CIHM Microfiche Series (Monographs)

ICMH
 Collection de microfiches (monographies)

The Institute has attempted to obtain the best original copy available for filming. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly charige the usual method of filming, are checked below.

Coloured covers/
Couverture de couleur

Covers damaged/
Couverture endommage
Covers restored and/or laminated/
Couverture restaurde et/ou pelliculbe
Cover title missing/
Le titre de couverture manque
Coloured maps/
Caı tes geographiques en couleur

Coloured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bleue ou noirs)

Coloured plates and/or illustrations/
Planches et/ou illustrations en couleur
Bound with other material/
Relié avec d'autres dccuments

Tight binding may cause shadows or distortion along interior margin/
La reliure serrée peut causer de l'ombre ou de la distorsion le long de la marge intérieure

Blank leaves added during restoration may appear within the text. Whenever possible, these have been omitted from filming/
II se peut que certaines pages blanches ajoutées lors d'une restauration apparaissent dans le texte, mais, lorsque cela ètait possible, ces pages n'ont pas èté filmées.

L'Institut a microfilmé le meilleur exemplaire qu'il lui a été possible de se procurer. Les détails de cet exemplaire qui sont peut-itre uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de filmage sont indiqués ci-dessous.

Coloured pages/
Pages de couleur

Pages damaged/
Pages endommagiesPages restored and/or laminated/
Pages restaurées et/ou pelliculéesPages discoloured, stained or foxed/
Pages décolorées, tachetées ou piquées

Pages detached/
Pages dítachées

Showthrough/
TransparenceQuality of print varies/
Qualité inégale de l'impressionContinuous pagination/
Pagination continueIncludes index(es)/
Comprend un (des) index

Title on header taken from:/ Le titre de l'en-tele provient:

Title page of issue/
Page de titre de la livraisonCaption of issue/
Titre de départ de la livraison

Masthead/
Générique (périodiques) de la livraison

Additional comments:/
Coınmentaires supplémentaires:

This item is filmed at the reduction ratio checked below/
Ce document est filmé au taux de réduction indiqué ci-dessous.

The copy filmed here has been reproduced thanks to the generosity of:

National Library of Cenada

The imeges appaaring here are the best quality possible considering the condition and legibility of the original copy and in keeping with the filming contract specifications.

Original copies in printed paper covers are filmod beginning with the front cover and ending on the last page with a printed or illustrated impression, or the back cover when appropriate. All other original copies are filmed beginning on the first page with a printed or illustrated impression, and ending on the last page with a printed or illustrated impression.

The last recorded frame on each microfiche 3hall contain the symbol \rightarrow (meaning "CONTINUED"), or the symbol $\boldsymbol{\nabla}$ (meaning "END"), whichever applies.

Maps, plates, charts, etc., may be filmed at different reduction ratios. Those too large to be entirely included in one exposure are filmed beginning in the upper left hand corner, left to right and top to bottom, as many frames as required. The following diagrams illustrate the method:

L'exemplaire filmé fut reproduit grâce à la générosité de:

Bibliothéque nationale du: anada

Les images suivantes ont 6tó reproduites avec ie plus grand soin, compte tenu de la condition et de la netret' de i'exemplaire filmé, et en conformité avec les conditions du contrat de filmage.

Les exemplaires originaux dont la couverture en papier est imprimée sont filmés en commencent par le premier plat et en terminant soit par le dernidre page qui comporte une empreinte d'impression ou d'illustration, soit par le second plat, selon le ces. Tous les autres exemplaires or!ginaux sont filmb́s en commençant par la premidre page qui comporte une empreinte d'impression ou d'illustration et en torminant par la derniére page qui comporte une teile empreinte.

Un des symboles suivants apparaîtra sur la dernière image de chaque microfiche, selon le ces: le symbole \rightarrow signifie "A SUIVRE", le symbole $\boldsymbol{\nabla}$ signifie "FIN".

Les cartes, planches, tableaux, etc., peuvent être filmés à des taux de réduction différents. Lorsque le document est trop grand pour être reproduit en un seul cliché, il est filmé à partir de l'angle supérieur gauche, do gauche à droite. et de haut en bas, en prenant le nombre d'images nécessaire. Les diagrammes suivants illustrent la méthode.

P
8. (1) Mage \& Co.'s Examination frimer Series.

PROBLEMS IN ARITHMETIC Firs

 PUBLIC SCHOOLS

 PUBLIC SCHOOLS}

INCIITINA: THE:
Entrance E.raminations, Public School Leaving Examinations,
and Primary Examinations.
ky

C. CLARKSON, B.A., lrincijul af' Seajorth Collegiate Institute.

> Teachers' ©́dition.
W. J. GAGE \& COMPANY, ToRontu.

QA103
 C55

when
classes I:xam twache velves propios li.rami heginu nations is the 1 yumstio) which a Next f_{1} to date througl papers Then f, culty. Tife I's Skelet work in for hims
devote r subjects

To ac sections
Examino

PREFACE.

TuE teacher of an ungradel school has to solve a difficilt question when he comes to distrihute his available time among a number of Classes at all stages of progress below the I'ublic School Leavin!! Examination. This little volume has been compiled to assiat such machers in economising time hy setting senior pupils to teach them. selves Arithmetic with a minimum of oral assistance. In view of the proposed increase in the difficulty in the Entrance ani P. S. Leaving Li:aminations the full set of Entrance Examination Papers from the heginuing fumishes the bist possible preparation for ensuing exami. nations. Learn to pass the examination by passing the examination. is the hest alvice that can be given. Aecordingly this eollection of questions emmains a few carefully selected Review Questions, Which are intented to le workel in the order in which they are given. Next follow tife Extrance Pafers from the heginning in 1873 to date. Theso papers are best utilized by taking question No. 1 through the whole set, then question No. : in each set, etc., for the papers are generally somewhat graded from the beginning to the end. Then follow the P.S. Leaving Papers and a few sets of like diffealty. Tinis is the ouly complete collection of these papers in print. 'Tie Teachers' Eiffion contains answers to all the questions and skeleton Solutions, which enable the teacher to correct his pupil's work in the shortest possible time, or enable the senior pupil to learn for himself how to solve the problem, thus learing the teacher free t, devote more time to literature, composition, reading, etc., in which subjects our sehools are so generally deficient.

To add to his perplexities the prblic school teacher in some rural sections is expected to prepare two or three pupils for the Primary Examination every year. To help this worthy class of teachers, who
are compelled to make extraordinary drains on health and strength by doing one or two hours over-time every day, the fuld RET OF Primary or Tilird Class Papers down to date is given. The questions are roughly graded, so that the best plan of attack is to work No. 1 in each pa!ner throughout, then No. 2, etc, until the pupil is preprared to do a paper in full against time. Tife Teachers' Edition contains a complete set of answers to the whole and SkELETON Solutions to all the questions requiring them. It is hoped that toachers will try tif Laboratory Plan, which has proved a triumphant success in other branches. In this plan the material to be investigated-in this case the sets of problems-is placed before the pupil and he receives directions how to set to work. He also receives books, apparatus, etc., and is told how to make use of thom. Thus equipped he is left to his own resources as much as possible After going rather slowly for a week or two he begins to depend on himself and learns to tepch pimself with the least possible assistance from his teacher, whose duties become largely of an advianry kind.

This plan has been fully tested in Arithmetic with great success. The questions here given without the answers furnish the matter to be investigated. If the pupil can write out full and explicit solutions he needs no help and receives none. If he fails after due trial the Skelcton Solution gives him assistance at the diserotion of his teacher, or it enables the teacher to point out in a moment the vicious step in the caleulation, so that time is economised and the overpressure of examination work is relieved to an appreciable extent.
C. α

Seaforth, Coll. Inst., January, 18:\%:.

1. 0
2. R
3. E
4. P_{t}
5. T
6. Tı
7. $A N$
ind strength ULL RET OF given. The attack is to c, until the Teachers' and Skeleis hoped that proved a triaterial to be ad before the also receives hem. Thus sible After d on himselt nee from his reat success. he matter to icit solutions lue trial the his teacher, cious step in rpressure of
C. 0

CONTENTS.

1. General, Introdultios Patae
2. Review Questions 1

- Review Questionv 7

3. Extrance Examination Papers, Complete Set from 1878 to date 17
4. Public Scifoot. Leavino Examination Papers, and seta of Questions of the saine grade 48
5. Type solutions 61
6. Third Class and Primary Leaving Examination Papers, to date
81
7. Answers105
I.
redu
simp
detai
easil.
large
more
The
more
their
light
time
tende
in per
analy
II.
acquir
discip
great
doing
tion,
shorte
Since
well to
ordeals

IN'TRODUCTION.

I. The Tendency of Recent Examinatio: " has been towards reducing theory to a minimum and towards clothing the few, simple principles of pure arithmetic with circumstances and details in the form of problems and applied questions. It is easily observed that our examinations in arithmetic consist largely of problems containing in disguised form some one or more applications of the fundamental abstractions of arithmetic. The effect of this is two-fold. It prevents very effectually the mere memorizing of dead rules without clear apprehension of their meaning; and on the other hand it tempts teachers to pass lightly over pure arithmetic and to spend most of their available time in the solution of problems. Indirectly, therefore, the tendency is to neglect mechanical skill, accuracy, and rapidity in performing fundamental operations, and to exalt the power of analysing applied questions and problems.
II. Mechanicai Skill vs. Analytic Power.-Of these two acquirements the latter is in all respects the more important as a discipline of the mind; yet in practical life the former is of very great importance; and, we may add, that for the purpose of doing a given amount of work in a limited time at an examination, quickness, promptness of action, and a knowledge of the shortest methods are equally as necessary as accuracy of thought. Since we have examinations as a kind of necessary evil, it is well to consider carefully how best to prepare pupils for these ordeals.
III. The Four simple Rules should receive very particular attention and rapidity should be cultivated by every ingenious artifice and stimulated by appeals to every proper motive. Constant reviews, matches, puzzle questions, rewards, special privileges, etc., will readily suggest themselves. The main point is to place in some way a very special emphasis on the importance of unerring accuracy and of great rapidity in all combinations of the four simple rules as essential to success at the examinations. In many transatlantic schools this mechanical skill is the strongest feature of the teaching. A careful observer reports that in an Edinburgh school some of the pupils "will multiply such a line of figures as $7,685,928,165,487,938,764$ by 7,8 , or any other figure, in less than the sixth part of a minute. From such a line they will subtract another of the same length, in the ordinary way, in about seven seconds. In simple addition they will sum up seven lines of eight figures each, in the ordinary way, in less than one-third of a minute, and, if allowed to perform the operation while the question is dictating, in about three seconds."

The gain in time is not the only gain, for with rapidity in the mechanical work, pupils acquire energy, decision, and quickness of mind that are of great practical value in all lines of study. From the earliest stages, work at high speed should receive constant care, and the best drill is found in pure arithmetic with tolerably large numbers ; whereas, the most useful drill in analysis deals with small numbers and emphasises the intellectual side of the problem. There are numerous simple expedients by which the busy teacher can easily supply practice in long addition, multiplication, subtraction, division, etc., without being obliged to work every question in order to test the pupil's result. All recent papers assume that pupils can add up an ordinary ledger column, both vertically and horizontally, without error and with considerable celerity, and this tendency is likely to increase, for in practical life the greater part of the arithmetical calculations are of this character. The ability to multiply ten figures by ten figures, and divide the product back again should be one of the tests for promotion to the fourth class.
IV. Mistakes in Subtraction give rise to more arrors than mistakes in multiplication, addition, and division combined. It is, therefore, a decided advantage to perform subtraction as a species of addition, and it is much easier for the pupil to learn it in that way. Thus, instead of saying five from seven leaves two, it is possible to state the question five and how much? makes seven? In long lines we thus proceed as if proving the result by additions, and no new rule has to be taught. Example:-

$$
\begin{array}{r}
6395464 \\
895493 \\
\hline 5429971
\end{array}
$$

3 and? 1 are 4; 9 and? 7 are 16; 5 and? 9 are $14 ; 6$ and? ? are $15 ; 10$ and ? 2 are $12 ; 9$ and ? 4 are $13 ; 1$ and ? 5 are 6 . In each case the figure is set down as the answer to the mental question is thought. The mystery of "borrowing and paying back" is avoided. This method enables the pupil to do long division very rapidly with half the usual figures by combining multiplication and subtraction. Example:-

$$
\begin{gathered}
13887 \\
4064 \mathrm{~J} 643971 \\
15798 \\
36069 \\
35577 \\
30651 \\
2203
\end{gathered}
$$

Write the quotient over the dividend, when convenient, to assist the eye, and say once 4 and? nine are 13 (set down 3 and carry one) ; once 6 are 7 and? sevell are 14 ; once D is 1 and? The are 6 : once 4 and? ,ne are 5. Bring down 8 . Three times are 12 and ? six are 18 ; three times 6 are 19 and? zero are 19; hree times 0 is 1 and? six are 7 ; three times 4 are 12 and? hree are 15. Bring down 9, etc. Pupils learn this in one esson, and it conduces to accuracy and rapidity as experience bundantly proves, and the result can be tested by casting out ines more easily than with the subtrahends fully written out.
V. The Extended Multiplication Table is of enormous service at written examinations, and in business life it is equally important. Experience soon teaches accountants and salesmen the necessity of knowing the table up to 16 or 20 times at least. Five minutes a day for five weeks will give a third class full mastery of the table to the end of 16 times 16 , and the same time will carry a fourth class to 25 times 25 , provided that the pupils construct their own table by successive additions and subtractions. Applied questions come in later to fix the multiples in the memory, but they are a hindrance in the work of learning the table. It saves a vast amount of time in written papers if as 25 , and in this connection the squares and the cubes of simple numbers ought to be learned as they occui.
VI. Testing and Verifying the Work is a matter of supreme importance in business, architecture, surveying, etc., and all the simple means of doing this are of eminent service at written examinations. When the pupil reaches the third class he ought to be able to test multiplication, division, and addition by "casting out nines" with great ease and rapidity, so that he may have confidence in his results as the work proceeds. He should also know as soon as possible how to verify his solution of a problem by check calculations to test its consistency with tl. 3 data. One correct answer on a paper will usually count more marks than three inaccurate results even when the method of solution is perfect.
VII. Indicating the Work first and performing it afterwards is an artifice of first-rate importance on examination papers. All written work can be done most quickly and accurately by separating as clearly as possible the analysis of the problem from the mechanical operations necessary to obtain the correct result. The examiner can judge in a moment whether the candidate understands how to work the quer ion and can award him marks for the correct analysis, whereas if the operation is not properly indicated and the final ressult is wrong the candidate receives indicated and the final result is wrong the cat notways possible
nothing or some merely nominal mark. It is not alw
to make this separation complete at one stage, but the pupil must be accustomed to set down the ground plan of his work first and make sure that he has done the reasoning correctly, otherwise he will be attempting to do two different things at the same moment. Factoring and Cancelling must be learned as early as possible, so that the work may be shortened and simplified. Thus, in solving the following question a little skill in factoring numbers actually reduces the mechanical pait of the work to zero :-
"A speculator borrowed $\$ 5,000$, and immediately invested it in land. Six months afterwards he sold the land for $\$ 7,500$ on 12 months' credit with interest. Find the speculator's profit, supposing he pays back the $\$ 5,000$ in 18 months after he borrowed it, all moneys being worth 6% per annum simple
interest."

Solution.-Sum received for land $=\$ 7500(1 \cdot 06)$,

$$
\begin{aligned}
& \text { Sum paid back }=\$ 5000(1 \cdot 09), \\
& \begin{aligned}
\text { Profit } & =7500(1 \cdot 06)-5000(1 \cdot 09), \\
& =7500(1 \cdot 06)-5000(106)-5000(\cdot 03), \\
& =2500(1 \cdot 06)-2500(\cdot 06)=\$ 2500
\end{aligned},
\end{aligned}
$$

Example 2. Find the area of a triangle whose sides are 760, 950 , and 570. Applying the ordinary rule,

$$
\begin{aligned}
& \text { area }=V(1140 \times 380 \times 190 \times 570) \\
&=100 V(114 \times 38 \times 19 \times 57) \\
&=100 \times 19 \times 19 \times V(6 \times 2 \times 1 \times 3) \\
&=100 \times 19 \times 19 \times 6=\text { etc. }
\end{aligned}
$$

VIII. The Utility of the Simple Arithmetical Equation can scarcely be exaggerated as a means of clearly mapping out the reasoning in all kinds of solutions. Every problem and question involves the equation. The addends taken together $=$ the sum, the minuend - the subtrahend = the difference; the multiplicand taken as an addend as many times as the multiplier contains units $=$ the product ; the quotient \times the divisor + the remainder $=$ the dividend; the number of the articles \times the price of one article $=$ the cost ; the principal \times the rate per $\$ \times$ the years $=$ the interest, etc., etc. Perhaps no single omission in the ordinary text-books has done so much harm to the learner as the
g it afterwards ination papers. d accurately by he problem from te correct result. r the candidate ,ward him marks n is not properly undidate receives t always possible
omission of a chapter on the use of the simple arithmetical equation, which is within the power of the youngest pupil, as it involves nothing more than the simple axioms that are fundamental beliefs. Full and systematic solutions expressed in the form of equations dispel half the mystery that usually hangs over arithmetic. Very often the use. 'e equation, and a little skill in factoring numbers and cancelhug, shorten the work by more than one-half, and every minute saved on an examination paper means two minutes gained. Abundant examples of this are given in the Skeleton Solutions of the following papers given in 'The 'Teachers' Edition of this little book and in the Type Solutions prefixed to the last section.
IX. Clear, Deflnite Aims are n prime requisite to success at any examination. The student must know what he is expected to perform, and he must be taught how to do it at the least expenditure of time and labor. A careful study of the papers in this book will give a practical knowledge of the standard that prevails in Ontario, and will enable any pupil of ordinary intelligence to know definitely when he is able to cope with the succeeding paper. The best way to learn swimming is to plunge into the water; and the best way to prepare for an examination is to plunge into the examination papers and struggle through them some thrice.

etical equapupil, as it ; are fundassed in the ally hangs and a little the work by examination uples of this papers given in the Type
o success at e is expected at the least the papers in tandard that dinary intelwith the sucis to plunge examination ggle through

PR0BLEMS IN ARITHMETIC

FOR PUBLIC SCHOOLS.

Reviow Questions.-Addition.

Exercise I.

(1) Add together $8,963,9,572,43,958,12,788,24,293,43,986$, $2,543,8,520,488$ and 6,304 .
(2) In question (1) take the sum of the digits of each number, divide each sum by 9 ; take the sum of the remainders thus found and divide it by 9 . Show that the remainder so found is the same as the remainder found by taking the sum of all the numbers and dividing the sum of its digits by 9 .
(3) Ascertain by "casting out the nines" whether 133,330 is the sum of the following numbers, correcting it if necessary :$19,348,10,195,18,919,40,914,9,665,12,190,2,187,12,424$, 3,985, 2,502.
(4) Add together 19,359, 17,945, 19,077, 5,417, 2,897, 15,670, $7,501,6,771,205,3,285$; and test the accuracy of your result by "casting out nines."
(5) $25,010,21,555,31,932,36,567,21,944,8,345,19,482$, $2,657,5,212,1,488$. What is the ercess of the sum of these numbers over 170,000 ?
(6) The average number of people at a ferry was 1,648 for the whole week. For Sunday and Monday it was 1,239, for Thursday, Friday and Saturday 1,842 . What was the average number per day for Tuesday and Wednesday?
(7) Add together the products of each pair of the numbers. $150,295,375$, and find the difference between this sum and the product of all three numbers.
(8) The population of ten cities are as follows :-65, 539 , $76,306,156,844,182,296 ; 19\left(, 3 \overline{3}^{2} 2,933,418,242,731,213,606\right.$, $358,989,211,190$. Find the total and the average.
(9) Show that $1,500,090$ is less than the sum of $161,415^{\circ}$, $132,329,98,127,174,192,140,871, ~(i 2,486,90,334,66,502$, $7: 3,148,94,219,99,928,104,301,36,631,44,064,46,060,13,977$, $30,350,42,210$. Test your work and give the correct result.
(10) Find the aggregate of the following debts as shown by the ledger totals in a merchant's books:- $\$ 42.17, \$ 36.24$, $\$ 18.42, \$ 10.71, \$ 194.30, \$ 347.16, \$ 40 . \mathrm{C},-\$ 12.94, \$ 86.73$, $\$ 271.19, \$ 103.07, \$ \$ 00.50, \$ 7.59, \$ 11.44, \$ 81.92, \$ 110.10$, $\$ 107.09, \$ 207.16, \$ 97.20, \$ 21.77, \$ 150.15, \$ 427.26, \$ 316,42$, \$114.64.

Exercise II.

(1) Find the sum of all the numbers of three digits that can be made with the figures : $;, 6,9$.
(2) The populations of five townships are $1,236,452,364$, 516 and 3,430 respectively, and the average population of the six townships in the county is $1,256 \frac{1}{2}$. What must be the population of the sixth townslip?
(3) What is the sum of 45 millionths, 45 thousandths, 45 hundredths, 45 tenths, and 45 units?
(4) The receipts at a ticket office for twenty-four weeks were as follows : $\$ 1,132.16, \$ 327.40, \$ 177.66, \$ 94 . \dot{0} 7, \$ 157.16$, $\$ 27.96, \$ 18.19, \$ 276.44, \$ 187.89, \$ 372.22, \$ 410.10, \$ 56.00$, $\$ 63.41, \$ 48.50, \$ 709.08, \$ 320.00, \$ 271.78, \$ 152.60, \$ 39.46$, $\$ 71.32, \$ 173.26, \$ 427.90, \$ 194.32, \$ 06.76$. The agent returns the amount as $\$ 6,160.24$. The auditors detect the error. How much must the agent remit to rectify the mistake?
(5) A collector receives ten payments but forgets to record the cighth. He finds on hand cash $\$ 422.10$, and his book shows nine payments of $\$ 137.21, \$ 142.45, \$ 23.56, \$ 24.06, \$ 24.99$, $\$ 12.75, \$ 8.56,-, \$ 36.40$, and $\$ 8.92$. Find the sum omitted, and complete the record.
(6) The head office of an Insurance Company has nine agents at work who remit the following sums for ten weeks, viz.:-
\$184.77, $\$ 90.80$, and $\$ 174.49$; 2nd wook, $\$ 95.72, \$ 101.95$, $\$ 179.45, \$ 215.55, \$ 360.95, \$ 100.75, \$ 180.90, \$ 91.35, \$ 66.53$; 3rd weoz, $\$ 439.58, \$ 189.19, \$ 190.77, \$ 319.32, \$ 162.28, \$ 95.05$, $\$ 35.03, \$ 194.25, \$ 42.75$; 4th weok, $\$ 127.88, \$ 409.14, \$ 54.17$, $\$ 365.67, \$ 97.35, \$ 36.57, \$ 85.77, \$ 90.2 f, \$ 182.15$; 8th weot, $\$ 242.93, \$ 96.65, \$ 28.97, \$ 219.44, \$ 222.79, \$ 47.18, \$ 38.91$, $\$ 64.95, \$ 47.25$; 6th weak, \$139.86, \$121.90, \$156.70, \$83.45, $\$ 121.20, \$ 13.50, \$ 234.73, \$ 96.87, \$ 61.05$; 7th wook, \$25.43, $\$ 21.87, \$ 75.01, \$ 194.82, \$ 72.80, \$ 62.59, \$ 5.04, \$ 9.13, \$ 97.20$; 8th Weot, $\$ 85.20, \$ 124.24, \$ 67.71, \$ 26.57, \$ 129.80, \$ 57.25$, $\$ 45.25, \$ 8.62, \$ 21.65$; 9 th week, $\$ 4.88, \$ 39.85, \$ 2.05, \$ 52.12$, $\$ 35.35, \$ 88.90, \$ 44.25, \$ 6.15, \$ 21.52$; 10th Week, $\$ 63.04$, $\$ 25.02, \$ 32.85, \$ 14.88, \$ 24.69, \$ 29.57, \$ 48.69, \$ 13.14, \$ 16.89$, Find the total amount received, the amount remitted by each agent, and the amount received each week. Arrange the whole in the form of a table for ready reference.
(7) Arrange the following sums in a single ledger column. Find the total by reading up each line of figures, thus, 4,5 , $10,11,19,24$, etc.:- $\$ 14,763.84, \$ 33,276.90, \$ 47,061.39$, $\$ 18,242.76, \quad \$ 47,364.96, \quad \$ 8,410.31, \quad \$ 5,724.27, \quad \$ 56,317.66$, $\$ 81,742.73, \$ 22,431.27, \$ 40,163.55, \$ 32,189.60, \$ 7,063.21$, $\$: 451.09, \quad \$ 9,200.00, \quad \$ 1,807.36, \$ \$ 9,768.72, \quad \$ 63,024.27$, $\$ 36,180.45, \quad \$ 90,807.08, \quad \$ 28,763.81, \quad \$ 37,196.75, \quad \$ 4,230.61$, $\$ 3,719.84$. Test your result.
(8) At a bank the cash receipts and payments for a week were as follows :-Monday, receipts $£ 1,073$ 16s. $4 d$., payments, £562 18s. 9d.; Tuesday, receipts, £987 15s. 3d., payments, $£ 739$ 17s. $5 \mathrm{~d} . ;$ Wednesday, receipts, $£ 85411 \mathrm{~s} .11 \mathrm{~d}$., payments, $£ 947$ 16s. $11 d$.; Thursday, receipts, $£ 9,37619 \mathrm{~s} .2 d$., payments, $£ 1,07315 \mathrm{~s} .3 \mathrm{~d}$. ; Friday, receipts, $£ 78617 \mathrm{~s} .6 \mathrm{~d}$.; payments, $£^{\prime} 993$ 0s. 7d.; Saturday, receipts, $£ 1,240$ 0s. 10d., payments, $£ 892 \mathrm{11s.1d}$. What was the excess of the total receipts over the payments during the week? Arrange your figures in tabular form for reference.
(9) Rule lines to form a square, divide each side into 11 equal parts, rule lines so as to make 121 spaces, each large enongh to hold a number of four digits. In these spaces place the following numbers in order, beginning at the upper left hand corner and filling up the horizontal lines:-2,016, $4,212,1,656,3,852$, $1,296,3,492,936,3,132,576,2,772,216$; 252, $2,052,4,248$, $1,692,3,888,1,332,3,528,972,3,168,612,2,412 ; .2,448,288$, $2,088,4,284,1,728,3,924,1,368,3,564.1,008,2,808,648 ; 684$, $2,484,324,2,124,4,320,1,764,3,960,1,404,3,204,1,044$,

2,844 ; 2,880, 720, 2,520, 360, 2,160, 4,356, 1,800, 3,600, 1,440, $3,240,1,030$; 1,116, 2,916, 756, 2, $556,396,2,196,3,996,1,836$, $3,636,1,476,3,276$; 3,312, 1,152, 2,952, 792, 2,592, 36, 2,232, $4,032,1,872,3,672,1,512$; 1,548, 3,348, 1, 188, 2,988, 432, 2,628, $72,2,268,4,068,1,908,3,708 ; 3,744,1,584,3,384,828,3,024,468$, $2,664,108,2,304,4,104,1,944 ; 1,980,3,780,1,224,3,420,864$, $3,060,504,2,700,144,2,340,4,140$; 4,176, 1,620, 3,816, 1,260, $3,456,900,3,095,540,2,736,180,2,376$. Now add the vertical columns, the horrizontal columns, and the two diagonal columns. Do this 10 times and record the time required for each operation.

Note. - In commercial life Addition is by far the most important part of Arithmetic, and the pupil is recommended to construct gymnastic exercises like No. 9 and do them against time. Let each member of the class furnish one in turn and let the time required be recorded until the addition of vertical and horizontal lines of figures can be performed mechanically at high speed.

Review Questions.-Simple Rules.

Exercise III.
(1) Add together $804,959,186,40 \Omega, 700,077,9,450,068$, $20,047,300$; subtract from the sum 670,076, and divide the remainder by 87.
(2) Find the sum, the difference, and the product of $1,234,568$ and $4,321,089$.
(3) In a question in division the dividend was $31,884,740$ and the quotient was 40,930 ; find the remainder.
(4) Divide the product of 999,999 and 1,955 by the continued product of $37 \times 13 \times 17 \times 7 \times 23$.
(5) Find what number subtracted from the one five hundred and eighty-third of the product of 31,472 and 974 will leave exactly 100.
(6) Multiply 129,847 by 468 , commencing with the figure 6 , next by 4 , and lastly by 8.
(7) Add together $567,496,341,827$; beginning at the hundreds, next the tens, lastly the units.
(8) Subtract 34,876 from 72,093, and explain every step of the process.
(9) Divide 5 50, 974 by 1,472 and explain fully the operation.
(10) Multiply $234,567,891$ by $118,813,212$ using altogether. only seven lines of figures in the operation.

Beviow Questions.-Mrutiplication.

Exercish IV.

(1) The product of two numbers is $760,069,388$, and one of the numbers is 26,078. What is the quotient when their sum
(2) The divisor is 19 times the quotient and 38 times the remainder, which is 212 . Find the dividend.
(3) Multiply 4,327 by 814 .
(4) In Question 3 take the sum of the digits of the multipliplicand (4,327), divide that sum by 9 and set down the remainder; take the sum of the digits of the multiplier (814), divide the sum by 9 and set down the remainder; multiply these two remainders together and divide the product by 9 , set down this remainder and observe that it is the same as the remainder obtained by "casting out the nines" from the

This test for multiplication is of immense practical value, and the pupil is strongly recommended to apply it to every case of multiplication he performs. It is not absolutely infallible, but in actual practice it will not fail once in 10,000 times to point

Note. -The teacher should explain the rapid method of performing the process of casting out nines and encourage the pupil to apply it at every stage of his work.
($\overline{0})$ Multiply $123,456,789$ by $987,654,321$, and test the result by casting out the nines.
(6) Multiply $57,298,492,692$ by $700,809,050,321$, and test your answer to detect any error in the work.
(7) There is a star whose distance from the earth is 574,58:, 614,865 miles, as neurly as can be calculated. Astronomers hw Yo woticed another stur which in $2,8: 37,104,309$ times more distant than the first. Express in miles the distance of the second star from the earth.
(8) Construct a multiplication table for yourself from 13 times 2 to 19 times 19 and leurn it by heart, one column to be learned each day in 15 minutes.
(9) Multiply 234,578 by 18 in one line of figures and test your answer.
(10) Multiply 924,846 by 95 , using the factors 5 and 19 so as to save addition.
(11) Find the continued product of 12,17 , and 19 , using the extended table of question 8.
(12) The quotient is 17 when 9,281 is divided by a certain number and the remainder is 373 . What is the unknow a divisor?

1
(13) Arrange 15 dots in rows, 3 dots in each row ; also arrange 15 dots in rows, 5 dots in each row, and from this show (a) that $5 \times 3=3 \times 5$; and (b) that in both cases the multiplier is an abstract number denoting the number of times that some other number is to be repented as an addend.

Roviow Quentions.-Subtraetion and Diviaion.

Exercise V.
(1) Subtract $123,456,789$ from $987,654,321$ and prove the result by addition.
(2) Subtract 584 from 721 and prove the result as you proceed thus, 4 and ? -7 make $11 ; 9$ and ? -3 mako 12 ; $;$ and ? 1 are 7. Apply this method to Question 1.
(3) Write down ten examples in subtrnction, each containing 172 ten figu : Do these examples over and over against time until you cen " : "h. ${ }^{\prime}$ in ton seconds each.
(4) Wryt: own ten examples as in Question 3 and obtain the

(5) Take the number $1,234, \begin{gathered}\prime \prime \\ 7,890 \\ \text { and divide it by } 12 \text {, then }\end{gathered}$ by 13, then by 14, etc., by 19. Prove each division by multiplication. Go through this mymmastic ten times und keep a record of the number of minutes required in each trial to do these $1: 3$ divisions and 13 multiplications. Endenvor to brenk your recorl at each trinl.
(5) Multiply 581 by $7 \mathbf{2} 1$ unt prove the result by casting out your division. Also divide the product by 721 and upply the
same test.
(7) Divide $24,583,279$ by 4;2. Prove the result by subtracting the remainder, 431, from the dividend, and observing that the remainder, on casting out nines, gives the same figure 0 as the product of the remainters left on casting out nines from divisor
(8) Find out without actually dividing whether $8,534,589$ is contained 20,303 times with remainder $8,534,579$ in the number $173,286,29 \overline{5}, 046$.
(9) Observing that $432=6 \times 8 \times 9$, work Question 7 by short division, using 6,8 and 9 as successive divisors, and obtain the correct remainder.
(10) Take 24,533,279 pounds of tea. Put 6 pounds in each package, 8 packages in each parcel, and 9 parcels in each box, and tell how many pounds of tea are left out of the 56,789 boxes required. Observe that there are 8 parcels, 7 packages, and 5 pounds remaining, and hence deduce the rule for finding the true remainder in Questions 9 and 10.
(11) Divide $4,796,299$ by 105 using factors and find the correct remainder, 102.
(12) Show that 285 is not the correct remainder when $8,765,348$ is divided by $1 ; \times 7 \times 11$.
(13) Prove that 58,679 is an exact divisor of $2,808,332,-$ 109,244. $172,814,412$ cities $\$ 191,477,917,688,477,236$ equally among result.

Exercise VI.

(1) $153=9 \times 17 ; 144=9 \times 16$; what is the H.C.F. of 153 and 144? Express their L.C.M. in facturs. Siow that the L.C.M. is equal to their product divided by their G.C.M that the
h containing ist time until
dd obtain the
(2) What is the greatest number that will divide 32 with remainder 5 ? What is the greatest number that will divide 24 with remainder 6 ? What is the greatest number that will divide 32 and 24 with remainders 5 and 6 respectively?
(3) What is the greatest number that will divide 68,130 and 107,275 , leaving remainders 27 and 49 respectively?
(4) The product of two numbers is 2.4, their H.C.F. is 2 ; find their L.C.M.
(5) Resolve 1,287 and 6,281 into prime factors, and find their L.C.M.
(6) Multiply both numerator and denominator of $\frac{1}{2}$ and $\frac{1}{3}$, so that they may have the same denominator and still retain their present values.
(7) If $\frac{1}{2}=\frac{1}{5}^{\frac{5}{0}}$, and $\frac{3}{5}=\frac{1}{8}^{\frac{6}{0}}$, what is the L.C.M. of $\frac{1}{2}$ and $\frac{3}{3}$? What is the L.C.M. of $\$ 5$ and $\$ 6$?
(8) Find the L.C.M. of $1 \frac{5}{7}, 1_{14}^{1}, 1_{16}^{20}{ }^{0}$.
(9) Find the G.C.M. of $2 \frac{2}{5}, 2 \frac{1}{7}, \frac{21}{58}$.
(10) Reduce to lowest terms- $\frac{3}{4}, \frac{5}{8}, \frac{7}{8}, 1^{0} 0,+\frac{1}{6}$, and hence find their sum.

Exercise VII.

(1) Find the H.C.F. and the L.C.M. of $17,725,554,1,054,879$, and $2,406,096$.
(2) Bring $+\frac{485}{80} 48$ to its lowest terms.
(3) Reduce $\frac{9,}{8},+\frac{8}{7}$, and 18 to the same common numcrator and hence point out the greatest fraction.
(4) Reduce the product of $\frac{3}{5} \frac{2}{2}, 7 \frac{5}{2}, \frac{18}{28} 8$, and $\frac{23}{3}$ to its lowest terms.
(5) Divide the sum of $\frac{6}{7}, \frac{5}{3}, 7^{\frac{2}{4}},{ }_{8}^{11}$ by the difference between $\frac{1}{5}$ and 7 .
(6) Divide $1-\left(\frac{1}{2}+\frac{1}{3}+2^{\frac{1}{4}}\right)$ by $1-\left(\frac{1}{2} \times \frac{1}{3} \times 2^{1}\right)$.
(7) Add together $1^{3} 6, \frac{1}{4} 3,2^{2} \frac{1}{6} 5, \sigma^{\frac{1}{2} 5}$. Express the fractions as decimals and find their sum.
(8) What number multiplied by $35 \frac{1}{8}$ will be less by $5 \frac{1}{6}$ than the sum of 37 and $5 H$?
(9) What quantity must be added to the difference between $5 \frac{7}{8}$ and $9+\frac{1}{2}$ so that when the sum is multiplied by $\frac{2}{8}$ the product may be 2s?
(10) Simplify $\frac{91 \div 68}{9 \frac{1}{2}-6 \frac{3}{3}} \div \frac{16 z \div 11 \frac{1}{8}}{16 \frac{7}{8}+11 \frac{1}{4}} \times 17_{18}^{2}$.

Review Questions.-Mciscellaneous Eremples,

Exerctise: VIII.
(1) Divide $16 \times 72 \times 45 \times 21$ by $27 \times 32 \times 12 \times 35$.
(2) Divide $213 \times 84 \times 190 \times 264$ by $30 \times 56 \times 36$.
(3) Divide the sum of $\cdot 075$ and 0075 by the difference between $7 \cdot 5$ and 75.
(4) What is the product of :-

$$
\frac{9}{38 \frac{1}{4}}, \frac{174 \frac{4}{6}}{196 \frac{1}{4}}, \frac{44 \frac{5}{8}}{16 \frac{1}{3}}, \text { and } \frac{40 \frac{8}{18}}{364} \text { ? }
$$

(5) Multiply the sum of the quotients in the following cases by $25 \cdot 25:-270 \div 4,000 ; 1,307 \div \cdot 008 ; \cdot 0103 \div \cdot 04 ; 70 \cdot 306$ $\div 5 ; 3 \cdot 78 \div 200 ; \cdot 04735 \div \cdot 000 \dot{5} ; 30 \div \cdot 004 ; 903 \div 30,000$.
(6) If Europe has $3,860,253 \mathrm{sq}$. mi. and $295,803,933$ inhabitants, and Asia has $17,112,5 \geq 6$ sq. mi. and $782,129,318$ inhabitants, which continent has the greater number of people to the square mile, and how many more?
(7) If $8 \frac{2}{3} \mathrm{oz}$. of bread cost $6 \frac{1}{2} \mathrm{c}$. when wheat is $\$ 1.25$ per bush., how many oz. of bread ought to be sold for 25 c . wher wheat has fallen to $87 \frac{1}{2}$ cents per bush.?
(8) How many cubic feet of earth must be removed to enlarge a cellar 26 ft . long, 18 ft . wide, and 7 ft . deep, so as to make it 28 ft . long, 21 ft . wide, and 8 ft . deep ?
(9) At what time between 8 and 90° clock is the minute hand as far beyond the mark V. as the hour hand is beyond the mark VIII. on the face of the clock?
(10) Find a number between 893 and 931 which shall have have with each other.

Exercise IX.

(1) A rod $10^{\circ} \mathrm{in}$. long is drawn out 1^{1} of its own length; whar fraction of its present length must be cut off to reduce it to its original length?
(2) A merchant adds ${ }_{1}^{1}$ 10 to the cost of his goods; what fraction of the marked price must he deduct to sell off his goods at cost? If the marked price is an advance of 20% on cost, what is the heaviest discount the merchant can allow on this marked price without losing money on the goods?
(3) A storekeeper sells 11 lb . of sugar for $\$ 1$, but the cost of sugar advances 10%; how many pounds can he now sell for $\$ 1$?
(4) A bicyclist going at 10 mi . per hour expects to arrive at his destination in 44 min ., but finding better road he increases his speed to 11 mi . per hour ; how many minutes will he gain on the time?
(5) A parcel bf gold coins contained 9 more coins than the banker expected from the weight. A close examination showed that 21 of these light coins weighed only as much as 20 true coins; how many coins were there in the parcel?
Hint. - 2_{26}^{10} less weight would give ${ }_{2}^{1} \mathrm{I}$ more coins; $9=2_{2}^{1}$ of No.
(6) An agent sold wheat at 4% commission on the price received, he is also to receive 2% commission on the price of sugar to be purchased after deducting both commissions, which come to $\$ 63$. Find the cost of the sugar, the value of the wheat and the amount of each commission.

Solution.-Price of wheat $=$ cost of sugar + double com. (A) 1 st com. $=4 \%$ wheat $=4 \%$ sugar $+4 \%$ double com. 2nd com.

$$
=2 \% \text { sugar }
$$

Double com. $\quad=6 \%$ sugar $+4 \%$ double com. (B) $\therefore 96 \%$ double com. $=6 \%$ sugar $=96 \%$ of $\$ 63$;

$$
\therefore \text { value of sugar }=\$ 1,008
$$

Again, 102% double com. $=6 \%$ sugar $+6 \%$ double com. (from B.) $=6 \%$ wheat (from A), \therefore wheat $=\$ 1,071$,
Hence, 1st commission $=\$ 42.84 ;$ 2nd commission $=\$ 20.16$.
a length; what reduce it to its
ds; what fracoff his goods at $\%$ on cost, what on this marked
but the cost of now sell for $\$ 1$?
ects to arrive at ad he increases tes will he gain
coins than the aination showed zuch as 20 true $\mathrm{s} ; 9=2^{1} \mathrm{r}$ of No. n on the price on the price of missions, which lue of the wheat
louble com. (A) double com.
double com. (B) ; of $\$ 63$;
le com. (from B.) wheat $=\$ 1,071$, ission $=\$ 20.16$.

ENTRANCE EXAMINATIONS.

July, $187 s$.
(1) By what number must $£ 416 \mathrm{~s}$. $3 \ddagger d$. be multiplied to give a product of $£ 8917 \mathrm{~s}$. $3 \frac{3}{4} d$.?

- (2) If I own $\frac{8}{4}$ of $\frac{4}{6}$ of $\frac{2}{3}$ of a ship worth $\$ 20,000$, and sell $\frac{1}{4}$ of the ship, what will the part I have left be worth?
(3) Prove the rule for multiplication of fractions.

Simplify $\quad \frac{1_{\mathrm{Y}^{2}}}{1 \frac{3}{5}} \div\left(\frac{2 \frac{7}{1}}{44_{1}^{4}}-\frac{13}{3 \frac{1}{4}}\right)+3 \frac{1}{2}$.
(4) If A can do a work in 39 dy., and B in $4 \frac{1}{2}$ dy., in what time will both working together do the work?
(5) If the 2 lb . loaf cost $6 \frac{3}{4} \mathrm{c}$., when wheat is $\$ 1.10$ per bushel, what is the price of wheat when the 2 lb . loaf costs $7 \frac{1}{2} \mathrm{c}$.?
(6) Simplify $\frac{3 \frac{3}{2}-.04}{5-.0625} \div \frac{.015+2 \cdot 1}{\cdot 035}$
(7) Find the expense of fencing a railway (both sides) 73 mi . in length, at the rate of $\$ 5.50$ per rod.
(8) If a wheel make 260 revolutions in passing over 1 mi . 520 yd .2 ft ., what is its circumference?
(9) Find cost of $7,225 \mathrm{lb}$. coal at $\$ 7.25$ per ton of $2,000 \mathrm{lb}$.
(10) Find the sum and difference of $2,754_{2^{1 / 5} 5}^{15}$ and $2,633 \frac{1}{5} 9$.

January, 1874.

(1) By what must $£ 157$ 12s. $10 \frac{1}{2} d$. be divided to give a quotient of $33 \frac{1}{2}$?
(2) How much wheat is necessary to sow a field containing 7 ac., if $\frac{9}{4}$ of an ounce is sown on every square yard?
(3) How many minutes between 12 o'clock noon May 24th, and half-past nine in the forenoon of September 3rd? and express the answer as a fraction of the year.
(4) Add ($1 \frac{4}{4}$ of 7_{3}^{9}), (8 of $1+\frac{2}{8}$), ($\frac{16}{\frac{6}{2}}$).
(5) A house and lot cost $\$ 3,600$; the value of the lot is $\frac{1}{6}$ that of the house. Find the value of each.
(6) Subtract $2_{8} \boldsymbol{\gamma}_{\sigma}$ sq. yd. from $\frac{7}{8}$ of $\frac{1}{4}^{3}$ of 3 ac.
(7) Prove that multiplying the numerator of a fraction by any number produces the same effect as dividing the denominator by the same number.
(8) Simplify 75 of $1 \frac{1}{8} \div 7.6$ of $7^{5} 5-\left(1.875-1 \frac{8}{8}\right) \times 2+\frac{4.875}{47}$
(9) If $\frac{8}{3}$ of 7 of an acre produce 41 bush. of potatoes, how many bushels will an acre produce?
(10) If a man working 99 hr . per day finishes a piece of work in 6 dy.; in r hatitime would he have finished it if he had worked $8 \frac{1}{\mathrm{~h}} \mathrm{~h}$. per day?

June, 1874.

(1) The dividend is one billion two hundred and twenty million two hundred and thirty thousand and ninety-two, the quotient six thousand and eighty-four, and the remainder fortyeight hundred. Find the divisor.
(2) Reduce 3 ac. 2 ro. 14 sq. pr. 4 sq. ft. 72 sq. in. to square inches; and $170,184 \mathrm{sq}$. ft. to acres.
(3) 797 tons 19 cwt .2 qr .14 lb . is divided among a certain number of people, so that each receives 5 tons 3 cwt. 2 qr .16 lb . How many people are there?
(4) Show which is the greatest and which the least of the following fractions: $-1 \frac{1}{7}$ of $\frac{1}{4}, 2^{5} \frac{5}{5}$ of $3 \frac{1}{2}, \frac{1}{3}$ of $2 \frac{5}{8}$.
(5) Reduce to its simplest form-

$$
\left\{\frac{2 \frac{1}{4}-\frac{2}{3} \text { of } 1 \frac{5}{6}}{\frac{1}{8} \text { of } 3 \frac{1}{5}+\frac{6 \frac{1}{2}}{18}}+\frac{1}{2 \frac{1}{2}}\right\} \div \frac{5 \frac{4}{4}}{8 \frac{3}{4}}
$$

(6) What fraction of $£ 585 \mathrm{~s}, 6 \mathrm{~d}$. is $\frac{38}{\frac{3}{7}}$ of $£ 172 \mathrm{~s} .3 \mathrm{~d}$.?
(7) A man invested $\frac{5}{6}$ of his capital in bank stock, $\frac{8}{4}$ of the remainder in real estate, and had still $\$ 6,000$ left. Find his capital.
(8) Find the value of 43 cwt .2 qr .21 lb . at $£ 216 \mathrm{~s} .8 \mathrm{~d}$. per cwt. $\quad(\mathrm{Qr} .=25 \mathrm{lb}$.)
oon May 24th, d ? and express
he lot is $\frac{1}{5}$ that fraction by any lenominator by

部) $\times 2+\frac{4.875}{4 \frac{7}{8}}$ potatoes, how p piece of work he had worked
and twenty inety-two, the mainder forty-
in. to square
nong a certain vt. 2 qr. 16 lb. ft. Find his
(9) Find the difference between

$$
\frac{26+2 \text { of } 3 \cdot 7}{48-.014 \text { of } 20} \text { and } \frac{4 \cdot \dot{3}+5 \cdot \dot{6}}{7 \cdot \dot{4}-\cdot 2 \text { of } 11}
$$

(10) A person, after paying out of his income for a year a tax of 4 c . in the dollar, has $\$ 7,200$ left. Find his income for a year.

Decenber: 1874.
(1) The difference between the product of two numbers and twenty-one thousand and twenty-eight; what is the other
number?
(2) A cannon ball trivels at the rate of $1,500 \mathrm{ft}$. in a second and a half; how far will it have gone in $1 \frac{1}{5}$ of a minute?
(3) How many grains are there in 9 oz. 17 dwt. 22 gr ., and how many acres, etc., in $16 \overline{7}, 412,715$ sq. in.?
(4) How many yards, etc., of carpet 2 ft .1 in . wide, will it take to cover a floor that is 19 ft .7 in . long by 18 ft .9 in . wide?
(5) After taking out of a purse $\frac{2}{3}$ of its contents, $\frac{2}{3}$ of the remainder was found to be 1iss. $5 \frac{1}{2} d$. What sum did it contain at first, and what part of $£ 3$ is that sum?
(6) Find the value of
(7) What must be the length of a plot of ground, if the breadth is $15 \frac{\mathrm{ft}}{} \mathrm{ft}$, that its area may contain $46 \mathrm{sq} . y \mathrm{yd}$? ?
(8) A pint contains 34 cub. in.; how many gallons of water in. deep?
(9) Reduce to a simple quantity

$$
\frac{2 \cdot 8 \text { of } 2 \cdot \dot{2} \dot{7}}{1 \cdot 1 \dot{3} \dot{6}}+\frac{4 \cdot \dot{4}-2 \cdot 8 \dot{j}}{1 \cdot \dot{6}+2 \cdot \dot{6} 2 \dot{9}} \text { of } \frac{6 \cdot 8 \text { of } 3}{2 \cdot 2 \overline{5}}
$$

(10) The chain for measuring lanel is 66 ft . long, and is divided into 100 links; what is the length of a fence that measures 2,456 links, and how much would it cost at $\$ 8.81 ;$ per yard ?

$$
\text { June, } 1875
$$

(1) Reduce to its lowest terms

$$
\left(\frac{2 \frac{1}{4}-\frac{2}{5} \text { of } \frac{18}{5} \text { of } 3 \frac{1}{3}+\frac{1}{36}}{\frac{1}{2}}\right) \div \frac{1}{12} .
$$

(2) A merchant bought a number of barrels of flour for $\$ 4,6,00$, and sold them for $\$ 5,200$, thereby gaining 75 c . per barrel ; how many barrels did he buy, and what did it cost him per barrel?
(3) A paid $\$ 60$ per acre for his farm, which was $f 0$ as much as B paid per acre for his farm of 150 ac . Find the entire cost of B 's farm.
(4) Find the sum of 7^{1} : of $£ 113 s .0 \frac{1}{2} d .+\frac{1}{8}$ of $£ 15 s .8 \frac{1}{2} d .+$ $\frac{1}{12}$ of $£ 24$ s. $8 \mathbf{4} d$.
(5) A farmer having 17 cwt .2 qr .19 lb . of pork, sold 4 cwt . 3 qr. 21 lb . of it, and the remainder he sold in barrels, each containing 2 cwt. $6 \frac{1}{6} \mathrm{lb}$.; how many barrels did he sell?
(6) If it takes a man 1 hr . and 40 min . to cut $\frac{1}{2}$ cord of wood, for how 'many days of 8 hr . each will he be occupied in cutting 186 cords 88 ft .?
(7) A man invests $\frac{1}{2}$ his fortume in land, $\frac{1}{5}$ in bank stocks, $\frac{1}{6}$ in debentures, and loses the remainder, which was $\$ 8,000$, in spectulation ; how much was his fortune?
(8) The dividend is fifty-one million eight hundred and fortysix thousand seven hundred and thirty-four, the quotient is five hundred and eight thousand three hundred and one, and the remainder thirty-two; find the divisor.
(9) Find the cost of $49_{1}{ }^{3} \mathrm{I}$ yd. of cloth, when 78 yd. cost $£ 7$ 18s. 4 d .
(10) A man paid $\$ 2,896,875$ for land, and sold 56.25 ac. at $\$ 31$ per acre; the remainder then stood him at $\$ 20.05$ per acre; how many acres did he buy?

December, 1875.
(1) Find the amount of the following account:-Mr. Markham bought of Mr. Jones, Dec. 8, 1875, 12 yd. Scotch Tweed @ \$2.85, 16 yd. of Silk @ $\$ 2.12 \frac{1}{2}, 50$ yd. Ticking © $14 \frac{1}{2} \mathrm{c}$., 42 yd. Shirting (1) 162 $\frac{1}{2} c ., 12 \frac{1}{2}$ yd. Flannel (1) 50c., $20 \frac{1}{4}$ yd. Scotch Plaid © 60c.
(2) I bought from $A 97$ ac. 2 rd. and 12 sq . rods of land; from B, four times as much, less 7 ac . and 1 rd ; and from C, $\frac{1}{2}$ as much as from A and B together. I then sold $120 \mathrm{ac}, 1 \mathrm{rd}$, and 29 sq. rọds. How much had I left?
(3) Reduce to its simplest form

$$
\left(\frac{18 \frac{3}{2}}{28}+\frac{\frac{1}{25}}{28}-\frac{15}{54} \text { of } \frac{1}{7}\right)+5 \frac{1}{8}
$$

(4) State the rule for division of Vulgar Fractions, and show by means of an example the reason for it.
(5) A person bought a certain number of barrels of flour for $\$ 2,200$; he reserved 20 barrels for use and sold to the remainder for $\$ 1,976$, which was $\$ 304$ more than cost. Find the number of barrels he bought.
(6) A sum of money is divided among 4 persons. The first receives $\frac{1}{3}$, the second $\frac{1}{4}$, the third $\frac{1}{6}$, and the fourth the remainder, It is found that the first received $\$ 700$ more than the fourth. Find the sum received by each.
(7) Add together $\frac{3}{6}$ of $£ 37 \mathrm{s}$.$.6 d . and \mathfrak{3}$ of $\frac{1}{4}$ of $4 \frac{1}{2}$ guineas, and reduce the result to the fraction of $£ 110 \mathrm{~s}$.
(8) If the annual rent of 46 ac .3 rd .14 pr . of land be $\$ 370.70$, how much will be the rent of 70 ac. and 20 pr .?
(9) If the price of 1.875 lb . of tea is 1.3749 shillings, how much can be bought for $£ 158 s$.?
 (b) with carpet 45 in . wide and $\$ 1.25$ per yard?

$$
\text { June, } 1876 .
$$

(1) Bought $19 \frac{1}{2} \mathrm{yd}$. Irish linen at $5 s .4 d ., 163 \mathrm{yd}$. calico at $1 s .8 d$. , and $16 \frac{1}{2} y d$. of silk at $8 s .4 d$.; find the amount of the bill in dollars and cents.
(2) Add together ($\frac{3}{4}$ of $\frac{5}{6}$ of $£ 25 s$.), $\frac{2}{7}$ of 3 guineas, and $\cdot \dot{2} \dot{7}$ of $£ 118 s$. 6dl. and reduce the result to the decimal of $£ 25$.
(3) If a pipe discharge 2 hhd. 23 gal. 2 qt .1 pt . of water in one hour, a how many hours will it discharge 11 hhd. $2 \overline{5}$ gal. $1 \frac{3}{5} \mathrm{pt}$., the water flowing with the same velocity?
(4) Add together,

$$
\frac{16}{i^{7} \text { of } 2 \frac{8}{11} \times \frac{1}{36}}, \frac{\frac{1}{2} \frac{3}{7}}{1 \frac{2}{8} \text { of } 3_{10}^{9}} \times \frac{1}{7^{5} 1},
$$

and divide the result by $\frac{3 \frac{3}{3} \text { of } 5 \frac{4}{4} \text { of } 7 \frac{1}{2}}{63}-\frac{1}{3 \frac{1}{2}}-\frac{\frac{1}{}^{4} 7 \times \frac{3}{14}}{\frac{1}{8}}$.
(5) A man's annual income is $\$ 2,400$; find how much he may spend per day so that after paying a tax of 2 c . $7 \frac{1}{2}$ mills on every dollar of income he may save $\$ 582$ per year (365 dy .)
(6) A room is 36 ft . long and 24 ft . wide; find the difference in the expense of carpeting it with carpet a yard wide at $\$ 1.40$ per yard, and with carpet 27 in . wide at $\$ 1.15$ per yard.
(7) If 162 gal. of water will fill a cistern 4 ft .4 in . long, 2 ft . 8 in . broad, and 2 ft .3 in . deep, how many cubic inches are contained in a pint?
(8) Three men can mow a field in 6 dy.; they mow together: for 2 dy., and then 1 of them ceases work, and the other 2 finish the field in 7 dy.; find how long the man who ceased work at the end of the second day would have taken to mow the whole field by himself.
(9) A man sold two city lots for $\$ 600$ each; on the one he gained $\frac{1}{4}$ of the price it cost him, and on the other he lost $\frac{1}{4}$ of the price it cost him; find his entire loss on the sale of the two
lots.
(10) A drover bought a number of cattle for $\$ 4,375$, and sold a certain number of them for $\$ 43$ per head for the total sum of $\$ 3,655$, gaining $\$ 680$; for how much per head must he sell the remainder so as to gain $\$ 400$ more?

December, 1876.

(1) How many square inches are there in 3 ac. 2 ro. 27 pr. 27 sq. yd. 7 sq. ft. 23 sq. in.; and how many tons, cwt., etc., in $37,496 \mathrm{lb}$. and $4,763 \mathrm{oz}$.?
(2) A persons owns 3 of a ship, and sells ${ }_{3}^{2}$ of his share for $£_{1,260}$. What is the value of the ship?
(3) The difference between the product of two numbers and 2,431 is three hundred millions three hundred and three thonsand and three. One of the numbers is twenty thousand three hundred and six. Find the other.
(4) Show which is the least and which the greatest of the following fractions:- $\frac{1}{y}$ of $9 \frac{1}{4}, \frac{8}{8} \frac{2}{6}$ of 9 , and $\frac{9}{8} \frac{9}{2}$ of $8 \cdot 2$.
(̄) If telegraph posts are placed 80 yd . apart, and a train passes one every four seconds; how many miles an hour is it running?
(6) A regiment marching $3 \frac{1}{2} \mathrm{mi}$. an hour takes 110 steps in a minute. What is the length of the step?
(7) How many yards of carpet 15 in . wide will cover the floor of a room 221 ft . by 19 ft .?
(8) Simplify $83-16$ of $2_{3}^{5}{ }_{3}$ of $1!+2 \frac{1}{2} \div i^{3}-7$.
(9) Find the sum of $6 \cdot 2 \dot{7}, 18 \cdot 6 \cdot 5 \dot{1}$, and $12 \cdot 3 \dot{4} \dot{5}$, and the difference between $: 34027$ and $\cdot 27$.
(10) If a room be 12 ft . square, what must its height be in order that the area of the walls may amount to $60 \mathrm{sq} . \mathrm{yd}$. ?

$$
\text { July, } 1877 .
$$

(1) What is the least number that must be added to five millions to make the sum exactly divisible by seven thousand and nineteen?
(2) Simplify $\frac{20}{21}-\left(\begin{array}{c}48 \frac{1}{2}+7 \frac{3}{3}-16 \frac{3}{4} \times 14 \frac{1}{3} \times 12 \frac{1}{4} \\ 16 \frac{1}{2} \times \frac{7}{7} \\ 7 \frac{2}{2}\end{array}\right)$
(3) Simplify $\frac{£ 1412 \mathrm{~s} .11 \mathrm{~d}}{10 \frac{4}{5}-3 \frac{5}{6}} \times \frac{£ 1010 \mathrm{~s} .10 \mathrm{~d} .}{10 \mathrm{~s} .9 \frac{1}{2} \mathrm{~d} .}$
(4) A man bought a quantity of hay at $\$ 15$ for 20 cwt. He sold it at 85c. per cwt., gaining $\$ 22.2 \overline{5}$. How many hundredweight did he buy?
(5) $3 \frac{1}{8} \mathrm{yd}$. of cloth cost $\$ 12.50$; what will $23_{1_{6}^{7}}^{\frac{7}{6}} \mathrm{yd}$. cost?
(6) A person having an annual income of $\$ 1,400$ spends a sum equal to $\$ 62 \overline{5} .50$ more than he saves. Find his daily expenditure (year $=365 \mathrm{dy}$.
(7) A lady had in her purse just money enough to buy a certain quantity of silk ; but she spent $7^{3} 0$ of the money in flannel, ${ }_{5}^{3}$ of the remainder in calico, and had. then only enough money left to buy $10 \frac{1}{3}$ yd. of silk. How many yards of silk could she have bought at first?
(8) A room 15 ft . wide and 18 ft . long is covered with matting at a cost of $\$ 25$; what would be the expense of covering, with the same quality of matting, a room a yard longer and a yard wider?
(9) The average of four quantities is $18{ }_{2}{ }^{3}{ }^{3}{ }_{9}{ }^{5} 7$; the first is 26.207 , the second $3 \cdot \dot{5} 9 \dot{2}$, and the third is $38 \cdot 0 \dot{6}$. Find the fourth.
(10) A bankrupt owes to $A \$ 1,039.84$, and to $B \$ 612.80$; if A receives $\$ 357.44 \frac{1}{2}$, what will B receive ?

December, 1576.
(1) How often is 6 yd. 2 ft . contained in 25 furlongs?
(2) If I buy : bush., paying be. for every 3 gt., and sell it at a profit of 10 c . per gallon, find the selling price of the whole.

(4) Reduce 2 hr .20 min . to the decimal of 38 wk .
(5) A sum of monoy was divided among A, B
received $\%$ of the sum; $B \$ 20$ less the remainder, which was 3 of A's shan $\frac{1}{8}$ of what was left ; and the sum divided.
(6) Trees are planted 12 ft . apart around the sides of a rectangular field 40 rods long, and containing 2 ac. Find the number
of trees.
(7) I buy a farm containing 80 ac. and sell 9 of it for $\frac{3}{5}$ the cost of the farm; I then soll the remainder at $\$ 60$ per acre, and noither gain nor lose by the whole tramsaction. Find the cost of
(8) Find the amount of the following bill of goods:183 cords of wood (a s:3.50 per cord. 16 ydl . of cloth (13) $\$ 1.12 \frac{1}{2}$ per yard. 12 bush. 25 lb . of wheat (iti $\$ 1.20$ per bushel. $1,400 \mathrm{ft}$. of lumber (a) $\$ 12.50$ per thousand. 65 tons, 12 cwt. of coal @ 30 c . per cwt.

$$
\text { July, } 1878 .
$$

(1) Define prime number, multiple of a number, highest counmon factor of two or more numbers. Find the prime factors of 1,260.
(2) The quotient is equal to six times the divisor ; the divisor is equal to six times the remainder, and the three together, plus 45, amount to 561 . Find the dividend.
(3) I sell $12 \frac{1}{2}$ tons of coal for $\$ 80$, which is $\frac{1}{2 \gamma}$ more than the cost. Find the gain per cwt.
(4) $001 \times .001 \div 0001$.
(5) A cistern is 3 full; one pipe runs out and two run in. The first pipe can empty it in 8 hr., the second can fill it in 12 hr.. and the third can fill it in 16 hr . There is also a leak half as large as the second pipe, in how many hours will the cistern be half full?
(6) Ten men can do a piece of work in 12 dy. After they have worked 4 dy. $: 3$ hoys join then in the work, by which means the whole is done in 10 dy . What part of the work is done by 1 boy in 1 dy. ?
(7) I buy a number of boxes of ormages for $\$ 600$, of which 12 boxes are unsaleable. I sell 8 of the remainder for $\$ 400$, and gain on them \$40. How many baxes did I buy?
(8) Find the total cost of the following:-Cutting a pile of wood 80 ft . long, 6 ft . high, 4 ft . wide, at 60 c . per cord ; digging a cellar 44 ft . long, 30 ft . wide, 8 ft . deep, at 18 e . per cubic yard; plastering a room 24 ft . long, 16 ft . wide, 10 ft . high, 'at 10.c. per square yard; sawing 6,800 shingles at 40 c . per 1,000 .

December, 1878.

(1) (a) Define abstract number, composite number, common multiple of two or more numbers; and explain by an example the use of the numerator of a fraction.
(b) Express in figures four hundred billions, four millions, forty thousand and four units.
(2) A man has 5 tons 6 cwt. of flour ; after selling 25 barrels of 196 lb . cach, how many sacks holding 150 lb . can be filled with the remainder?
(3) How many rails in a straight fence 40 rods long, 5 rails high, each rail being 10 ft . long?
(4) If it cost $\$ 57.00$ to carpet a room 20 ft . long with carpet 21 ft . wide at $\$ 1.20$ per yard, find the width of the room.

(6) A pint contains $34 \frac{2}{3}$ cubic inches; how many gallons of water will fill a cistern 4 ft . 4 in . long, 2 ft .8 in . wide, and 6 ft . $1 \frac{1}{2} \mathrm{in}$. deep?
(7) If 12 men earn $\$ 120$ in 12 dy . by working 10 hr . per day, in how many days will 15 men earn $\$ 150$ by working 8 hr . per day?
(8) A and B have together 210 ac. of land, and $\frac{8}{4}$ of A's share is equal to $\%$ of B 's share. B paid $\$ 1,470$ for his land ; for how much must ho sell it to gain $\$ 20$ per acre?

$$
J u l y, 187 ? .
$$

(1) Define abstract number, factors of n number, least common multiple of two or more numbers, common denominator.

$$
6
$$

(2) Simplify 5 -

$$
24+\frac{2}{3-2 \pi}
$$

(3) From one hundred and one thousandths subtract one humdred thousand nino hundred and ninety-nine millionths, and multiply the result by one hundred and one tenths of thousandths. (4) If the water in a cistern 8 ft . long, 4 ft . wide, and 12 ft . deep, weighs 12 tons, find the weight ingon ounces of one cubic foot
of water.
(5) Reduce $\frac{3 t}{5 \frac{1}{4} \text { of } 33}$ of $\frac{163_{2}^{5}-5 \frac{1}{2}}{5 \frac{1}{2}-3 \frac{3}{2}\left(2 \frac{1}{2} \times 7_{0}^{3}\right)}$ of 005 of a ton to
the fraction of a cwt.
(6) Find the cost of wheat, at 80 c . per bushel, which will be required to sow a field 60 rods long and 40 rods wide, if $\frac{8}{4}$ of an ounce be sown on every square yard.
(7) How many bricks, each covering 36 sq . in., will be required to pave a walk 6 ft . wide around the outside of a rectangular. field 10 rods long, which contains $\frac{1}{2}$ an acre?
(8) A train 40 rods long overtakes a man walking 3 mi . per the train running? 12 sec.; how many miles per hour is
(1) A man has 703 selling 19 ac. 1 ro. 30 sont can he divide the 45 ac. 2 ro. 20 sqe themainder so that each ang how many perac. 3 ro. 22 sq. rods $14 \ddagger$ sq. yd. ; aftgr-
sq. rods 214 sq. yd., among how many per-
remainder so that each person may receive
s $2 \overline{5}$ sq. yd.?
(2) Find the price of digging a cellar 41 ft .3 in . long, 24 ft .
ber
wh
yal
it hour, and passes h
the train running?

December, 1879.

 wide, and 6 ft . deep, at 20 c . jer cubic yard? 41 ft . 3 in . long, 24 ft .(3) The fore wheel of a waggon is 10 ft . in circumference, , and turns 440 times more than the hind wheel, which is $11 \frac{\mathrm{ft}}{\mathrm{f}}$. in circumference ; find the distance travelled over in feet.
(4)

$$
\frac{34-1 \frac{1}{6} \text { of } 7^{9}+8}{12\left(8 \frac{3}{2}+38-12+33\right)} \div \frac{05-005}{25 \div 5}
$$

(5) Find the total cost of the following :-
$2,745 \mathrm{lb}$. of wheat at $\$ 1.20$ per bushel.

| 867 | " oats " 35 c. | " | |
| :--- | :--- | :--- | :--- | :--- |
| 1,936 | " barley " 60 c. | " | |
| 1,650 | " hay | " $\$ 8$ | per ton. |
| 2,675 | ft . of lumber " $\$ 10$ per $1,000 \mathrm{ft}$. | | |

(6) If, when wheat sells at 90c. per bushel, a 4 lb . loaf of bread sells at 10 c ., what should be the price of $a 3 \mathrm{lb}$. loaf when wheat has advanced 405 c . in price?
(7) At what price must I mark cloth which cost me $\$ 2.40$ per yard, so that after throwing off $\frac{f}{5}$ of the marked price I may sell it at $\frac{1}{8}$ more than the cost price?

June, 1880.

(1) Multiply one lundred and seventy-four millions five hundred and fifty thousand six hundred and thirteen by six hundred thousand four hundred and seventeen. Explain why each partial product is removed one place to the left.
(2) Define Measure, Common Measure, and Greatest Common Measure.

Find the G. C. M. of 153,517 and $7,389.501,522$.
(3) Shew that $\frac{8}{8}=\frac{8}{12}$.

(4) A brick wall is to be built 90 ft . long, 17 ft . high, and 4 ft. thick; each brick is 9 in . long, $4 \frac{1}{3} \mathrm{in}$. wide, and $2 \frac{1}{2} \mathrm{in}$. thick. How many bricks will be required?
(5) A merchant received a case of goods invoiced as follows:12 pieces of silk, each 48 yd ., at $5 s$. $3 d$. per yard.
15 pieces of cotton, each 60 yd ., at $6 \frac{1}{4} d$. per yard.
20 pieces of cotton, each 56 yd ., at 43 d . per yard.
14 pieces of Irish linen, each 40 yd., at $1 . s$. $3 \frac{1}{2} d$. per yard. Supposing the shilling to be worth $24 \frac{\pi}{3} \mathrm{c}$., find the amount of the
above bill of goods. above bill of goods.

ENTRANCE EXAMINATIONS.

(6) Divide 76.391955 by nine hundred and twenty thousand three hundred and eighty-five ten-billionths. (7) D. D. Wilson
of eggs, each containing. theafth, exported last year 8,360 barrels average price of 14.85 c . per the same number. He received an packing, etc.), to have been dozen. Allowing the cost (including to have been $\$ 7,900.20$, find the. per dozen, and the entire profit barrel. in., and the daily issue is the Globe newspaper are 50 in . by 32 of Yonge street, which is about 24,900 copies, how many miles with ten weeks' issue? about 70 ft . wide, might be covered
(9) A flarstaff 120
it was found that $\cdot 76 \mathrm{ft}$. high was broken off by the wind, and shorter part. Find the length of each was $2^{\frac{2}{5}}$ of $9 \frac{1}{2}$ times the (10) A and B thength of each part. and C in iv of a day, and can do a piece of work in $\frac{3}{4}$ of a dey, B time could all working together do in $\frac{13}{13}$ of a day. In what

December, 1880.

(1) Define Number, Nuneration, Notation, Addend, Mintuend.
(2) Find the G. C. M. of sixty-aight million five hundred aud ninety thousand one hundred and forty-two, and eight and million forty-four thousand and fifty-nine.
(3) For a voyage of 17 and fifty-nine. amount of 48 tons 4 cwt 17 wk . a ship takes provisions to the are 73 men aboard, how much may. 9 oz . Supposing that there
(4) Find the amount of the fay be allowed each man per day? 10c.; 121 lb. pork @ $9 \frac{1}{2} \mathrm{c} . ; 3$ turke following bill:-143 lb. beef (0) $12 \frac{1}{2} \mathrm{c}$. per lb.; 12 lb .10 oz . lard © 1515 c , weighing in all $35 \frac{1}{2} \mathrm{lb}$., (a) in all 45 lb .12 oz ., (1) 10c. per 1 b . 10 c . per $1 \mathrm{~b} . ; 5$ geese, weighing.

- (5) Simplify $5 \frac{5}{3}$ of $3^{3}{ }_{5}^{5}+3 \cdot \dot{3}$ of $2-1 \frac{1}{3}$
 6 ft . 6 in . broad, and 4 ft . $1 \frac{1}{2}$ in. thick, when a block of 6 in . long,
kind of stone 2 ft .6 in . kind of stone 2 ft .6 in . long, 3 ft .9 inen a block of the same thick, weighs $1,875 \mathrm{lb}$.? 3 ft .9 in. broad, and 1 ft .3 in . (7) A man, after pavi dollar, and spending paying an income tax of $15 \frac{1}{2}$ mills on the per year (365 dy .) Find his gross income.

July, 1881.

(1) (a) Define Subtrahend, Multiplicand, Quotient. Explain the statement: "The multiplier must, always be regarded as an abstract number."
(b) Divide $2,000,000,018,760,681$ by sixty-three million two hundred and forty-five thousand five hundred and fifty-three.
(2) Define Prime Number, Prime Factors. How do you resolve a number into its prime factors?

Resolve 132,288 and 107,398 into their prime factors, and find their least common multiple.
(3) How many minutes are there in $\frac{10}{73}$ of a year (365 dy.$\left.\right)+$ 3_{3}^{3} of a week $+{ }_{2}^{2}{ }^{5}$ of $3 \frac{1}{2}$ dy.?

(5) A grain dealer buys 5,225 bush. of whent at $\$ 1.05$ per lushel, and paid \$125) for insmance, storage, etc.; he sold 4 of the quantity at 97c. per bushel. At what price per bushel must he sell the remainder in order to gain $\$ 522.50$ on the whole?
(6) Find the quotient of $9840018 \div \cdot 00159982$ to seven decimal places; and reduce $7 \dot{0} 02457$ to a vulgar fraction.
(7) Water in freezing expands about $\frac{1}{y}$ in volume. How many cubic feet of water are there in an iceberg $44 \overline{\mathrm{ft}}$. long, 100 ft . broad, and 175 ft . high ?

December, 1881.

(1) Divide three hundred and fourteen and one humdred and Ifty-nine thousandths by eight thousand nine hundred and thirty-seven ten-biltionths.
(2) Divide the difference of $13 \frac{1}{8} \div\left\{\left(2 \frac{0}{7}-2 \frac{8}{11}\right) \times 1 \frac{1}{7}\right\}$ and $\left\{13 \frac{1}{3} \div\left(2 \frac{9}{7}-22_{1}^{8}\right)\right\} \times 1 \frac{4}{7}$ by $13 \frac{1}{3} \div 2 \frac{0}{7}-2 \frac{8}{11} \times 1 \frac{4}{7}$.
(3) Find the amount of the following bill in dollars and cents, the shilling being worth $24 \frac{1}{3} \mathrm{c}$.:- 115 yd . Brussels carpet (40) $5 s$. 10d., 95 yd . Dutch stair © $2 s .7 d ., 84$ yd. Kidderminster © $3 s$. $7 d ., 72 \mathrm{yd}$. drugget © $2 s .8 d ., 10$ doz. stair rods © 5 s .6 d .
(4) Lead weighs $11 \cdot 4$ times as much as water, and platinum weighs 21 times as much as water. What weight of platinum will be equal in bulk to 56 lb . lead?
(5) Find the difference in cost between 200 ft . of chain cable, 76 lb . to the foot, and 600 ft . of wire rope, 18 lb . to the foot, the chain costing 15s. 6 d ., and the rope costing 23 s .6 d . per cwt.

entrance examinations.

(6) By selling tweed at $\$ 2.60$ per yard it was found that 直 of the cost was gained; what selling price would have gained $\cdot 7$ of the cost?
(7) A plate of copper 5 ft .6 in . long, 3 ft . wide, and $\frac{3}{4} \mathrm{in}$. thick, is rolled into a sheet 4 ft .6 in . wide, and 6 ft . long. Find
(8) How many bricks, 9 in. long, $4 \frac{1}{2}$ in. wide, and 4 in. thick, will be required for a wall 60 ft . long, 17 ft . high, and 4 ft . thick, allowing that the mortar increases the bulk of each brick $\frac{1}{6}$?
(9) A grocer gained 20% by selling 10 lb . sugar for $\$ 1$ 南? wards he increased his price, giving 10 lb. sugar for $\$ 1$. Aftermuch per cent. did he make at giving only' 9 lb . for $\$ 1$. How

June, 1882.

(1) Define Greatest Common Measure. State the principle on which the rule for finding the G. C. M. of two numbers depends Find the G. C. M. of $68,590,142$, and $85,054,059$ depends. (2) A dealer bought 8 carleads of
$9,870 \mathrm{ft}$., at $\$ 13.50$ per M. carloads of lumber, each containing Find his gain on the whole lot.
(3) Show that $\frac{9}{4}=\frac{6}{8}$, and that $\frac{3}{3} \div \frac{4}{6}=\frac{10}{1}$.

Simplify the following :-
(4) Prove that $2 \cdot 3 \times \cdot 04=092$.

$$
\frac{26 \frac{3}{7}-1 \frac{1}{2} \frac{3}{4}}{\frac{4}{9}+1 \frac{3}{5} \text { of } \frac{17 \frac{1}{2}}{12} \text { of } \frac{5}{9} \div \frac{35}{24}} \text { of } \frac{5 \frac{1}{2}}{521}
$$

Add together 154.2195 $4567 \cdot 0004$. Reduce $75 \cdot 0125$ cwt. to ounces.
(5) A steamer makes a nautical mile ($6,072 \mathrm{ft}$.) in 3 min .50 sec. Find her rate per hour in statute (common) miles.
(6) There is a solid pile of bricks which is 36 ft , long, 16 ft . 6 in. wide, and 14 ft .6 in . high, and contains 122,496 bricks of
(7) A London merchant transmits $£ 25010 \mathrm{~s}$. through Paris to New York; if $£ 1=24$ francs, and 6 francs $=\$ 1.14$ American currency, what sum in American currency will the merchant
realize?
(8) In a map of a country the scale is i^{1} of an inch to a mile (i.e. Io of an inch represents a mile), and a township is represented on this map by a square whose side is half an inch. How many acres in a township?
(9) If 4 men or 6 boys can do a work in 8 dy., how long will it take 8 men and 4 boys to do such a piece of work?
(10) A and B were candidates for election in a constituency of 2,700 voters. The votes polled by A were, to those polled by B, as 23 to $2 \overline{5}$, and B was elected by a majority of 100 . How many persons did not vote?

December, 1882.

(1) From 935 take 846, explaining clearly the reason for each step.

The difference between 82,610 and the product of two numbers is $70,300,000$. One of the numbers is 9,402 ; find the other.
(2) Find the amount of the following bill:-36 lb. 8 oz . beef © 16c., 16 lb .10 oz . mutton © 14 $14 \mathrm{c} ., 7 \mathrm{lb} .12$ oz. pork chops © 12 c ., 15 lb .6 oz . turkey (1) 18 c ., 4 lb .10 oz . suet (1) 16 c .
(3) Find the L. C. M. of 11, 14, 28, 22, 7, 53, 42, 81; and the G. C. M. of $40,545,124,083$.
(4) Prove that $\frac{3}{4}$ of $1=\frac{1}{4}$ of 3 .

(5) Prove that $1 \cdot 025 \div 05=20.5$.

Find the cost of 0620 of 112 lb . sugar, when 1 lb . costs 0703125 of $16 s$.
(6) Reduce $4 \overline{0}, 740,108 \mathrm{sq}$. in. to acres.
(7) The bottom of a cistern is 7 ft .6 in . hy 3 ft .2 in . How deep muşt it be to contain $3,750 \mathrm{lb}$. of water, a cubic foot of water weighing $1,000 \mathrm{oz}$.?
(8) A runs a mile race with B and loses; had his speed been a third greater he would have won by 22 yd . Find the ratio of A 's speed to B 's.
(9) A does $\frac{8}{3}$ of a piece of work in 6 hr .; B does 星 of what remains in 2 hr .; and C finishes the remainder of the work in $: 10 \mathrm{~min}$. In what time would all working together do the work? (10) By selling tea at 60 c . per pound a grocer loses 20%; what should he sell it at to gain 20% ?

June, 1883.

(1) What is the object of Division? Write down the relation connecting the Divisor, Dividend, Quotient, and Remainder.

Divide 108,419,716,001 by, $18,748,005$.
(2) Find, by "casting out nines," whether the following is correct :-349,751 $\times 28,637=10,015,819,397$.

Find the weight of 500,000 bricks at 4 lb .2 oz . each, and the cost-in dollars and cents-at 27 s . $6 d$. each, allowing 4 s . $2 d$:to make a dollar.
(3) A merchant received from England the following invoice in sterling :-

375 tons iron plate (1) $£ 815$ s. $6 d$.
107 $\frac{1}{2}$ tons bar iron (1) £11 14s.
10 tons bulb iron (1) £10 10 s .
17 tons T iron (m) £15 10s.
48 tons steel (10) $£ 187 s$. $6 d$.
15 tons rivets © © $£ 11 \mathrm{~s}$.
Find the amount of this invoice in Canadian currency, allowing the shilling sterling to be equal to $24 \frac{1}{3} \mathrm{c}$.
(4) At $\$ 1.75$ per rod, what will it cost to fence a piece of land
$62 \cdot 5$ rods long and 27.75 rods wide?
(b) Simplify

$$
\begin{aligned}
& \text { Simplify } \\
& 1-\frac{1}{6}+\frac{1}{24}-\frac{61}{5040}+\frac{277}{72576} ; \text { and } \frac{47_{6}^{7}+5 \cdot \dot{8} i-2 \cdot 5}{47_{0}^{7} \text { of } 32 \text { of } \cdot \dot{5} \dot{5}}
\end{aligned}
$$

(6) Gunpowder is composed of nitre, charcoal and sulphur, in the proportion of 15,3 , and 2 . A certain quantity of gunpowder is known to contain 20 cwt. of charcoal; find its weight, and also the weight of nitre, and of sulphur it contains.
(7) Bought 360 gal . of wine at $\$ 2.60$ per carriage $\$ 17.20$, and for duties $\$ 8.50$ per gallon; paid for leakage, at what price must the $\$ 86.50$. If $z^{3} \frac{3}{6}$ of it be lost by on the whole transaction? the remainder be sold togain $\$ 50$ and paid April 6,1883 , at 8% per annum.
$\dot{F}^{(9)}$ The length of a second's pendulum is 39.37079 in . ; if 64 French metres are equal to 70 yd ., by what decimal of an inch will the length of a second's pendulum differ from one of an inch
(10) At what time between 4 and 5 , clock (a) coincident, (b) at right angles? ${ }^{\prime}$? lock are the hands of a

December; 1883.

(1) Multiply the sum of 59,404 and 47,675 by their difference, and divide the product by $7 \times 13 \times 19$.
(2) Bought oranges at the rate of 10 c . per dozen, and sold them at the rate of 5 oranges for 11c. How much did I gain on 11 boxes, each containing 20 doz. ?
(3) A man bought a rectangular field 40 rods long by 25 roils wide, paying therefor at the rate of $\$ 300$ per acre, and then haid it fenced at the rate of $\$ 1.50$ per rol. Prove that the land cost him exactly ten times as much as the fence.
(4) Divide $\$ 1,200$ among A, B, and C, so that A may have $\$ 70$ more than B and twice as much as C.
(5) Divide the sum of $\frac{2}{6}$ of $8 \frac{1}{3}$ and $2 \frac{1}{7}$ of $5 \frac{5}{5}$ by the difference between $\frac{3}{7}$ of $3 \frac{1}{2}$ and $\frac{1}{2}$ of $\frac{1}{3}$ of $9 \frac{2}{3}$.
(6) Add together $1 \cdot 302,3 \cdot 2589$, and $40 \cdot 93$, Multiply the sum by 00297 , and the product by 90.09 . (Decimals, not vulgar fractions, to be used in doing the work, otherwise no marks to be allowed.)
(7) A farmer sold a load of hay at $\$ 16.25$ per ton; the whole weight of the waggon and hay was $2,875 \mathrm{lb}$.; the waggon alone was found to weigh $1,083 \mathrm{lb}$. How much did the farmer receive for his hay?
(8) A can run a mile in 5 min., B can run it in 6 min. How many yards start should A allow B in order to make their chances equal?
(9) Three men can dig a certain drain in 8 dy . They work at it for 5 dy ., when one of them falls ill, and the other two finish the work in 5 dy. more. How much of the work did the first man do before he fell ill?
(10) Find the interest on $\$ 275.80$ for 91 dy. at 7% per annum.

$$
\text { June, } 1884 .
$$

(1) The quotient is 12,434 , the remainder 2,763 , and the dividend eighty-seven millions uine hundred and eleven thousand one hundred and forty-three. Find the divisor.
(2) Find the L. C. M. of 11, 7, 21, 28, 22, 27, 81, 243, 216 ; and the G. C. M. of 94,605 and 96,509 .

ENTRANCE EXAMINATIONS.

(3) A sidereal day is 23 hr .56 min ., and the mean solar day is 24 hr . Reduce the difference between the two to the decimal of a sidereal day.
(4) Simplify (a) $\frac{\left(3 \frac{2}{5}-7^{2}\right) \text { of } 6 \frac{5}{1_{2}^{2}}}{1_{70}^{7}-\frac{1}{7} \text { of } 12_{6}^{5}} \div\left(6 \frac{1}{5}-1 \frac{1}{7}\right)$.

$$
\text { (b) } \frac{\frac{7}{6}_{6} \text { of a guinea }-\frac{2}{5} \text { of a } £}{8 s \cdot 10 \frac{3}{4} d}
$$

(5) A grain dealer bought 64 bags of oats, weighing (including bags) $3,616 \mathrm{lb}$. The bags averaged 1 lb .12 oz . each. The dear. paid 34c. per bushel for the oats, and sold them at $42 \frac{1}{2} \mathrm{c}$. per' c'shel. How much was his gain?
(6) A plate of metal $\frac{1}{2}$ in. thick was burnished on one side for 11s. $6 \frac{1}{2} d$., at $2 \frac{1}{4} d$. per square inch. Find the weight of the plate, supposing a cubic foot of the metal to weigh $62 \frac{1}{2} \mathrm{lb}$.
(7) A, B, and C do a work in $12 \mathrm{hr} . ; A$ and B can do it in 16 hr ., and A and C in 18 hr . In what time can each do it
separately?
(8) An army, in its first engagement, lost 1 in 10 in killed and wounded, and in its second engagement 3 in 25 of the remainder; there were then 3,960 men left. How many men went into the first engagement?
(9) Find the duty on 8 hogsheads of sugar, each weighing $1,200 \mathrm{lb}$. gross, at 18 gc . per pound, 16% being allowed for tare. (10) (a) Find the interest on $\$ 225.40$ for 16 mo . at 8% per annum.
(b) The amount of a certain principal was $\$ 307.20$ for $3 \frac{1}{2} \mathrm{yr}$., and $\$ 312$ for 33 yr . Find the principal and the rate.

December, 1884.

(1) Of what number is 8,967 both divisor and quotient?
(2) Find the greatest number that will divide $1 i, 067$ and 35,602 , leaving as remainder respectively 17 and 21.
(3) Find the amount of the following bill:-121 $\mathbf{y d}$. cassimere
 \$1.12. print © 9 93c., $5 \overline{5} y d$. shirting (1) $17 \frac{1}{2} \mathrm{c}$., $37 \frac{1}{2}$ yd. tweed ©
(4) Simplify (a) $5 \frac{1}{2}+2 \frac{1}{3} \div 113 \times 7 \frac{1}{2}+\frac{\$ 18.64}{\$ 1.16 \frac{1}{2}}$.
(b) $\left(\frac{4}{6} \times{ }^{9} \times 0.02 \times 0.456\right) \div+\frac{4}{7} \times \frac{16}{3}$ of $\frac{8}{9}$.
(5) The cost of carpeting a room 15 ft . long, with carpet 27 in . wide, costing 90 c . per yard, is $\$ 22.50$. What is the width of the room?
(6) A boy can do a piece (\dot{f} work in 42 dy ., and a man can do the same in $\frac{3}{7}$ of the time. How many days will both working together require to do five times the amount of work?
(7) How much water must be addel to 92 gals. of brandy, worth $\$ 4.60$ per gallon, in order that the mixture may be worth only $\$ 3.60$ per gallon?
(8) Find the simple interest on $\$ 275.60$ from 18th July, 1883, till 13th Sept., 1884, at 6% per annum.
(9) At what time are the hands of a clock exactly 2 min . spaces apaz . betw cen 4 and 5 o'clock?

June, 1885.
(1) Express in words :-17089653.005904, $\$ 705 \cdot 637$, and
DCCCLXXXV.

(3) Find the value of $17 \cdot 6 \dot{\overline{5}} \dot{\dot{4}}+4 \cdot \dot{8} 3 \dot{\overline{5}}+6 \cdot 40 \dot{8}$.
(4) Make out a bill of the following goods:-23 yd. cotton @ 11c., 13 yd . gingham @ 23c., 25 yd. flannel @ 37c., 18 $\frac{1}{3} \mathrm{yd}$.

(5) A merchant purchases sugar at $\$ 7.50$ per cwt. ; at what price per pound must he sell it in order to gain 10% ?
(6) Find the simple interest on $\$ 167$ for 3 yr .9 mo . at 7% per annum.
(7) In what time will any sum of money double itself at 6% simple interest?
(8) $\$ 1,200$ is to be divided between two persons, A and B, so that A 's share is to B 's share as 2 to 7 .
(9) At what two times between 3 and 4 o'clock are the hands of a watch equally distant from the figure III.?
(10) A man having $\$ 790$ spends a part of it, and afterwards received $7 \frac{1}{2}$ times as much as he spent; he then had $\$ 1,305$. How much did he spend?

December, 1885.

(1) Define the following terms:-Factor, Prime Number, Multiplication. Write down all the Prime Factors of 2,310.
(2) (a) Reduce to simplest form:- $\frac{9534}{15663}$.
(b) What is the least number from which 1,224 and 1,656 may each be taken an exact number of times?
(3) A man who lost $\frac{1}{3}$ of his fortune in one year, and $\frac{7}{7}$ of the remainder the next year, had $\$ 900$ left. Find the amount of his fortune at first.
(4) What quantity taken from $150 \frac{1}{7}$ wiil make it exactly
visible by $12 \frac{5}{8}$? divisible by 125 ?
(5) Express 3.74976 min . as the desimai oi a week.
(6) What will $11,750 \mathrm{ft}$. of lumber cost at $\$ 27.50$ per thousand?
(7) Name the units of length, time, and sterling money.
(8) Find the simple interest on $\$ 800$ for 3 yr . at $5 \frac{1}{2} \%$.
(9) A cistern has three pipes; the first will fill it in 10 hr ., the second in 12 hr ., and the third in 15 hr . In what time will

$$
\text { July, } 1886 .
$$

(1) (a) Multiply the sum of forty-eight thousand six hundred and thirty-nine, and thirty-nine thousand five hundred and thirty-seven by their difference and divide the product by sixty-
four.
(b) The product of four numbers is $827,658,432$; the first number is 12, the product of the second and third is 144 . Find
the fourth.
(2) Make out a bill of the following articles :-281 yd. flannel 0_{7}^{68}., 35 yd . calico © 15c., $3 \frac{1}{2}$ doz. pairs of stockings @ $\$ 2.10$, 7 pairs of gloves © 90 c ,, $12 \frac{1}{2}$ yd. linen (1) $\$ 1.12,4$ pairs of muslin curtains © \$4.20.
(3) What will it cost to fence a lot 49 ft . front and 180 ft . depth at $\$ 1.15$ per foot?
(4) (a) A horse worth $\$ 170$ and 3 cows worth $\$ 36$ each were exchanged for 14 calves and $\$ 82$. Find the value of a calf.
(b) A farmer sold an equal number of horses, cows and e cow at $\$ 37$ and a calf at $\$ 12$, find the number of each.
(5) (a) What sum of money will produce $\$ 300$ interest in $2 \frac{1}{2}$ yr. at 6% simple interest?
(b) At what rate per cent., simple interest, will a sum of money amount to 3 times itself in $2 \overline{5} \mathrm{yr}$. ?
(6) Divide $\$ 1,000$ among A, B, and C, so that A may have $\$ 60$ more than B, and twice as much as C.
(7) Five men can do a certain piece of work in 20 dy. ; after working 15 dy. they are joined by another man, and the whole work is completed in 19 dy . What fraction of the work is done by the sixth man?
(8) In a 440 -yd. bicycle race A can give to $B 20 y d$. start, and to $C 30$ yd. B and C ride a 440 -yd. race, starting, even. By how much does B win?

December, 1886.

(1) Simplify $\frac{1}{2}-\frac{2}{3}$ of $\frac{5}{8}+7^{7}$, and find how many times the result is contained in $\frac{3}{8} \div\left(\frac{7}{3}\right.$ of $\left.\frac{3}{14}-\frac{1}{8}\right)$.
(2) Divide the product of $\cdot 037$ and $\cdot 0025$ by the sum of $\cdot 9, \cdot 02$ and 005 .
(3) If a road is 4 rods wide, how inany miles of it will make 10 ac. ?
(4) A lot 150 ft . long and 100 ft . wide is to be surrounded by a close board fence 6 ft . high ; what will the boards cost at $\$ 12.50$ per thousand feet?
(5) A farmer bought a number of horses and cows for $\$ 2,000$. There were three times as many cows as horses, and a horse cost twice as much as a cow. If each horse cost $\$ 80$, how many cows did he buy?
(6) A man has a salary of $\$ 400$ per year and has $\$ 500$ in the bank. If he spends $\$ 500$ per year, in what time will his money be all gone?
(7) What will $\$ 1$ amount to in 3 yr .219 dy . at $7 \frac{1}{2} \%$ per annum?
(8) A man borrows $\$ 900$, for the use of which he has to pay $\$ 3$ per month ; how long will he have had it when the interest is 50 c . on every dollar borrowed?
(9) A dealer sold an article for $\$ 8.10$ and lost 10%; at what selling price would he have gained 10% ?
(10) How can you tell, without actually dividing, whether a number can be divided by 9 without leaving a remainder?

ENTRANCL EXAMINATIONS.

(11) If a cow gives 12 qt. 1 pt . of milk every day and 1 lb . 8 oz . of butter can bo mado from $2 \overline{5} \mathrm{qt}$. of milk, how many pounds of butter can be made in 1 wh. from the milk of 16 cows?
(12) A man bought a quantity of tea supposed to be doue up in packages of 1 lb . each, for which he was to pay s. 64 ; on weighing them, however, it was found that each package was 1 oz . too light ; how much should ho pay for the tea?

$$
\text { July, } 1887 .
$$

(1) What multiple of 595 divided by 595 gives as quotient 595 ? (2) Find the L. C. M. of $\$ 2, \$ 3, \$ 4, \$ 5, \$ 10, \$ 20$, $\$ 50$, and
(3) A man owns $\frac{3}{5}$ of $\frac{5}{6}$ of $7^{7} 0$ of an investment; on selling $\frac{2}{8}$ of his share he finds himself worth $\$ 100$ less than before; what is the value of the whole investment?
(4) Change $\frac{1}{13}$ of $\frac{1}{3}+\frac{\frac{1}{\frac{1}{8}}}{3+\frac{1}{4}}$ to a simple fraction.
(5) What principal will amount to $\$ 840$ in 5 yr . at $4 \frac{1}{2} \%$?
(6) If 1 lb . of thread makes 3 yd . of linen $1 \frac{1}{4} \mathrm{yd}$. wide, how many pounds would make 45 yd . of linen 1 yd . wide?
(7) A man sold two farms for $\$ 3,000$ each; on one he gained 20%, and on the other he lost 20%. Did he gain or lose on the whole and how much ?
(8) If a garrison of 1,000 men lave provisions for 12 mo ., how long will the provisions last if at the end of 2 mo . they be reinforced by 500 men?
(9) A merchant sold a pioce of cloth for $\$ 24$ and thereby lost 25%. What per cent. would have been the gain had he sold it
for $\$ 34$?

December, 1887.

(1) Ten cents will buy 3 oranges, 4 lemons or 5 apples; how many apples are worth as much as 5 doz. oranges and 7 doz. lemons?
(2) A man can run 100 yd . in 10 sec. How many miles will a steamboat go in $5 \frac{1}{2}$ dy. at the same rate?
(3) Find the interest on $\$ 150$ from the 16th of July to the 9 th of December, at 5% per annum.
and 1 lb . low many f 16 cows? be done up \$6.1; 011 kage was
ient 595 ? $\$ 50$, and
selling $\frac{3}{7}$ © ; what
de, how
${ }^{\ominus}$ gained e on the

12 mo., they be
by lost sold it
(4) A person horrows money for 6 yr . at $3 \frac{1}{2} \%$ and repays at the end of the time, as principal and interest, $\$ 897$; how much did he borrow?
(5) A map is drawn to a scale of half an inch to a mile, how many acres are represented by a sifuare inch on the map?
(6) One workman charges $\$ 3$ for a duy's work of 8 hr., and another $\$ 3.50$ for a day's work of 9 hr . Which had 1 hettor employ and how nuch shall I have to pay him for work that he can do in a fortnight working 6 hr. per day?
(7) Water in freezing expands 10%. If a cubic foot of water weighs $1,000 \mathrm{oz}$., find the weight of a cubic foot of ice.
(8) A mercliant bought $1,000 \mathrm{yd}$. of carpet at 60 c. per yard, and sold $\frac{2}{6}$ of it at a profit of 30%, , at a profit of 20%, and the rest at a loss of 20%. How much did ho receive for the carpet?
(9) A piece of land is surrounded by a stone wall 8 ft . high, and $2 \mathrm{ft}$. thick; tine land inside the wall is 100 ft . long and 50 ft . wide; how many cubic feet of stone does the wall contain?
(10) A house and lot are together worth $\$ 2,100 ; \frac{1}{4}$ of the value of the house is equal to $\frac{1}{3}$ of the value of the lot ; find the value of erch.
(11) A cubical cistern is 5 ft . deep; how many gallons of water will it hold if $277 \cdot 274$ cubic inches mako a gallon?

$$
\text { July, } 1888 .
$$

(1) Prove the rules for division (a) of vulgar fractions, (b) of decimals, using as examples $\frac{3}{4} \div \frac{5}{7}$ and $\cdot 012 \div 6$.
(2) A produce merchant exchanged 483 bush. of oats at 39 a c . per bushel, and $13 \frac{1}{2}$ barrels of apples at $\$ 3.85$ per barrel, for butter at $37 \frac{1}{2} \mathrm{c}$. per pound ; how many pounds of butter did he receive?
(3) A train going 25 mi . per hour starts at 1 o'clock p.m. on a trip of 280 mi .; another going 37 mi . per hour starts for the same place at 12 min . past 4 o'clock p.m.; when and where will the former be overtaken?
(4) If in a certain town $\$ 3,093.75$ was raised from a 4% tax, what was the value of the property in the town?
(5) By selling my cloth at $\$ 1.26$ per yard I gain 11c. more than I lose by selling it at $\$ 1.0$ per yard; what would I ? selling 800 yd. at $\$ 1.40$ per yard?
(6) How many thousand shingles, 18 in . long and 4 in . wide, lying $\frac{1}{8}$ to the weather, are required to shingle the roof of a building 54 ft . long, with rafters 22 ft . long, the first row of shingles being double?
(7) A farmer employs a number of men and 8 boys; he pays tho boys fisc. and the men $\$ 1.10$ per day. The amount that he paid to all was as much as if each received 92c. per day; how many men wero employed?
(8) A field, whose length is to its width as 4 to 3 , contains 2 ac. 2 rd. 32 rods; what are its dimensions?
(9) A man having lost 20% of his capitul is worth exactly as much as another who has just gained 15% on his capital ; the second man's capital was originally $\$ 9,000$. What was the first

December, 1888.

(1) Write down neatly the following statement of six weeks' cash receipts; add the amounts vertically and horizontally, and prove the correctness of the work by adding your results :-

	Mon.	'Tues.	Wed.	Thur.	Fri.	Sat.	Total.
1st.	\$29.87	\$31.47	\$33.35	\$35.00	\$26.16		
$\stackrel{3}{3} \mathrm{nd} \mathrm{l}$.	27.38	30.05	28.39	34.83	\$27.16	\$48.17	
4th.	19.96 23.19	29.70	29.98	36.10	-25.49	49.99	
5th.	17.84	32.73 31.19	31.80	37.91	27.84	50.00	
6 th.	12.09	31.19 26.07	27.36 24.09	35.55	28.10	53.94	
			24.09	31.87	29.15	57.77	
otal							

(2) If you buy 3 lb . of butter at 28 c . per pound, 5 lb . of tea at 56 c . per pound, 6 bars of soap at 17c. per bar, 12 gal . of oil at 27e. per gallon, and 3 oranges at 40 c . per dozen, and the mermant throws off 10c. for each dollar's worth purchased, how much change would you get out of a $\$ 10$ bill?
(3) Divide $\$ 82.60$ among 27 men and 37 boys, so that each man may have three times as much as each boy.
(4) Find the interest on $\$ 387.56$ from Maroh 18 th to Novem-
(5) A bushel of potatoes weighs 60 lb . If a grocer buys a ton of potatoes for $\$ 15$, and sells them at 15 c . per peck, how much per cent. will he gain?
(6) A barn 80 ft . long and 60 ft . wide is built on a plot of ground 308 ft . long and 204 ft . wide. The rest of the plot is covered with cordwood to a depth of 8 ft . How many cords of wood are there?
(7) The interest on $\$ 870$ for 4 yr . 6 mo . is $\$ 274.05$; how much will $\$ 1,000$ amount to in 3 mo . at the same rate?
(8) A lot 11 rods long and 9 rods wide has a fence built round it. Outside the lot at a distance of 2 ft . from the fence a sidewalk 4 ft . wide is built; how many square yards of ground does the sidewalk cover?

July, 1889.
(1) A bushel of wheat weighs 60 lb . and a barrel of flour weighs 196 lb . If 3 lb . of wheat make 2 lb . of flour, how many barrels of flour can be made from 343 bushels of wheat?
(2) Find the interest on $\$ 597.50$ for 2 yt. 5 mo .12 dy . at 8% per annum.
(3) A and B start together and walk in the same direction, A at the rate of 4 mi . per hour, rad B at the rate of 3 mi . per hour. At the end of 7 hours A turns and goes back. How many miles will B have gone when he meets A ?
(4) The circumference of a wheel is $\frac{4^{2}}{2}$ of its diameter; find the diameter of a waggon wheel that makes 360 revolutions in going a mile.
(5) A town whose population was 10,000 increased 10% every year for 3 yr .; what was its population at the end of that period?
(f) The Map of Ontario recently issued by the Crown Lands Department is drawn on a scale of 8 miles to an inch. On this map the Township of Scott measures $1_{7}{ }^{5} 6 \mathrm{in}$. in length and $1_{1} \frac{1}{8}$ in . in width; how many acres does it contain?
(7) If for $\$ 7 \mathrm{I}$ can have the use of $\$ 35$ for 3 yr .4 mo ., how much a month shall I have to pay for the use of $\$ 8,750$?

Entrance examinations.

(8) It is required to build a sidewalk a quarter of a mile in length, 8 ft . wide and 2 in . thick, supported by three continuous lines of scantling 4 in. square; what will the lumber cost at $\$ 17$ per thousand feet?
(9) Write down neatly the following statement of six weeks, prove the correctness of the work by adding your results :-

December, 1889.

(1) A fruit merchant bought a quantity of apples for $\$ 144$; he sold half of them for $\$ 82.80$, thereby gaining 12 cts. per bushel on what he sold. What did the apples cost him per
bushel?
(2) Find the interest on $\$ 84.25$ from April 16th, 1888, to November 4th, 1889 , at 7% per annum. (Year $=365$ days.)
(3) A pint contains 9,000 grains of barley and each grain is one-third of an inch long. How far would the grains in 17 bush. 3 pk. 1 gal. 1 qt. 1 pt. reach if placed one after another?
(4) An orchard is 242 rods long and 154 rods wide. At 19 cts. per cubic foot what will it cost to dig a ditch around it 3 ft .
9 in . wide and 4 ft . deep.
(5) A sold \dot{a} town lot to B and gained $12 \frac{1}{2} \% \quad B$ sold it to C for $\$ 306$ and lost 15%. How much did thè lot cost A ?
(6) In a room 26 ft .6 in . long, 16 ft .8 in . wide, and 12 ft . 3 in . high, there are three windows each $5 \frac{1}{2} \mathrm{ft}$. high and 3 ft . wide, and two doors each 7 ft . high and $3 \frac{1}{2} \mathrm{ft}$. wide. The baseboard is 9 in . wide. How much paper, 7 of a yard wide, will be required to cover the walls and ceiling ?
(7) A farmer sells to a merchant $3,015 \mathrm{lb}$. of hay at $\$ 10$ per ton, and takes in payment 6 lb . of tea (1) 80c. per 1 lb ., $22 \frac{1}{2} \mathrm{lb}$. of coffee (0) 26 c . per $\mathrm{lb} ., 33 \mathrm{lb}$. of sugar (1) 12 lb . for a dollar, 324 lb . of raisins at $18{ }^{2} \mathrm{c}$. per $\mathrm{lb} ., 14 \mathrm{lb} .13 \mathrm{oz}$. of bacon at 16 c. per lb., and the balance in cash. How much cash does the farmer receive?
(8) Brown purchased $\frac{7}{28}$ of a mill property for $\$ 4,064.55$ and Smith purchasell ${ }^{9} 5$ of the same property at a rate of 5% higher. What did Smith's part cost him, and what fraction of the property remains unsold?
(9) Ify farm contains exactly 184 ac. 76 sq. rd. $24 \frac{1}{5} \mathrm{sq} . \mathrm{yd}$. There are 3.85 ac . in garden and orchard, 8.147 ac. of green crop, 76.9 ac . of grain, $23 \cdot 608 \mathrm{ac}$. of meadow, 34 ac , of pasture, and the remainder is uncleared bush. What per cent. of my farm is uncleared?
(10) Write down the following statement of six weeks' cash receipts; add the amounts vertically and horizontally, and and prove the correctness of the work by adding your results :-

	Mon.	Tuns.	Werd.	thur.	Frit.	Sat.	TOTAL.
1st.	\$95. $6 \overline{0}$	\$89.24	359.79	\$78.04	\$59.37	\$98.16	
2nd.	71.58	65.41	67.24	62.49	67.02	51.42	
3 Brd .	58.47 69.29	57.99	50.60	71.08	82.91	76.89	
\%th.	69.29 45.81	80.07 93.56	91.87 82.54	93.74 57.96	63.36	${ }^{90.21}$	
6ith.	63.42	77.68	79.18	56.96 86.9	72.12 87.31	${ }^{67.96}$	
Totals.							

$$
\text { July, } 1890 .
$$

(1) Write down the following statement of six weeks' cash receipts; add the amounts vertically and horizontally, and prove the correctness of the work by adding your results :-

	Mons.	Turs.	Wen.	Thur.	Fri.	S.t.	tutal.
1st.	\$65.95	\$24.89	\$79.79	\$40.78	\$37.59	\$89.61	
3 rd .	47.58	${ }_{99}^{41.65}$	24.67	${ }^{94.26}$	70.26	42.51	
4th.	29.69	70.80	50.60	80.71	91.82	89.76	
5 th.	81.45	56.93	84.91 59	${ }_{96} 74.93$	36.63	21.90	
6 th.	42.63	68.77	81.79	96.57 60.86	12.72 31.87	96.67 .	
Totals.						75.82	

(2) A boy's age now is one-fifth of his father's. In six years
it will be one-third his father's present age. How old is he?
(3) Some Atlantic liners consumo 200 tons of coal per day. carry a supply for 4 days extra. 8 back. In case of accidents they hold of such a steamer uys extra. How many cubic yards of the trip if each ton is 33 cubic feet?
(4) In a factory 12 men 16

At the end of a week they romen and 30 boys are employed. much as two women, and aceive $\$ 330.00$. A man is paid as What is the share of each? woman as much as three boys.
(5) A farmer, whose property is assessed at $\$ 9,600$, pays on the dollar $1 \frac{9}{4}$ mills for township rates, $1 \frac{1}{4}$ for county rates, $1 \frac{1}{2}$ for railway bonus, and $2 \frac{1}{2}$ for school rate. How much does he
pay in all? (6) On June 29th, 1890, I borrow $\$ 16.50$, to be returned April 30th, 1892. With interest at $6 \frac{1}{2}$ per cent. what amount must I then pay?
(7) In what time would a field, 80×60 rods, pay for underdraining length wise, at 2 cents per foot, if the field yield 2 bush., at 66 cents, per acre more than before draining? The drains are 4 rods apart, and the first drain runs down the centre of the field.
(8) If 18 men do 8 of a piece of work in 30 days of 10 hours, in what time should 15 men do the whole, working 9 hours a
(9) Two men start from the same point at the same time to walk in the same direction around a block of land $1+\mathrm{mi}$. on each side. A goes at the rate of 4 mi . and B at the rate of 3 mi, an hour. How far will A walk before he overtakes B ?

December, 1890.
(1) Write down the following statement of six weeks' cash receipts; add the amounts vertically and horizontally, and prove the correctness of the work by adding your results :-

	Mon.	Tuss.	Werb	Thur.	Fri.	Sat.	TOTAL.
1st.	\$84.56	\$74.68	357.92	\$78.81	\$51.27	\$73.28	
3rd.	73.55 91.32	65.43 47.62	81.47	86.57	74.23	36.19	
4th.	64.39	54.98	76.41	64.93 71.46	83.57	75.64	
sth.	57.95	49.17	42.86	92.78	54.39 67.44	${ }_{85.16}^{46.37}$	
6 th.	78.19	63.58	52.29	63.69	96.08	79.31	
Total							

(2) A person sold $A \frac{3}{4}$ of his land, $B \frac{4}{5}$ of the remainder, $C 5$ of what then remained, and received $\$ 50$ for what he had left at $\$ 60$ per acre. Find the number of acres he had at first.
(3) A grocer bought 6 cwt. of sugar for $\$ 52.10$; he used 65 lb . himself and sold the rest so as to make $1 \frac{1}{8} \mathrm{c}$. per pound profit on the whole quantity. How much per pound did he sell it for?
(4) A starts from Kingston to walk to Belleville, a distance of 45 mi ., at $3 \frac{1}{2} \mathrm{mi}$. per hour, and B starts from Belleville 3 hr . earlier at $2 \frac{2}{2} \mathrm{mi}$. per hour. Where do they meet, and how far will B be from Kingston when A arrives at Belleville?
(5) A note for $\$ 162.50$, with interest at $5 \frac{1}{2} \%$, was given on January 14, 1889, and paid on November 28, 1890. What was the amount paid?
(6) A certain hall 60 ft . long is to be carpeted. It is found that by stretching the carpet lengthwise, any one of four pieces,
 fit the hall without cutting anything from the width of the carpet. If the narrowest piece, worth $\$ 1.10$ per yard, be chosen, what will it cost to carpet the hall ?
(7) I bought a bush farm, 180 rods long by 96 rods wide, at $\$ 12.50$ per acre. I paid $\$ 14.75$ per acre for clearing and $\$ 1.35$ per rod for enclosing the whole farm with wire fencing. Taking into account that I sold the wood for $\$ 1,160$ and ashes for $\$ 17.20$, how much has the improved farm cost me per acre?
(8) A loaned $B \$ 120$ for 1 yr . and 8 mo . and received as payment in full at the end of that time $\$ 130.25$. What wate per cent. interest did 1 pay?
(9) A farmer sells a merchant 30 bush. of wheat at 90 c . per bushel and makes a profit of 90%; the merchant sells the farmer 5 yd . of broadcloth at $\$ 3.60$ per yard, 16 yd . of calico at 8 c . per yard, and 44 yd . of cotton cloth at 13c. per yard, and makes a profit of 25%. Which gains the more by the transaction and

$$
\text { July, } 1891 .
$$

(1) Write down the following statement of six weeks' cash receipts; add. the amounts vertically and horizontally, and prove the correctness of the work by adding your results:-

	Mon.	Tues.	Wed.	Ther.	Fin.	Sat.	total.
1st.	\$75.59	\$62.68	\$ā9.63	\$62.78	\$15.36		
2nd.	82.61	79.81	48.79	92.13	81.78	87.17	
3 rd .	56.95	49.83	89.64	47.85	78.81	79.68	
4th.	91.04	75.16	46.98	39.67	59.76	$\mathbf{9 5 . 7 9}$	
5th.	68.17	34.75	77.63	85.94	93.19	86.97	
6 th.	47.80	81.14	67.19	49.85	48.77	98.99	
Total..							

No marks will be allowed for this question unless all the worl: is correctly done.
(2) A note of $\$ 360$, drawn April 20, 1890, is paid July 2, 1891, with interest at $7 \frac{1}{2} \%$ per annum. Find the amount paid.
(3) Brooms are bought wholesale at $\$ 20$ per gross; what per cent. profit will be made by selling them at 20 c . each?
(4) Express, as a fraction of an acre, the sum of the follow-ing:- $\frac{1}{2}$ of $\frac{4}{5}$ of 18 of an acre; $\frac{2}{3}$ of $\frac{1}{2} \frac{3}{1}$ of $8 \frac{3}{5}$ of 100 sq . rods; and $\frac{1}{7}$ of $2 \frac{1}{8}$ times 605 sq. yd.
(5) A drover lost 065 of his flock by wolves, $\cdot 105$ by disease, and 27 by theft; he then sold $\cdot 75$ of what remained, and has; 280 sheep left. Find the number in his original flock.
(6) A legacy of $\$ 9,500$ is to be divided among A, B, and C, so that A will ret ${ }^{5} 5$ of the whole, and B will get $\frac{3}{2}$ as much as $($. Find the sh res of each.
d as payt rate per t 90c. per he farmer at 8 c . per makes a ction and
eks' cash and prove

CTAL

The worl:

2, 1891,
hat per follow; ; and
lisease, nd has
d C, so 1 as ('
(7) The difference in weight of two chests of tea is 25 lb . ; the value of both at 65c. per pound is $\$ 113.75$. How many pounds of tea are in each chest?
(8) Find cost of digging a cellar 48 ft . long, 30 ft . wide and 6 ft . deep, at 20 c . per cubic yard, and flooring it with Portland cement at 10 c . per square yard.
(9) Farmer B sold to a merchant the following articles to apply on an overdue account of $\$ 54.45:-1,680 \mathrm{lb}$. of hay (1) $\$ 1$; per ton, 38 cords of wood © $\$ 4.80$ per cord, 4 barrels of apples (it) $\$ 2.75$ per barrel, 350 lb . of flour © $\$ 2.50$ per cwt., 30 lb .10 oz . butter © 16c. per pound. Make out the account neatly, showing the balance and to whom due.

$$
\text { July, } 1892 .
$$

(1) Make out the following account, neatly and accurately, in proper form:-Nicholas Nickleby bought the goods from you on March 3rd, and paid you $\$ 10$ on account April 8 th- 39 lb . tea (1) 80 c ., 300 lb . sugar (1) $4 \frac{4}{4} \mathrm{c}$., 45 y y. print (1) $11 \frac{1}{2} \mathrm{c}$., $2 \frac{1}{4}$ gal. syrup (10 63c., $12 \frac{1}{2}$ yd. towelling (1) $12 \frac{1}{2} \mathrm{c}$., $\frac{3}{4}$ doz. knives and forks (a) $\$ 2.50,27 \mathrm{lb}$. cheese © 15 c ., 1 lb .10 oz . lemon peel © 32c. per lb.
(2) A load of wood, 10 ft . long, 3 ft .8 in . wide and 3 ft . high, was sold for $\$ 3$.
(a) What was the price per cord?
(b) At $\$ 4$ per cord what would the load be worth?
(3) How much will it cost to paint the outside and both floors of a two-storey cottage, 36 ft . long, 33 ft . wide, and 18 ft . high, at 10c. per square yard. The walls to be 18 in . thick, and no allowance to be made for cornices, openings or partitions?
(4) What amount will be due July 1,1892 , on a note of $\$ 80$, drawn Feb. 6, 1892, and bearing interest at $5 \frac{1}{4} \%$ per annum?
(5) What is the smallest sum of money with which you can buy chickens at 25 c ., or geese at 50 c ., or turkeys at 75 c ., or lambs at $\$ 3$, or sheep at $\$ 5$, or pigs at $\$ 7$, or cows at $\$ 35$, or horses at $\$ 140$, and have exactly $\$ 15$ left for expenses?
(6) A farmer agreed to pay his hired man ten sheep and $\$ 160$ for one year's labor. The man quit work at the end of seven months, receiving the sheep and $\$ 60$ as a fair settlement. Find the value of each sheep.
(7) What decimal must be taken from the sum of $69 \frac{1}{5}, 8 \cdot \mathbf{2}$, $5 \cdot 445,065$ and $20 \frac{1}{12}$, so that it will contain 6.05 an exact number of times?
(8) A lad earned $\$ 21.16$ collecting accounts for a physician. He was allowed $5 \frac{3}{4} \%$; what amount did he collect?
(9) S. S. No. 5, Esquesing, is assessed for $\$ 150,000$. The trustees have built a' school-house costing $\$ 1,800$.
(a) What will the school-house cost a ratepayer whose property is assessed for $\$ 4,500$?
(b) What would be the rate of taxation per annum on the whole section if the house v ere paid for in six equal annual payments, without interest?

PUBLIC SCHOOL LEAVING EXAMINATION.

1892.

(1) (a) What is meant by the Prime Factors of a number?
(b) Find the prime factors of $13,230,22,050$, and 23,625 ,
and
(c) By means of the prime factors find their G. C. M. and
(2) A man owned $\$ 8,940$ Bank Stock, which paid a yearly dividend of $4 \frac{1}{2} \%$. He sold out at 1029 and invested the proceeds in Michigan Central Stock at 743 paying a yearly dividend of 3%. By how much was his yearly income changed by the transfer?
(3) Find the proceods of the following note:\$2,400.00.

Hamilton, February 3, 1892.
Five months after date, value received, I promise to pay Thomas Cowan, or order, the sum of Two Thousand and Four Hundred Dollars, at Bank of Hamilton here, with interest at 6% per annum.

Dicounted May 291802 Vance Allen.
(4) A 10° (Year = 366 days.)
(4) A machinist sold two seed-drills for equal sums of money. He gained 25% on the one and lost 25% on the other. His total loss was $\$ 9.60$. Find the cost of each drill.
(5) A commission merchant sells a consignment of wheat for $\$ 27,500$, on a commission of $2 \frac{1}{2} \%$. He pays $\$ 250$ for freight and storage, and with the net proceeds buys pork at $\$ 6.25$ per cwt., charging $2 \frac{1}{2} \%$ for buying. How many cwt. of pork does he buy and what is the amount of his two commissions?
(6) Find the cost of the material required to fence $2 \frac{1}{2} \mathrm{mi}$, of railway (both sides), posts placed at 8 ft . apart, an 8 in . base 1 in . thick, \& 2×4 rail at top, and 6 strands of wire. The posts cost $12 \frac{1}{2} \mathrm{c}$. each, the lumber $\$ 14$ per thousand, and the wire 4c. per lb. (A pound of wire stretches one rod.)
(7) (a) A circular cistern, 8 ft . in diameter and 9 ft . in depth, is filled with water to the height of 6 ft . How nany gallons of water in the cistern? (A cubic foot of water weighs $1,000 \mathrm{oz}$., and a gallon 10 lb .)
(b) If a sphere whose diameter is 4 ft . is submerged in the water in the cistern, how bigh will it cause the water to rise?
(8) Add vertically and horizontally the following statement of eight weeks' cash receipts: -

	Mon.	Tues.	Wed.	Thur.	Fri.	Sat.	T.
1.	\$3862.93	\$1391.76	\$6760.68	\$1098.91	\$1696.65	\$ 43.68	
2.	396.74	6168.37	864.39	964.26	\$167.69	1864.86	
3.	1768.63	467.89	2035.68	3165.03	691.83	185.97	
4.	3976.98	76.05	364.76	93.68	1948.39	1759.46	
5.	263.76	1035.84	36.10	386.41	3.45	1396.71	
6.	1559.83	1932.57	1268.15	8.37	279.72	67.85	.
8.	62.24 194.87	318.62	134.36	1763.29	1468.29	543.66	\cdots
8.	194.87	3.85	7643.82	685.38	765.42	39.67	\cdots
T.						-

ALGOMA AND PARRY SOUND.

TEACHERS' EXAMINATION.

(1) Define Factor, Highest Common Factor, Least Common Multiple, Per Cent., Discount, Decimal, Decimal Fraction.
 (b) $7_{3}{ }^{9} 2-8 \frac{5}{2} \frac{5}{2}-12 \frac{9}{44}+7 \frac{3}{8}-\left(514-6 \frac{7}{8}-7 \frac{19}{4}+10 \frac{1}{2}+15 \frac{5}{8}\right)$.
(3) A merchant bought a quantity of cloth at 3 yd . for $1 s$., and 1 a as much at 5 yd . for 2 s . ; and sold the whole at 15 yad. for $7 s$. How many yards at this rate must he sell to clear $\$ 1.12$?,$(20 \mathrm{c} .=1 s$.
(4) A and B can do a piece of work in 20 dy ; B and C can do the same work in 25 dy., and A and C in 30 dy . If A and B work 5 dy ., and $C 20$ dy., how long will it take B to finish it?
(5) A speculator loses $\frac{1}{4}$ of his money and then gains $\$ 14$; he then loses $\frac{1}{6}$ of what he now has, and gains $\$ 8$, when he retires as he began. What amount had he at first?
(6) A merchant has tea worth $30,40,80$, and $83 \frac{1}{3}$ c. per pound respectively; he wishes to make a mixture of 80 lb . so as to sell at 70 c . per pound and gain 20% on the cost. How mnch of each kind must he use?
(7) A broker invested a certain sum of money in railway stock at 88 and paying 6% dividend, and 4 times as much in bank stock at 80 paying 5% dividend; his income from both investments was $\$ 1,400$. How much did he invest in each kind of stock?
(8) The amount of two notes is $\$ 400$; they are drawn for one year; one is discounted at a bank, the other at true discount. The sum of both discouints is $\$ 38$. Money being worth 10%, what is the face of the note discounted at the bank?
(9) How far may a boat, whose speed is 8 mi . per hour in still water, go up a stream whose rate is 4 mi . per hour, so that the round trip may take only 8 hr .?
(10) Two vessels, one in the form of a cube, and the other in the form of a cylinder, together hold $71 \frac{5}{6} \frac{2}{3}$ gal. of water. The diameter of the cylinder is 16 in., and the depth of the side 30 in . If a gallon weighs 10 lb . and a cubic foot $1,000 \mathrm{oz}$., find the dimensions of the cube.

A.

(1) A set of harness cost $\$ 25$, the buggy as much as the harness and 60% of the price of the horse, and the horse as much as the buggy and harness together. Find the price of the rig.
(2) Bought a lot of sheep at $\$ 4$ each, as many and 20 more at number bought.
(3) When wheat is worth $\$ 1.20$ per bushel, 11 bush. of a mixture of wheat and oats are worth $\$ 8.90$, but if the proportions in the mixture were interchanged its value would be only \$8.04. Find the number of bushels of each grain in the mixture, and give the price of oats per bushel.
(4) A can chop 4 cords in 3 dy., B can chop as much in 3 dy . as A in 4 dy. In what fraction of a day can they both together chop one cord?
(5) A's money is $\frac{3}{5}$ of $B ' s$; $\frac{1}{8}$ of A 's and $\frac{1}{4}$ of B 's produces $\$ 800$ interest in 6 yr. at 5%. Find the sums.
(6) A father leaves $\$ 3,000$ to his three sons, aged respectively $15 \frac{1}{2}, 17$ and 19 yr . He directs the money to be invested at 6% simple interest, and the same sum to be given to each son as he reaches the age of 21. Find the cash value of each son's share.
(7) The interest on $\$ 98$ for 15 yr . is $\$ 81$, part of it being out at 5%, and the rest at 6% simple interest. Find the sum lent at each rate.
(8) A merchant marks his cloth at $37^{7} \%$ profit. After selling 3_{3}^{3} of his stock at this rate, he is forced by competition to reduce the price 2c. per yard, and in the end gains only $f t$ of what he had intended. Find the cost price per yard.
(9) A can do a piece of work in 18 dy., B in $30 \mathrm{dy} ., C$ in 33 dy. How long must each work in turn alone so that the work may be completed in 25 dy.?
(10) A building society lends $\$ 1,500$ at 5% per annum, compound interest, to be repaid in 10 equal annual instalments, principal and interest together. Find this yearly instalment.

B.

(1) Define Involution, Multiple, and ad valorem duty.
(2) A man bought a rectangular farm 140 rods long and 40 rods wide at $\$ 40$ per acre. What did it cost?

Criticise the following solution: -140 rods $\times 40$ rods $=$ 5,600 sq. rods $\div 160=35 \mathrm{ac} . \times 40=\$ 1,500$.
(3) Two ships sail away from the same port at the samo time, one due north at 8 mi . per hour, the other due east at 6 mi . per hour. What distance are they apart in 5 hr, , assuming that the surface of the sea is a level surface?
(4) Find the contents of a cone whose altitude is 27 ft . and diameter of the base 20 ft .
(5) If I pay $\$ 1,200$ for a 60-dy. draft when exchange is $\frac{1}{2} \%$ premium and the rate of discount 9%, what is the face of the note?
(6) If my goods had cost me 20% more than they did, my rate of gain would have been less than I now make by 25%. Find my gain per cent,
(7) A has 50% more property than B, and B has 50% more than C; how much per cent. more has A than C ? How much per cent. less has C than A ?
(8) A bought an organ from B January 1, 1892, agreeing to pay $\$ 160$ for it in semi-annual instalments of $\$ 10$, the first payment due July 1, 1892. A, however, on second thought decides to pay cash down; what ought he to pay, money being worth 10% per annum?
(9) A man invests $\$ 4,875$ in the 3 per cents. at $97 \frac{1}{2}$; he afterwards sells out at 99 and re-invests the money in railway shares at 110 paying a 4% dividend. Find the increase in his income.
(10) The capital of a railway company is five million; the gross earnings are half a million, and the expenses are 55% of the earnings. What dividend per cent. can the company pay on the capital?

C.

(1) State and prove the rules for multiplying and dividing decimals.
(2) Simplify $\frac{2}{5}\left(3 \frac{1}{3}+1 \frac{1}{4}\right) £+\frac{1 \frac{1}{8}-\frac{1}{8} \text { of } 1 \frac{5}{6}}{2^{1} \text { of } 3 \frac{1}{3}+1_{4}^{13}} \times 475$ of $5 s .+\frac{4.2}{012} d$.
(3) The value of the paper on the walls of a room is $\$ 10.3 \overline{\text { a }}$ when the paper is 27 in . wide and 9c. per yard ; find the value if paper 2 ft . wide at 8 c . per yard be used.
(4) The L. C. M. of two numbers is $634,938,944,494$, their G. C. M. is 9187 ; one number is $85,044,059$, find the second number.
(5) A grocer has 630 lb . of a mixture containing chicory and coffee in the proportion of 3 to 4 . What amount of coffee must be added to the mixture to make the proportion 7 to 10 ?
(6) A person discounts a note (true discount) due in 15 mo ., so as to make 10% per annum on his money ; what per cent. on the face of the note does he exact?
(7) A retired farmer invests 40% of his capital in $3 \frac{1}{2} \%$ stock at 90 and the remainder in 4% stock at 95 , and his income is $\$ 1,340$ per year. What capital has he invested?
(8) A man bought property for $\$ 9,000$, and agreed to pay the principal and compound interest in four equal annual payments. Find the amount of each payment, interest being taken at 6% per annum?
(9) Find tho solid content of a hollow spherical shell whose internal diameter is 5 in., the metal being 1 in. thick,
rreeing to first payht decides ng worth
he afteray shares s income.
lion; the 555% of y pay on
dividing
$+\frac{4.2}{.012} d$
is $\$ 10.3 \bar{\circ}$ the value

94, their te second
cory and ffee must

15 mo., cent. on
$\frac{1}{2} \%$ stock ncomo is
pay the ayments. en at 6%

11 whose
(10) A man standing on the side of a river observes that the reflection of the top of a tower on the other side, is seen by him at a point 29 yd . from the bank on which he stands. He fimls also that his eye is $\overline{5} \mathrm{ft}$. above the water and that the river is $1,400 \mathrm{ft}$. wide. Assuming that the angle of incidence is equal to the angle of reflection, find the height of the tower in feet.

D.

(1) Add together and simplify $-^{5}\left[{ }^{\left[\frac{3}{2} \sigma\right.}+\frac{9}{4}\left(\frac{4}{8}-\frac{2}{5}\right)\right]$ of $£ 1$, and + of $1 \frac{1}{2} \frac{9}{3}$ of $14 \frac{7}{1 /}$ of a penny. Answer to be reduced to $£ s . d$.
(2) Express the square root of $(\cdot 0864 \times 753) \div \cdot 00391$ correctly to the nearest integer.
(3) Express $(1 . \dot{5} 47 \dot{6} \times 10.618) \div 2 \cdot \dot{6} \dot{5} 4 \dot{7}$ in simplest form.
(4) A reduction of 20% in the price of apples would enable a purchaser to obtain 120 apples more for $\$ 1$. How many apples can be bought for $\$ 5$ at the first rate?
(5) Divide $\$ 100$ among a man, a woman, a girl, and two boys, so that the man may have as much as the girl and the two boys, the woman and the girl as much as the two boys, and the man and the girl half of the whole sum.
(6) A merchant lays out $£ 1,000$ in buying cloth in England at 3s. per yard; he takes the cloth to France at an expense of $3 d$. per yard for freight, packing, etc., and pays a duty of 42 centimes per metre. He sells $\frac{1}{2}$ the cloth at 8 francs, and $\frac{1}{2}$ at 6 francs per metre. Find his profit in sterling money, taking $£ 1=25^{\circ}$ francs $; 1$ metre $=39: 4$ inches.
(7) The interest on a sum of money for $2 \mathbf{y r}$. is $\$ 349.58$, and the discount for the same sum for the same time is $\$ 310.74$; simple interest in both cases. Find the rate per cent. and the time.
(8) A dealer sent 5,000 bush. of wheat to his Montreal agent to be sold at $\$ 1.20$. For his service the agent deducts a commission, and also a 4% commission in advance on the ensuing purchase of silk which he slips to his employer. The two commissions amounted to $\$ 500$; find the rate of the first one.
(9) A cylindrical vessel contains 3 cub. ft. of water and its depth is $18 \mathrm{in} . ;$ find the diameter of the base.
(10) A perpendicular 10 yd . long drawn from the right angle of a triangle divides the hypothenuse in the ratio of 1 to 4 . Find the area of the triangle.

E.

(1) Define the terms Abstract and Concrete as applied to num. bers. Is $6 \times 3=18$ a correct solution of the question:-What will be the cost of 6 postage stamps at 3 c . each ?
(2) Define the Numerator and the Denominator of a fraction, and from your definition prove $\div 5=53^{3}$ s.
(3) Prove the rule for pointing off the number in the extraction of the square root.
(4) What sum of money placed at $5.8 .40 \%$ per annum, simple interest, will yield in 15 yr. as much interest as $\$ 500$ will produce in 3 yr . at 5% compound interest?
(5) A bank wishes to realize 4% interest on its discounting operations. Form a table of the rates at which it must discount notes payable in 30,60 and 90 dy. respectively, days of grace included, and 1 yr . considered $=360 \mathrm{dy}$.
(6) A can give $B 10 \mathrm{yd}$. start, and $C 21 \mathrm{yd}$. in a race of 120 yd. ; \boldsymbol{B} can give $\boldsymbol{C} 1 \frac{1}{2}$ seconds' start over the same course. Find the number of seconds in which each of them can run a mile at the same rates.
(7) A person invested one portion of $\$ 1,000$ in $3 \frac{1}{2} \%$ stock at 80 , and the rest of it in 5% stock at 112, and his joint income from both was $\$ 44.061$. Find the amount invested in each kind of stock.
(8) The central part of a room 24 ft . long and 18 ft . wide is covered with carpet 2 ft . wide at $4 s$. 3 d . per yard. There is a painted margin all round the room 3 ft . wide, and the total cost is $£ 811 \mathrm{~s}$.; what is the cost per square foot for painting the margin?
(9) In a quadrilateral field $\mathrm{ABCD}, \mathrm{AB}=159 \mathrm{yd} ., \mathrm{BC}=105$ yd ., $\mathrm{CD}=90 \mathrm{yd} ., \mathrm{DA}=161 \mathrm{yd} ., \mathrm{BO}$ perp. on $\mathrm{AC}=84 \mathrm{yd}$. Find the area of the field in acres correct to three places of decimals.
(10) If an iron ball 7 in . in diameter weighs 10 lb ., find the weight of one whose diameter is 10 in .

$$
\mathbf{F}
$$

MANITOBA TEACHERS' EXAMINATION.

(1) A person has $\$ 15,566.60$ invested in 6% mortgages; he saves each year $\frac{1}{5}$ of his income and adds it to his capital. What will be his income for the fourth year?

$$
\$ 2
$$

lo.

$$
\$ 1
$$

to
(2) A dealer invests $\$ 2,000$ in the purchase of 92 horses, pays $\$ 280$ for carriages, $\mathbf{\$ 7 5}$ for stabling, and $1 \frac{1}{2} \%$ for insurance. He loses one horse which the insurance company make good with \$150. At how much per head must he sell the rest of the horses to realise 12% on his investunent?
(3) At what rate per cent. will $\$ 1,520$ anount to $\$ 1,733.75$ in 2 yr , and 3 mo ., simple interest?
(4) Three contractors build à road for $\$ 10,000$. A has 2.5 men at work for 16 dy . and 30 men for $3: \mathrm{dy}$. B has 40 men for 10 dy. and 45 men for 40 dy . C employs 28 mon for 00 dy . and he receives $\$ 200$ for superintending the work. To how much is each contractor entitled?
(5) A note of $\$ 6,000$, dated May : 6 in, paymhle in 4 mo. after date, is discounted on July 21st at 6% by giviag another note at 90 dy., of which the proceeds at the sam rate will just meet the amount due. Find the face of the second note.
(6) Sterling exchange is at 91% premium, find the cost of a draft on London for $£ 4168 s .9 d$. ., brokerage being $\frac{1}{B} \%$.
(7) The stock of an insurance company sells at 1374 and pays yearly dividends of 10%; brokerage boing $\frac{1}{4} \%$, what per cent. on the investment will a purchaser realise?
(8) A miner finds a gold nugget weighing 24 lb .10 oz . Avoirdupois, which proves to be 18 carats fine. If standard gold 22 carats fine is worth $\$ 17.62 \frac{1}{3}$ per Troy ounce, find the value of the nugget.
(9) A railway train runs over 1184 mi . in $4 \frac{1}{3} \mathrm{hr}$. It stops 10 min . at one station, 23 min . at each of 12 other stations, and runs through a tunnel $2 \frac{3}{4} \mathrm{mi}$. long at 16 mi . per hour. Exclusive of stoppages, what is the average speed per hour of the train outside the tunnel ?
(10) A room 25 ft . long, 16 ft .6 in . wide, 11 ft . high, has two doors 8 ft . high, 3 ft .4 in . wide; two windows 8 ft .4 in . high, 4 ft . wide; and a fire-place 4 ft .2 in . square. How many rolls of paper 8 yd . long and 1 yd . wide will be required to paper the walls?

G.

(1) Simplify $\frac{3}{6} \times \frac{5}{8}-\frac{2}{8}$ of $\frac{7 \frac{1}{2}-5 \frac{1}{4}}{16625} \times 064743589$.
(2) Bought 6 cwt. 3 qr. 21 lb . sugar at $£ 216 \mathrm{~s}$. per cwt., for which I am to pay $\frac{2}{3}$ cash and the balance in soap at $4 \frac{1}{d} d$. per pound. What do I pay in money, and how many pounds of soap?
(3) At what time after 3.30 o'clock will the two hands meet for the first time?
(1) A person performs $\frac{5}{8}$ of a piece of work in 11 dy ., he then gets help from a man and they finish it in 4 dy. more. In what time could each do it by himself?
(5) Simplify $\frac{1234 \times 4321-01}{00481346}$, and $\frac{8 \dot{3}+041 \dot{6}}{.0025}$.
(6) If brass be composed of 63 parts of copper and 31 parts of zinc, what quantity of brass contains 4 lb . more copper than of zinc?
(7) Two acres of land are contained in a field whose width is 2 chains 80 links. What is the length of the field?
(8) A man left $\frac{\delta}{8}$ of his property to his eldest son, 㝵 of the remainder to his younger son, and the rest to his wife. Upon dividing it was was found that the eldest son had $\$ 750$ more than the younger. Find the share of each.
(9) What sum must I lend for 10 mo . at $6 \frac{1}{2} \%$ per annum, so that I may receive interest to the amount of $\$ 237.50$?
(10) If 500 men excavate a harbor basin 800 yd . long, 500 yd . wide and 40 yd . deep in 4 mo.; how many men will be required to excavate a hasin $1,000 \mathrm{yd}$. long, 400 yd . wide and 50 yd . deep in 5 mo ?

H.

(1) A grain dealer bought 1,300 bush. of wheat and sold $\frac{1}{5}$ of it at a profit of 5%, $\frac{1}{3}$ of it at a profit of 8%, and the rest at 12% profit. Had he sold all at a profit of 10% his gain would have been $\$ 16.68 \frac{1}{3}$ more. Find the cost price of the wheat.
(2) The gross annual receipts of a railroad are distributed as follows : -40% for working expenses, 54% to pay a dividend of $3 \frac{1}{2} \%$ to stock holders and $\$ 28,350$ placed in the reserve fund. Find the smount of the railroad stock.
(3) A's present age is $\frac{?}{\frac{?}{3}} B$'s, but 34 yr . ago it was $\frac{5}{2} B$'s. Find their present ages.
(4) A boatman rows 5 mi . with the tide in the time he would row 3 mi . against it. But if the current ran $\frac{1}{2} \mathrm{mi}$. per hour more, he would row twice as fast with the tide as against it. Find his rate in miles per hour in still water.
(5) A and B have ewich $\$ 4,000$.- A invests in U. S. 5 per cents at 104, and B in $3 \frac{1}{2} \%$ English Consols at 91. At the end of a year A sells out at 102 and B at 98 . Give the year's income of each and also his capital after selling out.

$$
\begin{aligned}
& \mathrm{ar} \\
& \mathrm{cr} \\
& \\
& \mathrm{va} \\
& \mathrm{ea} \\
& \mathrm{~m} \\
& \mathrm{pa} \\
& \text { of }
\end{aligned}
$$

(6) If I buy a horss for $\$ 80$ and am allowed 9 months' credit, and I forthwith sell him for the same sum giving 3 months' credit, find my gain per cent., money being worth 8% per annum.
(7) A property of $\$ 2,000$, consisting of three farms of unequal value, is to be divided equally among three sons. They agree each to take a farm and balance the accounts by money payments. The three farins are valued as 11,8 and 6 ; find the payments that require to be made.
(8) The sides of a triangle are 10,12 and 16 ft ; find the lentith of the perpendicular on the short side from the opposite angle.
(9) The diagonal of a square is 4 chains; find the area.
(10) If the radius of a sphere is equal to the side of a cube, the solid contents of the sphere are $\frac{3}{3} \times \frac{35}{1} \frac{5}{3}$ the solidity of the cube. A cubic foot of iron weighs 450 lb .; find the diameter of a 68 lb . cannon ball.

K.

(1) What quantity must added to the difference between 57 and $9+\frac{1}{2}$, so that if the sum be multiplied by $4 \frac{4}{6}$ the product nay be 28 ?
(2) Select the greatest and the least of the fractions $\frac{18}{187}$, ${ }^{\frac{1}{3} \frac{6}{8}} \mathrm{~T}, 3 \frac{1}{3} \frac{2}{8} \overline{8}, 53^{9} 7 \overline{3}$.
(3) The sreas of three squares are as $1: 9: 16$, and the second is known to contain $944,784 \mathrm{sq}$. in.; find the lengths of the sides of the first and the third in yards.
(4) A mother and two children start on a long voyage. At starting the sum of their ages is 35 yr ., and are in the ratios of $356: 39: 2 \overline{5}$. At the end of the voyage the mother's age is to that of the eldest child as 728:94. Taking $12 \mathrm{mo}=1 \mathrm{yr}$., find the time of the voyage in months.
(5) What is the least number of years for which the simple interest on $\$ 145.37 \frac{1}{2}$ at 4% will be in exact number of dollars?
(6) Find the difference between the simple and the compound interest on $\$ 9,902 \frac{2}{3}$ for $2 \frac{1}{2} \mathrm{yr}$. at $3 \frac{1}{2} \%$ per annum?
(7) If $\$ 800$ is invested at 5% per annum, and at the end of each year $\$ 120$ is deducted for expenses; how much of the capital will be left at the beginning of the seventh year?
(8) Jones started from Halifax to Winnipeg and at the same time Brown from Winnipeg to Halifax. Jones reaches W. in 16 hr ., and Brown arrives at H. 36 hr . after they met on the road. Assuming uniform rates, find the number of hours each man was on the road.
(9) If 3% stock sells at 99 , what should be the present worth of $\$ 150$ due in 9 mo . from date?
(10) If a cubic foot of iron weighs 441 lb ., find the weight of a 13 -inch cannon ball, the metal being 2 in thick. ($\pi=\frac{27^{2}}{}$.)

L.
 SECOND PREVIOUS EXAMINATION, CAMBRIDGE.

(1) Find the quotient obtained by dividing the product of the seven whole numbers next in order after 30 by the product of the first seven whole numbers. Ans. 10,295,472.
(2) The circumferences of the large and small wheels oi a bicycle are 176 in . and 48 in . respectiveiy. How many more turns will the latter have made than the former if the machine goes a distance of 15 mi .? ANs. 14,400.
(3) Express the difference between $1-\frac{1}{8}+\frac{1}{6}-\frac{1}{4}$ and $\frac{1}{2}+\frac{1}{4}+$ $\frac{1}{8}+\frac{1}{8}$ as a vulgar fraction in its lowest terms. ANs. $\frac{8}{28} 9$.
(4) Multiply .01019 by 23.04 and divide 01342 by .0055. Ans. 23477 '6; 2•44.
(5) Express the quotient of $\dot{2} \dot{1}$ divided by $\cdot 0 \dot{1} 1$ as a decimal. ANs. $19 \cdot 0 \cdot 9$.
(6) Find the cost of 2 tons 3 lb .5 oz . at $3 s .4 d$. per pound (long ton). ANs. $£ 7474 \mathrm{~s} .4 \frac{1}{2} d$.
(7) A level tract of land 20 mi . long and $\frac{3}{4}$ of a mile broad is flooded to a depth of 5 ft . Given that a cubic foot of water weighs 62 lb . find in tons the weight of water on the land (long ton). Ans. 57,872,5713.
(8) A sovereign is worth $\$ 4.07$ in America, and 25 francs 2 centimes in French money. How many cents will a man lose who changes $£ 15$ at the rate of 25 francs for $£ 1$? (A franc $=$ 100 centimes; a dollar $=100$ cents.) Ans. $4 \frac{3}{4} \frac{1}{7}$.
(9) Two men, A and B, working alone can finish a piece of work in 7 and 8 hr . respectively. If they work at it for an hour alternately, A beginning, in how many hours will the work be finished? Ans. $7 \frac{3}{7}$.
(10) Find the amount of $£ 400$ in $2 \frac{1}{2}$ yr., reckoning compound interest at 4%. Ans. £441 5s. $10 \cdot 272 d$.
(11) A man buys 5% foreign stock at 40 and sells out at the end of the year when the stock has fallen to 38 . What does he gain per cent, on the transaction? ANs. 72%.
(12) The excess of the present value of a sum due in 1 yr ., reckoning interest at 5%, over the present value when interest is reckoned at 6% is 10 s. Find the sum. Ans. $£ 5513 \mathrm{~s}$.

M.

(1) There is a rectangle whose length is $1 \frac{1}{2}$ times its width, and which may be planked with boards of lengths 5,8 , or 9 ft ., all running parallel to any (the same) side. What is the least size of the rectangle?
(2) If an ounce of pure gold is worth $£ 318 s$.; and in a guinea 5 of the weight is pure gold, and the remainder an alloy 50 times less valuable; what is the weight of the pure gold in a guinea?
(3) How much money must be invested in stock at $97 \frac{1}{2}$ which pays an annual dividend of 6% to realise an income of $\$ 600$ per annum?
(4) A person invests $\$ 4,500$ in purchasing stock at 90 (par value 100). In 3 mo. he sells 30 shares at 95 , and in 3 mo . thereafter the remainder at 87 . If his money be worth 8%, what does he gain or lose by the transaction, no dividend having been paid on the stock in the interval?
(5) Show that the following is approximately a correct method of calculating interest at 6% for a given number of days:-
"Divide the number of days by 6 ; multiply the quotient by the number of dollars on which the interest is required; and the result is the interest expressed in mills."
(6) A bill due 4 mo . hence is discounted at 7% per annum (true discount), and $\$ 1,267$ is received for it. What is its face value?
(7) At what rate per cent. will $\$ 100$ in 3 yr . amount to as much as $\$ 120$ in 2 yr . at 7% ?
(8) A mortgage which is redeemed, principal and interest, by three equal annual payments of $\$ 250$ each, is to be sold. What should justly be paid for it now, a year before the first payment; interest 7% per annum?
(9) A grocer has teas at $5 s$. and $3 s$. $6 d$. per pound. He mixes them in equal quantities, and sells the mixture at such a price that he gains as much per cent. on one kind as he loses per cent. on the other. What was the selling price, and what does he gain or lose per cent.?
(10) The volume of a solid whose faces are rectangles is 786 cub. ft., and its edges are as the numbers 1, 2, 3. Find the length of these edges.

N.

(1) Simplify $\frac{\frac{1}{8}+\frac{1}{\frac{1}{2}}+\frac{1}{7}}{\frac{1}{2 \frac{1}{2}}+\frac{1}{3 \frac{1}{2}}+\frac{1}{4 \frac{1}{2}}} \times \frac{13}{3}$ of $7 \frac{1}{3}$, and
Reduce 8 oz .6 dwt . $3_{\mathrm{T} 9}{ }^{9} \mathrm{gr}$. to the fraction of a pound Troy.
(2) Divide, to 6 decimal places, nine million eight hundred and forty thousand and eighteen 10 -millionths, by one hundred and fifty-nine thousand nine hundred and eighty-two 100 -millionths.
(3) What will it cost to purchase bricks for a wall 150 ft . long, 6 ft . high, and 18 in. thick, bricks being worth $\$ 6.25$ per thousand, and each brick being (including mortar) 9 in. long, $4 \frac{1}{2} \mathrm{in}$. wide, and 3 in . thick?
(4) "Toronto, Dec. 1, 1876. -For value received I promise to pay A. B. $\$ 1,500$ one year after date, with interest at eight per cent. per annum." This note is endorsed as follows:-Jan. 23, 1877, $\$ 400$; Aug. 20, 1877, $\$ 500$. Find the amount required to pay the note when tue (no days of grace).
(5) Explain the terms - Stocks, Shares, Dividends. When is stock at par? At a premium? At a discount?

A man having \$25,000 Dominion Bank Stock paying 8% per annum, sells out at 120 and invests in Bank of Commerce Stock, which is at 125 , and pays $8 \frac{1}{2} \%$. Find the alteration in his income.
(6) How much sugar at 8c., 9c., 10c.; 13c., and 14c. per pound, must be taken to form a mixture of 400 lb ., worth 12 cc . per pound?
(7) A coin whose weight is $\frac{20}{6} \frac{90}{2} 3$ of an ounse contains 37 parts in 40 of gold, and the rest is silver; gold being worth $\$ 17$ per ounce, and silver worth $\$ 1.10$ per ounce, find the value of the coin.
(8) If at Toronto sterling exchange is quoted at 101, and at Liverpool exchange on Paris is 26 francs 85 centimes per $£ 1$, find what a Toronto merchant, remitting through Liverpool, must pay to discharge a debt of 12,000 francs (brokerage included in the above quotations).
(9) If the diameter of a 20 c . piece be to that of a 25 c . piece as 10 to 11, find the ratio of their thickness.
(10) Two trains respectively 99 yd . and 132 yd . long, and moving on parallel rails, pass each other in 63 seconds when running in opposite directions; when moving in the same direction the one passes the other in $47 \frac{1}{4}$ seconds. Find their rates per hour.

Troy. adred and idred and illionths. 1150 ft . $\$ 6.25 \mathrm{per}$ in. long, romise to eight per -Jan. 23, quired to

When is ying 8\% ommerce ation in orth 12 c . ll, must luded in
piece as
ng, and 8 when 18 direcir rates

TYPE SOLUTIONS.

The following selected problems are solved in full as types of the questions likely to appear in the public examination papers in Ontario and elsewhere. A careful study of these questions and a thorough mastery of them by frequent reproduction will go far towards training the student in the art of writing out solutions in a limited time. A few written out daily on the blackboard and formally demonstrated will prove an efficient tonic, and will give the confidence and celerity necessary to success. Several problems here given are more difficult than those usually set for the Primary Examination; but the student requires to attack at his leisure more difficult work than he can do under the rigid time limit of an examination. A suitable test is easily given by having a number of these problems written out on slips of paper and then distributing these slips at random to the different members of the class, who then solve them on the blackboard or on paper without any reference to the book. The pupils should do all the work, both problems and solutions:-
(1) A man and his wift would empty a cask of water in 16 dy.; after both had been drinking 6 dy., the woman alone drank for 9 dy . more, and then there were 4 gal. remaining, and she had drunk aitogether 3 星 gal. Find the number of g. llons in the cask at first.
Solution.-She drinks in 15 dy. 38 gal., or $\frac{1}{4}$ gal. per day;
$\therefore \mathrm{He} \quad$ " 15 " 10 " 4 " 3 " and leaves 3 as gal.
$\therefore \begin{array}{lllllll}\therefore & \mathrm{He} & \text { " } & 10 & \text { " } & 33 & \text { " } \\ \therefore & \text { or } 8 \text { gal. per doy. }\end{array}$
\therefore Cask holds 10 gal.
(2) \mathbf{A} and B start to run a race; their speeds are as 17 to 18. A runs 2t mi. in 16 min .48 sec . B finishes the course in 34 min . Find the length of the course.

Solution. -Speeds are as 17 to 18 ; therefore the times are as 18 to 17 ; hence B runs $2 \frac{1}{2} \mathrm{mi}$. in $\mathrm{t} \frac{7}{8}$ of 16 min .48 sec .; or B runs $2 \frac{1}{2} \mathrm{mi}$. in $17 \times 56 \mathrm{sec}$.
or B \quad " $5 \quad$ " 34×56 "
or B " ${ }^{5} \mathrm{~s}$ " 34 sec . or B ${ }^{6}{ }_{8^{5} \delta}^{5} \times 60 \mathrm{mi}$. in $34 \mathrm{~min} .=55_{14}^{5} \mathrm{mi}$.
(3) Find a number which leaves remainders 1, 2, and 3 respectively when divided hy 7,8 , and 9 ; and the sum of th/ 3 three quotients $=570$.

SoLUTION. $-\frac{1}{4}$ of the manibur	$=$ ist ruotient $+\frac{1}{7}$
$\frac{1}{8}$	6
$\frac{1}{8}$	6
	$=2 \mathrm{nd}$

$\therefore\left(\frac{1}{7}+\frac{1}{8}+\frac{1}{8}\right)$ of n m: 2 iner $=570+\left(\frac{1}{7}+\frac{2}{8}+\frac{3}{8}\right)$

$$
\frac{72+6 ?+56}{504} \text { of number }=570+\frac{72+126+168}{504}
$$

$\therefore 191$ times number $=570 \times 504+366=287,646$,
\therefore number $=287,646 \div 191=1,506$.
(4) The average of ten results was $17 \cdot 5$; that of the first three wus $16 \cdot 25$, and of the next four $16 \cdot 5$; the eighth was 3 less than the ninth, and 4 less than the tenth. Find the tenth.

Solution.-Average of 10 Nos. $=17.5 ; \quad \therefore$ their sum $=175$

$" 3$ Nos. $=16 \cdot 25 ;$	\therefore	"	$=48.75$
$"$	4 Nos. $=16.50 ;$	\because	$=66.00$

\therefore Sum of first seven Nos. $=48 \cdot 75+6 \ddot{6}=114.75$
\therefore Sum of last three Nos. $=175-114 \cdot 75=60 \cdot 25$
\therefore three times eighth No. $+7=60.25 ; \therefore 8$ th No. $=17.75$
\therefore tenth No. $=21.75$.
(5) To do a piece of work A would require twice as long as B and C together ; and B would require thrice as long as A and C together. The three work together and get $\$ 72$ for the job; divide the money among them in proportion to their shares of the work.

Solution 1, by Arithmetic.-A, B and C do the work and A does $\frac{1}{2}$ as much as B and C,
$\therefore \frac{3}{2}$ (B and C's work) $=$ job,
$\therefore B$ and C do $\frac{2}{3}$ job, and A does $\frac{1}{3}$ job. Again B does $\frac{1}{t}$ (A and C's shores),

\therefore A and C do $\frac{3}{4}$ job; \therefore C does ($\frac{3}{4}-\frac{1}{3}$) job $=\frac{5}{1:}$ job. \therefore B must have done remainder $=\frac{1}{4}$ Thus their shares of the work are $\frac{1}{3}, \frac{1}{4}, \frac{5}{7^{5}}$ respectively, or as 1:3:5; \therefore their wages are $\$ 24, \$ 18, \$ 30$.

Solution 2, by Algebra.-

$$
\begin{aligned}
& \frac{2}{\mathrm{~A}}=\frac{1}{\mathrm{~B}}+\frac{1}{\mathrm{C}} ; \text { and } \frac{3}{\mathrm{~B}}=\frac{1}{\mathrm{~A}}+\frac{1}{\mathrm{C}}, \text { whence } \\
& \frac{3}{\mathrm{~A}}=\frac{4}{\mathrm{~B}} \text { and } \frac{5}{\mathrm{~A}}=\frac{4}{\mathrm{C}} \text { or } \mathrm{A}: \mathrm{B}: \mathrm{C}=3: 4: 5 \text { as before. }
\end{aligned}
$$

\therefore B.-In all cases Algehraic Solutions are accepted on Arithmetic papers in Ontarlo (see Rerulatlons), so that whenever the solution is casfer in the algebrale form the student may sulstl|ute an algetraic equation tor arith(B) and
(6) Two sides of a rectangle measured in inches appear to be 11.87 in . and 9.95 in ., but measurements are known to be correct only within 4 doth of an inch each way. Show that the area computed from their product cannot be relied upon beyond the integial part.

Solution. $-11.87 \times 9.95=118 \cdot 1065$. But 11.87 may be any-
 118675 ,
And 9.95 may vary from 9.9525 to 9.9475 inclusive.
Hence the area may vary from 11.8725×9.9525, or $118 \cdot 16105625$ to $11 \cdot 8675 \times 9 \cdot 947 \%$, or $118 \cdot 05195625$.
Thus the product cannot be relied on beyond the integral part,
(7) A man paid $\$ 1,200$ cash for a lot. At the end of a year he took a 90 days' note for $\$ 1,360$ in exchange for the lot. Money at 6%; bank discount ; $360 \mathrm{dy} .=1 \mathrm{yr}$; no days' grace. Find the net gain at the time of sale.
SoLU'TION. - 90 dy . $=\frac{1}{4} \mathrm{yr} . ; \frac{1}{4}$ of $6 \%=1 \frac{1}{2} \% ; 1 \%$ of $\$ 360=$ $\$ 13.60 ; \frac{1}{2} \%$ of it $=\$ 6.80$; total, $\$ 20.40=$ discount on note. P. W. of note $=\$ 1,360-\$ 20.40=\$ 1,399.60$

Amount of $\$ 1,200$ for 1 yr . at $6 \%=1,272.00$

$$
\text { Net gain }=\$ 67.60
$$

(8) Two notes, each due in 2 yr .; total face value $=\$ 1,020$. First discounted at 5% true ; second at 5% bank discount ; total proceeds $=\$ 923$. Find face value of each. Neglect days of grace.

Solution. -Interest for 2 yr . at $5 \%=\frac{1}{10}=$ bank discount ;
true discount $=\frac{1}{1}$.

Let V_{1} and V_{2} be the face values,
$\therefore V_{1}+V_{2}=1,020 ;{ }_{10}^{9} V_{1}+$ ti $^{2} V_{2}=923$.
Multiply the first by, 9 and the second by 10 , and $1_{1} V_{2}=50$, $\therefore V_{2}=550, V_{1}=470$; and the discounts are $\$ 50$ and $\$ 47$, proceeds $\$ 993$.
(9) A pound of tea and 3 lb . of sugar cost $6 s$. But when tea has risen 10% and sugar 50% they cost 7 s . What would have been the cost if tea had risen 50% and sugar 10% ?

Solution. - $r^{\frac{1}{0}}$ more in the price of tea would require $\frac{1}{r_{r}}$ less in the weight for the same money ; $\frac{1}{2}$ more in the price of sugar would require $\frac{1}{3}$ less in the weight.

Thus, 1 lb . tea +3 lb . sugar cost 6 s . before the rise.

$\therefore 1 \mathrm{lb}$, sugar cost $\frac{2}{3}$ of $6 d .=4 d$. before the rise, and 1 lb . tea cost $60 d$. before the rise.

Add 50% to the tea and 10% to the sugar, and the prices are $90 d$. and $4 \cdot 4 d$.
$\therefore 1 \mathrm{lb}$. tea and 3 lb . sugar cost $90+13 \cdot 2=103 \cdot 2 d .=8 s .7 \frac{1}{5} d$.
(10) The fore wheel of a carriage makes six revolutions more than the hind wheel in 120 yd. Increase the circumference of each by 1 yd ., and the fore wheel will make only four more revolutions than the hind wheel in the same space. Find by arithmetic the circumference of each wheel.

Solution. - Each circumference multiplied by the number of revolutions $=120$. The numbers of revolutions are evidently whole numbers. Now all the divisors of 120 are $1,2,3,4,5,6$, $8,10,12,15,20,24,30,40,60,120$, and of these we must choose two that differ by unity, i.e., two of the first six ; the other two factors must differ by six, etc. $\therefore 4$ and 30,5 and 24 are the only pairs possible. Circumference $=4 \mathrm{yd}$. and 5 yd .
(11) How many cubic inches of iron are there in a garden roller which is an inch thick, with outer circumference 5 and width $3 \frac{1}{2} \mathrm{ft}$?

Solution.-Outer circumference $=66$ in. $\quad \therefore$ radius $=33 \div$ $\frac{21}{7}=10 \frac{1}{2} \mathrm{in} . \therefore$ inner radius $=9 \frac{1}{2} \mathrm{in}$. Hence solidity of iron $=$ $24(44-3 q 1) \times 42=2,640$ cub. in.
(12) A man can borrow money at 6% and pay cash for goods obtaining 2% discount, or he may pay for the goods in 2 mo. What will be the most advantageous course and how much will he gain by it on an invoice of goods amounting to $\$ 1,500$?
Solution.- 2% disct. $={ }_{3}^{10000} ; \frac{49}{50}$ of credit price to be borrowed. 6% for $2 \mathrm{mo}={ }^{1+15 \sigma} ; \quad \therefore 8^{\frac{1}{4} 0_{0}}$ of credit price $=$ interest to be paid.
Gain $=\frac{100-49}{5000}=\frac{51}{5000}$ of credit price $=\$ 15.30$ gain at the end of 2 mo . If the cash gain is meant, we must take the present worth of $\$ 15.30$, due in 2 mo .
(13) A and B invest capital in the proportion of $3 \frac{1}{2}$ to 4 . After $\overline{0}$ mo. A withdraws $\frac{1}{2}$ of his capital and B withdraws $\frac{2}{2}$ of his. At the end of the year they have gained $\$ 7,090$. Find each man's share.
Solution. -The capitals are as $42: 48$.

$$
\begin{aligned}
& \text { A's }=(42 \times 5)+(21 \times 7)=357 \\
& \text { B's }=(48 \times 5)+(16 \times 7)=352 \text { : Total } 709 \\
& \therefore \text { A's share }=357(707
\end{aligned}
$$

$$
\begin{aligned}
\therefore \text { A's share } & =357,709 \text { ths of } \$ 7,090=\$ 3,570 \\
\text { B's } & =352 .
\end{aligned}
$$

$$
\begin{array}{rlr}
\\
B ' s & =352, & 709 \text { ths of } \$ 7,090
\end{array}=\$ 3,570
$$

(14) A lets B have 30 lb . of wool to spin on shares. B is to charge $12 \frac{1}{2}$ c. per pound for spinning A's yarn and take his pay in wool at 30c. per pound. For every 10 lb . of wool there is a waste of $1 \ddagger \mathrm{lb}$. in spinning. How many pounds of yarn should A receive and how many pounds of wool should B keep in payment of his work?

Solution. $-1 \frac{\mathrm{lb}}{}$. on 10 lb . is $\frac{1}{8}$ of the whole wasted, $\therefore \frac{7}{8}$ wool becomes yarn, i.e., 各 A's wool at $12 \frac{1}{2} \mathrm{c}$. = B's wool at 30 c .

\therefore B's wool $=\frac{35}{8} \times 30 \times 1^{9} 3^{9} \mathrm{~T}=8 \mathrm{r}^{\frac{2}{3} \mathrm{r}} \mathrm{bb}$.
(15) A, B and C take a contract for \$120, and working together complete the job in $2 \frac{2}{3}$ dy. If B had done it alone he would have required 2 ? ${ }^{2}$ times as long as A and C together ; C would have required $4 \frac{1}{2}$ times as long as A and B together. Divide the money equitably among them.
Solution.-A, B and C do ois in a day. Also A and C do $2{ }^{2}$ as much work as B in a day.
$\therefore 2 \frac{2}{3} \mathrm{~B} ' \mathrm{~s}+\mathrm{B}$'s $=\frac{8}{8}$ Fer day $=\frac{1}{3}^{2} \mathrm{~B}$'s. Hence
B does ${ }^{9} 8$ per day. Again A and B do $4 \frac{1}{2}$ times as much as \mathbf{C} per day ; $\therefore 4 \frac{1}{2} \mathrm{C}$'s $+\mathrm{C}^{\prime} \mathrm{s}=\frac{2}{8}$ work $=\frac{1}{2} \mathrm{C}^{\prime} \mathrm{C}^{2}$.
 day.
Thus the money must be divided as $18: 9: 6$, or $6: 3: 2$
\therefore A's share $=7^{\circ}$ of $\$ 120=\$ 65_{1}^{3} \mathrm{~T}$
B's share $=\frac{1}{8} \mathrm{~A}^{\prime} \mathrm{s}=\$ 322^{8} \mathrm{r}_{\mathrm{r}}$
C's share $=\frac{1}{8} \mathrm{~A}$'s $=\$ 21_{1^{9} \mathrm{r}}$
(16) I invested a sum of money in debentures at 125 which paid 44% half-yearly; also 44% more than that sum in shares at 135 , paying $4 \frac{1}{2} \%$ half-yearly; and $39 \frac{1}{6} \%$ lesss than that sum in stock at 95 , paying $3 \frac{1}{2} \%$ half-yearly. I found that the income from the shares was $\$ 12.75$ less than that from the debentures and stock together. Find the amount invested in each ?

Solution.-For 100 invested in debentures, there were 144 shares, $60 \frac{4}{6}$ in stock
The investments were as $1: \frac{38}{8}: \mathrm{T}_{126}^{76}$, i.e., as $125: 180: 76$
The half-yearly returns were ($4 \frac{1}{4}$ on 125); ($4 \frac{1}{2}$ on 135); (34 on 9)).
Now $180=\frac{4}{3}$ of 135 , and $76=\frac{4}{5}$ of 95
\therefore returns were ($4 \frac{1}{4}$ on 125); (6 on 180) and ($\frac{1}{6}^{3}$ on 76):
Or returns are as $4 \frac{4}{4}: 6:{ }_{6}{ }^{3}:-$ i.e., $\frac{8}{2} \frac{5}{6}: \frac{1}{2} 0^{2} 0: \frac{52}{20}$
Hence $\frac{(85+52)-120}{20}$ represents $\$ 12.75$
i.e., $\frac{1}{2}$ represents $\${ }^{5} 4$
or, $\frac{10}{10}$ "
1 " \$15
$\therefore 125,180$, and 76 represent $\$ 1,875, \$ 2,700$, and $\$ 1,140$ respectively.
(17) A person invests a cert in sum (U.S. cv rency) in U.S. 5's, $10-40$, and $70+\frac{0}{0} \%$ more than that sum in U.S. 6 's, $5-20$. The former are at a discount of 5%, and the latter at a prsmium of 8%, and the interest on both is payable in gold. His interest from the whole investment is $\$ 1,400$ in gold. Find the amount of U.S. currency invested in each kind of bonds.

Solution.- $70+8 \%=87$, \therefore for every dollar of the first investment there are $1 \frac{16 \mathrm{z}}{\mathrm{J}}=\mathcal{L}_{0.6}^{6}$ of the second.

In the first 95 produces an income of 5 , \quad., ${ }^{5}$ per unit. " second 108 " " 6, " "

\therefore incomes are as $5: 9$, or $\$ 500$ and $\$ 900 ; \therefore$ investments are $\$ 9,500$ and $\$ 16,200$ respectively.
(18) Bought goods at wholesale price, but obtained a special discount of 4% on the bill. Gave my note at 6 mo . for the
reduced amount, and sold the goods forthwith for a nota at 3 mo. for $\$ 510.51$. Money was worth 8% at the time, and my profit on this transaction was $18 y^{2}{ }^{2} \%$. What was the wholesale price of the goods?

5 which n shares that sum ie income ebentures
were 144
U.S. 5 's, 2. The m of 8%, est from nount of it invest-

Solution. $-4 \%=\frac{1}{25}$. My note was $\frac{2}{2} \frac{1}{6}$ wholesale price.
Present worth moncy for 6 mo , at $8 \%=\frac{{ }^{2} 5}{25}$ principal
\therefore present worth of my note $=\frac{2}{2} \frac{2}{2}$ of $\frac{2}{2} \frac{4}{6}$ wholesale price $=1 \frac{7}{3}$ wholesale price.
My gain was $18 \mathrm{l}^{2} \%, \therefore$ my selling price was t_{1}^{3} of cost price i.e. t^{3} of $+\frac{2}{3}$ wholesale price $=t^{2}$ wholesale price.

But my selling price was the present worth of 8510.51 for 3 mo. at 8%.
Or, my selling price was ${ }^{5 f}$ of $\$ 510.51=\$ 10.01 \times 50=\$ 500.50$
\therefore my selling price $=\dagger^{\prime}$? wholesale price $=\$ 500.50$
\therefore wholesale price $=+\frac{1}{3}$ of $\$ 500.50=\$ 1.58 .794$.
(19) In 1850 the population of a town was 7,600 ; in 1870 it was found to be 9,196 . If the increase per cent. during the first decade was the same as during the last, what was this per cent.?
Solution.-Let $\boldsymbol{r}=$ decennial rate of increase per unit, just as money increases at compound intercst.

$$
\begin{aligned}
& \therefore 7,600(1+r)^{2}=9,196 ; \therefore(1+r)^{2}=9.988=1 \frac{2}{0} ; \\
& \therefore 1+r+16=1+1_{10}^{10} ; \therefore r=7^{2}=10 \% .
\end{aligned}
$$

(20) A piece of 1 d was bought for $\$ 1,000$, to be paid in 5 yr . with interest at 10 Tho purchaser was allowed a choice of two modes of payment:-(a) To leave the principal unpaid to the end of the fifth year, and pay the interest at the end of each year ; (b) to pay $\$ 200$ of the principal each year together with the accrued interest. Determine which of these modes was the more profitable, and how much the land cost at the end of the period by that mode of payment, money being worth 10% compound interest.

Sol.ution.-1st mode. He pays $\$ 200$ per year interest, which is the same as he would pay in principal by the 2nd mode, and as money is worth 10% in both cases, the two methods amount to the same thing.
Cost $=$ amount of $\$ 1,000$ for 5 yr . at 10% compound interest.

$$
=1,000\left(\frac{11}{5}\right)^{5}=1,000 \times 161,051 \div 100,000=\$ 1,610.51 .
$$

Solution No. 2. - Making the settlement at the cuat oit the \bar{t} h year, and counting compound interest on all payments, we have the foll wing statement beginning with the last payment:-

But $\$ 154+193.60+239.58+292.82=\$ 880$. They are the same.
(21) The gross receipts of a railway company in a certain year are apportioned thus:- 40% to pay the working expenses, 54% to give the shareholders a dividend of $3 \frac{1}{2} \%$ on their shares; and the remainder, $\$ 42,525$, is reserved. What was the paid-up capital of the company?

SOLUTION. $-40 \%+54 \%=94 \% ; 6 \%$ receipts $=\$ 42,525$ reserve. $\dot{\mathrm{H}} 54 \%$ receipts $=\$ 42,52 \mathrm{D}^{\circ} \times 9=3 \frac{1}{2} \%$ capital. Hence ${ }_{2}{ }^{2} \sigma$ capital $=\$ 42,525 \times 9 ;$

$$
\therefore \text { capital }=6,075 \times 9 \times 200=\$ 10,935,000 .
$$

(22) I have two debts, one of $\$ 400$ due in 2 yr ., the other of $\$ 2,100$ due in 8 yr ., both without interest. I wish to give a mortgage without interest for the whole $\$ 2,500$. For what length of time should the instrument be drawn, supposing money is worth 5% per annum simple interest?

Solution.-Interest $=T_{5} \frac{5}{\sigma}$ principal $=\frac{1}{2} \sigma$ principal.
\therefore discount $=2^{1}$ p principal. Thus the discount on $\$ 2,100$ for a year $=\$ 100$; and the interest on $\$ 400$ for a year $=\$ 20$. Now the interest must be so arranged as to cancel the discount. Hence we see by inspection that one way of accomplishing this end is to pay the $\$ 2,100$ a year before it is due, and $\$ 4005 \mathrm{yr}$. after it is due. And this arrangement will exactly coincide with the whole time, viz. 8 yr. Hence the mortgage may be drawn for $\$ 2,500$ and allowed to run 7 yr . without interest.
(23) A race in opposite directions round the sides of a rightangled triangle, starting from C , the right angle. The boys run 13 yd . and 11 yd . respectively in a given time, and meet first at D, the middle of AB, the hyp., 2nd at E, a point 30 yd . from \mathbf{C}. Find the area of the field.
Solution.-In every 24 yd . covered by both together, the faster runner gains $2 \mathrm{yd} .=\frac{1}{12}$ of whole distance run.
$\therefore 30 \mathrm{yd}=\frac{1}{12}$ perimeter; \therefore perimeter $=360$ yd. Now the triangle is right-angled with rational sides, and we see that $36=9+12+15$, which are the sides of a right-angled triangle, since $9^{2}+12^{2}=15^{2}$, hence the sides are $90,120,150$; and the area $=60 \times 90=5,400 \mathrm{sq} . \mathrm{yd}$.
mode. mode. ure the
(24) Find the effect of adding the same quantity to both terms of a ratio. Employ your results to compare the values of the

Solution. - Book work. A proper fraction is increased in value by adding the same quantity to both terms.

1st case :- $-\frac{483}{483}=\frac{519}{519} \quad \therefore \frac{483-8 i}{483}<\frac{519-86}{519}$.
2nd case : $-\frac{3731}{4568}<\frac{3731+67}{4568+67}$ and still $<\frac{3731+67}{4568+60}$.
i.e. $>\frac{3798}{46.28}$, since the fraction is increased in value by decreasing the denominator.
(25) A can do a work in $\frac{1}{2}$ the time B requires, B can do it in $?_{0}$ of the time C takes. All working together do it in 18 dy . How long would each take separately?

Solution,-A's time : B's time $=\frac{1}{2}: 1=1: 9$

$$
\therefore \text { A's : B's : C's = } 1: 2: 3
$$

Therefore their rates of work are:-
A's rate : $\mathrm{B}: \mathrm{C's}=1: \frac{1}{2}: \frac{1}{3}=6: 3: 2$

C " ${ }^{2}{ }^{2} "=0$
Ans. 33, 66 and 99 dy .
(26) A might have got home in $\frac{1}{5}$ of the time he actually took, if he had only walked $\frac{1}{3} \mathrm{mi}$. per hour faster than he did. Had he, however, gone $\frac{1}{2} \mathrm{mi}$. per hour slower than he did he would have been $2 \frac{1}{2} \mathrm{hr}$. longer on the road than he really was. How far had he to walk?

Solution.-1st case: Time $=\frac{\text { s }}{6}$ actual tine; \therefore rate would have been $=\frac{5}{4}$ actual rate; i.e., increase on actual rate would have been $=\frac{1}{4}$ actual rate $=\frac{1}{2} \mathrm{mj}$. per hour.

Therefore actual rate must have been $=2 \mathrm{mi}$. per hour.
2nd case: Decrease of rate would have been $=\frac{1}{2} \mathrm{mi}$. on a rate of 2 mi . per hour; \therefore decrease of speed $=\frac{1}{4}$ actual rate.
\therefore Decreased speed $=\frac{8}{4}$ actual rate; \therefore increased time on the road $=\frac{4}{3}$ actual time ; in other words, the increase of time $=\frac{1}{8}$ actual time $=2 \frac{1}{2} \mathrm{hr}$.
\therefore actual time $=7 \frac{1}{2} \mathrm{hr}$. at 2 mi . per hour;
\therefore distance travelled $=15 \mathrm{mi}$.
(27) An hour after starting a train breaks down, and spends another hour on repairs. Afterwards it runs at $\frac{3}{3}$ of its former rate and arrives 3 hr. behind time. The conductor observes that if the mishap had occurred 50 mi . nearer the terminus, he would have got his train in 1 hr . and 20 min . sooner. Find the length of the trip.

Solution.-Decreased rate $=\frac{3}{5}$ regular rate; $\quad \therefore$ increased time $=\frac{5}{3}$ regular time; that is the time lost $=\frac{2}{3}$ regular time $=$ $\frac{4}{3} \mathrm{hr}$. on 50 mi . ;
\therefore schedule time $=2 \mathrm{hr}$. on 50 mi .;
i.e. schedule rate $=2 \overline{5} \mathrm{mi}$. per hour ; consequently distance run before accident happened $=25 \mathrm{mi}$.

After the accident-Loss of time $=\frac{2}{3}$ regular time $=2 \mathrm{hr}$.;
\therefore regular time $=3 \mathrm{hr}$. ; and regular rate $=25 \mathrm{mi}$. per hour,
\therefore distance after mishap $=75 \mathrm{mi}$.
\therefore whole trip $=25+75 \mathrm{mi} .=100 \mathrm{mi}$.
Remark. -These solutions illustrate the application of the important principle of Inver:se Ratio. For any given distance. every increase of speed pioduces a decrease of time; and the fractions expressing the rate and the time are mutually reciprocal, and so on for a large number of practical applications of this principle.
(28) What price must I pay for bank stock 3 mo. before the dividend is die, so as to make 9% on my money, the half-yearly dividend being 8% on the par value?

Solution.-Considering 8% lialf-y arly $=16 \%$ per annum, the price of the stock, without regard to the coming dividend, would be $100 \times{ }^{16}=1777$. But the buyer is entitled to $\frac{1}{2}$ of the half-yearly dividend, viz., $\$ 4$ due in 3 mo . The P. W. of this at $9 \%=4 \times \frac{400}{400}=3.912$, which must be added to the price of the stock, \therefore total price of stock $=1777+3 \cdot 912=\$ 181 \cdot 689$.
N.B.-Eight per cent. half-yearly is $=16$ per cent. per annum + interest on $\$ 8$ for

6 mo., so that the first assumption is only comnercially accurate.
(29) A and B enter into partnership for 3 yr . A puts in $\$ 20,000$ and $\mathrm{R} \$ 5,000$. B is to manage the business, and the profits are oo be equally divided; but at the end of the first year A increases his stock to $\$ 36,000$. How shail they divide a gain of $\$ 28,500$ at the end of three years?
Solution. - It is evident that . ${ }^{\text {'s s services are considered equal }}$ to $\$ 15,000$ capital. Thus A has $\$ 20,000$ invested for 1 yr., and $\$ 36,000$ for $2 \mathrm{yr} .=\$ 92,000$ for 1 yr. ; and \mathbf{B} lias the equivalent
of $\$ 20,000$ for 3 yr . Hence their stocks are as $92: 60$, or as $23: 15 ; \therefore$ A's share $=\frac{23}{3} 3$ of $28 \frac{1}{2}$ thousands $=\frac{23}{3} \times \frac{52}{2} \times 1000=$ $17 \pm \times 1000=\$ 17,250$; and $B ' s=$ remainder $=\$ 11,250$.
N.B. - B's services are considered $\$ 15,000$ capital when the stock is $\$ 25,000$. If wre consider the value of his services to increase lin proportlon to the amount of stock in the business, then his services in the second year will be $=8$ capital, and his share must be increased in this proportion.
(30) Two quarters of beef weigh altogether 252 lb . ; one cost $7 \frac{1}{2} c$. and the other $5 \frac{1}{2} c$. per pound. They cost $17 \frac{1}{2} c$. more than they would have cost at the average price, 68 c c. per pound. Find the weight of each quarter.

Solution by Dr. McLellan. -68 is the average of the two prices; if both quarters had been bought at this rate, every pound of first quarter would have cost $\frac{7}{8} c$. more, and every pound of second quarter $\frac{7}{6} \mathrm{c}$. less than was actually paid. And \therefore if the quarters had been of equal weight, the cost would have been the same; but the cost was $17 \frac{1}{2} \mathrm{c}$. more, \therefore the first (dearer) quarter was heavier by $17 \frac{1}{2} \div \frac{7}{8}=20 \mathrm{lb}$., and $(252-20) \div 2=116$ the lighter quarter; 136 the other.
(31) A fitch 120 rods long runs through pure sand and pure clay. If it were all sand A could dig it in 30 dy . and \mathbf{B} in 24. But if it were all clay A could dig it in 40 dy . and B in 60. However, A begins at the clay end and B at the sand end at the same time, and they finish in 17 dy . Find how many rods of clay were in the course.

Solution.- $-\frac{A}{B}$ can $\operatorname{dig} \underset{5}{4}$ of sand, or 3 of clay
Now if B spent the whole 17 dy . in sand, he would do 85 rods, leaving 35 rods for A, who could do this at his slowest rate in less than 12 dy., leaving him idle nearly 5 dy. This shows that B must not spend all his time in sand, but must also do some of the clay. Now when they begin they are approaching at the rate of 8 rods per day; and after B enters the clay they approach at 5 rods per day. Let $x=$ the number of days at 8 rods ner day, $\therefore 17-x=$ number at 5 rods per day.
$\therefore 8 x+(17-x) 5=120 \therefore x=112 \mathrm{dy} . ; 17-x=5 \frac{1}{3} \mathrm{dy}$.
Thus A works 17 dy. in clay at $3=5$ iods

$$
\begin{aligned}
& =53 \frac{1}{3} \text { sand } \text {. } \\
& 120 \text { rods in all. }
\end{aligned}
$$

(32) By T. P. Hall, B.A., Woodstock College.-A, B and C start together round a field whose perimeter is p. A goes a miles, B b miles, C c miles per hour. When will they first be together again?
N.B. - Problems similar to this are occasionally found in papers on Arth. metic, and most Arithmetics give a wrong metiod of working them.
Solution. - Let $x=$ required time, and let $a=$ highest rate of speed; then $a x, b x, c x$ are the numbers of miles travelled in x hours respectively. Thus we have the equations:-
(1) $a x-b x=m p$; (2) $a x-c x=n p$, then m and n are integers, and the smallest integers that will satisfy the two equations.
(1) $\div(2)$ gives $a-b: a-c=m: n$. Now m and n are the smallest integers possible when they are prime to each other. Let k be the H. C. F. of $a-b, a-c$, so that $a-b=k m$, $a-c=k n \therefore$ from (1) $x=m p \div(a-b)=p \div k$.
Thus we derive the Rule: To find the time of meeting, subtract the other rates from the highest, and divide the perimeter by the H. C. F. of these differences.
For four travellers we should similarly obtain
$a-b: a-c: a-d=m: h: q$, and as above $x=p \div k$.
Example.-If $p=17, a=20, b=13, c=6 ;$ then $k=7$, and $x=23$. So that A would travel $20 \times 2 \frac{3}{7}=48 \neq \mathrm{mi}$., B $31 \neq \mathrm{mi}$., and C $14 \neq \mathrm{mi}$.
(33) In a certain factory were employed men, women and boys. The boys received 3 c . per hour, the women 4 c ., and the men 6 c . The boys work 8 hr . per day, the women 9 hr ., and the men 12 hr . The boys received $\$ 5$ as often as the women received $\$ 10$, and the women received $\$ 10$ as often as the men received $\$ 24$. How many of each were there, the whole number being 59?
Solution. - Each boy gets 24c. per day, each woman 36c., and each man 72c., \therefore their daily earnings are as $2: 3: 6$. And the total amounts received by each class are as $5: 10: 24$. Hence their numbers must be as $\frac{\frac{5}{2}}{5}: \frac{10}{3}: 2_{6}^{4}$. Dividing 59 in this ratio, we find 15 boys, 20 women and 24 men.
(34) Two partners, A and B, gained $\$ 700$ in trade. A's money was : mo . in trade and his gain was $\$ 300$ less than his stock. B's money, which was $\$ 250$ more than A's, was in 5 mo. Find A's stock.
Solution. - Let $x=$ A's stock. $\quad \therefore x+250=B$'s. And the profits are to be divided in ratio $x \times 3:(x+250) \times 5$. Hence we have the equation $\frac{3 x}{8 x+1250} \times 700=x-300$. Whence
$x=500$.
(35) Find a decimal multiplier that will convert Troy ounces per inch into tons per mile.

> AN3. $\frac{180}{7008} \times \frac{10}{2100} \times \frac{12 \times 3 \times 5 \frac{1}{6} \times 40 \times 8}{1}$ converted into a decimal.
(36) If a person spends $\frac{3}{7}$ of his money and $\$ 20$ more, then $\frac{5}{8}$ of the remainder less $\$ 20$, and has $\$ 28$ left, how much had he at the beginning ?

Solution. - If he spends $\frac{3}{3}+20$, he has $4-20$ left.

$$
\begin{aligned}
& \text {. } \frac{7}{2} \text { of this }-20 \text {, he has } \frac{2}{6}+20 \text { left ; } \\
& \therefore A^{2}(f-20)+20=28 \text {, } \\
& \text { or } \frac{8}{83} \text { sum }=12 \frac{4}{9} \text {, or sum }=\$ 98 \text {. }
\end{aligned}
$$

Otherwise, $\frac{2}{6} x+20=28, \frac{2}{8} x=8$, or $x=36$, what he had left after first expenditure. $\therefore \frac{4}{7} x-20=36, \frac{7}{7} x=98$, as before.
(37) A commission merchant sold a consignment of goods on 3% commission, and was instructed to invest the proceeds in other goods on 2% commission, both commissions being deducted in advance and amounting to $\$ 265$. Find the proceeds of the consignment and the value of the goods.

Solution. -proceeds $=$ commission + goods
Now 1 st com. $=3 \%$ of proceeds $=3 \%$ com. $+3 \%$ goods

$$
\begin{aligned}
& =\quad 2 \% \text { goods }
\end{aligned}
$$ i.e. whole commission $=\overline{3} \%$ com. $+5 \%$ goods add 2% com. to each of these equals, and we have

102% com. $=5 \%$ com. $+5 \%$ goods $=5 \%$ proceeds, i. e. $\frac{102}{100}$ of $\$ 265=\frac{5}{100}$ of proceeds. Multiply both sides by 20 and $\frac{102 \times 265}{100} \times 20=$ proceeds $=\$ 5,406$

$$
\therefore \text { goods }=5,406-265=\$ 5,141
$$

(38) By selling out $£ 4,500$ in the India 5% stock at $112 \frac{1}{2}$, and investing the proceeds in Egyptian 7% stock, a person finds his income increased by £168 15s. What is the price of the latter stock?
Solution.-First income $=45 \times 5$
Second income $=\frac{4 \overline{5} \times 112 \frac{1}{2}}{\text { price }} \times 7$
Hence $\frac{45 \times 112 \frac{1}{2} \times 7}{\text { price }}-45 \times 5=168 \frac{1}{4}$
add 45×5 to both the equals, and

$$
\frac{45 \times 112 \frac{1}{2} \times 7}{\text { price }}=168 \frac{9}{4}+225=\frac{1575}{4}
$$

Divide both numerators by 45×7, and we get

$$
\begin{aligned}
& \frac{112 \frac{1}{2}}{\text { price }}=\frac{5}{4} . \quad \text { Multiply both sides by } 4 \text { price } \\
& 450=5 \text { price } \\
& \therefore \text { price }=90 .
\end{aligned}
$$

(39) The difference between the two sides of a rectangular field is 33 yd ., and the area of the field is one acre. Find the length of the diagonal.

- Solution. - 33 yd. $=6$ rods, area $=160$ rods. Length \times breadth $=160=2 \times 80=4 \times 40=5 \times 32=8 \times 20=16 \times 10$. These are all the integral factors of 160 , and the last pair alone differ by $6 ; \therefore$ the sides are 16 and 10 , and the diagonal is $=$ square root of $16^{2}+10^{2}=18 \cdot 8679623$ rods.
(40) A note for $\$ 876$, dated May 17 th. for 90 dy . and bearing interest at 8% per annum, is discounted at the bank on July 3rd at 6%. Find the proceeds.

Solution.-The note is legally due on Aug. 18th ; 93 dy. July 3rd to Aug. 18th $=46 \mathrm{dy}$.
Interest on $\$ 876$ for 93 dy . $=\$ 17.856$; amount $=\$ 893.856$

$$
" \quad " \quad 46 \mathrm{dy}=\$ 6.759
$$

Proceeds $=\$ 893 \cdot 856-\$ 6 \cdot 759=\$ 887.09$.
(41) The expense of constructing a railroad is two million dollars, ${ }^{2}$ of which was borrowed on mortgage at 5%, and the remainder was held in shares. What must be the average weekly receipts so as to pay the shareholders 4%; the expenses of working the road being 55% of the gross receipts?

Solution.-Mortgage $=\$ 800,000 ;$ stock $=\$ 1,200,000$.

Interest on mortgage + int. on stock $=\$ 40,000+\$ 48,000=$
88,000 ;

$\therefore 45 \%$ receipts $=\$ 88,000$ in 52 wk. ;
\therefore weekly receipts $=(88,000 \times 100) \div(45 \times 52)=\$ 3,760.69$.
(42) The cost of manufacturing an article depends partly on the cost of the raw material and partly on the cost of labor. Wages rise 25%, but a reduction of $\frac{1}{3}$ in the cost of material enables the manufacturer to produce 16 articles for what 15 cost him before the rise in wages. How much does the raw material for $\$ 100$ worth of the manufectured articie now cost him?

Solution. - At first, cost $=$ wages + materiai.
Afterwards, \dagger^{5} cost $=\frac{5}{4}$ wages $+\frac{5}{8}$ material. i.e. $\frac{4}{4} \cos t=$ wages $+\frac{2}{3}$ material.
$\therefore(\bar{A}-B)$ gives $\frac{1}{4} \operatorname{cost}=\frac{1}{8}$ material; or, cost $=\frac{4}{8}$ material.
Now, 2nd cost $=\frac{15}{8}$ of first cost; hence $\$ 100$ cost at the altered rates takes the same material as $\frac{10}{8} \times 100$ at original cost, which $=\frac{4}{3}$ material; \therefore material $=\frac{10}{1} \times 100 \times \frac{3}{4}=\$ 80$, and this at reduced cost is $=\frac{5}{8}$ of $\$ 80=\$ 66 \frac{3}{3}$.
(43) If 12 oxen eat up $3 \frac{1}{3} \mathrm{ac}$. of pasture in 4 wk . and 21 oxen eat up 10 ac. of like pasture in 9 wk. ; find how many oxen will eat up 24 ac. in 18 wk. Ans. 36. (Proposed by Sir Isaac
Newton, 1704.)

Newton's Solution. - If 12 oxen in 4 wk. eat up $3 \frac{1}{3}$ ac., then by proportion 36 oxen in 5 wk ,, or 16 oxen in 9 wk ., or 8 oxen in 18 wk., will eat up 10 ac., on supposition that the grass did not grow. But since by reason of the growth of the grass 21 oxen in 9 wk. can eat up only 10 ac., the growth of the grass in 10 ac . for the last 5 wk . will be as much as would be sufficient to feed the excess of 21 oxen above 16 , that is 5 oxen for 9 wk., or what is the same thing, to feed $\frac{5}{2}$ oxen for 18 wk . And in 14 wk . the excess of 18 above the first 4 , the increase of grass, by analogy, will be such as to be sufficient to feed 7 oxen for 18 wk , for it is $5 \mathrm{wk} .: 14 \mathrm{wk} .:: \frac{5}{2}$ oxen $: 7$ oxen. Wherefore add these 7 oxen, which the growth of grass alone would suffice to feed, to the 8 which the grass without growth after 4 wk. feed, and the sum will be 15 oxen. And, lastly, if 10 ac. suffice to feed 5 oxen 18 wk ., then, in proportion, 24 ac. would suffice 36 oxen for the same time.

Solution by A. Martin, M. A., editor Mathematical Magazine, Erie, Pa . - In the first case one ox eats $\frac{1}{4}$ of $\frac{31}{12}$ or $\frac{5}{72}$ of an acre and ${ }^{5}$. of the growth of that acre in 1 wk . In the second case 1 ox eats $\frac{1}{0}$ of $\frac{1}{2} \frac{0}{1}$, or ${ }_{18}^{18} \frac{0}{3}$ of an acre, and $\frac{1}{20}$ of what grows on 1 ac. in 1 wk. Since 1 ox eats the same quantity of grass in 1 wk . in each case, therefore $\frac{10}{1}-\frac{5}{18}=7^{2,5}$ of the growth of
 $\frac{1}{3}_{\frac{2}{2}}{ }^{5}=\frac{1}{2}$ of an acre, what grows ore an acre during one week. ${ }^{3}{ }^{3} \frac{1}{2}+\frac{6}{18}$ of $1^{\frac{1}{2}}={ }_{6}^{5}$, the part of t_{16} original quantity on 1 ac. which 1 ox eats in 1 wk . $8^{5^{5}} \frac{1}{4} \times 18=\frac{5}{3}=$ quantity of grass, in acres, 1 ox will eat in 18 wk. $24+\left(1_{2}^{1} \times 24 \times 18\right)=60=$ quantity of grass, in acres, to be oatan from 24 ac . in 18 wk ; and $60 \div \frac{5}{3}=36$, the number of oxen required to eat it.
(44) In a meadow 20 ac . of grass grows uniformly, and 139 oxen in 13 dy . can consume it, or 28 oxen can eat up 5 ac . of it in 16 dy. How many oxen could eat up 4 ac . of it in 14 dy .?

$$
28 \text { " } 5 \text { " } 22_{\mathrm{g}}^{2} \text { " } 4 \text { " }
$$

$\therefore 22 \cdot 4$ oxen : 26.6 oxen $=13 \mathrm{dy}$: $15 \mathrm{~T}^{7} \mathrm{~d}$ dy.
i.e. 3 days' growth is eaten by $22 \cdot 4$ oxen in ${ }^{9} \mathrm{~d} \mathrm{dy}$.
\therefore Io dy. $: 16 \mathrm{dy} .=3$ days' growth $: 85 \frac{1}{3}$ days' growth.
i.e. original grass $=85 \frac{1}{3}-16=69 \frac{1}{3}$ days' growth.
$\therefore\left(16+69 \frac{9}{8}\right):\left(14+69 \frac{1}{8}\right)=22 \cdot 4: 25$. ANs. 25 oxen.
(45) The interest already due on a mortgage, together wiih what acrues during the time, will board 28 people $4 \frac{1}{4}$ mo., or 19 25 直 mo. How many people may be supported on this interesi and what accrues during the next 12 mo.?
Solution:-
Interest due + int. for 44 mo. boards 28 people for 44 mo .
 $\therefore(\mathrm{E}+\mathrm{F})$ Int. due + int. for 12 mo . boards 21 men 12 "ANs. (46) If 30 ac. of grass pasture 40 horses for 50 dy., and 60 ac. 70 horses for 80 dy., how long will 90 ac. support., 100 horses, the grass growing uniformly all the time? Ans. 100 dy .
(47) With the interest already due on a certain mortgage and that which will arise, while the work proceeds I can exactly pay the wages of 15 men :or 11 mo., or 31 men for 5 mo ., wages being uniform per man throughout. Find how long I could engage 9 men on the same plan. Ass. 20 mo .
(48) Two measures from a vessel A and one measure from B produce a mixture of 56 wine and 79 water ; but two measures from \mathbf{B} and one from A produce 58 wine and 77 water. Find proportion of wine and water in each vessel.
Solution. - Add the two proportions and we have
3 from A and 3 from B give 114 wine +156 water in 270 ;

 Similarly 1 from B "

$$
20 "+25 ; " 4: 5
$$

(49) A father left $\$ 16,395$ to be so divided among his three sons, aged respectively 15,17 and 25 , that when the shares of the two younger put out at simple interest at 5% per annum till they come of age, each would then have an equal amount, and that if one of these shares had been put out at the same rate for the time since the eldest came of age it would amount to his share. Find each share.

Solution.-Suppose $\$ 1$ is the amount each younger son will have when he is 21 yr. old. Then the youngest should get now the P . W. of $\$ 1$ for 6 yr . at $5 \%=\$ t_{3}^{0}$; and the second son should get the P. W. of $\$ 1$ for $4 \mathrm{yr} .=\$ \overline{8}$; and the eldest gets the amount of $\$ 1$ for $4 \mathrm{yr} .=\$ 9$. Hence the present shares are

(50) A parcel appears to weigh 49 lb . in one scale of a false balance and 64 lb . in the other. Find the true weight.
Solution.-The longer the arm of the balance the less the weight required to counterpoise the parcel; it is therefore a case of inverse proportion. Hence we have this statement
long arm : short arm = true weight : 49
short arm : long arm = " :64.
$\therefore 49$ long arm $=$ true weight \times short arm; and
64 short arm $=$ " \times long arm. Multiply these equations and divide this by long arm \times short arm, and we have $64 \times 49=(\text { true weight })^{2} ;$ true weight $=8 \times 7=56$.
(51) From a quantity of gold, silver and copper, weighing altogether $20,300 \mathrm{oz}$., two alloys are formed ; the first in the proportion of 11 gold to 1 copper; the other 37 silver to 3 copper; and there were 288 oz . copper left. The first alloy is coined at the rate of $£ 317 s$. $10 \frac{1}{2} d$. per ounce; the second at $5 s .6 d$. per ounce; and the whole sum thus coined is $£ 5,54614 s .6 d$. Find the number of ounces of each metal.
Solution.-20,300-288 $=20,012$ oz. coined.
 $5,546 \frac{2}{2 \cdot} .1$ st alloy $=\mathrm{t}^{7}$ of gold in it ;
$\therefore 2$ nd alloy $=20,012 \mathrm{oz}$. $-1{ }^{2}$ gold.
Hence fizs $\times 1^{2}$ gold $+\frac{11}{15}\left(20,012-t^{2}\right.$ gold $)=5,54648$
i.e. T^{3} r gold $\times 579=221,869-220,132=1,737$
\therefore ir gold $=1 \mathrm{oz}$; gold $=11 \mathrm{oz}$.
$\because \frac{4_{3}^{n}}{3}$ silver $=20,012-12=20,000$; silver $=18,500 \mathrm{oz}$.
Gold + silver $=18,511 ; \therefore$ copper $=1,788 \mathrm{oz}$.
(52) A and B run a race which lasts 6 min. At the end of the 4th minute A is $4 \frac{1}{4} \sigma$ of the course ahead; at the end of the 5th minute B increases his pace by 20 yd . per minute and wins by 2 yd . Find the length of the course.

Solution. - A gains in 4 min . the $\frac{1}{4} \frac{1}{4} \delta$ of the course

$\therefore 20 \mathrm{yd} .-\mathrm{TV}^{\circ} 60$ course $=2 \mathrm{yd}$. \therefore course $=3 \mathrm{mi}$.
(5i3) $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D run a race over a course of 1 mi . First A and B race, and A beats B by 20 yd. Next C and D race, and C wins by 60 yd . If A and C now race, which will win and by how much, supposing that D could beat B by 40 yd. if they were to run the race?

Solution. - D goes 1,760 while B goes 1,720

(54) A and B race to a post and back again. In returning A meets B 90 yd. from the post. and reaches the starting point $)^{3}$ min. before him. Had he then returned he would have met B at a distance from the starting point equal to $\frac{1}{6}$ of the distance between the posts. Find A's time in winning the race.

Solution. - Suppose A had met B the second time, he would then have traversed the course between the post $2 \frac{1}{8}$ times and B 15 times; A's rate : B's rate $=13: 11$; i.e. B loses 2 yd . for every 11 yd. that he goes. But when A met him he had lost 180 yd . and must have gone 990 yd ., and he was 90 yd . from the turning post ; \therefore distance of course $=990+90=1,080 \mathrm{yd}$. . and therefore A ran altogether $2,160 \mathrm{yd}$. and gained $\frac{1}{T_{5}}$ of 2,160 yd . But B took 3 min . to run this ; \therefore B's rate $=7^{2} \frac{2}{3}$ of 720 yd . per min. A's rate was therefore t^{3} of $\frac{2}{13}$ of 720 yd . per min. $=$ $1^{2} \mathrm{r}$ of 720 yd . A therefore required $2,160 \div\left(\mathrm{r}^{2} 1\right.$ of 720$)=16 \frac{1}{2}$ min. to double the course and win the race.
(5̄) In a race between two boats a spectator, walking at the rate of 5 mi . per hour, is $\frac{1}{8}$ of a mile ahead of the first boat at starting. When it passes him he observes that the interval between the boats, which was 30 yd . at starting, is reduced to 20 yd . At $1 \frac{1}{4} \mathrm{mi}$. from the starting point, the first boat is overtaken by the second. Find the distance traversed by the spectator after the first boat passed him until the end of the race.

Solution．－First，A loses 30 yd ．in rowing $2,200 \mathrm{yd}$ ．
\therefore Spectator has gone $733 \frac{10}{1}-2 \underline{y}-20=5132$ yd．bef． passed by A．Now 5 mi ．per hour $=442$ yd before he is $\therefore \mathrm{S}_{1}$ goes $513 \frac{1}{3} \mathrm{yd}$ ．in $3 \frac{1}{2} \mathrm{~min}$ ．
\therefore A＂＂＂$=1 \frac{1}{2} \rho^{2} y d$ der min．
\therefore A goes $1 \frac{1}{2} \mathrm{mi}$ ．in $2,200 \div \frac{4}{2} 41^{2}=10 \frac{1}{2} \mathrm{~min}$ ．
$\therefore S$ gocs $10 \frac{1}{2}-3 \frac{1}{2}=7$ min．at $i^{2}{ }^{2}=1,026 \frac{3}{3}$ yd．altogether．
（56）Four men，A，B，C，D，undertook a piece of work for £26 10s．A could finish it by himself in 4 mo．， B in $6, \mathrm{C}$ in！ 9 and D in 12 dy．But B began work a certain．time after A ，and C and D a certain time after B．A received $£ 133 s$ ． $11 \frac{2}{2} \frac{1}{2} d$ ． more than C ，and B and D received between them $£ 81 \mathrm{~s} .7_{2^{7}{ }^{7} d} d$ ． How long did A work before \mathbf{B} began；how long did B work before C and D began；what did each person receive for his work；and how long was the work in finishing？
SoLution．－C received $\frac{1}{2}\left(£ 188 s .4 \frac{1}{2} \frac{5}{2} d\right.$ ．）－（£13 3s． $\left.11 \frac{21}{2 \frac{1}{2}}\right)=$ £． 12 s ． $2_{2}{ }_{2}^{\mathrm{F}} \mathrm{F}_{2} d$ ．
\therefore A received（£2 12s． $\left.22_{2 \frac{2}{2}}^{2}\right)+\left(£ 133 s .11 \frac{1}{2} \frac{1}{2}\right)=£ 1516 s .2_{2^{7}}^{7} d$.
\therefore Time of C and D $=£ 26 \frac{1}{\div} \div\left(£ 212 \mathrm{~s} .2{ }_{2}^{\mathrm{s} 2} 2 \mathrm{~d}.\right) \times 4=\frac{39}{4} \mathrm{mo}$ ．
\therefore D received $£ 26 \frac{1}{2} \times(12 \div 39)=£ 119 s .1 \frac{1}{2} \frac{7}{2} d$ ．
\therefore B received $£ 81 \mathrm{~s}$ ． $7_{2}{ }^{7}$ 2 $d .-£ 1$ 19s． $1 \frac{1}{2} \frac{7}{2} d .=£ 62 s .5 \frac{1}{2} \frac{2}{2} d$.
\therefore B＇s time $=\left(£ 26 \frac{1}{2} \div £ 62 \mathrm{~s} .5 \frac{1}{2} \frac{1}{2} d\right.$ ．$) \times 6=1 \frac{17}{4} \mathrm{mo}$ ．
\therefore A＇s time before B began $=2 \frac{17}{4}-1 \frac{17}{}=1 \mathrm{mo}$ ．
\therefore B＇s time before C and D began $=1 \frac{7}{4}-\frac{3}{4}=\frac{1}{2} \mathrm{mo}$ ．
A worked the full time，\therefore work was completed in $21+\frac{5}{4} \mathrm{mo}$ ．
（57）A and B agree to carry 292 lb ．a distance of 3 mi ．for 2 s ． They set out with the load suspended from a 6 ft ．pole at a dis－ tance of 40 in ．from A＇s shoulder，and carry it thus 6 furlongs． After resting they change places and carry it $1 \neq \mathrm{mi}$ ．farther， when the load slips along the pole to ： 30 in ．from B＇s shoulder，in which position it was carried to its destination．Neglecting the weight of the pole，divide the money fairly between them in pro－ portion to the work performed．

Solution．－ 24 fur．for $24 d$ ．$=1 d$ ．per furlong．At the end of 6 fur．they changed places，hence at the end of 12 fur．each had earned $6 d$ ．But for the other 4 fur．before they rested the weight was 32 in ．from A and 40 in ．from B．\therefore the $4 d$ ．for this part of the journey should be divided as $40: 32$ ，i．e．A should get $扌_{i}^{2}$ of $4 d .=\frac{3_{0}^{0}}{9} d$ ．，and B should get $\frac{3}{2} \frac{1}{2}$ of $4 d .={ }_{9}^{16} d$ ．In the last stage of 8 fur．the weight is 42 in ．from 1 and 30 in ．from B，\therefore the $8 d$ ．should be divided as $30: 42$ ，c．e．A should get 3 是 of $8 d$ ．$=$ ${ }_{3}^{\frac{1}{2}} d$ ．，and B $\frac{4}{3}$ 年 of $8 d .=1_{3}^{4} d$ ．Thus A gets altogether $6+\frac{20}{90}+$ ${ }_{3}^{2}=11 \frac{5}{8} d$ ．，and $\mathrm{B} 6+\frac{1 \theta^{8}}{}{ }^{\frac{1}{2}}+\frac{14}{3}=12 \frac{1}{d} d$ ．
(58) Two cisterns of equal size are full. The tap of one would empty it in 5 hr. . the tap of the other in 4 hr . Both taps are opened; when will one cistern have twice as water in it as the other then contains?
Solution. - 1 st empties $\frac{1}{3}$, 2nd $\frac{1}{4}$ in an hour ; difference $=\frac{a_{1}^{1}}{2_{0}}$ per hour.
Suppose a third cistern which empties $\frac{1}{2} \sigma$ per hour more than the second, the level of the water in the second cistern will then keep half-way between that in the first and third. Therefore when the third is empty, viz. in $3 \frac{1}{3} \mathrm{hr}$., the first will have twice as much water in it as the second has in it.
(59) At what time after 3 o'clock are the hands first equally distant from the figure III.?
Solution. - Suppose the hour hand to move backward at the same rate that it really moves forward. When the hands meet they will be equally distant from III. But the hour hand is now as far above III. as it would in fact have been below III. had it simply moved forward as usual. Hence the time required to meet is the required time.
 Ans. $13 \frac{1}{1} \frac{1}{3} \mathrm{~min}$. past 20^{\prime} dock.
(60) Pure gold is worth $\$ 2.62 \frac{1}{2}$ per ounce; 18 lb . of a mixture of gold and silver is woth $\$ 3,473.25$, but if the silver were gold and the gold were silver in this mixture; it would be worth \$1,278.75. Find the weight of the silver in the mixture and its value.
Ans. 51 oz . silver at $\$ 1.37 \frac{1}{2}$ per ounce $=\$ 70.12 \frac{1}{2}$.
ne would taps are it as the
$n c e=n_{1}^{1} 0$
ore than vill then 'herefore ve twice equally d at the ds meet d is now Chad it aired to
ces,
a mixer were e worth and its

EXAMINATION PAPERS.

FOR CANDIDATES FOR THHKD-CLASS CERTIFICATES.

1871.

(1) Write in figures and express in words the numbers seven hundred and one units in the 6 th period, fourteen in the 5th, one hundred and twenty in the 3rd, fourteen in the 2nd, and nine in the 1st.
(2) Show that the corresponding operation in the simple and the compound rules, are based on the same principles. How many years, months, days, hours and minutes from 20 minutes past 4 o'clock p.m., July 15, 1862, to 25 minutes past 11 o'clock, June 29, 1871 ?
(3) State the principles on which is based the rule for finding the G. C. M. of two numbers. Apply them to find that of $\mathbf{3 , 6 2 1}$ and 1,581 .
(4) The driving wheels of a locomotive are $17 \frac{1}{2} \mathrm{ft}$. in circumference, and the trucks $10 \frac{5}{8}$, what distance must the train move to bring wheel and truck into same relative position as at starting?
(5) State the general principles on which the rules of fractions depend ; and find the simplest form of $\left(7 \frac{9}{4} \div 5 \frac{1}{4}\right)$ of $\left\{\left(4 \frac{1}{\lambda} \times \frac{7}{8}\right)+\right.$ $\left.1 \frac{3}{6}\right\} \times\left(3 \frac{1}{2}-\frac{9}{9}\right)$.
(6) From the sum of $2 \frac{1}{2} \frac{9}{4}$ ac., $\frac{2}{3}$ of $3 \frac{1}{8}$ ac., $\frac{9 \frac{1}{8}}{25 \frac{1}{3}}$ roods, and T^{3} of $1_{\mathrm{r}}^{1} \mathrm{r}$ per., take 4 ac .25 per. 12 sq . yd.
(7) A man divided a farm among three sons; to the first he gava 80 ac., to the second $\frac{f_{8}}{}$ of the whole, and to the third $\frac{a_{2}}{4}$ as much as to both the others. How many acres did the farm contain?

IMAGE EVALUATION TEST TARGET (MT-3)

(8) Find the sum, difference and product of $3 \cdot 45 \dot{9}$ and $42 \dot{5}$.
(9) Find values of 2.7345 according as the unit is £2 5 s., or 5 ac. 2 rd. 10 per., or 6 oz .10 dwt .16 gr .
(10) Sold $20,900 \mathrm{ft}$. of lumber for $\$ 331.62 \frac{1}{2}$, gaining thereby \$78.372. What had it cost per C.?
(11) Explain tho differenco between simplo and compound proportion. In Nova Scotia the sovereign is worth 85 , and in Ontario \$4.86 ; ; convert \$2,720.40 Ontario currency into Nova Scotia currency.
(12) (a) Received $\$ 4,100$ from my agent, who had deducted his commission at 5%, as proceeds of sale of goods; what were the goods sold at?
(b) Remitted \$4,100, including commission, to my agent to invest for me on commission of 5%; what was his commission?

1872.

(1) The demand of 10 hours' pay for 9 hours work is equivalent to a demand of what increase per cent. in wages?
(2) What number divided by $\left(2^{2}+\frac{1}{13}\right) \div\left(3-\frac{1}{3}\right) \times\left(\frac{1}{3}+\frac{6}{6}\right)$ will give ${ }^{3} \frac{3}{8}$ of $\frac{48}{68}$ of $\frac{6 y_{i}^{4}}{114}$ of 247 ?
(3) Find amount of following account:-448 lb. butter @ 23 c .
 $13 \frac{1}{2} \mathrm{c}$., $40 \frac{1}{2}$ doz. eggs (4) 16 gic., 15 barrels salt © $\$ 1.40$, and 481 tt lb. ham @ $12 \frac{1}{2} \mathrm{c}$.
(4) A bankrupt owes four creditors as follows : $-A \$ 2,500, B$ $\$ 3,300, C \$ 4,200, D \$ 4,000$; his property is worth $\$ 10,500$; what does each creditor receive?
(5) A lumber merchant bought $106,250 \mathrm{ft}$. of lumber at $\$ 14 \mathrm{i}$ per M., and retailed it at $\$ 1.75$ per C. Find his gain.
(6) Find the expense of plastering a room 20 ft . long, 184 ft . wide, and $11 \frac{1}{\mathrm{f}} \mathrm{ft}$. high, at 18 c ; per yard.
(7) If 25 men build a wall 15 ft . high, 2 ft . thick, and 50 ft . long, in 12 dy . of 9 hr . each, how many hours per day must 40 men work to build a wall 60 ft . long, 3 ft . thick, and 20 ft . high in 25 dy . ?
(8) How much water must be mixed with 600 gal. wine, at $\$ 2.50$ per gallon, in order to make the mixture worth $\$ 2$ per gallon?
(9) If $\$ 120$ gain $\$ 5.84$ in 126 dy ., find the gain in 360 dy .
(10) A merchant bought 500 barrels of flour at $\$ 6.25$ per barrel, on a credit of 8 mo . He sold it at $\$ 6.50$ per barrel on a credit of 4 mo. What was his net cash gain, inoney being worth 12% ?
1873.
(1) Define a fraction and fully explain the terins Numerator and Denominator.

$$
\text { Simplify } \frac{\frac{5}{5} \text { of } 3}{6!^{1}-51^{\frac{1}{6}}} \div \frac{3 \times 11}{2^{1}+54}
$$

(2) Bought $\frac{3}{5}$ of $4 \frac{1}{3}$ cords of wood for \% of $\$ 30$; what were 2 cords worth at the same rate?
(3) Show how to convert pure circulating decimals and mixed circulating decimals to vulgar fractions.

Find the sum of $4 \dot{7} \dot{8}, \cdot 3 \dot{2} \dot{1}, 3 \dot{2}, .7 \dot{8} 56 \dot{4}, \cdot \dot{5}$, and $\cdot \dot{432 \dot{6}}$, and the product of $3 \cdot 45 \dot{6}$ by $42 \dot{5}$.
(4) How many feet of lumber will be required to inclose a building ($; 01 \mathrm{ft}$. loug, 401 ft . wide, 22 ft . high, and each side of
 no deductions for doors and windows?
(5) Find the difference between the true and the bauk discount of $\$ 2,500$, payable in 90 dy . at $\boldsymbol{\pi} \%$.
(6) Find cost of plastering the walls of a room $30 \frac{1}{2} \mathrm{ft}$. long, 18 ft wide, 12 ft . high, tt 18 c . per squaro yard (no allowance for openings); find also the cost of carpeting such a room with carpet 97 in . wide, and costing $\$ 1.80$ per yurd.
(7) Ten per cent. of an army was slain on the field of battle, and 5% of the remainder were mortally wounded; the difference between the killed and mortally wounded was 1,100 . How many men went into battle?
(8) Having received a stock dividend of 8% I find I am now the owner of 297 shares; how many shares did I own at first?
(9) Given, that pure water is composed of oxygen and hydrogen in the proportion, by weight, of 15 to 2 , find the weight of each in a cabic foot of water.
(10) How many railway shares (100 each) at 40% discount must be sold in order that the proceeds invested in bank stock, which is 4% below par, and pays a dividend of 7%, may yield an income of $\$ 1,680$?
(11) A railway company pays $\$ 24.75$ per acre for a portion of read 100 mi . long and $94 \frac{1}{\mathrm{f}} \mathrm{ft}$. wide; find the whole amount paid.
(12) An insurance company took a risk at $2 \frac{1}{4} \%$, and reinsured ${ }^{3}$ of the risk at 2%; the premium received exceeded the premium paid by $\$ 42$; find the amount of the risk.
1874.
(1) Simplify
(2) Water is compozed of two gases, ox:gen and hydrogen, in the proportion of 88.9 to $11 \cdot 1$; what weight is there of each in a cubic yard of water (cubic foot of water weighs $1,000 \mathrm{oz}$.)?
(3) The sum of $\$ 1,416$ is to be divided among 15 men, 20 women, and 30 children, in such a mamer that a man red a child shall together receive as much as two women, and eal the women shall together receive $\$ 180$; find the amount received by each man, woman and child, respectively.
(4) A bankrupt who is paying 3712c. in the dollar, divides among his creditors $\$(6,300$: what do his debts anount to?
(5) It costs 96.25 to carpet a room 2.2 ft .6 in . long, with carpet 27 in . wide and $\$ 1.75$ per yard; find the width of the room.
(6) If 3 men or 5 boys can do a piece of work in 17 dy., in how many days will 5 men and 3 boys do a piece of ork three times as great?
(7) Find the cost of 38 yd .2 qr .3 nails of cluth when 3.75 $y d$. cost $\$ 3 \cdot 825$?
(8) A man invests $\frac{1}{2}$ his fortune in land, $\frac{1}{6}$ vi it in Bank Stock, 1 in provincial debentures, and loses the remainder $(\$ 8,000)$ in :peculation ; what was his fortune at first?
(9) Bought 9,000 bush. of wheat at $\$ 1.12 \frac{1}{2}$ per bushel, payable in 6 mo.; I sold it immediately for $\$ 1.06$ per bushel cash, and put the money at interest at 10%. At the end of six months I paid for the wheat; did I gain or loso by the transaction, and how much?
(10) In an examination, Arithmetic and Grammar are valued at 200 marks ench; Education, Geography and History at 150 marks each. A candidate obtains 70% in Arithmetic, 65% in Grammar, 60% in Education, 50% in History, and 40% in Geography ; find his average rate per cent. (i.e. rate per cent. obtained of the aggregate marks).
(1) Simplify

$$
\left\{\frac{\frac{2}{3}+\frac{6}{6}+\frac{2}{4}+8}{4-8} \times \frac{1}{314}\right\} \div\left\{\frac{7 \frac{1}{2}}{6 \frac{1}{2}}+11 \frac{1}{11}-2 \xi+23 \times 10_{13}^{9}-7 \frac{1}{3}\right\}
$$

(2) A wine merchant pays $\$ 175$ for a hogshead of wine, anll hottles it off into ant equal number of quitr, pint and half-pint hottles; how many dozen of each has he, and at what inust he sell it per clozen to gain ${ }_{2}^{3} 6$ of his outlay?
(3) What must be the face of a note so that when discounted at a bank for 4 mo. and 9 dy . at $\mathbf{9} \%$ it will give 8.240 ?
(4) A, B and C havind equal shares of a ship, sell respectively 1, $\frac{1}{4}$, and $\frac{1}{2}$ of their shares to D, who dies and leaves his share equalle among them ; if B 's and C 's interest in the ship be now worth $\$ 37,300$, what is the value of A's share?
(5) A farmer has 500 bush. of wheat ; he can sell it at once for $\$ 1.20$ per bushel ; by storing it for six months at a cost of $\$ 20$ paid in advance, ho can realize $\$ 1.30$ per bushel. He adopts the former course; money being worth 8% per annum, determine how much he has gained or lost by so doing.
(6) Express the value of $8 \dot{3}$ of $8 s .+0 \dot{0}$ of 2 guineas +1.8 of $5 s$.
(7) A merchant bought a number of barrels of flour for $\$ 1,800$; he used 20 barrels and sold ! of the remainder for $\$ 1,568$, which was $\$ 224$ more than cost. How many harrels dill he buy?
(8) When gold is quoted at 1333 , what is the gold value of a $\$ 10$ greenback?
(9) A piece of land wrose length is 151 yd .11 ft ., and breadth 35 yd ., is to be exchanged for part of a strip of land of tho same quality, whose breadth is $15 \mathrm{yd} .2 \frac{1}{2} \mathrm{ft}$. Find the length of the equivalent strip
(10) What is the duty on 4 hogsheads of sugar, each weighing $1,280 \mathrm{lb}$. gross, at 23 c . per pound; tare 14% ?
(11) A merchant in New York wishes to remit to London a bill of exchange for $£ 2931 \mathrm{~s} .0 \mathrm{~d}$. ; what is the cost of this bill when exchange is at 9% premium?

1876.

(1) Find what quantity must be added to

$$
\left(\frac{1 \frac{1}{2} \text { of } 3 \frac{1}{3}}{3 \frac{1}{2} \text { of } 2 \frac{2}{3}} \text { of } \frac{13 \text { of } 1 \frac{1}{3}}{1 \frac{2}{7} \text { of } \frac{32 \frac{2}{3}}{3 \frac{1}{2}}}+\frac{2 \frac{1}{8} \text { of } 6 \frac{2}{3}}{3 \frac{1}{4} \text { of } 4 \frac{1}{2}}\right)
$$

to make it equal to $\left(\frac{1}{28 \frac{7}{7}}\right.$ of $3 \frac{3}{4}$ of $3 \frac{1}{7}$ of $\left.1 \frac{3}{4} \times \frac{1}{3}\right)$
(2) Reduce to its simplest form
$\frac{(.075)^{3}+(.025)^{3}}{(.075)^{2}-(.075)(.025)+(.025)^{2}} ;$ and divide $9 \cdot 1704 \dot{\overline{5}}$ by $3.3 \dot{6}$, giving tho result to the end of the first period.
(3) Express \boldsymbol{i}^{3} of $12 s .6 d .+7^{4} 6$ of 3 guineas $+i^{3}$ of $£ 4-z^{3} s$ of $2 \frac{1}{3} d$., as a fraction of $£ 5$.
(4) A merchant marks his goods so that he may allow a discount of 5% and still make a profit of 15%. Find the marked price of broadcloth that cost him $\$ 3.80$ per yard.
(b) At an clection in a constituency in which the number of voters was 1,800 , the votes polled by the candidates were in the ratio of 7 to 5 , and tho successful candidate was elected by a majority of 240 . Find the number who d.d not vote.
(i) A rectangular plot of ground is 60 ft . long and 50 ft . wide; one pathway is made surrounding the plot on the outside, and two others intersecting at right angles in tho middle of the plot; if these pathways me $\overline{5} \mathrm{ft}$. wide and cost $62 \frac{1}{2} \mathrm{c}$. per square yard, find their entize enst.
$(\overline{1}) A$ and B engaged in business, the former contributing $\$ 7,500$, the latter $\$ 4, j 00$. The gross receipts for the first year were $\$ 2,800$, of which 5% was paid for insurance, and $14 \% \%$ for other expenses; of the balance, B received 4 certain sum for managing the business, and the remainder was divided in proportion to the capital invested. A's share was $\$ 1,250$; find B 's ullowance as manager.
(8) At what iate per cent. will $\$ 1,520$ amount to $\$ 1,733.75$ in 24 yr ? Find also in what time $\$ 33.40$ will double itself at 6\% \% per annum?
(9) A drover bongrit 400 sheep at a certain price per head. He sold 8 of them at a gain of $20 \%,{ }^{3}$ of them at a gain of 15%, and the remainder at a loss of 10%, gaining on the whole $\$ 217$. How much did he pay for the 400 sheep?
(10) If 3 horses are worth 7 cows, and 5 cows cost as much as 30 sheep, and 16 sheep cost $\$ 16 \overline{5}$, find the value of 12 horses.

1877.

(1) If 69 German Thalers, of which 9 parts in 10 are fine silver, weigh 41 oz ., what is the value of a Thaler in English money when standard silver; of which 37 parts in 40 are fine, is worth 5 s. $1 \frac{1}{2} d$. per ounce?
(2) A, B and C can do a piece of work in 2 dy ., A and C in

$$
6\binom{7 \frac{4}{4} \text { of } 12 \frac{3}{3}}{28 \text { of } 15 \frac{5}{8}}-3\left(\frac{2 f \text { of } 4 \frac{1}{3}}{2+1 \text { of } 2 \frac{1}{3}}\right) \text { days ; }
$$

in what time can B do it alone?
(3) A certain kind of brass is mude by fusing together old brass, refined copper, and zine, in the proportion of 33,55 , and 24 ; how much of each must be taken to produce 170 lb . of brass, after allowing 29% for waste?
(4) March 21, 1877 : sterling exchange is quoted at 93 for demand bills ; what must be paid for a demand bill for $£ 18$. 5 s. ?
(5) What will be the cost of insuring a ship worth $\$ 48,628 \frac{1}{1}$, at $3 \frac{1}{8} \%$, so that in ease of loss the owner may rccover the value of the ship, and the amount paid for insurance?
(6) The numerator of a certain fraction is $\frac{1}{2}$ as much again as its denominator, and the sum of the numerator and denominator is 352. Find the fraction.
(7) A room whose height is 12 ft ., and length 14 times its width, takes $178 \% \mathrm{yd}$. of paper 1 ft .9 in . wide to cover its walls; what will it cost to cover the floor with carpet 27 in . wide and costing $\$ 1.75$ per yard?
(8) The L. C. M. of two numbers is $634,938,944,494$, and their G. C. M. is 9,187 ; one of the numbers is $85,044,059$; find the other.
(9) The difference between the interest and the discount of a sum of money for 1 yr . and 9 mo , at 8%, is $\$ 9.80$; find the sum.
(10) A rectangular field whoso length is three times its breadth, contains 6 ac. 900 yd .; find its length and breadth.
1878.
(1) Distinguish the terms Multiple, Conmon Multiple, and Least Common Multiple.

The L. C. M. of 391 and another number is 12,121, and the G. C. M. is 23 ; find the other number.
(2) Prove that $24 \div 3$ is equal to 23×3.

Simplify $\frac{1 \frac{2}{6}+8 \frac{1}{2}}{7 \frac{1}{8}-4 \frac{2}{6}} \div \frac{2 \frac{1}{15}+\frac{7}{35}}{\frac{7}{88}-\frac{7}{76}} \times \frac{4 \frac{1}{3}}{21 \frac{2}{2}}$.
(3) Divide to 6 decimal places nine million eight hundred and forty thousand and eighteen ten-millionths by one hundred and fifty-nine thousand nine hundred and eighty-two hundredmillionths.
(f) Define ratio and proportion. Show that when four quantities are in proportion, the proluct of the extremes is equal to the product of the means.

Find a fourth pronortiomal to $76 \mathrm{ain}_{\mathrm{ac}} \mathbf{9}$ chains 279 yd .4 ft , 208 sq. mi. 181 ac. $\varsigma 3$ yd. 4 ft , $, \$ 1,317$.
(i) Find the ratio of the simple interest to the true discount on a sum of moncy for a given time and rate.

The interest on a sum of money is $\$ 110$, and the discount for tho same time and rate is $\$ 88$; find the sum.
(f) How mnny bricks, 9 in. long, $4 \frac{1}{4} \mathrm{in}$. broad, and 4 in. thick, will bo required for a wall foft. long, 17 ft . high, and 4 ft . thick, allowing that the mortar increases the bulk of each brick $6 \frac{1}{2} \%$.
(i) What is the Square of a Number? The Square Root?

The square of 10,129 is $102,596,641$, find the square of 101,29:3 without going through the operation of squaring.

Extract the squaro root of $0!7619 \div 1 \cdot: 00476$.
(8) A man rows 3 mi . down strcam in 40 min .; without the aid of the stream it would take him an hour; how long would it take him to return against the stream?
(9) A grocer bought a quantity of tea of a certain quality, and \pm as much of an inferior kinul, the cost of the latter per pound being only 80% of that of the former; he mixes them, and sells the mixture at an advance of 10% on the cost per pound of the finer quality; find his entire gain per cent.
(10) A man invests a certain sum of money in railway stock selling at 80 and paying 5% dividends, and 50% more than that sum in Bank of Commerce stock selling at 120 and paying 8%; his income from both investments is $\mathbf{\$ 5 2 0}$. Find the amount invested in each kind of stock.
1879.
(1) Show that $={ }_{18}^{8}$ and that $5=5 \div 0$. Simplify

$$
\begin{aligned}
& \left\{2 \frac{1}{2} \times 4.75 \div \frac{9}{2} \text { of }\left(4 \frac{9}{4}-3 \frac{28}{38}\right)+\frac{1 \cdot 75}{3 \frac{1}{2}}+\frac{43^{3} 5 \times 2{ }^{\frac{7}{10}}}{21 \cdot 5 \times 13 \frac{1}{2} \div 25}\right\} \\
& \left(3 \frac{1}{4} \times \frac{8}{82} \div \cdot 9\right) \text { of } £ 516 s .8 d .
\end{aligned}
$$ adred and hundred-

1880.

(1) Examine the statement "Division is a short method of Subtraction." Apply your answer to illustrate the following examples :- (a) Divide $\$ 48$ by $\$ 16$. (b) Divide $\$ 48$ by 16 . (c) Divide $\$ 18$ among 16 boys.
(2) Explain clearly the principles involved in finding the sum of two fractions.

Simplify
(3) What is the Square of a Number? The Square Root?

Explain why, in extracting the square root of a number. you mark off the number into "periods of two figures each."

Simplify $\left({ }^{3} \sqrt{ } / 32-2 \sqrt{ } 28\right) \div(\sqrt{ } 32-\sqrt{2})$.
(4) Define Ratio, Proportion, and Mean Proportional.

The quantity of saline matter in sea-water is 036 of the whole weight, and of this weight 061 is magnesia. Find the number of grains of magnesia in a cubic foot of sea-water, supposing 32 cub. ft . of it weigh $2,000 \mathrm{lb}$.
(5) Show that "Bank" discount exceeds "True" discount by the simple interest on the True discount.

If $\$ 6$ be allowed as true discount on a bill of $\$ 150$, having a certain time to run, what would be the discount if the bill had twice as long to run?
(6) A and B form a partnership, A supplying 25% more capital than B. At the end of the year A withdrews 60% of his capital, and B withdraws 40% of his; at the end of 2 yr . there is a gain of $\$ 3,383.50$ to be divided. How much does each receive?
(7) A merchant bought 350 yd . of silk and $1,470 \mathrm{yd}$. of lustre, the price per yard of the lustre leing 30% that of the silk; he sold the silk at a gain of 35%, and the lustre at a loss of $33 \frac{1}{3} \%$, and lost on the whole $\$ 39.20$. Find the cost price of the silk per yard.
(8) An agent sold a consignment of flour for $\$ 4,800$, and invested the proceeds (less his commission on both transactions) in the purchase of tea, receiving on the latter purchase 4% on the amount invested. His commission on both transactions being $\$ 300$, find his rate of commission on the sale of the flour.
(9) Find to six decimal places the average of $27,2.37,3.006$, $0,2.97$, and $3.51 \dot{6}$.
(10) There is a garden-plot in the form of a trapezoid, whose two parallel sides are 40 yd . and 50 yd . respectively, the other sides being respectively 30 yd . and 24 yd . Show that the perpendicular distance between the parallel sides is $\int_{6}^{2} / 11$.

1881.

(1) Find the L. C. M. of $545,26,487,1,853,11,421$.

One kind of brick is $4 \frac{1}{2} \mathrm{in}$. long and $2 \frac{9}{4} \mathrm{in}$. thick; another 5 in . long and $3 \frac{1}{2}$ in. thick. What is the size of the least piece of wall, height being same as length, that can be constructed of either kind of brick?
(2) Define Numerator and Denominator of a fraction, and from your definitions prove that ${ }_{3} \times \overline{5}=\frac{1}{3}{ }^{0} ; \frac{8}{8} \times \frac{1}{9}=\frac{1}{2} 9$.
 Add together ${ }^{3}$ of $1 \mathbf{w k} .2 \mathrm{dy} .17 \mathrm{hr}$; t of 17 hr .23 min . 26 sec ., and \ddagger of 2 dy .
(4) Describe briefly the Metric System of Measures. It a gallon contain 277 cub. in., and a dekalitre contain 17.6077 pints, express a metre in inches.
(5) If A walk 7 hr . per day, and $B 6 \mathrm{hr}$., and if, under like conditions, B can walk 6 mi . while A is walking $\overline{5}$, how many days will A be walking down hill a distance of which B accomplished up hill in 3 dy.; supposing that a man's rate of walking is increased by $\frac{1}{8}$ in going lown hill, and decreased by $\frac{1}{1}$ in going up?
(6) If 1,000 men excavate a square basin whose side is 1,600 yd., and which is 30 yd . deep, in 9 mo., how many will be required to excavate a square basin whose side is $2,000 \mathrm{yd}$., and which is 40 yd . deep, in 12 mo ?
(7) The hands of a clock move irregularly, the hour hand moving 5% too fast, and the minute hand 10% too slow. In 15 min . (true time) they will be together; how many minutes, measured on the face of the clock, are they apart now.
(R) A znoney lender has $\$ 1,000$ out at $8 \%, \$ 1,200$ at $7 \$ \%$, and 81,000 at 6%; find the percentage he receives on the average.
(9) A mortgage for 81,000 paying 7% per annum, payable yearly, has 2 yr, to run; what should a loan society give for the mortgage that it may receive 8% on its investment, it being assumed that all money received by the society can be lent out at 8%.

1882.

(1) The fore and hind wheels of a carriage are 9 and 12 ft . in circumference respectively. There are two points, one in each circuinference, at present in contact with the ground. Show that as the carriage moves on these points can never at the same time be the highest points of each wheel.
(2) Reduce $\left(\frac{5 t-1 \text { of } \frac{27}{8} \text { of } 4 t+i^{1 / 2}}{859}-\frac{85}{1085}\right)$ of 3 lb . to the fraction of
5 tons.
(3) Prove that $4873 \dot{2}^{\circ}$ is equal to $\frac{48684}{99900}$.
(4) Find the present value of $\$ 320$, due 2 yr . hence, at 8% per annum, compound interest.
(5) Find approximately in how many years a given sum of money will double itself at 15% per annum, compound interest.
(6) How large a bill of exchange on Paris can be bought for $\$ 1,500$ currency, exchange being at the rate of $\$ 1$ for $5 \cdot 25$ francs. and gold being at a premium of $8 \frac{1}{2} \%$.
(7) On July 10th a banker discounts a note for $\$ 500$, made May 10th, t 6 mo., at the rate of 8% per annum. At what rate does he receive interest on his money?
(8) A sells an article at a certain advance per cent. on the cost to B, who, in turn, at the same advance per cent., disposes of it for $\$ 19$, finding that if he had sold for $\$ 13$ he would have lost per cent. $1 \neq$ of what he now gains per cent. What did A pay for the article.
(9) Equal weights of gold and silver are in value as 20 to 1 ; and equal volumes are in value as 1.284 to $3 \overline{5}$. A certain volume is composed of equal weights of gold and silver; find how many times more valuble the same volume would be were it composed wholly of gold.
(10) The volume of a sphere is found by multiplying the cube of the radius by $4 \cdot 1888$; and the area of a circle by multiplying the square of the radius by $3 \cdot 1416$. Find the area of a circle which by rotating about a diameter will describe a sphere whose voluma is one cubic foot.
payable ve for the it being o lent out

12 ft . in in each Show the same action of t 8% per sum of interest. ught for 5 francs. hat rate
the cost ses of it ave lost 1 A pay mposed
(1) Add toget her $\frac{1}{} £ 13$, $\frac{1}{3}$ of $\frac{1}{2!}$ of 8 of $£ 212 s$, and 4 of 9 d . Reduce 13s. 41 d . to the decimal of 19 s .6 d . (2) Find by Practice the value of $8,596 \mathrm{lb}$. at 1510 18s. $7 \mathrm{f} d$. each.
(3) A person borrows 8500 on April 10th, and on June 99 nd pays his debt with \$510.20. At what rate per cent. per annum was he charged interest?
(1) A man having a certain sum of money to invest has an opportunity of purchasing 7% stock at 95 , but delays until it has risill to 110 . What per cent. is his income less than if he had firichased at tho first price?
(:) At an international exhibition one country was awarded is Lold, 9 silver, and 11 bronze medals; and another 4 gold, 15 silver, and 10 bronze. Find the ratio of valnes for such medals that these countries may be regarded as equilly fortumute.
(6) In n box there is n certain number of sovereigns, three times as many guineas, and twice as many marks (1iss. 4d.) The entire amount in the is $£ 815$; how many coins of each kind wro there?
(7) Find when first after 2 o'clock the hour and the minute hands of a clock make an angle of 60 degrees with each other.
(8) For each of three succeeding months the population of a North-West town rose 50%; and at the end of the third month it was 2,700. What was the population at the beginning of the time?
(9) Leap year is omitted once in every century, except those centuries whose number is divisible by 4. What is the average length of a year?
(10) A cube is formed of a certain number of pounds Avoirdupois of a substance, and the same number of pounds Troy of the same substance. What proportion will the side of this cube bear to the side of a cube formed of the same number of pounds as hefore, but all Avoirdupois? (17 jl lb . Troy $=144 \mathrm{lb}$. Avoirdupois.)
1884.

(2) Find the cost of 0625 of 112 lb . of sugar, where 1 lb . costs -0703125 of $178.9 \mathrm{~d} d$.
(3) A and B were employed to do a piece of work for $\$ 60$. They were to be paid in proportion to their ability to work, which was 4 to 5 , and to the time each worked, which was 3 to 4 . How much did each receive?
(4) A quantity of silk was sold at a loss of 1%; had it been sold for $4 s$. $2 \frac{1}{2} l$. per yard there would have been a gain of 1%. Find the actual selling price.
(5) A person rides to town at the rate of $8 \frac{1}{4} \mathrm{mi}$. per hour, and after resting 35 min . walks back at the rate of 93 mi . per hour. The whole time occupied was $7 \mathrm{hr} .20{ }^{5} \mathrm{H}$ min. Find the distance.
(6) Instead of a yard measure a draper uses a stick which is $36 \cdot 3 \overline{5}$ in. long. What does he lose per cent. by so doing?
(7) When the course of exchange between London and New York is quoted at $4 \cdot 96$, London exchange (i.e. English money) is said to be at 2% premium. From this calculate the par of exchange.
(8) If silver is worth $\$ 1 ; 10$ per ounce, and gold $\$ 17$ per ounce, find the weight of a $\$ 10$ coin containing 37 parts in 40 of gold, and the rest silver.
(9) Equal volumes of iron and copper are found to weigh 77 oz . and 89 oz . respectively. Find the weight of $10 \frac{1}{2} \mathrm{ft}$. of circular copper rod, when 9 in . of iron rod of equal diameter weigh $31_{1 \sigma}^{9} \mathrm{oz}$.
(10) (a) The expense of carpeting a room 15 ft . wide was $\$ 52.80$; but if the length had been a yard less, the expense would have been $\$ 46.20$. Find length of the room.
(b) A rectangular solid $4 \frac{1}{2} \mathrm{ft}$. long, $3 \frac{1}{2} \mathrm{ft}$. broad, and $1 \frac{1}{3} \mathrm{ft}$. thick, is increased 11 in. in thickness. By how much must the breadth be diminished, so that the solid may retain the same bulk as before?

1885.

(1) Define Prime Number, Factor, Common Multiple, Discount, Exchange.

Draw a diagram showing that there must be $30 \frac{1}{4}$ sq. yd. in a square rod, if the linear rod contains $5 \frac{1}{2}$ yd.
(2) A merchant bought 124 yd . of cloth at $\$ 3.62 \frac{1}{2}$ per yard and $87 \frac{1}{2}$ yd. at $\$ 4.12 \frac{1}{2}$ per yard. At what price per yard must he sell the whole to realize a profit of 20% ?
(3) Simplify the following and give the result in $£ s$. and d.:

(4) A farmer sold two loads of wheat, in all 110 bush., for 894.95. One lcad was sold at 97 c . per bushel, and the cther at 72c. per bushel. How many bushels were there in each
(5) A merchant bought cloth at $\$ 2$ per yard and sold the whole it a profit of $\$ 120$; had he sold it at 20% less he would have lost $\$ 96$. How many yards did he buy ?
(6) What will be the cost of insuring a property worth $\$ 47,580$ at the rate of $\frac{7}{8}$ of 1%, so that in case of loss the owner may recover both the value of the property and the premium paid?
(7) Divide $\$ 4,941$ among A, B and C, so that nine months' interest on A 's share at $3 \frac{1}{2} \%$ per annum, nine months' interest on B 's share at $3 \frac{3}{4} \%$, and nine months' on C 's share at $4 \frac{1}{2} \%$ may all be equal.
(8) I owe a man $\$ 850$ and give him my note at 90 dy .; what must be the face of the note to pay the exact sum, if discounted at $1 \frac{1}{4} \%$ per month (bank discount)?
(9) A and B engage in trade, A invests $\$ 6,000$ and at the end of 5 mo . withdraws a certain sum. B invests $\$ 4,000$ and at the end of $7 \mathrm{mo} . \$ 6.000$ more. At the end of the year A 's gain is $\$ 5,800$ and B 's is $\$ 7,800$. Find the amount A withdrew.
(10) (a) If a brick 8 in . long, 4 in . wide and 2 in. thick weighs 5 lb ., what will be the weight of a brick of the same material 16 in . long, 8 in . wide and 4 in . thick?
(2) The top of a ladder reaches to the top of a wall when its foot is at a distance of 10 ft . from the bottom of the wall, but if the foot of the ladder be drawn 4 ft . farther from the wall the top of the ladder will reach a point 2 ft . below the top of the wall. Find the length of the ladder.
1886.
(1) A had $\$ 7$ less than B had, and B had $\$ 10$ less than C had. A gave $\$ 5$ to B and $\$ 12$ to C. How many dollars had C more
(2) One-quarter of the time which a man spent on a journey from M to T he travelled by steamboat at an average rate of 14 mi . per hour ; $\frac{5}{3}$ of the time he travelled by railway-train at an average rate of 25 mi . per hour; and the remaining hour of the time he rode the remaining 7 mi . of his journey. Find the distance from M to T .
(3) At what time between 4 and $5 \mathrm{p} . \mathrm{m}$. is the mirute-hand exactly two minute-spaces ahead of the hour hand of a watch marking correct time?
(4) A man, assisted part of the time by a boy, completed a job in 15 hr . The man received $\frac{5}{6}$ of the pay and the boy received $\frac{1}{6}$, but the man was paid at double the rate the boy was, in proportion to the amount of work each did. How long would the man unassisted have taken to accomplish the job?
(5) How much water must be added to a mixture of 15 gal . of vinegar costing 52 c . per gallon and 13 gal. costing 40 c . per gallon, that $\$ 5$ may be gained by selling the whole at 15 c . per quart?
(6) A total of 250 marks is to be allowed to a paper of 10 questions. To the first 7 questions the average is given. Divide the remaining marks so as to allow 7 marks to the tenth question and 5 marks to the ninth for every 3 marks allowed to the eighth.
(7) A bookseller charges on certain books 35 c . on tho shilling of the published price and gives a discount of 35%. What is the actual rate he charges on the shilling?
(8) A bill for $\$ 253.03$, dated 7 th October, and payable at London in 3 mo. from date, was discounted in Toronto on 20 th October, the discount being at the rate of 9% per annum and 45 c . being charged for exchange. Find the proceeds of the bill.
(9) A cubic foot of water weighs 62.426 lb . and a gallon of water weighs 10 lb . How many gallons will a cylindrical cistern of 5 ft . diameter by 4 ft . deep hold?

1887.

(1) Prove the rule for the multiplication of two fractions.

$$
\text { Simplify } \frac{\left(7 \frac{1}{4}-3 \frac{1}{2}\right) \times\left\{4 \frac{1}{5}-\left(2 \frac{1}{3}-1 \frac{7}{10}\right)\right\}}{\left(7 \frac{1}{4}+3 \frac{1}{2}\right) \div\left(1 \frac{1}{2}-9 \frac{1}{2} \times \frac{1}{7^{9}}\right)}
$$

(2) A, B, C, rent a pasture for $\$ 92$; A puts in 6 horses for 8 wk., $B 12$ oxen for 10 wk., $C 50$ cows for 12 wk . If 5 cows are reckoned as 5 oxen, and 4 oxen as 3 horses, what shall each pay?
 If sec.? ${ }^{\text {b }}$?
(2) A can do a work in $\frac{1}{2}$ tho time that B requires, B can do it in for the time that C takes. All working together do it in 18 dy. How long would it take each one separately?
(3) A man got a 90 days' note for $\$ 1,360$ for a lot which cost him $\$ 1,200$ cash just a year before. Money 6%; find his net gain at time of sale. (Bank discount; 360 dy . to a year ; no days of grace.)
(4) Bought 78 ac. 3 rd. 15 per. 7 yd. 1 ft .9 in . of land at $\$ 80$ per acre; sold $\frac{\%}{5}$ of it at $\$ 120$ per acre, and the rest at $\$ \mathbf{0} 05$ per square foot. Find gain.
(j) A number of men and women earned $\$ 93$ per day, each man getting $\$ 2.25$ and each woman $\$ 1.50$. Had there been 6 more men and 7 more women the whole number of women would have earned the same as the whole number of men. Find the actual number of each.
(6) A commission merchant receives 125 barrels of flour from $A, 100$ barrels from $B, 225$ barrels from C '; he finds on inspection that A^{\prime} 's is 10% better than $B^{\prime} s$, and C^{\prime} 's is $5_{5^{5}}{ }^{5} \%$ better than A 's. He sells the whole lot at $\$ 7$ per barrel, charging 4% commission. What sum must he remit to each ?
(7) A compound of tin and lead weighs $10 \cdot 43$ times as much as an equal bulk of water, while tin wcighs 7.44 times, and lead 11.35 times, as much as equal bulks of water. Find the number of pounds of each metal in 765 lb . of the compound.
(8) A bankrupt had goods worth $\$ 7,950$, which, if sold at their full value, would give his creditors 814% of their claims. But 3^{3} of them were sold at $17 \frac{1}{2} \%$ below their value, and the remainder at 233% below their value. How many cents on the dollar did his creditors realize?
(9) A begins business with a capital of $\$ 3,200$; after $3 \mathrm{mo} . B$ is admitted as partner with $\$ 2,400$; after 3 mo. more C is admitted with $\$ 1,600$. What fraction of the year's gain should each have?
(10) If it cost $\$ 11.20$ for paper for a room 25 ft .3 in . long, 19 ft . 9 in . wide, and 12 ft . high, when the paper is $\frac{3}{4}$ yd. wide, find cost of the paper per linear yard. (No allowance frr doors and windows.)
(11) What is the cost of polishing a cylindrical marble pillar, 2 ft .6 in . in diameter and 12 ft . long, at $\$ 1.25$ per square foot?
(12) A square field, containing 16 ac. 401 sq. yd., has a walk around it outside 12 ft . in width. Find the area of the walk in yards.
1889.
(1) (a) Simplify $\frac{.5 \times 006}{\frac{9}{i 5} \text { of } \frac{4}{6} \times\left(\frac{1}{4}\right)^{2}}: \frac{\frac{1}{5} \text { of } 1 \frac{5}{8} \times\left(\frac{2}{6}\right)^{2}}{1.6 \times 625}$.
(Answer in fractional form.)
(b) Find the average, correct to four places of decimals, of 12 $\frac{1}{2} \frac{5}{5}, 21,7 \frac{9}{4}, .034,3 \cdot 125,0,24 \cdot 08$ and $122^{9}{ }^{\circ}$.
(2) In what time will $\$ 30,441$ gain $\$ 2,210.10$ if, at the same rate, the gain on $\$ 24,944.10$ for 1 yr . and 15 dy . is $\$ 2,596.92$? What is the rate per cent. per annum (365 dy . to a year)?
(3) A houss that cost $\$ 15,500$ rents for $\$ 155$ per month. It is insured for $\$ 10,850$ at $\frac{4}{6} \%$ yearly ; the taxes are 15 mills on an assessment of $\$ 12,450$, and $\$ 346.4 \overline{5}$ is spent each year on repairs. What rate of interest does the investment pay?
(4) A rectangular field, whose width is $\frac{8}{4}$ of its length, contains 15 ac. 123 per. In going from one corner to the opposite how much shorter is it to take the diagonal than to go around the two sides?
(5) A note of $\$ 2,450$, dated Halifax, June 1, 1886, for 4 mo ., bearing interest at 6%, is discounted at a bank on Aug. 15 th at 8% Find the proceeds.
(6) A farm cost 33 times as much as a house; by selling the house at 10% loss and the farm at $7 \frac{1}{7} \%$ gain, $\$ 3,993.30$ is received. Find cost of each.
(7) Bought 64 yd. of cloth at $\$ 5.70$ per yard. If it shrank 5% in length, find the selling price per yard to gain 20%.
(8) A and B are partners, A 's capital being $\frac{3}{6}$ of B 's. At the end of 5 mo. A withdraws $\frac{1}{4}$ of his capital, and at the end of 9 mo. B withdraws $\frac{1}{4}$ of his. How should they divide a gain of $\$ 4,222.33$ at the end of the year?
(9) A man sold his 5 per cents at 78 and invested the proceeds in 6 per cents at 104. His change in income being $\$ 385$, find how much 5% stock he had.
(10) A dealer shipped 400 bush. wheat at $\$ 1.40,800$ bush. at $\$ 1.62 \frac{1}{2}$, and 300 bush. at $\$ 1.20$, to his agent, who sold the first at 20% gain, the second at 15% gain, and the third at $4 \frac{1}{6} \%$ loss. The agent's commission was 3%, and other charges were $\$ 83.44$; find the dealer's gain per cent.
(11) What is the cost of boards, at $\$ 1$ for 50 sq . ft., to make a closed box 7 ft .10 in . long, 3 ft .8 in . wide, 2 ft .6 in. high (outside dimensions), the boards being 1 in. thick?
(12) Reckoning a pint to be 30 cub . in. ; if 462 gal. are taken out of a cylindrical cistern 7 ft . in diameter, how many inches will the surface of the water be lowered? $(\pi=81$.
1890.
(1) (a) Show how to find the L. C.M. of two or more numbers.
(b) Find the L. C. M. of $24,105,180,96,336,84$, and of
(c) $4410,7350,7875$.
(2) (a) Prove the rule for finding the product of two fractions. (b) Simplify

$$
\frac{4}{6}\left(3 \frac{1}{6}+1 \frac{1}{4}\right) £+\frac{1 \frac{1}{8}-\frac{1}{3} \text { of } 15}{1^{1} \sigma \text { of } 3 \cdot 3+} \text { of } 95 \text { of } 5 s+\frac{8 \cdot 4}{012} d .
$$

(3) If the Avoirdupois pound is equal to 7,000 grains Troy, and if 6,144 sovereigns weigh 133 lb .4 oz . Troy, how many sovereigns will weigh an ource Avoirdupois?
(4) A man engages a sufficient number of men to do a piece of work in 84 dy., if each man does an average day's work. It turns out that 3 of the men do respectively $\frac{t}{6} \frac{t}{t}$, and $\frac{1}{9}$ less than an average day's work, and 2 others $\frac{1}{8}$ and $\frac{1}{5}$ more; and in order to complete the work in the 84 dy., he procures the help of 17 additional men for the 84 th day. How much less or more than an average day's work on the part of these 17 men is required?
(5) How many bricks, 9 in. long, $4 \frac{1}{2}$ in. broad and 4 in. thick, will be required to build a wall 45 ft . long, 17 ft . high and 4 ft . thick, supposing the mortar to increase the volume of each brick 64% ?
(6) A circular race-course is 22 yd . wide and has an area of 12 ac. Find the diameter of the inner circle.
(7) The area of each of the longer walls of a room is $330 \mathrm{sq} . \mathrm{ft}$.; the area of each of the other walls is 220 sq . ft .; the area of the floor is 384 sq . ft . Allowing ${ }_{2}^{1}$ ² of area of walls for doors and windows, how many yards of paper, 18 in . wide, are required to cover the walls?
(8) The pressure of compressed air varies inversely as its volume. If the pressure on the inner surface of a cylinder fitted with a piston be 20 lb . on the square inch, and when the piston is forced in 2 in ., the pressure becomes 30 lb . on the square inch; what is the length of the cylinder?
(9) A man has $\$ 20,000$ Bank Stock which is at 170 and pays a half-yearly dividend of 5%; he sells out and invests in Stocks at 108 , which pays $3 \frac{1}{2} \%$ half-yearly. Find the change in his half-yearly income.
(10) Bought goods at $\$ 5.70$ on 4 months' credit and sold them immediately at $\$ 6.12$ on such a term of credit as made my immediate gain 62%. Reckoning interest at 4% per annum, how long credit did I give?
(11) A merchant in Montreal drew on Hamburg for 10,000 guilders at $\$ 415$; how much more would he have received if he had ordered remittance through London to Montreal, exchange at Hamburg on London being $11 \ddagger$ guilders for $£ 1$, and at London on Montreal $9 \frac{1}{4} \%$, brokerage being $1 \frac{1}{4} \%$ for remittanco from London?
(12) (a) What is meant by averaging accounts?
(b) Find the equated time for the payment of the following account:-
Di.

John Smitil.

$\begin{gathered} \hline 1888 \\ \text { June 10 } \end{gathered}$	To mdse.	030	days $\$ 9$	1888				
July 15	"،	@ ${ }^{3} 45$	'f $\quad 390$	P. 15	By Cash		-	84.50
Aug. 20	،	'60		Sept. 5	،			
Sept. 1	6	" 30	" 150					

1891.

(1) (a) Show that $\cdot \dot{0}+\overline{5}=T i T$;
(b) Show that $412={ }_{188}^{98}$.
(c) Add, without reducing to vulgar fractions, $\cdot \dot{31} \dot{2}, 9 \cdot \dot{4}$ and $\dot{2} \dot{3}$.
(d) Make a drawing that will show the number of square yards in a square rod.
(2) Find the premium paid to ensure a house worth $\$ 7,500$ for 3_{3} of its value for 3 yr ., the rate being ${ }^{3} \%$ of the policy for each year.
(3) A tax of $\$ 24,750$ is levied on a town, the assessed valuation being 1.5 mills on the dollar; what tax does a man pay on an income of $\$ 1,100$, of which $\$ 400$ is exempted?
(4) From the list price of a line of goods a purchaser is allowed a trade discount of 20%; a further discount of 10% off the trade price for taking a quantity, and a still further discount of 5% off lis bill for cash. Find his gain per cent. by selling at 10% less than the list price.
(5) A man invest $\$ 12,000$ in 3% stock at 75 ; he sells out at 80 and invests $\frac{1}{3}$ of the proceeds in $3 \frac{1}{2} \%$ stock at 96 and the remainder at 5% par. Find the change in his income.
(6) A man puts $\$ 350$ in a Saving's Bank each year, making his first deposit Dec. 31, 1890. How much will there be to his credit Jan. 1, 1890, the Bank adding 4% per annum?
(7) A owes $B \$ 400$ due in 1 yr., $\$ 300$ due in 2 yr., $\$ 200$ due in 3 yr . What sum paid now would cancel the debt, money being worth 5% per annum compound interest?
(8) The sides of a triangle aro 13, 14 and 15 ft ; find its area. and the length of the threo perpendiculars from the angles on the opposite sides.
(9) The external dimensions of a rectangular covered box, made of inch stuff, are 7,8 and 9 ft .; find the capacity of the box and the quantity of lumber in it.
(10) A well 7 ft . in diameter and $\mathbf{2 8} \mathrm{ft}$. deep is to have a lining of special bricks, fitting close together without mortar, 7 in. thick; find in tons the weight of tho bricks, supposing 1 cub. in. of brick to weigh of an ounce, and $1 \mathrm{cwt} .=112 \mathrm{lb} .\left(\pi=2 ; i^{2}\right)$.
(11) A shipped to $B 1,000$ sheep, tho buying price of which was $\$ 4.50$. B pays a freight chargo of 17 dtc . per head and the cost of feed and yard is 24 c . ench per day. His first sale is made at the end of 2 dy . which consists of a lot of 9.50 head at $\$ \overline{5} .2 \overline{5}$. At the end of the third day he sells a second lot of 525 at $\$ 6$, and at the same timo 5 sheep are killed by an accident. The balance are disposed of at $\$ \overline{5}$ per head at the end of the fifth day. B takes 10% of the profits for his commission and remits the balance to A. Make out B 's Account Sales to A.
(12) A has 8 bottles and $B 2$ bottles of wine. At odd times a common friend, C, joins them and the three share equally. To recoup A and B, C hands over $\$ 10$. How should A and B settle between them.
(13) Add vertically and horizontally the following statement:
 money s area. ; on the c, made ox and

lining

 7 in. inb. in. $=3^{2}$). which nd the s made $\$ 5.25$. at \$6, The ih day. its the$\frac{1}{10^{2}} \times\left\{1-\frac{3}{1} \cdot \frac{1}{10^{2}}+\frac{3.4}{1.2} \cdot \frac{1}{10^{4}}-\frac{3.4 .5}{1.2 .3} \cdot \frac{1}{10^{6}}+\frac{3.4 .5 .6}{1.2 .3 .4} \cdot \frac{1}{10^{-8}}\right\}$ to 8 places of decimals.
(b) Express as the product of powers of prime factors :$\frac{\text { 11. 12. 13. 14. } 15 . \ldots \ldots}{1^{3} \cdot 2^{3} \cdot 3_{3} \cdot \ldots} \cdot 8^{3} \cdot 9^{3} \cdot 10^{3}$
(3) A regiment of 1,000 men, 4 abreast, and marching 3 ft . apart, passes over a bridge 3 mi .44 yd . long in 56 min .10 sec . If each man takes 96 steps per minute, determine the length of each step.
(4) A dealer shipped 200 barrels of apples to Liverpool; the average cost of the apples was $\$ 3.75$ per barrel; for what sum must he have the apples insured at 4% premium to guard against all loss, in case of shipwreck, his other expenses being $\$ 75$?
(5) \boldsymbol{A} and \boldsymbol{B} are two railway companies that pay respectively $4 \frac{1}{2} \%$ and 13% per annum on their $\$ 100$ shares. When the price of a share in A is $101 \frac{1}{4}$ and in $A 324$, what is the amount of money which, when invested in one rather than in the other, would give rise to a difference of income of $\$ 31.50$?
(6) On January 1, 1890, a person borrowed \$2,417.50 at 63% simple interest, promising to return it as soon as it amounted to $\$ 2,582.50$. On what day did the loan expire? ($365 \mathrm{dy} .=1 \mathrm{yr}$.)
(7) Distinguish between Simple and Compound Interest, and between Interest and Discount.

A teacher's salary of $\$ 1,000$ is paid in four quarterly payments at the end of each quarter. What sum at the beginning of the year is equivalent to these payments, reckoning compound interest at 2% per quarter?
(8) A Canadian tourist goes to Paris with 85,000 , which he exchanges for French money at the rate 19bc. for one franc. He spends 830 francs in France and thence goes to Vienna where he exchanges what he has left at the rate of 135 forins for 300 francs. He spends 500 florins at Vienna, and then goes to Eng. dand where he exchanges his money, getting 1s. 8d. for a florin. His outlay in England is $£ 7510 \mathrm{~s}$. How much Canadian money has he left if $£ 1=\$ 4.80$?

- (9) (a) The sides of a triangle are $25,39,56 \mathrm{ft}$. respectively: Find its area.
(b) A road runs round a circular pond; the outer circumference is 280 ft ., and the inner 210 ft . Find the breadth and area of the road. $\quad(\pi=3 \cdot 14159$.)
(10) (a) The surface of a sphere is equal to $\frac{1}{2}$ of that of a right circular cone; the radius of the base of the cone is 1 ft . and its height $\sqrt{ } 3 \mathrm{ft}$. Find the volume of the sphere.
(b) Two wheels of a carriage are 3 ft .9 in . and 4 ft .8 in . respectively in diameter. How far will the carriage have gone when one wheel has gained 12 revolutions on the other?

answers and skeleton solutions.

Exfrcise I. (Page 7).

(1) $161,415$.
(3) 132,329 .
(4) 98,127
(5) 4, 192.
(6) 1,766 .
(7) $12,481,875$.
(8) Total $=1,937,271$; average $=193,727$ nearly.
(9) $1,511,194$.
(10) $83,316.17$.

Exercise II. (Page 8).
(1) 3,996.
(2) 1,541 .
(3) 49.995045.
(4) 85.90 .
(5) $\$ 3.20$.
(6) Total \$9,994.54.
(7) 849,902.43.
(8) $£ 9,41018.0 d$.
(9) 24,156 .

Exercise III. (Page 10).
(1) 350,790 . (2) $5,555,657 ; 3,086,521 ; 5,334,678,204,552$.
(3) Remainder $=270$.
(4) 1,485 .
(5) $52,479 \frac{17}{8} \frac{1}{2}$.
(6) $60,768,396$.
(7) 2,231 .
(8) 37,217 .
(9) 374 ; Rem. 446.
(10) $27,869,764,561,775,892$.

Exercise IV. (Page 11).
(1) 1,534 .
(2) $3,415,956$.
(3) $3,522,178$.
(5) $121,932,631,112,635,269$.
(6) $40,155,302,248,305,278,754,132$.
(7) $1,630,188,053,103,649,203,285$.
(9) $4,222,404$.
(10) $87,860,370$.
(11) 3,876.
(12) 524.

Exhrcise V. (Pagh 12).
(14) $330,040,769,503$.

Exercise VI. (Page 13).
(1) $9 ; 9 \times 16 \times 17$.
(5) 734,877. (7) 3.
(2) 9.
(8)
(3) 1,449 .
(4) 12
(9) चito.
(10) 4185.

Exercise VII. (Page 14.)

(1) $882 ; 1,314,385,280,208$.
(4) $7^{5} 6$.
(5) 225.
(8) is.
(9) $1 \frac{1}{2}$.

(3) $f=r^{\circ}{ }^{\circ} \mathrm{r}$ is greatest.
(10) 156 \%\%
(7) $180890=6109$.

Exercise VIII. (Page 15).
(1) 3.
(2) 14,839 .
(3) $0122+$
(4) $I^{2} r$.
(5) $4320544 \cdot 8215$.
(6) Europe $30 \cdot 93$ more.
(7) $47 \frac{1}{2} 3 \mathrm{oz}$.
(8) 1,428 cub. ft .
(9) $277^{3} \mathrm{r}$ min. past 8 o'clock. ${ }^{\circ}$
(10) 912.

Exercise IX. (Page 16).
(1) \ddagger.
(5) 189 coins.

July, 1873 (Page 17).
(1) $4,261 \times$ No. $=8,671$ farthings. Ans. 183894 .
(2) Value $=z^{3} \sigma$ of $\$ 20,000=\$ 3,000$. Ans.
(3) Public School Arithmetic, page 133.

(4) $1 \div\left(\frac{1}{6}+\frac{7}{6}\right)=22^{\frac{1}{2}} d y$.
 $\$ 1.10 \times 1 g^{20}=\$ 1.22, \therefore$ price of wheat ought to be of more :
(6) $\frac{3 \cdot 5-04}{5-0625} \times \frac{.035}{2 \cdot 115}=\frac{9688}{83542 \overline{5}}$ ANs.
(7) Cost of 1 rod (both sides) $=\$ 11 ; 1 \mathrm{mi} .=320 \mathrm{rods}$.

Total cost $=11 \times 320 \times 73=\$ 256,960$. Ans.
(8) $1,760 \mathrm{yd} .+520 \mathrm{yd} .+2 \mathrm{ft} . \div 260=$

January, 1874 (Pagm 17).
(1) $\mathrm{Sum}+$ No. $=33 \frac{1}{2} ; \therefore$ No. $=$ sum $+33 \frac{1}{1}$.

(2) $\frac{4}{2} \mathrm{Oz} .=88^{\frac{1}{2}} \mathrm{z} \sigma$ bush.

No. bush. $=4,810 \times 3 / \times \delta{ }_{\sigma} \frac{1}{2} 80=293 \%$ bush. Ans.
(3) 102 dy ., from 12 o'clock May 24 th to 12 o'clock Sept. 3rd $=102 \times 1,440=146,880 \mathrm{~min}$. Subtract 150 min . to get the time to 9.30 o'clock. Ans. $146,730 \mathrm{~min}$.

Second part-146,730 $\div(365 \times 1,440)=\frac{9,2}{240} \mathrm{yr}$. Ans.
(4) $1+\frac{8}{8}+1_{1}^{1}{ }^{1}=2 \frac{98}{8}$. Ass.
(5) House + lot $=$ house $+\frac{1}{\text { house }}=\frac{f}{f}$ house $=\$ 3,600$. Ass. House, $\$ 3,000 ;$ lot, $\$ 600$.
(6) $2,420 \mathrm{sq} . \mathrm{yd} .-2_{8} 7_{\sigma} \mathrm{sq} . \mathrm{yd} .=2,417 \mathrm{z}^{2} 8 \mathrm{sq}$. yd. Ans.
(7) Public School Arithmetic, pages 121, 122, 125.
(8) $2-\frac{1}{2}+1=2 \frac{1}{2}$. Ans.
(9) 7 ac. yields 41 bush. Ans. 143 bush.
(10) $93: 8 \frac{1}{5}=78: 65=6: 5$. The days have been shortened by t, hence their number must be increased by t to give the same amount of work; $6 \times \frac{t}{t}=7 \frac{1}{f} \mathrm{dy}$. ANs.

June, 1874 (Page 18).
(1) $1,220,230,092-4,800=1,220,225,292$. If this number is divided by 6,084 , we have divisor $=200,563$. Ans.
(2) $1 \mathrm{ac} .=4,840 \mathrm{yd} . ; 1 \mathrm{rood}=1,210 \mathrm{yd} . ; 1$ per. $=30\} \mathrm{yd}$.; $4 \mathrm{sq} . \mathrm{ft} .72 \mathrm{in} .=\frac{1}{2} \mathrm{sq} . \mathrm{yd}$. Thus the field $=14,520+2,420+$ $423 \frac{1}{2}+\frac{1}{2}=17,364 \times 9 \times 144 \mathrm{sq}$. in. $=22,503,744 \mathrm{sq} . \mathrm{in}$. ANs. 2 nd part-3 ac. 3 roods 25 per. 3 yd. 0 ft. 108 sq. in. ANs.
(3) 797 tons 19 cwt .2 qr. $14 \mathrm{lb} . \div 5$ tons 3 cwt .2 qr. $16 \mathrm{lb} .=$ 153 and the fraction $\frac{4}{6} \frac{9}{883}$, or nearly 154 shares.
(4) $7=\cdot 285 ; 5=883$; $7=875$, and they are in order of magnitude.
(5) $\left(\frac{1}{2} \frac{8}{6} 7+\frac{7}{6}\right) \times \frac{5}{3}=\frac{18}{7} 7^{32}=1999 . \quad$ Ans.
(6) The sums are $13,586 d$. and $4,107 d$.

$$
(36 \times 4,107) \div(37 \times 13,986)=7 . \quad \text { Ass. }
$$

(7) \mathbf{z} of $\frac{8}{\text { E }}$ capital $=\$ 6,000$; capital $=\$ 40,000$.
(8) Sum $\times 43=£ 121$ 16s. 8 d . $=$ price of 43 cwt .

(9) $5-2=3$. Ans.
(10) ?8\% income $=\$ 7,200$; income $=\$ 7,500$.

December, 1874 (Page 19).
(1) Product $=10,010,010+476=10,010,486$, which $\div 21,028=4766_{\mathrm{T} 879} 9$. Ans.
(2) Time $=44 \mathrm{sec}$. at $1,000 \mathrm{ft}$. per sec. Ans. $44,000 \mathrm{ft}$.
(3) $1 \mathrm{oz}=480 \mathrm{gr}$; $4,320+408+22=4,750 \mathrm{gr}$. 2nd part-Ans. 26 ac. 2 rd. 30 per. 8 yd. 8 ft. 115 in.
(4) Dimensions are 235 in . by 225 in . and 25 in . by 36 in . Number yards required $=(235 \times 225) \div(25 \times 36)=$ 58 yd .2 ft .3 in . Ans.

(7) Length \times breadth $=$ area; $\mathrm{g}^{2} \times$ breadth $=46 \times 9$ sq. ft . Ans. $26 \frac{7}{7} \mathrm{ft}$.
(8) 1 gal. $=8 \times{ }^{194}$ cub. in. ; cistern $=52 \times 32 \times 2{ }^{27}$ cub in. No. gal. $=\left(8 \times \frac{104}{3}\right.$ cub. in. $) \div\left(52 \times 32 \times \frac{22^{2}}{2}\right)=81$ gal. Ans.

(10) 2,456 links $=24.56 \times 22 \mathrm{yd} .=540 \cdot 32 \mathrm{yd}$., since 1 chain $=$ 22 yd ., $540 \cdot 32 \mathrm{yd}$. at $\$ 8.86=\$ 4787 \cdot 2352$. Ans.

June, 1875 (Page 20).
(1) $\left(1-\frac{7}{6}\right) \times \frac{f}{3}=1$. Avs.
(2) No. bbls. $=600 \div \frac{8}{4}=800 ; 4,600 \div 800=\$ 5.75$ per bbl. Ax -
(3) Price $=\frac{9}{8}$ of $\$ 60 \times 150=\$ 16,200$. Ans.
(4) $\left(2 s .9_{2} \frac{1}{4} d\right.$. $)+\left(8 s .6 \frac{8}{8} d.\right)+\left(3 s .8 \frac{35}{4} d\right.$. $)=15$ s. $0 \frac{2}{4} \frac{2}{8} d$. Axs.
(5) Rem. $=1,273 \mathrm{lb}$.; $1,273 \div 206 \mathrm{f}=6 \mathrm{bbls}$. and 36 lb . Ass.
(6) He cuts 1 cord in 200 min . ; 186 cords in 37,200 min. ; ${ }^{+}+$cords in $137 \frac{1}{2} \mathrm{~min}$.

No. days $=37,337 \frac{1}{2} \div(8 \times 60)=77+\frac{1}{2} \mathrm{dy}$. Ans
(7) Remainder $=\frac{T_{1}^{2}}{5}$ fortune $=\$ 8,000$. Ans. $\$ 60,000$.
(8) $(51,846,734-32) \div 508,301=102$. Ans.
(9) Answer in shillings $=\left(49_{1}^{3} \mathrm{f} \div 7 \mathrm{~g}\right) \times 158 \frac{1}{\mathrm{~s}}=$ £51 3s. $\left.15 \frac{1}{6} 3\right\} d$. ANs.
(10) Price of rem. $=\$ 2,896,875-(\$ 56.25 \times 31)=\$ 2,895,131.25$. Acres in rem. $=\$ 2,895,131.25 \div \$ 20.05=144,395789$ ac. Add 561 ac . sold $;$ total $=144,451+\frac{3}{8} \frac{2}{7} \mathrm{ac} . \quad$ Ans.

December, 1875 (Page 20).

(1) $34.20+34.00+7 \cdot 2 \overline{5}+6.93+6 \cdot 25+12.15=\$ 100.78$. Ans.

(2) A 's land $=$| ac |
| :---: |
| 97 |\(\frac{\mathrm{r}}{2} \begin{aligned} \& per.

\& 12\end{aligned}\)
B^{\prime} 's $" ،=3830080=720$ ac. 3 rd. 30 per.
$=210{ }^{2} 10$ Rem. $=600$ ac. 2 rd. 1 per. Ans.
(3) $\frac{1}{2} f+\frac{2}{2} \frac{1}{1}-\frac{10}{3}+5 \frac{1}{2}=5 \frac{1}{2} \frac{27}{2}$. ANs.
(4) (a) See Public School Arithmetic, pages 137, 138.
(b) Example:-5 $\div \frac{4}{4}$

Let $\mathrm{I}_{\mathrm{T}}^{5} \div \frac{4}{\theta}=$ quotient required
$\therefore \frac{7}{5}^{\frac{5}{r}}=$ quotient $\times \frac{4}{4} . \quad$ See P. S. Arith., page 29.
$\therefore 5=$ quotient $\times \frac{t}{y} \times 11$. " 112.
or $5 \times 9=$ quotient $\times 4 \times 11$
i.e. $\frac{5 \times 9}{11 \times 4}=$ quotient $=\frac{5}{11} \times$ 昗.
(5) $\frac{t}{8}$ remainder cost $\$ 1,672$; remainder cost $\$ 2,090$; $\therefore 20$ barrels cost $\$ 110$; cost per barrel $=\$ 5.50$. Number barrels $=400$. Ans.
(6) Remainder $=\frac{t^{3}}{3} ; \therefore{ }^{\gamma^{2}}$ sum $=\$ 700$; sum $=\$ 6,000$; and the shares are $\$ 2,000, \$ 1,500, \$ 1,200, \$ 1,300$. Ans.

\therefore required fraction $=\frac{3}{2} \times \frac{80}{225}=\frac{8}{16}$. Ans.
(8) 7,494 per. cost $\$ 370.70$
. 11,220 per. cost $370.70 \times 11,220 \div 7,494=\$ 555.01 \frac{1}{1 \frac{1}{2} 14}$. Ans.
(9) 1.3749 shillings buy 1.875 lb .
$\therefore 308 \quad$ " $\quad \frac{1.875 \times 308}{1.3749} \mathrm{lb}$.
$=\frac{1875 \times 3080}{13749}=\frac{625 \times 3080}{4583}=420 \frac{1400}{5885} \mathrm{lb}$. Ans.
(10) (a) Cost $=\$ 1.75 \times\left(45 \times 11 \frac{1}{2}\right) \div\left(3 \times \frac{q}{q}\right)=\$ 131.25$. Ans.
(b) Cost $=\$ 1.25 \times\left(45 \times 11 \frac{1}{4}\right) \div(3 \times 1 / 8)=\$ 56.25$. ANs.

June, 1876 (Page 21).
(1) The prices are in cents $64 \times \frac{5}{3}, 20 \times \frac{5}{3}, 100 \times \frac{5}{3}$, hence
(2) $\frac{225}{8}+18+\frac{21}{2}=\frac{453}{3}$ shillings,
\therefore fraction $=25 \times 20 \times \frac{8}{453}=4,000 \div 453=8.83002+$ Ans .
(3) 1 hhd. $=54$ gal. ;
$\therefore 1,053$ gal. are discharged in 1 hr .
and $4,9533 \frac{3}{3}$ gal. are discharged in $4,9533 \div 1,053 \mathrm{hr}$.
$=24,768 \div \overline{\mathrm{j}}, 26 \overline{\mathrm{E}}=4 \mathrm{hr} .42 \mathrm{~min} . \overline{0}_{1}^{5}{ }_{3}^{5} \mathrm{sec}$. Ans.
(4) $\frac{16 \times 15 \times 11 \times 35}{7 \times 30 \times 11}+\frac{13 \times 9 \times 10 \times 11}{27 \times 11 \times 39 \times 5}=40$.
$\frac{11 \times 21 \times 15 \times 1}{3 \times 4 \times 2 \times 63}-\frac{2}{7}-{ }_{119}^{48}=\frac{55}{24}-\frac{89}{119}=\frac{4577}{24 \times 119}$.
$\mathrm{A} \div \mathrm{B}=\frac{362 \times 24 \times 119}{9 \times 45 \overline{7} 7}=25_{\mathrm{T}_{3}^{1}{ }^{3} 7^{4} 95} . \quad$ ANs.
(5) $\$ 1-.0275=9725$
$[(2,400 \times 9725)-582] \div 365=\$ 4.80$. ANs.
(6) $27 \mathrm{in} .=\frac{3}{4} \mathrm{yd}$.

2 nd cost $=12 \times 8 \times \frac{4}{3} \times 1.15=96 \times 1.53 \frac{1}{3}$
1st cost $=12 \times 8 \times 1.40=96 \times 1.40$
Difference $=\overline{96 \times 13 \frac{1}{3}}=\$ 12.80$. Ans.
(7) $1 \mathrm{gal} .=8 \mathrm{pt}$.
$\therefore 162 \times 8 \mathrm{pt} .=52 \times 32 \times 27 \mathrm{cub} . \mathrm{in}$.
$\therefore 1$ pt. $=\frac{10.4}{3}=34 \frac{2}{3}$ cub. in.
(8) A, B, C do $\frac{1}{6}$ in 1 dy .; or $\frac{1}{3}$ in 2 dy .
$\therefore \mathrm{B}, \mathrm{C}$ do $\frac{3}{3}$ in the other 7 dy .
$\therefore \mathrm{B}, \mathrm{C}$ do ${ }_{2}{ }^{2} \mathrm{~T}$ in 1 dy ; or t in 6 dy. ;

(9) Lot A cost $\frac{4}{6}$ of $600 ;$ lot B cost $\frac{4}{3}$ of 600 ;
.. total cost $=\$ 1,280 ;$ loss $=\$ 80$. Ans.
(10) $3,655 \div 43=85=$ number sold.
$680 \div 85=\$ 8=$ gain per head, \therefore cost per head $=\$ 35$.
$4,37 \overline{5} \div 3 \overline{5}=12 \overline{5}=$ total No. bought,$\therefore 40$ head remain.
$400 \div 40=\$ 10 ; \$ 3 \overline{5}+\$ 10=\$ 45$, price at which remainder must be sold. Ans.

December, 1876 (Page 22).
hence
+. Ans.

3 hr .
Ns.
(A)
(B)
80. Ans.
(1) $3 \mathrm{ac}=14,520 \mathrm{sq} . \mathrm{yd} . ; 2 \mathrm{rd} .=2,420$ sq. yd. ; 27 per. $=$ 816 sq . yd. 6 ft .108 sq . in. $27 \mathrm{yd} .=27 \mathrm{yd} . ; 7 \mathrm{sq} . \mathrm{ft} .23 \mathrm{sq} . \mathrm{in}$. The sum of these is $=$ $17,78 \pm$ sq. $\mathrm{yd} .4 \mathrm{ft} .131 \mathrm{in} .=23,048,771 \mathrm{sq}$. in. Ans. 2nd part-Ans. 18 tons 17 cwt .3 qr .18 lb .11 oz .
(2) $\frac{1}{4}$ ship $=\$ 1,260$. Avs. $\$ 5,040$.
(3) $(300,303,003+2,431) \div 20,306=14,789$. Ans.
(4) $\frac{82}{81} ; \frac{82}{10} ; 9$. They are in order of magnitude.
(5) Train goes 20 yd . per minute; miles per hour $=$ $(20 \times 60 \times 60) \div 1,760=40+1$.
(6) Length of step $=\left(5,280 \times \frac{7}{2}\right) \div(60 \times 110)=2 \mathrm{ft} .93 \mathrm{in}$. Ans.
(7) No. yards $=\left(\frac{45}{2} \times 19 \times 144\right) \div(15 \times 36)=114$ yd. Ans.
(8) $83-4 \frac{4}{5}+11 \frac{2}{3}-7=76+6+\frac{3}{6}=82+\frac{3}{3}$. Ans.
(9) $6 \cdot 2 \dot{7} 7777 \dot{7}+18 \cdot 6 \dot{5} 16 \overline{5} 1 \dot{6}+12 \cdot 3 \dot{4} 5454 \dot{5}=37 \cdot 27 \dot{7} 4883 \dot{9}$. $\cdot 34027-\cdot 2777 \grave{7}=\cdot 0625$.
(10) Length of walls $=48 \mathrm{ft}$; height $\times 48=60 \times 9$. Ans. 11 ft .3 in .

July, 1877 (Page 23).
(1) $5,000,000 \div 7,019=712$, and remainder 2,472 ; \therefore to give quotient 713 and no remainder, we must add to the dividend $7,019-2,472=4,547$. Ans.
(2) Expression within the brackets $=$ $\frac{473}{12} \times \frac{2}{33} \times \frac{3}{43} \times \frac{4}{49} \times \frac{7}{37} \times \frac{37}{5}=\frac{2}{105}$ $\therefore \frac{20}{21}-\frac{2}{10} \overline{5}=\frac{14}{15}$ Ans.
(3) Expression $=\left(£ 14 \frac{31}{8} \div £ 6 \frac{2}{3} 8\right) \times\left(£ 10 \frac{1}{2} \frac{3}{4} \div £ \frac{25}{8} 8\right)=$ $£_{\frac{703}{48}} \times \frac{30}{209} \times \frac{253}{24} \times \frac{480}{25} 9=\frac{575}{14}=£ 41_{1}{ }^{1} 4=£ 411$ s. $5 \nmid d$. ANG.
(4) $20 \mathrm{cwt} . \operatorname{cost} \$ 15 ; \therefore 1 \mathrm{cwt}$. cost 7 D c. gain $=10 \mathrm{c}$. per cwt.; $2,225 \div 10=222 \neq \mathrm{cwt}$. bought. Ans.
(5) 3 b yd. cost $\$ 12 \frac{1}{2} ; 1$ yd. cost $\frac{25}{2} \times \frac{8}{25}=\$ 4$. $23^{7^{7}} \mathrm{yd} . \operatorname{cost} \$ 4 \times \frac{575}{16}=\frac{375}{4}=\$ 93.75$.
(6) Savings + expenditure $=\$ 1,400$

Savings $+($ savings $+\$ 625 . \tilde{0} 0)=1,400$
$\therefore 2$ savings $=1,400-625.50=774.50$
\therefore savings $=\$ 387.25 ;$ expenditure $=1,012.75$ which $\div 365$
gives daily expenditure $=\$ 2.777^{3.4}$. Ans.
(7) Spent ${ }^{3}{ }^{3} ; 7^{7} \sigma$ left ; spent $\frac{3}{3}$ of the remainder ; 8 remainder left ; $\frac{7}{\sigma}$ of $7^{7} \sigma=\frac{2^{7}}{7}$.
$\therefore 2^{7} \frac{7}{5}$ money buys $10 \frac{1}{2} \mathrm{yd}$. ; money buys $37 \frac{1}{2} \mathrm{yd}$. Ans.
(8) Area $=5 \times 6=30 \mathrm{yd}$.; proposed area $=6 \times 7=42 \mathrm{yd}$. \therefore cost $=\frac{f}{3}{ }^{2}$ of $\$ 25=\$ 35$. Ans.
(9) $18{ }_{3} 3_{3} 5_{7}=18 \cdot \dot{1} 1784 \dot{5}^{\circ}$
$18 \cdot 117845^{\circ} \times 4=72 \cdot 471380^{\circ}=$ sum of all the numbers. $26 \cdot 2070707$
$3 \cdot 59{ }^{2} 599$)
$38.066666 \dot{6}$
$67 \cdot 8663299=$ sum of three of the numbers.
$72 \cdot 4713804$
$\frac{67 \cdot 8 \dot{6} 6329 \dot{9}}{4 \cdot 6050505}=4 \cdot 6 \dot{0} \dot{5}=4$ th number.
(10) $\$ 1,039.84$ is discharged by $\$ 357.445$
$\therefore \$ 612.80$ is discharged by $\frac{357 \cdot 445 \times 612.80}{1039.84}=\$ 210.65$. Ans.

December, 1877 (Page 24).
(1) $6 \mathrm{yd} .2 \mathrm{ft} .=6 \frac{2}{3} \mathrm{yd} .=20 \mathrm{ft}$; 25 fur. $=\frac{25}{8} \times 5,280 \mathrm{ft}$.
\therefore quotient $=\frac{25}{8} \times 5,280 \div 20=25 \times 33=825$ times.
(2) 5 c . for 3 qt . $=\$ 1.60$ for 3 bush.; 10c. per gallon $=\$ 2.40$ for 3 bush.

Selling price $=\$ 1.60+2.40$ for 3 bush. $=\$ 4$.
(3) 1st Nr. $=\frac{55}{6} ; 1$ st Den. $=\frac{14}{15} ; 1$ st fraction $=\frac{275}{28}$

$$
\text { 2nd fraction }=3
$$

3 rd Nr. $=1 \frac{14}{6} f ; 3$ rd Den. $=\frac{10}{63} ; 3$ rd fraction $=\frac{101 \times 63}{600}$.
Whole expression $=\frac{275}{28} \times 3 \times \frac{101 \times 63}{600}=312 \frac{15}{\frac{5}{2}}$.
(4) $2 \mathrm{~h} \mathrm{hr} . \div\left(3 \frac{\mathrm{f}}{\mathrm{g}} \times 168\right) \mathrm{hr} .=\frac{1}{2} \frac{1}{2}$.
(5) A gets $\frac{3}{5}$ sum; ${ }^{3}$ left ; \therefore B's share $=\frac{2}{3} \times \frac{3}{5}-\$ 20$

B gets $\frac{2}{5}$ sum $-\$ 20 ;$ C's share $=\frac{3}{4} \times \frac{2}{5}=\frac{3}{10}$ sum C gets ${ }^{\frac{3}{10}}$ sum
\therefore sum $=\frac{11}{10}-\$ 20 ;$ to sum $=\$ 20 ;$ sum $=\$ 200$.
(6) $2 \mathrm{ac} .=320 \mathrm{sq}$. rods; $320 \div 40=8$ rods, the width of field \therefore perimeter $=2(40+8)=96$ rods number trees $=96$ rods $\div 12 \mathrm{ft} .=132$.
(7) 20 ac. at $\$ 60=\frac{2}{5}$ cost of farm; \therefore cost $=\$ 3,000$.
(8) $\$ 1.20$ per bush. $=2 \mathrm{c}$. per lb .; $\therefore 25 \mathrm{lb}$. cost 50 c .
$\$ 12.50$ per M. $=\$ 1.25$ per 100.
30 c . per $\mathrm{cwt} .=\$ 6$ per ton.
$\$ 65.62 \ddagger+18.00+14.90+17.50+393.60=\$ 509.62$ д.

July, 1878 (Page 24).

(1) (a) See Public School Arithmetic, pages 93, 104, 96.
(b) $1,260=90 \times 14=10 \times 9 \times 7 \times 2=5 \times 2 \times 3 \times 3 \times 7 \times 2$ \therefore the prime factors are $2^{2} \times 3^{2} \times 5 \times 7$.
(2) Dividend $=$ divisor \times quotient + remainder

Divisor + quotient + remainder $+45=561$
Divisor $=6 \times$ remainder;
Quotient $=6 \times$ divisor
\therefore quotient $=36 \times$ remainder, from C and D.
$\therefore 6 \mathrm{R}+36 \mathrm{R}+\mathrm{R}+45=561$, from B .
$\therefore 43 R=561-45=516 ; R=12$
\therefore divisor $=72$; quotient $=432$
\therefore from A, dividend $=72 \times 432+12=31,116$. Ans.
(3) Cost $+\dagger$ cost $=9$ cost $=\$ 80 ; \therefore 12 \frac{1}{2}$ tons cost $\$ 70$; \therefore gain on $12 \frac{1}{2} \times 20 \mathrm{cwt}$. $=\$ 10$
$\therefore \quad$ " $25 \times 20 \mathrm{cwt} .=\$ 20$
$\therefore \quad$ " $25 \mathrm{cwt} .=\$ 1$; gain on $1 \mathrm{cwt} .=4 \mathrm{c}$. Ans.
(4) $\frac{001 \times 001}{\cdot 0001}=\frac{1 \times 1}{100}=\cdot 01$. Ans.
(5) $\frac{9}{3}-\frac{1}{2}=\frac{1}{6}=$ amount to be run out.
$-\frac{1}{8}+\frac{1}{12}+\frac{1}{16}-\frac{1}{24}=-\frac{1}{48}=$ amount that runs out each hour when all the pipes are at work and the leak also.
$\frac{1}{6} \div \frac{1}{18}=8=$ No. hours required to reduce to $\frac{1}{2}$ full. A.ss.
(6) 10 men in 12 dy . do the whole work
$\begin{array}{llll}10 & \text { " } & 4 & \text { " } \\ 10 & \text { I } & 6 & \text { work; }{ }^{2} \text { work left. }\end{array}$

3 boys in 6 " $\frac{2}{f}$ work.
(7) $\mathbf{8}$ (No. - 12) cost $\$ 360 ; \therefore$ No. -12 cost $\$ 540$
$\therefore 12$ boxes cost $\$ 60 ; \therefore$ but No. $=600 \div 5=120$ boxes. Ans.
(8) $\$ 9+\$ 70.40+\$ 64+\$ 2.72=\$ 146.12$. Axs.

December, 1878 (Page 207).
(1) See Public School Arithmetic, pages 8, 94, 104, 116, 117. (b) $400,004,040,004$.
(2) On hand $10,600 \mathrm{lb}$. ; sold 4,900 ; remainder 5,700 Number sacks $=5,700 \div 150=38$.
(3) Number cf rails $=\left(40 \times 16 \frac{1}{8}\right) \div 10 \times 5=330$.
(4) $\frac{\text { Width } \times 20}{3 \times 2 \frac{1}{2}} \times \$ 1.20=\$ 57.60$.
\therefore width $=\frac{5760 \times 3 \times 2 \frac{1}{2}}{2 \times 120}=18 \mathrm{ft}$.
(5) Num. $=\frac{22}{7}-\frac{10}{7}=\frac{12}{7} ;$ Den. $=1-\frac{3}{140} \times \frac{2}{3}=\frac{69}{70}$ Whole expression $=\frac{12}{7} \times \frac{70}{69}=1 \frac{13}{35}$.
(6) No. gal. $=\frac{4 \frac{1}{8} \times 2 \frac{2}{2} \times \frac{68}{2} \times 1728}{34 \frac{2}{8} \times 8}=49 \times 9=441 \mathrm{gal}$.
(7) 12 men earn $\$ 120$ in 120 hr .
$\therefore 1$ man earns $\$ 10$ in 120 hr .
15 men earn $\$ 150 \mathrm{in} 120 \mathrm{hr}$. $=15 \mathrm{dy}$. of 8 hr . each.

\therefore B's share $+\frac{8}{7} \mathrm{~B}$'s share $=210 \mathrm{ac} .={ }_{0}^{1}{ }^{6} \mathrm{~B}$'s ;
or B's share $=98 \mathrm{ac}$. which cost $\$ 1,470$,
\therefore B's land cost $\$ 15$ per acre; selling price $=\$ \mathbf{\$ 5}$ per acre.

July, 1879 (Page 26).

(1) See Public School Arithmetic, pages 8, 93, 104, 126.
(2) Fraction $=6 \div\left(5-\frac{3}{3}\right)=1 \frac{3}{7}$. Ans.
(3) $\cdot 101-\cdot 100999=\cdot 000001$

Multiply by 0101
Product $\quad \overline{0000000101 . ~ A n s . ~}$
(4) $(8 \times 4 \times 12)$ cub. ft. weigh $(12 \times 2,000 \times 16)$ oz.
$\therefore 1$ cub. ft. weighs $\frac{12 \times 2000 \times 16}{8 \times 4 \times 12}=1,000 \mathrm{oz}$.
(5) 1 st fraction $=\frac{1}{6} ; 2$ nd $=\frac{56}{13} ; 3 \mathrm{rd}=\frac{1}{200}$ of a ton $=\frac{1}{10}$ of a cwt.

Required fraction $=\frac{1}{6} \times \frac{56}{13} \times \frac{1}{10}=\frac{14}{195}$. Ans.
(6) $\frac{60 \times 40 \times 30 \ddagger \times 3}{16 \times 60} \times 80 \mathrm{c} .=\$ 45.37 \frac{1}{2}$. Ans.
(7) $\frac{1}{3} \mathrm{ac} .=80 \mathrm{sq}$. rods ; $80 \div 10=8$ rods $=$ length of side

Rectangle is 10 rods by 8 rods $=165 \mathrm{ft}$. by 132 ft .
Length of walk $=177+177+132+132=618 \mathrm{ft}$.
Number bricks required $=618 \times 6 \times 1,728 \div 36=177,984$ bricks. Ans.
(8) 40 rods $=\frac{1}{6} \mathrm{mi}$; 12 see. $={ }_{51}^{1} \frac{\mathrm{hr}}{}$.
\therefore combined rate $=\frac{1}{6} \mathrm{mi} . \times 300=37 \frac{1}{2} \mathrm{mi}$. per hour;
\therefore rate of train $=37-3=34 \mathrm{mi}$. per hour. Ans,

December, 1879 (Page 26).
(1) Remainder $=684$ ac. 1 rd. 32 per. 12 sq. $y d$. 1 share $=45$ ac. 2 rd. 20 per. 25 sq. yd.
Now as the number of persons is integral we can find it by inspection, for we see that 45 is contained in 68: a little over 15 times, so that the number is probably 15 or perhaps 14 . Try 15 shares thus:-

N.B.-Had the remainder left after giving 12, 13, 14 , or any other number shares been required, we should have subtracted the product from the amount to be divided, and thus have avoided reduction.
(2) $\frac{41 \pm \times 24 \times 6}{27} \times 20=\$ 44$. Ans.
(3) I. C. M. of $10 \frac{1}{3}$ and $11 \frac{1}{3}=105$
\therefore fore wheel turns 10 times while hind turn 9 times,
i.e. one revolution more for every 10 that it makes, and it has done this 440 times
\therefore distance $=10 \frac{1}{2} \times 10 \times 440=46,200$, as before.
(4) 1 st $\mathrm{Nr} .=11 \frac{1}{8}-\frac{2}{2} \frac{1}{8}=\frac{81}{2}$
$1 \mathrm{st} \mathrm{Dr}_{\mathrm{r}}=+\frac{1}{2}\left(14+\frac{18}{12}+\frac{8}{8}-1_{2}^{7}+\frac{2}{3}\right)=\frac{1}{12} \times 15 \frac{1}{8}=+\frac{1}{2} \times 1 \mathrm{a}^{1}$
2nd Nr. $=\frac{1880}{48} ; 2$ nd Dr . $=\frac{1}{2} ;$ 2nd fraction $=180$
\therefore expression $=\frac{617}{60} \times \frac{12}{11} \times \frac{8}{121} \times \frac{100}{9}=\frac{98720}{11979}=8 \mathrm{Ci}^{28888}{ }^{8870}$. Ans.
(5) $\$ 54.90+\$ 8.92 \frac{1}{2}+\$ 24.20+\$ 6.60+\$ 26.75=\$ 121.37 \frac{1}{2}$. ANs.
(6) 4 lb . bread cost 10 c . when wheat is at 90 c. ; . 1 lb . bread $=\frac{1}{\gamma^{6}}$ bush. of wheat.
\therefore when wheat is at $13 \overline{\mathrm{~J}} \mathrm{c}, 3 \mathrm{lb}$. bread cost $\frac{1}{12}$ of $135 \mathrm{c} .=11 \frac{\mathrm{c}}{\mathrm{c}} \mathrm{c}$. Ans.
(7) : marked price $=\frac{f}{5}$ cost $=\frac{5}{5} \times 240$
\therefore marked price $=4 \times \frac{t}{6} \times 240=\$ 3.60$. Ans.

June, 1880 (Page 27).

(1) The partial products are shifted to the left because the relative value of each figure of the multiplier depends on its distance from the decimal point. Thus in the multiplier 600,417 the figure 1 represents one "ten," and we really multiply by 10 units ; and the 6 is really 600 thousand.

Ass. $104,803,155,405,621$.
(2) See Public School Arithmetic, page 96.
G. C. M. $=13$.
(3) See Public School Arithmetic, page 125.

1st fraction $=2$; 2nd fraction $=t^{\frac{3}{9}}$
$\therefore 243-1 \frac{23}{2} \frac{5}{5} 5=1 \frac{1}{2} \frac{9}{4} \frac{9}{9} \frac{3}{4} .4 . \quad$ Ans.
(4) $(90 \times 17 \times 4 \times 1,728) \div\left(9 \times 4 \frac{1}{2} \times 2 \mathfrak{i}\right)=104,448$ bricks. Ans.
(5) $12 \times 48 \times 63 \mathrm{cl} .=3, \stackrel{s}{\mathbf{s} .24} \quad \stackrel{\text { d }}{0}$.
$15 \times 60 \times 64 d=689$
$20 \times 56 \times 4 \frac{4}{4} d .=4434 \quad$ N.B. $-1 s .=2,3 \mathrm{c}$. $14 \times 40 \times 15 \frac{1}{2} d .=7234$

$$
\text { 3) } \frac{4,6595}{1,553 \times 73}=\$ 1,133.69
$$

$3 \mathrm{~s} .=73 \mathrm{c}$.
$1 d .=\frac{7}{3}$ f c.
(6) $76 \cdot 391955 \div \cdot 0000020385=$ $763919550000 \div 920385=830,000$. Ans.
(7) Profit per dozen $=1485-\cdot 135=\cdot 0135$

Total profit $\div 0135=79002000 \div 135=585,200$ doz. sold. $585,200 \div 8,360=70 \mathrm{doz}$. in each barrel.
(8) No. miles $=\frac{50 \times 32 \times 24000 \times 60}{5280 \times 70 \times 144}=43_{23} \frac{03}{2} \mathrm{mi}$. Ans.
(9) $\frac{78}{100}$ longer part $=\frac{r^{2}}{10} \times \frac{12}{2}$ shorter part ;
$\therefore \frac{1}{5}$ longer $=\frac{1}{3}$ shorter $; \therefore$ longer $=\frac{5}{3}$ shorter ;
\therefore both $=\frac{n}{3}$ shorter $=120 \mathrm{ft} .45 \mathrm{ft} ., 75 \mathrm{ft}$. Ans.
(10) A and B do $\frac{4}{3}$ of work in 1 dy.
b. bread
tc. Ans.

December, 1880 (Page 28).

(1) See Public School Arithmetic, pages 7, 8. The word Number is used to mean a collection of units or even a single unit. See pages 9, 16.
(2)

4	$68,590,142$
1	$2,774,474$
	192,927
2	45,935
1	18,374
2	000

$85,044,059$	1
$16,453,917$	5
$2,581,547$	13
652,277	
73,496	1
27,561	1
9,187	1

Ans. 9,187.
(3) $17 \times 7 \times 73=8,687$ rations required.

48 tons $=96,000 \mathrm{lb}$.
$4 \mathrm{cwt} .=400 \mathrm{lb}$.
$2 \mathrm{qr} .=50 \mathrm{lb}$.
$20 \mathrm{lb} .=20 \mathrm{lb} . ;$ total $=96,470 \mathrm{lb} .9 \mathrm{oz} .=1,543,529 \mathrm{og}$. $1,543,529 \div 8,687=177$ s. 9 gig 9 oz . Ans.
(4) $1.47 \frac{1}{2}+1.183+4.43 \frac{3}{4}+1.893+4.57 \frac{1}{2}=\$ 13.56 \frac{7}{3}$. Axs.
(5) 1 st Nr. $=\frac{2}{3}+6 \frac{3}{3}-1 \frac{1}{2}=5 \frac{5}{8}$.

1st Dr. $=2_{1 r}^{1} \times 2 \frac{1}{2 \frac{1}{2}} \times 2$
2nd fraction $=\frac{19039}{20003}$

(6) Required weight $\frac{12 \frac{1}{2} \times 6 \frac{1}{2} \times 4 \frac{1}{8}}{2 \frac{1}{2} \times 3 \frac{9}{4} \times 1 \frac{1}{4}} \times 1,87 \overline{5}=53,62 \overline{5} \mathrm{lb}$. Ans.
(7) $\$ 1-.0155=\$ 9845$.
$(\$ 3.375 \times 365)+\$ 1230.875=\$ 2,462.75$.
And $\$ 2,462.75 \div 9845=\$ 2501 \cdot 523+$.
July, 1881 (Page 29).
(1) (a) See Public School Arithmetic, pages 16, 22, 28 and 23.
(b) $2,000,000,018,760,681 \div 63,245,553=31,622,777$. Ans.
(2) See Public School Arithmetic, page 94.
(b) $132,288=2^{6} \times 3 \times 13 \times 53$
$107,328=2^{6} \times 3 \times 13 \times 43$
\therefore L. C. M. $=2^{6} \times 3 \times 13 \times 43 \times 53$
$=107,328 \times 53=5,688,384$. Ans.
(3) $72,000+540+1,050=73,590 \mathrm{~min}$. ANs.
(4) 1 st fraction $=\frac{267}{117}=$ 2nd fraction.

3rd fraction $=1,761$ 4 $_{3}^{5}$.
4 th $"=\underline{1,6504 \frac{13}{2}}$
Differenco $=1100_{1}^{1} 3_{2}^{6}=110_{2}^{2} 3_{6}$. Ass.
(5) Insurance, etc. - - $=\$ 125.00$

Loss of 8c. per bush, on 2,090 bush. $=167.20$
Gain to be realized on the whole $=522.50$
Extra profit required on 3,135 bush. $=\overline{\$ 814.70}$; or $259 \frac{1}{2} 9$ per bushel.
\therefore selling price must be $\$ 1.05+258 \frac{1}{2} 9=\$ 1.308 \frac{1}{9} 9$. Ans.
(6) (a) $\cdot 9840018 \div \cdot 00159982=$ $98400180 \div 159982=615 \cdot 070321$ nearly. Ans.
(b) $\frac{7002450}{9999990}=\frac{285}{407}$
Ans.
N.B.-G. C. M. = 24,570.
(7) 9 cub. ft. of water produce 10 cub. ft. of ice.
7^{90} " " $6 \quad 1 \quad$ " 6
ior of $445 \times 100 \times 175=\mathbf{7 , 0 0 8}, 750 \mathrm{cub}$. ft . of water. Ans.
December, 1881 (Page 29).
(1) $314 \cdot 159 \div 0000008937$
$=3141590000000 \div 8937 ; 8937=9 \times 3 \times 831$
Divide by 9 and by 3 and we have left
$11635 \overline{5} 185185 \cdot 185 \dot{5} \div 31=351526239 \cdot 26_{3} \frac{2}{3} \mathrm{~T}$.
(2) 1 st fraction $=\frac{196}{3} ;$ 2nd fraction $=\frac{484}{3^{\prime}} ;$ difference $=96$

3rd fraction ${ }^{\circ}=\frac{8}{21} ; 96 \div \frac{8}{21}=252 . \quad$ Ans.
(3) 115 at $70 d . ; 95$ at $31 d . ; 84$ at $43 d . ; 72$ at $32 d . ; 10$ at $66 d$. $=17,571$ pence; $1 d .=\frac{73}{6} \mathrm{c}$.
$17,571 \times \frac{53}{63}=\$ 356.30_{1 \frac{1}{2}}^{1} . \quad$ Ans.
(4) 10 volumes of lead weigh as much as 114 volumes of water \therefore platinum is $\frac{210}{114}=\frac{35}{19}$ times as heavy as lead
\therefore same volume of platinum weighs $56 \times \frac{35}{19}=1033^{\frac{3}{5}} \mathrm{lb}$. Ans.
(5) Chain weighs $76 \times 2=152 \mathrm{cwt}$. at $15 \frac{1}{2} \mathrm{~s} .=2,356 \mathrm{~s}$.

$$
\text { Difference }=182 s=
$$ £9 2s. Ans.

(6) Selling price $=\frac{13}{8}$ cost price $=\$ 2.60 ; \therefore$ cost $=\$ 1.60$

Required price $=1.60 \times \frac{17}{10}=\$ 2.72 . \quad$ Ans.
(7) Solidity of plate $=66 \times 36 \times \frac{8}{4}=66 \times 27$ cub. in. " sheet $=$ thickness $\times 54 \times 27$ cub. in.
\therefore thickness $=(66 \times 27) \div(54 \times 72)=14$ linear in. Ans.
(8) One brick and mortar $=\frac{17}{16} \times \frac{3}{4} \times \frac{3}{8} \times \frac{1}{3}=\frac{51}{512} \mathrm{cub} . \mathrm{ft}$.

Solidity of wall $=60 \times 17 \times 4 \mathrm{cub}$. ft. 40,960 bricks. Ans.
(9) Gain $=20 \%$; i.e. he sells 100 lb . for cost of 120 lb . or 10 lb . for the cost of 12 lb .
Second case:-He sells 9 lb . for the cost of 12 lb . Second gain $=3 \mathrm{lb}$. on every 9 lb . $=\frac{1}{3}=33 \frac{1}{3} \%$. Ans.

$$
\text { July, } 1882 \text { (Page 30). }
$$

(1) The G. C. M. of two or more numbers is their greatest common factor. Usually the name is restricted to integral factors. Every measure of two or more numbers will also measure the sum or the difference of any multiples of these numbers.

4	$68,590,142$	$85,054,059$	1
4	$2,734,474$	$16,463,917$	6
7	451,550	57,073	1
10	52,043	5,030	2
1	1,743	1,544	7
1	199	151	3

Now 48 and 7 are prime to each other, \therefore the given numbers have no G. C. M.

[^0](2) Gain per M. $=14.30-13.50=.80$
\therefore gain per foot $=\frac{8}{1000}=\$ \frac{8}{10000}$
Total gain $=9,870 \times 8 \times \frac{8}{10000}=987=8 \times 8=\$ 63.16 \mathrm{~s}$.
(3) See Public School Arithmetic, page 121.
$N=262^{2} \mathrm{~T}-1 \frac{1}{2} \mathrm{Z}$
$\mathrm{D}=1 \mathrm{z}-\frac{3}{5} \times \frac{35}{23} \times \frac{5}{6} \times \frac{24}{35}=\frac{24 \frac{1}{2} 7 \times 63}{16 \times 63}=\frac{1512+51}{63+28}=\frac{1553}{91}$
\therefore Expression $=\frac{1563}{91} \times \frac{11}{2 \times 521}=\frac{33}{182}$
(4) $\frac{23}{10} \times \frac{4}{100}=\frac{92}{1000}$. Ass. $=5162.9911235$.

No. of Ounces $=7,501 \frac{1}{4} \times 16=120,020$.
(5) In ${ }^{2 / 3} \mathrm{~min}$. goes $6,072 \mathrm{ft}$.
\therefore " 1 " $6,072 \times{ }^{2}{ }^{6} 3 \mathrm{ft}$. or " 1 hour goes $\left(6,072 \times \frac{3}{35} \times 60\right) \div 5,280$, miles $=18$.
(6) $122,496 \times \frac{9}{12} \times \frac{9}{24} \times$ thickness $=36 \times 16 \frac{1}{2} \times 14 \frac{1}{2}$
i.e. thickness $=\frac{36 \times 33 \times 29 \times 24 \times 12}{2 \times 2 \times 9 \times 9 \times 122496}=1 \mathrm{ft} .=3 \mathrm{in}$.
(7) $\mathbf{£ 1}=24$ francs $=\$ 1.14 \times 4$
$\therefore £ 250 \mathrm{lOs}=\$ 1.14 \times 4 \times 250 \frac{1}{2}$

$$
=\$ 1.14 \times 1,002=1,140+2.28=\$ 1,142.28
$$

(8) If ${ }_{1}^{1}{ }^{1}$ represents 1 mi , and $7_{7_{0}^{5}}$ represents 5 mi . $=$ one side of square township.
\therefore Number of acres $=5^{2} \times 640=16,000$.
(9) In 1 dy. 8 men +4 boys do $\frac{1}{4}+\frac{1}{12}=\frac{1}{3} ; \therefore$ time $=3 \mathrm{dy}$.
(10) In every 48 votes, 23 were for A, 25 for B.
$\therefore\left(\frac{25}{48}-\frac{23}{48}\right)$ total votes given $=100=\frac{1}{94}$ total votes given. \therefore total votes cast $=2,400$. ANs. 300 .
(1) Book work. The Public School Arithmetic does not supply the answer.

See H. Smith's Arithmetic, Canadian Edition, page 13.
(b) Product $=70,300,000+82,610=70,382,610$.

Required factor $=70,382,610 \div 9,402=7,48575849$.
(2) $\$ 5.84+2.323+.93+2.763+.74=\$ 12.60 \frac{1}{2}$.
(3) L. C. M. $=$ L. C. M. of $22,56,42,81=$
$11 \times 8 \times 7 \times 81=49,896$.
(b) $40,545=5 \times 9 \times 17 \times 53$; of which factors only 9 and 17 will divide $124,083, \therefore$ G. C.'M. $=153$.
(4) (a) Book work. See Public School Arithmetic, page 121,
Exercise XLVI.
(b) 1 st fraction $=\frac{1}{7} ; 2$ nd fraction $=1$;
whole expression $=\frac{1}{3}$.
(5) (a) Book work. See Public School Arithmetic, page 157,
se II. Case II.
(b) 1 lb . costs $16 \mathrm{~s} . \times \cdot 0703125$ 112 lb cost $16 \times 112 \times 0703125$ r^{1} of 112 cost $112 \times \cdot 0703125=7 \mathrm{~s} .10 \frac{1}{2} d$.
(6) Ans. 7 ac. 1 rood 6 per. 21 sq. yd. 7 sq. ft. 20 sq. in.
(7) $3,750 \mathrm{lb}$. $=60,000 \mathrm{oz}$.; $\therefore=60 \mathrm{cub}$. ft. \therefore depth $\times 7 \frac{1}{2} \times 3 \mathrm{~d}=60 ; \dot{\mathrm{depth}}=60 \div 7 \frac{\mathrm{fl}}{2} \div 3 \frac{\mathrm{f}}{\mathrm{f}}=2 \mathrm{ft} .6 \mathrm{fl}_{9}^{6} \mathrm{in}$.
(8) $22 \mathrm{yd} .=\frac{1}{80} \mathrm{mi}$. \therefore in 2nd case A goes $\frac{80}{80}$ while B goes $\frac{79}{80}$ mi. ; \therefore in 1st case A goes $\frac{3}{4}$ of $\frac{80}{80}$ while B goes $\frac{79}{80}$. Rates 60 : 79. Ans.
(9) A does $\frac{1}{9}$ work in 1 hr ; B does $\frac{1}{8}$; $C \frac{1}{6}$ in 1 hr . A, B and C do ${ }_{72}^{29}$ work per hour. Time $=2 \frac{1}{2} \mathrm{f} \mathrm{hr}$.
(10) $20 \%=\frac{1}{5} . \quad$ Cost $-\frac{1}{5} \operatorname{cost}=60 \mathrm{c} .=\frac{4}{\overline{5}}$ cost $; \therefore$ cost $=75 \mathrm{c}$, \therefore selling price $=\frac{6}{\overline{5}}$ cost $=\frac{6}{\overline{5}} \times 75=90 \mathrm{c}$,

June, 1883 (Page 32).
(1) (a) Book work.
(b) (Dividend - Remainder) \div Divisor $=$ Quotient.
(c) $108,419,716,001 \div 18,748,005=5,783_{\text {г }} \frac{3}{7} \frac{9}{8} 805$.
(2) (a) Multiplicand is 349,751. "Casting out nines," rem. is 2. Multiplier is 28,637. " 6 " 8. $2 \times 8=16$. "Casting out nines," remainder $=7$. Product is $10,015,819,397$; "casting out nines," rem. 8. It should be 7. \therefore The product is incorrect.
(b) Weight $=4 \mathrm{lb} .2 \mathrm{oz} . \times 500,000=2,062,500 \mathrm{lb}$.
(c) $\frac{27 s .6 d}{4 s .2 d} \times 500,000=\$ 3,300,000$.

(3) 375 tons @ | $£$ | s. | d. | f | s. | d. |
| ---: | :--- | :--- | :--- | :--- | :--- |

$107 \frac{1}{2}$ "@ $11140=1,257150$
10 " © $10100=10500$
17 " (1) $15100=263100$
48 "@18 $76=88200$
15 " (1) $110=165150$
Amount of invoice $£ \overline{5 \overline{5}, 964126}=24 \frac{1}{8} \mathrm{c} . \times 119,292 \frac{1}{2}$

$$
=\$ 29,027.84 t
$$

(4) Distance round the field $=(63 \cdot 5+27 \cdot 75) \times 2=182.5$ rods.
\therefore Cost $=\$ 1.75 \times 182 \cdot 5=\$ 319 \cdot 375$.
(5) (a) $\frac{362880-60480+15120-4392+1385}{362880}=\frac{314513}{362880^{\circ}}$
(b) $=\frac{4 T^{7} \sigma+5 I^{2}-2 \frac{1}{2}}{{ }^{2} 1_{1}^{2}}=\frac{83_{5}^{1} 5}{\frac{5_{1}^{2} 1^{2}}{2}}=\frac{441}{3760^{\circ}}$
 $\begin{cases}\text { Sulphur } & 2\end{cases}$

$$
\begin{aligned}
& \text { " } 20=3^{3} \sigma \\
& " \quad 20=\frac{2^{2}}{2} \text { or } \frac{1}{\text { to }} .
\end{aligned}
$$

When $20 \mathrm{cwt} .=$ charcoal, $20 \mathrm{cwt} . \times 20=133 \frac{1}{\mathrm{z}} \mathrm{cwt}$. is weight of powder.

Nitre $=\frac{9}{2}$ of $133 \frac{1}{\mathrm{z}}=100 \mathrm{cwt}$.
Sulphur $=$ Io of $133 \frac{\mathrm{t}}{\mathrm{t}}=131 \mathrm{cwt}$.
(7) Cost of wine $\$ 2.60 \times 360=\$ 936.00$

$$
\begin{aligned}
& \text { carriage }=17.20 \\
& \text { duties }=83.50
\end{aligned}
$$

Total cost $=\$ 1,039.70$

$$
\text { gain }=50.00
$$

Selling price $=\$ 1,089.70$
He must sell rem. which is $\frac{1}{2}$ of $360=306$ gal. for $\$ 1,089.70$.
\therefore He sells 1 gal. for $\$ 1,089.70 \div 306=\$ 3.56 \frac{1}{2}$.
(8) From January 3rd to April 6th $=93 \mathrm{dy}$.

(9) Seconds' pendulum

1 metre $=\frac{70}{8}$ yd. $=\frac{30}{84} \times 36 \mathrm{in} .=39.375$ in

$$
\text { Difference }=.00421 \mathrm{in} .
$$

(10) (a) Min. hand in going 12 min . gains 11 min . on hour hand \therefore as it has to gain 20 min . it must go $\mathrm{t}^{7} \times 20=21 \mathrm{Hr} \mathrm{min}$.
\therefore they are coincident at 21 gr min. after 4 o'clock.
(b) To be at right angles there must be 15 min . spaces oetween minute and hour hands. As there are 20 min . spaces between them at 3 o'clock the minute hand must gain 5 min.

It gains 5 min . in $\mathrm{tf}^{\mathrm{f}} \times 5=5 \mathbf{5}^{5} \mathrm{r}$ min.
$\therefore 5{ }_{1}^{5} \mathrm{~min}$. after 4 they are at right angles.

December, 1883 (Page 33).
(1) Indicating the work first, we have the expression

$$
\begin{aligned}
& (59,404+47,675)(59,404-47,675) \div 7 \times 13 \times 19, \\
& =(107,079 \times 11,729 \div 7 \times 13 \times 19, \\
& =(15,997 \times 11,729 \div 13 \times 19, \\
& =179,418,513 \div 13 \times 19, \\
& 13 \mid 179,418,513, \\
& 19 \left\lvert\, \frac{13,801,424}{726,390}-14\right., \\
& \therefore \text { Quotient }=726,390, \\
& \hline 72
\end{aligned}
$$

(2) Sold 5 for 11 c ., or 5 doz. for 132 c .

Bought 5 doz. for 50 c .
Gain on $\begin{aligned} 5 \overline{\text { doz. }} & =82 \mathrm{c} \\ 206 & =328 \mathrm{c} .\end{aligned}$
" 11 boxes $=\$ 36.08$,
(3) Cost of fence $=\$ 1 \frac{1}{2} \times 2(40+25)$

$$
=\$ 3 \times 65=\$ 195
$$

Cost of land $\frac{40 \times 25}{160} \times \$ 300=\$ 1,875$, which is less than ten times the cost of the fence.
(4) If C gets 1 share, A gets 2 shares, B 2 shares - $\$ 70$, $\therefore 5$ shares - $\$ 70=\$ 1,200$,

$$
1 \text { share }=\$ 1,270 \div 5=\$ 254=\text { C's, }
$$

\therefore A's share $=\$ 008$, and B's $=\$ 4: 38$.
(5) $\frac{\frac{2}{6} \text { of } 8 \frac{1}{8}+2 \frac{1}{7} \text { of } 5 \frac{5}{8}}{3 \text { of } 3 \frac{1}{4}-\frac{1}{3} \text { of } \frac{1}{8} \text { of } 2 \frac{2}{3}}=\frac{\frac{10}{3}+\frac{25}{2}}{\frac{3}{2}-\frac{4}{8}}=\frac{60+225}{27-8}=\frac{285}{19}=15$
(6) $(1.302+3.2589+40.93) \times .00297$

$$
\begin{aligned}
& =45 \cdot 4909 \times \cdot 00297 \div 90.09 \\
& =6.4987 \times .003 \div 13=-00149962
\end{aligned}
$$

(7) Price $=\frac{2875-1083}{2000} \times 164$ $=\frac{1792 \times 65}{8000}=\cdot 224 \times 6 \overline{0}=\$ 14.56$.
(8) A must allow B a start of 1 min , i.e. $\frac{1}{8}$ of a mile $=293 \frac{1}{\mathrm{~s}} \mathrm{yd}$.
(9) Gang do $\frac{1}{8}$ of work each day ; in 5 dy . 合 work done; 8 work finished by 2 men in 5 dy . \therefore 1st man did $\frac{2}{8}$ work in 5 dy. ANs. $\frac{1}{4}$.
(10) Interest $=\$ 275.80 \times{ }_{3}^{29 \theta^{1} 5} \times \mathrm{T}^{\frac{7}{60}}=\$ 4.813$.

June, 1884 (Page 33).
(1) See Public School Arithmetic, page 29, for the principle, $\therefore 12,434 \times$ Divisor $+2,763=87,911,143$. 70,070. ANs.
(2) (a) 243 contains 27 and 81 ; 11 and 77 are contained in 22 and 28, these may therefore be cancelled; and we have left $7 \times 3 ; 2^{2} \times 7 ; 2 \times 11 ; 3^{3} ; 3^{4} ; 3^{5} ; 3^{3} \times 2^{3}$. Of these the I. C. M. is $7 \times 3^{5} \times 2^{3} \times 11=7 \times 243 \times 8 \times 11=149,688$. Ans.
(b) $94,605=5 \times 3 \times 7 \times 17 \times 53$;
$96,509=7 \times 17 \times 811 ; \therefore$ G.C.M. $=7 \times 17=119$. ANs.
(3) $1 \mathrm{dy} .=1,440 \mathrm{~min} . ; \therefore 23 \mathrm{hr} .56 \mathrm{~min} .=1,436 \mathrm{~min}$.

(4) (a) 1 st fraction $=\frac{21 \times 59}{32} ; 2$ nd $=\frac{35}{177} ; 7 \frac{3}{2}$ Ans. (b) $\frac{1}{1}$.
(5) Gain per bushel $=8 \frac{1}{2} \mathrm{c}$. ;

Number bushels $=(3,616-112) \div 34=\frac{1752}{17}$ $\frac{17}{2} \times \frac{1752}{17}=\$ 8.76$.
(6) $\left(11 s .6 \frac{1}{2} d.\right) \div 2 \frac{1}{6} d .=\frac{554}{9}=$ No. square inches in surface. $\therefore \frac{554}{9} \times \frac{1}{2}=\frac{277}{9}=$ number cubic inches in plate.
. Weight of plate $=\frac{277}{1728 \times 9} \times \frac{125}{2} \times 16=\frac{277000}{9 \times 12 \times 12 \times 12}=$ 17.73456 oz. Ans.
(7) A, B, C do 4 times the work in 48 hr .

A, B " 3 " " 48 hr .
\therefore C does the work in 48 hr .
Again : A, B, C do 3 times the work in 36 hr .
A, C " 2 " " 36 hr .
\therefore B does the work in 36 hr ; A in $28 \frac{4}{5} \mathrm{hr}$.
(8) 1 in $10=10$ in $100 ; 3$ in $25=4$ in 100 .

Suppose 1,000 men at first; $\therefore 900$ after first battle and 792 after second battle are left ; $3,960 \div 792=5$.

Ans. 5, 000 men.
(9) 16% of $1,200=16 \times 12=192$; net weight $=1,008$ each. $1,008 \times 8 \times 18=1,008 \times 11=\$ 110.88$.
(10) (a) 8% for $12 \mathrm{mo}=32 \%$ for $48 \mathrm{mo}={ }_{3}^{32}$ for 16 mo .

Interest $=\$ 24 \cdot 0426$.
(b) $3 \frac{3}{2}-3 \frac{1}{2}=\frac{1}{4} \mathrm{yr}$. Interest for $\frac{1}{4} \mathrm{yr} .=\$ 4.80$.
\therefore Interest for $3 \frac{3}{4} \mathrm{yr} .=4.80 \times 15=\$ 72$.
\therefore Principal $=312-72=\$ 240$, of which interest for 1 7r. $=\$ 4.80$; or interest on 60 for $1 \mathrm{yr} .=4.80$;
\therefore rate $=8 \%$.
Decrmber, 1884 (Page 24).
(1) Divisor $=$ quotient ; $\quad \therefore$ dividend $=\left(\right.$ divisor $^{2}{ }^{2}-80,407,089$.
(2) To leave no remainder the numbers must be 11,050 and 35,581 , and of these the G. C. M. is 221 ,
(3) $\$ 34 \cdot 375+21 \cdot 45+8 \cdot 906+10 \cdot 453+9 \cdot 625+42=\$ 126 \cdot 809$
(4) (a) $5 \frac{1}{2}+\frac{7}{4} 9+16=2293 . \quad$ N.B. -In the second addend, observe that by general agreement $2 \frac{1}{3} \div 11 \frac{3}{4} \times 7 \frac{1}{2}=\left(2 \frac{1}{3} \div 11 \frac{1}{4}\right) 7 \frac{1}{2}$. It would prevent all ambiguity if brackets were invariably used in such cases.
(b) $\frac{8}{10} \times \frac{9}{11} \times \frac{2}{100} \times \frac{4 \overline{2} 6}{1000} \times \frac{17}{16} \times \frac{3}{2}=\frac{104652}{11000000}=00951381$.
(5) $\frac{\text { Width } \times 5}{\frac{8}{4}} \times 90 \mathrm{c} .=2,200 \mathrm{c}$.
\therefore width $=\left(2,200 \times \frac{8}{4}\right) \div(5 \times 9)=3 \frac{3}{4} \mathrm{yd} .=11 \frac{1}{4} \mathrm{ft}$.
(6) Boy does 1 piece of work in 42 dy. ;

Man "f 7 ، ${ }^{\prime}$ " 14 dy.;
Both do 10 pieces in 14 dy 14 dy .
(7) $460-360=100 ; \frac{102}{460}=\frac{2^{5}}{3}$. The price per gallon has been diecreased by ${ }_{2}{ }^{5}$, of itself; therefore the quantity must be increased by ${ }^{18}$ of itself to preserve the same selling price :

(8) 1884 was leap year; time $=423 \mathrm{dy}$.

$$
\$ 275.60 \times \frac{423}{365} \times \frac{6}{100}=\$ 19 \cdot 163
$$

(9) The hands are 20 spaces apart; the minute hand must gain 18 and 22 spaces respectively. It gains 55 spaces every hour, or 11 spaces every 12 min , or 1 space in $1_{1}^{2} \mathrm{~min}$.

Ans. 4:19 ${ }^{\frac{7}{1}} \mathrm{~min}$. ; 4:24 min.
June, 1885 (Page 35).
(1) $005904=$ five thousand nine hundred and four millionths.
(2) 1st fraction $=2 ; 2_{\mathrm{nd}}=\frac{4}{13} \times \frac{3722}{194}$.

Result $=2 \times \frac{13}{4} \times \frac{194}{3722}=\frac{1261}{372 \overline{2}}$.
(3) $17 \cdot 6 \dot{6} \dot{4}=17 \cdot 65 \dot{4} 5454 \dot{5}$
$4 \cdot \dot{8} 3 \dot{5}=4 \cdot 83 \dot{5} 835 \overline{5} \dot{3}$
$6 \cdot 408=\frac{6 \cdot 40888888}{28 \cdot 89 \dot{9} 27017}$
Ans.
(4) $2.53+2.99+9.25+27.50+21.87 \frac{1}{2}+29.25=\$ 93.39 \frac{1}{2}$. Ans.
(5) $\$ 7.50+.7 \dot{j}=\$ 8.25$ for $100 \mathrm{lb}, \quad \therefore 84 \mathrm{c}$. Ans.
(6) Interest $=\$ 167 \times 3.75 \times .07=\$ 43.8375$.
(7) $\$ 100$ yields $\$ 6$ in 1 yr .
$\therefore 100$ yields $\$ 100$ in $180 \mathrm{yr} .=16 \frac{2}{3} \mathrm{yr}$. Ans.
(8) Give A 2 shares, B 7 shares;
$\therefore \$ 1,200=9$ shares, \therefore A gets $\$ 266.66 \frac{2}{3}$; B $\$ 933.33 \frac{1}{3}$. Ans.
(9) First before the minute hand passes the hour hand.

Suppose the hour hand has moved 1 space, then the minute hand has moved 12 such spaces from the figure XII, and it is still 1 such space from the figure III.
$\therefore 13$ spaces $=15 \mathrm{~min}$, on the clock
12 " $=\frac{12}{3}$ of $15 \mathrm{~min} .=13 \mathrm{~min}$. $50 \mathrm{t}^{\frac{\rho}{3}} \mathrm{sec}$. past III. Ans.
Second when the hands are together, which takes place at $16 \mathrm{~min} .21 \mathrm{y}^{2} \mathrm{sec}$. past III. ANS.
(10) $\$ 720-$ sum $+7 \frac{1}{2}$ sum $=\$ 1,305$

$$
6 \frac{1}{2} \text { sum }=1,305-7 \underline{0} ; \therefore \$ 90 \text { Ans. }
$$

December, 1885 (Page 36).
(1) See Public School Arithmetic, pages 22, 93 and 94.
(b) $2,3,5,7,11$ are the prime factors.
(2) (a) $\frac{1}{2} \frac{4}{3}$ Ans.
(b) $1,224=2^{3} \times 9 \times 17 ; 1,656=2^{3} \times 9 \times 23$; \therefore L. C. M. $=2^{3} \cdot 9 \cdot 17.23=28,152$. Ans.
(3) $\frac{2}{3}$ of $\frac{5}{7}$ fortune $=\$ 900 ; \quad \therefore$ fortune $=\$ 1,890$.
(4) $12 \frac{5}{6} \times 12=154 ; 159 \frac{1}{7}-154=5 \frac{1}{7}$ remainder.
(3) $1 \mathrm{wk} .=10,080 \mathrm{~min} \cdot ; 3 \cdot 74976 \div 10,080=\cdot 000372$.
(6) $\$ 27 \frac{1}{2} \times 11 \frac{8}{4}=\$ 323.12 \frac{1}{2}$.
(7) Public School Arithmetic, pages 32, 34.
(8) Interest $=\$ 5$ 立 $\times 8 \times 3=\$ 132$.
(9) $\frac{1}{10}+\frac{1}{12}+\frac{1}{15}=\frac{1}{4} ; \therefore 4 \mathrm{hr}$.

July, 1886 (Pagm 36).
(1) $(88,176 \times 9,1,2) \div 64=12,504,280 \frac{1}{2}$.
(b) $12 \times 144 \times$ number $=827,658,432$.

No. $=827,658,432 \div(12 \times 12 \times 12)=478,969$. Ans.
(2) $\$ 19.38+5.25+7.35+6.30+14.00+16.80=\$ 69.08$. Ans.
(3) $(49+180) 2 \times \$ 1.15=\$ 526.70$. Ans.
(4) (a) 14 price $+82=170+3 \times 36$
price $=(278-82) \div 14=\$ 14$. Ans.
(b) $\$ 3,540 \div(69+37+12)=30$. Ans.
5) (a) Interest on $\$ 1$ for $2 \frac{1}{2} \mathrm{yr}$. at $6 \%=15 \mathrm{c}$. $\$ 300 \div .15=\$ 2,000 . \quad$ Ans.
(b) Interest on sum $=2$ sum.
i.e. sum $\times 25 \times$ rate $=2$ sum;
or 25 rate $=2 ;$ rate $=\frac{180}{80} ; 8 \%$ Ans.
(6) A's share $=$ B's share $+60=2 C^{\prime}$'s share
\therefore B's share $=2$ C's share -60
C's share = C's share
A's, B's and C's $=5$ C's share $-60=1,000$
C's share $=1,060 \div 5=\$ 212 ; B ' s=\$ 364 ; A ' s=\$ 424$.
(7) The gang does the work in 20 dy .
i.e. $\frac{1}{2} \frac{8}{8}$ work in 19 dy ., leaving ${ }_{2} \frac{10}{}$ for the sixth man. Ans.
(8) A runs 440 yd. while B goes 420 , and C 410 \therefore B goes 42 while C goes $41 ; B$ gains 1 yd. in every 42 that he runs, or $10 \frac{1}{2} \frac{1}{4}$ yd. in 440 . Ans.

December, 1886 (Page 37).

(1) $\frac{9}{52}$ Ans. 52 Ans.
(2) $\frac{1}{10000} \cdot$ Ans.
(3) Length $\times 4=10 \times 160 ; 400 \mathrm{rods}=11 \mathrm{mi}$.
(4) $\$ 12.50 \times 3=\$ 37.50$. Ans.
(5) $80+(\varepsilon \times 40)=200$. Ans. 30 cows.
(0) 5 yr . Ans.
(7) Interest for $3 \mathrm{yr},=7 \frac{1}{2} \mathrm{c} . \times 3=22 \frac{1}{2} \mathrm{c}$.

Int. for $219 \mathrm{dy} .=7 \frac{1}{2} \mathrm{c} . \times \frac{219}{365}=4 \frac{1}{\mathrm{~h}} \mathrm{c} . \quad$ Amt. $\$ 1.27$. Ans.
(8) $50 \mathrm{c} . \times 900=450$; time $=150 \mathrm{mo} .=12 \frac{1}{4} \mathrm{yr}$. Ans.
(9) $\frac{11}{10} \times \frac{10}{9} \times 810=\$ 9.90$. Ans.
(10) A number is divisible by 9 when the sum of its digits is divisible by 9 .
(11) Cow gives 25 qt. in $2 \mathrm{dy} .=24 \mathrm{oz}$. butter \therefore in 1 dy. 12 oz . butter. 84 lb . Ans.
(12) $1 \mathrm{oz} .=\frac{1}{16} \mathrm{lb} ., \therefore \frac{15}{16}$ of $\$ 64=\$ 6 \mathrm{U}$. Ans.

July, 1887 (Pagi 38).
(1) $595 \times 595=354,025$. Ans.
(2) $\$ 300$. Ans.
(3) $\frac{2}{7}$ of $\frac{7}{20}$ investment $=\$ 100 ;$ investment $=\$ 1,000$.
N.B.-Thls, problem is not clearly expressed. The words "worth $\$ 100$ less than before" probably mean that he has $\$ 100$ less in the investment than, etc.
(4) $\frac{37}{39}$. Ans.
(5) \$685.71\%. Ans.
(6) 12 lb . Ans.
(7) 1st farm cost $\$ 2,500$; 2nd farm cost $\$ 3,750$; loss $=\$ 250$. Ans.
(8) . On hand 12,000 rations ; 2,000 consumed; 10,000 left; 62 mo . Ass.
(9) Cost price $=\frac{4}{3} \times \$ 24=\$ 32 ; \$ 2$ gain on $\$ 32=67 \%$. Ans.

December, 1887 (Page 38).
'1) 5 doz. oranges +7 doz. lemons $=$ 100 apples +105 apples $=205$ apples.
(2) In 10 sec. boat goes 100 yd .
\therefore in $5 \frac{1}{2}$ dy. it goes $\frac{100 \times 5 \frac{1}{2} \times 24 \times 60 \times 60}{10 \times 1760}=2,700 \mathrm{mi}$.
(3) Interest for $1 \mathrm{yr} .=\$ 7.50 ; 146 \mathrm{dy} .=\frac{7}{8} \mathrm{yr}$.
\therefore interest $=\frac{2}{6}$ of $\$ 7.50=\$ 3$.
(4) For 121 repaid 100 was borrowed.
(5) $\frac{1}{2}$ in. sq. represents 640 sq. ac.
$\therefore 1$ " " $640 \times 4=2,560 \mathrm{sq}$. ac.
(6) 1st charges $\$ 2.25$ for 6 hr . work.

Wages of 1 st fortnight $=\$ 27$.
(7) 11 cub. ft . of ice weigh the same as 10 cub. ft . of water $\therefore 11 \mathrm{cub}$. ft. of ice weigh $10,000 \mathrm{oz}$. 1 cub. ft. of ice weighs $909{ }^{2} \mathrm{oz}$.
(8) Bought 1,000 yd. at 60 c .

(9) Length of walls $=308 \mathrm{ft}$.

Cub. contents $=308 \times 8 \times 2=4,928 \mathrm{cub} . \mathrm{ft}$.
(10) House and lot $=$ house and $\frac{3}{4}$ house

$$
\therefore \text { house }=\$ 1,200 \text {, and lot }=\$ 2,100
$$

(11) Cistern contains $5 \times 5 \times 5=125$ cub. ft.

$$
=125 \times 1,728 \text { cub. in. }
$$

\therefore No. gal. $=(125 \times 1,728) \div 277 \cdot 274=779{ }^{\text {r } \frac{1}{2} \frac{7}{3} \frac{7}{7} 7}$ gal.
July, 1888 (Page 39).
(1) See Public School Arithmetic, pages 137, 157, 125.
(2) $\$ 39.75 \times 486=\$ 19.3185$
$\begin{aligned} & 885 \times 13.5=\frac{\$ 19.9185}{\$ 3.75} \\ & \$ 71.2935 \\ & \text { which } \div 375\end{aligned}$
givee 190-116 as the number of pounds received. ANs. :
(3) $25 \times 3 \frac{1}{5}=80 \mathrm{mi}$. 1st train was ahead.

Distance gained per hour by 2nd train was 12 mi .
$\therefore 80 \div 12=6 \frac{7}{\circ} \mathrm{hr} . ; 62+4 t=10 \mathrm{hr} .62$ min., when $37 \times 6 \frac{2}{8}=246 \frac{3}{3} \mathrm{mi}$. from starting point. Ans.
(4).$\frac{8}{2} \%$ property $=\$ 3,093.75$;
$\therefore \frac{1}{2} \% \quad \%=\cdot 1,031.25$
i. e. 100% property $=1,031.25 \times 400=\$ 412,500$. A.Ns.
(5) $\$ 1.26-\$ 1.05=21 \mathrm{c}$; $21 \mathrm{c} .-11 \mathrm{c} .=10 \mathrm{c}$.

But gain $=11 \mathrm{c}$. more than loss, \therefore the 10 c . must be evenly divided $; \therefore 1.26-16 \mathrm{c} .=\$ 1.10=$ reai value of cloth.

The gain therefore $=30 \mathrm{c} .: 30 \times 800=\$ 240$. Ans.
(6) First row is double, \therefore each rafter $=22 \mathrm{ft} .6 \mathrm{in}$. both rafters $=45 \mathrm{ft} .=540 \mathrm{in}$.
Surface of roof $=(540 \times 54 \times 12) \div(4 \times 6)=14,580$ shingles.
(7) Average daily pay $=92 \mathrm{c}$.

Boys get 65c. ; men 110c.
$\therefore 2$ boys +3 men give 92c. average daily wage ;
for $92-65=27$, and $110-92=18$. But $18: 27$ as $2: 3$ hence 8 boys +12 men will give the average. Ans. 12.
(8) Area $=432$ per. : sides are as $4: 3$; or $1: \frac{3}{4}$ $\therefore \frac{3}{4}$ of $432=324$ sq. per. in the square on the least side. hence side $=\sqrt{324}=18 . \quad$ Greatest side $=24$.
(9) $\frac{115}{100}$ of $\$ 9,000=\frac{80}{100}$ of No. 2's capital i.e. $\$ 10,350=\frac{4}{5}$ capital, \therefore capital $=\$ 12,937.60$.

December, 1888 (Page 40).
(2) $\$ 8.00-.80=\$ 7.20 ; \$ 2.80$ Ans.
(3) 27 men $=81$ boys; $\$ 82.60 \div 118$; boy gets 70 c ., man $\$ 2.10$. ANs.
(4) $\$ 387.56 \times \frac{246}{365} \times \frac{6}{100}=\$ 15.68$. Ans.
(5) $\$ 20-\$ 15=\$ 5$ gain on $\$ 15 ; 33 \%$ ANs.
(6) $(62,832-4,800) \times 8 \div 128=3,627$ cords.
(7) $870 \times 4 \frac{1}{8} \times R=274.05$
$\therefore \mathbf{R}=274.05 \times \frac{2}{9} \div 870=\frac{7}{100} ;$ rate $=7 \%$
Interest on $\$ 1,000$ for $\nmid \mathrm{yr}$. at $7 \%=\$ 17.50 ;$
Amount $=\$ 1,017.50$ ANS.
(8) $9 \mathrm{rods} \times 11 \mathrm{rods}=148 \frac{1}{2} \mathrm{ft} . \times 181 \mathrm{f} \mathrm{ft}$. $=$ size of lot
\therefore length of sidewalk $=\left(160 \frac{1}{\frac{1}{2}}+185 \frac{1}{2}\right) \times 2$
\therefore area in yards $=346 \times 8 \div 9=3078$ sq. yd. Ans.

July, 1889 (Page 41).
(1) 60 lb . wheat $=40 \mathrm{lb}$. flour
\therefore No. barrels flour $=343 \times 40 \div 196=70$ barrels. Ans.
(2) 5 mo. $12 \mathrm{dy} .=5 \frac{2}{5} \mathrm{mo} .=\frac{9}{20} \mathrm{yr}$. Interest $=\$ 597.50 \times \frac{49}{20} \times \frac{8}{100}=\$ 117.11 . \quad$ Ans.
(3) In 7 hr . A will be 7 mi . ahead; of this 7 mi . A will walk 4 and B 3; 24 mi . Ans.
(4) Diameter $\times \frac{22}{7} \times 360=1 \mathrm{mi} .=5,280 \mathrm{ft}$.

Diameter $=5,280 \times \frac{7}{22} \div 360=4 \mathrm{ft} .8 \mathrm{in}$. Ans.
(5) $10 \%=\frac{1}{10} ; \therefore$ at the end of each year population becomes $\frac{11}{10}$ of what it was at first ; \therefore final population $=$ $10,000 \times \frac{11}{10} \times \frac{11}{10} \times \frac{11}{10}=13,310$. ANs.
(6) 1 linear inch $=8 \mathrm{mi}$; $\therefore 1 \mathrm{sq}$. in. $=64 \mathrm{sq} . \mathrm{mi}$.
$\therefore 1_{1^{5}}^{5} \times 1 \frac{1}{8} \mathrm{sq} . \mathrm{in} .=\frac{21}{16} \times \frac{9}{8} \times 64 \times 640 \mathrm{ac} .=60,480 \mathrm{ac}$. Ans.
(7) $\$ 7$ pays for $\$ 35$ for 40 mo .
$\therefore \frac{1}{200}$ pays for $\$ 1$ for 1 mo. $; \therefore$ rate $=8,750 \div 200=\$ 43.75$. ANs.
(8) $\frac{1}{4} \mathrm{mi} .=1,320 \mathrm{ft}$;
\therefore planks $=1,320 \times 8 \times 2=21,120 ;$
Scantling $=1,320 \times 4=5,280=26,400 \mathrm{ft}$. oil lumber $26.4 \times 17=\$ 448.80$. Ans.
(9) $\$ 1,171.41$. ANs.

December, 1889 (Page 42).
(1) $(\$ 82.80-\$ 72) \div 12 \mathrm{c} .=90 ; \$ 72 \div 90=80 \mathrm{c}$. ANS.
(2) $\operatorname{Time}=567 \mathrm{dy}$.
\therefore Interest $=\$ 84.25 \times \frac{567}{365} \times \frac{7}{100}=\$ 9.17$ nearly. ANs.
(3) One pint reaches $3,000 \mathrm{in} .=250 \mathrm{ft}$.; 1,147 pints reach, etc., 54 mi .543 yd .1 ft . ANs.
(4) The question should have stated whether the ditch lies inside or outside of the orchard. We tako it outside.
$\therefore 24 \frac{2}{3}$ rods by $15 \frac{1}{4}$ rods $=407 \mathrm{ft}$. by $251 \frac{5}{8} \mathrm{ft}$.;
$\begin{gathered}\text { Price }=1,3321\end{gathered} \times 32 \times 4 \times 19=2307+407+251 \frac{5}{8}+2515+7 \frac{1}{2}+7 \frac{1}{2}=1,3321 \mathrm{ft}$. Price $=1,3321 \times 39 \times 4 \times 19=\$ 349.71_{1}^{9} \frac{8}{9}$. ANS.
(5) $12 \frac{1}{2} \%=\frac{1}{8} ; 15 \%=\frac{3}{20} ; \therefore \frac{9}{8} \times \frac{17}{20}$ cost $=\$ 306 ; \$ 320$ ANs.
(6) $12 \mathrm{ft} .3 \mathrm{in} .-9 \mathrm{in} .=11 \frac{1}{2} \mathrm{ft} .=$ height of paper.

Area of ceiling $=26 \frac{1}{2} \times 162=4412 \mathrm{sq}$. ft .
" walls $=86 \frac{1}{3} \times 11 \frac{1}{2}=\frac{992 \frac{1}{6}}{1,434 \frac{1}{2}}$
Doors and windows $=98 \frac{2}{2}$
Amount to be papered $=\overline{1,336} \mathrm{sq} . \mathrm{ft}$.
$1,336 \div\left(\frac{21}{8} \times 3\right)=169 \frac{1}{6} \frac{1}{3} \mathrm{ft}$., or 56 yd .1 ft . $7 \frac{5}{8} \frac{\mathrm{in}}{3}$. ANs.
(7) $\$ 16$ per ton $=8$ mills per lb .; price of hay $=\$ 24.12$ Price of groceries $=$

$$
\begin{aligned}
\$ 4.80+5.85+9.75+6.15+2.37 & =\$ 21.92 \\
\text { Balance in cash } & =\overline{\$ 2.20 .} \text { Ans. }
\end{aligned}
$$

(8) $\frac{7}{26}$ mill cost $\$ 4,064.55$; \therefore mill cost $\frac{26}{7}$ of $\$ 4,064.55$.

At $\frac{1}{20}$ more cost Smith pays
$\frac{9}{35} \times \frac{21}{20} \times \frac{26}{7}$ of $\$ 4,064.55=27 \times 13 \times \$ 11 \cdot 613=\$ 4,076 \cdot 163$. ANs.
(b) $\frac{7}{26}+\frac{9}{35}=\frac{479}{310} ; \quad:$ remainder $=\frac{431}{910}$.
(9) $24 \frac{1}{\mathrm{f}}$ sq. yd. $=(24 \cdot 2 \div 4840)$ sq. ac. $=\frac{1}{200}$

76 sq. rods $=\left(\begin{array}{llc}76 \div 160\end{array}\right) \quad$ " $\quad 95.48$ ac
Farm $=184 \cdot 48$ ac.
$3 \cdot 85+9 \cdot 147+76 \cdot 9+23 \cdot 600^{\circ}+84=147 \cdot 50 \mathrm{a}$ ac.
Uncleared part $=184 \cdot 48-147 \cdot 505=36 \cdot 975$ ac.
$\therefore \%$ uncleared $=3697 \cdot 5 \div 184 \cdot 48=20 \cdot 0428+$. Ans.
(10) $\$ 2,648.78$. Ans.

July, 1890 (Page 43).
(1) $\$ 2,213.47$.
(2) Father's age $=5$ times boy's age $=3$ (boy's age +6)

2 times boy's age $=18$. Ans. 9 yr. old.
(3) $(200 \times 20 \times 33) \div 27=4,888 \%$ cub. yd. Ans.
(4) 12 men $=72$ boys; 15 women $=48$ boys; whole $=150$ boys $\therefore 1$ boy gets $\$ 2.20$; each woman $\$ 3.60$; each man $\$ 13.20$. Ans.
(5) Total tax $=7$ mills $\times 9,600=\$ 67.20$.
(6) Time $=671 \mathrm{dy} ., 1892$ being leap year

Interest $=\frac{33}{2} \times \frac{13}{200} \times \frac{671}{355}=\$ 1.9716$, say $\$ 1.98$
Amount $=\$ 16.50+1.98=\$ 18.48$. ANs.
(7) 15 drains, 80 rods long, at 33c. per rod
$30 \mathrm{ac} ., \frac{2}{2}$ bush. per acre, at 69 c . per bushel $(15 \times 80 \times 33) \div(30 \times 2 \times 66)=10$ yr. Ans.
(8) 18 men do the work in 450 hr .

Otherwise : $-\frac{1}{6}$ less men require $\frac{1}{5}$ more time, or 540 hr .
$=60 \mathrm{dy}$. of 9 hr . each.
(9) Distance $=5 \mathrm{mi}$. ; difference of rates $=1 \mathrm{mi}$. per hour \therefore time $=5 \mathrm{hr}$.; A goes 20 mi . Ans.

December, 1890 (Page 45).

(1) $\$ 2,495.08$.
(2) At $\$ 60$ we get $\frac{5}{6}$ ac. fer $\$ 50=$ final remainder
$=\frac{1}{6}$ of 3 rd rem., $\therefore 3 \mathrm{rd}$ rem. $=5$ ac. $=\frac{1}{5}$ 2nd remainder
$\therefore 2$ nd remainder $=25$ ac. $=\frac{1}{4}$ of original ; 100 ac. Ans.
(3) 1 lc . per pound on 600 lb . $=675 \mathrm{c} .=$ profit

$$
5,210 \mathrm{c} .=\text { cost price }
$$

$600-65=535 \mathrm{lb}$. sold for $\overline{5,885} \mathrm{c} . ~ 11 \mathrm{c}$. Ans.
(4) When A starts B is $37 \frac{1}{2} \mathrm{mi}$. distant; they approach at 6 mi . per hour, and meet in 64 hr . B takes 15 hr . to reach K , or $8 \frac{1}{4} \mathrm{hr}$. after meeting A, i.e. he goes $8 \frac{3}{4} \times 2 \frac{1}{2}=21 \frac{7}{8} \mathrm{mi}$.

Secondly :-A takes 12 hr . to reach Belleville; hence B has $15-12 \frac{9}{9} \mathrm{hr}$. to walk, or $2 \frac{1}{4} \times 2 \frac{1}{2} \mathrm{mi} .=5{ }^{\frac{1}{4}} \mathrm{mi}$.
(5) Time $=365+318=683 \mathrm{dy}$.

$$
\begin{aligned}
& \text { Interest }=\$ 162.50 \times \frac{683}{365} \times \frac{11}{200}=\$ 16.7241, \text { say } \$ 16.73 \\
& \text { Amount }=\$ 162.50+16.73=\$ 179.23 . \quad \text { ANS. }
\end{aligned}
$$

(6) L. C. M. of $\frac{3}{4}, \frac{4}{4}, \frac{5}{4} \mathrm{yd}$. is 15 yd .
\therefore cost $=20 \times 15 \times \frac{4}{3} \times \$ 1.10=8440$. Ans.
(7) 108 ac. at $(\$ 12.50+\$ 14.75)=\$ 2,943.00$ $(180+96):$ ruds at $\$ 1.35=74 \overline{5} .20$

Deduct $\$ 1,160+\$ 17.20$

$$
83,688.20
$$

$$
=1,177.20
$$

$$
\text { Net cost }=\overline{\$ 2,511.00}
$$

Cost per acre $=\$ 2,511 \div 108=\$ 23.25$. Ans.
(8) $\$ 120 \times \frac{5}{3} \times$ rate per $\$=\$ \frac{41}{4}$.

Rate per cent. $=\frac{41}{4} \times \frac{3}{5} \times \frac{1}{120} \times 100=5 \frac{1}{8} \% . \quad$ Ans.
(9) $20 \%=\frac{1}{5}, \therefore$ cost $=\frac{5}{6}$ selling price; $\frac{1}{5}$ cost $=\frac{1}{6}$ selling.

Farmer's gain $=5$ bush. at $90 \mathrm{c} .=\$ 4.50$
$25 \%=\frac{1}{4}, \therefore$ merchant's gain $=\frac{1}{5}$ of selling price.
$=\frac{1}{5}$ of $\$ 25=\$ 5$; merchant's advaṇtage $=50$ c. Ans.

July, 1891 (Page 46).
(1) $\$ 2,543.22$.
(2) $\operatorname{Time}=438 \mathrm{dy}$.

Interest $=360 \times \frac{438}{36 \overline{5}} \times \frac{1 \overline{5}}{200}=\frac{3240}{100}=\$ 32.40 ; \$ 392.40 \mathrm{ANm}$.
(3) He pays $\$ 20$ for 144 , He gets $\$ 20$ for $100 ;$ gain $=44 \%$.
(4) $\frac{3}{8}$ ac. $+\frac{1}{4}$ ac. $+\frac{1}{4}$ ac. $=\frac{7}{8}$ ac. Ans.
(5) $\cdot 065+\cdot 105+\cdot 27=\cdot 44 ; \cdot 56$ left; $\frac{1}{4}$ of $\cdot 56=\cdot 14=280$ sheep;
$\therefore \cdot 01=20$ sheep; whole flock $=2,000$ sheep. Ans.
(6) $\frac{5}{19}$ of $\$ 9,500=\$ 2,500=$ A's share; $\$ 7,000$ left. If \mathbf{B} gets 3 shares, \mathbf{C} gets 4 shares $=7$ shares
$\therefore 1$ share $=\$ 1,000 ; \mathbf{B}$ gets $\$ 3,000, \mathrm{C} \$ 4,000$. Ans.
(7) $\$ 113.75 \div 65=175 \mathrm{lb}$. $=$ weight of $A+P$

$$
\begin{aligned}
& 170 \mathrm{lb}=\text { weight of } A+P \\
& 25 \mathrm{lb}=\quad \text { " } A-B \\
& \hline 200 \mathrm{lb} .=\text { weight of } 2 \mathrm{~A}
\end{aligned}
$$

A, 100 lb ; B, 75 lb . Ans.
(8) $16 \times 10 \times 2 \times 20$ c. $=\$ 64.00$

$$
\begin{aligned}
16 \times 10 \times 10 \mathrm{c} . & =16.00=\$ 80 . \\
& \text { Ans. }
\end{aligned}
$$

(9) $\$ 12.60+\$ 18.00+\$ 11.00+\$ 8.75+\$ 4.90=\$ 55.25$

$$
\text { Account }=54.45
$$

- Balance due farmer $=-.80 \mathrm{c}$.

July, 1892 (Page 47).
(1) $\$ 3.00+14.25+5.17 \frac{1}{2}+1.46 \ddagger+1.56 \frac{1}{2}+1.87 \frac{1}{2}+4.05+.52$

$$
=\$ 31.89 \frac{2}{\lambda} .
$$

(2) (a) $11 \times 3 \mathrm{~s} \times 3$ for $\$ 3=110 \mathrm{ft}$. for $\$ 3$
(b) $\frac{110}{128} \times 400=\$ 3.43$ ft. cost $\frac{300}{110} \times 128=\$ 3.49 \mathrm{fr}$ per cord. Ass.
(3) Dimensions: 12 yd., 11 yd. and 6 yd .

Outside area $=46 \times 6=276$ sq. yd.
Floors $=11 \times 10 \times 2=\frac{220}{496}$
(4) Time $=146 \mathrm{dy}$. $\overline{496} \mathrm{sq} . \mathrm{yd}$. at $10 \mathrm{c} .=\$ 49.60$.
Interest $=\$ 80 \times \frac{146}{365} \times \frac{21}{400}=\$ 1.68$.
Amount $=80+1.68=\$ 81.68$. ANs.
(5) L. C. M. of $\frac{1}{4}, \frac{1}{2}, \frac{3}{4}, 3,5,7,35,140=420$ $\$ 420+\$ 15=\$ 435$. Ans.
(7) $69 \cdot 166 \frac{1}{3}+8 \cdot 2+5 \cdot 445+.065+20.083 \frac{1}{3}=109.96$
$6.05 \times 17=102.85$
(8) $\frac{23}{400}$ amount $=\$ 21.16$

Remainder $=\cdot 11$. Ans.

Amount $=\$ 21.16 \times \frac{400}{23}=\$ 368$. Ans.
(9) (a) $\$ 150,000$ assessment pays $\$ 1,800$ taxes
$\$ 1,500$
$\$ 1,500$
(b) $\$ 150,000$
$\$ 1$

"	$\$ 18$	"
"	$\$ 04$	$"$

" $\$ 300$ per annum " $\$ \frac{1}{500} "$ = 2 mills. Ans.
tiatic School Leating, 1892 (Page 48).
(1) (a) See Public School Arithmetic, page 93.
(b) $13,230=2 \times 3^{3} \times 5 \times 7^{2}$
$22.050=2 \times 3^{2} \times 5^{2} \times 7^{2}$ $23,625=3^{3} \times 5^{3} \times 7$.
(c) G. C. M. $=3^{2} \times 5 \times 7=315$.
L. C. M. $=2 \times 3^{3} \times 5^{3} \times 7^{2}=330,750$.
(2) 1 st income $=8,940 \times \frac{9}{200}$

$$
=\$ 402.30
$$

2nd income $=8,940 \times \frac{102 \frac{8}{7}}{74 \frac{2}{8}} \times \frac{3}{100}=\$ 369.16+7$

$$
\text { Annual loss }=\$ 33.13^{\frac{1}{17}}
$$

(3) Amount due on July $3 \mathrm{rd}=\$ 2,400+\$ 60$ interest $=\$ 2,460.00$ Int. from May 22nd to July 6th at $7 \%(4 \overline{\text { ® dy }}$. $)=\quad 20.66$

Net proceeds $=\overline{\mathbf{\$ 2 , 4 3 9 . 3 4}}$
(4) $\frac{5}{4}$ cost of first $=\frac{3}{4}$ cost of second
$\therefore 5$ cost of first $=3$ cost of second
Let $15 x=$ selling price of each
\therefore A cost $12 x$ and $B \operatorname{cost} 20 x$
Cost of both $=32 x$; both sold for $30 x$
Loss $^{2}=2 x=\$ 9.60$

$$
\begin{aligned}
\therefore \begin{aligned}
12 x & =\$ 7.60 \\
20 x & =\text { cost of A } \\
\$ 96.00 & =\text { " B. ANs. }
\end{aligned}
\end{aligned}
$$

(5) 24% commission on $\$ 27,500=\$ 687.50$
Freight and storage, $\quad=\frac{250.0 \mathrm{~J}}{\$ 937.50}$
$\$ 27,500-\$ 937.50=\$ 26,562.50$ to be spent in pork. $\$ 6.25+2 \frac{1}{6} \%=\$ 6.25+15625=\$ 6 \cdot 40625$ cost of 1 cwt. $\$ 26,562.50 \div \$ 6 \cdot 40625=4,146 \backslash 4$ cwt. pork purchased. ANs.
$2 \frac{1}{2} \%=\frac{1}{40} ; \therefore \frac{41}{40}$ of the cost is the total cost of pork
\therefore commission $=\frac{1}{41}$ of money spent
2nd commission $=\frac{1}{41}$ of $\$ 26,562.50=\$ 647.87$

$$
1 \text { st commission }=687.50
$$

Whole commission $=\$ 1,335.37$
The account sales stands thus :-
Cr. by wheat $\$ 27,500$
Dr. to $4,146 \frac{\gamma}{2} \frac{1}{2} 8$ cwt. pork at $\$ 6.25=\$ 25,914.63$
" storage and freight $=250.00$
" commission on sale and purchase $=\frac{1,335.37}{\$ 27,500.00}$
(6) 5 mi . of fence will require :-

3,302 posts at $12 \frac{1}{2} \mathrm{c}$. $=\$ 412.75$
$35,200 \mathrm{ft}$. lumber at $\$ 14=492.80$
30 mi . wire at $\$ 12.80=384.00$

$$
\text { Total cost }=\overline{\$ 1,289.55} \text { ANs. }
$$

(7) (a) $1 \mathrm{gal}=.160 \mathrm{oz}$;
$\therefore 1$ gal. occupies $160 \div 1,000=\frac{16}{100}$ cub. ft.
No. gallons in cisetrn $=4 \times 4 \times \frac{22}{7} \times 6 \times \frac{100}{16}=1,885 \frac{1}{9}$ gal .
(b) The volume of the sphere $=\frac{4}{3} \times \frac{22}{7} \times 8$
$\therefore 4 \times 4 \times \frac{22}{7} \times$ height $=\frac{4}{3} \times \frac{22}{7} \times 8 ; \quad \therefore$ height $=1 \frac{1}{8} \mathrm{ft}$.
(8) $\mathbf{8 6 4 , 2 7 7 . 5 0}$.
algoma and Parry Sound (Page 49).
(2) (a) $\frac{11}{39}-\frac{2}{21}+18 \frac{88}{9}=181^{\frac{2}{3}}$
(b) $7_{3}^{2} \frac{2}{2}+7 \frac{1}{8}+66_{6}^{2}+7 t \frac{1}{2}=2749+\frac{19}{44}$

Sum of remaining fractions $=52 \frac{1}{8}+\frac{19}{44}$
Difference $=-24$ - ${ }^{\text {T }}$ 多.
(3) (10 yd . at $\left.\frac{20}{3} \mathrm{c}.\right)+(1 \mathrm{yd}$ at 8 c.$)=\frac{224}{3} \mathrm{c}$.

11 yd. at $\frac{28}{3} \mathrm{c} .=\frac{308}{3}$ c.; gain $=28 \mathrm{c}$. on 11 yd . Ans. 44 yd .
(4) In 300 dy., A and B do 15 pieces of work, B and C 12, A and C 10 ;
\therefore C does 7 pieces in 600 dy ., and $B 17$ pieces, and A and $B 30$.
Hence A and B do $\frac{15}{60}$ in 5 dy., $C \frac{14}{60}$ in 20 dy., and B will do the $\frac{31}{60}$ in $18_{\mathrm{T}^{4} y} \mathrm{dy}$.
(5) $\left(\frac{3}{4} \text { No. }+14\right)_{\overline{5}}^{4}+8=$ No.; No. $=\$ 48$.
(6) Cost price $=58 \frac{1}{\mathrm{~d}} \mathrm{c}$. ; at the given prices there will be a gain of $28 \frac{1}{\mathrm{z}} \mathrm{c}$. and $18 \frac{\mathrm{f}}{\mathrm{g}} \mathrm{c}$. on the first two; and a loss of 21 i c . and 25 c . on the other two; these are equal.

Ans. 20 lb . of each kind.
(7) 1 st income $=\frac{3}{44}$ sum invested; 2 nd $=\frac{11}{44}$ sum invested in 1 st, $\therefore \frac{14}{44}$ sum $=1,400$. Ans. $\$ 4,400, \$ 17,600$.
(8) True discount $=\frac{1}{11} ;$ bank discount $=\frac{1}{10}$

1 st +2 nd $=400 ; \frac{1}{10} 1$ st $+\frac{1}{11} 2$ nd $=38 ; \$ 180$ Ans.
(9) Down rate $=12$, up rate $=4$, i.e. $3: 1$ is the ratio of the rates; $\therefore 1: 3$ is the ratio of the times; 2 hr . going down, 6 hr . going up. ANs. 24 mi .
(10) $1 \mathrm{gal} .=10 \mathrm{lb} .=160 \mathrm{oz} .=\frac{{ }_{100}^{6}}{} \mathrm{cub} . \mathrm{ft}$.

$$
\therefore 71 \frac{57}{3} \text { gal. }=\frac{4 \overline{5} 25}{63} \times \frac{16}{100}=\frac{794}{6 \overline{3}} \mathrm{cub} . \mathrm{ft} .
$$

$$
\text { Cylinder }=\frac{29}{7} \times 8^{2} \times 30 \times \frac{1}{1728}=\frac{220}{63} \text { cub. ft. }
$$

$$
\text { Cube }=\frac{724}{63}-\frac{290}{63}=8 \text { cub. ft. } ; \therefore \text { side }=2 \mathrm{ft} .
$$

Paper A (Pagi 50).
(1) $\frac{2}{5}$ horse $=\$ 50$, etc. Ans. $\$ 250$.
(2) If the lots had been equal in number the average price

Interest on $\$ 1$ for these periods $=\frac{12}{100}, \frac{24}{100}, \frac{33}{100}$;
Discounts $=\frac{12}{112}, \frac{24}{124}, ~ \frac{33}{133}$;
Present worths $=\frac{100}{112}, \frac{100}{124}, \frac{100}{133}$, and these are the proportions of the cash values of the respective shares;
$\therefore 100\left(\frac{1}{112}+\frac{1}{124}+\frac{1}{133}\right)=\$ 3,000$.
The shares are $\$ 1,092.76, \$ 987.01$, and $\$ 920.23$.
(7) The 5% loan + the 6% loan $=\$ 98$; also
$\frac{3}{4}(\quad$ " $)+\frac{9}{10}(")=\$ 81$. \times through by $\frac{4}{3}$ and
$\therefore(\quad ،)+\frac{3}{5}(")=\$ 108$.
$\left.\therefore \frac{1}{\overline{5}}(")\right)=\$ 10$. Ans. $\$ 50, \$ 48$.
(8) $3 \frac{7}{7} \%=\frac{2}{55}, \therefore \$ 1$ cost is intended to produce $\frac{57}{55}$ sales.
\therefore for every $\frac{3}{5} \mathrm{yd}$. bought he got $\frac{57}{55} \times \frac{3}{5}=\frac{171}{275}$ cost of 1 yd. and for every $\frac{2}{5}$ yd. but. he got $\frac{2}{\overline{5}}\left(\frac{57}{\overline{5} 5}-2 \mathrm{c}.\right)=\frac{114}{275} \operatorname{cost} 1 \mathrm{yd} .-\frac{4}{\overline{5}} \mathrm{c}$.
\therefore for every 1 yd . bought he got $\frac{285}{275}$ cost of $1 \mathrm{yd} .-\frac{4}{5} \mathrm{c}$.
Actual gain on $1 \mathrm{yd} .=\frac{10}{275}$ cost of $1 \mathrm{yd} .-\frac{4}{5} \mathrm{c} .=\frac{11}{15}$ of proposed gain $\therefore \frac{2}{5 \overline{5}}$ cost per yard $-\frac{4}{5} \mathrm{c} .=\frac{11}{15}$ of $\frac{2}{5 \overline{5}}$ cost per yard. $\therefore \frac{4}{15}$ of $\frac{2}{55}$ cost $=\frac{4}{5}$ c. ; cost $=82 \frac{1}{\mathrm{~h}}$ c. per yard.
(9) A, B and C do respectively $\frac{1}{18}, \frac{1}{30}, \frac{1}{33}$ per day ; \therefore let 4,950 shares $=$ whole work ; average for $25 \mathrm{dy} .=198$ shares per day. A does 77 shares above, B 33 below, and C 48 below the average each day. Now A must make up for the deficiency of \mathbf{B} and \mathbf{C}; hence as in alligation we must find some multiple of $77=$ the sum of some multiples of 33 and 48 . We may take A 63, B 35, C 77 days respectively, as one solution out of many possible ones; so that if the work lasted 175 dy., A would do (63×77) shares over the average, and B and C together would do $(35 \times 33)+(77 \times 48)$ under the average. Hence when the work lasts only 25 dy ., A must work $\frac{1}{7}$ of $63, \mathrm{~B} \frac{1}{7}$ of $35, \mathrm{C} \frac{1}{7}$ of 77 dy . Hence one set of inswors is $9,5,11 \mathrm{dy}$. The wording of the question might have been made more precise.
(10) Let x be the yearly instalment, then at the end of the period we have the equation $x\left(1+1.05+1.05^{2}+\right.$ etc. $\left.+1.05^{8}+1.05^{9}\right)=1,500 \div 1.05^{10} ;$
or $x+12 \cdot 57666=1,500 \times 1 \cdot 628835$. ANs. $\$ 194 \cdot 2569+$.
N.B.-In performing the work, carry out $1.05^{2}, 1.05^{3}$, etc., 1.05^{10} first and check the products to detect any error, next add the proper quantities, and lastly divide out.

Paper B (Page 51).

(2) $\$ 1,400$.
(3) $\sqrt{ }\left(40^{2}+30^{2}\right)=50 \mathrm{mi}$. Euc. I., 47 .
(4) Area of base $=20^{2} \times 7854$;

Content $=314 \cdot 16 \times 9=2827 \cdot 44 \mathrm{cub}$. ft .
(5) Bank discount on $\$ 1=.09 \times \frac{63}{360}=\$.01575$;
$\therefore 1 \cdot 005-01575=$ the cost of $\$ 1=\$.98925 ;$
$\therefore \$ 1,200 \div \cdot 98925=\$ 1,213.04+$.
(6) Second cost $=\frac{6}{5}$ first cost ; \therefore selling price will be $\frac{5}{6}$ as ${ }_{6}^{\text {great a gain per cent. on second cost as it is on first cost ; }}$ $\frac{6}{6}-\frac{5}{6}=\frac{1}{6}=25 \%, \therefore \frac{6}{6}$ gain per cent. $=150 \%$.
Verification : $-100 \times \frac{150}{100}=120 \times \frac{125}{100}$.
(7) If $\$ 100=\mathrm{C}$'s, then $\$ 150=\mathrm{B}^{\prime} \mathrm{s}$, and $\$ 225=\mathrm{A}$'s.

Hence A has 125% more than C;
C has $\frac{4}{9}$ of A 's, or $\frac{5}{9}$ less than A, i.e. $55 \frac{8}{8} \%$ less.
(8) First income $=4,875 \times \frac{2}{195} \times 3=150$

2nd income $=4,875 \times \frac{2}{195} \times \frac{99}{110} \times 4=180 . \quad$ Increase $=\$ 30$.
(9) Expenses $=55 \%$, net earnings $=45 \%$ of $\$ 500,000=\$ 225,000$

Rate $=225$ on $\mathrm{E}, 000,9$ on $200,4 \frac{4}{8} \%$.
(10) The final value at the end of 8 yr . of 810 invested at the end of 6 mo . and every following 6 mo . at 10% compound interest $=10\left[(1 \cdot 1)^{7} \times(1.05)+(1 \cdot 1)^{7}+(1 \cdot 1)^{6} \times(1.05)+(1 \cdot 1)^{6}+\right.$ etc. $\cdots+1 \cdot 1+1.05+1]$
$\left\{\right.$ N.B. -Sum of first two terms $=1 \cdot 1^{7} \times 2.05$, of second two $=1.1^{6} \times 2.05$, etc. $\}$,
hence sum $=20.50\left[1 \cdot 1^{7}+1 \cdot 1^{6}+1 \cdot 1^{5}+1 \cdot 1^{4}+1 \cdot 1^{3}+1 \cdot 1^{2}+\right.$ $1 \cdot 1+1]=20.50 \frac{1 \cdot 1^{8}-1}{1 \cdot 1-1}$
$\left\{\right.$ N.B. $\left.-x^{7}+x^{6}+x^{5}+x^{4}+x^{3}+x^{2}+x+1=\left(x^{8}-1\right) \div(x-1)\right\}$ $=205\left(1 \cdot 1^{8}-1\right)$. This is the amount of the debt Jan. 1, 1900. Its P. worth $=205\left(1 \cdot 1^{8}-1\right) \div(1 \cdot 1)^{8}=205\left(1-\frac{1}{1 \cdot 1^{8}}\right)=205-\frac{205}{1 \cdot 1^{8}}$ $=205-\frac{20500000000}{214358881}=205-95.63=\$ 109.37$, cash value. $\left\{\right.$ N.B. $\left.-11^{8}=\left(11^{2} \times 11^{2}\right)^{2}=\left(121^{2}\right)^{2}=14,641^{2}=214,358,881.\right\}$

Paper C (Page 52).
(2) $440 d .+14 \frac{1}{4} d .+350 d .=£ 37 s .0 \frac{1}{4} d$.
(3) The cost is the same. Paper at 9c., 27 in. wide, costs the same per square yard as paper at 24 c . , 24 in . wide.
(4) L. C. M. = product \div G. C. M.
$\therefore 634,938,944,494 \times 9,187 \div 85,044,059=68,590,142$.
(5) At first chicory $=\frac{3}{7}=270 \mathrm{lb} .=\frac{7}{17}$ of 2 nd mixture.
\therefore 2nd mixture $=\frac{17}{7} \times 270=655$ 年 $\mathrm{lb} .$, coffee added $=254 \mathrm{lb}$.
(6) Interest $=\frac{12}{15}$ of $\frac{1}{10}=\frac{2}{25}, \therefore$ discount $=\frac{2}{27}=7 \frac{1}{2} \neq \%$.
(7) $\left(\frac{2}{5}\right.$ capital $\left.\div 90\right) \times 3 \frac{1}{2}+\left(\frac{3}{5}\right.$ capital $\left.\div 95\right) \times 4=\$ 1,340$ capital $\left(\frac{7}{450}+\frac{12}{475}\right)=\$ 1,340$ capital $\left(\frac{7}{18}+\frac{12}{19}\right)=1,340 \times 25=\frac{349}{342}$ capital \therefore capital $=\frac{1340 \times 25 \times 342}{349}=\$ 32,828.08$.
(8) If the first payment is made at the time of purchase, and $\$ x$ is the annual payment, then

$$
\begin{aligned}
& x\left(1+1.06+1.06^{2}+1.06{ }^{3}\right)=\$ 9,000 \\
& \text { i.e. } x \times 4.374616=9,000 ; x=\$ 2057.323 . \\
& \text { Shell }-0.40
\end{aligned}
$$

$$
\begin{aligned}
& \text { (9) Shell }=\text { external }- \text { internal dimensions } \\
& =\frac{4}{3} \pi r^{3}-\frac{4}{3} \pi r^{3}=\frac{4}{3} \pi\left(r^{3}-r^{3}\right) \\
& =\frac{4}{3} \times \frac{22}{7}\left[\left(\frac{7}{2}\right)^{3}-\left(\frac{5}{2}\right)^{3}\right]=\frac{11}{21} \times 218=114 \cdot 19+\text { cub. in. }
\end{aligned}
$$

(10). Let x be the top of the tower, y its base on the bank, z the point on the water, w the position of the observer's feet, and 8 that of his eye. Then $w s=5 \mathrm{ft} ., w z=29, y z=1,400-87=$ similar and have their sides $x y z$ and swz are equiangular and $\therefore 87: 5=1,13$ sides proportional,
$\therefore 87: 5=1,313: x y ;$ i.e. $87 x y=5 \times 1,313$
$x y=(5 \times 1,313) \div 87=75 \cdot 489 \mathrm{ft}$.
Paper D (Page 53).
(1) $20 \mathrm{~d} .+3{ }_{1}^{\mathrm{q}} \mathrm{T} d .=23_{1}^{2} \mathrm{r} \cdot \mathrm{d} .=1 \mathrm{~s} .11_{\mathrm{T} \mathrm{T}} d$.
(2) Expression $=$ sq. rt. of $\frac{8640 \times 753}{391}=12^{2} \times 3^{3} \times 2^{3} \times \frac{1255}{391}$
$=72 \times$ square root of $3 \cdot 209718+=72 \times 5664=41$ nearly .
(3) $18 \frac{5}{8} \frac{7}{8} 8 \times 10.618 \div 28847=15,475 \times 10.618 \div 26,545$ $=3095 \times 10.618 \div 5,109=006432+$.
(4) $\frac{1}{5}$ less in price will require $\frac{1}{4}$ more in number of apples
$\therefore 120$ apples $=\frac{1}{4}$ number for $\$ 5 ;$ number $=480$ apples.
(5) 1 man +1 woman +2 boys +1 girl get $\$ 100$; and per (2 boys +1 girl $)+(2$ boys -1 girl $)+2$ boys +1 girl get $\$ 100$ i.e. 6 boys +1 girl get $\$ 100$. (A)
means (2 boys +1 man +1 girl get $\$ 50$; and by the conditions this
Compare B with A, (B) are, each boy $\% 15$, the girl 810 , boys get $\$ 75$; and the shares
(6) 1 metre $=39 \% \div 36=\frac{35}{32} y d$; $1:$ anc $=£ \frac{1}{25}$;

42 centimes $=£ \frac{42}{2500}$
No. yards bought $=£ 1,000 \div £ \frac{3}{20}=20,000 \div 3 ; 3 d .=£ \frac{1}{80}$ No. metres sold $=\frac{20000}{3} \times \frac{32}{35}$; one-half at 8 , one-half at $6=$ whole at 7 francs per metre. Hence the gain on whole
$=£\left(\frac{20000}{3} \times \frac{32}{3: 3} \times \frac{7}{25}\right)-£\left\{\left(1000+\frac{20000}{3} \times \frac{1}{80}\right)+\right.$

$$
\left.\left(\frac{20 c c 0}{3} \times \frac{32}{35} \times \frac{42}{2500}\right)\right\}
$$

$=£\left(\frac{20000}{3} \times \frac{32}{35} \times \frac{7}{25}\right)\left(1-\frac{6}{100}\right)-\left(1000+\frac{20000}{3} \times \frac{1}{80}\right)$
$=\frac{20000}{3} \times \frac{32}{35} \times \frac{7}{25} \times \frac{94}{100}-1000\left(1+\frac{1}{12}\right)$
$=\frac{8 \times 32 \times 94}{15}-\frac{13000}{12}=\frac{7814}{15}=£ 52018 \mathrm{~s} .8 d$.
(7) Int. - dis. $=\$ 38.84=$ int. on dis. $=$ interest on $\$ 310.72$

Rate $=3,884 \div 31,072=\frac{1}{8}=12 \frac{1}{2} \%$
Sum $=\$ 349.58 \times 8=\$ 2,796.64$; rate per annum $=64 \%$.
(8) Price of wheat $=\$ 6,000 ; \therefore 6,000-500=5,500$ cost of silk $4 \%=\frac{1}{2 \overline{5}} ; 2$ nd com. $=\$ 220 ; 1$ st com. $=\$ 280$ on $\$ 6,000 ;$ rate $=4 \frac{2}{3} \%$.
(9) $\pi r^{2} \times 18=3 \times 1,728 ; r^{2}=(3 \times 1,728) \div\left(\frac{22}{7} \times 18\right)=144 \times \frac{7}{11}$
$\therefore r=12 \sqrt{1}^{7}{ }^{1} \mathrm{in} .=\sqrt{\mathrm{T}_{1}^{7}} \mathrm{ft} .=\operatorname{dizmeter}=2 \sqrt{ }{ }^{7} \mathrm{r}=1.59 \mathrm{ft}$.
(10) Let y and $4 y$ be the the segments of hyp., then $5 y=$ hyp. Let a and b be the sides of triangle; then $a^{2}+b^{2}=25 y^{2}$, Euc. I. 47. But by the same theorem $a^{2}=16 y^{2}+10^{2}, b^{2}=y^{2}+10^{2}$. Hence $a^{2}+b^{2}=17 y^{2}+200 ; \therefore 25 y^{2}=17 y^{2}+200 ; y^{2}=25$; $y=5$, hyp. $=25 . \quad$ Area $=\frac{1}{2} \times 25 \times 10=125$,

Paper E (Page 54).

(1) Yes, if we explain it in such a way as to keep the multiplier an abstract number e.g., if the stamps cost 1c. apiece the price would be 6 c. ; at 3c. apiece the price will be $6 \mathrm{c} . \times 3=18 \mathrm{c}$.
(2) When a unit is dividud into equal parts there are two things to be considered, viz., (a) the Number, (b) the Size of these equal parts. T'he numerator expresses the number and the denomintor the size. Proofs $-\frac{3}{4} \div 5=$ quotient; $\frac{3}{4}=5$ times the quotient;

$$
\begin{array}{rlrl}
\frac{3}{4} \times 4 & =20 \text { times the quotient. } & \text { Now } \frac{3}{4}+\frac{3}{4}+\frac{3}{4}+\frac{3}{4}=3 \\
\therefore 3 & =" & & \text { Quotient }=\frac{3}{20} .
\end{array}
$$

(3) Area of one face $=16 ; \therefore$ edge $=4 ; \therefore$ internal edge $=1$. Solidity of box $=4^{3}-1^{3}=63$ cub. ft . This will weigh as much as $63 \times \frac{4}{3}$ of second metal $=84$ cub. ft . Again the surfaces of the three cubes are as $1: 4: 9 ; \quad \therefore$ their faces are as $\frac{1}{6}: \frac{4}{6}: \frac{9}{6}$ i.e. as $1: 4: 9$, and their edges as $1: 2: 3$, and their solid contents as $1: 8: 27$, hence $36 x^{3}$ will represent their combined mass. Thus $36 x^{3}=84 ; x^{3}=\frac{7}{3}, x=v^{2} 7 \div \sqrt[z]{2} 3$, or $x=1.912931 \div 1.442250=1.3263518$.

And the.sides are as $1 \cdot 3263518: 2 \cdot 6527036: 3 \cdot 9790554$.
(4) Compound interest on $\$ 500,3 \mathrm{yr}$. at $5 \%=\$ 78+3$ Simple for 1 yr . must be $\$ 78+\frac{3}{8} \div 15=\$ 5_{\frac{2}{2} 40}$ for 1 yr . $=$ interest on $\$ 100$ for 1 yr . at $5_{2}{ }^{6} \frac{1}{4} \% \%$. ANs. $\$ 100$.
(5) The times are $\frac{1}{12}, \frac{1}{6}$ and $\frac{1}{4}$ of a year respectively. The interests on $\$ 1$ at 4% for these times are $\frac{1}{300}, \frac{2}{300}, \frac{3}{300}$; the discounts are therefore $\frac{1}{301}, \frac{2}{302}$ and $\frac{3}{303}$.
A table may therefore be made thus:

No. days	$\frac{30}{}$	60	$\frac{90}{}$	
Fraction of Face	$\frac{1}{301}$	$\frac{2}{302}$	$\frac{3}{303}$	to find Discount.

(6) A runs 120 yd., B 110 yd ., C 99 yd . in the same time ;
\therefore C's speed is $\frac{9}{10} \mathrm{~B}$'s speed; $\therefore \mathrm{B}$ runs 120 while C runs $\frac{9}{10}$ of $120=108$; difference $=12 \mathrm{yd} .=$ distance run by C in $1 \frac{1}{2}$ sec. ;
\therefore C runs 120 yd. in 15 sec ; B in $13 \frac{1}{2} ; A$ in $12 \frac{3}{g}$ sec.
(7) $\$ 1$ in the $3 \frac{1}{1}$ per cents produces: $\$ 31 \div 80=\frac{980}{22400}$

$$
\text { " } 10 \quad \text { " } \quad 3 \quad 3 \div 112=\frac{1000}{22400}
$$

$\$ 1$ in both, as per question, produces $\$ 44^{2} \sigma \div 100=\frac{987}{22400}$
The interests on the three investments are therefore in the proportion of $980: 1,000: 987$. The average is 987 ; the 1st gives 7 less, and 2nd 13 more than the average rate; to produce the average these proportions must be reversed in the investments, i.e. for every 13 of the 1 st there must be 7 of the 2nd, or of $\$ 1,000, \$ 650$ in the $3 \$$ per cents and $\$ 350$ in the 5 per cents. The incomes are $\$ 28_{1^{7}}{ }^{2}+\$ 1518=\$ 44^{1} 6$, the average.
(8) Area of floor $=24 \times 18=432 \mathrm{sq} . \mathrm{ft} .=48 \mathrm{sq} . \mathrm{yd}$.

Aren of centre $=(24-6)(18-6)=216 \mathrm{sq}$. ft. $=24 \mathrm{sq}$. yd. carpet Area of margin $=432-216=216 \mathrm{sq} . \mathrm{ft} .=24 \mathrm{sq}$. yd. painting Cost of carpet $=24 \times \frac{3}{2} \times 44=153 s$.
Cost of painting $=171-153=18 \mathrm{~s}$.; cost of 1 sq. yd. $=18 s . \div 24=9 d_{\text {. }}$; cost of 1 sq. $\mathrm{ft} .=1 d$.
(9) $\mathrm{AO}=\sqrt{ }\left(\mathrm{AB}^{2}-\mathrm{BO}^{2}\right)=\sqrt{ }\left(159^{2}-84^{2}\right)=135$, Euc. I. 47 . $\mathrm{CO}=\sqrt{ }\left(\mathrm{BC}^{2}-\mathrm{BO}^{2}\right)=\sqrt{ }\left(105^{2}-84^{2}\right)=63$
$\therefore \mathrm{AC}=135+63=198$
Area of $\mathrm{ABC}=\frac{1}{2}(198 \times 84)=8,316$
Triangle ADC has sides 161, 90, 198; the area is found from the formula $\sqrt{s(s-a)(s-b)(s-c)}$, where $s=$ $\frac{1}{2}(a+b+c)$ and a, b, c are the sides. Hence area of ADC $=$ $\frac{1}{4} \sqrt{ }(449 \times 53 \times 269 \times 127)=\frac{1}{4} \sqrt{ }(812,976,911)=7,128+$ Hence area of $\mathrm{ABCD}=7,128+8,316=\mathbf{1 5}, 444$ nearly.

To find DP we have $7,128=\frac{1}{2} \mathrm{AC} \times \mathrm{DP}=99 \mathrm{DP}$
\therefore DP $=\mathbf{7 2}$ nearly.
(10) The volumes, i.e. the weights are proportional to the cubes of the diameters; $W: W_{2}=7^{3}: 10^{3}$, or $10: W_{2}=7^{3}: 10^{3}$ $\therefore \mathrm{W}_{2} \times 7^{3}=10^{4} ; \mathrm{W}_{2}=10^{4} \div 7^{3}=29_{3}^{54_{5}^{3}} \mathrm{lb}$.

Paper F (Page 54).

(1) A dollar becomes 1.012 at the end of the first year, 1.024144 at the end of the second, 1.036433728 at the end of the third, and the income for the fourth year is $06218602368 \times 15566.6=$ \$968.024906 + .

More concisely :-Income $=15,566.60 \times\left(\frac{506}{500}\right)^{3} \times \frac{6}{100}=$ $\$ 968.024956117$; since there is added $\frac{1}{5} \times \frac{6}{100}$, or $\frac{6}{500}$ of the principal each year.
(2) Price $=\left[\frac{112}{100}(2,000+280+75+30)-150\right] \frac{1}{21}=\$ 120.054$
(3) Int. for $21 \mathrm{yr} .=\$ 213.75$; for $1 \mathrm{yr} .=\$ 95$; rate $=64 \%$.
(4) Shares are as $71,110,120 ; \mathrm{A}_{3}^{\mathbf{7 1}} \times 9,800=\$ 2,311.62$; B \$3,581•395; C \$4,106.97.
(5) Note has 60 dy. to run, discount $=\frac{1}{100}$; P. W. $=\frac{99}{100}$ New note has 90 dy. to run, discount $=\frac{3}{200} ;$ P. W. $=\frac{197}{200}$ \therefore face $\times \frac{197}{200}=6,000 \times \frac{99}{100} ;$ face $=\$ 6,030.46$.
(6) Cost $=\frac{40}{9} \times \frac{109_{2}^{2}}{100} \times \frac{100 \frac{1}{6}}{100} \times 416 \mathrm{r}_{\frac{7}{6}}=\$ 2029 \cdot 19$.
(7) $137 \frac{1}{2}$ yields $10 ; 275$ pays $20 ; 100$ pays $20 \times \frac{4}{11}=7 \mathrm{~T}^{3} \mathrm{~K} \%$.
(8) Value $=24 \frac{175}{144} \times 12 \times \frac{18}{22} \times 178=\$ 5,204.88+$.
(9) Dist. outside tunnel $=115 \frac{1}{2} \mathrm{mi}$, time in tunnel $=10 \frac{5}{8} \frac{5}{8} \mathrm{~min}$. Time outside tunnel, actual running $=216 \mathrm{ft} \mathrm{min}$.
R
(10) Distance round room $=83 \mathrm{ft}$.; total area of walls $=913$ sq. ft. ; area of doors, etc. $=137 \frac{1}{3} \frac{8}{8} \mathrm{sq}$. ft.; area to be papered $=$ $775{ }^{2} \frac{3}{8} \mathrm{sq}$. ft .; area of one roll paper $=72 \mathrm{sq} . \mathrm{ft}$.; number rolls $=775 \frac{23}{3} \div 72=10 \cdot 7727$; i.e. 10 rolls and 18 ft . 6.53 in .

Paper G (Page 55).
(3) Expression $=\frac{1}{2}-\frac{12}{13} \times \frac{64743583}{999999900}=\frac{953846059}{2166666450}$.
(2) $£ 2.8 ; 6.96 \mathrm{cwt}$. ; 2.32 cwt . for soap ; 4.64 cwt . for cash. Cash $=£ 1219 \mathrm{~s} .10_{2_{5}^{2}}^{2} d . ;$ soap $=3466^{3} 5_{5} \mathrm{lb}$.
(3) 20 min . apart at $4 o^{\prime}$ clock ; $21_{T^{\circ} \mathrm{T}} \mathrm{min}$. past $4 \mathrm{o}^{\prime}$ clock. Ans.
(4) $17 \frac{3}{6} \mathrm{dy}$., and $277_{15} \mathrm{dy}$.
(5) 9 ; 350 .
(6) $11 \frac{8}{4} \mathrm{lb}$.
(7) 7 chains 14 links.
(8) $\$ 1,200, \$ 450, \$ 270$.
(9) $\$ 4,384.611_{1_{3}}{ }^{7}$.
(10) $800 \times 500 \times 10=1,000 \times 400 \times 10$. Ans. 500 mon.

Paper H (Page 56).
(1) The portions are as $3: 5: 7$; let $300,500,700$ bush. be sold and the profits taken in wheat. Then 139 bush. is the profit on 1,500 ; but at 10% the profit would be 150 bush.; gain $=11$ bush. on 1,500 sold ; or $\frac{11}{1500}$ cost $=\$ 16.68 \frac{1}{3} ; \$ 2,275$ Ans.
(2) 6% receipts $=\$ 28,350 ; 54 \%=28,350 \times 9=3 \frac{1}{3} \%$ of stock; stock $=\$ 729,000$. Ans.
(3) The difference between the ages is constant.

A's : B's $=9: 7$; A's : A's - B's $=9: 2$
A's age is $4 \frac{1}{2}$ times the difference. Formerly A's:B's $=5: 2$;
\therefore A's age : A's - B's $=5: 3$; A's was $1 \frac{2}{\text { fan times the difference; }}$
\therefore A's present age : A's former age $=4 \underline{\underline{d}}: 1 \frac{1}{\text { e }}=27: 10$
$\therefore \frac{17}{27}$ A's present age $=34$; A's 54 , B's 42. ANs.
(4) In a certain time, rate in still water + rate of tide $=5 \mathrm{mi}$.

$$
\therefore \quad ، \quad \because \quad ، \quad=\frac{1}{2}(5+3)=4 \mathrm{mi}
$$

" " rate of tide $=1 \mathrm{mi} .=\frac{1}{4}$ rate of, man in still water. Similarly, if 2 and 1 are the down and the $u p$ rates, $1 \frac{1}{2}$ will be rate in still water, and $\frac{1}{2}$ rate of tide $=\frac{1}{3}$ rate of man in still water. $\quad \therefore\left(\frac{1}{3}-\frac{1}{4}\right)$ rate in still water $=\frac{1}{2} \mathrm{mj}$. per hour
\therefore rate in still wnter $=6 \mathrm{mi}$. per hour.
(5) A's income $=40 \times \frac{100}{104} \times 5=2,500 \div 13=\$ 192.30+\mathrm{g}$

A's proceeds $=4,000 \times \frac{109}{104}=\$ 3,923.07_{1}{ }^{9} 3$
$B ' s$ income $=40 \times \frac{100}{91} \times \frac{10}{3}=\$ 146.52_{\frac{2}{2} 7_{3}}$
B's proceeds $=4,000 \times \frac{98}{91}=\$ 4,307.69_{1^{3}}{ }^{3}$
(6) Int. of $\$ 1,9$ mo. at $8 \%=\frac{3}{50} ;$ discount $=\frac{3}{53} ;$ P.W. $=\frac{50}{53}$

$$
\because \quad \text { " } 3 \quad " \quad=\frac{1}{50} ; \quad "=\frac{1}{51} ; \quad "=\frac{50}{51}
$$

\therefore gain $=80\left(\frac{50}{51}-\frac{50}{53}\right)=4,000\left(\frac{1}{51}-\frac{1}{53}\right)=8,000 \div(51 \times 53)$ gain per cent. $=\frac{80.00}{51 \times 53} \times \frac{100}{80}=\frac{10000}{2703}=3.7$ near'y.
(7) If 75 shares represent the whole property, 33,24 , and 18 shares represent the farms. Each should get 25 shares. A pays B 1 share, and C 7 shares ; i.e. $\frac{1}{75}$ and $\frac{7}{75}$ of $\$ 2,000$, or $\$ 26.66 \frac{2}{3}, \$ 186.66 \frac{3}{3}$.
(8) Porpendicular $=$ area $\times 2 \div 10=\frac{8}{\text { f }} \sqrt{ } 399=11.985 \mathrm{ft}$.
(9) Side ${ }^{2} \times 2=4^{2}$; side ${ }^{2}=8 \mathrm{sq}$. ch. $=$ area $=128$ sq. rods.
$\mathrm{de}=5 \mathrm{mi}$
$=3 \mathrm{mi}$.
) $=4 \mathrm{mi}$.
f. man in up rates, te of man er hour
$\mathrm{W} .=\frac{50}{53}$

$$
=\frac{50}{51}
$$

(10) Solidity of ball $=\frac{68}{450} \mathrm{cub}$. ft. $=\frac{4}{3} \times \frac{355}{11 \frac{3}{3}}$ solidity of cube whose side $=$ radius of ball ;

$$
\begin{gathered}
\therefore \text { solidity of cube }=\frac{68}{450} \times \frac{3}{4} \times \frac{113}{355} \times 1,728 \text { cub. in. } \\
=\frac{4 \times 17 \times 3 \times 113 \times 12^{3}}{900 \times 10 \times 71}=\frac{12^{3} \times 17 \times 113}{5^{3} \times 71 \times 6}=(\text { radius of ball })^{3}
\end{gathered}
$$

$$
\text { Diameter of ball }=\frac{24}{5} \text { cube rt. of } \frac{1921}{426}=\frac{24}{5} 84 \cdot 509389=7.932 \mathrm{in} .
$$

Paper K (Page 57).
(1) $\mathrm{Q} .=\left(28 \div \frac{24}{5}\right)-\left(9+\frac{1}{2}-5 \frac{7}{8}\right)=1 \frac{1}{2} 9$.
(2) Reduce fractions to common numerator, 144. The greatest fraction will then have the least denominator and vice versa. The fractions are already in the order of magnitude, the first being greatest.
(3) Area of 1 st $=\frac{1}{9}$ area of $2 \mathrm{nd}=104,976 \mathrm{sq} . \mathrm{in}$.; side of $1 \mathrm{st}=9 \mathrm{yd}$;; area of $3 \mathrm{rd}=16$ area of first; side of $3 \mathrm{rd}=4 \times 9=36 \mathrm{yd}$.
(4) Mother's age $=\frac{356}{420}$ of $35=29{ }^{\frac{\mathrm{f}}{2}} \mathrm{~m}$ yr., eldest child's age $=$ $3_{1^{\frac{3}{2}}} \mathrm{yr}$., and youngest child's age $=2_{1}^{1 \frac{1}{2}}$ yr. Difference between mother's age and eldest child's age at starting $=26$-h tr . ; at end of voyage difference is represented by $728-94=634$ units; or difference is $\frac{634}{728}$ mother's age. The difference between their ages is constant, therefore $\frac{634}{728}$ mother's age $=26 \frac{5}{5} \frac{5}{2}$ yr. ; mother's age at end of voyage $=30 \mathrm{yr} .4 \mathrm{mo}$. Hor age at starting 29 yr .8 mo ; time of voyage $=8 \mathrm{mo}$.
(5) Interest for 1 yr . at 4% is $\$ 5.815$, which $\times 2=\$ 11.63$, and the smallest multiplier that will make this an integer is 100 . Ans. 200 yr .
(6) Simple interest $=\$ 866.486$

Compound interest $=\$ 890 \cdot 957$; difference $=\$ 24.47$,
(7) The capitals at the beginning of each year are as follows: $\$ 800, \$ 720, \$ 636, \$ 547.80, \$ 455.19, \$ 357 \cdot 9495, \$ 255.846975$. ANs. $\$ 2 \overline{5} 5.84$.
(8) Let number of hours before meeting $=x$, and we have

A's rate : B's rate $=x: 36$; also
A's rate: B's rate $=16: x$
$\therefore x: 36=16: x ;$ or $x^{2}=16 \times 36, x=24 \mathrm{hr}$.
$\therefore x: 36=16: x ;$ or $x^{2}=16 \times 36, x=24 \mathrm{hr}$
The times are $24+16=40$ for $\mathrm{A} ; 24+36=60$ for B.
(9) Rate of interest $=\frac{3}{99}=\frac{1}{33}$. Interest for 9 mo. $=\frac{1}{44}$; discount $=\frac{i}{45} ;$ P. W. $=\frac{44}{45} \times 150=\$ 146 \frac{9}{8}$.
(10) Whole solidity $=\frac{4}{3} \times \frac{22}{7} \times\left(\frac{13}{2}\right)^{3}$ cub. in.

Hollow space $=\frac{4}{3} \times \frac{22}{7} \times\left(\frac{9}{2}\right)^{3}$ cui. in.
Solidity of shell $=\frac{4}{3} \times \frac{22}{7} \times \frac{1468}{8}$ and this $\times \frac{441}{1728}=1961^{3} 4_{6} \mathrm{lb}$.

Paper M (Page 59).

(1) The sides are as $3: 2 ; 360 \mathrm{ft}$. is the least distance that will contain 5,8 or 9 ft . exactly ; $\therefore 3 \times 360$ and 2×360, or $1,080 \mathrm{ft}$. hy 720 ft . is the least rectangle.
(2) Weight $=\frac{5}{6}$ weight of gold $+\frac{1}{6}$ weight of alloy.

Value $=\frac{5}{6}$ gold $+\frac{1}{300}$ gold $=\frac{251}{300}$ gold $=21 s .=\frac{21}{78} \mathrm{oz} . ;$
weight of gold $=\frac{21}{78} \times \frac{300}{251}=\frac{1050}{325 \overline{3}} \mathrm{oz}$.
(3) $\frac{\text { Sum }}{97 \frac{1}{2}} \times 6=\$ 600$; sum $=100 \times 97 \frac{1}{2}=\$ 9,750$,
(4) $4,500 \div 90=50$ shares

Int. on 4,500 for 3 mo. $=\$ 90$; received $30 \times 95=2,850$, bal. $\$ 1,650$
" 1,650 for $3 \mathrm{mo}=.\$ 33 ;$ received $30 \times 95=2,850$, \quad " $20 \times 87=1,740$
Total interest $=\$ 123 ;$ profit on sales $=\$ 90$ Lots on the transaction $123-90=\$ 33$.
follows: 46975. have for B. $=\frac{1}{44}$;
$67^{3} 4_{6}^{6} \mathrm{lb}$. 360 , or
02.
(9) Cost prices, 60 and 42 ; and 51 pence.

Then $\frac{100-r}{100} \times 60=\frac{100+r}{100} \times 42 ; \therefore r=\frac{300}{17} \%$
\therefore selling price $=42+\frac{3}{17} \times 42=49{ }_{17}^{7} d$.
Loss on $51=1 \frac{1}{7} ; \quad \therefore$ loss per cent. $=33_{2}^{3} \frac{3}{8} \% \%$.
(10) If the planes of the rectangles are all perpendicular $x=$ number feet in shortest edge, $\therefore 6 x^{3}=786$ cub. ft . $x^{3}=131 ; x=5 \cdot 078753,9 x=10 \cdot 15750$ $3 x=15 \cdot 236259$, the lengths of the edges,

Papir n (Page 60).

(1) $\frac{213}{286} \times \frac{13}{71} \times \frac{22}{3}=1 ; \frac{9}{15}$.
(2) $98,400,180 \div 159,982=615 \cdot 070320$.
(3) $150 \times 6 \times \frac{3}{2} \times 1,728 \div\left(9 \times 4 \frac{1}{2} \times 3,000\right) \times 15,20=\$ 120$.
(1) $(1,20 \times 54)+(1,100 \times 209)+(600 \times 102)=372,100=$ amount at intores for 1 dy. at 8%. Interest $=\$ 81.56$. Ans. \$631. 50.
(5) 1 st incorma $250 \times 8=\$ 2,000$

2nd income $=250 \times \frac{120}{12 \overline{0}} \times 8 \frac{1}{2}=\$ 2,040 ;$ increase $=\$ 40$.
(6) The iosses are 4, 3, 2 ; gains 1,2 ;
these must be made equal ; so we may take
20 at $8 \mathrm{c} ., 40$ at $9 \mathrm{c} ., 100$ at 10c., 80 at 13c., 160 at 14 c. , and countless other combinations.
(7) Find the value of $2,000 \mathrm{oz}$. and take one-6323rd.
$\frac{37}{40}$ of 2,000 at $\$ 17=31,450$
$\frac{3}{40}$ of 2,000 at $\$ \frac{11}{10}=\frac{165}{31615} \div 6323=\$ 5$. Ans.
(8) $\$ \frac{40}{9} \times \frac{110 \frac{1}{4}}{100}=£ 1=26.85$ francs

12,000 francs $=\frac{40}{9} \times \frac{441}{400} \times \frac{100}{2685} \times 12,000=\$ 2.413 .41$.
(9) Value: value = weight : weight $=4: 5=$ volume : volume .

Area : area $=100: 121$
\therefore thickness $:$ thickness $=\frac{4}{100}: \frac{5}{121}=121: 125 . \quad$ \&
(10) They travel tor her 231 yd , in $6 \frac{9}{4} \mathrm{sec}$. $\%$ mi. per hour. Also 231 yd iste difference between the ristances they travel in $47 \frac{1}{2 l}$ sec., i.e. the difference is 10 mi . for $1 \mathrm{hm} \mathrm{m}^{\prime} \mathrm{s}$ travel, ANs. $30 \mathrm{mi}, 40 \mathrm{mi}$.

THIRD CLASS.

1871 (Patie 81).

(1) 701,014,000, $120,014,009$; 701 quadrillions, etc.
(2) Write A.M. after 11 o'clock; 8 yr. 11 mo. $1: 3 \mathrm{dy} .19 \mathrm{hr}$. 5 min .
(3) G. C. M. of : $\times 17 \times \pi 1$ and $3 \times 17 \times 31$ is $\mathbf{6 1}$. Principles:-(a) Every measure of A will also measuro any multiple of A ; (1) every measure of A and B will also measure the sum or the difference of any multiples of A and B .
(4) L. C. M. of 140 eighths and 85 eigtths $=\frac{595}{2}=2971$.
(5) (a) A fraction is increased by increasing in any way the Number of the equal parts, i.e. by multiplying the numerator, or by adding something to it. (b) A fraction is decreased by diminishing the Number of the equal parts, i.e. by dividing the numerator, or by subtracting something from it. (c) A fraction is made less by diminishing the Size of the equal parts, i.e. by multiplying the denominator, or by adding something to it. (d) A fraction is made greater by increasing the SIze of the equal parts, i.e. by dividing the denominator, or by subtracting something from it. All the rules of fractions depend on applications of these principles.

$$
\frac{31}{21} \times \frac{443}{80} \times \frac{26}{10}=21 \frac{2}{8} 2 \frac{29}{6} .
$$

(6) $2 \frac{1}{2} \frac{9}{9}+2 \frac{1}{12}$ ac. $=4 \frac{7}{8} \mathrm{ac} .=4$ ac. 140 per.

$$
\begin{array}{ll}
\left(9 \frac{2}{2} \div 25 \frac{2}{3}\right) \text { roods } & =4 \text { ac. } 140 \mathrm{per} . \\
15 \mathrm{pr} .
\end{array}
$$

$$
\begin{array}{rlrr}
\left(\frac{3}{11} \text { of } 1_{3} 1_{\mathrm{r}}\right) \text { per. } & = & 15 \mathrm{lmr} . \\
& = & & 9 \text { yil. } \\
\text { Subtract } \frac{4}{4} & 155 & 9 \\
\hline
\end{array}
$$

129 pr. $27 \neq \mathrm{yd}$.
(7) $\frac{3}{4}\left(\frac{4}{9}\right.$ farm +80 ac. $)+\left(\frac{4}{9}\right.$ farm +80 ac. $)=$ farm
$\therefore \frac{7}{4}\left(\frac{4}{9}\right.$ farm +80 ac. $)=$ farm
$\therefore 140$ ac. $=\frac{2}{9}$ farm. Ans. $630 \cdot \mathrm{ac}$.
(8) Sum $=3 \cdot 88 \dot{2}$; difference $=3 \cdot 03 \dot{1}$

Product $=3 \cdot 458 \times 428=(31 \cdot 11 \times 3.83) \div 81=1.471003 \dot{7}$.
(9) $£ 2 \cdot 25 \times 2.7345=£ 6 \cdot 152625$
$5 \cdot 5625$ ac. $\times 2 \cdot 7345=£ 15 \cdot 21065625 \mathrm{ac}$.
$6.5 \frac{1}{3} \mathrm{oz} . \times 2.7345=17.8654 \mathrm{oz}$.
(10) $\left(\$ 331.62 \frac{1}{2}-\$ 78.37 \frac{1}{2}\right) \div 209=\$ 1.21_{2^{3} 0^{8} 9}$ per hundred feet.
(11) $\$ 5 \div \$ 4.862=\frac{300}{292} ; \$ 2,720.40 \times \frac{300}{292}=\$ 2,794.923+$.
(12) 95% sales $=\$ 4,100 ;$ sales $=\$ 4,315.79$ nearly.
(b) Commission $=5$ on $105 ; \frac{1}{21}$ of $\$ 4,100=\$ 195.24$ nearly.

$$
1872 \text { (PAGE 82). }
$$

(1) Increase $=\frac{1}{9}=11 \frac{1}{6} \%$.
(2) Number $\div \frac{9}{19 \times 13}=\frac{-247}{11} . \quad$ Number $=\frac{9}{11}$.
(3) $103.04+40.33+27.38 \frac{1}{3} \frac{7}{2}+34.401_{18}^{3}+6.75+21+$ $60.21_{3^{3} 2}=\$ 293.122_{15}^{7}$.
(4) $25+33+42+40=140 ; 10,500 \div 140=75$; A's share is $25 \times 75=\$ 1,875 ;$ B's, $\$ 2,475$; C's, $\$ 3,150$; D's, $\$ 3,000$.
(5) Gain per M. $=\$ 3 \frac{1}{8} ; 106 \frac{1}{4}$ M. at $3 \frac{1}{8}=\$ 332.03 \frac{1}{8}$.
(6) 18 c . per yard $=2 \mathrm{c}$. per foot

Walls, $\$ 17.02 \frac{1}{8}+$ ceiling, $\$ 7.30=\$ 24.32 \frac{1}{8}$.
(7) Number hours $=\frac{25 \times 20 \times 3 \times 60 \times 12 \times 9}{40 \times 15 \times 2 \times 50 \times 25}=6 \frac{1}{2} \frac{\mathrm{~h}}{\mathrm{~h}}$.
I_{n}
(8) The price is decreased by $\frac{1}{5}$ of itself, \therefore quantity must be increased by $\frac{1}{4}$ of itself $=150 \mathrm{gal}$.
(9) $\$ 5.84 \times \frac{360}{126}=\$ 16.68 \frac{4}{7}$.
(10) Int. $=\frac{12}{100} \times \frac{8}{12}=\frac{2}{25} ;$ disc. $=\frac{2}{27} ; P . W .=\frac{25}{27}$ of $\$ 64=\$ \frac{625}{108}$

In 2 nd case int. $=\frac{1}{25} ;$ disc. $=\frac{1}{26} ;$ P. W. $=\frac{25}{26}$ of $\$ 6 \frac{1}{2}=\$ \frac{675}{108}$
Gain per barrel $=\$ \frac{50}{108}$, which $\times 500=\$ 231.48_{2^{4}}$.
(1) $\frac{25}{196}$.

1873 (Page 83).
(2) $\frac{120}{13}=\$ 9.23_{\frac{1}{15}}$.
(3) 4787878787878 -3213213213213 -32்2222222்222்் -7856485648564 -55்555555555555ً $\frac{-4326432643264}{2 \cdot 8961788070698}$

Two to carry from the next line which is the same as the second line.
(b) $1 \cdot 471003 \overline{7}_{\text {. }}$ See No. $8,1871$.
(4) Wall $=100 \frac{3}{4} \times 2 \times 22=4,433$

Roof $=48 \frac{1}{3} \times 60 \frac{1}{2}$ Gables

$$
\begin{aligned}
& =2,924 \frac{1}{6} \\
& =\quad 523 \frac{1}{4} .
\end{aligned} \text { Ans. } 7,880 \frac{5}{12} \mathrm{ft} .
$$

(5) $93 \mathrm{dy} .=\frac{93}{365} \mathrm{yr}$. at $\frac{7}{100}=\frac{651}{36500}$ int. ; \therefore disc. $=\frac{651}{37151}$

Difference $=651\left(\frac{1}{36500}-\frac{1}{37151}\right) \times 2500=\frac{21190050}{2712023}=\$ 0.781$.
(6) $98 \times 12 \times 2=\$ 23.52 ; 30 \frac{1}{2} \times 18 \frac{1}{2} \times \frac{1}{9} \times \frac{4}{3} \times 180=\$ 100.46$.
(7) Killed $=\cdot 1$; wounded $=.9 \times \cdot 0-$ ¿ Terence 055 of army Army $=1,100 \div 055=20,0 \cup 0 \mathrm{men}$.
(8) $\frac{108}{100}$ of my stock $=297$; stock $=275$ shares.
(9) Cubic foot of water weighs, say $1,000 \mathrm{oz}$. ;

(10) 1 share yields $\$ 60$ cash, which purchases $(96 \div 60)$ share paying $\$ 7, \therefore(1,680 \times 96) \div(60 \times 7)=384$ shares.
(11) Cost $=100 \times \frac{94 \frac{1}{2}}{5280} \times 640 \times \$ 24.7 \pi=\$ 28,350$.
(12) $24 \%=\frac{9}{400} ; 2 \%$ on $\frac{3}{\overline{5}}=\frac{6}{500} ;$ difference $=\frac{21}{2000}$ risk.

Ans. $\$ 4,000$.

1874 (Page 84).
(1) $\left(3 \frac{1}{2} \times 1\right)+\left(7 \frac{1}{2} \times 0 \times 425\right)=3 \frac{1}{2}$.
(2) 1 cub. yd. $=27,000 \mathrm{oz}$., of which $\frac{889}{1000}$, or $24,003 \mathrm{oz}$. is O , and $2,997 \mathrm{oz} . \mathrm{H}$.
(3) Each woman gets $\frac{1}{20}$ of $480=\$ 24$
\therefore a man + a child gets $\$ 48$
15 men +30 children get $\$ 936$
15 men +15 children get $\$ 720$, ett.
Man, $\$ 33.60$; child, $\$ 14.4^{n}$
(4) Debts $=\frac{8}{3} \times 6,300=\$ 16,8$.
(5) Let $x=$ width, $\therefore \frac{22 \frac{1}{2} \times x}{9} \times \frac{4}{3} \times \frac{7}{4}=\$ \frac{385}{4} ; x=16 \frac{1}{2} \mathrm{ft}$
(6) A man does $\frac{1}{51}$; boy $\frac{1}{85}$; 5 men and 3 boys do $\frac{1}{3}\left(\frac{5}{51}+\frac{3}{85}\right)$
$\$ 150.46$. 5 of army
60) share
(7) $38+\frac{1}{f}=38.6875 \mathrm{yd}$.

Cost $=\$ 3.825 \div 3.75 \times 38.6875=\$ 39.46125$.
(8) $1-\left(\frac{1}{2}+\frac{1}{5}+\frac{1}{6}\right)=\frac{4}{30}$ fortune $=\$ 8,000$; fortune $=\$ 60,000$.
(9) $1.06 \times 1.05=\$ 1 \cdot 113=$ amount at ond of 6 mo .

Loss $=(1 \cdot 125-1 \cdot 113) 9,000=\$ 108$.
(10) $140+130+90+75+60=495$ marks out of $850=58 \frac{1}{7} \%$.

$$
1875 \text { (PAGE 85). }
$$

(1) $\left(\frac{79}{3} \times \frac{2}{69}\right) \div\left(\frac{15}{13}+7-7 \frac{1}{8}\right)=\frac{79}{3} \times \frac{2}{69} \times \frac{104}{107}=\frac{16432}{22149}$.
(2) $1 \mathrm{hhd} .=63 \mathrm{gal} .=1,008$ half-pints;
$1 \mathrm{qt}+$.1 pt. +1 half-pint $=7$ half-pints.
$1,008 \div 7=144=12$ doz. of each.
He must sell 1,008 half-pints for $175 \times \frac{23}{20}$;
$\therefore 1$ doz. half-pints for $\$ 2.399_{12}^{7} ; 1$ doz. pints for $\$ 4.791$, id do quarts for $\$ 9.58 \frac{1}{3}$.
(3) $4 \mathrm{mu} .=\frac{1}{3} \mathrm{yr} . ; 12 \mathrm{dy} .=\frac{1}{30} ;$ time $=\frac{11}{30} \mathrm{yr}$;
interest on $\$ 1=.033 ;$ P. W. of $\$ 1=.967$;
Face of note $=240 \div 967=\$ 248.20$ nearly.
(4) At first the shares are $\frac{1}{3}, \frac{1}{3}, \frac{1}{3} ; \operatorname{next} \frac{2}{9}, \frac{1}{4}, \frac{4}{15}$; lastly A has $\frac{167}{540}, B$ and C together have $\frac{373}{540} ;$
\therefore A must have $\frac{167}{373}$ of $\$ 37,300=\$ 16,700$.
(5) $\$ 20$ ior $500=4$ c. per bushel; amount of 1.24 in 6 mo . at $8 \%=\$ 1.2896$
Loss at end of $6 \mathrm{mo}=500 \times \cdot 0104=\$ 5.20$; or $\$ 5$ cash.
(6) ANs. $178.9_{1}^{5}{ }^{5} d$.
(7) $\frac{4}{5}$ remainder cost $\$ 1,344$; remainder cost $\$ 1,680$;

$$
20 \text { barrels cost } \$ 120 ; \$ 1,800 \div \$ 6=300 \text { barrels. }
$$

(8) $133 \frac{1}{8}$ greenback buys 100 gold ; 10 greenback $=\$ 7.50$ gold.
(9) $151_{7^{5}}{ }^{5} \times 35=$ No. $\times 15 \frac{5}{5} ; \therefore$ No. $=334 \mathrm{yd} .2 \mathrm{ft} .1 \mathrm{ft} \mathrm{in}$.
(10) Tare $=\frac{14}{100} ;$ duty is collected on $\frac{86}{100}$
\therefore duty $=4 \times 1,280 \times \frac{86}{100} \times \frac{11}{4}$ cents $=\$ 121.088$.
(11) $293.05 \times \frac{40}{9} \times \frac{109 \frac{1}{2}}{100}=\$ 1,426.17 \frac{2}{3}$.

$$
1876 \text { (PaGE 85). }
$$

(1) 1st expression $=\frac{15}{28} \times \frac{5}{36}+\frac{425}{432}=\frac{25}{24}\left(\frac{1}{14}+\frac{17}{18}\right)=\frac{200}{189}$.

2nd expression $=\frac{25}{98}$, which is less than the 1 st expression.
Difference $=\frac{200}{189}-\frac{25}{98}=\frac{25}{7}\left(\frac{8}{27}-\frac{1}{14}\right)=\frac{85}{37 \overline{8}}$.
The question has evidently been spoiled either in the making or in the printing. If "added to" be changod to subträcted from the answer is $\frac{85}{378}$.
(2) If $x=\cdot 075, y=\cdot 025$, we have $\left(x^{3} \times y^{3}\right) \div\left(x^{2}-x y+y^{2}\right)$ and this is $=x+y=.075+.025=\cdot 1$.
(3) $99{ }^{8.59^{2}{ }^{2} 6} \times \frac{11}{37}=\frac{458477}{49995} \times \frac{11}{37}=\frac{458477}{4545 \times 37}=\frac{458477}{168165}$

$$
=2 \cdot 72635209+
$$

(b) $\frac{1}{100}\left(\frac{15}{16}+\frac{84}{5}+\frac{100}{3}-\frac{1}{120}\right)=\frac{1}{10}\left(\frac{12257-2}{240}\right)=\frac{817}{1600}$ ANs.
(4) $\frac{95}{100}$ marked price $=\frac{115}{100}$ cost price ;
\therefore marked price $=\frac{23}{19}$ cost price; $\frac{23}{19} \times \$ 3.80=\$ 4.60$.
(5) $7: 5$ gives a majority of 2 in 12 votes polled, or $\frac{1}{6}$ of votes; $240 \times 6=1,440 ; 1,800-1,440=360$ not polled.
(6) Length of pathway to be made $=140+100+60+45=345 \mathrm{ft}$.

Price of pathway $=\frac{345 \times 5}{9} \times \frac{5}{8}=\$ 119.79 \mathrm{t}$.
(7) A's capital : B's capital $=5: 3 ; \therefore$ B's gain is $\frac{5}{3}$ A's gain.

A's share $=\$ 1,250 ; \therefore$ B's share $=\$ 750$;
\therefore B received $\$ 260$ as manager.
(8) If simple interest is meant, interest $=\$ 213.75$
$\therefore 1,520 \times 21 \times r=213.75 ; \quad r=\frac{1}{16}=64 \%$.
(b) Interest on $\$ 100$ must $=\$ 100 ; \therefore 100 \div 6 \frac{2}{3}=15 \mathrm{yr}$.
(9) Let $20 x=$ price of a sheep; $\therefore 8,000 x=$ cost.

150 at $24 x+120$ at $23 x+130$ at $18 x=8,700 x$;
gain $=700 x ; \therefore 700 x=\$ 217, \therefore 100 x=\$ 31 ; ~$
$8,000 x=\$ 2,480$.
(10) Price $=\frac{7 \times 30 \times 165 \times 12}{3 \times 5 \times 16}=\$ 1,732.50$.

1877 (Page 86).
(1) $\frac{9}{10}$ of 41 oz . pure silver $=69$ thalers

1 oz. pure silver $=\frac{69 \times 10}{9 \times 41}$ thalers.
Also $\frac{37}{40}$ oz. pure siver $=\frac{41}{8}$ shillings

$$
1 \text { oz. } \quad=\frac{205}{37} \text { " }
$$

$\therefore \frac{69 \times 10}{9 \times 41}$ thalers $=\frac{20 \overline{3}}{37} ; 1$ thaler $=2 s .114 \frac{17}{8} \frac{1}{7} d$.
(2) 1 st fraction $=12 ;$ 2nd fraction $=4$; difference $=8 d y$. B's work per day $=\frac{1}{2}-\frac{1}{8}=\frac{3}{8} ;$ B's time $=22 \mathrm{dy}$.
(3) Waste $=\frac{1}{35}: \therefore \frac{34}{35}$ of original quantity $=170 \mathrm{lb}$. ; original quantity $=175 \mathrm{lb}$. ;
$\frac{33}{112}, \frac{55}{112}, \frac{24}{112}$ of this are $51^{\frac{9}{6}}, 85 \frac{15}{18}$, and $37 \frac{1}{2}$ respectively.
(4) $£ 1=\$ \frac{40}{9} \times 1.09 \frac{3}{4}$
$\therefore £ 18 \frac{1}{4}=\frac{40}{9} \times 1.093 \times 18 \frac{1}{4}=\$ 89.02$ nearly.
(5) To insure $\$ 96 \frac{2}{3}$ costs $\$ 3 \frac{1}{3}$

$$
\begin{array}{llll}
\text { " } & \$ 1 & \text { ، } & \$ \frac{1}{29} \\
\text { " } & \$ 48,628 \frac{1}{8} & \operatorname{costs} \$ 1,676.83 \frac{1}{3} .
\end{array}
$$

(6) $\mathrm{N}=\mathrm{D} \times \frac{6}{5} ; \therefore \mathrm{D} \times \frac{11}{5}=352 ; \mathrm{D}=160 ;$ fraction $=\frac{192}{160}$
(7) No. square yards paper $=178 \frac{2}{7} \times \frac{21}{36}=104$ sq. yd.

Length of walls $=2\left(\right.$ width $+\frac{7}{6}$ width $)=\frac{13}{3}$ width
$\therefore \frac{12}{3}$ width $\times 4=104 ; \therefore$ width $=6 \mathrm{yd} .$, lengtl $=7 \mathrm{yd}$.
Cost $6 \times 7 \times \frac{36}{27} \times \frac{7}{4}=\$ 98$.
(8) L. C. M. $=$ product \div G. C. M. Let $x=$ unknown No.
$\therefore 634,938,944,494=85,044,059 x \div 9,187$
$\therefore x=(634,938,944,494 \times 9,187) \div 85,044,059=68,590,142$.
(9) Interest $=\frac{7}{50}$ principal ; discount $=\frac{7}{57}$ principal
$\therefore\left(\frac{7}{50}-\frac{8}{57}\right)$ principal $=\$ 9.80 ;$ principal $=\$ 570$.
(10) Breadth ${ }^{2}=9 \times 4,840+300=9,980$;
\therefore breadth $=89 \cdot 89+$ yards ; length $=299 \cdot 69+$ yarde.

1878 (Page 87).

(1) Product \div G. C. M. $=$ L. C. M.

$$
\therefore 391 \text { No. }=12,121 \times 23 ; \text { No. }=713
$$

(2) $\frac{361}{130} \times \frac{7}{170} \times \frac{361}{170}=\frac{912247}{3757000}$.
(3) $\cdot 9840018 \div \cdot 00159982=615 \cdot 070320+$.
(4) Ans. $=\frac{208 \mathrm{mi} .181 \mathrm{ac} .93 \mathrm{yd} .4 \mathrm{ft} . \times 3 \times 439}{767 \cdot 9 \mathrm{ac} .279 \mathrm{yd} .4 \mathrm{ft} .}$
$=\frac{5806592401 \times 3 \times 439}{38452239} ;$ cancel $439 ;$
$=\frac{1741977203}{76201}=\$ 228,603$.
(5) Lat a line a inches long represent the capital, and a line b inches lons represent the interest, thus

a	b
	$\therefore a+b$ represents the amount.

Now b is the interest on a, and the discount on $a+b$
\therefore interest $=\frac{a}{b}$ of the capital ; discount $=\frac{a}{a+b}$ of the debt.
(b) $\frac{a}{b}$ capital $=110 ; \frac{a}{a+b}=88$

Divide one equation by the other, and $\frac{a b+a^{2}}{a b}=\frac{110}{88}$;
$1+\frac{a}{b}=1+\frac{1}{4} ; \therefore \frac{a}{b}=\frac{1}{4} . \quad$ Capital $=\$ 440$.
(6) One brick with mortar $=162 \times \frac{17}{16}$ cub. in.

Wall $=7,050,240$ cub. in.
No. bricks $=7,050,240 \times \frac{16}{17} \times \frac{1}{162}=40,960$ bricks.
(7) Let $10,129=x ; \therefore 101,293^{2}=(10 x+3)^{2}=100 x^{2}+60 x+9$
$=10,259,664,100+$ etc. $=10,260,271,849$.
(8) $\frac{\cdot 0476.19}{1 \cdot 19047 \overline{6}}=\frac{47619}{1190476}$. . Now $25 \times 47,619=1,190,465$,
so that the square root must be a trifle less than $\frac{1}{5}$
(9) Times are as $40: 60=2: 3 ; \therefore$ rates are as $3: 2$

1 st rate $=3 \mathrm{mi}$. in 40 min .; $\therefore 2$ nd rate $=2 \mathrm{mi}$. in 40 min . \therefore rate of stream $=1 \mathrm{mi}$. in 40 min . ;
\therefore up rate against stream $=1 \mathrm{mi}$. in 40 min . $=3 \mathrm{mi}$. in 120 min . Ans. 2 hr .
(10) $100 x$ at 80, gives $\frac{5}{4} x$ stock at $5=\frac{25}{4} x$, inconie from 1 st.
$150 x$ at 120, " $\frac{5}{4} x$ at $8=10 x$, " 2 nd.
$\therefore \frac{65 x}{4}=\$ 520 ; 5 x=160,100 x=\$ 3,200,150 x=\$ 4,800$.

1879 (Page 88).

(1) 1 st addend $=\frac{5}{2} ; 2$ nd $=\frac{1}{2} ; 3$ rd $=\frac{1}{100} ;$ sum $=\frac{301}{100}$ $\frac{301}{100} \times \frac{31}{9} \times \frac{9}{62}$ of $1,400 d .=£ 815 s . \quad 7 d . \quad$ ANS.
(2) $03749 ; \cdot 012602$.
(3) 311768 .

Expression $=\frac{3 y^{2} \cdot 02-23 \times \cdot 125}{2 v^{2} \cdot 02+v^{2} \cdot 02}=1-.958 \dot{3}=\cdot 041 \dot{6}$
(4) Area of whole $=135 \times 180=24,300$ sq. ft.

Area of remainder $=159 \times 114=18,126$
Area of path 6,174 "
Cost $=(6,174 \times \cdot 025)+(181 \cdot 26 \times \cdot 175)=\$ 186.0705$.
(5) $\$ 693.33-640 \cdot 805=\$ 52.525=$ interest for $2 \frac{1}{2} \mathrm{yr}$.

$$
\begin{array}{r}
\therefore \$ 21.01= \\
\therefore \$ 68.08=
\end{array}
$$

$\$ 693.33-168.08=\$ 525.25=$ principal
$\hat{\$} 21.01=$ interest on $525.25, \therefore$ rate $=4 \%$.
(6) Cost price $=\frac{10}{11}$ of $\$ 2.80=\$ \frac{28}{11}$

Prices of two kinds of wine $=\$ \frac{24}{10}$, and $\$ \frac{32}{10}$
Gain on 1st $=\frac{28}{11}-\frac{24}{10}=\$ \frac{16}{110}$
Loss on 2nd $=\frac{32}{10}-\frac{28}{11}=8 \frac{72}{110}$
Gain : loss $=16: 72=2: 9$. But gain must $=$ loss
\therefore we must have 9 of 1 st kind to 2 of 2 nd kind to give loss: gain $=18: 18$. ANs. $9: 2$.
(7) Gain on $112=1153-112+4=79$
\therefore " $448=31$
" $4,480=310$. Ans. $\$ 4,480$.
(8) $20 \%=\frac{1}{5}, 33 \frac{1}{3} \%=\frac{1}{3}$. Let 30 and 48 be the capitals.
\therefore A's stock $=\left\{\begin{array}{c}48 \times 6 \frac{1}{2}=195 \text { for } 1 \text { month. } \\ 24 \times 5 \frac{1}{2}=132 \text { " } \\ \text { Total } 327^{-} \text {" } \\ \text { 1 }\end{array}\right.$

Whole stock $=327+504=831$ for 1 month.
A's share of gain $=\frac{327}{831} \times 3,047=\$ 1,199$
B's share of gain $=\frac{504}{831} \times 3,047=\$ 1,848$. Ans.
(9) $75 \mathrm{dy} .=\frac{15}{73} \mathrm{yr}$; interest at $10 \%=\frac{3}{146} ;$ amount $=\frac{149}{146}$ $\frac{149}{146}$ of $375.80=\$ 383 \cdot 526=$ broker's receipts at the end of 75 dy .
$135 \mathrm{dy} .=\frac{27}{73} \mathrm{yr} . ;$ interest at $8 \%=\frac{216}{7300} ; \therefore$ discount $=\frac{216}{7516}$
\therefore P. W. $=\frac{7500}{7516}$ of $\$ 383 \cdot 526=\$ 372 \cdot 504+$ Ans
(10) Area of end in sq. ft. $=\frac{\left(13+12 \frac{1}{2}\right)}{\left.1 \frac{(13}{44}-12 \frac{1}{2}\right) 3 \frac{1}{7}}=\frac{51 \times 11}{14 \times 144}$ Cost $=\frac{51 \times 11}{14 \times 144} \times 864 \times 3 \times \frac{12 \overline{5}}{2} \times \frac{777}{100} \times \frac{351}{20000}=\$ 6,147.315$.

$$
1880 \text { (PAGE 90). }
$$

(2) $18 s .4 d .+1 s .2 \frac{1}{4} d .+14 s .7 d .=£ 114 s .1 \frac{1}{4} d$.
(3) Dividing, expression $=2+\frac{\sqrt{ } 8}{\sqrt{ } 8-\sqrt{ } 7}=2+\frac{8^{\circ}+\sqrt{ } 56}{8-7}$ $=10+2 \sqrt{ } 14=10+2(3 \cdot 7416574)=17 \cdot 4833148$.
(4) $\frac{36}{1000} \times \frac{55}{900} \times \frac{2000}{32} \times 7,000=962 \frac{1}{2}$ grains.
(5) Face of note $=$ P. W. + True Discount;

Int. on face $=$ int. on P. W. + int, on True Discount, or Bank Discount = 'True Discount + int. on True Discount.
(b) Discount $=\frac{6}{150}=\frac{1}{25}$ principal ; \therefore int. $=\frac{1}{24}$ principal. For twice the time int. $=\frac{1}{12} ;$ discount $=\frac{1}{13}$ of $\$ 150=\$ 11.53+\frac{1}{3}$.
(6) If A's capital is $\$ 125, \mathbf{B} ' s$ is $\$ 100$ for the 1 st year.

And A's capital is $\$ 50, \mathrm{~B}$'s is $\$ 60$ for the 2 nd year.
Capitals are as $175: 160=35: 32$
A's share $=\frac{35}{67}$ gain, B's $\frac{32}{67} . \quad$ Shares $\$ 1,767.50, \$ 1,616$.
(7) If $100 x=$ cost of silk, $350 y$ d. silk cost $35,000 x$;

1,470 yd. lustre cost $44,100 x$
$\therefore \frac{1}{3}$ of $44,100 x$ loss $-\frac{35}{100}$ of $35,000 x=\$ 39.20$
$\therefore 245 x=392 \mathrm{c} . ; 100 x=\$ 1.60$ per yard.
(8) Téa cost $\$ 4,500$; commission on tea $\$ 180$;
\therefore commission on flour $=8120 ; 2 \frac{1}{8} \%$.
$=\frac{51 \times 11}{14 \times 144}$
$147 \cdot 315$.
(10)

10

Area of triangle $=\sqrt{\prime}^{\prime}(32 \times 8 \times 22 \times 2)=5 p=$ $\sqrt{ }(64 \times 16 \times 11)=32 \sqrt{ } 11, \quad \therefore p=\frac{32}{5} \sqrt{ } 11$.

1881 (Page 91).

(1) L. C. M. $=5 \times 17 \times 47 \times 109 \times 243=105,815,565$.
(b) L. C. M. of $4 \frac{1}{2}, \bar{v}, 23$, and $3 \frac{1}{2}=3,465 \overline{i n}$. = side of square. ANs.
(3) ANs. $4,8 \bar{D}_{7} 9_{\frac{23}{88}}$; $5 \mathrm{dy} .21 \mathrm{hr} .11 \mathrm{~min} .53 \frac{13}{3} \mathrm{sec}$.
(4) Litre $=1$ cub. decimetre $=\frac{1}{1000}$ cub. metre.

1 pint $=\frac{277}{8}=34 \cdot 688$ cub. in.
$\therefore 1$ litre $=1 \cdot 76077 \times 34.625$ cub. in.
$\therefore 1$ metre $=10$ cube root of $(1.76077 \times 34 \cdot 625)=$
$39 \cdot 37+$ inches, ANs.
(5) The ratios are $7: 6 ; 5: 6 ; 16: 9 ; x: 3$.
$\therefore x=\frac{6 \times 6 \times 5 \times 3}{7 \times 5 \times 16}=1+93 \mathrm{dy}$. Ans.
(6) No. men $=\frac{9 \times 40 \times 2000^{2} \times 1000}{12 \times 30 \times 1600^{2}}=1,562 \frac{1}{2}$ men. Ans.
(7) In 15 min . (true timej the minute hand will pass over $\frac{9}{10}$ of 15 minute spaces $=13 \frac{1}{2}$ spaces.
In 15 min . (true time) the hour hand will pass over $\frac{21}{20}$ of $\frac{5}{4}$ minute spaces $=1 \frac{5}{16}$ spaces.
Distance apart $=13 \frac{1}{3}-1_{1}{ }^{5} \delta=123^{3} 6$ spaces. Ans.
(8) $\$ 3,700$ yields $\$ 270$ interest; $\$ 100$ yields $7 \frac{1}{3}$. Ans.
(9) The company gets compound interest for its money.
$\therefore \operatorname{Sum}(1.08)^{2}=70(1.08)+70+1,000=1,145.60$
\therefore Sum $=\frac{1145.60}{1.08 \times 1.08}=\$ 982.17$ nearly. Ans.

$$
1882 \text { (Page 92). }
$$

(1) Let \mathbf{A} be the point in the fore-wheel, and \mathbf{B} in the hindwheel. Now B will be at the top when the carriage has moved on $6,18,30$, etc. feet, and at 36 ft . A and B will be together at the initial position on the ground. As A is never at the top at 6,18 , or 20 ft ., and as the same cycle of figures recurs, the statement is evidentiy correct.
(2) Fractions $=1$; Ans. $\frac{3}{10000}$.
(4) P. W. $=320 \div 1.08^{2}=200,000 \div(9 \times 9 \times 9)=\$ 274.3484+$.
(5) $(1.15)^{6}=2.01+$ Ans. 5 yr . nearly.
(6) $\$ 1,085$ currency $=\$ 1,000$ gold $=5,250$ francs; x francs $=\$ 1,500$ currency. $\therefore x=5,250 \times 1,500 \div 1,08 \dot{5}=7,258$ francs $6{ }_{2}{ }^{28}{ }^{8} \frac{1}{r}$ centimes.
(7) Apparently the note does not bear interest.

Banker pays $\$ 486$ s , gets back $\$ 500$,
\therefore rate $=\frac{2}{73}=8.219 \%$ nearly.
(8) B's cost + B's gain $=\$ 19$
$\begin{aligned} \text { B's cost }-\frac{5}{4} \text { B's gain } & =\$ 13 \\ \frac{9}{4} B ' s \text { gain } & =6 ; \text { B's gain }=\$ \frac{8}{3}\end{aligned}$
\therefore B's cost $=19-\frac{8}{3}=$ A's selling price $=\frac{49}{3}$
B's gain $=8$ on $49=$ A's gain $=\frac{8}{49}$ per dollar.
$\therefore \frac{57}{49}$ A's cost $=\$ \frac{49}{3} ;$ A's cost price $=\$ 14.04 \mathrm{~T}^{7} \mathrm{~T}$.
(9) Value of mixture $=21$ times silver in mixture. Turned into gold, the volume of silver in mixture is worth $\frac{1284}{35}$ times the silver now in the mass; and the gold already present is worth 20 times the silver now in the mass. Hence when whole mass becomes gold its value is $\left(\frac{1284}{35}+20\right)$ times $=\frac{1984}{35}$ times the silver in the mass. Hence it would be $\frac{1984}{35} \div 21=2 \frac{51}{3} \frac{4}{6}$ times more valuable.
(10) $4 \cdot 1888=\frac{4}{3}$ of $3 \cdot 1416=\frac{4}{3} \pi$. Let $r=$ req'd radius of circle. Then $\frac{4}{3} \pi r^{3}$ is given $=1,728$ cub. in. to find πr^{2}, the area of circle.

$$
\begin{aligned}
& \therefore r^{3}=1,728 \div \frac{4}{3} \pi=36 \times 36 \div \pi ; \therefore r=6 r^{2} 6 \div v^{2} \pi \\
& \therefore \pi r^{2}=36 y^{2} 36 \pi=36 s^{2} 36 \times 3 \cdot 1416=216 v^{8} \cdot 5236 \\
& =216 \times 80599=174 \cdot 09384+\text { square inches. }
\end{aligned}
$$

1883 (Page 93).

(1) $\frac{1}{7}$ of $£ 39=£ 511 s .5 \frac{1}{2} d . ; \frac{1}{14}$ of $£ 212 s .=3 s .8 \frac{7}{7} d$.; $\frac{1}{7}$ of $45 d .=6 \frac{3}{2} d$; sum $=£ 515 s .8 \frac{1}{2} d$.

$$
\text { (b) } 13 \frac{8}{8} \div 197=107 \div(12 \times 13)=68589743
$$

(2) The price of $8,596 \mathrm{lb}$. at $£ 1018 \mathrm{~s} .7 \frac{1}{2} d . \div \mathbf{1 0 , 0 0 0}=$ Ans. $£ 8,596 \quad 0 s .0 d .=$ price at $£ 1 \quad 0 s .0 d$. 10
$10 s .=£_{\frac{1}{2}}^{85,960} 0 \quad 0=\quad$ " $£ 10 \quad 0 \quad 0$
$4 \mathrm{~s} .=\frac{1}{5} \quad 4,298 \quad 0 \quad 0=\quad " \quad 10 \quad 0$
$\left.6 d .=\frac{1}{8} \left\lvert\, \begin{array}{lll}1,719 & 4 & 0 \\ 1,719 & 4 & 0\end{array}\right.\right\}=\begin{array}{lll}6 & 8 & 0\end{array}$
\therefore price of $859 \mathrm{lb} .=9 \cdot 3965+0000025=£ 97 s .11 \cdot 1606 d$. Ans.
(3) Interest on $\$ 500$ for $75 \mathrm{dy} .=\$ 10.20$

Interest on $\$ 100$ for $365 \mathrm{dy} .=\$ 10.20=10 \% \%$.
(4) 7 on 95 , and 7 on $100=\frac{7}{95}$ and $\frac{7}{100}$ on $\$ 1$ invested ;
difference $=7\left(\frac{1}{95}-\frac{1}{110}\right)=\frac{21}{19 \times 110}=$ loss on $\frac{7}{95}$ income
\therefore loss on $\$ 100$ income $=13_{1}^{7}{ }_{1}^{7}$. Ans. $13{ }_{1}^{7} \% \%$.
[N.B. - It is barely possible that the examiner meant by the question, "How much less per cent. did he make on his investment?" If so we should say 7 on 95 is $\frac{7}{19}$ on 5 , or $7_{1^{7}}^{7}$ on 100 , rate $=7 \frac{7}{70} \%$ on 1 st chance ; 7 on 110 is $\frac{7}{11}$ on 10 , or $6 \frac{4}{4}$ on 100 , rate $=64 \frac{4}{1} \%$ on 2nd chance. Difference of rate per cent. on investments $=7_{76}^{7}-6_{14}^{4}=\frac{140}{19}-\frac{140}{22}=140\left(\frac{1}{19}-\frac{1}{22}\right)=$ $\frac{140 \times 3}{19 \times 22}=\frac{210}{209}=1_{\frac{2}{2} \frac{1}{5} \%} \%$, If he did mean this he deserved severe censure for ambiguity.]
(5) 5 gold +9 silver +11 bronze $=4$ gold +15 silver +10 bronze $\therefore 1$ gold +1 bronze $=6$ silver. Now this relation will be satisfied if we count 1 point for bronze, 2 for silver and 11 for gold; 1 point for bronze, 3 for silver and 17 for gold; 1 point for bronze, 4 for silver and 23 for gold, etc., etc., indefinitely.
(6) $20 s .+3(21 s)+.6\left(13 \frac{1}{3} s.\right)=163 s$ $815 \times 20 \div 163=100$ sov. ; 300 guineas ; 600 marks.
(7) $60^{\circ}=\frac{1}{6}$ circle $=10 \mathrm{~min}$. ; space to be gained $=20 \mathrm{~min}$.; time $2 \cdot 21 \frac{1^{\mathrm{g}} \mathrm{T}}{\mathrm{min}}$.
(8) $\left(\frac{3}{2}\right.$ of $\frac{3}{2}$ of $\left.\frac{3}{2}\right)$ population $=2,700 ;$ population $=800$.
(9) In 400 yr . there are 97 leap and 303 common years; \therefore average length $=[(97 \times 366)+(303 \times 365)] \div 400=$ $\dot{3} 65 \cdot 2425 \mathrm{dy} .=365 \mathrm{dy} .5 \mathrm{hr} .49 \mathrm{~min} .12 \mathrm{sec}$.
(10) 1st cube contains No. pounds Troy + No. pounds Avoir. $=\frac{144}{175}$ No. Avoir. + No. Avoir. $=\frac{319}{17 \overline{5}}$ No. Avoir.
2nd cube contains No. lbs. Avoir. + No. Avoir. $=\frac{350}{17 \overline{5}}$ No. Avoir.
\therefore Weights, i.e. volumes, are $319: 350$;
\therefore sides are as $8 / 319: v^{2 / 350}$; or as $6 \cdot 832771: 7 \cdot 047298$.
(1) $\frac{17}{1650}$.
(2) $8 s, 9 d$.
(3) Powers are as $4: 5$; times as $3: 4$, hence work done is as $12: 20$, or as 3 to ANs. $\$ 22 \frac{1}{2}, \$ 37 \frac{1}{2}$.
(4) $101 \%=101$ half-pence; $99 \%=99$ half-pence. Ans. $4 s .1 \frac{1}{2} d$.
(5) Rates are as $3: 1$; times as $1: 3$; actual time is $405 \frac{5}{1}$ min. \therefore distance $=\frac{1}{4}$ time at $8 \frac{1}{4}=131 \frac{5}{6}$ min.
(6) Loss $=35$ on every 3,625 sold, etc. ANs. $=\frac{700}{727} \%$.
(7) $\$ 4.96=\frac{102}{100}$ par, etc. Ans. $\$ 4.86$.
(8) $\frac{37}{40}$ weight in our.ces $\times 1,700+\frac{3}{40}$ weight $\times 110=1,000 \mathrm{c}$. Number ounces $=4,000 \div 6,323$.
(9) Length : length $=1: 14$; weight : weight $=77: 89$.
\therefore weight of copper rod : weight of iron rod $=11: 178$; $\frac{178}{11}$ of $\frac{319}{10}=516 \cdot 2 \mathrm{oz}$. Ans.
(10) $852.80-46.20=6.60 ; 52.80 \div 6.60=8 \mathrm{yd}$. Ans.
(b) The thickness has become $\frac{27}{16}$ of what it was, hence tia lmeadth must be made $\frac{16}{27}$ of what it was ; decrontse $=\frac{21}{27}$ breadth $=\frac{11}{27}$ of $42 \mathrm{in} .=17 \frac{1}{9} \mathrm{in} . \quad$ Ans.

$$
1885 \text { (PAGE 94). }
$$

(2) $211 \frac{1}{2} \mathrm{yd}$. cost $\$ 810.43$.
\therefore selling price per yard $=\$ 810.43 \frac{9}{4} \times \frac{6}{5} \div 211 \frac{1}{2}=\$ 4.59 \nmid \mathrm{f}$.

(4) Average price $=845$ per bushel, at which 110 bush. give \$92.95. This is $\$ 2$ less than the real price. Now the difference must be made up by taking more at the higher price; $\$ 2 \div \cdot 25$ $=8$ bush. more. $55+8,55-8$; the quantities are 63 and 47 .
(5) $\$ 120=60 \mathrm{yd}$. cloth; $\$ 96=48 \mathrm{yd}$. -cloth. Suppose an increase in the cloth instead of an advance in price. Say he buys x yards at. $\$ 2$, sells $(x+60)$ yd. at $\$ 2$, or $(x-48)$ at $\$ 2$. 'The loss in the supposed case $=108 \mathrm{yd} .=\frac{1}{5}(x+60) ; x=480 \mathrm{yd}$.
(6) $\$ 100$ on policy costs $\$ \frac{7}{8}$ premium ; net proceeds $=\$ 99 \frac{1}{8}$. \therefore premium $=\frac{7}{793}$ of proceeds $=\frac{7}{793}$ of $47,580=\frac{\$ 4}{9} 20$.
(7) Interests $\frac{42}{1600}, \frac{45}{1600}, \frac{54}{1600}, \quad \therefore 14 A^{\prime} ' s=15 B ' s=18 \mathrm{C} ' \mathrm{~s}$.
$\therefore A: B: C=45: 42: 35$. Divide s1 122, etc. A's share $=\$ 1,822.50 ;$ B's $\$ 1,701 ; \quad \$ 1,417.50$.
(8) $90+3=93 \mathrm{dy} .=3 \frac{1}{10}$ mo. Int. $=\frac{31}{800} ;$ proceeds $=\frac{769}{800}$ face \therefore face of note $=\$ 884 \cdot 2652 \ldots$
(9) Gains are as $29: 39$; A's capital $\frac{29}{68}$, B's $\frac{39}{68}$ of total. $\therefore \frac{39}{68}$ capital $=78,000$ for 1 mo., \therefore A's capital $=58,000$ for 1 mo. He withdrew 14,000 for $1 \mathrm{mo} .=\$ 2,000$ for the 7 mo .
(10) $(\text { Ladder })^{2}=(\text { wall })^{2}+10^{2}=(\text { wall }-2)^{2}+14^{2}$. Euc. I. 47. Wall $=25 \mathrm{ft}$; ladder $\sqrt{ } 725=26 \cdot 925824 \mathrm{ft}$.

1886 (Page 95).

(1) $\mathrm{A}^{\prime} \mathrm{s}=\mathrm{C}^{\prime} \mathrm{s}-17, \mathrm{~B}^{\prime} \mathrm{s}=\mathrm{C}^{\prime} \mathrm{s}-10, \mathrm{C} \prime \mathrm{s}=\mathrm{C}^{\prime} \mathrm{s}$;

A gives 12 to B and 5 to C, and C has $\$ 46$ more than A.
(2) $\frac{1}{4}+\frac{2}{3}=\frac{11}{12}, \therefore 1 \mathrm{hr} .=\frac{1}{12}$ of time, time $=12 \mathrm{hr}$. 3 hr . at $14+8 \mathrm{hr}$. at $25+1 \mathrm{hr}$. at $7=249 \mathrm{mi}$.
(3) At 4 o'clock, minute hand is 20 spaces behind, gain 22 spaces $=\frac{11}{12}$ of time required since minute hand gains 11 spaces out of every 12 it moves. Time $=\frac{12}{11} \times 22=24 \mathrm{~min}$. past 5 o'clock.
(4) Wages are as $5: 1$; rates as $2: 1$; times as $\frac{5}{2}: 1$, or as $5: 2$; i.e. boy's time $=\frac{2}{5}$ man's time $=\frac{2}{5}$ of $15=6$.
Hence man alone takes $15+6=21 \mathrm{hr}$.
N.B. The words "in proportion to ete.." are so placed as to be capable of
several interpretatons. The problems lacks preclision of statement.
(i) The 28 gal. cost $\$ 13$; quantity sold at 60 c. per gallon gives $\$ 18, \therefore$ quantity $=30$ gal. ANs. 2 gal.
(6) 75 marks for the last three questions; to be divided as $3: 5 \cdot 7$. Aㅆ. $15,25,35$ marks.
(7) $35 \mathrm{c} .-35 \%$ discount $=22$ aic.

APPLIEロ £ MAGE, Inc Rochester, NY 14609 USA Phone: 716/482-0300 Fax: 716/288-5989

(8) Discount $=253.03 \times \frac{9}{100} \times \frac{82}{365}=\$ 5.19$, add $45 \mathrm{c} .=\$ 5.64$. $\$ 253.03-\overline{5} .64=\$ 247.39$.
(9) Cubic feet in the cistern $=\frac{22}{7} \times\left(\frac{5}{2}\right)^{2} \times 4=\frac{50}{7}-$ cub. ft . No. gallons $=\frac{550}{7} \times 62.426 \times \frac{1}{10}=490.49 \mathrm{gal}$.

$$
1887 \text { (PAGE 96). }
$$

(1) Multiply N and D by 4, and remove inner brackets

$$
\frac{(29-14) \times\left(4_{1}^{7}-2 \frac{1}{3}+1_{10}^{7}\right)}{(29+14) \div\left(1 \frac{1}{2}-9 \frac{1}{2} \times \frac{9}{77}\right)}=\frac{15 \times \frac{107}{30}}{43 \div \frac{60}{154}}=\frac{1605}{3311}
$$

(2) 5 cows $=3$ oxen; 600 cows $=360$ oxen.

$$
3 \text { horses }=4 \text { oxen } ; 48 \text { horses }=64 \text { oxen. }
$$

Now 6 horses for $8 \mathrm{wk} .=48$ horses for $1 \mathrm{wk} .=64$ oxen for 1 wk . Also 50 c . for $12 \mathrm{wk} .=600 \mathrm{c}$. for 1 wk . $=360$ oxen for 1 wk . And 12 oxen for 10 wk . $=120$ oxen for 1 wk .
Hence the shares are as $64: 120: 360$; or $8: 15: 4 \bar{j}$
\therefore A's share $=\frac{9}{88}$ or $\frac{2}{17}$ of $\$ 92=\$ 1014$ which leaves $\$ 811^{3}{ }^{3}$ to be paid to \mathbf{B} and C , whose shares are as 1:3.

$$
\text { B } \frac{1}{4} \text { of } \$ 81_{7^{3} \gamma}^{3}=\$ 20_{17}^{5} ; \quad C \frac{3}{4} \text { of } \$ 81_{1_{7}^{3}}^{3}=\$ 60+\frac{5}{7} .
$$

(3) Represent the time each worked by three lines.

Thus C works alone $2 \frac{3}{5}$ dy., B and C together $\frac{4}{5} d y .$, and A, B and C together the remainder of the time. C does $\frac{13}{60}$ work, B and C $\frac{7}{45}$ work; leaving $\frac{113}{180}$ to be done by A, B, C together at $\frac{53}{180}$ per day ; time required $=28^{7} \mathrm{~s}$ dy. \therefore whole time $=23_{3}^{7}+32=5 \frac{1}{2} \frac{1}{8} \frac{d y}{}$.
(4) 007916 .
(5) Benk interest $=\$ 15$: interest on $\$ 860$ for $1 \mathrm{dy} .=$

$$
\frac{1}{360} \times \frac{8}{100} \times 860=\frac{43}{22 \overline{5}}
$$

No. deys $=15 \times \frac{225}{43}=78 \frac{4}{43}$ or 79 dy .
Subtract 3 dy. grace; 76 dy. from March 23 rd is June 7th.
(6) $£ 871711 \times 184=£ 16,172168$

$$
\begin{aligned}
& 1111 \mathrm{ft} \times 3 \frac{1}{4}=\quad 316100^{2} \text { ? }
\end{aligned}
$$

$$
\text { Total price }=\begin{array}{lll}
£ 16,251 & 7 & 9 \frac{37}{32}
\end{array}
$$

(7) $\$ 75$ invested yields $\$ 4$ per $\mathbf{y r}$.; $\$ 75$ sold out gives $\$ 20$ profit; $\$ 75$ at $7 \frac{1}{2} \%=\frac{45}{8}$ per year. Hence the equation :-
$(\$ 4 \times$ No. years $)+\$ 20=\$ \frac{45}{8} \times$ No. years; No. years $=12_{1}^{4} s$.
Otherwise :- $\$ 20=21 \%$ on $\$ 75$ for x years, $\therefore x=12^{\frac{4}{3}}$.
(8) Water $=\frac{7}{93}$ of the vinegar; it must be made $=\frac{2}{23}$ of the vinegar; amount to be added $=\left(\frac{2}{23}-\frac{7}{9!3}\right)$ of the vinegar $=\frac{25}{2.3 \times 93}$ $\frac{25 \times 93}{23 \times 93}=1_{2^{2}}{ }^{2}$ gal. to be added to the water.
(9) Losis to be retrieved $=\$ 2,000 ; \$ 8,000$ at $8 \%=\$ 640$; $\$ 1,360$ to be made up by gain of 4% on borrowed money ; \therefore sum $=\$ 34,000$.
N.B.-This is a viciously vague problem, Insert "at par" after $\$ 10,000$; "at
once" after" sold out," "per annum" after per cent.
(10) $2(\text { side })^{2}=(\text { diagonal })^{2}$, Euc. I. 47 ; side $=\sqrt{ }$ area \therefore side $=$ square root of $\left(\frac{55}{2} \times 4840\right)=110 \sqrt{ } 11 ;$ diag. $=220 \sqrt{ } 11$.
(11) $3 \%=\frac{3}{1000}$; so that if the side were 1,000 at first, it would be 1,003 after expansion; \therefore cubical content increases from $1,000^{3}$ to $1,003^{3}$; increase $=\ddot{9,027,027}$ on $1,000,000,000$, or 9027027 per hundred.
(12) 1 in. deep of reservoir contains $187 \times 96 \times 9 \times 144$ cub. in.

Area of section of pipe $=\frac{22}{7} \times 7^{2}=7 \times 22$ sq. in.
10 mi . per hour $=10 \times 5,280 \times 12 \div 60=5,280 \times 2 \mathrm{in}$. per minute.
No. minutes required $=\frac{187 \times 96 \times 9 \times 144}{7 \times 22 \times 5,280 \times 2}=14.3064 \mathrm{~min}$.

$$
1888 \text { (PaGE 97). }
$$

(1) $\mathrm{N}=\frac{5}{16}-\frac{11}{96}=\frac{19}{96} ; \mathrm{D}_{8}=4 \frac{1}{2}-3 \frac{1}{2}-4_{7}^{2}+37+\frac{3}{56}$

$$
=\frac{1}{2}-\frac{1}{3}-\frac{2}{7}+\frac{7}{8}+\frac{3}{56}=\frac{17}{21}
$$

$$
\text { Fraction }=\frac{19}{96} \times \frac{21}{17}=\frac{118}{544}
$$

(b) $365 \frac{1}{\frac{1}{2}} \mathrm{dy} .=31,557,600$ sec. ; 349 dy., etc. $=30,185,520 \frac{1}{2} \frac{9}{3} \mathrm{sec}$. Required fraction $=694,266,970 \div\left(31,557,60^{\circ} \quad 23\right)$.
(2) A does 1 piece in x days, B in $2 x$ days, C in 七 days.
\therefore A does 6 pieces, B does 3 pieces, $C 2$ pieces in $6 x$ d ys each.
$\therefore A, B, C$ do 11 pieces in $6 x$ days ; $\therefore 6 x=11 \times 18, x=33$.
The times are $33,66,99 \mathrm{dy}$.
(3) P. W. of note $=\$ 1,360-20.40=\$ 1,339.60$

Total cost of lot $=\$ 1,200+79=1,272,00$. Ans. $\$ 67.60$.
(4) Sold $\frac{2}{5}$ at $\$ 120 ; \frac{3}{5}$ at $\$ 217.80$ per acre ;
average price $=\$ 178.68$;

cub. in.
$\times 2 \mathrm{in}$.
in.
$\frac{1}{3} \mathrm{sec}$.

7s.
sach. $=33$.
67.60.
(i) 6 men earn $\$ 13.50 ; 7$ women earn $\$ 10.50$; difference $=\$ 3$. The wonen in the actual case therefore earned $\$ 3$ more than the men. $\$ 93-3=\$ 90 ; . . \$ 90 \div 2=\$ 45=$ wages of men; 20 men. $\therefore \$ 48=$ wages of women ; 32 women.
(6) 500 bbl at $\$ 7=\$ 3,500 ; 4 \%$ off leaves $\$ 3,360$ to be divided. Let 100 represent the quality of B's flour, $\therefore 110: 100: 116$, i.e. $\frac{11}{10}: 1: \frac{29}{25}$ will represent the flour reduced to B 's standard. In burrels this is A, 1371; B, $150 ; C, 261$ barrels of standard quality. Hence divide $\$ 3,360$ in the proportion $275: 300: 529$, and the shares are, $\mathbf{A} \$ 812.30, \mathrm{~B} \$ 918.87, \mathrm{C} \$ 1,598.83$.
(7) Let W and W_{2} be the weights of tin and of lead. $\therefore \frac{W_{1}}{7 \cdot 44}$ and $\frac{W_{2}}{11.35}$ will be the weights of the equal volumes or bulks of water. Also $W_{1}+W_{2}=$ weight of the compound and $\therefore \frac{W_{1}+W_{2}}{10.43}=$ weight of an equal volume or bulk of water. $\therefore \frac{W_{1}}{744}+\frac{W_{2}}{1135}=\frac{W_{1}+W_{2}}{1043}$. From this $\frac{W_{1}}{W_{2}}=\frac{2976}{14755}$ which is the proportion of the weight of tin to lead in the compound.

$$
\therefore \frac{2976}{17731} \text { of } 755=\text { tin }=128.39884+; \text { lead }=\text { remainder }
$$

(8) $\frac{81 \frac{1}{4}}{100}$ debt $=\$ 7,950 ; \quad \therefore$ debt $=\frac{318 \times 400}{13}$
$\frac{3}{5}$ at $17 \frac{1}{5}$ discount $=\frac{3}{5} \times 7,950 \times \frac{33}{40}=\frac{318 \times 99}{8}=1$ st sale.
$\frac{2}{\overline{5}}$ at $23 \frac{3}{4}$ discount $=\frac{9}{5} \times 7,950 \times \frac{61}{80}=\frac{318 \times 61}{8}=2$ nd sale.
Proceeds $=\frac{318 \times 160}{8}=318 \times 20$
$318 \times 20 \times \frac{13}{318 \times 400}=65 \mathrm{c}$. on the $\$$.
(9) The capitals are as $4: 3: 2$

The times " $4: 3: \mathbf{3}$
\therefore the gains " $16: 9: 4$; or $\frac{16}{29}, \frac{9}{29}, \frac{4}{29}$.
Length of walls $=90 \mathrm{ft} . ;$ area $=90 \times 12 \mathrm{sq} . \mathrm{ft}$,
(10) Area of 1 yd. paper $=64 \mathrm{sq} . \mathrm{ft}$.; No. yards $=160$; coșt $=7 \mathrm{c}$.
(11) Area of surface $=2 \times \frac{22}{7} \times \frac{5}{4} \times 12$ sq. ft. \quad Cost $=\$ 117.85$.
(12) Square field $=77.841 \mathrm{sq} . \mathrm{ycl}$: side $=279 \mathrm{yd}$;
leigth of path $=1,132 \mathrm{yd}$.; area of path $=4,528 \mathrm{sq} . \mathrm{yd}$.

$$
1889 \text { (Page 98). }
$$

(1) $\frac{1}{10}+\frac{1}{12}=\frac{11}{60}$.
(b) Sum $=81 \cdot 499$; average $=10 \cdot 1873$.
(2) $\$ 24,944.10$ in 380 dy . gains $\mathbf{2}, 596.92$
\therefore ra'é per cent. per annum $=\frac{2,596.92 \times 365 \times 100}{24,944 \times 380}=10 \%$.
(b) $30,441 \times \frac{\mathrm{No}}{365} \times \frac{1}{10}=2,210.10 ;$ No. $=265 \mathrm{~d} y$.
(3) Premium, $\$ 86.80$; taxes, $\$ 186.75$; repairs, $\$ 346.45$; total, $\$ 620$.
Receipts, $\$ 1,860$; net income, $\$ 1,240$; rate, 8% on cost.
(4) If $4 x=$ length, $3 x=$ breadth, $12 x^{2}=$ area. $\therefore 12 x^{2}=2.523 \mathrm{sg}$. per. ; $2 x=1841=29$; $x=14 \frac{1}{2}$ per Ans. 29 per.
(5) June 1 to Oct. $4=126 \mathrm{dy}$.; Aug. 15 to Oct. $4=50 \mathrm{dy}$. Interest on note $=\$ 51.45 ;$ discount $=\$ 27.23$; Proceeds $=\$ 2,474.22$.
(6) Let $4 x=$ cost of house; $15 x=$ cost of farm.

Then $\frac{9}{10} \times 4 x+\frac{15}{14} \times 15 x=\$ 3,993.30 ; x=203$.
Ans. $\$ 3,045, \$ 812$.
(i) The No. of yards of cloth becomes $\frac{19}{20}$ of original length \therefore the price per yard of cloth becomes $\frac{20}{19}$ to clear cost price

$$
\therefore \text { " " " " } \quad \text { " } 800 \frac{20}{19} \times \frac{6}{5} \times 5.70
$$

$=\$ 7.20$ to gain 20%.
(8) Suppose $36 x=$ A's capital, then $60 x=$ B's
\therefore A's investment $=180 x+189 x=369 x$;
$B ' s=540 x+120 x=660 x$
Shares are as $123: 220$; i.e. A, $\$ 1,514.13$; B, $\$ 2,708.20$.
(9) In 2nd case 104 yields $\$ 6$, or 78 yields $\$ 4.50$; loss 50 c . on every share sold ; No. shares $=38 \overline{5} \div \overline{5}=770$. Ans. 877,000 .
(10) Total cost $=\$ 2,220$; selling price $=\$ 2,512$, of which the owner pays $\$ 75.36+83.44=\$ 158.80$.
$\therefore \$ 2,220$ gains $\$ 133.20$; rate 6%.
(11) Cubic inch of lumber $=$

$$
(30 \times 44 \times 94)-(28 \times 42 \times 92)=15,888 \mathrm{cub} \text {. in. }
$$

Since the boards are 1 in . thick, there are $10,888 \mathrm{sq}$. in. of lumber.
\therefore cost $=15,888 \div(144 \times 50)=\$ 2.20$?.
(12) Cubic inch taken out $=8 \times 30 \times 462$

1 in . deep of cistern contuins $\frac{29}{7} \times 42^{2}$ cub. in.
Cistern is lowered $(240 \times 462) \div\left(\frac{22}{7} \times 42^{2}\right)=20 \mathrm{in}$.

1890 (Pate 100).
(1) 10,$080 ; 110,2 \mathbf{2 0} 0$.
(2) $£ 313 s .4 d .+4 s .9 d .+£ 218 \mathrm{~s} .5 d .=£ 616 \mathrm{~s}, 5 d$.
(3) $133 \frac{1}{8} \mathrm{lb} .=133 \frac{1}{3} \times \frac{144}{17 \overline{2}} \times 16=1,755 \frac{7}{7} \mathrm{oz}$. Avoir. $\therefore 6,144 \div 1,755 \frac{3}{7}=3 \frac{1}{2}$ sover igns.
(4) $\frac{1}{6}+\frac{1}{7}+\frac{1}{9}=\frac{53}{126}$ of a day's work lost ; $\frac{1}{8}+\frac{1}{10}=\frac{9}{40}$ gained Net loss $=\frac{493}{2020}$; leaving $16 \frac{13}{6} \mathrm{dy}$. lost ; $\frac{17}{30}$ less for 17 men. Ans. $\frac{1}{30}$ less.
(5) One brick $=\frac{3}{30}$ cub. ft.; brick + mortar $=\frac{17}{16} \times \frac{3}{32}$ cub. ft. Ans. $(45 \times 17 \times 4 \times 32 \times 16) \div 3 \times 17=30,720$ bricks.
(6) 12 ac. $=58,080$ yd. $=\frac{22}{7}\left(r+r_{1}\right)\left(r-r_{1}\right)=\frac{22}{7}\left(r+r_{1}\right) 22$
$\therefore r+r_{1}=840$, and $r-r_{1}=22, \therefore 2 r_{1}=818$.
(7) $1,100 \mathrm{sq}$. ft. of wall; $\therefore \frac{24}{25} \times 1,100 \times 2=234 \frac{1}{8}$ yd.
(8) When pressures are as $2: 3$, volume of air is as $3: 2$ i.e. volume becomes $\frac{1}{3}$ less; $\frac{1}{3}$ volume $=2 \mathrm{in}$. Ans. 6 in .
(9) First income $=200 \times \overline{5}=1,000$

Second income $=200 \times 170 \times \frac{100}{108} \times \frac{7}{200}=\$ 1,101.85_{2^{k} \gamma}$ Difference $=\$ 101.85_{2}{ }^{5} 7$.
(10) Cash value of $\$ 5.70$ due in 4 mo , at 4%, with 63% adderl $=570 \times \frac{75}{76} \times \frac{16}{15}=\$ 6$.
Hence 12c. is the interest on $\$ 6$ for required tine, i.e. 6 mo.
(11) Direct exchange, $\$ 4,150$.

Circuitous exchange, $10,000 \times \frac{4}{45} \times \frac{40}{9} \times \frac{436}{400} \times \frac{395}{400}$ $=\$ 4,262.097 \mathrm{f}+\quad \$ 112.097 \mathrm{t}=$ difference.
(12) Dr. $\begin{aligned} & 950 \times \quad 0=0 \text { for } 1 \text { dy. after July 10th. } \\ & 300 \times 50=15,000 \text { " } \\ & 60\end{aligned}$
$250 \times 101=25,250 \quad$ " \quad "
$150 \times 83=12,450$ " \quad "
$\$ 1,650$ and $\$ 52,700$;
$=\$ 1,650$ due in 32 dy . after July 10th, or Aug. 11 th.
Cr. $450 \times 0=0$ for 1 dy . after July 10th.
$350 \times 36=12,600$ ، "،
$\frac{200}{\$ 1,000} \times 57=\frac{11,400}{\$ 24,000 ;}$ " " "
$=\$ 1,000$ paid 24 dy . after July, 10 th or Aug. 3rd.
Difference 650 due in $\frac{1000 \times 8}{650}=12 \mathrm{dy}$. after Aug. 11 th, , i.e. Aug. 2srd.

1891 (Page 101).

(2) Policy $=\frac{2}{3}$ of $\$ 7,500=50$ hundreds; rate $=\frac{9}{5} \%$ \therefore premium $=50 \times \frac{9}{5}=\$ 90$.
(3) Taxable income $=\$ 700$; tax $=\$ 1.05$.
(4) Take $\$ 100$ worth at list price, $\$ 80 ; \$ 72=$ bill ; $72-3.60=\$ 68.40$ invested ; $\$ 90=$ selling price ; $90-68.40=21.60$ gain on $\$ 68.40$; gain on $\$ 100=31+t$. Axs.
(b) Proceeds $=(12,000 \div 75) \times 80=\$ 12,800$ 1st partial income $=\left(\frac{1}{3}\right.$ of $\left.12,800 \div 96\right) \times 3 \frac{1}{2}=1558$

$$
\text { 2nd partial income }=\frac{2}{3} \text { of } 12,800 \times 5=426 \frac{g}{8}
$$

$$
\begin{aligned}
\text { 2nd income } & =382 \% \\
\text { 1st income }=(12,000 \div 75) \times 3 & =480
\end{aligned}
$$

Difference $=\$ 102 \overline{2}$.
(6) $1=1 ; 1.04=1 \cdot 04 ; 1.04^{2}=1 \cdot 0816 ; 1 \cdot 04^{3}=1 \cdot 124864$; $1 \cdot 04^{4}=1 \cdot 16985856$
Sum $=5 \cdot 41632256$, which $\times 350=\$ 1895 \cdot 712896$. Ans.
(7) P. W. of debt $=\frac{400}{1.05}+\frac{300}{1.05^{2}}+\frac{200}{1.05^{-3}}=\frac{441+31.5}{1.05^{3}}-200$
$956 \times \frac{20}{21} \times \frac{20}{21} \times \frac{20}{21}=7,648,000 \div 90,261=\$ 825.83$ nearly.
(8) Area $=84, \therefore 168 \div 13 ; \div 14 ; \div 15=$ perps. $12+\frac{2}{3} .12,916 \mathrm{ft}$.
(9) Area of lid and bottom $=144$; sides $=123$, ends $=107_{1}^{1} \mathrm{~s}$ sq. ft. ; total external area $=374 \frac{1}{18} \mathrm{sq}$. ft. Capacity $=(82 \times 94 \times 106) \div 1,728=472_{2^{7} 18}$ cub. ft .
(10) External diameter of wall $=84 \mathrm{in} . ;$ internal $=70 \mathrm{in}$. Area of top of wall $=\frac{22}{7} \times \frac{1}{4}(84+70)(84-70)=22 \times 77 \mathrm{sq} . \mathrm{in}$. Solidity of wall $=(22 \times 77 \times 28 \times 12) \div 1,728=\frac{1}{18} \times 77 \times 77$ cub. ft. But 1 cub. in. weighs $\frac{2}{3}$ oz.; 1 cut. ft. weighs 72 lb . Weight of wall $=\frac{1}{18}(77 \times 77 \times 72) \div 2,240=10 \frac{1}{8}$ 子 long tons.
(11) The account can be written out with the following figures:

Freight, $\$ 17 \overline{5}+$ feer, $\$ 71.78$ + commission, $\$ 81.58$

+ cash, $\$ 5.234 .14=85,562.50$.
Sales, $\$ 1,312.50+\$ 3,1: 00+\$ 1,100=\$ 5,562.50$.
(12) $10 \div 3=3 \frac{1}{3}$ bottles ench at $\$: 3$ a piece; B pays $\$ 4$.

1892 (Page 10:3).
(2) (a) $\frac{1}{100}(1-0: 3+\cdot 0006-\cdot 00001+\cdot 00000015)$

$$
=0097059015
$$

(b) Arrange each set in groups :-
$A=11(1 \cdot 2 \cdot 3) 12(1 \cdot 2 \cdot 3) 13(1 \cdot 2 \cdot 3)$
$\mathrm{B}=14(1 \cdot 2) 15(1 \cdot 2) 16(1 \cdot 2) 17(1 \cdot 2) 9(1 \cdot 2) 19(1 \cdot 2) 20(1 \cdot 2)$
$\mathrm{C}=21.23 .25 .27 .29$. Reducing these we get
$A=11.12 .13 .2^{3} .3^{3} ; B=14.10 .16 .17$. 9. 19. 20. 2^{7}; and $\mathrm{C}=23,29,7 \cdot 3^{4} \cdot 5^{2}$. And again
$\mathrm{A}=11.13 .9^{3} \cdot 3^{4} ; \dot{B}=7,17.19 .2^{14} \cdot 3^{3} \cdot 5^{2}$, etc., etc. Fraction $=2^{0}, 3^{2}, 5,7,11^{3}, 13^{3}, 17^{2}, 19^{3}, 23, \dot{2} 9: 31,37$.
(3) Length of regiment $=247 \mathrm{yd}$.; to which add 3 mi .44 yd ., and 3 mi .343 yd . is distance travelled to clear bridge
\therefore length of step $=(5,513 \times 3) \div\left(56 \frac{1}{8} \times 96\right)=3{ }_{3}{ }^{6} 5_{5}^{3} 5^{3} \mathrm{ft}$.
(4) Cost $=\$ 750 ;$ risk $=\$ 825+\frac{3}{400}$ risk. Ans. $\$ 831 \cdot 284+$.
(5) Let $x=$ amount $; \quad \therefore \frac{4 \frac{1}{2} x}{101 \frac{1}{4}}-\frac{13 x}{32 \frac{1}{4}}=31 \frac{1}{2} . \quad x=\$ 17,415$.
(6) Interest $=\$ 165$; int. on $\$ 2,417.50$ for $1 \mathrm{yr} .=\$ 163 \cdot 18125$ \therefore time required $=1 \mathrm{yr} .+\frac{\cdot 181875 \times 365}{16.5 \cdot 18125}=1 \mathrm{yr} .4 \mathrm{dy} .+$ Ans. Jan. 5th or 6th, 1891.
(7)

> P. $W .=\frac{250}{1 \cdot 02}+\frac{250}{1 \cdot 02^{2}}+\frac{250}{1 \cdot 02^{3}}+\frac{250}{1 \cdot 02^{4}}$
> $=\frac{250}{1 \cdot 02^{4}}\left(1 \cdot 02^{1}+1 \cdot 02^{2}+1 \cdot 02+1\right)=$ etc. $=\$ 951.932+$
(8) $\$ 5,000=26,0412$ francs; $25,211 \frac{2}{3}$ francs $=11,345 \frac{1}{2}$ florins;
$10,845 \frac{1}{2}$ florins $=18,075_{1} \frac{5}{2}$ shillings $=£ 903 \mathrm{i} 5 \mathrm{~s} .0 \mathrm{~d}$. ANs. $\$ 3,975.70$.
(9) (a) Area $=\sqrt{ }(60 \times 4 \times 21 \times 25)=4 \times 5 \times 7 \times 3=420$
(b) Aren $=\left(\mathrm{C}_{1}^{2}-\mathrm{C}_{\mathrm{g}}^{3}\right) \div 4 \pi$

$$
\begin{aligned}
& =\left(280^{2}-210^{2}\right) \div 4 \times 3 \cdot 1459 \\
& =\left(140^{3}-105^{2}\right) \div 3 \cdot 14159=11 \cdot 1404+
\end{aligned}
$$

(10) (a) Slant height $=2$; conical surface $=4 \pi \times \frac{2 \pi}{1 \pi}=2 \pi$; base $=\pi$; total surface of cone $=3 \pi$;
surface of sphere $=\frac{3}{2} \pi, \therefore 4 \pi r^{2}=\frac{3}{2} \pi$; $r=\sqrt{\frac{3}{8}} ;$ volume of sphere $=\frac{4}{3} \pi r^{3}=962$.
(b) Circumferences are as 45° : 51 ; large wheel gains 11 in going of; Small wheel gains $\frac{11}{45}$ of a revolution for every revolution of large wheel
Small wheel gains 1 revolution for every $\frac{4 \overline{5}}{11}$ revolution of large wheel
Small wheel gains 12 revolutions for every $\frac{45}{11} \times 12$ revolutions of large wheel
Small wheel gains 12 wolutions overy

$$
\frac{45}{11} \times 12 \times \frac{62}{6} \times \frac{56}{12} \mathrm{ft} .=720 \mathrm{ft}
$$

Problems in Arithmetic Por Junior Classes.

Ity W. E. Gnoven. Irluelpal Chureh Nt. School, Toronto. Malnly mapterl fior the use of puplla lin Seronil nul Third look Classes In puhile gehools. I'art I., Second Bhok Classes. 1'art II., Thirl Ibook Classes. Irlce 85 cents.

TIIS is a volume of over 11^{m} practleal problema, covering the work prescerlited tor the Sceomilmil Thirl Ifogk Clases. In lta prepara. tu vlew.

The followtig are a fow of the reasons why such a book should lie in the hands of the pupils:-

1. Whille the spectal teachers'edition has all the answers prepared and a great deal of useful matter not usually found lin works on arlthmetle, the scholars' elltion contalus only the bare problems. L'arfect linlepenf. ence of thought is thus secured in the solving of problems by the puplis.
2. It saves the for the teacher that he wouhl otherwise have to spent In looking for problens or tin the manufacture of orlginal ones.
3. It saves to the sehool the the that the teacher would requilre fin the dictation of problems to the puplls, while from the little hand-hook an exerelse call bo asslgned with scarcely a monent's delay.
4. It saves to the pupll the thine occupied in copying the problems assigned, leaving him that amount of thine to dovote to the solutions.
b. It prevents the ruln of a pupll's style of writhig from the mal racing pace at which pupils are frequently required to write in the enpyfing of home or class exerelses. There is nothing that teachers can do that so successfully destroys all chance of a boy's or girl's learning to write well as the incessant conylig of excrelses and notes, in oriler to save the purchase of a flfteen or twenty-flvo cent book. All your teaching of writ. ing is so murh lost tlime if puplls are allowed to negleet their writting caution when copylng other work. Every case where a pupll has to write at all should be inade a writing lesson.
5. School Trustees would do well to supply a copy free to each pupll, as the price would soon be saved in the Inereased time the teacher could give to his classes.
6. There is no other book jublished where teachers can get copies of the Uniform Promotion Papers set th the various parts of tive Province.
7. A pronfient feature is made of Bllls anlld Acconits, and of money transactions generally, including an exercise on the makling of Change.
8. There are over 500 problems on four simple rules based on the Practlec Table, the answers to which appear only in the teacher's edttion.
9. There aro 576 self-testing excrelses in loner d!v!s!on.

Problems in Arithmetic vom

II. and III. BOOK CLASSES.

EDITEM HY

W. IE. GROVES,
Principal Chwich Strect School, Toronto.

Abstract

Edition with Solutions and Answers (Tcachers only), 50c. Edition without Answers (Scholar's Edition), . . 25c.

TEACHERE STRONGEY RECOMMEND THEM.

The best I have neen.-SaM. J. Latter, Principal Public School, Zurich.

Shall Introduce Immedtutely.-M. A. Stewand, Principal Public School, Lancaste ${ }^{\circ}$.

Etecommend it.

The problems are excellent, and I hope the book may meet with the favor it merits. I would recommend it to busy teachers.Amy H. Guthrie, Teacher, Port Credit.

limprecedented in the history of Arithmetics.

The plan and matter of "Problems in Arithmetic for Junior Classes "by W. E. Groves, are unprecedented in the history of Arithmetics. The careful grading and the absence of answers in Scholars' Edition make it especially useful to teachers in ungraded schools. Mr. Groves is highly practical and logical.-E. R. Withemil, Prin. Westport P.S.

The best I have seen.
The Problems in Arithmetic for II. and III. Book Classes are the luestaI have seen.-SAM. J. Latra, Z urich.

Save time and laber.

The Arithmetic will save the teachers time anl labor and will prove valuable educationally as it contains a great variety of pro. bleins.-W. H. Bakl:1, Bayfeld.

Shall Introduce. it immedintely,
I an so pleased with the Arithmetical Problems for II, and III. Classes, by W, E. Groves, that I shall introduce it into our school inmediately. I hope the IV. Class work may be equally good.-W. A. Stewart, Prin. P.S., Lancaster.

Highiy Pleased with them.

I have made a careful examina. tion of youl Problems for II. and III. Book Classes and am highly pleased with them. The arrange. ment of the problems is the best I have seen in any book of its kind. - SAM. M. HaUCH, Principal

Problems in Arithmetic
 FOR

IV. BOOK CLASSES.

EDITED BY

W. E. GROVES, Principal C'hurch Street School, Toronto.

W. J. Gage' \& Co.'s Publications.

Prize Problems in Arithmetic.

Selected and arranged by W. H. Ballard, M.A., Inspector of Schools, Hamilton, and W. J. Robertson, B.A., LL.B., Mathematical Master, St. Catherines' Collegiate Institute. Thero are about 1,1(k) Problems in this book of which about 500 are from Prize Problens contributed to the c'anada School Journal. The object of the book is to place in the hands of teachers and pupils a careful selection of Probleins suitable to the fourth class in our public schools, thus enabling them to prepare thoronghly for entrance cxaminations to high schools and collegiate institutes. The selection is particularly strong in interest and percentage. 10th edition. Price 20 cents.

Decidedly a help.

Will be dectdedly a help to teachers who are preparing pupils for the cutrance examinations to ligh schools. The Problenis cover a wide field, and are, most of them, eminently practical.-J. A. Wismer, M.A., Head Master, Parkdale.

Interesting and practical.

I find the questions in the various departments of Arithmetic presented in great variety, and at once interesting and practical.-J. A. Macpherson, Head Master, Beeton P.S.

Excelient for home werk.

Your " Prize Problems in Arlthmetie" contains a great number of excellent Problems for home work or examinations.-J. S. Rowat, P.M.S., Caledonia.

Intend Introducing it.

I intend introducing it in my fourth-book class at the beginning of the term. It will make an excellent review book.-M. P. McMasTER; Principal P.S., Thorold.
More than pleased.
I am more than pleased with it.Thos. Hammond, Head Master, P.S., Aylmer.

Comprehensive anil very praclical.

The probleins are definitely worded, comprehensive in range, and very practical.-J. C. Munro, Principal P.S., Palmerston.

Will use it.

I will endeavor to have my class of next session provide themselves with the work.-A. N. Thornton, Head Master, P.S., Wallaceburg.

Best of the lind.

I consider it the best of the kind that I have seen.-J. C. STEWABT, Principal Pembroke P.S.

An indispensible help.

I have thoroughly examined "Prize Probleins in Arithmetie," by Robertson and Ballard, and believe teachers will tind it an indispensible help. -Jas. DUNCAN, Prin. Essex Model and Windsor Central Schools.

Time and labor saving.

The questions are practical and will induce a wider range of thought. Any teacher using this work will finid it both time and labor-saving in reviewing for examinations. - M. H. THOMPSON, Principal Aurora P.S.

Shall introince the book.

The problems involving interest and percentage are very numerous, and include an aimost endless variety of application. I shall introduce the book to our entrance class.W. E. Groves, Principal P.S., Wingham.

Useful to teachers nind pupils.

I feel certain that the work will not only le intereating, butalso very usetul to looth teacners and phpils.T. O. Steele, P. M.S., Darie.

W. J. Gage \& Co.'s Publications.

Hamblin Smith's Arithmetic.

A treatise on Arithmetic by J. Hamblin Smithi, M. A., of Gonville and Caius College, and late lecturer at St. Peter's College, Cambridge. Adapted to Canadian schools by Thos. Kirkland, M. A., Principhl Normal School, Toronto, and Wam. Scott, B. A., Mathematical Master, Normal School, Ottawa. Eighteenth edition. Price 60 cents,

Authorized for use in the Schools af Ontario.
Authorizen for use in the Schools or Quebec.
Authorized for use in the Schools of New Brunswick, 1892. Authorized for exclusive use in the if l'rince Edwaril Island. Authorized for exclusive use in the Schools of Nora Ficotia. Authorized for exclusive use in the Schonls of Manitnba. Authorizedfor exclusive use in the Schools of British Columbia.

Kirkland \& Scott's Arithmetic.

An Elementary Arithmetic on the Unitary System intended as an introductory text book to Hamblin Smith's Arithmetic, by Thos. Kırkland, M. A., Principal Normal School, Toronto, and Wm. Scotr, B.A., Mathematical Master, Normal School, Ottawn. Three hundredth thousand. Price 25 cents.

Authorized for exclusive use in the Schools of Nova Scotia, Authorized for exclusive use in the Schools of Manitoba. Authorized for exclusive use in the Schools of British Columbia Authorized for use in the Schools of Suebec of Newfoundland. Authorized for use in the Schools of Quebec.

Government Text Book).

Kirkland \& Scott's Arithmetic, French Edition.

Edited by U. E. Archambault, Superintendent of Frencit Schools, Montreal. For use in French schools. Price $2 \operatorname{sb}^{5}$ cents.

Key to Hamblin Smith's Arithmetic.

Or the solution of the most difficult exercises and examination papers in the Canadian edition of Hamblin Smith's Arithmetic, by Thos. Kirklann, M.A., Principal Normal School, Toionto, and Wm. Scott, B.A., Mathematical Master, Normal School, Ottawa. Prepared for the use of private students and teachers. Irice $\$ 2.00$.

W. J. Gage \& Co.'s Publigationg.

Revistd Edition Gage's New Map Geography

Primer. Price 40 cents.

For Pupils preparing for Promotion Examinations.
For Puplis preparing for Entrance Examinations.
For Pupils preparing for Junior and Senior Leaving Examinathons.

For Pupils reviewing for Certificates or Final Examinations.

170O overcome the great diffeulty of preparing students for these examinations, some masters throughout the province have taken the ordinary text-books in use, and from the multitude of sentences, selected what they deemed necessary to be learned by the pupil. Others again have used the blackboard or the diftation book for the facts to be memerized. These plans are objectionable, as the one does not present the words from the text-book so as to be remembered readily, and the others necessitate the loss of much valuable time. Further, the punil does not recognize the word in its written for:n, and thus the spelling is not taught. Of still more importanee and what in itself should commend the work to teaehers and the public genernlly, is that the exercise book required for the dictation exercises in Geography alone costs as much as this primer.

The work is arranged in tabular analysis, to prevent the waste of time in poring over a prosy text-book. Brief notes are inserted at intervals to convey information of specfal interest. Although merely preliminary, this hook will he found to contain all that is necessary to fit a student for any of our examinations in the subject, Geography.

As to what and how much to teach, those in eharge must exercise their own judgments.

The attention of both teacher and stndent is direeted to the Railway Map and to its analysis as special features of the book.

The new matter thus ad led relates to such interesting portions of the earth as Australia and parts of Oceania, Airlea, the West Indies, and Central America. These piaces, containing as they do sister colonies, claiming \boldsymbol{a} common origin with ourselves from British stock, cannot fail to be of deep interest to all loyal Canadians.

The stntistics of the various on itries, particulary those spoaking the Euglish Language, have heen brought down to the latest dnte; this is possible at this juncture owing to the prevalling custom of taking the census every decade.

.v. J. Gage \& Co.'s Publications.

Revised Edition Gage's New Map Geography Primer.

The Railway map and letter press instruction accompanying it, whleh forms a speefal fenture of the work, is aiso brought down to latest date, and will be found to almost furnish a "travellers' gutde," as nearly every place of importance will be found therein. It will be noticed that the older parts of Canada are as well supplied with raflway facilities as any part of the world. The natural products, manufactures, trade and commerce, have received special atttention: and, while not claiming that it contains everything essential to a complete knowledge of Geograpliy, it is contended that as much uscful information has been packed into the lintted space as is either wise or prudent.

The Maln Featnres may be sunmarized as follows:-
Brief and Clear.-The whole matter is put in so liricf and clear a marrner that the time of teachers and pipits will he saved and most satis. factory results can at the same time be secured.

Complete.-It is belleved that this uew Primer contained all that is necessary to corer Promotion, Fintrance, Junior and Senior Leaving Examinations.

Ite Utility-Time Saved, Expense Saved.-Instead of the teacherg marking in the large text-books the lessons to be learned, or using biackbonrds or dictation books, the student has presented in this little Primer in clear concise form all that is necessary to be reniembered.

Maps.-Fifteen beautiful maps are inserted, namely : Map of the World, Western Canada, Dominion of Canada, Noíth Amerien, South AmerIca, United States, Europe, England, Scotland, Ireland, Asin, Africa, West Indies and Central America, Mexico and Australia. Map of Geographical terms.

Among the special features of the new edition will the noted:
New Rallway Mup.-The Grand Trunk Railway System is indicated ly n Red Printing and Canadian Pacitic Rallway indicated by a Green Printing, thus showing at a glance these two great Railway Systems of Canada.

New Maps of West Indies, Central America and Mexico lave been added, also a map of the Domínion of Caunda showing - ative rela. tlons of the different Provinces of Canada.

Revised Edition Gage's New Map Geography Primer.

New Doable Page Map of ©ntarlo.-Printed from relief plates in three colors with all of the most recent information avallable.

New Doulble Dinge Map of British Colnmibia brought down to date.

Donble Page Map of Quebec.

New Statiatice of various comtries have been inserted, giving informatlon to latest date in accordance with the recent census, in which Products, Manutactures, Trude and Commerce have received speclal attention.

A thapter on Toplen! tieography for Language Lessons.

Npecimen Promotion Examination Papera.

Irlice.-Notwithstanding the book has been printed on beautifuliy calendered paper, entlrely re-written with a large number of additional maps, the price remains the same, viz., 40 cents, and is about one-half of that of ordinary texts looks.
founty Edilions have lieen issued, the Counties being grouped together cud beautifully engraved maps of each County, with every post-office, population of viliages, towns, etc., and other useful Informution supplied.

CONTENTS OF COUNTY MAPS.

Each map marks the location of every post-office, shows the popula tion of each villoze or town, shows the location of telegraph stations, the main travelled roads and the distances between stations on the varions llnes of rallway.

County Edition A.

With County maps of Essex, Kent, Lamihton, Middiesex, Elgin, Perth, Huron.

County Edition B.

With County maps of Oxford, Norfolk, Brant, Wentworth, Haldimand, Lincoln, Welland, Waterloo.

County Edition C.

With County maps of Halton, Pcel, York, Dufferin, Weliington, Simece, Grey, Bruce, aiso double page map of the Clty of Toronta.

County Edition D.

With County maps of Ontario, Durham and Northumberiand, Peterhorough, Hailburton, Vietoria, Hastings, Prince Edward, Len. nox and Addington.

County Edition E.

With County maps of Frontenae, Leeds and Grenville, Russell and Prescott, Renfrew, Lanark, Carleton, Dundas, Stormont and Glengarry.

Gage's Map Geography--Quebec Edition.

Contains a large double page map of the Province of Quebec, also map of the Eastern Townships, together with additional Text descriptive of the Province of Quebec. Price 40 cents.

Gage's Map Geography--Manitoba Edition.

Contains double page map of Manitoba, together with the des. criptive tert of that Province revised up to date. Price 40 cents.

Fage's Map Geography--British Columbia

Edition.

Contains new double page map of British Columbia, together wh deacriptlve text reviscia to date. Price 40 cents.

GAGE'S NEW MAP GEOGRAPHY PRIMER.

"The anving of lime, the awakening of intereat nad the fin:l nttilamient of sucepss will be realized, I believe, in every ease where it is used."-J. A. Hill, Ph.B., Headmaster Dunda" I^{\prime} ublic School.

Consider it execllent.

It is quite an improvement on the old edition and contalus an lininense amount of information for such a small look. The maps I consider excellent.- A. Donset, Essex, Ont.

Cireatly improved.

I have carefully exanined youf New Map Geograpliy Prliner and find it enlarged and greatily improved. The type, paper. binding and inaps are all excellent. Tencli. ers wilf find that it is now one or the hest works on the sulject for junior classes.-T. B. Caswelic, Principal Public School, Carlé, ton Place.

Decided improvement.

This new edition of Map Geography is a decided improvement on the old.-L. H. Luck, Penetang.

Many praiseworthy adilitions.

The Map Geography is now so well known to the teachers of Ontario, that it requires no extra com. inendation from me. The edition of 92 has many praiseworthy ndditions, and is one of the handiest little books for the sehool-room that I know of. Wril. J. HAMiliton, Principal Public School, Camp: bellford.

Extremely useful.

Your enlaraed and revised Geography Primer is a credit to your enterprise. I find it extremely useful as a supplement to the Text-Book.-E. J. Rowlanns, Head zfanter, jfodel School, Caledonia.

Recommend it.

I have used your Map Geography and recommend it to my pupils, many of whom use it in preparing their lessons, and with good results. - Robent W. Bright, Drayton, Ont.

Recommend its use.

Your New Map Geography con. tains a large ainount of informatlon, well arranyed and suitable for stindients preparing for the various omiclal exminhations. I shall recommend its use.-C. Sh. FAL. Con ER Principal District Train. ing School, Algoma.

The best ont.

The Geography I must say is the best out.-J. D. Nicol, Eganville P. S.

Find it excellent.

I have examined your New Map Geography Primer (Revised Enf. tion) nind find it excellent. The beautlful new maps, intest statis. ties, and especially the nerv mil. way map of Ontario, ure featur-s that shonld commend't to tenchers. J. A. Rfeder, Principul Blenheim P. S.

An invaluable work.

The labor of aequiring a great deal of valuable geographlenl knowledge is so facllitated in your Map Geography Primer as to render it an invaluabie work, not only for the school-room but for the home.-R. H. KNOWLEs, Pricipal Hespeler Public School.

Recently Authorized by the Board of Education for use in the Schools of British Columbia.

GAGE'S NEW MAP GEOGRAPHY PRIMER.

"By nging it a'great deal of time in naved."-James P. West Man, Prin. Crediton P.S.

Well plensed wiflif.

I have carefully cxamined the New Map Geography Primer, and I was so well pleased with its appearance and contents that I lost no the in showing it to my Entrance Class, recommending it to them as the ijest of its kind for their work. It ts now in the hands of nearly every member of the class for use at home, and the puptls are delighted with it.-S. C. Woodworth, Principal Ifodel School, IVelland.

IIIghy alelighted.

I am highly delighted with your Map Geography Priner.-A. A. McLean, Mar, Ont.

Host nseful help.

I consider your New Map Geopraphy Primer one of the most use. ful helps to both teacher and studeut. The statisties are up to date. This feature alone, to say nothing of the mass of other infor mation, Rallooul anil County Maps, and scores of gradel Examination Questions, should give it a place on every publle school teacher's table. I have used your old Map Geography Primer for years and would not he without such a book. The new edition is quite an im. provement on the old.-W. A. Gramam, Prin. Oil Springs P.S.

Alrendy Cised.

Many of my pupils already use the Map Geouraphy.-L. F. HalsRop, Prin. Niagaia F'alls P.S.

Plenseal with many fentures.
I am highly pleased with many features of your new Map Geography Yrimer. - THOs. Ham. Mond, H. M., Ayimer P.S.

Will scrommend them,

I will recommend it to those of my assistnnts who teach reography. -A. Mrikes, Head Master, $\boldsymbol{U} \boldsymbol{x}$. bridge 1'S.

I'sefinl matter.

The Geography contalns a great deal of useful matter not easily found elsewhere.-W. H. BakER. Bayfielil.

Good mips nat eonetsely arrangeal informution.

The Geography contains good maps and a preat deal ot eoncisely arranged intormatlon. - H. K. LoNith, Principal Model School, Clinton.

A perfeet work.

The new Geography Primer should be fil the hands of every teacher and pupll who wish the greatest amount of information in the shortest time. For revlew for examination it is a perfect work. The Railway Map alone is worth more than the price of the book. I should like to see it extenstvely used.-B. C. H, BECKE1, Priu. Brighton P.S.

Is plensed to see them used.

I am pleased when I see your Map Geography Primer in the hands of iny pupils. Some of them are uslus them with the regular text-hooks.-G. E. HENDERSON, Prin. Kingsville School.

Very mueh isuproved.

I consider the Revised Edition of your Map Geography Primer very much improved and shall recominend it to my students.-J. W. inend it to iny students.-J. W.
LaND, Principal P.S., St. Marys.

Gage's New Topical English and Canadian

History Notes.

This Ittle Primer is prepared to cover the Publio School History Course in English and Canadian History, and is printed so as to furnish a number of blank leaves to allow students to make additional notes. Price 25 cents.

Lendling Featuren.

1. The Notes are arranged Topically under such healings ns lesi indieate the True Growth of the nation.
2. The Progress of the People, the Struggle for Freciom, the Establishment of Representative Government, and the Development of Edu. cation, Literature and Religion, are given more prominence than wars.
3. The Colonial Extension of the British Empire is briffly outlined.
4. The whole History is Classified, so that the Relationships of the Great Upward Movement can be understood.
5. The arrangement of the Notes makes it Easy, Definite and Thorough Reviewing, perfectly simple without a teacher.
6. The Notes supply an Admirable Preparation for the study of larger histories, and the best means for Clearly Remembering what has been learned from them.
7. Ample space has been left for Additional Notes, to be written by the student.
8. The Notes can be used in connection with any History, and are intended to Stimulate the Further Study of the important subject with which they treat.

by the use of this Note Book

1. Time is Saved to teachers and pupils.
2. Success at Examinations made more certain.
3. Interest is Awakened In the study of History.
4. A simple, definite Method of Studying History is revealed.

GAGE'S

English \& Canadian History Note Book.

From Piof. VILLIAM CLARK, M.A., LL.DDo,

Trinity College, Toronto.

Abstract

"It ts an ndmirnbie compliation, equally unefal to lecturer and ghtudent, nuil am very Elad to permse If. i whall offen refer to 14."

A long-felt wnint.

Your English and Canadian History Notes fill a long-felt want. There geems to be no text book at present suitable for juntor pupils, and the notes will save the teacher much time in arranging class work. They are just the thing for oral teaching and review, and may be used with any English or Canadian History.-W. A. Graham, Prin. Oil Springs P.S.

A very grent ald.

Your Notes on English and Canadian History will ineet the needs of many tenchers who are pressed for time. Entrance pupils wili find It Ω very great aid.-L. F. HAR10p, Prin. Niagara Falis P.S.

Admirably ndapted.

It is admirably adapted for En. trance classes. and will make the work definite and thorough.-S. Y. TAylor, Prin, Public School, Paris.

Wust the thing.

1 am pleased when I sce your : English and Canadian History Note-book" in the hands of my puplis. Some of them are usinis them with their repular text-books inid ind them just the thing.-G. 15. Mhan School, Kingeville.

Grent help to ntudents of hanstory.

I have examined your Canalian and Engllsh History Note Book, and, although I am somewhat prejudiced against Note Books of any kind, I inust say that yours is the best and most carefully selected Notes that I have seen come frum the press, and under the care of a judiclous teacher they must be a great help to students of history, Thos. Hammond, II.M. Aylmer P.S.

Grasping polnts supplied.

The History Notes, I am sure, cannot fall to meet the approval of teachers, especially in the public school, where the leading events of Canadian and English fistory are required. This little book is admirably adapted to the needs of the teacher, since History can be taurht to young pupils only by providiug thein with grasping points wherely they may retain the hold they get during a lesson, and your book supplies those points.-A. H. KiL. MAN, Ridgeway P.S.

Fill an impportant niche in review.

I expect to find the Notes on History till an important nlehe in the review lessons on that subject.-1). MI. WAEKEF, Mi.A., Hicaid \#iaster, Prescott.

Gage's English and Canadian IIstory Note Book.

[^1]
Jint whint have been look. ing for.

The History is somethilug execi-lelut-just wint I have heen looking firr. I fitend to have all my Entrance pupils get them.-SAM. J. Latta, Zurich.

Hoth conventent mad helpful.

I think it well suited for the purpose for which it is intended. The Dusy teacher, and in fact any teacher. whin has thee sunbject in hind. will flind the uotes looth cont. venient and helpfui in preparing his lesson and in assipulny home Work- - A. MciKes, Heal Master. Uxbridge I'S.

Grent anstatunce to the teacher

'Ihe History will be of great assistance to the tencher in prepar. iny his notes. The topics are well shosen and the book is a good out'ine of the subleet.-H. R. LoNGH, Prin. Model School, Ćlinton.

Plensed with the nerange-

I an particularly pleased with the arrangement of the topics in the English and Cumadian History Note Book. It wiil greatly uii tearchers in saving time, and all candidutes preparing for examina-tion-from promotion to senior leaving. It is an eminently praetical work - B. C. H. Вескен, Prin. Brighton P. ${ }^{\text {S }}$.

Will save thac.

it will save the teacher as well \& $\cdot, \frac{y}{\text { upila in rreat amount of }}$ Ya de tilns With present text an : Fiwhry, pupils yequire an cons opedia and an nebridged duthe ry to arrive at the mean. ing of vit language. -J . G. CAR. RUTHERS, Prin, Cayugg P.S.

Probatble It will be adopted In the Northowest.

I belteve it is well adapted to the use for which1 it is intended. slath pass it to some of the othur teachers interested in the eabject. and it is probable it will be adopterl in one or more classes of our sclionl. - W. J. Cussiolm, Member or the Board of Education for the N.W.T.

An excelient mupplement to High Mrhool history.

An Immense saving of time in afforded by the use of Gage's New Engish and Cianmdlan History Note Book. An excellent supplement to iligh School History. Plan nisurpassed.-E. R. Wirit. ERLL, Prin. Weatport P.S.

Will dos nwny with wrifing notes.

The use of your History Note Book will do away with the writhir of elaborate history notes that we have aliwnys had. The blauk spare leaves room for each teacher's fu. dividuality to show in plocing his owin speedal, and to blin imin tapt.
 ones.-W. A. Shewars, dich. P.S., Lancaster:

Have never met nay work to equal 11 .

I am hifhly pleased with your History Primer. I have never met nny work to equal it for tho intended purpose. So far as I am personally concerued I find it a wonderfil assistance in presenting historical facts to iny pupily 111 a satisfactory and telling mauner.J. A. H1LL, PH. B., Headinaster Dundag Prblic Sthool.

Gage's Practical Speller.

Authorized by the Council of Public Inst ruction, Quebec.
duthorizell by the Council of Public Intruction, Manitoba.
Anthorized by the C'uncil ar Public Inatruction, Britiah Columbia.
Authnrised for use in the Schonls of North-Wese Territories.
Authorizellfor use in the Schools of New Brusiswich.
Is used in a unmber of the best Schonls of Outario.
Is used largely in the Province of Nova Scotia.

A series of graded lessons suitable for high and publle selmols. with words in general use, with abbreviatlons, ete., words of sinilar pronumelation and different spelling, a collectlon of the most difficult words in the English language, and a number of literary selections which may tee used for dictation lessons and committed to memory ly the mupll, together with Latin and Greek roots, afflyes and prefises most frequently found in the Publle Sehool Reader. 100th thousand. Price 30 cents.

TTHE old-fashloned Spelling book has been disearded by teachers generally. Many vaiid objections were properly urged against its une and it passed away.
Entire dependenec upon oral spelling may also be fitly styled a methol of liye-gone days. Unfortunately for the old spelling look, it was associated with all the folly and weakness of "oral spelling," and this partly accounts for its rejection.

What have the reformers given as a substitute for a sieller? They took our breal and hive given in return but a stone. The bread, eveli though a little stall. was much more wholesome than the stone. In Cananla, paris of the lessons to be found in the Readers are takeri as dictation lessons, and the pmpils are turned loose on soclety to shock it by their hud spelling, and disgruce the sehools which they attended and in which they should have been taught. The Readers do not contain all the words boys and girls will have to spell in life, and if they did, the lessons are not arranged in proper form for spelling lessons. Only a comparatively small portion of the Readers can be written from dictation in school. Bad as were the old spellers they were ininiltely better than nothing. This faet is now recognizel in Great Britain and the United States, in both of which countries many valuable spelling books have recently been issued. That these were necessary in England is elearly shown by the fact that at a recent Civil Service Examinatlon "no less than 1,861 out of 1,972 fallures were caused by bad spelling."

A practical dictation Speller is clearly a necessity, and this work has been prepared to supply all obvious want in the programme of Canadian schools. The claim to the name "practical" is based on the fact that it is not a mere collection of thousands of "long-talled words in osity and ation," but contains a graded series of lessons to teach the pupilin the proper spelling of the worde all have to use.

W. J. Gage \& Co.'s Publications.

Gage's Practical Speller.

A saperior litile worly.

The "Practicai Speller" is a superlor little work, and should find its way into every public school. The plan is ingenious and for aught I know may be original.-J. S. Carson, Inspector P.S., Strathroy.

Just what is wauteri.

The "Practical Speller" appears to be just what is wanted.-REV. W. Pilot, Supt. Church of England Schools, St. Johns, Newfoundland.

Particularly pleased with it.

I am particulary pleased with the arrangement of exercises and the choice of words in every-day use, as well as the high character of many of the literary selections. As a hand book both for oral speliling and dictation, the book merits a place in every school. - G. D. Platt, B.A., Inspector P.S., Picton.

Very muitnble.

"It is very suitable for the object in view."-Canada Presbyterian.

Is a necessily.

"The 'Speiler' is a necessity and we have seen no book which we can recommend more heartily than the one before us:"-Presbyterian Witness, Halifax.

Correct biending system.

As a rule masters follow only the dictation plan, hence there can be little doubt that the notoriously bad spelling on the part of the most students of the present day'is due to a neglect of the oral method. A correct blending of the two systems is arrived at in this work-SaM. HUGHEs, Toronto Coll. Inst.

Well pleased with it.

- I am well pleased with it. I endorse every word in the preface. I woula like to see it intiroduced in every achool.-N. M. CAMPBELL, H.M., Co. Elgin Model School.

No rules.

Among the many advantages this text-book possesses above all others with which I am familiar, is the noteworthy fact that it containg not a single rule for spelling.-W. D. MACKENZIE, M.D., I.P.S., Parrsboro, N.S.

Simplicity.

The "Practical Spelier" in an admirable work; its arrangement and simpilicity commend itself to all teachers as a text-book, and to all others who are desirous of acquiring a thorough knowiedge of this most itmportant branch of education. -J. H. Fonde. H.M., Central School, Sherbrooke, Que.

Admirable worla.

I consider it an admirable littic work. The chapter on Similar Sounds is a particularly valuable one.-Howard Murray, Prin. Academy, New Glasgow, N.S.

Recommends it.

I am much picased with it. I like the plan of grading the lessons, and also the classing of words pertailling to certain trades, professions, etc. I have found it very usefulin dictation exercises. Have recom-. mended it to several teachers.-E. J. Lay, Prin. Academy, Annapolis, N.S.

combination of excellencies.

The grouping of words in common use, the reviews, the dictation exercises and literary selections are all admlrable, and forn a combina. tion of excellencies not surpassed in any book of the book of the kind that I have ever met with.-A. C. A. DOANE, I.P.S., Barrington, N.S.

Excellent worl.

I can truly say I think it a very excellent work. The preface is very valuable both for teachers and pupils, and if it could be generaily introduced into our schools, I have no doubt that the results would be satisfactory.-PROF. J. F. TuETS, Wolfville Colleqe, iN.S. imilar aluabie Prin. 7.S.

I like ms, and sertainessions, seful in recom-ers.-E Anna-
encles.
in coinlictation tons are ombinaassed in he kind -A. C. A. on, N.S.
it a very ce is very ers and yenerally Is, I have would be TuFTs,

[^0]: N.B.-We have used the cominined method of muitiplication and subtraction.

 The quotients are placed on the outside columns.

[^1]: "1 have weldiom hand one plueked in hiotiory nfrer maing thin bonk." - Roneht W. Bright, Pifincipal Public Schoot, Diayton.

