CIHM Microfiche Series (Monographs)

ICMH
Collection de micrufiches (monographies)

Canadian Institute for Historical Microreproductions / Institut canadien de microreproductions historiques
(C)

Technical and Bibliographic Notes /

The Institute has attempted to obtain the best original copy available for filming. Features of this copy which may be bibliographically un que, which may alter any of the images in the reproduction, or which may significantly change the usual method of filming are checked below.

Coloured covers /
Couverture de couleur

Covers damaged /
Couverture endommagée

Covers restored and/or laminated /
Couverture restaurée et/ou pelliculée
Cover title missing / Le titre de couverture manque

Coloured maps / Cartes géographiques en couleur

Colcured ink (i.e. other than blue or black) /
Encre de couleur (i.e. autre que bleue ou noire)
Coloured plates and/or illustrations /
Planches et/ou illustrations en couleur
Bound with other material /
Relié avec d'autres documents

Only edition available /
Seule édition disponible
Tight binding may cause shadows or distortion along interior margin / La reliure serrée peut causer de l'ombre ou de la distorsion le long de la marge intérieure.

Blank leaves added during restorations may appear within the text. Whenever possible, these have been omitted from filming / II se peut que certaines pages blanches ajoutées lors d'une restauration apparaissent dans le texte, mais, lorsque cela était possible, ces pages n'ont pas été filmées.

L'Institut a microfilmé le meilleur exemplaire qu'il lui a été possible de se procurer. Les détails de cet exemplaire qui sont peut-être uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode ncrmale de filmage sont indiqués ci-dessous.

Coloured pages / Pages de couleur

Pages damaged / Pages endommagées
Pages restcred and/or laminated /
Pages restaurées et/ou pelliculées
Pages discoloured, stained or foxed /
Pages décolorées, tachetées ou piquées
Pages detached / Pages détachées

Showthrough / Transparence

Quality of print varies /
Qualité inégale de l'impression
Includes supplementary material /
Comprend du matériel supplémentaire
Pages wholly or partially obscured by errata slips, tissues, etc., have been refilmed to ensure the besi possible image / Les pages totalement ou partiellement obscurcies par un feuillet d'errata, une pelure, etc., ont été filmées à nouveau de façon à obtenir la meilleure image possible.

Opposing pages with varying colouration or discolourations are filmed twice to ensure the best possible image / Les pages s'opposant ayant des colorations variables ou des décolorations sont filmées deux fois afin d'obtenir la meilleure image possible.

Additional comments / Pagination is as follows: [1]-x, [17]-759 p.
Commentaires supplémentaires:
Pagination is as follows: [1]-x, [17]-759 p.

This item is fiimed at the reduction ratio checked below /
Ce document est filmé au taux de réduction indiqué ci-dessous.

The copy filmed here has been reproduced thanks to the generosity of:

```
McGill University
Health Sciences Library
Montreal
```

The images appearing here are the best quality possible considering the condition and legibility of the original copy end in keeping with the filming contrsct specifications.

Original copies in printed paper covers are fllmed beginning with the front cover and ending on the last fage with a printed or illustrsted impres. sion, or the hack cover when appropriste. All other original copies are filmed beginning on the first page with a printed or illustrated impression, and ending on the last page with a printed or illustrated impression.

The last recorded frame on each microfiche shall contain the symbol \rightarrow Imeaning "CON. TINUED"I, or the symbol ∇ (meaning "END"). whichever applies.

Maps, plates, charts, etc.. may be filmed at different reduction ratios. Those too large to be entirely included in one exposure are filmed beginning in the upper left hand corner, left to right and top to bottom. as many frames as required. The following diugrams illustrate the method:

L'exemplaire filmé fut reproduit gráce à la générosité de:

McGill University
Health Sciences Library Montreal

Les images suivantes ont été reproduites avec ie plus grand soin, compte ienu de la condition ot de la nettete de l'exemplaire filmb, et en conformitá avec les conditions du contrat de filmage.

Les exemplaires originsux dont la couverture en papier est imprimbe sent filmds en commençant par le premier plat et en terminant soit par la dernidre page qui comporte une empreinte d'impression ou d'illustration, soit par le second plat, selon le cas. Tous les autres exemplaires originaux sont filmós on commençant par la promidre page qui comporte une empreinte d'impression ou d'illustration ot en terminant par la dernidre page qui comporte une telle empreinto.

Un des symboles suivants apparaitra sur la dernidre image de chaque microfiche, selon le cas: le symbole \rightarrow signifie "A SUIVRE". lo symbole ∇ signifie "FIN".

Les cartes, planches, rableaux, etc. . peuvent ótre filmós à des taux de reduction différenis. Lorsque le document est trop grand pour ètre reproduit en un seul cliché, il est filmé à partir de l'angle supérieur gauche, de gauche à droite. et de haut en bas, en prenant le nombre d'images nécessaire. Les diagrammes suivaits illustrent la méthode.

1	2	3
4	5	6

616

AlA, $=$

A TEXT-BOOK
 of

PATHOLOGY

FOR students cf medicine

BY

.J. (iEORGE ADAMI, M.A., M.D., F.R.S.

MONTREAL GENERAL AND THE ROYAL VICTORIA HOSPITAL ADVIMORY PATHOLOGIST TO TIE E FELLOW OF JEBL'S COLLEGE, CAMBRIDGE, ENGLAND

AND

JOHN McCRAE, M.D., M.R.C.P. (Lond.)
LECTEREIK IN PATHOLOGY AND CLINICAL MEDICINE, MCGILL UNIVERSITY, MONTREAL; SENIOR AMBIBTANT VERMONT; LATE FELLOW IN BIOLOGY, CNIVEH\&ITY OF MORON OF PATHOLOGY, L'NIVERMITY OF VERMONT; LATE FELLOW IN BIOLOGY, CVIVEHSITY OF TORONTO, TORONTO, CANADA

ILLUSTRATED WITH 304 ENGRAVINGS AND 11 COLORED PLATES

LEA \& FEBIGER
PHILADELPHIA AND NEW YORK

$$
1912
$$

MEDICAL LIBRARY,
McGill university, MONTREAL, Canada
 LEA A FEBICBLR,
in the Ohice of the librarian of Comgers. . Ith rights reserved.

TIIE MEMORY
of

PREFACE

It will at first ghane be thonght that two lurge publientions upon the sume subject by the same athor within a rehutively briof spmer of time must be nlike. We venture to think that the reader will mot find in this work any lengthy exeerpt from "The I'rinciples of Pathology," hat on the contrary will find eomsideruble evidence of morlifiontion. Its hirth, however, in a certuin sense muy be hid at the door of the previons work, to be presently explained.

Jomit ago one of the anthors of this work was mppoached by its publishors, and he agreed to write a text-book of pathology of some seven hmolred pages, a book, in fact, the size of this lying open before the reader. The result of musy venrs of writing and re-writing was n mass of material safficient to make two vohmes each of one thonsmad pages or thereabouts, one upon General Pathologs, the other in eollaboration with our colleague Professor A. G. Nicholls mpon Sistemie and sperial Patholog:. The scheme nud seope of the mannseript were not what the publishers had sought; nevertheless with rare gool-will Messrs. Lea \& Fehiger modertook publiention, mod doing this took an undonhted risk. The ordinary medienl student conld searee be expected to aequire, still less to master, the two ponderons iomes; it was prohlematie whether the more ambitious and adraneed student and the practitioner wonld be attracted to them. Fortmately, these two vohmes of the "Principles" were well received, and whell after the iswe of a secomd edition Messirs. Jea \& Fehiger anked that the original contract $b^{\text {e }}$ fulfilled and that we afford a text-book which shomld within the eovers of a single volmme comain the gist of our subjeet, the loyal upport given by them to the previons mulertaking rendered it diffenlt to refusc. Their desire was seconded hy appeals from colleagnes in not a few sehools for something whith would emborly the main features of the former work without its bulk.

Let us confess that we fonnd ourselves in a quandary. We were averse to what might so easily become an act of commonplace book making. In the larger work a eonscientions endeavor has been made to
 to "pitomize would be to prenhere it "erim" best. On the wther hanil the harger work represinted our mitured eomehasions regarding the respertive value to the stalent of general, systemie, ind special pathol-

 the danger of iphearing to be ill abhereviation of the same hat must at the salle time be wot all epitome of the different aretions, hat a

 acpuire is an emand rahbe, that the text-buak of pathologes al the past has oftell berol little levemul al ratalughe of termo with the hriefest linkiger of comereting letter-press.
Bat facts and pheromema and their manes are onde the brioks with whid the selione of madicine has berol hite, and is still in the proeess of bibling. Wr hase to develop not the mere hasham, whose virtme
 ar:hiteret who, arguainted with materials and their emplopement, knows
 is called for hare, that material there. If our baikling be somewhat lacking in the elaboratemess at ite deneration, we trist that the fommata-

 collapser it is mot the momber of mit bricks that is of importancer so
 hasce embaloored first and foremont to make char and intelligate what is known emmerning the derper meming of morbid states, and hate mot hesitated to sacrifice lists of data rad darir mames. 'The alsaneed pathologist may look in vain for i. ormation that will adel to his knowlcolge in partionlar subjects: a seecialist is certain to time his particular
 that mudh has beet matter wre dare reply that moth has been incheded. Thr all-important matter is to proviole and faniliarize the stment with the plant and working drawings of our acience: once he hats these in his hend it is a comparatively simple matter for him to pigeom-luble mentally wew facto into thair proper platers as the eome pouring in upon him in the warels:and diad homse, in his reading and hertures.

This has been our aim and this is omr apology for the present work.

Those finmiliar with the presions volurnes will recognize that we have departed little from the tenching und order of se first, thut
 chapter upou puin mad its significonee; on the other hand, from the very finct that it is difficult to be originul in the trentment of specind puthologes we lame labored with greater affort to give un adequate preselltution of our seromel purt within the spure nt our disposal, med to that cmal hase written it neresh with little referenee to the varlis colume. With like embe in view we lume disureleyl most of the it trutions comphered in the larger work, introducing some two homblo. original rngrovings from drawings made he Misa li. S. ('arriugton from the material in the Md(iill Malient Masemon und in our department, nud from the collections of our recent . Hengues Professor ()sknr Khot\%, пиw of l'ittshurgh, and Profesor I. Sha, bow of Iharsarl. 'J'o these,

 Ahbott, ('urator of the Me(Gill Medienl Maseum, to Dr. Maelatehtio, of Pittshargh, and unt lenst to our publishers, we would here express our sincere thanks for nsistance so willingly remered.
J. (i. . 1.
J. Mce'

Montie:

CONTENTS

P. ClT I
GENERMI, P.STHOLOGY
(:II.IDTER I
Intionter"one
 17
('II.IPTER II
The Catspe of Disfones
Inherited Disease - Intranterine Diseane-Monstrositios and Abnormalities- Discone of Post-natal Aeduirement - Physional and Chemical Camses- IXtrinsic Intoxications-Parasitic Canses-Intrinsic Intoxications, Inter- fal Serretory, Autolwis, abd lupaired Metaholism-Predisposition and silserpibility 55
CIIAPTER III

Inflammation-Infertin-Fever-Immmity-Symope, slook. :and Collapse I'iin 11s
CIIIP'IER IV

Orergrowth - Rexemeration - Transplantation - Metaplasiat - The TumorsProper, Tratomans, Treratohbastomas, and IBlastomats-Cysts .18.3
CHAPTER V
The: Reghesilye Thiste: Chantes
Nomal IIistolysis-The Degenemations and Infiltrations-Nerosis-Death $3: 4$

P. ARTII

('HIJ'IER VI
 Fine: Combionascelati sistem

 Hemonthage - Thr Lemphatie system and Edema-The Heart - General Considerations amd sperial Pathology-The Arteries-Capillaries and Prins-The Lymphatio Viseds-Blowl-forming organs, The Lymph Notes, sphent, and bume Marrow-Cortain Organs of Intamal seceretion Modifying the Howat, the Adrenals, Thyroid, and Parathyroids

CHAP「ER V1I

The Resphbatory sistem

Cieneral Considemation-The Nose-Pharymx and 'Tomsil:-Larymx amd Trachea-Bronchi-Lungs-I leura-Mediastinum-'Ihymus

CHAPTER VHH

Tint Nervors system
(iformat Considerations-The Brait-The spinal Cord-The Meninges - J'eripherad Nore-The Lye-The Lar

CHAD'TER IX

The: Digentive System
 Liwer-(iall-blather and Durts-Panmreas

CHAPTER X
The: Limaly system
The (rimary Fumetion-The kidney-Lireters-Madater.

CHAPTEIR XI

The Rephodective Sistem

The Mate Sicxual Organs---The female sexual organs-The Products of Commption, Ilacenta, and Cord-The Mammary Gland

CHAPTER XH

The: Notoh and 'legumentahe systems

 Joints-The skin, Hair, Nails

A TEXT-B00K 0F PATH0LOGY

PARTI
gENERAL PATHOLOGY
CHAD'TER I
INTRODUCTORY: CELLS AND TISSUES
THE HISTOLOGY OF THF CELL

The human boly is made up wholly of cells and the pronlucts of cells; it takes origin from a cell, and carries on its life by cell activity; cren its fool is uot available for its use save by the intermediation of cells. It is, therefore, reasonable that in seeking to understand the diseases of the human body one should study the diseases of the individual cell, aud not its discase only, but its health. This first ehapter, therefore, is devoted to the properties of the cell, and attempts to show how it is constituted, how cell interacts on cell, how a commmity of cells forms all organ, how community reacts upon community-in short, how $t \mid$ ecll is at once a mit and a necessary part of a great aggregation of mits. If the cell be regarded as an individual, it will be seen that, like a human heing, it is born, grows, eats, casts out excretion, rests, is aetive, becomes useful, learns the work it is destincd to do, fills its place in the commmity, falls sick, recovers, mects with aecidents, is set npon by enemies in the shape of infections, encmies which it conquers or by which it is overcome, grows old, dics, and has its place taken by another like it. So far there is a parallel betwcen a man and a cell; and it may be carried farther. The statement is made upon good authority that no man liveth unto himself, because a man's dreds react not only upon himself but upon others, in however indirect it way; so the cell, as part of a community (the organ), cannot withIraw itself from communication with its fellows, but will bear its share of the labor of the organ, and its ill or well-being will react upon the colls that are near it or that depond in any way upon it.

The eell in health lies within the province of the physiolugist; bit the pathologist, too, must moderstand, as well as he can, its properties; especially must he attempt to know the cell's aboormal states-its overfed state and its starvation, its over-activity or its sluggishness, the cell attacked, damaged, killed, or the cell attacked, resistant, triumphant, the cell in the growth of its south, or in the atrophy of its age, the cell in its life and the cell in its death; all thesc he must study if he is to understand the cell and its place in the community of the organ, for with such knowledge only can he gain a sound comprehension of the disturbed states of the organs, and of the body as a whole.

Fia. 1

Vacuolation of nuclei of fat cells Fat cells of retroperitoneal tissuc stained by hematoxylin. and examined under the high power, to show the nuclear vacuoles, characteristic of this order of cell. a, nucleus seen from abowe; b, seen in profile.

Fig. 2

Notor werve cell from ventral horn of spinal cord of rabbit. The angular and spindle-shaped Nissl bodics are well shown. a, axone. (After Nissl.)

The Constituents of the Cell.-The animal cell eonsists of two main parts, the nucleus and the cell body, and even if it cammot be agreed that there is in all animal and vegetable cells, a nucleus in definite form, we can at least, say that there is nuelcar and eytoplasmic material. In the cells of man the nurdens has a definite form, generally round or oval; a nuelear membrane can frequently be made out, and inside this the substance shows an alveolar or netted arrangencnt. The miclear matter can be demenstrated to consist of (1) the linin or achromatic (non-staining) network in which is deposited (2) the chromatin-the material which is stainable by nuelear dyes. In the spares is (3) the nuclear fluid. Not alway's distinguishable are the following: (a) The mucleolhs, an acemmulation of melear material which stains tifficrently to the melens at large, and is presmed to b of a different, or at least, temporarily different composition; (b) vacuoles, which are rare, but may be seen in the mectei of fat cells, (see Fig. 1) and
(c) crystals. The last two are products of the activity of nuelear metabolism.

The type cell has but a single mucleus; but at times two or rany muelei may be present, a condition which may be due, on the one hand, to division of the nueleus with failure of the eytoplasm to divide, or on the other, to fusion of separate cells. Both proct ses evidently occur, as will be discussed when dealing with giant cells.

Although we say that the nuclear material is confined to the nucleus proper, at times it is found that particles of chromatin appear in the cytoplasm, and there is evidence to prove that thesc have been diseharged from the nucleus; it is of interest to note that many so-called intracellular parasites-notably, "cancer parasites"-are evidently such masses, as again are the Nissl or tigroid borlies (Fig. 2) of the eytoplasm of the nerve cell.
The cell substance gives evidence of structure, to the cxtent that onc sees a condensation of the cytoplasin at the periphery, whieh condensed plasm is designated ectoplasm and passes insensibly into the main mass of the endoplasm. The constitution of this curloplasm is a matter of debate, but it may be said to consist of (1) a reticulum, the cytoplasm, in the meshes of which lies (2) the cell sap; there are also (3) the paraplasmic substances. The paraplasin includes (a) foorl particles ingested, foreign or excrementitions particles that, being unassimilable, are to be cast out; (b) crystals or granules which have been manufactured by the cell; (c) the fluid contents of vacuoles, and (d) inactive substances laid down as

Fic. 3

Cell bridges of "prickle cells" of epidermis (From a photogreph by Schridde.) il frame work in the cell, such as fibrils or calcinm deposits. The cytoplasm is the active agenc among the althongh it must not be forgoten that there is also an active part in the nuclear material. Altmann has pointed out the existence of fine gramules which are called by his name, but of which the significance is as yet not understood. Lastly, at certain times specially connected with cell division, and precerling this process, a sentrosome uppears which originates from the cytoplasm. From this centrosome ron fine rays of the cytoplasm, and before nuclear division occurs, it divides. As to its function, there is no agreement.

Cell Connections.-There is a definite connection between cells, although it is not an casy thing to prove; the botanists first were able to show that fine comections of protoplasm bridge the space between cell and cell, and the cog-wheel appearance of the so-called prickle cells of the epidermis is due to fine protoplasmic extensions rumning from one to another, while the endothelial cells that line the blooulvessels have like junctions. We can even go so far as to observe that
in the eggs of sea-mrehins, when the cells cleave one from another in the S - and 16 eeell stage, fine protophasmie threads reach across the intervening spaee, and, in these, gramules ean be seen to stream from one aell to another. 'The detached cell is the exception, not the rule. The lenkoevte, it is to be moted, is a wholly independent cell, but if we follow the loukeryte downwarl into the lower invertebrates, we find that the eorresponding edls have series of eomeeting processes. The nerve eell or nemrone is, aecording to present teathing, wholly: detached, at least from other nemrones. (iranting this, we may soy that the individual is not a colone of suarate mits, as blocks in a parement, lint a comeeted whole in whieh the individuals are, in general, semidetached.

The Significance of the Cell.-The cell's most noteworthy character is its minute size; few edls are large emough to be seen by the unaided eve; when they are, we find one of the following eircminstances:

1. The eell may contain much stored-up, food material, as in the ova of mans species; the eytoplasin forms a thin skin over the food material or yolk, and in this "skin" lies the melens.

Fig. 4
 (ell bridges of vascular endothelium. (After Kolossow.)
2. The edl may have ite proto plam developed into radiating processes, as in the infinoria; the melens and every part of the cell remains close to the suremoding medinm.
3. There may he great enlargement of the exell associated with the development of multiple melei.

It will he moticed that in all these colls, large thomgh ther beeome, every partiele of the cy toplanin is near to the surfiee, if not to the meleus, and that there is a relationship as regarals size between the melens, the evtoplasm, and the surrombling medime this relationship is determined he the size of the mulens. The molens is the dominant part of the cell, governing the eytoplasm, and this governane monst depend ou the contact of muclear matter and eytoplasin; sin that the muelens whieh has the largest surfate relative to its mass, will, other things being equal, be cxerting the greatest effect upon the cytoplasm, will f.e the most active. If the meleus be very large it is eonceivable that centrally situated nuclear material may be comparatively inactive,
of that we may say that the small eell. whose miclear mass is small compared with its surface, wiil be active, and fitted to survive, while the 'ell whose nuelens is of harge mass and small surface, relatively, will be compelled to divide, and so inerease its melear surface or be handicapped in the race. This is the princip's on which is eleveloped the multimuteate cell.
If this be true of the interaction between melens and cytophasm, it holds also for the cytoplasm and the surrounding medinm. The external surfene of eytoplasm cim be greatly inereased by prolongation into proce:ses, but with the disadrantage that some of the eytoplasm is far removed from the meleus; the most ceonomical form is the sphericoll. This indeed is the form naturally assumed by a semithuid or fluid mass suspended in another fluid under the influence of molecular inter.setion and surface tension. We now recognize with increasing force that this surface tension is of basal inportance in edl activities. As the cell absorbs material and the eytoplasm increases, the surface becomes less, relative to the inereasing mass, :and the efficieney of the eytoplasm with reficence to the surrounding medium becomes less. The eytophasm tan now increase its surface only ly division, and thus the multimueleate cell leads to the nulticellular organism. The multieelluar organism is thus to be regarded not as a fusion of separate individuals, but rather as the optimun amonnt of protoplasmie hatter of any particular order capable of ceonomic existenee as a single mass in any particular environment, the maximal activity of such protoplasm being attained by molear and rell division.

THE PHYSIOLOGY OF THE CELL

The views that we state regarding the nucleus as the dominating part of the cell are not everywhere taught at the present day. But it is fully established that, without a nucleus, growth and reproduction of the eell emmot oceur. The cell deprived of its meleus can be the seat of ecrtain metabolie activities, but the cytoplasm is progressively used up and is not renewed, there being no eytoplasinic or nuclear material formed. On the other hand, the nueleus without the eytoplasm is equally incapable of regenerating the eell, for it has heen proved that there is a ininimal limit to the amount of cytoplasm neecssary for its embined existence. If there be less cytoplasm than this, no growth or regeneration can occur, and we add this statement to what we have alrealy said of the dominanee of the meleus, that mueleus and cytoplaim are equally essential, though not of equal value to the cell. The nucleus cannot treat directly with the medium around the es. hut requires the intermediation of the eytoplasm for its vital processes. We new ouly refer to the part played by the nucleus in cell division, to the series of processes by which it ensures that each daughter cell obtains its share of the nuclear naterial, to the part it plays in fertiliza-
tion atal the reprodnction of the individnal, and we shall refer in some detail to the great activity of the moleus in cell metaloolism. In loasing its dominame upon these facts, we do not lose sight of the fact that the certoplasm is able to manifest certain definite, if lower, vital activities, such as absorption, respiration,

Relationship of nuclear plasmasomes to $2 y$ mogen granules and arerctory substances of secreting cell: a, intranuclear plasmasomes (nueleolar bodies): b, granule (extranuclear plasmasome or ehromidial body) in rytoplasm, near nucleus, having same sthining reaction, and evidently discharged from the nurleus: c, conversiou of same into more feebly staining secretory (prezymogen) granules; d, further stage; symogen granules about to be discharged. (After Maximow.) mobility, and contractility, and these independently of molear control.

The Part Played by the Nucleus in Metabolism. -The specific function of certain cells, especially certain secreting cells, seems to be governed largely by the nucleus. The calcareons frame of the foraminifera is not formed if the moleus be aloscint; the amobia camot fully digest, though it can kill living organisms if it have no muclens; the formation of chitin in insect cells occurs only when the nuclens is present, and the moleus is essential to the proluction of slime by the amoba. In mmeons golbet cells and in the cells of salivary glands the process of secretion is accompanied by and probably depends upon the separation from the meleus, and that more especially through

Pis. 6

Developing egg of Antudon bifida. showing extrusion of nuclear matter. loung oöcyte, the nuclear chromatin in the form of scattered branching threads. The derply stained nucleolus is seen in the act of extruding apherules (chromidia) into the cytophasm. $\times 20 \%$.
the moleolns, of gramles, or chromidia, which stain deeply at first white they lie near the molons, and stain less deeply as they move away, mitil they appear actually to become the secretory granules. The secretory gramiles are either actually extruded parts of the nucleus,
or the prohncts of interaction betweren such cextrulerl parts and eertain constiturnts of the exdl borly. 'Tlue "pre\%rangens" of the cell are given off from the melcolns, and in the eitophasin become aymogens, being again given off from the extoplasm as specific secretions.

Section from the liver of a child that died from acute sepsis, to show various atages of karyolysis of the frst order: 1, unaffected nucleus; 2 and 3. paler staining nuclei, with some swelling and diminution of chromatin: 4, nuclei still more swollen, the membranc only and an occasional nucleolar mass taking on the stain; 5 , nuclei present as little more than unstaincd ve icles.

The formation of fat in fat cells is evidently a nuclear process, for the vaenoles in their nuclei give the reaction for fat, and have sometimes been fixed at the moment of extrusion into the central fatty globule of the cell. It is long since the changes were deseribed which the nueleus undergoes in salivary cells during and after seeretion, and nuclear alterations have been frequently observed in the nerve cell bodies of vertebrates after natural and experimentally produced fatiguc. The changes in fatigue in the Nissl bolies, which are of melear origin, are very noticeable. In gemeral, it mas be said that nuclear changes within physiological limits, are manifested by (1) elanges in size and (2) alteration in the amount, and (3) the disposition of the chromatin. In pathological conditions, still further grades of alteration are seen; such are redue-

Leukocytes with disintegrating masses of nuclear material scattered through the cytoplasm (karyorrhexis). tion of the ehromatin (karyolysis), abnormal arrangement of ehromatin, celema, and swelling of the nucleus, vacuolization, nuclear disintegration (karyorrhexis), and ahnormal discharge of nuelear material into the cell substance.

Summary.-The following summary of our eonception of the physiology of the cell may be given: the nueleus is the dominating part of the cell, which cannot act save in association with the cytoplasm;
the mindens initiates growth, reprexliction, ame witen fimetion, and practs upon the cetoplasim, taking substances from it and rielding substances to it, but not acting direatly mpon the medinum wheln surromads the cell. 'The extoplasim, on the other hamd, takes ip and acts upon mater from withont, and gives out in thrn other substames; this it does partly on its own acomont, and partly as intermediary for the imelens. These acts it performs in the processes of absorption and respiration, and it ean be mobile and contractile, ass well. Iastly, we only mention another important dass of activity, the production of organie lerments bey all metabolism; these tan be diseharged from the cell, and ean aet as intermediate bodies between the external
 upoin the inirlens.

THE CHEMISTRY OF THE CELL

All cells possess, in common, water, lipoids, and proteins; the proteins, at least, are to be extracted from all cells as soom as they are dead, and exist in the living cell ans sueh or as proteidogenoms sul)stances, whieh give origin to proteins. There are many other sulbstances to be fonnd in cells, such as salts, alcohols, carbohydrates, and so on, and many of these we regard as products of disintegration of proteins or als going to be built up into protecins. None of then, howrer, is eommon to all cells. Althongh proteins are dead, inert matter, and have mulergone ehange before we obtain them, set we believe they are bomad up intimately with what re eall "life," and
 molecule, we mean proteidogenons matter ; that is to say matter whieh by re-arrangement of its molecules or satisfaction of its affinities, beeomes converto! into preieins. The lipsids above mentioned are, as will be pointed ont later, closely related to the proteins.

Proteins and Lipoids.-The Constitution of Proteins.-I'roteins are fomplex compounds of nitrogen, carbon, oxygen, heilrogen, and sulphur; some, too, contain iron and phosphorus. So larre and so eomplex are the moleenles that in general they are ineapable of erystallization and remain in a colloid state; some of the simplest proteins, it is true, are erystallizable, and can be obtained pure. The hemoglohins (in the pharal, for they are multiple) hare been amalyzed, and samples from different species of amimals !ave varied between $\mathrm{C}_{680} \mathrm{H}_{1098} \mathrm{C}_{210} \mathrm{O}_{240} \mathrm{FeS}_{2}$ and $\mathrm{C}_{712} \mathrm{H}_{1330} \mathrm{~N}_{214} \mathrm{O}_{215} \mathrm{FeS}_{2}$; and they are among the simplest. The molecules of many proteins are far larger, and an average molecular weight for a protein has been estimated as 15,000 ; it ean thus be understool that ming protein molenles do not make their way throngh animal membrane, and do not diffuse.

Classification. Wir spatik of proteins as free or combined. lirer
 the ghombins (errmo globulin, fibrimeron), ane the vitellins (the " wolk plates" of egh yolk).

The combined proteins are in combination with varions borlies, indluding other proteins. Hemoglobin, for exmmple, can be broken uf into hematin or more aceurately hemochromogen- an iron-containing lonly with protein characters-and glohin, an alhominous matter which, acrording to Gamgee, is not a globulin. The nucleins are compmonds of protein and nucleic acid, which, in turn, is a componmel of phowphorie acid and the so-called nuclein bases; the nuelein bases are donely related to proteins. The maleins, again, combine with free protrins to make the nucleoproteins. Yet other proteins eombine with earholyulrates to make glycoproteins, important among which are the mucins.

It has heern said that if individual specimens of proteins be a malyed ther do not give identical propertions of $\mathrm{C}, \mathrm{II}, \mathrm{N}$, and O . All of them, however, mas be broken up into simpler borlies, which, in turn, have proteil dharucters. This is true out only of the combined but alsis of the free proteins; tor example, proteolytic ferments break down albumin, ghomlin, myosin, ete., into peptones and albmoses, which are still proteins but with smaller molecules; smaller molecules thes posisess, hreanore they call ditlonse through membrane; the peptones, etco, are degralation products of the proteins, and we can infer that the ordinary protein moleconle is a combination of like molecules, and is thas an example of polymerization, or the formation of a large molecule bey the aggregation of a series of smaller ones which are alike, or of like oreder. The prepones and albomoses afford a still further series of degralation proplucts, the gromp of the amino-acids, which together make up abont three-fourths of the albmmin molecule. These amino-acils are first consin:s of the faty aeids, are indecd fatty acids with qualities tending to be basic by the addition o! NH_{2} molecules; which again by hyilration or be the aldition of an OII molecule become the hydroxyl fatty acids. These amino-arids, always present as degradation prothets of protein, are in reality the basis of proteins; the protein is built up by a tinking together of mmerons amino-acid molceules.

Chemists have now been able to obtain pure, and to study, a scries of these amino-acids, and have been able to obtain optically active forms of them, the significance of which fact will appear. It had been noted for a long period that if a substance were the product of vital processes, it was optically active, but if it were synthetically produced hy the chemist, it was optically inactive. The optical activity of the now syuthesized amino-acids indicutes that they are, so far as human observation can go, absolutely identical with the amino-acids of the body.

The amino-icids are amphoteric, that is, they pussess both acid and basie properties, acid by reason of their COOI group and basic by the NH_{2} groups, and it is this duality of affinity that permits linkage.

To mee a homely simile, let ins imagime the phace of an animeacid takera by a man, with two artificial arms; at the emd of ome is a hook (the basic affinity), at the elad of the other, a ring (the acid affinity); if there were a large mminer of suels men they comild form a eomplete cirche, hook in ring. hook in ring throughonit the entire group. If, now, we imagine the chillare of emeh man haging on to his coat tails, we lave a large colong (the componiml moleonle) depending for perfere
 of aminn-acils are the polypeptids, and a linkage of eighteen individaals has been experimentally obtained :" is not even necessary that the liaks shombla be the same amino-ace. n, just as it is not beressary that the men be of the same race. The se sinthetic eompomils prowe by their eharacter to be all but identimi, if not identical with the preptones of the borle:

The conception we Irave here given may be erroneons in particulars, but we have attempted to give the idea that the complete molecule is a ring, and that ring we have suggested by the hizarre simile of the group of men hanal in hand or "ring in hook." Tlas, he it remembered, indicates only the simpler molecnle; the more intrieate proteins, polymerized forms, are aggregations of such rings, and it will readily. he seen that a very slight change in the individuality of one sub-gronp) will change the composition of the wholc. Reverting to the group of men with the chidren hangigg on to their cont tails, we have to picture these groups as tring surromaled by a concourse of individuals, Who are constantly moviag to and fro; such a picture, for example, as a bird'sereve view of a fair gromme wonld afford; these individuats (ions or radicals) as they patis a group invite (by their unsatisfied affinty) andividual of the gromp to leave it, and ceery now and then one of these free individuals is impelled to attach itself to a group. Iet us suppese we have twenty such groups, and this compound group (or giant molecule) by actual count has this formula: White 200 , Negronso, Indianss, Chineseso. If a couple of elildren stray away the group heeomes, white ${ }_{200}$, negro 2_{29}, Indian ${ }_{84}$, Chineseso, and the group is no longer the same. 'This is preciscly what is occurriag in the giant molecules of the iondy; the arrisal of a new ions of fool material, the separation of a few ions of excreted mater make for the moment a new aggregation, and these small changes mean a constant rearrangement, and constitute the metabolism of living matter.

Lipoids.- Dnriag the last few vears, the importance of the lipoid in cell activity las heen more and more reougnized. Under this term we bachode those horlice which have the common property of heing dissolved, like ordinary fats, in ether, alcohoh, chloroform, ete. Xearls. all of the bodies having this property are fatty compomats, heace the term lipoid, mihough it is usnal to inchude here also chotesterin,

I. Bodies containag neither phosphorus nor nitrogen: fatty acids, neutral fats, soaps, cholesterins.
II. Nitrogen- and phosphorns-containing lipnols. 'T'he phosphatides, such as lecithin (atyerin phosphorice neiol eater of two fatte acids phis cholin) and kephalin (having two fatty acids mad two hases), as well us sphingomy clin, the most important constituent of the sor ralleal protugen of bra. ${ }^{\circ}$ sulstancer.
111. Nitrogen-conts יing phosphorns-free bodies, e. !., the cerebrosiles, whell resemble gimeniles in their composition.
IV. Bodies of fatty mature, not yet manlyad, c. !., the lipodirmines.

Recent investigation indicntes that the lecithins and cholesterins are intimately associated with the development of protective sul)stances of the body and the prodnetion of immunity.

The Chemistry of the Nucleus.-The composition of the melous differs from that of the eytoplasm; it eontains no potussium, no carbohyilrates, and, spenking generully, no futs, but on the contrary, does "梠ain phosphorus and "masked" iron (that is, iron in in complex ioni), whiel appear in the eytoplasin but rarely and in small amount.
The protems of the nuclens show some peeuliar elharacters; gastrie juice will dissolve ordimary proteins, hut the nuelens of a eell is resistant to it, becanse its nuelcoproteins eonsist of albumin and nuelein comhincrl, and the latter is resistant. Nucleins eontnin 2 to 9 per cent. of phosphorus, ean be split up into allumin and a nueleinie (or nueleic) acill, of which there are several. Nueleinie neid ean be further disintegrated into the xanthin and other purin bases (nrie aeid, xanthin. gnanin, ulenin, and hypoxanthin). These derivatives are important dininaly beeanse they exereise a toxie effeet upon tissnes, especinlly the kidney, and it is these which constitute the drawhaek to a protein diet in persons whose powers of elimination are imperfeet. The existcuce of phosphorns and the xanthin-base grow, es constitutes the differrince between the muelens and other protopla. ons. These grouns and the "masked" iron and phosphorus are speeially eoneerned with oxidation, tle importance of whieh for the eell is absolute.

Before leari, $⺊$ this part of the subjeet we would rematitulate our ilea that tho "hiophorie molecule". or mass is the aetive part of the cell; that \therefore is a huge molecule aferegated of many large gronps, of which each: may be eonsidered a ring of molecules with affinities whieh are being satisfied by various other groups; that some affinities are constantly unsatisfied; that ions and molecules are being shed off and taken on, and groups are joining groups hew neffinities, that groups are breaking off and that this activity means metabolism, meins life. It must be understocil, too, that while from noms. int to moment the composition of the biophere may vary, the avarage composition over lorg periods oi time remains the same.
Enzyme Action.-We lay stress upon a proper understanding of enzume artion beeause we regard it as being a type of mueh of what we call metaholie processes in the cell; we shall constantly reeur to the comception here indieated. We understand first of all, that there
are enzemes in the erll ambl 'manmes ontside the eell, the later being elaborated in the cell and diohtarerel. biarh enagme acts mpon a partienlar snlstance or series of substanes in the external medinmptralin mon starehes, making sugars; pepsin mpon proteins in an aed modimm, making peptones; trypin mpon protcins in an alkaline medimn, and steapsin mon fats. It is mot possible to obtain the enzames free from eombination with protein borlies; as the protein material disappears from the solution the enarme action disappears. Finally, anl extremely minite amonnt of combined enzome and protein can comsert a maximm anoment of fermentesedble snbstance, and yet the enzeque itself is not used up; the action does cease, however, when the prodnets of fermentation, have acemmated up to a certain point.

It will seem strange to the reader, at this jumeture, to saly that enzernes to mot exist, lout such seems to be the ease. Enarme action does, but empones as definite chemical entities in all probability do not. Ename action is an interaction between a proteidogenoms molneule, and a fermentescible substance present in the same medinm, part or the whole of the molembe anting on part or the whole of a molecule of the fermentescible sulstance with the result that a new substance appears-the product of fermentation.

The Enzymes.-Enzerines are intracellular and extracellular; the former act in such close combination with the hiophore, the compound protoplasmie molecule, that we have to conchade that their action is part and paree of the activity of the hiophore. This is prowed br the fact that such emanes ramot be extracted, in faet, are mot existent in the molecule maless it be alive. If this be trie of the intracellalar enzims.s, it is also trim of the extracelhar ones; these enzymes, in fact, are free protem molermbes, divoreed from cellular relationship, hut still manifesting a characteristic of life, viz., that of being able to aet mon other molecoles and canse their re-arrampement.
some hold that enzemes act batalysis, but this viow we do mot advorate. They eonsider the ferment as a hody poressing anctive molernlar vihration, so that, in appusition to molecules of the fermentescible substance, it communicates to them its, vibration with the result that their particles are shaken into a new arrangement and the fermentescible becomes the fermented substance. This is the explanation given of the process ber which finely divided platimun eomerts hadrogen peroxide into water and oxygen, and this process is katalysis. A more satistactory explanation of ferment action seems to be that exemplified he making sulpharie acid from sulphorons anhedride by the mediation of nitrie aeid; the nitric acid gives \quad, an atom of oxygen which eonverts the sulphurous anheride to sulphurie acid, thins:

$$
\mathrm{H}_{2} \mathrm{SO}_{3}+\mathrm{HNO}_{3}=\mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{HNO}_{2}
$$

[^0]The nitrous acid, so formed, exposed to the air, combines with its oxygen and forms nitrie ariol, thes:

$$
\mathrm{HNO}_{2}+0=1 \mathrm{NO} \mathrm{O}_{3}
$$

Theoretially, a single molerole of nitric acid can eonvert an infinite mumber of molecules of sumphrons anhertride into sulphuric acid and at the complation of the action (if infinity combld be completed) still exist as a moldonle of nitric acid.

In this process there are three factors- the suhphorous anhedrade represcuts the fermentescible substance, the oxygen the fermentator or complement, and the nitrons acid, which ahone is present in both reactions, the ferment. The process can be represented as follows:

- themat of furment-like artion of nitrous oxise in the formation of sulphuric acid from sul-
 mulecule, first attaching to itself an 0 molecule irom an O , combination, aud then yielling this to ati unsatisfied $\mathrm{I}_{2} \times \mathrm{O}$. molecule. To the feft of the diagram it is suggested that the other 0 moternte liburatel from the O_{2} combination may also combine with an $\mathrm{H}_{2} \mathrm{SO}_{3}$ molecule to form a second bunterule of sulphuric aecid.

If insteal of the borlies in the above pieture, we consider that we are dealing with protein moleconles with their masatisfied affinities, we ran conceive the process as heing instigated by their masatisfaction and combluded by their satisfation. Enzeme artion is one form of the interactivity of the hophores. This heing so, one of our compomed protrin molecules mas be intermediary bods, or it may be fermentewible ahbatane: or. since cach individual part of the huge ring has got its own peruliar characters, and its own unsatisfied affinities, the same huge molecule may be in a sense both at the same
time. If we consider the biophore in activity, rearting thus, let ins saly, with proteins in the food and discharging fewer metabolites than it attracts, we find it getting gradmally larger. This is growth.

At this point we may review the subject, pointing ont that we have now three orders of proteidogenons matter concerned in metabolism: (1) Nuclear matter, capable of metabolism and growth in a medimu of proteins; (2) (cyoplasmic matter, capable of independent metabolismhat incapahle of growth save in combination with molear matter, and (3) the free organic emanes, eapable of eansing metabolism, but inc:ipable of growth. Are we to admit all these into our conception of what is living matter? 'This is a moot point. For onrselves, we are indined to regard growth as the all-important property of living matter; hut if this view be aecepted, then it maly be held that the hiophores situated within the nuclens are the only truly living elements u:tnin the cell. This is contrary to the usual conception of the evtophasm as being also living matter; the question must be left open.

The Reversibility of Enzyme Action. - Since we combt enzyme antion so inmortant for inn umderstanding of metabolism, we must indieate that it is reversible, and in fear of making the sabject too comples, we shall merely exemplify this. The enzyme maltase splits up maltose ($\mathrm{C}_{12} \mathrm{H}_{22}\left(\mathrm{O}_{11}\right)$ into two moleconles of gincose ($\left(\mathrm{C}_{6} \mathrm{H}_{12}\left(\mathrm{O}_{6}\right)\right.$, hat in the test tuhe the reartion is never complete-there remains a mixture of maltose and gheose. Maltase really can split mpaltase into ghome or builal יI glneose into maltose, and so long as the products of disintegration or of synthesis remain in the solution, meither the glucose nor the maltose ean be used up. The enarme will rease to et when a stage of equilib-
 the tendency to syuthesize the other. 'This action mas be expressed thus:

$$
\underset{\substack{\text { Maltuse. }}}{\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}}+\mathrm{H}_{2} \mathrm{O}+\text { Maltase } \underset{\text { Glucose. }}{\mathrm{C}_{6} \mathrm{H}_{2} \mathrm{O}_{6}}+\underset{\text { Gllurose. }}{\mathrm{C}_{6} \mathrm{H}_{21} \mathrm{O}_{6}}+\text { Mallase. }
$$

We have at the present writing evidence to indicate that all engrome aetion is potemtally reversible (althougl: recently it has been shown that the reversed action may require a temperature diflerent from that reguired for the original action), and this of itself is good evidence in favor of the supposition that an enzeme is not a chemieal entity, hat a rar!lin! state of satisfaction between the affinities of tue molecules. What was meant in saying that the enzime as an entity does not exist may now he better moderstood. Equilibrimm and arrest of enayme action necurs when the prodnets of that action acemmulate up to a ecriain point. While, if the products he removed, it goes on mill all the fermenteseblhe substance is used up. In the alimentary camal, the products of adtom of the varions extracelhatar emzomes are absorberd, finally reathing the lymph; in health, thas, the protems, etarches, fats, and other food substances hecon e fully disintegrated. In the cells, the action of the intracellular enzymes oceurs, and its extent is largely a
matter of diffusion. 'Take, for example, the glyengenie activity of the liser coll. If the cell in its metabolism has burnt up the gheose it has and becomes deficient in carbohydrates, more glueose will diffuse in; the ferment in the cell will synthesize this to glycogen, and will contimue so to do till there is a local equilibrimm between the intracellular glyeogen and sngar. Glycogen, being insoluble, remains in the cell, stored 11p. There it remains until one of two things happens: until either the cell is using up gheose faster than glneose can diftuse into the cell from the lymph, and the glycogen-gheose equilibrium is destroyed, when the reverse cuzame action begins to break down glycogen till so much gherose is formed that the equilibrimm is restored, or until the glucose in the lymph is reduced, by the tisusus using it up, faster than the alimentary tract supplies it, to a point below the amount in the cell. If this happen, the glueose hein soluble, diffuses out into the lymph, and the glycogen-ghoose equilibrimm is again destroved; the ferment action will break down glycogen again, and if the equilibrimm be not restored be a fresh supply of ghocose, the glycogen of the cell will he used up.

This promess we have just described, essentially an enzyme process, is really what we have heen acenstomed to call metabolism; the rell rpmililirime depends upon the cmarmes in the cell quite as much as, or more than upon the material absorbed. If the enarmes of the cell lor interfered with, the essential agent in absorption is lacking, and wr. find disturbance of metabolism. As free enzemes in the cell are associated with diseharge from the biophoric molecules forming the muchu; we see how the foreign agents of disease, by disturbing the biphore, strike at the very foundation of metabolism, nutrition, and the well-heing of the bods:

Non-protein Constituents.-Water.-Cell activity is associated with the presconce of water, water being the medium in which metabolism oreurs. If the amoment of water be rednced below a certain pereentage, lateney of activity supervenes, and if the water be removed entirely, molecular death; 60 per cent. of the humin body is water, and 80 per rent. of certain organs, such as the kidnes. The average cell of the hmman bony max be considered as seven-tenths water, and threetenthis proteins and other constitnents. It is still dehated whether living matter is existing in a soluble state in water, or as solid undissolved moleroles suspended in a fluid modinm. As to whether the cell is lignid or solid, it may he said that the relation of molernle to molecnle is variable, and yet at times is reatively fived; the truth is that protoplasm is colloidal, that is, the molecnles are so large that they camot rinter ferfectly into solution, and as a rolloid it possesses many of the properties of a liquid together with the persistence of form characteristio of a solid body. Our irlea of a solution is that the moleconles of the diswabed horly lie in the interstices of the solvent-in a colloid, protophasm for instance, we have to imagine the molecules of water as lying in the interstiees of the hage protein molecnles. The
question is of importance beranse of what we know of ionization. When NaCl , for instance, is dissolved in water some of the moleconles beeome dissociated into $\mathrm{Nim}_{\text {and }}$ (l) and these free constitnents are charged, sone with positive dectricity (anions), and some with negative (kathions); these ant as separate moleenles, and may be attracted by molecnles or bether ions having an opposite charge. By increasing the dilution all the moleroles may be thos ionized. Stable chemical componmes are made be the mion of such ions-or electroletesand the eneray represented by them is nentralized or liberated. Such compounds may he broken up heat or eleetrivity or by solution, and the dissociated ions are ready for fresh chemical combinations; the assimilation of food by the cell depends upon the separation and re-arrangenent of ions. If this is not to be accomplished be heat it must be done be solution, and water becomes an essential. Einame action is largely aceomplished by hydrolysis, and the setting free of ative hydrogen and hydroxyl ions in a watery solution, and these ions are most important in the process of metaholisin.

Simple Salts.- ('ertain salts withont being built up into the protein molecule are obvionsly cssential to the cell, for the protein molecnle does not exert its activity in a pure watery medium, but in dilute saline sohution. The salts usuall:" met are chlorine salts, alkaline carbonates, phosphates, and sulphates, and salts of the alkaline earths, especially sodiun, potassinm, ammonimm, ealeium, and magruesium. We know little about their disposal, but we assme, from the mimute quantitics present. that they probably are mostly dissociated into their ions and so help to promote activity of metabolism. The dissoriation of salts, and their building-up into the biophore are aecompanied by varions phenomena which we eall endosmosis and exosmosis, which is the diffusing, in or out of the cell, of water and salts in solution. A salt of high concentration in the rell will pass out of the cell to a medinm where the concentration is lower, and rice versa, and at the same time a corrective recerse passage of water orecurs. The collowidal cell substaner is sufficiently permeable to allow the molecoles of the salt in solution to pasi. We believe, too, that collods of different composition differ in their permeability, and, therefore, in the time required for the passage throngh them of solutions. This relative impermeability of the colloidal skin (ectosare) of the rell explains whe the huge protein molecoles are kept in the cell while the smaller, partly dissociated ones ean eseape. There are some of these which are almost small enongh to escape, and their retention depends on the state of the cell in relation to the external medim, depends npon the nature of the cell membrane and upon its surface tension. An cxample of this is fomm in the red corpusedes, which lose their hemoghobin when the salt in a salt zohntion rearhes $\mathbf{1 . 4 7}$ per rent. If the osmotic pressure be less than this, salts dithuse ont and water in, till the eetosare is ruptured and the hemogholin is disooleal in the surromming medium and colors it. But cormandes do not lose their hemoglobin till the
winctic presoure is much higher than the tomisity of the serum of man (0.9) per cent. sontimen chloride). Solutions with ann nimotic pressure hiyher than this are hyperisctonic, with one hower, hypisotonic. The bhool sermum mist be very hypisotomic before hemoghohinemia, from passage of the hemoghbin out of the cells, can onceur purely from this cause.
Carbohydrates.- Free earbohyitrates as such the mot enter into the composition of the hophore, and when fonut in the cell are true metabolites; they have beren or are realy to he disoociated. It must, howwer, be recalled that the dissomiation of undeir acid yields a pentose (sugar) according to Levene and Jacobs, a hexose aceording to Stendel and Ilalliburton. From the dissociation of sugars energy is hiberated, and on the contrary energy is comserved when they are stored as built-up gly eogen molerules.
Fats, Soaps, and Alcohols.- This is aurther group of metabolites, which may p, ible he split ofl from the eell protein; they are mot foumb in the mildei (save, as already noted, that fat has been fommed in muctear valaoles, amb are to be comsidered as anted upom mainly lay the extophasm. (certain cells are foumd to contain insoluble neutral fats of which the most important are stearin, palmitin, and olein; these fats, aecording to their formula, eontain a very small quatity of oxygen with a relaticely large amomut of earhm, which means that their dissociation ani combination with absorbed oxygen is eapable of wotting free a great amomut of emerg:; hence their value to the rell.
These come from the food almost entirely as nentral fats; they are cmulsified ly the aetion of tire bite, and, to some extent when emulsified, maly he ahsorbed by the phagoeytie aetion of the intestinal epithetium and leukneytes. Bint this is by no mems all. It wouk seem that free fiatty aeids are to some extent sphit off, soups being formed and glyeeriu liberated; while again there may be actual solution of the fats by the colloids of the cells and body fluids. This matter is not yet determined. The presenee of the fat-splitting ferment steapsin (discharged by the palmereas) in the intestimal contents favors the division of the fats into free fittey aced and glyeerin. The latter is probably taken up be: the intestinal epithecium ; the fatty areds are partly dissolved by the hile salts, but most of them, in an alkaline medium, are transformed intu soaps of sorlium, potassinm, calcinm, and magnesium. As somps ther pass throngh the intestinal cells and are to be fomme in the ehyle ami lymph as neutral fats. Nentral fats are rarely fomel in the blood, "hile somps commonly are; so it is evident that a secoud eonversion "curs:; it is as soaps that the fats are nitimately taken up by the cells.
Microscopieally, the cells of an ore m, e. !!., the kidney, may show fin fat nor the they vieh firt with to ordinary fiot solvents; set :he dry substance of such at: $\quad \therefore$ morts ats mach: 17 per cent. of hat; this means that the fats i. : not free, bat eombined.

Soaps are evidently very important as an intermediate stage in the 3
utilization and synthesis of fats; lipolytic and fat-forming ferments have beeti isolated and designated lipases.

Do proteins give origin to fats or fatty acids? They probably do to a slight extcut, int at present it appears as if the fats of the body are almost entirely the fats of the food. Here it is necessary to mention the lecithins, which are almost constant constituents of the animal cell, and forra a considerable factor in nerve cells and in the cells of efg solk. They have a fatty portim indicating a relationship with fats; they are nitrogenous sugresting relationship with the proteins; and they are richly phosphorized. The last two facts suggest that they are cleavage products of the nucleins, or combinations of such clearage products with fats. P'irallel to the lecithins as protein-fat compounds are the glycoproteins-or protein-carbohydrate compounds-chief of which are the meins. These are to be seen in the cell as globules of mucinogen, whieh by imbihition of water hecome mucins. They are modified, largely inert, proteins; among them are gelatin, elastin, chondrin, amyloid, and mucin, which are poor in carbon and rich in oxygen, and yield on dissociation earbohydrates. A few other "albuminoid" materials ocenrring in and outside the cell are to be mentioned: such are the prochects of dissociation of lemoglohin. such as hematin, together with melanin, the pigment of the skin and hair, which recent ol :ervations indicate are allied to the lipochromes, compounds of lipoids with protein derivatives; these will be discussed with the infiltrations and degenerations.

GROWTH

In all omr previons comsiderations of the biophore we have dealt with wetaholic atetivity: hat we have made only passing reference to -owth. If we think a little it will be seen that the growth of living matter demands a process whereby two molcules exist where there was one before. Onr conception of the biophore is as a ring, or a ring of rings, and growth oceurs by increase first of the individual smaller groups or rings. These groups, from their very inception present a series of musatisfied affinities, and each or any of the molecules is constantly attracting molecules of a like order, and on the first of these is built up a second and a third mutil the group is complete. Along these lines we can imagine the development of a new ring of whieh each indivithal eomponent is the reflection of the components of the original ring: in its turn this ring attracts, and so buikls up other rings in due order until eventually there is producel a completed eompound molecule, reprolucing the parent molecule. We use the illustration of the ring to indicate a degree of completeness; the ring can break, it is true, and in its repair, be enlarged or be made smaller, or it can join with another broken one, but the molvenles of the formed ring are less likely to be attracted away just because they arc in a ring, i. e., in a state of relative completeness.

The Relation between Growth and Other Cell Activities.-The consideration of this subject demands a few words on the dynamies of the cell. In the performance of finction of whatever kind, the cell is a maehine discharging potential energy. The body warmth means that cells are liberating energy in the form of heat; the nerve cell liberates energy akin to electricity. On the other hand, growth and the accumulation of new molecules demand, not the evolution, but the storage of energy, and this comes from the food. The proteins, earbohydrates, and fats are carbon-containing bodies the ultimate result of whose decomposition is a yielding of nuch energy. The excreta of the organism, carbonic acid, water, urea, etc., on the other ha nd, store up eomparatively little, and the cells acquire most of the difference.

Strictly speaking, energy is not evolved in the dissociation of matter; but dissociation and the freeing of ions mean that combinations immediately occur which liberate far more energy than was lost in the dissociations of a moment before, so that the ultimate result of dissociation is, paradoxically, a storage of energy. The biophores are not to be eompared to simple salts, but rather to nitroglycerin. A blow dissociates it, and though there is a theorctical momentary loss of merg: there is a vastly greater immediate production of energyin explosion-brought about by the reconstruction of the ions of r, O, N, II into more stable compounds. Dissociation, then, tends to the liberation of energy, and growth, or building up, to the using and storing of encrgy, the conversion of kinetic into potential energy. The energy of the food is thus:
(a) Katabiotic, dissipated in the performance of function.
(b) Bioplastic, stored up in the formation of the complex biophore, i. e., in growth.

Can these two contrastel processes, growth, and the performance of function proceed simultaneously in the cell? They can, as we shall show.
To digress again, growth is an intracellular affair, governed by conditions in the biophore, while the performance of function is a response to exterual stimuli of some kind. If the cell has abundant food, and the stimuli to function be strong, all the acquired energy may be used up at once, and no growth ensue. If the stimuli he yet stronger, all the food energy may be used up, and the cell substance be dissociated to supply the further energy required. If the food energy be little, the cell inay require to use up its substance to provide the energy needed for function. There is, however, a grade of adequate food supply and of moderate external stimulus, in which the dissociation of the foodstuffs provides more energy than the cell is called on to dissipate and the surplus is used in growth. The development of muscles under proper exercise illustrates this. Conversely, with adequate food, and not enough activity, muscles do not develop, but the contrary; a certain optimum of activity is necessary for the maintenance of nutrition and of growth. There are apparent exceptions to this, in
the embras, in tumor growth, and in the fart that muler exercise and adecuate mutrition there is a limit berome which growth eamot go. Whereas growth and fometion have thas a definite relationship, there are ciremmstances unker which growth is enite imkepembent of function.

Artive assimilation and growth with little fimetional activity characterize the embryonic and fetal stages of existence. The more the edls berome differentiated (for their proper finution in different organs), the kess rapacity they show for growt! and the more for katabiotic activity.

Growth of the cell and of the indivinhal progremes matil the volme of the eell (and of the individual) reaches the point herond which increase in mase is not only mecomminal, hat harmfinh. There is a relation betwere surface area and mass, and when the mass execents a certain amount, the surface area is too small, amb assimilation amel discharge are himered. The cell has now the alternatives of eell division (bey which there is a rapid incerase of surfiace arearelative to mass) or of lessening its mass be the performance of function, that is, of dissoriating some of its cell sulstance. ds long as the eell or the individnal is below the ecomomimal ratio between its mass and its surface area (relative to its external medium), it chooses the first (eell (livision); as this ratio is apprached it temets to employ the secomd (fimetional activity).

The size of the individhal is thms a function of the emstitntion of the biophores; it is the expression of the optimmen ceonome of interaction hetween the hophores and the external medimm. (irowth of cells and of individal contimes till this optimsm is reached. In the deveped cell there must be a comstant alternation betweon growth and fimetional activity; in performing function the rell dissaciates some of its substane and falls below the state of ontimme efficioure and it is in a pesition to take mp new matter, amb grow; Weigert's statement is "the katabotie use of material in function removes the ohstruction to growth."

Physiological Inertia and Habit. -1 wheel set spi:ming eontimes to spin after the hamd is withlrawn; a gland stimulated to secrete rontinues to serecte after the stimulns is remosed. A resting musele emintimes to rest (during the latemt prime) before it acts ini response to a stimulns. The eell, like matter in general, temels to contime in the state in which it is, whether of rest or activits: 'This inertia is the precursor of habit. A cell stimmated to perform an act, contimues to perform it after the stimuhts is removed; on a secomb occasion, a slighter stimulus sufferes to make it repeat the ant, matil a period is reached when a minimum stimulus will prohue an optimum reation, and the cell, tembing to employ its energe in one particular direction, temds to lessen its activities in other directions. It beeomes adapted to its work. Dime a cell starte to grow it has a tombene: to continue to grow rather than to perform function, until its increased size and increasing tension and other external stimmli attain such power that it is com-

The states of cell activity

prlled to fimetionate. This, in thrn, onre started, is apt to contime. Wi, hase this attempted to show the hiologieal process be wich one rell lambers many wells, and the many cells attain a certain size hy imdicinal growth, and finally, by which the energs that is put into growth beromes, at the proper time, directed toward the performance of function and a continnance of the same.

RESERVE FORCE

In important character of living matter is what is termed reserve force; mpon it depents the process of healing. . Inst as a wall, a bridge, or a hoiker, buit om somud mechanieal primeiples, is able to stamd a atrain several times greater than it is ordinarily experted to carry (the "fartors of safety" of the engineer), so are the cells of the organism; there is a harge reserse of fore or energy in them abow that which they exert muder normal comditions. Ihnstrations of the are known to creryone. The patient who semes wo wat that he call scareely raise his arm may berome in deliminn a mateh for two men. The heart can do thrice its normal work withont oserstrain; three-puarters of the rablit': liver may be removed, and the remaining puarter serse it-pmonsere the whole of the spleen of the dog mase bextisel withont injury to the animal's health.

In the last case, other related tissates take up the functions of the *plech, exercising a vicarious activit! ; set vicarions activity is a pure example of reserve force. Such also is compensatory activity, e. g., one hang will suffice for respiration, one kidney for urinary excretion; (${ }^{2}$ en in the brain, one of a pair of centres (an take np) the work of its dooroved fellow. In short the oryanism is so comstructed in to possess in must of its functions an abundant mar!in of reserre force. This reserse forere 'ites at the root of the healing of injuries and of inmmity to disease.
Remeree force is yet one more resilt of phsiologieal inertia. Life hai- berm lefind as the continuons adjustment of internal eonditions to extranh changes of encirmment. It is more, it is overadjustment; when the oell asimilates, it continues to assimilate more than is neded at the moncont when it starts to grow it continues to grow abose the extent of the original stimulns; and the excess remains as reserve force.

THE STATES OF CELL ACTIVITY

The state of the cell at ans given moment depends upon the sum tutal of assimilation, growth, and external stimulus, and this state is variable, and the valiations earried far in one or another direction, constitute cell disease.

1. Subnormal Activity.- Eren in normal tissie the accumulation of reserve force leads to the presence of redundant cells, which, receiving
relatively little stimulation pass into an! inert, latent state. These cells, with lack of stimulation, atrophy, and sone of them atemally disappear. Not ouly does this ocenr with reduadant cells, but even with normal cells under abmormal conditions; this tan be well seen in the atrophy which an immolilized leg undergoes; and the actual disapparance of cells is seen in the eases in which the lower motor neurones atrophy and disappear as a result of lack of stimulation from the upper ones, in cases where the upper ones are destroyed.
2. Vegetative Activity.-Cells in the process of aetive growth present certain well-1marked charaeters. The nuctei are large, round or oval, staining deeply; paraplasmie gramales are not prominent; the cell body is roimd or oval. Cells of this character are prone to reprofluctive activity and have heen called embryonic cells. The name is not a good one, because sueh cells occur at all life periods, and a better term for them is vegetative cells.
3. Functional Activity.-Cells in functional activity show signs of differentiation aecording to their specitic fumetion; in musele or nerve cells the eytoplasm is highty elaborated; in gland cells, there are paraphasmic deposits, in the form of granules or glohules; the nuelei are not large, and their staiuing differs aceording to the stage of cell aetivity.
4. Hyperactivity within the Limits of the Reserve Force of the Coll.- Wheu increased stimulation is aecompanied hy adequate nutrition, the functiona' aetivity of the cell is, to a certain extent, accompauied hy growth, and this eonstitutes hypertrophy.
5. Excessive Functional Activity.-When the cell work is extreme, the energy used up exceeds the supply from the food, the paraphasmie material disappears, the protoplasm is dissociated, and if the stimulus he continued the cell is exhausted; the mucleus stains poorly; the cytoplasm in the case oi eells like those of the ney tubules may be disintegrated and partly discharged; or there nay be abnormal deposits in the meshes of the extoplasm; or the extoplasm may beeome vacuolated.

CELL MULTIPLICATION

Inerease in size of the iudividual is brought about in two ways: ly enlargement of the individual cells, and by interealation of now cells. We sf. ...k of inerease in size of the individual as growth, whether it arise from one or the other of these processes, but it is neeessary to remember that cell multiplication and cell growth are mot symonymous terms. Cell multiplieation is of two main types-direct, or amitotic and inclireet, mitotic or karyokinetic.
Direct Division; Amitosis.- This is the rarer form of the two, and may be said to occur not at all in the development of the mammalian body, but in fully developed adult tissues it does oceur, and is partieularly frequent in cells that are multinueleate. In leukocytes and

CELL. MUlitiplication

endothelial cells it occurs, mind is the rule in the syneytimm of the nammalim embryo, nud in the rapilly growing encelopes of the embryo. In the last named, it will be noted t^{\prime} he tissue is but a temporary one. There secms to be a certnin amount of trith in the stintement that rells which exhibit amitesis are on the way to degeneration. As far ats the lenkocytes nre concerned, in lymph noles where cells are being contimmlly prosluced, mitosis is seen, and it is only in the blood and in lankoevtes in inflommatory nreas that we enconiter nnitosis. Possibly we cmmot emmeiate this view so confidently as we were accustomed to do; of late vears attention has been called with increasing frequency to the occurrence of mmitosis in artive tissurs. We inust, however, admit that we cannot follow the fate of cells originating by this methorl.

Fio. 10 B
A

Amitosis. Stages of direct division in tumor of the lip.
In anitosis, the nucleus divides without any preliminary re-arrangenent of its structure. It becomes elongated, then dimb-hell shaper, the neck breaks, and the daughter cells separate, either followed or nut followed by a corresponding division of the cytoplasm. The centrosome plays no noticeable role in this form of cell multiplication.

Indirect Division; Mitosis. - In this form of division the nuclear material is divided with exactness between the two daughter cells: If the muclear material were uniform, it would not be necessary to have the elaborate "quadrille," but each daughter cell would take its half as happens in indirect division; that the nuclear naterial arranges itaelf imlicates that there is a differentiation of the biophores, so that each daughter cell obtains a group of biophores identical with that whtained by the other. We shall merely indicate the stages in the 1. Prophase or Preparatory stegular or nodulated network; it becomes resting stage of the cell is an which appears as if in a tangle, and then a continuous si -le thre number (in man, thirty-two) of short lengths divides into a deınite number (is progressing the nuclear membrane called chromosomes. As this is naked in the cell. While this goes disuppears and the chromosomes he in the eytoplasm. The centrosome
appenrs und divides into two hinlves, uromad card the eytophasm hecomes commontraterl into raliating fibrils, forming a star or aster, ant
 ends of the cell, 11 spindle of fille fibriks is sele to stretch hep ween them.
I. Metaphase. Finch chromosme splits lemgitulimully into two like hatses, the danghter ehromosome whenring to beeome ntturhed to the mantle fibres of the spindle. This splitting of the chromosomes is the finmbanentul premesi in rell disision.
3. Anaphase.- The danghter chrommsomes diverses, a member of each pair going to ollue or the other pale of the spintle. Here the ehromosomes crowd mar the exentere of the aster.
4. Telophase.' - Moe cell henly divides into two, the line of division passing thromgh the erpator of the spinille. Pach damghter adl mow contains haff the ehromosames, alf the spindle, amb one exatrosome mud aster. The two last miay persist, as the attraction sphere, or may dismpear. The danghter chromosomes fuse into atambe, which becomes irregularly swollen or mohblated and forms the network of the resting nucheus.

ADAPTATION

We hare alreals made the statement that the oryanism cam alapt itself to its surrominlings, and the doetrine of the survival o? the fittest indicates that where there are mane intividuals motergoing change to become hetter suted to their emsemment, the ones whe. ine onet the new repuirements are the ones who survive ame their propeng, so montifien, foree out of exincence the fewer, wak progeny of those less well ahapted. A harge eldment of chance enters into smed a process. This, however, while true, is not the whole troth. Alaptation is not a passive furtuitous modification of living matter in a fincorable direstion, but an active process, whereb a change in surromatings brings abont a change in , ife composition of the living mater.

Examples of achatation are mumerons; bacteria wheh ordinarily split up) earbohylrates (am be made, by growing in :perial media, to split up protems; hacteria whor can ferment one sumar but mot a secomed may " "tramed" till ther ferment the second atal not the first; bacteria which were not pathogenic ean be made to become so. 'These altered powers are due to the acpurement of new qualities be the bateria ablapting themseles to their partionlar surrommbings; the alteration eam oceur in so short a time as to make it certain that it is an active process. The ardured immmity in man against disease is an exmmple of adaptation, the cells adapting themselses to one more foreign agent, in this instane the toxin of the special haterimm. This adaptation may reman for a long time after the toxin has ceased to be present beranse there is impersial on the cell some alteration in constitution

PLATE I
beitil sit" . like (1) H14's. , 1 the siun 110w olle Hily lich k $\|^{\circ}$
lipst ittest Allye 1יִet gens. those cess. s llot lirerrings
narily ial, to ceond cteria Itered cteria rion ctive eline (1111) agent, tation rescht itırion

The Hinaren of Mitusis.
which is pasied on even to the progeny of the cell. The eapacity to adapt itself is inherent in the molcenles of the cell, and the molceules become changed in response to some agent or ageney in the environment; it is not that the tembeney to vary is inherent, but rather that the power to change in a particular die wisala present, the ehange lecing in response to the action of a pecifie agma. Expressed more conrertely, a partienlar morification in the emvironent is able to change the protoplasmic molecule in imrticular vay. If the cell romain in the same enviromment with the kinds of food moleculdes coming to it, the cell response will be to buik up the same side chains within limits; in short, the eedl will not vary. But as soon as a new foodstuff is brought to it, and dissociated, an entirely new set of ions may be prodnced, and new combinations entered into, now side-ehains may be built up, and the protein molecules in the cell itself therely altered. This particular cell has gained a new d daracter by adaptation, by undergoing a molecular re-arrangement; growth goes on at the same time, and the new side-chains maty be detached into the surrounding medium or may remain and be built up into the extoplasmic or nuclear moleeules. If then a cell has adapted itself, and has multiplicd, the process of adaptation is not over, for its progeny will partake in the altered composition of the molecnles in the parent cell.

Maptations such as these will occur in response not only to the fondstafls, but likewise to toxins; and changes in temperature, vibration, light, and other phosical agents, not introdncing any new ions or molecules mars ret canse a re-arrangement of the molecules in the himphore, and so an actually altered composition of the eell, with altered characters.

CELL DIFFERENTIATION

I corollary to this is that a cell becomes adapted to its particnlar net of ciremmstances, its food, and so on, and thas becones different from its neighbor; this is the reason that underlics cell differentiation; if we hegin with a cell, which multiplies itself into a mass of cells, it is whionts that the cefls on the outside of the group are in a relation to the surromuling medium which differs from the relationship of those (1) the inside. Je hegin with two separate cells, exactly similar, rach of which ghe s into a multicellalar organism, if each be exposed tu exactly the same enviromment the danghter cells will be differantiated in exactly the same way. But if the biophoric composition of thene two cells is different, even if the environment be the same, we shall have the daughter cells in the multicellular organism differratiated aceording to a plan that differs from the differentiation of the last example. To state this otherwise, we would say that cell ditlerenti. tion is due to two factors, biophoric constitntion and physical inturnes, and that in practically every case, both are at work. We conld this understand, albeit in it hazy way, how the one adult individ-
ual differs from the other, evell if we were to presuppose that the ovum was exactly the same in each ease; the more diffieult task is to determine why one individual is like another individual, why son is like father, and this leads us to inquire wherein one ovim is different from another ovum. Two ova, side by side, look to our eves alike, let us say: why is one going to become an elepliant and one an insect, and how eomes it that the elephant is certain to have a trunk and the inseet wings? Is there, in the ovum, a part of the protoplasm tlat is definitely of such eompositiou that it must form a trunk and not a tail? And where is the protoplasm hidden in one cell which will determine that this particular elephant will have tusks like his grandfather, a trumk like that of his great-grandfather, and the temper of his great-grandmother? Is there a special piece of protoplasm in the ovum which has directly descended from each of his thousand ancestors? No, there is not; and we can prove, from what we know of the protein molecule that there is actually not room for them. The theory of "the continuity of the germ plasm," as it is called, which presupposes the descent from generation to generation of an infinitesimal part of the protoplasm of eaeh, is a physical impossibility.

Such "determinants" carrying particular properties derived from one or other ancestor, which shall in due time be distributed to one or other tissue or area of the fully-grown individual and shall endow that particular tissue or area with the properties scen in one or other ancestor demands, it will be seen, that every separate feature in the body, even down to the partieular markings of the thumb prints (which are alike in no two individuals), shall be present in the fertilized ovum, demands, in short, that not merely the microscopie nucleus of that ovum, but the chromatin or whatever part of it convers the hereditary characters, shall be made up of these innumerable determinants. Now, according to Weismann, these determinants cannot be simple molecules of matter, but must be molecular groups, and as we have pointed out that living matter is proteidogenous; each individual molecule must be of a size which, according to physicists, is almost visible by the ultra-microscope. Regarded thus, it is a physical impossibility that the minute nueleus of the impregnated ovum can contain all the determinants demanded by this theory. If, therefore, we cannot aceept the idea of determinats, is there any other means by which we ean visualize the facts of inheritance and of individual variation? This hiophoric hypothesis appears to us to afford the only means of explanation at present possible. The elephant ovum develops into an elephant and not into an insect because the elephant ovum is made up, in the main, of molecules of a certain average composition, a ring inade up, let us say, of smaller rings each represented by A:

A hirl ovim, on the otl r hand, may be made up of X rings, thus:

The biophoric molecules of an inseet ovum might be represented by

These may thus differ one from another not only in general composition (as A is different from R or X), but also in number, and mode of apposition. The fundamental grouping of the moleeule of all elephants is the same, thus:

the biophorie molecules of the ovum of one elephant differ from those of another in eertain slight modifications of one or more of the eonstitnent parts of the ring, which may be represented as side-chains; thus for one elephant:

for another elephant:

as no two individual elephants are identieal or can be represented by the same formula, it is evident that progeny of any two will present a modifieation of the formula seen in either parent; these modifications arising by elimination, interaction, or summation of the charaeters represented as side-chains.

Having thus dealt with inheritance and the effects of fusion of the male and female elements in the new individual, let us now consider the morlifieations aequired by environment.

Acquired Modification.-Passing on to the evolution of the individual from the ovum and the differentiation of his various tissues and organs, it must be elearly realized that when the ovum divides into two, each daughter eell has conveved to it biophoric molecules, and that so these biophoric molecules while coincidently multiplying by the successive
division and multip. cation of the cells of the growing individhal come to be distributed to alit the tissmes of the bods. So far ase we can see they pass to the germ cedls in ant marhanged romation, hat in the sureession of divisions which give rise to the somatio or body cells. the inflaences to which the sureessive generations of cells arn exposed in the different parts of the growing (monheo differ very greatly. It is dhe to the diflerence in position phas the difference in foodstafls and phesical and chemical agencies to which the cells are exposed, that the contained hiophores become modified, matil eventally, the modification becomes so great that instrad of these hiophores being able to reprodnce the whole individnal, they now become capable of contralling the formation of only one particolar differentiated order of cell.

Following npon this, the general statement may be made that the more promounerel the differentiation of a cell, the Iesss its colucity for reproduction. Vet there are certain cells that are specialized, and can vet reprodnce; bint they reproduce only their own differentiated and
 and even this multipliantion eann oceur only after the differentiated cell hass "madifferentiated" itself again, that is, has reverterl to a simpler, less diflerentiated stage. The eell that has become differentiated, that is, loses the dharacters it has acepuired, and becomes a "vegetative" cell in form, and ret when this cell reprolines, its prosemy assime onee more the differentiated trpe characteristie of the adnlt cell.

FERTILIZATION

We shall take up very Bricfly some of the fa"ts concerned with fertilization; that it has not hinherto entered into this text, is we to the faet that growth, adaptation, and cell differentiation ean proceed withont it; stody of the lower invertebrate forms indieates that it is, in them, a means of rejurenation of the biophore, bint that it is not an essential to the contimanue of the apecies throngh considerable numbers of generations. In its simplest phase, eombugation is the direet mion of two like individuals; but eren low down in the seale we begin to find a differentiation between the male and the female germ cell; the male tends to show itself motile, imasive, while the female tomds to be passive, diefly becanse the cell is lomed with the yolk neressary for the support of the new individual after fertilization. Of this food material the male element or spermatomön shows little; it consists of a nuclens, a centrosome, and a small amonnt of (ertoplasha which appears chictly as the flagellar tail; the male cell is, in fact, of a disproportionate smallness.

From a very early date in the development of the indivianal ovom the germ cells become marked off Irom the somatic or lafly cells; thic kerm cells remain rich in chromatin, none of whioh is east out.
The observations of Boveri and others indicate that the cells destined
(10 give rise to the tissiles in general mulergo a process of rednction oi their chromatin; very powihs this process of reduction renders them incopable of being totipotential, i. c, of giving rise to the whole imblividal, leaving them emable only of giving origin to as sperific ti-nue or tisanes according to their emsiromment. Fior does it seem that the crentual sexual cells are of necessiter aboolutely ilentieal in Lhe an?emint of chromatin which they contain; a study of the spermaforon, eprecially of insects, and of the pollen of plants, has shown rembly that in any particolar instance their spermatozon may be -phatated into two approximately equal groups, of whith the members of nhe gromp contain either one chromosome in excess of the momber comanimed he members of the other gromp, or one chromosime (accessory chromosome) marke dly larger than the corresponding chromosome iil that other group. No such ditterence is observed in comection with the ova, and as these species athord approximately equal numbers

Schema of germ and somatic cell differentiation. (After Kichs.)
of male mod female progeny and no other functional differenee can be Weterted or imagined between the two gromps of spermatozoa, it is fremmed that the one gromp, (that with the acessory chromosome) comere femate, the other male attributes. This eonclusion is now horoming generally aceepted by biologists.

Wi. have stated that there is no relaction in the chromatin of the malificrontiated germe cells; but we have now to add to this statement. 1hat the weneration of gern cells immediately preceding the formation (1) the owa and spermatoma does malergo a reduetion of chromatin furing the process of maturation, so that the mature spermatozoon or whm eontains just one-half he munber of chromosomes characteristic If the spercess (and it will be recalled that this is a fixed number for ardo speries.
In the maturation of the spermatozoonn, we mas st.. oriefly the wot that a pair of spermatozom arises from a sccomdary spermatocerte, 1hif in turn comes from a primary apermatocete, this from a spermatogo-
nimm, and this from a primordial germ ectl, and by the time the spermatozoon is formed it has one-half the normal manher of chromosomes. The four colls derived from the primary spermatocyte all hecome spermato\%oa, whereas, in the case of the ovum, the primary oöcete gives rise also to fone cells but only one of them becomes a functional ovom; the other threr are degencrate, and are cast ont of the cell as polar bodies, and this casting out does not occur till the spermatozoön has entered the oram. This intracelhatar occurrence is for the parpose of reducing the chromosomes of the owim, so that the ovim proper is the only one of the fome which remains, and it fanctionates with its shromosomes reduced to one-half of the mumber present in the cells of the athult individual. The steps of the process of maturation of the spermatozoön and of the ovim we have omitted, but these intricate "molear dances" are evidently a means of ensuring that the rhromatin of the original germ cell shall be impartially divided among all the danghter cells-the spermatozon or ova; and the reduction of the chromosomes brings it about that the fertilized cell, summing the two sets of chromosomes, each reduced by a half, shall begin life with exactly the normal number of chromosomes, and these contributed equally he the two parents. The cytophasm of the new individual is supplied mainly from the mother, bint with the chromosomes (s'mplied thus with striking equality from both parents) must come the most important of all those factors which we are accustomed to consider in the problem of heredity:

INHERITANCE

Heredity is the eonveral.e to the offspring of the properties of the parents and of the parental stock, so that the chidd inherits familial, racial, and specific characters. But this does not deseribe the chikl, becanse interwoven with heredity is variation, and this of several orders. (1) There is the variation that comes from one's course of life, as is seen in the trpe that is recognized as the sailor, the farmer, or the modertaker; variations so acquired are known as modifications and can be divided into those acquired in intra-nterine and in postnatal life. (2) There are variations that arise becmase the individnal is the result of amphmixis, i. e., the fusion of the germphasm of two individuals who differ one from the other. The child camot, on this accomet, be an exart copy of cither parent, but must show variation from each. (3) The molreules of germphasm of iwo parents are so complieated that their interaction never produces the same result twice; even the thousands of fish from the same spawning differ from one another. Finally, we must admit, that the biophores of the parent which supply the germ cells are prone to variation during the individual life of the parent.

The importance of the problem of herchity in disease is great, and we make no apology for insisting on its consideration.

INHERITANCE

The Different Forms of Inheritance (i.e., Heredity Plus Variation).The properties possessed by the individual are these:

1. Individual, i. e., those peentiar to the individual, mud not recognizably iuherited.

2 Parental, i. e., properties possessed by and peentiar to one parent anil ohionsly inherited from that parent.
:3. Familial, i. c., properties possessed by and pecutiar to the family: of one parent.
4. Racial, i. e., properties common to a particular race.

One may go farther, and indicate that tie individual has specifie or ex specie properties, such as those that distinguish him as a hmman being from an ape, and even class and order distinetions.

Wie see that there is an ascouding order of fixity in these charaeters, riz, that, dealing with man, his vertebrate characters are more firmly imprinted on him than his mammalian, his mammalian than his hmman, his luman than his racial, and his raciat than his familial characters, and so oll. His least imprinted characters (i. e., his individual characters) are those most liable to change, and among them the ones he har possessed longest he gives up least readily.

Racial Characters. -To go no farther back than this, everyone is familiar with racial differences, evidenced by the color of the skin, the shape of the skill, and the stature. In more strietly pathological ficlds, one may recall the differences in reactive power to certain microhic diseases; thus the Japanese and the native Austrian cattle are less susceptible to tubereulosis than most others; one race of Ilererian sheep can scarcely be inoenlated with anthrax; negroes and lamerican Indiaus are highly susceptible to tubereulosis, and so on. In nom-microbic diseases, it is a matter of common knowledge that the Hebrew is prone to diabetes; the French, to functicnal nervous di-ubses; the English, to gout, and the American to disorders of digestion. 'To say that these are due to the particular mode of life is pruisely what we wish to indicate: primarily they must be regarded is the ontcome of partieular enviromment.

Familial Characters.-Not only do the members of a famity tend to ra-mble one another, but there are certain distinetive traits that are fnul in many successive generations-a peeuliarity of stature, a -hape of some special part-"that thou art my son," said Falstaff, "I hare partly the mother's word but chiefly a fowlinh hanging of thy nether lip,"-or a morbid condition such as abinism (deficiency of cutancous pigment), color blindness, hemophilia biahilits to excessive hemorrhage as a result of insignificant injury), ractui I malformation such as the possession of nu extra digit. When ie consider that such peeuliarities as the last have bee. traced in a mily for centuries, despite the constant introduction of new blood, it wident that these are dominant properties possessed by the germplasin 1 particular strains. The further study of some of these characters cals the faet that there are some of them which appear in one sex
and are tramsmitted hy the other. Ilemophilia, for example, rarely appears in the fomales of ant affereded family. bit fre"mentle in their sents. ('haracteristies may shipagemeration or more. so that the appar-
 parents or procaling fordears were atferted he them, is designated atavism.

Parental and Individual Characters.- The rharacters that deseend from the parents to an individual maly be blended, that is, he may possess a m: ixture of the patermal and matermal featmers, intermediate betwern the two, or they may be particulate, that is, he may resemble one and not the other. 'There are rertain parental characters that ordinarily. eamont blemb, and sex is the most striking of these. Less important is sum a character as the color of the eles: one parent may have blae and one brown reses the children generally do not show an intermediate eolor, but either bhe or brown eves. One of the two parents, in properties that are unlike or antagemistic, is apt to be dominant, and the other is then recessive.

Mendel's Law. - Withont going aleeply into the particulars of inheritane in the matter of antagonistie characters, we sall indicate the exactness with which mature works, as it was observed be the Anstrian monk Mendel, whose work has in this eentury been revised. Let us take for example, as he did, the flowers of the pean; some strains hater white flowers, others eolored. Color is a positise aednirement, and whiteness means lateney or loss of this arguirement. If mow red and white flowers are erossed upon one another, the hyrbrids whieh result follow a law in regard to manifesting this partienlar character and the first generation is ral. The red color is dominant, and there is 110 indiantion of the white eolor--the white being revessive. But in this experiment the white eolor is only latent, and this faet will appear if this first generation (red) be allowed to fertilize itcolf; among its progen! ome-rnarter of the individnals will be white, that is, will show the recessive quality. If this white imbividnal be self-fertilizer again, all its progeny will he white. Now of this serond generation of fonr plants (three red and one white), of the three red, one will give only red progeng, the other two of this seeond generation will have the eharamers of the first gromeration of hybrids, that is, they will give rise in the next generation to one dominant, bure reressive, and two hybrids that again will prodnee this same pererntage of dominants, habrids, and recessives. This will be understool better from Fig. 12.

The formula mas be set down as follows: if I) represent a plant with the dominant red and its gemplasm and R one with the reeressive white and its germplasm, then the first generation of erosses of 1) and \mathbb{R} will all be INR, and if these IDR indivifluals he erossed the result will be $x(\mathrm{DR}+\mathrm{OR})=x(\mathrm{D})+2 \mathrm{I}) \mathrm{R}+\mathrm{RR})$, or in other words, a dominant rossed with a recessive gives in the serond gemeration, as regards this one partienlar feature, one dominant, two hisbrids, and une recessite, amb of these, cach dominant will give mothing bat dominants,
each recesive nothing bit recessives, and each hybrid the same proprotion of dominant, hybrid, and recessive.

Leal characters of hybrids of Crlica pilulifira and \mathcal{U}. dodartii (Correns): F_{1}, of first hybid genera-
 t.) bev illminant property.

- गhi of Mtndel's law for a single pair of "antagonistic" properties: A. the results of hybridization of a pure dominant. (D) with a pure recessive (R) form. (Bateson.)

The essential point to be grasped here is that while one property d,minates, the other is only latent, and may show itself in the absence the dominant property or mingled with it in a blend. The law, too, $1:-$ not hold in the crossing of distinct species, and we quote it only
 have for the emsideration of problems of heredite in the haman : pecies.

Atavism. Thlis is the appanalure in a givell generation of trats not present in the parent but ehameteristio of earlier gemerations, and is seel to be in areordanere with Mendel's law. If, howerer, we find trats appear which are eharacteristice of an carlier state in the phylogenge of the speries, we designate thic reversion. In reversionars: inheritance or reversion we have alwass a return to a lower type a development not eomplately up to the present tope but attaning a stage characteristie of all carlier perion in the developmont of the species. An example of such is the appearance of a mirococephatic child or of a child with indiations of persistent gill clefts; not all such cases are true reversion, for some mas be merely examples of intraIterine disturbance. A perfert example of reversion is fomed in Darwin's experiments and those of others, in which when widely ditlering breeds of pigeons were crossed, the progeny, disregarding, as it were, all the reent acenirements, have appeared exactly similar to the form of wild pigeon from which ali the diflerent varieties took their origin. One seems to see, from time to time, the offipring of parents of widely. diverse storks showing this reversion to a lower tepe.

Familial Degeneration.-This is a form of degeneration which we ascribe not to the interaction of two antagonistie germplasms, but to a defert in one or both i is ed bex toxie influences, which morlif: the constitution of the pare germ rells. The dass so pronlueed we designate degenerates the product of those leading vicions lives. The degenerate is of poor boblily development, the brain is smaller than mormal, its comolutions less marked, there is little eapacity for prolonged thonght, and a lack of moral semse- in all these peints, there is a resomblane to a lower, less-developed race of our species. Sheh are apt, in turn, to produce children who are idiots, stillborn, or monstrous.

Spontaneous Variation; Mutation.- We hase previously heell dealing with comditions appearing in the ancestor, and convered to the oflipring: But there appear in the offipring eombitions and relationships that are new to the stork, that have arisen, and these are called spontaneous variations. The clover has a tri-partite leaf, hat a fomr-leated dower is reeasionally fommd, and does mot mean that the ameestors of the elover phant had a quadri-partite leaf. We eleseribe this as a spontaneons variation. We find the same thing oremring in the haman speces; supernumerary mamme, fingers, or vertebre ocenr, and, onee present, tend to be inherited. The first of these in ans series to happen, was a mutation, a spontaneons variation; and botanists have been able to show that a now varidy will suddenly arise, and self-fertilized, remain trme to its new type. Some saly that evolntion works in this discontimoms way, and that a new variety or teew species does not rome by slow gradation, but beyden genesis. It may be, of course, that we hate here an example of cumulative inheritance; that is, where a bemblinstend of anowing a feature interatiate between

Twn differing parental fentures, shows this fenture exaggerated in the dirction of, bint tar beyond that feature in oure parent; but we have
 dferts, f. !.. the iefluence of chemical agents acting non ova.

The Theory of Inheritance. - The comsideration of fertilization and the promeres that prevede it leads us to suppose that cach parent eontribute wrehalf to the germ cell of the offispring; . If the chromosomes arc of paternal, half of matermal origin, mol the heritable material is wident!y in these chromosomes and any theory of inheritance mist Aral with the chromosmes and their comstitments-that is, with the himhoric moldonles conseyed in the chromosones.

Wi, may gronp the virious forms of inheritance, most of wheh hawe beri referrel to. as follows:
(.1) I'resenting itself also in the offspring:
I. Dominant, wholly replacing the corresponding but divergent fature seen in the other parent.
2. Blended, this particular feature in the offspring being intermerliate in character between that exhbited in the two parcuts.
3. In mosain form, in certain cells the patermal, in others the maternal feature being dominant.
4. Blended and excessive, the feathre being more promomeded than in either parcoit.
(b) ['urecognizable in the oflispring:

1. Recessiva, and replaced by corresponding feature derived from the other parent, but as suen latent, capable of reapparing in later generations.
2. Whent, wholly wanting in subsequent generations, the alsence being due either:
(11) To casting out of an iuherited eonciition, or
(1) To the feature seen in the parent being ann aequirement and not an inheritance.
Or. on the other hand, considering the individual, we note that as regards ally particular feature or group of features, there may be:
(1) Sirma! Inheritance: The offspring not being in this respect alvanced hevond either parent, but at the same time not fallen behind.
(B) Progressiif Inheriftace: The offspring being advanced beyoul the more advanced of the two parentsaml exhibiting either: 1. Fxcessive development of the condition or concitions already olservable in one or hoth parents, or
3. Spontaneous variation (mutation), i.e., the appearance of eonditions not previonsly noted in either parent or either parental stock.
(r) Retrogressice or Recersionary Inheritance: The offspring reverting as regards any feature or group of features to a lower stage in the phylogeny of the species.
(D) Sun-inheritance: Apparent or aetual.

It will be seen that guatition combered ber parental biophores may he retainal crem if in a recessive, latent comations. 'The fact that the Memblian halirid after as mbine of generations ran prohnce at purely dominant or purely remone indisidual shows this, and comjugation cannot, therefore, be a rhemiaral mion of two biophores with a resultang wew himphorie subatanes. Nor an there be separate biophoress representing rioh individuat ancontor. The following is onr

Fiu, 11

Schema in illumetrot Mendol's law rekariting the second habrut generation to illustrate the effects
 originatly provided with chromosomes of paternal (black) and of maternat arikin (white). The existence of the law demands that in che process of reduction the nwim and the permatozoin (scond row) becume provitcd with rhromosones (and biophores) that are of either paternal or of maternal lescent, hut not of lush, althoush, as alove noted, the hiophores nay in theirkrowth and development have attracted side-chaing formell primarily hy the roposed order of biophrores. to the exclusion of thuse originally belonging to them.
comeeption of the proces of eomjugationt: cen parental biophores in the fertilized own . We may pheture thes, wiophores as lying side by side in a common cytoplasin from which they extract and to which they give ions, so that some side-chans are being built up and some dissociated. Of these side-chains many are identical, common to the molecule of each parent; these possess the fixed characters of the species, the race, the order; uthers are wilike, and these evidently mark the
indis indality of cath purent. The mole enles and their side-chains will hase certian allinities for the wide-dmins of the molennles of the germphatim of the other purent, mull with the constant interehange which ne conviler the essence of the life provess, some of these will be ineorprorated intu the ring und others will be east ont completely. There will he a himl of contest between the parental hiophores, nuel as a rowilt an re-armugement, so that the characters represented by silewhans with strong allinities will appuar in the oflispring, and churacters repremed bey side-chains with weak alfinities will be cast ont and will mit appar, nur even exist in the new germplasm. Withent increasing the mmber of individhal nulecules, this semi-chemienl process allows a con-tint mumber of hiophores to hear propertios of many generations.
If then one emsiders a seheme swh as that afforded by Fig. 14 it will be seen that in the prowess of reluction muld rgone by their chromosomes the mature onieste and spermatozoin each medergo a proness of casting out of chromosomes derived uriginally from one or uther gramiparent. As the same order of chromosomes is not cast wirt in each owim and spermatezooin, the data obtanined from Mendelian "xperiments show us that the castine pet process evidently in each cance insolves the biophorm derived from one or other of the $\frac{r}{}$.adpirents. With promisemons mating of orin and spermatozo, $2: 16$ athene can give us the Ilendelian formula.
We think sueh an explanation suffices to sluw how hereditary charanters of many generations may be eonseyed in in small number of complex molectles; how these molecules niay be altered (being proteidugenoms molecules) bey amphimixis (thnt is, mughing with other molecones) and low enciromnent (that is, by interchange with the hirromeding eytoplasin): how they may lose entirely certain sidechains, and thereby certain properties, even if these are hereditary.
The Inheritance of Acquired Characters.- Are acquired characters transmitted? is a long-argued question. Contrary to the dominant teaching of the morphologists we think that some, hint not all, may lie. It has been indicated before that we pieture the biophoric molecule as in interaction with the cytoplasm that surrounds it, giving up to it anul taking from it ioms, and this in its turn interacting with the -urrounding medium, the himph. The biophoric molecule weaves into it ulf, thus, sone flavor of its surroundings, and can transmit whatever it hars. It will be evident that there are some kinds of acquirement that (ein he transmittel, and some that cannot. The so-called "maternal impression," by which a pregnant woman seeing or imagining something which mentally impresses her, is sulpoosed to transmit it to the ulf:pring she is carrying, is a myth. "Use acquirements" are probably wot transmitted; by this we mean that the blacksmith's arm is not reproluced in an musually large bieeps in his son. We have not as vet definite evidence that aequired immunity can be transmitted, alt hough the offspring can obtain immunity during intra-uterine growth; t" prove that immunity cull be transmitted, it would he necessary to
have only the male parent immmized, and to find the progeny so immunized. It might almost be predicted that immunity would be transmitted aceording to the Mendelian law, some of the progeny being immme, others not. Matilations, loss of limbs, etre, are not transmitted. On the contrary, there is a series of retrogressive changes in the tissues, the result of toxic influence, which does seem to be able to affect the progens. For example, it seems as if the drumkard begets ehildren who are the worse for his hahit; we need scarcely point ont how difficult it is to prove this statisticully, becallese there are so many. factors to consider, such as these: the mother, being somml, may dominate the offspring, and the child be normal; if the child be aboormal, can we say that the father's alcohotism was the prime cause? May. it not be that the fither's alcoholism and the child's weakness are alike expresions of an hereditary taint in previous generations of the father's family? Or, again, may not the child's incapacity be due to the misery and want that so often go with alcoholism in the homes of the peor!" It is not easier in the case of tuberculosis and syphilis; but in all these eases, as well as in prisoning by such chemicals as lead, series of eases do present a high percentage of monstrosities, stillbirths, short-lived, and mentally defective children. While we think that the germ eells of the parent are modified by molifications in the constitution of the parental blood and lymph, we must admit that the germ eclls live a relatively latent existence; that in them metabolism must, for considerable periods, be at a low sta, te of activity, and that this low degree of activity will tend largely, but not entirels, to preserve from change the biophores of the germ cells, became the interchange of the side-chains of the biophore with those of the : y toplasm will mot be very active, and the coviroment will this affert the biophore only 10 a limited extent. That it affeets it even in the slightest degree is sufficient for our contention.

(1I \P'EK II

THE CALSE OF DINGASE
I. the cell, the organ, or the individat, iny deviation from the ni rmat is a pathological comelition.

The normal is the state, customary to a series of indivinals, in which they perform their finctions easily and umeonseionsly, and this eontitntes health; this normal, naturally, will not be fiverl, lont will be a barying state, and will be only arbitrarily separated from the state on which it borders, viz., disease.

The diseased state arises in the individual (or the cell or the organ) either from the parent, in which case it is inherited, or as a result of -mbe influence after the genesis of the individhal, in which case it is acquired. The genesis of the individal is the moment of fecmulation wi the owim; and any pathologieal state that is entered upon alter this, is accuired, unless it be the result of qualities whieh were in the gromplam of one or other parent or which arose be the junction of these. If it he sum a result, the pathologieal condition is an inherited nure, cesen thongh the appearance of the pathological condition be Whared for rears (ans is most often the ease with gont); an example of this, indeed, is "old are," an inherited patholorical condition which the imbividual has potentially possessed all his iife. Ont the other hamd, an aronired pathological condition may arise while the embryo is till but a few weeks old, and this, arising from ant intra-nterine disturbince, is a "congenital" hut not an "inherited" pathological comditimn. In differentiating between inherited and acquired conditions, it i : necesary to date the life of the individnal from his begiming and not from the comparativel: accidental period of his birth, whidh, "ren among mammals, is a varying point of time. Yet since birth is the most important change of enviromment that the individual umberghors, we may distinguish aequired pathologieal eonditions as either

While pathologieal states may be separated, as above, into groups which difler from one another in the erind in which the eansative apont acts, it is necessary to indicate what these cansative agents are, and it is a perfectly sound mothol to consider them as direct and predisposing. Fifty years ago, phesicians knew mang predisposing causes hut few lireet ones; today we are finding ont one direct comse after another (witness the sperifie micrörganisms), and we tend to lose sight of the predisposing or assisting eauses. For example, many
individhals earry in the throat the germ which we commt the direet or exciting cause of pmemmonia; the assisting canse apparently must act before a man! is attacked by pmomia, and this assisting cause is not the same in all cases, and frequently is entirely intangible; we hide our ignorance behind the term "lessened resistance," and although this may be as yet only a name, we mast not fail to keep in mind that assisting, indirect canses exist. It even happens that the same agent may be at one time an exciting canse and at another a predisposing canse; such is cold, which at one time fre a a tissue, and at another, paves the way for the inroad of puemmonia.

Predispositions are thas the result of the presence of assisting canses, or of the absence of preventing properties. When we say that there is in an i..rlividhal a predisposition to tuberenlosis, we mean this. We have in our mind a scries of generations of a family in which cases of tuberculosis arise more frequently than in the sume number of individnals taken at random; in this family we note certain peruliarities of build, of habit of life, of constitution, which we suspect have a relation to this increased tendency to tuberculosis. An individual possessing all these peculiarities may, it is truc, escape tuberculosis, but his chance of escaping it we hold to be less on accomnt of his possessing these peculiarities and the history of increased incidence of tubereulosis that has arisen in eonjunction with them. We say that such a person possesses a diathesis.

INHERITED PATHOLOGICAL STATES

It may he reperated that the results of all the morbid influences which bear noon the foetus in the womb are ancumired; mutilations are never inherited, and the statement may be safely made that infections disease in the parent camot be inherited by the chitd althongh it may be communicated to the child in utero. The eases in which chiklren are born with tubercmonis, syphilis, smallpox, or other such diseases, are cases in which the chihl has contracted the disease while in the mother's womb. These diseases are tramsmitted by some germ, known or yet to be discovered, and to sily that they eould be inherited means that the germ most be in the spermatozoinn or the owm ats a foreign body, for we camot imagine it as heing incorporated with the protoplasin of the spermatozoin or the owm amd retaining its individual power to canse disease; but it is not conceivable that a minute germ cell with a bacilhs or a protozoön inside couk perform the delicate function of fecmatation. As reality shonht we look for good time keeping in the hatter's wateh, which, it will be remembered. was fall of the best butter. It is trie that in minals where there is a large yolk with the egr. the yolk may herome infected ahmost immediately after fertilization, as happens in the tieks that eanse 'lexas fever, amel as is seen in the eggs of experimentally tuberenlous hens; but the haman ormm is
so minute, and so free from yolk that infection of it can searcely happen at su carly a moment; nor if it eonld so happen, would it lessen the trith of the statement that it becomes an example of a pathologieal comblition, acquired, not inherited.

But if we say that sueh diseases as tuberculosis or syphilis are not truly inherited, we must yet admit that children are born with certain stigmata, such as Hutehinson's teeth, which, while not direetly, are iudircetly due to syphilis; thase lesions exist in the child becanse syphilis has existed in the parcut, and may be called if not syphilitic, at least, parasyphilitic lesions. We may: in the same way recognize paratuberculous lesions, such as a thin skin, fine hair, or a weak frame.

Where a parent is constitutionally diseased we may hase the effects of that disense manifested in varions ways, lepending upon the extent of the disease in the onc parent, and the relative aetivity of the germplasm of the other parent:

1. Sterility, no offspring being produced.
2. Imperfect development of offspring, giving rise to (a) intrauterine death, or (b) physical malformation, (c) lowered resistance, of so frequent occurrence as to be called "paraspecific" in its nature.
:3. Imperfect development of offspring, appearing later than the succerding generation.
3. No ipparent effeets.

In interesting possibility is that, whereas undesirable qualities mav. this he handed down to succeding generations, there may also be transmitted the quality of combating a certain disease, so that while "paraspecific" qualities may appear as a result of inheritanee, 'antispecific" characters may also be seen, and the offispring be less liable to a discase becanse the parent has suffered from it.

The Inheritance of Abnormalities Passed D.wn from Previous Generations.-If abormalities ean be transmitted, it will readily be understood that the oftener they appear in a scries of progenitors, the more cercain ther will be to exist in offispring. Without attempting to explain its oriv: 1 abmormality becomes in this way more fixed, more likely to $\cdot \cdots$ iter each appearance; such are polydactylism and hypospadia - in not yet evident if eolor blindness and hemophilia he such a. \because.cal inheritances, but the probably are. To go a step farther, there are nervous imperfcetions that appcar to us merely a) predispositions or tendencies, that are really dependent upon the amatomical lack of certain nerse-cell groups; some of these nervols, imperfections are now classed as instanecs of ablotrophy (Gowers), a promature exhanstion of nerve-cell groups, but this failure in complete function may really have a strietly anatomical, if yet unseen havis.

Diatheses.-While we deny the transmission of infeetious disease he the germplasm, we admit that an attack of infeetion may modify the next germplasm for better or worse, in the direction of giving the ofispring greater proteetion or greater liability. We are unable to
localize this quality, and proball! we shall never molerstand what it is, bat as a resilt of it there is the existene of "racial" diatheses, or, stated otherwise, the albsence of raceial immmities. The Hebrew has a certain racial freedom from tuberenlonis, and a racial liability (t) metabolie disturbaneres surh as dialnetes and, in the female, obesity; the white rat has a racial freedom from anthrix, and many earniworons animals from evil resinlts of septic womds. I man's offipring inlerits from him fualitics which rember it liable to or exempt from a certan disease just as it inherits a likeness of feature. We cannot take two needles and tease out of all oxim the particular piece of protoplasm that possosses these potentialities; but there is something actual in the germplaim, in the relation of one part to another, or in the molecular gromping, that constitutes a real hasis for the "diathesis"; and when we go farther and find that diseasers such as hasteria and epilepsy, which we frefuently name functional disenses, ore inherited, we realize that there may be a chemieal and cellnar basis for the transmission of "nervons diatheses"; but if we canmot time the organie change in the tissues of the diseased individual, it is ent more futile to attempt to find it in the germplasm.

INTRA-UTERINE AND PARTURIENT CAUSES

Morbid Conditions Acquired in the Womb. - Widely varying results acerne from inthences acting nom the embryo or the foens, and althongh the morbid states will be disconsen from the standpoint of (ansis: rather thani remults, it is well to indicate what these results are.

1. Jeath of the embryo, with aboorption or "blighted ovmon" or abortion, the fortus being imperfect : or premature lahor.
ㄹ. Monstrosities.
\therefore Dalformations of excess or of defect.
2. Impaired vitality, with imperfert development, withont gross anatomical change: (it) General infintilism, etc: (b) Sistemicespecially of the nervons sisterm.
3. Cachexia.
4. Infection.
5. 'Trammatism.

On the other hand, if we dassiit the canses that lead to the above results, we than that there are certain influences anding on the embryo, as follows:

1. Phesical and merhanical canses, indmeling injuries.

ㄹ. Malnintrition.
8. Intexications.
4. Infections.

1. Physical and Mechanical Causes.- 13: viole itit shaking, the rggs of certain invertebrates in the fomr- or cight-relled stage mave have the individual cells wholly separated, with the result that each cell may

INTRA-(TERINE AND PARTVRIENT (AISES

give rise to a complete individual, or partly separated with the production of domble or multiple monsters. ('onstant vibration may pronluce abmormatities, presmably he disturbing the relation of the molecoles: onie to another: but we know of 110 parallel fincts in the cals: of the mammalian embryo. We do know, however, that when the ammon i- incomplete there may be unequal presine brought to hear upon the cmbryo, or athesions may form hetween embryo and ammion, promocing malformations; and that oceasionally, the movements of the fortns may result in kz ; of the corl, so that limbs are therebe. anminated. Fiotal fractures oreme without any external trammatism, and are, in such cases, due to abomal fragility of the bones.
2. Malnutrition.- Beyond the simple statement that malmitrition of the mother may canse punt development and weakly constitution of the child we camot go. Definite amatomical defects are probably nut so callsed.
When there is disease of the placenta also, mitritional defects in the fertus are very readily seen, becamse oxygenation of foetal blood in imperfect, and fortal duth may ensme. Even where a monochorial twin pregnaney exists, that is, where there is a eommon chorion and lised placenta, the more vigorons twin may usurp more than its share of the placental circulation mutil funally it drives its blood by anastomosing vessels into the umbilieal artery of its weaker companion, whose heart fails to develop, and whose weak circulation gives rise to odema of its tisumes; the feebler twin may thus he horn acardiac (withont a heart).
\therefore Intoxications.-It has been experimentally proved that poisons, -nch as lead, merenry, arsenie, carbon monoxide, morphine, and aleohol pass throngh the placenta and ean be fomd in the foetal tissmes. In lead prisoming the offepring is frequently idiotie, imbeeile or epileptie; and it has been shown that where the mothers were exposed to lead alsorption, is pregnancies resulted in only 12 healthy children; in :32 pregnaneies where the father alone had been exposed to lead poisoning ouly 3 of the offspring survised their third year. In a large series of alcoholic mothers, it was found that the percentage of abortions, -tillbirths, and children dying hefore the third year, was nearly two and one-half times as great as normal. Where the mother became progressively a vietim to alcohol, the ligh death rate of the later oflspring and the lowerd vitality of the living children became more marked.
4. Infections. When the mother suffers from an infections disease,
the ahsorption of toxims be the child in the womb is often suffieicutly ereat to result in its death, a state of affairs identical with the cases just deseribel. But oceasionally, though not often, the infective agent finds its way into the foetal tissues, and the child is born with the disease which afflieted the mother. With donbtful $c_{\text {. }}$ "s carefully exchnded, there yet remain instanes of the transmission in this way of syphilis (the mother alone being infeeted), tubereulosis, varicella, variola (thongh not vaceinia), measles, scarlatina, erysipelas, rheumatic fever,
tuphoid fever, cholera, epidemie cerehrospinal meningitis, inflemza, relapsing fever, malaria, and pellow ferer. The explanation of these eases is probably that a gross lesion of the barrier between the maternal and fartal eirenlations orecurred, and not that the cansative agent "filtered throngh."

The Effects of Placental Disease upon the Feetus.--The placenta is essentially a part of the fortus, ame is a mass of finger-like projeretions (the villi) of the outer coat of the fortal sae into the uterine watl; the epithelime of these finger-like projections has great phagoertie power, and alnorbs the tissue of the nterns matil earh finger-like proces "imes to lie in a large boon simus of the matermal organ. Fach fine like process contains a vascular lonp and the fatal blowl Howing in this lowp exchanges wit! the maternal blowl, oxydem and other diffusible materiats thromgh the wall of the vilhs.

It is ohvions that these finger-like procesises, with their phagoeretic power tend to weaken the walls of the matermal simses, so that hemorrhage is apt to eremr; in fiact, mormally, hemorrhages do oecor, forming aceessory sates into which new villi make their way; with heightencd maternal blool pressure or with materual tissues ill-momrished, extensive hemorrhage mag occur. Such blowl being effused gives no oxygen or mutrition to the fatal blood, and loy its very presence prevents, Wholly or partly, the normal circulation, so that the fretus may perish from asphexia. This is a cause of premature labor and stillhirth. If the hemorrhage be not sufficiently severe to bring this abont, it will, nevertheless, be followed be thrombosis, and finally; by fibrosis of the areas aflected. This will rechece the area availatle for the nutrition of the fortns, which will necessarily be immared. Impaired nutrition of the fortal structures mas be exemplified in disease of the fingerlike processes, the vilh themselves; ther are at times adematous, restie, or they may become partly fibosed, any of which conditions mas , qive rise to pressure upon the vaseular loops, with consequent lessening of the efliciency of the circulation. 'The nutrition and growth of the fartus thes appear to depeni direetly upou the amome of good placental tissue, and the more mmerons the villi, and the more active they are in pharocytie properties, the better will he the mintrition and the greater the growth of the chikl.

Of infections of the placenta the most important is syphitis. In this. there is celhular wergrowth of the willi with adema, and both of these features tend to ineronse the size of the placentat. Thus in syphilities, the placenta maty weigh half as mueh as the chill, although in normal persons its weight is ahont one-fifth. A pmy child, of course, is partly reponsible for this alterel ratio. Maltiple small abscesses are also frequently fomm in the sphilitic placenta, and the co-existence of these with the changes mentioned above is characteristic. To the ere, the phatenta is large, pale, aml hats have vellowish-white fibroid areas. I firther character in syphilis is the lenkueptie infiltration of the umbilical cord.

Hydramnios (excess of ammiotie thuid) often arises in syphilities, 11. 'ongh cardiac defects of the fortus may also camse it ; hyamoios wafficury of ammiotio thaid) is also sometimes a result of syphilis.

It abormally long cord may become kooted, and so obstructed; or it may wind aromad the forths compressing or growing the body or limhs, the compression being associnted with the atrophe conseGuent upou olstructed blood flow; an aboormally short cord may interfore with labor; and, finally, the ammion may be fused to the fortus, giving rise to bands and so interfering with the growth of some part, ur hy ohstructing veins or lymphatios may even canse a localized gibut growth.

The Causes of Pathological States Acquired During Parturition.The causes of these are mechanical, traumatic or infections. Meehanical canses are cither shortness of the cord, preventing descent or producing strangulation, or undue nariowness of the pelvic channel cansing prolonged !abor and the results that arise therefrom. Traumatic causes are the mamal or instrumental aids that may he necessary to complete the !rocess of parturition; such also is the pressure that produces lematoma of the sealp; such the accidents that bring about fractures ur di-locations of hones, or birth palsies or hydrocephalus. The chief infertious canse is the mresence of pathogenic organisms in the genital tract, especially the gonococens, leading to ophthalmia. Finally, improper treatment of the umbilical cord may lead to hemorrhage, local suppuration, or to general bactericmia.

MONSTROSITIES AND ABNORMALITIES

The terms denote grave anatomical departures from the normal, iither general or local, and the term monstrosity is upplied to the more prommured of these. Departures from the anatomical normal consist of variations rither in the direction of excess or of affect, or of altered relative position of parts.
Abnormalities of Excess.-'Ihis may show itseli in cxecss of the inlividhal or in mumerieal excess.

Lulivicilal exeess may be (a) miversal, i. e., giantism; (b) lateral, $1 \because$ Whre one side is larger than the other, as if there had heen unequal din ision when the first two blastomeres were formed; or (c) local, where (1,He member or organ is markedly larger than the standard set by the rest of the borly. Giantism applies to those human individuals who arm more than 200 cm . high, that is, 6 feet $6 \frac{1}{2}$ inches, a height that is :- mally due to the great length of the legs. Giants usually spring from families in which the individuals are of medium height. Iateral Limitisn cannot well be cxtrome. I.ocal giantism may either he true - may he acquired be disturbed mutrition. in which latter case it is , Aten of congenital origin. Thus, localized elephantiasis of a limb or macroglossia or macrodactyly (where a finger is almormally large) may
be due to obstruction of the lymph chamels, alud comedinfut wergrowth of comective tisules. Where, however, there is mot mule macrolactely but duphanation of fingers or a tembeney thereto, it is safe to assime that there hav heren a redmulane of verevative matter at the growing puint. Hypertrichosis (hairine: is) and lipomatosis (general ohesity) are to be explained by a combination of inheritance and metabolie morifications; precority in the development of the musenlar and ge: ve slistrme appars also to be assomiated with aberations in devernpurent of the duethess glands.

Nimmerieal exess: inelules a wite range of almormatities from multiple birthe to partial diphlication of a phalans.

Twins. Twins mais be dichorial (heteroöphal) or monochorial (monoophal). In the former, cach child has its own membranes and placenta, althongh the two plarentas may ultimatels fuse. 'The children mas. or may not be identieal in sex; ther may or may not elosely resemble one another in fact, the obionsly arise from two separate ova fertilizerl at the same perionl. Shombl the dichorial twins be of the same sex, and very murh alike in elaracteristies, it may be that two ova from the same follicle have been fertilized, for multiple ova in a folliele do oreme; there is even oue other possibility, that a single owim after fertilization has divided into two, and that the two halves hecome separately implanted in the uterus. Superfoetation, in which the embreos are of diflerent ages, obvionsly can arise only from owa diseharged ind fertilized at different perionls.

Monochorial twins are rarer than dichorial. Thes hase the same chorion, the same phacenta, are of the same sex, mat if cumally developed, mueh alike. As the chorion is the onter wall of the ovmm, it is evident that here the same ormun has given rise to two intividuals. Such twins mase even have identioal abmormalities, sheh in spina bifida or heporparlias or right-sided hydrocele. Experiment upon insertebrates and even mon the lower vertebrates has demonstrated the possihility of oue ovem giving rise to two individhals, and the eggs in development may even be shaken apart, when dwarfed individuals arise from the fractions of the origimal batividual. The posibibities to which monochorial twins are due are, then, these: (1) the two melei of one ovom may be separately fertilized, or (2) a fertilized ovimume may break in two at a very early stage, as for example, when it is twocelled, or (3) a ckavage of the germianal area at a comparatively late perionl may give rise to two primitive streaks mon the one germinal areil.

C'uryual Tueins.- 'This cowers a munber of eases in which a common feanre is that one of the twins is normally formed; the other mas be a lump of flesh, with smaller warts projections on it (unt molike a potato with small supermmerary tubers mon it), whose only claim to recognition is that the mombinal cord is attanched to it ; this is the foetus amorphus. sometimes there is a fair indiention of the lower limbs hint no head (fæetus acephalus), or the fuetns mine consist of little

Intre than the chernh-like head (fortus acormus): the absenee of al heart in many of these chasses leads to their being called aterdiae in additinn to the other distinctive names. In some cases, like fortus acormus, the fatus hi directly nen the phacenta without the intervention of aury mbilical eord.

The ramse of these acardian monstrosities is that the eireulation in the fietus concerned is a reversed ome, beemse the stronger of the tuins in time comes to be driving the hlond throngh both; the allantoic and placental vescels berome freed, anastomosed, and the stronger

Fig. 15

Ilarmand's sehema of mode of developument of acardiae monsters. In .I the chorion ch is alreads i. edopesl: the rolk sac has divided into two unequal halves, d^{1} and d^{2}, in ronseguence of which the whe tubleo el reweives through the solk veswels more abundant nourishment than does the of ler
 Hintote artery of the smaller embryo nutatomoses with it. R, later ktuge; the allantoic vessele of "altp the whele of the chorion. the sumaller combryogaing its blood entirely through the anastomonis at allantoic urtery with that of e^{\prime}, and this, therefore, in the reverse dirention to the mormal eurrent and n^{*} indicate the amniotie sases of the embryos.
rimin drivers blood progressively into more and more of the anastomosis. finally, into the weaker embryos mmbitical artery and aorta; henee. it is distributed in the branches and nourishes the tismes of the weaker cmbren: it may be sufficient to mourish a part muls, and the rest of Hu whaker embryos frame umdergoes aphasian and atrophy: the heart of the weaker embryo by arrested action, ineomplete artivity, and robativel impared nourishment faits to develop, but in its losing batte, it yet lenes as its own province the head end of the embero. and it nourishes this so bally, that the cephalie end is more prone to he maldeveloped than the candal end-foetus acardiacus anceps.

Triplets and Other Multiple Births.- I'riplets may lee monochorial, or monochorial and dichorial, or even pulyehorial; the roles as to identity of sex and similarity of characteristics which mply to twins, apply also to triplets. Siven children at a hirth is reporteci upon reliahle (?) anthority. \quad !n the cat, the monochorial develoment of five kittens is recorded.

Double Monsters.- There has been for many years mueh disenssion npon the reasoms for diplogenesis, and in a fehl where so many theories exist, we venture to put forwarll batt one, which we term the "growing point" theors. 'This is hased npon our kinwledge of the growth of a

Ihagram of aretioh of the growing point of a plant. A, A, the mpical cells. which continually divide, giving of hackuaral a series of eells: B, C, which cells divide as in B^{\prime}. $B^{\prime \prime}$, to form the cells of the vegutative or cambal layer: ${ }^{\text {diese rells acain, as in } C, ~} \mathrm{C}^{1}$, and $C^{\prime \prime}$, divide at right angles to the former plate th give origin eventually th the functional cells of the stem (or root); D, development of a secondary growing point.
plant. If we comsider that the first cell is divided into two and then four, and each of the four again into :wo, we find that the two poles tend to become separated, one from the other, and each pole is advanced by the edlls that are bilt in behind it. There are in the plant, from an early stage, two primary growing points-the superior forming the stalk and the inferior the root ; the egtire plant arises from one or other of these "points," and the growing point is the most alvanced part of the plant: the plant increases by growth hackward and not forward from the growing puint, whose position is thus fixed at the apex.

The growing point dues not grou forward but is projected forward
lyy the intercalation of the daughter cells behind it, and the daughter cells are nble to divide in a transverse why and give rise to the special tissue eells. Secondary growing points cuin subsequently arise from the daughter cells, but their vegetative function must be exercised now in a direction more or less lateral, and no longer axial. Similarly in mimals there are two "growing points"; the superior growing point is represented in the adult mammal by tissue about the situation of the pituitary body, and the inferior by tissue somewhere in the sacral region. These two points lie beyond the extremities of the chorda dorsalis, an organ whose prominence in the early embryo and whose apparent unimportance in the formed fratus, suggest that its function may be partly the keeping of the growth axially, as a scaffolding might do, in the earliest stages. These two growing points from the very origin of the embryo arc being projected apart, and the suecessive daughter cells given off from these give origin to the different organs of the body, and even form secondary growing points for the limbs.

There is thus a close parallelism to be noted hetween the plant and the animal embryo, nor need this be unduly disturbed by the fact that smmetry in the plant is generally radial, and in the animal lateral, hecause there are numerous exceptions to both rules, and the lateral symmetry is the fundamental one, because cell division is binary.

But therc is a fundamental difference to be observed. Wherens in the plant the primary growing points are active through the whole of existence, in the animal they cease to functionate as such when the amlagen ${ }^{1}$ of the brain and of the rest of the ncrvous system have been leveloped.

If the superior and inferior growing points did not cease their activity, we would have the following state of affairs: the expansions of the neural canal which form the ventricles of the brain would have alrearly formed themselves, and the superior growing point which is situated near the site of the pituitary body would blossom out into a mass of tissie. This may aetually happen. Where is space to be found for it? 'There is none available, and it forces its way through the roof of the mouth to the outside as a large pediculated mass, which is called epignathus. These masses have at times bcen found to contain bone, anil tissucs representative of all three original layers, epi-, meso-, and linpoblast. The faet of limbs actually develon!••e on such a mass lends alditional weight to the supposition that \because is but a continuance of the original superior growing point.

A precisely analogous ease occurs at the lind end of the borly. A mass of tissue sometimes arises behind the rectum, at the extremity of the sacrum, called congenital sacral teratoms. Among roses one sees a similar happening when an imperfect flower stalk and head develop, from the centre of a flower.
We have in our language no word to describe the matrix tissue from which ryans originate, and so are forced to take this word from the German.

Polar Dichotomy (Braurhing of the (rowing Points).-In plants there is a liability for the gromine mante to branch, as when a fir

 superior frowing point, the suparation affecting also the lateral rows of relis Ewern off from th. aferior
 from the two superior growing points affected; IV and 1 whitar resulis of astly and latec amy
 points -anakatididymus; VII, early (complet, dichotemy onvolving beth growing pos sed double monsters, literal fusion; VIII, mesodilymus, the Ere, wing pointa remaining singe ate snries uf celle derived from them on either side undergunn
trex. high up, livides into tuo or three trmass; the ront it the rudish maty similarly fork. In whe plato a division into hamerons stems. is he rule. A plant may th is motergo dichotomy at a perion doring its gronth lemonse it: rowing phonts are always active, hat an
 "1 that in ited time duri when whe Ernming pmints are active. In the went -2. it has heell experimentally sh is 18 + in ? onge as the reg contimbe 10 the "erowing puints, domble monsters (ant In pronliced be partial physual diciving of the egge, -math at may 1. 1.rombet about b: the remenere of a ha tivel aroumd it After the growitg minta mase, that whem the methather:
 dome.

Fien the perion, thort ats it is, ring whel dichotomy nat orn mi be diviled into its early all lit .as ar If the dichotomy ocelirs ris chan-1 that - very cellborilfomtl aperis- ing
 prip: dieres fre it it bow.
is iention of is entire anin al, a fa ari il from the a rior gros ing ponat.
 iwo lisurging printion tha are for I and thas two anlagen will he haid dows and int ro. urgan - rise from each anlage will be the dupl ate of ther that ari-
II. how afer, a relatwely late ot my of of the growing points worrs, + emomg will have for t two growing points to : Arar from me an her l, in I cells, "l ich give rise to a normal ntive ofl 1 ... dichothes can allect only certain parts of p: =

Hinhotom. F- -1per: if te anadidymus and of the inferior : tadidymus; :. moth. anakata thus:

ho: i amimals, although not yet seen in man, that the cells ite projected back from the respective growing points either
fail to unite or beeome separated, thus cansing mesodidymus, whieh might be indicated thus:

Finally, if the cleavage of both growing points huppens very early, two parallel primitice streaks are developed side bey side, giving rise to fusional duplication, thins:

a figure which differs from anakatadiolymus in that the tronk has two complete longitulinal axes and the skelet I parts of two complete trunks.

There follows a large class of double monsters, to which the lastnamed division is the ke, first of all, a complete cleavage has oecurred, and a secombary fusion has been bronght about between the parts of

Apicopolar fusion: disymmetrical Janicfes (Cphahothotaropagus disymontros (Schwalbe's case).
The two secondary front or facial anpects are absolutely similar.
the borly whid are contignoms; the figure last given indieates the "Siamese 'Twins" form, but it will be molerstoon that there are many possible modifieations, as luend to heal, waist to waist, in an axial direction, buttock to buttock, breast to breast, and so on. Sometimes the directions of growth, and interferenee of tissues with one another lead to the suppression of certain organs; interesting as this subject is, it is searcely in plare in this volnme. Possibly the strangest
of these monsters is the janiceps, in which, as one looks at the monster, one sees a rather toad-like figure, with a face, two arms, and two legs; if one walks around it one sees on the other side an exactly similar

Apicopolar fusion at an augle less (or greater) than 180 tlegrees. Nonosyinmetrical Janiceps Cephalothoracopagus monosymmetros) (Vrolik's case): Fig. 21, the perfect secondary front view Hig. 22, the defective secondary front view, with synotia (fusion of ears).
face, two arms, and two legs (Figs. 19 and 20). It is to be noted that such fused monsters may be equal, or unequal, in size, until the incquality becomes so marked that one has its frame "parasitic" npon the other, the so-called teratoid.

Duplication of Organs. - Just as there is cleavage of the axial growing points there may be cleavage, also. of the secondary growing points, which ordinarily give rise to the limbs, so that abmormalities of these arise.

These abmormalities of excess may arise in (1) longitudinal series and (2) lateral series. Exerss in Iongitutinal series is shown by the development of extra vertebra, or extra ribs; extra vericera need not have

Fic. 23

Thoracic parasite (Gastrothorncopagus parasiticus). (Wirtensohn.) extra ribs nor need extra ribs arise from extra vertebre; the ribs evell may show excess in lateral series, when for example, the sternal end is bifid. Exeess in hateral sries is oftenest exemplified by polydactyly, in all grades from a domble uail to all acressory digit ; polymastia (increased number of breasts), and duplication of internal organs are familiar examples of this abmormality. Acressory orgams may exist be true duplication, but more

Cychup proper, with median single orbit and pupil. (After Alifelid.)
often this is due to segregation of eertain cells from the rest of the organ, which develop in some situation often quite remote from the original organ. The spleen and :he alrenal furmish the most frequent examples of this.

Abnormalities of Defect.-Just as giantism is the expression of a general abmormality of excess, dwarfism is that of a general aboormality of defeet. The minimum height of mormal may be given as 4 feet, 11 inehes, helow which there will be a number of indivithals who are dwarfs by the operation of the law of chance. As with giantism, so with dwarfism, imherited disturbances of some of the ductless glands appear to be factors in the prothaction of a certain number of cases.

Defect in Organs or Special Regions.-This may be che to (I) hypoplasia, where an organ is small merely by relative powerty of the amotunt of matrix set apart for that organ; or to (2) polar hypogenesis, which
is the opposite of dichotomy. Just as excess at the growing point is manifested be a dichotomy; and the existence of two growing points,

Fig. 25

A

B

Diagram io illustrate mode of production of polar hypogenesis: A, the nomal development of he abical purtion of the orgatisin, the daughter cells given off by the growing point controlling the levelopment of the apical parts of the body; B. premature exhaustion of the growing point cells, those cuntrolling segments I and $I I$ not being aleveloped. As a consequence, segments $I I I$ meet in the midalle line.
instead of one, so defect at the grawing point mine result in eessation of its growth, a premathre deing out of growth; at the superior pole, if the growing point die out, and the cells behind are eonstantly wishing it forward, and there is no new growth eells in the midalle to keep the lateral parts away from one another, they never leave their state of approximation, and it may thus happen that wo eves may develop as one (cyclops), or evell that uo faeial parts may develop at all.

Similarly, at the inferior pole we mary find a series of defeets, whieh in its simplest form in seen as defect or absence of genitalia, and ill its more extreme grades, fusion of the lower limbs or even the representation of the lower limbs by a fused froit stump (sympus apus). By a similar def in i, lateral growing points, arises syndactyly :ry in of fingers) or reduetion in the number ot wgits.

Fig. 26

Sirenotuelus. (Synipus apus, Förster.)

Local Malformations.-Imperfect Closure of the Dorsal Groove.The nenral eanal originates as a longitudinal depression in the epiblast. the epiblast hing the depression being differentiated into neuroblast, which is the preeursor of the nerve tissue. When the heaped-up elges
of this depression meet one another they enelose the neural canal, as if the banks of a diteh 0 :erhung it more and more until they met over it. At times, this elosure fials, either throughout the whole length or in some part of it. If the iablure to close be at the head, the vault of the skull and the sealp, are absent, and there is exposed congested tissue which appears like a mass of vaseular membranes. This eonstitutes anencephaly, acrania, or hemicephaly. It has been supposed that pressure upon the head by amniotic adhesions at an early period eauses some of these cases; parental infertion in others is the basis for this vieious development. With sueh erinial defect there is often associated a failure in the elosure of the spinal canal proper-the so-called spina bifida. Exencephaly is the condition in which, while the frontal region of the skill may be developed, though reeeding, the imperfect brain hangs out through the loak of the skull. In iniencephaly the oeeipital bone is defieient and the spine bifid, so that part of the brain projeets while the occiput and the sacrum are approximated, the body being bent backward.

When the lamine of vertebre fail to unite the condition is called spina bifida; elinically, the important point in this is to know to what extent the spinal cord is involved in the defeet. Cases of spina bifida may be elassified as follows:

1. Complete Spina Bifida.-Here the groove fails to elose and the superficial layer of nerve tissue is continuons with the skin on each side, lying as a broad plate. If only a small part of the canal be thus open, the condition is compatible with life mutil the canal becomes infeeted or until so mueh fluid is drained away that the ehild dies.
2. Incompiete Spina Bifida.-ilere there is failure of the bony struetures, but the skin covers the protrusion or the gap. This form is elassified as meningocele, myelocele, meningomyelocele, syringomyelocele, and the least serious form known as spina bifida occulta. The definition of these forms may be left with surgieal text-books.

Imperfect Closure of the Anterior Body Surface.-The embryo is at first flat, spread ont over the surface of the ovinn, and with time the edges curve in to meet, forming the borly eavity. For some time this elosure does not take place and the viseera actually protrude, as does the allantois. The mion ultimately may he incomplete, and aceording to the region in which failure oceurs, we have:

1. Sternal Fissure.-If the defeet of elosure be complete the thoracic viscera protrude; if the lungs do so, they eannot expand, and birth is death. If the heart alone be left exposed, ectopia cordis results.
2. Abdominal Fissurc.-This canses eventration, the protrusion of the viscera.
3. IIernia of the Umbilical Cord.-An incomplete elosure of the wall at the umbilieus may result in the proximal part of the cord being enlarged to receive a portion of the viscera. A condition not unlike this arises when the omphalomescuteric duct, which originally conneets the gut and the yolk sac, remains open.
4. Vesicogenital Fissure.-The allantois develops from the hind gut and runs through the umbilical region; the part ncarest the urogenital simus widens into the bladder, and the part distal to this closes, and extends as a cord (urachus) to the umbilicus. The urachus may fail to close, and may remain as a tube; the bladder may fail to close, constituting ectopia vesica. Associated or not with this, the mrethra muy fail to close, constituting epispadias.

Fio. 27

Development of the face of the human embryo (His): A, embryo of about twenty-nine days. The nasufrontal plate differentiating into processus globulares, tow ard which the maxillary processes of first visceral arch are exteading; B, embryo of about thirty-four days; the glohular, lateral frontal. and maxilary processes are in appesition; the primitive opening is now better defined; C, enibryo of about the eighth week: immediate boundaries of mouth are more definite and the nasal orifica ure partly formed, external ear appearing, D, embryo at and of second month. (Heisler.)

Imperfect Closure of the Facial Clefts.-The accompanying diagram will remind the reader of the different fusions that occur, with obliteration of clefts, when the face is formed. When the fusion of these 1pposing surfaces is inhibited totally or in part, we have produced the features of an earlier developmental stage. Of such failures, harelip in
its varions degrees, with the acempanying palatal malformations, is the whe of most clinical interest. In its simplest form, harelip affects only one side of the rpprer lip; a severer form is that in which, in addition, there is a lack of mion hetwern the maxillary process and the intermaxillary bone extemding into the hard or the hard and soft palate - cleft palate or this may oerour on both sides domble clift pulate; or the intermaxillar: home may be wanting median cleft palate; or e eernally, the ekft uny extend along the side of the nose to the orbit.

Imperfect Closure of the Branchial Clefts. In the eabryo the second and lower branchial defts pass from the outside into what ultimately will be the pharyan. If one of these do not dose at all, a complete fistula remains; if it chase at the end, a simus is made, and if it chase at both ends a erst; if the erst be formed from the part of the eleft nearer the skin, its epithelial lining is squamons, if from the phare geal end, columar and ren eiliated. The Eustachian tube is the first of these elefts, of which there are five; the seeond is the one whieh oftenest persists.

Rectal Malformations.- The embryonic chata in the course of development is transformed into cretain external genitalia and the rectum. If the scparation between the genital and the rectal parts do not oceur, we have the combition of persistent cloaca; if it oceur ouly partially; a fistula is formed, the "avity of the reetum commonieating with some part of the genito-mrinary tract, such as the vagina, the bladder or the urethra. Also, the septum between the hind git and the outside may not be broken down, and the condition of atresia ani or imperforate amis may result. There are varions grades of this, aceording to the distance from the surface at which the end of the hind-gut lies.

Hermaphroditism. - 'The matrix tissue (aulaye) of the genitalia remains the same in the two sexes up to the fifth week, and alike structures become transformed into the apparently widely differing organs fombl in the two sexes. Each part of the male tract has thus an analogue in the femake. It is not so strange that eases of blended sex shonk oceme, as that they shond oceur so rarels.

True Ilermaphroditism.-This is very rare; there may be an ovar:on one side and a testis on the other, or both on one side, and either or neither on the other, st finally, both on each side. The secondary sexmal characters (the conformation of the borle and its parts) are mixed.

False Ilermaphroditism.--Ihis is far more common than the former. In it the genitalia are actally of one or the other type, but the seeondary characters are those of the sex other than that to whieh the genitalia helong. The make individual with fominine charateristies is the more common of these (pseudohermaphrodismus masculinus).

POST-NATAL ACQUIREMENT OF DISEASE

Classification of Causes.-The canses of disease acepuired after birth are neressarily extermal. The enviromment may be altered so as to
(anse disease, or injurions substances, living or dead, may be introduced into the system. The agents which thus proluce disease are:

1. Mechanical-iuducing "tramma."
2. Physical-under which can be inehoded:
(II) Alterations in the pressure of the atmosphere, inehaling both dimimution and increase.
(b) Alterations in temperature, local and general, inchuling both heightened and lowered temperature.
(r) Effects of elcetrieity, both atmospherie and indmeed.
(d) Effects of light and of other forms of radiant energy:
(r) Eiffects of soil and climate.
(f) Sociological effeets, habitation. clothing, dwelling, ocempation, and other envirommental comditions.
3. Chemical Causes-muler which, besides (a) the gross effects of raustic and other agents upon the tissues, we shoukd indude (b) the main effeets of vitiation of the atmosphere by varions gases, and (c) the main deleterious effects of improper food, as again, to some extent, the deleterions effeets of certain oceupations.
4. Parasitic-muler which heading are to be included the deleterions uffects of:
(a) Minute vegotable parasites-bacteria and fungi.
(b) Minnte amimal parasites-sporozoa, amobe, etc.
(r) The larger animal parasites, inchuling worms (cestodes, trematorkes, nematodes) and arthropods (arachnids and inseets).

As one reads the foregoing table, he will be conseions that many of the agents mentioned are things not in themselves hurtfin; some are even therapentic agents of definite value; it depends upon the degree with which a physieal or chemical agent ailects the tissues, whether the result will be physiological or pathological.

Mechanical Causes of Disease.-Mcehanical caluses of disease are:
I. Coneussion.
2. Pmetnre, with which may be inchuled the aflects of projectiles muder high velocity:
3. Scetion.
4. Contusion, with which may be inchuled lacerations and tearing.
5. Compression.
(6. Distension.
7. Atmospherie pressure.

1. Concussion.-'This is the effect proluced upon a soft, fluid or vemifluid horly by the momentary application of force; familiar examples are blows upon the brain, or upon hollow viscera with gaseous or fhuid contents, such as the long, the bladder, or the stomach. The brain in a soft substance lying in a bath of fhid; if a blow of sufficient foree he struek upon the skull, without fracturing it, the brain may be damaged by being propelled against the opposite side of the skull, masmuch as, being denser than the fluid in which it hes, it takes more momentum form the applied blow that does the surrounding medim.

The small hemorrhages thut uppear in the brain are not necessarily the result of a dircet blow, but of the shaking-asmender action npplied by the brain being suddenly brought up against mun nuiceling surface. A similar result is seen in the case of soft tissues bordering npon a cavity containing fluid or air; a blow may be struck npon the thorax, und imparted to the hung; the part of the huy nearest is set in motion nway from the blow, and the air within not being set in motion with as much velucity, the conflict of two degrees of force acting upon the tissue teurs it. Thus is to be explained the rupture of a full viscus such as the urinary or gall-bladder or the intestine. Inseparable from the conception of concussion is the idea of molecular, if not visible, change in: the tissiles affected.
2. Puncture.-A stal) womd is a familiar example. The damage may be wronght in varions ways; there is a certain destruction of tissue in the path of the blade; there muy be grent dumage done by the weapon piercing a large artery or un important nerve trunk; bacterin may be introlnced into the tissnes bey the instrument, or from a hollow viscus opened nip, or along the track of the blate from the air. The puncture of tissues ly projectiles is to be considered here; generally speaking, the ligher the velocity the more a bullet wound upproximates to a "pmucture"; with low velocity the charaeter of the wound is more of the nature of a contusion. It will be obvious to the reader that in discussing these meellanical causes, one can rarely adduce examples that are purely of one character; with a punctured wound there may be contusion, and uearby tissues may he compressed against other more solid tissues; and with projectile wounds there will often be concussion.
3. Section.-This consists in the cutting asumder of tissues by an elged instrument, and as it occurs surgically, entails a mininum of eflect upon tissnes other than those cells actually injuren.
4. Contusion.-Diflering from the condition of concussion, we have here the effee of force applied directly to the tissue eoncerned, forcing cells asmuder from cells. The disintegration may be slight as in contusion, where, it is to be noted, the resultiny hemorrhage is mainly responsible for the visible signs; or more sevic, as in laceration, or scparation of one bart from the rest may be brought about. In this form of lesion, also, the injury may afford opportunity for the introduction of bacteria from withont or from within.
5. Compression.-Compression tends to affect rather the fluid part of the tissues than the solid, and we this search for its effects in changes in the nutrition of the part; compression made by the weight of the body when blood force is low may so empty the capillaries that the tissues are ill-nomrished, and a bedsore is prodincel. In the part hevond a tight hanlage, the stagnation of the body fluids may indnce necrosis, and the tissucs actually compressed are even more liable to suffer. The effect of the gradual pressure exerted by tumors upon neighboring organs causing poor nutrition in them is well known.
6. Distention.-The principle here is the same as in the last case; a familiar example is the destruction of renal tissue in hydronephrosis, where the increasing urine acts as the clistending force, until the kidney becomes a large thin-walled cyst.
7. Atmospheric Pressure.-Differences in the tension of gases in atmospheric air bring about changes in the tension of gases in the hood and the tissues. If the atmosphere be much rarefied, the amount of oxygen taken up is so reluced that asphyxia supervenes. Where the atmospheric prescure is greatly increased, as in caissons, there is a greatly increased amount of air taken up. As in a solla-water bottle the greater the atmospheric pressure to which a fluid is subjected the greater the amount of gas that can become dissolved in it. Renove the cork and so remove the pressure and the excess gas becomes liberaterl. This increased absorption at the moment does no special harm, but when the subject is expesed to irdinary atmospheric pressure, much of the nitrogen so taken up is suddenly liberated in the form of discrete bubles which may mechanically interfere with the circulation in the capillaries. The oxygen, of the air, it may be added, has become fixed in the tissues.

Physical Causes of Disease.-Temperature.-By reasen of a very responsive heat-regulating apparatus, the human body can stand exposure to great extremes of temperature, from $100^{\circ} \mathrm{F}$. below freezing point to $50^{\circ} \mathrm{F}$. above the boiling point of water. Protoplasm will freeze at the one, and coagulate at the other; but the body is protected in the case of cold by a layer of warmed air, and in the case of heat by a laver of air cooled by the evaporation of moisture given off on the surface. If the air be so moist that this evaporation cannot occur, the high temperature at once becomes effective upon the body cells and, therefore, dangerous. The dangerous effects of heat and eold are manifesterl in local change, which may be called primary, and in certain subsidiary changes affecting the whole system which are secondary. These secondary changes are remarkably similar in the case of heat and cold. Following the initial paralysis of the vessels which are the heat-regnlatilig mechanism, the vitality of the cells is arrested, and they may die, or at the best may throw into the circulation delcterious materials; in addition the sensory nerves of the part are profomdlie irritated.

It $:$ s thus evident that while heat or cold may cause denth, yet short
this the effects are prinary and secondary; while the disease-causing a "nt operates, the prinary effects are produced, and after it ceases to operate, we have yet to reckon with a train of secondary effects. Here exists the difference between physical and parasitic causes of disease; in the latter we have the continued effect of a constantly present agent, while in the former, we have to meet the after-effects of a temporarily applied disease-causing agent.

Light and Radiant Energy. - The most definite evidence that radiant energy can cause disease is connected with cases where the tissues are
athered bey the r-rars and radimm cmanations. It has been estimated that if ant "mene of rallinn conld he collereted in ome mass, merely to pass within a certain distatee of it womld canse death, and this, of course, withont there being any sonsation of heat. Such action we do not pet moderstand. Whore smiight appears to canse conjunctivitis and inflammation of the skin, it is combined with ult rasioket and other spectral rays, and these last are perhaps the more potent agent of the two. In sunstroke, there along with radiant heat, are berond question the active callse; in heatstroke, the rass are mot a factor, but this is the to accomulation of boly heat in eonditions where proper loses of heat from the borly is prewented.

The absence of light cores not seem to be an artive factor in the cansation of disease, athongh its combination with certain frequent aceompansing conditions, such as impure air, lo in time probluce deketerions etfects upon the homan system.

Electricity.-It is as yet diflicult to give much definite information about the affert of clectricity upon the tissmes. The effeets of the constant cmrrent are ditlerent from those of the alternate; it seems that the former probheres hess nervons and muscular excitation than the latter. 'The constant comrent of considerable strength can produce decomposition of the tissues in the neighborhood of the negative pole, apparently just as it prohnees electrolssis of water and other flumbs. Alternating currents of high potential, the orlinary "lise" wire of commerere, appear to camse death by inhibition of respiration. It is a neressary thing for every homse physician to know that in case of accident from chectricity the worst thing that can happen to the patient is that he shonk be carried off to a hospital. Artificial respiration shomld be begmen at onere mud persisted in; the losis of time involsed in moving the patient may be latal. It is to be remembered that altermating currents of extremely high rapidity and ver: high potential can be passed through the human booly without injury, athough less rapidty altornating currents canse death.

Chemical Causes.-Linder this heading are included all those canses in which a direct molecular interaction ocenrs between the noxa and the cells of the organism.

This interaction may he of the nature of a gross effeet, as in the action of a canstic, or of a more indirect effect by which the cells, althongh not destroyal, have their fumetions disturbed. Any solid, liquid or gas which is rapable of being incorporated with the borls: fluids, and therehy coming to act deleterionsly upon the eell substance, masy give rise to morhid changes, and thus be a poison.

Poisons. Whe haw just atated that chemical substances that act deleterionsty may do - of cither as canstic, that is, as substanees that injure and kill refls by direct contact with them, or as intoxieants, that is, as abstances that act harmatily urom ceif by reasom of being incorporated with boty Huids and exerting their influence upon cells any where in the borly, even at a distanee from the point of first contact.

Intoxication is the prowess her which surh impect act: 11 is broaght abont. The term poison is so wide. that it imeluces not muly abliatamers that we ronsider moxions in their very matmere, bit also smbintames in themardes harmless which bey reason of their anmont can interfere with the orelerly and proper performanere of the daties of the cell. A poison is not only that which induees molecolar disturbance ane disorelerly. chemical change in the erell, but also that which interferes with or inhibits the normal molecular changes in the protoplasm. An example of this poisonoms ation ber a smbtance in itself 110 poison, is foume in the case of water, which is essential to existenere, and constitutes Fil per rent. of the borly wright; if it be introduced into the tissues above a certain amome (60 e.e. per kilo of horly weight) it may kill. 'This will indicate how wide a meaning we bestow upon the term puisom.

Poisons may be at once divided into two gronps, exogenous, arising outside the system, and endogenous, arising within. In defining what is exogemons and what is endogenons, we must he carchil; foom material in the alinentary canal has not yet beeome a part of the organiom, and is as yet external to the lining epithelium of the borly; yet many wrongly speak of the absorption of decomposition pronlucts of it as rumbintmercation. ${ }^{1}$ as if sheh poisons were endogenous instem of being. as they are, exogemons. The strict and useful definition of the two terms inust be hell to be: embogenous poisons are substances netually derived from the cells; exogenous those set up by substanees foreign to the cells. This latter will inelude evell the products of beteria in the tissines.
'The intoxieations then may be grouperl as fullows:

1. Exogenous Intoxications.

1. Ton-parasitie.-Intoxications due to the aetions of poisoms not produred in association with the organism, which gain an entrance into the sistem through the skin, digestive, respiratory, or urinary trists.
‥ P'arasitir.-(a) P'arasitic proper, she to the introduction into, and growth within the tissues of parasites of varions orders, animal and vegetable, which, growing, give rise to toxie sulb-tances.
(b) Saprophytic, due to the growth of parasite: of various orders on one or other surface eomumacating with the exterior of the organ-i-m, the products of growth beeoming absorlied and diflused into the tisules.
II. Endogenous Intoxications.-Of pure tepe; anto-intoxications proper.
2. Internal serretory, intoxicntions due to altered internal seeretions III the part of the body cells affecting (a) the secretory cells and tissues themselves, and (b) the other tissues of the orgunism, through diffusion of the altered produets of cell activity.
3. Disimterratier. dhe to the abourption of the premlucts of disintrgration of dead colls (re.!., in hurns, intermal hemorrhiges, ete:.).
4. Metubulir, the results of mpaired metabolism and imperfert excretion.

EXOGENOUS INTOXICATIONS-NON-PARASITIC

Foreign -uhstinnes entering the boty or abomed by it aet (1) locally, at the puint of npplication, and (i) in ngeneral why: Wherever sufficient time elapses, there is a loenl change, degenerntive or neerotie; this muy he followed loy inflammatory reaction. If a poison like hydrocsmair neid be taken in sufficient amome, the general effects ure produced so quiekly that the local effects have no time to assert themselves.

Poisons may bring about their general effects in the following whys:

1. By arrest of cell activity.
2. By inerease of cell netivity, followed by exhunstion and paralysis of function.
3. By increase of coll a rivity, followed hy disintegration.

To classify the poisoms imder such groups would he merely to cntulogne them; it is hetter to realize that toxie agents have selective effects upon different tissues, mud in connection with each sort of tissue to attempt to armuge the poisons with some reference to the modes of action stated ahove.

Poisons Acting upon the Nervous System.- The nervous system, on areome of its delieate organization, is liable to be relatively often aflected he poisons, and we find, therefore, great differences aceording to the intensity of the dose. By reason, too, of the high degree of development of the nervons sustem in man, we find that animal experimentation often fails to give us correct madogies, for severe cerehral distarbance (Idelirimu) may be ereated in man hy substances that have little or no effeet on lower animals.

Poisons acting upon the nervons system may be grouped as follows:

1. Those "ansing arrest of eell activity: (a) Immediate, e. g., hyidroceanie acid; (b) not immediate, f. g., hypnoties and sedatives.
2. Those causing inerease of cell activity followed by dimimation of function, c. 9. . alcohol, aldehedes, atropine, etc.
3. Those eansing increase of activity, followed by exhaustion and at times disimtegration; $f . g$., strychnine, tetams and rabies toxins.
It is notahle, also, that many of these poisons select particular parts of the neroons system as the sites of their greatest activity. Areas so selected are:
4. Higher eerebral centres: Hypmoties, carbon dioxide.
5. The medulla: Pierotosin, anomorphine.
6. The spinal cord: Stryehnine, brucine, quinine, thebaine, sults of potassium and ammonimm.
7. l'eriphural merves: lither, chloroform, carbon dioxide (altoring (hectromobility), diphtheria loxin, noml, possibly, lema and alcohol.
8. . Xerse termimations: ('urare, comaine, veratrine, nitotine.

Confronted be the question how this selective ateon is brought abont, we may say that it is sugestive that the lophoties, as a group, are sobuble in fats ind lipoid substances, and the nbmalane of ereberoidens, cephalins, ete. (which nre lipoils) in the nervons sustem, seroms to anconnt for the momit tuken up he this partienker class of tisule.

Poisons Acting on the Muscular System.-Apart from the effocts problacerl upon strinted muside be the merlintion of the nerves, there art reman some poisoms whichappear to an" directly non the muscle wefl; these cither excite increased contraetion or imbe the contrace fion more feeble. Of the former, the irritative eximples are quinine, ratleine, veratrine (small doses), hyoxanthine, and creatine, as well as the toxilns of the Bacillns coli. Of inhibitive poisons may he mentimed the potassimu salts. the alknline earths, and eopper.
It is supposed, toos, that certain prisons produee definite efferts: npon motriated monsele, and it $: 3$ with this iden that atropine is administreel to excite peristusis in (ases of somalled "paralutio distension .1" the intestimes" arenring in peritonitis; morphine appars to arrest peristalsis he a direct action, while ergot is considered to stimalate matriped musele to contract. Adrenalia and barime chloride seem to anlise the mimsele of the arterioles to eontratt. 'Ihese points still require complete verificntion.
Poisons Acting upon the Blood Corpuscies. -The blowl eorpusedes are protecterl from mo ingurions substances bey alteration that
 directly into the bond stram these are eflertive.

1. Hemolytics (Hemochasties).-The destruction -' Bam hoorl

 b, thawing. Some drugs, smeh as saponin, abrin, and rietin are effective, and mane bacterial toxins and animal vemms. Nso dangerons to the buly, thongh without there necessarily being hemolssis, are those table emblinations of hemoghobin with carbon monoxide. carbon dioxide, cyangen, and the cyantes which present the proper absorption of oxygen and carbon dioxile in the normal proeess of sespiration, and st eanse miphysia.
2. Leukolytics.-There are some poisons whieh can canse destruetion of white hool corpusctes, hut one must be careful to note that Wonkopenia (lessened number of leukocytes in the cireulating hood) : w wot be due to destruction of leukoretes so much as to altered distraidtion in the berly at large. P'ancreatin can, however, enuse their destru. iom, as also can the presenee of hile salts in excess. Where the destruction (ail be recognized, it is quickly followed hy the appearance of a leuko"fonsis, which is, again, at first mot so much due to regeneration as to redistribution.

Poisons Acting en the Organs of Circulation.-Poisons may affect (1) the heart, or (2) the ressels, particularly the arterioles, or (3) the nerve eentres that control the cardiac meehanism; it is extremely diffieult for the observer to know which of these is being aeted up su the most, because their relationship in fimetion is so intimate.

Poisons Acting upon the Heart.-It has been tetermined, however, that certain substances such as digitalin, digitalein, digitoxin, strophanthin, and the barium salts cause stopprage of the heart in systole, whereas arsenic, antimony, potash, chloroform, and alcohol in sufficient doses can cause stoppage in diastole-which last is perhaps the reason for the occurrence of acnte dilatatio. of the heart in drunkards. The heart whose ventricle stops in diastole fails not because of inhibition, bint beeause of paralysis of the accelerator nervous inechanism.
Poisons Acting upon the Vessels.-These cause (1) contraction or (2) dilatation, by direct action. Ergot and ergotin cause contraction of the arterioles b: direct action, apart from their inflnence upon the heart. Adrenin and barium ehloride do the same. Dilatation, on the other hand, is directly prodnced by the nitrites, chloral, quinine, and atropinc (shath doses). It is a strange fact that some of the drngs mentioned have a selective power upon the vessels of certain organs. Quinine acts espectally upon the spleen, digitalein upon the kidneys, amy nitrite npon the superficial facial vessels and upon the respiratory: tract. Alrenin, while it causes the vessels of most organs to contract, when applied to the surfinee of the pancreas canses vasodilatation.

Poisons Acting upon the Digestive System.-It is necessary when examining the efluct of a poison upon the digestive tract to ascertain its effect when introduced into the digestive channel, (a) with the vagi and smpatheties intact, and (b) with the same divided, and also, when introduced smbentanemsly. It will be seen that, by reason of the intricacy of the mechanism, the possibilities of error are great. Apomorphine, to induce emesis, must be injected subeutaneonsly, ipecaeuanha mist be put into the stomach with the vagi intaet. If the vagi are cort, even harge doses are ineffective. Nagnesium sulphate introdaced into the blood or subentanconsly will canse only moderately increased peristalsis; introdnced into the bowel it causes abundant, watery evarnations.

Poisons Acting in the Mouth.- All the poisons whidh catuse inerease or dimimation of salivary seceretion require first to be absorbed, and their action is thes reflex.

Poisons Acting upon the Stomach. Vomiting is a process in which the neroms -rstem is domninant whether the impmes be originated from the modilla or noti the nerve endings in the stomach. There are many irritant puisnns which (an aet me irregular peristalsis, contraction, and relanation of the .tomach watls.
Poisons Acting upon the Intestine.-Diarrhora is to be recognized as a term which may refer to two distinct proresses. These are: (1) the premature disclarge of the eontents of the small intestine without due
ahnorption and modifieation, and (2) the diselarge of excessive secretion from the mueosa of the intestine. The first of these is due to incrased peristalsis Croton oil produces this direetly; rhubarb or seuna injected into the veins will cause it, and aloes when injected, only when there is a free flow of bile. The second proeess, the inerease of secretion, is produced by the saline purgatives.

Actual lesions of the intestinal wall are produced by poisons in two ways: (1) by direct effeet, aml (2) in the process of being climinated into the lowel after being absorbed there or elsewhere. The former are most likely to be situated in the upper part of the traet, and, in the ense of eanstics, at narrow places. The latter, the eliminative lesions, may oeeur in any part of the tube where the secretory struetures are nimerous. Duodenal ulcers, as they are observed iu buris, may be of this nature; the so-called uremie ulcers undoubtedly are. Clerrations and other lesions seen in the colon after the ingestion of corrosive sublimate may be reproduced if the poison be introduced hy other paths, au! thus are definitely due to elimination.

Poisons Acting upon the Liver.-One of the most important, if not thre most important, of the funetions of the liver is to stand between the toxins of the alimentary tract and the borly. By ics site at the licad of the portal system it eomes in eontact with, neutralizes or climinates the toxins that load the portal blood. This it does sometimes at a heary eost to itself. Nor is it only with portal blood that it has to deal, for sulphindigotate of sodium introlnced into the eireulation cintered the bile one minute later, and must have gone in directly by the arterial supply: In the ease of the liver, then, we are dealing with the effeet of toxins directly upon the tissue. The various poisons with which the liver has speeially to deal, and which are, therefore, prone to cmise danage to it, may be grouped as follows:

1. Metals and metallie salts, phosphorus, arsenie, lead, merrary, aml copper. After ingestion, upon analysis, these substaners will he fomel in greater quantity in the liver than elsewhere; and as they arr ixcreted in the bile they are in part again absorbed by the bowel, aml carried once more to the liver.
2. 'The toxic products of aigestion, iudol, skatol, and the toxins frim bacterial growth in the bowel. When these are in exeess, the liver cells camot handle them, and the overplus goes into general circulation, to the detrinent of the borly:
\therefore The toxins of pathogenie baeteria. It is one of the most frequent uf ohervations that the liver suffers in aeute infeetions, either showins donly or more severe degeneration, or even actual rell death fural ur greneral neerosis).
3. The pronlucts of destruction of the red-blood cells (hemolysis). It har- heron fomml that as a consequence of eertain toxemias the liver herumes incapable of dealing with the exeess of blood pigment given to it: :mil although the original toxemia may be partly to blame, the cxcess of pigment itielf appears to take a part in eausing the damage.

Poisons Acting upon the Kidneys. -The general statement just made, that the organ whose duty it is to handle toxims must itself suffer, applies to the kidners as it does to the liver; the kidnees must bear the brunt of the toxic substances in the systemic circulation; certain of the metals mentioned in the case of the liver are equally effective upon the kidners; while eartain other substances, such as cantharidin and uranimm nitrate and the toxin of searlet fever evince a distinet predilection for these organs.

EXOGENOUS INTOXICATIONS-PARASITIC CAUSES

The parasitic canses of disease are: (1) microparasites of vegetable nature; (2) microparasites of anmal nature, and (3) larger animal parasites. Some of the intoxitations so con. sel are from toxins inamfaetured ontside the body, as for example, where the parasite infests the alimentary tract (strictly ontside the body tis: י-s.s), and the toxins mamfatured he it are absorbed. By far the most, however, are intoxientions cansed by parasites living within the tissues.
Bacteria as Causes of Disease.-Bacteria are the most minute forms of wagetable life, some of them too small to be seen by the microsoope; ther secm of miferm consistenee, have no moteus, do not conjugate, but multiply hy fission; some are motile, by means of flagella, and some have a resting stage of distinct character-the spore; aecording to their shape. for purposes of deseription, they are separated into the pherical or bhmtly wal cocci, the rod-ike basilli, and the spirat or carved-in-more-than-mbe-plane spirilla.

Bacteria grow betserol whely separated limits of temperature, and in widely diverse media; of pathogenic bacteria in general it may be said that they grow best at a tomperature noar the holy temperature of the host, and in faintly alkaline media contamug organie matter. Most hacteria grow hest in the presence of free oxygen (aërobes) ; many call exist also in the complete or ahnost eomplete absence of Pree oxygen (facultative anaërobes); some can grow only in the absence of frec oxyuen (obligatory anaërobes), chtaining the necessar! oxygen hy breaking up organic matrerial. Bacteria take their food he absorpthon, and secrete enomes, by means of which they can bring about in carimes whotances the changes neeessary to rember those substances capable of ahsorption. The emomes are of different orders in difierent opecie's, proteolyte (protein splitting), diastatic (carbohedrate-splitting), glycolytic sugar-plitting) and anom; and the distinedive power possessed hy anerom mat at time be changed, so that bacteria in a proted medim, which are capable of forming proteolytic ferment, may, by being grown in a carbohydrate methom, in conrae of time, berome capahe of forming a diatatio forment ; and forms which are inert toward certain sugars may in conra of time become capable of fermenting them. Nost important of all. the pathogenir bacteria produce toxins, mbstances that cerert a prisumus andion umon other living things.

Ilaving in view this power of prodncing toxins, bacteria are divisible inte three gronps:

1. The nom-toxie.
\because. Those ordinarily incapable of multiplying within the tissues, hut grown ontside the body capable of proxhcing toxins which, if absorbed, are injurions. Fiere belong many saprophytic and putrefactive bacteria, which may become locked in wounds and set up irritation there, and may give off for absorption their toxins, withont themselves gating entri to the tissues. Here also belong some of the nurmal inhabitants of the intestine, which, in excess, may give off toxins that are dangerous to the host if absorbed. Some of these last, at tinnes, are converted into members of the following gronp:
2. Bacteria capable of growing in the tissines (and giving off toxins) and there setting up infection. From the foregoing it will be apparent that a baeterial intorication is the condition in which the action of the products only u: bacterial growth is considered; while an infection is that eondition in which in addition to the intoxieation, the bacteria themselves are in the tissues, and are multiplying there.

Toxins.-The term toxin is used somewhat laxly to indicate the poisons which owe their existence to the bacteria; but this does not mean that they are nccessarily manufactured by the bacteria. An "ximple will make clearer this statement. In diphtheria a highly" toxic all-umose is foumd abmudantly in the spleen and other tissues, but ver: little is to be found in the membrane in the throat. Tb membrane is toxic enough, it is true; the mode of happening is, probably, that an enzeme manufactured by the bacilli, and present in the memhrane, diffuses ont and acts upon proted substances, which become comsertel into toxic alhmoses; these it is which constitute the poisons of the disease. This idea we wond emphasize, viz., that in many rases at least, the bacterial prochect is an ename which is not itself the real toxin, bit bey acting on proteid materials produces out of them the artise toxie smbintares. It is only right to saty that this viev is not vet miversally aceepted, but there is inneh reasombleness in it. Like angumes, very small quantities of the primary toxin suffice to produce maximal disturbances; ation is not immediate and is cumulative. The primary toxins, too, are precipitated like enzunes, are thermolabile, are rendered inert hy temperatures of iff to 60°., and they diffuse slowle.
'The discharge of toxin in the active metabolism of some pathogenic frimeria is very small in amount. If cultivated ontside the boly, Howe organisms set free bat little toxie material; bat if the bacterial batiou are broken up. toxin is set free in adequate amount. Such toxin- are evidently truly intracellular, and are directly comparable in intrachllutarengmes that have been discovered in tissue cells. We than divide the pathogenic baeteria into (I) the endotoxde, such urganims as those of tapheid, tuberculosis, cholera, cte., and (2) the actotoxic, under which are included the b. diphtherise, the b. tetani, h. Proceancus, b. hotulinus of meat poisoning, etc.

The Normal Defences of the Organism. -It is necessary to consider the ways in which bacteria gain entrance to the tissne, and the means possessed by the borly of defending itself against them. The human body has a contimons external covering, one purpose of which is to prevent the entrance of organisms; this means not only the skin, but also the hining of every cavity or space that opens directly or indirectly upon the surfaec. The only brak in this continuity of covering in the human body is in the case of the opening of the Fallopian tube to the peritoncum; this has so fine a chamel and is so deeply situated, that it is, to all in:tents and purposes, closed. Yet this orening has proved, even in apparent health, the port of entry for organisms, peritonitis being set up. With this single exception, the human boly is a "elose corporation." On the outside, on the skin, in the mouth, in the upper air passages, in the intestines, in the female genital tract, are combless billions of bacteria. Do thene never succeed in getting past the barriers? A small proportion of them do so constantly, but there are many mechanisms waiting to deal with them, and in health their tenure of existence within is a very hort one.

The mechanisms referred to are these:

1. Surface Washing.-The bacteria on the skin are being constantly removed by washing or by friction, and those in the mouth are washed down by the saliva t. the stomach, where the acid gastrie juice kills the majority of them. The mucus in the mouth, the respiratory tract, the alimentary tract, and the female genital tract, while it eatches baeteria as a flypaper catches flies, offers a physical barrier to their contact with the snrface eells, and is itself by gravity or by peristaltic movenent or by ciliated epithelium apt to be earried away. It is considered by some that mueus, itself, has bactericidal power.
2. Gastric Juice.-The action of the gastric jnice has been mentioned.

The food contains comentess bacteria; yet the duodenal contents at times are almost, if not quite, sterile. It is a common ohservation that most peritoneal infections from perforation of the stomach or the upper part of the intestine are less virulent than from perforation of the ileum or colon, which is doubtless due to the killing of many and the attenuation of other bacteria in the stomach. With diminntion or absence of the hydrochloric acid in the gastric juice this no longer is trie, beeanse the bacteria unkilied in the stomach pass down living to the more alkaline, and, therefore, more snitable medinm in the lower bowel, where their multiplication nay dodamage. In the feres, of course, emormons monbers of bateria are remosed from the bode: As an indication of the extent of bacterial growth in the intestines: it may be said that on an arorage 25 per cent. of the dried feces has been fomm by competent observers to be composed of beterial bodies, the vast majority dead killed it wombl seem in the progressive concentration of the intestinal contents which takes place in the colon. Aecording to Mattill and Hawke the average daily amome of dry

3. Physical Hindrance in the Respiratory Tract.-If air containing dust and other particles impinges upon a moist surface, the solid particles athere to it; the breath that is drawn through the nose, passing through the devious maze of the turbinate bones and reflected hy the pharyngeal surface is very thoroughly purified before it reaches the trachea, and in health the expired air is again relatively free from orgar'ms. It has leen pointed out that the varying caliber of the larynx and trachea induces a spiral motion of the inhaled air, thus bringing ench successive portion of it in contact with the lining mucosa, so additionally ensuring the arrest of solid particles. The paiticles that lodge on the surfaces are either expelled again with the nasal mucus in blowing the nose or by expectoration, or they are swallowed, or, in the case of a small percentage of them, absorbed into the tissues that surround the upper respiratory tract. These partieles are of many sorts-bacteria, dıst, smoke, and so on. Among them there are sure to be many that are a menace to the individual, and it is for the disposal of these, in part, that nature has provided :o harge a mass of lymph tissue in the neighborhood of the upper respiratory tract. Between the level of the roof of the pharynx and the top of the sternum there are very numerous collections of lymph nodes, arying in importance from the toisils to the smallest cervical nodes, all tugether constituting a large amount of tissue. Just as a country phacre most garrisons near the frontier that is most open to attack, the borly has its garrisons of protective lymph nodes around the road hy which the invalers are most likely to come-the upper air passages. Piarticles on the surface are constantly being deported by the mucus anl alisa, in which they lie, heing carried toward the entrance by the cilia of the epitlelium lining the tract.
4. Protection by Leukocytes. - Onl mucous surfaces there are fre'inentl: free leukocytes that have wandered from the blood stream hotwren the superficial cells. These engulf particles of dust, bacteria, retc, ant wanler back with them into the tissucs. Apart from the digwtant or solvent effects of the eytoplasm of the leukocyte upon it captive, the foreign boly is thus imprisoned, and for the time being not capable of doing hurt to the berly. No commonwealth fears very gratl:" "riminals or other enemies, if cach criminal is handcuffed to a policeman. The leukocetes which wander back to the tissues are arrich by the lymph stream to the nearest lymph nole where the intruder, if a bacterium, is killed by the lenkocyte or if the leukocyte lis wrokened by its struggle with the bacterium both are engorged lev one of the large endothelial cells-the macrophages-which line the 1 moh simses. Bucteria are, therefore, constantly finding thei way into the tissues, but under such circumstances do not couse infection. In hulth they are destroyed soon after their cutry.
'This process is going on constantly in the tissues unferlying all the monist surfaces of the body, and in mone to a greater extent than in the intestincs. It is searcely eredible that the absorption of so many
and varions substances from the bowel eavity takes place withont there being inehoded many hacteria; these have to ram "n triple gamotlet before they are frece to do harm-first, the lemph tissume whiell is so ahmelant in the submencosa; seeonct, the mesenterie and retroperitonenl homph motes; and third, the liver itself. Fimmlls, hacteria wheln eseape these mux beome free ia the book, and although we have hitherto said nothing of the bacterieidal property which the bfoot and the boxly fluids ponsess, yet these are of the very first importance.

The impresion is widenpead that the sistemic blood is sterile, but this is probably oils relatively true. Exidence seems to intheate that bacteria enter the boo:l, mit are quickly attemated and killed, whether ther exist for this short time free in the fluids or engulfed he: lenkoeves: the solid internal organs-spleen, kiduev, ete. - have been proved to contain hacteria, hat appreciable growth from them is slow, presmably beenise most of the bacteria in a given organ at the moment at which the animal is killed are in an attenuated state, and probably die in the culture medium, while those deposited there at the latest moment before death are the only ones that nre viable, and ther are in so small umber that appreciable growth in the enlture medinm is delased for a time. This is the reason whe entures made from such organs, of ohserved only for two or three days, are reported as sterile, and in any ease, appear to grow hom sparimgls. As an ilhstration of the protective mechanism of the 1 ,.$\frac{1}{2}$, mat be quoted the experiment that if large quantitios of bacteria, even pathogenic, be injected into the boond stream, a few mimutes later only a few eolonies can be grown from the circalating hood, and after an home probably none at atl. The endothelime of the bood vessels of al'. the organs has been active in removing the basteria, the lemkerest have been engulfing them, and the bactericidal substances of the blool killing them. A few hours later, howewer, the book is again teming with them. This is becanse some attemated, half-killed, or minjured bacteria, tucked away in some corner with insufficiontle powerfal eells opposed to them, have waited their opportmity, have won their local hattle, and multiply, soon flooding the tissmes now exhansted of their protertive foreds. If one uses a homely example, the inroad of the hacteria is like a prairie fire, attacked and heatenont bey anme of fire fighters; some spot left smomblering biles its time, amblazes bip; the fire fighters exhusted be the previons strughle camot eope with it, and it sweps eversthing before it. It is possible to find in mieroseopie sections of the liver dots, simgle, domble, or treble, which are the remains of bacteria, and often whole hacteria themselves. Granting all the foregoing eridence, nevertheless, the heathy tissues are patentially sterile.

Modes of Infection. Since there are many ways by wheh bacteria enter the tissues, it is evident that there are mane ways he which infecetion tan arise. Infection implies not the mere presenee lat the successfal maltiplieation of bacteria in the tisules. The factors that make pomible the latter are these:

1. Traumatic Solution of Continuity of the Surface Layers.- Ilore an ingress is provided for the bacteria. and the damaged tissine is a farorahle gromed for them in which to multiply. 'Ihis lowered vitality of tisure is most important. The result is familiar to everyone who has seren an infected womme. Let us follow the process in a womed of the sin; lying deep down in the layers of the skin, and in hair follicles, is the staphyberocous epidermidis albus--perhaps an attemated form of the orlinary staphelocoecoss, but learling a harmless saprophytic existence. Let a tight suture in a wombl lessen the blook smpply of the mulerlying tissue, this organism, so weakly pathogenic that it ramot live mithin the tissues, has power to grow, to increase its virnlonce and to brak down the tissues already weakened by the tramma of the kinife eut. This is the genesis of "stitch-hole" abscess. Further, the organism which infects the wound need not be a local imhabitant of the tissues; we have pointed ont that there are bacteria of many ort. leading a brief existenee in the circulating blood; one of these in the few moments of life that would, under normal eireumstances, remain to it, may be carried to the damaged area of the womd, where it tinds the tissues in a state, not only not inimical, but even favorable to its growth. Such is the genesis of some wound infections. Everyour who has followed the work of a buse surgeon has seen "aseptic" aperative rases become infected, and die; heart burnings and selfaconsations, and smisicion of the assistant's fingers, and of the instramonts, and of the ligatures have followed, all of which tends to keep an operating staff eternally vigilant. This is a good result following a tragic athair; we wonld not lessen, for an instant, the mental effect of such cases, but we cannot refrain from indicating the method in which such am areident may occur.
\therefore. Alteration of the Surface Discharges and Secretions.-Whell in ? fewer the salivary secretion is lessened, the mouth becomes foul and hateria instead of being swept away remain in situ and multiply; their toxims canse necrosis of the underlying surface epithelinm, and in nlerer resmlts, so that there is now provided a suitable medinm for krowth of the hacteria in the damaged tissue and an entrance into the funly. Similarly in the bowel, if an obstruction occur, the bacteria in the contents above the obstruction multiply, give off increased toxic pronlucts, and ropidly increase in virnlence, an observation that is randily verition by experiment.
\therefore Growth of bacteria and infection in an internal organ with no recognizable solution of continuity of the surface--"Cryptogenic infection."

San ostromelitis of streptofoccic nature, for example, is seen to ariae withont any surface injury or recognizable trauma, or a joint in rhemmatic ferer is aspirated and a cocous is cultivated therefrom. This is clearly a case of eryptogenic infection. Why, then, if bacteria are in the circulating bood, is it not a constant oceurrence? There arr dombtlisis several factors which must be eonenrent, but one of them is that there must be the requisite quantity of infection. Just
as one swallow dors not make a smmer, our harterimm dees mot make an infection. . In orgamism, carrial into the tisimes or the hood strenm by a lukneyte, umbers it be excerdingly virulent, can hardly set up an infection, bownse the tismes, if not the lenkeyte, are able to overcome it. We suppose that a momber of associated ciremmstances are necessary: (1) the presente of a goodly number of hacteria upon some mueons surface; (2) a congestion with many leukocytes passing out and returning with many bacteria; (:3) acemmulation of so many bacteria at one spot that the tissine resistance becomes exhansted, and probable (t) lowered vitality of the tissue at this area before the bacteria were introlued. Infection is thus the outconte of a contest between the bacteria and the tissues, in which the former win.

How Bacteria Enter the Body.-Pathogenic bacteria have different habits of growth; some require the animal body for their nidus, others the human body, and such, if diseharged from the borly, do not multiply, although they may for a long time retain their vitality. It is essential for such bacteria that when discharged From one boxy, they find another in which to grow. They can be carried by direet eontact, or by the air, or tlrongh the medium of fomites (i.e., in garments, in dust, in seales of shed skin), or by the diseharges of one person getting into the water, milk, or food taken by another. Insects, too, may earry the haeteria, but they aet only in a passive way, that is, the bacteria do not aetually undergo any definite eycle of life while in the body of the inseet. There was a time when "contagious" diseases meant something essentially different from "infections" diseases; the distinetion is now a useless noe, since we kiow that it was not the "eontact" that made a contagious disease contagious, but the infection. Infectious is the better term to apply to all these diseases.

The habitat of a bacterium will be of some effeet in determining the portal of entry to the booly; thus (1) organisms floating in the air are likely to be taken up by the respiratory tract, especially the nose, pharynx, or tonsils. (2) duy bacterimm entering the upper respiratory tract mas be entangled in saliva or mueus and swallowed. Bacteria whelt can multiply in water, like the Spirillum eholerae and the Baeillus typhosus, are liable to gain entrance by the intestinal tract in food or drink; similarly, any bacteria whieh, though not able to proliferate in the water or in milk, yet gain entrance to sueh supply, and are ingested before they die, may infect be way of the intestinal traet. (3) The organisms which normally inhabit the skin, and others whose presence on the skin is adrentitious, may he carried into a wound, or an instrument or weapon may itself carry in hacteria, as oceurs, for example, in tetanus following a womd from a dirty, often rusty instrument. liurther, (4) bactoria infesting the genital passiges may be conveyed to the other sex in sexual intercourse, and (5) infection of the placenta may pass to the forens by the umbilical rem. With these various facts it is also necessary to remember (6) that the bacteria may pass the portal of entry and manifest themelves at some point of lowered resistance
in an entirely different jart of the body. Recent observations have -hown that a normal lymph nofer is not a perfect filter and that within a very few minntes after inoculating bacteria into the tissne of the leg these bacteria may be found in the eirculating bood, past the inguinal nonles; if, however, a prehminary inflammation of the lymph nodes ber cansed, the bacteria are wholly arrested, not appearing in the blood. The inflamed node is then a perfect filter by reason of the complete filling of its sinuses by cells.

The Virulence of Bacteris.-The virulence of a bacterimn is measured by the amount and the quality of the toxic sulnstances it liberates either in its growth or in its disintegration, for there are bacteria which herp their toxins shit up in their borlies (emfotoxins), to be set free only: when the body breaks up. These toxic substances-united under the term "toxins"--are the protective substanes of the baeterial boly, comparable to the protective sulstances of the anmal botis. From what has been said previously, it will be inferred that virulence depends upon three variable factors-the quality and the amonnt of toxins and the number of bacteria.

The quality of toxin is specific in a two-fold sense: diflerent species of hacteria produce different toxins, and toxins are active npon some species of animals and not upon others. Regarding the first of these statements, it is true that bacteria of allied species proluce multiple toxins, some of which are common to all the members of that group of allied species; yet others are specific for each member of the group. With reference to the second statenent, it is necessary only to mention the gonococcus which is active for man bint not for the lower animals, and members of the gromp of the hemorrhagie septicemias of various manmals and birds which are withont effect upon man.

Nor are these the only variaticals. It the same organism be isolated from two indiviluals, the virulence of the one strain is never, or hardly "wr, experimentally identical with the virulence of the other. Further, alterations of virulence can readily he produced cxperimentally by " "a-cage" through the bolies of animals susceptible to the bacterimn anincerned. If inoeulation of a pathorenie dose be performed, and if as somin as symptoms of disease present themselves, the boty fluids containing the bacteria be inoculated into a second animal, and so on, the virulence can be heightened in a very short time, so that a much - Inallar doser will cause discase in a much shorter time than was at first the (anse. It has heen occasionally noted that this procedure, while incraning the virulance for the species concerned, lessens the virnlence for certain other species.

In a mamer contrary to the above, there are certain methods at our dixposal by which the virulence of a bacterium can be lessened. Thus, by probiged growth upon media, with transference at long intorvals, the viritence of all pathogenie bacteria is lessened; bacteria "stewing in thor own jaice" rapidly lose virulence. Certain other procedures effect the same end, such as prolonged growth at a tempera-
 to smbight, exposire to small quatities of antiantio substances and inereased atmospherie pressure. It may he broady stated, that for bucteria as for men, within certain limit-, the etrugghe for existenee improves the hreal; if circumstanes he made tow easy the breed eronses to advance; if tow diffienit, it beronnes conferbled.

Other Pathogenic Vegetable Forms. Biolugienlly higher in the seal than the bacteria or schizonycetes, bint of lesser pathogenio importance are smudry hephomeretes, and blastomyertes, simple forms of vegetable life daraterizal, the former gromp be the developmont of long-branching filaments or hypher, the hater by the presence of rommed or oval thements moth harger than corei, multiplying he budding as well as hy spornation. These forms are chosely mometent; thas the organism of bastomseretir dermatitis, a skin affeetion wheh was first obsersed in North Amerien, whell within the tissues, exhihits only the rommed, budting form, athongh when grown in media ontsinte the budy: it devehps distinct hyphac. Intermediate between these and the bacteria proper are the so-eallenl streptothriar, forms muth more mimete than the ordinary hephomseetes, of which the ray fumgus or artinompers mas be takell as type. These are forms wheh, while having the same diameter as the orlimary hacill, molike those bacill, axhibit troe branching and tend under favorable conditions to form "myedimm or felted mass. These, indeed, are vere closely related to the tubercle bacilli and "sigher hacteria" which also meler favorable comblitoms may exhihit true branching. The more highly differentiated are these forms, the less frequently are ther fomed as conses of disease. 'The mouhls, for example, hasr ram more than a superfieial developbent, and that upon the skin or in the pasages communatang with the exterior, experially the reparatory tract, and with rare exceptions their growth is purcly lonal, setting up little general reartion, aml exhibiting little or mo power to form toxins. Among these may be mentimed the organis.nis of ring-worm, fashs, pity riasis, thrmsh, and aspergillosis.
"Yeasts" or hlastmarectes mat he fonnd multiphring within the stomath and urinary hibdter, there showing no tembency to invade the tissumes. It is only in commertinn with the skin and suhentaneons tisume that these a inp a low intractable form of inflammation, though "entually the organism of hastomyectie lermatitis may grow in all the tisanes of the buly. The most serims local and generalized lesions - e set up hembers of the intermediate gromp which canse lesions of a tularembr nature remembling in many respects those imherel hy the wherelve bacillus.

Filtrable Viruses.- In passing we may mote that quite a number of diseasers are mow regarden, where they have not heen surely proved, as being dae the the growth within the tissues of forms so minute that they catmor be seem moler the mierosempe sate as minute specks, which further are so small that they pass through the pores of a Pasteur or Berkefell filter. (i) these diseases we may mention yellow fever,
plomropmemmonin of aittle, vecinin, scarlet fever, and probmble menskes. It is possible that here we deal with ultramieroseropic orgunisms of more than one order. "Ihns, the carriage of cellow fever beyosquitoes suggests that this disease is cansed by an orgmism of protozomm mature. white, on the other haml, recent researches upon the contivation of the urgation of lovine pleuropuemomim indiente that this is allied to the selizom! ertes.

PROTOZOAN PARASITES AS CAUSES OF DISEASE

'Ihere are certain parasites belonging to the division of the protozon which can canse disease in mun; these belong to different orders of protozoa; thos, for example, the entamoba is one of the sareoclinine, the trypanosome of the flagellata, the malaria organism belongs t" the sporozon, und Balantichum eoli to the ciliate infusoria. One is tempted to try to find analogies between the protozom pamsites and the bacteria, bat the development of toxins be the protozon is son slight mod the toxins are of so low in order that it has not vet been possible to develop antitoxins or pussive immonity be experimental mo:ns. Ilere certain possible exceptions mast be noted. There is man no doubt thint the Treponema pallidum (Spirocheta pallida) is the cansative agent in syphilis, a disease exhibiting a well-marked immmity: The bahunce of evidence at the present moment seems to he in favor of regarding this as an animal form, although there are those who hold that it is more nearly allied to the barteria. So also protoma have been described as the causative agents in smallpox and vaceinin, two disorders presenting remarkably well-defined immunity: 'There is, however, increasing consensus of opinion that these disturbances, along with scarlet fever, are induced hembers of the uroup of ultra-microseopic microbes.

We have not yet enough knowledge of protozoan parasites to allow IIs to make general statements about them us a class, and we must he routent to set forth individual points about the most important if these.

Order Sarcodinim.-Entamœba.-I'The Entamoba histolytica is a mutile mass of protoplasm with a nucleus and a contractile vacuole, which in appearance is inlentical with the amoeba that inhabits pond of stagnant water. They are mot, however, the same species. The -ntamorba guins entrance to the colon where it mas set up dssentery; it attacks the imurosa and submucosa, ingests cell debris and red bhool cells, and may exist in great numbers. When it infests the bowel, it-action is aided he pathogenic bacteria, which constitute a secondary. infection. The entamorere are carried to the liser, where they often

[^1]
(ANSI and ISO TEST CHART No. 2)

set up abscesses. In the colon the entancebe are fonnd in a round, encersted state, with the development of spores whiel in turn form new entamolre. It is not known if these develop entirely extracellular, or if they enter into cells for their development, nor io it known that there is a toxin produced by the organism; the remote toxic effects seen in amolbic dysentery may be due to the secondary infection, or to the effects of cell disintegration.

Fia. 28

Schematic life cycle of the Entamaba histolytica: 1, the adult amoeba with nucleus (n) and contractile vacuole (v) : 2, the anae, multiplting by amitotic division; 3, appearance of chromidial granules in cytoplasm, which enlarge and become the spores in 4 : these spores become discharged or liberated (5) and develop ($0,7,8$) into the adult amoba, or (9) under other conditions the amceba passes into an encysted atage. (After E. L. Walker.)

Order Flagellata.-Of these, the trypanosome is the most important type. This is an elongated, spindle-shaped parasite, with an undulating membrane along one side, whieh is cometed at the head end with a refractie grambe, the mieromulens, and beyond the tail end is elongited into a flagellum. There is a meleus, and sometimes a eontractile vacuole; multiplication oceurs by longitudinal division. The dimensions of this protozom may reach 30 or even 50μ, with a breadth of 2 or 3μ; and in freshly drawn blood it may be seen lashing to and fro in the fick amomg the hood eorpuscles like a wombed snake among dry leaves.

Its importanee is great. Civilization might overlook the 30,000 blacks who are estimated as the annual vietims of sleeping sickness in

West and Central Afrien from T. gambiense, but deplores the millions of dollars amsally lost from T. evansi, and T. brucei infecting horses and eattle. The forms of disease so eansed are surra in Assam, India, and the Philippines; n'gana or tse-ise fly disease in S'outheast Afriea; dourine or mal de coit in Algeria and Southern Europe, and in North Ameriea by importation, and mal de Caderas in South Ameriea. The so-ealled Donovan-Leishman bodies found in the enlarged spleen in kala-azar, or dumdum fever of man, have been proved to be a stage of a trypanosome, as is the allied borly found in the sores known varionsly as Delhi boil, Aleppo button, ete.

Fia. 29

Trypanosones (T. gambicnse) from the hlood in slecping sickness. $\times 2000$.
So far as is yet known simple longitndinal fission is the only morle If multiplication; only this mode has heen seen in trypanosomes grown in media, but it is quite possible, even probable, that other stages in the life excle do exist. Without dealing at length with the evidence that already exists in favor of this view, it may be said that in Halteridium, a parasite found in the blood of the owl, a free trypanosome form has been fonnd in the flnid part of the bloond, and an amoboid, mom-flagellate form in the corpuscles. There is evidence that the trypunomes of disease have a minute latent intracellular stage.
These forms of protozon are eonveyed to man and warm-biooderl animals by the bites of insects. T'se-tse fly disease, whieh a quarter of a contury ago investel this insect with all the fatality and mystery
of a mediaval dragon, is conveved by Glossina morsitans, sleeping sickness hy Gle sina palpalis-both flies of the "horse fly" type. These take the trypanosomes into the stomach, whenee they reach the tissues and are discharged with the fluid hbricating the mouth parts into the flesh bitten by the fly. So experimental means have yet demonstrated the presence of toxins, and the srmptoms are ammia, mokerate fever, the existence of arlemas, depression of eerebral astivity and, finally, coma.

Other flagellata-the trichomonas and megastoma-are found in the intestine, but the eases in which the have been proved to be associated with disease are distinetly rare.

Fig. 30

Glossina malpalis ($\times 33$), the carrier of the trypanosome of sleeping sickness.

Order Sporozoa.-These organisms are characteristiea'ly intracelhlar. The parasitc enters an individual cell, arrests its function and canses its drath, the cocle of life of the parasite being such that the spore formation ronghly corresponds with the time of leath and disintegration of the host cell. The spores set free grow into small amorboid forms, which enter other cells and repeat this asexnal process. But a sexual evele also exists, espercally in the process of transmission from host to host, and this sexual evele in carried ont in the bonly of the earrier, whieh is of another species. In malaria, for example, the asexual evele is carried out again and again in the hmman boly; the mosquito (Anopheles) sucks infected blond, and the sevual cerle oceurs in the body of the mosquito, the
sporozoites, the prolucts of the sexual cyele, being introduced into another human host with the proboscis of the mosquito, there to enter once more into a series of asexual evcles. Transmission by insects, thongh the most frequent, is not the only mole of transmission of sporozon, for coccidia enter the digestive traet, and others supposedly w. the respiratory tract.

Hematosporidia.-The parasite of malaria is the type of this suborder, and om knowledge of it has been greatly assisted by the study of allied forms in birds and other animals. The most important facts relating to malaria are these:

1. The disease is transmitted by the Amopheles mosquito, and is embenic or epidemie only where these are.
2. The Anopheles lavis its eggs in still water, and the larva are aquatic; the mosquito does not travel far, save with high winds, and malaria is thus largely eonfined to the neighborhood of swampy or batly drained regions.
3. The Anopheles docs not bite in broad daylight. Infeetion, thercfore, necurs in the evening or at night.
4. The asexual evale of development requires different periods of time for the different species of hematozoan-forty-eight hours for the organison of tertian fever; seventy-two for that of quartan; forty-eight (with irregular variations) for that of the estivo-antumnal type. The peliodic chills and fever comeide with the maturation and sporulation of the parasite, the damage being probably wrought by the liberation of cell debris and pigment rather than by any speceific toxir of the parasite itself.
i.) The cell debris and piginent so liberated are carried to the splcen and there set up the ehanges that lead to the enlargement of that organ.
(i. Drolonged asexual reproduction seems to weaken the parasite, o) that if re-infection does not oecur the disease gradually passes off; young ehildren seem relatively resistant to the disease. Yet it appears that the parasite may lie latent in the tissues for long periods and then become active again; elinieal experience seems to show this "pecially in the case of the estivo-autumnal type.

Other sporozoa are unimportant, so far as the human race is eonwried. But it must be pointed out that forms very like stages in the sporozoan lifereveles have been foum in the cells in vaceinia, smallpus, and searlet fever. The relation of these to the diseases in which they are foum is not yet clear. Pathologists, in general, are doubtful whether they are of protozoan nature. Bodies of a supposedly sporomanl mature have been from time to time demonstrated in the cells of malignant growths, especially eaneer, but the idea most prevalent at present is that these are not sporozon, but that they arise by argeneration of extoplasin or of nuelei.

Order Ciliate Infusoria.-The Balantidium coli is found in the alimentary canal, assoeiated with inflammation of the colon, but its (allsative relation is not, as yet, definitely proved.

Spirochetes.-Great interest has eentred of late upon the spirochetes, organisms eansing European and Afriean relapsing fever, eertain diseases of geese and other hirds (spirillosis), frambossia (or yaws), and syphilis. These organisms are minute, elongated spiral bodies, differing from spirilla proper, morphologically, in the absence of terminal flagella, these heing replaeed by a gradual tapering of both extremities. They are actively motile with a corkserew-like motion. There is still some

Fig. 31

Spiruchetes in liver of congenital syphilis (oil immersion): a, spirochete; b, nucleus of
uneertanty as to their mode of division, there being positive observations that this is longitudinal, but this does not wholly exelude the statement, hy other equally eompetent observers, that transverse division ohtains. Their behavior toward salvarsan is so similar to that of the trypanosomes to wher arsenic eompomids, to that of the piroplasma, the intracellular parasite of Texas fever of eattle, to trypanroth, and the organism of malaria toward guinine, as to weigh down the seale in favor of their protozoan relationships.

metazoal parasites as causes of disease

The parasites of the metazoan order whieh are of importance as ean-ing disease are of the classes of the Platyhelminthes or flat-worms, the Nemathelminthes or round worms, the Insecta and the Arachnida (spiders:).
The motazoan parasites, in general, take their food in a prepared state from their host, so that their digestive system need be only of

PLATE II

Fig．1．－Tertian Malarial Plasniodium．

1．Hevaline furith
\therefore Pixnmenter risne furm
ato di．lighemed furlin
－．Pegmenting firms．
＊．I lazellate furm． melneyte．

9．Nom－lianellate form．Nacro－ E：Bllete．）
13．天egmentimp farm after de

Fig．2．－Quartan Malarial Plasmodium．

1．IT：alitue furm．

－Sagmemting forms after the
 sle．
 metueste．
 gamete．

Fig．3．－Tertian Estivo－autumnal Malarial Plasmodium．

1：and 1 llsalime risti form．

is and ic．Vigtachial furma．
－Vontag intranormerniar cres－ －Cost
1．Se\＆mettith furma．

10．Finuellate furm．Microma－ metorste．
11 in 11．（reacenti，forms．

F19．4．－Quotidian Estivo－autuminal Malarial Plasmodium．

－Empmenting farm．
Sequmeti－ l：tthth emathleta within in

10．11．1：3 ：tul 1．3．Crementic inrlle．
12．I Isaill fortul．
11 Sum－ilagellate forms（Ma－ －rいま：

PLATE II

Fig. 1
Fin: :

2

$$
\begin{aligned}
& \because \\
& \because i 1 \\
& 4
\end{aligned}
$$

$$
\begin{aligned}
& \because \because \\
& \because \because
\end{aligned}
$$

$$
5
$$

7
(
n
$\because n^{n}$
10
$A: 3$

Finis, 3
Fig. 1

$$
4
$$

[^2]the simplest sort; some, as the tape-worm, dispense with an alimentary thaet and feel ly absorption; their organs of locomotion ncel not he complieated; their organs of offence are only such as enable them to penetrate the body of the host to their fool; their organs of defence are such as to protect them from digestion by the boly juices of the host. A certain power to live apart from the host assures the continuance of the species, but this hist is safeguarded best by their enormous reproductive capacity. Some of them are merely aniinated masses of reproductive glands, the quantity of ova being great, becanse most of it is destined to fall on harren groumd. The simq,icity of structure tends to greatly lessen the ndaptability of the organism, so that we find that in the proeess of time a species becones able to grow actively only in a particular species of hoist, or, if there is alternation of hosts, iil a particular series of hosts. It follows, thus, that each particular species of host has a particular set of parasites.
The capability of causing disturbance in such forms is not great, a state of affuirs whieh is to be expented with parasites of comparatively slow development. Such disturbance, too, is brought about in several different ways, as:

1. Displacement or Pressure Due to the Presence of the Parasite.. Ithough this is in general negligible, a Filaria nocturna may bloek il lymph vessel and cause elephantiasis of a member. A cysticercus iil the brain may cause death, or the cyst of Tania echinococcus in the liver may be very large, and may mentce life.
2. Injurg Caused by Migre':n. - The filaria migrates through the tissues hut cause little or no damage in doing so; however, on the contrary, there may be much pain and inflammation of the muscles (allused by the passage of larval Trichince.
3. Destruction of Tissue.-This is of very stight importance, and mily to be considered in the case of a parasite like Ankylostomum unvening up a large capillary, causing hemorrhage, or where a parasite like Trichocephalus boring through the bowel wall leaves a hole through which infection may pass.
4. Loss of Food Material Used Up by the Parasite.-Contrary to a common belief, this loss is so slight as to be negligible.
5. Disturbance Caused by the Excretions of the Parasite. - It has been -upposed that the metazoan parasites excrete toxins as do bacteria; ome of them certainly produce substances which protect them against the digestive juices of their hosts, and in many cases the bodies and horly juices of the parasites themselves re toxie, but this is to he (xpected, and does not give any additional proof upon the questic.. it issue. More important is the "xct that all verminous parasites it up eosinophilia, an increase in the number of eosinophile leukortes in the circulating blood. This undoubted fact is evidently due \because an excitation of the bone-marrow tissue by some irritant produced the parasites, and it may be surmised that the anemia and the wition of ill-being are due to the same or parallel intoxicants.
i. S.u. vous Irritation or Discomfort Brought About by the Prosence of the Parasites. - This reform mostly to the Insertn and Arachnida, and is In obvins, thongh mimportant effert: set the presence of sent-worms mud other migratimg intestinul parmsites muy coluse itchimg, grimding of the teeth, nervoms irritability, mal even convolsions in the very goumg.

THE ENDOGENOUS INTOXICATIONS

Internal Secretions. - There are certaing ghonls, such ass the liver, with extermal secretion, which form and discharge into the hook in further

Fic. $3:$

Cretin, male, aged twentyone yars. (Bourneville and Bricon.) serretion, having now or little comereti :n with the first. There ure glands like the thyroid which, having no obvions secretion, and no duet, have been foum, nevertheless, to dischurge intermilly into the body juices seceretions of grent importance to the bonds. There nre even structures that are not recognized as glands nt all, such as certain sympathetie ganglia, which appear to form an intermal sceretion. And the cond is not yet, for we know that certain portions of the inncosin of the alimentury tract have secretions, called hormones, which are necessary for the full activity of other digestive ghonds, cren those vituated at a distance. As distinct from ellzemes, these hormones enn be iso.ated in a state of relntive purity and are matered by heat. In this class we inchude such bodies as adrenin and iodothyrin. Much of the information we possess abcut the internal secretions i: yet fragmentary and we are not able to las down general rule:. but must be content to indicate. me of the most important facts baring non the defect or exeess of the sinne as lactors in the production of morbid states.

Disturbances Related to the Thyroid Secretion.-Defieient thyroid secretion may show itself in the child as cretinism, or in the adult as myxodema, the latter arising from mechanical removal of the gland (cachexia thyreopriva) as well as from more obscure canses leading to its atrophy, or interfering with its proper action. (retimism is congenital; the eretin is physically and mentally in a state of retardation: the adult in years remains a child in intellect, or even an imbecile;
dentition is lnte, and the seximl orgmes mod functions dehned and imperfeet; the stature is: smmll, the limbs short ma! thick, the fentures conrser and expressionless.

Myxalema developing in mdult life has mans similur fentures; there
 ti-sines, grudually robbing the fure of its expression; the fentures herome hember, and the sulvolaneons tissue suffers a combertise-tissue wergrowth. The skin beeomes dry, the hair comrse, thiek, and tending to fall out; the mentality becomes slow mad the memory defective. 'The smme train of somptoms may be set up hy complete removal of the thyroid ghad. 'Thyroid extruet can eure inyxudemn, and eretinism in the child, but recquires to be given from time to time to prevent recurrence. It is to be noted that in some cases of inyxademin mol cretinism, the thyroid, far from being absent, is enlarged; despite its size, we do not suppose that it functionates properly. It may le that the wesicles are expanded hysecretion as the nir sumes bir in emphysomm, sil that the walls and the boodvessels ure compressed, with re-ulting arrested absorption.
'The opposite condition, clinicully, to myxorlema is exophthalmic goitre, known also as Graves' disease and Basedow's disease; here oure finds too much theroid, or too aetive thyroid tissue, with resulting mervousness, tachycardia, tremors-features opposed in character th those of myxorlema. The striking features of the disease are the exophthatmos (probnhly due to irritution of the sympathetics), and the goitre. Tremors, great nervousness, and tudhyardia may be present, indicating a nervons energy fur different from the placidity of the mexadematous patient. There is heightened metabolism and inurensed discharge of the products of tissure disintegration. Thyroidat. imy oftell prohluces goorl results.

Disturbances Related to the Secretion of ths Parathyoids.-Situated ill ur near or under the theroids, varying in number, are small pealibe glands ealled the parathyroids, which histologically look not malike the immature thyroid. Their removal in animals is followed ly tetany, . ophthalmos, rapid respiration, etc., which symptoms are andelorated or removed by the use of calcium salts. In many operaimision thyroidectomy in the human being they are doubtless removed, :uthont any apparent change being wrought, although the frequent bermet of accessory thyroid and parathyroid nodule; in the neck resin makes it difficult to be sure in any individual case whether liere has been complete ablation.
Disturbances Related to the Secretion of the Pituitary Eody.-The "fim of the pituitary holy is related in some obscure way to that the thyroid. Acromegaly is a remarkable disease which arises in anection with disturbed function of the anterior glandular part of " pitnitary body, supposedly in the direction of overactivity. The mae is charanteriged he great enlargement of the members; the willary bones hecome thick, the mose broadens, the lips, the ears
and the eyelids enlarge, the hands and feet beeome big and clumsy. The progress of the malady is slow, and the extract of the pituitary body is of no benefit to the patient. The extract from the intermediate and posterior portions of the pitnitary body canses a rise of blood pressure similar to, but more prolonged, than that of the extract of the adrenal, and, in addition, induces a marked polynria.

Disturbances Related to the Secretion of the Adrenal and of the Chromaffin System.--The medulla of the adrenal, apparently the more important part of the organ, is related embryologieally to the sympathetie ganglia. The extract of it (adrenin) leads to great inerease in blood pressure; it acts direetly on miscle, even if the nerve cndings are degenerated. The extract of the sympathetic ganglia has the same effeet upon blood pressure, and the effect of adrenin upon a part is identical with the result of stimulating the sympathetie fibres to that part. Both in the medulla of the adrenal and in the sympathetic ganglia is to be found a remarkable series of eells of sympathetie-nerve origin, the chiomaffin cells, so-ealled beeause of their affinity for chrome salts, the eells taking on a strong yellowish-brown color after immersion of seetijns in potassium biehromate. The indieations are that wherever those cells are present, adrenin or a body having like effect upon the arteriole is also present. We use the term adrenin rather than adrenalin or epinephrin beeause the latter are names of proprietary substances.
There are several pathologieal states whieh, aeting upon and destroying the adrenal, give rise to the disease known as Addison's disease. It is characterized by great physical weakness, fceble heart action and pulse, nausea, vomiting, and pigmentation of the skin. The pigmentation is most marked upon exposed surfaces, and in regions normally pigmented, and varies from a yellowish tint to a deep brown. Fibrocaseous tubereulosis, atrophy, malignant growths, hemorrhage, and inflammatory changes of the adrenal may produec it, and it has even been known to exist where the adrenals are healthy but the sympathetic ganglia diseased. It may well be imagined that the lack of blood-pressure-raising material due to the destruction of the organ accomits for the eardiovascular depression. As regards the eortex of this gland, it is interesting to note that just as overdevelopment of the glandular portion of the pitnitary body is fom associated with acromegaly and incrased growth of skeletal tissues, so there are several eases on reeord in which hyperplasia and tumor growth of the adrenal cortex has been found associated with exeessive and premature obesity, preeoeious musenlarity ("the infant IIcreules"), and premature virility with preeocions development of the external organs of gencration.

Disturbances Related to Secretions of the Testes and Ovaries.-It is known that in eastrated anmals the secondary sexmal characters fail to develop, and this is che, in the mate, to the loss of large interstitial cells in the testes and of their internal secretion; there are homologous eetls in the ovary, althongh the proof of the effect of their secretion is by no means as clear as in the case of the male. "Heat" in eastrated anmals
can be produced by the imjection of the ovarian extracts. Not only do internal secretions of the testes aud ovary affect sexual maturity, but they are also evidently concerned in the full physical development of the bolly. The function of the corpus luteum is of another sort; the secretion of the interstitial cells that lie external to the Graafian folliele is evidently potent to stimulate the uterine mucosa to respond to the presence of the ovum and permit its fixation; where the ovaries are removed after the fertilized ova are set frec, these do not become wherent in the uterus. A secretion acting in this way is a good example of a hormone.

Disturbances Related to Various Other Internal Secretions.-The Fætus and the Mammary Gland.-It has been proved, according to Starling and Claypon, that the hivertrophy of the mammary gland in preguancy is due to the internat secretion, so to speak, of the fœetus. Watery extracts of rabbit foetus injected into a virgin rabbit caused in a few weeks hypertrophy of the mammary gland and the formation of a thin fluid secretion; in multiparous, unimpregnated rabbits this was true milk. To disprove the supposed effect of nervous influences, a mammary gland in the guinea-pig was transplanted to the region of the ear, where it underwent hypertrophy in pregnancy, and, finally, produced milk. It is thought that the substance in the fætus which does, this acts upon the mammary gland causing anabolism and growth; when the child is born, lactation begins because this substance is no longer present, and. the cells which before, under its influence, manifested anabolisin and growth, in its absence break down and form milk. Thus lactation is apt to cease with the onset of a now pregnancy.

Doubt has recently been thrown upon these observations, other wservers associating the growth and activity of the mammary gland once more with the corpus luteum of pregnancy.
Disturbances Related to Secretions in the Intestinal Tract.-It is but rerently that we have discovered how intricate a system of internal ruretions exists in the alimentary tract, and we shall rather try to indicute what these are than to deal with their derangements. The acid contents of the stomach passing into the dnodenum cause an inwrease in the flow of pancreatic juice; this happens not because of rrflex nervous stimuli, but because of a chemical substance which is ir reted by the duodenum and carricd by the bood to the pancreas.
If the mucosa of the duodenum is scraped off and an extract made if it with hydrochloric acid added, this extract, which has been called secretin, if injected into the blood of a manmal, causes an abundant wretion of panereatic juicc. In a somewhat similar way the secrein! of pyloric glands stimulates certain glands in the cardiac portion
the stomach; thesc instances chable us to surmise that not only .. urrous mechanism stimulate the flow of digestive juices, shown the mouth "watering" at the sight or smell of food, but also that re exists a series of secretions developed by the mucosa of one part ir another, each of which secretions can, if absorbed by the blood,
exeite to seeretion some neighboring part of the tract. Of diseased conditions of the tract due to absence or perversion of these seeretions, we ean as yet only eonjecture.

Disturbance Related to the Internal Secretion of the Pancreas.-Apart from its digestive secretion, there appears to be an internal seeretion of the pancreas; withont reeapitulating the proofs that exist, we may state that this secretion, a true hormone, being put into the blood enahles the liver and the miseles to properly handle carbohydrates. We are able to say this much: (1) the normal pancreas forms a secretin; (2) the liver and musele are the main seats of deposit and utilization of carbohydrates; (3) that, massisted, they canot break down these earhohydrates: (4) that with help they ean convert soluble carbohydrates into insoluble ghycogen and rice rersa; (5) that it is the secretin of the pancreas which acts as a hormone and aetivates or renders capable these tissmes. This explains why the extirpation of the panereas in dogs leads to glycosuria, and why certain lesions of the panereas in the homan being are followed by diabetes; but there remain many cases of diabetes that are not as yet at all explicable.

To recapitulate briefly the points we have been eonsidering, we have, in all these disturbances due to improper aetion of internal secretions, a problent into which two or more factors enter; there is first, the internal secretion, seeond, the substratum or substance on which it acts, and third, in many eases, a hormone be virtue of which it aets. Disturbance may oceur (1) hy diminished seeretion with normal amount of substratime (2) he normal secretion with excess of substratum, and (3) by absence or diminution of the hormone without whieh the interaction cannot happen. This in (1) the lesion may be in the organ supplying the serretion, in (2) in the organ supplying the substratum, and in (3) in the organ supplying the hormone, and it is conceivable that in all three eases the sumptoms might he the same. Further, it deserves note that the work of the last few vears is indieating that the healthy state of the body is largely dependent npon the interaction of the secretions of the ductless glands; that, to a certain extent, one ductless gland and its sceretion ean replace another. We have already called attention to a areain parallelism between the funetions of the pithitary and those of the adrenal; but, also, several observers have moted that atrophic disease or removal of the thyroid is followed by distinct hypertrophy of the glandalar portion of the pituitary. Panereatie diabetes has heen fomm associated with hyperactivity of the chromaffin system, and Addison's disense with hyperplasia of the thymos. We are not prepared as yet to exphain what these data signify, bit they certainly support the vicw that there is much interdependence between these organs.

Non-eliminated Products of Katabolism.-Intoxieations may be eansed hy these in two wass: either the exeretory organs, being diseased, fail to eliminate prochets of katabolism or even if the secretory organs
eliminate, there may be resorption of the excreted material owing to obstruction in the dhets.

The Resorption of Excretions.-There is a normal resorption of excreted material constantly going on in the borly; the feees solidify in the lower bowel because of resorption of fluid; the increase in solids in gall-bladder bile over that of hepatieduet bile indieates absorption, while some physiologists hold that urinary water is reabsorbed as it passes down the tubule; this suggests that there are many series of cells which work in two directions, that is, which excrete in one direction, anli absorb in the reverse direction. An example of this resorption to a serious degree is fomm in olstructive jaundiee; here the bile is not discharged, and is re-absorbed by the lymphatics and the blood. Accompanving such janndice are certain cerebral symptoms, slowed pulse, itching of the skin, lessened coagulability of the blood, and a tendeney to lemorrhage. Some of these symptoms ean be set up be the experimental injection of bile salts, although mormally these bile salts are re-absorbed in the alimentary tract, whence, however, they are carried nice more to the liver by the proper channel. It is the resorption at the wrong place of such an excretion as the bile salts that eauses the disturbanee, rather than thei- deleterious nature, per se. The same statement holds with regard to the pancreatic: juice, whieh, if re-absorbed by reason of the obstruction of the pancreatie duct, (an set up pancratitis; while, if bile be absorbed by the pancreas from a hiockage of the Ampulla of Vater by a calculus, a yet more crere panereatitis may ensne.
('ertain cases of uremia are to be viewed in the same way. Uremia may br dhe to renal ineompetency, where dangerons constitnents fail to be abstracted from the bood, but in other cases, the kidneys perform their part, but the ureter or the urethra is bloeked, and the uriuary epithelium passes back into the blood materials from which it had previonsly freed the bood. What the substance or substanees maly be that canse uremia is vet unkown, though many different (1) De- have been suggested.

Disintegrative Intoxications.-Autolysis.-This is the process of self-di-intargration that tissnes undergo; if, for example, liver tissue be rinwed from the borly and protected from septie infection, it beeomes कht, herson of enzome actions, the most important of which is that (He which breaks up proteids. 'To illustrate this, onn may take the fol"ing figures (Wells): a liver in whieh only one-tenth of the nitrogen - in a soluble form, after being kept twenty-two days aseptically, atamed six-tenths of its nitrogen in a soluble form. The enzarmes ich bring abont this change are elaborated within the cells themi, aud all soft tissues behave in this way, the liver and renal cortex "Hir the most active, the brain substance and skin among the least Iutolysis oremes most readily in a slightly acid mediun and at mprature slightly higher than that of the boty. The tissues are rally allatine in reaction, and the process begins only when this
alkalinity has been neutralized by the produetion of earbon dioxide and organie aeids, suel as laetie and butyrie, which are formed in dying tissues. This proeess of autolysis takes place in the living organism. Thus, if a pieee of liver have its blood supply eut off, autolysis will oecur in the most rentral parts, but not in the peripheral because the alkaline lymph diffuses into this part of it. There is, however, an exeeption even to this, viz., wherever leukoeytes gain entrance in large numbers. Leukoeytes possess enzynes, the leukoproteases, whieh aet most powerfully upon the leukoeytes themselves, but onee liberated aet also upon other tissues. This explains the softening of septie infarets, and of the outer zone of simple infarets, into which areas great numbers of leukoeytes migrate; it explains also the softening and absorption of the exudate in a pmeumonie lung. The softening of a tissue by the effeet of this leukoeytie enzyme is ealled heterolysis, as opposed to autolysis, where the cells themselves supply the enzrme. But, to prevent this universal heterolysis wherever there are leukoevtes, there is an antibody in blood serum whieh tends to neutralize the enzume of the leukoeytes, provided these be not present in overwhelming numbers (Opie).
Autolysis is seen in the liver in eases of aente yellow atrophy, phosphorus and arsenie poisoning, ehloroform poisoning, and in the group of eases eharaeterized by pernieious; vomiting (oftenest eases of pieznaney). In these the end-products found in autolysis are present, viz., leuein, tyrosin, ete. The operative toxin has evidently destroyed the cells without destroying their ferments.

There is a partial explanation possible at this point of gangrene as it oeeurs in diabetie eases. Acidosis, as it is ealled, is a condition of heightened aeidity or lessened alkalinity of the tissues, with the produetion of aectonuria; sueh is frequently present in diabetes, and this lessened alkalinity permits the oecurrence of autolysis, although the gangrene is probably preeipitated by some active toxin.

Autolysis is able to cause eertain disturbances of borly inechanism, whieh ean be elassed as (1) disturbances due to liberation and diffusion of the enzymes, and (2) disturbances due to toxie action of the diffused produets of autolysis. It is quite likely that in some eases both aetions are at work. Albumosuria is an indication of such a diffusion, the albumoses appearing in the urine when there is extensive aggregation of leukocytes, with its aeeompanying heterolysis, such as happens in the resolution of preumonia or in empyema; albumoses appear also when large tumors mudergo softening or neerosis. Fever, too, as it oecur: in infarets, internal hemorrhages, burns or suppuration, is an indication of the liberation of intracellular enzynes; the experimental production of fever by ferments of all orders injeeted into the blood has been often demonstrated. Rarely the produetion by autolysis of aeutely toxie substances oceurs. Cholin is liberated in the autolysis of nerve tissues; it is not lighly toxie, but it is readily converted inte neurin which is. Cholin has been found in the eerebrospinal fluid
of eases of nerve degeneration and softening, and it is suggested as the cause of eonvulsions and other serious disturbanees that happen in these sases. (Mott.) Perhaps a similar formation of toxin from the disintegrated c ils is aceountable for the toxie manifestations seen in eases of severe superficial burus.

Impaired Metabolism as a Cause of Disease.-At times the eells of eertain organs of the body do not earry out the process of metabolism to its normal termination, and diseharge substances that are toxic, or, through defieient oxidation, there may aceumulate in the system, bodies not themselves toxie, but obstruetive to the proper activity of the tissues. At other times, although netabolism ean scarcely be said to be impaired, yet the metat slites fail to be excreted, and by their aceumulation tend t. eause disease.

Gout.-Gout is a condition charaeterized by attacks of acute arthritis and other constitutional symptoms, elinieally, by the exeess of urie aeid in the blood, and anatomieally, by the deposit of sodium biurate in the cartilages and elsc:rhere. It must not be imagined that this exeess of urie aeid in the blood is the eause of the disease, for urie acid in excess exists in the blood in a number of different states without gout being present. The urates are inert bodies, and the most that ean be said is that they are an indicator; that is, the faulty metabolism whieh procuces them produees also substances that are toxic. These substanees we do not know with any exaetness.

Urie acid is one of a group of substanees ealled purin bodies, of all of which, purin $\left(\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{~N}_{4}\right)$ is the nucleus. These hodies are uric acid, xanthin, hyporanthin, guanin, adenin, and so on. By some they are termed the alloxuric bodies, and (with the exception of urie aeid) sometimes the xanthin, purin, or alloxurie bases. These bodies are derived from nuelein, whieh shows that they originate from the disintegration of nuelear substance. This nuelear substance may be from the froml (meats), in whieh ease the purins are exogenous, or it may be from the nuelear substance of the tissue cells of the body; in which cite they are endogenous. There is normally a certain small output of rinlogenous purin bodies whieh represents the natural wear and tear if tisue. The inuseles are eonstantly putting out hypoxanthin, and cxercise inereases the output of urie acid, suggesting that one purin lurly is readily converted into another in the body, as happens in
itro. If the panereas be ehopped up and allowed to aet on guanin, can emvert guanin to xanthin by means of a ferment whieh has n ealled guanase. Similarly, adenin can be converted into hyponthin by the adrenal, the thymus, the panereas, or the liver, by the tion of the ferment adenase. The different glands, in fact, contain ments or groups of ferments; and in this series a ferment, an oxidase, ound in the lungs, liver, museles, and spleen, which can convert alloxuric bases into uric aeid. Yet another oxidase, found in the unss, the liver, and the museles, can oxidize urie aeid into urea. ally, or perhaps one should say firstly, there is in cells generally
a nuclease by which nueleoproteins are disintcgrated, liberating the purin bases.

Step ber step the following process can be seen to oceur: (1) mucleoproteins, crogenons from foodstuffs, or endogenous from the body cells, acted on by unclease, sield ($(\underset{)}{(})$ purin bases, which, acted on by guanase or udenase, viehl (3) xanthin and hypoxanthin, whieh, acted on by an oxiduse, yicld (4) urie acid, which, acted on by an oxidase, yields (5) urea.

There are other much more important sources of urea; but this will indicate the variations in the amount of uric acid that may be derived from the same diet, and the importance of the action of certain ferments that are constantly present in the body.

It is neressary to know, more fully than we do, the toxic effects of the purin bases, for they are toxic, and it is perhaps the purin bases that are responsible for gout. Gout, therefore, is probably the outcome of iusufficient oxidation, whereby the precursors of uric acid, and similar horlies, are not fully oxidized, and by their accumulation and their toxicity, set u) morhid changes; and the uric acid formed is in its turn imperfectly oxidized, and accumulates; this diminished oxidation is due to a constitutional deficicucy of oxidases, inherited or acquired.

Cystinuria. -The appearance of cystin in the urinc is an unimportant matter, save that it may lad to calculus formation; but it is worthy of note at this point, as somewhat parallel to gout. It tends to be a familial disease, characterized by the appcarance of cystin in the urine. Cystin is a sulphur-ontaining amino-acid, and the cridence secms to show that it arises from an abnormal disintegration or conversion of the sulphur-containing part of the protcin molecule.

Alkaptonuria.-This condition, in which the urine turns dark on exposure to the air, is due to the absence or deficiency of a specific oxidase with the resuli that final oxidation of the aromatic constituents of the protein molecale is imperfect. It, again, is unimportant clinically.

Obesity.--The accumulation of fat in the tissues is not a toxic manifestation, but follows an incomplete oxidation of the foodstuffs; when it brings about impairment of loeomotion, the oxidation process becoms yet morc incomplete, and the ill is cumulative. The normal fate of fat in the body is to be burnt up, yiclding ultimately carbon dioxide and water, and a fixed amount of heat and energy; in obesity, fat is stored up to such a degrec that 38 per cent. of the total weight i as been found to be fat. This state of obesity is due either to (1) excessive absorption of food, cither fats or substances, like carbohydrates, whose katab,ism viehds fats, or to (2) inadequate combustion of the fats so acquired. A given case of obesity may be due to both; but in those eases of ohesity which show anemia, deficiency of hemoglobin and corpuscles, it seems likely that deficient oxidation is to blame.

In the plethoric, ohese man, who has no such deficiency, the explanation is either orereating or an hereditary tendency to store up fat upon
a normal diet; such an hereditary tendency is often combined with goutiness, and just as the goutiness means imperfect oxidation of one group of the products of metabolism, the proteins, so the obesity maymean imperfect oxidation of another group, the fats.

Acidosis, Acetonuria, etc.--The group of cases which chow lessencd alkalinity of the blood, and the: cumulation of acetone and the acetone bodies ($\hat{\beta}$-oxybutyric and diacetic acids) in the blood, is characterized, in gencral, by grave intoxication, air hunger and nervous symptoms, leading cven to coma and death. We cannot as yet say definitely what is the origin of these bodies, whether from the amino-acids of the protein molecule, from the fatty acids or from the carbohydrates; perhaps in different diseases, the source may diff : for acetone and the accone bodies appear in diabetes, in hyperpyrexia, in wasting diseases, in cancer, and in starvation; carbohydrate starvation seems to be a constant factor, whether this arise from actual lack of carbohydrates or from inpaired ability of the body to use what it does rcceive.

The accumulation of 8 -oxybutyric and diacetic acids in the blood of diabetics seems responsible for the main symptoms of diabetic coma, for herbivorous animals to which they are administered develop the same group of symptoms-the blood is less alkaline, they are stuporous, drapnocic, the blood is bright red and contains less carbon dioxide than normal. If alkalies be given the symptoms pass off, just as may uceur clinically in diabetic coma. The explanation is that normally the alkalies of the blood take up carbon dioxide from the tissues, carry it to the lungs. where by the help of the oxidase present, the carbon dioxide is split off, and the salt, once more basic, is prepared to take up more carbon dioxide from the tissues. Where there is excess of acids in the blood these combine with the basic salts, and as a re;ult the arbor: dioxide remains in the tissucs, causing symptoms of asphexia.

Before leaving this subject, it may be recalled to the reader's mind that this condition of acidosis seems to underlie the disturbances finmd not only in diabetic coma, in certain cachectic diseases, and in starvation, but also in the pernicious vomiting of pregnancy, the ceclic vomiting of children, chloroform poisoning, and certain other less common states where grave hepatic disturbance has been determined; at the present time we call do no more than state the oherervation.

Dyspncea and Asphyxia.-These symptoms, it will be seen, depend "pon acidosis. It was for a long time debated whether they were mused by deficiency of oxygen or excess of carbon dioxide, and the lecision is in favor of the latter. The tension of oxygen in the inspired air mav be reduced from 20 to 8 per cent. without inducing dyspnoea, but an increase of tension of 0.5 per cent. of carbon dioxide in the inspired air and so in the blood, leads to such increased activity of respiration that the volunc of inspired air is doubled. Be it noted that the increase is not in the amount of carbon dioxide in the blood, but in the tension. of free carbon dioxide in it; for in diabetic coma, as has been said, acids
combine with the alkalies present in the hlood plasma, and less earbon dioxide is actually taken up; but it still diffuses in the blood, and is present in a free state, giv ing rise to the asphyxia.

Eclampsia.-There is a most grave condition which occasionally shows itself during the last fow days of pregnancy or in the few hours imnediately following parturition. It appears in the form of convulsions, followed by coma, and frequently is fatal. Postinortem examination shows that there are two orders of eases; in the oue there is extreme degeneration of the kidneys, in the other, the bennt of the disturbanee is seen to have fallen upon the liver, which exhibits areas of degeneration even to eomplete neerosis of the parenchyma of the orgam. The condition is essentially associated with chililbearing, is not of infectious nature, but has all the enr-marks of a grave intoxieation, but as to what is the exact nature of the intoxication, we are still wholly in the dark. While some attribute it to the fœetus, others bring (inadequate) evidence that the toxic material originates from the placenta. Others, again, ascribe it to want of balance between the internal secretions of the maternal organism. We are not, therefore, in a position to elassify properly the condition.

Ptomaines.-These form a large elass of substances obtainced from the decomposition of animal matter; they are the results, although not the ultimate rcsults, of the disintegration of proteins, for if the decomposition be continued beyond a certain time the ptomaines diminish in amount, givino place to simpler substances. The wellknown ptomaines are methylamin, di- and trimethylamin, cholin, neurin, and muscarin. While some of them are non-toxic, others are intensely toxie. It is possible that the symptoms of constipation may be due to absorption of small quantities of these toxie ptomaines from fecal matter fermented by the agency of bacteria; bacteria are necessary, for these substances have never yet been obtained from foodstuffs without the action of bacteria. The same holds true for a group of substances of a lower toxicity than the last, which are formed from carbohylrates by the action of bacteria; these are the organie aeidsformie, butyric, lactic, etc., and the interesting point about these is that if they are repeatedly administered, they cause disturbance of a chronie type such as : irrhosis of the liver. This is evidently not the sole canse of cirrhosis of the liver, because it can arise from some such cirenmstance as this; the obstruction may tend to increased bacterial activity in the intestine. which irritates the mucosa, permitting to cuter the portal systen: hacteria of low virulence, whose endotoxins are liberated, causing hemolysis and irritation of the liver. From what has heen said, it will be gathered that these intoxicants-ptomaines and indol and such others-are rather exogenoms than endogenous.

INTOXICATIONS NOT PURBLY EXOGENOUS OR ENDOGENOUS

Gastro-intestinal Intoxications.-Constipation.-It is a common observation that eonstipation, in a person whose habits are regular, induces a freling of lessened well-being, and in some, aetual hearlache or malaise. What is the aetual toxin or toxins at work we eannot yet say. In acute obstruetion of the alimentary traet, where voniting, weakness, or eollapse is present, we are in a position to be more explieit, although not dogmatie. Obstruetion of the upper howel is inore grave than that of the lower, and the possible causes of this severe intoxication are two: either (1) the blockage lets unusual baeteria bring about abmormal fermentation, or the baeteria produee their own toxins, or (2) there are elaborated in the stomaeh toxie materials, . nieh are in normal digestion modified lower down. Both these may be true, although the better evidenee is in favor of the former; obstruction does permit increase of virulence and increased multiplieation of the baeteria above it, thongh it has to be admitted that the toxins of intestinal baeteria grown outside the body do not produce the marked symptoms found in obstruction. It is true that one group of toxins-the indol groupdues show some toxic power, but in the intestine it is as likely to be an indicutor of a high degree of intestinal putrefaetion as to be the efficient twsin itself. Indol, however, if ingested, sets up irritability, mental dulucss, and headaehe; it can be formed in the test tube from peptone hy Bacillus coli-the commonest inhabitant of the intestine-and is finull in the urine, in small quantity, it is true, in obstruetion. One mily sum up by saying that part, but not all, of the toxie manifestatimis of obstruction, are probably due to indol, skatol, and related decomposition produets of proteins.

BODIIY STATES AS DIRECT AND PREDISPOSING CAUSES OF DISEASE

Overstrain.- Overstrain and fatigue are the results of work, with the difference that while fatigue is the natural, physiological sequel if activity, overstrain goes a step farther and indieates an abnormal Herree of fatigue or a pathologieal effeet wrought by aetivity; exhaus", in ges farther yet, and implies overstrain earried to sueh a point dat continued aetivity is impossible unless a period of rest intervene. $1:$ wryone knows by experience that fatigue is a natural consequence work and demands rest; if adequate rest be obtained, fatigue disnears, and the worker is left better able to work than before-the It heing that in course of time that maximum state of ability to is is reaelied in whieh we term the worker or the atlicite "trained." lowever, the rest be not adequate, or if work be earried to sueh "vtent that the fatigue is execssive, or if the work be of the nature inlent effort-the return to the normal is secured onlylafter a rest
muduly prolonged, becanse we have gone past mere fatigne and have got "overstrain." Further, the person or organ that has experieneed the owerstrain is the worse for it, is not stronger from the exereise. but is less capable of responting to a given demand. I'racticaiis, this is beroning daily of more importanee to the phesieian, and an understanding of the primeples of work, fatigue, overstress.' mud rest is essential to him. Whether work and fatigne eoncern more the nervons or the muscular meenanism matters not; in either case, if the work done equal in mits of energy the food taken in, the hody does not sutfer, becanse the energy that the body possesses is like a bank acconnt, to whid there is a daily ineome and from which there is a daity druft; if day hey day the amount drawn out exceds the ineome, the account diminishes, and a sudden large eall upon the aeconnt will require many days of ineome with careful expenditure before the monnt of the account is restored. The reader ean smpply other malogies in the same line of thonght: and we nay be forgiven for the digression if we recommend every practising physician and cvery student to read the chasie "Rest and P'ain" of IIiton, which exeellently demonstrates how ie a therapentio principle is judicions innetivits:
\therefore results of overstres are varions aceording to the organs involved and to the degree of overstress; there is either direct production of a morbid state, or an inereased suseeptibility to disease.

Direct Production of Morbid States by Overstress.-The degrees of overstress have been elassified as superacute, aente, and subacute; thes: will he considered in this order.

Superacite overstrain has not lacked examples since the soldier Iropped dead at Athens after gasping ont the news of Marathon. There are all gradations from this down to the few moments of suffiocating breathlesmess of the "commuter" who has harl to run hard to eateln his morning train. The symptoms of the lesser grades of superacute overstrain seem largely due to cardiac inadequace, the heart not being able to pass on the blond as rapidly as the museles demand. The eases in which death follows intense prolonged strain suggest in many ways that there are discharged into the bood toxic produets of museular activity. Cadaverie rigidity immediately follows death; the dark venons hood fails to eoagulate; the capillaries are dilated. The acute degree of overstrain may be excited in such a ease as where a man not in training is severely indisposed after a monntain elimb; he has anoresia, fever, pain in the limbs, and is restless and steepiess. From longer-eontinued, but less extreme effort, come such results as writers' and pianists' eramp, and the haboghosal paralysis of flate phayers: and there are undoubtedty local and general manifestations of disturbance from overstress of the ocular miseles in their attempts to keep accommodation perfeet.

Overstress as a Predisposing Cause of Disease.-It is long known to elinicians and experimenters that owerstress makes the subjeet of it
more hable to infection, that horl work, long homrs, and inadequate rost make men more liable than mornal to acute disenses, such as influenza and pheumonin. If resting minals mul animals molerquing forced labor are subjeeted to the same doses of baeterial cultures, the resting animals resist moch the better; if into any sueh animal, along with the culture, lnetie acid be introluced, the baeteria grow the more readily; this is interpreted to mean that the aeid produced by the museular activity of the exhustel animal assists the growth of certain baeteria in the tissues.
In a way entirely loeal, also, overstress renders the organ coneerned specially thable to disense, and this is true not only of overstress, but also of stress; in the foetus, the right heart bears the brunt of the eirculatory work, and in the foetus cardiac disease is right-sided; subsequent to birth, the stress on the left side of the heart is greater, and heart lisease tends to be left-sided. It is notable in this eonnection, too, that vegetations grow on the heart valves as a result of infection plus tress; the entire surface of the valve is exposed to the insult of the infection, but the entire surface of the valve does not develop vegetations; the area near the valve edge where one valve strikes the other in closing is the part that is exposed to both the insult of infection and the insult of stress, and here it is that the vegetations develop.
The last-named prineiple works in both directions, so that mot only are "strained" organs, or parts thereof, liable to infection and other lanlingr, but infeeted or damaged areas are more liable to overstrain thim liealthy ones, or, stated otherwise, what is merely stress for healthy tinure is overstress for damaged tissue. It is the subjects of chronic intusieations, sueh as syphilis or aleohol, in whom the ordinary work ,if the cirenlation produees aneurysmal and other evidences of vaseular werstrain.
Muscular Fatigue and Overstrain.-Museular fatigue has been con-- illered ly some as fatigue of the musele fibre; by others, as fatigue of the nerves concerned; it is one or the other or both. The musele it alf can be fatigued by direct stimulation, because the substances produced by contraction inhibit further activity; when the nervous merlanism is eonsidered we eannot experimentally fatigue the conLneting axone; nor ean we fatigne pereeptibly the reflex centres in the wril: hut what we do observe is this: if a reflex centre for a partieular lumrli be seleeted, a centre that is amenable to influenees from several nornt tracts, and we stimulate one of these traets, we produce in Sh. the phenomenon that the musele no longer responds; if, now, Her afferent tract be employed, the musele at onee responds. hows that the musele itself is not exhausted, nor is the axone anted; what is exhausted is the synapse, the junction between the rent nerve tract and the nerve cell of the reflex centre; these two parts of different neurones. Let us here digress to give a " working ui the comection betwcen neurones. One nerve cell does not inliy join another nerve eell, but we may say that it is in contact or
almost in contuct wit! it ; frminal filaments of one cell ure in "almost contuct" with the dendrito of another, like the branches of one tree intermingling with bit not actually tonching the branches of another; impulses skip neross the space from twig to twig, when they are in a state of "almost contact." Fintigne of a nerve cell may be practicnll: thought of as a shrinking, by which the twign or branches of one are Irawn avay from the other, so that mupulses have farther to jump from one to another than before, and do so less rendily; if cells ure fatigned, the impulses pass poorly bermase of this withdrawal from contact; with slep we may suppose that the rested dendrites or axones are expanding out once more to a position of almost contact; so that on waking, the impulses (or thonghts or whatever they may tr^{-1} - mas readily one more: Reverting to the specific exmmple we are e. . mering, wr may imagime that the constant stimulation of one afferenctract

Fic. 33

. 1

14

 hatimi nerve will of samm order, with hrmaken irmaular nucicus, chromatin betwork indis.

mates the promeses of that nemrone draw awne till the impulse no longer readily jumps the gap, and the uenrone governing the muscle is no longer stimulated; the state of "almost contact" is lost, the "synapse" fatigued; when a new neurone is nsed, which is in "almost contact" with the neurone governing the muscle, the impulse passes readily, and the neurone and the musde respond.

Fatigne of the muscle itself appears to be due to the formation of products of musenlar activity-sarcolactic acial, earbonic acid, and others. These substances have affect probably also on the nerve mechanism; ant fually, we have to arlmit that nerve cells themselves arc capable of organic change through use-that even the process of reasoning tires-althongh the experimental proof is not to be ohtained. This exhastion of the neurone has heen well demonstrated by Hodge and others by comparison of the staining yower of nerve cells and nuclei in rest and after-prolonged activity. e tree other; e in n tically: me are jump dls are 1 from axones () that
ulerne tract

Lack of Activity and Disuse as Causes of Disease.- Tissues utrophy. if unusel, and the atrophy so prowheed is not in uny sense different from the utrophy that follows dininution of boom supply to a part; the most that can be suid is that tissues in activity tend to have a good circulntion, uleduate nourishment and pronipt removil of wiste pronlucts. All this is laeking in muscle whose nerve supply is cut off, und unid these varions eomineident ciremms nces it is not possible to say which is most responsible. A worl i neeessary here about st-culled trophic nerves; these were supposed to be fibres whiell had special governance over the nutrition of the tissues; but the atrophy or other derangement of tissues separated from central eontrol need not be due to the section of trophie nerves, but may surely arise from lack of properly governed activity, from consequent inadequate food mpply because vasomotility is uot rightly governed, from delayed rome:al of waste prolucts. Since perfeet health of tissue depends npon the right eoorrlination of mitrition, vasealar supply and cell activity, it seems reasonable to suppose that the laek of this coördination may be attended by actunl tissue ulterations and by inereased liability to infections.

PREDISPOSITION AND SUSCEPTIBIITTY

By. these terms we mean an abnormal liuhility to be influeneed by some environing fuctor, whereby a morbid state is set up. living muler different eonditions, it has eome about that no two of us respond in exaetly the same way to the same external influence; even in an individual, different tissues respad with varying degrees of reaction (1) the same stimulus. Sensitiveness above the clegree that is usual i- susceptibility or predisposition. As was shown enrlier, this predispmition may be inherited or nequired.
hiherited predisposition may be (a) specific or ex specie, as is shown hy the predisposition of cattle to pleuropnemmonia, dogs to distemper, miln to gonorrhoa and typhoid. Or i may be (b) racial; as seen in linropeans and vellow fever, Hebrews and diabetes, or it may be (c) familial, as in rertain exanthemato, paricularly neuroses and gout.

It is necessary to digress at this point, t indicate that error may -a-ily owenr here. A family may realy be comparatively immune to a linease because, by survival of the fittest, the stronger members of th. fimmily have, by virtue of some characteristic, been able to resist : diemse to which they were liable and have been enabled to hand in this characteristic strengthened. But where a disease has been 1. Hime, there are many individuals who have acquired, in an unnoticed ".n mor, their immonity. They have had unreeognizable or unreeogI mild attarks of the specifie disease which have sufficed to proteet i1. 'This is seen in the apparent immunity of the natives of many atries to malaria, the ehildren when examined having the malarial
parasites in their hood. Nay, more, they may only have taken in minimal amounts of the infertion, which their tissnes have overcome, and in this very act they have mamfactured an immunity beeause they have been eonstantly attacked by minimal amonnts of the toxin. In an infectious hospital it is often noted that where diphtheria is being cared for, attendants are liable in the first few days to sore throat, but should no actual attack of diphtheria supervene, they are often found to be subsequentl, immune. The presumption is that they absorb a small number of diphtheria baeilli frequently, and that these stimulate them to build up an immunity to the discasc.

Classification.-Predisposition may be classified aceording to:

1. Sex.-The female is exposed to a series of disorders eonnected with menstruation, childbirth, and the menopausc.
2. Life Period.-Infancy.-Disorders of maldevelopment and inanition (to the end of first year); athrepsia, various forms of enteritis with diarrhoa; meningitis.

Childhood.-Rickets, measles, scarlatina, diphtheria.
l'uberty and Adolescence.-Chlorosis (in female); acute rheumatism and rhcumatie heart discasc (ten to fifteen); typhoid; tubereulosis.

Adult.-Typhoid (twenty to twenty-five); tuberculosis (twenty to thirty).

Middle Age--Gout, lithiasis, and chronic Bright's disease (thirtyfive onward); arterioselerosis, aneurysms (thirty to fifty); eancer (forty to sixty).

Old Age.-The same continucd, along with atrophic conditions.
3. Habit of Life at Different Life Periods.-In the years of infaney when growth is proeeceling rapidly, the digestive system is under most stress; limited power of loeomotion prevents much exposure to infectious diseases, which oceur at a later time when the child mingles freely with his fellows; the age of work produces often a more sedentary life in more crnfined and often less well-ventilated surroundings (the period of tuberculosis); with increasing age, lessened exereise and yet more sedentary life tend to constipation, gallstone formation, etc.
4. Previous Infection.-Nthough in some diseases an attack eonfers immunity, there are others in which there remains a sreater liability to a sceond attack; such are erysipclas, furunculosis, aeute rheumatism, and influenza. It may he that the germs of the diseasc are not destroyed, and that a low state of general health permits them to flourish once more. Not only this, but an attack of one discase is frequently followed by an infection of a different kind, as when one cxanthem is immediately followed by another.
5. Malnutrition. - To exemplify how malnutrition predisposes to disease, it is necessary only to cite the severe epidemies of infectious discase that, at diflerent times, have followed upon famine in Russia, India, and Ireland.

The Susceptibility of Particular Tissues.- Reference is made here not to the susceptibility of an area that is injured or badly nourished, for
this has buen already dealt with, but to the fact that certain tissues are prone to permit the growth of eertain infectious agents. The channel of entranec has something to do with this, so that inhaled germs often attaek the respiratory, and ingested germs the digestive traet. In foci that are elearly seconlary, and evidently selective, we find the tuberele bacillus growing readily in the pia-arachnoid, but infrequently in the brain; infrequently in the stomaeh, and often in the small intestine. Even if injected into the blood stream, colon bacilli are apt to set up enteritis. The fact of the suseeptibility of special tissues remains, but we have no adequate explanation for it. Consideration of these data brings us to an important conclusion that an infection does not involve the whole body. Coincidenti'y with the growth of the specific !erms in individual organs, there tends to be a reaction to and destruction of the same in other parts. We find typhoid bacilli in a patient suffering from that disease, in the spleen, liver, skin, and kidneys, but with much difficulty in many other organs; yet we know that the infection is a universal one, and that these other organs have their chance to hecome infected. It seems that in suseeptible regions the bacteria are winning, and in others losing their battle with the tissues.

Idiosyncrasy.-This term is applied to the exhibition of extreme susceptibility to the influence of substanees that are not hurtful, and even beneficial to the average of people. Strawberries, shell fish, rertain fish, in some people cause urticaria or other skin eruption, headache, and in fine, indications of an intoxication; idiosyncrasy to drugs is familiar to every physieian. Hay fever is an idiosyncrasy to one or more particular kinds of pollen; and the presence of a cat in the room, although unseen and unthought of, produces in some people a state of nervous apprehension, explieable by some unperceiced olfactory impression; these as yet are eurious facts lacking explanation, save that the recent study of the phenomenon of anaphylaxis has introduced us to a possible explanation of at least some cases. The administration of minute doses of protein followed, after a few dins, by larger doses of the same protein, results in a general systemic li-turbanee resembling that seen in some of these cases of idiosyn-rasy-malaise, profound depression, coryza, erythematous and other 1ruptions on the skin, or even in some eases severe respiratory distress if ill asthmatie type, the phenomena, in short, of "serum sickness." It is cvident that the system may develop an extraordinary susceptihility toward one or another protein, by the exhibition of relatively minute quantities of the same. The food idiosynerasies, hay fever, and - ne rases of asthma seem thus to come into line with serum sickness I : maphylaxis in general.

CHAPTER III

TIIE MORBID AND REACTIVE PROCESSES PROPER

the local reaction to irritation-inflamination

It is very necessary for the student to obtain a clear understanding of what inflammation is, and how it begins, progresses, and ends, because a large fraction of all the pathological speeimens he will ever see and a majority of the clinieal cases he will be called to treat involve in some way this process. He can become conversant with the thousand special eases of inflammation ouly by knowing that the same general haws underlie thent all, even those most diverse in appearance.

In whatever member of the animal kingdom we examine it, the response to an irritation is similar; if we seratch the tissue of an invertebrate with a needle, certain effects are produced; if we serateh the skin of a human being we find effects that at bottom are similar; in other words, the tissues from their simplest to their most complex type have learned only one way to belave when they are irritated or injured; the complex boly has more ways of exhibiting its reaction because it has more differentiated tissues, but the proeess we see in the simplest animal we find also in the most complex animal, and it is this unity that makes it ,essible for us to construct eertain rules which underlie every case of intlammation.
Inflammation is the series of local adaptive ehanges in tissu- that result from actual or from referred injury. By injury we mean all grades of stimulus, from a mere irritation which only quiekens the activity of the cells, to a danage which kills or all but kills them; and we insist upon some sueh understanding of the term inflammation; because those who work in a speeial field are apt to restrict the term, and here the physician, the surgeon, the physiologist, and the medieal student must meet on a lasis common to all; the tissues behave after the same manner whether they are injured by the aseptic knife of the surgeon, the poison of the Staphylococcus aurcus, the flame or the frost, and it would be wrong for us to lay down restrietions that nature has indicated so definitely to be false. There are those who say that inflammation of a wound occurs only when infection invades it; not so; the wound itself implies inflammation; and this broad view of the case, having priority and right upon its side, has two good reasons for being admitted. There are those, on the other hand, who go even farther than we. and say that inflammation includes not only the ehanges at the site of injury, but every other change in the body at large that
arcompanies this; this is apt to confuse the learner, and the distant rhanges will be dealt with by us in eonsidering general reaction to injury and infection; so that we restrict the term inflammation to the local rhanges in any tissme that reacts.

The process of inflammation, occurring in the invertebrate animals, we shall touch upon merely to ilhstrate two fundamental prineiples, two moles of defence against injury, and at the same time two moles of repair of the danage inflieted, for thas carly in our eonsideration of the subjeet, it is necessary to show that the processes-inflammation and repair-are inseparable. These two principles are (1) that sooner or later a proliferation of cells of the part eoncerned occurs, and (2) that there is a determination of wandering eells to the injured area.

Fic. 3is

The plasmorlium of fused mesodermal celle seen in the previous Ggure, higher magnifieation; nucl, nuclei of individual cells. (After Metchnikoff.)
lairs:a of one of the simplest metazoan forms (1stroperten) to show ect., ectodern; end., endod.f.th; mes., wandering mesodermal cells which at mh have attachel themselves to a foreign borly and fursied a plasmodium around it.

If we take the simplest form of ealenterate, we find a differentiation into ectorlerm, endoderm, and mesoderm, as in Fig. 34. The mesolerm cells are formed from the other layers, and represent what wili become, in higher forms, the supportive struetures of the body; it will be noted that in this simple form they are either relatively fixed ur free, some being joined loosely by cell processes, others wandering. If in irritant body be introluced into this cavity the cells travel toward if aml stick to it; its very presence irritates to reproduction cells in contact with which it lies, and thus new cells are born; these cells, new and old, surround it and if it be digestible, they digest it; if not, they inlle it off and render it as harmless by this isolation as they can. H.re are both principles illustrated, positive chemiotaxis, or attraction, :and cell proheration. This must be kept in mind later on when we find that the wandering cells, mesoblastic in origin, are the cells that
exhibit ehemiotaxis and rally to the site of injury, whereas the fixed eells of the body tend to proliferate and regenerate.

As we advance farther up the zoological scale to those animals that have an open vascular system, but no proper vessels, we find another fundanental principle illistrated; if the eetoderm be punetured, the lymph which bathes the cells of the body coagulates and temporarily seals the hole; this is to be remembered when we find in our studies on the human body that a scaflold of fibrin is constructed throughont the injured area. As we advance once more to the higher animals, which have a closed vascular system, we find that these same simple features persist, and that the vessels serve to convey more readily and more rapirlly lymph and wandering cells to the injured part, there to earry out their functions-the same functions that we find their counterparts performing in the lowly organized ecelenterate.

Foreign borly giant eells in thyroid vesicle, to show similar plasmodium formations suri uunding foreiga body, or its equivalent, in man: a, remnant of mass of eolloid in eentre of vesicle; b, giant cells attacking the colloid; c, giant eells that have alr pely dissolved eolloid. (From case of chronic interstitial thyroiditis, Dr. IRhea.)

The detail of the inflammatory proeess must be dealt with farther on with more particularity:
The Causes of Inflammation.-1. Bacterial.-Bacteria are most frequently the exciting cause of inflammation, whether by their direct "ction in originating the process, or as an adjuvant to trauma, as in infection after a wound, or as in secondary infection after a burn or after the action of some corrosive. It becomes at once evident that this admits a very large mmber of bacteria to our consideration; there
are the pathogenic organisms, such as the Bacillus typhosur or the streptococcus pyogenes, which can inangurate inflammation; there are the saprophytie organisms which eannot grow in the body normally, hit which can multiply in surface diseharges or on mueous nentbranes, and there liberate toxins which can be absorbed and eanse inflamnation; the non-pathogenie forms are able to do nothing of this kind and for our purposes are negligible.

If we are dealing with a mierobe capable of setting up or of assisting to set up the process of inflammation, it is by no means certain that the inflammation will be of a definite, fixed degree of severity; every case of baeterial inflammation is a problem in whieh it is neeessary to gauge the virulence of the organism and the resistance of the patient; and we shall see that varying grades of intensity and rapidity of the process are thus set up.

Bacteria may attack the body directly, being carried to and implanted upon it from the outside, or from the mucous surfaces of the throat or intestine, just as the Esopian viper bit the countryman who warmed it in his bosom. Another form of infection is of great elinieal importance. It sometimes happens that an operation wound, made with the most carefu! asepsis, becomes infected; it is possible that there may have been some fault in technieal work, and the bacteria may thus have come from the outside; but it may also happen, and does happen, that the patient supplied the infection himsolf, and that bacteria were earried from some of his storehouses, the throat or the intestine, by way of the blood to the wound, because the wound is at the moment the part of least resistance in the body. This implies that there are bacteria in the blood; such we believe actually to be the case. It is true that blood cultures of the healthy yield no srowth; nevertheless, there are indieations that from time to time hacteria are being pieked up from the upper air passages and from the int stine, and that under ordinary eonditions these are rapidly destroyed hy the ageney of the blood and endothelium; but if living baeteria be :arried to a part where the resistance is low, as a wound, then in place if mulergoing destruetion they are able to make a foothold and multiply. 1/ne very important function of the liver is to kill off the bacteria earried from the intestine in the portal blood; for the portal blood pieks up wit only food particles from the bowel but also organisms, whose rimains can be found in the liver at any moment. It is true that the hieteria which eseape into the blood are quiekly destroyed by several - $n c i e s$, and the internal organs are potentially, if not aetually, sterile. h in these "ehance" organisms which eause the latent infections il: 1 the terminal infections, whieh last so often supervene upon some 1. Hic disease; an example of this is that a ease dying slowly of heart . ner is generally found to harbor some inflammatory proeess such breumonia, which arises not by infection due to highly pathogenic whes brought in from without, but from bacterio ofi.n of low Hence, whieh hitherto have been impotent to r" Fothold
within the tis.snes. In such a case the resistance is at a low ebb, and a small is mber c^{*} bacteria of low virulcuce doubtless sutfiees.

The proxess of inflammation is cansed not by the mere presence of bacteria but by the efleet of the toxins given off from them. To use a homely exmmple, one may think of each bacterium or group of baeteria as surrounded by a little halo of toxin which it gives off either during its life or after its. death through the action of the tissue juiees; the tissues lying within the inflnence of this toxin becoming inflamed. The cells whin face the toxin in its least diluted form sufler the most severely: and the cells further away in a constantly lessening degree.
2. Traumadic.-Inflammation may be set np by a very numerous class of physitend agendes; the surgeon's kuife, a blow, a erosh, a puncture, friction, movement (reëxciting an inflammation that has subsided), elecetricity, heat, and cold are all eapable of injuring or killing eetls; the rells, onee killed, have to be got rid of and their dead bodies, themselves, are irritant by reason of the chemical produets of the disintegrafon of protophasm; so that in every case of trama we have two faetors assisting one another in the production of inflammation. When the minimum of destruction is wronght, as in an aseptic wound, we have the process of inflammation in a simple form, viz., the series of events which we enll repair.
33. Chemical.-strietly speaking, the products of bacteria are ehemical eauses of inflammation, but under this heading we deal with substanees or gases which have a destructive effect on tissues; it is a familiar fact that antiseptic solntions have the power to kill and injure cells to a eertain depth; and the aetion of eertain products of the animal and plant herly is well known, f. If, the venoms of insects and reptiles, contharides, mustard, and croton oil.
3. Nervous.-Nerves can not only stimulate tissues, but em ir ${ }^{\text {itate }}$ them, and we find tissues that mudergo inflammation solely from this canse. Herpes zoster is a well-known example; this follows upon irritation and inflammat " of one or more posterior root ganglia; again, at times the cheek becomes swollen, red, and painfon, in short, inflamed, becanse a tooth in the area of distribution of the same facial nerve is the seat of trouble; this is the form of inflammation we had in mind when we defined inflammation as a reaction to referred injury; here the injury is elsewhere, but is referred to the part eoneerned.

The Difterent Grades of Irritation.-It was stated that the eells exposed to the most undilnted toxin are most damaged, and those farther away are less damaged, so that in the same field of inflammation there are cells reacting in different ways; it may be further said that if the same grate of toxin ie applied to two cells of different orders they will react in ditlerent degrees. Thus there is found the very greatest variation in grades of response to irritation, even in the same linited area.

This grestion of the difierent resisting powers of different kiads of cells will repay eloser consideration. We are able roughly to divide
the redls of the body into the parenchymatons and the supporting; the former are sperialized to do special work, and are exemplified by the uerve cells, liver cells, kidney eells, and so on; the latter perform more lowly functions, and are concerned in no skilled work, as it were; sueh tissues are the fibrous connective tissue, subcutaneons, or as the framework of organs, tendons, ligaments, fascia, and so on. The body' may be likened to a community of which the parenchymatous cells are the professional and the skilled members, and the supportive struetures the "laboring classes." In a general way, the professional classes are more highly trained, less robust, do not reproduce readily, and if one die, his place may be filled only by a person trained like himself. $\therefore 0$ it is with the parenchymatous cell in each of these particulars. On the other hand, the laborer does relatively simple work, reproduces randily, is unmoved by the ordinary turmoils of public questions, and if he die, his work is done by a neighbor who needs no special training to take his place. So it is with the supportive cell, in all these particulars. If now we have a poison of a certain intensity aeting upon a parenchymatons cell and a fibrous connective-tissue cell side by side, the former is more damaged than the latter, and what is sufficient to kill the former may only irritate the latter to proliferation.

At this point we shall consider the effeets of irritation on the individual rell of whatever kind. Let us suppose a toxin of very slight sevcrity. It will irritate the cell, stimulate it to greater activity: if a secreting rell, to seerete; if a supportive cell, to reproduction. If now the poison he a stronger one, it has the power of producing ehange in the eytopasin of the cell:-first, the change we are aceustomed to call cloudy swelling or cloudy degeneration; the eytoplasm swells, the outline of the all may beome less distinct, the plasm may appear more opaque; if the degenerative proeess goes farther the eell becomes granular, like ground glass, and it may show fatty, hyaline, or other degeneratim (although we do not know exaetly what eireumstanees determine ne form of degen ration and what another), and finally may die. This gradual adv nee toward death we have designated as a biobecrescent process; if the toxin be set stronger the cell may be instantly hilled. We can thus pieture to ourselves a toxin killing at once the (H) ncarest, causing the bio-neerescent process with subsequent death it ihose a little farther away, the same proeess with rccovery in those Int farther away, and eloudy swelling in those still more remotc, while thone farthest removed, yet within the sphere of influence of the toxin, an merdy irritated to activity of funetion, phagoey tosis, ehemiotaxis, iir reproduction. In every composite picture of inflammation, the Whlent must keep in mind that although we may lay stress upon winer more macroscopic features, yet in each field there may be cells in all stages of "siekness."

Inflammation in a Vascular Area.-Let us consider what happens i: unch a tissue as the ordinary lax subcutaneous tissue, plentifully - Mplied with blood vessels. In this, let us suppose that the irritant-
say a clump of bacteria-is multiplying: the toxins are being given off in all directions. The first step whidh is ohserverl on the part of the tissues is that the eapillazies dilate, and the stream, thomgh larger, beeomes slower; at the same time the lenkoeytes begin to drop out of the blood current and lag along the walls of the capillary, where presently a whole row of them is seen. These begin to progress through the capillary wall, hy a flowing movement of the protoplasm-diapedesis -and soon some are to be sren outside the vessel. Serum las also been exuling at the same time, so that the comnective-tissue eells come to lie well apart; many of these last are noted to be in a swollen state.

14s. 3%

Inflamed mesentery of frog: a, margination of loukocytes in the dilated capillaries; b, migration of leukorytes; cseape of red corpuseles; d, ascumblation of foukorgtes outside the rapillaries. (Nfter lRibbert.)

What is now going on is a struggle between bacteria and serum aided by leukoevtes and sometimes by tissile cells, for if the last are not too severely injured they will proliferate, urged thereto by the irritation of the toxim. The leukoeytes and the newborn cells of the part are actively "phagoeyting" the bacteria, and many mierobes are thus destroved. In the meantime the blool in the eapillaries is cirenlating, and the lymph outside of them is also, in its own slow way, cirenlating, so wat it will readily appear that there is great aetivity in such an area; the area in question is now a mass of leukoeytes, of eells of the part, old and newborn, soggy by reason of the exeess of lymph which has exuded from the eapillaries. Up to the present moment, then, we have a preliminary dilatation of vessels, margination of leukocytes,
diaperdesis of the same, exudation of serum, and phagocytosis. At this stage the part inflamed will show the classie signs of inflammation, dolor, rubor, calor, tumor; dolor, or pain, leceanse of the irritation of the nerve endings, rubor, or rednees, because of the excess of bloorl which is present by reason of the dilated vessels, calor, or heat, because of the increased floshing of the part by the warm blood, and tumor, or swelling. hecmuse the tissue is bulkier than it was by reason of the excess fluid, by the lenkocytes newly brought in, hy the tissue cells ncwly born, not to mention the greater bulk of bloon in the vessels. This mass of leukocetes and other cells is now on the point of becoming all abseres; if, however, the resistmine of the boly be successfinl, the bacteria becone eaten up by the rells, or attacked by the lysins of the serum, and the leukocytes, which have not died, wander away arain or are carried by the lyoph, the exeess lymph itself disappears, the borlies of the colls which have died are disintegrated, and the pieces "scavenged" or clared way by their living fellows, and the tissue becomes as it was at first, with the exception of the proliferated cells of the part, which remain. These fibroblasts in time herome true functioning conner-tive-tissue cells, and the total revilt of the inflammation is that there is a fibrosis, an increase of these fibres at the spot where the inflimmation existed. This contitntes the process of repair or almerption in an inflamed area.

It. however, the fight is not wou b! the cells but ly the bacteria,

1, adhesion of leukorvtes to the walls of a capillary in an inflamed area; 2 , noode of migration of a prolynuclear leukocyte seen under bigher inagnification, (Lavdowsky.) hit $11 . \operatorname{consider}$ what happens. We revert to the stage at which we have A -ugy mass of leukocytes, new cells of the part, bacteria and serum, in firt, "the inflammatory mass." As the bacteria multiply and give off more toxins, more and more leukocytes die by reason of bacteria inseted or of toxin absorbed; especially those leukocytes and cells tha: are most in the centre of the mass are apt to die, because their on. . 11 ind food smply is cut off by the dense erowd surrounding them, ann heir excretion is not earried away freely from them for the same rei "f: when they die, we find that the centre of the inflammatory lliat hecomes a mass of dead and living leukocres and bacteria float-ill:- srum-in other words, pus, and the whole area with its contained
pus forms an abscess. 'The tissues set alive bordering on this liquefied centre are in abse that is little better, and suppuration sprends, and the tissmes borkering the abseress, as it wrere, melt into it until the abseess either breaks to the ontside, is opened be iucision, or stops bey virtue of the tissue resistance.

Before wre eonsider low such a lesion is repaired, let us glance a moment at the varying grades of cellular implieation we meet. At the edge of the tissie bordering one the pus, the rells, leukoeytes and tissue rells alike, are in a bad was; many are severely hit by the toxin aul are dying; as we progress outwarl where the toxin is less strong We find cells that are severely but not fatally "sick"; farther out, cells that are perhaps in the state of elomdy or grambar swelling, only. slightly. "sick"; whereas on the outside is a ring of cells only exeited, called in ber chemiotaxis, irritated, and these form a kimd of leukocetic ring like policemen surromuling the area of disturbance to see that none of the oflenders-the bacteria-eseape; and, once the disturbance has subsided, to carry ofl the maimed or dead. In erery" iuflammatory mass" we call find cells showiny erery grade of damage, and generally speaking, the conncetive-tissue cell will suffer less than any of its fellows, parenchymatous cells or leukocytes.

The Repair of an Abscess.- If the piss be cracuated, it remains for the tissues to fill in the gap; this is dome by the cells of the part; the comective-tissue cells, irritated to reproluction, bring forth fibrobasts, large, soft, vegetative cells, which heap up, taking their nourishmont from the lymph and from the slips of new capillaries that begin to grow between them. These cells in the mass "orm granulation tissue (in the words of the laity "promd Hesh"). If the abseess be draimed, there is no great amount of severe toxin in contact with them, and they. rapilly proliforate and fill un, the cavity; if the pus still remain in contact with them, this acts as a permanent irritant and they are prone to be killed by its toxins; if the wound be much washed, the washing is apt to float them away; in either case the process of filling up is retarled. If, however, they get a chance, the space is quickly filled up, even overfilled by these hig, soft, young eells; in the course of time these cells become more fusiform, throw ont processes which anastomose with one another (see Fig. 4.3), and later give off or eontrol the formation of fine fibrils which appeer in the intercellular spaces, gradually grow smaller, firmer, more like aulult fibrous connective tissue, till finally: cach fibroblast has become a connective-tissue ceil, tightly bound to its fellows, strong, and smaller in bulk than when it was younger and softer. This is the scar; it ocrupies less space th:.. did the granulation tissue it represents, and therefore oucurs the contraction which characterizes the soner; it is dense, and this aceoments for its hardness and muvielding character; it is also relatively bloodless, through pressure upon the pravionsly abumbant capillaries. If the pus has not heen evacuated. it remains as a kind of foreigu body; its serum drains away, and from being liquid it becomes of the consistence of butter, then of the con-
sistence of cheese, and finully, dry or inspissuted. Memntime, the surrounding tissue has been forming granulation t'ssue alout it, und this granulation tissue hecomes in time scar tissue, and the senr in of filling up the kap where the origimel loss of tissuc neverred, surromuls the dried-up pus, as with in wall. The remmins of the pus in time frequently become permeated hy calcarcous muterial deposited fronn the lymph, so thint such nn ubseess may be finally represented by a monss of ealcifieation, surroumded by a wall of fibrosis.

The various changes noted in an inflamed area call for a inore precise deseription than we huve given, and some particnlars nony be ontlined.

Circulatory Changes.--With the mivent of the irritntion, the vessels momenturily contraet, and then dihnte; and yet at the sume time the How of blood is not epuieker, but rather slower, and the scrum of the hoorl flowing ont of the part is unore abundant and contains in higher proentage of solids than is ordinarily fomul. The cange in caliber of the vessels is not due to the influence of the central nervous system, but is probably bromght abont by some local effect on the vessel walls. I'le margination of the leukoeytes is not so much an active quality of the lenkocytes themsedves as cansed by a change in the endothelium of the capillaries, by which it gnins ua agglutinative quality.

The exulation of serum is mot merely an accompaniment of the dilatation of the vessels but is an indiention of some change in the endothelium; the exuded sermm is more burteriolytic than normal blood sormm, although most of this quality is gained at the site of inflammation, where it pieks up proteolytie, antitoxic, and bartericidal substances, the products direet and ins'rect of cell dissolntion, especially of lenkneytes.

In nll the preceding paragraphs we have said nothing abont fibrin firmation, which is so obvions an necompaniment of inflammation on arerons or a mocous surfice. Vet even in deep tissires it may exist. The sermm supplies fibrinogen, the lenkocytes fibrin ferment, the body
nits the necessary calcium in the medium, and fibrin is deposited in "te tissue, where ordimarily its existence is but a short one, becurse of the presence of proteolytio ferments whieh, readily produced by the M! ugenic organisms, quickly dissolve it.

The Endothelium of the Bloodvessels.- We have indicated that the emfothelial cells lining the bloorlvessels and constituting the walls of thu rapillaries are not "tiles" laid in, as in a mosaic, but are active rell joined to one another. They can expand and contract, they ean grosern to some extent the qualitio of fluid passing between and through them; they have even been seen to send ont preudoporia and seize lateria in contact with them, and they are active phagocytes. It is powihle, thongh not proved, that the large mononuclear cells of the hami are the progeny of these endothelial cells. Whe the capillary is rmifacterl, the spaces between them are small, but when the vessel is dilited, they are large, and it is through these spaces that diapedesis of lewhocytes occurs; it may occur that red blood cells are pustred out
through these large openings, esperially those which have leen streteled by the previous pastake of a leukneytr; hut the existenee of red-hlowel eefls ontside the ressils in an area of inflammation is mo essential part of the process.

Closely related to these condothelial eells are the ombothelial cells lining lymph spaces and the bubly eavities. These are cmpable of reproduetion; and the cells that we see born from them are large, aedophilie, hyatine eells that are netively phagoertic. These cells we find lying amid the tissue cells, and they are of the same order as the large hyaline cells given off by a serous surface. The fibroms eomeetive-tissue eell which we pieture as the hasis of supportive tissue is netually lining a potential lymph space; and the cells that we recogniz" as lining lymph channets nud lymph simises are the same kind of eell; the capillary endothelial cell is the same cell directing the flow of blood instead of lymph, and the serous surface cell is once more the same eell with a special function of protection. Therefore, it matters not whether the progeny of these cells be set free in the howl stream, the lymph stream, the tissuc spaces, or the serms cavities, for they, the progeny, are like cells, playing a like part in proteeting the body during inflammation. This part is to perforin phagoeytosis, and as fibroblasts, to be the cells that will fill up the gaps that have oceurred in the tissuc, and ultimately to be the eells of the scar.
The Blood Cells.-The leukoeytes are called to the part that is inflamed by the proeess of chemiotaxis. This implies that there is a passage of fluid not only from the vessels to the tissues, but from the tissues to the vessels, and the leukoeytes are impelled to the part where eertain substances are in greater or less concentration; it implies, too, a considerable diffusion of the toxins from the spot where they are manufaetured. We do not mean to say that a eall reaches the lenkocyte in a distrint part of the body, but we do think that of the leukoeytes that pass by way of the inflamed area the greater number are liehl, eaught by the agghtinative quality of the endothelimm, and remain to assist.
The leukocytes that take part are the polynuclear (properly polymorphonuclear) cells, the lymphocytes, and the eosinophites. The first of these, the polynuclear, with a horseshoe-shaped or, more at :1monly, a partite nueleus, are the most eommon in the affected area in a case of aente inflammation; they are active phagocytes, liberate during disintegation, possibly in life and eertainly in death, antitoxic, proteolytie, and baeterieidal substanees, move away into the lymph stream again or remain to be caten whote or in pirces by the endothelial cells, and take no part in tissue formation. These originate most frequently from the bone marrow, although sometimes from the spleen, liver, and hemolymph nodes. The lymphocyte plays a much more subordinate part in acute inflamuation, though an important part in later stages and in more ehronic disturbanees; weakly amoboid and
ched lownl purt cefls e of arge, ceils order jrolis rtive that - the cell Ifface ction. re set es, or ing a art is t will to be
tamel assage illes to certuin \& coll-mallicyte in ooytes e hichl, remain polyThe e ct :1ed area liberate titoxic, lymph lothclial te most spleen, m more part in oid and

PLATE 111

II. bliforing Cells in the Peritoneal Fluid of a Rabhit Twentyfoul Holl's alter Injection of B. coli into the Peritoneal Cavity. (Beattie.)

- hom the resative propurmon of prlymbelear and eomimoplable leako-

weakly phagorytic, it ret has beon seen to wamer throngh the vessel wall, and to ingest particles, but not the bacteria of suppuration. It min be that the lemphocyte call give rise to the plasma cell, of which more anon. The important point to note is that while in a rery acute inflammation, the result of virulent toxin, ther are rare, in a low grade inflammation, cansed by a less active toxin, they are common. So mueh is this the fact, that in a serons-sate inflanmation we are in the habit of comiting the cells in the exulate, and of conchuding that a large perrentage of lsmphocytes speaks for an inflammation of second-grade iutensity like tuberculosis, and not for one of first-grade virulence like that set up be the progenic organisms. The lymphocete origimates

Ftc. 39

Phamelear leukorytes infilerating the rircular musele laver of an arutely infamed appendix: a, n, melotherial erdis; b, b, polynuclear leukorytes; c, nucleus of musele cell,
in wreatest abmalance from the lymph nodes; it has, however, to be kept in mind that in the sheaths of most veins there is normally present af hun of lymphoertes, and that those which accumul "o in an arca of indimmation are not necessarily all derived from a blood, but Ihin it leosist are the result of proliferation of these locai lymphocetes. The eosinophiles we camot ret rank in their proper place; they have the me power of migration as the ordinary leukocytes, less power of pharnertosis, and appear carly in some acute inflammations. Like the munnelears they originate mainly in the bone marrow and they hitw an part in the formation of new tissue. We may say here that no \ldots with multiple melei or a partite nueleus does enter into tissue
building; these cells, as we stated before, are marked for an carly death, and are already on the downward road.

Fin. 40

Acute lymhaldotis, showing a lymph sinus containing (a) large endothelial cells, some breaking dowil, others (c) acting as phagocytes. To the left are numerous lymphoeytes (b) for eomparison.

Fifi, 41

From a typhoid lymph note to show the swollen endothelial cells or macrophages (a, a) acting as phagorites, C. different stages in development of sumb; b, the same undergoing disintegration.

Fig. 42

Splenic sibuses from a case of typhoid fever, to show phagocytosia by swollen endothelial sinus rells (a, a). These contain red blond corpuseles, in various grades of decoloration and disintegration; b, smaller andothelial cell; c, sinus ce!t undergoing disintegration.

PLATE IV

eath,
(3) E \%
.

Wandering Cells from the Peritoneal Fluid of a Pabbit Thirtysix Hours after Intraperitoneal Iniection of B. coli.
(Beattie.)
 ryten, red corplateles, almal bacteriat.

FIG. 2

"

is

1 Hiy Cellis (Monomuclear Hyaline Histogenous) from Pirltoneal Fluid Forty-eight Hours after Intrabetitomeal Injection of B. coli. (Beattie.)

The Fixed Tissues.-These play a very important part in inflammation, despite the fact that their cells are less prominent than the leukorytes; if the irritant be one of slight degrec, proliferation of the stroma cells appears from the first; if of high degree, the stroma cells at the eentre of activity may be killed, but those in the surrounding areas are excited to phagocytosis and to proliferation, and the degrec of toxin that is

(tranulation tissue seen from the deeper toward the upper surface: f, spindle cells (6broblasts), 1. -1 atmondant in deeper portions, where they also are becoming shrunken; $l y$, lymphocytes; u. c.allaries. (Ribbert.)
a le to kill a leukocyte is probably not able to kill a stroma cell, or a hil rous connective-tissuc cell as we have called it previously. In the ara of inflemmation and appearing there as a result of the proces, II. find three sorts of cell, which we will describe one by one. (1) 1. hyaline-mononuclear cell, whieh is like the rell appearing in the hinl, which, too, we have stated above to origin..te, in all probability, if :A the tissues; (2) the fibroblasts proper, oval, beeoming spindle-
shaped, originating from the fibrons comertive-tissue cells, and (3) the storallec. plasma cells.

The Mononuclear Hyaline Cells.- These are especially numerons on inflamed serous surface, and are defmitely known to arise from the endothelium of those surfares ; some observers studying other areas of the benly comsider that they come from the lymphoeytes, but this we are inctined to douht. Their functions of phagoeytonis we have already mentioned and they appear to enter into comection with the surroumding eells and to build up new tissue.

The Fibroblasts. - These are born as large, round cells beeoming wal, and in time they form fine filrillary comections with the cells nearby, hecome spindic-shaped, and ultimately form comective-tissue cells such as their parents were.

From a rase of pubucute colitis, demonstrating abundant plasma cells (b, c, d) surrounding a Fgenerating follicle of liwherkün (a) in which the columnar cellw have become detached from the hasement membrane.

Plasma Cells.- We here approach a topie still mansing considerable confusion. An important gromp of ohservers regard the phasma eell as of lymphoeytic origir. It is a cell, fomed in the tissues in cases of subacute rather than of acute inflammation, romeded or polygomal in s^{\prime} pe (Fig. 44) with eccentric nudens and basophile eytoplasm, often exhihiting a clearer spare or zome at one side of or aromed the melens. Once recognized it is quite eharacteristic. It shows little or no phagoeytic powers, nor, aecording to these observers, does it play any part in the development of fibrohlasts. These emonsiderations coupled with its frequent presence, not to say abmendane, in eases of inflammation of moderate grache have led observers to promulgate that it aets hy affording an excretion.

On the other hand, Maximow, a very eapable observer, has a con-

PLATE V

1-amulation Tissue. The Upper is toward the Outer Surface. (Maximow.)
':uमlliry eaclothelitm; new cap. endothelinm of newly forming H:ny: fh, filmoblants: l., polymuelear leakocytes: x., the polyblastu of

sideruble following in support of the view that the plasme cell is but one plase in the life history of what he terns the "polyblast," a cell that is, which may originate cither from lymphorves or eonnectivetissue cells, which may develop into fibroblasts nod so into comective tissue, or into clasmatocytes, large cells with pronomnced processes, which are constantly shed, into "mast ceils" of the tissues, or cells filled with large basophile gramules or into cells of the above-deseribed phasma-cell type. The matter is still under debate.

FiG. 45

Inflammation of a Mucous Surface. - In putting together the details which characterize an inflanmation of a mucous surface we have to consider not only the surface itself, but also the tissnes that underlie it for a slort distance, because these also are attacked by the irritant. In them the process is that which we have just deseribed. In the milder conditions what we observe is a swelling and active proliferation of the epithelial cells of the mueous surface, and the proluction both her these cells and by the small mueous glands of the part of abundant mucin. There is thus produced a surface discharge of serous fluid mixed with abundant inucin, loosened columnar cells, some few leukowites, and where these are more abundant, there may be present in this discharge scattered threads of fibrin. This is what is termed catarrhal inflammation. Where the irritation is morc extreme, there the columnar epithelium of the part may be completely east off, and "ith this the character of the exudate is changed from a mucinous to a more serous one with abundant leukoeytes, and with the formation and deposit of fibrin this forms a moist layer of interlaced fibrils that "Htangle in their midst leukoeytes, often bacteria, while the interstices :ire full of sermm. Add to this, there are generally: superficial cells that, ittacked loy the toxin, damaged or killed, have become separated and
now lie in the exudate, for such is the name applied to the material, solid and fhuil, which is given off by the surface. If the exudate contain mueh filrin and lie upon the surface, its tough consistence has given to it the name of a membrane.

We are aecustomed to use many adjectives in deseribing an inflammation of a mueous surface, lesiguating it ly that term which expresses its most striking feature. Thus, if there be plentiful elear secretion, we eall it serons or eatarrhal; if the leukoevtes be relatively numerous in proportion so the amomit of fluid, so that the latter is slightly opacue, we use the term seropurulent or mucopurulent; if the leukoeytes are so numerous that the fluid is yellow or white, we call it purulent; if there be much fibrin, fibrinous; if less, but still in appreeiable quantity, serofibrix us; if there is much fibrin and also pus, fibrinopurulent; if a meublrane appears, membranous; if the surface sloughs away, necrotic or ulcerative; if abseesses under the surface do not burst, or until sueh time as they do burst, phegmonous; if bloodvessels be ruptured, either on the surface or under it, hemorrhagic. It will appear that there are many monlifieations of the sane process; if one judged merely by the salient feature, one might think that we had to deal with many different kinds of disease, yet in each case the same march of events is happening, with the difference that in one it is this character wronh predominates, in the other that. Let us designate each feature in process by a letter-thus, let a represent the hyperemia; b, the exucation of serum; ε, the diapelesis of leukocytes; d, the proliferation of the cells of the part; e, the formation of fibrin, and so on. Each case of inflauration is represented by a, b, e, d, c, f, ete. If, now, we represent each salient characteristic by the large letter, we find a particular ease represented thus: a, b, C, d, c, f, or A, b, e, d, c, f, or a, b, c, d, c, F. Looked at carclessly or from a distimee, it might seem as if these were different eases, the salient feature only being iistinguished; but looked at closely, all are at bottom the same familiar process. Thus, it has come about that we speak of so many apparently different forms of inflammation; the truth is that the tissues are not educated to distinguish different irritants, and respond to all in precisely the same manner, showing differences of degree but none of lind.
Inflammation of a Non-vascular Area.-The non-vascular areas of importanee are cartilage, the lens, the cornea, and the outer half or twothirds of the cusps of the heart valves. Of these the cornet affords the most favorable region for study of the proeess. Here, in the slighter grades of inflammation, the main change seen is a swelling with subsequent proliferation of the corneal corpuseles. The leukocytes are necessarily few in number becalse only the lymph has access to the tissues; while few, it ean be scell that these gather, attracted by chemiotaxis, in and around the injured area. In severer grades of irritation, such as can be produced experimentally by inoculating into the cornea with a fine needle a small amount of pure culture of one of the pyogenic organisms, suceessive stages may be made out. As in the course of a
few hours the inoeulated mieroles begin to proliferate, it can be olser ad that the surromding eorneal corpmseles become distinetly swollen and show evidences of degeneration. With this there is a cimilar accumulation of lenkocytes ont of the surrommling lymph spaees toward the focus of irritation. In a few hours more, the circular vessels at the periphery of the eornea become dilated, and with this there sets in a migration of leukoeytes from the vein. White this is procceding the corncal corpuseles in the immediate area of haeterial growth break down, and the proliferating bacteria infiltrate over a larger area until such time as the acemmulation of lenkocytes from all sides forms a barrier arresting their further escape. From this point on, the inflammation is similar to that scen in a vaseular area with this notable exeeption, that obviously the ehemiotactie influence whieh led to the migration of the leukoeytes, exerts itself also upon the wall of the cireular vein, so that now buds or processes pass inwarl toward the affeeted area and then become developed into true capillaries, which may persist weeks and months after the acute inflammention las subsided.

In the heart values a proeess similar to that in the cornea is seen; the area here is exposed to the double insult of a toxie or bacterial irritation, and seventy-two blows per minute, so that ulceration is likely to ensue. On this is laid down fibrin and in it leukocytes, for in inlition interaction ensues between the ulecrated surface and the blood which bathes it. There are thus produced fibrinous vegetations, and the fibrin, in the course of repair, is replaced by fibrous tissuc. In those mases in which the irritant is not very powerfnl, it seems that there is a proliferation of the eomeetive tissue of the valve, without anything (hse, so that a heap of new fibrosis arises from the edge of the valve, and constitutes a vegetation of a fibrous kind from the very outset. ${ }^{1}$

Chronic Inflammation.-From the way we have insisted upon the miformity of the process of inflammation so far, it may be inferred that we are not in favor of building up a barrier between so-ealled arole and so-called chronic inflammations; and such is the case. Irr we to eall an inflanmation aeute if it reaches its height in one, tiln, three, or four days, and ehronie if it takes five or ten or fifteen? Wi. lon so, but it will be seen that the distinction is arbitrary. Or, if we are in doubt, as elinicians, whether an inflammation is acute or chronic, "rr, we to compromise and eall it subacute? As elinieians, yes. But from the pathologieal standpoint, it is unnecessary, beeause in all we \because the same mode of reaction, a, b, c, d, c, f, as we have said above. If the irritant be of low degree of strength, there will be less killing of ti-nte and more proliferation, if of high degree, more killing and less moliferation, more serum, it may be, and less diapedesis, but in every we: the proeedure a, b, c, d, e, f, runs through all, as the theme runs in i ! icee of musie all but hidden under variations.

[^3]The salient fentare of an intammation cansed her an intense irritant is exulation; diaperlesis onemes but little, bermase chemiotaxis is negative, and the lenkovere, wise in their day, remain away; proliferation can oeverr only at the outskirts, where the toxin is well diluterl; at the centre, even the stromerst cells are killed. The striking fenture of ant inflammation (ansed by a gente irritant (smela an one as we often dinically call chronic) is proliferation, beamse there is a minimum of killing of cells, of irritation such as malls forth abmolant exudation and iliapedesis. Between these two extremes oceur many grales.

But there remains a frepuently mate error to eorrect. 'low often we speak of allesions between the lavers of the pericardium as chronic pericarditis instrad of correctly callin! it the resulls of a past pericarditis. Pleural adhesions, nine times ont of ten, do not indiente a chronic pleuritis, that is, a disease yet active, but indiate merely the repair of a disease aetive long ago and now healed, as far as may be. Yet adhesion might be slowly set up by a mild! process of irritation, and such would be correctly enongh alled chronie plemritis, but this oecors rarely in comparison to the rapidly pronlued plenritis. Another similar mistake is to speak of a heart as the victim of chronie fibroid myonarlitis, when we shonld say a heart with fibroses which have resulted from old myonarlitis. The terminology matters eomparatively little, if it be mulerstoond that the process is essentially a uniform one; the student shonld take heart from the consifleration of the simplicity of the inflammatory proeess; if he mulerstand the imariable reaction of the tissmes he will see it in every ease of the disease, even if it be for the moment consealed by the predominanee of some one feature.

The Vascularization of New-formed Connective Tissue. - In addition to the proliferation of the cells of the part, that is the formation of fibroblasts amb, it may be, of plasma eedls, and large hyaline cells, it must be recalled that the vessels play an ative part in the later reparative stages of an inflammation and this partienlarly where there has heen artive destruction of tissue. In all such eases what is termed granulation tissue is formed. This name is taken from the appearance of a healing superficial womnd, the granulation being due to the presence of elosely set new capillary loops. On such an inflamed surface at first is merely a layer of leukoeytes with, it may be, a few fibroblasts and large hyaline cells, but immediately beneath these it ean be made out that the dilated superficial eapilaries show tiny buds or thickening: of their endothelium directed towarl the surfaee, and presently thes 'buds" elongate, sending proeesses outward, whieh processes from arljacent capillaries join, become more prominent, become thicker, are hollowed by the blood stream and rapidly assume all the characters of a new eapillary. From these new loops other loops are formed, advancing into the area whieh is to be filled mp, until this area is filled with a framework of new vessels, whieh are supported and sepasated bs the tissue eells whieh have eontinued to be simultaneously proliferated in the meshes of this framework. This constitutes granulation tissue,
or, on a surface, what the hyman terms "prond flewh." Only those who luve watehed ot large deep womd heal in a heulthy, growing child em appreciate the troth of the adage. "There is in the tissues an almost insuperable temdency to heal." 'The physieian may suceed in owercoming this tendeney if he le meddlenome and foolish. If there be in grambinting surface, remember that untiseptics will succeed in killing

Fia, 40

Formation of new vessely in granulation tissue: 1, from a Ziegler's chamber (formed of two cover--ligat Inft in the peritoneal cavity of a rabbit for forty-eight days; portion of firld bounded hy twor fi: formal new papillaries; betwern them can be seen the wolid buds and procemses of developink ${ }^{3}$ ' 1 rapillaries; 2, from a sinilar preparation to show formative cells, or fibroblasts, in direct connecIf :) with the endothelial proeesses. (Zit-gler.)
these tender, newborn eells, that a stream of water may wash them away, and nature may have to do her work over again on your account. If fin see pus on the surface give it a chanee to drain away if possible, lout remember that granulation tissue presents a very strong barrier to at urption, amil the pus may do less harm than the clumsy sponge that removes it. The pus from a gramulating wound was ealled by our fonflathers, who umerstood the drainage of wounds as well as we do,
"laudable pus"; and when you speak of "exuberant gramulation" do not without thought run for the silver-nitrate stick; gramiations camot help being exnherant.

The Infective Granulomas. - The infective granulomas are the heal eflects wrought hy certain protozoa, ecrtain bacteria or other forms of plant life, such as the 13. tuberculosis, B. lepree, B. mallei, actinomyces, blastomyes, 'Ireponema pallidhm, and even the larve and eggs of certain parasitic worms; the tissines build up a wall around the irritant, so to speak, and this mass of new-formed tissue we call the tubercle, the gumma, or the nodule, as the "ase may be. It is evident at once that the process of formation of such a "lump" is a conservative one, and tubercmosis, the disease, does not so much consist of the presence of the tubercle as of the destruction of the tubercle or other tissues by the bacilli and their products.

A word as to the classification of these diseases is in place. Long ago it was realized that the result of the irritant of tuberculosis was a "lump," the tubercle; this was aforetime called a tumor, and was classed anong tumors; when it was found to be of fibrous tissne, i. c., of granulation tissme, it was called a "tumor of granulation tissue," or a granuloma, using the termination-oma which we have made to signify the idea of a tmor. When it was discovered that the 13. tuberculosis was the eause of this gramuloma, it was designated an "infective gramuloma." Thus, one by one, the class has grown, as each infective agent has been diseovered; and now we are able to state that the process is purely an inflammatory one, and that the gramama is merely the lump that results from the proliferation of the culls of the part in response to the toxin of the organism eoncerned. In fact, all that has been said of the "inflammatory aren" above is true for the formation of the granuloma, although the process is a longer one in time; the toxin of the 13 . tuberculosis canses a dilatation of the hoodvessels, a morlerate exudation of serum, a slight diaperlesis of leukoevtes, and a great proliferation of cells of the part-the so-cilled cpithelioid cells, which term we mention only to rejeet; they shomld be called the endothelial cells or the proliferated cells of the part; white the centre of an acute inflammatory area, rich in serimm and badly damaged hy toxin, breaks down rapidly into pus and an abseres is formed, the centre of the granuloma breaks down slowly into a formless mass of dry necrosis-cascation-and a cascated gramiLoma is the result. 'Tuberculosis is, dinically, a chronic or at times, a subacute inflammation. Another point of parallelism between these agents and those consing acute inflammation is this: if tubercle bacilli are in sufficient numbers they ean excite an acute inflammation not to be distinguished from the resilts of the pyogenic bacteria. The same has been shown to be true of the ghanders bacillus, while in man, the nodule of actinomycosis has very commonly a central area with abundant polymelear leukocytes; in fact, contains true pus, while aromal this is a \%one of proliferated tissue cells.

The tubercle, the gumma, or the nodule, thus, is a mass of new-formed comective-tissue cells, and these cells are the essential part of the tubercle; the trained mieroscopist nust become used to recognize the gramoma by this; the giant cell, of which more anon, is unessential; the easeation is an unessential, save that if sufficient time be given it is an almost inevitable sequel, at least in cases of tuberculosis; the ring of leukocytes external to the mass is also messential, although the more aeute the proeess the more likely it is to be present; the proliferated tissue forming the "lump," the tubercle, the gumma, the notlule is the essential, and the only essential. And in most cases of these maladies the unit is the gramloma, and a eavitated lung is merely the final result of neerosis, secondary infeetion and what not on an aggregation of small granulomas.

I whor fe from a case of tuberculosis ol medium severity ol the lung: a, central caseation: b a giant cell; c, endothelial cells; d, connective-tissue zone infiltrated with lymphocytes.

Giant Cells.-Although not a necessary charaeter of a tubercle, the siant cell is very frequently found therein; this is eharacterized by a larse borly, made up of ill-staining, acidophilic, neerotie material, with $:$ resent, a ring, or a group of ordinarily stained nuclei; this is some: imes clearly the result of fusion of a group of cells to form a plasmodium romed a small mass of necrotie material or of baeilli-in other cases "Hert are indieations of aetual nuclear multiplication with incomplete toplasmie division. The giant cell is often found close to the neerotie art of the tubercle, and in this enge, or in the giant cells themselves, :r bacilli are to be most readily found. Interspersed, too, with the : roliferated eells of the part are lymphocytes and arely leukocytes"former are the "small, round cells" of inflammation-and on the :tide is a more or less pronounced ring of lymphocytes which have all attracted to the area of inflammation by chemiotaxis.

Here it may be useful to recall that the presence of the giant cell is by no mans limited to tuberculosis: we encomuter similar giant cells in other infective granulomas, in sphilis, actinomycosis, hastomyeosis, and glanders. A somewhat similar type of cell is seen filled with the

Fie. 48

Giant cell or cells from a case of inflammation of the subcutaneous tissue: a, a, cells
type; b, b, the saine in process of fusion into the mass. (Dr. Rhea.)
Fic. 49

Giant cell from centre of tulserce, showing processes and peripheral arrangement of nuclei, and Hurrounding cndothelial cells (e, e) and orcusional lymphestes (l, l).
lepra bacilli in leprosy. Wheraser forcign borlies ocenr in the tissuc, as shown in Figs. 36 and 44 , plasmodial giant cells may be encomered. Another tope is seen in the onteoclasts of normal bone, and apparently smilar to this are the giant cells of myeloid or giant-celled sarcoma.

Set other multinuchated giant cells are not infrequent in other forms of sarcoma, while in certain cases of Hodgkin's disease we may encounter relatively huge cells which are truly giant cells, hut have only one or two nuclei.

Diffuse Inflammation.-Sometimes the organisms of the infective granulomas do not set up the localized nochuk, but we find a diffuse fibrosis such as happens in the pa mater in syphilis; nor is this confined to the group of organisms whit cause the granulomas, for a good example exists in cirrhosis of the liver, where there is a general increase in the connective tissue of the part without there being any particular localization. It may be, however, that this diffuse fibrosis

wotton from a syphilitic liver which presented gummata along with nat naive cirrlicsis. The newWhat connective tissue is sorn extending between and cutting off ; ' of liver cells, which as a -alt are shrunken and atrophied.
i- all after result of the existence of small 11 . . granulomas. At times it appears to be censed rather by the tox the organisms themselves. such a fibrosis-- a cirrhosis-is common er in syphilis, as well as in cases where a long-continued expoae of the liver to the bacterial and other toxins of the alimentary ane leads to the fibrosis which is known as "cirrhosis of the liver." There is a further class of cases which we term "chronic inflammation," high arise in a way similar to this. Such are chronic nephritis, roiditis, and hepatitis, all of which we recognize as eansed by an thant, yet in which we think faulty metabolism and imperfect nutriII are also of some effect. It is supposed that under the influence of - curbed or excessive activity the secretory cells become degenerated
and die, the fibrous tissue filling up the space left by then; the two processes just referred to oceur simultaneously, the same irritant causing degeneration of the higher-elass cells and proliferation of the lower-class supportive cells.

Fibrosis and Inflammation.-So frequently has the proliferation of connective tissue been dealt with in comnection with inflanmation, that the question arises, "Is fibrosis always the result of inflammation?" The answer is in the negative; the formation of a fibroma or a new growth is, of course, a case in point; the oceurrence of fibronatosis, of elephantiasis, of macroglossia all indicate the readiness with which fibrosis occurs if there be an obstruction to the exit of the lymph hy its ordinary chamels. The obstruction of the lymph prevents the free drainage away of the toxins of the cells, which toxins, remaining, may exsite the fibrosis; this becomes therely a rase of inflammation; a'though, on the other hand, with the absence of obstruction of the veins there may be free diffusion away of any such toxins, and the process may be regarded as a result of stress, to be prescntly mentioned. Finally, there is the difficult problem that is presented by fibrosis of the intima of a bloodvessel in arteriosclerosis. Here we find two forms: in one, the intima is primarily tie site of change, and this we may attribute to irritation, but the othors are adapive, to strengthen the wall at a place where the medid has degenerated; such fibrosis occurs without any lakocrtic infiltration or formation of new vessels, and may be partly explained by what we have mot previonsly adduced as a cause of proliferation, namely, stress. If cells are put upon a constant not excessive stretch, or even are intermittently. exposed to such a stress, if they be well nourished, proliferation ensues, the distension acting as a stimulant. Here we have no injury; it is too great a stretch of the imagination to consider this as an inflammation.

We feel that this is a principle of wider application than is generally appreciated, the principle, manely, that mechanical force exerted either as pressure or traction upon a cell, is able to cause the growth and proliferation of that cell, so long as, at the same time, there is no interference with its nutrition, and the force acting on the cell is not excessive. Overstress or diminished nutrition will lead to the opposite condition of atrophy. What applics to the cell individually applies to cells in the mass; thus, as a matter of experienec, it is found that the constant pulling of a tendon upon a bony ridge is followed by increase in the size of that ridge, i. c., increased bony growth.

We may thus classify the fibroses:
I. Of Inflamiatory Orifin.

1. Replarement fibrosis, in which the fibrons tissue takes the place of other tissue that has been destroved. The "seleroses" of the nervous sustem, arising from glia, are here to be inchuled, as well as in part the fibrosis of "nephritis" and "hepatitis."
2. Proliferative fibroses, such as (a) the fibroses of the gramiomata, and those around foreign, inert bodies, and (b) post-inflammatory
fibroses in which the fibrous tissue continues to grow even after the irritant has ceased to act, as in keloid.
3. Post-fibrinous fibroses, which replace fibrin in a thrombosed blood vessel or on a serous surface (arhesions); these partake of the nature of both the above groups. They are replacement fibroses in that they replace the fibrin, and proliferative in that they occur where previously no tissue proper existed.

II. Of Non-inflammatory Origin.

1. Due to strain, as in some cases of fibrosis of the inti: of the ressels.
2. Neoplastic, e. g., fibrous tumors.

THE SYSTEMIC REACTION TO MICROBIC INJURY-INFECTION

The term infection is used in different senses by the pathologist and the hrgienist. For our purposes, infection is a process; it consists not iil the mere presence of pathogenic bacteria in the mouth, skin, or intestise, but in the growth of those bacteria in the tissues, in the diffuion of their products, and in the reaction brought about in the body he their presence. Infection is the interaction betueen the body and the microörganism groxing in it. This interaction may be local, and the proerss will, in that case, be one of infective inflammation already dis1.15 sed; but we are now concerned with the general disturbances which fillow such local growth, or the effects of a widespreal proliferation if the microbes.
The hygienist, on the other hand, considers infection as the mere presence of the harmful micrö̈rganism; thus water, air, or a community Hay. be infected; he distinguishes (1) sporadic infections, where isolated atis occur; (2) endemic, ${ }^{1}$ where a notable number of cases of a given dincase occurs year after ycar in a certain area, and (3) epidemic, where the disease suddenly affects a large number of people. Similarly, dicases of animals are sporadie, enzoötic, ${ }^{2}$ and epizoötic.
Causation.-We have alrealy considered the question of susceptihility to infection; it may be repeated that there are various ways ii . .hich susceptibility, inherited or acquired, may show itself, so that the opposition to the bacteria is less than normal; on the other hand, the harteria may he of so great virulenec that a normal power of oppositi. 11 on the part of the borly is not enough to protect it. Each case of in ertion is, therefore, the resultant of forces which are always varying;

1) 小, thore may be great susceptibility and virulent microbes, or great
-1 . reptibility and mierohes of low virulenee, or great power of resistance
pited against highly virulent mierobes, or great power of resistance
il dinst lowly virulent microbes. The result differs in every case.
The Course of Infection.-To indicate the course of an infection a I themay be given of a type case of typhoid fever. The patient on a . Aem date has taken into hii alimentary canal some typhoid bacilli.
[^4][^5]For a few days mothing is noted till symptoms of malaise appearlassitude, slight but persistent headarle, constipation, pain in the back, and so on. These grow worse instrad of better, and ten days or so after the ingestion of the barilli the patient is so weak and feverish that he takes to bed. This period has been the stage of incubation, during which prodromal or premonitory symptoms declare themselves, the stage continuing until the onset of a definite febrile state. For clinical purposes, it is customary to date the ithess from the first prodromal symptoms, which generally correupond with a recognizable rise of temperature. The patient \mathbf{r} has fever, general weakness, and various symptoms or signs rectable to the different systems: (a) in the nervous system, there may be irritalility or dulness, headaehe, and chilly sensations; (b) in the circulatory system, a rapid pulse, vasomotor disturbanees, such as flushing; (c) in the digestive system, dryness of the mouth, by reason of diminution of salivary secretion, loss of appetite or a positive distaste for food, abdominal discomfort or pain, constipation, or at times diarrhoea with foul stools. Day by day the fever rises, and the symptoms grow worse; ehange of the urinary seeretion is evidencel by diutin, tion of the salts, notably the ellorides, and inerease in other constituents, notably the urates; the characteristic eruption may show itself. In the early part of this stage the bucilli ean be found in the circolating blood, and later the serum begins to gain the property of being able to agghtinate the typhoid baeilli. This is the stage of fervescence. Following this is the stage of high, continued fever, or fastgium, with persistence of all the symptoms and inereasing weakness and loss of flesh. This may last for a couple of weeks, after which the fever begins to fall day by day-the stage of defervescence, which in turn is followed by convalescence, with a gradual return to health and strength. Complications, which are morbid conditions, either associated with the original eause or of other eausation, may occur during the course, and sequelm may follow. These latter are morbid states due direetly or indireetly to the original infection, and are such happenings as abseesses due to B. typhosus or inflammation of the gall-bbalder from the same cause; the latter may be a complication or a sequel.
The Period of Incubation.- The period of incubation is that time during whieh the growth of the bacteria is local and the disturbance local, and that time which follows during whieh the diffusion of the toxic products of the barteria is not sufficiently great to give rise to general symptoms; as som as these prolucts have aceumulatel sufficiently they give rise to the prodromal s? mptoms. It is to be remembered that the prodromal symptoms may be due not only to the toxins of bacteria themselves, but to the toxic bolies (albumoses) made from body proteins by the enzame action of the baeterial toxins. The perion of incubation will be understood to vary aceording to the toxicity of the germ, the amount of toxin produced (that is, the number of germs present), and the resistance of the organism.

Grades of Infection-It might appear as if a line of demarcation were drawn between!oce! infertions and general infections, and yet the differmees between the two are diflerences of degree, rather than of kind. The bacteria w!nc!. : hovice are of local oecurrence may be fomme in the blood; lately, the diphtheria bacilhs which was supposed to be strictly loeal in its habitation has been repeatedly found in the blood; the seat of election of the pnenmococens is the hing, but it also is found in the bood; the typhoid bacilhs works its local effects in the bowel, but is fomol in the blood stream. It may be considered that every organism capable of loeal proliferation is theoretically capable of being fonnd in the blood stream, and that in the case of organisms like the pyococei their presence or absence is due to the number of them that escape at a given moment, and the antagonistic power of the hood and the tissues. Further, with regard to the toxie products of hateteria, we are accustomed to designate their presence by the term intoxication, sapremic intoxication, or sapremia. This, again, is a matter wf degree of intensity of the toxic prodncts; thus, a mild local infection gives off a certain ammont of toxin, and this is carried into the blood and tissue fluids, lont is so diluted that we see no general bodily change wrought therebe; we negleet such a mild intoxication, but it is nevertheless present.
Before leaving the subjeet of terminology, it is neeessary to define the terms generally used; bacteria multiplying locally, and giving no vivile signs of their presence in the blool, evan if there be indication 1, toxemia, constitute a case of localized infection. If the bacteria not mily multiply locally, but are also evidently in the blood, and are getting forthold in the tissies (metastases) the case becomes one of bacteriemia. liach of the metastases now becomes a centre for the production and dilinsion of more toxin, so that with the bacteriemia the toxemia atrances equally. ${ }^{1}$

Fior clinieal purposes we are in the habit of making certain rough di-tinctions, dividing infections into: (1) fulminating; (2) aente; (3) praisting; (4) smbinfection.

1. Fulminating Infection.-This type of infection is characterized his - great a floonling of the borly bey toxins, and presumably by the infertive organisms, that the resistance of the tissmes is notable ineffectnat. The symptoms are those of great intoxication with depression in the hanctions; the heart beat becomes rapid and feeble, the blood pa -ure is lowered, the respiration is shallow and rapid, the patient

IIt tur experience there is such painful confusion in the minds not only oi students hn: if nechieat men in general between the terms septicemia, sapremia, pyemin, l.u : and general sepsis or blood poisoning, that for the sake of elearness we prefer I. We them. There ean surdy be no doubt as to what is memet by toxemias and Himia: they exphain themselves. For the instruction of the stutent, we would Int, as popularly employed, loealized septicemia is equivalent to loealized (in). (Leneralizel) septicemia to bacteriemia, sapremia to toxemia. Pyemia man used at at term to deurribn septirmia with metastatic abseesses, and I poisoning" as a cuphenism for any or all of the above.
beomes dall or emmatose, and the temperature falls, beeoming submormal. If the disease is one ordinarily presenting a lenkere tosis, a lenkopenia is present. Such an owrwhelming rapidity depends on a virnkent organism, or a large mmber of such organisms, or a low resistance, or all these influmes working together: but it has to be remembered that there are only certan bactoria which hav the needsary virulence. It has never beell possible, for example salt the virulence of the tubercle baeilns to so great ant extent as .1 , produce this fulminance of symptoms. Gencral bacteriemia,' scarlet fever, and epidemie cerchrospinal meningitis provide striking examples of it. So rapidly is the toxin produced, and so potent is it that it produces a degeneration of the ...ols of the capillaries, so that the borst, and peterhiae are produced; hence the purpuric rash that may be seen on the skin, and after death on the intermal surfaces of sum in case of intense infection; a marked hemolsis is also present.

It is a motable fact that these eases tend to exhibit, not only no rise of temprature but exon a submormal one; this means that the cells of the body are not stimulated to that resistance whieh is evidenced hy an increase of heat prodnction, and metabolic processes instead of heing rendered nore active than mormal are redneed to a low ebb.
2. Acute Infection.-This is the familiar form of infection which has bern deseribed, where in a uon-fatal ase there is a period of incubation, of forseremee, of contimed ferer, and of defersescence. The gradual defervespone is called lysis; a times, as in acute pmemonia, the temprature falls suddenly, be crisis. The conrse of comalescence may be interrupted be relapse (a repetition of all or some of the symptoms: of the primary infection); if this relapse oecors before the temperature has reached the normal level, we call it in intercurrent relapse.
\therefore Persisting Infection.- This is the form of infection generally called chronic, which is characterized by long contimance, during the whole of which time the infertive agent appears to be at work. Examples of this type of disease are fomm in tuberculosis, sphailis, etc., as well as in oreasional cases of infection hy the orlinary progenie coeri. It times the smonllering infertion bursts up into a blaze, and we note all exacerbation. Clinually, it is often the enstom to divide these infertims into stages, as is fome in sphilis, bat these have no sperial usethtness in the present comeretion, and it secms that, evell among clinicians, this monde of chasitication of smptoms is falling into disnse.
(losely allied to the abowe inferetion, is the remittent infection, as it is seem in rhemmatiom; at present it seems as if more than one organism were able to camse this malady, but the characteristic to whel we refer hore, is that there is not with defervesence eomplete recovery or total destruction of the organime the germ sems to lie latent, lighting 11 '

from time to the into antarente form of infertion. The germs anpear to work comparatively slowly and to develop meither a very high degree of intoxication nor so active a resistanere , the part of the body as "Ir are acenstomed to see in the acnte infertions. We now reognize more and more f 'le the frernence of latent infection, of comblitions, that i, in! which for momen and it may be vears, pathogenio bacteria perint in the tisines or cavities of the borly, setting up mo disturbance, hut capable at ang moment of so doing. We may instance the now "rli-known "trphoid carriers."

Subinfection. -This term indicates a light degree of infection such ar is expressed by the presenee of hateria in the bool, whith are not pitent chough to canse gross symptoms of infection, yet which do artally wear out the cells whose dute it is to combat with and kill thom. Normally, of comrse, bacteria are being carried anay from the intertine and killod in the mesenterie nodes and in the liver; when, in addition to this constant action, we find that bacteria are locally active, and that there is a local intlammation in the bowel, if we examine the unameric node cells: and the liver cells we find remmants of bateria, when mere granules; the constant destruction of more than ordinary mmbers of these means the more than ordinary wear and tear upon the erlls; liver cells, for instance, are thas the more quickly destroyed, anm in mang cases of cirrhosis of the liver, we believe this is a canse of fhe comlition, thongh not the moly one. It is not necessary that the wrimins be very virnlent; we think, in furt, that the ordinary bac"ria of the intestinal tract can and often do constitute the agent in flue instances of suhbinfections.
Terminal Infection.-It must have struek evervone who has had - Mr moderate amomit of experience at the post mortem table that in 1. is of chromie disease, such as heart disease, where death has been -f. alal, there is frequently present some infection, such as a lobular F', mmonia, or turbidity, from infection, of a long-present ascites, or What mot. Theser infections we eall terminal; and they arise not so much 1.: virulener of the organism as beakness of the body. We mean 1.. draignate by the words "terminal infection" those cases in which In. ration of failing vitality a germ, powerless at ordinary times, is Finderl to fasten upon the tissues and set up an aeute inflammation. sult a proces means that beason of weakness of the borly, a subinintion beeomes an arute infertion, the terminal infection being set !if ! the chance microörganism which may be temporarily eireulating iil " harol.

THERMOGENESIS AND PYREXIA

Frexia is a heightenerl bodily temperature; the state of body in il : a prrexia exists, with all its concomitants, we shall call the feb:le state or, briefly, fever.

Heat Production.-Heat is liberated from the organism under the following conditions:

1. From the fool, i. e., from the recombination of dissociated foodstufis.
2. Fron katabolism, i. e., from the oxygenation of tissine products. Metabolism breaks down the cell substance, and the products so obtaince combine with oxygen, giving off heat in the process.

Fever is accompanied by increased heat prouluction, and since the intake of food is generally diminished and the output of heat greater than normal, this increased heat proxhuetion must be due mainly to tissue disintegration and oxidation. The student may well think of the febrile state as one in which the tisues are being "burned up."

Heat Discharge.-Heat is lost from the body hy rarliation and by evaporation from the surface, and ly the passage of excreta. The discharge may be inereased, and the hody temperature lowered by d cation of the surface vessels, by increased amount of sweat, and by increased respiration, in which more air than usual is passed over the respiratory surface and warmed, and the evaporation in the lungs thus increased. This increased respiration (panting) is the means by which the dog, unable to perspire, cools itself.

We express heat frequently in terms of calories, a calory being the amount of heat necessary to raise 1 gram of water $1^{\circ} \mathrm{C}$. at normal atmospheric pressure; of the total diffusion from the luman body, less than 2 per cent. is lost in the urine and feces, less than 4 per cent. in the expired air, 7 per cent. hy evaporation from the lungs, 15 per cent. in evaporation from the skin, while 73 per cent. is lost by radiation and conduction from the body surface.

The lower the temperature of the medimm in contact with the bod, the greater the loss of heat; if the external temperature be higher than that of the body, and the air he so saturated with moisture that evaporation is prevented, the body actually gains heat.

In spite of the variation of heat prochetion and of heat diseharge at different times, the temperature of the warm-blooded animal is very constant (save in hibernating animals during hibernation), whereas cold-blooked ammals have a temperature varying with the external medium (poikilothermic). 'The adult healthy man has a temperature (rectal) that varies little from $9 \mathrm{~S} .9^{\circ} \mathrm{F}$. A botily temperature of 107.5° is generally considered the upper limit of temperature that is compatible with contimed life, although, of comese, instances to the contrary are here and there met. The lower limit is considered $9: 3^{\circ} \mathrm{F}$., with similar qualifications.

Heat Regulation.-With combitions of heat production so complex, a comstant temperature maintained speaks for a heat-regulating mechanism, even if we did not know that there are two sets of sensory nerves, one for heat and one for cold; also, injury or stimulation of certain areas of the brain or medulla raises or lowers the botily temperature. In short, there is good reason to suppose that there are in the
brain, or the cord, or in both, cells, some of which on stinnulation cause ant increasel production of heat, others an inereased loss of heat; these will are attected in varions ways, for example, reflexly, or by the temprature of the cirenlating borol, or by substances in the cireulating hoorl that aet upon them. So perfect is the result that it seems hard to think of the mechanism otherwise than ins controlled be one centre or a pair of elosely conneeted eentres. It must always be rentembered that the thermometer gives us information only as to the balauce or roinltant hetween heat income and heat expenditure at a given monent in a particular part of the borly; we gain, therefore, by the use of this instrument, mo aremrate mensurement of the amount of heat developed or lost.

FEVER, THE FEBRILE STATE

Fever, or the febrile state, is the train of symptoms and changes in lhe organism which eonstitutes the reaction to infection, whieh changes, although assoeiated with increased heat proluction, may occur with or without rise of temperature (be febrile or afebrile), and the rise of temprature itself is best known as pyrexia. The febrile state is associated "ith changes in the eireulatory, nervous, museular, respiratory, digestive anl "voretory systems, which we shall take up in order.

Pyrexia.-In an infection we can frequently recognize the fervescent or pyrogenetic, the continued febrile, and the cefervescent stages; the lint mamel may be very short, the temperature descending sharply, lif crisis, or gralually, by lysis.
Wie are wont to distinguish the varieties of fever as continued, in which the changes between maximmm and minimum are as slight as it health, but at a higher level; as remittent, where the changes in a day may ramge over several degrees, as happens in bacteriemia, suppurathin, and tubereulosis with seeondary infection; and as intermittent, "hirr: a succession of felrile attaeks, each with its ferveseent, contimul, aul ilefervescent periods, veeur separated by a eoutinuous ilitrat of mormal temperature of a day's or more dhration-as in matiria. Where several days elapse the fever is called recurrent, as in retapsing lever.
The Associated Disturbances.-Disturbance in the Nervous System.1 $1,1 \mathrm{~s}$ aml Chilly Sensations.-It happens often in the fervescent stage i.) infertioms that the patient feels cold, the teeth chatter, and yet, i i rmath, the surface may be hotter than normal, and the temperature ti and increasing in height. The faee and extremities may be pale.
T': pallor or local anemia suggests that the bood is attraeted to other
 in : - - magage of heat in the body for the time. The ehill is evidently i) 'hmenon incited from the central nervous system; in faet, the (f) may ocenr without exposure to cold or infection, in which ease it

150

appears to be wholly a part of the function of the nervone syitem Closely associated with the phenomenom is the rigor, in which fis: fibrillary contractions of the museles of the surfiace oneme, involuntary in mature. Clinically, the term rigor is ated to demote the entire areme rence, induding the ehill. So visible mavenar action resulta from the rigor; in fact, opposing museles syuchromenty contract, with the total result of a stiffening of the munde as a whole (whirh in the - triet signifieane of the word rigorl. When the mustle fibrits are artioe, just like the flapping arms of the ehilled comduman, theore rapid contractions mean work, and muscular work means the giving olf, into the booly, of leat.

Other Febrile Sercous Disturhamese- Here we refor to the aflecets produed upon the whole mechani-m, indianterl by the state of the reblat nervons sestem. 'These are perime of nervons irritation and nervont depresinn. In some cases of fever, there are headache, irri-
 in others, apathy, mental duhese, prostration, imahility to control or motice the passage of excreta, quict delimime, and coma. We mats. comsider that these phemomen are the remit of the toxins ating luper the erlls of the brain and corl, e-perially an we know that eertain toxins have a direct allinity for the nerve call boly and its part:-

Disturbance in the Circulatory System. Thic fehrile state, in general, is accompanied by a marked inereane in the rate of heart beat, evidenced ber increased pulser rate. With this there mas le a softer pulse, with dierotism, indicating arterial dilatation and howerel blowl pressure. or a full homoling pulse, so that it is cren still a enstom to divide fevers into the sthenic-those characterized by a morbid excess of vital, especially circulatory "urgy and the eontrary asthenic. Thee determinations are msmally made muly he observation of the pulse, whels is affected in any given case by so late. a mmber of factors that our dednetions are not of much value. Ons thiner we do know, however. is that mane toxins of infertive diacase direnty infl are the cardiac musele cells to degencration, and mot only these, bit the nerves whel control them, so that a toxim sum as that of diphtheria is ahle to canse sudiden death.

Disturhumer in the Blowl. - Infertion re. of of mild grade is able to canse :1 , is of red corpuscles; the ene upon white corpuscles is variable. No:t kinds of infection are attended by a distanct inerease in the lenkerstes in the peripheral hoonl, bit some, like typhoid fever, are attented liy a lowering of the mmber. In such a disease, a rapid rise in the lankerse comut indicate that a seromblary infection has supersend bint it mut abou be rememberen that a secombary infection may supervene withont a lonkonetosis, becanse the reate ion of the

 import. Smilarly, in an infection in which we are acenstomed io fin: a lenkoertosis, its absence is not of good import beense it surgests
lack of reaction on the part of the patient．＇The Hareras in the white
 in the slower，less intense infeetions，sumbtan tularenteri－，i in the
 in errtain infertions of the skin ant nhan m whenpink－ong

 inerenars the temperature of the denkl bathing the respiratur！eentre

 a－firation．

Listurbances in the Urinary System．The effect of $1 \cdot \cdots \mathrm{ri}$ in till ish In water of the urine，minl the chlorides and phosidatem．an｜n ：－ ＂rame the degree of coloratus，the uren，the uric and the h．+F ，

 hin and evaporation from the limgs；the dimination dile ：

 wrie acid and othe maremons dematiom are al malt metas－ wifm that is more．nome ham manal and if the bre hmes a af pros－
 1．rtly then of the tixale，in this sernse．infertion＇iten＂Hur up＂the patient．

In mast severe ine tions the urime contan alhman，and the kis are the seat of a domely suething worse：pare arhymatoms d
the hilluey is probible the te h here re it on th pitheme

 alouminuria，＂allul the nrine nerre dur．at ection is it li wxic to ammals；the lexin wer ape r in the re inlut the damage the hidh in their of rem：
Disturbance of the Digestive $\mathbf{S y}_{3}$ em．It i－in in tha：－ 17

 Hell in ame int，as is seen in the numes of the month and t at wore dige tive mals，in fact if the mets of the bomp，are woed be the toxins，and clonds welling ults with，no doult，

The Cause \＆Pyrexia．－The n．pro cause of felrile tem－ in ture is int inn．but there．न－et auses of prexia which Ft，ire meth1 ：he mective then through their toxins，for If：ial can reduced emperin ntit ons as well as by enzymes
and ferment-like boolics. The hemolvis following npon an internal hemorrhage, or upom the injection of blemb into the system or num the injection oe a large quantity of water, is arempumich !ey prexia. The sterile extracts of tissnes or tissir juices are similarly capable, as oceurs with the iormation of infarct, though minfected, or after burns and scalds; even the injertion of the extract of thyroid may he followed by a febrite temperature. Acemoding to Vanghan, all foreign proteins mining entrance into, the system induce prexia as the result of their aboorption and dismeriation ive the cells, and the bacternal proteins are iu) exerption. Drugs, such ais hydrogen sulphide and sometimes stryednine, have the power of raising the temperature, and eontimed expusure to a high surromuding temperature will also prove effective. Irritation of the heat-prohuring med hanism by way of the nervons system indnces prexia of another order. Wie have already referred to the experimental evidenee of the exisumee of this form. Clinically it is to be oheerved after certain injuries to the central nervons system, and possibly it explains the prexia of smistroke. We are not yet able to supply the explanations necessary for the grouping toge ther of all these varying cases, but the infective, the enzeme, and the tissin-cxtract reactions are somewhat similar, and atl of these are eases where reaction leads to the production of antibodies; just as iuflammation is the reaction to local injury, ferer is the proccss of adaptation to such torxic a!eucies as can br numpalized b: the development of unthe:lies. If the toxim be so strong as to kill quiekly, and without strony systemic reaction, we find that death is preceded by arrest of the febrile reartion and by " falliny tcuperature; the apparent exceptions, in which death oecurs in hyperpyrexia, may be eases in which a specifice action on the heat centre is pronduced.

It is perhaps mawise to attempt to find a purpose for every morbid phemomemon when our igmorame is still so ahsimal; nevertheless, in the febrile state, knowing how increased heat stimulates the cells to more artior metaholism, it is diflientt not to suggest the opinion that both the nervons disturbanes heading to herightemed bootily temperature and the direct antion of the toxins npen individual tissurs, in fart, all the phemonena of feser, lead up to and fasor that inereased activity of the boty cells which results in the production of speecific antibodies, aud that at an aceelerated rate, so that thereby the specific toxins are nentralized and recosery is arted.

IMMUNITY

In the course of infections and diseases set up by certain organic substances, the bondy develops certain antiboties by which the toxins are neutralizel, so that the disturbanee comes to an end. This is the process of immunization. It has already been indieated that the body has a cert: in immunity, absolute or relative, to deleterions outside influences of many kinds, which immunity is only another name for the

IMMUNITY

acrustomanee to surroumdings; the body, further, has immunity whieh is inherited. We know of certain aequisitions of inmmaty which are gradual; and when we study the question of immunity experimentally, it is onh- those cases in which the immmity is produeed in the course of a short time that lend themselves to our experimental study. We thens know little about immmity, save as it is produced in eonnection with some toxins, enzymes, and tissue juiees.
Non-specific Immunity. -In our diseussion of the defences of the buly we pointed ont that if mierobes of varions orders be introdnced in small nmmbers into the tissmes, unless they be of extraordinary virnlenee, they are destroyed in a very short time. In other words, the cells of the bolly have a defensive power whieh may be nsed indifferently against varions intruders. And even where we deal with the development of an acute specifie disease, we notiee this striking fact, that the mierobes of that disease are not to be found growing throughout the whole boly. Take, for example, a case of malignant endocarditis; the very fact that the heart valves are singled out, is in itself an indieation that the mierobes, streptocoeei, or what not, have been eireulating in the blood, and the very nature of this disease neeessitates that thre inierobes are from time to time being swept off the valves into the hoorl stream and earried now to this, now to that organ elsewhere in the body. But the remarkable faet is that in such eases we never find abseesses forming in the museles, and very rarely in the brain, ir in the mueoms membrane of the ahimentary cimal; and yet all these tiours have an abundant blood supply. Nimerous similar instances will be called to mind, and the only conchusion that we ean draw is that while certain tissues or organs are peenliarly suseeptible to the inroad of one or other species of bacteria, eoineidently other tissues are eharantristically insinseeptible, or, in other words, are engaged in destroying throe organisms and preventing thair growth, or in yet other words, prisess a local immunity: The museular tissue or the entothelinm of thie yesels supplying the museles may be cited as a well-marked example of this non-specific immunity, beeause no matter what baeteria attack The horly they do not make a foothold here, bacterial infections of the mincre being very rare. We mention these faets beenuse it seems that thi- anacity on the part of these tissues of destroying baeteria, without ally previous apparent edueation, must be the foundation upon whieh
binilt or developed the speeifie immunity toward particular speeies ") Lat cria, which we shall immediately discuss. Or, otherwise, the d" dopmont of specifie inmunity is not to be regarded as a new property il :"Ynirement, but as an exaltation of properties already possessed 1. Hie tissues, and if this be so, it must be kept in mind that in eaeh di "ぃい that attaeks the body this non-speeifie immunity is constantly il "urk, land in hand with the speeifie immunity that is gradually taine devenond.
Inmunity against Substances of Known Constitution.-It is known thini the so-called "arsenic eaters" of Styria can, after a few years"
addiction, consume withont ill efferts fome times the ordinary fatal dose of the drug, and while this has not heon confirmed with animals, nevertheless, there is evidence of a certain srate of immmity that rant be conferred on them. If ann arsonical salt be injocted into the pritomemu in shspension or solntion, a fatal dose is arompaniod by a dimimation of the lenkoretes that are fombl so abmanatly in the peritomeal fhid- a negative chemiotaxis is excited. If the dose be not fatal, there is at first a reduction, followed by areat inerease in the number of the lenkorytes, so that the peritmeal fluid may appear milky, and the lenkopetosis in the circulating homel becones very evident. Whether a smepension or a solution of arsenic be employed, the lonkoeytes are fomed to take it ip, and the larger the dose, provided it be not fatal, the more promonued is the lenkoevtic increase. In time, fixed phageretes also take up portions of the arsenie, which, in fact, specially tends to find its way to the liver. 'The fatal effects are evidently wronght upon the uervons tissur, which is suseeptible to such ann extent that one one-hmolredth of the subcutancons dose is fatal if injected into the brain. In prodncing immmity, a rabhit is taken of such body weight that 11 rere of a given sohtion produces death in forty-eight hours; 2 cee of this solution is injected at night, followed by 10e.e. (the fatal dose) next morning; but no ill results ensie. Arsenic is slowly eliminated; the ammal has 12 e.c.- more than a fatal dose in its body; death does not oremr becamse the first dose has exeited an exees of leukocytes, which are, so to speak, lying in wait for the second dose to be injected. This is, if mot true immmity, at least a form of positive protection, comparable to the protection to be spoken of later in disenssing "Issinell": resistance period" and to the non-speeifie immunity that has just been discossed. But there is more to be said. If after six or eight days this amimal be hed, the sermon of the bood is found to have aroured an woperty; \& e.e of it, injected into a fresh rabhit aloug with, or slightly before a minimal fatal dose of arsenie, prevents the death of the ammal. This prevention is the conferring on the fresh animal of passive immunity; a substance not , wate by the amimal itself. but introdneed into its body, acts as an antidote-ads the body tissnes in nentralizing or destroving the poison. The sermm of the actively immmized ammal contains something that it ! id not contain before the immunization. What is this something? We do not know; but we do know that it is not arsenie containing, is not a combination of the arsenie and the cell substance of the animal. The cell substame has elaborated something which is eapable of eombining with or nentralizing arseine, something which is capable of solution in the sermm, and of remaning in it for eight days at least. We are not manare of the eriticism to which the interpretation is open, but for dearness, we refrain from stating the fill argment for and against.
Immunization against Albuminoid Vegetable Poisons-Phytotoxins.-
There are cortain zeretable prisens of a proteid nature, distinct from the alkaloids and glucosides, extremety toxie, to wit, abrin, ricin, robin,
and others. Of ricin, one grain is sullievent to kill a million and a half sminea-pigs, and this not smdenls, bitater a perion of fome or fice days, subsecpuent to wheh arkema, inflammation, and neerosis of the tisimes near the point of injowtion set inf this suggests the existence of a ferment-like action with formation of some serond substane able th act upon the cell sabstance. If animals in ferl cantionsly upon - howly increasing doses of ricin, they gain surh immmity that they fan take a lumdred times the fatal dose with impmity, and ber injection whe immmity can be made so active that there can take five thomsand bimes the fatal dose. If the sermm of such an animal be mixerl with the prison, the injection of the mixture into an anmal pronhees no ill dferts, the poison being renkered inert.
licin has two properties-its toxicity, and the power in toxic doses w cause agghtination of the bowl corpmisles; ontside the borly it can rimse agghtination of the corpmseles; bint he the action of pepsin and hasochbrie aciol this agorhtination pewer is destrosed withont the merieity being diminished. Either ricin is a mixture of a wo substances, 1r, what is more likely, it consists of a very complex molecole whieh ean moderge slight chemieal change withont its specifie functions being m-atroyed. We may assme the latter, amblyow what some of these Hanges are; if heated to $100^{\circ}($. for two hours, it hoses all its toxir fmores, yet mimals treated he it berome immunized. The so modifierl linin (anllerd a toxoid) is no longer toxie, hut is capable of setting up the Whane in the borly necessary to the formation of an antiberly: li, asiin, ricin be added to the sermon of an immmized animal with it- antiricin, so that the misture is inert and mable to promece toxie rth se, and if the mixture be injected into an amimal of the same spectes :- ! ichled the antiricin, it still has the power of prod an anctive mommity; from this it is evilent that in the mixture of toxin and antitosin the toxin is not destroverl.

Once an amimal is immmized against riein it mave be bed again and astan and the blood remains antitoxie; the tissues seem to have acquired 1h. power of liselarging the antitoxin, so that it does not seem likely that the antricin is derived from the ricin. The vast preponderance in unantity of the antitoxin ower the toxin also tells against sueh a -mmsition. Evidently the antitorin is a substaure wholl! new to the "r mism, prodncerl primarily hy the cells as a reaction to the presence, in lism, of the toxin.

Immunization against Substances of Unknown Constinion. Enzymes and Anti-enzymes.- If a forcign enzerme be injected $\cdot p$ it adly. in: the bonly, a tolerame of it is acquired, by means 0^{2} : (i) me which is formerl. For example, goats injeeted wits. emet in fore a sornm which has the power of nentralizing rennct, and this if ' quantitative clegree, so that a fixed amome of sermm neutralizes a ' limite amomet of remnet of a known strength. But just as an animal it mized against a certain miorourganisn is not rendered immme (t) ather, althomgh chesely related, microirganisms, so in the above
"ase the blood sermu will not mentralize the efferet of "remets" stained from plants. Thus the anti-enarme is strietly specifie. 'The proeess of immmiza tion against animal and regetable enzumes sems at first sight : like the process that exists in immmization apainst bacteria; ! mitare is this important difference, that the lesedpment of auti-e shue is limited. The supposed reason for this is that the antionza ares t iree in the boly stimulates the cells to set free an anti-anti-engrou.

Aati-enamen exist in the body in the normal state; an antiremin is present in, bumal blood, and antiperpsin exists in the stomach moneosa, and an amberment to the digrstive antion of the panereas ean be isolated from: that organ. If it were not for these antiferments the juice of the stomad would dipest the eoat of the stomad as it digests most and the panereas would digest itself in life as it deres after death. We:pit: the existone of antipeptic and antidiastatic emzemes, they camot be artificially problued by the use of pepsin and diastase, nor does the injertion of fibrin ferment result in the profluction of an anti-fibrim-ament. The reason for this probalby is that the enzemes that are produced all through the body (for pepsin, diastase, and fibrin ferment can be produed be the cells of all organs) are so usual to the cells that ther do not excite any antamistie action.

Toxins and Antitoxins. One of the carly discoveries in bacteriology was that of the bonteria-produced toxins; this was made out espeeially for diphtheria and tetams: hacilli, which we now know are able to produee and give ofl diflusible toxins, the ectotoxins. Most baeteria proluce endotoxins, which are not ditlusible. The injection into animals of the diflusible toxins was fomm to produce immunity; the serum of an animal, so immmized, contains sulstances which neutralize the diffusible toxins, either outside or in the body, and these are the antitoxins of medieme and commerce. It beeane necessary to arrange a standard by which to measure these antitoxims, and this was done by determining how mueh would nentralize the unit of toxin, which is the smallest amomet thut suffices to kill a :50-!rrum guincu-pig within four drese. 'The production of antitoxin is a vital process, while the neutraliaition of the toxin appears to be purely a chemieal one of the nature of a loose molecular mion; toxin by itself ean pass through gelatim hilters, but when acted upon b: antitoxin fails to do so, that is, the fesultant of the interaction is a larger (eompound) moleule.

It is not possible to define the term toxin aceurately; toxins are substanees that act in mimite doses, that difluse with diffieulty, that are produets of cell metabolism, and that have not vet been separated in a pure state. We ean define them as poisons against whieh it is possible to ohtain immonity bey the proluction of antibodies, and we can state that they appear to be colloils, and that they are allied to proteins, but are not proteins. They may; however, be dissoeiation problect.s of proteins. Whaterer toxins be, it is nevertheless possible to speak quite definitively of toxin action as a process similar to enzyme
action; toxin aetion is a physieal property, dependent upon moleeular arrangement and shared by some, at least, of the dissociation produets of the cell.
Toxin aetion is the first essential in the profluction of antitoxin. If a non-lethal dase of toxin! be injceted into an amimal, it disappears in a few minutes, beeause it is taken up by the eells of different organs and by the leukoeytes, and can in most cases be reeovered from the organs. And here is the erux of the experiment. If tetams toxin, well known to aet upon the nervons system, be injected, it disappears, and ean be recovered from all the organs, except the neroous system. Ines this mean that the nervous system has none of it? Quite the contrary; all the other systems give it up rearlily heranse their eells have not entered into a lard and fast eombination with it, whereas those of the nervous system have. This elose binding or anehoring of the toxin in a tissue is the condition neeessary to the produetion of the antitoxin, and it seems to be the cise that the tissues that bind the toxins closely are those that decelop the antitoxins.
It is not necessary for the produetion of antitoxins that the toxins produce disease; the tuxin inay by heat be rendered harumess (toxoid), and yet when injecterl ean eause the produetime of antitoxin. This ineans that there are in a toxin molecule at least two parts, one of which is eoncerned with pro-
 luing the toxie effeet. If this fowir part be rendered inert by heat, of what does the remainder of the malecule eonsist, and what does it do? Since sueh a modified toxin cam if up immunty it is elear that it must have attaned elose union with the eell protoplasm; therefore, Ehrlich concludes that there is a part if the edll devoted to the function of fixing the toxin molecule to the tiwne nolecole, and this part of it is ealled the haptophore; the part of the melecule which is actually toxie to the eell body when fixed to it is , illerl the toxophore. This is represented graphically in Fig. 51.
It is evident from proof that we need not here give, that the cells Whith thas beeome combined with the toxin molecoles are those that prome the antitoxin, and that the toxin is not in any sense changed int antitoxin. It is evident that the haptophore of the toxin moleeule dut - mot do all the "binding" by itsolf, otherwise it could fasten upon an. "Il of the borly, and this power it obviously does not possess. There
mast be a degree of reepptivity on the part of the cell. A shmating angine mas have a compler, hit it camot comple to a car mess the rar also has a compler. bihrlich has devised a conception in graphie troms of the proces. If we saly that a toxim molernle has a ecrtain eompler, it folman that the cell mont have ome to fit it ; bit the complex edl has to provile complers adapted not only to the compler of the toxin molerole, hat to varions nther molernkes other toxins, footstutls of dillerent sorts, and so on.
These alapter complers of the cell mokerole, adapted to mame different forms of complers on foreign monemes he has called receptors, or sile-ehains. From ones chemial stmle, it will be recalled that we depiet these sile-e hains as reachine ont for certain substances to satisfy them-ther are unsatisfied affinities. 'To go back to the picture of the toxi molecole, it will be seen that the side-ehain is reaching ont to satisfy its allinity for the huptophore part of the toxin molecule, that compler attracts eompler. It does not matter whether there be a toxo-
114. 82

phore part of the molecule or not; the toxophore part of the molecule has 10 power of sitisfing the side-chain, and camot comple with it ; bit if the haptophore part join with the call the tomophore part is hronght into dired commetion with the cell, and the toxin can thus heeome part of the cell; in other words, cin attack it. To apply this to a praretieal vase, hat us take that of diphtheria antitoxin; the toxin molerole fastens on a cell bey its haptophore part and its toxophore part acts mon the wh; as a consequence the eell throws ont mans additional side-chans: antitosin molecnles, which beeome free in the book; the toxin moleenles pick these up, eomple with them, and so are satisfeed without reaching the cell at all.

There is a normal discharge into the blood plasma of a large number of pootential antitoxins, quite apart from the stimmlas of special toxins, so that one is tempted to thank antitoxins may not be so purely specific as has been stated. Firlich's "nide-thain" theory supposes that a cell once stimmated to perform a certain act does not necessarily cease
doing so when the inmerliate need is past, but keepson produeing them cmimmally wen after the stimulns has been remover. 'Tle toxim moldcolle stimulates the all to throw ont reeceptors like the receptor which first fixes it. It is simposed, in terms of the theory, that these fresh reecporess are contimally thrown off and constitnte the antitonin. It is convenient, but difficult, to molerstanel how this thing happens, and at this point we propose to indieate a molifieation of the side-chain theory as it is ordinarily mulerstomed. As we lave indieated before, the cell consists of eytuplaism and murcopplatm, not to lay stress mpons the paraplasm. When a toxin heremes absorbeed into the cell, we do mot
 in the extoplasm anm combining with the siderelains of the biophoriemoleculs, dissociating them from the molecoles. If there are enomgh of surch toxis: molecules, the biophorie molernle loses sidecriains so rapirlly as actually to be destroyed, "pulled to pierese." This dones not mean that there minst be a texin molecmle for every side-chain detached, but rather that enzome action, as we have explained it. must play a part, and that a towin molecole, having detarlied a sidechan is free to break itself away from it, and at mer fis mpon and detach a new side-chain and another and set another. Only upon some onel assmuption, we think, is it posible to explain satisfactorily the cates where a minute amomen of toxin can kill large ammals. ilic think that poisons, other than toxins, wreak their eflects hy a siugle art of mion with the hiophoric mass, while the toxins must be able to awt like fermones, with a repeating action. If we were to suppose that the toxin molecule made a single art of mion with a side-elain, it is larrol to see why the dissocciation of a single sille-elain shomble at omer Gimse the biophoric mass to set free a large mumber of similar sidpNains; but if the toxin molecole shomld be able to repeat this act in funck suceession again and again and set again, we cem imagine the a, Il establishing a labit in the production of the new sidneelains. It nill loe maderstoonl that this implies aetivity of a high order in the hinphoric molecule: it is precisely this activity that marks the resistinge cell as different from the eell against which the toxic attack is at mine snecessful in cansing cell death. Lat us digress here to give an "Mample: insteal of the ahstract toxin molecole, real tetanotoxin, inscall of the hiophoric molecule consiler a single cell of nerve tissur: Ihe tetanotovin joins with the receptor for it and detaches it, amd freeinsiteelf from the receptor it has takem up, there hegins a race between win and cell, as to whether the eell can prodnee more remptors than the toxin can detarlh; it it cala, the excens of them, contiming to be
 i. fle result of an maneressfinl texin attack, just an the soldiers of a -u riwn berome more efficicut by reason of rach oremsion on which the ii. wher attempts but fails to capture their stromgheld. It will be seev
 th a luvering, so to say, in the eytoplasm, and not npon it being part

Fッフ. 53

The anthors' comeption of side-rhain aml antitusin production: 1. A biophorie molecule wituat-il

 by at trating to it other (fondstuff) molecules such as E, having the right onter of haptophorous group-
 whisfy the sideorhain, but hetach it so that the wompound. $1-E$ beconus fre in the cytoplasm, wr dischargel from the erll (active katalolism). 3 A toxin molemde F, diffusing into the eytoplasn hes strunger uffinity for the sidu-shain. I than has the biophore, eombines with it and detaches it; but When tetachet and free in the rytoplasm other malecules (6) present in the "ytoplasm have now : tronger aflimts for the I modety of the componad A F and eombine vith it, hibrating the tosin

 Whastitutes the "xtrarolluhar nntitoxin. 4. In the presente of abundant \mathbb{N} and \bar{y} nollecules the sidechains A become built un in series, and this whether attarhed to the biophore or free in the cytoplasm; the nure there are freed by the action of the toxin, the greater under these eonditinns will bo the proHuttion of antutoxins; thas the presenve of the toxin molecule F wimulates the reil to the produrtion of increased numbers of the molecules of the particular side-chain order upon which it exerts specific action.
of the hiophorie molerule. Our ink of antitoximproduction is expressed Eraphionlly in Fige, i:3, the thorongh study of which we would counsed.

The Mode of Union of Toxin and Antitoxin.-If toxin aud antitoxin he allowed to mite, neither is necessarily altered in the process, because at least one of them ean be separated unchanged from the mixture; finther, toxin nentralized by antitoxin may be neutral for animals of mes species and poisomons for those of amother, which may be explained by the statement that there are, in the bloon of the secend animal, - bhistances with so strong an alfinity for the antitoxin that they unite "ith it, letaching it from the toxin, which is thos left free to aet. If twxin and antitoxin be allowed in vitro to act one upon the other, thes. herome more closely bound one to the other, and in viro the longer the toxin aets in the cell the more firmly does it become fixed to the receptors, and the more difficult is it for the antitoxin to deach it; thus the later in the course of the disease the antitoxin is injeeted, the lesis chance it has of being effective. The very fact that antitoxins can cutcr the cell and arrest the infective process bears out the supposition that the toxins when they are setting up cell disturbances are not actually fused into the biophoric molecule, but are acting upon it from withwit, that is, in the certoplasm. The action of antitoxin scems to le hait: (1) it neutralizes free toxins in circulation, so preventing their irtion upon the cells, and (2) it gains entrance to the cells and there detaches toxin molecules, therely setting up the excess of receptors meresatry, as well as neutralizing the toxin molecules temporarily set free.

Jnst as enzymes cause the development of anti-cnzymes, so other dithisible-cell products, partieularly proteins, have a similar power.
Precipitins.-If the culture fluid, in which certain germs have been urnwn and from which they have been removed, be injected into the animal body, there appears a substance-an antibody-in the blood \because rimn, so that it, adderl to the original culture fluid, causes a precipitate of the proteins in that fluid. These antibodies were originally called coagulins and, later, precipitins. This power is possessed not only hy whifere culture fluids, but by many proteid substances of animal and \therefore artable origiti, such as milk, egg albumin, horse serum. globulins fran hood, albuminous urine, pleural exudate, vegetable proteins such i. "hestin, hordein, etc. The aetion of these is remarkably specific; for "ample, if human blood serum lor is ected into rabbits, the rabbits' urnm ciuses a prccipitate in hman sm, but not in dogs' or goats' itrm. and this constitutes a valuable nedico-legal mode of deciding if: Hhoul stain be caused by human or by other bloorl. But, still deatin: a ith this example, although the treited rabhits' serum inight not 'i. ': a precipitation in dogs' or goats' blool, it may in that of the en in or the orang, because of the relationship that exists between 11. ant these animals. The more nearly two animals are related, 1.. Water likelihood is there that the proteid substances in their h.... I are the same, or similar, and that they will give rise to the same 11
or smiar antilanhes or precipitins. Nowertheless, the prempitation is mot marked with the homologons sermm, that is, the sermon of the
 and note that the most marked preeppitation of all will weror with the sarmon of the imblicidul that smplied the original sermu.

The different proteins in a hfoud arrom lane something in commom, (6) that the prexipitin developerel bey the injection of ome protein may
 arls. We injerted, the antiboly so prohlared, when alded to whole blood, "all pronher hemolysis (serep. Hais).

In these experiments, the precipitable sulstance is considered to be: the main protemil sutstamere of the thaid that is nsed. and we suppose that the artion is detinitels speritio for each protein, ewon thongh this implies that there is an emormons manter of proteins, each different from amother. As there are toxins and toxoids, so there are precipitios and preeipitoids and even mitiprecipitins.

Agglutinins. Tgghtimation consists in the dmpling of free bacilli in a fluid merlimm when there is added to that medinm the sermm of inn individalal previonsly inocolated with hacteria of the same speries. With this chmping, the bacteria, if previmsly motile, become motionless. This eomstitutes the Widal reaction which is in common use, with this differenee that in the latter the eomerse procedure is carried ont, so that the remilt shows whether the individual athording the sermon has or has mot been infered with typhoid hacilli. Agrgatination tests ran ter dome with momotile as well as with motile organisms, and are ohtained with the organimens of typhoid, desentery, tuberculosis, plagne, anthras, dolera, and with Bacilhs coli, poe amens, pnemocorens,
 extent. that with mhtird! high dihutions of the homologmes sermm, the particolar organism concerned is the only one to show ehmping. The reartion "an the otheread mater the microseope or in bulk, where in small tulns the formation of a flocenkent serliment is seen; living and Wead bacilli alike promere the phemomenon, and the injection of dead harilli ralnas the formation of agyhtinins. The power of cansing agrontination may remain in the sermm for a long time after the infertion is past.

We cammet say "hat agghtinins are, hat we know that they are resistant, that they withetamb drying, light, and putrefartion and a comsiderable degree of monst heat ($62^{\circ}\left({ }^{\circ}\right.$.) : like antitoxins they may he present in mormal arman; the fact that they ere not effeetively present in firtal hlow or in the lirs sears of diblhood gives weight to the smpmition that the may the "ansed be" "suthinfection."

 teria). It is further (wident that one orgaism ema rive rise to more than one agghtinin, and in the ease of hactoria siat are related to one another, some of these arglutimins are the ame. We think, there-
iore, that a speries of organism 'an give rise on the one hand to an asyhtinin that is sperifie to itself, and to others that are also eapable of heing formed bex other related organisms. Thas hatilhos I man lead to
 form I), E , F ', (i , and II, and so om. "The nature of the agghtimation promess is probably that the agghtinims bring abont an abteration in the moleconar attraction or temsion between the bacteria and the fluid turdinm. We wonld correlate with this the gathering into romleanx of the bhod corpuseles, ant the phesical experiment in whieh matehes tw represent hateilli) or disks of cork (to represent redthlood eells) are mated with hard soap :and floated in a tub or water; they float about frew till the water is fantly adinhated, and then they gather together intu dhmps; if the water be remberal alkaline, the elumps if broken up du not reform. Fïst, there is probable a junction botween the agglntinims and the harterial exll, and as a consequence a phesical change i, "rought in the melium in which the lie atul in the surface tension of the hacteria, a change with whieh the salts are conecerned.

Cytolysins.-The blood of one person injereted into the borly of anther mare lead to the disobotion of corpmseles of the latter individual
 "ith small amounts of the blood eorpuseles of an animal IS of mother -weips, within a few days the hood sermon of A gains the power of "laking" the blood of B3, that is, of destroying the red-blood eells of it with liberation of the hemoghohin. The injection of the corpuseles Anals to the formation in the blood of A of a eltotoxin or cetolasin. When this was discovered, a series of similar lasins were determmed, indmbing leukolysins, which are madre by the injeetion of lenkoestes, the Lenkolysin being suecific for the kind of letkoerte introdueed. smilarly, nephrolysins and hepatolysins were diseovered, able to sat uf degenerations in the kidne? and liver cells respectively; in faet, the edls of every organ seem to have their specific lysin able to aet "- wrially upon that organ. The destrnetive effeet is most marked Whon the animals nsed are of widely different species, in which ease the lysins are called heterolysins, bit there is some interation even lurquen animals of the same species (isolysins). But it is not possible the manficture experimentally autolysins, that is, substances derived frum in animal which con break up its own cells. This observation i i: keeping with the impossibility of making anti-enzumes to the manom emzenes of the boll:. Before leaving this part of the subject it i- meresary to note that while a evelolysin acts most powerfully upon thin lls of the special kind which constituted its antigen, and in reaction "Whird it was prodneed, it may hase a certain lesser cffect upon other will and this is not wonderful when we eonsider the eommon origin of "werlls of the body and the likelihool that they will, therefore, have t.) in qualities in common. Just as occurred with precipitins, if cytolypitins, f bacmore ted to cantiously injected anti-eytolysins can be obtained, and these Mitralize the action of the eytolysins.

The Mechanism of Cytolysis. If a guinen-pig las ruhhits' corpuscles injected into it, its sermm quirkly beromes matise in breaking up the rabhits corpusches, mul is then called immune, but if we hent it to 35° or $\mathbf{6 i} 0^{\circ}\left({ }^{\circ}\right.$. the lomolytir action is urresterl, mul such sormm is said to be inactivated. If we mis rahhit- ourpusele and hoaterl (inactivated) guinea-pig sermen (which calli forth ne homols sis) nud add to it normal guinea-pig or rablit sermin hemblysio dow take plate. This means that heating the gumen-phes sermin has destroved sumething which the normal sermun cam restore or that thers is something present in
 serum that is necessary to hemolysis. 'Ilere most be more than one boly preaent, becanse non-inmune gulno:-pig sermon is not able by itself to produce the effect. In every cawr of culolysis the existence and combined action of these two factors com be shoms. The substanee developerl in the sermm of the immunized a nimal

Combination of cell a, nutum crptor b. and complement c. Thi" amboceptor may unite willa the rell, hut by itemf iommot affeed it. The complement cammot unite With the crll exrept through the amboceptor, having no maptation to the rell directly. is called the immune body or the intermediate body or amboceptor; and the body present in the normal (and in active inmune serum) is the complement or alexin. Both are present in the cytolytie sermm, and in fuct it is by virtur of their presence that the serun is evtolytic. From experiments we deluce that the immune bonly can attach itself to the cell, but camot disintegrate it, while the disintegration is lone by the complement acting with the immune boly. (iraphically we express this hy Fig. 54, in which it will be seell that the immune boly is imagined as eapable of a double attachment, lience the naine amboceptor, ${ }^{1}$ to complement on the one hand and to cell on the other. Nor must it be thought that complement and amboceptor are merely theoretical nomes, for each has a definite existence and is as real as if it wre a chemical enclosed in a bottle and visible to the eve. Further, in the interaction of complement, anboceptor and cell, an exact amount of each is necessary for a perfect reaction; an cxeess or lack of one or another leads to an imperfect reaction.

The Existence of Different Kinds of Amboceptors.-If a goat be doully immunized to both grinea-pigs' and rabhits' red corpuscles and this goats' serum be used npon guinea-pigs' corpuseles until no further hemoIysis can be ohtained, we find that there are yet amboceptors in it capable of lemolysing rabits' corpnaseles; the goats' serum thus eontains two distinet sets of amboceptors, and many other such experimonta lead us to derluce that there is a multiplicity of immune bodies (or amboceptors).

[^6]The Existence of Different Kinds of Receptors.--It follows from the lat statement that the cells must have multiple "couplers" or receptors, and while eacla cell may have a large series of these, the series is not an intentional ore for the redls of diflerent individuals of the same species; for $\cdot .$. .! e, if we inoeulate a goat with sermun from another goat, the ormm obtained from it will bemolyse the corpuseles of some but not of all goats. We may, express this graphically loy saying that if goats' mopuscles are capable of having a full series of receptors, a, b, c, d, e, f and we nse fur experiment a goat whose cells lave receptors a, b, anil r, its serum will come to contain amboceptors for a, b, and c, but not for l, e, f. If this serum with anboceptors a, b, and c, come in continct with goats' corphseles possessing receptors a, b, and c, it will de-troy them wholly; but if with corpuscles possessing reecptors a and c, it will oily partially destroy thent if with corpuseles prissessing receptors d, c, and f, it will have no eflect on them.

The Existence of Different Kinds of Complements.-Much debate has then place upon the question whether in a given blowl different comHements exist, and without recapitulating the lengthy evidene: we may state that it scems likely that there is multiplicity of complements. Ni. may say that there is in every normal sernm a series of complements, :11. I again that, in different animals there exists a certnin number of ith lical complements, identical at least in their haptophore (or eoupling) parts, although the toxophore (or destruetive) part may be different. Iust as was the ease with the toxin molecule, so the complement may In imagined as of two parts; just as the toxin could be motified to a wimin, so the complement may be modified to a complementoid, which will still have its old affinities but will have lost its eytolytic powers; till, such altered complement can join with the immune body, and the. toxophoric or certolytic part being powerless, no damage to the edll results, but other and active complenent is prevented from joining.
Lastly, it may be pointed out that the anount of complement present is a variable quantity, and it may by various experimental means and in distase be reduced, or may, by the injection of substanees like blood plat ma anl hroth, be inereased.

Bacteriolysine - As inoculation of animal cells leals to the production of bolies cansiug the rlestruction of those cells, so has the inoculation of regetable cells, baeilli for example, a like result; thus to whain perfect immunity against bacteria which decclop endotoxins, two di-vinet processes have to be carried out: (1) the development of ha: terimsis wherehe the endotoxins become liberated, and (${ }^{2}$) the frmation of anti- (omb) toxins. Nor is it by uny means easy to attain th. two results; it not infrequently happens that having gained the 1i) * it dose of the living germs will canse death in a relatively short frint: the lacteriolytic power that has been acquired, destroying the i., 'wria. liherates rapilly so large a quantity of endotoxin that the an mal die's of intoxication. To combat such an endotoxin, it is necesvi: to enploy a method different from that used in neutralizing a
diffusible toxin. If, for example, a guinea-pig by snaccessive injections of one of eertain pathogenie organisms be rendered immune, and what would ordinarily be an abundantly fatal dose of that organism be injected into the peritoneal cavity, it will be seen by removing peritoneal fluid from time to time that the bacteria are mulergoing destruction, and this apart from the process of phagocytosis; the bacteria are seen to become motionless, wiswd, to become rounded and then melt away by a process of grachal dimimition, like a graim of sugar in water (Pteifer's reaction). What is happening is that the immmization of the animal has produeed amboceptors and the normal serum supplies complenent, and the bacteriolstic effect is prod!eed upon the bacterial borly:

The amboceptors and complencits are called antibories, and exist in the serum, and even in the plasma of normal aninals, although not in large amounts: inoculation by a speeific germ is needed to call forth amboceptors abundantiy; the amboceptors, as we have said, are multiple, as appoars frem the fact that an animal immunized agains ${ }^{+}$ eholera and typhoid provides a serum that will destroy cholera, and subsequently also trphoid organisms. The appearance of the amboceptors is not immediate, but oceurs after the lapse of several days; once there, however, they may exist in the serum for a long period, even for more than a rear in sonne cases, and when ther disappear, a relatively slight inoculation of the specific organism suffices to produce them in abondance. Ther can be produced ba suceessive inoculations of the living or by larger doses of the killed germs and in this way immunits mas be obtained against cholera, plague, typhoid, and streptococens infections.

When the complements come under consideration, it is seen that those of different animals are not identieal, and, therefore, the immune serum of one animal will not nevessarily protect another; when one adds to this that the amoment of compleinent is reduced in disease we can partly understand faihures to immmize, and ean foresee that mixed immune sera will have a better chanee of being efficient than the immone serum of one animal; firther, humm serum is nost likely to afford the right order of complements for human patients, and a relatively small amount of human sernm contains enough complement for a large bulk of amboceptors.
Diversion and Fixation of Complement.-Diversion of Complement.We have already called attention to the fact that for proper immunization there must be no excess of cither amboceptor or complement. If a suspension of bacteria be mate in a normal serum, which has been fonnd to contain sufficient complement to canse bacteriolysis when a known mount of inactivated sermm is added (an amount containing say x amboceptors), then if ten times this amoment be added, instead of bacteriolysis being hastened, it may be wholly arrested. This is explained as being dite to "diversion of the complement," and it is supposed that the exeess of unattacherl amboceptos have a greater affinity or attraction for the complement molecules than have those
amboceptors that have become partially satisfied by attach eent to the bacteria, or, conversely, that the avidity of the bacterial receptors is greater for amboceptors, pure and simple, than for the amboceptor plus eompleinent.

Fixation of Complement. We owe to Bordet the observation that ensitized red corpuseles (i.e., corpuseles which having been previonsly placed in immme serum have taken up amboecptors from the same) when placed in normal unheated serum take up all the eomplenment present in that serum, so that now this serum beeomes wholly inactive for bacteriolytie or cytolytie purposes. Baeteria similarly sensitized act in the saine way, fixing all the eomplemental substanee present in normal serum. It is evident that the amboceptor-laden cells absorb or render inactive much more than the amount of complement neeessary for the eytolytie process, and absorb or fix indifferently all orders of complement. Gengou expanderl these observations, showing that a like fixation of complement takes place under eonditions in whieh the complement is not an essential for the main process. Ie found, in short, that any serum in which antigen and antibody undergo union, hats any eomplement that it eontains rendered inaetive.
The Wassermann Reaction.-If this be so, then the determination whether in a given serum the eomplement has become fixed or no, remters it possible to determine the presence or absenee of either antigen or antibody in a given fluid. If either of these be present, then the addition of the other, in the presenee of complement-eontaining serum leads to the fixation of that complement. If the complement does not become fixed, we can conclude that antigen or antibody respectively in absent from the mixture, and we can determine this point by adding th the mixture sensitized red corpuseles. If the complement lias beeome fixed, no hemolysis ensues; if either specifie antigen or antibody be ihnent, the eompleinent does not undergo fixation and hemolysis oecurs. This is the basis of the now widely employed Wassermann reaction fir the diagnosis, more partieularly, of syphilis. The test is not a little eomplieated in description, but the above gives its rationale. Wissermamn first ohtained what he regarded (as we now know wrongly) as a syphlitic antigen, viz., the tissue of a syphilitie foetus. To an extract of this is added the serum to be tested, diluted and heated to dentroy its eomplement, and normal moneated guinea-pig serum eontaining complement. If the serum to be tested is from a case of syphilis, anil contains the syphilitic antiboly, then in its union with the antigen the complement will mndergo fixation. Coincidently there is prepared a misture of washed red eorpuseles of some animal, and heated (immune) trimi from a rabbit which has been injected with the red corpuseles in 'ulestion. If this latter mixture be added to the previous mixture an mo hemolysis ensues, it is evident that the eomplement has been finat: it is evident then that the suspected serum eontained the syphilitic aniblualis. If, on the other hame, hemolysis ensures, this is an evidenee 1) Whe sermn tested is negative, containing no antiborlies.

However, more delicate reaction can be obtained, if in place of Wassermann's so-called syphilis antigen, there be employed the aleoholic extract of a normal organ, or even soluble soaps, leeithin, or bile salts. Fixation of complement there certainly is, but the reaction is not preeisely of the same order as the Bordet-Gengou pheromenon. Syphilitic blood serum is ound relatively rieh in globulins, ant it is the combination between these and lipoids that hinds the natural complement of the guinea-pig's blood present in the mixture.

Animal Vezoms and Antivenins.-An extensive study of snake poisons has led to the conclusion that the raw poison contains several separate toxins, such as a hemolysin, a neurotoxin, a nephrotoxin, and so on, and that some of these attack the cells direetly, while others require the intermediation of a complement; this complement is sometimes present in the blood scrum and sometimes exists in the cell that is acted upon, in which casc it is known as an endocomplement. By the repeated injection of minute quantities of venom into lower animals, antitoxins-or antivenins, as they are called, can be obtained for ill the animal poisons; the best-known forms are those against the vencons of the cobra, seorpion, spider, toad, salaniander, and eel.

Opsonins.-The opsonins are substances in the blood serum whieh stimulate phagocytosis. If opsonins are not present, phagocytosis of bacteria by leukocytes occurs only to a slight extent, whereas if opsonins be present, it oecurs very almudantly. For example, if a person suffering from chronic furunculosis be taken, and his lcukocytes removed by contrifngalizing from his sermm in which they show little phagorytic power, and added to the sermm of a normal person, they take up bacteria very rapilly, because the normal person's scrum contains that abomdance of opsonins in which the patient's serum was lacking. The normal person's leukoevtes plaeed in the patient's serum show searcely any phagocetie artivity, so the activit. depends not upon the leukocytes but upon the serum; the substances upon whieh this depends (opsonins) are not readily altered by heat, and become fixed by the bacteria, not by the leukocytes. The bacterial boty is in some way aeted upon so that the bukeertes can suberquently ingest it; the extent of this aetion em be ganged be noting under the mierascope the average momber of bacteria ingesten hy one of thirts or forts. lenkocetes observed, and comparing it with the momber ingested by normal lenkonte- in normal sermm. Certain precautions are neeessary: in the utilization of this phemmanor. (1) 'The bateria mast be in ar emulsion, so that musihal mirrolnes are separate amd mot clustered. (2) The cmulsion must not the thick, lest Imeteria, overlying but not in leukoetes, may appar to be a tomblly contaned. (:3) The counter should have considirable training lefore trusting hi results. (4) The same pipettes shonll be usol for the same stage of the procedure, so as to insure aceuracy of measurement.

The opsonins are considered to be protective and by their aetion upon bacteria are wed up, so that if hacteria are addel to a sermon and after
their removal the serum be used with a second lot of bacteria, it is inert. 'This last depends upon the fact that there is actually combination with or absorption hy the bacteria, because bacteria so removed are found to he readily taken up by leukocvtes even in an inactivated serum. Opisonins are inultiple; there may be, probably is, a conmon one in normal serum, and specific inoculations give rise to other speeific opsonins. If small measured quantities of dead cultures of Staphylococcus aureus, the gonococcus, B. coli, or B. tuberculosis be injected into an individual his opsonins are, for a short period, reduced in amount (the negative phase), after which they increase (positive phase).

Since phagocytosis is an important mode of protection of the organism against infcetion, Wright, whose work drew attention to these phenomena, concluded that the relative amount of opsonins in the blood furnishes an indication of the defensive powers of the individual, and has cstablished an "opsonir index." This is the ratio borne by the average number of bacteria per lcukocyte in the patient's serum, to the number found per leukocyte in the same emulsion with a normal serum, the latter being takerı as 1.0. To obtain a normai serum it is often well to "pool" the serum of half a dozen apparently healthy individuals.
In most infections the index is found to be less than 1.0. By carefully judged inoculations of dead microbes of the sort that cause the infection it is possible to bring up the index to more than 1.0, and this is frequently coincident with a marked improvement in the patient's condition. Excellent results have been obtained in many forms of infection by staphylococcus, in certain cases of infection by gonococcus and Bacillus coli, as well as of Bacillus tubereulosis. As time progresses, the value of the method seems to increase, but there is a growing trindency to employ larger amounts of the killed microbes and to lay leis stress upon the technical observation of the index and more upon the signs of reaction as they are obscrved clinically.
Aggressins.-As the animal cell aeted upon by bacteria produces antibodies, so the bacteria on their side are stimulated to produce reriprocal antibodies, and these have been named "aggressins."
This action will be understood better if a concrete example be given. If cholera spirilla be injected into the peritoncal cavity a local infection chlles; the inflammatory fluid containing the bacteria is ronoved and the bacteria taken out by centrifugalizing, and the few remaining oreminisms killed by sunlight, heat, or antiseptics; the resulting clear Hnill has no toxic effect, and can be injected into another individual of the sane succies with impunity. If, however, along with it a less than futul dose of the spirilla be injected, death shortly ensues. There is whething in the inflammatory exudate (aggressin) that has paralyzed the protective agencies of the body. The presence of these aggressins "xhluins why the exudate produced by the local growth of a given mi. rate has no opsonic power; the opsonins may be present but are melit r'izerl. Finally, it may be siggested that the aggressins are to the hanerima what the opsomins are to the animal.

By taking these into accomit we explain the wrll-known phenomenom of "exaltation of virulence" by passage throngh a sucession of animals. The virulenee of an orgainim does not depend only upon the production of toxins; increase of virnlener does mot mean inereased production of cetotoxins, for a filtered culture of a virulent strain of cholera or anthrax does not prohnere more sumptoms than does that from an attemated stranin; lut if the attemated bacilli be injected there is phagocytosis, if the virulent, nome. It appears as if the virulent barilli excrete or diseharge substances which are not toxins, but wheh have an inhibitive or "anti" action upon the borly cells, substaners which do not ueressarily: combine with the bolly cells to destroy them, but either nentralize the opsonins or directly repel the boly cells, the repmbion being ercater than the attreation exerted by other bactesid substances.

Anaphylaxis.-Anaphylaxis or allergy, is a phenomenon connected with the injurious effeet that is occasionally wronght by sorum tle so-called "serum sickness' and "sermm death." From the early days of the employment of antidiphtheritic sermm, there hawe been oceasionally reported eases of death following saddenly the injection of the sermm. Collapse, muconscionsmess, and convalsions hame oecurred, death ensuing with startling sudelemess. Lass severe simptoms, the nrticarial rash, with or withont systemic symptoms of lack of wellbeing, and other milder manifestations following the use of werm, are familiar to all. These moward effects are prodnced not by the toxins or antitoxins but bey the serm, and it may be said, bey the way, that the risk of these is the price mankind has to pay for the blessings of sermm therapy.

Again we shall illnstrate this phenomenon by a comerete example. If 5 e.e. of a forcign sermu be injerted into a gumea-pig there are no immediate efferts, and the animal beromes soom immmized to that
 twede days later a second injection of is cer. be giver, the ghinea-pig will almost erertanly die, and that quickly. lasteal of being remedered inmme, the opposite resmlt has berm obtained; the amimal has been ":sensitized," and this procers of semsitization is amuphylaxis in contraalistinetion to prophylaxis. la herbivoroms anmals, the same result can be wained by feeding with the sermm, and the blood of the sensitizel animal romes to eontain a substance which, when the blood is injecterl into other amimals, semsitizes them. In man and ommivoroms anmals a simgle dose sometimes has the eflect that the two doses possess in larbivorons animals, and thiss sermm death may ocror.

This ancitization appears at first to be opposed to our gemeral ideas of immmit:, but we have attempted to show that it is not necessarily (w) Ss anem hy Vanghan, the bacterial protems (an be split up into
 rge albumin, and its poisonomi pertion kills an expromental animal jut as don tik prison of a pathogenic hatorimu. 'The same is true, aho, of homt watable protems. One may sensitize an animal with
the poisonous portion, or with whole albumin, but not with the nonpoisonous portion, that is, the cell substance has affinity for the nonpoisonous part, and forms and discharges receptors sulted to this non-poisonous part. Still referring to egg albumin for illustration, ten or twelve days later when the cells are habituated to the non-poisonons part, if we inject whole ege albumin, the cells with their excess of reeptors attract the non-poisonous portion of the serum to wheh they are acrustomed and set free the poinamous portion in the circulation, which aets upon the nervous system and produces death. The sreond dose must be large enough to supply a fatal dose of the poisonous part after splitting up. It seems, further, that the poisonous portion has a pecial affinity for certain cells, aud it is this loeal, rather than general, action that explains the anaphylatic phenomena. In the guinea-pig, for example, as shown by Auer, the fatal result is clue to direct influence upon the plain muscle fibres of the bronchi, eausing a spastie contraction with arrested respiration. In other animals also it is plain museular fibres that apper to be specially implicated. What is true of the egg allmmin is true of the protein-eontaining horse serum, which forms the hasis of the antitoxie sera of commerce.

This doe's not explain why a small dose sensitizes while a large one dose not; and here we mast go farther, and remind the reader of what is called the dissociation of ions; if a minute quantity of salt be put intu al large quantity of water it is dissociated into its Na alld its Cl ions, whereas, if a large quantity be used it remains as an NaCl molerule. Similarly, the minute dose of protein may be dissociated into its pishons and non-poisonous parts, of whieh the former is in quantity too mimate to prodnce any symptoms, and the cells are ablo to react unly to the latter. If the preliminary dose be large, the dissociation does mot oecor, and the body cells become arenstomed to the whole protein molecole; the poisonons action is thas expended upon the colls, "here its cellecets are unt so serions as when it is free in the eireulation.
It maty he recalled that in our chapter upen predisposition (p. 117), attontion has heen called to the smimaty between certain cases of nhow ucrasy, asthma, hay fever, "te., and these anaphylactie phe1!川\|! 1111.

THEORIES OF IMMUNITY

Fivergane who is in the slightest degree familiar with medical literamee kimus that the amomit of material given ont upon the subjeet of Immmit! in the last few years is mildy described by the word stu"mbnes. It is ruident that we cangive as briefly as possible not an Whation of the various arguments in faror of varions theories, but ils a very hride explanation of a single praction one. We shall *empt to outline a workable plan by which immunty ean be moderinnl, hasel laracly upon Ehrlieh's views.
Hi have seen that all the smbtanes that can induce the profluction
of antibodies (i.e., all antigens) are either cells or the products of cell activity, and that the antibodies, too, are the prodncts of cell activity, and that one group is a kind of looking-glass reflection of the other. If we were bacteria we would regard the antiborlies as toxins, and our own toxins as protective antibolies. Two living urganisns, the animal and the mierobe, are pitted against each other, and the increase of virulence of the latter may be the result of its developing anti-antitoxins (which, from the microbe's point of view, are simple antitoxins), corresponding to the development of antitoxins by the animal and tending to neutralize them. The problems of iminunity narrow thenselves down to special problems bearing upon the assimilation or digestion of unusual or foreign proteid matter, the products of eell metabolism.

We have given the basis of Ehrlich's theory referriug to simple toxins, but when we rach the cytolysins we are met by a new phenomenon in which there is not simple union of the molccule of the cell and the toxin or the complement, but where this is brought about by the intervention of an intermediate body or amboceptor. We may here recapitulate the various forms of antigens and antibodies with which we have dealt:-

Reviewing this table, one notes that there is a progression from a simple structure of the absorbed body to a very complex one. Aceording to the nature of the bolly to be absorbed, the binding apparatus must differ. To tie a simple substance to the biophoric molceule we may presume that a single, simple side-chain is enough. When, howevcr, we come to the giant molecule of a protein, this will not be enough. Giant molecules, as such, are useless for the cell, and must be broken up, dissociated, by fermentative proeesses. This could be if the "seizing arm", were of a nature complex enough to scize the molecule and to bring into contact with it the requisite ferment; to borrow an exanple from the vegetable world, the tentacles of the Drosera seize the object, and cover it with a juice that is digestivc. Such a complex side-chain we ean predicate in the case where the body to be "lysed" consists of
complex proteins, such as we find in bacteria, in blood corpuscles, or in cells. If there be such a complex side-clain, the process of immunization will cause a rcproduction of such side-chains, and the sidechain with its complexitics will be claborated and cast off as a complete whole-as an immune body.
Ehrlich's Three Orders of Receptors.-Following up this idea, Ehrlich supposes that there are three orders of receptors for food or toxin molecules. (1) The simple toxin (I, b) is anchored by a receptor (I, a) of the first order, that receptor being a side-chain with a haptophore c to which the toxin molecule becomes coupled by its haptophore c. (2) For protein molecules, a different order must be imagined. The side-chain must have an arm for seizing ($I I, e$) and one ($I I, d$) for

Fra. 65

The three orders of aide-chains, according to Ehrlich.
applying the ferment by which the molecule must be dissociated, that is, a haptophore and a zymophore (or ferment-carrying portion). This kind of receptor is figured in Fig. 55, II, in which e is the haptophore, d the zymophore; as soon as eoupling occurs, the zymophore i, iree to excrt its ferment effect upon the body seized. It will be scen that the toxin molecule in Fig. 55, I, is the counterpart of the attached reptor of Fig. 55, II. (3) For the yet more complicated case of an interaction betwcen the biophoric moleeule and a forcign cell, we must prappose a complex reccptor as in Fig. 55, III. The receptor must $l_{n, ~ c a p a b l e ~ o f ~ a t t a c h i n g ~ t h e ~ c e l l ~ t o ~ b e ~ a c t e d ~ u p o n ~(~}^{f}$) and the complewnt (k); the complement is figured as possessing a haptophoric part h, and a rymophoric part (z), which latter corresponds to the toxo-
phoric part of the toxim moleculc. When both these are fixel to the original cell. the commmieation between the zamophoric part and the two cells permits the engeme action nown the attached cell (f) to hegin. When the cell receptors are produced in exeess and discharged, they have the same powers of attachment as when fixed to the biophorie molceule and when free are termed by Ehrlich haptines. Haptines are thas of three orders, thuse with a single haptophore, sueh as antitoxins and anti-enzymes; those with a haptophore and a zymophore gronp, the agghtiumins and the precipitins, and lastly, those with two hatpophores, which are the amboeeptors or immmue bodies proper, and constitute the extolysins and bacteriolysins.
There is a word of warning to be given to the heginrer in interpreting the diagrams whieh we have reprodneed. We are not sure that the toxin molecule becomes anchored on to the hiophoric moleenle and an becomes a part of it. The interation of toxin on haptine is direct: the toxin acts upon the biophoric molecule in a way that is less direct; we differ from Ehrlieh in not regarding it as beeoming firmly attached to the biophoric molecule, hut as dissoeiating, by its atfinity, the receptor, the toxin and receptor beeoning temporarily a free unt, and imagine that therelly the eondition of unsatisfaction, in which the hiophorie moleeule is left, leads to the formation of a new side-ehain or recentor.
When we censider the processes hy which bacteria are destroyed, and their cell prodncts nentralized we realize that these are but special examples of assimilation and digestion. The process by which an ingested microbe is dissolved in the vacmole of the leukocyte, or a bacterium melted in the looly fluids is probably brought about by a procedure of the same order as when fibrin is digested in the gastric juice. ${ }^{1}$ In :on pit of the whale suljeet can we neglect the importance of enzyme action. We rearlily admit-nay. we cite-the different grades of empene aetion with which we are familiar; how ptralin acts directly ani sarch, and enterokinase requires the mediation of trypsinogen. Wi. think, in short, that toxins and eytolysins are of enzyme nature. Indicating the cin:iarity between toxins amd emaymes, we have antitoxins and anti-rnames, we have natural and experimentally acquired auti-curymes just as we have artnal and experimentally aequired antitoxins, we haf evidence that a minimal amonut of enzame may convert a maximum anount of the substance aeted on, and a minimal amont of toxin rause dissociation of the crll substance, even unto death, or that, unler favorable ciremmstames, cither process may be arrestel; we see, tom, that the action of both is arrested by the produets of dissociation: buth work with chemienl exaetitude, so much enzyme nentralizes so much anti-enzeme, and so much toxin so much antitoxin.

[^7]We do not kuow the structure of enzames or of tovins, and we must, therefore, express the prowess by symbols ns Ehirlich has done. If we are spenking of enaymes, the ensume mole ente (eorresponting to the toxin molecule of our previons illustrations) has a haptophorie (empling) part, and a zymophoric part, and instrad of the cell borly we have this time the suhstance to be fermentel (the fermentererible sulstaneet). Ciow lat us ligress to the consideration of the chemistry of fermentiltion; fur example, dextrose gives rise to ghense thus:

$$
\left.\mathrm{C}_{12} \mathrm{H}_{21} \mathrm{O}_{11}+\mathrm{E}+\mathrm{H}_{2} \mathrm{O}=\left(\mathrm{C}_{6} \mathrm{H}_{12}\right)_{6}+\mathrm{C}_{6} \mathrm{H}_{22}\right)_{6}+\mathrm{E} .
$$

One molecule of dextrose $+\mathrm{H}_{2} \mathrm{O}=$ two mole prewee of enzyme (E) hydrolysis wecturs.
The mokenle of dext nose canmot be split into two equal parts, but divides mequally; thus:

$$
\mathrm{C}_{12} \mathrm{I}_{20} \mathrm{O}_{4}=\left\{\begin{array}{l}
\mathrm{C}_{4} \mathrm{H}_{1} \mathrm{H}_{6} \mathrm{O}_{6} \mathrm{CO}_{6}
\end{array}\right.
$$

anm the hedrolssis gives us a free basie IIO ion, and a free acid II ion. Thu next step is that we expand our last formula thus:

The dextrose molecule splits into two parts, one of which has positive, the other negative affinities, and when these are separated one attracts a hasie ion, the other an aciel ion. Our conception is that the engrme "hich thus splits up the moleenle into a basie and an aeid part, must itsilf be aed or basie; thas, if acid it detaches the basic complex $\mathrm{C}_{6} \mathrm{I}_{11} \mathrm{O}_{6}$, but the hylrolysis has left free an II iom, which now exerts a greater attraction for the (${ }_{6} \mathrm{IH}_{11} \mathrm{O}_{6}$ tham does the cazane; the two rombine, anil the enzime is set free to break up another molecule of the destrose. Wie have indieated this graphically in Fig. if, the torm recipiont imbleating the substane (in this example (i) wheh has aflinity for the broken-off molecule, greater than has the ferment.
In more complieated enzyme artion sueh as oceurs in the proterin-- flitting digestion of trypsin, the enarme is a componmel of kinase and trypingen; the latier has a suitable haptophore group, hat its gomowhre gromp is unable lop itself to split the protein mole eule and requires the asisistance of the kinase.
When we liken the action of mayme to that of toxin, we recognize that there is a frequent somere of comfusion in the conception on the iart of the worker that enorme action results ordinarily in the produetim of substances which are certainly not anti-enaromes, and there appears at first sight to be no similar action oar the part of toxin moleculs. 'These, we are apt to imagine, prolum only antitoxins. This, fomewr, is a mistaken idea. The process of junetion between toxin and antitoxin is associative and self-limiting, rand there is an identical innoss oxenring between enzeme and anti-engeme. What we wish
especially to proint out is that, corresponding to the process manifesting itself between ferment and fe mentescible sulistance which is dissociative and recurrent, there is, we hold, an exactly parallel dissociative

Fic. 56

Simple ensyme sction: F, the ensyme molecule, has affinity for and detarhes A, a side-chain ol a protein molncule, lorining a temporary combination with it. When $A-F$ is free the recipient G han a ereater affinity lor the side-chain moiety $A-F$ ind combine with it, the ensyme molecule P becum1re detached and ready to diswociate a second amilar side-chain.

Fic. 57

Schema ol toxin-antitoxin acticn: f_{i-A} (the eide-cbain A conbinct with the rerjpient G, as in Fig. 56, when discharged fron the coll into the surroundirig flud as an antitoxin molectile, is dissociated by the enzyme or toxin molecule f°, whes thus joining with . I becones mutralired.
and recurrent process occurring between the toxin and the biophoric molecule. The one essential differene is that the enzyme may mani-
frot this disociative activity outside the cell, the toxin can manifest is only within the rell and in associntion with living matter.

It is when the enzine acts upon the living cell that anti-enzynes are pronlueml, just as antitoxins are developed under like circumstances. Sud to cxplain the relationship between the fermentescible or dissorative and the autiboly or aciative activities of both orders of - Mbstances, we suggest an addution to I'rofessor Fhrlich's conception of -idh hain activities. In toxins and mutibodies he takes no note of the gromp of junction with the biophoric molecule; when dissociated, there must be here in the side-chain eomplex (which in our diagram, Fig. it, is aolid black) a satisfiable affinity: If now we picture the toxin molecole, not as becoming attnched to the biophorie molecule by one of the side-chains of the same, but as detachini, the side-chail, we can solve the diffienlty; that is, we can regard the toxin as acting like an cuzume, retaching the side-chain, giving it up to the stronger affinity of the reeipient G, and being free to detnech another side-chain. This sidrochain plus recipient is the antitoxin (Fig. 57).

In the cell this mutitoxin canmot act becanse the toxin has affinities for the similar side-chains of the biophoric moleenle still adherent, miles the point is reached at wheh equilibrinm occurs by the accumulation of the prolucts of the enzeme action and by the overproduction :unl discharge of side-chains of the partieular order into the paraplasin. But when the excess of side-chains plus recipient is discharged into the blood strean, then circulating toxins, not having the greater attraction of the intracellular molecules, are free to join them and be nentralizerl.

In this consideration of the subject, we have called in no cxternal fictor save the "recipient," some simple but active ion present in all whinas in which the enzyme or toxin is able to act.

SYNCOPE, SHOCK, AND COLLAPSE

Syncope or fainting is the state in which the face suddenly becomes Watiched, the pulse small, rapid, and at times imperceptible; a brief whlimess or a moment of mental helplessness is followed by unconsciouslitss, the individual falling "as a sail falls the mast being broken." This arises in varions ways: by the sudden assuming of the erect from the supine position, by the emptying of a full bladder (with probably a minchanical fillins of abdominal yessels), or by strong stimulation of nsory nerves, in other words, pain. Linconsciousness is usually brief. laiin, syncope may be purely of cmotional origin; many medical thlents will recall cases of syncope oceurring among their own number it tight of some operation, especially if the surgical procedure be one What is mondertaken witiont an anesthetic; the ready mind of the sympathitic one attrilutes to himself all the sensations (and more) under:nn hy the patient. Personal memory recalls vividly a football match, "ith the scattcred falling, like pole-axud stcers, of ncarly half a score

(ANSI and ISO TEST CHART No 2)

of underyradnate oulowkers, womsergent mom the loud, sharp snap of al g bone of oure of the phayrors.
Shock and Collapse are ofvionsly more severe conlitions. First, there is the emotional shork that may produre death. The case is cited of a mock trial condur ted ly some students of : 1 Seottish Liniversity upon an obnoxions janitor; he was kel to the hork, struck on the neck with a wet towe!, and picked up dead. In kes, extreme cases, reeovery may take days or weeks, intend of minutes as in sucope. There is blanching, with a weak, feeble pulse; the eyer berome sumken, the cheek bones prominent; the musctes are lax; the breathing is irregular, the temperature lowereri. lietehing and vomiting are frequent; the patient lies limp and regardless of his surromedings, but not muconscions; upon being aronsed, the answers given by the patient may he dow, as if brought from a distanee, diflicult to dolain, but they are rational; volition is largely abolished and there is extreme gencral depression of all bodily function. Shock aud collaper occur in the following eircminstances:

1. After operation, or womuls associated with injaries to nerves. These may be (a) peripheral, in which the terminations are affected as in the shock after hurns, iffer a sharp blow upon the testide, exposure or irritation of the peritonem, or of the periosteum; (b) in contimuity, as after severance of a large nerve such as the sciatic; (c) cenural. as after operations upon or removal of brain substance. Pain in all these is not an essential; shoek may ocenr even if the procedure has been comducted numder anesthesia sufficient to abolish sensation.
2. Pain or f 「ight, without gross injury to peripheral nerves.
3. Scevere hemorrhage, either external or internal.
4. Ioss of fluid, as in persistent vomiting or excessive diarrleea. Whe are apt to combt the two latter as collapse, the others as shock.
In syncone, shock, mul wollipse, there is a combination of cardiovascular disturbmer with wrave arrest of everebral activity. The primary vascular disturbane is sometimes casily muderstome. The vessels of the splanelnie area, or even of the liver, are capable of holding all the bood, but they do mot ordinarily fo so beemse of the tone of the abolominal walls, compressing the viserera, and the tome of the vessel walls, by whech arteries and weins are in a state of partial contraction. If from uny ealle there is rapid ailatation of the abdominal veins. the blood in the upper hall of the hooly may gravitate there in inereased amomit, with correspomding amemia of the brain. One can ceen produce t neonsemensess by compression of both carotid arteries. This abolominal rasodilatation may he eansed loy ablow upon the abdomen, which produces inhilition of the sphandhir vasoconstrictor influences, wherehy the aldominal weins beeme dilated, or stimulation of the eardiac inhibitory rentre (varns) wherely the heart heat is arrested. Onc or hoth of three influeners mas be at work to eomstitute the effect of the "soliar plexns blow," known to the prize ring. Where by any of these mems there is produced merely a temporary ecrebral anemia, we have the comdition of syncope.

When an attempt is made to define the eomelition of shock, it must ber remembered that depression or cessation of function is a prominent fiature. This seems to aphly the individual cedf; for it has been moted that drugs like alcohol, ether, amb strechmine, administered during shoek, are inert, althongh they difluse perfectly; yet with rewore of the eells, the physiologicen eflece has been seen to assert itralf, indieating that the aetual metaholism of the cell was, for the lime, suspemed. It has been observed, too, that in shock the specific gravity of the blood falls, and that of the tissues rises, indicating a masage of tissue juices to the blood, whidh aecoments for the rapid production of the "sumken" appearance of the eves and the prominemee of the chaek bones. Precisely the same relationslip between the blood :and the tisisues has been found to oecur in cases of large, rapidly prodaed hemorrhage. If a clinical distanction is to be made between shock am! collapse, it is that in shock we regare the nervous disturbance in initiating the circulatory depression, and that in collape we condider the depression as being caused by the contimed cerebral amemia.
Acapnia.-liandell Ifmerson aseribes the sequence of changes in the htood pressure, the filling of the splanchnie veins, the rapid and "whemed heart action seen in shock, not to primary vasomotor influencr:s, but to acapnia, or the effects of diminished carbon dioxide in the hlood. Exposure of the viscern and the mere aëration of the ahnominal cavity by this means is accompanied be exhatation of carbon dinsile, and affords the anatomical and clinical picture of shock. If the exposed viscera be bathed with salt solution saturated with carbon dimeile, the condition is arrested. This may well explain certain eases of -urerical shock, and, indeed, applying these views, supervention of dowk has been prevented by individhal surgeons. We doubt, however, "hether acedmian and shock are identical and whether this diminution if artoon dioxide is to be encomered in all cases. The rapid oneome of the condition in some cases is evidently a reflex aet, and a general inhibition of the activity of the higher rerve centres must, in these (an-m at least, precede ans change in the carbon dioxide content of the heren.

If dearses to be noted that it has been dentermined practically that in the course of surgieal operations the exhibition of earbon dioxide arn - the development of shock, even more surely than does ('rile's Waineration of the old anethod of eompressing the extremities and II: "re it as to bring about filling of the more central vessels. There 1.: 'ank of any evidenee that in shoek the arteries undergo dilatation.

PAIN

$I^{\prime} \quad$ ' is the cry of the tissues. The infant cannot explain its disfon, Th and expresse; them hy erying; equally the tissues have no lin. If expressing to the individual that something is wrong, save bresme of the sensation that need not be r^{3} fined because
universally experieneed-pain. Paradoxical as it seems, pain cammot exist in the tissues; a pain in the foot is a disturbance of those nerve eells in the brain whose function is to receive stimuli eonveyed to them by the afferent nerves from tl . region.

In this eonneetion we mu: reeognize two orders of tissucs, irritation of either of which may set up the sensation of pain, but in the one this process is aeeurately loealized, while in the other the sensation is loealized by the brain as originating in some other area or areas. Of the former may be mentioned the skin, the mueous membrane of the mouth and pharynx, the skeletal miseles, the periosteum, and the tumic 1 vaginalis of the testis; of the latter, all the viseera, with the exeeption of the testis, or more aeeurately, of its serous eoat. This may scem to be a sweeping and unfounded statement and one eontrary to personal experienee, but as a matter of faet, the individual viseera may be handled with impunity and even be eut in the unanesthetized individual without any sensation being induced. In such organs there are no sensory nerves for pain, no direet paths whereby the eonseionsness is informed of disturbance in those partieular viseera. Stating this, we do not mean to indieate that pain may not originate from the riseera; every sehoolloy knows a stomaeh-aehe as a very real thing, and undoubtedly a dull heary pain follows pressure or serious tration upon these riseera, though here again we are unable to loealize the pain in any particular area. At most we have an obseure loealization of something wrong inside. When, for example, the osophagus or stomaeh, or the eolon is ovordistended, there may be painful sensations behind the sternum, in the upper or lower abdominal areas respectively.

If we analyze the pain associated with disturbanees of the internal viseera, we eneounter some points of remarkable interest. Take for example, the organ just noted -the stomach. An uleer or other aeute lesion of this viscus is found to afford a pain whieh, if the patient be asked to localize it, is situated in the abdominal wall in the epigastric region. We may even observe that if the lesion be in the eardiae part of the stomach, the pain is in the upper part of this region, if toward the pilorus in the lower, and this irrespective of the fact that the earliae and prloric regions lie somewhat transversely, rather tham vertieally one above the other. In addition, the patient endeavors, and if he be at all stont, endeavors in vain, to tonch an area in the dorsal region between and rather below the shoulder blades; more aceurately on either side of the seventh and cighth dorsal vertebra. With the hoart, as, for example, in angina pectoris where the pain is extreme, it is noteworthy that it is complained of as revisting, not in the organ itself but ower it. 'Phere is frequently felt a., w a sense of extreme constriction along the line of the sceond rib, and with this, further, a pain extending down the imer side of the left or oceasionally the right arm, or both, most often as far as the elhow, and oeeasionally: as far as the little finger and the ulnar site of the ring finger.

It is to English-speaking observers more particularly that we owe the study and elueidation of these so-ealled referred pains. Hilton, in his well-known lectures on "Rest and P'ain," published in 1863, had a very clear realization of their existence; their full study, however, we owe to Janes Ross, Dana, James Mackenzie, Head, and Hertz.

Fia. 58

Ripresentation of primitive vertebral animal-the amphioxus-divided for convenience into three akinnens for the head, seven for the neek, twelve for the dorsal, nine for the lumbusarral region, and thindefinte number for the coccygeal region: $S P D$, the superior prinury divisions of the nerves applying the surface over the neural eanal; $1 P D / A^{\prime}$, the dorsal trunks of the inferior primary division $-H p h l i n g$ the lateral surface of the body, and $/ P D r$, the ventral trunk of the inferior primary divishu supplying the ventral surface. The parts supplied by the dorsal trunks of the interior division are alone lined. (Ross.)

Fig. 59

Miagram, shawing eonstitution of a spinal nerve: C, spinal cord; Pr, ar, posterior ganglited and :H? rior non-ganglated root of nerve respeetively: SPD, superior primary division; IPD. inferior pruary division; d, t, the dorsal and ventral branches respeetively; Sr, sympathetic (gangliated) thit (IRnss.)

Fach segment of the body has in the earliest vertebrate types, e. g., amphioxus, its segmental nerves, and marked as has been the evolution of the nervous system of the higher vertebrates this segmental arringement still persists, the segments being composed of the neurones if the posterior ganglia (sensory), the neurones of the anterior horns (nmtor), and the nenrones of the sympathetie system. Eaeh segment of the holly has thus its system of sensory, motor, and sympathetic
ner:(s, these latter being of both orders, sensory and inotor. In the process of development the various groups of nerves come to lie in different planes, the sympathetic motor neurones, for example, becoming grouped into ganglia, some of which, e. g., the eervical, represent the fusion of the neurones of several segments. So also the superficial sensory nerves do not necessarily lie in the same plane as do the muscles supplied by the motor nerves of the same segment; every sehoolboy should know, although he may not have analyzed the fact, that the region of the buttocks is supplied H sensory nerves originating from a singularly large number of spinal segnents; while as regards the internal viscera such as the heart, stomaeh, and intestines, these with their associated nerves come to lie widely remote from their original segmental position, both actually and relatively. Thus to explain the instances given, the stomach is innervated from the level of the seventh, eighth, and ninth dorsal; this region also affords the sensory nerves which on the posterior aspect of t'ie body supply the lower dorsal region between the shoulders and in front innervate the abolominal wall of the epigastric area, the anterior muscular branches innervating the corresponding intercostal spaces.

The sympathetic nerves of the heart are relatively abundant and vary for the different regions; thus the auricles are innervated from the fifth to eighth dorsal serments, the ventricles from the second to fifth clorsal, the ascending arch of the aorta from the third and fourth eervical, and the first, serond, and third dorsal. The refcrred pains vary according to the part involved, and it appears also that if the right heart be involved they show themselves on the right side of the body, if the left heart, then on the left. The referred pains in angina pectoris are most frequently along the superficial area of innervation of the ventricles, notably along the superficial sensory area belonging to the second dorsal, extending also when severe into the first dorsal segment. We are accustomed to regard the auricles as the beginning of the eardiac region, and so would expeet that they should be innervated fron the higher, the aorta from lower segments. If, however, we study the development of the heart we find that this begins as a simple tube which hecomes bent upon itself in an S-shaped manner; it is the inferior or "caudad" portion of this tube that gives rise to the eventual auricles, the superior or "cephalad" that beeomes the first part of the aorta.

What happens, therefore, in those cases where pain is experienced, is that stimuli proceeding from these internal viscera to the neurones of a particular level of the cord, do not extend thence directly to the cerebral eortex; no mechanism exists for this direct communication; but where the stimulus is above a certain grade there is an irradiation or expansion of the stimulus to other neighboring neurones which do possess this communication with the optic thalanus, and as a consemence, the brain localizes the seat of disturbance, not in the viscus originally disturhed, but in the areas innerrated by these neighboring neurones. It deserves note that painful sensations have their scat, not as might

In the 0 lie in becomcpresent perficial muscles hoolboy that the from 1 internal th their gmental istances eighth, s which 1 region wall of ing the
ant and rom the to fifth cervical, accordheart be , if the toris are the vento the egment. of the ted from udy the ole tube inferior auricles, e aorta. rienced, neurones y to the ication; adiation hich do a conses origineurones. is might

Ire expected in the cortex of the hemispheres, hut in the thalanus. The cortex may be cut into without giving rise to any sensation; irritation of the thalamns of one side lcads to pains referred to the other side of the holy, its destruction to anesthesia of that other side.
This, however, is not everything. If long continucl, this segmental irradiation induces a condition of heightened irritahility in these neighloring neuroncs, the result of which is that minimal stimuli reaching thein have maximal cffects, so that the arcas supplied by their sensory lranches berome hypercsthetic; and the irradiation affects the neurones also of segments above and below, and thus not mercly is the sense of pain localized in these otlier areas, but these other areas become the seat of actual hyperesthesia, so that now a stimulation of these areas, as by pricking or pressure or traction, gives the sensation of aente pain. ${ }^{1}$ More than tinis, as has been pointed out in the discussion of iuflammation, there may be a general vascular disturbance of such in1 area, giving a co-called sympathetic inflammation. Further, as we have already indicated, the area of cntancous supply does not cerrespond absolutely with the segmental innervation of the underlying muscles. In the first place we may recognize with Mackenzie, a superficial and a deep cutaneous hyperesthesia, possibly corresponding to the differing distribution of the tactile and pairful senses, of which the latter at times is found present without the former (although it seems that when superficial hyperesthesia is elicited, the deep is always present), aut: in addition a yet deeper muscular hyperesthesia. To give an example, where there is enlargement of the liver, the commonest pain felt is over this organ, and inasmuch as this is markedly increased by pressure, the ordinary impression is that this is an actual splanchnic or visceral pain. If, however, the arca be mapped out over. which pressure causes pain, it will be found to extend considerably below the edge of the liver, and if the abdominal wall be picked up wer this rea the muscle is exquisitely painful. There is here not a -mperficirl out a deep muscular hyperesthesia of the abdominal wall.
We hise here but touched upon the outlines of the subject, hut feel that both for comprehension of disease and as an aid in diagnosis this sudy of painfnl arcas is of the very first inportance, even if hitherto it has not been discussed in any text-book of general pathology known tw ins. We would conclude by giving an indication of a few important areas of referred pain without exact anatomical description. The "titeh" of pleurisy is not due to the presence of sensory nerves on the pherral surface-experiment shows that the pleure are ins ensitive-hut it is due, according to Mackenzie, to spasm of the intereostal muscles: it is thus a referred muscular pain. Nonc of the serous surfaces have rilsory nerves proper, with the exception of the tunica raginalis testis. 1 the testis descends into the inguinal canal, it carries before it certain Hments of the abdominal wall, the cremasteric muscle, etc., and alluly with these the genital branch of the genito-crural nerve. In
From which it follows that in cases of obscure visceral disturbance the mapping
o'st of hypereathetic zones is of prime diagnostic importance.
those having a long cord it 10 casy to determine that pressure upon the testis causes immediately acute pain loealized in, or more accurately upon the testis, and following upon this a referrel pain is felt in the groin. So also the lower end of the ureter is innervated by the genito-crural nerve, and, per contra, with arrest of a stone in the i.reter there is a referred pain in the testis. We have said that the other serous membranes are insensitive; this statement is made with a full recognition of the faet that traction upon the peritoneum in the unanesthetized person may be attended by pain; but this pain, again, is not aecurately localized but is referred. We may lay down that traction upon or injury to the stomach is referred to the epigastric portion of the abdominal wall, of the small intestir to the umbilical area, of the large intestine to the hypogastrie area .he localization of appendical disturbance is well known to be inc , en felt at what is known as "McBurney's point." Irritation of th. sadder, as in vesical calculus, is characterized by pain felt in the urethra, especially at the extremity of the penis, by reason of their common iunervation by the third saeral nerve. The rigidity which is observed in the aldominal wall aceompanying intestinal lesions, is another manifestation of the "visceromuscular" reflex. Deeks has recently called attention to the existence of a doughy inelastic skin over the abdominal wall in almost every chronic inflammatory lesion of the abdominal viseera.
Finally, the brain itself is devoid of sensation; headache is not pain of the brain, but, as will be recognized upon consideration, is a superficial phenomenon, due to irritation to one or other of the cranial nerves, or in the case of oceipital headache, of the spinal accessory and second cervical nerves. The brow-ache experieneed after an ice has been eaten in haste is due to the faet that the sensory nucleus of the fifth nerve has been stimulated by irradiation, the afferent nerves of the œesophagus being in the main vagal, and the vagus nueleus being situated close to that of the trigeminal.
In short, to quote James Mackenzie, "the sensation of pain from whatever source the stimulation arises, is referred to the peripheral distribution of sensory nerves in the external body wall." This source may be (1) in the brain itsclif, as, for example, where an epileptic attack, due to cerebral irritation begins with pain in the distant part (aura); (2) in the cord, $e . g$., the girdle pains of tabes dorsalis; (3) in the posterior root ganglia, e. g., the pain of herpes zoster; (4) in the viscera, of which numerous examples have been quoted, or (5) in the external body wall and skeletal museles, where only (with the exceptions noted) the pain informs us of the aetual seat of the disturbance.
Finally, while speaking thus broadly of pain it must be kept well in mind that there are various and distinct orders of sensory nerves, disturbance of any one order of which gives rise to the sensation of pain, namely, nerves for the tactile sense, for the muscular sense, for heat, for coid, not to mention yet other orders the existence of which is evidenced by the researehes of Head and Mackenzic.

CHAPTERIV

Progressive tissue changes

GENERAL CONSIDERATION OF TISSUE CHANGES

Having considered morbid changes from the standpoint of the irritant, it becomes necessary to view them with reference to the alterations produced in the tissues. Looking at the individual cell, we see that the factors determining its health or normality are: (1) the mutrition of the cell, and (2) its functioning or activity, and these two are intimately dependent upon one another. The process of nutrition is an active one; only that food which is of the proper quality tends to be assimilated, and assimilation is needful before the nutrition can occur. lunction is necessary as well; the more active the function, within limits, the more aetive the absorption of new material, and the less the function the less the demand for assimilation. The two factors, frod and function are seen to be inextricably bound to one another,
Although the subject has been previously discussed, there are certain seneral principles to be remembered, which are here recapitulated; thit inadequate nutrition or lack of exereise of function may lead to inanition and shrinkage until arrest of function or even death ensues; that oxcersive activity may so rapidly use up the cell that assimilation i.: 1. pace and death may ensue; that so perfect a balance may ulu between assimilation and disintegration by activity that tion ..nd activity even ame remain in health, unaltered; that stimulanutrition may lead to above the normal, if accompanied by adequate this time on a higher level j, and equilibrium be onee more reached, sale on whieh it works with just as mercantile business increases the tion between cell mass and surface, so that increase cell surface, and nuelear mass and nuclear proliferation occur; thecomes self-inhibitory unless cellular and nuclear which ean occur simultat growth and function are opposed processes, zation of the cell for ancously only within narrow limits; that specialigrowth and proliferative through the performance of function liraits not proliferate, and the capacity; that the highly developed cell does are those that have never the active vegetative cells of the organism beell differentiated, have reen highly differentiated, or if they have
If we pass from physionerted to the undifferentiated type.
arises at once the question to pathological growth or overgrowth, that such growth originates to the cause of that growth. Some think
stimulus to growth ontside the eell does not exist, a point of wiew whieh we eannot share. It seems likely that growth depends somewhat upon tension of smirounding eells, or better that growth is restrained by the effect of surrounding eells, but it appears that this eannot be all, for, more powerful than the restraining effect of the surrounding cells, an extermal stimulus may arise that is powerful enough to more than nentrulize these influmees.

We find that there is a considerable number of eireumstances or combinations of circumstances that may lead, on the one hand, to cell overgrowth, or, on the other, to cell shrinkage and degeneration.
'Thus overgrowth may arise from:

1. Nommal activity with inereased nutrition.
\vdots. Inereased activity with increased motrition.
2. Reduction in the external forees inhibiting cell growth, i. e., diminished tissue tension.
These elanges in tissue we eall progressive.
Shrinkage and degeneration may arise from:
3. Normal aetivity with reduced mitrition.
4. Normal aetivity with perwerterl mutrition, the food material being of the wrong kind.
5. Inereased stimulation or overstimulation and aetivity with relatively insuffieient nutrition.
6. Arrest of funetion.
7. Inerease in the external forces, arresting growth.

These ehanges are regressive.
But these classes do not eover all eases. It will be remembered that there is a gronp of eases in which the ehanges are not so evident in the protoplasm as in the paraplasm (a single example is the socalled fatty degeneration), and since these changes are either due to or lead to regressive changes in the protoplasm, they are ineluded among the regressive changes. On the other hand, there is the important series of the neoplasms in which one cannot state what is the primary eause of the exeessive overgrowth; these are naturally inehuied among the progressive ehanges.

OVERGROWTH

Overgrowth of 2 tissne in which the individual elements preserve their physiolog' it relationships and funetions may be shown by an increase in size of the individual element - hypertrophy - or by an iacrease in number-hyperpiasia'-or by both together. Pseudohypertrophy is something entirely distinet; here exists an actual atrophy of the individual elements, with replacement in excess by another tissue

[^8]which newhat trained not be unding o more
aces or to cell
i. e.,
naterial
with
mbered evident the sodue to ncluded portant primary among
(lig. 60). In the su-called "psendohypertrophic paralysis," the inerease in size of the misele is due to an excessive interstitial development of fat cells, while the musele fibres are degencrated, and diminished in size and in number. It must be nuderstood that hypertrophy and hyperplasia should be referred to only in connection with the specific elements of the orga" concerned-the liver cells in the liver, the musele cell in the musele (anatomically defined) and so on. Hypertrophy, itself, is a misleading term, etymologically it means "overnutrition," but scientifically it ineans nothing of ine sort; the tern is so widely used in its generally accepted sense that it would be inadvisable for us to employ it otherwise.
Kinds of Overgrowth. - 1. Physiological Hypertrophy.-The type of this is the pregnant uterus, which enlarges by hyperirophy and hyperplasia. The total size in cubie content, of the hypertrophis. muscle, is many times in excess of the normal; a great increase in blood supply also occurs, and muscular contraction begins from an early period of pregnancy. Increased mutrition cannot he said to be the chief cause of this overgrowth, because the presence of a fibroil in the uterus for example, unaccompanicd by any marked increase in vascularity, may be associated with great hypertroply. The excessive development of muscles by exercise, as in the blacksmith's arm, is certainly due partly to activity, but witl increased nutrition, because a muscle during exe -

Fin. 60

Longitudinal section through muscle of calf of leg in pseudohype t-ophle paralysis. The muscle fibres oxhibit atrophy; the increase in bulk is due to the excessive development of fat cells. (Orth.) cise ohtains an increased circulation through it. Muscle is not the only tissue that undergoes growth as a result of increased function (plus nutrition), because the bone shows like capacity, becoming thickened, in those of active athletic habits, along the 1 : lges and over the tuberosities where muscles are attached, the increased stress inducing increased growth.
2. Adaptive Hyper pphy.-Largely the result of functional activity, are the hypertrophies ..i hollow viscera following upon an obstruction to outflow. Such are the overgrowths of the heart or bladder in which, just as in the uterus, the fibres become larger than normal; the normal heart weight is 250 to 300 grams, and the hypertrophied heart has been known to reach nearly 2000 grams in weight. The overgrowth occurs relatively more readily in a young person than in an elderly one. A parallel case is the hypertrophy of the media of an artery where there
is an hatitually heightened bhent pressure, in which case the inereased work is of the mature of stress. This adaptive hypertrophy is sometimes called compensatory, a term which ought to bre restricted to the forin of overgrowth with which we nre alhout to deal.
3. Compensatory Overgrowth. - This is overgrow th to make up for loss of tissue, as where one of a pair of organs is removed or destroyed; the other may grow to the size of the origimal pair. It may he stated that in all the paired organs of the berly, one is capable of doing the work of hoth, and in performing it, hypertrophy ensues, but the statement ought to he moxified slighty, bermse the perfection of the compensation and its extent vary with the age of the fissues, the younger they are the more complete being the compensation. At this point, it is of service to point out wherein these cases are examples of trine owergrowth. and not of regeneration; in a case such as that in which a part of the kiduey is removel, there is not a new formation of units, e. !!, tubules, hut a prowth in length, size, and the number of their cells in those that have remainel undestroyed. Similarly, the hypertrophying liver does not proluce new lobules, but only new cells. It might be sail that the proluction of new cells is itself a regeneration, strictly speaking, but we think it neelful to apply the term only to those examples in which a cell complex is budded off from an already existent mass of cells.
4. Vicarious Overgrowth.-This is the comdition in which one organ fails through disease or destruction, and organs of another orler, apparently of allied function, undertake the work, und overgrow as a result of the extra call made upon their resources. The pituitary gland is thus the site of vimarious overgrowth when the thyroid is atrophied or removed; it is sai ${ }^{1}$ too, that Brumer's ghande in the duntenum have a similar relation to the patereas. The lone marrow and the hemolympla glands appean to be alle to perform the work of the spleen.
5. Irritative Overgrowth.- It is a familiar observatien that in cases of inflammation there is an irritative stimulation of the supportive tissues to replace destrovel parenchyma. There is cvidence to show that a proluctive overgrowth of supportive tissues may oceur not seccondarily to inflammation, but primarily; examples are found in the increased growth of bone when phosphorus is given in minute luses; the distinction becriceat this nad real inflammatory overgrowth is, we admit, unimpu.tant.
6. Nutritional Hypertrophy.- When a weak toxin stimulates cells to overgrowth, it is possible that it docs so by increasing the absorption aril assinuilation of which the biophoric molecule is capable. Even if such be the case, we must yet contimue to include those cases annong irritative overgrowth, for we are not yet certain that there is such a thing as nutritional hypertrophy, pure and simple. Mere hyperemia, the to increased arterial blood passing to a part is occasionally found to lead to hypertrophy; but even herc the cells must be called into inereased activity (as by the increased warmith of the part) before they
can utilise the exces. of mutrition that is around them. There is experimental evidence thint incrensed temperature of a part stimulates growth: n mbit's ear, kept warm, becomes of a creater size than is fellow which has been kept int a normul temperature. What then will, If them into the required activity? Mnny stimuli ure uble, nud some of these relatively slight ones, such us the constitution of the fluid that buthes the cell with reference to its oxygen nud carbon dioxide eontent, to say nothing of the externul nervons nul other stimuli which we are more necustomed to hear in mind.

There must be ineluded in this group the lyertrophies oceurring in myxordemn mud acromegaly, diseases which ise in persons whose internal seeretions are disturbed; nyxuedema.."is when the thyroid sceretion is defieient or absent, and exlibits excess of interstitinl moncin in the tissucs, and subsequently a real overgrowth of the supportive tissues. Similarly, aeromegaly is an overgrowth of the bones of the hend and the extremities, associated with disease of the pitnitary body. These are evide. ? y eases of mutritional overgrowth, which are instituted by some stmalus, ordimurily held in cheek by un internal secretion and possihly : in ehemienl nature. Not far removed from this, is the form of overow which is called sympathetie, such as the overgrowth of breast tissue in preguancy; this i.onld be frankly classed nmong the physiological overgrowths, save ior the fuet that it is due to something of the nature of a hormone, ns shown by the cnlargement of the breast that oceurs in the non-pregnant animal inoculated with an extract of fortal tissue or corpus luteum.
During the consideration of nutritional overgrowth, we must not lose sight of the faet that abumlant nourishnent is nost effective when coupled with some activity, but that oceasion lly the stimulus to activity is given by the increasei nutrition its this, however, is no to be depended upon, mud generally the opp e is true, tlat the netivity of function must preede the o ergrowa; this aetivity, too, must not be excessive or the result will 1 : not overgrowth, but the contrary, atrophy.

Simulated Overgrowth.-Somet. .c. we sein to see examples of exersive overgrowth, which are net reully s!lch; an example is seen in the occasional enormons development of certain teeth in animals. These teeth, ordinary opposed to other teeth, are by attrition kept to a certain size; if the opposing tooth be lost, the result may be an enormons growth, which, however, speaking strictly, is not a real hypertrophy.

REGENERATION

Loss of substane, not so great nor nffecting so vitul a part as to ranse death, is remedied by regeneration of the lost part or by compensatory overgrowth and increase in the functions of other parts. spaking generally, one finds that regeneration is slight in higher forms,
and indeed it is safe to say that anong the lower and simpler forms of life the eapacity for rogeneration is the greatest and most complete. The illustrations of this statement are familiar, aund need not be reiterated. The herlra and allied forms will regrenerate in any direetion in which the opposing cells have been removerl, but this within linits, for geotropism is a factor. In a tubularian the head will grow only upon the npper end, the font only non the lower end. This is valuable as indieating the power of influcuees external to the borly, and shows ns that the eapacite of the eell to proliferate is a function of its relation to other cedls, and of the action mpon it of certain phesieal influences. We say its relation to other cells; for it has heen noted that the planarian (a flat worm) head undergoes perfeet regeneration only when the rentral nerve ganglion has not been destros I. A parallel instance is seell in some erustaccans, where, if an eye be removed, there develops in its place not a new eve but an antema-like organ, mates the ganglion cells commeted with the eve have been left intact, in which "ase .un eye is redereloped. Thus it seems that while nerve cells do not initiate the regenerative proeess, they yet influence, or even control the intimate cell relationships and functions. Nor is it the active functioning of the cells that initiates the regenerative process, for in the earliest stages of a regenerating eve or limb of an arthroporl the new parts are entircly incapable of function.

In the higher vertehrates and in man, the capacity to reprolluee lost parts and organs is wholly wanting. We can, however, reengnize the capacity to reprodnee host fissues, but this only within certain limits.

1. If an' organ be completely remoced or destroyed, it cannot regenerate. If only a part be taken, the rest may proliferate and bring about regeneration; if a whole bone be removed, it is not replaced, but if the periostemm be left, a regencration may oceur.
\because. The higher and more specialized the tissue, the less is its capacity for regrurntion. A part of a nerve cell or a fibre may grow again after destraction lint not the whole neurone.
'The mushes regenerate, but imperfectly. Nor is it remarkable that regeneration in the higher kinds of tissue shonld be a diffenalt matter, heeanse not one, hut sowral, orders of eell develop side beg side, and the nore rapidly devdoping new-formed eometive tissue, for example, is apt to bring pressure to bear upon the new acini. or lobules, and to canse their atrophy. The salivary glands and the thyroid regenerate moderately well by a process of hudhing from the ducts, but most of the other complex organs and ghands can seareely he said to regenerate.

In the liver it is to be noted that the part most rady to proliferate is the hile duct, and this is quite in accordance with our knowledge, for we fiod that where diflerent cells of the same order are differentiated to varying degrees of perfertion, the les diflerentiated are more apt to regenerate than the more diflerentiated; in an ordinary erland, for example the rells in the merk or in the duct are more likely to proliferate than those of the acinus.
3. Tubules in the kidney, and lobules in the liver of the adult regenerate only to the cextent that lost eells are replaced. Only in the rery young are there indieations that new tubules or lobules may be formed. Regeneration is the more complete the yemuger the animml.

There has been a good deal of diseussion as to why regenerated tisulues so often atrophy in a comparatively short space of time. The reason is, probably, that where tissucs of widely different degree of differentiation exist side by side in the same organ, the less diflerentiaterl gain so great a lead over the more diflerentiated and regenerate so mueh more rapidly that aetive pressure is brought to bear upon the latter to their detriment.

Regeneration of the Various Tissues in Man.-Connective Tissue.White Filurons Connective Tissuc.- This is the most active of all regenrating tissues in the body. The fibrous eonncetive-tissue cell, under stimulus, swells, becomes larger, gains more extoplaim, and gives off a rather round, plump, soft cell, which shortly beromes somewhat more msiform-the fibroblast. There has been considerable diseussion as to the derivation of this eell, and there secms no reason to doubt that it arises alike from the endothelim of the vaseular ehamed and the supportive connective tissue, two kinds of tissue whose elose similarity, 'sell whose absohite identity we have previously upheld. Going farther, many hold that the plasma eell also takes part in regeneration.
There are scveral diflerent eells found wandering in the tissues, which Maximow includes under the term polyblast, aud following his observations, there is an increasing tendence to believe that all weh cells, having a round or oral mueleus, as distinguished from those having a partite nucleus (polynuclears and cosinophiles) may take part in tissure upbulding.
I:Instic Connective Tissue.-There is no doubt that elastic tissue regenerates. It is to be fomm, newborn, in areas of new conncetive ti-sne, and in such places as the intima of arteries; but we have not ret settled what kind of tissue gives rise to it, nor do we think it likely that its origin is different from that of the white connective-tissme filire. It is to be kept in mind that elastin, the component of the Wiastic-tissur fibre, is a relatively inert protein differing but slightly frum the more aetive alhmmins of the -mportive eell.
Fatty Tissue. - It is mecertain whether we should speak of the remeration of fatty tissme, beeanse we are not ret certain if fatty la-lm is a distinct entity or is a modification of conncetive tissue; - re is much evidence in favor of the belief that it is not a distinet 1i - He: What is the fat cell? It is chiefly considered to be a connec-1...-tissue cell, or a number of conncetive-tissue eells, which have " : itiplied in the ncighborhood of a capillary; in the eytoplasm of Nod cells fat droplets appear, fuse, and push the meleus to one side, 11! 'l we see, histologically, the huge fat droplet, surrounded by 1!. edll membrane, which shows at some part of its eiremmerene fin Hittened nueleus, representing the seal in a signet ring looked at
from the broal side. Some say that this large cell arises by fusion of smaller eells, and in places where the fat is disappearing one can sometimes see a mmber of closely aggregated cells. In view of the difficulty of settling this primary question of the existence of the true fat eell as an entity it would be wrong to make any statement stronger than this, that, at the present time, evidence of the regeneration of fatty tissue in any way eomparable to the regencration of the tissules we have dealt with, is wanting.

Cartilage.-Cartilage las the power of regencration, although its growth is slow. This occurs in two ways, distinct one from the other: (1) perichondrial regeneration, and (2) regencration direct from the cartilage.

In the former the perichondrium is swollen and broken away from the cartilage, and the space between perichondrium and cartilage is filled with fibrin. A great multiplication of cells is seen on the immer aspect of the periehondrimm, and these eells, which look like ordinary eonnective-tissue cells, come to replace the fibrin. The oldest, which are farthest from the perichondrium, beeome romeled, or polygonal, and lie in a transparent matrix; this obvionsly is new cartilage. Sonetimes, however, the matrix is not transparent, but entirelv fibrillar, the fibrils originating from previous eartilage. Between these fibrils are seen cartilage cells, which at first are uncapsulated and single, but later develop, a capsule, and become multiple; the fibrils, too, in time disappear, leaving the ordinary eartilage matrix. In the second method, the cartilage proper, when about to regenerate, undergoes a softening of the matrix, and division of the eclls, so that a single cartilage cell becomes a group of daughter eells, which group seems to be responsible for the subsequent formation of new haline matrix aromel it.

Bone.- Clinieally, the regencration of bone is an extremely important matter, and it is well to appreciate that the regeneration of bome, like the regeneration of cartilage, is merely the regeneration of a somewhat modified comective tissuc. The new eells in each are, in the earliest stages, exactly like the fibroblast. This is not romarkable, when we remember the relationship between the thre tissues; cartilage becomes comvertel into bone, and periosteum may give rise to fibrons tissues, as happens when a fibrous union occurs instead of an osseous one. Further, althongh we are accustomed to speak of hone arising with, and withent, the previous interposition of cartilage, both kinds of hone are actually molified conncetive tisine, and no distinction is to be made: in their forms of regeneration. Regeneration, of the medulla is of the same orler as that of the periostem. The long bones have remarkable qualities of regeneration, not only in the periosteum, but also in the merlulla, and even in the lamellae of the bone itself. The lamelle are constantly being renewed, the ohl tisule being taken up be the osteoclasts, and the new home being laid down in its place, so that the position of a tamella is constantly heing shifted. In ablition, there is a constant deposit from the periosteum, as well as the medullary eavity during
the entire process of growth；all these forees which are thus seen to buith up the bone in the first place，take part in regeneration after injury or destruction．

Periosteal Regeneration．－之．as of bone denuded of their periosteum have been seen to obtain a new layer by continuity from the adjacent priosteum；mere stripping of the periosteum from the bone does not necessarily render the bone liable to neerosis．When periosteum regen－ crates，it oceurs firmly attaehed to the bone，and separated from the werlying comnective tissue；the direetion of the fibres，too，suggests that the growth is from the periphery of the area destroyed．

The Regeneration of Medulla．－Injnry to the marrow cells is quiekly followed by the usuai degenerative ehanges，which quiekly give place to mitosis and proliferation；equally readily the connective tissue around the eapillaries begins its proliferation at the margin of the injury，whenee fibroblasts are pushed into the injured area．It is remarkable，however，that there is little migration of leukoeytes；new capillaries form and a new fibrillar network pervades the area of imjury，in the meshes of whieh are the constantly increasing young marrow eells．Pieees of injured bone are seen surrounded by osteo－ Mastic giant cells．

The IIcaling of Fractures．－It is searcely neeessary to deal here with the mode of repair in bone beeause this is so fully considered in works upon surgery，but it may be noted that considerable variation in the process oceurs，depending on whether the apposition is good，and the nutrition of both fragmeats preserved．The more perfeet the apposition，the quieker is the repair；the greater the amount of riding of one fragment upon the other，the greater the irritation，the exula－ tion and the callus．A poor blood supply will mean a delayed or arrested union．The eallus forms as follows：
（a）Hemorrhage and exulation around the fracture，with coagula－ tion．
（b）Invasion of the eoagulum by cells－polynuclear from the sur－ romuding soft tissnes，fibroblastie from the periosteum and marrow．
（r）Absorption of the fibrin and replacement of the elot by tissue from the periosteum and medulla，whiels
（d）Beeomes converted into cartilage，a step that may be lacking if the callus is small．
（r）Then begins the process of laying down the osteoid tissue with小pmit of ealcareous salts in the matrix，either with or without the preliminary intervention of eartilage，the subsequent absorption of the －imne and its replacement by lamellar bone．In the lapse of time，the Nris of bone is removed，and the callus remains just suffieiently strong tw ereure stability of the part．
Regeneration of Lymphoid Tissue．－The specifie cell of lymphoid ti．nll is the lymphoeyte，which is constantly regenerating，and the Mम小लrtive structure is made up of the comparatively unspecialized ＂imimn，whieh we have indieated as the most readily proliferated 13
of all tissues. New lymph nodes appear in varions sites in the subperitoneal tissue where they have mot been previonsly recognizable; this is doubtless due to lymphoy tes coming to rest in areas suitable, as regards foon supply, to their proliferation, or periaps to a sudden accession of growth on the part of lymphatio tisone that has been litherto latent.

Leukocytes.- Our infens of the lewkecytes temed to the smpensition that they camot regencrate; they arise in home marrow from the myedocyte, but are mable themsclues to institute any process of reproduction, and their appearance in mombers apparently greater than usual in the blood, is not abways or necessarily due to inerewsed reproduction, but may be due to a differcut distribution of lenkocytes aiready in existence. "The prohnction of new lentoretes is a process that goce on constantly throughont life muder physiological stimuli, and thus can scarcely be properly imeluled anomg pathological regencrations.

Regeneration of Blood-vascular Tissue.- In the cmbryo there are two methods by which new vacmar tisane ean arise: (1) an intracellular formation of book chandes, bey whells hollow out and give rise in their interior to blood rorpuscles, the spaces later beroming connected; (2) a proeess of buhbing, in which certain endothelial cells of capillary walls give ofl long protophasmic processes, without muckei, which eomert one apillary with another; these processes hollow out, and bool passes into ard through the process; ultimately mitosis of the original condothelial iedl occurs, and the new nuclens passes into the wall of the tube, which phaces the colls of the new ressel on an equalit! with the old. In regeneration of tissue, the seeond method is the one found, and it has been alrendy described in the process of vascubarization of grambation tisule (see p. 136i).

Regeneration of the Mother Cells of Red-blood Corpuscles.- The redhlood corpuseles arise from madeated, hemogiobin-eontainiag eells in the bone marrow, the hematoblasts. Whether these hematoblasts are able to arise from preformed hematoblasts- a true regenerationis doubtful; it is more likely that, mader the stimulus of necessity, there may be an incerased prometion of hematoblasts from less differentiated "mother cells" in the marrow; as again, more rarely, in the spleen and, it may be the lymph or hemotymph nodes.

Regeneration of Epithelium.-lipithelimin ean rerronerate, and new epithelim! arises onl! from pre-existent epithelium. The apparent cxeeption in which epithelimm appear ; in the midst of gramuation tissue is explicable by accidental transpantation of epithelima, or lyy the persistence of epithelial clements cleep down, as in the depths of a hair follicte. Another apparent exception ocours in gliomata-new growths arising from the sinportive tissue of the nervons system- in which eests come to be lined by a reqular haver of rather colmmar cells; it is not certain that this is true epithelim, for one searches in vain for a bascment membrane, the alls bing elomely now the less modified individuals of the next layer. Were it proved, however, to be true of a hair growths 11 which ar cells; in rain modified be true

Bithelimm, it would not prowe the origin of eells of one order from foremears of another order, for the glia is of epiblastie origin.
The epithelium, like the endothelium of bloodressels and serous cavities, ean regenerate completele. If the epithrimo of the skin be broken, the lower layers (not the keratinizod cells, whieh are inert, lecause degrencrated) become active, and these cells, ber ming dongated, slide over one another, still preserving protoplasmie connection, until they form a somer hat flat skin over the dembled surface, the new skin forming at the expense of the old, which can be seen th be thimer than mormal at tioe colge oi the injury. Mitosis quickly. herins in these flattened cells. There is as yet no basement inembrane, hut this is soon smpplied, evidently by the fusion of fibrils from the miderlying commective tissue. Lintil this forms there is free passage of lention rites throngh the superficial cells, anl लen phagocertosis of leukocytes lye the epithe ium.

Hairs, swoat, and sebaeeous glands mily srow again if their receper parts hame mot been destroyed, and it is intereating to note that in sueh cases Here is sometimes a downward zruwth of the superficial epithelium (1) mere then, an observation that -reserets that tissues of the same nature have a reeiprocal attraction fir oble another. If the root bed of hir hair be destroyed there is no reworation; and the same is true 1, the mail herl in the fingers, although

"I'seudo-epitheliun," or secondary ppithrlium without basement membrane lining a cyst in a glioma, formod by modification of the superficial layer of glioms cells. (Saxer.) thi- extends back farther than is commonly supposed, and a protion of it being loft accounts for the appearanee of a naï after a terminal Whanx has been removed. This can seareely account for the appearance of a new nail - or an attempt at sueh-when two phalanges have Inen removed. Here we are compelled to arlmit that it seems as if w川 conditions had stimulated a metaplasia-a change of nature of Hs- - of the ordinary skin to a nail-producing matrix.
Regeneration of Mucous Membrane.-The process descrihed for the filermus is fonnd to exist in the mucous membranes, to the extent t cells at the edge of an ulcerated area may lose their cilia, become umded and ultimately flattened to cover the denuded surface, and (1.1) simple gland follieles, like those of Lieberkühn, are reproducet.

Thrextensive regeneration necessary in the uterus after menstruation, arar the placental site after parturition, is said to be assisted by presistence of the remains of the deeper portions of mueous glands,

Regeneration of Endothelium.-In n way similar to that seen in epithelium, colothelium by a method of translation and proliferation quickly covers over a denuded area; even fibrin or the cells of a new growth transplanted in the peritoncum may be covercd ly it. The view usually aceepted is that the new eovering arises from precxisting superfieial endothelium, but eonsidering the elose relation existing between endothchial eells and fibroblasts and conneetive tissue, it is not impossible that endothelium of such a denuded area may arise from the underlying conneetive tissue, especially as endothedium has been seen to give rise to underlying new eonnective tissue.

Regeneration of Glands -In general, glands undergo but 'ittle regeneration. The gland of the simplest structure, such as the Lieberkühnian follieles of the intestine, the uterine and salivary glands, do present instances of the proeess; in more eomplex glonds the ducts are mainly or entirely the source of new tubules, yet with the modification previously noted, that such regenerated glands have a great tendency to atrophy by reason of the accompanying regeneration of the supportive structures whieh compress them.

Liver.-Where, as in poisoning an animal in the laboratory by ehloroform, there is induced a state of necrosis of the liver eefls of the centre of a lobule, regeneration oecurs by proliferation with simplification of the more peripheral cells, and these new cells with subsequent growth come to occupy the spaces from which the cells have disappeared, so that in the course of a few weeks there may be complete regeneration. So also, where eomplete hobules have undergone nor rosis from one or other cause, there has been observed the formation of new buds or branches from the bile ducts, whieh, adrancing into the framework of the destroyed parenelima, give origin to new liver cells. Where, however, there has been complete destruetion or removal of an area of the liver, the destroyed portion is not regenerated; at most, the remaining liver tissue exhibits some hypertrophy:

Kidney.-A tubule partly denuded of epithelium may be reclothed by the cells still left in that tubule, but no new tubules are developed. Attempts at the formation of a new tubule invariably stop short of the construetion of a new glomerulus, so that sueh a tubule remains imperfect and without function. But in young animals, not in the injured, but in the opposite kidney, new glomeruli and tubules appear to arise, beeause the kidney is found to contain more than the normal number, and groups of eells near the eortex are considered to be the anlagen of new glomeruli.

Thyroid. - A certain amount of regeneration oeeurs in the thyroid, chiefly by a process of budding and separation of new follicles from the old.
Pancreas, Spleen, 'Testis, Ovary. - In these organs, evidenee is in favor of the view that regeneration does not take place.

Muscle.-Plain Muscle.- In the stomach, the museularis mucosæ and the uterus, abundant mitoses may occur after injury, and in some animals, new fibres have been seen to form,

Striated Muscle. - If the substance of a inuscle fibre be partly destroyed, but the sarcole ama sheath left, a complete regeneration may necur; but where there is actual injury wrought to the fibres, these contract away from one another, and the regeneration of the interfibrillar connective tissuc tends to check the regeneration of the injured muscle. Yet in any given case some fibres will succecd in preserving the sarcolemma and other: not. When it is preserved, some nuclei still remain with cytoplasm around them, and these gradually multiply

Sucessive stages in the regeneration of voluntary muscle: A, formation of bud of cytoplasm with In-y of striation and multiplication of musele nuclei; \boldsymbol{B}, the nuclei aequire estoplasmic territories and cells, uninueleate and multinucleate, separate from the bid (sarcoblasts); a, unaltered end of muscle thi, r'; h, sarcoblasts; c, multinuelear sarcoblasts, one nucleus at d showing mitosis; C, early stage of In's muscle fibre, nultinucleate and exhibiting longitudinal atriation, becoming fused with the original thirw: D, regeneration complete but irregular, the original fibre being continued into three processes. (Ifter Volkinann.)
and are surrounded by constantly increasing cytoplasm, lying aggresitted in clumps; from such a clump individual mono- or multinuclear intl- separate themselves, and absorbing the remains of the old striated whatance, they attach themselves to one another or to the undamaged part of the muscle, and gradually become first longitudinally then trinsiersely striated; the old sarcolemma sheath iciumes absorbed an : new one appears. When the sarcolemma is ruptured, as in a cut or a laceration, the capillaries are also ruptured and the picture
becomes more confused. The ruptured fibres contract into elmmps, as before losing their striation, of which the nuchei mudergo rapial division, mutil a elan of many melei results; the nurlai temb to colleet in the unstriated clmmped end of the fibre, where thee form terminal "buds"; similar buds may appear latratly on the fibre; these buls dongate, the mumber of mekei beeomes redmed, the evtophasm imerasiss, and transverse striations begin to appar.

Regeneration of Nerve Tissues.-Neurogla.-'The urnroglial tissue is peeuliar in that it is a connective tissum and yet is of epiblastic origin, being in fact so dosely related to merve tissue that at an early stage of development one camot tell which cells will beeone nervo-roll bodies and whieh glia. Even in the adhat there is no doubt that glial cells regenerate, and they are able to form not only tumors but rephacement gliosis in the case of loss of nerve eells. Some observers have thonght they have seen them giving rise to cells which take the function of nerve cells, but this ean be determined only in the very young and even then seems to ofler ground for doubt.

Nerve Cells.-It may be definitely stated that the norve-cell booly does not regenerate in either man or the ligher ammais. Nitoses have been seen, it is true, but it is not prosed that eell division follows them.

Peripheral Nerves (Nerve Fibres).-It may be definitely laid down that any new development of the axis cylinder always origimates from a pre-existing axis cylinder, and then only when in conncetion with a nerve-cell body.

If a nerve fibre or its anis eclinder be severed there is olegeneration -the so-called Wallerian degeneration-distalward throughout the entire axis eytinder, and on the proximal side, as far as the next note of Ranvier or even higher. We may recall here, also, that as the result of section of a nerve the function of the nerve-edl body is apt to be diseontinued, and grahhally there may show itself a disuse atrophy of the nerve-cell borly, and the proximal portion of the axone. Regeneration may occur in the distal part of a divided nerve, provided (1) that the parent cell be intaet and molamaged; (2) that the organ or part innervated is not atrophied or degenerated, and (3) that a cieatrix does not bloek the track of the regenerating fibres. With regard to the third of these conditions an imperfect regeneration mar in these cases show itself, such as is seen in the so-ealled amputation neuroma, which may form at the end of a diviled nerve, in which the growing nerve fibrils beeome twisted through the fibrous connective-tissue overgrowth of the peri- and endonemrium.

It will be realized that regencration is most complete when the sheaths of Schwann are intact; this is exactly parallel to the condition seen in the musele, the neurilemma and the sarcolemma being both very near to the speefic molei of the melin sheath and the musele, the melei in fact lying and moltiphying elose underneath the sheath.

If a fibre be injured the axis eylinder stains imperfectly, becomes
fibrillated and disintegrated. The myelin sheath divides up into irregular masses. Now the mutlei of the sheath of Schwan begin to proliferate; they pass betwern the masses of myelin and piek up from their eytoplasm. some of these new colls degenerate and die, and others hecome elougated and spindlo-shaped, and give rise to the new sheath of schwann and the myelin. The axis eylinder meantime prolongates from the central end of the damaged nerve and has at its tip a nohhlar mass of protophasm, which is apparently motile and creeps ahead, laying down the axis extiuder like a telegraph line hehind it, its general conrse being along the lines of the old sheaths of schwamn.
Regeneration after Section.- Regencration muler these cireumstanees is bronght abont in the same way, but the new spindle-shaped eells and ane new end of the axis exlinder being no longer guided by a remmant of the origimal sheath maty take a tortuous conrse, especially if the two cnds of the nerve are widely apart. Time is lost in the process on this aecoment and quicker regeneration is obtained if a guide of sime sort be placed between the two ends; such a guide may be a bullow piece of bone or a bundle of catigut threads. In spite of a considerable distance between the two ends and the piling up of sear tissue at an obstacle very remarkable regeneration of peripheral nerves has nefured, gaps of 10 and 12 cm . in the dog having been bridged, the process requiring a couple of years.

GRAFTING OR ?'RANSPLANTATION

Transplantation means the inserting of living tissue into living tissucs anil may be autoplastir, that is, when individuals' own tissues are grafted on themselves, isoplastic, where the tissue of another animal of the same species is used, or heteroplastic, with tissues of another species. Implantation, while a similar process, lues not demand the use of a living tisule as a graft.

The remarkable results obtained by grafting in arborieulture and sarilning are familiar, and low forms of anmals show a great readiHise for growth if they are grafted; with the wam-hlooded animals, hwerer, this is he no means the casc. One mar make a gencral statement to the effeet that immediately after grafting the tissue inserted may grow, yet in a comparatively short time the planted tissuc becomes ahorbed and a cicatrix alone may remain, although sometimes the waft forms a franework upon which the regenerated tissue fills in the areit. Exen in this short periol of growth after transplantation it is nit'on notable that the proliferation of the transplanted tissue occurs throngh gromerations of cells that gradually become less and less specific. liveressed in other worls, there is at once al reversion in the type of 1h. ectls transplanted. Considering this fact one would naturally conH. ic that if embryonic vegetative tissues were taken in the first plaee, tramplantation would be much more likely to suceeed, and such is
the casc. But even in these cases, as where portions of chick embryos are transplauted to chickens, the graft in a few weeks hegins to show signs of becomine absorbed. In this comnection the reader may recall thait John Hunter transplantel a cock's spur to its comb, with the result that at first the spur grew to large dimensions, but with an iurvitahle tendency to atroply null sulbsequently fall olf.
When we note the results of transplantation of the thyrotd we see rather more successful exnmples. It is now a gooxl many years since the eat's thyroid was transplanted into its alxlomen, in which experiment it was noteci that the central portions of the transplanted tissue underwent the nsual degeneration, but the peripheral parts remained to sonte extent, grew, and were absolutely essential, by reason of their function, to the life of the animal. From many observations we know that transplantation of the thyroid can be complete and perfect. Experiments with the mammary gland have been equally: successful, the transplanted glands beconing eularged and secreting milk with pregnancy.
The trausplantation of the ovary has met with almost as great success, although the central portions again are subject to necrosis; we are not in a position, however, to state how long the ovaries so transplanted contimue to functionate. Experiment has actually succeeded in having ovulation follow aut isoplastic implantation of ovary in a hen whose ovaries had been removed, and one case is on record of a similar happening in the hunan female, although the case has been given another explanation. From these and other experiments it seems proved that the continued growth of the graftell ovary will occur only if functional activity be demanded of it; should an isoplastic implantation of the ovary le made where there is still original ovarian tissue functionating. the trausplanted tissue will be al rrbed; if, however, the transplanted tissue be called npon to functionat it will live. It will, of course, occur to the reader that autoplastic transplantation is likely to be more cucessful than isoplastic, becanse we know that in many cases the tissue juices in one animai are eytolytic to the tissue of a oother, and this autagonism will hasten the absorption of the graft.
The Skin and Skin Grafting.-The facts with regard to skin transplantation are well known; the capillary layer or part of i : must be transplanted to obtain the best resilts. Althongh a certain proportion of mere surface parings will become the centre of new growth, the greater part of the graft, of course, dies, but very soon after transplantation the cells of the Malpighian laver are seen to show mitosis and multinly, spreading out from a centre of activity, the cells so spreading having actually amoboid properties. The new skin so formed, however, does not contain any of its more differentiated constituents, that is, hair follicles and sweat glands are not reproduced. We suppose that this skin is somewhat permanent, but we are met by such an experimental observation as this: if unpigmented skin be graited into a pigmented area it may take, and will be at first unpigmented,
but subsequently will become pigmented. This may mean that there is a subsequent replacement of the graft, piecemeal, by cell3 derived from the oripinal epithelium of the host, that is, that the permanence of the graft is only apparent and not real. In support of this it may be said that in no case is the skin of another speecess successfully grafted on man; nevertleless, the mere presence of an aninal graft seents to stimulate the skin cells of man, causing them to spread more rapidl. than usial over the denuded surface. This nuy be another instance of that phenomenon to which we have previously referred, namely, that erlls of like order attract one another; that is, that the presence of epithelial cells in the centre of a denuded area by homotropism attract the epitholial cells of the host nround the ealge of the demuled area. It may be that the liffused products of activity of the grafted cells act like allantoin (Maealister) as cell proliferants or auxetics, Ross having shown that the dissociation products of proteins stimulate cell proliferation.

Transplantation of Mucuus and Serous Membranes.-Tlie mucous uembranes are quite as apt as the skin in transplantation, and the mucous membranes of the lips and of the mouth have been used to supply denuded areas on the eyelid. Similarly autoplastic grafts of the great onentum have beris enployed successfully to cover peritoneal wommels as also, recently, of fascia and tendons.

Transplantation of Teeth and Bone.-Transplantation of terth and of bone properly speaking does not occur, being really implantation. It is of interest that the IRomans understood the implantation of artificial teeth, and for nıany centuries in India teeth have been taken from one person and implanted in the jaw of another. The results are equally good, whether the tooth be newly drawn or one in which the pulp has been removed, or one that has been out of the body for many years; in other words, it is not an organic union, but rather that ressels, nerves, osteoblasts, etc., penetrate iuto the pulp cavity; the tooth proper continuing to be an mert substance, which in some cases becomes absorbed, with failure of the procedure. Munh tse same state of affairs is fonnd in the implantation of bone, sterilized bone or Hecalcified bone; snell bone, like any other porous material, is merely if framework which fulfils the functions that the fibrin fulfils in the bood clot with the additional quality of rigidity and consequent prewration of the contour of the part.

Transplantation of Periosteum and Perichondrium.-Osteoplastic t ramsplantation of these is very successful, especially if the periosteum lne retransplanted upon an old bone, or into an area where bonc has "isted. Exon isoplastic transplantation may be successful, but it is motable that in any experiment a good many of the periosteal oells maty die, the burden of proliferation remaining upon those that survive. The bone marrow lends itself perfectly well to autoplastic transplaniation, giving risc in its new site (f.g., experimentally, the anterior 'hamber of the eye or the abolomen) to true bone.

Transplantation of Vessels. In the hat few vars with improved surgimul tedhigue, umberons obervers have suchesplully interealated short lengeths of arteries or velus in the comrse of other vessels. 'They have coen obtained apparently sheressfal resilts where the introluced segments have bere killed be the artion of formalin and other pgent:. Where the living tissur has been employed and the "peration has been nutoplastie there has been persistent vitality und eveng growth of the introdned tisale inded, portions of the antopastic rein introdneed into the comese of the artery show pronomeced tiones, on the other lamperse espectally of the adsentitia. Dead
 is one, not of transpanazation, but of implantatios.

Carrel's Experimens. Co eonsideration of tramplantation at the present time wonld be complete if montion were mot mate of the surgieal wizarelry of Correl in the tramphantation of organs and even of limbs. Not only has he tramplane fresh organs with suceess, bat even organs that have betn prearved for mans hours on iee, the vascular anastomoses being mate with so womlerlal a legree of shill that sumeess has beell attainerl; howere, it mast be monited that sate muler the most fasorable conditions of anto- or inoplastic prafting, there is an ahnose insimmomiable tombery to subsequent ntroplay and degeneration.

METAPLASIA AND HETEROPLASIA

Metaplasia. Wetaphasia is the post-matal prometion of specialized tisones from coll- which mormally promue tis:smes of other orders, and is all maptation on the part of cells to an altered emiromment. It h ., a constant phesiologital proeess, as is shown be the corversion of ordinary combertive-tisane corpmiseles into fat cells, or the transiormation directly of cartilage edlls and rartilaginous tissme into bong edls and bomg tisole. let metaplasia is bommed by eertain rigid laws; epithelial tissite can be comerted only into other forms of epithelial tissine, meso-
 ghand cells for example, ean never beconle converted into bone or eartilage, or cice rersa; and exen in the transformation of one form of epithelima into amother we do mot find that very wide gaps are bridged, as, for example, that simple epithelimm should pise rise to complex Hambs, nerve colls, or to the formation of hair roots. Fibrous connertive tisane lins never been sell to change into muscle, striated or non-striated.

A striking example of netaplasia is that if an ere be rendered functionless be traman there will oiten develop from the choroid coat a deposit of tue inne. Of conree, !men in this rerion is normally absent, and its presence has beco accounted for variously. We mention three theories, the first of which we consider the most acceptable. These theories are:
(I) that the bone formation is due to morified function and mutrition of certain choroidal cells: these cells have normally a definite function comected with the receiving of light by the eye; this fmetion : eing interruptenl, the vascularity of the choroinl is modified and erertain of the choroidal cells give themselves over to the production of bone;
(2) that in the process of formation of the cere a few cells destined to form bone, lxing accidentally carriod into the eve, remain latent so hong as the eve performs its proper functions, beconing active when these finctions are interfered with; (3) bone-forming cells are carriol to the part by the blool. The remarkable frecpency with which this home formation oceurs in the choroid of eyes which have been rendered useless hy injury is strangely opposed to the two later hypotheses.

Before disenssing metaplasia specifically, it is necessary to separate one or two conditions which are not true metaplasia, but which might be confoumed with it. The first of these is heterotopia, which may be rougenital or acequired and consists of the abnormal snaring of cells of an organ from the organ proper, and their subsequent growth in another pace. Examples of the congenital form are the varions cell rests of Cohnheim, aberrant adrenals and accessory spleens; cxamples of the acpuired forms are periostea! and bony growths from displaced periostomm. It is to be noted that in none of these cases is there tisme transformation, for the tissme contimes to grow along the ordinary lines; further, one sees the same process in the invasion of one tissue into the territory of another, in such a case as where, after tracheotomy, the epidermis may not only cover the wound but grow some little distance into the trachen.

Heteroplasia.-This is the condition in whicl we find in the middle of the cosophagus normally: lined by squamous epithelium, ishurs of cohmmar epithelinm like that of the stomach. No ronversion has wenred from one type of epithelium into the other, but a sere is merely a persistence of misplaned and ordained tissue. The same explanation lowls for the occasionat. istands of squanons epithelium fomm in the respiratory passages, and the stomach, withont any evidence of past inflamimation which might accome for the change.

Anaplasia or Reversiunary Atrnnhy ("Undifferentiation").-T'o be distinguished from metaplasia is the loss of differential characters by wlis which lave become subject to abnormal conditions, for example, ilue simplification of the tubular cells of the kidney in nephritis, or the uhicai form of the lining cells of the pulmonary alveoli in interstitial prentionia. The same process is illustrated by the development of mucuad tissue in the adnlt body, for museid tissue derelopmentally is an intermediate stage in the growth of another mesoblastic tissue. I similar process is the morphological chawe of cells due to mechanical antion, c. $\%$, the flattening of a cubimel or cylindrical epithelium in a $\because t$ on account of the pressure of it, contents. Ay . n we must not Hinnal with true metaplasia the dififerentiation of a tissue under wlified chisironment without any change in the function, as occurs,
for example, in the cornification of the epithclium of the prolapsed vagina. Metaplasia, in opposition to this, comprises both a morphologieal and a fimetional change.

Epithelial Metaplasia.- The mucous membrane of the uterns is a colummar epithelinm; if the organ be everted so that it projects from the vagina, its mocosa becomes smooth and dry, and in place of the colnmanar there is a stratified squmons epithelimm with horny ehange of the external layers. Ilere, it will be observed, there is a change of function as well as of structure. In the bladeler we find changes of two sorts; normally it is lined by polygonal epithelium in several layers. We may find over an enlargcol prostate, as a result of inflammation, areas of typical squamons epiderm, with prickle cells, or, on the other hand, we may find papillomas developed with epithelium that is now distinetly columnar.

Stages in the metaplastic regeneration or formation of a new leas from the iris, in the laryal of the hypertrophied mass of cells to form the lens. (Fischet.)

In cases of ectopia vesice simple glamdular erspts may form from what was a :rang layered eppithom. Even more romarkable is the metaplasia ohaerved in the regeneration of the lens. In the larval newt, if tha lens be extirpated, a new lens may be developed from the iris, as will be readily understood from Fïg, 6is. This is not very remarkable when we remember that the normal lens and the iris thongh differently. formed are both (epiblastic.

Mesoblastic Metaplasia.- Itere may be seen the metaplastic formation of bone from cartilage, as oceurs in the tracheal cartilages in advancing age, the one tisume being merdy converted into the other. A similar process is the replacement of cartilige loy bone in the callus of a fracture. A more striking example is the formation of bome by metaplasia of eon-
 in the hmg, or of plates of true bone in old plenral and pericardial
adhesions, where there has been an excessive formation of gramulation tissue. Both bone and cartilage further have been met with in

Fin. 64

Metaplasia from a case of ectopia of the bladder; the ordinary stratifed epithelium becomes replaced hy a cohmmar epithclium. (.Ifter linderlen.)

 fulfout alamls; d, cartilage; c, connective tissure; f. f, masses of bone in submucosa; a. fat cells. ㄴ, ritig.)
arterial wall and in the thickened valses of chronic endoearditis. "will further example be necessary it exists in the replacement by
hone of the tembons of origin or insertion of the muscle, as in the soealled "rider's bone" of cavalrymen. This is purely local, but the same proeess is probably at work in the production of that remarkable condition mistakenly called myositis ossificans, in whieh the tendons and bodies of one set of muscles after another become replaced by bone until finally the patient is mable to move his limbs, rotate his head, or bend his lack.

As has been referred to above, the development of the provisional callus of long bones after fracture is an example of cartilaginons metaplasia, and the same is seen in the oceasional islands of cartiage formd in new growth derived from the eonnective tissue, espocially in the mixed tumors of the parotid and the testis. We are fully aware that this is generally aseribed to the presurece of cell rests, but there secms no reason to separate it from other cases of metaplasia.

Hitherto the examples given have dealt with the metaplasia of less specializal into more specializer? tissues, but the reverse oceurs, as when in an inflammation of the joint with immobilization, the cartilages disappear from the joint surfaces and are replaced by fibrous connective tissue. This is not a purely degenerative change, beeause inactivity of the joint would tend to atrophy, but results from a change of function, the immobility of the joint doing away with the necessity for eartilage.

In true metaplasia, finally, we have no new process, because bone arises first in the foetus from mesoblastic cells; even in the periostcum of the adult the future bone corpuscles may be indistinguishable from fibroblasts and in delayed union they may aetually be converted into eonneetive-tissue cells. In foetal life it is their enviromment and relationship to the vessels whieh lead certain mesenchyme cells to beeome osteoblasts and marrow cells. Why may not the same reason be in existence later? A lifficulty does present itself in the idea of fully formed cells of one order becoming directly converted into cells of a different type, but this does not happen; metaplasia is not direct, but ean be brought about only by a preliminary reversion to a vegetative type of eell, or, where mother cells are present, by the development of cells modified by environment. When we speak of the direet eonversion of cartilage into bone cells we mean that in these histologically simple cells there is at least a funetional ehange; that this is not merely a supposition is shown by the change in the matrix which they govern, and by its exhibiting a regressive modifieation.

THE NEOPLASMS

The term "tumor" is properly applied to any unusual swelling in the body, and inclules (1) dislocated parts; (2) collections of fluid or gas; (3) tissue growths, cither physiological, as the pregnant uterus, or hypertrophie, and others sum; obviously, then, it ean have no useful specific meaning applicable to the class of growth we wish to describe,
a elass which Thoma called the "autonomous tumors," that is, tumors whiel are, or possess a law monto themselves. These are now generallynamed the neoplasms, or new growths, and the process by which they arise is known as neoplasia. But even these terms are not satisfactory, since there may be new growth set up he hnown agents. The tubercle, for example, is au inflammatory neopla m due to the action of the B. tubereulesis. Despite these limitations it is usual to employ the term "neoplasm" to indieate the autonomous tumors and "inflammatory. neoplasm" to indieate tumors due to the action of known agents, and in the following pages we shall fall in with eustom. The neoplasms proper, therefore, are to be distinguished from inflammatory neoplasins by this antenomy; ly their growth independent of function and of the needs of the organism in which they grow and from which they derive their nourishment, and by the fact of their arising independently of any known stimulus. In the matter of terminology we emphey the suffix -oma which cannot be exactly translated, but which conventiot!, dly earries with it the iden of a swelling, and more specifically, of a swelling of the above-deseribed neoplastie nature, although exceptions occur in the ease of sueli words as hematoma. With more propriety than in the last named, the termination bears some of its full meming in terms like granuloma and tuberculoma, for these are "tumors of granulation tissuc" and "of tuberculous tissue" respectively.
To gain an idea of what neoplasms are, it is by no means a bad methood to read over some of the various definitions that exist. Colmheim described neoplasins as "eireumseribed atypical productions of tissure from . . . embryonie elements," statiug thus that they arise esscutially from "cell rests," anideal largely given upat the present day: Ziegler atates that "a tumor is a new formation of tissue, possessing an atypical structure, not exereising any useful function, and presenting no typical limit of growth"; Lubarsels counted them to be "grownis of apparently: iulependent origin, histologieally corresponding with the cells of the matrix from which they arise, but atypieal in form . . . "; von Rindfleiseh eharacterized them as "loeal degencrative exeess of growtlh." l'erhapls these ideas are best grouped in White's definition, that: ncophasin is " an (abnormal) mass of cells, tissues, or organs, . . . resemhimy those normally, present but arranged atypically. It grous at the (xi) nese of the oryminism withont subserving any useful function."

THE TERATOMAS

These are neoplasms which show a tendeney to the formation not minl: of irregular cell masses but also of fully formed organs sueh as lirain, teeth, skin, hair, bone, or seereting glands; for example, a eystlike mass containing many of these tissues may be found in the ovarythe warian dermoid. All monstrosities are terata, anl such have been disemsed in series down to the ease in whiel, of two individuals from
a common owme the fechler of the two becomes infolded into the stronger, and takes its nutriment from it. Such a fretal inclosure is a trpieal teratoma. It is not an independent individual; it is incomplêe; it is nourished from its host; hut it begru its existence as a separate individual, from a separate primitior streak. It may quite well he that both host and parasite arose from a single art of fortilization, but at an early period of development two indepembent centres of growth showed themselves, and it is the antonomons growth of one of these within the other that has given rise to the mass of tissile constituting the parasite. The teratoma is thins " m" outoumons grocth, the product of the contimued decelopment within one indicidunl of "unother individual of the same species." the term "contimed levelopment" being inserted to exclucle the normal fortus.

Before vonsidering teratomas specifically, it is worth while to mote what kinds of cell in the borly in its diflerent stages are capable of giving rise to all the orders of cells that go to make up the individual. It first glance one would say that the fertilized ovam alone can do this, but totipotentiality is more extensive than this. A totipotent cell is one that is capable of giving origin to an indis idual, that is, one that can give origin to cells of every order; a mipotent cell is one that can give rise to cells of only one order. The following are totipotent edlls: (1) the primordial blastomeres, which, even among vertebrates, if broken off, can give origin to individuals, though dwarfed; (2) the cells of the primitive germinal area; (3) the cells of the growing point, so long as they remain in comection with the orum (this heresom of their containing no ?olk) ; (4) the germinal blastomeres, that is, the forermmers: of the ova and spermatozoa, and (.) the mature owa and spermatozoa after fertilization. We have to consider, then, that there are, subsequent to the fertilized ovim, these various sourees from which a teratoma can arise; the forms that can arise, some of which have already been dealt with, are as follows: (1) development of two werminal areas on one germinal reside, giving rise to donble monsters, one of which undergoes inchusion in the other-feetal inclusion. (2) Ther prometion of exess or misplaced totipotential eells which become: inchoded in the growing individnal; these cells may develop early and grow elaborately, giving rise to iurlusions recognizable at birth, or may lie latent and at a subsequent time grow actively, as abdominal inchusions, teratomas of the genital glemils, and certain "mixed thmors." These varions teratomas require more particular note.

Foetal Inclusions.-These inclusions may be complete or incomplete and projecting; the waber and smaller embryo is carried into the borly of the larger during the process of chosing of the great anterior fissure.

Epignathus and Congenital Sacral Teratomas.-Some wonderfully complicated cases are fomm under this rass, such as where there is inserted into the roof of the mosth of one fotus the umbilical cord of the second, more or less well developed, or where iletinitely formed organs, lower
limbs, or sexual organs project from the month; less curions are those where projects a mere mass of tlesh in which ean be distinguished tissnes of the varions kinds that are ordinarily derived from all three layers of the embryo-the most eommon form of epignathus. Sometimes there is merely a tumor of the roof of the month, in which the tissues are simpler, and do not represent all three of the primitive layers. This last may have arisen not from totipotential eells separated at an early stage, bit from multipotential cells separated at a later period.
Teratomas of the Genital Glands and Sporadic Teratomas.-This class comprises some cases that are clinieally very eurious. The cases mentioned above of evsts eontaining hair, teeth, cte., being fonme in the ovary, are surpassed by the discovery of similar tissues in the testis of the male. (Of such neoplasins we find that some grow in parts of the body bearing uo relationship to the fissures or to the poles of the borly, or to the generative ghands, as, for example, in the neck, the anterior mediastimm, the abdomen, and elsewhere. No rule ean be laid down for these, and we are able to say only that there mast have been a development of displaced totipotential cells. These teratomas-ealled sporadic embryomens-consist generally of tissues from all three germinal lavers; sometimes the tissues are of adnlt appearance and of limited growitl, and these are ealled typical; morc frequently, howerer, they are atypical, uppear about puberty, grow rapidly, and tend to form secondaries. This, it will be noted, is exaetly parallel to the orenrrence of benign aud malignant blastomas to be hereafter mentimed. Sometimes a tissue in a typical teratoma of this sort will begin (1) grow inordinately, the result being a neoplastic growth in a neoplasin (tumor in tumore). A tumor of this order may give rise to distant metastases in the bolly of the host.
Most eommonly teratomas are found in the ovary, and are of two forms: (1) the large-evstie teratoma, commonly called the "ovarian dermoid," and (2) the solid or small-cestic teratoma. The former is the commoner and may attain the size of several inehes in diameter; it - contents are fatty debris and long hairs lying in a varying amount of fluid. It is lined by squanons epithelinm with sebaceous and sweat glands, with bone frequently to be found in the walls and an area whieh has been ealled the "island," representing the head; from the island arives the tuft of hairs (in our experienee, always red), and in it may tre bone in which are fastened teeth. In a small number of eases the "tremities and genitalia have been recognized. Typical ovarian teratwnas of this kind may be found in young children. The solid ovarian leratoma is like the sporadic teratonas already spoken of, and is very :"wommon.

With regard to teratomas of the testis, it remains to be said only that the so-called mixed tumors of the testis have frequently been
mind to 1 long to this elass, and close study is apt to reveal tissues erminal arcas. These are eviriontly the product of totipoten-

It is diffienlt to accoment for such peculiar freaks as these when they appear chewhere than in the ovary and testis without ealling to our assistance, as an explapation, the disappearance and displacement of some of the gaminal bastomeres, beanse we know that these in the process of development do not all find their way into the ovem or the testis; ther may be carried and deposited in different parts of the body. We need not imagine any carrying away to account for the teratomas of the genital glame, beeause this is the matural site of these totipotential cells.

TERATOBLASTOMAS

These are neophams which are not true teratomas, becanse the tissues in them do not represent all three germinal layers; they inelude the most striking examples of the "mixed tumors," although not all of them. A very familiar form will oceur to the reader if one mentions the so-ealled "sarcomas of the kidney;" which have been noted so frequently, growing to large size in the infant. In this and in mixed tumors of like orker arising in different parts of the bonly one must make the broad statement that one finds in such a tumor only tissues

section of a "mixed tumor" of the kidney, whowing aland tubules with surrounding sarcoma-like eflls of the plain muscle type. fat cells, ete. (libbert.)
such as might develop from the original anlage of the organ; by this we mean that just as the kidney arises from certain mrotomes which give rise to various structures in the neighborhood of the kidney, it is impossible to find in a renal mixed tumor a tissue that is not potentially represented in the myotome. Such a tumor has originated from the misplaced myotome cell which, leveloping, later, gives origin to all the orders of tissue which woukd have developed from it had it malergone growth in its normal position.
"It must be kept in mind that there are several orders of "mixed tumors" to be distinguished: i1) the teratomas, (2) the teratoblastomas, (3) the transitional lepidonas (i, 276), and (4) the carcinoma sarcomatodes proper (p. 266).

It is obvions in such a tmmor as this, that is, one arising from the myonome, that all the contamed tissines are necessarily mesoblastie. These neoplasms are large, loealized, soft, sareoma-like, and bleed nud nerose readily; on section, the borly of the tumor is sarcoma-like, but there are in it clements that recall a kiduey tubule, as well as musele, fibroms and elastic tissue, fat, cartilage, and so on. Mixed tumors of a like nature in which the tissues vary according to the situation, are formed in the parotid gland fairly commonly, less so in the submaxillary gland, in the vagina in children, in the cervix uteri later in life, in the manmary glands, the lacrimal glands, the cheeks, and the gums.

TERATOGENOUS BLASTOMAS

By this term we indicate tumors formed of one order of cell, but originating not from the tissues of the host but from that of another individual or potential individual within the host. The simplest cample is that of an adenoma or carcioma developing from an warian teratoma; the most interesting and important are those developing from the placenta, viz., placental moles and chorio-epithelioma. T'o nse simple language at the eost of being slightly inaecurate one moy (eyplain that the latter is an interesting form of tumor arising wi...e the rapid eellular growth of the placenta is not checked at the birth of the firsus, but continues growing in the uterus, prolucing a most malignant and fatal neoplasm. One might say that foetal structures habituated to rapid growth continue in the uterus after their physiologieal purpose is fulfilled, and become to all intents and purposes a mepphasin of the blastoma type.

The foxtal membranes include the fortal placenta, which is an organ devoped primarily from the chorionie villi; being epihlastie, it comes, with the development of the allantois, to gain a vasenlar mesoblastic rur: Before the placenta develops, the outer cell layers of the fatal chorion have "eroded" into the uterine mucosa. The aetively frowing cells of the outcr layer of the villi are phagoevtie and penetrate intu the simmses of the uterus below the meous membranc. Normally, thre cells, when they have penetrated into the simases, have done their wrot and the outer laver becomes inartive, fuses and forms the syneytilum; below this at the time of birth there are still layers of active whl the so-ealled Langhans' layer-but these also undergo degencration and in the due expulsion of the placenta at parturition they come cleanly away from the uterns. But in cases of abortion it sometimes happens that these placental ehanges, usually complete by the time of fill term, have not vet oeeurred and when the immature foetus i- expelled, there remain chorionie cells which have not degenerated anil are still artively growing. These constitute the evil agent, and She: carry on their growth in the uterns and constitute a neoplasm.

Placental Mole. It sometimes happens soon after conception that die firtus dies and is absorbed, leaving the placenta and membranes :rafted upon the uterus, and these form an irregular tieshy mass, the
fleshy mole, prone to hemorrhage (the hemorrhagic mole), anul to subsequent putrefaction (the putrefactive mole). Again, i., similar eases the chorionic villi being nourished by the materual blool grow netively and absorl, fluid so that a villus be-

A mall portion of a hydatid molv: natural size. comes a veside or series of vesicles of small or large size distended by an cerlematous nmeoid fhinl, these vesides being aggregated together in enormons mumbers, the mass clistending the uterus, as minch as does a fill-term fortus (hydatid mole). The vesicles are yellowish and transhenent. Even in an otherwise normal platenta a small portion of it has sometimes been fomul to consist of such a mole.

Chorio-epithelioma. - III the case last mentioned it will be seen that the growth remained within normal limits, and was, therefore, of benign nature, but this is not always the rase. Such a mole may continue to grow and fill the maternal uterine simmes with polypoid masses, the socalled "destructive placental polypi," which show a kind of tramsition to the full-blown chorio-epithelioma malir-

Fia. 6s

Choriowpithelioma growing within the uterus: V, wall of nterine sinus; Syn., multinucleate cell. of sumential tyr'; L. c., eclls of Lamghans' tspe. (Teacher.)
mim. We have said that theonter surface of the vilhs, consisting of fis tal epiderm, becomes fused to form syneytium, which is made of cently
taining cells whose lorlies have fused, the mass remaining multinuclear. Below the symestial layer the eells of Langhans' layer remuin unfused, individual, and less deeply staining. The syneytimm possesses erosive phagoeytie properties, and it is these masses of cells that tend to be -wrpt away in the bloorl of the materual sinuses and to be deposited int the capillaries of the lungs and elsewhere. Thus we have these Wertial cells growing actively either in the uterine simuses or in tissues whwhere, the active growth of the syucytium being seconded by the antivity of the cells of Langhans' layer. The chorio-opithelioma malignum in thus seell to be a neoplasm entirely cellular, formed of large aetively vertative cells growing entirely within the vessels, not requiring an intividual blood supply by vessels of its own, not eapsulated, liable to induce hemorrlage by erosion of the vessel walls and very readily: trinting to have partieles earried away to grow elsewhere. With sueh ehararteristies it is no wonder that we have here perhaps the most terribly fiatil of all neoplasms. Although the formation of this neoplasm generally owirs shortly: after an interrupted prevnince, yet cases have been repurtell uccurring years after abortion, (II) intersening pregnamey having necilrect.
Thre difficulty of understamling such a process of growth is increased by the finding of this growth in the testis of the male. Here the explanation IIII-t he that cell masses of this type have developed, not as the outcome of: the fertilized ovim and uterine previlucy, but from a teratoma.

Cells of a ehorio-epithelioma malignum. higher magnification: a, syneytial cell mass: b, cells of Langhans type; c, broken-down erythrocytes. (Von Franque.) Thu twratoma must develop or tend toderelp a chorion and so gain its nourishment through this chorion, invanting the veins of the testis; the chorionic cells so developed may prolifin rate in the testis just as they would in the uterus.
In like manner, a few eases lave been deseribel within reeent years in which speradic teratomas in various regions of the body have been finman c:amination to afford ehorio-epitheliomatous areas.

THE BLASTOMAS (ORDINARY TUMORS)

It, heramas include all tumors, that are not teratogenous, which 1". an imlepentent, localized growth. This growth is practically 1.) in of sat order; yet neoplasms coutain a stroma (just as do the
normal tissmes) in whieh stromm run capillaries and lymph ehamels, with the exception of those tumors which urise from simple conncetive tissue like that which forms the strom: of orgmes. With this exeeption, the blastomas are growths formed of ons order of tissue, and are in number as many as and more than the dififerent tissues; for example, fibromas of fibrous tissue, chomlromas of cartilaginous, and osteonas of bony tissue; myomas of inusele fibres, gliomas of glia cells, adenonms of (secreting) glands. There ure many more forms of blastoma than there are forms of individual tissue, because the eetls of a neoplasm, originating from a special kind of cell, may not present the charneters of the original cell fully differentiated. They present different degrees of npproach to the fully formed and fully differentinted cell of the original tissue. Whon the neoplasm approaches elosely the form of the adult normal tissue, we speak of it as typical; when the neoplasm eopies this but imperfectly, when the eefls nre but partially differentiated, when the neophimin is like no adnlt normal adult tissue (but hus for its eominterpart cells scell only in the embryo) it is atypical. Further, as a general rule, the blastomas that are of the type of normal adult tissues, the typieal tumors, are also the benign tumors; and the cells that eopy very imperfectly the normml adult tissues, and sometimes copy faithfilly enough the growing embryonie tissues, the atypieal tissues, are ahso the malignant neoplasme.

Benign Neoplasms. - The typical blastoma is composed of cells and tissues that are like the cells and tissues of the normal autult borly: They are neoplasms in that there was a time when they did not exist, and they have arisen for no apparent reason and in response to 10 known stimulus-they are new growths; but they are like normal tissinebecanse they reproduce the differentiations of normal tissues, and, as such, have grown slowly, and this slowness allows the body to reaet by produeing a wall around them. a capsule, which is essentially a prit of the hody tissues, and not of the neoplasm. Some tissues, sueh as brain or bone, are incap:' of free fibrous overgrowths, and do not readily produce a enpsule, bu, as a general rule, most tissues are able to circumseribe the growth, so that such neoplasms can often be shelled out. The tissues being "tpical," and like those from which they sprang, there is nothing essentially harmiul in such a growth, save that it may by pressure or otherwise, mechanieally disturb the tissues in whieh it lies. Growth, in such a neoplasm oceurs in all its parts, central as well as peripheral, and thus there is a tendeney to inerease in a glohular shape, with gradual enlargement in the same form.

Malignant Neoplasms.-Atypieal blastomas, on the contrary, are formed of imperfectly differentiated tissue, and beeause ther are less differentinted, are more actively vegetative. 'They spend little energ: on function or in the direction of differentiation and, eonsequently, have the more to expend on mere growth; active proliferation is, therefore, one of their main characters. Such rapidity of growth gives time for little reation on the part of the surrombling tissue, and there is little
sigu of encmpsulation; even if a capsule appear to the naked eve, it is apt to 1 e inflitrated b y the actively growing neoplasm; the rapid growth, memutime, by pressure canses atroply of the cells of the organ concerned, - these die, the comeetive tissue may remain as a scalfolling on whiel the neoplasm hilds itself. The active growth, tow, tends to invale eapillaries or lymph chamels, so that cells or gromps of cells may break off from the neoplasm, and be curried elsewhere in the bexly, where, findling suitable resting places, they go on with their growth and form urw masses or thmors like the parent growth. Such new growths are denominatel metastases or secondary neoplasms.
The impression gained from the alowe that the atypical tmonors are malignant is almost correct; but it is only fair to ald that the above dharacters, which are those of malignancy, do not belong to all atevpienl tumors, for there are maligmant tmmors (such as the muligmant monse : merers) that do not readily form metastases and, on the other hamd, there are tumors of benign tepe that form secondaries; we have, in fact, all grales of transition betwren typical and atypical neoplasims. Yist it is useful to gain the general idea that tumor-eell differentintion (no specialization of form) has a definite relation to benignaney, and the lack of it, that is, a temenery to the regetative type of tissue, has ar relation to malignaner: It is upo in suel evidence that the decision is made which determines the removal or otherwise of the tumor concerued. This being so, it is very essential to have a clear knowledge of what is the alult typer c°.ell from whieh a particular tumor springs; for example, the so-called giant-celled sarcoma arising from the bone marrow, exhibits cells of a vegetative, undifferentiated type, and might on that areonnt be colled very malignamt, mutil one reealls that the artult lome-marrow eells are of this type; this sarcoma, as a matter of fact, is one of the least malignont of all sareomas; whereas, n melanoma appears to be maile up of more differentiated spindle cells, and on this accome might be julged of mild malignanery, yet is one of the most malignant of tumors. Emphasis must, there re, be laid on the nuecssity for knowledge of the adult tissue from which a neoplasm is -upposed to arise.
Malignancy.-It must be umderstood at the ontset that it is not possible to lay down working rules by whieh a stulent may surely know whether a tumor is malignant or benign; such knowledge can "wne only from experience-from the "mental pigeon-holing" of a mimber of eases in each of which one correlates his ideas of the clinical listory, the macroseopic appearance, and the mieroscopic pieture, and his theoretic knowledge of location of tumors; these the observer mentally puts together as one ties up papers in an clastic band, and ait er he has correlated a number, he begins to reach a state in which 'iis intuition tells him that a tumor is malignant or the contrary. Some if the rules that are of use are these:

Malignancy is assoeiated with:

1. A vegetative character of the cells, that is, the eells are like the eorresponding cells of the embryo.
2. Rapidity of growth.
3. Peripheral extension, with lack of capsule, and infiltration of the surrommling tissues.
4. Tendency to develop motastases.

All of these fonr ymalities are related, amb are the expression of a vegetative activity beyond that of the surromeling tisules.
f. Tendency to Central Degenerative Changes.-This can be reatily nmberstood, for the pressure of surromaling parts temels to constrict hood vessels, and the outermost cells ohtain the best of the oxygen nod fool supply, white the imer ones are deprived of these, and also of a free ontlet to their own end-prohucts; the degenerative changes are atrophic, or necrotic, or at times autolytie, so that the central part of a tumor may become h id. Similarly, in a surface tumor, the most superficial cells nre farthest from the hood supply, and are therefore liahle to neerosis.
6. Liability to Recurrence after Removal.- This arises from the fact that the removal is not complete; the infiltrating character of the growth leads to the extension along lymph channels of chains of cells in eontiguity beyond the apparent houndary of the neoplasim. 'I'his is the reason for the modern radieal and extensive operation umbertaken, for example, in carcinoma of the breast.
7. Cachexia.- Cachexia is a lowered, impowerished state of the system, indicated by a marked degree of wasting and bodily weakening, with the chnracteristic sellowish-gray color of the skin, whioh is readily recognizalle.
8. Anemia.-'This goes hand in hand with cachexia, for which indeed anemia is partially responsible. There is a constant loss of red corpuseles, and sometimes the signs of regeneration show that the blood picture is not vers different from that of a severe Aldisonian anemia. Cachexia, however, is not necessarily in proportion to the size or the rate of growth of the the or; a very small carcinoma may be aceumpanied by very severc cachexia, and certain, though small, neoplasms, if situated in the wesophagus, mav interfere with nutrition in a physical way, so that the eachexia is thereb? increased. This is not true cachexia, but rather starvation; nor is it correct to use the term "cachexia" to describe those cases where absorption of the forl products from the tumor surface have occurred; yet leaving these aside we still have the true cancerous cachexia.

Have tumor cells an internal secretion? The question is of importance because eachexia and anemia have heen long considered as results of a specific toxic secretion of the tumor cells. Presumably these in their growth and in their degeneration discharge soluble substances into the body fluids. These are of the nature of enzymes, and as sueh are hemolytic and probably in some cases cytolytic as well,
so that we mny assme that the enchexin is directly the outeome of poisonoms pronlucts of cell netivity.

In the nhove poragraphs we have given at least eight chnracters which have to do with malignmery, but we womld onee more add the cantion that nll of these may un be present, that the reverse of some of them may be found, and that some of these vory' characteristics mas bre seen in a benign growth, so thint we hnve yot the essence of malignames to diseover. Is this something in the nnture of the cell itselfy Wer think so, ulthongh some scientists lanve declared on the contrnry that there is no such thing as a mmlignant cell perse; but that cells hnve matigmaney per se is proved by the finct that mouse cancer being passed throigh generations of mice enn be remberd more and more moliguant, (w that there is in constmutl: incrensing number of "takes," until fimathy 100 per cent. of nnimals injected develop the mouse cancer which las been conseyel to them. The malignancy of cells is determined by the grade of vegetative pouce they shou; the malignancy of amy , iven tumor is the resultunt of the interaction between cell malignanry and the resistin! powers of the rest of the organism.
There are yet other forms of malignancy (so-called) to consider. We have sometimes been tempted to define a malignant neoplnsm as a new grow th that tends to kill; if this be true, we are prepared to understnnd thut there is malignancy in virtue of site, and malignancy in virtue of vize. For example, a benign tumor tlant in the liver might be harmless, in the brain might eause death, or a large ovarian tumor benign in its nature may so press upon other organs ns ultimately to kill the patient. This is obviously accidental malignaney. It must not be forgotten that a tumor typical mul benign for a long periol may suddenly assume in any onc of its parts rupid growth, a statement which ean be understool when we recall that malignaney is a funetion of the rate and extent of the cellular reprohuction rather than of cellular proliferation it:clf.

Metastases.- We have become accustomed to consider as metastatic, in,flammations in which the agent, bacteria for example, is earried to a distant part of the body where the tissues react to its presence, so that the metastatic inflanmatory overgrowth is made up of the body rells; with neoplasms this is not the case, for the metastatie overgrowth is made by the multiplication of the cells of the original tumor in the new area. The migrating rells are the parasites.

It does not follow that the secondary growth need faithfully reprohuce the parent growth. As a matter of fact it generally reproduces the type, but is often more actively growing, more vegetative and -impler in strueturc.

Modes of Origin.-Metastatic growths may originate in four ways:

1. The cells of the original growth penetrate into the lymph spaces and are carried in the lymph stream a greater or less distance and longe in the lymphatie system, oftenest in the nodes. Sometimes in the neighborhoor of the tumor small notules may be found con-
nected with the origimal tumor he ambroken chain of tumor cells; What has oreorred is that the tmon cells have grown out contimonsly. along a chamel matil they have arrived at some spot, often at quite a
distance, wher en enconrage them to grow is a lesenlized pressure and grod food material

Fig. 70

Cu-rinoma atvaneing along the perivaseular lymph rhamels of the ling from a yheral erowth secombary to earcinoma of the breant. (D)r. Rlwa) a, prrivasoular lymph vessel elistenderd with rancer erells; b, alveolus of lung; c, bloml resents d, secondary leukorytic infiltration of ther privaseular connective tisule
,

Fic: - I
2. The tumor in its growth may crode a vein and the eells may thus mass direerly into the blood stream and be carried elsewhere. such (edls will be liable to arrest in the first capillary inte) which they are carried. Xeoplasms whose cedls are thus earried into the branches of the portal system are apt to form secombaries in the liver; those in the main venoms system are apt to be carried to the lumgs. harely cases arise which seem to indieate that here and there tumor cells may be carried through the hug capillaries without arrest.
3. By trunsiduntation. This form of converance is but a molification of the first, becalnse it ocelors in the seroms cavities, which are lymph spaces. If a tmor eroles the lining membrane of one of theses saces some of its eells may become free mad be carried elsewhere in the same cavity, as is expecially well seen in the peritoncum (Fig. 71). in the same cavity, as is eepecally well seen in from tomors in the mouth Group of nowtular sucondary growths of roundecelled sarcoma peeled off from the surface of the prritoneum in a case where a general "serding" of the perineal ravity had uevered.
eavity being carried to the stomath, and tmmors in the stomach being earried to the intestincs. It is mot safe to jump to the conchusion that a secombary in the small intestine has fomm its way there be transplantation even though the primary growth be in the stomach, for ren hare the extension may have taken place hy the lymphatic chamels.
4. Transplantation bse arours hy apposition. Cases are recorded in which (a) one 'if heing ineots ol in eaneer, the corresponding point on the other lip h is bereme inferd (b) the skin of the arm in contact with an ulecratin, eurcinona of the breast has become involved; and
 nant growth have beeome the site of transplantation ceen when no adhesions between the two have existed. The process of rubhing has bared the second surface, on to which the cells from the first have heeome engrafted.

Retrograde Metastasis.-While the cells are gencrally earried by the foree of the lymph or hood stream and the secombaries are this situated farther down the stremm, nevertheless, it may occur that such growth or earrying of neoplastie cells is in the direction precisely opposite to that which might be expected. Thus, in eancer of the breast one mas. find the head of the hamerus of the same side infiltrated. Fict the head of the hamerus sends lymphaties to the axillary nodes and not away from them, so that part of such extension must have happened against the stream. The explanation of this momaly probably lies in the supposition that some direct chanmels are blocked and the neoplastic cells seek oat eollateral roites. We have to remember the possibility that the extension may occur by direet contignity of growth which we can imagine prevails against the lymph strean as, well as with it; while where there exists a negative pressure in the inferior vena eal va, the cells may actually fall back from the inferior vena cava into the hepatie reins.

Unicentric and Multicentric Primary Growths.-It is ordinarily not possible to follow a tumor to its carliest logimings, hat we have good reason for supposing that most blastomas arise from one cell or from a group of cells in juxtaposition, and neoplasms which thus grow from a single foeus are unicentric. Others, however, appear to be pluricentric, that is, it seems that of a momber of cells or of groups of cells near one another, each gives origin to an independent mass of new growth. Thris fact tells against the theory of cell rests, in that the arlalt cells
an organ are sometimes seen indergoing change into the neoplastie \therefore pe.

We have also to admit that it is possible for one borly to be the seat of multiple neoplasms of different kinds at the sane time. It is hardly likely that these depend one upon another; more likely is it that a lowered bodily resistance permits cells of various kinds and in different parts of the boly to undertake active proliferation. It is perhaps due to the same condition that we sometimes find hilateral organs affected by new growth of the same or similar kind. It is, of
conrse, possible that one of these is primary and the other secomblary, the other organ being the organ selecterl becanse of what has been roferred to as tissuc predilection. There is a certain amomet of evidence which snggests that in such a case both growths are primary.

Tissue of Predilection.- It is notahle that in metastatie tumors some tissnes are very likely to be aflected, while others are almost sure to eseape; an example is seen in the readiness with whel melanotie growths appear in the liver, and the secondary tumors of the thyroid in the bones; the museles are rarely involved in metastatic growths. The meaning of this is that not all cells carried to differsnt parts of the bobly are able to proliferate, for often the ordinary cells of the bodyreact against the newcomers, and it becomes a trial of strength between the two tissnes, the proliferative power of the parasite being matched against the ractive power of the host. The vegetative powers of cells broken ofl from a benign tumor are not remarkable, and so in general the metastases from such a tumor do not eventnate; this antagonism, too, is not merely a local matter, but becomes a eharacter of the body fluids, as is shown by the observation that in transplantation of tumors there are stages, during some of which retransplantation can be made, while during others such in attempt fails, owing, no doubt, to the existence of antagonistie, presumably eytolytic, substances in the body fluids.

The Production of Metastases by So-called Benign Tumors.- Certain tumors of benign type are able to cause metastases, $e . g$., the ehondromas. Here we have multiple condary tumors in the lung, clinically: not dangerous. It is not possible that fully formed cartilage eells make their way into the pulmonary eapillaries, but rather that the perichondrinm cells (small aetively growing cells that surromend the periphery of a chondroma) which are small, are carried to the lung and there give rise to their normal prohuet-cartilage. A like example oceurred in the Royal Victoria Hospital, Montral, where an arm had been removed for an osteomatoms growth, and the axillary node's were found converted into nohules of solid bone. Ilare it was the osteoblasts that had been earried by the lyinph stream to the lymph nodes, where they had fulfilled their normal function. It will be at once evident how like this phenomenon is to true malignancy, although our clinical knowledge compels us to recognize it as essentially nonmalignant. Even a stronger example is sren in connection with the thyroid gland; in the bones have been fomm masses of thyroid tissue, actually producing colloid, replacing extensively the bone, having malignant properties, yet clearly henign in histological type, and strangest of all, careful scarch through the thyroid may have revealed no primary tmmor. All of these cases cited above indicate a want of correspondence between structure and properties, and indieate that there are cases on th. border line between nalignant and benign tumors, whieh conform fully to neither gromp. A clasification of tmmors based upon the existence or non-existence of malignant properties cannot
satisfy; however important it be from a clinical standpoint, it is necessary tu find some other basis for classification.

Latency in Metastases.-It is seen from time to time that a neophasm, successfully removed, may break out in metastases years after the operation. We have lately secn a case in which recurrence appeared eight years after removal of a melanotic sarcoma of the choroid. Have cells from the origiv ' 'eoplasm lain latent all this time? Presumably so, for the same puenomenon has been observed in transplantation experiments; the transplanted cells of neoplasms evidently either (1) grow immediately in their new surroundings, or (2) lie latent for a long time, with or withont eventual multiplication, or (3) degenerate and are absorbed. The variance of these happenings indicates that metastasis depends not only on the inherent growing qualities of the neoplastic cells, but also upon the resistance of the tissues; the latter may be merely another way of saying, as was said above, that there is a predilection in tissues.

The Nature of the Stroms.-The blastomas gain their mutrition from the host and possess a blood and lymph supply. In what degree the intervening tissue belongs to the host and in what degree to the neoplasm is a matter for consideration. The capsule of the typical hastoma is formed by the tissues of the host; even in a typical blastoma the cells at first make their way between the supportive cells of the host, and the comneetive tissue of the host thus becomes the stroma of the neoplasm, and its cells grow side by side with the neoplastic rells. Just as in inflanmation, a neoplasm infiltrating an organ may kill off the sperific eells of the organ and at the same tim imulate the more lowly connective-tissme cells to proliferation, a. $;$ this at times to so great in extent, as in scirrhous carcinomas, that che con-nective-tissue overgrowth acts as a direct check on the neoplastie growth. In an atypical comective-tissue growth (sarcoma) a double process is at work; the stroma itself multiplies, and again, as the surrommeling tissue is infiltrated, its stroma becomes part of the stroma of the growth.

Blood Vessels and Lymph Vessels.-The blood vessels and lymph chamels of the host are retained bey the growing tumor, by whieh means the tunor is nourished and gets rid of its excretions. As the tumor grows, the ressels also grow, but never beyond the stage of capillaries; there is never formation of miscular walls, or of arteries or veins proper, and even perfect vessels that become enclosed in a growth are simplified and hose their specialized characters. Thus it is evident that a blastoma has no power of regulating its blood supply.

Nerves.-The host supplies no nerves to the blastoma. A few fibres may be seen to pass into the periphery of a tumor, but they "vidently quickly mulergo destruction and absorption, and the deeper parts of the tumor are without nerves. There is thus no trophic or Vasomotur control exerted on the tumor by the body, and the activities, vegetative and other, of the neoplasm can be influenced only through
the conposition of the borly fluids and by alterations in the resisting poweis of the surrombling tissues.

Degenerative Changes. - Deqencration is very likely to oremr in a neoplasm, espectally since the thmor ean to so small an extent eontrol its own nutrition; apart from imperfect vessels the tumor cells have no other somrec of nourishment than the fhid of the surrounding tissues, and of this the peripheral cells of the neoplasm ohtain the best and most, leaving the centrally sitnated part, hadly off for food and oxygen. Not only this, but the peripheral colls may get rid of their, "acts by diffusion into the suromuding tissues, wherens the eral cells must "stew in their own jnice," and be damaged or killea therehe. Necrosis and absorption of the deep-lying parts of an internal neoplasm, and of the most superficial part of a smperficial tumor, are, therefore, liable to oreur; and the boodvessed walls heing thin and exposed also to the same deleterions influences, are liable to rupture and permit hemorrhare.

Irreqular mituses in runcer cells: 1, hypochromatic mitosis; 2, asymmetric miosis, the uppe dimgher nucleus hisperchromatic; 3 to 7 , various forms of multipolar mitoses. (Galeoti.)

Nuclear Changes.-Mueh wo-k has been done in the observation of the proeess of mitosis in neoplasms, and while no rules have resulted by which we can determine the degree of malignamey possessed by a given tumor, set many strange deviations from normal have been observel. The mitotic process is at times hypochromatic (that is, the mmber of eliromosomes is redued below that normal for the specties), ar times hyperehromatic (the opposite of the former), or phoripolar. in which there are more than two centrosomes, each centrosome attracting chromosomes so that multiple nuclei may be produeed.

Retrogression and Healing.-It is by the help of these degenerative changes that retrogression, and even disappearance and absorption of tumors oceur, althongh this result is an unusual one. Dany cases of disappearance of tumors, even the most malignant, have been reported, and it is upon this possibility that we ean base hope of attaining ultimately a means of cure; even now we know certain mems that have met with a measure of suceess, sueh as the use of arsenic and salts of selenium and tellurium; of Coles's inoculation fluid of sterilized cultures of streptocoecus and 13. prodigiosus (based on the experience that intercurrent erysipelas may lead to the absorption of malignant srowths) ; of extirpation of the ovaries in mammary carcinoma; of electropuncture in uterine myomas; and of ultraviolet and the launtgen rays upon superficial growths.

CLASSIFICATION OF THE AUTOCHTHONOUS BLASTOMAS

It may be here repeated that the autochthonous blastomas are neoplasms whieh arise in a body by proliferation of cells belonging to that borly; this is to distinguish them from heterochthonous (teratogenous) blastomas which arise in a body from eells belonging to another individnal. There is perhaps no word in the language which convers preeisely this meaning and we are compelled to use this elumsy term. In devising a elassificat.on it is necessary to remember that finality of knowledge of tumors is far from being attained, and it would be unwise to attempt to claim finality for any elassification made at the present day; the intention is to construet a working classification along the lines of the origin of the various tissues affected, that is, an embryogenetic dassification, and this because our mieroscopie diagnosis is dependent upon cell eharacters.
This is not the place to deal partieularly with already existont Massifications.
Each tissue in the body has a definite origin and mode of development, and if neoplasms are derived from definite tissnes, and their compmont cells represent stages in the development or the retrogression of these tissnes, it beeomes necessary to distinguish and possible to wassify tumors according to the tissue from whieh the neoplasm yrings. Considering the earliest stage that has been recognized in thr development of the fertilized ovum after it has begun to segment, that is, the morula, we have merely a eluster of undifferentiated cells. Riapirlly these cells arrange themselves into two layers, the epiblast and hypoblast. Between these the hypoblast and, to a less extent, the er ihast giv rise to a poorly differentiated mass of cells hardly to be ralldal a lay ", the mesoblast. The reader must correct the old idea If at connective tissues and connective "'ssues only arise from mesohist; and that epithelium and gland, .. d nerves, and these alone, from epiblast and hypoblast. From the epiblast, for example, there
is developed along the dorabl groove a mass of edts of which those awny from the surfine are no longer stratified. As the dorsal groove becomes infolded this portion beemes eut off from the rest, the only part realling the original epiblast being the ependymal laser around the central canal, these cells laving originall:- been outer lavers of

Fig. 73

Diagrammatic representation of section through vertebrate body to show ontogenetic relationship of the various orders of tissues. A. Of tepiclic type: I, epiderm and its ghands (epiblastic); 2. mucous nembrane of digestive canal and its glands, liver, cte. (hypoblastic); 3 , endothelium lining serous cavities (mesoblastic) and glands, like renal cortex, of mesothelithorigin; 4, vascular endotheliun of late mesoblastie origin. R. Of hylie type: 5, spinal cord, brain. and nerves (epiblastie); 6, notochord (hypoblastic): 7, connective tissues of the body (mesenchymatous) ; 8 , myotomes, striated musele of body (mesothelial). C. Cavities: 9, lumen of digestive tube; 10, body cavity.
the dorsal groove. A similar ingrowth of cells oceurs from the hypoblast to form the notochord. We find that these ingrowths from the epiblast and the hypohlast come into most intimate relationship subsequently with mesoblastic structures. The mesollast in its turn undergoes changes; when it splits to give origin to what will ultimatel: be the primitive body eavity, or coelom, the cells lining that cavity
hecome arranged in a layer, the mesothelium: the remaining part of the mesoblast, which does not beeome so differentiated, constituting the mesenchyme. Frons the mesothclium again, there occur ingrowths into the meseuchyme which are comparable to the ingrowths from the epiblast and hypohlast; these are the myotomes, the anlagen of the future striated muscles of the body. Further, a mass of mesenchyme which will intimately be recognizable as the heart and trunk vessels are seen to develop a central cavity, and the mesenchyme cells lying upon this cavity become differentiated into a definite layer, the endothelium. IVe thus find that the embryo becomes divisible into collections of two orders, which may be termed "lining membranes" and (for lack of il more expressive word) "pulps," the lining membranes being presistent epiblastic, hypoblastie, mesothelial, and endothelial layers, the pulp being the main mass of the neuroblast (of epiblastic origin), the notochord (of hypoblastie), and the mesenchyme (of mesoblastic). Briefly expressed, each laver in the original embryo becomes differentiated into lining membranes and pulps. To the former we apply the term "lepidic," (from $\dot{\varepsilon} \pi \pi s$, a rind or skin), and to the latter "hylic" (from üir, crude matcrial), both words being used as adjertives.
The characteristic of the lepidic tissues is that the cells are arranged in layers or clusters in direct apposition; they are not separated by lymph or blood vessels, and they possess a supporting framework or strona of hylic tissuc in which run the nutrient vessels. The features of hylie tissurs are the opposite; separating the cells there is a mairix of interrellular substance, either homogeneous or fibrillated, while lymph spaces !"!l ressels and blood capillaries tend to separate and run between the individual cells. If in the lepidic tissnes there is a stroma of hylic tisules, so in the hylic tissues there is lepidic tissue in the shape of the rudothclium of the bloorl and lymph vessels, in each case the clements of the other order being subordinate.
On this basis we obtain the following classification of normal tissues:
I. Lining Membrane or Lepidic Tissues, in which the blood vessels do nut penetrate the groups of specific cells and in which there is an absence if definite stroma between the individual cells, although such stroma, of mesenchymatons origin, may be present betwcen the groups of cells:
I. Epiblastic: Epidermis. Epidermal appendages, hair, nails, enamel of teeth, etc. Epidermal glands. Fpithelium of the mouth and salivary glands. Epithelium and glands of nasal tract and associated spaces. Findermal (anterior) portion of hypophysis cerebri. Lens of eye. lifthelium of membranous labyrinth of ear, anus, male urethra (except prentatic portion).
\therefore IIypoblastic: Epithelium of digestive tract and giands connected 1. ith it. Specific cells of liver, pancreas, tonsils, thymus, thyroid. li, ithelium of trachea, lungs, bladder, temale urethra, male urethra (1"mstatic portion).
-. Mesothelial: Lining cells of pleuræ, pericardium, peritoneum. :-rific cells of adrenals, kidneys, testes, ovaries (Graafian follicles).

Fepithelimm and ghando of Fallopian tubes, uterns, vagina, vasa defercutia, vesicular seminales. cte.
4. Endothelial: Lining embothelimm of bood vessels and lymphaties.
II. Hylic or Primitive Pulp Tissues.- Organs and tissines in which the special characteristic is that the specifie cells lie in, and are separated beg, a definite stroma, homogeneons or fibrillar, in which there mas. or may not be blowd and hamph vesisels:

1. Epiblastie: Nerve exlls, nemronh ia.
2. IIypoblastic: Sotochord.
3. Mescurhymatons: Fibrons connective tissnes, cartilage, bone, reticulum of lymph glamh, bome marrow, fat ceils, involmatary musele tisille, sheen, blood vesids, blood eorpuscles.
4. Mesothelial: Striated musde, inchoting eardian musde.

Following this seheme of classification of the mormal tissomes, we mas now divide the tumors arising from the sperifie constituent cells of the varions tissues into two main genera-the lepidie tumors, or lepidomas, originatiag from the above "lining-membrane" tisisues and the helie timors or hylomas, originating from tissie ; derived from the embronic "pulp." We can further distimuish two broad groups of lepinhe tumors, the prinary, those whose cells are derived in direct descent from the original epibhast and hypoblast: and secondary, or transitional, whose cells are derived in indirect desent from the same, i. f., have passed, in the course of development, throngh a mesobastic or mesenchymatoms stage before coming to form portions of a hining membrane.

The comage of new terms in a subject is undesirable, but, if new ideas or new relationships are to be expressed, mavodable; this is the case in the ciremmstances moler which lepidie and lepidoma and hylic and hytoma were sugestend. Ther are necessary for the expression of this conception of tomor relationships, but at present, we regaral them as a framework on which the iden of tmon growth is to be built, rather that as terms for everyday employment ; in fact, we do not personally: nse them for daily clinion purposes, for which terms like carcinoma, sarcoma, and endothelioma are adefolate. These terms (careinoma,
 we rerognize that momors of idential type mas originate from any of the germ layers: thus, a lepidie carcinoma ean arise from epiblastie. hepohlastic, or mesoblastic struetures, and, what is more, can vars in its malignamer acording to its origin; we think it nevessary, therefore, to apple an adjective whieh will indicate its tissue relationship, thas, epithelial careinoma, mesuthedial earcinoma, or epithelial adenoma, combthelial aldema, and so on. We are aware of the ateademic arguments which ean be urged aganint this method of nomenclature, but mas: be allowed to state its chief atrantage, viz., the recognition of the secomdary or transitional gromps. It is exactly these secondary lepidie tmonors which are liable to preant tramitional pharacter:s and to callse therely the greatest eonfusiom. For example, a tumor of the alrenal, a "hepernephroma" of the kidney, an "ovarian tumor,"
maty, if of sow growth, present all the charaeters of a curcinomo-a ghandular tmmor and if rapidly growing und netively vegetutive, mave be morphologieally 1 perfect sarcoma. Sineh a tumor was often called carcinoma sarcomatodes, and in some instances lats metmelly Inern proved to possess certalin characters, supposed to be distimetive, of carlo; for instance, sareoma cells are separuted by fibrils of stroma, carcinoma cells are not, vet a comparison of Figs. it and 7i) will show that lig. $\overline{\mathrm{H}}$. shows a tumor that is in this regard at once a careinomat alul a sareoma.

1\%.7.

 (1)flular filribs betwern the individual bu when the alvedar rell groups. (Wiowley.)

Fit. 7.5

Arecion of atn endothelioma similarly trated. The alvenhes below reacts almost wholly like an epithelial momer, that abowe exhibite intererllalar connectivertissole fibrits, like a sareuma. (Worlley.)

Thu reason endotheliomas (for example) are transitiomal seems to In fhis. We have insisted before upon the fact that the earliest acquired frerties af rells, or of indiviluals, are the last to be lost; properties of lit, of acpurement are vielded mp with greater ease. The primary lepidie thmers are derived directly from cells that from the earliest embryonic bind, have been lepidie and of the nature of lining membranes; while the. Irmasitional or secondary lepidie tumors are derived from cells wh: from being lepidic (in epiblast or hapoblast) have become hyl (when the mesohlast was formed) and yet later have again taken one whe characters. These sells, or their progeny in moplasms, revert re.. 'He the helle, sareomatous type, which the primary lepidic tumor (4.): sill unt, becanse these last have been continuously lepidie. This
is not to state that primary lepidie tmons never revert, for they do, notorionsly in the case of the so-ealled "basal-eclled carcinomus," wheh greatly resemble sarcomas; but the contention is that the reersion is so frequent as in br a distin!!uishing frature of the sermemary lepidic lumors, while it is mexeption in the ease of the primary.

It may be lait down as a rule in all tmons that the more rapid the growth, the more do cells lose those fentures that were formerly speeifie

"l'sundo-eppit helium," or somondary epitluliun without basement membrane lining at eyst in a glimmat, furmed by mostitication of the superficial hager of gliona cells. (Naxer.) to them ans the constituent eefls of this or the other tissue; the individual eell maye thas athord little or no che to the tissue of origin, hat be the general arrangement of eells it is possible to see at lenst resemblances to conneetive tissines or to ghambular tissues, mul therehy to know whint kind of tissue gave origin to the tumor. We note, in mug ense, a reversion to a simpler, entier, more "embryonie" type of tissue, in which proliferative or vegetative activity. has replaced functional aetivity and cansed the tissue to lose those fentures that are distinctively eonnerted with the performance of function. With this loss of power to perform its function, we believe the tissue to be incapable of regaining the same; a hatie tumor, being eomposed of tissues, of less specialized trpe, cmanot take on lepidie characters. An apparent assumption of such characters is seen in Fig. 77 , hut even here, although the eells which line the evst eavity that has developed in a gloma, have the appearanee, at first glance, of epithelimm, they are not so; there is no basement membrame and the case is merely one of alaptation of glioma cells to fulfil the function of lining cells.

TYPICAL HYLIC TUMORS OF MESENCHYMATOUS ORIGIN

Before clealing with the large question of eausation, we shall pass in review the various forms of thmors. Here it is necessary to draw a distinetion between blastomas proper and blastomatoid growths. The blastomas are well-lefined and automoms independent new growths; the blastomatoid growthas are comditions intermediate between simple hypertrophy and these true tumors. In connection with tumor formations from a great variety of tissues, we eneounter these intermediate growths, and while we realize that in time some of these forms
of owergrowth may be better understood and may come to be inchuded anong simple hypertrophies, yet at the present we have to group them an having many re:emblaners to tman formation. 'These overgrowths i1) blastomatoid nutare (of which lipomatosis, fibromatosis, nenrofihromatosis, pliosis, ete., are exmuples), as a class (1) atfect one particular tissude; (2) are multiple; , are of comgenital, if not hereditary, origin, frequently being manifest in enrly life and affecting several mimbers of a fanily: (4) may be difluse, or if not ditluse, at least merge iuto the surroundiug tissue; (5) maty appear to be encapsulated, but this apparent cucapsumation is merely the limit imposed by the boumary of the tissue aflected; (6) are of slow growth, extending over, it may he, years; (7) eventually may take on malignant claracters, which is not a characteristic but is mercly me example of the prineiple that tione which has developed in excess of function is already more than half-way toward aberraney, that is, the stimnlus, whatever it is, that led to blastomatoid growth may lead to true blastomatons growth.

Fibroma. - The fibroma is a typical thmor of fibrous connective ti-une; typical, in that the copy (the tumor) is a gronl initation of the uriginal (the fibrous connective tissue); the origina! tissue lies widely rattered thronghout the bonds, so that such a tumor may arise in minne situations. Just as connective tissue varies in its composition, lang in some regions loose and areolar, with relatively frequent cells, ant in others, lense and firm, with relatively few eells, which are necessarily compressed, so the tumors vary, and we have soft and hard filimmas from these tissues respeetively; the soft arise, for example, from subcutaneons tissine, the hard from dense tissnes sueh as tendons, fitmie. and periostemm. All alike, however, are composed of connertivotissue cells, commective-tissue fibrils, some clastie tissue, and honnl vessels. Lymph spaces are seen in greater or less prominence anvorling to whether it be a soft or a hard fibroma. The fibroma wnerally forms a well-defined notule which grow: slowly, and presses "phin and replaces the tissmes near it; if there be ripid growth, however, the refls, instead of resembling fully developed eomective-tissue cells, are like fibroblasts. The greater the temeney to resemble fibroblasts, and the less differentiation there is in the direction of perfection of the connective-tissue cells, the more does such a growth approach in strufire a sarcoma; the only sure differcntiation between the benign and the malignant (sarconnatous) growth is the absence or presence of infilration, and invasion of surrounding tissues. Lest one should be mind it is well to remember that all fibromas are more cellular than is mornal adult connective tissue, and the growth of a fibroma of the man! imneent kind occurs by the proliferation of such fibroblasts, and nut fully formed connective tissue.
I e fihrome is palc on section, and the firmer ones are glistening, wit appearance that recalls watered silk; this is due to the bands off 1, that run in all varying directions, each band being originally
lad down paralld to or aromud a blocal vessed. A sertion thromgh the tumor will show some hands ant tramiversely, others lomgitulinally, and others whligulls. In the grose, the fibroma is generally sharply: éremmareribed, and can remblily be comeleated, hat the sharp homblary: lime emmot he so well seen muder the mioroseope, heremse the surromuling tisane is of the same order, and the normal and tmor tiswes pass readily into ome another.

Degemerative changes are prone to neeme in fibromas, and he arrest of bood suppla, or beremion they menderg neerosis, and in the neverosed area is mudi cholecterin and fatty material, which subsequently mas become converted into calenreons modnles. If the lymph onticts be obstrated, the tumor may become adematoms, lymphangerentice restic, or momenid.

In ereptain sithations, as in the mammary ghand, a filoroma mas be fomel to have in its midst glamdular elements; this probable means that an infammatory fibrosis has taken on thmor formation, and the lowalized fibroma this formod has indmed ghands that were origimally: normal; surh a thonor is a pure fibroma, and not a fibromatemon; it is a fibro-adenoma only when there in a proliferation of the ineladed ghamblar dements. As a matere of fact, there is a goond deal of loosemess in our mise of the term fibro-ademomat some of these are pure fibromas with ghand tissue inedaded, and others are not athally trme fibromas at all, hecemse the filorons tisule is not eiremmseribed (blastomit), but is general, and dithose, of the nature of a blastomatoid growth. True fibromas do not form metastases and do not reeme after remosal; if reemrence does happen, it means either that the growth was originally: sarematoms or was fibobatoid, in which later case the recorrence is simply the expresion, once more, of the difluse overyrowth wheh was origimally wholly or partly removed.
Hard Fibromas. - Ilard fibromas are fomm in many diflerent sitattions hat most often in connection with tembons or fasciar this rule is not absolnte, for we find them in soft tissmes such as the kidhey. I variety oevorring in comection with the jaw is epulis, a term defen improperly given to asteod and ostensimpomatoms gront?s in this sitnation; it develops from the periostemm in eonnection with the root of a decosed tooth. Iterime fibromas and "fibroids" will be disemssed with the myonmes of that orgin.

Soft Fibromas.- These are frequentiy multiple, and many of them are fibromatoid. Thes are mont frequent in the skin, pharyns, and digentive tract, ar, ${ }^{1}$ those in the nose and throat are apt to be soft masses-meroid p. ${ }^{\prime}$ pis- of the trie my xofibromatous type.

Fibromatoid Growths.- Nost commonly these oceror in the submuents commective tissure of the posterior nares and pharyns; and to be included among them also are some "ases of "peurofibromatosis," the so-talled "von Recklinghausen's disease," which is a hlactemateid overgrowth of the methllated peripheral merves; it is asserted that the optic and olfactory nerves, which are devoid of sheaths of Schwann and of the
h the minlls: meply midary c suri $=$ sulus nrrest erosed 4 m! ets lis ctatic.
may loe means mil thic gimally mill: it elculed useness hromas bromas tomial), rowth. moval; iginally merence which t siturihis rule 1 in witen in this ith the he dis-
,f them nX, :unl be sult
murells midululed :c-cilled regrowth atic and 1 of the
 of mintiple wenrefibroma, set the optie nerse is the swat of true fiberomatensis. In these cances, there is anme relationship betwern the thmors
小ı. \#

Fini, ix

Harit fibroma. (Ita|.).

- ft hibroma
 from the sistem of the tisinies the trancerse; th... disturberl nutrition asims to be due to some vice of de belopment becanse mane, if mot all, if the hmulrend or more repurted calses of fibromatwis of the optie nerve u*?rred in rarly lifo or "1.ere finmilial.
Cheloid. . - Ithongh distimet in its etiology, amd whwhat in its histologer. rhehind is rloselle related to fill follatoris. It comsists in itheremidederalopment of
 burtise tissure, semetimes "troat as to produce bitconvorlapping massers of 14. 1 growth cowered be

siertion from a krowth in a case of chatuid tos show the ronrme, hyaline connerefive-lissuw bundlew. (After Mibbert.) - mothed skin. 'Two fac(t) are present in its ocrorrence: (I) a congenital prolisposition, and - irritation or injury. It is especially common in negroes, and in 1) "who suffer from it, a slight entaneons injury is liable to be folh. wh its developmont. In a case studied in our own laboratory,

[^9]the mere running of a pin point along the forearm with a foree suffieient to cause reddening but not bleeding, was followed by the development of little fibroid nodules along the track of the pin. Although some cases are spoken of as spontameous, it is probable that in all eases it follows irritation, even so slight as the pressure of a shirt stud on the skin.

Microscopically, there is no capsule and the overgrown sear passes imperceptibly into the normal eonneetive tissue. The fibrous tissue of the cheloid often shows thick, homogeneous bundles or strands of a hyaline appearance, between whieh lie fibroblast-like cells; elastie tissue is absent.

Cheloid is liable to spontaneous absorption, and steady pressure may be followed ly disappearance.

Myzoma.-Some pathologists doubt whether we ought to regard the myxoma as a tumor, and consider that we should speak of myxoma-

Section from typical portion of a muroid polyp. (Collection of Royal Vietoria llospital.) tous degeneration of some one of the various forms of con-neetive-tissue neoplasm - of lipoma, chondroma, or fibroma -using the term lipoma myzomatodes rather than myxolipoma, ete. This is, to a great extent, true but pure myxomas of the endoeardium have been deseribel, and myxomas are sometimes recognizable at birth. The mueoid nasal polyps, so frequently called myxomas, follow ehronie inflammation of the nose, and are often not muein-eontaining, but merely odematous; as soon as the odema is suffieient to weigh down the mass of inflammatory tissue, its draining is prevented, and the eondition becomes progressive, the ordema eumulative. Some few, even nasal polyps, however, are muein containing.

The tissue whieh the myxoma most resembles is not to be found in the adult body, but is the tissue of the umbilieal cord known as Wharton's jelly, and the developing subeutaneous fatty tissue of the foctus. In pathological states, we find, in the regions around inflammatory areas, fibroblasts lying in a mucinous matrix; we realize, in faet, that muein, which is a "low-grade" protein, has some obseure eonnection with the development of fibrous tissue, and we reeognize a connection with this development not only in the localized myxoma, but in the generalized mueinons condition called myxoedema.

A true myxoma is eomposed of isolated stellate eells, or polyhedral cells with proeesses (the so-called "spiler cells"), which are separated from one another by a mucin-containing matrix, the muein taking a
differential stain with thionin. In the matrix run large, thin-walled ressels.
The tumor is slowly growing, soft, and fluctuating, so as to seem at timues cystic. It forms no metastases; a certain number of myxomas Io become surcomatous, and when they do the metastases are purely sareomatous, and show no myxomatous characters.
Lipoma.-The lipomas are sharply defined tumors composed of falty tissue; cven if situated in the midst of fat there is no difficulty in recognizing the tumor, even if its color be not paler than the surrmulling fat, as it often is; there exists some difference between normal fat and the fat of a lipoina, for where a large lipoma is present the body maly progressively emaciate and yet the fat of the lipoma will not be takcin to supply the bodily needs. The lipomas are usually single but maly be multiple, and vary in size from the very minute ones observed in the kilney to the 63-pound retroperitoneal mass which has been deseribed. Generally rounded, they may have finger-like processes radiating into surrounding tissues. They grow slowly and do not recur alter extirpation. Modifications may occur, such as that part of the tumor which becomes jelly-like and mucinous, the lipoma myxomatodes; :III unchanged lipoma may even be so fluetuant as to be taken for a localized collection of fluid; at times a kind of necrosis is followed by the development of oil-eontaining cysts; cartilage and even bone have lxell found in lipomas, a phenomenon which is probably to be accounted for by metaplasia.
Most frequently the lipoma is subcutaneous, especially in the region of the shoulder and arm; a curious clinical fact is that one of these tumors under the influence of gravity may change its position and lie, for example, lower down upon the arm than was at first the case. Internally, they occur in the submucosa of the intestine, in the kidney, in the brain, in the omentum, and as enlarged appendices epiploice; lipomitous processes may develop in connection with the joints, projeeting into the synovial cavity, as in the knee.
Lipomatoid Growth.-More or less generalized, often regional, lipomiltosis oecurs. Steatopygy, an excessive development of the fitty tissue of the buttoeks is counted a point of beauty among the Hottentots, and is so frequent that it must be counted racial. Lipomatosis affecting eertain areas may be familial; and the good results sometimes chtained from the use of thyroid extract suggest that the occurrence is due to a nutritional disorder; and in fact, a diseased pituitary has heen fomml in at least two cases of adiposis dolorosa, a disease in which the presence of the exeess fatty tissue is associated with scvere pain.
Xanthoma. - The xanthoma is a small, benign, fatty tumor of a yellow color, subeutancous, sometines multiple (X. multiplex), often fonnd near the imer canthus of the eye (\mathbf{x}. palpebrarum). Forined of comeetive tissue, it contains yellow fatty globules, in which the pigment is of the nature of a lipoehrome. It is probable that the xauthoma is not a tumor but a fatty or lipochrome degeneration of
tissue. The multiple form is fomm assoriated with diabetes (X. diabeticorum).

Chondroma. - 'homeromas are tmmors of eartilage, haaline (hyaloenchondroma), fibrous (fibro-enchondroma), or reticulated (reticulated enchondroma). 'They may be simgle or multiple, and in general have a distinct fibrous eapsule. There are two varieties, the eechondroma, and the enchomiroma, of whirh the former is an outgrowth of cartilage where surh is normally present, as in the costal cartilages, the larsinx, the trachea, and elsewhere; they are truly loeal hypertrophies, and are to the considered as chondromatoid. In the chomdroma proper, or enchomitroma, we have to deal with a mass of cartilage having no commection with a parent matrix. Such oceur in many reqions, notably: in comection with the bones, the parotil, the submaxillary glands, the testes, the mammary glames, the lungs, and more rarely in the ovaries, the eorpora cavernosa, and other organs. They do mot arise from the cartilages of joints, althomgh they may develop in the fringes of the suonovial membranes, forming the "loose eartilages" of joints.

Dinchomlroma (xhibiting calcareons infiletation (E. metrifirmm) (lihburt.)
114. N_{2}

Eechondroma of finger. (Shepherel.)

As in normal cartilage, few or no bloon ressels are found in the substance on the tumor, and for this reason, if large, the mass is lobulated, the intervening eonnective tissue earrying the blood vesucts. In the large growths, the lerpor parts give place to bone (osteo-enchondroma), or ealeareons infiltration occurs (enchondroma petrificum). There is also considerable tendency to central neerosis, and if a merrotic area opens to the exterior it is apt to be very intraetable, and well
to give rise to general sepsis. Ocrorring in the parotid and testes, the chondromatons formation is part of a teratoma. Mucinons change orcurs frequently, the tissme beoming so perfectly transformod as to justify the use of the terin myxo-enchomeman.

Benign and slowly growing as these tumors are, nevertheless they may form metastases; nor is this only in the case of those mixed timors where there is more than a suspieion of sareoma, for metastatic enehonIromas may show absolutely no malignant characters. We have here all e:ample of a benign tumor showing one of the most eharacteristicfeatures of malignancer, and the explanation is a difficult one; it may. lic in the high grade of regetative activity possessed by the superficial chondroblasts which become free in the blood stream, and are carried diewhere.

Without undertaking to discuss the etiology of these tumors, it may. be said that they are prone to develop in early life, especially those ocolrring in bones, and there they are often connected with rickets, a disease in which there is undue preparation for the formation of cartilagimons bone, and a tarly formation of the same. In the region of the epiphyses, this cecess of cartilage rojects into what is lestined to be the shaft of the bone, and pieces become isolated which may give origin to enchondromas or osteomas. In some parts of the bords, there is a fair likelihood that "rests" form the source of origin of these tumors; for example, chondromas in the parotid may arise from the cartilaginous remains of the hyoid arch, and those of the mammary chand from included parts of the stermal cartilages, but it is more likely. that metaplasia of connective-tissue cells is the canse. Many eases of enchondroma furnish instances of trauma being a preceding factor.
Osteoma.- Oste mas, defined as tumors having a growth of their nwn, independent of the tissue in which they exist, are rare. Osteomintoid conditions, in which a regional overgrowth occurs, of nuknown urigin, connected with previously existent bonc, are very eommon. 1 metaplastic formation of bone in another tissue, whose ramificalinns alternate with the ramifieations of that tisine, is not a tumor proper, hot nevertheless oceurs frequently, and after lealing with lhr tumors we shall eite some of the mumerons examples of this ןrucres.

The true osteoma may occur in connection with pre-existing bone homoplastic), or apart from it in other tissues (heteroplastic). In the lormer case it may be superficial, derived from the periostemm, or may be within the bons substance (endosteal), and then originating wither from (a) a misplaced piece of epiphyscal cartilage, or (b) from the bone marrow, in which case it exhibits no cartilaginous fore stage. it may be dense and hard or spongy and soft, but in any ease it doess (1) merge impereeptibly into the surrounding bone, so that it leads to ,orption and weakening of the host bone.
IIf hereroplastic osteomas, the simplest type is the isolated tumor ing from displaced priosteum in the neighborhool of a bone; this
often shows no eartilaginous fore stage. Ossifying chondroma serves as a further example of the heteroplastie form.

Osteomatoid.--'This, as was stated above, includes all eases of localized or general overgrowth of bones in whieh the growth is not defined from the normal bone, is not independent, and is of monown eause (save, perhaps, that heredity plays a part).

Sueh are:

1. Idiopathic hyperplasias affeeting one or several bones, espeeially the long bones.
2. Enostoses, loealized and circumseribed growths within bones, not independent of the surrounding bone.
3. Exostoses, processes of various grades arising from the surface of a bone, not of traumatic origin. The ivory exostosis of the skull, or the ossifying ecehondroses at the ends of long bones serve as examples. It is difficult to separate from these, conditions sueh as myositis ossifieans, in which bone gradually replaces set after set of museles. This last should perhaps be considered as an example of the following.

Metaplastic Ossification.- 'This is an alteration of some part to bone, aecompanying inflammation or senile changes in a tissue; examples are: (1) the "siders' bone," where bone is laid down in the adduetor museles of cavalrymen, from repeated trauma of the musele; (2) the like ease in the deltoid of the infantryman, from pressure of the rifle; (3) in the ehoroid; (4) in the pia, after inflammation; (5) the bony plates developed in the dura are even better examples; (6) in the heart valves and arteries; (7) in the lungs; (8) in old pleural and pericardial exudates, where bone formation often follows ealearcous infiltration; (9) in various tumors-lipoma, fibroma, ete.

Odontoma.- l'ure orlontomas are rare, and odontomatoid conditions commoner, the growth not being independent of the cement substance, of the dentine or the alveolar periosteum of the tooth.

Bone-marrow Tumors.-Myelomas.-The myelonas are tumors of one or more parts of the bone marrow; morpholonically they are like the sareomas, but they are not malignant, do not form metastases, do not infiltrate: they are mode up, not of cells that have beeome undifferentiated, but of eells that at their lighest development are of a relatively simple type. Because the tumor tissues do not depart from the type of the original bone-marrow eells, the myelomas are typieal blastomas.

The different elements in the bone narrow are these: on the one hand the eells direetly eoncerned with the bone-the osteoblasts and the osteoclasts (or myeloplaxes); on the other hand, the erythroblasts, megaloeytes, myeloblasts, and lymphoblasts-the mother cells of red-bloor eorpuseles and leukoevtes. The cells of these two orders, widely divergent in kind and in function, ean give rise to eorresponding tumors, and not only this, but eneh kind of eell can give rise to its own overgrowth. If we realize this, and apply the principle that each kind of tissue call give origin to three order, of growths, viz., (1) tepieal blastomas, (2) ateppical blastomas, and (3) blastomatoid,
diffuse overgrowth, we can reduce the various overgrowths of bone marrow to some show of order.

Typical Blastomas.-The Giant-celled Myeloma ("Giant-celled Sar-coma").-These grow locally, oftenest in the marrow of the long bones or of the jaw; they may be of periosteal origin, as in the giant-celled rpulis of the jaw; they grow expansively, causing absorption of surroumding bonc, are vascular and do not form metastases, save in the cases where sarcoma springs up in a hitherto benign growth; they do not recur; nor do they require to be very "widely" removed. Histologically, the body of the tumor is formed of short spindle cells of fibroblast type, sometimes polygonal, and giant cells are abundant. These giant cells are the "typical" overgrowth of the myeloplaxes; hons spicules and lamelle may grow in the tumor, although the more abmindant the giant cells the less likely is bone formation to occur. linally, atypical blastomatons growth (sarcoma) may supervene in surh a tumor.

Fig. 83

Sertion of myeloma of vertebra. \times to0. (S. Saltykow.)
Itypiral Blastomas.- These are, of eolurse, the sarcomas, which mayarive (ta) primarily or (b) from typieal blastomas, such as the above, ur (r) from bastomatoid overgrowth, such as the following: Blastomatoid Overgrouth.-Myelomatosis (Myeloma Multiplex).-This 1. a pereliar form of growth that affects the red narrow of bones, such the vertebra, ribs or cranium, converting it into a dark red or mindivh-yray: or gray h-yellow tumor mass. It is a primary multiple rupos, arising simintanconsly in bones widely apart; at times the in the are soft and pulpy, at times firm; they may project up to through the periosteum, and fractures are thus common, or in vertebre, distortion. There is no sharp definition to the areas
of hyperplasia. Yet with this progression the fro ith remains confined to the bones, and there are no metastams 1 m ymph nodes or elsewhere. (linically, there may be fever, pain, ani severe anemia, with albumosuria. Some of the names under which the warkable condition has been known are malignant osteomyelitis, myelogenous psendoleukemia, sareomatons osteitis, !ymphadenia ossium; and our eontention is that even "myeloma" is ineorrent, in that it is a myelomatoid.

Histologically, there are the pure cases in which there is no overgrowth of the myeloplaxes nor any indieation of the osteogenie elements of the bone being implicated. The tumor cells are derived from the evtoblastic elements of the marrow, and are myeloblastic or lymphoblastic in tepe; this means that we may have localized blastomatoid overgrowth of the lymphoblastic elements of the marrow without leukenia.
Myologenous Leukemia.-The cell growth in the above is loeal, but we have similar diffuse overgrowth of the bone marrow with abundant diseharge of the cells into the cireulation-myelogenous leukemia. Here there are in the blood great numbers of large mononuelear cells with neutrophile granulations, coupled with the presence of inereased eosinophiles, "mast cells," and normoblasts. The ordinary red cells are redueed in number, the white cells greatly inereased, and the myelocetes may be one-thirl or more of the total white cells. The bone marrow is seen to show hyperplasia, and is reddened. The main elements present are myeloevtes, nueleated red cells, and numer ous cells with cosinophilous granules. The great enlargement of the spleen is not primary, but is due to an accumulation of bloud cells. Sometimes in the hiver and kidneys there are tumors due to active growth of the myeloevtes outside the capillaries; in faet, there is an overgrowth of the "lenkoclastic" elements of the bone marrow, sometimes confined to their natural site and at times elsewhere in the wod.

Chloroma.-This peeuliar tumor, which is multiple, affeeting the bones of the face, especially the orbit, the skull, the vertebre, and more rarely the ribs and marrow, is characterized by a striking greenish or greenish-vellow tint, which fades as the specimens are kept; the pigment is said to be a hochrome but this is not certain. The tumor is a medullary overgrowth, associated with which is a leukemia in which the prevailing eell is of the meeloblast type; evidently this is an aberrant form of myelomatoid.

Lymphoma and Lymphomatosis.- It would be nuwise to plunge: into the cortex of the mmerons terms emplosed to deseribe the varions lymphomatons states, and to lay down what seem to us the right interpretations of these various terms. We prefer to state: (1) that just as we recognize that the lymploory and the leukoeytes (the polymorphomelear and cosinophile cells) have distinct origins, so we have distinct series of blastomatous and blastomatoid overgrowths originating from the tissues that give origin to these two orders of cells; (2) that just as anong the overgrowths of fibroid tissue, there es or with ondi-eudo-intenatoil. overc elefrom nphonatoid ithout
ut we ndant remia. r cells reased I cells d the The main ner चus spleen Somerowth rowth nfined
g the e, and eenish t; the tumor nia in s is an
is a series of overgrowths from chronic inflammatory hyperplasia to typical fibroma and farther to atspieal sareoma, so here is an identical aries. Now we can clear away the overgrowths of the "leukoryteproduring" tissues, as distinct from the "lymphoc:te-producing" ours, and this we have already dealt with, since the lenkoeytes originate from the medoblasts. The myeloblasts have their seat in the bone marrow; the marrow contain speeific cells of different orders, viz., ontroblasts (and ostcoclasts), and myeloblasts, olong with other cells that are not specific-lymphoertes (lymphoblasts) and eonncetivetissur cells (fibroblasts). Tumors derived from these specific cells are myelomas, and of these we recognize the giant-relled melomas and the varous diseases due to overgrowth of the myeloblasts and mychorytes, namely, myelomatoid (myeloma multiplex), myelogenoms leukemia, and chloroma. This leaves us free to deal with the lymphoid wregrowths proper; and in doing this, to extend beyond the overgruwths of lymphoid tissue in the bones alone to those of lymphoid tisisue in general.

1. Caronic Hyperplasia (eomparable with chromie inflammatory filbrosis).-This is seen in comnection with tuberculosis, where there is a diffuse enlargement of lymph nodes, with or without caseation. This hyperplasia of the lymph cells present, even where bacilli are not demminstrable, is especially well shown in cattle.
\therefore Hodgkin's Disease (eomparable with cheloid).-In the last group wir dea't with cases where a known irritant is the callese of the lymph hyprplasia; here we have a hyperplasia of the same sort where the callec is mknown (despite the clinieal ofservations in some eases painting to tuberculosis).
The lymph-mode groups of the body are successively enlarged, often Inevinuing with the cervical, and finaliy, the spleen follows snit. There is diffluse lymphoid prolifcration in areas where anatomieally notes are mit described. The lungs remain free, and the blood slows no prounnuced ehange. Histologically, the characters are different from thuse of leukemia; there are no signs of infiltration, as oceurs in lymphosarman ; there is comective-tissue overgrowth, as oceurs in the previous 2rinp. ami a relative if not actual reduction in the lymphoeytes and c. Nh of the germ centres.

The same charaeters are foumd in the spleen, there being no excess if t mph eells noticed. But in areas where lymph cells are not normally prominent, there is great excess, the lymphoeytes being laid down thinkly around the vessels. These collections are provided with a otti inum of eomective tissue, and do not infiltrate, though they may. pre upon and cause to atrophy the snrrounding tissues. We have, III (.). a : lymph hyperplasia and not a metustasis.
Thw marked contrast between the involved nodes and spleen on the (1) hand, and the secondarily involved organs on the other, strongi! NLEAt that in the one we are dealing with reduction of the lymphoid el.
scen that in the early stages there is in the lymph notes a similar lym hyperplasia, followed by exhanstion or atrophy as the connecti tissue overgrowth progresses. The picture is thms not one of malign growth. ILodghin's discase is not a form of lymphosarcom. or lymp matosis. It appronelies much more nearly the results of chronic irr tion; it may be compared with heloid and regarded as an overgrov of the lymph tissues secondary to an unrecognized irritation.
3. Lymphatic Leukemia (Lymphocythemia). - There may be ov development of typieal lymph tissue, the reticulum, the simuses, a

Fia. 84

S.ction of enlarged lymph noxle from, case of Ilodgkin's disease to show various orders of celi present, many of them of irritative or inflammatorv type: a, large endothelial cell; b, fibroblast, c. cosinuphit d, orcasional Iymphocyte; e, polynuclear iruhoryte. (lm-
murgion lens.) the cells being developed prop tionately-a real lymphomat overgrowth. At times this is strieted to the spleen or cert groups of lymph nodes, at tin more widely developed, even fecting secondarily the liver a other organs. Of inflammato overgrowth the indications a slight; the capsules of nodes m by distension be thickened, but tl reticulum shows no correspondir overgrowth. The hyperplasia r spects its boundaries and shows signs of infiltration. This can exi witlout escape of the lymphoeyt into the blood, a lymphomatos without lymphoeytosis; ouly whe an excess of lymphocertes appear in the circulation do we have tru ymphatie or lymphoeytic leuke inia. It is éonceivable that som cases go part of the way and the reeede, ther being, for example, a splenic tumor with temporary lymphoeythemia which disappears.
4. Lymphoma (comparable with typical fibroma)--By analogy, we know that typieal lymphona exists, although reported eases arc few; it is, of eomrse, difficult to distinguish this from mere localized hyperplasia of a lymph note.
5. Atypical Lymphoma; Lymphosarcoma.- Since the lymph folliele contains tissues of more than one order, vessels and cndothelinm, along with the speeific lymph cells, it is evident that there may be several forms of sareoma originating from it-round celled, spindle eelled, ete. Romud-celled sarcomas of this order may be histologieally indistinguishable from lymphosarcoma, and the cells of such a tumur may represent rither a reversion from a differentiated connective tissue or else a lymphoma that has not greatly departed from the type of its original tissue.
milar lymph comectiveof maliguant or lymphoronic irritaovergrowth
y be oversinuses, and peel propornphomatoid this is reor certain s , at times l, even afliver and flammatory: ations are nodes may ed, but the responding erplasia re1 shows no is can exist mphocytes homatosis only when s appears lave true tic leukethat some and then emporary
alogy, we are few; el hyper-
h follicle othelium, may be , spindle ologically: a tumor onnective from the
6. Lymphosarcomatosis.- However widely a lymphosarcoma infiltrates the condition should not be called lymphosarcomatosis, because it is resentially by mature a localized growth. The term lymphosarcomatosis shonld be used to define a malignant, multiple, lymphomatoin overgrowth, of which cases have been described.
All these divisions, it will be seen, fall into three main classes: (1) pronluctive lymphadenitis; (2) lymphomatoid (with and witlout lenkemia); (3) lymploma (typical anil atypical). Lymphrmatoid Conditions Iffecting the Spleen.-Hemolytic Splenomegaly or Splenic Ane ala.-Splenomegaly orcurs under several elinical types. The splenic enlargemem may' be the only sign; there may be accompanying secomlary anemia, and cirrhosis of the liver (Banti's disease), or it may be familial; or the splenic enlargement may be coupled with cranosis and a great increase in erythrocytes, which may number $(1),(H),(O) O$ per c.mm. In all these cases there is a local blastomatoid wergrowth of the spleen, and in the last, it seems as if the spleen reverted to its fortal state, and became once more an active producer of (rythrocytes. Endothelial splenomegaly (Guucher's type) is a rare condition in which general enlargement of the spleen is associated with a remarkable overgrowth of the endothelial cells lining the splenic sinuses, these simuses becoming densely filled with large mononuclear cells.
Nothing is known about the cansation of either of these diseases, thongh banti called attention to the fact that in the former condition there is evidence of active breaking down of the ret! corpuscles in the when, with accompanying ancmia and icteroid state which may be rewored from completely when the spleen is extirpated.

Myoma (Leiomyoma). -The uterine fibromyoma or "fibroid," is the "ommonest of tumors. Very frequently they are multiple, existing rmetimes in large numbers, and in situation (a) interstitial, (b) submuroms, or (c) sulbserous; in the last two situations they may become prdmenlate. The individual tumor is sharply defined, and some luell out casily: while others are firmly anchored by a diffuse capsule. Thure are two general types and all stages of transition between them: (1) the pure myoma, redleish gray and softer than (2) the "fibroid" proper, almost white, and showing the watered-silk appearance on -rtion. Variations and molifications occur, the following being seen: 1) telangicetatic tumors, in which the blool vessels are greatly dilated; 12 lymphangiectatic, in which the lymph channels are distended, luating sometimes to oedema, or to cyst formation; (3) occasionally, thungh rarely, hemorrhagic; (4) necrotic, an actual liquefaction at tines occurring; (5) calcified, so that the mass can be cut only by the this state being preceded by fatty or hasaline degeneration. licroscopically, all grales exist from pure myomas to what are unt pure fibromas. The beginner generally finds difficulty in disalishing the two tissues, hut if the nuclei be cxanined, it will be that those of conncctive tissue are short and spindle shaped, if muscle larger, longer, rod-like, and with blunt rounded ends. 16

Cut transwersely, too, the comective-tissne mucleus has a naked appearnnce, while the musele melens has aromen it a fair monont of cytoplasm. The small tumor is preponderatingly muscular, the larger fibroid, a change due to the fact that the relatively poor blood supply causes the gradual effacement of the higher tissue. These tumors

Fig. 85

Section of portion of a purv nyoma, showing the character of the nuclei and the appearance of the cells rut longitudinally and transversely. (Perls.)

Section from a uterine fibromyoma (high magnification) to show: a, muscle cells with rod like nuclei cut longitudinally; b, a bundle of muscle cells cut transversely; c, fibrous connective tiseue around bundle, with (e) spindle-like nuclei of the same; d, a capillary.
are essentially benign, grow locally, and sometimes throughout a long period of years; clinically, they are often associated with menorrhacia or metrorrhagia, the obstruct pregnancy, and the demand fo: their removal is by no means so negligible as their histological nature migit suggest.

It is not possible, in the present condition of our knowledge, to offer any ncenrute supprosition us to the etiology of these tmenors.
"Adenomyomas."-These are diffinse myomns of the uterus containiug scattered ghad tubules that exhibit no sign of active growth. Athongh they hive led to much debate there seems considerable reason tosmppose that these glandular elements are merely inclusions of uterine Hhandrlar tissme, and the tumors not true adenomyomas.

Myomas of Other Regions.- The uterue myomins have been discussed brembse of their overwhelming frequence and importance compared with myomas elsewhere. The sites in which they are especially seen are: (1) other purts of the genito-mrinary sistem, the linllopinn tube, the brond liganent, the testis, prostnte, kidney, ureter, nud mammury Hhand; (2) the digestive truet, especinlly the stomach and intestines; (3) the skin, where they are sometimes multiple, not associated with "courrence in other purts of the body. Whether they arise from the minicle of the arteries or the erector muscles of the hair follicles is Nebatalle, but when the miversal distribution of the artery mascle i. considered it seems more likely thạt they arise from the hitter.

TYPICAL HYLIC TUMORS OF MESOTHELIAL ORIGIN

Rhabdomyoma. - Neoplasms of strinted inuscle fibres are found llsuilly combined with growths of other tissues in tumors of the tera-

 ar the lowart, the extremities, the mates, the orhit,

In all time rases the fibres nre of embryonice imperferetly dillerratiated mathere, sometimes howing only lomgitudinal etrintion, or transier e striation of omls "part of the cell, and othere eharacters, nll of which print to the likeliheal that they arise from en ll rests

TYPICAL HYLIC TUMORS OF EPIBLASTIC JRIGIN

The Neuroblastonas. (bily suld tumore as fomtain merve cells should be claserel as neuromas; firther, if the re be nereve fibres ill a thmor whid are in emblection with a inrer ert ontside the tmmor,

 ohe of the rarest of thmors, it in the rememi reel the

she cells of the firmation fomictes have al commonn - agim, an in the

 "The remelymal cells liming the ramal of the spinal cord amb the

 (.) ther riventsum ma, and (t) she nemriuma.
 ariong in the alh amen, for exampl : from t velar plexus med the

 arl! inlit the
nital ann malis teverom-
ther atof at hat
trestat of rumatorperar-shaper 11 tanee nor mulihe ata alvenit re, rmming from which sant 4* th laind be :"perial staine fine fibri- (a ress); despite this fact smeh

. He" mputation neuroma is " romas a it the proxinent eml "1 urve I comes swollen into at fil "mas, oflen strongly mited be. fil. to, its surromelings. This mial mesists of bmolles of merve filrilo, curving npon themselves, and tathmilat in ant overgrowth of the \because noth- and perinemrinm. 'The at -ile generully lack medullary
is but a true thmor forma1 It ant aberrant regenerative

Sitl more "rmbryobic" neurocytoma from a chilt, aseal sixtion month, (I)rs. Tileston and Wollard.) The bat-like arrangetmonl uf the wells with central tilurils im characteristic of an carly stagre in the developmunt of a sympathetir canglion. (1'rofesser J. II. Wright.)
(Profesuer J. II. Wright.)

Г14. 89
pro...., gert it has abont it certain features that show relationship to a 1 m mbatosis for (1) the development does not follow all cases of ally, mation, and (2) where it has once developed and beren rommed of 1 , hathility for at semain tomor to form at the freshly expowed end afl! berrortem.

Glioma.-The glia cells are small, romend, cr oval, with a single muclens and a small amome of proteplasm, having radiating fine processes rmuning from one to another in all directions. These processes, like those in ordinary- white comective tissue, are probably true processes of the cells that later may become separated and independent as fibrils. Thunors formed of these glial cells are found (a) in the brain, (b) along certain cerebral nerves, (c) in connection with the retina, and (d) over the coceys, from the remains of the neural canal. In syringomyelia is found glial overgrowth that is to be regarded rather as gliomatosis (gliosis) than as glioma. Gliomas are hard or soft; the former, as found in the ventricular walls, are well defined; the latter

Fig. 90

Giloma; numerous neurogia fibrils surround the cells and run in all directions.
are diffinse, infiltrating growths, not capsinlated, very vascular, and hable to be the seat of hemorrhages. To the naked eye they are areas of greater translucene: than the surrounding brain tissue, with a bluish tinge, and pulpy by reason of the glairy fluid in the matrix. These last are foumd in the cerebral hemispheres and the corpus callosum, and may be of large size, replacing and compressing the brain tissue. Neither hard uor soft forms give rise to metastases; and recernt studies go far to prove that many are strictly forms of gliomatosis rather than gliomas arising fro m a single focus.
Retinal gliomas show more definite signs of malignaney, both in their capacity to infiltrate and to give rise to metastases. They are
a single fine prorocesses, rue propendent te brain, e retina, nal. In d rather soft; the he latter
small, soft, gray masses projeeting from the retina into the vitreous, may invade the selern and extend into the orbit; or filling the bulb, the tumor may erole the cornea and project evternally as a fungating mass. Histologically, they are formed of small rells, without processes, arranged peculiarly around the vessels; glinl fibrils may or may not be rresent. The perivascular arrangement suggests a perithelioma in :ppearance. In addition to this grouping of the cells, there are "rosette"-like groups around an apparent humen (recalling an adenoma); hint be been the cells and the lumen is a clenr layer from which minute conieal projections into the space suggest the retinal cones. These retinal ghiomas are formed of cells little differentiated, and are, we hold, properl, stiosarcomas.

In attempting to determine the ctiology of glionas, we are helped by the fact that in the newhorn tirere are oceasionally to be found microscopie areas formed of glia with inchuled nerve cells. Since they are fommi at the white as well as the gray matter, they seem to be misplaced indusions or overproductions of nerve tisine, evidently developmental. This, and the liability of the young to the

Section of retinal glioma, showing relationship of cells to vessels and formation of "roscttes." (1 ihbert.) tmmor, indicates that some, at least, of the gliomas originate from rots, even if many are of the type of diffuse gliomatoid.
Ependymoma.-There are crists, found in the gray matter, or in shimmas, lined by a true, often ciliated, epithelium (to be distinguished from those described upon p. 228 and shown in Fig. 76), which are evidently foetal inclusions caused by the branching of the neural canal or by the cutting off of neuroblast which in its new site goes on to form mithetium of the nature of that which lines the nemral canal. That nernones and glinl cells develop alike from neuroblast explains why the ependymoma is never pure, because the neuroblast so separated wives rise to not only the cpendymal cells, but to the glial and neurone whts as well, so that the ependymal eyst appears us un inclusion in a thuer of glionatons nature.
Neurinoma and Neurinomatosis.-There is a very remarkable kind if thmor which appears as multiple nodules upon the stems of periphrall nerves, associated with subchtaneous nodules, from the size of it puhtead to an orange or larger, which may reach several hundred in nmmer. This condition has been variously known as molluscum fibrosum, fibromatosis, von Recklinghausen's disease, and many other t. Mus.

IHe general appearance of the individual tumors is that of a true filinuma, morlerately firm, but on microscopic examination, it is seen
that interspersed mong the fibroid tissue are individual nerve fibres, amd this relationship, has meessarily cansed a great deal of debate. Regarding the tmors as brought ibont by overgrowth of the perinomrimm, they have been eonsidered fibromas and wrongly termed neurofibromas. Others have recognized that the fibroid tissine is due to a proliferation of the eells of the sheath of schwann, and believing these cells to be mewoblastic, have again hed to the fibromatous theory: It has, however, been fully established hy Kohn and Veroçay that

Fis. 92

Multiple fibromatoid overgrow ths along the course of the cutaneou* netves. (Ilerczel.)
these eefls are of neuroblastie origin, that the growths are formed from a neurogenous tissue, and are derived either from the sheath of Sehwan or from precursors of the same. 'These' timors, therefore, are to ber described as neurinomas or, more aceurately, as nemrinomatoid, beeause characteristically the tumors are moltiple, they ocelor without sharp delimitation, and along the conrse of the peripheral nerves. There may indeed, in some cases, be a comedent increase in the true connectiv:tissme elements just as oceurs in a uterine fibroid: there may also br

[^10]whibited, as in most of these cases of blastomatoid, a tendency for wee or more of the tumors to manifest malignant sarcomatons characters. Mong with this condition, there is often come dent existence of cliomatrons areas in the brain mod spinal cord, a condition of general vegetative activity in the nervous tissue. Just as neuroblast gives origin to meurones, glia cells, mud these fibre cells, so in such tumors may be found the simplest form of neuroeyte-small cells like lympho-"itre-and various gradations np to cells of the imperfect nenrone type.

Fid, 93

Howe of a chorluma. To the right the cella are of the benign type, not unlike in arrangement
 (ru and the grow th is becoming malignant. (Fischer.)

OF HYPOBLASTIC ORIGIN

Chordoma.-This is a tumor of little or no importance which repre"t : in overgrowth from the remains of the notochord. Occasionally: anal collections of large vesicular cells, separated by a homogeneous Inter litial substance, are found in the intervertebral disks; most commont. all abnormal growth of these cells occurs just behind the pituitary. hall. The site of the upper end of the notochord, at the spheno-oceipital shelinilrosis, in the bone, through which and the dura mater it may. prove" t as a small mass of the size of half a pea, of ten intimately attached to the himilar artery.

ATYPICAL HYLIC TUMORS

Sarcomas.-While it is logieal to diseuss the atypical tumors with the typieal tumors of cach tissue, it would be combersome, by reason of the multiplicity of the sareomas; they are, therefore, here dealt with as a elass, the members of which have certain characters. The term has primarily a histologieal significance of which these eharacter. are the basis.
The sareomas are richly cellhlar tumors of the connective-tissue type, the cells being regetative imperfectly differentiated, resembling the combryonie mesenchyme, and developing a characteristic interstitial substance-the "hylie" arrangement. This arrangement can apply not ouly to tumors derived from the mesoblast (whether mesenehymatous or mesothelial), but also to certain tumors of epiblastie and hypoblastic origin; that is, some atypical epiblastic tumors must also be regarded as sarcomas, and actively !yroving tumors of transitional lepidic charact re: are also to be considered as sarcomas. Such tumors arc infiltrative and malignant, but the malignaney depends upon more than the mere form of cell present, for two tumors of equally small round cells may diftcr greatly in malignane: the tissue of origin is of the greatest importanec, and it may be said that the more nearly the eell approaches the cell of embryonic mesenchyme, the greater is the presumption of malignance, but more important yet is this: that of two such tumors, the one that has departed the farther from its adult type of eell to reach this state, the one that has "reverted" the more, is the more malignant.
The sarcomas are not capsulated, but grow peripherally and invade the surrounding tissues by growth along tissue spaces. This leads to progressive destruction of the preëxisting tissue, and absorption of all that tissue save a supporting framework around the vessels and capillaries. Thus, the tumor cells are frequently arranged in masses separated by well-marked strands of eomective tissue. The sarcoma cells grow in the immediute meighborhood of the capillaries, and the ressels are composed of a single endothelial layer bencath which are the tumor f Hs; the capillaries are wide and the tumor abmandly vaseular. It is probable, but not certain, that there is a new formation of capillaries, and that the sareoma cells grow along these, just as the filroblasts appear to extend outward among the growing loops of granulation tissue. In some sarcomas there are chamels that have no endothelimm, so that the blood seems to make its way directly between the tumor cells. It will thus be seen that hemorrhage into the tumurs is apt to oceur, and that sarcoma cells are liable to become frec in the blood stream, so that metastases along the blood stream are characteristic of these aronths, and the lung is apt to be a eommon site of seeondary saremai. Of course, metastasis can oecur also along the lymphatime, so that involvement of lymph notes is not thagnostie of carcinoma.

Some observers consider that sarcomas possess no lymph vessels proper, hot only occasional spaces and chanmels. Thmors growing as rapidly as do the sarcomas necessarily present ahmontant mitoses; cell inclu-

Pribuary matignant lymphoma of stomarb: a. preduminating larger eeils of lymphoblastic type; b. smatler lymphocytes. (Iligh power.)

l'ution of centre of active lymph ade to show relationship of proliferating "inother cells," or "hohlusts, to the lyinphocytes to which they give origin: a, lymphoblasts of large size: Amhlocstes. (High magnification)
-imi. signs of degencration, the so-called "sarcoma parasites" occur, but are not so frement as the corresponding arentrence iat carcinoma, innt a frequent incident is the wholesale necrosis of a part of the tumor.

Forms of Sarcoma.-Although lack of cell ditferentiation is to a large extent aceompanied bey retention or acquirement of increased regetative artivite, get the stages of molifterentiation or amplasia are not entirely inlentical. A cell in its neoplasia can never reprokluce a stage through which it has not passed in its normal development. Thus, a glia cell never pasises through a spindle-eelled stage in its development, and consequently, vegetative glia cells never proxluce a spindle-celled oareoma; again, the lyaphocete is a smaller cell than the byphohlast which proclo.e es it (lig. 9\%), and a lymphosareona formed of vegetative lymphoid cells may be of a larger eell type than the adult lymphoryte (lig. 94); it, also, may mot be of the spindle-ecelled type. Only those eells which in the course of their (normal) development pass through a spindle-celled stage can give origin to a spindle-celled sareoma; such cells ars: the comertive-tissue ell and the plain musele fibre. The statement has ben made withont sufficient justifiration that a tupiral, fully: differentiated tissue or a tupieal blastoma ramot give origin to sarcoma tissine pure and simple: to say that this process eamot ocenr is equivalent to stating that fully ditferentiated cell arises from fully differentiated eell; but this, of course, is mot the ease. Fither there are undifferentiated mother cells mormally present from which the differentiated cell arises, or as in musele and other tissues, the differentiated cell loses its specifie features and becones vegetative, in which state it is ready to proliferate. la a highly differentiated tissane, or in a trpical hastoma, cells mas lose their specific properties and berome simpler; they need not revert all the way; regenerating muscle fibre reverts to the sareoblast, or again it may revert all the way and resemble the primitive mesoblast. It follows, therefore, that a tumor may show ans stage from the very lowest vegetative form up to the not quite perfeetly ditferentiated cell. Being mable to finetion normally the tumor cell artually never does nequire perfection in dif. firentiation.

The regetative types of eell are simple and alike, from the small romed cell to the larger romml cell, to the oval eell, to the spindle celi; thus there are to be distinguished several forms of sareoma: (1) small round celled, (2) romud celled, (3) large round cellorl, (4) oat-shape celled, (i) small spindle celled, (i) large spindle celled, and (7) mixad celled, which last we employ when we are mot ahle to say that one form of eell is the predominant type. 'Tliese are pure sareomas, but there are also the intermediate sarcomas in which the erlls have not become absolutely undifferentiated, so that certain tissue charaeteristics are preserved here and there in the tumor. As examples of this form might be mentioned fibrosareoma, osteosarcoma, amb domelrosareona. These more differentiated rell:s necessarily indieate a lesser degree of malignaney, mul, on the other hame, the more vegetative the type, the grater the malignaney : since the stages throngh which eells pass in becoming undifferentiated differ aceorling to the cell concerned, it may, therefore, happen that cells which look alike may have beeone nent, clled blast ative usyte those ugh a 1 cells ment fully o saroreur fully there h the differwhich or in ecome fibre and thinur to the 1110 rII dif.
simall e celi; small -shape mixel it s, bint ce nut ristics ; forlil con:ai. ree , if type. is pais ned, it rectule
st through mueh or little modifferentiation, and thus, to repet, the malignancy of superfieially similar eells may be very different.
Small Round-celled Sarcoma.-The most malignant and infiltrative grow this to be found belong to this class. The cells are closely packed, atain deeply; and posiess round nuelei with little eytoplasm; the

Fig. 96

-mall funmi-relled sarcoma from skin, (High inturafication.) : (From Professor 1610ta.)

Fig. 97

Ruund-celled earroma infiltrating the heartwall. (lligh magnification).

Fig. is

amberlloll sarmoma, anfiltating liver, alvancing along a portal sheath: 1 . I, portal vein; R. D, hilf duet ; A, II, hepatie artery; L. liver mells.
at retitial reticulum is at a minimum. These growths are vaseular (a) radily milergo hemorrhage; metastases oecur by the blool stream al \therefore her ixuphaticrs.
 . heing not unlike a cellular gramution tissue; it may be reealled
that the simple vegetative neurohlast cells, as seen in a retimal surcoma, were of this sort, mol it may well be that this is the least differentiated and the most netively vegetative of all cells.

The ordinary round-celled sareoma, specified neither as large nor small, is merely an arbitrary group whose cells are of any size midway between this and the following.

Large Round-celled Sarcoma.Althongh evidently related to the two forms already mentioned, the large round-reded sarcoma is quite a different tmmor. The cells are fairly large with abundant eytoplasim, not necrasarily round but sonetines oval and exell polygonal. There is a fairly marked retieulum, and there may be in parts of the growth a definite connectivetissue stroma. They do not destroy and canse alosorption of other tissues as readily as do the last-named forms. Sueh tumors are often found in comnection with striated muscle; the most active, vegetative form of lymphoma presents also this kind of cell.

Alveolar blunt spindle-relled sarroma (swondary, non-pigmented growth ol melanotic sarcumaor chromatophoroma-ol skin): a, cell with iwu nuclei, recentl, divided; b, pigment containing feukocytes in stroma; c, septum betacen alveoli. (lligh power.)

The Oat-shape Celled Sarcoma.- It is perhaps overtare which seehs to differentiate this sarcoma from the spindle-celled sarcoma, but in
contradistinction to the latter members of this gronp have long oval murlei lying in blunt cells. We are not prepared to state that they originate from any speeial form of tissue.

Fia. 101

Oat-shape celled sarcoma of unknown origia. (Iligh power.) (MeGill collection.)

Fig. 102

Spindle-celled ascoma (recurrent, from forearm): a, delicate-walled blood vessel in tumor. (From Professor Klote.)

The Small Spindle-celled Sarcoma. - The cells of this form are relatively small spindles, 15 to $20 \mu \mathrm{long}$, with oval or spindle muelei, the cells appearing in bundles around the capillaries just as oceurs in true fibromas. The relationship of these the comective tissue is so marked that their surrer is evident; in fact, the fibrils which wrur in connective tissue may be found in thene tumors, which, compared with roundwhllel sarcomas, are far less malignant.
Large Spindla-celled Sarcoma (Fig. 103).The nuclei are large and clearer than in the last case, an? often vesicular and the rill vary greatly in their size and shape. sume arise from the periostcum, recalling the large spintle cells which occur in the si:nt-celled myeloma; this is to be expected whillering that hoth originate from the sithe tissue.

Large spindle-celled sarcoma. (Ribbert.)

It will appear that there are not very sharply cut distinctions between difforent grouns of cells that have just been dealt with; this is due the fact that undifferentiation has gone on to a different stage of
eompleteness in earh rase, just as the growing colls attenin diflerent degrees of differentiation in their formative proxesses.

Intermediutr T!ymes of Surromu.-Fibrosarcoma. - It becomes largels an indivithal matter with the observer as to when a given tumor will be ealled fibroma and when it will be eadled fibrosareomat the fibroma it self shows far more mumerous cells than does ordinary fibroid tissue. It is often diffient to say when the cells become so momerous in a given area as to justify the expectation that a tumor will hereme infiltrative and metastatic.

Myzosarcoma. - This nume is given to tmmors in which the myxomatous cells with their characteristic pronesses ure a feature, but in which also there are ishmels of elosely pmeked roumd cells without processes, which are evidently less diflerentiated and arore rapidly growing.

Liposarcoma. - An obsions hipoma growing slowhy for a hong time may take on rapid growth and show sarcomatous areas where the fat rells are replated hey a tissue that is richly edhular. Such a tumor may, of course, give sarcomatoms metastases.

Chondrosarcoma.-In a rapidly growing chomelroma there is sometimes fomnd a rapid transition from mmistakable cartilage to richly cellular tissire that is evilently sarcomatoms; this is a gradual transition from highly' ditlerentiated cells to those kesis differentiated, the reverse of what ofeurs in the normal growth of eartilage. As the vasenlar sarcoma tissue beromes formed it can be seen to advalace into and rephace the more typical eartilage, so that we have the pietnre of cartilage formation and, superimposed upon the neoplastic eartilage a sarcomatons modifieation.

Osteoid Sarcoma, Osteochondrosarcoma, and Osteosarcoma.-These three terms indicate diflerent tepes of sarcomat exhibiting varying grades of the process of ossifieation.

The osteoid sarcoma is malignant, grows rapiolly, and forms metastases; in it are areas intermediate between cartilage and hone, that is, there is " homogeneons matrix in which the cells are more like bone corposeles than eartilage exlls; sometimes there are several in one space. These eedls are seen to surromed thickly the osteond lamella or mass; they are polymorphous, and sometimes giant cells oecor: in studying smell a thmor one is eonsineerl that the osteoid tissue is part of the tumor, and that the tumor cells have lad down the imperiect bone.

The osteochondrosarcoma is more perfectly differentiated, and there may he a deposit of calcareous salts in the lanellat, while yet other cases show hoth true cartilage and true bone.

The osteosarcoma proper shows lamellie and masses that consist chemically of true bone. Histologically it is imperfect, the bone loring in isolated spicules or in thin, spongy irregular masses. Or, arain, especially where the periostemm is concerned, radiating osteophtes atiear. This is true lone, although in a tumor, just as there may be trie muste cells in a myomi.

There ar." some anthorities who are mowilling to almit that true homi am thas exist as a part of a tumor, bint the fact is actually so. Oif , irse, the more perfectly mal eonsiderably this bons substance is haid down, the less malignant is the tmmor, and we aetually find in thi suries of growths widely different powers of malignaney, just as we fint widely difierent histalogical pietures. The surcoma elements mar he 'pindle cells, polygonal cells of varions sizes, giant cells (espe(inally in central growths), and over the growth there is generally a printeal formation of bone which is thin and readily broken, giving riar to the fumiliar "egg-shell crackling." As a rule, they do not form metintases matil the smperficial periostemm is broken through.
Rhabdomyosarcoma.-This form appears in the kidney and elsewhere, ruprially as part of the plaripotential tamors that have been mentimmen. They may show imperfeet muscle fibres, transwersely striated, apinlle cells with lougitndinal fibrillation, or large polymorphous, often multinuclente cells of sarcoblastie type, ulthongh it is not necessurily safe to say that all such tumors arise from sureohlastic celle onla:
Gliosarcoma.- We have referrel to these tumors in connection with ther retima, and it will be recalled that the determination of such, as divint from a simple romid-celled sarcoma, often depends monn the retamion of a few inperfect glial fibrils and eells.

FRIMARY LINING MEMBRANE OR LEPIDIC TUMORS (LEPIDOMAS)

It must be mulerstood at the outset that while these tumors show

Papilloma.- The term papilloma convers to the mind nothing but anl antionieal description of the form of the tumor, and makes no statemint about its histologieal nature, yet for the class of tumors so dererihnal there is no term whieh is more used by the elinieian, and we harw therefore to ntilize this term, eompled with a qualifying adjective toindicate the nature of the papilloma under discussion. Papillomas are ous. ${ }^{2}, \ldots$, his from surfaces covered by epithelium, whether squamous or chhmmar, laving a conneetive-tissue core to each individual process.
II! Irritutive Origin (incorreetly called I'spillomas).-There are certain grow ha of irritative origin which fulfil in a sense the foregoing definition: hiv Warts.--'These are outgrowths of the corimm covered by a thick hepertmphied epiderm; they arise apparently from irritation, are
common in chilathool amb sonth, mul tome to disappear. Sime eonvider the in infective. amb there is considerable evidence in fiwor of their heing tramsmissible (Fig. 1111).

(b) Molluscum Contagiosum.-This is a definitely contagions skin liscase arising as small red mases, becoming warty, undergoing central necrosis, and discharging chersy matter. The epilerm is not greatly: overgrown, and there is as yot no definite evidence as to a parasitic origin; some interest attaches to the condition because in it have heen described intracellatar hodies, like the so-called cancer bodies, which at prescut are comed to be of degenerative origin.
(c) The Condyloma.- Condylomas are warty, nodular, or cauliflowerlike growths, oecurring as a multiple development on the external genitalia, in the anal region, or in the month. They ocerne as a sepuel to uncleanliness in the presence of venereal infection. It is probably: safe to say that syphilitie infection is always present, althongl the condyloma must not be eomfombed with the so-called simple venereal wart. The condyloma shows an outer wall of thickened overgr wn epithelium lying upon hypertrophied comnective tissue, which is the seat of inflamnatory infiltation; esseritially benign in itself, the who dylona may become the seat of a true blastomatons growth.
(11) Cutaneous Homs (Hy/urhirulosis). "Then are stronge-lookin, promesm of horny constitntion whind project feneot from the sealy atal the fince; they are movable, the lase hoing solt. 'Ihe born is an overelevelope urent af the kratinoms material in the hin, along with is failure of the same to lwe ruhbed otf, so that int acemmmlation urrors. Nure than this, lowever, the cells thromphent the entire epide omis may leemane keratinizal, while the vasenlar core of the papilla or horn is preserval; it voin- "crolure, as if we ladel to de with a dergoucration rather than a trae hastomat, or eveni a purely irritative phanowianm. (see later maler I Degeneration.)
(1) Coccidiosis.- 'I'o indieate low papillosmatonas growths mays arise fromirritation we llis! bote the oncorrence of papillonnas dine to the conccidinm, which is one of the sporo\%ai. 'This parasite appears to he almost deunil of marked irritative power, and yet, as ar riult of its very slight irritation, there is examise !roliferation of colls, especially of

(iondylonata of the vulva. (0rth.) therphthelial tyer, with soareely any temeleme durefori, apmears to be little stronger than a whecosis. Its stimnlas,

Fio. 100

I - pithelium of bile duct, with papillomatous outg a rablit: a. fibrous capsule; b, pro-
hif fathit cests are found, and in these cysts the epithelium of rriminally a bile duct becomes papillomatous, and projects
in dendrifuing masses; at first ghane such a comblition appears to be truly new growth, but the contimaner and the further growth of the papil! !te masses orvar ouly with the contimed presence of the eoceidia, and metastasis never orelirs.
(f) Bilharziasis. - Well more hastomatoms in character than the last is this eondition, in which (Fig. $10 \overline{7}$) growths in the rectum and the hander are initiaterl he the ova of Bilharzaia hematohimm. The egg: of this parasite having a spike, are able to travel through the tissues and in the hadder and rectum iudnce hematuria and mekena. In both these orpallis we find papillomatoms proliferation of the muensa allel uot infrequ: utly this irritative owergrowth gives phace to definite rarcinomal. It is evifent that the stimulus to grow th and the habit of growth are aceluired by the epithelime during the longcoutinued presence of the parasite, and that the final assimption of carcimomatons process is the expression of this habit of growth, and is mot depeonlent upon the continned presenee of the regr.

Blustomutom.s P'upillomans. (1) Soft Papillomas. - Of these growths there are many forms,

Fiti. 117:

 to shew a, trominal, b, tatcral apikי. (D'erls.)

Biharaiasis of the rectun, to show papiltomatonas overgeowth of the macoma: $\|$, mavities fillod wath blood. (Loms.)
from a mere nodular protuberance of the mocons membrane to a mass of delicate long finger-like processes; the nodnlar process, and eath of the finger-like growths alike, has a framework or stork of comuetive tissue, in which run the vessels, while on the ontside the cosering is of the epithelinm of the part, often with abmelant mitoses and often, too, showing tlee ntmost specialization, as when, in the intestine, it shows abmidant goblet cells; on the other hamd, it may be moditiod by
it: position (Figs. I09 and 110) so that a growth in the badder may. he cow ered bey romb-celled epithelimm like that normally fomd in the deep lay ers of the vesieal lining.

P'apllusaa of bladder t.) show the long. finger-fike Inapilhmatomentgrowths. (libiblert.)
1.3s. 110

Whe of the fine processes of a papilloma of the bhadder morr highly magnified t. show the central fibrous core or stack
(i1) Intracystic Papillomas. - T
forming an infolding and redupliewtion amilar papillary growths, of the atimes of am alrady-developed at the immer lining of a evst or tombing to fill up the cavity of the adenoma, the branching processes the : Instomary core of commective t?st. Each of these processes has tionu and ressels is secondary to the and this core of comective fate. is to be considered as the mode ep onelial overgrowth; this, in phithelial activits appearime to stimnlate origin of all papillomas, the tions. Sometimes papillomas give plate the malignant growth, suportive growing inward instead of onvard, infiltrating the growth, the cells
Adenoma.- An adenoma is a new growth of glandmar eng tissnes. tytial in that the eopy reproduces arowth of glandmar eppithelime, differently, having its epithelinm arrusely the original, or, expressed of the epithelimm in the organ from whieln it amilan to the arrangement bunal if glamblar acini with definite laminather if that tissure be comuf :rini with hamina; if, as in the liver, the eque adenoma is in the form mat-re, then the adenomat is of solid masersthenal cells form in solid口lin.z from the anithelium of a duet then whent hmina; if develWharamor of a dhet. There is thme a well the alemoma t hes on the andemmats, and hefore being able to well-marked variation among the thm n i, it is neressary to know from whe how tupical or attypieal a fimm hathro, however, are commom that tissure it originally sprang.
Th: power of growth being retan to all alike.
entio, in aheranaer, and the seeretery sellight, that of function is not reta ame po:ar of secretion. Shenomas of the intestine mare aphibit
goblet cells and discharge mucus; of the thy roid, some form colloid, and of the liver some produce bile; and as such growths are sometimes encapsulated within the tissues, and are incapable of discharging their seeretion, the secretion is apt to accumulate, distend the structure or the tubule, and form eysts, the cyst-adenomas.

In studying sueh a growth as tire alenoma we come at once to the diffieulty presented by such a faet as this, that two tumors of the same organ may develop histologically similarly, and yet one will form at the most a benign eessie growth, and the other a solid tumor

Fig. 111

Wenoma of hile ducta formod of acini resembling those of normal bile ducts. (Witzoll.)
mass, having some of the enaracteristies of the careitoma. We have, in liict, to recognize that in the adenoma we have a grade of overgrowth, difierent only in degree and not in kind from the inflammatory or irritative hyperplasia of epithelimm on the one hand, and a maliguant glandular careinoma, on the other. As we have done before, we can divide the overgrowths of glambular tissue into (1) irritative and congenital glandular hyperphasia, (2) adenoma (eneapsulated), amd (3) alenomatosis (non-encapsmiated).

We have said that two alenomas may grow from the same organ, one being eystic, the other not; one being eapsulated outside of the mother-tissue, another being napsulated within the tissue; one may lave ducts that open and allow secretion to be diseharged, while the wher is closed up and may hecome evstic. Becanse some of these adenomas, like normal glands, connect with the dhets of the organ, it bermes very difficult to separate them from inflammatory hypertrophies of the orran. For example a difinse fibroid induration of the mammar! and
may histologically exaetly resemble a section taken from the middle of an vanpsnlated adenoma; and the same is true of the liver, where lis the process of regeneration, new masses of liver cells spring up, which asactly resemble the adenoma of the liver arising without definite canse.
These similarities arise from the fact that irritative and regenerative hyperplasia, adenoma, and careinoma are three stages whieh ean be shown in succession by the same tissie, the differences being differcuces of degree and not of kind.

The cell-rest theory fails to explain satisfactorily the oeeurrenee of the alenoma; it is more rational to think that if cells (in cell-rests) which have never attained full differentiation, may under simple stimnli take on independent and blastomatons characters, the same ean be done by fully differentiated tissues. In inflamanation we see these cells ieverting quiekly to the vegetative stage, and an atypical arrangement. Why may not the same eause that sets up independent growth in cellrests set up independent growths in cells produced from differentiated tisintes:

Ilistologically, the stroma is an important part of the adenoma. Trpical adenomas show basement membrane between the eell layer and the stroma; when growth is rapid and atypienl, that is, whon the arowth is careinomatous, the basement membrane may be absent. While the gland cells and the stroma are dependent, one npon the other, the former is the more important; in faet, the growth of the stroma follows that of the epithelimm, and in transplantation of adenocareiIwnias in mice it is the transplanted gland eells that form the tumors, the stroma being furnished by the new host. The growth of stroma arendary to the growth of epithelimm is a phenomenon of ehemiotactic nature, and this secondary overgrowth is to be regarded as a reaction on the part of the body for its protection against the invarler, the orergrowing epithelium. This reaction on the part of the borls. in a factor in the arrest of new growths, the arrest oceurring in two "als: If, on the one hand, a given cell entering a tissue induces no rantion, its proliferation beeomes arrested because it has no vessels illil IIO stroma; if, on the other hand, there is execssive reaction, then the comnective-tissne overgrowth may cint off the mutrition of the Anchping neoplasm. This merely bears ont what we have previously minal. amely, that the development of a blastoma depends upon the remlant of two factors, the proliferative caparity of the growth, and the rantive property of the organism. Wir shall here deal one by one "III. the different degrees of overgrowth.

Corgenital Glandular Hypertrophy.-An example of this is the mat Growth of the mammary gland which may follow upon the in. iry development of puberty; such glanhular overgrowths have (1.) hmwn to secrete milk, and to prove, histologically, to lee an (i) of normal mammary ghand.

Tritative Hyperplasia.-This is cevidenced by increase in size of th med, he mainly to fibrosis, as ocenr frequently in the breast.

Glandular overgrowth, though to a moderate extent, does apparently: here exist. A similar condition is the overgrowth of the mucous membrane of the digestive tract at the edge of an uleer; prostatic hypertrophy probahly belongs to the same eategory:
3. Adenomatosis.- This is the conclition, closely related to the last mentioned, in whieh portions of a ghand or a surface become the seat of adenoma, the overgrowth occurring, not from a sim? foeus, but simultaneously from many foei at the same time. Examples of this form are the multiple polypoid alenomas of the alimentary traet, or multiple adenomas of the liver.
4. Adenoma Proper. - These are the demareated, encapsulated, benign overgrowths of ghands. They are not numerous eompared with the examples of adenomatosis, and they appear to originate from eell-rests. Wher the cell-rest is formed of gland tissue normally communicating with the exterior, complete encapsulation results in eystie formation, and the eyst may beeome the seat of intracrstic papillomatous growth. An alssence of seeretion indieates cither origin from non-secreting eells, or a highly marked grade of anaplasia. Here also belong the eneapsinlated cestic adenomas of the mammary gland, as well as the large gronp of denomas which arise from the remains of the Wolffian dhet, although reval and adremal adenomas are related very chosely to the transitional lepidomas.

THE ATYPICAL LEPIDIC GROWTHS-CARCINOMA

Ip to the midelle of the nimereenth centurs, any malignant growth was olesignated a eancer. With the development of morbid histologr, pathologists came to use the term eancer ats stomymons with carcimoma and as sharply contrasted with sarcoma. Wlithin the last few years, with the development of "eaneer researeh," and with workers in this department stmdying looth carcimomas and sarcomas, we are reverting to the older nise of the term. We shall thes comploy the term rancer indiscriminately to indiatte a malignant growth of any order, the term carcimona to denote only catherers of rpithelinl and glandular origin.
Carcinoma. We here consider antpical growths of hoth rovering epithelimm and of gland tissue, amd point out that the propertios of both are alike, to such an extent that the most atypical forms arr searedy distinguishable. Ilere if anywhere are found exceptions to the rule that the greater the degree of maplasia, of deperture from the adhlt normal histulugical twpe, the greater is the malignaney, for omme of these careinomas in the primary erowth deport but little and are excedingly malignant, while some that are greatly anaplastie are of relatisely midd malignames. A gronl example of the latter is rodent ulcer (ealled basal-celled carcinoma), a wry anaplastie kind of growith whieh for months or vears shows a heal malignancer, but which in man! cases fails to form metastases. (of those apparently slightly mapla-icic.
vet rere malignant, as exemplified by some adenocareinomas, careful "simmation will show slight departures from the mormal, such as the ahence of a basement membrane, and some slight tendency to infilration. W'e thuse regured ass carcimmuatoms all easers in which there is
 ", ll.s intle ther surromuling tissues, antl this whether of slightly atypical or
Relations of Tumor Cells and Stroma.-As in the adenomiss, the primary inmor elcoment is the epithelial cell; it makes its way into the tissues and in whong sets up a reaction on the part of the tissue so invaded. Sudh cralled an often very well marked at the growing edge of squamousmatury appomas, where it may be evidencerl her a distinctly inflammatury appearance, with a small-celled infiltration (Fig. 11:3). Many of

Fia. 112

 and apmar as inclusious latter are degemerated; they are often taken up twon he the lankoretes in the tomor eells. By the poor staining reaction the ane evilently thennel the region of a ripuilly growing carcinoma, indiantions that the aetively malergoing disorgamazation. There are provi ling tisstles, amblapparently by arcinona cells feed upon the
 tionle will and lise them as fordituffis, the tomor cells replatere the trom, of the tissue is used to form the But, on the other hand, the fran int of the tumor may stimulate the stroma of the thator, and the

order of tissue, as is seen in the pronluction of new bonc in a secondary carcinomn situated in a bone; or yet further, the stroma muy be excited to 1 un atypical overgrowth itself, giving rise to what is in true carcinoma sarcomatodes.

According to the degrce of reaction we are neenstomed to use certnin descriptive worls to denote carcinomas of different consistence: (1) medullary, where the cell growth is abundant, and the stroma inconsiderable, the resulting tumor being cellular, soft, and like marrow (medulla); (2) scirrhous, in which the stroma is abundant, the tumor cetls being scanty and compressed; and (3) carcinome simplex, where no marked predominance of one over the other is noticeable.

At the cdge of a carcinoma the cells generally stain deeply and are intensely vegetative, and while less so centrally; there may yet in this position be mitotic figures, indicating that the growth is not only peripheral. Generally, degenerntion progresses fairly rapidly in the decper parts, and this degeneration sometimes varies according to the function of the tissue from which the tumor is derived; thus fatty changes are common in mammary gland tumors (recalling the active part taken by the cells of that gland in supplying absorbed fats to the milk), and mucoid changes in tumors of the alimentary canal (in evident relationship to the normal function of the goblet cells of the mucous inembrane).
"Cancer Bodies."-These are bodies, found in and between carcinomatous cells, which have often been supposed to be parasites, and the cause of tumor growth, but which are at preseric considerel to be cellular degencrations. Thus we encounter small, hyaline, spherical borlies of varying size, the mean size being that of a red corpuscle shich stain intensely red with fuchsin, and lie singly or in little groups attached

PLATE VI

thone another, both intracelhilar and free in the stroma. They are known as "Russel's bodies," after their diseoverer, are neet with not only in malignant growths, hat also in inflammatory urens, and are considered to be examples of hyaline regeneration, but whether of red corpuscles, of cells, or of albuminous nutter is still unsetticel. Other intracellular bodies are of various forms. 'Ihere may he a single, round, homogencous mass prshing the nueleus aside; or sueh a body with a metachromatic central part, or surromaded by a elear space or it perip heral ring staining diflerently from the rest of the body, or a peripheral ring with processes connecting it with the cytophasm; or, ngain, a central boly may be surrimmed liy a ring of smatler globules; or throngh the eytoplasm may hic seattered abmolant small bodies lying in apparent vaenoles; or even large, amoboid, gregarine-like forms are seen, sometimes in the cell and someti:nes ontside it. With so many forms, and such failure to correlate results on the part of many observers, one may be forgiven for some seepticism as to these boties heing cansative. Although the

Fia. 114

Intracelhifar bodies of the type of lluso. ' 4 furlsin lrolies from a case of can-- roin lowhoplakia, ill cells of the plasma-- Il ispe. (Ḱrompecher.)

Fin. 115

Cell inelusions in cancer cells-the suppoacd parasites. It will be scen that the brodies are to the inner side of the cell toward the lumen; in the position, that is, of aodified secretory products. (Greenough.)
dencriptions recall the suceessive stages of a protozoan, with progressive conlargement and final setting free of spores, yet the study of the mirroehemical renctions of macin, hyaline, amyloid, keratin, and other deneneration produets shows that the same reactions are obtained in the case of these bodics. It is, of course, possible that some one or more , if these bolies may eventually prove to be protozoan, but in the present -tite of our knowledge, there is no sufficient ground for supposing that in them we have discovered the cause of malignant growths.

Site of Origin.-It is often incpossihle to determine the first site of a malignant growtl, becanse by the time of operation or death it has litcome too extensive; but in the ease of superficial growths it can often herdetermined that the origin is from a single point; yet even this does ' 1 it mean that the tumor is necessarily the progeny of a single cell. By serial sections it has been possible io see that although in a single metion the alveoli of tmmor cells appear separate, yet in different hine they are a.! connected in it series, or a set of series, for it may be "mihle to determine that there are more centres than one of origin,
that the erowth is pharierutrice, arising from several eells in the same region sinmultaneonsly.

Oreanomally several prinary growths, widely sparated, are ene combered, as ocours in the multiple superficial growths of ehimmersweeps or of workers in paratfin, and best of all, in the frequence with which both waries are allected by careinoma linirly freguently, too, an individual may exhibit two or more distinet forms of primary growth in different part, of the looly, althongh looth of these may not le malignant, as for example where nterine fibromisor theroid menomas coexist with earemomatons growth elsewhere. It is mot possible to

liarly rpithelioma of tongue, to show (A) rogion of orikin by Jown-growth from preexisting epithe

go farther than to state that the same instability of tissme that permits the over:prowth of tissme in one place in a typical (benign) way, afferting numerous tissues, allows atypical overgrowth in another, or even subsequently in the same place; that is, the multiple growths arise ats a sequence of a vier of development or from the development of multiple cell rests. Tle development of now si:afle now multiple tumors is paralleled by the state of affairs we find it: infection. There, generally, we find a single focus of origin, ahomgh in some cases there appear to be multiple simultancons de clopments; the simgle fo as (remaining single) is explaned upon the presimption that the reastance of the
hul! is raiserl, and further invasion at other points is resisted. In a lihe way, When tmoror grow th origiontes, the berly resistance is sufficient In prevent further development wewhere, althongh not strong enough (1) wercome the tmon growth alrealy instituterl. That this resistaner is real is shown be the fact that a monse inoconated with carcinoma Cimmme to a seconal inconlation, hont if the primare growth be removed Hhi immmmity is guichly lost.
Squamous-celled Carcinoma (Epithelioma). 'liumors of this order origiHate Irom stuamons epithelime, and are, ass such, chiefly of eppiblastie urigin; hat since hepoblastic lining membrame maly be of sqummons twpe, is in the amphagns, this also mave give rise to spmamonserelled carcimona,
 cimmas it is evident that no absolnte distinction can be made in the way of comsidering one of epiblastie and the other of hepoblastic origin. lirorlhing to its relationships and its functions, a given lining membrame develops squanons or colmmar or exlimal rical epithelimen, and aecording In the type of the mother tissure is the malignant growth that arises from it.

I Julle hat pearl fram metion of rgithelionat of fongue to whow serueture
(Immersion lens)
The oflamons-celled carcinoma presents solid colnmms of cells passine in tarions direetions, and in sections ent now transsersely, now lomsimalinally, now obliqnels, lying in a relativels abundant, vascular stroma, which mas. show concidrable "small-celled" infiltration (1゙is. I (i). In the tepical colnmon there is an outer liyer of closely set mith, stining deeply, which represconts the Malpighan layer. Within thi- may he several lavers of "prickle-cells," which, as the centre is apiranchel. beome less well stained, Hattened, and fually keratinized. 1han lie centre of the colnmin comes to be formed of concentric, flat, herpinimad cells, staining strongly with eosin, and constitutes on section this epithelial pearl. The formation of the pearl can le understood if "r. inatine that the skin, instead of growing down in a solid colnmn, is ins -imated as if pmshed before an imaginary finger. The outermost (a) if the projected part would be those of the Malpighian layer,

$$
\longrightarrow
$$

MICROCOPY RESOLUTION TEST CHART

(ANSI and ISO TEST CHART No 2)

and the imermost ones the normally keratinized eells of the surface. If the imaginary finger were now withrawn, and the projection laterally compressed to oblite te the spare left he the finger, the solid colnmn so resulting would show precisely what is scen in a down-growing process of epithelimm. In less tapieal growths, the differentiation between the cells of different layers is he no means so elear, and with greater degrees of amaplasia the cells may he romm, polygonal, or even spindle-shaped, as may happen in rodent nker (Fig. 119), and in this connection it is to be remembered that the extreme anaplasia is not necessarily a sign of extreme malignaney. These tumors which show a failure of differentiation toward flattened and keratinized cells have been called the basal-celled carcinomas, on the ground that such arise wholly

Fig. 118

Impure or transitional epithelioma of antrum of Highmore ("basal celled eareinoma"), in which instead of erntral keratinization and pearl formation, there is eentral neerosis and autolysis (a), with produetion of lumen-like space.
from the basal cells of the Malpighian layer, although, as a matter of fact, as this is the actively growing part of the epithelim, all the thmors arise from it; it is the degree of anaplasia, the incapacity to develop beyond a certain point into the flattened and keratinized eells that determines the existence of surh tumors. There are certain differences to be seen in the squamous-celled earcinomas according to the site of their origin. Skin and tongne tumors are apt to give well-marked pearls; œesophageal tumors are not so apt to show them, just as normally in the osophagus the keratin development is not marked. The more rapid, too, the growth, the more atypical it is, and the less apt are the differentiations to appear, just as the process of keratinization on the skin requires the lapse of considerable time, and a constant slow progression of removal from the deeper. better nourished layers below;
surface. In latere solid rowing tiation id with or even in this is not show a ve been wholly

Where the growth is rapied and the cutting-off of the cells from their mutrition correspondingly hastened, more active degenerations (even necrosis) are iiable to occur (Fig. 124).

Portion of edge of a rodent ulecr.

Fig. 120

Part of the same at a more highly magnified, to show assumption by the epithelial cells of a spindleshaped type. (Krompecher.)
symamous-cellet carcinomas are found occasionall in regions whieh nornally possess columnar epithelium, such as the larynx, bronchus, stomiach, uterus, and gall-bladder. It is in these very regions that we cncounter, either as the result of metaplasia or otherwise, islands

Fig. 121

- "perfect squamous epithelium, and appare; tly it is from such cells

Hese tumors originate. They are not infrequently mixed, showing

1. Authe! omatous and glandular carcinomatous constituents.

Gland-Celled Carcinoma.-These tumors differ somewhat atcording to the structure of the mother-tissure; from tubular glands we are apt to ohtain tumors that show, or attempt to show a tubular arrangement; from acinous glands, tumors that have a grape-like arrang cut; from the liver, a tumor of cells arranged in solid masses rumni g in irregnlar strands. As before stated, it is necessary to consider the tissue from which it arose, before one ean say how typieal or atypical is a certain tumor. In the tumors which show a distinctly glandular form, there may be a relatively orlerly arrangement, with an attempt to form lumina or, on the other hand, there mas be no such attempt, so that we arrive at the forms in whel the gland formation is lost and solid masses of cells occur with more or less abhumatat stroma, according

 growth with large lumen; b, more solid mass of aberrant gland cells forming multiple lumina
to the amome of which, as alrearly stated, we call the tumor medullary, seirrhons, or simple. 'To make any farther-reaching classifieation of the ghand carcinomas is hardly necessars; at most it may be eomvement for descriptive purposes to define a tumor by an aljective descriptive of the form of its cells, as colimmar, enbical, cte.; the sume "arcinoma may, in different sections, show pietures so diverse that one is in danger of lasing too molh stress upon the characters that appear predominant in this or that serction.

Degeneration.-The superficial eareinomas temd to ulerate. by reason of the ill-control exercised upon the hoond supple and the exposure to tranma or infection against which they are mable to protect themsclues. Extensive mucoid change, "colloid" degencration, oremps, especialiy in the carcinomas of the digestive tract; the tumor cells, sem

Fio 123
ording re apt ement ; from irregutissue al is form npt to tempt ast and cording fication be conljective re same hat one appear
ate. by xposiure themowelles, lis secm

Medullary cancer. (Ribbert.)

Fig. 124

atrfiny of breast. The cells are compressed and degencrated and the stroma relatively abundant $\times 250$.

Fig. 125

Carcinoma simplex. (Ribbert.)
to retain the power of prorlucing mucin, but are apparently unable to properly exerete it, so that it becomes heaped up in the eells, distencling and eventually killing them. Whole alveoli may suffer from this ehange, so that curefnl searelı is neeessary to diseover cells to give a elue to the nature of the tumor.

Colloid cuncer, showing large alveoli with cell remains, within which is contained the gelatinous colloid material. $\times 300$. (Rindfleisch.)

Of all tumors, carcinomas or malignant epithelial growths are the most important, both to the pathologist and the elinieian. Judging from statisties they are rapidly inerensing in their frequeney, and when not recognized early are so hopelessly fatal, that it beeomes of the highest importance to recognize them at the earliest possible moment and so permit of their removal before they have infiltrated too extensively.

THE TRANSITIONAL LEPIDOMAS (MESOTHELIOMAS AND ENDOTHELIOMAS).

It will be recalled that our elassifieation grouped together all those lining membrane tissues of mesothelial and mesenehymatous origin, derived seeondarily from the mesoblast, and determined that tumors arising from these should form a separate class, the secondary or transitional lepidomas. Of these there are four groups: (1) tumors arising from the developments and vestiges of the Wolffian and Müllerian duets; (2) those arising from organs wheh, while they eone into intimate relationship, with these, nevertheless as regards their essential constituents, are of separate mesuthelial or mesoblastie origin (ovaries, testes, kidneys; with this grous may be included the adrenals); (3) other mesothelial tumors derived from the serous surfaces, and (4) the endotheinal tumurs.
able to istendm this give a

1. Urogenital Duct Tumors.-Whetlicr the urogenital ducts gain a eecomlary lining of hypohlust or epiblast or whether, beeause of their very curly differentiation, the properties of their mueous linings are relatively stable and fixed, eertuin it is thut the tumors derived from thew arc usually of a purely lepidic type-true udenomas and true carcinumas-with very little tendency to take on seeondarily hylomatuns (sarcomatous) development. Thus, in the uterus and prostate, for c:sample, we get pure adenomatous and eareinomatous growths. lict, though rarely, it does happen that a tumor of one of these areas mily show most marked hylomatous charaeters (as in one of our cases of prowitatic tumor where the primary growth was typical eareinoma, but the extension sarcoma-like, in the judgment of some well-known pathologist.). Such tumors have clearly transitional properties.
\therefore Tumors of the Ovary, Testis, Adrenal, and Kidney. - In consildering the tumors of the kiduey, it is neeessary t, remember that the Wilffian duct provides the distal, eollecting part of the tubule, and the mesenelyme the glomerular epithelium and that of the main part of the tubule. In the ovary and testis the primitive kidney, intimately comereted with the Wolffian duct, is involved, along with the germinal messotheclium. Thus it comes that, while in these organs we meet pure adenmals showing no sign of reversion, we also find a series of transitimalal tumors which in places appear to be adenomatous and in other places sareomatous, and yet other areas where one passes into the other, and the cells in the sarcomatous areas may even be spindle shaped. such timmors, once for all, dispose of the idea of the striet bounds that were formerly supposed to exist between carcinomas and sareomas, and that sulch tumors can exist is due to the common embryogeny of the primitive tissues.
Adrenal Tumors.-It has been said that there are in the orary, testis, and kidney, tumors of fxed type, which fixity is perhaps due to the stahility of the Wolffian epithelium. In the adrenal, howe ver, there is ${ }^{116}$. 11 eh doubtful origin, and yet we f na in it transitional tumors.
The adrenal, it is true, arises from two sources: the medulla originates ill cminection with the sympathetic nervous system, the cortex from menothelial elements. In the medulla originate tumors that are true in uromans, with rudimentary ganglion cells and non-medullated fibres, which evideutly arise from eell rests of the sympathetic system; the curtical tumors, however, are entirely different.
First, there are aecessory adrenals; they are eomposed of cortical ti-ule, lying in the adrenai capsule or in the adrenal itself or outside it. "r even in the kidney and more rarely in the liver, while at times they have been caried down in development and appear in the ovary ur testi-. When such are found to hypertrophy, we deal with an adenomath nis phemenon. These tumors show the typieal cortieal tissue, (whinuls of cells lying in a meshwe i of eapillaries, the eells containHis fitt and myelin droplets. At times, insteal of small grow has, we fin, tumors of large size, in whieh we have the normal appearanee of
columns of cells, the cells large, and crowded with fat: and fat-like globules and glycogen, which last is constantly present in the growing adrenal. Sueh tumors, again, are evidently adenomatous. But

Fig. 127

Front the edge of a small nodule of new growth in the adrenal cortex, showing every transition from n, cells undistinzuishable from the surrounding cells of the cortex to small cells with decply staining nuclei of sarcomatous type. (Adami.)

Fic. 128

Similar conversion or modification of cortical cells of adrenal into tunter cells. (Woolley.)

Fio 129)

Hyperacphroma of kidncy. Transition from allenomatous to sarcomatous type of growth: nhazi, adenomatous overgrowth of solid colunna or masses of cells of adrenal type; nbuzil, transition to sarcomatous arrangement; K, a kidney tubule involved in the growth. (Dehernardi.)
there are other tumors which in parts may be like these, and in other parts show cells smaller, less fatty, more deeply stained, with tramsitions fron adenoma to sarcoma, and definite sarcomatous tissue; these may
d fat-like e growing ous. But
show metastases that are clearly sarcomatous. All these, io use the monlern expression, are homotopic hypernephromas (hypernephros, the alrenial). The name hypernephroma is more commonly employed in antion with a remarkable tumor of the kidney, in the belicf, first propoumled by Grawitz, that tumors of this orler found in the kidney, origimate fromadrenal cell rests, that they are heterotopic hypernephromas. It cammot be said that there is a complete consensus of opinion as to the mature of these renal growths. Possibly some of those which are found in the kidney cortex arise from the kidney instead of the adrenal, that is, are nephromas instead of lypernephromas. The two cortices, that is, of the kiduey and the adrenal, are somewhat related embryologieally so that tumors arising from them must possess closely related characters. This riew is supported by the latest workers on the subject, namely, Wilson and Davis. When such a tumor of the kidney tends to form tubules instead of solid columns of cells, its renal origin is a reasonable supposition.
Thesc tumors are apt to be vascular, the cells being in close contact with the capillaries, and they are prone to hemorrhage; metastases ly the bloorl stream readily occur, and especially is the tumor apt to grow by coutinuity along the reins to the vena cava.
A useful terin to describe all these transitional tumors of the adrenal, kidncy, ovary, and testes is mesothelioma.

A mesotheliomn is thus:
I. A tumor arising from tissues which, while of mesothelial origin, posiess in the adult state lepidic characters.
II. When typical and of slow growth, it is an adenoma.

11I. When atypical and of rapid growth, a sarcoma, although transitions hetween adenoma - ! a coma are to be seen.
11. The secondarit. matous.
3. Mesotheliomas timors, spreading locally

- Surfaces.-These are flat, nodular or pericardium, looking to the ne pleura, more rarely the peritoneum thickening, and under the microscope, like a carcinoma. They evidently arise from the endothelium lining the serous cavity affected. A relatively ahmolant stroma is present, containing elongated acini, formed of irregular, swollen, often cubical cells. Here we deal with a carcinoma-like thuner that has originated from the part of the mesoblast that has takell up a lining-membrane function.

1. Endothelioma.-The endothelioma is a tumor arising from the lining cells of a vessel, and may be a hemangio-endothelioma, from a hwod ressel, or a lymphangio-endothelioma, from a lymph vessel; in a thmor of long establishment it may be difficult to make the distinction. lis diecossing overgrowths of blood vessels, we have to consider first the typieal ones, and this leads us to the consideration of some tumors that arre not blastomas, along with some which are.
Angiomas.-Most so-called angiomas (tumors having vessels as their main constituent), whether hemangiomas or lymphangiomas, are not true
 of spaces, even if preceded by aplasia and followed by atrophy of the surrombling tissues, is not growth; nor is the inerense in length of a vessel (as in a cirsoid anemrysm), nor inerease in the thickness of walls (as in caveruma) to be considered as more than physiological. We fiud widening of preeixistent vessek, cither congenital, due to a lack of coorrdination between the amomnt of tissin (1) be supplied and of vessels to supply it, or postmatal, due to obstruction (as in hemorrhoids) to compensate for which the capillaries mondergo dilatation. But this is not bastomatons growth. P'roperly, most of what are celled angiomas are angiectases, or dilatations of vessels produced, not by virtue of independent cell growth but by some plysical foree or other stimulus. The augiomas proper will be dealt with later.
Bloul Vascular Tumors ("IIemangiomas") which are not Blastomas. -1. Obstructive Telangiectases.- The hest-kncwn example of this is the hemorrhoid. The hemorrhoidal veins of the anal region commmicate with the main and with the portal venons system; situated close to the surface and poorly supported externally, obstruction to the onward passage of bloorl leads to dilatation. Similar eapille ry : and venons dilatation oeeurs in "mutmeg" liver, in the vessels of the nose and eheek, and in the frequently observed varicose veins of the legs.
2. Andurysm.-This is the diatation of an artery produced as a result of weakening of its wall. The only form of anteurysm which might at all be considered as angioma-like is the form known as cirsoid, which may show itself at hirth and grow rapidly afterward, having a tortuons, worm-like appearance, and sometimes reappearing in the same region after removal. It is probably due to a eombination of congenital weakness of the wall with inadeynate discharge of blood from the vessel.
3. Congenital Telangiectases.
(a) Tilamgiectatic Nori--Some neri (pigmented moles) are purely cutaneons outgrowths with melanin-containing cells; the majority coutain, in addition, dilated capillaries or may indeed be areas of simple telanglectasis ("birthmarks"). The "blue nevus" is an extreme grade of the same condition, often very extensive. The association of telangiectasis with eongenital pigmentary distnrbanee surgests that we are dealing with a vice of development; the simple birthmark is a capillary dilatation, and the same state may be found in hone, muscle, or even in the brain. The blie nevus has larger spaces, where, by pressure atrophy, septa hav heen broken down, while the septa that yet exist aud the containng capsule indicate overgrowth from pressure-stress hypertrophy:
(b) Casernoma.-Tlis form can scarcely be separated from the foregoing, and is a frequent abmormality. of the liver, in which it is fonnd most frequently of the size of a pea, although oeeasionally as large as an orange. It is supposed but not certainly known that some are congenital, while in others it may be that a loealized atroply of
atation of the th of a of walls 1. We a lack and of rhoids) this is gionas of indeimuhs. stomas. s is the mincate I close to the venous cheek,

1 as a which cirsoid, ving a in the tion of hloord
purely ajority eas of streme ciation qgests hmark bone, paces, ile the rewth II the h it is Illy as some dyy of
liver cells is followed hey compensatory dilatation of the capillaries. Vicroscopically, a cinermona comsists of large irregular blood spaces, rommmicating one with anothor, lined hey mbothelimm and having septa of a filiroms nature, in which often are seen pigment particles. Thrombosis or caleifisation with formation of phleboliths menrs in them. Their congenital origin is ascribed to the failure of the original capillaries to become clothed with or to

Fig. 130

Fis. 131

Section of small eavernoma of liver, showing the cavernous antl communicating vascular apaces, from which the blood has been removed, (Ribivert.)
enter into connection with liver cells; and a strange fact has been noted, namdy, th:at they are not comected with surrounding capillaries, and,

 4, barger and r , smaller bloodvessels. (Driessun.)
arn ling to Ribbert, camot be injected through che hepatic vein. Most often they show no sign of independent growth and are not blastomas.

True Typical Blastomatous Hemangiomas.-Angioma simplex.-Th true angiomu shows un actunl proliferation of cupillaries with som ectasis, and the striking feature is the entothelinm, which is larg rich in eytophasm, und often more thm one huyer deep. These hav heen fomm in the skin, chorion, and miscle, and the thimor consists a congeries of surh proliferuted enulotheliul tulmles-sometimes culle the henign angiomu. Cases which show depurture from the type eve to the extent of showing colnmins of cells instend of tubmer ought be elassed with the hemungio-endothelionas-the atypical mugiomas: much more so when they exlibit metastuses. In the endothelia growth we see the one main factor which mnkes these blastomus.

Section from a case of hemangic:na simplex, exhibiting progressive enlargement and extension.
(liorrmann.)
Lymphangioma.-Here, as in the hemangiomas, the majority o tumors called lymphangiomas are really lymphangiectases. These may be independent or may occur in comection with tumor growth in which case the angiectasis is subordinate to the tumor growth dilated lymph channels are often seen in comeetion with all forms of overgrowth. When independent and unassociated with neoplasms of other orders, lymphangieetasis may be inherited or acquired, and is one of three grades, between which occur all stages of transition.

1. Simple Lymphangiectasis ("lymphangioma simplex").-These occur congenitally as slightly raised areas upon the skin breaking through
plex.-The with some h is large, hese have consists of mes called type cen sought tw. angiomas; endotheclial tomas. and is one
easily, and when broken, "weeping" persistently (lymphorrhea). They oceur most frequently on the face and neek, and viry greatly in the depth they extend into the tissue. Anatomically like these, buc acquirel, are the dilatutions of lymph chamels secondary to obstruction that are found in elephantlasta (filarial).

Fio. 134

Section from a lymphangiectatic polyp of the nowe, showing the greatly diatended lymph channele lined by deliente endothelium and the codematous interatitial tissue. (Iligh power.)
2. Cr.vernous Lymphangiectasis ('Lymphangioma cavernosum").-These (orrespond to the eavernomas but contain lymph, not blood; mostly congenital, they include examples of macroglossia (enlargem: , to the tongue), macrocheilia (enlargement of the lip), and othe: irmis of (m)!renital elephantiasis, brought about by a defective ability of the tionle's to discharge the lymph.
\therefore Cystic Lymphangiectasis.-The most striking examples of this are follinl in calses of "cystic hygroma," where multiple large, clear cysts werur below the ear, or submaxillary, or above the clavicle. The -Welling is tense, and the large cysts often do not communicate with Whe another; they a e lined with endothelium and have strong, fibrous "iall:. This is not due merely to obstruction, but the secretory activity of the cmlothclim is likewise responsible. Not to be confounded with it is "cervical hydrocele," where a cyst, lined by epithelium, arises from fart of a cervical duct or fissure. A true hygroma may appear in the sateal regim, a form of the congenital sacral tumor.
Atynical Angiomas.- Hemangio-endothelioma. - The most characteristic 'vample is that developing beneath the dura mater, where it forms
nodules that displatee briin substance or spread as sessile masses. Tl appearanec of the microscopie ficld is striking; the tissue consists

Fia. 135

llemangio-endothelioma from nose of child (Dr. Klotz), showing development of new capillaries (a). mmerous whorls of concentrical disposed eells, which are flatten but not tightly packed, especial at the ecntre, where one may oft distinguish the lumen of the blot vessel. If cut in a direction n perfectly transverse, the mass appear ovai or eursed, and in an case there may be between them good deal of celhilar fibrous tissu The whorls may show hyaline ealcarcons change, in which last eas the tumor is ealled a psammom The psammomas, sometimes mu ti, le, appear to have always th endothelial origin and the rapidl growing ones are sarcomatons.
Lymphangio-endothelioma.-When there is no perfeet whorling cells aronnd the eapillaries, growths of this nature may be considere as arising from the endothelium of lymph channels.

Section from a perithelioma or perithelial angiosireoma (from the collection of Dr. Rhea), shomis the relationship of the central blool vessel a to the new growth.

Perithelioma. - Thmors are sometimes fonnd showing capillary chamels cut in varions direetions, lined by endothelinm, around each

[^11]isses. The consists of acentrically. c flattened , especially may often ithe bloorl reetion not he masses and in any een them a rous tissule. hyaline or ich last case psammoma. times inulWways this the rapidly atous. horling of considered
of which elannels is a collection of cells, many layers deep, arranged radially. This arrangement in rows at right angles to the capillary axis is characteristic, and has led to the supposition that they arise from the endothelium of the perivascular lymph channel. The cells farthest from the vessel are evidently the oldest and probably from this eillse are the most likely to degenerate; haline change in such areas gives perfect examples of the cylindroma-a term used to designate these auld allied tumors that are formed of a collection of eylinders, earch erliuder being a mass of cells surrounding a lumen, and themselves surrunuted on the outside by a zone of hyaline change.

*ection from an alvolar melanoma or chromatophoroma of the great toe. The eflis in aeneral ar" lurr whit to be free from melaniu granules, hut these are present in ocrasional cells both of the (IIm, i (a) atml of the stroma (b). At r, soume of the melanin-rontaining rells are drawn separately',

Fig. 138

Pigmenterontaiaing rells from a spincile-celled melanoma, (lihhert.)
Melanoma.- There is a great dcal of uncertainty about these tumors, whid are characterized by the presenec of ehromatophores, that is, wlls, which bear pigment, whether they be in the skin, the mucous memhromes, or the choroid of the cyc. These cells are found, normally, in the skin of the annl region or the pigmented areola of the breast, alil, vist in the pigmented warts that are so common on the skin. TH. pigment is melanin, an iron-free protein or protein derivative, often 14, :ammen sulphur. We do not know surely if these cells are epiblastic 11) (i.whblastic in their origin, whether they are epithelial or supportive
in their nature, and some of the tmmors are alveolar, suggesting a earcinomatous origin (Fig. 1:37), others, more particularly those arising from the ehoroid of the eve, are non-ilveolar, with cells of the trpe of a spindle-eelled sareoma (Fig. 138). The tumors vary in color, from white (espeeially secondaries) to brown or black according to the amount of pigment present; they are highly malignant, and the secondaries are apt to be exceedingly abundant. Microscopically, as above noted, the growths differ greatly. The most likely explanation of their varying properties is that one kind of eell, the ehromatophore mother cell, of lymphangio-endothelial origin, gives rise under different conditions of vegetative activity to careinoma-like or sarcoma-like tumors.

Tumor of peritheliomatous type of the earotid gland: G, vessels; $B l$, hemorrhage into a column of cells; at d the cells of the growth are taking on a morf conneetive-tissue type; at c, hyaline degeneration.

Other Tumors of Doubtful Relationship.-Cholesteatoma.-This is found especially related to the membranes of the brain, and is characterized hy the presence of pearly nodules. The cells are of epithelial or endothelial trpe and among them may be cholesterin crystals. 'i here are by most eonsidered as endotheliomas, but the finding of hair follicles makes this not so elear. The name is, unfortunately, most commonly applied to a tumor found in the external auditory meatus and the middle car, which is not a blastoma, but a condition allied to hyperkeratosis, an aceumulation of flattened epithelial cells, which have not been cast off.
a cararising type of r, from to the seeonds above of their mother condimors.
o a column c, liyaline

This is characpithelial
'illes: follides mmonly unil the hyperave not

Tumors of the Carotid Gland.-The nature of the "carotid" gland being olscure, it might be expected that the , qture of the tumors arising from it would also be obscure. These are at tines like the peritheliomas and the sarcomas. Similar difficulty is found in the c. se of the coecygeal gland, and the perithelioma-like tumors that arise from it.

A THEORY OF NEOPLASIA

It will be evident from the forcgoing that some growths owe their origin to ce!l-rests; such are the teratomas and the teratoblastomas, the tumors originating from persisting rudiments of embryolie structures (gill clefts or branchial cartilages), and from cells displaced during the comrsc of development (aberrant hypernephroma, columnar carcinomas in regions where squamous epithelium normally exists, etc.).
'The idea of cell-rests has been known for long by Cohnheim's name, but, usefinl as it is, it gives no clue to the reason why tumor growth springs up from one cell-rest and not from another; even on Cohnheim's lime we may go farther and say that new growths arise also from cells which have undergone not congenital, but postnatal displacement, as happens i squamous-celled carcinoma arising in a scar, or in columnar (arcinoma from the edge of an ulcer. But cell displacement is not the issentiml. Indeed, certain neoplasms arise from provedly undisplaced colls, imd by actual transformation of the tissue cell into the tumor cell. Thus has been described the change of liver cells, the cell losing murlh of its nuclear chromatin and becoming granular, then an enlargement of the mucleus, and a final acquirement of abundant protoplasm, inio longer granular; and all this happens while the cell is ctill connected twit: foliows. This is the process we have referred to as undifferentiation or anaplasia. It is by a process of change like this that we can undertimil the blastomatoid growths, which develop not from a single cell but be a gencralized proliferation of the specific clements of a tissue, the hastomatoid cells showing all gradations from simple hypertrophy to pronomeed malignancy. A general theory upon which to base nenfinsia has been, for example, to consider it as the result of the removal of tisure restraint, while less widely-reaching suggestions have been the: : t temp: to show a parasitic origin for all neoplasms. All these fiaturs may be present, but no one is adequate to explain all cases. In alequate explanation will have to show some influence always preent in the cell itself, rather than an external stimulus or a series of extermal stimuli.

The Habit of Growth. -We have attempted to show that cell life is Apondent upon the never-ceasing activity of exchange between bivins and cytoplasm, between cytoplasm and food, between nucleofham, eytoplasm, amel the detacherl ions that mean ferment aetion; Mirsy cin he expended in the direction of growth, of function, and i! |rutiferation, the last occurring when n certain physiological degree 1: 2 row th has been attained. If now cells be placed so that no function
is demanded of them or permitted to them, while they continue to gain nomrishment, they may remain vegetative or become vegetative, and acquire a habit of growth, losing the habit of function The mere existence of immature cells or of cells that have passed from : differentiated form to a less differentiated form, is not enongh; cells must assume this habit of grewth and lose the labit of function before they can originate a neoplasm. A cell that is ready to be the starting-point of a neoplasm differs from an embryonic cell; the latter has the potentiality of differentiation still before it, the former has lost it. As snggesting how the cell has lost it, we put forward Oertel's hypothesis that as in the protozon we find in some cells two muclei, one associated with reproluction and the other with the functional activity of the cell, so in man and the metazoa there is chromatin of two orders, of which one governs the proliferative, the other the functional capacity of the cell. A tumor cell is a cell that has largely lost the latter; when lost the cell is mable to replace it. Such a cell ean give rise only to danghter cells that lack this power of differentiation, hit are still endowed with full vegetative properties. That such is the case is not yet proved, but the idea is worthe of preservation in the present state of our knowledge. It seems necessary to recognize among the blastomas some change in the biological provertics of cells as an essential for neoplasia. It is not something ontside the cell, neither an external stimulus nor a diminished external resistance; it may be that an external stimulns starts tl cells on that path which lead:; eventually to their assuming ncoplastic properties; it may even be that the malignant growth affords a secretion which depresses the vitality and inhihits the growth of surromoling tissue cells, but these are subsidiar:. The cssential point is that the cells giving rise to an antochthonons new growth are so modified that the energy acquired by the accumulation of food is not discharged in the performance of function, as in the healthe cell in norma! relationship, but is retained aud accumulated only for purposes of growth and multiplication. This is far from deming that various stimuli assist the modification of the cell; it may be that in one case the cell's position, displaced as it is, tends to retard its function but uot its vegetation, or in another ease that a microbic or parasitic agent begins an inflammation that acts similarly, or in yet another case that a senile loss of function paves the way, the change being accompanied by an alteration in histologieal characters. There is not one specific agent, but many: and these at the most begin the process. The end-result is a cell mutation.

What is the practical bearing of this? It is that the curc of cancer does not lie in the discovery of a parasitic sause, for, judging by what we know of the uature of malignant cells the mere removal of a microbic or parasitic eanse will not suffice to stop cell activity and the propagation of the properties that the cells have assumed. We have rather to seek agents that will influence the growing powers of these cells. Two possibilities, at least, lie open.
inue to etative,

The from : h; cells unction be the e latter has lost Oertel's clei, one activity orlers, netional ely lost cell can tiation, such is ation in cognize of cells he cell, ance; it h which ay even sses the ut these se to an וequired rance of retained lication. ifieation las it is, her case at acts aves the ological nese at
cer does re know or paraation of to seek Two

The first of these is an upparent parallel to bacterial immunity. In the inoculation of monse emeers, it has beea found that successful iucerelation with a cancer is tollowed by subsequent failure to inoculate again the same mouse; two simultaneous inoeulations may be suecessful, but if one be successful, a sulsequent inoculation fails. Some surl inoeulated tumors subsequently shrink and disappear, and the animal is immune to inoculation with the same or an allied tumor. These phenomena are evidently due to the producion of antibodies ly the tissues, parallel to that seen in various infections, and it seems pussille that tumor or even normal cell extracts mighi exalt the ilefences of the hody against tumor growth. Yet we must not be blind to the fiact that many inculable tumors induce but a very slight general reactio:
The second mode of destruction of new growths is parallel to the cmployment of the agents that produce passive immunity. It may be that Irugs or animal substances, or mechanical agents like radium ur the Röntgen rays, chemicals such as salts of selenium and tellurium, or houly ferments may be found, to which the neoplastic cells are more Ynsitice than are the normal cels, their growth heing arrested and atroply and absorption ensuing. As a matter of fact it has been fully demonstrated that radium and x-rays especially arrest the activity of vegetative cells. As this work has been passing through the press, Wianermam has anneunced partially successful inoculations with componurls of selenium and tellurium with anili: dyes: these have resulted in the destruction and disappearance of the cancer cells in mouse carcinoma without injury to the tissues in general. We say partially suc(w) ful: the experiments were wholly successful in the case of small tumur;; with larger growths, while the tumors disappeared, the animals died, apparently poisoned by the produets of tumor-cell disintegration.

CYSTS

I mat is a sharply limited, abmormal collection of fluid unprovided wihl it chamel of outflow, possessing a well-developed boundary wall. It in romul or oval, and the fluid fills it. We do not count the serous (a) itic: is exsts if they contain fluid, although we regard those serous :im, callewl bursex, as cysts if they contain a marked excess of fluid met the normal amount. Cysts are tumors only in the sense that this: are swellings; they are in no sense neoplastic, and the wall grows in dirert relationslipip to the amount of the fluid content, and the Wintion exerted by it.
Lermerling to their causation, cysts may he divided into the following 4nu! (1) retention cysts, due to abnormal dilatation of preëxisting ran ilime of the organism as a result of secretion outsiripping absorp(i.).2) hemorrhagic eysts, due to escape of bloorl into the tissues and -nl.wnumt encapsulation; (3) necrotic eysts, due to the death and lique-
faction of tissues with subsequent eneapsulation; and (4) parasitic eysts, due to the development (in itself normal) of metazona parasites within the organism, such parasites possessing a eystic stage.
A. Secretory or Retention Cysts.-This group may be subdivided aceording to the nature of the cells lining the eysts into (1) eysts with eubical or columnar "glandular" epithelium, (2) endothelial, (3) ependymal, (4) squamous epithelial, and (5) composite cersts.

In all of these, when cellular activity leads to secretion into a eavity unprovided with an outlet or when the outlet is obstructed, the fluid is secreted against pessure,

Section through a retention cyst of muensa of under aspect of epiglottis, due to obstruction of a mucous gland. (Professor Klotz) (low power.) a, blood vessels: b, compressed acini of a mucous gland; c, cartilage; d, artery. which, while low, is above that in the capillaries; as the secretion is eontinuous and the absorption less rapid, the eavity is gradually distended, and under this gradual, not excessive strain, cell multiplication is favored,

Fig. 141

From the same section under higher magnification to show the flattened cpithelium lining the cyst.
aud not only the lining eells multiply but also the underlying eonneetive tissue. Eventually the lining cells become flattened by pressure, (Fig. 141), and ill-nourished by reasom of the pressure on the vessels in the walls, so that atrophy aud final disappearanee may result. The watery contents of the cell are absorbed, so that the less diffusible products of secretion become more and more coneentrated, until the erst may be filled not with watery fluid but with inspissated, thick, jelly-like, or colloid content.

1. Of Antenatal Origin.-Congenital Cysts Due to Persistence of I'arts of Limbryonic and Fotal Ducts.-This is a large grouis. In the growth of the embryo and foctus, certain passages that ordinarily. herome closed and atrophy, may not becone completely absorbed; these remain isolated in other tissues, and either immediately; or after vears: lase elapsed, their cells may take on secretory activity, giving origin to evsts. Some of these are as follows:
(iI) Thyrolingual cysts in the median line of the neek, from the thyrolingual duct leading down from the foramen cacum of the tongue to the thyroid.
${ }^{3}$ i) Branchial cvsts on the side of the neck, between the angle of the jaw and the ste hoclavicular articulation, from the branchial clefts. The contents of this series vary from mucous fluid to sebaceous material according to whether they originate from the imer end, lined with mucons membrane, or the outer end, lined with squamous epithelium.
(c) Vitello-intestinal cysts, near the navel, from the omphalomesenteric duct which communicated between the small intestine and the yolk satc.
(d) Orachal cysts, in the hypogastric region, from persistence of parts of the urachus.
(c) C'usts of the Primordial Genito-urinary Passages in the Female.Fig. 1! will scrve to recall the relations of these ducts and the changes by which they arrive at their finally destined purposc; cysts are liable to arise from unabsorbed portions of those that atrophy. Cysts of the Wolffian body are apt to be multiocular, growing in the broad ligament. Crsts arise from the lateral (free) tubes of the paroöphoron; they are uf sulall sizc. The cysts that arise from the connesting tubes of the paroijphoron (connecting with the ovary) may be of large size; they are oftell single, and are lined by various kinds of epithelium, though this may he lacking in the larger ones, where also cholesterin may be fount. Cysts of Gartner's duct occur in the broad ligament and in the raginal wall. Hydatid of Morgagni is the term which describes the (qstic dilitation of the long fimbria of the Fallopian tube.
(f) ('ysts of the Primordial Genito-urinary Ducts in the Male.Stalked hydatids are found at the upper pole of the testis arising from Wilfiimin tuhules. Encysted hydrocele of the testis may arise from the vasil efferentia, while from the Müllerian duct may arise at its distal culd il sessile hydatid, a ceyst in connection with the globus major of the eprididymis.
(l!) ':'m!fenital Cysts Due to Arrested or Imperfect Development of rilduduinr Organs.-This class is well exemplified by the congenital cystic kidney. In the formation of this organ, the glomerulus and the tuhnle proper arise from the mesoblastic nephrogenic tissue, while the collt ting tubules take origin from the Wolffian duct. When a proper junction loctween the tubules from these two sources fails, the secretion from above distends the upper parts of the tubules and cysts resull.
II. Of Pontwatal Omein:-1. Origimatiug in T'ubular Gifomels through Obstruction of their Ducts.- These are the ordinary "retention" eysts, urising from phaging of the duct by mucus, or a calculus, or from stenosis of the duct from previons injury or by the pressure of surromaling fibrous tissue or of near-ly new growth. Examples are very mumerous; ranula of the floor of the mouth from obstruetion of the sublingual duct or that of the slanduln incisirn somewhat in front of it ; salivary cysts from blotking of a salivary duct; mucous cysts

Relationship of the sexual durts and thrir rublumente in the two sixes: I, the indifferent primary type. H. the differentiation in the femme. \quad III, the differntiation in the male. Hyd Morg., hisdatid of Morgagni. Jed. Ilyd., pedunculated hyihatid. V'rg., vagina; Sessile Iyd., sessile hydatid.
of the intestinal mucosa from blocking of the crypts; pancreatic eysts (ranula pancreatica); eysts of the mueons glands of the epiglottis, the trachea, of Cowper's glands, and the glands of Bartholin; bile eysts of the liver; eysts of the kidney, of the hladder macosa, of the glands of the cervix of the uterus (ovula Nabothi), of the laerimal gland (dacryops), of the ducts of the mammary gland (galactocele); wens and sebarenus evsts of the skin. Here also belong cystie dilatations of hollow organs, such as the gall-hladler (hydrops vesicæ fellem), of the appendix, and
the Fiallopian tule (hydrosalpinx); the retention of nterine discharges In wrdusionl of the cervix gives hydrometra.
\therefore Originating in Ductleses Gilamls.- Glanals like the thyroid and pitnitary, being formed of elosed vesicles, are liable to distension of these wordres. so that theroid exsts (thyroid goitre) or pituitary cests necur; anm in the ovary, cists of the Gruafian follicles and cersts of the corpora lintel may arise. In some of the former an ovim may persist, though hencrall: it mukergoes disintegration.

IIl. Of Neoplastic Origin.- 1. Cystadenomas.-Adenomas of tuhmar glamels he the eontinued prodnction of (abomanal) secretion become dintembled and costic; especially is this true in the ovary and the mammary gland; and in suclu evists there is a tendency to the multiplication

Fig. 143

 Rusal lumathennal. Zeiss objective DD without ocular.)
of the linisg membrane, so that papillomatons ingrowths of great romplenty wrour. It will be readily moderstood that here the borderline of fare proliforation is readily passed and neoplastie growth, aren of at carcinomatons nature, institnted.
\because Endothelial Cysts.-The second froup of eysts (elassified aceording tu the nather of the lining membrane) is a relatively small one. The hest examith are scrous ersts-saes distended with serous fluid or Smin. 'These sates are normally lined by endothelium, either of a (intont tartion of a serous cavity or of the lymphatic system. Ex-ampla- il the former are scrotal hydrocele and cysts of the canal of Nuck,
of the latter, bursal cyats, and "ganglia" (evsts forneel by the entting-onf of heruin protrusions of the synovial lining of the tendon sheaths). Bursal and lymph cysts ing genernl owe their origin to a combination of eireumstances; there is inerensed nctivity and lessencel nhsorption, and in many there is no doubt a low grade of inflammation, which, tending to a progressive thickening of the wail, yet further interferes with the proper degree of alsorption.
Of serons cysts of congenital origin the most striking are the hygromas, which are most common in the neek (hygroma eolli). Yet the lygroma is generully not a simple eyst but by renson of plentiful endothelial reproduction may be recognized to be a lymphangio-endothelioma.

Section through a portion of a large multilocular ovarian eyst ($c \% \cdot i$ pmpilliferum), showing cyats of various sizes lined by eolumnar epithelium, sone large, as at a, otacrs amall, others with papillary ingrowths; r, fibrous stroma.
3. Ependymal Cysts.-Imperfect development, or intra-uterine inflammation leading to stemosis, may cause a localized closure of some part of the spinal or cerebral canal, or of the chamnels of communication between that canal and the external lymphatics. Either happening will lead to accumulation of cerebrospinal fluid and eystic dilatation of the ventricles or of the spinal canal, giving rise to hydrocephalus internus, hydrocele of the fourth ventricle, or cysts of the spinal canal such as syringomyelocele (to be distinguished from eystic states of the meninges). A snaring off of portions of the ependyma during development may lead to the appearance of simple cysts in the gray matter; they may be lined by a ciliated epithelium.
4. Squamous Epithelial Cysts.-As already noted, the eysts lined by squamous epithelium and having sebaceous contents may show themselves on either side of the neck, as the outcome of persistence of the outer epithelial portion of one or other branchial eleft. A fair y common
form of acquired epithelial cyst is met with in the fingers of sewing women, and, more rarely, as the result of other forms of trauma. As the resint of small portions of the epiderm becoming driven into the deeper tissines, the cells persisting grow into a globular mass, the actively proliferating cells being on the outside, the cell debris accumulating within, as indicuted in Fig. 145.

Fin. 145

1hagratn to illustrate mode of formation of an implantation cyst of skin: I shows a fragment of skin hurewed into the underlying tissues; the actively growing cells of that fragment are upon it a Iniler saiwet at a (the palisade layer of the rete Malpighii); the at ratified flattened cells of the epidermis (at h) have lost the power of arowith; 2 and 3 show the continued arowthof the cells of the rete Malpighii, "huld from the wat of growth of the cells at b must come to surround those cells, and form at at a whal, and later, us at 5, a hollow sphere.
5. Composite Cysts.-These are cysts whose walls are composed of more than one kind of epithelium, whose contents are from glands discharging into the cerst; sequestration cysts of the skin are such, as is hydronephrosis.
ferguestration cysts occur in the line of fissures of the body, where in the process of joining, some cells of one or both surfaces become depresied, and sequestered in the underlying tissue, there eventually giving rise to a eyst. This may occur at the dorsal groove, the thoracicathlominal cleft, or the facial clefts, and in the part cut off there are If lierally sweat or scbaccous glands, and hair follicles, which determine the nature of the eyst contents. Such cysts may not only be superficial bint deep, and because of the comparatively late development of the shull, they mas le found attached to the dura mater. Hydronephrosis (wthrs, when the urinary passage is obstructed; the kidney continues tw metele, and the urinary canal to be distended, especially the pelvis of the kiduey, so that ultimately the kidncy itself may be transformed intw, at thin-walled sac. Of the nature of composite cysts, too, are those it:chasoms of tooth sacs or remains of the enamel germ that arc found in the juw. These may be lined by epithelium, and may even have teph projecting into them, in which case they are true dentigerous cysts.

1i. Hemorrhagic Cysts.-In the brain, as a good example, we find ($\because, 1$ formation following upon a hemorrhage; the blood outpoured :1, a a foreign body and the tissue makes an attempt to wall it off i.: ihrous capsule, while at the same time leukocytes and autolysis ar. repmisible for the removal of the corpuscles. The blood pigment,
too, is gradually removed, so that a small amomet aromed the eapsi may be the only indiention of the fact that blood has heen presen and even this ultimately disappens. 'The cyst finally contoms a de serons fluid. A like process oxcurs in the goitrons thyroid nad in t

Fio. 140

Diagraus of an Fehinocoecus hydatid: cu, thick external cuticle; pa, parenchymal (germin layer: c, d, e development of the heads according to Jeuckart ; f, g, h, i, k, development of the hea aecording to Moniez; l, fully developed bronel rapaule with heads; m, the brood capsule has ruptur and the hemds hang in the lumen of the hydutid; n. lifuratorl heal fonting in the hydatid; o, p, g, r morle of formation of mecondary exugenous daughter eysf; t, danghter cyst, with one endogenous s onc exogenous grand daughter eyst ; u, r, x, formation of exogetosus eyst (after Kuhn and Davain y, z, formation of endogenous daukhter eysts (ufter Xaungn and Leuchart) ; ψ. at the exprase o head; z, from a broad capsule; erag., conat ricted partion of the mother eyst. (R. Blanehard, sligh modified.)
sealp of the newborn (cophalhematoma), and sometimes in the corpi hiteum, althongh the metanorphosis of the last-named has, of cours a mueh deeper signifieance than the mere formation of a eyst.
C. Necrotic Cysts.--Wherever there has been a necrosis of lissl without infection, as in a large infarct, it may happen، that, after th
the capsule cell present, ains a clenr, and in the
tisure has become liquefied by autolysis, the soluble products diffuse ont, the lymph diffuses in, and a cyst is formed. Such a formation may he wen in the centre of a large cancerous nodule.

Fio. 147

Vermice ayst of hiver due to neerosis and autolyals of the central region of a secondsry carcinomatous nodule.
1). Parasitic Cysts.-Certain metazoan paiasites pass one cycle of their existence in a eyst within the tissues of their host. Those menrring most notably in man arc Taenia cchinococcus and Trichina puirnlix, the cessts of the latter being very small, containing each a mited-1: individual trichina. The custs made by the former are, howele, of large size, and oceur most often in the liver, although many wher organs may be found to contain them. The wall of the large (?) a is sipplied, in part, be the parasite, althor gh the irritation of its prexere leads the surroumding tissue to build a ihrous capsule on the mitithe of the haaline eyst wall proper.

Thin or-alled hydatid cyst may be single or multiple; its wall is hyaline and laminatom, lined intermally he a granular (cellular) 'יyer from Whidh project tive licads of new individual parasites, with characteristic huetlet Secondary heads ars constantly being budded off frum the wall and thrown into the fluid; these it is which render the fhin! likely t : infect the peritoneum if allowed to come in contact with it diru!? remowal. The secomary heads may give rise to the formation of danghter cessts in the primary sac, or less frequently, the dinuliter cests may form on the outside of the mother cest instrad of the inside, cansing a multilocular evest.

CHAPTER V

THE REGRESSIVE TISSUE CHANGES

NORMAL HISTOLYSIS AND CYTOLYSIS

For a proper understanding of the regressive tissue changes, it is neeessary to consider how the tissues naturally decay, for however rarely we pay attention to this phenomenon, it is going on constantly. Tissues and organs in the embryo, representing ancestral structures, appear and disappear. The thymus reaehes its maximum during the first two ycars of life, and undergoes absorption; the lymph nodes, at their largest in youth, become smaller; the milk-teeth disappear before the inroad of the permanent set; after pregnancy the uterine tissue undergoes involution, that is, the cells which were hypertrophied, atrophy; the ovaries atrophy at the menopause. Red blood corpuscles and leukoeytes have a life of but a few weeks; they disintegrate and are eaten up by other cells; even so solid a strueture as bone is undergoing eonstant change. All this is but the analysis of the popular saying that the tissues are renewed every seven years; the partieular definite length of time has no foundation, but the principle is true.
The destruetion of cells in the ordinary wear and tear of tissues is doubtless a complex proeess, the result being due to ehanges in the cell itself, as well as to forces aeting outside the moribund eell. We are not in a positun to recognize the signs of approaching cell death by any special histological change, but we ean tell sometimes that cells are growing old; in senile atrophy, for instanee, the cells grow smaller and often lose finer details of structure, such as the transverse striations of muscle fibres. A cell in this state of senility is not as eapable as it once was of carrying out its funetional duties, and substances which it absorbs are not properly or completely converted and tend to be stored up; the produets of its own ecll disintegration, if not soluble, in a similar way tend to be stored up, so that by the presenee of paraplasmic material in the cell we may reengnize its senility, either natural or premature. An excellent example of this is scen in the so-ealled brown atrophy of the heart muscle eell, in which the cell is seen to be smaller than normal and to have at each pole of the nueleus a deposit of fine reddish-l)rown granules, which are thought to be the final insoluble produet of the breaking down of myohemoglobin. (See Plate VII, Fig. 1.)
Equally good as an illustration is the change wrought in the muscle of the uterus after parturition. During pregnaney the musele fibres have undergone i.numense hypertrophy, and during the first week after delivery they slrink in a degree no less remarkable; from I ing on an
ges, it is however nstantly. ructures, ring the odes, at ar before ne tissue trophied, orpuscles rate and is underpopular articular rue. tissues is the cell c are not by any cells are aller and ations of s it once which it d to be ble, in a aplasmic l or pred brown esmaller t of fine ble prod, Fig. 1.) e muscle le fibres ek after on on an
average 208μ long, they become reduced to 24μ. (Sänger.) In addition, they look more cloudy, and sometimes show refractile globules of fat. This is fatty degeneration, and a simultaneous fatty infiltration is visible between the deeper muscle cells, this fat disappearing with convilerable rapidity. We have in this example cloudy and fatty degenration and fatty infiltration all occurring in a process which we regard ais liormal.
'The factors which are most potent in determining the state of a cell arc nutrition and the performance of function; if nutrition be good and there be loss of function, atrophy will supervene from disuse; if there be exeessive function with norinal nutrition, there will also be atrophy.

Causes of Atrophy.-Briefly, we find various orders of atrophy: (1) disnse atrophy; (2) atrophy due to excessive function; and (3) atrophy due to lack of nourishment.

1. Disuse Atrophy.-The cnforced rest of muscular tissue brings ahout true atrophy, that is, not necessarily a reduction in the numbers of the cells but a reduction in the size of the individual cell; this will remult from the immobilization of a limb by mechanical means, or if the urve be severed. Disuse atrophy is very well shown in the nervous system, in which it was for long thought that when an axone was severed, a degromeration only in the distal severed part occurred; but there is mure thatu this, for a disuse change occurs cven in the nerve cell body, antl this is especially so in arcas where, in health, there is a constant -n"ersion of stimuli reaching the cell; in the absence of these stimuli there is atrophy.
\because Atrophy from Overwork.- Overwork, carried bevond a given limit, tents to induce cell-exhaustion, if continued, to produce cell atrophy. It is difficult to loring forward elear examples, but we would suggest that certain of the professional palsies belong to this category.
\therefore Atrophy from Malnutrition.-The alteration of the body from wromeral starvation is a case in point, as well as the atrophy of special areas whose arterial supply is pressed upon and lessencd; even the alrophy ansed by pressure is another example of the same, the most dense tisines, like bone, undergoing atrophy when subjected to constant proure curn by a fluid mass.

Senile Atrophy.-A closely-allied form is senite atrophy-the natural wiaring out of the tissues; but there is another factor coneerned, for iil -mme people the process begins at an earlier period than in others. sume tissues, too, grow old more quickly than others, and as a general whe the first to atrophy are those that become functionless during the nan ural life: next to th:ese come the lymphoid structures-lymph nodes, Wabnghian borlies al the foleen, and the red bone-marrow-which matern great dimimion; next to these come "store-house" tissues,
:h its the fatty tissue. Nervous tissue, ordinarily, shows atrophy $1 \cdot 1$ if : all.
II 1 an fatty tisitue atrophies, the fat gradually melts away until the ha- ouce more become a eommective-tissue cell, but sometimes
instead of this the place of the fat is taken by a serous fluid, so that a large mass of fatty tissue so altered appears translucent and jelly like. This so-called serous atrophy of fat is not definitely known th be a purely senile change, but may be so regarded. When the cells a the aetive tissines atrophy, we have first the diminution in size, trut atroply, then in more extreme stages a dimimition in number (hypoplasia), and along with this the deposit of pigment, especially in those cells that normally contain pigment. This pigmentation oceurs in brown atrophy of the heart, as we have already indicated, and it happens similarly to a marked degree in the liver.

In bone the process of atrophy is a rarefaction whereby there is an actual loss of bony substance, the individual bones become lighter, and there is an increased liability to fracture. The loss of substance is largely central, the medullary e"vity and the Ilaversian canals being increased in size, and the trabeeuke and lamelta thimed; the red cellular marrow becomes replaced by fat, which again may undergo the beforementioned serons change.

The characteristic changes in the senile skin are due not so much to any epidermal changes as to a loss of subcutaneous fat and fluid, accompanied, of course, by actual +issue shrinkage; the elastie tissue of the dermis is also altered, beeoming less resilient. This elastic tissue change becomes very important in the senile degenerations that occur in the arteries and the lungs. In the arteries, as the walls lose their resilience, the arterial tube dilates and is unable to recover itself, remaining permanently expanderl. At this stage, when the expansion is permanent, we may find so diffuse an enlargement as to constitute a fusiform aneurysm, or if localized, a saccular aneurysm, although these rarely if ever arise from senility alone. In either case, the wall is found to be thimed and atrophied, and some layers, especially in the muscle, may disappear. The incrensed caliber of the vessels causes a slowing of the blond stream and the consequences of the same in the tissues supplied. But along with this atrophy of the wall proper, we have a series of important compensatory changes; as the arterial wall gives way, there is a connectivetissue overgrowth in the intima, as a result of which the lumen is restored; this process is arteriosclerosis. Although the eompensation may be in bulk equivalent to the tissue lost, and may ultimately come to contain ela dic fibrils, yet the wall has lost in elastieity, so that the pulse waves are conveyed with greater force, or at least with less modifieation, into the arterioles, which in turn undergo a similar change to the detriment of the tissues supplied. A like loss of elasticity in the tissue of the lung gives origin to emphysema-dilatation of the air sacs; with the lung tissue in this relatively non-elastic state, suddenly increased intrapulmonary pressure, such as oceurs the moment before a cough "explodes," tends to rupture the weaker interalveolar walls, so that several alveoli are thrown into one, and the distension thus protuced, which ordinarily is rectified by the elasticity of the lung tissue, remains permanently. When the alveoli are thus distended. the and jell!known to he cells of size, trıe ber (hypoy in those occurs in thapperıs
here is an riter, and stance is nals being ed cellular he before-

much to

 d, accomuc of the ue change ur in the resilience, ning peranent, we aneurysm, ever arise thimned isappear. od stream 3ut along ant com-nnectivelunen is pensation ely come that the ess modihange to ty in the air saes; suddenly thefore ar walls, ion thus the lung ded. the(apillaries in the walls are pressed upon, and flattened, and a greater amount of work than normal is thrown upon the right ventricle. Coinrincent with the distension of the alveoli, there is a deposit of connective tiswe around the arteries and bronchi.
'Thronghout the tissues of the borly, with the exception of the nervous sristem, there is cuerwwhere to be scen, along with the senile atrophy of the specific tissues, this relative inerease of the lower, supportive tissues. This is partly relative, that is, as the other tissues abate, the fibrous tisunc comes into greater prominence; but more than this, there is actual incrase, a replacement fibrosis; and this is more pronounced in the perivascular (periarterial) regions than elsewhere. The nervous system was stated above to be an exception; herc, it is true, there is periarterial increase, but there is relatively little or no gliosis; the place of lost substance is filled not by tissue, but by fhid, a hydrops ex vacuo, which is the rcason for the cadema of the pia so often observed at antopsy in those far advanced in life.
Abiotrophy.-A condition allied to senile atrophy, called by Gowers abiotrophy, equires mention. There are certain familial paraplegias, disemses like 'Xhomsen's disease, and the so-called parasyphilitic diseases that lack explanation, as well as paralyses developing in the most exercised limbs. Certain cells and systems of cells degenerate, and ultimately become disorganized, the rest of the system remaining unchanged, and this often in a way that suggests that the trouble is comected with heredity. The conception of abiotrophy is that these cells brgin life with less resistance, with less potential energy than others, no that the stress of a toxin, such as that of syphilis, uses up a considerable part of their energy; later on, they quickly become exhausted under a stress that is no greater than normal, even although this stress be nu uther than the usual work that is demanded of such cells. An experiment that exemplifies such a general abiotrophy is to expose frus permatozoa to the x-rays; the ova are fertilized, but the lar:x, aftur a few days' growth, expire prematurely, cell-exhaustion having supersemed.
Reversionary Metamorphosis; Kataplasia.-While studying atrophic Chaures, it is necessary to mention a regressive process that may sometimes be fommed accompanying them. In this, highly organized cells are sicu to change to a less specialized state, to become more embryonic, a "mulition of affairs that has been well observed in muscle fibres; just a- hee arcoblast be slow transition becomes the muscle cell in a prourewinway, so the muscle cell nay become the sarcoblast in a cegressive waly. The most commonly seen example of the process is $i: 1$ the liver, in which the bile-duct cell and the liver cells have a com.non origin, and a tuhular arrangement of cells is the earliest grouping that is seen; in the developing liver there is a time during which the liver cell and the bille-aluct cell are not to be recogni. ad one from the other. Whon, as latinis in cirrhosis of the +1 , Tiver cells beris to atrophy, the tran-ition from liver cells to q' ar cells become: sadual, and cells
or groups of cells isolated by the commective tissue at the edge of a lobule are of an intermediate type, smaller than liver cells, and larger than bile-duct cells, in faet, a reversion to the period in which the two were not differentiated. These groups of cells are often called proliferated bile ducts, but they are not true bine ducts by reason of the imperfeet arrangement oi the cells. In this very instance, it must be kept in mind that the process just described may well be associated with the opposite process, that of a compensatory hypertrophy, the still persistent bile ducts, as the lower type, prolifcrating to supply the lack of liver cells, and it may be quite impossible to say whether an individual intermediate cell is in progression or regression.

Fic. 148

Reveraionary atrophy from a case of fibrosis of the lun- the alveoli shrunken by the growth of the surrounding connective tissue have become lined by a cubical cpithclium, resembling that seen in the lung of the fretus.

Another oft-seen example, is the assumption of a cubical shape by the cells lining lung alveoli in compression of the lung or interstitial fibrosis, which is a reversion to the type of cell seen in this situation before pulmonary respiration began; similarly in the kidney, in nephritis, the epithelium of tubules and of glomeruli may be seen to take on the embryonic cuboidal shape.

THE DEGENERATIONS AND INFLTRATIONS

Even in simple atrophy we are dealing with more than a mere progressive reduction in the volume of the cell-constituents, for we have also certain changes in the nature of the cytoplasm itself. This very heaping-1!p of what we term by-pronlucts must tell deleteriously upon the cell and its activities. It was thought, but now seems less certain, that we could distinguish two processes, which might accompany each
nther, one the change wrought in the cytoplasm itself learling to the appearance in the cell of sueh changed products, and the other characterized by the appearance in the eytoplasm of substances obtained from mutsidic the cell, and, it may be, imperfectly handled by the eell. It was thought that the former were degenerntions proper and the latter intiltrations, but further study shows that it is becoming increasingly difficult to separate tlie two, that, in fact, they are too closely related to permit of being eonsidered apart. Fsprecially does it scem to be that true infiltration, by itself, is a rare oceurrence. ('ells, it is true, become infiltrated with or eontain the substances in question, such as fat or gharen, but it is doubtful if this is sequent to a process of absorption of the fat or glycogen as such; it is more likely that these materials are the result of synthetic processes, the activities of the cytoplasm being responsible for their appearance. For example, fat as such is not to be detected in the blood, for it is to a great extent saponified hefore its absorption by the intestinal mucosa, where it is converted into a soluble compound. This the liver absorbs from the blood, anl reconverts, by its ferment activity, into fat. When globules of fit appear in the diseased cell, it is not likely that these arise from the breaking down of the protcin of the eytoplasm, but rather they appear, perhaps in excess, as a sign of the lack of competency to deal with thrm on the part of the cetoplasm. Whatever be the source of these paraplasmic substances, de, seneration and infiltration are so closely link el that they may well be considered togetlier; in many cases, in fact, they are inseparable.
Cloudy Swelling.--Perhaps the most common morbid change seen at iutopsy is that of cloudy suelling or albuminous degeneration, in which the cut surface of the organ has a rlulled appearance, as if, to employ a much-used phrase, it had been momentarily dipped in boiling water. With this, there is a certain amount of swelling, which, in the hidher, caluses the cortex to rise above the level of the medulla and makis the cut edge to evert. The individual cells have lost transparPle? , and an unstained section will show, by transmitted light, the cells or tristing with the clear white of normal tissues. On close inspection, the mutei look as if ohscured by the deposit of a finely granular material in the ertoplasm, and they stain less readily than usual. Weak acid or weak alkuli clears up this cloudiness, apparently by dissolving out the precipitated proteid or albuminous material.
(homely swelling is found in the cell under many different conditions, thiof of which are acute infections and high fevers; it is seen also in rarioli intoxications, after chemical poisons, in burns, and even in starsition; the granular material which appears is evidently a product of atherel certoplasm, and seems like the granular material ordinarily deseribed as Altmann's granules, but with this distinction, that it seems agure.ned into larger masses, and there is none of the regular linear arranf ment seen in the normal. It is not possible to say definitely
what this material is; arcording to Martin lïseher, it is to be regarded as the result of conversion of certain colloids of the extoplasm from the soluble into the solid or "gel" state. It is evidently either material disintegrated from the cytoplasm or material absorbed and not completely " hamulled" by the eell; or finally, it may be both. The increase in size is partly due to the increase in these paraplasmic materials, but mainly to a hydropie condition and inerease in the watery constituents.

Clondy swelling is not to be confommed with gramular degeneration, which is a disintegrated state of protoplasm, and a precarsor of eell death; the droplets, at least the larger of them, are due to liquefactive necrosis. The process of clondy swelling thens seems to be the expression of overstimulation of the eedl, with disordered metabolism and the heaping-up of paraplasmic matter of an albminous nature; apparently it is not a necessary canse of cell death, is frequently recovered from, and yet is probably the earliest stage in what may be the progressive deterioration of the sick cell.

Clourly swelling of cetls of convolated tubules of kidney. $\times 4(0)$. (Ribbert.)

Fin. 150

liver cells in various stages of fatty accumulation. $\times 300$. (Rindfleisch.)

INTRACELLULAR FAT ACCUMULATIONS

As was said above, two states are to be considered-fatty infiltration and fatty degeneration; pronomeced examples of the two are readily distinguishable, but in many cases the two seem to be blended.
"Fatty Infiltration."-Neutral fat is a constituent of most of the tissmes of the body, but in a state murecognizable by ordinare mierochemical means. The kidney tissne may be demonstrated to possess fat to the extent of 23 per cent. of its solids, yet may by staining reactions show no trace. On the other hand, certain regions such as the subcutaneons comective tissue, the omentum, the appendices epiploise, the cardiac groowes, and the area aromed the kidney, normally contain fat in large amumet, the cells heing distended with it. This is not fatty infiltration; that term shonld be confined to describing connective tissue elsewhere, especially in the interstices of tissues, which
sarded m the aterial comcrease ls, but uents. ration, of eell factive ression nd the arently 1 from, ressive readily t of the mieropossess ing reathas the ices epinormally This is bing colles, which
be mines this laden. 'True fatty infiltration may this oceur between the cardiace musele fibres, in skeletal museles, or in an organ like the panrenis. 'The liver cells, too, may beeome the seat of a notable fat-deposit, for example, during preganey, and this is perfectly properly spoken uf is fatty infiltration; it may be very extreme in such states as elironic alcololism, where four-fiftlis of the total solichs und 41 per eent. of the rill :ubstance (incluling water) in a given case have proved to be fat. It i s to be remembered that in all other parts of the body fatty infiltration afferts the conneetive tissue; in the liver, the connective-tissue cells are nut involved, hat the liver eells proper.
Fiatty infiltration may thus arise from a number of canses:

1. Physiological.-There may be a heaping up of fat in the liver during pregnancy and lactation apparently as a preparation for the litter.
\because Overnutrition.--The "foie gras" of the overfed Strasshurg goose is a fimiliar example of this.
\therefore Substitution.-Fatty infiltration, and not cirrhosis, as pop larly supposen, is the most common affection of the liver in aleololic:, notwithambing the fact that the eonfirmed alcoholic is not a heave eater; alrolul, being a foolstuff capable of easy oxidation, probably replaces the lats, and these, not being oxidized, remain and aceumulate in the liver mells.
2. Diminished Oxidation.-(a) Conyenital.-There are some people milurally ohese just as there are others naturally spare. The former perform their metabolism slowly, and the defective oxidation of their fitty ariels leads to a gradual acemmalation of nentral fats in the cells. The ruill extract lessens obesity in such people, probably by reason of its ancelerating the oxidative processes.
(1) Throu!h Disease.-Fatty infiltration, of the liver often, and of tho wher tissues sometimes, oeenr: in those ill of a wasting disease (mont in tuberculous eattle), beeanse lowered vitality and low functimal artivity of the tissues mean lessened burning-up of the fats taken as form, white fat from the subeutaneous and other tissues may be tram-unal to the liver.
"Fatty Degeneration."-In the eases of fatty degeneration that "llear to be truly such, there is primarily a eell degeneration, the fat hinue drposited as a result of depressed cell aetivities. The nuclei may tain foorly, and in the cytoplasm are minute, dust-like fatty bodies whin!, tained with Sudan III or Seharlach R, give to the cell a diffuse ur:merem color, the high power showing that this is due to abundant minnte fitty dots. The tissues so affeeted are: (1) those liable to eloudy TH. lik , :nml minsele fibres, especially of the heart) (see Plate VII, Fig. 2); (2) whthelial cells of blood vessels, and (3) certain cells undergoing mon : mgresive changes (eells of the sebaeeous glands, of the mamHiz. : 'maly.
in. . it first sight appears to le a like aecumulation of fat in the form
of minute globules, but without any nuclear degeneration, necurs normally in the cortex of the adreana, and in the muscle cells of the uterns undergoing involution after purturition. (1a the contrary, with nudear

Fio. 151

Section showing fatty degeneration of the epithetium of the renal tuhules. The fine fatty globules are aceumulated in the main toward the outer aspect of the eells, elose to the basement memhrane.

Fatty degeneration of liver cells: b, fresh cells, cloudy and aranular, nuclei not clear; a, the fine. fatty globules seen more elearly after treatment with acetie acid. (Ribhert.) degeneration there may be large globules of fat in the ceil, as liappens in plosphorus poisoning. Histologically, it is thereforc not safe to say that the minute globules indieate a degeneration and the larger oness an infiltration; there are evidently intermerliate states.

TYpical cases of fattrolegeneration can be divided inio: (1) those

Fic. 153

Fatty degeneration of heart-nusele fitirea. showing different grales of involvement of the individual fibres; fresh speeimen. (Ribbert.)
following clouly swelling, therefore the second stage in parenclymatous inflammation of organs, and (2) simple unconplicated fatty degeneration, (a) physiological, and (b) pathological. The first is exemplified in bacterial intoxications. Phesiological fatty degeneration is seen in the cells of the sebaccous glands, and in the formation of the fat droplets of milk from the cells of the mmmary gland, in which there is a multiplication of cells, those nearest the lumen becoming fatty and being disintegrated off as a mass of fat globules. Pathological fatty degeneration is seen in certain mases of acute intoxication that is not baeterial, such as poisoning by certain chemicals, and in the mainutrition of starvation or of the extreme anemias. There is no certainty,
of comrar, that uny or all of these fatty degenerations are not preeded ber chome swelling.
Lipoid "Infiltration" and "Degeneration."- We imwe suid that the abnearance of the eells of the cortex 6 . alrembl uppenrs ut first sight to resemble fatty degeneration (see !late VIII, Fig. 2). 'The work of the last few sears unon the lipoids has demonstruted that here we deal not with the acemmulation of nentral fat, but with globules which, milike thase of the nentral fats, are fomed dombly refractive moder the pularizing mieroscope. Some neutral fut, it is true, muy be present, but those characteristic globules are, aecording to recent investigutions, formed in the main of eholesterin esters, more purticularly of cholesterin moate. Similar dombly refractive gramules are fomd in very many

Fio. 154

White eypremeal from alreral cortex, seen under ernssed Vhel'- phatm showing isotropous fatty globules and athen. [m in myelin globules (with black cross).

Fic. 155

llydropic degeneration: rpithelium froma smalipax papule. The epidermal cells greatly awollen. distenied by large vaeuoles. $\times 300$. (Ribbert.)
pant if the burl in degenerative processes, notably in the atherona-thin- : Andme of thr aorta, in degenerating eancer cells, and in areas of duat mion! in the nerve tissme. In fact, more than one of the lipoids ("in) Brol the appearance of double-refraction. ${ }^{1}$ One of the simplest anil: - \quad examples of the existence of these doubly-refractive so-ealled men Aroplets to stuly is in the sputum of adults coughed up fir:- 1. morning. It seems, therefore, that just as we may have a. Caty "infiltration" and "degeneration." so also we may have lip". iffiltrations" and "degenerations." This subject is being ani Inlied at the p. sent time, its ehief interest lying in the relat Ween the lipoids, and the proteins, many of the former

[^12]resembling the macteins in pessessiag both nitrugeums aad phosplarie radieles, and sugpesting stroagly, stuges either in the bilding up or dissociation of berdies of the latter order withian the cell.
Clycogenous Infiltration. - We have little knowledge of the siguitieance of plyeogea in the tissum in abmormal situntions or mumants. It is foumd in a consideralle anaber of rapially growing cellular neoplasms, as again in Henle's tulumes of the kidney in cases of diabetes. It has been fomad also in pas cells.
Hydropic Degeneration.-Cloady swelling heing associated with an iacreuse in the watery contents of the cell, there are extrene grades of this ia which actaal vaemoles appear in the cotophasm; these watry vacuoles may iacrense in size till the cell harsts; the nccamulatell flail from the burstiag of several contigams cells may then form resides. The most extreare exmaples of thas are the "porks" in smallpox, where the deeper layers of the epiderais beeome layilropic, swollen, aud rlisintegraterl.

The explanation of such absirption is that the colloidal onter layer of the eell, which represents the eell membrame of phants, orliaarily prevents the liffusion of erystalloid molecoles; that erystallowid molecules do appear ly some disorganization of the eytoplasm, anil as long as these exist in the cell horly in grenter concentration than in the surroumding medium, water will diffuse inward until equalization oceurs. Thus the cell swells up aad becomes leydropic. In aldition, Martia Fiseler calls atteation to the fact that increased acidity of a colloidal menstruma leads to an increased imbibition of water.
Vacuolar Degeneration is seen in musele and nerve cells, and is characterized by the appearance in the extoplasm of vacuoles, which are presumably causel by an nsmotic absorption.

Serous Atrophy.-This has alrealy been dealt with muler atrophy cells and intracellular tissue alike alisorb a serons fluid which replace preexisting fat.
Degenerations Ashochtei with the Deposit of Compoend Pro-tens.- There is a series of ill-understoon degenerations in which appear in the tissues material that in time mastained condition is translacen or glassy; when colorless and firm, we call this hyaline; when colorles and fluid or semifluid, mucoid; when semisolid or solid and of th appearance of ghe, colloid. Hyaliae and mucoid were once regarde as specific sulstances; but we know now that what is called hyaline for example, may be proluced in different ways. Amylold is an excep tion, and from its staining reactions seems to be a separate entity These sulstances are proteins; and in a molecule as large as even th simplest proteia molecules are, it will be readily understood that comparatively small change such as a few more or less carbon atom or a few inore or less oxygen atoms may be the cause of a considerabl changer in properties: and these lower proteins are only thus far remove from ordiaury protoplasm.
osphoric ig ip or ce signifiimts. It ophisms, It has | witlı nn ne grades se watery nted fluid 1 vesides. ox, where Hent, nul
uter layer ordinarily (nid mole1:1 as loug an in the on oceurs. n, Mnrtin a colloidal id is rharwhich are r atrophy; th replaces end Proch appears ranshurent en colorless and of the e regarded ed hyaline, sall excepate entity. is even the ood that a bou atoms ousiterable ar removed

Fll: 1

Fally Dagenfintion
 -

Lipoid Infiltation.

Mucoid Deposits.-Mucoid Degeneration and Mucinous Deposits.Thu murins are glyeoproteins, commomels between protein and earbohislrate; they are haid down in the bode intracellularly and intercellularly. P:amples of the first are seem in the sabivare glands and the goblet mells of the intestines, and of the second in Wherton's jelly in the mubilical cord and in the mocimons intercellules motris of embryonic fi-mes in general. In either ase, mucin is vise h. swolls up: ㅎiti water, is whble in weak alkalies, and is precipitatel heretic an or beg aleohol. Basic dyes stain it.
Intracellular Mucin Formation.- Murin is thu: , whene: in catarrlal tate of memens membranes, in whidr mot only is there antive pronluetion of musin begohlet cells, but also a degeneration of imdividnal whll, indoling the mudens, be whid the entire cell substanee changes tomulin. Thucin as suld does not appear in the healther cell, but mucin-
 prome of redl disision which is like that seen in sereretion in the mammary gland. A more artioe production is that seero in the ste-ealled colloid cancers, an mefortmate term, as the material is inspissated muein; there growths origimate from the intestinal menesa, the tumor cells

Intercellular or Interstitial Mucin Formation.-This may be folmed pathongically in:

1. sinike atrophic tissmes, as in the cartilages and bones of the old.
\because The romeretive tissues in the early stages of myoredema. It was at fir-t thomght that increased interstitial monem was a constant change in the subentaneons tis: ines in atrophic diseases of the thyroid, but in lone previsting eases the mucin is found to diminish with coincident hevelopment of fully formed commective tissine.
is. Aetively developing tumors of the eonnective-tissue type, sarcomais, fibromas, and in the interstitial tissue of carcinomas. Mere walma of tumors is often mistaken for a mueoid degeneration.
2. Developing gramulation tissue.
la all these ciremmstances it wilh be seen that we deal with either antior tisone, or with immature tissue, or with tissue reversiona.

Colloid. Dense colloid deposits are relatively rare. The typical 1 maple is the gher or almost solid acemmation within the distended - A. Whe of the enherged eolloid goitre' similar material may show itself i. caicles of the pituitary The next most common site is in the wh mar! tuhule's in certai: ases of ehronic nephritis, the tubules !. - ning phagerl with dense havane, or more acenrately, eolloid casts H take on a deef stain witl the ordinary staning reagents.
a myloid. - This is a material allied to the natrieial matter of cartilage, a fomed in normal tissines. When it is present, it has a characterappearance and well-marked individual reactions. It may be ralizal, atfecting several organs, or localized, affecting a relatively aria of inflammatory or neoplastic growth.

Generalized Amyloid; Amyloidosis.-When advanced, this affects a large momber of organs, esperially the spleen, liver, and kidneys. The only tissues that have not been fomm affected are the epidermis the cutis, bone, hung tissue, and nervons tissue proper. If the spleen and liver be free, it is useless to search other organs for it. The affected spleron is enlarged and more dense and firm than usual. On section it has a semitranslucent, waxy appearance (hence the terms waxy or "bacon" spleen), this being diffuse; or romoded areas are seen on the cut surface of the size and appearance of sago grains ("sago spleen") the affected parts being the Malpighian bodies. The appearance of the liver and of the kidney is by no means so characteristic, but the reactions can be readily demonstrated.

Fig. 156

Anxloid degeneration :tferting the law. slighter grade; the rells are still present with luat moderate atmphy; the irmgular deposit of amyloid around the capillaties is well marked (After libblert)

Fig. 157

Amyloid dafeneration of liver, advanced: a, at rophicel liver rolls: b, transverse section of a capillary surrounded leg a broad ring of amyloid material: r, a apillary cut longitudinally. (libbert)

Reaction.- On the ent surlace of the organ washed free from blood is poured liluted tincture of iodine. When the surfaee has assumed a pale vellow tint the amyloid will have a brownish-red color; if now a $\overline{5}$ or 10 per cent. solution of sulphurie adid be poured on, the amyloid becomes violet or blaek, the rest of the tissue remaining relatively maffected. The same method may be applied to the microscopic examination of sections cut from the frozen tisisue, the affe ied parts showing elear and yellowish by transmitted light. Even more distinctive in sections is the use of watery methel violet, followed by washing in very dilute hydrochlorie acid; this applies to fresh or alcohol-preserved material, and shows the amploid as a rose-pink mass against a slaty backgromml.

The deposit of amyloid occurs in the walls of the capillaries, just external to the endothelimm, and in the larger vessels the comertive tissue of the media is the part affected. The amyloid is laid down quite irregularly, so that a vessel may look lop-sided by reason of this inequality: The results to the tissmes of the laying down of amyloid
are twofold: the lumen of the resel is encroached upon, and the ti-nies are thus ill-nomrished, as we ll as subjected to pressure by the phesian presence of the amploid; ultimately the original tissue nay be almost destroyed. Anyloid deposits are marle in the body during the course of long-continued drains upon the system, espeeially when this is a :sociated with an excessive proluct ${ }^{\text {: }}$, and an excessive waste of lenkocy, althongh a protein discharge ..: any sort will prorluee the eflect. Chronie bone tubereulosis with eold abscess, osteonyelitis, Yphilis, leukemia, Bright's disease, or even prolonged latation are anme of the states that proluce it.
Localized Amyloid.-This is seen in localized granulomatous masses of tuherenlous or syphilitie origin and in eonnective tissue tumors, eperially of the head and neek region. In suele sites the small bloorlvesels are relatively maffeetel, the amyloid being laid down in the interstitial tissue, perhaps along the lymphe ehannels.

The Nature of Amyloid. The blue color with iodine and sulplurie acid led to the supposition that amyloid was related to starch, whence its name; but its protein nature was soon shown, although the nante persisted. It is a glyeoprotein, eontaining ehondroitin-sulpluric acid. Thic material, brought by the blood or lymph, probably diffuses out throngh the walls of the vessel and meets a loeal protein with whieh it comblues. In eomposition it is somewhat allied to the chondrin of eartilate and yellow elastic tissue, which also eontain ehondroitin-sulphurie aricl. Thus chondroid, rather than amyloid, would be the aeeurate term.
Elastoid.-We have separated off from the group of hyaline degeneratinns anotlier form seen often in the uterus after delivery and involution, in which, especially at the region of the placental site, arteries more or les whliterated are to be reeognized as glistening, hyaline masses. The remelt -tudies of our colleague, Dr. Goodill, have shown that, assoeiated with thr marrowing of the lumen of the mueh-dilated vessels, the internal diatic lamina undergoes a most rentarkable process of swelling and folling upon itself. At first the swollen elastic tissue reaets with Weiwrt \therefore mastic-tissue stain; in a later stage it no longer gives this reaction. The remarkable fact is that within these swollen masses a newer, smaller arterial humen is developerl, which nay become surrounded by all the arterial coats, intima, inedia, and adventitia, whereas to the outer side, thu previously leypertroplied media undergoes complete degeneration and ahourption. In this way the arteries alapt themselves to the lawind demand for blood by building what may be an entirely or partially new artery within the lunten of the old.
Hyaline.-Of the other orlers of hyaline, whieh still retain this nante, the momanest is that foumbl, apparently as a persistent neerobiotic tilat, in! association with comeetive tissue, though other tissues also mail he involvel. Examples of this are to be seen in the eonneetive-ti-w framework of the thyroid and kilney in cases of so-ealled ehronie inn-itial intlamnation. Here relatively large trats of thickened filimit tissue may assume a glassy appearance with great paneity of
madei. some of the !argest areas are seen in the mocardimm in eases of so-called edironi• munerarditis in the form of irregular areas of hyaline matter interposed in the mass of still manhaged musele tissme ; possibly

1:lastond degeneration: Section of smath arters from beneath placental site of uterns exhihiting subinvolution. The patent suffered from renat aul hejutie disturbances, and died weven months after delivery: Section stained by Wrigert's chastic and Van Cioson's stans. (Dr. Goodall.)

Vitreous hypertrophy of clastica interna at a_{i} vitreons degeneration of the same at $\ell_{\text {; }}$ at c, transition frous ataned hypertrophic to unstained thgourated elastica; d, humen of the now vessel surfounded hy irregular new museular mat intimal tissue; at foremans of olel media with hypert rophy of ite flastic

Fig. 160

[^13]lere we deal not merdy with a change in the fibrons tissme which has replated dead muside fibres, but with a havane transionmation also of mande cells whose matrition has becon cat off throngh obliteration of the arterioles. In several orders of tamors there is a similas hyaline nerrohiosis of cells farthest removed from the mutrient vessels; these thmors then assime the appearance known as cylindromatous. A like hyaline change may also atfect the organizel fibroid deposits on serons -urfaces, the new connective-tissme growths of grambomas and even rapillary walls. Of this last, the most moticeable example is seen in the hatine chmps which represent the glomernli in cases of chronie interstitial nephritis (Fig. 109).

Hematogenous Hyaline (Hematohyaloid).-Of this form the type Whmple is seen in hatine thrombi dhe to the intravasentar and intrabiai emghtination, either (a) oi the entire red corpusdes, as muler the :" '.. 1 of agghatinin, or (b) of the : 'me after a preliminary disintegration imn. matler glo' nlar masses, or (e) of bood-platelets. On.... onally,
 ant itice fine fibres of fibrin, molergoes coagnlation in the form of hrientmetas lyaline masses. This secms to be an allied eondition.

Hyaline Casts.-There is still debate regarding the motle of origin of the transparent, saree visible casts som in the urine. Some authorities regard them as the result of coagnlation of eonstituents of the bloorl eseaping into the tubules, and in favor of this view there is that at times these have been seen in parts to take Weigert's fibrin stain. Others regard them as more commonly the result of finsion and inspissation of discharges or broken-down matter from the epithelimn of the tubules. Where there is more extensive disintegration with liheration of coarser portions of the eell, a granular const is produeed; where the entire cells in the conrse of acute inflammation become cast off, there is formed the cellular or epithelial east. Where the disintegrated material detained within the tubule undergoes progressive inspissation, there is developed the colloid or waxy cast.

Intracellular Hyaline.-Especially in the stndy of eancers there have been noted small globular or irregular masses within the cells, having the appearance and reaction of hyaline. A series of eases has been deseribed showing varions gradations of staining power (and therefore of ehemieal composition). Of these the most familiar examples are the Russel's fuchsin bodies (Fig. 115), so-called beeause they fix fuchsin with eonsiderable intensity. These originate, apparently, within the eell in eases not merely of eaneer but also of elironie intlammation. Often through degeneration of the eells they eome to be extracellular.

Pathological Keratinization.-This is an allied condition. The normal epithelial eells of the skin, as they eome to lie farther and farther removed from the Malpighian layer, exlibit when they reath the level of the stratum granulosum fine granules of keratohyaline. These stain blue with hematoxylin. In the stratum lueidum these beeome translueent and are seen to be evenly diffused throughout the cells (eleidin). Further outward is to be seen a seeond developinent of granules of keratin which take on a puıpish-bhe color with Gram's stain. Passing still farther outward, as the eells beeome eompletely necrotie, with nonstaining nuelei, they become represented by flattened seales of eompact keratin; this stains yellow with van Gieson's stain. Oeeasionally we encounter massive aeeumulations of these keratinized cells, as for instance in the middle ear, forming pearly masses known as cholesteatoma, and in the eutaneous horns whieh may show themselves on one or other area of the body surfaee. These are not true hypertrophies, but abnormal colleetions of matter not properly cast off. At most, the muderlying rete Malpighii may show hypertrophy and indieations of inereased eell proliferation.

Rare allied eonditions are those of hyperkeratosis and ichthyosis, aequired and congenital imperfeet growth of the skin accompanial by thickening of the keratin layer. Chronie irritation sometimes leads the tongue to present keratinized processes of the epithelium (hairy tongue), the oesophagus to exhibit longitudinal bands of epithelial thiekening (leukoplakia), this notably in alcoholies, and the vagina to show horny ridges (pachydermia).

CALCIFICATION AND CALCAREOUS DEPOSITS

Ilmost every order of tissue may he the seat of interstitial deposits of whimm salts, although the supportive tissues, such as cartilage and the comective-tissues of vessels and of organs, are most frequently affected; the parenchuma of glands is at times liable to it and deposit may orcur intracellularly in the nervous system. The extent of the deposit mas. vary between a few gritty particles in a mass of easeation to large lumps as dense as stone. The deposit of calcium salts has little in common with the process of ossification, although in this, too, calcium salts are the material that is laid down; there are none of the orderlyprocesses by which in bone the caleinm salts are related to the boodresicls and the matrix; although, aceording to Wells, there is a striking amilarity in ratio between the calcium and magnesium salts and the phosphoric and carbonic acids that exist in bone and in pathological calcification.
Microchemical Appearances and Reaction.-In the smallest masses the calcarcous deposits are like fine dust, which may give place to angular, rerstalline masses or even globular concrements. Insoluble in ether or catustic potash, they dissolve rapidly in acids and slowly in formalin, and when dissolved out, a matrix of dead tissue is left in which histological characters are not to be distinguished. Stained with hematoxylin, calcarcons material takes a pronounced dark blue color. Treated with a i) pre cent. solution of silver nitrate for five minutes, with subsequent expenre to the air, metallic silver is precipitated, causing the granules of calcarcous material to stand out as coal-black dots, in consequence of the artion of the phosphates present. Treated with acid, there is an conhtion of hubles of gas-carbon dioxide-indicating the presence of (athimu (and magnesium) carbonates. sulpluric acid causes the aphearane of fine crystals of calcium sulphate (gypsum).

Cralcification mar ocrur in tissues that contain living cells, not in the livin! cells themselves, but in the inert interstitial matter betuceen the cells; it newrs, that is, in dead or necrescent material, and the statement may he marle that it does not occur in living functioning cells. The statement that ealcareous deposit does not occur in living cells is made with a kum ledge of the apparent exceptions.

It may be said, then, that calcification occurs in dead or dying cells, and in certain interstitial substances such as the matrix of cartilage, inlon dastic tissue and hyaline, this latter change being especially alli.il with other scmile alterations. Belonging largely to the former suly arr those instances that happen in the interstitial tissue of ghainlar orgalls like the thyroid, the testes, or the ovaries, in the lungs, the w: mbrates of the brain, and in scars, and most of all in the arterial no!!. In the arterics, calcareous deposit follow's lyyaline and fatty
 an! ", in the elastic tissuc; these changes may be shown by the specific
tests when no change is mpparent to the meared eve. Figmelly linble to give examples of such molefication are odd infarets, chronic inflammations of the seroser, of the walls of cests, and of 'onpsules uround foreign bodies, while the existeme of calefifation in old suppurntions is often seen. A perfect eximple is seen, too, in the impregmotion with lime salts of the dead fortus, the result of men extra-uterine gestation retanald in the abdoninal (avity (lithopedion). Experimentally, there wre many chembals which canse coleareons deposit; this action has been studied chiefly in the kidneys, where the deposit is preceded by a bioneerosis of the tubular epithelium.

Different hypotheses have been brought forward to explain the phenomenon of caleification, of which the most satisfactory appears to be that espectially elaborated by the work of our former colleagne. Klot\%. Obviously, ${ }^{4}$ is not a pro-

Section of aurta of elderly individual, treated by von Kossa's nuethod, to demonstrate calrification of media, and more particularly of the muscular bauds. (Klotz.) eipitation of the salts nomally: present in the afleceted areas; the lime salts are brought to the part by the lymph, and in dead or dying cells or in the interstitial material of low vitalits, are rendered insoluble and deposited. The chemical process molerlying this appears, in some cases at least, to be that a fatty degencration of cells is accompanied bey the liberation of fatty acids, which combine with the calcium in the lymph to form compound calcium sorps. In this combination the weaker futty acids are replaced by phosphoric and carbonic acids, with the subsequent deposit of insoluble calcium phosphate and carbonate in the dead tiss':es. The componnd calcimu soaps are probably conmponds of fatty acid, calcium, and a protein or a product of protcin disorganization.

In the latest work on this subject, Professor Wells, of Chinago, while admitting the foregoing, regards it as the more uncommon morle, and brings forward not a little evidence to show that hyonine cartilage and homogencous lyvaline degenerative material possess an affinity for calcium not exhibited to an equal degree by other tissues, so that in ficooring circomstances the enlcium salts are "adsorbed" from the lyiph until they come to be in such concentration that they are preeipitated in the same proportions as those in which they exist in the circolating mediun. He ahmits, howerer, that the factors conserned in this process of precipitation are not wholly known, suggesting that
frasihly a redurtion in the moment of enrbon dioxide or some other aremer indures the precipitation of caldinm salts in a colloid mutrix.
Concrements. - In addition to this deposit of calcareons materind in the tisis s, there may be a deposit of the same in ducts or passuges, handing to he formution of solid musses, round or owal or taking the
 ments or caiculi, the same term, mifortumtely, being employed both for the above calcareons deposits and for deposits dae to the aboormal precipitation of speceific exeretions. Conerements of the first order will he fonmed to contnin an amonnt of calmenols salts in excess of that w-mall! present in the fhids diseharged along the passage concerned. On lissolving out the salts. there is left in matrix of mmeinous material, Hanally mixed with fatter acids, soaps, and eholesterin. Such concrement arise genernlly as a result of a catarrhal inflammation of the passage in foustion, whereby mein is exuled and some of the cells exfoliated. Therdisintegration of the latter aflords the prodects of protedysis and the fitt! material, and in this as a matrix, jnst as in neerotic tissme, there in a deposit of calcium salts, by diffosion into the mass, of serm from the inflammatory exudate and of the secretion mormal to the passage. Of these roncrencents, the following are worthy of note: rhinoliths in the mithal pisisiges after owena; tonsillar concrements forming in the erypts; salivary concrements formed in the salivary ducts; lacrimal; cutaneous formen in selaceoms ducts); preputial, following phimosis, with acelumulated smegma as a fomulation; and appendical concrements which halre as al base rolled up and compressed fecal matter. Pancreatic concrements are of widely varying constitution, this depending probably "pnin the length of time dhring which the eoncrement has been retained; areme one will show abmelant profluets of cell-disintegration, while all whi our will be largely eomposed of insoluble salts, a distinction whid may !er considered to hold not onl: for pancreatic lont for all comerements.

Phleboliths.-These are small owal stones formed in veins, chiefly in the uterine plexus in the female, and the prostatie plexis in the male. Ill aranitions may be fombl from a comparatively soft to a hard pearllihe budy; the phlebolith arises from the deposit of lime salts in isolated thrmulif that hase not mulergone organization, and thus lies free in the linnen of the vein.

Calcareous Incrustations.-Deposits of varions kinds upon surfaces lina: Imilergo a similar impregnation with salts derived from the body Hhit. 'The commonest example is the tartar of the tecth, of which pithelial debris and partieles of fool form the fommation; in chronic ristin a deposit of phosphates may oceur upon the micosa, while furn-il lurlies in the tissues or cavities of the body are apt to become sumi' rly romernsted.
!' : ili or conerements of the second order include four gioupsuri.: biliary, and prostatic calculi, and corpora amylacea.

Urinary Calculi. -Urinary Lithiasis.- . Iny of the nsual or muninal salts of the urine mas be preeipitated to form calenti, and for this formation certain feature's umst be present, which are common to all diflerent forms of calculi. 'The cealculns monst have a nucleus of murns, of eell-deb)ris, or of forcign matter, such ins bhood clot or an intronfored foreign borly, in and upon which the salts are deposited. 'Iher rate of this deposition will depend upon the relative amome of salts present in the solution, that is, the concentration of the salts; as in the mrine this is very varimble, the rate of deposit maso varies, so that perionk of progression of depmit may alterumte with periods of arrest. . We a eonserpence, most calculi are seed to be formed of concentric lamina. Siner, tor, in the urine, at one time one salt may be present in expes. at another another, it crenerally hapmens that layers of more than mas sort enter into the formation of a calculns: mixed ealendi are the rule rather than the exerption; and in urinary embuli, the growing stone ants as an irritant, infection ocenrs with prometion of alkaline urine, w thart the most superficial layers mas be phosphatic in mature
'Tlie mere presener of salts in exress in the urine is mot aderfuate to explain ealdenlns formation. If the salts be dissolverl ont of the callembs. there is left behinel a matrix of organic matter

Fig 1 in

1) ountre contoureal myelia Imalies of irregular rounded shape with pres: ses. (Perls.) of grelatimons ar colloid type, yellowish or otherwise pignonte. nd if calculi be ground down to make sections, auter the manner of the geologist. it will be foumd that the salts are not laid down in their nsual crystalline form, a faet which han been previously noted in cegr-shells, bone, ete-; this appears to mean that there is first of all a macinous or colloid matrix laid down, and that erestallization in colloidal solution greatly modifies the shape of the erystals, the erystals toriding to be romuderl insteind of amgular. Such a mucinons or colloid material is thrown of in inflammatory states, and the greater its amomet, the greater is the liability to precipitation of the salts. 'Thus for the formation of urinary caleuti it seems neecsary to have three factors: (1) the presence of a crestallizable body in excess in the urine, and (2) irritation of some part of the tract learlime to increased diselarge of mucinous material, and (3) some solid body whed will att as a muelens on which precipitation oceurs. The irritation need not be bacterial, but no donlot it is so in a eonsiderable mumber of cases, and if not so at the ontsct, the irritation cansed by the stone will readily lead to a passing infertion being pirked up.

The most importent gronps of urinary caleuli are the uratie (inelon ling urie seid), those formed of calcimm oxalate, and the phosphatie.

Uric Acid and Uratic Calculi.- I ric aeid is the eommonest constituent of calenli, whether as the main or as a subsidiary salt, amd is more common as uric aeid than amorphous urates. The tepical uric aciul ealculus is rounded or oval; its surface is smooth or finely mammillated;
the color varies from fawn to red, ureorling to the amoment of urnersthrin whish is bronght down in the urine when urie ardil separates ont, and on sertion the stome is hminted (Figs: Itiis, liaj). 'Ihese oreme rolatively frementy in eurly life, and uppenr to originate in the pelvis of the kithey, whence they mus be pmssed while still smali, is gravel, sunll ralenli of a reddish tinge. Remaining in the pelsis of the kidney thes mas thre madergo inerease in size, until they form on "staghorn" unss, arcommokited to the shape of the pelvis of the kidney and its branehes.

Uratic Inspissation in Infancy.- Autopsies upon infants a few weeks oll :requently show the calices of the kidners opaque and whitish or "rom defintuly streaked with vellow, while in the pelvis a fen reddishhens. erains can be collected. The colleeting tubnles contain a large mmin of minnte donbly refracting spherical masses of urates in a mimatan matrix, and the condition has been usually called uric acid infarct : bos snituble term than uratic inspissation; the inasses, ehemicall:: "momed of quadrimrates. Why there should be a relatively Sratar harge of uric acid ond urates in the very young is not undr-
stonel, hat there seroms gockl remon for supponing that masses of this sort ure in part responsible for the uric meial alabli frequently foum in the young.

Calcium Oxalate Calculi. - The most emmonly sien of calrimm oxalate caleuli nre those that nre callerl "mulberry calculi." "Ihere is n " hossel" or mulberry-like appearmere with brown

Fins $16 i f$

A stax-horti calculus (a) in grivis of the kidney. or black color, and on serctom the laniinar appeur laid down like the phen of a fortress with hastions. In composition it is fomme that most of the axalate enleuli contain uric meil, with substaneres deposited from acid urime.

Phosphatic Calculi. - 'IThese may ber formerl only of ealdimen phosplates ur of mmmonimum magresim phasphate, of of pure ammonimen phosplente; of these the mixed form is the most common. All are thrown down fromalkaline urime, and if the alkalinity depormls om senlimu salts, the raleinn phosphate stome is fomml, whereas if the mrine hats berome alkaline from infertion and fermentation the triple phosplate is likely to be fommo, giving rise to a stome that is of loone cohesion and friable, but whirds may be of large size.

Other Urinary Calculi.-Cystin calculi, of a pale yellow eolor, becoming green on exposime to light, and of soft comsitence, and xanthin calenli, althongh wery rare: are kuown. Guanin caldeuli have been deceribed in enttle, ats well as steatoliths of fitty or soapy masses in man.

Biliary Calculi; Cholelithiasis.-The eomposition of biliary ealronti brings it about that they are less dense and lighter in weight that the mrinary eateuli; they are composed of modified hile pigments, cholesterin, and at times, caldeium carbonate.
('Inssification.-1. The Common Gallstone.--This may be single, large, aull barre-shaped, the ends being face ${ }^{-}$), or there may be a mall momber of relatively Inge stones face $\cdot / 1$ to one another, forming together a east of the gall-bladler; or there may be maltiple small stomes, even hundreds in number, all of relatively the same size, generally faceted, the faceted surfaces smooth. The color variss from black or deep brown through reddish-brown (bilirubin) to green biliverdin), or may be pale yellow from superficial layers of cholesteria or white from calciom carbonate. The cut surlace shows conerntric layers of varying color depending on the extent of admixture with the calciun salt of biliverdin or bilimbin; the nucleus is often of cholesterin.
2. I'ure (or almost pure) Cholestrrin C'alculi.- These are not verscomban, and are nsually single, wal, pale vellow stomes, with a wasplenhing, finely notular surface. When hroken, the surface is erystallinelenhing, and there is little or no sign of stratification. It is quite rure to
 be cholesterin.

 L: Hatume, (N: (Sunya.)

Fiu. 169

 ") 'hag outral ravitution. (Namyn.)

Fig. 10x

Cholew'erin calcollus, ent ant polished to raliate crysallime metreture. (Naumy

Fill. 170

lure bilirubin dealcium calculi; bile gravel. (Namyn.)
:i. l'ure Bilirmbin ('alrimm C'alculi.-These are sometimes termed "bile gravel," and are multiple blackish granules, lying in mucoid hike; when fresh they are soft, and break under the finger; when dry: the: armuhle apart.
4. C Alrium C'urbonate C'alenli.-Comparntively rare, these stones are very $\{$ haral: more often nodules of ealcimen earbonate occur in the mixed ralculi, ur common gallstones.
Etiology. In the difficult problem of determining the causes of Rathrow, there are certain well-recognized fucts at the ontset, sueh as ther hat they oceur most often in or after middle life. in females nitem: Than males, and in those of sedentary rather thai of active hahit- at that the cholesterin of which they are formed is not exereted to an: went by the liver, but from the mucous membrane of the
gall-bladder and the bile passages, especially the former. The increased production of cholesterin is due to a catarrhal state of the gall-bladeler wall, induced by some bacterial agent, often of a low grade of virulence; the readiness with which the gall-bladder is infected in general blood

Corpora :mylacea from brain, to show laminated character. $\times 251$

Fia. 172

section through an amyloid body from a eternal thmor, wet more highly magnified, to show the suberystalline doposit of sucressive layers of rlosely pached needles of amyloid material. At a the needles radiate from a small forus. (Ophats)

Fiti. 173

Amyloid boly from lung (immersion lens) to show raliate crystalline formation similar to that seen in figure premeding.

Fig. 174

Amyloid borly lying in a pulmunary alveolus from a case of chronic passive congestion of the lung (high poncri: a. large "cardiac" cells, containing pigment; h, rid corpuseles.
infections, surd as typhoid fever, will be recalled in this comection; finally it is necesary for such a state of affairs that the bile be stagnant, the coutents of the gall-thadder not being quickly drained an as quickly renewed.

In gallstones, as in urinary calculi, is a mucinous matrix in which the silts are deposited, and such mucinous matrix, here also, indicates that for their production there must be a catarrhal condition of the gallhadder, with increased outpouring of mucus into the bile. The studies of thi last few years have shown us with increasing emphasis the frequener with which organisms of low virulence, notably the B. coli and 13. typhosus, exist for long periods in the gall-bladder. It has been slown, indeed, that cultures of one or other of these organisms added to sterile bile leads to a deposit of all the constituents of gallstones. This, both be favoring a low form of catarrh and by acting on the bile, thees, and other organisms, directly lead to the production of gallstones. Is to the cause of the great variation in the relative amounts of the different constituents we are still in doubt, but pure cholesterin calculi are most frequently found in cases in which, through obstruction, the gall-hladder or its duct are cut off from the flow of liver bile. Their chulesterin appears thus to be derived mainly from the mucous membranc lining the gall-bladder (and ducts). The deposit of calcium salts appears to be associated with the breaking down of cellular debris, as in other concrements.
Prostatic Calculi.-Section through the prostates of most men past middle life shows the presence of minute, dark-colored granules in the suhstance of the organ; these are sometimes called prostatic sand. They are situated within the lumina, are hyaline-looking, generally polyonal, and of concentric structure; they are so soft as to be capable of 'ritting, and give imperfectly the reactions of amyloid; they are sonctimes callerl amyloid bodies of the prostate, and one of them may loe the nucleus for the incrustation of salts.
Corpora Amylacea.- Closely allied to the last are minute concretions finnd in the brain and spinal cord of the old, in lung alveoli in cases of chronic congestion with hemorrhagic discharge into the alveoli, ant in certain tumors. They have the general appearance of hyalinc mather al. The growth of some, at least, of these bodies in the lungs ant in tumors is by successive deposit of layers of obscured crystalline nerylle of protein nature (Figs. 172 and 174).

PIGMENTATION AND PIGMENTARY CHANGES

Thir relative mimportance is the chief excuse that exists for Lroming the pigenent changes of different sorts together, because the pw.....nn of color is no adequate ground of relationship. The pisn is com be divided according as they are: (1) endogenous, that is. it the direct products of cell metabolism or disintegration, or (2) 'x:- is, that is, are colored matters foreign to the organism and IIt in : from without. The endogenous we may further divide into ${ }^{\prime \prime}$ Er. globin and its derivatives, and (b) other metabolic pigments.
Et enous Pigments.-Abnormal Pigmentation Due to Hemoglobin and Jerivatives.-It will be remembered that hemoglobin occurs
in a soluble form in the blood eorpuscles, and especially in the portal system (including the spleern) is disintegrated, hy the liver cells espeeially, with diseharge into the bile of the iron-free portions of the pigment as bilirubin and other hile pigments. The urinary pigment, urochrome, is probably also derived from it.
Experimentally, by many chemicals, by foreign bood serums, and other agents, suth as thermal changes, the red corpuseles can be broken up and the hemoglohin freed into the serum, whenee it diffuses into the tissues and is absorbed by viomous cells. In diseased states, especiailly sepsis, hemoglobin imbibition orecurs, the heart valves and the surface of the aorta show:ng a bright-red color from absorption of the pigme 't, a condition to be distinguished from postmortem change of the same tissules; in sepsis the staining is partly ante mortem. When the pigment is set free in the blood in large amount it may quickly: appear in the urine, unaltered as in hemoglobinuria or modified as in methemoglobinuria, in the latter having a firm combination with the oxygen with an acill reaction. If the red cells are destroyed in the tissues or serous eavities, the pigment before its diseharge may undergo a further change into hematoidin or urohilin and be excreted as such (urobilinuria).
Paroxysmal hemoglobinuria is marked by the sudden appearance of hemoglobinuria for a short time, after whici again the urine becomes limpid. With some people exposure to :old is emough to exeite the state, and the attacks are most frequent in winter, the red corpuscles appearing to be ahormally sensitive to temperature changes.
Mondificd Itemenglobin.- Where there is prolonged hemorrhage or localized hemorrhage in tissues, we are apt to find the hemoglohin extemsively morlified, a fact which is graphically shown by the sucessive changes of color of a "bhack eye;" the substances eventually ohtained are hematoidin, hemosiderin, and hemofuscin. Hematoilin is identical with bilimbin, and is red, iron-free, and to be found in the central part of a large hemorrhage. It is erystalline, in which it differs from hemosiderin, which is always found in the form of amorphons granules. In the anemias, and diseases where there is extensive destruction of red corpmsides, hemosiderin may be deposited extensively in the liver, as happens also in the comdition known as hemochromatosis; it is an albuminate of irom in which the iron is relatively loosely comhined, and hemofuscin probably represents a yet more stable combination of the same sort.

Pseudomelanosis.-This is the dark greenish to black enloration seen post mortem in the liver, the spleen, and the stomach wall, when these organs have lain against the intestine, sulphuretted hydrogrus set free therefrom combining with the more or less modified derivatives of hemoghohin and leading to the deposit of sulphide of irom. Hematoporphyrin is an irom-free derivative of hemation which is set free in the urine, eypecially after the use of certain drugs surh as sulphonal, whoe acid constituent set free in the bhood, acts upon free hemoglobin.

Jaundice; Icterus.-The pignent of the constantly seereted bile is drrived from the never-easing destruction of red corpuscles, which altor a short existence of a few weeks fade away in the blood stream or are picked up by the phagoeytic eells of the spleen and liver, their hremorglolin, either unaltered or morlified, being absorbed by the endothrimun of the hepatic capillaries, and by them passed on to the liver (wll) to be broken up. The iron-free part is diseharged into the bile capillaries as bilirubin, the pigment of he bile; as to the iron-containiug part of the hemoglobin, it is evidently jealously preserved by the urgan, for very little passes into the bile, and relatively little remains storenl in a combined state in the liver. Should the bile pigment fail tw lne discharged from the liver, it accumulates and regurgitates into the Whood and lymph vessels, and is carried in a soluble state to the tionnes elsewhere, in whieh it is dissolved, eausing them to assume a bilc-taned appearanee. This staining is jaundice or icterus; the accompauying symptoms, such as itehing of the skin, slowing of the pulse, mental depression, and melaneholy (literally black bile) are entirely sulhidiary, due to associated ahsorpt:on of bile salts, ete. The blood, the urine, and the tissues show the chemical reaetion for bilirubin or the more highly oxidized biliverdin, and the liver is the first organ to Nuw this coloration.
(liniucolly, the selerotics of the eye, the muenus membrane of the munth, and the hard palate show pigmentation early, the skin quickly Nuws it and the connective tissues throughout the body; cartiage, the curncal, and in general, the nervous tissues (save in infants) are romitindy maffeeted; the secretions, the urine, the sweat, the saliva how it: the milk more rarely, and the tears (it is s. id) never; the pale color inf the feres indicatess that little, if any, is diseharged from the glam - if the stomach and intestines. The skin may show any gradation hetwren pale sellow and deep olive green, and the disappearanee of the whor is usually si:v.

Fitinutu!! -It se: : in nature, with (untrintive jamuli is: all whatruction i . lulut ant the chamel somewhere between the hepatie anmal marrow ing or absenee of the main ducts, inflammatory swelling of the will with narrowing of the lumen (catarrhal jaundice), growths or furn hurlies within the passage, new growths outside the passage, prew upon it, or perhaps even a spasmolic stricture of the duct. With uif these the bile chamels are distended, and it is found that ultin : I. the pigment injects a fine intraeellular network of chamels, (rinl. with the bile eapillaries. This network surrounds the nurd wif the cell but does not enter it, and if distended, throws baek thr \quad, and hivis less rapidly, but surels, the pigment makes its way into the hrpar . Howl; the latter process is much hastened if rupture of bile
ducts should occur. A second way in which jaundice can be caused is by the breaking down of a large number of rel corpuscles in the circulation; the liver cells, presumably overloaded, excrete a concentrated, inspissated bile by which the fine channels are blocked; the obstruction is not complete, the feces may remain colored, and the jaundice may not be very severe; such a form of jaundice may occur in sepsis, and is evidently hemohepatogenous in its nature. Yet another kind of jaundice is found in such states as acute yellow atrophy of the liver, in phosphorus poisoning, and in the infective jaundice of children where the pigment is evidently freed from liver cells during their destruction; it must be remembered, in fact, that whenever many liver cells are destroyed at the same time jaundice may supervene. Finally, severe shock or nervous disturbance has been followed by jaundice, a phenomenon which we are not able to explain.

Urobilin Pigmentation.-A true hematogenous pigmentation of the tissues by urobilin can occur, the pigment being supplied from hemolysis in the vessels, withont direct participation of the liver; this is not jaindice proper, althongh any corsiderable degree of hemolysis is likely to lead quickly to that state. The lemon-yellow tinge of the skin in grave anemia and the paler color of cancerous cachexia, as well as the diswioration of the skin in hemochromatosis appear to be of this order.

Other Endogenous Pigmentations. - Melanotic Pigmentation. - Of the autochthonous pigments not derived from hemoglobin, the most important are the melanins, bodies poor in iron i,ut rich in sulphur, which exist normally in the choroid of the ere, in the Malpighian layer of the skin, in the hair, and in the inembranes of the brain, and are lacking in so-called Alhinos. Increases of pigmentation are seen in pregnancy, in exophthalme goitre, in certain neurotic states (melasma), in Addison's disease, and in melanotic tumors. This deposit of melanin appears to be due to a process in which oxidases act upon the chromogen group of the protein molecule, with the production of pigmented substances allied to tyrosin and the members of the aromatic serics of protein dissociation products; these fail to undergo lurther conversion and so accmulate in the tissues.

Lipochromes.-These are colored fatty bodies, which give color to the fat, to the corpora hitea, to xanthomas and chloromas, and under certain conditions, to the cells of the nervous system. Present indications are that they are fats combined with tyrosin-like bodies.

Exogenous Pigmentations.-These consist of colored substances absorbed by and deposited in the tissmes, or colored derivatives of substances not themselves colored. Thattooing is a familiar example of the first of these, where insoluble particles of vernilion or another pigment are rubbed into fine punctures in the skin; the particles, those at least which are not carried away to the nearest lymph noles, remain in the onter layer of the corium, whence some of them are grabualy removed, producing a fading of the color. A superficial inflammation in the neell1; the d the occur 10ther hy of ice of luring many rvene. ed by hemo; this hemotinge hexia, ear to most Iphur, ighian n, and een in asma), elanin hromrented ries of ersion
lasting some time may almost obliterate the tattoo mark, because leukoeytes are called to the part and engulf particles of pigmert. More important are the pigmentary deposits in the lungs from inhalation, the pneumonokonioses (from xover, dust). The commonest of these is anthracosis, the deposit of eoal dust found in the lungs of eity dwellers and coal miners; these deposits are black, whereas rather gray in color are the deposits of siliceous partieles in the lungs of quarrymen, stone-
 silicosis). The lungs of kuife-grinders, glass-polishers, and others working with iron or iron-oxide dust beome a rusty red (siderosis); those of pottery workers show dirty-white deposits in the lungs (aluminosis), and those of workers in tolbaeeo dust a rusty-brown deposit (tabacosis). lhist partieles in the air may not all be entangled by the must wall of the nasal cavity, the pharynx and the trachea, but some reach the pulnonary alveoli, where, lying upon the epithelium, they are pieked up low wandering leukoevtes, whieh, in turn, if not diseharged in the sputum, make their way back into the lymph stream; once there, they may disintegrate and leave their pigment to the culothelial cells or they may carry it to the nearest lymph node. This explains the deposit so abun-

Fig. 175

From section of an anthracotic lung to show fibrous areas enclosing deposita formed of fine coal dust particles (high power). dantly present in the lymph nodes of the respiratory traet of a city dweller; but it is well to remember that a node that appears absolutely blaek to the naked eye may under thr microseope prove to be a fairly normal structure, the pigment being nell in scattered masses. Wherever such insoluble particles find lodgemosit they act as mild irritants, giving rise to a development of new rиним tive tissue in their neighborhood, which may be so localized armulal a large eolleetion as to appear like a tuberele; a lung so affected min iufrequently falls a vietim to aetual tubereulosis.
(II changes indueed by bodies that enter the system in a colorless form allil give rise to a colored deposit, the best examples are the "blue line" nif laind poisoning and the deposit of silver in the tissues. known as argyria. The "blue line" is due to a deposit of lead "'phide in the gums it :ine crlyes of the teeth, whieh is a result of the combination of the w, 'Ir. salt of lead, cireulating in the blood and lymph, with hydrogen sul: "ille given off from the decaying food material lodged in the interti iwtween the teeth and the gums. When soluble salts of silver are $\mathrm{p}^{2} \quad \mid$ in the body fluids they become reduced and metallie silver is det led in the tissues, especially the connective tissues.

NECROSES

Necrosis is death of cells, of tissucs, or of parts composed of many tissmes, in spite of which death the organism as a whole continues to live.

Causation.-It has alrealy been shown that there are many gratations of eell disturbance, in some of which quick death of cells or tissues occurs (necrosis) while in others the cells undergo a slow degeneration whir', erminates in death (necrobiosis, bionecrosis). Those forms of nec. . sand necrobiosis which occur as a result of degenerative change inhuced in the coll have been dealt with, but there remain those conditions of neerosis set up by circulatory and nervons disturbances.

Circulatory Disturbances.-Necrosis is inducerl, on the one hand, by arrest of the blood supply, and, on the other, by deficient or perverted quality of the blood with, as a result, deficient nutrition. In a general way, it may be said that ocelusion of the afferent artery and ocelusion of the efferent vein of an organ alike produce death of that organ; in both cases there is a lack of oxidation of the tissues, death occurring in those cases in which there is a relatively poor collateral circulation. Necrosis will be caused, for example, by ligation of an afferent artery or efferent vein; pressure on the vessel by tumors, cysts, etc.; thrombosis, the coagulation of the blood within a ressel; embolism, the blocking of a vessel by a foreign body in the wide sense of that term; the constricting action of a drig like ergot or disease of the artery wall with proliferation of the intima inducing a partial or total occlusion. If the agent le applied suddenly, necrosis follows, if gradually, neerobiosis.

Inadequate Nutrition. - General mahnutrition, tending to a wrak heart action and an inadequate blood supply, leads to a progressive state of necrobiosis, to which the different orders of tissues respond differently, the specialized tissues being more readily influenced than the lowly connective tissue.

Nervous Disturbances.-Two questions here arise: can stimuli from the central nervous system set up necrosi', (which is to be answered in the affirmative)? and can the loss of nerve supply lead to a like result (which is to be met loy a qualified negation)? "Central stimuli can apparently affect the vasomotor system so that constriction of the vessels may be followed by local anemia and even by necrosi, ats in Raynaud's disease (symmetrical gangrene); the loss of nerve supply may lead to cell inanition, but can only predispose to necrosis. A yrood example of this is seen in the supposition once widely held, that section of the fifth nerve led to ulceration of the cornea, and that neurotrophic keratitis was a refinite entity; but we now know that if in these circumstances. the cornea be protected from light, dust, and injury, no keratitis oceurs. Nevertheless, true though it is that nerve loss is merely a predisposing factor, it is to be admitted that inanition atrophy and
n abinal death of cells will follow upon loss of nerve connection with its consequent inactivity.

Wri-like degeneration of musele fibres (a, b) seventeen buurs after temporary ligation of the same. Io h there is "lready some accumulation of henkroytes. (OMerndörfer.)

11. Sife focal necroses in the liver of a rabbit subjected tu experimental glanders. (Duval.)

Forms of Necrosis.-I istinction, partly clinical, may be made bet11... lifferent forms of necrosis; there are (1) necroses of individual
cells; (2) those affecting small groups of eells, focal necroses; (3) those affecting eireumscribed areas, as a result of vascular obstructioninfarcts, and (4) necrosis affecting parts rather than tissues-gangrene.

1. Necrosis of Individual Colls.-In addition to the degenerat ${ }^{\circ} \mathrm{ve}$ ehanges alieady dealt with, there is the waxy degeneration, known as Zenker's degeneration of muscle, seen espceially well in the recti museles the abdomen in typhoid fever, in nuseles after trauma, and ats in the heart musele. The fibres lose their striation and become waxy or glassy in appearanee, the sarcolemma still intact. It appears to be a coagulation of the musele substanee, the inyosinogen beeoming eonverted into myosin.
2. Focal Necroses.-In eases of severe infeetions therc oeeur, in various tissues, minute areas of neerosis searcely visible to the naked eye; sueh are seen in the lymph follieles in diphtheria and typhoid fever; in the liver in typhoid fever and other forms of sepsis, even ehronie forms, and most inarked of all in the liver in celampsia.

The eausation of these foeal neeroses is yet unsettled; there is considerable evidence in favor of thrombi, sometimes hyaline, whielı may be formed by hemolysis of red cells, or by alteration of capillary endothelium which has been killed by toxins and cast off into the lumen.
Fat Necrosis.-Of quite a different causation are the necroses which oceur when the fat-splitting ferment present in the panereatie secretion eomes in contact with unprotected tissues. These are opaque, whitish-yellow islands of snall size, seen in the fatty tissues, generally in the vicinity of the panereas; any circumstance which allows the panereatie seeretion to act upon tissues other than the pancreas or the intestinal wall, may lead to their formation.
3. Infarcts and Coagulation Necrosis.-The production of infarcts will be nore fully considered later, but it is needful to mention here coagulation necrosis, a process best seen in infarets of the kidney and spleen. In addition to the death of the cells, there is a fibrinous eoagulation of the whole area, fibrin being demonstrable; besides this, the dim outlines of the tissues of the part, dead and without nuelei, ean be seen. The blood fibrin is one of a group of coagulable proteins, and this proeess is evidently eomparable to that whieh obtains in Zenker's degeneration, where myosinogen is converted into coagulated myosin. Closely allied to this is colliquative necrosis, in which there is liquefaction of the deal tissue as a process of self-digestion or autolysis, not to be confounded with putrefactive necrosis, where the liquefaction is the result of proteolytie powers of bueteria. 'The forner is seen in infarcts of the brain and in the eentres of tumors and large thrombi, especially in the parietal thrombi of the heart eavities.
4. Gangrene and Mortification.-The death of large areas may he brought about ly many agents-by vascular obstruction, by ar-ite infection, by burns, frost-hite, corrosives, and physical forces suc! as radium, the x-rays, and eleetricity. The results of sueh neerosis viry widely. Where the neerosed area is small, and not infeeted (1) absorp-
tion necurs. By autolysis and the activity of leukoeytes the dead part may I removed and its place taken by regenerated tissue of

Fig. 178

Anethe minarct of cortex of kidney to mhow coagulation necrosis, with surrounding sone of congention: a, artery. (Orth.)

Fig. 179

Friol.
necrua.
c. cotur
trion of an adrenal gland, to show the gradations in eell damage leading to coagulation frenal rells still retaining nuclear atain; b, the same with fading of nuclear chromatin; necrosed celle seen as fused abadows; d, blood corpusoles.
the part. More often, especially in areas of larger size, (2) cicatrization occurs; surrombling the dend area is a zone of reactive inflammation induced by the presence of the dead tissue and the diffused-out protucts of its disintegratios; from this zone a formation of gramulation tissue and vascularization of the same arises. In some areas, as in the brain, where reparative process is comparatively slow by reason of the relatively small amount of supportive tissue, and where colligurtive necrosis is prone to oceur, instead of a solid cieatrization, there is likely to be (3) cyst formation. In tissues such as boue that are so dense that disintegration of dead matter is a long-lrawn-ont process, the surface portions of the dead area may be disintegrated and loosened from the surrombling tissues, and the central mass, not vet disintegraterl, may remain as (4) a sequestrum, lying in a eavity and bathed he purulent fluid. Another sequel to colliquative change is (5) inspissation, in which the fluid part of the dead material drains away, leaving a gradually thickening residuc, which, beeoming cheesy in consistence, is prone to be a scat of calcareous deposit.

Coming to the consideration of gangrene, according to the amount of bood entering the dead area and the rate of evaporation of fluid from the surface, occurs (6) moist gangrene or sphacelus, or (7) dry gangrene or mummification. In moist gangrenc, as in the lung, intestine, or an extremity, blood enters the part and evaporation is prevented, the dead tissue hecomes waterlogged, and by the entrance of various mierobes putrefaction sets in; the affected tissue is swollen and livid; on the skin large blebs form filled with fluid; the discharge is foul from bacterial growth, and the soft tissues gradually become decomposed and liquefy, the bony portion being the last to diedd. Dry gangrene may oceur in the extremities and the ears, the neerotie portion becoming shrunken, wrinkled, and dark brownish black in eolor, like mummy flesh. At the boundary between the living and the dead tissue, a zonc of intense inflammation develops, the line of demarcation, at whieh, by leukocytic and revtolytic activity, a separation and ultimately a detachment may be made.

DEATH

Why does the body dic? Apart from any philosophic pronomeements we "ain find some definite knowledge on the subject. Death is mot an inherent quality of living matter; ine srhizomyecte-and this is true of all protozon-within certain timits of heat and eold, moisture and dryness, grows, divides, and adapts itself to change over long periods of time; aecidental death may; supervene, be desiecation, by plysical and chemical means, but in the processes of sueh life there is no suggestion of denth. In the hematomoön of malaria, its disappearance is not death, but a division into many new living individuals, and all of the original body save some paraplasmie pigment appears to enter into the new inctividuals. With the multicellular organism, death appears; the germ eeils alone carry on the coutinuity and the somatic or body
rell , die. In the germ cells death is not inherent; in the somatic eells twanne of their specialization of function, death becomes inherent. If a multicelluhar organism or a cell republic contd be immgined in whill atl cells arrived at muturity simultmeonsly, and in which enth aill mintributed exnctly to the needs of others, there would be no need for monatic death. But such an individunl does not exist; different urlern of eells are required to be mature and netive at different times. lu the case of mmn, there are developed in the embryo, orgnos, such as the yolk sac, which are merely of temporary use. When their purpun is accomphished they atrophy mod disappar, and their phee is tahen log other organs and a new cellular equilibrimm has to be estalilishel. The heart mad kidneys become fumetional early; the genitalia rilitively late, and the latter, too, cease their fumetional nctivity lefore the orgamism ingenerml. In the cases in which orgnos smpply internal wrotions to the blood nid to other organs, the disappearmece of those urgan: leares the boorl and those tissues impoverished in one or another diretion; if the fumetion of the tissues that have disappeared be nssumed burionsly bother tissues, these latter have their reserve of fore derre"nall thereby. By such constant modification there is incrensing trow ilirown upon the remnining cells until ultimately somatic death if the tisunes in general is brought about by the faiture of one or other ti-nur that is absolutely indispensable to life.

In the intraction of tissues, the circulatory, the respiratory, and the neroms systems nre indispensable, and cessution of the activity of : 1 ! $:$, HIe of the m will bring about somatic death; organs, too, at first inht insignificant, such ns ndrenals or parathyroids, have been prosed tu lu of prime importance. With so mmy organs, csisential to life, it i- har that there may be many different ways in which somatic Weath man supervene, because the exhaustion of one single system or urs:m will be emough to permit somme denth to occur. Somatie death, whon it deres oreur, is a eessation of function of these three vital sustems, followral he the disintegration and decomposition of the boty in general, there unt ureessarily being immediate denth of individual cells. Signs af thi- -matic death are the cessation of respiration, and of the heart lnatt, Wming of the eornea, the development of rigor mortis, and, finally,
 lation if myosingen forming masin, the congumion being brought ahnury the lactice acid of the musele; the passing off of rigor mortis i. dhe in intolytic change; its onset is rapid in those engaged in violent lum-ndar eflort at the moment of death and in cases of tetamus or tr! d, inu puisoning; whereas in cases wish prolonged wasting or of :"yh: war wo lomorrhage it may be delayed for a considerable period. The wivit. toe, of decomposition is variable in time according to temprrat:... the in, rmally moist parts such as the intestine show the mones enidily: the boklies of those dead of acute infection and of have: mian chamge rapidly not only because the bateria are present hut a! 'neanse the protective substanees that inhibit bacterial growth

1 ART11

YPE'LA, AND SIS'TEMIE PATHOLOGY

THE CARTIUL ZCULAR SY'

Pran the discussion of the zen. al effeet on n : 11
 anil wistems; pass, the in io comst iom that is usun.
 it Sistuice Patholag. Gur. $a^{-1}+h_{1}$. logists is not inerely to herime lamiliar with 2 . varic - in it may affect cach special
 me mine. to kee !e) mind her these less is of particular organs modify. the humen of the - tell which the to organs form a part, and so
 balue fu th: practitioner 'In. for le, he has diagnosticated a "ine af ex phthathef sitre to be h II t mind the picture of the
 - Hewinl: pprecites what tho uges is ply, namely, increased the thyroid Ils, it: ro al disch arge into the blood of ifl st (rearel oxidative changes, and metabolic activity |e1.... ran raism

Tl ise of pathology, in short, is to wease, and with this to afford indieations I1: tme ind ile the mass of data with which the student be. her is 'irge tl at our treatment of systemic int i.hology "p bat wismed lernhing is to be brought wichin the lume, w it II ! " mhout conseientiously endeavor wh lefore readers th er and more practical aspect of Bject.
thely the pathology of the cardiovascular system inchudes, thit of th rirculation medium, the blood (and lymph), and, second, atus whereby this medium cirenlates.
d we must consider the lymph. That also circulates. to say in a poll-parrot manner. that all the tissues gain ment from the hood, and saying this to forget that, save fleukoeytes, which are suspended in the blood, and those
other cells which line the bloodressels, this statement is ineorrect, giving us a false mental pieture of what really happens. Save in the ease of the above-mentioned exceptions, the tissue eells gain their nourishment from the lymph. This, it is true, is derived from the blool. It is, however, not iclentical with the blood plasma; its composition varies in different organs and regioms and in different states of the botly; the indieations are that its tramsinsion from the vessels is largely a governed process, varsing according to circomstances, while it receives primarily those problucts of cell activity which are not direetly excreted bey the ghands. The lymph, then, rather than the bood, is the great inedium of interchange, and as such most not be passed over, as we inagine is the tembency, as of secondary importance.
Saying this, we alhoit that just as the lymph originally is derived from the blood. so sooner or later it is diseharged into it again.

We have to deal with:
I. The blooxl.

1. Quantitative alterations:
(i) In the amome of bood as a whole.
(2) In the amonnt supplied to particular regions.
(3) Disturbances in blood supply brought about be:
(a) Hemorrhage.
(b) Intravascular disorganization of the bood (thrombosis).
(c) Effeets of foreign borlies (embolism).
2. Qualitative alterations:
(1) In the fluid menstrum of the bloorl.
(2) In the corpmseular elements.
II. The lamph.
3. Quantitative changes;
4. Qualitative changes.
III. The bloorl-forming orgalls.

It will, however, be more comvenient, as it is more in accordance with custom, to disouss the blool-forming organs after we have treated the carrliovascular apparatus.

THE BLOOD

Quantitative Alteration.-It needs hut a short experience in the postmortem roon to realize that in disease the relative amount of blood in the boly varies within very wide limits. Sone borlies are strikingly dry, others (notably cases of chronie obstructive heart disense) ooze abundant blood at every cut. But in health also there is wide variation. This is demonstrated by Ialdane and Lorrain Smith's methot. Carbon monoxide is taken up by the red corpuscles with much greater a vidity than is oxygen. If, therefore, an individual be made to breathe for a short time a known amome of carbon monoxide, it is easy, by removing after a fow minutes some culbic centimeters of that individual's blood, to estimate
the imomit of carbon monoxide per eubie centimeter in that blood, and therefore the total mumber of eubie eentimeters of the cireulating blood. Thre usial statentent is that the amount of blood eorresponds to onethirterenth of the boly weight. This is too high. The average amount is rather under one-twentieth, hut while this is so, a robist young athlete may. have twice as mueh blood per kilo of body weight as has his wiry gramparent, although both appear to be in perfect health.

These fiarts put us on our guard regarding the value of speeifie gravity determinations and red eorpusele counts. The same results as ragards heightened speeifie gravity or interease in the number of rethrorytes may be produeed equally by an inereased produetion of corpuseles, and, on the other hand, by reduction in the flaid of the bonnl. 'The same is true, mutatis mutandis, with regard to lowered apecifir gravity, or deerease in the number of eorpuseles. Without a detrmination of the amount of eireulating blood, enumeration of the corpusicles gives us 110 sure information regarding variation in the production or destruction of the eorpuseles. Indeed, with this fuller knowledge wo are beginning to find out that eonditions whieh hitherto have heen classed among the anemias, or states of insuffieient blood production, are truly eonditions of hyidr ria, or dilution of the blood and arthal incrense in its amount. There exist, that is, states of true digenias, or diminution in the amount of eirenlating bood, and of plethora or inerease in the blool volume.
Oligemia (Ischemia).-This diminution in volume may be found in some sromdary anemias and in pernieious anemia. In these eonditions we find at autopsy not only that the blood is thin and of a paife color, but that the amount of the blood in the heart and vessels is mutahy small. Like rednetion in quantity may follow extreme or rynutal hemorrhages or, again, great loss in the fluid part of the bood, as uremes in cholera and pernicions vomiting. In this latter ea. of the thin! left in the vessels is thiek and tarry, owing to concentration of the corpmedres, coutrary to what oeeurs after extensive hemorrhage, when "hat hlool there is is singularly pale and thin, owing to the passage intu the vessels of tissie fluids, in order to make up for the loss of blood promer.
Plethora. Alequate nutrition, with aetive development of the mus-
 of henil ahove the normal. There is thus, eontrary to the teaching that hat prevaled for some years, sueh a ecudition as simple plethors. With thin alson exists pathological plethora, as seen in obstructive heart dis"ルッ: whore the blool is apt to be darker than morinal, owing to imprefiet widation, although estimation of its specifie gravity shows that it i - more dilute thun normal (hydremic plethora). We do not wholly Imder-itad! what are the conditions that lead to this hydremic state in heart discase. A similar eondition has also beren noted in eases of minnern• hung disease. A somewhat different tape is the plethora that full ws the daily consumption of naty liters of light beer, allied
with the so-called Munich beer lieart. In these eases the heart is found mueh hypertrophied and dilated, clearly in response to the lnrger amount of fluid which is absorbed from the alimentary eanal in suceessive tides, necessitating increased work to pump the increased volume. Yet another form of plethora is seen in chronie 13right's clisease, attributed by some to reduced discharge of wate: through the damaged kilners, by others to retention of ehlorides in the tissues and the assoeiated neeessity of increased fluid for their due solution. Here, also, there is a heaping up of lymph and fluid in the iissue spaces (anasarca).

Alteration in Distribution Due to Cardiac Disturbance.-It is obvious that, the blood being kept in motion by the heart, disturbanees of that organ materially affect the quantity of blool in the veins and arteries respeetively. These disturbances may be broadly divided into three orders: (1) those involving the heart musele; (2) those of the valvular apparatus; and (3) those of the nervons meehanism eontrolling the heart beat. By eaeh and all of these the pumping aetion of the heart may be modificd.

Disease of the heart muscle leads to weakening of the same, so that the organ is ineapable of propelling the adequate amount of blood either from the right ventricle through the lungs into the left heart, or from the left ventriele into the systemic arteries. Similarly, imperfeet action of the valves results either in dircet obstruetion to the inflow of the blood through the narrowed orifices, or to indirect obstruction, from regurgitation of blool already forced forward, through valves that are incompetent and patent when they ought to be elosed. In both orders the result is an arrest of the inflow of the blond with, as a result, a progressive accmmulation of blood on the venous side of the heart; overfilling of the veins, whether of the lungs alone or of both lungs and the various organs; relative deficiency in the arterial blood supplied to the varions organs, and lowering in the arterial blood pressure. The efficets of this we shall diseuss under the heading of Passive Congestion (338). Where the left ventricle or valves of the left heart are involved, the pulmonary veins exhibit distension and inereased pressure with congestion of the lungs and all its attendant disturbanees of respiration. T^{1} is throws increased work upon the right ventricle, which undergoes hypertrophy and dilatation, and eventually, the right heart becoming unable to overeome the obstruetion, there results also eongestion of the systemic venous system.

Disturbance of the cartiae nervous system, whether acting more particularly upon the vagns paths, the accelerators, or the intrinsic nervous mechanism, leuls to alterations in the frequeney or the regularity of the heart beat. Tachycardia, or inereased rate of beat. may eventunlly lead to leaping up of bood in the systemie veins in consequence of shortened diastole and imperfeet filling of the ventricle3. Braiycardia, or slowing of heart beat, may lead similarly to defirtive filling of the arteries with resultant aecumulation of blood on lin : ight side of the heart.

Alterations in the Distribution of the Blood Due to Disturbances Affecting

 the Vessels.-The vascular tree is so extensive that it is capable of holiling very much more than the normal anount of blood; the ressels of thr liver alone fully distended are said to he capable of holding the whole of the circulating blood. Thus, for the circulation to contimur, it is essential that the vaseular chamels be reduced down to simb a width and extent that the normal amount of blood fills them. This is brought about by two main agencies, namely, arterial contraction (tone), and muscular tone, the compression exerted by the partial contruction of the museles in general and notably those of the abominal wall. The existence of musele in the walls of the veins shows that thene also are eapable of variation in caliber. The recent researches of Yimulell I Iemlersion demonstrate clearly the existence of a venopressor medanisim. It follows that, hy the action of one or other factor, the bhom maty find itself in relative abundance on the arterial side of the circulation or on the venous, although the close interaction between the hourt and vessels may bring it about that opposed states of the arterie's may result in the same general effects upon the distribution of the blool. Extreme contraction of the arteries and arterioles, for 'xample, misy result in an ohstructive heaping up of blood on the right side of the heart, but so also extreme dilatation of the arteries and artermess may be followed by such a :owering of the blood pressure that the 'rirculating fluid cannot be forced through the veins, but, stagnating there, allorels a similar picture of passive congestion. We have already divenserel the efferts of vascular relaxation, when treating of Shock and (0)llapser (p. 17S).Local Alterations in Bloon "apply.-Increased activity of an organ or part is, as is well known, accompanied by increased passage of blood to the same. Surli increase is largely determined her the vasomotor apparatus, although at the same time there are indications that the ratitinn of the lymph in the part has a direct influence upon the museuhature of the vessels. The lymph may become more acid with activity of the tisines and, further, may come to contain other diffisible cell prenlucts capable of acting on the vessel wall. Many other influences determinc the arterial supply of a part, as again the passage of blood ant of through the veins. We thus recognize the following states:

1. lacel) a ative hyperemia. due to increased determination of blood t. the part through the arte.sen.
\because I,onal) passive hyper.ania, tue to obstruction to the discharge wif hal throngh the veins.
l,owil) eapillary hyperema, in which, with no change in the cality of the artery and no obstruction to the outflow, a hyperemia is ind:a! wirlening of the abundant capillary channels of an organ.
t. (.,u:al) memia.
actire Hyperemia of a part may be direct, due to dilatation of the art. $\cdots \cdots$. - uplying that part, or collateral, due to contraction of other arton wherehy the blood pressure is raised, and as a result more
blood is poured into these arteries which are not actively contracted. This latter we sce in the development of a collateral circulation in a limb or other region ufter ohstruction of the main artery. The direet form is brought about nither by stimulation of the vasodilators (zeurotonic hyperemia), a paralysis of the vasocontractors (neuroparalytic hyperemia), or direct local action of physical or chemical agents on the part (warmith, diminution of external pressure, after-results of temporary ligation, atropin, croton oil, etc.). Such arterial hyperemia is characterized by increase in size of the affected part, briglit red color, increased warmith with, it may be, throbbing and pulsation.

Capillary Hyperemia is usually classed as arterial. We are, however, inclined to hold that the "active" hyperemia of inflammation is due not so much to dilatation of the arteries going to the inflamed part, as to physical changes occurring in the capillary area whereby the onflow of the blood is hindered. In all viscera possessing minscular walls or capsule, expansion of that muscle and lack of tone of the same, passively permit a dilatation and hyperemia of the capillaries within the viscera.
Venous Hyperemia or Passive Congestion.-Obstruction to the onflow of the blood or closure of a vein necessitates that the blood propelled from the artery accumulates behind the point of arrest, unless, that is, there be so extensive a collateral network of veins that the blood can escape through these. If, however, the obstruction is beyond the point where the veins of a part converge, then accumulation must occur. If, for examper, the obstruction oceurs in the right heart the whole systemie venous sistem is apt to show the comblition of passive congestion. If, again, the obstruction is in the left leart the whole pulmonary area becomes intensely congested. Thus (1) cardiac weakness, (2) hindrames to perfert inspiration, as from paralysis of the diaphragm or accumulation of fluid in the pleural cavity, and (3) arterial dilatation with lowered blood pressure, all lessen the onflow of the venous blood, aul, to a greater or less clegree, favor venous congestion. Such overfilling of the veins tends to slow itself, more particularly, in those regions in which the veins receive little support from their surroundings. It also must be remembered that a forwarl passage of blood through the veins is aided by muscular contraction, as again by the negative pressure on the thorax during inspiration, and lack, or relative lack, of these is also a factor favoring local or general congestion. It is, however, where there is obliteration of the venons chmmels that the passive hyperemia is apt to be most marked.

As a result of this damming of venous blood in a part (1) it beeomes cnlarged in consequence of the increased amount of contained blood, mud, secondarily, as a result of increased transudation from the distended apillaries; (2) it becomes of a dark purplish color, owing to the distension of those vessels whose blood, by long continuance in them, has become intensely venous, and (3) where superficial, the part is cooler than the surrounding parts, owing to the slowed circulation and increased
racted. on in a direet (zeuroaralytic on the tempoemia is d color, owever, due not t , as to tflow of valls or ae, pashin the
onflow copelled that is, ood can e point cur. If, ystemie on. If, ry area (2) hincagm or latation sblood, erfilling gions in It also he veins pressure these is r, where remia is
radiation. The blool may berome intensely venous, and this explains the cyanosis of sufferers from passive congestion. The vessel walls are apt to show evilences of malnutrition, the epithelium becomes abnormally stretched, and may exhibit fatty legeneration, and, as a result, there is inereased transudation into the tissues, resulting in codema. Whore there is venous congestion of large areas, as in heart disease, this arlema is one of the most striking features. There may be aceumulation of thuil in the body cavities (ascites, hydrothorax), sund in the sub)cutimeous tissues (anasarca). Perhaps the most rapid accumulation of thin takes place when the portal vein becomes blocked or obliteratcy. 'This leads to a very quickly developing ascites, presumably lnealse the portal blood coming from the intestines is more toxic and harmful to the lining endothelium of the vessels than is the systemic homel in gencral. With extreme congestion there may be multiple rapillary hemorrhages. Lastly, malnutrition is apt to affect the tissue ectls also, aud these may show evidence of legeneration.

Stasis. -ilowing of the blood stream may beeome so extreme that its onflow is completely arrested, and there is brought about a condition of stanis. The eapillaries of a part are found intensely distended, as aho the veins (if this condition is caused by venous obstruction); the arteries also are distended, as a result of the ojstruction in front. As a com-rquener of the mahnutrition and dilatation of the vascular walls the- thind of the blood tends to escape into the surrounding tissues, and the mure concentrated corpuseles become so compressed as often to appuar as a homogeneois hivaline mass. This conglutination must not he mintaken for eoagulation; with removal of the obstruction and remuntion of eirculation the individual corpuscles may again become lowenal one from the other. Prior to this stage of conglutination, the Wrahening of the distended capillary walls may result cither in escape of - wine of the erythroevtes into the surrounding tissue., either through pirc in the walls (hemorrhage per diapedesin, see p. 354), or as a result of :luturl rupture (per rhexin).

The camses of such stasis may be either (1) obliteration of the efferent will uf the part; (2) obliteration of the afferent artery, with regurgitation of hoose from surronnding capillaries into an area whieh now hal- Iti) stromim through it, but has become a "backwater" (see red infarct, p. 344); (3) chemical and physical agencies acting directly upon the rapiliorics of a part, e.g., heat, caustie agents, toxins, and other Inulien inhacing acute inflammation (see p. 122).
Local Anemia.-Loeal anemia may (1) be part of a general bloodless$111 \cdots$. . . after profound hemorrhage, or may be (2) collateral or eompen:atw, is where the determination of blood to one region leads to imathmatr hood supply to others, as is well seen in the cerebral anemia of - : "中n (1). 18S), or may be (3) che to local disturbance, as in the -ti-s. contraction of the artery or arteries of supply of a region (neurotonic anemia) secol in Raynaud's disease (symmetrical gangrene), and in the. . ficial tissues under the aetion of cold, or again through the
direct agency of alrenin aud other vasocolstrictor drugs; may be caused (t) by ohstruction to the arterial inflow to a part, as (a) by pressure on that artery from without by new growths, ligation, etc., (b) by disease of the arterial walls, (r) obstruction to its lumen either by foreign botlies, as in embolism (p. 3.31), or by iutravital coagulation of the contained hloonl (thrombosis, p. '16), (d) section of the cessel, etc.: may be cansed (i) liedirect compression exerted - pon a part (Esinarel's bandages, pressure of aneurysms, and other tumors wion the surrounding tissines). Pressure is, however, more apt, save whell extreme, to tell first upon the less rigid veins, and as a result, passive congestion rather than anemia is the more frequent. It will he recalled that if a pressure less strong than that required to arrest the pulse below, is applied aromed the proximal part of a limb, the result is a well-marked passive congestion and swelling of that limb, and this an incarcerated hernia presents a similar yenoms hyperemia and not anemia.

Results of Inocal Anemin.- These are primarily (1) pallor, (2) some reduetion in size due to lessened filling of the vessels, (3) firmer comsistence, (t) lowered temperature, (i) alrested function. With these there may he subjective ssmptoms-mmbness, "pins and neelles," agonizing cramps, and sometimes intense pain. The after-effects may be very serims unless eonditions favor the development of a collateral circulation. These results we will eonsider in some detail.

Closure of Vessels and its Effects.-Arterial Occlusion.-The results of clowire of an artery are influenced hy many factors: (1) the rate of closure, whether sulden or gradual; (2) the existence of anastomosing arteries; (3) the relative size of these collateral vessels; (4) the extent of the area supplied by the elosed artery; (5) the arterial blood peessure: (6) the venous blood pressure; and (7) the difference between the two latter. Slow ocelusion, for example, extendiug over days (as in the case of discase of the arterial wall) affords time for the development of an adequate collateral circolation. Such collateral circulation may be present, but the anastonnosing vessels may be of insignificant siz:, and sulden ocelnsion in these cases may lead to death of the tissues of an area before the collat ral vessels mudergo sufficient distension to carry the blood supply needed for the part. A goool example of this is seen in eomnection with the heart. Anastomoses exist between the different branches of the coronary artery; ; but these are small, and as a result a sudden blockage of one branch is followed by death of its arca of supply (infarct formation).
This presence or absence of anastomosing arteries is of high importance. Cohnheim divided the arteries of the body into two orders, the anastomusimg and the terminal or end-arteries. The aceomp:insing diagrans iublicate the nature of the two. Of the former the nost striking example is the eirele of Willis; the nastomosing arteriws there are so considerable that obvionsly if one be blocked, blood tein masily: flow into its branches from the other contributory vessels. In the muscles also and he skin (save the very smallest superficial vessels) her by tion of el, etc.: nareh's romindme, to gestion hat if a low, is narked cerated) some er cont 1 these elles," ts may Hateral results rate of mosing tent of essure; he two he case t of all 1ay be $\%$, and of an 0 carry sren in iflerent esult a supply
imporrrs, the anying a most s there easily In the (essels)
anatomoses ure abumbat; it regnires the simaltuneous blockage of wheral arteries to urrest the circulation. Of ('ohnheim's terminal arterins the most marked instances are the arterin centralis retina, the renal artery and its branches, the splenie artery and its branches, the

- thata of an anawtomoning circulation. If a branch be ligatured or blockell as at a, the region -uyplewl the that banch reedives abundant blow through the anastomoses between it and other arterin . ${ }^{\prime \prime}$ imilr. At most thre is an arrested cireulation in the artery itself as far as the nearest points

Fig. 181

It a Thmmal arterish system in which the anastonusod are only bet ween the capillary loopa.
It a \quad that a ligature or obstrurtion at the point a may ent of the whole blood supply of the
Prew : I ly the obstructed artery and its branches, unless the capillary rirculation provided by
teteh: atworalue subundant as to afford nourishment to the bloeked ares.
arteri within the brain, and the spernatic artery. These are held to pin-4. :nammuncation between their capillary arens and branches uf wh: arteries of like or different origin. We are of opinion that this -1. $\mu^{\circ \prime \prime}$: I matter of degree. Careful study of the kidney, for example,
revenk ondaiomal anantomoses between bramehes of the cortical arteries, and experimentally it can be shown that mulerlying the capsule the capilary area is common to the copsular and the cortical arteries. In the heart musele also, as alrealy noted, clear arterial amastomoses exist, but despite their existence, inlentical infaret prometion oceurs when a coronary artery is blocked, or one of its main bramehes, as when the arteria centralis retinae becomes obliterated. 'The same considerations apply to the intestimal arteries; anastomoses oceur between the suporior niesenteric and the many rami duolenales of the pancreatiendnodemal artery above and the rami coliri of the inferior mesenterre below, as again between the sucerssive bramehes of the superior mesen-

Fig. 182

The main trunks of a collateral circulation established by means of the intercostals and neck vessels between the arch of the acrta ant the dursal aorta in a case of coarctation or congenitat obstruction of the sorta in the region of the durtus liotalli. 1, region of coarctation: 2, anastomotio branches between the intercostal arteries: 3, mulolavian arteries. Fron man, aged thirty-five years, (After J. F. Meckel and Thoma.)
terie. If a small braneh of this last be bloeked the anastomoses may be adequate to prevent any arrest of the cireulation; if a larger, gamgrene of the intestines inevitably supervenes becanse these anastomoses are inadequate. It is not the existeure or nou-existence of anastomoses that should trouble ns, but the presence or ubsence of adequate annstomoves; if the surrommeling arteries, whether directly or indirectly through their capillaries, cannot rapilly afforl adequate bloool to preserve the vitality of the area whose direct supply has been arrested, then death of that area inust follow, resulting in a focal necrosis, when only a small capillary area is involvel, in an infarct where the area of distribution of an arterial brameh is involved, and gangrene or mortification where one of the larger arteries supplying a part is, with its branches, eut off from
rteries, whe the rteries. onnoses oecturs is when ısideraell the reaticoenteric meserl-
the circulation. These three termss indicate grades of extent of disturbance rather than distinct processes.
Development of Collateral Circulation.-Where a large artery, such as the femoral becones suddenly obliterated, the limb leecomes numb, rathl and paretic. Slowly during the course of days it regains its temprature and muscular power. We know from dissection that anastomonse exist hetween the femoral and its hranches and the other arteries of the lower limb, hut sbviously at first these eamot supply sufficient honul to the part. The returuing warmen shews that gradually these rullirge mutil the eollateral circulation beeomes completc. 'The accompallying diagrams show how ahmmdant and large these collateral rlathucls may beeome. It has heell determinel experimentally that "xul copilliry chamels in this process of distension may hecome arterial, gaining the structure of arteries.
linous mastomoses are freer and more widespread than are arterial; in a result the extent of the eollateral eirenlation set up is at times very: evtriurdinary: When, for example, the portal veir becones ohstructed, the blool from the abdonimal area may find its way to the heart through the ceronary veins of the stomaeh, and so to the cesophageal veins; thringh those of the gastro-epiploie omentum to the diaphragm and on to the rena azygns, through anastomoses between the inferior mesentrici" and the hemorrhoidal veins; through the veins of the round and :Hphisory: ligaments of the liver to the epigastrie and nammary veins :IIII 1110 on.
Infarct Formation and Mortication. - Where, as above noted, the anas1.nnures are inadequate to restore the eirenlation before the tissues die lanll here it must be noted that tissues vary in their vitality so that, fur wample, glandular organs are more sensitive to nutritional changes thath are musele and conneetive tissues), then a charaeteristie series of Thanes manifests itself. Of these, paradoxically, the first is a swelling (1) thr attiected area so eharacteristie as to afford the name given hy: Lirelluw, of infarction or "stuffing." Tlais swelling is due to great dis-tun-ion of the capillaries with bood. They become intensely con-wi-terl, aud at the same time the tissue eells of the part show a series if hi:nuss coting in complete death and failure of their nuelei to stain.
How does this cougestion come about? Cohnheim lieh that as with 'Whing of the artery of supply, the blood pressure bevond the bloek

Threol to nil, and as the surrounding veins have a positive pressure Hhmi falls, as it werc, from them into the area until the pressure 1). Fu remelhes that in the surrounding eapillaries. The matter, however, in 1, quite so simple. It has been shown that in the kidner; for example, Liw enurstion becomes even more extreme when both the artery and the vin are ligatured, also that after the artery has been ligatured 1. 4 . 4 enutinues to be diseharged from the vein. Widently, therefore, 4. Hhiteral arterial supply of this organ through the eapsular vessels, iull lirough the pelvis from the ureteral, is more extensive than we are ap $:$:. imagine. Wherefore it would appear that after ligation of the
artery going to a part the pressure commmicaterl to the capillary circolation through these collateral arteries is sufficient to distend the apillaries of the afferem aren, althongh insufficient to drive the capillary hood forward, or to supply adequite nutrition. This imperfert aebration in itself is of fuctor in the loss of tone and dilatation of the: rupilhuries.
lixperiments hy Greenfield, of Edinhurgh, and his pupils, eonfirming earlier studies of Vuphan and Harly, demonstrate that in its first stage -within five homrs of the obstrmetion-an infaret is alwase intensely eongested, redhlish-purple, and ruised. Later, if not toolarge, as both the colls of the part and the hood eorpuseles undergo neerotic changes, the hemoglohin becores diflised out, and the part breomes paler and of a more pinkish color. It is in the early purt of this second period that the infaret shows best the coudition termed coagulation-necrosis. The rells no longer stain; the berome lyaline or very finely granular shadows of themselves. At first the iudividual cell outlines ure still distinguishable; soon tissue cells, eapillaries, and their contents become fused into a firm homogeneous or almost homogeneons hyaline mins.

In this way the hemorrhagic or red infaret and the "anemic" or "white" infaret may be regarded as two stuges in the one proeess. But here eertain eomplications enter: (1) the hemoglobin may not diffise out of the centre of a harge infurctous area so that there may be complete hemorrhagie necrosis without pallor, and (2) in certain tisules (hung, liver) the infaret does not proeed berond the red stage, and that beranse, owing to the existence of a mouble blood supply, the coagnhation neerosis stage is not rearched. Thans, if a braneh of the pulmonary urtery beromes ocelnded, the result is intense eongestion of the region of suppls, congestion so intense that the eorpuseles escape into and fill the alveoli; but suffieient bood still reaches the ulveoher walls through branches of the bronchial arteries to maintnin their vitalite. Similarly, if a bramela of the portal vein be oceluderl, a like red infaret is produced, hat the liver eells do not mudergo neerosis, gaining shtficient nourishment through the branches of the hepatie artery.

It follows thas that the red or hemorrmgic infaret is of at least three orders; and a fourth may here be noted, namely, that the local death of tissite acrompanied hy intense congestion and all the features of infaret formation may equally be bronght about by occlusion of the effrent rein of the puit, provided that there be uod adequate anastomoses. While, for example, the majority of red infarets in the lung appear to be due to blocking of a branch of the pulmonary artery, in a eertain umber of cases a like comblition is produced be intravital eongulation of the blood in a bram fo of the pulmonary vein. It ean easily be imagined how in these eases, ow ing to lack of exit, there is most intense eongestion of, with hemorrhage from, the eapillaries of the affected part, and how the stacis is lialde to lee followed by tisisi death. This venous form is ahways of the lemorrhagie tepe. An organ in which it is apt to oreur is the alremal, and this partieularly in young ehiblen, in them being
a canse of relatively suden death. 'The whole organ is foumd intensely. hownerhagic.

If desirves mote that arteriey of the terminal type most frequently whibit a dichotomous branching and spread thus from the hilus of an ureall in a fan-like mamer toward the periphery. 'The typieal infaret. therciore, is wedge-shaped, with the apex directed townrl the hilus, and the base beneath the surface of the organ. We say benruth, beeanse Handly the infaret does nut come absolutely to the surface. In general. a - llperficial layer is to be made ont of tissue that is congested hut not merrmed, tissue that is prevented from necrosis by the collateral arrulation established in it, throngh the eapsular vessels.
firsults of Infurction. - 1. Complete Resolution.- (iomplete resolution hay oweur where the infarction is imporfeet and, as in the lomg. fons not result in complete necrosis. Capillary infarcts and foeal merman maty also he followed hy no obvions results, the destroved tiond rells being replaced by regeneration after leukoeytes have migrated into the part, and have aided in the digestion and removal ul the necrosed tissue amd fibrin.
\because Organization and Cicatrization.-These are the typieal events in the urdinary infarct. Very rapidly the necrosed wedge of tissue is fomme
 timinitu the necrosed area, and at the periphery there may be a certain :lnmint of regeneration of the tissue eells proper. In the more central araa the dead tissue is removed by the aguey of the lenkorytes and tiow firments, and now gradually the central dead area becomes the yal if a progressive formation of gramuation tissue: new eapillaries pass in tronn the surrounding vessels and beeome elothed with fibroblasts mutil a mew comnective tissue completely replaces the dead tissue, amd thon, after the nature of new eonnective tissule, undergoes pronomined rontration, so that the end result is the prometion of a rlense, deprowal sar of firm commetive tisine. Not infrequently we mere with thon depressed cicatrices of old infarets in the kidhey and the speen.
\therefore Cyst Formation.- Where there is little reaction on the part of the -urmmbing commetive tissue, antolytie changes result in the necrotie tioll. Weroming eventually repheed by a serous fluid, emonpsulated within a relatively thin laver of conncetive tisulue. Such eyst formatim! umequent to old infaretion is most frequently met with in the hrian -rpp. 2!94).

1. Suppuration.-Suppuration may oefor in small infarets where the H.N. h:in heen due to infeeted material in the blood stream. As the misramimisms multiply and toxins ditlise, lenkoertes may be attracted

i) Patrefaction. Where the infaret is larger and hecomes infeeted, the : m mination of lenkocytes to the part may be inadequate, and win!: - spowth of the bacteria the cells are broken down and liquefied, all at... of putrefaction rather than of true abseess formation being there int.
(i. Calcification.-- Rarely alareons sults mas lie depositerl in the infareted area.

Mortification or Gangrene. - We hase alreme noted that where limbs or large areas are involved in this promes there we spent of mortificution rather than of infaret formation. In these anpophytio urganisms from the surface are apt to grow into and insade the iland tis:uc, lembing to extensive putrefaction. We have already deseriberi ther stages and forms of this mortifiontion or gingrene (see p. 32N).

Thrombosis. 'Tlu main ranse of infaret formation and local arrest of the rirculation is embedism. But, as dislodged partieles of thrombi are the most freguent canses of rombolism, it will be better to disenss first the suloject of thrombosis.

Thrombasis is the intravital deposit of constituents of the blomal in a solid form within the weserls. It is a process frequently fomm at post mortems. Ilere we must distinguish between post morten clotting and intravital, and at times this is diflicult. The following are the main features: (1) blow that has clotted in vessechs after death (cruor) has done so be a provess identionl with that which aeemrs in blood removerl from the looly. It is a true coagulation, with fibrin formation. (2) It shows no stratification; the bom has coagulated of musse, save that
 "'ves may rise to the top and form a "bufly cont," so semetimes we find this post mortem dot red throughont, at other times, notable in the auricles of the heart, we find a superficial and mper pale layer amba lower mass of red elot. Where there is a combition of marlied lenkoevtosis, this pale layer is extensive, with a vellowis! tint and translincenc:, earning for it the title of "chicken-fat" clot. (i) Cuder the minoroseope this post mortem clot presents the same appearances of a network of fibrin, endosing corpuseles, which is seen in extravascular bood clot. (4) It is moister and less friable than is an ante morten thrombus. (i) It is not adherent, but, on the contrary, is erisily removed from the eavity ia which it lies.
'The thrombins, on the contrary, is firmly adherent at some point, or, if not alherent, sestreh will show a detached surface and a ragion in the ressel or cavity where it had previonsly been attached. It is Iry and more friable; seen muler the mieroseope the armagement of its constituents is different from that seen in an extrasasenlar clot.

The comditions, in short, lauling to coagulation and thrombsis: are different. Aecorling to monlern teaching, coagnlation is essentially brought about by the formation of fibrin as a fine network. It is here neessary only to reall that this lormation is clue to the action of fibrin ferment or thrombin unall certain of the proteins present in tho blowl plasma. 'lhis ferment is not present in the normal circulating boonl,
 action of a thrombokinase upon the thrombogen of the plasma in the presence of calcium salts. The thrombokinese in its turn is supposed
to lo liberated in the breaking down of leakoeytes and blow phatelets, aithongh tisiste cedls also may aflord a coaguline whidn activates the thrombogen. Opposial to this thrombekimse, there exist, aceording to Mrïeke, substances which hinder coagnlation, given off, more particulirly. by the endothelial edls of the vascular intima.

The characteristie of the thrombus is that the fine network of fibrin is unt an essential. Perhaps the best inea of the mature of thrombosis in caimed from a stuly of the suceessive stages of its experimental production. It is well kiown that if a foreigu horly be intronliced into the honal stream a clot or thrombins temals to form : aromed it. We owe to
 thin promess. They introluced a fine needle point throngh the vessed "all, and observed a very striking prosess; manely, they fontial that the firat step is the accumulation. upon the foreign boly of bowel platelets. What these blood platelets are has been subject of debate, but this is inetain that they are present in varying mmbers in normal blood, and that a reduction in their mumber characterizes conditions in which thare is delaved or imperfect agulation of the blowl (hypinosis). 'Thi" - tulies of J. H. Wright have demonstrated positively that some, at hail. of them origimate in the bone marrow by the breaking off of prombers from the megacaryocrtes of that tissme. Arnold and others lumb that some, at least, originate from red corpuscles. Accummlateal thas the bood platelets ran together or ablergo conghtination intu a lomogeveonts or findy granular mass, and not into fibrils, and "ith surersive deposit of more blool platelets the ver \therefore : men may luromur fillerl with (1) a purs hyaline blood platelet thr : anis. Often,
 to the man- when we speak of (2) a mixed blood platelet a formo yte thrmuhns. Or, auder ecrtain conditions, more partienlas : uf: f. chere in prammaced sta-is of the blood, a thrombus begimning thus passes on to the" "molition akin to congulation proper, and coarse hyaline bands ant promesses of conglutinated material enclose in their nic.shes the red -urpinles, so that (3) a mixed red thrombus is prodnced.
'Thur arr the main types, but also in the smaller vessels we acca--imally moonter (t) hyaline thrombi, which it is diffienlt to :"iphain inher than ass due to a conghtination or agghtimation, not of boobl platilitu, hat of red corpuscles, as may be seen in inflammatory stasis

liturns: Fucoring Thrombosis.-1. Loss of the Integrity of the Vasculat Endothelium.- This is a factor of the first order. Baumgarten and litiow hince shown that the blood may be kept fluid for days when "wh. .al in a vein between two ligatures, or in a "living test-tube," "min, wil of a vein, ligatured before removal from the body, and then ul. : ... it our coul, provided that in ligation the endothelium has not l:ai. .inaseal. On the other hand, the iestruction of the endothelium, "ha: I "prementally or hy disease, is foilow by thrombosis.
2. Slowing of the Blood Current and Stagnation.--large thrombi oecur in areas like anemrysins, where the blool stream is slowed; where, as in arteries, the strem is rapid, there may be little or uo thrombosi: . Thas thrombesis is murh more common in the venons than in the arterial system.
3. Eddying of the Blood.- Von Iecklingiansen hedrl that this rather than simple stagnation explains the frequent origin of thrombi in the pockets of the valves of the veins. The eentre of an eddy may be recalled as relatively stagmant, and the more peripheral whirl brings suceessive cells or bleod platelet into approximation with the surface of the developing thrombus.
4. Hemolysis.-Agents leading to corpuseular disintegration favor extensive thrombosis. Such agents favor more rapid coagulation (or hyperinosis). Among them we may mention burns and fieering of parts, transfusion of blool from another individnal or species, and varions poisons, suake venom, foreign enzymes, ricin, tohydene-dianin, extracts of amanita and wher poisonons moshrooms, and the prohnets of cedl degeneration. Of the same order may be cited the toxins of infections. 'Thrombosis, for example, is not uncommon as a complication of typhoid and other infections conditions. In some of these cases we deal with a hacterimia and find (as in acute codocarditis) that there has been a primary injury to the vascular endothelium. Such thrombi in themselves contain abundant bacteria. In other cases, however, the thromhi are sterile, and in these we mast suppose that the rirculating toxins are the important factor both in injuring the vascular cudothelinm and in bringing about an inereased coagulation power of the blool, this hyperinosis and the liability to thrombus formation appearing to proceed hand in hand.

Forms.-Thrombosis may occur in all parts of the circulation proper. (a) Cardiac thrombi are frequent; the sites of election here are in the anricular appendiees, and in the ventrieles, originating either at the apices or in the poudes between the musde bmolles. All these are areas of relative stagnation of the bloorl, and, it may be mided, of poor mutrition of the eardiaf endothelimm. Originating thus the: tend to form sessile, more or less ghombar masses, and, imbler the artion of the blood corrent, often present a ribbed or coarsely netted surface. They are of some little duration. Aiter a time these thrombi preent a comparatively thin surface layer, enelosing a turbid fluid, the erentre of the mass having undergone liquefaction throngh antolysis or loukoextic heterolvis. Wore rarely such a ghobalar thrombos, originating in one of the amricular appendieses, becomes perdmentate with progressive growth, and, being broken ofr, forms a ball thrombus. liree in the aurionlar cavity, such ball thrombi have been fonnd to be a canse of sudden death, acting like a ball valve and occhodiag a narrowed mitral orifice.

Vet another form of cardiac thrombosis is of first importance. 'Those above mentioned are concontered in cases of ohstructed circulation ind

لwow blood flow, whether throngh weakening of the eardiat musele or through valvolar disease. Thes are generally regarded as bland and nom-infertive. The other form is that fomd in ante (baterial) endomarlitis, in the form of vegetations, most often developing upon the cusps of one or other heart valve, but oceasionally also growing as parictal thrombi upon the walls of ventricle or auricle. Sinch vegetations may he in the form of individual processes or outgrowths, or, at times, may develop into large canliflower-like masses, allherent to the valves.

Fla. 1N3

fiteloular thrombus of atricular nppandix: a, globular thrombus filling and protruding from the aurienlar appendix.

Fic. 184

Globular thrombus of apex of left wotriele.
Fro. : heir comsisteney, and from the motion of the blowd enrent, as al-w :Hm the softening they may undergo through the action of the hact, il ferments, vegetations of this nature are peruliarl! liable to here.. liroken off and be carried forward in the bood st ream.
. 1 ramle noted (b) arterial thrombi are not so froquent an are Lewn Xovertheless, they may develop both in the pulmonary artery: and the aorta or its bramehes. More frequently they are parietal. tron. from some diseased area of the arterial wall, and at times they
may completely fill the vessel, forming an oceluding thrombus. it is interesting to note that it is exceptional for such arterial thrombi growing downward to extend into the capillaries. When (c) capillary thrombosis oeeurs it is due to direet local irritation or disease.
(d) Venous thrombi are relatively eommon, ocenring in the pulmonary, the systemie, and the portal circulation. The slower flow of the bloonl, its poorer quality, the presence of the

Fig. 185

Tcrate wed thrombus of the vein. - Hetitil Madual Musworn) valves, the low blood pressure, and easy compressibility all favor thrombosis, and oure the proeess has begun in a vein, it is apt to extend in both directions, so that, for example, al thrombus originating in the femoral vein, may extend up int, the iliae reins and involve atl the branches of the femoral below, while a thrombus forming in the eins of the uterus may progress matil it fills the internal iliaes of cither side.

The Results of Thromlosis.-An obliterating thrombus of a vessel promines those emuditions of arrested circulation, in the area of supply or origin, that have already been disensised. If the thrombus, or part of it, be"omes loosened and carried along the blook streetm, its effects are those which we shall diselusis in mir next section when treating of cmholism.
As to the changes that may oecur in the thrombus itself, the following may be said:
Once laild down, the filbinoid framework of the thrombus tends to contract and Irive oit the excess of plasima, henee the thrombins becomes relatively dry: If the thronblus is small, the indieations are that, throngh the ageney of leukocetes, it may (1) muleryo complete absorption and removal, with restoration of the circulation to the part, or (2) it may mulergo organization. We have alleady painted out that at the regius of attachment of the thrombus the lining endothelime of a vessec is destroved. It is at this point that the thrombus actims Ioxth as a frreign body and irritant, leuhertes makr their way into it from the vasa vasorum, and following num these there is a passaze in of capillary loops and processes. In this w.y, juat as in ordinary granulation tissue, first there is a solution and progresive remonal of the thrombotic material, and this is followed by the laying down of fibrohlasts and new comective ti-sue.

The thrombus this eventnally becomes represented by a shrunken mans of dense connective tissue. The network of new capillaries, in this newly forming tissue, may open above and below into the lumen if the vessel, and so not iufrequently we find the development of canalization, one or several channels of fair size restoring the continuit! of the vessel. At times indeed the only indication of an old thrombosis is the presence of fibrous bridges stretching across a vessel.
(i3) Autolysis, as we have already noted, is liable to occur in old cardiac thrombi.
(t) Putrefactive Softening.--TY is olso has alrcady been referred to, hat two processes must be distingnished. There nay be a simple pmilorm, but not truly purment, softening of a thrombrs. This, for eximple, is not infrequentlv ceen in thrombosis of the lateral sintrs and internal jugular vein foll: whag upon infective middle-ear disease. The thrombus is hquefied through bacterial ageney; without any marked invanion by pus cells. Or, on the other hand, as we at times note after anpendicitis, progressive thrombosis of an infective nature, involving the inferior mesenterie vein, may either be the result of an ascending infortion of the wall of the rein, or may itself set up inflammation of the wall (thrombophlebitis). Where this is the ease there may be all ahmulant migration of leukocytes into the thrombus, and softening, asumiated with true suppuration. (5) In certain regions of the bods, Where there are abundant venons amastomoses, ans in the nterine and prutatic plexises, we encomer phleboliths, somewhat elongated, wal hulic:, lying loose in the lnmen of a vein, when have molergone calcifaition.' These are old bland thrombi, are characteristically mattached, and instad of being absorbed they become infiltrated with ealeareous nilts.

Embolism.-Any body which, earried along by the blood stream mutil "itl the narrowing of the himen it heromes arrested and blochs the burd. is known as an embolns, literally, something thrown in.
lirmis uf limbolism.-It is interesting to note how many diverse Inntix, furign to the normal hood, may thus constitute emboli.
Liberated Thrombus or Vegetation.-(1) Quite the commonest is a liberaten 11 rombunc or a cardiae vegetation. The for aer, liberated in the \because tem. wille, may either become arrested in the right heart, e. !f, the
 Pulnumars arbers, or originating in the pulmomary veins or left heart, lwenne arreted in sone one of the arteries, or, lastly, originating in the p... If atim. is arrested in the liver. I detached venous throm-
 paint ... hiraration of a branch of the pmimonary arters. So. often, it
himin- : i h hown as "riding" embolus, riding over the angle of the
hime. "and rextrading down the two branches. It is apt to be why. Whw the two branches ber a process of secondary thrombosis whent 'rime the free ends.
2. Calcareous and Atheromatous Emboli. - ('alcareons and atheromatons matter from atheromatons uleors may also potentially form emboli, but these are not oftern encomenterel.
3. Cell Emboli.- Thmor masses amb ecells, originating from new growths which have penetrated the vessels, forming emboli, may contipue to grow, and thes give origin to metastases. Tissue cell emboli also ocemr. Of these the more frequent are placenta cell cmboli, derived from the foetal villi, which have penctrated into the uterine simses, and liver cell emboli, the cells being liberated into the hepatie vein after some sharp atml long e mpression upon the organ. These would seem to be more of the nature of pathologieal coriosities than causes of serions disturbanes. Another cell whed may also become liberated into the circulation is the giant cell or megacaryocyte of the bone marrow, which is apt to be liberated in the delicate capillaries in eases of pronomene lenkerensis. Very rarely osteoclasts and fat cells from the marrow have berol detected in capillaries.

Of cells that maturalls are present in the blood, the leukecetes, in cases of machoid lenkemia, may be so lensely packed into the capillaries of varions organs as to constitute embeli.
4. Fat Embolism follows nom extensive concomsion of the bumy skeletem, suld as may he ramsed bey a fali froma height. So, also, after fracture of the long bones, with rnpture of the fat cells of the marrow, after forcible breaking down of stifl joints, operative handling of fatty tissues. surlo as the omentmon and pamiculas aliposus, mumerons eapillaries of the lmg mare be blocked ber fat. Where onle a few capillaries are involved, at most minute infarets may be produced, with me serions results. There may be a small surromaling congestion and some migration of lonkoptes; gradually the fat secons to become saponiforl and so removerl. Its preseme in great abmelame may serionsly obstruet the circulation throngh the hang, and max aeen proulace a fatal dxspucea. The emboli may breome loosened from the long eapillaries, and passing throngh the left heart, hase been encombered in the eapilaries of the heart, kidney, and brain. I somewhat -imilar combition is at times met with in the lipermia of diabeters, but luere me reaction is seen; apparentl, the fine fatty ghomese present in the hame haver ron together and creimed as a post mortem phemomenom.

Of emboli dhe to extraneons matter the following may be noted.
․ Air Embolism. The nergative presismere most marked in the 1. in nearest to the heart during inspiration, sometimes leads to air heing surcked into one of thene veins dhring the coures of an operation, or after trimma. If the gmantity so inspired be small, no result may. cnsuc; if larger, death at times ocemes with absolnte smbleme- at times after a period of extreme drepuon, with ceanosis and combinhims. ('ases are on record where sumben death, apparently due to this canse, hats followed operation upon the head and upper extremities, amd from entrance at the placental site doring or after labor. There is still ame delate an to the exact canse of death. Some cases are evidently watize,
dhe to the expansion of the warmed air and its beroming churned into a froth in the heart, the frothimpeding the action of the aurienloventricular ralses. In other cases the formation of abundant eapillary emboli in the lungs or brain would seem to be the lethai agent. Thus in these (ans: the lungs bave shown multiple hemorrhages, indieating obstruction of al large numisu of eapillaries, with congestion and rupture.
(i. Gas Emboli.-Rapid death may follow if proper precautions be nut taken, when those who have been working under compressed air return to the ordinary pressure. There may be either pronounced dypmora and asphyxia, rapidly fatal, or a suecession of nervous disturhances, which may be reeovered from, or prove fatal after a few days. This caisson disease has heen experimentally proved to be clue to the inerasicel solution of air in the blool under pressure. The oxygen of that air is utilized by the tissues, but the dissolved nitrogen is apt to he liberated from the blood in the form of gaseous bubbles, as gas bubbles furm in a socrla-water bottle just opened, and in the eapillaries, notably theme of the brain and spinal corl, these form emboli. The injection of in:mide of hedrogen inte the cavities of the body has been followed by Hralu wrehral symptoms, apparently due to air embolism, and in a "raian proportion of cases of infection by the Bacillus Welrhii the produrtion of gas in the vessels oreurs ante mortem, so that gaseous cmhnition may be one of the eauses leading to a fatal event.

- Bacterial Enboli.--13acteria may, although we think indirectly, firm (apillary emboli, whereby we mean that bacteria carried in the hant tram may be arrested by the capillary endothelimm, and so do met immerlintely block the vessel, but multiplying locally may eventnally (enmptoly onclude it.

Pigment Emboli.-These vecur in the smaller capillaries of the hrain. hidnere, and other organs in malaria. These emboli are composed if the Adris, pigmented, of the hemamoba of malaria left after the Vmrw hanc beroll diseharged.
" Parasitic Emboli.-Closely allied is the aecumulation of trypanovilu, in the cerchral capillaries, which, according to some observers, i 1 h. main "anse of the sommelence characteristic of sleeping siekness. W.1... 111 prasitos, nel as the abumdant larvat of various strongyles, ntit, whe inhuce embolism. After the rupture of an echinococeus cyst, whin the danghter cysts may find entrance into a vein and so lead tw, trilim of a pulmomary vessel.
I! E oreign Bodies,- Lastly, some three cases are on record in which lullu! mutring the heart or larger vessels have been earried along in II, $1, \ldots+$ tromm mutil the \boldsymbol{y} have become fixed in some smaller artery.
II. I_{1}. "nrelves seen a bullet lolged in the femoral artery after pierri:- Her interior wall of the dorsal aorta.

Thi li vult.s of limbolism. - These have already been discussed when tratin - ithe closure of arteries and infaret formation. To repeat, Whal. "infarct be formod or not depends upen the extent of the rallat. irconlation. Is to the result nipon the vessel itself, there may
be either urganization and ohliteration of the vessel; abscess formation where the embohs is infectiwe ancurysm formation throngh weakening of the arterial wall; formation of metastatic growths, etc.

Hemorrhage.- Hemorrhage, the act of esceape of blood out of the vesiels, and the results, local and general, of that escape, may be of two orders-that brought about by gross breaches in the continuity of the vessel wall, hemorrhage per rhexin, and that occurring in capillary vessels without breach of contimuity, but through the insterstices of the wall, hemorrhage per diapedesin. (1) The former may be cardiac. arterial, or venous, and may be bronght about ley trauma, be disease and weakening of the vessel walls, and by grave adterations in the relations of the pressure acting upon the vesseds from without, and the blood pressure within the vesisels-whether by imdue lowering of the external pressure, or undue raising of the blool pressure, or, lastly, by a combination of these causes, i. c., an incrase in blood pressure throigh sudden exertion whiel! would have no effect upon healthy arteries mav lead to cardiac or artrrial hemorrhage in one suffering from disease of the myocardium or syphilitic disease of the aorta. Here may be noted a rare order of hemorrhage, regional, capi!lary, and apparently per rhexin, that, namely, of nervous origi:s, seen occasionally in hysterical individuals. The "stigmata" on the hands ind feet of religious enthusiasts are of the same order.
(2) Hemorrhage per diapedesth ocrars from the capillaries and venules as a result of artive or passive congestion. It is generally held that the passage of the bion! riments occurs between the endothelial eells by expansion of the bridges ami spaces between those cells. Impoverished nutrition of that endotldimm still further favors the escape of bood, as does lack of support by surrombling tissues. Thus, this form of hemorrhage is particularly liable to ocrer where the capillaries are superficial, as beneath serous surinees and in the hong alveoli. A similar oozing of blool may show itself where the arterial wall is thinned and its endothelium imperfect, as in false ancury: sins.

Varions manes have berol given to hemorrhages in different regions; thus a cerebral apoplexy is a hemorrhage bronght arout by rupture of one of the arteries of the hase of the brain, and its results; hematemesis, a gastric hemorrhage, or, more accurately, its results, the escape of blood from the stomach through the mouth: melena, the discharge of blood per anum rendered black (fesia_, f. „éiucua) by the action of the intestinal juices; hemoptysis, the expectoration of blood after pulmonary hemorrhage; hematuria, hemorrhage along the urinary tract causin!, blooty urine; metrorthagia, hemorrhage into and from the uterine envity at time's other than the menstrual period; menorrhagia, excessive loss of blood at that prioul (ary, a nonth); hematidrosis, boody sweat. The terms hematopericardium, hematothorax ixplain themselves; : hematncele is the accumulation of blood in any horly cavity (xyitr, n tumor). A hematoma is a localized projecting, tumorlike accumulation of bood in the tissues; petechise are punctate capil-
lary hemorrhages; more diffuse eapillary hemorrhages so close set that they temel to run together are ecchymoses or suggillations; where these hemorrhages are inultiple and subrutaneons we speak of purpura.

General Effects. -The gravity of a hemorrhage depends upon (1) the amoment of blood lost from the vessels, (2) the rate at which it is lust (that amount which, withlrawn sudenen, leads to death may be lost wera! times over in recurrent smaller hemorrlages), (3) the region of hemorrhage (thus a hemorrhage of but an onnce into the brain substance, by pressure upon and obstruction of important centres and tracts may canse rapid death, where a pint withlrawn from the vein of an arm may be followed by a fecling of relative well-being). It may he laid down that the normal adult individnal may suffer the loss of twenty ounces of blool without harmful effects, and of less than half the tutal volume of blood without necessarily fatal results; women hair the loss of large amounts of blood better than do men.
Tahing these into consideration the general efleets of hemorrhage may he:

1. Simblen death within a minute or two, as after rupture of the hear:, or bursting of a thoraeie aneurysm into the pleural cavity, pricurimun, cesophagus, or trachea.
?. Weath. preceded by coliapse and all the symptoms of grave cerebral antilia.
it Collapor followed by hydremia and eventual recovery.
2. swowe or temporiry cerebral anemia with rapid recovery:
i. Su disturbances duc to cerebral anemia, but, in eases of hemorrhagic extravasation into the tissues or cavities of the borly, the devel"purnent of a febrile state due to diffusion of the promluets of disintegration of the "xiravasated bloorl.
The : thowe need little eomment, save, perhaps, to note that diminution of the circulating blood below the normal anount is followed by a pawate ol fluid from the tissues into the blood ressels so as to restore in al lew mimutes the amount of fluid within the vessels; this passage rember, the bood hicidremic. So, also, secondary to any considerable h... in howl there is increased aetivity of the hematopoietie tissues, and mothly aut increase in the red marrow of the bones (inereased pronluxtinn of erythrocytes). With repeated hemorrhages the marrow mas hireme exhansted and the reprodnetion of red eorpuseles be impernen. Thus in a case of vaseular papilloma of the bladder with hentitaria "xtemeling over many months, we have seen developed a combitan chorly resembling pernicions anemia in every respect, save in a lack of incramed iron content in the liver.
Local Effects. -The loss of eontinuity of an artery by deflecting the lhenl yrammay lead to at least temporary lack of nutrition of the area $:$, In general, where there hats been rupture there follows a han: I proness whereby the escape of blood is brought to an cond: (h) wl . - the esalue is at all considerable the bloorl pressure inecomes brein I! luwered, aud with this the rate of escape is lessened. (2) is
the blood esenpes through the womded vessel into the tissines, contant with those tissues, and their congulins, induces congulation, and this in its turn has a hemostatio action which becomes more eomplete the slower the blond strealle. (3) The sohution of continuity of the vessel wall, if the rupture be transverse, is followed he contraction of the middle coat, and diminution of the vaseular homen. If it be longitudinal, on the eontrary, the contraction results in the opening remaning patent. But in general, besides (1) the direction of the rupture, the matural arrest of hemorrhage depends upon these main factors, (2) the size and mature of the vessel involved, whether artery, vein, or capillary, (3) the forec of the heart action and hoond pressure, and (4) the state of the bood, whether hyperinotic or hypinotic. There are those in whom a trifling contusion with rupture of vessels of ineonsiderable si\%e is followed by intractable hemorrhage endangering life, in whom, for example, the extraction of a tooth is dangerons. To these victims of hemophilia we have already referred, pointing out the hereditary mature of the diathesis (\sec p. \mathbf{t}^{-}). As to what is the exact nature of the state we are still in ignorance, whether there is an excessive developnent of antithrombin or a lack of kinase or congulins. It has, however, been noted that the intravenous exhibition of horse or other bood serum tends to arrest hemorrhage in these individuals.

Next as to the fate of the extravasated blood. This, when it eseapes into the tissues, mudergoes eotgulation; when it eseapes into cavities lined by endothelimm it may remain fluid for some little time, and in this fluid state mas undergo reabsorption through the lymphaties hoth as regards its fluid and its corpusedes.

In petechise and mimute hemorrhages into the tissues, through the agency of lenkocetes the extravasated corpuseles after undergoing disintegration may be completely absorbed, although often some pigment is left behind, loading to a coloration which disappears in the course of weeks and months.

Where the hemorrhage is more extensive the following changes may occur:

1. Fscape of hemoglobin from the extravasated erythrocytes with hemoglobin imbibition and discoloration of the area.
2. Disintegration of the eseaped hemoglobin with production of hemosiderin and hematoidin (ser p. 322). The different stages in the disintegration lead to a series of color changes (as seen in the fitmiliar "black eve").
3. Absorption of the pigment and disintegration prolucts ber leukocytes, which may be found in the area, containing pigment and other granules.
4. Where the hemorrhage is large and the absorption incomplete there may, as in some hematomas, be a production of surromoding gramulation tissue and eventual production of a hemorrhagic cyst (p. 2933), the contents of the eyst heconing eventually a colorless arrum.

The bactericidal powers of the bloond are such that it is rave for a hemorrhagie extravasution to become infected and terminate in abscess firmation or putrefaction.

QUALITATIVE CHANGES IN THE BLOOD

In this sertion we have to pass rapidy in review the main data conerrining the variations in the plasma and the corpmsenlar elements of the blowl mud their relationship to disease.
The Plasma. - We are but at a beginning of our kuowledge eoneurning the significance of changes in the composition of the plasim. While it is relationly asy to determine the varibions in its main ciements, water, sermm albumin and serum globulin and salts, we are coming to realize that comstituents present in quantitics too minute to be isolated by rhemimal methorls exereise a profound influence upon the looly at large(nathers, hormones, toxins, and antitoxins. Biological as well as chromial methols have to be invoked in order to gain a completer knewlenge of this great medinm of interchange between the various tivoles, this stream which is at onee the nutritive medium and the sewer of the boly:

IV curals its main elements, what impresses us is the evidence of the evistence of mechanisms which in the normal state keep their ratio extramedinarily constant, so constant that, as A. B. Macallum has pminted out, the salts still retain the relative proportion elaracteristie of that incestral period when, with free eommunieation between the bunly con ity and the external medimm, the internal tissies were bathed in lint lightly morlified sea-water. Nevertheless, in disease variations ari mamifest. Thns, as already indicated, sondition of hydremia is ini infryucnt, of increase in the plasma relative to the corpuscular Anman- with acempansing lower specifie gravity: This may be hrmadn about (1) ber actual increase in the amoment of cireulating fluid, as in ut-tuctive hairt disease, (2) be no in rease, but, on the contrary, derraw in the total amoment of cirenlating floid, as after severe hemorrhase. "hen with loss of bood the plasma melergoes a eompensatory dibntini, teneling to maintain its volume. A similar relativa hedremia i, wnitertistic of conditions of grave anemia brought about, not by

 Inne: !ain. so that the hopertonie state of the plasna may be reduced to 1^{1} rmal. This procees has been invoked to explain the hedremia inf lit it in, whish there are evidences of increased retention of chlorinle ". "stem, thongh here also the loss of the proteins of the blood hy. "into the urine may be a factor of some importance. Thus, liriw: \quad Indremie state of the blool may be encountered (1) in obstrue-
tis: this und lung disease, (2) in kidney disease, more particularly the wlit H hymatous form, (3) after severe hemorrhages, (4) in condi-
tions associated with destruction of the red corpuseles, severe infections, molvinced maligmones, and pernicions ancmin

Of the protcins of the phama (as eontranied with blool sermin) we. have ulrendy called attention to the eonditions of hyperinosis and hypinosis, due presumably to diflerences in the ratio between fibrinogen and fibrin ferment. But in the gencrality of cases it would appear that we have to deal not so mueh with an excess or defieceney of the substrutum to be arted upon, the fibrinogen, as of the kinnse mil its concomitnnts, the caleinm salts, ctc. It is the rate of congulation rather than the mount of fibrin that shows the greatest varimion. There are, however, indieations that in certain conditions the amonnt of fibringen, and so of fibrin produced, is definitcly bedow the norman.

Of the salts of the plasma (sodium salts, chlorides, phosphates) this may be said, that they play a part in the solution of the proteins and are normally present in such relationships that the plasma is defimitel: alkaline. Reduction of the alkalinity (acidosis, p. 109) is followed by the gravest metabolic disturbances.

Lipemia.-From the normal plasina there can always be isolated a minute quantity of fat, but occnsionally we meet with an extraordinary incrense in this fat, a condition of lipemin. As in milk it is present in fine globules in the form of an emmlsion. The amount may be such that the serum ussmmes a distinctly milky apparance. We know little regarding the causes leading to the condition, save that it is encomitered in diabetes and other diseases chnracterized by defective oxidation and increased earbon dioxide of the bloml, phosphorus poisoning, severe anemias, phemmonia.

The Red Corpuscies. - Variation in Number.-We have alre:idy laid stress upon the fart that moderate increase or decrease in the mimber of erythrocytes per cublie millimeter gives ns no sure information muless at the same time we determine the total volume of blood; such ehange may be brought abont he conerntration or dilution of the blood plasma as well as bey actual increase or decrease in the momber of cireulating corpuseles. There may be an apparent great increase in the red cells in cholera asiatica, due to draiming away of the fluid from the bloorl, or, on the other haml, in aetual polycythemia. A great increase in the number of red corpusches is seen in those living at high levels, and this without recognizable dimimution in the total volume of the blood. What is the canse has not surely been determined. Even in a balloon ascent to an . Ititude of several thous and feet an inerease from the normal $5,000,000$ to S, inn, no (h) has been recorded. A similar increase has been reeognized in animals made to breathe carbon monovide. This suggests that the change is adaptive, duc to inercased demand for oxygen, and that it is brought about by an increased outpouring of erythroevtes from the bone marens.

A pationorical polycythemia has been recorded by several observers, unermsected with rhange in altitule, blood counts affording from $8,000,000$ to 14,0 , 000 corpuseles. There is often an associated enlarge-
ment of the spleen, and a dusky or cyanotie appearnnce of the skin, with, at post roortem, presence of abtumhat red marrow. 'The canse of the combition is practically monown. Weath often oecurs within a fow nioh of reognition of the state, althotgh a few cases of return to mirmah have heelu moterl.

Variations in Siso. - Where there is slisturbance in the production of rolcorpuscles, as in secondary and pernicions anemias, certain corphas les mily intanin harge size (megalocytes), with a diannctor of from 16
 maty aliso encontier cells that are abmorually small (microcytes), atong with corpuseles exhibitiug great varintion in shape (poikilocytes, frout -

Variations in Structure and Staining Reactions.-A stuld. of the rell marrow shows that the red corpmseles origimate from mindeated cells - erythroblasts-he a process of gradual slirinkage of the muchens, with diediarge of medeoli or nucleolar matter into the certophasm, which at fire ventered in uasses, gradually difluses evenly throngh the whole rothlasim. In disense we may encomer varions monlifications of the mrpmilu which represent stages ia their developmont and indicate, therefore an increasednetivity of the marrow, with premature dise harge of tha copposeles. We thas, at times, efocomiter melaterl red corpmelles in the form of megaloblasts, large cells with large pale muclei (thr rarlicst stage), normoblasts, which are hemoghobin-containing cells of mormal size, but uncleated, and other cells exhibitiug polychromatophilia, 'ertan corpuscle's taking on n umore hasic, purplish stain. By: Romammsk's staian or modifications of the same this is characteristic of immiture erythrocytes. The "stippling" of the red corpuseles, seen in whu "ases of lead poisoning, may also indieate an incomplete conwervin of discharged nucleolar matter into hemoglobin, and may also lu whimere of immaturity. As regards irregular staining, it unst be noted wat this may also be met with in cases of recognizable degenerathon of the corpuscles (e. !., in carly thromhi).
Whar drar evidences of disintegration are seen in the conditions of plasmonhexis and plasmoschisis. The former is the development of remations at the periphery, with progressive liberation of peripheral Whathlon of varying size. The latter is the rapid breaking up of the whole lanl! of the corpusele into small globules from wheh the hemoglobin hat !exill discharged, so that as they separate ther are scarce distiaguishahla from bood platelets.
Variations in Hemoglobin Content.-There may be great variation in the wher index of the blood, i. e., the ratio of the hemoglobin per mpln he: This is, for example, found increased in pericicious ancmia, redhu! in chloro is. There may be both a rednetion in the hemogh! !io monere as in the hater ease-a defective comersion of the mink: matte, ol the erythroblast into hemoglobin, aud, on the other Hant, ditinsion of the hemoglobin out of the corpuscle or hemolysis. II. numerous ageneics whieh can bring abont hemolvsis both

within the vessels and in the test-tube: cold (as in paroxysmal hemoglobimuria), "eat (as in burns), the sera and tissue extracts of animals of other speeies, and sometimes of those of the same species, experimentally proluced hemolytie sera (p. 163), eertain bacterial toxins: (which possibly explain the anemia of many infectious diseases), notably those of streptococeus, B. coli, prococeus aureus, pheunococeus; vegetable products, such as ricin and amanita (mushroom) poison. In addition many chemical agents bring about this diffusion ont of hemoglobin and "laking" of the blood, notably pyrogallic acid, glycerine, potassium chlorate, and toluylenerliamin. And by employment of one or other of these agents we ean materially reduce the number of circulating erythrocytes. The red corpuscle, that is, when it has lost its hemoglobin, has no power to reproduce it, and so is rendered largely nseless. Its stroma is removed by the agencer of the splenn. Thns, by inoculating rabbits with repeated non-lethal doses of B. coli (Charlton), or by similar doses of ricin (Bunting), the number of erythreetes becomes reduced to $1,000,000$ or less per e.mm., and conditions (ineluding poikilocytosis) elosely simulating pernicious anemia are produced.

Secondary Anemias. - When we can determine what appears to be an adequate cause for the reduction in the total number of eorpuscles, we speak of a secondary anemia. This may be acute, as after profound loss of blood, potassium chlorate poisoning, and severe infections, or chronic, as after recurrent small hemorrhages, in splenic anemia, eancer, and exhausting diseases, lead poisoning, intestinal parasites, etc. The longer continued the destruction or loss of red corpuscles, the greater the strain upon the marrow and blood-forming organs, with the result that nueleated and other premature and imperfectly formed erythrocites are apt to appear in the circulating blood until finally, as in those afflicted with the fish tapeworm (Dibothriocephalus latus), or in some cases of eaneer, the blood picture is indistinguishable from that of pernicious anemia.

Pernicious (or Addisonian) Anemia.-This affords a very characteristic picture. The vietim has a peenliar lemon vellow color, is apt to be flabbily fat, exhibits progressive musenlar weakaess, with weak heart action, anhlorhydria, or absence of free acid in the gastrie juice, and other digestive disturbanees, diarrhoea, ete. There may' be one or two renissions, but with very rare exceptions the conrse is fatal within less than two years The blood condition is striking: marked reduction in the number of erythrocytes, it may be, down to 500,000 per e.mm.: presence of poikilocytosis, with macroevtes, microcytes, and nuclented red eorpuscles. The eoler index is increased.

At antopss the most marked features are the bright yellow eolor of the body fat, the small amount and tinin, watery character of the bloorl, the pallor and bloodlessness of all organs; the fatty degeneration of the heart muscle; the presence of inereased iron in the liver demonstrated by Quincke's (I'russian blue) or Perl's (sulphide of iron)
test, and evidences of hyperplasia of the red marrow of the bones. Frequently there is an accompanying atrophic gastritis, and evidence of interference with the sensory tracts in the lower part of the cord.
These various conditions suggest the continued action of a hemolytic toxin of gastro-intestinal origin, leading to excessive destruction of the red corpuseles, inerease in liepatic iron, and increased but inperfect compensatory proluction of corpuseles. The inerease in hepatic iron, for example, is a result of hemoglobin disintegration; the pigmentation of the fat, a result of modification of the hemoglobin liberated in the circulating blood. Whether the fatty degeneration of the heart museles is of toxie origin or due to deficient oxidation is uneertain.
The eause of the hemolysis is still undetermined; there may be more than one. From the frequent association of pyorrhoea alveolaris, a low form of smppuration involving the sockets of the teeth, Hunter inclines to the view that a secondary chronic streptococcic gastritis is the csirntial cause; onc of us (Adami) has suggested that we deal with a sulbinfection by means of hemolytic intestinal bacteria of the colon group; Herter would implieate the excessive proliferation of the B. Wedchii in the lower intestine. Based upon the close resemblance between the clinical pieture and post mortem appearances in man and thowe of surra and dourine in the horse, the latest hypothesis is that we deal with a condition of trypanosomiasis. The riddle has still to be ruluct.

Aplastic Anemia.-Rarely there is encountered an extreme anemia acrimpanied not by hyperplasia, but by an hypoplasia of the bone mirruw and hemopoietic centres. There is great reduction in the number of red corpuseles, absence of normoblasts and negaloblasts (immature crythrocytes), low color index. Poikiloeytosis is not marked, lmphocytes are in good number, but leukocytes (polynuclears and conimphiles) fewer than normal. Instearl of inerease in red marrow there is reluction, its place being taken by fat cells.
Chlorosis.-Chlorosis is an anemia of a different order affecting vomus alult females; its presence in young males is so rare that many dene its existence. There is a characteristic pallor, the "green sickness" of lilizabethan writers, lassitude with weakness following upon slight extion, dyspepsia and eapricious appetite, gastric acidity, constipatinil :ind cittacks of palpitation.
Thre hool exhibits definite hydremia with corresponding reduction in ther number of erythroeytes per c.mm. What is most marked is the rethetion in the hemoglobin, so that the color index averages 0.5 , and mas he as low as 0.1. The gool effects that follow the proper exhilition of itmingest that imperfeet production of hemoglobin is the essential flatise: What leads to this we do not know, although several clinicians hali laid stress upon constipatical and the good effects that follow a (wher- of laxatives, suggesting intestinal intoxication as the underlying (:llim Others see a relationshiy between the sex of those affi ted
and between disturbances of the menstrual function and these blood disturbances.

The Leukocytes.-Before proeeeding to 'seribe the changes that oecur in the leukocytes it is necessary to msify these and to have some idea as to the relationship of the difisent forms. Now this is not an easy matter, and that beeause, despite abundant research, there is still aetive controversy regarding many points, and to diseuss the pros and cons would oeeupy many pages. We ean, therefore, but give dogmatieally our own opinions regarding these matters, stating frankly that these represent one view, and that they are liable to revision. ${ }^{1}$
Briefly, we have to distinguish between the eireulating white eorpuseles and those found outside the vessels and in the tissues, certain wandering cells being found in the one region and not in the other. We can further distinguish between those white corpuseles, or wandering eells which originate from myeloblasts, those that originate from lymphoblasts and lymphoid tissue, and those originating from endothelial and other conneetive-tissue elements. The trend of reeent observ: ons is to approximate more and more the last two groups. The difhculties in making a elassification depend essentially upon this, that the earliest and simplest stages of developing cells show practieally no differentiation, and thus it beeomes a matter of extraorlinary difficulty to trace back the different forms of cells to their origins, particularly when in the hemopoietic system the different orders of cells are apt to originate side by sile and not from different isolated centres.

Forms of Leukocytes.-We may, however, distinguish the following main forms:
Of myeloblastic origin (granular leukoeytes): (1) the polymorphonuclear, polynuclear, or neutrophile ecll. This is the commonest white corpusele of the circulating blood, eonstituting in general more than 65 per cent. of the white corpuseles present in normal blood. In its cytoplasm are fine granules which stain with neutral or more aecurately wcakly aeid dyes. It is the form in greatest abundance in aeute inflammation, and is thus the typical pus cell. The nueleus is charaeteristically lobate, so that under low power the cell appears to be multinucleate. It is actively phagocytic, particularly for bacteria. It rarely shows evidence of ritosis in the blood stream, or again in the tissues at the site of inflammation. It has nothing to do with tissue fornution.
The Eosinophile.-This is of the samc size as the former, most often its nuelcus is coarsely lobate or horscshoc-shaped. In the cytoplasm are gramules much coarser than those of the former, and these take an intense stain with eosin and other aeid aniline dyes. It also nigrates out of the vessels in the carly stage of aeute inflammation, but is soon overpassed in number by the polynutears, while again it is found in the tissues in fair numbers in certain forms of subaeute inflammation.

[^14]In normal blood this form is present in but small numbers (abnut 3 per cent.). It is abundant (10 to 50 per eent.) in many forms of hrflminthiasis (parasitic worms), in certain cases of chronie skin disease, ett. Only rarely is it observed to act as a phagocytc. Studics made on the frog and other animals show that these cells ean discharge their griumles, which are of nucleoprotcid nature. The eells seem thus to have eertain excretory funetions. Opic has noted that during the emirse of certain acutc peritoncal infections the eosinophile disappears largely from the peripheral cireulation, but may be found accumulating in the mesenteric and other vessels, and there undergoing migration.
The Lymphocytes.-The typical lymphoeyte is distinctly smaller than the preceding form, possessing a relatively large, sphcrical, deeply staining nucleus, with a relatively inconsiderable surrounding layer of stoplasin. This form of cell is but slightly amoeboid. It is not obsrrved to be phagocytic. In inflaramatory conditions it is found more particularly aceumulated around the vessels. There is still doubt as to wherther these accumulations are the result, in the main, of migration, or are due to proliferation of preëxisting lymphocytes of the region. (Marehand.) In subaeute and ehronic inflanmation (e. g., tuberculosis) this is the preponderating type of cell present. In the blood strcam iin pathologieal conditions, what are known as large lymphoeytes, one firm of "large mononuelear," may be eneountered; these represent immature lymphocytes. In the tissues in cases of subacute inflammation the small lymphocytes give origin to cells of larger size, with excentric murtens and a somewhat polygonal cell body of fair size, the plasma cell (p. 132).
Mast Cells.-These cells, rare in the normal blood, may be occasionally cucountered in pathological states, such as leukemia. They are of fair size and possess abundant granules which take a basic stain and arre so large that they may be taken for clusters of micrococci. The inudens is gencrally degenerated. Whether the mast cells in the tissues arr of the same origin as those in the blood has not been absolutely Inturmined, but here they may take on motility, and their path may be tricell occasionally by the granules which they have shed. In any pwition they are eomparatively rare.
Hyaline Cells.-Cells having a large body and an oval, pale staining inillw, constituting "large mononuclears," are encountcred in the Hhwnl in small numbers, and there are difficult to distinguish from the lirse lymphoeytes already described. Their eytoplasm is frce from Lrmulec. A sinilar type of cell is seen in conditions of inflammation of the iuritoueal cavity, and here clearly some at least of these eells are of (1)...thetial origin, derived from the lining endothelium of the serous sur.urn. It is possible, therefore, that the intravascular form originates frum the vascular cndothelium. The macrophages of the sinuses of inflaturd lymph nodes are of this order. This type of ecll is phagocytic, 1u: . r the bacteria of aente disense, hut for other cells and their debris,
and it is generally held that it is capable of becoming fibroblastie and so of leading to the formation of connective tissue.

Leukocytosis. -The presence of an excessive number of any one or more of the above forms in the bloon constitutes a comdition of leukocrosis. We distingnish thus: (a) polymur lear lenkocytosis or a nentrophilia, (b) eosinophilia, (r) lymphoretosis, and (d) myelocy tosis, or the presence of aberrant or immature forms. Leukemia is a condition of excessive lenkocytosis where the number of leukoevtes exceds 15,000 per cubic millincter. The number of 'rnkoeytes of various orders present in normal blood is in the neighborhood of 5000 per c.mm., but there may be a considerable phrsiologieal variation. Thus yomg individuals exhibit a well-marked relative lenkoeytosis of 12,000 to 15,000 during the first week of life, of 10,000 to 12,000 during the first ten sears. Toward the time of parturition in the female the number is apt to reach 15,000 to $2(0,000$. After a rich protein meal there occurs a moderate alimentary lenkoevtosis. During the last hours of life a terminal lenkueytosis is generally to be recognized.

Polynuclear Leukocytosis is met with in inflammatory and many infections conditions; not, however, in all, for it is absent in typhoid, malaria, and the more ordinary type of chronic tuberculosis and leprosy, save where there is secondary infection. So, also, it is wanting in measles, mumps, and in most cases of inthenza. It is very pronounced in pneumonia, where there may be a leukocytosis of even 100,000 , with 95 per cent. napolymelears. Suppurative disense and local and generalized disturbances due to progenic organisms exhilit this trpe of leukoevtosis. It is of note also that in states characterized by grave disturbance of the liver, and where there is a breaking down of tissues, as in the later stages of carcinoma, this form shows itself. Antipyretics and salicelates induce a moderate grade.

Eosinophilia is seen in many different forms of helminthiasis (p. 99), in many irritative skin diseases, aecompanying nyelogenic lenkemia, in bronchial asthma, hay fever, and allied conditions of so-celled idiosynerasy, in some post-felbrile states, and in a variety of conditions it is diffir olt to correlate.

Lymphocytosis is frequent in young children, particularly where there are gastro-intestinal disorders; it may be noted that in the young there is a rolatively great development of the lymphoid tissine of the borly, and especially of the intestinal area, and irritation of the lymph nodes is aceompanied hey a greater discharge of lymphocytes into the blood. . I similar lymphocytosis is fonnd in adults, where there are enlarged lymph nodes. With whooping-congh, lymphocytosis is so marked as to be pathognomonic. In senrvy, rickets, selerosis, and debilitating disense a lymphor'stosis of moderate grade is freqnently noticeable.

Leukemia.-Leukemia is a disease characterized by the continued presence of an cosess of cirenlating lenkoeytes-of more than dinn pre enhic millimeter, although generally in the hundreds of thousands. Tloe state is characterizet by progressive weakness and assectiated

anmia proper, nsmully with a greatly endarged spleen. There ure, howmer, two types-the melogenous or myeloblastie nad the lymphatio.

Myelogenous Leukemia. - 'This form is seell most often in early adult life, and more often in the mulc. The mederlying fenture is an aborrant hyperplasia of the hool-forming tissues. The bone marrow is ulways afferetel, showing an exeess of groy marrow, in which abumdant cells fill be found exhibiting trusitional stages, from myeloblast to myelo"!te, to the neutrophile lenkoeyte. There is in assoeiated increased derclopment of eosinophiles, evilenee of inscrased artivity also in the prohuction of red eorpuscles, with increase in the number of megaarrocytes.

The spleen also reverts to the eondition seen before birth, and presents indications of netive formation of myelocytes. The organ muy attan an cmormons size. There may be similar indications of meloeyte formation in the liver. In ull these areas there is but slight indication of 'III increased activity of the lymphoid tissue proper. The most strhing chunge is seen in the blood, where there may le an extraordinary increase in the number of white corpuseles, varying from 60,000 to as many as $1,500,000$. The greatest increase is in the immature granule rill or myelocytes, which may compose half of the total, the neutrowhiles or polynucleurs constituting almost the other half. There is Lrmerally a pronounced cosinophilia, some increase in the number of mast crils, and the lymphocytes, although relatively in small numbers, are present in greater numbers than in health. With this there is a listinct, though not an extreme inerease in the number of red wrpmscles. Thesc large and abundant leukoevtes tend to elog the capillaries of organs, and this, with the reduction in the number of rell corpur :- explain the dyspnoa, general bodily weakness, an! wastı.. - Ire features of the disease, as again the epistaxis, retimal, a... :\% . bemorrhages. Associatal with the increased produrtion there are evidences of increased destruction of the leukoeytes, lint:als. an excessive diseharge of uric aeid, which we assume to be due to the disintegration of the nuded of these cells. The disease is elironic, lithing from a few months to several years after its first recognition.

Lymphatic Leuremia.-This also occurs in young adult life and mainly. in the male, although found at all ages. In young people the disease trid- th have an acute onset and course. Herc not the spleen but the lymin glands are most involvel. The symptoms and physical signs ar wherwise much the same as in the other form, and blood films show a at exress of lymphocytes (see plate) of typical shape, with large dwotaining nutleus and small rim of cytoplasm. In the more an'w, form they are of more atypical and embryonic type, resembling th: the lymphoblasts, and showing a less deeply staining nucleus if :... :nlar shape, with relatively abundant cytoplasm.
It uncrall these cells are lymphoblastic is a matter of present debate. It \quad remply been shown that the presence of Altmann's granules in coll this orler is not, as Schridde held, a positive indication of
lymphoblastic origin, for such gramules may also be detected in myeloblasts. Thus it is quite possible that there exists un acute leukenia, due to exeessive atypieal derclopment of the myeloeytie elements, indistinguishable by present methorls of reeearch from the acute lymphatie form. Or, expressed otherwise, there may be an acute leukemia eharacterized by the overgrowth mul diselarge into the blood of cells representing the common primary stage of both lymphocytes and granular leukocytes.
Unlike the myelogenous type, in the lymphatie there is a liability to the appearance of multiple, minute, subeutaneous lymphoid nodules. Tinlike the other form there is here characteristieally an aeeompanying febrile state (102° to $104^{\circ} \mathrm{F}$.), with severe sweats, nad development of a "typhoid state." The condition is fatal, and of shorter eourse than the other form; and this, although the blood pieture does not exhibit such extreme ehanges, the number of contained white cells averaging 200,000 ; eosinophiles and mast eells are wanting, nor is there any marked inerease in the neutrophiles.
Blood Platelets.-To the other constituents of the blood brief referenee may be made. We have already referred to the importanee of the blood platelets in the development of thrombi. These are small bowlies, oval or pear-shaped, averaging. 2μ; in blood smears they tend to be present in small gronps. Even in normal blood they show eonsiderable variation in their number, from 200,000 to 000,000 per eubie millimeter. As to their origin there has been mueh debate, but sinee J. H. Wright's studies there can be no doubt that some at least are derived from the giant rells (megaearyocytes) of the bone marrow. We ou...elves still hold to the belief that in eertain forms of thrombesis a condition of phasmoschisis results in the breaking up of the red corjuscle into oval ioolies whieh are indistinguishable from the platelets of normal blood. It is deserving of note that in certain conditions, e. g.. pernieions anemia, there is commonly a marked diminution in the platelets. In some cases of purpura also they huve been found wholly absent. In pneumonia and in myelogenous leukemia they are inereasel in number.

Still smaller elements, the dust bodies or hemoconia, are to be reeognized in the bloorl. Nicholls and others regard these as products of disintegration, more particularly of the erythroeytes.
The Lymphatic System: ©dema.-The aeeumulation of serons fluid transuded from the vessels in \dagger^{\prime} e tissue spaees and eavities of the berly constitutes the condition of r.ema. Distinct names are given to such aceumulation of fluid in particular areas; thus anasarca or interstitial oedema is the aceumulation in the tissuc spaces of the limbs and burly wall. Chemosis is the serons infiltration of the subeonjunctival tisule. Ascites is the accumulation of serous fluid in the peritoneal cavity: hydrothorax, in the pleural eavity; hydropericardium, in the pericardial; hydrocele, in the tunica vaginalis testis; internal hydrocephalus, in the ventrieles of the brain; external hydrocephalus, distending the spares

of the pia arachuoid. We would lny down that atemmulations of wrins fluid in commmiention with the exterior, and thos ontside the buly, ure not strictly ordema; pulmonary codema, therefore, the aceumulation of fluid in the air sues of the lung is, strictly speaking, not a member of this class.
Wur chassifiention of these varions conditions luns so fur been fanlty. liment sondies show that the lymphatic chmmels originate from the whoms sustem und form a closed, freely branching series of ducts - parated by mis endothelinl lining from the tissue spares. ; to the rilationships of the grent scrous envities of the body with tis system there is still debate, some holding (from the ense and rat its with Whirh milk globules, red corpnseles, ete., pass from the peritoneal raity into the lymphatic vessels of the diuphragm) that there is a dirert communicution; others, from histological considerations, deny the existence of any such free communication. For convenience, therefore, we may regard the three arer, is distinct, and lay down that wron- fluid may become accumulato (1) in the lymphatic channels promer. (2) in the serons cavitics of che body, and (3) in the tissue -ares. Nay, more, we ean go farther and recognize (4) that fluid m. ilvmulate abmormally in the individual cells. (Sce Serous Atrophy und H!1/rupic Degencration, pp. 298 and 306.)

1. Lymphanglectasis. - Little nced be said regarding the first of than comrlitions. We recognize that, in consequence of obstrnction, "hethr congenital or ns the result of disease affecting the efferent |ymphatic chammels of certain organs or aren3, there may result. n huge diverninu of the lymph chanuels behind the point of obstruction. a dintelnion so great that at times they take on a vestic appenrar forming lomph cysts. Such distension is scen in congenital conditi - जlill is macroglossia and macrochellia (p. 281). Hygroma of the n maty le regarded as of similar nature (p. 281). As an arquired condition, limphangiectasis is encountered in one group a cases of A-phantiasis.
\because Accumulation in the Serous Cavitles, etc.--Se. ..., cavities are lined thriwhint he an endothelium. There is thus normally no direct mimnicetion between them and the tissue spaces of the crgans mumanel in those cavities. Thus, an oedematous condition of the iniminal walls, for example, is not necessarily followed by ascites, and 1IM, cersa. But while this is the case, we must recognize that there 1. : whtint circulation of fluid through these cavities, passing into then thom, the endothelial lining and passing out through stomata iif ur is of thiming in particular areas. Thus pigmented matter or han tial iutrolucel into the peritoneal cavity finds a way within a few min : into the snlisternal lymph nodes.
I. arm of inflammation there may be rapid and abundr t accumulat fluil in these cavities. This inflammatory exudate is more thin aimple serous effusion; whereas its salts approximate in concentriti.. the thuse of the blood serum, the inflammatory exudate is much
richer in proteins than is mon-inflammatory ascitie fluid. Very extensive acemmulations of fluid oreur in the varions serons cavities as a resnlt, either of obstrnction to the onward flow of boom, as in heart diseas. anul conditions of portal obstruction, or, again, as a result of an imporerished eondition of the blood withont aetual ohstruction to onflow, but with enfechled eirculation and depresed mutrition.
2. Anasarca.-Remembering what has been said regarding the want of relationship between the tissue spaces and the lamph chamels it will be seen that two main factors determine the accumulation of fluid in the tissue spaces: (1) the rate of escape of fluid out of the blood vessels into the tissue spaces; (e) the rate of escape of fluid from the tissue spaces into the lymphatic chandels. If fluid ean be carrien ofl by the lymphaties as rapidly as it passes ont from the blood, no acemmulation can occor. In other words, an oedematons state may be bronght ahout bey an excessive diseharge from the hood, or, on the contrary, by defective draisuge away through the lamphatic chanmels.

There has been controversy extending over long years as to the relative importance of the different factors found associated with the production of the edematous state. On the one hand, there are those who would reduce the problem to its very simplest physical factors, who regard the lining wall of the vessels as nothing more than a filtration membrane, who thus ascribe colema in the main to pressure differences, to increased discharge from thimed and dilated capillary and other vessels. On the other hand, an important body of investigators holds that the endothelial cells lining the bood vessels are not merely memhranes, but possess a selective capacity, and thus regard the codema fluid, not as a filtrate, but as determined by the state of nutrition of the vessel wall. Neither of these schools seems to have paid sufficient attention to the problem of how, once in the tissue spaces, the fluid gets into the lymphatic channels. A compromise may be reached. We must admit that when the smaller ressels beeome dilated their walls become thimed and the intercellular spaces of their cudothelium become colarged, so that if there be any increased pressure all conditions favor an increased transfusion of flnid between the cells; but we must admit also that the endotheliun lining the ressels is ly no means an inert cell laver. 'Thms the dilatation of vessels is not by any means necessarily a predy merchanieal matter; we mnst admit that malnutrition of the capillary embthelimm and lowered vitality of the same is a factor fivoring nedema.
We may possibly go farther than this. Studies upon the mammary gland in its stage of activity indicate that through the capillary endothelimen there is a selective removal of fatty matters from the bood for the use of the mammary gland cells, and the reason for the difference between a serous and inflammatory exudate, as again between the composition of rerebrospinal fluid, aqucous humor and arsitic fluid, must largely be this difference in the selcetive activities of the vascular endothelium in these different regions.

The last few vears have seen another prineiple invoked to explain adema. It is well known that the rate and the direction of osmosis depomls upon the relative comerentration of salts on either side of the whotic membrane, and the aseites and the anasarea encountered in "an of nephritis have been ascribed to hemping up of sotimm ehloride within the tissues and tissue spaces. Some physicians have found marked reduction in anasarcouss states following the reduetion in the anomit of chlorides giveu as food. Lately, I'rof. Fiseher has propoumded ret another theory to explain this aecomulation of fluid in the tissues, a thenry hased upon the properties of colloidal bodies like gelatin and pre-- mathly other proteins. If, for example, Iried gelatin be placed in plain water, it will absorb a definite quantity of that water and swell up to a rertion point. If, however, the water be wakly acidified the amount ahourhed becomes very much greater. If a freshly removed sheep's or ox's ere he placed in ordinary water, nothing very much happens; if it be phared in weakly acidulated water the amomet of fluid taken up, apparrintl be the vitreous, is so great that the eveball is liable to undergo rupture: If, again, a frog's limb he ligatured or eut off and now be placed in the water in which previonsly the frog had been swimming, there "evins ant intense imbibition of fluid, with development of post mortem illiairea. As we know, when musde and other tissues die they herome inereningly acil. It is to this aeidity that Prof. Fischer ascribes the imhibition in this last case, and he is cinelined therefore to aseribe many anos of ardema and anasarea not to mechanical changes in the blood prenure or, again, to changes in the blood itsolf, l,ut to alterations in the callembal tissue elements, wherehy these need and attract to themselves ineraning thing. The idea is suggestive; we emmot, however, see that it con ers ther whole gromm; rather we would say that we eontinue to remonize the following tupes:

Tun's of (Eilema.-1. Congestive Odema.-This is the commonest formand is met with in eases of obstruetion to the venous outflow. Here, mumhtorlly, there is (al) inereased capillary pressure, (b) dilatation of the capillaries, with thiming of the walls, (r) slowing of the bloord tremen and indreased venosity of the blood, (d) lowered nutrition and italit: of the cappilary wall. Possibly here, secondarily, the nutrition of thenes amb the changes oecurring in those tissues form a factor. "Thm- lewature of the main vein of a limb in a healthy animal is not fille at loy adema, thongh such adema will oceur if the animal be ilt in :upucrerished state of health.
"- Edema from Lymphatic Obstruction.-It has already beell moted that phatic ohstruction, whild leading to dilatation of the lymphatie lea: fon mot neressarily cause ardema, in fact experimentally the mait 'uphaties of a part may be ligatured and yet no cedema may wen "He hood rapillaries are eapable of taking up fluid from the tiwn : is they permit fluid to pass into them. But sometimes wht ults, and here again the condition of the tissues appear. to he al lat. Wie may find, for example, oedema of the arm occurring in the
later stages of eancer of the breast, when all the axillary lymphatirs have become involved; but in the earlier stage all those lymphaties may be excised, in order to arrest the extension of the disense, and no cerlema shows itself.

In this conneetion we may note three varicties of ascites, viz., chylous, chyliform, and pseudochylous ascites. The first of these is due to rupture of the abdominal lymphaties, or of the receptaculum chyli, wherehy the milky ehyle eseapes into the peritoneal cavity. Of similar origin is chylous hydrothorax from rupture of the thoracie duct, and chyluria, from rupture of the lymphaties of the pelvis of the kiduey or of the bladder. Chyliform ascites is found in eases of abrominal carcinoma or tuberculosis, the emulsion of fat giving the milky appearance, and is due to breaking down of leukoeytes and other cells that have undergone fatty' degeneration. 'The percentage of fat in these eases may: be much higher than in the former. In pseudochylous ascites the milky appearanec is associated with absence of fat, and is brought about either by mucoid substances or suspended proteins.
3. Inflammatory ©dema.-All acute inflammation is accompanied by a local inereased passage of fluid out of the ressels. The fluirl in these cases approaches more nearly in its composition to the blood plasina than does that of eongestive odema. As will be remembered, the capillary eurlothelinm shows a striking series of changes in acute inflammation, and to this changed eondition we must largely ascribe the increased exurlate, although here also we must recognize that the tissue cells in the involved area exhibit marked disintegrative changes which may undombtedly attract more fluid.
4. Toxic Odema.-We know, experimentally, that there are substances which aet as lymphagogues, inducing inereased lymph formation. In the case of some of these no noticeable change is exerted on the circulation. The difference in the distribution of the anasarea in heart and kidner disease, respectively, wonld suggest that the toxie substances circulating in the blood have possibly a different effeet on the capillary wall in the diverse conditions.
5. Neuropathic Edema. - We have already emphasized on more than one occasion, that the central nervons system of itself ean set up disturbances of the same character as those due to the action of hocal noxce. The same is true in comection with this matter of arlema. This is well seen in herpes zoster, where irritation of one posterior spinal ganglion is followed by cedema aecurately mapping out the superficial area supplied bey that particular spinal nerve. There also oneur certain remarkable angioneurotic codemas, characterized by the sulden pouring out of fluid into particular areas of the internal organs or shin, without any recognizable canse. It is true that these resemble mueh the urticaria and localized cedema seen in eases of idiosynerasy and fondpoisoning, eonditions which we have noted (p. 117) are in turn allied to anaphylactic phenomena. It may eventually be determined that
in these we deal with something more than simple uncomplicated vaisomotor tisturbances.
(i. Hydrops ex Vacuo.-Finally, accompanying the atrophy of tissues indosed within spaces having relatively resistant walls, there may be il "replacement dropsy." The most familiar example of this is noted in senile and other atrophies of the brain where there may be marked aremmatation of fluid, either externally in the pia arachoid spaces, or internally. in the ventrieles, or both. Hemorrhagie and necrotic cysts (p. 293) belong to the same category.

THE HEART, BLOOD VESSELS, AND LYMPHATIC VESSELS

THE HEART: GENERAL CONSIDERATIONS

The striking progress made during the last few years in the comprohemsion and treatment of heart disease have been preëminently advanced hy the stndy of normal and perverted function. For such a thlly, it is true, a knowledge of the anatomy and histology, and, interal, of the embryology of the organ has been a prerequisite, but minulitelly at the present time a knowledge of the pathological phiology of the heart is of profound importance to the medical man. Thins of necessity a chapter must be devoted to cardiac function and it- lisurbances.

Finntionally the heart is nothing more nor less than a pump-a小mble pump and donble-actioned-the indieations being that the filling of the rentricles is not a passive process, but in part at least active, Whe th suction excred by the expanding ventricles; it is a suction punp, erol if, to a greater extent, it is a propulsive organ. With this it i_{2}, wraordinarily responsive to variations in the work it is called "pn" to atcomplish, altering its rate or rhythm and the force of indibidnal hats alceorling to the amount of blood supplied, the resistance a is ot which the blood is propelled, and thar stimnli received from the " "ront res. We must, even if rapidly, mention in order the varying fill lur- "hioll morlify its activity, taking for granted a knowledge of the :and , wetines of its anatomy and embryogeny.

It a milter of difficulty to deternine the order in which to treat the wrins-sertions of our subject, and this beconse there is such an intinntw intaration between the work and the disturbanees of the diff ent forms of the heart, that it is impossible to discuss one phase if lath anth withont referring to the other. The following, however, hate : Smblel helpful:
. The Auricles.-We must regard the amricles as distensible pouches withr’ 'incl! weak muscular walls. Their very structure indicates that theo ar pervoirs to acemmulate blood during ventricular systole allul $\quad \mathrm{r}$ it freely into the ventricles during their diastole. It is true
that these walls are muscular, true further, as has been abundantly demonstrated during the last few vears, that the heart beat eommences at the sino-auricular ring, where the vente cave open into he auricle, and from there the contraction spreads through the auricle, and so later to the ventricle; ; but in the auricles the contraction is relatively feeble. Linder normal conditions there is indeed very little need for vigorous contract.on. The very size of the anriculoventricular orifice, as we shall point out, and the active dilatation of the ventricles together aflord an easy flow of blood into the ventricular ehambersa flow so easy that no proper valves are present at the orifices of the vengeave and the pulmonary veins respectively. At most, with the contraction of the circular musenlature around each orifice, there is a diminution in their humen. It thus beeomes a matter still under debate as to whether witio cach auricular systole some small amount of blood is not driven backward into the veins. As already noted, the flow forward into the ventricles is so easy that if normally sneh regurgitation is present, it is not propagated, and does not, for example, show itself in the neck veins.
2. Venous Pulse.-If, however, there be olstruction to the onflow of blood and dilatation of the auricle, sueh regurgitation easily manifests itself. There have been mamerons conflicting studies upon this matter during the last century. We owe, more espeeially, to Dr. James Saekenzie and his emplovment of he polygraph (i. e., of an instrument permitting simultaneous records of venous pulse, apex beat, arterial pulse, etr.) that today wrerognize the different forms of venous pulse and are able to translate the significanee of the same. Nackenzic has shown wery clearly that areording to their position relative to the phases of the carotid pulse, we may recognize three separate waves in the venous pulse ($e . g$., in that seen in the jugular vein).
I. If the auricle be distended and its contraction be powerful, there may be propagated along the vein a wave eorresponding with the auricular systoke.
II. If the auriculowentricular value be incompetent there maly he propagated backward a regurgitant wave corresponding in time with the ventrieular sistole, and

IlI. Owing to the dose proximity of the carotid and jugular within the same sheath, an netive impulse propagated along the carotid artery may be transmitted to the column of blood in the vein showing itself a little later than the regurgitant ventricular wave.
sometimes all three of these waves are present together. Where there is little or mo regurgitation throngh the trieuspid, the auricular sustolic wave alone may be present, as in the rare condition of trienspid stenosis. Where the tricuspid is markedly ineompetent, and through regurgitation the right anricke is owerdistembed and enfeebled so that its systole is much weakened, then the ventricular systolie wave may be of great size, the other two soarce recugnizable.

In other words, a carcful study of the venous pulse is affor ig us
apex, which, indeed, is singularly thin. The arrangement of the fibres and their morle of contraction are such that the walls of the nuical portion of either ventricle, and particularly of the stronger left ventricle, ure bronght together and compressed. Above the apices of the papillary muscles there is left 11 small chamber around each auriculoventricular value, which even in the completest contraction is never entirely emptied. The more recent studies of the electric reactions of the heart show that the contraction begins at the hase and travels down toward the apex, and, as already noted, it affeets the papillery museles at a comparatively late period. But, also, with Krehl, we are led to recognize a third seetion of the musele, the ring museulature, controlling the arifice of the ventricles. This in held to play an important part in preventing regurgitation. Where its tomus is reduced and beoomes enfeebled the enlargement of the auriculoventricular orifice leads to incompetence. In the right heart also we lave to distinguish a comus or passage leading up to the pulmonary artery. Embryologically this originates as a separate portion of the ventricular earity: Lastle, it has to be recalled that the weaker right ventricle is applied in a somewhat ereserntic mamer nono the side of the more conical left ventriche, and that the musculature of the two ventricles is not absolutely distinct. A considerabie number of the more superficial fibres pass from the one ventricle to the other. Some elinieal observers have recorled an independent rate of contraction of the two hearts. From anatomical eonsiderations it is diffeult to see how this can occur.

While the cardiac muscle presents certain distinctive features in its mode of contraction, we must regard it in most respects as possessing the sume general properties as other striated musele. If we attach a weight to a resting band of musele, such as that of the frog's leg, we find that the band undergoes progressive elongation. So, similarly, if under pressure increasing volumes of blood enter the ventricles, the ventricle expands and undergoes distension. It is very probabic that, as with skeletal muscle, there is a certain optimum load under which the maximum amount of work is accomplished, and that thus a moderate grade of distension of the ventrieles is most favorable for the heart work. Without entering into the physies of the matter we would here point out that with increased exereise up to a certain point the ventricles of the heart undergo a phesiological distension, which seems to be to their advantage, inasmuch as in thir state a smaller range of contraction of the individual muscle fibres drives out a relatively much larger amount of blood into the arteries. Saying this, it inust be remembered that the normal heart possesses a very large reserve of force. It is found, for example, that with the internal pressure raised to four times the normal, the organ still continues to pump out regularly into the aorta. Thus it can stand temporary increase of work with comparative ease. Nevertheless, this reserve of force can be used up either by malnutrition or by eontinued work up to the limit of the capacity of the organ. Where this is the ease we find that the organ undergoes what
!", w we may term "pathological dilatation." Even in this dilatation, julting from the continued strength of the pulse and the arterial hown pressure, the organ may contime to function adequately, and ! !rive forward the amount of blood necessary for the orgamism at large, hor this only so long as the individual is at rest. Relatively slight exrrtion, or increased demand upon ine organ brings about cardiac failure and acnte distress, or otherwise we recognize three gradesphysiological distension, pathologienl dilatation with partial incomputence, and cardiae failure.

It is probable that in all cases of what we have termed "pathological "liatianom" there is incompetence to the extent that regurgitation shows itself. As already pointed out, such regurgitation through the dilated auriculoventricular orifices is of the nature of a safety valve action, wherely the strain is removed from the ventrieular musele at the masibly lesser expense of congestion of the lungs and abdominal and other orgens.
\therefore Gong as the heart is working within che limits of its reserve force w. find, in accordance with the principle laid down on page 142, that imerased work leads to hypertrophy. When, therefore, we encounter the condition of marked inerease in the volume of the ventricular muske, we must not regard this in itself as a pathological condition. It is allaptive, but, at the same time, is an indication of the existence of whe condition, either in the heart itself, as from disease of the valves and obstruetion to the onflow of the blood, or outside the heart, whether in the form of ohstructive disease of the Iungs or of chestruction tw the onflow throngh the systemic arte.ies. It is an indication that wi halre to seek for the cause of the increased work upon the heart, rither within the organ itself or outside it.
Systole and Diastole. - That systole, the contraction of the cardiac murche, is an active process is obvious. It is less generally recogni"ed that liantole is likewise active. While this has been suggested hy whral observers, and while the very firmness and resistance oflered to prewre when the beating heart is taken between finger and thumb, is int itelf upposed to the view that the diastolic fiiling of the ventricles is a pasive process, it is only conparatively recently that Stefani has aliuribul absolnte demonstration of the active elongation of the heart !uルr.i. Ihe has demonstrated that blood enters the ventricles, and i- rrindlol into the anrickes when the pericardial pressure (the pressure arine ont the heart walls) is 25 cm . of water higher than that in the renf "ava. Only hy the suction action of the ventrieles, by their allin dilatation, cinl there be continuance of the circulation under the ernalitions.
'11.... uhservations throw light upon the hypertrophy of the left ventrind nut infrequently present in cases of mitral stenosis; they suggest that the ventride modergoes increased work in diastolic suction of blood $t_{1, i}$, the narrow orifice. It appears that under usual conditions, Whe: here is no resistance to inflow, the free entry of blood into the
ventricles prevents any pronomed negative pressmre in these cavities, so that intraventrenlar pressure curves often show little or no indication of this phase of active expansion. B3 analogy we must suppose that the minseular walls of the arteries possess likewise these two properties, and that dilatation muler the action of vasodilators is as: much an active process as is constriction moler the vasoconstrictors.
The Semilunar Valves.-These guarding cacli a smaller orifice do not need the accessory structures present in the auriculoventricular valves. The (asp)s elose securely, owing to the relatively large extent of the peripheral portions of each of them whiely comes into apposition with its neighbor, and in this relationship it is interestimg to note that acute disease does not affert the cusps along their edges, lout immediately. below the zone of apposition, where appears to be the region of greatest strain.

From the point of view of the work of the heart, the relationship of the aortie valve to the coronaries is of considerable importance. The older view that when open the ensps ocelude the coronary orifices, is now known to be wrong. There is a free entrance of blood into these vessels, both during systole and during diastole. Thanks to the existence of the simses of Vialsalya, there is at all periods a space between the upper aspect of the eusps and the aortic wall.
The Coronary Circulation.-As above stated, blood enters the eoronaries during systole. There is, however, no douht that with the contraction of the ventrieular muscle, the intramuscular brauches of the eoronaries undergo eompresion, and the heart musele is comparatively bloodless, compared, that is, with its condition dhring diastole. It is daring this latter and longer period that the main nourishment of the heart fibres oceurs.

A study of seetions where there has been extensive destruction of the ventricular musele, through malnutrition, shows that there is a zone or layer of this muscle under the endoeardimm which still survives. (learly, therefore, there is in the mammal, as is the case to a much greater extent in cold-h)ooded amimals, a certain amount of nomrishment of the myocartimn from the ventricular chambers.

To the relationship of the different branches of the eoronary arteries to each other we have already referred in diseussing the subjert of infarets (p. $3+2$). We would only recall that amastomoses occur, hat they are small and infrequent. As shown by Kronecker, ligature of certain of the main bramches, particularly of the left side, may be followed in a few minutes be fibrillation of the whole heart, with resultant death. This does not, it is true, occur always, but possibly throws light upon sudden death in some cases of angina pectoris, a eondition which is especially assoeiated with obstructive disease of the cormary arteries. For the supervention of an attack of angina, it does not seem necessary that there be complete ohliterative spasm or other form of closure of the left coronary or its branches. There must, hom, ere, be some narrowing or rigidity of these arteries by disease, so that a
all for increased work camot be met by dilatation and inerensed mintrion of the hemrt muscle. The symptoms, that is, of angim pertoris, are those of a relative amemia of the ventrienlar mustle, or of vilue arem of the same.
The Nervous Mechanism.-It is in this comnection that during rewnt vears there has been the greatent adsance in onr knowledge.
The Intrinsic Apparatus.- I. If the cat's heart, for example, be remesed in toto and, with as little delay as possible, be perfinsed with defibrinated blood mader proper comditions, the organ will begin to lant and continue to contract actively and with regnlarity for an hour or umere. It is clear, therefore, that there is a merdamism be which anrionloventrieul " contractions proced regnlarly and periodically in the ilhsence of central stimnlation.
-. Fien with separated strips of mammalian ventricolar mmsele Phirter), if defibrinated blond be perfused through the attached brameh of the roronary artery spontaneons contractions or heats will, under fanorable conditions, show themselves. It is char, therefore, that the contractions of individual fibres may orequ in the absence of any stimuli frum foralized ganglionic centres, sitnated in the heart.
\therefore It is still a matter of delate ans to whether this last order of contrantion is infomuseular, and this becanse it seems impossible to isolate ally part of the heart museulature which does not show fine nerve fibrits, aworlated with which are scattered nerve cells.

1. 'Those who hold to the idiomuscolar hypothesis point ont that int the whick and other embryos the heart is developed and actively. heatimes for some days before any nerve fibres and crells reach it from the rempenl urrous systein. There is no question, therefore, that the embry:min hart tissule possesses the power of spontaneons contraction. But in Werlomment, as pointed ont by Gaskell, this embryonie tissne is repared by the heart muscle proper. The striking point is that a partion of this primitive enrdiale musede remains and constitntes a very remarkiblu conduction system, which, evidently, under normal conditimb, initiates and regulates the contractions of the organ as a whole.
\therefore Cimdurlion System.- Our kinowledge of this system is based upon thenhervations of Gaskell (188:3), Kent (1892), Ilis, Jr. (189:3), Tawara and Lednofl (1906), Keith and Fleck (1907), with abundant eonfirmatory wherrations by more recent workers. At the junction of the superior vena rana with the right auride is an acemmation of peculiar small musede film, flniform with well-marked nuedei, having a plexiform arrangeInent, and embedded in a densely packed connective tissue. Strands of imilar rells pass from this so-ealled sino-auricular node over the inner san" if the auricular wall and appear to be direetly connected with a serm! ! herle, the auriculoventricular node, situated in the neighborhood of the "uromary sinus at the base of the aurieular septum. From this there lious forward and to the left a bundle of cells of similar nature (thr "tundle of His"), ensheathed in a fibrous canal, which at the pars memi \quad unten septi of the ventride divides, the one branch becoming
eontribited to the left, the other to the right ventride. Fiach brand gives ofl' fregnent divisions rmming under the condonarlinm, the main arborizations: heing contributed to the papillary muneles of either ventricle, and, further, becoming directly contimous with the subendocardial network of Purkinje cells, which lines the interior of both ventrictes. These cells have becon kiown for long, and had hitherto been regardend as immature or embromice museld fibres. It is throngh these that the network connes into dircet commmication with the ventrienlar musche proper.

6i. It shombl be added that assonemed with this system is an abumdant plexms of fine nerve fibrils with oeasional gathglion cells, and that the sime-anrienher nome receives bramehes, both from the vagus and the sympathotic (aceelerator) nerves.

The great imporamee of this system lies in this, that practieally all recent work demonstrates that the regular contractions of the heart are intimately associated with its presence and finmetional integrity. The reenut studies with the chectrocardiograph show that the wave of contraction begins at the simo-anricular node. (I) Remove the node and the comeractions cease. (2) Destroy the anriculoventrieular nome and coïrdination betwernanricles and ventricles comes to ane end. The amrides contime beating at the regular rate; the ventrieles at first quiescent, showly assimme a rhython of their own (the idioventricular rhythou), the rate of which is romghly one-half to one-thirel of that of the amricles.

Onr present eonception of normal eardiac aetivity is that recomrent periodie stimuli proeced from the simo-auricular node which lead first to a contraction of the anrieles, and following upon this, as the wave extends down the auriculowentricular burdre, the ventriches in their turm indergo en eraction. And we regard te erate, and, to some extent, the fore of the shecessive wawes as influe...erd hey atherent ragns and acelerator intluences renehing the sino-auricular monde. We recognize further, that these molifications in the heart work are set up be influ-
 direct throngh the influence of cirenlating blood npon those centres, or reflex, either from stimuli renching these centres from other organs or parts of the hody, or from the heart itself. But, in addition, we recognize that be lirect stimulus from within the heart it self, ind wholly apart from this condactive system, there may arise a series of independent contractions, whether of the auricular or of the ventricular musele. The outcome of these investigations has resulted in a mass of observations more particularly upon the various phases and forms of cardiac irrerlarity, obscrvations so recent that mueh hass still to be elarified, but nevertheless, eertain points stand out elearty.

Heart Block.--Just as experimentally it is possible, by iujury to the auriculoventrieular node and its branches, to bring about incoördination between auricles and rentricles, sn a like incoördination is foma! b elimieal and autopes stndies to result from destructive disease affecting
the nowe and bmolle. 'Ihn condition has been known for some vears. Ammerons cases have bern described in whidh, often sudelenly, the pulae had fallen from the normal 70 or 50 to : 3 o or less, the fall heing atompanied her symptoms of an epileptic type (Stokes-Shams synIfonnc). It is ingenionsly suggested that Nupoleon's "epileptic" attacks, in viow of his habitalal pulse rate of 40 or ion, were manifestations of this diause. In mange eases this bralyardia or slow beat has persisted for vears. Other dases have been moted in whid the eomdition connes in paruspins. 'The more recent employment of phedographes, with record if the venons pmase, has shown that in these eases, while the ventricles are slowerl, the amricles retain their normal rate. 'The varions grales of this heart bow may show themselves either as (1) a lempthoning in the interval between the onset of anrienlar and ventrienlar systoles, (2) an wan-imal ventrionlar dropped beat, (:3) priondic Iropped beats, wery

Fia. 180

- "haltanmentracings of the jugulorarotid and radial pulse waves. The diagrarn, congtructed from ?. "unity rimorded in the tracings, shows that no stimulus passes aloug the a-v fibres to the ven(- . . hat that blere is complete disociation of the ventricular rhythm ($V . S$.) from the auricular (filt,on and littehic.)
1.nth or minth pulse, ate., being wanting, intil there ana be developed at condition known as two-one rhethon, or three-one rhythm, the auricles h, ame wiee or three times the rate of the ventrieles, or, lastly, comWht hart bork, so that there is no relationship, between the two thathis. Here, with contire fallure of transmission, the ventricles may inat for acars with im inhereat or idiowentricular rhythm.

Other Forms of Arrhythmia.- The time is not yet ripe for a eomplete ification of the arrhythmias. Some of these are clearly of external Noun origin. Thus, in those reeovering from achte ilhesses, there twe markerl changes of pulse rate which clearly are associated with piratory art. These appear to be of vagns origin. ExperimentI ain be show that vagus stimulation either may bering the heart i.mulatill, may slow the heart rate, or may so act upon the conIt appariatus as to arrest the passage of aurieular impulses to the
ventriede. But others are asominaded with eomulitions in the heart itselli, and due to some form of irritation. White the heart musele is insensitive to any stimnlus remelhing it during the perion of contraction, it responals to stimuli remeling it in the diastolic phase. We thas amay rome incoss regularly or irregularly interposed beate nurelated to the regular rhytho. 'These beats may be interposed in the ventricle aloure, iI in the auriele aione, or in louth.
Fibrillation. What may be regarled as the extreme condition of irregularly interposed beats is the condition of fibrillation or delirium cordis. In this, insteme of a wave passing rogularly thromgh the heart monsele, diflerent areas of the mosele are sern to be contracting indepementers, so that there is \cdot : contraction of the heart as a whole, but the orgall pasises into a em. . iom of progressively ineremsing dilatation, with an extramelinary fibrilhers movement of the whole surfaceappearaness suld as might be given be a mats of smath worms, densely parked, wriggling aetively in a thin-walled hag. Where this comeditions afleets the ventrieles, muless it be immediately arrested by vanos or other artion, the result is death, and that beeanse the cireulation is ine vitahly arrested. It werims probable that this ventricular fibrillation is a emase of sulden death in some comditions of lomgecontimmed and grave eardiage irregularities. One of the most interesting of rerent observations oun the heart is that in coses of obstructive cardiade disemse there male be dilatation and fibrillation of the auricles, persisting for monthis, if mot for ? ears. Both ber stuly of the venoms pmise and by the eardingrams, this fact is now well entablished. It is but another comefirmation of the point made at the begiming of this chapter, that from the point of view of the pmoning antion of the hemrt, the auriches are not esocutial, bint simply serve as reservoirs.

THE PERICARDIUM

Firon this point on we shall in due order pass in review the main features of the morhid anatomy and histology of the diflerent organs. It would be well to saly here a word or two, regarding the systrom employed. A definite order will be preserved in comection wit! madh sertion, the treatment being as follows:
(1) . 16 normalitics, (2) C'irculutur!! Disturhnneess, (3) Laflummations. (t) Re!ressier Disturbumers (deremerations, infiltrations, meernese, trammatie disturbancess), (.⿹) I'rouressice Disturbances, inchoding uew growths, (i) Iny comditions not comin! under the abore headings. It will be inderstood that where any one of these headings is passed ower,

[^15]ini disturbance of this purticulner order is deremed noteworthy in conneretim with the organ under considerntion.
In the second phece, not merely for ceomomes of spmer, but also nis ut due mentul exercise, it is tuken for grmented that the rember is fimiliur with the main morlid processes. Tluss, for exmmple, in noting the wiscuce of diphtheritic or enturrlal inflammation of a siven surfure, it is uot 1 ought necessury to cuter into a detniled description of these tspe of . Smmation; ut most, ung leparture from the ordinury type
 the affereted parts.

Suin, lustly, it inust be clearly understomel that the trcatment is not imtromed to be exhmistive. Our ohjere is to piss in review these conditions with which the ordinury, ats distinet from the movenced, student meht to be familiar.

With these prefintory remurks ne now pass on to the pathological inul histologicul anutomy of the pericurdium.
Abnormalities.-There is only one noteworthy abmormality of the pricurdimm, und this is rure, namely, the condition af defect, rither partial ar complete, of the purietul hayer, resulting in either a passage ur commmuicution between the pericardinl and left pleural sales, or in the heart lying, as it were, haked, in upposition to the left humg.
Circulatory Disturbances.-All serons surfaces, from the sinilarity in their structure, show a similar suceession of changes assoeiated with dillerent grades of eirculatory und inflammatory disorders. The ahmelant network of empillaries situated immediately moderneath the rinhothehal haser remders them nll peculiurly liable to present profound Whase. Thus, in the first place, at post mortem we frequently eneonnter periardial petechine, due upparently to irregular and spasmodic le it artion in the ugonal period, with eonsequent disteusion and ruphere of some of the ponrly supported uperficial capillaries. The himder abert of the heurt is a not infreque. 't seat of these peterhiae. Certain twis substances, phosphorus, and the like, are peenlarly apt to lead "" thew multiple small hemorrhages, secondary, it would appear, to H. . нeration of the eapillary endothelium. Tin may appear, that 1. '...: only in the agonal period, but also during the eourse of acute - Mrantions and infectio: $:$:

Hydupericardium.--Of more importance is isydropericarlium, with Inmalition: of serons fluid in the pericardial sac. This serous envity Gir- from the others in that normally there is present a small aceumn\{th if surous thail (from 10 to 20 e.e.). In obstructive heart disease :1. ammont becomes greatly inereased (from 100 to ; much as 1000 An intersting poist is that, despite this large nuonnt of fluid, 1) I 'he prosine it brings to beur noon the heari, there may be 'his O. . ise arcomulation of fluid without arrest of the heart aetion. with (t. rambal ponring-ont of the fluid there is expansion of the parietal whial site, so that the pressure cloes not rise sufficiently high to an the aurieles, and so arrest the onflow of blood. This con-
dition of hyydroperieardium is the result of obstruetive heart and lung disease, and, as sueh, is associated with the transulation of fluid into the other cavities of the body. It is significant that there is no constant redationship, between the extent of the accumulation in the perieardial, pleural, and peritoneal eavities; there is considerable variation in the relative amonemts.
Hematopericardium.--Ilematopericardium results (1) from extreme dilatation of the perimarlial eapillaries, with hemorrhage from the simme, (2) from tranma, (3) from rupture of the heart, or (4) rupture of the first part of the aorta, either from a simple or from a dissecting ameurysm. In the first of these cases there is a combination of hydroand hematopericardium, and the comlition is not neeessarily fatal. In the last two the sulden outpouring of blood into the perieardial eavity prevents gradual and adaptive expansion of the parietal pericardium, and the pressure may beeome so great that the aceumulation of blood is in itself the eause of death by arresting heart action.
Anemia.-Ancmia of the pericardium coexists with anemia of other organs.

Fig. 187

Section from rase of recurrent pericarditia: a, myorardinn; b, e layers of connertive tissur, the result of previous attarks of inflammation; r, Ifpesit of fibrin, the result of recent acute influma tion; d, the limit of the norm \mathbf{z}^{\prime} connective-tissue layer of the pericardium.

Inflammation.--Pericarditis.- The first stage of an netute inflammaltion of the pericardium is characterized by an intense eongestion of the superficial ressels, with erosion anul destruction of the endothelium, followed lys slight formation of fibrin on the surface. This stage in which there hass so far mot been much fluid exulation, is eharacterized clinically- hy the presence of friction somuds or ruls, the roughened surfaces of the epicardinm and parietal pericarlimun rubbing one against the other. It is rare for this dry form to contimue more than a few hours; more frequently it gives place to a sercfifbrinous periearditis, with disappearance of the friction somuls. In this form there becomes developed a layer of fibrim on both the pericar!i:ol surfaees, which sometimes assumes a great thickness, and through the constant move-
mint of the heart and the eddying of the fluid exudate, instead of heing smooth the fibrinous layer is ridged or even shaggy and villous, anmming often a characteristic "bread-and-butter" appearance, i. e. , thit of the butter between two layers of bread when those lavers have bren quickly pulled apart. Fibrin so deposited can casily be scraped uff the surface of the heart with a knife-blade or finger nail, exposing the reddened underlying pericardium. According to relative abundance of the filirin formation and fluid exudate, so do we speak of either a serofilrinoms or a serous pericarditis. In some carly acute cascs, as also in the acinter cases of tuberculosis of the pericardium, the congestion is so istrone that in place of a simple serous exudate there is a hemorrhagic inflimmation.
Sirous pericarditis is seen in cases of acute rheumatism, clıronic nephritis, and other conditions in which the indications are that we deal with infection and bacteriemia, due to organisms of low virulence, or again, it may be due to intoxication. Here, also, may be included a shewhat rare form associated with the extension of malignant growth to the pericardium.
l'urnent Pericarditis.-This form is, in gencral, set up by the pyococcins, streptococcus, or pneumococcus, although occasionally other microörganisms of acute infection are found as the causative agents. Here, with the excessive pouring out of leukocytes there is a coincident proteolytic digestion of any fibrin that has been formed. The pericarrlial cavity is found filled with thick pus.

I'lirunic l'ericarditis.-An acute fibrinous pericarditis may, if of only mowlerate extent, undergo complete resolution, with complete absorption of the fibrin. If, however, the deposit be at all extensive, either this absorption is not universal or is largely wanting, and in its place oramization ensues, with the passage of new capillary vessels into the fibrimons lavers, and replacement of the fibrin by new connective tisine. While in the acute stage the opposed layers of fibrin are separatral hy serm, in the process of healing the excessive fluid becomes aborbed, ant thus the opposed layers come into contact and become athrent, and as the process of organization continues there is first vianlar and then comective-tissue connection between the epicardial and the parietal layers. In this way there are developed adhesions which mat be either (a) localized, as, for example, in the region of the ifnex, and then in the form of fibrous bands, or (b) gencralized over both wimfintes, or (e) universal, resulting in what is known as synechia or adherent pericardium. This process of organization takes days if not "evk, whecome complete, and such fibrosing continuation of all acute attick i simple chronic pericarditis. But once formed these organized athb- inns are apt to be permanent; at autopsy we encounter not a true Threnic mrirarlitis, but an old condition of pericardial adhesions.
It i. nut iufrequent to meet with a condition of acute pericarditis implanter upon a thickened fibrous pericardium, the results of previoh, inlinnmation. This recurrent pericarditis may be met with in
recurrent aeute rheumatism; not infrequently, however enreful exam ination will slow that we deal with a tuberculous atfection. While w may encounter the more acute form of tuberculosis of the pericardium with abundant recognizable tubercles throughout the thickened peri cardium, it is frequent, in cases of tubereulosis, to find few tubercles on casenus areas proper, but, in the main, a diffuse extensive connective tissue formation, the fibrous tissme being laid down in regular layers which, towarl the free surfaere, give place to a recent fibrinous peri earditis (see Fig. 187).

Syphilitic Pericarditis.- This form is not frequent. It appears generally as a contimution or extemsion of syphilis of the heart musele with formation of alluesions. Actinomyeosis is as rare or rarer. Here mar. be noted the condition of indurative mediastinopericarditis, a condition in which the inflammation of chronic tepe with adhesions extends into the surrounding mediastinal tissue and pleura, and, with the contraction of the tiosue, is apt to pull upon, and distort the heart, giving rise to aberrant murmurs aud paratoxieal pulse.
"Milk spots."-'To this category also belong milk spots. These are localized patches of thickening of the epicardium seen most frequently upon the front of the right veutricle; they may be present also at the back of the ventricles, and less commonly over the auricles. Thes are slight overgrowthe from lypertrophy of the epicardial connective tissue, and appear to be induced by the rubhing of the heart wall against the parietal pericardium in cases of dilatation of one or other cavity.

Ftiologis.- A worl or two may be said regarding the causation of pericarditis. It appears probable that there is no such thing as true primary idiopathic pericardi is. The organism setting up the inflammation must reach the part fro. : some focus elsewhere. Cases are either of hematogemous origin, the infective agent being brought by the hood, or, more frequently, derived by extensiom, and secondary to inflammation either of the heart musele, of the pleura, or the diaphragm. As already indicated, a great number of species of organisms may be isolated from instances of one or other tape. It deseryes note that tuberculous pericarditis is foumd, upon careful examination, to be more common than the naked cye apearances would suggest. Lastly, the frequency of pericarditis in chlerly individuals, victims of chronie nephritis, desioryes mention. The conditions here are generally of the serous type, and frequently on bacteriological examination the results are nogative. Whether we deal with a toxie pericarlitis, or, as appears to be the ease also in aroute rheumatism, the causative agents are such as do not grow easily umon the ordinary media, is a matter which has still to be detormined.
Regressive Disturbances. - Of these only one condition deerres note, namely, that of serous atrophy of the pericardial fat. In senile conditions, as also following exhausting diseases, the fat of the fat cells may become replaced by scrous fluid, so that without much shrinkage,
fult examWhile we ricardiun, ened periabercles or onneetivelar layers, nous peri-
t appears irt minsele rer. Here tis, a conns extends the conrt, giving s. These most freesent also es. They onnective leart wall : or other ssation of g as true ufflaminatre either he blood, munation s already ted from Ions perinon than uency of deserves rpe, and ngative. o hr the has do has still deserves In renile fit cells rinkage,
the regions where fat has been, in the auriculoventrienlar groove, etc., assume a transhucent, soft, gelatinoms appearance.
Progressive Changes.-New Growths.-Primary neoplasms are rare, and are of sarcomatous type or endotheliomatons. Nor are secondary growths very eommon, though these may occur by extension, as, for eximple, in cases of mediastinal lymphosarcoma, or he metastasis.
Cases of cysticercus and echinococcus hydatids have been described.

MYOCARDIUM

Abnormalities.-Abnormalities of the heart are not uneommon, most often due to defective devclopment, occasionally the results of intriolnterine disease. They affect mainly the myocerdinm, but the valves and larger vessels may be involved. It is simpler to consider them all as a gron. Saying this, it has to be admitted also that they are on varions that only the more important can be touehed upon. ${ }^{1}$
Wie may divide them into four main groups: (1) those affeeting the heart as al whole; (2) those due to imperfection in the development of the septia which convert the original two-chambered heart into four chambers; (3) those due to imperfection in the development of the systemic and puhmory arteries ont of the original single efferent trimk: and (4) ablnormalities of the main venous and main arterial trumks, ductus arteriosus, ete.

1. Pinder the abnormalities of the heart as a whole are to be inchuded displacements, duplication, hypoplasia, and primary congenital hypertrophy. The heart has been found to assume a transverse or vertieal interal of an oblique position, or to be dislocated, so as to be high nr, in the nerk, wem at the level of the base of the tongue, or, through dei.... off thr" diambragm, in the abdominal cavity, or through defect of the *ternme, to be exposed to the exterior (ectopia). Or, again, it may be transposed, heing in the right thorax, in whieh case in general, though not alwal!s, there is found transposition of other viscera. A case in which there were seven functional hearts in seriess has been recorded in the chich. Hypoplasia of varions grades is found down to complete alsencee in amardiare monsters (p. 62). P'rimary congenital hypertrophy; in which the weight of the organ may be more than twiee the normal, ha: herin recorded by a few observers, the causation being unknown.
$\because I$ IIlurfect derelopment of septa may affect (a) the interauricular «ptmu, (b) the interventricular septum, and (c) both septa. The interauricular septum has a double origin, two primary septa growing downWird annd lying oblique! $!$; between these is the ehamel of communication betwew the auricles, which is patent until birth, conveying the bloond from the inferior sena cala across to the left heart. It frequently remain patent in post uterine life. This patency of the foramen ovale
a Th:
$\therefore .1$ I. I. Abbott in Osler and MeCrae's Modern Medicine, vol. ive, p. 323.
is the commonest of all ahmormaities of any organ. In Montreal we have fomm it thms patent in 14.5 per cent. of our autopsies, and believe this to be an molerstatement, as frequently the oblique channel is so small as only to admit a fine probe. At other times it is large ano conspicuous, there being various grales up to complete absence of septal development, up to the condition of cor biventriculare triloculare, with a single anricular cavity. Often this condition is accompanied by $n 0$ physical signs or symptoms, but aberrant murmurs have been recorded, together with the development of eyanosis when the pulmonary circulation has become obstrncted.

The interventricular septum develops from below upward, and here again various grades of defect are on record, from total absence (cor biatriatum triloculare) down to a mimute orifice in what is known as the "undefended space" in the upper portion of the ventricles immediatcly beneath the semihmar valses. The indications arc that in these cases the current is from the stronger left ventricle into the right, with secondary hypertrophy of the right ventricle. Here again there may or may not be eranosis, and the development of a systolic murmur heard to the left of the sternum abont the third space.

Both in the auricles and in the ventricles are found occasionally accessory imperfect septa.
3. Originally there is a single primitive arterial trunk which in very early embryonic life becomes divided into two great vessels by the development of a septrm. There may be (a) complete absence of development of this septimm (persistent truncus arteriosus), this common vessel giving off the pulmonary vessels and continuing as the aorta. (b) The commonest abmormality is deviation of the septum, so that we obtain various grades of irregnlarity in the origin of the aorta and pulmonary artery up to conditions in which the aorta originates from the right ventricle, the puimonary artery from the left. Or (c) the scptum leads to an mequal division of the trimk, so that one artery, most commonly the pulnonary, is minute or obliterated (congenital pulmonary stenosis with atresia); rarely the origin of the aorta shows the same character. These conditions may be produced either by mere vice of developinent, or hy intra-uterine inflammation. In pulmonary stenosis compensation is obtained by persistence of the widely patent ductus Butalli (or d. arteriosus). There may also be dilated bronchial arteries aiding the puhnonary circulation. It is these cases of pulmonary stenosis that present the characteristic picture of congenital cyanosis (morbus cæruleus).

Intimately associated with defeets in development of the aortic septum are ahnormalities of the pulmonary and aortic semilunar cusps. These cusps originate as four embocardial cushions, two of which become snblivided in the descent of the arterial septnm, so that normally six cusps are developed, three in each artery. 'There may be increase in number, such supernumerary susps being more frequent in the puhmonary artery, or, on the other hand, decrease, a bicuspid condition
of the pulnonary, or again of the aortie valve being oeeasionally reeorded. The latter condition nust be distinguished from fusion of the consps, the result of postnatal inflammation.
4. To our fourth group belongs a variety of eonditions, such as pitency and abnormalities of the ductus arteriosus, coarctation of the aortia, hipoplasia of the aorta, anomalies of the aortie areh, of the coronary arteries, of the systemie veins, and of the pulmonary veins. luring fortal life the ductus arteriosus joining the pulmonary artery and aurta is a short, thick trimk, 12 mm . long, passing from the region of the bifureation of the pulmonary artery to the under side of the areh of the aorta, below the origin of the left subelavian. It earrics the Wowl, which reaches the right ventride from the head and upper extremities, from the pulnonary artery into the descending aorta. At hirth the pulmonary blood beeomes diverted into the lungs and the ductus madergocs rapid involution, with, normally, complete obliteration in the third week after birth. Occasionally (i) it remains patent, remain (\because) can mulergo aneurysmal dilatation, or (3) very rarely it is (wnpletely absent, in whieh case may be found defeet of the interyoutricular septum, or (4) it may present an anomalous course. Coarctation of the aorta is the name given to narrowing or stenosis of the descendiny arch immediately above the insertion of the duetus arteriosus. The ard, it may be pointed ont, is little used during faetal life, and this stmenis is the result of a failure of the aorta to dilate and adapt itself th the altered conditions of circulation at birth. As a result the bood from the left rentricle reaches the trimk and lower extremities through :In "traordinary series of anastonotic vessels (as shown in Fig. 1S2).
Circulatory Disturbances.-Of these the most striking is the series uf di-turbances which may result from obstruction of one of the coronary irturio or its branches, more partieularly of the left eoromary. From the filet that the eoronary vessels originate at right angles to the aorta, embolism is rare, although we have encountered one ease and have heard of another in which the month of the left eoronary has been found whtructed by a thrombus forming in the anderlying pocket of the aften wroudiry Localized thrombosis is the more cominon event, most atth raromdary to ehronic endarteritis (arterioselerosis). The results he sufficicnt eollateral branch be small little harm ensues. There may matrinu- necerosis and circulation. (2) If larger, the area of supply withult rason, termed myomalacia. The ear'y stage of this is, of a rell infiret with hemorrhagic concestion are the usual eharaeters fibru. sinch necrosis mar be followed by eithen death of the muscle Win! uf the danaged heart wall, with formation (a) rupture, (b) giving of (i) healing and fibrosis, or cicatrization. mante from either ermolece obliteration. Malnutrition of the heart the cormary artern of a branch or branches of aticmpia, appears to it i- $1: 11: 1$ to term it, "nterstitial mymon cause of cardiac fibrosis, or, as

Cilema, passive eongestion, and hemorrhages may all be met in the myocardium.

Inflammation.-Aente myocarditis is possibly more common than is usually supposed. From its very aetivity the inyoeardium is pernliarly susceptible to toxic agents circulating in the blood; the cloudy swelling, often going to fatty degeneration, eneountered in the different acute feven, may be regarded as the result of diffuse irritation and so as an acute moocarditis. But berond this we may eneounter a more obvious inflammation with small-celled infiltration in pyococeus and streptococcus infections, and in aente rheumatism there is a rather charaeteristic form of myocarditis, to whith Aschoff has called attention, in the form of localized nodes of small-eelled infiltration along the eourse of the vessels; in some eases of ulcerative endocarditis, due to pyogenic organisms, there may be isolated or multiple small abscesses developed in the heart muscle, secondary to small infective emboli. Aerte iniliary tuberculosis is rare. Some cases are on reeord of multiple syphilomas-minute localized aecumulations of sma!l round cells not very well defined (miliary gummas).

The more chronie forms of tubercular and syphilitic lesions are not common. (aseous foci have been described, together with solitary: gummas. More common both in tuberculosis and syphilis, and as the end result of the localized inflammatory lesions due to pyogenic organisms, is the formation of cicatricial tissue and the development thus of loealized fibroses.
Regressive Changes. -The heart muscle is very susceptible to alterations in mutrition and function and exhibits thus a variety of regressive disturbances.
Atrophy.-Simple or brow? atrophy is very common. In elderly. individuals and in the subjects of progressive wasting disease, the ventricular musele is fonnd lessened in amount presenting on section, a darker, more mahogany-brown color than normal. The mier seopie apparances have already been described (p. 296). In geneal autopsy work this is perhaps the commonest of all cardiae disturbances to be encomitered, although the next regressive change to be noted rims it a close second.

Cloudy swelling (p. 301) is seen, particularly in eases of hyperpyrexia, febrile disturbances, and infections diisorders. The rentricular musele in these cases no longer presents the normal rich meaty color, but has, on section, the chall, paler apparance of meat that has been dipped in boiling water.

Fatty infiltration is not uneommon in the obese and sedentary, and is fomed associated with extreme epieardial development of fattytissue. Here little collections of fat cells are found lying between the hands of muscle fibres around the vessels. Their presence leads to maluutrition and disturbance of function of the heart musele. This condition appears to be a frequent cause of the weak heart and cardiac
incompetence of stout individuals. In our experience the right heart tmols to be more involved than the left.

Fia. 188

ivellon of myo

> in e, nncctive-tissue surrounding arteriole cut obliquely; f.f, fat cells

Fin. 159
Fig. 190

rams, dugeneration of papillary (McGill Path. Mus.)

Fatty degencration of heart-musele fibres, showing differcnt grades of involvement of the individual fibres:
fresh specimen. (Thibluert.)

Fatty degeneration (p. 303) is also common, either as a diffuse change or in multiple small foci of degeneration alternating with unaltered
areas, giving the myocardium a grained appearance and producing what is known as the "thrush-breast" heart. 'This condition is best seen on the naked-eve examination of the interior of the left ventrich, ofter showing itself well in the papillary maseles. The heart muscle in these eases is shrunken aud very triable, so that upon pressure between the fingers and thomb the tissue easily breaks up; sometimes; indeed it has ahmost a buttery consistence. In our experience, the diffuse form in which the whole of the mascle has a paler pellowish appearance, is fomm as aresult of extreme toxid combitions, the thrnshbreast form in conditions of mahnotrition and advanced anemia, notably. in cases of pernieious anemia. In the latter form the small arens of degeneration are the parts farthest away from the hood suphly, the mascle immediately aromal the terminal arterioles not being involved.

Section of myncardium to show periarterial fibrosis: a, arteriole with wellmarked endar(eritis obliterans; other patches of fibrosis to be olsererved in the
lic. 192

Sections (hrough cdge of developing alea of myocarlial fibrosis showing the cardiae musele fibres (a) merging almost imperceptibly into the hyatine fibroid area (b).

Amyloid or chondroid degeneration is fonnt in the more-alsanced cases of general amyloidosis, as in long-emonned cases of Pott's disease. As elsewhere it shows itself hy a deposit of the amploid material in the middle coats of the arteries and along the eapillary network. The socalled Zenker's or vitreous degeneration, or hyaline neerosis of indivilual musele fibres, is more common than is usually tanght. Notably, it is to be found in cases of malnutrition and particularly where there is blockinig or obliteration of branehes of the coronary artery. Muscle
fibres are fomed swollen and hyaline, with loss of nuelear stain and of triation, exhibiting varions stages of replacement by fibrons tissuc.
Fragmentation.-In exanining sections of the heart musele it is not minsual to come across abmodant fractures, as it ingy be termed, in the course of the fibres. Around these no reactive change is to be moted, and there has been much diseussion as to whether these are artifiats or the result of agonal rupture of the fibres, due, for example, t1: a terminal state of irregular fibrillary matraction of the ventricles. That it is mot a merre artefact we are inelined to think from the fact that the eondition is frefnent in certain particular conditions, ahent in others. Thus, Landry, working in omr laboratory at the Royal Victoria Hompital, noterl that it was practically colstint in cases of aneurysm of the transvery arch of the aorta, associated with mure or less fatty degeneration. Hektoen diatinguishes between true fragmentation, in which there is rupture along the course of a fibre, allul segmentation, occurring along the lines of demareation between the separatr fibres.
Fibrosis. We shatl refer to this more partienlarly under the heading of Intertitial Mocarditis, noting here that it is a frequent result, not only of acute inllanmation, but also of degeneration anil nerrosis of areas of muscle tissue. L.wniated with it we frequently get hyaline "lange (p. 309), more rarely we ellrimiter calcification (p. 313).
Here, as an outcome of degencration and herrosis, may be moted the ocenrence if rupture of the heart. This may follow filt! degeneration or infiltration, but, morn fremently, is the outcome of coronatry disenise, with localized necrosis. The

Wall of left ventricle cut into obliquely, or roughly parallel to the niternal aspect, to show extensive areas of fibrosis: a, urea close under the endocardium; b, areas in depth of myoeardium. (McGill Pathological
Museum.) Inm-1 frembent site is the lowest third of the laft ventricle in front. The condition may alsu follow upon abscess ur hell growths.
Progressive Changes.-Hypertrophy.-Hypertrophy of the muscular Hellint:, both in the auricles and, more markedly, in the ventricles, i- di-timetly common. Anything, in fact, which leads to increased worl of the heart, or of any single chamber of the heart, within the limits uif it remerve foree, is followed by overgrowth of the muscle, and this anmenes to ill extraordinary extent, so that cases are on record in
which the hoart, instemb of woighing the average 300 grams, has weighed linh). Csmally the comlition is one both of simple hypertrophy and of hyperplasia. Not only are the intin dhal fibres of inereased size, but their momber is inereased. We moy classify the canses of increased work and so of hypertrophy as follow:
I. Inereased load in the form of increased volume of flind to be propelled, as in true plethora ("Mimieh beer heart").
II. Inereased load, in consequence of ofstruction to the onflow of hood:

1. In the peripheral circulation, as in some forms of arterioselerosis, and chronic Bright's disease.
\because Within the heart itself.
(a) Through valvolar stenosis and olstruction, resulting in hypertrophy in the chamber or ehambers beinind the obstruction.
(b) Throngh valvalar ineompetence and regurgitation, the regurgitant bood adding to the load and volme to be expelled ont of the ehanber receiving it.

HI. Increased load, dite to hindrance of contraction exerted from without, as by pericardial whesions.
IV. Inereased activity of the heart, due to central nervous stimuli. In the earlier stages of the tachycarilia of exophthalmice goitre the heart has been found distinctly hypertrophied. If the cause of the hypertrophy persists, aml, as often happens, becomes progressively aggravated, the hypertrophy is apt to give place first to dilatation and then to exhanstion, and in these cases, although the heart is fouml enlarged and of increased weight, microscopically the individual fibres no longer appear enlarged and hypertrophied. Withont taking up the individual cases of hypertrongy of partieular chambers we may here lay down the general rule that it is the chamber which bears the brunt of the increased work that first shows hypertrophy. Thus, where there is stenosis of the aortie valve it is the left ventriele, in puhmonary obstruction the right ventricle, $1:$ is first hypertrophied. And, in the second place, hindrance to the outlow of blood from one chamber tells secondarily upon the chamber immediately behind, and leats to its hypertrophy: Thus, where there is aortic stenosis, the left auricle in time undergoes lypertrophy because it attempts to empty its blood into an already crowled ventricle, and this is followed in course of time by hypertrophy of the right ventricle.
Dilatation.-Lilatation is not a progressive but rather a regressive condition. In passing, we would reeall our contention that two distinct a alitions are to be recognized, a physiological distension Which always aceompanies increased work thrown upon the heart, followed by hypertrophy, and a pathological dilatation, an indication that the heart camot fully respond to the work thrown upon it, a condition in which microscopically we find that the fibres which had modergone a true simple hypertrophy now show regressive changes, with some shrinkage.

New Growths.- Prinary tumors of the myoenrdium are distinctly rirr, although fibromas, myx 7 , and lipomas have beell reported. The most typieal primary l....our is the rhabdomyoma, a comdition gemerally of multipic tumors foumd in children und so of congenital mature, which is generally associated with congenitnl nervous and "ther disturbinuces. Sccondary growths are not uneommon, sarcomas briug more frequent than carcinomas.

THE ENDOCARDIUM

Fimbocarditis is so often confined to the valses that when we use this torm we ure apt to pieture to ourselves a "valvulitis" and hye associattime, to forget that the endocardium includes the whole of the lining of all the heart chambers, and that regions other than the valves may. bre the seat of disturbamee.
Abnormalities.-These are rare and confined to the valves. There may be accessory semilunar valves or only two; very rarely has beren recurdel a duble orifice of the mitral. Aberrations of the chordse tembinese, and cords passing from one papillary muscle to the other withont tonehing the mitral eusp are not very uncommon. A still more fregnent ahmormality is fenestration of the semilumar vilues. These follotrations are situated immediately ben the free edge in the area nd apposition and canse no functional disturbance.
Circulatory Disturbances. - The circulatory disturbances are of slight imphrtance. The healthe values are non-vasentar, bint, just as ine dit curneal after inflammation, there is development of the vesispls, so here, and with recurrent inflammation there maty, though rarely, he hemorrhages within the valve substance. In infants minute pinhead hematomas arc orcasionally encomitered, generally toward the closing edg" of the mitral eusps. The latest view is that in the course of develop, matit mimite poekets hecome formed, lined by endothelium, which, themming covered in by the endothelium above, form closed sacs contanime hoorl. They are not, therefore, associated with the presence of 'i....h. The bright red color of the endocardium occasionally met "ifl in llue to hemoglobin imbibition, and is usually a post mortem

Inflammation.-Endocarditis.-The commonest and most important rpi- of disturhances, seen in commection with the endocardium, are Hnally imended under the heading "endocarditis," whether acute or dirmic. Acute cudocarditis most frequently affects the valies, although it 1 man he remembered that the mural endocardinn may also be innoliol, and tha. the succession of changes seen more particularly. in connection with the valves, may also be encountered affecting the wall if erntride or anricle.
ither a experisental en: dence that the endothelium lining the heart hio phagocytic powe! and can take up bacteria from the blood.

Following Washbonrn, we may imagine that at points of narrowin where the boonl strem impinges non the embocordimm, this phag eytic netion is most likely to orent, nud so the anricular aspeet of il muricoloventricular valie and the ventrienher aspeet of the semiluna valves are favorable areas to this process. Bat at the same time the: are the regions whel, from their constant movement, are the subjee of grentest stress, and, ins a consequence it muy happen that if weakener these rells, instend of destroving the baetorin thaken np, peruait th intmorllular maltipheationd of the bucteria and themselves hreom destreserl, the beteria in thair moltiphimtion involving other ecell in the immerlinte neighborhool. With this destruction of the linins cells there is now developed mon area he which thrombosis is fincored mad thas what are known as regetations become developed. Accord ing to the extent of surfince involved, ureording also to the virulene and properties of the inferting microbe, so do we obtain variation in the extent of these vegretntions. i' we deal with organisms of mild

Fil. 101

Verrucenal amberarditia of mortio valve

Fig. 193

Aortic rudorarditis with vegetation (a)
virulence, with relatively little spreal into the surrounding tissue, the regetations remain small, mal there is developed what is known as a verrucose endocarditis. If they spread and involve a relatively large area of the endocardim, dien a large base is provided for the thrombotic process, and large, almost canliflower-like vegetations are produced. If, again, the mierobes are strongly proteolytie, the fibrin of the vegetations becomes digested, the vegetations with their contained baetria soften and break off, and, carried by the blood strean, give origis to infective emboli. With this the necrosed surface layer is exposed, and the baeteria penetratiag farther into the valve substance give rise to an mocrative endocarditis, accompanying whieh, with thinang of the rulve substaner, there may be giving way and development of ancurssmal ponches of the valve (Fig. 198), or withont such aneurysm there may he perforation or rupture of the affected ensp. We thus find various grades of acute endocarditis and various observers have differed much atmong themselves as to the classifieation of these varions grades.

It is usmal to make a broad distinction hetween (1) simple or verrucose endocarditis in which the destruction of the valve tissne is superficinl

Fita. 100

Fia. 107
tion (a).
sisue, the whl is a ely large ombutic roduced. Vegetabacteria rigin to ed, and rise to of the neurysre may various 1 much grades.
marrowing, this phugnpeet of the a semilumar time these he smbijects weakened, permit the es become other cells the lining is favored,

Accord-- virulence rriation in is of mild
 large nill to
1, and

[^16]and ineonsiderable and also the fibrin formation over the affected areas is very slight in amount. (2) Vegetative endocarditis, in whiels the main feature is the extensive formation of thrombotic vegetations, and (3) ulcerative or malignant endocarditis, in which the dominant feature is the extension of the bacteria into the value substance, with neerosis and ulceration and their sequels. But while making this distinction it most be remembered that an ulcerative endocarditis may also be vegetative, that there may be areas of uleeration, and surrounding these abundant formation of vegetations. Here once again we have to recognize that we deal with a succession of grades of the inflammatory proecss, and not with distinet forms of inflammation.

Fig. 198

[tcrative endocarditis with aneurysmal nouching and perforation (a) of mitral valve. The same in reverse (b).

Of the different valves the mitral is most frequently involved in the aunte process. Next to this is seen a combination of aortic and mitral, and in third place the aortie alone. The trieuspid is least frequently involved.

Chronic Endocarditis. - What we said regarding the pericardium is true with regarl to the endocardium, namely, that we ean recognize widely different conditions which familiarly, but of ten faultily, are included under the heading of "Clironic Inflammation," namely, the organizing healing stage of an acute inflammation, the effeets of a reeurrent acute inflammation, the effeets of granulomatous inflammation, and what is not inflammation at all, the persistent remains or outcome of previous inflammation. The result of an acute inflamma-
affected whieh tations, minant e, with ng this carditis n, and e once grades ammaleast
un is gnuize \therefore are mely, cts of minains or mına-
tion is in the first place a liability for the affecterl cusp to become vacelarized; secondly, if ihe process be not fatal, there ensue the varions stages of healing, with cell proliferation and eicatrization in the area of previous acute inflammation. 'Thirdly, the vegetations may undergo complete resolition or absorption, or, on the other hand, the organizing process in the underlying value tissue may extend into them and they may thus berome replaced by new eon-nective-tissue formation and may beeome represented by routracted fibroid nodules projerting from the surface of the cusp.

The condition that we most Prequently refer to as chronic antocurditis is, however, one old diffinse thickening, with contraction of the cusps, leading

Mitral incompetence seen from below, to show shortening and thickening of chorlap tendinete and large orifice a, papillary muscle with attached choriæ so shortened that the muscle impinges upon the valve; b, patont orifice of valve surrounded by greatly thickenerl fibr sed cusps. either to stenosis of the valve, with great narrowing of the orifice, or to incompetence, with incapacity of the cusps to meet and close the orifice, or often a combination of the two conditions. As regards the mitral valse, which is most commonly affected, it must be

Fig. 200

Fio. 201

Autic stenosis ween from alsove, with fusion of cusps, leaving but a small central orifice.
kent in mind that this valve is not composed of two distinet cusps hitt ${ }^{\prime \prime}$ a veil of irregular depth hanging down into the ventricular chamar. If we study a series of hearts, we find not a little variation
in the conformation of this veil, and, as a result, when this becomes diffusely thiekened by new fibrous-tissne formation, in some cases the result is a funnel-shaped narrowing, in others with contraction of the fibrous tissue there develops a slit-like, or button-hole orifice. As regards the semilnnar valves we find that the fibrosis affects more partienlarly the distal portion of each eusp, with contraction, the cusps beeone much shortened, so that the corpora Arantii, in the aet of closure, canuot possibly meet, ineompetence and regurgitation being set up. Or, on the other hand, the scparate eusps undergo fusion. Where all three beeome fused marked stenosis is the result (see Fig. 201). It has alrcady been moted that there may be congenital fusion of the cusps, but it must be reeognized that such fusion can also occur as the result of inflammation. If the inflammatory agent attack two neighboring valves in the angle of origin, where there is little movement of the cusps, adhesion and subsequent organization

Fusion of aortic cusps. The two cusps at a have become united in consequence of progressive slow inflammation originating at the angle of junction.
may take place, and thus immobility of the eusps, with progressive inflammation involving the angle of apposition, may continue until the neighboring eusps beeome boumd together along the greater part of the area of apposition.

While it is true that fibrosis of the valves is a resultant of aeute inflammation, we are of opimion that in a very large proportion of eases the thickening of the valves is more of the nature of strain effeet than the outcome of previous mierolic irritation of the valves. Even in cases of mitral stenosis oecurring most frequently in young individuals and then following upon, it may be, recurrent attacks of acute endocarditis, presumably set up by the organism or organisms of aeute rheumatism, there is in general wanting any intimate relationship between the site of the lesions . i the acute disease and this chronic thickening, involving the whole area of the valve. The even and regulat manner in which the new connective tissue is laid down leads us to
the belief that through the loealized lesion of the acute disease the lalue has been remlered rolatively weak and less eompetent and as a romsequence is subjeeted now to a greater strain, that greater strain learling to a diffuse proliferation of the conneetive-tissue elements, and eonsequent thiekening and contraction, eonsequent greater obstruction and inereased museular aetion with heightened blood pressure, wit'l, in short, the estahlishment vieious eirele. In the ease of the iortie valve this view gains still greater support, and that beeause fibrosis of the aortie cusps is more frequent in later life, associated with arterioselerosis. As we shall proceed to point out (p. 406), the fibrotie elanges of the aortie intima, in the majority of eases, bear no relationship to any infeetive process, for it must be recalled that the aurtic cusps are merely infoldings of the eardio-aortic intima. As actual or relative strain is the cause of the one, we must presume that it is equally the cause of the other. Rupture of the semilunar eusps occasionally follows sueh strain with its aceompanying rise of arterial hoonl pressure.
Is in arterioselerosis, so in these eases of valuular fibrosis, we are ipt to encounter a series of degenerative ehanges-fatty degeneration allid necrosis with atheroma and calcification.

THE ARTERIES

Ther arteries may be rivided inte the two broad groups of those of the clastic type and those of the museular. The aorta and its main !rancher belong to the first. In these large vessels reeeiving the first impular of the hood wave, and thus liable to sudden expansion, something is evilently needed bevond musele fibres, both to prevent undue ditemion and to bring the vessels passively baek to the normal when the disternding foree is removerl. We find in the media of these vessels multiple sheaths of elastie tissue alternating with layers of musele fihre. In the media proper these musele fibres have a cireular arrangement. Immerliately within the media, in what is known as the museulodiattic layer of Jores, there is to be found a small zone of fibres having it longitulinal direetion. Smaller arteries are of the museular type, in whid the elastiea is often reduced to a single prominent layer, turming the boundary between intima and media; there is often to be luntrit an extornal elastie layer between he media and adventitia. It i- these smatler arteries, with their relatively abundant musele lifycr and eapacity to undergo relatively great dilatation or contraethen that are the great factor in determining the blood pressure. As th He extent to whieh the contraction and rilatation of the arteries is nlinter the control of the central nervous system, the evidence before Is indicates that the same conditions obtain as in connection with the hen? hamely, we have central influences acting through the vasocomstiotors and vasodilators; there exists also a rich system of nerve
cells with preveses, forming a plexus in the arterial wall, and, thirdly, the muscle es the media is fomm to be eapable of direet stimnation. The larger arteries may exhibit strong contraction many hours after death and many !omers after the vasoeomstrictor nerves are no longer irritable. Leonard lill, more particularly, has called attention to the fact that, muler heightencd intermal pressure, arteries tend, not to expand, but to contract, and this so immediatele as to indicate a local and not a reflex reaction. With regard to the notrishment of the arteries the vasa rasomm penetrate only into the outer half of the media, ${ }^{\prime \prime}$ the internal elastic lamina is secon to oppose a considerable hindr .o to much nutritive interchange between intima and inedia. We must comelude that the intina is nourished from the blood stream, at least the outer two-thirds of the media by the vasa vasorum, while the imner third of the media may posibly receive nourishment from both sourees.

Abnormalities.-We have already referred to almormalities of the larger trunks (p . $3 \mathrm{zi}(\mathrm{i}$). We may here note in addition that a general hypoplasia has lecel deseribed, with smell size of the aorta and main trmos. Some would regard this as truly er genital, and as a condition predisposing to chlorosis, general malna'rition, tubereulosis, etc. Others regard it as secondary to impoverished state of the blood, with weak heart action.

Inflammation.-The arteries may be involved in the inflammatory affections of tissues, their walls often being eroded. That severe hemorrhage does not happen more frequently than it does is due to the fact that the inflammation causes a thrombosis. Inflammatory states primary in the arterial wall, especially those due to syphilis, will be diseussed in comnection with arteriosclerosis, by which means that important proces., belonging largely to the regressive changes, will be discussed without heing divided. Burger, of New York, has of late called attention to the frequency of an obliterative arteritis (thromboangitis obliterans) among Polish and Russian Jews, leading to presenile gangrene of the limbs. Beginning as a migratory loealised inflammation with thrombosis of certain coms. eventually both arteries and veins of a limb become axtensively thrombosed. The smallest arteries are frec, and there is aecompanying periarteritis. The cause is unknown.
Regressive Changes.-The observations of Aschoff, Klotz, atid Foster show that the thickness of the larger arteries undergoes progressice increase until about the age of thirts-five, then remains stationary until about fifty yars of age, after whieh, in the majority of iumbiduals, a reduction is to be noted. It is the media that in the main shows these changes, and here, after fifty, both the muscle fibres are ant to show begimning atrophie disturbances, leading to slrinkage and disappearance of some elements, and also the elastic sheaths show greater irregnarity in contour and with the disa a_{1} pearanee of intervening muscle fibres, are apt to rum together, forming coarser strands. But beyoul this simple atrophy, in elderly people ve frequently lation. s alter louger to the not to a loeen rterie ia, \cdot dr must am, at , while t from of the reneral 1 nain condiis, ctc. d, with hemorhe fact states will be is that will be of late uromboresenile almmaI veilis ies are nown. \%, atid es proIIS starity of in the c fibres rinkage is show intertrands. quently
anomuter indications of both fatty and calearems degeneration of the murcle, often assuceciated with a failure on the part of individual elastic hams to take the elastic tissue stain, which may be mistaken for ruptire of the fibres. All these apparances indicate that ith adrancing alare the wall of arteries of the elastic type becomes weaker. In the art rioles and smaller arteries hyaline degeneration is not infrequent. Buth in the media and in the adventitia there is to be noted a deposit or intiltration of a homogeneons hyaline material. Somewhat similar to this, involving not the ordinary comeetive tissues but the clastic tionnco, is the elastod degeneration of the uterine, ovarian, splenic, and other arteries already. deseribed (p. 309). Amylotd infiltration has a predilection for the misenlar conts of smaller arteries as well as the muter surface of the eapillaries.

Arteriosclerosis.-This condition, or as revent German authorities trmin "atherosclersis" or "atherosis," is the most eommon canse uf deth, direct or indireet, in those who attain to middle life or, we mil! -ay, after thirty years of age. "A man is as old as his arteries," and it is incapacity on the part of the diseased arteries to cespond to the In wh of one or other organ that leads to malnutrition and atrophy. if thaw organs, even where graver and more immediate disturbances are lo.t produced by distension of the diseased artery (aneurysm), ur is rupture of the same (hemorrhage and apoplexy.). It is thus all impertant to have some general ideas regarling the nature of arterio-- flat is and the comblition ; learling thereto.

I 'urm of degeneration, frequently observable in those dying from arith liwhere is the presence of "fatty streaks" of the aortic intima, whi:- imear streaks, disposed longitudinaly, partical - in the dorsal half : Hhe aorta. Examination here shows fatty changes which may "etw, :中, to the intima, but very frequently involve the cells of the
muscuio-elastic layer. Apparently this represents only a transitory change, and would be recovered from had the individual himself recorered, and that beause we are unable to find any chronic developments taking the place of these streaks; Klotz notes oceasional intimal thickening over the fatty areas; nevertheless the disposition of these streaks is obviously different from l : at of the nodes in ordinary arteriosclerosis.

Arteriosclerosis is not in itself a degeneration, even though it may give place to degeneration; it is to be regarderl as an adaptive process following upon degenerative changes oceurring in the arterial wall.

Forms of Arteriosclerosis.- It may manifest itself in more than one form: (1) the simplest and commonest type is what is known as nodose arteriosclerosis. The carliest stage of this, seen in the aorta, presents itself in the form of whitish, flattened, nodular thickenings. It is peculiarly apt to be situated around the orifices of the aortie branches and notably around those of the intercostal arteries (see Fig. 204).

Section of one of these flattened norles shows that we deal with a pronounced ihickening of the intima, in the form of successive layers of new connective tissue. Where the condition is more extensive, similar nodes are irregularly scattered along the course of the aorta and thickenings of like nature, though relatively of larger size, covering, that is, a larger proportion of the arterial circumference, are to be encomiterel in the various main branches, there, by their very size, lealing to some narrowing of the lumen. In the earlier stages, as above indicated, we deal with a simple overgrowth or hyperplasia of the intinal comective tissue. The most abundant nuclei, and the best staining, are present in the layers immodiately underneath the endothelinm. 'This indicates that these are the layers of most reeent development. As i. matter of fact, associated with this development of superficial layers, the deeper layers show evidenees of malnutrition, so that very frequently we find either the deeper cells swollen and poorly staining, or that they exhibit fatty degeneration, with granular breaking down and necrosis, and often with some imbibition of fluid, so that the part is distinetly softened and somewhat oedematous, or again this deeper intimal tissue breaks down into a porridgy mass of necrotic material, and if the superficial layer be broken and the soft material be examined under the microseope, it is found to afford abondant characteristic crystals of cholesterin, together with fat droplets and lipoid globules, which are doubly refractive. Or, lastly, such atheromatous areas beeone the site of calcareous infiltration and deposit, and this to such an extent that there may be formed in the thickened intima a solid ealdified plate. The presence of such a rigid plate in an organ liable to some dilatation results at times in the rupture of the overlying layer of intimal tissue, and the formation, thus, of what is known as an atheromatous ulcer. It is interesting to note that there may be somewhat frequent crosions and ulcerations of this
nature, with little or no thrombosis formation; oeeasionally, however, a well-marked parietal thrombus forms upon one of these atheromatous ullerrs (see Fig. 206).

Settion through a fibroid plaque of anrtic intima from ease of nodose arterioaclerosis: a, outer proliferating layer of intima; b, deeper hyaline layer; c, still deeper layers showing deposit of cal. carcous salts (stained black) and extending into d, the iuner layera of the media.

Fig. 206

$[\ldots: 1$ il thrombus (a) and atheromatous ulcer (b) of ascending aorta. (McGill Path. Mus.)
'I he ahowe is the commonest type. The studies of the last few years lian. fal to the recognition of another form, namely, (2 ; the syphilitic. Wherai- the former is found along the whole length of the aorta, and inntumet marked in the abdominal section, this second form involves min:- .,mmonly the ascending aorta and transverse aorta. Here we chi: tur patehes ihat are of a somewhat translucent appearance,
that bear oo speetial relationship to emergent veseds, that often hawe their long axis transwerse, and very often hate a phekered appearanees Siderotie changes of this nature are seromblare to spphititic mesmortitis. It is now abumbatly recognized that siphilis finds what might be deseribed as a "point of election" in the rasa vasornm of more partienlarly the first part of the aorta. 'There oecours a smallcelled infiltration aromed the branehes of these small arteries in the molventitia and media, and this is followed be what might ahost be deseriberl as a "melting away" of the media in the affected areas (see Fig. 20. 0). One of two results may follow, either (and this when the process apparently is not very acole or very extensive) the weakening of the media is followed he an owergrowth of the commective-tisume clements of both intima and adrentitia, or (where the process is more extensive and more ante) in phace of she compensatory opergrowth the arterial wall gives way, with resultant anemram formation.

(i) Mönckeberg's Sclerosis.- Here we leal with a process in which the most marked feature, seen in arteries of harge size such in the eommon iliacs, is an extensive degeneration of the media with atrophy of its muscubar elements and frequent calcareons deposits in the atrophied musele cells and, it mary be, in the elastie tissue havers. A smikr process oncouring in the aorta leads to a ditfuse dilatation, with edongition and apparance of aceessory curves. In the harger branches athore noted the degemeration oremes in transierse patches, so that at anton? there are to be seen a suceresion of ring-like or transerse deprestons which are very characteristic (see Fig. ?(os). 'The important pount regarding this form is that a similar caleareons infiltration of the media is apt to insolse the smaller arteries; if a series of the well-hwwn "pipe-stem radials" be examinef, it is found that their hardues or
whrosis is mot due to intimal fibrosis but to this romblition of medial calcification precerlerl ofteon byerertrophe of the musenlar coat. In

Fic. 208

Nob hillotge artorinelrobis nfecting the external iline arteries

Fig. 209

Qult be of :treriole of invorardiums showing the
 llin a \quad andarkenemt of the arteriole seen in
the larger arteries it is more common to find a comblination of monlose selerosis and this medial regeneration.
(4) Endarteritis Obliterans.-All the above changes, inchading the syphilitice, are fomm to involve alson the arterioles annd arteries of smatler size. The syphilitic changes manifest themselves particularly in association with

Fisi. 210

l.ongituthal wertion through a branch of the renal artery, thowing the relationship brtwern weakening and at rophy of the media and arlaptive owerkrowth of the intitna a, normal or. more areurately, hypertrophicu media; b, b. areas of the thickened selerosed intima over regions of midial thinning and desuneration; ht r, the imedia is divorganized.
the wethal arterioles. Here in the earlier stages there is a wellmarhul, proviaseular, small-celled infiltration, aceompanied by an astreanth of the intima, which may be so extreme as to lead to whlitet: tion of the lumen.
Th, inuluse and Jönckeberg selerosis present a succession of stages. In il maller arteries cither there is a diffuse hypertrophy of the minn- "oit, frequently to be male out in the branches of the relal 'rPs or apparently following upon this lypertrophy, there i. he:- wh there exhanstion and degeneration of the muscle; there is omm 'mis and, in addition, where the muscle has given way, an ailipt: wergrowth or sclerosis of the intima, or with diffiuse dilata-
tion of these smaller arteries there is diffise, rather tham nodular, intimad thickening; the adwentitia of the smaller arteries frequently partakes in these changes, heeming generally thichened (chronic periarteritis).

A very remarkable form of sclerosis is seen in the uterine arteries and in the branches of the ovarian artories of multipare, clearly in rolationship to menstruation. We have alrealy described this, showing how large masses of elastoid material become formed, together with the regencration of a new artery within the old one (p .303). llere again we deal with no infective process, but with a functional stimmhes, leading to active new growth of intimal, medial, and adventitial elements. The process is clearly adaptive.

The ohservations of Klotz and others show that experinentally, after the intravenous inoculation of certain bacteria or their toxins, there may be developed localized arcas of intimal proliferation. More than one olserver has ealled attention to the supervention of arterioselerotie changes in young adults following upon typhoid fever. Were the organisms of the exanthems and of the commoner infectious diseases the canse of arteriosclerosis, we would expect to find this condition eominon at or following the period during which thesc infections are most rife, namely, in ehildhoorl and youth. On the contrary, arterioselerosis is eommonest in and after middle age, at a period, that is, whon the individual slows a strikin; - \quad lative immunity to infeetious diseases.
Etiology.--We thus suppre view that arteriosclerosis as such is not in general of infective orign and, indced, is not an inflammatory process. We hold that it is the expression of a disordered relationship between the internal pressure to which the artery is subjected and the strength of the arterial wall, that strength depending, in the main, upon the condition of the media. The same results ensuc when there is increased internal pressure, the wall being of normal strength, and when there is only norinal internal pressure, with weakening of the media. Whether this weakening be due to inflammatory infiltration, as in syphilis, or to degencration, as in old age, is a secondary matter. The tendeney will be in any of these conditions for the wall to give way at the point of least strength; if it give way suddenly an aneurysm is formed, and, what is more, the intima is overstretcherl and overstrained and shows little tendency to take on excessive growth. If the strain, on the other hand, be not excessive, it is followel ly aetive proliferation of the intimal connective tissue and this proliferation continues with the laying down of layer upon layer until the new development is so thick and firm that it is no longer subjected to strain. With this the sclerosing process becomes arrested.
In favor of this coneeption two series of cxperiments may be quoted: (1) that of Klotz, in whieh holding up a healthy buck for a few minutes daily by the hind legs, over a period of four months, the increased pressure brought to bear upon the thoracic and cervical region led to marked hypertrophy of the heart, diffuse dilatation of the thoracic aorta and nodose arterioselerosis of the carotids, and (2) Carrell's experiment, repeatedly confirmed, of ligaturing a length of a vein ir

the comrse of the carotid artery of the rahhit or eat, of replacing, that iva a portion of the artery by a like lengeth of a vein. Performed properly the operation leads to no thrombosis or arrest of blood current, and if the unimul be killed some months later, the vein is found somewhat dilaterl, but showing a most marked thickening, with hying down of litrons tissue in ull the conts, though most murkerly in the adventitia. 'This filmosis can only he regariled as functional or renetive, as a response to the increased strain thrown upon the vein.
'Thns, to eonelude, we reeognize (1) a irne inflammatory endarteritis, dun tu haetorin and their toxins, mainly imwhing the arterioles, ocea--ionally, and to a slight extent, atleeting the aorta; (2) an inflammatory prriartoritis and mesaortitis, of which syphilis affords a most striking "Gumplr: (3) an int inal selerosis, non-inflammatory in nature, secondary lowetnal or relutive weakening of the middle coat (and there may be an ahrintitial selerosis of the sane nature) ; (t) a medial selerosis (Iönekelerg's selerosis.) of degenerative mature, the hardening being due to the deposit of eulcareous salts in the midele cont; (5) a functional Wernsis, as seen in the arterirs of the uterns and ovary : η which the reqemration and mow formation of the arterial coats with the distrmenl hanen of the older artery is aceompanied by a lyy, in: or more arcurately, elastoid deposit outside the newly formed artery, but derivel from the internal clastic lamina of the original artery.

Aneurysm. - ln anenrysm is an abnormal mad eircumscribed dilatatinn of the hamen of an artery. From old time we distinguish between the trae ancurysin, in which there is persistence of one or more of the mats of the artery to form the bomblary of the dilatation, and the false alleursim, in which the wall of the artery in the dilatation has beeome atmothed and the surrounding tissues form a seeondary wall enclosing the huml. Fullowing Osler, we may still further chassify the forms as follows:

1. True Aneurysm.
(1) Dilatation ancurysm: (1) fusiform, limited to an area of one of the larger vessels; (2) cirsoid, involving an artery of the second order with its branehes, the whole series thus beeoming greatly distended and tortuous.
(b) Saccular ancurysm: this is the eommonest form, in whieh there is a loealized and lateral giving way of the aorta or of a smaller artery:
(c) Dissecting aneurysm: here with rupture of the inner eoat the blood makes a passage, disseeting between the layers of the degenerated middle eoat, and either makes its way eventually into the pericardial sae or to the exterior of the aorta (leading thus to sudden death from hemorrhage), or back again into the artery at, it may be, some considerahle distance from the original site. In this case the new ehannel gains an endothelium, and the eondition may persist for years, the individual possessing apparently a double aorta, and even double iliacs, etc.
II. False Aneurysm ats above described; strietly the condition here is one of hematoma.
III. Arteriovenous Aneurysm oeceurs, in which, from traumatic or other emuses, there is established a eommmication between an artery and a rein, either direet (aneurysmal varix), a eondition in which there is marked dilatation and tortuosity of the vemand its branches receising the arterial boom, or indirect, a sat origmally of the mature of a filse menrsm intervening between the artery and the vein (varicose aneurysm).
IV. Other Forms.-There are other forms (rare), sueh as the parasitic aneury:sm seen in horses (in which strongyloid worms, present in the bood stream betome arrested in one of the smaller ablominal arteries and, growing and setting up irritation in the arterial wall, come thms to fill a sace which is in direct (ommmentation with the bionel stremm): traction anturysms, erosion aneurysms, ete.

As stated in the above table, the commonest form that we have to leal with is the sucenlar imeuresm; next to this the fusiform aneursm of the aorta. By far the eommonest site of these dilatations is the aorta, and in this the ascending and transverse portions. Anenresms, of the abelominal aorta oecur, but are mot so frequent; of the main branches of the aorta the popliteal arteries deserve special notice, althongh the splenic, remal, and other ablominal arteries are oxen-ionally involved. Another site, of no small importance, is the cirde of Willis and its branches, while carefn! examination of the semae brain, particularly in those who have been syphilitie, receals the not infrequent presence of multiple miliary aneurysins upon the cerebral arterioles. Similar ancurysms sonsetmes follow infeetive embolism in eases of acute emberarditis. Both in chronie syphilis and in its more aroute eondition the infective process leads to a weakening of the walls of the smaller vessels, with eonseguent giving way muler the blood presiare. A rarer form, the so-ealled mycotic aneurasim, is oetasionally met with in the aorta; here, apparently, bacteria gaining entrance into the vasa vasorm lead to localized abseess formation in the aortie wall with rmpture into the lumen. These, however, are comparatively rare.

The eommonest canse of aneurysin formation is syphilis, and the - xilanation of the peenliar frequemery of the eomelition in the first portion of the aorta is mot merely, ass iseal to be taught, beeanse here the wall is subjereded to the greatest internal pressure (though this, of courne. is a factor), but becausee syphilitic mesaortitis speecially affects this requon. The small-eelled infiltration arouml the bramehes of the vasa vasorum is followed by am extraordinary destruetion of the molia, the main support of the artery, and it is this loealized destruction of the media that is the main eanse of ancurvism formation. Batreme degeneration of the modia, from non-inflammatory eanses, may have the same resilt, as may arterial trama or erosion of the outer coats throngh progresibe inflammation in their neighberhood. Thas, where
here is other and a here is receivre of : varicose ,arasitic in the arterics ne thus: (remin); curysin is the urysmis e mailin notice, (41) 1 (1) ir le of briall, le met erchral loolism in its ning of under isill, is gaining mation er, alre nit the portion he wall comres. to this ic vasa meclia, tion of xtreme צ hatre remats , where
there is caritation in the lumgs with progressise destruction of tissine, it in not uncommon to find satecular aneurysm: of branches of the imhnmiary artery projecting into the cavities; hut senile, or presenile dureneration, trauma or erosion do not compare in frequency with \because philis, as causative agents.
Results of Aneurysm. -The aneurysm being due primarily to a weakening in the wall, the greater the dilatation, the weaker becomes that will; there is thus a tendence toward progressive enlargement. If the grow th be not too rapid and the enlargement is surrounded by soft, armmundating tissucs, there may be a reactionary development of an inlventitial (alpsule arresting further growth. If, on the contrary, the side impinges upan rigid structures, be compression of the nutrient wosels of those structures, instead of the formation of such capsule, there is a process of necrosis and absorption; the aneurysmal wall heremues so thimued as to undergo rupture, either with extensive hemorrhape aut sulden death or with the formation of a localized hematoma and filse aneurysm. Thus, for example, a saecular aneurysm of the ancmuling arel may completely perforate the sternum, and then form a filke aneurysm, pulsating and forming a protrusion in front of the chent, with eventual atrophy of the skin that covers it, and final "Sternal rupture. Even in a true aneurysm, sudden increase of pressure, a beyertion, may lead to rupture at some point where the external "ilpoule is thimest, with resultant sudden death.
On the other hand, where the circulatory conditions are favorable, where. for example, the aneuressm is so situated that the contained monl is rulaticely stagnant, a process of obliteration may show itself In the haying down of layer after layer of fibrin until the cavity thernurs filleyl up. This eomplete obliteration of an aneurysmal cavity. i, huweser, rare. Nimmerous attempts have been made clinically to irritate or induee this natural process, as by temporary occlasion of the artery abowe an aneurysm, by the alministration of drugs lowering thin Whan pressire and force of the heart beat, and by the introduction If "ire, cte., iuto the aneur!sinal cavity, so as to incite coagulation.
Progressive Changes.-In cases of high blood pressure it is not (inwinminen to finu a marked hypertrophy of the middle coats of arteries. Tin his, in recent years, liusisell has specially called attention. If the wh prenure be loug continued this is apt to lead to degeneration Wh. Yönckeberg type. Tumors primary in the arteries are distinetly tombe olsiservers have held that uterine myomas originate, not the itterine, but from the arterial musculature. This is still undeintel, anul is semerally doubted.

CAPILLARIES AND vEINS

Cupillaries. The disturbances of the capilluries have not been studied 'I. in they deserve. Regressive changes are common and, notably
under the agency of baeterial toxins, passive congestion, protein poisons, various mineral and other drugs, the endothelimm is apt to manifest a condition of fatty degeneration, which in its turn favors cupillary hemorrhages. Hyaline degeneration or infiltration is not uncommon. In our chapter on Inflamnation we have ealled attention to the profound changes that may affect this endothelium as the result of local irritation.

Congenital dilatation of the capillaries (eapillary telangiectasis) is scen in certain nævi, and similar 'ilatation may be accuired as a result of active or passive congestion.

The tumors that may originate from the eapillaries, hemangiomas and hemangio-endotheliomas have been discussed on p. 277.

Veins.-Regarding the reins the following may be noted: as with the capillaries there may be congenital or acquired dilatation. Such dilatation may be rliffuse but more often is sacculated (varicosity), with a marked liability to the formation of mmerous anastomosing vessels, which become dilated and tortuous. The aequircd phlebectasis is most of ten the result of passive congestion, associated with malnutrition, and is apt to show itself (1) in commection with vessels, which, heing superficial, lack the support and resistance of surrounling tissucs (e. g., hemorrhoids, veins of the lower end of the ossophagus in portal cirrhosis), and (2) in the lower part of the booly, where the weight of the column of bloorl, in addition to the poorer circulation, favors the dilatation of the vessels (e. g., varicose veins of leg, pelvic veins, veins of the pampiniform plexus). Such varicosity may be accompanied by rcactive thickening of the walls (phlebosclerosis), or, more often, by thinning of the same and resultant hemorrhage; the condition of malnutrition favors the onset of inflammation (phlebitis), and of thrombosis.

Calcification may oceur in the venous wall, but it is rare.
Of inflammations, there may be acute suppurative phlebitis; this is usually secondary to a localized suppurative, gangrenous inflammation, as appendieitis, where with infective thrombosis extending along the veins from the suppurative focus, there may be a progressive asceurling thrombosis (thrombophlebitis), with associated inflammation of the vein walls. Even in young adults careful examination shows that a thickening of the walls of the veins of the extremities, sufficient to render these veins easily palpable, is not uncommon (phlebosclerosis), and this without any sign of inflammatory or toxic disturbance. We must presume that, as in the case of the arteries, so here, there may be a strain fibrosis.

THE LYMPHATIC VESSELS

Of abnormalities the most striking is the condition of congenital dilatation of the lymphatics and localized arcas, apparently due to some congenital obstruetion to the outflow of lymph. Well-marked
ein poio maniapillary ommon. the proof loeal tasis) is a result ngiomas as with Sueh y), with vessels, is most ion, and g supers (e. g., rtal cirt of the ors the ss, veins nied by ften, by of malombosis. tis; this inflamtending progres-inflamnination emities, common or toxic arteries,

THE BLOOD-FORMING ORGANS

THE LYMPH NODES

There infictutions of lymph tissue are found viroughout the boily, In. mily in the large groups anatomically deseribed as cervical, oxillary, inamal, or other nodes, not only as the tonsils, and mixed with various - divary true glands in the region of the mouth, but also as unexpected ant ariable aggregations on the course of lymph ehannels and around the wins in any part of the boly. The amount of this tissue varies in dn rant ages, and some struetures rieh in it in youth, as the appendix i. ifirmis, lose it to a great extent in old age. Its protective function i: : : important one.
Abnormalities.-I condition still not understood is the so-called stions lymphaticus of infaney and ehildhood. In this, aecompanying a $\quad n$ ith a proper developinent of the other tissues, there is found
faimples of these conditions are macroglossia, macrocheilia, hygroma colli, and "cavernous" lymphangiomas of the superfieial lymphaties. Sueh lymphangiectasis may also be aequired as the result of obstruction to the exit of lymph from a region. This may be brought about by the pressure of tumors upon the efferent lymphaties, or by elironie inflammation, involving and compressing the same, or, thirdly by obstruction of the lymphaties, as a result of eaneerous growth in them. The most marked and extensive state of aequired lymphangiectasis with it.: resultants is seen in the condition of elephantiasis, very common in the West Indies, and most often the outeome of filariasis. The alult filarial worms make their way into the lymphaties, partieularly of the groin, set up there a chronie inflammation with ohstruction of the main lymphatie channels. As a result there nay be a liuge enlargement of the serotum or lower extremity, in which, in aldition to dilatation of the lymph ehannels, there is an aceompanying diffuse fibrosis of the connective tissue, or, again, of the nerve sheaths, and a cutaneous hypertrophy (pachydermia). As a result of ohstruetion, there may also be rupture of the lymphaties, which, when the pelvis of the kidney is involvea leads to chylurta, when the mese ierie Irmphatics are involved eauses chylous ascites, and when the superficial cutaneous lymphaties undergo rupture brings about the condition of lymphorrhagia.

Wie have already discussed the tumors of the lynnhatics, namely, the false tumors (lymphangiomas), p. 280, and the true tumors (lymphangioendotheliomas), together with the rarer true lymphangiomas. In this cennection we may reeall that both eareinomas, and, to a less extent, sarcomas, are apt to extend along the lymphaties, and, doing this, may (mmpletely obliterate them.
a general hyperphasia of the lymph tissues throughout the body and very frequently a promonneed enlargement of the thymus. The causation of this state is most ohseure, and some hold it to be congenital.

Circulatory Disturbances.-Active hyperemia of nodes occurs in the early stages of infections, and is not so much a step in disease as a preparation for finction; the presenee of toxins canses a congestion of the lymph node which results in a proliferation of the lymph cells and an increase in their number which is defensive against the near-hey infection. Cedema of lymph nodes is seen in the case of nodes that are inflamed. Thrombosis and embolism are of no importance, because the node has a perfect collateral circulation made not only of vessels, but of lymph simuses, so that its mutrition can searcely be interrupted by alything short of a complete cessation of circulation to the part or memher concerned. There is one means wherehy the circulation through the node ean be interrupted, vi\%., by excessive accumulation of leukoeytes and lymphoertes in the sinnses and the proliferation of endothelial cells. This is a factor in producing the central necrosis seen in the bubo and in neerosis of mesenterie and submucous nodes in trphoid fever.

Farices are dilatations and tortuositaes brought abouc in the simuses of lymph mocies, with the final formation of cests, due to blocking of the eflerent chammels.

Inflammation.-Lymphadenitis.-If bacteria be introdueed into a limh or into a serous cavity they are found in the adjacent lymph notes within a few minutes. At first they may :ass readily through these and be found in the hood; rapidly, however, the node is found to become impervious, to become swollen and eongested, to have its simuses filled with leukocytes, and soon there ocrurs aetive proliferation of the lemphoeytes of its tissue. Later the endothelial cells lining its simses become greatly :wollen and enlarged. All these are conditions fonnd in simple lymphadenitis, hut where the pyogenie mierobes have gained entrance in great numbers, the further phase of suppurative limphadenitis is apt to supervene, the nodes beeoming still further swollen, soft, and pinkish on section, yieldine on scraping a thin, purulent fluid. Central necrosis mas oever with the formation of thick pus. These acutely colarged nodes are known as buboes. Frequently the inflammation affects also the immediately surrounding tissue, which becomes eongested and ordematous (perilymphadenitis or cellulitis).

Chronic lymphatenitis is represented be the enlarged fibrous notes which are kept in a constant mild state of inflammation by some irritant of moderate viruleure, such as is seen in the submaxillary nodes when the teeth are hadly preserved; equally well-known examples are sem in tuberculosis and syphilis, as again in the anthracotic nodes at the root of the lung in coal miners, ete. The affeected nodes are enlarged, firm, and, according to the nature of the offending material, more ar fows pigmented. In the earlier stages there is simple cellular hyperplasia, but eventually the capsule and the stroma undergo fibroid thickening causagenital. in the se as a gestion oh cells car-bụ es that octause ressels, rupted he part ulation ulation tion of tecrosis moxles king of

Which may be so extreme as to cause atroply of the lymphoid clements proper, the node becoming represented by a dense encapsuled mass "if fibrous tissue. In addition to this in tuberculosis, the nodes may be the seat of tubercle formation, with agglomeration and cascation.
Regressive Changes.-Atrophy.-Physiological atrophy of lymph tissue appears to be progressive through life, the lymph norles being at their maximum in early childhoorl and diminishing progressively', until in old age the ence of lymph tissue is most marked.
Degenerations and Infiltrations.-Hyaline thickening of the capillary walls and of the stroma is not uneommon in connection with ehronic inflammation, especially in tnberculosis. Amyloid affection of the cupillary walls is met in general amyloidosis, and more particularly in local amsloidosis such as may be found in the head region. The disease may also affect the fibrons interstitial tissue. Calcification is not uncommon in comection with old caseous tubereulosis, while pigmental deposits, whether of dust particles or of morlified hemoglohin, arc rery frequent, : he former in the bronelial norles, the latter not infrequently in the deeper mesenteric and retroperitoneal nodes in cinc's of chronic intestinal disturbances or where hemoperitonemm has onimred. Tattooing leads to the presence in the nearent lymph norles of the pigment or pigments emploved. Necrosis is met most frequentlyin the mesenteric nodes at the ileocecal angle in cases of typhoid fever, hut may be concountered in various conses of aeute infection, bacteriema, diphtheria, and bubonie plague.
Progressive Changes.-Hyperplasia.- Hyperplasia, as already indi(atcel, is a not uncommon condition wherever a gronp of lamph nodes i- whjerted to a mild grade of irritation; it is peenliarly difficult to draw the line between this functional hyperplasia and inflammation, if. inilerel, it exists. The particular funetion of these norles is to respond (1) irritants by increased activity which shows itself in lymphoevtie proliferation. A compensatory hyperplasia has been noted by several imentigators as following excision of the spleen.
Hodgkin's Disease.-In this usially there is first noted a progres--ivr culargement of the cervical nodes which may become extreme, forming luge eonglomerate masses; progressively the other lymph II....- of the bocks exhibit enlargement, group after groap. Macro-

Heally, the condition differs from tumor formation in that, in early
T:- - - horer is a maltiplication of different orders of cells, some of them
In:サ上 urambar and eosinophilic, while aecompanying this proliferation
tha... i- a coincident fibrous hyperplasia suggesting strongl: that we
d. aith a chronic inflammatory process. Indeed, chere is one type (1) Arembons hyperplasia of the lymph wdes which histologically: r_{1}. Whe dosely the picture seen in Morlgkin st disease proper. Much an. Hurs hilve demonstrated the existence in a certain number of II Ilolgkin's disease of a number of curious fine granules taking i) : uteristie stain and have suggested that these are derived from thi. . hacilli; the granules, however, are not acid-fast nor does inocu-
lation of material from IIorlgkin's disease into the highly suserptible guinea-pig lead to tuberculosis. Thus the causation of the lise.as remains still wholly obscure. Occasionally, glandular enlargements of the Hodgkin's-discase type exhihit true sarcomatous terminal charges.

Lymphatic Leukemia.-As pointed ourt elscwhere (p. 240) we are inclined to regard this as primarily a blastomatoid condition, a diffuse and undue excessive growth of lamphoid tissue throughout the body. which eventually leads to the passage of an excessive number of lymphocytes into the blood stream.

1"4211

Section from a lymph sode in Hodgkin's disease, showing the different order of cells. a, degenerating leukocyte; b, fibroblast; c, cosinophile; d, lymphocytes, large and small; e, polynuclears.

Fig. 212

Section of liver from casc of leukemia, showing the abundant leukocytes of lymphatic or lymphoblastic type filling the sinusoids or capillaries: ", liver celis somewhat atrophied; b, sinusoid or eapillary filled with lymphocytes; c, pigment in endothelia! cells.

Tumors.-Siel a hastomatoid condition may at times give place to malignancy with infiltrative growth of the lymphosarcomatous tissue through the capsule into the surrounding tissues (lymphosarcomatosis), or more rarely in an individual lymph node there may be a prinary and local malignant development (lymphosarcoma proper). But apart from these true lamphosarcomas, either small round-celled or still more aberrant, large round-celled, or spindle-celled sarcomatous growths may originate from the interstitial tissue of the nodes, or again from the endothelinm of the lymph and blood vessels (lymphangiosarcoma, hemangiosarcoma, and endothelioma). In addition to these primary tumors of the lymph norles, it must be emphasized that lymphoil tissue is one of the seats of election for serondary malignant grow ths, and notably for carcinomatous metustases.
Hemolymph Nodes.-Attention was first called by Hencage Gibbs, in 1884, to the existence of small nodes, more particularly in the abdominal
area resembling in size and distribution the ordinary lymiph nodes, but lark in color and differing in that blood replaces lymph in the sinuses. These have sinee been studied by Swale Vineent, Warthin, and others; the: vary considerably in number in different animals of the same species (ineluding man), and Warthin and Meek have explained this by demonstrating that the hemol mph node is capable of conversion into the ordinary lymph node. Their number is inereased in ennditions calling for inereased destruetion of red corpuseles, as after spleneetomy.

THE SPLEEN

The funetions of the spleen are somewhat obseure, but it may be sitil that it is a "killing ground" for red corpuseles, that it is in foetal life and for a short time subsequently a place of manufaeture for the sauc, and that in ease of neeessity this function may be reassumed. It is very vaseular, and its arteries open somewhat freely into its sinuses, at areas, the Malpighian corpuseles, where the aetive proliferation of lymploeytes is favored by this abundant supply of fresh arterial bond. The spleen pulp consists of sinuses lined by endothelium, in which ean be seen disintegrating red corpuseles. The splenie veins form part of the portal system, and apparently the amount of relatively arterial blood that can be temporarily contained in the organ is very large. Its capsule is provided with plain museular tissue, and, as shown ly. Roy, the organ exhibits a slow periodic contraction and expansion whereby the enntents of the sinuses are driven out and renewed.
The spleen resembles the lymph nodes not only in its strueture and its function, in short, is physiologieally part of the same system, but like the norles, it has few diseases of its own. Like the nodes, it suffers in sencral infeetions, and appears to be to a great extent protective.
Abnormalities.-The spleen is rareiy absent, but may be very variwhe in shape and size, and accessory spleens are very common. They are u-luilly of small size, and are to be distinguished from hemolymph multe: they lie oftenest, but not neeessarily, near the main organ.
 mi"tut of its hilus; in splanchnoptosis the mobility of the spleen may be srat and it has been seen in almost every possible position in the In rimmal cavity; if inerease of its size and weight oecurs in combinatim with laxity of attachment, it tends toward or into the pelvis.
Circulatory Disturbances.-Anemia of the spleen oceurs as part of a L-urral intemia, and by pressure, and is characterized by a color paler than: Manal. In atrophie states, to he spoken of later, this color is :llu... 1 cinstuntly observed. Active hyperemia oecurs in eases of infeetim: attl of intuxication, and is searcely to be distinguished from the it winte which will be deseribed in inflanmation, of whieh, indeed, it In eurly stage. Passive congestion arises in all obstructions to fru 1 rtinl cireulation such as happen in cardiae or hepatic disease,
and is characterized by enhargement of the organ, with inereased darkness of color; mieroseopieally, the simses are cularged and emgerged with boon, there is inereased deposit of blowe pigment and the comnective tissine of the traberolar tembls to be increased; when the comblition of stasis hast, for a long time, the fibrosis is fairly well marked, and the cut surfaee of the orgalu is perfectly smonth, glistelagk, dark red or hhish red, and the organ is dense and firm-cyanotic induration.

Section from an enlarged congested splen of rhronic whatruetive \| (Wisease, showing the sinuses greatly distended: a, dilated sphenie sinus filled with rial cerf ates; b, aphenie corpuselen.

Embolism, with the formation of infarct, is frequent in the spleen, by reason of the large amonut of blow that reaches it, although it is an organ of relatively smath size; the embolns is derived usually from the heart valves, and the resultant infaret is often wedge-shaped, with the base ontward, of yellowish-white or white color, showing upon the surface of the ment spleen a raised area (Fig. 214); single or multiple, large fractions of the total splenic bulk may be occupied by infarcts. The infareted area modergoes eongulation-meerosis, the nuckei beroming hate and indistinet, while aromed the affeceted area is a heperemic ame of reaction. As in other organs, such an infaret may be completely absorbed and its place taken hy a mass of sear tissue. In the cance of septic embolus the infarct may break down and abscess result: coen as a result of an minferted superficial infarct, there may be fibrimons exulate thrown out on the surface, of which the ultinate result is an adhesion to surrommding tisones. This is even more certain to serer when the infaret is infeceet. Thrombosis is much rarer than embolism but produces similar results. Hemorrhage of the spleen may occur with
tramma, hit the small hemorrhages seen in the hemorrhagie diseases are nut distinginishable, mainly because the spleen is itself filled with fond that is no longer in the ressels; the simses normally contain so mine: himend that a little more is hardly to be notieed.
Inflammation. Splenitis.- Intlammation of the spleen is sern in all enore infertions and intoxieations, and in some of these, as malaria amb typhod fever, its conlargement furnishes one of the clinieal signs of the disense. The spleen is enlarged, and at first firm, the swelling of it - doments rembering the eapsule tense, so that on section the capsinle rip and the contents semoln to buge as if freed from restraint. The rui urface is seen to have lost its dis, inctness, and the doeolatembured spleen tisulue is seen to, he moist nud pulpe in its eonsistence, of at times diffluent. The enlargement may at times be very grent, and such a spleero has been known

 - Hgratus wurtoumlimg infart. to rupture, either without, or with only slight, violence. L'inder the microscope, the changes seen are hit no means distinctive. Definite nerosis, especially comfined to localized areas, is sometimes seen. Suppurative splenitis may oreur in

Tubercolusis of splec口 wils profluetive fuberculons
 logiral Musentu.
-tilte just described, but oftener is merely the direet resmit of L. : maturenoms infection in bacteriemia, or of the breaking down of infected infaret. An abscess may burst through the eapsule and hat" a peritonitis, or if small, may be absorbed, leaving a sear, or |lli- 11 a! remain and beeome inspissated and ultimately calcified.
Recurrent splenitis is exemplified be the state of the spleen in malaria, in, as a result of often repeated attacks upon the organ by the arial organisms, many of wheh undoubtedly ultimately find their way - a gradnal enlargement takes place. In this, as well as in other Thronie allections, there is hyperplasia of the splenic tissues r is well as of the interstitial tissue, with much increase in size, limmess of the tissue (induration), and increased deposit of pig--uch milargement constitutes splenomegaly. Such changes may.
occur in the spleen in a mmber of different diseases, malaria, cirrhosis of the liver, syphilis, knla-azar, und especinlly in Banti's disease. Although there are yet other forms of disease in which the spleen is enlarged, the histologieal examination of the splenie tiesue is not very illuminating, nor does it differentiate one form elearly from another. None of these foims of disease appear to be, properly speaking, diseases of the spleen, althongh the spleen is alwnys involved.

The granulomas are found to affect the spleen. Tuberculosis appears in miliary form in generalized miliary tubereulosis, and at times one finds agglomerative aud easeous lesions (Fig. 215). While the syphilitic gumma is found, the disease is manifested oftenest as a general diffuse splenitis, with fibrosis. Leprosy, glanders, and actinomycosis are found.

Regressive Changes.-Atrophy of the spleen is familiar, as it is scen in the old. The organ is small and soft, the capsule opaque and wrinkled, on section the prevailing color is a pale red, and the trabecule uppenr to be abundant, not from aetual inerease, but because relative loss of the parenchyma of the organ brings the trabecula elose to one another. The weight of the spleen is greatly lessened.

Degenerations and Infiltrations.-The spleen is a favorite site for the deposit of amyloid in general amploidosis. The amyloid material appears as translucent small areas of dark brown color, separated by normal splenie tissue; the appearanee of these amyloid areas has been likened to that of grains of sngo, and the name "sago spleen" has been given to the organ thus affected. Where more advanced and diffise the walls of the sinuses also are involved-"bacony" spleen (see also p. 398).

Pigment infiltration is frequent in the spleen, as will be gathered from what has alrendy been said about its functions in the matter of blood destriction. Apart from already mentioned states, such as malaria, in which it is well marked, is hemochromatosis in which there is a marked deposit of pigment in varions parts of the body.

Progressive Changes.-Hyperplasia. We have considered in a brief general way the hyperplastic states and have also mentioned, when diseussing lenkemia and Hodgkin's disease, certain conditions in which there is an extraordinary development of splenic tissue. In some cases the hyperplasia affeets the lymphoid elements, as in lymphatic leukemia; in others, as in Gaucher's type of splenomegaly, the overgrow th involves particularly the endothelial cells lining the splenie sinuses. ${ }^{1}$

Tumors.-Primary new growths are rare in this organ, although various connective-tissue tumors have been reported. Oceasionally. is found a diffise lymphosarcomatous change, more rarely a norlular sarcomatous growth. Secondary sarcoma is not common, though it has

[^17]Inem noted in cases of the melanotic variety. It is remarkable how rare is scondary carcinoma; primary carcinoma is (naturally) unknown.

THE BONE MARROW

It is difficult to describe the bone marrow as a distinct tissue; there is in it un intimate admixture of eells of various orders. In manr reyreds it is intinately allied to lymphoid tissue, not merely in the existrine in its meshes of nhundant hemphoreves, but also ingereral structure. levertheless, the existence of abum lant leukoblasts giving origin to eramular lenkocytes (polymorphs and cosinophiles) brings it into a different category, as do also the abumdant osteoblasts and megacaryorites. l'athologically it is as a bood-forming organ that it possesses intrerst.
Circulatory Disturbances.-Anemia in the borly gencrally is, for once, aworiated not with anemia, but with hyperemia of this particular structure. 'llhis is most marked in sudden hemorrhage and in pernicions anemia, the color of the tissne being the not to vascular hyperemia lint to the abmelance of newhorn and maturing erythrocytes in the tiont yaces. The marrow in these eases is markedly reddened.
Inflammation.-It is difficult to separate inflaminatory disturbances in the bonce marron from inflammation in the bone as a whole, such lecal disturbanee being purt and pureel of osteomyelitie changes (see binatses of Bone). The suppurative and grmulomatous forms will inuilar!: be discussed in the section upon bone.

Regressive Changes.- With advancing life the amonnt of red marrow muler normal conditions shows progressive diminution, the active marrow cells of the shafts, and elsewhere, becoming more and morr repliacel he fat cells, until only at the extremities of long bones is any ral marrow to be detected, and with yet farther advance in age, the fat lwing absorbed, its place within the fat cells is taken ly a serous Hhid an that it beeomes transheent (serous atrophy). In conditions if osteitis deformans along with marked absorption of the trabceulae the fatty marrow may beeome replaed by a fibrillar connective tissue wint wlls lying in a somewhat thick mucoid or hyaline matrix. Assuritul with this there is a diminution:, Ae number of osteoblasts. Tlise ambe diminution is seen also in osteunalacia, and in both of these crntitions active red marrow is characteristically defective.
Aplastic ancmia differs from ordinary pernicious anemia in that here al-o there is an absence of red marrow and of signs of active. rewnation of the erythrocytes (f .361).
Progressive Changes.-What at first sizht seems elearly a hyperplaslit of the bone marrow, viz., the increased extent of ret marrow
 Th tisprpasia in the sense in which that term is ordinarily used. Th . i- no increase in the marrow as a whole; there is, nevertheless a $\quad \therefore$! rouluction of red corpuseles and coineidently of leukoeytes,
nud also an awakening into artives of whis hithoren inactive, so that where previonsly there had la a b bolt! marrow we mow emeoniter red marrow. In certanin casen of msulagemons lenkemin there mag be a poid marrow dar to the exersa prohlection of marehblasts mal loukoryter.

Tumors. - 'The commonest form of primare' timor of the home marrow is the su-called giant-colled sarcoms (p, 2:37), it form of melonat in which the multimuldeaterells of onterelar in tupe are present ingreat

 pointed ont, this difiers from 1 lu ine feoma in being relatively benign, so that simple excision is a male rately early stage is rarely followed he recorrence. Fibrom ts chmutronas, and myxomes of the marrow have heen deseribed, thuth fine ate rate. In interesting
 but apparcotly more truly of endotheliomatous mature. has heen reported bey several observers.

Fis: Ilf

Section if myeloma of vertebra \times (ilh) is maltyhow.)
Myelomatosis (myeloma multiplex is another charicturistic form of home thmor. In this comblition, Hore is the appeataner in weral bomes simmentanemsly of diffise, ill-lefinerl growths of aremathens apperance; the rells forming these growths sow some ariation in different cases, perhaps the commonat form being made ap of mases of cells not mlike plasma cells. Presmmably these are of medollatic

 when this is the rase, secombary erowths of sarcomatone the mat he
 inter red mer lo nst: allil

- marrow conlia in in great olygonal, we have watively is rardy 3 of the terestilug rcinimila. reportel
mand he enconiteral, originating in the marem, it form derived not

 Than- 'mrefill examin etion of that wall if the merns thows infiltra-
 (anco of breast cancer. (ertain maknath tumben shon in pecular

THE = ENAL

 al' al to the cortex of the idney a il th rle m, fore-

 penperty witlo wh ath at it it 15 endow is in ammertion with internal eretion itha as as its most-triking
 he eveturt inerl amse a ale ith the vaseular system.

Th. whe it is a dustl stan $\because=$ in elose juxtaposition to the

 the glomerulose, "emide! eoncists of columnis of pelygonal

 - uf, if irregular m. i poly alral cells, often pigmented, (i) 2t retacularis The neni ata, of entisely different structure, con1. "in cil with ,meroms nerve fibrils, being, in fact, l.4 . in the nglian the sympathetie system.
II. Werce, obscurely, it is true, a eertain interfimetional activity of the adrem?, the thyroid, the: werat essistem. Further, there as evidently 1.. 4 wetwo wemermalands and the pigments of the

A morma ities. Hypopl. \quad.. the adrenals is found at times in ons it tailures of ery lopment of hrain tissue, and in some - layed sexhal development. Horseshoe adrenals have been accessory adrenals are common; these appear as tiny whes on the surface of the otherwise normal adrenal; at wr: alrenal tisole may ine found moticrmenth the kidney If cmberded in the liver substance, or again in the neighborher testis and in the hroat ligament.

Circulatory Disturbances.-Anemia is unimportant; hyperemia of the active scrt occurs in infective diseases, and passive hyperemia in general states of blood stasis; with hyperemia, hemorrhage is prone to occur, usually punctate, but sometimes of large size (venous infarct). Fairly frequently in our autopsies on intants, we have found hemorrhage in one or other adrenal without having any clinical details to corrclate with the condition, and in quite a proportion of cases in young children bemorrhage or infarct of one or both adrenals has been the only serious lesion scen to explain sudden death. It seems as if there were at times symptoms referable to suddenly occurring hemorrhage of the adrenal, viz., a sudden onset of abdominal pain, vomiting, diarrhca, and collapse.

Inflammation.-Acutc inflammation of the adrenal occurs in some cases of pyemia and by extension of inflammation from nearby structures. It seems likely that cavitation of the adrenal is often due to roughness in removal of the organ. Softening may, however, occur. Abscesses may appear at times, and sometimes a considerable degree of fibrosis is found.

Infective Granuloma.-Tuberculosis is important by reason of its relation to Addison's disease. The adrenal may be affected by miliary tubercles, but more often by massive tuberculosis with caseation, affecting one or both organs; here a marked degree of fibrosis is at times to be seen. Syphilis has been noted in a few instances, usually as gumma, though there are enormous numbers of spirochetes in the adrenals of the premature congenital syphilitic.

Regressive Changes.-Atrophy occurs in the old, but the alterations in size appear to be usually connected with differences in the amount of fats and lipoids. It may be said that no organ in the body varies so little in size from carliest to latest life. Degeneration of cloudy and of fatty nature is seen in states of general toxemia. Amyloid disease is found in generalized amyloidosis and necrosis is seen in intoxication and locally in infarcts from thrombosis.

Progressive Changes.-Hyperplasia of one organ may occur in cascs of insufficiency of the other, and it has been noted that in destructive disease of the adrenals there may occur a multiplication of chromaffin tissue outside the adrena, especially in the solar plexus. There is still some debate as to whether in cbronic Bright's there be not a distinct hypertrophy, more particularly of the cortex of the adrenals.

Tumors.-Two wholly different orders of tumors originate from the medulla and cortex respectively. Several cases are on record of primary new growtlis of the medulla which, carefully studied, are scen to be true neuromas or neurocytomas, resembling in cell arrangement and in the size and appearance of cells the developing sympathetic ganghon ($\mathrm{p} .24 \overline{\mathrm{j}}$). In the cortex we obtain tumors of a wholly different order. The simplest and most benign present theinselves as nodules from the size of a pea or less upward, originating within the cortex and in structure, formed of columns or cell collections recalling the arrangement of the zona fasciculata. These may be spoken of as adrenal adenomas.
remia of peremia is prone infarct). hemoretails to cases in has been ms as if hemoromiting,

in some

 y struedue to r, oecur. e degreeof its miliary seation, sis is at usually s in the y varies $u d y$ and disease xication

Several cases are now on record of an intermediate type presenting transition from the above arrangement to a sarcomatous, diffuse, and infiltrating distribution of the tumor cells. In other tumors, again, the capillaries or sinusoids of the new growth become a striking feature and the general arrangement is difficult to distinguish from that of the hemangio-endothelioma. Lastly, there may be what seem to be purc oval- or round-celled sarcomas. As we have pointed out elsewhere, we believe that these are all stages or states of development of one common form of tunor, ite mesothelioma or, if the term be preferred, the hypernephroma proper. Great confusion has hitherto reigned regarding the nomenelature of these tumors. They have been spokell of as careinoma, as careinoma sarcomatodes, as endothelimuas, ete.
sccondary carcinoma is by no means uneommon, particularly in caves of eancer of the panereas and stomach. More rarely do we encounter secondary sarcomatous growths in the adrenals. Blood cysts hatre heen reported after hemorrhage, and lymphangiectases occasionally wear in the organ.

THE TH: SODD GLAND

The thyroids are developments from the floor of the embryonic montl. At a very early period the connection between the alinentary callal and these offshoots from the same beeumes broken and the gland develops through further growths of side processes which in time locome dissociated into a collection of ductless vesieles. Even late in life we oceasionally eneounter in the stroma of the organ small cillections of cells tending to develop into new vesicles. Each vesicle pronts normally a single lining layer of cubieal epithelium and is - hrromeded by a connective-tissue stroma rieh in bloodvessels and lymHatics. Apparently under normal conditions there may be considerable viariation in the contents of the vesicles, which show all degrees of ministency up to a dense, inspissated, gluey or colloid material. Upon "Wraction this colloid material affords iodothyrin, whieh appears to be the -perific produet of the activity of this gland.
Abnormalities.-There may be marked variation in the size and rt latimship of the middle lobe, and in a considerable proportion of (:Iルー this shows a remmant of the original median duct in the form if a process of thyroid tissue passing upward toward the middle of th. hyoul hone, the processus pyramidalis, sometimes adherent to this I., : hand-like continuation of connective tissue. In rarer eases there i dirct extension of this to the foramen cocum of the tongue, or therentee of a fistula leading down from the foramen cecum in the millt. line toward the gland. Again, at puberty or even later, eysts 11. frim! in the substance of the tongue or between this and the middle l.i.. :hese are lined by glandular epithelium and are evidently remit. hi. if the original thy roglossal duct which have now talien on active twhinn. Accessory lobes or isolated masses of thyroid tissue are not
uncommon. When these oceur between the asophagus and trachea they may canse grave dyspnora through further enlargement and congestion. A remarkable feature is that occasionally collections of typical thyroid tissue have been fombd included in one or other part of the bong skeleton, and this without any obvious tumor of the thyroid. 'Ihey appear to be foetal inclusions. Cases of congenital hypoplasia or even of complete absence are on recorl as well as others of congenital hyperplasia. These conditions of imperfect funetion result in delayed growth of the individual and the state of eretinism.

Circulatory Disturbances.- It has beell observed that with menstruation and pregnaney, the thyroid shows a simpathetic congestion in the female and the great vaseularity of the organ makes it susceptible to hyperemie states, so that in passive congestion it may be found markedly enlarged. Cysts of hemorrhagie origin are common in the organ, but this apparently always in association with the formation of local "adenomatous" growths.

Inflammation.-It is somewhat striking that in so vascular and so exposed an organ acute inflammatory changes are rarely noticeable. Abseesses occasionally oceur in casces of premia, and have even been known in phemmonia and typhoid fever.

Regressive Changes.-The thyroid ca clderly individuals not infrequently shows extensive atrophy of the parenchymatous elements accompanied with generalized fibrosis, with hyaline degeneration, and at times with calcareous deposits. In long-continued cases of exophthalmic goitre we obtain evidence that the parenchymatous cells undergo degeneration, posisibly from overwork. There are cases on record in which the syroptoms of heperseretion have been followed by those of inadequate secretion or hypothyroidism, this being correlated with a form of atrophic flattening of the cells.

Progressive Changes. - The progressive changes of the thyroid are diffieult to classify, but the work of recent years appears to be throwing inereased light upo the relationship letween the different forms. There may be, in the first place, a condition of active hyperplasia of the gland associated with increased function and comedent increased formation of the specific internal secretson. This is notable in the enlarged soft gland of carly acinte eases of Graves' disease. In these cases, the alveolar epithelimm is prominent, the cells of good size, and there is evidence of active proliferation of the same in the form of ridges and papille projecting into the vesicles. There may even be more than one layer of epithelial eells, and many mitotic figures. . Aecompanying this, the organ is distinetly vascular and the alveoli are moderately distended by a thin secretion. The pieture is identical with that seen in active regeneration of the gland following exprimental remosal of part of it. Another group of cases exhibits a diffuse anlargement of the vesicles (diffuse parenchymatous goitre) but now the epithelim is of a flatter type and the vesides are distendel with dense colloid; the cut sarface is gelatinous and there is no markedly in rea ed nd contypical he bony

They or even Il hypergrowth enstrian in the tible to arkedly an, but of local
lar and iceable. en been
vascularity. This condition may represent a late stage of exophthalmic witre with marked amelioration of symptoms or, on the other hand, mily develop insidiously, with marked diffuse enlargenent of the gland. The rery denseness of the colloid and the absenee of vaseularity indicates that in these conses there is accumulation, in place of inereased discharge, of the internal secretion. Indeed, up to a certain point, such cases may show very little bevond the local effects of the thyroid rilargement and little general disturbance save when, through handling or operation, active congestion is induced and the grave symptoms of hyperthyroidism may supervenc. If the condition progress still farther, with pressure atrophy of the epithelium and loss of function, symptoms of myordema may show themselves. In yet another series of cases wr deal not with genealized but with nodular localized hyperplasia of the thyroil tissue. These are nsually spoken of as adenomas, a term whese applieability we doubt. They present not so much active urorgrowth as a distension of the individual vesicles with colloid. lir in some cases there is evidence of true adenomatous developinent. W_{i}, may thus encounter the foetal adenoma, so-called hecause in this conlition we find areas formed of clusters of cells situated in the stroma, rwabling closely the cell clusters seen in the embryonic thyroid. Thow evidently are undergoing active proliferation, and what vesicles arr present among these are of small type and lined by small, rounded or cubical cells. This form :ccording to Wölfler, presents itself as muhiple well-defined nodes, originating apparently from mother tissue Whish has remained batent between the previously developed follicles. Thue v-(alled adenomas in their early stages are very vascular and liahle to extensive hemorrhages in their substance, which result in the firmation of eysts, smetimes of great size. Yet another form has heill called by Virchow the struma vasculosa. This is not a blastoma prow.rhut merely a great dilatation of the superior and inferior thyroid arturios inul their branches, leading sometimes to great enlargement of the organ with pulsation and the development of bruits audible hy the stethoseope. This eondition is often accompanied by indicatimn of hyperthyroidism.

Tumors Proper.- The proliferative conditions just mentioned may give phl" l" trne odenocarcinoma, or this may criginate without previous whr:ahle goitre. Arising thus the condition is markedly mulignment, "ith "Itelusive infiltration of the surrounding tissues, penetration of the trin han illil of the \because :s w" the neck, accompanied hy rupid increase in th: ize of the org."n :n : the formation of metastases in the lungs, In:! 'ti. Loeb and ... 's .s have described both in man and the lower anin. a truc carcinoma sarcomatodes, namely, a combination of the mal. -ant growth of the parenchyma with coincident sareomatous Int t.: rhasis of the interstitial tissue. Secondary invasion of the the hemalignant growths originating in other tissues is comparatin. "re: oncasionally there may be direct extension into the gland In: - ro of the trachea and desophagus.

THE PARATHYRODS

We owe particularly to $_{0}$ Sandstrom (18S0), Gley (1891), Cristiani (1892), and Cohn (isis) the recognition of the parathyroid glands, and from the stage in which these little bodics were regarded as undeveloped and latent masses of thyroid tissue, we have passed to perhaps too great a belief in tle importance of their function. They are usually four in number, situated either immediately outside or imbedded within the thyroid tissuc in the rcgion of the posterior inner edges of the lateral lobes above and below, and, in their histological structure, resemble the embryonic thyroid tissuc, with frcquent cyst-like spaces. Embryologically it is found that they have a separatc origin, being derived as outgrowths of the epithelium of the third and fourth branchial clefts, close to, but distinct from, the points of origin of the lateral thyroid masses. They are 6 to 8 mm . long by 3 mm . in breadth. From their similarity to undeveloped thyroid tissue, it is difficult to state with precision whether certain small masses found in the: tissues of the neck between the thyroid and the arch of the aorta are accessory thyroids or accessory parathyroids. Thesc are so common as to make the frequent statements of surgeons that they have removed both thyroids and parathyroids without obvious results of little value.

The observations of MaeCallum suggest the cxistence of a poison in animals whosc parathyroids have been removed, which enters into combination with certain cells of the nervous system, so that there develop the symptonis of teinny, a condition characterized by spasmodic contractions of the muscles, convulsions, rapid respiration, with dyspnoa and salivation, followed by coma and death. Accompanying this there is increased exeretion of calcium salts with diminution of the calcium contents of the blood (MaeCalhum and Voegtlein), while, as pointed out by Erdheim, the extirpation of the glands in the rat is followed by defeetive deposition of lime in the large incisor tceth, followed by brittleness and a tendency to breaking. Fracture of the bones of these animals is followed by delayed conversion of the eartilaginous into bony callus, affording a picture that recalls somewhat that seen in rickets. If an animal showing these symptoms be bled, they are cheeked and ean be made to disappear by the injection of enulsions of parathyroid. This condition of tetany in humankind occurs most often in infants and here several observers have noted the existence of hemorrhages in the parathyroils; these, however, are not present constantly and a further condition of gastric tetany is described associated with dilated stomach, etc., in which no lesions have been made out in these glandules. An attempt has lately been made to correlate hemorrhagic and necrotic changes in the parathyroids with marasmus of infants.

Hyperplasias, or so-called benign adenomas, have been described, without much evidence of functional disturbance.

CHAPTER VII

THE RESPIRATORY SYSTEM

GENERAL CONSIDERATIONS

TuF chief function of the respiratory system is the intake of oxygen and the discharge of carbon dioxide for the benefit of the economy at large. This is accomplished by the filling of the air sacs with air on the one hand, and the capillaries and lymph spaces with blood and lymph, on the other, and the free interchange of the gases between the two, separated as they are from one another by the alveolar epithelium, the capillary or lymphatic wall, and what connective tissue may chance to intervene. It has been calculated that there are $725,000,000$ alveoli in the lungs, exposing a surface of roughly 210 square yards, so that the air cells are lying close to a film of blood that has been estimated to be 10μ in thickness. The amount of gaseous interchange can be thus seen to be enormous, yet this is but a mall part of the process of oxygenation of the tissues, for only a small amount of oxygen undergoes reluction in the corpuscles. The cells have an intense avidity for oxygen, and are capable of storing it to some extent, for the tissues have been shown to be capable of metabolism for some time in an oxygenfree atmosphere or when transfused with oxygen-free saline, during which metaloolism carbon dioxide is abundantly discharged. The arterial hoorl is almost but not quite saturated with oxygen, and even in atphyxia some oxygen can still be obtained from the blood. Of the process of diffusion which the oxygen undergoes from the time it leaves the corpuscle until it joins and becomes part of the biophoric molecule "I. know very little, but we suppose the transference to be fairly direct.

Anatomically, it may be noted that there are aburdant elastic fibres in the alveolar walls which assist in the recoil of the lung, in the expulion of air, and in the circulation of the blood and lymph in the ahcolar walls; that the right bronchus is larger than the left by onethirl, and that the bronclial tract has a capacity that is one-thirtieth that of the lungs; that the varying diameters of the larynx and trachea all + widently to impart a rotary motion to the current of inspired air; ainl that a double blood supply from the right ventricle through the minmary artery and from the aorta through the bronchial artery give a 1 ire free collateral circulation in all parts of the lung.

The Air Passages.-This term includes the entire tract from the :...in , lo the terminal bronchioles, a considerable distance; the effect "I" " the inspired air is that it enters the air sacs (1) at the body temprese, (2) impregnated if not saturated with moisture, and (3)
devoid (normally) of dust and foreign partieles, and therefore sterile. The nasal passages have an important eflect in bringing this state of aflairs abont, and the large surfaces of the turbinated bones war a and moisten the air, and their moist surfaces, like those of the whole tract, entangle particles to an enormons extent. If the effect of this mechanism be mullified be month breathing, it will be seen at once how serions may be the effects produced upor the lower parts of the tract. Moutlbreathing may resilt from nasal obstruction of many offerent sortsfrom congenital or acquired narrowness of the pasages, from trauma, from the secretions of inflammation or the thickening resulting therefrom, from tumors, especially polyps, and from lymphoid enlargements. Of the last, adenoid growths of the nasopharyux are very common and very important; occurring in childloond, ther inay be assoeiated with peculiarities of development of the nasal chamber, especially a high arch of the palate.

In nomal conditions, there is a distinct protective function exerted by the nasal mueosa, which is at onee highly sensitive, strongly vascolarized, and richly supplied with mucous glands; as a result, irritation is followed by marked reaction with abumdant mucons secretion, which protects the cpitholimm, washes ofl and dilutes the irritant, and supplies a phesical impediment to bacteria.

The Pharynx.- Lssistance is lent by the pharynx in these processes, and while its surface is not multiphed like that of the nose, the sudden change in direction imparted to the air current assists aetively the contanglement of foreign particles; the abmadant provision of hymph tissue (including the tonsils) is directed to this end, and it is notable that many of the air-borne diseases, such as the exanthemata, are connected with a preliminary infection of the pharyns.

The Larynx. -The main function of the laryinx is phonation. The larynx, essential for the singing voiee is not essential for speech; the " note" of the voice is determined by the tension and the rate of vibration of the vocal corls, and by commmication of this vibration to the air. The voice is therefore affected by the pathologieal states of the vocal cords, which may be thus divided: (1) excessive nervous stimuli lead to spasmodic contraction of the laryngeal muscles, with closire of the aperture; delective or arrested stimuli lead to flaccidity; and (2) intrinsic disturbance of the cords, such as diffuse or local inflammatory thickening, or development of tumors upon them, by which the corls become " muted." Articulation, on the other hand, is dependent on the lips, teeth, palate, and tongue, and it is by disturbances of these that it will be affected.

The site of the vocal cords is the region of the greatest narrowing of the respiratory passage, and at this point, therefore, a relatively inconsiderable stenosis by spasm, inflammatory deposits, or new growths, may ussime importance; in addition to this, the larynx, as a whole, ǐa relatively narrow part of the tract, and even slight affections of the glottis are apt to cause grave obstruction. The relatively loose attach-
sterile. tate of . 1 and tract, merd serions Ionth-ortsauma, therements. on and with a high xerted y vasitation which upplies
eesses, ind den ly the lymph otable a, are

The h; the vibralto the of the timuli losire ; and nflamch the nold nit these
ing of incon5 , mily , 唇 of the ttach-
ment of the mueosa, except over the rocal cords, renters adema a common event, in which the uper opening of the ghottis, the epighotic and aryteno-epiglottic folds may be so swollen that mesess intubation or tracheotomy be performen, nsphyxia may ensine.

The I'rachea and Bronchi.-These are lined by moist, ciliated mueronn, whirh is enabled to take up many particles, mul pass them buck to be remowed by conghing; the traelea is kept expanderl hy a series of artilaginons hoops, which allow muel mohility of the tube; yet there may be hindrance of respiration be (1) foreign borly, (2) deposits or contractions from inflanmation, (3) new growths, or (t) pressure from mitside, such as womld be proluced by aneurysm, goitre, mediastinal nmors, and sometines even hy enlarged tubereulous lymph noles. Valsular obstruction, permitting inspiration but interfering with cxpiration, may oceur with in diphtheritie membrane or a polyp. Asthma in supposedly due to a spasm of the bronehi and bronehioles suddenly prohbed throngh nervous mechanism; not only is there a spasin so prownced, but evidently a rapid eongestion which is so great as to amoment to angioneurotic adema with abundant seeretion.

Complete obstruction to the air passages ends quickly in asphyxia; with obstruction to inspiration the inspiratory act becomes slow and labored, even to stridor, the expiratory act short and unimpeded; the diaphagin eontracts more fully, and the accessory muscles all aim at insreasing the capaeity of the thorax; in expiratory despuca, the atulominal and trunk muscles ain at lessening the thoracie eapaeity. Where one main bronehns is obstructed, there is rapid respiration mutil : whitation is secured, after whieh one long eontimes to perform the work ordinarily done by both.

The Muscular and Nervous Mechanism of Normal Respiration.lnapiration is an active process, and expiration, largely, if not entirely, a pansive one, bronght about hy pressure upward of the ablominal Wera during relasation of the diaphragm, aided by the elasticity of the expanded lomg and of the thoracie wall. The gromps of museles, trinsic and aceessory, and the mechanies of the act will be fonnd hailed in text-hooks of plysiology. The ditlerent nerves concerned Her atimmation of these miscles appear to he under the coördinated atol of a centre, althongh we are mable to say which partienlar "mp of colls constitntes this centre. Afferent impulses affect it, for mulation of many different cerchral areas and peripheral nerves "lifion the respiratory act ; the pmonomar: brameles of the vagus are mont important aflerent nerves of respiration, and stimnli are armaly graerated hy the earbon dioxide tension in the blood, rated tension of earbon dioxide stimulating the centre to produce anayl respiration, and redueed tension depressing it.
Disturbances of Respiration.-Sneezing.-This is a reflex act, caused bill: be naval irritation stimulating a hranel of the fett nerve, and itin of a derp spasmorlie inspiration followed by a strong, quick iration. Daring the first part of the latter process, the mouth is
closed by the approximation of the dorsum of the tongue nud the soft palate, so that the first portion of the nir that is expelled goes through the nose, tending to drive before it the irritunt particles; then the tongue and soft palate are separated, and through this relatively narrow spaee the air is forcibly driven, producing the characteristic sound.
Coughing.-This is voluntary or reflex, the irritation in the latter ease being in the nasopharyns, the laryns, the hungs, or the pleurae, although it may he in the external auditory meatns; deep inspiration is followed by elosure of the glottis, which remains closed during the first part of the strong expiratory effort; the glottis is this suldenly "blown" open, and the released air may carry with it mucns or other matter from the parts of the tract that lie below.

Dyspncea.-This term denotes two different states, that of airhunger, and, more correetly, that of labored inspiration, due to absence of an alequate amome of air, or to the necimmatation of earbon dioxile in the blood, with or withont deficieney of oxygen. It may or may not be aecompanied by eyanosis; the individual is protected by being compelled at onee to reduce his muscular aetivity, diminishing forthwith the call for oxygen and the diseharge of earbon dioxide. If the venosity of the blood be aeting upon the centre for some time, there develops a lowered sensitiveness of the eentre which becomes accustomed to a tension of earbon dioxide that conld not be borne if suddenly presentecl; and there are, on the eontrary, states of hypersensitiveness of the centre. such as are seen in hysteria, in which rapid respiration is proluced without there being any evidence of a modified gaseous tension.

The conditions in which despmon manifests itself are: (1) conditions of hindrance to the entrance of the normal amount of air, (a) in the air passages (foreign body, stenosis, etc.), (b) in the lungs (collhipse, exudates, growths, cavitation, emphysema, ete.).
2. Diseased states of the muscular meehanism: (a) inflammation of the diaphragm or other muscles, (b) diseased states of the centres, the afferent or efferent nerves.
3. Where the circulation of the blood through the lungs or the medulla is obstricted.
4. When the inspired air is rarefied, or carbon monoxice is present or earbon dioxide increased above normal, the two latter states reduciug the gaseous interchange.

Asphyria.-In dyspuca a sufficient gaseous interchange is ohtained to support life, but in asphyxia even this minimum is not obtained, and the accumulation of carlon dioxich goes on until the action of the respiratory eentre is arrested. Death may follow prolonged cyanosis with ut struggling, hut more often an intense respiratory struggle oecurs. In this acute form there is first of all increased amplitude and rate of respiration, followed by relatively great expiratory efforts, with short convulsive inspirations, the expiration being accompanied by violent muscular efforts of the entire body; as this passes off, the respirations
lecome slow and deep; the mouth is open, the head stretehed baek, and the arms are raised; there is insensibility, the pupils are dilated, and the respirations become slower and slower until death ensues. Coincident danges in the bood pressure are to be noted; there is a marked rise in pressure, the venous blood stimmating the vafus and vasomotor intres, so that the heart is slowed and the arterioies contracted. The hart, poisoned by venous blood, begins to fail and to distend, and the blocel pressure begins to fall.

Cheyne-Stokes' Respiration.-- 'This eonsists, to quote Stokes' own words, in "the oeeurrence of a series of inspirations, inereasing to a maximum, and then declining in force and length until a state of apparrut apnora is reached; in this condition, the patient may remain so lomg as to make his attendants believe that he is dead, when a low incpiration, followed by one more deeided, narks the eommeneement uf a new ascending and then deseending series of inspirations." It was wirimally supposed that this phenomenon marked oner,ming death, but not is not necessarily the case. There are two main groups of disease ifi which it may be manifest-eirculatory disease without obvious dinalse of the brain, and intracranial disease without affection of the heart; some eases of gencral infection and some narcoses may also show it. It is not possible in the present state of our knowledge to give any satifactory explanation of the phenomenon; it appears to be what plosicists call an interference curve, that is, it is the resultant of waves of unc rhythm on which are superposed waves of another rhythm, the round at times augmenting, at other times neutralizing the first.

The Air Sacs.-If one considers broadly the diseased states of the air sars that interfere with the proper performance of the work of the lunis, these fall into two main groups-those in which the ingress of air into and the egress of air from the air sacs is prevented, and those in which changes in the walls of the air sacs prevent the proper interrhange of gases. Diseases of the first order may lead to those of the -4"nul.
. lir may he prevented from entering the air saes beeause they have
 or haring bero distended, they have undergone collapse. If of small "Whnt, this state is of no moment, the other air saes undergoing compunitury enlargenent; even a whole lung may be thus dispensed with, if the change be wrought gradually.
1harution to Air.-The air sacs may become filled, and the air they Winlly contain be replaced (1) by serous fluid, as in the ceses of aeute or Wirmit: congestion, (2) by blood, as in rupture of a branch of the pulmurary artery in a cavity or its walls, or in rupture of an aneurysm into thu tarlien, or in infaret; (3) by water or other fluid from without, as in Irn: ing; or (4) by inflammatory exudate as in pneumonia. The effeets If: ith. of these upon respiration depends partly upon the amount of hung i.... involved, and partiy upon the eausative agent. In hemorrhage the prenfets of hemolysis, or in pneumonia the toxins, may induce a
felrile state whied of itself will affert respiration, or the effect upon the plenra in the later disease mase be responsible. Witly a fluid in the air sucs there is a eertain interforence with the circulation in the ressels in the walls which are compressed or ant necording to the greater or less distension of the suc; if this compression of the eapillaries affect a speecially large amome of lomg tissuc, the result is a large amount of work thrown on the right heart, with consequent dilatation, and, it mus be, hepertrophes.

Changes in the I'rollis of the . I ir Sars Iliudering Aemration.--These changes may. be atrophice or may consist of interstitial deposits in the walls of the air sacs. Of the former, the most important is emphysema.

Section from lung thowing diffuse employema. Sote the ureat atrophy and thinning of alvertar walls and the free ends of ruptured and ubsorbed interalveolar septa.

Emphysema.- This may le local or generalized, but the mode of production is alike in both. The bronchus or bronchiole has its lumen narrowed, either he pasint or hy inflammatory deposit, or by the presence in it of thick serretion; the forcible inspiration followed by the relatively passive act of expiration leaves an amonnt of air in the sac sufficient to distend it : suceessive acts of inspiration will distend it still more, and at no time will the sac attain the proper degree of collapse. 'This constant state of relatise distension will keep the capillaries in the wall compressed (Fig. 217), flattened, and elliptical in section: ant only do they (ontain less hood than when they are circular, but the smaller amomit of boot is exposerl to a larger surface and inereased frictian. The final result of this is contimual mahutrition of the wall, reduced gaseon: interchange, diminution of the elastic tissue and of the elasticity of the wall, and atrophy. In this state, the sudden increase
of intraphlamary prosonre, at suld times as the moment before a congh
 am thrown into one. Bien if the ohstruction in the bromelne be now remosed, the damage alreally done is permanent, athel there is a want of proper proportion between the (ineromsed) volmane of air and the (Himimished) area of wall presented by the air sats. Those air saes ithated at the surfaer of the long, and especialle at the thin edges heing relatisely little supporteal be aljoning air sares suffer the greatest

We have consideref in a general way the cansation of emphysema; it will be ser" that anthing whiels eanses a herightemed intrapmonomer: presore mas induer this state, henee the linhility of players upon wind instrmands, of glasshlowers, and of persoms suffering from such a divense as whoping eomgh; age, tom, has a lefinite effect, in that the rasticity of the alveoher walls is lessened by the atrophe of the elastic tissure, abal proper contraction of the air sale in expiration is uot nhtaiberl.
With this empherematomes expansion of the hugs, the comstant demand for oxyen calls for an oworflliag of the alrems full air sates, and to ohtain this the chest wall comaes to assame a barrel-shaper, repreonting the state in wheh its maximman inspimtory enpacity is attaneed; the expiratory part of the anet is kengthemed, gaseons interchange is ineffieiont, the passage of hood throngh the longs is obstrueted, and mabarmsoment of the right side of the heart follows.

Bronchiectasis. - This is a comelition of the bronchus in which its lumen is dilated in onfe or many phares; either by pressure from within "pon ant atrophie wall, or he traction from withont by contracting librons commetive tissure, the lamen of a bronehos or a laronchiole may. - how a fusiform or even an abruptle satembar widenage, the enarged hromelas taking up space that should be oreopied by normal air sates, renulting in diminished aeration of the blowe.
Interstitial Deposits. - It is self-evident that wew tissue, whether fihmons, grambonatous, or neoplastir takes up rom in the long and by ") mind displaces normal air space: but this i - mot all, for it obstructs the pulmomary circulation, so that there is a domble interference with the alieration of the hoorl.

The Pleural Cavities.-These are closed, poteatial cavities around rinch hug, and when the two surfaces move freely and smoothly over earh other, a miform expansion of the loug is obtained. If the lungs "rore fixed to the parietal surface of the chest, as happens in the ease of maveral pleural adhesions, expansion and contraction would go on lout would vary in different regions; thus, with diaphragmatie contrim tion there would be great cepaasion of the lower parts of the lungs "ith littlo of the apiees, and the interehange of air would be slight in hat region. There is normally a negative pressure in the pleural latities.

Paeumothorax.- The ellennere of air or gan into one or both of the cavities clmuges this nogative to a peritive pressure, and in nearly every case n compression of the lang is promered; in some cases, ton, the air drawn in at inspiration is not expellod at expiration, und there may ultimatuly be a pressure in the plenra! cowity grember ann that of the nemosphire. We spank of two forms of pueninothoras-spen. where there is free commmination with the extermal nir thromgh the thomaric wall or through the long, and closed, where the opening has been oceluied, or where, as ingaseons !nemmothorax, no oprening to the air has existenl. In open pueunathornx there is necessariy a pensitive pressure in the pleura, aud the lung collupses mutess held hy pleural adhesions. In closed puemothorax, necording to the amount of air or gns, there may he merely u diminution of the negative or a law positive pressure which is not sufficient to cntircly prevent respiration.
Pleural Efrusion.-At first comsiderntio.. one would expect that the effect of an effinsion iuto the pleurnl carity would he to diminish the space available for the lung, num that the effect unon the lung womid be to prevent its expansion, just ns: womld a positive pressure upon its surface. In dfinsions of harge amomat this scems to be the case, and the hag lies against the vertehrol colnum completele collapsed. In small effusions, the fluin bụ its weight exerts a negative pressure, and the lung, instead of swimming upon the effusion, supports the effusion until its weight excceds the liftimg power of the lung; when this happens, the fluid is uble to exert 11 direct downsard force on the diaphragm. In such a case, the purtly compressed lung has little chance to exert its elasticity, and the movement of the diaphraguand the costal musdes has to take place agaiast resistunce.

SPECLAL PATHOLOGY OF THE RESPIRATORY SYSTEM

THE NOSE

Anomalies.- Malformations of high grade are generally ansociated with important dofects of the face and even of the cerebriminand are important chiefly as curiosities. Practically, the commonest amomaly is a deviation of the boily septmo, which oceurs with great frequenc:-

Circulatory Disturbances.-Hyperemia of the active sort oceurs in inflammatory processes, and in infective fevers such as measles, inflienza, and even typhoid fever, and readily leads to hemorrhage (epistazis). Of the passive sort are those hyperenias due to heart and lung distives, and to the presence of tumors in the nasal cavity. By reason of the delicaey of structure and the elasticity of the mucons membrane of the nose, it is prome to be rendily renfered heperenic in a reflex was, and vasomotor turgesecace, cuen of purely nervous origin is frequent; even so slight a thing as a change of posture in some indivituals

1 of the ncarly tow, the ere may t of the re there ric wall celuider, existed. e in the ons. lı "re may' re which
that the nish the g would re upon lie case, ollapser. urc, and effusion appiens, phragm. to exert muscles
may canse the disappearaner of hyperemian of one side of the nose amb its transference to the other. Hemorrhage oceurs in ukeration, homophilia, leukemia, senrey, suffocation, and trama.
Inflammation. - Acute Rhinitis, Coryza, or Catarth.-This arises primarily from bacterial infection, and apparently from exposure to robl and wet, as well as irritating clomieal vapors. Some persons are -Wreptible to eertain individual volatile stabstances, such as ipecar, and many to the irritant effect of special sorts of pollen, the smell of rertain flowers or animals; the most faniliar example of this is hay fever, which is evidently a reflex wsomotor effect resulting from amphelasis. T'lat coryza is met wite - measles, searlatina, variola, influriza, and tuphus fever probably means that a direct infection of the mucosa by the specific agent oceurs. The mucosa is swollen, hypercmic, of a decpened color, dry, an! irritated, a state soon followed hy the copious sceretion of a clear, watery, slightly viscid fluid, containing trukucytes and epithelimen, and possessed of the power of eroding the him or another mucons mombrane. It must be rememberel that such all infection has the bow ... to spreal to the throat, the accessory cavities, and simses, as well as to the Einstachian tube and the middle ear. In arere primary infections, as well as after the continuance of mikd infuctions, the fluid may hecome purulent, and heing so may be mixed with hloml and may possess a foul ohor. Local abseesses or the crosion of bone or cartilage may: follow. Mern:ranous inflammation is most , ftom due to the diphtheria bacilhs.
Chronic Rhinitis. IIypertrophic Rhimitis.-M. ...アcontinuance of

 phom in the submucous tissues, and may, in ext " irs - aso ; assume a poly pidal form he merely to the foldings of $t \mid$. an an proper. In ville canc: such hypertrophy is followed by a secondary contraction Coating to a diminution in the size of the turbinate, the so-called wemndiry atrophy" seen in old persons. 'This process, however, is whethims ynite apart from the condition of atrophic rhinitis, as will lire ued in the deseription of that state. The old idea that an atrophic rlinitis was a late stage of a hepertrophic comdition seems to be without fentulation.

Itrophic Rhinitis.-This condition has heen the object of innumerahbe theussions and inventigations as to cause, and very varied con-- Jh-ink harc been rearhed. The condition prescuts a very :"nite dinieal and also histological picture. The structures in the nose: , m: mulh shrumken and covercl with ilry, foul-smelling crusts (ozen . Tlue histological picture shows narked thiming of the mucosa, with intiltation and destruction of the mucous glands, and also a metaplasia of the epithelium from columnar to sf!emmons. There are changes in the bunes, which some observers regard as the primary factor in the Drminction of the discase, though this we are not inclined to admit.
fort formation takes place for two reasons-there is abnormal air
space in the nose tending to drying of the secretions, and there is a marked dimimetion in the amount of these secretions, due to the destruction of the secreting ghands.

It seems probable that we have here to deal with a condition having a vere varied etiology in diflerent cases. There may be in some cases a eongenital peculiarity in the distribution of the squamons epitheliun in the nose and in the wilth of the air spaces, bint more often it is probably the result of some former severe inflammatory process which has destroved the normal lining of the nose, and this has been imperfectly repaired. Such severe lestruction may be seell in congenital syphilis, and in the infections fevers, such as scarlet fever. In some cases a long-contimed, latent suppuration in one of the accessory simses may be the embe of the diseased state.
The Granulomas.-Tuberculosis in the nose is rarc; syphilis, however, is fairly often seen, berimning with the "snuffles" of the baby who is born syphilitic, with a constant purulent catarrh; gumma is apt to arise in the cartilages or bones, and. when broken dowi, to give origin to the "saddle" deformity so often seen; perforation of the septime and of the hard palate may oceur. Glanders and leprosy may attack the nasal mucons membrane, the lesions varying according to the acmity of the infertion.

Progressive Changes. -The most common form of overgrowth is the polyp, and, as has been reliarked elsewhere, the polyp is misally not a tumor proper, but a mass of proliferated tissme, which thus beromes codematous or a myxomatous polyp. Both are gray, semitranslucent, and sparsely eelhalar; mucons shlands may be endosed in the mas, and may become eystic: proliferation of the ghandar parts may make adenoma, of the fibroms parts, fibroma, and widening of the resocts telangiectasis. One must at times be amazel at the size of wedematons or mexmatons polys that can be taken from the nostril. Carcinoma arising primarily is rare, sarcoma more common. Sew growths, often endotheliomatous, arise in the ancersory simses.

PHARYNX AND TONSILS

Fauces.- As the gate of common entre to two important systems, the digestive and the respiratory, the pharys is characterized by what would appear to be an extensive defensio merhanism in the shape of abmulant submocons lymphoid tisise. 'This tissum is present oser most of its extent, but is massed in the form of very mumerons follicles in the two lateral pair of fancial tomsils, and in the median superior or pharengeal tomsil. The structure of these tomsils is charaterestic. The epiderm is relatiody thin, and dips down forming a collection of erypts. Both on the surface and immediately bemeath the epithelimen lining these erppts is an abmant coller tion of lymph follicles. A smear marle with a swab rewals fairly moneroms frer polymorpla lenkoe!tes which have cridently wamered out and ingest surface bacteria, etc. Fiurther,
awording to lexer, the thin cpithelimm rovering the tonsils also possenses phatgoctio properties. By this moans the surface is kept dean and freve from the growth of bacteria whin have inpinged upon it, either from the imhaled air or from the fool in the process of being swallowed. It will be further moticed that the submeosa is fairly loose, with a relatively rich vasentar supply, and that it contains momerons mucous ulambs. Notwithstanding these defences the very position and function uf the pharyux remer it liable to varions forms of inflammation.
Abnormalities.-These are mucommon. Cleft palate may involve the oft matate; oceasiomaliy the monla is bifid. 'ilhere may be the openings. of persistent gill clefts into the pharynx, these forming either complete fistular extending to the surfuce, or morely closed lateral diverticula. The most striking abmormality is epignathus (p. (6i)). This teratomatons growth, which has its attachment at the base of the skill, projects into the mouth.
Circulatory Disturbances. - The vascular condition of this region anl its visibility make it a striking indieator of circonatory disturbances
the active hyperemia set up by varions irritants, with its scarlet red apmaranes, throngh the more brownish color of chronic irritative hypremia, as in alcoholies and smokers, to the passive hyperemia of eardian disease, with its bhnish-red livid appearance and irregularity of wrface brought about by swollen veins. Pharyngeal cedema is uot mombmon; most often it is associated with spreading inflammatory tates, r . : \cdot. acute inflammation of the tonsils. It may be angionementic in tupe or may show itself in obstructive heart disease.
Inflammation. Of this we recognize varions grades. It may be noted thint lowal inflammation (amygdalitis, of the tonsil, or uvulitis) is apt to Wreal and become generalizenl, setting up a condition of pharyongitis. Wr. revernize the following forms:

Acute Catarrhal Pharyngitis.- Aente eatarrhal pharyngitis or angina whithis in the early stage pronounced redness and swoding of the mum,ia, witi later abundant discharge of mucos or mocopms and -Wething of the isolated lymph follicles, sometimes also of the mucous Hand. Over these projections there may be abrasions and formation if nitili ulders, with gray ish necrotic bases. Acute tonsillitis may. be of diftiorent types, bat in all, the tonsils are swollen and hyperemic, and there is abmolant secretion of mucopus. The inflammation mainly. athert the crypts which become greatly swollen and filled with foul pmonent material. From here the inflammation may extend into the -uldanme of the organ leading to tonsillar abscess, and, ats ant afterrwoll uf the follicular disturbance, the contents of the crypts may bewne invissated, cheesp, and intensely foul smelling; still later they Inis: Lurome the seat of calcareons deposits, forming concrements. Whu there is abseess formation the process may infiltrate throngh the fuper tissue extending into the rellular tissure around about, with mim! inflammatory ordema, setting up the condition known as quinsy "r. i: may be, peritonsillar abscess.

Phlegmonous Pharyngitis.-Phlegmonous pharyngitis, whether originating from the tonsils, as above noted, or from tranma, or an aeute pharyngeal infection, as in searlatina, erysipelas, and diphtheria, exhibits a pronouneed seropurulent inflammation and infiltration of the pharyngeal submucosa, with extreme swelling of all parts of the pharynx and dryness of the surface (whieh is apt to he deeply eongested and to present oecasional superficial vesicles). This condition may subside or lead to the formation of loealized abseesses, or, again, to a diffise gangrene of the region.

Retrophargngeal Abscess.- Retropharyngeal abseess of the deeper tissues behind or at the side of the pharynx, may originate either seeondary to pharyngitis or tonsillitis, or to caries of the cervical vertebre, or suppurative otitis media, or, again, mary be one of the manifestations of premia. Such an abseess is apt to burst into the pharynx, or to extend downward along the ossophagns. Ot'er complieations are crosion of the internal earotid artery (especially in the ease of tonsillar abseess), inflammatory swelling of the cerviral lymph nodes, aspiration phenmonia, thrombophlehitis, and general bateriemia.

Regarding tonsillar and pharengeal inflammations, there are certain points deserving of note: (1) the high grade of fever that rapidly supervenes even in the simpler catarrhal combitions; (2) the frequenc: with which aeute haflammation of this region ushers in severe general $^{\text {fan }}$ infections, notably scarlatina and achere rheumatism. In smallpox and measus the pharym also may be involved and not infrequently secomdary syhilitic manifestations of this region lead to an acute phar!ngitis.

Membranous Pharyngitis. It mont be kept well in mind that while a charateristic fibrinons or membramons inflammation of the pharyux in due most freguently to the diphtherim bacilhos, such membranous inflammation is ly an means: a meromary iadieation of diphtherial inflammation. The so-called "diphtheritic membrane" may be due to (I) inhalation of stean and irritant gases; (2) the streptocoerns: progenes; (3) more rarcly, phemberocols, in addition to (4) the most important canse. Bacilhus diphtheriac. In general it may be said that the nse of ohphtheria antitosin gives the most rapid differentation between the diphtherial and other forms of infammation. With this the leathery membrane indued by the diphtheria baeillus may loosen "ithin a few homrs. The antitoxin may have some effeet on other membranes. bat not so rapidly or so charaeteristically. The true diphtherial infection begins with a bocalized congestion of the fances of the tonsils or back of the pharynx; soon there appear grayish-white, opalencent spots, whieh spread and become fused, and now extending over the pharyugeal wall, coalesere into a dirty yellowish membrame. At the efge of the sprealing membrane is a zone of aeute congestion, and characteristically the membrane in its early stage is firmly atherent. Removal of the erge or other part will be follon ed by bleeding. Later, where healing oreurs the membrane becomes loosened and may the
romoved with ease. Such membrane may extend from the pharynx into the postetior nasal passages, the larynx, trachea, bronehi, etc.

As pointed out already, with the superficial growth of the diphtheria hacillus on the surface of the mueons membrane, there is a necrosis atrl destruction of the epidermal tissue, which is cast off, an intense congestion of the submucosa with abundant exudation of serum and leukoretcs, ind now a fibrinous coagulation of the exudate, with, at the same time, a necrosis of the superfieial layers of the submucosa. As the cells here undergo a coagulation necrosis the resulting membrane is due in part to the surface exudate, in part to these necrosed and infiltrated uncrficial layers of the submucosa. It is this that renders the membrame so firmly adherent. Later, with healing, abundant leukoeytes pass from the vesieis into the deeper layer of necrosis, and as these, through their enzymes, cause the liquefaction of the necrosed tissue the overlsing merioranc becomes loosened. Diphtheria bacilli may be -uperficial anci grow in greatest abundance toward the under aspect of the membrane, although from here they are not to any large extent takin up by the leukocytes and conveyed to the deeper tissues. Or, if so convered, they do not there proliferate actively. Almost constantly there is an acconpanying abundant growth of streptococei in the mombrane. These may invade the derper tissues and set up severe compliating disturbances. Rarely the inflammation extends along the linstachian tube to the middle ear, or through the lacrimal duct to the (omjunctiva.

I similar membranous infection oecurs in vary atute cases of scarlet fever. llarestreptocoeci appear to be the main agents, and the tendeney for the process to extend into the derper tissues with uleerative disturhances and suppuration oi the cervical lymph glands is much greater.

Vineent's Angina.- Vincent's angina, due, it would seem, to the arow th of spirochetes with the bacillus fusiformis, is a rare affection, anm may in the carly stages show membrane formation. This tends In the development of superfici:', neerosis. of the pharyns with the formation of uleres.

Chronic Pharyngitis.- The chronic form may be due to recurrent or lnw-emtimed irritation as by alcohol, tobaceo, or may be the sequel if a sucerssion of acute attaeks. There is a congestion of the pharynwnl wall, with dull, reddish or brownisl. coloration, a mucoid or mucofminkent secretion tending to dry and adhere in the form of scales, and " Leprplasia of the lyinph follicles, giving the wall a granular, warty ilptarance (granular pharyngitis). More rarely with atrophy of the marait the membrane becomes thin, smooth, dry, and shiny (chronic atophic pharyngitis). In chronic tonsillitis with advancing age, as again, ". whing to some, as the result of acute tonsillitis, the lymphoid tissue it tho tonsils may become diminished in amount, and there may be Hi-at atrophy of these organs. The opposite condition, hypertrophy; min H-nlt from repeated attacks of acute tonsillitis, or from longis. and irritation, as from retention of inspissated material in the
tonsillar rrypts. In these cases the organs are distinetly enlarged, exhihiting a diffuse hypertrophy, so that they may be of the size of walnuts, and may interfere with swallowing and respiration. General hypertrophy is particularly hable to involve the pharyngeal tonsil in children and thas eanse what are generally known as adenoids. In fact, the hypertrophie type of chromie disturbance, whether of the faucial or the pharyigeal tonsils cespecially affects children aid brings about marked respiratory disturbance. In a certain proportion of cases what appears to be a simple hypertrophy is found by the inoculation of guinea-pigs to be tuherculous. White this is the case it is interesting to not, that there may be no recognizable tubercles or caseation, but a diffuse cellular infiltration, with overgrowth of the stroma of these organs.

As above noted, another form of ehronie tonsillitis specially involves the crypts (chronic follicular tonsillitis) with progressive distension of these crypts be desquamated cells, ete., until they hecome filled by large checsy plugs.

Tuberculosis.- 'Tubrerculosis may involve the tonsils and may, as ahove noted, be apparently primary, and then of an unobtrusive tape, or there may be pharyngeal tonsillar tahoreulosis secondary to pulmonary or laryngeal disease. In this secomblary tuberculosis of the pharyux the superficial tubercles break down and form shallow ukeers.

Syphilis.-Syphilis in the secomdary stage may show itself as an ande catarrhal inflammation, or there may develop musous placpues tending to give place to shallow ulecration. There are cases of primary chancre, as again of gummas of the submucous tissue.

THE LARYNX AND TRACHEA

Etiologieal factors of importance in the cansation of disemse of the laryux and trachea are the characters of the respired air, and of the secretions conghed out from below it, and the state of nearby orgalls, such as the pharyon and the thyroid. limally, it is of interest that the phemomenon of "catching cold" has this physiokogi al hasis, that anmina and hyperemia of the laryox can be indued by the application of hat and cold to areas of the skin far remote from the laryms itself.

Abzormalities.-Absence of the larynx occurs in comjunction with grave defects that are incompatible with the contimance of life. Hypoplasia oceurs in the subjects of carly eastration, giving rise to the morlitication of wice often ohserval in such persons. The epighottis man he fissured, and the simsers of Worgagni may be so deep as to form definite pouches. The amomaties of most practical importance are atresia or narrowing of the tube, fistulous communication with the desophagus and persistence of the branchial ckefts.
Circulatory Disturbances.-The laxity of the submerosa is chiclly responsible for the rapid appearance and disappearance of phomomena associated with the boond smply of these parts.

Anemia of the laryins maty be an enry indication of systemic anemia or ceren of tuberenlosis．
Hyperemia may resilt from infection，from the effect of dust or irri－ tating gases，and from exeessive nse of the voice；long continuance of lixperemia may lead to a permanent dilatation of the veins（phlebec－ tasia laryngea）．Hemorrhage may result from trama，uleeration， henordilia，scurvy or phosphorus poiseming，and a hematoma so arising at this site may cause suffocation．Cedema of the glottis is the most important eirculatory change from a practical standpoint．The acute type is generally of inflammatory origin；the less acute forms arise in patients suffering from cardiac or renal dropsy or from the pressure of cervieal or mediastinal tumors or aneurysms．Those parts in which the submucosa is the most lax are most prone to the disease，viz．， the aryepiglotic folds，the epiglottis，the false cords，the arytemoid cartilages，and less often the vocal eords．
Inflammation．－Acute Laryngitis．－According to the course and the intensity of the inflammation，the appearance of elifferent cases of infammation may vary widely，and the most striking feature generally urres to give a eharacteristic name to the inflammation．Thus we yrak of catarrhal，membranous，phlegmonous，or ulcerative laryngitis， as weil as of eertain specifie forms，such as tuberculous or syphilitic larrugitis，or those weeurring in variola，glanders，leprosy，or rhino－ whromia．
（＇utarrhal Laryngitis．－－This represents an early stage of infiammation， wof often ly the larygologist，exeted by a variety of irritants，arising in the infective ferers，and is a prominent feature in sueh diseases as intluenza and whooping eough．Just as in the nose，a preliminary＇ rinlocs and swelling are followed by secretion of a fluid at first clear， latur clouly or purulent，not often erusting upon the surfice．Super－ firial erosions are common，and the appearance of traces of blood， irum hemorrhage produced by violent eonghing，frequent．Influenzal infertion is often nasal at first，whereas that of whooping eough is －fon tracheal．Inflammatory affections of the larynx are assisted and imbnifical，and even at times inaugurated，by the excessive use of fabment and alcohol．A definite ill－effect on the larynx camot but

If from the practice of＂inhaling＂the smoke of even the mildest A，aco 0 ，to say nothing of the greatly inereased absorption of nicotine ．．．ow ors through the delieate mueosa of the tract lower than the ばリバ
IIt mirambs．Largmgitis．－The mombranc，due to whatever cause， i－h of fibrin，moist with sernm，entangling in its meshes leuko y y tes 1 deal cells of the part，as well as bacteria．The superfieial cells he killed and form part of the membrane；a coagulation necrosis has gone down to some depth，and layers even lower than the －ai be comprised；in such a ease，the membrane being pulled off， －＂ith it the npper lavers of the underlying tissues，and a bleeding ＂．results；of this form of inflammation，diphtheria gives a gerol
example, but it is hy no means safe to rely upon this as a sign by which to recognize diphtheria, because a menbrane overlying columnar epithelium is more readil: removed than a membrane of like density

Wertion from a cave of membranus tracheitir: a, membrane replacing mucosa; b, outer layers
 of submurosa, e, derpest layery of subnucosa; f, cartilage.

Suppurative perichondritis of larynx: a, infiltruted and necrotic inner wall of abscess; b, cartilage laid bare and surrounded by abscess cavits.
over scquamous epithelium, and diphtheria may exist with any sort of membrane or even without one; and, on the other hand, the pyogenie eocei are capable of causing a membrane not distinguishable in appearance from that of diphtheria.

Phle!mmonous Laryngitis. lhlegnonous laryngitis is an ocensional sequel of ulceration, or even of diphtheria or erysipshas, and may reach the cartilages, setting up a perichondritis; in this last, sequestration of a part of the cartilage may occur, and a fistula remain.

Chronic Largngitis. - Chronic laryngitis, of non-specific order, leads to a definite hypertroply' of the mucosa and submucosa, which is sometimes quite lowalized into warty, gray areas (pachydermia laryngis verrucosa); thrse latter are often fonnd on the vocal cords.

Tuberculous Laryngitis.-It happens frequently that in advanced pulmonary tuberculosis the larynx becomes infected fron the bacillis:-
laten sputum, with the result that nlceration or a diffuse infiltration results. A tubercle, caseating and discharging, will leave an ulcer, or there may be shallow erosions whose relation to the tuberculous infection is not at once evident, or there may be a diffuse, granular wergrowth, definitcly tuberculous, which may sulsequently caseate ill a number of places.
Syphilitic Laryngitis.-Like tuberculosis, this may be cvidenced by congestion, a diffuse infiltration or the formation of gummas, the epiglottis and the vocal cords being liable to show the lesions. The tissues sometimes become rough and warty with the overgrowths, and in parts where there is considerable ulceration a good deal of deformity may result.

Glanders, leprosy, actinomycosis, and rhinoscleroma arc all able to give origin to ulceration of the laryux.

Fin. 220

Carcinoma of the laryax. (From the Pathological Museum of McGill Cniversity.)
Regressive and Progressive Tissue Change.-Atruphy of mucosa, sulmucosa, muscle and cartilage, calcification of cartilage and such haluges nccur in hatural or premature senescence. Of progressive hampes, the commonest is the papilloma or papillary fibroma, a warty "rriscence often seen on the vocal cords, consisting of fibrous tissue "werlain! hy squanous cpithelium, which often recurs after it has been mimwer vet docs not of ten show indications of carcinoma. Like this is the mine flattened nodular fibroma which is scarcely papillate or p, jpuil, found on the vocal cords of singers. Enchondroma, lipoma, nyxoma, lymphengioma, adenoma, cysts, and even thyroid tumors are fonul in the larynx and trachea, and carcinoma is the most frequent
malignant growth, nsually of the squamons variety. Sarcoma is rare, and the laryux and trachea are mot nisual sites for secomblary growth.

Alterations in Size and Shape- Obstruction of the lumell may be eaused by ardena, inflammatory intiltration, tumors, exostoses, and atresia, or harrowing, by contraction of sear tissine, or as the result of pressure from the outside by agencies suth as thyroid tumors, peritratheal absersses, enlarged lymph uodes, or aneurysms, most of which may also canse perforation of its walls.

THE BRONCHI

The pathological changes fomm in the bronchi are diverse, aceording to the anatomical nature of the part affereted; the larger brouchi, approximating to the stracture of the trachea and larsinx, are likely to be subject to ehanges similar to the changes seen in those structures, while the terminal bronehioles are so intimately comected with the air saes of the lungs that lesions of the latter are eertain to affect the former.

Circulatory Disturbances.-Passive congestion of the bronchi is fomad typically in conneetion with valvalar diseases of the heart; the mucots inembrane and the underlying structures are swollen, the surfare is deep red in color, and an increase in secretion is seen. Petecinal hemorrhages ocrur in severe inflammations, in those suffering from severe systemic infections and in instances of hemorrhagie diathesis.

Inflammation. - Bronchitis, while often miversal, is not necessarily so; in the larger tubes it is generally associated with tracheitis, in the terminal bronehioles with lobalar pnemmenia. It arises by extension from the trachea in all or any of the conditions in which tracheitis is found, including the infective fevers, while it constantly aceompanies emphysema, bronehieetasis, and pueumonia, and is almost certain to accompany the development of the passive eongestion in heart disease. The bronchi are reddened, covered with a mucoid or a purnlent secretion, in which latter case sequeezing the lung tissue leads to the expression of ting drops of musopns from the openings of the bronchioles.

Acute Bronchitis. - In the simple catarrhal form hypersecretion is a freguent, though mot a necessary characteristie, for a small amonat of stieky muens may he seen in eases of somecalled "dry eatarrh." In cases where secretion is ahmulant it is likely soon to become purnlent, and in eases of passive congestion, especially where there is arlema, there may be a very ahmolant, thin, watery seeretion, the so-called "serons cutarrh."

P'urulent Bronrhitis.- In easos that do not quickly reeover, this may he a disease of serions import, for the walls become infected with putrefactive organisms, and the purulent secretion may beeome intensely fetal, and the likelihoorl of destruction of the bronchial wall
anl consequent abseess, is ineremsed. 'This is the an-enlled putrid or gangrenous bronchitis.

In fibrinous bronchitis there may be desenamation of the epithelinm, congestion, orlema, and infiltration of the submucosa, while on the free wrface there is min abmilant exudate, fibrinous and richly cellular, which in sections of the lung is often seen to fill the bronelus ermpletely. such a microseopic picture does not necessarily mean that the bronchus is impervions to air. It is worthy of note that in bronchial asthma, a dear, glassy, viseid secretion is expectorated in "pearls," which are found oll closer exnmintion to be capable of extension into a long spiral aromid a celntral thread; as the tube east is n "cast" of the urinary mbinle, so the "Curschmann's spiral" is u east oi the bromehiole. lifther this, nor the "Charcot-Leyden" erystul, is pathognomonic of inthum.

Is in the laryox and trachea, membranous broachitis is usmally, but mot alwass, the result of infection by the diphther:a bacillus.

Chronic Bronchitis.-The point of most importance in whieh this diftern from the arute form is that it tends to be proluctive, the wall boing definitely hypertrophic; even the mucosn mas be rough and mapoid, due to the irregular contractions of areas of fibrosis. let in at very long-contimed inflammation, the products may be absorbed, and the mucous glands, musdes, and cartilages atrophy, so that the hrenclon- mese finally be dilated and thin-walled. The specife forms 1if hromelitis scarcely differ from tracheitis and laryagitis from the same camw tuberonlosis. syphilis, ete.-unless it be in their greater rarite:

Forengn Bodies, etc.-A foreign bods, inhaled, is likely to fall into the right bromelns, becamse it is larger and more vertically situated that her left; if it completely obstruct the bronchus, collapse of the
part of the lung supplied will follow; if the body inhaled be septic, or if the trauma be eousideruble, a putrid bronelitis and abseess may be quickly set np; at the best, there is likely to be localized inflummation nod ultimately a fibroid indurations. Broncholiths, masses of inspissated secretion in which lime salts have been deposited, are oceasionally found, especially in bronehicetasis.

Progressive Tissue Changes. - The hypertrophy which may result from chronic bronchitis seems to form a starting point for many kinds of tumors, such as chondroma, osteoma, myxoma, lipoma, and adenoma, which have been observed to oceur relatively frequently in brondicetasis. On the whole, however, benign new growths of the bronchns are very rnre. Both carcinoma mid sarcoma of the bronchi oceur as primary growths, although infrefueutly. (areful study shows that, following ehronic inflammation, the bronchial mneosa is linble to present areas of metaplasia from cellindrical into squamous epithelium, and some of the cancerous growths show epitheliomatous tendencies. Secondary growths of both orders are often seen.

Alterations in the Lumen.-Perforation.-Perforation of the bronchus may arise from foreign body or from inflammation, while caseation of lymph nodes, careinoma of the asophagns, abscess or aneurysm may brenk in from the outside.

Occlusion.-Foreign hodies, manses of secretion, moist or dry (broneholiths), intrabronchial tumors, or the contraction following a syphilitie nlceration may ocelale the bronchus; or from without, the pressure of enlarged lymph nodes, of mediastimal tumors, or aneurysms may bring about a similar effect. If the obstruction be complete, the air in that part of the hong is gradually absorbed by the blood and collapse follow: whereas, if it he only partial, the alveoli are dilated, and emphysema ellsues.

Bronchiectasis.-This is a diseased state in which the bronchi are dilated and often distorted, by reason of inereased intrabronchial pressure combined witlo weakness of the walls of the tubes; the resulting culargement may be single or multiple, local or generalized, and according to its form one recognizes saccular, cylindrical, fusiform, and varicose dilatations. The wall may be atrophie or hypertrophic, and within the lumen is secin to be encircled by ridges, which represent the less vielding muscular and elastic parts of the wall, while the more yielding conneetive tissue has given way. 'Jle hypertrophic form is found most often in a highly fibroid limg in which an irregular, heightened pressure is found as a result of some parts of the lung being eut off entirely from their supply of air and the pressure in other parts being corpespondingly higher than normal; pleural adhesions, too, may be so situated is to pull nfon a bronchus in two opposite directions at the same time.

The istence of a bronchicetasis is usually evident to the naked ce; even if the dilatations are not of very great size, it may be possible to trace the tulnalmost io the periphery of the lung, and their mucosi is
ahmost certain to show evidences of the necompanying bronehitis, while collapse, compression, cavitation, or induration of the neighboring lumg tissine may be visible.

THE LUNGS

Abnormalities. -The anomilies of the lings are unimportant; variations in the lobulation, especinlly of the right limg, are often seen.

Circulatory Disturbances.- Edema.-Where death has been slow, there is almost certainly to be fonnd some crdema of the lungs, which arises from the laxity of the vessels of a failing eirenlatory system assisted by the toxic or infective manifestations that we have previously referred to as likely to oecur in the last homrs of life. The lung is heavier and firmer than normal, and on squcezing it, a thin, watery thuid exndes. In this Huid there are no constant cellulnr elements, bit accidental blool corpuseles, lenkocytes, or lining nlveolar cells may be secu. This is the soncalled agonal cedems.

Congestive Cdema is found accompanying passive hyperemia, the posterior (dependent) parts of the lungs being most affected; the fluid, from long continuance of the congestion may be mixed with blood or Wood pigment. Inflammatory cedena may be fonnd in the early stage of pneumonia, in the vicinity of pneumonic areas, und sometimes in cases of bacteriemia; cellular elements are often present, and the fluid is more albuminous than in the previous forms. The most interesting, and the least understood form is acute tulminating codema, which may rome on very suddenly with dyspnoa and the free expectoration of large quantities of thin, watery sputum; it seems to be the result of a sulden rise of pulmonie blood pressnre, and is associated with aortitis and other forms of arterioselerosis. Experimentally, the injection of alrenin sometimes causes it in animals. Mieroseopieally, cedema of the hmgs is not shown by any ehange of the tissue, although if the fluid lo strongly albmminons, the coagulated atbumin may be seen as a miform structureless shadow in the alveoli.
Hyperemia.- Hyperemia or passive congestion of the lung arises when there is ohstrnction to free outflow of blood from the lungs, or when threre is deficient heart power; in many eases, respiratory movement is weak, and there is damuged heart musele, in whieh rase the combination i- resonsible. The blood is allowed to remain in the lesser cireulation lomer thin it shombl normally; this stagnation, or slow circulation, i. mont marked in the dependent parts of the lungs, the posterior haties of both the fobes in the recumbent, the lower halves of the lower labers in those who sit ; this postural type is called hypostatic congestion. 'Hosmetion to the cotllow from the lungs may be dne directly to a -aluular ledion, such as a stenosis of the mitral valve, but more often it infe to an unemptied state of the left auricle, from whatever cause. 'II wer the heart is incompetent, it is to be remembered that the step fathers incomplete emptying of the left auricle is passive congestion

of the lings. The congested lung is enlarged, firm, less elastie than nsual, and of a dark red or purple color; with long continuance, a fibrosis of the ling occurs, and from the dark eolor and the increased firmness, this has been called cyanotic induration. Where inneh blood is broken down in the course of a long-tontinned congestion, the pigment stans the tissues and the predoninant rusty color fonds to the term "brown induration" being employed. In such a lung, there are seen in the alveoli, or in the fluid expressed from the soneezed lung, large, flat cells, generally cirenlar, laden with brown pigment granules-the "cells of heart failure" or "eardiae" cells, which are the desquamated cells that in their lifetime lined the alveoli. The microseopie appearanee of the eongested lung is readily interpreted; the ressels in the interalveolar septa are congested, tortuons and varicose, and seem to jut into the alveoli in a suceession of bead-like projections. Blood corpuscles are apt to appear in the alcooli. With this, there is an increase of the fibrous tisse: of the interalveolar septa, which are often richly cellular, the increase being due to the numbers of fibroblasts. Very dharacteristie are the "cardiac" cells mentioned above, and in longstanding eases the pigment is not eonfined to these but is seen in the septal themselves.

Hemorrhage.- Blood free in the lung is nsually from the pulmonary vessels, but it may be aspirated from the nose or mouth or may come in from an aneurysm external to the hung; one of us (Me(.) has deseribed an aortic aneurysin expanding in the mper lobe of the lung. This, however, is a rare ocrenrence; the emmon mode of production of pulmonary hemorhage is ber crosion of a ressel in tuberenlous or other nleeration or its rupture by trama. In tuberenlous cavitation the hoorl ressels being vers resistant may be left projceting into a cavity as a loop or eren erossing from side to side. Such a ressel is unsup)porter, and its wall being degenerated a rupture may ensue, or an anemrysinal dilatation which later ruptures. I eath does not so often result from a single large hemorrhage as from the effeet of repeated hemorrhages.

Infarct.-An infaret is the area in which a hemorrhage ocetrs as a result of the blood supply to it being eut off by a elot lodged in the ressel supplying it. The tapical infaret is cone-shaped, sharply defined, the base of the cone usually situated at the pleural surface, the apex imermost at the point where the clot is lodged; it is elevated above the cut surface of the lung, is dark red or purplish, and firm. The plenral surface is at first smooth, but beromes roughened by the fibrimens deposit that results from reactive inflammation. The edges are usually sharp, and with the lapse of time may become gray from fibrin and leukoretes, while the centre mare (rarely) soften. Mieroscopically, the air sace are distended with bood corpuscles, and the relation of the septa to one another is mohanged; the melei of the tissue cells may stain poorly. It the periphery of the infarctous area leukocytes are usialla: albumant.

With the lapse of time the iufarct tends to be absorbed; with the breaking np of the corpuscles and the setting free of pigment the alveolar -paces hegin to be reeistablished, and eirenlation restored. Should infertion ocenr, abscess will follow, but neerosis and eicatrization are nout common in the lung.
. rising as infarets do, in valvilar diseases of the heart, it may be that the capillary walls are degenerated, and rupture is bronght about by the force of the collateral rireulation aeting on the capillaries that are full (from the bronehial arteries). It is still (lebated whether the hemorrhage oceurs per rhexin or per liaperdesin.

Embolism.-Althongh this is dealt with in conncetion with the vaseular -ristom, it may be pointer ont that fat cmbolism occurs in the langs in the ease of fracture of a long bone, "here fat is pieked up by the hlood from the mariow; in fresh tissme the fit ghboules may be seen and staned in the ressels. Partieles of filorin or exell large thrombi may be dearched from the systemie veins, ant, passing through the heart, may lonlure in the ling; if a large vessel lue booked, instant death may be the remult.

Hisensed States Due to Disturb-

Necti n from an infarct of the lung, showing eentral portion The alveolar walls stain poorly; the alverli are distended with blood in which are ocrusional pigment-holding cells, staining decply: "Hue of the Respiratory Function.-Atelectasis.- This is the state in whieh the air saes are partially or eompletely modistenced by air. Complete airlessness is called apneumatosis. Thu true atelectatic state is that in whieh the hangs have never lex+l distended; in it the bronchi are lying in folds longitudinally, anll the alveolar walls are in contaet with each other, to be thrown "part and distembed with the first breath inspired. A persistence of the fortal state, with a failure of proper expansion, may be found in dehilitated and premature children, especially those with such a Hecelopmental defect as hypoplasia of the ling or a diaphragmatic harnia; or with bronelial obstruction by foreign body, by meeonium, in hes secretion or be compression of the thorax. Not only in infints Whes atelectasis oceur, but in weakly or moribund adnits it mas. sinc.
When there is a mechanieal eanse allowing the egress but not the Wres of air, the respiratory aet is not of itself sufficient to produee a ste of airlessness, but the residne of air that cannot be expelled is wly absorbed by the blood until the alveolus, being empty, collapses
completely, with what may be regarded as a compensatory dilatation and congestion of the vessels of the alveolar walls.

External pressure upon the lung or a part of it induces a compression atelectasis. Fhid or air in the pleural cavity, an elevated diaphragm, a mediastinal tumor, enlargenent of the heart or pericardium, thickening of the pleura or distortion of the spine may all be effective, not only by reason of direct pressure but also by indirect interference with proper respiration.
When the whole lung is atelectatic it lies high up in the thorax, close to the spinal column, porsesses the bulk of a moderate sized adult fist, and is brownish rel in color, or if anemic, is gray. From its resemblance to flesh it is sometimes called "carnified." It does not crepitate, and it sinks in water; if squeezed below the surface of the water, a few bubbles may be expressed, chiefly from the bronchioles. If only : part of the lung be ateletatic, the surface of that part is smonth, dark, and depressed below the surface of the rest of the organ.
In the fretal state, the lining cells of the air saes are polyherlral or rounded, and project from the walls; with complete expansion of the hung they become flattened, and with a subsequent aequirement of the atelectatic state, they once more assime their former shape.
Emphysema.-The terin interstitial emphysema describes the state in which the tissues of the body at large or the conneetive tissues of the hung are infiltrated with air, while emphysema, pure and simple, denotes the overdistension of the air saes. When this is generalized, there are certain well-marked physical peculiarities in the thoras. The accessory muscles of respiration are well developed, the neek appears short and thiek, the ehest is enlarged, especially in the anteroposterior direetion, so as to be barrel-shaped, whil" the abilomen is relatively sumken. "pon opening the thorax the hungs are vohminons, relatisely of light weight, aud do not collapse. The tissue is inelastic, lesss erepitant than normal, keeps the imprint of the fingers and feels like "a bag of feathens." On the surface, the pigmentation is slight, the surface pale, and at times the individual air saes can be seen with the naked eye like little vesicles. In advanced cases, especially at the edges of the humgs, individual sacs may become of great size, giving the lung a bullous appearance (bullous emphysema).
Nicroscopically, as seen in Fig. 217, p. 432, in a case of emphysena there is marked atrophy of the alveolar walls, and many of them are rupturel; several alveoli are thus thrown into one, and the resulting sac takes a shape approximating to the circle. In the thinning-out med rupture of the walls the blood vessels necessarily are flattened, thimed out, and many are thus oh terated; the diminution of space that occurs in the remaining vessels due to pressure throws increased work upon the heart and the right ventricle distends and hypertrophies.
Inflammation.-Pneumonia.- IIere consideration is given to the pathological aspect of an inflammation of the lung itself-a pneumonia or pueumonitis--and not to the manifestations elsewhere that are a
part of the disease that is termed by the clinician pneumonia. Yet we mave not, for a moment, disregard the fact that the reader finds his interest chiefly in the clinical manifestations of the disease. It is necessary that one see, at the outset, that an inflammation of the interstitial tissue of the lung is just as truly a pneumonitis as an inflammation of the air sacs, though by no means so common. Even more important is it for him to recognize that, numerous as the causative asruts are, and diverse as are the modes of infection, yet the air sacs responl to irritations of all sorts in much the same way, Just as was said in the general discussion of inflammation, the process may vary in speed, in intensity, and now this feature and now that other may be prominent, but at the bottom of them all lie the same fundamental wourrences; the blood vessels become congested, there is an outpouring of serim and a diapetesis of leukocytes, a formation of fibrin, a contemporaneons killing or injuring of the cells of the part, especially those that line the air sae, and even a multiplication of those cells that are mildly irritaterl-all this occurring in the closed-in space of the air sac, so that the prodiets of the inflammator: process fill the air sac to the exclusion of air, and the disposal of such prohncts constitutes a step to be performed bev the borly in the process of healing, over and above what has to be done in a case of iuflammation on a surface.

Nhost all the known pathogenic organisms have the power of (innsing phemmonia; the Frïnkel-Weichselbaum diplococcus of pneumonia, l'riedländer's bacillus of pneumonia, the Streptococcus progenes, thestaphelococeus albus and aureus, B. tuberculosis, B. typhi abdominalis, B. coli, B. influenze, 13. pestis, B. anthracis, and B. diphtheria inchule nearly. all. While each of these is able maided to produce the disease, it actually happens very often that the infection is mixed. \therefore is the manner of infection ev ruone of these bacilli can reach thr long either by the bronehial tract (aërogenic pneumonia) or by thr hoorl or lymph (hematogenic, lymphogenic pneumonia). As to what rlinical type of rlisease will be set up by a special organism, we can saly little more than that there is no unvarying rule; the pneumococcus Ht, up most often a lobar pneumonia, but may cause the lobular form, While there seems no reason to suppose that any of these organisms in mable to emine a lobar pneumonia, lie this as it may, lobar pneumunia in the clinical acceptation of the term, is a very different kind uf dietelso from cuy other form of pnenmonia; it is essentially a general hemel infection with a local manifestation in the lung; histologically this loral manifestation has close resemblance to other pulmonary inflammations.
These pulmonary infections are due, it will be seen, to bacteria, many if which are habitual residents of the body; under what conditions do there hateria gain power to attack the tissues? 1'erhaps the body is atiackerl at a moment of chilling or at a time when resistance is in some uhar way lowerel, or the bacte ia become increasingly virulent; the tirre fact that a particular lobe is attacked seems to indicate that this
is a place of least resistance. Lohar pmemmonia is that form in which a part of a lober, a whole lobe or several lobes are atierted; all other forms of puemmonia are of the lobular type in which the mit affereted is the lobule. The names be which the ditherent formse are characterized are many, some based upon the monde of comberane of the cansative agent, some upon the amatomieal rharacter of the lesion. Among the clinieal types of lohnlar maromonia are bronchopneumonia, in which the infection arels down one or many bronchi, this obtaining a lobnlar distribution: miliary pneumonia, in which the blool stream infects moltiple foci at once; septic and metastatic pneumonia, in which the lomg is affecter in multiple areas as an cexpression of a widespread hacteriemia; hypostatic pneumonia, in which the lohnles attacked are neeessarily in areas that are alramly the suljerets of passive congestion, and terminal pneumonia in whech the hug is attacked beeanse it, in common with the rest of the boly is in a low (ante mortem) state of resistance. All these have a lobilar distribution of the infertion. While the character of the exudate mays sometimes emable me to deride what is the infeetion, onr knowledge of the process of intlammation will remer us cautions as to depending absolutely upon this, and the smeas and the enlture are safer means of diflerentiation.

Acute Lobar Pneumonia.- The well-known division of the comrse of: the disemse into four stages was urver aceurate and has outlived its. usefuhers. It is clear emongh that congestion is followed be consolidation; the lomgs seen at antopsey frecuently present an appearance well described in the term "red hepatization," often show the state of gray hepatization, and very oftell are seem in a moist, gray state well describerl by the term purnlent infiltation.

The proiol of congestion or engorgement is milonhtedly brief, rarely seem hy the pathologist and often reforred to, by careless clinicians as "eomgestion of the homgs," "threateming pmemmonia," " some surh term. What the clincian can observe at this stage is me rely the monst state of the bronehi and bromelioles; ronsidering the frequence of bronchitis, all the preliminary signs of the onset of pmemonia are regnired before he mas make exen a likely guess as to whether puenmonia is or is not to sipervene. 'The long at such a time is redlemal, distinctly ordematoms; if seon at antopse it oozes abundant blood on section and is curionsly brittle. This quickly gives place to consolidiation, in whid the hag becomes heary, swoller firm, pits on pressure, and in more friable than mormal It is intemsely red, owing to vascmar haperemia rather than to the presence of red corpmseles in the exulate, and the fluid scraped ofl the cont surface witn a knife is definitely turbit. ambl ilomestaned. Miero-opicalle, the mpillaries are congesterl, the lining eplithelimm of the air sars is swollen, often desquamated, and fibrin and lonkoeptes are present, the fibrin threads mak ag a complete mesh in the air sace just as a blood-chot adheres to the sides of a glates resel. Red corpmides are present. From the red solid appearance if the tissue in this state, it was likened to liver, and the term hepatization

Fig. 223

Butc lobar preetmonia (gray hapatization). The lower lobe is involved (Pathological Museum, MeGill University.)

Fig. 224

[^18]applied to it. To understmad properly how this changes to the so-ealled gray hepatization, a consileration of the microscopic appearnuce is necessary: After the lapse of a lit '? time the fibrin threads begin to break up under the action of enzemes, and just as the blood clot shrinks away from the sides of the glass vessel, so the exulate or clot shrinks from the sides of the air sac and mieroscopieally a clear zone (actually filled with sermm) appears around the exudute; the fibrin is now being digested, dead cells are being disintergrated; and the "scavenging" effect of leukoevtes and proliferated air sale cells becomes apparcht; leukoeytes are now present in so great numbers that the tissue takes the chr wteristic color of lymph tissue-gray; disintegration of the

Fig. 225

Section from a lung with acute lobar pneumonia in the stage of gray hepatization. All the filorin here has been disintegrated: a, desquamated alveolar cell: b, disintegrating lcukorytc; c. normal leukocyte. exudate proceerls, until the air sac contents becone thinner and thinner, until there remains only lymph, which is absorbed, and air mee more enters the air sac. Or it may be that the loosened plug of partly disintegrated cxulate is sudlenly dislodged by a cough into the bronchiole, and appears in the sputum, where we can recognize the fibrin, the leukoevtes, the desquamated epithelium and the bacteria. This disintegrating stage, with its numerous leukocyies is that of gray hepatization. The surface is gramular, s.. . nolor, the lung is firm, pri" ". nted by the ribs, the but dulled 1. a fine fibrinous exulation, the lung is airless, friable and sinks in water. The cut surfaee looks granular, and scraping yields a fluid no longer Wlood stained, but more turbid than ever. As time elapses, the disintegrative process goes on, the lung losing its firmness, the surface hecoming more lax, and the stage of gray hepatization has definitely passed into that of resolution. Many cases, however, do not exhibit this course, but appear at the death of the patient in a state of "purnlent infiltration," which differs from that just described as gray hepatization only in this-that the lung is more moist, and the scraped surface, granular for an instant, quickly becomes clouded over by a thin layer of fluid pus which cxudes from the alveoli and bronchioles; the tissuc is even more friable than before, because the alveolar septa have undergone a considerable degree of disintegration. One can well imagine that, had life been prolonged, the cutirc affected area would soon have become one large abscess.

As to the site of the pneumonic process, our own figures show the right sirle affected in 48 per eent., the left in 30 per eent., and both in $\because \underline{-1} \mathrm{mr}$ erit. of cases. When both lungs are affected it is common to find one farther advaneed in the disense than the other. The lower buwes are more often the seat of the disease than the upper, but it is wit infrequent to find atypieal forms suel as "spical," "central," and "creeping" pneumonia, terms which explain themselves.
('onsidering the nature of the disease, viz., that it is a gencralized infection, it is to be expected that the infeetion in the lungs may be associated with inflammation elsewhere; pleurisy, empyemu, pericarditis, endocarditis, meningitis, osteitis and arthritis are those of commonest oceurrence.

Instead of proceeding to rcsolution, the exudate may remain in the alveoli and organize (as might a clot elsewhere), giving rise to the rare instances of unresolved pneumonia. It is a good elinical rule to remembur that this is one of the least common causes of eontinuance of the purmmonic febrile state, and he who keeps the figures of frequency of werurrence in his mind will wisely dispose of other possibilities, espemilly cmpyema, before coming to this diagnosis. Secondary infection may lead to a breaking down of the lung tissue causing abscess or sangrene, elosely related conditiors. Espeeially if putrid bronchitis or bronchiectasis have been present, is gangrene apt to supervene, the hing becoming pulpy, greenish in color, and stinking. A line of demarcation rarely exists, and irregular cavities with shaggy, necrotie walls are seen. Even this may heal by a fibrosis, the part of the lung afferted finally shrinking to a dense, indurated mass.

Acute Lobular Pneumonia.-Only rarely is this a primary diseaso, save in voung ehildren; it is usually the sequel to bronchitis or one of the infectious fevers, measles, whooping cough, influenza, or diphtheria, and the voung, the old, or the debilitated are the sufferers. The organisms are the same as in the lobar form, but the pyogenic coeei have a greater tendeney to be concerned. A bronchial inflammation that has spread to the bronchioles is very certain to go a short step larther and attaek the air saes. It is all but a safe statement to make that the exulate is more serous than fibrinons, and a striking feature is the presence of large, elear, mononuelear cells, whieh are, in all pobahility, the swollen alveolar cells, and these give to the exudate a ""atarrhal" quality.
Coming from the bronehi, this disease is apt to attack both lungs, uthongh only onc or a part of one may be affeeted. The damaged hung is congested and in its substance are isolated firm areas, raised thove the rest of the surfaee, gray; red, or yellow in eolor, and friable in consistence. These scattered areas may grow larger till they coalesce, but they never sueceed in producing the uniform solidity of the lobar type of pneumonia. With the possible exceptions noted above, a pieee tram the mitllle of one of these areas is microscopically indistinguishable from a similar piece eut from the middle of a lung in lobar pneu-
monin. 'The individual comsolidutions pass through red nul grays stages, and the sporndic distribution of these arens hass led to the lung being likened to a spleen-hence the term "splenization" (not to lee commended). When consolidntion occurs mad resolves, the resolution is upt to progress more quirkly than in lobnr puemmonia, beenuse the lymph mul boond strenus are less interrupted, but not the less is it a serions disease, since it attacks at a time of low vitality or complicutes other grave disense. Several of the different forms must be considered iudividually.

Fig. 220

Two alveoli from the lungi in aputs lobular pneumonia, showing looser cell collection in the paudate and absenpe of fibrin: a, disintegrating leukorytes with gianular coneents; h, same with fat globules,

Aspiration Pneumonia.- I typical example of lobular pneumonia is that known as inhalation or aspiration pneumonia, arising from the aspiration of food, vomitus, or secretion from the nose and mouth during meonscionsmess, at in the anesthesia of operations. From the uature of the infecting agent it will be readily understood that the temdener to destruction of the hong tissue, to abseess, and gangrene is greater than usual. It is a frequent 1 ceurrence that in surgica! cases ending fatally, especially where vomiting has been present, the trachea and bronchi show a greoui h tint, suggesting bile-stained stomach contents, and this usually indicates that sueh have been aspiraterl. Where life is sufficiently prolouged to allow the pnemmonic process to supervene, the profuse sputum, often fæetid, shows by the presence of clastic tissue that the hug tissme is being destroyed, and at antopse soattered or confluent areas of actmal absees formation will be found; the zone :urromuling such areas is likely to show a
ury intense congestion becanse seen in so vasemar min organ. Septic pmomonian may be cmsed in other wass thm by inhahation; the exten--inn of intlammation from ncighboring tisanes, sim as the mediastimm of from subliaphragmatic structures, will canse it, as mas also infer-
 the lome through the chest wall. Womm of the limg he a rib, where no external womd cxists, is more likely to be followed bey momixed infortion and a tepical pheuronin, becanse the womded area is the phare of least resistance for the time being, and the infertion is bemathernic.
Metastatic or Embolic Pneumonia.--'This is allied to the last form. It happons as a manifestation of a general bucteriemia in such dismanes as osteomyelitis, thrombophlebitis, arthritis, septic embearditis, ant erysipelas, where a septie embolns becomes the point of origin of a memonic foeds. No part of the lung is exempt, and the abscesses "ain he felt as indefinite lumps deep in the tissue or seen as sellow -wellings under the pleura, varying in size from that of a pinhead to werai centimeters in diameter. The inflammation set up be the eptir material brought ly the embolus, although ciremmseriberd, is of the nature of a localized pneumonia, but it proceeds straightway to the formation of abscess or gamgrene. Of pnemmonic nature, strict? -periking, is also the effect of secondary infection in tubereulosis, netinomy cosis, or other primary infection.
Hypostatic Pnoumonia.-A pneumonic infection occurs very often in thuse who are debilitated, and because the posterior parts of the lamgs are congested and orlematous it is here that the infection strikes, and a diffuse catarrhal pneumonia, definitely localized to this part of the lung, is set up; the general bodily depression has mueh 1. a for with the infection, for it is know: to every elinieian that lungs mas remain rousested amd gedematous for months without infect in; but wh in the imbivichal comes within a few hours of his dath, the so-ealled termin' "ffection takes hold, and thus it is that so many patients sufferin rrinn heart disease die with, if not from a pueumonia.
Chronic Pneumonia. - Care is necessary in eonsidering chronic phe monia not to inchow the actual reparative process that may follow : ante premmonia, untess an actual lesion of the alveolar septa ocet The term ehronic pneumonia presupposes that an irritant is contimual illil progressively at work. An "unresolved pneumonia" is correctly. thronic premmonia, and the infections of the gramulomas, tuberculosis, -philis, actinomycosis, ete., set up an inflammation that may be so - Inignated. Chronic pnemmonias may be divided into (1) the abovemumtioned secondary indurative pneumonias, (2) pneumonokonioses, the linaties exeited by the inhalation of various kinds of dust, and (3) pleurogenetic pneumonias, caused by the extension inward of the infection of a chronic pleurisy, a rare form.

1. Suremhtury Indurnhite Pucumonita. Thepe is a general substitufon of fibrous tisure for the solt lung substance, the pleura and inter-
lobular septa being specially prominent. If it oecur secondary to a bronchopneunomia, the fibrosis roughly follows the bronchial tree. In an advanced case, seen microseopically, one is struck by the fact, that, wherens normally the greatest part of the section is air spuee, and the least the walls, here the greater part of the field is solid tissue and the lesser part is a ir space. The lung is heavy and hard, cuts firmly, is grayish in color, mottled with the hlack of inhaled dust. Areas of necrosis resembling caseation may be seen, the pleure are thickenel and ofter matted together, and the lung may be entirely deformed. Microscopieally, the air sacs slow as stnall irregular spaces containing desquamatel cells or leukocytes, liued by irregular cubical cells, and

Section from a - se of indurative pneumonia (fibrosis of the lung), showing the extreme fibroid thickening of the alveolar walls and the consequent reduction in size of the alveoli: a, alveolus containing desquamated cells; b, somewhat culical epithelium lining the air spaces.
separated from one another ly wide masses of fibrous tissue. The broncli are irregular in shape from pressure or traction. Now ant] then in the fibrous tissue one sees large collections of leukocytes and young fibroblasts indicating areas of aeute inflammation in the fibrous tissue, where some infection still continues to operate. This extreme grade of change never follows passive congestion; here, at the most, there is moderate thickening of the septa and the alveoli show many catarrhal cells containing pigment (brown induration).
2. Pneumonokoniosis.-Little, if any, inhaled dust reaches the lungs directly in the air, but it impinges on the bronchial walls, is carried by the leukocytes to the peribronchial lymph collections or to
the alveolar walls. Wherever it lands it may set up a eertain amonnt of ritation, the more so if it partieles are sharp-edged, because these witully pieree the walls and set up in the surrounding tissues nodular ractive growths, like tubereles, in whiel the offending perticles are Wht up. In advanced enses the peribronchial lymph nodes moy be sritty, and partieles may be carried to the abdeminal lymph noles. biffrent kinds of dust set up different degrees of irritation; the most finniliar fo m is anthracosis, from eoal dust, found in all adult dwellers in rities. Id mimportant; in the ease of coal niners, however, the dimage ought may be great, and antliracotie tubereles are seen as grayish asses of fibros's with blac': dies, while the entire lung is somewhat infiltrated and is heavy. \therefore : $\%$ ste-mason's lung (chalicosis) the infiltrating material is grey an. ${ }^{.}:+;$; in siderosis partieles of iron and steel do the damage, as is seen ... :ong needle-grinders, file-makers, and iron-workers of different kinds. The lesions are not very different from those of indurative pneumonia; calcification and even the formation of hone has heen seen.

Tuberculosis.-Tuberculosis oceurs in the lungs both as an acute and a ehronie locase, the Baeillus tubereulosis, discovered in 1882 hy Koch, being the essential agent.

As to the morle of infection, it may be stated that tubereulosis is nut hereditary, and but few cases of intra-uterine infection o e known to have oecurred. As to how the organisms rearh the lung there has been nuch debate; a reasonable statement of the faets seems to be the following: the inf ection of the lungs is nearly always by the human type of organism; the bovine or the liuman form may be ingested with fool and may t arried by the lymph stream ultimately to the thorax intl infect the $1 \quad s$, although ihis is probably an infrequent happening. Inst pulmonar. ..fections occur by inhalation; of these very few are dirent, that io, result from the baeilli being engrafted upon the bronehial :urfice ani setting up a tubereulous bronehitis as a primary lesion. Thue bat i!i are usually eaught in the mucous membrane, carried to the lympin nodes where the infection may remain (and be subsequently transierred by the lymph stream to the lung), or they may be carried at nuce by the lymph to the lung. This transference may also oceur $!!$ the ageney of the blood; and eases in which a tubereulous area iin a $!$ ympli node breaks into a bronehus, a bronehiole or a blood vessel ir. so obvious as not to require explanation. This last is an unimportant filt, for it happens oftenest in advanced cases. Infection by the skin, "Mrially by the hovine form of the baeillus, happens, though rarely.
liewed broadly, the greatest dangers to which people are exposed arise from the inhalation of dried sputum or exhalation from the mouth anl nose. Personal contnet constitutes a grave danger, but being lirerer may be guarded against; the infection of houses and rooms, al:l their subsequent oceupation by those who are ignorant of the int, is a great souree of risk, and can be obviated only by rigid regulathn compelling notification of cases, inspection, and disinfection of
honses. 'Tuberenlous milk, lutter, or meat is no more serious menace to the public health than the existeme of mmarked contaminated houses and rooms.

From the above considerations it will be seen that, aceording to the generally aceepted views of the present time, pulmonary tuberculosis instend of being primary is, in the majority of cases, truly sceondars; and of hematogenic or lymphogenic origin, althongh the mode of infection is in the first place aerial.

Aërogenic Tuberculosis.- Wherever the bacilli, carried as above stated, lorlge in a part of the lung suitable for their growth, they result, according to how numerons and how virulent they are, in a simple tuberele or a small localized are of the nature of a loholar phemomia. The site of predilection is just below the apex where the extursion of the lung is slight and gaseons interchange slow, or otherwise, however extensive their distribntion throughont the hmg substance, they tend to grow only in the region or regions of least resistance. Clinically, it will be recalled that if a lesion be fomm in one apex it is well to seardi carefully the other apex, and then the apex of the lower lobe of the long first involved. At first the area imvolved is small, gelatimous in appearance and imperfectly diflerentiated from the surromoling tissue. The only phesieal sign available at this time or even for some time to come may be fine rales in the moist broncholes of the region. A cellular exndate is thrown into the alveoli, and the vessels become bocked hy eulothelial proliferation, aseation quickly ensuing. The sharply defined lesion now existent, may even yet heal, and be represented by a fibrous scar, or a fibrons mass with caseous or calcareous centre, and a puckering of the apex of the lung. If, however, the process contime, the batilli are earried be the lymphaties and secondary similar foci arise on the periphery of the first. The nodules gradually increase in size and comasese, the caseation increasing with equal pace, until the caseated areas in turn coalesce. The nearhy pleura and the lymph notes become likewise infected. I'resently a brondhus is invaded which gives outlet to the broken-down caseons material, and hacilli appear in the sputum, contemporaneonsly with the formation of the first cavity. A grachal progresion of infiltration and overgrowth of tissue in any or in all directions is now followed by the corresponding breaking-lown process, so that the whole routine is repeated on an ever-increasing scale of size. 'The cavities may fill and refill with fluid exudate; if a secondary infection of their contents occur, the process becomes more freely suppurative and in most eases more active. The walls are ragged and fibrons and may be lined by a trpical "pyogenic membrane." Most resistam, the septa and the blood vessels may be left bridging the cavity, and when the latter are eroded or form small aneurysms and break, hemorrhage oecors. Hemorrhage may oceur in the most minute cavity and thus may be the first symptom to be observed. When a cavity opens into a bronchos and discharges its contents, it is likely that not all the latter will be expelled, but they
may. he aspirated elsewhere and set up a tuberculous bronchopneumonia in the tissue nearhy. Should the infective agent in this material be

Tuberele from a case of tuberculosis, of medium severity; of the lung: a, central cascation, b. a mant cell; c endothelial cells; d, connective-tissuc zuse infiltrated with Ivmphocytes.

Fig. 229

- Whn throuph early apical tubercle, showing: a, central caseation; b, surrounding cellular infil 'H Wh whrosis; c, giant cell; d, congested capillary outside tuberele, the tubercle itself being and of remerds
: he tubercle bacillus, the resulting pneumonia will be truly tubrrculous, 14 if pugenic coeei be present, ther may set up pneumonia, strictly rinchophemnonia in a tuberculous ling. It does not greatly matter
which is the case, so far as the patient is concerned. Such an infection, if tubcrculous, may give origin to a bronchitis in which tubercles form in large numbers along the bronchial trec and subsequently coalesce, so that large caseous masses may be produced, eack: surrounded by a zone of simple pncumonia. The avascularity of such a large caseous mass is of importance in that the breaking-down process goes on the more rapidly. Seen post mortem, the lung is generally adherent to the thoracic wall, weighty, the upper lobe largely caseous with multiple cavities, while caseous nodules are seattered through the rest of the lung, the largest in the lower lobe being usually at its apex. Variously sized cavities may exist, or the upper lobe may be converted into a thin-walled bag containing air, pus, caseous matter, detritus, and occasionally blood. The more chronic the process, the more smooth and

Tubrerculaus cavity (a) at apox of lung, showing its relation to a bronelus. (Pathological
Museun, Mr.Gill ťniversity.)
fibrous are the walls. The bronchi a, "uflamed, often ulcerated, and usually communicate with some of the cavities, which often communicate with one another. This state of the lung is called chronic ulcerative tuberculosis or phthisis.

The above-describerl process is frequently scen; other rarer types of tuberculusis are described under many different names which are rarely used in a uniform fashion. Without going especially into this part of the subject it may be said that all are permutations and combinations of three original kinds of reaction: (1) the individual tuberele, (2) small or large coalesced arcas of tuberculosis with caseation, and (3) tuberculous lobular pncumonia. Most cases of the disease at autopsy show all three; now one form of reaction is more prominent clinically, now another. "There are two forms frequently referred to which require mention: "galloping consumption" and "fibroid phthisis."
"Galloping consumption" or acute pneumonic phthisis is a term apt to be applied earelessly to any form of pulmonary tuberculosis that runs a very acute course, but should not be used to describe the generalized hematogenous miliary type of the disease; it is characterized by a wilespread caseous pucumonic state of a lobe or a whole lung-is, in

S. If lung, sumerior tohe, and upper part of lower lobe, the former containing a number of communi"111tig ciwerns, brought about by tuberculous infiltration, cascation, and evacuation of the contents 1hwheh the bronchi: A, aneurysmal dilatation of an artery spanning owe margin of a large cavity; h. whmmuni ation with another cavity; C, C, thickened and adherent plcura between the two involved luha 'The pleura over both lobes is thickened, and at the autopsy the cavity had been obliterated hi: simversal adhesion; D, a small group of tubercles in which caseation is just beginning; E, a fused a'flu, f tubercles, farther advanced that at D. (llare.)
fat, a combination of easeous tuberculosis and meumoilia, the lesion luwhing mieroseopically like the former and the in wlvement resembling that of the latter disease. "Fibroid phthisis" is merely a very slowly proyressing ulcerative tuberculosis, in which there is ample time and timulus for a marked degree of protective fibrosis to occur. The titruts sulidification of lung tissue, with its contraction and consequent
deformity of the lung and eron of the chest are the atriking features of this type of tubereulosis．
Hematogenic Tuberculosis．－This form of the disense is characterized by the disisemination of the bacilli by the blood either in the lungs alone，or in the hang：in common with all the organs of the body．A （＊iscous forens breaking into a vessel or into a large trunk of the lymphatie ssten is the usual tanse，and the widespread oecurrence of tuberedes in so many foci at onee briugs it about that death oeeurs before any： considerable degree of culargement and easeation oecurs in any one of them．

 ghellmonia．（lath Mis，McGill lone）

Fic．：33

Hematogenous miliary tuberculonis on lune（l＇ath Mus MrGill loniv）

The lung so affeeted is hyperemic，heary，and the tubereles are felt，or later seen，as shotty，graular particles in enormous numbers in the tissine，throughout both lungs in the generalized disease，in one or a part of one in the locai forms．The bronehi are reddened．From the small size of the tubereles（Fig．233）eaeh has been likened to a millet seed（milis）and the term miliary has been given to them． Tubercles of the sme small size and miliary appearanee may also at times be eneomered as the result of bronehogenic，not hematogenic infection；in such a case their arrangement is not uniformly diffuc； they occur in little grape－like clusters along the course of individual brouchi．
Lymphogenic Tuberculosis．－Iufection of the lungs mar oeenr from a tuberealons caries of the spine or rib，and ocrasionally by direct extension from a lymph node；the most frequent example，howeser． is the secombary spreal of the disease in the lung itself．Under this heading it may be pointed ont that there is still debate as to the part played by the pleura and its lymphaties in the origin of apieal tubercu－ lonis．It is held be some that the pleural carity becomes inteeted from the lower cervical lymph nodes，and from this，infeetion most eatily involves the apical region of the luag．

Syphilis．－Syphi of the lung is rare，and seem oftenest in the urw－ born．No dombt some cases considered as syphilitic bronchitis and
phermonia are merely instances of a mixed infection occurring in syphilitic subjects. The disease proper manifests itsclf as an interstitial fibrosis or as gummas. Gummas are rare, found oftenest near the hilus, and if healed may leave a fissure forming a false lobe (pulmo lobatus). Grayisit, translucent whel. small, gummas may in their later stages appear very like tuberoles. The diffuse interstitial form is due to a grereral widesprea linfiltration by inflammatory products that can be remdily understood by anyone who has seen the cnormous numbers of spirochetes that infest the lung. The anemic pallor of the organ hats led to the condition being described as white pneumonia.

Actinomycosis.-Actinomycosis o ors in the lung both as a primary and a secondary infection, conveyed from the mouth ly inhalation, or by cxtension from the mediastinum or asophagus. Sometimes manifest as miliary nod!!es, it may, nevertheless, set up a bronchopremmonia and cousolidation with cavitation may be found. If very chronic and long continued a fibroid lung may result.

Glauders.-Like actinomyces, the 1 B . mallei may sct up an acute pucmonic process or a chronic state characterized by multiple miliary nowhtes, hardly to be diagnosticated except by the discovery of the bacillus.

Various Infrequent Infections.-Therc are ccrtain organisms that have brell found infecting the lung, capable of setting up either caseating sramiomas or diffusc pneumonia or abse sses. Cladothrix, streptothrix, smin of the hyphomycetes, aspergillus, and even animal parasites, such as strongylus and distomum Westermanni, have been found. Echinococcus. carried from the liver, may form cysts in the lung as elsewhere.

Regressive Changes.-We have already spoken of the atrophy of the lung secn $i_{1, ~}$ emphysena (see Fig. 217, page 432). Here we would meruly recall that this emphysematous process is often secondary to a prosressise atrophy and disappcarance of the elastic tissue of the lune. The cironic deposit of fibrous tissue around the arteries and the bromelii seen in the old, the so-called periarteritis and peribronchitis, is, i- the names inply, usually regarded as an inflammatory condition. It is prelarp more properly considered as a progressive than o, regressive Whater
Progressive Tissue Changes.-Hyper y may be said not to "rwir in the lung, increase in size being ... physematous, not hypertruhtic: 'lumors of primary nature are rather rare; of benign growths fibroma, lipoma, chondroma, and ostooma arc found, the last named not ti) he confounded with the metaplastic formation of bone previously inentimed; adenoma and teratoma are of great rarity. While the lung i- it common site for sccundary malignant tumors, especially those carrien in the blood stream, primary malignant tumors are not very mmmon. Sarcoma is found arising from the lung tissuc, lymphosarcoma frem the lymph tissue, especially at the root of the lung, and endothelioma from the lining of the lymphatics or from the pleura. Primary cascinomas may originate in the bronchial or the alveolar epithelium
or in the peribronchial mueons glands, and are important from th frequency with which the project into and bloek the bronehi, wit resultant collapse of the lung tissue. All tumor; that protur secondaries appear with fai frequeney in the lung, especially th chorioepithelioma, whose tissuc of predilection it is.

THE PLEUR/E

The pleure are sates composed of a thin, loose, connective-tis:n membrane containing numerous blood vessels and elastic fibrils an covered by a single layer of flattened endothelial cells. These sae-wall being normall:: in perfert apposition, the plenral cavities are nom existent. Ane content, therofore, constitutes an abnormality. No very prone to primary disease, they often suffer by the contiguity o the hings, and be the relatively free lymphatie communieation witl the pericardium and the peritonemm. The course of any disease of the pleura is influcneed by the constant movement inseparable from respiration.

Circulatory Disturbances.-Hyperemia.-Active hipperemia occurs in inflammatory affections and with eongestion of the lang proper, and oecasionally from relaxation of temsion when thoracentesis has been performed, while passive hyperemia is found in obstruction to the greater or lower cirenlation.

Hemorrhage.-Petcchiex, relymosis, or even hemorrhage may arise from trama, in suffocation, in renal and cardiae disamse, in severe infeetions and intoxications and in instances of the hemorrhagic diathesis.
The Existence of Contents in the Pleure.-Hematothorax.-Blool may be effused into the plrural cavity in wounds of the chest sueh as fracture of the ribs, inwolving the pleura, or by the bursting into it of an aneursism, in which cases the blool may he mmmixed. Often, however, it is mixed with transindate or some profluct of inflammation, as in the ease of certain forms of pleurisy, with new growth, or when a tubereulous or gangrenous cavity ruptures into it.

Hydrothorax. - This consists of the presence of a transulate in the plemral cavity, oreurring oftenest on the right, frequently on both sil!ss. The explanation offered for its greater frequeney on the right is that a distension of the right side of the heart presses upon the reins of that side. Plemral alliesions mar localize the flaid to a part of the cavity affected. The fluid is minali! pale, straw-colored, alkaline, of a sperific gravity of 1009 to 1012 , containing \cong to 5 per cent. of albumin; microseopieally it contains nothing but accidental leukoeytes and desquamated endothelial cells. The surface of the pleura remains smooth hut in long-standing eases beeomes thiekened and even pearly by reason of overgrowth of the fibrowis tissue.

A small anount of fluid may transude into the pleura during the
from the nchi, with
produce ecially the
tive-tissum fibrils and e sac-walls are nonlity. Not itiguity of ition with disease of able from
oceurs in oper, and has been m to the
may arise in severe norrhagic
x.-Mlood st such as Ig into it Often, mmation, or when te in the on both e right is the veins rt of the line, of a albumin; tes and remains en pearly ring the
death agons, but plentiful transudations are found in nephritis, broken compensation of the heart, cirrhosis of the liver, hydremin, and pulmonary cedema. A small collection of fluid is of no significance, but the larger ones lead to displacement of the heart, mediastimal structures, and humgs.
('hylous IIydrothorax.-This consists of an admisture of the fluid with fat globules, granular material, and lymphoid cells, rendering it "paque and whitish, and is caused by a rupture or olstruction of the thoracie duet above the point where it enters the thorax.

Fneumothorax.-This is the term used to designate the presence of air in the pleural cavity. By reason of the nature of the exeiting causes, there is usually inflammation present and the cavity contains not inly air hut also serum (hydropneumothorax), or pus (pyopneumothorax). Mridanically it may be produced by a penetrating wound of the che-t, even by thoracentesis; most commonly it follows the rupture of a tuburenlous or gangrenous cavity through the pleura during a severe paroxs:m of eoughing; an empyema may rupture into the lung, or air (or Lis) may come from the cosphagus, stomath or bowel previously. remidered allherent to the pleura or to the pleura and diaphragm by new gronth. 'ertain varieties of pneumothorax may be differentiated: (1) open pneumothorax, in which air passes freely in and out, (2) valvular pneumothorax, in which an oblique, valve-like opening allows air to cuter bit not to escape, and (3) closed pneumothorax, in whieh the "peuing has become occluded. Pneumothorax, without perforation, "ant orell in the event of an infection of the pleura by a gas-producing orsanism.
The effect of pneumothorax depends upon the canse and the persistener of the communication with the outside; while the fistula rembilis, the lung will be collapsed unless prevented from so doing byathesions. Where a valvular opening is present the cavity beeomes mure and more disteinded until the heart is pushed over and the diaphramon depressed; if there be no infeetion, and the wound be elosed, the air mis be gradually absorbed and the limg nay resume its natural state.
Inflammation. - Inflammation of the plenaa (pleurisy, pleuritis) is Whally set up bextension of the risease from an organ nearby or is il metastatie affection, part of a general disease, as is seen in baeT, riomia, rhemmatism, typhoid, or the exanthems; practically always batcrial, the disease may be complete or partial, and is either exudative (1) productive; the exudative form may arise in a pleura already the tat uf a probluctive inflammation or the exudative form may develop intu the productive. These two forms are really expressions of a more

Exudative Pleurisy.-The exudate, whieh here is shut in, unable to 'ripre, maly manifest miny different appearances; it may be fibrinous plastic pleurisy), serous, serofibrinous, fibrinopurulcint, purulent, or inemwronagie.

Fibrinous Plourisy.-In this, the so-called "dry" pleurisy, the pleura is opaque, und covered by a delicate lnyer of fibrin which senreely: resists removal. This consists of interlaced thrends of fibrin, with leukocytes, and bacterin; the vessels of the subjacent lung and of the pleurn inre congested, and fibrin mny be seen in the tissues, which nre oedematous and show a certain anount of cellular infiltration.

Section from a case of serofibrinous pleurisy (high power): a, congested and infiltrated subplaural lung tisare; b, fibrous layer of pleura also infiltrated and devoid of endothelium; c, c, denser bands of fibrin; d, d, loose meshwork of fibrin, infiltrated with serum and leukocytes.

Serofibrinous Pleurisy.-Few pleurisies remain dry, and there is usmally: an ontpouring of fluid into the cavity (pleurisy with effusion); this fluid is sellowish, and if mixed with many cells and shreds of fibrin, turbid. In the dependent parts of the cavity and sticking to the walls of the pleural cavity are shaggy masses of fibrin, bright yellew, sometimes geiatinous, and at times so thick as to form a regular blanket which it requires some force to tear. The amonnt of fluid may vary from a few cubic centimeters to several liters, it coagulates readily with heat and sometimes spontaneously on removal; its specific gravity is high (1025 or more) and it contains much albumin as well as some uric acid, cholesterin, and sugar. Microscopically, it hows fibrin. lcukocytes, red corpuscles, endothelial cells, and bacteria. The condition of the lung varies with the amount of fluid; it may be almo:t completely. collapsed, the heart displacel, and the diaphragm (and with it the liver) depressed. The collapsed part is tough, gray, or grayid brown, or even bluish in color, and is non-crepitant. If not held by
athesions, the fluid moves with the patient's change of posturc. When hraling uecurs the fluid is gralnally absorhed by the lymphatics, the filrinl lireaks up, and no sign of trouble may remain except a slight thickening of the pleura. Oftener, however, some organization of the iibrums layer occurs, so that the visceral and parictal layers of the pleura remain adherent. With the lapse of time, the adhesions, being ronstautly pulled upon, becone thin and veil-like; such adhesions are iften seen between lobes and on the posterior surface of the upper lobe, and in some cases the pleural cavity may be entirely obliterated.
Purulent Pleurisy (Empyema).-This may arise from a serofibrinous pleurisy, or as a complication, sometimes a sequel, of pneumonia, or from the rupture of a tuberculous or gangrenous area in the lung, or more rarely, a sulbdiaplragmatic abscess or a diseased viscus may perforate into the pleura. In children it occasionally seems to be primary. The cxudate consists of thin or thick pus, and the action of the pus cells temls to chesest the fibrin. If putrefactive organisms be present, the pms becomes very fetid. If the condition be not relieved surgically, the consequences may be very serious; the patient may die of exhaustion, of tuxemia, or the pus may rupture into the lung with formation of prepneunothorax, or through the chest wall (empyema necessitatis), or intuneighboring organs. If unrelicved, it occasionally happens that the fluid is absorled, the pus becoming inspissated, and later, infiltrated with calcareous salts, so as to form a solid plaque. Should the paticnt sulrvive, there is usually great thickening of the pleura and even deformity. of the chest. Practically it must be remembered, in view of the crions nature of the disease and the readiness with which it may escene recuguition, that the physician will oftener regret his delay than his precipitancy in the use of the exploratory puncturc needle in a doubtful (Hise.
Hemorrhagic Pleurisy.-Mloody exudate is found in tuberculous plenisy or where new growth is present in the cavity, although not of ulceessity; further, it may occur in the very debilitated, or those -uffering from scurvy, icterus, or the hemorrhagic diathesis.
Productive Pleurisy.-This may be a late development of a simple cinditive pleurisy, or may arise insidiously as a primary affection. ilisht degrees of thickening of the pleura are pathologically unimporiant and clinically equally so. In the more marked cases the pleura is unurl thickened, even to a contimeter or more, becoming a white Hilmbrame, sometimes of a pearly or cartilaginous appearance, and in extrene cases, resembling the icing that is put upon a cake (hyaloserositis). On microscopic examination, this proves to be layered, and uthrrwise almost structureless, saye that in its deepest parts there is light vascularization; the lung is apt to participate in the state of induration, and often a neighboring serous surface is likewise involved, afeceilly the peritoneum over the spleen and liver. With the lapse time, calcurcous masses or plates of cartilage and bone are formed.

Tuberculosis of the Pleura.- Not infreonintly a patient previonsly heulthy develops pleurisy with effusion; such a pleurisy, eoming "out of n char sky," is likely to be tuberculons, mul even if now lesion of the lung or elsewhere be foumel, it is neerlful to consider that the patient is tuberculous matil it is proved that he is not. 'The tubercnlons infeetion in surh a case has beron piekerl np from the lymph notes or from n foeus in the lung too small to be diseovered bey physienl examiuation.

The pleurn may be affected as part of n genernl miliary infection or from n tuberculous bronchopmeumonia; in the former case the tubereles aloue may be seen, nul iuflammatory renetion in the ordinary sense of the term is very slight, while in the latter, after the fibrin has been removed, the tubercles show on the surface of the pleura, indicntiug the uature of the infection. It must be rememberel that there are cnses showing no obvious tubercles, appenring to be enses of simple serons plenrisy, in whieh inoculation of the fluid into mimals sets up tubercnlosis. In arlvinued cases, comsiderable ensention may be found, layer after layer of tubereles undergoing in suceession the necrotie change.

Rardy, syphilis, leprosy, and curtain parasites, such ns cehinococcus, psorosperms, and entannoba coli have been known to affect the plenra.
Progressive Tissue Changes.-Tumors. - Of benign growths, fibroma, lipoma, chondroma, osteoma, and angioma affect the pleura; of malignant growths, the most importnnt is ondothelioma, which is found in the pleura more often than anywhere else, save the dura. It may be soft and cireumseribed, but more often is firm, flattened, and cancer-like. Sarcoma of the pleura is oeemsionally found in the young; varions combination forms of sarcoma, such as angio-, fibro-, and chontrosarcoina are met.

THE MEDIASTINUM

The merliastinum is that part of the thorax which lies between the two pleura, the sternum and the vertebral column. Since it is a space eontaining many organs and diflerent sorts of tissue, and not an organ or system of organs, its disenses camnot be takell up in any rational or sequent way; some generalities, however, are necessary. Leaving aside the vessels, nerves, nmscles, the trachea, osophagus, thyms, and the thoracie duct, we have still left for consideration the loose eonnective tissue that lies among these, aud the very important groups of lymph nokles.

Inflammation.-Mediastinitis.-Mediastinitis is inflammation of this connective tissue; it will be seen that such can arise in many different ways, by trauma or hy extension from any of the numerous structures referred to as oecupying or bounding the space, or finally, by the infeetive agent be'ng earried thither in the bloorl. An inflammation may resolice or, on the contriry, may progress to the formation of an abscess, which may rupture to the outside or into one of the many organs of which of the ient is infec-- from ation. ection e the linary in hats dientthere imple ts up ound, crotic
it has choice. shonld a considerable inflammation, which has not her'll appurative, becone henled, modiastimal adhesions ure apt to remain: these may link the periearlinn to the chest wall, or the pricarlium to the pleura, and ir $?$ be so dense mad mamerous as to ublitarate the space. Apurt from such nente disease, the slow prourewire inflummation spoken of ns procheing the thickening resembling a make icing temes to affect the medinstinal tissues nlong with the pleura and the prericardimm.

In the frequent references male to thomeic lymph nodes as the place in which tuberde bacilli and other infertive ngents lie latent or from which they set out to infert the borly at large, the large groups of medes in the mediastimum are thase referred to; not only those which arb strmg along the course of the vessels, the asophagus, and the trachan, but the large groups at the lifurcation of the truchen, and aromud card bronchus. The size of these groups and the importance

Fig. 233

Tulureulosis of lymph nodes belop iifureation of trachea in a child; a enlarged caseous norle. (\mathbf{M} :Gill Pathological Museum.)
of the tracts they guard make them of great use in handling large ammonts of infective material, from which they are necessarily liable In injury. It is in them that signs of latent and healed taberculosis arr" uftencst foume. Simple inflammation of these groups may lead to Un ir great enlargement, and to consequent pressure upon the viscera in the space, or to their allhesion to the walle of viscera, such as the "-ック, ingus, with subsequent deformity of the same by traction.
Progressive Tissue Changes.-Tumors.-Considering the tumors of thr merliastinum, the multiplicity of tissues makes it possible to have llany different forms of nev growth; the only forms that require speeial In.ution are the dermoid cysts, which arise from tive thymus gland or irnmepiblast shut in at the closure of the thonacic wai!. These are soft, Hhin thant, and are apt to transmit pulsation from the great vessels, so fla: they may be mistaken for aneurysm. There is danger that they 1.1. rupture into some important structure. Teratomas proper-
foetal inclusions-are rarely encountered. Sarcoma is the most comm maligunt tumor of the modiastimm, urising either from the connective tissue or from the lymph structures, from which lymphosarcomas of enormous size grow. Muny of these medinstinal tumors, however, originate from the lymphoid tissue of the thymu. 1 , and of these some, nt least, exhibit the characters of an inflamm 'ory granulomatons growth. Secondary mulignant growths obtnining place in the lymph notes or elsewhere ure of fuir frequeney, and are clinically important, as are the primary growths, by renson of the importance of the structures upon which they may exert pressure. The vagus, the sympathetie nerves, the ossophagus, trachen, and the virions vessels nre so elose together that a rehatively small timor may be attended by great disturbance of fanction.

THE THYMUS

The thymms is developed prinarily from the lippoblast of the third branchinl groove just as the tonsils are derived from the second, and, like the tonsils, while originally of epithelial type, their epithelium becomes surrounded and largely replaced by lymphoid tissue, the renlmints forming concentric masses of cells known as Hassall's corpuscles. To all intents and purposes it is a lymploid organ forming two elongated and fused lobes in the anterior mediastinum and extending over the npper portion of the pericarlium. Reaching its inaximum development at about the end of the second year of life it then undergoes a premature senile atrophy of a somewhat remarkable type. The lymph cells prefressively diminish and their place is taken at first by cells which contain smull fatty globulcs and later by what appear to be true fat cells. Occasionally it persists until the fifteenth year or later and is of considerable size, with abundant lymphocytie elements. Diseased conditions of the thymus are rare; the most important is the thymus hyperplasia generally accon laming the status lymphaticus (lymphatism); this hyperplasia ocens in young children, but hat; been roted in yoliag adults, weights of 5, to $7 n$ grams being recorded, the maximum of the normal gland being 5 j grans. In leukemia there may be marked enlargement as also in some cases of exophthalmic goitre. Rare cases of abscesses, tuberculosis, and of syphilitic necresis have been deseribed.

Timors are rare, with the exception of lymphosarcoma. As above noted, it appears prohable that a large proportion of the diffuse. locallyinfiltrating growths of the mediastinum originate from the thymus ghand.

（！\｜Jリ「にK VIII

THE NERVOUS SYSTEM

GENERAL CONSIDERATIONS

Wines we reenll the extraordinary eomplexity of the finer a．．．ny of the brain and eord，the relatively small area of the surfas a cerchral hemispheres in which we ean recognize the existern＂．cres＂ rintrolling one or other function of the body，the vast inns：－relorum and cerrbellnm，regarding the function of which we have n ure indi－ rations，the remarkable system of multiple assoeiations between the nelurones，the great bulk of datn and of hypotheses that has aceumu－ hited，we confess that it is with trepidation we enter upon the task of compresing into a few pages even the mininum of knowledge required lif the beginner in medieine．As to the nature of thought and the ansmiation of ideas，the highest of all the eerebral activities，we know practically nothing；the same is true regarding the essential nature of memory；it is only when we come to the relationship bet ween the higher rutres and eertain bodily functions that we find ourselves on somewhat －urer ground and thi beeanse we can follow and recognize the tracks of anatomieal ehange．But even here，although for long years investi－ Laturs have been studying the nervous phenomena of sueh all－important matters as the periodic aetivities of the eireulatory and respiratory \because will，there continues to be uncertainty as to the exact nature of the antomatic mechanisms that govern these，and as to the exaet site of the controlling neurones．

The entire nervous system is inade up of a great aggregation of similar ninit，the neurones；each neurone eonsists of a nerve－cell body，dendrites aral axone．The gray matter of the brain and the ganglia possess a premonderance of nerve－eell borlies while the white matter and the prripheral nerves are largely made up of axones．The neurones are lind together（or held apart）by glia and fibrous tissue im latter，in Hall umantity，serving to support the blood vessels（，variou．．rem； Whinite ：mph vessels have not yet been proved for $1 \times$ whata curic if ： 14×1 rain，although these exist around the blood channai．Each lewi－ ronn－is inatonicall：endependent of all other neurones．
 mums，with a definite nueleolus，and in its protoplas in subatono it l：m hark of ine fibrils in the interstices of which he varic：of shomer Innlin of stainable substance（chromophilic，tigroid，or Nissi：－$-\infty$ ）， whids are presumed to be of nuclear origin，beeause their substance
has stain affinities somewhat like those of the nuclens. The dendrites are tree-like prolongations of the protophasmic substance of the nerve eell body, tapering, becoming smaller as they recede from the eell, very numerons and branched, serving to bring the protoplasm of one nerve-cell borly into "alonost-contact" with other cells. The term "almost-contact" is used, becaluse it is generally believed that aetual eontact does not oeeur, but that parts of two nerve-cell bodies thus lie in justaposition as do the secondary and the primary eoils of an induction battery. The axome or axis-eclinder is a process of the eell, usually. single, eontaining no chromophilic bodies (nor are there any to be seen in the part of the nerverecll bolly from whieh it takes its inmediate origin) and is of uniform size throughout; toward its end it may split it up into a terminal tree, of which each twig may end in an end-foot or end-plate which is in intimate relation (actnal contat) with the cell (e. !., muscle) to which it runs. The axone, as it leaves the nerve-cell borly; beeomes invested by a meclin sheath, and anones so sheathed make up the greater part of the bulk of the white matter of the brain and eord. A number of sheathed axones, surrounded by the sheath of schwam, comstitute a peripheral nerve; the sympathetie nerves possess a sheath of Schwamn, but are not myelinated.

On the Correlation of Neurones.- It is only the very simplest reflex act, apparently, that depends upon what we may term a simple are, and that simple are calls into phey two neurones. This may be laid down, that a given axonc eonvers stimuli in only one direetion. Thus, a sensory or afferent stimulus has to be conveved to the spinal cord through the ageney of at least one neurone, and the museular response to such stimulus has to be convered from the central nervous system by at least one other netirone. As already stated, each neurone is isolated to the extent that, although it may eome into contact with another neurone by means of its arborization, there is not an intercellular mion. Commmication between neurone and neurone is in the form of arborizations surrounding the nerve-ced body of the second nenrone, and impulses passing down errtain of these arborizations have to jump across the material, or synapse, intervening betwern them and the sceond neurone. F'or more eomplicated reflexes, and for voluntary acts, a stimulus may have to pass through several cell relays before the act in response to the primary stimulus ean be instituted. In the complex, as in the simple are, a break in amy one relay prevents the response, or if it does not prevent it, canses definite delay in its production, becanse the stimulus has to pass along some more romblabout path, whieh may not always be provided. If the break be on the atlerent side, we have loss of sensation, if on the efferent side, lows of functional response.

Groups of Neurones. We are accustomed to recognize three great groups ("ieurones-the atferent, the efferent, and the sympathetie.

The Afferent System.- The atferent urrwe of the boty in reneral ars represented by nemrones whose nerve-cell bodies are situated in the
posterior root ganglia of the spinal cord, and in certain corresponding she:alled eentres in the bulb and pons, and even farther forwarl in the base of the hrain. Cerebral sensory merves, olfactory, optie, etc., are similar to the somatic sensory nerves in this, that all alike must trimsfer their stimuli to other nemrones which conduct them, by more or less devions paths, to the cells of the cerehral cortex, and to other related cerls of the higher order. The appreciation of sensation lies in thess rells of the higher order, whereas the reflex act produced in the simple are may be accomplished without reference to the brain, and therefore without appreciation on the part of the individual.
The Efferent System.- The efferent nerves of the bolly are represented les a lower group of neurones whose nerve-cell borlise are situated in the anterior horns of the cord and in corresponding centres in the base of the brain. These, however, are under control of a higher group of nellmes, or more strictly of two groups of neurones, the one whose rell bodics are situated in the cerebral cortex, the other in the cerebellmm. We still are by no means informed as to the full functions of these two orders of neurones. The cerehellum is presumed to be cmatantly responsible for the preservation, by means of rhythmic -timuli, of the interaction of the museles, that is, it exerts a static influrner, continues, so to speak, the status quo of the borly musculature; departures from this state, such as voluntary movements, are instituted ly the cells of the cerebral cortex. This may he made clearer by saving that the status quo of the bolly, whatever its posture at the time, is premerved by the (meonscious) tone of muscles, to illustrate which it may le pointed out that man keeps a certain posture without apparent chort, but really he the contraction, properly coördinated, of many bunches; this state of the muscles is in response to constant stimuli from the cerebellar cells; if, now, one wishes to move voluntarily, the wht of the cerebral cortex take command, and bestimuli rcinforce the ation of some, lessen the action of others, introluce, it may be, the antion of yet other intagonistic muscles, and so alter the status quo that new statis of coluntary activity.
The Sympathetic or Autonomic System. -This system is a very complimatel pecial section of the nervous system, regarding which it may be ind, that the abundant investigations of the last few vears be Langley and uthers, have introduced so many new points of view that it is exthenely ditficult in a few words to describe either its anatome or its flmetion. Briefly, in comncetion with the brain, the main spinal cord, and the sacral region, "ertain fine nerve fibrils pass out. These fibrils hin ing their nerve-cell bodies within the central nervous system leave this in comection with motor, or what (in the brain) correspond to mumer ronts, and terminate in a scries of finc arborizations around the lireseredll borlies of certain ganglia, which, save for these fibres, are inlaferl from the main nervons system. Thus, for example, the third "alal nerve contains finc fibres which pass to the ciliary ganglia; the - ruth and ninth fibres passing to the submaxillary and sublingual
ganglia, and to the sphenopalatine and otic ganglia; the autonomic or sympathetie fibres of the tenth and eleventh nerves run in the vagus, and it seems probable that these fibres end in small ganglia situated in or near eaeh of the organs supplied by the vagus. As regards the spinal cord, the sympathetie fibres pass out by the anterior motor roots to the series of verteloral ganglia, ineluding the superior cervieal ganglia; in the sacral region of the eord, slight differences of arrangement of the sympathetic system to the anogenital region are observed.

These fibres running to various ganglia are the pre-ganglionic fibres whieh arborize around the cells in the ganglia; these cells in turn give oligin to axones (the post-ganglionic fibres) which eourse direetly to the viseera, or in the ease of cutaneous fibres, return to join the spinal nerves and so eourse to the various segments along with the cutaneous sensory nerves. In whatever ganglion this relay is siturt d, it appears that there is no further relay, but that the axone of the seeond cell passes direct to the viseus which receives the svmpathetie imervation. For example, in the dorsal region we have both vertebral ganglia and the eonjoint ganglia of the solar plcxus; sympathetic fibres from the eord pass through both of these to their ultimate distribution; their relay eells may be in one or the other but not in both. As regards the afferent fibres of the sympathetic s.stem, thesc when present run in the white rami; it seems that the head and the skin have few or no afferent sympathetic fibres, these coming essentially from the thoraeic and ab)dominal viseera. So, further, it appears that the sensory connection of the various viseera with the spinal nerves differs but little in arrangement from their motor connection.
Pathological Changes in the Nerve-cell Body.-What knowledge we possess coneerning the ehanges that oecur in the finer structure of the nerve-cell body is largely dne to the employment of Nissl's method whieh uses a staining material compommed of methylene blue, thionin, tolnidin blue, and neutral red. Small masses and granules in the protoplasm thus beeome visible, arranged in rliflerent ways aceording to the type of eell. It may be mentioned that experience and extreme eantion in the observation and interpretation of results obtained by this method are necessary. In a general way we know from the appearance and arrangement of the stamable sulstance what is the phys)logical state of the cell; the stainable material (tigroid) is normally in granules, spindles, lozenges, rodlets, threads, or shapeless masses oceupying the interstiees between the fibrils; it is not demonstrable in the embryo, it increases in amount within limits in a state on rest, and diminishes bev activity and fatigue, in intoxications, in eirculatery and mutritive disturbances, diminishes in adraneed age and undereres a degeneration into a fincly gramular material. Eleetrie stimuli, and the activity consequent upon them, lead to swelling of the cell bonds and nueleus and to diminntion of the stainable substanee; if earried to the extent of prorlucing fatigue, cell iorly and nucleus diminish in size and stainable material in quantity, and vaeuoles appear. By section,
(ompression, electrie or ehemieal stimulation of peripheral nerves, the Manges brought about in the eell are divisible into two stages, those of raction and repair. The stage of reaetion is eharacterized by a diminution of the stamable material (ehromolysis, tigrolysis); this appears to be diffused more generally than usual through the cell, whose protoplam, as a whole, becomes more readily stainable. This dissolving action seens to begin at the eentre, the eell swells, and the nueleus comes to lie nearer the periphery. These ehanges are produeed but lowly, the reactionary state being visible a couple of days after seetion of the nerve, remaining evident for two or three weeks and passing gradnally into that of repair, in which the nueleus beeomes onee more centril and the swelling disappears.

Pathological Changes in the Dendrites.- We know but little of the finer changes that oceur in the dendrites, although they har 3 been studied in dements and after the aetion of eertain poisons. In diseases caused so diversely as these, we are able to sce lesions that are relatively. similar; which means that the metloods at our disposal are able to deteet only the most gross kinds of lesion, while the finer differences entirely. compe our notice. We ean make out atrophy of the fibrils, swelling and twisting of the same, and localized swellings. In the ease of large cells, such as the Purkinje cells of the eerebellum, there are buds or cemmules to be seen on the twigs of the dendrites. When damage has been wronght these buds may be seen to be swollen, and to be cast off ur disappear. We suppose that sueh swelling of the nodules, and to a grouter extent such easting-off, interferes with the eonduetivity of the rell, so that this state of the dendrites is aceompanied by impairment of the mental, the set:sory, and the motor functions.
Pathological Changes in the Axone.-The iden whieh is most widely (mbrtained at the present day is that the nerve-eell body exerts a trophic influence upon the entire axone; that the axone maintains its nutrition only whon it remains eonneet"l with its nerve-edl body. Thus, if a mumer axome be eut, that part of it whieh is separated from the eortio: whor the interior horn cell degenerates and dies, anel if a sensory axome th. "ht, the part separated from the spinal ganglion eell ultimately: whars and disappears. Whatever the eourse of the axone, however intiniste its relations with other axones, its life as an axone depends "!nin it - nerve-eell body, and if it be separated therefrom it is useless, jn- is mie of a hundred telegraph wires might be useless if eut off from it-hatter:: The one wire looks like the other ninety-nine, but no me-atse are passing over it. As a result of severance from the nerverill lunds, the axone in a short time-twenty-four hours-shows a -willing of the myelin sheath; this presently becomes ehanged into a rrice of glohules of various sizes, of a fatty nature, which ultimately C-मp川ar hy a process of digestion and absorption by the cells of the buth of shwamn. The axis eylinder proper becomes irregularly ammlated, broken, and granular, and likewise ultimately disappears, illane being taken by proliferated sheath cells and fibrous tissue,
a replacemont designated ber the general term sclerosis. Nor is degencration necessarily confined to the distal part of the axone; it may happen that the parent cell degenerates, apparently from lack of oceupation, since it no longer can transmit messages or stimuli-disuse atrophy-and suth atrophy applies alike to all parts of the neurone. Regeneration of a severed avone takes place, within limits. Where a nerve has been torn apart, the injury of the tearing sometimes extends a short distance up the nerve trunk toward the nerve-cell bods, and may be followed by degeneration, but with a clean eut the proximal end quickly shows regenerative ehanges in the form of fine ramifieations terminating in delieate filaments, the axone itself separating into its eonstitnent fibrils, some of which terminate in a little cone of growth. The central end of the axome by the forward movement of the fibril referred to ean extend from the point of section and join itself to the distal end, provided there be mot too great an intervening gap. The bringing of the gap betwee the severed ends is aceomplished by the extension of the central axone, uning the danaged nerve or some other tissue, or even a mechanieal insertion as a scaffohl, and seeking the course of the destroyed distal axone by chemiotropism or attraction toward the sheath cells of the degenerated fibrils of the distal part. It is evident that the old axis exlinder molergoes complete degeneration, and recovery of function is not complete mutil the new axis celinder processes have travelled down the old sheaths, even montil they reach the site of and form new end-plates in the musele, or in the case of semsory nerves, new semory filaments in the end organs.
such gross damage as we have been considering is not the only cause of atrophe and legeneration of the axone, for there are at least two oceasions upon which atrophy em oceur withont a definite interruprion to the eontimity of the peripheral nerve. Comparatively mild toxins aeting during a long time, especially if accompanied bey finctional activity, mas dimage the nerve-cell boly to an extent, slight but suffieient to interfere with its nutrition as a whole. Under these dircumstances, the most outlying part of the neurome- the terminal part of the asone - suffers most, and the mutrition which did not suffice for the whole neurone may suffice for the neurone minns the most peripheral part, which is thus sacrificed to the welfare of the whole nemrone, mueh as a beleaguered and starved city might save itself beverificing its most outlying garrisom. Where the peripheral part of the axone begins to atrophy in this way, we may prediet that the entire neurone will ultimately share the same fate. A second kind of degeneration is that to which we hase previously referrenl as abiotrophy, in which, by reason of some congenital lack of vitality, the stress of ordinary neurone Whit is too great, and the structure atrophes moder timuhes that would not danage a healthe neurone; and a meurone ; a. apemes its life with so little spare energy at its disposal, t. :he. ..itinary expenditure of ent. ${ }^{N}$ is too great for it and it atrophes pematurely.

Lesions of the neurone may be accompanied by a great variety of
or is de; it may oi oeen-li-disuse neurone. Where a s extends only, and proximal ramificating into cone of ement of and join ervening mplisherd or some 1 seeking traetion part. It neration, eylinder ey reach c case of nly cause enst two rruptien hl toxins ional alcsufficient nstances, he asonic he whole ral part, murh as its most e begins cone will ration is hicll, hy nemrone llus that - pemes ..idinary urely. rriety of
vmptoms, and these it is not possible to particularize, comprising, is they do, all kinds of deffinite and indefinite aberrations of funetion. Oi thr definite functions passessed by the neurone we are able to note Hait (1) the stimuli whiels excite musenlar contraction may be absent or woik or, if present, inefficient, so that the musele rests in a state of partial or complete paralysis; (2) or, enntrariwise, the stimuli may be so frempent or so extreme as to exeite a disordered and too great aetivity if the muscle. These changes in the state of the nerve may be correbated with an aetual lecion which we can see; but it may not be so, anm althongh the two states are widely different from one another, we inly" not be able to distinguish any difference in the nermone, nor may wri be able to tell that it is actually the neurene that is at fault. If we re toe pathotogical elange in sueh a neurone, we say that the fault lime nut in any organie alteration of the neurome but in its function, antul wr deseribe sueli alterations of the normal performance of the ursuins ins functional. It is not possible to say that functional diseases ot-cellect) are attended by no organie change in the neurones; all we Gall iuy is, that if there be elange, it is not to be detected by our present mint thenls.
similiarly, in the sensory neurone whose impulses pass from the periphery: of the horly to the nervous system we find that eertain lesions if the neurone destres the eomlucting power completely; or, again, with no visible alteration, we discover that the f.netion of the sensory ururme is altered or absent-that, like a badly manned telegraph line, there maly he ne messages at all (anesthesia), that the message initiated it the shin mas be exagyerated (hyperesthesia), or may be entirely pariuh liacel from its true meaning (paresthesia). To make the matter mirn entinsing, any of these deviations from the true function of the urimine mary mot be due to inefficiency of the neurone at all, but may In mentinl, just as the messages taken by a bad reeeiver from a good thentriph line might seem to indieate that the line itself was inefficient. The -nm of all this is that there is little known about the organic elanges hat happen in the neurene; that wherever we observe disordered fiwntion without a eorrelated lesion, we eall the disurder functional; Hhat man! disorters, totay called fumetional, may prove ultimately in lo. due to organic ehange; and that a knowlerge of the highest lination of the norve-tell borly, even thought itself, is, as yet, a closed 1 mok.

GENERAL DISTURBANCES OF THE NERVOUS SYSTEM

limbre proceerling to the eonsideration of the organic changes found II: : hin meroms system, it is necessary to diseuss briefly some of the divnrbanress seron in it which are not referable to a definite eell, or a :n!! if renls. or a special peripheral nerve, but seem to involve a large forl of the entire system or at least a very important part of it; sueh 4: slivinm. comulusions, and coma.

Delirium.-Delirinm is an affection of the mental function, in wh judgment and the appreciation of the relations of surroundings to another or of the patient to surroundings is impaired. The sped senses may or may not be dulled, but, at the best, understanding of messages they convey is obscared, and misinterpreted. The degr of mental confusion vary widely; delirimm may be the dangerous $f t$ of the maniac, the meaningless shouting of the terrified but half-unce seious drunkard, or it may be the disordered dreans of the quiet, febs patient, whose mind wearies itself by hearing the fancied rattle of machine or by the ceaseless repetition of some imaginary task or volu tary action. Active as the mind seems to be, and great as is the expe diture of energy, there is usually a corresponding dulling of conseio ness in some other direction; there is at times physieal aetivity great as to require restraint, or the museular aetivity may be redue merely to picking at the bedelothes, subsultus tendinum (a voluntary a misdirected), or there may be visible only a tremor.

Delirium is often an accompaniment of the pyrexia of the vario infective fevers, typhoil, typhus, smallpox, pneumonia, and rheumatis but is rather a manifestation of the presence of a toxin than a me accompaniment of hyperpyrexia. Delirium tremens is an example of tl effeet of an nnaided chemical poison; the delirium of a child in pne monia represents that arising wholly from an infective agent and i toxins; the delirium of acnte mania is an instance of that form whic arises in the brain without a known physieal cause-and the diversit of these forms indieates how hopeless a task it would be to define th affection in any pathological sense.

Coma.-Coma is a state of unconsciousness, and represents not much an actual derangement of the function of the lower nervon system as a state in which there is an arrest of the highest, the menta functions; the contro' which mentality exerts on the lower nervo sistem is lessened or absent. Thought, perception, volition, and volun tary movements are in abeyance; if the coma be not of the deepest reflex movements can be instituted, but the muscles are relaxed; th contres, such as the respiratory and circulatory, which are automatio are depressed in their activity, but their functions are by no mean abolished. Concussion, pressure, exhaustion from previous excitation and toxins appear to be effective causes of this state.

Convulsions.-A convulsion is a series of involuntary contraction: of the muscles; if only a few muscles are concerned or only a single part of the body, the term spasm is usually applied, while the tern convulsion is used to describe the phenomenon oecurring in all or mans parts of the boly together. Conscionsness may or may not be lost the convulsion in any ease is quite apart from the action of the will. Let the reader think for a moment of a motor nerve eell with its axone ann the musele supplicd by it; voluntarily, he may send a stimulus to the musele (and rertain of its neighbors). The message calling for muscilar movement goes down the wire, the axone, and as a result the muscle
on, in which lings to one The special nding of the The degrees ugerous fury half-unconquiet, febrile rattle of a sk or volunsthe cxpent consciotsactivity so be reduced luntary act
the various heumatism, han a mere inple of the $1 d$ in pneuent and its form which e diversity define the
nts not so er nervons the mental er nervous and volun. e deepest, laxed; the automatic, no means cxcitation, ntraetions y a single the term 11 or miny elost; the will. Let axone and us to the or musciihe muscle
contracts. It is as if the muscle were a marionette that performs whel the wire is pulled. In diseased conditions misdirected stimuli may come to the nerve cells from various sources and these stimuli may pronlnce disordered purposcless muscular movements. To follow our simile, it is as if a mischievous boy found his way to the keyboard Whirh eontrols the marionettes; instead of pressing them in their proper order so as to produce coördinated action of the marionettes, he does his best to make them all work at once, and the figures dance in a hopeless disorder. In the brain, it may be a toxin which irritates, or it maly be a near-by tumor, or a clot of blood which presses the brain all--in any case, like the boy with the wires of the marionettes, the irritant play's upon the nerve cells: they send out impulses and the musiles dance.
This leads us to say here a fow words regarding the normal tonus or phesiological state of the muscle and the significance of exaltation and dopression of the same. All the cells in the body may be said to halve ant intrinsic tone, but in the voluntary muscles it is clear that we leal with more than this, for if the nerve going to a muscle be divided, the musele immediately passes into a flaceid state; or otherwise, stimuli are comstantly passing down the nerve from the central nervous system, which stimuli without any act of the consciousness or will, maintain the muscle fibres in a condition of relative partial contraction. The next question is, what is the nature of these stimuli? Is it a constant mutflow or docs the tonus of the muscle represent the summation of prionlic and rapilly repeated impulses? The delicate string galvanometur applied to motor nerves informs us that the latter is the correct answer; that, in health, each voluntary muscle receives stimuli reaching it at the rate of from five to fifty per sccond. These stimuli are minimal lut sutficient to set in action those associative and dissociative processes which heal to eontraction. When the neurone is fatigued, the rhythm erom: to be slowed, and apparently the rate of rhythm in coorra...ated murles is subject to variation, that is, may not be the same for the flevors arit the extensors respectively; in this way we may explain the tremors if cases of nerve exhaustion as due to a lack of correspondence betwern the raves of contraction of the flexors and the extensors of a part. This tonus then is a "state of preparedness" of a muscle; the differruce between tonus and voluntary contraction is a matter of dearer in a normal contraction there is not a single impulse but a like win' of rhethmic, rapidly recurring stimuli, apparently at the same rate as, hit individuall: stronger than those necessary to produce : 1 lal prearve tonus.

I/i lewribing convulsive movements of the muscles, it is usual to ditinumish tonic and clonic contractions; in the former the stimuli nener -o rapidly that the proper time of rclaxation is not granted to the mianle, and a contimmane of the contracted state happens-tetanic 1.e thic contraction; in the latter either by partial tiring of the muscle if hy a tess rapid scries of stimuli, the muscle goes alternately into
the contracted and the redaxel state－clomic contractions．The te clonus，hy usigr．has come to hare a slightly different significan By clomus we momin the phemomen associated with tendon or mus reflexes，where in places of getting a single response to a tap or p upon a tendon there is elicited a recurrent series of contractions， to conditions cansing cexaggeratal muscle tomes．

The part allected hy a convolsion may enable the observer to defi the site of the lesion，especially if it be sitnated npon the cereb cortex；here the cells of only one gromp or a few groups of muse may be atfecterl，in which case the convulsion is called focal or Jac sonian（Hughlings Jackson hav：ing first deseribed it）．Even if t lesion be strictly localized，it sometimes scems as if the exeitation the edls immerliately aflecterl could spread to others，in ever－wideni circles，new cells being involved suceessively，so that the convulsi extends in that half of the borly first allected，in a definite order．Co vulsions are elassified aceorling to their origin，rather aceording their supposed origin，for most of such a chassification is pure conjectur the difficulty of determining the ranse of eonvolsions is enhanced t the differences of irritability of the nerve cells，not only in differe persons，but in the same person at different periods．Nevertheless is customary to say that the eauses of eonvulsions are（1）mechanica as when a tumor or hemorrhage in the skull causes extra pressure upo the motor nerve cells，or（2）toxic，as in alcoholism，uremia or len poisoning，（3）reflex，c ．！ 1 ，some cases of epilepsy，as when an inflamma tion or irritation in some distant part of the boly（perhaps even pin worms）appears to be the canse，or（4）functional，when the stimulu appears to originate in the highest cerebral cells，that is，the erells con cerned with thonght and association．Stimuli of this sort are calle ideogenous．
Focal or Local Changes and Their Resu．s．－Distinct from the state just discussed，which concern the most important parts of the nervon s．stem and through them affect the entire system，are those change which remain limiterl to a part of the system，which are thus caller focal or local．Wacre changes are evidenced by symptoms which puin to the destraction or damaging of a neurone or a set of nenrones whether the damage be wrought in the nerve－cell borly，the dendrites or the axone，whether the neurone be motor，sensory，or sympathetic any sufficient lesion in any part of it will be shown by a failure in it． fanction－thas a musele is paralyzed or is weak，sensations are not carried，or are earrical ineorrectly（paresthesia）．The symptoms pro－ duced are thins dependent uper the nerie centre or the nerve path that is concernel，althongh it is of course to be remembered that the ner－ vous mechanism may be intact and fully operative and a paralyis， for example，be due to some fault of the nusele or other structire con－ cerned in the performance of motion．
Focal Symptoms in the Field of Motor Nerves．－From the moment at which the student begins to study focal symptoms，he requires an

The term significance. or muscle tap or pull actions, due
er to define the ccrebral of muscles cal or JackSven if the xcitation of er-widening convulsion aler. Concorrling to conjerture; hanced by in different crtheless it mechanical, ssure upon ia or lead inflammaeven pirlestimulus e eells collare called the states ne nervoms se changes hus callerl hielı point neurolus, dendrite; npathetie. lure in its is are not toms propath that t the nerparalysis, ctire conmoment quires an
arninte knowlonge of the situation of the varions gromps of nerve-cell lonlies in the hrain and cord and, of conrse, of the axones from these gronps. Betwrell the eortical cell and the misele two nenrones runthe 1 pper and the lower motor neurone. The upper motor neurone has its coll booly in the cortex, and its merlullated axone crosses to the opposite side ant there rums with other motor nerves, esperially in ther erossed pyramidal traet, to reach the nerve-cell borly of the lower motur neurone, which is situated in the mnterior horns of the cord. From the cell body in the lorn the axone of this second cell runs by a pripheral nerve to the musele. If the peripheral nerve be cut near the muscle all this elaborate mechanism is rendered temporarily useless of far a- the musele is concerned, and the musele is parnlyzed; if the uper in tor neurone jnst brlow the eortieal nerve-cell body be cut, the mun- e is similarly paralyzel; low ean one tell in which of these itnations is the actual lesion? The mutrition of the muscle depends ultimately upon its conncetion with the nerve-eell body of the lower Inntor nemrone; if the lower motor neurone be intact, nutrition is not intorfored with, and the nusple responds to every stimulus which the wrirerell bolly of the lower motor neurone chooses to send; and if the lexion be in the upper motor neurone, the cortical eell body has no Surirumere ower the lower cell horly and the latter "breaks loose" sending frepurnt, uncalled-for stinuli to the muscle, which is thrown into a -tat" of excitability (hypertonus) and, it may be, spasm. On the contrary, if the lecion be in the lower motor neurone, no impulses at all rawh the musile, which lies inert, flaceid, hapotonic, and, cut off from its nerve-crll borly, quiekly degenerates and atrophies. To recapitulate. destrution of the upper motor neurone allous hypertonus or spasm in thr muscle, destruetion of the lower motor neurone, flaccidity and "tru,h!y. But this alone will not tell us which part of the tract is小-urosed; to determine this requires consideration of all the facts in the tise. Monch ean be learned from the extent of the damage; if we musiber the upber motor neurone, it will be apparent that a lesion, and as hemorrhage, though of small size, might affect a great many "irnus: even those of half the entire body, if it attacked them where ther ary all packed closely together, as in the internal capsule. A luinn if the same size at the cortex conld afleet only the cells concerned whit part of a limb. Similarly, in the lower motor neurone, a drtruitive lesion in the middle part of the spinal cord might destroythe pramidal tract and put out of service most of the muscles of a hwer limh. Whereas a lesion of the same size lower down might destroy m! a a few anterior-horn cells, and put out of service only a small group if marter.
Depressive versus Irritative Disturbances.-We see, thus, that a Hw-rle mat be paretic or paralvzed by reasont of some discase in the in it.eli, or, more commonly, by reason of some disturbance in the :eveme whinh governs it ; there is yet another way in which the same ri-hl is produced, and that is in the so-called hysterical paralysis; here
the mus－le is healthy，the neurone intuet，lont the musele is a stimulated by its neurone，whose action is inhibited hy the mind in other words，by some group or gromps of eells which are eoneernt with the mental functions，and are the multiple governing power the brain．

Hitherto we have spoken of besions of the nemrones，evideneed b paralysis or paresis of the emmeles，that are due to prevention or de pression of the function of tie neurone－the so－culled depressive man festations，but there is mother form of lesion，the irritative．Befor pointing out what tlese nre，it may be said that a lesion can destro． some part of the neurone，so that stimuli from that neurome cens entirely；or the lesion may merely interfere with the stimulus，whie reaches the misele in a weakened degree；or the pressure of the lesio may net as an irritant to the ucurone so that it is stimuluted．Bein stimulated in a wrong way mud from 11 wrong source，the messages sends to the musele are certnin to be ill－timed nud purposeless，beeaus they are not instituted by the mind，us part of the properly coörlinate plan of stimuli in obedience to which the proper museular work of th body is enrried on．These irritative lesions are important，and will b particularized；the signs by which they are necompanied are tremors choreiform movements，convulsions，and the maseuhir activities tha resuit in contractures．

Tremor．－Tremor is a series of consecutive＂small＂musenlar move ments，and is familiar to everyone as seen in some of the very old The tremulous movement in different people may vary greatly in it rapidity and in its situation，being gencral or limited to one or severn groups of museles．Tremor usually ceases dnring sleep；sometimes it lessened or prevented temporarily by the exereise of the will；in othe con it is seen only when some vohntary movement of the part
le（intention tremor），in wet others，during rest．A form of movemen clusely related to tremor is fibrillary twitching of the muscle，in whicl the individual muscle bundles are seen through the skin to contrac quiekly and rhythmicalls．＇Tremors are readily observed in som aleoholies，in paralysis agitans，in multiple selerosis，in lead poisoning and many other states．We have alrealy referred to the mode of pro duction of muscular tone（ p .47 .5 ）．If the rate of these tonie impulse to two sets of antagonistic miscles be different it will be seen that ther will be a lack of syuchronism between the respeetive contraetions o the two sets，so that the limb or part affeeted is drawn momentarily now in one，now in the other direction．

Choreiform Movements．－Chorciform movements ars of the natur of intermittent elonie spasms；they appear as irregulan，purposeless jerky motions of the limbs，face，or body，and are seen in eherea Huntingdon＇s ehorea，spasmodie wry－neek，tic，and hysteria．

Convulsions．－Convulsions have been already considered（seen ：－0）
Contracture．－These are the states of borly in which the m．ollity of the limbs is lessened，and the position assumed by a limb is gradually
sele is 1 ? mind rr, concernes g power in
flenced her ion or thessive manie. Brfore an destroy rone cease lus, whieh the lesion al. Being nessages it s, because ö̈rlinated ork of the nd will be re tremors, ities that
ilar movevery old. atly in its or several times it is 1 ; in other he part is movement , in which o contrart in some poisoniug de of proc impulses that there actions of mentaril!
he nature irposeless, in cherea,
cen : " 0) m colity gradually
fixed, sot that it camot be moved from that position. This occurs in two whes-a limb, for example, may be flexed by the activity of flexor IIITM's which are continually in a state of spasm, or by the action of unimal flexors, unopposed ly extensors, because the latter are paralyzed, while the former still receive the normal tonic impulses. This Intter firm of contracture is termed passive.

THE BRAIN

Gross Anomalies.-These may be divided in the first place into (1) those associated with malformation of the vault of the skull, which we mity call cranial anomalies, and in the second place, (B) those of the hrain nlone, the cranial vault being intact.
(A) Of the former we have a remarkable series, associated evidently with imperfect closure of the dorsal groove in the region of the cephalic lohn's, illustruting all stages in which this is either partial or complete or accompanied by a greater or less cxtent of imperfect closure of the annatic dorsal groove (spina bifida). Anencephaly or acrania is that form in which there is complete defect of the vault of the skull and of the salp, and the brain is represented by a mass of congested membrilles. The basal part of the brain is present and gives origin to the eye, the "ir, anl the cranial nerves. In exencephaly the defective developmont is partial; the vault of the skull is in part developed, most frefurntly the frontal region; there is inperfectly formed brain substance which owerhangs, like a sack, the back of the neck, or in other cases, the eves. As a result of amniotic allhesions, the projecting pari may be lateral aul unsymmetrical.
(i)) If malformation of the brain alone, the following are the most remarkable:
(a) General.-Microcephaly, in the typieal form of which the whole of the hrain is small and poorly developed, the cranium, while perfect, Weing correspondingly small. The brain, instead of weighing 1200 Urams, may weigh $2 \overline{0} 0$ grams or less. This condition is associated with inliure, and is sometimes familial.

Macrocephaly is a condition of absolute increase in brain substance, rarr, hut well authenticated. Some, but not all of the greatest men in lifory have harf large brains, notably Cromwell and Bismarek (over ?lln grams). The largest known brain (2850 grams) was, however, that of ant idiot.
(h) Local.-There may be partial inicroccphaly, the cerebellum being "rill heveloped and the hemispheres of small size and with poor convolutions or vice versa. More frequent is defective development of portions "If "IIf or both hemispheres; of this the most characteristic form is 1, rumbtabout by imperfect development or by intra-uterine obstruction if mir or more branches of the middle cerebral artery. As a result the is either in the early stages a lack of development or in later foetal
or early postuatal life absorption of the area supplied by that resse with, in emsengucnce, the formation of a ext-tike spmee covered b the membranes, containing cerrebrospinat fliwid (porencephaly). Mor rarely, definite portions of the brain, such as the corpms catlosmm, ma be undeveloped and wanting. A slighter defect is hoterotopia, in whici portions of the gray matter are aberrant and are fomed in the whit matter.
There is considerable variation to be found in the development men number of the convolutions: in son-ralled degenerates, these may bo reduced in number nuld shallow, from thateniug of the gyri (agyia) In those of high inental development they nre fomm weil develope and abmutant.
Circulatory Disturbances.-Anomia.-The brain is fomul strikingh blondless, and of atmost milky white color in enses of death from hemorrhage, as again in eases of profomed systemic ancmias.

Hyperemia.- Hyperemin of the passive order is seen in cases of chronic general congestion, is in carliae disease, of obstruction to the venous outlow by way of the jugular reins, as in hanging, and in cases of suffiocation or death in comvulsions. The brain oozes more blood than usual on section and the eut vessels are more than usually prominent. Active hyperemia is seen in cerebritis, and in such states as mania, delirium tremens, and to some extent in cases of death at the height of aente infections. As in eongestion, so also in cedema, the condition is best recognized by the state of the mentbrames; cerebral oedema is recognizable by the pate y et, am: shins: arface on section. (Edema may be extreme in the vienity of a new growth, the infiltrated brain tissur appearing actually relatinous. The eanses of cedema in general are those of extreme passive congestion.
Hydrocephalus.-Hydrocephalus is of two orders-external, where the excess of fluid is outside the brain (see meninges), and internal, where the necumulation is in the sentricles. The latter is the more striking, and may be acpuired during intra-nterine or postmatal existenee. The condition is progressive and the head may attain an extraordinary size, the cranial tones becoming as thin as paper, or eveu replaeed by membrane and widely separated. Through the umsual distension of the ventrieles the brain substance beeomes thimed to an almost incredible degree. There is still debate as to the cause, but even if in the first stages there is extensive formation of eercbrospinal fluid from ependymal irritation, etc., the main disturbanee in a fulty developed case is obstrnction to the ontflow of the fluid from the ventricles into the system of meningeal spaces, and so into the lymphatics.

IIydrocephalus of the fourth zentricle is rarer, but occurs as a result of olstruetion in the lateral recesses in which run the enoroid plexuses and which communicate with the sularaehnoid spaee.
Hemorrhage.-Hemorrhages of the small vessels of the brain may oceur in large number and of small size, from trauma, especially ia concussive injuries and at the site alfected by "eontrecoup." They
hat ressel, overed be y). More sum, mily , in which tle white ment and e may be i (agyris). developed strikingly atlı from of clironic e venous s of sufluhan usual Active delirinm of acute on is best is recora may be in tissuc. neral are
l, where internal, he mure eal existIII extril. or evern unusual mimed to use, bint rospinal a full! the veriphatics. a result olexuses in may ially in They
are wedn near the surface on section of the brain substance. Iarge momorlages in the eregions are rare, apart from netual laceration. larere hemorrhages, lowever, may ocour, notably deep in the substunce of the leminphere, involving the intermal capsule, corpus striatum, and optio thalamins, less rarely in the pons and hase of the brain. Tllese
 with grant accompanying lestruction of the brain tissue; the blood may Mape into the ventricles. Why this slould be the sent of election furerebral lemorrhage appears to be dae to the fact that the lentieulotriate brameles of the middle cerebral are almost in a direet line with the iutermal carotid and thus are sulijected to the greatest force of the hhul stream. From their position such hemorrhages are likely to immse the anterior two-thirds of the posterior limb of the internal "apmale ill which pass the fibres from the notor area of the cortex; thr reiult is "apmplexy" or paralytic "stroke," botl terms implying -ndlumess. A small hemorrlage may be completel. absorbed; alarar may be nhsorbed with a resultang ciontrix; there is, however, lithe trmenere to the formation of gramulation tisisme, and thus, if not fatal, a large hemorrlage is transformed into a cyst (see p. 293).
Embolism and Thrombosis.-Sulden apoplectic nttacks may be due to "alles other than hemorrhage. Of these the most impoitnut is enabilin. The arterias of the hasal region of the brain are endarturic (sow 1 . 341), wherefore it follows that it one of these becomes vilalenly phgyed be ang foreign substance circulating in toe blood, tur areai is cut off from its mutrition, and, as a result, the nerve cells in, ath thre wree fibres parsing throngh that area, undergo disorganiantin. ('rebral embolismu mas be lrought about, like embolism else"herre, be many ugents (seer p. 3.0), but of these by far the eommonest i. ther thrombotic material eonstituting the vegretations of aeute endoraraliti, whid, broken off, may be carricd into the carotids and so to the lirain, and the same reason that led to hemorrhage being specially fropurnt in the branches of the middle cerebral-namely the direct "mene of the blool-applies also to embolism; it is the arteries of the histe of the brain that are specially apt to be iuvolved. 'The result of - 1 i.h cmbolism is encephalomalacia or "brain softening," affecting thr areal of distribution of the artery involved. There is first developed it1 : are: of merosis, which soon umbergoes softenimg and is of yellowish, mintimens appearance; most often there is no infiltration of blood frons the - urmmuling veins (white softening), but oceasiomall! this supervenes red softening), giving place to brown o: vellow softening as the blood pismuth ditlise's out and is absorbed. 'The diflerence between the revilt- of combolism and of hemorrlage is that the former remains retatively rircomseribed to the area of hood supply, whereas with Itwentive outpouring of blood the hemorrhage involves a greater arma than is supplied by the ruptured vessol. Symptomatically, theredurne the time for following upon a hemorlage is apt to be progressive during the time following its aetual begimning.

Thrombosis is secondary to disease of the arterial wall or to an embolus. In order of frequency the eauses of cerebral thrombosis are arteriosclerosis, syphilis, and acute infections (including those eases which follow embolism). It will be recalled that in the subjects of arterial disease the smaller cerebral arteris's are peeuliarly apt to show degeneration in the form of atheromatous placpues and of multiple miliary aneurysms. Such thrombosis, originating at one spot in the diseased vessel wall, does not suddenly, but gradually, lead to obliteration and closure; there is, therefore, in general, an absence of the true apoplectic or stroke-like onset. The results to the cerebral tissuc may be identical with those just described.

Aneurysms.-Aneurysms of the extracerebral and basal vessels of the brain are not uneommon; they are saceular and of the size of a pea or bean, and may be the sitc of rupture. Of more inportance are the multiple miliary aneurysuns of the intracerebral vessels in alvanced arteriosclerotic conditions; maccration of the brain reveals that these may be present literally by the humdred, just visible to the naked eyc. It is the sudden giving way of one of the larger of these that is held to be the most frequent cause of cerebral hemorrhage.

Inflammation. - Acute Encephalitis.-This is not a very frequent condition, save as caused by tramma, and as it oceurs in the superficial parts, associated with meningitis, and locally, as an extension from disease of the middle car and hones. Nevertheless certain of the acute infections are associated with diffuse and generalized disturbance of the brain tissue. In rabies, in acute polioencephalitis, to a less marked extent in influenza, in bacteriemia dure to staphylococei, ete., in typhoirl, and other acute infections, the toxic hyperemia is probably the cause of those symptoms which are clinieally gromped under the term "meningismus." Save the hypermia, the changes are mieroseopie, and consist of perivascular exudate with infiltration of lymphoertes and leukoeytes. The nerve-cell bodies exhibit alteration of the Xissl's granules. In very'acute eases, punctate hemorrhages may be seen (hemorrhagic encephalitis).

Abscess of the Brain (Purulent Encephalitis).-This may be of various: kinds, cryptogenic, traumatic, metastatic, and by extension from nearby structures, especially the mastoid region of the skull. Or asionally a well-defined abseess is found in the cerebrum or cerebellunn . assoeiated with any recognizable focus of infection elsewhere; doubtless in surh the infection is hematogenous. Tramatic absecss develops usually. by the immediate carriage of progenie organisms into the brain substance from the exterior, althongh it may happen that an injured area may be infected long after the infliction of the injury. Metastatic abseess is seen where there is suppuration elsewhere, this being a hematogenous (or lymphogenous) infection. Abseos arising by extension is most commonly seen in the temporosphenjidal lobe or in the cercbellum, secondary to suppurative mastoiditis; it may also occur by extension from the upper nasal region and from any of the bone sinuses,
or from the orbit. Frequently the abseess in these cases is a direct rontimation of the adjacent suppurative area, but it also frequently happens that it is separated from this area by a zone of intact, though infina.onl brain substance; to explain this it is neeessary to consider t:re posibility of a metastatic lymphogenous infection.

Br in abscesses may be minnte or multiple, as in metastatie eases, bun 'aore frequent is the large solitary abscess, surromeded by a hyperwan: wematous area, forming a rounded mass; the pus is character-i-tically greenish and thin; when at all old, there is present a wellformed lining membrane, with little or no tendency to subsequent filous repair; according to its position it may rupture externally, (ansing a purnlent meningitis, or internally into the ventricles. Deep in the "hlime" area of the brain, such an abseess may remain for years withent obvions disturbance of cerebral finetion.
Syphilis.-Favorite site for spiroehetes as is the brain, it is to be remembered that the most striking signs and simptoms of "cerebral Aphilis" are meningeal rather than cerdral; the meningeal effeets will be dealt with later. More than this, eerebral infection is very commonly secondary to meningeal infection. The following are the most common ehanges indued in the brain substance: (1) encephalitis neonatorum, whieh is found in newborn, often in stillborn syphilitics; its striking feature is a small-celled perivaseular infiltration, together with in excess of gramule cells (Gluge's corpuscles), scattered through the brian.
'Thronghont the syphilitie process there is a peeuliar liability that there should be involvement of the cerebral arteries and arterioles, equerially those on the surface passing in from the meninges. This how itselif in the form of (2) a diffuse periarteritis with small-eelled and phamiaredled infiltration, mesarteritis, with small-eelled infiltration and replacement of the middle eonat, and intimitis with proliferation if the rmbotherimm, leading to a form of endarteritis obliterans. It is this prowes which seems to be the eventual eanse of those degenerative thanses which appear in such diseases as general paralysis of the insane (dementia paralytica).
(ii) In addition to these diffuse vascular disturbances, we encounter the Nevelopment of localized solitary or inultiple syphilomas (gumma). Thuer uphilitic gramblomas may attain large size, 2 em . or more ateross, "ith dintruction and replacement of the brain substance, and irritation of the surmmuling neurones-in short, may present those symptoms "hiol waracterize intracranial growths. The hase of the brain is the moit frepuent site, and the eerebellum is rarely involved. In the mal! tises they are soft and jelly-like, with a whitish centre, but the: breome firmer and may even mulergo enseation. As a whole, the: ure less sharply defined than tuberculous masses.
Tuberculosis.-J Jnst as with syphilis, so with tuberenlosis, there is a pronli puition for the lesions to oceur most extensively in conneetion wits the meninges (see p. 505). In the brain substance, tubereulosis
appears in the form of conglomerate tuboreles of hematogenous origin these are found especially in the romme in the basal portion of the brain in the pons, the temporosphenoidal lobes, and partionlarly in the cere bellum. In the earlier stage of growth th " casoms rentre is surromede bey a ring of small tubereles and sumall-edler infiltration passing imper eqptibly iuto the surromeding tisue and invading it. By the progressive caseation of the centre, and extension of the periphery, large caseous tubercles are formed, as large as or larger than a hen's ege. The process may beeome arrested, in which ease the surromoling fibrosis is firm and well defined, and the mass may be shetled ont. Oevasion lly, the eascous material mulergoes softening, in which case the appearance is much that of a "cold" abseess. It will be understood that in such a ease we have a replacement (and more) of brain substance by new tissue and the consequent increase of intracranial temsion whid is so predominant a feature in cerebral tmonor.
Other granulomas such as actinomycosis, glanders, and leprosy are uncommon.
Regressive Changes.- These may be diflue and generalized, or local, involving sharply defined areas of the brain and their associated tracts of fibres.

General Atrophy.-General atrophy is best marked in the progressive diminution in size of the brain in the old. Here the brain in general shrinks, and the spate so made is taken, both outside and inside the bram, be ecrebrospinal fluid; the perivascular lymph spaces in the base of the brain are greatly widened so that erstie spaces appear in the brain substance, and the membrames, epecially the pia, indicate their share in this ehange by appearing adematons. The nerve cells of the grave matter undergo a marked dimintion, individual eells shrinking, and losing their dendrites, beeoming more oval, and finally disappearing, and this not in special areas, but here and there, apparently at random.
With this dimimution of the nerve cells, there is both an apparent and also, it would seem, an artual inerease in the more lowle glial tisane and fibrils, so that there results an apparent diffuse selerosis of the diminished orgill. Associated with thic, the convohations appear small and the gra between them much widened.
Very similar appearances are met prematurely in cases of chronic lead poisoning and in some aleoholies. In both of these classes, the glial and fibrons ovorgrowth appears to be even more pronomeed than in the senile brain. To another markedly atrophic condition we have already referred that seen in dementia oaralytica. Here it is that arterial changes of syphilitic origin, afferting the arterioles, characterized more particularly bey a perivasconlar plasma-celled infiltration, are obvionsly the primary cause of the degeneration. With the consequent madnutrition, there in even more extreme degeneration of the cortial uerve-cell bodies (and of the nemones in their whole length) than orenrs in senile atrophy: Over 0.5 per cent. of eases of dementia paralytica give a positive Wiassermam reaction. This disease, therefore, mast
ous origin； the brain， the cere－ irromuled ng imper－ rogressive e cascons te process is is firm in illy，the opearance t in such by new lich is so
prosy are ，or local， el tracts
ogressive a general side the the base or in the ate their Is of the rinking， pcaring， ntom． pparent al tissue s of the ar smiall elirmuic sises，the ed than we have is that aracter－ ionl，are sequerit cortical 1 orecurs ralytica ，must
be regarded as an atrophy of the brain secombary to chronic syphilitic artsritis．
Local Atrophy．－This may be brought about by many eanses，chief athous which are circulatory disturbanees，pressure of tumors or of owrerowth of the inner table of the skull．pressure of localized inflam－ matury processes and the disturbed mutrition set up by the same．In antition we must recognize abiotrophic phenomena duc to inherited or arpuirel premature exhaustion of the neurones of partisular areas of the train，as also the disuse atrophy which may follow the cutting－off of neurmes from their distal portions，either peripheral end－organs or arherizations aromel the cell bodies of other neurones．It is these partial atrophies that are so characteristically accompanied by degener－ ation of particular tracts，whether asecuding or descending，and it is these that have given ns the knowledge we possess of the finer anatomy of the hrain and eord．The processes that oecur in this partial atroph． are of the same order as those seen in the general atrophy just described．
Progressive Changes．－The structure of the brain differs from all uther orpins：of the boly in that both its specific elements，the nemrones， and its－pecific comective tissue，the neuroglia，are of epiblastic origin． The wesoblastic elements in it are comparatively slight，eonsisting merely of the ressets and the small amount of connective tissue con－ －ifutiug their adrentitia．It follows thus that progressive changes arr mainly in comeetion with＇epiblastic elements．I＇rogressive chanure in commetion with the elels are comparatively rare；these Wr miny first discuss，in stating that angiomas have been recorded in armiation with the cortex，and then of pial rather than of cerebral orisin．Fibromas and myxomas have also been recorded，the former larser，the latter small and rombled．sin，again，there are vear rare （\＃ッハー 价••rebral osteoma．More frequently are encountered metaplastic ハーットリ plagnes of the brain membranes；these cannot be regarded as trum tumors．Sarcomas orginating within the brain substance are divinctly rare if we except the most anaplastic form of glioma，the slin－irmin＂Severtheless，occasional spindle－celled sarcomas are onf rimely which ean be only of connective－tissuc origin．We shall refer in thr endotheliomas when discussing the tumors of the brain liwntrames．

Glioma．－Here we must in the first place distinguish between this and il condition of gliosis or gliomatosis，in whieh we eneounter one or mere prorly defined areas of difluse but pronomeed overgrowth of the III urnatial dements．In such a case the tumor passes imperceptibly infu the surromuling tisme，and，what is more，if it affect a convoluted ati：i，the consohtions are still maintained，although they are markedly Writht．This，it is trus，is something beyond a mere hyperplasia， fuc $111 \times$ in surh arcas the nenrones have bern replaeed．What may l． 1 inmel true glioma is nsnally solitary，tends to be spherical，and by ．．lur anl consistence is recrgnizably distinet from the surrounding
if．In color the glioma is grayish pink，somewhat more trans－
heent than the brain substance, and may be either relatively poor in cells but rieh in fibrillar tissme (hard glioma), or may be rich in cells (soft glioma).

The glioma cell is characterizel be showing mmerons "spider-leg." processes, herein differing from the normal glial cell in which these processes are little noticeable. althongh there are abundant fibrils in the immediate neighborhs "the ceils. Where the cells compose the whole of the tumor " 11 "ir processes little recognizable, it is difficult and at times impos, ane to distingmish the tumor from a roundcelled sarcoma of mesoblastie origin. Believing, as we have pointed out (p. 226), that the term sarcoma can be given only a histological significunce, we do not hesitate to speak of such tumors as gliosarcomas, althongh many German anthorities still maintain, from argmments with which we cannot agree, that this terminology is incorrect. Solitary glomas are to be met with in the eerebral hemispheres as also in the cerebellum. There are not a few cases on record of glioma ai the corpus callosum but this, in our opinion, is more accurately a diff ise gliomatosis. Occasionally we meet with gliomas containing rosette-like cell masses fand actual cystie cavities lined by a cubieal epithelimm; such tmmors are evidently of embryonal origin and represent aberrant portions of the ependyma that have been snared off in the course of development. We have already referred to the ependymomas (p. 24i), tmmors containing ependymal clements; these may be found forming nodular gliomatous masses in the lateral ventricies; a few cases from the fourth ventricle have been reported. Apparently these ependymomas may, thongh rarely, take on an epitheliomatous or eareinomatous appearance.

Secondary tmors in the brain suhstance are not so common as primary; not only are carcinomas annl sarcomas met, but tumors, such as hypernephroma and chorioepithelioma are oecasionally found, the two latter having more predilection for this site than the two former.

Cysts. Cists of varions orders may be encountered in the brain; "gland cysts" or ependymal cysts arise hy cutting off of part of the lateral ventricle; hemorrhagic cysts are seeondary to large hemorrhages; necrotic cysts replace areas of softeniag, appearing also in eonnection with glionas; here also may be inchuded porencephaly (p. 486), and lastly: parasitic cysts are found, the crstic stages of cysticercus and echinococcus. The former are small, multiple, attaining the size of a pea, rarely larger; the solitary cechinococols hydatids are large, even to the size of an orange, and from their size give all the symptoms of a brain tumor.

THE PITUITARY BODY (HYPOPHYSIS C' REBRI)

The pituitary borly deserves separate mention, in that, while attached to the brain, its main constituent is not nervous tissme; it is, indeed, composed of three portions: the anterier glandular, an intermediate in eells ider-leg" ch these t fibrils compose le, it is roundpointed ological urcomas, fuments

Solias also glioma urately taining cubical preselit in the momas found r cases epen-areillo-
as prideli as ctwo hrain; ateral crotic with lastly: chinopen, ot the brain liatec
areal with glaud cells internixed with neuroglial tissue, and the posterior jumetional purtion, also of glial tissue without nerve fibres proper. Little is known regarling its fluction save that the posterior and intermelliate portions afforl am extract whieh, like adrenin, greatly raises the blowl pressure, and molike adrenin, induces polyuria by acting direetly on the kidney: The main pathologieal interest of the pituitary liw in the relationship, between hyperplasia and adenomatons growthis of the allterior portion and the devempment of acromegaly (see p. 101). (hangre have also been secn in the ritnitary in connection with pregnancy and castration, as again, secondary to removal of the thyroid gland.

THE PINEAL GLAND (EPIPHYSIS CEREBRI)

Anatomically the pineal gland represents a rudiment of the median erestill recognizable in certain lizards; it consists thus of purely nervous chements; at most, it may be the seat of hypertrophy and gliomatous tumurs, which by their size may press upon the aqueduct of s.lvius and the rema magna Galeni and so bring about lyydrocephalus internus.

THE SPINAL CORD

Anomalies.--Here may be recalled some of the more important mustuital abmormalities of the spinal eorl; they are relatively infrechlent and do not call for extensive desieription. Incomplete formation inld. Alurtening of the cord is observed in cases of anencephaly combined with pina bifila as also in simple spina bifida, to which reference will lur madr later. Muplication of the cord has been observed both in ("I-C of partial double monsters and apart from any elcar evidence of duplication of the body in general. Duplication of the spinal canal i- :hw rewerded: this may be partial or complete, when it appears to bex the very slightest case of somatic duplication. More important, bereille mure common and more obvions, are the various grades of spina bifida (rachischisis). Here, anatomically, we deal with the various cunlitinns of incompletc formation of the lamine of the vertebre, but mulerlyinge this, in the extreme cases is a lack of closure of the dorsal grimes, wherely the two halses of the posterior portions of the cord liil to minte anil the ependyma of what ought to be the spinal canal mitw with the true skin.
II. have ,"rady referred to the varions forms of this condition in Ni-minus :... shmormalitics (see p. 72). Here we repeat that the Wralitimin may affect the whole length of the cord, or may be partial, :Whe ting a portion thereof, and may be complete or incomplete. Thus, 14n! the eystic form of spina bifila, we may have a series of cases in whith merely the lamine are defective, the cord being perfect, the
slighte:s form being the spina bifida occulta in which fatty tissue, in pat developerl in association with the spina! meninges, in part filling th defect of the bomy and subentaneoms tissues, forms a projecting mas: which, eorionsly, is cowered by a skin that is extraordinarily hair! This form is most frequently rem in the hombosacral region and appear to be closely related to those eases of fatty projections covered hy hair skin whieh coustitute "false tails." Firom these slightest cases we pas through a series of conditions of meningocele, in which the clefect is the bony vanlt is ocenpied by a somewhat esstic expansion of the men inges filled with fhid, and in which the spinal cord is not involved, ant

A, schema of development of medullary groo ${ }^{\circ}$; B, formation of neural canal by elosure of the mudullary grouve: C: fomplete rachischisis; the medulary groove remains open; Epi., epiderm; a, neural tract: p.a.s., pia-arachnoid space.
to cases of myelocystocele in which, while the spinal canal is complete, the lack of support in the region where the lamina are defective, resmits in a localized expansion of the spinal canal, to cases in which the spinal emal has failed to form and while the anterior dura and pia are fully developed, the spinal eord is represented by in imperfeet and intensely congested layer of nerve tissue covered posteriorly and superficiallyby a layer of ependyma. In these cases oceasionally owing to the want of support, fluid miy accumulate in the anterior part of the pia-arachmoid space, forming thus a tumor projecting backward, the myelomeningocele.

He, in part filling the ting mass, rily hairy. il appears d by hairy es we pass Nefect in of the menolved, and , results. e spinal re fully: itensely rficially: he want 1-arach-myelo-

Oirasionally, wholly massoeiated with any defect of the lamine, there may be localized inyeloceles or :lilatations of tine neural canal fillol with cerebrospinal fluid (hydromyelia). This condition may be compared with hydrocephalus internus. As to the canses of the condition we how little, save that in some cases it appears to be congenital, in others ancunired. Of greater elinical interest is the somewhat rare monlition of syringomyelia, in which alfong the course of the cord is to br fomul one or nore irregular dilatations of the central conal, which, *1 -mall in the normal cord as to be practically invisible, may be so dintonded as to almit a finger. In general these cavities are irregular in -hape; in general, also, ther are surromuled by a layer of hyperplastic ulial tissur. The dilatation and cavity, being centrally located, affect the fibres passing over in the commissure and produce dissociated loss of whibility to pain, heat, aml cold. It is still uncertain how far this chionis is to be regarded as of primary, how far of secondary origin; what is particularly noticeable is the indication that this condition athurls of the existence of tactile as distinct from other sensory nerves. III a comsilcrable proportion of cases, tactile sensation is retained, wherens the senses of heat, eold, and pain are lost. It is held by some that the at rophy and necrosis of areas of the gliomatous new formation farvor the ocemrence of these cerstic dilatations.
Circulatory Disturbances.-There is little that neerls to be said regarling the circolatory disturbances of the corl as distinct from those of the brain. There may be anemia and active and passive congestion hronght abont by the same factors as in the brain. At most may be wowl the oreasiomal oecurrence of clongated cysts, extending down the morl paralled with the still-extant ecotral comal, whieh, aecording to Van Gifon, are of tramatic and hemorrhagic origin; they are, in fact, posthellurrhagie rests. Hemorrhage may occur in purpura and the blood dix:mo, thongh it is usually a result of tramma. It has been suggested What the symptoms of "railway spine" are not parely functional, but are the revilt of mittiple hemorrhages into the substance of the cord with

Inflammation.- Inflimmation of the corl is known by the general ternof myelitis and may be generalized throughont the cord or confired th curtain loeal areas. It may again be divided into the form which allwin the whole cord, or that affecting mainly the gray matter, poliomyelitis. ${ }^{1}$
(infution exists as to what is truly called myelitis, in that the after-Whnt-of ample degeneration, such as that produced by compression, are indi-tinguishable from those following an acute (infective) inflammation. In the primary stage, these two conditions are quite distinct. Mediti-, properly socalled, is the result of infection, or acute tranma, or him, and is characterized by definite reactive processes. It is fontel in acute general infertions and in certain specific infections

[^19]affecting especially the cord, preiminent among which is that know as acute polionvelitis. Very important als, are those forms in whi infection oecurs by extension, as in disease of tle meninges, notab cerebrospinal meningitis, or of the vertebre, as in earies. In all cas of true aente myditis the affected portion of the cord appears pin more hyperemic than normal, soft, so that it is almost impossible ent it cleanly, and somewhat swollen. Mieroscopically, the mai fature is a small-eelled infiltration around the vessels, with evidenc of degeneration, whether in the ganglia cells or the medulated fibr constituting the white matter. With this there may be an increase number of "gramule cells" seattered through the affected area. Th ultimate results are atroply of the specific elements and a moderat degree of glial proliferation (selerosis) with atcompanying diminutio in volume.

Regressive Changes.-Just as in the brain, so in the cord, with ol age there is evidence of simple atrophy shown by diminished size, som shrinkage and pigmentation of the nerve cells of the gray matter, and in addition, more particularly in the white matter, is to be rccognize an increasing number of corpora amylacea, small corpuscles varyin from 12 to 50μ in diameter, staining decply with hematoxylin and th ordinary aniline dyes. These are specially mmerous in the posterio columns. Whether they origimate from glial cells or from degencrate medullated fibres is still a matter of uncertainty.
As already stated, acnte degenerative changes result from trauma traumatic compression, hemorrhage, and infection; more gradually produced degencrations may resilt from tumors, gummas, and tuberculomas, cither in the cord itself or in the brain. It is more usuall, however, to encounter the later stages of the degenerative process-secondary degenerations manifesting themsdres by atrophy and selerosis of one or more of the aseending and deseending traets in the white matter, and by shrinkige and, it may be, absence of cells and cell groups in the gray matter. Here the accompanying figure will recall the more importaut of the tracts, divided into the ascending and the descending, the long and the short.

We need merely recall that no matter what the nature of the canse, these secondary degenerations are all of the same order.

We are made aware of degeneration of this secondary nature by study of serial scetions of the cord. During the development of the degeneration various special methorls of staining, notable among which are Marchi's and Weigert's, pick out for us the affected fibres, largely in consequence of the chemical substances resulting from dissociation of the myelin of the mednllated sheaths. Later, when the process of disintegration is complete, and the fatty matter has been absorbed, ordinary histological stains demonstrate, by their failure to color the tissue, that the axones and their sheaths have largely disappeared and have been roplaced by firmer, more translucent fibroid tissue, the outcome of glial proliferation (sclerosis). These areas of degeneration
map out the geography of affected tissine, whether this be of the nature if it legemeration throughout the whole cord, or an isolated aren of primary dogeneration in the cord itself, with the tracts below or above atombirily afliceted hy that degeneration.

Fia. 237

Hi,oth mhatice section of spinal cord th show the more import:ant tracts: 1, postericr columns Wiwn and aspmbing); 2, direct cerelellar tract (sensory and ascending); 3, ventrolateral trant of (inme perambat and ascoming); 4, lateral or crossed pyramidal tract (motor and descending); 5 ,

1.16. 23:

Tulu- 中urailio-
the
lat known ns in which es, notably In all eases pears pink, possible to the main 1 evidences ated fibres I inereased area. The moderate diminution
l, with old size, some atter, and, reeognized es varying in and the posterior Egenerated
m trauma, ually pro1 tubercuhowever, secondary sis of one te matter, groups in the more scending,
he cause,
by study he degenhich are argely in sociation rocess of bsorberl, color the ared and the cuteneration
the cord has been hemisuterl, that is, me-land of it has heen ent thromgh the knife has severed every tract and cevery longitndinally disposed fibre in that half of the cord. The desemuling fibres that hare been rint show degeneration lelow the section, that is, special staining methonls will at first show these tibres in their state of degeneration, and later their disappearame and replacement bex serowis. 'The assembing fibers, on the other hand, are relatively maflected helow the point of injure; it is above this that the legemerations are seen.

Based upon these general eonsiderations we may dasify the main diseases affecting the cord aterording to whether the lesions are due to (1) destrmetion of the 口pper motor memrones; (2) injuries affecting the axones of those nper notor neurones during their eonerse down the cord; (3) injurios of the lower motor neurones (discases of the axones of these, the periphoral nerves, will be considered separately), and (4) diseases or injuries affecting the sensory nemrones from the posterior ganglion upwarl, and (i) diseases affecting motor annl sensory nebrones coineidently:

It seems neeessary in a work of this seope to leave ont the great mass of clinieal detail that is involved in any full disenssion of these various spinal disorders; we can merrly indiate the diflerent types with outstanding ceamples.

1. Diseases Affecting the C'runial Distribution of the Upper Motor Ne:-rome.-Congenital spastic paraplegia is a well-marked condition in which nerve-cell bodies in the cerchral cortex have been destroyed, usually. bey tramanat hirth or again be: obliteration of cerebral vessels during fortal life, as in congenital porencephaly. Similar spastic paralysis of like origin, namely, throngh destruction of eortieal nerve cells, may be of postnatal origin, che, for example, to the presenee of tumors, infective granulomas, or vaseular ohliteration (acquired porencephaly). As regards the cercbellar nouromes, the ileas of many authorities compel us to include here Friedreich's ataxia as owing its inost inportant symptoms. to an atrophy of nerve-cell bodies in the cerebellam. In this rare familial disease it must be remembereal that there is also a spinal lesion of both motor and sensory systems.

Perhaps the commonest of lesions in the cord, sccondary to primary insults in the brain, are those following upon cerebral hemorrhage and cerebral thrombosis. Hemorrhage affects most frequently the intermal eapsule and the pons, destroying axones of only one side of the borts: In multiple sclerosis with its sporadic, irregular distribution of sclerosed areas of primary degeneration, cither the cortex or the cranial tracts may ehance to be involved, and so lead to secondary degencration in the motor tracts of the cort.
2. Disease Affeeting the Axones of the Upper Motor Neurone during Their Course lown the Cord.- The broal effects of sueh diseases are identical with those of the previons category; we make the separation beeanse here the disease ats within the cord. Strietly speaking, we must lere include conditions of myelitis diffuse or loealized, becanse
ther allewt the motor tracts, although it rarely happens that the ceffeets arn \cdot-ulined to theser descombling anomes. Lateral selerosis is a primary ?mmetrical setrosis of both erossed parimidal tracts, charactorized lay pantid paralysis withont atrophy of the maseles, and he incrase of the tembon reflexes. Althongh the main lesions are sern in the cord, it is really an abiotrophic condition of the whole motor nemrone, and thus atrictly might hawe beron induded with erpual jnstice annong the divanes ol' the upper motor neurune in the brain. 'This lateral sclerosis is aril int the family type of lateral sclerosis and amyotrophic lateral sclerosis (where the lower motor menrone is also affeeted). Pure Manmpe of this condition are rare. As in the previons chats, multiple sclerosis may happen to involve the motor tracts at any level and inhee a ermblary selerosis below, with spastic phemomena; so also with tumors :nid the infective granulomas.
\therefore Dismses or Injuries Intolving the Lower Motor Neurones.-In bulbar paraiysis we deal with a destruction of lower motor menorones sitmated mot in the horns: but in the bulb; the fact that the asomes of these cells maly rum in cramial nerves, does not affere the principle that, althongh "e arr here dealing with diseases of the spimal cord, we have in bulbar paralysis a lesion of the uerve cell boty of the lower motor nenrone and it anome. The progressive atrophy of these nenrones involves the muldi if the lepoglossal, glossopharyogeal, the vagus and the spinal if arry herves, and occasionally the motor melens of the trigeninal. If. may repeat that such paralyses of lower motor neurones are flaceid, mot partie. Passing to the cord itself, the most extreme destrnction uf the low or motor menrones is sern in acute poliomyelitis. This is an infertive dimorder, characteristicaliy of chidhoorl, involving particularl! the interior lorn cells, and leading, in a short time, to a flaceid paraly in, followed he atrophy and cont racture of the paralyzed member. is is well to remember that in this disease, the inflammatory process is met anfined to the anterior horns, bint may affeet the entire cord; a cellular infiltration is seen along all ressels, most marked where the iamblarity is greatest, viz, in the anterior horns.
Here afoim most be mentioned muclitis of the varions ande forms,
 luth ancerned; as well as the gliosis of syringomyelia, multiple sclerosis, tumors, illid the granulomas.
Lumher aprefie disorder specially involving the anterior horns and their hurre cells is the spinal form of progressive muscular atrophy "!" Ima-I neheme). In this the whole lower motor neurone underH.w. atron and with it the innervated muscles. This disease affects thwe wimithe age, is slowly progressive over years, and appears in on (one be the result of a toxemia acting in the subject of abiotrua. ar p. ©99), affecting particular groups of lower motor neurones. II aravotrophic lateral sclerosis there is also degencration of the lower mumer nimetme; this has alroady been considerad.

1. Disenses Ifferring P'rimarily the Sicmsory, Norrromes. Here, first am formost, is to be recognized tabes dorsalis or locomotor ataxia. Thic characteristie lesion is an ansembing degeneration afferting the posterin cohumbs; in short, this is a sensory nemrone disease; as to the cemse " it, the Whssermame reaction has proved condusisely that nearly al cases ure of syphilitie origin.

Regarding the exact nature of the proeess bringing alowt the degencration, opinions are still divided. ('msiderable attention has heer paid of late vears to the degenerative changes sem in the posterion root ganglia, but it is now generally atepted that these are nut sufficient to explain the extensive degemeration fomel in the posterior columis So, also, eertain ohservers have "alled attention to loealized menimgiti with thickening involving the meninges of the posterior aspert of the cord, and have assmumed that the emoraction of the fibrous tissue aromal the entering posterior rowt fibres is sufficient to conse masermb. ing atrophy and sclerosis. Wie are inclined to neepept the viow of Nott that the syphilite virns atfeeting the vitality of the eensor? nemrones masy case a degeneration that first shows itself peripherally and only with its progressive achance lorings nhent a final atrophy of the nerve-cell bouly. It might be suggested that we deal with a selective aetion of the syphilitie virns telling partienkarly mon the sensor: menrones; there are, however, indications that this view is ineorrert that syphilis induces a general lowered vitality of all the nenrones thus in those showing the early stuges of tabes and acenstomed th particular recurrent mimesilar movements (pulishers and the like) a freguent symptom of the disete. © is paresis and wasting of the musche involved in these movements. The reason whe in the corl the semers: astem is particolarly involved appears to be that in the mantename of musenlar tome, ete, these neuromes are in a state of contimens activity, wherems the anterior motor nemromes, acted upon as they are from two somrese, viz., from the brain and from the cord (in refle aetion) have a prionl of comparative rest during slecp when the eerebral stimuli largely cease to act. If the vitality of both orders of eells bu depressed, the sellsory neurmes are more hable to berome exhaustent than are the motor.

Again, as in all the foregring yromps, multiple sclerosis, myelitis tumors, gummas and tuberculomas, acting on some portion of the pusteriun columis, may lead to a secomdary useending degeneration.
ㄷ. Diseases of the Spinal C'ord Alfecting Motor and Sensory Fibres:IIere we have to take into acemome all those disturbances of the spinal cord which result in destruction with subsequent selerovis of buth aseenling ami destending tracts. Sinch are all those that atfert the whole cord or all the substance of half the cord, such as the furmathene mentioned of myelitis; sulch, also, may be almy of the lesions, mure on less arecidentally plared, sidich as tumors or the granulomas. It nunt bes remembereil atos that in disenses which we commomly regaril an di.eases of one system, a certain proportion of cases may show an
 - intolved giving rise to geleral paresis, there may be it selerosis of the lateral (motor) trict ns well. Whore, ns in multiple sclerosis, mumerous are:a of primary, locentized destruction of the spimal tissue have their urigin, lut su murli in comection with truets as with vessels, whieh in their momeremay pmss through several tracts, there mevessarily we "memmer combined sederosis, that is, 11 selerosis of hoth motor mod whit! tracts roincidently. In Friedreich's ataxia there ure fonnd
 (mhmme, lirect rereledher, ete.). A similar state is follod in subacute combinsd selerosis, associated with pernicions anemia. Besides these. ill lathyrism and pellagra ure found silmilar states of combined sederosis: the furmer of these follows the poisoning bes several kinds of vetel - lathras), and the latter is commonle nttributed to a diet of monde. maize. thongh there is still mudn disemssion upon this matter of

Progressive In isi rhances.- Asocinted with the low regenerative
 distimetly rare. As resirds the thmors, the gliomas ure the only ones - Hficiently rommon to deserve note. 'These ghomas origimute most witw in the immerliate neighborhood of the central canal, mod frequently are dithone, being of the mature of glosis rather than shmpry defined thinais. If the centrol glioma breaks down, 1 condition of suringomathia in prochucal.

THE MENINGES, CRANIAL AND SPINAL.

The Dura Mater

Circulatory Disturbances.-The most inportant (irenlatory disturl)ither uf the dura are thrombosis and hemorrhages. With the dura are ners-arily to be induded the remarkable simuses of the cranium, for thea are formerl in the substmee of the dara; be their situation and man" they are peroliarly linble to be the site of thrombosis, rather from the - hall that: from the firm, resistant dura itsedf.
Thrombosis. Thrombosis maly be traumatic, marantic, and infective. The marantie form is oreasionally met with in cases of chronic exhaustive di- 小. . anowiated with eardiace wakness and slowed circulation, most uften, met in the longitmelinal simus. It is by no means clear that thi - and the nomewhat allied form oceasionally. seen in chlorosis, may. win he the acthally to infertion of a low grade. There is some tendeneriii) 'uregaral all mon-tramatic thromboses as infective. Infective I' Le..... ciperially of the lateral sinus, is the most important of all U... momition- and most often arises by extension from inflammatory If (- in the mastoid cells, either directly or hy way of the emissary " "H He petrons bone or in the cranial vault. The cavernous sinus
is less often thrombosed by extension from the orbit, or elsewhere. The sinus is distended by a clot, grayish-pink to dark red, firm or softened aceording to its duration, and at times even appearing as little else than a purulent mass. Sireh a sinus thrombosis may spread to a surprising extent into other simises, and into the jugular veins. The results of this softening are very frequently the development of multiple abseesses in the lung and pyemia, not to mention the more local development of meningitis and cerebellar and cerebral abseesses.

Hemorrhage.-It will be recalled that the arteries run on the external aspect of the dura; thus while there may be small eapillary hemorrhages in the substance of the dura, any large hemorrhage brought about by traumatie or other rupture of branehes of the anterior or middle meningeal arteries, is situated between the dura and the skull; despite their extradural position, suel may naturally bring pressure upon the underlying brain substance (cephalhematoma internum, eontrasted with c. externum, under the sealp). Sublural hemorrhages originate from the vessels of the pia-araclinoid. The same prineiple obtains, mutatis mutandis, in connection with the spinal dura.

Inflammation.-Acute Pachymeningitis Externa.-This inflammation of the orter surface of the dura is praetically always secondary to infection of the skull, the simses, or the vertebra, or follows infeeted wounds; it may be of any degrec up to abscess formation, and, by the firm eonneetion between dura and bonc, is loealized, sinee extension is only obtained at the price of stripping off the adherent dura or burrowing into the resistant bone.

Pachymeningitis.-It is not a little intercsting to note that inflammation of the pia-iraehnoid may progress with little evidence of involvement of the dura, while contrariwise, the curious condition, pachymeningitis hæmorrhagica interna, affords at least in its early stages a pieture of involvement of the dura alone. In this relationship or want of relationship we may recall that the blood supplies of dura and pia are from entirely different sources, and presumably thus, in conneetion with inflammation, the infection may travel by one and not by the other. In paelymeningitis hæmorrhagiea interna the earliest stage so far recognized is that of areas of the inner surface of the dura eovered by a thin layer of fibrin. What is the cause of this phenomenon we do not know, but we suppose that there has been a hemorrhagie oozing of exudate from the finer capillaries of the dura. The conditions in which this is found, viz., in alcoholies and the insane, does not help us to determine the etiology: Studies of eases of longer standing give evidence that with the organization of this first deposit the newly formed capillarics, originating from the dural vessels, again afford a hemorrhagic exndate, which once more exhibits fibrin formation and organization, and in this way in the course of months, there develops a thickened layer of new tissue which may attain considerable depth, and by its pigmentation indieate that there lave been reeurrent hemorrlatis. The outer side of the dhra is not affected. This layer of new tisue

Isewhere softened little else to a surns. The multiple developexternal 10:rhages about by dle menpite their ac under1 with c . from the , mutatis mmation to infee1 wound:; firm conn is only purrowing f involve-chymenina picture want of d pia are onnection ot by the t stage so a covered on we do yic oozing conditions not help ding give ly formed a hemur-organiz:athickenced nd by its aorrhitits. new tissue
mily extend over the larger portion of the dural lining of the skull, and in many eases may show little evidence of extension of the inflammatory process into the pia, there being no adhesions to the underlying brain substimee, though in other eases these adhesions arc so extensive and dowe that it is impossible to think that the pia has not entered into the process, even if secondarily. Whether pachymeningitis is truly inflaumatory must be left an open question.
Pachymeningitis Cervicalis Hypertrophica.-This disease attains imprortance only because it may lead to so extensive a thickening of the structures around the cord in the important cervical region, that the merves are implieated and compressel as they leave the cord. The newformed layers may extend as a collar, thrce or four inches wide, and very thick, around the cervical cord; the cord may be so compressed that deyeneration occurs, and the vessels so obstructel that the cord softens. The general opinion is that this is a syphilitie manifestation; it may require years to develop, with periods of quiescence.
Tuberculosis.-This arises chiefly from tuhereulosis of the pia-arachmoil, or of the bone; the latter is more common in the cord by extension of I'ott's disease. There may be gross conglomerate tuberculosis or miliary tubercles.
Syphilis.-This may appear as gumma or as a diffuse process, and may. be an extension from disease of the pia-arachnoid or from gummatoll: caries of the skull or vertebre; this latter condition, thanks to bettor treatment, is today rare.
Progressive Changes.-Tumors.-These are essentially of the conbiretive tissue and endotheliomatous type. The so-called osteomas of the dura are, strietly speaking, osteophytes, showing no inherent tembeney to grow, but are plaques of osteoid tissue of metaplastic origin from the conncetive tissue. Chondromas are rare. Pure fibromas are it times recognized, but the small benign tumors, solitary or multiple, attached by a broad base to the inner aspect of the dura, are otrictly endotheliomas, originating apparently from the endothclial itmer layer of this membrane. In general these are firm and on section 'xhibit a framework or stroma of fibrous tissue in the meshes of which are more or less abundant cells of endothelial type, arranged rumentrically after the type of the endothelioma proper. Whether the filoun tisale is truly a stroma or is to be regarded as a metaplastic dinner of the endothelial cells is debatable. On section through these tumar. they have a "s undy" fecl, and microscopically, there are found morn wr less abundant globular bodies with coneentric striation, caleitirel. These are the psammoma borlies, and when this particular form uf $小 \mathrm{wir}$ ration is present, the tumor as a whole is called a psammoma. Thi., In repeat, is an endothelioma with caleifieation of its more central arromal cells.
Ih it from these small firm tumors, we occasionally find larger, more athal - minors, up to the size of an orange or larger, which are more purt mulotheliomatous, or have the characters of a rouml-celled
sarcoma; or again, we find diffuse growths of cither endothediomato or sarcomatous nature spreading over a large area of the imer aspe of the dura. 'These larger growths naturally eompress and produ atrophy of the underlying brain substance. I'ure sareomas do, course, arise from the subembothelial part of the dura, and these a usually spindle-celled.

There mar be secoudary sarcomatous and carcinomatons tume affecting the dura mater; this secondary involvement is probably mo common in the spinal than the cranial dura, amd it has been obsers that mammary carcinomas are liable to afforl metastases either in the vertebre or directly into the dura, which growing are apt to large fill the spinal canal and compress the eord.

The Pia-arachnoid

Anatomically a distinetion is made between the arachnoid and pi pathologically no such distinction can be made; in other words the pi arachooid may be regarded as a loose, aboudantly vascular membra (covered on its dural aspect by a simple layer of cells) in the mesh of which are abundant and large spaces lined by cudothelium, t arachoid spaces, and it: these spaces there eirculates the cerebr spinal fluid. The ressels of this membrane give off branches whi penetrate the brain substance, and it enters the ventricles as the ehoro plexuses.

Circulatory Disturbancer - Anemia is brought about in a general a local way, the latter as in hyilrocephahs internus. Active hyperem is not easily reengnizable, becanse the richuess of the vascularity the brain in the corpse is so variable, the blood easily draining away the thorax has been opened before the cranial section. Passive co gestion leaves its marks through the dark bhish color $n^{\circ}+{ }^{*}$ e congest ressels. ©dema is not memmon; it may be comp’ : y (hydro ex vacuo), where there has berol atrophy of the 1 : Dstance, congestive, as in the newhorn in cases of prolonge i. \because with hea presentation, or hydremie as in mepliritis, or inflamı...i....., associat with arente infections. Hemorrhage may be trammatic or may oceur the hemorrhagic diseases, in rupture of ancurysmal dilatations of th ressels, or in severe infections; blood may appar in the aracho spaces by extension of hemorrhage from the brain substance.

Inflammation. - Leptomeningitis.-This may be serous, fibrimou purulent, or a combination of these; or in more chronic infection tuberculous or ditluse, as int suphilis.

Acute leptomeningitis. - 'The serous form is characterized loy th inflammatory odema just montioncol; it is seen particularly in youn individuals ats the resinlt of alonte infections; at times the rapid acemont lation of the fluid leads to pressure sunptoms and even to optic atrophy It is aiso seen as all rarly stage of cases that are destined to berom purulent. Morr striking and morr severe in their effects are th
diblerent conclitions of suppurative meningits. Many agencies can (anter this, notably the meningococens, pheumococens, strepto- and ataphlococci; bacillary forms are not so common; influenza is perhaps the most frequent, B. tuphosiss, B. poecraneus, B. coli and several others are occasionally recorded as leading to this disease. Such infections may be either hematogenons or by extension along the lymph paces, as from the middle car, the nasal passages, the orbit, etc. Ip to a few rears ago conditions like epidemic cerebrospinal meningitis were held to be idiopathic; an increasing amount of proof today indicutes that they are secondary to growth of the specifie organisms int the npper nasal passages. There are two arcas which are especially liable to be the seat of purulent accumulations, viz., the base of the brain from the foramen magnum forward, and the vertex, over one or both hemispheres. The pus is specially apt to lie along the snperficial rinels, in the sulci, but may be so abundant as to form a thick layer hiding all the convolutions of the hemispheres. In general, owing to free communication along the arachooidal spaces, this purulent fluid extemds down the corl, where it is apt to accumnlate along the anterior and posterior fissnres. The ventricles, also, may be similarly invaded bex extension along the choroid. A local meningitis may arise either be extension from without, as in mastoid disease, or from within the brain, as in absess. It may be laid down that throngh the intimate commetion of the ressels with the cortical substance, the outer layers of the gray matter are apt to be involved, so that we deal more often with meningo-encephalitis than with pure meningitis. It is to this involvement that we owe the pareses and other nervons phenomena that presen: themselves after the acute attack has passed by.

Ill forms of meningitis, save perhaps the syphilitic, are more liable torattack ehildren than adults; this is notably the case with the epidemic and the tuberemions forms.
Chronic leptomeningitis presents itself as a milky thickening of the mitninges in the inmediate neighborhood of the superficial vessels wor the comvexity and again by a transhecent, gelatinons material at the lane of the brain; further, especially in the old and the alcoholic, the opacity wer the ventricles may becone more diffuse, and yet more rarely, as the rematins of an old acoute inflammation, there are It. lie amomered definite fibrous adlecsions between the dura and piatarim hmoid.
Tuberculosis. - One of the eommonest forms of meningitis, and then whin raming a relatively acute conrse, is the tuberculous. This shows mali now fropuently as manifestation in part of a general hematogenous hil. "thbremlosis, and is recognizable on careful examination by the corbere along the vessels of the Lybian and other fissures and if: ". 'horond plexus of mimute pinhead and sinaller tubcreles, which "int "uparent if a small piece of the arachnoid be floated out in Hit $\quad 1,1$ cxamined with a hand lens. Other furorite sites are over the anm on the apposed surfaces of the cerchellum and the temporo-
sphenoidal lobes. More rarely the tubercles instead of being generaliz may be few in number over a small area, e. g., of the cerebrum. Th appears to be an early stage of the cerebral or cercbellar tuberculom While the superior surface may appear relatively healthy and free fro diffuse inflanmation one may discover on lifting the brain, that all tl interstices at the base are filled by a yellowish, gelatinous transluce and cedematous mass, really the swollen and infiltrated pia-arachnoi In general, the basal areas are the most involved, and it is to be remen bered that in practically all eases, there are here n_{L}. only the miliar tuberclc, but signs of exulation and increased presence of lymphocyte in the earlier stages, and of large mononuclear cells in the later stage
Syphilis.-Localized gummas of small size may be formed in th meninges of the base, part of a greatly thickened matting of th arachnoid, in which the individual gummas are not to be distin guished by the naked eye. The solitary gumas may, however, b recognized by their yellow, caseous centres. More typical of cerebra s.yphilis is the diffuse thickening of the basal mening's, with firm adhe sion to the brain substance, and thickening along the basal nerves This process of syphilitic infiltration around the vessels, with possibl subsequent gummatons formation is liable to extend into the brair substance (see p. 489). Rarely, the only sign of syphilis in the cranium may be a localized peri- and mesarteritis of a single superficial vessel.
Progressive Changes.-Small plates of metaplastic ossification occasionally are to be met in the leptomeninges as in the dura.
Tumors.--Rarely among the benign tumors are to be encountered the lipomas, cavernomas, and lymphangiomas, as also fibromas. More common and more characteristic are the primary endotheliomas. These are of two main types: the more frequent is composed of whorls of concentric, flattened cells, and these must be regarded as hemangioendotheliomas; the other form shows cells of a more eylindrical type and peritheliomatous arrangement. These, it is supposed, are strictly lymphangio-endotheliomas. Both forms are apt to. show transitions into more purely sarconatous growths, though occasional pure roundeclled sarcomas are to be met. An unusual tumor found especially in connection with the pia mater is the true cholesteatoma, in no wise to be confounded with the cholesteatoma found in the middle ear. These tumors form pearly, multinodular masses, occasionally reaching the size of a small apple. They are found originating in the pia, particularly at the base in the region of the pons and medulla, and occasionally over the cerebellum, cloroid plexus, or cord. They are to be regarded as inclusion dermoids, which subsequent to their inclusion have taken on blastomatous growth. The cells composing them are of epitheliai nature, containing keratohyaline granules; the pearly appearanee is due to inspissated cellular debris containing fat and platelets of cholesterin. More than one observer has found hairs in these, and sebaceous glands hav been detected.

PERIPHERAL NERVES

The peripheral nerves may be divided into two systems-the somatic and the sympathetic; the former are composed entirely of medullated uerves, and have a somatic distribution to the voluntary museles and skin: the latter are composed of fine medullated and of non-medullated nerves; their fibres innervate the non-striated muscles of the body, ind luding those of the blood vesscls and the intestines, the various glards proper, and the striated muscle of the heart. The arrangement of the latter system is distinctly complicated and must be studied in the more recent text-books of anatomy. It is due especially to the work of I'rof. Langley that our knowledge of the anatomy of this system has been claborated. Briefly we may say that the non-medullated efferent fibers take origin from the lateral horns and pass out by the ventral roots to a series of vertebral ganglia, where either they end, or passing through, are distributed to a second group of ganglia, the prevertebral. Not every segment of the cord gives origin to these fibrcs, but we may distinguish a cervical group in connection with the superior cervical ganglion, a main group originating from the first dorsal to the sccond ur third lumbar and a third series originating from the second, third, and fourth sacral.
This sympathetic system we may rapidly dismiss; experiment and pathological anatomy have afforded us singularly little clear-cut evidence with regard to either the diseased conditions that may affect it or the results of its destruction. While some observers describe an important series of disturbances following removal of the solar plexus, others have kept dogs alive for several months after this operation, with rery little bodily disturbance. We point out again that the efferent sympathetic fibres convey impulses which under normal conditions do not reach consciousness, although, inder certain circumstances, their irritation stimulates other ganglion cells, impulses from which affect consciousness, and as a result irritation of the sympathetic is referred to areas of the somatic innervation. We have referred, also, to the rclationship between the sympathetic system and the medulla of the arlrenals. Thus, Wiesel describes degeneration of the chromaffin rells of the sympathetic ganglia in Addison's disease, cells identical in character with those found in the adrenal medulla. We can, that is, produre isolated examples of evidence of sympathetic activity and its disturbance, but we are not prepared as yet to formulate any general i:itcinents.
Inflammation.-The term neuritis is very loosely employed. While there are examples of true inflammation, frequently this term is used th indicate atrophic changes. Thus, the so-called optic neuritis is hetter referred to as choked disk. It is a disturbance of the optic merve, leading to atrophy, brought about by intracranial pressure and intruction of the vessels, with associated oedema. Similarly, alco-
holic，arsen：c，and ead neuritis are degenerative rather than inflammats states．［n pealiin a alite neuritis the peripheral nerve trunks affeet are swolien ad rongested，not necessarily along their whole length for a longer on sloorto－distance，so that they may present spindle－li swellings mong ther course．In such cases，there is an cxulati into the comeetive tissue of the sheath affeeting the endo－，per and epineurium．With this there may be more or less leukocy infila ation，＂o extreme that there may at times be actual pus formati with or without localized hemorrhages，and where the inflammati is intense the aetion upon the nerve fibres leads to breaking－up the medulla and also of the axis evlimoers．Purulent inflammati of nerves usually occurs by extension from neighboring tissue．Su aeute neuritis may be followed by comective－tissue overgrowth，whic in its turn，by pressure，favors degeneration and atrophy of the inelud axis－eylinder processes．Such neuritis，besides being of infeetive origi may be traumatie，from wounds or eompresision．
One of the infective granulomas stands out preëminently in its liabilit to affect the peripheral nerves－leprosy．Numerous peripheral nerve of the limbs，faee，and other regions become involved by granulomato growth，rich in＂lepra cells＂containing the bacilli，and bring abot anesthesia，pallor，aud atrophy of the regions of supply，so that finget and toes undergo a form of dry gangrene and drop off，leaving extensiv sears．The later stage of this chronic process in the nerves is see as fusiform fibroid thiekenings along their course．Tuherculosis peripheral nerves，while it oceurs with similar distal degeneration eomparatively rare．Until salvarsan came into frequent employmen the effeet of syphilis upon the nerves was overlooked by most path ologists，but syphilis is now held responsible for a large number of dis turbances of the optie and auditory nerves whieh may appear after the use of salvarsan ：nd more rarely of mereury．The attention drawn to this subject has shown that lesions of these two nerves are mot uncommon in the course of untreated syphilis．
Regressive Changes．－Here inust be included many forms of so－called neuritis from alcohol，arscaic，lead，ergot，diphtheria，beri－beri，and the presumed causative toxins of severe amemias，to mention the more important．Many of these toxie agents have a characteristic selective activity．Thus the diphtheria toxin leads to areas of aeute degenera－ tion and atrophy，pieking out eertain merves in the upper respiratory tract，as well as the vagus，the degencration of the latter being the eause of sudden heart failure．Lead affeets the immervation of the extensor museles of the forearm and leg，eansing wrist－drop and foot－ drop．Aleohol may set up a widespread polynenritis，especially affecting the peroneal nerves．In all the above the degeneration of the peripheral nerves appears to be primary，they being directly affected．What is termed secondary degeneration is seen in the peripheral nerves whose eell borlies have previously undergone destruction，or which have her in cut off from those cell bodies，as in true Wallerim degencration．
flammatory nks affecterl e length but spindle－like exulation ndo－，peri－， leukocytic s formation flamınation king－up of flammation sule．Such wh，whieh， he includerd tive origin，
its liability eral nerves iulomatous ring about hat fingers extensive es is seen rculosis of reration is nployment nost path－ ber of dis－ r after the ion drawn s are not
f so－callerl beri，and the more selective degeneri－ espiratory being the on of the and foot－ affecting eripheral What is es whose ave born

Progressive Changes．－We have already referred（sec p．245）to ＂faise neuromas＂or amputation neuromas，as also to what we have termed neurinomatosis or multiple neurofibromas or fibromatosis（see p．247）． Thu＇sit－callerl elephantiasis neuromatosa or pachydermatocele，appearing as a congenital affection，has underlying it a great irregular thickening wif the nerves，of the same order．Associated with this is a general deformity of the part with thiekening of the skin．Rarely gliomas hatr bern described as occurring along the course of peripheral nerves and still more rare are lipomas and rhabdomyomas．
III of the gliomatous and neurinomatous tumors show a tendeney toward a malignant metamorphosis，the latter giving origin to spindle－ rellerl，sometimes myxo－sarcomas．Of secondary tumors carcinoma has berelleserihed as occasionally extending in nerve bundles and bringing about atrophy of the same，but in general，nerves are little involved in seromdary maliguant growths．

THE EYE

Anomalies．－The evelall may be latking（anophthalmia），a state whill is llually found in conjunction with other grave defects；ocea－ somally there may be found tissues that represent the eyeball，sud in vet other cases a small bulb may be present（microphthalmia）．In diffirent kiuds of cyclopean monsters，two eyes in a single orbit or a imgle cere in a central orbit are seen．The cornea may be smaller o ： larger than mormal，or its curvature may be more or less convex than mormal；part or all of its substance may be opaque，usually in such Atates as microphthalmia．The iris may be absent，or may lack pigment（albinism）；the lens may show opacity，or tissue strands on the surface may represent the remains of the hraloid ressels；the lens lay be dislocated．Any or all of these different parts may be lacking iil coloboma．
Iohboma is a congenital failure of the cleft of the secondary optic imind to close，either wholly or in part．This may thus affect every ur any part from the optic nerve to the evelid；it is common in the iris， anl is frequently associated with other congenital anomalies．
Circulatory Disturbances．－Conjunctiva．－The conjunctiva becomes hyperemic as a result of irritation from a forcign body，from irritant Sars，from exposure to bright light and cold wind at the same time，as i－rem in suow－blindness，from crring，from facial neuralgia，and as an （arly sumpton accompanying rhinitis．Persistent hyperemia is well illu－trated in the cye of the alcoholic subject，and occurs in most ットッ Where thre is coustant eyestrain．Edema of the conjunctiva（and Her wift tissues of the lids）is seen as an marl：stage of generalized aiar＂a in Bright＇s disease and broke．ompenation of the circu－ wry apparatus．A common cause of local milema is the sting of an \％t．Hemorrhages in the conjunctiva are the result of injury or
arise during the effort of violent conghing or snewing, especially i children with whooping congh.

Iris.-Fiyperemia is of importance as an early accompaniment inflammation.

Chorvid.-Hyperemia is seen as an accompaniment of inflammation the choroid and surromoling parts, and in its passive form, as part of general congestion of the borly in general or the head in particula Hemorrhages in the choroid are due to trauma, and the hemorrhagi diseases.

Retina.-Circulatory changes seen in the retina are of a good deal importance, especially because the function of sight is readiiy affecten Anemia is characterized by a visible narrowing of the arteries, wit pallor of the membrane; if cxtreme, the nutrition of the retina may b affected and partial or total blindness result from its degeneration Hyperemia occurs as part of an inflanmation of the retina and of su rounding structures, or may be passive, as a result of general congestion More important is that passive hyperemia seen in choked disk, whel by compression of the central vein the retinal veins are larger and mor tortuons than usual. Embolism of the central artery of the retin occurs occasionally, and sudden blindness with anemia of the membran results; later, severe degenerations arise with ultimate destruction Thrombosis of the same vessel is attended by similar results but is le frequent. Hemorrhages of the retina are of much clinical interes They occur in systemic diseases such as Bright's discase, diabete and all those diseases which are characterized by capillary rupturethe anemins, the sevcre infections, scurvy, and certain other seve intoxications. They occur also in trauma, and fairly large areas the retina may be lifted off the choroid (subhyaloid hemorrhage) wit subsequent rlegeneration of the part with whose nutrition there interference. Retinal hemorrhages vary in position, and consequentl in shape and size. If superficial in the nerve fibre layer, they have striate form, if deep they are round or irregular. It will be readil molerstoorl that hemorr'iages of the retina may be accompanied b escape of blood into the vitreons, with consequent dimness of vision.

Inflammation.- For an enumeration of the agents of inflemmation and their results on the different parts of the eye it is hardly necessar to mention that more voluminous works must be consulted.

Conjunctiva.-Apart from injury, exposure to bright light or irr tating vapors, the use of drugs, such as potassium iodide and arsenic inflammations of nearby or related parts, there are many bacteria whir canse acute conjunctivitis. The readiness with which bacteria can gai access to the conjunctiva is self-evident; nowhere else in the borly so delicate a structure so exposed. In a considerable percentage healthy conjunctive, the Bacillus xerosis and a non-pathogenic Staphyld coccus albus are found. The bacteria which most often cause con junctivitis are (in the order of frequency in a large series studied b) our colleagne, Dr. Hanford McKee), Murax-Axenfeld diplobacillu:
staphylococcus, streptococcus, pneumococcus, Microcoecus catarrhalis, gonococens, B. McKee, B. Koch-Weeks, B. coli, B. influenze, meningncoecus, B. xerosis, B. Hoffmann-while a large variety of saprophytes is seen, many individuals of these last being found in greater frequency than some of the pathogenic microbes enumerated.
The character of the inflammation varies greatly but is in no way distinct from that described in vascular areas; catarrhal, purulent, and membranous forms are seen. The severe degrees of inflammation are apt to jeopardize the integrity of the delicate cornea; the chronic forms may lead to considerable superficial loss of conjunctival tissue, the healing of which may be attended by deformity of the lid. Pterygium is an inflammatory overgrowth of the conjunctiva upon the eveball, of triangular shape, the apex directed to the pupil; sometimes it becones quite well vaseularized, and the superficial epithelium is proliferated and even at times folded.

Chronic Conjunctivitis.-The forms of conjunctival inflammation known as ehronic are, in the main, characterized by proliferation of the tissues, which appears as granulations varying in size from those just visible to cock's-comb-like masses of large size. The so-called trachoms is the most important of these, the overgrowths being not typical granulations, but small encapsulated overgrowths of lymphoid and connective tissues. It has been shown that the so-called "trachoma bordies," intracellular horlies found in the epithelial cells in trachoma, are not the etiologiea! factor. Parinaud's conjunctivitis is a rare, but severe form accompanied at times by marked systemic disturbance. Vernal conjunctivitis is a malady of persistence, with annual exacerhations, in which the granulations are hard, composed of thickened epithelium and connective tissue, at times degenerated into a hya' ne mass. Thie infective granulomas are rarely seen to affect the conjunetiva. Tuberculosis may spread from lupus of the face, and syphilis and leprosy are known.
Cornea.-The process of inflammation in the cornea (keratitis) has ilrouly been described (see p. 134); from what has been said there, it will be gathered that the collecting of lymph eells and the production of new corneal corpuscles will give rise to some opacity of the cornea, lieeil or diffuse. This may be recovered from and the foreign elements he absorbed, but on the other hand, a certain opacity may remain, or the inflammation may become more intense, with loss of substance within or on the outside of the cornea. Should this loss of substance be repaired, the connective tissue which performs the repair may, on the one hand, remain as an opaque body, and, on the other, by its wntraction alter the eurve of the cornea, thus impairing its efficiency is a refracting body; vascularization of the surface of the upper part if the cornea may occur in trachoma, constituting pannus.
Diffuse parenchymatus keratitis, evidenced by infiltration of the "rnea, may lead to vascularization in the substantia propria, the formainis of new vessels being deep. Should loss of corneal tissue occur on the surface, corneal ulcer is the result, and if in the substance, abscess.

Suppurative keratitis may be phlyctenular, generally close to the cornen seleral margin, where minnte pastules appear just under the surface .apidly breaking through. A considernble number of case's of suppu rative keratitis are clue in part to the coexistence of injura:

Corneal ulcer may occur with inflammations of various intensity it may arise in ill-mourished ehildren and progress slowly, or it ma be the result of a florid conjunctival inthommation and erode rapidly The serpiginous ulcer is maned from the fact that while the ulcer heal at one part of its edge it progresses at another; it is practicully alway due to pheumoencens.

Herpes of the cornca may oceur, associated with marked nuesthesia
The infective granulomas are of considerable importance in the causa tion of kerntitis; the difiuse form is frequently syphilitie, mueh less often tuberculous, but the localized oceurrence of the gumma or the tubercle is rare. It was previously thought that there was a specific form of kerntitis which followed lesion of the fifth nerve, but it has been shown that this is not neurotrophic, but due to infection because the eve is less protected than in health.

Iris.- Iaflammation of the iris should alwnes at once suggest to the behohler systemic disease, and in the order of frequency is due to sphilis, rhemmatism, tubereulosis, gonorrhen, gout, diabetes, oral sepsis, and tramm-overwhelmingly the first two. Fibrinous exudation from the vessels of the iris hurs its bright surface, and with this exudate there exists a strong temlence to adhesion (synechia) to the capsule of the lens behind it. '! !". inflammation may not present the fibrinots form but mals freniki, suppurntive, the pus lying in the anterior chamber (hypopyon): this usually follows a wound that has perforated the cornea. The granulomas exceptionally show the gumma and the tubercle, usually being represented by diffuse plastie exudations: sometimes in the case of syphilis, small yellow nodules are seen at the pupillary edge, which in late case's only, are to be regarded as trae gummas.

Ciliary Body.-Cyclitis, infammation of the ciliary borly, is often eombined with iritis, the combined disease being iridocyclitis. 'The symptoms are those of an iritis with the adalition of excessive pain, tenderness in the ciliary region, an increased or a decreased tension. and considerable disturbunce of vision. There are different varietit the simple, the plastic, alld the purulent. The plastic form, characterized by the preselnee of fibrinons exudate, arises from an injury in the danger zone, and is important because of its ability to set u , a plastie iridocyclitis of the other eye, i. e., sympathetic ophthalmia. Such a plastie crelitis, if not checked, will destroy the eye by at "ophy of the eyehall. The sympathetio ophthalmia nay arise weel:s, ocensionally vears after the onset of exditis in the eve first affected, and and to the mode of transmission of the mfeetion, a century has not adiled any certainty to our knowledge. Purulent eyclitis, or better, iriloceclitis, results from injury, and the infection sets up panophthaimitis.
he corneote surfuce, of suppul-
intensity; or it may le sapidly: alcer heals lly nlways mesthesia. the causanuch less ma or the a specific ont it has n because
uggest to ey is due etes, oral us exulawith this ia) to the present ing in the that has te gumma culations: en at the d as trum , is often itis. The ive pain, I tension. varietic , eharacinjury in set u . a hthalmia. - atroply lis, wernd, and and ot adiled er, iritlothaimitis.

In this grave state, there is suppuration and disintegration of all the soft intermal structures of the eyehall, generally ateompanied by severe inflammation of the eonjunction and the soft tissues of the orhit. The inflammatory products may greatly distemel the evelall, their rape being prevented hey the dense solera, which in time may he itself rromed to the bursting point, when the eontents eseape. Should the erehall not be removed there may be a gradual shrinking of the empty are, and a nore or less solid mass of firm tissue be left to represcont the Holole (phthisis bulbi).
('horoid-Choroiditis is caused hy systemic disease, syphilis, tubermonois, cortain disorders of mutrition, or a bacteriemia; in other cases the canse remains undiscovered. Sometimes in the granulomatous infertions, and always in the bacteriemie, it apperars as an exudative or a purulent inflammation. These terms sufficiently explain thenselves; the exudate may remain upon the choroid or may be thrown out into the vitronss which loses its transpareney for the time being; even a mild grade of choroiditis may, in healing, be followed her atrophy. A suppurative choroiditis, as stated shove, is almost neeessarily a forerumer of panuphthalnitis.

Byrasom of the propinquity of the retima, this membrane is praetically always affecterl; in the aeute type, the retina quickly disappears, bint in the more slowly progressing infeetions, the retina shows changes prouliar to it, and the disease is known as chorodoretinitis. In tuberratonis, tubrerdes of miliary size are seen in the choroid, lifting the retina, or harger agercegated easeous masses may be fomme ; the retina is clondy anlul lenes its distinctive features as a result of redema or exudation combined with degeneration of its individual struetures. Syphilitic Whoridoretinitis is seen as a localized or diffuse process, the choroidal proliferation bring somotimes extensive.
lirfina.-Acute retinitis arises by extension of infection from many of the whorementioned parts. In this eondition, the retina is conwherl, tedematons, and elonds: Apart from these cases, a like appearance is sern, indirative, not of an acute local infection, but of a systemie tate n nell as Bright's disease, diabetes, syphilis, or arterioselerosis, the lin-t named indionted by hemorrhage. Most inportant of retinal change is that known as albuminuric neuroretinitis, a description of which will in genoral serve for the elanges scen in any of these bodilytatus. Xot infrequently the retinal examination, undertaken because thur vimu is failing, gives the first alarm of the existence of the disease. There is swelling, clomdiness, and lack of definition of the papilla; the retina suows points, streaks, or flame-shaped areas of hemorrhage, and thre are in the inaeular area, irregular whitish areas formed by the :t mmulation of cellular debris which has undergone fatty, granular, or hasline degeneration. Withal, there is lymphoeytie and fibrinous exulation into the retina, whose vessels appear engorged and tortuous. The wnsistence of the hemorrhages and the whitish areas marks the statt of neuroretinitis. Whether due to Bright's disease, diabetes or a

[^20]transitory alhmuinuria of pregnancy (gravidic zeuroretinitis) the picture may be the satue, but the sulsequent course if the process may be quite different; in the last named, the retina mav recover with the disnppearance of the allmminnia after labor.

When due to syphilia, the the son is that refere I to above, horsithretinitis; it may be congenital or aequired, and nppears in the so-en eel second stage of syphili, usumlly in both eycs. The fundus is i. foutinct, the retiua and thedisk are swollen, and fine, dust-like opacitie (cast-off exudate) appear in the posterior part of the ritreous. In tl
hemorrhagic form, so-called herause the hemorrhages are ahmedan: the usual signs of retinitis ar present, and. an addition, if -c is series of rccurrent hemorrhuges, the whole often beine an ind on of
 bral hemorrluge.
Regressive Changes. - "1e only regro-ive changes of inpor ance are those observei in the corna, the chorvill. the retina and the :ne

Cornea.--In the first, the cornea, there is a regres ive hange whin is called arcus senilis. It consists of whitish are $1!+$ at seen in te margin of the enrnea above and below, ultins: tel io n_{k} made ver." minute drop of fat wheh lie in the sut tance of t e eorn far posterinly as inesemet's membrane; sol: ames th, itish appears to be a kind of hyaline, while in "her ca: t. ar ars to be a deposition of line ilts in + e transparent tiss of the which demont on the adsan, ugg degenerat a f the l lood ve..sel sur. It is thu: hith wore than a sign of arterial age. In the choroid ometines as a segned to previons inflammation, ar $*$ of atropi sceur, vith irregular phinentation, and ametime wht tely et pioduetion of thone. In the retina, dergenerative, hanges oes r: esnl. of age, a- well as after varions forms of lisease, such 16 it us at subretinal hemorrlage. The rod ond cones may atrop interg ohseure fatty or othe: chaneres. yitu hay arich and the monat of nigment onay inerease of ererea- IV ... ease of separa ion of the metina in which the super ral hat on to away ving , e pigment layer attached to the r' rois at in as apanito by grace changes in the separat ay ay be imatous and may undergo maceration or geliera: din. renit kinds, ew in to the deposition in it of calcia mater
Retinitis Pigmentosa This is stric a gressive al not an inflammatory state of the retin which ocenr in particular , ufficts males. especially those whe re the offsinng of consang us parent. In thi rare disease, the rel a is degernerated and atropined, and there is a migration or a carryins of the 1 ment from the exterual layer, wher it normally lies, to the inner ers of the retina, where it is dep ed. We have prer imsly mi- out that the pigment-carrying cells the shin seen to the nis ry powers; it is not possibie to sal wat methor the changes its situation in retinitis
e picture ess may with the
permutosn, but it is laid down npmently in endothelial mells in the vicinity of hood vessels in fibrotic arens.
lans.- Thee re ressive changes in the lous that are of importance are those that give ase to opacity-in short, the varions forms of cataract. Cataract is of tro distinet forms-stationery and progresaive In the former, in cornez. infe thun miy lend to a localized area; opacit. on tic muterior surfnee of the lens which remmins through fe, but Whi, is of little importance, because it does not inerease in :ize. A like ndition un! affect, thongh more rorely, the pemerior surfare, 1.e a single home tla the lens may be opaque, and of as the extent importance are necessarily grenter. I'rogressive catnract is (1) an: (2) congenitnl (juremile), and (3) trummtie. In semile caturact. most familiar form, the fibres of the lens undergo degencration: th the formation of f globules and meelin. I'sually the opaque has " be remow "extraction." It may happen, further, - uft weh a lens ha hen removed, the posterior eapsule, which of re, remnined, uy itself become opaque-secondary cataract and breity constitı. tes capsular cataract. In faumatic cataract the lons । paque as a direct result of an injury, and here it is that a considerabie degree of nbsorption of the opaque tissuc may occur; shonld the lens fibres become separated and fluill be absorbed (from the aqueons) the lens n. y swell up, may berome soft, and may even le completely absorbed. If the lens and capsule become fixed to some nearhy structure aly! ularized, a considerable filmous proliferation mil! weur, and thi, her with the new blook ressels, constitutes a ver. great detrimu ransparency of the lens. Even calcareons matrorial may be ultima. nosited.

Progressive Changes. netiva.-Certain Menign tumors, fibroma, lipoma, papilloma, or estre found on t lue ronjunctiva, but the most important are ma nethe squamous carcinoma and the sarcoma. Carcinoma is oftenest seen as an extension from the eyclid or uther nearby structure. Sarcoma is less common, and when it (w.ons: may be of the piginented variety:
l'ornca.- Primary tumors of the cornea are very rare. Isolated cases if primare fibroma, papilloma, sarcoma, and myzoma are in the literature. " 7 "/ v ructure nay be secondarily invaded from other parts of the eye.
i,is. - ligmented sarcomas are fonnd, but by no means so commonly. it amilar tumors in the choroid.
(\%urroid.-The most common progressive tissue change in the choroid in melanotic sarcoma, of which, indeed, it is the most frequent site. These tumom are markedly pigmented, consist of round or spindle cel' srus rapidly, and having once grown through the selera, rapidly f. mat. taes. They are seen as flat, sessile growths, lifting the reth a- ! "progress.
Ii. 'mu. - The only importiznt tumor arising from the retina is t gloma to which we have previously mate reforenee. The tum:nu: rapidy, filling the globe, making its way through it and appearine
as a fungating huxuriant growth that spreads with great readiness Its cells are small, closely packerl, and with speeial stains the spider-le processes can be demonstrated. It occurs invariably in infance.

The Vitreous and the Aqueous.- In the foregoing consideration the diseases of the eye, no mention has been made of the vitrous the aqueous. The vitreous, it will be recalled, is not a fluid but gelatinous substance which, if allowed to escape, is not replaced, whieh too, may be injury beeme on the one hand fibrillated and on the thet liquefied. Should it become fibrillated, it is less transparent and :nad contraet, pulling with it the delicate retina away from the choroid By reason of its position and consistence, the vitreons is the mediun into which exudate is thrown as a result of inflammation of the part of the eye in contact with it.

While making reference to the aqueous, the secreted fluid of the an terior chamber, secms the best occasion on which to dead with glaucoma a very important disease which is characterized by increase of intra ocular tension, with resultant pressure on the structures in the eyeball (alancoma may arise from inflammatory causes, in which case a fev hours suffice for its development, or it mas arise insidiously, and b discovered ont! when an ophthalmologist is consulted for failing vision or when the patient discovers that one eve is blind. In such a cas the damage is alrealy done, but in the first-named form, treatmen may be effectual. The name glancoma is given because of the greenis reflex that is given from the pupil to the eve of the beholder; insteac of a black color of the pupil, the beholder seems to see a greein color the eveball is hard, tense, and the cornea dhll; the aqueous humor ordinarily drained away by the canal of schlenm and the space of Fontana, fails to find escape, owing to blockage of these passage by narrowing or obliteration of the angle of the anterior chamber Owing to the great intraocular pressure the optic disk becomes cupped which cupping, together with the harduess of the eveball, is sufficien to distinguish the disease.

The Optic Nerve.- It is necessary to point out one at least of the pathological processes that affect the optic nerve. 'The most important is choked disk, the name applied to the papilla altered in certain patho logieal states, as when there is a more than normal intracranial tension such as is produed by the presenee of a new growth or an inflammation of the membranes of the brain. Some of the names applied to choked disk, such as papillitis and optic neuritis, imply that the change is an inflammatory one, but this is probably not the case, although the appearance of choked disk is seen as part of a papillitis or optic neuritis. Choked disk is an oedematous state of the optie papilla. As the optic nerve is continnous with the brain substance, the cerebrospinal fhid surromals it in the optic nerve sheath; and may press upon it ; thus the central ressels which come to rom inside the nerve itself are likewise compressed and croma of the papilla and the most distal part of the nerve results. In a moderate degree of choked disk, the outline of
readiness. spider-leg fanes. leration of vitroous or niid but a ed, which, the , ther, t anà :nay e ehoroid. e medium the parts

of the an-

 glaucoma, e of intrahe eveball. case a few y, and be ing sision, reh a case treatment e greenish er; instead reen eolor; us humor, the spaces c passages ehamber. es cupped, sufficient ast of the important ain pathoal tension, ammation to ehoked ehnnge is hough the ic neuritis. the optic pinal thuid ; thus the e likewise ant of the outline ofthe papilla is blurred and indistinct, the papilla reddened and swollen, ripecially in its nasal half, while the retinal vessels are enlarged and tortuons. In more extreme eases, there may be splashes of hemorrhage on the disk. Should oedema persist, atrophy of the nerve fibres of the disk may be the result.
Curitis of the nerve trunk may occur from an orbital or a meningeal infection. We have previously pointed out the liability of the nerve trunk to fibromatosis, and true neurome has been found.
The Orbit.-The eveball is suspended, as it were, in the bony orbit, and between the globe and the bone there is, therefore, a considerable bulk of ruaseles and connective tissues, not to mention fat and the vascular and nervous structures that are placed therc. Inflammation if these soft tissues oecurs, as a diffuse cellulitis or as abscess, resulting from tranma or infection; to the latter the orbital tissues are exposed, for infection may spread from the face, the eranial cavity, the bones, or the laerimal gland and its subsidiary mechanism, the lacrimal duet.
Tumors of many orders are found in the orbit, apart from those that mily spread from the globe: angioma, osteoma, myoma, and teratoma are fomml, while sarcoma is fairly common; carcinoma is only secondary, or hy extension. Cysts of many sorts, ineluding hygroma and others of like congenital origin, may be seen.

THE EAR

Abnormalities.-Anomalies of the different parts of the auditory aparatus are numcrous, but relatively unimportant; considering the origin of these structures, those that affect the middle and internal rur are usually associated with other lefeets, such as harelip and cleft palate; the auriele may be abnormally small, abnormally large, or arcrisory anricles may exist. The cxternal auditory canal may be absent, stenosed, unusually narrow, unusually wide, or even duplicated. Thre irum membranc may be absent or fissured. The middle car may br absent, as may the Eustachian tube, or the latter may be curved ahmomally or may open in an unusual place. The internal ear may be absent or abnormally developed, or may show lack of some of its pirt, while even the auditory nerve has been known to be wanting. Circulatory Disturbances.-Auricle.-The peculiar liability of the auriche to be danaged by frceaing is well known. Hyperemia is usually a renilt of such thermie or of mechanical causes. Hemorrhage oecurshematoma auris-as a result of trauma or without known eause, as is rin in the insane, possibly here also from unnoted trauma-in whom it mat be bilaterally symmetrical.
Dirtermal Auditory Meatus.- Cireulatory changes are not of importand apart from the inflammations or traumas with which they are a*w"ilated.
Mrum Membrane.-Hyperemia may be observed as a distinct reddening (1i) the part, the enlarged individual vessels being visible in states of
inflammation. Hemorrhage, of punctiform nature, may oceur in membrane, and may show upon one or the other side.
Middle Ear.-Hyperemia oceurs as part of the inflanmatory proc and as the result of general passive congestion of the head regi Hemorrhage is usually the result of trauma or of a partieularly virul infection-hemorrhagic otttis media.
Internal Ear.-Hyperemia and hemorrhage oceur under conditi similar to those in which they arise in the middle ear, but hemorrh is of more importance, as it may cause deafness, and the absorpt of even a modcrate hemorrhage may be attended by damage to delicate struetures involved.
Inflammation.-Auricle.-Any of the inflammatory proeesses wh affeet the skin may affect the auricle. The inflammation which follc freezing is familiar, the auriele becoming swollen, bluish red, and pa ful; blisters may form on the surfaee, and even gangrene may foll Inflammation of the perichondrium or of the errtilage iself may aceo pany this or other form of injury. Perichondritis, secondary to inju as at operation or after hematoma, is occasionally followed by slig deformity of the pinna which appears wrinkled.

External Auditory Meatus.-Inflammation may be localized, as the common furuncle, whose origin can be readily understood when is considered that the wall of the meatus is exposed to enntact w diselarges from the middle ear, is liable to eczema, and does aot read lend itself to eomplete cleanliness. On the other hand, inflammati of the meatus may be diffuse, from the same causes, especially in patie whose resistance is poor; secretion tends to form upon the wall, whi is shed off from time to time and as quiekly remed. The infecti may be confined to the soft parts, may be suputieial, or periosti and implication of the bone may arise; in any of these eases an abse may form. Membrane may form from diphtherial or other infectic and mycosis, or infection by moulds, is seen. The infective granulom aficet the meatus, tubercles being found on the eartilage of the auri or in the skin. Syphilis may show itself in ulceration or in inflammati of the cartilages; gumma is not unknown. Both of these infeetions : rare.
Drum Membrane.- Inflammation of the drum membrane or myringi is usually the result of exteusion from nearby structures, especially t auditory canal. The membrane becomes red, swoll ${ }^{\circ} \mathrm{r}$, soft, and ev tiny abseesses may be scen; in eases where the internation persis the surface may beoome granular. The membrem been set affected in both tuberculosis and syphilis, in patient. ... o have lesio of these diseases in the middle car or other nearby structures.
Middle Ear.-Inflammation of the middle ear-otitis media-is frequently frund and important disease. Clinieally, it is divided in well-defined groups, the acute and the chronie, while pathologicall one may recognize a simple, often catarrhal, and a suppurative form:

Trauma is oftes: responsible in part for its origin; the infectio
which is always present, may come from the Eustachian tube, which affords direct continuity to the infections of the pharynx, or through a danaged membrane, or by the blood or the lymph. There is no specific microbe, for many are effective in its causation.

In acute otitis media of a simple type, the mucous membrane of the cavity is reddened, congested, and swollen, with an abundant production of mucin in which appcar degenerated cells and a few leukocytes; the submucous tissue is infiltrated with cells. The drum membrane shares in ihe inflammation, and perforation may occur. It is not easy to draw a sharp line of distinction between this and the suppurative form, into which, indeed, it frequently passes. In the latter, the secretion is frankly purulent, the inflammatory infiltration is greater, and there is a greater liability to ulceration and necrosis than before. In comsidering infective diseases of the iniddle ear, we must remember that the mastoid cells represent an extension of the antrum in the upper lack part of the middle ear, and that these cells are probably involved to a greater or less extent in the acute process, although not urcessarily to a degree which will be evident clinically. By reason of the smallness of the outlet from the colls to the middle ear, retention of seeretion in the mastoid cells is apt to occur, which retention is largely re:ponsible for the clinical signs of mastoiditis. Spontaneous cure of the discase, in fact, is to be looked for rather in the absorption of the exulate and the resolution of the inflammation than in actual drainage. Extension of the disease follows the failure of resolution or of drainage, alul tends to involve the bone in the direction of least resistance, which may lead to extradural inflammation, labyrinthitis, or infection of the laterral sinus.

A persistent infection without the formation of pus, may be the result of a simple acutc infection; the changes are chiefly of hypertrophie nature. Chronic suppurative otitis media is, however, of much grealer importance, and should be considered under two heads. In the first of these the cause of the chronicity lies in the Eustachian tube and pharyix, and the middle ear is inflaned secondarily by the persistent discharge passing through it. This type is best illustrated by the group of einses which depend for their chronicity upon adenoid masses and minarged tonsils. In the second group, the chronicity depends upon definite pathological changes in the middle ear especially in the attic, antrinn, illu mastoid, where the lining of the cavity an even the bone itwif is attacked. Herc belong the cases where the ${ }^{1}$ aing las become 'pildimized, either by metaplasia or by extension trom the cxternal aurlitury meatus, and the formation of cholesteatoma occurs. Cholertatoma is an aggregated mass of desquamated ppidermal cells and deliris accomulating from the walls of the cavity which has become line.t hy new squamous epithelium. Such are the cases in which the diwnarge is purulent and foul smelling. It is especially in this group that danger of intracranial complication exi ts and the urgency of a gi: cill cepends largely upon the particular part attacked and the
tendeney to retention, since retention leads to bone destruction. will be understool that in either of these groups the mucous membr may be considerably: hypertrophied reen to the cxtent of polyp excrescences, the ordinary aural polyps.

Chronic adhesive otitis media, which is the eommonest cause of deafn is known also as sclerosing otitis, and arises from the oceurrene adhesion between the ossicles and the walls of the eavity. Speei important is the involvement of the stapes in the oval window. Th adhesions may be the result of a former suppurative otitis or may of very slow formation from long-continued catarrhal processes in middle ear. These cases are prone to begin in childhood, at wh time the submueous tissues are normally more abundant than in ad life. Witlo ehronie inflammation this tissue is not absorbed and te to become organized.

Otosclerosis is sometimes incorrectly called "dry catarrh." It is unknown origin and depends on change in the labyrinth capsule w cxostosis, especially liable to oceur in the region of the oval winde it is important when it causes a bony ankylosis of the stapes in oval window itself. Such foci of disease may occur in the cochl when an atypical elinieal pieture of nerve deafness is presented.

Tuberculosis oceurs in the middle ear as a somewhat late manifestati of a severe infection elsewhere in the body. There is no special ehar teristie to be noted, save that the process is suppurative and attend by a rather rapid neerosis of the tissues.

Internal Ear.- Inflammation of the internal ear may be said to always secondary, either to an infective process in the middle ear within the eranial eavity: Extension conmonly oceurs from the mido car by erosion of the bony wall at some point, or extension through t membranous closures. Secondary to a meningitis, it may be infect by extension from the intermal auditory meatus or some of the lymphat connections. This imolvement, secomlary to eercbrospinal meni gitis, is perhaps the commonest cause of deaf-mutism.

Regressive Changes.-- Auricle.-The only regressive change th need lee here mentioned is the oceasional calcification of eartilage, an the tophus, a deposit of urates whieh is seen in gout.

Drum Membrane.-Atrophy of the membrane, with thinning an consequent inerased tramspareney, is noted subsequent to ehron catarrhal states of the midille ear.

Internal Ear.-Sporadically and in some families there seems to 1 occasionally a special tendency to degeneration of the cells of the spir: ganglia, leading to deafness.

Progressive Changes.-Auricle.-Thesc differ in no way from thos occurring in the skin and subepidermal tissucs elsewhere.

External Auditory Meatus.-Polypoid overgrowths of the mucos are seen, the result of inflammation; exostoses of considerable size ar found, sometimes pedunculated, often spherical. Various kinds a
truction. It as membrane of polypoid e of dcafness, ceurrence of r. Specially dow. These is or may be cesses in the orl, at whieh han in adult ed and tends h." It is of capsule with val window; tapes in the the cochlea, inted.
tanifestation ecial characnd attended
said to be iddle ear or 1 the middle through the be infected e lymphatic nal menin-
hange that rtilage, ant
inning and to clironic
ecms to be f the spiral from those he mueosa ole size are kinds of
timnors may be found, such as fibroma, lipoma, angioma, osteoma, sarcoma, and carcinoma; sebaceous cysts are occasionally present.

Middle Ear.-Inflammatory overgrowths and tumors are found with fair frequency in the middle ear. As a result of inflammation, polypoid growths with eonncctive-tissue core and epithelial covering, grow from the wall; such a growtlo is a potent faetor in the contimance of an inflammatury process that may exist. Fibroma, angioma, and adenoma may he fonnd. Sarcoma and carcinoma are rare and oftenest secondary.

CIIAPTER IX

THE DIGESTIVE SYSTEM

THE MOUTH

Abnormalities. - The most frequent and characteristic abnormal enconntered are harelip, eleft palate, defeets in the momber, arra In int, and grow th of the teeth, and abnormal shortness of the fre of the tongue (tongue tie).

Harelip and Cleft Palate. - It will be remembered that in the deve ment of the face the intermaxillary processes of the first visceral project into the processus interglobulares and undergoing fusion in middlc line, are separated on either side by a cleft from the lat frontal processes, which give rise to the lateral facial parts-this c running from the month to the orbit. Later by the developmen the nasal passages, the upper portion of this cleft becomes divi into an orbital and a nasal portion. The former becomes closed a relatively early date, the latter remains open for a somewhat lon period as a cleft of communication betwecn the roof of the mouth 8 the nasal passage of that side. Through arrested developnient encounter, therefore, these various grades of malformation, eit unilateral or bilateral.

1. Cheilognathoprosoposchisis, persistence of primary lateral fac cleft. This, the extreme conlition, is rare.
2. Median cleft of lip, without development of the nasal passag owing to lack of development of the intermaxillary (arrhincephaly) very rare.
3. Cheilognathopalatoschisis, eleft of lip, jaw, and palate, unilater
4. Cheilognathoschisis, cleft of lip and jaw, bilateral, the intermaxilla forming an isolated median projection; rare.
5. Cheiloschisis, harelip. This is the slightest grade affecting wh is the last portion of the cleft to undergo closure; is most often un latcral and on the left; the more pronounced form has associat (milateral) cleft palate.

Defects of the Tecth.-Among these may be moted: lack of develn ment of onc or more wisdom teeth, irregular position of teeth, persi: cnee of milk teeth with coincident presence of milk and permane tecth. Lack of development of the jaws to the full size leads to abno mal eloseness of tle teeth. Some recent writers ascribe the increas irregularity of position and protrusion of the front teeth to the emple ment of infant "comforters"-dummy rubber teats sucked for liou at a time.

Hutchinson＇s teeth is a condition affecting the upper central fin－ cisors of the primary sct．These are stumpy，of yeg shape，with a roncavity of the cutting edge；they are frequently ridged and dis－ colored．Hutchinson regarded them as a sign of congenital syphilis； while they occur in true congenital syphilis，it is debatable whether they are not also a paras ${ }^{-}$．ic development（see p．57）．Nor are they wholly pathognom

Deferts of the Teeth．－T +2 reing met with also in rickets． delavel speech；it is remediable tie is not uncommon，leading to malformation of the tongue is macroglossia，or ical operation．A rare brought about by congcinital obstruction of the
Circulatory Disturbances．－While not infrequ
nizable，these call for little special note，save as a reminder that the appearance of the lips and gums affords valuable indications of general anemia or hyperemia．
Inflammation．－According to the part specially affected we speak of stomatitis（inflammation of the mouth），cheilitis（of the lips），gin－ givitis（of the jaws），and glossitis（of the tongue）．Considering how the mouth is exposed to infection and trauma it is remarkable on the one hand how relatively rare are serious inflammations of this region． In other words the protective mechanisms are here highly developed． Wounds of the mouth heal in general with extraordinary rapidity．＇This doc＇s not mean that inflammations of various orders are not met with； on the contrary．Some of them，too，are characteristic and deserving of notice．More particularly it would scem that the mouth is markedly influenced by disturbances affecting the other portions of the digestive ainl respiratory tracts．Here may be mentioned the herpos labialis that frequently accompanies lobar pneumonia，and the catarrhal glos－ itis accompanying intestinal infection．As a class general infections exhihit an associated inflammation of the buccal mucosa，and the con－ dition of the tongue and lips，varying as they are apt to do in the dif－ firent infertions，is employed as a valuable diagnostic aid．We would ruall Koplik＇s sign in ineasles（the appearance of punctate hyperenic． apits of piuhead size，often with a paler bluish centre on the mucost if the checks and lips．These may bepresent hours or days before the Nevelopment of the skin rash）；the strawberry tongue of scarlet fever dife to intense congestion and swelling of the papille with loss of the ＇pithelium over them）；the catarrhal exudate upon the tongue，lips anl wims of the typhoid patiert，which accompanied by extreme Jrymos of the mouth leads to the production of sordes，dry，dirty lowhing，superficial deposits．Cases are on record of a vesicular stom－ resembling in its characters those of the highly infectious＂foot mu，ith disease＂of cattle and brought about by drinking the milk fiected animals．In smallpox，chickenpcis，and erysipelas also，when minth is offected，a vesicular and later ulcerative eruption may be ， 11 ．
Wher characteristic forms of inflammation of the mouth are：

Thrush.-This is a form of spreading membranous stomatitis, be ning on the tongue and mucosa of the cheeks, found in infants greatly debilitated adults, following it would seem the acid ferme tion of milk and starcher foods, and cansed by the superfieial gro of a fungus, the Oidium albicans. Begiming on the surface of epithelium the fungus inay extend into the deeper structures.

Stomatitis.- Aphthous stomatitis is charucterized by the formation aphtho, yellowish-white, thin, rounded plaques standing ont against reddened mucosa of the cheeks, lips, tongue and bases of the gums not on the gums themselves. These would seem to be of the nat of a fibrinous exudate. This condition is most common in poo nourished children at teething and after acute and weakening disea (bronchopneunonia, whooping cough, etc.), but also may occur pregnant women and in men after exhausting disease.

Ulcerative stomatitis shows itself most characteristically in the ja and around the teeth. The gumis become codematous and spon easily bleeding and breaking down. With this the teeih are apt become loosened. The jaw hone may be exposed and undergo necr and the ulcerative process become very extensive. The condit is met with in scurvy, as also after poisoning with phosphorus, and copper. With phosphorus the liability to necrosis of the jaw bo is very pronounced.

Noma or gangrenous stomatitis is a very acute and fatal condit beginning usually on the cheek and rapidly spreading, with inte congestion and odematous swelling of the affected parts, and ra necrosis. With rare exceptions it affects poorly nourished and we ened children. The rapid gangrene is very striking and suggests sol specific agent, but that there is such has not yet been determin Several workers have encountered the "bacillus" fusiformis with accompanying spiruchete. Others have eneountered the diphthe bacillus. Suppurative stomatitis with the development of abscess more particularly in the substance of the tongue, is comparatively ra

Among the more chronic conditions are to be noted:
Ler-koplakia.-Leukoplakia is a condition following chronic irritatic characterized by epithelial overgrowth and thickening and the form tion of plaques of a whitish appearance on the tongue and muco inembrane of the cheeks. aere is here superficial cornification of thickened epithelium. Thin condition is seen in sunokers, alcoholi and not infrequently in the affected with syphilis, and may be extensive as to give rise to the geographical tongue. There is a distin tendency in these cases to the formation of intractable fissures and slo ulceration, which may pass on to the development of epithelioma.
Syphilis.-Syphilitic lesions of the mouth are relatively commo more frequent than tubercular. They may be (1) primary, the chanc appearing on the lips or on the tip of the tongue; (2) secondar as an erythema, diffuse or in circumscribed patches leading mo particularly on the lips to fissures and erosions. Mucous plaqu
atitis, begininfunts and id fermentaficial growth rfaee of the res.
formation of t against the he gums hut f the nature n in poorly ing diseases ay oecur in
in the jaws and spongy, are apt to ergo neerosis e condition phorus, lead he jaw bone
al condition vith intense , and rapid 1 and weakggests some determined. ais with its diphtheria abseesses, atively rare. ie irritation, the formaand mueous ation of the , alcololies may be so is a distinct es and slow lioma.
y common, the chancre seeondary, ading more ous plaques
maty appeur during the secomdary stage or later in the disease. These mny be present on the lips, cheeks, palate, and elsewhere. At first there is a warty or condylomatous thiekening. This tends to break down, leaving slaallow ulcers whieh henl, leaving considerable -arring; (3) summas, the eharacteristie tertiary manifestation. These show themselves in the substanee of the tongue and on the gums.
Tuberculosis.-T'ubereulosis of the mouth is rarely primary, and its sat is the tongue, and here most frequently literally; along the edge. the tubercles tend to brenk down, leaving uleers with thickened and swollen elges, not so huril to the feel as those of earcinomatous uleers.
Actinomycosis.-Aetinomyeoss in man, from our experienee, starts mo.t frequently in the elieek, though eases nre found in whieh, as in cattle, the growths begin in the gums und extend into the bone. Leprous nudules may show themselves beneath the muensa of the mouth.
The three chronie eonditions most liable to be eonfused in eonneetion with the mouth, and more partieularly the tongue, are tubereulous ulerrs, tertiary syphilitie ulcers and epithelioma.
Progressive Changes.-We have already referred to leukoplakia, a comlition of overgrowth and thiekening of the squamous epithelium covering the tongue. Of the tumors proper, the connective-tissue gromp (fibroma, lipoma, myxoma) is oceasionally eneountered. The turme epulis is employed for rounded tumors of benign type projeeting from the gums. The term thus ineludes fibroma and giant-celled myeloma (or sareoma). Rarely do these take on very malignant propertics. The mouth is lined by squamous epithelium, and thus the typical epithelinl tumor from this region is the epithelioma, or squamous relled cancer (p. 269). Sueh epithelioma may affeet the lips and the tomple, more rarely the gums. The eharaeteristies of these epithelial tumbrs are the formation of well-marked eell nests, with extensive surerficial ulecration and the relatively rapid involvement of the lymph muder: at the base of the tongue and in the neek.
Epitheliona may also nrise from the upper portion of the pharynx and orcasionally from the lower portion above the laryngeal opening, in which case the epithelial origin is from the sinus pyriformis. This firmin is diffieult to distinguislı from primary cancer of the larynx. Kamman lays down that while laryngeal eancer is for long unaecompanicil hy any secondary growths in the eervieal lymph nodes, pharynyeal (aurner is apt to be aceompanied ly a relatively ormous infiltration of these nodes.
Teratomas are oeeasionally eneountered growing from the pharynx epignathus, p. $6 \overline{3}$), or from the palate. Oceasionally within the tunywe sulstanee posteriorly may be eysts developed from the primitive thrreghossal duet or from an aberrant proeess of the same, the so-called "Burditalek's glands." These eysts may be lined by a eiliated epithrtinm. Other eysts may oceur in the ducts of the salivary and mivnis glands through obstruetion and retention of their seeretion. The w-ealled ranula oeeurs in the neighborhood of the frenulum, and is
said to be duc to a dilatation of the duct of one of the Blaudin-N mucons glands in this neighborliool.

Nearly every form of benign tumor has been orresionally descri in connection with the soft pulate, phuryux, und tousils; fibrom chondromas, lipomas, angiomas, und, as alrcally noted, toratomas (e nathus, p. 65). The most cominon growth, und that most of appearing in children, is the nasopharyngeal polyp. These tum are of the same order as the nasal polyps already deseribed. is worthy of note that the latter may frequently project into upper pharynx. Of the maliznant tumors, large and round-cel sareoma of the tonsils and pharynx are occasionally encounter Epithelioma may also originate over the tonsils, and is peculiarly to lead to extensive ulceration, with erosion, and liable to cause des from involvement of the carotid. It is distinguishable from a chan of the same region by its undermined edges and more nodular floor As might be expected from the abundance of lymphoid tissue the pharynx, the various orders of lymphosarcomatous growth encountered in this region. Thus in lcukemia there may be overgrow of both the tonsils and the general submucous tissue of the phary Very similar overgrowth may be encountered in the preleukemic aleukemic conditions, while, further, lymphosarcome may show its primarily in the tonsils, and then is apt to be rapidly infiltratin Such growths are very vascular, easily break down, and lead to gangre and hemorrhage.

THE TEETH

A few words should here be given regarding discased eonditions the teeth whieh the ordinary medical man is apt to negleet, althoug we are eoming to realize that they are of material influence upon th gencral health.

Caries.-Carics is the comınonest of thesc disturbances. Tl process is due to a progressive decalcification and destruction of th substance of the tooth. It is brought about by the agency of micr organisms which, producing acids, dissolve out the calcium salts. Thes hacteria gain eutrance through erosions of the enamel and grow alon the canals of the dentine. While this is the case, it has to be recognize that the tooth is not wholly inert matter, and that its power of resist ance to this microbic invasion varies greatly. French writers, mor particularly of late, have called attention to the fact that during preg nanev, and in the early stage of tuberculosis, there is a distinct lower ing of the gencral calcium content of the organism and coincidently marked liability for the rapid supervention of dental caries.
Pulpitis.-Simple caries is unassociated with pain, but where it present microörganisms have penetrated along the dentine canals $\|$ the pulp and there set up an aeute inflammation that is intensely painful. The exudate may be of suppurative type and so form an absec-
destroying the pulp and extending to the root of the tootll and so to the alveolus, inducing an alveolar periostitis; or again the pulp cavity remaining elosed, the abscess may make its way (1) through the bone of rither jaw, usually on the outer aspect, and here either diseharge itself or undergo absorption; or (2) nbseess of the upper jaw, notably of the canine teeth, may extend upward and set up acute inflammation of the antrum of Ilighmore.
Pyorrhea Alveolaris.-This is a form of low suppurative alveolar preriostitis, originating, it would seem, not from the root of the tooth, but at the angle between the gums and the teeth and gradually working downward, loosening and leading to the falling out of tooth after tooth. The condition is in general puinless, and apt to escape notice, save on examination. This condition has come in for increased recognition of late years owing to the teaching of Hunter and others. It is held that the constant discharge of the infected pus and the swallowing of the same leads to a low and continued form of gastric inflammation which, in its turn, is responsible for the supervention of grave anemia. To supurative conditions in association with the teeth have also been ascribed the oceasional development of aspiration pneumonia, gangrene of the lungs, and chronic swelling of the lymph norles in children.
Sinch pyorrhea is said to be often preceded by tartar of the teeth. This is a very common affection and easily set up if the mouth be not wavird out after meals. Portions of food, cell debris, etc., collecting in the angle between the tooth and the gum beeome the seat of growth of Ieptothrix and other bacterial forms, and, as noted on page 315 , rallareouss salts are apt to be deposited in the broken-down material a) that al calcified layer of extraneous matter coats the lower part of the tooth. If left, as the epithelial scales are given off from the surface of the gimi and are prevented from being swept away by the caleified matter ibove, these dead cells in their turn become the seat of a cal(armms deposit, and so the tartar appears gradually to push its way luwnward separating the tooth from the gum.
Tumors of the Teeth. -The development of the tooth as a differminiated portion of the epithelium of the jaw is a complicated process, and herce quite a series of tumors may develop from one or other portim. These tumors may be either solid or cystic. Of the former, thro. may be localized overgruwth of the enamel, adamantinoma, exces--ive hocilized development of the dentine, odontoma, of the cement -uhtimee, dental hyperostoses, while from the root of the tooth there maly be cither conncetive tissue or epithelial growths. Kaufmann divides the eystic overgrowths which may be found in the jaw as follows:

1. Tooth cysts.
l. Root cysts.
(1) Simple.
(2) The periosteal cysts of the jaw.
r. Multilocular cystomas.

The simple tonth cysts originate from normal ore acee esory toutho or misplaced portions of shels germs. Therse rasts, limed hy an en limen, are most often milocular, but may be multilocolar, and they contain rudiments of tereth.

Root eysts are the resint of periontitis of the root.
The multilocobar eysts are thin wallerl, eausing absorprion of the of the jaw with great swelling of the same.

SALIVARY GLANDS.

Inflammation. - The most important condition i!: associa witl the sali:ary ghands is angina ludovici (evinathe). This very acute inflammation of the foor of the monta and of the u portion of the nerk, whiell is supposed by many anthorities to origi from the submaxillary gland. It is a rapidly extending infiltra the surrounding tissues tending to suppuration and gangrene, an is liable to end in a general bactorimia or fatal corlenaa of the glo

Mumps or epidemic parotitis is a highly infeetious condition charac ized by pronounced enlargement of one or both parotial ghands accompanied by a moderate grade of fever and general disturba That the infection is not merely local and confined to the paroti slown by the frequent coincilent orchitis in the mate and by an infl nartion of the coarics or mammae in the femate. The discase n particularly affects the mule sex before the age of twenty, and the parotid is apt to be more involved than the right.

Tuberculosis and other specific inflammations of the salivary gla are relatively rare. Concrements (sialoliths) forming in the du of the salivary glands are oceasionally encountered. These re from catarrh with obstruction.

Progressive Changes. -Tumors, inore partienlarly of the parotid, fi a complicated series of growths, nor can it be said that the exact relati ship of the series has been fully established. Oceasionally we eneour pure adenomas and pure adenocarcinomas; more frequently ther an almixture of cell groups of very different types, what appear be epithelial elements intermixed with fibrous, cartilaginous, or m actively sarcomatons developments. As a rule, these mixed trmors gr slowly, and while they are apt to spread locally, despite their malign: appearance they show little tendeney to reeur upon removal. II particularly these tumors are apt to show eells of the connective-tis tupe, or sarcomatous, in definite relationship to the vessels of the pi the so-called perivascular endotheliomas or peritheliomas ($\mathrm{p}, 2 \mathbf{2}$) , where the outrr masses of cells undergo hyaline degeneration (cy) dromas (p. 283). It is often difficult to come to a determination whet the alveolar masses of cells of these mixed tumors are of epithe or endothelial origin. We are inclined to state that no satisfact, or generally accepted explanation has been afforded for the frequen
touth germs lọ um epithe－ mid they may． on of the bone aswocintion
＇This is a of the upper sto originate g infiltration， grene，and it of the glottis． on character－ 1 glands and disturbaner． he parotid is be at inflati． disense more ，and the left
livary glands n the duet． These result parotid，form ract relation－ we encounter atly there is at appear to ous，or more tumors grow ir malignant oval．More ective－tissue of the part， （p．232），or ation（cylin－ tion whether of epithelial satisfactur． te frequency
of these mixer growths of therticular region．＇Tumors of the same urifer，thongh rure，huse b．deseribed in nssonintion with the sul）－ masillary ghmad．

the esophagus

Xontwithamerling its exposed condition－its liability to infection from fund oubstances anul discharges swallowerl from the month，its liability alon tu tranmatism from the food，affections of this organ are rehativery menemmon．In other words the lining spuamons epithelimm is endowed ＂ith consideruble rasisting powers．When it is involiod in disernse
 the wophagus us show themestees are of very eonsialerable clinical impurtalice．

Hure rertain anatomiand dutn may be recollerl．Averaging 95 an． ＂r li inehes in length in the meluht，the arsophngend tube is pressed upon
 wrigin the theft bronchus which erosses it，annl shortly hefore its termination in the stomath it mases thronghame is apt to be eompressed bey the diaphrogm．It is at these points of relative narrowing that irritant materer taken with the foorl is apt to sutfor relative urrest and there，therefore，wre the sites of clection for morbid states．In the mprer portion the misele is strinterl，in its lower phain and involnotary． I－thronghont the digestive truct this musele is arranged in ann outer
aritulinal and inner cireular layer．There is ako a wedt－developed aris mucosie＇The mucusit is formed of a squamons epithelium ＂n：：：＂isional mucous glands．In ：ome lis per cent．of normal indi－
hamin small istands of cellimericu－celled epithelium are entountered ＂pper half of the renphatis．On section，thess closely resemble the wantric mincosa，and ha ；bres：cegarled as such，by some anthoritics． schrifthe has pointed out，however，that the originally cylinder－celled phithlimm of the forgut gives rise to varions orders of epithelium， anl that in these istands it has procceded to develop into a cylinder－ whini unlification rather than mon a squmons－celled；these are not L：A－1＂：will－rests in the proper sense of the term．

Maiformations．－These ure uncommon．There may be complete absence（ancusia）or in part the tube may lee represented by a fibrous wrol．the．（rersm thus forming a blind sac．Oceasionally there is M川mminati with the tracbea．Partial or complete duplication has berti rerorded，h．lized narrowing or stenosis，and the presence of a fohl ir diaphriz．，causing occlusion．It must be remembered that the reviratory system originates as a diverticulum from the primitive furemat，and ocensionally we encounter cysts in the upper thanal Hin：In twren the cesophagus and the trachea，lined by cilinted rpithe－ lin！e we find isolated accessory masses of lung tissue immediately alm，thr diapliragm．These must be regarded as originating from sicrery respiratory diverticula．

$$
\therefore
$$

Acquired Malformations.- Oceasionally in hysterical individuals and nervous states contracture of a portion of the oesophagus is brought about by muscular spasm. Whether from sueh continued spasm, or from acquired stenosis (by pressure from without, by new growth in the wall, or by cieatricial contraction after an inflammatory process), the portion above the site of narrowing undergoes dilatation. This dilatation is sometimes enormous. Idiopathie dilatation has also been observed. A similar condition has been produced experimentally in the dog by cutting both cervical ragi.

In addition to this generalized dilatation we recognize also local dilatations or diverticula. These are of two orders, the so-called pressure and traction diverticula. The latter are not uncommon, their usual site being on the anterior wall just below the bifurcation of the trachea. They are clearly associnted with tuber ulosis and other inflammatory disturbances of the group of lymph nodes situated in the angle between the two bronchi. As a result of this inflammation the tissue around the noles is involved and fibrous bands or adhesions are developed between the nodes and the oesophageal wall. As a result with each peristaltic aet, in swallowing, the osophagus is pulled upon at this point and gradually a small expansion or saceule becomes developed.

The pressure diverticula are rarer. These oceur at or in the neighborhood of the middle line on the posterior aspect of the osophagus close to its origin. At this poini the muscle wall is at its weakest. The usual teathing is that throngh the pressure of a large bolus of food the mueons coat becomes pressed outward through a defeet in the muscle wall and soon a small amomit of the ingested food or fluid collerts in the lower portion of such an expansion, so that with the successive acts of swallowing the diverticulnm gives way more and more; more and more foonlstuff collects in the lower portion of the saccule thus formed, until gradnally from the weight of this food and the irritation and weakening of the wall of the sac produced by the same, there is developed an clongated, hlisd sare, cextending downward on one or other side in front of the vertebral colnmo, it may be for several inehes and even into the thoras. 「sually no musele fibres are found in the walls of this sac.

In this eommertion we may note certain other acquired conditions. Rupture is rare. Perforation may oceur from swallowed bone, ete., from erosion, from stphilitic and canecrons uleers, at the base of traction diverticula, by pressure of retained foreign bodies, or by extension of inflammatory conditions from withont (cascous tobereulous glams, anemrysm, etc.).
Post mortem softening and rupture may he brought about by the action of the acid gastric juice. This may neeur where there is relatively sudalen death, with full digestion. Very rarely may this digestion occur intra xitam, with the prodnction of ulecrs at the lower end of the asophagus of the same order as the peptic ulcers to be described later.

Circulatory Disturbances.- Of these the most noteworthy are the greatly distended varicose submucous veins of the lower extremity of the organ, seen in conditions of obstruction of the portal circulation, and, especially, in cases of portal cirrhosis of the liver. They are due to the development of collateral circulation through these veins between the portal system and the vena azygos. These lie so immediately beneath the surface that mere passage of fool may lead to their rupture and fatal hemorrhage. In elderly individuals slight varires are not infrequent at the upper end of the cesophagus.
Inflammation.-In cases of general infection the osophagus is rarely fomm involved. For example, while there may be an intense and extensive pharyngeal diphtheria extending down the respiratory passages it is very rarely that the oesophagus also shows a false membrane. It is rare also to find this organ the seat of either tuberculosis or syphilis. On the other hand, extensive inflammation may be set up from irritating food and by the accidental or purposeful swallowing of very hot water, lye, alcils, etc. These may lead in the milder cases to an acute desquamative catarrh; in severer cases to necrosis and ulceration of the epithelimin, more particularly at the regions of narrowing already noted. After such alteration, with eicatrization there may develop stenosis of the tube, with all its consequences. We have repeatedly confirmed the observation of our late colleaguc, Prof. Wyatt Johnston, that the conlition of leukoplakia-streaks or patches of epithelial thickening and hipertrophy-is commonly to be met with in chronic drunkards. Here it wonld seem that we deal with a chronic inflammation of low grade, leading to epithelial proliferation. Other conditions of chronic ealarrh, as for example, that associated with chronic passive congestion, may aloo te a cause of this condition.
Progrissive Changes.-Tumors.-Benign tumors, mucoid polyps, myomas, and lipomas are relatively uncommon; so also are sarcomas.
The one frequent tumor is primary carcinoma. This in the majority of cases is of the nature of epithelioma, originating from the squamous epithelimm of the organ. Occasionally we encounter medullary adenoframoma originating either from the mucous glands, or, it may be, from the above-mentioned islands of cylindrical epithelium. There are thre main sites at which such a tumor may develop, namely, one of the three points of narrowing already noted. The statistics from lifldrent regions vary regarding the frequency with which one or other regin is involved. Onr own experience favors the middle region ain thre most common site, but many state that the diaphragmatic narrming is most affected. The slower growing forms do not project extunively into the lumen but are apt to encircle it and become scirrhous, ther ind inding stenosis and obstruction. With the passage of food Hant, lat liahe to break clown in their central zone, forming thus a the th: hulere with thickened raised wall, the tumor infiltrating beneath that inil and extending also into the deeper layers of the tube, so that "I progressive ulceration there may be rupture into the medi-
astinum or thoracice cavity: Through infiltration upward and downward the growth may extend a considerable distance. Softer adenocarcinomatous growths, on the other hand, form large masses projecting iuto and blocking the oesophagus. The bronchial nodes are especially liable to be che seat of sccoulary growtlis; metastases at a distance are relatively uneommon. By direct infiltration the trachea, lungs or vertebre may be involved. It will be understood that through the passage of food over the uleerating surface, gangrenous conditions extculing into the neighborhood are liable to supervene.

THE STOMACH

The stomach is of the nature of a pronotinc: dilatation in the eourse of the alimentary tube. This tube in early foetal stages las a comparatively direet course in front of the future vertebral column, but, with further growth, that portion which is to be the stomach both increases in length so as to form a loop downward with what is to be the pyloric end remaining relatively fixed, and at the same time undergoes distension and some rotation, so that what had been the posterior aspect comes to correspond with the greater curvature tuming to the left and forward. The wall eonsists of three main layers. From cither side of the vertebral column the peritoneun passes to it to form a mesentery, whose two layers separate to cover it and join again along the low're aspeet, now forming the great omeut un, which passes flown and ri turus to the vertebral column, whence again it is reflerted ower the transurese colon.

Bencath the serous conat is a loose comective subserosa. The musle layers are well developed, consisting of an outer longitudinal, an intermediate, somewhat ill-rlefined oblique laver, originating from the former, and a cireular layer. At the distal emel of the stomach the musenlature mulergoes a marked increase so as to form a sphinctor, the pyloric ring. The mocosa is relatively very thick, consisting of a
 tions. These ghands form simple and often in the paloric portion. forked tubnles, differing in their constitution in the cardian and the plorie regions respectively. The cardiale region may present two orlers of cells, mamely, the more regular colinlrieal chief eells, giving origin to a pepsin-rontaning serretion, and the angular or polygunal oxyitic eclls, with a more prephoral position, giving origin to the acid of the gastric juice. Thesis latter cells are wanting in the pelaric ciartion of the stomach.

Between the varions glame tubules and again between the memena
 with oreasional solitary lymph modules. In the resting or contra ted state of the stomach the muerosa cexhibits a series of longitudinal : Wh or rugie.

As demenstrated by Cannon's method of fluoroscopic examination, ufter giving foorl mixed with hismuth the stomach plysiologically. cminits of two distinct parts: first, after a meal the cardiae half is dismuded, the pyloric contracted, and only us the food becomes disinteryated through the acid cardiac secretion does constriction of the ory:ll at its centre slowly give way, permitting the food to pass into the pytoric half, the cardiac portion now contracting. Following npon this the peloric ring opens, permitting the softened food to pass into the dhodenum.
Abnormalities.-Cases are on record in which the organ in the adult lias leern so small as to contain little more than an eggeupful of fluid, and others of entire absence. More common is almormality of position with sulle perssistence of the vertical relationship of fartal life. The most importint abmormalities are congenital homrglass constriction and pyloric stennis. Care must be taken to distingnish between three orders of hourglass stomach: (1) as demonstrated by Camon's bismuth experiment, during the comrse of normal digestion there is a stage in which the cardiace is cut off from the pyloric portion by contraction of the middle zone of musele and at times we finel the stomach in this phase at antense. This physiological hourglass state can be reduced by distomding and kneading the organ; (2) occasionally there is a state of cmurenital h_{1}, ertrophy of the mid zone of muscle, the truc congenital hourchans state, and lastly (3) the cientrization and contraction of an old miter of the lesser curvature, which constricts the mid area, canses in identical appearance. The state of pyloric stenosis, may similarly In either of congenital or acquired origin. The former manifests itwif in infancy with symptons of gastric ohstruction, dilatation of the -wnarch, vomiting, etc., and on operation or at autop:s: the ohtrinctimin is fomm due to extensive hypertrophy and contractire of the Ph hrier ring. The latter is oftell not a true muscular hypertrophy, but a filroms overgrowth: in two cases we have found it to be of the mature of an arrested scirrhons cancer with abmodent dense stroma and ratre itruphied cancer cells.
Circulatory Disturbances.-Anemia is most often a part of general allumian if gradnal prohuction or from rapid loss of hoond. Aetive hyperemia follows the reception of irritants into the stomach and is wefl win in the early stages of acute gastritis.
Passive hyperemia is relatively frequent, manifesting itself in all Thy untructive liver disense, and to a less extreme extent, though till - whedly. in ohstructive heart disense. In the former case, noticeahl rirrlusis, the congestion is associated with the development of at whltral virenlation through mastomosess with the asophageal
 a hin lrumic type of gastritio.
minh orrhages ate not infrequel:t. They may be either (1) mimute, thr: - Antin int meininsumems, or (2) munte and frer, constituting mulsede 11 interom the ach the hinuter, ug of : vagin:!portion mill the 1t + wi giving Yynnal he atill p. luric ille: Aitinn of diffinse hemorrhagic oozing, from vessels so smailh as
to be invisible to the eyc; or (3) solitary, gross and free, leading to great sudden loss of bloorl and tending to be rapidly fatal. Minute hemorrhages, eechymoses, are seen in many diffcrent conditions: (a) in hemophilia, passive congestion, acute catarrhal gastritis, where thete has been severc vomiting, phospheris and arsenic poisoning, conditions, that is, associated with dilated or degenerated states of the capillary; or (b) they may be the result of a nervous or neurotic dilatation of capillaries as in hysteria and (probably) the gastric hemorrhages of pregnancy, or (c) they may follow the erosive action of caustic substances that have gained entrance in the stomach or (d) they may be sceondary to multiple emboli into the gastric arterioles, or thrombosis of the larger gastric veins. The beginner must be careful not to eonfuse with these the common condition of apparent liemorriage along the gastric vessels brought about by post mortem digestion, and duc to diffusion of hemoglobin and changes occurring in the same.
The submucous hemorrhage is apt to induce necrosis of the immediately overlying mucosa by cutting off its nutrition. While the gastric juice can cxert no influence upon the living cells of the mucosa, dead mucosa is acted on by it; there is in fact no difference between it and the dead aninnal matter that may be introduced into the stomach as food. It follows, therefore, that the state of multiple hemorrhages tends to give place to tiat of multiple hemorrhagic erosions. We shall describe these more fully under the regressive changes. We would suggest tentatively that whether there be developed easily recognizable subnucous hemorrhages with little evidence of erosion, or on the other hand liffuse oozing with little or no indication of submucous hemorrhage is prolably determined by the acidity and activity of the gastric juice. When this is poserful, so soon as a small area of the mucosa is of depressed vitality through underlying vascular disturbance, it becomes digested and remowed, affording a minute ulecr with a bleeding capillary at its base.
Gross hemorrhages may be brought about by the rupture of a relatively large vein in passive congestion (most often in cirrhosisthe rupture affects not the gastric but the lower (rsophageal veins). Conumoncr canses are carcinoma and rmul ulcer. The very nature of the cancerons growth determines that where it infiltrates the surface the ont ermost layers are apt to be poorly nourishell, to undergo necrosis and ulecration. The digestion, therefore, of the neerosed matter is apt to expose some derp vessel, weaken its wall and favor hemorthage. In the peptic ulcer there is a similar process of uereosis, ulceration, : ind exposure of a decp vessel (see p. is36).

Blood discliarged into the stonnach and mixed with gastric juice takes on rapidly a brownish coffee-ground appearance owing to the action of the acil upon its hemoglobin.
Embolism and thrombosis, as alrealy indicated, may involve the gastrie vessels; we shall take up their effects in discussing the potic nleer.

to great

 e hemors: (a) in ere there g, condi. s of the neurotic chemorof caustic hey may r thromul not to norriage ligestion, he same. lediatelygastric sa, dead and the as food. tends to describe suggest ble sube other orrhage ic juice. sa is of becomes apillary
fa relaruptıre mmoner he calle outersis and apt to ge. In on, ind
r. the M, itic

Inflammation.-Acute Gastritis.-The historical studies of Beaumont on the stomach of Alexis St. Martin have taught us how easily errors of dict induce inflammatory changes in the gastric mucosa, an overdose of aloolol bringing about acute hyperemia and even the development of a vesicular eruption, with discharge of greatly increased amount of пинis. Acutc catarrhal gastritis is characterized more particularly by this pouring out of abundant mucus from the goblet cells, along with other mollifications in the composition of the gastrie juice, notably. dimimution of the hydrochloric acid. The nucous membranc is hypermic and may show ecchymoses. Histologieally, in addition to the citarrhal inflammation of the mucosa, there is a small-celled infiltration of the submucosa with marked congestion.
Phlegmonous Gastritis.-This is a rare and fatal condition characterizel by the formation of subinueous abscesses which, sprearling, separate the mucosa from the underlying tissucs. With its necrosis the pus is discharged into the stomach and ragged ulcers develop. In most cases the condition is of streptococcal origin and is one manifestation of the premic state; in others it is idiopathic, unassociated with abscess formation elsewhere. Drunkards show some predisposition to this form, presmmably as a complication of subacute gastritis.
Membranous Gastritis.-Membranous gastritis is also rare, apt to he rmomiteral more particularly in the newborn and young children, in whom, indeed, truc gastric diphtheria has been recorded.
Follicular Gastritis.-As rare or rarer is follicular gastritis with pronomucel culargement of the small lymph follicles usually present in the submueosa.
Chronic Gastritis.-Clironic gastritis may be broadly of two forms: (1) liypertrophie and (2) atrophic. The first of these is seen more particularly in alcoholics and those suffering from chronic heart and liver diseases, although it may result also from any chronie irritation of the stomach, as from dyspepsia and prolonged retention of food in the stomach with delayed and perverted digestion. The mucosa is recornizably thicker than usual, of larker color, with at times some pismentation, the result of imperfectly absorbed hemorrhages. There is increased murous production and discharge, but what is most characturitic of the eondition is the coarsely granular appearance of the surfar: when the mus us has been washed off or otherwise removel.
I meter the microscope there is found a distinct thickening of the subminwol with rongestion and cellular infiltration; the infiltration and impreneml tibrosis extend between the gland tubules, which are further appirt than in the normal organ. The mueosa itself in this form is well preserved and the coarsely gramular appearance is due to closely Imen, 1 are as of slight overgrowth, both of gland tissue and stroma.
Hhw more typical cases give place to others in which the mucous an. whmen lypertrophy takes on a papillomatous form, gastritis polypesa. Whether this polyposis is always the outcome of chronic ir " "nn is questionable, but in some cases in which it is found there
is definite history of such, in others the polypoid masses appear to orig inate from the edges of healed ulecrs. It is possible that a proportion of cases represent a blastomatoid condition-a tendency, that is, diffuse papillonatoms overgrowth upon minimal irritation.

Atrophic gastrits may be the outcome of a fibroid hypertrophic gastritis; the atrophy of the glamhar elements, that is, may be due to arrest of nomrishment her the underlying owergrowth of connective tissue. In a considerable proportion of cases there is no very prononnced submueons fibrosis, but both mueosa and submucosa are diminished. It may, indeed, be questioned whether they would not be better phaced among the regressive disorders than among the inflammations. Microscopically the gastric glands are greatly shortenol with large lumen and cells relatively shrmaken. The condition is not infrequently found associated with pernicions anemia and marantic conditions.

Specific Infections.- Of the specific infections tuberculosis is rare and never primary. Syphilis is also rare thongh ulerrations are occasionally observen, and the marasmus of the syphilitie chila has been ascribed in part to the existence of subaente or chronic gastritis. Gastrie actinomycosis and glanders have been recorded. Lleeration of the rare solitary lymph follicles of the stomath is one of the curiosities of typhoid fever.

Regressive Changes.-Of degeneration proper there is little that calls for further mote, save that calcareous deposits have been deseribed as occurring in the mucosal. Of greatest interest is the series of necrotic changes that may involve the mucosa and the varions ulcerative processes from simple hemorrhagie erosions to the perforated peptic ulecr.

In speaking of phlegmonons gastritis we have already indicated that there may he ulecration of inflammatory origin in the stomach: the most common uleers eneomitered in this organ are non-inflammatury. They are clean cut and upon mieroseopic examination the edges show little evidence of congestion and little or no small-celled infiltration. They are peptic ulcess due to the digestion and removal of an area that has become necrotic, and of these we recognize two main orders: (1) the multiple small and (2) the solitary or few large, the latter constituting the round uleer. The ordinary text-book takes little note of the former, but we have enconntered no less than six examples in the course of 1500 autopsies together with others that appear to be the early stage of the developnent. In this form there are found from fifteen to fifter or more small areas of loss of tissue of irregular shape and from 1 to 5 mm . across, most often in the middle zone of the organ, hut at times inore in the cardiace, at others more in the pyloric regiom. Ther have pale, clan-cut elges and in general a smooth base formed of the submucosa or at most the muscularis. Their abundance and small size give the lining of the organ a decidedly moth-eaten apparance. Very rarely do they perforate. In mone of the cases can we recall that there were any symptoms calling attention to stomach
tromble; no hematemesis, no melena. Ther have been associated "ith typhoid, peritonitis, and operation for the same, portal thromlmanaml in one case with premia, in two with multiple infarets in the hidners, spleen, etce. One gromp of these cases is associated with submbeons hemorrhages and belongs to the order of hemorrhagie crosions, for we have in our collection intermediate cascs showing abundant -mall, submueons hemorrhages and intermingled with them numerous rarly uleress of this type. The muensa over the hemorrhages has undergone neerosis and digestion, and ulcer formation has been the result. Inother gromp shows no sign of hemorrhage, and the presence of emboli Newhere suggests that here the condition is due to multiple minute cmboli of the branches of the coronary artery. In one case the ulcers accurred along the course of the bramehes of a thrombosed coronary win. We must admit, therefore, that anything which eauses local death of small areas of the mucosa becomes a cause of these conditions prowiled that the gastric juice retains its activity. Recently our (mblenges, Drs. Rhea and vom Eiberts, have demonstrated in one case of widesprewil capillary oozing from the stomach wall that here existed multiple microscopic uleers, the loss of tissue on the surface being very murh less than in the mulerlying mucosa.
Round Uleer.- The more familiar round ulcer has the following charantoristics; it is strikingly clean ent, when small (2 to 3 cme across) it is ronnd, when large it may be of iric;ular shape; it is often solitary, but there may be two or three present; it B sharely punched out and when -mall, is, if we may so express it, of a terraceil, funnel shape, more of the monesa being involved than of the submucosa, of the submucosa than of the muscularis (if it penetrate thus far). Its exient correvinht, that is, with the area of distribution of one of the gastric arteriwhe, Its walls show no signs of inflammation in the carly stages; liter with repair and the process of cicatrization these may be present.
One of two dangerous complications is apt to attend the development of this fiom: (1) hemorrhage, often fatal, from digestion of the artery of nuply of the neerosed area down to the region where this has become wind and and (2) petoration, with escape of the gastrie contents and "Mrrmition of peritonitis. Many of the ulcers fail to perforate freely, owing to the fact that with thinning of the stomach wall, adhesive inflamation is apt to be set up between the base of the ulcer and the panman, liver, or other neighboring visens. In this case the digestion and 1 wrforation may extend some little way into the adherent organ. Frew priforation is most apt to oceur when the ulcer is situated on the frome wall muler the left lobe of the liver near the pylorus.
Ifin, hi!! of Round Ulecr.-As to the canse of this form of ulcer there fir- lim abundant hypothesis, nor is the matter by any means settlecl. The inatomy of the ulcer indicates very strongly that it corresponds th) in! infarctons area cansed by occhasion of a branch of one of the hi, arteries, An cmbolic cause is held by some and is supported rinlt- of experimental embolism, but the condition occurs most
often in individuals, man and woman, who show no signs of embolism elsewherc. For this reason others have suggesterl a local spastie contraction of individhal arteries, and yet others, seeing that the condition is specially frequent in the mid zone of the stomach, occlusion of a branch of the coronary artery by the lons-continued contraction of the muscularis which occurs after meals. The solitary nature of these ulcers is opposed to causation by irritants--hot foods, etc.-acting from within the stomach; such should set up multiple lesions. Nevertheless Turck has produced lesions of this type her repeated feeding with toxins of B. coli. Reford has regularly proluced the like order of ulcers in the first part of the duodemm by ligaturing the common bile duct. Such ligature does a way largely with the "alkaline tide" in this region and favors thus the deleterious cffects of the acidity of the chyme. Now it is to be noted that there is a close association between gastrie hyperactivity and the development of these peptic ulcers. We are inclined to lay down the following as essential factors in the process:
(1) A local area of necrotic or necrescent mucosa.
(2) This area must correspond with the area of distribution of one of the terminal brancises of a gastric artery in which either primarily or secondarily there is arrested circulation-primarily through embolic or other occhision of the artery, secondarily through stasis and thrombotic change induced either by some local irritant, or, it may be, by the action of the heperacid gastric juice acting on a submueosa deprived of its overlying epithelium, and remberel suseeptible to the action of the gastric juice bev inflammation.
(3) A normal, or, preferably, hyperacid gastric juice.

It may be asked why a generalizerl inflammation of the gastric mucosa is not followed by extensive peptie ulceration. The answer is that gencralized inflanmation leads constantly to the production of a gastric juice of diminished activity and digestive power. For the production of peptic ulerers the gastric mucosa in general must be normal, if not producing a juice of heightened digestive capacity, and with this there must be some local focus of lowered vitality.

In conneetion with necrotic changes attention may be directed to the specifie effects of different canstic agents upon the stomach wall. Thus caustic alkalies leal to a pronounced gelatinous or slimy swelling and softening of the mucosa. Sulphuric acid to a dry leathery appearance with grevish-black discolorations. According to its concentration nitrie acid gives a pure vellowish staining or a yellowish brown. (iarbolie acid causes whitish eschars, oxalie acid grevish-white discoloration, corrosive sublimate also a grevish-white superficial precipitation, copper sulphate a greenish discoloration.
Progressive Changes. - We have ulready referred to simple hypurtrophy as scen in the phlorus. Here wr would add a note of caution that some cases, possibly the larger proportion, of so-callex pyloric hypertrophy of later life are not truc hypertrophies, are mat, that is, examples of overgrowth of the main tissue, in this case of the
pylorie musenlar ring, but are due to fibroid hyperplasia either of inllinmatory or eancerous origin. We have, that is, encountered mases of pyoric thickening and stenosis in which only the most careful stuly has revealed rare collections of atrophied cancer cells. They havr brell cases of arrested scirrhoms cancer in which the excessive growth of the fibrous stroma has choked and killed off the specific earcinoma cells.
()f benign growths, submucons and subserous fibromas, lipomas, and neurinomas (neurofibromas) are occasionally eneountered, as are myomas. More common are simple adenomas. We have already imliated that multiple polypoid overgrowths may be secondary to inflinumation (gastritis polyposa) or may he blastomutoid, hereditury ill uiture. 'There can be little doubt nowadays that such adenomatons uvergrowth may precede and give place to true carcinoma.
Carcinoma. - This subject of careinoma of the stomach ©o of high importance. There is indeed no organ more liable in both sexes. Thirty per cent. of all eases of earcinoma involve and indeed origine te in this organ.

Arcorling to the form so do the symptoms and course var. ! ...s $w_{0} \cdot$ may encounter:

1. Squamous-celled carcinoma (epithelionia), comparatively rare, present at the cardiac end of the stomach and extending from the cardiac orifice. There the squamous epithelium of the cesophagus interdigitates to some extent with the columnar epithelium of the stomach and small processes more or less isolated may come thus to be present in the stomach wall. We presume that it is from such that this form of carcinoma has its origir.
\because Adenocarcinoma may be derived as a malignant transformation of the polypoid adenoma and present itself as a fungating polypoid or ralliflower-like mass projecting into the lumen of the stomach. The centril portion of such a growth is singularly apt to undergo necrosis anll meration and originate severe hemorrhage. The more fungating firins of these growths are seen in the mid zone of the stomach. But While projecting inwardly there is coincident infiltration and invasion if !he maderlying tissues, and according to the tissue reaction and Wrowing powr of the aberrant gland cells so there may be varying proprtions in the abundance (and size) of the cancer cells and the atrinal. We thus eneounter either (a) medullary cancer, abundantly rrllilar with large cells and great tendency to fungate; (b) carcinoma simplex: (c) scirrhous cancer with relatively sinall cells, abundant stroma, with little tendency to fungate, slower growth, less ulceration, although thi- mentually develons, and great tendency to infiltrate. The canser ?Nl. inis form show the greatest departure from type and least inination of glandular relationship, lumen formation, etc. This wint form is most common in the pyloric region, beginning often a trat $\}$ ali the walls of the stomach from the pyloric toward the cardiac
conl. This form may also originate in the lesser corvature. It appears to her related not so mueh to prolypoid growthes as to previons ulceration.
:3. A rare form with extensive infiltration is the colloid cancer, in which the cells of the :nf nowarcimoma retain their power of muein formation, and the cancer alvenli become converted into inspissated mas ses of murin, the rells mulergoing a murimons transformation to such an extent that the: may not be recognizable, being completely disorganized and replaced by eolloidal material. This form has extensive infiltrative power, invading the peritomeal and neighboring tissues
()f there diflerent forms it may in general be laid down that the more rellular the growth the greater the size of the primary mass and the more rapid the development of metastases. A densely seirrhons cancer of the p.lorns may exhihit widespread extension through the stomach wall; indeed, the whole organ may become inwolved, and as a consequence be eomverted into a dense, thick-walled, shrumen tube, and nevertheless there may be little extension bevome. In this same seirrhons form, if metastases do weur thes may grow moch more rapidly and attain much grater size than the origimal growth. Thus we have seen a secondary growth in the liver the size of an infant's head, with a primary growth at the lesser eurvature at the site of an old healed uleer, so smali as only to be diseovered by carefnl seareh. The commonest site for seemodary growths is in the lymph momes situated outside the lesser enrsature, next in the nowle or nomes above the hend of the panereas in the gast ooduonlemal angle, this last more partienlarly in cancer of the pylorus. Of other organs the liser is most frequently involverl, either by direct extension or through the bood stream, and next most often the pancreas, by direct extension; similarly the gastrocolic and great omentum are apt to be invaled and to become contracted and thickened in consequencer.

The most striking dinioal feature accompansing gastrie cancer is the loss or dimimution of frer acid in the stomath eontent..
Sarcoma.- Primary sareoma of the stomach is a moeh less frequent event, as is also secombiry cancor, although the stomach wall is a mot infrequent seat for secondary molanotie growths and we have seen a fow enses in which it has been involved in lymphosareomatosis.

THE INTESTINES

General Considerations.- From its size we are maturally led to regard the stomach as the most important secetion of the digestive tract, hut this is an ineorrect o onchsion; the size is merely an aceompaniment of its function, that, bamel!, of storing, kinealing, and dissociating the maws of solid food until they become eomverted into a more finely divided state. Comparatiwly little assimiation tio...s phate from the stomach, indend, complete remosal of the organ is perfertly compatible with contimed existrone. 'The main alsorption of foorlstuff:s ocemes in the small
intertine. Amatomically and fmactiomally we distingnish three sections if the bowel: (1) the short duodenum receiving the hepntie and panrematic ducts, in which the acid cheme beromes intimately admixed with the bile and pancreatic juiee and renderednthaline, before it passes onl 10 (\mathbf{Z}^{\prime}) the small intestine in which, through the combined action of like, pancratie jnite, and suecus entericus all the varions constituents of the food, proteins, carbohydrates, and fats are rendered solnble and asimilable; (3) the large intestine whose function is in the main to inspisate the mutilizeyl remains of foom and store them mutil such timu is they beeome voided. Judged from its structure the upper half of thr sinal! intestine, the jojunum, with its prononneed increase of surface (the rugre) is the more active region of absorption; the grenter evertheus form, d attain seell a primary so suali site for e lesser ancreas tileer of wolved, xt most lie and ed and
ucer is
equent a mot seell :

ammon of lymphoid tissue in the ileum in the shape of solitary follicles an! leerers patches is eorrelated with the need for protection against the : ibmulant hacterial flora of this part of the tract and against the frenherto of hacterial activity. The large intestine also has its divisions annolic, colon, and rectum. It is usial to regard the appendix as a 11 whe rndiment, basing this view mpon its great variation in size. Tos hif virw we camot agree; complete absence is as rare as is comphe almence of the stomarh, and that organ also exhibits marked lariaton in size. Vo one, however, suggests that the stomach is a "hy and disappearing organ. Rather, we camot hat be impressed hat adrostatic relationships of the large gut in man, an erect animal. θ. 'hind contents of the ileum pour into the ceenm and there and

$$
\longrightarrow
$$

microcopy resolution test chart

(ANSI and ISO TEST CHART No. 2)

in the ascending colon undergo inspissation prior to discharge per anum. In other words, the cecum and ascending colon have physior logically to undergo great variation in the volume of their contents. It would be to the aetriment of their function were they to be acutely sisceptible to pressure changes, were they to undergo peristalsis and void their contents immediately they bccame filled from the ileum. We must regard them thus as, in the normal state, distinctly unresponsive to pressure effects. It is the appendix, we hold, that is the hydrostatic agent initialling peristalsis in the large gut. In it we have a narrow tube, with no such pronounced variations in caliber, so situated that the weight of the column of forming feces is communicated to it, and we presume that when this weight reaches a certain point, the distending force acting upon its walls originates muscular contractions which spread directly into the cecum and so initiate the forward movement of their contents. Such a view explains the tendeney to constipation in the bedridden, in whom this gravitational influenee of the contents of the ascending colon can have little effect; it explains the nornal tendency to empty the bowels, either shortly after rising and assuming the erect position or after the first meal when stimulating peristalsis of the small bowel has driven extra contents into the cecum and so inereased the load; it explains the constipation that follows some interval removals of the appendix.
At the other end of the colon we have another hydrostatic mechanism. In nornal health the rectum is empty until immediately preceding the act of defecation. As Hertz has shown that act is brought about hy the sensitiveness of the preanal portion of the rectum to internal pressure, but this sensory mechanism becomes soon exhausted if the pressure continues, if, that is, the call to defceate be not attended to. Once, therefore, the rectum is loaded and not duly emptiel it is apt to become owerloaded. This rectal constipation with all its attendant ills anml miserics is guarded against by the siphon action of the sigmoid flexure. The formed fecal matter does not gradually dribble into the rectun!; it gradually accumulates in the descending colon and the proximal limb of the flexure until a column is formed of sufficient length to set up the pressure necessary to surmount the curve and once around the curve the whole column siphons rapidly into the rectum. Once there it exerts sudden pressure upon the anal region and demands discharge.

Constipation.-It will be seen that constipation may be of varimu orders: (1) obstructive, from kinks, contractures, etc., of one or otliwr portion of the gut, arresting the inflow of the contents. (2) Fecal inadequacy, when either from starvation or from the ingestion of calily ahorbable or predigested foods, sufficient indigestible remnants: :rre not affiorded to possess hy their volume a hydrostatic effect. In wh cases hardened feces accumulate more partiecularly in the eecum : n, 1 sigmoid. (3) Atonic, when either (a) the sensory limb of the ra "x are is exlausted or depressed and pressure within the gut does .nt excite peristalsis as in rectal constipation or (b) through pre ${ }^{\circ}$ is
arge per physioontents. acutely Isis and m. We sponsive rostatie narrow tel that it, and distends which ovement tipation contents nornal ssuming talsis of d so ininterval oressure Once, become ills anul flexure. rectumi; roximal to set mid the e there
distension or disease the musculature fails to respond. (4) Appendical, through lack of initiation of colonic peristalsis either from inflammation or othei oblitcration of the lumen of the appendix or operative removal of the same.
Diarrhosa and Dysentery.-Diarrhoea is the broader term indicating the discharge of watery non-inspissated bowel contents; dysentery ${ }^{1}$ the narrower, indicating a like passage accompanied by tenesmus, pain, and straining. Not only this, but discharges of this type are eommonly due to inflammation of the large gut and are accompanied by the passage of increased mucus with some blood. Diarrhea, on the other hand, more often (although not essentially) originates from disturbed conditions in the small intestine. With this of necessity there must be failure on the part of the large intestine to absorb the fluid pressed into it from the ileum. That failure, however, need not he due to a disordered state of the large gut. More frequently it would appear that the contents of the small bowel enter the colon so rapidly and in such abundance that the hydrostatic mechanism is set in action and the very weight and distending efiect of the abundant matter induces peristalsis and rapid diseharge.
These watery feces may be of various orders and due to:

1. Excessive intake of fluid, although, as in the infant, this more often causes soft feces than diarrhoea proper.
2. Hypertonicity, and here again either (a) the sensory limb of the refles is unduly irritable or susceptible of stimulation and induces a corresponding excessive peristalsis. Here we may deal with a reflex set up by abnormal contents of the bowel or by reflex or other senory stimulants, or (b) the intestinal musculature may be unduly responsive. In either case we deal not with the discharge of increased lucal contents, but the premature expulsion of imperfectly acted upon aml non-inspissated matter.
\therefore Excessive discharge of fluid through the intestinal wall. The type example of this form is seen in cholera where the gro th of the yirillum upon and in the mucosa induces an intense congestion and exulation of fluid from the capillaries, until the rapidly recurring mutions come to consist of little beyond serous fluid with shreds of urerrotic mueosa, and consequently the blood becomes extraordinarily diminisished in amount and tarry in consistence. Saline purgatives imiliarly attract Puid into the bowel.
suaking thus of excretions from the bowels it deserves here to be rroillind that the digestive tract subserves not mercly absorption and a-wimilation of foodstuffs but also the climination of sundry toxic -uhtiances-mercury; for example, from the salivary glands, antimony frum the stomach, as also along with mercury from the colon. It is the athurmal aud excessive discharge of these toxic substances, as again of the muknown) toxic substances which hecome heaped up in the system in the uremic state, which lead to necrosis and ulceration of the colon.
[^21]Recently; Ifiss has demonstrated eondmsively that bacteria are dis charged from the circulation into varions portions of the gut, and thi after ligature of the common bile duet.
Abnormalities.-Apart from considerable variations in length, th most common abnormality is the presence of a.sezkel's diverticulum or the persistent remains of the proximal part if the omphatomeserai duct. There may be various grades of the persistence from the com plete duct opening at the navel (very rare), through the state in whict a fibrous band adherent at the navel represents the distal portion anc passes into a diverticulum opening off the ileum and lined with mucosia representing the proximal portion. The most frequent condition is a finger-like free di verticu um, one to three inches in length, with or without a mesentery of its own, given off from the ileum from thirty to forty inches above the ileocecal valve. We have encountered this in 2.7 per cent. of our antopsies. Belonging to the same system are oceasional abdominal cysts representing a persistent intermediate part of the duct, and the condition of persistence of a congested moist columnar epithelium mpon the navel, or it may be an actual blind sinus leading down from 're same. More particularly where there is a fibrous baud of attachment, the divertieulum may become the cause of internal hernias with strangulation of coils of the intestine. We shall refer later to the aequired diverticmia.
The appendix in addition to variation in length may be abmornally placed, and infrequently retroperitoncal.

Another important condition of congenital origin is congenital hypertrophy of the sigmoid and often of the colon-megacolon (Hirschsprung's disease). In this there is noted in the young child a progressive enlargement of the abdomen until it attains huge size, and associatect with this there is progressive constipation.
On opening the abdomen the sigmoid is found of relatively enormons size, occupping the greater part of the cavity. There may or may not be associated enlargenent of the desernding colon, or the colon in general, aud with this pronounced hypertrophy of the coats. There has been :nuch disellusion as to the cansation. In two well-marked cases seen by us there was an aboormal mesentery of the sigmoid; the lower end of the desernding colon was elosely bound down by the peritoneal attachments, and gave ;hace to a large, fan-like mosentery of the siymoid proper, with similar binding down of the sigmoid-rectum junction. a condition favorable to obstruction by kinking when the sigmuid became loaded and so to its progressive distension. One of the twio cases had a similar elose binding down at the splenic flexure with corresponding dilatation and hypertrophy of the transwerse colon. Others, however, deny the evidence of this primary and anatomical defict. and possibly there exists another order of eases in which not potential obstruction but primary atony of the walls is at fault.
The third important group) of abnormalities is that of the stenoses and atresias. The presence of membranous septa oceluding the duo-
demim has been reported (corresponding to the end of the mesogistrinm anterius), in the ilcum (eorresponding to the region of exit of the omphalomeseraie duet), ete., together with contractures and stenoses that ean only be explained as the after iesults of antenatal peritonitis. The most frequent set of cases is constituted by the various orlers of atresia ani and atresia recti, due respectively to persistence of the cloaeal septum and to lack of deseent of the reeturn to eome into apposition with this.
Acquired Anomalies.-IIere it will be useful to pass rapidly in review the more important of the changes in form and position of the intestines.
Two orders of aequired dilatation are to be kept in mind: (1) obstructive: (2) paralytie. The former shows itself above any region of obstrustion whether by stenosis, kinking, volvulus, or impaction of feeal matter and, if of general development, is assoeiated with hypertrophy; the latter is seen in peritonitis and acate infections (typhoid, pneumonia, cte.); it is evidently the result of the aetion of bacterial toxins upon the musculature of the bowels.
Diverticula.-Aequired local dilatations of the howel wall, divertienli, are not infrequent in the duodenum and there particularly in the ueighborhood of the ampulla of Vater; in the small intestine they presint themsclies at the region of greatest weakness of the wall, namely, where the branehes of the mesenterie artery penetrate through the circular muscle, and whien coineidently the micsentery divides to encirele the gut. They thus constantly show themselves at the mesenteric attachment; they may be multiple and the size of a pea or even of a cherry: More common, especially in ellerly people, are diverticula of the colon. They oceur in the weaker regions intermediate between the lougitmlinal muscle bands and may be very numerous. They are of the nature of small hernias of the mucosa between the eircular murle fibres, have little or no muscle in their walls but an outer coat of the serosa. They oceur when atrophy of the muscle is favored, in ensen of chronie constipation and when, through rapid disappearance of the sulserous fat, the wall becomes weakened. Oecasionally these herome the seat of inflammation (diverticultis) with excessive smallerllecl infiltration.
Volvulus or the twisting of a loop of intestine upon itself may affeet either the locse sigmoid flexure or the small intestine. It learls naturally to whtructive phenomena, as also to intense congestion of the twisted low, followed, if the twist be not released, by gangrene.
sich strangulation may be brought about, however, by many other menn- by the suaring of a loop of intestine in a hernial sac, or between athe ions and hauds in the peritoneal cavity, or by invagination. In all these cases the weaker veins are eompressed before the arteries and then wemes a progressively inereasing congestion of all the walls followed by stiwis, neerosis, and gangrene.
Invagination (intussusception) is brought about by irregular peri-stal-i., or more accurately, incoordination between the contraetions
of the longitudinal and cireular muscles, whereby a part of the g above is either projeeted into the segment immediately below or eaught by that lower segment in its contraction. As a result, on caught within, the peristaltie eontraction propels it downward just if it were a feeal mass within the lumen. In this way long segmen of the bowel may beeome invaginated within the portion of bow below, and may indeed appear at and be projected through the anm It will be realized that the attached mesentery likewise becomes invagi ated, with eompression of its vessels, congestion and liability to gan rene. Inflammatory adhesions are apt to form at the reactive upp end of the invagination and thus the gangrenous intussusception may r off without there being escape of feces at the line of junction. In sue eases a zone of stenosis in the shortened bowel may he the outeome the process. In other eases, unless operated upon, the obstruction an toxemia may lead to death, or there may be peritonitis from perforation
These invaginations may involve the ileum alone (ileal), or, at th valve, the ileum may become invaginated into che ceeum (ileoeecal), i whieh case the cecum and appendix may also be carried forward t form part of the intussuseeption; may be colie, affeeting the colon alone or colicoreetal, the eolon beeoming invaginated within the rectum.
This irregular peristalsis oeeurs most often in young children, an in them therefore invagination is most frequently encountered. As curiosity we may encounter one invagination setting up a second invag ination below, and so presenting not three but five coats; or, again through reverse peristalsis the invagination may oecur in an upwarc direetion.

Sueh reverse invagination is most frequently seen in the condition of agonal invagination. Often at autopsies, more particularly upon children, small invaginations of the small intestine present themselves, evidently due to irregular peristalsis during the death agony or in the hour or two immediately succeeding death. They differ from the other cases in their tendeney to be inultiple (three or more), in their snall size, in the absence of any signs of inflammation of the serosa, and in the ease with whieh they can be reduced.

Circulatory Disturbances.-The great vascularity of the intestinal mucosa renders it apt to reaet in a very pronounced manner to altered eirculatory states; it shows extreme pallor in cases of general anemia, intense acute hys aremia in inflammatory states, and even more marked engorgement and purplish eoloration in eonditions of passive hyperemia, such as follow partial or complete obstruction of the purtal vein or its mesenterie branches, or obstructive cardiac disease. In this passive congestion the subserous veins stand out prominently; the mucosa assumes a bluish-purple eolor, is swollen and succulent through odematous transudation, and, as already noted in eonnection with the stomach, if the condition is of some duration there are evidences of a secondary and aceosupanying low inflammatory state.

Hemorrhage.-Where the hyperemia is acute, whether active (infective) or passive, there may be submucous hemorrhages from the capillaries followed by hemorrhagic erosions, although these are not nearly so common as in the stomach. Other causes of hemorrhage arr trauma, hemophilia, vicarious menstruation, malignant growths, ulecration (typhoidal, dysenteric, etc.), and hemorrhoids. Blood escaping into the lumen of the upper part of the bowel becomes tarry owing to dissociation of the hemoglobin and action of the sulphuretted hyidrogell of the feces. There may be long-continued oozing of small quantities whether from the stomach or intestines, which becomes so concealed by the natural color of the feces as to be unrecognizable, save by delicate blood tests (occult hemorrhage).
Hemorrhagic Infarcts.-There is extensive serial anastomosis of the branches of the superior and inferior mesenteric arteries, but this is frequently inadequate to afford rapidly a sufficient collateral circulation where an important branch of either artery becomes blocked by all mbolus or otherwise obliterated, and, as a result, there may be infarct formation. This, ill our experience, is more common in the small than in the large gut. The result varies in extent from one to forty inches and more, according to the importance of the artery that has becone blocked, or, expressed otherwise, the distance of the lesion from the intestine. It varies in appearance according largely to the length of time that elapses before death ensues. Ir. the early stages the affected length of gut seen from without is of a bluish-purple color and on opening presents an intensely congested thickened and hemorrhagic mucosa. Later the superficial layers may become broken down with oozing of bool-stained matter, and later still the whole thickness of the necrosed muersa and muscular coat may slough or be digested away until, as we have seen in one case, merely the distended serous coat may be left over a considerable area, and t is in turn may give way, liberating the contents into the abdomina' cavity. Similar infarct formation may result from thrombosis and other forms of obstruction of the larger mesenteric reins and, in fact, an identical process due to venous obstruction is seen in volvulus and strangulated hernia-intense congestion with stisis, hemorrhage, necrosis, and gangrene.
Hemorrhoids.- Varices of the congested superficial veins may occur although they are not so common as in the stomach. An exception, howerer, inust be made for a local development of what are essentially, varionities and are as rainfully common as they are commonly painful. We refir to hemorrhoids (piles). These are due to the interacinful. several factors: (1) a siles). These are due to the interaction of reir:-; (2) to the superfate of passive congestion of the rectal and anal (3) the increased congestion of these vessels nature of the anal veins; straining at stool and (4) in ex these vessels induced by the act of emptuing of the distended in exs?rnal piles, the obstruction to the firm inntraction of the sphincter ani. Thich results upon the subsequent luore ur !ess complete circle of projecting result is the production of a
intestinal to altered anemia, e marked ve hyperhe portal

In this ntly: the t through witl the nere of a
ring, external to the sphincter, which are apt to be irritated and erod by the passage of hard fecal matter, which may undergo, rupture and induce severe hemorrhage, or from which, again, there may mere be oozing of blood; or, lastly, the contnined blood may undergo thron bosis, and some organization.

Peptic and Necrotic Ulcers.-True peptic ulcers are now well reco nized by surgcons as by pathologists as oceurring frequently in the fir part of the duodenmm. Ulcers of similar nature, produced by dige tion of small arcas of necrosed mucosa are rare in the small intestin although they may ocenr, at times duc to infarction of the area supplit by a terminal arteriole, or thrombosis of a small mesenteric vain.

Fia. 240

'h
Section through a small simple nerrotic ull." f of ileum, involving only the mucosa: a, Leberkübnian follicles; b, congested vessels of submuensa.

Inflammation.-Different names are given to inflammatory dis turbances according to the region affected-duodenitis, enteritis (of the small bowel), appendicitis, typhlitis or cecitis (of the cecum), colitis proctitis (of the rectum).

Owing to post inortem digestion of the superficial layers it is by no means easy to gain satisfactory histological pictures of the various forms of inflammation involving especially the mucosa. There may have been all the clinical evilences of an acute enteritis, but vers little may manifest itself on microscopic cxamination that can surely be ascribed to acute inflammation. This is particularly true of simple or catarrhal enteritis and colitis. If the mucosa be well retained it nay show an cxcessive number of goblet cells. The submucosa also may present pronounced congestion and cxtensive leukocytic infiltration, but the same hyperemia and leukocytosis are features of certain stages of digestion and some cxperience is needed to determine whether these cxceed the normal limits. Petechial hemorrhages uggest an abnormal state, but superficial necroses accompanying
thrse are difficult to distinguish from areas of more extensive post mortem digestion.
Ocasionally, however, the infiltration of leukocytes between the i.te erkühnian crypts is so extensive that there need be no doubt; indeed, the condition may be so pronounced as to constitute a suppurative infiltration of phlegmonous type with a tendency to necrosis of the owrlying mucosa and uleeration. This is uncommon.
Follicular enteritis and colitis also present difficulties. Particularly in children it is not unusual to find the solitary follicles of both small and large gut so mach enlarged that they stand out prominently. Is this of inflammatory origin or does it merely mean an enlargement of the lymph follicles which is part and parcel of the lymphoid hyperplasial common in childhood? When the follicles are surrounded each by a zone of congestion we incline to an inflammatory causation, and when, in addition, the condition
is circometered after adolescence and there is evidence of erosion ower these small norles and actual ulceration, the diagnosis becomes still more assured. It is more particularly in the colon that we encomiter such folliculitis in the adult, while in chidren in diphtheria aud other acute infections the solitary follicles in the small bowd may be so promisent that the condition must be regarded

Fio. 241

Lymphoid hyperplasia of ileum in a child, leading to the production of a polypoid state. (McGill Path. Mus.)
as of inflammatory ty?

Membranous enterit.

ive membrane form
the ceecum and colon, a_{1} sccasionally encountered, most often in patehts over the ruga and mer end of the ileum, either diffuse or in With deeper extension of thore projecting portions of the mucosa. membrane, extensive ulceratic nccrotic process and sloughing of the sen in mercury and arsenic poisong may ensue. The condition is well extenvire ulceration of the large bong, and uremia, and, combined with小rentery: Prolonged retention of feces may lead to a combinary of mumbranous and ulcerative of feces may lead to a combination small si\%e, which originate apparently foccanenal uicers resulting of Special Forms of Intestinsl Infantly from the lymph follicles. monn: lesion in of Intestinal Inflammation.-Typhoid Fever.-The comi_{11} the ilemn above the ileocecal valve; we may, however, (cast, with no recognizable affection we ma, however, encounter othere in which the solitary folliction of the intestinal lymph nodes, have ren one case in which the of the colon alone are affected. We althowly hefore death the blood solitary ulcer was in the appendix, after 小eath pure cultures of typical typhe Gruber-Widal reaction and
blood and peritoneal contents. But these are rarities. The site of election of the disease is the last two feet or more of the ilenm and there, the contained Peyer's patches. These may; it is true, be" involverl throughout the whole length of the ileum and with them the solitary follicies. So, also, in quite a considerable proportion of our cases in Montreal (no less than 32 per cent.) the solitary follicles in the ceecum, colon and, in a few eases, the rectuin have been simultaneously affected, nor does the severity of the case and the toxic state nppear to have any definite relationship to the extent of involveinent of the lymph noles.

The stages in the development of the typhoid lesions are the following: (for the general course of the disease see p. 143.)
I. Stage of Tumefaction.-It is rare to meet with cases in which death has occurred before the end of the first week of fever, but where it has taken place from the seventh to the tenth day, the Peyer's patches and adjacent solitary follicles arc found greatly swollen, standing out well above the level of the rest of the mucosa, either exhibiting some congestion or distinctly pale and anemic. Since all are not involved at the same time, but commonly those nearest to the valve are earlier affected and others more remote exhibit earlier stages, it is at times possible by the study of one case to follow the various stages. Of these the carliest is seen to be an acute hypercmia with moferate swelling of the Peyer's patches. Sections exhibit the individual follieles surrounded by a hyperemic zone, and the peripheral lymph spaces filled with large cells of the endothelial type (macrophages). These are actively phagocytie and may contain leukocytes and red corpuscles and their remains. The individual follicles are large and show evidences of active proliferation of lymphocytes. At a later stage the lymph spaces are found intensely engorged with these large cells, which replace the previous small, round-cell areas of the individual nodes, the picture suggesting strongly that both the mother cells of the centres of the nodes, and it may well be the small lymphocytes themselves undergo conversion into the larger type of cell. The affected pateh or solitary follicle becomes now so tensely packed with these cells as to be rendered anemic and pale.
II. Stage of Necrosis (from about the twelfth to the nincteenth day).-In nodes showing the anemic swelling many of the "macrophages" show signs of degeneration and death, but this becomes progressively more marked, and now masses of these cells corresponding to the centres of individual nodes undergo a necrosis, which involves the stretched overlying mucosa. These dead areas become stained with fecal pigment, and begin to slor gh out. Where the process is widesprcad throughout a patch, thr may be a striking appearance produced; the small isolated slonghs may have dropped out, leaving the patch riddled with small irregular perforations (6 tat criblee). It deserves note that the whole of a patch would not scem necessarily to procecd to this stage of necrosis so that we may meet with patches in which the sloughing affects only one portion.
site of d there, ivolverl solitary ases in cecum, fected, ve any odes. owing:
death it has atches ig out some olved earlier times these elling surfilled e are iscles. ences mph hich odes, ntres elves atch 5 as
enth cro-proling
ves ned s is nce ing It to in

Typhoid fever. Peyer's patches and solitary follicles from a youth, aged twenty vears, to show the suecesive stages (P. M. 31-08 Royal Vietoris Hooppital.) a little lower down, 225 cm ffun ileocecal valve, showing tatat crible, and welling, in conmencement of ileum, 250 cmin . from vave. 2. Patch of norman cise, situated area of noecrosis. ${ }^{3}$. Patch, 210 cm . from valve. Here the solitary follicles also show swelling; at c, hemorrhagic areas with neerrotic went ceatral pabasiciag allough or necrotic area, bile stained. 4. Peyer's patch, some 50 em . lower down, with two sloughing areas, that at e, loose and almost detached; at f, molitary from which the sloughs have escapea. 6. Jarge Peyeris por the last and the ileocecal valve; ρ, hemorrhagie area; \boldsymbol{h}, aloush beroming loosened; i, uleerated areas. exposing the circular muscular coast of the bowel; m, solitary follicele that has uleerated. There were uleel. aloo in the appendix, weevom patch has aloughed away.
III. Stage of the Developed Ulcer (nincteenth to twenty-eighth day).The necrosis and sloughing once manifested tend io involve the whole of the affected individual norle, so that large pigment-stained sloughs may be formed. In typical eases the whole of the lymphoid tissue constituting the Peyer's patch sloughs away leaving an ulcer having the following characteristics: (1) a clean, smooth floor with fine transverse ridging, formed of the exposed circular muscle; (2) raised overhanging edges formed of the intact mucosa of the margin of the patch from beneath which the lymphoid tissue has sloughed out; (3) a long axis corresponding with the long axis of the ileum (although where part of a patch only undergoes ncerosis the ulcer may be rounded or have a larger transverse axis); (4) a situation on the bowel wall remote from the mesenteric nttachment. When solitary follicles are involverl the

lleum from a case of typhoid fever, showing, "leeration of solitary follicles (b) and of a amall Peyer's patch (a).
ulcers are correspondingly smaller and circular; more particularly in the colon, they may, however, be so large as to suggest that not merely the lymph node but also the surrounding zone of submucosa has been affected by the neerotic and sloughing process.
IV. Stage of Healing (after the fourth week).-The overhanging, somewhat raised edges become flattened down and adherent to the floor, and now the mucous membrane, regenerating, covers that floor with a smooth shiny layer of epitheliun. There is very little granulation tissue produced, and little or no subsequent contraction. Where death occurs a few months later all that is to be made out is a smooth, small, oval area where the wall is thinner than normal.

The figures above given are approximate; they refer to the condition of the oldest erop of affected nodes nearest tu the valve. We repeat that cases are not infrequent in which these oldest ulcers are of the fourth week or later, whereas higher up in the ileum there may be

Pcyer's patches at the end of t . : first wcek. Progressive involvement of lymph norles explains the loug-continued cases; where successive crops of nodes are affecterl at intervals we obtain relapses.
Similar necroses are liable to occur in the mesenteri. lymph nodes; the lymph norle situated in the ileocecal angle is constantly enlarged in typhoid and is particularly apt to exhibit whitish arcas of necrosis.
The two grave complicutions of the typhoidal process are hemorrhage through crosion of a vessel or vessels in the slougling stagc, and perloration, either through extension of the necrotic process into the muscular haycrs, possibly along the lymph channcls, penetrating that muscle, or through rupture following pressure of the bowel contents pon the weakened area. Most often the perforation is small, of the - n-point" variety, suggesting the former mode of origin.
Tuberculosis.-Tuberculosis may involve any portion of the small aurl large intestincs, and has no specia! site of election, save that where infected feces become arrested in the lower part of the ileum, in the clecum, sigmoid, and rectum, there infection is most liable to occur. Although it oftenest originates in If sividual lymph norles, there is not the same strong tendency to ins:" ate primarily the nodes immediately above the ileocecal valve, and, what is more, in the subsequent strges the process spreads beyond the limits of the nodes and patcl is, involving all the coats.
The infection may be (1) of hematogenous origin (acute miliary tuberculosis; this rarely sets up extensive lesions), or (2) of enterogenous origin, from the bowel contents, or (3) peritoneal, by infection from the peritoneal fluid secondary to ovarian, tubal or other abdominal tuberculosis. This last will be discussed later. It is the enterogencus that causes the most characteristic lesions. This may be primary, from the food, and then most often set up hy the bovire type of baci (milk), or secondary, due to swallowing of sputum where there ex. pulmonary or laryngeal tuberculosis (human type). Saying this, in must be remembered that infection with the bovine type shows itself most often not in the intestinal wall bit in the mesent..ion nodes. It has been abuudantly proved by experiment $t \cdots r$ the tuhe cto bacilli may be carried through the bowel wall without ing up any lesion, only becoming arrested in the mesenteric nodes. The bacilli carried through the mucosa may become arrested in the submucosa, and there most naturally in some lymph node or collection of lymphoid tissue along the course of a lymphatic. Thus there develops a submucous tubercle, aull bacilli escaping or carried from this induce the formation of secoulary tubercles in the immediate neighborhood. These in their growth fuse and undergo central caseation, cut off the nutrition from, and even invade, the overlying mucosa, and necrosis and ulceration is the result. The subsequent stages are those of progressive extension of the lesion; new tubercles form especially along the course nf the lymphatics and as these lymphatics, like the blood vessels, hav:- a circular disposition, the tubercle formation and ulceration is peculiarly apt to
be most marked in a transverse direction, often becoming completely annular. Other lymphaties penetrate the innscularis and thus simultaneonsly tubereles become formed on the serons aspect of the gut. These groups of sulbserous tubercles are the first indieation of the condition upon inspecting the opened abdomen.

Tuberculous ulceration of the jejunum, showing ulcers (1, 1) tending to be annular. (MrGill Path. Mus,)

Syphilitic geriproctitis. Purtion rif the lower ensl of the rectum, showing at a great contrartion of the lumen, thickenilly of all the coats and extensive hyperphasia :anl fibrosis of the periproctal
tiseuc. (MeGill l'ath. Mus.)

From the nature of this process it follows also that the resultaut ulerrs have irregular edges irregularly swollen br the presence of underlying tubercles, irregularly undermined where these have undergone easeation, and that their floors, instead of being smooth as in typhoid, are nodose and irregular, formed of a laycr of tubercles or of these
altcrnating with cascating areas. This caseation and ulceration may extend into the muscularis, which forms no natural boundary. Where this extension is marked, there also is well-defined subserous tuberculosis, and, sccoudary to this, a notable tendency to the formation of local alhesions. These cxplain why in intestinal tuberculosis perforation and perforative peritonitis are comparatively rare, while the formation of fistulous communications between various segments of the bowcl is comparatively frcquent. We have encountered half a dozen of these in a single case. The disease is apt to be chronic and, what is morc, to show healing, fibrosis, and contraction in one area; while in the immediate neighborhood new tubercles may be forming.

The largest of these annular ulcers are to be met with in the cæcum and colon.

Tuberculous ulceration involving the mucosal pouches formed by the contraction of the sphincter ani, leads to one form of fistula in ano.

Syphilis.-Save in connection with the rectum (and the characteristic lesions there are now coming, by some at lcast, to be regarded as doubtfully of syphilitic origin), acquired syphilis rarely affects the intestinal tract. A form of lesion is described as affecting more particularly the jejunum, in the form of groups of small nodes arranged in a circular manner in the submucosa which, under the microscope, presents vessels with characteristic perivascular small-celled infiltration. The inucosa over these is apt to ulcerate, leading to transversely disposed, somewhat shallow ulcers with uneven pale floors.

What until recently was held to be a syphilitic proctitis and periproctitis is a remarkable condition of venereal origin, presenting a combination of ulceration and irregular hyperplasia of the rectal mucosa through the greater part of its course, with fistula formation and the production of periproctal abscesses. Sections show a pronounced plasma cell infiltration throughout, without the small-celled perivascular infiltration so common in syphilis being a leading feature.

The intestines are more frequently found infected in congenital syphilis. The commonest form is a diffuse small-celled perivascular infiltration of the submucosa and muscular coats, but the development of seattered guminas has also been recorded and, more frequently, of multiple miliary gummas of the submucosa and muscularis, closely allied, we may suggest, to the first form.

Appendicitis.-All the aspects of appendicitis are now-a-days treated in such full detail in the text-books of surgery, and the student is expected to have so thorough a knowledge of the subject that we find ourselves in a dilemma. To fulfil his needs, to discuss the etiology, classification, histology, and sequels on the same scalc as does the surgcon would consumc many pages and be out of balance with the treatment here afforled to other important conditions; to indicate briefly the main data may lay us open to a charge of neglect. Neverthelcss as the stukent gains these data elscwhere the latter is the course we must select.

Briefly, then, if the appendix be sturlied in each ease presenting itself at autopsy, what impresses us is the frequency with which we eneomnter indication of old inflammation, and this in cases which have afforded no history of aente abdominal disturbances. We encounter, that is, localized cioatrices cansing narrowing and slight stenosis of the small organ. At other times, it is true, studying the organ removed for active disease, we find the muensa maffected save in the zone of aente inflammation, which generally is found in the distal half. There is thus apt to be cither a series of inild inflammations of the mucosa unproduetive of symptoms, or a first inflammatory attack so aeute as to lead to grave results.

What in gencral is the nature of these attacks? Anatomically the appendix is a small edition of the bowel, resembling the colon in the absence of ruge and villi, and the small intestine in that its longitudinal muscle forms a continuous sheet and is not gathered into bands; differing from both in the abundance of solitary lymph nodes in its subinncosa. Over these the inucosa has a stretched appearance with few and short Licherkühnian follicles, and, as Asehoff points out, the swelling cansed by the presonce of these modes causes the outline of the hmen to be not circular but irregular. He regards the angles or depressions between contignons nomes as the regions of eleetion and origin of the inflammatory process and affords figures from early cases whieh strongly support this view. As we write, Poynton and Paine publish experiments upon the rabbit, confirming the previous observations of Alrian that, under favorable conditions, the intravenous inoeulation of smedry pathogenic organisms (pnemnocoecus, I3. typhosus, diploeocens of acute rheumatism) sets up an aeute localized appendicitis in the rabbit. This is of hematogenons origin and affects first the individnal lymph nodes. These observations necessitate a renewed study of the earliest eases of the condition to determine whether serial sections of the human appendix demonstrate the existence of cases in which the lesion begins in the lymphoin tissue of the submucosa without evidence of preceding focal catarrh and neerosis of the meosa.

We have long passed the perion at which it was held that appendicitis originates from the presence of forcign loolies, pins, shot, ete., or of fecal eoncretions in the hmen of the organ. Where these are present molombtedly they act as irritants favoring the development of local inflammation. So, too, the existence of constricting bands from old cicatrices by favoring the retention of feeal matter in the distal portion, favors the multiplication of putrefactive and other bacteria in the retained matter, and so seemingly predisposes to the supervention of catarrhal and graver inflammations. It must be admitted also that a relatively slight eatarrh extending from the caecum must tend toward closire of the proximal portion of the narrow tube, while similarly the very mobility of the tuhe favors its assuming abmormal positions and becoming temporarily kinked, again favoring retention of fecal eontcnts in the distal portion and all its sequels. We cannot accept
the view recently propounded ly. Metchnikoff that pin-worms and threadworms (oxyuris and trichocepha' 1 s. penetrating the mucosa are a dominant cause in setting up infection, while admitting that they are present in a sinall proportion of ehildren exhii, ;-ing a milder form of catarrhal appendicitis. Briefly all these factors signify imperfect Irainage.
By analogy with what we know regarding the earliest stages of iufections involving the lymph noles in the ileum, namely, typhoid and tuberculosis, we are inclined to the wiew that hacteria are conveved into the sulmucous lymph nodes withont there being necessarily any oreliminary destruction of the surface epithelium. Wherever there is irritation from within the lumen, a simple catarrh is the first di-turbance, with increase in gollet cells, congestion of the submucosa, and inereased passage outward of waudering cells, and thrse cells, we believe, convey the bacteria into the underlying lymph nodes. Thus while hesitating to oppose the masterly studies of Aschoff, we are accustomed to conceive the process as affecting essentially the lymph nodes. It is the active proliferation of the cells in these nomes, and the consequent swelling with acconpanying small-celled infiltration of the submucosa and muscularis that in our experience is the dominant fiature in acute appendicitis. Further, as a result of the swelling, rather than as a normal condition, sharp angles or pits of the mueosa herome developed whieh clearly favor baterial growth, necrosis, and ulecration of the mueosa. This we regaril as a second, rather than as a first stage.
The condition apparently may proce od no farther than this and then become arrested, with little or no after-affeets; or with the great swelling of one or more lymph nodes the overlying mucosa undergoes necrosis and removal, and with resolntion a sear is prolueed with some constriction of the lumen (simple catarrhal appendicitis.)
(ienerally we olserve more than this. It is a striking feature of the appendix, due possilly to its small size, that once set up, inflammation tends rapidly to insolve all the coats. The limits of the affeeted lymph monds become ill defined, small romul cells, lymphoeytes, and polymurphs infiltrate the circular and longitudinal muscle layers. Even the subserous vessels exhibit intense congestion, and at an early perixl 1 -wre may be a peri-appendicitis with fibrin formation on the serons -2. we, loug before there is any deep necrosis or sign of perforation. That this stage (diffuse appendicitis) is also recovered from is indicated hey the frequeney with which we encomenter its after-effects, the so-called chronic appendicitis, seen where the appendix is removed after recurrent attacks, and characterized by diffuse filososis involving all the conts, and hy the organized athesions surroumling the organ.
If the inflammation be more promoneed, the local toxic effects of the bacteria coupled with the inflammatory stasis, acting most powerfully in the region of primary invasion, lead to deep neerosis and nleeration which, extending throngh the outer coats, cause perforation (perforative appendicitis). Where the inflammation is more widespread
and the stasis and necrosis affect the greater part of the distal portion, or even the appendix as a whole, widespread gangrenc ensues (gangrenous appendicitis) and at operation little may be found save a detached slough lying in an abscess, or a more rliffuse collection of foul serous fluid with admisture of fecal matter.
The further effects depend largely upon the position of the appendix, "hether it pass down into the true pelvis, or be retroperitoneal, or pass upward along the onter aspect of the cecum and colon toward the appendix; depend upon the reative power of the individual; depend also upon the nature of the infecting organism. Thus there may be a loealized peri-appendical abscess well circumscribed, a spreading retroperitoneal inflammation, a diffuse peritonitis, an intense toxemia fatal before gencralized peritonitis shows itself, a prlephlebitis extending along the vcins of the appendix to the larger mesenteric seins and so to the portal vein, with multiple abseesses in the liver. The possibilities are manifold.

Colitis.- Colitis may be, as already stated, of very varied orders, namely, simple catarrhal, follicular, membranous, ulcerative, and others. Certain forms deserve additional notice. Mucous colitis is a remarkable condition in whid, from time to time, the individual passes casts of the colon formed almost entirely of mucns, which may be many inches in length; the condition may extend over many months and, after a period of quiescence, may recur. It is unaccompanied by any marked febrile reaction and it is donbtful whether it should be spoken of as inflammatory in nature, secming rather to e of the nature of a secretory neurosis; it oecurs most frequently in young women and those of neurotic temperament, and possibly it is associated with comlitions of slight splanchnoptosis and congestion. It is recovered fron by rest and improved borly tone.

Of the specific inflammations of the colon two especially deserve note, namely, amœebic colitis and epidemic ba,cillary colitis. In amobic colitis or dysentery the upper portion of the colon, viz., the cecum and ascending portion, is most involved, the characteristic feature being a marked thickening of the wall due in the inain to a striking cellular infiltration of the submucosa, which on section stands out as a broad, pale, yellowish-white layer. Over this thickened area the mucous membrane is swollen and hyperemic, with a pronomeed tendency to superficial necrosis and the formation of ulcers leading down into the swollen subinucosa. In this way, large areas of the mucosa may disappear, leaving stronds that bridge across the areas of ulceration. The ulcers rarely extenl through the muscle coat and perforation is rare. With healing there may be cliffuse thickening of the bowel with papillary overgrowth of the remaining mucosa. Entamober are to be found in considerable numbers in the infiltrated submucosa, which further contains abundant plasma cells. This form is largely tropical and subtropical, though eases have been described in persons who have never heen in cither zone.

Epicamic bacillary colitis（dysentery）shows some differenee aecording to the straiia of baeillus that is the cansative agent．The more severe type is that found in the tropies and in Japan，due to Shiga＇s bacillus； this is strongly epidemic．In North Ameriea a somewhat milder form is cucountered，particularly in inmates of asylums and other institu－ tions，and in infants，cansing one form of summer diarrhea；this is due to the strain isolated lye Flexner，as well as to allied forms．In these

Clecrative colitis，showing multiple，deep ulcers（a）mostly transverse．（McGill Path．Mus）
Fig． 247

Colitis polyposa apparently secondary to old infammatinn，shoving at a an outstanding polyp． （AcGill Path，Mus．）
bacillary eases the rectum and sigmeid are as apt to be involved as are the upper reaches of the eolon．There is intense congestion of the micosa with swelling and prominence of the ruge and superfieial nerososis of the mucosa leading to the formation of a membrane，and learling also to erosion and uleeration．These ulcers in the early stage are most apt to be along the ridges of the mucosa，while in severe eases， a purulent infiltration of the submueosa may ensue．The thiekening of the submucosa is never so marked as in the amœbic form，nor is the
bowel wall so markedly thickened. Both forms of colitis are characterized by dysentery which may be of long continuance.
Reference has already been made to tuberculous colitis and to the most characteristic forni of proctitis, the so-calied syphilitic.
Progressive Changes.-As alrealy stated, hypertrophy of the bowel occurs above any region of chronic obstruction.
Tumors.-It may be said of the small intestine that primary tumors of any order are distinetly infrequent, and of the large intestine that benign tumors, save dapillary growths, are rarcly met. Neverthcless, cases are on record of various forms of benign tumors of the intestines, fibroma, lipoma (either subserous or submucous), myoma (ditto), hemangioma, and lymphangioma. Where these tumors projeet into the lumen of the bowel they may cause either obstruction or intussusception. Papillomas, whose epithelial portion is of the columnar type, are more common in the colon than in the small intestine and often are secondary to previous uleeration and continued inflammation (Fig. 241). They may occur also in the rectum. Apart from growths immediately around the ampullia of Vater, the duodenum is singularly devoid of tumors.
Of malignant growths, we eneomnter carcinoma in the duodenum in the region of the ampulla; it is very rare as a primary condition in the small intestine; it is more common in the colon, especially at the flexures, and still more common in the rectum. The next most frequent seat is at the lower end of the sigmoid. Of cancer in general, the rectum comes fifth in the order of frequency of incidence. The forms that present themselves are, in the main, columnar-celled adenocarcinoma (see Fig. 122, p. 272), though we may also eneounter more infiltratirg forms, less adenoeareinomatous in character, with scirrhous tendencics, encireling and infiltrating broal areas of the bowel with accompanying contracture and narrowing of the lumen. Particularly in the rectum we meet with colloid cancer and, again, in the anal region, squamous epithrliona.
The last few scars have afforded numerous examples of carcinoma of the distal portion of the appendix; the form is usually of the simplex or the scirrhoms trpe, and what is very remarkable is that, with searce an exception, the presence of the tumor has been a chance discovery; there being no symptoms, and what is more, little infiltration and no metastasis. The tumors in general have been small and welldefined. We have here, in short, the paradox of a "benign" carcinoma. It is worthy of note that the rare carcinomas of the lower end of the ileme are of the same benign type.

The results of carcinoma of the intestine are nsually ulceration, which may pass on to perforation, but more frequently the growth is of the infiltratise type leadiug, both ly its projection into the lumen and by the contraction of the gut, to stenosis and obstruction. Hemorrhages are not so pronounced as in the case of gastric cancer. Metastases are frequent in the retroperitoneal lymph nodes and on the peritoneun; The liver also is a frequent seat. Secondary carcinoma of the intestines
is not common; cases are on record in which a primary eancer of the stomach has heen followed by one or more solitary growths along the comrse of the intestine. There may further be infiltiation by extension into the rectum of uterine carcinoma.

I'rimary sarcoma may occur as a round-celled growth originating ermerally in the submucosa, and this most frequently in the lower part of the ileum, though the rectum, ceeum, and even the appendix furnish mises. Spindle-celled sareona is distincuiy rare. Lymphosarcoma has the same regional distribution as has the round-celled sarcoma, and possibly they often fail to be distinguished one from the other. Secondary sarcomas oceur in cases of generalized sarcomatosis; melanotic sarcome ${ }^{\text {a }}$ particularly are apt to show themselves in the bowel wall.

THE PERITONEUM

Were it not for the necessity of peristalsis and motility of the stomach aul intestines, the peritoncal cavity might be considered a superfluity: Ill those organs whose function demands a change of size aud position are surrounded by a lubricated eavity in which to work, and of these (avities the peritoneal has by far the largest potential extent and whal surface. We must take it for granted that the student is familiar with the anatomy of the peritoneum, the disposition of the parietal portion, the nature of the mesenteries whereby the viscera hang relativels free within the cavity, and the relationship of these musenteries to the bood supply, whereby, while the bowel is allowed a large measure of freedom and of variation in calibre, each part is prevented from eseaping beyond a certain fixed distance from the origin of the mesenterie vessels. We must expect that the student is familiar also with the anatomy of the great omentum and its relationship to the stomach and the transverse colon respcetively. The great addition to the superficies of the lining membrane of the peritoneal eavity afforded hev the great omentum has for long attracted notice and numerous hypotheses have been suggested to explain its action. It is eminently lascular, its vessels being almost in contact with the contents of the pritoneum, so that if any portion of the omentum finds itself in an area of irritation, there is rapidly exeited in it a secondary inflammatory process, and the ease with which it forms adhesions that are temporarily protective is very remarkable. With so large a free surface as that atlorded by the peritoneum, it seems necessary to have some such protwrive organ to produce a rapil exudation of protective bodies; whether ahorption oceurs through it with the same freedom deserves further stuly: The general indications are that foreign particles present in the peritoneal eavity make their way with greatest frcedom into the lymph spaces of the diaphragm.

The peritoneum is constituted by a layer of endothelial cells, ini h, while thin, are by no means inert, and rapidly react to any inflammation,
undergoing swelling and often proliferation. These form a eontimuous membrane bounding the cavity save at two points, viz., the openinge of the Finlopian tubes, thromgh which there is a potential, though rarely actual, commmaication with the exterior. So, also, it mest be remembered thut over the ovaries the preritonemus becomes moxlified into a more cubical layer of cells, the germinal epithelimm, from which by downgrowths originate the ovarian follicles. Beneath this endothelial layer is a subserons layer of loose connective tissme which in certain regions shows a prommeed tendeney to mudergo metaphasia into fat cells, as in the appendices epiploicer, the mesenteries, and the omentum.
Abnormalities.- Of abmormalities, perhaps the one most frequently moticed is a variation in the length of the great omentum, which may vary from a small irregular fringe an inch in length to a massive apron often loaded with fat, a foot or more long. Similar moriations are at times to be noted in the mesenteries, most marked in the case of organs whith normally are incompletely surrounded by peritonemm, but may on occasion be found to possess mesenteries, e. g., the ceenm, and ascending colon, and even the kiduey ("floating kidner"). We have already referrel to abmormal length of the mesosigmoid as favoring the development of the comdition of megacolon (Hirschsprung's disease).
Circulatory Disturbances.-The great vascularity of the peritoneum renders it most sensitive to circulatory disturbances. Where there is anemia its, pallor is markel; where there is hyperemia, aetive or passive, the injection is extreme.
Passive congestion is accompanied by promomeed transudation and production of ascites; ceren after death, transudation easily occurs, so that where immediately before death there has been a transfusion of saline solution, or after death an injection of embalming fluids, the peritoncal cavity may be fomel to contain a considerable amomet of fluid which must not be mistaken for that of ascites. Apart from cireulatory disturbances, it deserves note that the presence of ovarian tumors is frequently aceompanied be a noticeable grade of ascites. The exact canse of this is somewhat ohscore. Onp. 366 we have already disenssed ascites, and the related phenomena. How sensitive are the peritoneal vessels is well shown when the peritomem is seen at operation even but a few minutes: after a perforation of the bowel; there may be little obvions escelpe of bowel contents, set the intestinal coils may be of the most angry, scarlet color. It will be mulerstood from this that capillary subserons hemorrhages are not uncommon, especially where there has been some toxemia with degeneration of the capillary endothetime. A favorite seat for these hemorrhages seems to be the lower anterior half of the parietal peritomelom. Ther are seen particularly in severdy. toxic coulitions, as well as in the hemorrhagie diseases. Of gross hemorrhages into the peritoneal cavity the commonest and most extenise is that seen in ruptured tubal gestation, and in traumatic rupture of the liver, spleen, mesentery, and other organs.
ontinuous operings 1, though must bo morlified om which his endowhich in actaplasia , nud the hieh may ive apron ins are at of organs but max cum, anil We have favoring disease). ritoneum ere there aetive or ition aud ceurs, so fusion of the perit of fluid reulator: unors is he exist discassed eritoneal cion evern may be oils miny rom this speciall! capillar! o be the een paragie dismoment , and in organs.

The effects of thrombosis and embolism upon the viscera are so grave that the acompanving changes in the peritonemm are relatively of ininor importance, although they are of a like nature, viz., stasis, liemorrhage, and neerosis.

Inflammation.-Peritonitis.-Without attempting to make any full dissifieation of the various acnte inflammations of the peritoneum from a surgieal standpoint, it may be laid down in the first place that threr tepes are to be distinguished at antopsis: (1) local circumscribed, (2) locally diffuse, and (3) universal. We may find, that is, that by the rapil proluction of alleseions and the formation of fibrin an inflammation is sharply eireumseribel to the region of primary disturbance. We may, for example, find an appendix bathed in pus which thas forms a peri-appendical abscess, and throngh omental adhesions and the fibrimons allhesions "atween surromuding eoils of intestime, the rest of the peritoneal cavity wholly closed off from, and showing no signs of, the inflammatory process. Very often, however, we enconnter an acoute peritoniti: of wider extent which fails to implicate some, it mas be a comsiderable, part of the eavity, and this without the sharp line of demareation bey allhesions just noted. There may be, it is true, slight formation of tibrin between the eoils at the periphery of the area, but so slight as to make it evident that some other factor, such as gravity, is likewise effective. This we term a locally diffuse peritonitis. Fin example, very frequently a pelvie peritonitis fails to extend into tie midille area of the peritonemm, or a peritonitis involving the small iutrestines in gencral does not affeet the area oi the stomach and spleen. lin the production of such a restricted inflammation, it is true that there are certain physical factors; this, an inflammation may be largely restricted to the lesser peritoneal sac, or may be bounded by the mesenter. or by the great omeutum. The universal form is in general of a supmrative trpe, the pus being as abmont immerliately beneath the diaphrigm and aroum the spleen as in the pel ic cavity:

Is regards the forms of peritonitis, it may be laid down that what is trum of one serous sac is true of another. We meet, that is, serous, serofibrinous, hemorrhagic, and purulent forms, thongh the purulent forms arr relatively more frequent than in the other serous cavities. It is nout safe to imagine that these stand in their order of gravity, for the most quickly fatal ease we have seen, one fatal within twelve hours after apparcutly perfect health, gave a serous fluid containing a pure culture of streptococei, while Bacilhns coli iufeetions may vield abumdant foul pus and vet undergo complete recover:. What is particularly noticeahle in this relationship is that typhoidal peritonitis is characterized by it, difluse character, absence of athesions, and lack of pus cells; the langer of such a diminished reaction as is seen in cases of this mature lies in the rapid diffiusi no the irritant, and generalization of the process. Too few leukorytes exuded with defertive fibrin formation ou the one hand, and too abmulant cxudation of leukocytes on the other, with rapid digestion of fibrin as it is formed, equally favor a diffuse
as distinet from a loealized peritonitis. A form of purulent peritoniti that deserves mention is not infrequently seen following upon lapnrot omy, namely, that ehmracterized by the presence of one or more isolater poekets of pus between the viscera. 'This oceurs ehiefly where drainag, has been emploved, the mere aet of haparotomy having removed the greater part of the pus and thereby huving improved the ability of the peritonemin to form adluesions; the very excellenee of these adhesion: prevents eertain remote infected arells or pockets from obtaining fred drainage, mud in sueh pockets multiplication of bacteria with progressive pus formation may go on.

Fig. 248

Exogenous per ${ }^{\text {r }}$ ition of the lower end of the asceading colon. The illustration, whirli it natural size, shou- wrll the curious raised and perforated condition of the mucous membrane, senn from within the bowel, and at a, the opening through the muscle wall. (Adami.)

It is interesting to note how, in generalized peritonitis as in generalized pleurisy, the suppurative process rarely extends into the walls of the viseera and induces perforation; it is only. where we have these hoeatizerl areas of suppurative peritontis that the presence of the pus upon a soft viseus arresting the nutrition of the walls of that viscus favors the production of what may be termed exogenous ulceration and perforation.

Etiology of Preritonitiz.-As to the causes of peritonitis, these may be (1) traumatic, from without; (2) enterogenous; (3) from other viscera by extension or by escape of contents, e. g., bile and urine; (4) hemstogenous, and (5) cryptogenous.

Of these the commonest are those originating from some portion
peritonitis in laparotre isolated edrainage noverl the lity of the adlhesions ining free rogressive
of the bowed, either through rupture or perforation or secomdary to inflammation of the smme without aetual rupture. It is a matter of ewry-rlay observation that a peri-appendicitis presents itself around an inflamed appendix, as if the peritonemm were preparing itself against the possible perforation. As to the bacterial eanses, the forms most frefurntly found are the 13 . eoli, streptococeus, staphylocoecus, 13. typhosus, pnemmococous, and gomocoecus, the last partieularly in pelvic peritonitis of the female. Where the contents of the bowel maper into the eavity, it is evinlent that one or more of a vast number of potentially pathogenic intestinal bacterin may be coneerned. While the 13. coli is most commonly encountered, many observers today. regarl this not as the primary but as a secondary pathogenic agent.
Chronic Peritonitis.-Where aeute peritonitis undergoes resolution there is a great liability for adhesions to be left whiela undergo organization and often contracture, and these may be the camse of grave after-effects, viz., stricture, kinking, or internal hernia by a loop of bowel slipping under a fibrous band. This organization is a gradnal process, and what is more, the irritation set up by displacement and eonrquent congestion of the viseera may itself constitute a eause of continuanee of the prores that camot be designated otherwise than ail chronic peritonitis. Other forms of ehronie peritonitis may be associated with long-contimued passive congestion leading to a diffuse thickening of the peritoneum. A remarkable allid extreme form of this chronic peritonitis is seen in the condition of hyaloserositis, or as it is termed, where it is loeal affecting particularly the surface of the liver, icing liver. In this condition a dense, poreelain-like deposit of hyaline tissue covers the surface of the liver and spleen and is aceompanied by a thickemng and eontraction of the great omentime, lading to the formation of a thick hyaline mass lying along the transrersc colon. More rarcle the same condition is seen in the ileowoal region. Its exact eausation is still un-

Fic 249

Hyaloserositis of spleen; sec• tion through spleen showing at a an area of hyal serositis of capsule; b, splenic tissue. (McGill Path. Mus.) wetermined, but in a eertain proportion of rises it is assoeiated with a very ehronic form of tuberculosis, and wrasional eascons areas may be detected in the deposit. Coincidently, the pleura and perieardium are apt to present a similar condition. Arompanying this lesion, there is aseites.

Tuberculosis.-This is relatively common, and while at times it is dry, it is generally accompanied by a low form of serous peritonitis. Broally two forms may be recognized: one in which the infection of
the peritonemm iv secomblary to extension from one of the bhamiment viserera, most often the intestine, ulthomgh sometimes from the tulse. ovare, or spleren; mul the other a diffise form in which mo visens mpeners to le primarily involved. What is the exmet allase of this secomed form is drbatulale: certnin cases mpear clenrle to be part and parced of a
 ulheration of a censems lymph nowle into the mate witla diswemination of the baselli over the surfuere of the peritonemon; there is a gromp of cases, hower ar, resembling 11 parallel series contined to the plenrn, in which the pritomenne appears to be n site of prediection and thus the condition serems tole primary, in the usmul semse in wheh that term is emploped.
 of tubereles immediately above on tubereulous aren in the visens of origin. Such an aren nas i \boldsymbol{i} to extend continuonsly along the meighboring lymphatios, lemdins: further to infertion and alloesions of the srouss surface of neighboring coils of the bowed. The condition welerally is of ruther chronic development associated with the formation of eascons coighomerate tulureles. In the emrly stage there is little exulation (tuberculosis sicca), but as the condition adrances an serofibrimons peritonitis is liable to be set up).

The serons form is generalizerl; if seen in the emply stuge multiple miliary tuberdes ure seattered over any or all parts of the peritoneal surfince, aceompanied lis a relatively acute serofibrimons, sometimes almost purnlent proritonitis. In later stages, the tubereles may. be seén as masees momost as large as a pea with miversal adhesions hetween the howel loops, mad hetween onentum, intestines, amb parietes. There is a strihing liability for miliary peritoneal tuberembosis to complicate the late stages of the aseites lue to portal cirrhosis of the liver.
Syphilis. In strome contralistinction to tuberculosis, syphilis rarely indneses peritoneal disturbances.

Actinomycosis.- Actimonycosis is liable to involve the peritome....m, aremulary to its presence in the appendix or other region of the bowel. It mayy lead to tistule thromgh the abidominal wall.
Abnormal Contents of the Peritoneum.-Apart from inflammatory exulates and boonl. sumby foreign bodies may oceasionally be encomintered in the envity. A subserous fibroid of the nterus may beeome shared off and be free in the covity, as may also an appendix epiploica. Throngh rupture of the gall-bladder or eommon bile duct, not only bile but gallstones may gain entrance; as may also the urine from a ruptured hadder; in ertopic gestation, the fortus may eseape into the (avity, subsequently molergoing ealcifieation (lithopedion); in attempterl ahortion, needles or other instruments may perforate the uterine wall and esape into the eavity; while during laparotomy, sponges and instruments have been inadjertently, and happily rarely, allowed to remain in the cavity. In perforation of the intestimes, besides the momat buwd contents, intestinal worms may occasionally be fomed to have reathed the peritoneal sale. hich the molition ployed. phtchers is'rus of ong the Thesions mulition -mution is little 14 seromultiple perito-sthuees uny hesions arictes. o comliver. rarely nce...n, bowel. natory e enecome' ploica. - יnly oin a on the nipted : will istrimain Im: ! have

Regressive Changes.-Regrassive ehmgrs in the peritonemm are inemsidenthle. Orasiomilly we eneomer neronsis with hemorrlage of an intividunt npendix epiphoise through torsion of its perlunele. Necrosis of the peritonemin nul subperitoneal fint memers thromgh the action of escaped pmereatie secretion. Simall urems of pigmentation are occasionally observed, partienlarly in the pelvie region, possibly acombary to ecehymoses, although they uppar to bear some relationi--hip, to chrom constipation; blowl pigment ma, be observed loug altor a hemorihnge has been al)iorlect.

Progressive Changes. - What wime unthorities term fibromas, siren on the surfnce of the spleen in chlerIf individumls in the form of one or more fhatteneal, tallow-like projecotions, are uot blastomatous but are allied to hamboserositis. Of the mritomemm proper, manely, the enWhthelial membrane, there is but (sur new growth, the endothelioma, whidh at times dosely resembles "aromoma in the finger-like proresies that involule the mulerlying tisulus. From the subperitoment tis--IIf, a series of connective-tissue

Fic. 250

Fat uecroxis of appeadices epiplinica, from a char of parreatic necrosis ("hemorrhagic pan(rembitis"): a_{0} whife areas of fat necrowis; $b_{\text {o }}$ colun. (McGill lath. Mus.) thmors uny develop, lipoma, lipochondroma, lipoma myxomatodes, fibroma, angioma, und sarcoma. These: are particularly liable to grow in the root of the mesentery and in the retropritoneal fat; especially in the fat overlying the kidueys are we liable wo meet lipomatoid overgrowths and the prodiction of massive tumors Which may show myxomatoms, choulre natous, osteomatous, and sareomatoms areas. Teratomas onecasionally nevelop subperitoneally:
Scrombary tmons are apt to involve the peritonemm bex extension; thas tire areat omentum may be the seat of extensive eareinomatous trowth - il cases of carcimoma of the stomath, par! reas, gall-bladeler, or domes, and where there is colloid cancer of the rectmon this spreads "it...ive., along the peritoneuti. Other secondary growths, notably cystadenomes of the ovary, grow by imphantation, the rupture of one of the owarian evsts liberating cells which may seed thenselves upon the pritoneal surface, giving origin to very numerous small tumors. W_{i} have seen a similar diffinse implantation of lymphosarcoma over a large area of the peritonemo (Fig. 71, p. 2IS), which is so a favorite -ite for secomary melanotic growths.
Carious orders of ejats may present themselves in zonnection witl tha peritoneum. As nlrealy noterl, persistence of the median portion of the omphalomeseraic duet gives origin to a vitello-intestinal eyst.

Lymph cysts, sometimes multiple, due to dilated, obstructed lyimph vessels may he found, particularly in the mesenterics. Parasitic cysts may be encomitered, due to rupture or eseape of the eontents in removal of a hydatid of the liver.

HERNIA

A hernia is the protrusion of any (abdoninal) viseus or portion of the same through natural or accidental aperture in the parietes. In a secondary sense the term is also employed to inchude conditions in which a portion of the abdominal viscera passes, not through the parietes but through openings in the omentmo, or the foramen of Winslow, or into peritoneal porkets. We thus make a distinction between the former, the external, ind the latter, the internal hernias. Sueh protrusion may occur in regions of congenital weakness of the abdominal wall, as at the inguinal or femoral canals, the obturator foramen, the umbilicus, or, again, in regions of aequired weakness, as in the neighborhood of laparotomy sears, and in the middle line below the umbiliens, when through pregnaney or other distending eanse, the space between the recti muscles is enlarged. Weakness of the abdominal wall, with consequent giving-way owing to internal pressure, is the prime factor in the production of these external hernias. With this giving-way a sae is formed, lined by the parietal peritonemon, and into that sac there may pass various viscera aceorting to the situation of the sae, viz, the eoils of the small intestine, masses of omentun, ceenm and appendix or other portions of the large intestine and more rarely ovary, spleen, or portion of the stomach or urinary bladler, liver ete. As the sae enlarges it is apt to expand and in this way to present a relatively narrow neek with a more wohmminons extra-ablominal eavity. This pateney of the sae may contimes, and reduction of the contents of the sac may oceur, or be indheed (reducible hernia). But through expanson of the eontents of the bowel in the sac, congestion may. be set up with resultant adhesions, or the very bulk of the tissue passing in may oppose return. It is in these conditions that therc is innminent danger; with such incarceration the relative constriction of the neck obstructs the free return of venous blood. The hernial mass beeomes larger through this congestion, the constriction, therefore, more prononneed, and a progressive enlargement is the result which, ending in stasis, leads to necrosis and gangrone of the hernial contents, and these, whenever any portion of the bowel eontaining feces is concerned, eventually become putrefactive and gangrenous.

1. External Hernias. - The following forms are to be recognizel: Inguinal Hernia.- In man this is the commonest form, but it is also seen in woman. It is due to mulue pateney or weakness of the tissues in the region of the inguinal canal. Thus visecra may pass down the inguinal canal itself (oblique inguinal hernia) or the external abdominal ring being unduly large and the parietes over it being weak, there is
developed what is known as direct inguinal hernia, originating internally to the inner side of the internal orifiee of the eanal but presenting itself through the external ring. Either of these forms may now extend down the serotum to form a scrotal hernia. If the hernia does not rxtend through the external ring we have what is known as incomplete inguinal hernia.
2. Femoral Hernia.-This is more eommon in woman, the ehannel heing formed along the course of the femoral vessels and so below l'mpart's ligament and along the upper part of IIunter's eanal.
:3. Umbilical Hernia.-Abdominal eontents may protrude through the mmbilical ring. This may be eongenital but it is most often seen in the multiparous female; the sac may attain great size. Somewhat similar to this, but oeeurring below the navel in the middle line is the abdominal hernia. This oftell oeeurs in women who have borne ehildren, or as the result of a laparotomy in the median line. Epigastric abdominal hernia in the middle line above the navel is rare.
3. Other Forms.- Other forms are also rare, viz., obturator hernia, through the obturator foramen; sciatic, through the saeroseiatie noteh; perineal, through the levator ani; vaginal, through the giving way of the wall of I ouglas' poneh. Diaphragmatic hernia may be the either to a rongenital deficieney in the formation of the diaphragn, nearly always on the left side, as a result of whieh, stomaeh, spleen, kidney, and loops. of intestine may be found oeeupying the thorax; or it may be aequired through traumatie rupture.
Internal Hernias.-Internai hernias show no protrusion through the ahlominal parietes; they are relatively infrequent. Through rupture or imperfeet formation of the mesentery vecasionally the abdominal contents become retroperitoneal and a large, if not the greater, portion of the intestine, may pass behind some part of the peritoneum; or, Isain, loops of the intestine may be pressed through the foramen of Winslow, to the filling of the lesser omental sae. The fossa duodenalis may further give way; similarly the subceal and intersigmoid fosse may form saes containing hernial masses of the intestime.

THE LIVER

Simple as is the strueture of the liver, there is no organ in the body tw whieh more various metabolie activities have been justly attributed. It: great importance is indieated by its size (1400 to 1600 grams). It is the main organ for the removal of produets of broken-down erythroevtes: the separation of the iron of the hemoglobin from the discharged iron-free bile pigment: the discharge of the bile-salts and of cholesterin: the regulation of the sugar supply of the blood and tissues in general, through its glyeogenie activities: the regulation similarly, of the eireulating fats, and storage of the same and other lipoids: the formation of urca. Situated at the head of the portal system, whieh brings
to it the various substances absorbed from the walls of the intestine, the liver acts as a protective organ, arresting and exereting or destroying toxie loodies of various orders, and in this way accomulating certain poisons surh as arsenie and phosphorns. As with the organs in general, although capable of withstanding the insults of particular orders in partienlar degrees, and although intended for such a purpose, nevertheless these insults may at times be extreme and the liver may thereby suffer. It is, therefore, the seat of many inflammatory and degenerative processes, which, in time, interfere with its prime metabolic purposes; hence the far-reaching importance of pathological change in its structure, and the profomd general disturbances to which disease of this visens may give rise. Space forbids that we shonld here enter into the minute anatomy, which should be known to every student of histology. At most, we may recall that it is abondantly vascular, so vaseular as co be able to contain the whole blood supply of the borly; that it has a double blood smpply, systemie and arterial through the hepatic artery, portal and venons through the portal vein; that the entering bood reaches the individual lobules from their periphery to be collected into a central, intralohular branch of the hepatic vein, which carries it to the inferior vena cava. Contrariwise, the hile capillaries pass outward to the periphery of the lobnle, there joining to form the bile ducts, and thus each individual liver cell is in immediate apposition, on at least one aspect, to a blool capillary or sinusoid and, on another, to a bile capillary. There is, indeed, evidence that within the individual liver cell there are fine chamels intimately comnceted with both systems.
Abnormalities.-The abnormalities of the liver, as compared with other organs of the borly, are distinctly few. It may show considerable variation in shape; one lobe, especially the left, may be abnormally small, or there may be accessory lohes, in general small, or masses, snared off in the course of developme: ', may lie in the neighborhood of the main organ, e. g., in the suspensory ligament or the great onnentnm. Liebermeister's grooves, depressions rumning in the anteroposterior direction, while most often aequired, may be congenital; in all cases they appar to be due to an irregular development or an hipertrophy of the diaphragmatic musculature, the grooves corresponding to regions of pressure of the monsele bands upon the upper surface of the liver. There may further be variations in the position of the portal rein and a few cases are on record in which there has been indusion of adrenal tissule.

Circulatory Disturbances.-The liver participates in general anemia, and then is found pale, small and flabher, with sharp edges. Local pressnre may produce local anemia. Active hyperemia, or more accurately: active portal congestion, may be physological, as after a hearty meal, and possibly is the canse of the large liver of the tropical dwedler, whose diet is in excess of the requirements of the elimate. In infective and toxie states the clondy swelling to be presently noted is an accompaniment of active congestion. In temperate \%ones, passive congestion
tine, the stroying certailu general, sill parertheless uffer. It rocesses, nee the and the lay give latomy; ost, we able to e bloond tal and hes the central, inferior to the Id thus 1st one pillary. ere are
d with nsider-abnornasses, ghborgreat nterotal; in or an correupper sition been

emia,

 pressately meal. rhose and panistionis much more commonly encomitered as a result of chronic obstructive hoart or liver disease. The organ is enlarged, tense, its edges more than nisially oldinse, its color from a chocolate brown to a dark purple;

Fia. 251

Nutnieg liver, showing a small arta, hatural size, of the cut surfilue (MleGill Pith. Mus)

Fig. 252

Early stage of passive congestion of liver from near ecnire of lobule, showing a, liver cells, somewhat shrunken; b, wall of capillary, separated fronı liver cells by cedematous fuid; c, pignent from destroyed red blood corpus. cles. The corpuseles have been left out of the drawing for the sake of elearness.

Fig. 253

Latcr st:ige of the same: a, red blond corMiscluy which hate exeaped into the space ure viously orcupied by the liver cells; b, greatly thrunken and degenerated liver cells. The sarisisuita ate evell nore dilated than in the (arlicr stage. (After Mallory)

Fig. 254
a

Still later stage of the same condition. Here the rells of the mid-zone of the lobule have completely disappeared. their plaee being taken
 ing cells of the peripheral zone of the lolsule; c, cells of inner zonc showing abundant fatty vacuoles. (After Mallory.)
often, a.so, with enlargement of the right side of the heart and of th liver, there is to be noted a distinct hollowing of the upper aspect the left lobe-a cardiac gulf or groove. Where the condition has bee long continued, the surface is apt to be obscurcly gramular, due to th fibrosis which inevitably follows long-continued moderate congestio On section of a modcrately carly case the appearance is characteristi and gives the name "nutmeg liver" to this condition; the centres the lobules are dark red from congestion, a congestion so extreme tha the cells of the central zone of the lobule undergo atrophy; owing the obstruction to the circulation, the fat brought by the portal bloo is not actively consumed and is stored up in the remaining peripher part of the lobule, the light color of which contrasts strongly with th red or brown centre; the cut surface of the liver tissue resembles ver

Red infarct of liver. Section of the organ (less than the natural size), so cut as to ezpose two branches of the portal vein into which extends a thrombus (b); a, area of red infarc:, (McGill Path. Mus.) closely the grated surface of th nutmeg of domesticity. As th congestion continues, both th lack of nourishment, owing t the slowed cisculation, and th increased venous pressure lea to an extending atrophy of th cells of the centres of the lobule and with this there is some in crease of the connective tissu around the central vein; with th continued malnutrition of th peripheral cells less fat is store up, the whole organ thus assum ing a darker color with som shrinkage and increased firmnes -cyanotic induration. Congestion secondary to thrombosis of th hepatic vein or its obliteration is rare.
Infarcts of the liver are of two kinds, the ancmic or white, and the red. These have a different origiu; the white infarct is brought about ly embolic or other closure of a branch of the hcpatic artery. Despite the relatively small size of the hepatic artery as compared with the portal vein, it , experimental closure leads to a necrosis of the organ or stated otherwise, arterial blood is necessary for the perfect nutrition of the liver. Thus, despite continued portal circulation, if a branch of the hepatic artery be obliterated, cspecially where there is already an impaired general circulation, the local area of supply undergoes necrosis, becomes pale, and shows typical white infarct formation. Red infarct is the result of closure by embolism or thrombosis of a branch of the portal vein. The appearance obtained is that of a sharply defined, more or less wedge-shapel area of darker red color stand ${ }^{+}$ag out in sharp contrast to the paler brown liver tissue. If necrosis be taken
and of the r aspect of n has been due to the congestion. racteristic, centres of treme that ; owing to ortal blood peripheral with the mbles very ace of the

As the both the owing to and the sure lead y of the he lobules some inive tissue ; with the of the is stored us assumith some d firmness Congestion is of the bliteration e , and the ght about
Despite with the organ or, nutrition branch of lready an necrosis, ed infarct ch of the definel, ig out in be taken
as the essential property of an infaret, this is no true infarct. Sections studied under the microscope show the cells still intact with wellstaining nuclei, but each column of liver cells is surrounded by intensely dilated and congested sinusoids or capillaries. The condition, however, may be compared with the red infarct of the lung, where similarly there is a double circulation, and where closure of a branch of the pulmonary artery is followed by an intense congestion without necrosis of the involved tissue. The liver is a favorite site for ninute cell emboli, either those derived from the placenta, or in rarer cases from the bone marrow, or from peritoneal or other fat cells after operation, or from conglutinated erythrocytes. They eause focal necroses.
Thrombosis of the main trunk of the portal vein, again resembling that of the main pulmonary artery, is unaccompanied by this infarct formation or by any marked ehange in the liver tissue, save when the thrombosis is of infective nature. Thrombosis of this vein is not uncommion, and may be brought about in more than one way. The commonest cause is by extension of thrombosis or thrombophlebitis in one of the mesenteric or other branches of the portal vein, from an area of indammation or an operative lesion; or inflammation within the liver, by affecting the wall of onc of the larger branches may cause a localized thrombosis within it, which may extend and involve still larger branches.
Hemorrhage is most commonly traumatic, but small hemorrhages may occur around actively growing tumors, in the neighborhood of abscesses, in cases of the so-called hemorrhagic diseases, in eclampsia, and in "acute ynllow atrophy."

A condition not often recognized is that of codema of the liver. Our attention was first drawn to this in the routine insertion of pipettes to obtain liver juicc for bacteriologieal purposes, when not infrequently we obtained a fluid that was thin and evidently a mixture of scrum with hood. Microscopic section of livers affording such fluid presents a characteristic picture. The columns of liver cells appcar shrunken and widely separated, and on examining the space between the columns the capillary channels are seen scparated from the liver cells by clear spaces, evidcntly containing serous fluid (see Fig. 2£1). In some cases, the accompanying atrophy of the liver cells appears to be primary, in which case the oedema is evidently ex racuo.
Inflammation.-Acute Hepatitis.-It is perhaps difficult to make anything like a sharp line of demareation between the active physiological hyperenia to which we have already referred and what is known ats acute hepatitis. In both conditions the organ is enlarged and hypercmic, but where toxic agents such as the toxins of acute infections and (ertain mineral poisons, etc., or again the products of abnormal digestime are brought to the organ, it is common to find cellular changes in auldition to the hyperemia, and it is this cloudy, passing on to fatty, W上eneration that is regar ${ }^{1}+$ as the distinguishing feature on 0 general inflamnation of the org. ... $\&$ severer carr. there is in addition
a certain amomit of small-eelled infiltration along the interlobular portal sheaths. 'There is the same doubt here, as in acute nephritis, as to whether these cellular changes should he regarded as inthammatory or as pure degencrations. Certain it is, that extreme toxic aetion leads to cell degeneration, acole atrophy, and necrosis. In what is known as acute red atrophy we bave a combination of intense congestion with "jumbling" and shrinkage of the cells, and even more pronouncerl conditions are seen in acute yellow atrophy in whieh the necrotie changes accompanying the acoute atrophy are still more marked. We mention these here beennse, by seme observers at least, aente red atrophy i, hehl to precele one form of cirrhosis or chronic hepatitis.

Sowion through a small ahserss of liver from a rase of pylephtebitis: a, abseess; b, dilated bile duct with epithelimm lonsened from its basement membrane; c, surrounding liver ceils conmprosed

In addition to this so-ealled simple diffinse hepatitis we not infrequently encomenter a more soractic suppurative hepatitis; this mas. be in two forms, presenting itself cither in the form of multiple small abseesses or of a few or a solitary large abseess. The multiple abseeses may- have either (a) a hematogenoms or (b) a biliary origin. The former is perhaps the eommoner. Where there is suppurative inflammation of the appendix or intestinal tract, a local purnlent thrombophlebitis may be follower be loosening of the infective material in some branch of the mesenterie reins with formation of multiple infective emboli in the small hepatic bramehes of the portal vein. Each embohs of this nature may then become the erntre of a small abseress, and these may be so abmulant as to be strmig together along the conrse of a group of vessel branders, like a bunch of small grapes (pylephlebitic abscesses). Surromaling these there is intense congestion of the hepatic parenehyma.

But, similarly, an acnte aseending infection along the intrahepatic bile ducts, secondary often to suppurative cholecerstitis, may lead to a rery similar appearance, though here the angry and somewhint dilated iplearance of the larger bile dncts and the presence of pus within them gives a clue to the origin of the abscesses.

The large tropical abscess, or abseesses of the liver have a wholly lifferent origin. These are found most often in the dome of the liver and may be several inches in diameter. Ther contain a thick, broken-down fluid material the color of chocolat au lait, composed of necrotic liver tissue with molerately abundant lenkowtes; they have mewhat ragged boundaries formed of necrosing liver tissue, and with their extension may rupture through the diaphragm into the ling tissue or bronchi, or, again, into the peritoneal cavity. These are amoebic abscesses, and are secondary to amobic colitıs (dysentery). ('arefnl examination of the boundary tissue of these abseesses reveals albundant entamober, which, according to our experience may be found still active and motile on a warm stage twelve hours and more after thr death of the subject. How these entamobe gain entrance to the liver is perhaps debatable; the central position of the abseess suggests that they have gained entranee by the portal blood.
Chronic Inflammation.-Cirrhoses and Specific Inflammations.-By the term cirrhosis we imply a diffuse extensive laving-down of fibrous tissue within the liver. Saying this, it will be seen that anatomically such chposit of fibrous tissue may have various origins. It may originate around the branches of the portal vein or may be of the nature of a dironic periarteritis around the branches of the hepatie artery; it may show itself particularly in eonnection with the intralobular branches of the hepatie vein or be secondary to an inflammation and irritation of the bile dnets. It may be an extension inward of a chronie inflammation affecting Glisson's capsule, or lastly, as in syphilis and tuberculosis, it may be the outcome of focal specific tubercular changes so abundant as to be gencralized. Anatomically, therefore, we may expect to find mumerous types of cirrhosis; as a matter of fact the arterial form is almost muknown, that in conneetion with the hepatie veins, while seen in clironic: congestion, is but of slight degree, and that following a Mronic inflamnation of the capsule is also so rare as to be nrgligible. 'Thr important forms to recognize are the portal, the biliary, and the diffuse syphilitic.

Laennec's Cirrhosis or Portal Cirrhosis (inaccurately termed atrophic (irrhosis). -This is the commonest type of cirrhotie change. It is finmed frequently in those addicted to alcohol, hence the term gindrinker's liver, hit may occur among native Ilindoos and ehildren "ho have never known spiritnous liquor. Clinically it is eharacterized her drspepsia and anorexia, ascites more frequently than jaundiee, progressive emaciation and weakness. a slight grade of anemia, a fair "inargement of the spleen, and death either from intereurrent tubereulenis or inflammation of the lungs, or sometimes oesophageal hemorrhage.

Studying the course of the disease, if recognized early, the liver is foun greatly enlarged, hut in tlae course of montlas it is apt to undergo pro gressive shrinkage mutil in a certain proportion of cases it is very mue

Fig. 257

Portal cirrhosis of the liver: n, d^{\prime}, fracts of fibrous tissue enelosing masses of fatty liver-cells The distinction betwern the different lebules and the radiating urrangements of the eells is entirely
lost. (Green)
smaller thim normal. According to our experience, in gencral the liver in this condition is larger and heavier than normal. The main features of the orgain at antopsy are the nodular surface (hobnail liver) the

Hohnaited liver with small hobnails, natural size. (MeGill Path. Mus.) extreme firmness on sertion, due to the increased fibrosis, and usually the distine tly yellow color of the cut organ. It vas this last feature that primarily gave the name (к,ipors, vellow) to the comition. although by association we now apply this term to any condition of diffuse fibrosis. On inspection of the cut surrface the liver parenehyma is seen to be separated off into small islands or irreyular lobules by bands of fibrous tissone. rinder the microscope in typical casces what is characteristic is that the broal but irregular bands of dense fibrous tissue are sharply defined from these istands of parenchyma, nor are these islands seen to be wellformed lobules. On the contrary, individual islands appear to he
er is found lergo proery mueh
formed of chasters of several imperfect lobules (imperfect beeause their intralobnlar veins are not, in general, central). It is this formation that gives the additional name of multilobular cirrhosis to this particular type. Further, the bands present relatively few inclorled bile ducts. Fispecially in the voung, a variant of this type is aetn in which many of the nolules are relatively large (Figs. 259, 2tio), much larger than hobuails; a study of them shows that here we deal with a regenerative proeess. From this simple regeneration we may pass on, partieularly in adults, to eirrhosis with multiple adenomatons nowlules and cirrhosis with accompanying diffuse careinomatosis.

The canse of this hobnail appearance is obvious; it is the old story of "rentual contraction of newly formed connective tissue with resultant projection of the intermediate masses.

Fic. 259

Hubnuiled liver with large hobnails due to regen"ratiun of the parenchyma, natural size. (MleGill
Pith. Alus.)

Fig. 260

Portion of the same seen on section.

Is to the cause of "portal" cirrhosis, there has been great debate. The commonest type of alcoholic liver is that of advaneed fatty infiltration. In such livers we notice often that the portal sheaths show a small-celled .ufiltration or slight fibrosis. It is presumed that some irritant agent, bronght by the portal blood, sets up a low form of irritation around the branches generally, as also that the same irritant leals to degeneration and atrophy of those liver cells which are exposed to the main brunt of the toxie agent, that thus there is a coincident meriportal growth of connective tissue and destruction of the peripheral wils of the lobules, the resultant irregular brealth of the bands of fibrous iane being dependent upon the irregnlar distribution of the portal branches around the lobnles. As to the nature of the irritant, it has beyn formd that alcohol alone administered to the lower animals will not It up cirrhosis, and that aeute atrophy, pure and simple, of liver cells, - ch as is produced by ehloroform, is followed not by cirrhosis but by remeration from the undestroved liver cells. Hektoen, Weaver, and others hare occasionally noted that inoculation of laboratory animals with certain strains of B. coli will set up the condition, but this with no
constancy. Recently; Opic has shown that if, after preliminary necro of the liver cells by means of ehloroform, the organ be suljected infection by a mild strain of B . coli or its toxins, then eonstantly cirrhotie process is developed. 'This, it is true, is not a p' re port eirrhosis, becanse ehboroforin tends to produce u eentral rather than peripheral neerosis. Indeed from the similarity of the histologiea picture prohneed thus following upon a eentrilobular neerosis, to tha seen in the common human multilobilar trpe, it may be questione whether the loss of liver parenchyma in the latter is primarily or essel

Fig. 261

Section from a liver enlarged and showing combined extreme fatty infatration and moderate cirrhosis, approxinating histologieally more to Hanots than to Lacnace's type: a, fattily infil trated liver cells; b and d, hile ducts, increased in number; c, round-celled infiltration of fibrous tissue
tialiy peripheral and whether we are right in speaking of this as portal cirrhosis. But these observations strongly support our contention that there are two factors at work in the proluction of cirrhosis, viz., in the first place an agent acting through the stomarh and intestines and there setting up condit. as which favor subinfeetion (see p. 147), and in the sceond place, in consequence of the gastro-enteritis, the undue passige into the portal system of organisms of the B3. coli type through the damaged mucosa.

We have here described the typical form of portal eirrhosis; it must, however, be bornc in mind that the typical case is the exception and
ry necrosis bjecterl to nstantly a re portal her than a istological is, to that questioned y or essell-
not the rule. In a large number of cases this very growth of fibrous tionur within the liver leads to grave disturbance of the biliary system and so to the intercurrent developr of janndice and coincident irritation of the bile dhets. Fisther, quate nlarge proportion of cases of dirrhosis exhibit a brownish pigmentution hoth of the liver cells unl of the fibrons tissue, the pigment being iron-containing. There is "vidently in these cases some hemolytic agent at work with excessive hibration of hemoglobin. The most advanced cases of this nature show it generalized pigmentation und constitute the condition of hemochromatosis. Often in these there is necompanying fibrosis and utrophy: of the pancreas (bronzed diabetes). The ascites and eulurged spleen in portal cirrhosis appear clearly to be associated with the contraction of the fibrons tissue and accompanying compression of the intrahepatic portal vessels, leading to obstruction.

While making this stutemont, mention must be made of a remarkable courlition known as Banti's disease, or, according to Banti himself, hemolytic splenomegaly. Here, enlargement of the spleen is the first disturbance noted, and after the course of some years this is followed ly portal cirrhosis of the liver. Banti's observations on the result if ablation of the spleen indicute that the overgrown spleen funclomates in excess, the anemia ceasing when the organ is removed; presinmably, it is the prodncts of excessive hemolysis that act as the prestal irritant.

Biliary Cirrhosis. - Of this we recognize two forms, i. : obstructive and what is known as Hanot's or hypertrophic cirrhosis. We confess that we have nevor met with an example that we conld surely say was of this second kind, and the condition seems to be very rare in North Imerica, althongh numerous cases have been reported, paiticularly in l'rench literature.

The obstructive form of biliary cirrhosis is to be encountered where from one cause or another there is continued obstruction in, or complete tenosis of, the common bile duct. It is to be seen, for example, in infints presenting congenital atresia or absence of the duct, or where there has bren long-continued impaction of gallstones, or pressure upon the dhect from withont or where there is occhision by tumors growing "ithin the duct. In all these cases the liver is enlarged and shows "Vtreme jamolice, as do the other tissues of the body. All the bile duts throughout it are markedly dilated and around each is a broad z.ин" of new connective tissue in which, in part through dilatation, in bart throngh celhular proliferation, a chaplet or cirele of terminal bile inicts stan:'s out prominently. Here clearly is a cirrhosis around the hile passages, which may well be compared with the fibrosis around the hranches of the pancreatie duct following obstruction of the same. I! ! woth cases the reabsorp m of the excreted fluid appears to be the nimary irritant. In our laboratory Ford collected a considerable
number of such cases.

Hanot's Cirrhosis. - In this we have a train of symptoms widel different from those of orlinary portal cirrhosis. There is not so marke gostro-intestimal disturhance; there is little tembence to ascites, bu what is most marked is a smoression of molerately acote attacks jammier, and after cach attack the liver is fonnd larger, the jannlic tukes a longer and longer time to pass off, nutil it beromes contimun and the liver attains an mormons size. At mitopsy, there is tota absence of hobmailing, the organ is grently janaliced, ents firmly, an muler the miaroscope the fibrosis is much more evenly distributed Around indivihual lobules (monolobular cirrhosis) the bunds are no so sharply defined and cehhibit momeroms bile ducts, or more aceuratel psembo-bile ducts, little worm-like, comoluted masses of cells having

Fiu. 202

Section from a liver under high magnification demonstrating reversionary metamorphosis of the liver cella at the periphery of a lobule under the influence of the surroumbing fibrosis, into suall eells approximating to the bile-duct type, though unprovidel with a lumen: a, reduced liver cells forming a pseudo-bile-duct: b, liver cells of lobule with extreme fatty infiltration; c, bile duct proper: d. cells of pseudo-bile-dint atill containing fat, showing thus their liver-cell origin.
no regular hmmen and appearing io represent, many of them, collections of shrunken liver cells snared off and compressed by the connective tissue as it advances into the lobule. Thas appearance is not entirely eonfined to Hanot's cirrhosis, and is well scen in Fig. 262. In other words, some eases of what appear to be ordinary cirrhosis show here and there similar appcarances; as we have said, a large proportion of cases of cirrhosis are apt to beeome seconlarily of mixed type.

The prominenee of the icterie manifestations in Hanot's cirrhosis suggests strongly that here the irritation is of biliary origin. It has been suggested that it is due to an ascending ehronie inflammation of the finer bile ducts, and that it is of infective origin, but this has still to be surely determined.
mis widely so murked scites, but attacks of e jnimulice continuous re is total irmly, mill istributed. Is are not nceurately: Ils having

Syphilitic Cirrhosis.-In a suphilitie stillhorn infunt one of the most triking features is the abmulaner of spirochetes in the liver tissue; in infunts showing syphilitic mmifestutions the orga: is apt to be of rehatively grent size, mul to present on microscopic examination abundant, small-edled infiltration in the form of widely diffused miliary gmmmis. 'This condition muy lead later on to a diffuse formation of romective tissue of what mis be termed the pericellular type; not onlyat the periphery of the lobules but within the lobules themselves, separating off individual cells and cell columns, there may be developed a delinte but extensive connective tisunc. Ocensionally in acquiral siphilis we meet, in the so-called late secondary stage, a similar enlargement of the organ with a like diffuse pericellular cirrhosis; also (though this must not be considered a true cirrhosis) in the neighborhoorl of large gummas we ohserve a similar pericellular fibrosis. Freneh authorities lay stress upon a amewhat similar diffuse fibrosis wern in some cases of tuberculosis, and ascribe this to the netion of tuberenlar toxins; although we hawe sought for it, we have not sron this form. One of us (A.) hats secon and described an extreme condition of pericellular cirrhosis in cattle suffering from What is known as Pictou cattle disease, now recognized us due to the rifiets of eating ragwort.

Inflammation of Glisson's Capsule.

This should strictly be considrerel as a localized form of peritmitis; it may be acute or chronic. Wir mention it here because one remarkable type of chronic proaressive inflammation has often, from the aecompanying extreme ar"ite's and great shrinkage of the liver, been mistaken for a portal rirrhosis. This is hyaloserositis, or "cake-icing liver," in which there is a dense, porcelain-white, fibrous deposit sometimes a centimeter or 11 ure in thickness, particularly over the upper and anterior surface if the liver, which induces by its contraction great compression and atruphe. Some text-books teach that this is accompanied by an invasive cirrhosis of the liver tissues, but the cases we have seen have mot shown any such process.
The Specific Inflammations.-Miliary tuberculosis of the liver is not unimmon in cases of general disseminated hematogenous thbercu$!\cdots$. Oiten the tubercles are so fine that they are noticeable only IIM, microseopic examination, and then also it is characteristic that il! seneral they are isolated and show little caseation and appear as
though they develop with difficulty, suggesting that the tuberde bacilli do not readily multiphy in this organl. Occasiomally, howerer, as in the brain, we eneometer solitary conglomerate masses of caseating tubercles, tuberculomas. A third form, the stoealled bile-duct tuberculosis, is deseribed in which tuberculoms nodules np to the size of 1 or $\stackrel{\square}{2}$ (in. in diameter, are distributed along the course of the larger bile ducts. These show a caseons centre, are apt to be bile-

Fig. 264

Section from a gumnatous, syphilitic liver, showing at a necrutic (gummy) central area; b, zone of leakocytes undergoing necrosis; c, c zone of abundant mmall roundcelled infiltration: $d d$, outer zone of fibrosis, extending outward letwren the columns of rompressed liver cells it e; flile duct. stained, and what is more, ther tend to break into the bile ducts and so to undergo cavitation.

Syphilis.-It may somud paradoxical lout at the same time it is true that of all the internal viseera the liver shows most frequently manifestation of the presence of s.philis, and nevertheless, tomsidering the frequeney of accuired syphilis, it is somewhat striking to observe how rarely in the ordinary rin of post mortem cases we meet with syphilitic disturbances in this organ. Or otherwise, with modern treatment it is rare to find permanent syphilitic disorders of the viseera, but of the viseera the liver is most frequently involved. At the same time, the syphilitic lesioms are very varied. Considlering first congenital sphilis, eommon conditions are either widely dissemimated miliary gummas or a later stage of syphilitic cirrhosis, lont in addition there are some few cases on record of large solitary syphilomas, corresponating to the tuberenlomas already mentioned, sirromuded lyy hyperplastie liver parenchyma. Ordinary gummas of moderate size are comparatively rare in the congenital disease. In acquired suphilis, it is these ordinary gummas and the results of the same that are the commonest and mont elaraeteristic manifestation. We may find cither infrequent nodulcs moderately sharply defined with gummy eentres, which may be 2 or 3 cha.
in diameter, or more frequently there is present one or other later tage in the history of the sime. The tendence is for these gummas muler ordirary conditions to undergo absorption. With this, the necrosed eentre undergoes shrinkage and simultanemsly there develops a very pronouneed surromeding fibrosis. This often takes the form of rambial processes of fair size extending for sor: atif. ! istance between the lobules. The shrinkage that this inflan atory bihous : issue may imblergo is very striking, and the result is that the wort ins liver tissue is pulled in and the surface of the liver sloms rell-matke distortion, ruembling, to employ a homely simile, a seat as, in.atmed by the button methon, there being deep impressions with stellate furrows radiating from the bottom of each. Where these riratrices are abmudant we कhtain the greatly distorted, eoarsely lobate liver, the hepar lobatum. This distortion appars to be permanent: we may, in old syphilities, meet with these depresions which show at their base a small amount ul "iatricial tissme, rmming intu the liver tissine, but exhibiting no sign of the tepieal gimman, the gimmer matter hating been wholly absorbed. I. already noted, there mas. he; thongh rarely, a diffuse \because philitic dirrhosis, and some"hat more frequently than in the congenital form we may -imilarly rucomer luge solitary syphilomatons masses, "hich may easily be mistaken for timmor growths.
Speaking of errors of diagmosis, it dessrves mention that the whilitie ciratrices if situ-

Surface of syphilitie liver to show the characteristic puckiring (n, a) over old fibroid gummata, atud near the hilus of the liver may so eompress or pull upon the limper portal veius as to canse obstruction and aseites and lead to a - "मpmsition that we deal with a case of portal cirrhosis.

Actinomycosis.--Aetinomycosis is somewhat apt to involve the liver is a metastatic process, and there may be multiphe small, yranulomatous aratsor, more eharateristic: 11 y, solitary large masses, many centimeters arrons, charaeterized by a newhat spongy appearance.

Regressive Changes.-At: ophy.-Cimple atrophy is seen in old age, in also in severely eachertic conditions. The organ is small, with sharp wises, and, particularly in the left lobe, along the edge, there may be comphetedisappearance of the liver eells, the connective tissue framework ahme remaming as a whitisli continuation of the liver tissue. Uuder thimicroscope, the lobules, columns, and cells are small, and throughout, the eells may show small aceumulations of brownish pigment (brown
atrophy).

Pressure Grooves．－These manifestations of partial atrophy are somewhat common，either shallow grooves corresponding to the ribs or as alrcaly noted，Liebermeister＇s grooves（ p ．$\overline{\mathrm{i}}(\mathrm{O})$ ），or as the cardiac depression（p．572），or，lastly，as the groove that separates the so－called ＂lacing－lobe，＂lronght about by excessive and long－contimued tight lacing，by whieh the liver is forced down and the costal edge pressed into it．In one case known to us the terminal portion of the right lobe was found lying in the pelvis attached to the rest of the liver by a long fibrons band．
Degenerations and Infiltrations．－These are many and frequent．Most common is the cloudy swelling seen in aeute infections and carly toxic states．Frequent also are fatty infiltration and fatty degeneration，the

Fig． 260

Teased cells from a fattily infiltrated liver：a，nuelei being pushed to the periphers：

Fte． 267

Teased cells from a liver showing the earlier atage of fatty infiltration，with multiple fat droplets of varying size distributed in the cytoplasm．
former in cases of obesity and overfereling，alcoholism，conditions of deficient oxidation，$e . g$ ．，some cases of tubereulosis and other cachexias， and lastly，in the late stages of pregnancy．While the peripheral cells are the first involved，it may be noted that in the pregnant woman the central cells of the lobule may contain the largest store of fat．We may recall that in this form，while the cell mucleus still stains well， the cell body is seen distended ly one or more large fatty globnles． Fatty degeneration proper is evidenced by the appearance of multiple minute granules or fine globules of lipoid or fatty matter throughout the cell body，accompanical in typieal easea by evidence of nuclear chromatolysis and degencration．One of ho（McC．）with Professur Klotr，has called attention to the frequency of this condition and hats
suggested that the irregular and angular form of the granules, when stained with Sudan III, indieates tha we deal not with ordinary nentral fats hont with some fatty eompound or lipoid. This fatty degeneration may be either universal, peripheral, or central in position in the lobule, but there is no evidence to indicate the meaning of partieular distribntion; it is notable that in pernicious anemia the degeneration is generally of the eentrel type. As a further distinctio tween the liver of fatty infiltration and that of fatty degeneration, it may be said that in the former, the organ is large, with romal, obtuse edges, pale and solid, witlo a greasy cut surface, while in the latter, the liver is flabby, shrunken, brittle, and of a more natural color. In phosphorus poisoning and in acnte yellow atrophy we appear to have a combination of infiltration and degeneration.

Fic. 268

Fectan from the liver of an alcoholie, with fatty infiltration und slight grade of fibrosis in the portal sheaths: a, certral vein; b, a fatty liver cell.

Glycogenous infiltration may he encountered in the peripheral cells of the lobule in certain cases of clabetes; in some of these corses recently. the glyengen has heen detected actually within the nuelei.
Amyloid of the liver is seen in general amyloidosis, associated with -imilar ehange in the spleen and kidne?; when advanced, the liver is colarged, firm, and the waxy areas are prominent on the smonth eut mifiace. Nieroscopieally, it may he observed that the deposit oceurs first in the intermediate zone, that is, the zone midway between centre anul periphery of the lobule; later, the amyloid deposit may affeet the "hole lohe, easing great atrophy of the liver cells proper.
Pigmental Inflitratien.- The pigment deposited in the liver may be if different kinds, viz., bile piginent (bilirubin), iron-free derivatives of
blood pigment，and hemosiderim．In ictorus or janndice the heaping up of the pigment is seen primarily within the liver cells and here at times it ean be recognizel that it ocenpies a set of fine intracellular channels．In more adranced cases the inspissated bile is foumd also in the bile eapillaries betweon the liver cells and deposited in the lymph spaces of the portal sheaths．According to degree of pigmentation，the liver may exhibit a bright yellow，a pronounced brown，or even a dark olive－green eolor upon section．We have eonsidered the causation and forms of icterus on p． 323.

Iron－containing pigment is recognized in the form of fine（hemo－ siderin）gramules situated along that border of the cell whieh impinges upon the bile capillary；in advanced eases it may be seen even in the periportal comncetive tissue；it takes on a Prussian－bhe stain with solutions of potassimm ferrocyanide after treatment with aeid，and is very prononnced in cases of pernieious anemia，hemochromatosis，and those intoxieations in whieh there is excessive destruction of the red blool corpmseles．The liver in these cases has a distinct rusty－brown color on seetion，unless the fat is so extreme as to give it a paler yellow． Aceompanying this iron－containing pigment there are penerally to be seen vellowish pigment granules which do not give the Pussian blue reaction；these are spokent of as hemofuscin．Similar granales，often agdomerated，are to be recognized in the atrophying eells in the con－ dition of brown atrophy．

A eharacteristic form of pigmentation may be encountered in recur－ rent malaria when the liver assumes a bluish－grey or even a dark ehocolate color．The pigment in these cases is found in abmelance in the endothelial cells lining the portal sinusoids and capillaries as also in Kupffer＇s star－cells，oceasional cells whieh，on the one hand，impinge upon the blood stream and so have an endothelial character，and on the other penetrate between the liver cells．This pigenent is obviously derived from the central pigment deposits in the bodies of the hem－ ancebe，left free in the blood after sporulation，and obviously also is a metabolic prohnct of the liemoglobin of the erythroeytes absorbed bey the growing parasites．

Calcification．－There are on record a few cases of extensive calcifiea－ tion of the liver associated with previous extensive necrosis of the lobules．

Necrosis．－The commonest form of necrosis in the liver is met in the form of inultiple mimite and discrete areas of cell death，in many arute infections．Experimentally these can be produced by several toxins．We have discussed the theories regarding their causation on p．328．In chloroform poisoning more extensive necrosis may be seen affecting the central \％one of the lobules and in perricious anemie we＇casionally a similar central neerosis may be found．More extensive areas of neerosis may oecur in eclampsin，the etiology of which is still unknown．The necrosis may be extreme，involving a large part of the entire tissue of the liver．Similar very extensive necrosis characterizes
heaping licre at icellular nd also lymph ion, the a dark ion and (hemonpinges in the in with and is is, and the red -brown vellow. illy to in blue often e con-recurdark nee in as also apinge nd on iously hemy also :orbed cificaof the
net in many everal on on seen nemie nsive 3 still of the erizes
the condition of acute yellow atrophy and an almost identical picture is seen in acute phosphorus poisoning. In any of these states, where

Focal necrasis. Section from a typhoid liver rathibiting at a the carly stage of uncomplicated necrosis of a gmall arca.

Fig. 270

Section from the same liver exhibiting a later stage of focal necrosis with small-celled infiltration into the necrotic area: a, necrotic centre. In a later stage the small cells completely remove and replace the necrused liver cells.

Fio 271

Sirtion from the liver showing well-marked cez ra! necrosis of the lobule: a, centre of lobule with few and shrunken remaining liver cells; b, po il vein; c, c, c, c, portal sheath at periphery of linule.
the toxin has evidently been very strong, followed quickly by death, the "ells are found in a condition comparable with coagulation neerosis;
their general form and relationships are unaltered, although they fail to take nuclear stains; in less sudden cases, where presumably the toxin is less acute, there is seen a peculiar disarrangement or "jumbling" of the cells so that the orderle arringement of the cells in the lobule is

b
Section of liver som a case of cclampsia showing widespread neerosis: a, liver cells relatively unaffected, still retaining normal arrangement and staining powers; b, necrosed liver cells; c, a portal sheath, with some small-celled infiltration.

Fig 273

Section from the same liver under higher magnifieation, showing the sudden transition from the relatively healthy (a) to the necrosed tissue (b). The "jumbling" of the affected cells is well
shown.
wholly lost. The cells no longer give the Sudan III reaction for fat. (MeCrae and Klotz.)
It used to be the custom to consider amte yellow atrophy as a condition sui generis. Now we are coming to recognize that several
they fail he toxin ling" of obule is
different intoxications, such as the eclamptic, phosphorus poisoning, and the exhibition of chleroform may all producc a very similar picture, so that the term acutc vellow atrophy must be applied only to those conditions of extensive necrosis in which the ceusative agent remains undetermined. Such cases seem more frequent in women than in men; in the earlicr stage the shrumken liver has externally and on section a bright yellow appearance (vellow atrophy'). With complete necrosis and disintegration of the cells therc follows an adaptive dilatation of the capillaries with occasional hemorrl. :ges, so that now intensely congested areas alternate with or are interspel ed among those still retaining the yellow colur (acute' red atrophy). In cases of red atrophy not rapidly fatal there is further an extensive small-celled infiltration with indications of active regeneration in the form of budding and worm-like processes from the bile ducts. It scems probable that with recovery there may develop a cirrhotic condition.
Progressive Changes.-Hypertrophy and regeneration of individual tobules may be seen as above noted in non-fatal cases of necrosis, and also in eases of portal cirrhosis, where nolular areas of such regenerative hyperplasia are seen; as already stated these may pass on to irregular multicentric adenomatous or even carcinomatous overgrowth. Loss of liver tissue is followed by no new formation of lobules but those in the neighborhood of the loss undergo pronounced enlargement, the cell columns actually proliferating. It is now fully established that regeneration may occur by two processes, viz., by budding from preexisting bile ducts or by proliferation of preëxisting liver cells.
Tumors.-Cavernoma.-A common abnormal condition found in the liver is the presence of one or more, sharply defincl, generally small areas of deep red color (see Figs. 130 and 131). On microscopic examination these are seen to be composed of greatly dilated, communicuting (apillar, channels filled with blood or containing thrombus, with no intervcuing liver cells. We have discussed these on p. $2 \overline{7} 9$ and pointed "ult that strictly speaking, they are not tumors proper.
Truc fibromas and other benign connective-tissuc tumors are rarc. sin also prinary sarcoma and hemangioendothelioma are infrequent. O_{11} the other hand, sccondary sarcomas are not uncommon, and the liver is notably a favorite seat for multiple metastatic melanotic sarcomas. A few cases are on record of included adrenal tissue, and of tumors, hypernephromas or mesotheliomas, originating from the same. Two forms of adenoma are to be recognized, viz., the tubular adenoma, widently originating from and to some extent reproducing the cubical "r columnar cpithelium of the bile ducts, and the true liver-cell adenoma, in which the cells are arranged without lumina and reproduce irregularly the structure of hepatic parenchyma. The multiple nodules of hyperHilasia allready described partake of this type.
Solitary primary carcinoma of the liver is rare; a large solitary metatanis from some minute and obscure prinary focus must not be misfaker for such a primary growit. In short, very careful search must
he made before declaring any case to be one of primary carcinoma of the liver. A considerable mumber of cases of difflnse carcinomatosis sccomdary to cirrhosis are recorded. A smallecellem form of earcinoma of scirrlous type is hy some held to originate from the bile ducts. In consilering nuy hepratic carcinoma, the possibility of its origin from the gall bladder must always be kept in mind, considering the great frequency of cancer of this organ.
While thus primary carcinoma of the liver is distinctly uncommon, there is no, organ in the botly which is more frequently the seat of secondary cancerous grow ths: more partienlarly in "arciumuas of the stomach, pancreas, creophagns, intestine, and ovary, is the liver apt to be affected, and the secomdary growths may loe extraordinarily abundaut and some of them of very great size. As a consequence the liver may be relatively chormons, the nodules often being palpable through the skin. On examuation of such a liver the noduces stand out as well-defined masses, wlitish against the congested liver tissue; the surface nodules frequently present umbilication (a crater-like depression) owing to autolywis aud absorption of the central arees.
Cysts.-Hepatie cysts are of two main orders, retention cysts, and parasitir eysts, due to the growth of eehinocoecus within the organ.
Bile cysts may be solitary, due to the obliteration of an individual bile duct, either congenital or aequired, or may be small and multiple, scarcely visible to the naked eye; this last condition is seen in what has been termed eystic degeneration of the liver, a congenital state foumd sometimes associated with similar multiple eystic development in the kidneys and, it may be, also in the pancreas. The contents of bile essts are generally watery in appearmene. hare cases are deseribed in which eysts due to congenital abnormality of the bile ducts possess a ciliated epithelium.
Parasitic cysts are due to the development in the liver of the echinococeus in its encessted stage (hydatid). This eystic phase in the life history of Trenia cechinococcus may take on two main forms, in one of which the formation of daughter eysts takes place wholly on the inner aspect of the capsule, and in the other, rarer form, on the outsile, so that mumerons on lying smaller eysts develop (multilocular), so abundant and widespread as to give the appearance of a colloid cancer. The capsule of the hydatid is double, consisting of an outer fibrous layer provided hy the irritated tissuce of the liver, and an imer hyaline layer, the cest wall proper of the paizesite. The presence of hooklets in the flnid, recognizable her the microseope, is the characteristic diagnostic feature. Ocmanally the parasites die, and the eyst contents undergo absorption, leing ultimately represented by a fibrons eicatrix with an irregular shrumken cavity ia which hooklets may still be found. Some three or four cases of coccidiosis of the liver are on reeorl. Other parasites of the liver, not cansing eyst formation, but lying in the bile duct-, to which they have gained cutrance from the duodenum, are distomum (several species) and rarely ascaris lumbricoides.

GALL ELADDER AND DUCTS

Abstract

Abnormalitias.-Complete absence of the gall bladter has been recorder and ceasionally it may hang completely free from the liver. lis relation to the liver edge is very variable. An inportant abnormility is congenital atresia or complete obliteration of the common bite duct, leading, with progressive janndiee, to inevitable death. Remembering that the liver is a tubular ontgrowth from the duodenal region, it is obvious that such obliteration must occur after the definite differmintation of liver and duets. Circulatory Disturbances.-Cdema is a not infrequent condition associated with general anasarea. Submueous hemorrhages are oecasionally sern.

Inflammation.-'There is still debate as to how bacteria most commonly enter the gall bladder, whether by exeretion through the liver from the blood or by ascent of the duet from the duodenu:n. This much, however, is clear, that at operation and at post nortem a large proportion of samples of gatl bladtler bile afford eultures of one or more forms of bacteria; the presence of these bacteria favors the development of cholecystitis. This inflammation may be of varions orders. The inmmonest is simple catarrhal cholecystitis, an infanmation characteri\%d lye congestion, active proliferation and freeing of the eolumnar rells of the mucosa into the bile, together with markedly increased rexretion or discharge of mucin. The mucosa is found swollen, turbid, infiltrated with round cells, and covered by a haver of mucin, and inasmueh as the eommon and cystie ducts may be involved (acute cholangitis), the swelling is apt to lead to obstruction and as a sequence to janndiee (acute catarrhal jaundice). This condition may be recurrent or continned over long periods, and then associated with a polypoid wergrowth of the mneosa of the gall bladder or sometmes with secondary atrophy and thinning. Particularly in these long-contimed cases, as alreaty noted on p. 320 , the altered composition of the bile, and the wremee of cell debris and of mucus, and the direct action of the bacfria from the bile, together with its stagnation, act in concert as factors in the production of gallstones. Onee formed these gallstones in themwhes act as a continued irritant and in this association it is interesting l") inte that over 90 per cent. of the eases of cancer of the gall bladder alliurd a history of the presenee of gallstones.
Suppurative cholecystitis is most frequently found associated with Hheir same gallstones, but may present itself in cases of severe infection, I., some cases of typhoid and premia. Very frequently sueh suppuration is seen to be seeondary to complete or partial obstruction of ther restic duct from preceding non-purulent inflammation. As in the apmemdix, so here, stagnation appears to favor the proliferation and incrased virulence of bacteria, so that what was previously a simple licomes now a suppurative proeess. Associated with this purnlent
condition there may be nerrosis of the merosa with nlacration, and a times gangrene of the derp layers of the wall and perforation; as result there may be eithor a localized purulent pericholecystitis (loealizer peritonitis) or gencral peritonitis. The bile, when it reapes into the peritoneal cavity, as pointed ont lyy Bunting, has in itself direct irritative and neerotic effects. This nerrosing, ulderative form of cholecystiti is often accompanied by a superficial membrane formation upon the immer surface of the gall bladder; more rarely this is seen in the large bile ducts. The suppurative fom may oceur not only in the gall bladeder but also aromed impacted gallstones in the duets. From this perforation either of the gall bladler or of the larger ducts, there may result, not necessarily escape of the contents into the abdominal envity, hot where time has been afforded for athesion with neighboring organs, the contents may make their way into the interior of viscera. Notally there may be fistule between the gall bladder and bile duets, on the one hand, and the stomach, dnodemm, ilenm, colon, or the skin on the other. There is scarcely an organ of the trunk that has not been the seat of such fistula.

Two widely contrasterl states of the gall hadder resulting from inflammation may at times be concomutered. With obstruction and suppuration the organ may be hugely distended, and on section fond to be comverted into a bag of pus; on the othe band, in eases showing evidenee of long-contimed inflammation withnu: truction, the laying down of incrased fibrons tissue in the submuensa is followed by pronounced contraction, so that the organ may be represented by a mass, as long as and not thicker than a finger, practically shrmen up and devoil of contents. Not infrequently this latter condition is associated with extensive organizell adhesions to surrounding structures, evidence of a previous acut. inflammation.

As originating from previous inflammatory disturbances, though in itself not a sign of astive inflammation, there may be noted the striking condition of hydrops cystidis felleæ: the gall bladder is found pale or almost transhucent, greatly distended, and on section discharges a Hnid wholly dewoid of hile bint shimmering, if not milky, with abundant cholesterin erystals. The process in the development of this condition is usually catarrhal inflammation with obliteration or blocking of the restic duet, cither be overgrowth of the mucosa or by means of a stone. The contained bile diffuses ont and at the same time fluid and muens are discharged from the mucosa, leading to progressive distension. The abmolant cholesterin suggests that there is a continued state of mild inflammation of the mueosa, with dissociation of the epithelial cells or actually increased excretion of cholesterin or some precursor thereof, such as cholesterin oleate.

The irfective granulomas rarely affect the gall bladder and larger biliary passages.
Progressive Changes.-Tumors.-The main tumor to be considered in conneetion with the gall bladder and bile ducts is carcinoma. Benign
mi, and nt tion; as 1 (localized s into the irritutive oleeystitis upon the the hirge the gnll From this here may bdominal ighboring f viscera. ile duets, n, or the that has
n inflam-suppurilnd to be evidenee down of nounced as long 1 devoid ted with lence of
ough in striking pate or arges a undaut mdition of the a stone. muells The of mild al cells thereof, larger sidered Benign
thmors are so rure that they may be passed ower; the sume is true of thre primary sarcomas.

Carcinoma most often originates in connection with the gall bluder, hat masy also oerome nong the course of the larger ducts, either in the ustic duct, or, at its junction, within the common du. or agnin nt the impula of Vinter. ('arcinoma of the gall badder most frequently. hows itself either in the fundus or ut the neek; at the fundus, either thromgh the gravitutional presence of gallstones, or ut the neek in association with the arrest of the same in their passinge to the duct. We wonld here emphasize that this is one of the frequent sites of carcinomm, ronghly ifer cent. of cases of eareinoma arising here. The tupieal form is an soft, columar-ectled adenocurcinoma tending on the one hand to furm a mass projerting into the gull bhder, and on the other to infiltrate extemsively the wall and the liver tissue; but variations are fomed. It times, there is abundant stromn formation with alveoli filled with romul cells and the general characters of a seirrhous growth, and severul "imples are now on record in which throngh metnphasia, presmmably due tw preceding inflammation, the tumornpproximates to the sqummonswidel יpitheliomatons type or shows a combination of epitheliomatons inulalenoenreinomatous structure (see Fig. 122, p. 272). There may also lin: thongh rarely, eases of colloid eancer. Here, as in cholelithiasis, the condition is more common in the female thon in the male. In addition tou die direct infiltration, there are apt to be harge noduher metastases in thr lymph nodes at the hilus and in the mesentery, and in the peritonemm, an well ins isolated nomblar metastases in the more distant perts of the liner. Carcinomas of the larger bile ducts are of the same type as those of the sall hladder, thongh in our experienee they lead to death more rapidly than do the latter, and as a consequence are found of smaller size. Prom their region of origin, they necessarily lead to obliteration of the common bile dact, and to fatal jamelice or through their uleerative Aharater to infection. Carcinomas of the ampulla of Vater, it must I_{n} rememberel, may originate either from the mueous membrane of the triminal portion of the bile duct or from the duodenal mueons mimbrane covering the ampulla.
Ficmulary canecrs, involving either gall blader or bile dhets, are

THE PANCREAS

like the liver, although in a different way, the pancreas subserves multiple functions; as regards its exeretion it affords a trypsinogen Whid, eombined with the enterokinase supplied hy the mucosa of the -hall intestine, affords the most powerfal proteolytic ferment of the Mramism; wherefore it follows that arrest of this excretion, either by : Ifatation of the duet or atrophy or arrested netivity of the gland cells, i followed by incomplete dissociation of the proteids of the fool, and cyucut lack of assimilation of the same, so that, as a matter of 38
fuct, a combition of true starvation is bromght mbant mod a progresisi "morintion developing more rapidly than from ang other cantor.
It also exaretes a lipolytic forment, stempsin, esserntial to the disse cintion ume subsequent ahsorption of the futs; interferenere with absence of this exeretion is ulso a potrent fareor in the comerintion abos mentioned. In such comblitions we find that the stools nre chnecold from excess of multered futs. Other ferments ure prenlueced, notubl an mintolitic or starch-splitting ferment.

Equally importmit secms to be the internal sereretion afforded b this orgme we have diseussed this on p. 104, hut we would here reeal that there is in the body a "sugur combine" or "trust," of which th puncreas, the liver, and the moscles are the members, which control the amomit of sugar formed and its consmotion in the organism, so that atrophic or degenerative disease of the pancreas is associated witl the development of glycosuria. Not all cases of dinbetes present pancreatic chunges, for it is evident that certuin lesions of the other members of the "combine" muy lead ton similar loss of conitrol of output
Abnormalities. -These ure not very conimon, but we occasionally cucounter hypoplasia or cuell absence or duplication, or again, more commonly, the presence of small accessory groups of pancreatic acini either in the submincosin of the stomadel, the dhomenum, or even the small intestine. The most importment irregnlarity in the development of the organ is in comection with the duets. The origimel pancreas was possessed of two duets, one, the chat of simeorini, from the hemel of the organ, the other, Wirsung's duct, constitnting the main duet of the bonly of the ghand. In the course of development these become connected within the body of the pancreas and the duct of Suntorini undergoes atrophy, so that moses cases erentually come to present only a single duct opening into the umpulla of Vatior. In 10 per cent. of all organs examined, there is persistence of the former duct with a papilh, genernlly minute, opening into the duodenum at a somewhat higher level than the ampulla. It is obvious that the presence or ahseure of this duet of santorini with its communication with the main duct will materially modify the results of obliteration or ohstruction of the duolenal cul of the main duct. Variations also oweur in the relations of the duct of Wirsung to the common bile duct. The two ducts may open into the dhodenum side be side, one at the very termination of the ampulla, the other slighty separated from it; bint usually the pancreatic duct gains entrance to the bile duct nt the base of the ampulla so that the ampulla constitutes what ${ }^{\text {a }}$ be termed a pancreat-ico-lepatic duet, a centineter or more in lent...s. These relationships. also are of material importance in determining the results of blockise. of the umpulla by a small gallstone, ete. As a result of such blockage. according to the relationships, the danuned back bile may or may mot enter the pancreatic dinct.

Circuiatory Disturbances.-The pancreas is abmelantly vascular hut on accome of its natural color, it cloes not show to the baked eye an!
marked changes in anemin; in cases of passive congestion, it beeomes large, injected, and of a hoish-gray color, wherens in active hyperemia, -nth as oecurs during digestion, it is fommel of a pinkish color.
'The most important circulatory disturbance is the supervention of hromorrhage in the gland mul the development of the falsely so-called acute hemorrhagic pancreatitis. The series of events leading to this condition is now generally acknowledged to be (I) the development of local areas of ischemia of the gland substance : \sin urterial arrest or dimase; (2) the edlls in these areas mendergo necrosis with the liberation into the tissumes of the celluhar ferments; (:3) localized self-digestion ensules with crosion of the copillaries and other vessels, associnted with which there is necrosis of the fat edts in the neighborhool and dissoriation of the contained fat through the agenes of the liberated stapsin (fat necrosis). The comdition is hy no means necessarily of infective origin; armund such areas there may be, it is true, evidence of wrute inflammution. hat this is secombary. The effects of these liberated ferments are not confined to tha panceras but may invol o. surromding tissues; the condition mas be apidly fatal within a fo w homes or, on the other hand. there are evidenees that. if not extensi ". roonery may ensule.
Inflammation. - There is a possilility that a condition similar to the above may follow a lowalized inflammation in the patereas mul that there is thos a true acute neerotic and hemorrlagie pancreatitis, but if on, bacteriological studies show that this is the exception and not the rule. Purulent pancreatitis is oecasionally encountered, wither with multiple small premic abseesses in eases of bacteriomia, or by extension of disease elsewhere, oftenest by perforntion of a gastrie or dnodenal .iecer, or lastly, by an ascending inflammation of the panereatic ducts.

Chronic Pancreatitis.-It has been experimentally shown by Opie and others that by obstruction or, again, by retrograde flow of bile into the pamereatic duct, there inay develop a condition of fibrosis around the duet and its branches, due to resorption of the secretion as well as to: Ine irritation of the foreign fluid. Whether this be the essential canse or ino. it is to be remembered that in cases of cholelithiasis we frequently "wemmer a marked induration especially of the lead of the pancreas, this becoming so firm that the surgeon is apt to mistake it for new-growth. 'Th organ also is apt to show extensive fibrosis in advancing age, associated with the chronie periarteritis of arteriosclerosis. We thus recognize more than one form of fibrotic change in the organ, viz., a centrilobular, around the branches of the duct, a perilobular, separating the individual collections of somewhat atrophic acini from each other, :mil an irregular, or sporadic form, sccondary to previous inflammation or necrosis of localized arcas. It is to be noted that a chronic diffuse inucreatitis or cirrhosis is not infrequent as an accompaniment of Grhosis uit the liver.
Infective Granulomas.-Tuberculosis is very rare. As a result of eonwhital syphilis, there may be encountered an extreme grade of diffuse
interstitial pancratitis with enlargement of the organ, and induration and pronounced atrophy of a great part of the panereatic tissue proper, save the islands of Langerhans. We are inclined to regard the islands of Langerhans as the mother tissne from which new aeini may be developed thronghout life, and in this and other forms of fibrosis the persistence of the islands indieates that this vegetative or mother tissue is the last to be destroved. Others, however, it must be noted, regard these as independent entities.

Fig. 2 : 4

Acction from a fibrosed pathereas, showing a comhination of the centribobuhand peritohutar types; there las lan ohstrution and dilatation of the main duets (a) and their bratuches (b). The lobules are separated by broad perilubular bunds of fibrous tissue, and the inelividual acini (c) in the lobules are similarly separated by a rentrilobular fibrosis.

Regressive Changes.- Care nust be taken to distinguish between ante mortem and post mortem changes in this organ. If death oecurs when the "品s arr in mactive state, there is a marked tendeney for the intracelular enzymes to diffinse ont, and bring about a condition of post mortem self-digestion. In the rarly stages of this process the organ may be firm, opiaque, and homogeneons, and on section the muclei rither stain feelly or fail to stain. This condition resembles somewhat coagulation nerosis; at a later stage softening takes plaee with disorganization. In discussing the so-ealled hemorrhagic panereatitis wr have already deseribed the main features of the eommoner forms of ante inortem or intravital necrosis and self-digestion. In general, thi: affeets part and not the whole of the organ, and areas are preserve?
in which the pancreatie acini still preserve their normal staining power. Occasionally, however, at operation or post mortem it is found that practically the whole of the organ has undergone ante nortem selfdigestion. The appearance in such cases is very remarkable; in the r"gion where the pancreas ought to be there is found a mass of completely drgenorated softened "muck," blood-stained, shreddy, greasy, with intense surrounding inflammation and tendency to generalized peritonitis. Throughout the peritoneal cavity in such cases there may. be found foci of fat neerosis. This extensive necrosis may follow not morely the causes above mentioned, namely, stasis, vascular obliteration and infection, but may, as in the case of the late President Mchinley, follow trauma, or, again, operative section with liberation of the panereatic juice.

Regarding the relationship of the pancreas to diabetes mellitus, while whitting that the matter is still unsettled, we are inclined, as a matter of clearness, to lay down the following: (1) in a considerable proportion of cases 110 change can be observed in this organ; (2) in the rapidly proyressive cases of carly life there is a hydropic degeneration of the islands of Langerhans followed by atrophy, with little accompanying general filirosis of the organ, although there may be considerable atrophy of the general parenchima (Weichselbamm); (3) the slowly coolving diahotes of advanced life may be characterized by marked fibrosis and atrophy of the organ in gencral, together with changes in the islands. These changes are most often of the uature of a hyaline degeneration or infiltration. With regard to the relationship of these islands to the pancratic acini there are data favoring the view that they play a part ill the sugar regulation of the economy.

1 frequent form of regressive change in the pancreas is fatty infiltration. In advanced cases the greater part of the gland substance may hase atrophied without the organ being reduced in size, a fact which is due to its replacement by fat cells; often localized areas of such fatty infiltration occur. Fatty degeneration of the gland cells has been noted iil phosphorus poisoning. Fat necrosis has already been diseussed. Amyloid change is to be scen in general aundoidosis.
stingle or multiple calculi may be enconntered in the larger ducts; Hicy are formed of calcium salts with a mucinous matrix and are due than accumulation of cell debris following catarrhal inflammation.
Progressive Changes.-Tumors.-We rarely encounter benign growths iat the pancreas. In our laboratory Nicholls has recorded localized adenomas arising from the islands of Langerhans, and since then, "fow other similar cases have been placed on record. Others have dirrribed cystadenomas representing more fully differentiated puncreatie tione. Comective tissue tumors are rure. The most important tumor i- the primary carcinoma. Through the infiltrative quilities of both minurs, it is ofteu difficult to say whether we deal with a primary pancreII i- or a primary gastric tumor, especially where these are of a scirrhous af a promonced amplastic type. Most frequently- the growth origin-
ates in the head of the pancreas, and most frequently, also, is of a relatively scirrhous type, but soft, adenocarcinomatous growths are to be encountered, as are primary tumors originating in the tail or body of the organ. Growing in the head, these tumors are peculiarly liable to cause obstruetion of the common bile duct, setting up a condition of grave icteric toxemia, accompanied by rapid emaciation when there is arrest of seeretion, and extensive destruction of pancreatic tissue. The pancreas itself is apt to be extensively involved by the infiltration of the growth; this infilt ration is: t to extend to surrounding

Pancreas: carcinoma exteading along branch of portal vein: a, thrombus in vein; b, masses of cancer cells; c, wall of prortul vein showing a certain grade of phlebosclerosis; d, artery; p, pancreatic acini; f, perivascular fibresig. (Dr. Hhea.)
tissues, stomadi, adremals, ete., while abmodant metastases oceur in the lymph hodes and liver. Primary sarcoma is rare. Secondars melanotie sareoma is liable to affect the organ.

Maltiple congenital cysts oecur along with simi'ur eysts of the liver and kidney. Retention cysts of later life (ranula pancreatica) nay be either solitary or multiple, may attain large size and are due to obstrurtion either from a conerement lying in the main duct or one of the branches or secondary to inflommation and obstruction of the ducts These eysts are most often in the tail or body. Echinococcus cy:t are recoriled.

©HAPTER X

THE URINARY SYרTEM

THE URINARY FUNCTION

General Considerations.-Embryology.-The permanent kidney appears about the fifth week of foetal life, and is made up of cells from the Wolffian duet, on the one hand, and the mesoblastic tissue, called the Whastema, on the other. The former gives origin to the ureter, pelvis, eulires, and eollecting tubules, the latter to the glomerular epithelium and the rest of the tubulc. This complex origin and close relationship to the primitive myotomes suggest a partial explanation of the frequency with which mixed tumors (teratoblastomas) appear, and appear, too, in early life. The faet that the Wolffian borly and the genital gland arise from the same primitive genital ridge, explains why developinental anomalies of the kidney and the reproductive organs are so apt to oecur tugether.
Anatomy.-The renal arteries are short and readily allow a transfrrence of the aortie pressure to the kidneys; the kidneys are relatively almmlantly supplied with blood, and theoretieally all the blood in the booly may pass through them in a short space of time, the result being that in any toxemie state of the blood, the kidneys are certain to bear the brint of it in full measure. When they are danaged, the wther serectory systems, the skin, the intestines, and the lungs must assume the responsibility for the wark which they ean no longer aceomplish.
The kidneys possess ol ant vasomotor nerves, and are therefore surcerptible to central .". pheral impressions; the effect of mental Alites mpon the amou effecte often seen to l . allil rectim. arine is well known, as is also the reflex ununicated from the bladder, genitalia,
In the eapsule of the kiduey is a plexus of unstriped mucnle fibres, ruwilling those seen in the spleen; the purpose of these is doubtless by contraction and relaxation to promote the eirculation in the kidney and therchy modify excretion. Their anatomieal position in the body, Intinut the peritoneum, protected as they are br abmume fat, ensures tu the kifherss some immunity from tranma, white, on the other hand, minmmicating indirectly with the outside of the borly, they are liable T: trirtain extraneons infections.
The Physiology of the Urinary Function.- It is so usual for a gland to lin " $"$ in internal as well as an external secretion that we are tempted 1. "undule by analogy that the kidncy, whose main work is obviously
the profluction of an external seeretion, may have also an internal on At the present time, there is a little evilence in favor of this idea.
The analogne of the kidncy exists in the serretory organ of th invertehrate, where we may find a eiliated opening leading from th crelomie eavity into a tubule which passes to the ontside. Since i the vertebrate the coelomic cavity loses its importance as a medim of circulation, it is rational that the bloor-vascular system should con neet direetly with the tubule, which it does by virtue of the glomerulu: The tubule, too, thronghont its length, is in intimate assoeiation wit the lymph, from which, again, the direction of flow is to the tubule an thence to the outside; yet not entirely so. We most recognize tha a certain absorption oceurs throngh the tubnlar epithelium back t the lymph, but there is little reason to suppose that this is a very important factor; for we find that the larger surface of the tubule i: exposed to the lymph, the smaller to the urine.

Controversy has long waged over the question as to whether the uetion of the glomerulus and the tubule, in exereting the urinary water, is a mechanieal or a secretory process; it may partake of both, but evidence seems largely in favor of the latter, esp cially when it is taken into consideration that definitely known metainolic processes, such as the building up of hippurie acid and other suostances, take place in the renal epithelinm.

The Vascular Supply of the Kidney.-The arterial supply of the cortex passes directly and almost entirely to the glomeruli. 'The blood enters the glomerulus in the afferent vessel, leaves it in the efferent vessel, and thence is distributed into a network of eapiliaries around the convoluted tubules. The blood supply of the collecting tubules in the merhulla is from capillaries of the arterie rectæ. The blood supply of the eortical tubules, having been through one set of eapillaries (the glonneruli) already is at a relatively low pressure, a state of affairs which suggests that this may allow a resorption from the urine, which is not allowed in the colleeting tubnles where the blood pressure is higher. And in all probability this is what actually oceurs.

Blood pressure determines to some extent the discharge of urine: if the general pressure be redueed to 40 min . of mereury, che flow of urine ceases; but under relatively normal conditions, the rate of blood flow is of more importanee than the pressure in the glomeruli. Wie conchude that certain simple salts (and thongh simple, seleeted) and substamees such as grape-sugar, ateompany the water through the glomeruli, and that while some resorption oceurs in the convolnted tubules, a more important mattor is the further selective exeretion into the urine of uren, urie aeid, and other "extractives," as well in toxins; and superaded, there is on the part of the cells a certain amonit of metabolism, both amabolic and katabolie, of which the result is alo, discharged into the urine on its way through the convoluted tubule.

The Nerve Supply.-This is of considerable complexity; the neri.t to the kidnev form a plexms aremme the remal arter:, and are for the mone
part vasomotor in function, both vasodihntors and vasoconstrictors being demonstrable. Some nerve terminations must, on the other hand, be "secretory," for nerve terminals have been demonstrated in Bowman's capsule, and others entering the membrana propria of the convolnted tubules. Experiments upon the renal nerves have amply proved that these have a marked effect upon the amount of urine. The interlobular arteries are plentifully museular and their state determines, to a great extent, the a...ount of blood in the glomeruli, in which, by the way, no nerves are demonstrable. The interlobular arteries, loubtless, may be overridden by the gencral hlood pressure, and the legree of contraction or expansion of the eapillaries may be affected hy the substances that pass through their walls from the blood. To sum ip, the amount of urinary water seems variable under the influences of (1) the central nervo's system; (2) the intrinsic renal nerves; (3) the eff'cet of substances in the blood on arterioles and capillary endothelium.
This may be expressed othe wise: the quantity of urine depends on the quantity of blood flowing tirrough the glomeruli, and this blood flow depends on the difference in pressure between the renal artery and the renal vein; if the arterial pressure be increased without increase in the venous pressure, more urine is secreted; if the venous pressure be inrerased without increase in the arterial, less. At the same time the size of the arterial channels in the kidney must be taken into account; the urine is increased not only when the gencral arterial pressure is rinsed, but even if, without increase of general blood pressure, the interlobular and afferent arteries are dilated; on the contrary if the interlobnlar and afferent arteries are contracted without alteration of the greneral pressure, the amount of urine is diminished.
The ultimate ohject of all this mechanism is twofolf; to regulate (in conjunction with the skin) the total amount of body fluid, and to rparate from it substances that are unnccessary or actually detrimental, which are brought to the kidney by the blood. These are selected by the kidney cpithelium, some being passed, others retained, and yet others metabolized and passed in an altered state. The state of the hidney at any given moment is thus of great importince. The compo--ition of the urine is an indication of the state of the blood, the accuraeyif this indieation being sometimes lessened by a diseased state of the hilluer.

Disorders of Excretion.-These may be considered imder the heads of (1) exeretion of urine normal in composition but abnormal in quanlity: (2) the excretion in abnormal amounts of substances normally frement in the urine, and (3) the exeretion of substances not normaily fomm in the urine. Such a division, however, is harlly of viologically :"mate, hecanse the amount of urine is affected by its concentration the matter of certain salts, so that divisions (i) and (2) may overlap. Ir ${ }^{\wedge}$ reased Amount of Urine, Polyuria.-According to general principles if may he bronght absut by (1) increase in the general arterial pressure ithont renal change, or (2) dilatation of remil arterioles without, of
necessity, any rise in general blood pressure. (3) To these it is obvious that a third factor has to be added, namely, the effect of certain salts and other substanees upon the seeretory epithelium, stimulating it to greater aetivity. Dinreties may aet in my of these three ways, and some of them in differcnt ways at different times, or even in more than one of these ways at the same time.

Decreased Amount of Urine, Oliguria, or Anuria.- Reduction of urinary flow may be caused by (1) lowering of general blood pressure, (2) direct contraction of the afferent vessels, or (3) increased venous pressure; two of these may be inchoded in the more general statement that a redt n in the difference between arterial and venous pressure leads ... oliguria. To be added to these is (4) any obstruetion to the urinary outfow, provided it affects both kidneys. The oliguria that is so marked a feature of aeute nephritis is probably due to the amount of glomerulitis that is present, rather than to the effect of swelling of the epithelium and consequent diminution of the tubular hmen, although this is often pronounced and cannot be wholly neglected.

The Solids in Urine.-Some of these are the produet of the ordinary processes of digestion and assimilation; some are the produet of normal metabolic processes, others of abnormal metabolic processes; some are due to extraneous agents, such as bacteria or metallic poisons. The following is a list of the more important substanees found in the urine, s= ne of them only in minute quantity: acetone, achroglyeogen, allantoin, carbamic acid, chlorides, elolesterin, ehondroitin, creatin (?), creatinin, diacetie aeid, diastatie ferments, gheose, hematoporphyrin, indican, isomaltose, lactose, muein, nueleinie aeid, nueleoalbumin, orthocresol, oxalic acid, oxalurie aeid, paraeresol, paraoxyphenylacetic acid, paraoxyphenylpropionie aeid, phosphates, pentose, pigments, proteolytie ferments, ptomaines, purin bases (?), pyrocateelin, sulphates, urea, uric acid, and volatile fatty atids.

Urea.-The excretion of urea depends on (1) the ingestion of nitrogenous foods, and (2) the breaking down of the organized albumin of the body. The amount eliminated in the urine of a healthy individual on a mixed diet varies from 20 to 45 grams daily. The quantity is increased in febrile diseases and decreased in malnutrition, as well as in disease of the kidney parenchyma.

Uric Acid.-The daily exeretion of urie acid in the healthy adult varies from 0.2 to 1.25 grams, and is derived from the katabolisn of the nueleins in the fooll or the body tissues, so that whenever there is a loss of tissme albmin, as in fevers, its amount is inereased.

Cheatinin.- The daily exeretion of ereatinin varies from 0.f to 1.3 grams, derived from a diet of meat or from the museular tissule of the body. It is inereased by bodily exereise and in fevers, and idiminished in many diseases that prodnce a eachectie state.

Albcmin.-- Various proteins may appear in the urine unchanged from: absorbed food, as egg-allmmin after an excessive diet of raw egror as mucins or nucleo-albumins from tissue disintegration; but thes
we infrequent and unimportant compared with serum albumin and sernim globulin, which are the bodies concerncd when we speak of Yhminuria. They are the dominant proteins of the blood plasina, aml their presence in the plasma indieates an abnormal eseape. Proof exist.: that the albumin eseapes through the glomeruli, but it is also likely that when the tubular epithelium is disintegrating the albumin so derived is added; further, when the tubular cpithelium is cast off, the naked basenent membrane probably allows lymph to exude into the tubules. Thus, in a severe aeute nephritis, it is likely that the tubules contribute a eonsiderable amount of albunin, while in the milder cases the glomeruli allow the albumin to eseape. The disintegration of rells is not neeessarily aecompanied by the presenee of albumin in the wrine. The albumin found in urine is usually serum albumin, but it may be globulin alone, or with mere traces of serum albumin. Since albumin is present in the blood plasma in a constant ratio to globulin of 3 to 2 , and globulins are the more diffusible, these faets seem to indieate that the glomeruli have a power of selection.
"Physiological" Albumnuria.-This is the term used to designate the appearance of albumin in the urine in those whose subsequent history leads us to suppose that there is not any lesion existing to account for it. It may appear after eold baths or violent exereise, especially if the latter be performed soon after ehange from the supine to the ercet posiure.

Cyclical Albuminuria.-This is noted in the young; the morning urine is free from albumin, but it appears inereasingly in the forenoon and disappears in the afternoon. The erect, aetive state may here again be a dominant factor.
Albuminuria from Circulatory Disturbance.- Whatever slows the rate a blood flow through the kidneys favors the appearance of albuminuria. Thus, contraction of the renal arteries, as in lead poisoning, or rarious obstructions, as in heart disease, or in local obstruetion of the renal vein, eauses albuminuria with lessening of the amount of urine.
Toxic Albuminuria.-Many mineral and bacterial poisons, and the lut mknown toxin of eclampsia, are eapable of eausing albuminuria, wictly by the damage wrought in the epithelium, although the glomeruli als, are considered to be involved.
Infectious Albuminuria.-This is exemplified by scarlet fever and urptococcus infeetions, and is especially due to lesion of the glomeruli, with abundant diseharge of albumin, and sometimes even of blood (4) puscles; the parenehyma, too, is generally damaged.

Albumoses.-Albumoses appear in the urine whell the intracellular hatiholism of proteins is perverted, as in tubereulosis, suppuration, मlaphorus poisoning and osteomalacia. Bence-Jones' albumin is a rutited form fount in eases of multiple myelomas.
Hematuria.-Blood may appear in the urine from eauses in the h:hey or elsewhere in the tract; it may be evideneed by a dark or bright
red color, and verified by the miorosiope, the spectroseope or hy ehe ieal reactions.

Hemoglobinuria.-IIemoglobin dissolved in the urine may appe when hemolrsis hats oreurred, the material being artually: secret nod not filtered in a mechnnical wny.

Disturbances of the Function of Urination.- The pelvis of the kidn and the rreters ure merely amplified conductors of the urine. I bhader 1 reservoir with functional power of discharge. The d ordersee condueting apparntus are, thercfore, chiefly obstructio and ohstruction may arise in a variety of wass; it may result from objects in the lumina, as calculi, tumors, clot, neerotie tissue, parasit and from sharp "kinks" in the tube; (2) thickening of the walls, inflammations, neoplasms, and hyperplasias; (3) pressure from ontsid as by tumors, exudates, organs misplaced, traction or pressure fibrous bands, ligatures and so on. Finally, the same ultimate resu mat urise from a solution of continuity of the tube, so that extravasatio of urine occurs. The effect of the varions obstructions depends upo whether one or both kiduey's are concerned; molerate obstraction mas be corrected hy hypertrophy above the point of obstruction an the correction of the dininution of urine by the employnent of mor foree. But this canmot go on indefinitely; the extreme of hypertroph is reached, further dilatation ensues, and the disability is aggravater stagnation of the urine, and subsequent infection thns results, and sue an infection may progress upward to the kidnev itsedf. Apart from such infection. the presence of the distending fluid acts so as to enlary the pelvis with compression and atrophy of the kidney substance unti the kidney becomes al large sale, in the walls of which the glomeruli an tubules still functionate. The pressure, acting upon the tabules, lead: them to resorb fluid, and the pressure of these swollen cell-, added to the general intramural pressure, lesisme the flow of blood through the kidney diminishing the amount of urine secreted. If this state of affairs be milateral, the other kiduey may compensate entirely for the lack; but if bilateral, uremia and death may quickly ensue.
The badder is sperially coneerned in regulating the function of urination. Were it not for the badder, the urine would be continualls: eseaping: lout it acts ats a reservoir and at the proper time a mechanism for evacuation. Functionally, it consists of two elements, a sphincter musele which detans, and a detrusor musele which expels the urinc; the action of hoth being governed be the nervous system. In infant: urination is reffex, being set in motion by peripheral impulses, chieily the condition of distension of the badder. Later, by education, the child is able to control and time the function. There is, therefore. a reflex centre (situated in the sympathetic system, not in the lumbar cord) and a cerehral centre. The sphincter, largely of voluntary muscle, relanes and allows the membranous urethra to fill with urine. and the impulse becomes irresistible, the detrusor expelling the conten:s of the bladder. Factors which govern the reflex irritability are the
amomint of distension, the state of the mueosa, and the charncter of the urine. In inflamed bladder or a highly acid urine may initiate wacuation, apart from nny marker degree of distension.
Retention of Urine. - Ratention of urine may arise, apart from physical ohstrietion, from lack of periphernl stimuli, where, for example, the rinory nerves conduct hadly or fuil to eonduct the message despatehed ber a distended bladder, or from n paralysis of the detrusor musele, or from a spasm of the sphineter, or from loss of the mental eontrol, as happens in acute fevers. When the distension of the bladder is so great as to overeome the sphincter, urination may occur until the excess is removed, the bladder still remaining moderately full. This is the "overflow of distension" and its oeeurrence at intervals may fail to warn the attendant that the bladder is never being emptied at all. Orrdistension, too, may indure inability of the bladder muscle to contract. One variety of this is very important, viz., the local distension of the lower part of the badder behind an entarged prostate. The wright of retained urine and the weakness of the musele nllow the wall to sing and emptying of the bladder becomes impossible; the retained urine readily becomes infected, and allows the progress of inflammation innl the formation of ealeuli.
Incontinence of Urine.-Incontinence of urine is the inahility to retain it in the bladder. Apart from the ineontinence of retention referred to ahove, this may arise from paralysis or weakness on the sphineter, or spasmodie overaction of the detrusor. The former arises from trammatism as in labor, or the pressure of tumors, while the latter is insmally due to irritation of the nucosa.

Nocturnal Enuresis.-Nocturnal enuresis, or "bed-wetting," usually. fonnd in young ehildren, is due to the exeessive response of an mistable nervonis system to some peripheral stimulus, such as intestinal worms in the reetum, phimosis, preputial adhesions, and many other such staters. It may also be due, though rarely, to the oceurrence of metmrmal epileptie attacks.

The Influence of Bodily States on the Production of Kidney Lesions.

'Thr chief factor in the production of lidney lesions is the blood. On the one hand there are conditions leading to a diminished supply of h hunl to the kidnevs, such as arterioselerosis or a weak heart musele, inll whthrs eausing an inereased retention of blood in the organs, such is whtruction, general or loeal. In both these groups, albuminuria is lihely to supervene. Both groups, too, have this in eommon, that there i. a deficicont amount of nutrition supplied to the cells, and an imperfeet rumes al of the toxic produets of metabolism. Epithelium of the tubules anl the glomeruli is alike sensitive to such influenees. The vasomotor influmere, also, are not without effect; a marked deviation from the m, rmall in the quantity of blood, especially if suddenly produced and Itr, hently repeated, impairs the vitality of the organ, and paves the W... for infection or other damage.
(ill more important is the quality of the blood; it may be vitiated
by the toxins of bacteria or by chanical poisons; bacteria mayg entrance to the kidney or may damage it by their toxins prondued el where in the broly. Even the prolucts of putrefaction in thei bot may be potent canses of danage. Substanees that are norma exereted by the skin, the lungs, or the liver may be thrown upon t kidney in states of ineompeteney of those organs. Finally, the kidne may be danaged by the aetion of substances the result of pervert metabolism, sueh as apprars to oceur in eelampsia, diabetes, myxoden and other ill-understoorl states.

While we group many of these diseased states under the gene heading of neyhritis it nust be remembered that we have two differe orders of phenonicna-degenerative and inflammatory. The former a manifested by retrogressive ehanges, such as eloudy swelling, fat degeneration, vaenolation, and necrosis of the scereting eells, the latt by congestion, exudation, and hyperplasia of comective tissue. We a prepared, also, for the coexistence of these factors.

The Influence of Kidney Lesions on the Excretion of Urine. - (irc latory disturbanees and other abnormalities thus affect the seeretin structures; lesions of these struetures, in turn, modify the compositio of the urine, and the systemie metabolism. The urine is thus a refle tion of the state of the kidnevs and of the metabolic processes of th body; we therefore find in it deviations from normal in point of quantit, specifie gravity, and reation; in the appearance in it of abnormal sub stanees sueh as albumin, bloorl cells, pus, epithelium, easts, blood pig ment, salts, and bacteria; and deviations, too, in the amount of ehemica constituents. These can be referred to only in a very general way.

Acute Parenchymatous Nephritis.-The amount of urine is greatl reduced; the specific gravity is correspondingly high, and because o concentration any abnormal constituents, sueh as casts, are not so fal to seek as usual. The speeific gravity may be 1025 or 1030 , the urint is turbid, generally deeply colored. It contains a large amount of albumin, and much sediment, whieh eonsists of blood cells, leukoeytes. renal and vesical epithelium, erystals of uric aeid and oxalates, and easts of any or all sorts. Its freezing point (determined by the proces. of cryoscopy) is higher than that of normal urine. In the form known as hemorrhagic nephritis, blood is present in considerable quantity. In acute infeetive nephritis, where bacteria are aetually at work in the kidncy the urine will be practically the same as in hemorrhagic (noninfective) nephritis.

Chronic Interstitial Nephritis.-In this form of nephritis the urine is greatly inereased in amount, aeid, pale in color, of low specifie gravity (1002 to 1015). Albumin is present in smah amount or may even be absent. Casts are few, and the solids generally diminished.
Pyelonephritis.-CeHular debris, urinary salts, epithelium, and pus are generally present; the blood of a free hemorrhage may appear in the urine; if there is ukeration, shreds of tissue also may be serm. The eausative bacteria may be demonstrated in the urine. The
"wretion of salts, following Van Noorlen, is thus: in acute nephritis and in aronte exacerbations of chronie uephritis, urea, creatinin, pigments, hippuric acid, phosphates and inorganic sulphates are excreted with difliculty; water with even greater difficulty; urie aedi, xanthin hases, aromatic substanees, ammomia, chlorides and carbonates with ease. The nitrogenous element:s in the urine are derived from the disintegration of proteins, and follow the same rukes as in health. In a general Way their exeretion is parallel with the excretion of water.
The Relation of Kidney Affections to General Metabclism and the State of Other Organs.-It has long been known that mephritis is arcompanied by lesions of other organs, for example, hypertrophy of the heart and high-blood pressure. For long, the idea was current that the heart had to work harder to propel blood through the kidneys, but it is prohably more correct to suppose that the toxic influences whieh are responsible for the nephritis are also to blame for the stimulation wronght upon the circuatory system. It has long been said, too, that when the waste products of metabolism are not eliminated ber the kidners, they are vicariously exereted by other parts of the body; by purging, sweating and other modes. This again is not entirely borne out by exterimental facts; true it is, clinically; that such methods of treatment ill part are the most satisfactory we know. Neverthrless, very little urea can be cxcreted bey the skin; and the possibility exists of concentrating the toxic materials in the boly by the plentifnl escape of water he the skin, so that uremia may be induced. The ulcerations that are prone to occur in the intestinal tract in nephritis are probably dhe to ammonia from the urea exereted into the tract, assisted by increased bacterial activity:
Uremia.-The symptom complex known as uremia consists of headarhe, gastro-intestimal irritation, grave disturbance of the mervons ?hem indicated be convulsions or coma, accompanied by high blood presure and cardiac hypertrophy. Its cause is not vet known; the twice effect of all the known urinary substances combined is searech wulfirient to account for it. Perhaps, first of all, it is rommative, and at the toxic effects quickly produced by experiment are not strictly prallel. Perhaps, too, the affected tissues have a smocial power in fiving certain toxins. The work of the dnetless gli if in these states i. lime yet sufficiently known.

Ciry important, clinicully, is the fact that the retention of toxic nhtances, not excreted by the kidners, leads to depression of the general ditality, so that the subjects of such retention are liable to snceumb to indirtions of all sorts.

THE KIDNEY

Congenital Abnormalities. Absence of houh ki/huers is not comsiste
 eight times. It is sad, howrer, that in such cases carefol exmminati of the commetive tissue will reveal some trane of kidner tissur. Absen of the kidueg has mo bearimg upoll the ate , at of the same vide, but

 The surgical importanere of unilateral kidsey he, i: 1 a rule that hefo removing a kidney the preselle of the of ar hidne. onst be varifie
 the surgeom from removing the mile kidne?

Congraital rambit hillory

Anomalies of Shape.-In milateral absence of the hidney: the tingle
 Even when tathare prescle :me may be large, the other anall. Anomalies of shape are often aerompanied ber amomaties of position (the brim of the pelvis being a freplent site), and nearly ahays by some monsinal arrangement of the arteries and weins. Finsion of the two kidnes. Insually at the lower rold, gives the horseshoe kidney; and a very common and quite unimportant anomaly is the presistence of the fetal lobulation of the orgall. Clinically. important is tine mudne mubility of the kiduce, which ranges from that observed in ann organ that sars slightly, to that seren in a kidney which male be felt in any part of t abobmen. The congenital erstic kidney has been refermel to dsewher.
 a number of thin-walled ersts, often reinforced bis filirous tissure all contaning limpid flud. They mas be fomm quite late in life

Circulatory Disturbances.-Anemia. - Anthat.. if the hidney and part of in general anemia affecting all organs or a. rise from somet

tomsistent

 - "uperience canninntionAbsentre vide, hut is trnetures. he bladder. that before le wrified; - meevelited
that prevents ingress of bomal on the urgati. The rewnlt of a sudden anemia may be murin, and a mhlen auma from spasmo of the renal artery is supposed to be the nuse of hasterical smiria. As a resilt of hug-contimed anemid, epithelial degathention - the.
Hyperemia. - Heperonia results from inflanie ati n, or as a result of in general or local venous stasis. With an imompetent herart and a weal artorinl How, there is at first cortiral and gl membar congesti is with the иppearance of albumin in the urine, and uh quently dege. rations. The kidney is large, firm, and ret its e: nonle strip rendily,
 promment. Thi hyperentir state, "long, mumel "iml- "cyanotic nduration," and a well-marke filore result. The it wh weth
 Istate af affairs that amot easily l. differen iater all in a

 "anse nophritis in the ordinary Thrombosis. -The arterie. or t " 11 if the "Y l be thromInsel, most often as part of then mifi ations rerm infection. ther roult will be practically passi li! or

Embolism.- Erm wolim of the renal artery in in rapid necrosis; of a bramels f that arter: "infaret if the emt lus be infective, abscess revilts; if not, the familatr wallan. or golden t angular infarct is seen: at lines, a- in eclampsia the rficial par the eortex appears as, if infarcted in its entirety: Exi int the of the largest infurcts, there may be mes sign or syaptou oth - . if a larance of blood wr hemoglolin in the urinc and temporar o of ten 1_{1} ature; an infaret hash with the rmation of a depress on on e surface of the

Inflammation.

than are signate is hall comiter under this heading the lesions
 vll" (t" comp. in whir ie chan the tre degen, and that a chronic nephritis imfint be gimning

It me. Le waid the
pathong t is necessary of the undersh. of the clinician and the if the pat logists had werclassified" ans lisease; it seems as han orer sified the cirrhoses of the liver. The just as the clinicians now may made a inst the classification whe charge of incompletcis if mphritis, clinical could be divided into which follows. It scems parm mhatons, chro coukd be divided into acute interstitial, acute Of ! $\quad \therefore$ II it the interstitial, and chronic parenchymatous forms. whin arc called Bright's disease; in the first, exudative the in in in 1. are in the kidney itself, while in the last threc (191 5. mly degenerative, due to toxemia, although not
entirely so, beeanse, apart from their presence as a causative fac bacteria may gain entrance us a secondary or a terminal infect Acute interstitial nephritis is exemplified by the case of a kidr affected, like other organs, in bacteriemia; nente parenchymat nephritis by a kidney suddenly attacked and made to degenerate a diffusible toxin, as in diphtheria; chronie interstitial nephritis by kidney that is small, shrunken, damaged by numerous attaeks of eit of the foregoing, and chronie parenchymatous nephritis by the la swollen kidney of many aleoholics. In indicating the characters chronic parenchymatous and chronic interstitial nephritis, one mit

Fig. 278

Anemic infarct of cortex of kidney to show r : quataton merosis, with mirrounding zone of congentin a. urtery. (Orth.)
say that no case of a chronic kidney lesion ean exemplify the one or the other purely; parenchymatons and interstitial changes are seen side hy side, and it is not possible for any consilerable degree of one to exist without the other. There are two extremes between which lie all the cives; on the one haml, in kidney with marked fibrosis as the most promit nit feature, and on the other, one in whieh n maximum degree of parenchymatous ehange is allied with little fibrosis.

The conditions that are essentially non-infective will be dealt with first.

Acute Parenchymatous Nephritis.-This is known as acute Bright's disease and is the state induced by a diffusible toxin such as is liberated in the infectious diseases. The slightest grade is a state of cloudy swelling; in fact it is immaterial whether the term cloudy swelling or

Fia. 270

Varly stage of acute parenchymatous nephritis, with marked cloudy awelling. Cell bodies are cloudy with beginning dissociation. Note variation in nuclear stain: a, pale staining nuclei; b, deaply staining; c, d, intertubular capillary; e, cell with pale invisiblo nucleus.

Fig. 280

Acute parenchymatous nephritis, Infor stage with more ncute disintegration of the cell bodies into the lumen.
the tubule and the glomerulus, no distortion, but the affected tubu are seen in a staned speeimen without melei or other sign of moleeu life.

In general, the kidney is enlarged and may be odematous, the eort is pale, the stellate veius injeeted, and the lobules distinct ; the eapsu strips readily, and on section the eortex springs up, released from pressur so that it stands higher than the medulla, the cot edge at the eapsu everting and appearing rounded. 'The generally pale cortex contras with the darker-red medulla, and sometimes minute hemorrhages ea be seen in its substance.

Mieroseopically, all grades of damage are to be seen from elond swelling of the tubular cells with some eneroaehment upon the hume to a state of neerosis of entire tubules, glomeruli and all; or merely on part of a tubule may show no nuelei and the rest be in a state of cloud swelling. In the tubules, especially low down, may be seen cells in easts; in Bowman's capsule the glomerular epitheliun may be swolle and degenerated, and exulate may be seen in the space of the capsule Espeeially in searlet fever there may be a cellular migration iuto the glomerulus, a eoudition kuown as glomerulitis or glomerular nephritis Hemorrhage may oceur into the glomerular space, and blood and blood easts appear in the uriue, warranting the use or the term hemorrbagic nephritis. Clearly such a series of lesions is the outeome of a diffuse toxemia, nor is this qualified by the faet that oftentimes one finds a cellular exudate in parts of such a kidney. The highly intoxicated organ is in a fit state to aliow the admission of a seeondary infection.
Instead of dealing immediately with aente interatitial nephritis. whieh will be considered with other infective conditions proper of the kidney, the other forms of IBright's disease, i. e. the ehronie forms of nephritis, will be eonsidered.

Chronic Parenchymatous Nephritis.-This form, called also ehronicdiffuse nephritis, is characterized by a large kiehney, sometimes "large

 white," sometimes "large red," or even "large mottled kidney." It may be merely a contimane of the ande pareuchomatons state, or it man arise insidionsly. Oftell the kidney of the aleoholie exhibits this variety of change. The dilatation of the cortieal iubules is an important finetor in the increaved size of the organ. In addition while we distinguish here a certain implieation of the interstitial tissue, it in uotable that it is mainly in the form of a proliferation of eonnection tissue, and as fibroblasts are momerous we have here partly the camsi of its iucreased size. It is in the state of enlargement, to be followed finally he contraction if the patient live long enough. The eonnectis. tissue of the kidney hehaves as does the conneretive tissue of any other area in iuflammation, passing first into a stage in whieh its bulk is increased, and subsequently to a stage in whieh its bulk is lessened by the[^22]contraction of fibrosis. It thus sometimes occurs that chronic parenchymatous nephritis is but an earlier stage of the so-called diffuse chronic interstitial nephritis.
The enlargement of the kidney gives it a plompl look and if it be held with the pelvis in the palon of the hand, its conrex surface looks broad, somewhat sumare, and there may evell be a kind of flattening along the convex border which reminds one of the longitulinal furrow over the spine of a fat hogr, whene the mane "hog-back" kidues. This some"hat quadrilateral shape may, however, he congenital. The bulky kiducy is vurtimes soft, although if congested it is firm, the capsule peels readily and haves a smooth surface on which the rains are dilated aud prominent. The premailing color may be pale, or ral, or monttlerl. On section the erlge may evert, aml the cortex is larger, deeper than lurmal, pale and fatt.- looking; this fatty ippearance is due to the preseniee not

nephricis trom a case of parenchymatous nephritis fo slaw the (regenerated and modified) flatrened epirhelium lining the dilaterl convolured tubules. Asindieated by the lonsened and desquanated cells in the central tubule the iuflimmatory prowes is liere arill concinuing.

Fotc. ैs $_{3}$

it white (a) and small granular, eontracted kidncys (b) (one-half natural size), to show relative size.
inf "rece fat, but possible of fatty soaps: anemia, too, has somewhat to
: ith it. Mieroscopically, the tubules differ widely. Some may be It state of cloudy swelling with small lumina; others may show
flattened epithelium with relistively and actually large lumina, the m characteristic tope of chanere; others are so dilated as to suggest ther will subsequently give -ise to the developnent of cysts. Fat soaps or even myelin droplets niay be seen in the cells, which tend of to be irregular, with ragged edges. Casts and debris may be seen the tubules. Cellular infiltration may be noted in the interstitial tiss In the glomeruli, albumin may congulate in Bownan's capsule, or debris of cells may be seen. The glomeruli are large, often lobulated. that a glomerulus may seen to be eleft into two or three or more loh At other tines the glomerulus seenrs to fill completely its space, and t lining of Bownan's capsule, instead of being one cell thick and scarc

Chronic intermitial ucphritis (amatl granular kidney). (Mc(iill Path. Mus.) discernible, may be a definite, eas distinguished line of perceptible thio ness, the first indication of interstit proliferation.
Chronic interstitial Nephritis. - T above form may progress into thi or the interstitial form may, on th other hanel, gradually arise in a kidne that at no time has been much larg than usual. Considering that there an various grades of involvenent, a kidue typical of the advanced condition wi be described. For suelh there are man names, sueh as granular kiduey, con trwied kidney, small white kidues fibroid, cirrhotic or selerotic kidney or the kidney of indurative nephritis There seem to be many different way: at least by which a kidney arrives at this; as a sequel to parenchymatous nephritis, as a sequel to acute nephriti. without the interposition of a stage in which the kidney is large, from arteriopoisons like lead, and as a selcrosis, from gout, from chemical hard, firmly clastie, resist thesult of old age. The kidney is small, small knobs of a few milline kinfe, annl its outer surface is rough with remove the capsule, it cometers' diameter. When one attempts to of much polling, and whenes away in many picces after the exereise breaking the tiny fibrous it is being stripped one may see graduall: itself may be much thickencd Crands which have held it. The capsule to be seen by the maked cye to thsts of various size, from those scarevis jut fron the surface or be cere those a centimeter in diamcter, may them. The pelvis looks large, and the eut ; a clear fluid rums out of lying in the comnective tissue betweeu it is usually considerable fit that the kidney on section may prove to be yet smaller than it seenmil.

The cortex is often hardly distinguishable as such, and, when it ean be distinguished, is marrowed to half its usual width or less; in the arterioselerotie form especially, its least and greatest widths differ widely: The color of cortex and medulla alike may be grev, red, mottled, or may exhibit any eombination of these tints. On section, the tubules which in the normal kiduey appear to toueh one another are here separated by definite bands of fibrous tissue, whieh is often infiltrated by: the cells of acute inflammation; in some parts of the field one may find , and the and scarcely finitc, easily tible thickinterstitial
itis. - The into this: y, on the n a kidney: luch larger it there are t, a kidner dition will - are many lner; cone kidney, kidner, nephritis. rent ways arrives at hymatous nephritis a stage in n arterio.chemical is small, ugh with empts to : exercise graduall! eapsnte scarccis ter, may as out of able fat tances, seen: 1 .

Fig. 285

enrex of kidney from a ease of ehronie interatitial nephritis (small granular lidney) ir wis. (u) prescoting dilated tubules and hypertrophiol glomeruli alternating with (b) fhrosed ahnur ruli, usually observahle in these arens Sected does not show the hyaline contraeted remains of

ahmost entirely fibrosis, in others almost entirely tubules, and these artin alternate, the fibrosis being greatest in the vieinity of an arteria rema. This alterıation is especially eharacteristie of the arteriosclerotic furm. whereas that following aeute parenehymatous disturbance is apt to Whihit a more diffuse fibrosis. The tubules are often large, sometimes 'wr large, and the epithclium may be flattened or absent; other tubules, 1. Nimaged, may still have an epithelium relatively so normal as to show dimly, fatty; vacuolated, or other degeneration. The glomeruli are fewer (') hormal; some are large, partite, and active; others are represented
merely ly a romed hyaline mass in which a few flattened nuclei are scen; these are evidently quite out of commission. On coürdinating the gross and microscopic nppearance, it is fommel that the granular surface is due io the effect of fibrosis; where a band of fibrous tissue has pulterl in the capsule, a depression exists on the surface, and the knobs are the projection of masses of tissue not pulled in by the fibrosis (see
 marks of cloudy swelling, but too often there are not enough for this, and the cut edge remains flat and well-defined, without any eversion of the edge. One is struek by the large amount of urine that can be secreted hy such a damaged kidney.

Fig. 287

Section from a rase of acute scarlatinal nephritis: convoluted tubutes showing acute parenchymatous together with acute interstitial nephritis, widenced by the plasina cell infiltration: a, a, between the tubutes.

Acute Interstitial Nephritis.- In this and the related infective, septic, and suppurative conditions we have to consider a twofold circumstance: (1) that there are more or less marked, the results of the toxins arting in some of the ways whe have just considered, and (2) that there is active inflammation following infection of the kidney tissue itsoff. Before proceeling to the infective states proper of the kidney, the realler may he reminuled that in eases of iufectious disease such as scarlet fever, there is an interstitial exulation of markel degree, but we would rather consider this as a fortuitous molifieation of a (primarily) parenchyyiatous nephritis than give the impression that Bright's disease has an acute interstitial type peculiar to it.
Infection reaches thic kidney through the blood, or from the ureter and pelvis up the tulbules, or more rarely directly from without, as from a wound, or cqually rurely by extension from a nearby structure.

In a stage carlicr than that of suppuration, a kidney so infected will
uclei are dinating granular ssue has te knobs osis (see show the for this, eversion t can be
show cellular infiltration of the type familiar in acute inflammation, and an accompanying clouds swelling of the tubules. Such constitutes the not-often-seen typical picture of acnte interstitial nephritis. It is in the more advanced forms that we shall consider it, as these are so much more important practieally.
The souree of the infection, whether from the blood or by way of the tubules makes some difference in the distribution of the abscesses. In the former case the kidnce is infected, like other organs, by the bacteria in the blood; actual emboli may be the form in which they are carried. This is especially noticeable in cases of subacute vegetative endocarlitis, and here actual small infarets or areas of necrosis involve portions of the slomeruli. Both kidnevs are involved, and the sites of intection are scattered apparently at random; if suppuration has not occurred, hyperrmic areas with mottling may indicate the spots where the inflammation is progressive; if suppuration has occurred, the cut surface shows small multiple abseesses, which may nppear on the surface also; when the cap--ule is stripped, these golden-iellow areas show well against the reddened harkground. The abscesses in the papillary part of the kidney may be rongated indicating that in this dircetion the pus found least resistance; Newhere they are usually round. In an ascending infection from the pelvis, the abscesses tend to be lincar, or to be arranger! in groups that are linear, following the course of radii from the tip of a pyramid to the cortex; in a section of the whole kidnce, abscesses may be seen arranged along such radii, but not continuously so, parts of the tubule that have served for the conduction of the infection being spared. Microwopically, the abscess prescuts nothing that need be here detailed; the surrounding tissue may show oedema, and degrees of infiltration var!ing according to the distanec from the abscess; the parcuchyma is likely to be affected as much from the gencral systemic toxemia as from the proximity of the abseess; by this is meant that if a tubule near ill abseess be in a state of cloudy swelling it may have been rendered " by toxins that have come originally from this or another absecss and traversed the circulation before reaching the tubule.
Such a condition of the kidney tissue is usuahly called suppurative uphritis, in older phraseology "surgical kidney"; in the case in which it is cunsed by an ascending infection the pelvis must have been first allecterl (pyelitis), so that as soon as the kidney has become involved "I. maly speak of a pyelonephritis; should the absecsses become large, so That the kidney is converted into a sac full of pus, the condition is ralled pyonephrosis. Should the abscesses remain sinall and encopsul.iten, healing may ensue. On the other hand, the infection may spreat 1., the tissues around the kidney with the ultimate formation of abscess i: these connective tissues, the so-called perinephric abscess.
Bofore leaving the suppurative processes of the kidney, it nuay he said " "t the progenic cocci, the Bacillus coli, and the gonococcus are the wiost 1 'alagents of infection, and that the presence of stone is not infrequent? : rerlisposing eause; the sae in which the stone lies may readily becone
infected, and a calculous pyonephrosis be the result. On opening such a kidney, the sae wall is apt to be fairly thick, made of the eompressed kidney tissue, fortifiol by the capsnle; the inner wall is often smooth, and the ealculus may be seen adapted in shape to the bed in which it lies; the pus may have no outlet, and in process of time nay become inspissated or even calcifichl.

In the above paragraphs it may seem that the elassification of nephritis has been reduced to terms too simple to be effective; it may be pointed out, however, that the great complexity of terms generally in use would never have arisen if there had been a well-understood relationship between elinical signs and pathological observations. The truth is that no such accurate correlation exists; the elinical observations are very often merely variations upon the old theme of albumin, casts, and oedema, while the pathological observations are bewilderngly diverse. In the present state of our knowledge it is not often safe to prediet what kind of kidney is going to be found in any given case; anyone who has followed his cases to the autopsy table has found small gramlar kidneys where he expeeted large white kidneys, and normal looking kidneys where he expeeted small granular kidneys, and so on; little or no dependenee is to be put upon the valuc of granular or hyaline casts as indicating lifferences of lesion; the urine examined is an infinitesimal fraction of that exereted; the amount of urine and the number of casts must vary according to the amount of the urine and the completeness of the centrifugalization; and the reparative process in the kidney may execel our expectation. We have some admiration for a certain pathologist of eminence whose pathological diagnosis rests content with the simple statement that "the kidncys indieate Bright's disease," without attempting an $\ddot{\ddot{z}}$ morc elaborate refinement.

Tuberculosis.-Tuberculosis of the kidney may be part of a general infection or part, even the chief lesion, of an infection confined largely, if not entirely, to the genito-urinary system. It is theoretically possible that tubcreulosis might be primary in the kidney, the bacilli having gained no foothold and having eaused no permanent lesion at their place of entry. It is not likely, however, that suci, conditions ohtain frequently; careful examination will usually reveal a latent or quietly active focus in some lymph node or elsewhere.

As part of a general miliary tubereulosis, the lesions in the kidney arc seen as small hyperemic spots that on seetion are leukoeytic or lymphocytic collections, or as larger grevish or white dots appearing through the substance and on the surface ol the organ; early abscesse. or small fibromas may be mistaken by the naked eye for tubereles. These last seem to arise oftener in connection with the intertubular than with the glomerali.

In loealized tubereulosis of the genito-urinary tract, the involve ment of the kidrey is more extensive, the infortion is often bilatera! usmilly unequally advaneed on the two sides, and caseation readily
ning such mpressed a smouth, which it y become of nepht may be generally iderstood ns. The observaalbumin, bewilderoot often ny given as found eys, and kidneys, granular xamined rine and he urine parative ve some nological kidneys laborate general largely, possible having at their ortaill quietly kidne: eytic or pearing oscesse. bercles. tubular
occurs; the pelvis, if not primarily affected, quickly becomes so. Whether, in fact, the infection travels from bladder to kidney or from kidney to bladder is a debated point; a good many cases seem to be definitely the latter. The caseated masses may fusc until the cutire kidney seens to be a scries of compartments full of cascous or caseo-purulent matter; between them septa run; half a dozen of suel sacs may secm to fill the entire organ, including the pelvis, and the capsule, aided or not by a thin compressed layer of kidncy tissue, may be the external covering (tuberculous pyonephrosis). Except in the case of the ureter becoming blocked or its walls gummed together, put: and at times blood will escape into the urine, and tubercle bacilli may he detected. This is, of course, possiblc only when the lesion becomes an "open" one, because in the case of thoroughly circumscribed caseous arcas or of miliary tubercles, no was. of escrape is present. Much care has bren taken with the detail necessary to. Wetermine tubercle bacilli in the nrine; it is necessary to be sure that what seem to be tuberele bacilli are not in reality smegma baeilli, which are acid-fast. The formamin method hat simplified the search a good deal. It seems to be now generally concerled that no differential stain is infallible; the greatest care must be taken to wash the external orifiees, to ohtain the urine by catheter, and finially: to use absolute alcohol as a decolorizer in addition to the ordinarily employed dilute mineral acid.
Syphilis.-Apart from the rare ocrurrence of gumma in the kidncy,

Tuberculosis of kidney; one-half of the vrgan from a case of tuberculous pyonephroN1s: the organ is converted into a seriea of ares filled with brittle caseous matter. (McGill Path. Mus.) the recognition of syphilis int the kidney by any naked-ege lesion is a mat+er of great uncertainty. The kidney of the newhorn is sometime !md affected, and the Treponema pallidum has been demon-- ratio: Even the picture of multiple scarring which is attributed to \because, hilis, may be copied by lesions of a less specific nature.

Actinomycosis, glanders, and leprosy have been known to affect the hidney, but all are rare.
Regressive Tissue Changes.-Atrophy.-Apart from the atrophy of fil ronis which is a familiar picture, atrophy may be said to occur in 1 1.. rismus and in senility, but it must be remembered that in the latter "the arterial changes of old age may be the causc. Atrophy from tivity occurs in tubules whose glomeruli are damaged or congenitally
imperfect. Pressure atrophy occurs in hydronephrosis, because th obstruction to the outflow of urine renders the intrarenal pressur high.

Cloudy Swelling.-It will be already clear that this results from toxin of many kimls. The cefls are cularged, of gromud-glass appearanere and the lume'n is reduced in size. The best methon of demonstratime clomly swelling is to examine by the microseope a section cut by freez ing, without preliminary treatment of any kind; the heallhy tubule: appear colorless, the tubules that are swollen are grey and opaque acetic aeid clears them. In the stained section the lumen of the tubulc may he stellate, and the staining power of the nucleus less than nsual.
Fatty Degeneration.- This, like the previous change, which it follows, is seen to best advaintage in the convoluted tubules. Fat droplets may. be demonstrated by the nse of sudan III, the gramules or droplet. appearing golden or vellow.
Hyaline Degeneration.-This is to be seell in aly section of advanced interstitial nephritis, the glomernli appeariug as round nasses, smaller than normal. The hyaliue east is probably due to the change undergon by epithelial cells after they are shed, although occasionally coagulated albumin may form a east of like appearance.
Vacuolar Degeneration.-Vacmoles may be seen in the epithelium of severely damaged tubules in nephritis, usuatly oecupping the part of the cell nearest the lumen; the discharge of such vacuoles is thought to increase the albmmin in the urine.

Amploid.-This appears. in the kidney as a deposit occurring first in the glomeruli, in cases of general amyloid deposit. The condition has nothing to do with the appearance of the waxy; so-called amyloil cast, which is probably a monlification of the more frequently seen hyaline east. In advanced eases not only the glomeruli are anyloid, but the eapillaries and the basement membranes of the tubules show the change. The vessel walls are thickened, transparent, and the lunina may be almost or entirely obliterated. In ann advanced case, the cortex is greyish, in places translucent, and the gloneruli may be recognizable as grey dots, which react to the tests referred to in the paragraphs dealing with anyyloid in general.
Pigments.-Pigments found iu the kidney are derived from the blowl or bile. Blood pigments may be laid down in any part of the kidney, appearing even in the secreting eells. Bile pigments lead to a diffuse or circumseribed greenish or vellow color, the secreting cells again readily becoming affected.
Oric Acid--Refercnce has been made elsewhere (p. 317) to the illunderstood deposit of urates seen in the tips of the pyramids in infants at birth or shortly after; the salts are deposited in the lumina of the diseharging tubules.
Progressive Tissue Changes.-Hypertrophy. Whell one kidney i removed the remaning ane grows larger by incrase in the size of the glonernli and the tubules; it is not certain that in the very yourg
there is not un actual growth of new tuloule：，lat such is unlikely． The yomger the person，the greuter is the eapacity for hypertrophys．
Tumors．－It will be realleyl that the mixel tumors of the kidne？are of considerable importance and embryological interest（see p． 210 ）． Ipart from teratohlastomas，there are certain mesoblastic tumors to be cousidered of hoth liylie and lepidie：types．
Fibromas．－These are small fibrous musses，appenring in the kidney， of whitish color，which ure upt to be mistaken for iniliary tubereles ur ceen for alscesses．They are usually so small as to be burely dis－ tinguished by the eye，or muy reach the size of a pinheud．
Lipomas，myomas，and myxomas are octasionally seell．The pure lipoum is usually small，but large ones have been reported，and they are to be distinguished from the＂hepernephromns，＂which ulso may be wry rich in fat．Most so－called inyxomas are enses of myxamatons Wegeneration of some other form of tumor．The so－culled angioma is probably nlways more correetly a telangiectasis．

Adenomas．－These vary in size from a millineter in diameter to wral centimeters，are single or inultiple，soft and white．Histo－ logically，they are solid or tubular，made of cohumar eells，and the tuhnles may even be dilated into cests．These adenomas are prone in litur life to give rise to careinoma，and both terms，considering the origin of the kidnee，have to be used in their histologienl sense．

Carcinomas．－Curcinomas oceur，developed from previous adenomas and otherwise；the diagnosis between alenoma and the mulignant trow th mas be difficult to make，especially in those eareinomas arising frum the thlular epithelium，as distinet from those of pelvic origin． The scirrhons，simple，and medullary types are found，the tumor being often of considerable size，but not attaining the bulk rached by the arromas．Prone to degeneration，hemorrhage is a likely oeeurrence． incmalury earcinomas are more common in the kidney than primary．
Sarcomas．－Endotheliomas，peritheliomas，and sareomas of romid aind spiudle cells are found in the kidney，both in youth and in adult life：the large tumors，supposedly of this nature，in the very voung， witin prove to be mixed（teratoid）tumors rather thin pure sarcomas．
Mixed Tumors（Teratoblastomas）．－These are found at birth or shortly． afturwarl．They are large，loealized soft growths，prone to hemorrhage atill to degeneration，and have heen known by a great variety of nanes in：which the sarcomatous nature is recognized．The growth consists of ：i sarcoma－like matrix in which there are epithelial elements，some－ timi：tubular，as well as fat，muscle，eartilage，and so on．They some－ tinus grow to a size truly enormous．

Hypernephromas．＂－These，whieh we have elsewhere referred to as Im－wholiomas（see p．27i），are masses of considerable size，eircumscribed， an．if with a connective－tissue eapsule，from which septa run into the mass if the thmor．The tumor is usually suft，yellowish，or brown，often red itwin hemorrhage and in some eases large collections of elot are found． ＇li．new growth pushes the kidney tissue before it，so that this may lie
sprend ont npon the surfuce of the thmor. Netasteses readily oc Ilistologienlly, the thmor consi-ts of a meshwork of conpillaries, rows of cells voronsly urrugenl along them; the cells are often those of the ndremil cortex, while in pharee they ate in unger nasses and look like conlothelinl cells, which latter ire m act somient prolifernted. 'Ihns, a hypernephroma at one phee may look like angioma, ut another hke an endothelioma, or even like a sarcoma

Fitu 289

Section of a portion of a byperuephroma of the kidney. A characteristic arpa showing columns of clear polygonal cells, a, lying in immediate apposition to the endothelium (d) of the capillary sinuses (c). At b, arpas of infiltration and degeneration.

Fin. 290

Section from another portion of the a turmor, more highly magnified, show tulular arrangement: a, swollen translue tumor cella surrounding a definite ium b, capillary: r, fat droplete in tumor ee (Buday.)
carcinoma. The cells are usually polygonal, but may be cubical columnar. An abundance of fat i:s sometimes seen in the cells.

Cysts. - Reference has already been made to congenital cystic kidue. retention cests are very common, either as the comparatively sma ones to lse found in the kirlney of interstitial nephritis or the larger on that appear in otherwise fairly healthy kilners of old people.

THE URETERS

Abnormalities. - The congenital anomulies of the ureters ian necessarily of the kilney pelves) have been considered with those o the Lidney; the circmlatory disturbances are oímumement, apart irob their occurrence as features of more serious changes. Foreign body
eadily occur. illaries, with re often like "1 muged in et sumietimes look like ati sarcoma or

ion of the ame mificd, howiog Hen tranolucent definite lumen in tumor cells
cubical or cells.
stic kidney: ively small larger ones le.
eters and th those of apart irom eign body,
particularly stone, is, however, of much pructical interest. Salts may. he deposited in the pelvis of the kidney in the form of gravel or as the larger calcull, differing in size from the small particles that pass down the ureter without inconvenience, to large, cornl-like masses that fill wry crevice in the pelvis of the kidnc!. These are nsually uric or uratic in nature, although exceptionally calcium carbonate and calcium phosphate are depositerl. Lying in the pelvis of the kidney a stone may. irritate the surrounding tissues and may after infeetion, become the centre of a culculous pyelitis, with irritative thickening of the walls of the pelvis n state of affairs that soon allows the suppura a to spread to the kidney proper, with pyonephrosis, until ultimately a sac full of pus and rulculi may be all of the organ that remains. It often happens that a stone or a piece of a stone leaves the pelvis and proceeds in the urinary streum down the ureter, where it is apt to be canght, either at the brim of the pelvis or just before the nieter enters the bladder. This gives rise to renal colic or more strictly ureteral colic, a very important romplication of nephrolithissis; $\mathrm{tl}_{\text {: }}$. stone may be incapable of dislodgement, save by opening the ureter and removing it manually: Apart from calculi, blood clot, a piece of tissue, or of a tumor may act as a foreign body in the ureter. The ureter, serving as it does for minduction, is liable to have this function interfered with in various wils; stenosis may occur from general inflammatory or fibrous thickening of the wall, or from a local thickening acting as a valve. Obstruction may arise from the intermul auses referred to above, as " $\|$ as by pressure from outside, which nisy be exerted by a varietr :t i,jecta, such as tumors, misplaced organs or masses of inflammat. y ristiate or iuflamed tissues. Einks may be produced in the ureter, \therefore ip aialls whon the kidney is unduly mobile, and the temporary block ry wron duced may give rise to hydronephrosis, which is a distension primarily of the pelvis of the kidney and of that part of the ureter above the ohstruction. It must not be forgotten that continued obstruetion in any part of the urinary tract may give origin to hydronephrosis. Thr pclvis dilates gradually because the urine secreted into it is mable to escape, and as the urine increases the kidney tissuc in primed upon until it becomes very thin; a hydronephrotic sac may coule to contain several liters of clear fluid, of low specific gravity, coutaining usually a little urea, rarely albumin. It sometimes happens that a hydronephrosis due to a kink in the ureter discharges itself at int revals, the very increase in size in some way "undoing" the kink. eximsion upward of infecting organisms from the bladder and urethra; it misy occur by the infection of the ureter (ureteritis), the inflammation sprading by contiguity; or the infective agent of a cystitis or ureteritis of lhe lower end of the tube may be carried ly the blood to oue or both hidins. Any interfernce with the outfow of urine teialing to allow thu :rine to decompose increases the liability to such infection. More rat , pyelitis and ureteritis occur by extension of a hematogenous
infection of the kidnẹ: The progenic eoceci, Bucillus coli, and gomococens are all effective. A suppurative state of one kidney may readily infeet the other by way of the ureters and bladder.

Aceorling to the severity of the infection, there may be mereiy a eatarrhal state of the lining membrane of the pelvis, or the fluid exuded may be purulent, with or withont the formation of a membrane; when stone is present, the irritant effect of the stone superadded may result in an ulcerative or even a gangrenons state of the wall. When the inflammation is of long duration, productive inflammatory overgrowths of papillate nature may be notieed. The ureter in its conse can reproduce any or all of these states, although the complications due to the presence of a stone are infrequent, because the stone is not likely to remain at any one spot withont preripitating the s.mptoms of obstruction. Finally, it is to be noted that in states of clronic inflammation of the pelvis and ureter formed masses of muein may be thrown off by the surfaces, and their passage down to the bladder may be the oceasion of attacks of ureteral colic.
Tuberculosis.-Miliary tubercles may be found in the pelvis or ureter in eases of generalized tuberculosis, bit more often a localized caseous state of the pelvic wall follows tuberculons infection of the kidnes. The wall becomes thiekened, notular, caseons tubereles coalesce, and the pelvic caviuy becomes nerely one compartment more of the multilocular cascous kidney (tuberculous pyelonephrosis). Perforation of the wall is provided against by the considerable thickening that it undergues.
Parasites.-Parasites infesting the kidney; and, therefore, the pelvis and ureter, are not commonly found, but echinococcus, cysticercus, filaria sanguinis, and eustrongylus gigas may be mentioned among those that have been found.
Progressive Tissue Changes.--Tumors.-'Tumors of the pelvis of the kidney and of the ureter are rare. Villous growths-papilloma-are the most common, and are apt to give origin to serious hemorrhage. Sarcoma, carcinoma, and teratoma are secci occasionally:
Cysts.-Following chronic inflammation, the wall of the pelvis or ureter (or even that of the bladder and urethra) may exhibit munerons small, pinhead eysts, containing watery, yellow, or even brown fluirl. The trigone of the bladder shows the best examples. There is with these exsts some epithelial proliferation, and the condition is known as pyelitis or ureteritis cystica.

THE BLADDER

Congenital Anomalies.-The blalder may be absent, the ureters opening into the urethra, or the bladder and rectum may fail to $1, x$ separated, forming a cloncu. Septa of the bladder may exist. Extrophy of the bladder, the most important anomaly; is seen when the two halves of the body have failed to unite along the median line; the postetiner
wall of the bladder hies open to the air, the pubic bones often lying rparated by a eonsilerable space. Frequee iy there is also with it "pieparlias. Ectopia consists of the extrusion of the bladder through a wip in the wiall. The urachus may remain patent (vesico-umbilical fistula), or by imperfect closure urachal cysts may be caused.

Circulatory Disturbances.-Hyperemia.-Active lyperemia oeenrs as a stage of inflammation, and may exist withont developing further, in asiss wherc the urinc is irritating, by reason of excessive aeidity or the presence of certain chemical substances. Pissive congestion, affecting espeeially the trigonal region, aeeompanies generial systemic eongestion; odema is a frequent aecompaniment. Hemorrhage in the form of prechlize is seen in cases of casticis, new growth, and those states in whin it is found in the serous and mueous membranes. Hemorrhage in which much bloonl is effinsed is gencrally due to new growth or stone.

Inflammation.-Cystitis.-This oecurs bue extension of inflammation from the ureter or urethra, or as a resilt of abnormalities in the contents, viz., the presence of stoni or decomposing mrine. Rarely th. infeetion is hematogenic. Of all these, the most potent cause is the retention of arine, the distended bladler being less resistant than the normal, and the chemical changes inducing the formation of substances that irritate the wall; in this state, a dirty matheter mas introdnce the organisms, or washing mas wash back the mrethral contents, or the homal may carry the necessary germs.
'Ho mrine is liable to undergo fermentation, alkalinity being produed by thr aetion of the micrococcus urea. It is by no menns neeessary that the urine in eystitis be alkaline; indeed, numerous eares are now neported of egstitis, with arid urine, due to the B. eoli.
Acute Cystitis.-Catarrhal cystitis is a comparatively mild affection, anul it is notable that the bladder wall at antopsy may show no signs to thr naked eve, althongh the existenee of the inflammation before dath was mulonbted. The mineosa may be faintly redlened or swollen, "- ${ }^{\text {aidilly }}$ aromid the trigone. I suppurative state, however, is readily wharable. The mucosn is reddened, rngose, and if the urine has been alkilime, macorated. Patelos of membrane, free or attached, areas of hemorrhage, the deposit of carbonates and phosphates, minl a purulint rivilate may he observel. The wall, on seetion, looks thiek, wemmens and rod, and actmb abseesces may be seen in it (phlegmonous cystitis). ('aleareons deposit is specially likely to oecenr on the rilges if the riges, while separation of the folls shows red, weeping furrows in "hindr ulceration is usual.

Chronic Cystitis.-A slight acute cystitis may persist indefinitely and fin into chronic eystitis, as also may the severer forms. Sometimes the hamber is found distended, and sometimes eontrated and rigose.
I. it resilt of the continuance of the infection, the mucosa and the rest wh the wall tomd to becone hypertrophically thickened. 'The mieosa rimains red, sometimes grey, of ten ulecrated, with incrustations of earlumates or phosphates.

Tuberculosis．－The most frequent morle of infeetion of the bladder tulberombosis is by the passage of bacilli from the kidnev；this is evidene by the frequency with which a tuberenlons uleeration of the hladd wall at a ureteral orifiee is seen．Notwithstanding this，the health badder wall ean resist the attack of the badill for a considerable tim but a preëxisting eystitis of any degree will lessen this power．Pro： tatie tubereulosis is also able to infect the blader．＇The disease seen as miliary tubercles，each grey mohule surromeded by a sma zone of hyperemia where the bameler is infected as part of a generalize tubereulosis，or oceasionally where the bacteria from nearby sites hat been well distributed in the urine，or by extension from a caseous foen in the bladder wall；more frequent is the localized easeons lesion rapidly nlecrating．This arises by the coalescence of small tubereles and tends to spread over the nucosa rather than deeply into the wall ＇The easeons material，constantly washed away by the urine，may no be evident，and the ulceration may be mistakenfor a simple one．

Syphilis．－Gınımas of the trigone have been observed，but syphili of the bladder is very rare．

Bacteria and Parasites．－Bacteria are frequently folsul in the urime the microcoecus urea seems to be a constant inhabitant of many health． bladders．Pathogenie bactoria of ali sorts are found，whether passer throngh a healthy kidhey or not is debatable．leasts are found it the urine of diabeties，and sometimes of healthy persons．Among parasites，all those referred to as being fonnd in the kidney，pelvi of the kiduey，or ureter are maturally also found in the bladder，added to which are the ages of bilharzin hematubiam escaping through the mucosa of the organ．
Abnormal Contents．Blood corpmestes or pigment．appear in the bladder urime in some cases of mephritis，in uleeration of the tract， in the hemorrhagie diseases and in cases where there is a neoplasm． Desenmated epithelimn from the bhalder or ang higher part of the tract is seen，als well as ensts of all kimb，and foreign bodies that have been introdued by the urethra．Lastla，malenti of varions sorts are fommb．Frice acid，mrate or oxalate stomes may be passed down from the kidney，and may form the melens for phosphatie or other deposit．Foregn bolies or masone of epithelimm may likewise form an melens for pure ph：owhinic stomes．

Regressive Tissue Changes．Atrophy of the blader ocemrs in old age，as well as in some cases of atraned cardexia；the monsentar tisume becomiss greatly lessomed，ath the wall mas be of extreme thimes． listenton．long continued，is able to bring about the condition．The nsmal cetialar degenerations are fomm in the mueosal colls：widespread nerosis msuall？orrmrs from tramma as in parturition or from the pressure of an unusually large calculus．
Progressive Tissue Changes．Hypertrophy．－Il pertrophy of the barder occurs frequently and forms．ne of the constantly－msed examples hy which＂hypertrophy to overeone obstruction＂is illustrated．It
maly result from abstruction, a real work hypertrophy, or may result from irritation of continued inflammotion, as in cystitis, or in cases of winal ealeulus. Even here, the eonstant mueosal irritation keeps the musele more or less constintly stimulated, so that work is also a femure in the production of this form. The bladder wall is thickened and firm; the trabeenla are enlarged and prominent, and form a kind of hasket-work on the immer snfface of the bladder; tlac wall is thinner betwern the trabecule and in places becomes pomehed out, giving rise t" :ilculations or even large diverticula; these are most apt to occur in the fundal half of the bladeler.

Fig. 291 tubereles. o the wall. , may uot e one. ut syphititis
the urine: ny healtiny ter passed found in

Among ey, pelvis ler, addicel rough the
ar in the the traet, neophism. irt of the dies that f various be plassed phatic or likewise irs in old lar tisulu thinnes. on. The despreat pressirc
of the cxatulples ited. It
perhaps the majority of cases of sareoma show multiple growt Seeondary carcinoma of the bladder is quite common, in view of t liability of neighboring organs to the growth, viz., the prostate, t reetum, and the uterns.
Displaeements of the bladder oceur frequently in the female as aeeompaniment of displacement of the nteris and other organs; t bladder has been found in hernial saes, and we are acquainted with case in which a diverticulum of the bladeler was removed as part the eontent of such a sac.

THE URETHRA

Congenital Anomilies.- The urethra may be absent in conjunctis with other grave amomalies. It may open on the lower aspect of th penis (hypospadias) or on the upper side (epispadias); it may have mol than one opening, or may open at the base of the scrotum or into th vagina. Obliteration or valunlar ohstrnetion of the nrethra may ocen

Inflammation.-Urethritis.-This may arise by uncleanliness, fro foreign borlies, from trimma, from calculi, or from the injection of ant septic flnids, but of all eases of urethritic, overwhehningly the mos are due to the gonococerns. Gonorrhoal urethritis is more conmo in males than in females, becanse in the latter some other part of th tract is likely to be primarily infected; most frequently the disease carried by coitus, althongh infection by means of infected towels o bed linen is possible. The gonocoeci in smears are apt to be in the pu cells, although they mar be ontside; it has been found in the conjunc tiva, which is sery liable to infection by the gonoeroe eus, that when the pus fails to show the gonococens, a light rubbing, not sufficient to redien the surface, will remove the superficial epithelial cells in which the gonococei are often abmolant. This is not ordinarily mechanically possible in the urethra. When it is specially needed for dinguesis coltures should be male; of late vears with improved methomls the gonococeres is grown mueh more easily than was formerly the ease.

Early in the disease the surface of the urethra is reddened, with a eatarrhal seeretion which rapidly becomes purulent. Desquamation of the superficial cells follows, and sometimes ulecration, which mas bleed, and the infection may spread backward to the prostate, and the bladder; in the female, the vagina may be affected throughont, and thir uterus and tubes attacked; not infrequently the latter become diseased while the former eseapes. In the female, Bartholin's glands are certain to be inferted; in all thene ont-of-the-way situations the infertion nay remain for a long time.

The inflammation may herome ehronie, and in the male, after the lapse of time, the seerction beromes seanty and less purnlent, perhaps only clomdy or even clarar to the maked eye (gleet). In the proceso of healing, the fibrous grimulation tissue, if abundant, is apt to subside
tu fibrous masses or even bauds, which imperle the passage of urine (stricture of the urethra). Behind such bands and in irregularities of the surface, the gonococci may hre for a long time, the urethritis thisuppearing in the menntime.

With a urethritis there may be considerable systemic intoxication; in the male the infection may attack the prepuce or go backward, cansing epididymitis and orchitis; us a result of the constant stimulation of the mucosa, iminful continued crection (chordee) may be induced. 'Tlie isarby lomph nodes may suppurate (bubo), and arthritis by direct infertion of the joints, and tenosynovitis may occur even at long periods after the acnteness of the infection has passed; general bacteriemia, and endocarditis are rare complications of the disease. Considering the frefucney of gonorrhoa and the compurative unfamiliarity of the stulleut and practitioner with the appearunce of the urethra, it ought to he a part of every routinc autopsy to remove and open at least the posterior part of the urethra. Strictures are of various kinds and forms, arcording to the situation of the ulceration or areas of ulceration that lawe healed.
Condylomas may be found in the urethra, usually at the meatus, as well iss non-specific overgrowths of tissue.
Syphilis.-The chancre may be in the urethra, usually just within the meatus. Such iufection may be coincident with that of gonorrhoea.

Tuberculosis.-Tuberculosis of the urethra is not common, being seen is miliary or caseous foci duc to the spread of infection from other pirts of the traet.
Foreign Bodies.-These are of neccssity of the same order as those fomm in the bladder, bint are not often formd impacted in the passage.
Progressive Tissue Changes.-Primary tumors of the urethra are rirs: In the female, a simple irritative hypertrophy of the mucosa mas resilt in the formation of small fleshy excrescences-carunclesWhich are extremely tender and bleed easily. Fibroma oceasionally wertire as a polypoid mass. Carcinoma and sarcoma are rare, but may he preselut by extension.
Solution of Continuity.-The urethra may be lacerated or ruptured ly villuce, or by the passage of instruments, especially in the case of tricture', where 'he fibrons mass or bund prevents the instrument from herping the line of the urethra, and displaces the point of it laterally, where it impinges on wenkened or even normal tissue, which gives way. 'Th" "xtravasation of urine that follows progresses into the tissues inmerimes to an mlmost incredible distance, and constitutes a grave mention to life berause of the certainty of infection in areas that are not tal No reached hyy surgionl means.

(HAPTER NI

THE REPRODUCTIVE SYSTEM

THE MALE SEXUAL ORGANS

THE PENIS

Congenital Anomalies.- The penis may be absent, double, or hyp plastic, which last is found in cretins, cryptorehids, idiots, atc. Th prepuce is rarely absent, but frequently phimosed, that is, abnormal narrow and incapable of being retracted. The important malform tions of cpi- and hypospadias have been considered with the urethra.

Circulatory Disturbances.- In valvular heart disease, the lax con nective tissues of the penis are apt to be the seat of odema, the corpor cavernosa becoming enlarged; the lax tissues of the prepuce may als exhibit great œedcma. The sinuses of the corpora may become blocked so that the corpora cannot be emptied, with the result that chroni congestion with erection (priapism) results. Bands, strings, or ring: applied around the organ have mused gangrene by reason of the con striction and consequent great congestion. Hemorrhage may occul in the lax tissues of the corpora from trauna, with the formation of hematoma.

Inflammation.-Inflammation may attack the skin (dermatitis), the prepuce (balanitis), the glans (posthitis), or the corpora (cavernitis) Most eommonly the prepuce and glans are attaeked together (balanoposthitis), the preputial sac being specially liable to inflammation from the tendency to aceumulation of smegma, pus, dirt and urinary salts If the swelling of the parts be great, it may be impossible to draw the prepuce forward (paraphimosis). Ulceration and even gangrene may result; superficial erosions and subsequent adhesions of one layer of the prepuce to another, or induration and fibrosis are more frequent sequels. In eavernitis, the infection being closed in may lead to abscess formation, with subsequent rupture into the urethra, or a considerable induration in its healing. Herpes progenitalis, connected with the superficial nerves, arises as a group of small vesicles on the glans which rupture and form erosions.
Syphilis.-The primary lesion of syphilis, the hard chancre, is the most important affection, appearing three weeks or more after infection. upon the prepuce, near the raphe, on the corona, on the skin, or evell in the urethra. Beginning as a minute vesiele which may rupture, there is generally a small erosion surrounded by a reddish border, the
whole being indurated. If pieked up between the finger and thumb the structure feels bigger than it looks, as if a small piece of parehment Imiderlay the inflamed spot. This sore is infective but does not infect a superposed layer of the prepuce, that is, is not auto-inoculable. scrapings from it show spirochetes in large numbers. The lesion is so trilling in itself that it may be overlooked, but the most trifling lesion is almost sure to leave a definite sear. Mieroscopically are seen the signs of a low-grade inflammation; there is considerable infiltration ly small round cells, especially around the vessels, a great deal of proliferation of connective tissue, and giant cells nay be present. By, the time the chancre is evident, the infection has already beeome systemie, in evidence of whith the inguinal gland is the first to show a considerable swelling, the bubo (called the indolent bubo from its slight teruleney to suppuration). malformaurethra. e lax conhe corpora may alse te blocked, at chronic s, or rings f the connay occur mation of
titis), the savernitis). r (balanotion from lary salts. e to draw rene may. layer of frequent lead to or a concted with the glans
the most infertion. , or even rupture, orler, the

Fia. 292

Irum a section of a chancre of the prepuce at the twentieth day from its appearance. The Wharliting cextema corresponds to a distension and infiltration of the uppar layers of the derma, n:lliw if the vessels is also well exhibited, especially of the chanere at a. The infiltration of the

It a later stage, the infection of syphilis, aided often by bacteria, ralle's anl overgrowth of the mucosal elements the condyloma, which is har a great tendeney to nleeration; funally; gummas may be formed in athy part of the penis, usually deep in its tissue, healing with much quarring; the formation of eondyloma or gumma has no special relation th the site of the primary sore, and they are as likely to follow an extrugenital primary infection as a genital one.
Chancroid. -Not at all to be confounded with the chancre or hard whurere or hard sore just described is the chancroid or soft chancre or soft
sore, a non-syphilitic sore that frequently urises on the penis, cans by many different infective agents (though never by the treponema ably assisterl hy meleanliness. This arises from a few hours to a few da: after infeetion, us a small vesicle or pustule which breaks down and forms rapidly enlarging ulcer, with red, augry culges, and a moist, pus-secretir base, on which there may he a membrane. It is oftenest found on tl prepuce or glans, and is auto-inoculable, so that the uleers are ofte multiph; this, with the shorter incmbation period nand the more seve uleeration serve to distinguish it from the chanere, although it mu: be remembered that the two may ecexist. A certuin amount of indurn tion may exist in the base of the chansroid, but it is not so well marke as in the chancre, where it persists after the inflammation ha disappeared. A specific microürganism for the chancroid has bee deseribed, but it is generally consilered that many common pathogeni organisms, which are certainly present in nearly all cases, are capabl of proklucing the lesion. A chmeroid may become infected with spirochetes, and the unobtrusive charaeters of the primary sore of syphili be masked by the features, of the chancroid, but the systemic infeetion will oecur all the same. The chaneroid may lead to severe balanitis, lymphangitis, suppuration of the inguinal glands (virulent as opposel to indolent, bubo), and the penis may even become phagedenic, phagedena being a rapid necrosis which is apt to affect those who are alcoholic, diabetic, syphilitic or otherwise greatly debilitated. Tuberculosis of the penis is rare, but has been met with in children as a result of the ritual practice of cirrumesion in cases where the saliva of the operator has eontained bacilli. It is a notable fact that the smegma bacillus is in appearance and by some staining reactions very like the tubercle bacillus, and unusual care is therefore necessary in deeiding whether or not tubercie bacilli are present in the urine.
Progressive Tissue Changes. - The Venereal Wart. - This outgrowth is inflammatory in its origin, but not necessarily venereal; the irritating discharge of gonorrhoaa or other infection, together with uncleanliness, is sufficient to excite it. It consists of one or more papillary excrescences, like a cork's comb out the gland or prepuce, sometimes flattened by the pressure of a tight prepuee, sometimes reaching a large size. Microseopically, earh papilla consists of a fibrous vascular core covered by squamons epithetium, the core often branching so as to produce compound papilla, and the squamous epithelium being at times so richly proliferated that a diagnosis from carcinoma is not easy. The mass is usnally freely movable upon the subjacent tissue, unless uleeration has oecurred. Keratosis, the outgrowth of a horuy projection, similar to that seen on the skin, may oecur. Elephantiasis, affecting chiefly the prepuce, is found; it may be combined with elephantiasis of the serotum, and sureh a tumor weighing 25 kilos has beren described. The mass consists chiefly of fibrous tissue and is of course often the seat of marked inflammatory infiltration.

Tumors．－Carcinoma of the penis，generally of the squamons variets； hass been fonm to compose nearls ：3 per＇ront．of all eaneers，so that its importance is considerable．Phimosis with the irritation of reained arretion seems to be a predisposing cuuse，while the warter and keratoid krowths just described may form the starting point．＇The suleus and the imer edge of the prepiree are the most frequent sites，where a small warty growth begins and spreals over the surface，forming a luxuriant mass that may erole throngh the propuce；the momerons folds of the mass contain a foul，whitish，greasy secretion，anmern nleeration oceurs radily，the surface becoming gramalar．The inguinal glanads are maturally the earliest site of extension．Melanotic and other sarcomas， is well as endotheliomas，are found；secondary thmors are not eommon， while of the benign growths，fibroma，lipoma，and others are deseribed． trhaceous cysts of the prepnce and penile skin are enconntered．
Injuries of Penis．－Injuries of the penis require a word oil desciption； luxation may oecur be the main substance of the organ being separated from the prepuee and cverlving skin，so that it eomes to lie beneath the skin of the trunk，the original covering hanging like an empty sausage kin．Fracture，eliefly rupture of the eorpora cavernosa，oecurred ＂ith some frequency when it was supposed by the ignorant that a chorlee could be cured by violently＂breaking the cord．＂

THE PROSTATE

Congenital Anomalies．－Absenca of the prostate is eombined with uther grave defeets of the genito－mrinary system；aberrant and uni－ laterally hypoplastic prostates are exeeptional；cysts along the course of the Miillerian duct are occasionally found．
Circulatory Disturbances．－Hyperemia is eomanon，hut mimportani．
liep eommonly a general dilatation of the veins of the prostatie plexus i．scon，and phleboliths are eonmon．
Inflammation．－Prostatitis is usually a sequel of gonorrhcel infee－ tion．but may lesult from evstitis or injury to the urethru．Beginning in the gland tubules，the infeetion soon spreneis to the surrounding thwue，and multiple abscesses quiekly result，which sometimes coalesee in the almost entire destruetion of the organ．Rupture of an abseess mas happen into the bladder，urethra，scrotum，or perineum，and general pritonitis is exeeptionally so mitiated．Metastatic abseesses in bacter－ wimit are meommon．Chronic prostatitis，of a less destructive grade， min？revilt in considerable fibrosis，and in cystie dilatation of the tubules．
Tuberculosis of the prostate is fairly frequent，assiming the form of multiple caseous nodules，whieh may oecupy the whole organ，eausing mur henlargement．The process begins in the tubules and is nearly alwin！s part of an extensive urogenital tubereulosis．
Foreign Bodies．Concretions，the so－called＂corpora amylacea，＂ ＂im low boolies，＂＂prostatic samb，＂＂prostatic caleuli，＂of one sort
or another, are fomm in the prostates of a majority of ellerly a They may appear to the makeyl eye like priper grains, or they may lurge and + ritty like grupeseeds, when they are infiltraterl with sa Mieroseopically, the smull ones are oval, rombl, or triangular, " concentrie lamination, which gives them the appenrance of sta grames, whence their name. Often, if not nlwars, in normal or dila tubes, they may be seell to commence from on fision of desquama cells which undergo haline degeneration. So lamimation mus. evident, the bodies being merdy masses of brownish matter. ocenrence of corporn amylacen is of no practical significance, and nothing to do with amyloid disense.
Regressive Tissue Changes.-Atrophy occurs in about one out four old men, and in somng people ns a result of castration, wasti disense, or the presence of coneretions. In the last mmeyl the stron suffers most, otherwisc the glandular portion. Fatty and hyali degeneration of the nuscle fibres and of the epithelium are sometim olserved.

Progressive Tissue Change.-Hypertrophy.-The familiar cularyc ment of the prostate in chlerly men, while it may precede malignant krow.: of the organ, is to be sharply distinguished from the same. The "onsensus of present-day opinion inelines to regard it as the outcone of a long-eontinted chromic inilammation of the urethral part of the organ; a constant relationship between previous gonorrhoen and prostatic hepertrophy cannot, however, be said to exist. Such a urethral inflammation my show itself in several ways:

1. Interstitial fibrosis around the mouths of the prostatic ducts may lend to partial obstruction, compensated by hypertrophy of the plain muscle fibres, giving a diffuse enlargement.
2. The fibrosis may give rise to complete stenosis of a duct, so that the associater glands become dilated and cystic-a condition often "rongly miled cystadenoma.
3. Il itether as a result of the preceding or from continued irritation, there may be active proliferation of the glandular epithelium, often with eystic dilatation.
4. Whether, again, from the progressive inflammation or as the outcome of loss of muscle fibres, with replacement by connective tissue, we may find a considerable diffinse liyperplasia of commective tissue (mmbined with that of the muscle.

Fio. 204

arfon fron adenocurcinoma of the prontate, whowing on one side: of the band of atroma (a), intompat lumen formation.

While the enlargement may be generalized, it often shows itself perially in the midlle lobe, where it brings about its most serious effects, fir this nodule or ridge, projecting upward, acts as a valve when the binller contracts, obstructs the orifice of the urethra and impedes urination; this leads to hypertroply and subsequent dilatation of the haddor, and causes a bay or depression behind it in the lowest part of the. hadder which fails to be emptied in micturition, and becomes an inm itable seat of bacterial growth, from which ascending inflammation, urcirritis, pyelitis, pyelonephritis, and pyonephrosis may result. The ill'pelen urination calls for the employment of the catheter, a fertile ullre of infection, and the projecting mass of the prostate may even W. .

The nature of th.: middle lobe of the prostate is not yet understood,

$$
\longrightarrow
$$

(ANSI and ISO TEST CHART No 2)

for in the normal prostate of carly life it is noneexistent. Bre most it is regarderl as an ontgrowth from one or other lateral lobe.

Tumors.- Of malign int growths, carcinoma is the most important, occurring as a primary neoplasm, and not infrequently in a gland previonsly enlarged. We have observed one ease in whieh mrinary obstruction with enlarged prostate existed for eleven years before the development of an adenoearcinoma. Csually it is soft, nodular in one or both lobes, and spreading rapidly, it infiltrates the "capsule" of the gland, the mucosa of the bladker and the prostatic urethra, or may go throngh to the reetum. Nicroscopically, it consists of exlindrical or polyhedral cells, arranged in an attempt at glandular formation or in solid masses. Metastases are not a marked feature, and happon first in the retroperitoneal norles, although in some eases there is a peenliar liability to form secondaries in the bones. Sarcoma is infrequent in comparisom with carcinoma, hot occurs in childhood, sometimes as one constituent of a mixed tumor. Secondary tumors rarely attack the prostate be metastasis, but may extend from the blader or the rectinin.

COWPER'S GLANDS

These small borlies, lying behind the bulb, are liable to inflammation by extension of processes that originate in the urethri, and rarely to cyst formation from blocking of the dnet.

THE TUNICA VAGINALIS TESTIS

It will be remembered by the student that the testis, primarily in the ablominal cavits, descends into the scrotum along the inguinal eanal. In this descent it pushes before it a prolongation of the peritoneum belind which it comes to lie, and along with this there is projected a portion of the miseular wall to form the gubernaculum testis together with associated ressels and nerves. Following this descent, the proeess of the peritoneum beeomes normally closed off from the peritoneal eavity proper. Non-closmre, with persistence of the inguinal canal, favors subsequent hernin. The testis thus lies suspended behiml aperitoneal sac, one wall of whieh, in juxtaposition to it, forms the visceral layer of the tunica vaginalis testis; the other, the parietal layer, is scparated from the skin of the scrotum by loose tissuc eonnective tissue, in whieh is the eremasterie musele. The viseeral and parietal layers enclose a suroys sace, and this serous sae may show all the comditions seen in the other serose of the body:

Abnormalities. - In the precelling paragraphs we have alrady referred to these, viz., the patency of the neek of the sac.

Inflammation.-There may be a certain amount of anasarea of the tunica; of greater importance, however, are the collections of fluid resulting primarily from inflammation, viz., the condition of hydrocele.

Here it is held that the first stage is a serous periorchitis resulting in distention of the sac by a clear serous fluid, and, once accumulated, the cendency to secrete fluid is maintained, so that tapping is often followed by reaceumulation. In more acute inflammation the fluid maty be blood-stained and the exudate of a serofibrinous type with deposit of a membranc over the testis. In gonorrheal and traumatic (aises there may be a purulent periorchitis, but acute periorchitis of a fibrinous type without marked fluid exudate may occur. It is not mincommon to find at autopsy old fibrous adhesions between the two walls of the sac indieating such old inflamination. Reverting to hyilrocele, it descrics note that in a considerable proportion of cases ini history can be obtaincd bearing upon any primary trauma or infection. Thus the etiology of the condition is not wholly worked out. In old collections, the hydrocelc fluid may appear shimmering from mumerous plates of cholesterinc.
Syphilis and tuberculosis may involve the tunica by extension from the testis.
Progressive Changes.-Tumors primary or secoudary, save by extension from the testis, are distinetly rare.

THE TESTES AND EPIDIDYMIDES

Congenital Abnormalities.-It will be remembered (Fig. 141, p. (sw) that the epididymis and testis originate fr in two separate bodies, the former coming to constitute what may be termed the collecting tubules for the latter and that, owing to imperfection in the junction butween the two parts, certain orders of cysts may develop. So also it may be recalled that in development, adrenal tissue may be snared ofl and earried down along with the descending testis. As regards the tevtis itself there may be varions grades of lack of development or filihure to attain the normal position in the scrotum. There thus maylee absence of both testes-anorchidism, absence of one testis-monorchidism, non-descent into the inguinal canal-cryptorchidism, dupli(ation of a testis-polyorchidism, or fusion of the two-synorchidism. Hypoplasia or incomplete development is met in cryptorehidism and uther forms of dystopia or failure of the organ to pass into the scrotum; in "retinism and other cases of delayed or imperfect development. There may be verious grades of dystopia, the testes being found in of near their primordial position in the neighborhood of the lumbar iertel)rer, in the pelvis or imperfectly descended in the canal, or again, Wrent may be not into the scrotum, but into the tissues of the inside of the thigh. There may be not only congenital, but aequired dystopia, is weurs oecasionally after tramma, the testis being forcibly displaced frim its site, usually up the eamal. Very rarely both testes have been fonnd in the one-half of the serotum.
Aspermia.-Absence of discharge of sperinatozoa in the adult may. I. dhe to (1) lack of production in the testis, or (2) to stenosis, obstruc-
tion or destruction of the vasa deferentia as the result of trauma inflammation or new growth. Prolonged olstruction to discharg leads eventually to atroply of the epithelium of the tubules of the testis, and so in certain cases both canses may be oper ive. Defieient procluction of spermatozoa, with consequent sterility .niay be brought about by many causes, some congenital, some acquirea. Thus aspermia is encountered where Ite testes are retained in the abdominal cavity even although apparently fully formed; for a few years around the age of twenty it is stated that such cryptorchids may present spermatozoa in the semen, but after the age of twenty-four they are uniformly found sterile. Imperfect devopment of the testes has also associated with it aspermia or oligosperm.a. Such hypoplasia is frequent in cretius accompanying defective development of the thyroid; in acromegalic giantism there is a similar aspermia and lack of sexual capacity. In the very obese, men and animals, aspermia shows itself, passing ofi with reduction of the obesity. General lowering of vitality as by long-continued disease and after excesses of various kinds, including inental worry and overstrain, lead also to lack of devclopment of the spermatozoa.
To the contrasted condition of precocious sexual maturity we have already referred (p. 102).

Circulatory Disturbances.-The only serious circulatory disturbances are trammatic hemorrlage and the secondary effects of arrest of circulation as from thronthosis of the pampiniform plexus.

Inflammation.-Inflammation may be either ascending, along the vas deferens, in which case the eipididymis is first affected, or hematogenous when the body of the testis is nore liable to be involved. Most often botlı testis and epididymis are implicated. The most frequent form of inflammation is that due to the gonococcus, and here there is first a catarrhal epididymitis followed by a more interstitial orchitis. The epididymis becomes enlarged, tense, and painful, on section is found congested, showing tubules distended with semifluid exudate. At times this passes on to actual abscess formation. The testis similarly becomes firm and painful, and there is a similar catarrhal exudate in the tubules with an accomnanving pronounced cellular infiltration of the stroma. With arrest of the acute condition, fibrosis, shrinkage and atrophy of the organ ma: supervene, if the inflammation has been long continued. The type cxample of henatogenous orchitis is seen in mumps; at times this complicates other acute infections, e. g., smallpox and tuphoid.
Infective Granulomas.-Both tuberculosis and syphilis are apt to affect these organs. In tuberculosis, more often the infection is aseending and as a result the epididymis is apt to be the earlier and the more involved. The discovery of an enlarged epididymis may be the earliest clinical sign of the existence of tuberculosis in the body. There is formation of relatively large caseous masses with extensive destruction of the tissue of the organ and progressive cxtension of the process along discharge les of the Deficient e brought aspermia al cavity. d the age rmatozoa uniformly associated in cretins romegalic city. In assing off ty as by including nt of the we have disturbof arrest
long the hematod. Must ent form e is first tis. The is found ite. At similarly udate in iltration hrinkage las beeli is seell ., small-
apt to ascendhe nore earliest Chere is truction ss along
the tubules into the testis. If the process reaches the tunica vaginalis allocsions may be set up with eventually ulceration of the skin and sillus formation.

In contrast to this the most frequent form of syphilitic implication involves the testis proper, as a diffuse fibrosis, the so-called white swelling. Less frequently definite gummas develop. In the former romdition the testis becomes enlarged, hard, and insensitive to pressure. With the latter, as with tuberculosis, the skin may be involved and hreak down.

Regressive Changes.-Simple atrophy of the organ with aspermia is a senile change, and occurs in marasmus and wasting diseases, as also as the result of the influence of x-rays. Pressure atrophy is noted in ronditions of hydrocele, hernia, and neoplastic growths.
Progressive Changes.-Hyperplasia.-Cases of precocious development and maturity of the testes have been roted particularly in connection with hypertrophy and tumor formation of the adrenal cortex. In the adult therc is little evidence of compensatory hypertrophy after removal or destruction of one of the pair, though this may occur in the very young.
Tumors.-Tumors of the testis are not uncommon; they are characterized, as a group, by rapid growth and malignancy. The variety of forms described is bewillering. IRecent careful studies of several sections from various areas in such tumors are leading to the conclusion that the majority are of teratomatous nature. Several cases are now on record of chorio-epithelioma. Very frequently we encounter mivel tumors with glandular, cartilaginous, sarcomatous, and other tisisues. In addition we may find tumors of simple type; it seems that pure sarcoma may originate from the interstitial cells of the testis and that pure carcinoma, occurring as it does in adnlt life, may originate from the tubules of the crgan. Other cases of so-called curcinoma sarcomatodes are explicable, when it is remembered that the testicular epithelimm is of mesothelial origin, and that therefore, we would expect to find transitional mesotheliomas.
Cysts. We have already referred to the congenital cysts, and it rumilins only to note the spermatocele, a relatively large cerst, originating apparently from aberrant tubules of the epididymis which, under the influence of some obstruction, may become of relatively great size "xtumling into the cavity of the tunica vaginalis testis and simulating a hirdrocele. This on puncture affords a fluid containing spermatozoa.

THE SCROTUM

The conditions affecting the scrotum are, broadly speaking, those liahle to affect the skin in general, with certain modifications due to it presition, and the relative abundance of its constituents. Thus the then:? dartos contains distinctly contractile cremasteric muscle fibres,
and there is a lack of subeutaneons fat; it is permliarly liable to involved in elephantiasis, and then may attain a huge sizc. Its v cularity favors hemorrhage in trauma and in obstructive heart disea in renal disease, eedema may he extreme. ('f tumors the most importa is carcinoma (squamous cpithclioma), apparently secondary to irri tion. In the old days ehimnev sweeps were peeuliarly liahle to th form of cancer, and tolay workers in tar and paraffin show a simi liability.

THE SPERMATIC CORD AND VESICULE SEMINALES

Esperially in those having a long spermatic cord the accompanyir veins of the pampiniform plexus are liable to varicosity, and as the are relatively abundant they may form a tumor-like mass, varicocel This is fomid more frequently on the left side ir onsequence, it held, of the course of the vein on that side, which remers it more liah to pressure and obstruction.

Inflammation of the vas deferens oceurs, not as an isolated condition but in association with epididymitis and vesienlitis; as a result ther may be a reparative fibrosis leading to blockage of its lumen and conse quent sterility: Regarding the vesicula seminales, there has been som debate as to whether these are to be regarded as reservoirs for th sperm or as affordine a special seeretion for almixture with the same Apparently in man the have the double function. Inflammation is its active state may lead to marked tumefaction, and subsequently to fibrosis and eontraction. As to its eansation, the gonococcus is the most frequent infecting agent, thongh pure strephecoccus infection: also occur. Tuberculosis, both ascending and deseending, may involve these and the vas.

THE FEMALE SEXUAL ORGANS

THE EXTERNAL GENITALIA

Abnormalities.-Thre is a long list of abormalities of the external genitalia, involving either individual parts or the whole tract. Of the entire tract there may be complete absence as in certain moustors, hypoplasia as in eretinism and other forms of ineomplete development. Of individual parts, the vulva may te aboormally small; the clitoris mare be ahsent, or hyperplastie, as in some cases of false hermaphruditism, or donblerl, as the lowest grade of inferior duplication, or adherent to neighboring structures. The labia may be abnormally: small or aboormally lar"; the lahia minora, as a congenital condition or as an adiurement, may be of great size (Hottentot apron). The lahina
milijora, corresponding to the two halves of the serotum, may at times posisess a patent canal of Nuck, into which hernia occurs. Into sueh, there may he an imperfect descent of the ovary. The hymen is inconstant; it may be absent, even in the young child; may present an abnormally sinall orifice, may show all possible variations in the form of its orifiec; may show multiple orifices, or lastly may be imperiorate, ill which ease, with the onset of puberty, there develops retention of the inenstrual blood.
Circulatory Disturbances.-There are certain important circulatory disturbanees of the extermal genitalia, due to their vascularity. Passive congestion accompanies the later stages of pregnaney, and codema, eypecially of the labia, may be very pronounced in general anasarcous states. Hemorrhage and hematoma are most frequicntly traumatic in rigin.
Inflammation.-Trauma, inflicted in parturition and otherwise, is a rommon cause of transitory inflammation, especially in the labia; any part of these may be the site of laceration. Owing to the frequeney of discharge from the vagina, and to urination, the external parts are apt to present irritation and infection, so that numerous cutaneous disturbances may show themselves here. Added to this nust be considered the effeets of friction upon surfaces so inflamed. Erysipelas, furmencosis, and milder infections causing eivthema and eczema, arr to be noted in addition to the important rroup of venereal infections. Apart from syphilis, these last inchude all the inflammations due directly to the gonneoccus, and indirectly to the combination of modeamliness with pathogenic baeteria, of which the chaneroid, single ur multiple, is a frequent resnilt.

Acute vulvitis, generally associated with inflammation of the vagina, will be considered with that condition, but it requires mention here that in gonorrhea the flands of Bartholin are prone to an elective implication. In very young childe n, uncleanliness often leads to marked inflammation and excoriatio n, apart from vaginitis.
Infective Granulomas.-Syphilis nay present itself in the form of the primary sore, the chanere, or of mucous patehes, eondylomas, of secmulary eruptions, as again of gummas of the labia. Any part of the raternal genitalia is liable to be affected. Tuberculosis is rare, appearing oreasionally as lupus.
Regressive Changes.-Atrophy oecurs in the old. A remarkable contition known as krauro is vulva is due to a fibrous hyperplasia of the subentaneous tissue of the labia, with thinning and atrophy of the thin, and, being generalized, results in a progressive contraction of the vilvar orifice.
Progressive Changes.-As in the scrotum, so here there may be elephantiasis of one or both labia; hypertrophy of the labia minora and ditoris is considered as oftenest dine to masturbation.
Tumors.-Fibromas of large size have heen reported as orig nating in tin ditoris and varions parts of the vulva. Nævi and angiomas may 41
be encountered, still more rarely myomas, lupomas, and chondron Perhaps the commonest tumor of this region, and cren then not v frequent, is the squamous-celled carcinoma. Melanotic sarcomas hi been reported. Among cystic formations, most conmon are retent cysts of the glands of Bartholin. A rare cyst, corresponding to scro hydrocele, may origimite from the canal of Nuck.

THE VAGINA

The vaginal walls are normally in contact, rugose, except in old and after frequent parturition, sparsely provided wit ${ }^{2}$ glan lined by squamous epithelium. Despite its simplicity of atn the vagina partakes in many diseased comlitions arising in it nedia neighbors, the external genitalia and the uterns. Its aclations nearby organs, the uterus, bladder. rectum, and the viscera in Dougla pouch, favor alterations in position due to pressure or traction exert upon it. The vaginal wall, having no inherent rigidity, is liable become inverted, or even prolapsed through the vilvar orifice. Lp the vaginal space various organs may obtrude themselves; the blidd may descend as a mass in the vagina (cystocele); the rectum may pll forward the posterior wall (rectocele), and loops of the bowel or ev sometimes the ovaries may cucroach ipon the passage (enterocel ovariocele). In parturition, and otherwise, the wall may be injured completely torn. Foreign bodies in great variety have been et countered in the vagina, as, for example, forgotten tampons, pessarie and ohjects introducel for purposes of masturbation. On one oceasio we found at autopsy the lower lalf of a test-tube an inch in diamete firmly imbedded in the canal, where, to julge by the surroundin granulations, it had been for a considerable time. Such objects remain ing for a long time usually hecome crusted hy phosphates and carbonate

Abnormalities.-The vagina may be absent or duplicated. Mor common than either of these states is a relative narrowing (atresia which may exist at one or more points, or throughout the tube.
Circulatory Disturbances.-In the later weeks of pregnaney, passivi congestion is noted. Hemorrhage in the walls is usually traumatic
Inflammation.-Vaginitis, oftell associated with vulvitis as vulvo vaginitis may he acute or clironic. Among acute infections, as might he supposed, gonorrhea is the eommonest. An acute inflammation from gonococens or other agents may spread from the vulva; the discharge of acrid or infective material from the uterus is also a cause. The wall is reldened, secretion is inereased, and this, at first catarrhal, later becomes purnlent. In somng children vulvitis may spread to the vagina, in spite of the protertive hymen, and it is worthy of note that accilental infection of infants by gonococcus may readily occur. In ehildren's hospitals, a calse of whovaginitis is so liable to infect the entire ward, that it must he care! for by an attendant who does mint
deal with the other children; this by reason of the intimite handling required for the cleanlincss of infants.
Chronic vaginitis is an extremely important affection; it arises by Ilfthance of an acute vaginitis, or may originate by a low form of infection in debilitated suljects, in whom it is liable to show slight exirerbations over a long-period (leucorrhea). The discharges of the uteris are here also of importance, in continuing the irritation. The lecal result is hypertrophy of the mutosa, which may appear granular or papillate, eventually, at times, atrophied and smooih. As a result of inflammation in nearby organs, as well as of trauma from within the vagina, fistule may be found, rectovaginal, or vesicovaginal.
It is noteworthy that the vagina rarely exhibits either tubereulous (If s philitic lesions.
Regressive Changes.- With age the rugæ of the vagina tend to disappear, and the wall to lose its velvety surface, becoming smooth.
Progressire Changes.-Tumors.-Tumors of the vagina are relativel.murommun; a torm that is characteristic is the teratoblastomatous mixed tumor, encountered in children, presenting largely sarcomatous Nemmins along with muscle cells and other connective tissues. Pure sarcomas have also been recorded, as have leiomyomas. The vagina may he the site of primary squamous-celled carcinoma, and secondaries are pronc to infiltrate from carcinoma of the uterus, bladder, or rectum, as well as from chorio-epithelioma of the uterus.

THE UTERUS

The uterus is a thick-... ${ }^{-1}$ rgan, pear-shaped, but flattened from lefore lackward; it is ce " " ' 'he myometrium formed, in the main, of plain muscle fibres, of its extent, and a muros. serous peritoneal covering over most epithelium prolonged inu, thec muse cudometrium, consisting of columnar ghathlar acini. These glands muscle as an abundant series of simple, datit in the cervical region. The somewhat morc elaborate and abunhut immediately underlying there is no sharply-defined submucosa, characterized by a relatively abund epithem is a reticulated stroma in basing we would note, must nomant accumulation of cells, which, infiltration, or for a diffuse mat no mistaken for an inflammator: the myometrium is richly sarcomatous growth. The inner layer of there iessels show the evy vascular, and in the multiparous woman peribheral hyaline che evidences of involution and new formation with are, firther, abundant lyes to which we have referred on p. 309. There with the iliae lymph homphatics, those of the cervix communicating lumber ind inguinal nodes, those of the body of the organ with the Abnormalities - Of coups.
Abnormalities.- Of congenital abnormalities, mention may be made of cruplete absence and marked hypoplasia; the organ may be duplicated uterus didelphys), with or without duplication of the vagina. Where
the Miillerian ducts mite into a common eervix, the nterus is bic nuate; there may be two cavities enclosed in a common uterus (ute soptus). Considering the juxtaposition of uterus, hludder, and rect and the primitive common clonen, it is not remarkehle that occasiona separntion is imperfert with resultont uterovesical nnd uterorec fistula. 'There may' be stenosis of the curity associnted with imperf development of the uterus along with that of the other genitnlia.

Congenital Anomalies.-Two great classes of anomalies ean recognized, the dystrophies, due to nutritive disorders, reaulting abnormality of size; and the dysplasias, due to eceentricities of devel ment. They may he associated.

The uterus may be wnnting (aplasia) or diminutive (hypoplasi and this may he symmetrieal or asymmetrical aeeording as the Müllori duets, which form the organ, are equally or unequally involved. 'Tra verse fission of the os uteri may be confouaded with that resulting fr childhirth. Real aplasia is rare, for nearly always some rudime of uterine tissue are to be found. The external genitalia are genera intact, but the ovaries and tubes nuy occasionally be absent.

Where one Müllerian duct fails almost entirel:- to develop, uterus unicornis is formed. If the duets fail to fuse, uterus didelpl results, in which there are two separate uteri and vagine, or two ut and one vagina. If the ducts fuse below, and not above, uterus bicor results, and molifications of this are seen in uterus bicornis dupl where thore are two complete cavities; if these unite at the cervix have uterus bicornis unicollis, while if a septum divides the utcr eavity, the condition is called uterus septus or bilocularis, and there names to distinguish the various degrees of completeness of the septu

The cavity of the uterus may be alosent, or there may be multi rudimentary cavities; it may be narrower than normal or obstrue (stenosis uteri), or it may be in communieation with the bladder b. tube, or with the rectum (congenital uterorectal fistula; anus uterinu 'The uterus may fail to develop bevond its fortal state (uterus foeta or hevond its infantile state (uterus infantilis). On the other hand may develop precociously. Occasionally at birth the uterus is f.m retroflexed, in varying relation to the cervix, retroverted, or anteflex It las even been found in an inguinal or crural hernia (uterocele, h terocele).

Acquired Abnormalities of the Uterus.--The pressure of tumors. or organs misplaced, or traction in unusual direetions or its own writ may misplace the utcrus, and if it ' molile may even impart an ahn mal shape to it. As a whole the uterus may be misplacel forwa backward, to the side, upward, downward (prolapse), or it may be turn inside out (inversion). Again, the same agents may bring about at pressure that there is an alteration in the direetion of the axes of uterus; it may be rotated in its transverse axis (version), usually hat ward (retroversion). This may exist in all degrees from a slight tilt to th in which the uterus lies with the fundus below the promontory of
rus is bicorteris (uterus and reet oceasiomally
uterorectal th imperfect talia. lies can be resulting in 4 of develop(hypoplasia), he Müllerian ed. Trialissulting from e rudiments are generally
levelop, the rus didelphys or two uteri terus bicomis ornis duplex, he cervix we the uterine nd there are the septum. be multiple r obstructed oladder by a us uterinus. terus fettalis) ther hand, it rus is f.unnd or anteflexed. terocele, hys-
tumors, fluid ; own weight art an alhororcell forward, ay be turned about such axes of the sually backht tilt to that ntory of the
sacrum and the cervix behind the symphysis pulis; these disloentions uslally result from ehildhirth or abortion, where the increased weight of the nterus is not compernsated ley the fixity of its supports. Weakening of the romnd ligaments and, above nll, the lack of perineal support after tears, are the most potent causes. A uterus so misplueed is prone th impairment of circulation and may becon:- congested and enlarged, with the production of endometritis. Abmormal anteversion is not so liathe to happen, and when it does, is usnally from the craction of repairel tixisue in front.
Inversion.-Inversion oi the uteris oecurs in a large lax uterus, such as may be seen after delivery. It may be (1) incomplete, with the fimulus still within the uterus, or (2) complete, where the fundus lies in the vagina, or (3) complete with prolapse, where the uterus is wholly aull the vagina partly everted, and the uterus appears outside the vulva, where interference with its circulation may lead to all degrees of degenerative ehange, even gangrene.
Prolapse. - In simple prolapse, the uterus destends and presents itself withut inversion. It may lie in the vagi:a (procidentia) or with inversion of the vagina, may proirude through the vulvar orifice.
sicveral conditions may favor prolapse, chief of which is laek of suppurt, whether from weakening of the ligaments or of the pelvic floor. Rictroversion practically always precedes prolapse, and is assisted by iinjury to the pelvie floor, increased weight of the uterus, and laxity of the alulominal wall. The bladder or reetum or both may accompany the .terus in its descent. As in retroversion, but to a greater degree, threr is interference with the cireulation resulting in passive congestion aurd eurdumetritis. Prolapse is neecssarily accompanied by some displacernent of the rectum or bladder or both.
Elevation.--Elevation of the uterus happens when it is pushed up fromin lelow by a tumor. When it gains attaehment to the abdominal will, so that involution cannot properly be aceomplishel, the result will probably lie an elongation of the organ.
Flexion.-For long it has been the custom to speak of a lass of almuriual conditions-flexions-in whieh the uterus becomes bent upou itself, giving antefiexion, retrofexion, and lateral flexion, but at prewnt the tendency is to minimize the inportance of this change, anll to merge each of these in the more important version in the same dire"tinn. Retrofiexion is the most common, associated, as it usually is, with retroversion, and if pregnancy occur the organ may be inearcerated in its ner position, with abortion s a result. The causes of flevions are laxity of its tissue or its suppotis and undue tractions or presure n one or another part of it.
Stenosis. - We have already referred to congenital stenosis: the actuired stenoses are usually due to contraction after curetting, or inflinanuation or obstruction of the ehaunel by tumors. It may oceur in premaney as a result of gonorrhera.

Dilatation.-Anything that favors retention leurls to distension of the uterine cavity with or withont a corresponding hypertrophy of the nterine wall. As noted more than once previonsly, the extent of this hypertrophy is largely a matter of age. In the elderly there is little reactive overyrowth following the stress of distension. A very frequent canse of this is the contimed growth of an intra-uterine fibronyoma Whieh eneromehes upon the cavity. In sueh cases the hypertrophy of the uterine wall may be remarkable. With imperforate hyineli or cervieal stenosis, there may he great distension from accumulation of menstrual fluid (hematometra). Retention occurring after the menopause or before puberty may result in the accumulation of clear fluid in the cavity (hydrometra). If the obstructed uterus become the seat of purnlent inflammation, pyometra results. An infrequent condition is the aemmulation of gas in the uterine cavity, seen occasionally in the puerperiun when putrefaction of the retinimed lochia or placenta is present.

Rupture- Laceration of the cervix is a common event in delivery, particularly in the primipara. The severer contition of rupture of the borly of the organ may be brought about by any condition which leads to continued, strong uterine contractions withont progression of labor, stich as oecurs where there is a tramsverse presentation. Here onc may expeet a longitudimal tearing of the uterine wall, slight or complete, with passage of the foetus into the peritoneal cavity. Apart from the longitudinal, tears of all positions and degrees have been observed. Previous disease, with degeneration of the uterine wall, predisposes to these events.

Bruising and Perforation.--These occur in attempts at mechanical abortion, or during operative neasures (curetting); dilatation hy force is alway's a erushing or braising. is must be remembered by the operator every time he takes a curette in hand that the most skilful of operators have perforated the uterus by the use of a force that could not be called other than gentle. In these cases, the perfo:ation is usually at the fundus. Apart from these operative perforations, there nay be perforation resulting from cancerous and other deep ulcers, these often leading to the formation of utero-rectal, utero-vaginal and utero-vesteal fistule.

Circulatory Disturbances. - Hyperemia. - Active hyperemia occurs physiologically every month during the period of sexual maturity of the unimpregnated female. Each menstrual perion is immediately preceded hy a phase of artive congestion of the organ culminating in multiple hemorrhages in the hypertrophied mucosa, and casting off of the degenerated muiosal cells. Under pathological conditions, active hyperemia is found both where there is a local acute inflammation and as an accompaniment of general infections.

Hemorrhage.-Apart from menstrual hemorrlage of normal amount, there mat be menorrhagia, an excessive loss of blood at the menstrual perion. This may be brought athout as a result of ehronic pasive
nsion of of the t of this is little frequent omyoma rophy of mell or lation of e menoear fluid the seat ondition nally in placenta
lelivery, e of the ch leards of labor, one may omplete, rom the bserved. disposes
chanical by force he operkilful of at could usually may be se often -restal occurs urity of ediately iting in g ofl of active amation
migestion, predisposed to by the existence of uterine tumors, both Inolign und malignant, as well as by the presroce of inflammation of the uterus or its appendages. Motrorrhagia is the escupe from the uterus of blood which is mot menstrual. This assumes its gravest diagnostic import in women who have passed the menopnuse, in whom its existence demands the suspicion of the presence of eareinoma of the uterus. Apart from this, it may ocear as an accompaniment of Leneral diseased states such as the hemorrhagic diseases, and severe uneral toxemias; more frequently it depends upan some local disorder which temls to congestion or uleeration (endonetritis, new growths rte.). Hemorrhage, not iucludel in the above, oceurs during and afte parturition, in which cases an excessive amomit depends gemeral.: "!n imperfect contraction of the uterus, due either to an inherent failure of the muscle to perform its function or to the presence of retained placrita or tumor which coustitutes a phesieal obstacle to complete contraction. In elderly women, associated $w^{i t h}$ pronomeed arteriosherotic ehanges in the vessels of rie organs, it is not very umcommon to have hemorrluge of a morlerat: grale iti he mueosa, with some conipe of blood into and out of the uterine cavity:

Inflammation. - Inflammation may affect the serous covering of thr uterus and the structures intinately connected with it (perimetritis a local peritonitis), the surronnding pelvic organs, including the broad ligaments (parametritis), the uterine musele (metritis) or the cinlometrium (endometritis).

Endometritis.-According to the region affecterl, so do we speak of cervical endometritis or cervicitis, corporeal endometrinis of the iody, or general endometritis, involving the entire uterine lining. The same arales of inflammation may oceur here as are fouml in ecancetion with any umcous membrame, although the warning must be given that very considerable exocrience is requisite before the histological appear ances of the cndometrium in certain stages of the menstrual cycle ec" le surely differentiated from those of inflammation. Wre recogniz for example, acute catarrlal endometritis, showing hy:.....nia with diowarge of an abundant vised or in more mbanced ca: . a mueopurnlent secretion; this latter constitutes leucorrhea, of which it may he aill that, in the najority of eases, it is the cervix which is involved, and that we deal with a recurrent, often chronic catarrh. More acute di-turbance leads to hemorrhagic endometritis. Aeute endometritis arixu from vaginal infection, not nccessarily gonorrheal; more rarely it is of descending origin, and a degree of it may uecompany a variety of linurbances of the aluexa, or of the uterus itself, especially if these are atcounamied by a chronic congestion of the mueosa.
Chronic Endometritis.- This results most often from a combined catiarrhal disturbance, and as in the stomach, for example, so here. on the one hanl, there may be a distinctly productive or hyperplast.c conlition, sometimes even going on to the formation of nodular, polyphil, or papillate overgrowtlis of the mueosa; or, on the other hand,
if the mucous membrane heeomes exhausted, to atrophy with thiming of the endometrinm. Here, again, as in the stomach, there may oecta sionally le inflammatory obstruction of the duets with eystic dilatation of the same.

On microseopie examination, if the glamds seem to be the seat o the most marked ehange, the state is ealled glandular endometritis in contradistinetion to interstitial where tla morbid changes in the interstitial tissue scem to predominate. Nieroseopic determination is diffieult becense of the changes incident to menstruation. The gland tubules are generally: lengthened, tortuons and irregularly dilated even to the extent of eyst formation; the epithelial cells have iost their cilia are clear, swollen, and mueeid. The lumina of the duets are filled with muens, leukoevtes and desquamated cells, while the interstitial tissue is proliferated. The presenee of the glands among the musele bands must not lx mistaken for maligname, for it will be remembered that there is no sulmuensal.

Late in the disease the mueosat hay Iseome atrophie, smooth, thin, pigmented, and fibrous. The accompaning fibrosis is apt to compress some part of the tubules so that they dilate. Another result of irritation is the concersion of the mueosa into squamons epithelium; this serms to bear upom the oceurrence of squamous earcinoma in the body of the uterus, but it is likewise to be remembered that islets of squamous epithelium have been diseovered in the deeidua, and even in the uteri of fortuses and infants.
Like the other forms of inflammation, elironic endometritis arises from various canses, a reeapitulation of whieh would be to repeat what has already been stid when dealing with the acute form.
In chronic cervical endometritis a frequent result is the formation of small eysts, which may attain the size of a pea, the so-ealled orula Nabothi. They have usually clear, viseid contents. They are really retention eests, duc to erowion (wherein the proliferated epithelium "eorks" the gland duets), and are liable to infection, whieh may kead to abseess formation. Nieroscopically, the glands are seen to be cularged, with many cells comverted into goblet cells; such eatses are readily mistaken for carcinoma. As a rule in this form of endometritis there is abundant leucorrhorn.
As a resmlt of injuries in labor, and sceondary also to such chromic catarrl, the cervix is ape to show a series of disturbanees. The externat os appears no longer romul, but transicerse, and the extrenities of this transicerse slit are so deep as to constitute actual fissures, whose edyrs are red, often tumefied, the entire os sometimes appearing coated. 'The congested surface readily erodes and bleeds, and may show a varicty of secondary changes, characteristic of progress or repair of the lesinn. Therefore, we may find ulecrations, stars, eysts, granulations of normal extent or so exuberant as to suggest new growth, whieh indeed may follow this chronic inflammation.
thinming may oc'cadilatation
he seat of adometritis res in the ination is The gland lated even their cilia, filled with tial tissue ele bands ered that
oth, thin, compress of irritalium; this the body islets of and even
itis arises to repeat mation of lled orula are really pithelium may lead en to be eases are lometritis

Metritis.-Metritis is most frequently associated with the puerperal state, though it may be secondary to acute infection esperially if assodiated with the trauna of operation. The uterine muscle takes on a pale color and a soft, friable eonsistence; aecompansing it there may be aente hyperemia of the endometrium and oceasional hemorrhages within the mosele smbstance, rarely aetual abseesses, althongh frefucutly there is thrombosis and thrombophlebitis of the nterine and nther pelvie ressels. If the infection be not extremely acute, or again as a resnlt of long-eontimed congestion, a chronie metritis may result, with enlargement and diffinse fibrosis of the myometrium.

Perimetritis is but a form of localized peritonitis originating often in romection with inflammation of the adnexa or as an extension from arnte metritis.

Tuberculosis.-Tuberculosis involves the body of the uterns, rarely the cervix and vagina; most often it is secondary to tuberenlosis of the tube. Frequently the disturbance is not very characteristie; amall-celled infiltration, not grouped into definite tubereles, may show hrre and there an oecasional giant cell, but only upon special staining fir hacilli is the nature of the eondition surely recognized. Oecasionally, lowever, large caseous tubereles are encountered, melergoing nleeration, and the process extends slowly bit definitely into the myometrium.
Syphilis.-There has been much debate as to the extent to which the nterus is involved in syphilis. The primary sore may at times he detected either in the vagina or in the eervix or in its camal, but apmarently infection may oceur through the uterus withont there being my reeognizable primary sore. We refer partienlarly to those eases in which the child is born syphilitie, and the mother presents no primary or 'ren secondary lesions, and vet the presence of the Wassermann ramtion and the fact that the mother eamot be infected from the infant, as also the further fact that sulh a woman may give birth to a exri's of syphilitic infants, all indieate that she is infeeted.

Parasites.- Only rarely are echinococcus cysts fomnd growing within the nterine wall.

Foreign Bodies.-As in the vagina, so here, forcign bodies may he fomm, necessarily less frequently. Attention must be called to the fart that portions of the placenta may remain attached, acting to all intents and pmrposes as foreign bodies, setting up irritation, and even tumer growth.

Regressive Tissue Changes.-Atrophy.-Just as the ovaries eome ${ }^{11}$: 111 emd of their function at the elimaterie, so the uterus, heing fun inmally useless, modergoes shrinkage after the menopanse. It thromes small, thin-walled, pale in eolor, and the cervieal portion mone particularly becomes diminished. In very elderly women, there is went to be found an accompansing congestion with hemorrhages of tim fumbal endometrim. This is not to be eonfounded with an amian infertion.

Progressive Tissue Changes.-Hypertrophy.- Apart from the hypertrophy of pregnanes, there occur other hypertrophies, sueh as that arising from inflammation and from overwork; overwork hypertrophy, sueh as is seen when a large fibroid lies in the eavity, is likely to involve the musele most, whereas that from inflammation need not do so. The formation of polyps, glandular hypertrophy, and even the formation of a deeidua in extra-uterine pregnancy are all examples of localized hypertrophy.

Tumors.-These are of great varicty and of mueh praetieal importance. The chief benign tumors are the myoma and fibromyoma, lipoma, adenoma, and so-called adenomyoma.

The most common tumor of the uterus is the fibromyoma, the soealled fibroid.

Study of the smallest and earliest of these affords examples of pure myomas, of a reddish color, vaseular and moderately soft. Tumors of a larger size exhibit a combination of well-formed bands of unstriated musele fibres alteruating with bauds of conneetive tissue, although eareful examination indieates that much of this apparent eonneetive tissue is formed of atrophied musele fibres. The largest and oldest forms show great degeneration of the musele, and are eomposed in the main of firm connective tissuc. These are very dense and of a whitish color. In all forms, on section, the surface is glistening and has a watered silk appearance owing to the component bands being cut in various directions. These tumors are generally multiple and originate most often in the posterior wall, though with growth, they may come to be subserous, intramural, or submucous. Tumors of this order may even become detached from the uterus, and grow within the broad ligament, intraligamentous. Of these diflerent forms, the intramural fibromas may attain the greatest size, becoming as large as an infant's head or larger. Subserous and submucous fibroids tend to become pedunculated, and with torsion of the pediele the nutrition may be interfered with and as a result there may be infaretion, neerosis, and gangrene.

These tumors are peculiarly liable to show various forms of cireulatory and nutritive disturbances. Some are relatively vaseular from passive congestion; others are odenatous, the lymph spaces beeoming so much dilated as at times to give rise to a cystic appearanee; at other times the general oedema mimies a myxomatous change (myxomyoma). Fatty degeneration is not uncommon, oceurring in scattered areas, and beyond this, there may be indications of a localized or general necrosis, showing itself at times as a havine change or as a softening and autolysis with cerst formation, or not infrequently, as ealeification, seeondary to necrosis. A remarkable form of necrosis is that known as acute red degeneration, due apparently to sudden torsion of the tumor and obstruction of the blood supply. It appears to be a form of infarct. Rarely, apparently from metaplasia, nodes of actual bone or carthage may develop within the tumors.
he hyperh as that ertroply, to involve so. The formation localized
al impor12, lipoma, , the sos of pure Tunors ls of une tissue, apparent e largest are comlense and glistening uds being tiple and th, they rs of this w within rms, the as large oids tend nutrition necrosis,
f circulalar from yecoming at other myoma). d areas, - general softening ification, t known e tumor finfarct. cartilize

These degenerated fibroids may als, become the scat of infection with resultant suppuration and gangrene, is a sequel of which submucous fibroids may undergo spontaneous evacu.tion.
The above myomas and fibromyomas are characterized by being well encapsulated and distinct from the utcrine musculature in general. There is another form of tumor, lowever, in which the myomatous overgrowth is diffuse and not encapsulated, involving often a large area of the uterine wall and characterized by the inclusion of glandular acini, lined by columnar epithelium. It has now been proved absolutely l, Cullen and others that these glands are extensions of the uterine mucosal glands deep into the modified myometrium. This has been coutirmed by finding changes in these glands at the menstrual period ilentical with those seen in the utcrine mucosa. These glands show no sign of active, independent growth; we deal not with adenomyomas hut with a condition of myomatosis with glandular inclusion. The name adrnomyoma, however, has taken such hold that it is difficult to replate it.
These myonas may undergo conversion into more malignant, sarcomatous growths. So, also, there are not a few eases on record in which the inucosa over a submucous fibroid has taken on carcinomatous growtl, infiltrating the fibroid.
Adenoma and Carcinoma.-Polypoid overgrowth of the mucous meubrane is not very uncommon; so also there may be such a localized uvergrowth of abundant uterine glands that it is difficult to say whether we deal with an inflammatory or a neoplastic process. Neverthcless, at times, this adenomatous infiltration of the muscular wall may be so excessive that there can be no hesitation in speaking of this as a malignant adenoma, more particularly as secondary growths of adenomatous type may appear in the pelvic lymph nodes. This is one type of nterine carcinoma. Allied to this is the adenocarcinoma found in the cervical canal, and occasionally in the body. Here in place of typical there is atypiral development of the glandular elements. This form appears to originate most frequently from the occluded glands anil orule Nabothi. This, like the former, infiltrates extensively the murcle; with still more atypical growths, we obtain the pure carcinoma, with solid cul masses. Colloid eancer is distinctly rare.
This forms one grour of uterine caucers; the other, and smaller group originate in connection with the squamous epithelium of the "rrix, only a few cases having been recorded developing from the cericical canal or the body of the uterus. This, the squamous carcinoma IT epithelioma, arises as a somewhat superficial growth, at tines tending to lie papillomatous, having a distinct tendency to ulceration and erminn with progressive invasion of the deeper tissues. It may extend thur, up the cervical canal into the body of the uterus, and slowly inilit rate the neighboring organs.
ithen the above description it will be scen that carcinoma involves all pirts of the womb, but the cervix most frequently. Uteriue cancer
is one of the eommonest of all forms of malignant growth and of carcinoma in the female, one out of every three cases is uterine. In the mulliparous, the condition is rare, and then most frequenti, affect the eorpus, whereas in the woman who has borne children, the certix is the part most often involved. This leads us to see some relationship between tramma and searring of the cervix, and subsequent cancerons development. Cancer develops most often after the menopause, and we ean but repeat the warning that a hemorrhage from the womb developing after the cessation of menstruation demands eareful cxamination for the presence of a careinoma.

Sarcoma.-Sarcoma is distinctly less frequent than carcinoma, is apt to arise at an callier life periorl, and most frequently affects the body of the organ. The growths are pale, noolular, often multiple with extensive infiltration of surrounding tissues. Endotheliomas are still less common.

Cysts.- We lave already referred to the ovula Nabothi and other retention eysts of the uterine glands, as well as to the necrotic and angiectatic costs of uterine fibroids. Teratomatous cysts have been recorded.

THE FALLOPIAN TUBES

The Fallopian tubes may vary considerebly in their position aceord ing, to the relationship of uterus and ovaics. Their freedom of movement permits them to be included in any conglutination of pelvic suriaces and organs, and as a result they are distinetly apt to exhibit inflammatory and other distırbances. Again, their function as carriers between ovary and uterus permits them to beeome the site of gestation - tubal gestation. What is the cause of this is still a matter of debate. It is natural to imagine that slight brigges and inflammatory scarring of the mueosa of the tube by arresting the outward passage of the ovum favors its arrest in the course of the tube, but when we come to attribute the eondition to gonorrheal or other salpingitis, the great frequeney of the condition in some regions, as in certain parts of Western Pemsstamia, is wholly out of proportion to the incidence of infertion and the exact eausation remains unexplained. Such ectopie gestation oceurs, but with great rarity, in the ovary itself. Mueh more commonly it shows itself in the course of the tube, sither toward the distal cul, or in the central region or somewhat rarely in the utcrine portion of the tube (interstitial). As a result, with the reaction on the part of the mucosa of the tube to form a deeidua there is an extraordinary congestion of the blood ressels of the thae and as the gestation sae inereases in size the walls of the tube become so much thinned that rupture may occur with eseape of the foetus into the peritoneal cavity or the broad ligament and associated profuse hemorrhage. In this new position the foetus may gain a new placental attachnent, and rare cases are on record, in which the fæetus has developed to full term. Nuch more frequently
the uncontrolled hemorrhage leads to a fatal issue, or where the hemorrhage is not so extreme, the foetus dies and becomes a lithoperlion. These eventualities occur, of course, in the absence of surgical interrention. It is interesting to observe that a sympathetic decidual formation or change in the mucosa may show itself in the opposite tube or in the uterus.

Congenital Abnormalities.-The commonest congenital abnormality, at common as to be practically normal, is the pr sence of the hydatid of Morgagni, a cystie dilatation and enlargement of the longest of the fimbriae. This is present in more than ${ }^{i}(i)$ per cent. of autopsies upon the female. Less commonly, variations are seen in the distal end. Thore may, for example, be a double orifice with a separate colleetion of tumbria aromen each, and very rarely the tube itself shows some dhplication. Diverticula are sometimes noted. There may be complete absence of one or both tubes, generally associated with absence or malformation of the uterns.
Circulatory Disturbances.-These call for no special remark. In inflammatory states, there is acate hyperemia, at times with associated hemorrhage. The condition of hematosalpinx or accumulation of hlood in the tube is occasionally encomentered by regurgitation of retained menstrual blood, or, some hold, from actual hemorrhage in the tube dhring menstruation.
Inflammation.-The more accurately the bacteriology of the inflamed tube is studied, the more it is seen that gonorrhea is the commonest (allise of acute or subaeute salpingitis. There may, it is true, be infectim by the strepto- and staphylococcus, but these are not so frequent. The results are a swelling of the mucosa with pronomeed purulent erretion which in cases of obstruction of the tube pass on to its great ditension with actual pus (pyosalpinx). A marked characteristic of gonorrheal salpingitis is that while the lumen of the tube may be fillod with ordinary pus cells, coincidently the greatly infiltrated submusa may show an extreme aceumulation of plasma cells. Recent anthorities hold that this abumdance of plasma cells is pathognomonic. of eromorrhen! infection. With this infiltration of the submucosa, thr mucous membrane shows pronomed loss of epithelium and the rusid are flattened, so that the mucosa becomes less infolderl. This very destruction of the mucosa favors the subsequent formation of hriture and bands of connective tissue with stenosis. It is characteristic of this alcute inflammation of the tube, that the ends are apt to become railed; and even while at first this sealing be throngh swelling of the minerosa and the viscid nature of the secretion, it is apt to be ultimately followed by organized obliteration, with consequent steriity. A swom point is that with this sealing and subsequent distension of the tulu. the fimbrie are apt to become inverted with complete disappearall: a thirl, that despite the great distension, the tube adapts itself and rupture rarely occurs.
rording to the grade of inflammation, we obtain conditions of
hydrosalpinx and pyosalpinx. Pyosalpinx is the result of a contin suppurative infertion. Itralrosalpinx ocenrs where there has bee previous inflammation that has sealed np the tube and then came to end, and is the expression of the continued secretion from the min of its normal product, a mucoid thuid.

As with the appendix, so here, inflammation involving primarily mneosa is hiable to spread throngh the walls and induce a perisalping which in aente cases may be suppurative, learting to an acute pe peritonitis. More frequently this assumes the form of an adhe inflammation with extensive adhesions so that the tubes and all pelvie contents are densely bomed together.

Specific Infections.-Next in frequene! (o) gonorrheal is tubercul salpingitis. While this may be of hematogenic origin, it appears quently to be induced by hacilli carricd down the tube in the perito fluid, from the oraries or other alolominal organs, or upward from uterus and vagina. In the early stages the changes are not characteris there is a small-cellerl infiltration of the mucosa and submucosa generalized thickening of the tube. Later, tubercles with ease centres are to be made ont, and the whole interior of the tube may s. extensive fuscl tubercles with advanced caseation, which with sten of the ends of the tube may lead to a condition simulating pyosalp the greatly distended tube filled with soft, cheesy, or thick purif matter (tuberculous pyosalpinx). Here again the tuberculosis pro is liable to extend outward involving the serosa and leading to tube formation with adhesions.

Syphilis.-Contrary to expectation syphilitic lesions in the Fallop tubes are distinctly rare. Gummas have been reeordei. So also tl are a few cases of actinomycotic lesions, due to a secontlary and desce ing infection.

Progressive Changes.--Productive inflammation may show it as a distinct overgrowth of the mucosal folds, and with the abmut infolding of the mucosa the enlarged tube may on section be mista for an adenomatons development composed of abundant branct glauhular acini fined by cohımrar epithelium. Primary tumors infrequent; papillomas aul carcinomsas are encountered, and a few ci of myoma, fibroma, and lipoma are on record.

THE OVARIES

The average athlt ovary may be said to be somewhat of the and shape of the inrst phalanx of the adult male thmons. The ov is developed from the Wolffian boty by the ingrowth of the germ epithehimin. It is from thesc ingrowths that the Graafian follicles, " their contained ova, are developed. The stroma, on the other hat of connertivetissme origin. The ovary is thus entirely mesoblastic, a tumors arising from it, even if histologically of carcinomatous type, mesothelial (mesotheliomas), or mesenehymatous.
a contimued has been a ll cance to an the mucosa orimarily the erisalpingitis, acute pelvie an adhesive and all the tuberculons appears frehe peritonea! ard from the haracteristic; mucosa with with caseous be may show with stenosis pyosalpinx, ick puriform losis process g to tuberde

the Fallopian

 So also there and descend-show itself he abundant be mistaken nt branching - tumors are da few cases
t of the size
The ovary the germinal follicles, with ther hamul, is soblastic, alld ous type, are

Abnormalities. - Onc or hoth ovarics may be wanting, and this usually arompranies other grave defects of the genito-mrinary avstem. There may likewise be hypoplasia of one or boih, with a relative absence of (iratian follicles. So also occasionally accessory ovaries have been menmered. Of abnormalities of position the most important conproutal condition is descent of the ovary into the canal of Nuck, simulating the descent of the testis into the inguir:al canal.
Circulatory Disturbances.-It is notable that active h:peremia of the wary may be extreme in the menstrual period, leading to such dilatation of the arcerics that, as in the uterus after pregnancy, there may be a subsequent reduction in size of the resscls by means of new growth of the intinai tissues. The vessels similarly nay show pessive hyperemia in obstructive cardiae diseasc or from torsion or other local obstruction to the renons outflow. Physiological hemorrhage occurs into the corpora lutea, and pathological hemorrhage, generally localized, is found in various acute infections.
Inflammation.-Oöphoritis. - In all cases of acute peritonitis the ovar: is foumd reddened and congested: it may even be infected in general bacteriemia; but by far the most frequent causes of inflamnation lie in the pread of infection from connected structures, especially the tube, and this notably from gonorrhœal virus. The inflammation so set up may he diffinse or follicular, and as a result, the ovary may be soft, mblirged, and oedematons, or suppuration in small or large areas be wern. The entire organ may' be converted into a sac of pus, which may rupture: such a change is usually accompanied by fixation to the tube and other nearby structures, so that a mass of inflammatory material is fomme in which it is recognized that both orry and tube have participated. This is known clinically as a tubo-ovarian abscess, and mayarise eylually from either constituent.

1 frequent result of oëphoritis is that pelvic adhesions result, and the inflanued ovary is often found in Douglas's pouch. In considering the gellevi of ovarian abscesses, it must not be forgotten that the ver.: irequently scen follicular cests of the ovary may become infected.
Chronic Oöphoritis.-In this the ovarics are found dense, of arı ivory colir, and while ther may be smooth, the surface is usually corrugated, with or without adhesions. Warning must be given that a similar external appearance is seen in the shrunken, atrophic ovaries of old women. In the younger adult, this thickened condition of the outer lay , if the ovary is due to an inflammatory fibrosis, and is important in that, obviousl; it linders the rupture of the follicle and the escape of thr oviom. Such unruptured follicles undergo degeneration and bromur converted into small cersts, which are a characteristic feature in wamio- of this order. The stroma in general shows an increased fibrous hyperplasia. Chronic inflammation of the ovary usually results from continuance of an acute infection or from recurrent attacks of a milu irritint. Tuberculosis and syphilis are rare in the ovary.

Regressive Tissuse Changes. - We have alrealy referred to the atrop and fibrotic comdition secombary to ouphoritis. It was there sta that a somewhat similar appearance is encomotered after the me pinsise. As a resint of memstroation hyaline and elastold changes seen in the arteries.

Progressive Tissue Changes.-Tumors. - If a morphological elas. "ation be nsed, it is likely to be incorrect embrologically, for retologes of many of the ovariangrowths is get in donlt.

It is possible to divide them roughly into the erstic, the eystic a solial mesotheliomatons or eareinomatous tumors, the comective-tis growths and the teratomas, a division which will serve to prevent a finsion.

Cysts.--These are of great variets, and it may be stated bev way preface that they can originate from the follicles, from the germi epithelimm, or from Wolffian "rests."

1. Cystic Degreuration of the Orary.-This is characterized by appearance of mumerous small (ersts throughout its substance, lined a single layer of eells, in places eiliat

Fia. 2! 15

fertion through ovary exhibiting multighe fullicular eysts of varsing size (a, b, r, - and f): 1 , Fallupitan tube. (McGill lath. Mus.) there is mo follienlar epithelium of usalal tepe, and no ovim. They m be fommel in the mewhorn. The w is constituted by the thickened " of the follicle, amel the fluid is cle It srems likely that an ill-timed rip iur of a follicle is responsible for th oremrente.
?. Follicular ('ysts.- These are of t mature of true retention evists. V'sina these (\because sts are multiple and sm: but occasionally a single larger e is for.oth. When small they are lin ber e-lindrical epithelium and at tin a persistent ovum is seen. When lan the epithelium, through pressure, Hattened; ther contain a limpial flu Quite analogous to these are the ex origimating in corpora luten, misually. be known hy their thiek, wave, hyali wall. In these the fluid is apt to colored he modified blood pigment.
3. C'ystadrumas (C'ystomms, or Gilandular P'semdomuciunas, I/n! locular ('ysts). The alternative names, taken together, describe fai acrurately these eysts, the most common neoplasm that is foumb the ovary. They are milateral or often bilateral. Now-a-lays ther a usinally remowed ber operation before reaching a great size. but former eases have heen desuribed in which the weight of the cyst exceed that of the patient after its removal. The mass consists of oine ma
r-9t of large size, with several subsidiary or dmughter cysts, which maty esint independently in the stroma or may encroad upon the eavity of the major cest. On the inner wall nre ridges representing former disivions between the cysts, the larger cyst being developed from the coullnence of smaller ones. The cist wall is tongh, thin, and translucont, hit in some eases thick, its hlood supply being the large vessels that ramify on the surface. The fluid is of varying consistenee, thimest int the largest exst, having a specific gravity hetween 1010 and 1030 . It may be viscid, mucinous, clear, ghassy, turbid, brownish, or at times bounly. Bodies related closely to mucin (pseudomuein) and albumin arre present in the fluinl.

Fig. 296

Multiocular ovarian cyst.
'The \quad ? s t wall is composed of two layers, the outer dense and fibrous, the inner cellnar and vaseular. A single layer of evlinlrical, columnar rell- "ith hasally placed nudei lines. it internally (see Fig. 143, p. 292). Thi 'pithelium has a pronounced tendeney to form multip'e papillary ingrumths, and an equal tendeney to give origin to downgrowths into the ex, wall, which, becoming smared off, develop into secondary eysts. Hicrimepically, the lining cells are distinctly mucinous, but they may hom varimes kinds and grades of degeneration. In addition to pseudomurin the fluid inay contain fat gobules, leukocytes, degenerating cells, hlunl. inul cholesterin. The position of the cesst in relation to the tube in warmeteristic. The tube can be lifted off the evst, except in those ratr ane in which the eyst develops between the layers of the broad liguillititt.

Wint the continued growth of the eyst, it lifts itself out of the true pehi- anll elongates the ovarian ligament, which, acting as a long pelin to to relatively movable growth, is liable to be twisted, shutting nff tho "irculation. The cesst wall then becomes dark red in color, and it timer maly show all grades of hemorrhagic infaretion, even to neern:- I large eyst may break and diseharge its contents into the
peritonemm，where the mass of mucinons material may be walled aromul and form a kind of false mencinons tumor（pseudomyzoma peritonei）．

Papillary Cystoma（Cystadenoma Papilliferum）．－I well－known dinic＊i variety of this orler of tumor is the so－alled cestadenoma papilliferum in which the papillary growtlı is very pronomeed．＇The cavity o cavities are more or less filled with warty，villons or tree－like exares cences formed of proliferated stroma covered by ciliated eylindrian epithelimm．＇The stroma is fairly vasenlar，but may＇molergo a mucinom

Cystadenoma．Multilocular ovarian eyst．（Dudley．）
degeneration．When the papille appear，as they sometimes do，on th outside of the erst，it means that a rupture of the eyst wall has ocemren permitting the papille inside to hurst forth；sometimes the papilh； actually invade the cyst wall．In such a ease the cerstie quality the tumor has receded and it approximates more than before to papilloma．

The fluid is thin and watery，at times booly in appearance．Th tumor is an important one，becanse in time it beromes malignan （a quality foreshatowed by its infiltrating its own wall），giving ris to secomdary nodules on the peritonemm．The origin of eystadenoma has led to much discussion，and the question is still an open ene．Lan
img this question necessarily minettled, there is a matural tramsition to the carcinomas, considering the great hability for the benigu tmons, -urcially the cystic ones, to becone malignant. Like the eystadenoma, carcinoma of the ovary has been fomul in early life, even lefore puberty:
Carcinoma.-These are cystic and solid, the former arising in the simple erstadenomas, or even more frequently, in the papillomatons wirs. In the former, which in general resemble their non-maligumet prototypes, the walls anul septa are infiltrated with nodules which are masiscs of epithelial cells. Multiple rows of cells replace single rows; the fluid contents are chonly from admixture of cells and blood, at times viseid, or even ealloill.
lu the papillary trpe (cystadenoma papilliferum malignum), the framkly malignant form of the type above deseribed, the papillar grow culberrantly, aul the septa arr infiltrated with papillomatouss masseres, which may, grow right through the walls and appear externally, giving rive to peritoneal and broad ligament metastases, and to secondary growth in distant orgams. At times it may be difficult to determine whether a given earcinoma is primary in the stomath or the ovary:
The solid carcinomas of the ovary form smoutly or now halar growths of larse size and may be milateral or bilateral. They may he of mifiform, rather solf consistence, and exule a milky fhid on pressure, or may be wirrhoms or even colloid. Ilistologically, they may he difhnse, alveolar or may simulate tubnles of eylindrical, cuboidal, or polymorphous cells. In almulant deposit of calcareons material may give rise to psammocarcinoma.
Rillurtt regards these as cmbryomas in which the entoderm or hypoHist ilowe has mulergone development, and compares the papillary grenth to chorionic villi. We are not prepared to atcept this view, hint. From the studies of our colleagne Dr. Goontall, are inelined to Intline what the origin is from certain remarkable downgrowths of the terminal epithelimen which do not mulergo development into Graafian finllivls. hut are fonand persisting in about 10 per cent. of human ovaries, in the form of spaces or cavities, lined by an eppithelinm which, aecording tul lite ineriond inid stage of develoment, is curionsly variable in its Harmurs. An interesting feature abont these persistent growths it that they show a marked liability to the formation of capillary instumith, as again to the levelopment of outgrowths at times solid, at timuc glaulular or erstie, into the surrounding ovarian tissue. We purr. hirre, in short, an organ or part capable of giving origin to multinle ersts and to intracestie ingrowths.
Connective-tissue Tumors.- Of the conncetive-tissue tumors, the most impurt:ut are fibroma, adenofibroma, cystofibroma, myofibroma, oxdothelioma, peritheliome, and sarcoma. Fibromas nsually. form diffuse wremwths with uniform enlargement of the ovary, but may be eir'minurilined notules, nuilateral or hilateral.
Tin sarcomas are not nearly so common as are carcinomas of the mary Like so many of the ovarian tumors, they tend to be hilateral: the: Wiat be round-celled, spindle-celled, or giant-celled, and it has been
shggested that the last origimate possihly from the interstitial eefls whin nre of like origin with the cells of the (iranfian follicles. Some can are on record of true carcinoms sarcomatodes. These perlups represel transitionnl typers seen in tmmors of mesothelind origin.

Endotheliomas ure erensionally enemutered, hut, here agnin, there a great liahility to classify complieated and danhtfal tumors of th transitional tope us cither endo- or perithediomu. Much fuller stard is necenary hefore we can properly classify the ovarian new growths.

Teratomas.-These constitnte a class npart and are not uncommon They are embryomas, or ass stated on p. 20), the re sult of aberran growth of totipotent ovariall germ cells. They nre genernlly exsti althongh solid forms consisting of cells derived from all three ger layers are ut times met.

Cystic Teratomas.-Appearing as cy:sts of any size up to five or inches in dinmeter, msially solitury, int sometimes multiple and I lateral, these are specially prone to appear after puberts: On openin the ersts are sedic to contain tullow-like eontents, mixed with hai sometimes the contents are thin fhid with tallowy masses. The han ure fixed to skin resembling the senlp, which covers n knobbed part the immer surface, the rest heing covered by what looks like muro membrane. Inderlying the knoh may be bone, mod in it nee ofte incisor teeth, sometimes in a row as in the jaw. Microscopie examin tion throngh the knobbed portion shows hair follicles, sebnceons an sweat ghads, portions of hone and cartilage, sometimes structures the ere; in fact, almost any structure fomed it the embryo may seen, mad even atiempts at limbs have been observed.

Solid Teratomas.- The solid teratomats are less common. The tum on section shows multiple small eysts with serons, mucinous, or tallon like contents, lined hy ciliated, colnmar or Hat epithelimm, in solid parts muside, cartilage, glial tissue, and so on; but as a gener rule, the solid teratomans contain less developed tissmes than the e?sti and are more prone to malignant development with secomdaries other organs. C'ratie' teratomas, it is trme, frequently modergo a ea rinomatons development, the tumor growth being of varions kind evell chorio-epitheliomatoms, and the metastases may be also of mixe nature, althongh sometimes of only one kind of malignant tissu Before leaving the "mised tmonss" of the ovary, it may be pointed on that there are two kinds, those in which different tissines develop ind pendently and simultancomsly (mised tmmors preper), and those. whith a secondary transformation occur:; in the previously existis ncoplasm (tumor in tumore). Ahost cvery known combination benign and malignant growths has been ohserved.

Teratomas are liable to complications of varions sorts; twisting. the pedicle may lead to anmia, hemorrhage, or necrosis; inflammatio may. result in alliesions on suppuration with rupture into surromudir organs, the preritonem or to the ontside. If the more nerions reat do not ensme, there is at least congestion, redema, and the formation degencration casts; haybine or ealc areous degeneration, also, may necu

RELATED PELVC STROCTURES-THE LIGAMENTS, THE PERIMETRIUM, THE PARAMETRIUM, AND THE PELVIC CONNECTIVE TISSUS

Congenital anoman 'es. -Vinrions merlifieations of the lignments enn orvir, goverued by absence or anomalous position of the more importmint orgmes witis which they are comereted; remmins of the pirovinimm nul the paroijphoron may give rise to cysta.

Circulatory Disturbances.-The voins in all these struetures may be dilited, tortnous, thrombosed, or (especinliy those of the ovnrian or pimpiniform plexns) the seat of phlebolith formntion. Hemorrhage may arise from many different causes connected with the pelvie organs, nud the course of the blowl variss, necordiag to whether it is intra- or extrnpritoueal. If into the peritoneum, it may gravitnte into Douglas' [nich mad forin in postuterine hematoma or hematocele; if in large enough quintity or cireumseribed, it may enlarge the spnee between the uterus :Imil blulder, as an ante-uterine hematoma. If extrapcritoneal, it may infiltrate diffuscly all the loose comnective tissue of the pelvis, or may be belwen the layers of the broad ligment (intraligamentous hematoma). lutay case the bloorl may be absorbed and leave traces as pignent; or licing partly unabsorbed may undergo organization and be walled off. the oceurrence being marked finally by the presence of a mass of filorms allhesions; or while still fluid it ming rupture the will of some orgall and escape; or being infected, muy become the basis of an abscess. The liemorrhnge of greatest importance is that due to a rupture cetopic gestation suc, although bleeding may ulso oecur from rupure of a Graafian follicle, from a cyst, from the esempe of blook from the ablominal cud of the tube, or accidentally after an operatioll.
Inflammation.-Aceorling to situation, this may le parametritisthat is, cellulitis of the pelvie tissues, or perimetritis, a localized peritemitis affectin, the uterine serosa.

Parametritis.- 'afpetion of the pelvic connective tissue .aises from "theinion of a gonurrheal or other infection of the passage, or from injuries in paturition or from puerperal sepsis. The cxudate may be vens, or the tissucs diffusely infiltrated with pus, or there may be lowizan albcess formation, nid even gangrene. Where pus is formed it mis: hurrow to the abominal wall, the thigh, the floor of the pelvis, or may perforate into some of the viscera. If healing of such a state welle, it will be at the enst of much adhesion and fibrosis. The Wers. inflaned tissues of a parametritis are elinically known by that wowl deseriptive phrasc, "the (inflammatory) pelvic mass." WhatMrer ara: is affected, Dounlas' pouch is sure to sufler, sooner or later, hy r_{1};-1-n of its position, and aloscess in this area is frequent (retro-uterine absees : In all these inflammations, the adhesions are an important fictur. in a low grade of infection they may be the chief aboormal fact
(productive pelvic peritonitis), and may lead to all sorts of distortio and occlusion; in an ordinary ease, their position may determin the localization and ultimate conse of the fluid exudate.

Progressive Tissue Changes.-The round ligameuts may hype trophy along with the uterus, and the broad ligaments with ovaria or parovarian eysts.

Tumors.-The tumors found in the broad ligament are in the mai derived from the uterus, where they are not of ovarian origin. Th growths are mostly benign, myomas, fibromas, lipomas, and evelt adenc myomas of the type already descrihed as originating in the uterine wal

Cysts.-Mention should here be made of parovarian cysts, which ari from the parovarium. A parovarian eyst may grow as large as a man head. It lies at first between the ablominal end of the tube and th ovary, and as it develops the tube and ovary may be widely separate and greatly flattened. There is generally no pedicle, and the wall thin; internally the wall may show papillate ingrowths. The containe fluid is watery, and a low specifie gravity:

Teratomas ("dermoid eysts") have been found in the pelvie con neetive tissules, and sarcomas can arise from it; carcinoma is alwa, secondary.

THE PUERPERAL UTERUS

Apart from hemorrhages commeeted with the injuries of labor, an with imperfeet involution, and hemorrhage due to aecidental disturl ance of the placenta, diseases of the puerperal uterus eentre arou infection. As a result, endometritis, metritis, or "puerperal fever" מua superve.ie.

The offending organisms are most often the streptocoreus progen and the staphyloroceus, and the predisposing canses are lack of dean liness and meddling, usuall, in the way of examination, douches, an improperly undertaken instrumentation of the lining of the uterus. Th infection may be membramons: in general, the placontal site is moatlected, the surface is dis and gray or brown or even green i color.

In addition to this, there may be infertion and decomposition retained foetal prodnets, homel, or lochia. The uterus of such a cas is enlarged, the wall cedematous, the embonetrium dirty green o brownish-hlack in color, stinking and pulps, the wall of the uterus sof and rotten. Microsopically, in either case, the tissues stain badly an areas of necrosis or of infiltration are seen according to the vary ins severity of the infection. Bacteria can usually be readily demonstrater on the surface and in the tissues.

In slight eases of puerperal infection, there is no such serious state the placental ste, it is true, is ragged and unelean looking, but if drain age be efficient the affection subsides with no further onsequences For practical purposes, it must be remembered that an intra-uterime determine nay hyperth ovarian the main igin. The ven adenoterine wall. which arise as a man's be and the - separated the wall is eontained
pelvie conis alwars
labor, and al disturhtre around ever" mas.
\& progenes k of cemill mithes, and terus. The ite is most greell in
position of helh a case grectl or uterus suft badly and he varying nonstrated
ions state: ut if drainisequences. tra-uterine
louche at sueh a time often serves to produce an alarming state of fiver and rapid pulse, due to the sudden release and absorption of twins; it is always to be remembered that treatment, to be effieient, unst inflict no further lesion on the uterine wall. Another extremely important fact to be kept in mind is that fever in the puerperium is most likely to be due to infection of the genital tract.
In the pregnant uterus, if the patient is suffering from infectious discase, chdometritis may arise from hematogenie sources; if of low grade, the deeidua may be merely thickened, but if severe, purulent reretion is foumd, which instead of being diseharged, may be retained hotween the deeidua; hemorrhage and abortion are likely to ensue.
Metritis. - It will be evident that any severe ease of pucrperal endometritis is aceompanied by a corresponding metritis, whieh need seareely lur considered by itself, further than to point out that the metrium may he the seat of a difhnse serous or purulent infiltration or of multiple alseesises; on the other hand, the metritis may consist of little more than an infeetion of the lymphaties or of the vessels witl: thrombosis. From such begimings the lymphangitis may spread to the diaphragm, the thrombophlehitis to the vena cava, the infection to the peri- and parametrium, and an extensive pelvic cellulitis and peritonitis be the roult; frequently, and most serious of all, a baeteriemia arises (puerfrril septicemia).

Progressive Tissue Changes.-Tumors.-The tumor speeially connerted with pregnaney is the chorio-epithelioma malignum, otherwise callid deciduoma maisgum, syncytioma, syncytial carcinoma, and many nthre names. It has been elsewhere explained (see p. 213) that this in to be dassed as a teratogenous blastoma. When it appears in the literns it is an evidence of previous eonception, although this may have newirred long hefore.

This tumor tends to form polypoill or fungating growths projecting intu the uterine cavity, but quiekly invades the enfometrium and the iterine vessels. It is of reddish color, often hemorrhagic, and soft, friable, and sponge:
'The growth oricinates by proliferation of Langhans' layer of the dwrionin villi; these cells, instead of undergoing syneytial ehange, roman active and proliferative. After they have proliferated in abmimal sithations, they may, it is true, undergo the usual transformatinn into symeytium. The deeply infiltrating parts may show an alveular tructure, but the spaces possess no special lining and the tumor $t_{\text {bib }} 160$ stroma and no blood vessels. The syneytial elements when print are in the form of plasmodial giant cells. The eclls of the I, mehans' laver tend to be spherical, and are grouped into masses of vary ing size. In the secondaries, they possess all their original power in (rmeion.

Un-ntion has been made of the realiness with whieh this tumor meta-taizes; the vagina is very oftell mearly seat of extension.

THE PRODUCTS OF CONCEPTION

The Placenta

The pathology of the placenta is not very well understood, an few of its morlid states are recoguizable at first glance. Its size an its place are variable; its size, if extreme, is often in kecping with that the child; usinally single, there have been seven reported with one fortu aceessory placentas of small size (placente succenturiate) are ofte seen. The position of the placenta wonld be a matter of little momen were it not for the fact that its displacement canses ic to interfere wit the opening of the uterus, and it is torn and blecds at parturitionplacenta previa. It is considered that endometritis is a predisposin factor in the oceurrence of placenta previa.
Circulatory Disturbances.-Among vascular changes, it may be sai that pressure upon the corl by knotting, torsion or other means mala make the placenta anemic or, more probably, hyperemic, the veins bein more compressed than the more resistant arterics. Thrombosis mat result in placental infarct, a brown or sellow area with altered blood clo that ultimately may undergo organization. Hemorrhage is the mos important of these circulatory changes, because effused blood mas separate the placenta from the uterine wall, and so cause abortion Gdema of the placenta occurs as the result of extreme congestion, anm in hydramnios and cases of gencral anasarea.
Inflammation.-Tuberculosis.-Occnsionally in a woman the sulbjec of widespread tulerculosis the placenta may be infected from the blowe and the rare cvent happens of a c:ild born with tuberculosis; suct tuberculosis is conemital, not hereditary.
Syphilis.-Syphilis leads to eellular infiltration of the placenta; the artcries may also le the seat of syphilitic endartenitis.
Regressive Tissue Changes.-Hyaline and fatty degeneration, atil necrosis, followed at times by calcification are all known as results of circulatory disturbance;

Progressive Tissue Changes. - We have already (p. 211) callecl attention to the results of retention of the placenta in the production of different form: of placental mole-fleshy mole, hydatidiform mole, and the chorio-epithelioma malignum. For the placental tissuc to take on other forms of new growth is singularly rare; nevertheless, fibroma and fibromyoma have been describel. The angioma, also recorded, is presumably a condition of hemanglectasis. As regards cysts, these may he either necrotic, seeondary to localized infaret, or oecasionally in an otherwise normal placenta, the villi of a restricted area may show celema and the production of a condition simulating the hydatidiforn mole.

The Umbilical Cord

The cord varies greatly in length, both extremes being troublesome at parturition; if the omphalo-meseraie duet does not properly close, the intestines may protrude into it (hernia of the cord). The rhicf interest in discases or pathologieal dange seen in the eord attaches to the hariug which these have on parturition or the state of the foetus. Thus it mily: he twisted or looped about the fortus ur some part of it, so as to cause even anputation of a limb in eariy foetal life, or strangulation at birth. Sometimes deep grooves are made upon the borly surface he pressure of the eord.
Virious degenerations of the usual kinds maly be wrought in the eorl by disturbance of its cireulation, and septic infection of the cilt cul may lead to infeetion of the infant by way of the arteries and veins, which berome inflamed.
Syphilis of the eord is seen as a smallcelled infiltration around the vessels; myxoma, angioma, and cysts are oceasionally. fouml.

The Amnion and the Amniotic Fluid

'The' ammion may press upon the foetus, (1) that development of a part or parts maly be hindered; aetual adhesions may occirs. If the outflow of blood and lympli be chstructed, giantism of a part may eusue. Tho ammiotie fluid may be excessive in allubut (hydramnios, polyhydramnios) or it min: he diminished (oligohydramnios). It mity he contaminated by foetal exeretions sut in tw he dirty and foul, and may umderen infection and putrefaction.

The Fcetus

'Hice death of the fortus may be followed

Girl, aged ten sears, showing cicatricial grooves due to coustriction of umbilical cord. At birth, according to the mother, the arooves in the abdominal wall and left thigb werc occupied by the cord. (Hawthorne.)
l! it, cxpulsion, hut if not expelled, it min: macreate and disintegrate, eoming away gradnally in pieces; ir : "rying-up process (mummification) may ensue, or even caleificatin. lithopedion). Ieath of the footus in utero is often due to syphilis,
and varions forms of atente or chronic disease in the mother, prohn ing toxemia, may suffice to kill it.

Ectopic gestation may take place in any part of the tube, but is mo common at the entrance of the tube to the uterus (interstitial gest tion) and in the mid part of the tube. It is not likely that abolomin gestation ever occurs, the foetns that is found in the abolomen havin been extruded from the tube (tubal abortion). To this we have alread referred on p. 652.

The ehief danger in eetopie gestation lies in the liability to seve hemorrhage at the time of rupture, and the nccessity for operati delivery, for as will be casily imagined, there are but few eases the admit of expulsion by the natural ehannels. The causes of ectop gestation are inflammatory; sueh as the existence of gonorrhoea, or som olstruction, either by bending or folding of the tube or by the present of a tumor or other obstacle to the passage of the ovum.

THE MAMMARY GLAND

The discases of the breast belong alike to both sexes, but by reaso of its function in lactation, the female breast becomes of prime inpor anee; in the male, a consideration of its tiseases would be a very simpl and brief matter. The mammary gland is branehed, and at the onse of pregnaney the single lobes become eompound and many new aeir arc formed, while the vascularization and stroma advanee equally i their levelopment; at the time of delivery, the first expression bring from the gland colostrum, in which the "eolostrum eorpuscles" ar eells that have wandered into the acini and have engorged themselve with the fat eorpuscles that lie therein; after their dislodgement, th globules are, in the regular way, the produet of the mammary cells When the function of lactation is finished, the breast, as a whole beemes smaller and onee more simplified.

Congenital Anomalies.-Amazia or amastia, absence of the breast often bilateral, is generally associated with laek of ovarian develop ment, and hypoplasia, the infantile breast, aecompanies an infantile stat of the sexu organs in general. Microthelia, an abnormal smalhess o the nipple, may lead to difficulty in suekling. Abnormal developmen of the breast in the male (gynecomastia), reduplieation of the nippl (polythelia) or of the breast itself (polymastia) are observed. Accessor: breasts may be seen in sueh a situation as the axilla, from pinched of lobules (aberrant mamma), and such, as weil as the ordinary super numerary breasts, can produce milk.

Circulatory Disturbances.-Swelling of the breast sometimes charac terizes the premenstrual period, and occasionally vicarious menstru ation is exhibited by discharge of blood from the nipple. Hemorrhage and the formation of hemorrhagic cysts may result from trauma cithe primarily or by bleeding into a preëxistent eyst.
but is most titial gestaabdominal nen having ave alrcady
y to severe operative eases that of eetopic ea, or some he presence
by reason me importery simple the onset new aeini equally in sion brings iscles" :are themselves ement, the mary cells. s a whole,
he breast, n develop)antile state malhess of velopment the nipple Accessory inched off ary super-
les characs menstruIemorrhage amal either

Inflammation.-Inflammation may arise in the breast at any periorl of hife, even in infancy, but it is most often found during latation, where infection gains entrance throngh the nipple canal, or more frequently by way of sinall fissures or cracks in the nipple. Rarely the hrcast suffers by extension of inflammation, as where the infection from a carious rib or a ruptured empyema reaches its tissues. Thelitis, inflammation of the nipple, and areolitis, of the areola, oecur, with the formation of abscess, the so-called antemammary abscess. Inflammation of the breast tissue itself (mastitis) is the most common form; the breast is enlarged, tender, and sometimes redlened; it may be possible to press pus from the nipple (galactophoritis purulenta), or there may mercly be evidence of a deep abscess or of several sueh; more rarely, the cintire breast is in a state of purulent infiltration (mastitis phlegmonosa). However the infeetion may have reached the breast, the interstitial tissue is seen microscopically to be infiltrated, while the glands contain a semipurulent material in whieh are abundant desquamated degencrat.' gland cells and leukocytes. If the disease be not relieved, the abseesses may coalesce, and the entire breast be riddled, and the pus may traved far for an outlet, may break through the skin or even into the thorax. An opening into the skin may establish a fistula through which milk, mixed with inflammatory prochets, may escape. A nonmppurative mastitis may quickly resolve; abseesses if evacuated may lacil with scarring, and it not evacuated, the pus may inspissate, and calcareous deposit oceur; in a mueh scarred breast, the onset of a new progianey may be attended by the development of retention eysts. 'The so-called retention mastitis is nothing more than infection of a breast in whieh there is already an irritation eaused by the presence of tagnant gland seeretion.
Tuberculosis.-Tuberculosis oecurs with fair frequeney in the breast, neanionally as diffuse miliary tuberculosis, but oftener as caseous areas, :IIII :1s cavities, from whieh fistule may open. The edges of the fistula are covered by granulation tissue and the diseharge is thin pus. The aillary lymph norles also show eascation, aud may even break down and liseharge. In the case of both these forms of tuberculosis the intertion is hematogenic. Syphilis may occur on the nipple as the primary: lesion, and diffuse and gummatous infiltrations may arise in the breast in the later stages, while the skin of the breast may exhibit ynoific changes, as the skin elsewhere.
Regressive Tissue Changes.-Atrophy of the mammary r,land oeeurs at ther menopause and sometimes after removal of the ovaries, although the. loss may be compensated or overcompensated in bulk by fat, without which the breast becomes small and flably: Mieroseopieally, thishroning and hyaline degeneration of the walls of the duets oecur, so that they appear as yellowish whice lines in the tissie.
Progressive Tissue ; Fegeneration ir destroyed tissue awirs ouly to a slight es, , pensatory hypatrophy of the rest in the sland is a more frequ. t happening, and is not eonfined to preg-
naney but may happen in eases of new growth of the uterus and ovaris Rare eases are observed，usually in the young，of a kind of neoplast overgrowth（giantism of the breast）in which a breast has attained weight of sixty－four pounds．There is also diffise overgrowth that som times is of the mature of fibromatosis，at others of adenomatosis，or both together．The nipple does not share in the general enlargemen

Tumors．－These are of considerable complexity and of great practic importance beeause of the preponderane of matignant forms of growtl because they are readily ancessible to surgieal removal，the pathol gist＇s opinion is frequently asked，and the decision is often very difficu to make．Becanse of the hability to error，and the frequency of mali， nant tumors in this site，it has become a surgieal rule to advise th

Fibromadenonat of breast aftorling indifations of owergrowth ind aberrunt grow th of the glaudul： mements：A，compressed acini；b，filrous osergrowth；fo a somewhat ditated duct，with rpitheli proliferation．
removal of ans growth whose mature is at all doubtful．Although th male breast is able to show examples of all the tumors to which the femal breast is liable，it does so relatively infrequently；the latter is in a stat of physiological and anatomieal instability throughont the years a sexual activity，and is liable now to progression，now to recession o vegetative activity，which is precisely the state of affairs in which w have indicated a＂habit of growth＂as likely to arise．Because of it exposed position，a history of trauma frequently preceles the deselop ment of a tumor，and the association has been accorded，especially b the laity，an importance that is probalby undeserved．Among primar growths，the epithelial are most inportant，and consist of fibroademomas ademomas，cysts，and earcinotats．

Fibro-adenomas. - 'IHese ure growths from the size of a cherry stone to that of a wahut, hard, sometimes nodular on the surface, readily

Fio. 300

Paricanalicular fibroma of the mammary gland. The glandular acini and ducts are prominent and show some irregular overgrow the of the epithelium, but the main feature is the development of connective tissue both periaeinous and interstitial, the latter not slarply defined. (Ribbert.)

Intracanalieular fibroma or intracystic papilloma of breast. (Orth.)
Fhillui wit from the surrounding tissue, which on section have a very detinite fibrous structure; between the fibrous bands, the glandular
tissue protrudes. It will he at once evident that the term fibroadenon implies that not only is there overgrowth of the fibrous tissue, but al: of the gland tissue, and it requires considerable experience to be sh of this on microscopie examination. Pure fibroma of the breast rare; nearly every fibromatoms growth inchudes in it some glandula structures which necessarily hecome distorted, pressed, and lose som what of their orderly arrangement; there will be all grades seen betwed a very fibrous growth eontaining few acini and a slightly fibrous growt showing many acini, ret all alike may be classed as adenofibroma It is customary to divide these growthis into pericanalicular and intr: canalicular adenofibromas. In the peritanalicular form, single glan acini are surromeded hy a thick liyorr of cellular filrons tissue, whil in the intracanalicular form there are papilloma-like projections proliferated strona eovered heproliferated gland epithelium extendin into the humen of the ducts.

Degencrative or other changes in the struetnre of the tissues formin these tumors give origin to varions modifieations such as adenomyac fibromas, adenolipofibromas, and adenofibrosarcomas.

Pure Adenomas.-These are comparatively rare, and are solid, 1 cystic. The solid forms approximate somewhat to the fibro-adenomas: hut are distiuguished he the extreme increase of glandular tissme The cystic form (cystadenoma papilliferum) is characterized by th presence of eysts on the imner walls of which there are small papillo matons or polypoid projections.

Cysts.-If all sorts of cests are here eonsidered, it is needful to men tion milk eysts (galactocele) whiclo arise by bocking of a duet durim the time when secretion is active. These are true retention ersts Of another kind are the involution cysts fomm in advaneed years; they appear as usually multiple, bilateral, hard small masses, not capalili of being shelled out and on section cestic, with varionsly colored Huid the state in which these ersts develop is called chronic cystic mastitis.

Carcinomas.-1. Gland Carcinoma.-This arises most commonly in the fonrth and fifth decades as a firm, ill-rlefined mass in the breast not easily movable apart from the rest of the gland. Frequently, there is a relatively carly indrawing of the nipple. The growth become more superficial, and as it does so, the skin until now freely movable over the tmmor, beomes fixed to it, and careinomatons masses appear as knobs in the skin. Withont complete removal by operation, the earcinoma may spread diffusely throngh the skin and subentaneons tissule forming a dense, board-like mass (cancer "en cuirasse"). Sometime" the growth breaks through the skin in a fungous mass. Neerosis and ulecration are prone to oecur. The lymph nodes nearbe are early infiltrated, not only the axillary but the supra- and infraclavieular groups, as well as the plenra, the other breast and the underlying musele; the secondaries exhihit a tendener to attack the bones.

Tieroscopieally, ome mave distinguish a soft rapidly growing (medullary) form and a hard, slowly growing (scirrhous) form, between which
roadenomit re, but also to be sure e breast is glandular lose someen between ous growth ofibromas. and intrangle gland isue, while jections of extending
les forming denomyxo-
e solid, or adenomas, lar tissue. al by the ill papillo-
ul to menuct during ion rests. ears; they ot capablin ored Huin!; nastitis. only in the reast not itle, thar become: movable e's appear II, the carous tissul ometimes rosis and carly intilIr gronps, usele; the

Ir (medulen which

Fig. 303

(11.1 of hreast infiltrating into surrounding fatty tissue of breast; n, fatty tissue of breast : t, smallorelled infiltration at outer limit of the advancing growth; c, carcinoma.
are all degrees of variation. When neither very soft nor obvion fibrons, the growth is usually denominated carcinoma simplex. TI soft tumors are whitish, and exude milly juice, while the scirrho ones are fibrons, sear-like, and, if in the region of the larger duet tend to retract the mipple. Nieroscopically in a medullary eareinon the careinoma cells may be diffuse or arranged in an alveolar or a tubul manner; in seirrhous tumors often in mere lines. The new growth ma in vade the larger ducts and infiltrates nomong the fatty tissues; scoonda inflammatory reaction is often seen (p. 26:3). The scirrhous form modified only in this particular that there is a parallel, strongly pr gressing process of healing by fibrosis, going on, so that in a field th carcinomatons alveoli or tubules may be surprisingly scanty, Psan monatons boklies mud colloid champe are rare molifications.
2. Squamous Carcinoma of the Nipple and Areola (Paget's disease the breast).-These terms are not exaetly synonymous, but Paget disease inchules most of the eases; here it seems as if a squamo carcinoma arose from the lining of the larger duct mouths, tending ulecrate and spread superficially.

Other Growths.- Growths other than cpithelial are rather uneommol Fibroma has been referred to; sarcomas of the various kinds are see as well as endo- and peritheliomas, chondromas, and osteomas. Melanom arises oceasionally in the nipple or areola.

('H.IPTER XII

THE: MOTOR AND TEGUMENTARY SYSTEMS

THE MOSCLES

Tut: anatomical muscle is made up of numerons bundles, each of whirh, int turn, is made of individual muscle cells; the bundles are heid to one another by a filrous tissue network, lodging fat, vessels, and nerves, the perimysium; the individual fibres or cells are similarly hadil together by the endomysium. The individual fibre cell is differentiated into the fibrils, which carry the transverse striations, the sarcoplasm or cement substance, and the sarcolemma. The fibre is prlymurlear, the oval nuclei arranged in rows close to the imner surface of the sarcolemma. The size of imuscle fibres differs enormously. The muscle spindles are structures distinguished from the other fibres by mill size and a thick perimysium; innervated from the sympathetic Yistill," it is thought that they may be the orgar of "muscular selwe." After death, as soon as a couple of hours in the young, the mivalhumins coagulate, so that in a short time, the muscles are firm :mul rigid (rigor mortis), a condition which passes off after a day in 4. The muscle fibre is rigid and shortened.

The muscles are much exposed to tramma and to infection, but they are well protected by the tissue juices and the frec circulation. The morke whose inncriation is interfered with is by no means so immune.

Congenital Anomalies.-These are so numerous as to forbid detailed derription. Absence of a whole muscle or a part, reduplication, abnormal origin, insertion, or size include most of the morlifications found; imurles may appear in man which are normally found only in some wher ipecies. The one muscle whose importance entitles it to special mentinn is the diaphragnı; defect of this muscle may vary from a small opning to a lack of almost an entire half, so that the thoracic and ab-小mimal cavities are freely communicative. We have seen al autopsy a hus congenital defect, with many abdominal organs in the thorax, in : mall of more than fifty years who had some reputation as an athlete in lic yomger days; to so much can the body become accustomed.
Circulatory Disturbances.-Anemis of the muscles of more than tumburury duration rarely curs apart from generalized anemic states of the hody; if there be an obliterative endarteritis of many vessels, the hand supply may be continuonsly restricted.
Hyperemia occur. in and about aress of inflammation, and in states of parive congestion.

Hemorrhage is usually of tramatic origin; if a large momot of lol be extravasated, a hematoma results; this may be absorbed, and part heal with fibrosis, or may be infected with abseess formation, eyst may develop. Smaller hemorrhages (petechis) are of other ori They are fomad in cases of great hypremia and of great anemia very severe toxemias, and bactericmias, but are less readily seen muscles than in whiter tissines. Infaret is infrequent, beeause museles have a good collateral blond supply; in cases of widespr thrombosis or a general selerosis of many vessels, infaret may devel and may even lead to gangrene.

Infiammation.-Myositis.-The changes which characterize a sli myositis are those of the connective tissme, the musele entering into proecss only hy showing a cloudy or other degeneration. In suppo tive myositis, abscesses oceur by cextension from periosteal or eellul infections or as a part of a gencral bacteri mic process, but in this I the museles eseape better than de other solic. organs, perhaps because their activity arousing hyperemia. The abseresses are cireunserih or there is a diffuse neerosis produced. The process of healing attended by fibrosis.

Chronic myositis is exemplified by such an inflammation as is si in arthritis deformans, where there is a progressive thichening of perimysium and an inflanmation of the endomysium with degenerat of the fibres; it may be seen, toe, in the neighborhood of any pros of a low degree of acuity. Here may be mentioned those peenl cases of myositis which result in the growth of bone in atms such as the adduetor (rider's bonc), and the strange disease cal myositis ossificans. These it will be remembered are rather examp of metaplasia than of true inflammation, even if in the former e there is a continued irritant at work.

Acute Polymyositis. -This is an ill muderstood and rare disease, dh acterized by spontaneous multiple swellings of the inuseles of ma parts of the body, with loss of motor power, aecompanied hy urtican swelling of the skin. There is a marked cedema of the muscles w round-celled infiltration and peteehial hemorrhages, and vacoolat of the individual fibres.

Trichiniasis.-This is a widespread inflammation of the museles to the presence of a systemic infection by Trichina spiralis. The wor ohtain entry to the muscles and there eneapsulate themselves, anpeari as tiny white or gray dots; mieroseopically the coiled-up worm can seen in its eapsule, whieh is thiek and ehitinous; in the museles arom especially when the parasites are numerous, there is a great cellu infiltration, accompanied by degeneration of the musele fibres, some which are degenerated even if not direetly attaeked by the parasi The muclei of the misele fibres are ordinarily multiplied.

Tuberculosis. - Thberconlosis of hematogenie origin is not very comme but may be part of a gelleralizel infection; the museles, however, a here seem to be fairly self-protective. Generally the disease is seconda
to and in the neighborhood of tubereulosis of the bones and joints, where it takes the form of small or large, easeous are.1.- The resulting aren of suppuration is culled a "coll" abscess, the pus irom which may burrow for long distances between the muscle bundles, infeeting fresl: areas as it goes.
Syphilis. -The form usually assumed by syphilis in the muscle is the summa, although a diffuse inflammatory form is also seen. Gumma in the muscles reaches its greatest dimensions, and its progress and healing are narked by grcat fibrous proliferation, atrophy of surrounding iund involved museles often occurring.

Glanders and Actinomycosis.-These oceasiomally give rise to slowly forming abscesses.

Parasites. - Apert from trichina, eysticercus and cehinococeus are sell oceasionally in the museles.
Regressive Tissue Changes.-Atrophy.-Atrophy of muscles ans a whole oceurs ia ohl age, or in eases of inanition, excellently exemplified in the marasmus of imfants. Not only is there loss of size, but if the process contimue long or be extreme, other degenerative changes are bronght about. Atrophy from disuse is seen in cases of long-continued fixation of joints. Equally familiar is the atrophy wrought in infections or cuchexias.

Neuropathic atrophy is the form brought about by lesion of the central ur pripheral nervous system. Such an atrophy partakes partly of the mature of that from disuse, but there is even more, for the muscle in lualth is kept in a state of tonus (that is, incomplete relaxation) by cmatimuns: rhethmical stimuli of :light force: Somewiat allied to a nenropathic atrophy is that seen in myopathy (progressive muscular atrophy, in which the lesion in the nervous system is not appurent; it is thought that this may be an example of abiotrophy in which the mande starts life with a less than proper amount of molecular energy. It hais little bearing on the pathological condition that the discase in its carly stages shows hypertrophy, for this is only apparent, occasioned is intermmeubar fatter deposit.
lu atrophy from any of these causes there are certain fundamental fatures to be sen; the fibres are shrunken by loss of eontractile subAther and one may often observe, laid down in the neighborhoorl of thr mudri, wotlowish or brown granules of pigment (lipochrome) possibly小rivel from myohemoglobin. The sarcolemma and the nuclei remain Inichanged. In simple as opposed to degenerative atrophy, no such yrimules are to be seen. The deposit of inercased fat in the perimysium is al frequent aceompaniment of all forms.
Cloudy Swerling.-As a result of infcctions and intoxieations, there "!リar in the musele cell dully refractile granules which veil the striatin! these are soluble in aeetie aeid; such a state often progresses apparre! i., fatty degeneration, in which the fat droplets may be seen in ru:- : is they coakesce, the striations disappear and the cellular structure and eren the nuclei are destroyed.

Waxy Degeneration (Zenker's Degeneration).-This is observed espe ally in the rectus abdominis and adduetors in typhoid fever, less oft in other infections and in trauma. The musele is parboiled looking, p and waxy in appearance. Microscopically, entire fibres or parts of fibs are seen to be ill-stained and of a uniformly waxy appearance, t contractile substance appearing to have undergone a coagulati necrosis. Transverse rupture of the fibrilla appears to oceur, althou some hold that this is an artefact. The occurrence of small hematom: however, is strongly against this supposition.

Progressive Tissce Changes.-The regenerative processes of mus have been diseussed elsewhere (p. 197). Hypertrophy of a muscle fro increased work in the presence of adequate nutrition, consists in broadening and lengthening of the individual ecll. Debate still exi as to whether or not a numerieal increase of fibres occurs.

Tumors.-Prinary tumors of musele are not very common, and t fibromas, myxomas, and angiomas that are observed, as well as the lipom arise from the connective-tissue structures, the peri- and endomysim etc. Rhabdomyomas originating from the muscle cells are singular rare. Sarcomas of various kinds may be found, and while we ha found rhabdomyosarcoma in the trout, its oceurrence in man is lit known. Secondary sarcomas and careinomas are not common, save extension.

THE TENDONS AND TENDON SHEATHS

Tlie tendons are relatively avaseular bundles of strongly mited pa allel fibres, held together be a small amome of connective tissue whi earries the blood vessels, the interfascienlar tissue, and which form an external covering, the perifaseicular tissue. The tendon is enclos in a dense fibrous capsule, between which and the tendon is a space fill by sumovial fluid which serves as a hubritant. The tendon shea cavity is thus one of the syonvial spaces, and as such is very like th joint cavities and the burse. By reason of their little vasculari they are not prone to infections of a primary nature.

Inflammation. - Tendinitis and Tenosynovitis ('Tenlovaginitis). Despite the name tendinitis the tissue of the tendon practically pla, no part in inflammatory processes, which conecrn chiefly the inte faseieular tissue and the sheath.

Acute Tendinitis and Tenosynovitis.-This is an exndative inflammatir with fibrinous, serofibrinous, or purulent exulate. The less sove forms may evidently arise as primary discased states in rhematisn and from trauma, while the purulent forms are usually by extension or by infection from penetrating wounds, rarcly hematogenousl With a fibrinous exulate, "dry tenosynovitis," the fibrin forms a thi layer between the moving surfaees, and motion gives rise to erepita tion. It is quite often seen in the extensors of the thumb and ham The seronbrinous form, in which there is some fand cxulate in the sheat is oftenest seen in the flexor tendons of the hand; when absorption of th
fluid occurs，the healing process，as in the pleura，may be accompanied hy the formation of adhesions betwcen tendon and sheath．These may greatly limit movenent，until in time by the continuance of move－ ment they bccome lengthened，thinned，any hay finally dis－ ap pear．Purulent tenosynovitis is character and by a manhest exudate， and its danger lies in the fact that there m oy benecrosis a d digestion of the interfascicular substance with sepal tion of the te idon into its component parts and necrosis even of these．

Chronic Tenosynovitis may result in much thickening of the wall and secretion of fluid exudate which distends the sac（hygroma of the tendon sheath）．The organizing process and the overproduction of tissue in such a case may lead to the formation of polypoid and papillate bodies which hecome separated off from the surfaces，and，being frce in the salc，are called＂rice bodies．＂These are merely hyaline masses of degen－ craterl cells．Calcareous deposit may occur as a result of a long－continued
Tuberculosis．－Tuhcrculosis of the tendon sheaths can be primary， hint is usually secondary to disease of a joint or hone nearby．It may comsist of a diffuse inflammation with rapid growth of granulation tisule whith fills the cavity and covers the tendon；the interfascicular tissue of the tendon may become infectal and the tendon increase in size．＇The soft granulation tissue readily caseates and a suppurative process may ensuc and finally burst through the superficial structures． Iture rarely tuberculosis may show itself as circumscribed overgrowths ＂f slow progression and accomnanied by much fibrosis．Finally，the rice bodies，＂spoken of above，may he the product of a tuberculous prucess．
Syphilis．－Syphilis may appear as a more or less acute tenosynovitis in the earlier stages of the infection；later，gummas occur on the wall of the sheath．
Gout．－A deposit of urates occurs in the tendons and the sheaths， with sometines a necrotic process leading to clisintegration，while again there may be a proliferation of connective tissuc and a corresponding inerease in size of the tendon．
Progressive Tissue Changes．－Tumors．－Sarcomas of the tendon and in thre tendon sheath have bren seen；lipomas oecasionally arise in the sheith．
Ganglion．－The so－called ganglion＂arises from tendon sheaths，as from juints，as a cyst with a fihrous wall，containing thick，gelatinous symial fluid；it is frequently seen on the back of the wrist，carpal ganglion，and consists of a hernial pouch whose wall is made of the distemedel temdon sheath．

THE BURSE

TH世綒 fibrous sacs containing synovial fluid，and while some are （MMーtint and preformed，others arise where tissues are subjected to
pressure, such as is caused by the play of a tendon on a bonc. Thi become lined l_{y} a definite endothelium, and being perfectly analogon to the tendon sheaths, they are subject to much the same processes disease. Fibrinous, serofibrinous, and purnlent exudates occur inflammation of the burse, under conditions similar to those und which tenosynovitis occurs, with the difference that the burse are mo cxposed to trauma than are the tendon sheaths. Chronic bursitis characterized by much thickening of the walls and a considerable amou of cxudate, so that a large swelling may be produced at the sitc of t loursa (hygroma). "Housemaid's knec," " miner’sellow," and " weaver bottom" are all well-known forms of bursitis. Tuberculosis affee the bursa usually as a diffuse granulomatous affection of the linit membrane.

Sarcoma, endothelioma, fibroma, and myxoma of a bursa have bet found, but none of these are common.

THE BONES

It is worth stating, that rigid as is its nature and apparently fixe bonc is throughout life undergoing a steady constant process of absor) tion and reformation accorling to the needs of the cconomy. The is, indeed, no more excellent example of the economical use of materi than is afforded by the uormal structure of bones, particularly the lor bones. Just as the engineer has determined that the hollow ste cylinder is capable of standing greater weight anel grenter strain than solid column formed of the same amount of matcrial, so the long bon are formed not as solid masses of ealcareous matter, but as cylinder and what is more, they expand at their extrenities; instead of leeil solid we find that the lone is laid down as a lattice-work of "strut: whose arrangement is finely adapted to bear stresses upon the bone partieular directions. Now these stresses may vary with the clangin weight of the individual and with the growth of the different parts, at as a consequence we find that these "struts" undergo alteration adapt them to the altered stress. On one aspect we may find renov of the bony sulstance through the agency of osteoclasts; on the oth side of the same lamella there may be a simultaneous new formation layers of bone through the ageney of the osteoblasts. In an cxagge ated condition we may find these simultaneous processes of absorptic and new formation occurring in diverse pathological disturbances.

Abnormalities.-In true dwarfism, as again in truc giantism, th bones share the general abnormality of development of the tissue There are, however, other dwarfs in whem the bony development is 1 . proportioned. One group, for exan le, cxhibits a marked shortenir of the limhs; sueh dwarfs are cxamples of chondrodystrophia feetal (achondroplasia, micromelis). There has been much debate as the underlying process in this condition, but the disease may
one. They - analogous orocesses of s oceur in hose under $æ$ are more bursitis is ble amount site of the 1" weaver's osis affeets the lining have been
ently fixed, s of absorpny. There of material rly the long rollow steel rain tham a long bones is eylinders, ad of being of "struts" the bone in he elinging t parts, and lteration to ind removal n the other ormation of an exaggerabsorption oanees.
iantism, the the tissues. ment is not I shortening phia feetalis bate as to se may be
regarded as a foetal raehitis. It is found that the periosteal formation of bone proceeds in a normal manner, but at the junctions of epiphyses and diaphyses the ehondriform development is imperfect, and as a result the bones do not grow adequately in length. A similar process, involving the skull, is to be secn in those bones whieh are of ehondriform rigin, that is, in the bones of the ' "se. As a result of their imperfeet devclopment the base bccomes ...askelly shortened and the bridge of the nose sunken in; and as the nasal bones themselves also are of ehondriform origin the nose is short, flattened, and of negroid type.

A somewhat similar arrest of development of bony growth is seen in (rrtims (cretinism), there associated with eongenital inadequacy of the thyroid; the bony skeleton in this eondition shows more particularly a shortening of the limbs, something of the type seen in chondrodystrophia but not so extreme, while there is the same indication of arrested derelopinent of the ehondriform bone formation of the skull base preronted by the nose. With this, however, there is more marked general arrest of mental and sexual development than is presented in ehondro-小ystrophia.
let another type of eongenital bone disease is seen in what is termed osteogenesis imperfecta, although many other names have been given, ils fragilitas ossium, osteopsathyrosis, or myeloplastic malacia. In this condition during early life and, indeed, during intra-uterine life the bones show an abnormal liability to fracture. In a ease in our collection, reported by Klotz, the body of the newly born infant showed over a hmolred sueh fractures. Assoeiated with this there is marked deformity an! shortening of individual bones and of the skeleton in general. This is, strietly speaking, more elosely allied to riekets than is chondrodstrophia; there is, namely, abundant preparation for the formation of hone, in the shape of well-developed eartilage formation, only there is a failure loth in the periosteal and chondriform metamorphosis intn true bony tissue. Eien in the shafts, the periosteum may give urigin t" fibrous tissue rather than bony lamellw. This defeetive furnation may be so extreme that large areas of the ealvarium may reminin purely membranous.
Circulatory Disturbance.-The very ligidity of the ehannels within thir home substanee prevents extreme alterations in the blood supply. 'Hhe prriosteum, however, is liable to exhibit more pronouneed changes, active hyperemia, passive hyperemia, ete. More important, there may h." "xtcmsive periosteal hemorrhages, either traumatie or as a result of divaice. Closely allied to the traumatie must be mentioned a most trihinis form of periosteal hemorrhage, viz., the cephalhematoma of the: wewhorn. Here as a eonsequence of unduly prolonged presentation of the head in the cervieal portion of the uterus, and of the great eomprosime exerted upon the body of the infant by the contracting uterus, thi" "treme engestion of the vessels of the calvarium leads to rupture of the same as they pass into the overlying perieranium, with hemor-
rhage betwen the tro layers, and an aeeumulation of blood the of half an orange ray result. This hematoma may undergo abso tion, but if the process of removal is slow, a ring of bony growth 1 oecur at the periphery.

Infarct.-The predisposition shown by young ehildren to osteom litis originating at the ends of the long bones is usually aseribed the aetive vaseularity with new vessel formation presenting itself in neighborhood of the epiphyseal line, the new vessels here beeom the seats of bacterial emboli. We have stated elsewhere that doubt whether suelı emboli are truly primary; rather we imag that individual bacteria arrested by the endothelial eells multi and set up a foeus of inflammation with thrombosis. Whet aetual infarets oecur is a matter of controversy. The appearance s in many eases of tubcrculosis of the ends of the long bones stron suggests infaret formation; wedge-like arcas of neerotic bone may deteeted having their bases immediately heneath the eartilage, but l it may well be that there is not primary embolism but obliteration the nutrient artery in consequence of perivaseu'ar tuberele format and the assoeiated endarteritie changes. Extensive 1 ecrosis may oc where, cither through trauma or throngh accumulation of inflammat produets, or of blood, the periostcum beeomes separated from the und lying bone and the nutrition of the latter ent off.

Inflammation.-According as the inflammation involves the peri teum and the surfaces of the bone, or the substanee of the bone and medullary cavitics, so do we distinguish between a periostitis, an ost myelitis or, inasmuch as one process, if severe, incritably leads to other, a general osteitis or panostitis.

The study of these conditions is eomplicated by the fact that wher an infective agent, acting intensely, leads te ncerosis and ahsorpt of the bone substance, in the areas of surrounding hyperemia there set up coincidently a productive process leading in the deeper parts the bone to increased thickness of the lamella and greater density the tissue, and on the surface to the formation of new bone layers of osteophytes, irregular processes of new bone. In extreme ca the intensity of the inflammatory process and the presence of tensi may lead to the necrosis of relatively large masses of bone, whi undergo a very slow process of absorption while simultaneously periosteum gives origin to new bony layers. As a result we obtain sequestrum surromnled by an involucrum, with associated thiekeni and deformity. Usually in these eases the purulent fluid surromedi the sequestrun makes its way along the line of least resistance, thron some area of weakened periosteum, into the subeutancous tissues a so to the surface, giving rise to one or more sinuses.

Periostitis.-Acute periostitis may be of two forms, simple and su purative. The former shows itself in non-infeetive traumatic inf tions and in infections of low virulence, and is characterized by a mitr aeute course with infiltration and subsequent thickening of the pe
ood the size ergo absorpgrowth may
o osteomyeascribed to itself in the re becomiug ere that we we imagine lls multiply Whether carance seen nes strongly one may be ige, but here literation of le formation is may occur iflammatory m the under-
the periusone and the tis, an osteoleads to the
that whereas 1 ahsorption mia there is eper parts of r density of ne layers or treme cases of tension bone, which meonsly the we obtain a thickeniing surrounling nce, through tissues and
ole and supmatie infecby a mill! of the peri-
interm, stimulation of the genetic layer to active bonc production re-mlting in a loeal inercased proxluction of bone in the forn of osteophytes or nodular thickening. Suppurative periostitis is mueh more acute, and involves a larger area and shows itself as an accut.ulation of puls cells within the periosteum and then between the periosteum and the home. This seecumulation of pus tends to extend around the shaft of the bone laterally in all directions, masmuch as the density of both yeriusteum and bone prevents extension either outward or inward. There is thus great tendency for the nutrition of the bone through the prriosteum to be cut off, as also for the process to extend to the joint setting up a suppurative arthritis. With the eontinuance of the dis(ase, the periosteum at one or other point may undergo atrophy and erosion, the pus thus extending into the surroundiug tissues and setting up i periosteal suppurative process. So also in some eases the process extculds along the vessels into the marrow, inducing a panostitis. Such sulpmrative periostitis may be brought about in two ways, cither as the result of an infective traumatism or, as happens not infrequently in romug children, as a hematogenous or cryptogenetic process. The urganisms associated with the process are most frequently the pyogenic corei, and such baeilli as B. coli and B. typhosus. The later is espehially apt to set up a somewhat restrieted and localized suppurative prrientitis, sometimes showing itself long after the aeute infection has pissed. In the youre, there is a pechiar liability for this suppurative furn of disease to extend along the epiphyseal lines and lead to scparatim of the epiphysis from the shaft of the bone.
Osteomyelitis.-In this condition the primary infeetion oecurs in the marrow of the bones, and may be set up by the same organisms as induce in other cases periostitis. Like periostitis, the eondition is mint common in the young and during adoleseence, while the long lunes are those most frequently affeetel. As already indieated, not infrequently the disease begins an an infective epiphysitis.
The ortinary course of infection is modified in the ease of the bony ulhtiance ly the unyielding nature of the framework; the congesterl imons camot throw out mueh exudate or, more eorrectly, the exudate ann infiltration of leukocytes react upon the vessels themselves favorimg thrmulosis and the rapid production of relatively large areas of neerosis. Thun caries or neerotie softening with absorption and more extensive nurrines of hony tissue is a eommon accompaniment. We have already reflirell to the results of these processes in the production of sequestra; so, abyilu, the inflammation is very apt to extend to the periosteum indhining suppurative periostitis, periostcal perforation and the formation of fivtule The process, if very at ite, gives rise to a generalized bae-turi-mia or pyemia resulting in deats : if less acute, is followed by various states of reactive development of new bone, although often fm m the minfed nature ot the foei of suppuration the acute stage passon on to Hi: chronic or latent form of osteomyelitis, with tendeney toward aeute "Na, rhations from time to time, over, it may be, yeurs.

Chronic Periostitis.-Various forms are described. As already i cated, continued mild inflammation of the periosteum leads to b overgrowth, and the formation of osteophytes-periostitis ossific The periosteal overgrowth of bone after fractures is of this nat so, also, the bony overgrowths through irritation induced by neighl ing tumors or inflummation of overlying structures, as is well sho in the nodular overgrowth of the tibia under a chronie ulcer. To commonest form of chronic periostitis, viz., the syphilitic, refere will be made later. A remarkable type of periosteal inflammati the periostitis albuminosa, has been deseribed by Ollier in which a th serons fluid containing albunin, and a few pus eorpuscles and so fibrin, collects between the periosteun and bone; it appears to be milhly infeetive origin, and differs merely in degree from the m aeute suppurative periostitis.

Chronic Osteomyelitis.-Aecording to the virulence or concentrat of the infeetive agents, so do we find two processes manifesting the selves in cases of long-eontinued inflammation of the bone substan viz., rarefaction, or osteoporosis and condensation, or sclerosis. Ravefy osteitis is evilenced by the progressive alsorption of the bony lamel The marrow becomes increasingly vascular, and through inereas gsteoclastic activity the compact bony tissue undergoes redueti until it assumes a loose spongy appearanee. Aeeording to Ribbe and others, in these inflammatory proeesses the presence of osteocla is not essential, but ordinary lenkocytes possess the capacity of causi absorption of the bone, as clearly happens when the bone has alrea undergone necrosis, as in a sequestrum.

Condensing osteitis oceurs, as already stated, where the irritation is n so intense. One of two events may oceur; either there is evidence increased ostcoblastic aetivity so that the lamella undergo progressi thickening and the marron spaces beeone correspondingly reduce or the marrow first becomes less cellular, shows an inereased fibrosi and the eells of this fibroid tissue undergo metaplasia, becoming bot eorpuscles. In this way, save for a small space around the centr vessels, the whole of the marrow may become converted into den: bone. If at the same time there is progressive periosteal new develop ment the shaft may beeome thickened to twice its normal diamete and the central marrow may be completely replaced by solid bon It is this secondarily formed compaet bone which, from its extrem density and likeness to ivory, has been deseribed as eburnated bone.

We shall discuss the so-ealled osteitis deformans among the regressiv changes.

Specific Inflammations.-The bone is peculiarly liable to be infecte in both tubereulosis and syphilis, and to present characteristie monlifi eations.

Tuberculosis.-Tuberculosis may show itself either as (1) of primary periosteal origin, or as (2) a form of specifie osteomyelitis, or (3) generalized miliary tubereulosis. The last is relatively unimportant
already indieads to bony. tis ossificans. this nature; by neighbor3 well shown cer. To the ic, reference iflammation, hich a thick es and some ars to be of m the more
oncentration esting theme substance,

Raretying ony lamclle. h increased s reduction to Ribbert f osteoclasts y of causing has already
tation is not evidence of progressive ly reduced, sed fibrosis, oming bone the central into dense ew develop1 diameter, solid bone. its extreme ed bone. regressive be infected stic monlifiof primary s, or (3) a importaint,
inlismuch as death occurs before any grave change has ensued in the honles. Periostitis, also, is apparently not of first importance; it is sren particularly in the rils. By far the most important form is tuberculous ostoomyelitis. Certain bones are particularly apt to be afficited, notably the ends of the long bones, the femur and the tibia, auld the vertebre. Less frequently the calvarium and the phalanges may be involved. Tuberculosis of the spinc and the long bones is prictically of the very greatest importance, and this fact is due, to a large extent, to the function of the parts cone ned, namely, that the weight-learing of the body is vested in them; thus, the tuberculous discase is assistet by pressure at all times during which the upright position is maintainet, and the lesion begun by the disease is incrcased ly the pressure. This osteomyelitie process in the long bones originates with great rarity in the shait, save in connection with the phalanges of chilldren (spina ventosa), but almost always in the epiphyseal ends, and this in cnildren and adolescents. The process begins by the formation of a conglomerate tuberculoma, with surrounding development of granulation tissue in the medullary spaces and absorption of the bone sulhstance. Two orders of change may appear; either the tubercles may. show little tendeney to caseation and granulation tissue formation may predominate or, more frequently, the mass of tubercles (m)ereites while simultaneously new tubercles form in the surrounding nerlullary spaces with, as a result, a progressive and spreading easeous change, and accompanying destruction and rarefaction of the bone tisule. We have already pointed out how economically the normal bony subtance is laid down in relation to the strain it is called upon to bear, ind, therefore, if there be any considerable area of rarefaction and destraction without corresponding overgrowth in the neighborhoo!, the ineritible result is that the bone gives way and becomes distorted. Thii distortion is peculiarly well seen when the head of the femur is the part involved. At this process advances, it is apt to extend to the cartiliginons joint surface and with erosion of the eartilage throngh lack of nutrition, the joint now becomes infected and tuhereulons arthritis is set up. A similar osteomyelitis involving the vertebre hovin within the substance of the bodies, often as scattered foci, whieh as they cularge by formation of new tubercles at their peripheries, tenul to fuse and give origin to large areas of caseation and earies, the latter so som as the area reaches the periosteum and interferes with mutrition. When the process extends to the intervertebral disk it (tillic: al rapid destruction of the same with extension of the tuberculous promes into the neighlooring body. Here the inevitable result is that the, witrued vertebral bodies become compressed under the weigt: to whinh they are subjected and kyphosis or angular backward curvature roults. Whether as a result of this compressing force or from the compriratively thin periosteum covering the vertebral bodies, there is " irnnuluced tenleney for the softened caseous matter formed within thee wredral body to escape into the immediately overlying tissues,
in which it may travel great distances ly mexpected courses, indur what is called a cold abscess. The abmindint contents of such are comstituted of trie pis bint of dihuted checesp matter with a small portion of lakoeytes and lymphoeytes muless a secomlary infect has oreorred, when thore is a greater predominance of leuko elements. 'The term cold doubtless refers to the lack of surromud inflammatory manifestations, sud as the aetive hyperemia of the sh A cohld abseres is minally limed bey a hayer of necrosing or caseat tuberenlons tisime. Similar periosteal extension of the process may sh itself where the upper end of the femmr is involved ("hip-joint diseas or when the knee is alleceted ("white swelling").

Syphilis.-The bonos are almost always involved to a greater or extent in cases of congenital syphilis and are frequently the sent lesions in the acquired disease. As with other organs we can distingu dithise and cireumscribed lesions. The ciremnscribed lesions or gumn may develop as a comparatively late manifestation and then either the periostemm or in the medulla. They are slowly progressive a eanse little destruction as comparel with the tuberenlous; rather, general, they induce a surromeling, almost compensatory selerosis, a in the case of the periostem, active new bone formation, the res of which is, very frequently, a localized nombar thickening and on growtb in their immediate neighborhood. But mere particularly in calvarinn, the obliteration of the ressels leads to ncerosis and extens localized destruction (caries). Lnlike the tuberele bacillus the spiroch has no special seat of election in the bones; the gmmmas may be firely scattered through both the diaphesis and the epiphyseal regi

The diffuse form of syphilis is charactorized by increased bone p duction (periosteal) and sclerosis, so that the long bones, for cxam hecome greatly thickened and condensed. With this, there is a liabil to the formation of exostoses, which may be seen in the long bones 1 more partienlarly on the imer aspect of the ealvariom. As a resi the vault of the skull is found greatly thickened, so demse as to sawn with diffienlty, and on its imer aspeet there may be a masis development of close set molular osteophytes.

The characteristie disturbance of congenital syphilis is what may termed osteochondritis, afferting the layer between epiphysis and d phesis of the long bones and the usteochondral junction of the ri We find, either that there is an molur formation of the cartilage, whi malergenes caleification withont proper hone formation, or this calcificati of the eartilage is acompanied her an excessive grambation tissuesembit processes into the epiphysis. In either case the fine line of demarcati between epiphosis and liaphysis is replaced by a broal sellowi haml, often irregular, which comsists of cartilage which has not wo on to proper bone formation. As a result there is to be observerl distinet liability to separation of the epiphysis under vere slight pron cation. The combition shows itself in the first few weeks of lifo : recovery may follow. At a later period in these congenital cases, the
mas develop a syphilitic periostitis of the same order as that seen in the aequired disease. Gummas are rarely seen in the newborn but wom after birth the gimmatoms process allecting the septum masi may lead t^{\prime} its destruction with the development of a "saddle-back" muse. 'This procens may lead in addition to perforation of the hard palate or be accompanied by atrophie rhinitis and ownal.

Other Infective Granulomas.-()f the other infective grammonas, attrontion may he called to the inwolvement of the bones, especially tha hower jaw, in a primary actinomycotic process. Lulike what is seen in cittle, the condition: in man is rarely nimary in the hone itself. In romeretion with leprosy of the anesthetice variety it minst he recalled that the phalanges are apt to medergo a rarefying osteitis and absorption. Hathit\% considers this to be due to a trophoneurosis.

Regressive Changes.-Atrophy.-We have already referred to senile changes in the bone marrow; in addition, with old age, the bony sub)tance undergoes progressive absorption and regression so that the lunns hereme light and very brittle. Such senile atrophy is especially rew in the that bones, inchiding the lower jaw, hut atlects also the long lunnes and exhilits a combination of two processes, viz., (1) superficial aherpition, the so-ealled concentric atrophy, whereby the diameter melerwne: reduction and (2) osteoporosis or Ihaversian atrophy or lacmar reworption, the Hasersian canal becoming distinetly colarged by alurption of the superfieial lasers of the lamellae. The above-mentimelal atrophy sern in anesthetic leprosy is an extreme example of this order of change; closely allied is the atrophie change in bones, rumontered in syringomyelia and tabes dorsalis. Other examples art - (") in disuse atrophy, and the atrophy and absorption secondary
"prosurc (thongh here also there is inflammatory absorption of the tionle whove mutrition has been rednced).

Halisteresis.-.Ench simple atrophy in, t be distingnished from haliveresis in which the absorption of the bone is preceded by solntion and almorption of the bone salts. This latter process is dominant in curtain remarkahle disorders, notably in osteomalacia and in many
 mime points of relationship.
Osteomalacia is a condition most frequently deseribed in females and then in association with pregnaney or lactation, hat it may show itself ahow in ants either male or female. It is apt to affeet the whole bony framework and may show itself first in particmbar orders of bones. Sumbly in the female, the pelvis is apt first to show disturbance, and, thringiti the loss of bone salts and softening, there may be developed strihine deformity, the acetabula being pushed upward by the weight of the boty, the blades of the ilia pashed ontward so as to become mur. horizontal, and the pelvie ontlet eorrespondingly diminished. IVith this there may also be great softening of the hadies of the vertehre with hratosis, kyphosis, and seoliosis, and the long bones may be fonnd *) altmed that they can be easily ent with a knife. The process
may go on mutil there is practically eomplete absence of bone salt: individuat bones, but in general, along with the absorption, there evidenees of attempted adaptation or regeneration so that, for exam in a long bone which has umdergone deformity, while on the conved of the curse the lone is rarefied, there is thickening atong the eoneav only here the new bone formation is imperfect. Dieroseopies the bone presents a very characteristic appearanee; the Havers cmals and the medullary pares are enlarged and comparatively poverished in edl eontents; the lamella may be wholly devoid of be salts, or more frequently the central lasers still contain these salts are surromoded on either side by havers of somewhat hagaline oste salsistance, deroid of salts, luit taking on a diflerential color with vari stains, being espeeially strongly stained by carmine. 'The process n be progressive or may be arrosted and once more the lamellae att their due amomet of calcareons material. Aceompanying the devel ment of the process there is a marked incrense in the exeretion of careons walts in the urine, the milk, and evon the feres. As to the ori of the disease, little is known; its frequent association with gestat suggests that here we may deal with some disturbanee of the ova as organs of internal secretion.

Osteitis Deformans (Petget's niscrase of the Bone).-This is a gressive condition aflecting the skeleton, most often of elde individuals, not neeessarily attecting all the bones but telling m particularly upon the long bones (notally the tibia), the skull, and vertebre. Cases are on reeord in which a single tilia or a single fen has been involved; the afleced bones show progressive irregular thi ening eombined with distortion and exaggeration of the normal cur ture. There appear to be two if not three stages in the process affect the bone. First, there is halisteresis resembling that seen in ost malacia lat followed or aceompanied by a much more promom periosteal and even medullary new growth of osteoid tissue. T new tissue does not gain proper ealcifieation, but on the contrary apt in turn to become the seat of absorption with enlargement of medullary and Haversian canals. Associated with this, as a the stage, the medulla undergoes charaeteristie and diffuse change. place of being fatty or abundantly cellular, it becomes fibroid. Recklinghansen regarded this change as of an inflammatory nath and spoke of the condition as osteomyelitis fibrosa. We can find evidence of this inflamnatory stage and regard the process as me plastie. This "Fasermark," or fibroid medulla, is apt to show areas degeneration with cyst formation, but in a certain proportion of ca exhibits a further diffuse metaplastic change, beeoming abundau cellular with a tendeney to the formation of new osteoid lamellæ a what might be termed a blastomatoid formation of new bone-produc tissur, which, in its turn, may again give place to infiltrative locali growth of sareomatous nature. ${ }^{1}$

[^23]hone salts in on, there are for example, he convexity e concavity, eroscopieally e Haversian ratively imvoid of bone ese salts and aline osteoid with various proeess may mellie attain the developetion of calto the origin ith gestation the ovaries is is a pro'n of elderly telling mure kull, anul the single femur egular thickormal curvacess affeeting ell in osteopronomieed tissue. This contrary is ement of the , as a thirl ehange. In ibroid. Von tory nature, ean find no ess as inctahow areas of tion of cases abundiantly lamelle and ne-proflucing tive localized

Close upon 10 per cent. of recorded eases exhibit this eventnal local malignamey. With this general osteoid change and softening of the home there may be sutraorlinary deformities produced. As to the camsition of this disease nothing definite is known, lout the cliffuse tipe of the ehange, the known sassociation between the pitnitary, the parathyroids, and the caleium metabolism of the booy, lead us to the brief that hore we deal with another of the disturbances assocjated witl want of balanee between the organs of internal seeretion. A few aises lave been recorded in which lesions of the pituitary and thyroid have loeen associated with the comdition.

Rickets (Rachitis).-This is a disease affecting the skeleton in general and manifesting itself after birtl, most often in the first and second vars, althongh it may continue as an aetive process into carly childhoorl. Its chleets are shown most charaeteristically in connection with the long bones, the ribs and costoehondral junctions, and the skull. The dominating feature of the disease is an exeessive preparation for the formation of eartilaginous bone followed by defeetive deposit of bony salts whether in chondriform or membraniform bone. 'This leads to the development of bones which are imperfeetly rigid and liable to whibit irregular and exressive curvature with deformity, along with "green-stiek" or partial fractures. 'The condition, however, is not promanent and the deformed bones eventually gain a normal or more than normal deposit of calcareons salts, although the deformity may proit through life. The process may involve the spinal colnmin learding to curvature, and through the soft condition of the ribs they lieht to the forres acting upon them, so that the chest beromes flattened in the anterolateral regions and the stermm foreed forward, eamsing what is known as "pigeon-breast." The rachitie "rosary" is a swelling of nereessive regions of junction of ribs with stornal cartilages; while this rim be felt from without cluring life, it is most pronomeed on the inter aspect. The joints of the limbs appear enlarged relative to the slafts of the bones. The forehead may take on a curiouslyMilire appearance, due to what is known as cranio-tabes, with thiming of the cranial bones, most marked in the parietal and oecipital bones, and there may appear lyperplastie "bosses" of the frontal and parietal hour- With this there is delayed union of the sutures, so that the anterior fontanelle may remain open intil the begimning of the fifth var. Drintition is late and the teeth fall an easy prey to carions change.
I. to the eausation of rickets, little is known with any precision. It i n unt of syphilitic origin, although it may oeeur in the subjects of concenital syphilis; it is most often found in city children; lack of fresh air :and smlight, unsanitary surroundings and deficient mutrition are trunis predisposing factors, although of two children subjected alike to the- influences one may beeome rickety, the other not. Reeently Menfurso, confirmed by other Italian pathologists, has isolated what lue ramaris as the specific organism inducing the condition. The time hav int come to state with certainty that this is an infective disease.

If we examine the "piphyseal end of one of the long bomes, the of cartilage between cpiphysis and diaphysis is fomul greatly thiche and finger-like prowesess of new enrtilage extend deeply into marrow, giving an irrogular line of denareation. In the deeper tions these colhmus of eartiluge cells, instend of giving place to t bong lamethe, pass into an aren of osteoid tissue, peorly supplied " bone salts. There fund there massers of the cartilage may becone isola and surromuled he the osteoid tissue. This zone of osteoid tis pasees more deeply into the medullated home than normal, but gradn gives phace to bone proper, ulthongh there may be an intermedi ane in which the central areas of the lamelle contain bone sults wi the peripheral pertions are devoid of these sults.

Betweell the osteoid hamelhe are relatively wide chamels filled " a marrow, containing sparse marrow cells proper, but showing spin rells and fine fibrils, a more fibrons marrow than normal. This a mulergo a direet metuphasia into osteoid tissue. With progressing this osteoid tissuc exhibits a more mad more emplete depesition calcaremis salts mutil the whole of the lamella may tuke on the nor appearance, and the hones becone of almost ivory harchess, with sh Haversian canals. l'reiosteal bome is not laid hown regularly, hut w its development is arrested in certain nreas it is apt to be exeessive others, osteophytes heing proclucel.

Infantile Scurvy (Barlone's Disense).-This disease is one of rec ohservation, it huving beell mrecognized prior to the employm of pastenrized milk and varions sterilized milk preparutions. maknown in chilitren fed upon the mother's milk, und presents it first as an exquisite tenderness of the limbs so that the child serrea upom being mover. T"pon post mortem examination this tembern is fomul to have its canse in an acute congestion of the periosto with the development of subperiosteal hemorrluges: hemorrhage in medulla maty also be present. The nutrition of the henes is grav affected: they are of lighter build than mormal with a tendeney fructure and eurvature. Hemorrhage may oecur in other organs recall those associated with semrsy. As in that disease, so here, exhibition of fruit juiees is found to arrest the progress of the conditi there is, on the other hand, a certain likeness to rickets, e. g., soften and eurvature of the bones.
Progressive Changes.-The importmint sulject of the repair of 1, with callus formation has been touched npon by us on p. 192; as: we have dwelt to a considerable exi - upon the different order: primary tumors of bones in the sections upom myelomas (p. 236) osteonas (p. 2.3i5). Here we need only repent that it is in very m eases diffientt to draw the line between tocal hyperplasias and the tumors of home, and that true primary henign tumors are really in quent, most of the ostromas being hyperostases.
Tumors.-- We thus recognize ciremmseribed hyperoustoses- exosto localized boury formations of periosteal origin projecting from the sur?
nes, the line ly thichemer ly into the decper porolace to true upplied with onne isolated steoid tissue out gradıally interme liate e sults while

Is filled with wing spindle

This may ogressing age deposition of n the normal ss, with sumall ly, hut while - execssive in
me of rerrith employment Itions. It is resents itself child sereams is tenderness e periostenun rrhage in the es is gravely tendeney to r organs amel so here, the the condition; g., softruing
epair of home 192; als also ent orilers of (p. 236) and in very many and the true e really infre-
exostoses, m the surface
of the Irme, mul enostoses, originating from the spongiosa. Of similar mature are the ossifying ecchondroses, mokluher overgrowthes projecting from the bone in the regions where there had been previons elondriform developments, motahly in the region of the epiphyses. 'Ihese have a superficial layer of cartilage and often a small bursa over their frir anpect (exostosis bursata), ami may be multiple.
Other lenign eonnective tissne overgrowths of the bone are rare, if wr leave ont those originating from the periosteum. If we inchude these, fibromas of the bone are ocensionally met (fibous epulis), as also mimpharyingeal polyps of fibromatous nature, origimating from the prefustemin of the base of the skill or the walls of the nasopharynx. l'ure myxomas were very rare, myxo-chondromas inirl myxo-sarcomas mort (ommonis
'Timors originating from the bone marrow may be of the relatively finnign tepe, so-called giant-celled sarcoma, which we regaril strictly as ill witroclastic giant-colled myeloma.
Myeloma multiplex may he regarded as a diffuse blastomatoid overдruwth of the marrow, amb may be compa, it of more than one tepe of marrow rell (sce p. 236). Simple angiomas are rare, but there are a fow (athe of a remarkable hemangio-endothelioma on record, involving parti "\%. l. rly the bones of the calvarimen and showing channels filled with blood ami linerl by an almost cubical endothelium. Intermediate tumors of the nature of osteosarcoma, osteoid sarcoma, chondro-osteo-sarcoma, and chondro-sarcoma are to be formul. The most frequent form of bone tumor is malignant and sareomatous. We distinguish sarcomas of periosteal amb if rondosteal origin. The former prodnce large, oval masses of new grow th surromerling or sprealing over the surface of the affected bone; ther mily he roumb or spindle-eelled. What is more, a tumor arising wrimtoilly may invade the shaft of the lone eausing its absorption. 'Flune are more frequent than the central sarcomas, whieh, again, exdinting the gimeteelled medomas, may be round, spindle, or mixed wh. These rentral sarcomas are liable by progressive absorption of the. - armmaling bone to give origin to spontaneons fracture.
'flume malignant sarcomatous timors of bone show certain features in commun, viz., they are apt to be extremely vas ular and may present "xtilitu hemorrhages, or later these hemorrhages may give place to 1.:-ar, again, may be accompanied by extensive necrosis; the growths maly vent into the surromding soft parts, and the nearby lymphatic numbe, and frequently aflord metastases in the lungs.
I. to secondary growths, many cases are on record in which thyroid tionu his heen found forming circumscribed tumors within the bones. While primary epithelial growths do not exist, it is striking how certain "ar immats of particular organs show a predilection for extension into the lwhes. This is notably the case with prostatic, and, to a less extent, with mammary cancers. So, also, is it with the mesothelial hyperiajo. hina which may afforl metastases in bones vither by extension or :1 : distance.

A usefnl distinction between periostenl and endosteal sarcomas that the former, while they may have a framework of radiating be spicules, possess no covering layer of bone; the endosteal sarcoma, the coutrary, as it expands and canses the absorption of the bony tis in its neighborhood is apt for long to remain covered by a layer of p osteum which layer, mo matter how great the expansion of the tum contimues to give origin to bone and thus this form of sarcoma is : to be covered by an imperfect thin bong. layer, so thin that on press it afforls an "egg-shell erackle."

Cysts--Cysts may originate in bone either in connection with n growths or with osteitis deformans as the result of localized necro with or withont hemorrhage, and sulbeequent antolytie absorpt of the neerosed matter. Parasitie exsts are of great variese: connection with the jaw eysts of another order may develop, r the dentigerous cysts, formed around areessory and imperfect tow germs; they may be either mi- or multiloenlar, the latter being of nature of cystadenoma.

THE JOINTS

Each joint consists of a cavity containing a sperial fluid-the syin vial Hhin-interposed betwern two or more bones which in this of become capable of moving one against the other. This canity exten somewhat beyoml the apposed surfaces of the bones, and is linew an endothetium composed of one layer of cells, which hevoml t apposed surfaces rests mpon abmulantly vasemlar tissue. Ontside th again, is an outer fibroms layer, whieh here and there beeomes me condensed and reinforeal to form the ligaments. Lpon the appos surfaces the s.inovial cmbothelimen is more flattened and rests alme immeliately upon the dense thin layer of cartilage covering so mun of the heads of the bones ass are liable to move one nome the oth At the jumetion of the symovial membrane cosering the joint and t onter, sacenlar prolongation, the membrane is apt to be developed in a series of small papillate processes, the symovial fringes. The symow fluid is not a simple serons: Hnid, lont contains mucin and albumin as to have al somewhat slimy character appropriate for a lubricati fhnid

Abnormalities.- Cudue laxity of the joints, bronght abont by loon mess of the ligaments, and favoring easy dishocation, is oceasiomally m The condition is penerally multiple, afficeting several joints. Ito serions conlitions are those due to imperfect development of the han entering into the formation of the joint. 'This is seen more esperial in comection with the hip-joint, where the heal of the femur is imp" fectly: developed and coincilently the acetalonhm does not becon adequately hollowed ont, so that there is no proper seizure of the ha: within the acectahnar eavits, and in the upright pooture, the hin: of the femmer is forecel upward over the wing of the ilium (congenit
sarcomas is liating bent sarcoma, on bony tissue layer of perif the tumor, rcoma is apt on pressure
oll with new zed neerosis, - absorption variety: In evelop, viz, erfect towth being of the

- the symoin this way vity extmil is linew by lexomd the)utside this, comes more the apposed rests alment ig so mimelı It the other. int and the coloped into [he symorial albumin so lubrienting nt bur loosiionailly met. ints. Nore of the hones e especially1 r is impernot become of the hemel , the intill (congental
dislocation of the hip). A similar looseness and imperfect formation mily atlect the knee and other joints, inducing subluxation.

Circulatory Disturbances.-These ure inconsiderable; thus anasarca is bot aceompanied by any excessive accumulation of fluid in the shmovial cavities. Through trauma there may be hemorrhage into the joint and the resultant coagulation may lead to the development of one form of false boly therein, often subsequently absorbed.

Inflammation. - A notable feature of inflamination of the joint (arthritis) is the sympathetic inflammation, exudation and swelling of the soft tissues around it. Nor is the extent of this swelling by any mans a sure indiention of the severity of an arthritis; an acute "stran" of the ligaments may be rapidly followed by intense surrounding swelling, although the actual injury to the joint is of simple nature, slight and localized.

Following contusions there is in addition to this surronnding swelling a rapid inerease in the serons contents of the joint cavity so that in the kuee, for example, the patella is "floated" or pressed away from the underleving lony surfaces. This serous arthritis is seeondary to hypromia and is the simplest form of exulate, with few leukoevtes. It tomls to undergo absorption lout oceasionally the inflammation hecomes clironie with thickening of the synovial membrane, vascularization and proliferation of its surface layer. 'The forms of trauma wting up serous arthritis may be various, either a contusion, a "strain," alume cartilage or the sudden entrane of the same or other loose borly. in the joint between the joint surfaces. With more aente irritation there develops the condition of serofibrinous arthritis; the fluid in these (anco is no longer clear but turbid, and if the joint be opened there is intener hyperemia of the synovial menorane with slight fibrinons dequits in the recesses of the synovial sule. The turbidity is due to an inserased migration of lemkoeytes into the flnid. More severe and小-antive inflammation, dhe to the presence of paogenie organisms, remits in suppurative arthritis. With this the synovial membrane hecomes ennlul and more particularly there is apt to be a degencration and ernion of the joint eartilages, following non which the process may "temblinto the bone setting up an osteo-arthritis. Where these erosions tikne piace there is a process of healing if the joint be kept immobile: allh ions may oceur between the apposed joint surfaces and with organBation anm formation of dense comective tissue aeross the joint envity ther movement of the joint is almost entisely arrested. Where the Jwantion has been very extensive there may indeed be developer? a micersal alhesion between the two surfaces and in the proeess of tim. lony ankylosis be set up, trine bone replacing the fibrous tissue. It 1 , he noted that where serous and serofibrinons inflammations are i nes continued, with voluntary inmobilization of the joint ber the vul. $r_{\text {a }}$ althomgh the joint surfaces are not involved, nevertlieless the thi ning, fibrosis, and shorteming of the syovial membrane and the lik: 'uts may also lead to rigidity and to a condition of false ankylosis.

Possibly our elinical distinetions of the various forms of acute arth are at the present day inadequate. Gradually we are coming to ree nize by bacteriologieal studies that several different mierobes are eape of indueing what elinically we term acute rheumatism or rheum fever. This term is employed to designate a condition of obvi infection with high fever, redness, pain and swelling of one or mis joints, presenting itself with considerable suddenness. Wherever oceurs, we believe that we deal with a bacteriemia. Sometimes condition shows itself as a complation of known infections, e. gonorrhoa, searlet fever, etc., at other times following acute ton litis, at others with no recognizable souree, and when bacteriolog exi. ninations are made in one group of eases we encounter the go cocens, in others streptococri, in others the diplo-streptococeus Poynton and Paine, and in yet others, we obtain negative resu The transitory nature of the polyarthritis in searlet fever, and ag after the administration of sera, suggests that not only bacteria toxins are capable of setting up joint irritation. In these last ca: we probably deal with a serous arthritis, but as regards the conditi set up by the aetual baeteria, it is evident that according to their vi lence we may have a serous, a serofibrinous, or a suppurative arthri

This purulent arthritis is characterized by two series of events; the one hand, it is apt to originate by extension of the suppurat proeess either from the surronnding soit tissues or irom the bone, again from traumatic entrance of infection, and, on the other ha is apt to extend beyond the limits of the joint cither, as above no into the bone itself or into the surrounding soft tissues, or both.

There is a condition whieh it is usual to inehnde among the ehro joint diseases, but which we are eonvineed should be more prope regarded as an acute disease, as a recurrent aente or subaente arthri we refer to arthritis deformans. Here over long years the patient subjected to a snecession of slightly febrile attacks with accompany exacerbations of pain and swelling of the joints and the periarticn tissmes. With this the joints show progressively inereasing deform and progressive inflammatory thickening of the surrounding soft par The histories given indieate that there has been primarily a pure arthri but with sucessive inflammations the process extends into the appos. ends of the bones leading to a rarefaction of apposed surfaees wi flattening, eompression even up to the stage of cburnation, and d tortion, while simultaneonsly the process extenting to the perioin the neighborhood induces there a proliferative overgrowth, often wi "guttering" and subsequent locking of the joint, the whole accomp:ni by great deformity. We have seen such a joint after many showing purnlent contents, thongh this is probably an musual ever Worthy of note is the involvement of the spine in this disease (spend litis deformans). Here the inflammation spreads to the perioand liganents of the vertebre, and with the new bony growth results, there is developed a eomplete superficinl ankylosis het
inklividual vertebre, with or without accompanying distortion and cirvature.

Chronic Rheumatism.-Apart from the specific forms presently to be considered, there is a certain number of cases which appear to be the result of a latent or continued process such as is seen in acute rheumatisin; these are characterized by great thickening and shortening of the syovial membrane, the fibrosis extending to and involving the surrounding ligaments; with this the rartilage of the joints undergoes degeneration and at times replacement by fibrous tissue and either there may be adhesions developed or with atrophy of the heads of the bomes the ioints may undergo subluxation. Unlike arthritis deformans there is here little or no periosteal activity and new bone formation. It has been called arthritis pauperum.

Tuberculosis.-Two joints stand out as peculiarly liable to be the scat of tuberculous affection, the hip ("hip-joint disease") and the knee ("white swelling'). Less frequently, but still often, the ankle, wrist, and dlbow are effected. As to the mode of origin of the disease, this may be said, that the joint disease rarely accompanies generalized tuberculosis; more frequently it is present for months or years before thr disease shows signs of generalization. As to the mode of development two main forms are recognized: (1) that in which the bone in the immerliate neighborhood has been first involved, and by caseation and necrosis the joint surface has become invaded, so that the joint ass al wole becomes infected; this appears to be the more commor; and (2) where the synovial infection is primary, tubercles forming in the imure layer. In cither of these cases it is usual to speak of the disease ins primary in the one part or the other, but it must be remembered that areording to general belief the actually primary fucus is in the lungs or dsewhere, even although this focus may in the meantim. undergo arrest while the process advances in the neighborhood of the joint. Thu syovial form orcasionally is of acute development inducing all :ahmant serofif: us exudation; more frequently this, like that
uriginating from of tubercles on tı that membrane e. is proliferation and fungoid overgrowth, becomes mutahly thickened, and not only is the outer layer involved but the anrminuling soft tissucs become infiltrated with the tubercular growth anil wollen. With caseation and breaking down of the infected tissue there maly be final fistula formation. Coincidently with these processes, the lonte if not primarily the seat of infection, becomes secondarily innowed in a rarefying tuberculous osteitis with ncerosis (caries). 11. $\mathrm{m}_{\text {a }}$ as in arthritis deformans, there may be a coincident superficial furnation of bone by the periosteum in the neighborhood of the inflamed jur i in the form of osteophytes.

Syphilis.-In the congenital disease an exurlative form has been ri...ind with disintegration of the cartilages and fibrosis and thickenin the capsule. In acquired syphilis, there may be an acute serous
or serofibrinous arthritis in the eruptive stage, or later there may small-celled infiltration or gummatous formation in the synovial me brenes, either primary or secondary to a syphilitie osteitis or periostei

Regressive Changes.-Atrophy.-'The most important degenerati oceur in connection with the joint cartilages. Here we may eneoun either a fatty degeneration or a necreseent state of the eartilage and with this a eomeident dissolution of the matrix. This is often x eharacteristic in old age; the matrix becomes more mueoid and fibrillation beeomes prominent. The general result is that un pressure the eartilage shows a tendeney to ulecration with second sclerosis and eburnation of the exposed underlying bone. In ot arcas the degeneration may be followed by some proliferation of remaining eartilage eells, and caleifieation with opaque shitening these arcas may erentually show itself.

The remarkalbe condition of ochronosis is characterized by a d brown or blackish coloration of the cartilage. It is very rare a little definite is known about its causation. It must be remembe that cartilage has an affinity for iron anc also for blood pigment that thus if there be hemorrhages in the reighborhood of the joint, cartilage may become the seat of a herratoidin pigmentation.

Gout.-Anotioer infiltration that is very characteristie, is that s in the gouty joint, especially the metatarso-phalangeal joint of great toe. Here the cartilages either generally or in patehes may t on a chalky white opacity, which is fomd, upon microseopic exami tion, to be due to a dense infiltration of the natrix with fine acien (rystals of sodium biurate (see p. 107). The same deposit may be s in the syovial membrane and its underlying soft tissues and ligamen In the surrounding tissues, the e deposits may oceur as tophi or sm lowalized notules. In general, if the erystals be dissolved out, it found that the eartilage is necrosed, whether as a preeeding o sequent proeess is ret debsated.

Neuropathic Atrophy.-In the course of some eases of loeomotor ata and syringompelia it may happen that with eomplete absence of p an individual joint, such as the kner-joint, may a rlergo a relativ rapiol, non-inflammatory effusion of thuid into the joint eavity w coincirlent atrophy of syovial membrane, cartilages and bone, where in a very short perios there is aleveloped a greatly disorganized jo eavity with a flail-like motion of the limb in all directions. 'Ihes known as a "Charcot's joint." We are still unable to aseribe any" cal to this, but conclude vagnely that here we deal with atrophic disurd due to the destruction of the sensory portion of the reflex arc. I does not satisfactorily explam why only a single joint is involven. may be recalled that a singular rapid atrophy of bone is seen in st cases of anesthetic leprosy.

Foreign Bodies.-Foreign borlies in joints may be of more thati orler. 'The corpora oryzoidea, often fonnd in the tubereulor- ini are little, translucent rice-grain-like bodies, sometimes conereth
formed of hyaline material with occasional indieations of cells. These are regarded cither as masses of hyaline fibrin or as dissociated nortions of necrosed granulation tissue. As already noted, fibrinous masses from old blood clots may form soft foreign bodies; pieees of the synovial fringes may be nipped off and become free in the joint cavity. In adlition there may be firmer loose bolies formed of snared-off projections of the synovial membrane which have previously undergone (artilaginous or bony metap)'
Progressive Changes.-Metaplasia, as already notel, is not infrefurint in comection with the joint eartilage. This may become converted from the hyaline to the fibrous form and again may become comverted into simple comective tissuc, which, in its turn, may mulorgo ossification. So, on the other hand, the synovial fringes may either become so fatty as to be lipomatoid or, on the other hand, may show cartilagmous change, while in arthritis deformans bony plates may form in the suovial membranc.

Tumors.-The spowial fruges may show a diffuse fibromatous or lipomatous change. The so-called lipoma arborescens originating in these fringes has been reeorded in sevcral cases of tuberculous arthritis and arthritis deformans. Sarcoma of the synovial membrane is very rare.

THE SKIN

Gime most of the diseases that affect the skin produce effects that arr enperficial and visible, it is obvious that the pathological effects :anl the clinital signs of these diseases will be largely identical; we will therefore deal with all these in the most brief way. The circulatory artivity in the skin, the secretion and excretion performed by it, its fumetion as a sense organ-all these, as well as its exposed situationrember it the scat of changes more active and more numerous than misht be at first thonght.

Abnormalities.-The skin may be locally unpigmented in areas that arr irreqular in size and shape, and pure white (leukoderma). A general almener of pigment in the skin and other pigment-containing areas coutitutes albinism. Excess of pigment is found in pigmented moles, whirh are nsnally hrown or brown-black. An interesting congenital tiln is ichthyosis in which there is great keratinization following upon In!"rtrophy of the skin; large fissures appear in the surface, and the Win beromes like that of a fish or an alligator. There may be much atruphy of the active lavers unterlying this superficial hypertrophy.

The nails may be absent or hypertrophied, and the hai: absent, Hare, or ahmodant. Hypertrichosis, hirsuties or hairiness may be Evin ral. the entire surface cxcept the palms and sol: • being affected, a " wlition which is responsible for the "dog-facel-man" of museums. I،w lized hypertrichosis is seen on moles and over occult spina bifida.
Circulatory Disturbances.-Anemia is manifested by the skin in \rightarrow tic of general bodily anemia, and loeally and temporarily from
cold, pressure, and emotion or other purely nervous influences, facial pallor in a fainting attack will appeal to all as a familiar exan Acute hyperemia consists of a temporary dilatation of the superf capillaries, the shin beeoming pink or rel; this may he the response different kinds of stimuli, suel as heat, cold, cmotion, e. g., blushi frietion, a chemical irritant or may be the early stage of inflammati Passive hyperemia is seen in conditions of general venons cor"esti as in suffocative attacks or severe fits of coughing, in overfilling of heart, and impeded respiration from any cause. The skin then assin a dusky tint, and the mucous membranes may he bluish or lead collo janosis, lividity). In eases of severe long-eontimed passive hyis emia, codema or anasarca may supervene, with the result that the tis becomes smonth, tense, and shiny, the skin and the underlying lo tissue being "waterloggel."

Hemorrhage into the skin may oecur from trauma, from extre infections in which petechise are seen, or from the "hemorrlag diseases, especially semry:. In the last-maned the extent of the hem rhagie patch may be considerable, and in marked contrast to the ext may be the superficiality on section. The varions tints assumed the skin after hemorrhage, due to chemical changes in the pigment, familiar. The ocenrrence of hemorrhage in the skin is usually de nated by the terin purpura (see p. 35.). , and is dhe to a more or less ra degeneration of capillary walls. Finally in circulatory disturhan of the skin, it must be remembered that many states appearing thro the skin do not actually eoneern the skin at all, and are connected w underlying tissues.
Inflammation.-There are numerous causes, direct and indireet, which the skin ean beeome inflamel; of the former, wounds of all sol friction, ehemical irritants, heat and cold, bacterial and other parasit are the most important; the latter comprise noxions agents carried the skin by the blood, as well as those disturbances of mutrition a of nerve connection which, while perhaps not effective of themselv are vet strongly predisposing forces.

While the main feature of inflammation of the skin is the exulati this appears in a great varicty of forms, the macule, the papule, vesiele, the pustule, the bulla, the node, the wheal, all of which aptly culled primary effloreseences to distinguish them from erns seabs, erosions, ulcers, furrows, and scales whieh are the secondi results of such effloreseence. To apply the term dermatitis to all su appearances would be mislealing beeanse that term has beeome gra ually restrieterl to particular forms of inflammation of the skin. attempt at elassification made here will be clementary, merely subdivide a too bulk list of diseased conditions.

I. Inflammations of the skin due to systemic disturbance.

Measles.--In measles the skin shows round, discrete, flat or sligh raised red or hhish-red spots, 2 to 10 mm . in diameter, fading to selic on pressure, which muler exceptional circumstances may be hemorrlage
fluences, 'he liar exahride. te superficiai e response to g., blushing, aflammation. ; con"estion, filling of the then assumes lead colored issive hypernat the tissue erlying loose
com cxtreme temorrhagic" of the hemorto the extent assumed hy pigment, are sually desig. or less rapid disturbances aring through nnected with
indirect, by s of all sorts, er parasites, ts carried to intrition and themselves,
e exulation, papule, the of which are from crists, e secondary s to all such ecome gradskin. Iny , merely to
t or sliyhtly ng to yellow hemorrlagic
or confluent. The exciting organism is not known, and the skin rash is distinctive only in connection with the systemic signs and symptoms.

Scarlet Fever. - In scarlet fever (scarlatina) there is an eruption of fin-head-sized or smaller red areas (puncta), with which is usually rombined a diffuse reddening of the otherwise unaltered skin, both disappearing on pressure; the scarlet tint of the skin is characteristic.

Erythems.-A grent many forms of hyperemia of the skin are grouped umder the term erythema-often called orythema multiforme because of the impossibility of distinguishing these from one another in their morphology or eticlogy. There is nothing distinctive about the red arcas of the skin, which fade under pressure; they may become changed he hemorrhage, or by the formation of papules, vesicles, or other monlifications. We have to recognize a large number of agents which can ranse erythema, such as the local cxhibition of heat, cold, chemicals or mechanical irritants; the invasion of the boly by some toxin, as after the ingestion of certain drugs, quinine, turpentine, salicylates, mercury, or of certain foods (this often an idiosyncrasy), shell fish, fish, strawberries, etc.; as a result of certain infections, as seen in the "roseola" of typhoid fever, the bacterial agent being present in the lesion; as an arcompaniment of sapremia in many different infections, and after surgical operations. Finally, many cases of erythema occur in which no (alluse can be assigned, and, accompanied as these often are by gastrointostinal disturbance, we suppose that toxins elaborated in the alinnentary cmal or elsewhere possess the ; wher of cansing this manifestation.
lirythema of a diffuse type or localized and norlular (norlosum) mily, of course, occur in specific infections, as in syphilis, rheumatism, and wther states. In desiguating such, we are accustomed to lay more stres upon the disease that we know to be the cause than upon the mu-listinctive erythema-thus in speaking of argthema syphiliticum wr mentally underline the latter rather than the former word.
Urticaria.-Here we deal with not only a hyperenia but also with an whema of the tissues, showing itself as slightly raised, pink or yellowishred areas (wheals) of any size and shape, with a slight surrounding 2川11 of hyperemia, which appear quickly and may as quickly disappear. limiliar to most people as the homely "hives," they may be caused b. mettles or a like extermal irritant, by the injection of the various wh, and by any of the drugs or foods or toxins mentionel above; they hint some obscure relation to the nervous system, for they arise in shlur persons as a result of a finger-mail drawn across the skin, and in uthers without apparent irritation as the condition of angioneurotic whma. As a result of toxins from certain fools, urticaria is a more wnmon phenomenon than is erythema.

II. Inflammation of the Skin from Heat and Cold.

Burning.-The dermatitis set up by heat varies according to the row of the heat and the length of tine in which it acts: burns are nally classified by us in every-day hospital life in a similar way. In 1: lightest grade of burn, such as sometimes follows bright sunlight,
there is active, followed by passive hyperemia, mud a monkerate amon of swelling, followed hater by a brownish color of the skin. More sew degrees are attended by lifting of the damaged epithelium by t exudate-the bulla or blister. The covering of the bulla may degene ate, or the contents beeome infeetell the corimm is ahmost certai sufficr in surch a ease, but unless severely infected, searring is not like to ensine More severe degrees of burning are followed by destructi of an: 11 of the parts eoncerned, leading to gangrene or to dry eha ring of the tissues. It re may be mentioned the parallel rases of burni by x-rays and other forms of radiant heat; the buru is not at onee e dent; lout degeneration and cell death may follow, with the producti of nulers which are hard to heal, and whose healing processes seem realily pass on to new growth.

Freering.-The injury in slight cases of frosthite is perhaps as mu dhe to the overaetion of repair as to the severity of the original lesio in a slight frosthite, as soom as reaction has oeeurred, the picture the same as in a slight burn; in severer eases blebs oceur, and in t severest, gangrene, there being various degrees of degeneration evide or even necrosis, as a result of the freezing process.
III. Miliaria, Herpes, Eczema, etc.

Miliaria.-Miliaria is an eruption of tiny droplet-like areas of thelimn lifted by seeretion, which seems to oecur in comnection espe ally with the mouths of sweat glands. Its eauses are obscure, h probably inflammatory.

Herpes.-This is an inflammatory disease of the skin oeenrring eomeetion with the peripheral nerve trunks (see p. 122), appeari as small papules, which quickly hecome vesicles, containing clear turbid serum; with the drying-up process, crusts form, ander whieh t epithelimn is renewed. Aecording to distribntion there are ma varieties; herpes zoster (intereostal nerves), herpes facialis, and hery preputialis, are common forms.

Pemphigus.-This name groups together many diseases of vario origins, whieh are alike in this, that there are produeed on the sh vesieles at first compartmented, but later single-chambered, attaini large size, sometimes that of a goose-egg. The contents, at first cle may become either turbill from fibrin, epithelial lebris and leukocet or purulent or hemorrhagic. The surromuling inflammation often slight, ont of proportion to the size and appearance of the bulla. Som times pemphigus seems to be of im acute infective nature and leads a fatal resilt; it is seem in the newborn as a result of syphilis and times seems to be dependent largely upon the nervous system for origit.

Eczema.-This term is employed to indicate an ill-defined inflamm tory disturbanee showing a basis of diffinse reddening and swelling. up which there are foci of more productive or more destructive disturban If these foei take the form of papmles, we speak of eczema papulosw a very commom form is that in which small lentieular vesieles devel
ate amomit Horeserver nm by the ay degenrrt certai to s not likely destruction to dry chars of burning at once eviproduction ses seem to
ps as much ginal lesion; e picture is and in the ion evident,
reas of epiction especibscure, but occurring in), appearing ing clear or er which the e are many , and herpes ; of various on the skin d, attaining t first clear, leukoeytes, ion oftell is illa. someand learls to shilis innd at stem fir its
d inflimunaeelling. upon disturlance. papulosum; cles devedop
eczema vesiculosum). These are particularly apt to rupture under irritation and lead to oozing (eczema madidans); where more chronic, the werpio simplace is apt to give rise to the formation of seattered rrusts, or the vesicles may become pustules (ocsema pustulosum). Is a result of the chronie condition, pigmentation and thickening of the skin are apt to be seen. In attempting to define eezema it may be said that a discrete eruption does not constitute an eczema; there must be an underlying inflamed basis. If the e he simple inflammation without foei of further disturbance we speak of erythema; if these fori of further change oceur, of eczema; if these for i develop to such an extent as to overshadow the background of diffise inflammation, we are apt to speak of the focal disturbance and neglect the diffuse lermatitis; to speak, for example, of impetigo, intertrigo, ete. From tho pathologist's point of view it appears as if eczema were a term used by dinicians for convenience in designating many forms of ill-defined dermatitis.
Impetigo. - This is an infective disease oftenest of the face and hands (frecpucntly by transfercnee) in which small pustules arise, with sulsefinent crusts. The eommon form is designated impetigo contagiosa, lut from the nature of the contents one would judge that under favorable circumstances most of the cases, if not all, would prove communicable. We recall that, during our college days, an epidemic occurred in the foothall team, the eruption appearing in som cases behind the "ir, where the skin frequently was broken hy the anricle being pulled forcilly forward in the pressure of the scrimmage; after a certain mateli members of the opposing team developed a similar condition, similarly linated, the result of head-and-head contact.

II. Inflammation of the Skin Characterized by Pocks.

Variola.-As a result of hematogenous infection, a coagulation necrosis wrinss in the cells of the rete Malpighii, with a cellular exudation from the bessels of the papillie; by the action of prococer the contents of the minu-chambered poek become infected and, finally, a single-chambered purtule results, which forms a crust and ultimately may leave a scar. ()f the same general order are the poeks of varieella, and of vaccinia.
I. Psoriasis, Lichen, etc.-Psoriasis is an inflammation of the skin in whith an infiltration of the epidermis and corium oecurs; there are pmetate heaps of broad plates of dry epidermis on a background of darply defined redelened skin that bleeds easily. The epidermal cells of the stratum cornemm dry and are scparated into large plates or Ilahes between which air finds its way, giving the characteristic if. ry appearance to the scales.
Lupus erythematosus, in no way connected with true lupus, is an in! mmation that shows itself as small round, raised spots with a小 irnsion in the centre; these become covereal by dry, yellow scales.
when is a chronic form of inflammation with papules which remain III. hanged save for an increase in size; they may form scales, but not is lis or pustules, although in lichen scrofulosum there may excep-
tionally he tiny pustules on the summits of the papules. The mo of the hair follicle is the part affected, a perifollienlar iuflammat and hyperkeratosis resulting.
VI. Erysipelas and Other Inflammations of Known Bacterial Origin.

Erysipelas.-This is an infection of the skin, sometimes by way of unrecognized lesion, sometimes by increase of virulence of the ence hair follicles, which may be aecompanied by great or by slight syste disturlance; often the latter is out of proportion to the amount of involvement. Formerly considered dangeronsly infeetious, the dise is now placed on a par, in this regard, with other forms of sepsis, y danger exists chicfly in the presenee of wounds or great bodily weakn The lymph spaces of the comective tissue longe the bacteria, usu streptococci, and there is marked hyperemia, eellular and serous e date, which progresses with the existence externally of a well-defi line of demarcation. The skin is swollen, shiny, and red. Vesi and pustules may form and even severe neeroses may follow.
Abscess or Phlegmon.-Abscess or phlegmon does not differ grea from the alove in its mode of origin; Huid exudation and the distens of the tissues are more evident. The result of infection of the may be a diffuse cellulitis on the one hand, or a localization-absees on the other. By reason of concentration and bacterial activity, ahscess may attaek the deeper structures, and attain considera drpth before the pressure hecomes sufficient to break through the s or hefore surgical intervention is sccured.

Acne.-This is a small inflammatory mass originally formed in vicinity of a hair follicle or a sebaceons gland, breaking down to fo a small quantity of pus. Acne rosaces has a different origin; her fomnd, in the simplest forms, a prominence of capillaries over the surf of the cheek or nose, while in severe forms there is a marked incre in the comective tissue and the glands, which latter become closell, a great deformity-a kind of elephantiasis of the nose-results.

Furuncle, Carbuncle, etc.-The furuncle is, pathologically speaki an acne pustule upon a larger scale; and a carbuncle upon a yet grea scale. In the last, by reason of the virulcnee of the organism, ussu in all these cases the staphylocoecus, there is apt to be a widespr neerosis of tissuc and a marked systemic disturbance. When infection is not staphylococcic or streptococcic but due to the bacil of anthrax, the lesion is designated malignant pustule. In necrosis ? gangrene the skin is but one of the tissucs involved; these have ln dealt with elsewhere (p. 328).
Uleers.-Uleers of the skin arise in many different ways, and n follow many causes; the essential condition is a loss of tissue brous about in other than a sudden way. Normally the process of rep cones at once into action, and according to the completeness of t reaction and its speed, coupled with the quality and amount of ex:st? the ulcer takes certain characters, indicated by names such as heali spreading, indolent, or phagedenic. The tendency of new growths

The mouth "flammation

al Origin.

 y way of an the cosed in ght systemic tount of skin the disease sepsis, viz., ly weakness. eria, usually serous exu-well-defined ed. Vesiclesliffer greatly he distension of the skin n-absees:activity, the considerable ugh the skin
ormed in the own to form igin; here is er the surface ked increase c closed, and ults.
lly speaking, a yet greater ism, usually widespread
When the the bacillus necrosis and have been ys, and may ssue brought ess of repair eness of this t of ext:! !ate, h as healing, growths of
the skin to ulecration is very great, by reason of their poorly-controllerl blool supply and of the readiness with which interference with the rireulation of the skin is producerl.

VII. Infoctive Granulomas.

Tuberculosis.-Lupus appears as a momlular eruption, which consists of an agglomeration of miliary tubcreles surrounded by an inflammatory infiltration, seen most often upon the face. The norlules may be at times hardly visible, hut may be felt, and if a molerate degree of absorption occurs, the area may be ultimately scarred, but in some part of its course ulcerative destruction of some part of the surface is alnost the rule. Scarring may be cxtensive, and there is a tendeney for the disease to recur in the scar tissue. Histologically, the characters of the tulerculoma are seen amid inflammatory infiltration by leukocytes and plasma cells. Tubercle bacilli are present usually in sinall mimibers.
The so-called scrofuloderma or subcutaneous tuberculosis consists of a subcuticular infection often in the neighborhood of tuberculous yhands or fistule. The infiltration by sinall tuberculons masses, with subsequent infiltration of the skin itself, shows itself as an apparent athesion of the thinned layers of the skin to the underlying tissues, the whole being bluish-red with a considerable tendency to caseation and merrosis. Miliary tubercles of the skin may be seen in some cases of peneralized tuberculosis, and localized tuberculous warty growths nay wecur on the hands as a result of a "post-mortem wound."
Syphilis.-- The chancre is found most frequently upon the genitals hut may occur in many other regions, and is usually single. After ill incubation period suited to the relatively low grade of virulence of thre spirochete, a sharply defined, painless, small, hard nodule is found, with a deeply lying base of firm tissue which extends outward on all inles bevond the actual nodule. Microscopically the infiltration of roukeretes and plasma cells in the perivascular regions is very marked, as is the proliferation of the fixed tissues which gives hardness to the mins: The manifestations of syphilis in the form of efflorescences on the win are very various; the simplest is the orythema syphilitica or mimolar syphilide, which is seen as red, ill-defined areas of varying i\%, tending to appear on the trunk and t^{\prime}, exor surfaces. They may remain for a considerable time and facte, leaving a temporary hrownish pigmentation. The papular syphilide may show itself in the miht of an area of the erythema as well-defined brownish-red papules, (ini the skin dry and on moist arcas such as mucous surfaces, exuberant, muint, and tending to ulceration. The mucous plaques of the mucose In' 1, ng to this order, but the rapidity with with they break down I\% 卜 to their appearing as flattish ulcers covered by grey debris. The phenes nity become infected and give origin to pustules, which again ln whe scabbed. A combination of considerable proliferation with II! ration and scabbing gives rise to the peculiar structure of eoncentric it cullerl rupia. Actual gummas may occur in the skin, but more
often bromg originally to the maderly ing tisme mid involve the later. The true gimmme of the shor show as flat, hard arens, lik buse of a clunere, tembing to ulererate aul form "punched-out" ul In ull these ulemerative lesinns, the healing is nttended by a ma degree of searring.
Lepra (Leprusy.).-This is seen in the shin us nodules of prolifer
 spots on the skin or mucoser, with an in ham, intory in filtrution. A seurifeation yields a fluid in which the har eteristic bucilli are ret found. (Wyatt Jolmstom.)
Other Granulomas, Blastomycoris, Derras omycoses, Etc. -Gla oecurs in the skin as an ateute infla mation dur to infection of a w or other solution of comtimity and actinomgeosis usually as a seeon process, appearing as a chronie ulomation is or erzmowth; a lesic like nature is Madura foot, of whith the "allsative agent is. Myee perlis. Among the proliferative (and second cil? ulerative) lesion this mature, must be considered that formed ley Mastomsices, blast cosis. Here a general iuffection of the boly may oercur, but more quently a distinetly hypertrophie, sharply defined, warty, ernited gro is fomm. Begiming as a papme, the mass is distin tly of intamma type, and in the later, larger lesioms minute abmessed oceur in subitaner ; in there absersses, as clsewhere, the veast-like organism be fonnul.
Favus is due to Arhurim, Schönlcinii, which sucteeds in obtail footing in the hair follieles und setting up a low-grade inflammo with the formation of a sellowi-h cinperd disk componsed of which lies upon a slighty inflamed area of skin. Ring-worm ma cansed by more than one monded, most commonty by the Trichopi and is known as tinea. It may affect the scalp (T. tonsurans), the less skin (T. circinata), the beard (T. sycosis, oftelt aeute by reate cuscic iufection), and the conered parts of the skim (T. versicolor), hatter is often ealle! pityriasis, and is relatively mimportant.
VIII. Inflammawons of the Sldn Caused by Animal Parasites.

The lecions cansed by animal para sites are often of themselves a imensiderable hut are nearly always compliented by the bact the itchiug set up leads to scratehing and thit, to secondary inft matio, of of varions types. Monst impertant of these parasitie le is scabies, set up be the .1rarus secthor, which burrows into the in a direetion smowherat parallel to the surface, and coposit: ege the burrow thas uade. The constant and long continned irrita by scratching as well as he the Ensect, may leal to a general thimp and pigmentation of the skin (vagabond's disease). Pediculosis i term applied to the lesions caused bey the presence of lice et biffo himes; fleas and beelbugs alsio canse lesion that are usually Mylass is the term applied to the deposit of the eggs of (Diptera) in the neighborhowel of th : arious orifices of the to the ensuing inflammation.
olve the skin areas, like the r-out" uleers. by a markel
of proliferatenl reel or brown ation. A light illi are readily
ic. - Glanders on of a womul is a secondary th; a lesion of t is .Mycetoma ive lesions of res, blastomybut more frerusted growi.a inflanmatury oecur it the organism mav
in obtail inflammet sed of thetris worm ma:" he T'richopi tom, ans), the mairby reation of sicolor). The
int.
sites.
mselves quite the face that udary intlamrasitic leions into the win posit: exes in ued irritationt ral thickening iculosis is the e e. Till. rent 1. \quad м ilitand

Molluscum contagiosumb, reforrel :welsowhere (f. 2.5. is ablantomatoid Tate, inamgratel, nerorling to amo nuthor, br ar orcidium. The guinea-worm (Filaria mer mensis), ant the chigoe are nlso examples of partitites thit burrow in ne shin.

Regressive Changes Atrophy Strop if 1 , shill occurs in the ohl, a general proce-s of thammg, t! ai, beroning narrower, the epidermis dry, and the subent berote ant so erently absorbed as to Hhw the skin to wrinkle. I locul process of at aphy is noti able in (11 Win as the somalled linese albicantes, i beh are whitish ilvery hume the result of a previons distennon of the kin. Thew are seen

 uther cantice vill suffice of th erp protuen m.

Necrosis.-Ni rosis of the kin ore ; ar mat ir erosis of 'pur tissims m bedsorm, an' ulcers if ot 10 well a in

Pigmentation.-Variatioll in i.. pighmothat are bee comsidererl in this lass. fere unsi-1 (b) in anse , ue finmal pigment of $t=0$ vorin the paratice of 1 d aml bile pigments, il (a) then ont 0 Tre! agesterl pigments. Th congenital lark, bigme I tait mig reference lans heen made

Vitilign r Leuiroderma i- 1 , aliz ald arancer congenital absence
 "himh irregulararanof hit kin, on: ich the hair also is unpigmented, "मatar in varion parton ebonls. I ase is unknown. Increase of the

 (a) "ret if with the grnital flu in in A son's disease, in "bronzediabete after sunburn, after tion physical courterirritants, hem hromatosis, ar.' in jaund. . Wost, if not all, of these have
rr. - Kewhre ats han the general subject of pigmentation Santhelas! is an -understood !ellowish pigmentation the rish.
Prog. ve Cha ges. Wie lave already tonched upon rertain conis. 4 'wize ${ }^{1}$ masked ir perphasia of the cpidentis: a local rula- 'hl al , be an rof as the result of chronie irritation 10 fanitar cal. - on the palm or sole, and the in. Hlere at the result of at slight irritation there develops hithening, win in reased de ..nment of layers of keratinized epiinm. 心uh may be local, ats in the above-mentioned cases, or may were gion ralized as in the marked thickening that oceurs involving While we f those accustomed to walk barefoot. A condition that 1 foh be regarded as of congenital origin is the development utane norns, which in some cases have been reported as attaining ry size, a foot or more in length. The hom is generally I exhibits a base showing active growth of the deeper layers
of the epirtermis and overlying this is a succession of elosely pae atherent layers of keratinized edls. Diffuse loceal thickening of skin may further result from ehromic inflammation, e. g., eczema, s.y itic lesions, etc. Warts or verrucm are locaized hyperplasias of epidermis, and when of harge size show a coincident overgrowth of underlying eutis, presenting a definite stalk, and sometimes beeon definitely papillomatous. The remarkable point regarding then that after being present for years they may spontaneonsly und atrophy and disappear. There is some indication that they ar infective origin, it having been observed that they may be conse by contact.
A conlition or gronp of conditions in which apparently the prin disturbanee involves the dermis and snbxermal tissues with second epidermal hyperplasia is seen in elephantiasis. As alrendy indiee there are several forms of this; one group is congenital, and is com able with macroglossia and macrocheilia. The inost common for enrountered in tropical regions and is filarial in origin (elephanti arabum). Other callses, as lymphatic obstruction, lead to very sim appearances: surh are obliteration of the main lymph channets of extremity through new growth or chronic fibroid lymphadenitis lumphangitis; while lastls, s.philitic and other ehronic inflammat of the skin ly: calusing a chronic medema, favor the setting-up of orders of this comdition. In all these states, it appears that we with a relative or actual hmph stasis, learling in the first place enlargement of the part, and secondarily to a diffuse connective tia hyperplasia. Due to the distension, of moderate grade, of unlerlying tissues, the epidermis tends to hypertrophy, forming i into folds and sonetimes more warty and nodular overgrowths. comdition most frequently presents itself in one or both of the lo extremities or in the serotum, the latter being apt to attain a cold size, extending behow the kinces.
A mikler type of thickening of the skin with primary involvern of the dermis may affect considerable areas of the limbs or trumk is seen in thr group of conlitions known as scleroedema, scleroden and sclerema. Of the:~ the first manifests itself in long-onntin anasarea; it is allied to the comlition seen in mysedema, there bein brawny harduess of the affecterl part, with, however, little ehaug the overlying epidermis. In scleroderma a similar induration, continued, is followed by distinct hypertrophy involving not only dernis hut also the epidermis. An associated state is seen in derm myositis in which the underlying museles beeome intensely harle and rigid, and the skin above them appears as though adherent :ul capable of curtailed movement. Little is known regarding the e of either of these eonditions. Neurosis has been suggested, a comli parallel to that of angioncurutic cedema. In dermatomyositis musele at first shows little change beyond congestion and oule in both the apparent primury hypertrophy is apt to be followed
atrophic ehanges. Sclerema is a congenital condition or develops in infaney, and is eharacterized by a diffuse thickening and induration of the cutancous tissues without recognizable anatomical changes. (irrman authorities have called attention to the fact that there is here a morlification in the composition of the fat, in the direction of increased proventage of the less soluble palmitin and stearin fats whereby, in place of being fluid, the fat within the fat cells is solid.

Tumors and Tumor-like Growths.-We have already referred (p. 259) to the development of cutaneous horns. which are not strietly tumors, lint imuliseharged keratinized cells: to keloid ($p .231$), in which we have a striking overgrowth of the subcutaneons connective tissue secondary to irritation, but at the same time due to congenital hyperplastic tendency (111 the part of these tissues: to multiple cutaneous fibromas (neurinomatosis) (p. 247), due to overgrowth primarily of cells of the sheath of sidwam around filaments of the cutaneous nerves: to diffuse lipometosis, or hlastomatoid hyperplasia of the subeutaneous fat: to the allied conlition of adiposis dolorosa and also to Xanthoma (p. 233). There remain certain overgrowths whieh deserve more particular notice.
I'ruc fibroma may be present, most often in the form of solitary tumors which may attain considerable size and may be either hard or soft. Myxoma, chondroma, and osteoms are rare. We have encountered a multiple entaneous formation of small choulronntous plaques in the *kin of the legs, evidently metaplastic. The skin is, however, a favorite ralt for the development of lipomas, more especially in the sloulder revion. 'These solitary lipomas have a lobulated structure and may attain considerable size. Several cases of multiple small myomas are "II reworl, and some of solitary myomas, of small size, originating evidently from the arrectores pilormm, and from the muscles of the swcat amis.
limer the heading of nævi (or hirthmarks) and moles are to be grouped il himulur of different conditions. The hairy mole is a patch of normal kin giving origin to large, coarse hairs in a region normally hairless. firmmontly assoeiated with this there is marked pigmentation and inl: hypertrophy of the skin. A seetion through such a nole shows Irwimently a more vaseular condition than normal, with, in addition, a pmomined collection of ehromatophores or pigment cells around the ri.. 1 . The nevis is of larger size and comprises a variety of eonditims. from the soft, warty masses, showing abundant cells, to states of "wrmous and widespread cavernous dilatation of the superficial いい.ts, which may involve the whole of one side of the fate, or, as we ha: , yell, the whole hearl, or, again, a large portion of the trunk. The - Hler. cellular forms, like certain moles, show masses of somewhat "uhinal ir polygonal cells surrounding somewhat eularged vessels. III :hif larger, the dilated vessels predominate and caise a striking 1,1. h or redilish moloration of the affected area ("strawberry mara"). Tii. conlition is most often what has been termed cavernoma, or cavernin : ingioma, but occasionally we mect with not merely this dilated
comdition hut a true blastomatons proliferating angioma with progres growth into the surromuling tissme. So, also, at times we encom conditions of lymphangiectasis which may weep, and true cutane lymphangiomas, or lymphangio-endotheliomas. Any of the ahove neetive-tisule tumors may give rise to sarcoma or to sarcomat developments. At the same time primary serema does oceur, rom spindle-, or mixed--elled together with a remarkalle form of dif sarcomatosis of the skin which may incolve large areas (mycosis goides). The character of this growth, howerer, makes one stron suspect that liere we mayy deal with a spreading inflammatory comdit

ection from a case of lemankioma simplex, exhibiting progressive enlargement and exteus (Borrmann.)

A not uncommon form of malignant tmmor is the melanoma or chro tophoroma. We hesitate to give this its usual name of melamotic coma, inasmuch as there is still comsiderable disenssion as to whe this he of epithelial or perithelial origin. These tumors originate nist from a pigmented nevis or mole, and in these from the large polsg cells or chromatophores sitnated immerliately aromul the vessols. have repeatedly called attention to the abumbunt metastases wo they are liable to set up.

Carcinoma. -The malignant epithelial tmmor of the skin is natur the squamous-ceiled carcinoma (epithelioma), but of this two forint
h progrensive ie eneromer 1e cutaneons a above emsarcomatoms ccur, romill-, om of diffinse (mycosis funone stroughy ry condition. as to whother ginate usually rege polygonal vesich. We astases which n is hat turally two forms are
rrognizable: the one, the squamons epithelioma proper, such as is arrol on the lip, scrotmon, or penis, is characterized by large, moderately coarse, finger-like processes dipping down into the undrelying tissues, presenting well-marked epithelial pearls, and with its decp infiltrative powrrs, manifesting a marked tendency to develop metastases in the methboring lymph nodes. This may originate either from the cutis proper or from the hair follicles or sebaceons glands and shows a marked tembelic! toward nlceration. The other form, the rodent ulcer, presents itwdf most commonly on the upper part of the face, where it is characterizel bus slow growth, extenling sometimes over years, shallow and dry. ule $\begin{gathered}\text { ration, fibrosis and cicatrization in certan parts with slow exten- }\end{gathered}$ sion and cating away of the superficial tissues, and often a superficial wrinkling he reason of the contraction of the fibrons tissme. A remarkable fact is that only late in its course, when there has been much erosion, dows this show deep infiltration and the formation of metastases. Mirroserpically the cell cohmms are small, irregular, with absence of epithelial pearls. The simpler tepe of cell scen in this form with its departure from the tapical prickle-eelled tape, led Krompecher to inchude this annong the basal-celled careinomas, on the mfonnded supposition that it originates from the derper Malpighian layer rather than from the fully formed epithelial cells. There is no evidence for this assumption, but bey analogy we must say that it is composed of cells that have muldergone a greater anaplasia and have lost the capacity to develop the more diflerentiated cell The observations of Wolbach upon the dondy allied x-ray cancer of the extremities and other regions, affords, it whe to ns, a possible explanation for the absence of metastases in thi, form, viz., in the latere form it is evident that a fibrosis with condenation of the dermis precedes the cancerons change in the epithelimn, anul in this way, by the density of the moderlying connective tissue, atlond a harrier against the casy penetration of the cells into the dereme lymphaties.
Sermilary carcinoma of the skin is not very common; it is seen most often in coninection with mammary cancer, one form of which shows a pereliar tombeney to spread along the cutaneons lamphatics, giving rix tu the stomalled cancer on cuirasse.

Cysts. Retention cysts may show themselves in connection with the atbaromb ghands, often secondary to a condition of seborrhoea or hyperarremin, resulting in the pre ation of wens on the sealp or sebaceous cysts Wrwhere. Retention $\quad \therefore \cdots$; may also affect the sudoriparons what, arain following hypiar tion, resulting in miliaria, minute, Nemr whe vesicles immediat, underneath the upocr layers of the shin. In this commection we may mention the allied condition of comedones ("blarkheads"), a condition due to the hocking of the ducts of silnoms glands hẹ plugs of sehom and desquamated cells. They are' lmat (ommonly scen upon the nose and chin. Yet another form of a 1 isserves mention, the implantation çist, bronght abont bex the tramatic forcing of colls from the deoper epidermal layers into the
dermis (see p. 293), and the rarer true cutaneous dermoid due to embryonie inclusion of epithelial tissues in the deeper layers duri the proeess of elosure of sarious fissures.

THE HAIR

Certain diseased states of the hair eall for notice. There may excessive proxluction of hair (hypertrichosis) either over the great part of the bolly or in partieular regions, notably over the site of oceult spina bifida or, in the female, on the elin and lips. Absence hair from regions where normally it should exist is spoken of as alopec: This may be congenital, and then either universal, or as on the mon in the axille, and on the face, associated with a laek of developme of the seeondary sexual charaeters; or a senile ehange, or prematu supposedly a trophoneurosis. Apart from this, it may be a manifes tion of a distinctly local trophoneurosis, round or oral arcas of the se being affected (alopecia areata). Similar lural loss of hair may foll the growth of sundry moulds, e. g., trichophyton, or in loealized infla nations or after infeetive fevers. Nutritional ehanges in the hair little understool; premature whitening (canities) may be found to arrested development of pigment, without of neeessity any ot sign of defective growth, and may also follow severe nervous shock, continuel nervons irritation as in migraine and neuralgia; sometin local patches of eanities constitute a family trait. Other disturban due to $!$?fective nutrition are splitting of the hair, clubbing of the of the hair, uneven caliber of the hair, or bealing. In certain of above-mentioned parasitic discases, the defective nutrition of the 1 is manifest in its brittleness.

THE NAILS

Abnormalities of the nails are rare. Hemorrhages may oeeur in bed of the nail in eases of malnutrition eombined with sudden chan of temperature. Inflammation may attaek the tissues at the root of nail (onychia) or at the ellges (paronychia) leading to suppuration sometimes exfoliation. With paronyehia the relation of nail and part may be altered so that the nuil penetrates the deeper tissues (ingr ing too-nail), while fleeks due to the presence of air between the lay of the nail may appear in the body of the nail (leukopathia), or a tri verse furrow may mark on the surface the date of a past aeute illn both of these being evidences of temporary malnutrition. The i may grow to an enormous extent (onychogryphosis) with great deforn in shape, in this eomparable to the development of eutaneous ho Parasitic discalses of the skin (favus, ring-werm) may affect the in and the mycelial threads may actually penetrate and grow within nail substance.
due to an vers during
ere may be the greater e site of an Absence of as alopecia. n the mons, levelopment premature, a manifestaof the sca!p may follow lized inflamthe hair are e found due y any other us shock, or ; sometimes disturbances g of the end ertain of the of the hair occur in the dden changes ne root of the puration and nail and soft ssues (ingrowen the layers b), or a transacute illness, n. The nails eat deformity ancous horns. ent the nails, Jw within the

INDEX

A
didominal epigastric hernia, 569 fissure, 72
Herrant mammary gland, 666
prostate, 633
Abiotrophy, 57,299
of nerves, 478
Abwormalities, 61
of defect, 70
in excess, 61,62
inheritance of, 57
Abortion, tubal, 666
. 1 brint, inmunity against, 154, 155
Abicess, 126
antemammary, 667
of brain, 488
cold, 684
of liver, 575
of orbit, 517
perinephric, 617
peritonsillar, 437
pylephlebetic, 574
repair of, 126
retropharyngeal, 438
retro-uterine, 661
of skin, 700
"stitch-hole," 89
of thymus, 472
tulo-ovarian, 655
Ahmlute imnunity, 152
A"ериіа, 179
Ararrliac monstrositics, 63
Actone bodies, 109
Acthnuria, 109
Achmendroplasia, 678
Acturis, 104, 106, 109
of hlood plasina, 359
A'rue of skin, 700
rusacea, 700
An"pirred characters, inheritance of, 53 diseases, 55
(1mmunity, 115, 116
murlifications, 43
A'4 4ia, 72,485
At., mekaly, 101
ituitary body and, 493
.1": my yeosis of bone, 685
1 irain, 490
Kikney, 619
| larynx, 443

Actinomycosis of liver, 583
of lungs, 465
of mouth, 525
of muscles, 675
of peritoneum, 566
of skin, 702
of spleen, 418
of stomach, 536
Active hyperemia, 337
Activity, lack of, as cause of disease, 115
Adaptation, 36,40
of human body to temperature, 77
Adaptive hypertrophy, 187
Addison's anemia, 360
disease, 102, 422, 703
Adenase, 107
Adenin, 27, 107
Adenocarcinoma of stomach, 539
of thyl id gland, 425
of uterus, 651
Adenofibroma of ovary, 659
Adenofibrosarcoma of inammary gland, 670
Adenoids, 428, 440, 460
Adenolipofibroma of mammary gland, 670
Adenoma, 261
of adrenals, 422
of bladder, 627
of bronchi, 446
of kidney, 621
of larynx, 443
of liver, 589
of lungs, 465
of mammary gland, 670
of nose, 430
of pancreas, 597
of parathyroids, 426
of stomach, 539
of thyroid gland, 425
of uterine ligaments, 662
of uterus, 851
Adenomatosis, 262, 264
of mammary gland, 668
Adenomyoma of uterus, 243, 650
Adenomyxosarcoma of mammary gland, 670
Adherent pericardium, 383
Adhesive otitis media, 520
Adiposis dnlnmen, 233, 705
Adrenalin, 102

AIrcnals, 421
abnormalities of, 421
accessory, 421
adenomits of, 42:2
anemia of, 4 '2'2
atrophy of, 422
carcinoma of, 423
eavitation of, $4 \geq 2$
cortex of, overgrowth of, 102
cysts of, 423
degenerations of, 422
diseases related to, 102
hemorrhage of, 422
horseshoe, 421
hyperemia of, 422
hypernepliroma of, 423
hyperplasia of, $4 \geq 2$
hypoplasia of, 4:1
infarcts of, 422 hemorrhagie, 344
inflammation of, 422
lymphangiectases of, 423
necrosis of, 422
neuromas of, $4: 2$
sarcomis of, 423
secretion of, 102
syphilis of, 422
tubereulosis of, 42:2
tumors of, $975,42^{2}$
Adrenin, 1000,102
Aërobes, 84
Aërobie bacteria, 84
Aërogenie pneumonia, 45l
tubereulosis, 460
Agglutination, 162
Agglutinins, 162
Aggressins, 16!)
Agonal invagination of intestines, 546
adema of lungs, 447
Agyria, 486
Air embolisin, 352
passages, 427
sacs, 4:31
changes in walls of, hindering aceration, 432
eollipse of, 431
distention of, $4: 31$
interstitial deposits in, 433
obstruetion of, 431
transmission of heteria by, 90
Albinism, 47, 509, 60:5
Alhunin, 25
Bence-Jones, 603
egr, 25
seruin, 25
in urine, (6) 2
Albuminoid vegetable poisons, immunity against, 154
Albuminons degeneration. See Cloudy swelling.
Albuninuria, 603
reciical, 6013
febrile, 151
infeetious, 603

Albuminuria, physiologieal, (0)3 toxic, told 3
Albuninuric neuroretinitis, 513
dhbmoses in urine, 25,603
Ilbumosuria, alutolysis and, 106
Alcoholic neuritis, 507,508
Alcoliols in cell, 33
Aleppo button, 95
Alexin, 164
Alimentary leukocytosis, 364
Alkaptonuria, 108
Allergy. S', Anapliy...xis.
Alloxuric bodies, 107
Alopecia, arcata, 708
Altmam's granules, 301, 365
Aluminosis, 325
Amastia, $\mathbf{0} 66$
Aniazia, 666
Amboceptor, 164
Amino-acids, 25
Amitoris, 38
Amitotic cell division, 38
Ainnion, 665
Ammiotic fluid. 665
Ancebie abseess of liver, 575
eolitis, 558
Anphimixis, 46
Amphoterisnt of amino-aeid, 25
Amputation neliroma, 198, 245, 509
Imygdalitis, 437
inyloial, 34
bodics of prostate, 321, 633
degeneration, 306, 307
of adrenals, 422
of lymph nodes, 413
of myoeardium, 390
of heart, 390
infiltration of arteries, 401
of kidney, 620
of liver, 585
of pancreas, 597
reactions, 308
Amyloidosis, 308
Amyotrophic lateral sclerosis, 499
Anadidymus, 67
Anaërobes, 84
Auakatadidymus, 67
Anaphase of mitosis, 40
Anaphylaxis, 117, 170
Anaplasia, 203
in thmors, 285
Anasarea, 336, 339, 366, 368, 696
Anemia, 339
Addisonian, 360
of adreuals, 422
aplastic, 361, 419
of bone marrow, 419
of hrain, 486
collateral, 339
of intestines, 546
of kidney, 608
of larynx, 441
of liver, 570
of mouth, 523

Inemia of museles, 673 neurotonic, $3: 3!$) of pericardium, 382 of peritoneum, 563 pernicious, 360 of pia-urachnoid, sta 4 of placenta, fitis of retina, 510 secondary, 360 of skin, 695 of spinal cord, 49:5 splenic, 241,415 of stomach, 533
Anemie infarct, 344
. Inencephaly, 72, 485, 493
hifenthesia, 479
Incurysm, 27S, 298, 407 arteriovenous, 408 ill brain. 488 cirsoid, 278, 407 (hilatation, 407 disseeting, 407 false, 4t)8
fusiform, 298, 407 miliary, 4t)8 myeotic, 408 saceular, 398,407 traction, 408 l:aricose, 408
Imenrymal varix, 408
. Muniectases, 278
Theina, 437
hutovici, 528
pectoris, 376
linecnt's, 439
. Ingioma, 277
of bladter, 627
of bones, 689
of brain, 491
of car, 521
of killney, 621
of mouth, 526
of musches, 676
of orbit, 517
of peritoncuin, 567
of placenta, 664
of pleura, 470
of 人hin, 705
of umbilical cort, 66.)
of villa, 641

Thhylovis of joints, c91
linhylostomum, chestruction of tissue by, : $1 \cdot 1$
Intasen, 65
Inomatics. See Abnommaties.
Irphinles mosquito, malaria ind, 07
Am川h1h:Imia, 509
Imorchidism, 637
IIt flexion of uterus, 644, 645
Intwinammary abseess, 667
A.mpmat:1 discase, 5.5
dut--llcrine henatoma, 661

Anthracosis, 325, 412, 459
Antiborlies, 155, 172
Antidiastatic enzyme, 150
Anti-enzymes, $1.55,1.56$
Antiferment, 156
Antigen, 16:3, 172
Antipepsin, 156
Intipeptie ferment, 156
Antipreripitins, 1 1\%'s
Antirennin, 15̄t
Antiricin, 155
"Antispecifie" qualities, inheritanee and,
Antitgxin, 155, 156
Antitoxins, production of, 155-160
toxins and, 156
Antivenins, 168
Inuria, 602
Inus uterinus, 644
Aurta, coarctation of, 387
Aortic endocarditis, 394
Aphthae, 524
Aphthous stomatitis, 524
Apical pneumonia, 455
Aplastic anemia, 361, 419
Apneumatosis, 449
Apoplexy, 354, 487
Appendical conerements, 315 constipation. 543
Appendicitis, 548, 555 catarrhal, sinıple, 557 tiffuse, 557 gangrenous, 5.58 perforative, 5.57
Appertix epiploica, 566 vermiformis, function of, 541
Apposition, metastasis and, 219
Aqueous humor, 516
Arachnida, 98, 100
Arcus senitis, $\overline{1} 14$
Ircola, carcinoma of, 172
Areolitis, 667
Argyria, 325
Arrhincephaty, 522
Arrhythnia, 379
Arsenie caters, 153 nènritis, 508
Arterial thrombus, 349
Arterips, 399
abnormatities of, 400
anastonosing, 340
artcriosclerosis of, 401
atrophy of, 410 degeneration of, 4t:1 hypertrophy of, 409 hypoplasia of, 400 infiltration of, 401 inflanmation of, 400 occlusion of, 346 syphitis of, 4to) terminal, 340
thrombresis of. 100
tumors of, 409
Arteritis, 410

Arteriosclerosis, 298, 402
nodose, 402
syphilitic, 403
Arteriovenous aneurysm, 40s
Arthritis, 691
deformans, 692
pauperum, 693
purulent, 692
serofibrofibrinous, 691
serous, 691
suppurative, 691
Ascaris lumbricoides in liver, 590
Ascites, 339, 366
chyliform, 370
chylous, 370
pseurlochylous, 370
Aspergillus of lungs, 465
Aspermia, 637
Asphyxia, 109, 430
Aspiration pneumonia, 455
Aster, 40
Asthenic fever, 150
Asthma, 429
Atavism, 48, 50
Ataxia, Friedreich's, 498, 501
locomotor, 500
Atelectasis, 431, 449
impression, 450
Atheromatous embolus, 352
ulcer, 402
Atheroselerosis. See Arterioselerosis.
Atherosis. See Arteriosclerosis.
Atmospheric pressure as cause of disease, 77.

Atonic constipation, 542
Atresia ani, 74, 545
of gall duct, 591
of intestines, 544
of larynx, 440, 444
recti, 545
of vagina, 642
Atrophic gastritis, 536
pharyngitis, 439
rhinitis, 435
Atrophy, 297
of adrenals, 422
of arteries, 400
of bladder, 626
of bone, 685
of brain, 490
brown, of heart, 388
of liver, 586
of drum membrane of ear, 520
of joints, 694
of kidney, 619
of larynx, 443
of liver, 574,583
of lymph nodes, 413
of mammary gland, 667
from malnutrition, 297
of muscles, 475
of myoeardium, 389
of nerves, 478
of ovary, 656

Atrophy from overwork, 297
of pericardium, 384
progressive muscular, 499, 675
of prostate, 634
reversionary, 203
senile, 297
serous, 306
of fat, 298
of pericardium, 384
of skin, 703
of spleen, 418
of testes, 639
of thymus, 472
of thyroid gland, 424
of uterus, 649
of vulva, 641
Auditory meatus, external. See Ear external.
Aural polyps in otitis media, 520
Auricle of ear. See Ear.
of heart, 371
Auriculoventricular node, 377
valves of heart, 373
Autochthonous blastomas, 223
Auto-intoxication, 79
Autolysin, 163
Autolysis, 105
Autonomic nervous system, 475
Autonomous tumors, 207
Autoplastic transplantation, 199
Auxeties, 201
Axone, 473
abiotrophy of, 478
degeneration of, 478
disuse atrophy of, 478
pathologieal ehanges in, 477
regeneration of, 478

Bacllilary colitis, epidemic, 558, 559
Bacilli, 84
Bacillus coli, constipation and, 111
diphtlicriz, 85,438
fusiformis, 439
typhosus, 90,121
"lhaco:" spleen, 308, 418
Bacteria, action of gastrin fuice on, 86 of leukocytes on, 87
of surface washing on, 86
aërobic, 84
in bladder, 626
as cause of disease, 84
damage of cells by, grades of, 126
development of ptomaines and, 110
ectotoxie, 85
endotoxic, 85
entrance of, into body, 90
physical hindrance to, in resp ratory tract, 87
through genital passages, 90 intestinal tract, 90
lymph nodes, 87, 91

[^24]Bacteria，entrance of，through plucenta， 40 respiratory tract， 90 skin， 90
to tissucs， 86
enzymes of， 84
exaltation of virulence of， 170
intestinal， 85
passage of，through body， 91
pathogenic， 85
phagocytosis and， 124
putrefactive， 85
saprophytic， 85
temperature limits of， 84
toxins of，84， 85
transmission of，by air， 90
by direct contact， 90
by fomites， 90
by insects， 90
virulence of， 91
Bacterial embolus， 353
intoxication， 85
Bactericmia，145， 629
Bacterigir！al power of blood， 88 of mucus， 86
Bacteriolysins，165， 166
Bacteriolysis，165， 166
Malanitis， 630
Balantidium coli， 97
13：lhinoposthitis， 630
Ball thrombus， 348
Banti＇s diseasc，241， 579
Karlow＇s disease， 688
Basal－celled carcinoma，264， 270
Busedow＇s disease．See Exoplithalmic goitre．
Betsore， 76
Bence－Jones＇albumin， 603
13－ovybutyric acid， 109
Birornuate uterus， 644
Bile ivsts of liver， 590
lucts， 591
tuberculosis of， 582
hravel， 319
in peritoncum， 566
Bilharzia hematobium，260， 626
Bilharziasis， 260
13ili：ry caleuli， 318
rirrhosis， 579
13iliruhin， 318
Bilivertin， 318
13inner rosis， 326
－\because चhtre， 24
hhoric molecule of cell，24， 27
1．lisuia， 35
lmarks， 278
lurl palsies， 61
Birth，multiple， 64
13：n小共， 624
hnormal contents in， 626
alsence of， 624
＂lenoma of， 627山цитиa of， 627 Homalies of， 624

Bladder，atrophy of， 626
bacteria in， 626
bilharzia hematobium in， 626
carcinoma of， 627
ectopia of， 625
extrophy of， 624
fibroma of， 627
hyperemia of， 625
hypertrophy of， 626
inflammation of， 625
myoma of， 627
papilloma of，261， 627
parasites in， 620
sarcoma of， 627
septa of， 624
syphilis of， 626
tuberculosis of， 626
tumors of， 6^{97}
Blastomas， 213
atypical， 237
autochthonous， 223
heterochthonous， 223
multicentric， 219
pleuricentric， 219
teratogenous，211， 223
typical， 237
unicentric， 219
Blastomatoid， 228
Blastomatous papillomas， 260
Blastomycetes．See Yeasts．
Blastomycosis of skin， 702
Blended character， 48
inheritance， 48
＂Blighted ovum，＂ 58
Blood， 334
bactericidal power of， 88
cells in inflammation， 128
coagulation of，346， 347
corpuscles，poisons acting on， 81 red．See Erythrocytes． white．See Leukocytes．
distribution of，alteration in， 336
dust bodies of， 366
＂laking＂of， 360
plasma， 357
acidosis of， 358
hydremia of， 357
hyperinosis of， 358
hypinosis of， 358
lipemia of， 358
platelets， 366
in thromiocsis， 347
qualitative changes in， 357
quantitative alteration of， 334
stasis of， 339
sterility of， 88
stream，metastasis and， 218
supply，alterations of， 337
Blood－clot， 346
Blood－forming organs， 411
Blood－vascular tissue，regeneration of， 194
tumors， 278
Bloodvessels， 371

Bloodvessels, entothelium of, inflimmintion and, 127
in neoplasms, 2:3
Hhac line in lemp poisoning, $32 \mathbf{3}$
Hodies, Nissl, 19
tigroid, 10
IBodily states as canses of discave, 111
Body cell, 44
inechanisin, rlisturbimees of, autolysis and, IU6
surface, imperfect elosure of, $7 \cdot 2$
Hones, 678
abnormalities of, 678
actinomy cosis of, $68{ }^{5}$
angiona of, tis!
atrophy of, 685
earies of, 681, 684
ecphalhenuatoma ${ }^{5}, 670$
chondrosarcoma of, tis!!
cold abseess of, ust
eondensation of, 682
cysts of, 690
eburnated, 682
enostoses of, 68:)
cxostoses of, 688
bursata of, 689
granulomas of, 685
gummas of, 684, 685
hemangio-endothelioma of, tis!
hemorrhages of, 679
hypercmia of, 679
liyperplasia of, 236, 688
infarct of, GSO
inflanmation of, 680, 682
involucrum of, 680
leprosy of, 685
mirrow, 419
anemia of, 419
chondromas of, 420
endothelionnas of, 420
fibromas of, 420
hyperemiat of, 4 !!
hyperplasia of, 419
inflammations of, 419
myelomatosis of, 420
myxomas of, 420
sarcomas of, 420
tumors of, 2:30, 420
metastases in, 6is?
myeloma of, 689
niyso-chomdromas of, 68?
myxomas of, tiso
myxo-sareona of, ti89
necrosis of, 681
ossifying ecchondroses of, bis!
osteoporosis of, 682, 685
Paget's disease of, tis6
rachitis of, 687
regeneration of, 192 682
rickets of, 687
sarcoma of, 6s9
sclerosis of, 682
sequest rum of, $\mathbf{i x (1)}$
syphilis of, 6.44

Bones, transplantation of, 201 tubcrculosis of, 68:
tumors of, Gss
I Bradycardin, $3: 36$
l3rain, 485)
abscess of, 488
aetinomycosis of, 4!
anemia of, 486
ancurysin in, 488
angioma of, 491
anomalies of, 485
at rophy of, 490
carcinoma of, 492
chorioepithelioma of, 492
cysticercus of, 90,492
eysts of, 402
cchinococcus of, 492
embolism in, 487
endothelioma of, 491
ependymoma of, 492
fibroma of, 491
ghioma of, 491
gliosarcomas of, 492
planders of, 490
gumma of, 489
hemorrhage of, 486
hydrocephalus of, 486
hypercinia of, 486
hypernephroina of, 492
inflamination of, 488
leprosy of, 490
malformations of, 485
myxoma of, 491
osteoma of, 491
porencephaly of, 492
sarcoma of, 492
softening of, 487
syphilis of, 489
syphiloma of, 489
thrombosis in, 487, 488
unberculosis of, 48)
tumors of, 491
Branchial clefts, imperfect closure of, 7 cysts, 289
IBreatt. See Mammary gland. Pagct's discase of, 672
"pigeon," 687
Bridges, cell, 19, 20
ISright's diseasc. See Nephritis.
Hordet-Gengou phenomenon, 168 reaction, 167
Bronchi, 429, 444 adenoma of, 446
carcinoma of, 446
chondroma of, 446
foreign bodies in, 445
hemorrhages into, 444
inflammation of, 444
lipoina of, 446
lumen of, alteration in, 446
myxoma of, 446
occhusion of, 446
ostroma of, 446
passive congestion of, 444

Bronchi, perforation of, 446 sarconia of, 446 tumors of, 446
Bronehiectasis, 43:3, 446 cylindrical, 446
fusiform, 446
saceular, 446 varicose, 446
Bronchitis, 444
meute, 444
catarrhal, 444
chronic, 445
fibrinous, 445
gangrenous, 445
purulent, 444
putrid, 445
Broncholiths, 446
Bronchopneumolia, 452 tuberculous, 461
13ronzed diahctes 579, 70.
Brown atrophy of liver, 583,586 induration of lungs, 448, 458
Bubo, 412, 631, 632
Bulbar paralysis, 499
Bullous emphysema, 4.56
' Bundle of His," 377
Burning of skin, 697
Bursex, 677
endothclioma of, 678
fibroma of, 678
hylronat of, 678 inflammation of, 678
myxoma of, 678
sareoma of, 678
tuberculosis of, 678
tumors of, 678
Bursal cysts, 292
Ibursitis, 678
('minexia, 216
thyroopriva, 100
('aisson discase, 77, 353
C'alrarmus deposits, 313
in stomaeh, 536
in tendon sheaths, 677
of thyroid gland, 424
einbolus, 352
incrustations, 315
(:alcifiration, 313
of auricle of ear, 520
of endocardium, 399
in infarction, 346
of liver, 586
of lymph nodes, 413
ill myocardium, 391
of placenta, 664
of veins, 410
('alcium earbonate calculi, 319 ovalate calculi, 318
('iluli, 315. See also Concrements. biliary, 318

Caleuli, calcium biarubin, 319
cholesterin, 319
cysti- 318
guanin, 318
inulberry, 318
oxalate, 318
phosphatic, 318
prostatic, 321, 633
in ureters, 623
uric acid, 316
urinary, 316
xanthin, 318
Calculous pyonephrosis, 618
Callus, formation of, 193, 703
Calor, 125
Calories, 148
Cancer. Sec also Carcinoma.
"bodies," 266
cells, irrcgular nitosis in, 222
"en cuirasse" of mammary gland, 670
of skin, 707
"parasites," 19
Canities, 708
Capillaries, 409
degencration of, 410
hemangio-endothcliomas of, 410
hemangionas of, 410
hemorrhages of, 410
hyperemia, 338
infiltration of $\$ 10$
thrombus, 350
tumiors of, 410
Capsular cataract, 515
Carbohydrates, 33
Carbon dioxid, asphyxia and, 109 dyspnopa and, 109
Carbonic acid, nuscular fatigue and, 114
Carbuncle of skin, 700
Carcinoma, 264
of adrcnals, 423
bassal-celled, 228, 264, 270
of bladder, 627
of brain, 492
of bronchi, 446
"cancer bodies" and, 266
of conjunctiva, $51 \overline{5}$
degeneration in, 266, 272
of dura mater, 504
of ear, 521
of Fallopian tubes, 654
of gall-bladder, 592, 593
-duct, 592, 593
gland-celled, 272
of intestines, 560
kcratinization in, 270
of kidney, 021
of larynx, 443
of liver, 589
of lungs, 465
of nammary gland, 670
medullary, 260, 273, 670
of nose, 436
of cesophagus, 531

Carcinoma of orhit, 517
of ovary, $15: 5$
of pancreas, 507
of penis, 633
of prostate, 838
Russel's bodies and, 267
sarcomatores, 227, 266, 425
scirrhous, 266, 273, 670
of scrot 11 m, 640
simplex, 227, 2ti6, 273, 672
site of, origin of, $2 f^{\prime \prime}$
of skin, 706
of spleen, 419
squamuati-crllev1, 265, 672
of stomath, $5: 39$
stroma of, 21:is
of testes, 639
tumor cells of, 265
of urcters, 624
of urethra, 629
of uterus, 651,663
of vagina, 643
of vulva, 642
Cardiac thrombus, 348
vegetation, 349, 351
Carlinvascular syetem. 333
Carics of bone, 681, 684
of joints, 693
of teeth, 526
Carnified lunks, 450
Carotid gland, tumors of, 285
Carrel's exprrimemts, 202'
Cartilage, regeneration of, 192
Caruncles of urethra, 629
Casts, cellular, 312
colloid, 312
epithelial, 312
granular, 312
lyaline, 312
waxy, 312
Catalysis, 28
Cataract, 515
Catarrh, 435
Catarrhal, appendicitis, simple, 557 bronchits, 444
cholecystitis, 591
rolitis, 558
cystitis, 625
enteritis, 548
inflammation, 133
jaundice, 323, 591
laryngitis, 441
Cavenitis, 630
Cavernoma, 278, 705
of pia-arachnoid, 506
of skin, 705
Cavernous lymplangiect asis, 281
Ceritis, 548
Cell, a hnormal states of, 18
activities of, bioplastic, 35
compensatory, 37
excessive, 38
functional, 38
katabiotic, 35
(iell, activities of, relation of growth 35
subnormat, 37
vogctative, 38
alcohols of, 33
hiophoris molecule of, 24
hloust, 12s
tordy, 18, 11
bridмен, 19, 20
carbohyurates in, 33
centrosome of, 10
chenistry of 24
chromatin of, 18
connections, 19
connective-tissue, 126, 128
constituents of, 18
crystals of, 10
cytoplasin of, 19
danage of, by bacteria, 126
differentiation, 41
division umitotic, 38
aster in, 40
attraction sphere in, 40
direct, 38
karyokinctic, 38
mantle fibers in, 40
initotic, 38
dynamics of, 35
cetoplasm of, 19
ectosarc of, 32
embolus, 352
enbryonic, 38
endoptasin of, 19
endothefial, 127, 128, 138
epithelioid, 108
fats of, 33
germ, 44
giant, 139
histology of, 17
hyaline, 363
hyperactivity of, within limit o reserve force, 38
lining of, 18
lipoids of, 24
"mast:" 13', 363
molecule, Ehrlich's conception of, 158
mononuclear hyaline, 132
multiplication. 38
non-protein constituents of, 31
nincleolus of, 18
olein in, 33
palmitin in, 33
paraplasm of, 19
physiology of, 21
plasma, 132, 363
polymorphonuclear, 128
polynuclear, 128
"prezymogens" of, 23
proliferants, 201
proliferation, inflammation and, 1!!
proteins of, ? 4
regeneration of, 21
salts in, 32

Cell，sap， 19
signifieance of， 20
size of， 20
sоaps of， 33
somatie， 44
stearin in， 33
totipotent， 208
totipotential， 45 vacuoles of， 18 varying powers of resistance of，123 veretative，44，216， 217
wandering，inflamniation and， 119 water in， 31
（ Cllular casta， 312
（enlonlitis， 412 of orbit， 517 of skin， 400
Central pneumonia，455
Centrilobular pancreatitis， 505
Ceiltrosome，19， 39
Cephalhematoma，294，502， 679
Cephalotheraeopakus disynimetros， 68 monosyinmet ros， 69
Cerebral apoplexy， 351
hemorrhage， 498
thrombosis， 408
Cerebrosides， 27
Cervical endometritis， 647 hydrocelc， 281
（Arvieitis， 647
（Malicosis，325， 459
Chimere，524，63t）， 701 hard， 630
of mouth， 524
of $\mathrm{kkin}, 701$
soft，R31
Chancroid， 631
＂＇harcot－leyden erystals， 445
＂（＂hareot＇s joint，＂ 684
（Cluilitis， 523
（＇le ilognathopalatoschisis，5：2
（＇heilognathoprosopuschisis， 522
（＇heilognathoschisis，5122
Cheiloschisis， 522
（＇heioid， 231
（＇hemical causes of disease，75， 78 of inflammation， 122
（＇Ir miotaxis，inflammation and， 119
（ hentosis， 366
（＇Ievne－S＇tokes＇respiration， 431
（ Mickenfat clot， 346
（＇higoë in skin， 703
（hills，fever and， 149
Chloasma， 703
（hloroform poisoning，necrosis of liver
in， 586
（ hloroma， 238
（＇hlorosis， 201
＂hokerl disk，507，510， 516
（ $/$ Inlangitis， 591
（＇helecystitis， 591
Tindelithiasis， 318
（？ulesteatoma，284，312，506， 519
（ Ihlesterins，27， 319

Cholin，108， 110
Chondrin， 34
Chondrodystrophia fatalis， 678
Chondroid degeneration of inyocardium， 390
spleen， 309
Chondroma， 234
of bone marrow， 420
of lironchi， 4 tb；
of dura mater， $50: 3$
of lungs， 465
of maininary gland， 672
of mouth，520 6
of plen：： 470
of vul．： 12
Chonilro－ostecumarcoina， 689
Chonilrusarcoma， 256
of bones，689
Chorda tendinex，aberrations of， 393
Chordee， 629
Chordoma， 249
Choreiform movements， 484
Chorio－epithclioma，212，653， 664
of brain， 492
of lungs， 406
of placenta， 604
of testes， $6: 39$
of vagina， 643
Choroid，hemorrhages of， 510 hyperemia of， 510 inflammation of，51：3
sarconta ：melanotic， 515
tuinors of， 515
Choroiditis， 513
Choroidoretinitis， 510
Chromaffin cell，multip新：：少が， 22 system，diseases $r_{t} \cdot 1 \ldots$ it：
Chromatin， 18
Chromatophoroma，2s？，：
Chromidia， 22
Chromophilie borlies，4i．s
Chromosomes，39， 45
Chyliformascites， 370
Chylous ascites， 371$)$
hydrothorax， 370,467
Chylurin， 370
Cicatrization in gangrenc， 339
in infarction， 345
Ciliary body，inflamnistion of，si：－
Ciliatc iufusoria． 97
Cireulation，collateral，development of， 343
coronary， 376
organs of，poisons acting on， 82
Cirrhosis， 141
of liver， 575
biliary， 579
Hanot＇s，579， 580
hypertrophic， 579
Lennec＇s， 575
Inthoiobuizr． 580
multilobular． 576
obstructive 579
portill， 575

Cirrhosis of liver, syphilitir, 581
Cirsoid aneurysm, i28, 407
Cladothrix of lungs, 465
Clasmatocytes, 133
Cleft palate, 74, 437, 522
Clitoris, 640
absence of, 640
hyperplasia of, 640
Clonea, persistent, 74
Clonus, 452
Clot, blomel-, 346
chickenfat, 346
Clourly degeneration, 123
swelling, 123, 301 of kidney, 61! of liver, 5s4 of muscles, 675 of myocardium, 388
Coagulation necrosis, $322 \mathrm{~K}, 344$
Coaguline, 347
Coaretation of aorta, 387
Coeri, 84
Coccilia of sporozoa, 97
Coccidiosis, 259, 590
Cold abseess of bone, $6 \mathrm{~K}-\mathrm{L}$
Colic, ureteral, 323
Colitis, 5 5̈
amobic, 5.58
bacillary, cpidemic, 5is, ins?
catarrhal, $\overline{\text { bes }}$
follicular, :058
membranous, 558
inucous, 558
ulecrative, 5:s
tuhcreulous, 560
Collapse, 178
of air sales, 431
Coll:aferal adeniat, 339?
rirculation, development of, 343
hyperemia, 3:37
Collipuative necrosis, $32 \times$
Colloid carcinoma of stomach, 540 cast, 312
degeneration, 306, 307
in carcinoma, 2iz
deposit, 304), 307
properties of, :32
Coloboma, 50)
Color hlindness, 47
Colostrum, 666
Coma, 480
Combined proteios, 25
sclerosis, subacute, ion
Comedones, 7 () 7
Compensatory cell activity, 37
hypertrophy, $188,(3: 36)$
Complement, 164
Complementoid, 165
Compression, 76, 450
Conception, prolucts of, 66:1
Conerements, 311°
Coneretions in prostate, (i3is)
Concussion, 75
Condyloma, 258, 629

INDEX
Condensation of bones, 682
Condensing osteitis, 682
Congenital ystic kidncy, 289
cysts of pancreas, 598 disease, 5.5
porencephaly, 498 sacral teratoma, 20N, 209
spastic paraplegia, 498
Congution, passive, 338
of liver, 570
of peritoncum, 562
of spinal cord, 495
of vagina, $6+2$
in preumonia, 452
of spleen, 415
of thyroid gland, 424
Congestive arlema of lungs, 369, 447
Conjunctiva, 509, 510
carcinoma of, 515
fibroma ot, 515
hemorrhages of, 509
hyperemia of, 509
infective granuloma of, sil
inflammation of, 510
leprosy of, 511
lipoma of, 515
a'dema of, 509
osteoma of, 515
papilloma of, 515
sarcoma of, 515
syphilis of, 511
tuberculosis of, 511
tuniors of, 515
Conjunctivitis, 310
Parinaul's, 511
Comnectivertissue cells, 127, 128
new-formed, vascularization of, 136 pelvic, 661
regeneration of, 191
Constipation, 111,542
lhacilus coli and, 111
"Consumption, galloping," 462, 46.3
"Contagious," distinction of, from "infretions," 30
Continued fever, 149
Contracture, 484
Contusion, 76
Convulsions, 480
foral, 482
Jicksonian, 482
Cor, biat riatum triloculare, 3 NK
liventriculare (riloculare, 386
Corl, spinal, 493
Corn, 703
Cornca, fibroma of, 515
herpes of, 512
infective granuloma of, 512
inflammation of, 511
myxoma of, 515
pipilloma of, 515
s:arcoma of, 515
syphilis of, 512
tuberculosin of, 512
(1miors of, 515

Cornca, ulcer of, 511,512
Coronary circulation, 376
Corpora amylacea, 321 of bruin, 496 in prostatc, 633 in spinal cord, 496 oryzoidea in joints, 604 (orporeal endometritis, 647
Corpuseles, red. See Erythroeytes. white. Sce Leukocytes.
('oryza, 4:35)
('olughing, 430)
('owper's glands, 636
cysts of, 630
inflammation of, 636
(ranial meninges, 501
((ramio-tabes, 687
(reatinin in urinc, 60)2
(recping pncumonia, 453
(rrtimism, 100, 678
(risis in infection, 14!)
('ryoseopy in nepleritis, 606
('ryptogenic abscess of brain, 488 infection, 89
(ryphorchidlism, 6:37
(rystals of cell, 19
('umulative inheritance, 50)
('upperl optic: dhsk, 516
('urschmam's spirals, 445
(iutimeous concrenients, 31ī
('utancous horns, 259, 312, 7():3, 7(0i)
(Y:Hosis, 3399, 696
(ymotic induration of kidney, (6)? of liver, 5it
of lungs, 448
of splecen, 416
('yrlical allominuria, (iO),
Pirlitis, ill2
('sMns: 70, 71
(iliulrical loronchicectasis, 46
(ilimIroma, 2s3, 311, 52S of salivary glames. t 2 L
C'Simalromatous hyaline degeneration, :311
(inanela, 525
(bis formation in infaretion, 345
 of \cdot-9ary, (6.th, (6i5)
of pancreas, ion
p:upilliferum of mammary gland, (izo
of prritonctim, 567

hyeromin, 281
hislney, congenital, 291
Tymphangiectases, 281
mastitis, chronic, 670
laratoma of ovary, (iff)
(i-1icrerthe of brain, 99, 4! ${ }^{2}$
of museles 6%
of perionrlimes, 385
if irroters, 624
(: ' $111,10 \mathrm{~s}$
ahinli, 318
(. muri:, 10)

Cystitis, 625
catarrlal, 3.5
phlegmonous, (625
Cystocelo, 642
Cystoma of ovary, 656, 658
Cysts, 287
of adrenals, 423
of antenatal origin, 28!
of boncs, 690
of brain, 487, 492
branchial, 289
of bretiss, 670
bursal, 292
of canal of Nuck, 291
composite, 203
congenital, 280
of Cowper's glands, 6:36
rermoid, of mediascinum, 471
distinetion of, from tumors, 287
dentigerolas, 293
cmolothelial, 291
cpendymal, 292
of Gärtner's duct, 289
of glands of Bar(holin, 64'2
hemorrhagic, 237, 293
hydaticl, 295
of intestines, 544
of kidney, 622
of larynx, 443
of liver, 590
lymph, 292
of mammary glanıl, 667, 650
nutous, 290
necrotic, 287, 294
of neoplastic origin, 991
of ovary, 6.56
of pancreas, 508
parasitic, 28S, 295
of penis, 6:33
of peritoneum, 567,568
of placenta, fict
of posenatal origin, 290
of primordial grenito-urinary iucts, $28!$
of prostate, 6:3:3
retention, 287, 2s8
salivary, $2!0$
sebaccous, of ear, 52 i
secretory, 288
sequestration, 293
of skin, 707
squamous cpithelial, 202
of (anial crhino"oceus, 295
of tecth, 52.
of tesfes, ti:39
of thyroid gland, 291, 424
thyrolingual, 289
of 'Triclina spiralis. 205
of umbilical cord, (665
urachal, 289, e's
of urcters, 624
of utcrine ligaments, 6til, 602
of uterus, $65^{2} 2$
vitello-intestinal, 289

Cysts of vulva, 642
of Wolffian body, 289
Cytolysins, 163
Cytolysis, 296
mechanism of, 164
Cytoplasm, 18, 19
Cytotoxins, 163
1)achyopa, 290

Deaf-mutism, 520
Death, 330
somatic, 3:31
Deciduona malignum of puerperal uterus, 663
Defect of special regions, 70
Defences, normal, of organisin, 86
Defervescence in infection, 144
Degenerates, 50
Degenerations. 300
of arlrenals, 422
albuminous. Sec Cloudy swelling.
amyloid, 306, 307, 308
of arterics, 401
of axone, 478
of eapillaries, 460
ill carcinoma, 272
chond roid, 309
clouly, 123
colloil. 272, 306, 307
ristie, of ovary, bist
rlastoid, 300^{3}
familial, 50
"fatty," 123, 30:3
granular, 12:3
hematohyaloid, 311
hyaline, 123, 306, 309
livilropic, 306
of killney, 620
lipoid, 3(0)
of liver, 584
of lympli nodes, 413
mucoid, 306, 307
of musele, 676
of myocarlium, 359. 390
in neoplasms, 2:2
of pancreas, 597
of placenta, 6 bi 4
of urostate, 0.34
of retina, 514
of spinal corl, 496, 497
of spiect, $1 / 8$
of thyroil gland, 424
of tumors, aciste red, (65)
of mmbilical cord, 565
vacuobar, 306
Wullerian, 198
waxy, 328, 676
Zonkrr's, 32s, 676
1 Delhi boil, $5: /$
1)elirium, 480
corrlis, 380

Delirium tremens, 480
Dementia paralytica, 489, 490
Dendrites, pathological changes in, 477
Dental hypcrostoses, 527
Dentigerous cysts, 293 of bones, 690
Deposits, calcareous, 313
Dermatitis, blastonycetic, 92 of penis, 630
Dermatomycosis, 702
Dermatomyositis, 704
Dermoid cysts of mediastinum, 471 of uterine ligaments, 662 inclusion of pia-nrachnoid, 506 ovarian, 209 of skin, 707
Deterninants, 42
Diabetes, bronzed, 579 predisposition toward, 115
D'abetic coma, 109
Diacetic ac. $\because, 109$
Diapedesis, 121
Diaphragmatic hernia, 569
Diarrhoea, 543
Diastatic cnzymes of bacteria, 84
Diastole of heart, 375
Diathesis, 56, 57
Dichorial twins, 62
Dichotomy, polar, 66
Diffusc parenchymatous goitre, 424
Digestive systent, 522
fever and, 151
poisons acting on, 82
Dil::tation : ncurysni, 407
of intestines, 545
of myocar lium, 392
of uterus, 646
of vcins, 410
of ventricles oi licart, 375
;) imethylamin, 110
Diphtheria, 138
of external ear, 518
of asophagus, 531
Diphtifritic membrane, 438
Dip!ogentsis, causes of, 64
Direct cell division, 38
inguinal hernia, 569
Disease, acquired, 55
canses of, 55
chemical, 75
intra-uterinc, 58
mechanical, 75
proasitic, 75
parturient, 58, 61
plysical, 75
predisposing, 55
functional, 58
of nerves, $\mathbf{4 7 9}$
inherited, 55, 56
postnatal acquircment of, 74
Disintegrative intoxications, so, 10;
1 Disk, choked, 507
Dislocation, congenital, of kip, 6M.

Dislocation of lens，jet，
lissereting alleurysim， 407
｜Wisymuctrical janicepre，tis
Dricention，a calnse of discaser，Fif
His（ommm in liver，e！（\％）
IVestermanii of lungs，4ti．5
llisuse as catase of disence， 115
biversion of complement，16ti
Diverticma of Fallophian tulew，（iaj）； of infestines， 54%
Meckel＇s，i44
of cesoplingus，jizu
1 1worticulitis，：$\% 5$
1）Miar，105
bominant properties， 47
Dunal groove，imperferet closure of，al
lumble cleft palate，it
monsterss， 64
penis，ti30
1）
1）w
－｜iry＂pleurisy， 4 （is
mosynovitis，tiati
Iherins arieriosuc，patent，3sti
Botalli，patent，3sij
fmenlun fever，Laishnatn－1）onov：an
homlies ：mal，！！
1）mulenitis，its

luylic：arion，fusional，fis of myoeardiun． 3 ，
of（ッチ）
of org：als， 70
of 1：1114re：as， $5!4$
ul \because ：gina，（j4！
Jur：1 materr，iol
＂arciama of，50－1
（－hondromat of，io）：
rmbolarliomit of，itl：
tibromat of，5t）：3
hemorrhages of，ithe．iot？
mflammatien of，atle
wintomill of，Ell：

－arconl：of，Ellf
sthlitis of，inl：
Thrombosis of， 5 th
tuluroulosix of．En：
thmors of，ste： 3

（1）14－11．F0．6in
－h1．0！！il：，．5！

1）L1113：\％．111！, 430

1）いだリー， 11 f

E
il：
CHM，Mmalitiox of．ilf

Ear，auricle of，ralcification of， $\boldsymbol{5} \boldsymbol{2} 0$ hemorrhage of， 517 lisperemia of， $51 \overline{7}$ millammation of，515
（Irum membranes of， 517 ：absence of，517 atroplyy of，52t） homorrhage of， 51 s hyperemia of， 517 inflammation of， 5 IS
Listachian tuler of， 517
external，absence of，ist
absence of， 517
angioma of $5: 1$
carcinoma of， $5 \underline{2} 1$
diphtheria of， 515
duplieation of， 515
rezema of，515
exostoses of 520
inflammation of，jls
fibromata of， $5: 1$
furuncle of sis
grimulomiss of，infertive，six
lipomat of， $\bar{j} \geq 1$
mutosis of，5ls

periositio of．．j1s
sarcoma of，5） 1
minareous evet of，ioll
stenosis of， 517
syphilis of， 51 L
tuberoulosis of ins
infrrmal，absence of， 517
hemorrhatge of．iss
hymeremiat of， j sis
inflammation of，sel

： 11 मumata of $5: 21$
（arreatomat of．5） 1
fibroma of， $\mathrm{i}^{2}-1$
hemorrhage of sis
ligperemia of，ins
inflammint ion of，bls

l：Immated bome，tixiz
barlivimoses，35\％）

rysto of pancreas，ois
of Herms，tit！
hyed：a I，e9．4
of lumgs，4tio
of mancles． $1 \mathbf{i z}$ ．

of $\operatorname{urot} \boldsymbol{r a s}, ~(i \geq 4$
EAlimpsia， 110
Lictupiat of harder．hol
cordix．7：
of myoc：ardium，35：it
voirar，73

1ヵ（tッ）
Entoniare，3：
Firtorovir bactoria，sis）
bectotoxins, 1.6
Hezelua, tiss
of auditory meatin, iols
madidnus, 699
prambenilu, tiok
mstulosillı, 699
vesiculosimn, (69!
Efferent uervonts syatelit, 17.5
EIfusion, pleural, 483
bige :Ilbmin, 25
Ehirlichis orders of rexeptors, 173
side-chatin theory, 17:2
theory of immmity, $157 \cdot 160,172$
Flast in, 3 .
Elastoid chamges in ovary, 6.56
degumeratio: 1,30 , fint
Fllectricity as c:atse of disemse, 78
bilcidin, 312
Filophametiasis, (il, 2s1, H11, 70.4
nempomatosal, jete)
of penis, 6:32
of scrotimit. (ifo
of volv:a, $6+1$
EKevation of itteros, 64.5
Fimbolir pmemmonia, 4.5
fimbolisin, 346, :3.51
in brain, 487
of kidues, 609
of liver, $5 \overline{7} 3$
in hmgs. 44!
of lymph modes, 412
of peritomelmm. oftis
of splerent, +115
in refin:s. . 110
stomach and, 8.34
Vmbohs, air, 35:2
atheromithoms. 3.72
binterial, 3.is
ralcurrons, 3.i2
(••11, :3:5)
f:11, 35:
forcien boty, 3.73
m:1s, 3.3 . 3
mematirsoryto, 3:\%

pigmont. 353
"riding." 3.:1
Bimbryomas, spor:rdic, 20!
limbrionir coll, 38
matignancy of neoplisims :mal, 216

Dimpurana, 14!
Fimephalitis, 4S5, 489
Finerphalomalacia, 487
Finchondromis, 2:34
of laryns, fis
Fincesterl hydrocele, 2as!
Eminrteritis obliteratns, to.
Findemir infeetion, $14: 3$
Enchorarditis, 39,3
arortic, 301
gomerrhanal urmhritix : mul, (i2.)

Endocarditis, malignmmt, 3:K
mitral incompetence in, 397
stenosis in, 397
simple, 39.5
ulerative, 39\%
vegetative, $394,30 \%$
verrurose, 394, 39:5
Finlocmrlium, 393
abnormalities of, 393
atherom: of, 390
alleifieation of, 399
dezenerative changes in, 399
hematomas of, 30:3
hemoglobin inbibition in, 393
hemorrhages into, 3:3
inflammation of, 39:3
necrosis of, 399
Findogenons intoxications, 79, 16H
pigmentation, 321
bindometritis, 647
corvical, 647
-orporeal, 647
general, 647
glamdular, 648
hemorrhagic, 64^{7}
interstitial, 61 s
Findoplasin, 19
1.ndosimosis, 3:

Findostral ost eoma, 2:3:5
Eindothelial cells, 127, 138
eysts, 291
neoplasms, 220
-plenommaty, 241
1 issultos. 226
Embothrlioma, 2י27, 27.4, ㄹ.7
of bone marrow, f:l
of brain, 491
of bursic, 678
of dhral mater, 50:3
of hmess t6:5
of lymph nodes. 414
of inammary gliml, (6iog
if nows, 436
of ow:ry, 6.59, bitio
of penis, tis3:
of peritoncum, 567
of piat-arachamid, sepi
of pleurs. for
of saliv:ary glanl, sizu
of $11($ erns, 6.5$)$
Findothelimm, 22:
of boombesels in inflammation.
regeneration of, $1!16$
EAmotoxic besptoris, \&ís
Emlotexins. 1 :if
Fingorgement in pmemionia, (5)
Finnstosix, 2:36, (is?
Fint:ammba coli, !! 3
hystolveim, 93. 0.
Eutcritis, its
ratarrhaI, 5fs
follimular, it?
membranoms, 549
phlegmonoms, it9

Finterocele, 642
Enterokinase, activation of trypsinogen hy, 174
Enuresis, nocturnal, 605
Finzoontic infection, 143
Fin:-me action, 27
growth and, 30
hydrolysis and, 32
kits'ysis and, 28
reversibility of, 30
antiliastatic, 156
antipeptic, 156
of himeteria, 84
distinction of, from ferments, 28
extracelhular, 28
immunity against, 155
intracellular, 28
of lenkorytes, 166
resemblanee of, to toxins, sis
Finsmophiles, in inflammation, 128, 129, $315^{2} 2$
Fosimophilia, 9?, 364
Fimblymal rysts, 292, 4!2
1: 1 matymoma, 247, 492
lipiblasi, 2es
Fphhlastie neophasms, 225, 22ts
Lpiname bacilary colitis, 55 N, , 55?
infertion, 143
parotitis, 528
Fpidirlymis, ti:37
lipignath!s, 65 , 209, $437, .525$
Pimeplırin, 102
finiphysis cerohri. Nce lineal ghand
PMindisitis, 681
1 pi-pinlias, 73,628
1pに位is, $4: 34$
Ifinherlial lasts, :312
'sishs, squamones, 29)2
metaplasia, 204
Marls, 2ti!!

1. fulludioid cells, lizs
F.fиh lioma, 26!. Šre ako Carcinoma, armamolis-relled.
of month, 5ie-
of crophagis, $\overline{5} 31$
of skin, 7 (Mj
of जtomumph, is3!)
of 1150rns, (6) 1
I 1.flidjum, rekomeration of. 1:4

1 in 14s, 230. 50.5
fibronss, 6 s 9
I reninds, lomorrhagic, of stomach, 5i3.

1 - Hhma, bisi
1 Whrow yes, 35s
hernigelolion contront of, 35:!
hertuly vis of, 3.3:
-1 ppiling " of, :3.0!
1 Motlér in wolonid fover, sent

D Dembata, prediximesition loward, 115 "toms. r"sorption of, intoxic:ations . 111. I 10.$)$

Exencephaly, $22,45 \pi$
Exercise, hypertropliy duc: to, 187
Exogenous intoxications, 79
pignentation, 324
Exophthalmic goitre, 101, 424
Fxosmosis, 32
Exostonis, 2:36, (6x8
of bones, 6SK
bursata of bones, (is:)
of external car, 20
Extrophy of bladder, 62:4
"Exuherant " gramulations, 138
Fixudate, 134
Lixudative choroiditis, 513 pleurisy, 467
Eye, 509
anomalies of, ser?
inflammation of, 510
Eyes(rain, 50)

F

Fachal clefts, imperfect closire of, 73
Facultative anaërobes, 84
Fallopian tubes, 6ive abmormalities of, 6:3 3 absence of, $3 ; 3$ arcinoma of, 6.54 divert icula of, 653 double orifice of, 6.5.3 fibroma of, 6.54 gonorrheral infaction of, 6ī4 hemorrhage of, $6 . \bar{n}^{-} 3$ hypermiat of, 65̄3 inflamunation of, 6.5 .3 lipoma of, 654. nyoma of, 654 papillonas of, (ī) 4 syphilis of, (6.54 tumors of, 65: 4 tuberculous infertion of, 6.54
False hermaphroditism, 74 neuromas, 50!!
Familial characters, 47
degeneration, \%)
inheritanee, 47
immmity, 115
Fanily type of lateral selerosis, 4 ta
Fastigimin in infection, 144
Fat in rell, 3:3, 302
embolism, $: 3.52$
formation of, in fat cells, 23
nemposis. 3:3s
of pancieas, 593, 597
sorons at roplyy of, eifs
-forming ferment, 34
-splitting ferment, 3:3
Fatigure, 111
musacular, 113, 111
of nerverell, 114
Fatty degoberation, 12:3, $30: 3$
of kidney, 620
of liver. Sst

Filly degencration of muselos. tiatis
of myorardinm, $3 \mathbf{3}$?

of prosiate, $6: 34$
intiltration, 3th'
of liver, ist
of myorarlimm, 3 sk
of pinnereis, is?
tiswue, regeneration of, 191
Fiumere of tonsils, 436

Fobrile allominuris, 151
Femoral hernia, bib!
Fenestrition of somilunar valver, 303:3
Ferments, distinction of, irmen (rizymes, 롱
fat-forming, 34
fat-splitting, 3:3
lipolytic :34
Ferilization, 14
Forvesernere in infertion. 144
Fover, 14!
asthenic, 150
chills and, 149
contimusl, 14!
(listurh:unces, assoriated with, 140 in hlood : imd 1.5 t$)$
in (irculatory systemand, $1: 00$
in digestive sysiom :ntul, 1.11
in nervolss syst em and. 149, 1.0
in respiration :mal, lat
in urinary syetem and, . it
intermittent, 14!
rclapsing, !
recourrent, $14!$
remittent, 14!
rigor amel, 150
st horive, 1.00
typhoid, in! - -in. 3
Fibrillary twit ching of monelors. 1st
Piharillation of lacirt, Bive
of vitreons hmmor, ilts
Fiblimogen, 2.9
Fïhrinons: bromehitis, 41.5
Enflammation, 13.1
pleurise, 46s
vegetatimax, 183
Pihro-idfenomil of m:mamary glamd, titio
1-ihrohtants, 12.5. 131. 13:2
F̈̈bro-enehomlromi, 2:31
"P̈̈hroid! phthixis." Iti2, 4 ti 3
Iterinc, $2: 11$, (6.5)
Fت̈broma, 2:3?
of bome marrow. 4:
of brain, 4! 1
of hather, tiz27
of burs:e, tizs.
of conjunctiv:a, 3 \%
uf eorne:a,
of (:ar. $\bar{i} \geq 1$
of liallopiall mber. ti.)
of intestmes, int
of kidhers, ti? 1
of taryux, 113

Fibroma of tiver, ins? of lungs, 465 of mammary gland, 6:2
of mouth, $i 2.5, ~ i 26$
of musicles, 676
of myocardium, 3!3:
of nowe, 436
of ovary, tis?
of penis, ti333
of pritoneum, isto
of pist-arachomoid, Ext;
of plarenta, 6 (64
of plemra, 4\%
of skin, $\overline{0} 95$
of stomach, isis)
of urethra, tie?
of uterine liganurnts, (ifis
of volva, $6+11$
Fibromatoid growths, 2.30
Fibromatosis, 247
of manmary glind, fi6s of optice nerve, 517 of peripheral nerves, 509)
Fibromyona of plicenta, 66.4 of uterus, tist)
Pibrosarcoma, 2iti
Fibrosis, 125, $1+1$
in arteriosclerosis, 142
due to strain, 143
of heart valves, 398
inflammatory, 142
of lung, interstitial, 465
of myoctrelim, 357, 391
nequ)lastie, 143
non-inflammatory, 143
post-fibrinous, 143
proliferative, 142
replarement, 142
of wrins, 410
Filari:s nocturna, !9!
s:mgnin is in ureters, 624
Filarinsis, 411
F-ilt rable viruses, 92
Fïssion of os uteri. 644
Fixsure, ahominal, 72
stornal, ブ2
vesico-vigginal, 73
Fïssured larynn, 44t

of larynx, 440
rectovigginal, 643
uterorectal, 644
uterovesical, ti44
vesico-mmbilical, 625
resico-vingimal, 643
Fixation of eomplement, $16 \overline{ }$
Fixed tissues in inflammation, 131
Flagellata, 0-4
Flat worme, ?s
likshy mole, 212, ti04
Flexion of nterus, 645
Foosil change in nervous system, wis necrosis, 32s
Fortal adenoma of thyroid glame. I

Firctal inclasions, 2ts lobulation of kidney, fors
Fiat lis, 666:5
acarliachas ancepos, tio3
arephalus, tie)
atormus, th3
amorphins, ti^{2}
death of, ti65
reffert of, upon mammary glamd, $10: 3$ of placental dimeswe upmot tio
mumnifieation of, (6ib:
serretions of, 10:3
s.jhilis of, titb:

Poulicular colitis, fiss
(ysts of ovary, 6it)
(interitis, 5t!)
gast ritis, 8335
tonsillitis, chronir, +40
fomites, transmission of bactoria by, (0)
$\operatorname{Finnt-(Iron),~को)S~}$
Finamen exemm, 423
linere. reserve, 37
lomeign borlies in bronchi, 4ti
pmbolıs, 3ī̀3
in joints, 6i!4
in prostate, 63:3
in ireters, tis:3
in urethra, 69?)
in utcrus, 64!
Pratetures, healing of, 19:3
of ponis, $6: 33$
Pragilitas ossium, 679
fruguncotation of myoc:arlium, 391
Framberia, os
Prowhlss. $70: 3$
Prew protecins, 2π
Promine of skin, bes

Finlmin badies, Ruswel's, :112
T'ithinating infertion, 145 adrmat of lunges, $4+7$
Fintiont. growth and, relationship bewrent, 315
1 metional cell activity, 3 s diveasers, inheritance of, is
Furmele of anditory moatus, 61 S of skin, 7 t)
Pıifirm :menry:m, 395, 407 hromehiectasis, t+t)

- ish:aptophoritis purnkenta, 667

1. H1-hlahler, 591
almormatities of, :9!
al)wernce of, 5!l
carcinoma of, 592, 593
granulomats of, 5! ?
Tremorrhages of. ial
intlammation of, is!
arl(olti of, $5!91$
stronmen, i993

Gall-blader, tumors of, 5! 2 duct, abomormalities of, Sis :atresia of, 591

grammlomas of, 5! ${ }^{2}$
hemorrhages of, 591
inflammation of, o4l
obliteration of, $5!1$
arlema of, sol
sarcoma of, 593
fumors of, 59?
" (ialloping consumption," 4ti2, 4ti:3
(iallatones, 31 s . Ner ako Calculi, biliary. in peritonemm, attit
Ganglion of temdon sheaths, tiat
(iangrene, $34 \mathrm{~S}, 3 \mathrm{H}$
(lry, 3:3t)
moist, 3:30
of skill, 700
symme (rical, 326, 33!)
Gangrenous appendicitis, ions bronehitis, 445
inthesusereption of intestines, ith stomatitis, i 24
Gärtner's duct, rysts of, 2x!
(ias embolns, 35)2
(iastric juice, artion of bacteria on, ist)
(hastritis, 535
artite, 535
atrophie, 53ti
chronic, 53.3
follieular, 5335
membranous, 535
phlegmonous, 53.\% polyposa, $5: 3 \mathrm{~B}$
Gastro-int estinal intoxications, $1 / 1$
Gastrothoracopagus parasiticus, 70
Gelatin, 34
Genital glands, teratoma of, 200 passages, entrance of bactoria through, 00
Genitalia, female, external, 610
(ingraphieal tonglo, 524
(ieotropism, 190)
Germ cell, 44
Germplasm, fusion of, $4 t$) molecules of, 46
Gestation, ectopic, (i66 interstitial, tifio tubal, tis2
Giant eells, 139
cmbolus. 352
in infective gr:mulomas, 140
Giant-celled mycloma, 2:35, (is!) sareoma, 237, tis!
Giantism, 61, 678 of breast, 668
(iin-Irinker's liver, 5%
(iingivitis, 52:3
Gland-cdled carcinoma, 272
Gland-eysts of brain, +!22
(ilanders of kidner, til)
of larynx, $4+3$
of hongs, 405
(ilanders of muscles, tion
of mose, 430;
of skin, 7 (1)
of spleroll, 41s
of stomach, $\mathrm{iz3} 6$
(ilands of barthohn, eyste of, itis ('owper's, tis3
hypertrophy of, congenital, 206:3
regeneration of, litit
salivary, ios
(ilamdular cudomet ritis, 6.48
hyprertropley, rongemital, 2bis
(ilaucoma, illi
(ileret, ti2x
(ilia, 4 Tis
(ilioma, 240
of brain. 491
of peripheral nerven, ax)
of retima, isio
of spinal corl, sol
(iliomatosis, $246,4!1$

(iliosis, 246, 4!!
(iliswon's capsule, inflammmion of, ist
(ilohin, 2i)
(ilobular thrombons, 34:
(iloboulins, 25 serum, 25
Clossina monitans, (M; pialpalis, 96
Clossitis, $52 ;$
(ilottis, odelema of, $4+1$
Ciluge's corpuseles, 4N:)
(ilycogenic artivity of liver rells, 31
(ilycogenous infilt ration, 3tit;
(ilicolytic enzymes of bicteria, it
(ilycoproteins, 25,34
(ilycosuria, pancreas in, 504
(ioitre, iliffuse parenchymatons, 424 exophthalmie, 101 thyroid, 2!
(ionorrhoa, predisposition mazarl, 115)
(ionorrlumal infection of Fillopian tules, 6.54
ophthalmia, til uretbritis, 62x
($\mathrm{B} 011,107,675,694$
faulty metabolism and, Itro
predixposition towarl, 115 tophi in, tiol 4
Grafting, I99. Sef also Transjlatutation.
(irmular rants, 312
degeneration, 12:3
kinhey, small, filf, tily
pharvingitis, 439
(itanulation, "exuberant," 138
fissur, 126, 1:36
(iramales, Ilmmam's. 301
of muclous, 2.2
secretory, 22
(iramomas, infective, lise
of conjulurfiv:a, $\overline{\text { ol }} 1$
of corne:a, .il2
of car, ils
(iranulomas, infective, of gall-bladile of fluct, 592 of iris, 512 of panereas, $\%$ \% of peripheral nerves, ©ing of akin, 7 t)? of spimal cord, 4!8, 409 of lewters, tisis of vilva, $6+1$
(iravel, bile, $31!$ in ureters, 62:3 urinary, 31%
(iraves disenase, 424
(iravidie neuroretinitis, iflt
(irowing-point theory, (is
(irowing joints, branching of, 66
(irowth, 34
(pzyme ation and, 30
function and. relationshij, betw 36
halit of, 250
limits of, 3 ts
relation to cell artivities, 3.5
(inanase, 107
(ilanin, 27,1) 7
raleuli, 31. 8
(ininea-worm in skin, 7t);
Gimmma, 138
of bone, 684, 68.5
of brain, 48!
of iris, isl2
of lungs, 46.5
of mouth, 525
of muscles, 675
of myocarliom, 3 ss
of pia-ararhnoid, stht
of skin, TOl
of spinal cord, 49t, 500
(iymecomastia, 6ift)

H

Ilahit, 36
of growth, 28.)
Hair, 708
regencration of, 1!s
Hairiness, tio. 5
Hairy tonguc, 312
IIolisteresis, 685)
IIalteridium, $\mathbf{9} 5$
Hanot's cirrhosis, 57!), 5x:
Haptines, 174
Haptophore, 157
Ifaril chanere, ti30
Marelip, 73, 522
Hay fever, 117,435
Healing of neoplasms, 22:3
nleers, 700
Heart, 371
arrhythmia of, 379
auricles of, 371
muriculoventricular valves of, 37:
block, 378
alli-blatder, 592
ves, 50)
N. 499
of, 66
whip betwen,
cs, 3.5

Heart, diastole of, 375
endocardium of, 393. Ser ula Henatosalpinx, 6iñ Endoeardinum. fibrillation of, 3 st) interuuricular septum of donble Ifematozoón malariac, "i origin of, 3ヵ, "
intraventricular septum of, defeets of, 3 st
imsele, disense of alteration in Hemochasties, 81 distribution of blood and, :3:3ti in Hemoconia, 366
myocardium of. sice Myocardinin. nervons merhanism of, 37\%
perientilium of, 3 so. Sice also Perieardim.
poisons aeting on, 82
rupture of, 391
semihunar cusps of, rıpture of, 399 valves of, :37 6
septum of, ucreserory imperfoet, 3Et, deviations of, 386
systole of, 375
"thrush-breast," 3c0
valves of, aboormalities of, 39:3 fibrosis of, 3!8
vegetations in, 349
ventricles of, :373
!1cut discharge, its profluction, 1 . Ls regulation, 148 stroke, is
H19nachronmosis of liver, 5\%9
Hemangio-endothcliomn, 27\%, 281 of bones, 689
of capillaries, 410 of liver, 589 of pia-arachnoid, smi
H-mangionas, 278 bastomatoms, true, 2so of capillaries, +1 t) of intestines, stit)
I! (rmamgiosarcoma, +1t
llematemesis, 3 :54
IInn:thilrosis, 354
ITmatin, 2.5, 3.t
1hem:athblests, 194
Hamatocele, 3iat, titi
Hematogenic phemmonia, 451 fuberenlosis, tit 4
Itrmatogenous hyatime degeneration, 311
Hamat thehatine degeneration, 31 I
Hamatomidin, 3iots
bigmentation dhe to, 322)
li, matcina, 3.54
ilute-nterine, 661
:anris, 517
of emtor:trdimm, 393
iur raligamentons, 661
of musides, 6:-
prot-uterine, bint
of vulsa, biti
If mitomotra, titts
Hemmatopericariliun, 3.7. 3x:2
lomatoporphyrin, pigmentation due to,
ine
Hemofuchsin in liver, 322, isti
Hemoglobin, eomposition, of 24,25 imbibition, 322, 35:t
in endorardium, 3!9:3
pigmentation cha to, 321,322
variations in, 35!
Hemoklobinuria. 322, 604
Hemohepatogenoms janndire, 324
Hemolymph notes. 11 I
Hemolysis, 164, 35:
Hemolytie splenomegaly, 241, 5\%!
Hemolyties, 81
Hemophilia, 47, 356
Memoptysis, 354
Hemorrhage, 354
cerebral, 498
effects of, 3:55
in lung, 448
per diaperlesin, 339, 354
per rhexin, 330, 354
retinal, 510
in typhoid fever, 55is
Hemorrhagie cysts, $287,293,356$
of brain, 492
of manmary gland, tio\%
encrphalitis, 488
endometritis, 647
crosions oî stomach, 5.34
infaret, $3+4$
of intestines, 54
inflammation, l:34
mole, 212
nephritis, til2
otitis media, 5IS
paneratitis, 50\%
peritonitiv, s(i3)
Prarisy, 469
rutinitis, 514
vertienmia, !!
Hemorrhoid, 27s, it5
Hemosiderin, 35it
in liver, 5 sti
pigmentation dhe to, 32?:
IFep:ir lobatum, 58:
Impatitis, 573
acute, 573
suppurative, 574
Hepatization of lung, ti52
Hepatolysin, $16: 3$
Meredity, 46
variation and, 47
Hermaphroditism, it
Hemia, 568
abdominal, 569
epigastric, in 09

Hernia liaphragmatio, ins
ext rual, intis
fromeral, itis)
incarceration of, intis
inguinal, ithin (lireer, intis
incompletr, ibi!
olligures six
intermal, siss, iti!)
obeurator, itios
perimeal, ixt?
redmeible, itis
valatic, intis
srotal, otit
umbilical. Fiz, ati!, (ini.i
vatginal. Ein!
Herpery 69!
of cormen, il?
facinlix, (ions
dibhialis, gie: 3
prepusialis, 6 (\%)
progenitalis, disu)
of \sin, tiles

IIcerrolysin, Itia
Iletrrolysis, liki
Ilat(roöphal twins, t_{2}^{2}
Hercroplasi:1, 20:3
Ihtreroplastic osteoma, : $: 3 \mathrm{i}$ (rathiplantation, 1!!)
Iletrrotepia, 20:3, 4N6
Hetcromopic hyprrmephrom:ıs, „-і
Hip, congental dislocation of, $\mathbf{6 9 0} 0,691$
"Hip-joint disease," (ist, w!:3
Iliruchaprang's dise ase, ith, itio
Hirshties, 0905
His, bundle of, 3:-
llistolysis, normal, m! mi
11, hn:

1log-hack kidnce, 61:3
Ilumoplastic: risicomal. 2:3\%
Ilometropisill, 20)
Itormennes, I(M)
Ilorn* entanmors, 2.54, 70:3, 70.;
llorseshoe armonals, 4:1 kidney, 1;
Hottratot aprem. (itu)
Hourglass somuth ! , - -3:3
"llonsemairl", kue." "bat

11 salime cases, 3I2
rells, $36: 3$
mononurlequr, I:s
change in myocandinm, z! in ov:lry, (6.14

"if artaric's, 40) of capillarios, +10 of kidnery, (i20) of lamph noders. 11:3
iii :mst:16, li?:

Hy:aline rlepmit, 33 mi
hermati fromos, 311
mfileratwon of capillarios, 110
mumermedear cedl, l:3I, I:
thronhlose, $3 \cdot 17$
119:alo-r"lichundroma, 2:31
Ilyaloseronitis of liver, jxl

in plemrisy, 1 li!!
 of liver, o(m)
erhinoworens, 2! 4
of Norgakni, 2s!! bin: molv, こ!!
Ilyratirliform mole of placeruta, ditit
llydrammion, (iI, lifio)
 of herorl plasina, 3.is plethora, i33is
Hylic tixsurs, 22:5
Hyalrocele, 3tik, $6: 30$
errvieal, exi
encysted, 28!
of fourth ventricle, 2!?
scrotal, 291
of tunica vagimalis testis, ti.36
I1vilrocephaluw, 61, $299,366,456,495$
Hydrolywis, chzyme action ind, is?
Ilydronet ra, 291, 646
Hydromyclia, 4! 5
Mydroneplirosis, 75, 293
fron kinks in nroters, (i2.3
IIvaropericardium, :3iti, 3s1
Ilyiropie degencration, zat
Hydrophamothorax, 468
Ifodropes eystidis falleur, i!!
ex varuo, 209, 304, 331
vesirur fallerr, z! (M)
IVylrosilpinx, 200, 654
II vilruthorax, 333!, 3166, 370, 466 chylous, 16%
Hymonna, a!
of bur:ir, (fos
colli, 292, 411
privtic. 281
of neek, 367
of orhic, 517
of tendon sheath, liä
Hylie neoplasins, 225, 2066
tumors, typieal, of mesothelia origin, : ils
Ilyomas, 2e26
Ilymen, 64I
absurnt, ti41 imperforate, 6.11
Hypamnios, 61
11yphonnycetes of lungs, 46:) p:ithogenie, 92
Ilypisofomie solittons, osmosis and. :i:;
llyper"mi:s, 3:37
artive, :3:37
of adremats, 422
of bladeler, 625
of hone marrow, 419
11)

I! fertomins, 48:3
Hipurtrichosis, (iz, bil. J, Jo
Hipurtrophice (irrlıo.is. b-!! rlinitis, $4: \beta i=$
H6ルreropliy, 3N, 1Ni :Iroumegily :mml. IN!

of : ittaras: fo!

Hypertroplyy of Dadder, tizti
romperisatory, INs of 1 est (ex, 6is!
eongomital glandular, eltis
of heart, 391
of interfiner, sith)
irritative, Ins
of killncy, tizo
of liver, iss!
of muscles, bitis
of invorarilinm, 3n.j, 3:3!
nut rítionnl, 188
plysionogical, INT
of prontalle, $6: 34$
simmatatel, $18:$
sympatheric, 18!
of utorine ligamonts, tifis
of uterus, bioll
vicarions, ISs
IIypinosis, 347, 3iN
IIypoblase, 22:3
IHyohbastic nooplasms, 22it, 2ets
Ilypogenesis, polar, 70, $\overline{7}$
Hypophesis cerchri. Nir l'ituitary body.
Ilypoplasia, 70, 2!s
of adrenals, 421
of aricries, $f(0)$
of laryinx, 440
of mamme:ry slamel, titit;
of myorarlium, 3 Ni)
of ovariex, 6 6.5
of mancreas, i9.4
of testis, ti:37
of thyroid gland, 4et
of ulcriss, 64:3
Hypoplastic penis, 630
milateral, prostate, ti3is
Hypupon, siz
livpospaulias, 57, 628
Iypestatic congestion of langs, 4. 4°
pheumonia, $4 \pi^{2} 2.45$
IIpoohyroidism, 421
Ityoxanchin, 27, 107
IIysterical paralysis, +N:3
IIysurovele, 64t

I

Icnthyosis. 312, 60.9
leing liver, itis, 5si
Icterus. see Jinmilico.
Idiosinerasy, 117
Imbibition, liemoglubin, :32:2
Inmume body, lit
serum, lit.
Immunity, 152
absolute, 152
acpuired, 115, 116
against abrim, $1,-4,15 \%$
alluminoid vegetalle poisoms, 1.54
enzymes, lini
phytotoxin, 1.5

$$
\longrightarrow
$$

(ANSI and ISO TEST CHART No. 2)


```
APPLIED IMALJE Inc
    1655 East Mun Street
    Rosnester. New York 14609 USA
    (716) 482-0300 - Phone
    (716) 288-5989 - Fax
```

Immonity against ricin, 154, 15.5 robin, 154, 150 substances of known constitution, 1:33
of unknown constitution, 15.5.
anaphylixis and, 170
Ehrlieh's theory of, 1:5-160, 172
familial, 115
non-specifir, 152
passire, 154
relitive, 152
side-chain theory of, 1:57-160, 172
theory of, 172
Imperfert elositre of anterior boly surfiree, 72
of branchial clefts, 74
of clursal groove, 71
of facial clefts, 73
Imperforate hymen, 641
Imprtigo, 699
Implintation, 199 cysts, 293, 707
Inantivated serum, 164
Incarecration of hernia, sos
Inclusions, abiominal, 20! dermoids of pia-arachlmoid. 506 fotal, ZO_{O}
Incompetence of heart valves, 397
theomplete inguinal hernia, sib!
Incontinence of urime, (60:)
Incrustations, calcareotes, 315
theubation period of infection, 144
Individual inheritanee, 48
Indol, constioation and, 111
Indolent bulo, $\mathbf{t i 3 1}$
uleces, 700)
Incluration, "brown," of lungs, 44S in pheumonia, 4s
eyamotic, of kidncy, bion of limgs, 44s
me liastinopericarditis. 384
Indurative pneumonia, secondary, 4.9\%
Inertia. physiological, 36
Inf:mtile seursy, 6Sts
lufirrt, 32x, 341, 343
of alrenals, 422
amemir, 344
of bones, tif?
formation of, :343, 34t;
liemorrhagie, 344 of intestimes, 547
of liver, 572
in hungs, 448
of museles, 674
neerosis :nd 32 ,
of placenta, 644
rel, 34t
results of, 345
uric arid, 317
white, 344 of liver, 572
Infaretion, 34 :
lufretions. .5!. si. 14.3.

Infertions, acute. 141
chronic, 146
complications of, 144
contimued frbrite, $14!$
course of, 143
(risis in, 140
"eryptogenic," s!
defervererner in, 14. 149
endemic. 14:3
enzoôtic, 143
epidemic, 143
epizootic: 143
exacerbation of, 140
fastigium in. 144
febrile state in, 144
frovesemer in, $144,14!$
frver in, continturl, 144
fulminating, 145
grades of, 115
incubation perion of, 144
latrat, 121, 146
localized. $14{ }^{\circ}$
lysis in, 149
metastases in, 145
morles of, 88
persisting, $14 t$
premonitory symptoms in, 144
prodromal symptoms in, 144
pyrogenctir, $14!$
remittent, 146
sequelie of, 144
of spinal eorl, $4: 4$
sporalic, 143
stages of, 146
terminal, 121, 147
wound, s!
Infectious alhuminuria, 60:
Infective granulomis, 138
thrombosis of clura mater, 5月1
Infiltrations, 300
of arteries, 401
of capillaries, 410
"fatty," 30"
glycogenotis, 306
lipoid, :30:
of liver, sist
of lymph nodes, 413
of myocardium, 3 SS
of piancreas, 597
of spleen, 418
Inflimmation, 118
of adrenals, 422
Bacillus typhosus and, 12i
of blatder, $(625$
bloot cells in, 128
of bone marrow, 419
of bomers, 680
of brain, 488
of bronchi, 444
of bursme ti7k
catses of, 120
catarrlat, 133
cell proliferation and, 119)
-lpmiotaxis antl, 119

Inflammation of choroid, 513
chronic, 13:
of ciliary body, 512
of conjunctiva, 510
of cornea, 511
of Cowper's glands, 636
diffuse, 141
of drum membranc, 518
of dura mater, 502
of car, 518
endothrlium of bloodvessels and, 127
eosmophile in, 129
exudate in, 134
of eye, 510
of Fallopian tubes, 6503
fibrinopurulent, 134
fibrinous, 134
fibrosis and, 142
fixed tissues and, 131
of gall-bladder, 591
dluet, 591
hemorrhagic, 134
of intestines, 548
of iris, 512
of joints, 691
of kidney, 609
of larynx, 441
of liver, 575
of lungs, 450
of lymplı nodes, 412
of lymphatic vesseis, 411
lymphocytes in, 128
of mammary gland, fir
of mediastinum, 4\%
membrane in, 134
of niddle ear, 518, 520
of month, 523
mucopurulent, 134
of mueous surface, 13:3
of muscles, 674
of nails, 708
necrotic, 134
of non-vascular area, 134
of nose, 435
of cesophagus, $5: 31$
of optic nerve, 517
of orbit, 517
of ovary, 655
of pancreas, 59\%
of perins, 630
of peripheral nerves, 507
of peritoneum, 56:3
of pharynx, 437
phlegmonous, 134
of pia-arachnoid, 504
of placenta, 664
of pleure, 467
polynuelrar leukorytes in, 12s
purulent, 134
of retina, 513
serofibrinous, 134
seropurulent, 1:34
of skin, 696
of sprematic eord. 641

Inflammation of spinal corl, 495
of spleen, 417
Staphylococcus pyogenes and, 1! 1
of stomath, 535
of teeth, 526,527
of tenton sheatlis, 676
of tentons, 676
of testes, $6: 38$
of thyroid giand, 424
of tonsils, 437
of tunica vaginalis testis, 6;3)
ulcerative, 134
of ureters, 623
of urethra, 628
of iterine ligaments, $6 i 6$
of uterus, 647
of vagina, 642
of vas deferens, 640
in vascular area, 12:3
of vulva, 641
of veins, 410
wandering cells and, 11!
Inflammatory fibrosic 142
adema, 370,447
tumors, 207
Infusoria, ciliate, 97
lngrowing toe-na : 708
Ingninal hernia, 568
Inhalation pneumonia، 456
Inhibitive poisons acting on muscular system, 81
Inheritanee, 46. See also Heredity.
of abnormalities from previous generations, 57
of acquired characters, is: 3
"antispecific" characters ant, 57
atavistic, 48, 50
blended, 48
cumnlative, 50
familial 47
forms of, 47
of functional diseases, is
of hypospadias, 57
individual, 48
Mendel's law of, 48
normal, 51
non-, 51
"paraspecific" (1nalitics ant, 57
parental, 48
partieulate, 48
of polydactylism, 57
progressive, ol
racial, 17
retrogressive, 51
reversionary, 50, 51
theory of, 51
Inheriterl disease, 55
pathological states, 56
predisposition, 115
Iniencephaty, 72
Inoculation, cells of tumors and, 287
Insecta, 08, 100
Inserts, transmission of bacteria by, en of sporoza: by, 17

Inspissation in gatugene, 3:3t)
uratio, in infancy, 317

Intention | remor, 4 St |
| :---: |

luteraturicular septum of he:ar* donble origin of, 385
Intereurrent relitpse, 146
Intermediate body, lits
Intermittent fever, 14!
Internal seeretions, 100, 216
Interstitial emphysema, +50
entlomet ritis, 6.48
fibrosis of lungs, 413 j
myocarrlitis, $35 \overline{7}$
nephritis, (iNK), (il4, 616
arlemat, 363
Intertrigo, 6999
Intervent ricular septum of heatt, Hefects of, 3 sif
Intestinal bateria, 8.
tract, entrance of h:actorial through, (1)
secretions of. 10:3

Intestines, abmormatition of, ivit
atrexia of, iolt
ancmia of, isti
(arcinoma of, ofeo
cysts of, ist
dilatation of, 5h
rliseases related to secretions of, 10:3
diverticula of, itis
fibromat of, sitio
liemangioma of, 8 ofo
hemo:rhage of, it occult, D^{2}
hemorrhagie infarets of, ith
hyperemia of, s 4 f
hypertrophy of, 560
ififlammation of, ists
intussusception of, i-4.
gangremotis, : 44
invagination of, itti
large, 541
liponat of, $5(60$
lymphangioma of, ittol)
lymphosarcomat of, ixt
invoma of, iffo
papilloma of, : atio
poisons arting on, s?
sarcomat of, 501
smaill, it 41
stenosic of, int 4
strangulation of, it 45
syphilis of, ion
ruberculosis of, 55.3-5.5.
tumors of, 560
t yphoid fover and, int!
nleer of ints
varices of, 547
volvulus of, 54.5
Intoxication, 5! , 7!. 1/1\%
bucterial, 8,5

- distinction wer. from infection, 8.
(lisilutegr:tivo, stl, 10.i

Intovieation due to non-climinated produets of katabolism, 104
to resorption of exaretions. 10.) andogenous, 70,100
exogenous, 79, s4
gasitro-int est inal, 111
internal secretory, 79
intra-uterine, as calluse of divense, is
me:abolic, so
mon-parasit ic, 79, s0
purasitie, 79 , 84
sapremic, 145
sturophytic, 79
It, racanatieular fibro-adenonata of mam-
mary gland, 670
Intracollular enzymes, 2 s
fat arcumulations, 302
Int racestic papillomas, $2(61$
Int raligamentous hematoma, 661
myoma of uterus, biono
Intraniural myoma of uterus, biot
Int ra-uterine cause $;$ of disease, 5 s
Intus susception, 545
Invalgination of intestines, 545, 546
Inversion of uterus, 64\%
Involucrum of bone, 6s0
Involution cysts of manmary gland, (iso
Ionization, water and, 32
loslothyrin, 100
Iridoevilatis, 512
Iris, ibsence of, 509
gumma of, 512
hyperemia oî, 510
infective granuloma of, 512
inflammation of, 5l2
pigment of, abselice of, 509
sarcoma of, 515
syphilis of, 512
tuberele of, 512
tumors of, 515
Irritation, definition of, 11 h
grades of, $1: 2$
local reaction to, 118
Irritative hypertrophy, 18s
poisons acting on muscular sy-tim, S1
Ischemiat, 3:35
Isolysin, 1933
Isoplastic transplantation, 100, 201

J

Jacksonian convulsions, 4is
Janiecpse, is
Jaumblice, 343, 703
catarrhal, 32:3, in91
hemohepatogen. 1s, 32.1
obstructive, 10.2, , ie?
skin in, 70:3
Jcјunum, 5. 11
Jomins, 6! 0
abmormalitics of tion
ankylowis of, 6:9

Joints, atrophy of, 6014
(:uries of, 69): 3
"Chareot's," (904
corpora oryzoitcea of, $6: 94$
foreign borlies in, 694
hemorrhage of, 691
inflammation of, 60)
lipoma arboresecons of, (69) $)$
metaplasia of, 695
ochronosis of, 691
osteo-art hritis of, 691
sarcoma of, 6!5)
subluxation of, 6:91
syphilis of, 69:3
tuberculosis of, 69:3
tumors of, 695'

K

Kiala azar, Le shman-Donovan borlies and, 95
Karyokinetic ed division, 13ふ
liaryolysis, 23
liaryorrhexis, 23
Katabiosis, 35
liatabiotic activities of cell, 3is
liatabolism, effeets of proxituct: of, 104
non-eliminated probluets of, intoxirations due to, 104
Kitadidymus, ti?
kitalysis, action of maymes by, 2 s
Kataplasia, 299
Kalhons, 32
Kirlon of skin, 705
Kephatin, 27
leratin, 312
Keratinization in rareinonat, 270) pathological, 312
Kioratitis, 511
parrenchymatous, diffuse, 5ll
phlyctenular, 512
suppurative, ol?
Karatolyaline, 312
Leratosis of penis, 63:3
lỉhey, bios
abmormalities of, 60s
absenee of, 60S'
artinomycosis of, 619
adenoma of, 621
anyloid of, 620
:memia of, 608
angioma of, 621
amomaties in shupe of, bos
at rophy of $61 \overline{7}$
biveleria in, 88
carcinomat of, 621
clondy swelling of, ($i \geq 00$
congenital esstic, 2N:
rivis of, 623
heqencration of, tizo 2)
ambolism of, tieg
fibromats of, $6 \mathbf{i} 21$
futal Iobulation of, 60)

Kidney, glamders of, 619
Lrambar, small, $614,61 \%$
hog-back, 613
horse-sliof, (30)
hyperemia, 60.)
hypernephroma of, (is1
hypertrophy of, 620
induration of, ryanotic, tin!)
inflammation of, ti09
large mot terl, 6i:
rexl, 612
white, tile
leprosy of, (il!
lipomist of, 621
mobility of, 60S
myomas of, 621
myx minas of, 62 I
nerve supply of, 600
pelvis, disturbances of, (ize
pignents in, 620)
poisons acting on, st
regeneration of. 191, 196
sarcona of, $0 \cdot 1$
"surgical," 817
syphilis of, 61!
telangieetasis of, 621
teratol)lastoma of, $6: 1$
thrombosis of, (it)!
tubereulosis of; 61s
tmmore of, 275,621
unilateral, 608
urir acid in, 620
vascular supply of, 600
Kink of ureter, tis: j
Knee, "white swolling" of, (ixit, 60):
Koplik's xign, òe3
Krumrosis vilvar, 641
Sinpffer's star rells, inc(;
liyphosis, 6s:3

L

Labia, 640
almomalities of, 6:10
actenia of, $6+1$
Labor, premature, catises of, tio
Laburinthitis, 519
Lacrimal concrenments, 315
Larnnee's cirrhosis of liver, itis
Lateing-lobe in liver, ist
"Laking" of blool, 360)
Laryngitio, ${ }^{+4 \theta}$
nente, $4+1$
catarrhal, 441
chronic, 442
membranous, $4+1$
phlegmonous. 4!?
syphilitic, $44: 3$
tuberculons, 4 ± 2
Larynx, 42s, 440
abnormalities of, 440
absence of, 440
actinomycosis of, 443

Larynx, atlenona of, 44:3
alteration in size and shape of, 444 athemia of, 441
at resian of, 440, 44
at ropliy of, 443
carcinoma of, 443
cysts of, 44:3
enchondroma of, 443
filoroma of, 443
fissured, 440
fistula of, 440
glinders of, 443
hypoplasia of, 440
inflammation of, 441
hyperemia of, 411
leprosy of, 443
lipяна of, 443
lumen of, obstrurtion of, 444
ly mphangioma of, 443
myxoma of, 443
papilloma of, 443
rhinoscleroma of, 443
sarcoma of, 444
tuinors of, 44:3
Latent infection, 121, 146
Lateral selerosis, amyot rophic, 499 family type of, 49:
Lathyrism, 501
"Laulable pus," 138
Lead neuritis, 508
poisoning, blue line in, 325 peripheral nerves and, 508 pigmentation and, 325)
Lecithin, 27, 34
Leionyoma, 241
of vagina, 643
Leishman-D Donovan bodies, 05
Lens, 515
dislocation of, 509)
opacity of, 509,515
Lepidic tumors, 220, 257
Lepiclomas, 226, 257
transitional, $2 \overline{7} 4$
1.cpra, 701, 702

Leprosy, 508
of bone, 685)
of brain, 490
of conjunctiva, 511
of kilney, 619)
of laryns, 443
of nose, 436
of peripheral nerves, 50 s
of pleura, 407
of skin, 701
of splecn. 118
Laprons norlules of mouth, 535
Icpitomeningitis, 504
Lencosrhea, 643, 647
Lerukemia, 304
lymphatic, 240, 365, 414
my clogratos, 238, 365
Loukorytes, 362
action of. on hacteria, 87
enzymes of, 106

Lenkocytes, granular, 362 neutrophile, 362 polymorphonuelear, 362 polynuclear, 362
in inflammation, 128
regeneration of, 104
Leukocytosis, 364
alimentary, 364
polynuclear, 364
terminal, 364
Leukoderma, 695, 703
Leukolysin, $16: 3$
Leukolytien, 81
Leukopathia, 70 S
Leukoplakia, 312, 524
of nails, 708
of asophagus, 531
Leukoproteases, 106
Lichen, 699
serofulosum, 609
Liebermeister's grooves of liver, 570,584
I ife-cyeles in spozozoa, 96
Ligaments, uterine, 661
Light as eause of disease, 77
Linex albicantes, 703
Linin, 18
Lip, median eleft of, 522
Lipases, 34
Lipemia, 358 of blood plasma, 35S
lipochondroma of peritoneum, 567
Lipochromes, 27, 34 pigmentation due to, 324
Lipoid degeneration, 305 infiltration, 305
Lipoids, 24, 26
Lipolytic ferment, 34
Lipoma, 233
arborescens of joints, 605
of bronchi, 446
of conjunctiva, 515
of ear, 521
of intestines, 560
of kidncy, 621
of larynx, 44:3
of lungs, 465
of mouth, 525,526
myxomatodes, 2:32, 233
of peritoneum, 567
of asophagus, 531
of penis, 633
of peripheral nerves, 509
of peritorcum, 567
of pia-arachnoid, 506
of pleura, 470
of stomach, 539
of tendon sheaths, 677
of utcrine ligaments, 60^{2}
of uterus, 6 है)
of vulva, 642
Lipomatoid growth, 233
Lipmomatosis, 62, 2?3, 705
Liposarcoma, 256
Liquefaction of vitrcous humor, 510

Lithiasis, mrinary, 316
Lithoparlion, 314, ébt, titi.j
Liver, 5 (i) 570
abnormalities of, 570
arcessory loless of, sito
actinomycosis of, 5x:3
arlenoma of, Es:
amorehic ahscess of, :i7.)
amyloid of, 5×5
ancmia of, 570
Ascaris hmohricuides in, 890
atrophy of, $\mathbf{5 8} \mathbf{3}$
brown, 583, 5N6
red, acute, 574 , in9
villow, acute, 57.4
antolysis of, 106
ealcifieation of, 586
carcinoma of, 5k!
eardiac depression in, 5x4
cavernoma of, Es!
cell emholis, :352
glycogenic setivity of, :31
cirrbosis of, 575
cloudy swelling of, 5×4
coccidiosis, 590
congestion of, passive, $\mathbf{i 7 0}$
cyanotic indhration of, 572
cysts of, 590
legenerations of, 584
distomum in, 590
emholi of, $\overline{3} 73$
fibroma of, 589
focal necrosis of, :573
gin-Irinker's, 57.
Gilisson's capsule of, inflammation of 581
bemangio-endothelioma of, $\mathbf{5 8 9}$
hemofuchsin in, 586
bemorrhage of, 573
hemosiderin in, 586
holnail, 575
hy: 'nserositis of, 5kl
hy: emia of, 57t)
hy; inephroma of, is!
hi pertrophy of, 589
$\mathrm{i} \cdot \mathrm{og}$, i 81
in icterus, 586
infarct of, 572
infiltrations of, 584
inflammation of, 573, 375
lacing-lobe in, 584
Liebermeister's grooves of, 570, 5S4
in malaria, 586
mesothelioma of, 5x9
necrosis of, 586
mitmeg, 572
culema of, 573
pigmental infiltration of, 585
poisens acting on, 83
pressure grooves in, ind
regencration of, 190, 196, 589
sil uma of, 588
sintpe of, variations in, 570
\therefore philis of, 352

Liver, syphilis of, hepar lobatum in, 583 syphilomas of, 582 thromhosis of, 57,3 tuherculomas of, 382 tuberculosis of, miliary, 5\$1 tumors of, 580
Lividity, 696
Iobar pheumonia, 452, 453
Localized infection, 145
Loeomotor ataxia, 500
looped unbilical cord, 66.5
Iadwig's angina, 528
Langs, 447
abnormalities of, 447
actinomycosis of, 46.5
adenoma of, 465
apneumatosis of, 449
aspergillns of, 465
atelectasis of, 449
hrown induration of, 448
earcinoma of, 465
carnified, 450
chondroina of, 465
chorio-epithelioma of, 466
cladothrix of, 465
cyanotic induration of, 448
disease of, due to disturbance of respiratory function, 449
distomum Westermanii of, 465
echinococens of, 465
emholism in, 449
emphysema of, 450
endothelioma of, 465
fihroma of, 465
fihrosis of, interstitial, 465
glanders of, 465
gummas of, 465
heinorrhage into, 448
hyperemia of, 447
hyphomycetes of, 46.5
hypostatic congestion of, 447
infarct in, 448
inflammation of, 450
infrequent infections of, 465
lipoma of, 465
lymphosarcoma of, 465
adema of, 447
ostconia of, 465
sareoma of, 465
streptothrix of, 465
strongylus of, 465
syphilis of, 464
teratoma of, 465
tuberculosis of, 459
tumors of, 465
Lupus, 699, 701
of vulva, 641
Lavation of penis, $\mathbf{6}: 3: 3$
lymph cysts, 292
of peritoneum, 568
nodes, 411
abnormalities of, 411
anthramtir, 412
atrophy of, 413
 C.beneration of. 11:3 (mblolism of, H? roulothelioms: of, 414 entrance of bancoriat ant, n-, !at ! wereronia of. $41 ?$ enfilemations of, 11:3 inflammation of, 412 nererosic of, 413 urdem: of, 112 syplitis of, 112 thrombosis of, 41 ! tubermionis of, 112 flumors of, 411 variees of, 412
stre:min, Inetastasio and, 217
I.ymphalenitis, 412

of :ulrenals, 4×3
of skin, 706
Lymphamgio-rindotheliomat, $2-7.252$ of piti-ar:uchmoid, sut of skin, Tot

e:wermosum, 足1
of intestince, $\overline{5}$ (t)
of lirvinx, 443
of skin, 70
Lxmphangiosareonat, 414
I.ymphatio louk cumis, :240, 3ti.5, 411
obsitruction, wethes from, 3ti!)
-ystroln, 36it
vessols, :371, 414 abnormalities of, 410 inflammation of, 411 thmors of, 411
Lämphati=m, 47:

Limphory hemis. $?^{2} 10$
Limphocytosiч, 36
lymphorenic puremoni:\%, 4.it nuberrulosis, th.t
I,ymphoid tissur, regencration of, 1 ! : $\%$
I:9mphom: $2: 3 \mathrm{~s}, 210$
lymphomatoid conclitions affecting the splern, 241
Iamphomatosis, 2:3s
l:unphorrh:yia, 111
lymphorrha:a, 2x1
I:9mphos:rcomit, ?10, 114
of intestines, ottit
of hangs, 415.5
of momiastinum, $17=$
of periestrlitm, 3 saj
of month. . old $_{6}$
of thymis. 4iz.
Lymphosireomatosis, 2II, 414
Lixis: $14 t \mathrm{i}, 14!$

Mamonemhily. 45:
Marrocheilia, 2̣1, 347, 4t1

Marrodartytr, 61

M:nhrat foot. 7 (t)
Mal de C'iduras. 9.5小e roil, !iv
Manamia, myedoplan ice tia!
 parasite of, !14 typer of. 18
Male nextal organs, $\mathbf{6}: 30$
Malformations, local, 71 reetil, 74
Malignither. 215
Mislignant adenomat of uterus. tial entomerditis, 30%
neoplat:mes, 214
pustule, $\boldsymbol{\text { on }}$
, hlıtrition, i!!
:utrophy from, 297
intri- nitrime, ats callse of dimense,
predisposit fon ame, 116
Maltase, 30
Manmaary glimI, ititio aberrant, bifit absernere of, bitit accessory, bitit adenolili ros: reomat of, 650 adenolipofibromat of, (ia) adenomia of, pure , fi-1 aflenomatosis of, ifis arknomywosarromat of, 180 :momaties of, $\mathbf{t i 6 6}$ at rophy of, tit eameer "en cuirasse" of, 67t (arrinomat of, bī! chomiroma of, 672
(yst ademoman papilliform of, (Ysts of, (i66i, (6) 10 cindotheliom: of $16^{2} 2$
fibro-alcmomas of, titit, (6)

tibromatosis of, bitis
hemorrhame into, titit
hypoplasi:1 of, bitit
inflammation of. 667

ast coma of 6-2
perithelion: of of, 6iz
sarcont: of (it:
serretions of. 103
syphilis of, this
(ramephantation of, exto
tulherentosis: of, $\mathbf{6 i f} 7$
tumors of, tits
virarions menst ruation in.
Marmatic thrombosis of dara mater.
"M:sked" iron, 27
"Mast cells." $103,30,3$
M:stitis, 6iti
chronie cystic. , titl
phlogmonos:i, $\mathbf{6 i \sigma}$
reterntion. lif6
Mastoiditis, bla

Menikev，argamisum of，9： ＊kin in，6！ 1, ti！）
Merkel＇s alivertionlono，il 1
Median：rleft pilate， T
Mediastimitio．Fす！
Mediastinopericarditis，induranive，ist
Mediastimum．17
dermoid eysis of，til
inflammation of．to
Ivmphosiareolla of $t=2$
sareollis of，472
teratomas of ． 471
tulnors of．4il
Medulary eareinomin，266． 273 of mammary gland，19：2 of stomach，Bis！！
Negacolon，54t，itfe2
Meradohlanta，3in！
Megaloeyters，3．5！
Megastoma，！oi
Molanim， 34
Melanoma，2s：3
of mammary glamd，（ifis
of $\mathrm{skin}, 7 \mathrm{tat}$
Mdamosis， 324
Molamotic pignentation， 324
s：arcoma of choroid， 515
of liver， 589
of vulva，tit2
Melena，354
Memhrane，I：34 diphtheritie，4：35
Itombranous colitis，biss
enteritis， Ef ！
Hast ritis， 535
l：uryogitis． $4+1$
pliaryngitis， 4.34
Memdel＇s law，44
Ho inges，cramial amd spinal，sol
gginmus． 485
gitis．itt 4
．ingerele，4！ 4

Hemorhamit， $354,64 t$
fibroid of uterus and，242
Hamatmation，vearions，in mammany mand，titis
Hesendixmatons tissues，23if
Wesenchyme，22．5
Ifesortitis，syphilitic，40s
Wesul）last，2e3
Wesoblantic metaplawia， 201
Hemodidymme，tis

Wroothediomas，274．2－7
of liver． ESO
of testes， 639
lemothclimm，225，
letabolice inf（oxitations，st）
latal）oliain，f：mlty，gont and， $10{ }^{\circ}$ impaired，as a comse of diseate， 107 patt played hy medels in，e2？
Ietatmolites， 3 ：3
ht：anmphosis，revrainnary，？ 3 m

Metanhaner of mitomis， 40
Metaplasia，2tis
distinction of，from anaplasia，sors
enithelial，21！
of joints，tio．
mesuhlistie，20．4
assmons，20．2，204i
Mrotaphastic ossificalion．2：3ti

he hood stremm，ols
in bones，6s：
in infertion．14．7
hy lymphatreitm， 217
of neoplasins：？ 1^{-}
patency of，221
retrogrule，219
sarcomat and， 250
tissure of prealiketion for，2eto
hy transplantation， 218
Metastasiv，2！5
by ：apposition， 219
Metastatie aliserese of hrain，Ans puctumonis，452，4．57
Metazo：as cannes of diserase，as exaretion of toxins hy，！9！
Metazoan parasites，is
Methemoulohimuria，32：
Methylamin， 110
Mertitis，647，64！？，titis
Metrorrhamia，3：7，ti47
fibroid of uterus ：mat． 242
Microcephaly，48ii
Micrococens urer，62：－
Microcytes，35！
Micronelia，67s
Microörganisms，ultranicroscopic， 93
Microphthalmia， 509
Mierothelia，6i6
Miliaria， 698
Miliary ancurysm，408，48s
menmonia， 452
tuberenlosis of liver，isil
＂Milk spots＂in phericarditiv，3st
＂．Miner＇s ellow，＂ 17 S
Mitosis， 39
thiphase of， 40
irrogular，in caneer cedls，22！
motaphase of， 40
prophase of， $3!$
telophase of， 40
Mitatic cell division， 34
Mitral valve．domble orifiee of， 393
Mixed thmors． 910
Mobilaty of kiclney，fox
Morlification，4ti acquirel，43，44
Mnist gangrene，330
Mole，Heshy， 212
hemorrhikic，212
hylatid， 212
pigmenterl，278，695
placental，211，664
putrefactive， 212
of skin， 70.5

Moberule, biophoric. 픔 of er.ll, 24 of protrin, 21
Mollıs•"111 cout: librosim, 247
Monchorbrg's selerosis, 40-1
Monor horial twins, 02 2
Momolobular cirrhowis of liver, invo
Monomularir hyalime erells, 1:3E
Monoophal twins, fig
Monorchicliant, (6is-
Monosymmetrical janiorps, fs
Monst (rss. clouble, 64
:
parasitic, 6!
Monst rositices, 61
Morbus carmbens, zivis
Morgagni, leyilatid of. ex:
Mortilication, 325, 343, 346
Morulia, 2:23
Morility of kidney, toハ
Motor syextem, fïs
Mottle, kirnery, lirese, ti?
Moulds, ! 12
Month, 522
abhormalities of, 5:
artinomyyrosis of, 525
ancmia of, 523
angionlat of, 526
-linure of, $5: 24$

- \cdot hondromat of, 526
cpitheliom: of, :2:
fil,romat of, 525, 52 ${ }^{2}$
gummas of, $5: 5$
hypercmial of, iods
inflommation of, $)^{2}: 3$
leprous motules of, 5i2:
lipouta of, $: 25,5 \% 6$
lymphosarcomen of, zet
muroths pagues in, 5:24
myeloma of, giant-rellet, :525)
myxoma of, 52:5
poisons arting on, se
syphilis of, $5: 4$
teratoma of, $52.5,52(6$
fuburculosis of, ide

Mucin, 25, 3.
formation, 307
Murinogen, 34
Muroill henemeration, 30f, 307
Arposit:- з31"
polyps in (0.",phagus, 5:31
Auropirulen' iflimmation, 1:34
Mucous colit , jis
(ynis, 290
membranc, regeneration of, 10) (rabsplathtation of, 201
plapues, 5 2. 4,701
surf:ace, intlammation of, 133
Muctus, bacterididal power of, si
Mulberry aileuli, 318
Multilobmiar liver, sát
Maltilomalar cysts of liver, item

Multilonular cysts of ovary, fint)
Multiphe birtha, 64
neurofibrona, 50!
melerosis, 498, 409, 590,501
Mummitie:ation, 3:3t3, 665
M111!上, 58
Munirl beer lacart, 336
Musrarin, 110
Musclew, 67:3
alonormal insertion of, 6i:3
origin of, tis: 3
size of, 673
nbsernee of, 6:7
are inomy cosis of, tias
atcmin of, $63^{7} 3$
Hugiomat of, tigis
if rophy of, 6:5
clondy swelling of, 65:-7
confrintious of, 451
evsicercus of, 675
defeet of, 16.3
degeneration of, 15 :
erhinocorcus of, $6 \overline{\text { on }}$
fibrillary 1 witeling of, 484
fibroma of, 676
chanders of, t 75
gumma of, 175
hematonla of, tiat
hemorrhage of, 6:7
hyperemia of, 673
liyperrophy of, 66^{7}
infaret of, 1.74
inflammation of, 674
my:
parasites of, 67.5
potechite on, 674
reluplication of, (i73
regeneration of, 190, 190i
rhablomyosareoma of, 676
sarcoma of, 1876
spinclles, 673
syphtilis of, 675)
tonus of, 481
oricliniasis of, 674
tuberculosis of, 674
(tillir rn of, 676
Zenker's degeneration of, 66
Muscular afrophy, progressive, 499, 6,0 inechanism of respiration, 423
system, poisons actiog on, 81
Mutation, 50
Myrosis of aurlitory meatus, 518
fumgoides of skin, 706
Mycotic ancurysm, 408
Myelitis, 495, 498,500
ayelocystocele, 494
Myeloeytes, origin of laukorytes fron 194
Myelogenous leukemia, 238, 365
Myelomas, 236
gi:mt-celled, 237
of bones, 689
of mouth. 585
mulliplex, 235, 239, 420

Myelonas, multiplex, of honc marrow, Nyxadena, thyroidextract aml, ImI 420 of hones, fis!
Ayelomatoid, 2:35
II yelomutosis, 2:37, 124)
Myromeningocele, 4! 1
Xyelophastie malacia, tis!
Myiasis, 0 O2
Hỵo arditis, 358
acute, 388
interstitial, 3si 7
Atyoeardinu, 38.5
abnormalities of, 3si
at roplly of, 388
ealcification of, 3:31
cloudy swelling of, 3ss
degeneration of, $3 \mathrm{~s}:$, 3:n?
dilatation of, 392
displacements of, 3 SH
duplication of, 3sis
ectopia of, 385
fibroma of, 39:3
fibrosis of, 387, 391
fragmentation of, 391
gumma of, 388
hyaline change in, 391
hypert roply of, $385,3!1$
hypmplasia of, 385
infiltration of, 388
inflammation of, 388
lipoma of, 3:13
malnutrition of, 387
myxoma of, 393
sareomit of, 393
segmentation of, 391
syphiloma of, 388
transposition of, 385
therrulosis of, 38א
tumors of, 39:3
I! yofibroma of ovary, (i.j!)
Myoma, 241
of bladiler, 027
of Pallopian tubes, bist
of intestines, 560
of kidury, 621
of asophagus, 531
of orbit, 517
of skin, 700^{-}
of stomach, $53!$)
of uterine ligaments, (xis
of utrrus, $241-243,650$
of vulva, 642
Myomalacia, 387
Myomatosis with mindular inclasion in Iterus, 651
IIyopathy, 675
Myosit is, 674 ossificans, 206, 6\%4
suppurative, 674
Hyotomes, 225
Myringitis, 518
lyxo-rhondromat of bones, 6s:!
ilynedema, 100 hypertrophy and, isy

Ayxo-enehondroma, 23.)
Myxolipona, 23:2
Myxoma, 232
of bone marrow, 120
of bones, (in!)
of brain, 191
of bronchi, 44 it
of bursa, 65
of cornea, 51 m
of kidney, $12 \geq 1$
of lirynix, $4: 3$
of mouth, 525
of muscles, 676
of myoearctium, 343
of skin, 705
of umbilieal cord, fitia
Ayxomyoma of uterus, 6.50
Ayxosareoma, 256
of bones, $68!9$
of peripherat nerves, 509
\mathbf{N}
Neni, 70.5
blue, 278
pigmented, 703
of skin, 705
tchangiretatic, 278
of vulvis, 641
Niils, 708
abnormalitios of, 70s
facue of, 70 S
hemorrliages of, 70 s
inflammation of, 70s
ingrowing, 70 x
lenkoputhia of, 708
ringworm of, fos
Nasil polyps, 436
Nasopbaryonx, 4.2S
Necrobiosis, 320
Necrosis, $3: 20,32 \mathrm{~s}$
of adrenals, 42:2
of bone, fis I
congulation, 32N, 344
colliquative, 3:s
for:al, 328
of individual rells, 32s
of liver, 573, 5s6
of lym $_{1}$ si notes, 413
of pancreas, $595,597^{7}$
of peritoneum, 567
putrefactive, 328
of skin, $7(0), 70: 3$
in typhoid fever, 5ñ
Necrotic eysts, 287,204
of brain, 492
inflammation, 134
uleer of intestines, its
Needles in peritoneum, ofici
Nemathelminthes, 98
Neoplasia, 207
Neoplasms, 206

Noplasins of atremals， 275 ，12：2
anaplasia in，2が
ameluia from， $21 t ;$ of arteriow，409） alypical， 214 allonomous， 207 lvenign， 214 of bile chucta，5ol？ of bladler， $6: 3$ boral vaseular， 9π of bour marrow，23is，420 of bonoss，©SK．
of brain， $4!!$
of broant，titik
of bronchi， 445
of hursace，bis
of eapillaries， 410
of cirotid gland，2x．
cells of，destruction of ？－2．
 radium and， $2 \times \overline{6}$ sclenitum and，2s－ tellurinnu and，9ヵ－ x－rays and，2x－
of ehoroid， 515
of conjunetiva，：is
of corl，ix）
of cornea， 515
degemerative chates in，2e：2
distinction of，from eysts，2si
of doubtfal relationship，＇2x：
of dura mater，50：3
of（：ar，520）
embryonic 2es；
endothelial， 224
apiblastic，20．5، 2！
of $(\underset{\sim}{0} \mathrm{E}, \mathrm{B} 5$
of F ：uappi：m tuber， 6.5
of gall－hladder，su！z
－duet，in）
healing of，223
of herart，39：3
hylie，225，2：2
at ypical，2001
typical，2es
hypolhastic，22．5，2l！
ihiflamuatory，207
internal sererefion of，estit
of intestincs，505
of iris， 515
of joinis，ros
of kitiney，25．5， 621
of larynx，44：3
Hepidic．296，257
atypieal．264
typical， 257
of liver，5se
of lithas， 465
of lymph notes， 414
of Wmphatic ressels， 4 II
malignant， 214
of ：ntambary stent．thix
of medias（intum，i71
mesenchymatous． 2 ？ 26

luctastane of，？l：
mixer， 2 I6
of mouth，595
multicentric：： $2!!$
of muscles， 676
of myoerardimu，39：3
of nerves，5c：
of nose， 436
mumear cinampes in，yeg．
of asophagus，531
of orbit， 517
of ovary，275，1．isi
of pmereas，5！＂
of pelvic structures，fitie
of perois，ti3：3
of perieardian， 3×5
of peritonelum，it if
of pia－arachuoid，ioti
of placeluta，tibt
of pleura， 470
of prostate，（iz36
of pherperal utorus，titis
of retina， 515
retrogreswion of，223
of salivary glands，Jis
serondary，215
of skin， 70%
of spinal eord， $4!6,40 \mathrm{~s}, 4!\mathrm{H}$, ह00
of spleren， 418
of stomach，ij3s
stroma in，22！
of teeth， 527
of tendons， 177
（erminology of， 207
of（estis， 2 すis，63：39
theory of， 285
of thyroid cland，425
transitional，226
of tuniea vaginalis testis， 6.37
typical， 214
undiffercntiantion in， 285
unicentric，＂199
of ureters， 624
of urethria， 62 ！
i urogenitiol ducts， 275
of utcrine ligaments， 662
of utcrus，biat
of vagina， 643
of vulva， 641
Xeoplastic fibrosis， 14 ：；
Nephritis，606，（60！
eryoscopy in，bios
hemorrhagie， 612
interstitial，acute， 616 chronic，606，614－i11i
parenchymatous，seute， $60 \%, 61$ chronic， 612
searlatinal， 616
suppurative， 617
Nephrolithiasis， 623
Xephrolysin， 163
Srrve－cell Iondy， 48 pathological changes in， 47
.verve-sell, fatigue of 111 regeneration of, 19 s
N゙erve mechanism of heart, 37\%
oplic, 516
tissne, nutolysis of, cholin and, ltwi rugeneration of, las
Nerves, motor, focal symptoms in, 4S? in Hoplasins, 221
peripheral, ina
regeneration of, after seetion, 199)
Nrroons ranses of inflammation, $1 \geq 2$ diathesin, isk
Hechanism of respiration, 429)
syanem, 473
ufferent, 474
antonomie, 4 万is
(fforent, 475
focal changes in results of, 4×2 general disturhanees of, 47!)
foeal changes in, resultes of, $4 \mathbf{N}^{2}$ poisons anting on, st)
pyrexia and lis
sympathet: : 75
tetames toxar amf, $1: 5$
Neurin, 11t
Nenrimoma, 247, 21 K
of stomadh, 53!)
Nourimomatosis, 2.17, 50!, 71.7
N(uritis, 5017
nleoholie, 50\%, 50
ursenic, 508
leal, 508
opic, 50\%, 517
toxic forms of, 508
Nemroblistomas, 244
Neurocytoma, 244, 245, 422
Nourofibromas, multiple, 500
Neurofibromatosis, 2:3t)
Yeuroglia, regeneration of, 19 s
Nouromas, 244
of adrenals, 422
anputation, 108, 245, 50!
"falme." 50!
of optie nerve, 517
Neurone, 2t, 473
connections betwren, 113, 11.
correlation of, 474
croups of, 474
lesions of, 478
depressive manifestations of, 484
irritative manifestations of, 484
upper motor, diseases of, 49s
Nenroparalytie hyperemit, 33x
Xicuropathic atrophy of joints, 694
of museles, 675
(muma, 370
Veuroses, predisposition toward, 115
Neuroretinitis, allouminurie, 513 gravilie, 514
Vemrotonie anemi:t, 339 hypromia, 338
Vint rophile lenkoeytes, 302
inw growths, 214

Ň, миа, 95
Xipple, earcinoma of, $1:$
Xinel lealies, 1:), 47.3
Doeturnal cпurewis, (00.5
Norle, auriculovent ricular, 3 :-
sinu-aurieular, 3 "̈
Nonome arterioselerowis, 402
Nodnle, 138
Noma, 524
Non-parnsitic intoxications, 70, , 80
Fon-protein constituents of cell, 31
Xon-perific immmaty, 152
Xon-va ular area, inflammation of, 134
Norn, inheritaner, is
$* \quad$ (11,1 1 4
Corr.., alamen, 35!!
Nose, $4: 34$
adenoma of, $4: 36$
anomalies of, $4: 34$
eureinoma of, 4:3t
matarrh of, 43:5
endotheliona of, 436
filoroma of, 4 ist
glanders of, $4: 3 t$)
hemorrhage of, 4:34
hyperemin " 434
inflammat,on of, 4355
leprosy of, 430
polyps of, 436
"saddle-back," 685
sareoma of, 436
syphilis of, 436
tuberculosis of, $4: 36$
tumore of, $4: 36$
Nuek, e.nal of, cysta of, 291
Nuclear changes in meoplasins, 222 fluid, 18
Nuelease, 108
Nucleie aeid,:
Nucle in: 25, 2,
buies, $\because 5$
Srivation of purin hases from, 107
Nuctinie acid, 27
Nuch 1: 18
Snelens. IS
alterations in, 23
chemistry of, 27
chromidia of, 22
composition of, 27
cytoplasin and, interaction between, 20, 21
interrelation brtween, 21
disintegration of, 23
dominance of, 20,21
gramiles of, 22
histology of, 18
importance of, 20
karyolysis and karyorrhexis, 23
"Inasked" iron in, 27
in metabolism, 22
,hosphorus in, 27
proteins of, 27
relation to refl, 21

Nuclens relation to metabolism, 22 Numerical hyperplasit, 1st Nitritional hypertroplys, 1 NS

Oat-silapea relled sarcoma, g.it
()besity, 11 .s

Ohligatory anaïroles, 84
Obliteration of gall duet, i991
()hstruction to air in respiration, 431 of ureters, tis3
Ohatructive cirrhosis of liver, sin!
constipation, it?
j:undirer, 185, :32:3
telangier tasis, 275
Ohturator hernia, a69
()whision of arteries, 340) of bronchi, 446 of (rsophagus, 229
Oren!t hemorrhage of intestines, 5.4
(OCluromosis of jois:ts, tiol4
Odontomar, 2:36, n27
(Edema, 36if, 6:9i
agonitl, 447
;mgionemrotie, :37()
mongentive, 3 s!
of conjunctiva, 509
of gall-bladekr, sol
duct, 591
of glotis, 44
inflammatory, 370
inf(erstitial, :36i
of lahia, titl
of liver, īis
of hangs, 44
of lyinph nodes, 412
from lymphatic olvetruction, 3ti!
nempopithic, 870
of phiryne, 437
of pis, 3!)!
of piat-ar:achnoid. $\mathbf{3 0 4}$
of Marenta, tits 4
pulmonary, 367
of srrotum, (i.40
of ski!?, G!tit
of tonsils, 4:37
toxic. 370
typers of. 34:9
of valva, 1511
(Ex-phagi(is, in31
(Ex, phagus, ien
(alrinomia of, B3l
diphtheria of, :531
divertionla of, ist)
duplication of 529
epithelioms of, $3: 31$
hemorrlitge into, $8: 31$
inflammation of, 5.3!
lenkoplakia of, a3s
lipomats of, :331
malformations of .iz!
mancoid prifpe in, 2.31
(Fsophagns, myomis of, sisl
orchasion of, 5:3!
perforation of, is:30
ruphture of, isis)
stenowis of, : 2 ?
syphilis of, is:31
tuberoulosis of, aisl
Old nge, is.
Olcin, $3: 3$
Oligemia, 335
Oligolyalranmio, (itis)
Olignria, 602
Onychiol, fos
Onymogryphosis, 70S
äryte, primary, tij

Oparity of lens, ingo, it ${ }^{-1}$
Ghathatmis, gomorrhowth. (i)
sympat hetic, 512
(Opsonicic index, 1ti!)
()psonins, 168
phagoevtosis and, 1 tis
Optic disk, cupped, ith;
nerve, 317
nemritis, : $\mathbf{8 1 7}, 517$
Orbit, 5li
allecess of, 517
angiom: of, 517
carcinoms of, 517
relhulitis of, :17
lyygromat of, E17
inflammation of, 517
myoma of, i17
osteomat of, $\mathbf{5 1 7}$
sarcomat of, 517
teratomar of, 517
Orchitis, $\mathrm{B} 2 \mathrm{X}, 63 \mathrm{~K}$
Orginisim, normal defences of, 80
Orgams, lefeens in, 70
Onmosis, 32
hyperisntonic sohntions and, 33
hypuisot onic sohtitions and. 3:3
Osseons metaplasia, 20ñ, 2th
(Sxification, metaplistic', 23ti
(hsifying ecrhondruses of bomes, fis!)
(Ostritis, 6SO
rondensing, 68:

rarefying, 6s?
Ostro-arthritis of join(s, 601
Oxteorliondritis, 684
Osteochondrosarmoma, 2.76
Osteo-enchondroma, 2:34
Ostogenesis imprefertin, 679)
Osfeoid sareoma, 206
Ostemomi, 2:3.)
of brain. 491
of Lronchi, 446
of conjumetivis. 51.
of dura mater, it): $\}$
of ear, 52l
of hings, 4tis
of mammary gland. 18:2
of orhit, 517

Ostcoma of plenra, 47) of skin, 7t:)
Osfeomalapia, +10, is 5
Osfematoid, $2: 36$
()stromyelifis, 6ist), 6isi chronie, 682 fibrosa, 1586 tuberrulosis amd, 68:3
(Asteoporosis of bones, tise, tis:
()steopsat hyrosis, 6 :9
Osteosareoma, 25̄6, 689
Otitis media, ois-í20
acute, in!
hemorrhagic, its
suppurative, sla
sclerosing, 520
Otoselerosis, 520
"(Ovarian dermoid," eng teratoma, ㄹ(t)
Ovariocele, 642
Ovary, 6ist
abnormalities of, 6.5.)
arecesory, 6.5)
adenofiliomat of, $\mathbf{t . 5 !}$
atroply of, 6.af
carcinomat of, 6is)
cystialduoma of, tiant
cystoma of, 6isti
cysts of, biof
degeneration of, rystic, bish
divedses related to sircretion of. It: 2
chastoid changes in, tiatis
endotheliomat of, tisis, 6iti)
fibromat of, 659
hyaline changes in, 6.56
hypoplasia of, 6i5)
inflammation of, 6.05
myotibromat of, tijo:
perithelioma of, bias)
psammocarcinoma of, tia!
regeneration of, 196
surcoma of, the?
serretions of, 10$)^{2}$
syphilis of (6.5j
teratoma of, (itit)
tramsplantation of, gon
t herculosis of, this
fumors of, 275, tiafi
ronneetive (iswic, bial)
Owergrowth, 1s6. Ser alko Hypertrophy. eompensatory, 1 ss
irritative, 158
simmlated, 189
vicarious, 188
Oyrmutrition, fatty infiltration the to, 303
Overstrain, 111
distinction of, from overstress, 112
museular fatigur and, 11:3
Owerstress, 112
a canse of disense, 11:2
Owrwork, atrophy from, 297
Ovula Nabothi. 200, tifs
Uvom, "blighterl," 5 K

Ovim, maturation of, th polar bodies of, 46
Oxidase, 107
Oxirlation, diminished, 30:3
()zenta, 4:35

\mathbf{P}

Pachydehmatocelef, sog
Padyvermia, 312, +11 laryngis verrncosa, 4+2
Pachymeningit is, itt?
l'aget's disease of bone, tist of nipple, $1 \boldsymbol{i}_{-2}$
Pain, 179
collitpse and, 1 -K
distribution of, segmemtal, 18:
localization of, 1s3, 18t
referred, 181
shock and, 1 Is
Pahnifin, $3: 3$
Palsies, birth, 61
1':uncreas, 50:3
abnormalities of, sol
absenee of, 594
acibi of, areeswory, bll 4
:ulenomats of, 597°
amyloid of, $\overline{\text { an }}$
carcinoma of, 597
cystalenomat of, 5!
cysts of, 5!S
rhplication of, 594
fat necrosis of, 595, 507
fatty degeneration of, $8: 1$ infilt ration of, 297
hlycosuria amb, sot
granulomas of. 59.
bemorrhage of, 595
hypereenia of, 5os
hypoplasia of, 594
inflammation of, 595
internal sereretion of, $10: 3$
passive congestion of, :0.
regeneration of, 19 ;
satroma of, 598
welf-digestion of, E9i
tuberculosis of, 59:
thmors of. 507
Pancreatic conerements, 310
Pancreatitis, centribobular, 59:
clirorif, 505
henorrhagic, aronte, jos
perilobular, 505
purulent, 595
xporadie, 5%
Pannus, 511
Panophthalmitis, 512
Panoslitis, 680, 68J
l'apillary cyonoma of ovary, bigs
Papilloma, 257
of bladder, 261, b27
blastomatous, 2ta
of conjunctiva, 515

P:apillom: of cormes, its
of Fallopian tubes, (6.51
of intostimes, stiol
intractratic, 261
of irrit:ative origin, 2:5
of larsins, 4.4
soft, 260)
of urotors, $6: 21$
Papular syphilide of skin, $\boldsymbol{\text { Ol }}$
l'aralywis, 4a!
bulbar, 499
hystericula 4:3
lesions of neurones and, 47!
Parametritis, (it7, bitil
Parametrium, titil
Par:ıphimosis, tia30
Paraplasm, I!
P'araplegia, congenital sumatic, 4 !!s
Paranites in hadder, tiol
" ("ancer," 1!
of malaria. ! 9
metazoath, :as camese of diveler, !s
of muscles, (is.i)
of pleurar, 47!
"sarroma," 2.il
of k kin , 7 に
of urcters, tiz4
of utcrus, $164!$

of bones, tion?
of train, $4!2$
of liver. is?
of prritonctim. ith
mulolus, 3 ï:
intoxieations, $\overline{3}$!
monst(trs, $19!$

in
Parasyphilitic lexions, at
Parat uberoulons lesions, is
Parrathyroids, 426
:ulenom: of 426
diseases relaterl to, 101
beyperplasian of 426
rereretion of, 101
larencloynatots poitre, diffuse. 424
keratitis, liffuse, ill
ncphritis, tini, till, (i12
Parental inlaritanere, 4s
Paresthesi:, 47! 4, 4:
Parinamul's conjunctivitis, ill
Paronychia, 7 os
Parotitis, cpilemice : ies.
Parovarian evats of uterine ligaments, titio?
Paroxy:un:d hamoglohimuria, :3:2
I'articulate inheritanere, is
Darturient ranses of dise:sise, is

Parturition. pathological states arepuired during. 61
Pasiver congextion, 333N
immunity, 1.5t
Patemt ductus art erionits. 3sti

Patent duceus Botalli, 3xis
Pathogenice bact (riat, sio
Dathologieal states, inherited, it
Pediculosis, T(I2
1Prellagra, sol
Pelvic mass, inflammatory, titil peritonitis, productive, titis) structures, bitil
Pemphignts, 6:3N
Penis 6:30
abserent, bisu
:momalies of, (i.30
rancinomat of, bi3:3
(1):meroid of, $6: 31$

- y :51s of, $6: 33$
dermatitis of, (bi30
double (i3:
elephathtiasis of, 68:2
cumlotheliomas of, 6:3:3
fibroma of, (i3:3
fratcelure of, ti:3:3
hypopl:stice, ti330
inflammation of, 6;30
injuries of, $6 ; 3: 3$
keratosis of, 6332
lipomit of, 6:33
luxation of 6:33:
phimosed, $6 ; 30$
sarcoma of, 6:3:3
soft chatherf of, (i31 sore, titiz
syphilis of, tiz3
tibereulosis of, 632
tumors of, ti3:3
venereal wart of, 6i32
Peptic uleer of intestines, 5 is of stomach, i):36
Peptonces. 25
Perforation of bronehi, 446
of intestime, ins
of arsophagus, is30
in otitis merlia, $\overline{\text { in }}$! !
of stomachl, it:3
in typhoid fever, ises 3
of htcorus, bift
l'erforative appendicitis, s.at
Promicions anemia, 3(it)
P'riarteritis, chronie, toti of lung, 4tis
Peribronelhitis, 46 is
Peric:analicular fibro-atenems of ma mary glame, 670
Periearlitis, 3s:2
alhesions in, 3×3
1.hronic, 383
"milk spots" in, 3N4
purulent, 35:3
recourrent, 30:3
sprofibrinoms, 3N2، 35:3
serous, $3 \times, 3$
syphilitic, 3st
Poricarrlium, 3S:"
abmormalitios of, 3א1
adlucrent, 3s:3

Pericartiom, aremia of, :3x:
at ropliy' of, . "4
rysicereus of, is:
echinocorents of, 30
inflamme tion of, 3×2
lymphosarcoma of, 3si.
now grow the of, 3s:5
petechial spots on, 381
Pericholecystitis, purulent, 50:2
Perichondritis, 3 is
Perichondrimm, transplantation of, 901
Perilobalar pancreatitis, DOD
Perilymphadenitis, +12
Perimetritis, 647, 649, 661, 662
Prerimet rium, 6 uil
Perineal hermia, 569
Perinephric abseress, 617
Periorchitis, 6:37
Periosteal regeneration of bone, 19:3
Periostitis, 6×1
athuminosa, (6s?
of ear, 518
Ossific:ans, 6s?
suppurative, bisl
Proriostemm, transphantation of, 2ill
Peripherat nerves, 507
deceneration of, 5t以
fibromatosis of, ion
gliomas of, 50 (9
infective granulom:as of, zots
inflammation of, sot
lead poisoning and, sus
leprosy of, sils
lipomats of, 509
mysosarcomats of son!
neuromat of, 509
regeneration of, 19 si
rhabrlomyoma of, 509
syphilis of, 00s
tubereulosis of, 50.s.
Perithelioma, 282
of mammary glind, 672
of oviary, (6.):
of s:aliviary ghands, 52 s
Pritomemm, 561
athormal cont(ents in, sibi
abnormalities of, itity
atetinomyersis of, itifi
anemia of, 5 tiz
angioma of, 567
bile in, 566
evatimlenoma of, 86
(9ysts of, 567
rubolism of, 5 ti:3
antotheliomat of $8 \mathbf{5 0}$
fibroma of, 567

Iremorrhages of, ifi2
hyperemia of, 562
inflimmation of, imis
lipordondromas of, Exit
lipom: of, 5 iti

morellaw in, ititi

Peritoneum, passive eongestion of, itbz pigmentation of, Etsa
sarcoma of, ifis
sponges in, Etit
syphilis of, 506
teratoma of, 567
thrombosis of, 56.3
tubcreulosis of, itis sicca of, 566
tumors of, 56
worms in, 566
Proritonitis, 503
chronic, 565
hemorrhugic, 563
hyaloserositis in, 56.5
local circumseribed, 50.3
diffuse, 503
prodnctive pelvic, $\mathbf{6 t}{ }^{2}$
purulent, ote:3
serofibrinons, 503
scrons, 503
universal, $5(03$
Peritonsillar absuress, 4:37
Pernicions amemia, 360
Persistent cloach, it truncus artcriosus, 3s6
Petechi:r, 354, 674
Pfrifier's reaction, 166
Phagemenic utcers, $7(0)$
Phagorytosis, bacteria ind, 124
opmonins and, $16 x$
1'haryngitis, 437
aeute catarrhat, 437
atrophic, chronie, 4:3:)
chronic, 43!
gr:mular, $4: 39$
membranons, 43s
phlegmonous, 438
Pharyins, 428, 436
abnormalitices of, 4;37
hyperemis of, 437
inflammation of, 437
codema of, 437
Phimosis, 630
Phleberethia laryogeat, t41
Phlebectasis, 410
Phlehitis, 410
Phteboliths, 315, 351
of pelvic reins: 661
of prostatic verins, (6.3.3
in uterine ligimments, $\mathbf{i 6 1}$
Phobosclerosis, 410
Phlegmon of skin, $7(0)$
Phlegmonoms eystitis, 620
enteritis, 54 ?
gastritis, $5: 35$
inflammation, 1:34
laryngitis, $4!2$
pharyngit is, 438
Phlyetenular keratitis. in?
Phosphatie eateuli, 31 s
Phosphitites, 27
Plmaphata in murloun. 2^{5}
Phthisis, 4 (i)

Phthisis bulbi, 513
"fibroid," 462, 463
pneumonic, acute, 463
Physical causes of clisease, 75,7
1'hysiologiral albuminuria, 60):3
hypertroplyy, 187
inertia, 36
Phytotoxil 3, 154
Pia-arachnoid, 504
a `emia of, 504
cavernomas of, 506
cholesteatomas of, 506
endotheliomas of, 506
fibromas of, 506
gummas of, 506
hemangio-endotheliomes of, soof
nemorrhage of, 504
hyperemia of, 504
inclusion dermoids of, 506
inflammation of, 504
lipomas of, 506
lymphangio-endutheliomas of, infi
lymphangiomas of, 506
adema of, 299, 504
passive rongestion of, 504
sarcomas of, 506
syphilis of, 506
tuberculosis of, 505
tumors of, 506
Pictou cattle discuse, 581
"Pigcon-breast," 687
l'igments, 321
derived from hemoglohin, 321
minbolus, 353
in kidney, 620
in liver, 585
l'igmentation, 321
endogenous, 321
exogenous, 324
melanotic, 324
urobilin, 324
Pigmented moles, 278, 695, 70.3
Piles, 547
Pineal gland, 493
Pituitary body, 492
acromegaly and, 493
diseases related to, 101
secretions of, 101
Placenta, 664
anemia of, 864
angioma of, 604
calcifieution of, 66!
cell embolus, 352
chorio-epithelioma malignum of, (i6* cysts of, 664
llegeneration of, 664
disease of effict of, upon fortus, (i)
entrance of bacteria throngh, ! 0
tibroma of, 664
fibromyoma of, 664
fleshy mole of, 211, 664
hemorrlage of, 664
hydatidiform mole, 211, 661
hyperemia of, 664

Plaecnia, infaret of, 664
inflammation of, litit
ardema of, 664
traevia, tife4
succents ata, 664
syphilis of, 60, 664
tuberculosis of, 664
Plain miscle, regencration of, 196
Plasma, blood, 357
cells, 132, 363
changes in, 357
Plasmorrhexis, 35!
Plasmoschisis, 35!
Plastic cyclitis, 512
pleurisy, 467
Platelets, blood, 366
platyheminthes, 98
1lethora, 335
hydremic, 33.5
Pleura, 466
angioma of, 470
chondroma of, 470
contents in, 466
endothelioma of, 470
fibroma of, 470
hemorrhage into, 466
hyperemia of, 466
inflammation of, $46{ }^{\circ}$
leprosy of, 470
lipoma of, 470
osteoma of, 470
parasites of, 47t)
sarcoma of, 470
syphilis of, 470
tuberculosis of, 47 t)
tumors of, 470
Pleural cavities, 433
effusion, 434
Pleuricentic blastoma, 219
Pleurisy, 467
"dry," 468
exudative, 467
fibrinous, 468
hemorrhagic, 469
hyaloserositis in, 469
plastic, 467
productive, 467,469
purulent. Sce Empyema.
serofitrinous, 468
with effusion, 468
Pleuritis. See Pleurisy
Pleurogenetic pneumonia, 457
Pleu:opneumonia of cattle, organism " 93
Pneumonia, 450
aërogenic, 451
apical, 45.
aspiration, 456
brown induration in, 4.58
central, 455
chronic, 457
congestion in, 452
creeping, 45 .
embolic, 457

Pneumonia, engorgement in, 452 hematogenic, 451 hepatization in, gray, 4.54 hypostatic, 452, 457 indurative, secondary, 457 inhalation, 456 lobar, 452, 453 lobular, acute, 455 lymphogenic, 451 metastatic, 452, 457 miliary, 452 pleurogenetic, 457 resolution in, 454 septic, 452 splenization in, 456 terminal, 452 tuberculous, 461
"unresolved," 457
"white," 465
Pneumonic phthisis, acute, 40:3
Pneumonitis. See Pneumonia
Pneumonokoniosis, 325,457 , 4 in
Pneumothorax, 434, 467
Poikilocvtes, 359
Poikilothermie animals, 148
Poison, 76
acting on blood corpuscles, 81
on digestive system, 82
on heart, 82
on intestine, 82
on kidneys, 84
on liver, 83
on mouth, 22
on muscular system, 81
on nervous system, 80
on organs of circulation, 82
on stomach, $\mathbf{8 2}$
on vessels, 82
endogenous, 79
exogenous, 79
Polar bodies, 46
dichotomy, 66
hypogenesis, 70,71
Poliomyelitis, 495, 499
Polyblast, 133, 191
Polychromatophilia, 359
Polycythemia, 358
Polydact yly, 70
Polydactylism, inheritance and, $5 \overline{4}$
Polyhydramnios, 665
Polymastia, 70, 666
Polymorphonuclear cells, 128 leukocytes, 362
Polymyositis, 674
Polynuclear cells, 128
leukocytes, 362
Polyorchidism, 037
Polyp, aural, 520
Polypeptids, 26
lolypi, destructive placental, 212
Polyps of nose, 436
Polythelia, 666
Polyuria, 601
I'orencephaiy, 486, 492, 498

Portal cirrhosis of liver, 57.5
Post-fihrinous fibrosis, 143
Posthitis, 630
Post-natal acquirement of disetse, 74 discass, is
Post-uterine hematoma, 661
Precipi ins, 161
Precipitoids, 162
Predilection, tissue of, in metastusis, 220
Predisposition, 11:;
age and, 116
habit of life and, 116
inhcrited, 115
malnutrition and, 116
previous infection and, 116 sex and, 116
Premature labor, causes of, 60
Preputial concreinents, 315
Pressure, atmospheric, as cause of disease, 77
diverticula of esophagus, iss, grooves of liver, 584
"Prezyinogens" of cell, 23
Priapism, 630
Processus pyramidalis, 423
Procidentia of uterus, 645
Proctitis, 548
Productive pelvic peritonitis, 662 pleurisy, 467, 469
Progressive catarart, 515 inuscular atrophy, 499, 675
inheritance, 51
tissue changes, 18.5
Prolapse of uterus, 645
Proliferants, cell, 201
Prolifcrative fibrosis, 142
Prophase of mitosis, 39
Prostate, 6:3 3
aberrant, $\mathfrak{C S} 3$
absence of, 633
annyloid bodics of, 321, 6.33
anomalies of, 633
atropi.y of, 634
carcinonia of, 6.36
concretions in, 633
corpora anylacia, 633
cysts of, 633
degeneration of, 63+
foreign bodies in, 633
hypereniaia of, 633
hypertrophy of, 634
multiple cascous nodules of, 633
phleboliths in, 633
sarcoma of, 0,36
tubcrculosis of, 633
tumors of, 636
unilateral lyypoplastic, 633
Prostatic calculi, 321, 633
sand, 321, 633
Prostatitis, 633
Protagon, 27
Proteins, 24
rombined, 25

Proteins, eonstitution of, -4 enzymes of bacteria, st frev, 25
molerule of, $-\frac{1}{4}$ of mucleus, 27
I'rotozoa as callise of disease, 93 levelopment of toxins in, 933
"Proud flesh," 126
Psammocareinomat of ovary, 659
Psommoma, 2S2 borlics, 50 0 3
Psoudochylous aseites, 370
Pserudolurmaphrodismus musculinus, it
Pisouldypert roply, isti
Psomlonidlaosis, 322
Pseudomyxomat peritons tios
Psoriasis, 699
Pterygimm, 511
Ptombines as ealuse of disease, 110
development of, bacteria intl, 110
Puerperal ut erus, iffie
Pulmonary arlema, $36 \mathbf{B}^{7}$
Pulp tissues, primitive, :20
IPulpitis, '2 2
Pulse, venons, 37:
Puncture, 76
Purin bases, 27, 10s lmolies, $11{ }^{-1}$
Purulent art liritis, 6092
broncintis, 444
choroiditis, 513
(rrlitis, $81 ?$
encephalitis. Sec Rrain, abseress of. inflammation, 1:34
pancreatilis, 595
pericurditis, 383
perieholecystitis, 502
periorchitis, $0: 37$
peritonitis, simi
plentisy. See Empyonna. tenosynovitis, 676
I'urpura, 355, (696
Pus, 125) "laudible," 1:3s
Pustule, malignant, 700
Putrefaction in infarction, 345
Putrefartive battria, si neerosis, 3:3
Putrid bronehitis, 445
P'yelitis, 617, 6 :2 3 eystica, 624
Preloncphritis, 6016, (i17, (i). 1 tuberrulous, 619, ti24
P'ylephlebetic abseress. 575
PYlorit stenosis, 533
Pyometra, 646
Pyoneplorosis, 617 entulous, 618 tuberculons, 619
Pyopmeumothorax, 467

puanpinx, (6.3. 6.7.t
Purexi:, 147, $1+9$ ralless of, 1.5

Qumssy, 487

R
Rachiscillsis, 493
"Rachitie rosary," 6s7
Rachitis, 087
Racial clanracters, 47
diathesis, 5x
: nheritance, 47
inherited predisposition, 115
Radiant energy as eanse of ilisense, $7 \overline{7}$
Ratlum as catuse of disease, is
eells of tumors and, 2×7
"Railway spine," 49i
R:umla, 290, 52:
Rarefaetion of bones, 682
Rarefying osteitis, (is2
Raynaul's rlisease, 326, :339
Rereptors, 158,165
orders of, Ehrlieli's, 17:3
Recessive properties, 48
Rectocele, 642
Rectovaginal fistula, 643
Recurrent fever, 14!
pericarditis, 3×3
splenitis, 417
Red atrophy, acute, of liver, 574
blood eorpuseles. See lirythroeyt
infarct, $3 \cdot 4$
of $\mathrm{li}\langle\mathrm{r}, 572$
kidney, ,arge, 62
softening of brain, 487
thromhus, 347, 3:50
Reducible hernia, jis
Rerluplication of muscles, 673
Referred injury, 122
pains, 181
Regeneration, 189
of axone, $: 78$
of blood-vascular tissur, 194
of loone, 192
of sartilage, 192
of ronnective tissur, 191
of endotheliunn. 196
of epithelimen, 194
of fatty tissilue, 191
of glamis, 106
of hair, 195
of hematoblasts, 194
of kidney, 191, 196
of ? eukocytes, 194
of liver, 190, 196
of lymphoid tissue, 103
of mother ectls of red blool a
puseles, 104
of mueous membrane, 195
of muselos, $190,19 \mathrm{i}$
of nerve cells, 198
tissime, lis
of nerves, 478

Regeneration of ncurogli:, 195 of ovary, 196 of pancras, 196
of peripheral nerver, 19 s
of sebaceous glands, 195
of spleen, 106
of sweat glands, 195
of testis, 196
of thyroid, 19t;
Rugions, sperial, deferts in, 7 t)
R-lapse, 146
Relapsing fever, $9 \mathbb{S}$
Relative immunity, 152
Remittent fever, 149
infection, 146
Repair, 122
"Replacement dropsy," 3 II
fibrosis, 142
Reprodurtive system, 630
Resorve force, 37
Resistance, lowrral, if
Resolution, complete, in infarction, 34 is of lung, 454
Respiration, Cheyne-Ntokes, 431
disturbanees of, 429
asphyxia, 430
coughing, 430
dyspncea, 430
sneezing, 429
irechanism of, 429)
Respiratory system, 427
tract, entrance of bacteria through, 90
physical hindrance in, to entrance of bacteria, 87
Retention cysts, 287, 288
of liver, 590
of pancreas, 50 S
of skin, 707
mastitis, 667
of urine, 60.5
Reticulated enchomlroma, 2.31
Retila, 510
anemia of, 510
choked disk in, 510
degeneration of, 5It
mmbolism in, 510
glioma of, 515
hemorrhages in, $\boldsymbol{i l l} 0$
hyperenia of, 510
inflammation of, 513
thrombosis in, 510
tumors of, 51%
Retinal glioma, 246
R"otinitis, 513
homorrhagie, 514
pigmentosa, 514
Ratroflexion of uterus, ti45
Rotrograde metastasis, 219
Rerrogression of neoplatims, 223
Rotrogressive inheritancr, 5 I
lietropharyngeal abseres, $4: 3 \%$
Retro-1t erine abscess, 661
Reversibility of enzyme aetion, 30

Revcrejon, 50
Revorsionary at rophy, 2to3
inhrritanee, st), il
motanorphosis, 299)
Rhadelomyonia, 243
of prripheral nervos, so?
Rhabromyosareoma, 257, 67̃
Rhematie fever, ti92
Rhounatism, 692, 69\%
Rhinitis, 435
Rhinoliths, 315
Rhinoseleroma of larynx, 443
Hice bodies, 677 , ti94
Riein, immunity ugainst, lij4, liaj
Rirkets, 687
"Riders' bone," '306, 233
"Riding' embolus, 3isl
Rigor mortis, 3:31, tia 3
Ring-worm, 702, 70s
Robin, immunity again. *, 154, 155
Roment uleer, 964, 707
Rosary, raelitic, 687
Roseola, 697
Round-celled sarcoma, 253, 2.51
uleer of stomaeli, $\overline{3} 36,3,35$
worms, 98
Rubor, 125°
Rupia of skin, $\mathbf{7} 01$
Rupture of heart, 391 of heart valves, 390
of lymphatie vesseds, 411
of (isophagus, 530
of urethra, 699
of uterus, 644
"Russel's bodies," 26i, 31"

$\$$

Sacculah ancl:wsm, 29n, 407
bronehiectasis, 446
Sacral teratoma, congenital, 6is
"Saddllo-back" 1owe, 68:,
"Kago" spleen, 30s, 41"
salivary conerements, 31\%
(ysts, 2010
glands, i2s
eylindromas of, 52 endotheliomas of, :ies inflammation of, 5 : k peritheliomas of, i2 28 tuberculosis of, 528 tumors of, 528
Salpingitis, 653
Nilts, simple, of cell, 32
Salvarsan, spirochetes and, !ex
Sand, prostatic, 321, ti33
Sap, cell, 19
Sapremia, 145
Sapremic intoxication, 145
Saprophyti : rteria, 8.5
intoxicat 2 mes, 9
Sarcollasts, 244, 299
Sarcodinie, 93

Saromat : 35,254
of adrentils, 423
of hadder, 627
of bone 1marrow: $\mathbf{I L}^{2}$
of bonts, fin!
of lu:am, 1!!2
of bronchi, 416
of burser, tits
of cobjumetiva, s . j
of durt mater, ill
of c:ar. $: 2,1$
of Lall-hadder, $8!5$
of gall-duct, 292
Linint-rollod, 2:3
imsermediatr, 2.iz
of interimes, sthl
of iris, 515
of ioints, tith
of kiducy, : $210,(021$
of lirvinx, 414
of liver, 5 s!
of limgs, $\mathbf{t i 5} 5$
of mammatry gland, 16.3
of mediastinum, tiv
of musders, 176
of myormrtium, 393
of noser, 436
oat-shape celled, 2:5
of orbit, 517
atmid, 25ti, tis!
of ovary, (iz!!
of pamoreas, ions
"parasites," 2.0.
of penis, bi3:3
of peritoncum, 5 tit
of pi:1-arachonoid, .iof
of plemera, fin
of prostate, $\mathbf{~ b i z t i}$
round-erlled, 9.73, 2.-1
of whin, \quad (o)
spiatle-cellerl, 2-22, 2.5
of :plerol, IIs
of stomach, 540
of trindons, $6: 5$
of test(es, 63!!
of hroters, 62
of urethris, 629
of werine ligamonts, tifi:2
of uterus, bio?
of vagina, ti4:
sarcomalosis of skin, 70f
sablies, TOL
siar. 126
Searlatinal mphoritis, 616
srarlet fever, organism of, 013 skin in, 6! $\mathbf{7}_{4}$
schizomuretes. Sep bacteria.
S'riatic hernia, obe)
scirthous carcinomat, 266, 27:3
 of stomarh, $533!$

Scleroderma, 7t)
sicherordema, 7(O)

Redrowing otitis media, isen
Nelorosis, 4! ${ }^{\circ}$
of hones, 6S:2
(ombinal, subacute, 501
lateral, anyotrophic, 499
family typo of, $4!9$
Mönchelores's, 404
multiple, 4!9s, 499, 500, 501
in spinal eord, 406
scrofulonlerma, 701
Srotal hernia, Eft:
hydrocerle, 291
Scrotume (i33)
carcinoma of, tifo
clephantiasis of, tift
hemorrlage of, 640
adedme of, bity
Scurvy, infantile, 688
Shbaccous eyst of ar, is? of stinl, 707
glands, regeneration of, 19\%
Soloorrhati, 807
Nerretin, 10:3
Secretions, intermal, as callese of dise 1(1)
Neeretory (ystrs, 2ss
granules, '2!
section, a cause of disease, 6
Self-digestion of pancreas, s93
somilanar valves, acessory, 393 fenestration of, 39:3
Nenite atrophy, "! $\overline{7}$
S'msory and motor nemrones, dises affecting, 500
neurones, diseases afferting, 500)
Nopta, imperfeet, of heart, 'ast
Septic infection of mubilical cord, 66 pmeumonia, 4\%2
Sirpuestration cysts, 293
secpucstrum of bone, 6810
scrofibrinous arthritis, 6:1
inflammation, 134
pericarditis, 382, 353
pritonitis, 806
plenrisy, 468
Soropurule int inflammation, 13.4
serous arthritis, 691
atrophy, 298, 30ti, 419
(avitics, accummation in, 367
leptomeningitis, $\mathbf{5 0} \mathbf{4}$
membrane, transplantation of, 2
pericarditis, 38:3
peritonitis. 563
serpiginous ulcer of cornea, 512
serunn albumin, 25
"dcath," 170
globulin, 2_{5}^{5}
immune, 164
inactivated, 164
"sickness," 117, 170
Scrsile hydatid, 2s9
sexual oreans, male, fize
female, 640
shock, 178

Nialoliths, Figs
"Siantese (wins," fis
Nifle-chatin theory of immmity, $1: \overline{-160}$
Nidarosis, 33!.5, tis!
Nilicosis, $3: 3$
Sino-anricular nome, 3\%
Simus of bome, (iso
Nircmomelas. 71
Sikatol, constipation amd, 111
skin, 6!!
abourmalities of, 65\%

actinomyensis of, 70)?
atiposis dolorosil of, $70 . i$
anas:arrit of, bith;
: memia of, $1: 1.5$
angionit of, 7et
:1trophy.y of, 70:3
blastomycosis of, 702
burning of, tie97
(:illhs: of, 70:3

(:arbmincle of, $7(\mathrm{H})$
rarcimomat of, 70ti
(avernomat of, 70.5
culhlitise of, F(n)
chathere of, 701
(higoe in, 70.3
Chromatopheronm:a of. Tthi
comertones of, 70
'orm of, $\mathbf{7}$ (0):
ryanosis of, bient
reses of, 707
dermatomyrosis of, 70?
darmoith of, 707
cractint of, tils
rephathtiasis of, 701
entrane of birteria throngh. :0
epitheliomat of, Tori
(rysipelas of, zto)
arythemat of, 697
fivus of, $7: 2$
fibromita of, 70.5
freckles of, 703
frexaing of, bis
finmucle of, 700
gathgreme of, 706)
glamiers of, $\overline{\text { (}}$)?
grafting, 2(0)
grambimats of, 7o!
guinea-wormin, $\mathbf{7}$ (0)
gummats of, 701
hairiness of, 69)
hatrkening of, 704
hemorrhage of, (ijof
herpes of, 6iss
bypremisi of, tiof
iii netigo of, (i!9!)
inflammation of, tiont
inter(rigo of, (i99)
keloid of. 70)
leprat of, 702
lenkoderma of, $70 ; 3$

Skin, hichern of, tion!
lincol albicantere of, THis
lipomatosio of, 70.5
lividlity of, 696
lipuse of, 701
erythematosins of, (699)
lymphangiertasis of, 7 (f)
lymphangio-endothelionma of, 70)
lymphangioma of, 7 (M)
malignant pustule of, 700
mellanoma of, 706
miliaria of, bisk
moles of, 705
molluserum cont:agiosim of, 7 (his
murous phatues of, 70)
myoosis fungoides of, 70?
myiasis of, 706
my
myxoma of, 705
nimer of, TOF
nerrosis of, 7(0), 70, 3
meurimomatosis of, 70.)
arlema of, b:96
ost (entatil of, 705
p:pular syphilide of, 701
parasites of, 70)
perliculosis of, 702
p"omphigus of, b9s
phlagmon of, (o)
prignentation of, 70:3
pasoriasis of, 699
purpura of, 694
ringworm of, 70 ?
roxicut ulerer of, 76
rosecola of, 697
rupia of, 701
sarcollat of, \bar{t} tht
sarcomatosis of, 706
serbibs of, 702 ?
arrofulodertua of, 701
"strawherry mark" of, 70.5
suphilis of, $7(0)$
thirkening of, 704
tineat of 7 (t)?
tuberculosis of, 701
tumors of, 70.5
nlecers of 700
urtic:urist of, 6997
variola of, (i9?)
verrucas of, 704
vitiligo of, 703
Wirts of, $70: 3,704$
xanthelamma of, 70:3
xanthoma of, 70:
sincezing, 42!
"Snuffles," 436
Soaps, 33
Noft chancre of penis, 6:31
sore of prenis, 6:32
Softening of brain, 485
Somatic ecell, 44
Poricu, SIS
Sors, soft, of penis, 6:32
Spasm, 480, 48:3

Sp：atic paraplegia，commenital，t！s
Sperilie mberital prerliapomition． 11.

－jurmatio corrl．litn
varimurolo of，bla
intlathtration of．tith
mbarrollosis of，tifo
Surmatorede of teates，fis3！）
Surrmatoreters，4is
＊permatogonimm，\＆\％．\＃1
Sírmaturam，mat uration of，4．i
Suharollas， 333
silhingonyvelin，ö

orcollt：t．4！ 4
ventoms，tis；
－binal corcl，493
ahmormalition of．19：3
：uncuia of， $4!\%$
：momaties uf．4！：3
rongextion of，4！ 1.
（wrpora ：amylacea in，fini
hegeneration of．4！ f, 4！ 7
gliomats of， 501
gramulomats of，infective，l！s， $4!9$
gumbinas of，t！（\％i，$\overline{\text { g }}$（K）
hemorrhage into，4！\％，I！$\%$
infertion of， $4!6$
inllathmation of，t！．）
solorosis in， $4!\mathrm{mj}$
trallmat of． 496

thmors of，4！f，t！s，4！！！，E（K） meninges，sol
spine＂railw：ay，＂t！

Spirilla，st
Spirillosis，as
Spirillum chockrar，multiplic：＇？n of，！$\times 1$
Epiroclaeta patliela．Sict ixponemat
pallislun．
spirochetes，！s
Sb：athehnoptosis．4．）
Fidern，45
athormalitice of．11．5

ant inomyerosis of，419
ancmia iff， 41 i
atrophy of，tis
＂hacorn，＂308，414
b：ecteria in，sis
（：arci moma of， 41 ！
rongestion（ff．＋1：
（vanotie incluration of，tlis
thenemerat ions of，the
cmbolism of， 416
glanders of，tis
hemorrhatge of，tlti
heveremiat of，41：i
livperplasia of，tha
inifilt rations of．HIN
inllammation of，＋17
leprosy of． 41 s

Sileern，Isumplomatoial roblitions at ing，2 +1
ragencrationt of， $1!: 6$
＂未itga，＂＂301s，t1s
sarremilia of，fis
xyphilis of，tIS
thrumbosis uf．Itit
lubererolosis of，tia
lumors of，tlis
waxy， $36 x$
Splonic ancuin：，2 21
Suldontis． 417
Sulenization of lung．fist

homolytir，211， 5 ：$!$
Spomlylitis coformans，fite2
Efontanemos variation，int
sporadic combryoma，20！
inferticoll：I43
pancreatit is， 80.8
teratoma，20：1
Sinorozot，9if
liferyerles in，ini
spore formation in，！Mi
transinissiont of，！！
 of mammary gland． bi－$^{-2}$ of $\times \mathrm{kin}, 706$
of stomatel，5：3！
of vulvit，64？
（phithelial evists，2！！
Stalkisl hyolatid，： s ！
Staphyloeroreus pyogenes，indlamm anll．121
stisis of hoonl，3：3！！
Status lymphaticus，＋11，4だ
Strapsin，3：3
stearin， 33
Steatoliths，315
St eatopygy，2：33
Stonosis，comgenital pulmonam： atrexia，iset
of heart valle es， 3417
of int extimes，it it
of（rsophagus，ix！
ploric，inis
of ureters，fie：
of utcrus， $644,64.5$
Storility of hloorl，is
of healthy tissuc．ith
stermal fiswure，iz
Sthenie fever，lial
Stilliirth，（athers of，tit）
Stimuli，incogemous， 4×2
＂stippline＂of erythrowtes，i．is！
＂sititeh－hole，＂abiseress，si！
Stokes－Alams symlrome，Bä！
Stomarh，ini33
abnormalitios of，－i3：3
alsence of，5is：3
alot inomyronis of，in3t
alenocarcinoma of．539
adenoma of，b：3！
anemia of，inis
 carciooma of, ib:3! cmbolism allul, .i.3! rpitholiontas of, siz!! crovions: of, bemorrlagic, iist filıromat of, ix:3
 homorrlage of, oij3: hourglans, ijis: hypreremiat of, isis inilammation of, -3.3.\% lipomat of, $8: 3!$

ucurinoma of, izis!
poisinns acting ots, א2
s:urcounta of, $\overline{5}+1)$
syphilis of, $\mathrm{B}: 3 \mathrm{G}$
ihrombosis and, $8: 34$
thbererulonis of, is:36
fumors of, $\mathrm{i}, 3 \mathrm{~s}$
ulerer of, is.3t

aphthons, $i=1$
gamkrenolis, 5 -2 4
suppurative, $i \mathbf{j} 4$
ulererativer, 5 ?
Stragulation of intestinm, iblis
"Sirawherry mark" of akin, $71 . \%$ tongue, 523:3
sitreptothrix of lungs, H6.i
sitriateal muscle, regeneration of, 197
stricture of urethra, 62 S
Stridor, 4e!
Stroma in nexplasuns, … 4
Strongylus of lunces, 46.5
struma vasomlosi, 425
subinfertion, 147, 162
sublus:ation of joints, 694
submucous hemorrhatge of stomatho, $\mathbf{i j} 4$ myomen of uterns, 6,01
-ubmormal mell atetivity, 36
Suhscrous myom: of utrus, tiso
subsubles temelimum, 4Nt)
-ugrillations, 33:
Gunburn, skin in, 71):

- HInctrokro, is, lis
suprefotition, ti2
-uppurative arthritis, ti!)
rholery:titis. .i94
hepratitiv, sit
keratitis, ill
Ieptomeningitis. ith.i
myositis, tiat
nephritis. 617
oftitis merlia, sil!
priostitis, tist
-plenitis. 417
stomatitis, i2 4
Surgic:al" killney, 615
- mria, 9.
- Hroptibility, 185
-w at glands. regeneration of, $19 . j$
-williug. ilomily, I2:3, 31)!
- wompathetie hypertrophy, ts!

Sympathetie morvous miserm, 10.i
ophth halmia, il:

- "ипиме, $11: 3,474$

Symerom, 176
Syneviail carcinomat of purrwral utorus. (itit)
symartuly, it
Synerlia, $3 \times 3, .112$
Synorchidism, tiza
Ryphilis, !8
of alremals, tix2
of :arterioss, 414)
of hladiler, 626
of lome, 6xi
of brain, 4K!
of conjunctiva, itl
of cormen, il?
of dura mater, .tols
of car, ils
of Pallopian tubes, di.i.t
of freths, titi.)
of intestimes, .5 .5
of iris, it!
of joints, 6:93
of kidnes, 640
of liver, sis.
of lunges, 464
of lymph noders, 1 H2 2
of hammary gland, titis
of month, 524
of museles, 675
of nose, 4.86
of (19nophagus, sist
of ovary, bin
of penis, tize
of peripheral morves, its
of peritonenm, stits
of piatarnchnoid, ioti
of placonta, 60), 6if4
of pleuris. 170
of skin, 701
of splemen, 418
of stomath 536
of tentom sheaths, 12 F :
of testes, 1;38, (i33!
of (lyymus, 472
of tonsils, 440
of turieal vaginalis trestis, 637
of umbilical (orel, titio)
of urethri, $\mathrm{t} j 2$?
of uterus, 649
of volva, 641
Wassermann reaction in. 167, 16is
syphilitie arterioselerosis, 40:3
rirrhosis of liver, 584
laryngitis, 443
amesoart eritis, 408
pericarditis, 384
Syphiloma of brain, 48!
of liver, is: 2
of myonerdime, 3sis
Ayringonvelocele, 202, 4!5
Systole of heart, 375

INHEN

T
19いいいいのに，3！
Tinnew lomsilio，raty

T＇intomink，11：3
＇limetl，i－3i
Mariow of，：De
Mistuf，ils
doforton ix：

lartar of，34．i．i：

of kinlury： $1:=4$

＇Trolophase ot mitosis， 11

$$
11.17
$$

I＇rorninal inferetion，1：21， 117
lathony：nsis， 364

almormalitine off，bi：37
atrophyy of tia！
rarrimillat of，（tis！）
－1worior－2pitheliomat of，biast
（TuAN of，bis！！
dy＝10pi：of，tix 3
li！ 1 wr phlasi：t in，bis！！
livery roplyy of，compronstory，tis！
liypuplanite of，6：37

inflammathon of，bi3a
Inswothelionlat of，tist？

atromat of，bis！！
arerctions of，HI？
－prymatoserle of，bis！！
－yphilis of，ti：3x，bis！！
teratomita of ：나！
tubreremhasis of，tiz．

comstimme of．in warm－hburlerl
： 1 himais．Ith
lomblintior biali

hatromat of，tiă
inflammation＂f．lift；
lipromia of，hist
＂rive lonlic＂＂in，liन̄

－philix off 167

ththors of biot

intlammation of．lieti
－aromata of，bä
llolm！of．dī̆

 of kinlow tiot

Trambick，bit

 （x）：
of［anital whamk， $20!9$
of himys，Hi．）
of merli：atimum， 47

of urbit， 17

of proritonomm，הint
s！uradic．？20！
of te：915，23：
of wreters，$i=1$
of 1 rita lig：at onta．biti？

F＇athice contractions of mimelde，｜al

Finalys，111，120
Thulitis，iftio
Tharmogemexis， 148
＇Thrombin，341＇

－Thrombophlahitis，3．24，411）
Thromboris． $34 i$
of ：arturiow， 4 （k）
bowal platoldts int．．？
in brain，ATE，Ins
cumser of ：347
corelaill 4！s
of ham：a mater．．in
forms of，istis
hermoltsis olml，：is
of hilhery，bin！
of liver，sïs
of lymph moxes． 412
of peritonernim，itis；
resitte of，3．51）
in r．tillia，itll
of ：pheron． 166
slomach ：mbl． $3: 34$
of vills， 111
＂íhrombus，346，347
alssorptinn of，35t）
artorial．34！
1m：all，34s
（：1pill：ıry，3．54）
（：umpliac，34N
Llohutiar， $34!!$
ha：aline，3．47
liberaterl，3：3
ury：anization of，3．5）
remb，acute， 3.00

Thromblis. red, miverl, 315 valtoning of, 3.:1

Thrısh, iiz!
"Fhrusti-hresiat" brart, : Bam
Thymins, $1: 2$
almeremen of, ti:
altoplyy of. 1:2
hyperpilasia of, 17:2
timphowitronilit of, liz
Nyhlilis of, ti:3
chlurrulowis uf, 1i:
Thyruid (evis.s. 2! ! !
exarad, "robinisin :mal, 161 myx
ghemel, 42:3
atmormatition of. 12:3
:
arerosory. fe?
whenorarcimona af, I: :
allomoman of. 4.:.
at rophy of $+2!$

rarcinomat, warromatowhes of, 12.i
romgesition of, 4:2
-vist of, $42 t$
diguencration of, 1?2
hyperplasia of, tel hyymplaniat of, t:t intlammat ion of, 194 rekeluration of, 1! Mi (r:ansulantation of, - (M) lumurs of 42.5
goitre, 2! ! 1
reartion, disturhathere of. 100
thmors of laryons, 4t3
Thyroidectomy, iol
Thivrolingual cysta, ose!
Tigroid hartios, 1!!, 4:3
T'me:

fonsur:thes. 0 O2
versicolor, T(1)2

development of $2: 23$
ardothelial, 2:2 6
rotrance uf bicteriat to, sis

hembly, st erility of, is
hylic, 22.5, 2:2 4
hypohlastic, 20.5, 220
Lipulice. 22.5
mewromelimatoms, 2e3;
mexot holi:al, 22:3, 2e?
of prealile et ion, 220
pulp, primitise, e2s
Fow-nail, ingrowing, Jos
Poni cont ractions of musche, |NI
Tougur, Ilefects of, 5 :23
gemgr:uphical, 524
st riwherry, $52: 5$
tie, 522,52
'lomsillar eomerremed is. 31:i
"lonsilli is, chronie lallirular, 110
Tonn-ilas. dislis
abmormalitios of, 4:37
alluyculatitix: of, $\mathbf{1 : 1 7}$
folvires of, I33t
hyprovini:1 of, 1:37
inllammation off, 1:37
andemia of. 437
avphitis of, 140
fillureromomis of, 110
Tomms of musillo. IN1
'Nophi in kolle, (i!) 1

alloma, $3 \overline{11}$
Toxins, Ris, list
artion of, Kit
antitoxins amul, litis
of Barcilhes rliphtherim. א.i
of hateroria, st, No
definition of. bist

Fveretion of, by metizo:l, !!!

10414ns, 15%
Toxoid, 105, 1.9
'Toxopher aition
Pracheal, 42! $1,+70$
'Trawhoma, 511
Traction ancurym, tas
divert iculat of (10世0,
Transitiomal hopidomas, 2゙̈t

Tramsplamtation, 1 ! ! t
alatophast ice, 1! !!t
of bolle, 20!
heteropl:ist' 1 !! 9
isupliastic, . 1. 201

of murotis membranor. 201
of ov:ary, "(M)
of prerichomlrium. 201
of periostrotim. 201
of serons membrames, 201
of tomh. $3(0)$
of thyroid. $2(\mathrm{M})$
of ressels, 202
Trammatic comase of inllammation. 122
thrombosis of hur: mater, Ellt
Tromor, 484
Troponema pallidum. ! 33, !s
Trichina spirativ, (eysts of, 2! !)
Trichinar, !!
Trichinizsis of musclese $67 t$
Triclumephathe destrumtion of tissine ly. !!
Trichomonas, $9 \boldsymbol{j}$
Trimethylami 1,110
Priplets, 64
Tropical almoces of liver, $5: 5$
Truncus arteriosils, persintent, 3st;

Prypanosoma brueci, 0 :
evansi, 95
gambiculse, !
Trypanosomes, 04, 05
Trypsinogen, iletivation of, by enterokinase, 174
Trse-tse fly disease, 0is
Tubal abortion, iefis gestation, 65:3
Tube, Fiallopian, (izis
Tiubercle, $1: 38$ of iris, 512
Tuberculomas of liver, isez
Thherenlosis of alrenats, 42!
:ıёrugenic, 460
of bile chuct. EN E Z
of bladder, $t^{2} 2 t i$
of bone, $\mathbf{6 8 : 3}$
of britin, 489
of bursir, bis
of conjunctiv:a, .ill
of corne:t, inl2
of dura mater, eno:

of Fallopian tubes, ti., 4
hematogenie, 464
of intestines, $50.3-5,5$
of joints. 693
of kidneys, 6is
of liver, 581
of linges, 45!
of lymph norles, 412
tymphogenie, 464 of mammary glimd, titio miliary, 464 of moith, $5 \mathbf{2} 5$
of museles, 6it
of myorardinnt, 38.6
of nose, 436
of ansophagus, 5:31
of ovary, 65:
of pirmereats, 095
of penis, $6: 32$
of peripheral nerves, $\mathbf{5 0} \mathrm{s}$
of peritonemin, 86.5
of plat-irachmoid, हो
of p^{1} licenta, 664
of pienires, 470
of pros(ate. 6i3:3
of s:alivary glands, 5 : 2 s of skin, 701
of sprnmatic corcl, $6: 4$
of spinal cort, 4! (\%, 50)
of spleren, 418
of stomateh, i3st
of tendon sheiths, 67
of testers, biss
of thymins, 472
of tonsils, 440
of funica varimalis testis, ti:37
of ureters, $62 \cdot d$
of urethri, be!
of uterns, 64!
of vulvis, 144

Tubermbons bronchopmeumoni:1, 4is?, 461
colitis, 560)
laryngitis, 44?
pnemmonia, 461
nvolonephrosis, (i24
pyonephrosis. 61!)
Tubo-ovarian abseress, 0.5.5
'Tumefaction in typhoid fever, boto
'Tumors, 2(M). Sier also Neoplasms. nomenelature of, 226
orllinary. Sor Blasfomas. in (umore, 209, 660
Tunie:1 vaginalis testis, $6: 36$
abnormalities of, 6:36
inflammation of, ti36
hyidrocele of, $6: 36$
syphilis of, 6.37
tuberenlowis of, fi3i
timors of, $1: 35$
Twins, 62
dichorial, 62
heteroiphat, 8
monorhorisi, 62
monตöphat, 62
unequal, 62
Typhlitis. ise
"'Yyphoid rarriors," 147
fever, in4!-07.3
etat cribler in, 5.50
hemorrlage in, siais
intestines in, 540
neerosis in, 550)
prerforation in, 5.53
predisposition toward. 11.5
relapes in, 0 ais
kkin in, 697
stomatrh in, is36
lumefaction in, 5 no
ulear in, 5 .n2

U

atheromatoms. 402
of corneta, 511, 51?
he:iling, 7 (K)
indolent, $7(0)$
of intestine, B 4 N
phagerlenic, 7 (4)
rodent, 264
serpiginolns, 512
of skin, 7(M)
spreating, 700
of stomach, 536
in typhoid fever, nis?
Iferation of peritoneum, 564
Clerrative politis, 55s
entoearditis, 396
inflammation, 1:34
somatitis, 524
tuberrulosis, 46^{2}
"1t ranicroscopie mieroërganisms, 0\%

Cltraviolet rays as comse of discose, Urethritis, gonorrheral, bies 75
['mbilical eord, 66.it
angionna of, thbij
cysts of, 665 degeneration of, tif:3
 looped, (itios
myxoma of, 6tis
septic infertion of, 66.i.
syphilis of, 665
t wisted, 665
hernia, ife!
Unconsciousness, 480
"TIndifferentiation," 20;
Unequal twins, tis
Unicentrie blastoma, 21%
Unilateral kidney: 60 S
Universal peritonitis, 563
"Unresolvel" pheumonia, 4.7"
Urachal cysts, 285, 29t), (625
Cratie culculi, 316
inspissation in infancy, :317
Vrea in urine, 602
['remia, 60"
causes of, 105
Ureteral colic, 623
Ureteritis, 623
Ureters, 622
abnormalities of, tiv2
calculi in, 623
carcinoma of, 62.4
cystipereus of, 624
cysts of, 624
cehinorocerns of, 624
eust rongylus gigas of, $0 \geq 2$
filaria sanguinis of, 624
foreign bodies in, ti2:3
gravel in, 623
kinks in, 623
inflammation of, 623
obstruetion of, $62: 3$
papilloma of, 624
parasites of, 624
sarcoma of, 624
stenosis of, 62:3
teratoma of, $\mathbf{t} 24$
tuberentosis of, 624
tumors of, 624
Urethra, 62 s
absence of, 628
anomalies of, 62S
(arcinoma of, 629)
caruncles of, 620
condylomas of, 62!)
fibroma of, 629?
foreign bodies in, 629
inflammation of, 62 s
sarcoma of, 824
strieture of, 62!)
syphilis of, (029)
tubereulosis of, 629
tumors of, 62!
('rothritis, 628
Lric acid, 27, It)
calculi, 31t
infarct, 317
in kidney, 620
in urine, (60)2
U'rinary ealeuli, 316
fuluction, 59!)
gravel, 317
Urination, disturbances of, 604
Lrine, albumin in, 6itz
albumoses in, 60:3
creutinill in, 602
excretion of, decreised, bit) increased, tiol
incontinence of, 60.
retention of, 605
solids in, 602
urea in, 602
uric arid in, 602
Urobilin, pigmentation due to. 324
Irobilinuria, 322
Urochrome, 322
Urogenital duet, tumors of, 275
Urtica, hybricls of, showing Mended's law, $4!$
Urticaria, 607
Uterine fibroid, 241
Uterocele, 644
Uterorectal fistula, 644
Utoroversical fistula, 644
Uterus, 643
abnormalities of, 643
absence of, 643
adenocarcinona of, 6 i 1
adenoma of, 651
adenomyoma of, 243, 650
anomalies of, 6 H 4
anteflexion of, 1544,645
atrophy of, 64?
bieornis, 644
bicornuate, 644
bruising of, 646
carcinoma of, 651
cysts of, 649, 652
didelphys, 043
dilatation of, 616
dysplasias of, 644
dyist rophies of, 644
cleration of, 645
endothelioma of, 652
cpithelioma of, 651
fibroid of, 241, 650
fibromyoma of, 650
fission of os of, 644
flexion of, 645
fretalis, 64t
foreign bodies in, 649
hemorrhage of, 646, 647
hyperemia of, 646
hypertrophy of, (i:0)
lypoplasia of, 643
infantile, 644
inflammation of, 647
['terns, inwersion of, tif.) lig:thments of, titil alsemere of, titil atrmomat of. 6tis amomaties of, titil (wass of, titio, titiz) filhroma of, tifiz herworrhage inc Gitl hypertrophy of, $6 t^{2}$ 2 inflammation of, 6til lipotua of, titie miyomat of, $66^{2} 2$ plikebolith in, 661 s:urcomit of, $166^{2} 2$ tratomat of, 6tiz tumors of, titiz lipoma of, (i.50 Hyoma of, 241-24:3, ti,5)
myxomyonta of, (6.5) parasition of, 649 perforation of, it4i procidentiar of, 6.45
prolapse of, titis
purperal, (iti?
chorio-rpithelomat of, tifis
decichoma maligmom of, (itis)
syncytial rarcinoma of, bitis thmors of, tifis
retroflexion of, 644, ti45
retroverterl, 644
rupture of, 641 i

septus, 644
stenosis of, 644,645
syphilis of, ti4!?
tinherenloxis of, 149
thmors of, tivo
mnicornis, " H
I'vulitis, $4: 37$

∇

Vaccinia, organism of, 9:3
V:unolar degeneration, 306, 6i2u
Vamoles, is
Vagabond's disease, 702
Vigina, 642
abnormalities of, 642
absencer of, 642
atresia of, 642
carcinoma of, squamons-cellod, 643
chorio-epitheliomat of, 64;
cluplieation of, (542
hemorrhage of, 642
inflammation of, 642
leiomyoma of, 64:3
passive congestion of, 642
sareonat of, 643
thmors of, 643
Vaginal hernia, 569
Vaginitis, 642
Valves, aurieuloventricular, 373 semilunar, 376

Valvalat mucumot m:is, 4tif
Valvolitis, 393
Virriation, heredity and, 4^{5} spontancolls, io
Varices of intestincs, 597 of lymph notes, 412
Varicocele of spermatio eord, 640
V'arieose :memrysin, 40s bronelhiectiasis, 44) veins, 278, 410
Variola, 609)
Varix, anemrysmal, 4th
Vas leferens, (640
inflammation of, 1440
Visembar area, inflammation in, 12:3
Visarularization of new formed connertiv i is:ste, 136
Vasetable forms, pathogenie, other tha burteria, 92
Vemetations, 135, 394
(emrliar. 349, 351
fibrinotes, li, 5
Prextative cell, $4 t$
amivity, 3S
cmoloc:arditis, $3!4$
Voins, 410
(akkifieation of, 41t)
dilatation of 410
filbrosis of 410
inflammations of, 410
thrombesis of, 410
varivome, 410
Venereal wart, 2054, (652
Venoms, animal, Itis
Conoms lyperemia, 3i3s
pulae, 372
thrombus, 3a0
Ventricle, fourth, hydrocele of, 292
hyidroeephahss of, 486
of heart, 373
dilatation of, pathologieal, 37: distention of, 374
Vernal conjumetivitis, 311
Verrucie, 7!
Vermense endocurditis, 394, 305
Version of uterns, 644
Vesico-mmbilied fistula, 625
Vesicovaginal fissure, 73,144
Vesienlar seminales, 640
Vemsels, poisons ateting on, 82 1ransplantation of, 202
Vicarious cell activity, 37 hypertroplyy, 188
menstruation in manmary glan 606
Vincent's angina, 43:
Virulent bulo, (i3:2
Virns, filterable, 92
Vitellins, 25
Vitello-intestinal cysts, 289, 567
Vitiligo, 393
Vitreous degeneration of myoeardiur 390
humor, 516

Volvalus of intestines, 345
Von Recklinghausen's diseatre, 2:30, 2.17
Fulva, 641
abnormalities of, 640
angioma of, 641
ntrophy of, 641
carcimoma of, stuanous-ralleql, 642
chondroma of, (i42
entaneoms disturbanese of, $\mathfrak{t} 41$
cysts of, 642
clephantiasis of, 641
fibroma of, (441
hematoma of, 6 H 1
hemorrhage of, 641
infective granulomas of, $6+1$
inflammation of, 641
lipoma of, 642
lupus of, $\mathbf{~ t h 1 ~}$
myoma of, 642
nevi of, 641
indema of, 641
passive congestion of, 641
sareoma of, melanotic, ti4:
syphilis of, 641
tubrereulosis of, 641
timmors of, 641
Vulvitis, acole, 6.41
Vulvovaginitis, 64!

W

Wallemban degeneration, los
Wiarts, 257, 70:3, 704
venereal, 258
Wissermann reaction in syphilis, $167,16 \mathrm{~s}$
Water of cell, 31
ionization and, 32
Waxy (ast, 312
degeneration, 32S, 676
spleen, 308

Weaver's bottom, 6̈̈s
W(ans, 290, 707
White infaret of liver, 344, 572
kidury, large, tis'2
pheumonia, 465
soften. ig of brain, 487
swelling of knee, (684, 603)
Widal reaction, 162.
Wolffian body, "ysts of, 2x!
Worms in peritonemm, 566
Wrist-drop, 50 S

X

Nantilin, 27, 107
calculi, 318
Xanthelasma, 7(0):
Xanthoma, 23:3, 705
X-rays an catuse of clisense, 78 cells of thimors and, $2 x i$

\mathbf{Y}

Yaws, as
Yeasts, !!2
Pallow atrophy of liver, amite, 374
fover, organism of, 92, 93 prealisposition toward, 11is

Z

ZeNKEA's degencration of museles, 32s, 1576
of nyoeardinm, zan)
Zona fasciculata, 421
glomerulosa, 421
retimularis. :?1
Zynophore, 1 :.;

[^0]: which are produred by the living codl, to distinguish them from inorganie forntents, e. g., gold and platimum.

[^1]: : Keemnt workers, following sehaudinn, make a distinetion between the entamebre cell, a noranal hamless inhabitant of the lower bowel, and the entamabe histolytica, the ralsative agent in tropieal dysentery.

[^2]: I. Craig, Del

[^3]: 1 frequent mistake of the student is to confuse fibrous and fibrinous. The term 'rnous can be employed only to designate the result of deposition of fibrin.

[^4]: 1 ifrow, the people.

[^5]: : תinn , animal.

[^6]: ${ }^{1}$ Ambo, both; capio, 1 seize.

[^7]: ${ }^{2}$ Or prhaps, more aceurately, in the pancreatic juice, for such digestion is lytic and wr now recognize that fer the aetivation of the trypsinogen a second body is b"Hmaty, Trypsinogen is inert save in the presence of cuterokinase, which may be regarded as the complement, the trypeinogen as amboeeptor.

[^8]: ${ }^{1}$ Some prefer to call these simple and numerical hyperplasia respectively, which is more accurate but less widely used.

[^9]: in in which the processes spreat into the surrounding corium); others cheloid, 1.

[^10]: '

[^11]: ${ }^{1}$ Many object to this term: it is permissible if understood as an abbreviation for "perivascular lymphangio-endothelioma."

[^12]: ' See also p. 26 for classification of lipoils.

[^13]: Hyaline degeneration of a glomerulus, from a kidney showing chronic interstitial nephritis.

[^14]: ${ }^{1}$ A fuller diseussion of the subject will be found in the small work on "Inflammation," published by one of us (Adami). (Macmillan: London and New York, fourth edition.)

[^15]: ${ }^{1}$ The latest work Hon these subjects is by Thomas Jewis, "The Mechanism of the Heart Beat," London: Shatw \& Sons, 1911. Articles upon the same sulyipets are to be fonnt in both Allbutis and Osher and MeCrae's Systems. The clan-ieal
 Of equal importance is his "Dise" o, of the Ineart." Iondon, 190 os .

[^16]: ath rupture of chorda tendinese: u, papillary muscle; b, ruptured chordse

[^17]: ${ }^{1}$ For the reason that there is diffuse piplenie enlargement in many general atates it may be serviceable here to tabulate some of the various diseases in which spienic enlargement occurs; we give them roughly in the order of the degre of enlargement that may, as an average, be expeeted: myelogenous lcukemia, malaria (ague cake, splenomegaly (Banti's), splenomegaly (Gaucher's), lymphosarcomatosis. Hodghin's disease (late stage), acute infections, chronic congestion, amyloid, syphilis.

[^18]: , ment hy an vesirle containing a mass of exudate compased of a network of fibrin, red blood \because ath a few leukocytes. (Hare.)

[^19]:

[^20]: 30

[^21]: isis, hard (i. e., difficult), eurpor, the bowel.

[^22]: ${ }^{1}$ The receat work of Lechlein and Cawkell suggests that the large mottied kidne. is a type a:art, assoriated chararteristieatly with acute endocardnis, and multh simali emboli in the glomerule and elsewhere with resulting local disturbancr: of
 circulation.

[^23]: ${ }^{1}$ This occurred in a case very thoroughly studied in our own laboratory this year by the Dr. Elsie B. Wilkie.

[^24]: sssages， 90

