CIHM
Microfiche
Series
(Monographs)

ICMH
Collection de microfiches (monographies)

The Institute hes ettempted to obtain the best original copy evaileble for iliming. Foutures of this eopy which may be blbliographieslly unique, which may alter any of the inaces in the raproduction, or which may significantly change the sual mothod of filming, are checked below.
\square Coloured covers/
Couverture de couleur
Covers dameged/
Couverture endommadie
Covers restored and/or Iaminated/
Couverture restaurte ev/ou pellicutíeCower tithe missing/
Le titre de couverture manque
\square Coloured mypa/
Cartes giographiques en covieur
Coloured ink fi.e. other than blue or bleck)/
Enere de couleur (i.e. eutre que bleve ou noine)
Coloured pletas and/or illustrations/
Planches ef/ou illustrations en couleur
Hound with other materie//
Ralle avec d'eutres documents

Tight binding may cause shadows or distortion elong interior mergin/ Le reliure serrie peut ceuser de l'ombre ou de la distorsion to long de le marge intirieure

Blank loaves addod during restoration moy appeer within the taxt. Whenever pessible, these heve besn omittod from fiiming/
II se peut que cortrines pages blanches ojouties lors d'ume restauration apparcissent dens le taxt. mais, lorsque cell detait possible. ees pages n'ont pes ite filmies.

L'Institut e mierufilmé le meiliaur exemploire qu'il Iui e éte possible de se procurer. Les dítails de cet exempleire qui sont peutfitre uniques du point de vue bibliographique, qui peuvent modifier uns imeps reproduito, ou qui peuwent exigor une modification dans la mithode normale de filmape sont indiquis ci-dessous.

Coloured pages/
Pages de couleurPages dimeresel/
Pages endommajiesPages restored and/or laminated/
Puges restauries et/ou pelliculies

Peges diseoloured, strined or foxed/
Pages dicolories, tachedies ou piquies
Puges detached/
Pogos dítachbes

Showthrough/
TransparenceOuelity of print veries/
Ouciité indgale de l'impression

Continuous pegination/
Pagination continueIncludes index(as)/
Comprend un (dos) index
Titla on header taken from:/
La sitre de len-Itte provient:Title page of issue/
Page de titre de le livraison

Caption of issue/ Titra de dípart de la livrrison

Masthead/
Générique (périodiques) de la livreison

Additional comment:/ Commentaires supplifmentaires:

Pagination fs as follows : p.[51]-69.

This item is filmed et the reduction retio checked beiow/
Ce document est filme ou taux de riduction indique el-dessous.

The copy filmed here hes been renroduced thenks to the generosity of:

Notionei Librery of Conede

The Imeges appearing here ore the best queilty possibio consldering the condition and lagibility of the originai copy and In keaping with the filming contrect spacificetions.

Originei copies in printed pepar covers are filmed beginning with the front cover end ending on the last pege with e printed or illustrated impression, or the beck cover when epproprlete. Ail other originai copies ere flimed beginning on the first page with e printad or iliustrated imprassion, end ending on the last pege with eprinted or illustratad imprassion.

The iest recorded irema on eech microfiche sheli contein the symbol \rightarrow (meaning "CONTiNUED" , or the symboi ∇ Imeaning "END"I. whichever eppiles.

Maps, piatas, charts, etc., may be flimad at different reduction ratios. Those too large to ba entirely inciuded in ona exposure are filmed baginning in the upper laft hand corner, left to right and top to bottom, as mony frames as required. Tha foliowing diagrams lilustreta tha method:

L'oxempiaire filme fut reproduit grace $\mathbf{1}$ le génèrositè do:

Bibliotheque notioneie du Canede

Les imeges sulventee ont fitc reproduitas evec is pius grend soin, compte tenu de lo conflition ot de ie nettete do i'exempioire filme, ot en conformite evec ies conditions du contret de filmege.

Les exemplaires originaux dont is couverture en pepiar est imprimée sont filmds on commencent par ie premior plet ot on terminent solt per is dernilere page qui comporte une empreinte d'Impression ou d'iliustration, soit per la second plot, selon io cas. Tous ies eutres oxempiaires originoux sont filmds on commonçant per lo promildre pege qul comporto une emprelnte d'Impression ou d'illustration ot on tarminant per ie dernidre pege qui comporte une telie omprointe.

Un des symboles suivants opperaitre sur lo derniàre imege de cheque microfiche, seion ie ces: io symboio \rightarrow signifie "A SUIVRE", io symbole ∇ signifie "FiN".

Las cortas, plonches, tablaaux, etc., peuvent dtre filmes des daux de réduction différents. Dorsque io document est trop grend pour atre raproduit on un soui cliche. il est flime a partir da l'angie supériour geuche, de geuche droite. ot de hout on bas, on pronent le nombre d'images nécesseire. Les diegremmes suivents iliustrent ie mithode.

MCEOCON WESOLUTION TEST CHART

(ANSI and ISO TEST CHART No. 2)
. \cdot.

Rbekinigi from The Jutrnal Oy Tur Royal Astronomical Society Of Canada, Fedruary March, igos,

 the EluborEARTHQUAKES AND THE INTERIOR OF THE L:ARTH

BY

OTHO KLOT/, LL.D., F.R.A.S.

F.ARTHQUAKI:S ANI) THE LNTERIOR OF THE IEARTH*

lis Otro Kiome.

IN the nuth edition of the Iincyclopıedia Britannica Professor Archibald Geikie writes: "Though we cannot hope ever to have direct acquaintance with more than the mere outside skin of our planet, we may yet be led to infer the irregular distribution of materials within the crust from the present distribution of land and water, and the observed difference in the amount of deflection of the plmmb-line near the sea and near mountain chains. The fact that the southern hemisphere is almost wholly covered with water appears explicable only on the assumption of an excess of density in the mass of that portion of the planet. The existence of such a vast sheet of water as that of the lacific ocean is to be accounted for, says Archdeacon Pratt, by the presence of some excess of matter in the solid parts of the earth between the Pacific ocean and the earth's centre, which retains the water in its place, otherwise the ocean would flow away to the other parts of the earth. The same writer points out that a deflection of the plumb-line towards the sea, which has in a number of cases been observed, indicates that the density of the

- Address delivered at Ottana before the Royal Astronomical Socicty of Canada, February 27, 1908. Illustrated by lantern slides, diagrams and models.
crnst bencath the mountains mast be less than that below the plains, and still less than that below the ocean- bed."

In passing I may mention that ny own observations for sravity in the Sonth Sea show an excess of gravity as indicated by Archedeacon Pratt.

We shall see later what direet acquaintance or information at lenst we have obtained from the interior of the earth.

If p to 183!) the interior of the earth was considered to be a hot liquid molten mass, and the reasons therefor seemed very plansible:-Did not the temperature increase as we penetrated the earth either in mines or in borings ; did not volcanoes give us ocular proof when they transported the flowing lava from the interior: and in comnection with these, the analysis of these lavas whether from Vesmvins or Hecla or the Andes or New Zealand or Japan slowed that there was in remarkable miformity in them, leading to the conchasion that they were ont oi the same canldron; then there were the hot-springs fonnd all over the world, apparently hot becanse they cante from the heated interior?

These reasons seemed so obvionsly sufficient, that their :ery plansibility deadened investigation, as has happened wint more than one phenomenon.

Cold, marelenting, minconpromising, intpartial athematics, is not content with plansibility only. In 1×39 Hopmas of Canbrilge attacked the problem, and endeavonred to calculate how far the planetary motions of precession and mitation would be influenced by the solidity or liquidity of the earth's interior. He found that the precessional and nutational movements conld noi possibly be as they are if the planet consisted of a central ocean of moten rock surromided with a crust of 20 or 30 miles in thick. ness ; that the least possible thickness of crust consistent with the existing movements was from 800 to 1000 miles, and that the Whole might even be solid to the centre, with the exception of comparatively small vesicular spaces with melted rock.

In treating of the interior of the earth we shall do so muder the following headings: Density; Figure of the Earth; Tides; Variation of Latitude ; and Earthquakes.

Density or Spheific Gravity.-If we compare the weight of a cubic foot of any substance with all equal volume of water we obtain directly the density or specific gravity of the former, as water is the unit of measure. Now this process can be followed for all suhstances or matter on or near the surface of the earth, but as we cannot penetrate any distance into the earth we cannot directly measure the density for such deptha, nor weigh the earth ns a whole. However to arrive at the latter several methods are opell to ins. Here we may first post 'late Newton's Law of Gravitation, which declares that " any ${ }_{t}$. "cle of matter attracts any other particle with a force inversely aroportional to the schare of the distance between them and directly to the product of their masses."

Our first methot is that of the deflection of the plunb-lineor Mountain Method, first applied by Maskelyne in 1774.3 Now the direction of the plurin-line in the resultant of all forces acting upon the freely suspended bois or mass. In reality we do not use a plumb-line, but which amounts to the sane thing, we thee a very sensitive ce:el which owes its position of erpilibrinm exactly to the same canses as does the direction of the plomb-line. What Maskelyue did was this, he made a topographic survey of Mt. Schehallien and its surrombings, a volumetric survey one may term it, furthermore he determined what the average density of the mountain was, this combined with the volume gave him the mass with which he had to deal outside of the earth itself. Observing, then, zenith distancer on the south side of the mountain and again on the north side of it , it is evident that the two wonld differ by twice the amount that the mountain would deflect the plumb-line from the direction given $t \mathrm{n}$ it by the attraction of the earth. We have in this case two forces pitted against each other, both forces subject to the same law, i.e., of the inverse squares of the distances and directly as the masses-the unknown quan. tity being the mass of the earth. From these observations the mean density was found to be 4%. Now this is an important

[^0]
Ollu R Kot

deduction as will be more fully shown later. leet ins state our two facts just fonnd, ore is that the density directly measured on the surface was i^{\prime} this case 2 a , and the llient density of the earth 4%. An interesting inference ls made ln the alove conoted
 of hee earth, is the central or metalline part." A to the dis. tribution of the density we have by this investigation no knowledge.

The next metlose briefly to be referred to in that of the pelldalnin. Now, the pendnlum we may consider an all owcillat. ing plumb-line ; its action is subject to the same law of gravitation. The grenter the pull or force, the more guickly will the pendinlum oxcillate when disturbed from its poxition of rest. Hence if we allow a penclulnut to swing on top of a monntain whose minss and height are known, and again at the base of the msometain kirowing the radius of the earth, in the relation of the equation connecting the observation the only maknown quantity is the mass of the eurth, which is thins fomd. The weak point in this, as in the former method, is the uncertainty of the mass of the monntain, even when mumbers of sumples of the constitnent rock have been weiglied.

A notleer practical application of the pellelulanis is froms obser. vations on the surface of the earth and down in deep mines. This method involves a principle first pointed ont by Newton and that is that at any point within a hollow, homogeneons, spherical shelt, gravity is zero. Hence in a mine all the matter ill a shell the thickness of the deptlo of the mine has no effect, as the mass in spheres is rednced in the ratio of the cubes of the radii, and the attraction is increased by the sillare of the radii, the resilting attraction varies directly as the radii. Airy observed by this method, but from the impossibility of obtnining a reliable value for the covering shell the result was not very satisfactory, being $6 \cdot 56$.

The most accurate method is by meaus of tite torsion balauce. This is essentially laboratory work, where all the data indergo rigorous determinations and examinations.
liroul the end of in fine wire, or letter atill al gatarte fibre, in suvjeuckl symumetrically a roul having at each entl a suall wetal lic ball, each of the base mana. 'Tle first tetermination to be male is the so-called " tormional coeflicient." i.f.. the renistance that the filme offerm to leving twisted. 'Tinis is done loy giving the balla a small rotational motion ame olswerving the time of their swing hackwarl ansl forwarl, twisting and untwisting the fibre. T'he 'aphility with whieh oxcillations take place is dejsendent Hpon the fibre, the greater its resivtence to torsion the shorter will lee the perionl. Ilaving the coefficient determined, the next atep is to measure the twint or torsion pronluced lyg placing large metallic spleces of known mans on opposite sides of the small balls, and at given distances foum them. Iby the law of gravitation the ball and splere with approach each other, and the force which is exerted is measured by the amount of torsion of the fibre, and as its coefficient is known the force can lee expressed in the ordinary mits. Now the force of the earth is known, if., we know the acceleration to be :"月 feet jer second per second, or HTs. (60) dyues, or we mate express the force by sayiug that the pull of the earth on the small ball is, of conrse, its wejght.

We also know the carth's ralins or volume, hence its mesw by comparison with the mass of those attracting splueres. As mass is the prosluct of volume into de:swity, we finally olstain the lensity of the earth, that is, the mean density. Recent determ-

Now what have we learmed from these varions determinations of the densit; of the earth? We lave fomme that the mean or average density is alout five and a lialf, i.e., the matter of t^{*}, earth is volnuse for volume compared with water leotween five and six tines as henvy as water. Heavy is rather an inacenra: expression, as it implies a force, a pull; better to say, five or six times as dense as water. Mass is independent of force, weight is not.

We have learned something of the earth in its entirety, but we are after details. Although we kiow so far with a consider. able degree of accuracy what its mean density is, set from it we

Otto K'lozz

know nothing definitely about the distribution of the matter. We might surmise or assume as probable that the density increases, perhaps following some law, from the surface to the centre, but as far as the above data are concerned it would only be a surmise. What we can say, however, with certainty is, that if the distribution of mass in the earth is not uniform, then as the density of the earth as a whole is $5 \cdot 5$, some of it must be greater than 5% and, of course, some less, as we know to be the case for matter on the surface. Let me say here that the density of iron lies between 7 and 8 .

Let us consider briefly another question-the figure of the earth-and see what evidence it can furnish us of its constitntion.

Newton applying his law of gravitation and centrifngal force, deduced the flattening for a homogeneons fluid, rotating with a umiform angular velocity to be ${ }_{230}^{I}$, i.c., the axes in the ratio of 229 tc 230.

A few years later Huygltens, on the assumption that the attracting force was concentrated about the centre, fonnd that the ratio of the axes was as 578 to 579 , i.e., the flattening $\frac{1}{379}$; this latter assumption is equivalent to considering the bulk of the mass of the eartl gathered about the centre. We see then that for a homogeneous earth, i.e., where the density is the same throughout, the flattening is about $21 / 2$ times as great as when the density is enormonsly greater about the centre.

Now from pendulum observations as well as from geodetic measurements the flattening of the earth lias been found to be about $\frac{1}{2095}$ (Clarke's value 1880). We see that this value falls between that of Newton and that of Huyghens, obtained muder certain and diferent assumptions. We may infer therefore that the actnal conditions in the earth fall somewhere between those assumed by Newton and Huyghens. Hence the conclusion is that the density increases towards the centre. This is an important deduction, and in the sequence of our discussion is the first direct inference of the distribution of the mass within the earth.

In default of knowledge, Laplac. assumed, as an hypothesis, the law of compressibility of the matter of which, before its
solidification, the earth consisted, to be that the increase of the square of the density is proportional to the increase of pressure. Now the phenomena of precession and nutation are clependent upon the distribution of the mass of the earth, i.e., upon the moments of inertia about the polar and equatorial axes. If we compute the moments of inertia about these two axes we obtain the constant $(C-A) / C$, where C and A are respectively the moments of inertia about the polar and equatorinl axes, we find the valine to be $003 \cdot 7$, or ${ }_{305}$. The moments of inertia of the earth as an ellipsoid about the principal axes are $C=\frac{a^{2}+b^{2}}{i j} m$ for the polar axis, and $A=\frac{b^{2}+c^{2}}{i)} m$ for the two equatorial axes. Taking the earth as an olflate spheroid $a=b$. hence $C-A=\frac{a^{2}-c^{2}}{2 a^{2}}=\frac{e^{2}}{2}$ a where $e=$ eccentricity.

As will be seen fron the expression it is eqnal to the flattening or compressinn approxinately $\left(f=\frac{c^{2}}{2}+\frac{c^{4}}{5}+\frac{r^{6}}{16}+\ldots\right)$ or to one half of the square of the eccentricity of the earth, and as this latter quantity is known from the other data we find the two to be fairly accordant, from which it might be inferred that Laplace's hypothesis is verified. But it is necessary not to overlook a very inportant point, and that is, that the density may only to a degree be dependent upon pressire. The density not only nuay, but very probably is, dependent largely in the depths of the earth on inherent molecular aggregation; and instead of a homogeneity of material throngliout the earth, subject only to the respective pressures at different depths, we probably liave to deal with niatter inherently of different specific gravity.

There is another phenomenon mpon the earth which gives us some clne as to the plasticity or rigidity of the earth, it is the tides. Tidal action through the law of gravitation plays a very important factor in the cosmos, bint we can now occnpy ourselves, and that but very briefly, only with onr own planet. In all or nearly all physical investigations the difficulty of absolnte deter-

Otto KYolz

minations is enconutered. The determinations all pass through the phase of relative measures before the absolute value is arrived at. So it is with the tides.

If we observe the height of the tide at flood and again at ebb, we naturally iufer that because water is a fluid, is mobile, it answers or responds to the call or attraction of the Moon and Sun, which the earth as a solid does not. This last statement, however, begs the very question, that of an unyielding solid, which we wish to consider. Let us consider for a moment the earth as a plastic mass. It must be evident then, that although the Moon and Sun would exert their attractive force just as much as before, the phenomenon of tides wonld practically disappear, for under sravitational stress the land would rise and fall just as the water, and hence their relative position would remain the same. As the land became stiffer, i.e., offered more resistence to being pulled out, tides would appear, until perfect rigidity set in when the maximum rise and fall of the water would occur. We well therefore that the actual tides as we obsend occur. We see of the rigidity or elasticity of the observe them, are a measure earth, as the word fluid is ordine earth. A fluid interior of the impossible from the considmarily understood, seems therefore stresses and consequent strains on thes. The gravitational break up the thin rigid crust of the interior would continually. of the Moon around the erth with every revolution earth had only the rigidity of Lord Kelvin found that if the $2 / 5$ what they would be on a earth had the rigidity of steel rigid earth, and similarly if the of an inelastic earth. Aseel then the tides would be $2 / 3$ those on the subject: "On the Lord Kelvin says in his closing words whilst there is sume evide whole we may fairly conclude that, mass, that vielding is cence of a tidal yielding of the earth's rigidity is at least as great certainly small, and that the effective

We will now pass as that of steel." * nature and distribution of thother consideration involving the variation of the pole or pols mass of the earth-it is that of the

[^1]It is now over a century since Euler established that in any mass-system the axis of free rotation about the centre of gravity can only remain fixed in the system when it is coincident with one of the principal axes of inertia passing through the centre of gravity. Monents of inertia for a solid are generally referred to three principal axes passing through the centre of gravity; for one of then the moment of inertia is a maximum, that is, the summation of the products of every particle of mass by the square of its respective distance from that axis is a maximum ; for another, at right angles to the former, the moment of inertia is a minimum. The third axis is at right angles to the plane containing the other two. In the ellipsoid the principal axes wonld be coincident with its semi-diameters a, b, c. In the oblate spheroid, a figure of revolntion, one that is generally assumed in the discussion of the earth, the axes a and b of the ellipsoid become equal, i.e., the equator is a circle. As stated, Euler showed the stability of the axis of free rotation only then obtains when it coincides with one of the principal axes of inertia. Now in the case of the earth whose slape is due to the very fact of rotation, the principal axis of inertia with which the axis of rotation must coincide to ensure stability must be the polar or shorter one, the one for which the moment of inertia is a maximum.

It may be remarked that for a sphere in which all the dianeters are equal, the monents of inertia abont any axis throngh the centre are equal and hence the position of any axis of rotation about the centre may be considered unstable, as the slightest misymnetrical displacement of mass wonld produce a permanent change of the position of the rotation axis. Of conrse the moment a spherical fluid sphere begin: to rotate about any. axis, the sphere will throngh the influence of centrifugal force begin to flatten, that is, the axis of rotation will shorten and tue axes perpendicular thereto will lengthen. What shape the splhere will take is strictly definable when its period of rotation and the density of the fluid are known.

Ollo K'lotz

We see that in the evolution of a spherical liquid or plastic body, when rotation about a diameter is given to it, the axis of rotation will gain stability by the changing forn of the body, due to the centrifugal force, and this stability must necessarily continue as long as the mass adjusts itself to the axial rotation, that is, there will be perfect coincidence between the axis of free rotation, and the principal axis of inertia passing throngh the poles; in short, tiere will be no variation of the pole. When in the course of time the plastic mass begins to cool and stiffen, it cannot so readily. adjust itself to the demands nade by die axial rotation. From what we know of the surface and crust of the earth, of faulting ; of elevation and sinking of masses ; of extrnsion and intrusion of lavas, it is obvions that displacements of mass have taken place, and some of then under violence, so that it is reasonable to suppose that at times at least the coincidence between the axis of rotation and the respective axis of inertia would be disturbed. Now according to Enler's theory in this event the axis of rotation will relatively to the solid have a conical movennent abont the above principal axis of inertia, while pointing to the same fixed point in the heavens, i.e., the declination of the stars is not affected, and its period will be dependent upon the dimensions of the earth and the relation of the principal moments of inertia abont the polar and equatorial axes. The period, expressed in terms of the principal moments of inertia, is equal to $\frac{C}{C-A}$. Ex. pressing this mamerically we find the period to be abont 806 days, say ten months. It is to be borne in mind that this result applies to a perfectly rigid earth, it is obtained simply from a disp'acement of mass cansing a mimnte divergence between the axis of rotation and the primcipal axis of inertia. Now the result of this r^{\prime}--ergence means that the latitude of every place on the earth would go throngh a cycle of change in 306 days.

Astronomers recognized the validity of Euler's reasoning and examined the records of observations to see if such a period was traceable from latitude observations or meridian circle readings, but they failed. The examination revealed that whatever
the fluctuation of latitude, it was confined to a fractional part of a second of are. The precessional effect upon the asis of the earth, that is, the effect from external forces, the attractions of the Moon and Sun, is to carry the pole arome the heavens in abont 26,000 years, the axis describing the surface of a cone whose vertical angle is nearly 47°, being twice the inclination of the plane of the equator to the plane of the ecliptic. We shall find that this external inflnence upon the position of the axis of rotation within the earth is very small, for the precessional effect would be represented on the earth in linear measire by the Arctic circle, and this divided by the umber of days in $26,0(0)$ years would give the circnumference of the circle described ly the rotating axis, and this is fonnd to be five and a half feet, which
 tity wholly murecognizable by observation, so that one may almost strictly say, that the position of the axis of rotation in the earth is not influenced by the change of position in space. However in a quite opposite manner do the changes and distribution of mass within the rotating body act. In this case the change of position of the axis of rotation in the bocly is predominant, while those in space are secondary and vanislingly. small. The following may therefore be ahnost rigorously stated, that in consequence of the change of distribution of matter of the rotating mass no perceptible clange of the position in space of the axis of rotation results from a change in position of the axis of rotation in the body.

Dr. Küstuer was the first to show, from his own observations in Berlin, that the latitude had decreased $0^{\prime \prime} .20$ from $188+$ to 18585 . In 1888 the subject of variation in latitude was taken up, by the International Geodetic Commission, and it has actively been prosecuted ever since under the direction of Helmert.

Since 1900 with similar instruments and methods continuous observations have been made at the six international stationsGaithersburg, Cincinnati, Ukiah, Mizusawa, Tschardjni and Carlo.Forte, all on or rery near the parallel of $39^{\circ} 05^{\circ}$.

A na ne that will always be most intimately associated with the proof of the change of latitude is that of Chandler, who found that the period was not 300 days, according to Euler's theory, but 427 days. Subsequent to his first announcement in 1891, Chander examine 1 an enormonts amomit of material, and as Professor Abbot writes, "From this great array of evidence the fact of the wandering of the pole was not only clearly defined, but also the variation of its period and amplitude came ont witls. ont question, and an insight was gained, as to the cause of this baffing phenomenon, as follows: The ohserved variation of latitude is the resultant curve arising from two periodic fluctuations superposed upon each other. The first of these, and in genteral the mere considerable, has a period of about 427 days, and a semi-amplitude of about $0^{\prime \prime} \cdot 12$. The second has an annual period witl a range variable between $0^{\prime \prime} .04$ and $0^{\prime \prime} \cdot 20$ during the last half centnry As the resultant of these two motions, the effective variation of latitude is subject to a systematic alternation in a cycle of $s \in$ ven years duration, resulting from the commensurability of the two terms. According as they conspire or interfere, the total range varies between two-thirds of a second, as a maximum, to but a few hundredtlis of a second, generally speaking, as a minimunı.'

Now this deviation of 121 days from the theoretical value of 306 days is intimately bound up with the interior of the earth, with its rigidity : as already stated the 306 days pertain to a perfectly rigid earth. The insestigation in this respect has led to the result, as stated by Professor Wiechert that the resistance of the eartli to deformation is twice as great as that of steel, as we know it. We see then that the variation of latitude tells ins something definite about the interior of the earth.

Professior 'Turner in ais " Astrondmical Discoiery'' refers to the effects of the wandering of the poles, and says that we should expect to find a swash of the occan, even if very small, and also that "the little cracks of the earth's skin, which we call earthquakes are more numerons when these unbalanced vibrations are at their maximm, that is to say; abont once every seven years,"
-i.c., that eartiquakes are in a measure depenclent upon the behavior of the axis of rotation. On the other hand a few investigators believe the earthquakes are acconntable, to some. degree, for the variation of the axis of rotation by the displacement of mass within the earth. This rather extended reference to the wandering of the pole within the earth is introluced to show its counection with the interior of the eartl, its rigidity, its elasticity.

We now come to another sonrce of evidence regarding the interior of the earth, it is the principal one that we have for consideration to-day.

Earthegakes and the Inthrior of the liarth, -I, et us tarry for a moment with the word wave as understool in physics. A wave is a vibration propagated from particie to particle through a body or elastic medinm. We may distinguish different classes or types of waves: gravitational, as in water; longitudinal waves or waves of compression and dilatation, such as manifested in sound ; and lastly transverse, as are manifested in the propagation of light. It is certain that the hypocentre or origin of earthquakes is not sitnate at any great depth compared with the radius of the earth. From deductions based on direct observation within the epicentre, or area within which destriction takes place it appears that probably thirty miles is the very extreme depth at which earthquakes occur. Hence the study of the interior of the earth can not be made from any records within the epicentral region, for the waves received there can not come from or throngh any greater depth than that of the hy:ocentre which, as has been said, is within say thirty miles. It is evident we must get farther and farther away to obtain greater and greater depths for the path of those earthquake waves that enable ns to study the interior of the earth. Let us consider the first impulse recorded by a number of seismographs or earthquake instruments situate at varying distances of some thousands of niles from the seat of disturbance. Each record would show an abrupt and rapid oscillation. Let it be granted that the origin is known and hence the distance along the surface of the earth and
along the chord to each station would be known. Now we can cither assume the time of the occurrence of the quake to be known, as is nearly always the case when the epicentre is in inhabited regions, as was the case in San Francisco, Valparaiso, and Kingston, or we may compute it indirectlv from the observed times of arrival of the shock at the varions stations. The former assumption suits our purpose better. Now see what our problem looks like. It is something like this analogy: Many trains leave Ottawa at the same time in different directions; one arrives at Halifas at a certain time, one in Washingten, one at St. Lonis and one at Vanconver, If we divide the distance travelled by rach, by its respective time consumed; , we will get the average spect or rate of propulsion. Granting the same motive power, the road that had the least resistance, the easiest grades would show the lighest speed. T13e distance travelled then combined with the time gives us the average velocity. Now let us return 10 our earthquake record where we have given the accurate time of transmision, for it is the difference between the time of the actual occurrence of the quake and the time the shock arrives. With the distance our a priori knowledge is not so certain for we may say that there are an infinite number of distances between any two points upon the earth, it depends ufon the path that the particular wave, which has recorded itself, has taken to reach us from the origin. Torricelli tells his that "nature abliors a vacuum," and similarly nature abhors the ronndabout way but follows the line of least resistance at hand. Have you ever followed a monntain stream and seen how it picks out the route of greatest descent, being the easiest and quickest to get down to the valley? Similarly nust be the route of our first shock, or preliminary tremors as they are technically called. Now we are safe in assuming that there is some law of increase of density, be it due to pressure or molecular arrangement or both, as we go down in the earth for a considerable depth anyway. This assnmption combined with our knowledge of the belavior of different solids of various densities for the propagation of waves leads us to the conclusion that the path of the earthquake wave
first to arrive will not he aloug the geometrically shortest line but aloug a line concave to the surface, the line along which the pulsations are most quickly transmitted. Hint even were we to omit the assumption of any particular haw for the increase of density as we descend into the earth and treat the medimm simply as isotropic we will be able to make the point that we have in view. We will take then that the particular wave travels along the chord, the shortest distance between the two points, i.e., of origin and station, and this distance is accurately known, as is the time. We obtain then an incontrovertible average speed or relocity of propagation of the pulsations. Now let us return to the pispsical laboratory and see what information we can obtain there to enlighten our path and draw valid conclusions. We find that the speed of propagation through various substances is siven, and further that the law of speed is expressed by $\hat{v}=V^{\prime /} \quad \begin{aligned} & \text {, } \\ & d\end{aligned}$ i.e., the velocity of a wave of compression and dilatation or rarefaction in an isotropic medi' 11 is equal to the square root of the elasticity of the medimn divided by its density,-or we may say that the velocity varies directly as the square root of the elasticity and inversely as the square root of the density. Increase of temperature also increases the velocity. It is generally accepted that the first preliminary tremors are longitudinal waves, while the second preliminary tremors are transverse, and the waves of the principal portion are surface waves.

When we compare varions seismograms of the same quake, having noted on each the varions phases, it will be foumd that the time interval from the occurrence of the shock to the arrival of the long-period waves is directly proportional to the arcual distance from the epicentre. Or inversely, we find for that particular kind of wave that the time interval is projo:tional only to the respective arcual distances froun the centre of disturbance, and as the velocity is dependent upon the density of the medinn, the medium, we see, must be more or less miform, in this respect, which occurs only between two points when the path joining thems lies along the surface of the earth. Hence this form of
waves must be surfice waves. The average speed of these whees is 3.4 km . or $: 1$ miles per second. For instance in the San Francisco catastrophe those waves took uearly 17 minutes to reach
 IS K km . hence to complete the circilit of the earth wonld take a little more than tell times as long, or over two and a half homrs.

Wheth, however, we make comparison of the two phases of the preliminary trenoses, we note two inportint facts, the first is, that the time intern il is not proportional to the arcual distance, ins it is for the above surface waves; now, the natural inference wonld be that the wave travels along the chord betweell the hypocentre and the place, and, of course, the chords are not proportional to the arcs which they subtend. On closer examination of the records there will still be a small ontstanding difference after making due allowance for the ratio of the chords, that is, the farther place shows the greafer velocity, or which comes to the same thing, the time interval for the farther place is relatively shorter than for the nearer place, allowing for difference of distance along the chords. Strictly speaking these chord distances are only applicable in an isotropic medium, in an zolotropic medium we wonld find the path concave to the surface of the enrth, which is really the condition which obtains. This further speed we find attribitahle to the greater depth, and hence greater density and elasticity of matter throngh which the waves reaching the farther stations travel. From the relationship which we have shown to exist between velocity, elasticity and density, and from the observed fact that the velocity increases with the depth, to within ortain limits, it follows that the elasticity must increase faster with the depth than does the density. This, then, is the first fact that we note with reference to the first preliminary tremors as interpreted from different seismograms. The second is that the interval letween the first and second prelininarytremors is not only not constant. lnt increases with the distance from the hypocentre. This fact immediately differentiates the nature of the waves. It is evident and obvions that one kind of pulsation is gaining on the other, otherwise the two recorded
phenumena would not be getting Inrther and father apart, and We arrive at the conclusion that we are dealing with two different kinds of waves-with longitudinal and transverse waves. It may be opportume right liere to draw a certain inference, after laving sees the existence of transverse waves. While !ongitudinal wases, those of compressions and dilatation, may be propagated in a solid or fliti:, the transserse waves (those of distortion) can not be propagnted in a finisl, taking the term in its oodinary acceptation. We must conelude therefore that in that sense of fluidity we eannot s.enk of the interior of the earth. The interict of the earth is neither liguid nor gaseons, int solid. It is to be berne in mind, and this point may we!l I .mphasized, that this is not a speculation, as so much hitherto ha: been nbout the interior of the earth, but the direct evidence or hand-witing of messengers who have travelled throngh the earth, and told ans their story on the seismogram. The seismograms are the Röntgen rays of the interior of the earth.

Now, as you will see from the diagram which I lave constructed from available data for the San Francisco earthquake. the increase of velocity with the depth is fairly well represented by a straiglt line up to a depth of about one quarter of the earth's: andius. The chord of this depth is subtended by an are of about 83°. It may be remarked that an are of 83° from Ottawa would pass close to Cairo, ligypt ; Valparaiso, Chile ; and the northern extremity of Japan. Beyond this depth there is no apparent increase in the velocity. Up to this point the elasticity was increasing faster than the density; but heneeforth this relationship does not obtain. It wonld appear as if we encountered different eonditions of matter.

It is fomed that the velocity of the first prelinimary tremors increases from 7 km . per second near the surface to nearly 13 k k . at great depths, where it is approximately constant. Similarly for the second preliminary tremors we have the velocity increasing from 4 km . to 7 km . per second, depending upon the depth of the path. The surface waves have an aveage velocity of abont 3.4 km . per second.

It may be obmerved here that the many disturbances in Italy cluring the past two yeara must have thelr origin at very mmall depths, that is, the hypocentre must be very shallow, for, so far, inn record has been obtained here of an Italian volcanic or seismic distarbance, even when the latter has lieen locally very dentrnctive.

The data at hand are somewhat limited for very distant places, and the conclusions based on the latter might appear hased oll ileagre material. However, they receive ample support from Professor Wiechert, who has pald especinl attention to the atbject, alld who has had at his disposal a vast amount of matter. Ilis conchnsions from all tie evidence he contd gather, ard enpecially from the neismological records, are that the earth is composed, essentially of a stony layer for about a quarter of the diameter, and the interior is a core, most prohally of iron. We cannot on this occasion enter into the many other questions connected winh onr discussion. Volcanoes, which are a phenomenon apart from earthquakes, may be said to be mere pustules int the skin of the earth and are not part of anl interior liquid mass or magma, for the latter does not or cannot exist.

I think it must be admitted that what has been presented as evideoce by earthquakes, or rather their seismograms, about the interior of the earth, has been of a most positive and in many respects conclusive character. And we are but at the heginning of this new science of Seismology in unravelling the story of the structure of the earth and of its behavior. Althongh there is a fairly clear idea of the propagation and nature of the waves issuing from the lypocrntie, or more strictly speaking the hypoarea, for the seismic disturbaoce does not issue from a point, but raflier all area or volume is involved, yet there remaios much to be learned about these waves. Then, too, the separation on the seismogram of the part due to the motion of the pendulum, which is supposed to be at rest, from the earth movements due to the quake, is a matter of iooport. But for all the difficulties involved. we must oot lose sight of the fact that the esismograms have the data for a cemplete solution and cetermination of all the quantities involved in producing the records. The Rosetta stone is yet
to be fonmd for a complete linterpretation of the hieroglyphen of the seimogram. When our instrmenty are made more sellsit. ive, when their thee-record is inproved, whell we call assure ourselves on variond selsmograms of the lenentity of the record of one and the same innpulse froll the hypocentre, say that every webangrant considered nhown the impulae from the firnt wave. fromt, then, from resulting observatlon eghations, not only will the accurate propertien of matter of the inerior of the earth at various depths be determined, but eventually also deviations therefrom on particular pathes along which the impulses travel, just an our pendulum observations now hre mainly utilized for letecting deviations from the theoretical value of gravity; we thall le able to differentiate velocities for the same Illstance hint over different rontes, i.e., coning from different hypocentres : for favorably sitnated stations along a monntain chain, the "roots" of the momentans may reveal thelr characteristics, that by other methods have been inferred.

Seisuology has taken firm root and the outhonk for the future is bright, it holds the key to unlock the contents of the treasure vanlt below ins. Learthquakes have already told us annch of the linterior of the earth and nach more is in store.

[^0]: An Account of the Calintation mone from the in mey and . Wessures taken at Schehallien by Charles iIutton, F. K. S., 1779.

[^1]: *Natural Dhilosophy, Vol. II., p. 460.

