

Phoiographic Sciences Corporation

23 WEST MAIN STPEET WEBSTER, N.Y. 14580
 716) 872.4503

CIHM/ICMH Microfiche Series.

CIHM/ICMH Coliection de microfiches.

The Institute has attempted to obtain the best original copy available for filming. Features of this copy which may be bibliographically unique. which may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below.

Coloured covers/
Couverture de couleur
Covers damaged/
Couverture andommagéeCovers restored and/or laminated/
Couverture restaurés et/ou nelliculée

Cover title missing/

Le titre de couverture mans., 4
Coloured maps/
Cartes géographiques en couleur
Coloured ink (i.e. ©ther than blue or black)/
Encre de couleur (i.e. autre que bleue ou noire)
Coloured plates and/or illustrations/
Planches et/ou illustrations en couleur
Bound with other material/
Relié avec d'autres documents
Tight binding may causa shadows or distortion along interior margin/
Lareliure serrée peut causer de l'ombre ou de la distorsion le long de la r.large intérieure

Blank leaves added during restoration may appear within the text. Whenever possible, these have been omitred from filming/
Il se peut que certaines pages blanches ajoutées lors d'une restauration apparaissent dans le texte, mais, lorsque cela était possible. ces pages n'ont pas été filmées.

Additional comments:/
Commentaires supplémentaires:

L'Institut a microfilmé le meilleur exemplaire qu'il lui a été possible de se procurer. Les details de cet exemplaire qui sont peut-ètre uniques du point de vue bibliographique, qui peuvent modifier une image reoroduite, ou qui peuvant exiger une modification dans la méthode normale de filınage zont indiqués ci-dessous.

Coloured pages/
Pages de couleur
Pages damaged/
Pages endommagées
Pages restored and/or laminated/
Pages restauréधs et/ou pelliculèes
Pages discoloured, stained or foxed/
Pages décolorées, tachetées ou piquèes
Pages detached/
Pages détachèesShowthrough/
TransparenceQuality of print varies/
Qualité inégale de l'impressionIncludes supplementary material/
Comprend đu ma:ériel supplémentaireOnly edition available/
Scuľ édition disponible

Pages wholly or partially otscured by errata slips, tissues, etc., have been refilmed to ensure the best possible image/
Les pagee totalement ou partiellement obscurcies par un feuillet d'errata, une pelure. etc., ont été filmées à nouveau de façon à obtenir la meilleure image possible.

This item is filmed at the reduction ratio checked below/
Ce document est filmé au taux de réduction inciqué ci-dessous.

The copy filmed here has been reproduced thanks to the generosity of:

Library of the Pubiic
Archives of Canada

The images appearing here are the best quallty possible consldering the condition and leglblity of the original copy and in keeplng with the filming contract specificatlons.

Orlginal copies in printed paper covers are filmed beginning with the front cover and ending on the last page with a printed or illustrated impression, or the back cover when approprlate. All other original copies are filmed beginning on the first page with a printed or ilustrated impression, and ending on the last page with a printed or illustrated impression.

The last recorded frame on each microfiche shall contain the symbol \rightarrow (meaning "CONTINUED"), or the symbol ∇ (meaning "END"), whichever applies.

Maps, plates, charts, etc., may be filmed at different reduction ratios. Those too large to be entirely included in one exposure are filmed beginning in the upper left hand corner, left to right and top to bottom, as many frames as required. The following diagrams illustrate the method:
l.'exemplaire filmé fut reproduit grâce à la générosité de:

La bibliothèque des Archives publiques du Canada

Les images suivantes ont été reproduites avec le plus grand soin, compte tenu de la conditlon et de la netteté de l'exemplaire filmé, et en coniormité avec les conditions du contrat de filmage.

Les exemplaires originaux dont la couverture en papier est imprimée sont filmés en commençant par le premier plat et en terminant soit par la dernlère page qui comporte une empreinte d'impression ou d'illustration, soit par le second plat, selon le cas. Tous les autres exsmplaires origInaux sont filmés en commençant par la première page qui comporte une empreinte d'Impression ou d'illustration et en terminant par la dernière page qui comporte une telle empreinte.

Un des symboles suivants apparaîtra sur la dernière image de chaque microfiche, selon le cas: le symbole \rightarrow signifie "A SUIVRE", le symbole ∇ signifie "FIN".

Les cartes, planches, tableaux, etc., peuvent être filmés à des caux de réduction différents. Lorsque le document est trop grand pour être reproduit en un seul cliché, il est filmé à partir de l'angle supérieur gauche, de yauche à droite, et de haut en bas, en prenant le nombre d'images nécessaire. Les diagrammes suivants illustrent la méthode.

Please read and send in as full a discussion as possible at earliest date.

Qanadian \$ociety of eivil Engineers. INCORPUKATED 1887.

ADVANCE PROOF-(Subject to retision).
N.B.-This Society, as a body, does not hold itself ,esponsible for the statements and opinions advanced in any of its publications.

THE MINERS' INCH AND THE DISCHARGE OF WATEK THROUGH VARIOUS ORIFICES UNDER LOW HEADS.

Jiz in ins. Drummond, B.A. So., A. M. Can. Soc. C. E.

(To be read Thursday, November 8th, 1900.)
The water determinations here recorded were made in the Hy draulic Laboratory, McGill University, Montreal.
This laboratory is unusually well equipped. It is fully provided with the modern scientific apparatus necessary for experimental work in all branches of hydraulics.
General Description. The laboratory is 39 feet long, 31 feet wide, and contains the following:-An experimental tank and flume; a weir with adjustable widths; a number of large orifices; a battery of five measuring tanks of large capacity; smaller measuring vessels of various capacities of from ten to one kundred gallons; standard gallon, quart and litre measures; a large experimental pump, weighing 55,000 pounds, with interchangrable valves and other special apparatus for experimental work; a 16 -inch Pelton wheel, with brake attachments; a turbine tester of special design; an experimental centrifugal pump; an hydraulic ram; apparatus for testing hose up to 800 pounds' pressure per square inch, in lengths of 50 feet; Venturi, Piston and Rotary Meters; hook ga:1ges and chronographs; Darcy's Improved Pitot tubes; metal plane tables, with adjustable feet, for use with the movable measuring vessels; a fixed mercury column, 27 feet high, and several smaller movable columns; a set of pipes for use in determining the resistance to flow due to bends, etc.; a set of carefuliy made nozzles, with pressure gauge attachments at each end; a set of hydrostatic gauges, with a wide range of pressure; apparatus for measuring the impact of water.
apparatus for determining the coefficient of veloclty, etc.; jet measur. ing apparatus; a Rogers' llnear comparator; apparatus for studylng the inverslon of the veln; a large series of standard orifices; special thernometers, scales, vernier:s and micrometers; glass tanks for illustrating ring motion, critical velocity and stream line phenomena; glas's vessels for demonstrating circular and splral vortcx motlon, etc., and varicus other appiances too mumerous to mention.

The pumps and shaftling in the laboratory are driven by an electric motor. The water is drawn from the city high level reservolr, and is under a pressure of 120 pounds per square lach.

Hetailed Dresription of the 1 Immerthes usert. The experimental tank is of cast iron, and is 28 feet high and 5 feet square. All flanges are on the outside, and the inslde walls are perfectly finsh. The water is admitied into a chamber extending right across the bottom of the tank, which contains perforatlons through which the water flows to the bottom, and is there deflected upward, and passers through two bafle plates with perforated holes, the first being 12 incnes and the second 18 inches above the bottom of the tank. To equalize the flow of water as much as possible, the pitch of the holes in the upper plate was determined by the projections on a horicontal plane of eçuai distances on a sphere of 10 feet diameter, whose centre coincides with the centre of the orifice.

The tank is provided with varions inlet and outlet pipes of dlfferent sizes, so that the admission and discharge of varying amounts of water are completely governed.

The head of water is shown by a glass gauge $11 / 2$ inches diameter, with a graduated brass scale, both of which extend from top to bottom of tank, the zero on the scale being the centre of the orlfice. A sliding carrier with a horizontal wire moves up and down, and any required head is obtained b_{y} bringing the required scale divislon, the bottom of the meniscus of the water in the tube, the horizontal wire and its reflection in a mirror behind into the same horizontal plane.

A second indicator consists of a float attached to a silk fishing line, passing over a pulley on the top of the tank, and then verifcally downward in front. It has a plumbob at the lower end to keep it taut, and an adjustable pointer and stationary graduated scale. The lnfiow and ontfiow are first roughly regnlated and the final adjustment is then made by means of small pipes and valves. In this way the operator has the water fully under control and observation, and a constant head can be maintained for any required

The orifices, when used in the tank, are centred in a circular ring, which fits into a speclally designed circniar valve, with gun metal bearlng surfaces, forming a water-tight joint, and the centre of thme when the water has once assnined a uniform reglme.
the orifice always coincios with the zero of the scale. The valve is provlded with a serew adjustment for lixing the verticality of the sides of the oriflce, and a handle by which the oriflee can be opened or shut. By means of a speciai artifice the orillce can be changed without lowering the head.

The base of the experimental tank is on a level with the botton of, and discharges into, an iron flume 35 feet long, 5 feet wide, and 6 feet deep. It has a clear depth below the bottom of the orifice of $31 / 2$ feet. It is provided with movable batlfe boards to steady the flow of water, and hook gauges, reading to the thousandth of an inch, for measuring the head. At the lower end it discharges over a weir or through an orifice, and either runs to waste or into a battery of five iron measuring tanks, each holding 1,100 gallons, the united measuring capacity being 882.5 cubic feet. These tanks are careful!y palibrated, and can be used either together, separately, or in any combination. The flume is provided with a waste gate. When open the water runs to waste, and when closed into the measuring tanks. The gate is electrically connected with a chronograph, which can be read to the $1-100$ of a second, so that the beginning and end of an observation is antomatically recorded. A good stop watch may be used to check the chronograph time.

When orifices are used in the side of the experimental tank the water discharges through a switch, either to waste or into a carefully calibrated 100 gallon cylindrical measuring tank, which rests on a plane table. This switch is also electrically connected with the chronograph, and is used as above.

The wooden orifice used in these experiments was adjustable, and it was arranged as follows:-

Side Elevation

End Elevation

A is a wooden frame 2 inches thick, planed and painted, and made the full width of the flume into which it fits; a is a sliding gate, which slips down between two side pieces, e, the lower surface, being varnished and square edged. This rests on dimension blocks c and c, placed at the proper width to make the required orifice b. It is then clamped into place, the lower surface of the orifice being
aiso square edged and varnished. The volds d and d are then filled in wlth wooden blocks, and the cracks tallowed and made watertlght. The blocks c and c as used at first were made of hardwood, and were set ens on, but they were subsequently replaced by brass block , as lt was found that the wood blocks swelled sllghtly in the water. The orifice was then carefully measured with Brown \& Sharpes vernler mlerometers and also with scales and calipers. The width weing taken at the top and bottom, and the helght at from 3 to 5 polnts depending on the wldth, the means of these gave the helght and width of the orlfice, which had been carefully levelled. This was done for each set of observations and head, and for every change of orlfice.

The word gallon as used in this paper means Imperial gallon.
All heads are measured from centre of the orifice.
The valve of $\mathrm{g}(=32.176)$ used was determlned for Montreal by Commandant Desforges in 1893.

The observations were taken in sets of from 2 to 5 , depending upon the agreement and the tlme avaliable.

The formula $Q={ }^{\prime}$ el $\sqrt{2 \mathrm{~g}} \mathrm{H}, 3_{2}-\mathrm{H}_{\text {, }}^{2}$ was used throughout.
Q.-The dlscharge \ln cubic feet per second.
$\mathrm{G}=$ Coefficient of discharge.
$\mathrm{b}=$ Breadth of orlfice.
II . $=$ Head from bottom of orifice. $\}$ All \ln feet.
$\mathrm{H}_{r}=$ Head from top of orlfice.
The dlscharges here recorded were made under low heaus of from 6 to 12 lnches, and with two klnds of orifices, viz.:
(1) Standard sharp-edged rectangular orifices \ln brass from 1 to 4 square inches in area.
(2) Square-tdged rectangular orifices in wood, 2 inches thick, 2 to 4 lnches \ln helght, and $1 / 2$ to 24 lnches \ln width.
orifices with full contraction.
Condensed tabular statement of the observed discharge \mathbf{Q}. The ca:culated coefficient of diseharge \mathbf{C} in various

The orifice $\frac{1}{2} \times 2$ was tested in a horizontal and vertical position with heads of from $6-12$ inches and runs full throughout.
The bame statement for standard brass orifices with sharp edges.

$$
\begin{array}{cc}
\text { Steady stream. } \\
\because 4 & \because \\
艹 & \because \\
" & 4
\end{array}
$$

[^0]Cocflicients of discharge for various standard brass orifices of various sizes with various heads.

The brass standard oriffees were placed in the vaive in the experimental tank, which has adready been described, and in all the experiments the water ran through the switch into the 100 gallon tank, fitted with a glass gange tube and a scale graduated to gallons.

The capillary action is so eliminated. The tubes are of large size: they were always kept wet, and the scales were gradnated by reading the bottom of the meniscus under these conditions of calibration.

The observed discharges from the brass orlfices rarely d'ffered by
more than $2-1000$ of a cubic foot per minute, and they often agreed fimost exactiy.

The correct size of the brass oriflees, as measured at a temperature of 65 degrees F., is given eisewhere in the paper.

The discharges from the wooden oriflces were observed at the lower end of the flume, and measured in the large tank. The agreement was not so close us was antlcipated with the larger quantity of water.

With the 12,18 and 24 luch ollfices, vertlees were formed, and there was an appreclable veloclty of approach. No correctlons were applicd, as their effect would be very silght, and fracticaily nil.

With these same orifices there was a slight breaking up of the water, and the clearance was not as good as it might have been. From this canse the discharge for these orlfices is probably silghtly less than it should be. This was tested in the case of the 12×4 lnch orlfice, and lt gave a sllghtly incieased discharge, amounting to about $3-1000$ of a cubic foot per second.

With two of the largest orlfices there was a puisation in the water affecting the head. In such cases the mear head from a number o? readings was adopted.

Regarding the wooden orlfices, ' can be said that wood is not an abscletely stable materlal. The wood, however, was made practleally waterproof, and anv change that may have occurred from sweillng was Inappreclable in the Interval of tlme necessary for one set of observations

No attempt was made to get exact inch dimenslons for the orifice; it was levelled, set, and measmied as described above.

Full contraction of the veln was malntalned thronghout, except in a partlcular case referred to later on.

Great care was taken to make and keep the edges square and charp, and, thls being done, the thlckness of the orlfice wlthin certaln llmits makes llttle or no difference.
The large jets show more lregularlty and disturbance in the stream llnes. Corrugations appear on the surface, and they undulate and move slightiy.

The shape of the orlfice has a perceptlble effect upon the dlscharge. Circular orlfices give the least dlscharge, rectangular orifices the greatesc, and square orlfices are lntermediate. As the rectangular orlfice becomes narrower, the width being the same, it will discharge proportlonately more water, and the coefficient of discharge ' becomes greater. ' Increases as the width increases, the depth remalnin \dot{E}_{ξ} constant, and it decreases as the size of the orifice increases, the same shape being malntalned. ' has a smalle: value for large than for small orlfices, and for the same orifice it decreases as the head increases.

The curve of coeffictents for a particular orifice is a eurve resembling the cuibical parabola. With great heads it tends to become assymtotic, and the evefilelent $i=$ robabiy eventualis becomes a constant. Several of trese curves are drawn to srate, with tho head in inches, and the calculated coefficient as co-ordinates. A curve is then drawn in to accord with these polnts as nearly as possible, so that the coeflicient for any polnt within its limits san be rad off directly.

There are slight discordances, as may be seen, whilh are due to several causes. First, there is the exaggerated scale, making the diference appear much greater than it really is. Agair, the ohservations were started with hedis of $6,7,8$ and 12 inches, and some of the observations under the 10 -luch head were taken with a separate setting of the orifice, but with the same igreement, and the same care as before. These latter observations for some reason wlo not agree well, and several have been rejected. The errors of oiservation are only silght, and would not account for them. They are caused (1) by temperature effccts; (2) by certain inherent irregularities in the flow of water under low heads. 'Temperatures were taken, and an attempt was made to apply corrections by using the recognized coefficients of expansion for iron, brass, copper and water. Theoretically, they can be relucti to a common temperature; practically, however; it is uncertain. In the case of the orifices and tanks, one side of the metal only is in the water, and the air has access to the other. We can only assume that the conta!ned water is of the same temperature as the metal, and this does not appear to be the case. Till more is known, these corrections cannot be applied with celtainty.

With the head and observed discharge as co-ordinates, the curve of discharge is practicaliy a paraboia, but not exactly so. If it were, the whole theory of hydraulics would be much simplifier
A curlous and beautiful phenomenon is the inrersiom of the rein, and as this term has been used, and is not generally described in text-books, a short descilption may be given. With a carefully made standard circular orlfice the jet issues like a clear crystal bar of glass, and seems to be perfectly rigid. With other orlfices of three or more sides, there is a iemarkable change. The jet develops wings or rays in certain wave iengths. The first are at right angles to the edges of the orifice, and the number is the same as the sides. This is because the issuing water from the corners of the orifice has a greater convergent tendency than elsewhere in the jet, and it presses the water out into these rays. Ali the brass orifices show this phenomenon well, and the wooden ones show it to a lesse: extent, depending upon the size. Several examples are given.

The observations here recorded should be especially useful in British Columbia as furnishing data for the delivery of water at mines, and this leads to the question of the miners inch of water.

The' Miner's furl of lifter, it may be explained, is an arbitrary module adopted in mining listricte for selling water: It is variously defined as being the amount of water discharged by an orifice one inch square, or an equivalent fraction of a larger orifice with a head of from 6 to 9 inches. The thickness of the orifice is usually 2 inches.
One great difficulty is that it is a variable quantity depending upon the specified head, and therefore all such modules should also doffing, the flow in cubic feet per minute.

In British Columbia it is defined as being 1.68 cubic feet of water per minute, or that quantity of water which will pass through an orifice $1 / 2$ an inch wide, 2 inches high and 2 inches thick, with a constans head of 7 inches above the top of the orifice, and every additional inch shall mean so much as will pass through the said orifice extended horizontally $1 / 2$ an inch. As a definition, unfortunately, this is completely wrong. In the first place, widening the orifice as above changes the coefficient of discharge, and therefore the discharge itself. In the second place, this orifice actually discharges 2.147 cubic feet of water per minute, instead of 1.68 cubic feet, and this brings out a curious point referred to above, that certain shaped orifices, with a thickness of 2 inches run full like a short tube, the vein is not contracted, and they actually give a greater discharge than they are supposed to give. The orifice in question runs full in the horizontal and vertical positions with heads of from 6 tc 12 inches.
A. 1×2 inch orifice 2 inches think is just on the margin between How with contractlon and full bore. If flxed in the ventical position, with longest diameter vertical, the vein contracts. If flxed in the horizontal positlon, with the longest diameter horlzontal, it will also contract, but if rubbed with the fingers on the edge it will run full for a time and then contract again. If kept running full in thls way it will discharge about 1 cuble foot of water per minute more than when full contraction takes place.

There are practical difficulties in the way of dellvering absolutely exact quantitis of water; and they cannot be measured ont as a pound of tea is weighed over the counter. The deflnition of the module or unit, however, should be correct within a reasorable limit of erro:: If it is a definition of a single miner's inch from an orifice of one square inch, it should go no farther. If the inch is defined as being some practical part of the discharge from a larger orifice, it should go no farther than the capacity of that oriflce, and as it is an unknown quantity to the outside world the discharge should be given in cubic feet per minate. Convenient discharges are $11 / 2$ and 2 cubic feet. The flow under low neads is lregular. Heads of 1 ft . or more are not convenient because the water is dellvered from ditches or flumes where the depth of water is never great. The question thus resolves itself into a choice of a standard module or unit from a flow under two conditions.
(1) With a low head of $61 / 1$ inches above the centre of the orlfice, giving a discharge of $1 \frac{2}{2}$ cubic feet per minute, with the advantage that it is already partially recognized as the miner's inch, and with the disadvantage that the flow is irregular.
(2) With a head of $11 \frac{1}{2}$ inches above the centre of the orifice, and a discharge of 2 cuble feet per minute, the flow being much more regular, but the quantity discharged new to the people.

Definitions of both inches are given, and a choice can be made, but the author favours the last.

Definition No. of the Miner's Inch:-
The water taken into a ditch or slnice shall be measured at the ditrh or sluice head. It shall be taken from the main ditch, flume or caial, through a box or reservoir arranged at the side. The orlfice shall be fixed vertlcally at right angles to the delivering water way, and the edges and corners shall be sharp. The vein shall be fully contracted. The distance between the sides and bottom of the orifice and the sldes and bottom of the water way shall be at least three times the least dimension of the orlfice. The oriffe shall discharge freely into air.

One Miner's Inch of water shall mean $1 / 4$ of the quantly which will discharge through an orifice two (2) inches wide and two (2)
inches thick, made in a two inch plank, planed and made smooth. The water shaii have a constant head of $71 / 2$ inches above the centre of the orifice. It shail mean a discharge of $11 / 2$ cubic feet per minute,

In definition No. 2 the first part is precisely the same, the latter part is changed as foliows:-

One Miner's' Inci of water shali mean $1 / 1$ of the quantity which wili discharge through an orifice two inches wide, and two inches thick, made in a two-inch piank, planed and made smooth. The water shail have a constant head of $111 / 2$ inches above the centre of the orifice. It shail mean a discharge of 2 cubic feet per minute.

A one-inch orifice may run fuli, but no experiments were made on this point.

These discharges are from a standard brass orifice, and are attualiy .478 and 1.997 cubic feet per minute. The discharge througn a wooden orifice 2 inches thick is siightiy greater than for a standar. 1 orifice, so that these discharges shouid be aimost exactly $11 / 2$ and 2 cubic feet per minute.

As stated above, no attempt was made to reduce the observations to a common temperature. The temperatures for the brass orifice varied between 31.7 degrees and 46.5 degrees F., a range of 9.5 de crees F., with an average temperature of 48 degrees F.

The temperature for the wooden orifices varied between 45 degrees and 50 degrees F., with an average of 48 degrees F.
The mean : amperature for the whole was 45 degrees F.
Every precaution was taken to remove, disturbing effects, and to make the work as accurate as possible.
Aitogether some 235 observations were made in sets of from 2 to 5 , involving a considerable amount of labour, both in the work and caicuiations.

With a more careful examination of the resuits it may be possible to sive a usefui discussion upon the paper.
and made smooth. above the centre c feet per minute. same, the latter
quantity which and two inches e smooth. The bove the centre feet per minute. S were made on
ce, and are ascharge througn for a standaris actly $11 / 2$ and 2

e observations

 e brass orlfice age of 9.5 de F.en $4 \overline{0}$ degrees
s.
effects, and
ets of from in the work be possible

[^0]: The brass oritices were carofully measured at a temperature of $65^{\circ} \mathrm{F}$.
 $1 \times 1=0.198 \% \times 0.9987=0.99 \% 902$ square inches
 空 2.011149 $=$
 $=$

 $=$ | $=0.980 \times 1.9984$ |
 | :--- |
 | $2=0.5008$ |
 | $\times 1.9967$ |

