BULLETINS

Arrial Expretment Asautatiun

Bulletin No. XXXII Issued HOMDAY, FEB. 15, 1909

MR. McCURDY'S COPY.

BEINN BHREAGH, NEAR BADDECK, NOVA SCOTIA

BULLETIN STAFE

Alexander Graham Bell
Gardiner H. Bell. Assistant Editor
Charles R. Cox.................................... Typewriter
Mabel B. McCurdy.
Stenographer

Bulletins of the Aerial Experiment Association.

BULEETIN NO. XXXII ISSUED MONDAY FEB, 15, 1909.

TABLE OY CONZTMTS.

1. Bitorial Notes and Compenta:-

Gardiner Hell's Hying Toy..
Ice-Bout Acoident, Curtiss hurt............................... $4-4$ 3ilver-Dart

- Zorx of the A.E.A: -

> \$perisenta reported by the Bditor............................. 7
> Jan.19, 3rake Teuts...
> Jan.22, Gardiner Holi's tlying toy.............. 6
> Jan.23, Gardiner Bell's Mying Toy..........6.6
> Jan.23, Jore Toy moporiments......................7-7
> Jan.27, Hore Toy Koperimonta. $7-7$
> Jan.28, HoCurdy's Ice-Boat Experinonts......7-8
> Jan.29, MeCurdy'z Ieo-Boat ieperinents......8-9
> Jan.29, Aeroplane carrying a Gyroscope....10-10
> Jan.30, Acroplane oarrying a Gyroscope.....10-10
> Jan.30, Accident to Ice-Boat. 10-10
> Peb. 1, Testing Suction of Propeller.......10-11
> Teb. 2, Push of Advancing Propeller.........11-12
> Feb. 3, Push of advancing propellor.........13-13
> Teb. 3, Ho Water-Spout af Beinn Bhreagh...14-14
> Teb. 4: Dry Batteries Affected by Cold.....14-19
> Peb. 4, Tay Yodel of "query". $20-20$
> Pob. 5. Exper ments with Ice-boat.......... .20-22
> Feb. 8, Experiments with Ieo-boat...........22-22
> Photoa, etc. Illustruting sxperiments.......ij-27

The Dufaux Bingine: By G.H. Curtias......................... 20-30
Recording Inatruments usod on Ico-Boat:
By J.A.D. MeCurdy.
Hacelzaneous Comunications:-
Selfridge to A.B.A. Pob. 2, Concorning Chanute's Approval of his son's work......................................34-34
Itre. Bell to A.B.A. Bob. 10, about Saleridge
Yomuaont. $34-36$
4. The Outlook on Aviation:by the Aast. Wiltor:-37-42

Tho Girard Aizship, Fussia's wprupriation ber Aeronautios, Congress " anpropriation for Aeronautics, Wright'a rlights at Pru, Quotation from Scientific Anerican ooncerning propellers used in Britiah Any Aaroplane, Sxtracts from I' Aerophile, Tranalated by Kiss Mabel B. Me Curdy, oncerning foreign Aviators and their machinea,

IMustrationg.

1. 3lue print containing Miga. 3,2,3, 4 and 5 rolatm ing to Yhing Toys.
2. Blam print containing 9iga. 6,7,6 and 9. Bign. 6 and 7 relate to Rlying toyb. Figs. 8 and 9 ralate to inatruants for noazuring the suction of a rotating propelior
3. Two photographa ahoving tho shod for the "SilverDart*。
4. Two photographs shoaing Droms Mo.5 providod aith sledgemrunnera and a front control
5. Photegraph of the notor-drivon Icempoat besion insediately after tho aecidont in wich Curtias was injured. The velocity was ao groat that, after breaking off the front stoering akid, the Iepmoat illd over tha platiorn in fron: of the boat house and brougt in auddenly against the 3111 of the door.
6. Blue print illustrating uccurdyis article on the rocerding insbrurventa uzed or the Ico-Boat: Dynnometer above; Anamorntor below.............................. 33

Goxtiner Belva Ruing toy.

Jene 26.2009 - In view of the temuination of the Assooistion on its present beala at the ond of mareh attention has been oulled at various times to the absolute neceasity of providing aore incons to the Association frue its work if it is to continue in operation after the slat of tarch when its aubsidy fron tra. Hell caases. Since the organization of the Asseciation there has been a continuous outago of cyoney and no in-ge with the reault that it beconea indracticuble to continue the Association beyond its allotted term unleas other weans of suyport oan be found than bave so fiar been providod. I an unwilling that tris. Hell should be called apon for further finuncial aupport than she has pronised to give. I have auggested at various times that one of the best maya of seouring financial meana to continue experivents by our own exertions in a mort time would be to take sdvantage of the general interest of the public in the aubject of flyingnachines by putting on the market a plying toy of such cheap conatruction ab to be aold at a profit for a very amall amount. of course we cannot interrupt important experiments for thia purpoae, but it has aecred wise that we shoula give some thought to the matter as a promising means of bringing in quick returns and diapenaing with financial aid. I have apecially directed the aisention of htr. Burainer h. Bell, our Asst. Bditer te this matter. Hia work relates nore particularky to literary matters. He had taken but little active part in
our experissenta sume abs observer, and can beat spare the time for the consideration of this subject.

On Jan. 16 Mr. Gardiner Mell gubnitted an idea aa a Dasis for an astractive toy. It is well known that a long and narrout alip of peper if allowed to drop whiria round in the air upon a horimontel axis and doseonds very gantly to the ground. Mr. Gardinar Boll has rsede oxperiments to ascertain the best disonaions for zuch a miriling slip, and on Jan. 14 aubnitted a alip of paper about 10×4 on (Fig. 1), which wiried very well and in an attractive manner. He also inforeed we that he had tried a sheet of bleting paper of largor size but of the ase relative disensione with a p in placed at either end in the axial line fror which was auspended a aort of aving of wood, and that the mirling aurface endyorted ita 2ond in the air in u very proniming manner. He did not however exchibit thin in operation at thest time (Jan. 14) and he was requested to do se as moon as poasible.

In the meantime the reasibility of a aiswio mirling toy on this principle was discuased and sonse old Laboratory nodels were hunted up made of ailk upon a franework of wood Wieh had been used a year or ao ago to inves igate the affoet of varying the dirnengions of the uurface upon the rate of whiri. One of these soroplanes waw soleoted sad fiven to wtr. Gardiner Beli to make experinonts with.

On Jan. 22 Hr. Gardiner Hell ahowed this whriing aeroplane in operation carrying a swing of wood (Fig. 2), and it was decided that this forrsed a very promising basis for an attratetive toy.

I augionted two whixling wings aupyorting betweon thon the Pigure of a man (Fige s).

解. Gardiner Bell suggosted coiling a string around an axis and pulling it so as to give a good initial rotatIon; and I suggented amal oentral balunce wheel to keep ug the rotation.

On Jan. 23, Mr. Gardinar Ball aubnitted a model ahovn in $7 \mathrm{H}_{\mathrm{E}}$. 4 to exry out the idem of central loading. This was of milk with a framework of wood.

I submitted a whrling theet os stifl paper $\begin{gathered}\text { with a }\end{gathered}$ Bteal icnitting needie ruin through it as a contral axis, Pis. 5. Thie whirled very woll but vith exrious rlapping noise sugceating the iden that the axis of rotatien wis not In the middie Iine of the papar where the knitting meedle was placed but that the lond amung around the axia of rotation coeasioning the riapping apund.

During wy reeont visit to Vinahington I mot the Fon. Juther Anes, Representative Iron kass. at the wite House, and learned from hin that he Ia employing whiring aoroo planos in an satwal plyingwnachine with which he ia axperimentinge A.G.B.

Zoh. 9. rpgage Mr. Curtise suotainod a frightrus looking wound in the leumboat neeident yeaterday (Fob.a), his lower lip having been alnoat torn off, morely holaing by a manl sleah conneetion on either alde of his nouth. When he looked at himbelf in the ghams he found his tongue protruding through the wound.

He wab drivan to the Point eurfering fron ahock and loas of blood. Doughas hecurdy flew to toun on our aalling 20e-boat for a Doctor, nhile mas Cadel, a trainod nurwo gavo firet atd an bandinged the wound.

Dr. Henonald mas aney mo HeCuray brought over Dr. MoIver. He etitached on the Lip, sund roported thet there soemed to be no other darnge. Tooth ull ridat, and no interm nal injuxy although Curtisa hed boon throun against the steoring wheal with aueh force as to bond and distort the Iron rod forming the axite.

Fomany (Feb.9) Curtsas has remained in bod feeling weak and aixay when he attermsed to rise. Both Dr. Hemonald and $\mathrm{Dr}_{\text {, Melver onse to aee him thia afternoon, and report that }}$ the isp is healing atiarnctorily, mat that there is no other injury. We is axpeeted to be all right in a day or two.
 usual afternoon conforonce of the A_{0} Fio $_{0}$, was held in his bed room yeatexdny (Fab.10) no an to allew hin so attond.
A.a.B.

Silver-Dart.
Peb. 11, 1909:-The remaining crates of the Silver-Dart arrived here Feb. 6, and the Hammondsport engine arrived this morning. A.G.B.

Jam. 192. 1909:- The rollowing rough notes eoncerning brake teste made tomay were reeordod by wr. 3uatirinte A.G.B.
*To tune up engine (Curtise wo. 2) which was mipping When laat uaed on "quary" we put brice on it.

Ingine vould nat take advanced eparic ao shortmeireuited timer to get continuous apark. The apoed vas very much inproved; gave 13.79 horiempower at 1254 rym.

Ian engine dale clasod porthe...2252 RoP.ll. Han engine idie open ports....... 2336 R.P.M.

Shortened arm of brake fron 63 inches to $311 / 2$ inchea giving eirewnerence of 26.5 rt . so thet

$$
\text { B.H.P. }=\frac{\text { gry } \times P}{2000}
$$

Badius	cireum	Pa@	$10^{\mathrm{Z}} \mathrm{sec}$	Hepl	3 HP	Rernaris cloaed ports
32.50	26.5 2t	14	225	2350	9.450	$\begin{aligned} & \text { Cyi. Ho. } 3 \text { akip- } \\ & \text { ping during } \\ & \text { reading I. } \end{aligned}$
\cdots	\bullet	22	209	1254	23.794	
-	*	22	219	724	7.854	
-		17 12	259 242	1434	12.169 8.72	
-	*	12	242 282	1452 1392	3.728 9.048	
*	-	12.ght	358.6	2152	1ight	11ght
						open porte
*	-	12ght		2836	1icht	-
-	*	12¢t		2336	21ght	-

These experizents zere sude aimily with a view to tuning up ongine. We were having gorse trouble with the tirser but by short-cirouiting it and using a continuous prinary eurrent the engine apeeded up all right.

Zwo of the cylinders have not got good conyression but as it was understeod that these bruce testem were net meaaures of the available pewer of the motor we did not take any trouble to leeate leaka and get good oomyression.
Y.W.B.

Gaxtiner Me21's Byang toy.
Fane 22e 1909:- Mr. Gardiner Holl made experinenta with the ohirling acroplane of ailk atretched upen a fraene of wood, ahown in bluomprint Pig. 2 carrying as load a arose-bar of wood. The whole weighed 134 graze. Then the apparatus was drepped fron a haight the seroplane mirled round gilding seroue the anall room in the hosdquartera buileing carrying its load.

Ite bohavior mas so premising that it was decided te make further exparinents looking to the manufacture of a flying toy. A.a.B.
Jano 23, 1909:- Itr. ©ardiner Be21 made experimonts with the कhirling model, ahown in blue-print Fig. 4, fitted to carry a contral lond. Thia was of ailt with a framewort of wood. It gisaed well men given a preliminary apin, but not so well without. A.G.3.

Jan. 23, 1909:- A. 3 . Boll made wirling experimonte with a atiff shoet of paper with a steel knitting-needle run throuth it an an axis as ahown in blue print pig.5. For roaulta ace editorial in thia Builetin. Mr. Boewin was asked to make san arrangemont of wire and paper on this basis to test the practioability of the toy auggeated in blue print Mg. 3.
A.a.B.

Jan. 27, 29092- Hr. Heduin aubuitted a wire frame covered alth papor (Fig.6) carrying a looae awinging aren of wire auapanded in the midale, loaded with a mall piece of lead to represent the Iigure of the man in Fig.3. The apparatus whirled poerly. The winge were thought to be toe wide for their length. They were then out down, as shown by cotted lines in Mige6, with inproved results; but the whole arrangonent seamed to be teo hoavy for the wirling surfmees amployed. A.G.B.

Jan. 28, 1909:- The ice-boat, to cearry out MeCurdy'a idea of teating the pumh of a propeliar filie advaneing rapialy in the line of thruat was tried towday on the frosen aurface of Beinn Bhreagh lurbor. I mas not prosent and thereo fore aaked HeCuray about the remalts of the exporiment. Io ry aurprise he anid there was nothing to report, for maid he, "the experiment was not an experimont, but only an ex periment (1) to teat the tranaiasion.

Fith the kind aasiatence of Hial label B. MeCurdy, our atenegrapher, tho was plsoed in a sultable atrategte position, I suceoedod in capturing from MoCurdy the follown ing acoount of this experinent that mas not an exper mont at mill MeCurdy aald:-
Whe ides thas to soe about the
tranariasion. Yould it hold up under
the haavy propeller, a big 10 foot
propelier. Fo just took the ongine-
bed and frome exactly an you had it
on the "Guery" and bolted it down on
the ice-boat, and mounted on that the
counter-khart with the spring.
We took her out on the ioe. Had
a place eleaned by Hanehester. start-
ed her up all right. Mlan her dovm on
the courae 200 meters in 22 veconds.
wo atopped her at the other end and
found that the upreader mas toe weak
snd it buckled up. We tightened her
wif whe tried her agin, but it was ne
go.
In the meantime noticod the
puah on the gauge. From the time we
atarted, the acale moved right up to
three diviaions, and there ware ne
variations. Wentt know what the
push mas mon the bost was mtil2.
Velocity was 100 meters in 22 seconds.
Hedwin ia going to Pix the swreader.
We found that the rudder was not
quite strong onexpt, and he if going
to fix 1t up. The apring indicator
works all rigent.
A.G.B.

Fan. 29. 1909: Iocoboat triod nghin tomday with 10 ft . propeller, $221 / 2^{\bullet}$ at tip. Curtiss Illo. 2 ongine used. (Nosring 3:I. A silight wind of perhapes 5 or 6 miles an hour was blowing down the harber.

The objeet of the experinent was to ascertain whether the puah of the propeliar was the save when the ice-beat was in motion ns men it was at reat.

The boat was firut held atationary upon the iee wilo the push mos being measured and the rotations of the propoller counted. The boat was then releawed and aped dow the harber with the wind, but we did net get a roading. Coning back against the wind wo made a mpeed of $\mathbf{1 0 0}$ metore in $\mathbf{1 6 . 3}$ soconds. 值ile the was running at this rate the push was soaured on board the lec-boat, and the rotations of the prom peller eounted.

Besult.
Ieembant stationary....Puat 150 lba at 342 rpa. Icembeat moving........Pluah 150 2bs at 438 rpi.

We cannot place much relianoe upon these first reaults; for HeCurdy's aoviee for measuring the pull is new and requirea eareful testing before we can sceept its indicmtions as correct. He has found that a meight of 200 lbs coraprasaes the apiral apring to the extent of one inch, and the indicater ia graduated upon this basis. A lever arm ie uacd to megnify the motion of the apring, but nuesorous choak observations muat be made before wean feel frull confidence in the aeouracy of the readinge. The puath the some while the mochine was in motion as when at. rest. I would have more conridenee th the result if the twe readinge had been difforent for then we would have had aorse assurance that the maaauring meehanian was operative. MoCurdy*s device 200ks very promiaing and further experiments will whow how far its Indioations may be relied upon.

> A.O.B.

Ian. 29. 2909t- Gaxdiner Bell made experimenta with a cotton eovored aeroplane carrying at ita couter a mall gyrom scope uhich he caused to rotate (indepondently of the plane) by moans of a atring coilod around the cucis. See Pig.7.
A.0.3.

1an. 30, 2009 g - Gardiner Mo21 ahowod us his conbined aeroplane and ecyroscope (rigst) in operation. When aropped froen a height the aeroplane glicea gontly towarab the floor athriing round as it descenda.

If aid not seen to mais much difference whther the gyroscope mas in rotation or not; or whether it revolved one Why or the other.

The aereplane thirled more gracerully, and nade a more gradual caseent without the egroscope then with it.

$$
\text { A. } 0.3 .
$$

ACCTD ${ }^{2}$ 登

Jan. 30, 1909: Thile Hecurdy's icembent was being prepared for trital the balaneewheol shart ahearod off and further experinenta had to be poatponed for rapairs.
A.O.B.

Yeb. h , $1909 \mathrm{~s}-\mathrm{In}$ accordance with aome suggeations from me, mr. Wh. F. Bedwin tomay tried the apparatus show in blue

A agtuare pieee or wood，hoving an area of one aquare foot attached to one ond of a balane boam，and a mpriny belance to the other．She wooden axfince wad placed below the propollez of the ieembeat in about the poaition stere the water－apout was observed in the $\begin{aligned} & \text { whenondsport axeriments } \\ & \text { with }\end{aligned}$ the＂boon＂．It was axpected that the wooden surface would riae，as the water had tone under the auction of the rapidiy rotating propelier；and that the apringubalance at the other ond of the beas would measure the value of the pull．
 tas observed，ilthough the aurface was shifted to difforunt placos under the propalies on both aices of it，and at difo ferent dietances axtay．

Plangyate Mr．Moturdy and Hr．Curtiss have been reo quoated to repeat the mator－apout exper turent for our inform mation．If wean reaproduce the oonditions that eaused the wator te tise we will have a basia to work upon．瓨 already have two instrumente preparrod for meanuring the affect．See bluo print yiga． 8 番 9.
A.0.B.

Sig pusi or Mi ADVAHOMG prop whis．

Tob．2，190日ge Ieembat tried to－day with serew propeller 7 Seet 8 Inches dianeteri 220° at tip．vind 8 to 10 miles por hour felt on harber．Following detalls somplled frou HeCuray＊e notes．

boat houmo. Propell er made 654 rym.
 Heaule: Thrust 150 1bs at firat

 but apoedily aettled to 225 lbs .Inge. 2. Iec-boat in motion down harbor miking 100 moters in 10 soeonds. Prepolier 633 rpm.

Reanit: Inruat 100 lbs at firat speedily foll to 75 lbs , and resainod thare till near conclueion of experiment when it roas to 150 lbs .

Zon. 3. Iee-boat in motion up harber. Vorocity 200 m in 23 ase. Propeliar 558 rpm.

Reault: Thrugt mot observed.
Emp, 4. Ieo-boat in motion down harbor. Velocity 100 m in 9 anc. Prom peller 1027 rpm.

Heaults Inrust 1.55 lbs at pirst, but apeedily settice to 100 lba .

Eno 5. Ieembat atationary on the 1eG. propeller 561 три.

Resul ti Thruat steady at 230 lba .
Fon. 6. Ieemboat in motion up harbor. Velocity 100 m in 22.6 sec. Propelier age xpm.

Reanle Mruat ateady at 75 lbs.

Renarixas- The results are not very concordant but aeem
to indieate that the thruat of the propelier is less when the naching is in notion than when it is at reat, thus reversing the verdict given Jun. 29. It ia obvious that valuable rei aulta mill be obtained with MeCurdy's device for measuring the thruast taile in motion, but the dofects of the instrumont oan only be aaeertained by multiplying obaorvations. We cannet yet feel full conridence in its indications.

$$
\text { A. } 3 . B_{0}
$$

Tab. 3, 1009:- Iecmbont propellod toman by the "Albatrosa Propeller", \& reet, pitch $6 \mathrm{~L} / 4 \mathrm{rt}$. Detaila eompled froan He Curdy ${ }^{6}$ a notes.

Prop. I. Ioe-boat in notion dovan harbor. Speed 100 m in 10 see. Prom peller 759 rya.

Heavit: Thrugt ateady at 2.25 2bs.
Exse 2. Ieemboat atationary on the 1ce. propeller 660 rpa .

Reault: Thruat stendy at 235 1bs.
공. 3. Ieo-boat in motion up harbor. Bpead 100 m in 12.8 sec. Propoller 636 xpm .

Reatits Thrust steady at 50 lba.

The lellouing experinents were then nade with another propelier 7 rt. a inchea cianeiter, 220 at tip.

Zope 1. Ieombat wtationary. Prom peller 370 xpm .
Hesulet Thrust 135 2bs.

3xpe 5. Ice-boat in motion dovm harbor. Bped no tobserved. Propelier 600 xpme (doubtrul).

Rasult: Thruat 75 1bs.
Expe 6. Teembat in motion up harbore byece 200 in 14 aee. Propellar 504 rym.

Beavalt: Firust 75 lbs.
Frac 2. Iee-boat in motion down harboro speed 200 m in 12 aec. Proo peller 618 rpm.

Hesult: Thruat 75 3Ds.
zen. 3. Ioe-boat in motion up harbor. bied 100 m in 15 sec. Proe pelier 543 xpm . fosult: Thrust 75 1be.

Romarigas- Homults of tomay's exporiments are confirmate ory of reaulte obtained Pob. 2 that the thruat of the prow pelier is loas when the michine is in motion than wen it is

Yebe 3. 1909:- 3tr. Bodvin reported that Mccurdy and Curtiss hsve attarapted to raproduee the 瑯tax-apout phonomenon observed in Hitwondogert. A large hole wis broigen in the loe In Beinn Bhraagh Harbor and the icembont backed up to it 50 that the rotating propalier aous above the open water.

Roante: Bone aingt agitation of the water but no (7atermapout affeet.

Hennerlasio Mr. MeCurdy and Mr. Curtisa have beon requested to ropeat the experiment with the new engine won it arrivea here ao as to have at maxiy as possible the aase conditions they had in Humsondsport. They own use the stane ongine and prebebly the same propaller.

$$
\text { A. } 6.3 .
$$

 spaking of the atificulties experionced whth the engine on the ice, trought that the intensity of the ignition apary varied s good deal at different times; and axpressed the opinion that this might be due to the aupposediy weli ienovin faet that the dry batteries, fich ware plaend in the prime ary eireust of the induction coil, ware arfected by cold. He atated that he had meaaured the ctarxent produced from the batteries at a time when the angine was woricing badly and had found that the batteries wore apparontly in poor condition.

Upon placing them however near a stove thoy very soon reoovored their pewer.
itr. Bedvin wan then requeated to mace exparinenta with a number of dry cella to ascertain dofinitely the efsects of hoat and cold upon them. The experinent mas made tomiay, and the following reamite are ooepiled fron Mr. Bedwin" ${ }^{\text {m }}$ notes.

Hr. Bedwin took ton dry colis which he numbered froct one to ten, and tested the atrength of the current produced by each with his Voltnoter. The reading purport to bein Axperas: At 1 anst the readinge are tacen from the Aspere acale. The cella were divided inte two groupm, Mos. 1-5 and Hea. 6-10.
 Colls in Morral Condition

Cella Current Cella Current.

Cella I to 5 were then placed out of doors to cool, and cella 6 to 10 were kept in doers near a stove to warm. Observations of eurront ware then made evory hall hour with the following reaultas-

Cooling
Cells Current

Coolting
Cells Gurrent

瑯ming
Cells Current

H0. 6	10.0	
7	13.0	
8	10.0	
9	13.0	
	20	13.0
Totar	5	39.0
Aver.		11.3

3ng. 1..........2ino, 22.15 (Moon)

Coaling
Cells Current

Thurning
Cells Current

After the noon roading the cool cells Hos.I to 5 were brought indoors to warn and the warn celle Hos.6 io 10 were put out of aoors to cool. Zesiinge were thon taken every hale hour with the following resultas-

Uuraing		Cooling	
Cells	Current	Calln	Curront
\＃0．I	20.0	Fo．6	7.5
2	20.0	7	8.5
3	10.0	8	6.0
5	10.0	9	8.0
a $-\frac{5}{5}$	$\frac{1890}{320}$	10	7.0
	10.4		7.4

Anrseratan．

3otperiment	\％1me	$\begin{gathered} \text { Cella } \\ \text { I-5 } \\ \hline \end{gathered}$	$\begin{gathered} 6 e 118 \\ 6=10 \end{gathered}$
Tx9．	10．45	$\begin{gathered} \text { Bomal } \\ 42.0 \end{gathered}$	$\begin{array}{r} \text { Somani } \\ 50.0 \end{array}$
Bre． 8	12．15	$\begin{gathered} \text { Cooling } \\ 34.5 \end{gathered}$	Waxaing 59.0
Fap． 3	12.45	32． 5	59.0
30．4	28.15	32.5	68.0
			Coaling
退9． 5	12.45	40.5	47.0
式中． 6	2.15	49.5	4.40
70．7	1.45	52.0	40.0
F928	2.15	59.0	87.9

Cells Hormax Coos Ears

Ay racers.

Baperinent	Pime	$\begin{gathered} \text { Cells } \\ 1=5 \\ \hline \end{gathered}$	$\begin{array}{r} \text { Cells } \\ 6-10 \end{array}$
Exp. 1	20.45	$\begin{gathered} \text { Mornal } \\ 8.2 \end{gathered}$	$\begin{gathered} \text { Hormal } \\ \mathbf{1 0 . 0} \end{gathered}$
3xp. 2	11.15	$\underset{6.9}{C o o l i n g}$	Thrning
Bx. 3	12.45	6.5	11.8
139.4	12.15	6.5	12.6
		Warzaing	Cooling
6xp. 5	12.45	8.1	9.4
3 \%. 6	2.15	9.9	8.2
Ex. 7	1.45	10.2	8.0
F2. 8	2.15	10.4	7.4

quy
Cells Hormal Cool Varn

Romareas- The toraporature ovidontly axerts a considerable Influanee upon the efficioncy of the colls. Wo may learn fras thoee experinents that it may prove important to the succesaful operation of our engine that the batteriea umed to produce the ignition apark should be protected from the cold. More than this: It would be wise to provide sone means of keeping then warm. A.G.8.

coy monz or monaxy.

Pab. 4, 1909:- Soce time ago I requested $\begin{aligned} & \text { tr. Bedwin to have }\end{aligned}$ a toy hydrodrome made after the model of the "Query" that could be rloated in water and toved by a atring, as I thoucht that auch a toy micht prove attractive to chilaren. Fomay he produced a beautiful listie model of the "Query", made by ifr. Helliell. The male model is made of tin with tin hydrocurves of proportionaliy the aere sise ss thoae upon the Quary". I 12 oated thia model in a bath-tub and towed it with a string, but it did not rise out of the water. The hydrosurfacea are too mall to pormit it to rise at a moderate epeed. This Pinely Iinished ninchine will be proserved as a model of the *Query juat as it is; and I have aaked Mr. Bea(in to have another toy hydrodrors sade, of cruder construction, and with larger hydro-aurfmees. A.G.B.

Pob. 5, 1909: The iee-boat was tried agrain to-day.
Ero. I. Iocobont in motion dovm the harbor oarrying four perbona. Speed 100 a in 16 meconds. Propeller 439 гpm. Reault: Thruat 40 1bas.

3 Bop. 2 Hoving up the harbor with 4 peraons. Speed 200 in in 13 seconds. Propeller 507 rym.

Reault: Thrust 70 lbs.
perame S. Hoving down harbor with S Propelier 228 гра.

Hosule: Thruat 75 1bs.

Bre 4 Moving down with 3 perions. Spead 200 n in 10 secondm. Propeller 1214 грн.

Reault: Thruat 75 lbs .
Zne 5 Hoving up with 3 persons. Apeed 100° in in 11.3 seconds. Propelier 652 rpm.

Heault: Thrust 70 Lbs.
 3o. 2. Moving aown. Speed not notod. Propenlaテ 524 rpm.

Reault: Thruat 100 2bs at Pirat, then eteady at 75 1ba.

3ng. E. Hoving up. Speed 200 min
12 \#econâs. Propelier 510 rpm.
Heasalt: Thruat atarted at 75 lbs , and becase steady at 50 2bs.

Romarikgt- All the observations seen to indicate lesa thruat when the machine I a in motion than then at rest: But the resulta are not aurficiently concordant to be reliable.

Peb. 6. 2909:- MaCurdy reporta another experirsont wich was not an experiment. He says:-

Whe heve discovered that friction in a bearing in connection with our puah indicator has reaulted in a wtate of affairs in wich the proper awount of puah of the propelior would not be registered by the pointer. I therupore reek, that all the propelier teat results obthined so far are not to be ralled upon".
A.G.B.

Pobe Be 1909 - The following account of experinonte made
this afternoon has been handed to me by Hfr. HeCurdy:-

- Thia afternoon (Monday, Feb.3) 1t was plamned toteat out the ieom boat as uaun with the iden in view of gotting aone propaller data. The iee was in good shapa and a northeast wind ana blowing up the harbor having a velooity of about $25-30$ miles an hour.

The propelior usod wae a $71 / 2$ foot dionster $2 z^{\circ}$ at sip (not a perm
 Gurtias took the wheel, tru. Bedwin ran the angine, and MeCurdy attengted to obtain the roadings in the usual manner.

Vo oovered the first one hundred meters in 7 soconds (againat the wind), the fastest time made so far, and instead of atopping at the uaual place we ran right on down to the and of Long Band. Point, turnod round undor our oun power and afarted up the harbor. The wind was now of oourae bohind us.

I whe unable to get the apeed of rotation although I neted the puah thich whe 100 lbse. \#hereas in goins down the courae the puah was 135 lba .

It aoomed to me to be in about two seconds time then Mr. Bedwin quiothy advised ze to maox outif and then we struck the landing of the notor boat house. We wore all three throm violently porward, and as it arterwards turned out Hr. Curtias was the only one hurt. He saoned to have gtruek his lower lip againat the stearing wheel and a doep cut rosulted.

Thefront akate of the iee-bont was eorpletely tornaway and the ateering gear budly daragod.

Dr. MoIver was brought ovor from soum in our asiling icembast, and itr. Curtias, having beon ruah od to the Point, was soon attended to by the buetor, and by itisa Cado ${ }^{\circ}$.
J.A.D. MeC.

The poetor raporta that the infury ia not serious and that itr. Curtias will be all right in a pew days. A.G.B.

let

Pob. 6. 19p9: Norerring to the artiole on page 24, Bulletin Mo.VIX, in which Mr. Baldein points out the advantages of the Dutaux engine I enust say, that I de not agree ontiroly with Itr. Buldwin's viewa. This enginn is construoted In rather a nevel manner. The cyinders are set up in tander, wh it vere, and there are five of theae pairs placed in a vertieal poaition, with the ornntowhart above. Beh oyilnder is double acting, that is a charge of gan ia exploded on both aidea of the piston. The action being Pour-cyele the reault is the asen as if 20 ordinary four-cycle olgincera wore used.

The Advantage guined by this double metion is quastionable te the connecting rod between the two pistons, facing as it does one cylinder to the other, makes a dirfieult bearing te lubricate and is bound to wear and cause a leak. A very slight leak at this joint, shere a preasure of aevaral thousand pounds per aquare inch corses firgt on one aide and then the other, if bound to have a bad effect on the idle eylinder. The advantages of thia motor are given as followsf-Mirat, light weight; second, haw eentor of eravity; and shird, the orank case. the H.P. given is 120 and the weight 65 kilograns. Ihis is indeed extrensiy light but I doubt if it coula be verefied in a practical teat, and as a matter of fact, an axtromely light motor is not considered ae desirable as one on wich absolute dopendence may be placed.

This Dufaux motor, with its automatie valves, eomplieated lubricating aystem and extremely light construction might work well in the hand of its buildor shen new and before it had become vorn; but in the handa of the averago experimonter it would likoly moet with the sarve fate ace the rotating type of ongine, which, although it ahow up wall in an axhibition, refusea to run at all wen placed in the hands of the man the mast actually the work.

The low center of gravity is of no advantage in the engine itaelf, but only in a rlying rachine. At the date or迹. Baldwin"a article the direct drive was conaidered deairm able. At this tine a larger propallur geared dow, ia considered beat; therefore the angine oan be plaod low in the machine with the propelier ahart above and the low center of Gravity acecuplished without rogara to the poaition of the engine cylinter: Cyilnders in a vertical position oonbined With a closed arank oase are obvioualy advantageous in cone nect ion with the iubrication.

Thile a forced foed aysten is most deairable, the aplash ayatom, that is, the crunk shart running in oil, makes an auriliary, and the oiling of the ontire ongine is asaured evon though the foed plpas to sonn of the bearings or the purp which supplies thom, is out of order. There is no auch thing ad too much oll on a high speod bearing.

If the need of an extromely $1 i_{\text {ght }}$ moter ia felt I wrould advecate the atar type, that ia an engine with seven or nine cylinders placed in the form of a atar around a aingle
ghaft. Horring'a motor, whioh in claimed to be the lighteat in the vorid, is of thia type. It has, hovever, the sume disadvantages in its Lubrienting sfaten as the Duraux but hac not the aliding connecting rod between the clyinders wich, if I am rigit in wo thoery, is a mest merioun fault as the engine would rall off in power very fast with wear, wile the ordinary oylinder gins poror vith use, at least to e eertain peried.

Mrything considered I ahould advoeste the ragalation four-mylinder vertical wher-cooled engine for all roquiroments to 35 H . Pe. If mort than this is cesired an © cylinder V type would give the beat axtififaction.

$$
\text { G. 谓. } \mathrm{E}_{0}
$$

Yeb. 12. 1909:- Two instruaents were deviaed to be uaed on the propeller icemboat, the rasings of mich gave us the thrust of the propelier in 2bee, and the velocity of the wind in miles per hour relativgly to the ice-boat. These inatruments are techniealiy known as a dynonarnoter and ansmogeter.

Dymanopetaxt- The conatruction of the dymmonoter is show in $\mathrm{Hg}_{\mathrm{g}} \mathrm{I}$. As the propelier revolves producing a thrust of a certain nueiber of lbseg the counter-ahaft advances in the direction of the line of thruat compreasing the hesvy opiral apring.

An the anount of compresaion of the spiral apring is proportional to the thrust in 1be., a pointer moved by the advaneing shaft would record the thruat by indieating on a graduated aial the movmt the apring was contpressed.

The apring aelected would corpress one inch for the firet 200 2bs. of load applied. This inch of zovemont was muztipiled on our diak, and a groduation of the face mas errected by equaliy dividing the apace betwoen the 1 inits of the magnified inch. This gruduation was arterwards ohecked by moans of a atandard apring balance.

Anomonaters- Fig. 2 ahows the method oriployed in the construetion of the anmmoneter.

The oonatruction of the ordinsary anemometer neeesasitiaters the eounting of the number of turns por minute in order to ascartain the veloeity of the wind. What we wanted was an inatrument which would indicate at a glance the voloeity of
the wind relatively to the icemoat.
the aiv aeting on the equare foot of rectangular aurface at one ond of the lover axm, eaused a motion of this anm about ita pivoted point, and this in turn trange mitted the motion to the peinter.

The wethed of graduation exployed was to run the ieeboat at any apeed noting the place on the aisa to mith the pointer moved. The velocity of the wind relativaly to the iee-boat was at the wane time observed by the rotating type of anemocoter, and the point on the diwl indicated by the pointer wan mariced with the miles por hour corrosponiling so the reading obtained. In tha manner, by varying the apeeds of the ice-boat, a consideruble portion of the dial was gramated.
J.A.D. HeC.

To The Aerial toperiment Aasociation, Baddeck, H.

San Franotice, Caher Tob. 2, 1909:- I an in recelpt of your Bulletins Fos. 27,28 and 29.

I ean* but feel that your onergy and experionee vill auraount the aifficulies that at present seon perplexIng.

Mr. Chanute ${ }^{\text {a }}$ a letter to 道r. Bell is axcoodingly gratifying-

$$
\text { (signed) } x_{0} \text { A. Selfridge. }
$$

Baddecik HoSos Yobs 20, 1909te Hr. Chadroun and Aasoeiates of tho Asrial Zaperienent Aasociation.

What is the object of a nonument to Thomas selfriag p His Aasceiates of the Aerial Experiment Aasociation-will satce a apecial contribation to hia momory by the publication of his own artiele on Aviation, "A Brief sketch of the Prom gress of the Art of Aviation", and in the compliation of hia biography.

In the monument for which funde are now being raised by the Aero cxub, the world in general is invited to partieie pate, and aome of the very firat subacriptione have cone fron across the water.

Why ahould people whe did not know him put up a monument to Thomas selfridge?

It is necessary to have a clear onnception both of the roanon why, and why the popular feeling is justiriable, bofore proceeaing to decide thent rom it mhould take and where it ahould be placed.

The dranatie aapects of the diasster at Yort Meyer where on Axny orfieer, young, ardent, full of ilfe and the joy of $2 i f 0$, who had eageriy volunteered for a dangeroue poat of duty, and wod mas auprencly haypy at having achieved his purpoae - was auddeniy huried to dasth in the giftit of thouaands, eterred the papular inaginstion, fand the pitifulneas of it aroused a aympathy wich inatiructively aought some auch axpresaion. 敛 the juatification of it liea doopor. Like an electric rlanh the acoident brought into sudden view one whase whole life ambedied the highest ideal of soldieriy gualities. What one so young eould do for his country he had dene. It was no aceldent that had placed him, the youngent officer of hia grade, st Wright'a side that dave Ho accident that of all our Arzy ho mus the only one who had hinaelf previously driven a Plying machine through the air. Ho aceident thas the youngeat of all the new Aerial Corps of the signal Berviee had been aelected to coamund the new Arny Balleon in the coning manuoevrea.

It was because he, holding that a moldier a duty eomprised not the bare neasure of uaual time and atrongth, but the very best of himacle mentally, morally and physically,
had oarestully atudied the needs of the Arny and had pitted hiveelf for the eall he foremsw mas to come.

He ia dead, he has paid the uttemoat men peraonally can pay. What we may do to honor his memery esnnet arfeet him, but we his frionda the know him, ean endeavor that being doad he shail still speak, the this monuaent by its ailont witness mhall testify what he did and atrove after, and peint out the way that othera ney follow.

If we do this the place for his monurent is not in a cometery where it is but one mong many, like a labell od object in a bumoum, nor marking the apot there tricht's machine Pell. thus apelling diaater and death, but wong the haunta of ryen whore young aoldi ars do congrogate and discuss what eseh shall to with his ilife.

Let it be somentare on the grasaplot near the flas atarf at Fort Hojer; the Caxpus or Assembly Hall at Weat Point. Thereby nay other young aoldiera like himaelf be induced to follow where he led and earry forward the work to which he gave his life and for wich he laid dom his life.
(51 gnea) Mabel G. Bell.

THE OUZZOOK OA AVIATIOE: By The Aast. Bititor.

The Girard Airahip hala a total veight of 3550 ibs. with 2300 aq. ft. of aurface. An interesting feature of the machine is the fact that inatulled are two entire ongine plants rotating four propeliars, two in front and turo in the rear. Theat propeliers are of modol conatruction in thet their breadth of aurface inerwasea sowards the axis.

It ia eacy to see that Ruasis doos not mean to be behind in Aeronauties. The has alrendy set aside 角, 000,000 for that purpose according to information received at the Far Dapartment.

Both the sonate and House havo finully paased the $\$ 500,000$ appropristion for Aeronation in thia country.

The oald Mednd to be prosentod by our tovorrazent te the Frighte will be the firat official reeogalition the Governacnt has ahown.

Wilbur Vright ${ }^{\circ}$ s rilghta at Pau are well attonded. To the prasont tine he has made ne long fligits. Fight is uaing a now moter.

An Aeronautical Chair is to be eatabliuhed at the College of France. Reports have it that Whibur Wright was

offored the Chair and has refueed.

The most netesrerthy and interasting feature of the
Britiah Anvy Aoroglane ia the form of propellers. The ral-
lowing is quoted from the Seiontific Anerican for Jan. 30 ,
and nay bo of value to us just nows-
The most noteable feature of this (The Britiah Axzy) saroplane is found in the two propelierm. These are of a peoullar type similur to that deseribed in the Supplasunt of Dec. 19, 1008, by解. Sidnay H. Hollands.

The peculina reature 10, that the blades are broader at their bate than at their onds, tho width at the base being 24 inches, and the width at the outer and being but five inches. the length of the blades ia about 3 foet. Thay are made of alvainium and are curved aomom what iitre a augar weoop. Zach one is nounted on a strong plece of ateol tubing.

Mr. Cody, as woll as tr. Mollands both clada to have found that a blade of this ahape gives better resule than the uaual form of blade, wich is narrouer at the base than at the tip. It is only in thia reapeet that 1 tro Holland ${ }^{\text {s }}$. propelier raaomblea that used by itr. Cody on the Britiah Axyy aoroplane.

In a lester to Ingilah "Acrensutics" Mr. Hollanda deacribes his propeller (with whieh he elaing to have obtained a thruat of 26 ibs. por horse-pewer) al having tivo "narroumtipped bludes of a apecial oenchoidal (or irregular erescontahape) croas-acetion, met to pitcheangien of maximun efriciency. These angl as, tom gether with the other roregoing essontial Poaturas, were all separately deteminined by a long and oarorus sorias of ocesparative experiments. Ine bladea have a twiat, and the pitch is 0.7 of the dianoter. It is moat ofriciont at high apeeds (the driving torque being rolativoly very anall), and the oseential features of the design lend themselves to atrongth and rigidity. It is constructed wholly of hichograde steel, and the two meters diantoter type wilchis 15 lblog , with a factor of safety
of $\mathrm{aix}_{\mathrm{g}}$ at 1200 revolutiona per ninutet
Mr. Hollands elains that h1a pro-
peller is auperior to those used on the
Axry Aaroplone, and that it was designed
some yonrs before the propaliers of flr.
Cody.
According to a eable report, the firit
test of the romodelod aoroplane occurred
on the 20 th instant. Swo short flights
were made by Capt. Cody aucceasfuliy, but
the third one was terminated, after the
mochine had travoled aome 300 reet at a
haight of about 20 feet from the ground,
by the buekling of the horizontal rudder,
and the aaroplane fell heavily and was
badly wraciced".

The Firinta at Pous- Berore beginning his rifgtis at Pau, $\begin{aligned} & \text { vight waighed hia maohine and round it to be } 364 \text { kiloa. }\end{aligned}$ Wright hinself weigna 7 kilas, having gained 8 kilos during his stay at le itans. All the wright material has beon ahipped to Pan, whore the Compte d'Aviation and the Asro Club et Boarn have finiahod the conatruction of the aerodrone shed which is in the vicinity of Pont-Eong. The shod is a aplendid big builaing with axple roon for aleeping quartera as woll as storage roon for the neroplane.

Orvilie and Miss Kathorine Vright have accormanied Wilbur Vright to Pan there he, wilbur, will continue his f1ighta, and alae teach his nev pupil, H. Pani Tiasundier, se r2yp

Wilbur Wright will return in March to Aneriea to terminate the military experiments with the wight Aoroplane whioh wore intorrupted by the aceident at Fort Mayer, uniass

Orfille will be in a condition to oontinue tham hinaelf．
The two aviators aill detervine，in the maantime， quostions rolating to the aelling of their invention in Franoe and in Burapo．

Fron at this atage of the grame the Petitas Affiohas， a French Yowapaper，has publiahed an advise of wich the prineipal oxtraeta are：－
－The Jociety has Por ita ob－ jtot，in all countrien，the buying， aelling，the manuracture，and the ofrade of all kinde of aeronsutieal machines；alao all parts neessamy for the eonstruction of these nach－ inas，the receiving，the buying，and the solling of all patents or ileon－ cas concerning the induetry：

First，the oumerahip of 3 Trisht Froneh Patentas To．342，138，on the 22nd of March 1904；IO．334， 124 and Ho． 304,125 on the 1ath of Nov． 1907. All these were for the perfection of aeronautical machines＂${ }^{\circ}$ ：

Socond，the tright to the oun－ orahip of all ather Fronoh Putenta by requeat on the part of the Wrightas

Third，tablos and formbias uaed In construction of the machine employ－ ed by 鲑。 Eilbur Exight in Tranco． 1tr．Wilbur Fright has proaiaed，further－ morn，to give innedistoly aftar the organization of the proaent Society to throe peraons alremiy doalgnated，in－ atruction for mounting and dianounting and oparating the machine．The proaises， beaides to porsonally give so the presont sooiaty his help until thase three people are in a eondition to re－ pais and operate the aeroplane

Soaides，tir．viluur wright，in hia oun nanes，and in the nuse of itr． Orville Mright，and M．Kasare Wailler， ennveys to the society the right to use the machine which was uaed in the opxeriments of tr．Tilbur trighte。
 Cup, on the 31st of Dee. 1908, Hensi Marman, at the cexp of chaiona, on account of the oold woethor wain able to make only a few flighte or 2000 to 2500 netera.

It in anid that the celebrated aviator hae sold his machine in the form of a triplane to a oportamm whe just now doos not deaire to be known.

Formen, Fereaftor, will set sbout conatructing, at Chalone, sose machines after his oun laese and luprowed by means of his paet experionce. The firat msehine vill be a triplane lighter than the one which he has just mold, fittec with a noter of $25-30 \mathrm{H} . \mathrm{P}$. placed in zuch a way as to be abl to rotate either one or both propellers.
gefntelnatete Ioropianeg- On the 20th of Dec. the Antoinette monoplane, operated by H. Welferingar, erospe: and recrossed meny times the rield at Iasy at a height of B meters. On the 25th he sccoraplished a very pretty nicht of one kilamet at the apeed of 75 kilometers per hour.

On the 5th of Jan. 1909, in apite of his amall area ef aurfaee he aarried alort a paseenger, Mr. Robert Gastanbice and carrici him a distence of 400 or 500 meters. On the 6th of Jan. a meries of very auccesarul inights were made at a apeed of 75 eflometera per hour. In the last Rilght boing a shost one, a wing struok the ground but was ropaired the aarse day.
 built the blylang with wich he had already made some fine
flights, but he modiried it by reducing the angle of the main planes and by lengthening the lower plane with the addition of two balancing wing tips.

Surfaces- 35 aq. m; broadth: 10 mj length from the extranity of the front control to the extromity of the roar stabliaing tail, 9 mof weight, mounted and ready for f11cht (Gasoline, oil and wator for two hours); 500 kilog . Moter $\cup 0 \mathrm{H} . \mathrm{P}_{\text {. Antoinet }}$ Ate.

Plobart Aeropane $t-$ Papperimonted on the 2lat of Dec. at Anions, on the Croix-Roxpue grounds. The Robart aoroplane, after making two starts, 1 oft the ground for a flight of 10 meters. The turf was very bad and the weels made a continuous drag on the ground. The aviator has decidod to experiment again after the ground has been rolled.

Moore, -Brabaton Aoroplang:- Regularly ontered for the Michelin Gup, M. Hoore-Brabason prepared to try his luck at Chaions on the 3lat of Bee . When the gasoline tank exploded wounding the machinist.

Folding Plang:- A model of a plane, without motor able to be folded to facilitate tranaportation, has just boen invented by H. Serive. Set up it moasured 8 m 50 in breadth 7 m in length and weighs 26 kiloa , and can support a man of 70 to $\mathbf{8 0} \mathrm{kgs}$. Folded it displaces an ares of 2 m 60 in heights i n 36 in width; and $2 m 50$ in langth.
G.H.B.

