CIHM
 Microfiche Series (Monographs)

ICMH
Collection de microfiches (monographies)

Canadian Institute for Historical Microreproductions / Institut canadien de microreproductions historiques

Technical and Bibliographic Notes / Notes technique et bibliographiques

The Institute has attempted to obtain the best original copy available for filming. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of filming are checked below.

Coloured covers /
Couverture de couleur
Covers dameged /
Couverture endommagéeCovers restored and/or laminated /
Couverture restaurée etoou pelliculèeCover titte missing / Le titre de couverture manque
Coloured maps / Cartes géographiques en couleur
Coloured ink (i.e. other than blue or black) /
Encre de couleur (i.e. autre que bleue ou noire)
\square
Coloured plates and/or illustrations /
Planches et/ou illustrations en couleurBound with other materiel/
Rellé evec d'eutres documents

Only edition available /

Seule édition disponible
Tight binding may ceuse shadows or distortion along interior margin / La reliure serrée peut causer de l'ombre ou de la distorsion le long de la marge intérieure.

Blank leaves added during restorations may appear within the text. Whenever possible, these have been omitted from: filming / II se peut que certaines pages blenches ejoutées lors d'une restauration apparaissent dans le texte, mais, lorsque cela était possible, ces pages n'ont pas été filmées.

Addtional comments/
Commentaires supplémentaires:

L'Institut a microfilmé le meilleur examplaire qu'il lui a été possible de se procurer. Les détails de cet exemplaire qui sont peut-être uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modifications dans la méthode normale de filmage sont indiqués ci-dessous.

Coloured pages / Peges de couleur
Pages damaged / Peges endommagées
Pages restored and/or laminated/
Pages restaurées etou pelliculées
Pages discoloured, stained or foxed /
Pages décolorées, tachetées ou piquées
Pages detached / Pages détachées
Showthrough / Transperence
Quality of print varies /
Qualité Inégale de limpression
Includes supplementary material/
Comprend du matériel supplémentaire
Pages wholly or partially obscured by errata slips, tissues, etc., have been refilmed to ensure the best possible imege / Les peges totalement ou partiellement obscurcies par un feuillet d'errata, une pelure, etc., ont été filmées à nouveau de façon à obtenir le mellieure image possible.

Opposing pages with varying colouration or discolourations are filmed twice to ensure the best possible image / Les pages s'opposant ayant des colorations variebles ou des décolorations sont filmées deux fois afin d'obtenir la melleur image possible.

This item is filmed at the reduction ratio checked below/ Ce document ast filmé au taux de riduction indıqué ci-dessous.

The cepy fllmed here hes been reproduced thenks to the generosity of:

University of Alberta
Edmonton

The Imeges eppeering here ere the best quellty possible considering the condition end leglbility of the original copy and in keoping with the filming contrect specificetions.

Original copies in printed paper covers ere filmed beginning with the front cover end ending on the lest pege with e printed or lllustrated Impresslon, or the beck cover when eppropriote. All other original coples ere filmed beginning on the first pege with e printed or Illustreted Impresslon, end ending on the leet pege with eprinted or illustreted Impression.

The lest recorded freme on eech microfiche shell contaln the symbol \rightarrow (meening "CONTINUED"), or the symbol ∇ (meening "END"). whichever epplles.

Meps, plotes, cherts, otc., moy be filmed ot difforent reduction retlos. Those too lorge to be entirely included In one exposure ere fllmed beginning in the upper left hend corner, left to right and top to bottom, es meny fremes es required. The following diegrems lllustrete the mothod:

L'oxempleire fllms fut reproduit grace it le génórosited de:

University of Alberta
 Edmonton

Les imeges sulventes ont ditó reprodultes avec is pius grend soln, compte tenu de le condition st de te nettote de l'oxemplaire filmb, ot en conformitt evec les conditions du controt de fllmege.

Les exemplelres origineux dont lo couverturs on pepler est Imprimbe sont filmós en commençst per to premior plot ot en terminent soit per le dernilire pege qul comporte une empreinte d'Impression ou d'illustration, colt per le second plet, selon to oee. Toue les eutree exer .plelres orlgineux sont fllmós en commencent per ie promilire pege qul comporte une emprolnte d'Impression ou d'llustretion ot en terminent per le dernitre pege qul comporte une telle ompreinto.

Un des symboles sulvents eppereitra sur to dernidre lmege de cheque microfiche, selon te ces: le symbole \rightarrow signifle "A SUIVRE". it symbolo ∇ signifio "FIN".

Les certes, plonches, tableaux, otc., peuvent dite filmés à des taux de réduction difförents. Lorsque le document est trop grend pour dtre reprodult on un seul cllche, il eat filmó à pertir de l'engle supérlour geuche, de geuche à droite. ot de hout en bes, on prenent ie nombre d'Imeges núcessaire. Les dlegremmes suivents lllustrent le mothode.

MICROCONY RESOLUTION TEST CMART

(ANSI and ISO TEST CHART No. 2)

APPLIED IMAGE Inc
1853 Last Main Street
Rocheatar, New York 14609
USA
(716) 482 - 0300 -Phone
(718) 288 - 5989 - Fax

A Geometrical Vector Algebra

11y

T. FROCTOR HALI., VANCOUVFR, CANADA

CONTENTS

1. Introduction
2. Notation
3. Cosine AB
4. Addition and Sulstraction

-

5. Collinear Vectors... : 3
6. Coplanar Vectors. 3
7. Multiplication is
8. Collinear Multiplier... 4
9. Perpendicular Multiplier . 4
10. The Product AB
11. Permutation of Factors
12. Operand Distributive
13. Operator not Distributive
14. Factors not Permu" sle
15. Powers of Operator \qquad 7
16. Laws of Multiplication 7
17. Perpendicular Factor's .. 7
18. Division \qquad ...
19. A^{n} B; General Formula $\quad 8$
20. Quaternions .. 9
21. Vector Ares
22. Sum of Circular and Straight Vectors10
23. Sum of Circular Vectors 11
24. Spherical Triangle 12
Pax.
25. ('onie Vectors $1: 3$
26. Differentiation 14
2\%. Differential coefficient of$\mathbf{A}^{\prime \prime} \mathbf{B}$15
2\%. ('urvature 16
27. Linear loci 16
28. Surface Loci It
29. Solid Loci 17
is2. Common Regions 17
30. Projections 20
31. Plane Algelora 21
32. Four-Space Algelora 21
33. Multiplication in 4 -space 21
34. Perpendicular Vectors in
4 -space 22
35. Coplanar Equations 23
36. Perpendicular to a Vector 23
37. Normal to a Plane 23
38. Normal to a 3 -flat 24
39. W, V. F and N 25
40. The Product $\overrightarrow{A B} \mathbf{B}^{\prime \prime}$ 25
41. Quaternion Rotors 26
4is. Intersecting Loci 26
42. Projections 27
43. Projections of a Regular Tessaract on a 3-flat 28

A Grametriaal Hertur Alyrtura

\#y T. PROCTUK HALL., M.A., I'I. D., M.D.

1. The laws of operution of any algebra are uttimathly based upon ita detinitions. If the definitions are geometrieal the aldelird a ofratlons have seometric correapondences. The opel.athorm of adition and subtraction in common alzebra, for example, eorrespo so the geometric addition and subtraction of atralght lines, vectors, surface, etc.

In this algebra new definitlons of vector nultiplicution and division are adopted, In consequence of which all algebraic operations upon vectors (directed unfocated straight lines or ateps), or rather upes vector symbols, correspond to geometric operations in space upon the vectors themselves: Hid "very algebraic vector expression corresponds to some geometric configuration of the vectors themnelven.

In every vector demonstration or problem, therefore, the student may think In terms of either algebra er genmetry or both; and inay at uny time change from one realm of thot to the other with no brenk in the continuity.

This algebra is developed first in terms of analytial geometry for three-fold space, and is then adapted to two-fold and to four-fold space. Complex numbers, spherical trigonometry, and quaternion rotations, appear as speciul cases.
2. NOTATION.-Taking three rectangular axes X, Y, Z_{1} let x_{1}, y, z denote unit vecturs (steps) outward from the centre O, along the axes. Unit vectors in the opposite direction from 0 are denoted by \bar{x}, y, z. Vectors in general are herein denoted by black faced Gothic capitals, and the corresponding unit vectors by back faced italics. For purposes of lesignation and operation all vectors (unless otherwise indicated) are understood to start from O, the centre of coordinates.

Then if \mathbf{A} is any vector, a is its length, \boldsymbol{a} is unit length of the sume vector, $a_{v}, x_{1}, a_{y}, a_{z} z$ are t'se vector components of A along X, Y, Z, and $a_{\mathrm{x}}, a_{\mathrm{y}}, a_{\mathrm{x}}$ are the lengths of these component.

Then $A=\boldsymbol{a} \boldsymbol{a}$

$$
\begin{aligned}
& =a_{x} \boldsymbol{x}+a_{y} y+a_{,} \boldsymbol{z} \text { by vector addition. } \\
a^{2} & =a_{\bar{x}}^{\bar{x}}+a_{y}^{y}+a_{2}^{2}
\end{aligned}
$$

The symbol \mathbf{A} is used to indichte (1) the vector fiom \mathbf{O} to the pons: whose rectangular coordinates are a_{1}, a_{3}, a_{x}; (2) motion from O to the extremity of A; (3) a rotor, defined in

The line of lerens of A it expressed liy an clongated A, thus / A, and any part of this locus, from m to n. is written ${ }_{m} / \mathbf{A}$. Surface loci are ordinarily "xpressed liy two I :x and solid wed by three I'n.
3. To express the cosine of the nngle between two vectors in terms of the coordinates of the vectors,

Let c be the length of the line joining the
 extremitles of the vecturs A. B. from 0 .

Hiv wulid geometry-

$$
c^{2}=\left(a_{1}-b_{1}\right)^{2}+\left(a_{y}-b_{y}\right)^{2}+\left(a_{2}-b_{n}\right)^{2}
$$

liy wane trikonometry -

$$
c^{:}=a^{2}+b^{3}-2 a h \cos \text { A B. }
$$

Therefore, $\cos A B=\frac{n_{1} b_{v}+a_{v} b_{y}+a_{0} b_{y}}{a b}=\frac{S_{a n}}{a b}$.
where $S_{\text {alt }}=$ the sum of the $a b$ products $=a b \cos A B$. If $S_{\text {alt }}=O, A \quad B$, and conversely.
Example: 1. -Find the angle between the vectors $x+2 y$ and $2 x-y+r z$. Here $S=0$, and the vectors are perpendicular.

Example: 2.-What angles does the vector $2 x-y+z(=$ A) make with the axes x, y, z ?

$$
a=16 ; \therefore \cos A x=\frac{2}{1} 6, \cos A y=\frac{-1}{16} \cdot \cos A z \quad \text { is. }
$$

4. ADDITION AND SUBTRACTION.-Addition is geometricalls defined as the process of making the second vector step from the extremity. of the first. The sum is the new vector from 0 to the extremity of the sucond vector thus added.

Algebaically additien is performed by resolving the vectors into their compenents and adding these.

$$
\begin{aligned}
\mathrm{A}+\mathrm{B}= & \left(a_{\mathrm{x}} \mathbf{x}+a_{y} \mathbf{y}+a_{\mathrm{x}} \mathbf{x}\right)+\left(b_{1} \mathbf{x}+b_{1} \boldsymbol{y}+b_{\mathrm{x}} \mathbf{x}\right) \\
& =\left(a_{\mathrm{x}}+b_{1}\right) \mathbf{x}+\left(a_{\mathrm{y}}+b_{1}\right) \boldsymbol{y}+\left(a_{1}+b_{,}\right) \mathbf{x} .
\end{aligned}
$$

Subtraction is idddition of the negative of a vector.
Hence, both meometricatly and algebraically vector terms are commut. ative.

$$
\mathbf{A} \cdot \mathbf{B}=+\mathbf{B}+\mathbf{A} .
$$

8. COLLINEAR VECTORS,-Two vectorn A, B, are in tha wime line when

01

$$
\begin{aligned}
& \text { A } \quad n \mathrm{~B} \\
& a_{1}=\begin{array}{l}
a_{1}- \\
b_{1} \\
b_{y}
\end{array} b_{b_{3}}=\mu
\end{aligned}
$$

If n in persitive. A und B are In the name direction, If nef tived A and B are ofporite. If $n=1, A \quad B$.
6. COPLANAR VECTORS,-Three wetors, $\mathbf{A}, \mathbf{B}, \mathbf{C}$, nre in the same plane when unother vector, K, cun be found which is perpendicutar tes cioch
 Let the coplanar equation

$$
a_{s} b_{y} c_{n}^{\prime}=0
$$

The determinant $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}$, is six times the volume of the tetruhedron whisw cornery are () A BC, When this volume is zero A, a arreplanar.
 $C=x+2$, and in the BC plane whe $\mathbf{B}=2 x-y_{1}: 3$.

The condition of perpendicularity is

$$
S_{a r}=0, \quad \text { or } a_{v}+a_{r}=0 .
$$

The coplanar equation is

$$
\left|\begin{array}{ccc}
2 & -1 & 3 \\
1 & 0 & 1 \\
a_{1} & a_{y} & a_{8}
\end{array}\right|=0 .
$$

Therefore $A=a,\left(x-y_{1} 3-\Sigma\right)$.
7. MULTIPLICATION of the vector \mathbf{B} by the vector \mathbf{A} is writtell A B. and is defined geometrically as the combined operations,
(1) Extention of B until its length is ah.
(2) Simultaneous rotation of B thru 90^{\prime} about A as an axis. in a direction which is right handed or clock wise when facing in the positive direction of \mathbf{A}.
Fiach vector multipiisr is a tensor-rotor. The rotor power of all vectors is, the same and needs no separate expression at this stage.

The profuct $A B$ is that vector from O whose extremity is the final position of the point B after extension and rotation. The losus of $A B$ is the curve traced by the point \mathbf{B} during the operation.

ABC means the operation of \mathbf{A} on the product BC. or
ABC A. BC.
Atso $\mathbf{A}^{2} \mathbf{B}=\mathbf{A} . \mathbf{A B}$, ete.

It next becomes necessary to find the laws of algebraic multiplication that currespond to the geometric changes here defined.
8. Multiplication by a collinear vector makes no change except in length or sign,

$$
\begin{aligned}
& x \boldsymbol{x}=\boldsymbol{x} \\
& \boldsymbol{x} \bar{x}=\boldsymbol{x} \\
& \boldsymbol{x} \boldsymbol{x}=\bar{x} \\
& \bar{x} \boldsymbol{x}=\boldsymbol{x} \\
& \mathbf{A} \boldsymbol{a}=\mathbf{A}, \text { etc. }
\end{aligned}
$$

9. Unit perpendicular vectors give the following results which are geometrically evident.

$$
\begin{array}{ll}
x y=z & x y=\bar{z} \\
x z=\bar{y} & x \bar{x}=\bar{y} \\
x \bar{y}=\bar{x} & \bar{x} \bar{y}=z \\
x \bar{x}=y & \bar{x} x
\end{array}
$$

and similarly for \boldsymbol{y} and \mathbf{z} as operators. Here the laws of signs are the same as in common algebra, so long as the factors are in alphahetical circular onder;
Fit. 2

$$
\begin{aligned}
& x y=z=x y \\
& x y=z=x y=-x y .
\end{aligned}
$$

But reversing the order of the factors changes the sign of the product:

$$
\begin{aligned}
& x y=x \\
& y x=x .
\end{aligned}
$$

The second power of an unit perpendicular operator is equivalent to -1 ,

$$
\begin{aligned}
& x^{2} y=x z-y \\
& x^{2} y=x x \quad y .
\end{aligned}
$$

The fourth jower leaves the operand unchanged.

$$
x^{4} y=x^{2} y=y
$$

Wi the vectors are not units the product of their tensors is prefixed to the vector product.

$$
a x . b y=a b . x y=a b x .
$$

10. To find the algebraic product of any two vectors. Let the product

Fig. 3 be K = As. Draw $K D O A$, and $O V$ equal and iarallel to $D \mathrm{~K}$. Then the length OL) is

$$
\begin{aligned}
O D & =O K \cos A K \\
& =a b \cos A B \\
& =\mathrm{S}_{n 10} \quad b y s i .
\end{aligned}
$$

As vectors $O K=O D+1) K$,
or $\quad \mathbf{k}=\mathbf{S}_{\mathrm{al}} \boldsymbol{a}+\boldsymbol{v}$.
lication
cept in

To determine \mathbf{V} we have the equations of perpendicularity,

$$
\begin{aligned}
& \mathrm{S}_{\mathrm{xv}}=a_{\mathrm{x}} v_{\mathrm{x}}+a_{y} v_{\mathrm{y}}+a_{\mathrm{x}} v_{\mathrm{x}}=0 \\
& \mathrm{~S}_{\mathrm{hv}}=b_{\mathrm{x}} v_{\mathrm{x}}+b_{\mathrm{y}} v_{\mathrm{y}}+b_{\mathrm{x}} v_{\mathrm{x}}=a,
\end{aligned}
$$

and from the triangle $O D K$,

$$
v_{x}^{2}+v_{y}^{2}+v_{i}^{2}=v^{2}=a^{2} b^{2}-S^{2} .
$$

Solving we get

$$
\begin{aligned}
& v_{x}=a_{y} b_{x}-a_{x} b_{y} \\
& v_{x}=a_{x} b_{x}-a_{x} b_{x} \\
& v_{x}=a_{x} b_{y}-a_{y} b_{x} .
\end{aligned}
$$

Hence the "Vector Normal" to A.B, is

$$
V=\left|\begin{array}{lll}
a_{\mathrm{x}} & a_{\mathrm{y}} & a_{\mathrm{x}} \\
b_{\mathrm{x}} & b_{\mathrm{y}} & b_{\mathrm{x}} \\
\mathrm{x} & y & z
\end{array}\right|
$$

and its length is

$$
v=1 \overline{a^{2} b^{2}-\mathrm{S}^{2}}=a b \sin \mathrm{AB}
$$

The product K is thus expressed in ternis of the given vectors and their components, in the equation

$$
A B=S \boldsymbol{a}+V .
$$

Example. Find the product $\mathbf{A B}$ when

$$
A=3 y-x, B=3 z-y
$$

Here

$$
S=-6, \quad V=8 x, \quad a=, 10,
$$

$$
\therefore A B=8 x-\frac{3,10}{5}(3 y-x) .
$$

11. PERMUTATION OF FACTURS. It is geometrically and algebraically evident that
and that

$$
\begin{aligned}
\mathrm{S}_{\mathrm{bb}} & =\mathrm{S}_{\mathrm{bz}} \\
\mathrm{~V}_{\mathrm{ab}} & =-V_{\mathrm{la}} . \\
\mathbf{B A} & =S_{\mathrm{ba}} b+V_{b a} \\
& =S_{\mathrm{bc}} b \quad V_{\mathrm{ab}}
\end{aligned}
$$

which is not equal to $A B$.
Changing the order of the factors changes the vector product. Vectors are not permutable.
12. OPERAND DISTRIBUTIVE. To find the product $\mathbf{A}(\mathbf{B}$ • $\mathbf{C})$ let so that

$$
\begin{aligned}
& B=C=D . \\
& d_{x}=b_{x}+c_{x} \\
& d_{x}=b_{y}-c_{y} \\
& d_{x}=b_{x}+c_{x} .
\end{aligned}
$$

Then

$$
\begin{aligned}
A(B & \pm C)=A D \\
& =S_{\mathrm{sd}} a+V_{\mathrm{ad}} \\
& =\left(S_{\mathrm{sb}} \pm S_{\mathrm{sc}}\right) a+V_{\mathrm{ab}}+V_{\mathrm{sc}} \\
& =\left(S_{\mathrm{ab}} a+V_{\mathrm{ab}}\right) \pm\left(\mathrm{S}_{\mathrm{sc}} a+V_{\mathrm{ac}}\right) \\
& =A B+A C .
\end{aligned}
$$

The operand is therefore distributive.
13. OPERATOR NOT DISTRIBUTIVE. To find the product $(A+B) C$, let $A=B=K$ so that

$$
\begin{aligned}
& k_{\mathrm{x}}=a_{\mathrm{x}}+b_{\mathrm{x}} \\
& k_{\mathrm{y}}=a_{\mathrm{y}}+b_{\mathrm{y}} \\
& k_{\mathrm{x}}=a_{\mathrm{x}}+b_{\mathrm{x}}
\end{aligned}
$$

and

$$
k^{2}=a^{2}+b^{2}+2 S_{a b}, \text { by } \$ 3 .
$$

Then

$$
\begin{aligned}
& (A \pm B) C=K C \\
& \quad=S_{k c} k+V_{k c} \\
& \quad=\frac{S_{\mathrm{xc}} \pm S_{\mathrm{bc}}}{1 a^{2}+b^{2}+2 S_{\mathrm{ab}}}(A+B)+\left(V_{\mathrm{ac}}+V_{b e}\right)
\end{aligned}
$$

which is not equal to $\mathbf{A C} \pm \mathbf{B C}$.
Hence the operator is not in general distributive.
14. FACTORS MUST NOT CHANGE ASSOCIATION.

$$
\begin{aligned}
A B C & =A\left(S_{\mathrm{bc}} b+V_{\mathrm{be}}\right) \\
& =\frac{\mathrm{S}_{\mathrm{kc}}}{b} A B+A V_{\mathrm{bc}} \\
& =\frac{\mathrm{S}_{\mathrm{ab}} S_{\mathrm{be}}}{a b} A+\frac{S_{\mathrm{be}}}{b} V_{\mathrm{tb}}+\left|a_{n} b_{y} c_{\mathrm{z}}\right| a+\mathrm{S}_{\mathrm{ac}} B-S_{\mathrm{at}} C .
\end{aligned}
$$

To expand AB. C, let $K=A B$, so that

$$
\begin{aligned}
& \text { AB. } \mathbf{C}=\mathbf{K C}=\mathrm{S}_{\mathrm{ke}} \boldsymbol{k}+\boldsymbol{V}_{\mathrm{kc}} \\
& =\left\{\underline{S}_{\mathrm{b} b} \mathbf{S}_{\mathrm{ac}}+\left|a_{\mathrm{x}} b_{y} c_{\mathrm{a}}\right|\right\} \boldsymbol{a} \boldsymbol{b}+\frac{\mathbf{S}_{\mathrm{ab}}}{\boldsymbol{a}} \boldsymbol{V}_{\mathrm{ac}} \\
& +\left|\begin{array}{ccc}
\left|a_{y} b_{z}\right|,\left|a_{z} b_{x}\right|,\left|a_{x} b_{y}\right| \\
c_{z} & c_{y} & c_{z} \\
x & y & z
\end{array}\right|
\end{aligned}
$$

which is not equal to $A B C$.
Hence the association of a factor must not in general be altered. But if $C=A$ these two products become identical, and therefore
A. $\mathbf{B A}=\mathbf{A B}$. \mathbf{A}.
15. POWERS OF AN OPERATOR.
$A E=S a+V$
$\mathbf{A}^{2} \mathbf{E}=\mathbf{A} . \mathbf{A B}=\mathbf{A}(\mathbf{s} \boldsymbol{a}+\mathbf{V})$
$=S A+A V$
$=2 \mathrm{SA}-a^{2} \mathrm{~B}$ by expansion and multiplication.
$\mathbf{A}^{3} \mathbf{E}=\mathbf{A}\left(2 \mathrm{SA}-a^{2} \mathbf{B}\right)$
$=2 a^{2} S a-a^{2}(S a+V)$
$=a^{2}(\mathrm{~S} a-\mathrm{V})$, which is geometrically evident.
$\mathrm{A}^{4} \mathrm{E}=a^{3} \mathrm{~S} \boldsymbol{a}-\boldsymbol{a}^{2}\left(\mathrm{~S} \boldsymbol{a}-\boldsymbol{a}^{2} \mathrm{E}\right)$
$=a^{4} \mathrm{~B}$, which is also geometrically evident.
From these results it is easy to write the expansion of any valuc of $A^{n} \mathbf{E}$ when n is a positive integer.
16. LAWS OF MULTIPLICATION, summary.
(1) Factors are not permutable (\$11)
$A E$ is not equal to $B A$.
(2) The operand is distributive (\$12)
$A(B+C)=A B+A C$.
but the operator is not ($\$ 13$)
$(\mathbf{A}=\boldsymbol{B}) \mathbf{C}$ is not equal to $\mathbf{A C}+\mathbf{A C}$.
(3) The association of a factor must not be changed (\$14).
A. BC is not equal to $\mathbf{A B}$. C but A.EA $=\mathbf{A B} . \mathbf{A}$.
(4) The fourth power of an operator is equivalent to the fourth power of its tensor (\$15).
(5) The common laws of signs are true for operand and product; not for the operator.
17. PERPENDICULAR VECTORS. When A,B.C are perpendicular, $\mathrm{S}_{\mathrm{ab}}=\mathrm{S}_{\mathrm{ac}}=\mathrm{S}_{\mathrm{bc}}=0,(\mathrm{~S} 3)$, and $\mathrm{AB}=\mathrm{V}$, ($\$ 15$).

Then the laws of $\$ 16$ become the following:
(1) Permuting the factors, i.e., interchanging operator and operand, changes the sign of the product.

$$
\mathbf{B A}=\mathbf{V}_{\mathrm{h}+\mathrm{d}}=-\mathbf{V}_{\mathrm{ab}}=-\mathbf{A} \mathbf{E}
$$

(2) Both operator and operand are distributive.

$$
\begin{aligned}
& (A=B) C=A C+B C \\
& A(B+C)=A B=A C
\end{aligned}
$$

(3) The association of a factor must not be changed.
$A . B C$ is not equal to $A B . C$.
but $\mathbf{A} . \mathbf{B A}=\mathbf{A B}$. \mathbf{A}.
(4) The square of an operator is -1 times the square of its tensor.

$$
\mathbf{A}^{2} \mathbf{B}=-\boldsymbol{a}^{2} \mathbf{B}
$$

(5) The common laws of signs hold true.

If $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}$ be any three unit perpendicular vectors in the same circular order as $\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}$; then $\boldsymbol{a b}=\mathbf{c}, \boldsymbol{b} \boldsymbol{c}=\boldsymbol{a}$, $\mathbf{c a}=\boldsymbol{b}$, and these vectors may serve as units of the system, as well as $\boldsymbol{x}, \boldsymbol{y}$ and \boldsymbol{z}.
18. DIVISION is the inverse of mu!tiplication, so that if

$$
\begin{aligned}
& A B=C \\
& C=A^{\cdot 1} C=B .
\end{aligned}
$$

Geometrically, division is a negative turn of 90° about the divisor (identical in this respect with multiplication by the negative of the divisor) and redustion in length to that given by the quotient of the tensors.
19. GENERAL FORMULA fo: $A^{n} B$ where n is real.

Fig. 4

Let OA, OB, be the vectors A, B. and let $O C$ be in line with their vector product, so that $A^{n} \mathbf{B}=a^{n}$ times $O C$.

Let BCT be the circle of revolution of B about $A ; N$ its centre; N B, N C, its radii. Draw CD 1 NB; DE\|BO. Let $\quad \mathrm{CNB}=\theta=n \frac{\pi}{2}$ be the angle of rotation of B.

As vectors $\quad \mathrm{OC}=\mathrm{OE}+\mathrm{ED}+\mathrm{DC}$

$$
=\stackrel{S}{\dot{a}} \text { a vers } \theta+B \cos \theta+\frac{V}{a} \sin \theta
$$

$\therefore A^{n} B=a^{n} . O C$
$=a^{\mathrm{n}-1}(\mathrm{Sa}$ vers $\theta+a \mathrm{~B} \cos \theta+\mathrm{V} \sin \theta)$.

This formula, being true for all real values of n, includes products, quotients, powers and roots of vector operators.

Example. - Two rods, A and B, are joined at one end. A is one foot long, and the perpendicular distance of its free end from B is six inches. B is turned 60° about the axis of A, then A is turned 90° in the same direction about the new axis of B. Find the new position of A.

Let the joined ends be at 0 . Let $B=b x$, and $A=a_{x} x+a_{y} y$. Since $a=1$, and $a_{y}=\frac{1}{2}, \quad A=\frac{1}{2}(x, 3+y)$.

The result of the first rotation is represented by

$$
\begin{aligned}
C & =A^{\frac{3}{B}} \mathbf{B}=S \text { vers } 60^{\circ}+B \cos 60^{\circ}+V \sin 60^{\circ} \\
& =\frac{h}{8}\left(7 x+y_{1} 3-2 z_{1}^{\prime}\right)
\end{aligned}
$$

The second rotation is

$$
\begin{aligned}
c A & =S c+V_{c u} \\
& =\frac{1}{i 6}\left(9 x_{1} 3-3 y-2 z\right)
\end{aligned}
$$

which gives the final position of the free end of \mathbf{A}.

20. QUATERNIONS.

When $A, B, S=0$
and

$$
\mathbf{V}=\mathbf{A B} \quad \text { (\$17) }
$$

Then

$$
\begin{aligned}
\mathbf{A}^{n} \mathbf{B} & =\boldsymbol{a}^{n}(\mathbf{B} \cos \theta+\boldsymbol{a} \mathbf{B} \sin \theta) \\
& =\boldsymbol{a}^{n}(\cos \theta+\boldsymbol{a} \sin \theta) \mathbf{B}
\end{aligned}
$$

Now \boldsymbol{a}^{2} as a perpendicular operator is equivalent to -1 ; and by expansion in series, exactly as with the complex $(\cos \theta+i \sin \theta)$, it may be shown that the rotor of A^{n}

$$
\cos \theta+\boldsymbol{a} \sin \theta=e^{\boldsymbol{a} \theta}
$$

where θ is the angle and a the axis of rotation.
Hence for perpendicular vectors

$$
\mathbf{A}^{n} \mathbf{B}=\boldsymbol{a}^{\mathrm{n}} \boldsymbol{e}^{\boldsymbol{a} \theta} \mathbf{B}
$$

The operator A^{n} is a tensor-rotor-vector, or a directed quaternion, when applied to vectors perpendicular to A. It has the four fundamental characters of a quaternion, namely,
(1) Since $A^{n} B=C, A^{n}$ may be regarded as the ratio of C to B;
(2) It is the product of a tensor and a directed rotor, a^{n}. e^{a+1};
(3) It is the sum of a scalar or number and a directed unlocated line or vector, $a^{n} \cos \theta+a^{n} a \sin \theta ;$
(4) It is a qu:drinomial of the form $k+1 x+m y+n z$, where k is a pure numoer and the directive units x, y, z, have the relations

$$
x^{2}=y^{2}:=z^{2}=x y z=-1
$$

21. VECT(OR ARCS. The rotor "a turns thru the angle a about the axis A any vector in the plane perpendicular to A. The index a is a vector angle whose axis is \mathbf{A} and whose magnitude is a radians. The length of the subtended are is aa. If this circular are he taken as a vector, written a, it is understood that its angle is a, its axis A and its radius a. A vector arc may take any position in its own circle, and has therefore one more degree of freedom than its vector axis.

Vector ares need not be confined to ares of circles, but whether the extension to other curves would be of any particular value remains to be seen. A rouzh classification gives thic following:
(1) Straight vectors,
(2) Plane vectors, having single curvature.
A. Conic,
a. Circular, b. Elliptic, c. Parabolic, d. Hype: balic,
B. Spiral, etc.
(3) Solid vectors, with double curvature.
22. SUM OF CIRCULAR AND STRAIGHT VECTORS.

Let the plane of the arc a meet the plane of A, B. in th: line $C C^{t}$, let C be so chosen that. BC is not greater than 90°, i. e., so that n is positive; and let $a=c$.

Fig. 5.
ernion, fundaatio of $e^{a t t} ;$
located
where we the about $x a$ is The 1 as a and its nd has
er the s to be

Let $\quad \mathbf{C}=m \mathbf{A}+n \boldsymbol{B}$.
Then from the figure

$$
\begin{align*}
& n^{2} b^{\prime}-m^{2} a^{2}=c^{2}=a^{2}, \\
& \cos A B={ }_{n b}^{m a}=\frac{S_{u n}}{a b} \\
& \therefore n=\frac{a^{2}}{v}, m=\frac{S}{v} \text {, } \\
& \therefore C={ }_{b}^{1}\left(\mathrm{~S} \mathbf{A}+a^{2} \mathrm{~B}\right) \text {. }
\end{align*}
$$

Let . ($\mathrm{COD}=a^{1}$.
Then $\quad \boldsymbol{a}=\boldsymbol{F}-\mathrm{D}=\boldsymbol{e}^{\boldsymbol{a}^{1}+\boldsymbol{a}} \mathbf{C}-\boldsymbol{a}^{\boldsymbol{a}^{1}} C=\left(e^{\boldsymbol{a}^{1}+\boldsymbol{a}}-\boldsymbol{e}^{\boldsymbol{a}^{1}}\right) \mathbf{C}$
$=\left\{\cos \left(a^{1}+a\right)+\boldsymbol{a} \sin \left(a^{\prime}+a\right)-\cos a^{1}-a \sin a^{\prime} ; \mathbf{C}\right.$
$=2 \sin \frac{a}{2}\left\{\sin \left(a^{1}+\frac{a}{2}\right)+a \cos \left(a^{1}+\frac{a}{2}\right): C\right.$.
To this \boldsymbol{B} is readily added.
If B is parallel to A, C is indeterminate and any radius of the a circle may be taken as C. In this case the sum is a point on a right helix or screw whose axis is A. Since the addition may begin at any point of the \boldsymbol{a} circle, the sum is a ssew vector whose r lius, pitch and direction are fixed.
23. SUM OF TWO CIRCULAR VECTORS, Let a, B lee two circular vectors with a common centre 0 ; and let $C=V_{a b}$ he the intersection of their planes. Let $\mathrm{CB} \mathrm{B}_{\mathrm{o}}=\beta^{\prime}, \quad \mathrm{CA} \mathrm{A}_{0}=a^{\prime}$.

Then

$$
\begin{aligned}
& \boldsymbol{a}=\mathbf{A}_{1}-\mathbf{A}_{0}=\left(e^{\boldsymbol{a}^{1}+\boldsymbol{a}}-\boldsymbol{e}^{\boldsymbol{a}^{1}}\right) \boldsymbol{a} \mathbf{c} \\
& \boldsymbol{B}=\mathbf{B}_{1}-\mathbf{B}_{0}=\left(e^{\boldsymbol{B}^{1}+\boldsymbol{B}}-\boldsymbol{e}^{\boldsymbol{B}^{1}}\right) b \mathbf{c}
\end{aligned}
$$

Any third circular vector whose position is determined with reference to the intersection of its plane with the plane of a or B. may be similarly expressed and the sum readily found. In expanding these expressions it is convenient to remember that

Fic. 6
when

$$
C=V_{u}
$$

then $\quad A C=V_{A C}=S_{\mathrm{ah}} A-a^{2} G$

Let a, B, y, be three circular vectors forming a spherical triangle; $a, b c$, their vector axes; A^{\prime}, \mathbf{B}^{\prime}. C^{\prime}. the vectors from O to the angular points; A, B, C, the angles of the spherical triangle.

Fig. 7
Draw $A^{1} n!O^{1}$.
Then as vectors $0 \mathbf{A}^{1}=0 n+n \mathbf{A}^{1}$
or

$$
A^{\prime}=C^{\prime}+\beta=C^{\prime} \cos \beta+V_{b r^{\prime}} \sin \beta
$$

Similarly

$$
\mathbf{A}^{\prime}=\mathbf{B}^{1}-\mathbf{y}=\mathbf{E}^{1} \cos \gamma-\boldsymbol{v}_{\mathrm{cb}}{ }^{\mathbf{1}} \sin \gamma
$$

By inspection of the figure it is evident that in any spherical triangle

$$
\boldsymbol{a}=\boldsymbol{v}_{\mathbf{b}} \mathbf{c}^{\prime}
$$

$$
\begin{aligned}
& \cos a=S_{b_{c}^{1}, 1} \quad \sin n=v_{b}^{1}{ }^{1} \\
& \cos \mathbf{A}=-\cos (\pi-\mathbf{A})=-\mathbf{S}_{\mathrm{bc}}, \sin \mathbf{A}=\boldsymbol{v}_{\mathrm{bc}}
\end{aligned}
$$

$$
\begin{aligned}
\mathbf{A}^{\prime} & =\boldsymbol{v}_{\mathrm{tc}}=\frac{\left|b_{x} \boldsymbol{c}_{\mathrm{y}} \boldsymbol{z}\right|}{v_{\mathrm{be}}} \\
& =a^{1}{ }_{x} \times \cdot a^{1}{ }_{\mathrm{y}} \boldsymbol{y} \cdot a^{1}{ }_{x} \mathbf{z}
\end{aligned}
$$

Similar equations may be written for the corresponding elements of the triangle.

From the last equation, equating coefficients of x, y, z.

$$
a_{s}^{1}=\begin{array}{|c}
\left|b_{y} c_{x}\right| \\
v_{k e}
\end{array}, \quad a_{y}^{1}=\frac{\left|b_{x} c_{x}\right|}{v_{\mathrm{be}}}, \quad a_{y}^{1}=\frac{\left|a_{x} b_{y}\right|}{b_{l e}},
$$

Similarly,

and

The last expressio, is symmetrical in a, b, c, and therefore

$$
\frac{\sin a}{\sin \mathrm{~A}}=\frac{\sin \beta}{\sin \mathrm{B}}=\frac{\sin \gamma}{\sin \mathrm{C}}
$$

25. CONIC VECTORS are expressible in terms of the radius vector from the focus to each e.tremity of the segment of the curve.
cirerical

Let A be the axis of a conic, O its focus, \mathbf{N} its directrix, \mathbf{P} the radius vector, $a . b$ the coordinates of \mathbf{P} with reference to \mathbf{A} and B; and let $n=e(n+m)$, where $e=\frac{1}{c}$ is the eccentricity.

Thus

$$
\begin{aligned}
& a=p \cos \theta, \\
& b=\rho \sin \theta, \\
& c \boldsymbol{p}=a+m \\
& =\rho \cos \theta+m \text {, } \\
& p=\frac{i n}{c-\cos \theta} . \\
& \therefore \mathbf{P}=\boldsymbol{c}-\cos \theta^{m}(\boldsymbol{a} \cos \theta+\boldsymbol{b} \sin \theta) .
\end{aligned}
$$

If n is a constant, $r=m=x$, then for the cirele

$$
P=p(a \cos 1)+h \sin 1)
$$

Siuilarly in any conic

$$
\begin{aligned}
& \mathbf{P} A+{ }_{\mathfrak{a}^{1}}^{b}:(a+m)^{2}-a^{2} \boldsymbol{c}^{2}! \\
& \mathbf{P}=\frac{m \cdot \mathfrak{a}_{1}\left[m^{2}+b^{2}\left(c^{2}-1\right)\right]}{a^{2}-1} \boldsymbol{a}+\mathbf{B}
\end{aligned}
$$

but when $c=1$, in the parabola,

$$
\mathrm{P} \quad \boldsymbol{r}^{2}-m^{2} a+\mathbf{B}
$$

We have then an expression for any conic wetor as the difference of two straight vectors, $\boldsymbol{P}=\boldsymbol{P}_{0}$; whieh may be expressed in terms of either of the variables, a, b or θ.

The sum of two or more conic vestors would express approximately for a short distance the course of a body moving under gravitational forces from two or more sources. Whether this method of calenlating would be an improvement on present methods 1 am not prepared to say.

Multiplieation of a straight ector ly a vector are involves double curvature, and the locus of such a product is a convenient form by which to express solid vectors (si2l). Again the utility is problematical.
26. DIFFERENTIATIUN OF STRAIGHT VECTORS. Any vector, A. may vary in length and in direction. Its variation may be expmessed in terms of a for length and \boldsymbol{a} for direction; or it may be expressed in terms of the components A_{1}, A_{1}, A_{2}.

Since the infinitesmal increments of a vector are also vectors, it is evident that by vector addition

$$
\begin{align*}
d \mathbf{A} & =d_{\mathbf{x}} \mathbf{A}+a_{\mathbf{y}} \mathbf{A}+d_{\mathrm{x}} \mathbf{A} \\
& =\mathbf{x} d a_{\mathrm{x}}+\boldsymbol{y} d a_{\mathrm{y}}+\mathbf{z}_{1 d} a_{\mathrm{x}} \tag{1}
\end{align*}
$$

since $\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{x}$, are absolite constants.
Also, $d A \quad H_{a} A+d_{0} A$

$$
\begin{equation*}
-a d \boldsymbol{a}+\boldsymbol{a} d d r . \tag{2}
\end{equation*}
$$

It follows from (1) that the differential of a vector i., the sum of the differentials of its components, and hence that differentiation is distributive over vector terms.

It follows fro:n (2) that the orllnary rule for dlfferentintion of n product holds true for any unit vector and its tenmor, and hence fur any product of a tensor and a vector.
27. To finil the diferentinl coeffefent of a veetor preulnct, $\mathbf{A}^{n} \mathbf{B}$.

Differentiating both sides of the equation with respeet to $11=n_{2}^{\pi}$

$$
\begin{aligned}
& =\int_{\pi}^{2} \mathrm{~A}^{n} \mathrm{E} \log a+a^{n}(\cos H+\boldsymbol{a} \sin \|) \mathrm{V} \text {. }
\end{aligned}
$$

since', hy multiplicution, Sa-a日=aV.

The list term of the differential coeffieient may ulso be written $a^{n-1} e^{a H} V$. It is a tensor and rotor proluct of V the vector normal "f \mathbf{A} and \mathbf{B}, whose rotution is about A. "aft V expresses the rotution of
 plane, und us a vector it gives at any point the direction and rate of motion in this plane matle by the point B. supplementary to the increase in "he length of \mathbf{B}.

The term ${ }_{\pi}^{2} A^{n} 巴$ loga is a multiple of the vector product, and for any given value of n it expresses the rate and direction of the inerease, in length only, of that product.

The sum of the two terms gives the rate and direction of the motion of the point 8 for unit increase in $\#$. It is the vector tingent to the curve traced by $\mathbf{A}^{n} \mathbf{B}$, namely, the curve $\mathbf{A}^{n} \mathbf{B}$.

Example.-Find the tangent where the Hat spial $(a x)^{n}$. by cuts the Y axis. The tangent is

$$
\begin{aligned}
\mathbf{T} & =\frac{d}{d t^{\prime}}(a x)^{\prime \prime} b y_{1} \\
& =a^{n} b\left[\left(\frac{2}{\pi} \log a \cos (1-\sin t) y+\left(\frac{2}{\pi} \log a . \sin H-\cos t\right) \geq\right]\right.
\end{aligned}
$$

At the starting point $\|=0$. and

$$
\mathrm{T}_{0}=b\left(\begin{array}{l}
2 \\
\pi \\
\log a \cdot y+z
\end{array}\right)
$$

When $n=2, f=\ldots$ and

$$
\mathbf{T}_{i z}=-\mathbf{a}^{*} \mathbf{T}_{n} .
$$

When $n=4$. $11 \quad 2 \pi$, and

$$
\mathbf{T}_{1}=a^{d} \mathbf{T}_{u}=-a^{x} \mathbf{T}_{3}
$$

This vector tangent makes at ail times a constant angle with Its radius, und Its jength gives the veloclty of the genernting point when the angular veluctty to unlty.
28. CURVATURF. If I be the length of a curve, and T the vector tungent, the curvature :S is $\frac{d T}{d 1}$, and the radius of evrvature is

$$
\mathbf{R}=-\mathbf{K} .
$$

29. LINEAR LOCI are locl having only one degree of freedom: lines or discrete points. A few examples are given:
${ }_{a} \int_{A}^{a} B$ is any part of the stralght line drawn from the point \mathbf{B} in the direction A.
${ }_{n} \boldsymbol{l}^{n} \mathbf{A}^{n} \mathbf{B}+\mathbf{C}$. uhen \mathbf{A} B. is a circle with cuntre C. radius b, and plane perpendicuiar to \boldsymbol{a}.

${ }^{\prime}{ }^{n}\left(A^{n} B+, C\right)$ includes a varicty of curves.
If $A, B . C \| A$, and $a=1$, the locus is a helix.
If C : A the locus varies from a circle (when $c=o$) to a straight line (when $c=\infty$), passing thru the cycloid. In other positions of \mathbf{C} the helix is acute angled. When a 1 the curves are expanding and when $a \quad 1$ diminishing.
30. EXAMPLES OF SURFACE LOCI.
${ }^{C} l^{\mathrm{h}}(\mathrm{A}$. B$)+\mathrm{C}$ is a paralletugram whose adjacent sides
A.B. start at the point C. Its diagonals are $\mathbf{A} \cdot \mathbf{B}$. Its area is $a b \sin A B=0$. ($\$ 10$).
 radius b.
${ }^{4}{ }^{4} \mathrm{Ca}^{\mathrm{n}} \mathrm{B}$ is the conceal surface traced by B as it is turner about A.
$\left.\int_{0}\right]^{\prime \prime}(\mathrm{A}+(1-a)$ B) ls the triangle OA13.
31. EXAMPLES OF SOH.ID LOCI.

U $7(\mathbf{A}+\boldsymbol{B}+\boldsymbol{C})+D$ is any parailelopiped.
Its diagonals are $\mathbf{A}+\boldsymbol{B}+\boldsymbol{C} \cdot \mathbf{A}+\mathbf{B}-\mathbf{C} \mathbf{A}-\mathbf{B} \cdot \mathbf{C}$. $-\mathrm{A}+\mathrm{B}+\mathrm{C}$. Its volume is $\left|a_{\mathrm{x}} b_{y}, c_{\mathrm{s}}\right|$. If $P=\mathrm{V}_{\text {nit }}$ and $\boldsymbol{Q}=\boldsymbol{V}_{n}$, the dihedral angle, a, over the edge A is found front the equation $S_{i q}=p q \cos a$.

$\int_{0}^{1} a^{n} \int_{{ }_{0}}^{1} b^{m}{ }_{c_{0}} C+\left.R\right|_{\text {is a hollow annulus }}$
E,C.R|C. A + RA E.
32. THE EGION COMMON to two loci is found by equating the coefficients of x, y, z, in the expressions for the loci. If these equations are consistent, giving real values for the variables, the limits thus found are inserted in either of the loci to give the required locus of intersection.

Example: 1. -Find the region common to the straight line

$$
\begin{aligned}
& \int_{n}^{n} n+1 y, \text { and the curve } \\
& { }_{0}^{n}\{a x+(2 x+y) \sin a\}
\end{aligned}
$$

Equating coefficients.

$$
\begin{aligned}
& n=a+2 \sin a \\
& d=\sin a
\end{aligned}
$$

Whence $n=a+1=\arcsin \frac{1}{2}+1$
Inserting these values, both loci become

$$
\int_{0}^{n}\left(\frac{1}{2} y+x \arcsin y\right)
$$

which is a low of discrete points parallel to x.

Example z -Find what part of the helix

$$
\left.\ell_{\left(x^{n} y\right.}^{n}+3 n x\right)=\prod_{n}^{n}\left(3 n x+y \cos \frac{n \pi}{2}+z \sin \frac{n \pi}{2}\right)
$$

is within the figure

$$
\left.\left.\prod_{0}^{1} \prod_{i}^{c} l^{n} c z+b x-y\right)=\prod_{0}^{4} \prod_{i}^{c} x\left(c \sin \frac{m \pi}{2}+b\right)-y+z \cos \frac{m \pi}{2}\right)
$$

Equating coefficients of x, y, z,
(1) $3 n=c \sin \frac{m \pi}{2} \cdot b$
(2) $\cos \frac{n \pi}{2}=-1, \quad \therefore \sin \frac{n \pi}{2}=0$. and $n=2,6,10 \ldots \ldots$
(3) $c \cos \frac{m \pi}{2}=\sin _{2}^{n \pi}-0$ 。

If $c=0.3 n=$
If $\cos \frac{n \pi}{z}=0 . \sin \frac{\pi \pi}{2}=+1$, and since c is positive $3 n-b+c$.
Inserting these values in the locus of the helix we get for the intersection a row of points

$$
\ell 3 n x-y, \text { where } n \text { has the values }
$$

$2,6,10 \ldots \ldots \ldots$ up to $\frac{b+c}{3}$.
Example 3. - Find the intersection of the plane
$7(m x+n z)+3 x$
with the solid

Equating coefficients of x, y, z,

$$
\begin{aligned}
& \text { (1) } m+3=a, \text { or } m=a-3 . \\
& \text { (2) } b \cos \theta=0, \therefore b \cdots 0, \text { or } \sin \theta \cdot 1 \text {. } \\
& \text { (3) } n=b \sin \theta,=0 \text { or }+b . \\
& \therefore n=-b .
\end{aligned}
$$

Substituting in the locus of the plane we get for the interseetion the parallelogram

$$
\left.l_{1}^{\mathrm{a}} 7_{(10 x}^{b}, \forall z\right)
$$

Example 4.-Find the locus of the intersection of the cube

$$
l^{\prime} l_{0}^{1} l^{\prime}\left(a_{x} x+a, y+a_{x} z\right)
$$

with a plane which cuts its diagonal
$A=x+y+x$ perpendicularly.
Let

$$
B=x-y
$$

lee one vector in the perpendicular plane, and

$$
C=V_{\mathrm{ab}}=x+y-2 \boldsymbol{z}
$$

the other. The plane is

$$
l l\left(l \mathrm{~B}, a_{l} \mathrm{C}+n \mathrm{~A}\right)
$$

where n is an arbitrary constant expressing the fractional distance from O to the point where the diagonal is cut.

Equate coefficients of $\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}$, in the two loci,

$$
\begin{aligned}
& a_{x}=l \cdot m+n \\
& a_{y}=-l+m+n \\
& a_{z}=-2 m+a .
\end{aligned}
$$

Therefore

$$
\begin{aligned}
l & =\frac{a_{x}-a_{y}}{2} \\
m & =a_{x}+a_{y}-2 a_{x} \\
6 a & =a_{x}+a_{y}+a_{x} .
\end{aligned}
$$

If $a=0$ the plane goes thru 0 . Since $a_{\mathrm{x}}, a_{y}, a_{4}$, are all positive and the sum zero, each of them is zero, and the locus of intersection is the point 0 .

If $a=1$ the point of intersection is \mathbf{A}.
If $n=1$, so that $a_{\mathrm{x}}: a_{y} \cdot a_{z}=1$, while each vai ies between 0 and 1 subject to this condition, the locus is, an equilateral tiriangle whese corners are found by giving to a_{v}, a_{y}, a_{4}. separately the maximum value, 1 , in the expinded expression for the plane

$$
l_{\mathrm{o}}^{1} \boldsymbol{l}_{\mathrm{l}}^{1} \boldsymbol{l}^{1} \frac{a_{\mathrm{x}} a_{y}}{2} \mathrm{~B} \cdot a_{\mathrm{x}} a_{\mathrm{y}}-2 a_{2} \mathrm{~A}
$$

If $n=?$ the locus is a similar titangle.
If $n=\frac{1}{2}$ the locus a regular hexagon.
33. PRO.JECTIONS. To express any vector K in ternis of three noncoplanar vectors A.E,C, write

$$
\begin{aligned}
& \text { IA m日 } \boldsymbol{A} \mathbf{n C}=\mathbf{K} \\
& \therefore \quad l a_{\mathrm{x}}+m b_{\mathrm{x}}+n c_{\mathrm{x}}=k_{\mathrm{x}} \\
& l a_{y}, m b_{y}, n c_{y}=k_{y} \\
& l a_{z} \cdot m b_{z}: n c_{z}=k_{z} \\
& \therefore \quad l=\frac{\left|k_{x} b_{y} c_{x}\right|}{\left|a_{x} b_{y} c_{z}\right|}, m=\frac{\left|k_{x} c_{y} a_{z}\right|}{\left|a_{x} b_{y} c_{z}\right|}, n=\frac{\left|k_{x} a_{y} h_{z}\right|}{\left|a_{x} b_{y} c_{z}\right|} .
\end{aligned}
$$

If we now write $n=0, l \mathbf{A}+m \boldsymbol{B}$ is the projection of K, nade parallel to \mathbf{C}. upon the plane of \mathbf{A}, \mathbf{B}.

If \mathbf{A} and \boldsymbol{E} only are given, and the projection is desired of K perpendicularly upon A. \boldsymbol{E}. take $C=V_{\mathrm{xb}}=\left|\boldsymbol{a}_{\mathrm{x}} b_{y} \boldsymbol{z}\right|$, and proceed as before.

To project K in the direction of C upon a plane pelpendicular to C, take any vector A, C, so that $S_{\mathrm{ac}}=0$,
as, $\quad A=c_{y} x-c_{x} y$
and a second vector $\mathbf{B},=\mathbf{V}_{\mathrm{ac}}$.

$$
\boldsymbol{\theta}=\left|\begin{array}{ccc}
c_{x} & c_{y} & c_{z} \\
c_{y} & -c_{x} & 0 \\
\boldsymbol{x} & \boldsymbol{y} & \mathbf{z}
\end{array}\right|
$$

Then express K in terms of A, B, C, as before.
The most general form of a locus is $77 \boldsymbol{K}+\mathbf{M}$. which is projected in the same way.

Example. - Project upon the Y Z plane and parallel to D the helix

$$
\begin{aligned}
l_{\mathrm{B}} & =l^{n}\left(x^{n} b y+a n x\right) \\
& -l_{i}^{n} b\left(y \operatorname{cas} \theta+z \sin (y)+a n_{x}\right\}
\end{aligned}
$$

Let $\mathrm{E}=\boldsymbol{l} \boldsymbol{y}+\boldsymbol{m z}$: $\boldsymbol{r D}$.
Equating the coefficients of x, y, z,

$$
\begin{gathered}
r d_{\mathrm{x}}=a n \\
l+r d_{y}=b \operatorname{cas} \theta \\
m+r d_{z}=b \sin \theta . \\
\therefore \Theta^{\prime}=y\left\{b \operatorname{cas} \theta-a n \frac{d_{y}}{d_{\mathrm{x}}}\right\}+\boldsymbol{x}\left\{b \sin \theta-a n \frac{d_{\mathrm{z}}}{d_{\mathrm{v}}}\right\}
\end{gathered}
$$

the locus of which is the required projection.
34. PLANE ALGEBRA. Every vector in the $X Y$ plane is of the form

$$
\begin{aligned}
A & =a_{x} x+a_{y} y \\
& =a_{x} x+a_{y} \geq x \\
& =\left(a_{x}+\geq a_{y}\right) x
\end{aligned}
$$

Since x is a part of every vector expression of this form, it may be omitted. The remaining form, $a_{x}+\boldsymbol{z} a_{y}$, is a complex number. sinete \boldsymbol{z}^{2} as a rotor is equivalent to -1 , we may write this tensor-rotor in the common form $a+i b$ (whare $i^{2}=-1$), whose properties are well known.

Again, any vector in the X Y plane may be expressed as a z-product, thus,

$$
\begin{aligned}
\mathbf{A} & =a \mathbf{z}^{n} \boldsymbol{x} \\
& =a(\cos \theta+\mathbf{x} \sin \theta) \boldsymbol{x} \\
& =a \epsilon^{\boldsymbol{z H}} \boldsymbol{x}
\end{aligned}
$$

Omitting x as before we have left ather two forms of the complex number.

Vector multiplication in the XY plane with any other rotor than z gives in general imaginary products, i.e., products lying outside of that plane.

FOUR-SPACE ALGEBRA

35. In four-space there are, by definition, four mutually perpendicular axes, X, Y, Z, U. These are so selected that they multiply in cireular order, as in 3-space. Each vector is now fully defined by four componnts. Vectors are added and subtracted as in 3-space.

As in $\$ 3$ it may be shown that

$$
\mathrm{S}_{\mathrm{xb}} \equiv a_{\mathrm{x}} b_{\mathrm{x}}+a_{\mathrm{y}} b_{\mathrm{y}}+a_{\mathrm{x}} b_{\mathrm{z}}+a_{\mathrm{u}} b_{\mathrm{u}}=a b \cos \mathrm{AB}
$$

where $S_{u b}$ is, as before, the sum of the $a b$ products.
Evidently also when $\quad S_{a b}=0, A \cdot B$.
36. MULTIPLICATION in 4 -space is defined as rotation about the plane* of the multiplying vertors, thru a right angle in the positive direc. tion. The planes of rotation are wholly ${ }^{\dagger}$ perpendicular to the axial plane.

[^0]Multiplication of C by $A B$, is written $\overline{A B C}$. and is defined as
(1) Rotation of C thru 90° in the positive direction about the plane A B, and
(2) Simultaneous extension to the length $a b c$.

By definition, $\overline{x y} z=u, \overline{y_{z}} u=x, \overline{\boldsymbol{z u}} \boldsymbol{x}=\boldsymbol{y}, \quad \overline{\boldsymbol{u x}} \boldsymbol{y}=\boldsymbol{x}$.
Remembering that the plane of rotation is perpendicular to the axial plane it becomes evident that

$$
\begin{aligned}
& \overline{x y}=\bar{z}, \overline{y x}=\bar{u}, \overline{z u y}=\bar{x}, \overline{u x z}=\bar{y} \\
& \overline{x y} \bar{z}=\bar{u}, \overline{y z u}=x, \overline{z u} \bar{x}=\bar{y}, \overline{u x} \bar{y}=\bar{z} \\
& \overline{x y} \bar{u}=x, \overline{y z} \bar{x}=u, \overline{z u y}=\bar{x}, \overline{u x}=\bar{y}=\bar{y}
\end{aligned}
$$

Fig. 9

Coplanar vectors are unchanged in position by 4 -space multiplication. because the whole axial plane is unmoved,

$$
\begin{aligned}
& \overline{x y} x=x \\
& \overline{x y}\left(a_{x} x+a_{y} y\right)=a_{x} x+a_{y} y
\end{aligned}
$$

37. MULTIPLICATION BY PERFENDICULAR VECTORS.

Let
Then
and
Solving for
 C, and let $\overline{A B C}=W$.

$$
\mathrm{S}_{\mathrm{aw}}=\mathrm{S}_{\mathrm{bw}}=\mathrm{S}_{\mathrm{cw}}=0
$$

$$
w^{2}=w_{\mathrm{x}}^{2}+w_{y}^{2}+w_{x}^{2} \perp w_{u}^{2}=a^{2} b^{2} c^{2}
$$

$w_{\mathrm{x}}, w_{y_{0}} w_{z}, w_{\mathrm{u}}$, and collecting,

$$
\left.\mathbf{W}_{\mathrm{abe}} \leftrightharpoons\left|\begin{array}{cccc}
a_{\mathrm{x}} & a_{\mathrm{y}} & a_{\mathrm{z}} & a_{\mathrm{u}} \\
\boldsymbol{b}_{\mathrm{x}} & b_{\mathrm{y}} & b_{\mathrm{x}} & b_{\mathrm{u}} \\
c_{\mathrm{x}} & c_{y} & c_{\mathrm{z}} & c_{\mathrm{u}} \\
\boldsymbol{x} & \boldsymbol{y} & \mathbf{z} & \boldsymbol{u}
\end{array}\right|=1 a_{\mathrm{x}} b_{\mathrm{y}} c_{\mathrm{z}} \boldsymbol{u} \right\rvert\,
$$

Also

$$
\begin{aligned}
w^{2} & =\left|a_{y} b_{\mathrm{z}} c_{\mathrm{u}}\right|+\left|a_{\mathrm{x}} b_{z} c_{\mathrm{u}}\right|^{2}+\left.a_{\mathrm{x}} b_{\mathrm{y}} c_{\mathrm{u}}\right|^{2}+\left|a_{\mathrm{x}} b_{\mathrm{y}} c_{\mathrm{z}}\right|^{2} \\
& =\left\lvert\, \begin{array}{l}
\mathrm{S}_{\mathrm{zu}} \mathrm{~S}_{\mathrm{ub}} \mathrm{~S}_{\mathrm{ac}} \mid \\
\mathrm{S}_{\mathrm{ba}} \mathrm{~S}_{\mathrm{tb}} \mathrm{~S}_{\mathrm{zc}}=a^{2} b^{2} c^{2} . \\
\mathrm{S}_{\mathrm{cz}} \mathrm{~S}_{\mathrm{cb}} \mathrm{~S}_{\mathrm{cc}} \mid
\end{array}\right.
\end{aligned}
$$

38. C is coplanar with A.B. when

$$
\mathbf{C}=m \mathbf{A}+n \mathbf{B}
$$

Writing the four equations of coordinates, and eliminating m and n. we get the coplanar equations

$$
\begin{aligned}
& \left|a_{\mathrm{x}} b_{y} c_{z}\right|=0 \\
& \left|a_{y} b_{z} c_{\mathrm{u}}\right|=0
\end{aligned}
$$

39. To find the perpendicular N : from the point B to the vector A.

Let Q B be the positive direction of \mathbf{N}_{2}.

Then $q=O Q=b$ cas $\mathbf{A B}=\frac{\mathrm{S}_{\mathrm{ab}}}{a}$.

$$
\therefore \quad \mathbf{Q}=\frac{\mathbf{S}_{\mathrm{xh}}}{a_{2}} \mathbf{A} .
$$

Fic. 10

$$
\begin{aligned}
& \left.\therefore \quad \mathbf{N}_{2}=\mathbf{B}-\mathbf{Q}=\begin{array}{cc}
\mathbf{S}_{\mathrm{as}} & \mathbf{S}_{\mathbf{a b}} \\
\mathbf{A} & \mathbf{B}
\end{array} \right\rvert\,+a^{2} . \\
& n^{2}=b^{2}-q^{2}=:\left|\begin{array}{ll}
\mathrm{S}_{\mathrm{as}} & \mathrm{~S}_{\mathrm{xb}} \\
\mathrm{~S}_{\mathrm{b}, \mathrm{a}} & \mathrm{~S}_{\mathrm{Lb}}
\end{array}\right| \div a^{2}=\frac{\mu^{2}}{a^{2}} .
\end{aligned}
$$

These forms of \mathbf{N}_{2}, n^{2}, Q. q. are identical in space of four, three and two dimensions, and evidently for space of all dimensions.

In a 2-flat

$$
n=\left|\begin{array}{ll}
a_{x} & a_{y} \\
b_{x} & b_{y}
\end{array}\right| \div a
$$

40. To find the perpendicular \mathbf{N}_{3} from C to the $A B$ plane.

Fig. 11

Solving for the coordinates of \boldsymbol{Q}_{3}, and collecting terms,

$$
\begin{aligned}
& \mathbf{Q}_{3}=\left(b^{2} \mathrm{~S}_{\mathrm{ac}}-\mathrm{S}_{\mathrm{ut}} \mathrm{~S}_{\mathrm{ucc}}\right) \underset{\boldsymbol{v}^{2}}{\frac{A}{2}}+\left(a^{2} \mathrm{~S}_{\mathrm{lec}}-\mathrm{S}_{\mathrm{ut}} \mathrm{~S}_{\mathrm{ac}}\right) \frac{\mathrm{B}}{\boldsymbol{v}^{2}}, \\
& \boldsymbol{q}_{\mathrm{i}}^{\boldsymbol{2}}=\boldsymbol{q}_{\mathrm{x}}^{2} \cdot \mathrm{t} \boldsymbol{q}_{\boldsymbol{y}}^{2}+\boldsymbol{q}_{\mathrm{i}}^{\mathbf{2}}: \boldsymbol{q}_{\mathrm{u}}^{2} \\
& =\left(a^{2} S_{\mathrm{uc}}^{2} \cdot b^{2} \mathrm{~S}_{\mathrm{ur}}^{2}-2 \mathrm{~S}_{\mathrm{at}} \mathrm{~S}_{\mathrm{uc}} \mathrm{~S}_{\mathrm{bc}}\right)_{v^{2}}^{\frac{1}{2}}
\end{aligned}
$$

where

$$
v^{2}=a^{2} b^{2}-\mathrm{S}_{\mathrm{al}}^{2} .
$$

Then

$$
\begin{aligned}
& =\frac{w^{2}}{v^{2}} .
\end{aligned}
$$

These forms are identical for 3 -space, and apparently for all space above it.

$$
\text { In 3-space also } \quad n_{i}=\frac{\left|a_{\mathrm{x}} b_{y} c_{z}\right|}{v} \text {. }
$$

41. To find the normal N_{4}, from D to the 3 -flat of A, E, C.

Then it is evident as in $\$ 40$ that

$$
\begin{align*}
& \mathbf{S}_{\mathrm{xq}}=\mathbf{S}_{\mathrm{ad}} . \tag{1}\\
& \mathbf{S}_{\mathrm{bu}}=\mathbf{S}_{\mathrm{bd} d} . \tag{2}\\
& \mathbf{S}_{\mathrm{cq}}=\mathbf{S}_{\mathrm{ct}} .
\end{align*}
$$

Since A.E.C. \mathbf{Q}_{4} are all in the same 3 -flat and therefore all perpendicular to N_{4} $\mathbf{S}_{\mathrm{an}}=\mathbf{S}_{\mathrm{tn}}=\mathbf{S}_{\mathrm{en}}=\mathbf{S}_{\mathrm{q} \mathrm{n}}=0$. Eliminating the n 's we get the cosolid equation

$$
\left|a_{x} b_{y} c_{z} q_{\mathrm{z}}\right|=0 \ldots(4)
$$

Fig. 12

Solving for q_{x} etc. and collecting terms

$$
\begin{aligned}
& Q_{4}=\left\{S_{\mathrm{sd}}\left[A\left(S_{b e}^{2}-b^{2} c^{2}\right)+B\left(c^{2} S_{\mathrm{ab}}-S_{\mathrm{ct}} S_{\mathrm{be}}\right)+C\left(b^{2} S_{\mathrm{we}}-S_{a b} S_{\mathrm{be}}\right)\right]\right. \\
& +\mathrm{S}_{\mathrm{bu}}\left[\mathrm{~B}\left(\mathrm{~S}_{\mathrm{cc}}^{2}-a^{2} c^{2}\right)+\mathrm{C}\left(a^{2} \mathrm{~S}_{\mathrm{be}}-\mathrm{S}_{\mathrm{a}} \mathrm{~S}_{\mathrm{wc}}\right)+\mathrm{A}\left(c^{2} \mathrm{~S}_{\mathrm{ci}}-\mathrm{S}_{\mathrm{be}} \mathrm{~S}_{\mathrm{wc}}\right)\right]
\end{aligned}
$$

$n_{s}^{2}=\frac{\left|S_{\mathrm{at}} \mathrm{S}_{\mathrm{uch}} \mathrm{S}_{\mathrm{cc}} \mathrm{S}_{\mathrm{dt}}\right|}{\left|\mathrm{S}_{\mathrm{ac}} \mathrm{S}_{\mathrm{bs}} \mathrm{S}_{\mathrm{vc}}\right|}=\frac{\left|a_{x} b_{y} \boldsymbol{c}_{\mathrm{x}} d_{\mathrm{u}}\right|^{2}}{w^{2}}$.
42. RELATION OF \mathbf{N}_{1} TO THE RECTOR \mathbf{W}. Since \mathbf{N}_{4} and \mathbf{W} are each perpendicular to the 3 -flat of $\mathbf{A}, \mathbf{B}, \mathbf{C}$, they differ only in their tensors,
Hence $\quad N_{4}=\frac{n_{4}}{w} \mathbf{W}=\left|a_{x} b_{y} c_{2} d_{4}\right|$.
Similarly, in 3 -space

And in 2-space

$$
\mathbf{N}=\frac{n_{3}}{v} \mathbf{V}=\frac{1 a_{x} b_{y} c_{z}}{v^{2}}, ~ V .
$$

$$
\mathbf{N}_{2}={ }_{f}^{n_{2}} \mathbf{F}=\underset{\boldsymbol{f}^{2}}{\left|a_{x} b_{y}\right|} \mathcal{F},
$$

when

$$
F=\left|\begin{array}{cc}
a_{\mathbf{x}} & a_{y} \\
\boldsymbol{x} & \boldsymbol{y}
\end{array}\right| \text { is the perpendicular to } \mathbf{A} .
$$

The forms for $N_{3}, N_{3}, n_{3}^{2}, n_{2}^{2}$, may be obtained by suppressing rows and columns in the determinant forms of N_{4}, n_{4}^{2}. It is evident that we have here a correspondence between the geometric space-form for a perpendicular and the algebraic space-form or matrix, which is true for all space.

4s. To find the product $\overline{A B}^{n} C$ when n is real.

Fig. 13

Let CPK be the circle of rotation of the point C, and let Q be its centre in the AB plane.

Join QO, QC, QP.
Let $O P$ be the position of $O C$ after rotation, so that $O P=\overline{\boldsymbol{\omega}} \overline{\boldsymbol{\sigma}}^{n} C$.

Draw PD: QC, DM\|CO.
The angle $\mathrm{CQP}=\theta=n_{\frac{\pi}{2}}^{\pi}$.

Then since $P D$, being in the plane of rotation, ia perpendicular to the A A plane, and also to QC ; PD is perpendicular to the 3 -flat of A, B, C, and ia therefore parallel to W.

$$
\begin{aligned}
& \mathrm{OM}=\mathrm{OQ} \frac{\mathrm{CD}}{\mathrm{CQ}}=q \text { vers } \theta \\
& \mathrm{MD}=\mathrm{OC} \mathrm{QD}=c \cos \theta \\
& \mathrm{DP}=\mathrm{PQ} \sin \theta=n_{2} \sin \theta=\frac{w}{v} \sin \theta
\end{aligned}
$$

As vectora

$$
O P=O M+M D+D P
$$

$\therefore \overline{a b}^{n} \mathrm{C}=\mathrm{Q}_{\sin }$ vers $\theta+\mathrm{C} \cos \theta+\frac{W}{v} \sin \theta$

$$
\left.+C \cos \theta+\frac{W}{v} \sin \theta\right]
$$

44. If C is perpendicular to A and E. then

$$
\overline{\mathrm{AB}}^{n} \mathrm{C}=a^{n} b^{n}\left\{\mathrm{C} \cos \theta+\frac{W}{v} \sin \theta\right\}
$$

and

$$
\begin{aligned}
\overline{a b} c & =\frac{W}{v} \\
\therefore \quad \overline{A \bar{B}} \mathrm{C} & \left.=o^{n} b^{n}(c) s \theta+\overline{a b} \sin \theta\right) \mathrm{C} \\
& =a^{n} b^{n} c^{\overline{a b} \theta} C
\end{aligned}
$$

The rotor $\boldsymbol{e}^{\overline{\boldsymbol{a b}} H}$ resembles the rotor $e^{\boldsymbol{a} H}$ found in 3 -space multiplication. It is evident that similar rotors (quaternions) will be found in all higher space forms.
45. The intersections of loci are found as in $\$ 32$.

Example 1. -Find the intersection of the 3 -flat

$$
777(o x+b y+c z)
$$

with the helix

$$
\ell\left\{\bar{x}^{n}(x+y+z)+n x\right\}=l(x \cdot y+z \cos \theta+u \sin \theta-n x)
$$

Equating coefficients of x, y, z, u,

$$
\begin{aligned}
o & =n+1 \\
b & =1 \\
c & =\cos \theta \\
0 & =\sin \theta \\
\therefore c & =+1 \\
\text { and } n & =0, \pm 2, \pm 4, \text { etc. }
\end{aligned}
$$

The intersection is

$$
\begin{aligned}
& \ell^{n}(n+1) x+y+z \\
& \text { representing two rows of polnts parallel to } X
\end{aligned}
$$

Example 2.-Find the intersection of the plane $\|(a x+b y)$ with the solid cylinder

> Equating coefficients of x, y, $\left.+\left(c_{u} \cos \theta+c_{\mathrm{z}} \sin \theta\right) u\right]$.

$$
\begin{aligned}
& a=c_{x}+m \\
& b=c_{y}
\end{aligned}
$$

and the plane locus becomes the rectangle

$$
{ }_{0}^{C} \int_{0}^{m}\left\{\left(c_{x}+m\right) x+c_{y} y\right\}
$$

46. PROJECTIONS. To express any vector K in terms of any four vectors A, B, C, D, not in one 3 -flat, write

$$
\begin{aligned}
& 1 \mathbf{A}+m \boldsymbol{B}+n \mathbf{C}+r \mathbf{D}=\mathbf{K} . \\
& \text { Then } l a_{x}+m b_{x}+n c_{x}+r d_{x}=k_{x} \\
& l a_{y}+m b_{y}+n c_{y}+r d_{y}=k_{y} \\
& l a_{s}+m b_{z}+n c_{\mathrm{x}}+r d_{\mathrm{x}}=\boldsymbol{k}_{\mathrm{z}} \\
& l a_{\mathrm{u}}+\boldsymbol{m} \boldsymbol{b}_{\mathrm{u}}+n \boldsymbol{c}_{\mathrm{u}}+\boldsymbol{r} \boldsymbol{d}_{\mathrm{u}}=\boldsymbol{k}_{\mathrm{u}} \\
& \therefore \quad l=\frac{1}{\mid a_{x}} \frac{, c_{x} d_{u} \mid}{b_{y} c_{z} d_{u} \mid}, \quad m=\frac{\left|a_{x} k_{y} c_{x} d_{\mathrm{u}}\right|}{\left|a_{x} b_{y} c_{x} d_{u}\right|}, \\
& n=\frac{\left|a_{\mathrm{x}} b_{y} k_{z} d_{\mathrm{y}}\right|}{\left|a_{\mathrm{x}} b_{y} c_{z} d_{\mathrm{u}}\right|}, \quad r=\frac{\left|a_{\mathrm{x}} b_{\mathrm{y}} c_{\mathrm{x}} k_{\mathrm{u}}\right|}{\left|a_{\mathrm{x}} b_{\mathrm{y}} c_{\mathrm{z}} d_{\mathrm{u}}\right|} .
\end{aligned}
$$

Writing either l, m, n or r equal to zero the remaining terms of K are the projection of K made parallel to the vanishing vector and upon the 3 -flat of the remaining vectors. To project K normally upon the 3 -flat of $\mathbf{A}, \mathbf{B}, \mathbf{C}$, write $\mathbf{D}=\mathbf{W}_{\text {nke }}$, then make $r=0$.

The sum of any two terms of K is the projection of K upon their plane, made parallel to the plane of the other two vectors.

Loci are projected in the same way.
47. As an lllustration of the method of the lant nection we may find the principal orthogonal projectlons* of the regular 8 -cuhed tessaract whose edge is unity,

$$
l^{1} l_{\mathrm{n}}^{1} l^{\prime} l^{\prime} \text { K. upon the 3-flats ohout it. }
$$

(1) Parallel to x, on the 3 -flat of y, x, w, the projection is obtained by writing $k_{s}=0$, giving the cube

$$
{ }_{v} l_{u}^{1} l_{u}^{1} l^{\prime}\left(k_{y} y+k_{i} x+k_{u} u\right)
$$

(2) Parallel to x; y. Let $x+y=0$.

To get three other rectanguiar vectors we may take

$$
\begin{aligned}
& A=\boldsymbol{x} \\
& E=\omega \\
& C=W_{\Delta b d}=y-x .
\end{aligned}
$$

Then $l=k_{z}, m=k_{u}, n=\frac{k_{y}-k_{x}}{2}$.
Writing $r=0$ the projection becomes

$$
l_{1}^{1} l_{0}^{1} l_{0}^{1} l_{1}^{1} k_{2} A+k_{u} B+\frac{k_{x}-k_{x}}{2} C^{\prime}
$$

And $a=1, \quad b=1, c=12$.
To express this locus in geometrical terms we note first that since it contains three vectors, not coplanar, with independent variable coefficients, it is a 3 -space solid; and in the second place that the original axes, $\boldsymbol{x}, \boldsymbol{\omega}$, which are perpendicular to the line of projection, remain unchanged. The axes x, y, are each foreshortened in the ratio of $12: 1$. Projecting x and \boldsymbol{y} by the same plan as for \boldsymbol{K} we get for the projections

$$
\begin{aligned}
& \dot{x}^{\mathbf{1}}=\boldsymbol{i} \mathbf{C} \\
& \boldsymbol{y}^{\mathbf{1}}=-\boldsymbol{z} \mathbf{C}
\end{aligned}
$$

making the totai distance, 2 along C.
Consider next the variables in the locus, k_{z} and k_{u} are entirely independent, with limits from 0 to 1 , and ${ }_{\mathrm{o}}{ }^{1}{ }_{\mathrm{N}} \boldsymbol{l}^{1}\left(k_{\mathrm{i}} A \cdot k_{\mathrm{u}} 3\right)$ is a square in the $A B$ plane. The solid is a right square prism whose extension along \mathbf{C} is given by the last term $\frac{k_{y}-k_{\mathrm{x}}}{2} \mathrm{C}$ of the locus. k_{y} and k_{x} vary independently from
*For a purely geometric investigation of these projections see the American Journal of Mathematics, Volume XV, No. 2, pages 179-189.

0 to 1. The lower iimit of the term occurs when $k_{y}=0, k_{1}=1$, numely, $-\mathcal{C}$; and the upper Ilmit is $\backslash C$. Since $c=12$, the length of the priam in 12 along C.
(3) Parallel to $x+y ; x,(=D)$.

Take for the other rectanguiar axea

$$
\begin{aligned}
& A=\omega \\
& B=x-y \\
& C=W_{\text {ntan }}=x+y-2 z .
\end{aligned}
$$

Then $l=k_{u}, m=\frac{k_{1}-k_{y}}{2}, n=\frac{k_{x}+k_{y}-2 k_{s}}{6}$.
Put $r=0$; the projection la

$$
\left.l_{0}^{1} l_{0}^{1} l_{n}^{1} l_{1}^{1} k_{u} A+\frac{k_{x}-k_{x}}{2} \mathrm{~B}+\frac{k_{n}+k_{y}-2 k_{x}}{6} C\right\}
$$

where $a=1, b=12, c=16$.
The figure is agaln a 8 -solid; the axia \boldsymbol{u}, perpendicular to D, remaining unchanged. Projecting the other three axea we get

$$
\begin{aligned}
& x^{\prime}=B+1 C \\
& y^{\prime}=-1 B+t C \\
& z^{\prime}=-1 C .
\end{aligned}
$$

The length of each of these is $\frac{16}{3}$. This length may be found directly by the equation

$$
\sin ^{2} \times D=1-\cos ^{2} \times D=1-\frac{S_{x d}^{2}}{d^{2}}
$$

The variable k_{u} is indapendent. The figure is therefore a right prism of unit ingth along A. To find the prism base, or section in the BC plane, draw the axes B, C, and plot the figure.

First, let $k_{x}=k_{y}=0$, while k_{x} varies from 0 to 1 , tracing the line along C from - to O, the line $a 0$. Next let $k_{y}=1$; the locus of k_{1} is then the line $b c$ from

$$
-\frac{B}{2}-\frac{C}{6} 10-\frac{B}{2}+\frac{C}{6} .
$$

Intermediate values of k_{y} fill out the parallelogram ac.

Fig. 14

Next let $k_{1}=1$, and jroceed as bafore, obtaining the paralielogram $d C$, whose limiting lines are de from $\frac{E}{2}-\frac{C}{6}$ to $\frac{8}{2}, \frac{C}{6}$, and OC from 0 to $\frac{C}{3}$.

Intermedlate valuen of k_{n} glve almilar parallelogramn commencing at every point along $a d$ and covering the regular hexagon ace. The whole projectlon ls a right hexagonal prlsm. The projected axes $x^{\prime}, y^{\prime}, z^{\prime}$, are Oc, Oc, Oa.
(t) Parallel to $x+y+z+u, i=D)$.

Take for the other rectangular axes

$$
\begin{aligned}
& \mathbf{A}=x-y \\
& \mathbf{B}=\boldsymbol{z}-\boldsymbol{u} \\
& \mathbf{C}=\boldsymbol{W _ { u l u d }}=x+y-z-u
\end{aligned}
$$

Then $l=k_{x}-k_{y}, m=\frac{k_{i}-k_{u}}{y}, n=\frac{k_{x}+k_{y}-k_{i}-k_{u}}{l}$. and the locus of the projection la

$$
{ }_{n}^{1} \prod_{n}^{1} \prod_{n}^{1} 7_{1}^{1} k_{x}{ }_{2}^{k_{y}} \mathrm{~A}+{k_{2}-k_{u}}^{\mathrm{n}}{ }^{2}+\frac{k_{1} \cdot k_{y}-k_{1}-k_{u}}{1} c^{\prime}
$$

where $n=b=1 \varrho, c=2$.
Projecting the axes x, y, z, u, we get

$$
\begin{aligned}
& x^{\prime} \quad A+\ddagger C \\
& y^{\prime}=-1 A+\ddagger C \\
& z^{\prime}=B \quad \ddagger C \\
& w^{\prime}=-B-\& C
\end{aligned}
$$

and the length of each projected axis is $\frac{1}{2}$.
To olstain the geometric form of the projection, give to all the variahles the value zero, then to each one separately give all values up to unity. This gives four lines from O, identical with the projected axts. With three of these lines as adjacent edges form a parallelopiped, and form three more parallelopipeds with the three other possible groups of the four lines. The sum of these four solids, a rhombic dodekahedron, is the projection required.

[^0]: *Rotation is essentially plane motion. In a 2-flat the axis of rotation is a point. In a 3 -flat the axis is a line. In a 4 -flat the axis is a plane.

 + It is evident from $\$ 35$, that in 4 -space absolutely perpendicular planes exist. For $A=a_{x} \boldsymbol{x}+a_{y} \boldsymbol{y}$ is any vector in the $X Y$ plane, and $\mathbf{B}=\boldsymbol{b}_{2} \boldsymbol{z}+\boldsymbol{b}_{\mathrm{u}} \boldsymbol{u}$ is any vector in the ZU plane. Since $\mathrm{S}_{\mathrm{at}}=\mathbf{0}, \mathbf{A}-\mathbf{B}$. That is to say, every vector in the XY plane is perpendicular to every vector in the Z U plane.

