fluid; or the same draft may be produced with less steam. 2. The effect of the draft is increased by lengthening the chimney, but the effect is smallor from four diameters to eight diameters than less than four diameters above eight there is a falling off. 3. He states that the draft mensured in inches of water, inches of diameter and pounds per square inch abovo the atmosphere, muy be computed as follows: Draft equale thirty-seven times the flfth power of the third power root of the diameter of the blast pipe times the fourth power of the fifth root of the pressure, divided by the square of the diameter of the ehimney.
Q. - What are the chemicul constituents of coal?
A.-Carbon, hydrogen, oxygen, nitrogen, sulphur and ashes, which form the result from combustion.
Q.-Of what is air composed that causo coal to burn?
A.-Nitrogen and oxygen, this latter causes combustion.
Q.-Of what is water composed, and does its evaporation under conl assist any?
A.-Oxygen and hydrogen, the oxygen would assist as in
Q.-In what manner may the size pump required for boiler be calculated from the boiler's heating surface?
A.-Assuming that ten square feet will evaporate one cubic foot per minuto, and that the boiler has 1,200 square feet heating surface.

$$
\begin{array}{rr}
10) 1200 & 1728 \\
60 \lcm{120} & 2 \\
\hline
\end{array}
$$

iONs.
with less steam. engthening the ameoters to eight eight there is a red in inches of lare inch above
Draft equale power root of ih power of the of the diameter
coal?
sulphur and
to burn? combustion. its evaporation
ld assist as in nired for boiler
rate one cubio 00 square feet
oko of pump.
compressed." Thus, if a cubic foot of steam at ten pounds pressure be compressed into one-half a cubic foot, the pressure will be twenty pounds, but if expanded into two feet it will be only five pounds, provided the temperature remains unaltered; in estimating the pressure in a condensing engine the atmospheric pressure must be included. Thus, if the steam gauge shows twenty-night inches (two inches equals one pound pressure) the initial pressure on each square inch of the piston will be $20+\div 4=34$ pounds per square inch. Rule by which can be found the amount of gain derived by expansion by one operation. Divide the distance through which the steam expands by the distance the piston travels before the steam is. cut off (which call one); the hyperbolic logarithm of the quotient is the increase due to expansion. According to this. rule it will be seen that if a gain quantity of steam (the powerof which working at full pressure is represented as one) when cut off at half stroke (that is expanded twice) the efficiency is. raised by expansion $1.69+$; at one-fourth stroke to $2.39+$. See table of hyperbolic logarithms.
Q.-What is meant by surface condensation?
A.-A surface condenser is an instrument for condensing steam by contact with cold metallic surfaces, instead of bringing it directly into contact with a shower of cold water as done in a jet condenser. The object in using such a condenser in lieu of the common jet condenser is to furnish boilers of marine steamers with distilled instead of sea water; consequently, to provide against the loss of fuel otherwise occasioned by blowing off a portion of the water to keep the concentration at a desired point and prevent salt forming, and the loss due to the little condncting power of the envelope of scale which attaches to all heating surfaces of boilers using sea water. By the use of a surface condenser there is also gained the saving in labor and time for scaling and cleaning. which belongs to all sea-going steamers using the common jet condenser; this is of no small importance to those having the care of stean boilers and machinery.
Q. What are the principal parts of a boiler?
A. -The shell steam chest, or dome, furnace or fire-box, flues, tubes, tube plate, man-hole, mud-hole, hand-hole, feed apparatus, blow-off apparatus, sediment, collector, steam pipe, safety-valve, bars, gauges, fusible plug, steam whistle, damper, stays, and clothing.
Q.-What style of boilers are generally used for steamboats?
A.-Marine flue and tubular boilers, or cylindrical double: furnace or locomotive boilers.
at ten pounds: ot, the pressure feet it will be ains unaltered; ine the atmose steam gauge Is one pound h of the piston Rule by which pansion by one ch the steam :e the steam is arithm of the ording to this. am (the poweras one) when te efficiency is. ke to $2.39+$.
r condensing s, instead of cold water as such a conis to furnish of sea water; tel otherwise - to keep the forming, and 3 envelope of ooilers using there is also nd cleaning common jet having the
or fire-box, d•hole, feed steam pipe, le, damper, ical double

SPECIMEN PAPER CHIEF ENGINEER'S EXAMINATION.

Q. - What would you do if you found no water in the glass gange or try-cocks?
A.-Draw the fires, easo safety-valve, examine tubes and combustion chambers; when boiler is sufficiently cool, pump up and proceed.
Q.- How is a feed-pump constructed, and when hot why does it not work; explain the principles on when hot why
lifts water?
A.-A feed-pump consists of a cylindrical chamber fitted with a plunger, working through an air-tight stuffiug box, and of a suction and a delivery valve. The lifting of the plunger forms a vacuum beneath it, the atmospheric or other lower or suction hot well then forces the water through the planger returns this into the pump chamber, and when the valve opens and the water is fots, and the upper or delivery boiler. If the pump becom forced by the planger into the remains in the chamber and expao hot, a quantity of vapour thus destroying the vacuum expands when the plinger rises, entering the pump. A pump and preventing the water from principle, which is 14.7^{4} pomp lifts water on the atmospheric of everything. pump in what menent of the check-valve will effect the A.-Should the check-valve on boiler stick fast to its seat, and pump or pipe would burst unless there be a relief valve, and if the check-valve remain open the pump would thamp, quantity of water. Q.-Why should the man-hole and mud-plates he placed on the inside of a boiler? A.-Because the pressure inside tightens the joints, and
Q.-What is a surface blow-off? Why and when used? Where should the main blow-off be placed?
A. -The surface blow-off consists of a cock upon the boiler, with a pipe outside to the sea, and a pipe inside leading to the centre of boiler and just below the water-level. It is used to blow the scum off the water and as often as the water becomes dirty or dense. The main blow-off should be placed on or near the bottom of the boiler.
Q.-Explain the usual method of blowing scale, etc., out of boilers, etc.?
A.--13lowing-ont is done by opening the surface or bottom cock on boiler, and the sea-cock on ship's side, the pressure in the boiler will force the water out as low as may be required, or altogether as the case may be. The scale is removed by scaling hammers and slices; it should be done often enough to prevent a thick scale growing on the heating surfaces, as it impairs the steaming qualities of the boiler, and also renders the furnaces and tubes liable io be burnt.
Q.-In regard to boilers, explain the danger ef neglecting them; where they wonld decay and wear first, also their relative ages?
A. -If a boiler is not kept clean, the scale prevents the absorption of the heat by the water; the plates, therefore, may be burned and an explosion ensue. The boiler is most exposed to decay upon the bottom, or any place which is often or continually wet; it will wear most in the furnaces and along the water-line-twelve to twenty-one years in fresh water; eight to ten in salt water.
Q.-What helps to cause boiler explosions, and how are boilers chiefly injured?
A.-Boiler explosions are cansed by, viz.: safety-valves being fastened down or sticking to seats; water becoming too low, and cold water imprudently pumped in upon the heated plates; an accumulation of scale, an excessive pressure. They are injured by leakage of water upon the plato from the outside. Constant leakage in seams or rivets, galvanic action from copper pipes, ete; large and sudden additions of cold water, sudden cooling by opening furnace or tube doors, and salting; these thiugs should be guarded against by taking the precaution of preventing their occurrence; suspending zinc plates in the boiler to neutralize the galvanic action before mentioned.
Q.-What is foaming? What is priming? Is one or both dangerous? How are they controlled?
A.-Foaming is a violent ebullition or disturbance of the
'water; priming may be a still greater disturbance, while the water may be carried over into the engine. They are dangerous, because the gauges do not show the true water level, and the plates may be uncovered and the engine may :also break down owing to the quantity of water carried into the cylinders. It may sometimes be stopped by scumming the boiler and partially closing the throttle-valve; tallow is sometimes injected for this purpose.
$Q .-$ Why do some boilers require more watchfulness than others? Is there any danger from raising the safety-valve suddenly, and why?
A.-Some boilers require more care than others, such as locomotive or other boilers in which the quantity of water is small and the evaporation rapid, becanse the water would leave the glass in such a short time were the feeds to be stopped by any accident. It is dangerous to raise a safetyvalve suddenly, because it may carry the water with the steam and lay bare the plates.
Q.-Describe a form of boiler that would prime badly? State what height of water should be carried over the top heating surface in a boiler?
A.-A boiler in which the tubes are placed too close to one another, or too close to the furnace crowns, or one which has too little steam space, and takes the steam from the top of the boiler instead of a dome or super-heater, it would be subject to priming. The water should be at least six inches above the top of heating surface.
Q.-What danger is there in coming to a wharf with a foaming boiler? When foaming, how do you find what water you have in boiler?
A.- There is danger in coming to a wharf with a foaming boiler, because when the engine is stopped, the water may possibly drop much further than is safe. While foaming, the water level may be found by slowing, or if necessary, stopping the engine.
Q. - In what way may the try-cocks or gauge-glass dcceive you? Explain the construction and principle of gauge-glass, try-cocks, and steam gauge?
A.-The gauge-glass might doceive by being full when apparently empty, or empty when seeming to be full; or, -owing to priming, the glass may show more water than there really is; or one or both cocks, etc., may be choked by dirt, silt or foam. The try-cock might deceive you from similar reasons. The glass gauge-cocks are screwed in to the boiler, 'with the outside ends turned up and down, respectively, so as
to receive the ends of the glass tube; they are placed so that both cocks being open to the boiler, the water rises to the centre of glass-there is another cock below the glass, by opening which the steam and water rush through, thus cleaning obstructions. Just opposite the openings into the boiler, a small plug is screwed, by removing which a wire may be inserted to clean out any obstructions. The Bourdon steam gauge consists of an elliptical tube, curved into an almost: circular form; one end is fast and receives the steam, the other end is closed, and is connected by means of a toothed sector with a pinion and spindle which moves the pointer over the dial. The tube being curved and closed at one end, the pressure acts upon the curvative and straightens it out more or less, the pointer marking the degree of pressure.
Q.-Explain the mode of laying up an engine?
A.-When laying up an engine for the winter care must be taken that all sea-cocks are shat and the water run out of all piper, pumps, and any places where it might lodge; the cylinders, pumps, and valve casing must be opened up, and everything well oiled; the bright work is also usually tallowed or white-leaded; in a screw steamer the coupling bolts in the shaft are taken out, that the engine may be turned by hand should the propeller be frozen in.
Q.-Explain the mode of lining an engine, and the manner of setting the eccentric?
A.-In lining an engine, stretch a line tightly through cylinder to centre of crank pin, or if a beam engine, to contre line of beam; this will show if cylinder, guides, and bean have a common centre-line, another thrcugh air-pump to corresponding place, and another from certite of crank pin to centre line of beam; these lines must also be true to each other, which may be tested by cross lines. With a slide-valve, the eccentrics are set-the sum of lap and lead in advance of right angles to the crank, so that wheu the engine is on top or bottom centre the valve is open the amount of lead required.
Q.-Explain how to find if the crank pin is set true in the crank ; also if the connecting rod is hung properly?
A. -If the crank could be placed upon a true surface, the best way would be to try the contres with a surface gauge; in the steamer it can be done by placing a long straight edge lengthways on the crank pin and measuring with callipers or trammels from another straight edge or the shaft. If the connecting rod is properly hang it will come to its proper place in the centre of the crank pin.

NS.

laced so that rises to the the glass, by 1, thus cleanto the boiler, wire may bo urdon steam 0 an almost: e steam, the of a toothed pointer over one end, the out more or
are must be n out of all lodge; the led up, and lly tallowed bolts in the ed by hand
the manner

ly throngh

 e, to contre and beam imp to corank pin to ne to each slide-valve, advance of e is on top it of leadtrue in the

Page 186.

Page 186.

mandal of engineers' calculations.

Q. -What in mechanics is meant by the term "power?"
A.-Power is the product of pressure and motion; or the result of a certain pressure acting at a certain velocity.
Q.-What is the throw of the eccentric?
A.-Double the port and lap of valve.
Q.-How would you work an engine into port that had a broken air pump bucket and foot valve?
A.-High-pressure; if the air pump cannot be speedily repaired, and if the circulating pump cannot be used instead, and if general repairs cannot be effected, why the engine can be worked non-condensing by removing the air pump valves and exhausting through the ship's side, or if the circulating pump draws its water through the tubes, and especially if a off and removing a be done by taking the condenser's door. allowing the circulatinger of tubes and opening the jet, thus condensed steam; the boiler pump to take away both water and
Q. - What are the qualificationt be fed with salt water.
A.-A first class engineer shall required for first engineer?. a sccond class engineer with not less the the qualifications of ence on one or more steamboats of not less thee years' experi-horse-power. He must be of not less than 100 uominal thickness of plate, pressure competent to calculate theconnections, joints, tensile and allowable, strength of stays, steel, the capacity of the feed-pumphing strength of iron and power of engine from indicator card, and of safety-valve, etc., and eccentric, must understand ard, make diagram of crank combustion, and be competent to steam, water, coal heat and engines and boilers.

ENGINEERS' EXAMINATION FOR CERTIFICATES AND HIGHER GRADES.

Under the requirements of the "Steambont Inspection Act, 1882," of Canada, it is necessary for every passenger steamer (or freight steamer of 150 tons) to havo an engineer, graded according to the nominal horse-power, and where it is necessary to keep watch at night, it is necessary to have an assistant engineer with certificate.

Certificates of Canadian engineers are divided into four classes: "First class engincer," "Second class engineer," "Third class engineer," and "Fourth class engineer."

Examinations of engineers, exclusive of "first class," will be made at any time by the resident inspector of the district, while at the port to which the applicant belongs or by the applicant going to the inspector's office.
First class engineer must ioe examined by a quorum of, or full board, the chairman being present; the dates of the meetings of the board in the several districts are advertised yearly, etc., but usually have, so far, occurred in September or October, and so on to December.

Application forms may be had from any steamboat inspector by applicants that are desirous of trying for engineer's certificates, and the inspector will in return inform the applicant whether he is qualified, and for what grade; also when and where he can examine him.

It is necessary for all engineers to have recommendations from their last employers.

Candidates will be allowed five hours to work out the questions in Form No. 3.

The examination will be partly viva voce, and partly by examination papers and drawinge.

If an engineer holds a third class certificate under the Act, 1882, he can obtain a second class engineer's certificate, if he
has run a steamer of thirty nominal horse-power for two years, by making application and stating experience, without being re-examined. Fee same as an examination, five dollars.
Aay ongincer who has lapsed and possesses a certificate of 1882, or since, can renew and receive the same grade by five dollars, and proving he has form and paying the fee of steamer requiring a liccused engincer been omployed on any
ection Act, ;er steamer eer, graded it is necesin assistant into four engineer," er." class," will he district, or by the rum of, or the meetsed yearly, tember or t inspector engineer's form the rade; also endations the quespartly by - the Act, sate, if he

CALCULATIONS OF STAYS.

Calculate the area of a direct stay, the pitch and pressure being given. The area of a direct stay may be found by the following formula:

Pitch $^{2} \times$ Pressure
$-6000=$ diam. of stry in square inches.
Pitch being $8^{\prime \prime}$ and pressure 100 lbs . per square inch; what is the area for a direct stay:
$8^{\prime \prime}$ pitch
8
64
100 lbs. pressure per sq. inch. 6000) 6400(1.066667 diam. of direct stay in sq. ins. 6000

40000
36000
40000
3ti000
46,000
Stco
40000
36000
40000
42000

Pitch being $15^{\prime \prime}$, pressure 20 lbs . per square inch; what is 15 inch pitch
15
75
15
225
20
$6000) 4500.0(.75$ diam. of a direct stay in sq. inches.
42000
30000
30000
Formula: ${ }^{\text {P2 }} \times$ Press. $=A=$ Pitch \times Pressure.
6000
6000 [stay sq. ins.
Rule for area of direct stay:-Square the pitch and multiply by pressure per square inch, and divide by 6000 , and the answer will be the diameter of a direct stay in square inches.

Calculate the strength of a direct stay of eighteen and-abalf inches pitch by fourteen inches, two inches diameter, and pressure per square inch seventy pounds.

2 inches diameter direct stay.
2 ar diay.
-

4 square of direct stay.

16
20
32
28
3.1416 area of direct stay.

6000 lbs. per sq. in., according to Act.
18849.6000 lbs. total pressure allowed on stay, showing the stay to be sufficiently strong.

Proof.-Taking actual pressure on supported surface as: 181200 pounds.

Proof.-Taking total pressure on stay, 18849.6000 lbs. $2^{\prime \prime} \times 2^{\prime \prime} \times .7854 \times 6000=18849.6000$ 6000)18849.6000(3.1416 18000

8496 6000 24960 24000
9600 6000 36000 36000.

IONS.
rted surface as:
$3.8485(1.96$ dia.

Mandal of engineers' Calculations.
Then $18 \frac{1}{2} \times 14 \times 70=181300 \div 6000=3.0216 \div .7854=\sqrt{ } 3.84{ }^{7}$
$=1.96^{\prime \prime}$ diameter stay.

Then $2 \times 2 \times .7854 \times 6000=18849.6000=6000=3.1416 \div .7854$
$=\sqrt{ } 4=2^{\prime \prime}$ diameter stay.

Calculate the streugth of a direct stay nine inches piteh and fifty younds pressure per square inch.

$$
9 \times 0=81 \times 50=\frac{40500}{6000}=.675 \text { diam. in sq. inches. }
$$

Calculate the area of a diagonal stay twelve feet long, line being nine, the direct stays in boiler are two inches in diameter.

The areas of diagonal stays are found in the following way: Find the area of a direct stay needed to support the surface, or if direct stays are given, compute its area, and in either case multiply the area by length of the diagonal stay, and divide the product by the length of a line drawn at right angles to the surface, supported to the end of the diagonal will be the area of the diagonal stay

Diam. direet $2^{\prime \prime}$ stay $=3.1416$ area of direct stay.
12 length of diagonal stay.
Line 9)37.6902
.7854)4.1888(5.33 4888 dia. of diagonal stay in sq. ins. 39270

26180 23562

26180
23562 5.33(2. 3 ins. diam. diagonal stay. 4
43)133

4

Calculate the area of a direct and of a diagonal stay, the distance between centres ten inches, the pressure per square inch eighty pounds; twelve feet length of diagonal stay.

100 surface supported.	
6000)8000	
$.7854) 1.3334(\sqrt{ } 1.69=1.3 \mathrm{diam} .$$7854$	
$\begin{aligned} & 54800 \\ & 4^{7} 7124 \end{aligned}$	$\therefore 1.69\left(1.3^{\prime \prime}\right.$ diam. of direct 1 stay.
76760	23)69
70686	69
6074	

1.3334 area of the direct stay.

 12Line 9)16.0008
1.77786 area of a diagonal stay.

onal stay, the re per square nal stay.

MANUAL OF ENGINEERS' CALCULATIONS.
Abbreviated:-
$10 \times 10 \times 80 \div 6000 \div .7854=\sqrt{ } 1.69=1.3$ diam. direct stay.
$1.3334 \times 12 \div 9 \div .7854=\sqrt{ } 2.96=1.5$ diam. diagonal stay.
$10^{2} \times 80$
Or, $\overline{6000 \div 7854}=\sqrt{ } 1.69=1.3$ diameter direct stay.
1.3334×12
$\underset{9 \div .7854}{ }=\sqrt{ } 2.26=1 \frac{1}{2}$ dianieter diagonal stay.
area of a diagonal stay.
The following rule is given in the " S . B. Inspection Act, 1882," page 25, ss. 4th, "The area of diagonal stays are found
in the following way":
"Find the area of a direct stay needed to support the surface, mu iiply the area by the length of the diagonal stay, and divide the product by the length of a line drawn at right angles to the surface, supported to the end of the diagonal

```
                    ~2
```



```
                4
                .7854
                16
                    20
```

 32
 28
3.1416 area of the direct stay.

Lenglh
line 1.5 ft .) $6.2832(4.1888$

Length
line 1.5 ft .) $6.2832(4.1888$ area of diagonal stay. 60

Or 3.1416 area direct stay $\times 24$ inches length of diagonal stay $\div 18$ inches the length of line $=1.5$ feet; gives 4.1888
 diameter of diagonal stay.

iam.

diam. diag. stay.

CALCULATIONS IN BUTT-STRAP JOINTS.

Calculate the strength of double butt-strap joints, made in hest manner:
(Pitch-Diameter of rivetsj $\times 100$
of plate at joints as compared with the solid plate.
(Area of rivets \times Number of rows of rivets) $\times 100$
Pitch \times thickness of plate. $=$ Per cent. of strength of rivets as compared wite.
th the solid plate.
解
if the marked * the allowance may be increased still further factory.
very doubtful, or unsatispercentage as found exposed to double shear multiply the 1882," page 24.
S. B. Inspection Act, of the plate of whivets must not be less than the thickness where the plates are thin shell is made, but it will be found straps are adopted, that the when lap joints or single buttin excess of the thickness of the plate of the rivets should be

Example.-Pitch $2 \frac{1}{2}$ inches, $\frac{1}{2} \mathrm{in}$. diameter of rivets $=80 \%$ compared with the solid plate.

2.0

100
Pitch $\left.2.5^{\prime \prime}\right) 200.0$ (80 percentage of strength of plate at 200 joints as compared with solid plate.
0
Rule.-Subtract the diameter of rivets from the pitch and multiply by 100 , and divide by the pitch.

Second Example.-Pitch $4 \frac{1}{2}$ inches; diameter of rivets $1 \frac{1}{8}$ inches:

$$
\frac{\left(4 \frac{1}{2}-1 \frac{1}{8}\right) \times 100}{4 \frac{1}{2}}=\frac{(4.5-1.125) \times 100}{4.5}=75 \text { per ce }
$$

$$
\text { Formula }: \frac{(\mathrm{P}-\mathrm{t}) \times 100}{\mathrm{P}}=\text { Percentage. }
$$

Calculate the percentage of the strength of rivets as compared with solid plate;-pitch $23^{\prime \prime}$, rivets $\frac{7^{\prime \prime}}{8}$, and plate $\frac{1_{2}^{\prime \prime}}{}$:
$\frac{7^{\prime \prime 2} \times .7854 \times 2 \times 100}{23^{\prime \prime} \times \frac{1_{2}^{\prime \prime}}{\prime \prime}}=87$ percentage of strength rivets, etc.
$=\frac{.875 \times .875 \times .7854 \times 2 \times 100}{2.75 \times .5}=87 \%$
$.875^{2} \times .7854=.6013$
1.2026

100
$1.75 \times .5=1.375) 120.2600(874$

0NS.
gth of plate at ith solid plate.
the pitch and er of rivets $1 \frac{1}{3}$ nt. of strength
rivets as comd plate $\frac{1_{2}^{\prime \prime}}{}$
h rivets, etc.

The lowest percentage is taken for strength of joint.

MANUAL OF ENGINEERS' CALCULATIONS.

$$
\begin{aligned}
& \frac{9625}{6350} \\
& \frac{5500}{850}
\end{aligned}
$$

Rule.-Area of rivets, nultiplied by number of rows, multhe thickness of plate.

Formula: $\frac{A \times N \times 100}{P \times t}=$ per ct. $=\frac{\text { Area } \times \text { No. rows } \times 100}{\text { Pitch } \times \text { thickness }}=$ perct.
Then the strengths of the joints are found by the following formula: $\frac{\mathrm{P}-\mathrm{D} \times 100}{\mathrm{P}}$; and $\frac{A \times \text { or } \times 100}{\mathrm{P} \times \mathrm{t}}$; see example.
Calculate the strength of joints and rivets as compared with the solid plate

Example.-Pitch 3 inches, $\frac{7}{8}$ rivets, $\frac{1}{2}$ inch thickness of plate gives 70 per cent. for joint and 80 per cent. for the rivets.
$(3-.875) \times 100$

Pitch 3"

$$
=70 \% \frac{.6013 \times 8 \times 100}{3 \times .5}=80 \%
$$

$\xrightarrow{3^{\prime \prime}} \underset{.875 \text { thickness plate }}{ } \left\lvert\, \begin{gathered}\frac{7}{8}=.875^{2} \times .7854= \\ -6013 \text { area riv. } \\ 2 \text { rows. }\end{gathered}\right.$
3)2.125

70 percentage of \quad Pitch t.
1.2026
$3 \times .5=1.5)$
120.2600 (๕า. 1% 120 of stgth riv'ts as
26 comp'd 15 sol. plte

Calculate the strength of double butt-strap joints, made in best manner:

With $2 \frac{1}{2}$ inch pitch, $\frac{7}{8}$ inch rivets, and $\frac{1}{2}$ inch plate; what would the strength of plate be at the joint, also strength of rivets, as compared with solid plate:

$$
\begin{aligned}
& 2 \frac{1}{2}=2.5 \text { inches pitch of rivets. } \\
& .8 \% \text { diameter of rivets. } \\
& 1.625 \\
& 100 \\
& 2.5) 162.500(65 \\
& \text { percentago of strength of llate at } \\
& \text { inint as compared with solid plate. } \\
& 125 \\
& 125 \\
& \frac{7}{8}=.875 \times .875 \times .7854=.6013 \text { area of rivet. } \\
& 2 \text { number of rows. } \\
& 776 \\
& 750 \\
& 260 \\
& 265
\end{aligned}
$$

But according to the Steamboat Inspection Act, 1882, joints must be 70, and rivet over 70 percentage of the plate, so 3 inch pitch $\frac{1}{2}$ plate, $\frac{7}{8}$ inch rivets, will give 70 and 80 per cent. respectively, as the following worked out example will show:
tions.
joints, made in
nch plate; what also strength of
manual of engineers' calculations.

70.834% strength 15

 of joints.10
105
50
45
50
60
$3-.875 \times 100$
rows.
entage of rivets ed solid plate.

$$
\frac{.6013 \times 2:: 100}{3 \times .5}=80.1734 \% \text { rivets. }
$$

Pitch being $3 \frac{3}{4}$ inches, rivet $1 \frac{1}{8}$, thickness of plate $\frac{3}{4}$ of an inch; calculate the strength of plate at joint and rivets an

202
manual of engineers' calculations.
$1 \frac{1}{8} \times 1 \frac{1}{8} \times .7854 \times 2 \times 100$
$3.75 \times .75=71$ percentage strength of rivets.
$\begin{gathered}1.125^{2} \\ \text { Pitch }\end{gathered} \times .7854=.9340(70.06$ percentage strength of $\begin{array}{cc}\text { Pitch } \\ 3.75 & 2 \\ \text { rivets comp'd solid plate. }\end{array}$
. 75 thickness 1.9880

$\overline{1875}$	100
2625	198.8000
-	196885
9,5)11	192500
9.5) ${ }_{1}$	169750
	22850

In a double-rivetted scam the rivets are $11^{\prime \prime}$ diameter, and placed at $4 \frac{1}{2}$ pitch; plate $1^{\prime \prime}$ thick; what percentage of strength has joint compared with the solid plate and rivets, etc., rivets being exposed to double shear.

$$
\frac{4 \frac{1}{2}-1 \frac{1}{8} \times 100}{4 \frac{1}{2}}=75 \%=\frac{4.5-1.125 \times 100}{4.5}=75 \%
$$

4.5
1.125
3.375

100
45) 337.500 (75 percentage of strength of plate at 315

225
225
joint as compared with solid plate.

IONS.
gth of rivets.
ge strength of p'd solid plate.

MANUAL OF ENGINEERS' CALCULATIONS.

2
19880
4.5 100
4.5) $198.8000(44.18 \times 1.75-77$ percentage of strength of rivets as compared with solid plate.

80
45
350 350

If the rivets are exposed to doublo shoar $\times 1.75$.

In a double rivetted seam, the rivets are $1 \frac{1}{4}$ inch diameter, and placed at four inch pitch; plate ono inch thick; what. percentage of strength has the plate at the joints, and rivets as compared with the strength of solid plate:
$\frac{4-41 \times 100}{4}=68 \%=\frac{4-4.25 \times 100}{4}=68 \%=\begin{array}{r}4.00 \\ 1.25\end{array}$
4) $275(68.7$ percent.

24 strength of plate at j'ts.
35 compared 32 with solid plate.
30
28
2
$1 \frac{1}{4} \times 1 \frac{1}{4} \times .7854 \times 2 \times 100$
$4 \times 1=61 \%$ strength rivets.

In a treble rivetted seam the rivets are $1 \frac{1}{8}$ inch diameter, and placed at $4 \frac{1}{8}$ inch pitch; plate one inch thick; what percentage -of strength has the joint compared with the solid plate:

For formula of rules for strength of joints, etc., see "Steamboat Inspection Act, 1882," in the "rules and regulations" for boiler; page 24 of official issue of the Act.

Calculate the percentage of strength of rivets as compared with solid plate, rivets being $\frac{5}{8}^{\prime \prime}$ of two rows, pitched $2 \frac{1}{12}^{\prime \prime}$ and plate of $\frac{g^{\prime \prime}}{}$ thick.

CIONS.
sh diameter, and what percentage olid plate:
of strength of plate at joints as compared with solid plate.
age strength of sompared with . see "Steam-
regulations"
as compared hed $2 \frac{1}{12}$ " and

ManUal of engineers' calculations. 205.
$d=$ area of rivets. $\quad-\quad=$ Percentage of strength. $n=$ number of rows of rivets. $p=$ pitch.
t=thickness of plate.

$$
\begin{aligned}
\frac{5}{3}^{\prime \prime}= & =625 \text { diameter of rivet. } \\
& .625
\end{aligned}
$$

3125
1250
3750
. 390625
.7854
1562500
1953125
3125000
2734375
.3067968750 area of rivet. 2 number of rows.
.6135937500
100
$2.083+\times .375=.78) 61.35937500000(78.666$ percent. strength of rivets as compared. with solid plate.

675 624

519
468
513
468
457
468

$$
\begin{aligned}
& \text { Or } \frac{2_{1}^{\frac{1}{2}}-\frac{5}{8}}{2 \frac{1}{8}} \times 100=70 \%=\frac{\frac{25}{12}-\frac{5}{8}}{\frac{25}{12}} \times 100=.70 \% \text { strength of } \\
& \text { plate at joints, etc. } \\
& \frac{2 \frac{1}{12}-\frac{5}{8}=\frac{25}{2}-\frac{5}{8}=\frac{80}{24}-\frac{15}{24}=\frac{35}{24} \div \frac{25}{2}=\frac{7}{10}=.70 \%}{\frac{5}{8} \times \frac{5}{8} \times .7854 \times 2 \times 100} \frac{2.083+, \times .375}{20}=78 \% \text { strength of rivets, etc. } \\
& \text { Or } \frac{\frac{5}{8} \times .7854 \times 2 \times 100}{2 \frac{1}{12} \times \frac{3}{8}}=78 \% \\
& \text { Or } \frac{.625 \times .625 \times .7854 \times 2 \times 100}{2.083334 \times .375}=78 \% \text { strength rivets, etc. }
\end{aligned}
$$

rIONS.
0% strength of te at joints, etc. $=.70 \%$
rivets, etc.
ngth rivets, etc.

Page : 0 o.

CALCULATIONS ON SAFETY-VALVES.

Calculate the area of a safety-valve, vide section 20, page 10, "Steamboat Inspection Act, 1882."
any locked of any locked safety-valve, or the joint areas of board after the passing of this Act boiler, made or placed on a square inch for each square foot, shall not be less than half the boiler.... The boiler, or foot of grate surface in or under every steamboat, be provided each boiler, if more than one, of which shall be locked up and one open." safety-valves, one of
Rule for area of safety-valve:-Half a square inch of safetyvalve area to every square foot of grate surface.

G S
Formula: $\frac{L_{2}}{2}=A$; or $G S \times .5=$ area.
Grate surface in sq. feet.
$2=$ area in square inches.
What should be the area of a safety-valve for a boiler with 23.6 square feet of grate surface:
2)23.6 square feet, GS.
11.8 square inches, area of safety-valve.
23.6
.5
11.80 square inches area of safety-valve.

What would the area of the safety-valve be for a boiler with twenty-six square feet of grate surface:
2) 26 square feet of grate surface.

13 square inches area of safety-valve. $0 \mathrm{r}, 26 \times .5=13.0$ square inches area of safety-valve.

Compute the area of a safety-valve for a boiler with twentyfour square feet of grate surface.

Rule.-One-half ($\frac{1}{2}$ ") square inch of area for every square foot of grate surface.

$$
\frac{\text { GS }}{2}=\text { A., means } \frac{\text { Grate surface. }}{2}=\text { area. }
$$

$\therefore \quad \frac{2) 24}{12}$ square inches area of safety-valve.
Abbreviated :-
Abbreviated :-

Area means area of safety-valve in inches.

S V.	"	safety-
\therefore.	"	then.
$=$	r	equals.

The rule for area of safety-valve is the same as the British Board of Trade rule.

C'alculate tho weight required for the safety-valve, size of the fuicrum lever, etc., being given, and the boiler pressure per square inch:

Rule.-Multiply the square of the diameter of safety-valve by . 7854 ; then multiply this sum by the pressure on boiler

MANUAL OF ENGINEERS' CALCULATIONS.
per squaro inch; subtract the effective or dead weight of the parts; then multiply this product by the fulcrum, and divide ball required for end of lever.

$$
\text { Formula }: \frac{\mathrm{D}^{2} \times .7854 \times \mathrm{P}-\mathrm{DW} \times \mathrm{F}}{\mathrm{~L}}=\mathrm{W} .
$$

$\mathrm{D}^{2}=$ Diameter of valve multiplied by itself.
$P=$ Pressure per square inch on boiler.
$D W=$ Dead weight or effective weight of parts.
$F=$ Fulcrum in inches.
$\mathrm{L}=$ Lever in inches. valve.
$.7854=0$ ne circular or decimal inch used to get area of
$X=\operatorname{Sign}$ of multiplication.
$-=$ Sign of subtraction.
$=$ means equals.

Example.-Diameter of valve being four inches, boiler pressure forty pounds per square inch, dead weight of parts (lever, valve, spindle, etc.,) fifty-two pounds, fulcrum five inches, and lever forty-five inches long; the required weight of the ball would be 116.88 pounds, or a little over $116 \frac{3}{4}$ pounds.

4 inches diameter of valve.
16 inches sq. of valve.

Calculate the weight required at the end of a lever twentyone inches long, four inches fulcrum, five inches diameter of valve, twenty-five pounds pressure per square inch, effective weight of lever, etc., ninety pounds.

$$
\begin{aligned}
& \frac{5}{5} \text { inches diameter of valve. } \\
& \frac{25}{25} \text { square inches. } \\
& \frac{.7854}{100} \\
& \frac{125}{200} \\
& \frac{175}{19.6350}
\end{aligned}
$$

MANUAL OF ENGINEERS' CALCULATIONS.
19.6350 area of safety-valve.

25 lbs . pressure per sq. inch on boiler. 981750 392700
${ }_{90} 490.8750 \mathrm{lbs}$. press. per sq. in. on safety-ralve. 90
400.8750 lbs. actual press. per sq. in. on safety-
4 inches fulcrum.

```
Uever 21 inches \() 16035000\) ( 76.357143 , or \(76 \frac{1}{3} \mathrm{lbs}\). weight. 147
133 126
75
63
120
105
150 147
147 % (%..357143, or 76\frac{1}{3} lbs. weight.
133
126
75
6
O
$
150
14
30
21
90
84
60
6 3
```

Abbreviated-
$\frac{5 \times 5 \times .7854 \times 25-90 \times 4}{21}=76 \frac{1}{3}$ lbs. weight.

Shoht Rule. - Arca of valve multiplied by the pressure per square inch, multiplied by the fulcrum; divide by the lever in inches will give you a rough estimate of the weight
required.

$$
\text { Formula: } \quad\left(\mathrm{d}^{2} \times .7854\right) \frac{\mathrm{A} \times \mathrm{P} \times \mathrm{F}}{\mathrm{~L}}=W
$$

I'o find the weight on the end of a lever:
Let $\mathrm{P}=$ Power.
W=Weight.
$\mathrm{S}=$ Short arm. $\}$ Long arm is the distonco a . . a Then
$\mathrm{P} \times \mathrm{S} \div \mathrm{L}=\mathrm{W}$
$\mathrm{W} \times \mathrm{L} \div \mathrm{S}=\mathrm{P}$
$\mathrm{S} \times \mathrm{P} \div \mathrm{W}=\mathrm{L}$
$\mathrm{L} \times \mathrm{W} \div \mathrm{P}=\mathrm{S}$$\quad\left\{\begin{array}{l}\text { Power is area of valve multiplied by } \\ \text { steam pressure. }\end{array}\right.$

Example.-Diameter of valve three inches; pressure of steam tweaty pounds per square inch; length of short arm (a....b) three inches; length of long arm (a....c) is thirty:

> 3 inches diameter of valve.
> 3
> 9 inches square of diameter of valve. .7854
> 9
7.0686 area of valve.

20 lbs. pressure per square inch.
$141.3 \% 20 \mathrm{lbs}$. total pressure on valve.
4

$13 \% .3720$ lbs. actual pressure on valve. 3 inches fulcrum.

$\overline{412.1160}$
'IONS.
the pressure per ide by the lever. of the weight
nce a. . . .b.
nce a....c.
miultiplied by b_{j} multiplying coimal . 7854.
s; pressure of of short arm. . . . c) is thirty:

ManUal of engineers' calculations. 213 Long arm $\left.=30^{\prime \prime}\right) 412,1160\left(13.74\right.$, or $13 \frac{3}{4}$ pounds weight.
30

$\frac{30}{112}$
90
221
210
-110
120

Abbreviated: $3 \times 3 \times .7854 \times 20-4 \times 3 \div 30=133$ lbs. weight.

CALCULATIONS IN PUMPS.

The arithmetical examination of candidates for licenses as: engineers, by the Board of Steamboat Inspection of the Dominion of Canada, consists of ten questions; two in relation to the feed-pump, one as an example of multiplication of decimals, two questions on boilers, involving the thickness of plate required for the pressure allowed, two relating to the safety-valve, its area and weight required at end of lever, etc.; the remaining sums are the horse-power of an engine and buttstrap joints.

I would advise the engineer student to learn these rules, so as to bave complete knowledge of them, and work out every example, because these questions are requisite to pass the Board, and a complete and correct understanding of them is required of every engineer.

Previous to entering into a examination it would be advisable for the candidate to review his knowledge of the first four rules of arithmetic, decimal fractions and proportion, as it is the very best preliminary exercise he can take for to successfully assist him in undorstanding and working correctly any calculations that may be assigned him; also it would be desirable for him to study the rules of formula and signs as used in arithmetic, for fear that he may have forgotten these things from disuse, or their being crowded out of his mind by the more important every-day facts and difficulties of his calling.

Ques.-Calculate the contents of a feed-pump?
Ans.-This question consists in getting the cubic contents of the pump, ther fore the following rule may be devolved:

Rule.-Compute area of diameter of pump, and multiply this product by stroke in inches; or, in other words, square
rlicenses as ion of the o in relation plication of hickness of ating to the f lever, ctc.; ne and butt-
esc rules, so k out every to pass the g of them is.
t would be ledge of the proportion, take for to ng correctly it would be and signs as gotten these of his mind ulties of his
bic contents devolved:
nd multiply rords, square

Page 214.
diameter of pump, (that is, multiply the diameter by itself), then multiply by . 7854 , and multiply this product by the stroke in inches.

Formula:- $\mathrm{d}^{2} \times .7854 \times \mathrm{S}=\mathrm{CP}$.
Example.-Calculate the contents of feed-pump, the diameter being four inches and stroke ten inches.

4 inches diameter feed-pump.
 4

16 square diameter of feed-pump.
. 7854 decimal or circular inch.
16
4712 4
7854
12.5664 area of feed-pump. 10 inches stroke of feed-pump.
125.6640 cubic ins. contents of feed-pump.

Abbreviated as for the examination paper:
$4^{\prime \prime} \times 4^{\prime \prime} \times .7854 \times 10^{\prime \prime}=125^{\prime \prime} .6640$ cubic inches contents of the feed-pump.

Second Example.-In "contents of the feed-pump," diameter of the feed-pump being three and-a-half inches, and stroke of feed-pump five and $\cdot a$-half inches; what is the contents?
$3 \frac{1}{2}=3.5$ inches diameter of feed-pump.
3.5
--
175
105
--
12.25
12.25 square of diameter of feed-pump. .7854 circular inches.

$$
4900
$$

$$
6125
$$

$$
9800
$$

8575
9.621150 arca of the feed-pump.

55
48105750 $48105 \% 50$
52.9163250 cubic ins. contents of feed-pump.

Abbreviated $-3.5^{2} \times .7854 \times 5.5=52.916325$
Or, $\quad 3 \frac{1}{2}{ }^{2} \times .7854 \times 5 \frac{1}{2}=52 \frac{15}{16}$.
Third Example.-Two and-a-half inches diameter of feedpump, five and three-quarter stroke.

2.5 2.5	
--	4.908750
125	5.75
50	
--	24543750
6.25	34561250
. 7854	$24543 \% 0$
2500	28.22531250 cubic ins. contents of
3125	feed-pump.
5000	
4375	
$4.908 \% 50$	

Fourth Example.-Feed-pump of five inches diameter and fourteen inches strokc.

CONS.
eed-pump.
eed-pump.
ameter of feed-
ns. contents of eed-pump.

MANUAL of engineers' calculations. 217

Fifti Example.-Calculate the contents of a feed-pump $47_{8}^{\prime \prime}$ diameter and $83_{8}^{\prime \prime}$ stroke.

```
47 (7% % = 875)=4.875
                                    4.875
                                    24375
                                    34125
                                    29000
19500
23.765625
                                    .7854
                    95062500
                    1 1 8 8 2 8 1 2 5
            190125000
            1663505375
            18.6652218750
            8.475
            933261093750
        1306565531250
        7466088%5000
                14932177500000
\(158.187 \% 553906250\) contents of feed-pump.
```

Examples of feed-pump sum to be worked out:

Diameter of feed-pump.
$4 \frac{1}{2}=(4.25)$
$4 \frac{1}{2}=(4.5)$
$4 \frac{7}{8}=(4.8 \% 5)$
5
6
6

Stroke.

SIZE PUMP REQUIRED.
To calculate the size pump required from the dimensions of the boiler, is a question that engages to do a good deal, and can only truly be correctly arrived at by practice, trial, and supposition, from examples in use.

The following rules or methods are given as ways to arrive at the approximate data for size; the best plan is to calculate the evaporating power of the boiler and to proportion a pumpover and sufficient to supply the water used by the boiler per hour. The following rules are based on either the quantity of steam used by the engine, or the water evaporated by a. boiler of given dimensions per hour.

These rules, tempered with practice and experience, may be found useful.

Calculate the size pump supplying water to a boiler, supplying an engine with cylinder thirty inches diameter, struke eight feet, making twenty-five revolutions per minute, cutting off at half stroke, pressure thirty pounds per squareinch.

In answering this question, we shall assume that the steam is always cut off at one-half the stroke; if the amount of cut. off is variable the feed-pump should be proportioned to suit. the largest requirement of the engine.

30
30
900 square of cylinder $\times .7854=706.86$ sectional area. of cylinder in square inches. Since the steam is cut off at.
half stroke, engine uses steam in one revolution equal to the capacity of the cylinder, then 706.86

$$
96 \text { inches }=8 \mathrm{ft} . \times 12 \text { ins. }
$$

Contents.
103.382750
123.258712 ก̃0 157.131276
274.8900
508.9392
282.744
e dimensions of good deal, and tice, trial, and
ways to arrive is to calculate portion a pump \square the boiler per r the quantity vaporated by a
erience, may be
r to a boiler, ches diameter, ns per minute, ods per square
that the steam amount of cut. ortioned to suit.

3 sectional area. m is cut off at.

Suppose it to be a beam engine with the pump connected to beam at a point giving it half the stroke of the piston, then
48) $982(8.16$ 384

80
48
320
288
32
$.7854) 8.166666(10.3981$
7854

So a pump three and-a-quarter inches diameter, four feet stroke, single acting, would be the proper size for this engine.

Calculate the size pump for a boiler of given dimensions. A boiler eleven feet in diameter, containing two furnaces each, length of grate five and-a-half feet by three feet, pump two-thirds full each stroke.

$$
\begin{array}{r}
5.5 \\
.3 \\
\hline 16.5 \\
2 \\
\hline 23.0
\end{array}
$$

(3.22 diameter.
eter, four feet or this engine.
n dimensions. two furnaces 'ee feet, pump

MANUAL OF ENGINEERS' CALCULATIONS.
33.0 square feet grate surface.
20 20
660.0 coal burnt per hour. 10
Weight
cubic $\mathrm{ic} .=62.5) 6600.0 \mathrm{lbs}$. water evsiporated per hour.
And that equals 105.6 cubic feet; assuming the pump to be two-thirds fuil each stroke; and to be capable of throwing twice the quantity of water evaporated to allow for leakage, blowing off, etc., the capacity of pump per hour will be

$$
105.6
$$

2
3)211.2
60) $\overline{70.4}=\frac{2}{3}$ full each stroke.
\qquad
60) $140.8=$ double capacity.
80)2.3466
.02933
2 for leakage, etc.

. 05866

1728
Then: answer is,
3.6 ins. diameter. 46928 $10^{\prime \prime}$ stroke. 80 revolutions.

11732
41062
5866
10)101.36448
.7854)10.136448

$\overline{12.90(3.6}$ diameter of pump.
66) 390
306

calculate the size pump required.
Calculate the size pump for a boiler with three furnaces 3 feet by 5 feet, allowing the consumption of coal to be 15 pounds per square foot of grate surface per hour.

45 square feet of grate surface.
15

225
45
675 lbs . burnt per hour.
10 lbs . water $=1 \mathrm{lb}$. of coal.
1 cubie $\mathrm{ft} .=62.5) 6 \% 50 \mathrm{lbs}$. water evaporated per hour.
60) 108 cubic feet per hour.
70) 1.8 cubic feet per minute.
.0257 cubic feet per revolution. . 1728

2056
514
1799
25%
44.4096 cubic inches per revolution.
\%
88.8192 double capacity for leakage. 2
:Supposed stroke
of pump $=14) 17 \% .6384$ double again for leakage of boiler, pump gear, etc. $.7854) 12.6884$
$\sqrt{1615(4.09}$ diameter of pump. 16
89) 1500

1521

IONS.

RED.
hree furnaces 3 \& coal to be 15 ur.
ce.

al.

or hour.

Iution.
volution.
leakage.
akage of boiler, , etc.

Size pump $4^{\prime \prime}$ diameter, $14^{\prime \prime}$ stroke and 70 revolutions, cut off at half stroke but double capacity taken; so this does not occur in this calculation, that is, the multiplying by 1 and dividing by 2 ; assuming the pump to be only half full each stroke and therefore allow for a capacity of twice that quantity per revolution which brings it to 88.8192 cubic inches, allowance has still to be made for a leaky boiler and pump gear and the additional quantity of water often necessary; and therefore, to be safe, again increase the capacity to $88.8192 \times 2=17 \% .6384$ cubic inches per revolution.

Assuming again a single acting pump making a stroke of say 14 inches, then $177.6384 \div 14=12.6884$ square inches area of pump $\div .7854=\sqrt{ } 16.15=4.09$ inches diameter of pump, 70 revolutions, 14 inches stroke.

This is the method usually employed by candidates in working the examination question No. 11, Part II. It has therefore been worked out continuously without written explanation and is so added to follow this discription of the rule which the student will please see work in examination paper accordingly.

Calculate the size pump for a boiler of a given dimension.
Given a boiler say 12 feet diameter, containing three furnaces three feet, width of fire bars five feet; the grate surface of a boiler would be $3^{\prime} \times 5^{\prime} \times 3^{\prime}=45$ square feet, allowing the consumption of coal to be 15 pounds per square foot grate surface per hour.

675 pounds coal burnt per hour.
Allowing the high evaporative power of 10 pounds of water for one pound of coal, $675 \times 10=6750$ pounds water evaporated per hour, divided by 62.5 pounds per cubic foot $=62.5$) 6750.0 (108 cubic feet per hour.

$$
625
$$

$\cdot \cdot 60) 108$ cubic feet per hour.
Revolutions 70)1.8 cubic feet water per minute.
.0275 cubic feet per revolution. 1728

2056 514
1799
257
44.4096 cubic inches per revolution.

Owing to leakage, stuffing boxes and vapour arising from feed water, then increase the capacity to 88.8192 for the leakage, etc., and double this again for leakage of boiler, defective pump gear and necessary water required for other uses, etc., which will give us 177.6384 , then dividing this by 14, the supposed stroke of pump and by .7854, we get $16.15^{\prime \prime}$, and the square root of this is $4.09^{\prime \prime}$, the diameter of pump.

heating surface of marine bollers.

Ratio of heating surface, 35 square feet to one of grate

Steam room $\frac{1}{2}$ of water room.
Funnel area $\frac{f}{8}$ of grate surface multiplied by
Heating surface =pounds of coal per hour multiplied by 1.3 heating surface per nominal horse-power=16 square feet. Heating surface to be taken into account.
Top of flues ($\frac{1}{2}$), side back and top of back connection (flamo box), back tube plate and tubes:-weight of boilers multiplied by the surface plates per foot and by the thickness in inches and $\div 20=$ weight in cwts.

$$
\frac{\text { Surface in square feet } \times \text { eights }}{20}=\text { Weight in ewts. }
$$

TABLE OF VALUE OF ADDED FRACTION=DECIMALS.

HORSE-POWER SUMS.

Caldulate the horse-power of a steam engine.

A horse-power is equal to 33000 pounds lifted one foot high in one minute, therefore the horse-power of an engine will be the area of the cylinder multiplied by pressure per square inch multiplied by the speed of piston in feet per minute divided by $3: 3000$.
Example.-Diameter of cylinder forty inohes, stroke of piston ten feet, twenty revolutions per minute, pressure of steam per square inch, ${ }^{\text {as }}$ per gauge, thirty pounds; vacuum twenty-six inches, as per mercury gaage. Calculate the horse-power of this engine.

40 inches diameter of cylinder.

1600 square of the cylinder.
.7854
6400
8000
12800
11200
1256.6400 area of cylinder in square inches. 43 pounds steam pressure.

37699200
50265600
54035.5200 pressure per square inch in cylinder. 400 speed of piston per minute.
21614208.0000
$33000) 216142080000(654.976$, or 655 horse-power. 198000

181420 165000

164208
132000
322080 297000

250800
231000
198000
198000
Abbreviated-
$40^{2} \times \cdot{ }^{7} 854 \times 43(30+13) \times 400(10 \times 2 \times 20)$
$33000=655$ horse-power.
Calculate the horse-power of an engine, the diameter of the cylinder being 10 inches, 4 feet stroke, 45 revolutions per minute, pressure of steam 60 pounds per square inch:

10 inches diameter of cylinder.
10
100 square of the cylinder.
.7854
400
500
800
700
78.5400 area of cylinder in square inches. 45 revolutions per minute.
392.7000

3141600
35343000

MANUAL OF ENGINEERS' CALCULATIONS.
3534.3000

2
7068.6000

4 stroke.
282744000
74 lbs. pressure.
$\overline{19790976000}$
$\overline{193000)} \overline{190923056000(63.4032}$ or $63 \frac{1}{2}$ horse-power.. 198000

112305
99000
133056
132000
105600
99000
66000
66000
Second method, using constant multiplier . 0000238:

10
10
100
4
400
45
2000
1600
18000
2
36000

36000
74
144000
252000
2664000
. 0000238
21312000
7992
5328
63.4032000 horse-power.

A short method for calculating the horse-power of an engine:
The short rule for the horse-power of an engine; (of an engine, 5 feet 10 inches being diameter of cylinder, 6 feet stroke, 15 revolutions per minute, 25 pounds pressure per square inch): Square diameter of cylinder, multiply by stroke in feet, double revolutions and the pressure, and by the constant multiplier, . 0000238 which is $.0000238=!.9854$ $\div 33000$). Then

70 diameter of cylinder in inches.

29400
30 double revolution.

882000

25 lbs. pressure per square inch.

$$
4410000
$$

$$
1764000
$$

22050000 .0000238 constant multiplier:

176400000
6615
4410
524.7900000 or 5244^{3} horse-power of the engine.

Formula: $\mathrm{D}^{2} \times \mathrm{S} \times 2 \mathrm{R} \times \mathrm{P} \times \mathrm{C}$.
$\mathrm{D}^{2}=$ Square the diameter of cylinder.
$S=$ Stroke in feet.
$2 R=$ Double revolutions.
$\mathbf{P}=$ Total pressure per square inch in pounds.
$\mathrm{C}=$ Constant multiplier for horse-power which is .0000238 .

Calculate the horse-power of an engine forty inches diameter of cylinder, eight feet stroke, twenty revolutions per minute, forty-two pounds pressure per square inch.

40 inches diameter of cylinder. 40
1600 square of cylinder in inches. 8 feet stroke.
12800 40 double revolutions per minute.
512000 42 lbs . pressure per square inch.
$\begin{aligned} & 1024000 \\ & 2048000 \end{aligned}$
$\underset{.0000238}{21504000}$ constant multiplier.
$\begin{aligned} & 172032000 \\ & 64512 \\ & 43008 \end{aligned}$
511.7952000 or 5118 horee pewer.

ons.
Itiplier.
ches diameter ns per minute,

MANUAL OF ENGINEERS' CALCULATIONS. 231
Old method: 40 inches diameter of cylinder. 40

1600
.7854
6400
8000
12800
11200
1256.6400 area of cylinder. 8 feet stroke.

1005331200
42
201062400
4021248100
4222310400 40
33000)16889241.6000(511.7952, or $511 \frac{3}{4}$ horse-pover. 165000

38924
33000
59241
$33(100$
262416
231000
314160
297000
171600
165000
66000
66000

Calculate the horse-power of a componnd engine; the diameter of the high pressure cylinder fifty-nine inches, stroke forty-eight inches, mean pressure 33.3 pounds per square inch, and 53.7 revolutions per minute; low pressure cylinder 10.7 inches diameter, and 12.75 pounds mean pressure per square inch, forty-eight inches stroke.

$$
\begin{array}{lc}
\text { W.P., } & 59 \times 59 \times .7854 \times 33.3 \times 8 \times 53.7 \div 33000=1185 \\
\text { LP., } & 10^{7} \times 107 \times .7854 \times 12.75 \times 53.7 \times 8 \div 33000=1492
\end{array}
$$

Total indicated horse-power 2684
Calculate the horse-power of an engine forty inches diameter of cylinder, ten feet stroke, twenty revolutions per minute, twenty-five pounds steam pressure, and thirteen pounds vacuum.

$$
40 \times 40 \times .7854 \times 38 \times 10 \times 2 \times 20 \div 33000=578 \text { horse-power. }
$$

Rule for calculating horse-power of an engine: Square the diameter of the cylinder in inches, and get its area by multiplying this square by .7854, then multiply the area by the stroke in feet, the pressure, and double the revolutions, and divide by 33000 .

Short rule, using constant. 0000238 . Square the diameter of cylinder in inches, multiply this by stroke in feet, double the revolutions, and the pressure per square inch, in pounds, and by the constant .0000238 .

Formula: $\quad \mathrm{D}^{2} \times \mathrm{S} \times 2 \mathrm{R} \times \mathrm{P} \times \mathrm{C}=$ horse-power.

Calculate the mean pressure of an engine 107 inches diameter of cylinder, 12.75 pounds mean pressure per square inch, 53.7 revolutions per minute, four feet stroke.

107 inches diameter of cylinder.
107
749
'1070
11449

rONS.

d engine ; the ie inches, stroke per square inch, e cylinder 10.7 sure per square
I. H. P. $-33000=1185$ $\cdot 33000=1492$
e-power 2684
nches diameter 18 per minute, irteen pounds
horse-power.
Square the sa by multiplya by the stroke ns, and divide

3 the diameter n feet, double h, in pounds,
power.
3. 107 inches ire per square ke.

MANUAL OF ENGINEERS' CALCULATIONS. 233

11449 square of cylinder. .'78อั4

45796
57245
91592
80143
89920446 area of cylinder.
12.75 lbs. mean pressure per square inch.

- 449602230

6:9443122
179840892
89920446
114648.568650
53.7 revolutions per minute.

802539980550
343945705950
573242843250
6156628.1364050
_ 8 feet stroke.
i33000) $492 \overline{2} 3025.0912400\left(1492.516\right.$ or $149 \cdot \frac{1}{2}$ horse-power. 33000

162530
132000
305302
297000
$830 \div 5$ 66000

170250
165000
52500
33000
195000
198000

Formula :

$$
33000
$$

$\mathrm{UP}^{12}=$ Diameter of cylinder.

 MP=-Mean pressure.Renthevolutions.
$25=$ Double the stroke.
Same sum, by shere methou, using constant .0000238.

57245
80143
$2: 898$ 11449

14597475
107.4 donble revolutions.

$$
583899900
$$

102188*325
145974750
15677688150
4 ft . stroke.
62710752660
.0000238 constant multiplier.
50168520800
1881322568
1254:215052
1492.5158908800 horse-power.

Calculate the horse-power of an engine 59 inches diameta.
of cylinder, 33.3 pounds mean pressure, 4 feet stroke and 53.7 revolutions per minute:

59 diameter of cylinder in inches. 59
stant . 0000233
cylinder.
orse-power.

3481 square of cylinder in inches. . 7854

2733.9774 area of cylinder in inches.

 33.3 mean pressuré.91041.44742 8 ft . stroke donbled.
728331.51936 53.7 revolutions per minute.
$33000\left\{\begin{array}{l}3) \sqrt{3911405.811632} \\ 1 1 \longdiv { 1 3 0 3 8 0 . 1 }\end{array}\right.$
1185 horse power of engine.
Or, $59 \times 59 \times 33.3 \times 4^{2} \times 10 \% .4 \times .0000238=1185$ H P. Example H P Engine:
Cylinder 40 inches diameter, 10 feet stroke making 20 revolutions per minute, steam pressure 30 pounds per square inch, vacuum 26 inches or 13 pounds.

Calculation:
40 inches.
40
1600
.7854
6400
8000.

12800
11200
1256.6400 square inches in piston.

Steam 30
Vacuum 13
Total pressure 43

1256 square inches. 43 pressure. $\overline{3768}$

Making 654 and a fraction horse-power. In this example the steam following full stroke and the engine exerts its greatest power.

NOTES ON THE SLIDE VALVE.

The area of port opening for any slide valre should be such that the velocity of the steam in passing through it will not exceed 100 feet per second. The accompanying table can be ased in determining the area:

Speed of piston in feet per minute: $100.200,300,400,500$
Port area $=$ piston area multiplied by $02.04 .06 \quad .07$. 09

600.	700.	800.	900.	1000.	1100.	1200.
.1	.12	.14	.05	.17	.19	.2

Thus for an engine with a cylinder 40 inches diameter, 4 feet stroke, 50 revolutions per minute, the port area should not be less than $1256.6 \times .07=88$ square inches; and if the length of the port is equal to the diameter of the cylinder, its width is $88 \div 402.2$ inches. The width of opening given by the motion of the valve is frequently greater than the width of port, so that the bridge between steam and exhaust ports should be wide enough to prevent a leak into exhaust due to - over travel.

RuLe.-Minimum width of bridge equals width of steam port $+4^{\prime \prime}$-width of steam port.

Width of exhaust port equals width of steam port+travel of valve $\div 2$-width of bridge.

In this example ngine exerts its

LVE.

e should be such ough it will not ing table can be
, 300, 400, 500 .06 .07 .09
00.1200 .

19 . 2
hes diameter, 4 oort area should ches; and if the the cylinder, its oening given by than the width d exhaust ports exhaust due to
width of steam am port+travel

DRAUGHT OF BOILER FURNACES.

The question frequently arises, "What is the proper way toregulate the draught of a steam boiler furnace-by opening and elosing the ashpit and furnace doors, or by means of a damper in the flue leading from boiler to chimney?"
There is some difference of opinion and practice regarding this matter, which probably arises from differences or peculiarities in the constructive details of varions boiler plants, which might make it desirable or even neeessary to regulate one way in one case and the other way in another case.
Our own preference is decidedly in favour of regulating thedraught by means of a damper placed in the uptake or pipe leading from the front end of the boiler, smoke box, or front connection to the main flue. This uptake should be made of wrought iron, and rivetted securely to the boiler shell, and the damper should be fitted as close to its lower end or the tube opeuings as possible, and be provided with a convenient. hand attachment whereby it may be set at any desired point and secured there.
There is much less liability of burning out the grates in a boiler furnace when the draught is regulatel by a damperthan there is when it is regulated by the ashpit door. For, let the ashpit door be closed tightly, and all circulation of airin the ashpit is stopped; there is nothing to prevent the heat from the layer of incandescent fuel being transmitted down-ward and overheating the grates, and overheating means warping, twisting, and cracking of the bars, and we have known them to be melted from this cause.
When, on the contrary, the ashpit doors are fully open, there is nothing to prevent the free circulation of air throughout the pit, and the bars are kept cool. We recommend omitting altogether doors to the ashpit, and making theopening through frout nearly the full width of the grate, and
muking a water cavity or trough at least six inches deep in the bottom of the ashpit. This should be kept full of water, :as it has a great effect upon the temperature below the grates.

For ease and certainty of regulation, a damper placed in the uptake, as described above, possesses great and obvious advantages over any manipulation of ashpit or furnace doors. Any one who has had charge of boilers fitted up in this manner can readily appreciate the truth of this statement.

There is, also, in our opinion, decidedly less loss of heat by infiltration of air through cracks in the setting walls when the draught is governed by a damper in flue than there is when the doors are used for same purpose; for, when ashpit doors are tigntly closed, the draught of the chimney will draw air in through every crack and crevice in the walls, and this air entering the furnace at all points has a cooling tendency which it is most desirable to aroid.

The damper should always be so fitted and adapted to the boiler that, when it is tightly closed as far as it can be by the appuratus provided for operating it, it will allow sufficient dranght to just keep the fires going, and carry off any coal gas which may be generated in the furnace.

The foregoing relates more particularly to boilers used for power purposes, and those plants of such size as to require the constant supervision of an engineer or fireman. With many of the small house heating boilers where the draught is automatically regulated, it is deemed expedient by most steam fitters to regulate the draught by the ashpit door.

THERMOMETERS.

To change degrees of Fahr. to degrees of Cent.: If above freezing point, from the degree of Fahr., subtract thirty-two; multiply the remainder by five; divide the product by nine. If below freezing point, first add thirty-two; then multiply by five and divide by nine.

To change degrees of Cent. to degrees of Fahr.: If above freezing point, multiply by nine and divide by five, and add thirty-two. If below freezing point, multiply by nine, divide by five and subtract thirty-two. Or, donble the degrees Cent.: deduct ten per cent. and add thirty-two, when above freezing point; when below freezing point, proceed as above and deduct from thirty-twe.
x inches deep in ept full of water, ature below the
per placed in the at and obvious or furnace doors. p in this manner nent.
ss loss of heat by r walls when the n there is when en ashpit doors ey will draw air mlls, and this air soling tendency
adapted to the it can be by the allow sufficient ry off any coal
boilers used for ize as to require fireman. With the draught is t by most steam jor.
ent.: If above act thirty-two; oduct by nine. en multiply by
ahr.: If above y five, and add by nine, divide degrees Oent. : above freezing ove and deduct

HOW SMOKE IS FORMED.

The following are the views of a correspondent in the London "Iron" on this subject:
"It is well known to every one that when fresh coals are placed on a fire in an open fire-grate, smoke arises immediately and the cause of this smoke is not very far to seek, as it will be easily understood that before the fresh coals were put upon the fire within the grate, the glowing coals radiated their heat and warmed the air above, and thereby enabled tho rising gases at once to combine with the warmed air to produce combustion; but when the fresh coals are placed upon the fire they absorb the heat and the air above remains cold.
"By gases, I mean the gases arising from coals while on or near a fire; and it may not be known to every one that we do not burn coals, oils, tallow or wood, but only the gases arising therefrom. I can make this clear by the lighting of a candle, which will afford all the information required. By lighting the candle fire is set to the wick, which by its warmth melts a small quantity of tallow below; and this melted tallow is directly absorbed by the capillary tubes of the wick, and thereby so very finely and thinly distributed that the burning wick has heat enough to be absorbed by the small quantity of dissolved tallow to form the same into gases, and these gases burning, combined with the oxygen in the atmosphere, give the light of the candle. A similar process is going on in all other materials; but coal contains already about seventeen per cent. in weight of gases, which liberate themselves as soon as they get a little warm. The smaller the coal, the more rapidly will the gases be liberated, so that in many cases only part of the gases are consumed.
"To return to the subject, the fact is that the volatile rising gases from the coal cannot combine with the cold air for combustion, still a combination does take place in the following way: The cold air in the act of combination, absorbs a part of the warmth of the rising gases, which they cannot spare,
and therefore must condense, so much so that all particles areformed, which aggregate, and are called smoke, and, when collected, produce soot; but so long as theso particles and gases are floating they cannot burn or produce combustion, as they are surrounded by a thin film of carbonic acid. It is only when collected and the acid is driven off that they burn rapidly.
"I have now shown that cold air is the canse of smoke, which may be greatly reduced by care. In the open fire-grate the existing fire ought to be drawn to the front of the grate and the fresh coal placed behind or on the buck of the fire. The fire in the front will then burn more rapidly, warm the air above, and prepare the rising gases for combustion. In this way smoke is diminished, as the gases from the coals atthe back rise much mure slowly than when placed upon the fire and the air partly warmed. The same process may be applied to kitcheners, thereby almost entirely preventing smoke after the first lighting. For stoves and boilers, warm air may be produced for the entire combustion of all gases."

SUALE IN BOILERS.

In the experience of the steam user there is probably no one cause more prolific of danger or more wasteful of steam power than scale in boilers. The great saving in fuel and time is evident when it is known that a scale one-fourth inch thick requires an extra expenditure of sixty per cent. more fuel. Scientific experiments show the conducting power of scales as compared with iron is as one to 35.5 ; consequently, to raise water in a boiler to any given heat, the fire surface of the boiler must be heated to a temperature in accordance with the thickness of the scale. To raise steam to a pressure of ninety pounds, the water must be heated to 320 degrees Fahrenheit. In a clisan boiler of one-fourth inch iron this may be done by heating the external surface of the shell to about 325 degrees. If one-half inch of scale intervenes between the shell and the water, such is the non-conducting power that it will be necessary to heat the fire surface to about 700 degrees, almost red heat. This excessive heat causes the oxidization of the metal, and it becomes granular and brittle, and is liable to bulge, crack, or otherwise give way to the internal pressure, with the dangerous results which follow such conditions.

After long and exhaustive experiments, looking to the destruction and prevention of scale, the Ohio Scale Solvent
cions.
; all particles are aoke, and, when srticles and gases bustion, as they cid. It is only that they burn
cause of smoke, o open fire-grate ont of the grate aack of the fire. pidly, warm the ombustion. In om the coals at placed upon the process may be ely preventing d boilers, warm n of all gases."
mandal of engineers' calculations.
Co., of 29 Glen Building, Cincinnati, Ohio, now confidently offer their scale solvent with the assurance that it has no remove all scales that have iron, and that it will entirely completely resist the forme formed in the boilers, and will the mineral salts in the feed wation of any new scale, by holding it can be blown out through ther in a sludgy sediment until With this preparation the difficulty blow cock or otherwise. of wells or from other sources is increased safety in the use of is entirely overcome, and the the consumption of fuel is assured thas great economy in cost of repairs and extra time ared, thus saving the additional also saving valuable time of employes fin cleaning out, and This solvent is a dry powder wloyes frequently lost by delay. exposure to the weather. It is mich will not deteriorate by of warm water and administered mixed thoroughly in a bucket through the feed water pump, or at the man-hole, safety-valve, and costs only from two to five any other convenient manner,

SUPERHEATED STEAM.

It seems a little remarkable, says the London "Engineer," that in the pursuit of economy of fuel, engineers have abandoned superheating. Years ago its value was well understood, and the superheater was found in almost all ships pretending to have good engines and boilers; but the boilers which in the present day are fitted with true superheaters may be counted almost on the fingers. The reason why superheating was given up is to be found in the fact that the thing was overdone. We have heard of instances in which the steam was so much heated that it would scorch paper, and did carbonize and ruin the piston-rod packings. No amonnt of saving in fuel could compensate for this. Another objection to superheating lay in the fact that it appeared to exert a species of solvent effect on the cast iron of port faces, the edges of the ports becoming in time so brittle and soft that they could be dug out with a pen-knife. We have reason to think, however, that, although superheating was a failnre ten or fifteen years ago, it need not be a failure now, the conditions under which it can be employed being much more favorable than they used to be. What we are about to say on the subject is not intended to apply solely to marine engines, but to all steam engines which are intended to be economical.

The conditions of application are more favorable than they have been; first, because more is known about superheating than was known, and there is consequently less chance of it being overdone; and, secondly, the use of very high pressures has led to the production of better castings than those previously made. Again, asbestos and metallic packings are now available, which were unknown before; and, lastly, mineral oils can be used as lubricants instead of the tallow which alone was at the service of the engineer as a cylinder greaser. Twenty years ago, when Mr. Adams first tried to use very high pressures- 150 pounds to 160 pounds-on the North London Railway, great tronble was experienced from the
cutting of the cylinders. The high temperature of the steam, 370°, volatized or carbonized the oil, and the metal appeared to be attacked in much the same way as though superheated steam was used; but after a few trials a mixture of irons was difficulty, and system of casting adopted which got over the without any inconsures of 160 pomnds are now freely used temperature, then it follows If we assume that 350° is a safe with a temperature of 328° mighteam of eighty-five pourds superheat imparted to it with might have 25° or thereabout of may go further than this, because the st danger. Indeed, we cooled down the moment it cause the steam is certain to be degree of superheat would enters a cylinder, so that a greater derived from the use of a supe no harm. The advantage to be place, it will send dry steam, not a misture told. In the first into the engine; and, secondly, mixture of steam and wnter, prevent cylinder condensation. understand the advantage to be Before any of our readers can they must realize the loss cansederived in this way, however, rather by the presence of moisture by the use of wet steam, or

The great foe to economy of f in a cylinder. If perfectly dry steam could of fuel is cylinder condensation. be rednced to a minimum be used this condensation would gas, conducts heat very slowly because dry steam, like any other were always dry, then the cy. If the walls of a cylinder would be hardly felt, for reasons in a few words. If a surface is which may be easily explained vacuum, the moisture will evaporated and submitted to a heat necessary for evaporation evaporate freely, taking up the rests. If the vapor is continnally the surface on which it pump of a conderising engine thally drawn off, as by the air of heat will be intensified, as me cvaporation and absorption experiment. Sulphuric acid may be easily shown by a simple some be placed in a saucer under themely greedy of water; if air pump, and a watch glass contain reoviver of an ordinary it, also under the recciver, as soon ang water is placed near the pressure reduced vapor, as soon as tre pump is worked and immediately seized by the will be şiven off by the water and carried off in this way that acid; and so much heat will be the watch glass rests on a the water will quickly be frozen if from which it cannot get heat. wood or other non-conductor place at every stroke in a steam Just the same action takes loss will be measured for ons thing byine, and the amount of in the cylinder.
Ordinary satnrated stean is π very differenti thing from a
permanert gas. It is in what chemists call the critical condition. Its molecules are in unstable equilibrium, and the least deprivation of heat causes condensation. When steam is superheated it acquires different properties. Aniong others it is much more mobile. Mr. D. K. Clark has pointed out in his treatise on the locomotive, that engines with outside cylinders always have more back pressure than engines with inside cylinders, because, the outside cylinder being cooler than the inside cylinder, the steam is wetter and the exhaust more sluggish. Smaller ports and passages will do with gaseous than will suffice with saturated steam. It must not be forgotten that steam is considerably increased in volume by superheating. The late Dr. Siemens found that steam of 212°, superheated, but maintained at atmospheric pressure, augmented rapidly in volume until the temperature rose to 220°, and less rapidly up to 230°, or 18° above saturation point; from thence it behaved like a permanent gas. Ordinary saturated steam may be made gaseous by superheating it from 10° to 20°. According to Regnault, the total heat of gascous steam is about $2 \frac{1}{2}$ per cent. greater than that of saturated steam.

It is well known to most engineers in the present day that a portion of the heat contained in steam is converted into work, so that even in a perfect non-conducting cylinder, if such a thing could be had, some steam must be condensed. Now it so happens that working steam will always give up its superheat before anything else, and therefore it is quite possible, theoretically, to work an engine without any cylinder condensation whatever, the whole of the heat converted into work being derived from the superheat. Such an engine would work with maximium economy. Let us assume that . 3 . pound of steam per minute developes one horse-power in a given engine; the total quantity of heat in it will be, let us say $+.3=354.3$ units, of which we may suppose that 324 are due to the fuel, the temperature of the feed water being 60°. A horse-power represents only 42.74 units per minute. The specific heat of saturated steam is .305, that of gaseous steam is .475 , under constant pressure. If we take the latter figure, then it would be necessary to superheat $\frac{1}{3}$ pound of steam by 90°. If its pressure were eighty-five pounds, its temperature while saturated would be 328°, and $328+90=418$, which would be too high for ordinary use, corresponding as it would to a pressure of about 420 pounds on the square inch absolute. The whole of the work would, however, come out of the superheat, and if the cylinder had a very thin liner, and was.
the critical conbrium, and the

When steam Among others. pas pointed out es with outside n engines with er being coolernd the exhaust will do with 1. It must not ased in volume 1 that steam of heric pressure, prature rose to turation point; gas. Ordinary heating it from heat of gaseous at of saturated
resent day that converted into ing cylinder, if be condensed. rays give up its re it is quite ut any cylinder converted into uch an engine assume that 3 . rse-power in a 11 be, let us say lat 324 are due being 60°. A minute. The gaseous steam ie latter figure, d of steam by ts temperature 8 , which would it would to a inch absolute. ne out of the liner, and was.
jacketed with superheated steam, it is more than probable that an extreme degree of economy would be attained. Although we do not assert that it would be desirable to push superheating so far as this, we would earnestly impress upon steam users the importance of adopting some arrangement by which dry steam may be admitted to the cylinders of the engines; even a steam-trap fitted on the stean pipe near the engine will be useful. It is not as generally known as it ought to be that all Lancashire and Cornish locomotive boilers supply steam which contains from five to eight per cent. of moisture in the shape of insensible priming. Some of this can be "knocked out" of steam by the use of baffle plates; but in all cases where it is possible some arrangement for drying the steam thoroughly should be adopted.

WHAT THE BEST INFORMED THINK. ABOUT BOILER EXPLOSIONS.

The following, by H. Walther-Meunier, is from the "Bulletin de la Societe Industrielle de Mulhouse," 1885, p. 113: "The author, in response to numerous inquiries, has studied the question of the possibility of boiler explosions caused by the superheating of water in the boiler-that is, the heating of water to a temperature higher than that due to the pressure. He notices the results of various laboratory experiments on the subject, which lead to the following conclusions: 'That the state of absolute repose is indispensable for the production of the phenomenon of superheat of water; and that the presence of air or other gas, even in indefinitely small proportions, maintains ebullition under normal conditions. He finds from the official statistics of boiler explosions for six years 187\%-82, in England, France, and Germany, that the proportion of explosions from unknown causes were eight in one hundred and fifty for England, thirteen in one hundred and fourteen for France, and three in one hundred for Germany. These average about six and-a-half per cent. But, on closer examination, the proportion of totally unknown causes for France is reduced to three per cent. For Germany there is no cause classed as totally unknown; and for England only one per cent., making a total average of 1.1 per cent. of totally unknown causes. This percentage is easily explained, in the face of the difficult and laborious work of investigation after an accident, without needing to ascribe its origin to the existence of superheated water. The author maintains that: in a
steam boiler, whether at work or at rest, there is continual agitation and circulation arising from differences of temperature; and that superheating of water in the boiler is impossible. Besides, the presence of the smallest quantity of air is sufficient to impede or prevent superheating of water-a condition which is always fulfilled in practice, and which is clearly confirmed by the fact noticed by the author, that, at the temperature of diseharge of condensing water, eighty-six degrees Fahrenheit, the tension of the vapor is 0.041 atmosphere, whilst there is never less than 0.12 atmosphere of back pressure, making the difference 0.079 atmosphere, which is only explained by the pressure of air.
"After a consideration of the conditions of boilers of different types, the author concludes that all boiler explosions inay be explained by bad materials, bad construction, bad design, or want of care and precaution, or too much pressure for the strength of the boiler."

INDICATOR.

A small instrument, called the indicator, is used by engineers to ascertain the pressure of steam, etc., at each point of the stroke of the engine, by which they get the actual power and form of the figure of the diagram. The engineer, from knowledge and experience, concludes causes by its variations, the errors and defects of his engine, and applies the proper remedies, and thus this ability is one of the highest wattanments of an engineer. The indicator is a small piston working in a cylinder with considerable clearance, carrying a pencil at the end of its piston-rod. One end of the indicator cylinder is placed in communication $r: i t h$ one of the ends of etc., by pipe of which it is desired to know the horsc-power, cation with the air by, and the other end is in free communiwhich the piston-rod means of the loose stuffing-box through a hole in the cylinder of indicator moves, and by means of into the main cylinder of the endicator, so that steam going bottom side of ihe indicator engine a part is admitted to the the atmospheric pressure. The mover on the other side is regulated by a spiral spring attached to the the piston is indicator at one end and to the piston of the cover of the other; as the steam pressure is piston of the indicator at the so the spring is compressed held on the indicator cyiinder in or less. A piece of paper is the various indications of prer in front of the pencil to register requires a treatise specially devoted Each make of instrument ment of parts, principle, and manne to it, describing arrangeetc., and the student will do well to of fixing and operating, is using; most of the makers wow to study the instroment he of their indicator, also gis now issuc a pamphlet deserin ve explanation of everythinging rules, diagrams, and at full descrintion of the Crosby pertaining to its use. The following
on that subject by George H. Crosby, the inventor of the Improved Parallel Motion Steam Engine Indicutor:
"The principle and action of indicators are so simple, and to most practical engineers now so well understood, that it will only be necessary to give the following cut and description of the parts of this instrument to readily appreciate the sidvantages aecruing from its use."

The general principles of indicators are the same, though there are two classes; those where the piston travels with the pencil, and those where the pencil moves a greater distance than the piston of the indicator; the latter system is generally given the preference, but none of them are yet perfect, though many valuable new inventions have been made, and contrivances added to the instrument of late years and better results are being attained every year, still some difficulty exists in procuring good diagrams from high speed engines, even with special indicators for this class of machinery.
The best form of aiogram for an expansion engine is that which comes neare the true curve, which is called the hyperbolic or Nays lix! mirve of the cut off, showing that the valve correctly set, viave and piston tight, with right clearance, etc.; but in mest cases in practice it will fall short of the theoretical curve, being a little below; if much below it is cansed by a leak in the steam valve. An experienced engineer can tell at a glance whether an engine is in good working order by seeing its card. By engineers comparing their cards and the practical results under different arrangement of their engines, much uscful knowledge may be obtained regarding their special style of engine, not to be readily obtained or even found in books; but for the gencral rules, cards, information and finding out of faults of the diagrams, I would refer the student to the works of Read, Ainsley and Roper, also Appleton's "Applied Mcchanics," which works are now generally to be found in the libraries of every student of marine engineering, but in this and other important subjects where the students have to purchase, I would always recommend them to get a book specially devoted to the one subject and more especially such a subject as the indicator; the student will find Professor Chas. T. Porter's work, "The Steam Engine Indicator," to cover the most important part, or N. P. Burgh's 'Indicator Diagram Practically Considered." It is now universally admitted that the steam engine indicator is a most valuable appendage to the steam engine, and when successfully used and intelligently understood, its value can hardly be too highly estimated.

TIONS.
inventor of the icator:
re so simple, and derstood, that it t and description appreciate the
re same, though travels with the greater distunce stom is generally perfect, though de, and contrivId better results iculty exists in rines, even with

1 engine is that is called the rowing that the ith right clearill fall short o: nuch below it is ienced engineer good working :ing their cards yement of their ined regarding btained or even ls, information ould refer the 1 Roper, also orks are now ary student of ortant subjects always recomhe one subject indicator; the work, "The aportant part, y Considered." gine indicator ine, and when its value can

The following riles and diagrams are inserted so the student may have a slight general idea of the indicator. especially so far as is required for him to successfully pass the looard ne Steamboat Inspection examination on that subject:

Rule for calculating the mean pressure on t
thronghont the stroke from the indicator diagram the pistuas

1. Divide the diagram in the direction diagram.
ten equal parts by drawing nine ordinates, of its length into cular to the atmospheric line, at equal dis, or lines, perpendi-
2. With the scale to whe, at equal distances.
measure between the spaces the the indicator is constructed, line to the upper outline until this crosses the forn (or the steam side) of the diagram process for the area ber, if it does so. Next, repeat the expansion curve, after it has the atmospheric line, or the outline diagram.
3. Take the
then of the vacuum of the measurements of the steam side,
4. Add vacuum to se, and divide by ten in each case.
sure for each part of the stroke.
In finding the mean effective.
not at all necessary to take pressure of the diagram, it is separately. The usual and most eam and vacuum effects expeditious mode is to
(a) Take measurements at once completely across the diagram, that is, measure between the space from the vacuum line to the steam line; note these scales distance down.
(b) Add the whole together and take the mean by dividing by ten; the result is the total mean pressure.
In the case of a double diagram, or diagrams from the top and bottom of cylinder combined, proceed as directed in Nos. 2,3 and 4, or as directed in (a) and (b), then
5. Lastly, add top and bottom together, and divide by two; wheresult is the average of both, or the mean pressure for the whole double stroke.
There is a simple plan by which a person with but little knowledge of the method of working indicator cards can take the separate value of the steam and vacuum pres"lre from an indicator diagram; it is one often employed in the sterm department of the British Admiralty:
The atmospheric line is taken as equal to fifteen pounds, and from this line, as a point of dopartare, fifteen other lines are marked by the scale, thus coming below the vacuum line of the engine up to the true vacuum line of a perfect exhaust. The lowest line is then taken as the zero or datum line, and

IMAGE EVALUATION TEST TARGET (MT-3)

Photographic Sciences
Corporation

the actual pressure (not the relative pressure) as compared with the atmosphere of both the steam and vacuum line can thus be obtained. The difference between the two pressuies. gives the gross or actual pressure on the piston.

THE PRINCIPAL FUELS USED FOR STEAMERS IN CANADA.

The principal fuels used in Canada for stear --making are coal and wood. At one time wood was used to a great extent, but of late years coal has superseded it in many steamers, and on small steamboats on inland lakes and the upper part of rivers for high-pressure steamer or tugboats employed at rafting. Dry bituminous or soft coal is mostly used, and is found and mined quite extensively in the Maritime Provincos at Pictou, Sydney, Lingan, Springhill, Joggins, Newcastle, also at Vancouver Island, B. C., and in the great Saskatchewan Valley are cretaceous, and toward the north, along the McKenzie river, a brown lignite kind of coal is abundant.

The "Gororia" mine in Cape Breton gives the following. analysis:

	PER CENT:
Volatile matter.	24. 08
Fixed carbon	. 60.45
Ash....	7.25
Sulphur.	. 3.42
Moisture..	. 1.80

Brown, in his work on the coal fields of Cape Breton, says: "Notwithstanding the large quantity of ash in this coal it is much esteemed for making stcam." The coal found at Newcastle, New Brunswick, is not regnlarly mined to any extent, but is prized for use by blacksmiths.
The following analysis of the "O'Leary" seam, at Newcastle, N. B., is by a Glasgow, Scotland, chemist:
re) as compared acuum line can le two pressures. on.
ear :-making are o a great extent, 1y steamers, and e upper part of ts employed at tly used, and is itime Provincas rins, Newcastle, at Suskatchewan ith, along the is abundant. is the following.

PER CENT:
27.08
60.45
7.25
3.42
1.80
100.00
Volatile mattersCoke $\{$ Fixed carbon32.12
\{ Ash 56.44
Sulphu: 6.70
Moisture 4.1064

$$
100.00
$$

The following is an English analysis of Vancouver Island coal, but no special mine is mentioned:

Carbon	PER Cent.
Hydrogen	. 66.93
Nitrogen.	. 5.32
Sulphur.	- 1.02
Oxygen.	. 2.20
Ash..	(8.70
	100.00

A good deal of English coal is used at the seaports of Canada, as vessels bring it instead of ballast, and American hard coal is commencing to work itself into use everywhere, on account of its steaming qualities and cleanliness, especially for summer passenger boats and pleasure excursion steamers. Wood, when newly felled, contains a proportion of moisture which varies very much in different kinds and specimens, ranging from thirty to fifty per cent., but generally being about forty per cent. Perfectly dry wood contains fifty per cent. of carbon, the remainder consisting either of ouygen and hydrogen or water. The coniferous family (spruce, pine, etc.), contains a small quantity of turpentine, which is a hydrocarbon. The total heat of combustion in wood is about the same, being due to the fifty per cent. of carbon. As a relative example of the equivalent value of wood and coal the aecount of the amount of vegetable matter or vegetation in coal may be. interesting. Wood affords in general abont twenty per cent. and coal eighty per cent. of charcoal. Neglecting the oxygen and hydrogen, therefore, it must have required four tons of wood to yield the charcoal, which we find in one ton of coal. Let us, then, suppose a forest composed of trees eighty feet high, that the trunk of each tree contained eighty cubic feet,
and the branches forty, making 120: the weight of such a tree, at 700 specific gravity, will be two and-a-quarter tons; and allowing 130 tons to an acre, we have 300 tons on that space. Supposing that which ialls annually, leaves and wood, to be equal to one-thirtcenth, we have ten tons of wood annually from an acre, which yicids two tons of charcoai; and this charcoal, with the addition of bituminous matter called bitumen, forms two and-c-half tons of coal. Now a cubic yard of coal weighs almost exactly one ton; and a bed of coal one acre in extent, and three feet thick, will contain 4,840 tons. It follrws, therefore, that one acre of coal is equal to the produce of 1,940 arres (i. e., 4,840 divided by two and-ahalf) of forest; or if the wood all grew on the spot where its remsins exist, the coal bed three feet thick and one acre in extent must be the growth of 1,940 years. Even if we suppose the vegetation like that of a tropical climate, to be twice as rapid as I have assumed, we shall still require about 1,000 years to form a bed of coal one yard thick, and, as an example of a coal field for the thirty-six yards of coal in a coal field a period of 36,000 years.

Secing that coal is the most valuable of all the treasures the earth has preserved for us. therefore no apology is needed for assigning so many articles to its consideration in this work. We have seen that it is matter which owes its existence i vegetable growth, and that, buried beneath vast accumulation. of shatified deposits, this vegetable matter has undergone, in the lapse of agez, a process called bitumensation, a species of metamorphism which has generally obliterated all traces of vegetable construction in the coal. The stored-up sunlight that produced the growth of the forest that produced the material coal again gives out light and heat to the world after many ages.

TIONS.
weight of suck a d-a-quarter tons; 300 tons on that leaves and wood, en tons of wood of charcoai; and us matter called 1. Now a cubic and a bed of coal ill contain 4,840 coal is equal to ed by two and-ae spot where its k and one acre rs. Even if we al climate, to be Il require about hick, and, as an 3 of coal in a coal
the treasures the gy is needed for n in this work. its existence i it accumnlation. is undergone, in ion, a species of ed all traces of red-up sunlight t produced the t to the world

MANUAL OF gNGINEERS' CALCUIATIONS.
253

NOTES ON THE SOREW PROPELLER.

The screw propeller has many different forms and members: of blades, and has been divided into classes named from inventor, form or number of the blades and their shape, but they may all be roughly classed as 'right-handed 'and 'lefthanded.'
A right-handed propeller is a propeller whose blades form part of a right-handed screw of a certain pitch, revolving from port to starboard. A left-handed propeller is a propeller whose blades form part of a left-handed screw, and it revolves. from starboard to port of the steamer.

A screw of increasing pitch is not one of uniform pitch, but onn that the pitch increases from the leading edge to the following edge of the blade, or from the centre to the circumference, or buth; a screw with a uniform pitch being one in which the pitch is the distance between the threads which is constant.

Engine makers generally fit a right and a left-handed propeller to a twin screw steamer, as it is advisable that the crank should revolve in the same direction as regard the cylinders, one on each side of steamer.
The slip of a screw propeller is the difference between the actual speed of the slip and the speed of the screw, or in otherwords, it is the amount of the work lost from the screw revolving in water: a yielding substance. Its amount is expressed in figures as so much per cent. of the speed due to25 feet pitch, 50 revelut number of revolutions. A screw speed ($50 \times 60 \times 25 \div 6080$) equals 1.3 knots slip, which would bpose actual speed 11 knots find the progression of the serew be 10.6 per ceut. slip. To. following rule may be used:
(1) Multiply the pitch of propeller by the number of revolutions per minute and this product by sixty; this last result.
divided by 6080 is the progression of propeller per hour in knots.
(2) Take the amount of slip per cent. from 100; then say, as 100 is to remainder, just found, so is rate of progression of propeller (1) to the rate of the slip.

The rule to find the required number of revolutions it must take to advance at a given rate, viz.:
(1) Find the number of feet in the knots per hour by multiplying the knots by 6080 feet.
(2) Divide the product (1) by the pitch of the screw or distance moved in one revolution. The quotient is the number of revolutions required.

NOTES ON THE PADDLE-WHEEL.

The common radial paddle-wheel has the "floats" rigidly fixed on the arms; with cast centres; arms of wrought iron; bolts with one end turned back to grip the back of arm, the other secured with a nut and washer. Some paddle-wheels are made with a few cast iron floats for the purpose of counterbalancing the weight of the moving parts of the engine. The metal float is placed so that when the centre of the weight is at the bottom of the wheel, the crank has a slight lead for the downward stroke. A common radial paddlewheel differs from a feathering-wheel, in having floats fixed to the arm with their face parallel to the centre of the wheel, while the feathering paddle-wheel has its floats to oscillate, or move on the centre, and are so regulated by an eccentric that their faces, while immersed, are nearly at right angles to the surface of the water. In a feathering float there is very little waste from friction, as may be seen by this construction. The centre of the wheel eccentric is forward of and in a horizontal line with the centre of the shafting. The working surfaces of a feathering-wheel are made of brass and are lubri--cated with water by the wheel.

Disconnecting paddle-wheel engines are worked separately or together, the wheel slides on keys let into shaft, moved levers, etc. This kind of paddle-wheel engine is very useful for tug-boats or steam ferries, as they are quick and handy.

The speed of a paddle-wheel steamer may be calculated by the following ruie:

Diameter of the wheel in feet multipliod by 3.1416 multiplied by the number of revolutions of the engine in an hour, divided by 6080 equals knots per hour.

The number of revolutions that an engine must make per hour to drive a steamer a given number of knots can be ascertained by the following rule:
(1) Find the circumference of the paddle-wheel by multiplying the diameter by 3.1416 .
(2) Find the number of feet in the knots the paddle-wheel is driven per hour by multiplying the number of knots by '6080 feet.
(3) Next find how often this last (2) contains the distance moved in one revolntion (No. 1); the result is the number of
"floats" rigidly f wrought iron; jack of arm, the c paddle-wheels pose of counterof the engine. e centre of the nk has a slight radial paddleing floats fixed re of the wheel, s to oscillate, or n eccentric that t angles to the ere 's very little 8 construction. rd of and in a The working ss and are lubri-
ked separately shaft, moved is very useful x and handy. calculated by

SQUAKE AND CUBE ROOT.

Find the square root of $62 \% 264$.
The greatest square in the first period, sixty-two, is the equare of seven, or forty-nine. Subtracting forty-nine from sixty-two, we place seven as the first figure of the rout. Webring down the next period, seventy-two, to the right of the remainder; thirteen, for a dividend, doubling seven to form a partial divisor, which is contained in 137 (the dividend without the right hand figure two) nine times. We annex the nine both. to the partial divisor and to the part of the root already obtained. Multiplying 149 by nine, we subtract the product, 1341, from the dividend, and bring down the next period, sixtyfour, to the right of the remainder for a dividend, doubling seventy-nine, the part of the root already obtained, for a partial divisor, 158, is contained twice in 316 , and annexing the two both to the partial divisor, 158, and to seventy-nine, the part of the root already obtained, we multiply the divisor, 1582 , by this last figure of the root; the product is 3164 , which, subtracted from the dividend, leaves no remainder. Hence 792 is the exact square root of 627264 .

$627 \dot{2} 94$
49
149)
13792
1341
$1582)$
3164
3164

Find the square root of 7.3441 .
Placing a dot over the figure in the unit's place, we put oneover every second figure to the right, and then performing the operation as if 73441 were a whole number, as indicated in

गT.

sixty-two, is the forty-nine from he rout. Webring: of the remainder; o form a partial end without the ex the nine both the root already ract the product, ext period, sixtyridend, doubling obtained, for a 6, and annexing to seventy-nine, iply the divisor, roduct is 3164 , a no remainder.

MANUAL OF ENGINEERS' CALCULATIONS.

the margin, we get 271 as the root. We cut off two decimal places from this, because there are two dots over the decimal part of the original decimal.

The square root is therefore 2.71.

Observe.-At any stage of the process the product of the completed divisor into the last figure of the root must not exceed the dividend. Hence, in finding the figure to be when the me root, care must be taken to observe whether, the dividend or nication is effected, the product will exceed of the dividend 334 , the pas, in the last example, in the case times in thirty-three, but partial divisor four will go eight than 334 , seven is the next fince the product 8×48 is greater In the case of a decimal, if the of the root, and not eight. odd, it should always be me number of decimal places be order that the last period may even by annexing a cipher, in Find the square root may be completed.
Here, adding a cipher, we point the decimal thus:

$$
41.341560(6.429
$$

36
124)534

496
1282)3815

2564
125160
115641

And there will be three decimal places in the square root obtained. Here there is a romainder, or the given decimal is not what is called a complete square. By adding, however, more ciphers, more and more figures can be obtained in the root, to any extent of approximation.
This is a similar case to that of square root of seven, spoken of in Art. 2. 'To approximate to the square root of seven, we should proceed thus:

$\dot{4} .0 \dot{0} 0 \dot{0}(2.64$
46):300
276
524)2400
2096
304

By continually adding ciphers we can carry the approximation to any degrec of neatness.

Similarly in the case of any whole number which is not a complete square root, an approximation to the root by means of decimals can be obtained. The integral part of the root obtained is, of course, the square root of the largest integral complete square, which is less than the given number.

The square root of a fraction is obtained by taking the square root of the numerator for a numerator, and the square root of the denominator for a denominator. This follows at once from the consideration that the multiplication of fractions is effected by multiplying the numerator for a numerator, and the denominator for a denominator. When either the numerator or the denominator is not a complete square, in which case the fraction itself evidently has no exact root, instead of finding an approximate root of both numerator and denominator in decimals, and then dividing one by the other, it will be better first to reduce the fraction to a decimal, and then to take the square root.

Example. - To find the square root of two-sevenths.
Reducing two-sevenths to a decimal, we find it to be . 285714.
Hence, we should find by the previous method the square root of $.28571428571428 . .$. . to as many decimal places as we
please by continually taking in more and more figures of the recurring periods.

Similarly in finding the square root of two.fifths, we should proceed thus: two.fifths equal to .4, and then find the square not follow then, etc., to as many places as we please. It does fraction are not compe the numerator and denominator of a square root; for the division squares, that the fraction has no by some common measure may redumerator and denominator Thus, $\frac{88}{3}$, when numerator may reduce them to perfect squares. seven, gives four-ninths, the denominator are divided by thirds. A fraction must he square root of which is twodetermine whether it be a reduced to its lowest terms to complete square or not.

ABBREVIATED PROCESS OF EXTRACTION OF SQUARE ROOT.
When the square root of a number is required to a considerable number of decimal places, we may shorten the process by the following rulo for the contraction of the square root
process.
Find, by the ordinary method, one more than half the number of figures required, and then, using the last obtainerl divisor as a divisor, continue the operation the last obtainerl operation as in ordinary long
Find the square root of two to twelve figures.

$\dot{2} \dot{1} .0 \dot{0} 0 \dot{0}(1.4142$
24)100
24) 96
281)410
281
2824)11900
11296
28282)60400
56564
282841)383600
$282841{ }^{\prime}$
10075900

$2828423) 10075900$
8485269
15906310 14142115

17641950
16970538

$$
\begin{aligned}
& 6714120 \\
& 5656846 \\
& \hline 10572740 \\
& 8485269 \\
& \hline 20874710 \\
& 19 \% 98961 \\
& \hline 1075749
\end{aligned}
$$

Here having obtained by the ordinary process the first seveafigures, wo get the rest by dividing as in ordinary division by the last divisor, 2828423.

Wo might extract the square root of a perfect square by splitting it into its prime factors, but unless the number is. not large this would be a tedious method.

Find the square root of 441 .
Following the method given in Lesson VIII., Art. 5:
3)441
3) 147

49
Therefore $441=3^{2} \times 7^{2}$, of which the square root is 3×7, or twenty-one.

Observe.- Unless a number is made up of prime factors, each of which is repeated an even number of times, it is not a perfect square.

To extract the cube root of a given number is the same thing as resolving it into three equal factors. As i. the case of the square root we must content ourselves with giving, without explanation of the reason of its truth, the rule for the extraction of the cube root of a given number. Mark off the goint number into periods of three figures each, by placing a third figure to the left the unit's place, and then over every decimals). Put down for the first fight also if there be any whose cube is the greatest cube in fure of the root the figuro tract its cabo from the first period, first period, and subperiod to the right of the period, bringing down the next number which we shall call remainder, and thus forming a of the part of the root already divisor, and then, having dity obtained by three to form a divisor is contained in the dividined how many times this hand figures, annex this dividend without its two right already ohtained. Then determint to the part of the root the following processes:

Cube the last figure in the root.
Multiply all the figures of the root except the last by three, and the result by the square of the last. Multiply the divisor by the last figure in the root. Set down these lines in order, left. Add them up, and each suscessively one place to the dividend. Bring down the subtract their sum from the remainder, to form a new dividend period to the right of the a divisor, and to find another find, and then proceed to form same process, continuing the gure of the root by exactly the are exhausted. In decimals, the opation until all the periods the cube root will be the same as the num of decimal places in over the decimal part, i. e., as the number of points placed decimal part.

Observe.-If, finally, there be a remainder, then the given number has no exact cube root, hut, as in the case of the square root, an approximation can be carried to any degree of nearness by adding ciphers, and finding any number of

The rule will be best understood by following the steps of
example.

Find the cube root of 78314601 .

Placing the points as indicated in the rule, we observe that the cube of four is the greatest cube in the first period, seventyeight. Subtracting 4^{3}, or sixty-four, from seventy-eight, we get a remainder of fourteen, to the right of which we bring down the next period, 314, to form a dividend. Multiplying the square of four by three, we get for a divisor forty-eight, which will go twice in 143 (the dividend without its two right hand figures). We set down two, therefore, to the right of four as the next figure in the rost, and then proceed to form the three lines according to the rule:

Eight is the cube of two;
Forty-eight is $3 \times 4 \times 2^{2}$;
Ninety-six is the product of two, the last obtained figure in the root; and forty-eight the divisor.

Placing these three lines under each other, but advancing each successively one place towards the left, and adding, we get 10088 , which we subtract from the dividend, 14314, leaving a remainder, 4226. To the right of this we bring down the next period, 601, thus forming another dividend.

The next diviser, 5292 , is 3×42^{2}, and is contained seven
times in 42266. Putting down, then, seven as the next figure in the root, we find three lines as before:

343 is the cube of seven, the last figure in the root; 6174 is $3 \times 42 \times{ }^{72}$; 37044 is 7×5292.
Adding these up, when properly placed, we get 3766483 , which we subtract from the previous dividend, 4226601, leaving a remainder, 460118. There are now no more periods left. Hence, 427 is the number whose cube is the nearest cube number to the given number, and less than it. If there were no remainder, the root obtained would be the f t cube root of the given number.

In such an example as that worked out above, we could place a decimal point and as many periods of ciphers as we may wish after the original number, and thus, by continuing the process according to the rule, get as many decimal places as may be required as an approximation to the cube root.
In finding the cube root of a decimal, the periods must be completed by adding ciphers, if necessary.
When the cube root of a fraction is required, the cube root of the numerator and the cube root of the denominator will be the numerator and denominator, respectively, of the fraction which is the cube root of the original fraction. If the numerator and the denominator are not both perfect cubes when the fraction is reduced to its lowest terms (vide 9, Obs.) the best plan generally will be to reduce the fraction to a decimal, and then to find the cube root of that decimal. In the case of mixed numbers, they must be reduced to improper fractions, in order to see whether the resulting improper fraction has its numerator and denominator both perfect
cubes.
Thus $5 \frac{23}{64}$, reduced to an improper fraction, gives $\frac{343}{64}$, of which the cube root is seven-fourths or one and three-quarters.
But if, when so reduced, the numerator and denominator are not perfect cubes, then it will be better to reduce the fractional part of the mixed number to a decimal, and placing the integral part before it, find the cube root of the above rule.

Find the cube root of forty-four and three-fifths to two places of decimals.

$$
\begin{array}{ll}
44 \frac{3}{5}=44.6 & \begin{array}{l}
4 \dot{4} .60 \dot{0} 000(3.54 \\
17600
\end{array}
\end{array}
$$

27)17600
125
225
135
15875
36\%5)1725000
1680^{64}
14700
1486864
238136

And so on to as many more decimal places as we may desire.

Observe.-Exactly as in the case of the square root, when one more than half the number of figures required of the root have been found by the rule, the rest may be found by simply dividing, as in ordinary division, by the last divisor.

Observe.-It will be observed that although twenty-seven, the first divisor, is really contained six times in 176 , we only put down five in the root.

The reason is that, on examination, we find that six would be too large, for it would make the sum of the three lines which we add up greater than the dividend 17600 . We must, thercfore, always be careful to observe whether the figure put down in that root will or will not make the sum of the three lines too large. The dividing the dividend without its two last figures by the divisor is not, therefore, an infallible guide to the next figure of the root.
are root, when ired of the root ound by simply ivisor.
1 twenty-seven, in 176 , we only
that six would the three lines d 17600 . We θ whether the make the sum the dividend not, therefore, t.

PART III.

SKETCH OF THE LIFE AND WORKS OF WM. M. SMITH, Esq.

(First S. B. Inspector of the Maritime Provinces.)
William Morgan Smith is the second son of GeorgeNeilson Smith, C. E., surveyor and artist, of Edinburgh, Scotland, and Olivia Morgan, of Waterford, Ireland, and grandson of Adam Smith and Margory Melville, of Edinburgh, Su the parental side, and grandson of Nathaniel Morgan, Surgeon of the 90th Regiment of Infantry, of Welsh descent, and Rosahanna Burns, of Waterford, on the maternal side; "C was called after his uncle, William Smith, writer to the Cygnet," Custom Llouse, Edinburgh. His family cane to Cavada about the year 1823, on the appointment of his father as draughtsman and instructor of surgeons, to the Crown Mr. Smith, the ne Capital of New Brunswick, Fredericton. what is now knownect of our sketch, attended as a school, while living at Fredericton, university of New Brunswick, to his own efforts in private study education he mainly owes a subject, in any way connected with tuition, never leaving had mastered thoroughly all its details his business, until he the above mentioned schooling details; and with exception of educated, especially in regard to may be said to be selfhis father moved to St And to scientific subjects. When "The Standard," Mr. Smith came publish the newspaper, in 1833 became an apprentic came to St. John, N. B., and prietors of "Duke Street Iron Foundry" the Hogg, promanager of which was Mr. Robert Fouli," the mechanical land, an expert for those dobert Foulis, of Glasgow, Scotapplication of the steam whistle to the the inventor of the of now world-wide remewn ande to the fog alarm, a machineserving four years with Mr and usefulness. Mr. Smith, after assistant engineer with him on lis, two of which he served as the River St. John, after hise steamer "John Ward," on Boston to perfect himself in his calling had expired, went to
years at Alger's foundry and machine shop, where the first brass cannons for the United States navy were mannfactured by Babbit, the inventor of the famons non-conducting Babbit metal. After the expiration of his time, Mr. Smith returned to St. John, N. B., and assisted Mr. Foulis in erecting a side lever engine in the first ferry boat ever built at that city, called the "Victoria," and owned by the Corporation of the 'City of St. John, N. B., by whom Mr. Smith was appointed engineer in charge; and after the second steamer, "Lady Colbrook," was built, he became the superintendent engineer and manager of the ferries, in which capacity he served fourteen years. Mr. Simith then wellt to New York, and entered the celebrated macline shop of Cunningham \& Bellnap, where he remained for eighteen months, to perfect himself in mechanical knowledge and drawing; the engines of the "Western Star," "Pride of the North," and the extremely fast steamer "Joseph Bellnap," were built in the establishment. Soon after learing the above firm, Mr. Smith returned to St. John, N. B., and became one of the proprietors of the St. John and Carleton ferry steamers, at which business he remained as the manager until 1854, when he was appointed Steamboat Inspector of New Branswick, by the Provincial Government of this Province, under the hand and seal of Sir Edmund Head, the Royal Gorernor; and in 1867 was appointed Steamboat Inspector of Nova Scotia, by the Government of Canada; in 1862 he was appointed Steamboat Inspector for the Province of Prince Edward Island, by the Prince Ed ward Island Government and Commission, signed by the Royal Governor of Prince Edward Island, then a separate colony; and when Prince Edward Island entered the Dominion in 1873, Mr. Smith was appointed Steamboat Inspector for the Maritime Provinces of the Dominion of Canada; in the year 1872 he was chosen Deputy Chairman of the Board of Steamboat Inspectors by the Government. After thirty-three years of continual employment as Inspector of Steamboats, Mr. Smith retired from official life, February, 1886. His official life was a very busy one, as he had a very large district to travel orer, reaching from Dalhousie, N. B., to North Sydney, C. B., and including Prince Edward Island; and as nearly every sea and river port has its steamboat, the reader can imagine the amount of travelling he yearly had to do, outside of extra trips required. Beside this, the Government of Canada often required his opinion on fog alarm and marine station repairs, which took him to many of the remote islands and places in the Maritime Provinces.

The subject of the foregoing sketch has worked for over fifty years in a mechanical trade or profession, and is at present a Consulting Engineer, St. John, N. B., Canada; at the time of applying for superannuation, was the oldest Inspector in Eastern North America, and by nine years the longest in service in Canadn.

The following is a partial list of the private mechanical works with which he has been in some way connected in a professional manner:
Seagoing side-wheel steamer "Princess of Wales," of Charlottetown, P. E. I., superintended and prepared plans for boiler and engine, furnished and fitted for sea; built for the Bell," side-wheel steam Steam Navigation Company, "Heather and boiler, superintended prepared plans for the hull, engine Lunt \& Sons, for the St. Juring the building; built for E . first compound engine, an ind River service; also put in the combined, built in New Brunswick and oscillating cylinders wheel steamer "Heather Bell"," for above steamer. Sidepassenger steamer, inclined low pressure ence Edward Island, proved fast, making fourteen knots per engine; this steamer
"Blue Pird," a side-wh knots per hour. engine, built for the Britisi low pressure steamer, beam Bermuda Islands, for the Mr. Smith, under the inspectionance of troops, etc.; built by Steamship "Alpha," Summ of British naval officers. engine, for freight business, superintend E. I., high pressure boiler, etc., prepared plans, etc. Paddle ferry steame " T etc.
Summerside, P. E. I., plank," for Island Hotel Company, Paddle ferry steamer "r plans, etc., superintended building. Provincial Government, Steamship "Albert" specification, plans, etc. tended building. Steamship "'arl N. B., plans, and superinand boiler. Stern wheel ste "Earl Iufferin," plan for engine superintended engine, boileamer "Florenceville," plans, and model, speed ten knots an hand hull; Joln Retallick's, sr:, River. Inspector of gas John for fourtas and illuminating power of the City of St. Canadian Governm years; also tested coal and oil for theand appointed as an expert to mamber of years. Was chosen. before a select committpert to make experiments on coal oil Province of New Brunce of the House of Assembly, of the. for to govern the sale of coal oil.

Improved Foulis' application of the stcam whistle to fog alarms, and made plans and specification for house, engine and boiler, from his own design, and invented an improved whistle for these alarms. Furnished information to Gen. Denanne, Engineer Naval Department of United States const service, in relation to the constructing of fog alarms; Gen. Deuanne and Inspector Staples, of Portland, Maine, U. S., visited St. John, and interviewed Mr. Smith on this matter. Built by contract a large and powerful fog alarm for Government of Newfoundland for erection at Cape Race, constructed by Fleming \& Sons. Superintended and made plans for over nineteen fog alarms for the Government of Canada. Made plans and specifications for the lightships built for the Government of Canada, that had steam fog alarms on them.

Erected the No. 1 dioptric light at Cape Sable, Seal Island, and also a No. 2 at Machias, Seal Island. Made th ${ }^{2}$ drawing and specification for a bronze (gun-metal) screw, twelve feet diameter, weighing 9,000 pounds, for steamship " Northern Light," a Government steamer employed in the winter service when the ice will not allow the regular steamers to run; this screw proved a great success, and is now perfect and still in use.

The Maritime Provinces contains 119 steamers, more or less (1885), and at one time as high as 126 steamers; all of which have to be inspected at least once a year. This yearly work, combined with the position of Deputy Chairman Board of Steamboat Inspection, and to look after any local marine works, were faithfully and successfully carried out by Mr. Smith, until increasing years made it necessary for him to seek a less arduous life.

ATIONS.

Im whistle to fog for house, engine nted an improved rmation to Gen. nited States coast fog alarms; Gen. d, Maine, U. S., h on this matter. n for Government 3, constructed by ans for over nineda. Made plans the Government m. ble, Seal Island, Tade th 3 drawing arew, twelve feet ship. "Northern le winter service eers to run; this perfect and still
amers, more or steamers; all of 2r. This yearly Chairman Board ay local marine ied out by Mr. for him to seek

45 VICTORIA-CHAP. 35.

AN ACD TO AMEND AND CONSOLIDATE THE ACTS RESPECTING THE INSPECTION OF STEAMBOATS, AND THE EXAMINATION AND LICENSING OF ENGINEERS EMPLOYED ON THEM.

> (Assented to 17th May, 1882.)

For the greater security of life and property on board steamboats navigating the waters of the Dominion of Canada, or owned or registered in ise Dominion of Canada, and departing from or rriving at any port or place in the Dominion of Canada: Her Majesty, by and with the advice and consent of the Senate and House of Commons of Canada,

extent and application of act.

1. This Act, may be cited for all purposes as "The Steamboat Inspection Act, 1882," and shall extend and apply to the Whole Dominion of Canada, including Manitoba and the North-West Territories and Keewatin. Manitoba and the
2. This Act shall be Keewatin.
ment of the Act thirty intituled "An Act respecting Victoria, chapter sixty-five, and for the greater safety of p the Inspection of Steamboats, by the Acts thirty-secoty of passengers by them," as amended thirty-nine; thirty-sixth Vand thirty-third Victoria, chapter three; thirty-seventh Victoria, chapters seven and fiftyVictoria, chapter eighteen anda, chapter thirty; fortieth twenty-one, which are hereby forty-fourth Victoria, chapter as hereinafter provided), with superseded and repealed (except provision inconsistent with this every other Act, enactment or dation of the amendments heris Act,-and as being a consolithe said Acts which are hereby made with those - rtions of in Council made under thein re-enacted, and of 1 . Orders

> under them as are herein incorporated, all
which shall be construed as declaratory of the existing law: and all appointments made and all things lawfully done under the provisions of law then in force, shall remain valid, unless and until it is otherwise ordered by or under this Aet, and all proceedings commenced under them may be continued and completed, as if this Act had not been passed, only the amendments hereby made having effect as new law.
3. In this Act the word "steamboat" includes any vesseli used in navigation or afloat on navigable water, and propelled or moveable wholly or in part by steam; the word "owner" includes the lessee or charterer of any such vessel; and the word "year" means the calendar year, commencing on thefirst day of January, and ending on the thirty-first day of December.
4. This Act shall not apply to steamboats belonging toHer Majesty the Queen, nor to steamboats registered in Great Britain and Ireland or in any foreign country, and plying between any port or place in the Dominion of Canada and any port or place outside of the Dominion of Canada:
(2.) And all steam yachts, used exclusively for pleasure or private use without hire or remuneration of any kind, all tug boats, all steamboats carrying freight only (hereinafter called freight boats) and under one hundred and fifty tons gross, and all steamboats used only for fishing purposes or the carrying of fish, and under one hundred and fifty tons gross, and steam dredges and elevators or vessels of like kind, shall be exempt from itiz requirements of this Act,-except as regards the inspection of their boilers and machinery, to which they shall be subject at least once in each year, and oftener if required, under the same provisions and penalties for neglect as other steamboats, - and except also as to the obligation to carry one life buoy hereinafter imposed on all steamboats.
5. The Governor in Council may direct that any steamboat not registered in the Dominion of Canada, but employed in the Dominion of Canada in carrying mails, passengers or troops, shall be subject to the provisions of this Act.

APPOINTMENT AND QUALIFICATION OR INSPECTORS.

6. The Governor in Council shall, from time to time, appoint at each of such places, and to act respectivel $/$ within such local limits, as he may find advisable, within the Dominion of Canada, a skilled person or skilled persons competent to inspect the boilers and machinery employed in steamboats, who shall not be interested in the manufacture- of steam engines, boilers or other machinery belonging to steamboats, and whose duty it shall be to make such inspection two of thafter prescribed, and to give to the owner or master person or skilled persons competent to inspect andso a skilled equipment of steamboats, who shall to inspect the hulls and building or construction of hulls not bo interested in the article or thing hereinafter mention steamboats, or of any ment required by this Act for steationed us part of the equip)to or connected with such equipment or properly belonging of this Act, and whose duty it sliphent according to the intent and to give triplicate certificates be to make such inspection, 2. In this Act the expicates of such inspection: includes the steam engine ression "boilers and machinery" or thing connected therewith, engines, and every part thereof steamboat, and any donkey or pomployed in propelling the the boiler or boilers for or pony engine used on board, and furnaces, chimneys, llaes, sapplying steam thereto, and the braces, stays, pipes, stemm pump and blow-off valves, ganges, things attached to or connected, and all other apparatus and ence to any such engine or underewith or used with referand the expression "hall and equip the care of the engineer; and every part thereof, masts, sails and inclades the hull steamboat carries them, life-boats and rigging when the tackle and apparatus for lowering other boats and the apparatus, other thin stean fire oring or hoisting them, the extinguishing fires, anchors and engines, for preventing or stans, fire buckets, compasses, a cables, windlasses und caparticles and things necessary for thes, lanterns, and wll other the steamboat and not under for the navigation and safety of word " Inspector," in any provision care of the enginecr: the means a person appointed to in in the following sections, machinery" of steamboats, whe inspect the "boilers and applies to anything included in the so far as such provision appointed to inspect the "hulls that expression, or a person boats, when and so far as the and equipment" of steamincluded in the expression last provision applies to anything means a boiler of or intended mentioned; the word "boiler" boilers when the steambonded for a steamboat, and includes "boilers" means "boiler" when she than one, and the word word "hull" includes the equipment uas only one; and the inconsistent with such constructionent unless the context is means one of the duplicates or the and the word "certificate" given by the inspectors or inspectoriplicates of the certificate
7. No person shall be appointed, as the case may be. 18

214

machinery of steamboats unless nor until he has passed a satisfnetery examination before the Board of Steumboat Inspection, as to his knowledge on the subject of boilers and machinery of steambonts, and the working of the same; or an inspector of the hulls and equipment of such vessels, unless he has passed a satisfactory examination as to his competency for the oflice, before a board of three practical ehipbuilders to be appointed by the Governor in Council, or is n certified surveyor of a recognized society for the classification of ship,ping; nor shall he be appointed an inspeetor for either purpose unless he has received from the chairman of the Board, or from the said practical shipbuilders (as the case may be) a certificate in writing that he has satisfactorily passed such examination, or is a certified surveyor as aforesaid:
(e.) Provided always, that all inspectors appointed before the passing of this Act shall continue in office us inspectors of boilers and machinery until removed under this Act:
(3.) Every such inspector, before entering upon his duties as snch, shall take and subscribe an oath, before any person duly authorized to administer an oath, well, faithfully and impartially to execute the duties assigned to him by this Act.
(8.) The inspectors shall form a Board, to be called the "Board of Steamboat Inspection," of whom the Governor shall name the chairman; three of the members shall form a quorum, and the chairman shall have the right to vote, and in case of an equal division he shall also have a casting vote; and the minutes of the proccedings of the Board shall be kept by him:
(2.) The Board shall meet at least once every year at such place as they may agree upon, and may make rules and regulations for their own conduct, and for the uniform inspection of steamboats, the selection of ports of inspection, and granting licenses to engineers, and for such other purposes as may be necessary under this Act, and may, from time to time, repeal, alter or add to such rules and regulations or make others in their stead; and such rules and regulations shall come into force after they have been approved by the Governor in "suacil, but not before; and copies of the minutes of the proceel \rightarrow tine Board, certified by the chairman, shall be transmai io this Minister of Marine and Fisheries; provided thatstich and reguations made before this Act comes into ione sull remain in force until repealed or amended under it:
(3.) Provided always, that in the Provinces of Manitoba and British Columbia, and in the North-West Territories and the

ATIONS.

he has passed a rd of Steumboat icct of boilers and of the same; or un ch vessels, unless o his competency al ehipbuilders to , or is a certified sification of shipor either purposo of the Board, or 3 case may be) a rily passed such csaid:
appointed before a as inspectors of his Act:
upon his duties fore any person , faithfully and im by this Act. to be called the the Governor rs shall form a tht to vote, and a casting vote; -d shall be kept
ry year at such ake rules and : the uniform s of inspection, other purposes , from time to regulations or nd regulations pproved by the of the minutes the chairman, and Fisheries; efore this Act il repealed or

Manitoba and tories and the

Manual of engineers' catcelations. District of Kewatin, the Minister of Marine and 205 may, if and when he sces fit, disper of Marine and Fisheries of in inspector of hulis and equipense with the appointment in case of the non-appointment ont; and in such case and inspection district, or of vacut of such inspector in any said Minister may, by departmey in the office therein, the of such inspector to the inspectortal order, assign the duties such other person as he may tector of boilers and machinery, or then and so long as such order temporarily employ, -who sharl powers and perform all the remains in force, have all the inspector of hulls and equipment, undereby assigned to the and like penalties in case of defanlt, - the the like obligations being altered to suit the case.

INSPECTION GENERALLY.

9. The chairman of the Board of Steamboat Inspection may, at any time, inspect or examine the hull, boiler and of having neglect steamboat, and if he suspects any inspector may call a meeting of the ly in relation to such steamboat, he the result of every such investid to investigate the case; and municated in writing to the Mgation shall forthwith be comfor the information of the Governor in Marine and Fisheries,
10. The master or owner of or in Council. inspection under this Act, shall of every steamboat liable to and the hull and equipment there the boiler and machinery once cvery year, and shall delivereref, to be inspected at least at the port where such inspertion the chief officer of Customs steam bow shall arrive next aftion is made, or at which such not been made in such port, or such inspection, where it has and for every neglect to cause one of the certificates thercof; a certificate thereof to be deliver inspection to be made, and Customs, such master or owner shed to the proper officer of hundred dollars, and such steamben incur a penalty of four same and chargeable therewith; and shall be liable for the unless sooner revoked, shall be rood every such certificate months from the date thereof or good for a period of twelve be stated by the inspector in the certificate less period as may
11. The master, owner or the certificate. the person in charge thereof, shall at of every steamboat, or after the occurrence of any shall at the earliest opportunity machinery, or boiler thereof, orent whereby the hull, or the the same, is in any material or any part of any or either of weakened, report such material degree injured, strained or weakened, report such occurrence to the inspector by whom
the same was last inspected, or to the proper inspector at the port or place where the steamboat is, or first arrives after such event occurs; and in case of omission to give such notice theowner of the steamboat shall forfeit to Her Majesty twohundred dollars for every day during which such omission continues; and if the injury be to the machinery or boiler or any part of the same, the license of the engineer shall be revoked.
12. Any inspector may, at all times when inspecting, visiting or examining any boilers and machinery or the hull of any steamboat, ask of any or all of the owners, officers or engineers of such steamboat, or other person on board thereof, and in charge or appearing to be in charge of the same, or of the boiler or machinery thereof, such pertinent questions concerning the same, or concerning any accident that may have happened thereto, as he may think fit; and every such person shall fully and truly answer every such question so put to him respectively, to the best of his knowledge and ability; and every person refusing to answer or falsely answering such question, or preventing any such inspection or obstructing any inspector in the same, shall, by so acting, incur a penalty of forty dollars.
13. Any inspector of steamboats is hereby empowered to demand of the owner or master of any steamboat being inspected by him, the production of the certificate of registry of such steamboat; and it shall thereupon be the duty of such owner or master to produce and exhibit the same to such inspector.
14. When the inspector finds it necessary to open up the hull of a vessel for the purpose of examining her condition, the expense incurred thereby shall be chargeable to the ownerof such vessel.
15. The inspector may require that the engine and machinery under inspection by him, be put in motion; and any inspector shall be carried free of expense on any steamboat which he shall desire to inspect while under way, and during such period as may be necessary for such inspection, and for his return to the port at which he embarked on such steamboats for such purpose, or for his disembarkation at any port at which such steamboat touches on her voyage.
16. If the inspector who inspects any steamboat in the manner required by this Act, approves the hull and equipment of such steamboat, he shall sign a certificate according to the form A in the schedule of this Act, and triplicates of such certificate, signed by the inspector of hulls and equipment.
shall be delivered by him to the inspector of boilers and machinery for the same district, who, if he has then inspected and approved the boilers and machinery of the steamboat and has also satisfied himself that the certificate of the inspector of hulls and equipment is true and correct as to the said equipment, and as to the number of passengers the steamboat may lawfully carry, and as to all the particulars mentioned in the said form, and that the equipment is sufficient and in accordance with the requirements of this Act, shall sign the certificate in triplicato and deliver two of such triplicates to the owner or master of the steamboat, -who shall deliver one triplicate to the chief officer of Customs as aforesaid, and the other he shall cause to be posted up, framed and protected by glass, in some conspicuous part of the steamboat for the information of the public; and the inspeetor of boilers and machinery shall retain the other triplicate for the purposes of this Act:
(2). Except that, if the steamboat is one of which the boller and machinery only is subject to inspection under this Act, the inspector of boilers and machinery shall sign a certificate in the form B in the said schedule, in duplicate, and deliver the duplicates to the master or owner of the steamboat, who shall deliver one to the chief officer of Customs and cause the other to be posted up in some conspicuous part of the steamboat for the information in some conspicuous part
(3). Any matter in dispute ation of the public: sections of this Act, between aning under this or any other Inspection and the master or an inspector or the Board of also any dispute between or owner of any steamboat, and Inspection and an engineer, an inspector or the Board of to the Minister of Marine and be referred by either party decide the same:
(4). Each inspector shall kee $_{i}$ a register of the inspections and certificates made and granted by him, in such form and with such particulars respeeting thein as the Inspection Board shall, from time to time, require, and shall furnish copies thereof to the Board when required.

INSPECTION OF BOILERS AND MACHINERY.

17. Any inspector may, whenever he deems it necessary so to do, and some one of them shall, at least once in every year, subject the boiler of every steamboat to a test by hydrostatic pressure, and shall satisfy himself by examination and experimental trials, that such boiler is well made, of good and
suitable material; the limit of such pressure shall not exceed one hundred and fifty pounds to the square inch in the caseof a boiler made of iron plates, or one hundred and ninety pounds to the square inch in the case of a boiler made of steel plates; and the owner of the steamboat shall provide the necessary hand-pump and apparatus for such test, to be worked' by the crew of the steamboat; and no inspector shall make or deliver to the owner or master of any steamboat, any such certificate as is mentioned in the sixteenth section of this Act, without having first subjected the boiler of such steamboat to such test by hydrostatic pressure:
(2). Before subjecting a boiler to a test by hydrostatic pressure, it shall be opened up for inspection, the man-hole doors and mud-plates removed, and the outside and inside of the boiler cleaned, the furnace grates removed and the furnace swept out clean, so that satisfactory and efficient inspection can be made; when bulkheads are so placed as to prevent a close examination of the plates of the boiler, they shall beremoved; the owner or master of the steamboat shall see that these requircments are complied with before applying for inspection:

In any case in which the test is not satisfactory, the defects. must be made good and the boiler re-tested satisfactorily, before a certificate shall be granted; and-

When the outside of the bottom of a boiler cannot be otherwise perfectly inspected, the boiler shall be lifted for inspectioronce at least in every four years:
(3). In subjecting boilers made of iron plates to the hydrostatic test aforesaid, the inspector shall assume one hundred pounds to the square inch as the maximum pressure allowable as a working power for a new boiler forty-two inches. in diameter made of the best refined iron, at least one-quarter of an inch thick, in the best manner and of the quality herein required,-and shall rate the working pressure of all iron boilers, whether of greater or less diameter, according to this standard; and in all such cases the test applied shall exceed the working pressure allowed, in the ratio of one hundred and fifty pounds to one hundred, using the water in slich tests ata temperature not exceeding sixty degrees Fahrerheit:
(4). In subjecting boilers made of steel to the hydrostatic test aforesaid, the inspectors shall assume one hundred and twenty-five pounds as the maximum pressure allowable as a working power for a new boiler forty-two inches in diameter, made in the best manner, of the best quality of steel plates, at least one-quarter of an inch thick, with all the rivet holes: with double butt steel straps cut across the grain of the plate, and each of five-eighths the thickness of the plates they cover, and all the seams being at least doublo-rivetted and having at least seventy per cent. of the strength of the solid plate, and all the flat surfaces stayed in the best manner and all the seams double-rivetted,-and they shall rate the working pressure of all steel boilers so made, whether of greater or less dinmeter, according to this standard; and in all such cases the test applied shall exceed the working pressure allowed for such boilers in the ratio of one hundred and ninety ponuds to one hundred and twenty-five pounds, using the water in such tests at a temperature not exceeding sixty degrees Fahrenheit:
(5). But if the inspector is of opinion, that any boiler, whether made of iron or steel plates, by reason of its construction or material, will not safely allow so high a working pressure as that hereinbefore specified for each such description of boiler respectively, he may, for reasons to be stated specifically in his certificate, fix the working pressure of such boiler at less than two-thirds of the test pressure:
(6). And these rules shall be observed in all cases, unless the proportion between such boilers and the cylinders, or some other cause, renders it manifcst that their application would rules if it -in which case the inspector may depart from these working pressure alle with safety; but in no case shall the mentioned, as compared exceed the proportion hereinbefore
(7). The exmpared with the hydrostatic test: circular furnaces and working pressure to be allowed on the longitudinal joints are subjected to such pressure, when strap, shall be determined welded or made within a butt
The product of 90 ed the following formula:
thickness of the plate in multiplied by the square of the flue or furnace in feet pinches, - divided by the length of the inches, -will be the atlus 1 , multiplied by the diameter in inch in pounds,-provided it does norkg pressure per square the following formula, -

The product of 8000 plate in inches, divida multiplied by the thickness of the in inches, will be the by the diameter of the furnace or flue inch in pounds, - allowable working pressure per square
The length of the furnace to be used in the first formula weing the distance between the rings, if the furnace is made with rings; and that one of the two formulæ which gives the
lowest pressure being the one by which the inspector shall be guided:
(8). On flat surfaces the allowable working pressure shall not exceed six thousand pounds to each effective square inch of sectional area of the stays supporting it; the pressure to be allowed on plates forming flat surfaces shall be that found by the following formula:

$$
\frac{C^{\top} \times(T+1)^{2}}{S-6}=\text { Working pressure in lbs. per sq. inch, where- }
$$

$T=$ Thickness of plate in sixteenths of an inch;
$\mathrm{S}=$ Surface supported in square inches;
$C=100$; but when the plates are exposed to the impact of heat or flame, and steam only is in contact with the plates on the opposite side, O is to be reduced to fifty:
(9). In order to satisfy himself as to the strength and condition of a boiler, the inspector may, if he deems it necessary, order holes to be cut in it, and may also demand that such information be furnished him as to the interior construction of the boiler as will enable him to judge correctly of its strength:
(10). In no case shall a certificate be granted for a boiler when drift pins have been used in bringing the holes in the
sheets together: sheets together:
(11). Man-hole openings must be stiffened with compensating rings of at least the same effective sectional area as the plate cut out, and in no case shall such rings be of less thickness than the plates to which they are attached; all openings in the shells of cylindrical boilers shall have their short axes placed longitudinally:
(12). When bars or angle irons are used for sustaining the crown sheet of the furnace of a boiler, three-fifths of the working pressure allowable upon the crown sheet shall be sustained by hanging stays from the shell of the boiler attached to the crown sheet:
(13). Donkey boilers on steamboats shall be prorided with two safety-valves, one of which may be locked up:
(14). Boilers in which the longitudinal seams in the cylindrical shell are single rivetted, in place of double-rivetted, shall be subject to a reduction in the working pressure allowable for a boiler made in the best manner (as prescribed by sub-sections three and four of this section), and the limit of pressure in boilers so made shall not exceed eighty pounds to

ATIONS.
inspector shall be
ng pressure shall ctive square inch the pressure to be be that found by
sq. inch, where-
inch;
to the impact of ith the plates on
trength and conms it necessary, mand that such ior construction correctly of its
ited for a boiler the holes in the
with compenonal area as the ings be of less e attached; all hall have their

- sustaining the ee-fifths of the sheet shall be of the boiler
prorided with up:
seams in the ouble-rivetted, oressure allowprescribed by ad the limit of hty pounds to
the square inch in place of one hundred pounds or one hundred and twenty-five pounds, as mentioned in sub-sections three and four of this section.

18. No boiler made and placed on board after the passing of this Act shall be made of boiler plate, whether iren or steel, which has not been stamped with the mark or namo of the maker thereof; and no certificate shall be granted with respect to any boiler made wholly or in part of plate not so marked: boiler, a de a certificate shall be granted with respect to any stating the name of on oath by the maker of the boiler, and the quality of all maker of the plates, their quality, thereof, shall be furnished to the used in the construction be taken before any Justice of the inspector,-which oath may a Notary Public, and certified the Peace in Canada. or before -out of Canada: Provided alwayder his official seal, if taken declaration on oath by the nys, that in any case where such obtained owing to the death naker of the boiler cannot be -deemed sufficient by the of the maker, or from other cause practical boiler-makers whe inspector, the affidavit of two report upon the quality of the mall examine the boiler and manship and strength, shall, if materials in it and its workinspecting the boiler, be de, if satisfactory to the inspector declaration by the maker of the boildicient in lieu of such (2). During the con of the boiler:

Canada, the maker of such boiler of every boiler made in the district in which such boiler shall notify the inspector of inspection, and shall, at all times made, that it is open to his allow the inspector access to such boiler: such construction, (3). No boiler or pipe to such boiler: or in part of bad material or is un approved is made in whole from defective workmanship, insafe in its form, or dangerous
safety-valves, steam gauges, etc
19. Every inspector, when inspecting, visiting or examining the boiler or machinery of any steamboat, shall satisfy himself that the safety-valves attached thereto are of suitable dimensions, sufficient in number, well managed and in good working order, and only loaded so as to open at or below the certified working pressure; and he may, if he thinks proper, order and cause one or more of such safety-valves, which together shall be of sufficient dimensions to discharge all the appropes, to approves, to be locked up and taken wholly away from the
control of the engineer when the stoam is up; but this provision does not imply that the engineer is not to have access to the safety-valves when the steam is not up, but on the contrary he shall see that they are kept in working order, and the master of the steamboat shall sec that the engincer has access to them for that purpose, and keeps them in properworking order:
(2). The boiler-cocks and valves attached to the boilers, shall be substantially made, and in no case shall they be attached to the boiler by screwing into the plate, unless, as an additional security, nuts and flanges be used in addition to such attachment:
(3). No valve, under any circumstances, shall, at any time, be so loaded, or so managed in any way, as to subject a boiler to a greater pressure than that allowed by the inspector at the then last inspection thereof:
(4). The lock-up valves shall be of a construction, approved by the Board of Steamboat inspection,-such valves to be tested and proved by an inspector before use; and no inspector. shall grant a certificate to any steamboat unless the boiler, or each boiler, if more than one, of such steamboat be provided. with two safety-valves, one of which shall be locked up and one open:
(5). Every safety-valve made or placed on board after the passing of this Act. or attached to a boiler made after that time, must have a lift equal to at least one-fourth of its diameter: the openings for the passage of steam to and from the valve must each have an area not less than the area of the valve, as shall also the waste steam pipe, and the valve box must have a waste water pipe; if the lever of a lever safetyvalve is not bushed with brass the pin must be of brass,-iron an iron working together must not be allowed; every such safety-valve must be fitted with lifting gear so that it can be worked by hand, either from the engine room or the fire-hold, or by the master or person in charge on deck; every such safety-valve must be so attached to the boiler, that the valve chest shall be as close to the boiler as possible.
20. The area of any locked safety-valves or the joint areas of any locked safety-valves to any boiler, made or placed on board after the passing of this Act, shall not be less than half: a square inch for each square foot of grate surface in or under the boiler.
21. Whenever the engine of any steamboat is stopped for ayy purpose, the engineer or the master or person in charge of such steamboat shall open the safety-valve, so as to keep. pressure by the inspector's certificate if the engine be a high as aforesaid engine, and to five pounds below the pressure limited penalty of two hundred be a low pressure engine, under the this provision. 22." In a conspicuous and easily accessible place, in cach steamboat, there shall be a steam gauge properly constructed and open to the view of all passengers and others on board such steamboat, and showing at all times the true pressure of 23. And if any moiler thereof.
time allows the any master or engineer of any steamboat at any steamboat is subjected, to steam, to which the boiler of such cate, or alters or conceals excced that limited by her certifi-stcam-gauge, so as to prevent otherwise deals with the said being seen and ascertained by the real pressure of steam from incur a penalty of two hundy any passenger, he shall thereby 24. The steam-gange required by for every such offense. the view of all passengers and od by this Act to be open to shall be that known as "The Bourd on board any steamboat, such construction and shall be Bourdon Gange," or shall be of as the inspector inspecting, visitin such place and position, boat shall, from time to time, direct 25. Each boiler of every stirect. a suitable water-gauge, capableat shall be provided with within each boiler at all timpable of showing the water level in brackish or salt water, shall be all steamboats navigating off valves, such as are comme provided with surface blowsteamboats. are commonly used on board seagoing.

SAFETY BILGE INJECTION-PIPE.

26. Every steamboat carrying passeugers and baving a condensing engine, shall be provided with valve and pipe of suitable dimensions, leading from the floorframes of the steamboat into the leading from the floor the condenser of the engine.

PO BE CARRIED BY STEAMERS.

27. No steamboat of the registered tonnage of one hundred tons or ppwards shall depart by sea from any port or place within the Dominion of Canada, or der any port or place place, on either of the lakes 1 or depart from any port or Huron, Simcoe or Superior, Memphremagog, Ontario, Erie, on the river Ottawa, or St. Jo on the river St. Lawrence, or or placed on ess than half e in or under on in charge as to keep

Manitoba, British Columbia, or the North-West Territories, - or the District of Keewatin, which is at any place on the route of such steamer more than one mile in width, with passengers, without having on board or attached to such steamboat, one good and sufficient life boat made of suitable metal, fireproof, with air-tight metallic compartments at the ends and sides (except as hereinafter provided) according to the directions of the inspector, capable of sustaining, inside and outside, fifty persons, with life-lines attached to the gunwale at suitable distances, or having on board two good and sufficient life boats, with air-tight metallic compartments as aforesaid, each capable of sustaining inside and outside thirty persons, with life-lines attached to the gunwales at suitable distances, and in either case with sufficient oars and other suitable tackle:
(2). The life boat required to carry fifty persons may be considered of sufficient capacity if made of the following

Length of keel, twenty-two feet; breadth of beam from metal to metal, five feet six inches; depth from top of keel to top of gunwale at bottom of row-lock, two feet nine inches:

The life boat required to carry thirty persons may be considered of sufficient capacity if made of the following dimensions:-

Length of keel, eighteen feet; breadth between metal and metal, five feet two inches; depth from top of keel to top of gunwale, two feet two inches.
28. Notwithstanding anything to the contrary contained in the immediately preceding section, the life boat or life boats on board of or attached to any steamboat on any of the voyages of such steamboat, may have air-tight metallic compartments at the sides only, or at the ends only, or shall have them at both ends and sides, according to the directions of the inspector by whom such steamboat was last inspected.
29. No steamboat of any registered tonnage whatever shall depart by sea from any port or place in the Dominion of Canada or depart from any port or place on any of the lakes or rivers mentioned or referred to in section twenty-seven, with passengers, without having on board or attached to such steamboat, a good, suitable and sufficient boat, or good, suitable and sufficient boats, in good condition and properly equipped,-every such boat to be provided with not less than six oars, and other necessary tackle, and to be of sufficient capacity to carry not less than twelve adult persons, exclusive of the crew of such boat, and to be of not less than seventeen
fect length of keel,-and the number of such boats to be in the following proportion to the registered tonnage of such steamboat, that is to say:-
For every steamboat of less than fifty tons, one such boat; for every steamboat of fifty tons and upwards, but less than; one hundred tons, not less than two such boats; for every steamboat of one hundred tons and upwards but less than three hindred tons, not less than two such boats, in addition to the life boat above required; for every steamboat of three handition to the and upwards, not less than three such boats, in All such boats shoat above required. lowering apparatus com be hung in separate davits, with Provided, that in any colete and ready for instant lowering: two life boats, one of the where any such steamboat carries hurricane deck without davits; boats may be carried on the condition, water-tight and reat buts shall be kept in good masters of steamboats shall ready for imnodiate use, and them in lowering and handling the their erews and exercise month; when wood is used as fuel said boats at least once a sure steamboats, the covers as fuel in the boilers of high-preswood covered with zinc; and of the said boats shall be made of the steamboat to which it berery boat shall have the name of legibly painted on her bows and stern of her port of registry Provided, that no steamb and stern.
of freight, when carrying ant employed chiefly in the carriage gers shall be required to have more than twenty-five passensteamboat more than two have on board or attached to such 30 Provided, that the boats in addition to a life boat. may authorize the nse in Minister of Marine and Fisheries of different dimensions fromdividual specified cases, of boats. seven, twenty-eight and these specified in sections twentysuch authorization being granted boats of the dimensions specified it shall be sufficient that provided and carried on the steced in such authorization be ization relates.
31. Every steamboat employed in the carriage of passengers which shall be used in the navigation of rivers, or inland navigation only, except as specified in sections twenty-seven and twenty-nine of this Act, shall carry not less tha: two good boats, provided with four oars each, and of sufficient capacity to carry not less than twelve persons with safety, besides the crew, except steamboats persons with safety, tion of the river St. John, above Fredericton, the waters in the district of Muskoka, the county of Yictorian, the waters in the district of Muskoka, the county of Victoria and the county
of Peterborough, in the Province of Ontario, and the waters of the Ottawa river, and its tributarics above the city of Ottawa, or of lakes or rivers not excecding one mile in width at any place on the ronte of such steambont, which shall carry one good boat of the size and provided as aforesaid; and except also stcamboats of less than fifty tons register, which shall carry one good boat of the size and description, and provided in the manner approved of, in each casc, by the inspector: Provided always, that steamboats not exceeding one hundred and fifty tons register shall not be required to carry more than ono good boat of the capacity above mentioned.
32. Every stcamboat to which the twenty-seventh and twenty-ninth sections of this Act apply, shall be provided with sufficient means for lowering from on board safely and expeditiously cach boat required by the said sections to be on botrd or attached to such stcamboat, on each occasion on which such boats are so required to be on board of or 3 stached to the same:
(2). Three davits properly constructed and placed shall be considered sufficient for lowering two boats.
33. Every steamboat not employed in the carriage of passengers, and every steamhoat to which the twenty-seventh, twenty-eighth, twenty-ninth, thirty-first, thirty-fifth and thirty-eighth sections of this Act do not apply, shall, at all times when the crew thereof is on board, be provided with and have on board or attached to such steamboat in some convenient place, a good, suitable and sufficient boat, or good, suitable and sufficient boats, in good condition and properly equipped, and provided with oars in sufficient number and other necessary tackle, and of sufficient capacity to carry all the crew of such steamboat, and with sufficient means for lowering such boat or boats from on board safely and oxpeditiously, and also a life-preserver for each one of the crew, and also a number in due proportion to that of the crew, of good and sufficient fire buckets, of metal, leather, or other suitable material, and axes and lanterns, to the satisfaction of the inspector.
34. Sections twenty-seven, twenty-eight, twenty-nine, thirty-one, thirty-five and thirty-eight shall not apply to ferry-boats or tugboats plying elsewhere than on the river St. Lawrence.
35. Every sea-going steamboat and every steumboat on any of the lakes or rivers specified in the twenty-seventh and twenty-ninth sections of this Act, or navigating any bay or bays or arm or arms of the sea in connection with the

Dominion, employed in the carriage of passengers, shall be provided with und shall carry on bourd on every voyage lifepreservers as follows, namely: Each and every such steamboat of the registered tonnage of two hundred tons and upwards, and every such steamboat hundred life-preservers; and each than two hundred tons shall of the registered tonnage of less three life preservers for eve provided with not less than steamboat carrving passeurers five tons register; and each except on tho lakes and rivers specifivers or inland navigation, of the registered tonnage of two hedin section twenty-seven, shall be provided with not less than oned tons and upwards, vers, and each such stcamboat as last hundred life-presertwo hundred tons register, with not lest afosaid, of less than vers; and all such life-preservers shall than fifty life-preserand material approved of by thers shall be made of the size with shou!der straps and fasteningsecior, and shall be fitted same around the body, under the suitable for securing the preserver shall have a buoyancy of arms; and each such at all times be kept in some con of sixteen pounds, and shall in the staterooms or on the denvenient and accessible places cover and in readiness for the deck of such steamboat, under boat shall proceed to sea or on of passengers, and no stcamfully provided in compliance with any voyage without being scction: Provided alway, that the the requirements of this such life-prescrvers required the maximum number of exceed two hundred. But in on any steamboat shall not boat capacity, and the numbery steamboat, as to which the short of the number of passengers life-preservers, together fall her certificate, such deficiency shall bis allowed to carry by of wooden floats, each equal in shall bi supplied by a number seasoned white pine, equal to buoyancy to one cubic foot of crew not provided for in the to number of passengers and
(2). Provided always, that nots or with life-preservers. next preceding sub-section, no stwithstanding anything in the the carriage of freight, when steamboat employed chiefly in passengers, shall be required to be provided more than sixty board on any voyage, more than provided with or carry on passenger, and one life-preserver fone life-preserver for each board of such steamboat. 36. A cork jacket, wi fastening the same around shoulder straps and waist lines for preserver to be used on passenger stall be the form of life37. Every steamboat registered imboats. this Act applies, shall caryistered in Canada, or to which this Act applies, shall carry at least one life buoy with a
proper heaving line attached, in some convenient place where. it can be easily got at for use in case of accident requiring it:

But the Governor in Council may, at any time, order and direct that the other provisions of this Act shall not, or shall not for any time specifled in the order, in so far as such provisions extend to the carrying of boats and life-preservers, apply to any ferry boat specially mentioned in such Order in Cotuncil, and the Goverument in Council may order and direct that such other provisions as he may deem advisable with respect to the carrying of boats and life-preservers on such. ferry boat, shall be applicable to and shall be enforced in respect of such ferry boat.

PRECAUTIONS AGAINST FIRE.

38. Except as hereinafter provided, every steamboat employed in the carriage of passengers, whether by sea, bay, lake or river navigation, of more than one hundred and fifty tons gross, shall be provided with and have on board, in some convenient place, not less than twenty-five sufficient fire buckets of metal or leather, five axes, and six good and sufficient lanterns approved of by the inspector: Provided always, that passenger steambeats of more than seventy-five and less than one hundred and fifty tons gross shall not require to be provided with and have on board more than twelve fire buckets, and that passenger steamboats of seventy-five tons gross and under, and steam-tugs under one hundred and fifty tons gross, shall not be required to be provided with and have on board more than six fire buckets.
39. Suitable and safe provision shall be made throughout the steamboat to guard against danger from fire; and no conbustible material liable to take fire from heated iron or any other heat generated on board any steamboat, in and about the boilers, pipes or machinery, shall be placed at less than six inches distant from such heated metal or other substancelikely to cause ignition; and further, when wood is so exposed to ignition, it shall, as an additional preventive, be shielded by some incombustible material, in such manner as to allow the air to circulate freely between such materinl and the wood: and metallic vessels or safes shall be provided and kept in some convenient place to receive cotton-waste, hemp, and other inflammable substances, which are in use on board:
(2). Provided however, that when the structure of the steamboat is such, or the arrangement of the boiler or machinery is such, that the requirements aforesaid cannot, without
serious inconvenience or sacrifice, be complied with, the inspector may allow deviations from the said requirements, if in his judgment it can be done with safety:
(3). But inflammable matter, when carried on any steamthe boiler, and from be stowed away as far as possible from
(4). No fire nom places where its ignition is possible:
light by which fire any lighted lamp, candle, or other artificial any stateroom of any pe communicated, shall be allowed in thercof unless in a locked enger steamboat, nor in the stecrage 40. Every steamboat and glazed lantern. least three double-acting carrying passengers, shall have at leust four inches in diameter, one by stcam, if steam can be cmpo worked by hand, and not worked by the main encine, othoyed independent of and -one whereof shall be placed, otherwise, all three by hand, stem, and one amidships, naced near the stern, one near the hose of at least two-thirds the having a suitable well-fitted all times in perfect order, cleargth of the steamboat, kept at ticns, with hose compled and ear freight or other obstrucpump and coupling shall ready for immediate use; each chained to the same, and be provided with a hose-wrench supplied with water by a pipe the said pumps shall be passing through the sides of the connected therewith, and all times in the water when the steamboat, so low as to be at
(2). Provided, that when the boat is afloat.
dred tons gross (that is steamboats not exceeding two hunpumps (one of which engine-room included) two of such dispensed with, and in steamboats the steam-pump) may be but not exceeding five hundred tons over two hundred tons, pumps may be dispensed with; but gross, one of such handshall be of such length as to reach in these cases the hose steamboat; and in steamboats whe easily to every part of the such pump shall be placed where directy one pump is used, (3). And in cases where an iron tube by the inspector: diameter to the hose carried by the steambe or tubes equal in a force-pump or pumps, and by the stcamboat, connected with length of the steamboat is extending at least one-half of the deck thereof, and provided with fixed under the hurricane not more than thirty feet with nozzles placed at distances of of the steamboat-to which each other or from either end steamboat can be readily attached the hose carried by the that the hose should be of greater -it shall not be necessary to reach from some one of sueh nozit than will be sufficient steamboat: each nozzle shall be prozides to either end of the
stop cock, so that one or more of such hose attachments may be used, as may be required:
(4). In steamboats under one hundred tons gross, one steam pump of suitable size, or if steam cannot be employed, one force-pump of suitable size worked by hand, shall be sufficient:
(5). In steamboats not exceeding two hundred tons gross requiring only coe pump, such pump shall be placed aft, unless the space forward is kept free to admit of ready access to the pump and hose, in which case the pump may be placed
forward.
40. Every steamboat of more than sixty tons, registered tonnage, carrying passengers, shall also be provided with a steam pony-pump that may be used as a fire-engine, to be worked independently of the main engine; such steam pony-pump shall be placed on the main deck of the vessel, as near as possible to the engine room, convenient to the control of the engineer; and in all cases the pump hose shall be coupled to the pony and hand fire-pumps, ready for immediate use in case of fire.
41. Every steamboat carrying passengers on the main or lower deck, shall be provided with sufficient means convenient to such passengers for their escape to the upper deck, in case of fire or other accident endangering life.
42. On board every steamboat carrying passengers there shall be placed in some conspicnous place, aocessible to all the passengers, a copy of this Act, and in every cabin, stateroom and in other conspicuous places about the vessel, a printed paper (to be provided and filled up by the owner or master of the steamboat) showing the number of boats, with their capacity, and also the number of fire-buckets, axes and lifepreservers and floats on board of such steamboat, and the method of sdjusting such life-preservers to the body, and a statement of the places where such buckets, axes and lifepreservers are kept. The name of the steamboat shall be painted or stamped on all the boats, fire-bucirets and floats, axes and life-preservers.
43. The Governor in Council may, from time to time, make, alter or repeal rules and regulations requiring steamboats to carry chemical or other fire extinguishers, and prescribing the number of such fire extinguishers to be carried by steamboats of different sizes and classes respectively; and such rules and regulations being published in the "Canada Gazette," as required by this Act, shall, while in force, have effect and be enforced by the inspectors and others as if made

IONs.
ttachments may
ons gross, one ot be employed, hand, shall be
dred tons gross be placed aft, of ready access may be placed
, registered tond with a steam , to be worked m pony-pump ssel, as near as control of the 1 be coupled to nediate use in
on the main or ans convenient r deck, in case
ssengers there ssible to all the bin, stateroom ssel, a printed or or master of ts, with their axes and lifeboat, and the ie body, and a axes and lifeboat shall be ts and floats,
time to time, uiring steamguishers, and s to be carried ectively; and the " Canada in force, have ers as if made
under this Act ; and any contravention thereof shall be punishable as an offence against this Act.

ENGINEERS.

45. Any person claiming to be qualified to perform the -duties of an engineer in steamboats, shall apply for a certificate to the Board of Inspection, who shall examine, or shall -cause an inspector or inspectors to examine and report upon the applicant and the proofs that he produces in support of his claim; and any such examination may be upon oath, which any inspector may administer; and if upon full consideration the Board of Inspection are satisfied that his character, habits of life, knowledge and experience in the duties of an engineer are all such as to authorize the belief that the applicant is a suitable and safe person to be entrusted with the powers and duties of such a station, the said Board of Inspection shall give him a certificate to that effect under whe hand and seal of the Chairman, specifying the grade for which he has been found qualified; and the said certificate, conditions, be renst-class engineer, shall, subject to the above may be so renewed by yearly, or oftener if applied for, and the meetings of the Board; Chairman in the interim between -applicant shall pay the ; and for every such certificate the renewal five dollars, which of five dollars and for every General, as part of the Consolidate be paid to the Receiver that if the report of the inspector Revenue Fund: Provided, fitness of an applicant, be mader or inspectors certifying the Inspection is not sitting, it ade at a time when the Board of inspectors to the Chairman may be sent by such inspector or Board, who may thereupon or to the deputy Chairman of the to be in force only until the grant a certificate to the applicant and the fee paid by him shall next meeting of the Board; then obtain a certificate from thot be returned if he does not he shall not pay any further fee board, but if he obtains it
(2). But the license of any such ener:
by the said Board upon any such engineer may be revoked drunkenness, or upon the proof of negligence, unskilfulness or may also be revoked by thinding of a coroner's inquest, and vided such other cause be Board for any other cause, proof Marine and Fisheries, and cert sufficient by the Minister
(3). It shall not be lawful for any as such by him: engineer on any passenger steamboat or on to keep watch as boat over one hundred and fifty tons gross, any freight steamboat over one hundred and fifty tons gross, who does not hold
a certificate either from the Board or from the Chairman as: provided by this Act:
(4). It shall not be lawful for any person to act in the double capacity of engineer and master on any steamboat.
46. Engineers shall be classified according to the following. grades:

> First-class engineers, Second-class engineers, Third-class engineers:
(1). A first-class engineer shall be qualified to take charge of any steamboat:
(2). A second-class engineer shall be qualified to take charge of any freight steamboat, or of any other steamboat, except a seagoing passenger steamboat of more than one hundred nominal horse-power:
(3). A third-class engineer shall be qualified to take charge of any passenger steamboat of less than thirty nominal horsepower, or of any freight steamboat except a seagoing steamboat of more than one hundred nominal horse-power:
(4). Persons who hold certificates as first-class assistant engineers, or limited certificates as competent to take chargeof passenger steamboats for the year one thousand eight hundred and eighty-two, may, at any time after the passing: of this Act, exchange them for certificates as third-class engineers on payment of a fee of five dollars, which shall be paid to the Receiver General as part of the Consolidated Revenue Fund.
47. It shall not be lawful for any person to employ another as engineer, or for any person to serve as engineer, on any passenger steamboat, or on any freight steamboat of over one hundred and fifty tons gross, unless the person serving or employed as engineer is licensed by the said Board, for the grade in which he is to be employed, except as herein provided;: and any person so offering shall incur a penalty of one hundred dollars: Provided however, that if a steamboat leaves a port with a complement of engineers, and on her voyage is. deprived of their services, or the services of any of them, without the consent, fault or collusion of the master, owner or any one interested in the steamboat, the deficiency may be temporarily supplied until others licensed can be obtained.

Rules for the guidance of Inspectors of Steamboats examining

48. No person shall be qualified for a third-class engineer's certificate who is not over twenty-one years of age or who has not served an apprenticeship of not less than three years in a marine steam engine shop, and been employed on the making apprenticeship, such engines-or if he has not served such not less than three years as a journermas been employed for workshop, on the making and ourneyman mechanic in some either case, he must also have repairing of such engines; in engine room of a steamboat as served one calendar year in the must have served four years at engineer on the watch; or he steamboat as engineer on the watch; in the engine room of a a description of boilers, the methen; he must be able to give requisite strength of their several parts staying them, and the means of repairing them; he must parts, and must know the the engine, setting the eccentrics know the method of lining valves, and also the cause of any and adjusting the slides or of remadying it; he must write derangement and the means the first five rules of arithmetic: (2). A second-class engineer:
a third-class engineer with not shall have the qualifications of as such in the engine room of stess two years' experience thirty nominal horse-power, as en steamboats of not less than
(3). A first-class engineer, shall heer on the watch:
a second-class engineer, with not have the qualifications of experience on one or more steambo less than three years hundred nominal horse-power: he mof not less than one calculate the thickness of plate required for competent to dimensions and construction to required for a boiler of given and also the dimentruction to carry a fixed pressure of steam, thickness of plates being and construction of the boiler and allowed to carry; he mug given, the pressure that it may be its stays, connections, join be able to calculate the atrength of and crushing strength of th and other parts, and the tensile tion; he must be able to the materials used in its constructhe feed-pump, the area of the the required capacity of given dimensions, and the of the safety-valve for a boiler of of its working, and to the power of the engine from a diagram eccentrics as indicated befine the position of the crank and volumes of steam and wiagram: he must know the relative pressures, the chemical coter at different temperatures and imechanical equivalents, and the to coal, its heating and mechanical equivalents, and the quantity of air required for
its combustion: he must be competent to make a working. drawing of any part of an engine, and explain the operation of the engine or any of its parts in connection with the whole: he must be conversant with surface condensation and the working of steam expansi vely.
49. Any engineer who feels himself aggrieved by any order or act of an inspector may, within two weeks thereafter, appeal therefrom to the Board of Steamboat Inspection, or tothe Chairman when the Board is not sitting, who shall submit. the case to the Board at its next sitting; and the Board may confirm, modify or disallow such order or act; and any other person who feels himself aggrieved by any order or act of an inspector, may, within two weeks thereafter, appeal therefrom. to the Minister of Marine and Fisheries, who may confirm, modify or disallow such act or order.

INSPECTION FEES.

50. The owner or master of every steamboat in the Dominion of Canada, shall pay yearly, and every year, a rate or duty fixed by the Governor in Council, and not exceeding ten. cents for every ton gross which such steamboat measures; and the owner or master of every passenger steamboat exceeding one hundred tons gross, shall pay an inspection fee of eight. dollars for each inspection made imperative by this Act; and the owner or master of any passenger steamboat of one hun-dred tons and less, or of any other steamboat, shall pay an inspection fee of five dollars for each inspection made imperative by this Act:
(2). Aud for the purposes of this section every ton of the gross tonnage of a steamboat shall be reckoned, and noallowance or deduction shall be made for the space occupied by the engine room:
(3). The amount of such rate or duty and inspection feeor fees shall, in each case, be paid to and received by the chief officer of Castoms, at some one of the ports in the Dominion of Fanada, who shall account for and pay over the same to the Receiver General for the Consolidated Revenue Fund, at such. times and in such manner as the Governor in Council, may, from time to time, direct.
51. No inspector shall make or deliver a certificate respecting any steamboat under this Act, unless the receipt of a. chief officer of Customs for the rate or duty payable ir respect of such steamboat for the then current year, has been produced and shown to him, nor unless he is satisfied, by
rake a working. 1 the operation with the whole: sation and the
ed by any order eeks thereafter, nspection, or to ho shall submit. the Board may and any other ler or act of an ppeal therefrom. o may confirm,
rat in the Domyear, a rate or t exceeding ten t measures; and boat exceeding ion fee of eight. y this Act; and oat of one hun-tt, shall pay an n made impera-
wery ton of the koned, and nospace occupied
d inspection feeved by the chief n the Dominion the same to the e Fund, et such, n Council, may,
rtificate respectthe receipt of a. ayable ir respect year, has been is satisfied, by
careful examination, that all the conditions and requirements of this Act have been fulfilled and complied with, by and in respect of such steamboat; and every inspector shall report to some chief officer of Customs any case of omission to pay such rate or duty, or of omission to apply for such inspection as aforesaid, for more than one year from the date of the then last inspection, or of refusal to submit to inspection at any time, which in any way or at any time comes to his knowledge.
52. Each chief officer of Customs shall demand of the owner or master of every steamboat which he may have reason to think has not been inspected as required by this Act, or in respect of which he may have reason to think the rate or duty mentioned in section fifty of this Act is due and unpaid, the exhibition of the receipt and certificate in that behalf, appertaining to such steamboat; and if such receipt and certificate, as aforesaid, to his satisfaction, are not produced, then such chief officer shall seize and detain such steamboat until the same are produced and exhibited, and any penalty incיrred and lawfully imposed in respect of such steamboat under the provisions of this Act has been paid in full; and in default of payment, such chief officer shall sell such steamboat for the payment of such rate or duty or penalties, in the usual manner, and shali deal with the proceeds as if the penalties were incurred for violation of the Customs laws.

PASSENGERS.

43. The inspectors shall, in their certificate, prescribe the number of cabin or steerage or other passengers, that nay be carried by any steamboat inspected by them having regard to the dimensions or tonnage thereof, or both, or otherwise howsoever-subject to appeal to the Minister of Marine and Fisheries, whose decision shall be finai; and if such decision differs from that of the inspectors, they shall alter their certificate accordingiy.
44. Every inspector may, at any time, visit, within the limits assigned to him, any steamboat, and inspect and examine the same, and if he considers such steamboat unsafe or unfit to carry passengers, he shall report thereon to the Minister of Marine and Fisheries, who may direct that such steamboat shall not be used or run until permitted by the inspector, who shall have made such report, or by order of the said Minister; and any steamboat run or used in contravention of an order of the Minister shall be liable to forfeiture
and to seizure by the chief officer of Customs at any port, and to sale, in the same way and under like provisions as goods liable to forfeiture for non-payment of duties.
45. The master or owner of any steamboat in which a greater number of passengers than that allowed by her certificate is, at any time, carried, shall be guilty of an offence against this Act and shall, for each such offence, incur a penalty not exceeding five hundred dollars and not less than fifty dollars-to be recovered and appropriated in the manner provided by section sixty-six of this Act.
46. The master or person in charge for the time being of any steamboat, who shall, wilfully or negligently at any time, allow to be carried, on board such steamboat, a greater number of passengers than that permitted by her certificate, shall be guilty of a misdemeanor-and upon conviction thereof shall be imprisoned for two years in a penitentiary, or for a less term in any other prison or piace of confinement, or shall be subject to a fine not exceeding five hundred dollars, or shall suffer both fine and imprisonment within the above defined limits, as the court may order.

5\%. No tugboat shall be employed to tow any barge, or any boat, bateau, scow or undecked vessel having passengers on board, unless such vessel has been inspected by an inspector of hulls and equipment, and by him certified as provided in the Schedule C, hereunto annexed, to be fit and properly equipped to carry passengers on the waters on which sh. is so towed; and no such vessel shall, while so towed, have on board a greater number of passengers than she is certified as being fit to carry safely; and for any contravention of this provision, the master and the owner of the tugboat, and the owner and person in charge of such barge, boat, bateau, scow, or vessel carrying such passengers, shall each incur a penalty not exceeding two hundred dollars, and not loss than twenty dollars, to be recovered and appropriated in the manner provided in section sixty-six aforesaid.

MASTS AND SAILS-AND GANG-BOARIIS.

58. It shall be lawful for the Minister of Marine and Fisheries, from time to time, by regulations to be made, repealed or altered by him from time to time, and to come into force as provided by the eighth section of this Act, with respect to regulations made by the Board of Inspection, to rejuire that all or any description of steamboats above sixty tons registered tonnage, carrying passengers on the sea coasts of
of the Dominion, or on all or any of the waters of the Domnion, with the exception of that portion of the St. Lawrence between Quebec asd Kingston, and of the river connecting Lakes Erie and Huron, and of the waters between Kingston and the head of the Bay of Quinte, and the rivers in the Provinces of Nova Scotia and New Brunswick, and the tributary rivers flowing into the river St. Lawrence, or the lakes west of Quebec, and of any rivers or lakes not excecding one mile in width on any part thereof on the route of such steamboats, respectively, shall, at all or any seasons of the year, be provided with a mast or masts, and sail or sails, suitable for such steamboats, and to prescribe the dimensions of such mast or masts, and sail or sails respectively.
59. Every steamboat or vessel carrying passengers shall be provided with good and sufficient gang.boards, protected at the sides in a suitable manner against danger to passengers from falling overboard; and the master of such steamboat or vessel shall, on stopping at any wharf or landing-place, cause a gang-board to be firmly secured to the vessel for the safe and convenient transit of passengers; and he shall cause to be affixed to such gangway (in the night time) good and sufficient lights.
60. The owner or occupier of every such wharf or landing place, shall also (in the night time) cause to be shown conspicuously, on such wharf or landing-place, and at every angle or turn thereof, during the whole of the time that any steamboat or vessel is approaching the same or stopping thereat, a good and sufficiert light.
61. For the purposes of the two next preceding sections of this Act, the night shall be deemed to extend from one hour after sunset till one hour before sunrise, at all seasons -of the year.
62. Any person commanding or having charge of any steamboat, schooner or other vessel, navigating the waters of Canada, and any owner or occupier of a wharf or landingplace, who offends against the fifty-ninth or sixtieth sections of this Act, shall be liable to a penalty of twenty dollars und costs, and in default of payment to imprisonment for a period of not more than twenty days, unless such penalty and costs are sooner paid.
63. The owner or owners of any steamboat or other vessel, or the owner or occupier of any wharf or landing-place, the person commanding or in charge of rehich neglects to comply with the provisions of the fifty-ninth or sixtieth sections. of this Act, shall be liable for all damages sustained by any
person or persons from any accident arising from non-compliance with the provisons of this Act, or during sunh time as the provisions of this Act are not complied with-such damages to be recoverable at law, before any of IIer Majesty's superior courts of common law in the province in which such. accident happens.

MISCELLANEOUS PROVISIONS.

64. If any damage to any person or property is sustained in consequence of the non-observance of any of the provisions of this Act, imposing any duty on the owner or master of any steamboat, the owner shall, in all civil proceedings, and the master or other person having charge thereof shall, in all proceedings, whether civil or criminal, be subject to the legal consequences of such default:

And any inspector wilfully, or through any culpable negligence of duty, making or confirming any false statement in any certificate under this Act shall thereby incur a penalty of two hundred dollars.
65. Except when otherwise specially provided, for every contravention in respect of any steamboat in the Dominion of Canada, on any one voyage or trip thereof, of any provision in this Act, or in any Order in Council made under it, the owneror master thereof shall incur a penalty of not more than two hundred and not less ihan twenty dollars; and any inspectorof steamboats is hereby empowered to detain any steamboat on board or in respect of which the provisions of this Act have not been fully complied with, or of which the boilers or machinery or the hull, by reason of any injury or other cause, have, in his opinion, become unsafe; and in case any such inspector gives notice in writing to any chief officer of Customs that any of the provisions of this Act have not been fully complied with in respect to any steamboat, such chief officer of Customs shall not grant any clearance, coasting license or other document for such steamboat, unless nor until he receives the certificate in writing of such inspector, to the effect that such provisions have been fully complied with in respect to such steamboat.
66. All penalties incurred under this Act may, when other provision is not made in the case, be recovered with costs in a summary manner under the Act thirty-second and thirtythird Victoria, chapter thirty-one, in the name of Her Majesty, by any inspector or by any party aggrieved by any act, neglect or omission, on the evidence of one credible witness, who may
be the prosecating inspector himself, before any Judge of the County Court, Judge of the Sessions of the Peace, Stipendiary or Police Magistrate, or two Justices of the Peace; and in default of immediate payment of such penalty, such magistrate or justices may commit the offender to gaol for any period not exceeding three months, unless such penalty be sooner paid; and one moiety of all penalties recovered under this Act shall be paid to the Receiver General, and shall be, by him, placed to the credit of the Consolidated Revenue Fund, and the other moiety shall belong to the informer unless he is the prosecuting inspector-in which case the whole shall be paid to theReceiver General for the said fund.
67. The Governor may, whenever he thinks fit, order an investigation to be made by any person or persons to be appointed for that purpose, into the cause of any accident involving loss of life on any steamboat; and the person or persons so appointed may summon witnesses and compel their attendance before him or them by the same process as courts of law, and may administer oaths and examine witnesses touching the cause of such accident, and report thereon tothe Governor.
68. The Chairman of the Board of Steamboat Inspection shall, at the ond of each calendar year, furnish the Minister of Marine and Fisheries with a report of the proceedings of the Board, and a return of all steamboats inspected, and of all penalties collected under the provisions of this Act:
(2). And each inspector shall make monthly returns to theChairman of the said Board of all steamboats inspected by him, their tonnage and power, with general descriptions of their machinery and hulls, and a statement of the fees collected upon the same.
69. The foregoing provisions of this Act shall come into force and take effect on, from and after the first day of September in the present year, one thousand eight hundred and eighty-two; except that any appointment or arrangement for carrying out this Act may be made before the said day to

SCHEDULE A.

Certificate for a steamboat to carry passengers, or a freight steamboat of or over 150 tons gross.

Having examined the hull and equipment of the steamboat (name) of owners, and of

whereof

is master, on this
is (or are)
A. D. 18 .
day
The particulars of her gross and register tonnage, as shown on her certificate oi registry, being as follows:
Tonnage under tonnage deck
TONS.
Houses on deck (naming them)
Total gross tonnage
Deduct for engine room
Register tonnage
I (inspector's name) inspector of hulls and equipment, do hereby certify that her hull is in all respects staunch, seaworthy and in good condition for navigation, that the equipment of the vessel throughout is in conformity with the requirements of "The Steamboat Inspection Act, 1882," the said steamboat having on board, properly placed and in yood order for immediate service:
(Number) boats having a carrying capacity for persons; life boats having (together) a carrying capacity for persons; life-preservers; wooden floats; axes; lanterns; fire buckets; chemical fire extinguishers, and one life buoy having a proper heaving line attached: And I declare it to be my deliberate conviction, founded on the inspection I have made, that the said steamboat, as regards her hull and equipment, may be employed on the waters hereinafter specified, without peril to life from any imperfections of or in materials, workmanship or arrangement of the several parts, or from age or use.

And I, (inspector's name) inspector of boilers and machinery, do hereby certify that the engine, boiler and machinery of the said steamboat are sufficient and suitable to muthorize her being lawfully employed in the carriage of passengers, (or as a freight boat, or as a ferry-boat, as the case may be) without hazard to life on the route on which she is to be placed as hereinafter mentioned; that the engine of the said steamboat is of her boiler can carry with safety pressure per square inch, and no more;
pounds of steam And we further certify that the said to run on the waters between (here insteamboat is permitted. which the steamboat is to be emere insert the places between seasons or period of time during which in running, and the and for which the certificate is granted) she may be so employed and fit to carry (here insert the ned) and that she is adapted more (as the case may be). Date (of time and place.)

> A. A. B., Inspector of hulls and equipment. Inspector of boilers and machinery. SCHEDULE B.

Certificate for a freigit boat under 150 tons gross, or a tugboat, fishing boat, ol pleasure yacht, steam dradye, or elevator, or like vessel.
Having examined the boiler and machinery of the steamboat (name or as the case may be) of whereof is owner (or are owners) and day of
The particulars of her gross and regist on her certificate of registry, being as follows: tonnage, as shown.
Tonnage under tonnage deck
TONS.
Houses on deck (naming them)
Total gross tonnage.
Deduct for engine room
Register tonnage
(If not registered omit this statement of tonnage.)
I (inspector's name) inspector of boilers and machinery, do. hereby certify that her engine, boiler and machinery, are sufficient for a freight boat under 150 tons (or as the case may. $b e$) and may be so used without hazard to life; that the engine and that the boiler of the said (steamboat) can carry with safety square inch of pounds (here insert number of pounds) per square inch of steam pressure, and no more: and that she attached and so ple life buoy, having a proper heaving line required.
Date (time and placej. \qquad

SHEDULE C.

Certificate for a barge, boat, bateau or scow, to carry passengers in tow of a tug steamboat.

I (inspector's name) inspector of hulls and equipment, having examined the barge, boat, bateau or scow (as the case may be) of whioh is owner and is master (or the person in charge) on this A. D. 18 , do hereby certify that the said vessel is fit, safe and properly equipped in all respects to carry passengors in tow of a tugboat, on the waters (here describe the locality on which she is to be employed) and that she is provided with one life buoy having a proper heaving line attached, and so placed as to be ready for immediate use.

Date (time and place.)

A. B., Inspector of hulls and equipment.

47 VICTORI * -CHAP. 20.

AN ACT TO AMEND "THE STEAMBOAT INSPECTION ACT, 1882," BY REDUCING THE FEES PAYABLE ON RENEWAL OF ENGINEERS' LICENSES.

(Assented to 19th April, 1884.)

Her Majesty, by and with the advice and consent of the Senate and House of Commons of Canada, enacts as follows:

1. The fee payable on the renewal of an engineer's certificate, under section forty-five of "The Steamboat Inspection Act, 1882," shall be one dollar, instead of five dollars, as mentioned in the said section, which is hereby amended accordingly.

In amendment of "The Steamboat Inspection Act, 1882," Her Majesty, by and with the advice and consent of the Senate and House of Commons of Canada, enacts as follows:

1. Section forty-six of the said Aet is amended by inserting after "third-class engincers," in the first sub-section, the words " fourth-class engineers;" and by adding the following as sub-section five of the said section:
"(5). A fourth-class engineer may act in the capacity of second engincer to a second-class engineer or third-class engincer, on any freight steamboat, or any other steamboat except a sea-going passenger steamboat of more than one hundred nominal horse-power, but shall not act as chief engineer on any steamboat requiring under this Act engineers bolding certificates."
2. Section forty-eight of the sanu Act is amended by adding the following to the first sub-section as part thereof:
"No person shall be qualified for' a fourth-class engineer's certificate who is rot over twenty-one years of age, and who has not served as apprenticeship of not less than thirty-six months in a steam engine shop, and been employed on the making and repairing of steam engines; or, if he has not served such apprenticeship, he must prove that he has been employed for not less than thirty-six months as a journeyman mechanic in some workshop on the making and repairing of steam engines; or he must have served at least thirty-six months in the engine room of a steamboat as engincer on the watch; or he must have served not less than forty-eight months in the fire-hold of a steamboat of not less than thirty nominal horse-power, as fireman on the watch; and in any prescribed above mentioned cases twelve months of the time making and may have been served in a boiler shop on the read, and repairing of steam boilers; he must be able to the construction write a legible hand; he must understand water-gauges and safe operation of the feed water-pump, is foaming, and how ty-valves; he must know when a boiler from neglect to keep a stop the foaming; also the danger sleanizatitiol kep a boiler clean, and the nemal methods oi
3. The forty-fifth section of the said Act is amended by adding the following thereto as sub-section five thereof:
"(${ }^{(0 .)}$.) Any person claiming to be qualified to perform the duties of a fourth-class engineer may apply for a certificate as such to the Chairman of the Board of Inspectors, who may examine or cause an inspector to examine him and the proofs he produces in support of his claim, and any such examination may be on oath, which any inspector may administer; and if the Ohairman is satisfied that the character, habits of life, knowledge and experience in the duties of the position of the applicant, are such as authorize his granting the applicant a certificate, he may do so, and such certificate shall be renewable yearly; and for every such certificate the applicant shall pay the sum of five dollars, and for every renewal thereof one dollar; and the said sums shall be paid and applied in the manner provided in the first sub-section of this section; and the said certificate shall be snbject to be revoked for the same causes and subject to the same conditions and consequences, as the license or certificate of an engineer of any other class. under sub-section two of this section.

49 VICTORIA-CHAP. 34. AN ACT FURTHER TO AMEND "THE STEAMBOAT INSPECTION
ACT, 1882." (Assented to 2nd June, 1888.)

Whereas it appears by a despatch from Her Majesty's: Secretary of State for the Colonies, and other documents laid before Parliament by His Excellency the Governor General, that the Board of Trade of the United Kingdom have reported to Her Majesty that they were satisfied that the examination under the Canadian laws of persons applying for certificates of competency as engineers on board sea-going steamboats orvessels propelled wholly or in part by steam, are so conducted as to be equally efficient with the examinations for the like purpose under the Imperial Acts relating to merchant shipping, and are granted on such principles as to show like qualifications and competency as those granted under the said Imperial Acts, and are liable to be forfeited for the same reasons and in the like manner; and that Her Majesty will be advised to extend the provisions of the Order in Council made under the "Merchant Shipping (Colonial) Act, 1869," and dated the twenty-ninth day of June, one thousand eight hundred and eighty-two, making the colonial certificates of competency granted by the Minister of Marine and Fisheries in Canada to persons intending to act as masters or mates on board British sea-going ships of the same force as if they had been granted funder the said Imperial Acts, to certificates of competency as first-class or second-class engineers for sea-going British ships; and in view of such extension it is expedient to amend the said. "Steamboat Inspection Act, 1882," as hereinafter mentioned: Therefore Her Majesty, by and with the advice and consent of the Senate and House of Commons of Canada, enacts as follows:

1. Certificates of competency granted under "The Steamboat Inspection Act, 1882," to persons examined and found qualified under it as engineers, shall hereafter be granted by the Minister of Marine and Fisheries, instead of the Board of Inspection, and shall be on parchment and signed by the said Minister instead of the Chairman of the said Board; and any such certificate in force at the time of the passing of this Act, may be delivered up by the holder thereof to the said Minister, who may therenpon give to the holder a certificate on parchinent and signed as hereby required.
2. Every certificate of competency to which it is intended that the said order of Her Majesty in Council shall apply, shall have the word "ccanada" inserted prominently on its face and back, and shall be as nearly as possible similar in shape and form to corresponding certificates of competency for the foreign trade granted by the Board of Trade under the Acts relating to merchant shipping, and shall be numbered in consecutive order:
(2). Such certificate shall be granted only on proof that theprevious service at sea of the person applying for the same has been such as is required by the regulations for the time being in force in the United Kingdom with respect to certificates of like grade:
(3). Every such certificate of competency shall be subject to be suspended or cancelled by the Board of Trade for like offences or causes and in like manner, as certificates granted under the Imperial Acts relating to merchant shipping, all
the provisions whereof or of any order of Her Majesty in Council made under them shall apply to such certificatesor to be revoked for cause by the Minister of Marine and Fisheries under the provisions of the Act hereby amended.
3. Certificates of competency as first or second-class engineers in sea-going ships, granted under the Imperial Acts relating to merchant shipping, shall, after the time of the coming into force of the order of Her Majesty in Council referred to in the preamble to this Act, and while in force under the said Imperial Acts, be of the same force and effect in Canada as if grantod under the Act hereby amended, but suhject to be forfeited for canse, as respects ships to which "The Steamboat Inspection Act, 1882," applies, as if granted under the said Canadian Act.
4. The rections hereinafter referred to as amended are those of "The Steamboat Inspection Act, 1882."
5. Section nine is so aniended that is shall read and have effect as follows:
" 9 . The Chairman of the Board of Steamboat Inspection, who shall also be the supervising inspector, may at any time, inspect or examine the hull, equipment, boiler, and machinery of any steamboat, and if he suspects any inspector of having neglected his duty in relation to such steamboat, or in any other respect, he may call a meeting of the Board to investigate the case, or may himself investigate it; and the result of such in vestigation shall be forthwith conmmunicated in writing to the Minister of Marine and Fisheries: he shall receive and examine all reports and accounts of inspectors, and report fully to the Minister upon all matters pertaining to his official duties, so as to ensure, as far as possible, a uniform and efficient administration of the inspection laws, rules and regulations."
6. The first sub-section or paragraph of section sixteen is so amended that it shall read and have effect as follows:
"16. If the inspector of hulls who inspects any steamboat in the manner required by this Act, approves the hull and equipment of such steamboat, he shall sign a certificate in triplicate according to the form A in the schedule to this Act, and such triplicate certificate shall be delivered by him to the inspector of bcilers and machinery for the same district, who, when he has inspected and approved the boilers and naachinery of the steamboat, shall make and sign in triplicate upon the same sheet of paper, a certificate according to the form A, in the said schedule, and shall deliver two of the

IONS.
Ter Majesty in h certificatesof Marine and y amended. or second-class Imperial Acts 1θ time of the sty in Council while in force orce and effect amended, but hips to which as if granted amended are ead and have pat Inspection, y at any time, and machinery tor of having at, or in any ard to investia the result of ted in writing tll receive and rs, and report ; to his official uniform and vs, rules and
ion sixteen is follows:
un steamboat the hull and certificate in odule to this vered by him same district, e boilers and in triplicate rding to the r two of the or master of
the steamboat, who shall deliver one triplicate to the chief officer of Customs as aforesaid, and shall cause the other to be posted up, framed and protected by glass," in some conspicuous part of the steamboat for the information of the public; and the inspector of boilers and machinery shall retain the other triplicato for the parposes of this Act."
7. Sub-section four of section sixteen is so amended that it shall read and have effect as follows:
"(4). Each inspector shall keep a register of the inspections and certificates made and granted by him, in such form and with such particulars respecting them, as the Chairman of the Inspection Board shall, from time to time, require, and shall furnish copies thereof to the Chairman when required."
8. Sub-section three of section seventeen is amended by inserting the word "eir strength compared with "after the words "accordinf", in the eighth line thereof:
anserting the secti" "urr of section seventeen is amended by the words "according to" in strength compared with" after
(3). The first par to in the seventeenth line thereof:
seventeen is so amended the of sub-section seven of section follows:
"(\%). The exterual working pressure to be allowed on plane circular iron furnaces and flues subjected to such pressure, When the longitadinal joints are welded or made with a buttstrap, shall be determined by the following formula:"
9. Sub-section thirteen of section seving formula:"
that it shall read and heen of section seventeen is so amended
"(13). Donkey boilers effect as follows:
with a safety valve which may be locked un," be provided 10. Sub-section two of may be locked up."
it shall read and have effect as foun nineteen is so amended that ('(2). The boiler cocks and follows:
shall be substantially made valves attached to the boilers attached to the boilers by screwing in no case shall they be an additional security, bolted flanges be the plate, unless, as nages be used in addition to
11. Sub-section four of section nineteen is so amended that it shall read and have effect as follows:
'(4). The lock-up safety valves shall be of a construction approved by the Board of Steamboat Inspection-such valves to be tested and proved by an inspector beforé use; and no inspector shall grant a certificate to any steamboat unless the boiler, or each boiler if more than one, of such steamboat,! be provided with a safety valve."
12. Sab-section two of section thirty-two is hereby repealed.
13. Each life-preserver required by section thirty-five shall have a buoyancy equal to sustaining twenty-three pounds of iron immersed in water.
14. The following provision is hereby added to the first sub-section or paragraph of section thirty-nine, after the words "in use on board:"-" and no coal oil lamp shall be used between decks on any passenger steamboat in which hay or other inflammable material is carried, under a penalty of one hundred dollars for each contravention of this provision, nor shall an coal oil which will not bear a test of three hundred degrees Fahrenheit without taking fire be used on any passenger steamboat."
15. So much of section forty-five as requires that the certificate of any engineer shall be subject to renewal, vearly or otherwise, is repealed, as is also so much of the said section as authorizes the Board of Inspection to grant any such certificate, and every certificate bereafter granted shall be for life or during good conduct, and shall be signed by the Minister of Marine and Fisheries; and for every such certificate granted on the delivery up under section one of this Act of an unexpired certificate, or on the expiration of the term for which any certificate was granted, the applicant shall pay one dollar, but the sum payable for the first certificate to an engineer of any class, or for a certificate raising him to a higher class after re-examination, shall be as now, five dollars; and the said sums shall be paid and applied as provided in the said section forty-five.
16. Sub-section four of section forty-six is hereby amended by adding after "as" in the first line the words "second or third-class engineers or as."
17. Section fifty-two is sc amended that it shall read and have effect as follows:
" 5%. Each chief officer of Customs shall demand of the owner or master of every steamboat entered, cleared or otherwise officially dealt with by such officer, the production of the certificate of inspection of such steamboat and of the receipt for the payment of the rate or duty mentioned in section fifty of this Act, in respect of such steamboat; and if such certificate and receipt are not so produced, then such chief officer:shall seize and detain the said steamboat until the same are produced and exhibited, and any penalty incurred and lawfully imposed on such steamboat under the provisions of this Act, has been paid in full; and in default of payment

IONS. 0 is hereby re-thirty-five shall hree pounds of
led to the first nine, after the lamp shall be nboat in which inder a penalty f this provision, a test of three ire be used on nires that the enewal, vearly the said section rant any such ted shall be for by the Minister tificate granted it of an unexrm for which pay one dollar, an engineer of a higher class llars; and the d in the said
reby amended is "second or
hall read and
emand of the ared or otherproduction of t and of the mentioned in nboat; and if d, then such samboat until nalty incurred the provisions t of payment

MANUAL OF ENGINEERS' CALCULATIONS. 309 such chief officer shall sell such steamboat for the payment of such rate or duty and penalties, in the usual manner, and shall deal with the proceeds as if the penalties were incurred for violation of the Customs laws."
18. Section thirty-six is so amended that it shali read and have etfect as follows:
"36. A cork jacket with shoulder straps and waist lines for fastening the same around the body, or such other description of life-preservers as the Governor in Council approves, shall be the form of life-preserver to be used on passenger steamboats."
19. Schedule A of the said Act is so amended that it shall read and have effect as follows:

SCHEDULE A.

"Certificate of the Inspector of Hulls and Equipment, for a stcamboat to carry passengers, or a freight boat of or over 150 tons gross.
"Having examined the hull and equipment of the steamboat (name), of , whereof is (or are) owner (or owners) and, is master, on this (or are) owner
"The particulars of her gross and register tonnage, as shown on her certificate of registry being as follows:
Tonnage under tonnage deck.
Honses on deck (naming them).
Total gross tonnage.
Deduct for engine room
Register tonnage
"I (inspector's name), inspector of hulls and equipment, do hereby certify that her hull is in all respects staunch, sea-worthy and in good condition for navigation; that the equipment of the vessel throughout is in conformity with the requirements of "The Steamboat Inspection Act, 1882," the said steamboat having on board, properly placed and in good order for immediate serrice--
" (Number) boats, having together a carrying capacity for persone; capacity for perso lifeboats, having (together) a carrying floats; fire buckets; life-preservers; $\begin{array}{r}\text { wooden } \\ \text { axes; }\end{array}$ one life buoy having a proper heaving line attached; and
that she has the fire-pumps, hose and other appliances for extinguishing fire, required by the said Act, and placed as therein provided, and in every way efficient and according to the requirements of the said Act; aud I further certify that the said steamboat is permitted to run on the waters between (here insert the places between which the steamboat is to be employed in running, and the season or period of time during whitel she may be so employed, and for which the certificate is granted, and if she is a passenger steamboat, add: and that she is adapted and fit to carry (number) passengers and no more (as the case may be).
" Date (time and place).
A. B.,

Inspector of Hulls and Equipment.
"Certificate of the Inspector of Boilers and Machinery for the same Steamboat.
"And I (inspector's name), inspector of boilers and machinery, do hereby certify that the engine, boiler and machinery of the steamboat (name) are sufficient and suitable to authorize her being lawfully employed in the carriage of passengers (or as a freight boat, or as a ferry boat, as the case may be), without hazard to life, on the route on which she is to be placed, as hereinafter mentioned; that the engine of the said steamboat is of nominal horse-power, and that her boiler can carry with safety pounds of steam pressure per square inch, and no more.
"Add the certificate as to the waters on which the steamboat is to run, as in the certificate of the inspector of hulls and equimment.
"'Date (tine and place).
C. D., Inspector of Boilers and Machinery.
20. Nothing in this Act shall invalidate or affect any inspection made or certificate of inspection granted in conformity to the Act hereby amended, before the passing of this Act.

RULES AND REGULATIONS

FOR THE CONDUCT OF STEAMBOAT INSPECTORS AND FOR THE

 INSPECTION OF STEAMBOATS.
BOLLERS.

1. When cylindrical boliers or the cylindrical parts of boilers composed of iron plates are made of the best material with all the rivet holes drilled in place and all the seams fitted with double butt-straps, each of at. least $\frac{5}{8}$ the thickness of the plates they cover, and all the seams at least double rivetted with rivets having an allowance; of not more than seventy-five per cent over the single shear, and provided that the boilers have been open to inspection during the whole period of construction, then four nay be used as the factor of safety. The tensile strength of the material is to be taken as equal to 48,000 pounds per square inch with the grain, and 42,000 pounds across the grain. When the above conditions are not complied with, the addition, in the following scale, must bo added to the factor according to the circumstances of each case.

A $|$\begin{tabular}{c|c}

.15 \& | To be added when all the holes are fair and good |
| :--- |
| in the longitudiual seams, but drilled out of |
| place after bending. |

To be added when all the hales are fair and good

in the longitudinal seams, but drilled out of

place before bending.
\end{tabular}

F	. 1	
		the circuinferential seams, but drilled out of place after bending.
G	. 15	To be added if the holes are fair and good in the circumferential seams, but drilled before berding.
H	. 15	To be added if the holes are t.iir and good in the ciroumferential seams, but punched ufter beuding.
I	. 2	To be added if the holes are fair and good in the circumferential seams, but punched before bending.
J*	. 2	To be added if the boles are not fair and good in the circumferential seams.
K	. 2	To be added if double butt-etraps are not fitted to the longitudinal seams, and the said seams are lap and double rivetted.
L	. 1	To be added if double butt-straps are not fitted to t.he longitudinal seams, and the said seams are lap and treble rivetted.
M	. 3	To be added if only single butt-straps are fitted to the longitudinal seams and the said seams are double rivetted.
N	. 15	To be added if only single butt-straps are fitted to the longitudinal seams, and the said seams are treble rivetted.
0	1.	To he added when any description of joint in the longitudinal seams is single rivetted.
' $\mathrm{P} \ddagger$. 1	To be added if the circumferential seams are fitted with single butt-straps and are double rivetted.
Q \downarrow	. 2	Co be added if the circumferential seams are fitted with single butt-straps and are single rivetted.
$R \ddagger$. 1	To be added if the circumferential seams are fitted with double butt-straps and are single rivetted.
S \ddagger	. 1	[o be added if the circumferential seams are lap joints and are double rivetted.
T	. 2	To be added if the circumferential seams are lap joints and are single rivetted.
U	. 25	To be added when the circumferential seams are .lap, and the strakes of plates are not entirely under or over.

ir and good in drilled out of
d good in the 1 before bend-
d good in the anched ufter
d good in the nched before
r and good in
re not fitted le said seams
e not fitted to e said seams aps are fitted e said seams
ps are fitted e said seams
joint in the ed.
al seams are are double
l seams are d are single l seams are d are single
ams are lap
ams are lap
l seams are not entirely

To be added when the boiler is of such a length as to fire from both ends, or is of unusual length, such as flue boilers; and the circumferential seams are fitted as described opposite P, R and S, but of course when the circumferential seams are as described opposite Q and T, V . 3 will become V. 4.
W* . 4 To be added if the seams are not properly crossed.
To be added when the iron is in any way doubtful, and the inspector is not satisfied that it is of the best quality.

1. To be added if the boiler is not open to inspection during the whole period of its construction.

The strength of the joints is found by the following
(Pitch—Diameter of rivets) $\times 100$
Pitch $=$

percentage of strength of
plate at joint as compared
with the solid plate.

(Area of rivets \times No. of rows of rivets) $\times 100$

$$
\begin{array}{ll}
\text { Pitch by thickness of plate } & =\text { percentage of } \\
& \text { strength of riv- } \\
\text { ets as compared } \\
\text { with the solid } \\
\text { plate. } \dagger \dagger
\end{array}
$$

Where marked * the allowance may be increased still further if the workmanship or material is very doubtful or unsatisfactory.
$\dagger \dagger$ If the rivets are exposed to double shear multiply the percentage as found by 1.75 .
\dagger When surveying boilers that have not been open to inspection during construction the case should be submitted to the Chairman as to the factors to be used.
P $\ddagger, 1, Q \ddagger .2, R \ddagger .1$, S $\ddagger .1$, shall not apply to the eud or circumferential seams, if such seams are sufficiently stayed by through bolts; nor to the seams between the squars and round part of shell, in cylindrical boilers with square furnaccs, when such seams are double rivetted.

Then take iron as equal in tensile strength to 48,000 pounds per square inch and use the smallest of the two percentages as the strength of the joint, and adopt the factor of safoty as found from the preceding scale:
(48,000 \times percentage of strength of joint) \times twice the thickness of the plate in inches

Inside diameter of boiler in inches x factor of safety $=$ pressure to be allowed per square inch on the safety valves.
For steel plates of the best quality the tensile strength may be taken as equal to 60,000 pounds per square inch, using the same factor of safety.

Plates that are drilled in place must be taken apart and the burr taken off and the holes slightly countersunk from the outside.

Butt-straps must be cut from plates and not from bars, and must be of as good quality as the shell plates, and for the longitudinal seams must be cut across the fibre.

The rivet holes may be punched or drilled when the plates are puncher or drilled out of place, but when drilled in place must be taken apart and the burr taken off and slightly countersunk from the outside.

When single butt-straps are used and the rivet holes in them punched they must be one eighth thicker than the plates they cover.

The diameter of rivets must not be less than the thickness of the plates of which the shell is made, but it will be found when the plates are thin, or when lap joints or single buttstraps are adopted that the dianeter of the rivets should be in excess of the thickness of the plates.

The distance of the rivet holes from the ends or edge of the plates shall not be less than the diameter of the rivet.

Dished..ends that are not truly hemispherical must be stayed; if they are not theoretically equal in strength to the pressure needed they must be stayed, as flat surfuces, but if they are theoretically equal in strength to the pressure needed the stays may hare a strain of $10 ; 000$ pounds per effective square inch of sectional area.

Inspectors will remember that the strength of a sphere to resist internal pressure is double that of a cylinder of the same diameter and thickness.
2. The neutral parts of boiler shells.
ust be sufficiently stiffened and stayed.

The sides of boilers having square furnaces and half round tops must be stayed from side to side of the shell, over the furuace, one or more rows of these stays to be placed well above the centre of the cylindrical part.'

Screw stays are not to be used when supporting flat surfaces at any angle but a right angle to the surface supported, their diameter to be measured inside the thread.

The longitudinal seams in the eylindrical shell of boilers should be us far as possible from the bottom.
The inside diameter of the outside strake or course in the cylindrical shell of a boiler is to be taken as the measure of its diameter.
3. In cylindrical superheaters the strength of the joints and the factor of safety is found in a similar manner as for cylindrical boilers and steam receivers, but instead of using 48,000 pounds as the tensile strength of iron, 24,000 pounds is adopted, unless where the heat or flame impinges at or nearly at right angles to the plate, then 18,000 pounds is substituted.

In all cases the internal steam pipes should be so fitted that the steam in flowing to them will pass over all the plates exposed to the impact of heat or flame.

Superheaters or water jackets shonld, as regards inspection, be deemed to be the most important part of the boilers and must be inspected inside and outside; those that cannot be entered (on acconnt of their size) must have a sufficient number of doors through which a thorough inspection of the whole of the interior can be made.
Special attention should be paid to the inspection of superheaters, as with high pressure the plates nay become dangerously weak and not give any sound to indicate their state when tested with the hammer; the plate should therefore be occasionally drilled. Drain pipes must be in all cases fitted to superheaters in which a collection of water in the bottom is possible.

Superheaters that can be shut off from the main boilers must be fitted with a Government lock-up safety. valve of sufficient size, but the least size passed shall not be less than three inches diameter.
4. The areas of diagonal stays are found in the following

Find the area of a direct stay needed to support the surface;; multiply this area by the length of the diagonal etay and divide the product by the length of a line drawn at right angles to the surface supported to the end of the diagonal
stay, the quotient will be the area of the diagonal stay required.
5. When the tops of combustion boxes or other parts of a boiler are supported by solid reetangular girders, the following formula, which is used by the Board of Trade, will be useful for finding the working pressure to be allowed on the girders, assuming that they are not subjected to a greater temperaturo than the ordinary heat of steam, and are further sustained by hanging stays, as provided by sub-section twelve of section seventeen of the Act, and in case of combustion chambers, that the ends are fitted to the edges of the tube plate and the back plate of the combustion box:

$$
\frac{0 \times d^{2} \times T}{(W-P) D \times L}=\text { Working pressure. }
$$

$\mathrm{W}=$ Width of combustion box in inches.
$\mathrm{P}=$ Pitch of supporting bolts in inches.
$\mathrm{D}=$ Distance between the girders from centre to centre in inches.
$\mathrm{L}=$ Length of girder in feet.
$d=$ Depth of girder ir inches.
$\mathrm{T}=$ Thickness of girder in inches.
$0=$ Five hundred when the girder is fitted with one supporting bolt.
$0=$ Seven hundred and fifty when the girder is fitted with two or three supporting bolts.

C=Eignt hundred and fifty when the girder is fitted with four supporting bolts.

The working pressure for the supporting bolts and for the plate between them, shall be determined by the rule for ordinary stays.
6. The flat end of all boilers, as far as the steam space extends, and the ends of superheaters should be fitted with shield, or baffle plates, where exposed to the hot gases of the uptake, as all the plates subjected to the direct impact of heat or flame are liable to get injured unless covered with water.
7. Donkey boilers that are in any way attached to, or connected with the main boilers, or with the machinery used for propelling the ship, must be inspected and fitted the same way as the inain boilers, and have a water and steam gauge, and all other fittings complete, and as regards safety valves must comply with the same regulations as the main boilers,
and no safety valve shall be passed less than two inches
8. No boiler or steam chamber is to be so constructed, fitted or arranged as that the escape of steam from it through the safety valve can be wholly or partially intercepted by the action of any other valve.

A stop vulve must always be fittei butwen the beiler and the steam pipe, and when two or riore boilers are connected with a steam receiver or superheat r, betwena each boiler and superheater or steam receiver. Thr oljeut of this is obvious, viz.: to avoid the failure of all t '...tiers through the failure of one. The necks of stop 1 r. . ees should be as short as practicable.
9. Each boiler must be fitted with glass water gauge, at least two test cocks, and steam gauge, that is to say, each boiler must be fitted with all the fittings as complete as if there were only one boiler.
Boilers that fire at both ends, and those of unusual width. must have water gauges and test cocks at each end or side, as the case may be. When a steamer has more than one boiler, and those boilers are fitted with stop valves, each boiler must be treated as a separate one, and have all the requisite fittings.
10. Inspectors are to be most careful not to give any official sanction to any new arrangement or construction of marine steam boilers, without first obtaining the permission of the Chairman in writing, nor are they allowed to give any written approval of any invention or arrangement unless by direction of the Board, and whenever they know that any invention or new arrangement is to be fitted to a vessel that is intended to have a passenger certificate, they should as soon as possible obtain plans and submit the same to the Chairman.

- 11. When the longitudinal seams in cylindrical furnaces are not welded or made with a butt-strap as provided in subsection seven, section seventcen of the Act, the following constants will be substituted for 90,000 .

Furnaces with butt joints and drilled rivet holes.

90,000 where the longitudinal seams are double rivetted and fitted with single buttstrups; 80,000 where the longitudinal seams are single rivetted and fitted with single buttstraps; 90,000 where the longitudinal seams are single rivetted and fitted with double butt-straps.

Furnaces $\quad\left\{\begin{array}{c}75,000 \text { where the longitudinal seams are } \\ \text { double rivetted }\end{array}\right.$

Furnaces with butt joints and punched ., rivet holes.

Furnaces with lap joints and drilled rivet holes. with lapped joints and punched rivet holes.

85,000 where the longitudinal seams are double rivetted and fitted with single buttstraps; 75,000 where the longitudinal scams are single rivetted and fitted with single buttstraps; 85,000 where the longitudinal seams are single rivetted and fitted with double butt-straps.
Furnaces
with lap
joints and
drilled rivet
holes. $\left\{\begin{array}{l}80,000 \text { where the longitudinal seams are } \\ \text { double rivetted and bevelled; } 75,000 \text { where } \\ \text { the longitudinal seams are double rivetted } \\ \text { and not bevelled; 7,000 where the longitudi- } \\ \text { nal seams are single rivetted and bevelled; } \\ 65,000 \text { where the longitudinal seams are } \\ \text { single rivetted and not bevelled. }\end{array}\right.$ double rivetted and bevelled: 70,000 where the longitudinal seams are double rivetted and not bevelled; 65,000 where the longitudinal seams are single rivetted and bevelled; 60,000 where the longitudinal seams are single rivetted and not bevelled.

STEEL FURNACES AND FLUES.

12. The external working pressure to be allowed on plane circular steel furnaces and flues when subjected to such pressure, when the longitudinal joints are welded or made with a butt-strap, shall be determined by the following formula:

The product of 90,000 multiplied by the square of the thickness of the plate in inches, divided by the length of the flue, or furnace, in feet, plus one multiplied by the diameter in inches, will be the allowable working pressure per square inch in pounds; provided it does not exceed that found by the following formula:

The product of 10,000 multiplied by the thickness of the plate in inches, divided by the diameter (outside) of the flue or furnace, in inches, will be the allowable working pressure aper square inch in pounds.

CORRUGATED STEEL FURNACES AND FLUES,
13. Steel flue furnaces when new, corrugated, and machine made, and practically true circles, the working pressure is found by the following formula, provided that the plane parts at the ends do not exceed six inches in length, and the plates are not less than $\frac{5}{18}$ inch thick.
$12,500 \times$ thickness in inches
Mean diameter in inches $=$ Working pressure per sq. inch.
Whep the furnaces are rivetted in two or more lengths the case should be submitted to the Chairman for consideration, as it may be necessary to make a reduction.

CORRUGATED IRON FURNACES.

14. The working pressure for corrugated iron furnaces practically circular, and machine made, provided the plane parts at the ends do not exceed six inches in length and the plates are not less than $\frac{5}{16}$ inch thick, should not be greater than that found by the following formula:
$10,000 \times$ thickness in inches
Mean diameter in inches $=$ Working pressure per sq. inch.

INSPECTION OF BOILERS.

15. Inspectors are to fix the working pressure of boilers by a series of calculations of the strength of the various parts, and according to the workmanship and material.
16. Before testing a boiler the inspector should examine it, take the necessary measurements and calculate what the working pressure should be, in accordance with the provisions of the Steamboat Inspection Act. If the test is not satisfactory the defects must be made good and the boiler re-tested. This instruction applies to superheaters, steam chests and water jackets as well as boilers.
17. If the boiler is too hot for the inspector to examine it efficiently with safety and convenience, he should decline to examine it and absolutely refuse to grant a certificate until he can make an efficient examination.
18. Inspectois should zee all new boilers, and boilers that
have been taken out of a ship for a thorough repair, tested by hydraulic pressure up to at least one and one-half the working pressure that will be allowed previous to the boilers being placed in the vessel to test the workmanship, etc., but the working pressure is to be determined by the stay power, thickness of plates and strength of rivetting, etc., and not by the hydraulic test.
'The hydraulic test should in no case exceed that provided by section seventeen of the Act, and it is never to be applied until the boiler has been opened up for examination and until the strength has been calculated from the necessary measurements taken from the boiler itself.
19. When a boiler is partially inspected by one inspector and the inspection is completed and the certificate granted by another, if the inspector who witnesses the test of the boilers by the hydraulic pressure has an opportunity of examining them inside and outside after the test, such inspector shall determine the pressure to be allowed on the boile:s in question, taking care to inform the owners, makers or agents, and the inspector who is ultimately to grant a certificate, what pressure should in his opinion be allowed on them.
20. Cast iron must not be used for stays, and inspectors should also discourage the use of cast iron for chocks and saddles for boilers. Particular attention should be paid to chocking and fastening boilers to the vessel.
21. A pressure once allowed on a boiler of a passenger steamer is not, under any circumstances whatever, to be increased, unless the inspector has previously written for and obtained the sanction of the Chairman. In cases where an inspector is of opinion that an increased pressure may with safety be allowed, he should commanicate with the inspector who last inspected the bniler, and if on learning the reason why the existing pressure was formerly allowed, the inspector is still of opinion that it may be increased, he should communicate all the facts of the case to the Chairnan, but as above stated the pressure should not in any case be increased until the question has been decided by the Chairman.
22. In fixing the maximum working pressure on steamboat boilers, inspectors are to assume one hundred and twenty-five pounds to the square inch as the limit allowable for a new steel boiler forty-two inches in diameter, made in the best manner, of the best quality of steel plates, at least one quarter of an inch thick, with all the rivet holes drilled in place, the plates being then taken apart and the burrs removed, the
longitudinal seams in the shell being fitted with double butt steel straps cut across the grain of the plate and each of at least five-eighths the thickness of the plates they cover, and all the seams being at least double rivetted and having at least seventy per cent. of the strength of the solid plate, and all the flat surfaces stayed in the best manner and all the seams double rivetted, and they shall rato the working pressure of all steel boilers so made, whether of greater or less diameter, according to their strength compared with this standard, and in all such cases the teet applied shall exceed the working pressure allowed for such boilers in the ratio of one hundred and ninety pounds to one huadred and twentynot exceeding using the water in such tests at a temperature not exceeding sixty degrees Falurenheit, and all percentages material, are to be deductety for inferior worknanship or
In fixing the maximum from that pressure.
ers, inspectors are to assumorking pressure oll steamboat boilinch, as the limit allowable one hundred pounds to the square in diameter, made of the best a new boiler forty-two inches of an inch thick, in the best refined iron, at least one quarter required, and shall rate the working. of the quality herein boilers, whether of greater the working pressure of all iron strength compared with this less diameter, according to their the test applied shall excess standard, and in all such cases the ratio of one hundred and fifty porng pressure allowed, in using the water in such tests fifty pounds to one hundred, sixty degrees Fahrenheit, at a temperature not exceeding factor of safety, for inferior all percentages added to the be deducted from that pressure 23. In the case of pigzag the plate diagonally zigzag rivetting the strength through horizontally between between the rivets is equal to that $\frac{8}{10}$ horizontal pitch plos rivets, when diagonal pitch equals

safety valves.

24. Section nineteen of the Act provides that the boiler of every steamboat shall be fitted with one or more locked-up safety valves. Subsequent section further provides that the area of any locked safety valve or the joint areas of any locked safety valve to any boiler made or placed on board after the passing of this Act, shall not be less than half a square inch ${ }_{21}$ for oach square foot of grate surface in or under the boiler.

In all cases the safety valves should be upon the boiler or as near as possible to it.
(1). Inspectors are instructed that in all new boilers and whenever alterations can be easily made, the valve chest should be placed direstly on the boiler, and the neek or part between the chest and the flange which bolts on to the boiler shonld be as shcrt as possible and be cast in one with the chest.

In any case in which an inspector is of opinion that it is rasitively dangerous to have a length of pipe between the boilcrs and the safety valve chest, it is his duty at once to insist on the requisite alterations being made before granting a certificate.
(2). Inspectors are to fix the limit of the weight to be placed on the safcty valyes and are to satisfy themselves that the boilers are in their judgment sufficient with the weight so placed.

In new vessels no safety valves should be passed less than two and one-half inches in diameter, and for donkey boilers and boilers having less than ten square feet of giate surface, not less than two inches in diameter.
(3). Care should be taken that the safety valres have a liti equal to at least one-fourth their diameter, that the area of the inlet and outlet openings for the passage of steam be not less than the area of the valve; where lever valves are used the distance between the centre of the valve and the centre of the fulcrum should not be less than the diameter of the valve.
(4). The size of the steel of which the spring is made in spring safety valves is found from the following formula taken from the Board of Trade Rules:

$$
\sqrt[3]{\mathbf{S} \times \mathbf{D}}=\mathbf{d}
$$

c
$S=$ The load on the spring in pounds.
$\mathrm{D}=$ The diameter of the spring (from centre to centre of wire) in inches.
$d=$ The diameter of side of square of the wire in incies.
$c=8,000$ for round steel.
$c=1,0000$ for square steel.

Ns.

 boiler or as boilers and valve chest ueck or pait to the boiler one with theon that it is between the , at once to ore graating veight to be mselves that the weight
ed less than okey boilers ate surface,
ss have a litu the area of eam be not es are used the centre reter of the
is made in rmula taken

The spring should be protected from the steam and impurities issuing from the boiler, and in case of the spring breaking meaus provided to keep it in position on the valve.
(5). A standard spring, if made of the best square cast steel, contains. $\% 5$ of a square inch, the inside diameter is two inches, and the outside diameter three inches, it has thirteen complete coils with the ends and is eleven and onehalf inches long. The working load is assumed at 600 pounds, one-sixth of its breaking load when hardened to a temper, just sufficient to break it, at which load it should deflr c ju:st

To find the sectional area fo: any other spring the pressure on the valve being given:
600:: 700 : . 25 : . 29 sectional area of spring at 700 pounds load.

Suppose the pressure on the valve be 1,344 pounds then $600: 1,344:: .2 \overline{5}$: . 56 equal to a $\frac{3}{4}$ ineh square bar; the other dimensions of the spring would be in like proportion.
(6). The following conditions should apply to all safety
valves:
(a) Under no consideration whatever should the pressure rise in the boiler above the load placed on the safety valve.
(b) The relieving power of the safety valve or safety under full fires.
(c) No disk or "pot safety valve" liable to open the full area of the valve suddenly, should be passed over four inches in diameter. When a larger area oi safety valve is required, two or more valres may be used; but in all cases lifting gear must be provided for raising them singly or together.
(7). Safety valves must be placed in convenient and accessible places, that their adjustment and examination may be readily and efficiently made.

25.-Duties and liabilities of engineers.

Rule I.--Engineers are required in all cases upon stopping - of the engine to open the safety valves, so as to keep the steam in the boiler below the limit allowed by the inspeetor's certifieate as prescribed by law, to open the doors or close the dampers, and when from accident or other cause, the water in the boiler has fallen below the point of safety, to put out the fires immediately.

Rule II.-Engineers shall keep the fire pumps and hose end their connections in perfect condition, ready for immediate
use, and when found unfit for use from age or othar cause, shall report their condition to the inspector of hulls by whom the steamer was last inspected.
Ruse III. - Engineers when laying up a steaner in the fall, or when finally leaving her, are required to report to the owner and also to the inspector of the nearest district any defeets of, or injury to, the boilers and machinery by which the stiety of the same may be endangered. They shall also report to the inspoctor of the district at which the steamer next arrives, why recident happening to the boilers or machinery during "Hite anp, and in case of omission to make sueh report, the li,euse of the engineer so omitting shall be revoked.
Rule IV.--The viei engineer of a steamer is held accountable by the Buard for the proper care and management of the boilers and maclinery under his charge. He is, therefore, in no case to absent himself from the ressel while on her regular trips, unless a competent substitute be provided to fill his place during his absence.
Rule V.--Engineers on first taking charge of a steamer, and at least once a year thereaiter, shall satisfy themselves by close examination that the braces, stays and pins of the boiler are in good order, and sufficient for the strain to which they may be subjected; they shall also satisfy themselves that the safety valves are in good working order and sufficient for the requirements of Rule 1, hereof.
Rule VI.-Engineers are to exhibit their certificates in the engine room along with a copy of these rules when required to do sc.
Rule VII.-Management of boilers:

1. Getting up steam-Warm the boiler gradually. Steam should not be raised from cold water in less than four hours. If practicable, light the fires over night. By getting up steam too quickly, the boiler will soon be destroyed.
2. Firing-Fire regularly. Keep the sides up, and use the slice gently and as seldom as possible.
3. Feed water-Let the feed be regular and constant.
4. Glass gauge and try cocks-Keep the glass free and the gange cocks every fifteen minutes.
5. Safety valves-Lift -uch safety valve at leas' on a day, and always before geting up steam.
6. Low water - Put cut the fires by drawing wo throwing ashes on them. Never use water. Low water should never occur.
7. Blowing off the boiler-Do not blow off by sters.
other cause, ulls by whom er in the fall, oport to the district any ry by whinh y shal! also the steamer e boilers or on to make ing shall be
eld accountement of the therefore, in 1 her regular d to fill his (a steamer, lemselves by of the boile: which they res that the ient for the
icates in the en required
dly. Steam four hours. ng up steam
p , and use
nstant. free and
eas' onct a
g "irru or Low water
by ste
prossure; let the water run off if possible. See that the fires are all out.
8. Boiler purges-Never use any compositions to keep down incrustation, or oil or other impurities to remove it withont the approval of the Chairman.
9. General rules-Keep the boiler clean inside and outside and free from leak. Never throw water in the furnace. Under high pressure, raise the safety valve gently. Lower the fires, or, if necessary, stop the engine when foaming to find the water level.

BRITISH BOARD OF TRADE RULES.

AN ABRIDGED EXTRACT FROY THE " BRITISH BOARD OF TRADE:
In Great Britain, stationary boilers are built under the inspection of boiler insurance companies, while in this country and the United States, this is the exception instead of the rule. Locomotives boilers are designed by the superintendent of machinery in the old country and by the manufacturers in the new. Marine boilers are subjected to the control of the Board of Trade in Great Britain if for passenger, but usually are passed if, according to Lloyds' inspection, only for freight carriers.
The following may be taken as the rule, in substance, of the Board of Trade for to determine the strength of shell of boiler: When cylindrical boilers are made of the best material, with all rivet holes drilled in place and all the seams filled with double butt-straps, each of at least $\frac{5}{8}$ the thickness of the plates they cover, and all the seams at least double rivetted with rivets having an allowance of not more than seventy-five per cent. over single shear, and provided that theboilers have been open for inspection during the whole period of construction, then five for iron and four for steel may be used as factors of safety. The tensile strength of iron is to be taken as equal to 47,000 pounds per square inch with the grain, and 40,000 pounds across the grain. The boiler must be tested by hydraulic pressure to twice the working pressure, in the presence and to the complete satisfaction of the Board, steam engine and boiler surveyor. But when the above conditions are not complied with, the additions in the following scale must be added to the factor five, according tocircumstances of each case:

SCALE OF ADDITIONS TO BE ADDED WIIEN THE BOILER IS.
NOT MADE IN BEST MANNER.
(British Board of Trade.)

Keasons for such Increase in Factor.

When all the holes are fair and in the longitudinal seams, but drilled out of place after bending.
When all the holes are fair and good in the longitudinal seams, but drilled out of place before bending.
When all the holes are fair and good, but are punched and not drilled after bending.
When all the holes are fair and good, but are punched and not drilled before beading.
When the holes in the longitudinal seams are not fair and good.
If the holes in the circumferential seams are fair and good, but drilled out of place after bending.
If the holes in the circumferential seams are fair and good, but drilled out of place before bending.
If the holes in the circumferential seams are fair and good, but are punched and not drilled after bending.
If the holes in the circumferential seams are fair and good, but punched and not drilled before bending.
If the holes in the circumferential seams' are not fair and good.
If tho longitudinal seams are doublo. rivciced lap joints and not double cov-

EXAMINATION OF ENGINEERS FOR CERTIFICATES OF COMPETENCY.

(Under the "Merchants Shlpping Acts, etc " as a"nucc 1 ATo".)

1. Under the provisions of the "Merchants Shipping Acts, 1862," no " foreign-going steamship, or home trade passenger steamship, can obtsion a clearence or transire, or legally proceed to sea from any port in the United Kingdom, unless in the case oll a foreign-going steamship of one hundred horsepower or upwards, the first and second engineers, and in the case of a foreign-going steamship of less than one hundred nominal horse-power, or a home trade passenger steamship, the first or only engineer (as the case may be) have obtained and possess valid certificates, either of competency or service appropriate to their several stations in such steamship, or of a higher grade.
2. Every person who, having been engaged to serve as first or second engineer in a foreign-going steamship of one hurdred nominal horse-power and upwards, or as first or only engineer in a foreign-going steamship of less than one hundred nominal horse-power, or in a home trade passenger steamship, goes to sea as such, first, second, or only engineer, without being at the time entitled to and possessed of such a certificate as the act requires, or who employs any person as first or second engineer in a foreign-going steamship of one hundred nominal horse-power and npward or as first or only engineer in a foreign-going stumnship of less than one hundred nominal horse-power, or a home trade passenger steamship, without ascertaining that he is at the time entitled to and possessed of such certificate, for each offence incurs a penalty not exceeding fifty pounds.
3. The certificates of enginners are of two descriptions, viz.: certificates of competency and certificites of service; and for each description of certificates tiere are two grades, viz.: "first-class engineers certificat an " seconu-class engineers certificates."
4. Certificates of competency wil! be granted to those persons who pass the requisite examinations and otherwise comply with the requisite conditions. For this purpose examiners have been appointed by the Board of Trade, and arrangements have been made for holding the examination in the places and at the time named in the table marked A. The examiners are selected generally from the engineer surveyors of the port, but no engineer surveyor is to undertake
the duty unless he receives special instructions from the Board of Trade.
5. The application for examination is to be made on form Exn. 3. The same rules are to be observed by enginecrs in making application to be examined, in paying the fees, and in forwarding testimonials, as in the case of application by cmasters and mates.

qualifications for certificates of competency.

6. Second-class Engineer. A candidate for a secondclass engineer's certificate must be twenty-one years of age;
(a) He must have served an apprenticeship to an engineer, and prove that during the period of his apprenticeship he has been employed on the making and repairing of ergines: or if he has not served an apprenticeship, he must prove that for not less than three ycars he has been employed in some factor: " workshop, on the making or repairing of e.igines. In either case he must also have served one year at sea in the engine room; or
(b) He must have served at least four years at sea in the engine room.
(c) He must ir blo to give a description of boilers, and the method of st. jing them, together with the use and management of the different valves, cocks, pipes, and connections.
(d) He must understand how to correct defects from accident, decay, etc., and the means of repairing such defects.
(e) He must understand the use of the barometer, thermometer, hydrometer, and salenometer.
(f) He must state the cause, effects, and usual remedies for incrustation and corrosion.
(g) He must be able to state how a temporary or permanent repair could be effected in case of derangement of a part of machinery, or total break-down.
(h) He must write a legible hand and understaud the first ifive rules of arithmetic, and decimals.
(i) He must be able to pass a creditable examination as to the various constructions of paddle and screw engines in general use; as to the details of the different working parts, external and internal, with the use of each part.
7. First-class Engineer. A candidate for a first-class' - engineer's certificate, must be twenty-two years of age. In
addition to the qualification required for a second-class: engineer,
(a) He must either possess, or be entitled to a first-cluss. engineer's certificate of service; or in the event of his not being so possessed or entitled, be must have served for one year with a secoud-class engineer's certificate of competency. By this it is intended that the same rule shall be observed in the examination of engineers who are not in possession of a first-class certificate of service, as is obtained in the examination of masters and mates, viz.: that before the certificate of a higher grade is granted, certain service in the lower grade must be performed. The examiners should therefore be satisfied that applicants for the first-class engineer's certificate have not only been in possession of a second-class certificate for twelve months, but that they have actually served for a period of not less than twelve months in the engine room, with a second-class certificate, in the capacity of a second engineer; and that their names have been entered in the articles of agreement accordingly.
(b) He must be able to make rough work drawings of the different parts of the engines and boilers.
(c) He must also be able to take off and calculate indicator diagrams.
(d) He must be able to calculate safety valves, pressure, and the strength of the boiler.
(e) He must be able to state the general proportions borne by the principal parts of the machinery to each other.
(f) He must be able to explain the method of testing and altering the setting of the slide valves, and of testing the fariness of the paddle and screw shafts and of adjusting them.
(g) He must be conversant with surface condensation, superheating, and the working of steam expansively.
(h) His knowledge of arithmetic must include the mensuration of superficies and solids, and the extraction of the square root.
8. An extra first-class engineer's examination is voluntary, and is intended for such persons as wish to prove their superior qualifications, and are desirous of having certificates for the higher grade granted by the Board of Trade. Thecandidate must be entitled to or possessed of a first-class engineer's certificate of competency, and in addition to the qualifications required for a first class-engineer,
(a) He must possess a thorough knowledge of the con-struction and working of marine engines and boilers in all:
their parts, and be so far aequainted with the elements of theoretical machines as to comprehend the general principles on which the machine works.
(b) He must understand how to upply the indieator and draw the proper conclusions from the diagrams.
(c) He must be acquainted with the principles of expansion, and able to prove, or at least to illustrate, the use of the expansion gear.
(d) He must be able to draw rough sketches of any part of the maehinery, with figured dimensions fit to work from.

GENERAL RULES AS TO EXAMINATIONS AND FEES.

9. The examination will be partly viva voce, and partly by examination papers. It will be directed specially to the above points, and to the duties and business of an engineer generally.

If the candidate passes the viva voce examination creditable, a set of questions will be given to work out. He will bo allowed to work out these questions according to the methoc. he is accustomed to use, and will be allowed five hours to perform the work; and
(a) If at the expiration of the time allowed he has worked out correctly the whole of the questions set him, he will be declared to have passed.
(b) If at the expiration of the time allowed he has not worked out the whole of the questions set him, but if the result of the viva voce examination taken in connection with the answers to such of the questions as he has worked out are sufficient to satisfy the examiver that the applicant is competent to take charge of engines of one hundred nominal horse-power or upwards, he will be declared to have passed.
(c) In other cases he will be declared to have failed. A report of the examination, and the examination papers, will be forwarded to the Board of Trade on the form (Exn. 15).
10. The fee for examination must be paid to the superintendent of the mercantile marine office. If a candidate fail in his examination, half the fee he has paid will be returned to him by the superintendent on his producing the form Exn.. 17, which will be given him by the examiner.

The fees are as follows: First-class engineer's certificate, whether extra or ordinary, $£ 2$. Second-class engineer's. certificate, £1. For first-class engineer's certificate, if already in possession of a second-class certificate, $£ 1$.
11. If the applicant passes he will receive a form, Exn.

16, from the examiner, which will entitle him to receive his certificate of competency from the superintendent of the mercantile marine office of the port to which he has directed it to be forwarded. If his testimonials have been sent to the registrar-general of sesmen to be verified, they will be returned with the certificate.
12. If an applicant is examined for the higher grade and fails, but passes an examination of the lower grade, he may receive a certificate accordingly, but no part of the fee will be returned.
13. If the applicant fails in working out the examination papers, he may present himself for re-examination whenever he thinks he has acquired sufficient knowledge to enable him to pass. But if he fails in the viva voce or practical part of the examination, he may not present himself for re-examination until the expiration of three months from the date of failure.

CERTIFICATES OF SERVICE.

14. Every person who, before the 1st April, 1862, had servel as either first engineer in a British foreign-going steamship of one hundred nominal horse-power and upwards, or who has attained or attains the rank of engineer in the service of Her Majesty, or of the East India Company, is entitled to a first-class engineer's certificate of service; and every person who, before the above mentioned date, has served as second engineer in any British foreign-going steamship of one-hundred nominal horse-power or npwards, or as first or only engineer in any other steamship, or who has attained or attains the rauk of first-class assistant engineer in the service of Her Majesty, is entitled to a second-class engineer's certificate of service.
15. Application for certificates of service must be made on the printed form Exn. 22, to be obtained free of charge of the registrar-general of seamen, Adelaide Place, London Bridge, London, or of the superintendent of any mercantile marine office.

LIST OF EXAMINATION DAYS AT FOLLOWING PLACES.

Bristol.-Second nud fourth Tuesday in each month.
Dundee.-Thursday in each week.
Glasaow and Greenook.-Thursday, held alternately of each place.

Hull. -First and third Tuesday in each month.

Liverpool.-Thursday in each week.
London.- Wednesday in each week.
Shiflds, North.-First and third Wednesday in each. month.
Southampton.-First and third Tuesday in each month.
Sunderland.-The last Monday in each month.

NOTICE OF ALTERATION IN EXAMINATION PAPERS.

From the first day of February, 18\%4, all candidates presenting themiselves for examination will be required to give written answers to eight out of a list of ten questions selected from form Exu. 15 A. "Elementary questions for the first examinations of engineers for certificates of competency, and of masters and mates for certificates in steam." These questions are intended to furnish a record, to some extent, of the candidate's knowledge at the time of his examination, and also to induce the candidate to pay more attention to his handwriting and spelling.
The form Exu. 15 B , on which these answers will be written, contains also some questions as to the experience of the candidate, to be answered by him in writing. A copy of Exn. 15 B, is contained in form Exn. 15 A.
The viva voce questions on the practical management of steam engines and boilers will renain on the same footing as at present. Examiners may add to their viva voce questions any of those contained in Exn. 15 A.

The arithmetical questions on forms Exn. 10 and Exn. 11 will be cancelled, and forms Exn. 10 A. and Exn. 11 A, or other similar forms to be from time to time issued, will be used instead. No further notice will be given of the changing of these forms. The questions will be promiscuous exercises on the arithmetic of marine engineering, and the candidate will not be expected to work all the questions, but only so many of them as he may think sufficient to satisfy the examiner that be possesses the required knowledge of arithmetic, and that he can apply it. The arithmetical standard for candidates is not altered; it will continue as at present to include decimal fractions for second-class, and to include square root for first-class candidates.
First-class candidates will be reruired to make, from a copy, an intelligible hand sketch, or a working or drawing of some one or more of the principal parts of a stearm engine, and to mark in, withont copy, all the necessary dimensions. in figures, so that the sketch or drawing could be workeds
from. This is considered an important qualification for a first-class engineer, and as his sending home an unworkable sketch to replace a break-down would be a practical failure in competency, will fail the candidate.

The examination questions are designed to test the degree of knowledge of this kind possessed by the candidate, and thereby to ascertain how mnch his heart has been given to his work. The examination papers for a second-class certificate will consist of questions relating to the candidate's experience in the construction and management of engines, of questions in clementary knowledge, and of a set of engineering arithmetical questions.
In addition to these examination papers a candidate for a first-class certificate will have also another set of arithmetical questions, and an examination paper on indicator diagrams and working drawings. The first set of new questions for first-class require a knowledge of the strength of a shaft against twisting and against transverse breaking, the strength of an iron level, the loss by friction, and the cut off by a given amount of lap.
The new questions for secoud-class candidates contain nothing beyond what is contained in the old set of questions, except that one of the questions requires a knowledge of the weight of wrought iron. In addition to these examination papers, the viva voce examination papers will be continued as heretofore. These alterations are not intended in any way to remove from the individual examiner the entire responsibility of passing or of failing any candidate. The examination papers are planned to assist the examiner, and to afford a written evidence, to some extent, of the thoroughness of the examination, and to promote uniformity at the various examining ports.

ELEMINTARY QUESTIONS FOR ENGINEERS.

(a) Where and how long did you serve in works at the making or at the repairing of engines?
(b) How long have you served in the stokehole?
(c) How long have you served in the engine room at sea, and in what capacities?
(d) With what description of engines have you served at sea-paddle or screw, or both jet condensing, surface condensing, or non-condensing engines, compounds, trunks, inverted cylinders, or horizontal engines? What size were the engines?
(e) With what description of boilers have you served at sea-rectangular or cylindrical, wet bottomed or dry bottomed, multitubular, sectional, or flue boilers?
(f) What engine defects have come under your notice at sea, and what caused these defects, and how were they remedicd? Give the names of the steamers for verification.
(g) What boiler defects have come under your notice at sea, what caused these defects, and how were they remedied? -Give the names of the steamers for verification.

at the
at sea, rved at surface trunks, were

PROCEEDINGS OF UNITED STATES STEAMBOAT

relating to licensed officers.

Rule 42.-Before a license can be issued to any person toact as a master, mate, pilot, or engineer, he must personally appear before some local Board, or a supervising inspector, for examination, according to the law; but upen the renewal of such license, when the distance from any local Board or supervising inspector is such as to put the person holding the same to great inconvenience and expense to appear in person, he may, upon taking the oath of office before any person authorized to administer oaths, and forwarding the sarne, together with the license to be renewed and Government fee, to the local Board or supervising inspector of the district in which he resides or is employed, have the same renewed by the said inspectors, if no valid reason to the contrary be known to them; and they shall attach such oath to the stub end of the license, which is to be retained on file in their: office.

CLASSIFICATION OF ENGINEERS.

Rule 43. -The classification of engineers on the lakes and seaboard shall be as follows:

Chief engineers of ocean steamers.
Chief engineers of lake, bay, and sound steamers.
Chief engineers of river stcarners.
First assistant engineers.
Second assistant engineers.
Third assistant engineers.
Special engineers.
All steamers of over one hundred tons burden shall carry at least one chief engineer.

First assistant engineers may act as first assistants ou any. steamer.

Second assistant engineers may act as first assistants on steamers of seven hundred and fifty tons and under, and second assistants on any steamer:

Third assistants may act as second assistants on steamers of seven hundred and fifty tons and under, and third assistants on any steamer.

Special engineers may be assigned to act, in any capacity for which they are qualified, on steamers of one hundred tons and under.

Inspectors may designate upon the certificate of any chief engineer the tonnage of the vessel on which he may act, and they may also designate any assistant engineer as special engineer on steamers of one hundred tons or under, and may restrict an engineer to a particular vessel.

Fingineers on steamers navigating rivers flowing into the Gulf of Mexico, and into the Pacific Occan, shall be designated as first and second engineers. The first engineer shall rank as a chief engineer. For steamers of one hundred tons or under, special engineers may be licensed, and may, at the option of the inspector, be restricted to a particular steamer.

First assistant engincers and second engineers may act as chief engineers and first engineers of steamers of one hundred toms burden or under.

Special licenses of all grades shall be regarded as of inferior grade, and the fee for the same in every instance shall be five dollars.

Rule 44.--The navigation of every passenger steamer above one hundred tons burden shall be under the control of a firstclass pilot, and every such pilot shall be limited in his license to the particular service for which he is adapted. Special pilots may also be licensed for snall steamers of all kinds locally employed.

On all waters other than rivers flowing into the Gulf of Mexico, second-class pilots may by allowed to take charge of steamers not exceeding ane bundred tons burden, and may be authorized by the license granted to act in charge of a watch as assistant to a first-ch is pilos on freight and towing steamers of all tonnage.

Steamers navigating in the wight time shall, in addition to the regular pilot on vectch, have one of the crew also on watch in or near the pilot house.

Rule 45 . When an original license is issued to a pilot whose route extends buyond the jurisdiction within whick the license is issued, it shall be the duty of the loon Board issuing such license to refer it to the local Board of inspectors having
jurisdiction over the remainder of his route, for their endorsement thereon.

This rule shall apply only to the seaboard, Gulf of Mexioo, and rivers flowing into the Atlantic Ocean.
Rule 46.-On all rivers flowing into the Gulf of Mexioo, (and their tri'utaries), where inspectors are called upon to extend a pilot's license beyond the usual route for which said pilot has been licensed, they may, on being fully satisfied, grant the same; or they may refer such application to the Board of the district to which the extension may be desired, for the purpose of obtaining an endorsement of such grant on such license.

Rule 4\%.-Inspectors, before granting or renewing a license to any person to act as a pilot, shall satisfy themselves, by examination, that he thoroughly understands the rules and regulations governing pilots.

Pilots of steam vessels, while in the discharge of their duties, must be governed by the Rules of the Board of Supervising Inspectors made for their guidance, and not by any instructions emanating from any inspector or other person.
Rule 48. -The grade of an engineer or pilot shall not be raised, during the time for which his license was granted, by any other than the inspectors who granted the same, nor by them unless proper reasons are given for the change.
The following formula shall be used by inspectors in determining the pressure to be allowed for rivetted cylindrical flues of sixteen (16) inches and upward, viz.:

$$
\text { Let } \frac{1760}{\mathrm{D}}=\mathrm{a} \text { constant }(\mathrm{C}) .
$$

$\mathrm{D}=$ Diameter of the flue in inches:
$T=$ Thickness of flue in decimals of an inch.
Formula:-

$$
\text { Constant } \frac{\mathbf{C} \times \mathbf{T}}{.31}=\text { lbs. pressure allowable. }
$$

Example. -Given a flue twenty (20) inches in diameter, and thirty-seren one-hundredths (.3\%) of an inch in thickness, Required, pressure to be sllowed by the inspector,

fs.

 heir endorseof Mexioo, of Mexioo, ed upon to which said ly satisfied, tion to the be desired, such grantng a license nselves, by rules and ye of their d of Supernot by any r person. lall not be ranted, by ae, nor by e.
pectors in cylindrical
hantal of engineers calculations.

$$
\frac{1760}{D}=\frac{1760}{20}=88=\text { constant }(\mathrm{C})
$$

$$
\frac{\mathrm{C} \times \mathrm{T}}{.31}=\frac{88 \times .37}{.31}=104 \mathrm{lbs} . \text { pressure allowable }
$$

For cylindrical flucs of less than sixteen (16) inches in diameter, the following formula for determining the pressure. to be allowed, shall be used by inspector, viz. :

$$
\frac{1760}{D}=a \text { constant }(C) .
$$

$\mathrm{D}=$ Diameter of flue in inches, and $\mathrm{T}=$ Thickness of flue in decimals of an inch.

Formula:-

$$
\text { Constant } \frac{0 \times T}{.25}=\text { lbs. pressure to be allowed. }
$$

Example.-Given a flue ten (10) inches in diameter, and twenty-two (22) inches in thickness. Required, pressure to be, allowed by the inspector.

$$
\frac{1 \% 60}{D}=\frac{1 \% 60}{10}=1 \% \sigma_{i}=\text { constant }(\mathrm{C}) .
$$

$$
\frac{\mathrm{C} \times \mathrm{T}}{.25}=\frac{176 \times .22}{.25}=155+\mathrm{lbs} . \text { pressure allowable. }
$$

The following formulas shall be used by inspectors to determine the pressure allowable for cylindrical rivetted flues used as furnaces, viz.
$\mathrm{D}=$ Diameter of flue in inches.
$T=$ Thickness of flue in decimals of an inch.
$\mathrm{L}=$ Length of flue in feet (not to exceed eight (8) feet).
$80600=A$ constant.
*Formula:-

$$
\frac{80600 \times \mathrm{T}^{2}}{\mathrm{~L} \times \mathrm{D}}=
$$

Example.-Given a flue of forty (40) inches in diameter, seven (7) feet long, and five-tenths (.5) of an inch in thickness. Required, the pressure to be allowed by the inspector.

$$
\frac{89600 \times \mathrm{T}^{2}}{\mathrm{~L} \times \mathrm{D}}=\frac{80600 \times .20}{7 \times 40}=\frac{22.400}{280}=80 \mathrm{lbs} . \text { pressure }
$$

Provided, That if rings of wrought iron are fitted and rivetted properly on, around, and to the flues, in such manner that the tensile strain on the rivets shall not exceed six thousand $(6,000)$ pounds per square inch of section, the distance between these rings shall be taken as the length (L) of the flue in the formula:

Example.-Given a flue forty (40) inches in diameter, cight (8) feet long, and five-tenths ($\left.\left.{ }^{5}\right)^{5}\right)$ of an inch in thickness, having one ring at the middle of its length. Required, the pressure to be allowed by the inspector.
$\frac{89600}{\mathrm{~L} \times \mathrm{D}} \times \mathrm{T}^{2}=\frac{89600 \times .25}{4 \times 40}=\frac{22.400}{160}=140$ lbs. pressure allowable.
CHAS. C. BEMIS, GEO. B. N. TOWER, JOHN FEHRENBAT'CH.

[^5]diameter, in inch in red by the
ure.
fitted and ch manner exceed six ection, the length (L) reter, eight thickness, uired, the
allowable.

LIST OF BOOKS FOR ENGINEERS TO READ AND STUDY, ETC.

" CHIMNEYS FOR FURNACES, FIRE PLACES AND STEAM
"STEAM BOILER EXPLosions." By L. Colburn.
"A Treatise on compound engines." By Turnbull.
"SAFETY Valves." By R. H. Buel.
"FUEL." By J. Wonmold.
"ON BOILER INCRUSTATION AND CORROSION."
"STEAM INJECTORS." By M. Leon Pochet.
"STEAM ENGINE CONSTRICTION AND STRENGTH MATERIALS."
(rio cents each-publishe by VanNostrand \& Co., New York.)

SCIENCE PRIMERS.

"CHEMISTRy." By Prof. Roscoe.
"PHYSIC OR NATURAL PHILOSOPHY." By B. Stewakt.
" REED'S (3s cents each-pubilshed by McMillan \& Co., London.)
"HASWELL'S ENGFNEERS' HANİDOOK."
"CATECHISM MARINE sTEAM." By E. Edwards.
" EVER'S MARINE ENGINEER."
"THE GROWTH OF THE STEAM ENGINE." Professor Thurston.
"A TEXT BOOK OF THE STEAM ENGINE." T. M. Goodeve.
"Proportion of the steam engine." Professor Grimshaw, M. E.
"Mechanical engineering. By D. K. Clark.
" APPLETON'S APPLIED MECHANICS."
"A TREATISE ON THE STEAM BOILER." R. Wilson.
" u'seful information for ENGineers." Fairbairn.
"steam engine." By Prof. Rankine.
" Experiments on iron." Kirkaedy.
"MECHANICS of fingineering." By Moseley."
"friction and lubrication." By Prof. Thurston."

I N DEX.

Air, Paoe.
Arithmetical Definitions, Signs and Quantities, 7
Bolletis: 153
Flues, Furnaces and Boilers, Boiler Plate, 318-319
Canadian Rule for Pressures, 03-76 03-76
Construction, full calculations,
Construction, full calculations, 50 50
Heating Surface, 160
Pressures allowed, 64 64
Area of Plates, 168-172
Factor of Safety, Iron and Steel, 64
Thickness of Plate, Steel and Iron, 163
Weight of Plate, 161
Strength of Plate with and aeross the fibre,
63
63
Area of a Circle 78
Combustion, 39
Coal heat, etc., 12
Combustion process, 14
Coal and Combustion, 20
Caleulations for Engineers, 28
Condensers, 30
Connecting Rod, 67
Cylinders, 68
Colours of Iron caused by heat 70
Circle, Properties of 106
Circular and Square inch, 73
Combustion Box Calculations, 30
Classification of Engineers, 178
Decimals. 336
Enginetrs: 30-43, 160
Viva Voce Examinations, Calculations, 157
General Examination, 160
Chief's Examination 179
Examination for higher grades, 18.
Examination of Stays, 188 100

IMAGE EVALUATION TEST TARGET (MT-3)

Photographic Sciences
Corporation

Enaineers:
$\begin{array}{lll}\text { Calculations of Stays, } & \text { FAcE } \\ 190\end{array}$
$\begin{array}{lll}\text { Butt-Straps, } & \text { - . . - } & 190 \\ 197\end{array}$
Joints, - - - - - 197
Calculations on Safety-Valves, - - . 207
Calculations in Pumps, - - . . 214
Eccentrics, - - . - 57, 186, 236
Engineers' Examination, 160
Fees, - $\mathbf{3 3 1}$
Certificates of Service, - . . . 332
Examination days and Papers, - . . 332-333
Elementary questions, - . . . 334
Examination and Qualifications for Certificates of \quad - ${ }^{\text {n }} 8$ - $\mathbf{3 2 9}$
Competency,
Liabilities of Engincers, - ${ }^{\circ}$ 8-3293
Flues:
External Pressure on Flues, 48
Calculated, - - 48
Form and Construction, 279
Grate Surface:
Ratio of Heating Surface to Grate Surface, \quad. 225
Heat,
Horse-power, - - 78, 50, 47, 226
Horse-power, Canadian Rule for - . - 50
Horse-power of boilers, - - 177
Inaugural Address, . - - . . . 133
Indicator, - - - - - . . 247
Inspection generally, 275
Iuspection of Boilers and Machinery, 277
Marine Engines:
Short History of Marine Engines and Presssure, .- . 124
Mean Pressure, - - . . 44
Nominal Horse-power, - - - . 153
Calculations on Engines, - - - . 67
Horse-power of - 47
Calculations on Condensers, - - . . $\quad 67$
Proportion of Parts, - . . . 108
Useful knowledge on 114
Grate Surface, - - - - . 114
Horse-power of Marine Engines, - . . 153
What is Mechanics, - - . . . 177
Nominal Horse-power, - - - . 47, 50, 78, 220
Pressure on Butlers:
Direct Loaded Safety-Valves on Boilers, - $\quad 33,38,66$
External on Flues, - - . . . , 48
Table of Pressures, - - 77-78
Flues, - - $\quad 48$
What is Power, 58
Horse-power, Nominal 5%
INDEX.$34 i$
Qualifications:
Licensed Othicers, Page
For Enginecr, Cundidates for Certificates 336
Questions in Examimation Papers, 1.51
Stem and Water. Relative Volume 151,236 151,236
Steam, Mechanical efilect of 18
Steam used in Cylinders, $1!$
Safety Valve Sums, 62
Sypare and Cube Root, 33, 38, 136
Steel for Safety Valve Springs, :4, 256
strength of Minterials, is
Screw Propeller, 112
Superheated Steam, 2.3:3
Slide Valve, Notes on 242
Scate of additions to be added $2: 36$
Sketch of the Life nud Works of Wm. M. Smith, Esi., $3: 7$
Safety-Valves, 267-270
Steaners in Canada, Principal Faels of 321
Tahles: 250
Melting point of Metals, 77-108
Tenacity of Metals, (Wrought Iron)
Pressure on Boilers,
Round Iron,
Fractions and Equivalent Decimnls,
Tensiic Strain of Iron and Steel,
Sheering
Sheering of Steel Rivets,
Rivet tests,
Plates, and Tie Bolts screwed therein,
Rivetted Joints,
Multipliers for Expansion
Strength of Lap Joints,
Equivalent Decimal for a Frac
Weight of Iron Rivets per 100,
Weight of Wrought Iron,
Weight of flat Bar Iron per foo
i.inear Expansion of Metals,
IIyperbolic Logarithms
Square and Hexagon Nuts,Boiler Tubes, Sizes, etc.,siturated steam,
Coal, Evaporative Power and Chemical Composition,Colours of Iron cansed by heat,Tensiie Strength of Plate nod Rivet Iron.
Useful quantities,
Usefal information on Iydranlies 34
Useful knowledge about Marine Engines and Boilers, 39
Useful knowledge about Mild Steel, 114
Water, 114
Weight of Boiler Plate, Page.
Water and Stenm, Mechmical effects of 63
Papers on: 19
Square aud Cube Root,
Steel for safety Valve Springs, 74, 23:3
Strength of Matcrials, 58
Screw Propeller 112
Slide Valve Notes, 2.5 2.5
Heating Surface of Marine Boilers, 236 236
Draught on boilcr Furnaces, 225 225
Thermometers, 237 237
How Smoke is formed, $2: 38$ $2: 38$
Scale in Boilers, 239 239
Superheated Stenm, 240
What the best informed think about Boiler explosions, 42
Indicator, 45
Paddle Wheel, 247
Rules for the conduct of Stenmboat Inspectors and for
the Inspection of Stemboats, 311-325
Stenmboat Inspection Law, 1882, with all amendmentsto 1886 ,
271-310
Extract from Board of Trade Law, Great Britain,
320-3335
320-3335
Extruct from American Law, 3:36-340
INDEX TO PLATES AND DIAGRAMS.
Diagrams of Square and Circolar inch, Page.
Plate No. 1, "Eccentric," 58
" " 2, Marine Boiler, 160
" " 3 and 4, Eccentric, 186
" " 5. Stays and Butt-Straps, 190
" " (i, Safety Valves, 206
" " \boldsymbol{i}, Calculation in Pumps, 214
" ${ }^{6} 8$ mad 9 , Eecentric and Slide. $2: 36$

[^0]: St. John, 1st November, 1886.
 D. McL. S .

[^1]: same as .1 ; Cyphers to the
 one-tenth; $; .01$, one cyphers to the of a decimal
 one-tenth; .01, one-hundredth

[^2]: "It has been explained in the first part of this work that the nominal horse-power of an engine is ascertained by assuming the mean pressure on the piston to be equal to seven pounds on the square inch, and the speed of piston equal to

[^3]: Hornblower, 1781. Patented a judicious arrangement of

[^4]: "I had just filled some loose sheets, hope to see.

[^5]: *British Lloyds.

