emadian Sexily of Evil Engineers.

INCORPORATED, 1887.
ADVANCE PROOF二(Subject to revision).
N.B. - This society, as a body, does not hold itself responsible for the statements and opinions advanced in any of its publications.

DATA AND NOTES DERIVED FROM TESTS ON CEMENT AND ALSO ON CONCRETE TAKEN FROM REGULAR BATCHES USED IN ACTUAL WORKS.

By James S. Costigan. B.A.Sc., A.M.Can.Soc,C.E.

To be read February 27th., 1902.
The following tests on cement were made during the year of 1900 , at Chaudiere Fails, Que., where a water power of $5,000 \mathrm{H} . \mathbf{P}$. was being developed under the direction and supervision or T. Pringle \& Eon, Hydraulic Engineers, in accordance with theft, and specifications, by the Engineering Contract Company.

The work, in general, consisted of the construction of a timber crib 190 feet long on concrete piers, with a concrete abutment on the west end, the spaces between the piers being designed to allow the water to enter the head race under the crib, which was firmly bolted to these supports.

The head race is enclosed on the west side by an earthen emtankment about 250 feet long, with a concrete core wall, which embankment also runs into the west bank of river at an angle of about 97 degrees to the side of head race, a distance of some 300 feet. It is bounded on the north and northwest by a concrete bulkhead with steel framing to carry the water racks, etc., built in the concrete together with three steel plate cones, tapering from 9 feet to $8^{\prime} 3^{\prime \prime}$ inside diampter in 29 feet length. and one cone tapcering from 3 fact to $2^{\prime} 6^{\prime \prime}$ inside diameter in the same length. To these cones are connected penstocks to carry the water down to the turbines, direct connected to generators, situated in a power house some eighty feet below, the small pipe being used to operate independent turbines which drive the exciters.

On the east side of head race is a concrete weir dam about 140 feet long, and at an angle of about 103 degrees to the weir dam is a waste weir provided with stop logs for closing same in time of low water; and then in the same line with this is the main dam 824 feet in length of the overflow type running across the river,
about 60 feet from the edge of ghe falls ang/terminating in a substantial concrete abutment on the east side of the stream.

The power house foundations and wheel pit are built of rubble masonry laid in cement mortar and arched with 1-2-5 concrete over the tail-race.

It is not the object in this paper to give more than an outline of the style of works being carried out where the following experiments were made, and a full detail description of this undertaking will be presented in a subsequent article.

The bulk of the cement which was used in these works was imported Portland cement, known as "Hemmoor brand," and was made in Hanover, Germany.

These tests on cement were carried out under the supervision of Mr. C. H. Hollingsworth, C.E., who was at that time the Engineer in charge; also the moulding of the concrete cubes referred to in the following pages.

The specifications under which all the cement was furnished for these works were as follows:-

Cement:-Ail cement used throughout the work shall be Portland cement ground to such a degree of fineness, that not more than 10 per cent. residue shall remain on a standard 100×100 sieve (10 ,000 meshes to the square inch.)

Specific Gravity:-Specific'gravity of cement shall not be less than 3.10.

Soundness:-To be determined by Faija's method. A thin pat of neat cement will be carefully made on a sheet of ground glass, $4^{\prime \prime} \times 4^{\prime \prime}$. The pat will be bevelled from centre to edges, where it shall not be more than ${ }_{s 2}{ }^{\prime \prime}$ thick. Immediately after making, pats are to be supported above the surface of water at a temperature of 115 . Fah. in a closed vessel for 'six hours. At the expiration of this time they will be immersed in the water, which will be kept at the same temperature, for an additional twenty-four hours. Separation of pats from the glass, cracking or presence of blow holes, etc., will be taken as indications of unsoundness,

Tensile Strength:-Samples taken indiscriminately from the centre of cement barrels or bags, shall be mixed with 20 per cent. of water and rammed into briquette moulds, with a pressure of 20 lbs. to the square inch. After being removed from the moulds the briquettes must have a tensile breaking strength of not less than the following:-

At the end of 7 days, (1 day in air, 6 days in water), 400 lbs ,
" " " " 28 " (1 " " " 27 " " " "), 500 lbs,
Mortar mixtures of three parts of sand Standard i.e., of such coarseness as to all pass the meshes of a 20 mesh sieve; $\mathbf{4 0 0}$ meshes per square inch, and all be retained on the meshes of a 30 mesh sieve, 900 meshes per square inch, to one part of cement with suf-
ficient water to make a good plastic paste, and rammed into moulds with a pressure of 20 pounds per square inch, must show a tensile strength of not less than

145 lbs. at the end of 7 days (1 in air and 6 in water.)
225 " " " 28 " (1 ". " " 27 " ${ }^{\prime \prime}$ -
All briquettes in neat cement and mortar tests will be covered with a moist eloth while setting, to exclude drafts of air.

At least one barrel in every 100 will be tested, and should the sample from the barrel prove defective, the whole 100 barrels shall be rejected.

If the cement used is packed in bags, at least one bag in every 500 will be tested, and, if sample prove defective, the whole 500 bags will be rejected.

The contractor is to keep all cement on hand at least 30 days before using, so as to allow of testing. He may be required to slack cement in weatherproof sheds, if so thought necessary by the Engineers.

In case of any dispute arising as to the interpretation of this specification, or the manner of testing cement, the matter shall be referred to the Faculty of Applied Science of McGill Uriversity, Montreal, a decision from whom shall be final and conclusive. The cost of making tests'at the University shall be borne by the party in fault.

The details of careful chemical analysis made of three samples of cement taken from 100 barrel lots, on the works, were as fol-lows:-

Silica	$\begin{aligned} & \text { No. } 1 . \\ & 21.93 \end{aligned}$	$\begin{aligned} & \text { No. } 2 . \\ & 21.84 \end{aligned}$	$\begin{gathered} \text { No. } 3 . \\ 21.53 \end{gathered}$
Oxide of Iron and Aluminia.	12.84	11.84	12.35
Lime	64.17	. 65.36	64.41
Magnesia. .	1.11	1.14	0.96
Carbon Dioxide. .	0.22	Tra:	0.37
	100.27	100.18	99.62

There was also 'minute quantities of sulphate present but it is of no special import.

CEMENT TESTS.
The briquette moulds used were made by the Fairbanks Company, having an area of 4 square inches by $1^{\prime \prime}$ thickness, the sectional area in the centre being exactly one square inch.

The Fairbanks' patent automatic cement testing machine was used to obtain the tensile strength of the briquettes.

The Portland cement used in all these tests was Hemmoor brand imported from Hanover, Germany, and the fineness test showed a residue of 6 per cent, on a 100 mesh sieve (i. e. 10.000 per square inch), and a specific gravity of 3,18 . The volume and soundness tests were satisfactory.

The following special tests were made besides the regular ones called for by specifications, but had no bearing ts regards the acceptance of the cements:-

LOT 1.

Four briquettes were made by filling moulds with water, and then shovelling in dry cement with a small spatula, without ramming. The briquettes were placed in water when 24 hours old, and were taken from the water when test was due and broken imme-diately- 2^{\prime} at 7 days old and 2 at 28 days old; the results were:7 days old, 222 and 214 lbs . per sq. inch; 28 days old, 445 and 337 lbs. per sq. inch, tensile strength.

LOT II,
Four briquettes were made by filling moulds with water and sifting in cement without ramming. They were placed in water when 24 hours old. One of the briquettes scaled off slightly after belng in the water for 24 hours. Two briquettes were broken when taken from water after 7 days, and two at 28 days, and showed a tensile strength per square inch, as follows: 7 days old, 132 and $232,212 \mathrm{lbs}$, and at 28 days old $257,254 \mathrm{lbs}$. per sq. inch. tensile strength.

LOT III.
Four briquettes were made by filling moulds with dry cement and pouring in all the water they would absorb but without tamping. When treated similar to lot II, the results at 7 days old were $232,212 \mathrm{lbs}$., and at 28 days old $257,254 \mathrm{lbs}$. per sq. inch tensile strength.

LOT IV.

Four briquettes were made by mixing cement with 20 per cent. of water and tamping into moulds with a 1 lb . nail hammer. When 24 hours old they were placed in water until ready for testing. Two were tested when 7 days old and showed a tensile strencth of 722 and 738 lbs , and two at 26 days old showed 707 and 747 lbs per sq. inch.

LOT V.

Four briquettes were made by mixing cement with 20 per cent. of water and placing in moulds without any tamping 'whatever. When 24 hours old, they were placed in water until ready for testing. The results of this test were very poor; at 7 days old they broke at 28 and 32 lbs . per sq. in., and at 28 days old at 41 and 47 lbs . per square inch.

LOT VI.

Four briquettes were made by mixing the cement very wet (about 30 per cent. water), and placing in moulds without ramming, then letting them stand with a pressure, of about 3 lbs. per sq. inch for 24 hours. They were then submerged in water until
tested. The results at 7 days old were 393 and 355 , and at 28 days o!d, 613 and 588 lbs. per sq. inch tensile strength.

In the following lots VII., VIII., IX., X., XI., XII, two briquettes were made of each by mixing cement with 20 per cent. of water, and placing in moulds under pressure of 20 ibs. per sq. in. When 24 hours old they were all placed in water and allowed to remain there until they were seven days old, with the exception of 24 hours during this period (as noted opposite each lot), when they were exposed to the action of frost for the length of time denoted. They were all td:t in tension at the end of seven days, as follows:-

LOT VII.
Frozenfor 24 hours after they were 24 hours old, then thawed out and put in water until 7 days old, when they broke in tension under 476 and 590 lbs . per sq. in. respectively.

LOT VIII.

Frozen for 48 hours after they were 48 hours old and then thawed out and put back in water until 7 days old, then tested with these results 505 and 490 lbs . per sq . in. in tension.

$$
1 \quad \text { LOT IX. }
$$

Frozen for 24 hours after they were 3 days old, and then thawed out and placed in water until 7 days old; results of tension test 380 and 460 lbs , per sq. in .

LOT x .
Frozen for 24 hours after they were four days old, and then thawed out and placed in water until seven days old, pesults being 485 and 487 lbs . per sq. in.

LOT XI.

Frozen for 24 hours after they were 5 days old, then thawed out and placed in water for the remaining day, then broken under load of 530 and 410 lbs , per sq. in.

LOT XII.

Frozen for 24 hours after they were 6 days old, and then thawed out and tested; these broke at 465 and 475 lbs . per $\mathrm{sq} . \mathrm{in}$,

In lots XIII., XIV., XV., XVI., XVII., two briquettes were made of each by mixing cement with 20 per cent, of water, and placing in moulds under pressure of 20 lbs , per siq. in. When 24 hours old they were all placed in water. The subsequent treatment of each lot was as follows:-

LOT XIII.
Was frozen in water when 48 hours old, and thawed out when 7 days old by exposing to a temperature of 120° Fah., and then broken in the machine, showing a tensile strength of 454 and 416 lbs. per sq. in.

LOT XIV.
Was frozen in water when 48 hours old, and thawed out when 7 days old by exposing to a temperature of 120° Fah., and then tested; the results being 448 and 417 lbs . per sq. in.

SOT XV.

Was frozen in water when days old, and thawed out when 7 days old, by exposing to $120^{\circ} \mathrm{Fah}$, and tested, the tensile strength being 460 and 405 lbs . per sq. in.

LOT XVL.

Was frozen in water ${ }^{\circ}$ when 4 days old and thawed out when 7 days old by exposing to a temperature of 120° Fah., and then tested, the results being 474 and 486 lbs . per sq. in.

LOT XVII.

Was kept in the water at a temperature of 60° Fah. until seven days old, and then tested, and showed a tensile strength of 590 and 492 lbs . per sq . in.

When the briquettes in Lots XIII., XIV., XV., XVI., were frozen, the temperature ranged between $+32^{\circ}$ to $\mathbf{- 1 4}$ degrees Fah.

LOT XVIII.

Six briquettes were made with 20 per cent. of water moulded under a pressure of 20 lbs . per sq. inch. When 24 hours old they were exposed to the weather and allowed to freeze, and kept frozen until 7 days old. They were not immersed in water at all, but were thawed out by exposing to heat for about 45 minutes, No flaking or chipping of briquettes whatever occurred. The results, when tested at seven days old were, 342, 315, 341, 340, 353. 376 lbs . per sq. inch.

LOT XIX.

Was made similar to Lot XVIII., and was immersed in water when 24 hours old, and taken therefrom when 3 days old, exposed to weather until 28 days old. The results of 28 days test being 297 , $356,268.351,285,406 \mathrm{lbs}$. per sq. inch.

LOT XX.
Five briquettes made same as Lot XVIII., and exposed to the weather when 6 hours old, not placed in water at all, thawed out before testing when 7 days old. The loads were 212, 260, 235, 283, 391 lbs. per sq. inch.

The cement on these briquettes was chipped or flaked off on both sides and edges when exposed to heat-about $-\frac{1}{2}$ of an inch from each face-this would reduce the sectional ares somewhat. The above are the actual loads under which briquettes were broken. LOT XXI.
Six briquettes made similar to Lot XViII. and exposed to the
weather when 12 hours old, and allowed to freeze. They were left exposed until 28 days old, the range of temperature being from -20 to +35 degrees Fah., as per chart. The briquettes broke under the following loads when 28 days old, 327, 322, 300, 317, 303. 247 lbs . per square inch.

As some quantities of steel framing for racks, stop log checks, etc., had to be built into the concrete of the bulkhead, the concrete would act as a protection for the steel embedded in it to a certain extent, and as the expansion: of concrete and steel are nearly the same, it was reckoned they would stand without cracking when once well joined together, but it was desired to protect the exposed portion of the steelwork from-pxidation if possible with some kind of paint or composition to which the mortar of the concrete would adhere, so a few experiments were made to determine whether red oxide or asphaltum paint would be most adhesive in this position and also to determine whether the clean dry steel or rusty plates 4 ould hold to the cement better than the painted surfaces.

The method adopted was to place a plece of $1 / \mathbf{N}^{\prime \prime}$ steel plate one inch square in the centre of the briquette moulds at right angles to the flat surface of same, and the cement which was mixed with 20 per cent. lof water in the usual manner (by hand) was filled into the mould on both sides of the steel plate and rammed against same, care being exercised in this operation so as to keep the plates central.

LOT XXII.

The plates used in this lot were exposed to the weather for a period of fourteen days and were thoroughly rusted, but not correded, before being placed in the moulds.

The briquettes were immersed in water when 24 hours old, then removed after 36 hours, and left in a damp place until seven days old, when they were broken in the testing machine.

Only two briquettes were successfully moulded of this lot, and when tested they broke at 60 and 70 lbs . per qquare inch respectively, the fracture taking place at the junction of the steel plate and cement.

LOT XXIII.

The $1^{\prime \prime} \times 1^{\prime \prime} \times 1 / 8^{\prime \prime}$ steel plates in this lot were clean and smooth when placed in the moulds, and cement tamped in on both sides of same. The briquettes were immersed in water when 26 hours old and left for 24 hours, after which they were removed and placed as to be damp until 7 days old when they were tested with these results, $37,15,40 \mathrm{lbs}$. per sq. inch. All briquettes broke at the plate, the same remaining attached to that part of briquette in the lower Jaw of machine.

LOT XXIV.

The $1^{\prime \prime} \times 1^{\prime \prime} \times 1 / s^{\prime \prime}$ steel plates used in this test were thoroughly cleaned, then heated and while not were painted with asphaltum paint. The plates were allowed to stand for twelve days, then placed in briquette moulds and cement mixed in usual manner and piaced on each side of plate in mould. The briquettes were taken from moulds when 10 hours old and placed in water. After 24 hours in the water they were taken out and placed in a damp place until tested, when 7 days old. The results were: $30,35,22,60 \mathrm{lbs}$. per square inch.

In the first three tests the asphalt pulled off the plate; in the fourth case it adhered to plate in many places.

The average tensile strengths of the briquettes in the tests described above will be found in the accompanying table I.

Two attempts were made to make briquettes with steel plates in them, that had been painted with two coats of red oxide, the first coat being applied 12 days before the second, and they were placed in moulds 10 days after the second coat of paint was applied, but all briqueites broke at p'ate when being removed from the moulds, in the usual manner. It was found that the cement would not adhere at all to the steel when painted with this pigment.

It is regretted that more tests were not made in this direction, as there are several other paints that might have been experimented upon, and as steelwork is being used more and more in connection with concrete dams, bulkheads and other structures of this nature more or less exposed to atmospheric changes, it is to be hoped that in the near future complete data on this subject will be forthcoming.

/ CONCRETE TESTS.

Tests on concrete taken from regular batches on works were made from time to time, as the work progressed, and account was kept of where the batch of each special lot of concrete was being placed together with any other notes that had any special bearing on the work. At the same time, as the concrete was taken, a sample of the cement used was obtained and tested neat and in mortar test, and the results of tests will be found in the table II.

CEMENT.

The most of the concrete work was done with Hemmoor brand of Portland cement, but some of Heidelberg brand was also used, both these were imported. The Canadian cements used were "Star" and "Beaver" brands, and from the results of these tests it will be seen that these latter brands compare very favourably with the imported article.

> SAND.
, The sand used was obtained from a pit within a mile and a half
from the Falls, near Chaudiere Station, and is known as siliceous sand; it was free from loam and of good quality.

The voids in the sand when measured loosely were found to vary from 37 per seent. to 41 per cent., and this was obtained by filling a vessel with the sand and then pouring in enough water to fill the vessel. The amount of water required to fill the voids, multiplied by 100 and divided by the amount of water alose, which the vessel would hold when filled to the same height, gave the percentage of voids in the sand. A better method would have been to have determined the specific gravity of the sand, and from that the weight of a unit of volume of the solid. and also weight of a unit of volume of the sand. The difference between these weights divided by the former would give the proportion of voids.
STONE.

The stone used for the concrete was a mixture of boulders of Laurentian rock and Felosphatic sandstone or Arkose, all broken to pass $2^{\prime \prime}$ ring, in three crushers, two kinds of which were on the works, namely, the Gates gyratory crusher and the Jaw crusher. From the crusher the stone went over a screen, which allowed everything but the dust to pass over same into the stone pile.

The crusher designated as Eagle crusher was a jaw crusher, with the pitman hinged at top and the bottom of same oscillated by means of a toggle plate. The other machine was the reverse of this one, as the pitman was hinged at the bottom and worked at the top with a toggle plate.

The voids in the rammed broken stone, found in a similar way to those in sand, averaged 46 per cent.

proportions.

The proportions used in the concrete for the bulkhead and overflow dams were 1 of cement, 2 of sand and 4 of broken stone. This was adopted after testing a few cubes of 1,2 and 5 , which gave considerably lower results as Table II. will show.

It is necessary in order to guard against lack of uniformity in the aggregate, imperfect mixing, insufficient tamping, etc., to have more mortar than is sufficient to fill the voids in the stone. The usual excess of mortar is from 15 per cent. to $25 \cdot \mathrm{per}$ cent. The method of determining the proportions so as to have this excess of mortar is as follows:-

1st. Assume the proportions 1-2-4, and test the sand and stone for voids.

Say, voids in loose sand $=39$ per cent.
" " " rammed stone $=46$ per cent.
Cement measured in barrel.
Solid material, cement 1; sand, 1.22; stone 2.16.
Voids, cement, 0; sand, 78; stone, 1.84
or 1 cubic foot of cement plus 1.22 cubic feet of sand will give 2.22 cuble feet of mortar to fill 1.84 cubic feet of voids.

Mortar in excess of voids $=20.6$ per cent.
In the above it will be seen that there is 28 per cent. of cement in excess of the voids in the sand, and a possible saving might have been made by using less cement, but as a very rich concrete was desired, this excess of cement was allowed to remain

The percentage of water used in the concrete averaged 20 per cent.
concrete mixing.
When the mixing was done by hand, the cement and sand were mixed dry in the proper proportions of each, and turned over with shovels four or five times, and on damp days, even six times, to thoroughly mix them. Then water was sprinkled on until sufficiently wet, next the mortar was spread out on the mixing platform, and on top of this a bottomless box was placed, which would contain the proper proportion of stone when filled to the level of the top of same. The box was filled with stone, then removed, allowing the stone to remain; the whole mixture was then turned over four stone to remain; the whole mixture was then turned over four times, besides the shovelling into barrow and dumping out into works. The concrete that went in the cube moulds was taken from the batch at the same time as they were placing the material in the wheelbarrow after being turned over four times.

When mixed with the Cockburn \& Barrow mechanical mixer for constructing the bulkhead and wing dam, during the spring of 1900, the cement and sand were first mixed together by turning them over two or three times; then wet. The stone was then dumped on the mortar and the whole batch shovelled into the mixer, through which it ran, dropping out at the lower and into skips, which were dumped where wanted on the work.

Later on, when the Cockburn-Barrow mixer and the Sooysmith miker were used on the main dam, the broken stone was of a very much better size and more easily mixed, the quantity of the sand also improved, so that the method of mixing adopted was as follows :-

A skip holding the proper quantity of stone was dumped on the mixer platform and spread out until about 6 to 8 inches thick. A smaller skip containing two barrels of sand was dumped on the stone and spread evenly over same, then one barrel of cement was spread on the top of the sand. The entire mixture was then shovelled into the mixer, all shovelling being done form the bottom of the pile; the water was added in the mixer. Under no conditions, however, were all the materials mixed together dry on the platform.

A gravity mixer, which consisted of an inclined iron box, having a number of iron pins distributed throughout its length, which caught the falling material and turned it over, and provided with a
water pipe and valve in the upper section for wetting the mass as it was shovelled into it from a platform-was used down in the wheel pit of the power house to mix the 1,2 and 5 concrete, which was used in the arches.

It would have been interesting to compare the results of the strength of the concrete mixed by this mixer and the mechanical mixers. but in all, except one lot of cubes which had been mixed mechanically, the proportions were 1, 2 and 4 . However, the writer is of the opinion that the mechanical mixer will produce the best results, as far as strength of the concrete goes-if the same treatment is accordẹd the concrete after mixing.

Moulds.

The moulds used for making the cubes were $9^{\prime \prime} \times 9^{\prime \prime} \times 9{ }^{\prime \prime}$ deep inside measure.

They were constructed of clear, dry pine, dressed to a thickness of $11 / 2^{\prime \prime}$, and the sides and bottom of the moulds were lined with No. 25° B.W.G. tin plate. The sides were putpogether in the form of two angles, and they were held with four " " bolts, and could bs readily taken apart by loosening the wing nuts on the bolts.

The moulds were cleaned and oiled just before using, as it was found almost impossible to get the cubes out whole in less than three or four days;' without the use of oll.

The concrete was placed in the moulds in $4^{\prime \prime}$ layers, and rammed with regulation railroad tie tamper, being $3 \prime \prime \prime \times 1^{\prime \prime}$ on the face, and the flat portion being four inches long and slightly offset from the $11 /{ }^{\prime \prime}$ ' round bar, which formed the handle at the junction of the fat portion and the round part.

The moulds were filled slightly above the sides and tamped with a cast iron tamper $6^{\prime \prime}$ square on face and weighing 15 lbs . This was, however, used lightly, and in some cases where the concrete was wet it was dispensed with eutirely.

Atter the mortar had flushed to the surface the mould was struck off level with a straight flat iron bar, and the top smoothed over with the back of a shovel.

The moulds with the concrete in them were then placed in a shed and covered with a damp cloth for 24 to 48 hours, when the cubes were removed from the moulds and recovered with the cloth for six days, then exposed to the air until 21 days old, when they were boxed up and shipped by express to the Testing Laboratory of McGill University, Montreal, where they were surfaced off true with plaster of Paris on two opposite faces, which formed the sides in the mould, and stored in the cement laboratory until tested.

The cubes were nearly all tested in the Wicksteed machine after being surfaced with plaster of Paris, and scraped to a surface plate. The Emery machine, which had an ultimate capacity of $150,000 \mathrm{lbs}$., was used for a few of the first cubes made, but the con-
crete proved too strong for it, so all succeeding trials were made in the large machine which had an ultimate capacity of $215,000 \mathrm{lbs}$. This was subsequently increased to $217,500 \mathrm{lbs}$. by the addition of a slight increment on the length of the beam of machine.

The cube which was to be tested, after having the plaster of Paris surfacing previously referred to scraped to a surface plate, was placed on a planed cast iron plate $10^{\prime \prime}$ square by $1 \% 8^{\prime \prime}$ thick; this plate was then placed in the stirrup of the nachine and on the top of the cube was placed a similar planed plate, on this was placed another plate with a spherical bearing, which thus insured an even distribution of pressure over the compressed surface. The whole was brought carefully into the centre of the space where the pressure was to be applied. Then a finely graduated steel scale, divided in inches, tenths of inches and hundreds of inches, was set up beside the cube between the two plates, and resting on the bottom one. A telescope, with cross hairs in it was then mounted opposite the scale, and an incandesfent lamp hung, so as to illuminate the same, and with the aid of this telescope the hundredth of an inch could be split quite readily on the scale. The load was applied gradually and reading taken at every $5,000 \mathrm{lbs}$., atfer reading the scale with $1,000 \mathrm{lbs}$. on, which was called the initial load, and the zero mark on scale being at the reading under this load.

The load was increased at the rate of $5,000 \mathrm{lbs}$, every half minute, approximately, and while this was in progress two assistants scrutinized the exposed faces of the cube to detect the least crack that might develop; as soon as such appeared the person in charge of the record (usually the one who read the scale) was advised of the fact and the time and load noted. In some instances where the specimen appeared to be yielding appreciably under a given load this was not increased as rapidly at the rate just mentioned, and several readings of the increments of compression were taken under the same load.

When the cubes were strong enough to require more than $100,-$ 000 lbs to cause fracture, the load had to be taken off by running the weight on the beam of machine back to zero to put on the counter poise which was equivalent to $100,000 \mathrm{lbs}$. When the load was being removed the scale was read at every $20,000 \mathrm{lbs}$. decrease, and the reading compared with the reading under the same load, when increasing the loads. In some instances the reading wes nearly the same, the material returning to its orizinal state to within a small fraction of the first reading.

As soon as the counter weight was put on, the load was applied gradually again by a valve which controlled the hydraulic pressure, unțil $100,000 \mathrm{lbs}$. were registered on the dial, a reading was then taken and the time noted. The load was then increased $5,000 \mathrm{lbs}$. at a time, until the increments of compression showed signs of ap-
proaching fracture, when the load was increased more gradually and reading taken every half minute until the cube broke down.

In a number of instances the strength of the cubes was beyond tne capacity of the machine, and where the opportunity offered, the cube was left in the machine under the highest pressure obtainable $(215,000$ to 217,500$)$, and the time effect on the compression readings was noted at longer intervals. By examining' the detail report sheets therewith, it will be observed how the compression increases as time goes on.

In explanation of Table II., it may be added that where no eracks developed under the maximum load the compiession given is the last reading taken before removing the cube from the machine, and the time is also the total length of time the cube was under pressure.

A number of cubes were nut tested on the day, that they should have been when 28 days, 3 months and 6 months old, but this was unavoidoble on account of other work in connection with the University, which required the attention of the staff of the testing laboratory.

The writer wishes to acknowledge his indebtedness t, Dr. Heary T. Bovey, for suggestions on this subject during his visits to the McGill Testing Laboratories, in connection with the tests referred to above, and his appreciation of the careful manner in which Mr. F. H. Whittycombe, who is in charge of the testing laboratories, conducted these tests at McGill University.

The writer is also greatly indebted to his principals, Messrs. r. Pringle \& Son, for the privilege of using all of their notes and data, which were obtained by them at considerable expense in the preparation of the foregoing paper.

COMPRESSION TEST OF CONCRETE.
25 A
Cube $91 / 4^{\prime \prime} \times 9^{\prime \prime}$
Weight 6 ! l'js., 13 oz. Made 8th Sept., 1900. Proportion $1-\frac{2}{-2}$ - Beaver cement.

28 days old.
Tested in Wicksteed machine on 6th Oct., 1900.

Load.	Time	Reading.	Remarks
1,000	9.14 .00	.000	
5,000	9.15 .00	.000	
10,000	9.15 .35	.000	
15,000	9.16 .10	.0005	
20,000	9.16 .50	.001	
25,000	9.17 .30	.0015	$.0 c 2$
30,000	9.18 .10	.003	
35,000	9.18 .45	.0035	
40,000	9.19 .20	.004	
45,000	9.19 .55	.0045	
50,000	9.20 .45	.005	
55,000	9.21 .15		

COMPRESSION TEST OF CONCRETE.

25 B. Cube $9 \prime \prime \times 9.1 \times 9.3$.
Made of

Load.	Time
1,000	3.10
5,000	3.11
10,000	3.12
15,000	3.12 .30
20,000	3.13
25,000	3.13 .30
30,000	3.14
35,000	3.16
40,000	3.16
45,000	3.17
50,020	3.18
65,000	3.19
60,000	3.20
65,000	3.21
70,000	3.22

Weight, 62 lbs., 14 oz.
Tested December 1st, 1900.
Reading. Remarks.
.000
000
.001
.002
002
.0025
. 003
.0035
.0035
0040
.0040
.0045
.0045 0050 0050

25 C. Cube $9.15 \times 9.0 \times 8.0 \times 8.9 \times 9.2$ height. Weight, 61 lbs. Made of . 6 months, due Feb. 3, 1901. Tested Feb. 25, 1931.

Load.	Time	Reading.	Remarks.
1,000	12.10	.0000	
5,000	12.11	.000	
10,000	$12.11 / 2$.0025	
15,000	12.12	.0030	
		15	

Load.
20,000
25,000
30,000
35,000
40,000
45,030
50,000
55,000
60,000
65,000
70,000
75,000
80,000
85,000
90,000
95,000
100,000
80,000
60,000
40,000
20,000
5,000
1,000
100,000
105,000
110,000
115,000
120,000
125.000
130,000
135,000
140,000
145,000
150,000
15,000
160,000
165,000
170,000
175,000
180,000
185,000
190,000
195,000
200,000
20,000
210,000
215,000
218,000
218,000
218,000
218,000
218,000
200,000
180,000
160,000

Load.	Time.	Reading.	Remarks.
140,000		4.5	.0180
120,000	4.6	.0168	
100,000	4.7	.0160	
80,000	4.8	.0155	
60,000	4.9	.0150	
40,000	4.10	.0145	
20,000	$4.1-$.0130	
5,000	4.12	.0095	
1,000	4.13	.0080	

COMPRESSION TEST OF CONCRETE.

19 A. Made at Chaudiere Falls, P.Q., on the 17th August, 1900, of 1-2-5 Hemmoor cement in gravity mixer. Cube $9^{\prime \prime} \times 9^{\prime \prime} \times 99^{\prime \prime}$. Tested Sept. 14, 1900, in Wicksteed machine at McGill University Surfaced with plaster of Paris. 28 days old.

Load.	a Time	Reading.	Remarks,
1,000	9.29.00	. 000	Initial load
5,000	9.30 .00	. 001	
10,000	9.30.40	. 002	
15,000	9.31 .05	. 003	
20,000	9.31 .35	. 003	
25,000	9.32.05	. 004	
30,000	9.32.45	. 0045	
35,000	9.33.10	. 005	
40,000	9.33.40	. 0055	
45,000	9.34.10	. 0065	
50,000	9.34.40	. 007	
55,000	9.35 .10	. 0075	
60,(0)	9.35.40	. 008	
65,000	9.36.10	. 009	
70,000	9.36 .35	. 0115	
75,000	9.37 .05	. 012	
85,000	9.38	. 017	
80,000	9.37.45	. 0145	
90,000	9.39 .10	. 020	
90,000	9.39 .20	. 021	
90,000	9.39.30,	. 021	\checkmark
90,000	9.39.60	. 022	First crack.
95,000	9.40 .40	. 027	
95,000	9.40 .40	. 027	
100,000	9.41 .50	. 033	
100,000	9.42.00	. 035	
100,000	9.42.10	. 037	
100,000	9.42 .20	. 039	
100,000	9.42.50	. 042	Cracked on all sides.
100,000	9.43 .05	. 043	
100,000	9.43 .30	. 045	
100,000	9.43.50	. 047	
100,000	9.44 .15	. 049	
105,000	9.45 .20	. 057	
105,000	9.45.40	. 061	
105,000	9.45.45	. 034	
105,000	9.45.50	. 069	
$\begin{aligned} & 105,000 \\ & 105,000 \end{aligned}$	9.45.55	$.073$	Failure.

COMPRESSION TEST OF CONCRETE.

19/B. Cube $8.9^{\prime \prime} \times 9.0^{\prime \prime} \times 9.2^{\prime \prime}$ high. Weight 61 lobero oz. Made of 1-2-5 Hemmoor in gravity mixer.

12 weeks old.
Tested 9th Nov., 1900, in Wicksteed, at McGill University.

19 C. Cube $8.9 \times 9.0 \times 8.9 \times 9.0 \times 9.15 \mathrm{high}$. Weight. $581 / 4 \mathrm{lbs}$
Made of 1-2-5 Hemmoor in gravity mixer.
Tested at McGill University, in Wicksteed machine.
25 weeks and 5 daye old.
Surfaced with plaster of Paris.
Load.
1,000
5,000
10,000
15,000
20,000
25,000
30,000
35,000
40,000
45,000
50,000
55,000
60,000
65,000

Reading.	Remarks,
.000	
.000	
.0015	
.0020	
.0025	
.0035	
.0040	
.0045	
.0050	
.0055	Interruption.
.0070	
.0080	
.0090	
.010	

19.

COMPRESSION TEST OF CONCRETE.

11 C. Cube $9^{\prime \prime} \times 8.8 \times 9.2$
W'eight, $61 \mathrm{lbs}, 2$ oz. weeks old.

Made of 1-2-4 Hemmoor cement, Mixed with Sooysmith Mechanical mixer.

Tested January 21, 1901, in the Wicksteed machine.
25 weeks old.

Load.	Time.	Reading.	Remarks.	
195,000	4.03	.0087		
200,000	4.04	.005		
205,000	4.05	.0100		
210,000	4.06	.0109		
215,000	4.07	.0120		
218,000	4.08	.0130	No	cracks
218,000	4.20	.0140		
200,000	4.22	.0135		
150,000	4.25	.0127		
100,000	4.30	.0117		
50,000	4.33	.0100		
5,000	4.35	.0075		
1,000	4.36	.0070		

COMPRESSION TEST OF CONCRETE.
11 C . Cube $9^{\prime \prime} \times 8.8^{\prime \prime} \times 9^{\prime \prime} \times 8.8 \times 9.2$. Weight, $61 \mathrm{lbs}, 2 \mathrm{oz}$.
Made of 1-2-4 Hemmoor cement. Mixed with Sooysmith mechanical mixer.
Tested January 21 , 1901, in the Wicksted machine.
25 weeks old.

Load.	Time	Reading.	Remarks.
1,000	3.10	.000	
5,000	3.11	.0005	
10,000	3.12	.001	
15,000	3.13	.0015	
20,000	3.14	.0018	
25,000	3.15	.002	
30,000	3.16	.002	
35,000	3.17	.0025	
40,000	3.18	.0025	
45,000	3.19	.0027	
50,000	3.20	.0027	
55,000	3.21	.0027	
60,000	3.22	.0027	
65,000	3.23	.0029	
70,000	3.24	.0031	
75,000	3.25	.0031	
80,000	3.26	.0033	
85,000	3.27	.0033	
90,000	3.28	.0035	
95,000	3.29	.0035	
100,000	3.30	.0037	
80,000	3.31 .30	.0033	
60,000	3.33	.0030	
40,000	3.34 .30	.0027	
20,000	3.36	.0025	
5,000	3.37	.0020	
1,000	3.39	.0010	
100,000	3.44	.0037	
105,000	3.45	.0038	

22

COMPRESSION TEST OF CONCRETE.
11 B, Cube $9.2 \times 9.1 \times 9.05 \times 9.10 \times 9.05$. Weight, $6 \mathrm{lbs}, 1 \mathrm{oz}$.
Made of 1-2-4 Hemmoor cement. Mixed with Sooysmith mechanical mixer:
Tested October 24, 1900, in the Wicksteed machine. 12 weeks, 2 days old.

COMPRESSION TEST OF CONCRE'TE

11 A . Cube $9^{\prime \prime} \times 9^{\prime \prime} \times 9^{\prime \prime}$.
Weight, $611 / 4$ lbs.
Made of 1-2-4 Hemmoor cement. Surfaced with plaster of Paris. Tested 29th August, 1900, in Wicksteed machine.

29 days old.

Cube perfectly sound after the whole experiment, and could not break it.

COMPRESSION TEST OF CONCRETE.
27 A. Cube $9.3^{\prime \prime} \times 8.7^{\prime \prime} \times 9.1^{\prime \prime}$
Weight, $63 \mathrm{lbs} ., 3 \mathrm{oz}$.
Made of 1-2-5 Star brand cement, mixed in gravity mixer. Tested 25th October, 1900, at McGill University, in Wicksteed machine.

Load.	Time.	Reading.	Remarks.
1,000		.000	
5,000	3.19	.001	
10,000	3.19 .5	.002	
15,000	3.20	.0025	
20,000	3.20 .5	.003	
25,000	3.21	.004	
30,000	3.21 .5	.005	
35,000	3.22	.0055	
40,000	3.22 .5	.006	
45,000	3.23	.0065	
50,000	3.23 .5	.0070	
55,000	3.24	.0085	
60,000	3.24 .5	.010	
65,000	3.25	.012	
70,000	3.25 .5	.015	
75,000	3.26	.020	
80,000	3.26 .5	.026	
80,000	3.27	.034	
80,000	3.28	.035	
80,000	3.29	.038	Cracks
80,000	3.30	.040	developing.
80,000	3.31	.041	
80,000	3.32	.042	
80,000	3.33	.042	
85,000	3.34	.045	
85,000	3.35	.046	

COMPRESSION TEST ρF CONCRETE.

27 B . Cube $8.8^{\prime \prime} 9.0$ and $8.85 \times 9.0 \times 9.2$ high. Weight, 60 lbs .13 oz . Made of 1-2-5 Star brand cement in gravity mixer. Tested December 20, 1900, in Wicksteed machine.

12 weeks old.

Load.
65,000
70,000
75,000
80,000
85,000
90,000
95,000
100,000
80,000
60,000
40,000
20,000
1,000
100,000
105,000
110,000
110,000
115,000
120,000
125,000
130,000
135,000
140,000
145,000
145,000
145,000
145,000
145,000
145,000
145,000
145,000
145,000
145,000
150,000
150,000 150,000 150,000 150,000 150,000 $150,0: 0$ 150,000 150,000 150,000 150,000 150,000 150,000 150,000 150,000 150,000 150,000 150,000 150,000 150,000 150,000 150,000 150,000

Dec. $21 \begin{aligned} & \text { Load. } \\ & 150,000\end{aligned}$	$\begin{gathered} \text { Time. } \\ \mathbf{9 . 0} \end{gathered}$	Reading. a.m. . 0925	k Remarks.	
150,000	10.0	a.m. . 0930		
150,000	11.0	. 0940		
150,000	12.0	. 0345		
150.000	1.0	. 0948	Badly broken surfaces.	up on
155,000	2.2	. 0960		
160,000	2.3	. 0970		
165,000	2.4	. 0975		
170,000	2.5	. 0978		
175,000	2.6	. 0950		
180,000	2.7		Failed suddenly.	

COMPRESSION TEST OF CONCRETE.

27 C. Cube $8.9 \times 8.9 \times 8.95 \times 8.6 \times 9.2^{\prime \prime}$ high. Weight. $581 / 2 \mathrm{lbs}$. Made of 125 Star Brand Cement in gravity mixer. Tested March 14. 1901.

Load.	Time.	Reading.		Remarks.
1,000	12.7	.000		
5,000	12.9	.001		
10,000	12.10	.0015		
15,000	12.10 .30	.002		
20,000	12.11	.0027		
25,000	12.11 .30	.0033		
30,000	12.12	.004		
35,000	12.13	.0045		
40,000	12.13 .30	.0048		
45,000	12.14	.0052		
50,000	12.14 .30	.0055		
55,000	12.15	.0057		
60,000	12.15 .30	.006		
65,000	12.16	.0062		
70,000	12.16 .30	.0065		
75,000	12.17	.0070		
80,000	12.17 .30	.0076		
85,000	12.18	.0083		
90,000	12.19	.0090		
95,000	12.19 .30	.0108		
100,000	12.20 .30	.0115	No	
80,000	12.23	.0110		
60,000	12.24	.0100		
40,000	12.25	.009		
20.000	12.26	.008		
5,000	12.27	.007		
1,000	12.28	.005		
5,000	12.31	.0095		
20,000	12.32	.0060		
40,000	12.33	.0075		
60,000	12.34	.0090		
80,000	12.35	.0110		
100,000	12.36	.0120		
105,000	12.37	.0133		
110,000	12.38	.0140		
115,000	12.39	.0145		
120,000	12.40	.0150		

TABLE I.
Average Tensile Strexgths of Briquettes in Lots I to XXIV.
Briquettes $1^{\prime \prime} \times l^{\prime \prime}$.

$\underset{\substack{\text { Lot } \\ \text { Numper. }}}{ }$				A yerage Tensiie Strength lbs. per sq. in.		Remarks.
				7 days.	28 days.	
I.	4		\ldots	217	391	Not rammed in moulds.
II.	4			167	340	" " " "
III.	4			222	256	A bsorption test.
IV.	4	20	730	727	Tamped into moulds with 1 lb . hammer.
V.	4	20		30	44	No tamping whatever.
VI.	4	30	3	374	600	
VII.	2	20	20	534		Frozen for 24 hrs , when 24 hrs. old.
VIII.	2	20	20	497		Frozen for 48 hrs , when 48 hrs . old.
X.	2	20	20	420		Frozen for 24 hrs. when 3 days old.
X.	2	20	20	486		rozen for 24 hrs , when 4 days old.
	2	20	20	470		Frozen for 24 hrs. when 5 days old.
XII.	2	20	20	470		Frozen for 24 hrs. when 6 days old.
XIII.	2	20	20	435		Frozen in water when 24 hrs old until 7 days old.
¢1	2	20	20	432		Frozen in water when 48 hrs. old untıl 7 days old.
X	2	20	20	432	Vrozen in water when 3 days old until 7 days old
XVI.	2	20	20	460		Frozen in water when 4 days old until 7 days old.
X	2	20	20	541		Kept in water at 60 F . until 7 days old.
XVIII.	6	20	20	344		Exposed to weather for 7 days when 24 hrs . old.
XIX.	6	20	20		327	Exposed to weather for 28 days when 3 days old.
XX .	5	20	20	256		Freezing test after 6 hre. old.
XXI.	6	20	20		302	Freezing test after 12 hrs . old.
XXII.	2	20		67		Plates rusted.
XXIII.	3	20		30		Plates clean and smooth.
XXIV.	4	20		42		Plates painted with asnhaltnm naint.

OATA AND REsULTS of PHYSICAL TEsTS made on ine neat cement, cement mortar and concrete used in the Constuction of ha Bulhhead. Main dam, wing dam and anches in owen House at chaunimes wall, Que, Jor the of the regular balches of concrele being placed in the works. Plans and specifications prepared by.and

4

