CIHM Microfiche Series (Monographs)

> ICMH
> Collection de microfiches (monographies)

Canadian Institute for Historical Microreproductions / Institut canadien de microreproductions historiques

Technical and Bibliographic Notes / Notes techniques et bibliographiques

The Institute has attempted to nbtain the best original copy available for filming. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of filming are checked below.

Coloured covers /
Couverture de couleur

Covers damaged /
Couverture endommagée

Covers restored and/or laminated /
Couverture restaurée etlou pelliculée
Cover title missing / Le titre de couverture manque
Coloured maps / Cartes géographiques en couleur
Coloured ink (i.e. other than blue or black) /
Encre de couleur (i.e. autre que bleue ou noire)

Coloured plates and/or illustrations /
Planches et/ou illustrations en couleurBound with other material /
Relié avec d'autres documents
Only edition available /
Seule édition disponibleTight binting may cause shadows or distortion along interior margin / La reliure serrée peut causer de l'ombre ou de la distorsion le long de la marge intérieure.

Blank leaves added during restorations may appear within the text. Whenever possible, these have been omitted from filming / II se peut que certaines pages blanches ajoutées lors d'une restauration apparaissent dars le texte, mais, lorsque cela était possible, ces pages n'ont pas été filmées.Additional comments /
Commentaires supplémentaires:

L'Institut a microfilmé le meilleur exemplaire qu'il lui a été possible de se procurer. Les détails de cet exemplaire qui sont peut-étre uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de filmage sont indiqués ci-dessous.Coloured pages / Pages de couleur
\square Pages damaged / Pages endommagées
Pages restored and/or laminated /
Pages restaurées et/ou pelliculées
Pages discoloured, stained or foxed /
Pages décolorées, tachetées ou piquées
Pages detached / Pages détachées

Showthrough / Transparence

Quality of print varies /
Qualité inégale de l'impressionIncludes supplementary material /
Comprend du matériel supplémentaire
Pages wholly or partially obscured by errata slips, tissues, etc., have been refilmed to ensure the best possible image / Les pages totalement ou partiellement obscurcies par un feuillet d'errata, une pelure, etc., ont été filmées à nouveau de façon à obtenir la meilleure image possible.

Opposing pages with varying colouration or discolourations are filmed twice to ensure the best possible image / Les pages s'opposant ayant des colorations variables ou des décolorations sont filmées deux fois afin d'obtenir la meilleure image possible.

This Item is filmed at the reduction ratio checked below / Ce document est fiimé au taux de réduction indiqué ci-dessous.

The copy filmad here has been reproduced thanks to the generosity of:

National Library of Canada

Tha images appearing here are the best quality possible considering tha condltion and legibility of tha original copy and In keaping with the filming contract specifications.

Original copias in printed paper covers are fllmad beginning with the front cover and anding on tha last paga with a printed or illustrated impres. sion, or tha back cover whan appropriate. All othar original copias are filmed beginning on tha flrst pega with a printed or illustratad impression, and ending on the last paga witho printed or illustratad impression.

Tha last recorded trame on each microtiche shall contain the symbol \rightarrow (meaning "CON. TINUED"), or the symbol ∇ (meaning "END"). whichever applies.

Maps, plates, charts, atc., may be filmed at different reduction ratios. Thosa too large to be entirely included in one exposura ara filmed beginning in the upper left hand corner, left to right and rop to bottom. as many frames as required. The following diagrams illustrate the method:

L'examplaira filmd fut reproduit grace à la générosité de:

Bibliothèque nationale du Canada

Las images suivantes ont fid reproduites avec le plus grand soin, compre senu de la condition ei de la nettate de l'exemplaire filmd, er en conformité avec les conditions du contrat de filmage.

Las exemplaires originaux doni la couverture en papiar ast imprimée sont filmbs on commençant par la pramiar plat ot an terminant soit par la darnidre page qui comporte une empreinte d'impression ou d'illustration, soit par le second plat, salon le cas. Tous les autres exemplaires originaux sont filmés en commençant par la pramiéra paga qui comporte una empreinie d'imprassion ou d'illusiration et en perminant par la darniere paga qui comporte une relle ampreinte.

Un des symbolas suivants apparairra sur la dernidre image de chaque microfiche, selon le cas: le symbole — signifie "A SUIVRE". le symbole ∇ signifie "FIN".

Les cartes. planches, rableaux. otc.. peuvent ötre tilmés à des taux de réduction différents. Lorsque la document est trop grand pour ètre raproduit en un seul cliché. il est filmé à partir de l'angle supérieur gauche, de gauche à droite. et de haut on bas, en prenant le nombre d'images nécessaire. Les diagrammes suivants illustrant la móthode.

V.inversity of Coronto studes Bological Errice

THE NORTH AMERICAN DRAGONVLJES
(iEVIG MESHNA

THE NORTH AMERICAN DRAGONFLIES

 OF THE
GENUS AESHNA

BY
E. M. WALKER, B.A., IM.B.
lecturer :n zonlogy in the university of toronto

UNIVERSITY OF TURONTO LIBRARY MCMXII

PREFATORY NOTE.

It gives me great pleasure to state as preface to the present monograph of the North American Dragonflies of the Genus Aeshna, that the cost of the admirable plates illustrating it, which might have proved a difficulty in the way of its being issued by the Committet on University Studies, has been generously met by Sir Edmund Walker, Chairman of the Board of Governors of the University.
R. Ramsay Wright.

BIOLOGICAL SPRIES NO. 11

Errata.

Page 72, line 2, for "septeatrionnlis" read "septeritrionalis."
Page 99, insert the following paragraphs after the one on Measurements :
Material detormaned-8 $\boldsymbol{o}^{2} 129$. Nova Scotia: Pictou, Sept. 1, 1889 (Sheraton, Acad. A. S. lhit, I 8). Jugraci Anticontl Island, 1gos (Dr. Joweph Schmidt, Coll. Div. Vinl., Oltawa, I O). Ontaulo, DeGramal Point, Lake Sincoe, Sept. d, igob (Walker, 1 8): Temagami Furent Reserve, near Lake Obubika, Sept. 11, 1908 (Walker, 10 ${ }^{\circ}$): Nipigon, Aux. 28, 30, 190% Aug. 6, 1910 (Walker, $+0^{7} 6$). Micuican: Isle Koyale, Auk. 8-16, 1905 (B. F. Savery and C. C. I'lani, Coll. Univ. Mich. and Williamson, $3 \mathrm{~d}^{\circ}$ a 9) Manitura, Winnipes, Sepa. z, 1910 (J. B. Wallis, 1 8).

Page 205, umit ifth reference : Igory. The Insects of New Jersey Odonata.

TABLE OF CONTENTS

l'ars:
INTRODLCTION 1
Purpone and scope of Paper 1
Sources of Material and . Acknowiedgments 1
Field Obsehvations 3
THE NAME AESHNA 3
IHE: GENUS AESIINA 4
Taxonomy 4
Cencric Characters of the Adult j
Generic Characters of the Nymph b
Secondary Sexual Ch.iracters 13
Characters of Specific Value and Terminolugy: 7
1 mago 7
Colour-pattern 8
Genitalia 10
(a) Accessory Genitalia of Male 10
(b) Cenitalia of Femble 12
Nymph 13
Measurements and Ablreviations 14
Genetic Relationahips of the ficnu- Aechna 15
The Subfamily Aeshninit 15
The Aeshna Croup -
firiations 25
Climatic Variations. 9
Colour Variation of Fermales 34
Geographical Races... 29
General l.jfe History 30
Season of Imiginal life 30
l.ength of Inasinal life 31
Habitat : 11
Influence of Weather (m (ition: i. 1
Migrations 3
Seasonal Variation in Number of lmbividuals 1.1
Food 3.5
Enemies. 36
Mating Habits $3 \times$
Copulatory Position 39
Comparison of Copulator! Pusition witl that of Other Odonata 41page
Oviposition 42
The Egg 46
Probable Number of Nymphal Stages 46
Changes at the Various Ecdyses. 47
Length of Nymphal Life 49
Habitat of Nympl 50
Habits of Nymph 51
Symbiosis of Nymph and cireen Alga 53
Emergence of the Imagn 54
IHE NORTH ANERICAN SIPCIES OF AESHNA 56
General Characteristics 56
Key to the North American mpecies of Aeshna-Adults I-Males. 37
I-Female: 02
Key to the Nymph-ur 才ukill tmikh an theties or Aeshna bis
The Caertlea Grol'r. 64
The Juncfa Gruly ty
The Clepsydra Grol'r 69
The Clanea Cirut p 70
The Californica 万rut 71
The Allificulok Gritp 71
Descriptions of Specie: 72
Aeshna caerulea reptemtriunahis 72
Aeshna sitchensis. 7
Aeshna juncea 83
subactica 93
interrupta 100
". . interrupta 103
.. ." nevalensis 111
.. -. line.nt.. 112
internis 116
. crenita 110
" clepsyidra 129

- canadensis. 13i
". verticalis. 145
-. tuberculiter.a 15%
- palmat.s $1: 3$
indelorent 165°
.. \quad - mubrusa 165
- ocridentalis 1:4
cunstricte 17
californicat IS 1
multicolor 190
mutata 195
LITERATURE CITEI 203

THE NORTH AMERICAN DRAGONFLIES OF THE GENUS AESHNA.

Introduction.

Purpose and scope of paper-1)uring the summer of 1906 while spending the latter part of the season at De Grassi l'oint, Lake Simecu, Ontario, 1 became interested in the large dragonflies of the genus Aeshna Fab. by reason of their great abundance that year. Rough observations in the field seemed to point to the existence of more species than were recognized in any of the writings on the Odonata of eastern North America and the published descriptions of our species of this gemus impressed me in nearly every case as being more or less vague or superficial. Correspondence with the eminent Odonatist, Mr. E. B. Williamson, elicited the fact that his observations on Aeshna in Indiana and northern Ontario corresponderl closely with my own, and it seemed evident that the genus was in need of thorough revision. Accordingly, on Mr. Williamson's suggestion, I undertook o make a careful study of this neglected group with the aim of placing our systematic knowledge of the North American species upon a sound basis and obtaining as much information as possible relating to their life histories, ecology, seasonal and geographical distribution. Only the species which have been found north of Mexico are considered here, as the Mexican and Central Amcrican forms have already been ably dealt with by Calvert (Od. B.C.A., 1905).

Sources of material and acknowiedgements-During the four fears in which 1 have been engaged in this study 1 have examined most of the larger collections in North America, as well as a considerable number of specimens received from collectors not specially interested in the Odonata, and 1 take pleasure in expressing publicly my deep gratitude to all those who have thus assisted me in what would otherwise have been a very incomplete piece of work. Especial thanks are due to Mr. E. B. Williamson and Professor P. P. Calvert,

2 Nalker: North Amerlean Spleci: of Aeshna

who have been ever ready with helpful suggestions and encouragement and most generous in the loan of material. The entire collection of North American Aeshnae lelonging to the former, probably the largest in existence, has been in my hathds sine the work was commeneed. Other large collections which were in my possemion for a considerable period of time are those of the l'nited States National Museum, for which I have to thimk Ir. L. O. Itoward and Mr. R. P. Currie, and that of Wiss Wattie $W_{\text {adsworth, to whom } 1 \text { an also }}$ much indebed. The total mumber of specimens examined was abent 1720.

The following is a list of the sources of the material studied, in addition to that in my own collection, together with the names of those to whose kindness I owe the privilege of examining it:

The Enited tates National Wusemm, Washington, 1).(. (I)r. L. O. Iloward and Mr. R. P Curric.)

The Itusem: of Comparative Zoology, Cambridge, Mas: (Mr. Sammel Henshaw.)
The British Mhseum, Lomdon. (Mr. (3, N. Waldo.)
The . Ca ai:my of Natural Sciences of I'hiladelphia. (1'rof. I'. I'. Cilvert.)
The Boston suctety of Natural History. Mr. C. II. Johnsto...)

The l'ublic Museum of Milwatere. (Mr. R. A. Muttkowski.)
The V'mersity of Michigan. (1)r. C. (\because. . Dams.)
The I'rovinctial Nusem of Ontario. The late Dr. IIn. Brotic.)
Nase the private collerioms of Mr. E. B3. Williamson, Bhofton, Indiana; l'rof. I'. P'. Calvert. Philadelphia; and Miss Shatie. Wiadsworth, Hallowedl, Me: and mancrous speci-
 whom I am aloo indebted for valuable fiedd-notes, and colour *ketches): J. B. Wallis, Wimnipeg; Norman Criddle, Aweme, Man.; T. N. Willing, Regina; A. (i. Ihutsman, Toronto; R. (: Osburn, New York; l'rof. J. (i. Needham, Ithaca,入. Y.: E. I: Cowdry, Waterford, Ont.; the late Dr. James Fletcher of Ottawa; Mr. K. J. Morton, Eilinhergh, from whom I
received a fine series of British specimens of Aeshna juncea; and Dr. l'. Ris, Rncinau, Switzerland, who furnished me with nymphs and exuriae of the same species.

Field observations-1n addition to the knowledge gained from the study of this material I have becn able to onserve in the field most of the eastern species herein described and in such cases descriptive notes on the coiour-pattern and, wherever possible, coloured drawings have been made from the fresh material. Of nearly all the species that I have not seen in life 1 have examined recently captured specimens preserved in strong alcohol, in which the colours are retained practically unaltered for a consitcrable length of time.

In regard to the carlier stages 1 have not been very successful in my efforts to obtain and rear the mature nymphs, and it was only ly persistent effort and the help of others that a considerable series of nymphs and cxuriae representing eleven species has been accumulated. Although it is impossible to prove that these nymphs which have not been reared belong to the species to which they have been reforred, I an confident that there is very little pmisibility of error in any of $m y$ determinations.

Much kind assistance has also been rendered to the in the work of collecting the imagines by Mr. Paul l!alne and in collerting and rearing the nymiphs by Mr. A. R. Cooper.

THE NAME: AESHNA.

The name Acshna, formerly coextensive with the modern family Aeshnidac, was given to these insects by Fibricius in 1775 (Syst. Ent., p. +2.4), but was afterwards changed t.m Acschna by the editors of " llliger's Magazin für Inselatenkunde" (Bel.1, S. 126, 1822). In this form it was uniworsally quoted until Cahert, in 1905, restored the orginal spelling, in which he has beon generaliy followed by Amer an but not by European writers. \iarious attempts have leen made to interpret this word. The first suggestion is found in "Illiger's Magazin" (loc.cil.) as follows:
"Aeschna, ae (nicht Aeshiza) f. Schmaljungfer vielleicht Aeschyna von aioqúı η. Schamhaftigkeit, nach der

Aehnlichkeit mit Jungfer? In Charleton, Exercitatt. de differentiis et nominib. animal., Oxon. 1677, kommt aox. als Name eines Insekts vor."

Williamson (Drag. Ind., p. 303, 1899) regarded the word as probably derived from aia $\chi^{\text {oos, " ugly," but recently the }}$ sime writer has communicated to me a suggestion made by Mr. R. J. Tillyard that the original spelling was a printer's error for Aerhma (aiरнй, " a spear," in allusion to the long slender form of the boty). As, however, it is impossible to decide the question of the meaning of this word with any approach to certainty it is unfortunately necessary to fall back upon the original spelling, for although "Aeshma" is impossible as a Greek word, "Aeschna," in spite of its better appearance, is also meaningless and impossible to derive from any Greek word without making allowance for errors. This is the more unfortunate as the composites of Aeshna must all retain the emended form in which they originally appeared (Basiaeschna, etc.).

THE GENUS AESHNA.

Taxonomy

The genus deshna is here considered in its narrowest sense :ant the species separated from it by Williamson ('03) under the name Coryphaeschna have not been included, although this group of forms has not been generally recognized as having generic rank. It is true that the characters, taken singly, which separate Coryphaeschna from Aeshna, sensui stricto, are seemingly slight ant that some species, now referred to the latter genus, are in some respects intermediate between these two types; nevertheless the points of difference between such forms as Coryphaeschna ingens and deshnu juncec are aumerous, and, taken together, fully deserving of generic raıı, according to the usual conception of a genus as held by modern entomologists. A number of apparently slight differences, difficult of definition, may be of greater phylogenetic significance than a few easily definable ones. Thus any typical species of Aeshna may be readily
separated from Oplonaeschna by the unforked radia! sector, while the distinctions between the former and Coryphaeschna are much less easily defined (vide llilliamson, loc. cit.). V'et apart from this one character, which is really a very slight one, Oplonaeschna is a typical A. hna, while Coryphaeschna differs from the latter in many points, small individually but together giving the group a distinct halitus of its own.

It must be admitted, however, that the separation of Coryphaeschna as a genus may necessitate further subdivision of the genus Aeshna asdefined at present. but it is not improbable that this would be an advantage, as the numerous species which the latter now embraces are not all obviously nearly related forms and possibly represent several distinct lines of descent.

The genus Aeshnu as understood here may be characterized as follows :

Generic characters of the adult-Eyes contiguous for a distance not greater than the dorsal length of the frons and frontal vesicle combined; irons not unusually produced in advance of the eyes, the face more or less convex in profile view; wings moderately broad, the base of the hind wing and the anal loop well developed; males with an anal triangle and the postero-anal margin of the hind wing angulate; membranule of hind wing extending along the anal margin for a distance equal to or greater than the distance along which it extends on the postcosta; Lioper piece of arculus equal to or longer than the lower piece; median space free; subcosta not prolonged beyond the nodus, pterostigma distinctly braced; ${ }^{1}$ triangles typically with two hasal cells, inner side of triangle of hind wing at least half as lcng as the outer side; radial sector forking more or less unsymmetrically a short distance before the pterostigma or at the level of its proximal end, the posterior branch generally continuing the direction of the main stem more nearly than the anterior branch, two to four rows of cells (generally three in North American species) between the forks at the level of the distal end of the pterostigma, increasing at the margin; radial sup-

[^0]phenemt mete or lean simate, divergime fom the ralial sedor

Ginerid dartaters of the nemph lite promsinest, the

 of rarely lhmely angl:atte: proberion marsin of head straight or tighty excarate. Mentum of labinns reathing lack: t: the hase of the midelle legs, the lateral boless generallys but not alwas, equardy trmente, the ir hime margins minuteIs and fechly cremulate, the terminal hook minute or orcasionHy abeent. Wing-cares in full-grown nemphs usually taching late to the hase or apes of sement 4 , sometimes wer a part of segment 5 showing the carve of Rs toware the enterior margin and its matimemetrical apical fork, and the radial and merlian anplemento chring toward the posterior :nargin: abtome 11 breateat at segment or or without dorsal nooks, lateral pines typically present on segments 6 to 9.
 in ohters they are ditinetle developednotsegmente 5:09 Suprior appendige a limle shorer than the inferior appendiaper, herply exavated at apex.

 are fromed in the temate pemitali. the dank markitase of the tate, the theme ic colomeprittern and to a ters evtent that of the ablemorn. In partionar aben wher charatern are

 whation fealimes. fork of the radi.ll actor and the origith of Xh .
 in the form of the labium, equedally of it- lateral indes. the - 1 phomed proceste of the prothorss. the lepgth of the 1.1t, at - pimes of the ablomen, the sion of the female geni
 atul the colow-patiern.

In the dereptions af luth imagoes athe nemphe I have

.1. Imase The prencular band is the hack owitar margin of the trons amd nasta, which i- broule: abose
 natowing a it proce wintral , llong the -ide- wi the from

 limit: of 1 siun - frecto

The stude of these ilmete in harge er rico itemomstrates
 h.I- its charaterintic colour-pathert, which hatally varien hat bow shighty, it exception be mate of the wide vartation in

 oritied as "amt humesal -trifes." The wron lateral thoracic hund is wey in deathing tho whigue lomeral bonde or pate
 be well desoribed a "hind," When ohher palde bean occur on the wide at the thatax the are men induded in the term.
(b) Ablonat Fxath the tirat alnhominal agmenta on which there i- me.als alway a derab ond gemerally a lateral

segments in any uproies of deshan al gute olwious; and as in all the sw cie the pale areas of corropmoling acgments are homoley us theseme terms are applicille to these areas - n esery (:i-s.

 to toxt figate i. Whicot aise dorsal athl lateral views of segments i in +11 the litale of Jeshma jatient It will be
 lateral series, and eillt of the s-rion into antorion, middle

MI., I'\&). NO is always small and ofien absent in 天orth Anmericas species, and except for the salie of uniformity in the terminology need not have reedied a special term. WD
and PD are paired, the former generally small and yellowish or greenish and represented on segments 2 to 7 or 8 , the latter large and typically blue, and nearly always present on all the segments. PD or PD + PL is the "apical spot" of Hagen. Of the lateral spots, all of which are typically blue, AI, and ML are partly or wholly separated by the transverse carina and together form the "lateral divided basal spot" of Hagen. They are generally represented on segments 2 to 8 . AL gradually decreasing in size caudad to a mere dot on 8 , while ML increases to 6 or $\%$ becoming amaller again on 8 . On segment 2, AL and ML are almost always united, forming a single spot AML. PL, which is generally small and frequently a mere ventral offishoot of PD, is the most variable in development of all the spots. It always decreases in size caudad and is often represented on only a few of the anterior segments. In females, PL and ML are usually confluent on segment 2, and occasionally, in both sexes, also on segment 3 .
2. The genitalia. (a). The accessory genitalia of the male-.These are lodged in a deep median groove or pocket, the genital fossa, on the ventral side of segment 2 , bounded laterally by the tergal margins, which are more or less approximated behind but divergent rephalad in the region occupied by the anterior hamuli and anterior lamina. The vesicle of the penis is a sar with chitinous walls lying at the posterior end of the genical fossa and attaihed by its broad posterior end to the front of the sternum of segment 3. Arising from the dorsal surface of the vesicle, at its distal end, is the penis, a three-jointed chitinous tube whose lumen is continuous with that of the vesicle. The first joint is the longest and is bent upon itself, the proximal limb being directed dorsad, the distal limb ventrad. The second joint is directed ventrad and caudad and has a longitudinal slitlike aperture on its convex surface, communicating with the lumen of the penis. The third joint consists of a small strongly chitinized piece, and two large fleshy distal lateral lobes, which are complexly folded and lie in a marked depression in the wall of the vesicle at its anterior end. When not in use the bent penis is protected by the shealh of the penis.
a concave chitinous process arising from the floor of the genital fosea; and on each side of the sheath, generally concealed by the overlapping tergal margins, is one of the posterior hamuli, two simple chitinous processes of the walis of the genital fossa bearing upon their apices a number of long hairs.

In front of the posterior hamuli, and in some species (none North American) partly concealed by the hairs of the latter, are the much larger and more complicated anterior hamuli. Each anterior hamulus consists of a broad, somewhat triangular thickening of the wa!l of the getital fossa and a folded, strongly chitinized mesially concave prucess, arising from its sloping mesial surface. The two concave processes of npposite hamuli form a pair of claspers for the ovipositor during copulation and their efficiency as such is increased by the presence, in each roncavity, of a small elevation thickly covered with spinules, (fig. 2, t). For descriptive purposes each clasper may be divided into two parts, the hamular process and the hamular fold. The hamular process (fig. 2, hp) is a freely projecting structure, the most anteriorly and ventrally situated part of the clasper. The two processes together form the floor of the passage for the ovipositor. The hamular folds (fig. 2, hf), so called from their fulded form, are the more posterior and dorsal part of the clasper and close the passage above and behind. Generally the hamular process and fold are not sharply marked off from one another, the free margin of the one passing insensibly into that of the other; but in some cases the

A

B

Fiv. 3 -Anterior lamina and anterior t.amuli of (A) Arshna iwterrupe Walk. 4B) de jwnora L: al anterior lamina; to tergal margin of ecgment a; sp spine of anterior lamina ; $\quad \beta$ 'lamula procesa : i epinules tubercle ; \& Gasal part of hanulun: $4 f$ hamular fodl.

12 Whakir: Nobtil Imerican Sifegen of Aeshma

hamular procests ass:mbe highty specialized forms and become parify it entirely sparate from the folds, which are in such cates more or lise teduced (ifig. 2, 13). Both of these - cructures differ greaty in form in different species and are of great systematic importance.

Immediately in froni of the anterior hamuli is the an-
 the midule line, the eleft forming the anterior termination of the genital fossa. The anterior lamina bears on each side at or near the margin a more or less acute process, the spine of the anterior lemina ($s p$), which is clirected more or less camdard and either ventrad or dorsad according to the species. In form and size it exhibits great variation within the limits of the gellus, but offers excellent group and sometimes specific characters.
(b). The genitalia of the female-These ant situated on the central side of segment 9 . Voder this term are included the onipasitor, genital valves, styli and lateral genital plates

(fig. 3). The ovipositor (oci) is attached to the apex of segment 8 and consists of a pair of somewhat falciform processes, concave internally and fitting together to form a laterally compressed tube. Each process consists of an upper and a lower piece fitting closely together along their aljacent margins and sharply pointed at their distal extremities. The outer surface of the upper piece, at the apex, is marked by a serics of fine transwerse ridges like a file, while the lower piece is quite smooth. At the base of the lower piece is a short broad transverse plate, the basal plate of the ovipositor $(b p)$. When not in use the ovipositor is largely concealed by the genitatalaes (gv), a pair of broad thinchitinous plates, attached to the whole length of segment 9 under cover of the tergal margins. At the hase, the genital values are widely separated, leaving part of the ovipositor exposed, but beyond a point somewhat before the middle they are attingent and form a complete protective sheath for the apical part of the ovipositor. Each valve generally exhibits rlistinct lateral and ventral surfaces separated by a lateral carina which terminates at the apex of the valve. Dorsal to the apices the valves are produced caudad and dorsad into a beak-like process, which fits into a depression on the sternum of segment 10 and serves as a sheath for the apex of the ovipositor. Articulating with the lateral surface of each genital val.e, a lit tle dorsad of the apices, are the styli(st), or valvular processes, a pair of short one-jointed cylindricai processes, eath bearing an apical pencil of thairs. The lateyal genital plates ((p) are a pair of small folds not present in all species, occupting the proximal part of the space between the tergal margins and the genital valves. They perhaps give alditional support to the latter.
B. Nymph-The only terms that require special mention are those used in describing certain scar-like impressions and spots which are present in all Aesha nymphs. The lateral scars are a series of pairs of smooth areas on each side of the abdomen, parallel to the lateral margin. The ventral scars are two series of similar areas on the ventral surface. The dorsal punctae consist of a number of groups of impressed dots and transverse sireaks arranged in a median

14 Walker: North American Species of Aeshna

dorsal series, there being two pairs on nearly every segment. The lateral punctue are a series of dark spots or dots, one on each side of every segment near the base and just mesad of the lateral scars. The dorso-lateral punctae are smaller dots mesad and distad of the lateral punctae. They are absent from segment 9 .

Measurements and abbreviations-All measurements are given in millimetres. The terms length and breadth, when their meaning is not otherwise obvious, refer to the anteroposterior and transverse dimer.s'ons, respectively, of the measured part.

The relative lengths of the occiput and line of contact of the eyes are not accurately definable, but they are occasionally of some taxonomic value. The somewhat arbitrary point selected as the apex of $t \cdot$ occipital triangle is the meet-ing-point of two tangents drawn to the curves of the ocular margins a little in front of the middle of the sides of the triangle (fig. 4).

 The latter is measures from the apen an the occipital triangle (A) to the hind margin of the tront iesicle (FV)

The measurements of the T-spot when not otherwise indicated are the se of the transure dimension of the crossbar.

The lengths of the thorax, abdomen and its segments are measured on the side along the dotted line in fig. 5 .

The width of the hind wing is meas'red at the nodus.
The pterostigma is measured along the posterior margin.

Fso. s-Method of measuring the lengths of the thorax. abdomen and abdominal weyrente.
The abbreviations used in describing the abdominal colour-pattern have already been given (p. 9). The only others besides those used in reference to wing-venation (vide fig. 6) are the following: apps. $=$ appendages; $h . f .=$ hind femur; h.w. $=$ hind wing; pter. $=$ F curostigma; gen. $v .=$ genital valve; gen. $\%=$ genitalia of female.

Fus. b- Winge of Aeshna rewota Scudd. C sonta; S c subconta; R iadic: R : radial sector : Rspi radial supplement; Mmedia: Mr, Mra, Ms. M3, M4 brancheq ot medim; Mepl median supplement; Cu cubitus, Cux, Cus branches of cubitus: A anal vin: at anal triancle: al anal houp: m median space; cu cubital mpace; CuCf cubito-anal cross-veins ; t trian ile: spt supratriangle : Ar arculus: N nodus.
Genetic relationships of the genus Aeshna. (a). The subfimily Aeshninae-The natural classification of the Aeshninae, like that of most groups of organisms, is complicated by the occurrence of many cases of parallel evolution which seem to have arisen through certain orthogenetic tendencies, more or less characteristic of the entire group. As Needham ('O3) has pointed out, there are five dominant tendencies in the development of the venation in the Aeshnidae: "(1) The similar elongation of

16 Walker: North American Species of Aeshna

the triangle in both wings; (2) the development of strong supplements $\$(3)$ the hypertrophy of twontenodal cross-veins; (4) the development of a brace to the stigma; (5) the angulation of the hind angle of hind wing in the males." These characters are generally least developed in the most generalized members of each subfamily and best developed in the most highly specialized forms, so that we find resemblances between specialized members of different subfamilies or smaller subdivisions which are not due to genetic relationships but to parallel development. The brace of the pterostigma in the Gomphinae and Aeshninae or the clongation of the triangles and the forking of the radial sector in such distantly related Aeshnine genera as .Vasiaeschna and Staurophlebia are examples of such parallelisms.

It is therefore almost an impossible task to represent in detail with any approach to certainty the genetic relationships of the genera of such a large group as the Aeshninae. Some approximation to the truth is all that we can expect to arrive at.

The earliest classification of the Aeshninae that can be regarded as an approach towards a representation of the natural affinities of the genera in this group is the system proposed by Karsch ('91). On venational grounds alone he divided the subfamily into five groups; Anax, Aescina, Hoplo:ataschna (Oplon-), Allopctalia and Brachytron, the two clominant groups being those of Acshna and Brachotron. Needham (loc. cit.) has also shown that the two mair lines of venational specialization in this subfamily are indicated by the members of these two groups respectively, though he excludes from the Acshn group the genera Staurophlebia and "ouracschna. Karsch's groups of Oplonaeschna and Allopetai are the most generalized forms according to Needham, while the Anax group and the genera Staurophlebia and Neuracschna represent independent side lines of descent.

My attempt to group these genera in a natural way is based upon the two admirable works eited above, and I have been able, to consideralle extent, to substantiate by the study of other characters the phylogenetic interpretations which Professor Needham has placed upon the venational
characters alone. In the placing of those genera which I have not seen 1 have relied chicfly upon the numerous illustrations in Martin's recent work on the Aeshninae of the Selys collection (Martin, 'o8).

The only important points in which my conclusions differ from those of Needham are in the positions of $A n a x$ and Hemianax and of Neuraeschna and Staurophlebia. Although 1 should place the first two genera in a different group from Aeshna, I regard them, as well as the other two genera, not is belonging to independent side-lines of descent from primitive ancestors, but as specialized offshoots from the Aeshna line. My reasons for this belief will be given later.

The genera which represent the Aeshna line of descent. including the four just mentioned, have the following characteristics in common: (a) The radial sector is curved forward under the stigma and is forked, the fork being more or less unsymmetrical as a result of the curve. (b) The radial supplement is bent toward the posterior margin of the wing so that the space between it and the radial sector is widened, being occupied at its widest part by three or more rows of cells. (c) The median supplement is similarly curved and the space between it and M_{4} similarly widened. (d) M_{4} is bent away from M_{3}, at a point about opposite the proximal end of the radial supplement and is apparently more or les.: distinctly forked at the point of deflection. In most of the genera the trigonal supplement joins the median supplement. To this group belong the genera Aeshna, Coryphaischna. Anaciaeschna, Amphiaeschna, Meliaeschna, Gynacantha, Triacanthagyna, Tetracanthagyna, Platacantha, Cornacantia. Siabaeschna, Neuraeschna, Staurophlebia Hemianax and Anax.

To the Brachytron group belong a number of genera which agree with those of the Aeshna group in the forked radial sector, but differ in the absence of the other characters given. In these the radial sector is not curved fonvard but is straight and the fork is symmetrical, or nearly so, and is generally deeper than in the Aeshra group. The radial and median supplements are also straight, and there are only one or two rows of cells between these supplements and the longi-

18 Walfer: North American Species of Aeshna

tudinal veins in front of them Rs or \mathbf{M}_{4}, as the case may be). M_{3} and M_{4} and to be parallel throughout their course and the trigonal supplement does not join the median but is separate from it by a row of cells. To this group belong the genera Brachytron, Austroaeschna, Nasiaeschna, Epiaescina, Caliaeschna, Aeschnophlebia, Telephlebia and Periaeschna.

Of the remaining genera which agree in the unforked radial sector, Basiaeschna and Oplonaeschna approach the Aeshna group, in that the radial and median supplements are similarly curved toward the posterior margin of the wing. Rs is slightly bent forward and M_{4} is more or less deflected from M3. These features are present in but a slight degree in Basiaeschna, in which, also, the base of the hind wing is not much enlarged, but in Oplonaeschna the only character which separates it from Aeshna, is the simple radial sector, the anterior branch of which is represented, as in Basiaeschna, by a line of cross-veins which is tending to straighten out. In some species of Aeshna, such as Ae. caerulea, this anterior branch is but little better developed than in Basiaeschna and Oplonaeschna, and in many individuals of this species the radial sector cannot be described as forked at all. The two genera Basiaeschna and Oplonoeschna also resemble Aeshna in all other characters and may therefore be regarded as very nearly related to the immediate ancestors of the Aeshna group.

The corresponding prototype of the Brachytron group is Boyeria, in which the venation is very like that of Basiaesch$n a$, but differs mainly in that Rs is still straighter, the supplements straight, and M_{3} and M_{4} nearly parallel. As in Basiaeschna the position of the trigonal supplement in relation to the median supplement is undecided and the anterior branch of Rs is represented by a line of cross-veins tending to form a longitudinal vein. The median space is reticulated.

The evidence of the relationships supplied by these venational characters is supported by the characters offered by the auricles and accessory genitalia of the males. These structures, as found in Basiaeschna (or Oplonaeschna) and

Boyeria, are typical of the Aeshna and the Brachytron groups respectively (pl. 12, figs. 2, 3). In the great majority of the former group the auricles bear but few well separated teeth, the hamular processes are short, not lying close to the floor of the genital fossa, and are continuous with the well-developed hamular folds, with which they form a pair of concave chitinous plates. The spines of the anterior lamina are typically well developed. In Boyeria and the Brachytron group the auricles bear a large number of small teeth, more or less closely crowded together, and the anterior hamuli are strikingly different from the Aeshna type. The bases tend to increase in size and extend caudad, the hamular folds are greatly reduced or scarcely distinguishable at all (pl. 12, fig. 3) and are sharply marked off from the hamular processes, which are large and peculiarly shaped, being broad and elevated behind, mesially attingent and prolonged cephalad with an acute apex which lies close to the floor of the genital fossa. The spine of the anterior lamina is usually less developed than in the Aeshna group.

This type of auricle, hamuli and anterior lamina, modified in detail in various ways, is present in Boyeria, Caliaeschna, Brachytron, Austroaeschna, Nasiaeschna and Epiaesch$n \alpha_{\text {, and }}$ presumably in other genera of the Brachytron group. Hamuli simulating this type more or less closely are present in Aeshna caerulea and Ae. sitchensis and in Gynacantha and Staurophlebia and probably also in other genera related to the latter two. The resemblance in these two genera is very remarkable, and in Gynacantha is sometimes shared to a certain extent by the auricles, which have a larger number of teeth than are usually present in the members of the Aeshna group. Hamuli of an intermediate character are present in Amphiaeschna ampla, and as there is no similarity in venation between these forms and the Brachytron groups the resemblance in the hamuli is probably to be interpreted as a case of parallelism not of relationship.

Of the primitive genera other than the three mentioned Allopetalia resembles Boyeria in the straightness of the radial and median supplements, the nearly parallel course of M_{3} and M4 and many venational details, but differs in the short-

20 Walker: Nortil American Species of Aeshina

ness of the triangles and of the stigma, in the free median space and in the much less curved course of Cu and Cu 2. In these latter characters it rescmbles Oplonacschata closely, and seems in venation to be nearly intermediate between these two genera. As 1 have seen no male: of this genus 1 have no knowledge of the accessory genitalia. The resemblance between Martin's figures of the mate appendages of A. reticulosa and Boyeria irene is perhaps worthy of note.

The three remaining genera of Arshninae with a imple radial sector, excluding th: Petelia group. which is probally worthy of sulfamily rank (ede Williamson. Proc. ['.S.N.M., 3.3. p. 271 , 1907), are Linaeschna. Jagoria and Gon:phacschna. These are evidently nearly related genera and differ but little from one another in venation, except that, in the order given, the triangles are successively shorter and the venation, in general. less complex. Linaeschita most nearly resembles Boycria and Basiacsina in the comparatively complex venation and the clongated triangles, hut possesses only two culito-ana! crossveins and has the base of the hind wings less dilated. with a smaller anal loop and no supplementary anal loop, which is present in the other two genera, though imperiectly developed. In Jugoria, ant still more so in Comphacschna, the number of cells in the wings is reduced, the triangles are less elongated and the supplenent: loss sirongly developed than in the wher genera noticel. The bifid form of the inferior appendage of the makes presert in all timere of these genera and very marked in Gomphaeschna is probably another primitise feature. It is also present in a slight degree in Allopitalia. Gomblacschna is the only genus of this group in which I have examined the auricles and accessory genitalia of the mak. These are quite typical of the Brachytron group and much resemble those of Boyeria. It should not be concluded, however, that the hamtli of this group are of a more primitise type than those of the Aeshna group, because of their presence in the primitive genus Comphaeschna. On the contrary it seems more probable that the Acshra lype, as found for instance in Basiauscina, is the more primitive. It is a simple folded chitinous plate borne
upon a stont basis and, apart from its shortness, bears a considerable resemblance to the anterior hamuli of Cordulegaster (pl. 12, fig. 1). It seems highly probable, too, that in Gynacantha and atlied genera the hamuli, which closely resemble those of the Brachytron group, have been derived from those of the Aeshna type, so that here at least they are secondary to this type. A knowledge of these structures in the archaic Petulit group, the nearest living relatives of the Aeshninae, is very desirable.
(b). The Aeshna group Of the genera belonging to this group Aeshna appears to be the most generalized, and is probably the parental form of many of the other genera. It is the only genus in the group in which the forking of Rs is sometimes imperfect and we find a seites of stages in the development of this character within the genus. In Ae. caerulea Rs is but little curved forward under the stigma and the anterior branch is slenderer than the posterior and its connection with the latter is not alway's distinct. There is a long tine of $\mathrm{c}^{\text {r }}$ cins between Rs and $\mathbf{1 / 2}$ proximal to the fork and Ct latter in front o I also a short distance beyond the anterior branch. In Ac. sitchensis this line of cross-veins is also present, though somewhat shorter. and the fork is generally distinct, but the anterior branch comes off somewhat abruptly, the posterior branch continuing the course of the main vein. In Ae. juncea the fork is similar, but the line of cross-veins is reduced and often absent, especially in the male. Wit, the further development of the fork and the strengthening of the anterior branch the line of cross-veins is no longer needed and is lost; Rs as a whole tends to bend larther forward and the anterior branch to come off at a smaller angle so that the fork becemes more nearly symmetrical. In Ae. culifornica, for instance, the fork is but slightly unsymmetrical at base and the posterior branch no longer continues the course of the main stem. Further in Coryphaeschna, Helineschna, Anax, etc., the forwarl curvature of Rs is so marked that the anterior branch continues the direction of the main stem, white the posterior arises at a more or less distinct angle. This is most marked in Anux and IIemiinax, in which the posierior branch becomes
only the most distal of a series of subparallel b: snches arising from the posterior side of Rs. With these progressive changes in the radial sector are associated corresponding alterations in other longitudinal veins. M2 becomes more strongly curved forward, the radial supplement tends to diverge more and more from Rs and then become convergent again; the median supplement hears a similar relation to \mathbf{M}_{4}, which tends to become more deflected from M_{3}.

Considering now the relationships of the various genera we must again return to Aeshru. In this large cosmopolitan genus great varicty exists in the characters of venation, appendages and accessory genitalia. The latter differ so murh in different subdivisions of the genus as to suggest a polyphyletic origin from several parent genera resembling Basiaeschra and Oplonueschna which, themselves. differ considerably from one another in these structures.

Some species of Aeshna, such as californica and multicolor, and to a less extent those of the grandis and clepsydra groups, closely resemble Basiaeschna in the structure of the anterior hamuli, particularly in the form ar.d large size of the hamular folds, while in others such as Ae. affinis, isoceles, cyanea, constricta, etc., there is a closer resemblance to Oplonaeschna, in which the folds are but little developed, than to Basiaeschna. In other species again they are of other types and their affinities difficult to determine.

Of the other genera Coryphaeschna is a lateral offshoot from Aesina, in which the specialization in wing characters has been carried a little farther than in the latter genus. Amphiaeschna is also very near Aeshna but the median space is reticulated. The hamuli of A. ampla are very like those c' certain species of Aeshna but approach those of Gynacantha and allied genera in the somewhat reduced hamular folds and the knob-like elevation of the posteroventral part of the processes.

Of the remaining genera (Heliaeschna, Gynacantha, Neuraeschna, Staurophlebia, Tetracanthagyna, Triacanthagyna, Platacantha. Cornacantha and Subaeschna) I have seen examples only of the first four, but with the possibleexception of Subaeschna, on!, the male of which is known, they appear to form a
natural group, having much in common in their venational plan in spite of certain apparently important differences, and in which the membranule is much reduced and the tenth abdominal segment in the female is not spinulose as in most genera, but ir armed with a few long spines or with a long bifid process.

Needham's objections to associating the genera Neuraeschna and Staurophlebia with the Aeshna group are that the tip of the subcosta in these genera extends beyond the nodus, the stigma lacks a brace, and in Neuraeschne (and also Heliaeschna and Amphiaeschna) the median space is reticulated. These appear to be primitive characters but in view of the otherwise close resemblance in venation and other character between these genera and others of the Aeshna group, especially Gynacantha, I feel satisfied that they belong to this group and have acquired these characters secondarily. The presence of cross-veins in the median space in such genera as Neuraeschnu may well be due to the same influences which have brought about the general multiplication of cross-veins in this genus. It is also very doubtful whether the apparent continuation of the subcostal vein beyond the nodus really belongs to that vein, or is a short series of cross-veins in line with it, as iis irregular course suggests. The point can only be settled ', a study of the early stages. Furthermore I see no reason why the brace of the stigma should not be lost by reversion to an earlier condition in which it was not needed. In some species of Aeshna, as Ae. sitchensis and Ae. caerulea septertrionalis, the stigma of one pair of wings may be sometimes well braced, that of the other pair not at all (cf. fig. of Heliaeschno uninervulata in Coll. Zool. Selys, XX, p. 163, fig. 164).

For similar reasons it seems to me more natural to regard Anax and Hemianax as representing a highly specialized offshoot from the Aeshna group than as constituting an independent line of descent. The position of the media at the arculus and the rounded anal margin of the hind wing of the male are considered by Needham to be primitive characters, but in none of the otherwise primitive genera of Aeshnidae are these characters found, and in all other respects

N'alkfr: Nortu Amtrrican Sprcips of Afghna

A:חx and Hemianax are very highly sperialized. Morewer in the genus Anaciaesthma, which is unnistakably ver: close to certain species of Aeshna (ef. figures of the wings of Aeshna marlini and Anacileschna trianguifera, Coll. Zool. Selys, X'IIII, p. 30, fig. 24 and 11.72, fig. 70), some of the peculiarities of A max are present in a rulimentary conditoon; the mper part of the arculus is slorter that the lower, vein M2 is strongly curved forward behind the stigma in a manner resembling that of Anox, the anticles are very small (ahsent in $A n(x)$ and there are \cdot astiges of the supplementary lateral carinac, which are well developed in that gewns. The hamuli and anterior lamina of A nacineschna jaspidea and: of Aeshna afinis and Ae. isoceles, which belong to that section of the genns which is nost nearly allied to A natiaeschna, are wery moth alike and bear a decided resemblance to these strm tures in Anax.

My vicws on the relationsbi, of the genera of Aesluninae are expressed in the accompanying phylogenctic tree. (Fig. 7.)

It is inpuesible to arrange these gemera satisfactority in alinear serio". The arrangement that appears to me most monstent " he the phylogenetic tree is that whith is given below. It the the necessary defect that the most primitive

 f the feshna series.
genera of the two great groups of Aeshne and Rrachytron are widely aparated from one another, c. g., Basiaeschna and \dot{u}_{i} ! onaeschna from Boyeria, Allopetalia, etc., but similar difficulties are encountered in any other attempt to arrange the genera naturally. The only alternative would be to divide the genera into three main groups, the first comprising the primitive genera (those in which Rs is not forked, etc.). the other two containing the specialized members of the Brachytron and . eshna groups respectively. This method is perhaps the simpler of the two, but is less exact than that which I have adopted.

Brachytrin Group,		Aesina Group.	
Boyeria Series	Allopetalia	Aeshna Serics	Basiaeschna
	Gomphacschna		Oplonaeschna
	Linaeschna		$\left\{\begin{array}{l}\text { Aeshna } \\ \text { Coryphoeschna }\end{array}\right.$
	Boyeria		Anaciacschna
			Amphiaeschra
Brachytron	Telephlebia Caliaeschna Periaeschna Austroceschna	Gynacantha Scries	Gynacantha
			Triacanthagyna
			Platacanthe
			Cornacantha
Series	Nasiaeschna		Tetracanthagyna
	E.piaeschna Brachytron Aeschnophlevia		Heliaeschna
			Staurophlebic
			Nc:rraeschun
			Subaeschna
		Anax Serios	Hemianax
			\{ Anax

(1). Climatic variations-On a whole the variations among the individuals of a given species of Aeshna in a given locality are not great. The only striking ones are found in the colour of the females, in which there is a tendency towards dimorphism. This subject will be considered later. The abdominal appendages of the female, which are appar-

26 Walker: North American Splecies of Aeshna

ently functionless structures, and the third segment of the abdomen, are also subject to considerable variation, the former in length and the latter in depth. The range of variation in these part. in widely di-uributed species is found, however, to be much greater over the whole aren of distribution than in any onc locality. A correlation is also noticeable in the variations of these strmetures. Thus in the females shortening of the abolominal segments, especially segment 3 , is accompanied by deepening of the same segments and a shortening of the appendages. In the males the latter variation does not appear, as the appendages are functional structures and must be of a more or less definite length.

It may also be shown that these variations are dependront in a great measure upon locality. Thus if we compare pecimens of A e ercmita from the following three localities, Bay of 1:lands (Newfoundland), Heyden (northern Ontario), and Toronto (southern Ontario), we find that the aldomen of the Newfomellame females is distinctly shorter and deeper than in the Toronto specimens, and the appentages are mush -horter, while the Heyden bemales are about intermediate hetween those from the iwo other loralities.

Similir variations occur in the case of Ae. interrupta, ranadeisis, juncea, palmata aml umbrosa, and it may be further shown that the various :pecies from a given locality resemble one another more or lins closely as regards these variable features. Thus in Newfondland and the Magdalen ssland-, deshnt juncea, canatensis, ermita, and interrupta all have rolatively short and deep bodies and the females have short appendages as compared with the same species in Ontario: while the same differences in les degree are obser:able in the specimens of these species from northern Ontario or northern Michigan and southern Ontario respectiveIy except in de. juncer which cloes not occur in southern (Ontaris). In the case of the witespread and common Ae. umbrosa, specimens from Anticosti, Vincouver Island and New bridge, Oregon, are very simiar in the comparatively short alxlomen, which is relatively stont at seg. 3, while in those from Toronto, Bhaffon (Ind.), and various localities
in New lork, Pennsylvania and Ohio the abdomen is long and slender, particularly at seg. 3- Specimens from northern Ontario and Manitoba come nearer the latter than the former, though varying somewhat towards thes .. lise first category, especially in the females. ${ }^{1}$ Again 1 the circunionar $A e$. juncea, specimens from the Magdalen lstords (Ouc.), Alaska and Creat Britain are nearly alike a bom and ant stouter than specimens from Nipigon (Lak, :prom), the Bighorn Monntains (Wyoming) and other parts of cise interior of North America.

The olvious corrclation of these variations with locality suggests climatic influence as a factor in theircausation, and as the form of the body does not change during adult life we must look for the factor ing the environment of the nymph.

In an aquatic life like that of the nymph the most important climatic intluence is probably that of temperature, although light may also be of some importance. During the winter the nymphs are olviously not influenced much by temperature as they cannot withstand freezing and therefore must live in waterat $0^{\circ} \mathrm{C}$. wherever the ponds or streams in which they breed are frozen over throughout the winter; and this is the case throughout nearly all of the territory under consideration. Woreover there is probably no growth of the nymph during the winter as they apparently take no food at this tinne, at least in the later stages. That the winter temperature has nothing to do with the phenomena in question is aloo obvious when we compare the mean temperature of winter or of January, the coldest month, in the varinus localities where the individuals of a given species of Aeshna are similar in form. Thus of Ae. umbrosa specimens from Treesbank, Man., and Toronto, Ont., are ncarly identical lut differ considerably from Anticosti examples. although the nean January temperature of Anticosti is nearly midway between those of the other two localities: thus, Inticosti castern point), I I $4^{\circ} \mathrm{F}$.; Toronto, $22.9^{\circ} \mathrm{F}$; Treesbank (Winnipeg), $2.6^{\circ} \mathrm{F}$:

[^1]But if we compare the mean July temperatures, or better. those of the season of growth from May to September inclusive, we find a decided correlation between the variations in temperature and those exhibited by the insects. This may be illustrated by the following tables' $(1 .=$ length, $\mathrm{d} .=$ depth). (See also plate I.)
(1). Aeshna crenita.

(2). Aeshna canadensis.

Locality.	Nean Temp. May-Sep	$\begin{array}{\|l\|} \hline \text { No of of } \\ \text { Speci- } \\ \text { mens. } \end{array}$	l. abd. (mean)	$\begin{gathered} 1 . \\ 3 c k \\ 3 \\ \text { (mean) } \end{gathered}$	$\begin{gathered} \text { d. seg. } \\ \mathbf{3} \\ \text { (mean) } \end{gathered}$	I. apps (mean)
Grand Entry, Magdalen Is. (Temp. Grindstone, Masd. Is.	.33.5	2	45.5	6.92	4.3	4.2
Nipigon, Ont. (Tentp. Port Arthur, Out.)	3.5.4 4	2	47.0	8.13	4.0	4.:
Wtawa, Wnt.	62.4	2	46.3.)	8.(6)	2.5	- 3.6

(3). Aeshna umbrosa.

The tables are merely illustrative, my conclusions hasing been biaced upon the examination of a much larger series of specimens.

Thus with an increase of the mean summer temperature there is an increase in the length and a decrease in the depth of segment 3, and an increase in the length of the female apendages. Similar but slighter variationsin some of the other abdominal segments posterior to segmi $\mathbf{t} \mathbf{3}$ are demonstrable in some cases, but segments 1 and 2 seem to take little or no part in these morlifications.

I am as yet unable to offer any suggestions as to the operation of this factor of temperature in the production of these variations.
(2). Colour zariction of females-The females of all or nearly all the Norch American species of Aeshna are very variable in colour but the variations are all in one direction. A certain number of females of each species are coloured like the males in which, with very few exceptions, the abdomen is nearly black, spotied with blue. In a number of other females all the pale markings are yellow or yellowish green and the wings often flavescent. These two types may be known respectively as the homoochromatic and the heterochromatic types-terms employed by Calvert ('05) to designate similar colour phases in the females of Ischnura and other Coenagrionine genera. These two colour phases are, however, not sharply marked off from one another, but are connected by intermediate forms. Homœochromatic females are generally less common than the heterochromatic and intermediate forms, but the proportion varies in different species. In some species, e.g., Ae.canadensis, heterochromatic females are never pure yellow but always greenish; while in others, such as Ac. constricta and californica, the extreme heterochromatic examples are yellow-spotted without a trace of green. This tendency to dimorphism is doubtless of the same kind as that which occurs in a more perfect form in Ischnura, Anomalagrion, etc. The so-called third form of female, met with in some species of these genera, is probably merely an intermediate between the other two forms.
(3). Geographical races-While some species of Aeshna of wide distribution are very uniform over their entire range
of territory, others are more or less distinctly divisible into geographical races or sulbspecies. The characters which separate these races are altogether different fron those whose variability elepends on climate and hence also on geographical distribution, but are similar in kind to the specific characters of the genus. The species in which such races are lest defined is Ae. interrupla, which ranges from Newfomdland and the northern New lingland States to Great slave Lake, and the northwestern coast of British Columbia, and thence somthwards to Nevata and New Mexico. It includes three dominant races, interrupta, which inhabit the wooled regions east of the Great llains; lineata, the dharacieristic lesha of the Canadian prairies, found from the Daketas to Great Slave Lake; and internu, a mountain form, ramging from the southern boundary of Alberta and Briti-h Cohmbinato New Mexico.
L.metha and interna intergrade in the southeastern Canalian Rockies; a form appears in northwestern British Colnmbia estremely like the eastern interrupta but approaching also the otlor two races: in Nevada another occurs (netadensis), alow approaching all three of the other forms, white in the Magdaten Istands, in the extreme east, the species takes on certain features of colour-pattern resembling those of the western races interna and nevadensis.

Ae. umbrosa in likewise divisible into an castern race umbrosa and a western onte, occidentalis, the latter approaching Ac, polmata, the charaturistic western species of the same grous), mose chatly than does the race umbrosa, while the latter in the (canatian \%one (in northern Ontario) approaches the race ocidentalis. . L. . plmata itself varies considerably thronglout its range and it would thes appear that the varied toppgraphy of the wertern half of the continent has reacted on the species of Acohna as on many others groups of organisms with the prodnetion of many local races.

(ieneral Life History.

Scason of imaginal life - In Canada and the northern United States, the metropolis of the North American species of Ashna, the imagoes of most species are abroad during
the latter part of summer and in early autumn. July, August and September are the months when they are most abundant. Most of the species first appear in July, but Ae. canadensis is generally on the wing before the end of June in the Transition Zone in Ontario, while Ae. californica, multicolor and mutata reach maturity still carlier, the two first named species appearing early in April. Most of the species have nearly disappeared by the begimniag of October but Ae. umbrosa, and probably others such as 1 e. constricta and Ae. verticalis, may linger on until the middle of the month, disappearing only after severe frost.

Length of imaginal life-As the majority of individuals of a given species in a given locality emerge within a period of about two weeks, the length of the inaginal life would appear to be all least a mont?, probably considerably longer in most cases. Reared specimens kept in captivity and unfed live only a few days and do not acquire their mature coloration.

Ilabitat-The imagoes are fount, as a rule. most abundantly about their breeding grounds, but may often be seen foraging in large numbers more than half a mile away from any possible breeding-place. The majority of species breed in still shallow waters, thickly grown up with the smaller species of reeds. sedges, Sparganium, Acorus calamus L., Equisetum fluviatile L., and other plants of similar habit. Open marshes hordering rivers or at the mouths of sluggish treams, shallow reedy lakes, ponds or bays, are favourable localities for most of the species, and during the season of tlight the imagoes may be seen foraging over these marshes, generally at a height of two to five feet above the vegetation and following as a rule, no regular course; though they may also be frequently seen flying low and following the water's edge, darting in and ont of the washouts or little recesses lextween the clumps of reeds and rushes, on the lookout for their prey. Ae. umbrosa is an exception to all the other eastern species that I have observed in the field, in that it frequents small woolland streams and ditches, or small pools on the edges of woods, never being found associated with the other species in open marshes. The imagoes

32 Walker: North American Specties of Aeshna

fly up and down such streams or pools keeping, as a rule, near the water, and when the streans are large, close to the margins.

Fietd noter made at Temayami, Ontario. Sept. 14. 1908, on the species of Aeshna observed about a small lake helween Lake, Wikimaka and Obabika. Temagani Forest Reserve :

This lake is an expansion of the Obabika Creek which connects the two lakes named above, and is broally margined by an open marsh, behind which is a dense spruce forest. Just helow the lake the creek is broad and passes for a shore distance through the same kino of open marsh, thence entering the deep woods. Un the west side is an area of several atres of marsh in the midst of which is a pond of some 300 square feet in area. It was about this pond and between the pond and the creek that the Acshne were most abundant. The soil is a suft dark nuud into which one would frequently sink to the knees, but, as a rule, owing to the abundant cover of horse-taits and sedge, one could obtain a fairly good footing. Moost-iacks were numerous about the margins of the creck and atong the edge of the woods. The vegetation of the marsh consisted largely of Squisetum fixviatile L . with a few sedges and coarse grasses, and in a few places whete the ground was a little higher, Myrica gate L. grew in abundance with tufts of Spiraca salicifolia L., Triadenum virginicum L. and a few grasses:

Four species of Aeshna, Ae. eremita, internupta, canadensis and subarctica. were takien here,and the following additional spescies of Odonata: Lestes congener, L. disjinnctus, Enallagma hageni, Somatochlora villiamsoni, Sympetrum scoticum, rostiferum, semicinctum and obtrusum. The Resine were very abundant but extremely dificicutt to capture. Ae. interrupta was the most ahundant, Ae. canadensis coming next. Of Ae. eremita quite a number were seen hut ouly two captured, while of Ae. subarctica unly one wast taken. They were flying back and torth following no definite coursc, though many would shirt the margin of the creek for some distance and then fly inwards over the marsh or atcross to the other side. They seemed to be similar in habits and character of tight. The inales, which appeared to be in the great majority, were foraging and seemed tw prey enticely upon a species of caddis-fly (Limnephilus indizisa Walk.)' which was very abundant among the horse-tails ard sedge of the marsh. The male Aeshnce were flying rather low, 3.5 feet from the ground, and were coustantly descending within a few inches of the water, making their way for some distance among the liorse-tails on the look out for caddis-flies. Their rustling could be heard at al distance of 6 or 7 yards. When two males came near one another they would dash off together up into the air but generally soon separated and continued their foraging.

Shortly after reaching maturity the imagoes may often be found in large numbers at some distance from their breeding-grounds, flying about the borders of woods or in openings in them, along wood-roads, etc. Some species, particularly Ae. canadensis, are especially attracted by open coniferous woods and are fond of settling on the trunks in the sunshine or hanging from twigs. Ae. umbrosa shows a marked preference for more or less shady haunts, while its near ally, Ae. constricta, is most often seen ranging over open fields or bushy pastures. Late in the season they return to their breeding-grounds.

[^2]Influence of weather conditions - Although generally most active in bright sunny weather the species of Aeshna are influenced to a less degree than most Odonata by conditions of light. Most if not all of our species fly readily in dull warm weather and sometimes even during very light rains, while Aeshna umbrosa habitually flies till well after dusk. This habit, which is common among the Aeshninae, has also been observed by Mr. Williamson in the case of Ae. interrupta, eremita and canadensis.

According to Mr. C. H. Kennedy, the activity of certain species of Acshna is decreased in intensely hot weather. In a letter to the writer he says of Ae. californica and multicolor, at Sunnyside. Washington: "Both californica and multicolor hang in the shade from the underside of leaves of trees on very hot days (when the thermometer rises to 100° or $105^{\circ} \mathrm{F}$.). I have not noticed them resting on days when the temperature was less than $100 .^{\circ}$ These rests last for a few minutes only but occur at short intervals. It is only at such times that they are easily taken away from the water. One very hot afternoon for a few minutes I caught them, while hanging up, as fast as I could empty my net, and two only fifteen feet from the back door."

In Ontario, where the weather is very rarely as hot as nescriled above, this habit must be attributed to some other cause. Indeed, it is on the warmest days that the Aeshnae are least likely to be seen resting, while in cool bright weather although they fly readily enough, they take very frequent and often prolonged rests, sometimes in the shade, sometimes in sheltered sunny places, the difference here being also probably a question of temperature. On the other hand on hot still days, when the thermometer is at 80° or $90^{\circ} \mathrm{F}$. they are often very restless and almost ceaselessly on the wing. On July 22, 1910, between 4 and 4.30 p.m. the writer observed Aeshnae flying in considerable numbers at De Grassi Point, Lake Simcoe, among the young bushy trees near the edge of a dense low wood bordering a large area of pasture land. The weather was very hot and still and the sun partly obscured by the smoke from forest fires. It was observed that Aeshnae kept in the small open places, a few square yards in

34 Walker: Norim American Speches of Aeshna

area, which were well shaded by the surrounding trees. Gemerally -praking each of these small spaces was occupied by not more than a single Aeshna which flew around the space in a more or less regulat course at a few feet from the ground, and was not readily frightened by my attempts tu capture it, being driven away only when actually touched by the net. A number of specimens were captured, all except a single female Ae. constricta proving to be Ae. canadensis.

Similar tlights of deshnae have on several other occasions come to my notice, as shown by the following extract from my note-liook: "On August 28, 1909 (at De Grassi Point, lake sancoe). Aeshnae were observed in considerable nembers lying ower the tenmis lawn and garden, a few rods from the lake shore. The weather was cloudy but very hot and still amt the deshnae were for the most part flying within a lew fret from the ground, cach confining its movemente wa more or less definitely limited area or beat. There were apparently about fifteen or sixteen individuals flying about the tenni- lawn alone and about half that number flying ower a small vegetable-garden about 20 square yards in area. The land surrounding the lawn and garden is covered with long grass, tall herbs, numerous bushes and young trees and the A shnae were lying here too, but it was noticeable that they preferred the more open places. They were hawkirg among the multitules of Chironomidae that were abroad and wree often olserved to capture them. At 6.30 p.m. the were still numerous, but at $7.00 \mathrm{p} . \mathrm{m}$. only one was seen, flying rather high. The following were captured: Ae. constrictia. 30^{7}; Ae. canadensis, $20^{7} .3 \%$; Ae. umbrosa, 18."

A similar but smaller flight was observe! about ten clays Wefore this one, about the same time oi day, the weather being likewise still and rather warm, although the sky was clearer. Is 1 was wihout a net only one was captured, a female constricta, but others were recognized as belonging to this species. The first tlight of this kind that 1 remember was on a warm still afternoon in August 1906. The insects were observed at the same locality, about $5 \mathrm{p} . \mathrm{m}$. or a little later and it was estimated that about twenty-five Aeshnae
were flying over the tennis-lawn at one time. A number Nete captured and all proved to be Ae. constricta.

Migrations-13rown ('yl) records a migratory swarm of Iragontlies in Wiscousin, one of which was captured and letermined as Aeshna eremita Scudd. This appears to be the only case on record of a North American species of this gemns exhibiting the migratory trait, though Camplell ('85) lescriberl a similar swarm of the European Ae. mixta, which he observed ilying along the brake of the Gironde in France. They were first noticed about five o'clock in the afternoon, and the swarm lasted from one and a half to one and threequarters hours. "The weather was fine and warm but the shy was clouded and rain had fallen during the day. There was little or no wind."

Seasonal variation in number of individuals-The number of inclividuals of some species of Aeshna varies greatly from year to year. The season of 1906 in the vicinity of Lake Simcoe was remarkable for the extraordinary abundance of Ae. constricta and Ae. canadensis, while in 1907 both of these species were comparatively scarce. Since then they have both been common enough, hut not remarkably so, until the season of 1911, when very iew individuats of either species were observed. Ac. serticalis is also inconstant in numbers, uccasiunally occurring in abundance. Ae. umbrosa, on the other hand, seems to be more or less common every year, but apparently never occurs in excessive numbers as in the case of the other species mentioned.

The relative scarcity of individuals during some seasons is not dependent upon the drying up of the waters in which the y breed. Ae. umbrosa is the only species that would be at all likely to suffer from th. cause, since its nymph often breeds in small pools and ditches, but it is the most constant in point of numbers of all the species whose habits are familiar to me. P'ossibly the irregularity of appearance is dependent upon parasites.

Food-The food of Aeshna consists of flying insects, generally of small size, especially Chironomidae and other Diptera, caddis-flies, small moths, etc. On Aug. 4, 1910, 1 olserved a male Ae. eremita at Nipigon, Ontario, flying about over a small clearing on the river shore with a grasshopper
in its jaws. It was watched for three or four minutes, while it flew alout the erlge of the woorls. The grasshopper was of about the size of Camnula pellucida and was prolally this species, which positively swarmed on the clearing. to the exclusion of almost all other Orthoptera. I hawe also ohserved the wearly allied Basizeschna janatuf feeding upon a somewhat teneral specinen of Gomphus spicatus, and in the I'. S. National Musemm collection there is a femate specimen of Nasiueschna pentacantha which was taken with a worn specinen of Papilio asterias in its clutches. The European Aeshnine Brachytron hafniense has iecen olserved to feed upon Libelluline dragontlies.

A mitroscopic examination of the stomach contents of a female Ae. canodensis taken while foraging revealed only minute chitinons fragments of small Diptera and possibly of other insects.

Enemies-In the adult state Aeshna seems very well alte to take care of itself and has but few enemies. The most critical perionls of its life are doubtless the time of emergence from the \quad "mph and while still teneral; and in the case of females, : they are engaged in oviposition.

Tenerals ak woubtess often caught in spiders' webs, but no instance of the kind has come under my notice. On one occasion, however, I found a fully mature female of Aeshata inberculifera in the weh of a spider (Argiope trifasciata Forsk.).' This was on the banks of the Etolicoke Creek, near Torminto, on Sent. 30, ngos. The web was in the grass on the step stepe of ebank: about two feet from the water's edge, and the dras ay whose thorax was partly eaten had evidently been recontly killed an the colours were still fresh.

Doubiless tencrats aloo fregmently fall victims to some of the larger insectivorms lieds. Mr. R. I'. Currie sent me a specimen of Coryshacschna ingens and the male abdominal appendages of Epiaeschma heros, both from stomachs of the chuck-will's-widow. The latter species has also been recorded as having teen captured by the king-bird (Tyrannus tyrunnus) (Moore. 'co).

P'ossibly the most serious enemy of the adult Aeshna

[^3]is the frog, which no doubt destroys many ovipositing females. Mr. C. H. Kennedy suggests that the scarcity of females of some species of Aeshna, notabls Ae. ambrosa and Ae. pulmata, is slue to this cause. In suppe, : of this Delief he has sent me the following interesting olservations on these species, made in the Blue Mountains, Oregon:
"Of Ae. umbrosa and Ae. palmata the females were a rarity, males were much more abundant. This was inexplicalle to me until one day I saw a female ambrosa while ovipositing knocked into the water by a frog. Thestreams and ponds, particularly of the Blue Mountains, are almost swarming with a medium-sized frog. I examined the stomachs of several but found only grasshoppers and water-bugs. However, I felt certain that the abundance of frogs explained the paucity of female Aeshnas, becanse in both umbrosa and palmata, while the males are high wide fliers, the females nearly always fly less than a foot above the water ard even lower when ovipositing.
"The above observations were made in Eagle Valley, all of which lies in the upper Sonoran and Transition Zones. later whon I collected in l'ine Valley, which is a higher valley, I hat my case against the frogs strengthened.
"The lowerend of I'ine Valley lies in the Transition Zone but the upper end is in the Canadian Zone. These frogs are not found in the Canadiam Zone. They are peculiar to the sitg-brush regions, ceasing abruptly at the lower edge of the timiker. Only males of ambrosa were seen in the lower end of l'ine Valley, where the frogs were aloundant, white females were as abundant as the males up at Carson in the Canadian or timber zone, where there were no frogs. "

I may add that in Ontario, also. the females of umbrosa are appa ently much rarer than the males, though my experience in rearing the nymplis and collerting the exuviae shows that the two sexe: enter the adult stage in about equal number:.

In this connection Mr. Kennedy alsonserves that the males and females of Ac. californica and multicolor in the Yiakima Valley, Wash., oceur in about efual mumbers, and he attributes this fact to the entire absence of frogs in the

な
 Nat.ker: North Americin strete: de Aralina

ponds of this valley: "There are here a small ground-inhaliting tree frog and a small toad, neither of which resort to the water except for a short time in the apring to breed."

Muhne hatits-l'airing may take place at any time during the sessom of maturity. Mr. Kimmely has ohserved Ae. califormiot in coitu as carly as May 8 , and I hate sect Ac. clepsydra paired at Collome Bay, Corgian Bay, On.
 oripositing at the same locality on Juls 17 , 1907. Augnst and early september are, however, the month in which pairing may be most frepuently ohserved.

The paring halits difler somewhat in the different speriss of Aeshas. (If the common speries that I have ohscrecel, Ace consercter isconapicumbs for its halhit of pairing in open bu-hy places often obme distance from water, for its wild nuptial tlight and the temacions grang in which the mate holds the femate. When abmulate it is very often seen in copeda, whike I do mot recall a -ingle occasion on which I have identifed with certanty a pair of the still more ahmolant Ae.
 taken paired a long way irom it. breeding haunts, but its habit- appear to te muter miring than those of constricta and unlike the latur speries the pairing individuals separate immediately when taken into the hand.

Mr Kennely writes: "While in copulation pairs of raliformote ding to bushes, not indukeng as much in wild nuptial thightsas malticolor. which species in copulation is not often seen hanging (o) bishes." 11 is probable that the highly differentiated male abfominal appendages of constrictu and multicolor. and the unumally large genitalia of both sexes in constricta, are an adaptation to their active copnlating habits, in which a fimer union between the two sex's is necessary than in such retiring -pecies an Ae. verticalis and californicu, the males of which have comparatively simple abdominal appendages.

In most percies the males ariae the femates while ranging over the reeds and rables which grow in their breeding places. Viery fiequently the femals wre picked up while oripositing. If copulation ensucs. the pair ustally Aly off
to the nearest trees, often after circling about in the air a few times.

As might tre expected from the close resemblance of the various species to one another, the uniformity of colourpattern atd unspotterl whas, ogether with the marked ditferemes in the external genitalio and mate absominal appendages, there is nte contest luelwern the males for the femakes, nor att they upparembly able wo distinguish the femates of their own species from thone of wher species of the gemus. fairing between ditferent operies is probably prevented bw the mutual inadaptibility of the genitalia of the two sexes.

In the lemagami Forest Kegerve, Ontario, the follownks notev were made on the paring hatite of the apeciee of deshnus showred there the locality and

"Niow and them a buzzinge of wings wav hearal in the reeds and a pair would enierge, tlyang of owitty. woinetimes making a bee-line for the nesphbouring wools, sonetunco corching about at firt hut e'ways flying eventuatly to volle sheltering bush or tree.
"Sever.al times pairs, were observed, were no in rothe, the mate simply. graspus the head of the female by the abdommal apmonages sonie of the pairs were fling with the bodies ol both wexesexiented atter the nammer of damsel-fies (Cornagrionidae), no attenpt at copulation heing inde. In whe the abdumen of the female was seen to curve upward frequenty toward the male accessory genitalia lut without establohmer a comnections.
"While some or all of these partial unions may have takell place between different species, two positive cases of this kind were ebwerved. it male of de suburetica was taken with a female of .te. canadensis and a male of de infermuta . Who with a formale of runadensis. In the former case no union had heen effected when the pair was captured though taken in the net at the sime time. It wis beice wed, however, that the male had takens hold of the female by the appendingen. In the latere case a connection was apparenty cotablished for a few eer mind between the genitalia of the female and the arcessory senitalia of the male but the pair droppedt to the ground and a scuffe ensued. durings whish they were captured.
"The only pair in cottu that was observed at clove enough range to permit of recognition of the species was one of Ae. interrupta, which was followed nome distance to the bushey at the edge of the wood and then approached wery clovely. though not captured.

In the first week of August, 1910, the writer observed a number of copulatong priirs of deshnu on the Nipigen River, where six ypeciee of the genus are more or leas conmmo. Several pairs of cremita and inferruptaz were recognicell thet nothing of special interest ohserved except a series of three madividuals con. nected in line and convi人tug apparenty of two males and a fennale, the first male holding: the head of the second, which in turn was gravping the head of the fermale. I also saw two males making frantic efforts to secure a vingle lemate. but apparently not attempting to drive each other away. Thes were flying at a censiderable height and the species was nut recognized.

Copulatory position-In the paper hy Williamson and Calsert, on "Copalation of Odonata" (Ent. News, XIlI. 1906, pp. I4.3-1,50) the former writer ctates that in copulating
the male Aeshna grasps the female by the head, the inferior appendage resting on the top of the head, the superior appendages on the rear of the head. The plate accompanying this paper (pl. V'll) is from a photograph of a pair of Ac. umbrosa (referred to constrictu) in coitu, and shows the general position of the two sexes in copulation, but the appendages of the male are no longer in contact with the head of the female, nor is the connection between the genitalia of the female and the accessory genitatia of the male exactly as it is in life. I have been fortunate in obtaining two pairs of Ae. constricta and one of Ae. clepsydra in all of which the natural position of the male appendages has been retained, and in one pair of constricta the connection between the genitalia of the two sexes has also been preserved. Both pairs of constricta which were taken at De Cirassi Point, Lake Simcoe, Aug. 20 and Sept. 2, 1909. were carried in the hand over a quarter of a mile before the benzine necessary for killing them suddenly conld be obtained. The pair photographed (pl. 2, fig. 1) in which the natural position has been preserved in every detail was dried in an envelope over a coal oil lamp after being killed with benzine. The pair of Ac. clepsydra was taken at Go Home Bay, Georgian Bay, by Mr. W'. J. Fraser, who immediately severed the abdomen of the male at the sixth segment, this leaving the distal portion and the appendages adhering to the female.

An examination of the two pairs of constricta shows that Williamson's statement is correct as far as it goes, but that in addition to the head of the female being grasped by the superior and inferior appendages of the male, the prothorax is hell between the two superior appendages, the superointernal surfaces of the latter being applied to the lateral surfaces of the pronotum (pl. 2. figs. 3 and 4). The preapical spine of the stiperior appendages fits into the groove or space between the rear of the head and the cardo or basal joint of the maxilla, and the preapical tubercle, on the inner surface rests in a depression just under the lateral margin of the amterior lole of the prothoras.

In Ae. clepsydra, (figs. 5 and 6) the position issimilar but the prothorax of the femate is apparently less firmly grasped by
the superior appendages of the male, which are much narrower and simpler in structure than in constricla. The pointed apices occupy the same position \therefore the preapical spine of constricta, with which it is homologous. Probably the slightly elevated and denticulate apical portion of the superior carina corresponds in position to the tubercle in constricta, but this cannot be determined from the specimen.

The relative positions occupied by the accessory genitalia of the male and the genitalia of the fenale in Ae. constricta are shown in plate 2, fig. 2. The ovipositor (Ov) is unsheathed from the genital valves (GV) and lies for the most part in the genital fossa of the male (ventral side of seg. 2). In its basal half it is grasped by the posterior hamuli (PH) and from its position and relation to the anterior hamuli (AH) it must pass through the channel fr med by the concavities of the hamular processes and folds, the two anterior hamuli thus forming a pair of claspers. The two parts of the anterior lamina are closely applied to the ventral surfaces of the genital valves and are turned somewhat inwards, the tips of the two spines (Sp) lying close to the concave margin of the ovipositor and possibly braced against the sides in life. The appendages of the female and the styli apparently take no part in copulation.

Comparison of copulatory position with that of other Odonata-Aeshna is the only genus of Anisoptera, so far as known, the male of which grasps the prothorax of the female during copulation, although many, if not all, of the other Aeshnine genera doubtless resemble Acshna in this respect. In many of the Zygoptera, as Williamson has shown, the anterior surface of the hind lobe of the prothorax is grasped by the inferior appendages, but there is nothing comparable in the mechanism to that which obtains in Aeshna. Of the other subfamilies of Anisoptera, the head alone of the female is grasped by the male appendages in the Gomphinae and Libellulinae.

1 have a pair of Gomphus spicatus taken at Go Home Bay, Georgian Bay; in July, i907, which well illustrates the method in the former group. This pair which was resting on the ground was captured by carefully placing the mouth
of a large net over it. The position was observed and the pair was partially anaesthetized with chloroform and then placed in a cyanide bottle. Unfortunately in carrying them they came apart but the appendages of the male were easily replaced, for the larse ventral tooth on each superior appendage had made a deep depression on the rear of the head of the female. It will le seen from the figure of this specimen (pl. 2, fig. 7) that the superior appendages have no connection with the pronotum. The ncciput of the female is held between the two pairs of appendages at their bases, while the curved apices on the forked inferior appendage are applied to the head between the frons and the frontal vesicle.

It will $1 x$ noticed that in the Gomp:rae and Libellulinae the upper surface of the superior appendages is smooth and rounded while the under surface is commonly provided with toothlike projections or denticles, while in the Aeshninae it is the upper (supero-internal) surface which shows the greater amount of structural differentiation. In the Cordulegasterinae, the general form of the male appenilages resembles that of the (iomphinae and the superior pair probably also rests upon the rear of the head of the female during copulation.

The nearest approach to the Aeshnine method of clasping thus far known is that of Fetalura gigantea which has been described by Tillyard ('(0)). In tis species the supero. internal surface of the superior appendages of the male were applied to the shoulders of the female, while the inferior ap. pendage is pressed down upon the occiput.

Oviposition-Females begin to oviposit soon after becoming fully mature and apparently continue to do so from time to time throughout the rest of their life. I have found Ae. canadensis, a species which does not often appear before the last week of June, ovipositing at Go llome Bay, Georgian Bay on July 17.1907, and 1 have found the same species oviprositing at the end of August. Ovipositing females are most frequently seen in August and early September.

I have watched the process of oviposition at close range in the case of two species of Aeshna, Ae. cremita and Ae. con-tricta. The former was observed in a small reedy bay on the Nipigon River on Aug. 5, 1910. The insect when first
seen was clinging to the blade of a bur-reed (Sparganium) close to the surface oi the water with about half the abdomen immersed (pl. 3, fig. 1). She was watched for about five minutes at the end of which she suddenly flew away. During this time the end of the abdomen was thrust against the stem every two or three seconds and was gradually lowered until wholly under water. Soon after this depth was reached she flew away.

I then examined the reed and found the punctures made by the ovipositor arranged as shown on pl. 3, fig. 2. They were confined to the two narrow surfaces of the three-cornered reed and the great majority were on one surface. The uppermost w re found about 1.5 cm . above the surface of the water, the lowermost about 4 cm . Beneath the surface. It will le seen that they are not arranged in a double row as described by Needham ('oi) for Basiaeschna janata, but tend to be grouped in oblique rows, although the arrangement is by no means regular. A few eggs lying near the edge of the reed were exposed by carefully picking away the tissues on one side of them. They were found to lie a little beneath the surface and very obliquely placed, occupying more nearly a vertical than a horizontal position (fig.3). The pointed anlerior ends were in all cases outermost.

On the following day another oripositing female of the same species was observed at still closer range, in fact I was almost directly above the insect while watching her. She was supported on a collection of dead floating reeds dmong a thick growth of living ones and was thrusting the ovipositor, seemingly at random, into any piece of reed within reach. She did not remain more than a minute or so, but the lever-like thrusts of the ovipositor could be seen distinctly when the abdomen was turned sideways. In making these thrusts the terminal abdominal segment served as the fulcrum (fig. I).

Mary other individuals were seen ovipositing in the same way in both living and dead floating reeds and it appeared that in lie latter case the thrusts of the inseet were always irregular, as though the insect were not satisfied with the site for her operations.

H Walkir: Nortil American Splcien of Aesina

In the case of Aeshna constricta, which 1 observed ovipositing only once, though at close quarters, the female was seen to alight upon a sweet-flag (Acorus calamus L.) growing at the edge of a broad sluggish creek near De Grassi Point, l.ake Simcoe, Although about two and one-half feet above the water she at once began to oviposit, curving her abdomen and using her large ovipositor apparently in the same way as Ae. eremita but spending a longer time, four or five seconds, over the deposition of each egg. Instead of lowering the abdomen during the operation, she gradually climbed upwards and seemed little disturbed by the very strong breeze that was blowing. When she had climbed about six inches and was not far from the end of the flag she flew away.

On first examining the seat of her operations I could find nothing to show that she had been there, but on a closer inspection longitudinal slits in the epidermis were found along the whole path of the operations. These were each a few millimetres long, the length varying considerably, and arranged somewhat irregularly in two rows (pl. 3, fig. 5). An egg was placed longitudinally under each incision, the anterior end upward. They lay rather loosely in the slit in the parenchyma. The flag was taken home and the lower end placed in a jar of water but it gradually withered and the eggs did not hatch that season and were finally destroyed by an accident.

Although the slits did not open with the drying of the Hag it is probable that they do so under natural conditions and thus allow the eggs to drop inoo the water before hatching. The unusually large size of the ovipositor in Ae. constricta -cems to be related to the praction of making elongate incisions instead of more punctures in the tissues of the plants. This method of owipositing high alove the surface of the water is unique as far as 1 know among the Anisoptera but has been deseribed hy Needhan ('oo) in the case of the Zygopterous species, Lestes unguiculatus, and L. uncatus.

A number of other species of Aeshna were also seen wipositing, viz., Ae itmeca, subarctica, interrupta, canadensis and umbrosa, and the process was in general the same as that
of Ae. cremita, as nearly as could be judged, but although reeds or reed-like plants are usually chosen by the female for this purpose it is no invariable rule. Thus Ae. canadensis usually oviposits in the ordinary way in aquatic plants but 1 have seen it at Grenadier Pond, Toronto, performing this function on the side of an alga-covered log, just below the water-line. The eggs were apparently distributed quite irregularly. I have also observed the same species apparently utilizing for this purpose the fine wet sand on the shore of Obabika Lake, near the mouth of Obabika Creek, Temagami District, Ontario. There is a stretch of open marsh here covered largely with Equisetum and coarse sedges, which, earlier in the season had evidently been under water for some distance back from the shore and the sand, especially within a few yards of the water's edge, was beaten hard by the wares. It was this fine wet sand some yards back from the water-line into whic: the dragonfly was thrusting her abdomen, as though in the act of ovipositing.

A similar act was also observed in the case of Ae. umbrosa, a female of which was observed ovipositing in tire mud of a partly dried up bed of a short creek connecting Lakes Temagami and Obabika. Although pools of water were near at hand the insect chose the wet mud of the streamIn'd. clinging to the base of a sedge-stalk and thrusting the cond of the abdomen into the mud in the direction of the stem and moving it irregularly to right and left but apparently not touching the stem with the ovipositor. While the female was thus engaged, a ma'e swooped down upon her and the pair were thus captured.

Miss W'adsworth sent me a female of this species which -he observed ovipositing on the nearly dead trunk of an alder hrub . . the middle of a stream. She observed the insect light on the trunk and "press the eggs into the wet bark of the alder. Some were placed about half an inch from the water line and from there down to the water line, and a very few just below. A male soon came to her and as they flew 1 got the net over both but the male escaped."

Sometimes a female . Leshna may be seen tapping the apices of the genital whes against a rock or other hard
substance, apparently adjusting their position in relaticn n the ovipositor. I have observed this performance in lincase of two species, Ae. umbrosa and Ae. eremita.

While ovipositing the female Aeshna is never accompanied by the male as sometimes occurs in the case of Anax junius.

The egg-The eggs of Aeshna (pl.3, figs. 4 and 6) are Hongate, smooth, cylindrical, rounded at the posterior and pointer at the anterior end: They are pale yellow when first deposited but may darken considerably before the nymph is hatched (Ae. evemita). The size and exact form of the mature egg varies according to the species, e.g., in Ae. eremita they are $1.7-1.8 \mathrm{~mm}$. long and about five times as long as broad; in Ae. constricta they are about the same size and general form but are somewhat less acute at the anterior end; in Ae. canudensis they are about $1.6-1.66 \mathrm{~mm}$. long, and slightly more acute than in eremita; while in Ae. sitchensis the length is only about 1.1 mm ., the breadth proportionately somewhat greater than in the other species, and the anterior ends but little pointed.

The ovarie's of a female Ae. umbrosa, taken at lake Simcue on Aug. 29, 1909, were found to contain 8.39 eggs, nearly all of which were full-grown.

Probable number of nymphal stages-IVith a sufficiency of material it is not a difficult matter to determine the number of stages in the nymphal life after the wing-buds have begun to appear, as with each eedysis there is a very definite increase in the relative size of these organs. Of the stages preceding the first appearance of the wing-buds I have no knowledge.

The material I have obtained by collecting nymphs of deshna canadensis and Ae umbrosa is sufficient for the determination of the number of ecdyses that the nymph goes through after attaining a length of about 1 cm . The results thus obtained were partially confirmed by rearing nymphs of various sizes through several ecdyses and comparing the exuviae with the collected material. Nymphs of various sizes of Ae. eremila, interrupta, juncea, californica and mul-
ticolor, as well as the two species previously mentioned can in all cases be referred to a particular stage.

The earliest stage represented in the material at hand is a nymph of Ae. canadensis, measuring 10.5 mm . in length. The wing-cases are barely indicated by a pair of minute buds and the antennæ are five-jointed. Beginning with this stage the nymph apparently moults eight times before emerging as the adult insect, there being eight instars including the fullgrown nymph. Judging by the size of the egg and the relative sizes of the known instars it appears probable that there are three or four ecdyses in addition to those observed, making a probable total of twelve or thirteen stages. This would make the number about the same as in the Agrionidae, according to Balfour-Browne "'09), who found $10-14$ stages in various British species, the number varying considerably among individuals of the same species. It is possible that the number varies also in Aeshna but I am inclined to believe that the number of stages in a given species is constant.

Changes at the various ecdyses-As I have not been able 10 determine the number of stages with certainty I have desig. nated the various known ones as $\mathrm{A}, \mathrm{B}, \mathrm{C}, \ldots \mathrm{H}$, stage H being the mature nymph. Owing to lack of material in the earlicr stages I shall not describe in detail the changes which appear in the nymph at each ecdysis. I shall do little inore than indicate some of the external characters by which each instar may be recognized. The younger instars among those represented in the material at hand differ from the mature nymph chiefly in the somewhat greater relative size of the eyes, which are less prolonged mesad, the smoother surface of the interocular region, the relative lengths of the antennal segments, the shorter and somewhat narrower thorax, and, of course, the smaller genitalia and shorter wing-cases, when these are present. The colour changes alsn with the growth, the younger instars being darker than the older ones. Instars A and B of Ae. canadensis and umbrosa, C, D and sometimes E of Ae. constricta are nearly black, except for a short time after each month, but in the succeeding stages the colours of the full-grown nymph are rapidly assumed.

Stage A. Antennæ 5 -jointed, terminal joint very long,

48 Walker: North American Species of Aeshna

wing-cases very minute buds, probably appearing for the first time at this stage.

Stage B. Antenna 6-jointed, terminal joint long, wing-cases still small and tubercle-like (pl. 4, tig. 1).

Stage C. Antenna 7 -jointed, the terminal joint of preceding stage having divided into two. Wing-cases in the form of small triangular flaps, the posterior pair reaching back about as far as the posterior margin of the metathorax (fig. 2).

Stage D. Antennæ 7 -jointed, wing-cases still widely separated mesially, the hind pair extending to about the middle of seg. 1 of the abdomen, their front margins meeting the hind margins of the front pair but not overlapping the latter (fig. 3).

Stage E. Front wing-cases though still separated mestally are much more closely approximated and their hind margins are overlapped ly the hind pair, which reaches about as far back as the apical margin of seg. 1 (fig. 4).

Stage 1 . liront wing-cases attingent and about half covered by ther hind pair, which reaches nearly to the apical margin of acg. 2, or to the middle of seg. 3, and a little beyond the midule of the hind femora (fig. 5).

Stage G. Hind wing-cases reaching the base or apical inargin of seg. 3 and nearly to the ends of the hind femora (fig. 6).

Stage 11 (full-grown). Hind wing-cases generally reach as far back as the middle or apical margin of seg. 4 and extend a little beyond the ends of the hind femora (pls. 5 and 6).

The above characters are based chiefly on the nymphs of Ae. umbrosa and Ae. canadensis but they apply equally well tu those of all the other species seen except Ae. constricta. Two nymphs of this species apparently belonging to stage D, but with slightly longer wing-cases than is characteristic of that stage in other species were found in a creek near De Grassi l'oint, Lake Simeor, in carly July, 1910. After the next moult which occurred about a week later the nymphs were intermediate in wing-length between stages 9 and 10 , and after another moult, in Ausust, they had all the appear-
ance of full-grown nymphs, except that they were a little below normal size for full-grown nymphs of this species. One of them died just after the moult, but the other lived until Dec. 24, when it died apparently from a too rapid change of temperature in the aquarium. The genitalia in this specimen, which is a female, are fully developed, extending beyond the apical margin of segment 10 , and the wing-cases reach a considerable distance beyond the apices of the hind femora. I am unable to say at present whether these peculiarities are characteristic of this species or were the result of abnormal conditions under which the nymphs were reared.

Length of nymphal life-Our knowledge of the nymphal life of Aeshna is not sufficient to warrant a positive statement as to its length, which indeed is not necessarily the same in all species, nor in every locality. It is, however, exceedingly probable that in southern Canada and the northern United States three years is the normal length of life of Ac. canadensis and Ae. umbrosa, if not of all the species found there.

It seems to be a general rule that stage F is entered upon about a year before the imago emerges. Of thirtyseven nymphs of Ae. multicolor collected by Mr. C. H. Kennedy at Sunnyside, Wash., in May, about the time when the imagoes were emerging, eleven were mature, twenty-four belonged to stage F and two to stage E. As the imagoes all emerge within a period of a few weeks the nymphs belonging to the latter two stages certainly remain over until the following year. Stage F of Ae. canadensis is the oldest stage that I have found in late summer after the time of emergence of this species and I have never found it in the early half of the season. 1 succeeded in rearing one individual taken during this stage. It moulted in the fall and became mature in the spring (the dates were lost), emerging on June 25. Six nymphs of this species taken at Go Home Bay, Ontario, on Aug. 14, 1908, all belong to this stage, while of six others taken on July 29, at nearly the same locality, four belonged to stage D and two to stage E. Six nymphs of Ae. canadensis taken at De Grassi Point on Sept. 6, 19io, belong to stage C. Two of these sson moulted but all entered

50 Walker: Nukit Amer!can Sphcies of Aeshna

the winter either as stage C or D. Finally I have taken stages A and B on July 27, 1910, and one example of stage C on July 3 .

These facts seem to show that stages \boldsymbol{E} and F and often D are passed through during the season before that in which the imago emerges, and that A, B and C belong to a still earlier season. The remaining early stages doubtless belong to the early part of the same season, as 1 have never been able to find any trace of them in the summer and autumn, in which practically all my nymph-collecting has been done. Thus it seems very probable that in Ae. canadensis the imago appears in the third season after the egg is deposited. This conclusion is, of course, open to doubt, and is offered merely as a basis for future work. And even if true in. the case of canadiasis it is not necessarily so for other species, as the following observations seem to indicate. On Aug. 8, 1910, 1 took ten nymphs of Ae. eremitu from a marsh on the Nipigon River, Ontario. At this time the imagoes were flying in numbers, the great majority fully mature and some worn, though a few tenerals were still to be seen. Of these nymphs two were mature, three belonged to stage F, two to stage E : and three to stage B. The mature nymphs were taken home ative and 1 expected them to emerge within a fortuight at the latest, but they did not do so that season and are still alive at the time of writing, Jan. 25,1911 . Thus it is possibte that an atditional year is required by this species to complete its life-history, at least in the northern locality where these nymphs were found.

Habitut of nymph-Although fresh water is probably the uormat habitat of the nymphe of all the North American species of Aeshna, Ae. califormial has been fornci in brackish watter at Victoria. B.C. (Oshurn 'on), and Mr. C. 11. Kennedy bas taken the adutes of Ae. interrupta interna and Ae. palmate at an alkaline slough near Baker City. Oregon, where it is prosible they were bred.

Nymphs of deshis are unable to withstand freczing won for a short time aud are killed by rapid clanges in the iemperature of the water. On July 29, igod, 1 found a number of young nymphs of Ae camadensis (stages D and E) in a
very shallow pond with a sandy lwttom. The water over many square yards was not more than about three inches deep and had been heated by the sun to such a degree that it was: almost uncomfortable to step into it with bare feet. The temperature must have been at least $38^{\circ} \mathrm{C}$. Nymphs of Ischnura verticulis Say and Nehallennia irene Hagen were also common here and all were quite as active as usual. 1 brought a number of the Aeshna nymphs to the laboratory and left them overnight in a jar of water, but all were dead the next morning.

The nymphs of Aeshna and the Aeshninae in general are climbers, living among reeds and rushes in still waters usually a few inches to one-and-one-half feet deep. Still weedy waters with a soft muddy bottom grown up with reeds, bur-reeds (Sparganium), sweet-flag (Acorus), horsetails (Equisetum), coarses edges, etc., with an abundance of true aquatic plants, such as water-milfoil and pondweed, and of aquatic life in general, offer the best conditions for their existence. Pred beds growing in water that is subject to any considerable ware-action may be searched in vain for any species of this genus, nor have any North American species heen found in rapid streams where the allied genu, Boyeria sometimes occurs. Only one species of Aeshnu, Ae. umbrosa, has been found in shady woodland streams free from all reeds or reed-like plants, although this species seems 10 prefer a "otain quantity of such growth. If never occurs in the open reed-like beds frequented by the majority of the species of this genus.

Habits of nymph - The nymphs cling to the reeds, lying in wait for their prey. In captivity they are usually almost motionless, except when attracted by some moving object. Sume nymphs of Aeshna which I kept in glasis jars placed upon a window sill overlooking a lawn were often atracted by white clothes hanging from a clothes-line, when moved by the wind. They usually rest with the heal downwards and in insufficiently aerated aquaria the tip of the abdomen is kept at the surface with the valves open. The opposite position is, however, :is assumed, particularly when the time for emergence is near at hand. Nymphs

of Ae. cyanea, whith I fomend in abundance in smath prols at Tithingen, Whirtumbur, "I Viesen, linhemia, were more frepuently seen resting noon the button with the abdemen tilted slightly wiwards than clinging to the reevls, though this is also a common habit. They were quite of en wherverl us swim short distances whith their characterintic straght jorky movements. White suinming all three pairs of legs are directed backwards, clowet the werly.

The ford of the gymp, on leshna is imilar to that of other large Odonate myiths. L mpoles. nymphs of smaller dragonllies. such as l,women ans, Sympetrum, Lestes, or the smaller nymphs of of \cdots a veies, nymphs of maylies,
 marus and Asellus, hem . Acorn ig 10 Needham ('osa) the nymphs of . 'e. construbl ($=4$ e umbrosa will eat young brooketrout as long as themaduer. This was demonstrated by condaing them togeth of in bredeng-age. The trout disappeared one by one until all had ben caten.

In aquaria I have found small carthworms convenient for feeding the older nymphs. The larger eart² nurms are avoided by Aeshna. Leeches are still better, 1 . © they are ea is obtained, as they remain alive a long time in the aquatiom. A leech, however, will often succeed in slipping away trom the nymph after the latter has apparently succeeded in obtaining a firm hold of his wrey. I have atoo fod Aeshna nyt. phis on tlies, water-smails removed from there whe thard suspernite d upon a thread in front of the insects, and at the lars te of the larch saw-lly (.Vematus efohsona), wich las at umes proved very comverient on account of its a undanc 1 tried also the lar of Leconte's saw-fly Lophyrus becontei) which occurred in large numbers on you ig white pines at De Grassi l'oint, but although seized ly the nymph they were ai once rejected. Probably the strong , our if turpentine wiic' ney give forth when crushed was disa, +4. able:

In the words of l'rofessor Needham, "the .he hna nymph approaches its prey with the s!owness and prise and stealth of a cat till within striking distanee." Thowe w o have watched these insects in captivity will st once recog ize the aptness of this comparison.

Considerala lifference bay le ntwerved between dif.
 nymph Tho of the yan 1 gernet ire distinetly lese shy than the of he clepside gron it I 'ave observed. None of our spuitis as ' \mid ' " ds voracious as Ae. ckinea which I reared ine all though Ac. umbrosa in very like it twoth in ar rame ad abits. Ae. canea would seize dmu- any of her Hhrlu in. the water i the b,reeding-jer whe is a it minger and ould stack eat. : is of a size whe 1 ind inned t:Ar umber A. wlins efas y le ean specil som. it ta no the nis te

Svmbir of : $n \quad n$ alga-Kammerer ('07) has 4 icribed all in res a symbiosis between the :ympi 「Aeshn. vanet and ic e en alga Dedogonium un. dulatur Hex is an The ympths were all found in a small p ite in reare id, Buhemia, which had been used f i ts r of a v the washerwomen of the igh 13, . It 'r 1 of Ae anea in the pool suppoted growth of whi tone of those found in neightarming pools nu, eet h ewatherwomen were hus If 7 ected. A weri perime showed conclusively that theasso in mbiosis and that the a. whe if ec the not associated with the 1. We ath in ate trongly ontaminated with -het is soa, their own excreta, etc. .ri hundant supply of oxygen provided more resistant toward : etain egnia, which cannot lis in an

atmosphere rich in oxygen. Thirdly, the growth of algar serves to hide the nymph from its enemies.

On the wher hand the alga has the bencfit of free tramsere from place to phace, which fasours the procesese of assimilation, and is , dhe to ohtain a richer fonel-supply from the feral matter of the nymph and the mod, in which it frequently burrows. The anthor also usperest that the spines and sharp cormers of the chitinous solerite of the nymph offer favonrable point- of attachment for the algat .mel that the latere is protereded from many animals which ordimarity fered npon it tilaments.

It was dha duwn he experiment- hat the asmediation
 msing indisidnals uriginally free-lising and medenendent of one another. bot that, with the exeeption of a temporary attachment to the cyater nymph of the alga Oedogonium capillare no similar connertion. contrl the exablished teetween
 for example, were refued in hosis beg (Oedogonium undulatum.

No similar ssonfation- hase be r. secorled from amons North American Gdomistat atd it is sene ewhat improbable that they will le fonmel unker such circomatances as those altending the rabe deorritud by Kammerer.

Emergence of the imago loor a wedk or more prior to the time of emergener sbe nymph is slugei-h and takes no food. and a few duw 'were this romt takes place certam changes in its appearance are noticestle. The ever of the developing image can le distinctly sern throngh the integument of the head, morly moetimg at the mitdle lime and extending farther back than thew of the nympla. St the time for transformation approadics, the eges become mesiaty ottingent and the hind margin- mone backwarth imtil they nearly reach the hindmargmof the head. White these changes are taking place the labium in acquiring the form which it assumes in the image and beromes emtitely witheawn from the larval cuticle, which appars quite empery shorly betore the imago begins to emerge During the lat few day- lefore emergence the nymph reats at the surtate of the water with the howed partls exponed

Judging from the very few occasions on which I have oberved the emergence of Aeshna or the freshly transformed imagoes, it would seem that this process usually takes place late in the afternoon or in the evelling. On dugust 1.5. B008, 1 witnessed the entire process in the case of Ac. cunadensis, a nymph of which 1 had lxeen keeping in a breeding-jar in $m y$ romm at le Cirassi Point. At to p.m. I found that the nymph had crawled up a reed which had been placed for the purpose in the jar. It was clinging to the reed with the bexly in a vertical position (pl. 5, fig. 1). It remained alnoss motionless for nearly ton minutes and then began to execute slight jerky movements of the abdomen and lifting movements of the wing-parls. These were accompanied by a bulging of the thorax and head, the integument of which almost immediately split in the usual way, i.e., in an are across the eyes, along the mid-dorsal line of the back part of the head and thorax to the bases of the wing-cases, and along the upper edges of the thoracic pleura. In five minutes from the time when the abdominal movements commenced the head was free, and immediately aftern rols the first pair of legs, followed rapidly by the second pair, these movements being accompanied by a backward curving of the br ly. The extraction of the wings and then the third pair of legs followed in less than a minute and at $10.16 \mathrm{p} . \mathrm{m}$. the imago was hanging lack in the pesition shown in fig. 5 , the accessory genitalia plainly exposed and projecting, and only the last iour abdominal segments not yet free. In this position the insect rested almust motionless for eleven minutes, the only noticeable change during this time leing the very slight elongation of the wings. Then the legs legan to move irregularly and at intervals but the position remained the same for seven minutes longer. At $10.34 \mathrm{p} . \mathrm{m}$. there was a sudilen convulsice movement of the whole alodomen and slight movements of the legs, and ten minutes later the insect suddenly bent forward. grasped the anterior part of the exusia with the legs and quickly withlrew the rest of the abdomen (figs. 6 and 7). The alstomen new measured .32 mm . and the wings 10 mm . The colour was pale greenish grey, the lateral thoracic lands faintly distinguishable. In the next twelse minutes the
wings became fully expanded but the athomen remained very little longer than before (fig. 8). Bobhing movements of the abdomen ensued, followed by a gradual clearing of the wings. Rhythmical up-and-down movements of the whole bocly and irregular telescopic movements of the abdomen were next observed. At 11.30 the ablomen had not quite reached itfull length and was still stout. The colour was practically unchanged.

Exuviae of Aeshna nymphs are, as a rule, difficult to find. As most of our species transform on reeds or other plants growing closely together in shallow waters they are not at all conspicuous and are very easily on rlooked. They should be sought during the period of emergence, or soon afterwards, for they are soon blown into the water by the wind. They are generally found clinging to reeds a few inches above the water. Exuviae of Ae. umbrosa are sometimes found on stumps or logs at the water's edge.

Tee North American speches of Aeshna. Generai Characteristics.
Although the number of describeyl North American species of Aeshnu is somewhat greater than that of the Palaretic species, the latter are more diversified in size, stlucture and colour-pattern and represent a larger number of groups. All of the North American greups except thase of californica and multicolor orcur also in the Palearctic region, where in addition to these the groups of grandis, mixta, ${ }^{2}$ isoceles ${ }^{2}$ and melanictera are represented. The Corth American species are remarkahly uniform in size. form and coloration, the nates of nearly all the species having the abdomen brownish black. spotted with blue. no such variety of colou-pattern occurring as in the lazarctic -pecies grandis, viridis, isoceles, melanictera and cyaneas.

In both regions the greater number af secies inhabit the cooler parts of the comperate zone and anoong these are

[^4]some of the most characteristic dragonflies of the subarctic and arctic regions. A number of the North American species, induring (w') groups, are entirely restricted to the boreal tegion, where they are a dominant group, both in species and individuals.

Key to the North Amerlcan Specles of Aeshna.

I. Males.

I. Anal trianglo 2 -celled; spines of anterior lamina lire: ven verad
i3. Lithe of entact of the eyes little or no longer than ihe veciput: lateral thoracic bands less than 1 mm . broad, the firut bend sigmoid or bent twice at alternate macts; hamular processes large, broad and elevated whind, acute in front, their inner margins straight and at:ingent or approximated ; hamular folds small, more or lasis concealed by the hamular processe : with which they are connected by a low ridge. . (caerulea group).

1 . Preorular hand not produced forward on each dild lehind the T-spot; distance from hind margin of exciput to frontal wesicle less than 2 mm .; spines if anterior lamina not longer than the hamular p:oisis, stout, straight, bluntly pointed: MD large, rregular or subquadrate. caerulea septentrionalis Burm. (C. I'reocilar band produced forwarl on each side of the stenn of the T-spot; distance from hind margin of occiput to frontal vesicle about 2.5 mm .; -pines of anterior lamina longer than the hamular process, curved ventrad anc tapering to a slender point; MD of ordinary size, triangular... sitchensis Hag. 113. l.ine of contact of eyes distinctly longer than the , लciput lateral thoracic band generally more than 1 mm . brodel, when narrower never sigmoid; hamular processes never with straight closely approximated inner margins: hameatur folds (except in Ac. subarctica) not at all concated by the hamilar processes.
1). Hamular proecsses long and slender, separated inter the hamulariolds, wnich are more or less reduced; -qiues of anterior lamina very long, tapering to a fine
erint; superior appendages more or less acute at apices, thr superior carina not denticulated: a black band on lifr fronto-nasal suture.
(juncea group).
E. Lateral thoracic bands broad, the margins -traight; spines of anterior lamina curved ventrad: apices of hamular processes acute and somewhat hooked; hamular folds plainly visible in a perpendicular view..
juncea L .
EE. Lateral thoiacic bands broadly excavated in front, the first one narrowed and slightly bent a little above the middle; spines of anterior lamina straight, very slender; hamular processes rounded it apices, almost concealing the small hamular folds in a perpendicular view. . .subarctica Walk. DD. Hamular processes short, continuous with the hamular folds, which are well developed;spines of anterior lamina short and straight. (clepsydra group).
F. Superior appentages without a prominent basal inferior tubercle; : g. 10 with a pair of pale dorsal spots (I'D) which are sometimes confluent.
G. Dorsal thoracic bands reduced to a pair of small isolated spots (often absent in dried specimens): lateral thoracic bands reluced, either nart iw and nearly straight or clivided into an upper and lower spoi. Mt taarising normally beyond middle of pecrostigma: spines of anterior lamina very short and blunt: superior carina of superior appendages generally with a frw small denticles; a black line on the fronto-nasal suture. interrupta Walk. GG. Dorsal thoracic hands complete, eypanded at their upper ends : lateral thoracic bands broad, more or less excavated or sinuate in front; Mra arising normally before the middle of the pterostigma.
H. Superior appendages with a low sub basal inferior prominence, expanding almost symmetrically from the base, the inner margins in dorsal view not sinuate; apices rounded, normally without a terminal spine and not at
all decurved; superior carina rather strongly elevated apically, where it bears 6 or 8 wellmarked denticles; a black line on the frontonasal suture (sometimes absent in arctic specimens); first lateral thoracic band strongly constricted about the middle by the deep excavation of the front margin.
HII. Superior appendages eremita Scudd. metrically from the base, their inner margins sinuate in dorsal view; apices acute with a terminal spine; superior carina moderately or but little elevated apically.

1. A black line on the fronto-nasal suture: a large pale triangular spot immediately in front of the humeral suture below ; lateral thoracic bands very broad, the upper end of the first band narrowed and bent cephalad; pale spots between the bunds very large, occupying the greater part of the space between them; outer margin of the superior appendages in lateral view very slightly elevated apically, with $3-5$ small denticles. ...clepsydra Say. 1I. No black line on the fronto-nasal suture; no triangular spot in front of humeral suture telow: first lateral thoracic band lent caudad at the upper end ; spots between the lateral bands, when present, sinall; outer margin of superior appendages in lateral view more or less upcurved. apices decurved; superior carina moderate. ly elevated apically.
J. Lateral thoracic bands blue or green the first generally green below, blue above, its anterior margin almost rectangularly sinuate ; superior carina of superior appendages with a few denticles, apices rather abruptly decurved; ham-
ular processes rather long, directed cephalad, subparallel, the apices convergent: Pl. typically represented on abd. segs. 2-6. . canadensis llalk. J.J. lateral thoracic hands yellowish green, the anterior margin of the tirst band obtusangularly sinuate: superior carina of the superior appendages not denticulated; apiees usually gently decurnedilhamular processes directed mesad and ventrad, each consisting of a stout proximal and a slender diztal part: 1 'l. iypically represented on alxd. segs. 2-4. verticalis Hag. 1.1. Superior appendages with a prominent inferior basal tulercle: superior carina moxherately elevated apically, not denticulated; apices rounded with a small projecting spine, not decurved : lateral thoracir bands broad, not excavated in front; able seg. io wholly black
tuberculifera Walk. AA. Anal triangle $\mathbf{3}$-celledis spines of anterior lamina curved dorsiul.
K. Axd. seg. I without a distinct ventral tubercle: dorsum of seg. 10 smoth; superior appendages without a well-developet superior carina but with an anteapical internal hairy tubercle and an anteapical inferior spine; apices broadiy rounded.
(cyenea group).
L. Ablack line (rarely a fine brown line) on the frontonasal suture; dorsal thoracic bands 1 mm. or less broad, tapering somewhat towards each end or sometimes suddenly expanded at the posterior ent: latr ral thoracie bands nearly straight and equal: a diesinct grevinish yellow lateral spot on seg. 1 ; lateral carinar of res. 7 in ventral view; sighty or not at all sinuate: venter of alxlomen and rear of head wholly back: generally one cell between A_{2} and A_{3} at their origin. palmata Hag.
I.I. Without a black line on the fronto-nasal suture:
dorsal thoracic bands rapidly widened caudad so as to be triangular in form with the hase just in front of the antealar sinus: generally two cells between A2 and A_{3} at their origin.
M. Rear of head in part fuscous; lateral thoracic bands rather narrow (I min.); straight, not widening above the middle, surrounded by a dark margin; a pair of large pale basal spots on the ventralsurfaces of segs. 4.5 and 6; lateral carina of seg. 7, viewed ventrad, strongly sinuate in its anterior two-fifths. .umúrosa Wali. MM. Rear of head wholly black; lateral thoracic bands broader, not surrounded by a dark margin, widening above the middle, margins of first band, especially the anterior, sinuate; venter of abdomen without pale spots; lateral carinae of seg. 7, viewed ventrad, at most feelly sinuate.... .constricta Say. KK. Abd. seg. I with a distinct spinulose ventral tubercle: dorsum of seg. 10 with median and submedian tooth-like elevations; superior appendages with a welldeveloped superior carina.
N. A black line on the fronto-nasal suture; superior appendages without an anteapical inferior spine, the apices obtusangulate or rounded, superior carina not angulate or denticulate; inferior appendage somewhat less than half as long as the superior pair.
californica Cals.
NN. No black line on the fronto-nasal suture; superior appendages with an anteapical inferior spine, the apices acute and decurved, superior carina angulate: inferior appendages slightly more than half as loug as the superior pair.
(multicolor group).
(). Abdomen (excl. appendages) less than four times as long as the thorax; a prominent ventral tubercle on alxd. seg. 1 ; inferior sub-basal tubercle of the superior appendages at one-fourth to onefifth the length of the appendages: height of superior carina above outer margin, in profile, not less than the depth of the appendage directly below it;
distance from summit of superior carina to apex of appendage greater than one-third of the length of the appendage; outer side of anal loop in hind wing longer than inner side of the triangle.
OO Abtom (excl appendages) mullicolor Hag. ally a little more, than four times as long as the thorax; ventral tubercle on abd. seg. I but little elevated; inferior sub-basal tubercle of the superior appendages at one-sixth to one-seventh the length of the appendage; height of superior carina above outer margin, in profile, generally much less than the depth of the appendage directly below it; distance from summit of superior carina to apex of appendage about one-third of the length of the appendage; outer side of anal loop in hind wing about as long as the inner side of the triangle.
mutata Hag.

II. Females.

A. Abd. seg. I without a distinct ventral tubercle; fork of Rs decidedly asymmetrical at base.
B. Line of contact of eyes little or no longer than occiput; lateral thoracic bands less than I mm. broad, the first band sigmoid or bent twice at alternate angles. Genital valves in ventral view tapering evenly to the narrow attingent apices, lateral carinae prominent.
C. Distance from hind margin of occiput to frontal vesicle less than 2 mm .; preocular band not produced forward on each side above; appendages about as long as segs. $9+10$, more slender proximally than distally, the apices rounded or broadly and obscurely pointed. caerulea septentrionalis Burm. CC. Distance from hind margin of occiput to frontal vesiclealout 2 mm .; preocular band producedforward on each side of the stent of the T-s: vi; appendages slightly longer than the dorsa of seg. $9+10$, tapering equally at base and apex, the latter distinctly though Lluntly pointel
sitchensis Hag.

BB. Line of contact of eyes distinctiy longer than occiput; lateral thoracic hands generally more than I mm . broad, when narrower never sigmoid.
D. Basal plate of ovipositor distinctly bilobate, lateral genital plates aisent; PL large but separate from PD (sometimes narrowly connected on 2).
E. Lateral thoracic bands broad, not excavated in front, first band gradually tapering to the upper end, without a distinct posterior offshoot; genital valves with a distinct ventral surface; appendages shorter than abd. segs. $8+9$ (.5 mm . or less). juncea L . EE. Lateral thoracic bands narrower, broadly excavated in front, first band gently widening above the middle to the upper end from which a narrow posterior offsl: \times t is given off; genital valves without a distinct ventral surface, appendages about as long as abd. segs. $3+9(6-6.8 \mathrm{~mm}$.) subarclica Walk.
DD. Basal plate of ovipositor not bilobate, its hind margin straight or slightly arcuate; lateral genital plates present; PL generally confluent with PD (often separate in sie. umbrosa).
F. Styli much shorter than the dorsum of alxel. seg. 10; appendages less than 1.5 mm . broad, decidedly slenderer in the hasal than in the apical third: broadest beyond the middle ; apices generally rounded.
G. A black line on the fronto-nasal suture.
H. Genital valies $\mathbf{2 - 2 . 5} \mathbf{m m}$. long; apices not elevated, bearing a very minute pencil of hairs.

1. Dorsal thuracic bands absent or represented each by a minute and usually illdefied spot: lateral thoracic bands reduced. 1 min. or less in width, each band often divided into an upper and lower spot : Mia normally arising beyond the mididie of the pterostigma.
interrupta Walk.
II. Dorsal thoracic bands distinct in wellpreserved specimens, complete, or the upper
end separateal an a distimet spent: hateral shoraci band nowr than 1 mum. hroal. never divided hat the deat band derply excavated in fromt: $\$ 1$ t. mormally arising in frome of the michle of the pherostigmat.
J. Without a pale eriangular spen in tront of the hemeral suture; liral latesal theracie hand unt tron fontard at the upper cond; apots betwern hateral hathto not matually harge.
cremita sculd.
JJ. A hage pale triangular 4 pet in Iromt of the humeral suture ladon: first lateral thoracic band trent forward 11 upper end; spots freweell hateral batalm vers large, offen contluent with the bands.
alepsydra say.
H11. Gental valves , 3-3.5 mme long, apices elevated, withest a terminal pencil of hatre: laterat
 isallated in front.
palmula llis.
(ic: Without a black line on the fronto-nasal shlure.
h. Lateral thoracic bands green ir yellowish green (rarely blee) not margined with black, the anterior margin of the first band distinctly sinwate, the second band clongate-triangular; genital values $2-2.6$ mm. long, apices not efevated, learing a minute ancil of hairs.
L. First lateral horacic band with the amterior margin almost rectangularly sinuate, much narrowed about the middle, its upper end giving off catudad a very narrow offshont: ponterior (pa-lero-inferior) inargin of second band generally curued ventral at the upper end: sulcation of ventral surfaces of genital valies not distinctly delimited posteriorly. appendages usually $q-6 \mathrm{~mm}$. long.
1.1. lïrst lateral thoracic band with the anterior margin obtusankularlysinnate, not much narrowid alxut the niddle, its upper end giving of catdand a broad offshoot; poitcrior margin of arond lateral band straight; sulcation of ven1 thl surfaces of genital salves terminating 'bure or less abruptly some distance lefore the bices, appondaxes $5.75-7$ nun. long.
verticalis Hag.
KK. latteral thoracic bands yellow, margined with black or dark lnown, aloout 1 mm. broad. Groight, the tirst banel expanded a little lelow; lot mot at all simate, the secomel band with the margins sul ; arallelige:ital valses $\mathbf{2 . 7 - 3}$ mim. long, .picessighty wewatul, without a terminal pencil of hairs.
umbrosa W'alk.
I.F. Styli as long as the dorsum of abd. seg. 10 $(1.5-2 \mathrm{~mm}$.) : appent!ages 2 mm . broad or nearly so: hasal third tully as bromd as the apical, expanding rapidly with comsex margins so that the greatest lireadih is attoined lxfore the middle: apex gencrally acute, u-ior broally rounded; no black line on the frouto-nasal suture.
2. lïrst lithral ham with the anterior margin -taaight or nearly so, gradually tapering clorsad and hot giving off a distinct posterior offshoot; second latcral band nou widened at the upper end; genital bulces. $3.1-3.5 \mathrm{~mm}$. long, apices broad in profile, each trering a minute pencil of hairs; : 1.5 mm ., spinwess on ventral wurface of abd. seg. Io comparatively frw and coarse. tuberculifera Walk. MIM. First lateral hand with the anterior margin distinctly sinuate, the upper and giving off a -matl prosterior offshoot: second lateral band rapidly widened at the upper inf; genital valves $\$-4.5 \mathrm{~mm}$. long, apices slender in profile, without a pencil of hairs; styli nearly 1 mm . Iong: spinules on ventral surface of abd. seg. 10 numerous, minute and close-set
constricla Say.

AA. Abd. seg. I with a distinct ventral tubercle; fork of Rs nearly symmetrical it base; genital valves without distinct lateral carinae
N. A black line un the fronto-nasal suture; supratriangle ef tore wings clear or with a single cross-vein. coltfornica Cals.
N.N. Without a black line on the fronto-nazal stlture; supratriangle of fore wing with $2-4$ cross-veins.
(). Abslomen scarcely more than four times as long as the thorax: a prominent ventral tulerile on abod. seg. 1: appendages somewhat shorter than segs. $8+9$ (5 -6 min.), Iroth margins archate, the curve of the inner margin not much stronger thatl that of the outer: outer side of athal lenp) of himid wings longer than inner side of triangle. . mallicolor Hag. (20. Alxlomen four and onc half times as long ats thorax: ventral tuberele on absl. sex. I but little elevated: apiondages a little longer :han segs. $8+9$ (6.5-7.5 $\mathbf{1 1 m}$.): outer margin straight, inner margin arcuate. outer side of anal loop of hind wings about as long as inner side of triangle.

> mutata Hag.

Key to the known Nymphas of North American Specie: of Aeshas.

A. Mentum of labinum distm tly more than half as broad at lase as at apex: genitalia of femble natally not reaching the pesterior margin of 9 and never evtonding teyond $i t$.
13. Lateral spines pres.mion alel regs. $5-9$; lateral lohes of labium squarely truncate.
C. Postero-lateral angles of head blundy angulate or but little rominded.
eremila.
(C. Postero-lateral angle- of head broadly rounded. anterrupha lineala!
13B. Lateral spines present on aidd. segs. 6-9; posterolateral corners of head well rounded.
D. Femera dark with three pale annuli, abolonen marked with irregular pale blotehes on a darker ground colour; lateral lobes of labinm squarely truncate. the outer apical angle scarcely rounded.
inlerrupto interrupla

DD. Femora uniform: abdomen without irregular blotches, more or less distinctly longitudinally striped; lateral lobes of labium, when truncate, with the outer apical angle distinetly rounded off.
E. Lateral luber of labium truncate; abdomen not conspicuonsly striped; lateral spines on 6 rudiinentary, distant from the posterior margin of the egunitt by at least four times their own length.
1.. P'unctae conspicuously marked with dark brown. those of the later: series distinetly larger than the dorso-lateral; lateral spines on 9 not quite reaching as far caudad as the midtle of the dorsum of 10; lateral appendages of fentale half as lung as the inferior pair junceu. FF . Punctac very inconspicuously marked, the dorsal series being scarcely darker than the ground criour, those of the lateral and dorsolateral ser, about equal in size; lateral spines on 9 reaching as far caudad as the middle of the dorsum of 10 : lateral appendages of femate threefifths as long as the inferior pair.suburclica. EE. Lateral lube's of labium not truncate, lnt exteriorly curving to a prominent internal terminal hook: alxdomen with conspicuus well-d in weld dorsal loreitudinal bands; lateral spise on of welldevelop 1, distant from the postc.:. , sim by about the ir own length.
(i. Lateral margins of mentum ofe
l.asal half not in the least degree ar . .anal toves terminating in a broadly curved i. .,.n.rk median band on abdonen not derpened about the dorsal punctae. clepsydra. (iCi. Lateral margins of mentum of labium in the basal half very feebly arcuate, lateral lojes terminating in a very abruptly curved and \therefore nuost truncate hook; dark median band on itm domen deepened about the dorsal

AA. Bentum of labium not, or scarcely more than half, at broad at base as at arex.
H. Lateral lobes of labium tapering to a slender slightly hooked point ; legs miformby coloured: genitalia of female reaching caudad nearly or tuite to the .tpical margin of 10.
constricia.
11H. Lateral lobes of labium sipuarely ermate: femora, and generally the tiliae alst, with alternate pale and dark amuli- genitalia of female never reaching caudad to the middle of 10.

1. Eyes very ;rominent, postocular part of head comparaticely long with straight lateral margins, and presminemt. though romaded, postero-lateral angles; menthm of labium strongly narrowed in the proximal four seventho, distal part with the lateral margins strong19: arcuate: genitalia of fenale reaching wor beyond the posterior mathein of 9 .
2. Apical breatho of mentum of labimm equal to atont tomer-lifthe of its lengeth, lateral lohers without an interna! aprial tooth: stpracos.il processes erfual; genitali, of temate extometing wat the hatal third of 11) palmata.
IJ. Apical breathle of labium ergat to about three tourths of its length, lateral kolnon with at small in-
 the posterior momewhot the l.uger, genitalia of
 (1). umbrosa.
3. Eves but litale preminems, posto ather part of head - bort with watriely any development of the lateral mation ds dintine from the entre of the postero-
 cuerly, distal part with t... lateral maghe moxerately are uate ; genitalia of female not reabhing the pesterior matsin of 9 .
4. I'ostertor stipracoxal presem distinetly longer than the anterior: latcral spines ot at, ! seg. 6 dis-
tant front the posterior margin by $1-2$ times their
oun length; anterine wingeam- with $11-15$ ante-
cubital veins; basal part of superior appendages of male about as long as the hasal breadth; tibiae without, or with indistinct, annuli californica. KK. Supracoxal processes subequal; lateral spines on 6 ruclimentary, distant from the posterior margin by at least four times their own length; anterior wing-cases with $16-19$ (rarely 15) antecubital veins: ibasal part of superior appendages of male distinctly Ionger dan the basal breadth; tibiae with distinct annuli.
mullicolor.
The caerulea gronp-A well circumscribed group of breal distribution, consisting of the circumpolar Ac. raprulea with its two races, carrulen and septentrionalis, and the North American Ae. sitchensis. Their origin and affinities are obseure, their nearest allies being apparently the juncea group, with which they share the long downwardly directed apines of the anterior laminat and the reluced hamilar foki-. In the feelbe and andecided developenent of the anterior brimelh of the fork of the radiat sector, especially in caeraled. and the long line of cross-weins between K s and. M 2 the group) appars to be a primitive one, approaching the genera Oplonde"chna and Busizeschno.

The junce group-This is also a sharply defined group of ino looreal species, of which junica is rircumpolar, subcritica North American. Their nearestaffinities are with the depsydra group, to certain members of which they bar a rmarkable ctose resemblance, both in the atult and nymphat title. The wide differences in the genitalia, however, show that there is no very close relationship leetween the twogroups.

The clepsyirc group-Auother circumboreal group of "ight species, -ix of which ocour in North America, two in 1-ia and one in limrope. Their mearest allies are the Palatretice percies gradis and viridis, which differ chielly in the -impler ind mone gemeralized form of the male alxlominal "premages anos the more specialized type of coloration. Iter genitalia of 1 oth sexes are of precixdy the same type and
 Dhat i. I hate nut seen it 1 prefer to ieave it out.

70 Walker: Nortil American Species of Aeshna

the venational characters are also very similar in the two groups.

The North American species of the clepsydra group are for the most part remarkably alike and it seems probable that they have diverged from a common ancestor at a comparatively recent periol. Species are apparently still in the process of evolutioi., as exemplified in the case of the geographical races of Ac. interruptu. The most generalizel member of the group, however, is the Siberian Ae. crenata, in which the lateral thoracic bands are broad and straight asi in juncea and grandis. This speries closely resembles interrupta and ere. mita in the accessory genitalia of the male, and the apmendages of this sex combite the characteri of sweral of the American forms such as eremitu. interriopta and clepsydra. It would thus sevm iory probable that the clepsydra group had a common origin with the grandis group in the l'alieartic region.

The cyanea group-This is a very well-marked group of four species, remarkable for the form of the male appendages. In the Pabearetic Ac. cyenes the jerequakation in these structures hals not Ixen carried quite sin fir as in the other forms and the downwarlly directed apical spine is clearly homolngous with the pointed apices in the ordinary type of appendage, while the hairy anteapical hubercle is less developed than in the other species and appears to represent part of the susperior carina. Of tite other three speries pabmata is in nost respects intermediate Ixetween umbrosa and constricta and may le regarded as nearly representing the parental form from which they have descended. This leoing so, it is ant interesting fact that palmata ocrurs in northeastern Asia as well as western North America.

Thus it is probable that the cyener group is also of Palaarctic origin. Ac. cyanca being the most primitive species in the form of the male appendages, though wost specialized in coloration, while Ac. palmata is the mos' generalized of the other three. In this cennection it may be noted that Ae. umbrosa has diverged from palmata more widely in the cast than in the west, the ablominal coloration being more similar to that of palmata in British Columbia and the Western

States, where both species occur together, than in eastern North America where only umbrosa is found.

The californica group-The nearest allies of Ae. californica are found in a group of species from South a'd Central America and Mexico. This group as pointed out by Calvert ('osb) consists of such species as Ae. difinis, marchali, cornigera, galapagoensis, bonariensis and confusa. Ae. haarupi probably also belongs here. Not having studied many of these forms closely, I am uncertain as to the limits of the group. or whether it is sharply marked off from the following group, to which it is certainly very closely allied. The nymphs of californice and multicolor are renarkably similar.

The multicolor group-The peculiar form of the abdom. inal appendages of the male seems to be the only character by which this group differs from the preceding, of which it is probably an offshoot. It is |xest developerl in southern Dhexico, where Ae. dugesii, mullicolor and jalapensis occur. The moly other species, Ae. mutata, is a northeastern offshont. in curring in the eastern half of the I'nited States.

Besides the species of Aeshna described here, one other. line Palarartic Ae. grandis 1.. has leen once recorded from Virth America by Hagen ('61), who observed a single indivilual at Bergen Hiil, N.J. This specimen was believed en have been iateroduced by a vessel. There is also a specimen of grandis in the collection of the Ontario Agricultural Colbige. Cuelph, labelled "London, Ont., J. M. Denton." Nothing, however is known of the history of this specimen and in the absence of such information 1 prefer to exclude titis species from the present account.

Descriptions of Species.

Aeshna caeruiea septentrionnill; iburmeistct.

 1.乡. 1, 2, 3.)

 nirby. 5 yn Cal ©

 if. 3. fige 1, 1.s th (198:).

A rather small, masicraty -tom apecien.
Male-Occipa: phil fellowish, brower than long. at lung as, or somewher longer than, the line of combet of the eges, which measurn less thon 1 mm in lengil. fromal vesicle wery lagee about wice in broad is lomg, the tront margis straight ur slighly emarginate, black with a median yellow spot mot tenthing the latoral ocelli: yes muth narowet dhove and smaller than in other North Ameriban speciess T-spot with cros- har very hease, $2-2.5$ mon., the stem vers thort, dhate .5 mam. broad, preocular band not cirved forHard on cach sile nt the 1 -apot, but contmed vemerad as a marginal line to her bote's of the heteral lobes of the nasus. panding manderally w the Ironto-natal suture, lout narow on the na-1!-; a hent blach lime on the froato-nasal stlure.

 near the fows mate in of the nastis not marked with black. Lateral lobe witule fotampulate. foebly haring; rhmarium
 and gencrally a hens ,i-k tomer, margin; labum dull vellow -tained with tefdeh bre wertipherally rear of heod hark.
 dull olisedons hewn, datemed, shong the sutures and about

though distinct, elongate pale spots $1-1.75 \mathrm{~mm}$. long. A pale utrak usually present along the lower half or more of the humeral suture in front. Lateral thoracic bands narrow and irregular, pale yellow (bluish above?). First hand very *tro g'y sinuate, being twice bent, at alternate angles. hroadest in the middle and lower parts, but nowhere more than 1 mm . and sometimes (in Labrador specincen) very narrow and broken; a narrow posterior offshoot is given off it the upper end. Second band nearly straight, narrowed and cometimes divided at the middle, upper ends expanding along the posterior margin of the thorax above and below.「wo small spots generally present between the lateral bands. one at the metastigma, the other above it.

Legs rather pale reddish brown, darkened on the tarsi, distal ends of the tibiae and under surface of the femora.

Ablomen about four times as long as thorax and barely I. ber than the hind wing, considerably stouter than in sitchousis, strongly constricted at 3 , then rapidly expanding and at taining nearly its full width at the apex of that segment: base of 10 considerably narrower than the apical margin of 9. $\because g$. I without a ventral tulx rele; auricles with 4.6 teeth; trgal margins of 2 approximated but not angular.

Spines of the anterior lamina rather stout, shorter than in Ac. sitchensis, reaching caudad nearly to the posterior margin of thr hamular processes, and projecting a little below the tergal margins, nearly straight, rather bluntly pointel. directed ventrad, caudad and slightly mesad. Hamular procenes very large, their posterior margins broad, rounded and trongly clevatecl, the apices bluntly acute, the inner margins ruther narrowly separated at hase but approximated apically. 'huter surfaces strongly concave and almost vertical apically; hamular folds wery small and almost concealed in a direct woneral view ly the hamular processes with which they are ionneected by a low ridge; elosely approximated mesially.

Latcral carinae on 7 and 8 nearly straight; on 9 present. as a rulce only on the apical half. Dorsum of in with a prominent median basal tooth and a smaller one on each side rit it.
superior appendages a little shorter thang +10 , nowerate-
ly slender and slightly divergent in their basal fifth, where they are separated by aspace 2.5 times their width, thence expanding on the inner margins to the middle, where the breadth is 15 to 1.4 times the length, tapering slightly in the distal half to the well-rounded apices, which are without a terminal tooth; outer margins moderately convex, inner margins sinuate in the basal half. Superior carina obsolete or feeble in the basal third, considerably elevated in the apical fourth and strongly arcuate at apex, nearly smooth or with a few minute elevated points. In profile the outer margin appears gently upcurved or nearly straight but the appendlage appears considerably upcurved apically on arcount of the elevated superior carina and arcuate inferior carina, which is formed by the deflected inner margins. Hasal part thickened, with a low sub-basal inferior prominence. Inferior appendage triang. ular, slightly less than one-half as long as the superiors, basal breadith three-fifths to two-thirds of the length, sides barely convex, apex very bluntly rounded, surmounted by a pair of small recurved teeth. Upper margin in profile view very gently curved, lower margin strongly rurved, the sides very broad near the base, tapering rapidly.

Abdomen brownish black, all the pale markings probably bluc. varying considerably in size but always large.

Seg. i. i)orsal spot apparently large. lateral spot variable, sometimes 1.5 mm . in the transterse dimension, sometimes obsolete (?Labrador specimen).

Seg. 2. AMIL, very large, covering most or all of the laterai surface back to the transverse carina, connected with or narrowly separated from MD. I'I. and I'I) confluent, cosering about two-thirds of the posterior half of the ssgment. deeply notchec in front, broadly cunfluent alove with its fellow and with a median clorsal band, more than 1 mm . broad, which runs cephalad nearly to the anterior margin.

Segs. 3-10. AL on 3-8, upper margins straight, no basal offshoots; on 3 covering almost the whole lateral surface in front of the transverse carina. MI. large, rounded posteriorly. MD very large, irregularly semi-elliptiral or subquarlrate, and generally broadly confluent with ML, except on 8 , where it is reducel to a mere dot; geterally confluent
also with PD on some or all of the segnients, the variation in this regard being considerable. In the Labrador specimen these spots are more widely separated than in the others. PD on $\mathbf{3 - 1 0}$, varying in length from $\mathbf{1 . 5} \mathbf{~ m m}$. on 3 to 2 mm on 8 , always well separated from its fellow, except sometimes on 10 where there may be a narrow connection next the posterior margin; inner margins nearly straight on last 2 or 3 segments, elsewhere convex or somewhat indented and irregular. II, usually on $3-8$, on 3 and 4 only in the Labrador specimen, connected with PD, straight and elongate where well-developed and separated from PD throughout, or narrowly connected on 3 and sometimes 4 ; often also with ML on 3 and 4 .

Wings of average size and usual form, the hind wing about as long as the abdomen, hyaline; costal margin moderately dark brown; pterostigma long, brown; membranule uniform grey, extending caudad to cross-vein of the enal triangle, which is 2 -celled; one cell between A_{2} and A_{3} at their origin. Upper branch of Rs following a somewhat irregular course, not always distinct at its origin and, when distinct here, coming off at a rather marked angle, at a point opposite the first to the third postnotal cell before the pterostigma: 3 (rarely 2) rows of cells between the forks at the level of the distal end of the stigma, and $3-4$ rows of cells between the forks at the margin. Rspl nearly straight, separated from Rs at the point of greatest divergence by 4 (rarely 5) rows uf cells. Two rows of cells between Rs and M2 for a consititalle distance before and beyond the fork of the Rs, somelimes indications of a third row. Mra arising under the sligma at a point oppusite or somewhat before the middle.

$$
\text { Antenodals } \frac{13-16}{6-11}, \text { postnodals } \frac{11-12}{12-14}, \mathrm{CuCr} \frac{4-6}{5}, \mathrm{Spt} \frac{2-3}{1-2}
$$

Female-Abdomen about as long as hind wing, deeper than in the male, especially at seg. 3, the dorsal and ventral surfaces of which appear in profile nearly straight. Seg. 3 almost as long as $1+2$, barely longer than 4 .

Genital valves a little longer than the dorsum of 9, ventral margin in profle slightly convex, especially at apex; lateral carinae percurrent, sharp and very prominent; space between them in vertral view, suddenly widencd a little be-

76 Walkek: North American spleties of Aeshna

yond the hase, thence taperiug evenly to the narrow pointed apices. the greatest width being about twoffiths of the length. Ventral surface of valves moxlerately declivent. Styli somewhat less than one-half as long as the dorsum of 10 . Basal plate of osipositor of mexlerate size, the posterior margin nearly straight. Ventral surface of to deeply cleft by the pesterior margin. Appendages slightly shorter than $9+10$, somewhat incurved at base, lanceolate, greatest width beyond the middle, somewhat less than one-fourth of the length: curve of inner margin slightly stronger than that of the outer; apices rotundo-angulate without a projecting tooth.

The colons-pattern differs but little from that of the male. Dorsal alxdominal spots somewhat smaller, lateral spots slightly larger than in the male. (11) sometines iomparatively smill, triangular and isolated, sometimes large, subquadrate and confluent with M1. and I'D on some of the segments. P'l. on 2-7 ecparate from I'l), but confluent with M1. on some or all of the segments.

Mewsuriments llhor. of $9-10$, \& 9-0 5 ; ald. on 37.5-42,

 of 11-12.5. 8 11-12. : pter. of 3.5-3. \%. \& 4

Nymph-I Inknown

 181.
lientery I can fimel no gexal characters for the separation of this formfrom the l'alivatetic caeraliz Ström (borealis \%ev.). The omly dintin tive atruetural harater is the shorter and relativety broader form of the appenduges of the female in septentrionalis, but an I have shown thewhere these strucwres sary gutaty in length in mont :incico of deshna and. as a rule, long appentage are relati dy :arrower than shore ones. It must also !a twome in mind that very few female specimens of septentrionsels. anit in coliertions, and still frwet with unbroken appendagse. In fact I have seen but two such specimens.

The upper branch of Rs is generally somewhat less definite in typical cacruler than in septentrionalis, the venation in keneral slighty more complex and the size slighty larger, but none of these characters are constant enough to be of any value in separating the two forms.

The colour-pattern is also aluost identical in the two forms hut here there is one point of difference in the form of the first lateral thoracic hands. These are somewhat wides "pposite the lowest lxend in cuerulea, the hind margin not being angularly bent as in septentrionalis but only slightly rurved. This frature, however, seems tox) trivial to te made the basis of a specific distinction, and may prove to be inconstant when the species is better known.

The distinctive characters for these forms givell by Vartin (os) are incorrect. The line of contact wi the cyes is quite ds short in this forn: as in typioal caeruled. Matrin's ligure of the wings of seplentrionalis lelongs to some other -per ies. onte of the clepsydra group and probally interrupea. It mily le noted that the maximmon number of antenodal wins in the fore wings as given by Martin is 18 , and the number in his figute in 19. The figures of the appendages are diso apparenty tron one of the races of interrupta, ithough $^{\text {a }}$ the ;rofle view is se much like septentrionalis as any other - pectes.

Distribution-Thin is a citcumboreal species, the race septent: ionalis inhaliting the Hudsomian and northern part of H. Conalian \%one from the Alantic at least as far west as Geres Slave Lathe

Aeshna sitchensis llagen.

1Pl 12, fig. 5: pl. 15. figs 2, 2a ; pl. 22. thg. 4 ;
pl. 2.5, figs 2, 2)

Aesshna sitchensis, Ilagen. Syu. Neur N.A., p. 119 (1s6b:; I'r. Boss. Due

 Ir. (XL. p il (1911).

78 Nilker. Nortil Ampicican brecifis ur mi shana

Uni., p. 1t (1g0y): Mutik.enki, (al (M. N.A., P. 114 (1910); Hebard. A.at. Newe. XXI.p. 134 (1910). (,ibeen, 4oth Ann. Mep. Fint Sxc. Ont., p. 120 (1910).

A rather small, moxlerately slender spmories.
Male-Occiput, pale greenish yellow, broader than long, two-thirds io fully as long as the line of contact of the eyes. Frontal vesicle large, usually somewhat more than twice as broad as long, pale yellow with a black hot 'er of variable extent, usually confined to the ocular margin bit sometimes surrounding the vesicle and always including the lateral ocelli. Eyes shorter than in the othet Nurth American Aeshnae except Ae. coerulea septentrionalis, licir colvur in the living insect unknown, in dried specimens clark olivaceous brown. T-spot heavy, the cross-bar thick, 2.25 inm ., stem very short, .5-75. mm . broad; preocular band extending laterally a little beyond the limits of the T-spot, curving a little cephalad and terminating abruptly a little beyond the base of the antenna, its breadth near the end being about .5 mm . From this band a narrow black line passes ventrad along the ocular margin of the frons and nasus to the tips of the lateral lobes of the latter. A lilack line on the fronto-nasal suture, not very heavy in the middle but expanding to form a broad black triangular area where it joins the marginal line. Face pale, dull greenish or olivaceous, sulletimes dark brownish in dried specimens, paler next the ucular margin. Nasus short, the vertical diniension being about equal to one-third of the transverse, the two depressed areas near the lower margin not marked by black dots; lateral lobes not flaring, bluntly angulate, the outer margin straight. Rhinarium dark reddish brown. Labrum pale yellowish green, margined narrowly above, broadly below, with black. Labium pale ycllow, the lateral lubes and the apical part of the median lobe reddish brown. Kear of head black.

Thorax moderately dark brown with a bronzy lustre. rather thinly covered with greyish hairs, venter more or less covered with a greyish bloom Dorsal thoracic bands reduced to a pair of small narrow pale spots about 1 mm . long, oftell ill-defined and sometimes indistinguishable in driel specimens. Antealar sinus without pale markings.

Ventro-lateral ingle of meso-episternum with a pale spot. Lateral bands narrow and irregular, pale yellow or whitish, generally shading above, especially the second band, into pale bluish or blue. First band very strongly sinuate, being twice bent, at alternate angles, broadest at about the lower bend $(.5-75 \mathrm{~mm}$.), narrowest above the excund bend (. $2-5 \mathrm{~mm}$.), more or less expanded toward the upper end. The low est part of the band is oblique, bounding the h.omeral suture, the middle part nearly horizontal, the upper part sub-vertical. Second band nearly straight behind, cou-- rictel and sonetimes nearly divided by the deep excavaton of the front margin, the breadth below the constiction .4 .75 mm . : expanding at the upper end to about 2 or $\mathbf{2 . 5} \mathbf{~ m m}$. Behind the upper bend in the first band is a narrow sinuate pale streak. Spots at bases of wings above pale yellowish.

Legs dark reddish brown, under side of femora nearly. black, no pale streak on fore femora.

Abdomen 4.5 times as long as thorax and slightly longer than hind winf, rather slender, considerably constricted before the middle of 3 , thence expandin? on this segnient to nearly its full width, which is attaines at the apex of 4 : sides of 9 not at all divergent caudad, continuous with those of 10 .

Seg. 1 without a vential tubercle, auricles on 2 with 3 tweth (rarely 2), tergal margins of 2 subangulate, widely reparate at base, but closely approximated a little beyond the middle. Spines of the anterior lamina long, reaching caudad a little beyond the hamular processes, stout at hasc. and proximally directed caudad, thence tapering and curving ventrad to the finely pointed apices, which project distinctly below the level of the tergal inargins. Hamular processes very large, triangular; bases rounded, apices acute, directed rephalad; inner margins straight and attingent along their entire length, considerably elevated. Hamular folds small, close together, nearly or quite covered in a direct ventral view by the hamular processes, with which they are connected by a rather low ridge. Lateral carinae on 7 and 8 straight. Dorsum of 10 with a fairly prominen: merlian sub-basal unth and one or two minute ones on each side of it.

80 Walker: North American Species of Aeshna

Superior appendages more or less granulate, about as long as the last two segments, cheir 'jases slender and about one-third as broad as the space between them, expanding gradually on the inner margin to the middle or a little beyond, when the breadth is about one-fifth of the length, thence narrowing slightly to the rotundo-angulate apices, which terminate in a small abruptly decurved spine; outer margin moderately convex, inner margin (vertical view) gently concave at the proximal half, straight, or nearly so, in the distal half. Superior carina arising in a basal dorsa! tooth, partly concealed by the tergum of 10 , percurrent, though often indistinct in the basai third, gradually and moderately elevated beyond, bearing 8 or 10 minute denticles on the apical third. In profile the outer margin appears nearly or quite straight, the part of the appendage internal to the superior carina forms a fairly prominent subangulate ventral carina, the deepest part of which is opposite the apical fifth or sixth of the appendage. Inferior appendage triangular, barely more than one-half to three-fifths as long as the superior pair, breadth at base equal to three-fifths of the length, sides straight, apex rounded; in lateral vir w very gently curved, the curve of the lower margins considerably stronger than that of the upper, tapering considerably in the distal two-thirds.

Seg. I brown, dorsal spot blue, lateral spot pale greenish, $2.5-3 \mathrm{~mm}$. in transverse dimension, acute above, widening below to 1 mm . or a little more.

Seg. 2 brown. AL and ML pale greenish or bluish, separated except for a very short distance above the auricle by a black streak. AL oblong, about 1.5 mm . broad (transverse), covering more or less of the upper surface of the auricle, but not extending below the latter in front. ML a narrow streak generally extending somewhat farther dorsad than $A L$ and nearly meeting MD. PL blue, about as, long as broad, front margin roundish and almost touching the transverse carina. PD blue, nearly as long as PL, with which it is narrowly connected, connate with its fellow of the opposite side, concavely emarginate on each side of the median line, along which it is continued forward as a narrow streak
joining AD (a small yellowish triangle) at the front margin.

Segs. 3-10 brownish black, the pale areas except MD blue and somewhat larger than usual. AL on 3-8, large, quadrate, giving off narrow basal transverse offshoots which do not form complete rings; upper margins straight, inclined more or less dorso-caudad (except on 3). ML present on $3-8$, large, subrhomboidal, somewhat rounded behind, not indented in front. MD on 3-8, greenish or yellowish, quadrate and broadly confluent with ML on 3, triangular on $4-7$ and connected with ML on 3 and sometimes narrowly on 4, small and transversely elongate on 8. PD increasing in length from $1-1.25 \mathrm{~mm}$. on 3 to $\mathbf{1 . 7 5 - 2 ~ m m . ~ o n ~} 9$ and 10. 1t covers about half the dorsum of 8 , four-fifths or more of 9 and 10 and may be more or less connate with its fellow of the opposite side on all of these segments, though generally separate throughout. The front margins are rounded on the more anterior segments, somewhat irregular and indented on the last four or five, the inner margins posteriorly subparallel. PL on $3-7$, rather large, connected behind on all the segments with PD, of which it forms a broad, somewhat curved offshoot, pointed at the anteriur ends.

Wings of average size and usual form, the hind wing very slightly shorter than abdomen, hyaline, costal margin moderately dark brown; pterostigma long, dark brown, yellowish beneath; membranule uniform smoky brown, extending caudad fully as far as the cross-vein of the anal triangle, which is 2 -celled. ${ }^{1}$ One or 2 cells between A2 and A_{3} at their origin. Rs forking under the proximal end of the stigma or the first postnodal cell before it, in the hind wing occasionally opposite the distal half of the second cell before it; the fork distinct but the upper branch is slenderer and comes off at a much greater angle than the lower branch; 2-3 rows of cells between the forks at the level of the distal end of the stigma and 2.4 cells between them at the margin, towards which the forks are often slightly convergent. Two rows of cells between Rs and M2 for a

[^5]considerable distance before and after the point of forking. Rspl gently sinuate, 4-5 rows of cells between it and Rs where most widely separated. Mra arising under the stigma at a point about opposite the middle.

Antenodals $\frac{16-18}{10-11}$, postnodals $\frac{10-13}{11-15}, \mathrm{CuCr} \frac{5-6}{5-6}$, Spt $\frac{2-3}{1-2}$.
Female-Abdomen about as long as the hind wing, deeper than in the male, especially at 3, the dorsal and ventral surfaces of which appear straight in profile. Seg. 3 about as long as $\mathrm{I}+2$ or 4 .

Genital valves barely longer than the dorsum of 9 , ventral margin in profile nearly straight, apices scarcely elevated. Lateral carinae percurent, very prominent and of nearly equal height throughout; the space enclosed by them, in ventral view, widening a little from the base to about three-tenths of the length, where the breadth is equal to about two-fifths of the length, thence tapuring evenly to the narrow pointed apices. Ventral surface of valves strongly declivent, distinctly grooved inside the lateral carinae; styli about half as long as dorsum of $10(.6 \mathrm{~mm}$.) ; basal plate of ovipositor of moderate size, the posterior margin straight or indistinctly bilobed.

Appendages about as long as dorsa of $9+10$, lanceolate, broadest about the middle, where the breadth is about onefourth of the leng th. Apices tapering but little more abruptly than the bases, rotundo-angulate with a small terminal tooth; loth margins evenly convex, the curve of the inner somewhat stronger than that of the outer.

The colour-pattern differs from that of the male in the usual way. Dorsal thoracic bands represented by a pair of ninute ill-defined spots, or absent; lateral bands in the Newfoundland specimen broader than in any of the males seen. Andominal spots PD considerably smaller than in the male and more widely separated, especially on 8 and 9, the interrening space being somewhat more than 1 mm . broad on 8 ; lateral spots considerably larger than in the male. PL large, quadrate, connected narrowly with PD, and confluent on 2 with ML.

The colour of the face and thoracic bands seems to have been about the same in the Newfoundland female as in the male. The lateral bands in the Isle Royale specimen are wholly greenish yellow. Of the abdominal spots, PD appears to have been a yellowish green, MD yellow and the lateral spots green on seg. 1 , bluish green on the others. The wings are hyaline in the Newfoundland and Burrough's Bay specimens, somewhat smoky in the one from Isle Royale. No doubt considerable variation occurs in the females of this as in other species of Aeshna.

Measurements-Thor. $\sigma^{7} 9-10, \% 9$; abd. $0^{7} 40-44.5$, Q 38.5-40; seg. 3 o $0^{7} 6.75-8$, o 5.7-6; depth seg. 2 o ${ }^{7}$ 4-4.4. 8 4.5-4.75 ; depth seg. 3 o' $^{7} 1.5-2$, $\% 3.25$; apps. $\sigma^{7} 4-4.7$, \% 3.5-3.75 ; gen. v. 2.2-2.25; h.w. of 38-40.5, \% 36.5-40; widtr: h.w. σ^{7} 11-12.3, © 12-12.5; pter. $\mathrm{o}^{7} 3.75-4$, $9.5-5$.

Type- o', Mus. Comp. Zoology-Sitka, Alaska.
Melerial delermined - 15 o 69 . Newfoundland: (R. Thaxter, M.C.2., ${ }^{\circ} 0^{\circ}{ }^{1}$ O) ; Bay of Islands, July 7, 1 goo (D.A. Atkinson, coll. Williamson, $1 \sigma^{\prime \prime}$: Q). Querec. Ellis Bay, Anticosti Is., Sept. 12, 1910 (E. V. Cowdry, coll. Walker, I $\mathrm{\sigma}^{\prime}$) ; Levis (T. W. Fyles, coll. Walker, I' $\mathbf{\sigma}^{\prime}$) ; Isle d'Orleans, Aug. 26, 1904 (Walker, I 0^{2}). Ontarıo: De Grassi Pt., Lake Simcoe, July 1, 1905 (A. L. Walker, 10°); Sault Ste. Marie, Sept. 14,1907 (Donaldsun, coll. Williamson, $10^{\prime \prime}$). Micaigan: Isle Royale, Aug. 21, igos (C. C. AdAMs, Univ. Mich., I \boldsymbol{o}^{\prime}). Mineseota: Duluth, Sept. 2 (0. Sacken, M.C.2., I ${ }^{\circ}$). Manitoba: Winnipeg Beach, L. Winniper, Sept. 6, 1909 (U. B. Wallis, I 0°) ; Westbourne, Aug. 19,1908 (J. B. Wallis. coll. Walker, I of'). Saskatchewan (Scudder, Kenniccit, M.C.Z., 2 on 1\%). Northwest Trraitory: Fort Resolution, Great Slave Lake, July 1862 (Kennicott. M.C.2., 1ᄋ). "British America" (Scudder, M.C.Z., 1 $\%$). Alaska: Sitka, (M.C.2. $1 \sigma^{\circ}$ type); Burrough's Bay, Aug. 5, 1894 (J.A. Cadenhead, coll. Walker, 1 Q).

Distribution-Canadian and Hudsonian Zones.
Most of the records of this insect are from the southern part of its area of distribution, where it is rare and local. The single specimen from Lake Simcoe must be regarded as a straggler fiom the north, as it is certainly not native there. This specimen is the largest that I have seen.

Aeshna Juncea Linné.

(Pl. 12, fig. 6; pl. 15, figs. 3. 3a ; pl. 18, figs. 3. 3 a :

$$
\text { pl. 23, figs. } 3-4 \text {.) }
$$

Libellula juncea, Linné, Syst. Nat. I, p. 544 (1753.)
Aeshna juncea, Stephens, III. Brit. Ent.,6, p. 8.4 (1835); Evans, Brit. Lib., p. 21. pl. II, fig. 2 (1845) ; Calvert, Occ. Pap. Bost. Soc. N.H., VII, 6, p. 23 (1905); Willianison, Ohio Nat., VII, p. 150 (1907); Walker, Can. Ent., XL, pp. 385. 390, 451, pl. 10, Gge. 1, 2, 5 (1908); Muttkowiki, Cat. Od. N.A., p. III (1910).

84 Walker: North American Species of Aeshna

Aeschna juncea, Selys, Mon. Lib. Eur., p. 106 (1840); Ilagen, Stett. Eirt. Zeit., XVII, p. 369 (1856); Hagen, Syn. Neur. N.A., p. 120 (1861); Pr. Bost. Soc. Nat. Hist., XVIII, p. 35 (1875); Ris, Faun. Helv., p. 25 (1885); Kirby, Syn. Cat. Neur. Od., p. 87 (i890); Banks, Trans. Am. Ent. Soc., XIX, p. 353 (I892) ; Cialvert, Trans. Am. Ent. Soc., XX, p. 199, 207 (1893); Wallengren, Ent. Tidsk., XV, p. 256 (1894); Calvert, Trans. Am. Ent. Soc., XXV, p. St (1898); Lucas, Brit. Drag., p. 190, pl. 16, ot 9 (1900) ; Currie, Pr. Wash. Acad. Sci., 1II, p. 219 (1901); Williamson, Ent. News, XIII, p. 146 (1902) : W'illiamson, Ent. News, XIV, p. 7, pl. - fik. I (t903); Osburn, Ent. News, XVI, n. 190 (1905) ; Williamson, Ent. News,

II, p. 134, ${ }^{135}$ (1906): Martin, Cat. Coll. Zoul. Selys., XVIII. pp. 34. 又2, \&. 29 (1908); Cockerell, Ent. News, XIX, pp. 455. +57-49 (1908); Martin, Gen. lns., CXV. p. It, pl. 1, figs. 1-8b (1911).

Libellula ocellata, in ueller, Nova Acta Leop. Carol. Acad., Ill, p. 125 (1867).
Aeschna ocellata, Hagen, Syn. Lib. Eur., p. 54 (I8 10).
Aeschna rustica, Zetterstedt, Ins. Lapp., p. $10 \not 0$ (I8 $\ddagger 0$).
A eschna picta, Charpentier, Lib. Eur., p. 112, pl. 20, on $\% ~(1840)$.
Aeschna picta var. caucusica, Kolenati, Mel. Ent., V., p. It (18q6).
Aeschna caucasica, Selys, Rev. Odon., p. 300 (1850).
Aeschna propinqua, Scudder, Pr. Bust. S~c. Nat. Hist., X, p. 215 (1866) lin part].

A rather stoutly-built species, of medium or some hat ss than medium size, though attaining a large size in Europe.

Male-Occiput light yellow, sometimes darkened at apex, distinctly broader than long, ofter twice as broad, and from one-fifth to two-thirds as long as the line of contact of the eyes. Frontal vesicle more than twice as broad as long, generally wholly yellow above, except a small area around the lateral ocelli and a narrow hind margin, but sometunes the yellow arca is confined to the anterior half or two-fifths. Eyes emerald green above, fading below to pale yellowish green and pale blue behind, the hind margin above greenish yellow. Preocular band about 2.5-3 times as broad, at base of antenna, as one of the lateral ocelli, narrowed to a thread line on the sides of the frons and nasus. T-spot heavy, but with a rather slender stem, the sides of which are slightly divergent or subparallel, cross-bar 2.5-3 mm., stem .5-. 6 mm . broad in front, $.7-.8 \mathrm{~mm}$. broad behind. Frons and nasus yellow or greenish yellow, more or less infuscated just below the T-spot; a heavy dark brown line on the fronto-nasal suture, narrowing laterally, and two impressed dark brown dots near the lower margin of the nasus. Lateral lobes of the nasus rotundo-angulate, somewhat flaring. Rhinarium dark reddish brown, with a yellowish upper margin. Labrum yellow or greenish yellow, with upper and lower black marginal lines. (In one male from the Bighorn Mts., Wyo., it is com-
pletely surrounded by a heavy black margin.) Labium light yellow, more or less infuscated towards the margins. Rear of head black.

Thorax rather heavily built, dark reddish brown. Dorsal bands pea-green, 4 mm . long . $4-.75 \mathrm{~mm}$.broad at the middle, straight or slightly curved, sides nearly parallel, lower ends pointed, separated by $4-4.5 \mathrm{~mm}$., upper ends generally somewhat expanded, . $75-1.3 \mathrm{~mm}$. broad, separated by $1.3-2.3 \mathrm{~mm}$. A green spot in the antealar sinus and sometimes an ill-defined humeral streak. Lateral bands broad, straight, greenish yellow, pale blue at the upper ends, surrounded by an illd fined dark margin; first band rounded at lower end. near which it is $1.25-1.5 \mathrm{~mm}$. broad, gradually tapering to $u . \begin{aligned} & \text { J. } \\ & \text { t }\end{aligned}$ half that breadth at the upper end, from which no offshoot is given off; margins nearly straight. Second band rounded at the lower end, which is generally slightly narrower than the upper end, sides straight. Between the two hands are two elongated yellowish spots, sometimes united into an undulate streak. Spots at bases of wings above light yellow, those on the tergum between the wings, pale greenish blue.

Legs black, the posterior surfaces of the fore coxae and bases of fore femora pale yellowish.

Abdomen nearly or quite 4.5 times as long as the thorax, strongly constricted before the middle of 3 , widening to about the apex of 4 and narrowing again slightly on the posterior f or 5 segments, though generally expanding slightly on 7 . Seg. I without a ventral tubercle; spis जlose area on ventral -urface of 2 generally restricted to the apical fourth; auricles with 3-5 teeth; tergal margins angularly approximated opposite the sheath of the penis. Spines of the anterior lamina long, projecting below the tergal margins, curved ventrad and inclined caudad and slightly laterad, stout at the base but tapering to a fine point. Hamular processes long, slender, spine-like, slightly hooked at the tips, inclined ventrad and mesad, the tips often overlapping a little. Hamular folds separate from the hamular processes, and somewhat widely separated from one another, rather small and contracted, the outer and posterior margins meeting at a rotundo-acute angle. Seg. 3 one-hifth to one-third Inger than $1+2$ or 4 , the
relation depending upon climate (vide postea). Lateral carinae on 8 not angulate, obsolete on the basal half of 9 , generally distinct on the apical half. Dorsum of 10 with a prominent median tooth between two pairs of much smaller teeth.

Superior appendages as long as, or slightly shorter than, $9+10$, their basal breadth about one-third of the space which separates them, gradually expanding to the middle or a little beyond (dorsal view), where the breadth is about onefifth of the length; thence narrowing again somewhat to the rounded or somewhat angulate apices which bear, near the outer margin, a terminal decurved spine of variable size, generally small but sometimes well developed. Outer margin in dorsal view moderately curved, inner margin feebly or scarcely at all sinuate. In profile view the outcr margin is moderately to strongly curved upwards in the distal half, the lower margin minutely denticulate, slightly convex in the basal fifth, somewhat con se before the middle, produced in the distal three-fifths or two-thirds into a rather prominent angulate or arcuate inferior carina. Superior carina distirct except at base, somewhat elevated and arcuate in the apical fourth, smocth. Inferior appendage triangular, about three-fifths as long as the superior pair, the breadth at base equal to three-fifths or two-thirds of the length, sides straight or barely convex, apex rather blunt and rounded, lateral margins terminating above in a pair of minute recurved teeth; in profile gently curved, tapering evenly to the apices.

Seg. I brown, dorsal spot blue, lateral spot greenish yellow, generally about 3 mm . long and .75-1 mm . broad but much narrower in the Alaskan specimen and generally in European specimens.

Seg. 2 brown, AML greenish yellow in front, blue behind, subrhomboidal, $1.75-2 \mathrm{~mm}$. broad at the middle, covering sides of auricle, partly divided by the transverse carina, behind which it is produced dorsad as a narrow offshoot not quite reaching MD. PL yellow in front, shading into blue, about four-fifths as long as the posterior division of the segment, fairly broadly connected with PD, which is confluent with its fellow of the opposite side, forming a broad blue band,

Walker: North American Species of Aeshna

whose front margin is convexly curved on each side of the middorsal 'ine, and from which a pale greenish median streak extends forward to the front margin, where it is somewhat exganded (AD).

Segs. 3-10 brownish black, AD and MD pale green, PD blue, lateral spots bluish green, on 3 often blue. AL, on $3-8$, of moderate to small size; on 3, subtriangular, nearly as broad at base as long, upper margin straight, very oblique; on 4-5 or 6 giving off a small basal transverse offshoot which does not form a complete ring. ML on 3-8, of moderate size, enlarging to 6 , angular with the upper margin very oblique on the more anterior segments, more rounded on the posterior segments, front inargin not indented. AD represented on 3.8 by a minute spot; MD on 3.8, not connected with ML, a transverse streak on 8, transversely elongate-triangular on the other segments, the postero-lateral margins more or less concave. PD on $3-10, \mathrm{I}-1.25 \mathrm{~mm}$. long on 3 , increasing to 1.5 mm . on ${ }^{r}$. unded in front; the space separating them gradually incluming from about .4 mm . on 3 to 1 or 1.25 mm . on 8 , then decreasing again slightly; inner margins straight on 8 and 9 , nearly parallel on 8 , slightly divergent on 9 , rounded on the other segments. PLon $3-5,-6$ or -7 , separate throughout from PD or narrowly connected on 3 only, triangular on the anterior segments, becoming an elongate streak farther caudad, and finally a mere dot. Ventrai surface of abdomen without pale markings.

Wings hyaline to rather etreaqly flavescent, costal veins brown, ochre-yellow along the reddish brown; membranule o the basal fourth to more thai: ins, pterostigma long, smoky brown, with . whitish, not reaching thecross-vein of the anal triangie, ... th is 2-celled. One or 2 cells between A2 and A3 at their origin. Reforking at the level of 1-2 (fore wing) or 1-3 (hind wing) postnodal cells before the stigma,' the upper branch strongly curved proximally; 3 rows of cells between the forks at the level of the distal end of the stigma, and $3-6$ cells between them at the margin. Three or 4 rows of cells between Rs and Rspl at the level of widest separation. Sometimesone or two cross-veins between Rs and M_{2}

[^6]near the point of forking. Mia arising beyond and sometimes opposite the middle of the stigma.

Female-Alxlomen slightly sloorter and considerably deeper than in the male, slightly longer than the hind wing. Dorsal and ventral surfaces of 3 nearly straight in profile.

Apices of genital valves not at all elevated, compressed and rather broadiy roundeci as seen in protile, inner surface obliquely concave. Lateral carinae obscure and roundel at base, prominent in distal half, in protile sinuate, being more or less concave before the middle, convex begond; in ventral view, sinuate, usually strongly so. being convex in the proximal three-fifuss or two-thirds, slightly concave or straight distally. Space enclosed by lateral carinae broadest just before the middle, where the breadth is about three-sevenths of the length, narrowing to about half this breadth before the apices. Ventral surfaces of values feebly sulcate. Basal plate of ovipositor large, consisting of two rounded lobes, one on each side; lateral plates absent. Styli scarcely more than half as long as the dorsumi of $10(.6 \mathrm{~mm}$.). Appendages about as long as $9+10$, expanding from the moderately slender bases by the curve of the inner margin to about three-fifths of the length, where the breadth is alsut one-fifth of the length, rapering rather abruptly to the rounded or rotundo-angulate apices, which usua!ly terminate in a minute, barely projecting tooth. This tooth is occasionally well developed or may sometimesleeabsent. Outer margin nearlystraight, inner inargin more strongly curved.

The dorsal thoracic bands are usually narrower than in the male and, as a rule, clivided into an anterior longitudinal streak, and a posterior shorter transverse spot at the antealar sinus. The lateral thoracic bands and the lateral abdominal spots tend to be a little broader than in the male, particularly PL, which is represented on 2-7, and tends to be quadrate in form, and is separated from PI) except sometimes on 2, where they may be narrowly confluent. On the same segment PL is broadly connected with A.ML and is sometimes
narrowly joined with M1. on 3. AL on 2, quadrate, connected folow with ML. PD smaller than in the male, generally connate on 2, but separate in specimens from Alaska and in one from the Magdalen Islands.

The ground colour is like that of the male except that the abdomen is reddish brown, darkened about the margins, sutures and pale areas. Considerable variation exists in the colour of the latter. I have taken both blue and yellow females at Nipigon, Ont., the colour of the former differing but little from that of the male except in the paler shade of blue. In the heterochromatic type all the pale markings are green or yellow. Both types are also represented in a series of British specinuens received from Mr. K゙. J. Morton of Edinburgh. In this series PD varies from liue to greenish yeliow and the lateral spots from pea-green to pale yellowish green.

The wings are sometimes hyaline, sometimes more or less Haveseent and may be quite deeply suffused with brown. The pterostigma is considerably longer than in the ma'e.

The following colour notes were made on the day of cipture from a female taken at Nipigon, Unt.:

Occiput and frons greenish yellow, shading into light vell w slightly tinged with green on the lower part of the nasus ind labiunt; cyes grey-green with a greenish yellow hind margin. Thorax olive-brown, paler bencath; lateral thoracic bands yellowish green, the lower part of the first band yellow. Ablomen brown. lateral spots on t and 2 yeilowish green, on the remaining segments pea-green. PD yelowish green, hecoming pale green on 9 and 10 .

Measurements of North Americun specimens-Thor. or 10.5-11, \% $10-10.2$; abd. of $45.5-49.7$, \& $42.5-48$; seg. 3 or 7-4-8.6, o 6-7.1 : depth seg. $20^{7} 5-5.75$, o $5-6$: depth seg. 3 8 3.75-4.33; apps. of $4.8-5.5$, of $4-4.75$; gen. $\vee .2-2.3 .3$; h.w. $\sigma^{*} 42-46$. of $39 \cdot 5-46.5$; width h.w. of 12-13, of $12.5 \cdot 13.3$. pter. σ^{7} 3.6-4.25, of 3.7-4.9.

Measurements of British specimens--Thor. of 10.5-1:5, \% 10.5-12; ald. of $47-54.5$, \% 46-53.5 : seg. 3 or $7.5 \cdot 9$, \% n.5-8.3.3; depth seg. 2 o $^{7} 5-6.5$, \% 6-6.5; depth seg. 3 \% 4.25 +.S: apps. of $4.6-5.5$, \& 4.3.5-5.5; gen. '.. 2.3-2.5; h.w. of $4.3 .5-$
47. © $43-47$; width $h . w$. of 13.14 , 13.5 .15 ; pter. - ${ }^{7}$ 4-4.75, 9 4.33-5.4.

Nymph(pl.6,fig, 1 ;pl.8.fig.1; pl. 10, fig 1) - Eyes moderately prominent, the posterior margin about equal in length to the antero-posterior diameter; lateral margins of he, somewhat more oblique than in clepsydra, canadensis, ctc., the straight part but little longer than the wilth of the interocular space; postero-lateral corners of head broadly rounded, posterior region barely emarginate. Mentum of labum seven-elevenths as broad at base as at apex, the apical breadth a little more than two-thirds of the length; proximal three-fifths barely widening distad, the sides feehly arcuate, distal twofiftho with the sides rather strongly arcuate; midalle lote somewhat narrow, obtusangulate; lateral lole's narrowing slightly distad, truncate but with the outer apical angle much rounded. the inner with a minute tooth.

Supracoxal prrcesses well developed, equal in length, acute, the posterior a little stouter than the anterior, the intervening space rectangularor slightly narrower than a right angle.

Atdomen of average form, broadest at seg. 6 ; lateral spines present on sags. 6 to 9 , those on 6 rudimentary, on 7 reaching half-way to the posterior margin, on 8 two-thirds of the way to the margin, on 9 not quite to the middle of 10 . Lateral appendages ratherslender, half as long as the infarior pair (8), or slightly more (σ^{7}); basal part of superior appendage in the male about four-fifths as long as the lateral pair, its basal breadth a little less than its length, sides feebly emarginate, apex bluntly pointed. Genital valves nearly onehalf as broad as long, not very deeply declivent, nearly or quite reaching the apical margin, the ovipositor slightly shorter.

Head and thorax almost uniform brownish, sides of head and lateral margins above sometimes paler ; legs concolorous. Abdomen brownish; dorsal surface with two longitudinal pale bands, fairly well defined on the anterior four or five segments, but fading caudad and becoming very faint or disappearing altogether at seg. 9.; median dark area between the bands but little or no darker than the general ground colour, but exhibiting a more or less distinct pale
median line in the anterior half or more of the abdomen: dorsal punctae dark but discrete; sides of abdomen brown, slightly paler outside the lateral scars, which form a pale interrupted wavy band, with a dark inner edge; la leral and dorsolateral punctae clark hrown, well marked; no pale mottlings in'tween the lateral scars and the pale dorsal bands.

Measurements-Length of body 39.5-42.8; mentum of labium 6.2-6.9; h.w. 8.4-9.8; h.f. 6.2-7.3; inf. apps. 4.2-4.8; gen. 1. 1.9-2.4; width of head 7.75-8.5, of abdomen 7-8.

Malerial determined - $17 \sigma^{n} 19^{\circ}$ (excl. Paluarctic). Out asc: Grant Iintry. Magdalen Is., June 3o, 1901 (D. A. Atkinam, coll. Williamson, 2 of © \%). New Hampshias: White Mis., Aug. 22, 1862 (Scudder, C.Z., ${ }^{\circ}$). 1)NTAR10: Nipigon, July 10, 1907, Aug, 28. 30, 1907, Aug. 4-8, 1910 (Fletcher, Walker, 6 ó 4 O). Alaknta: Banff, July 17, 1902 (Osburn, N.B. Sanson,
 wear Trarifory: Fu. Kemolution, July, 1 R62 (Kennicott, M.C.Z., 2^{2} on 1). M.AsKA: lethel, Kuskoquin River (Acad. N.S. Phil, (σ°); Kodiak, July zo, 1 Rog
 1 R99 (W. E. Ritter, Harriman Exped. U.S.N. M., 18). Wromav: Shell Lrek,
 rastern part," $10,000-11,000$ (I). (Thos. S. Gillin, Acad. N.S. Phil., ${ }^{2} 0^{2}$ o) Corf. Colorado Ilains, 1872 (M.C.Z. ${ }^{2}$ 8). Yellowsrore : 1872 (Hayden,
 data. British specimens: $100^{2} 8 \%$ Merionethshire. England ; Capel C'ureg, Wales; Glagow, and Glen Lochay, Scotland: and Emydale, Ireland.

Nymph-Cicrfs, Switzerland, 1900 metrea, July 27, 1909, 20 , one trans. forming, the other about 10 ifandorm; exuviae, 4 on 50 . one of the latter
witheral imago (Dr. F. Ris). with teneral imago (Dr. F. Ris).

Distribution-Circumboreal; in North America apparently most abundant in the Hudsonian Zone and not known from the Transition Zone. In Europe t ranges into warmer latitudes than in North America.

Geographical variations-Specimens from Alaska and the Magdalen Islands are somewhat smaller than those from Nipigon, the Bighorn Mts. and southwestern Colorado. The wings in the former specimens are slightly broader and the abdomen perceptibly shorter, particularly seg. 3 , which is also relatively deeper. This variation in seg. 3 is most marked in the females and is correlated with variation in the length of the appendages, both being dependent upon climatic conditions (vide p. 26).

The northern specimens are indistinguishable in form from British examples, but are, on the whole, decidedly smaller. The largest American specimens I have seen are from Ontario, Wyoming (Bighorn Mts.) and Colorado and

92 Walker: Nortil American spectes of Aeshna

are about the size of arerage European individuals. Specimens from Liamtchatka and other parts of northeastern Asia are also smaller than those from Eurone and are quite similar to Alaska specimens.

No constant differences can be found between European and North American specimens of this species, but what is typical of the former is not always typical of the latter. The renation of the European specimens is more complex, as is indicated by the following analysis:
I. Rs tunds to fork a little farther distad in European -perimens, often under the proxinal end of the stigma.
2. The number of rows of cells between the forks of Rs at the level of the distal end of the pterostigma is typically 3 in American, 4 in European specimens. In a female from Alaska, however, there are + regular rows in each wing and in several British specimens the e are only 3 rows. When this is the case, however, there are usually indications of a fourth row.
3. In American epecimens, there are 3 or 4 rows of cells betwern R - and R-pl at the ievel of widest separation, there being 3 rows in alout 65 per cent. of cases. In European specimens there are typically 5 rows, often 6 and only occasinnally + r:w
4. In American specimens there are 3 rows of cells between M_{+}and M-pl where these veins are most widely separated, in Europati specimens typically 4 , though sometimes 3 or 5 rows.

In colour-patictin the differences are but slight. In the European seremens the yellow of the eostal veins is more extensise and brighter in colour the thoracic bands are generaily somewhat narrower. the curved sot between the bands and the latural spot of abrlominal seg. I smaller. The fromt matrgin of the lires latemal band is frequently slighty excanated aboue the midelle, a feature not seen in Imerican specimens.

Mabits-On the Nipigen River, where this species is fairly common, it flies ower the open marshes and shallow reeti-grown watere which boter the river below the rapids. specimens taken Jnly 10 were tencmal: on Aug \boldsymbol{q}^{-8} they
were in good condition, while on Aug. 28-30, on which dates three females were captured, one was still fresh the other two somewnat the worse for wear. These were taken while ovipositing among the reeds. The weather was dull, and one was taken in llight during a very light rain.

Ris ('85) has given an interesting account of the habits of this insect in Switzerland, where they are apparently quite similar to their habits in Canada.

Aeshna subarctica Walker:
(Pl. 12, fig. 7; pl. 15, figs. 4. 4a; pl. 18, figs. 4, 4a; pl. 23. figs. 5. 6.)
Aeschna juncea, Fletcher, 35th. Ann. Rep. Ent. Sor. Ont., p. 104 (I 1906).
Aeshna subarctica, Walker, Can. Ent., XI, pp. 385. 390, 451 (1908); Mutthuwki, Cat. Od. N.A., p. It (1910).

Aeshnia subuctica, Martin, Gen. Ins., CXV', p. 11 (1911).
Male-Occiput lemon-yellow; 1.5-2 times as broad as long and $1-3.5$ times aslong as the line of contact of the eyes. lirontal vesicle more than twice as broad as long, lemonyellow, with a black posterior border. Eyes sea-green or grey-green to light brownish olivaceous with bluish grey reflections; a small dark transverse streak above, the posterior border . llowish green above, whitish or very pale preen laterally. Preocular band $2.5-3$ times as broad, at the base of the antenne, as one of the lateral ocelli, narrowing on the sides to little more than half its dorsal width, "xcept at the fronto-nasal suture, where it is generally expanded. T'-spot heavy, $2.8-3 \mathrm{~mm}$., stem $.3-.7 \mathrm{~mm}$. broad in front, 1 mm . broad behind, the sides divergent. Frons and nasus bright yellow, often with an olivaceous tinge, paler along the ocular margin and on upper surface of frons. I heavy black line on the fronto-nasal suture, broadest in the middle. Two black impressed dots above the lower margin of the nasus. Lateral lobes of nasus somewhat tlaring, rotundo-obtusangulate. Rhinarium dull dark brown ur plumbeous. Labrum light yellow, margined narrowly above, more broadly below, with black. Labium pale dull yellow or greenish, the middle lobe with an ill-defined median hackish spot next the margin. Rear of head black.

Thorax fairly robust, dark brown with an olivaceous tinge derpening to nearly black around the lower parts of
the lateral bands. Dorsal bands yellowish green, complete, somewhat curved, strongly divergent below, about 4 mm . long and $.7 . .8 \mathrm{~mm}$. broad at the middle, tapering towards each end, the lowerends acute and separated by 4.5 mm ., the upper ends suddenly expanded, i-1.5 mm. broad, and separated by about 1.5 mm . An ill-defined elongate greenish spot generally present just in front of the humeral suture. Lateral bands of moderate width, light bluc above, greenish yellow below; first band rounded at the lower end, where the breadth is $1.2-1.5 \mathrm{~mm}$. thence narrowing to less than .5 mm . a little above the middle, where it is bent upwards at a slight angle, thence widening to about 1 mm . at the upper end from which a narrow posterior offshoot arises. Front margin obtusangularly excavated, hind margin nearly straight. Second band rounded or subangulate at the lower end, a little above which the brealth is $1.1-1.35 \mathrm{~mm}$., narrowing to the middle or upper third by a broad rounded excavation of the front margin and widening again to the upper end to a breadth of about 1 mm ., or slightly more; hind margin straight. Between the two lateral bands are two yellow spots, one larger one partly enclosing the metastigina, and a smaller one above it. Metasternum with two pale yellowish antero-lateral spots. Interalar spots pale blue, spots at bases of costal veins of the wings yellow.

Legs reddish brown, tibiae and tarsi and underside of femora darker; a pale streak upon the outer surface of the fore trochanters and bases of the fore tibiae.

Ablomen a little more than 4.5 times as long as thorax, of average build. considerably inflated at base, strongly constricted before the middle of 3 , thence expanding to the apical margin of 4 ; sides of 9 feebly divergent caudad. Segs. $1+2$ about as long as 4 ; seg. 3 rather more than one-third longer. Sternum of 1 without a tubercle. Auricles with 3-5 teeth. Tergal margins approximated on each side of the penis. Spine of the anterior lamina long, slender and sharppointed, directed ventrad and curved slightly caudad, the apices reaching well below the level of the tergal margins. Hamular processes having the form of elongate, flattened and slightly curved plates, rounded at the apices, rather
longer than the spines and directed ventrad, mesad and slightly caudad. Hamular folds separate from the processes, difficult to see, except in a strong light, as they are sunk reep in the genital fossa and are partly concealed by the hamular processes in a direct ventral view. The anterior part of the fold is very small, but the posterior portion is large and prolonged caudad, forming with its fellow of the opposite side, with which it is closely united, a somewhat rounded prominence (pl . 12, fig. 7). Lateral carinae of 8 nearly straight, those of 9 more or less obsolete in the basal half. Dorsum of 10 with a prominent but not large median tooth, and one or two minute ones on each side of it.

Superior appendages slightly longer than $9+10$, moderately slender at base, the breadth here being one-third to fourninths that of the intervening space ; expanding to about the middle or a little beyond; the slender proximal portion, which is about one-fourth to one-third of the total length, passing almost insensibly into the broader distal part, which is one-sixth to one-fifth of the total length ; apices rounded or angulate, terminating in an abruptly decurved tooth of variable size, being sometimes minute, sometimes fairly well developed; outer marsin gently and regularly convex, inner margin gently sinuate, being proximally concave, distally convex; a prominent dorsal tooth at the extreme base under cover of the tergal margin of 10 ; superior carina distinct, except on the slender basal part, the apical fourth or third somewhat elevated and gently arcuate, without any indications of denticles. In profile view the appendage is more or less distinctly undulate in the basal half (in one specimen from Nipigon the undulation is scarcely noticeable), curved gently upwards distally; internal part in the distal three-fifths to two-thirds ient downwards forming an arcuate inferior carina. Inferior appendage triangular, barely more than half to three-fifths as long as the superiors, basal breadth three-fifths of the length, sides straight, the dorso-lateral margins terminating in a pair of minute preapical teeth, apex rounded; in profile curved as in juncea, tapering considerably from the middle to the apex.

Colour-pattern of abdomen-Seg. I brown, dorsal spot
narrow, light blue, lateral spot pale greenish yellow to bluish green, elongate triangular, $2.5-., 5 \mathrm{~mm}$. long, $.7-.8 \mathrm{~mm}$. broa!
eg. 2 brown, AMI, gremish yellow to pale blue, or yellow in front of the transterse carina, bue behind, covering upper surface of auricles, partly divided by the transverse carina, in front of which it is $1-1.5 \mathrm{~mm}$. broad, and extending dursad behind the suture as a band $2.5^{-3} \mathrm{~nm}$. long. which is not confluent with MI). MID of the usual form. yellow. P1, greenish yellow to pate bluce, $1.3-1.5 \mathrm{~mm}$. long, rounded in fromt, narrowly connected with PD, or barely separated from it. Pl) light blue, somewhat shorter than 1 L, its front magin rather deeply concawo-emarginate on each side of the middle, along which a narrow greenish streak passes to the front margin.

Segs. 3-10 clark brown, the pale markings variable in colour. AL on 3^{-8}, greenish blue to pale blee, rather small; on 3 triangular, about 2.5 mm . broad at hase, apex reaching; the transverse carina; on the succeeding segments semielliptical, not commected with a basal ring but giving off a short basal offohoot. ML on 3-8, greenish blue to pale Whe, fairly large, increasing in size to 6 or 7 , subrhombic on the anterior segments, becoming rounded caudad, slightly marginate in tront. A[represented loy small yellow dot on 3-K. MD on 3-8 or -9, bright yellow, separate from ML, somewhat L-shaped on most of the segments but reduced to a pair of short transverse spe.. on δ an'l of minute dots when present on 9 . PD on $\hat{5}-10$, pale green to pale blue, 1 mm . long off 3 . increasing to $1.25-1.75$ on 8 , sub-semicircular on 3-7, the rounded inner margins separated by about 6mum.: triangular or subtriangular on 8 and separated posteriony by about 1 mm., suborate and about the same distance apart on 10 . PL on $3-8$, unconnected with PD, except sometimes narrowly on 3 , straight and clongate on the more anterior segments, dwindling caudad to a dot.

Wings hyaline, costal veins edged with ochre-yellow; pierratigna rather long, dark brown; membranule of hind wing darl: smokj- brown, the hasal fourth or less pale yellowish, nut quite reaching the cross-vein of the anal triangle,
which is 2 -celled. One cell between A_{2} and A_{3} at their origin. Rs forking at the level of $1-3$ postnodal cells before the stigma, the upper branch proximally rather strongly curved; 3 (rarely: 2) rows of cells letween the forks at the level of the distal end of the stigma and 3-6 cells between them at the margin. Three or 4 (rarel- 5) rows of cells betwen Rs and Rspl where most widely separated. Mia arising behind the middle or distal half of the stigma.

Female - A bdomen about 4.5 times as long as the thorax and almut as long as the hind wing. Seg. 3 rather deep, moderately constricted, about equal in length to 1 and 2 and thout 1 mm. longer than 4 .

Genital ralves short, not longer than the dorsum of 9. strongly compressed on the distal half, lateral carinae clistinct only in the distal three-fifths, in profile arcuate. especially distally, in ventral view parallel in the distal half, divergent and indistinct proximally. The ventral surface of the values is not developed in the distal half and proximally slopes outward, passing almost insensibly into the lateral urfares. Apices strongly compressed and blade-like, in profile broad and rounded, with a very minute tuft of hair. Styli .5 .6 mm . long. Basal plate of ovipositor unusually: large, consisting of a pair of rounded lobes, one on each side. Appendages about as long as $8+9$, lanceolate, considerably sle.derer at base than at apex, greatest width at three-fifths to two-thirds the length, equal to onefifth or three-tenths of the length; curve of outer margin very slight, that of the inner margin much stronger ; apices rounded, with or winhout a small terminal tooth.

The pterostigma is somewhat longer than in the male. Rs, forks at the level of I-2 postnodal cells before the stigma or beneath its anterior end. Two cells are present between A_{2} and A_{3} at their origin.

The dorsal thoracic bands are narrower than in the male and are sonsetimes complote but generally divided into an upper shorter and lower more elongate spot, or the latter only

98 Walker North American Species of Aeshna

may te present. Lateral bands of similar form to those of the male but slightly broader, the intermediate spots of ten confluent. PD somewhat smaller than in the male, all the other spots larger, AL and AD often connected by complete basal rings. AL on 3 trapezoida!, confluent with ML. PL large, subquadrate, separate throughout from PD, but generally confluent with ML on 2 and sometimes also on 3. PD irregularly quadrate on 8 and 9.

Dichromatism occurs in this species and the colour variations are very similar to those of Ae. juncea. In several specimens seen in life the coloration was almost like that of the male, the lateral abdominal spots being pale blue or blu ish white and PD varying from very pale blue to greenish. In others all the pale markings are yellow or greenish yellow. The eyes vary from grey-green to Indian yellow and the wings from hyaline(generally in homœochromatic individuals) to deeply flavescent(generally in heterochromatic individuals).

Measurentents- σ^{7} 10-II, 9 9.5-10.5; abd. σ^{7} 47-51.5, 8 43.5-49; seg. 3 o 8.7-9.5, ₹ 7-7.6; width seg. 2 o 7 5-5.5. 5.25-5.7; width seg. 3 o $0^{7} 3 \cdot 3.75$; apps. of 5.3.6, ${ }^{\circ}$ 5.33-6; gen. v. I.8-2 ; h.w. 0^{7} 42-46, 9 39.5-44.5; width h.w. o 7 12-12.5, \& 12-14; pter. $\sigma^{8} 3.6 \cdot 4 \cdot 2$, of 4.2-4.7.

Types- σ^{7} and , coll. Walker-Nipigon, Ont.
Nymph-Among the nymphs and exuviae which I collected at Nipigon, Ont., in August, igio, there are two species of Aeshna which I had not met with before. As the nymphs of only two of the six species of this genus that occur at Nipigon are unknown, viz., Ac. subarctica and Ae. interrupta, it is reasonable to refer the two unknown nymphs to these two species.

The form referred to Ae. subarclica is placed under this species for the following reasons:

1. It resembles the nymph of juncen, the only near ally of subarctica, very closely in both stiucture and colour-pattern, and particularly in the details oi the labium. One of the most marked differences is the distinctly longer lateral appendages of the female. As these organs are the rudiments of the appendages of the adult this is what we should expect
in view of the similar difference in the length of the appendages of the adult females of these two species.
2. Of t^{\prime} e two nymphs only one exuvia of the form referred to subarctica was found, against five of the form referred tc interrupta, and of the adults of these two species interrupla is by far the more abundant.
3. The form referred to interrupta most close! y resembles that of eremita, the nearest relative of this species.

Head similar to that of juncea, except that the posterolateraı angles are m : e prominent, though well rounded off, being nearly as in interrupta. Labium indistinguishable from that of juncea.

Supracoxal processes well-developed, subequal, the anterior considerably slenderer than the posterior.

Abdonien a little slenderer than in juncea, broadest at segs. 6 and 7. Lateral spines present on segs. 6-9, those on 6 mere rudiments, those on 7 distant from the posterior margin by about their own length and on 8 by about one-fifth their length, on 9 reaching to the middle of 10 . Lateral appendages three-fifths as long as the inferior pair. Genitalia of female bately reaching the posterior margin of seg. 9, the genital valves more steeply declivent and somewhat narrower than in juncea.

Colour-pattern similar to that of juncea, differing only in the more faintly marked punctae, which are but little darker than the ground colour, and in the somewhat larger size of the dorso-lateral punctae.

In the young nymphs there is a very dark brown band on the sides of the head and prothorax (also distinguishable in the exuvia on the prothorax and anterior part of the mesothorax) and a very distinct medio-dorsal pair of narrow dark brown longiturtinal streaks. These may also be seen in the nyinph of juncea.

Measurements-Length of body 40 : mentum of labium 6; h.w. 9; h.f. 7 ; inf. apps. 4.5; gen. v. 2.2 ; width of head 7.5 ; width of abdomen 7 .

Distribution, elc.- This species inhabits the Canadian Zone, from the Atlantic coast to Manitoba. The single female from Lake Simcoe was probably a wanderer from the north, as

I have collected there for many season- and have never seen another specimen.
. It. suburction is clowdy related tw Ac. juncea, the most unportant differemereme formet in the accesary genitalia of the: math. . Thart irom the:c, however, the wo species may bee - wily aeparated by the differemere in she form of the lateral thoracic bands, and ls the length of the appendages, particularly in the female.

These two sperios fly lugether at Nipigon, Ont., and 1 was unable to distinguist them in tight, nor could I detect any differences in habits.
destan interrupta W alker.
With the typical hirm of this speries 1 have united Ae. Iineata, interna and meadensis, as the study of a large series of specimens sidus io indicate that ihese forms are but geogra Eal races of ome and the sume species.
l'he chici -poctio characteri are as follows: frontal vesiche rather large a batk or wark brown line on the fronternamal duture, dorod thoradid bands reduced to small isolnted :phto, or ibsint, lateral bands onemillimetre, or less, in brentith, cither meraight and sometimes reduced to a mere lint or divited and into an upper and lower spot. Sternum of abilominal segment i without a tubercle but with numerous -pines nedt the postrior margin. Abdominal spots well Aleveloper or but little reduced lilue, except, as a rule, MD, which is generally gremish or vellowish. Lateral spot on I very small or albinnt. lenser wholly black. Rs forking at the level of I-2 postimbid cell- before the pterostigna, Ma arising opposite or beyond the ditull end of the stigma.

Male--inu. triangle - -edleri, anric: , with $\mathbf{3}-5$ teeth, tergal margin-bounding the genital los-a not approvimated opposite the she tho of the penis. comaiderably elevated behind. spines of the anterior lamisa very short and blant, direcied ventrad and caurlad, their apices sunk below the level of the tergal margins and often concealed by them. Hamular processes directed ver.trad and mesal, short and very broad, their internal margiss rounded and terminating in a minute but well-rounded thbercle. IIamular folds continuous with
the hamular processes, well developed, ear-like, closely approximated mesially, their lateral margins regularly curved and passing insensibly into those of the hamular processes, apices rounded.

Superio: appendages expanding unsymmetrically from the base, the inner margins more or less sinuate, the superior carinae gradually and moderately clevated, usually with a few minute denticles near the apices, which are typically rounded and not at all decurved. Terminal tooth small or absent. Inferior appendage triangular, three-fifths to two-thirds as long as the superior appendages.

Female-Genital valves ev -nding caudad about as far as the apical dorsal margin of 9 , apices not at all elevated; litcral carinae percurrent, very prominent, in lateral view irregularly arcuate concealing the ventral surface except near the base, highest a little beyond the middle, straight or slightly depressed before the apices; in ventral view divergent in the proximal third, thence comverging to the small squarely cut apices; breadth of enclosed space about one-third of the length. lentral surfaces of valies sulcate throughout, most deeply towards the apicen. Styli rather more than half as long as the dorsum of to (.60 mm.). Basal plate of ovipositor of moderate size, posterior margin straight, lateral plates distinct. Anpendages slightly shorter to slightly longer than $8+9$, gradually. expanding from the slender base to three-fifths or twothires: the length, where the breadth is about one-fifth of the length, thence narrowing somewhat to the rounded apices, which only rarely have a minute terminal tooth. Inner margin more st rongly curved than the outer margin.

This species may he separated into four geographical races by the following table:
A. Lateral thoracic bands each divided into a superior and inferior spot (in the female sometimes only strongly constricted) : superior appendages of the male without any indication of a ventro-internal basal tubercle; their apices generally without a terminal tooth; appendages of the female typically as long as, or longer than, $8+9$, their apices broadly; rounded.
interrupla. A.A. Lateral thoracic bands not divided.
B. Superior appendages of the male witholtt a ventrointernal basal tubercle.
C. Lateral thoracic bands alout 1 mm . broad near the lower end, somewhat narrowed at the middle; inner margin of superior appendages of the male in profile slightly concave lefore the middle, in torsal view strongly sinuate, the breadth of the appendage increasing rapidly from the basal fourth, so that at the middle it is fully twice as broad as at loase, thence searcely narrowing to the well-ronnded apices, which bear, near the outer margin, a prominent tooth; inferior appendage slightly more than half as long as the superior appendages. Female unknown. nevadensis. ($(`$. Lateral thoracic bands linear, their breadth rarely more than .75 mm .; inner margin of superior appendages of malc in dorsal view very gently sinuate, in profile straight or slightly convex before the middle, the inferior carina rather low, its angle rounded or obsolete; breadth of appendage at middle scarcely twice that at the extreme base, thence narrowing gradually to the rounded or bluntly angulate apices, which are normally without a terminal tooth; superior carina but little elevated, finely denticulated or smooth, inferior appendage three-fifths to two-thirds as long as the superior appendages. Appendages of the female usually somewhat shorter than $8+9$, their apices less broadly rounded than in interrupta........ lineata. BB. Superior appendages of the male with a low basal tubercle on the ventro-internal surface : inner margin in dorsal view gently sinuate, : profile slightly concave beyond the middle, beyond which it forms a prominent, more or less obtusangulate, inferior carina; breadth at middle abotit twice that of the extreme base, thence narrowing gradually to the more or less acute apices, which terminate in a small si c; superior carisa moderately elevated before the apex, with a few minute denticles; lateral thoracic bands about 1 mm . broad below, narrower above ; appendages of the female as in lineata.

Walker: With American Sprcies of Aesina 10.3

Aeshna Interrupta Interrupia Walker.

(Pl. 1, figs. 1, 5 ; pl. 13, fig. 1 ; pl. 15, figs. $5,5 \mathrm{a}$; pl. 20, figs. 1, 1a; pl. 22, figs. 6-8; pl. 24, figs. 3, 4.)
Aeschne propinqua, Scud : r, Pr. Bost. Soc. Nat. Hist., X, p. 215 (1886) lin [art].

Aeschna chepsydra, Calvert. Eint. News, V, p. :n fig. 5 (1894); Walker, 3 Gth Ann. Rep. Ent. Soc. Ont. P. G9 (1906) (in part) , Williamson, Ent. News, XVIl. p. 133-135 (1906) |in part|; Walker, (an. Ent., XXXVIII. n. 50 (1906) |in part|.

Aeschna " w ". Williamson. Ohio Nat., V11, p. i\&6 (1907): Walker. Ore. Nat., XXII, p. 55 (1908).

Aeshna interruphe, Walker, Can. Ent., XL, pp. 38ı, 3^{87}. 450; pl. to, fig. 3 (IyO8); Muttkowski, Cat. Od. N.A., p. It (1980).

Aeschna interrupla. Martin, Gen. Ins., CXV, p. is (igit).
Occiput pale dull yellow, somewhat broader than long. two-thirds to one-half as long as the line of contact of the eyes; frontal vesicle greenish yellow, broadly margined with black, the pale area not reaching the lateral ocelli; eyes varying in colour from olivaceous grey with a bronzy lustre to green or bluish grey with green reflections, a dark curved transverse streak above, posterior border yellow or green, preocular band about twice as broad at base of antenne as one of the lateral ocelli, continued ventrad on the sides to the luwer margin of the nasus where it is scarcely half as broad as upon the frons. T-spot heavy, $2.8-3 \mathrm{~mm}$., stem . $5-1 \mathrm{~mm}$. in front, $\mathbf{t} 1.4 \mathrm{~mm}$. behind, sides straight or a little convex. Face yellowish green to olive, pale yellow on the sides and dorsal surface of frons. A heavy black line on the fronto-nasal suture, narrowing laterally to a fine line. Lateral lobes of nasus obtusangulate, more or less rounded, not flaring. Rhinarium dull greenish yellow (reddish brown in dried specimens). Labrum pale green, margined narrowly above, more broadly below, with black. Labium pale yellowish, obscured with reddish brown; lateral lobes dull bluish or plumbeous. Rear of head black.

Thorax dark olive-brown, becoming more or less transparent in dried specimens, owing to the thinness of the cuticle and the shrinkage of the tissues away from it; the clothing of hair moderately thick, much longer below the apex of the median carina than above it. Dorsal bands reduced to a pair of lanceolate green spots about 2-2.5 mm. long and somewhat less than I mm. broad, no spots in the antealar sinus and

$10 \downarrow$ Walrer: Nortil American Speries of Aeshna

no humeral spots. Lateral bands each divided into a superior blue and an inferior yellowish green spot, surromeded by a diffuse dull backish margin; the inferior spots wate, about I mm , or some what less, broal, the anterior somewhat broader, the posterior somewhat narrower than the corresponding superior spot. There are also two small yellowish spots between the lateral "bands," unc just below the spiracle, the other, a mere dot, farther dorial.

Femora dark reddish brown, black beneath, the anterior pair of (en with a pale streak ont the basal thirel or half of the outer surface, tiliace and tarsi black.

Alxdomen moxerately slender, lxeing, on the whole, slightly broader thim in Ae. cinadensis, cleps ydra and ererticalis, narrower than in Ac.constricta. Structural features, alceessory genitalia, ete., as given umber "specific characters."

Superior appentages generally a litte shorter than $9+10$, sometimes slightly longer, shender in the proximal fourth, the basal breadth of which is about one-third of the intervening space, thence expanding mesad to alout two-lifths of the ength, where the brearlth is about twise that at base, and narrowing again very slightly tothe broadly rounder apices, which are sometimee armed with a mintute projecting tooth; onter margin gently and evenly convex, inner margin rather strongly sinuate: superior carina in dorsal view mesad of the middle lime, whollete in the basal fourth, gradually clevaterl distally, where it bern $2-6$ mimnte denticles. Outer margin. in profile, "urseal gently upwards, inner (lower) margin feebly concalle before the maddle, be yond whieln it forms a low. somewhat whtsangulate, inferior rarina. Inferior appendage about there-fifthe as long as the superior appendages and thice as long at the basal liceath, triangular with straight lateral margins and bhath rounded apex, surmonnted by a pair of small dorsal mbercho: in protile mexterately and uvenly curved, rather hroad in the midelle hum tapering consiterably to the apex.

Colour-pattern of abdomen Sick 1 brown, dorsalt spot well developed, blue; lateral spet green, 1.2 mm . Fong (transverse). . 5 mm . or less broad.

Seg. 2, hrown: ID a minute yellowish dot, A. Wh. a blue

Walker: North American Specirs of Aeshna 105

band about .7 mm . broad, continuous above with MD, passing ventrad along the transverse carina to the auricle, then bending cephalad to the posterior margin, where its breadth is about $\mathbf{I} .5 \mathrm{~mm}$. MD green ; PL confluent with PD, forming a broad blue hand covering two-thirds of the posterior division of the segment above the auricle, the anterior margin deeply excavated laterally and indented on each side of the niddorsal line, along which a narrow streak runs cephalad nearly to the front margin.

Segs. 3-10 brownish hlack; MI) green, the other spots azure blue (ID on 10 sometimes pale greenish). aL on 3-8: on 3 separated above at hase from its fellow by somewhat more than 1 mm ., the upper margin passing obliquely downwards so that the breadth at the uransverse car: ', where it ends, is only about 1 mm .; on 8 a mere dot; on the remaining seginents less than .5 mm . broad and connected with, or narrowly separated from, a narrow lasal ring; upper margins oblique, lower margins indented. M1. on 3-8, of moderate size, irregularly quadrate, rounded lehind on (-8 , front margins angularly indented. MD distinct and comparatively large on $3-7$, generally represented by a pair of dots on 8, on 3 broadly connected with ML, on 4-7 triangular, the postero-lateral margins angularly excavated. 1 D about I mm. long on 3, ncreasing to 1.75 mm . on 7 and 8 , slightly smaller on 9, inne margins on 3-5 or -6 rounded, on the remaining segments more or less straight, becoming widely separated (1 mm .) on 8-10, and somewhat divergent cephalad on 8 and 9 PL on 3-4, -5 or -6 , small, more or less indistinct posteriorly; on 3 broadly confluent with PD, on 4 narrowly confluent or separate, on the other segments always separate.

Wings hyaline, costal veins pale brownish yellow, pterostigma dark smoky brown above, pale greenish brown beneath, membrinule snooky brown with the basal fifth or third white, excending to the cross-vein of the anal triangle. Ine or 2 cells belwfon A_{2} and A_{3} at their origitr. Rs forking at the level of $1-2$ postnolal cells before the stigma, 3 or 4 rows of cells between the forks at the level of th: distal end of the stigma, and $3: 0.5$ rells between the forks at the wing-margin. four or 5 rowsoicells hetween Rsand Rsplat the level of widest separation.

106 Walker: North American Species of Aeshna

Antenodals $\frac{15-22}{11-16}$, pnstnodals $\frac{8-14}{10-15}$, CuCr $\frac{5-7}{5-6}$, Spt $\frac{2-4}{2-3}$.
Female -The abrlomen, which is slightly shorter than in the male, varies considerably in form, especially in the length, depth and amount of constriction of seg. 3 (vide postea).

Appendages as long as, or slightly lonser than, $8+9$ (slightly shorter in specimens from Newfoundland and the Magdalen Islands), outer margin nearly straight, inner margin evenly curved, apices broadly rounded, without a terminal tooth.

Dorsal thoracic bands still more reduced than in the anale, being minute indistinct spots, often wholly invisible in dri 1 specimens and perhaps also in living ones. Spots representung the lateral thoracic bands somewhat larger than in the male, those of the first band of ten barely connected. PD smaller than in the male, especially on the anterior segments, not confluent above on 2, and separated on 8 and 9 by $1-1.5 \mathrm{~mm}$. PL. on $3-6$, much larger than in the male, confluent throughout with IPD, and on 2 and 3 sometimes also with AL.

The range of colour variation in this species is complete, but the pure homoochromatic female seens to be rare. Most of the individuals 1 have observed in the field were intermediate forms, but examples of extreme heterochromatism are not at all uncommon.

In the common intermediate form most of the light markings are more or leas greenish yellow, the lateral spots of the abdomen often somewhat bluish, as shown in the specimen figured (pl. 24, fig. 4).

In a heterochromatic female from Nipigon, Ont., the coloration noted just after death was as follows: Thorax and abdomen dark olive-brown. Eyes deep yellowish green, with a yellow hind border; face ochre-yellow. Spots of thorax and abdomen bright cadrumm-yellow, tinged with green. ML on 5-9 and PD on 8-10 pale dull greenish.

In another specimen from the same locality the spots of the abdonen were all yeliowish olive.

Walker: North American Species of Aeshnd 107

I have not seen a female with deeply flavescent wings such as are sometimes met with in the races lineata and interna but sometimes a yellowish cast is present and it is probable that deeply flavescent wings sometimes occur.

Measurements (exclusive of specimens from Newfoundland and the Magdalen Islands) :

Thor. σ^{7} IO-II.5, \& 10.5-1 ; abd. σ^{7} 45.3-51, \& 47-51.5; seg. 3 ơ 8.1-9.5, १ 7-9; apps. © 5-5.6, o 6.5-7.5; gen. v. 2.25-2.5; h.w. or $43-47.5$, of $46-49$; width h.w. of 12.5-13.6, o 1.3.6-1 4.33: pter. of 3.33-4, \& 3.75-4.5.

Measurements of specimens from Newfoundland and the Magdalen Islands-(1 $\left.0^{7}, 4 \%\right)$. Thor. $0^{7} 11, \% 10-10.5$; abd. $\sigma^{7} 49$, of $45-48$; seg. 3 o or $^{7} 8.6$, ₹ 6.75-7.5; apps. of 5 mm ., of 5.25-5.66; gen. v. 2.33-2.66; h.w. of 47 , \& $44.5-46.5$; width h.w. $\sigma^{7} 14$, $\% 13.5-14$; pter. or 3.5, of 4.45 .

Types- σ^{7} \& , coll. Walker-Nipigon, Ont.
Nymph (pl. 6 fig. 2; pl. 8, fig. 2 ;pl. Io, fig. 2)-As men tioned on p. 98 two unknown Aeshna nymphs were found at Nipigon, Ont., which were referred to Ae. subarctica and Ae. interrupta respectively. The form described below is referred to interrupta (I) by elimination of all other species occuring at Ni pigon; (2) because it comes next to the nymph of eremita in point of numbers, as is the case with the adults of these species; (3) because of its close resemblance to the nymph of eremita, the nearest relative of interrupta.

Eyes shaped as in juncea but a trifle more prominent; lateral margins of head slightly arcuate, postero-lateral angles broadly rounded, posterior margin feebly concave. Mentum of labium slightly narrower at base than ir Ae. juncea, the basal breafth equal to about three-fifths of the apical, the latter equal to about five-sevenths of the length ; proximal three-fifths slightly hut distinctly widening distad, the sides straight or very nearly so, sides of distal two-fifths strongly arcuate; middle lobe somewhat broader but less produced than in Ae. juncea, broadly obtusangulate; lateral lobes scarcely narrowed distad, squarely truncate, the outer apical angle little or not at all rounded, the inner angle with a
minute tootl. Supracoxal processes moderately prominent, the anterior slightly longer and more slender than the posterior, the interval a little less than a right angle. Abdomen broadest at seg. 6, shaped as in juncea, seg. 9 nearly three times as broad as long; lateral spines present on segs. 6-9, not at all divergent on 8 and 9 , extending towards the posterior margin of the corresponding segments as follows : on 6 onethird to two-fifths of the distance, on 7 three-fourths of the distance, or quite, to the margin, on 8 a little beyond the margin, and on 9 as far as the proximal three-fifths of io. Leteral appendages slender, a little more than half as long as ith inferior pair, basal part of siperior appendage of male somewhat more elongate than in junceu, the basal breadth equal to about three-fourths of the length, sides distinctly concave, apex rounded. Genitalia of female not quite reathing the apical margin of 9 , genital valies about three times as long as broad, more steeply declivent than in juncea.

Head behind the eyes with a pair of roundish scars surrounded by a pale margin, a dark submarginal blotch on each side and a broad pale marginal band, extending from the eyes to the posterior margin of the pronotum. Dorsum with a pale sigmoid streak in front of the bases of the hind wing-pads. Femora brownish, with three pale rings, a basal, a median and a preapical; tibiae and tarsi almost concolorous. Abdomen brown, varying much in depth of shade and in the extent of the pale mottlings, the arrangement of which, when noi greatly olscured, is as follow: : dorsal surface with a series of pairs of pale spots, largest on the anterior segments and generally running together on the first three or four segments to form two irregular band., but separate on the posterior segments and confined to the lyasal mart of each segment; another series of subcrescentic pale blotches, just laterad of the dorso-lateral punctar. diminishing in size caudad and disappearing at seg. 7 or 8 ; a series of large $\leqslant u b-$ marginal pale blotches enclosing the lateral scars, which appear outlined in brown and touching the lateral punctac; and a series of pale subovate median dorsal spots, very small on the basal st 'ment: Intit increasing in size to seg. 7 and absent beyond. There is also on several of the middle segments, in

Walker: North American Species of Aeshna 109

front of the transverse carina and the lateral scars, a pair of whitish patches alternating with darker ones. Punctae dark brown, the dorsal series sometimes obscured by dark brown blotches. Spines pale, with the apices dark.

Measurements-Length of body 39-41.5; mentum of labium 5.9-6.4; h.w. 9-10 ; h.f. 6.5-7.2 ; inf. apps. 4.5-4.9; gen. v. 2 ; width of head 8-8.3, of abdomen 7.25-8.

Material deiermined - 46 on $_{31}$ ᄋ. Newfoundland: Grand Lake, July 21. 1901 (D. A. Atkinson, coll. Williamson, 10°); Bay of Islands, July 7. 1901 (D. A. Atkinson. coll. Williamson. 2 \&). Nova Scotia: (M.C.Z., i P, Brit. Mus., $1 \sigma^{*}$). Malne : Portland, Aug. 9, 1870 (Jones, M.C.Z., 10). Verimont: Aug., 1907 (Ellis Frost, coll. Williamson, 10^{7}). Massachusett;: (Uhler, M.C.Z., I © ${ }^{2}$. Quebec: Grand Entry, Magdalen Is., June 30, 1901 (D. A. Atkinson, coll. Williamson, 2 Q teneral); Chicoutimi, Aug. 23, 1901 (Calvert, I σ^{7}). Ontario: Uttawa, Meach Lake, July 21, 1907 (A. Gibson, 18); Oxtongue idake, Muskoka, Alug. 22, 1904 (Walker, I \%); Algonquin Park. Aug. 14, 1903 (Walker, $20^{7} 18$); Itmagami Forest Reserve, Lake Obabika, Sept. 11, 12, 1908 (Walker, 8 of 3 8): Temagami, Aug. 15, 1906 (P. Hahn, 1 on' $^{\text {N }}$ Sudbury (J. D. Evans, 20°); Sault Ste. Marie, Algoma, Sept. 18, 20, 1907 (D , maldson, coll. Williamson, $2 \sigma^{7}$): Heyden, July 31 -Aug 4, 1906 (Williamson $110^{7} 4$) ; Searchmont, Aug. 6-9, 1906 (Williamson, $10^{\circ} 28$); Nipigon, Aus. 28-30, 1907, Aug. 6.8, 1910 (Walker $70^{\circ} 7$): Fort William, Aug. 2, 1910 (Walker, $1 \sigma^{7} 19$). New Yore: Catskill Mits., Aug. 28 (Acad. N.S. Phil., I $\mathbf{\sigma}^{7}$); Lake St. Regis, Franklin Co., Sept. 5-22, 1890 (J. P. Moore, Acad. N.S. Phil., $\mathbf{I}^{\mathbf{1}} 2$ 8): Michigan: Isle Royale, July 13, 1905 (Gleason, Coll. Univ. Mich., 18); Minnehaha Falls, Emmet Co., Aug. 23, 1907 (Williamson, 10°): Douglas Lake, Topinabee, Aug. 20, 1910 (Miss A. O'Brien, $1 \sigma^{7}$). British Columbia: Inverness, Aug. 1890 (Brit. Mus., 2 of 2 8).

Nymphs-Nipigon, Ont., Aug. 5-8, 1910, 10^{7} (St. F); exuviae, $40^{\text {at }} 19$.
Identity-Scudder's description of Ae. propinqua was evidently based partly upon specimens belonging to this species, as the lateral thoracic bands are described as sometimes divided each into an upper and lower spot. The types of propinqua now in existence do not, however, include any specimens of interrupta, but belong to juncea and verticalis. I have therefore let the name propinqua remain in the synonymy and have described the present species under the new name interrupta.

Distribution-The race interrupta is a characteristic inhabitant of the Canadian Zone east of the Great Plains. It occurs only occasionally in the Transition Zone, except in its most northern parts, and is apparently absent from the Upper Austral Zone. It is not known north of the limits of the Canadian Zone. The occurrence of this eastern race in the extreme northwestern part of British Columbia needs confirmation. The four specimens in the British Museum from

lic Walker: North American Splecies of Aeshna

this locality are, however, not quite typical in the form of the superior appendages of the male, these structures approaching those of the races lineata and interna. It is thus possible that the distribution of the British Columbia form is not continuous with that of typical interrupta.

Geographical variations-Considerable variation exists among females in the length and depth of the third abdominal segment and in the length of the appendages, and these variations are dependent to a great extent, though not wholly, upon locality. These structures are shortest and the third segment deepest in specimens from Newfoundland and the Magdalen Islands, longest in a female from Ottawa, Ont. (pl. 1, fig. 1c).

Females from the two former localities also differ from the typical form in the coalescence of the spots on the sides of the thorax and in the specimens from the Magdalen Islands the lateral bands scarcely differ from those of the western race, interna (vide pl. 22). Of the two females from this locality, both tenerals, the appendages are present in only one and differ from those of any other specimen of the sace $i n$ terrupta that 1 have seen in their slenderness and the acuteness of the apices. It may be that this form is a local race. The appendages of both male and females from Newfoundland are typical in form and the spots of the lateral thoracic bands are separate in the male.

From Nova Scotia westward to Fort William, on the north shore of Lake Supericr, no geographical variations could be detected, except those which are apparently the effect of temperature. The lateral thoracic bands are constantly divided in the male and the second band also in the female. The British Columbiaי specimens, as already mentioned, differ only very slightl in the form of the male appendages, which approach those of interna and lineatu. In one of the males the terminal woth of the superior appendage is distinct though very small, in the other it is barely indicated.

Habits-This species flies over shallow waters grown up with reeds, in bushy pastures, etc. I have observed nothing in which its habits differ from those of juncea, canadensis, etc. Mr. Williamson, however, has taken this species flying over
water after sundown, a habit which I have observed only in Ae. umbrosa.

Ae. interrupta can be distinguished in flight from the other species with which it is associated by the dark sides of the thorax.

Aeshna Interrupta nevadensis Walker.
(Pl. 15, figs. 6, 6a: pl. 22, fig. 9.)
Aeshna nevadensis, Walker, Can. Ent., XL. p. 382, 451 (Ig08) ; Mutexawski. Cat. Od. N.A., p. 113 (iyio).

Male-Similar in form to the race interrupta, differing chiefly in the form of the lateral thoracic bands ard the superior abdominal appendages.

Colour and markings of the head similar to those of interrupta but the black line on the fronto-nasal suture is narrower than is usual in interrupla and in one specimen is very narrow.

Hairs cove:nis the thorax somewhat paler than in in. terrupta, dorsal bands pale yellow, sometimes well defined, about 2 mm . long and . 3 mm . broad. Lateral thoracic bands not divided, nearly straight, pale yellow below, bluish above. First band rounded at the lower end where it is about 1 mm . broad, narrowing to .5 mm ., or less, at the middle, and reinaining about this width or expanding again slightly to the upper end. Second band .66-1 mm. broad below, generally constricted about the middle and expanding again to about 1 inin. at the upper end.

Colour-pattern of alxlomen nearly identical with that of interrupta. MD on segs. 3-5 tends to be larger and to lose the triangular form and on 3, and sometimes also on 4, may be broadly confluent with ML. AL and ML are also sometimes confluent on 3. AL, is narrowed as in interrupta but is not, or less distinctly, indented below. PL present on 3-7, connected throughout with PD, of which it forms a falciform ventral offshoot.

Superior appendages somewhat shorter than $9+10$, differing from those of interrupla in the somewhat greater length of the sleuder basal portion, which is nearly or quite wne-third of the length of the appendage, in the more strongly and angularly sinuate inner margin and consequently more

112 Walrer: North American Species of Abshya

rapid expansion of the broad distal part of the appendage, which is slightly broader ard less tapering 'istally than in interrubta, the apices being : ore broadly rounded and terminating in all the specimens examined in a minute tooth. Superior carina with $3-5$ minute teeth. In profile view the superior appendages are practically identical with those of interrupta. Inferior appendage alout three-fifths as long as the superior appendages, similar to that of interrupla.

Wings similar tothosenfinterrupta except that the membranule is uniform greyish brown. Rs forking at the level of 1-2 postnodal cells before the stigma; 3 rows of cells between the forks at the distal end of the stigma, and $3-4$ cells between them at the margin. Three or 4 rows of cells between Rs and Rspl where most widely separated. Mra arising beyond the middle of the stigma, generally under the distal end. Two cells between A_{2} and $\mathrm{A}, 3$ at their origin.

Antenodals $\frac{15-17}{12-13}$, postnodals $\frac{9-11}{11-13}, \mathrm{CuCr} \frac{5-6}{4-5}, \mathrm{Spt} \frac{3}{1-2}$.
Female unknown.
Type-- o', Mus. Comp. Zoology-Reno, Nevada.
Measurements (mule)-Thor. 10-10.5; abd. 46-48; seg. 3 $8-9$; apps. $4.8-5$; h.w. $45-47$; width h.w. 13.6-14; pter. 3-3.5.

Nymph-Unknown.
Material determined-Nevada: Keno, 1878 (H. K. Morrison, M.C.Z., 8 o $^{\circ}$). Only two of these, kindly lent me by Mr. Samuel Henshaw. were studied in detail, and the venational characters given abuve are based on these two opecimens alone.

Aeshr: $=$ interrupta lineata Walker.

(Pl. 16, figs. 1, Ia; pl. 24, figs. 5, 6.)
Aeshno lineala, Walker, Can. Ent., XL., pp. 382. 388, 450 (1908); Muttkowaki, Cat. Od. N.A., p. 112 (1910).

Maie-Head as in race interrupla, the frontal vesicle a little shorter, the naso-frontal line and the black lateral margins of the race generally a little narrower.

Thorax slightly heavier than in interrupta, colour similar but appearing paler on account of the longer and paler growth of hair, which gives it a greyish brown appearance. Dorsal bands generally even more reduced or entirely absent.

Walker: North American Species of Aesina 113

Lateral bands linear, ne-rly straight, greenish yellow below, more or less bluish or blue above, the first band $.5 \mathrm{r} . \mathrm{m}$. ., or less, broad at the lower end, tapering dorsad to a fine streak; second band still narrower below, somewhat more oblique and gently curved backwards, sometimes interrupted below the middle.

Abdomen slightly shorter and stouter than in interrupia; auricles with 3 teeth (occasionally 4); accessory genitalia as described under "specific characters."

Superior appendages barely shorter than the dorsa of $9+10$, showing no very constant differences from those of interrupta, but typically darker in colour, expanding more gradually from the base to three-fifthsof the length, where the breadth is generally somewhat less than in interrupta; apices; rounded, usually smaller than in interrupta, sometimes with a very minute terminal tooth; curve of outer margin stronger, inner margin less sinuate, denticles of superior carina usually very minute and occasionally absent altogether : appendage in profile more strongly curved upwards. Inferior appendage three-fifths to two-thirds as long as the superior appendages, the apex smaller than in interrupta, otherwise similar in form.

Colour-pattern of abdomen similar to that of interrupte but the blue spots are somewhat larger.

Seg. I as in interrupta.
Seg. 2. AML broader than in interrupta and less distinctly divisible into vertical and horizontal parts, produced ventrad along the front margin to the ventral surface; PL and PD shaped as in interrupta but slightly broader.

Segs. 3-10. AL generally larger throughout than in interrupta, broadly connected on 3, and sometimes narrowly on 4. PD as in interrupta, or slightly larger on the anterior segments. PL on $3-5,-6$ or -7 , falciform, connected behind on each seg;nent with PD.

Hind wings about as long as the abdomen, the breadth averaging somewhat greater than in interrupta; membranule brownish grey, gencrally paler than in interrupta, basal fifth or third whitish. One or 2 cells between A_{2} and A_{3} at their origin. Rsforking at the level of I postnodal cell (in hind wing sometimes

114 Walrer: North American Species of Aeshna

2) before the stigma or behind its proximal half. Three or 4 rows of cells between the forks of Rs at the level of the distal end of the stigma and 2.4 cells (rarely 5) between them at the margin; Mia arising at or beyond the level of the distal end of the stugma (beyond in 80 per cent. of cases).

Antenodals $\frac{14-18}{9-13}$, postnodals $\frac{8-11}{9-12}, \operatorname{CuCr} \frac{5-7}{4-6}$, Spt $\frac{1-4}{2-4}$.
Female-The differences in form exhibited by the females of lineata and interrupta correspond with those cf the males. Appendages usually slightly shorter than $8+9$ (a littie longer in 1 of from Regina, Sask.) Apices somewhat less broadly rounded than in interrupta, often with a feebly indicated apical tooth, otherwise as in the latter race.

Dorsal thoracic bands generally absent, sometimes indicated by a minute and usually indistinct spot. Lateral bands as in the male or a little broader. PD somewhat smaller than in male, not confluent on 2. PL much larger than in male, generally confluent with AML on 2 and frequently with AL on 3 .

Ground colour of abdomen light reddish brown, darker about the margins and pale areas, the latter varying greatly in colour, sometimes closely resembling those of the male, sometimes strongly heterochromatic. In a Winnipeg example of the latter type, the face is rather dark olivaceous, lemon-yellow laterally and on the upper surface of the frons; the dursal thoracie spots are distinct though minute and are chrome-yellow, as are also the lateral bands and the s pots between the wings above. The abrlominal spots are somewhat discoloured except those on I and 2, which are yellow. The other abrlominal spots were apparently of the same coluur. I have another similarly coloured female from the Swan River, Man., and both of these indiviluals are remarkable for their flavescent wings, a character which I have seen in no other specimens of this race.

Measurements - Thor. $\sigma^{7} 10.25-11$, 9 10-1I ; abd. $\sigma^{7} 45^{-}$
 5. \circ 5-5.8; apps. $\sigma^{7} 4.5-5$, $\%$ 4.5-6.5 ; gen. v. 2.3-2.6; h.w. $\sigma^{7} 44-46$, $\% 44.5-46$; pter. $\sigma^{7} 3.5-4.25$, $83.75-4.5$; width of 1.w. o' 7 13.5-15, \% 14.2-15.

Types- $\sigma^{*} \ell$, coll. Walker-Regina, Saskachewan.
Nymph (?)-In the Cabot Collection in the Museum of Comparative Zoology, Cambridge, are two Aeshno nymphs that diffor somewhat from any other nymphs that I have seen. They al labelled "Mouth of the Red River of the North, Scudder, 1860, " and were originally preserved in alcohol, but are now dry and somewhat shrunken and the colour-pattern has practically disappeared. They seen to be nearest interrupta interrupta, though I was unable to compare them directly with specimens of that form. They differ principally in the presence of small lateral spines on segment 5 and in the somewhat larger labium.

As these nymphs come from the territory inhabited by Ae. interrupta lineata, it is probable that they belong to this race. They are in any case a member of the clepsydra group; and the other members of this group, except Ae. eremila and canadensis, whose aymphs are known, are not known from the Red River country and probablv th not occur so far north.

Eyes rather prominent, anter shorter than the posterior mars nearly straight, two-fifths as lor ${ }_{s}$... terior diameter slightly aral margins of head which is considerably emarginate; postero-lateral margin, rounded. Labium large, apparently extending somewhat behind the bases of the middle legs; proximal margin of mentum a little more than half as broad as the distal margin, which is equal to about five-sevenths of the length; sides subparallel in the basal two-thirds, then diverging, the distal third strongly arcuate; medium lobe short, feebly arcuate; lateral lobes broad, squarely truncate, internal apical angle with a somewhat prominent tooth. Abdomen bruadest at seg. 6 . Lateral spines present on $5-9$; on 5 reaching half way to the margin, on 6 :wo-thirds of the way, on 7 about to the margin, on 8 beyond the margin by two-thirds of their length, on 9 reaching just bevond the posterior margin of 10 (probably a little beyond tice middle in exuvia). All the spines are curved slightly inwards, the curve continuous with that of the margin. Lateral appendages (\%) barely more than half as long as the inferior pair. Genitalia not quite reaching the apical margin of 9 .

116 Walker: North American Sfecies of Aeshna

Colour-pattern indistinct, probably like that of interruf"a and eremita. Femora with broader sub-basal and narrower preapica! dark dorsal (not seen distinctly in ϑ).

Mcasurements ($\%$) - Length of body 36 (shrunken): mentum of labium 7 ; h.w. 10 ; h.f. 8 ; width of head 9 ; of abdomen 8.

Mistertal determined-30 s 30 \%. Nurth Dakora: Aug. 13 (Coues,
 June, 13. 1002 (N.G. Urchard, coll. Williallison, 1 \%). Maniroba: Winnipeg. July 6-24, Sept. 7, 1908 (J. B. Wallis, 5 of 5) : Winnipeg Beach, Lake Winnipeg, Aug.-Sept. 6. 1909 (J. B. Wallis, $20^{7} 3$) : Westbourne, July 28-Aug. 19. 1908 (J. B. Wallis, $50^{4} 6$ 8): Aweme, July 20, 1906, Aug. 10, 1907, Aug. 16, 1908 (N. Cridule, 2 ó 2) ;) ; Swan Kiver, Sept. 8, 1906 (W. 1. Alexander, coll. Walker, 1), Saikarchewan: (Scudder, M.C.Z., 10 10): Regina, July 18, 1905 (T . N. Willing, $40^{7} 29$) : Carlon, July 28. 1900. July 22. 1907 (J. Fletcher, T. N. Willing, 3 ol, teneral): Duck Lake, July 22. 1907 (1 . Fletcher, T. N. Willing, 20°, teneral); Goose Lake, July 21, 1907 (T. N. Wiilling, 10^{*}); Parkside, July 24, 1907 (T. N. Willing, 10^{*}, teneral); Meota, July ', 1907 (T. N. Willing, $1 \sigma^{\prime \prime} 1 Q$): Moose Jaw, Auk. 24, 1903 (A. N. Candell. U.A.N.M., is). Alberta: Banf. Aug. 4, 1906, Iug. 16, 1908 (R. P Currie, U.S.N.M., 1 8. N. B. Jinson, $1 \mathrm{o}^{\circ}$) ; Waterton Lake, Aug. 7-10, 1908 (E. V. Cowdry: coll. Walker, 2 on 3). Nortilwest Tenkitosy: Great Slave Lake, July 1862 (Kennicott, M.C.Z.,., ${ }^{19}$). Alss "Upper Missouri" (Hagen. M.C.Z., 19); and "Hritish America" (Scudder, M.C.Z. 1, 0" 19).

Nymphs (1)-"Red River of the North, Scudder, $1860^{\circ "}$ (M.C.Z.) i 10° (St. F).

Distribution-This race of Ae. interrupta is probably the most characteristic dragonfly of the Canadian Prairics, ranging over the whole of this region from Manitoba to the foothills of the Rocky Mountains and northward into the wooded country as far as Great Slave Lake. South of Canada its range extend- into North Dakota and to the Upper Missouri. It is thus characteristic of the Canadian Zone, in the middle part of the continent, reaching the northerninost linits of that zone: while southward it ranges well into the Transition Zone.

Geographical zariations-No variations of geographical significance have bee:: detected in this race, except where it intergrades with the race interna (vide postea).

Aeshna interrupta interna Walker.

(PI. 16, figs. 2, 2a; pl. 22, figs. 10, 11).
Aeschno interna, Hasun, Pr. Bust. Soc. Nat. Ilist., p. 35 (1875) (no deecnp(ion): Martin, Gen. Ins., CXV', p. 11 (1918).

Aeschna ckepsydra, Calvert. Itwns. Am. Ent. Soc., XXIX, p. 43 (1903).
Aeschna juncea, Currie, Pr. Ent. Soc. Wash., VII, p. 16 (igos) : Osburn, Eat. News, XVI, D. 190 (1ger).

Aeshne interne, Wialker, Can. Ent., XL. pp. 381, 388, 450 (1906): Muttkowki, Cal. Od. N.A., p. 112 (1910).

Closely related to Ae. interrupta lineata with which it intergrades where the territories inhabited by the two races meet. It differs from linea's in the form of the superior appendages of the male and in the greater development of the pale areas of the thorax and abdomen.

Head indistinguishable from that of lineata except that the paler area of the frontal vesicle is generally larger, occupying nearly the whole of its upper surface, though not reaching to the lateral ocelli.

Dorsal thoracic bands in the male $\mathbf{2 - 2 . 5} \mathbf{~ m m}$. long and .5-. 6 bread; in the female 1.25 mm . long or less, very narrow and sometimes indistinct or even aisient; lateral bands blue above, pale green or yellow below, somewhat variable in width, in typical specimens distinctly broader than in lineata; first band $.75-1 \mathrm{~mm}$. broad below, narrowing to about half that width a little above the middle, then remaining equal or expanding slightly to the upper end. Second band of about the same width below, curved gently caudad, equal, or slightly constricted at the middle and expanding slightly on the upper half.

Abdomen similar in form to that of lineata. Superio :pendages of male somewhat contracted at the extreme base. the proximal three-tenths rather slender, equal; thence expanding gently on the inner margin to about three-fifths the length, where the breadth is somewhat less than twice that of the slender basal part. Distal two-fifths narrowing somewhat to the rounded or angulated apices which bear, externally, a distinct spine. Outer margin curved as in lineata, more strongly than in interrupta, inner margin more distinctly sinuate than in the former. In profile the superior carina appears more elevated apically than is usually the case in either of these races, the denticles very minute or absent, outer margin less rorved upwards, lower (inner) margin simuate, being proximally slightly convex, concave before the middle, thence produced ventrad to form a somewhat prominent obtusangulate inferior carina, which is usually deeper than in interrupta and lineata. A rather low sub-basal ventro-in-

118 Witiker: North Amprican Species of Aeshna

ternal tuhercle appears in an oblique view from above or below.

Appendiges of the female as long as the dorsa of $8+9$, or slighty shorter, shiped as in lineatn, apices with a small terminal ((x) th.

Colonr-pattern of ablomen similar to that of lineata but all the spots average somewhat larger.

Sieg. 1. L.ateral spot $2.5-3.5 \mathrm{~mm}$. long, 5 mm . or less in breadth. Sc.g. 2 as in lineata; P'L sometimes confluent with FoMl. in the fentale, sometimes separate.

Segs. 3-10. Spots all light hlue, alt ostidentical in form with those oi lineata; M1) considerably arger and the others averaging sonswhat larger, though no good differential character can be based upon them. AL and MI as in linealu; MI) larg ${ }^{\circ}$, more or less quadrate in the male, at least on 3-5, triangular in the female, generally broadly confluent with M11, on 3 and 4 in the male, separate thro shout in the female. P'l. larger than in lineata, represented on -8 , and confluent throughout with PD, becoming recognizable on 8 only as the lower part of the latter. PD as in lineata or barely larger, about 1.25 mm . long on 3 , increasing to nearly or quite 2 mm . on 7 and 8 .

As in races lineata and interrupta, the female exhibits both types of coloration. One female from Utah and one from Oregon are apparently homœochromatic, or at least partially so, with hyaline wings; whileone from Baker City, Ore., is strongly h.. erochromatic, all the pale markings being yellow, and the wings, except beyond the pterostigma, strongly flavescent.

Measurements-Thor. 8^{7} 10.2-11, $\%$ 10-10.5; abd. $\sigma^{7} 46$ -
 5-5.33: h.w. or 43-45 width of h.w. of i3-13.6, \& 13.4-14.

Types -.. o \& \& Acad. Nat. Sc. Philadelphia-Lamb's Cañon, Salt Lake Co., Uta!

Nymph--l'nknown.
Material delermined- $\mathbf{3 n}^{2}$ or 22 - Brifish Columbia- (Crotch, M.C.Z., 1 8); Kaslo, Aug. 7. 1903 (R. P. Currie, U.S.N.M., I σ^{*}). Oaggon: Baker City and vicinity, July $27,30,1908$. Iux. 7,911909 (C. I1. Kennedy, $50^{2} 20$ in cop. July 30). Wis ington: Spokane, July 22, 1882 (S. Henshaw, M.C.Z., i 8): Colville, July -3-25, 1882 (S. Ilenshaw, M.C. Z., 2 of 8). Utar: Ogden (Cyrus Tho sas, At.C.Z., i 今" 2 Q): Summit Cavern, Aug. 8. 1875

Walker: Nortil American Splicies of Aesilna 119

(M.C.2.., $2 \sigma^{2} 8$) ; Lamb's Cañon, Wamatch Mis., Salt Lake Co., July 97 18. (Browning, coll. Calvert, 1 of 10); City Creek Cañon, July 5, thoy (co Calvert, i' 9). Nkw Mexico: theulah, Aug, 15. 1901 (coll. Calvert, I of).

Also fornis in:-armerliate between races interne and linoola as follows: AL.

Distribution British Columbia to New Mexico, a monntain form.

Geographical variations-All the intermediates between this form and lireata, that 1 have seen, witl the probable exception of a single damaged nate from Fort Collins, Col., come from British Columbia. No other geographical variations were noted, specimens from Oregon and Washington being quite like those from Utali and New Mexico.

Aeshna eremita Scudder.

(1'l. 1, figs. 2, 6; pl. 3. figs. 1-4; pl. 13. fig. $2 ;$ pl. 16.
figs. 3.3 a ; pl. 19, figs. 1, 1a; pl. 24, figs. 1, 2.)
Aeschna eremita, Sculder, Pr. Bosst Soc. N.H., X. p. ${ }^{213}$ (1866); Hagen, Pr. Bont. Soc. N.H. XV. p. 376 (1873); Ilarvey, Ent. News, I1, pp. 73. 73 (1891); Brown, Las. Lifr, III (INin) : Hagen, Rep. U.S. Geol. Surv. Terr.: VI, p. 737 (1873): Calvert, Trans. Am. Ent. Soc., XX, p. 206 (1893); Ent. News, V. p. 9 (1894).

Aeshna eremita, Walker, Can. Ent. XL. pp. 383, 388, 451 (t908); Muttkowaki, Bull. Wis. N.II. Sce., VIII, p. 50 (1910): CaI. Old N.A., P. 110 (1910).
 Mem. M. C. Z., VIII, p. 23, pl. 2, fig, z (nymph) (1881).

Aeschna hudsonica, Selys, Ent. M. Mag., p. 242 (1875); Martin, Cat. Coll. Selys, XVIII, p. 35, fig. 30 (1908): Gen. Ins., CXV, p. II (1911).
Aeschna crenala, Bergroth, Ent. Nachr., VII, p. 86 (1881) lin part|; Calvert, Ent. News, V. p. 9 (1894).

Aestici :cepsydra, Calvert, Trans. Am. Ent. Soc., XX, p. 248 (1893) : Ent.
 ※.. III. pp. 21: 223. (1901); Ruthven. Ec. Surv. N. Mich., p. 101 (1906); Wa!kcr, forth Ann. Kep. Ent. Sore. Ont., P. 69 (1906) lin part|; Walker, Can. Ent., XXXVIII, p. 50 (1906) (in part); Williamson, Ent. News, XVII; pp $133 \cdot 135$ (1906) lin vartl.

Aeshna " x :" Williarnson, Ohio Nat. III, pp. 145, 146 (1907).
A species of large size and average or rather stout build.
Male-Occiput light yellow, black in front, equilateral (): somewhat broader than long, two- to three-fifths as long as the line of contact of the eyes; frontal vesicle rather narrow. "marginate in front, the anterior one- to two-thirds light yellow, this pale area sometimes divided mesially into two pots and not reaching the lateral ocelli. Eyes varying in colour from pale greyish greell with hluish reflexions to bright grass-green, hind margin pea-green to yellowish green. Pre-

120 Walker: North American Species of Aeshna

ocular band more than twice as wide, at base of antennæ, as one of the lateral ocelli; reduced to a narrow marginal line on the sides of the frons and nasus, reaching the lower border of the latter. T-spot 3-3.3 mm., regularly but not very strongly arcuate in front, stem rather short, . $4-.8 \mathrm{~mm}$. in front, . $66-$ 1.66 mm . brhind, the sides straight and parallel or somewhat divergent caudad. Frons and nasus light green or yellowish green, pale yellow laterally and on upper surface of frons, nasofrontal line black, very heavy in front but narrowing to a fine line before the lateral margin. Lateral lobes of nasus slightly fiaring, rectangular, the apices rounded. Labrum greenish yellow or light green, margined above and usually also below with black. These marginal lines are generally narrow and sometimes the lower one is reduced to a fine brown line, but occasionally the lower one is the broader and in an example from Temagami, Ont., it is very broad and contluent mesially with the pper nargin, thus dividing the pale area into two parts. Labium lemon- to dull clay-yellow, lateral lobes bluegreen to "robin's egg" blue. Rear of head black.

Thoras rather robust, dull greyish brown with an olivaceoustinge, greyish below; darker along the sutures and around the lateral bands, forsal carina and edges of antealar sinus black. Dorsal bands bluish green, $4-5 \mathrm{~mm}$. long, .75 mm . broad at the middle, lower ends separated by about 4 mm ., taper-pointed; upper ends separated by about 2 mm ., somewhat expanded and truncated, about 1 mm . broad, the expanded portion occesionally separated from the rest of the hand as a distinet spot; outer margin straight, inner margin convexly curved. Lateral bands rather broad but irregular in form, first band blue, often pea-green in the lower half or margined below with green, rounded at the lower end, 1.75-2 min. broad in the lower half, greatly constricted just above the midelle by the deeprounded exavation of the anterior margin. the broadth here being generally less linan I mm., thence expanding again to tor 1.5 mm , th the upper end, from which a short posterior uffshoot is given off, or may be separated as a distinct spot; posterior margin gentiy sinuate. Second band blue, hind margin sometimes green below, expanding from the artutangulate lower end to the upper end. which is $2-3 \mathrm{~mm}$.
broad; hind margin straight, front margin excavated in the upper two-thirds, but less decply than in the first band. A small green or blue elongate spot just behind the constricted part of the first band and one or two spots about the mit $-9 . \rho-$ ma, no pale humeral spot. Spots between the wir :s azure blue.

Legs very dark reddish brown, the femora pale atove; anterior pair generally with a pale greenish streak a $n \ldots$, he outer surface, extending from the base sometimes to the apex.

Abdomen 4.5 to nearly 5 times as long as the thorax, the length and stoutness, especially of seg. 3, apparently depending to some extent upon locality (vide postea). The constriction at this segment is as usual in this group, the abdomen expanding behind it to the apex of 4 , thence remaining equal as far as 6,7 or 8 , narrowing slightly on the remaining segments.

Ventral surface of 1 without a distinct tubercle, but bearing numernus minute spines on the posterior half. Auricles with 4 teeth. Tergal margins behind the hamuli somewhat elevated, straight or somewhat divergent. Spines of anterior lamina well developed for the clepsydra group, reaching as far back as the bases of the hamular processes, straight, sharp-pointed, directed ventrad, caudad and laterad. Hamular processes directed ventrad, mesad and cephalad, rather short and thick, ventro-lateral surface somewhat concave, internal margin thick, strongly convex, apices produced into a distinct papilliform process smaller than that of verticalis, but larger than the apical tubercle of interrupta. Hamular folds well d.veloped, closely approximated mesially, their lateral margins continuous with those of the hamular processes, moderately thick, somewhat divergent caudad, forming an acute angle with the well-rounded apices.

Seg. 3 about $2-\%$ times longer than $1+2$ or 4 . Lateral carinae of S rether strongly angulate about the middle. Dorsum of 10 with a prominent midian and two smaller lateral teeth.

Superior appendares about one-sixth shorter than $9+10$, basal breadth about one-third or two-sevenths of the intervening space, expanding gradually and almost symmetrically to about the middle, where the breadth is more than twice that

122 Walker: North American Species of Aeshna

at base and about one-fifth of the length, and narrowing again very slightly in the distal half to the broadly rounded apices which only very rarely bear a minute terminal tooth; outer and inner margins in dorsal view very gently and almost equally curved, the latter not being at all sinuate. Superior carina arising in a prominent basal tubercle, percurrent though feeble in the proximal fourth, apical three-fifths rather strongly elevated, arcuate, bearing 6 to 8 well-marked denticles. In profile view the outer margin appears moderately curved, the basal fourth of the appendage thickened by the presence of a rather large but low and rounded sub-basal ventral tubercle, whose surface hears a number of minute denticles. Inner margin produced downward beyond the middle into a fairly prominent rotundo-obtusangulate inferior carina. This carina together with the elevated superior carina just aboveit gives, the appendage the appearance of being rather strongly bent upwards in its apical third. Inferior appendage six-elevenths to three-fifths as long as the superior pair and nearly three-fifths as broad at base as long, triangular, apex blunt and rounded; in profile moderately curved, tapering considerably in the distal two-thirds.

Colour-pattern of the abdomen-Seg. I brown, dorsal spot azure bluc, lateral spot greenish blue orgreen, 2.5-3.5 mm. long (transverse), .75-1 mm. broad.

Seg. 2 brown ; AML bluc, sometimes greenis' yellow or green in front, rhomboid, $2.5-3 \mathrm{~mm}$. broad at front margin, which is not produced below the level of the auricles, confluent avove with MD; PL and PD united, forming a blue band, which is two-thirds (above), four-fifths (below), as broad as the posterior division of the segment, the anterior margin deeply excavated laterally and confluent above with a fairly large median dorsal blue spot.

Segs. 3-10 brownish black, the spots rather large, azure blue, except MD, which is dull yellow. AL on 3-8, average size; on 3 separated by a dark brown dorsal band which is about I mm. broad in front, 2 mm . broad behind; on 8 minute, on the remaining segments rounded and not indented below, straight alove and connected with a basal ring, which becomes very narrow and sometimes obsolete at the middorsal
line. ML fairly large, being about twice .s high on 6 and 7 as AL, quadrate, somen hat rounded behind on the posterior segments, front margin on most of the segments with a small oblique acute indentation. MD on 3-8, fairly large, confluent with $\vdots: L$ on 3 , transversely elongate-tric ? posterior margins concave. PD about 1.25 mm . loug on 3 , increasing to 2 mm . on 8 , front and inner margins more or !ass rounded on 3 and 4, nearly straight on the remaining seg. Ients, the inner margins narrowly separate except on 8 and 9, parallel except on 9, where they are divergent cephalad. On to they are connate in about 65 per cent. of individuals, but may be separated by 1 mm . PL $c_{1} 3-9$, straight, narrowly connected behind with PD on a! it the segments.

Wings distinctly shorter than abdomen, hyaline, costal veins brownish ochraceous, pterostigma smoky brown above, ochre-yellow below, membranule of hind wing dark smoky grey, not reaching the cross-vein of the anal triangle, which is 2 -celled. One or 2 cells (2 in 75 per cent.) brtween A2 and A3 at their origin. Rs in front wing forking at the level of $1-3$ postnodal cells (2 in 65 per cent.) before the stigma, in hind wing at the level of $1-4$ cells (3 in 50 per cent.) with 3 (rarely 4) rows of cells between the forks at the level of the distal end of the stigma and 2.6 (usually 4 or 5) cells between the forks at the margin; 3-6 (4 or 5 in 92 per cent.) rows of celis between Rs and Rspl where most widely separated; Mra arising before the middle of the stigma, sometimes before he proximal end.

Antenodals $\frac{15-22}{11-15}$, postnodals $\frac{11-16}{13-17}, \mathrm{CuCr} \frac{5-7}{4-6}$, Spt $\frac{2-4}{1-3}$.
Female-Genital valves about as long as 9, lateral carinae broadly rounded and swollen at base but elsewhere sharp and fairly prominent, the apical half almost straight in profile view, in ventral view subparallel or slightly diverging to about two-fifths of the length, then converging and son becoming subparallel, the greatest wilth of the enclosed space being equal to about two-fifths of the length; ventral surface of valves feebly sulcate, strongly declivent in the basal half, - puarely cut; in profile nearly rectangulate, not elevated.

124 Walker: Nortil American Species of Aeshna

bearing a minute pencil of pale hairs. Styli about .75 mm . long; basal plate of ovipositor of usual size, posterior margin straight; spinulose area on ventral surface of 10 rather large, with numerous rather coarse spines. Appendages varying much in length according to locality, sometimes slightly shorter, sometimes a littie longer, than $8+9$ (vide postea), much slenderer at base than apex, greatest breadth a little beyond the middle, equal to one-fifth to two-sevenths of the length; curve of inner margin stronger than that of the outer margin; apices broadly rounded, sometimes subangulate but without a projecting tooth.

The dorsal thoracic bands are reduced and divided into an anterior elongate spot, $2-2.5 \mathrm{~mm}$. long and .5 mm ., or less, broad, and a posterior, small, more or less transverse spot, corresponding to the expancled upper end in the male. Often the posterior spot is indistinct or absent altogether. Lateral abdominal spots somewhat larger than in the male, PD slightly smaller. The size of the lateral spots depends to a considerable extent on the depth of the abdomen, whic't is deeper in northern than in southern specimens (vide postea). IL is always connected with PD but is nearly ahways separatr throughout from ML, though rarely narrowly confluent on 2 .

In colour a complete range of variation occurs, from the pure homoochromatic type to a marked degree of heterochromatism. The majority of females that I have seen were of the latter type, the pale markings being usually yellowish green throughout, but in one example from Go Home Bay, Georgian Bay, Ont., the lateral thoracic bands as well as the abdominal spots (except MD) are blue, as in the male. Heterochromatic females often have strongly flavescent wings.

Measurements--Thor. of $11.5-12.5$, \& 10.5-12; abd. $\sigma^{7} 51 \cdot 5-58.5$, $\circ 48.3-52$; seg. 3 o $^{7} 9-11$, $97-9$; depth seg. 3 \& 2.4-4.9: apps. of $^{3} 5 \cdot 5-6.3, ~ \% ~ 5-7.75$; gen. v. 2.2-2.5; h.w. $\sigma^{7} 45-52$, $86-49.5$; wilth h. w. or 13-14.5, \& 13.6-15; pter. σ^{7} 3.5-4, $\%$ 4-4.6.

Type- σ^{7}. Mus. Bost. Soc. Nat. Hist.-- Hermit Lake, N, H.

Nymph (pl. 6, fig. 3; pl. 8, fig.3; pl. 10, fig. 3)-Eyes as in ranadensis and juncea; lateral margins of head moderately ,) lique, straight or nearly so, postero-lateral angles obtusingulate, sometimes rounded off a little; posterior margin nearly straight. Mentum of labium about three-fifths as broad at base as at apex, the apical breadth about sevenninths of the length, proximal three-fifths slightly expanding, the stues very feebly arcuate, distal two-fit ths much expanded the sides strongly arcuate; middle lobe very little produced, very broadly subarcuate; lateral lobes broad, equal, squarely truncate, outer angle scarcely rounded, inner angle with a minute tooth. Supracoxal processes somewhat longer than in interrupta and juncea, about equal in length and similar in iorm, rather slender, acute and somewhat curved away from one another, the interval nearly rectangular. Abdomen broadest at seg. 6 or 7 , slightly stouter than in juncea; lateral spines present on segs. 5-9, usually more spreading than in other related species but somewhat variable in this replect, reaching back towards the posterior margin of the corresponding segments as follows : on 5 one-fifth or oneforith of the distance, on 6 half way, on 7 three-fourths or yaite to the margin, on 8 to the margin or a little beyond, un 9 as far as the proximal three-fifths of 10 . Lateral apperdages one-half ($\%$), or slightly more than one-half (σ°), i. long as the inferior appendages; basal part of superior appendage of male about as broad at the base as !ong, about four-fifths as long as the lateral appendages, lateral margins ferbly concave, apex bluntly poirted Genitalia of female not quite reaching the posterior margin of 9; genital valves about two-fifths as broad as long, somewhat less steeply Neclivent than in interrupta and canadensis.

In life the nymph is usually of a very dark greenish molnur with paler mottlings, the pattern of which is almost identical with that of interrupta. As seen in the (xu-iae the pattern is as follows:

Head behind the eyes with an oblique subtriangular 1.rownish patch on each side and a broad pale marginal band extending from the eyes to the posterior edge of the pronotum and sometimes continuing in a sigmoid course to the bases of

126 Walker: North Anerican Species of Aeshna

the wing-pads. lemora brownish with three pale rings, a hasal, a median and a preapical. Tibiae and tarsi almost concolorous. Abdomen varying much in depth of shade and extent of the pale mottlings, which are almost identical with those of interrupta; dorsal surface with a series of pairs of pale blotches, which run together on the proximal five or six segments, forming two irregular zigzag longitudinal bands, but separate on the posterior segments, where they are confined to the basal part of each segment; another series of pale blothes just laterad of the dorso-lateral punctae, often enclosing them and contluent with the longitudinal pale bands, diminishing caulad and disappearing at 8; a series of large irregular submarginal pale blotches enclosing the lateral scars which appear as dark brown rings; and a transverse series of alternately pale and dark basal spots in front of the lateral scars on several of the middle segments; lateral and dorso-lateral punctae comparatively large, dorsal punctae dark brown, discrete; lateral spines whitish, black-tipped.

Measurements-Length of body 41-47.7; mentum of labium 6.3-8; h.w. 8.4-II ; h.f. 7.5I-8.75; inf. apps. 5-5.9; gen. $\%$ 2.2-2.4; width of tead 8-9.5; width of abdomen 8.1-9.5.

This nymph is the same as the one attributed to this species by Cabot. Although I have not yet succeeded in rearing it, there is no possibility of doubt as to its identity. In one specimen which died during emergence the characteristic form of the lateral thoracic bands of eremita (or canadensis) can be made out. Moreover, its size is too large for any other species and it has always been found in localities frequented by adults of eremita. It was by far the commonest nymph at Nipigon in 19IO, where the imago was also much more abnendant than any other species of Ileshna.

Material determined - $1180^{\circ} 37$ \%. Labrador: Hopedale (S. Weiss, M.C.L., $10^{7} 5$ 8). Newfolndland: (Brit. Mus., 18 . Thaxter, M.C.Z., 1 9): \therefore John's (Peary Exped., Ac. N.S. Phil. ${ }^{1}$ O"): Bay of Islands, July 7,1901 (I). A. Atkinsun. coll. Williamsun, $20^{\circ} 1$ Q); Grand Lake, July 21, 1901 (D. A. Atkinsun, coll. Williamson, 1 8). Northwest Territory : Atik River, 45 miles from mouth (Iludson Bay Slope), Aur. 31, 1907 (IV. J. Wilson, coll. Walker, $1 \sigma^{7}$); Fort Resolution, Great Slave Lake, July 1862 (Kennicott, M.C.Z., $13 \sigma^{\circ}$ 4 8). "Arctic America" (Brit. Mus., 3 o' $^{\circ}$). Alaska: (U. S. N. M., 2 d') $^{\circ}$) Bethel, Kuskequin River (Acad N.S. Phil., $10^{\prime \prime}$). Manse: Six Ponds, Piscataquis Cu., Sept. 14. 1898 (F. L. Harvey, U.S.N.M., 1 of 1), New Hampshre:

Franconia (Mrs. A. T. Slosson, U.S.N.M., 2 (r) : Ilermit Lake, Mt. Washington, Aug. $11,25,1862$, Aug. 2, 1890 (Scudder, Mi.C.Z., aud Calvert. Acad. N.S. Phil., Bost. Soc. N.H. and coll. Williamson. 17 o 1 8). New York: Loch Bonnie, near Lake Placid. Adirondack Mis., Sept. 10 , 1905 (Calvert, 4 o $^{\circ}$): Hone Pond, Saranac Inn, Adirondacks, July 26, 1900 (Needham $2 \sigma^{\circ}$). Quenf.c. Chicoutimi, Aug. 23, 1901 (Calvert, 1 o ${ }^{\circ}$). Ontario: Toronto, Sept. 25, 1891, xept. 15. 1906 (Brodie, Walker, 2 on 1 8): Go Ifome Bay, Goorgian Bay, Aug. 17. 1907 (Huntsman, $1^{1} \delta^{2}{ }^{1} 8$) : Dwight, northern Muskoka, Aug. 23. 1903 (Walker, $2^{2 \pi} \sigma^{8}$): Temagami Forest Reserve. Kokomo Lake, Aug. 19, 1907 (P. Hahn, 1 or); id., near Lake Obabika and Truss Lake. Sept. 3., 11, 1908 (Walker, 2 o': : Heyden, Algoma, July 30, Aug: 4, 1906 (Williamsun, $20 \sigma^{7} 4$ 8): Searchmont, Algoma, Aug. 7.1906 (Williamson 1 o 1 o) Nipigon, Aug. 28, 1907 (Walker, $1 \mathrm{~J}^{1} 1$ O); id., Aug. $4-8,1910$ (Walker, 10 oi ${ }^{+}$O). Michigan : Marquette (U.S.N.M., I O); Oden, July 25. 1906 (J. H. Williamson, 1 ov); Minnehaha Falls, Emmet Co., Aug. 23.1907 (Williamson, $1 \sigma^{2}$): Isle Royale, July 26-28, 1905 (Adams, Gleason, Wood, culf. Univ. Mich., $\left.90^{\circ}\right)$. Manitoba: Ifusavick, July 1860 , 1910 (J. B. Wallis, δ°). Siskatciewwan:
 British Columbia: Peachland, Aug. 3. 1909 (Wallis, i 8 , reared); ith., 2500 ft.,
 (Scudder, ${ }^{4}$). Wroming: Shell Creek. Bighorn Mts., July 15, 1896 (R.P. Currie, U.S.N.M:, ! σ^{2}). Also $3 \sigma^{7} 18$ without thta.
 (St. F), 1 (St. E), 3 (St. B) : exuviae $60^{\circ} 8$. Temagami, Ont., 10^{7} exuvia (P. Hahn). Go Home Bay, Ont., Aug. 1907, i $\%$ (emerging); Aug. 1, 1908, 1 \% (St. H). Midland, 1 of exuvia.

Identity-This species was thought by Hagen ('75) to be the same as the Siberian Ae.crenata Hag., and Calvert ('94), accepting this view, attempted to show the identity of Ae. eremita Scudd. with Ac. clepsydra Say. 'This study was based upon forty male specimens, including at least four species, but, although a careful piece of work, it takes nocognizance of the important characters found in the accessory genitalia of the males and the thoracic colour-pattern. A detailed study of all these forms in much larger series leaves no room for doubt as to the specific distinctness of eremita and the comparison of this form with the types of crenatu likewise shows that these two forms are also quite distinct.

Ae crenala differs from Ae. eremita chie!ly in the following characters:

Abxiomen of male slenderer, sides of 9 slightly divergent caudad (subparallel in eremita); posterior margin of 10 more strongly rounded, superior appendages somewhat narrower, the outer margin convexly curved at base, thence straight to the apices, inner margin strongly sinuate, apices s'enderer than in eremita, with a small projecting tooth; superior carina percurrent and more gradually elevated apically; with larger

128 Walker: North American Species of Aesina

but fewer denticles (3-5). I'rofile view of superior appendage straight, scarcely at all elevated apically, the inferior carina less prominent, its deepest part close to the apex. Spines of the anterior lamina somewhat shorter and blunter. Appendages of female much narrower, with a more prominent mid-carina, apices very acute. Lateral thoracic bands broad and straight, shaped like those of juncea, with a distinct dark margin and not at all excavated in front. Blue spots on segment 10 in the male smaller and more widely separated than in eremita. Rspl less strongly curved and less widely separated from Rs.

Martin's ('08) figure of the male appendages of Ae. hudsonica Selys shows unmistakably that hudsonica and eremita are synonymous, the latter name having priority.

Distribution-Ae, eremita has an extensive distribution throughout the lludsonian and Canadian Zones, from Atlantic to Pacific, and occurs more locally and in smaller numbers in the Transition Zone. It appears to be the commonest and most generally distributed species of Aeshna in the far north. I found it more abundant than any other species at Nipigon, north shore of Lake Superior, in the first week of August, igio, but at the end of the same month in 1908, it was outnumbered by Ae. interrupta interrupta and by Ae. canadensis.

Geographical tariations-The relative length and depth of the abdominal segments and of the female abdominal appendages is suljeet to considerable variation. In specimens from Newfoundland, Mount Washington and the far north, seg. 3 is rlistinctly shorter and deeper than in those from middle and southern Ontario, while in those from Isle Royale, Mich., and northern Ontario, it is about intermediate (ride p. 26).

Ilabits-1 have ohserved nothing distinctive in the habits of this species. It flies about shallow, reed-grown margins of lakes and bays in company with other species of Aeshna, and may also be met with in bushy pastures and open woorls in the neighbourhood of such bodies of water.
llilliamson ('07a) has taken this species together with Ae. interrupta interrupta and canadensis flying about pools in a lumber-yard after sunset.

Walker: Nortil American Species of Aeshna

Brown ('91) records a migratory swarm of Ae. eremita in Wisconsin.

Most of th nymnhs 1 found ir, the : :ipigon River were taken in rather deep water ($15-18$ inhes). The two mature nymphs which were taken on Aug. 7 th, igto did not transform that season, but lived until the following January. They fed readily until about November lut took nothing during the winter.

Aeshna clepsydra Say

(Pl. 2, figs. 5,$6 ; \mathrm{pl}$. 13 , fig. 3 ; pl. 16, figs. $4,4^{3}$; pl. 19, figs. 2, 2a; pl. 25, figs. I, 2.)
N.B.--Indoubted references to the species described here as clepsydra are marked with an asterisk.

Aeshna clepsydra, Say, Journ. Acad. Phil., VIII, p. 12 (1839) ; Calvert, Occ. Pap. Bost. Sic. N.H., VII. 6, p. 23 (1905); OiI. B.C.A., p. 183 (1905). Walker Can. Ent., XL. pp. 383. 388. 451 (1908). Wilson, Pr. U.S.N.M., XXXVI p. 666 (1909) ; Smith, Ins. N. J., p. is (1, 049) : Muttkowski, Cat. Od. N.A., p. 109 (t910)."

Aeschna clepsydra, llagen, Syn. Neur. N.A., p 122, (1861); Pr. Bost. Soc. N.H., XV. p. 271 (1873); l.c., p. 35 (1875); Kirby, Syn. Ciat. Oil., p. 89 (1890). Beutenmuller, l'rel. Cat. Od. N. Y., p. 163 (1890); Harvey, F.nt. News, II, p. 73. 75 (1891) : Calvert, Ent. News. V. p. 243 (1894); Banks, Trans. Am. Ent. Soc, XIX, p. 35.3 (I892), Culvert, Trans. Am. Ent. Suc., XX, p. 24^{8} (IS93); Banks,
 Kellicutt, Journ. (inc. Sx, Nat. Ilist., XVIII, p. 212 (1895); l.c., XVIII, p. II4 (1896): Calvert. Journ. N.Y. Ent. Sxc., L', p. 93 (1897) ; Kelicott. Od. Ohio, p. 34 (1899); Williamson, Drag. Ind., p. 30.4. pls. 7, figs. 12, 13 (Ig00); Calvert, Ins. N. J. Od., p. 71 (1900); Burnham, Pr. Manch. Inst. Arta Sc., I, p. 32 (1900); Needham, Bull. 47 , N.Y.State Mus., pp. 469,470 (1901); Williamson, Pr. Ind. Ac. Sc., VIII, p. 12+ (1901)*: Needhan and Itart, I3ull. III. Lab. N.H., VI, pp. 40 . 42 (1901); Willian!son, Ent. News, XIV, p. (1903) ; Osburn. Ent. News, XVI, p. 186. (1905): Martin, Ciat. Coll. Zoul. Selys, XVIII, p. 36 (t908); Mutkowski, Bull. Wis. N.II. Sir.. V'I, p. 91 (Igos) ; Needham, Rep. Ceol. Surv. Mich., App. III. p. 252 (1908): Martin, Gen. Ins., CXV, p. II (191i).

A medium-sized species of slender form, remarkable for the variegated pattern of the sides of the thorax.

Male-Occiput lemon-yellow, equilateral, (w) to threefifths as long as the line of contact of the cyes; frontal vesicle more than t vice as broad as long, the yellow area reaching nearly to the 'ateral ocelli. Eyes bluish grey, pale yellow behind, with a broad dark brownish transverse stripe above; preocular band somewhat wider at the base of the antennz than one of the ocelli, narrowed to a fine line on the sides where it extends to the lower margin of the nasus. T-spot very heavy, the cross-bar rather strongly convex in front, 2.5-3 mm ., stem $.75 \cdot \mathrm{I} .3 \mathrm{~mm}$. broad, sides straight and parallel or nearly so. Face pale bluish or brownish green; a heavy deep

I 30 Walker: Nortn American Species of Alehina

brown land on the fronto-nasal suture, which fails to reach the lateral margins by nearly I mm. Rhinarium dark reddish brown, margined above with pale green; labrum pale green, very narrowly bordered above and below with dark brown. Labium pale yellowish or greenish, the middle lobe stained apically with brown, lateral lobe's blue or green. Rear of head black.

Thorax of average size, ferruginous, very dark in the humeral region and upper part of lateral surface, distinctly paler on the dorsum tretween the dursal bands, covered ventrally and on the lower part of the lateral surface with a greyish bloom, the ventral surface being quite pruinose. Dorsal lands light green. 3.5 mm . long, lower ends pointed and turned outwards and separated by alont 4.5 mm ., niddle breadth aloout i mm., inner margins strongly convex below, curving mesad abowe, onter margins concave, upper ends at the anteilar sinus abont 3 mm . broad, separated at the middle line only low the doal carina. Lateral bands broad and irregular in form, pale green below, bluish above; first band rounded at it: lower end, about 1.5 mm . broad in its lower half, where it is separated by $t \div n$ humeral suture from a large triangular antchmeral spot. out the middle it is bent abruptly hackwards and then i...ulediately dorsad, the breadth somewhat reduced, terminating in a slender spur which is bent sharply cephatad. Just behind this band and frequently confluent with it are two spots of the same colvur, a large subtriangular or rlomboid patch enclesin., the rectastigma and a smaller unce above it. Second lateral band large, triangular, sometimes reaching the suture in fr t, lower end acute, upper end $2.5 \cdot 3 \mathrm{~mm}$. broad, front ma.: , often a litle excavated near the : viddtle. hind margin straight except where it curves downard at the upper end. Antealar sinus green.

Legs redlish brown: femora somewhat darker; no pale streak on outer surface of fore fen:ora.

Abdomen a little more than four and one-half times as long as the thorax, very slender. Seg. 3 considerably constricted. Scg. I without a ventral tubercle; auricles with 3 (rarcly 4) teeth. Spines of anterior larnina short and blunt, directed ventrad and caudad, not projicting L_Jow the tergal

lvalker: North American Species of Aeshna 131

margins. Hamular processes directed mesad and cephalad, short, with bluntly pointed apices and without a distinct apical. tubercle, elevated considerably above the adjacent margins of the hamular folds, surface divided by a ridge into antcrior and postero-ventral areas, the latter rhomboid and somewhat sulcate. Hamular folds continuous with the processes but distinctly marked off from them, ear-shaped, the outer margins straight, parallel or slightly divergent, inner margins closely approximate. Tergal margins on each side of penis straight. Seg. 3 one-half, seg. 4 very slightly, longer than segs. $1+2$. Lateral carinae of 8 sinuate at base in ventral view, those of 9 obsolete in the anterior half. Dorsum of 10 with an abruptly elevated median tooth and trio minute lateral teeth on each side of it.

Superior appendages barely longer than $9+10$, slender in the proximal fifth or sixth, the hasal breadth of which is about one-third of the intervening space, thence expanding mesad to about one-third or two-fifths of the length, where the breadth in a vertical dorsal view is one-seventh to one-sixth of the length; sides beyond parallel, converging again in the distal fourth to the rotundo-angulate apices, which are produced into a rather prominent sharp-pointed backwardly directed spine. In dorsal view the outer margins are nearly straight, the inner margins sinuate in the proximal half, nearly straight beyond. In lateral view the outer margin is also nearly straight, feebly curved downwards at apices, inner (lower) edge beyond the basal fifth forming a well-marked arcuate inferior carina. Superior carina obsolete in the slender basal part, elsewhere moderately sharp, straight, scarcely elevated apically, with $3-5$ minute denticles on the apical third. In lateral view it barely rises above the lateral margin before the apex. Inferior appenda ${ }_{5}$ a elongate-triangular, three-fifths as long as the superior pair, the breadth at base about one-half the length, sides straight, apex acute; in profile view moderately curved, rather narrow, evenly tapering to the apex which is surmounted by a pair of minute spines.

Colour-pattern of abdomen-Ground colour dark brown, distinctly paler in front of the transverse carinae and darken-

132 Walker: Nortil American Species of Aesina

ing posteriorly on eacli segment; blue spots paler than in most of our species of the genus.

Seg. I brown; clorsal sput bluc, lateral spot 3.3 .5 mm . long, 1.5 mm . broad, giving off al yellowish offohoot to the front margin of the segment.

Seg. 2 brown: AML pale blue, somewhat V-shaped, the anterior limls, at the front margin $2.5-3 \mathrm{~mm}$. long, posterior limb somewhat narrower and not conlluent with ND. PL. Dlue, almost or quite crossing the posterior division of the segnent, rather narrowly confluent with ll), the latter about two-thirds as wide as the posterior part of the segment, moderately broadly connected with its fellow of the opposite side and giving off cephalad to the front margin a diffuse median band.

Segs. 3-10. 1'ale spots, except MD, bluc; AL, on 3-8, well developed on the anterior segneents, connected by a narrow basal ring, except on 7 and 8 , and curving mesad along the transverse carimae. Upper margin concave, lower margin not indented. ML on 3-8, generally slightly indented in front, rounded leltind, confluentwith M11) on 3-6 or -7 and of ten with PL on 3. MD on 3-7, yellowish, much elongated transversely, narrowed laterad except on 3 and 4. I'D about mm . long on 3 increasing to 2 mm . on 8 , connate behind on 10 , with a V-shaped anterior emargination, triangular on 8 and 9 , the inner margins separated by a V-shaped space; elsewhere, rounded in front, the inmer nargins straight and separated only ly the dorsal carina. PL on $3-6$ or -7 , an anteriorly directed offshoot from PD, broader and nearly straight anteriorly, curved and slender posteriorly. There is also a pair of pale basal ventral spots on segs. 4-7.

Wings hyaline, costal nerves brownish ocnraceous, pterostignaa dark snoky brown above, paler yellowish brown beneatn: membranule of hind wings wholly dark smoky brown not reaching cross-vein of anal triangle, which is 2 celled. Twocells between A_{3} and A_{2} at their origin. Rs forking at the level of 2-3 (fore wing) $3-4$ (hind wing) postnodal cells before the stigma; 3 (rarely 4) rows of cells between the forks at the level of the distal end of the stigma and $3-6$ cells between the forks at the margin; 4 (rarely 3 or 5) rows of cells
between Ra and Rspl when most widely separated; Mra arising before the mudtle of the stigma.

Antenodals $\frac{16-20}{11-14}$, postuodals $\frac{9 \cdot 15}{10-16}$ ((uCr $\frac{5-7}{4-6}$, Spt $\frac{2-4}{2-3}$.
Female-Dorsum of 9 alout five-sevenths of the length of 8. Genital valves in profile slightly arcuate, the apices unt clevated; lateral carinaeprominent, eercurrent, in profile somewhat irregularly arctuate, in wotral view somewhat sinnate, enclosing a space, which is broaclest at about twofifths the length. the breadth here being about one-third of the length; thence narrowing to the somewhat widely separated apices, each of which bears a minute terminal pencil of hairs. Ventral surface of valves feebly sulcate, inner margins not at all elevated, meeting when the ovipositor is withdrawn, unly a very short distance about the middle. Styli scarcely more than 5 mm . long. Appendages longer than $9+10$, but shorter than $8+9$, more slender in the basal than in the apical half, greatest width at or a little leyond the middle. equal to nearly one-fifth of the length; inuer margin more strongly curved than the outer, which is nearly straight; apices roundel, onetimes with a very minute terminal spine.

Colour-pattern-The contrast in the depth of the ground colour of the abdomen before and behind the transverse carinae is somewhat more marked than in the male. The pale markings are very similar, the differences being of the usual kind. PD is shorter, especially on the anterior segments, and is less distinctly or not at all triangular in form on 8 and 9. Lateral spots all somewhat larger, PL confluent with ML. on 2 and generally also 3. Legs somewhat paler reddish brown.

In the two females seen in life one (the specimen figured) resembled the male except that the pale markings were duller and PD green; in the other the colours were not quite mature. It is impossible to determine the range of colour variation from the dried material examined.

Measurements-Thor. σ^{7} 10-10.5. \% 9.5-10; abd. of 45.5 . 49, \% $46-48$; seg 3 of $8-9$, o 7-8.5; apps. of $5 \cdot 2-5 \cdot 4$, 8 $5 \cdot 3.3-$ 5.6; gen. v. 2-2.33; h.w. of $40-47$, o $43-44$; width h.w. o7 12-13.3.3, of 1.3-13.5: width seg. 2 on 5-5.7. 8 5.5-5.7.

134 Walker: Nori! American Species of Aeshna

Neotype-Harris Collection (Harris Cat. No. 45). Bost. Soc. Nat. Hist.-Massachusetts.

Nymph (pl. 8. fig. 4)- Very similar to that of Ac. canadensis from which it differs as follows: Eyes and posterolateral angles of head very slightly more prominent, the latter similarly or somewhat less broadly rounded. Mentum of labium about three-fifths as broad at base as apex, the apical breadth five-sevenths of the length, somewhat narrower in the proximal three-fifths than in canadensis, the sides not at all arctuate except in the distal two-fifths; middle lobe moderately produced, subarcuate; lateral lobes rather slender terminating in a somewhat strongly curved hook. Supracoxal processes somewhat shorter than in canadensis, bluntly conical, about equal in length, the posterior one a little the stouter, interval less than a right angle. Lateral spines of abdomen somewhat longer than in canadensis, those on seg. 6 extending half way to the posterior margin, on 7 to the margin, on 8 onefourth to one-third beyond the margin, on 9 as far as the proximal two-thircis of to. Appendages similar to those of canadensis, the superior pair a trifle shorter, being scarcely more than one-half as long as the inferior pair in the male, and about half as long in the female.

The colour-pattern is very much like that of canadensis, but trn pale lateral bands in the head and thorax are broader throughout their length; the longitudinal bands of the abdomen are continucd to the apical margin of to (at least in the exuvia) and their 1. argins are almost straight throughont their length. The dark median band is generally paler but more even in depth of shade, not being deepened about the dorsal punctae, which are not marked with darker brown. The dorso-latcral and lateral punctae are also inconspicuously marked.

Measurements-Length of body 36.5-40: mentum of labium 6 -6.33: h.w. 8.2-9 : h.f. 0 -6.2: inf. aprs. 4.1-4.2; width of head $7 \cdot 5-8$; width of alxkmen $7-7 \cdot 5$.

Walker: North American Species of Aeshna

 Ontario: De Grassi Point, Lake Simcor. Aus. 24, 1908, Aug. 19, 1910 (Walker, ' $\mathbf{v}^{\prime} 1$ Q) : Gu Home Bay. Georgian Baw, Aug. I. 5. 1908. Aug. 18-26, 1907. uly 19. 1910 (Huntsman. Fraser, Cooper. Walker, if $\sigma^{7} 5^{-1}$. Point Pelec,
 Steuben Co., Sept. 1, 1003 (Wug. 24, 25, "190 (Williamson, 2 no $^{\circ}$); Crooked Lake. lata.

Nymphs-(ro Home Bay, Ont.. Jalv, 19no, 2 事. about to emerge; exuviae : c". "merged July 25. 28, 1910 (Cimper); July 31. 1907, 1 \&: Aug. 13. 1908,

Identity-Say's type which was formerly in the Museum of the Boston Socicty of Natural IHistory no longer exists and it is impossible to say with certainty which species of the repsydra group it belonged in. It seems clear, however, that the species described here is the one which has the best right to retain siay's name, for the type locality is Massa. chusetts, and all the specimens of the clepsydra group that I have seen from that state, with a single exception, belong either to this species or to Ae. verticalis. One of the former is the single specimen labelled clepsydra in the Harris collection. This specimen was probably determined by Say and should be regarded as the neotype.

Distribution-Ae. clepsydra is an castern species inhabiting the Upper Austral and Transition Zones from New England to Indiana and southern Michigan. It appears to be most common in the eastern part of its range.

Habits-At Go Home l3ay this species flies over shallow reed-grown bays and adjacent open marshes, its habitat being apparently similar to that of Ae. canadensis. It begins to appear, however, abotit a month later, the earliest date of capture recorded being July 19, 1910. Two specimens nenerged at Go Home on July 25 and 31 , 1910 . The two Lake Simcoe specimens were taken from tree trunks on the edge of a wool, about half a mile from the nearest possible breeding-place.

Aeshna canadensis Walker.

! 1'l. 1. ligs. 3. 7 : ןl. 5, figs. 1-8: pl. 13. fig. 4: pl. 16. figs. 5. 5a; ρ l. 19, figs. 3, 3a; pl. 25, figs. .i, 4 .
Aeschrg cleprydra, Selys, Ent. M. Alag., 11, p. 242 (1875); Calberr. Trans, Am.

136 Walker: Nortil American Species of Aeshna

Ent. Soc. Ont., p. 132 (1008): Mutekowski, Bull. Wis. Nat. Hist. Soc., (2) W1, p. 91 (1908); Martin, Cat. Coll. Zoul. C.lys, XVIll. p. 36, fig. 36 (1908).

Aeschna junce, Williamson, Ent. News, XIII. p. $\mathrm{I}_{\mathrm{f}} 6(1902)$ (in part).
Aeschna refticalis, Walker, 36 th Ann Rep. Ent. Sorc. Ont., p. 69 (1906) ; Can. Ent, XXXVIII, p. 50 (1906) (in fart].

Aeschns " ${ }^{\prime \prime}$ " Wiilliamson. Ohio Niat., ili, pp. 145. 1\&6. (1907); Walker, Ott. Nat., XXII, p. 54 (1908).
 kowski. Bull. Nis. Nat. Hist. Suc., VIII, p. 57 (1910); Cdt. (Ud. N.A., p. 109 (1910): Martin, Gen. Ins., CXV, p. it (I911)

Male-A medium-sized specie:s of slender form. Occiput pale yellow, margined haterally with hark, equilateral or considerably broader than long, two. to three-fifths as long as the line of contact of the eyes. Frontal vesicle more than twice as broad as long, the yellow area not reaching the lateral ocelli. Eyes grey-green, without blue reflexions, pale greenish or yellowish behind with a dark brownish transwerse stripe above. Preocular band somewhat wider at the base of the antenne than one of the lateral ocelli, becoming very narrow on the sides of the frons but broadening again upon the nasus. Tspot heavy, rather strongly convex in front, $2.5-3 \mathrm{~mm}$., stem .75 to 1.3 mm . broad, sides generally straight and parallel or slightly divergent behind. Face pale bluish or sometimes yellowish green; the frons yellowish to brownish olivaceous just beneath the T-spot, pale yellowish or whitish next the preocular black band; a fine brownish line on the fronto-nasal suture: lateral lobes of nasus rotundo-angularn, scarcely tlaring. Rhinarium dark brown, pale reddish above end usually below and along the median line. Labium dull yellow or drah to dull buish, stained distally with reddish brown; lateral hobes more or less distinctly tinged with greenish blue. Rear of head black.

Thorax of average size, chocolate-brown with a greyish bloom beneath. Dorsal hands rather dull pea-green, sometimes bluish ahove, nearly straight. $3 \cdot 5 \cdot 3 \cdot 75 \mathrm{~mm}$. long, $75 \cdot \mathrm{I}$ mm . broad at the micidle, lower ends primted and separated by alout 4.5 mm . ; upper conds at the antealar sinus separated by about I mm., expranded, $1.25-\mathrm{I} .5 \mathrm{~mm}$. broac: of en separated from the rest of the band as a distinet spot. Agreenorbluish green spot in the antealar sinns: generally an obseure streak just in front of the himeral suture. Lateral bands broad but irregular in form: the first band sometimes wholly blue, but

Walxer: North American Species of Aeshna

generally pea-green in the lower half, often wholly green, rounded at the lower end, $1.33-1.5 \mathrm{~mm}$. broad in the lower half, greatly constricted just above the middle by the deep alnost rectangular excavation of the anterior margin, the breadth here being $.33-.75 \mathrm{~mm}$., thence expanding to about 1 mm . near the upper end, from which a rather narrow offshoot passes caudad. Anterior margin above the middle straight. posterior margin slightly sinuate. Second band blue, often more or less green below, occasionally wholly green, about i mm . broad at the middle, generally narrowed at the lower end, expanded at the upper end, where the breadth is $1.5-2$ mm .; anterior margin more or less sinuate, posterior margin straight except at the upper end. There is also a pair of gre enish spots at the metastigma and a small yellow spot alowe them. Interalar spots pale blue.

Legs dark reddish brown, the tarsi and under side of the femora and tibiae darker. Front femora with a pale streak on the proximal half of the posterior surface.

Abdomen 4.5 to nearly 5 times as long as the thorax, slender, strongly constricted before the middle of seg. 3 , without a ventral tubercle. Auricles with 3 or 4 teeth. Spines of the anterior lamina short, not reaching back to the hases of the hamular processes, directed ventrad and caudad and not projecting below the tergal margins when in the usual position. Hamular processes somewhat elongate, proximally parallel and directed cephalad, the apices approximated, huntly pointed. Hamular folds continuous with the processes, the outer margins divergent, meeting the posterior margins at a rotundo-acute angle, inner margins closely approximated. Tergal margins on each side of the penis straight. Seg. 3 about one-third longer than $1+2$ or 4 ; lateral carinae of 8 in ventral view irregularly bent before the middle; feebly developed or obsolete on 9 . Dorsum of 10 with ar abruptly elevated suh-basal conical median tooth between two pairs of mach smaller teeth.

Superior appendages about as long as $9+10$ or barely longer, their basal breadth one-third to two-fifths of that of the intervening space, slender and slightly widening in the basal fourth, then expanding mesad to about two-fifths of the

138 Walki:r: Nortil American Specifs of Aeshna

length where the breadth viewed dorsad is one-seventh to one-sixth of the length; and narrowing again siighty to the somewhat abruptly decurved apices, which terminate in a short sharp spine; outer margin, in dorsal view, gently convex, inner margin rather strongly sinuate, appearing more or less concave beyond the midlle. In lateral view the outer margin is curved gently upwards except towards the apex; inner margin bent downwarts beyond the basal fourth, forming an arcuate inferior carina Superior carina fecbly marked in the slender proximal part, somewhat elevated in the apical third. where it bears five or six small denticles. Inferior appendage dongate-triangular, ahout three-fifths as long as the superior pair, the hasal breath half or barely more than half the leugth, wiles straight or feellyapproxinated about the middle. a pair of minute recurverl spines just fefore the bluntly pointed apices; in profile view moderately curved, rather narrow, tapering eventy to the apex.

Colour-patlern of abdomen-Spots all hhe except MD, which is dull yellowinh.

Seg. I fuscous; dorsal spot azure blue; lateral spot a pale blue strath along the posterior margin, 3 mm . long and generally \mathbf{i} imm. or leso in breath. though sometimes widening helow to 1 mm.
 the midelle, prextuced at bort distaner ventrad along the front margin and continued dorsad afong the transwerse carima as a broad land which is narmwly conllnelt with $\mathbf{I I I}$. II. and (ll) (onthent, forming ant azare bhe band, which is nearly as broad lxdow (ll), or from one-half to twothirds as broad abowe (Pl), as the posterior part of the segment; front margin angularl! exawated on each side. A blue - treak of variable width rum- forward from this hand along the median line to the front margin of the segmemt.

Segs. 3-10 brownish hatek. Al. on 3 -א, aryure blue, giv ing off on most of the segments a basal tanst eroce offishomet. which fails to form a completer ring with its fellow of the opnosite side; mper margins straight. Wh. on 3-8. azare bhe, enlarsing to 6. Hombeid on . 3 t or -5 . roundial leehind on the remaining segments. anterior margin more or less angularl!
indentes. MD on $3-7$, often represented also on 8 by a pair of dots, of moderate size, on 3 more or less quadrate and confluent with or narrowly separated from ML, on the remaining segments triangular and separate from ML. PD azure blue, on 10 sometimes very pale blue or even yellowish ; about 1.3 . 1.5 mm . long on 3 , increasing to 2 mm . on 8 ; narrowly connate behind on 10 in about 22 per cent. of cases, rounded in front and mesially and rather narrowly separated on 3-7, subtriangular on 8, and triangular on 9, the inner margins straight and more or less divergent and more widely separated on these two segments than on the others, though sometimes narrowly connate behind on 9. PL on 3-6 or -7, decreasing, separated from 5 or 6 caudad, elsewhere forming a curved offshoot from PD. lentral surface of aldonien with a pair of pale blue basal spots on 4-6.

Wings hyaline, costal veins bro:nish ochraceous, pterostigma dark smoky brown above, paie yellowish brown beneath; menibranule of hind wings wholly dark smoky brown, not reaching cross-vein of anal triangle, which is 2 -celled. Two cells between A_{2} and A_{3} at their origin. Rs forking at the level of 1-3 (fore wing) 2-4 (hind wing) postnodal cells before the stigma; 3 or 4 rows of cells between the forks at the level of the distal end of the stigma and 3-7 cells between the orks at the margin. Threeor 4 (rarely 5) rows between Rs and Rspl where most widely separated. Mra arising before the level of the middle of the stigma, nesually just beyond the proximal end.

Intenodals $\frac{17-22}{12-1.5}$, postnodals $\frac{9-13}{11-17}, \operatorname{CuCr} \frac{5-6}{4 \cdot 6}, \mathrm{Spt} \frac{2-4}{2-3}$.
Female-Abdomen very slightly shorter than the hind wing, its depth, especial' at seg. 3, varying greatly according to locality (vide postea).

Apices of genital valves not elevated, lateral carinae perrurrent, feeble in the hasal third or fourth, prominent beyond; in profile subangulate or gently arcuate, in ventral view omewhat sinuate, enclosing a space which is broadest in the proximal third or two-fifths, the breadth here being about onefourth the length, thence narrowing very siightly to the some-
what squarely cut, well-separated apices, which bear each a minute pencil of whitish hairs. Ventral surface of valves slightly sulcate, sloping laterad in the proximal three-fifths, more or less mesad in the distal two-fifths. Inner margins of valves when ovipositor is ensheathed attingent only for a very short distance. Styli about .66 mm . long, or half the length of the dorsum of 10. Basal plate of ordinary size, the free margin straight. Appendages not longer than $8+9$, generaly distinctly shorter, the length varying with locality (inde postea), more slender in the basal than in the apical half; greatest breadth a little beyond the middle, equal to onesixth or one-fifth of the length, curve of inner margin stronger than that of outer margin, apices rounded o: rotundo-angulate without iterminal tooth.

Colour-pattern-Dorsal thoracic stripes narrower than in the male, often obscure in colour, each divided into an anterior more elongate'spot, about .5 mm broad, and a posterior shorter and broater spot, just in front of the antealar sinus. Lateral thoracic bands similar to those of the male. Lateral abdominal spots sontewhat larger than those of the male, especially PI., which is present on 3-7 and is only rarely separated from PI). PD slighty smaller than in the male, separate on 2 , quadrate on 9 , the basal rings for the most part complete, though narrow. In colour there is great variation among the females of this species, typical homenchromatic and heterochromatic individuals as well as internediate forms being met with.

The pure homoeochromatic form is rare. At De Grassi Point, Lake Simcoe, I raptured a female of this form, differing in colour from the male only in the heavy brownish suffusion of the wings. The dorsal thoracic bands and the lower part of the first lateral thoracic band are green, the upper pari of the latter, the second lateral hand and the abdominal -pois (excepi MD) Dlue. Another female taken at Toronto had the lateral thoracic bands wholly blue and the wings entirely clear, and one from the Porcupine Mts., Mich., is also of this type. In the heterochromatic form the occiput is bright yellow, the eyes yellowish green, and bright yellow along the hind margin, face olive-green, labium dull yellowish,
rhe laireal lobes plumbeous. Thoracic bands and the inter-己in " spnts yellowish to grass-green. Abdominal spots green, the lateral spots, particularly AL and ML, usually of a more bluish green than PD and PL.

The legs are somewhat paler than those of the male and the wings frequently flavescent, though often quite hyaline. The flavescence apparently deepens with age, but it is not entirely dependent upon it, as tenerals may have fairly deeply coloured wings, while those of old battered individuals may be quite hyaline. Flavescent wings are apparently most common in northern individuals, in which they may be of quite a deep shade of brown.

Measurements-Thor. σ^{7} 10-11, \& 9.5-10.5; abd. or 46 51.5, \& 45-49; seg. 3 of 8-9.4, \% 6.75-8.25; depth seg. $2 \sigma^{7}$ $5.25-5.75$, \% $5.5-6$; depth seg. 3, $\% ~ 2.5-4 \cdot 5$; apps. or 7 5.25-6, \% $4-5.6$; h.w. $\sigma^{7}+3-46.5$, क $42.5-47.33$; width h.w. $\sigma^{7} 12.5$ 14. $\%$ 12.75-14.4; pter. 0^{7} 3.1-3.6, $\%$ 3.7-4.3.

Types- σ^{7} and $\%$, U.S. National Museum-De Grassi Point, Ont.

Nymph (pl. 6, fig. 4 ; pl. 8, fig. 5 ; pl. 10, fig. 4.)Eyes morlerately prominent, shaped as in juncea; lateral margins of head moderately oblique, nearly straight, about one-half longer than the interocular space; postero-iateral angles of head rutundo-obtusangulate, inore rounded than in eremita but decidedlyless so than in juncea and interrupia: posterior margin straight or very nearly so; mentum of labium about seven-elevenths as broad at base as at apex, the apical breadth a little more than five-sevenths of the length; proximal three-fifths slightly widening distad, the sides barely arcuate, distal two-fifthsexpanded, the sides more strongly arcuate, though less so as a rule than in juncea; middle lube broadly rotundo-angulate or subarcuate, but little produced; !ateral lobes rather slender, narrowing somewhat distad, the apices not squarely truncate, outer apical angle well-rounded, inner angle with a distinct tooth. Supracoxal processes well developed, about equal in length, acute, the posterior slightly stouter, interval slightly less than a right angle. Itdomen broadest at seg. 6 or 7 ; lateral spines present on 6-9, not spreading, extending towards the posterior mar-

142 Walker: North Jmekican spleieg of Aeshina

gin of the corresponding segments as follows: on 6 two-fifths to half the distance to the margin, on 7 to the margin or nearly so, on 8 to the margin or slighly beyond, on 9 about as far as the middle of 10 . Lateral appendages slender, about threefifthe an long as the inferior appendages ; basal part of superior appendage of male about one-fifth shorter than the lateral pair, somewhat less broad at base than long, sides straight or nearly so, apex acute. Genitalia of female nearly reaching the posterior margin, genital valves about two-fifths as broad ats long, more steeply derlivent than in juncea and eremita.

Head behind cyes with a rather narrow pale margin, which is continued over the pronotum and mesothorax, lecoming more diffuse on the latter; thorax otherwise nearly uniform brownish, legs concolorous. Abdomen longitudinally striped, a dark median band between two pale ones, these becoming somewhat less distinct caudad and more or less olvolete on 10 . These bands are for the most part somewhat conspictous and wedl-defined, with the margins nearly straight and sul)parallel. The median band is solid and dark on the more anterior segments and sometimes on all but the last one or two segments, but is generally broken up posteriorly into a series of subcontmuous dark botches on the basal part of each segment, obscuring the dorsal punctae. A more or less distinct pale median line run- throughout the band. Pale longitudinal bands as broad or slightly broater anteriorly than the median band, narrower posteriorly, outer edges nearly straight posteriorly, omewhat undulated anteriorly. Sides of alxlomen brown. much paler than the median band, the posterior external to the lateral scars, pater than the rest; tateral scars forming a pale undulating line not distinctly outlined laterally, lateral punctae distinct, dorso-lateral punctae almost olsolete.

Measurements-Length of abelonen 35-39.5 ; mentun of labium 5.5-6 ; h.w. 8.5-9.5; h.f. 6-6.6; inf. apps. 3.8-4.3: gen. 8 1.8; width of head 7.8-8; width of alxlomen 7-7.5.
 1889 ill Sher.ton, roll. Calsurf, I © . Seu likewwick: St. Andrews. 1910 (Hunt mann, 18). Maise: Bradley, Aug. 7, 1891 (F. L. Harves, U.S.S.M., 3

$0^{\circ} 68$ inci. $1 \sigma^{2}$ in L'S.N.M.): Surway (S.J. Smith. M.C.7.. 2 ${ }^{2}$): 1 ronc, July $28,2 \%$ 1898 (F. L. Ilarvey, C.S.N.M., 8 on 1 . 8). Nrw 11 ampsurb: White Mts. (shurtlef, M.C.Z., I ©); White Mountain Ilouse. Aug. 22
 (Howr. Sic. Nifi. I ${ }^{(1)}$). Vermont: (Ellis Frost, coll. Williamson, 1 jili Newport
 foks: Ithuca, Aug. 2H, 1889 (Banks, U.S.N.MI., I J"): Lake St. Regia, Franklin
 meher, M.C.K. I Ge), Granil Entry, Maghiaten Islands, June 30, tont (b..A. Atkinwon, coll. Williamwin, \& 8 -1 rearedl). Untario : Ottawa, Mench Lake July 21. 1907 (1. Gibson, i 8); Turonto, Sept. 12, 1907, Sept. 27, 1:\%4, (Walker
 P'oint, Lake Sincin, June 25-Scet. 6. $1903-10$ (Wiliker, $200^{\circ} 108$); Milland, Auk. B, loon (Walker, t o'); Go llome Bay and vicinity, ticorgian
 14ala, Sept. 15, ty: (Ifuntsman, 1 $0^{\prime \prime}$); Muskika (11ahn, I of 18); Dwight, . Wurthern Muskoka, Aug. 23, 1903 (WiWlker. I J18); Temagani Forest Reserve, Jug. 14, 1906, Spt. 1-11, 1908 (Walker, Hahn. y ó 58): Tobermory:, Bruce
 Ilepicon. July 30. Aug. 3it lywo (Williamson, 6 of 28): Nipigun, Aug. 28.30, 1907. Aug. 6-8. 1910 (Walker, 8 on 6) ; Ft. William. Aug. 2, t9to (Walker, t $\mathrm{s}^{\prime \prime}$. Michitian: Detroit (IIubbard and Schwarz. M.C.L., 1 (${ }^{*}$); (rten, Enimet Co., Aug. $11.24,1906$-07 (Williamson, 26 of 3 8): Porcupine Mls., OntonaKon Cu. (A. ©: Ruthren. Univ. Micli., 3 on +) ; Ishe Royale (Gleamon, Univ. Mich., 1 8): St. Cruix River (Muttkuwski, I σ^{*}): Douglay Lake. Topinabece. Aug. 19. 20, 1910 (Miss A. O'Brien, 2 o' 78). Illinots: "Northerulllinuis," 1860 (1 'liler, M.C.Z.. I 0°); Rhorle Islanil, 1850 (Walsh, M.C.Z.. I ơ); Lake Furest. June, 190. (Needham. 1 © ${ }^{\circ}$). Ividava : Graveyard Lake. Aug. ${ }^{27}$ 1911 (Kdy, coll. Williamson, I 0^{*}). Mrssoutr, St. Louis, July 10, 1903 (C. L. Mer iick, coll. Muttkowski, I 8). Wisconsin : (J. T. Brown, U.S.N.M., I ${ }^{\text {F }}$); Nagowicka Lake. Waukesha Co., Aug. 17, 1900 (C. E. Brown, U.S.N.M., I \%): Fux l-ike, Dulge Cu., Aux. 9 , 1yod (Muttkowski, 20^{*}) : Portage Cu., Aug. 20 1905 (Muttkuwski. I © ; Oust burg, Sheboygan Co., July 8. Igos (Muttkowski, 18): Milwauke Co., June 14, 1908, J uly 1-Sept. 26, 1903 (Muttiowski, 3 J $^{7} 3$ 8) : Low Rock. Aug. 1 5: 1906 (J. D). Hond. 1 8). MinNe: ©TA: Duluth, Sept. \therefore and 3 (O. Sacke.:. M.C.Z., 2 on 18). "Dakora": (Dr. Mark. coll. Calvert 8). Manstuba: West Lourne. Aug. 24, Igo8 (J. B. Wallis, 1 ól). (3kitisin

Nymphs-Magilalen Islantls, P.Q., 18 exuvia with imago, emerge. 1 June 30

 $10^{7} 18$ from reared inagoes. Giant's Tomb Island, Georgian I3ay. Ont. July 29.

 "xuviae froni reared imagues ; July 15. 19io, exuviae $20^{\circ} 28$. Turonio, exuviac

Identity-This is the species to which most of the refer--nces to Ac. clepsydra Say belong, and is the one to which Calvert ('94) referred as "presumed clepsydra." Its nost distinctive feature is the form of the anterior liamuli, which are more elongate cephalad than in other species of the group.

144 Nilker: Nortil American Species of Aesina

It is most likely to be confused with Ae. eremita and Ae. verticalis, both of which it resembles in coloration. The males inay be readily separated by the form of the appendages and hamuli but the females are more difficult to distinguish. Eremila may be almost invariably known by the larger size and the black line across the face, but badly preserved females of verticalis and canadensis may give trouble to those who try to separate them, though, in the great majority of cases, the lateral thoracic bands can be seen well enough to render a diagnosis possible.

Distribution-This species inhabits the Transition and Canadian Zones from Atlantic to Pacific, but is apparently niuch less abundint on the western than on the eastern half of the continent. In the east it occurs throughout the Transition and in the lower part of the Canadian Zones. It is not knowin how far north it ranges but no specimens have been seen from beyond i.at. 50 . N. Occasional examples are taken from within the limits of the upper Austral Zone.

Next to Ae. umbrosa this is the commonest North American species of deshna met with in collections.

ILabits-This specics breeds among reeds and sedge in -hallow sluggi=h creeks, lakes and bays. With the exception of Ae. culifornica and the multicolor group it is the earliest -pecirs to appear in the adult state. Individuals may sometimes be seen as early as the middle of June but the usual time for their appearance in the Transition Zone in Ontario is dinring the last week of Junce and the first week of July. By the middle of July they are numerous and may sometimes oc(ur in very large numbers about the sunny borders of woods, ripecially coniferous woods. Here they may be seen sunning themetver on the trunks of trees or hanging from the twigs. Un hot sultry day's they tly restlessly to and fro in small openings among the trees, on the lookout for their prey. In August they are less frequently seen in the woods. They appear to return to their breeding-grounds, where they may be ohservert in large mambers, gliding over the reeds or skirting the water's edge. Such indiviluals are all males and may often be observed to drop down among the reeds and then emerge with a female, in copula. Apparently copu-
lation does not take place far from the water as commonly occurs in constricta and other species.

Ae. conadensis is still common at the beginning of September and may sometimes be found until nearly the end of the month.

Aesina verticalls Hagen.

(Pl. 13. fig. 5; pl. 16, figs. 6, 6a; pl. 19, figs. 4, 4a; pl. 25, figs. 5, 6.)
Aeschna berikalis, 1 Idisen, Syn. Neur. N.A., p. 122 (1861) : Pr. Bost. Soc. N.
 Trans. Ott. Field Nat. Cl. II, pp. 334. 335 (1887); Wadsworth, Ent. News, 11 \%. 37 (t (890); Kirby, Syn. Cat. Neur: Oll. P. 89 (1890); Beutenmuller, Prel. Cat. Oi. N.Y.. P. 163 (issu0); IIArvey, Ent. News. 11. P. 73 (1899): Banks. Trans. Am. Ent. Soc., XIX. P. 353 (isg2); Rellicott, Jourr. Cinc. Soc. N.II., XVII, p.

 h.um. Bull. 47. N.Y. State Musenm, P. +69 (1901); Needham and Ilart, Bull. III.

 V. Page 90 (1908): © c Pe 167 (1908):

Aeshns verticalls, Williansison, Ohio Nat . Vilt, p. 150 (1907): Walker. Can.

Aeshna juncear revtractis. Calverti Ore. Pap. Bume. Six N. II., VII (6). p. 23

 |art|; Ilazen. "Most. Suc. N. Ii., XV', p. 376 (is7it). Male-A medium-sized species of slender form. Occiput greenish yellow, equilateral or somewhat broader than long, two- to three-fifths as long as the line of contact of the ryes. Frontal vesicle twice or slightly more thatr twice as hoad as long, the yellow area not quite reaching the lateral welli. Eyes greere or grey-green, varying considerably in thade, pale yellowish green next the hind margin. Pre"cular band, at the base of the antennæe, rarely less than twice is. broad as one of the lateral ocelli, but reduced to an exiremely narrow line on the sides of the frons and nasus. 1 -upot heavy, $2.5-3 \mathrm{~mm}$., the stem generally short with divergent sides, $6-.7 \mathrm{~mm}$. broad in front, $1-1.33 \mathrm{n}$. road behind. Face yellowish green to olivaceous with a pale yellowish ocular border; a fine brown line on the fronto-nasal
suture; lateral lotes of wath. rut Haring, nesorly rectangular. with the apices more or 16 s ron 'onl. Rhinasmm redilish brown. Labrum pale dullgreen, or I whbih green, wten wiha plamberos timge, masined very narrowly .dnowe mort broally lokow with black. Lathom varying in the living insect from dutt greyish wheured with redhlish browit " ivory-yellow behind, blush white more ", hese obenered by bownish in frome, the lateral iol s, whe due or phmentens. stamed apicalty with rechli-h brome. Jow of head blath

Thorax of werage size, das - hal brown. with a slight greyish hexm tremath. Wer-1) lamh (on-picmous, pea-green or yellowish green, \& 1'. Aqamelmg dorsad.

 ats a larger greats font just in fromt of the the whet atcre bear its midild. Lateral bands fairly boad wellowith
 in the spper halt, narrowed ju-t abowe the mi. .f 16 - \quad, man. by the obtusamglate excaltation of the amtertor margin. then widening dy.all wery lighty (1 mas) and giving oft d the upper end a pesterior offshoot of nearly the same breath The penterior margin of the batal is more or 1 -as sitatite. but Iess etrongly on than the anterior margits secend hand widening gradtally trom the pointed lower end wo upper end, which is alnoti 2 mm. broad, midHe hreadial 1 me . .mberior margin curving outwards at the upperent, por rior margin straight. Interalar spots hlue-green and green.

Femera dark recidish brown above, back berta ath, the pesterion surface of the fore trohanters and hasal bourth or third of the fore femora pale yellowish, thibe and il latack.

Alubeter :raty 4.5 times as long as the thoras. - Wher strongly constaicetl at 3. Seg. I without a wentral tulatile spinulese area on ventral surface of 2 restricted to the apical third; durictes with $3(2-4)$ teeth. Spines of anterior lamina rather large for the clepsydra group, straight at ute, directed vertrad. caudad and somewhat laterad. Hamular procese

d cted ventrad and thi con-istan of at shart browed proximal and a slender ph. liform thst prart llamular folds continuous with thel ula eret-in elo. Iv ipproxi-
 margins in a rather broas curve a $\{$ ane chird

 - raum of 10 with an brupts det ter mede a abohasal

Sut rus ..prendet, it is long -1, hels
 it the intervenisp you seme nitsli, be
 afths or une-hatt thelengt , readth Sd beng one-sixat to une-f th belengt ant in "hnin to the mere or fo sart . Ant lightly ". which terminate in a short hat who siewel dorsad, gent! con inm nar. usually appearing neari at io dis curse of the apex. It rot. i. ller । end gently upwards except ally, ner 11 ber wnwards forming ont arct infe it provior arina lecthly marked of dsolut in th i art. distinct ley all ans som it eleva and se cuate in the aptal two-fiths : Ally 16 out dentic

Inferior appen zu t. .. 'rang ' baretymure than halt as long as the - erin dul aton ice as long as the basal breater side ogha recursed pines just lefor the ble ely semied al fe in atertels in il tape ag venly to al
iolow ither of wodomen in the ral spue

+ . t mis ruat at sin 1 it end. taper4 . 4

148 Whlker: North American Specifis of Aeshna

separated from. PD, which forms with its fellow of the oppositte side a blue band alout 1.3 mm broad, from which a more or less ill-detined median green streak passes cephalad.

Segs. 3-10 brownish black; all the spots azure blue except MD, which is pale green. Al. on $3-8$, of moderate size, dwindling to a mere dot on 8, rounded below, giving off, on 3-6 or -7 , a basal transverse offshoot, which on most of the segments forms a complete though narrow ring with its fellow of the opposite side; upper margins straight or slightly concave. ML on $3-8$, enlarging to 6 , rhomboid on $3-4$ or -5 , oblong and subangular or rounded behind on the other segments; front margin feebly or not at all indented. MD on 3-7, triangular, the postero-lateral margins concave; often more or less quadrate on 3 and 4 , and occasionally confluent with $M 1$, on 3 . ('I) 1.1 .33 mm . long on 3 , increasing (1) 1.7 .5 or 2 mm . on 8, rounded mesially and rather narrowly separated on 3-7, more widely separated on 8 and 9, the inner margins straight and more or le'ss divergent cephalad, particularly on 9; well-developerl on io, subpuadrate and separated by a variable interval, but never connate. P' usually represented on 3 and 4 only, but often also on 5 and rardy on 6 . O. 3 it is a well-marked offshoot from ${ }^{\prime} \mathrm{D}$, on + smatier and more curved, generally an isolated dot when present on 6 or 7 .

W"ings liyaline, costal veins brownish ochraceous, pterostigma dark smoky brown above, paler and more yellowish beneath. membranule of hind wing smoky brown, uniforn or slightly paler at base, usically not reaching the cross-vein of the anal triangle which is 2 -celled. Two cells letween A_{2} and A_{3} at their origin. Rs forking at the level of $2-3$ (fore wing) $2-f$ (hind wing) postnodal cells before the stigna; 3 rows between the forks at the level of the distal end of the stigma and 3-6 cells between them at the margin. 'ihree or 4 (rarely 5) rows of cells betwern Rs and Rspl, where must widely separated. Hia arising lwfore the level of the midelle of the stigina, generally near the proximal end.

Antenodals $\frac{16-20}{12-15}$, postnoxals $\frac{10-15}{13-17}, \quad \operatorname{CuCr} \frac{5-7}{5-7}$, Spt $\frac{3 \cdot 5}{2-4}$.
Female - Ablonen about 3.5 times as long as the thorax and barely or no shorter than the hind wing.

Genital valves as long as the dorsum of 9 , lateral carinae very prominent, except at the base, varying considerably in profile view, but more or less gently arcuate with a tendency to be subangularly bent about the distal third; in ventral view nearly straight, bounding a space which is broadest in the proximal two-fifths, the breadth here being about onethird of the length, thence narrowing to the moderately broad squarely cut apices, which bear each a ininute pencil of whitish hairs. Ventral surfaces of valves with a more or less well-defined sulcate area occupying about the middle third, distaily narrowed and sloping mesad, feebly sulcate; inner margins touching only at a point near the midd!e, beyond which they are somewhat divergent. Styli $.6-.7 \mathrm{~mm}$. long, or hialf as long as the dorsum of 10 . Basal plate of ovipositor with the hind margin straight. Lateral plates distinct. Appendages about as long as $8+9$, slender, expanding to about three-fifths of the length, where the breadth is one-sixth of the length, thence tapering slightly to the rounderl apices: curve of inner margin slightly stronger than that of the outer.

The dorsal thoracic lands vary considerably in development but are usually completr though someWhat narrower than in the male (middle buadth $.5-.8 \mathrm{~mm}$.) and more constricted below the expanded upper ends, wh: h are sometimes separated as distinct transverse spots. Lateral bands averaging slightly broader than in the male. Abdominal spots shewing the usual differential characters of the sex, $\mathrm{PI})$ being smaller, the lateral spots larger, than in the ma!e. IPD is particularly reduced on 3 , and on 2 is bat narrowly connected with, or separate from, its fellow of the opposite side. PL on 2-6 or -7, relatively large, subtriangular on 3-5, generally connected throughout with PD and broadly confluent with AML on 2, and often narrowly so with ML on 3.

The extent of colour variation is as yet uncertain. Ths individual figurell on pl. 25. fig. 6, was strongly heterochromatic, the spots being all decidedly green or greenish yellow, but in the majority the lateral spots are more or less bluish green, the thoracic bands and dorsal abdominal spots yellowish green. I have never seen a purely tommochromatic female.

The witus vary from hyaline to a moderate degree of
flavescence. The stigma is, as usual, somewhat paler than in the male.

The following colour notes were made from two specimens taken at De Grassi P'oint, Lake Simcoe.

Muteral dete-mined-80 o 33 . Maine: Manchester, July 18.1890 (1 0^{*}). Aug. 15, 1895 , Aug 22 -Sept. H, 1908 . Aug 23 Sept. 3. 1909 , (iept. $2-7,1910$ (Mis, Wadsworth, 11 of 8 8) ; West Heach (Hagen. M.C.Z., I σ^{*}). Mass.

 Yoke: Loug lsland, Sern. (O. Sacken, M.(.L., io) Pensiviviví: Akron. Sept. 28. I 897 (J. S. Iline, ' ${ }^{\prime \prime}$): Folsom. Ihlaware Co. Oct. 4 , 1890 (Calvert it ©) Kidley Township, Del. Co., Oct. 11, 1890 (Calveri. 10); Neville lsl., Sept. =: toot U. L. Giral, \& © ; Squaw Kun. Alleghany (io, Sept. K, 1 qui (j. Le. Grafi, (ull. Williammin. I ơ). Distaici of Culimhia Washington (O. Sarken, M. C.J., $1 \sigma^{\circ}$). Ontarto: Tormio. Sept. 12, 140) \%, Sept. 27, 1909 (Walker, 10 of 3

Aug. 18-25, 1908. Aug. 30-5ept. 6, 1909. Aug. 27, Sept. 7. 1910 (Walker, 12 - ${ }^{6}$ (2): Gollome Bay. Georgian Bay, Aug. 26-30. 1907 (lluntsman, 2 on io). Micuigan : Detroit, M.C.Z., 3 O) : Petroskey (Mrs. (iodirey Ashbaucher, coll.
 (hilter, M.C.Z., I 8); Indiana: Fort Was ne, Aug. 23, Sept. 13, 1ge)s (William-
 Mlufton, Sept. 17. 1906 (L.A. Williamson, 1 of): Crooked Lake, Steuben Cu.. Ypt. 1, 1905 (Williamson. 18). Wisconsin: Milwaukee Co., June 14, 1goris Mıukowski, σ°, teneral): id., Aug. IU, 1.208 (Muttkowaki, i o): Magnolia, epi. 9. 1880 (llagen, M.C.Z., 1 of 1 P).

Also $3 \sigma^{*} 58$ without data.
Identity-This species lears a superficial resemblance to Ar. juncea L.., especially in the coloration and form of the male appendages, and was placerl by Calvert ('9.3) and Martin ('o8) as a race of that species. It is not, however, at all closely related to juncea but finds its nearest relative in Ae. canadensis. From this species it differs very olviously in the form of the anterior hamuli, and may 1 n : easily distinguished from it in the field by the much brighter thoracic bands. The lateral bands differ but slightly in form from those of canadensis but this difference is very constant. The undenticulated superior carina of the male appendages is an almost constant feature but occasional individuals orcur in which a fow slight denticles are present. This is the case in the two specimens from Sherbourne, Mass., which were referred by Calvert ('94) to Ae. clepsydra.

Distribution--Alleghanian and Carolinian Zones from the Atlantic States to Wisconsin. In afldition to the localities given abowe it has bee. recently reported by Muttkowski from likorida ('sol). Some of the older records, such as the one from California (Calvert, '95), need contirmation, as more than one species have been quotel unde the name verticalis.

Habits-. All my captures of this insect were made about the borders of wooxls or in small open spaces surrounded by trees. In its flight and its habit of sunning itself on the trunks of trees or hanging from the branches it resembles Ae. canadensis, with which it is sometimes associatel, though it nsually makes its first appearance at a time when Ae. canadensis is leaving the woorls and returning to its breeding grounds. Although two specimens, one a eneral, are recorded above as having been captured on June 13 and 15 , the normal time of appearance of this speries is during the latter
half of July, whil: it is most numerous towards the end of August and in earl: Scpter: ber. On Sept. 12, 1907, it appeared in very large numbe:, about the horders of a wood near Toronto.

Two pairs were taken here in copula and I found a third pair in an open wood at De Cirassi Pt., Ont., on Aug. 27, 1910. They were resting on the branch of a tree and by approaching very quietly 1 was able to pick them up with the fingers, but they separated immediately:

I have never discoverel the breeding grounds of this species nor do I rementer ever to have seen it in the immediate neighbourhood of water.' Mr. Williamson, however, has taken it at Fort Wayns. Indiana, flying over an open marsh. in company with Ae. constricta.

Aeshna tuberculifera Walker.
(Pl. 13, fig. 6; pl. 17, figs. 1. ta ; pl. 20, figs. 2, 2a; pl. 26, figs. 1, 2.)
Aeshna juneea serficales, Caivert. (Kec. Pap. Hoet. Soc. N.H., VI, p. 23 (igos) [in part].

Aeshno tuberculifero, Walker, Can. E.nı. Xl. PP. 385.387 .451 (1908).
Aeschna tuberculyfera, Murikowski, Bull. Wis, N.II. Soc., V?. p. 167 (1908); Martin, Gen Ins., CXV. p. II (1911).

Male-A slender species of medium or rather large size. Occiput pale bluish green, the antero-lateral margins blackish. usually distinctly broader than long, one-third to two-fifths as long as the line of contact of the eyes. Frontal vesicle reniform, ore than twice as broad as long, the yellow area not reaching the lateral ocelli. Eyes in alcoholic specimens deep yellowish olivaceous shading into bright yellow behind, with a small transverse dark spot above. Preocular band not more, generally less, than twice as broad as the first antennal joint, narrowed ventrad on sides of frons, becoming obsolete at the fronto-nasal suture, but broadening again on the nasus. T-spot $2.3 .3-3 \mathrm{~mm}$., stem $.4-75 \mathrm{~mm}$. broad in front, $8-1 \mathrm{~mm}$. behind, sides generally straight, more or less divergent. Face (alcoholic) dull nlivaceons with a slight bluish tinge, in dried specimens yellowish olivaceons; paler above and on the

[^7]sides next the procolar line. A fine brown line generally present on the fronto-nasal suture. Lateral lobes of nasus rotundo-angulate, scarcely llaring. Khinarium reddish brown. the upper part green. Labrum light green with very narrow upper and lower marginal hack lines. Labinm pale obscure yellowish or olivacenus stained with reddish brown toward the fore margins. Rear of head hlark.

Thorax moderately slender, dark reddish brown, deepening to black around the lateral bands, with a slight greyish hoom beneath. Dorsal liands pea-greell, nearly straight, $3.5-4 \mathrm{~mm}$. long, $7.5-1 \mathrm{~mm}$. hroad at the middle, lower ends pointed, separated by almolt 4 mm ., upper ends reaching the antealar sinus, expanded, about 1.5 mm . hroad, separated by 1-1.5 nım. Antealar sinus pert-greein. lateral bands blue above, fading into pale green below (pale yellowish in dried teneral specimens), straight, the first band rounded at the lower end, $1-1.5 \mathrm{~mm}$. broad in lower third, thence narrowing dorsad to about 1 mm . in the upper half and widening again slightly at the upper end. from which a very simall offshoot passes caudad: anterior margin sometimes slighly broken alove the middle, posterior margin nearly straight. Second hand tapering somewhat at the lower end, the margins straight and subparallel: breadth at middle $1.3-1.5 \mathrm{~mm}$., slighly broader at upper end. No spots, or at mosi a minute dot. letween the bands. Spots hetween and at base of wings hue.
legs dark reddish brown, nearly black on the tibiae, tarsi and underside of the femora; fore femora without a pale streak on the posterior surface.

Aldomen slender. five times as long as the thorax, itrongly constricted at 3 . Sternum of i slightly elevated at the hind margin, but without a distinct tubercle. Auricles uith 4 or 5 teeth. Tergal margins of 2 opposite sheath of penis subangularly approximated. Spines of the anterior lamina short and hunt, not reaching back to the hamular folds. Ilamular processes short and very broad, directed mesad, the ventro-anterior surfaces flat, postero-internal margins arcuate, apices blunt!y obtusangulate, with no indication of a tubercle. Hamular folds continuous with ham-

154 Whlkfer: North Amprican Spectes of Afshna

ular process, not so closely approximated behind as in most species of the clepsydra group, margins thickened, outer margins parallel. Seg. 3 alootit one-third longer than $1+2$ or 4. Lateral carinae on 8 more or less subangulate or irregularly sinuate, on 9 distinct except for a short distance near the middle, where they arc more or less obliterated. Dorsum of 10 with a prominent median and two nairs of small lateral teeth.

Superior appendages usually slightly shorter than $9+10$, sometimes as long, contracted at the extreme base, moderately slender in the proximial fourth, leing about half as broad as the intervening space, thence expanding meso-caudad to about two-fifths of the length, the width here twing aloout onefifth of the length, narrowing very little distally, the apices being broadly rounded with a small deflexed terminal tooth near the outer margin. Outer margin viewed dorsad, gently convex proximally, more strongly so distally: inner margin rather markedly sinuate, being convex just beyond the base, just lefore the middle and before the apex. Superior carina obsoletc in the proximal third, gradtally and moderately elevated beyond, gently arctate before the apex, but with no indication of denticles. Profile view: slightly curved upwards: a prominent basal clorsal tulercle and a well-marked sul-basal ventral tulercle, which apkears most prominent when viewed obliquely either from above or below. Inner margin in the distal four-lifths lwilt downwards, forming a fairly prominent arcuate inferior carina. apices slightly decurved. Inferior appendage triangular, with nearlystraight sides, one-talf to three-fifths as long as the superior pair, the basal breadtlo one-half to three-fifths of the length; a pair of minute recured dorsal spines lefore the blantly pointed apices; in profile very sently upurved, tapering evenly to the apex.

Colour-pattern of abdomen-Sigs. 1 and 2 fuscous, the others brownish black, pale spots all slightly refuced.

Seg. 1. Dursal spot blue, lateral spot wanting.
Seg. 2. AML pale green to azure blue, L-shaped, the horizontal part $1-1.5 \mathrm{~mm}$. broad just above the auricle and extending downwards a short distance atong the front margin

Nalker: Norill American Spfcies of Aestina 155

to the ventral surface; vertical part somewhat narrower, extending dorsad $\mathbf{2 - 2 . 5} \mathbf{~ m m}$. above the auricte, ending abruptly and not confluent with MD. PL pale green to azure blue, only about 1 mm . broad, connected rather narrowly with PD, which is about 1.3 long (antero-posterior dimension), connate with its fellow of the opposite side, and in front with a narrow pate median greenish streak.

Segs. 3-10. At on 3-8, pale green to blue, smaller than usual, diminishing caudad to a dot, subtriangular, with the upper margins ol hique: on 3 about 2.5 mm . broad in front, on the next 2 or 3 segments sometimes giving off dorsad a short narrow basal offshoot. ML ous3-8, pate green to blue, increasing in size caudad to 6; more or less rhomboid on 3, and sometimes 4. rounded on the succeeding segments, not confluent with III. MD on 3-7, pate green, small and subquadrate on 3 and reduced to a pair of dots on 7, elsewhere triangular, but little elongated transversely. PD on 3-9, azure blue, increasiug in length from 1 mm . on 3 to $1.3 \cdot 1.75$ on 8 ; inner margins rounded and separated by about .5 mm . or somewhat less, rxcept on 8 and 9, where they are straight, somewhat divergent cephalad, and more widely separated. Seg. 10 entirely black. PL, on 3 only, a small curved offshoot from PD sometimes separated as a minute dot or alosent altogether.

Wings hyaline or slightly flavescent in tenerals, costal wins rather clark reddish brown, pterostigma dark brown, membranule of hind wing dark sninky lrown, fading into pale greyish at base, not reaching criss-vein of anal triangle, which is 2 -relled. Twocelts between A2 and A3 at their origin. Rs forking at the level of $2-5$ (fore wing) $3-6$ (hind wing) pur:notal celts before the stigma; 3 (rarely 2 or 4) rows of cells between the forks at the level of the distal end of stigma and i-h cells between the forks at the u-ing-margin. Three or 4 rows of cells between Rs and Rspl, the latter not strongly sinuate; Mia arising at a point between the level of the middle and proximat ends of the stigma (almost always near the latter). Three (occasionally 2 or 4) cross-veins under stigma.

$$
\text { Antenodals } \frac{18-22}{11-16}, \text { postnodals } \frac{11-18}{13.18}, \operatorname{CuCr} \frac{6-7}{5-6}, \text { Spt } \frac{3-4}{2-3}
$$

Female-Abdomen scarcely five times as long as thorax. slightly widened at apex of 8 and base of 9 , the parts of the genitalia larger than in any other North American species of Aesina except Ae. consirictu. Genital valves as long as dorsum of 9 , or larely longer, in profile arcuate toward the base. the apices slightly devated; lateral carinae prominent, percurrent. in profile sinuate, in ventral view nearly straight, the enclosed space narrowing slightly caudad : its middle breadth about one-fourih the length: apices rather broad and truncate. lentral surfaces of values distinctly declivent, especially at the middle, ferbly sulcate. Basal plate of ovipositor of moderate :ize, hind margin straight; lateral plates distinct. Spines in wintral surface of to few and scattered, rather coarse. styli 1.5 mm . long, or about as long as the dorsum of 10. Appendages as long as, or slightly longer than, $8+9$. expanding rapidly from the base to one-fourth or one-third the length, the breadth there being slightly more than one-fifth of the length, tapering in the distal half to the acute or roundly angulate apires, which sometimes terminate in a minute spine. The curve of the margins is generally stronger towards the base than the apex and that of the inner margin stronger and more regular than that of the outer.

The colour-pattern shows the usual marks of distinction from that of the male: the dorsal thoracic bands narrower (. 5 mm.), the lateral abklominal spots somewhat larger and PI) slightly smaller and on 9 more widely separated. Ill-defined traces of PD are sometimes present on 10. Pl, as in the male, is represented only on 2 and 3, though a little larger, and confuent on 2 with A.MI.

In the single female in which the colours were seen while still fresh they were purely hom@ochronatic (pl. 26, fig. 2). None of the Iried specimens are well enough preserved to determine the natural colours, though in some the ID spots were apparently blue in life, while in one from Hampden, llass., these spots on the posterior segments are yellow and were probably so in life, so that Ae tuberculifera is pru'ably more or less dichromatic, like related species.

The wings are sometimes slightly flavescent, especially at the bases and along the costal borders, but I have seen no
specimens with deeply coloured wings. The pterostigma is, as usual, generally longer than in the male.

Measurements-Thor. o7 9.5-10.5. \% 10-11 : abd. o' 47.552.5. 8 45-54. 5i seg. 3 o' 8-9.66, 8 7.5-9: depth seg. 2 of 5.35.75. 母 5-75-6.25: depth seg. 3 \& 2.33-2.9: apps. of 4.8-5.75. 8 7.33-8.33; gen. v. 3.1-3.5; h.w. o' 45.5-49, \% 44-50.5;

Types- - $\%$. Acad. Nat. St I Iniladelphia-Isleboro, Me., taken in cop:ala.

Nymph-Unknown.
Material examined-14 $\boldsymbol{\sigma}^{7} 11$ 8. MAnse Isleboro (Dr. S. G. Dixon, Ac
 (Miss Wadsworth, 7 Of 3 日). MAssichlserts: A. N. Caudell. U.S.N.N.,
 $11(2,18)$: Provinctown, Alıs. 5. 6, 1899 (J. E. Benedict. jr., L.S.N.A. R

 Home Bay, 'seorgian Bay, Aug. 26, 1907 (Huntsnan I $0^{\prime \prime}$). Wiscossis: Ooti. burs. July io : yor (E. Was, coli. Miut kowiski i θ).

Distribution - Alleghanian: New England, Ontario and Wisconsin.

Aeshna palmata Hagen.

(II. 1, fig. 4 ; pl. 14, fig. I; pl. 20. figs. 4. 4a; pl. 26, figs. 3. 4.)

Aeschnz palmata, Hagen. Stell. Ent. Yeit., XVII. \&. 369 (18s6): Selys, Ann. Suc. Ent. Belg. XV; P. $34(1872)$; Martin, Gen. Ins., CXV, p. 12 (1911).

Aeshna palmata. Walker, Can. Ent., XL. pp. $379.388,450$ (1908): MuttAeschna constricta, Hiagen, Pr. B.S. N.H., XVilil. poc., Vis (187. p: 174 (1910). C.at. Od., p. 88 (isgo) (in pari); Calvert, Tratis. Am. Eni. Suc., XX, p. 249 (is lin parti; Currie. Pr. Wash. Ac. Sc. III, p. 220 (1901); Pr Ent. Soc. Wanh., VII, p is (1905): Usburn, Ent. News. XV1, pp. 185, 190 (1905).

Aeshna constrich, Cuivert. Ud. B.C.A., p. 183 (1905) (in part).
Male-A strongly huilt species of medium or rather large size. Occiput pale yelluw or yellowish green, one-half to thre-fifths as long as the line of contact of the eyes. Yellow area of frontal vescicle extending laterally to the lateral ocelli. Eyes blue above, vith a dark transversi: stripe, pale greyish bruwn below, hind margin whitish. I'reocular band varying in width, like the other dark inarkings of the head, according to locality, but almost always two or three times as broad at buse of antennæ as une of the lateral ocelli, narrowed to a heavy black line on the sides of the frons and nasus. T-spot heavv but exhibiting great variability, generally $2.5-3 \mathrm{~mm}$.,

15 Whlkfr: North American Splicles of Abshna

strongly arcuate in front; stem short, . $6-.75$ man. broad, with parallel sides. In specimens from Banff this spot is inclined to be a little under the werage size, while in examples from Vancouver Island it reaches its greatest development, the cross-lar measuring $3-3.3 .3$ t:man, and proportionately wider, so thet: the stem is shortened, and in one exam; le from Departure Bay has virtually dismpearel, the cross-bar leeing directly connected with the preocular band. Frons, nasus and labrum pale green or greeninh yellow, a black line on the fronto-nasal suture, varying in width atcording to locality. In one unusually large and paile example from City Creek Caion, the line is brown and extremely narrow. Lateral lobes of nasus rotunde-ohtusamgulate, scarcely or not at all flaring. Labrum borleterl atove and below by a black line. Rhinarium brownish or hambeous. Labium pale dull yellow, more or less olmured by reddish brown. Rear of head black.

Thorax robust, dark reddish brown, paler beneath. Dorsal hands yellowish green, . $6 . .8 \mathrm{~mm}$ hroad, tapering below. expanded sudilenly at the extrime upper end, this expanded portion being frequently separated as a distinct spot or absent altogether, the billd in such casest tapering at both ends. No humeral spots or lands. l.ateral hands bright greenish yellow, often bhish alnowe, incarly straight, more or less distinctly surrounded by a diffuse dark brown margin; first band broadest near the rounded lower end (1 mm . or a little more), straight or fecbly simute about the middle, somewhat narrowed alone, not expancled at the upper end and without a pesterior 'ffshoot. Becond band of about the same width below as the first hand. straight, slightly expanded at upper end. There are often two very small greenish spots between the two lateral hands, one at the metastigma, the other above it. lint these are not always present.

Legs black, femora nore or less reddish brown above in alcoholic specimens. Anterior trochanters and basal fourth or more of posterior surface of anterior femora pale yellowish.

Aidomen alnut four and one-talf times as long as thorax, rather robust, strongly constricted at .3. Seg. I without a distinn t ventral tubercle. Auricles with $4-5$ teeth. Tergal
margins of 2 approximated upposite sheath of penis Spines of anterior lamina strongly developed, projecting caudad about as far as the hamular processes, moderatelv and evenly curved dursad. Hamular processes loroad and thick, their anterolateral surfaces concave and bounded lehind by an arcuate ridge which runs from base to antero-internat angle; apical margin straight mill transverse, ilmer margins approximate in front, divergent ledind, where they are in unbroken continuity with those of the hamular folts. Hamular folds nearly mecting tehind, simususly bent, but not produced into earlike processes. Seg. 3 one-fifth tor one-fourth longer than : +2 or 4 : lateral carinate of 7 athd 8 feebly sinuate in ventral view, dorsum of 10 omooth, without a vestige of a tooth.
superior appendagist alxout as long as $9+10$, their bases comparatively stout and as broad ats the space between them, expanding rapitly by the curving of the imaer margin, so What the greatest breadil, at alout three-fifths of the length, is equal to about threr-tellths of the length. Outer margin curled inwards over the dorsal surface, feebly convex in the proximal half or two-thirds, straight or feebly concave beyond, passing distally into the broad rounded apical margin. luner margin strongly concave in the besal half, very strongly convex beyond and emarginate lefore the apex, where it terminates in a slender pointed spine, directed downwards and backwards and surmounted by a stout inwardly directed tubrecte, which lxars a tuft of browoll hairs. Dorsal surface concave, facing rather inwards than upwards in the natural position. Superior carina indicated by a low rounded median ridge.

Inferior appendage about half as long as the superior par, the basal breadth about half the length; lateral nargins feebly sonves next the base, straight beyond and meeting in the rather broadly rounded or truncated apex, which is arned above with a pair of minute recurved black spines. I'rofile view: gently curved upwards, the curve of the lower ni.argin leing a little stronger than that of the upper.

Colour-pittern of abdomen-Seg. 1 fuscous, dorsal spot blue, lateral spot greenish yellow, elongate-triangular, of variable size, 1.5 .3 mm . long (transverse), i nim., or less, broad.

Seg. z fuxcous. (1) small, triangular, pale yellowish. AML greenisla yellow, shout 1.5 mm . Droat at midde, giving off ventral a marron, atreak along the front natgin and conI!uent abmer with MII). I'l. gremish yellow, partly separated liy a dexp noth from I'D, \therefore ', iti is a blue bant, from the front margin of whit a narrow medio-dorsal streak runs forhard to comert win d).

Kig- $\mathbf{i}-10$ hack, the blue spots varying somewhat in size arcording to locality. liat newer much reducerl. AD on 3-7 if .8, small yellowinh triangular sposs, rudimentary caudad. M1) well developerl, sellowish, triangular on 3-7, and gene:dlly represemed liy a pair of dots on 8 . I'D well developed, generally rather liarrowly eparated, increasing in size caudad; on \& usually nearly half as long as the segment, the inner margins straight and subparallel and separated by less than 1 mm .; un 9 threerefifthe as long as the segment, broadly connate or separated by a 1 larrow line; on 10 rather narrowly connate. In specimems Irom V'ancouver Island PD, as well is the other blue almoninal spots, is slightly smaller than ustal, and more widcly rearate from its fellow (except on 10, where they are kenerally narrowly connate). Al. on 3. 8 . Whe or frepuently mure or less green on 3, connected on most of the segments will a narrow basal ring or narrowly \¶ted from it; upper margins straight and horizontal. N1. on 3-8, subpuatedrate Incoming larger and more rounded caudael, not contluent with III). I'I $7.3-5$. 6 or -7 , variable, lecreasing.

Wings hyaline, costal weins brewnish yrllow, pterostigma lark smoky brown, paler Ineneath, membranule of hind wing whitist in the poximal fifth, smoky brown distally, reaching nearly to the cross-vein of anal triangle, which is 3 -celled. (hne cell irarely 2) Inetwerll I_{2} and A_{3} at their margin. Ks in front wing forking upposite the lirst or second pusterdal cell before the stigma, in the himel wing opposite the first to thircl cell: 3 or 4 rows of cells between the forks at level of distal end of stigma and 3.6 cells $1 n$-iween the forks at the wing-margin. 'lhree or 4 rows of cellshetwern Rsand Kspl. Ma arising beyond the middle of stigma or beyond itig?na altogether.

Walker Nortil Imikican splichis ol deshida 161

Femule-l'arying considerably in form according to 10 . cality (vide postes); abdonen but litte or no longer than the hind wing.

Cenital valves rather large, reaching slightly treyond the posterior margin of 9 , in profile considerably arcuate, apicew elevated; lateral carinae percurrent, prominent, in lateral view somewhat sinuate, in ventral view almost straight, the space leetween them broadest at alsout one-third c^{\prime} its length, the breadth here leing equal to aloout one-fonrth of the length, narrowing caudad very slightly to the broat truncated apices. lientral surface of valves declivent in the proximal third, distally rather shallowly sulcate. Styli alout 1 mm . long, shorter than dorsum of 10 . Appendages about as long as 9 +10 , tapering somewhat more gradually lowards the base than the apex; greatest breadth aloout the middle and equal to one-fifth, or a little more of the lengith; curse of inner margin somewhat stronger than that of outer margin; apices rounded, sometimes terminating in a more or less obscure point.

Dursal thoracie bands much reduced or obsolete, -ometimes divided into a superior and inferior spot. Audominal spots differing from those of the mane in the usis! way, i.e.. PD is small.p, the lateral spots larger, cosp fally Pl., which is sometime confluent with P l) and or (1. is D.111 In the specimen from Twin Lakes, Col., whi, figured on pi. 26, the spots are decidedly larger that: and the difference be ween the two sexes as shownon the is greater than it is in specimens fow the same loceality we female from Bantf, as in the Twin Iakes specimen, il. in contluent with AMII. on 2, but elsewhere it is isolated and the basal rings are mere lateral extensions of AD and do not rach Al.. In individuals from Baker City, Oregon, and Kiasls, B.C., the spotsarestill smaller and PL is isolaterl on all the segments on which it is present. In the Kaslo specimens the hasal rings have apparently disappeared altugether.

162 Walker Nioril Amprtcin Spectes of Aeshna

The range of colour variation is as great in this as in any of our species of Aeshna. Mr. C. II Kennedy has sent me a coloured drawing of a purely homorochromatic female, in which the ablomen is blackish brown and all the spots on segs. 3-10 are blue. The upper part of the eyes is also blue. Oll the other hand the Twin lases specime n is reddish brown, somewhat darkened alfolt the margins and elevated parts and the pale markings where well presersed are all yellow with a greenish tinge. Most of the other specimen, seell are not well enough presersed to reveal the natural colones. One from lianff was apparently of the intermediate type. The wings are hyaline in all the specintens exrept the heternctaromatic one from Iwin lakes, in whirh they are Havescert. The stighat is pale brown.

Measurements Thor. of to.75-11.5. \& 10.5-10.75; alxl.

 of $2 \cdot 3.3 \cdot 3,8 \quad 2.6 \cdot 3.5$.

Nymph (pl. - . fig. 1: pl. 9. tig. 1: pl. 11, lig. 1)-V'ery similar to that of umbrose, difiering chidefly in the shomter form, broader fathom and farger genitatia of the femato
liyes as in umbrosa, postocular part of head also similar, except that the postero-lateral corners are sonnewhat less toradly rounded. Mentum of tahinm decidedly froader than in umbrosa, hut strongly narrowed at hase, the basal breadth txeing less than half the apicaltreadth, which is equal to atorut four-fiths of the lengtin. Proximal four-sevenths expanding gradually fout more rapilly than in umbrosa, the sides straight; distal threesevenths much dilated, the sides strongly archate l.ateral fote's not narrowerl beyond the base of the mowable hoxsk. spuarely truncate, angles scarcely romuled, the imer one withomt a terminal toxth. Supracoxal processes someWhat larger than in umbrosa, equal, slightly outcurved, acute : intervening space rectangular or mearly so.

Abdomen distinctly stouter than in umbrosa, having ahout the same form as interreptes and eremitu, itoalest at 7 or 8; lateral spines present on 6 to 9, a trith longer than in
umbrosa, those of 8 extending slightly beyond the posterior margin of the segment, and those of 9 to about three-fifths or two-thirds the length of 10 . Abdominal appendages as in umbrosu. Genitalia of female extending over the basal third of to. the valves slightly declivent.

In the female specimen the pale markings of the abdomen are olsscure, but in the male they are as distinct as in average.specimens of umbrosa; and the pattern is nearly the same in the two species. The pale lateral margin of the head is less distinct than in pulmata, but the annulations of the legs are quite as in umbrosa. The pale dorsal area of the alxlomen in the male specinen is divided anteriorly into two bands by a dark median band, which broadens and becomes diffuse in the more persterior segmenis. Jist external to the pale bands, in line with the dorso-lateral punctae, is a series of narrow longitudinal pale streaks. The lateral scars are outlined in brown and surrounded by diffuse pale areas. The other markings elescrilxel for umbrosa are less distinct than in that speries except the punctae, of which the dorsal as well as the lateral and dorso-lateral are inarked with eleep urown.

Measurements-length of lexly $40.5-41$; mentum of labium 6.8; h.f. $7-7.2$; h.w. \& $5 .-4$; inf. apps. $4.25-4.5$; width of head x : of alxleme'n $7.75-$ - .

The two exinviar from which the above description was taken were found by Dr. Ilunlsman at the edge of a pond ucar Kobson. 13.(\%. Aeshna pulmala was flying here and was the only species serin execpt a single female of Ae. californics. These exuviae are very close to those of Ae. umbrosa but are distinct and can lelong 10 no other known species than palmata. As in the inagoes of these two species the bod; is somewhat stouter and the female genitalia a little larger than in umbrosa. The difference in the abdomen is in reality greater than appears on the plate, as the drawing of palmata was made from an exuvia. that of umbrosa from the nymph itself.

Alaska. Kudiak. July 20, 21, 1809 (T. Kimaid. V'S.S.M., I $\mathrm{O}^{+} 201$: Cook'

164 Walker: North American Species of Afshna

(M.C.Z. 1 O): Shawnigan Like, Vanc. Is. (Currie, U.S.S.Mt., I Jo): Chacier (Mrs. C. Schaeffer. Ac. N S. Ihil., 1 8): Peachland, Aug. 18, 21, 1 peo (Wallis, 30°): J'enticton (Wallis, ${ }^{2}$ ó): Sulh Fork Creek. Aug. 11, Igous (Currie
 Lakc, $\$ 100 \mathrm{ft}$. E. V: Cuwatry, cull. Walker, 3 (i); Banf. July lo-Aug 6, 1 gos
 Yakima, Sepl isyt (Calieri. I ${ }^{*}$) ; Lasin lake. Culville V'slley. July 25. 1882 (Henshaw, M.C.L., I O). Oracons: Baker Ciiy and vicinity. July 31, 1908 , Aug. 6-Sept 18,1909 (C. 11. Kenned), $165^{*} 10$): Curvallim (Neerham, $1 \sigma^{\circ}$). Colonado- Twin Iaken. Aug. 13 31. 1gou (Calvert, coll. Calvert and Willianison, 3 of 10 : Fort 11 ill, 1873 (is (2 . 1) Summil Canun. Aug 8.1875 M.C.L., $1 \sigma^{\circ}$); "Suuth-western part of Culuradu." $11000-12000$ ft. ($5 . S$. Gillin.
 10). L'tah: Moundains eas! of Ogden. Aug 22. 1809 (Neetham, I 8); City (riek Cañon. July 5. 1899 (Calvert, $\left.10^{\circ}\right)$. Nevada: Renu. Aug 11, 1890 (F. II Hullman. Ac. N.S. Phil., 18). Alwi 1 of withoul dald.

Nymphs-Exuviace isi8. Kulawn. 4C., July A1, lyo (Hunisman).
Identity-The Alaska specimens, as far as can be judged trom their discoloured condition, are identical with the type specimen from Kamtchatki. In the latter the abdominal spots are snaller than in any of the American specimens, but there is much variation in this character, according to locality.

In the great majority of cases the black line across the face will serve to distinguish this species from ambrosa and constricha but ecosional individnals ocour in Colorado and L'tah in which this line is very narrow or practically absent. such spe imens may be known by the other characters given in the key.

Distribution-Borcsl ; Kamtchatka and Alaska to Colurado and U'tah.

Cicographical variations-A constderalle range of cotour variation is exhibited by this specries in the different parts of the territory that it inhalits. The extent of the black markings of the head is greatest in the specimens from Vancouver Island and least in those from Alierta, Colorado and Utah. The reverse is the case with the spots of the abdomen; ('g., the P'1) spents on seg. 9 of the male are separate in all the Vancouver bland specimens but are broadly connate in nearly all of those from the other localities.

In my key of agod I gave Baja C California as the socuthern linnit of this species' range. The specimens from this tocality which I referrul to Ae. palmates were part of the material recorded l,y Calvert ('95) as Ac. constrictu. They differ from
typical palmota in the hroader superior appendages with shorter preapical spines, in the smaller anterior hamuli, the somewhat more complex venation (there being, e. g., Iwo cells between A_{2} and A_{3} at their origin) and in the slight reduction of the abrlominal spots. AL is quite insignificant on 7 and 8; ML present only to 5 or 6 and very small, while Plis represented only to 4 or 5 , though connected with I'D where present. I'D is but little reduced.

As I have ury no females from this locality I prefer to leave undeciderl the question of the status of the Baja California variely.

Aeshna umbrose. Walker.

Aeschna constrwhe, Sculder, Pr, Bost. Snc. N.H., X. p. 212 (1866) : Ihagen, Pr. Bont. Soc. N.11., XV. p. 376 (i8;3) : I'rovancher, Nat. Canad., ix. p. 42 (18:7); Cabot, Mem. M. (Z.V111, p. 2t. pl. 3, fig. 1 (nymph) (1881); Kirby.Syn. (at. Od. X.A., p. 88 (1880) Jin (urt), Calvert. Trans. Am. Ent. Suc. XX, P 349 (1893) lin parti: Can. I:nt., XXV1, p. 317. 318, (1894): Ent. Newa, X. p. 42 (1899) Williamson Drag. Inc. ppl. 4 hg. 10 (nymph); llowaril, Ins. Bk.,pl. \&l.fig. 4 (1got); Sredham, Bull. 47 , N.Y. St. Mus., p. 470 (nymph).pl. 17. fig. I (1y0t); Needham and Ilart, Bull. If St. Lab., V1, p. 42 (got): Williamson, Ene. News, XIII, p. 110 (tgna): l.c XIV, p. 227. (1903); Neelham, Bull. 68. N. Y. Statc Mus., pp 205.212 .275 pl. $\mathrm{s}(1903)$; Walker, Ann. Rep. F.nt. Suc.. XV. p. 69 (1906) Can. Int., XXXTIII, p. 149 (1go6) lin part); Martin, Cat. Coll. Zool. Selys, XVIII. 5 48, fg. 44 (Igor).

Aeshra ronstrwta. Calvert, OA. B.C.A., p. 185 (1905) lin part): Oce. Pap. Bist. Soc. N.II., VII, 6, p. 24 (Igos) lin part), Ent. News, XVII, p. 148, pl. Nli 1906).

Aeshna " g ", Williamson, Ohio Nat., VII, p. 145, $1+6$ (1907): Walker, Ott. Nat., XXII, is \$ $\$$ (1908).

Aeshna memhrosa. Walker, Can. Ent., XL, pp. 380, 390, 450 (1908): Muttknwaki, Hull. Wis. Nill. Sor. Vill, p. 57 (1910), Cat. Oh1. N.A., p. 114 (igio).

Aeschna umbrosa, Muttikowski. Bull. Wis. N.II. Soc., VI, p. 167 (Igas) ;

This widespread species varies considerably in the differint parts of its geographical range. Two principal varieties may be distinguished, the one occurring in the eastern half of the continent, the other from the Rocky Mountains westward. These may be separated as follows:

PD much reduced, greenon segs. $5 \cdot 10$ or on all the segments; seg. 3 varialle, but generally rather long and slender; easterin. .Ac. u. umbrosa.
PD of the 'sual size, hlue except on to; seg. 3 of ordinary length; western. Ae. u. occidentalis.

Aeshna umbrose umbrosa Walker.
(Ill 14, fig. 2; pl. 17. figa. 2, 2a; pl. 20, fig; 3. 3a; pl.26.figs. 5, 6.)

166
 Walker: North American Spfcies of Aeshna

Malo-Occiput temon-yellow, two-fifths to one-half as long as the line of contact of the eyes. Frontal vesicle greenish yellow, this colour extending laterally to the lateral ocelli. Eyes above rather dark olivaceous green with a transversely elongate black spot, partly surrounded by a diffuse violet margin; paler below; edged behind with bright yellow or greenish yellow. Preocular band, at base of antenne, rarely more than twice as broad as one of the lateral ocelli; reduced on the sides of the frons to a narrow line, which disappears 11 the nasus. T-spot of moderate size, $2-2.33 \mathrm{~mm}$., stem very variable. frequently a mere line, . 25 mm . broad, sometimes as narrow as this in front but expanding to .5 or .7 mm . at hase: more rarely equal throughout. Frons and nasus varying from pale green to comparatively dark olivaceous; pale yellowish laterally and on dorsal surface of frons. Fronto-nasal suture often witli a very narrow brown line. Rhinarium generally darker than the other pale portions of the face, more or less plumbeous. labrum pale to moderately dark dull greenish, margined alove and below hy a very narrow black line. Labium drab or yellowish, more or less obscured peripherally by reddish lrown. Rear of head black centrally and above, pale yellowish green (brownish in dried specimens) laterally.

Thorax rather slender, dark rich brown with a reddish or coppery tinge. Dorsal hands yellowish green. $\mathbf{3 . 5 - 4} \mathbf{~ m m}$. long, separated by about 4 mm . at the pointed lower ends, converging upwards to the antealar sinus, their breadth increasing to dixut 1 mm . ar the middle and 1.5 to 2 mm . at upper end. where they are separated by 1.1 .5 mm .; outer margin more or le's strongly rurved mitwards at the upper ends. A transures. green spot in each antealar sinus, and generally alst a darker grecon humeral streak. Lateral bands bright yellow or grenish yellow, ofter biue at upper end, rather narrow, straight and surronded by a diffuse black margin. liirst land rounded at lower end, where it is 1.25 1.5 mm broad, narrowing to .6 or .8 mm . at the middle and generally kiving off caudad at upper end a small triangular offshout. Second hand $.75 \cdot 1.25 \mathrm{~mm}$. broad, equal or slightly constricted by a slight excavation of the hind margin; upper
end of ten with a narrow cross-bar. There are also frequently one or two small greenish spots at the metastigma and another farther clorsad. Spots at bases of wings above yellowish green, interalar spots pale blue and greenish blue.

Abxlomen alout five times as Iong as thorax. strongly constricted a ; which is generally longer than in most species, elsewhere fains broad though not deep. Seg. I without a distinct ventral tubercle. Auricles with 4 (rarely 3) teeth. Tergal areas on each side of penis moderately elevated with numerous spinules, their margins somewhat approximated but less so than in Ae pralmata. Spines of anterior lamina well. leveloped. projecting raudarl a little beyond the hamular processes, their apices, curved somewhat more abruptly dorsad than in palmada and constricta. Ilamular processes smaller than in these two species, their antero-lateral surfaces concave and separaterl from the rounded inferior surface by an indistinct arruate ridge ; apical margins truncate; inner margins approxima : in front, divergent behind, where they are in unbroken continuity with those of the hamular folds. Hamular follds lying directly dorsal to the processes and projecting srarcely any farther caudad, similar to those of Ae. palmata. max. 3 nearly or quite one-third longer than $1+2$, or 4 . lateral carinae of 7 and 8 strongly approximated in the basal thirl, leeing separatel there by a space about one-half as hroad as at apex and appearing strongly sinuate when viewed ientrad. Dorsum of 10 sinooth, witholt a tooth.

Superior appentages as long os $9+10$, dull brown, thaped as in Ae. polmata, the only differences being the paler colour and slightly shorter preapical spine. Inferior appendage pale horn colour, darkened at apex and along lateral margins, olloerwise as in palmata.

Colour-pallern of abdomen-S.g. I fuscous; dorsal spot Hue, narrow; lateral spot absent.

Seg. 2 fuscous, spots reflucerl. AD obsolete ; A.11. yellow or greenish yellow, rhomboill, about 1.2 mm . in diameter, the upper posterior angle confluent above with MD. PL. and I'l) separate, the former greenish yellow, the latter blue, forning a band half as broad as the posterior part of the segment, with a concave front margin, from which a narrow

168 Wal.kfr: Voriti Infrtota spretise of Afshni

green streak passes forward in the middle linc:, sometimes expanding to form a large diffuse green spot.

Segs. 3-10 dark brown with a greenish tinge, mos' of the spots greroll or greenish blue, and so reluced as to give the whole insect as unusually dark appearance. AD a minute elongate greenish spot connected on +-7 uith a narrow pale green basal ring. 3ll) on 3-7, well-developed triangular greenish spots, separate from IIL, except sometimes on 3. often representerl on 8 by a pair of minute dots. PD imuch reduced hut variable, . 8.1 .25 mm . long on 3. decreasing and narrowly separated mesially in 7 , where they measure 4-1 $\mathrm{mm} .$, somewhat larger and nore widely separated on 8 and 9. diffuse and of varialle size on 10 . Frequintly they art rassgreen or yellowish green throughout, hut often the first oneor two pairs are palle blue, the remainder green. Al. on 3-6 or -7 : on 3 reduced to a triangular bluish green or blue spot, occupying the antero-ventral angle of the segment; on the others a small rounded pale greenish spot, umeonnected with the hasal ring and thecoming a mere dot on 6 or 7 . Ml. on 3. or $4-8$. palegreen or greenish bhe, small and sulquadrate on 3 and 4 , then rapidly enlarging in 7 , those on 7 and 8 being particularly large and more rounderl than the others. Pl. on 3 -h or -7 . small pale greenish elengate spots, lecoming minute caudad, widely separate fron li), except sometimes on 3. where they may be narros fy contluent.

There is also a pair of large pate hluish basal spots on the ventral surface of 4^{-6}.

IVings with a faint brownish tinge. distinctly shorter than the alviomen. costal veins lornwish olivaccous; pterostigma lark smoky brown. palor beneath: membranule whiti-h in proximal half, dark brown distally: amal triangle with 3 rells; generall! 2 colls Inetween A_{2} and A_{3} at their origin: R, in fore u ing torking oppesite the serend to the fourth posinadal cells tefore the stigati, in hincl wing oppesite the second to fourth cell; 3 or + rownof cells the ween the forks at the level of the distal end of the sigma and +107 cells letwern the forksatt the wing-margin. Four to 5 rownof erdls levecen K.

Walrer: Nurtil American sidicies of deshin ifo
and Rspl, where mest widely sparated. Wha arising In fore the middle of the stigma (octasintilly at the miehle).

Intenodals $\frac{15-23}{11-16}$, presmextal: $\frac{12-17}{1.3-20}$, (inCr $\frac{5-7}{4-6}$, spt $\frac{2-4}{2-3(\text { rarely } 1)}$)
Female-Alxtomen a little lees than five times as long in thorax; dorsum of 9 elistinetly shoreter than that of 8 and alment half as long as that of 7 .

Genital valves extending slightly leyond the priterier margin of 9 , in profile moderately areuatt, the apices very -lightly elevated. Latral carinac percurrens, prominent, in wrofile nearly straiglo, in wotral view arcuate, the intervening space lanceolate, broadest at two-fifthe of the lengith, the lireadth here being equal to about two-fifths the length. tapering distad to the narrow rounded apiers. lientral surface of values declivent and lat in the hasal fifth, suleate distally, beconing decoly so at the apices. Sityli $.75 \cdot 1 \mathrm{~mm}$. long. distinctly shorter than dorsunt of 10 . Firee margin of hasal plate of ovipusitor slightly arctate. Lateral plates listinct.

Appendages thin and delicate, generally broken off excepi in tenerals, alout as long as $8+9$. tapering much notere gradally towarls the base than bee apex: greatest brealth bevond the middle and eftual to abest one-fifth the length: -mbe of miner margin somewhat stronger than that of the wher margin: apies romedel, sometimes terminating in a more or les obscure puint.

The colowa : ieftern corresponds closely to that of the male and there is apparently no tendency (1) dimorphism. The face tends, to be somewhat darker in the male the dossal thoracic hands are of a duller green and oftelt more or lese obscurel with brown, being frequently invisible in dris.! specimens. They are also narrower and generally divide ! into an upper and lower spent; the former small, the latt. more elongate. The lateral bands are offen olscuret at the - xtreme upper ends.

Aldomen somewhat paler irowo that in the mate, the Whal spot a n t and PI) on all the segments green, the latter till more reduced than in the mate, cxcept on the apical there*
or four segments. AL and "11. pale greenish or nearly white, similar in size to ihose of male. PL la، er, often confluent with PD on 2-3 or -4.

Wings often quite decply flavescent, this colour extending to the apices: pterostigma pale brown.

Measurements (excl. Anticosti specimens)-Thor. on 9.311, 9 8.5-9.75; abd. 0^{7} 48.5-54.5. 8 44-50.75; seg. 3 of 8.7510.33. 6.5-8; seg. 9 ค 2.33-2.75; apps. © 5 5.33-6, $\%$ 5.4-6.9; gen. v. 2.66-3.25; h. w. of $42-46.5$, $43.5-46.7$; width h.w. त12.5-14, © $13.6-14$; pter. of 2.66-3, Q 3.3-3.66.

Measurements of Anticosti specimens-Thor. σ^{7} 9-9.25, $\therefore 9 ;$ abd. $\sigma^{7} 44-48$, 844 ; seg. 3 o $^{7} 7.8-8.4$, \circ 6.5; seg. 9 Q 2.5; apps. $\sigma^{7} 5-5.2$; gen. v 2.4; h.w. $\sigma^{7} 40-41.5$, Q 41 ; width h.w. of 11 5-12, 812 ; pter. σ^{7} 2.7-3, 8 3.2.

Types- $0^{7} 9$, United States National Museum-De Grassi Point, Ontario.

Nymph (pl.4, figs 1-3;pl. 7, fig. 2; pl. 9, fig. 2;pl. 11, fig. 2)Eyes very prominent, the antero-posterior and transverse diameters about equal; lateral margins of head nearly straight, about half longer than the interocular space, or equa! to twofifths of the length of the hind margin; postero-lateral angles of head prominent but well rounded; hind margin slightly emarginate. Mentum of labium strongly narrowed in the proximal half, but considerably expanded distally, the breadth at base being much less thanhalf that at apex, which is equal toabont three-fourths of the length: sidesstraight and slightly divergent from the base to slightly beyond the middle, thence strongly arcuate; middle lobe broadly obtusangulate: lateral lobes broarl, equal squarely truncate; outer apical angle scarcely rounderl, iuner angle terminating in a small tooth.

Supracoxal processes well developed, ennical, the posterinr larger and somewhat stouter than the anterior, and usually slightly recurved, the intorvening space generally a litte greater than a right angle.

Abdomen comparatively slender, broadest dhout seg. 6 or 7 ; lateral spines present of $6-9$, those on 6 extending onethird to one-half of the distance to the hind margin of the segment; on 7 to the margin or nearly st; on 8 to the nargin or slightly beyond; on 9 to the middle of 10 . Lateral append-
ages about three-fifths as long as the inferior pair, very slender in the female but somewhat stouter in the nate than in junced and the clepsydra group, and tapering somewhat suldenly in the distal third or fourth, the apices very slender and finepointed. Basal part of superior appendage of male about onefourth longer than its basal breadth and one-half shorter than the lateral appendages; siles somewhat concave, apex buntly rounded. Genitalia of femtale extending barely to the pesterior margin of 9 ; genital valves rather steeply declivent. about three times as long as hroad.

Colour dull dark brown. more or less distinctly spotted with pale yellowish, the degree to which the pale markings are obseured varying greatly. Ileall wills a pale tateral marginal band and as submarginal pale spot just behind each eye. The marginal bands are continued caudad across the lateral jortions of the pronotum to the meso- and metathorax, where they become much broader, but diffuse and often ohscure covering the whole thoracic dorsum, or sometimes broken into spots: sides of thorax dark brown. l.egs dark brown, femora and tibiae each with three pale rings, the former having sub-basal, median and preapical rings. 'larsal iuints pale, darkened clistalls: Alxomen rather dark brown, varied with pale yellowish and brownish, the pale markings aften almost entirely obscured. A broad medio-lorsal pale hand with slightly undulate margins extends the whole lengeth. Anteriorly it is well defined and alont +5.5 mm . hroad but posteriorly it lecomes gradnally narrower and less listinet. This band is more or less darkened mesially by a eries of pairs of dark basal blotches, which run together in the more proximat segments and sometimes throughout the whole length of the aldomen to form ani irregular nedian dromble dark based. Lateral scars pale, dieinetly outlined with desk brown: in front of each, on the midille segments, is .. Dasal transverse series of alternate pale and dark spots, atout three of each, the outernost of the former occupying the antero-lateral angle of the segment. Stines pale, tipped with black. lateral and dorso-tateral punctae nearly black; dorsal punctae zo darker than the ground colour.

172 Walker: Nortil American Spectrs of Aeshina

Mensurements-langels if ha |y 3R.5-4.3.5: mentum of

 Hhice M-runtanto, Aug 15, mape (t II. sprague. M.C.:... 2 (5): ill., Aug. 7 (A.C $2,10^{\circ} 2:$ illermit lake. Mhe Momitamo, Aug 2\%, 1 seiz (iscultier.

 An:herme. Alig. 3. 1002 (Aiedhan), I 0°): Willuahimi (). () Marinin, coll.

Sent 151907 (Williammon, $\delta^{2} 20$): inl., Aus. yo. ion (i ? teneral):

 (Villiamsun, I oi); Wisconwi: Milwaukee Co., Aug. 2\&, Jyos, Aug. 1. 1907
 (boll W J. Fraser, 1 8) Alwas ot 9 orithout data.

そixaphi-Aipigon. Uns. Ang. \%o 1910. 1 d exuvia; Collome Ray, Aus. 8.

 ismer. (St. C')

Distri ution-Carolinian to Canadian Zones, prolably ranginge also into the lhelsenian \%ome, as the record of Ae. construfa from Lahmetor (llagen '6t) donhtiesa ledomgs in this species. The race umbrosi probally grates into occidentalis in the wrst. This is the commonest species of Leshna in North Imerican colloctions.
(ieographacal zariations- This species is snbject 10 the usual variations in form defembing upon climatic conditions vede p. 26). If vorries also slighlle in size in different parts ot its range. The largest average sire is exhibiter by Ohio .nd Indiana specimens, the smallest by those fom Antiwoti Northen examples are must like the race occidentalis 10, 'ifution, the face hemg generally pale, the lateral thoracic hiends of the mole Whish it their upper ends, and the ['I) spots hose reduces) thon in the more southern specimens and blue on the basal three or four regments in the male. In specimens trom l.oke Simex'. Ont., and mothward there are lisually III Haces of hine, exiep on seks. I aull 2 , and the l'D spots are greasly rexlucet.

Ilabits-This common dragonlly differs considerably low our oher epecie's of Aeshna in its habits. It deres not frepuelt open marshes but llies along woulland streans,
 women in more or less shady gloules and paths in werxds and in mest often xern in light late in the afternoon and ol dusk.

Disules lxgin to appear alxout the end of June but the priokl of entergence seems tole irregular; wis some individuals do not come out until nearly the end of August. It is the tont sercie's to rembin on the wing in the alltumin, sometines

174 Walker: North American Species of Aeshna

flying, in the vicinity of Toronto, as late as the second week in Octuber, and probably considerably later farther south.

The nymphs are common in woodland streams, small pools and ditches, and sometimes occur in considerable numbers. They are very like those of the European Ae. cyanea in both appearance and habits. They appear to be the only A eshna nymph, that is at all easily obtainable in the full-grown state, in eastern North America.

Aeshna umbrosa occidentalis subsp. nov.
(Fl. 26, fig. 5.)
Differs from race umbrosa mainly in the blue colonr of nearly all the abdominal spots, and the much larger size of PD , which is somewhat reduced only on 9 and 10 , being elsewhere as large as in most other species of Aeshna. The abdomen is somewhat shorter and stouter at seg. 3 than in typical specimens of umbrosa, generally resembling that of Anticosti specimens, though varying considerably with locality.

Occiput lemon-yellow; frontal vesicle greenish yellow; T-spot $\mathbf{2 - 2 . 3} \mathbf{~ m m}$., stem $.25-.33 \mathrm{~mm}$. broad in front, sometimes expanding a little caudad. Face pale greer, generally of a bluish shade; a very fine brown line often present on the frontonasal suture; rhinarium plumbeous; labrum pale green; labium dull yellow, brownish or drab, the lateral lobes sometimes slightly plumbeous. Rear of head black above, pale brown in iower half.

Thorax a little stouter as a rule than in race umbrosa, marked as in northern examples of that race, i.e., coiour reddish brown, dorsal bands yellowish green, antealar sinus pale green, lateral bands yellow passing into pale blue at the upper ends, surrounded by a nearly black margin.

Abdomen brownish black, the spots all blue except MD (dull greenish), PD on 10 (dull greenish) and sometimes AML on 2 , which may be blue or green.

The spots are similar in form to those of race umbrosa, except PL and PD, the former being considerably, the latter much, larger. PD is in fact as large as in constricta and many specimens of palmata, except on 9 and 10 , where it is more or
less reduced. On i-6 they are separated only by the median carina, on 7 a little more widely, while on 8 and 9 the intervening space is nearly 1 mm . broad behind, the inner margins strongly divergent cephalad. On 10 they may be connate behind, but are always more or less indistinct and apparently sometimes absent altogether. On the ventral surface of 4 , 5 and 6 there is a pair of large basal spots as in. race umbrosa, but they are blue instead of green.

The female differs but very slightly from that of umbrosa, the largersize of PD and PL and the usually paler face and slightly shorter average leagth of the abdomen being the only characters by which they can be separatiod. The wings vary from hyaline to distinctly flavescent.

Measurements - Thor. of 9.7-10.5, \& 9-10.25; apps. m. 5-5.5, $\% 5-6$; h.w. \& 4 1-46.5, \& $38-45$; width h.w. σ^{7} 12.3-13.5, \& $12.5-14$.

Types- $\sigma^{7} \%$, Bluffton Public Museum-New Bridge, Oregon.

Saterial determined - 51 o7 11 9. Britisb Columbia: Greenwood, Oct. 8, 1906 (W. J. Alexander, coll. Walker. 1 ('); Bear Lake, July 21, 1903 (Currie, U.S.N.M., 10 teneral); Wellington, Vancouver Is., Sept. 2,11003 (H.G. Dyar, U.S.N.M., I 0°); Langford Lake, Victoria, July 20, 1902 (coll. Williamson, $\left.10^{*}\right)$. Washengton: Colfax (L. O. Howard, U.S.N.M., $1 \sigma^{\prime \prime}$); Almota, Aug. ${ }^{1894}$ (coll. Cal vert, 1 O); Skokomish River, (T. Kincaid, Ac. N.S. Phil., 18) Seattle. July 6, 1892 (Ac. N.S. Phil., 1 of). Oregon: (Ac. N.S. Phil., \& ${ }^{\circ}$); New Bridge, Sept. 8-18, 1909 (C. H.' Kennedy, 29 of 2 8) : Le Grande Valley, Sept. 30, 8909, (Kennedy 2 ${ }^{\prime}$) : Pine Valley, Sept. 23 (Kennedy, $83 \mathrm{c}^{\text {ol }}$); Carson, Sept. 22, 1902 (Kennedy, 4 甲 $\%$). Nevida: Reno, (Morrison, M.C.Z.. 1 ól $^{1} \mathrm{Q}$). California : (Calvert, 1 ơ').

Nymph-Dr. Ris has sent me a full-grown female nymph of Ae. umbrosa from the Yosemite Valley, Cal., dated July 26,1907 . It does not differ in any way from the nymph of the race umbrosa, but on account of the locality it doubtless belongs to ocidentalis.

Distribution-British Columbia to California and Ne. vada, probably grading eastward into the race umbrosa.

Habits-Mr. Kennedy has taken this form in Oregon, flying along ditches. Its habits are probably not different from those oi the eastern race.

Aeshna constricta Say.

(Pl. 2, figs. 1-4; pl. 3. figs. 5, 6; pl. 14, fig. 3: pl. 21, fig. 1; pl. 27, figs. 2-4.)
N.B.- Undoubted references to the species described here as constricto are marked with an asterisk.

Aeshna constricta, Say, Journ. Acad. Phil., VIII, p. 11 (1839); Calvert, Od. B.C.A., p. 180, 285 (190). Oce. Pap. Bost. Soc. N.H., VII. 6. P. ${ }^{24}$ (1905) ; Williamson, Ohio Nat., VII. p. 150 (1907) ; Walker, Ott. Nat., XXII, p. 54 (1908);* Wilson, Pr. U.S.N.N., XXXVI, p. 659 (1909) : Muttkowski, Cat. Od. N.A., p. 109 (1910). ${ }^{\circ}$

Aeschna constricta, Hagen, Syn. Neur. N.A., p. 123 (1861);* Pr. Bost. Soc. N.11., XV, p. 271 (1873); Rep. U.S. Geol. Surv. Terr., 1872, p. 727 (1873); L.c., 1873, D. 591 (1874); 1'r. Bost. Soc. N.H., XVII, \%. 34 (1875); Rep. U.S. Geog. Geul. Surv., P. 919 (1575); Kirby, Syn. Cat. Neur. Od., P. 88 (1890); Wadsworth. Ent. News, I, p. 37 (1890) ; Beutenmuller, Prel. Cat. Od. N.Y., P. 163 (1890); Harvey, Ent. News, II, p. 73 (1891); Banks, Trans. Am. Ent. Soc.,XIX, P. 353 (1892); Calvert. Trans. Am. Ent. Soc., XX, p. 249 (1893): Ent. News, V. p. 243 ((894); Journ. N.Y. Ent. Soc., III, p. 46 (1895); Kellicott, Journ. Cinc. Soc. N.H., XVII, P. 212 (1895); 1.c., XVIII, P. 114 (1896); Calvert, Journ. N.Y. Ent. Suc., V, p. 93 (1897); Van Duzee, Ent. News, VIII, p. 89 (1697); Williamson, Rep. State Geol. Ind., pp. 404 (1897); Davis, Journ. N.Y. Ent. Soc., VI, p. 197 (1c9s); Kellicott, Od. Ohio, p. 83 (1899) ;"Calvert, Ins. N. J., Od., p. 71 (igoc); Williamson, Drag. Ind., P. 305 (1900) ; Needham, BuII. 47, N.Y. State Mus., p. ${ }^{469}$ (1901); Elrod, Buli. Univ. Mont., X. p. 150 (1902); Comstock. Ent. New, XIV, pi 200 (1903); Williamson, Fnt. News, XIV, p. 369 (1903); Brimley, Ent. News, XVII, p. 01 (1906); Walker, Can. Ent., XXXVIII, p. 149 (1906):
 Martin, Cat. Coll. Zuol. Selys, XVIII, p. ${ }^{46}$ (1908); Cockerell, Ent. News, XIX, p. $455^{-4} 59$ (1908); Martin, Gen. Ins.', CXV. p. 11 (i911).

Aeschna constrictor, Burnham, Pr. Manch. Inst. Arts Sci., I, p. 32 (1900).
A species of average size and rathe: broad abdomen, the spots of which are of large size and blut in the male.

Male-Occiput lemon-yellow, usually a little larger than in the two preceding species, but varying in length from twofifths to two-thirds that of the line of contact of the eyes. Frontal vesicle greenish yellow, this colour extending laterad to the lateral ocelli. Eyes green and grey-green with a violet area above, bounded behind by a dark brown transverse stripe; paler below; celged behind with bright yellow. Preocular band little or no broader at base of antennæ than one of the lateral ocelli, reduced on sides of frons to a narrow black line which fails to reach the fronto-nasal suture. T-spot of moderate size, $2-2.6 \mathrm{~mm}$., stem longer than in palmata and umbrosa, $4-.7 \mathrm{~mm}$. broad in front, expanding to 1 mm ., or a little more, behind. Face pale green, the frons often more yellowish than the nasus and projecting a little farther in advance of the eyes than in umbrosa and palmata; a fine,
pale brownish line on the fronto-nasal suture; lateral lobes of nasus obtusangulate, not flaring. Rhinarium plumbeous or brownish. Labrum pale green, very narrowly edged above and below with black. Labium dull greyish to yellowish, more or less obscured peripherally with reddish brown. Rear of head black.

Thotax moderately robust, reddish brown, paler than in most North American species of the genus. Dorsal bands yellowish green, nearly straight., 4 mm . long, separated by about 4 mm . at their pointed lower ends, from which they converge upwards to the antealar sinus; their breadth increasing to about 1 mm . at middle and 1.5 mm . at the upper end, where they are separated by about $1-1.5 \mathrm{~mm}$. A transverse spot occupies each antealar sinus, but there is no humeral streak or spot. Lateral bands greenish yellow below, blue above, expanding above the middle, noi surrounded by a black margin, though edged behind with black in the lower half. First band about 1.3 mm . broad in the lower half, narrowing a little above the middie to somewhat less than I mm., then expanding again and giving off a small posterior offshoot at the upperend; anterior edge distinctly sinuate about the middle, posterior edge gently curved or slightly sinuate. Secc..j band subequal in the lower half, the breadth at middle about Inm., expanding at upper fnd by the outward curving of both miargins to 3 or 4 mm . Interalitr spots greenish blue.

Legs black, upper surfaces of femora dark reddish brown; posterior surface of fore femora pale greyish in their proximal half or four-fifths.

Abdomen about 4.5 times as long as thorax, strongly constricted at 3 ; rather broad, the greatest breadth at about the apex of 5 ; somewhat depressed. Seg. I without a distinct ventral tubercle. Auriclestypically with 4 teeth (3-5). Tergal areas on each side of penis moderately elevated, with numerous spinules, the margins moderately approximated. Spines oi anterior lamina large and strong, projecting caudad as far as the posterior margins of the hamular processes or a little farther. Hamular processes larger than in palmata and umbrosa, ventral surfaces somewhat convex, separated from the strongly concave antero-lateral surface by an arcuate ridge which
runs from the base to the inner angle of the truncated apices; inner margins closely approximated in front, divergent behind, where they are continuous with those of the hamular folds; the latter similar to those of palmata but better developed, closely approximate in the middle line, the margins produced into a rounded lobe just beyond the hamular processes. Seg. 3 one-sixth to one-fifth longer than $1+2$, and two-fifths to one-half longer than 4 . Lateral carinae of 7 nearly straight, or feebly sinuate, those of 8 generally slightly sinuate proximally. Dorsum of 10 smooth, without a tooth.

Superior appendages dark brown, very similar to those of palmata and umbrosa. The slender basal part is slightly longer and more arcuate, the outer margin in the basal half appearing in dorsal view very slightly convex, instead straight as in the other species; the greatest breadth, which is at about seven-tenths of the length, is equal to three-clevenths of the latter; the ventro-apical spine is distinctly longer than in umbrosa, less sharply pointed than in palmata, the rounded notch between its base and the apical margin generally broader and the preapical tubercle somewhat lower than in the other two species. Inferior appendages as in palmata.

Colour-pattern of abdomen-Seg. I reddish brown; dorsal spot blue; lateral spot represented by a very narrow paie green line along the posterior margin, sometimes also an illdefined pale blotch present.

Seg. 2 reddish brown; AD absent. AML pale vellowish green below and behind, more or less bluish above, $2 \cdot 2.5 \mathrm{~mm}$. broad in the middle, extending ventrad along the front margin as a narrow streak and confluent above with MD. PL and PD united, forming a broad blue band, often greenish below; the front margin indented laterally and on each side of the mid-dorsal line, where it is connected with an ill-defined median blue spot. An additional blue or greenish blue spot occupies the postero-ventral angles of the segment.

Segs. 3-IJ black, the blue spots all well developed. AL on 3-8; on 3 blue or green, the upper margins horizontal and separated by about 1.3 mm .; on the other segments blue, the upper margins straight and somewhat oblique. Basal rings absent. ML on 3-8, enlarging to 7 , front margin not indented,
nind margin rounded except on 3 , where it is acutangulate or narrowly confluent with PL. MD on 3-8, small narrow pale green triangles, decreasing in size caudad, smaller and more widely separated than in palmata and umbrosa, separate from ML, except frequently on 3. PD well develop(', pale blue to azure blue, enlarging caudad, being about 1 mm . long on 3 and 1.8 or 2 mm . on 9 , connate behind on 10 in about 66 per cent. of cases, well separated on the other segments, the inner margins straight and subparallel from 5 or 6 to 9 . PL on 3-4, -5 or -6 ; on 3 a broad truncated offshoot from PD, on the other segments small isolated spots diminishing caudad. Ventral surface of abdomen wholly blacn.

Wings a little shorter than abtomen, costal margin dull ochraceous; pterostigma dark brown; membranule of hind wing whitish in the basal half or three-fifths, smoky brown distally, extending beyond the cross-vein of the anal triangle, which is 3 -celled. Rs forking at the level of i or 2 postnodal cells before the stigma; with 3 rows of cells between the forks opposite the distal end of the stigma, and 3.5 rows of cells between Rs and Rspl, where most widery separated. Mia arising under distal half of stigma (opposite middle in 5 per cent. of cases).
Antenodals $\frac{14-19}{10-15}$, postnodals $\frac{8-14}{10-16}, \mathrm{CuCr} \frac{5-6}{4-5}, \mathrm{Spt} \frac{2-3}{1-2}$ (rarely 4)
Female-Abdomen barely longer than the hind wing, considerably inflated at base and constricted at 3 , widening considerably on 8 and 9 , the latter segment unusually long, being as long as 8 and three-fourths as long as 7 .

Genitalia much larger than usual in the genus; genital valves extending well beyond the apex of 9 , in profile moderdtely arcuate, the apices strongly elevated; lateral carinae percurrent, very prominent, in lateral view nearly straight and subparallel; the space between then a little broader at the basal third than elsewhere, the breadth here being onefourth of the length, narrowing very slightly caudad to the rather broad, rectangular, and of ten slightly divergent, apices; ventral surface of valves sulcate throughout their entire length. Styli 2 mm . long, and longer than the dorsum of I .

180 Walkfr: Nortil American Species of Aeshna

Appendages unustally large and strong, rarely broken off in the living insect, a little shorter than $8+9$, greatest width a little before the middle and equal to about two-sevenths oi the length; margins curved somewhat more strongly at base than afex and the inner slightly more than the outer; apices acute.

The markings show the usual differences characteristic of the sex. The dorsal thoracic bands are reduced in width to somewhat less than 1 mm . and are but little, or not at all. expanded at their upper ends. They are usually as conspicuonsly coloured as in the male but are often obscured by lorownish. The lateral bands have thr same form as in the male. Of the abdominal markings AI. is connected with uarrow hasal rings; PD is somewhat smaller than in the male on all the segments except 9 , where it is considerably enlarged laterally, extending to the tergal margins; on 8 and 9 it is mure widely separated from its fellow, and on toit is olscure or absent. PL is large on 2 , reaching the tro vers: carina; on 4 , as well as 3 , it is generally confluent 1 PD .

In colour great variation is met with and a marked tendency to dimorphism is present. In extreme heterochromatic individuals all the pale markings are lright yellow without a trace of green, the eyes are yellowish olivaceous with a lright yellow hind margin, the wings are strongly flavescent and the whole insect has a decidedly yellowish cast. Such individuals are by no aeans rare but are less frequently met with than the pure homoochromatic type and the intermediate fornss, wh; owh;it cuery gradation in colour between the two extret

A common intermediate $t \%$ ation may be illustrated by the following desci. i:ken from a fresh specimen captured at De Grassi r_{i}, Ontario: Occiput lemon-yellow, eses above grey-green with a deep blue transverse stripe, paler and more brownish green beneath; hind margin lemon-yellow. Frontal vesicle, frons and nasus ochre-yellow, the latter two with a greenish tinge; rhinarium pale brown; labrum dull clay-yellow; labium pale drab with larker brownish margins. Thorax chocolate-brown with a
slight greyish bloom; interalar spots pale yellowish green. Wings strongly flavescent, stigma rather dark brown. Femora dark brownish red, the first pair pale yellowish beneath; tibiae dark seddish brown, rarrly black beneath. Tibiae, spines and tarsi black. Abcomen reddish brown, D on 1 and ['1) on 2 bluish; AML on 2 bright yellowish green; MD bright yellow: AL, ML, and PD on 3-10 very pale green with a bluish tinge; l'L pale green; basal rings pale yellowish green.

Mrasurements-Thor. of 10.5-11, \% 10-10.5; abd. * 47.5-50.75, \& $44.7-46.5$; seg. 3 of $8-9.2$, \& $7-7.25$; seg. 9 8 3.6-4; арря. of 5.75-6.25, \% 6.25-7.25; gen. v. 4-4.5; h.w. σ^{7} 43-47, \& 43-46; width h. w. o' 13.6-14.9, \% 13.5-15.2; pter. 0^{7} 2.75-3.66, \& 3.5-4.

Types-Say's types are lost. Neotype (Hagen '61) σ^{7}. Museum of Comparative Zoology-Rhode Island, Ill.

Nymph (pl. 6. fig. 5 ; pl. 9, fig. 3 ; pl. 11, fig. 3)-Eyes less prominent than those of Ae. umbrosa and palmala, but slightly larger, appearing somewhat deeper when viewed from $1 e$ front. Lateral margins of head straight or slightly convex postero-lateral angles of head not prominent, well roundec off; posterior margin of head feebly emarginate about the middle. Mentum of labium about half as broad at base as at apex, the latter breadth being equal to about sixsevenths of the length; proximal four-sevenths expanding considerally; the sides straight; distal three-sevenths more rapidly widening, the sides moderately arcuate. Middle lobe broadly obtusangulate; lateral lobes, beyond the base of the movalle hook, tapering to a slender, slightly incurved point.

Supracoxal processes of moderate size, subequal, bluntly conical; intervening space subrectanguate.

Abdomen considerably stouter than in Ae. umbrosa and somewhat shorter; broadest at 6 . Lateral spines present on 6.9; on 6 extending one-fourth or less, on 7 onc-half to two-thirds, of the distance to the hind margin of the segment; on 8 two-hirds of the distance, or quite to the margin; on 9 as far as the proximal two-fifths of 10 . Length of venter of 9 about equal to half of the basal breadth, sides slightly
arcuate, strongly so at base. Lateral appendages two-thirds as long as the inferior pair; in the male fairly stout and taperin g abruptly to the slender, sharp-pointed apices; in the female slender, more gradually tapering. Basal part of superior appendages of male scarcely two-thirds as long as the lateral appendages, about one-fourth longer than broad, sides slightly concave, apex rounded. Genitalia of female remarkably large, the regularly arcuate ovipositor reaching back nearly or quite to the posterior margin oi 10 , or even a little beyond it; genital valves steeply declivent.

Colour light brown; head, thorax and legs concolorous. Abdomen with a fine, pale mid-dorsal line between two narrower dark streaks. Punctac all marked with dark brown, the dorsal and lateral rather heavily. The lateral scars are not distinctly outlined and there are no other dark markings, except faint indications of two lateral streaks on each side.

Measurements-Length of body 36-38; mentum of labium 5.7-6.5; h.f. 6-6.25; h.w. 8.75-9; inf. apps. 3.8-4; gen. \& 4.3-4.75; width of head 7.8-8; width of abdomen 7 3-7.5.

I refer these nymphs withcut hesitation to .Ae. constricta on account of the very large genitalia of the female, which correspond in size with those of the imago of this species. The only other species in which the genitalia are comparable in size is Ae. iuberculifera, which does not occur at Whitefish Creek nor any other part of Lake Simcoe, so far as I am aware. Constricto on the other hand is abundant and is the common species et the creek. The only other species I have ever seen there are Ae. umbrosiz and occasional individuals of canodensis, both of which have been reared.

Material determined - $1080^{0} 56$ Q. Nova Scotin: (British Museum 3 on 3 Q). Maine: Manchester, Aug. 1 - Sept. 10, 1889-1910, Sept. 1909 (Miss Wadsworth, $9 \sigma^{7} 7$ 8). Massachusetts : Hampden. Aug. 7, 1902 Needham. I Q). Qüebec: Chateauguay (J.(;. Jack, M.C.Z., 2 Q); South branch of Nation River, Dundes Co. (A. K. Cooper, 3 o $^{\text {º }}$). New Yonk: Hotel Champlain, Watkin's Glen, Aug. 21, 1890 (Calvert, 1 ©"); Clyde, 1902 (Nelsาn R. Wond, U.S.N.M., i $\boldsymbol{\sigma}^{\circ}$). ONtarin. Ottawa, July 26, 1900 (Fletcher, i \wp); it. (Harrington. 18); Toronto, Aug. 26, 1908. Sept. 12-27, 1906, 1903 (Ifuntsman, Walker. $80^{2} 28$) ; De (Grassi I't.. Lake Simcoe, Aug. 7-Sept. 8, 1906-1910 (Walke, $160^{7} 108$). Onto: Medina, Aug. 20, 1397 (J. S. Hine, U.S.N.M., 18). Illinois: Lake Forest, Aug. 2, 1904, Sept. 2, 1902 (Needham, 2 9); Rhode Island, 1860 ¡Walsh, M.C.Z., $1 \sigma^{\circ} 19$). IndiANA : Ellihart (Ac. N.S. Pliil., 1) ; id., Oct. 12, 1899 (R. J. Weith, cull. Williamson, 1 \%); Blufton, Sept. 5-Oct. 2, 1904, Aug. 20. Sept. 24, 1905, Aug. 11 -Sept. 22. 1907 (Williamson. 35) (i) In 8); Fort Wayne. Sept. 7, 1902, Sepi. 16-18, 1906, Aug. 25-Sept.
32. 1907. Aug. 30-Sept. 13, 1006 (Williamson, 17 of 3): Crooked Lake, Stenben Co., Sept. 1, 1905 (Williamson, 1 8). Wisconsin: lone Rock, Aug. '' 1906 (J. D. Howil, coll. Williamson, I σ^{*}): Milwaukee Co., July 17.Aug. 24, Sept. 6, 1902, Sept. 5, 1904. July 10-27, 1905. July 16, 1907. Sept. 9, 1g08 (Muttkow. oki, C. E. Brown, Mrs. P. Laur, Milw. Pub. Mus. 0 of 3); Coney Island, Milwaukee River, July 17, 1902 (1 ' 1 Furnke, Milw. Pub. Mus, 1 8). Souta Dazuta: Volga, Aug. 29. 8889 (1) : Trueman, Ac. N.S. Phil. 18). North Dakota, Fargo, July 30, 1 got (R. C. Obburn, \& ó i 8). Manitona: Westbourne, Aug. 26. 29, 1908 (Wallis, 2 ot 8). Beitisil Cotumata: (Brit. Mus., (${ }^{\circ}$)

Nymphs-Whitefish Creek, Lake Simcce, Ont., of $\%$ (St. D), taken about fuly is 1910, mosulted iwice; male died after mecond meult, Aug, 18, 1910 ; lemale livet until Dec. 24. 1910. Buth arguirel fully developed wing.parts at
 $\sigma^{\circ} \circ(\mathrm{St} . \mathrm{E})$ and exuviae of full-grown nympha, $2 \sigma^{\circ}+\ominus$. Aug. 10, 1910.

Identity-Say's type came from Intiana and therefore must have belonged either to the species described here or to Ae. umbrosa. umbrosa. Hagen's neotype belongs to the present species, and, apart from this, there is one point in Say's description which applies to this species better than to umbrosa. This is the statement that "the posterior interrupted bands (PD) might be called rounded or quadrate spots and are largest and more glaucous on the posterior segments." (The italics are mine.)

Ae. constricta is more closely related to Ae. palmata than to Ae. umbrosa, but is very distinct from both, especially in the female genitalia. The taper-pointed lateral lobes of the labium is a remarkable and distinctive feature of the nymph.

Distributinn-Upper Austral and Transition Zones from the Atlantic Occan to Manitoba and the Dakotas, ranging into the Canadian Zone in Manitolo. The British Columbia record needs corroboration.

IIabits-This species first appears in Ontario during the sccond half of July, becoming numerous about the : intle of August and remaining until about the beginning of Ucto ber, or possibly later.

At Lake Simcoe, where constricta is comm 1 and in x ie seasons very abundant, it flies over open marshes, pas ures and fields, especially near woods, though not often occurring in the small clearings and glades, which are frequented by its congener Ae. umbrosa. It is most often seen on warm, sunny days, and unlike unbrosa it apparently does not fly after sundown, although in hot still weather I have seen it

184 Walker: Nortil Ambrican fpeches of Absilna

late in the afternoon. llying low over grassy spaces (vide p. 34: When at rest it hangs from the branches of trees or settles in bushes, or even weeds close to the ground.

The copulating hathits of this sprecies and it morle of oviposition have been deseribel under "Ceneral life History" (pp. 38, 44).

Whitefish Creck where the nymphes were found is a small sluggish stream, which winds through wowls and pastures in its upper part, where it is a mere broo', lout near its mouth traverses an open swamp supporting a derse growith of reeds, rushes and sedge. The upper, shadier part of the stream is inhabited by nymphs of Ac. umbrosa, the lo: 'r part by those of Ae. constricta. The territories occupied by the two species are not sharply separated but on the whole are quite distinct.

Where constricte is most at home, the stream is quite clear of reedy plants except at its immediate margin where there is a tall dense growth of Acorus calamus, Sparganium sp. and several species of tall sedge. The hottom sheives rapidly from the bank and there is no shallow reed-grown area, such as forms the characteristic habitat of most Aeshna nymphs. Thus the habitat of constricto as represented by Whitefish Creek is somewhat intermediate in character between those of umbrosa and the majority of species of the genus.

The nymphs appear to be difficu' to secure and many hours of dredging resulted in but few adividuals, and none of these were full-grown. The exuviae, too, are not readily seen. They cling to the reeds, near the base, and are of ten hidden from view.

Aeshna callfornica Calvert.

(Pl. 14, fig. 4; pl 17, figs. 4, 4a ; pl. 21, figs. 2, 2a; pl. 28, figs. 1, 2.)
Aeschna calijornica, Hagen, Pr. Bost. Soc. N.H., XV111. p. 33 (1875) Ino descl; Caivert. Pr. Cal. Ac. (2) 1 P. P. 504, pl. XV, figs, 19.20 .23 (1895): Needham and Hart. Bull. III. State Lab., VI, p. 41, 45 (1901); Williamson, Ent. News, IU, P. 3.7 (1903) : Needham and Anthony, fr. N. . Ent. Soc., X1, P. 121 (1903) : Osburn, Ent. News, XVII, pp. 186.190 (1905): Amer. Nat., XL, p. 396 (1900); Martin, Cat. Coll. Zool. Selys, XVill, p. 47, 84, fig. 83 (i908); Cockerell, Ent. News, XIX, p. 455-457 (1908).

Aeshno californica, Calvert, Od. B.C.A., p. 183 (1905) : Walker, Can. Ent XL, p. 378, 386. 450 (1908); Muttkowski, CaI. Od. ત.A., p. 109 (1910).

A speries of somen late less than me lium sien, with a rather short broad abdomen

Male-Occiput pale lemon-yellow, rather large, onethird to two-fifths as long as the line of comtact of the eyes; frontal vesicle with a large pale yellow reniform spot, or two smaller spots; eyes pure hlue. fading below to bluish grey : preocular band two to three times as broad at bases of antenne as one of the lateral ocelli, narrowing on the sides of the frons to about half that breath, and widening again at the fronto-nasal suture: T-spot $2.3-3 \mathrm{mmn}$, stem two or three times as broad behind as: :- wt. the former breadth varying from 1.25-2, the lath or greenish, yellowish on eaci, A black line on the fronto-nasa, liace pale dull blue the stem of the T-spot. e and another at base of labrum. Lateral lobes of nasus rotundo-angulate, distinctly flaring. Labium pale blue to pale yellowish or dull olivaceous. Rear of head black.

Thorax molerately dark brown, appearing somewhat pale in dried specimens on account of the thinness of the cutiele anc the rather long and dense grow th of pale brownish hairs; sutures very dark brown. Dorsal bandsreduced to a pair of small elongate paic spots on the anterior half of the thoracic clorsum, often obscure or inclistinguishable in dried specimens. Lateral bands bluish white (often yellowish white in dried specimens) more or less distinctly edged behind with blackish; first band ncarly straight, ahout 1 mm . broad near the rounded lower end, tapering rapidly clorsad to one-half o less of this breadth; second band nearly equal, scarcely 1 1. broad, curved slightly caudad.

Legs $\quad k$, posterior surface of fore trochanters and $f e$ mera in the ir basal half pale yellowish.
dixtomen about four times as long as the thorax, rather str:! strongly constricted at 3 but rapilly expanding again, so int the posterior margin of 3 is but little narrower than that of 4 . Seg. 1 with a prominent spinulose ventral tubercle. Auricles with 2 or 3 teeth. Spines of anterior lamina welideveloped, strongly curved, exiending back to the hind mar. gin of the hamular processes or a little beyond; the latter with the inner margins straight and attingent, the apices sharp-
pointed and directed cephalad; hamular folds large, mouse-ear-shaped, continuous with the hamular processes, closely approximated mesially. Segs. 5-8 with rulimentary accessory lateral carinae, best marked on 6 and 7. Median tooth-like elevation in dorsum of ro low and rounded as seen in profile.

Superior appendlages about twice as long as 10 , slender and distinctly divergent in the proximal fifth, thence convergent, the breadth increasing to or slightly beyond the middle, thence 'ecreasing very slightly to the bluntly angulate and closely approximated apices; inner margin viewed dorsad rather strongly sinuate, being strongly concave before the middle, gently convex beyond; outer margin viewed dorsad distinctly convex at base, gently so or nearly straight beyond; in lateral view curved regularly upwards. Superior carina percurrent, rather strongly elevated and arcuate in the apical third, not denticulate; infero-internal margin gently curved forming a low inferior carina: a low sub-basal ventral tubercle at about two-sevenths of the length of the appendage. Inferior appendage slightly less than one-half as long as the superior pair, and about three-fourths as broad at base as long, triangular with slightly convex lateral margins and bluntly roundel apex, which bears a pair of minute dorsal teeth: in lateral view molerately curved upwards.

Colour-pattern of abdomen-Abdomen brownish black, varied with castaneous; all the spots caerulean blue, mostly well developed.

Seg. I. Dorsal spot alsent, lateral spot indicated by a pale marginal line less than 2 mm . long.

Seg. 2. Blue spotswery large; AMLbounded below by the auricle, upper margin very oblique, confluent with MD; posterior part of the segment above the level of the auricles entirely blue except for a pair of oblique black dorsal spots just behind the transwerse carina.

Segs. 3-10. Black ground colour on the dorsum of 3-5 in front of the transveree carina and behind MD varied with castaneous. AL on $3-7$ or -8 , very large on 3 , covering whole of lateral surface: of moxlerate size on $4-6$, the upper margin oblique; minute on 7 and a mere dot when present on 8. ML on $3-8$, ver: large on 6 and 7 . MD on 3-8, greenish blue,
subcrescentic on 3-6, a pair of dots on 7-8. PD on 3-10, well developed, semi-elliptical, each separated from its fellow by about 5 mm ., except on 8 and 9, where they are somewhat smaller, more elongate and separated by 1 mm . or more; on 10 as large as on 9 , not connate.

Wings hyaline; costal veins pale horn-yellow; pterostigma dark brown; membranule of hind wings extending nearly to apex of anal triangle, whitish in proximal half, smoky brown distally, the two areas generally sharply separated; anal triangle 3-celled; one cell between A_{2} and A_{3} at their origin, in the hind wings; outer side of triangle of hind wing fully 1.5 times as long as inner side; Rs forking at the level of I-2 postnodal cells before the pterostigma, base of the fork but slightly asymmetrical, the two branches equally well developed, not or but little convergent at the wing-margin; $2-3$ rows of cells between the forks except at the margin, where there are usually 4 or 5 cells; 3 (2-4) cells between Rs and Rspl where most widely separated; Mra arising beyond the level of the distal end of the stigma (sometimes opposite the distal end).

Antenodals $\frac{12-15}{8-10}$, postnodals $\frac{7-10}{9-12}, \mathrm{CuCr} \frac{5-6}{4-5}$, Spt $\frac{0-1}{0-1}$.
Female - The usual differences from the male, in form, are present. Abdomen not quite four times as long as the thorax and about equal in length to the hind wings.

Genital valves as long as seg. 9, in profile arcuate in the proximal three-fifths or threc-fourths, the apices straight, approximated; no distinct lateral carinae nor ventral surface; styli about one-third the length of the ovipositor (.66 mm .); hasal plate small, more or less furrowed on each side, posterior margin straight.

The most marked difference in the pattern of the abdominal spots is the smaller size and wider separation of the PD spots, except on seg. Io. On seg. 2 these spots are frequently separate at the mid-dorsal line as on the succeeding segments and are partly or wholly marked off from PL. The lateral spots are larger and are more or less confluent on 2 and 3 and sometimes on 4.

Both blue and yellow females occur, according to Mr.

188 Walker: Nortil American Species of Aesiina

Kennedy, who has observed this species in life. He has sent me a coloured drawing of a specimen in which all the pale markings are a pure chrome-yellow on a ground colour which is of a more yellowish brown than in the mate. In the specimen figured, the only alcoholic one I have seen, the colours were apparently perfectly preserved at the time the drawing was made, and the ground colour was noticeably more yellowish than in the alcoholic male. The face was greenish yellow, labium pale greenish, eyes grass-green with a yellow outer margin; thoracic bands very pale yellowish green; abdominal spots pale green. PD more yellowish than the others. Many of the dried speciruens that I have examined appear to have been coloured like the males.

Measuremerts - Thor. σ^{7} ㅇ $10-11$; abd. or 39.5-43.5, §. 37-40; seg. $3 \sigma^{77}$ 6.3-7.5, of 5.5-5.8; width seg. 2 of 5-5.33; width seg. 3 \& $3 \cdot 3-3 \cdot 5$; apps. $\sigma^{7} 4 \cdot 25-5$, of $4 \cdot 5-4 \cdot 9$; gen. v. of 1.75-2; h.w. of 38-49, of 37-40; width h.w. of 12-12.6, क 11 .66-12.25; pter. © 3-3.8, of 3.5-3.8.

Types- $\boldsymbol{\sigma}^{\circ}$ \%. Coll. Calvert-Mt. Tamalpais, Cal.
Nymph (pl. 7, figs. 3. 3a; pl. 9, fig. 4;pl. 11 , fig. 4)-Eyes larger but less prominent than in the other species here treated, except multicolor; postocular part of the head short, the lateral margins slightly arcu: e next the eyes, thence passing by a stronger curve into the almost straight posterior margin; mentum of labium rathershort, about half as broad at base as at apex, the apical breadth a little shorter than the length, expanding distally throughout the length, especially in the distal three-sevenths; lateral margin slightly sinuate, the curve proximally very feebly convex, more strongly so towards the distal end; median lobe slightly produced, obtusangulate; lateral lobes slightly narrower distad of movable hook than in multicolor, the outer apical angles somewhat rounded off, inner angles with a minute tooth.

Supracoxal processes rectangularly divergent, acute, the anterior of moderate size, the posterior considerably larger, recurved.

Abdomen moderately stout, broadest at 6 or 7 ; in the exuvia, which is deeply convex, at 5 . Lateral spines present on 6-9, those on 6 distant from the hind margin by I-2 times
their own length, on 7 reaching back as far as the margin or but little short of it, on 8 slightly beyond the margin, on 9 to about the middle of 10 . Venter of 9 nearly two-fifths as long as broad. Lateral appendages about three-fifths as long as the inferior pair, slender, tapering gradually to the finepointed apices. Basal part of superior appendage of male triangular, one-half shorter than the lateral appendages and about as long as the basal breadth; sides nearly straight, apex acute. Genitalia of female distant from the posterior margin of 9 by one-sixth or one-fifth of their length, genital valves not steeply declivent.

General colour (exuvia) dull brown, pale markings more or less obscure or inconspicuous. Head with a group of pale spots between the eyes, including a median and three or four spots on each side of it; a roundish spot just behind each eye and a pale marginal band which is continued across the outer ends of the pronotum. Sides of thorax with a few small pale spots. Femora dark with three narrow, ill-defined pale annuli; tibiae generally also with traces of two or three such annuli. Abdomen, with two dorsal pale bands, which are broad and distinct on the first four segments but become gradually narrower and more obscure caudad, usually being almost or quite indistinguishable on the last four or five segments. Lateral scars inconspicuously ringed with brown, punctae marked with brown, but all inconspicuous. Lateral appendages pale, with basal and median annuli and the apices dark.

Measurements-Length of body 33-36.5; mentum of labium 4.5-5; h.w. 6.8-8; inf. apps. 3.75-4.2; width of head, 7-7.3; of abdomen 7 (exuvia 6-7).

Material determined-41 or 19 \%. Berrish Columbin: (Crotch, M.C. Z., ${ }^{\circ} \sigma^{\circ}$) Victoria, July 14, 17, 1901 (Currie, U.S.N.M., $3 \sigma^{\circ}$: ${ }^{\circ}$): Departure Ray, Vancouver Id., June 20,July 4, 5, 1908 (Huntsman, 5 (f 1 $\%$); Diver Lake, Vanc. Id., July 23, 1908 (Huntsman, $1 \sigma^{\prime \prime}$) ; Peachland (Wallis, i $\%$). WassIN:ToN: Sunnyside, April 23-28, 1910 (Kennedy ${ }^{2}$ on 11) id, May 8 , 1910
 April 8, 1897 (Needtham, i 8); Scattle. July 6, 1892 (Ac. N.S. Phil., 1) ${ }^{4}$); Kent, Junc, 9,1905 (H. E. Burke, U.S.N.M., I ©"). Oregon: Portiand, July 8 , 1905 (Currie, U.S.N.M., I 8): Corvallis, May, 7, 1878, June 30, 1896' (Needham, 1
 U.S.N.M., $\sigma^{7} 2 \%$): Utah Lake, June, 19, 1891 (E. A. Schwarz, U.S.N.M., 0^{\prime}); Gulf of Georgia (A. Agassiz, M.C.Z., 4 (${ }^{\prime}$): Mendocino (A. Agassiz.

190 Walker: North American Species of Aesbna

M.C.Z., 1 o'): San Matcu (A. Agassiz, M.C.Z., $1 \sigma^{*}$); Sonoma Co., Apr. 27-May 9 (R. Osten Sacken, M. C.Z., I ${ }^{7}$). Nevada: Reno, 1878 (Morrison, M.C.Z., 3 or' $^{\prime}$) Utail: Ogen (Cyrus Thomas, M.C.Z., i \&).

Nymphs-Xigger Ponc, Sunnyside, Wash., May 10, 1910; 18 (about to transfornu); 18 (St. F); 19 (St. E); exuviae $100^{\circ} 149$ (Kennedy).

Distribution-Upper and Lower Sonoran. California and Arizona to southern British Columbia.

Ffabits-This species is the earliest North American Aeshina to appear in the adult state. As the dates of capture given above show, it may appear as early as the serond week in April (Caliiornia, Washington). Mr. Kennedy found it at Sunnyside, Washingtoia, on May 8, 1910, flying about Nigger Pond in cor iderable numbers. He observed several pais in copula and states that, while thus engaged, they are more retiring than Ae. multicolor and do not indulge in wild nuptial fiights. A few weeks later they had left the pond and were ranging freely over the countryside. The nymph was first described from a specimen taken from an irrigation ditch at Tombstone, Arizona (Needham and Hart '01). It has also been found by Osburn ('06) to inhabit brackish water.

Aeshna multicolor Hagen.

(Pl. 14, fig. 5; pl. 17, figs. 5, 5a; pl. 21, figs. 3. 3a.)
Aeschna multicolor, Syn. Neur. N.A., p. 121 (1861) ; Rep. U.S. Geol. Surv. Terr., 1872, p. 727 (1873); 1. c., 1873, p. 591 (1874); Pr. B.S.N.H., vVIII, P. 33 (1875); Kirby. Syn. Cat. Od., p. 88, 1890; Banks, Trans. Am. Ent. Soc., XIX, p. 353 (1892) ; Calvert, Ent. News, III, p. 26 (1892) ; Pr. Cal. Ac Sc.. (2) IV, p. Sot, pl. 15, figs. 25, 26 (1895); Tr. Am. Ent. Soc.,XXIX, P. 43 (1902); Williamson, Ent. News, XIV, p.7 (1903): Currie, Pr. Ent. Soc. Wash., V, p. 303 (1903)); 1.c. VII, p. 18 (1905); Osburn. Ent. News, XVI, pp. 186, 190 (1905); Baker, Invert. Pac., I, P 87 (1095) ; Martin, Cat. Coll. Zool. Selys, XVilI, P. 48, fig. 45 (1908); Gen. Ins., CXV. P. 12 (1911).

Aeshna multicolor, Calvert, B.C.A, p. 883 (190) $)$ Williamson, Ent. News IX, p. 265,301 , text fig. (199) (1); Walker, Can. Ent., XL., p. 279, 386,450 (1908); Muttkowski, Cat Od. N.A., p. 113 (19)0.)

Aeschna furcifera, Karsch, Ent. Nachr., XVII, p. 310 (189ı).
Of average to rather large size, the thorax robust and the abdomen somewhat short.

Male-Occiput pale bluish, two-fifths to one-italf as long as the line of coatact of the eyes; frortal vesicle pale blue, the blue area separated from the lateral ocelli by a space narrower than one of the latter. Eyes pure blue, of the same shade as the abdominal spots, sometimes pale greenish along the hind margin. The blue colour usually disappears in dried specimens but may be retained to some extent in well

Walker: North American Species of Aesf:A

preserved examples. Preocular band scarcely broader, at base of antennæ, than the lateral ocelli, continued ventrad on each side as a narrow line on the lower half of the frons and nasus. T-spot $2.8-3.2 \mathrm{~mm}$., stem $1.45-1.66 \mathrm{~mm}$. broad behind, $.55-.75 \mathrm{~mm}$. in front, sides straight or slightly concave. Face slightly broader than in Ae. mutata. Frons and nasus pale blue or grey-blue with a narrow yellowish white submarginal wea; fronto-nasal suture ochraceous; lateral lobes of nasus rounded, their margins but little flaring. Rhinarium and labruin greenish, the latter narrowly margined above and below with dark brown. Labium blue, plumbeous or olivaceous in dried specimens. . .ear of head black.

Thorax robust, moderately dark brown with a coppery tinge. Dorsal bands light blue, 4 min . long, $.65 \cdot .75 \mathrm{~mm}$. broad, sometimes sligh \because hroader at the upper ends, where they are appioximated, and of ten giving off mesad an offshoot from the lower ends. Lateral bands light blue, sometimes greenish below, straight, very oblique; first band nearly equal, about 1 mm . brnad, rounded below; second band generally a little narrower, tapering to the lower end and sometimes expanding sl'ghtly towards the upper end. Interalar sposs blue.

Legs black, anterior femora with a pale streak on the proximal half of the posterior surface.

Abdomen somewhat less than four times as long as the thorax, moderately stout, considerably sonstricted before the middle of 3 , then rapid!'y expanding again to the apex of 4 .

Seg. I with a prominent ventral tubercle, bearing a few inconspicuous spines and a tuft of lcrig brownish hairs. Auricles with $2-3$ teeth. Tergal margins of seg. 2, bounding the senital fossa, strongly sinuate. considerably elevated in the posterior third. Spines of the anterior lamina welliveloped, reaching caudad to the posterior margins of the hamular processes, moderately curved dorsad, sharply pointed. H-mular proccsses rather broad and thick, mesially attingent, antero-lateral surfaces concave, bounded behind by an arcuate ridge running from the base to the antero-internal angle, which is somewhat acut Hamula: folds continuous with the hamular processes, ar long and contracted,

192 Whaker: λ orth American Spectes of Aeshna

mouse-ear-shaped, closely approxinated mesially, the apices strongly acutangulate, outer nargins slightly divergent. Seg. z as long as $1+2$, one-third to two-fifths longer thar 4, and one-sis nth to one-sixth longer than 6 . Dorsum of 10 with a median and two pairs of sub-median tnnth-like elavations, the former relatively stmall and rounded in profile view.

Superior appendages aloout as long as $8+9$, or a trifle longer, slender at base, expanding on the inner margin to about five-twelfths of the length, where the breadth is about twice that at base and rqual to aloout one-seventh of the total length; thence remainang equal as far as the distal fourth or fifth, whence curving strongly downwards and slightly outwards they taper to the long slender pointed apices. In dorsal vicu they appear very slender, the outer margin gently arcuate, the inner very slightly sinuate. Superior carina subobsolete in the basal half, suddenly elevated in the distal half into a very prominent angular crest, the apex of which is a little more than one-third of the length of the appendage from the apex of the latter. In profile view a low sub-hasal wintral tubercle appears at one-fifth to one-fourth of the length: the outer margin is curved slightly upwards except apically, and above it the superior carina is elevated to a height about equal to the depth of the inner portion of the appendage directly beneath it , this part being bent downwards to form an inferior carina, whinh, a little beyond the apex of the superior carint, is produced into a strong spine, directed ventad and caudad, its apex recurved. The distance betwecn the apex of this spine and that of the appendage is equal to alout one-fifih of the length of the latter. Inferiur appeendage clungate-triangular, feebly acuminate, slightly more than one-half as long as the superior pair, the breadth at base threr-cighths of the length, upper surface with a distiuct methan carina, apex rounded with a pair of small recurved dor-ad weeth; in profile view moderately curved, subequal and tapering but litule apically.

Colour-patlern of abdomen-Seg. i fuscous ; dorsal and lateral spots blue, or the later sometimes narrowed io a mere marginal line.

Seg. 2 fuscous; A. $1 / \mathrm{L}$. blue. extending $\mathrm{I}-2 \mathrm{~mm}$. above the
auricle and a variable distance below it, its upper margin very oblique and confluent with MD. PL + PD covering the fosterior division of the segment except part of the ventral surface and a narrow brown space on each side behind the transverse carina, which is continued mesad into adark brown oblique streak.

Segs. 3-Io. MD on all the segments and sometimes PD on 10 greenish, the other spots pale pure blue. AL on $3-7$ or -8 , the first three or four pairs connected by a narrow basal ring; large on 3 , the upper margins straight and separated by a brown band of about 1 mm . breadth; of moderate size, decreasing caudad on $4-7$, the upper margins more or less oblique. ML on 3-8, of moderate to large size, irregularly quadrate or roundish, separated from MD, anterior edges not indented. MD on 3-8, rudimentary on 8 , elsewhere relatively large, triangular. PD on 3-10, irregul rly semi-elliptical, varying in length from about 1.3 to nu.arly 2 mm ., separated mesially by spaces of varying width but always much wider on 8-10 than elsewhere, especially on 9; on 10 they are paler than on the other segments and are larger and better defined than in mutata. PL on 3-5 or -6; short, broad, curved offshoots of PD, with which they are broadly confuent.

Wings hyaline; costal veins pale horn-yellow; pterostigma dark brown above, ochraceous beneath; membranule of hind wing extending nearly to the anal angle, whitish in the basal third or fourth, dark smoky brown distally. Anal triangle 3celled; A2 in hind wing arising opposite or distal to the last cubito-anal cross-vein before the sub-triangle; outer side of anal loop longer than inner side of triangle. Rs forking opposite 1-2 (fore wings) 2-3 (hind wings) postnc fal cells before the stigma, the fork almost symmetrical at tase, and both branches equaily well developed, generally not converging towards the wing-margin. Three rows of cells between the forks opposite the distal end of the stigma. Supplements strongly curved; 3 or 4 rows of cells between Rspl and Rs between the points of wirlest divergence. Mra arising beyond the stigma. Usually a single row of celle between M_{3} and M_{4} in the hind wing, for , short distance just before the marginal cells.

194 Walrer: Nortr American Spec:es of Aeshna

Antenodals $\frac{14-18}{9-12}$, postnodals $\frac{7-10}{8-13}$, $\mathrm{CuCr} \frac{5-6}{3-6}$, Spt $\frac{2-3}{1-2}$.

Female-The abdomen is about the same in length as in the male and is not usually very stout. Abdominal seg. 3 is shorter, seg. 4 longer, than in the male, there being but little difference in length between these segments.

Genital valves as long as seg. 9, in protile slightly arcuate with the apices a little elevated, lateral carinae distinct only apically, elsewhere broadly rounded; ventral surfaces somewhat declivent, not distinctly sulcate. Basal plate with the hind margin straight; lateral plates distinct. Styli scarcely half as long as the dorsu' of $10(.75 \mathrm{~mm}$.). Appendages nearly as long to a little songer than $8+9$, tapering nearly equally at apex and base, curve of the inner margin a little stronger than that of the outer; greatest breadth about the middle, equal to about one-fifth of the length; apices acute or narrowly rounded.

The dorsal thoracic bands are narrower than in the male and are either divided into a superior and an inferior spot or represented by the latter alone. They are frequently indistinguishable in dried specimens. Lateral spots of scg. 2 forming a continuous broad band; brown area behind the median suture broader than in the male, owing to the smaller size of the PD spots which are a'so somewhat reduced on the other segments. They are not confluent on any of the segments. PL on $3-5$ or -6 , larger than in the male, often separated from PD posteriorly, connected with ML on 3. I have seen no purely homœchromatic specimens though they probably occur. Intermediate and markedly heterochromatic examples are present in the material studied. A fairly well preserved specimen from I'ortland, Ore, and two from Sunnyside, Wash., belong to the latter type of coloration, while two from Departure Bay, Vancouver Is., are of the intermediate type. Mr. Kennedy makes the following notes on onc of the Sunnyside specimens: "Eyes brown, edged behind with grey-blue, markings of thorax and abdomen yellowish with greenish hue." In these specimens the wings are also somewhat flavescent at base and along the costal edge. In the British Columbia females the head is coloured as in the male,

Walker: Norta American Species of Aeshna
dorsal thoracic bands greenish, lateral bands yellowish green below, blue above. Spots of abdomen pale green, except those on segs. 2 and 3, which are largely blue. The ground colour of the abdomen is brown shading into black around the light areas.

Measurements-Thor. ot 11-12, \% 11.3-11.5; abd. o' $43-45, ~ \& 43-46$; depth seg. $2 \delta^{7} 5.4-6,95.8-6$; seg. $3 \sigma^{7}$ $6.5-7.2$, $ᄋ ~ 6-6.25$; seg. 4 o' $5-5.25$, $\% ~ 5.4-5.7$; apps. o' 6-6.5, \% $5.5-6.2$; gen. v. 2.25 ; h.w. $\sigma^{7} 42.5-45$, o $44-45$; width h.w.

Types- o' 9, Mus. Comp. Zoology.
Nymph (pl. 7, figs. 4, +a;pl. 9, fig.5; pl. in, fig.5)-General surface smoother than usual, more than ordinarily transparent. Eyes large but less prominent than in species of the juncea, clepsydra and cyanea groups; lateral margins of head short, curving evenly from the eye to the straight posterior margin. Mentum of labium about twice as broad at apex as at base, the apical breadth equal to about eight-ninths of the length, expanding distad throughout its length, especially in the distal three-sevenths, though this part is less dilated than in most of our species of the genus; lateral margins sinuate, the curve being feebly convex or almost straight in the proximal part, more strongly so towards the distal end. Middle lobe very little produced, subangulate; lateral lobes, distad of movable hook, broad, parallel, squarely truncate; outer angles but little rounded off, inner $\begin{aligned} & \text { anties } \\ & \text { vith a small }\end{aligned}$ tooth.

Supracoxal processes short conical, subequal; interval rather greater than a right angle.

Abdomen rather short and broad, strongly convex ahove in the exuvia, in which the greatest breadth is reached at seg. 5 ; segs. 6 and 7 being of about the same breadth. Lateral spines present on 6-9; those on 6 mere rudiments, on 7 extending two-thirds to four-fifths of the distance to the posterior margin of the segment, on 8 to the margin or slightly beyond, on 9 to the middle of 10 or just beyond. Venter of 9 nearly three times as broad at base as long. Lateral appendages three-fifths as long as the inferior pair, rather slender in both sexes, tapering gradually to the slender fine-

196) Walker: Nortil Ambrican Spleble of Mimena

pointed apices; distal third in the male somewhat excavated below. Breadth of basal part of superior appendage of male equal to about threefourths of the length of one of the sides, which are some what roncalve; apex small, rounded. Genitalia : female small, alrout onethird of their length shorter than segment 9 senital valves not steeply dedivent.

Colour somewhat dark brown, more or less spoted and mottled with pale yellowish. Head above with a group of pale spots between the eyes, inchaling a larger central spot and three or four sinaller ones on each side; a pair of crescentic spots lounding the scars externally, at at inmediately behind each eye and a lateral marginal bant which is continued across the outer ends of the pronotum. Thorax with a number of small scattered pale spots; wings with the veins heavily marked with dark brown, the interspaces pale. la'gs, dark brown, the femora and tibiae each with three pale annuli. Abdomen variable as to distinctuess of the pale markings. In well-marked specimens the following can be made out: (i) A series of pairs of subtriangular spots, each pair at the base of one of the segments. Anteriorly the spots are largest and coalesce to form two irregular bands; posteriorly they generally decrease in size and often beconte subobsolete on the last two or three segments. (2) A series of suberescentic spots immediately laterad of the former series between the dorso-lateral and lateral punctae. (3) A series of paie blotches surrounding the lateral scars which are outlined in dark brown. (4) A mill-dorsal series of sublanceolate spots on some of the segenents, each spot surromaded by the corresponding dorsal punctac. All the punctate are distinctly marked with dark brown.

Measurements-l.ength of borly $35-4^{\circ}$; mentum of labium $5-5.75$; h.f. 6-6.9; h.w. 8-9); inf. apps. $4-4.5$; width of head $7.7-8.5$; width of alxlomen $8.3-9$ (exuvia $7-\mathcal{X} .5$).

The nymphs and exuviae upon which the above deseription is based were all taken by Mir. Kennedy at Nigger Pond, Sunnyside, Wash., where they were associated with those of Ae. californica, but occurred in largernumbers. None were reared, but there can be no doubt that they belong to

multicolor, for many of the exuliae were found on May 8 , a date that is much ton early for any other species of Aeshna in thin locality. Noreover the resemblance to the nymph of culifornice is so close that it could searcely melong to any speries exerpt mulficolor, the only near relative of californica in this region: allel, indeed, some of the differential characters of the two nymplis clesely correspend to these of the adults of these speries. Thus (1) the triangular basal part of the superior appendage of the mate is more clongate in the multicolor nymph, this structure being the mediment of the inferion appenclage of the adult make, which is likewise more elongate than in californica (pl. 7. tigs ,3a, 4a:pl. 17, figs 4, 5): (2) the mumber of antenolal veins is greater in both nympli and adult of mullicolor in the great majority of cases; (3) the size of the renlicolor nymph is distinctly larger.

Only californica was secol aloout the pend on May 8 . when the first lot ot exuviae was collerted, Imit on July 17, when the second lot was tak'il, only mullicolor was present. The first lot of exmviae comsisted of both species, the second of multicolor only.

[^8]
198 Walker: North American Species of Aeshna

Calvert as Ae. mul:icolor from Costa Rica and Panama, I have scen 1 O from Irazu (Costa Rica) and i from the Volcan dr Chiriqui (Panama). These belong to Ae. jalapensis Williamson, as does also a σ^{*} from Amula, Guerrero.

Aeshna mutata Hagen.
(PI. 14, fig. 6; pl. 17, figs. 6, 6a; pl. 21, figs. 4, 4a; pl. 22, fig. 5; pl. 28, fig. 3.)
Aeschna mulata, Hagen, Syn. Neur, N.A., p. 12 (1861); Kirby, Syn. Cat. Od. N.A., p. 89 (1890); Banks, Trans. Am. F.nt. Sice. XIX. p. 353 (1892)

Aeshna mutata, Willianson. Ent. Nirws, XiX. pp. 264, 301, Cext (io. (1208); Walker, Can. Ent., XL, Pp, $379,386,450$ (1908): Muttkou iki, Cat. Od. N.A., p. 113 (1910); Skinner, Ent. News, XX11, p. 336 (1911).

Aeschna multicolor, Weith, Ent. News, X1, p. 641 (1900) : Williamson, Pr. Ind. Ac. Sci., p. 173,176 (1900).

Aeschna veriscalis, Onburn and Hine, Ohio Nat., 1. p. 14 (1900).
A species of average size and build, with a rather short abdomen, and somewhat long and narrow wings.

Male-Occipu dull ycllowish (bluish in life?), cdged laterally with black, one-third to two-fifths as long as the line of contact of the cyes. Frontal vesicle pale blue above, the blue area separated from the lateral ocelli by a space fully as broad as one of the latter. Eyes in life pale blue, in dried specimens dask olivaceous with a bluish cast. Preocular band about twice as broad at base of antenne as one of the lateral ocelli; narrowed to a hair-line on the lower half of the frons and nasus. T-spot $\quad 2.3-2.8 \mathrm{~mm}$., stem about 1.75 mm . broad behind, .75 mm . broad in front, the sides distinctly sinuate, being straight or concave in front, convex behind. Frons and nasus pale bluc or grey-bluc, pale yellowish next to the ocular margin; lateral lobes of nasus rounded obtusangulate, slightly flaring. Labrum in dried specimens brownish with a very narrow basal and a broader apical dark brown margin. Labium plumbeous.

Thorax slenderer than in Ae. niulticolor, moderately dark brown vith a coppery tinge in dried specimens. Dorsal thoracic bands light blue, nearly 4 mm . long and about 1 mm . broad, except at :ie upner ends, where they nearly meet in the middle line just in front of the antealar sinus, and where the breadth is increased $t 0 \geqslant \mathrm{~mm}$. Sometimes the lower ends are also expanded. Lateral bands pale blue, nearly straight, surrounded by a artit ise dark brown margin; the first band slightly sinuate just below the middle, about 1 mm . broad at

Walkre: Nortil American Species of Aeshna ing

the lower end, expandling and becoming diffuse at the upper end, where the breadtli is 2.5 to 3 mm .; second band straight and equal excrpt at the expanded upper end, breadth below $.5 \cdot \cdot 75 \mathrm{~mm}$., above 1.5 to 2 mm .

Legs black, proximal half of anterior femora with a pale streak on the posterior surface.

Alxdomen four to four-and-a-half times as long as the thorax, molerately slender, sontewhat less inflated than usitial at base, moxlerately constricted at 3 , then rapidly expandling to the apex oi 4 . Seg. I with a very low ventral tubercle, bearing a few inconspicuous spinules and a tuft of long pale brown hairs. Auricles with $2-3$ teeth; ventral surface of 2 with a few minute spinules, especially nearly the posterior margin. Tergal mar gins lounding the genital fossa strongly sinuate, birably elevated in the posterior third. Spine of 1 n ior lamina well-cleveloped, moderately curved : \quad narply pointed, extending caudad to the posterior, , fins of the hamular processes; the latter rather broad and t. ., meeting along the middle line, antero-inferion surfaces concave, hounded behind by an arcuate ridge, which runs from the thase to the antero-internal angle, posterior margins arcuate. Hamular folds continuous with the processes, elongate, arutangulate behind, decply concave and closely approximated mesially, their outer margins subparallel. Seg. 3 one-seventh longer than $1+2$, one-thirl longer than 4 . Segs $5-7$ with traces of accessory lateral carinae about the middle. Median dorsal tooth on seg. 10 appearing very low and . tongate in profile view.

Su : rior appenti ges slightly longer than $9+10$, slender in the basal fifth. then expanding on the inner margin to about five-twelftis of the length, where the breadth is a little more than twice that at base and equal to about one-fifth of the length; thence remainiug equal as far as the distal seventh, whence, cuiving strongly downwards and slightly outwards, they taper to the sharply pointed apices. In dorsal view they appear slender, the outer margin gently and somewhat irregularly arcuate, the inner margin slightly sinuate.

Superior carina percurrent. low in the proximal two

20 O Wharer: Nortil Americin species of Aeshna

thirds then suddenly elevated with an angulate crest, the apex of which is about one-third of the length of the appendages from the apex of the latter. In profile a low subbasal tubercle at one-seventh to one-six th of the leng th appears: the outer margin is nearly straight except towards the apex, the superior carina raised above it to a height usually much less than the depth of the inner part of the appendages directly beneath it, this part being lent downwards to form an inferior carina, which is produced into a strong spine, directed ventrad and caudad, its apex recurved. The distance between its apex and that of the appendage is equal to about one-sixth of the length of the latter. Inferior appendage elon-gate-triangular, slightly acuminate, seven-twelfths as long as the superior pair, the basal breadth three-eighths of the length, upper surface without a median carina, apex bluntly rounded; in profile view rather strongly curved proximally, more gently distally, tapering more rapidly caudad than in multicolor.

Seg. I fuscous, dorsal and lateral spots blue, the latter $3-3.5 \mathrm{~mm}$. long, somewhat less than 1 mm . broad.

Seg. 2 fuscous, spots all bluc. AML with the anterior margin extending $1-2 \mathrm{~mm}$. above the auricle and a variable distance below it; upper margin very oblique, continuous with MD; posterior part of the segment above the ventral surface wholly blue, except a narrow brown band on each side, passing obliquely mesad from the transverse carina, and a dark brown spot behind the auricles. I few irregular blue blotches on the ventral surface also.

Segs. 3-10 dark brown. MD on all the segments and PD on 10 pale yellowish (green in life?), the other spots blue. AL. on $3-7$ or -8 , each pair except the last connected by a narrow basal ring; large on 3 , the upper margins straight and separated by about 15 mm .; of fairly large size also on 4-7, the upper margins nearly straight. WIL on 3-8, of moderate size, irregularly quadrate, the anterior edge of all but the last pair angularly indented, those on $3-5$ or - 6 narrowly confluent with MD. MD on 3-8, the last pair rudimentary, the others well-developed. triangular with the hind edges concave. 1'D on 3-ro. pairs of semieelliphical pens aloun 1.5 mm . long on most of the segments, narrowly separated mesially except
on 8-10, where the intervals are much wider, especially on 10, on which the spots are small and ill-defined. PL on $3-5$, generally rudimentary on 5 , elsewhere a narrow curved offshoot from PD.

Wings rather narrow, more or less flavescent, the hind pair about as long as the abdomen; costal veins dull brownish yellow; pterostigma dark brown, ochraceous beneath, membranule of hind wings smoky brown, with the base more or less whitish or grey, reaching nearly to the apex of the anal triangle, which is 3 -celled. A2 in hind wing arising basal to the last cubito-anal cross-vein before the subtriangle; outer side of anal loop about as long asinner side of triangle. Rs forking opposite the third (fore wing) or the third to fifth (hind wing) postnodal cell before the stigma, the fork nearly symmetrical at base; 3 or 4 rows of cells between Rspl and Rs between the points of widest divergence. Mia generally arising opposite the distal end of the stigma but often a little beyond or before the end. Two rows of cells between M_{3} and M_{4} in the hind wing, from the point where M_{4} appears forked to the margin of the wing.

Antenodals $\frac{17-21}{11-14}$, postnodals $\frac{9-12}{10-13}, \mathrm{CuCr} \frac{5-6}{5-6}, \mathrm{Spt} \frac{2-4}{2-3}$.
Female-Abdomen as long or a little longer than in the male, rather slender.

Genital valves barely as long as seg. 9, in profile very slightly arcuate, the apices a little clevated; lateral carinae rounded; the ventral surfaces not distinctly sulcate; posterior margin of basal plate straight; styli not quite I mm. long. Appendages a little longer than $8+9$, slender at base, outer margin straight, inner margin strongly arcuate, the curve at apex a little more marked than at base; greatest breadth about the middle. equal to about one-fifth of the length; apices rotundo-angulate.

Colour-pattern-[Colours mainly as described by Williamson, ('o8) from a single specimen). Occiput greenish yellow; cyes dark greenish brown with a narrow green posterior border, paler below. Face yellowish green, obscured with brown, margined with yellowish; frons above dull bluish, a

202 Walrer: North American Species of Peshina

pale brown line on the fronro-nasal suture; rhinarium plumbeous; labrum pale olivaceous; labium olive-green. Thorax olivaceous brown; dorsal bands divided each into a superior and an inferior greenish spot; lateral bands green, yellowish above. Abdomen castaneous, shading into black around the pale areas, which aregreen; on the first three or four segments margined with yellowish, in the posterior segments obscured with drabbish. On seg. 2 the lateral spots are connected to form a single broad band, and on 3 and 4 ML is confluent with PL. PD somewhat smaller, PL larger, than in the male. Wings strongly flavescent, the stigma pale brown.

In the females from Angola, Ind., and Wilbrahim, Mass., both of which are teneral, the lateral the zacic bands are yellowish white, in part bluish, a possible indication of the homœochromatic type of coloration.

Measurements-Thor. σ^{7} \& $. \mathrm{J}-11$; abd. or 45-47.75, 848-51 ; depth seg. 2 or 4.9-5.2, \circ 5.33-5.5; seg. 3 o'7.3-8, 87-7.5; seg. 4 우 3.6-5.9, ㅇ 6.5-6.75; apps. ه’ $5.8-6.3$, \& 6.5-7.5; gen. v. 2-2.2; h.w. of 44-47; \% $47.75-5 \mathrm{I}$; width h.w. $0^{7} 13$-14, of 14-14.33; pter. $\sigma^{7} 3 \cdot 3-3 \cdot 75$, \& 3.8-4.2.

Type-\%, Mus. Vienna-" North America."
Nymph-Unknown.
Material determined-I4 $0^{\pi} 4$ 9. Massachirsetts: Wilbrahim. June 5. 1902 (Needham, 2 or 1 8, teneral). Ohio: Stewart's Lake, Kent, June 22, 1950 (J. S. Hide, coll. Osburn,). Indiana: Bluffton, June 30, July 2-13, 1907 (Williamson, $12 \delta^{7} 18$); Angola, June, 1908 (Mary Shafer, coll. Williamson, 8 8, teneral). " Nozth Ayerica" (M.C.Z., I 8).

Identity-This species is closely related to Ae. multicolor, but I have seen no individuals that are in any way intermediate between the two forms. In fact multicclor shows no tendency anywhere to vary towards mutata, exhibiting indeed a marked uniformity of type throughout its entire area of distribution, as far as is indicated by the material I have studied.

The Mexican species Ae. jalapensis Williamson is still more closely related to Ae. mutata.

Distribution-Carolinian; Indiana. Ohio, Massachusetts, Pennsylvania.

Habits-All that is known of the habits of this species has been given by Williamson (loc. cit.).

LITERATURE CITED.

Baker, C. F.
1905. Notes on the Neuropteroid Insects of the Pacific Coast of North America, with Descriptions of New Species by Nathan Banks. Invertebrata Pacifica, I, pp. 85-92.
Balfour-Browne, Frank.
1909. The Life-history of the Agrionid Dragonfly. Proc. Zool. Soc. London, pp. 253-258, pls. 3.3-34.

Banks, Nathan.
1892. A Synopsis, Catalogue, and Bibliography of the Neuropteroid Insects of Temperate North America. Trans Am. Ent. Soc., XIX, pp. 327-374.
1894. The Odonata of Ithaca, N.Y., Can. Ent., XXVI, pp. 76-78.
Bergroth, E.
1881. Zur geographischen Verbreitung einiger Odonaten. Entom. Nachr., V'II, pp. 85-88.
Beutenmuller, William.
1890. Preliminary Catalogue of the Odonata found in the State of New York. Dragonflies vs. Mosquitors, pp. 163-164.
Brimley, C. S.
1906. North Carolina Records of Odonata in 1904 and 1905, with Corrections of some Previous Records. Ent. News, XVII, pp. 91-92.
Bran: J. J.
891. Flights of Dragonflies. Insect Life, III, pp. 413414.

Burmeister, H.
1839. Handbuch der Entomologic, Vol. II. Odonata, p. 805-862.

Burnifam, Eidward J.
1900. Preliminary Catalogue of the Anisoptera of Manchester. Proc. Manch. Inst. Arts and Sciences, I. pp. 27-38.

Butler, Hortense.

1904. The Labium of the Odonata. Trans. Am. Ent. Soc., XXX, pp. 111-134, pls. II-VII.
Carot, Louis.
1905. The Immature State of the Odonata. Part II, Subfamily Ischnina. Mem. Mus. Comp. Zool., VIII, No. 1, pp. 1-40, pls. I-V.
Calvert, Philip P.
1906. Catalogue of the Odonata (Dragonflies) of the Vicinity of Philadelphia with an Introduction to the S.udy of this Group of Insects. Trans. Am. Ent. Soc., XX, pp. 152a-272, pls. II-III.
1894a. On the Specific Identity of Aeschna clepsydra Say and Ae. crenata Hagen (eremita Scudder.) Ent. News, V, pp. 9-13, figs. 1-5.
1894b. Data on the Distribution of Dragonflies. Ent. News, V, pp. 242-244.
1894c. © tes on Nova Scotian Dragonflies. Can. Ent., Xivi, pp. 317-320.
1895a. Odonata of New York State. Journ. N.Y. Ent. Soc., III. pp. 39-48.
1895h. The Odonata of Baja California, Mexico. Proc. Cal. Acad. Science, Second Serics, 15', pp. 463558 , pls. AV-XVII.
1907. Additons to the Odonata of the State of New York. Journ. N.Y. Ent. Soc., V', pp. 91 -9.9.
1908. On Burmeister's Types of Odonata. Trans. Am. Ent. Soc., XXV, pp. 27-104.
1909. Foot-note on "A Note on Copulation among Odonata" (Williamson). Ent. News, X, p. 42.
1900a. Insects of New Jersey-Odonata. 27th Ann. Rep. N. J. State Board Agric., pp. 66-75.

1900b. Note on "Kinghirds eating Dragonflies" (J. P. Moore)!'Ent.! ${ }^{\text {News, XI!! }}$! ! 340 .
1903. A List of the Insects of Beulah, New Mexico -Neuroptera Odonata. Trans. Am. Ent. Soc., NXIX, pp. 42-45.

Walker: North American Species of Aeshna
1905a. Fauna of New England, 6. List of the Odonata. Occasional Papers Bost. Soc. Nat. Hist., VII, pp. I-43.
1905b. Biologia Centrali-Americana-Neuroptera Odonata. Pp. 17-420, pls. I-X. London (1901-1908).
1906. Copulation of Odonata, II. Ent. News, XVII, pp 148-150, pl. VII.
1909. The Compusition and Ecological Relations of the Odorata Fauna of Mexico and Central America. Proc. Ac. Nat. Sci. Phil,, 1908, pp. $460-491$, with Map, pl. XXVI.
1909. The Insects of New Jersey-Odonata.

Campbell, f. M..
1885. Dragontly Migration. Ent. Month. Mag., XXI, p. 192.

Charpentier, Toussaint de.
1840. Libellulinae Europaeae, pp. 1-180, pls. I-XLVIII. Leipzig.
Cockerell, T. D A.
1908. A Dragon-fly Puzzle and its Solution. Ent. News, XIX, pp. 455-459.
Comstock, G. F.
1903. A List of Lepidoptera found in the Adirondack Mountains. Ent. News, XIV, pp. 197-200. Odonata p. 200.
Currie, Rolla P.
1901. Papers from the Harriman Alaska Expedition, XXII. Entomological Results (it): The Odonata. Proc. Wash. Acad. Sci., III, pp. 217-223.
1903. The Odonata collected by Messrs. Schwarz and Barber in Arizona and New Mexico. Proc. Ent. Soc. Wash., V, No. 4, pp. 298-303.
1905. Dragonflies from the Kootenay District of British Columbia. Proc. Ent. Soc. Wash., VII, No. I, pp. 16-20.
Davis, Wm. T.
1898. Preliminary List of the Dragonflies of Staten Island, with Notes and Dates of Capture. Journ. N. Y. Ent. Soc., VI, pp. 195-198.

206 Waleer: North American Species of Aeslina

Elrod, Morton J.
1902. A Biological Reconnaissance in the Vicinity of Flathead Lake. Bull. Univ. Montana, No. 10, Biological Series No. 3, pp. 9I-182.
Evans, W. F.
1845. British Libellulinae, pp. 1-28. 21 coloured figs. London.
Fletcher, James.
1906. Entomological Record, 1905. 36th Ann. Rep. Ent. Soc. Ont., p. 104.
Fletcher James, and Gibson, Arthur.
1908. Entomological Record, 1907. 38th Ann. Rep. Ent. Soc. Ont., pp. 113-141.
1909. Entoniological Record, 1908. 39th Ann. Rep. Ent. Soc. Ont., pp. 99-120.
Fyles, Thomas W.
1901. The Dragonflies of the Province of Quebec. 31st Ann. Rep. Ent. Soc. Ont., pp. 52-55.
Gibson, Arthur.
1910. The Entomological Record, 1909. 40th Ann. Rep. Ent. Soc. Ont., p. 110-128.
1911. The Entomological Record, 1910. 4Ist Ann. Rep. Ent. Soc. Ont., pp. IoI-120.
Hagen, Hermann August.
1840. Synonymia Libellularum Europaearum, pp. 1-84. Koenigsberg, Prussia.
1856. Die Odonaten-Fauna des russischen Reichs. Entom. Zeitung Stettin, XVII, pp. 363-381.
1861. Synopsis of the Neuroptera of North America, with a List of the South American Species. Smithson. Misc. Coll., IV. Odonata, pp. 55-187.
1873a. Report on the Pseudoneuroptera and Neuroptera of North America in the Collection of the late Th. W. Harris. Proc. Bost. Soc. Nat. Hist., XV, pp. 263-301.
1873b. Report on Mr. S. H. Scudder's Odonata from the White Mountains, after an Examination of the Types. L.c., XV, pp. 376-377.

Walerr: North American Species of Aeshna 207
1873c. Odonata from the Yellowstone. Sixth Ann. Rep. U. S. Geol. Surv. Terr., 1872 (Hayden), pp. 727-729.
1874. Report on the Pseudo-neuroptera and Neuroptera collected by Lieut. W. L. Carpenter in 1873 in Colorado. Ann. Rep. U.S. Geol. and Geog. Surv. Terr., 1873 (Hayden), pp. 571-606.
1875a. Report upon the Collections of Neuroptera and Pseudo-neuroptera made in portions of Colorado, New Mexico and Arizona, during the years 1872, 1873 and 1874. Rep. Geog. Geol. Expl. Surv. West 100th Merid. Engineer Dept. U.S. Army, pp. 911-922.
1875b. Synopsis of the Odonata of North America. Proc. Bost. Soc. Nat. Hist., XVIII, pp. 20-96.
1890. Two Species of Aeschna. Psyche, V, pp. 353-355. Harvey, Frances Leroy.
1891. A Contribution to the Odonata of Maine. Ent. News, II, pp. 73-75.
1902. A Catalogue and Bibliography of the Odonata of Maine with an Annotated List of their Collectors. University of Maine Studies, No. 4.
Hebard, Morgan.
1910. A few Records from Northern Michigan in the Order Odonata. Ent. News, XXI, pp. I34-135.
Howard, L. O.
1901. The Insect Book. Odonata, pp. 363-376, pls. XL-XLVIII. New York.
Kammerer, Paul.
1907. Symbiose zwischen Libellenlarve und Fadenalge. Arch. für Entw. der Org., XXV, pp. 53-81.
Karsch, Ferdinand.
1891 a. Kritik des Systems der Aeschniden. Ent. Nachr., XVII, pp. 273-290.
1891b. Acht neue Aeschniden, l.c., XVII, pp. 305-313. Kellicott, David S.
1895. Catalogue of the Odonata of Ohio, Part I. Journ. Cinc. Soc. Nat. Hist., XVII, pp. 195-216.

208 Walxer: North American Species of Aeshna

1896. Catalogue of the Odonata of Ohio, Part II. L.c., XVIII, pp. 105-114.
1897. The Odonata of Ohio. Special Papers, Ohio Acad. Sci., No. 2. viii +116 pp., pls. 1-4.
Kirby, W. F.
18 .o. A Synonymic Catalogue of Neuroptera Odonata or Dragonflies, with an Appendix of Fossil Species. $x+202$ pp. London.
Kolenati, Frederico A.
1898. Meletemata entomologica, V-Neuroptera, pp. 113-120. St. Petershurg
Linné, Carl von.
1899. Systema Naturac, I-Neuroptera, pp. 543-552. Lucas, W. J.
1900. British Dragonflies (Odonata). xiv +356 pp., 27 pls., 57 text figs. London.
Maclaughlin, T. J.
1901. Ottawa Dragonflies. Trans. Ottawa Field Nat. Club., II, pp. 329-342.
Martin, René.
1902. Collections Zoologiq Baron Edm. de SelysLongchamps. Cata systematique et descriptif. Fasc. XVIII, Aeschnines, pp. 1-84, pls. I-II.
1903. Ibid. Fasc. XIX, Aeschnines, pp. 85-156, pls.
1904. Ibid Fasc. XX, Aeschnines, pp. 157-223,
V-VI.
1905. Genera Insectorum, Fasc. 115. Odonata, Fam. Aeschnidac, Subfanı. Aeschninae, pp. 1-34, pls. I-VI.
Moore, J. Percy.
:900. Kingbirds eating Dragonflies. Ent. News, XI, p. 340.

Muelifer, F. O.
186\%. Enumeratio ac Descriptio Libellularum agri Friedrichsdalensis. Nova Acta Acad. Caes. Leop. Car., III, pp. 122-131.

Waleer: North American Species of Aesena 209
Mutthowski, Richard A.
1908a. Review of the Dragonflies of Wisconsin. Bull. Wis. Nat. Hist. Soc., VI, pp. 57-127.
1908b. A Summer's Insect Collecting-Odonata. L.c., VI, pp. 166-168.
1910a. New Records of Wisconsin Dragonflies. L.c., VIII, pp. 53-59.
1910b. Catalogue of the Odonata of North America. Bull. Publ. Mus. Milw., I, art. 1, pp. 1-207.
1910c. Miscellaneous Notes and Records of Dragonflies (Odonata). Bull. Wis. Nat. Hist. Soc., VIII, pp. 170-179.
1911. New Records of Wisconsin Dragonflies, II. L.c., 1X, pp. 28-41, pl. IV.
Needham, James G.
1900. The Fruiting of the Blue Flag. Amer. Nat., XXXIV, No. 401, pp. 361-386.
1901. Aquatic Insects in the Adirondacks. Bull. 47, N.Y. State Mus., pp. 383-612, pls. I-XXXVI, 42 text figs.
1903a. Aquatic Insects in New York State. Bull. 68, N.Y. State Mus., Ent. 18, parts 2 and 3, pp. 204279, pl. V.
1903b. A Genealogic Study of Dragonfly Venation. Proc. U.S. Nat. Mus., XXVI, pp. 703-764, pls. I-XXIV, 44 text figs.
1904. New Dragonfly Nymphs in the United States National Museum. L. c., XXVII, pp. 685-720.
1908. Notes on the Aquatic Insects of Walnut Lake. Rep. Board Geol. Surv. Mich. 1907 on the Biology of Walnut Lake. App. III, pp. 252-271.
1910. Report of the Entomologic Field Station conducted at Old Forge, N.Y., in the Summer of 1905. Bull. 124, N.Y. State Mus., App. C., pp. 156-284.
Osburn, Raymond C.
1905. The Odonata of British Columbia. Ent. News, XV1, pp. 184-196.
1906. Some Experiments with Dragonflies in Brackish Water. Amer. Nat., XL, pp. 395-399.
Osburn, R. C., and Hine, J. S.
1900. Dragonflies taken in a Week. Ohio Nat., I, p. 14. Provancher, l'Abbé.
1897. Petite Faune e.ttomologique du Canada. Névroptères. Le Naturaliste Canadien, IX (continued from vol. VIII), pp. 38-43.
Ris, F.
1885. Neuroptera Helvetiae, analytisch bearbeitet als Grundlage einer Neuropteren-fauna der Schweiz (Gustav Schoch). Odonata (Die schweizerischen Libellen), pp. 35-85.
Ruthven, Alexander G.
1906. Spiders and Inser: : from the Porcupine Mountains and Isle Royale, Michigan. From "An Ecological Survey of Northern Michigan" (C. C. Adams). Ann. Rep. State Board Geol. Surv., 1905, pp. 100-106.
Say, Thomas.
1839. Descriptions of New North American Neuropterous Insects, and Observations on some already described by (the late) Th. Say. Journ. Acad. Nat. Sc. Phil., VIII, Pt. I, pp. 9-46.
Scudder, Samuel H.
1866. Notes on Some Odonata from the White Mountains of New Hampshire. Proc. Bost. Soc. Nat. Hist., X, pp. 211-222.
Selys-Longchamps, Edmond de.
1840. Monographic des Libellulidées d'Europe, pp. 1-220, pls. 1-4. Paris and Brussels.
1850. Revues des Odonates ou Libellules d'Europe, pp. 1-408, pl. I-II. Brussels and Leipzig.
1875. Notes on Odonata from Newfoundland, collected in 1874 by Mr. John Milne. Ent. Month. Mag., II, pp. 241-243.
Selys-Longc: Mps, Edmond De, and Maclachlan, Robert. 1872. Matériaux pour une faune névroptérologique de l'Asie septentrionale. Ann. Soc. Ent. Belg.,

Walker: North American Species of Aeshna as

XV, pp. 25-77 (Odonata by Selys-Longchamps, pp. 25-45).
Skinner, Henry M.
1902. "Doings of Societies." Ent. News, XIII, p. 26.
1903. 1bid., l.c., XV, p. 288.

191I. Ibid., l.c., XXII, p. 336.
Smith, John B.
1909. Insects of New Jersey. Rep. N. J. State Museum. Odonata, pp. 73•82.
Stefanflli, ${ }^{\prime}$.
1882. Osservazioni sui costumi e sullo svilluppo dell' Aeschna cyanea Mull. Bull. Soc. Ent. Ital., 1882, pp. 236-238.
Stephens, James Francis.
1835. Illustrations of British Entomology, or a Synopsis of Indigenous Insects, etc., VI-Mandibulata. Odonata, pp. 70-96. London.
Tillyard, R.J.
1909. Studies in the Life-histories of Australian Odonata. I. The life History of Petalura gigantea Leach. Proc. Linn. Soc. N. S. W., XXXIV, part 2, pp. 256-267, pl. XXIV.
Van Duzee, E. P.
1897. List of the Dragonflies taken near Buffalo, N.Y. Journ. N. Y. Ent. Soc., V, pp. 87-91.
Wadsworth, Miss Mattie.
1890. List of the Dragonflies Udonata) taken at Manchester, Kennebec Co., Me., in 1888 and 1889. Ent. News, I, pp. 36-37, 55-57.
Walker, Eumund M.
1905. Orthoptera and Odonata from Algonquin Park, Ontario. 36th. Ann. Rep. Ent. Soc. Ont., pp. 64-70.
1906. A First List of Ontario Odonata. Can. Ent., XXXVIII, pp. 149-154.
1908a. The Dragonflies of the Ottawa District. Ott. Nat., XXII, pp. 49-63.
1908b. A Key to the North American Species of Aeshna. Can. Ent., XL, pp. 377-391, 450-451.

212 Waleer: North American Species of Aeshna

Wallengren, If. D. J.
1894. Ofversikt af Skandinaviens' Pseudoneuroptera. E.nt. Tidskrift, IV, pp. 235-270.

Wi:ith, R. J.
1900. Indiana Odenata. Ent. News, Ni, p 041.

Williamson, Eimaro B.
189\%. September Wragonflies of Round and Shriner Lakes, ilhitley Co., Indiana. Rep. State (eeol. Ind., pp. 403-405.
1899. A note on Copulation Among Odonata. Ent. News, X, ple 42-43.
tyona. The Dragonlies of Indiana. 24th Ann. Rep. Dept. (icol. Nat. Res. Ind., pp. 229-233.
1gool. Additions to the Indiana List of Dragonflies, with a liew Notes, Nu. I. Proc. Ind. Ac. Sci., pp. 173-178.
1901. Additions to the Indiana List of Dragonflies, with a Few Notes, No. 11. L.c., pp. 119-127.
1902:I. A list of the Dragonflies ubserved in Western I'ennsylvania. Ent. News, NIII, pp. 65-75,
108-1I3.
1902b. Dragontlies (Odonata) from the Magdalen Islands. Ent. News, XIII, pp. 144-146.
:00.3. A proposed new genus of Odonata (Dragonflies) oi the Subfamily Aeschminat. Croup Aeschna. Ent. News, XIV, pp. 2-9, pl. 11.
1903h. The Dragonflies (Odonata) of Tennessee, with a Few Records for Virginia and Alabama. Ent. News, XIV, pp. 221-229.
I'06a. Dragonflies (Odonata) collected by Dr. D. A. Atkinson in Newfoundland, with Notes on some Species of Sumatochlora. Ent. News, XVII, pp. 133-I 39, pls. V and VI.
1907 a . A Collecting Trip North of Sault Ste. Marie, Ontario. Ohio Nat., VII, pp. I29-148.

Walker: Nortil American Species of Aeshna 213
1907b. List of Dragonflies of Canada. L.c., VIl, pp. 148-150.
1908. Three related Species of Arshna. Ent. News, XIX, pp. 264-271, .301-308.
Wilson, Cifarles Brancif.
1909. Dragonflies of the Nississippi Valley collected during the Pear? Missel Investigations on the Mississippi River, July and August, 1907. Proc. V.S. Nat. Mus., XXXVI, pp. 053-67t.

Zetterstedt, Johanne: Wilhelmo.
1840. Insecta Lapponica. Neuroptera, pp. 1015-1080. l.eipzig.

PLATE 1.

Cimatic Variations.

Figs. 1-4. Abdominal Segments :-4 of females of four species of Aeshna, illustrating variations in length and depth of the segments. (lateral view, $\times 2$.)

1. Ac. interrupla interrupla; a, from the Bay of Islands, Newfoundland; b Heyden, Ont.; c, Ottawa, Ont.
2. Ae. eremita; a, from the Bay of Jslands, Newfoundland; b, Searchmont, Ont.; c, Toronto, Ont.
3. Ae. canadensis; a from Grand Entry, Magdalen Islands; b, Porcupine Mountains, Mich.; c, De Grassi Point, Ont.
4. Ae. palmala; a, from Kodiak, Alaska; b, Twin lakes, Col.; c, Ogden, Utah.
5%. Abdominal segments 8 -10 and appendages of females of three species of Aeshna, illustrating variations in length of appendages. (Lateral view, $\times 2$.)
5. Ae. interrupla; a, Bay of Islands, Newfoundland; b, Heyden, Ont. ; c, Ottawa, Ont.
6. Ae. eremila; a, Bay of Islands, Newfoundland; b, Heyden, Ont.; c, Toronto, Ont.
7. Ae. canadensis; a, Grand Entry, Magdalen Islands; 3, Porcupine Mountains, Mich.; c, De Grassi Pt., Ont.

111014

 . 5

PLATE 2.

Copulatory Position.

Fig. 1. Ae. constricta, pair in copula, De Grassi Point, Ont. From dried specimens, killed with benzine. (From photograph, by A. J. Reading.)
2. Ae. constricta, connection between male and female genitalia, from the same specimens. AH , anterior hamulus; PH, posterior hamulus; Sp , spine of the anterior lamina; Ov , ovipositor; GV, genital valve.
3. Ae. constricta, appendages of mal., grasping head of female during copulation. Oblique view from behind, from another pair taken at De Grassi Point, Ont.
4. The same, viewed from above.
" 5. The corresponding position in Ae. clepsydra. Lateral view, from specimens taken at Go Home Bay, Ont.
6. The same viewed obliquely from behind and beneath.
7. The corresponding position in Gomphus spicatus Hagen, viewed obliquely from behind.

PLATE 3.
Oviposition.
Figs. 1. Re. eremitn, fent. oviposiling in the stem of Spurganium. ($\begin{aligned} & \times 1.5 \text {.) }) ~\end{aligned}$
2. Stem of Sparganium, showing punctures made by the ovipositor of Ae. eremite. ($\times 1.5$.)
3. Eggs of Ae. eremita in natural position in Sparn ganium. ($\times 3$.)
4. Egg of Ae. eremita. ($\times 20$.)
5. Stem of Acorus calamus, showing slits made by the ovipositor of Ae. constricta. (x 1.5.)
6. Egg of Ae. constricta. $(\times 20$.)

PLATE 4.

Aeshna umbrosa, instars b-g (X 2).
Fig. 1. Instar B.
" 2. "C.
3. "D.

Fig. . Instar E.
5. " F .
6. "

PITTE ゥ.

Aesifil canadensis, emergence of imago.
1 ig. 1. Nymph suspended. prior to emergence of imago.
2. Emergence of head and thorax.
3. Emergence of wings.
4. Extraction of hind pair of legs.
5. Resting position.
". 6. Extraction of end of abdomen.

- 7. Imago immediately after emerging.

8. imago immediately after full expansion of wings.

PLATE:

Nymphs.
Fig. 1. Aeshna juncea \circ, Cierfs, Switzerland.
". 2. " interripta interrupta σ^{7}, Nipigon, Ont.
3. " eremita ơ. Go Home Bay, (ieorgian Bay, Ont.
" canadensis o7, Go Home Bay, Ont.
5. ". constricta $\%$, Lake Simcoc, Ont.
${ }^{1}$ All the figures enlarged one-ball.

PIATF:

Nymphs. ${ }^{1}$
Fig. 1. Aeshna palmata 8. Roloson, B. C.
" 2. " umbrosa umbrasa o", Turonto, Ont.
" 3. "c californica \&. Sunnyside. Wash.
"3a. " " σ^{*}, ablominal appertay's. ふ., sal view.
" 4. " multicolor \%, Sunnyside. Wiah.
" 4a. " " 0^{*}.alklominal apperidage - der. sal view.

PATE: 8.

Labia of Nympic.
Figs. 1. Aeshna juncea, ('ierfs, Switzerland.
" 2.
-" interrupta interrupta, Nipigon, (Im
"3. " 3 eremita, Nipigon, Unt.
" 4. " clepsydra, Go Home Bay, Ont.
" $5 . \quad$ " canadensis, Gu Home Bay, Ont.

$$
\begin{aligned}
& \Leftrightarrow \\
& \Leftrightarrow
\end{aligned}
$$

PIATE:
Labia of Nymphs.
Fig. 1. Aishme palmata, Rolison, B. C.
2.
3.
4.
5. .. ralifornira, Sunnyside, Wash.
multicolor. Sumy ide, Wash.

リ.Al! II.
Tfrminal skgment init gFintrai.i of HEMALE NVMPISS.
Fing. I. Apshma juncea, (iorrs, Switzerland.
2.
3.
." interrupta inferrupta. Nipigon. Ont.
4. eremita, Nipigen, Ont. canadensis. Collome Ray. (Int.

1

PLATE: 11.

I crminal segments and genitalia of FEMALE NYMPHS.
Fig. 1. Aeshna palmata, Robson, B. C.
" 2. " umbrosa umbrosa, Toronto, Ont.
. 3. " constricta, Lake Simoue, Ont.
" 4. " califormica, Sunnyside, Wash.
5. " multicolor, Sunnyside, IVash.

F1.17F, 12
ANT:KIOR HIMITI IVI) INTERIOR LAMINA.
lis. 1. Cordulegaster dursalis, anterior hammlus. Departure Bay. Vanconver Is.. B.C.
Baslueschna janata, fio Itome Bay, Ont.
Boyeria vinosa. Algonquin l'ark, Ont.
Aeshna caerulea septentr,omalis, Labrador.
" sitchensis, Isle d'Orleans, Quebec.
" juncea, Bighorn Mountains, Wyo.
subarctica, Nipigon, Ont.

I'. $11!\div 1 .:$

Fig. 1. Aeshna interrupta interrupta. Heyden. Ont.
2. " eremita, Algunguin l'ark, Ont
"
3.
-•
4.11
" clepsydra, (n) Home Hay, Ont.

- 5 .
canadensis, lake Sinsore, ()nt.
" verticalse, liort Wiayne, Ind.

6.

" cuberculiferu. I'ruvinulown. Masa,

IVRLKI IR HIDILI IVD INTERGIN I IMINA
1.ig. 1. Aoshna palmatu. Kionlo as, M1.aina
2
3.
4.
5.

6
" umbrosa umbrace, I ahe Sitnoes int.

"" califormer Iresom, Cal.
" mullicolor, tumy-ide. IVidh.
" mutata, Fort IVivite, Int.

PLATE 15.
Mafe abiximinal applididges, dorsai. and Lateral views.
Fig. I. Aeshna cuerulea septentrionalis, Labrador.
1 a.
2.

2 a.
sitchensis, Isle d'Orleans, Que.
3. Westhourne, Man.

$$
0
$$

3 a. juncea, Kodiak, Alaska.
4.
subarctica, Isle Royale, Michigan.
4 .
5.

5 a.
6.

6 a.
interrupla interrupla, Starchmont, Ont. Temagami, Ont. nevadensis, Reno, Nevada.

111
TM
部9

PLATE, 1t.

Male abdominat. atpendages, dors.il and lateral vil:ws.

Fig. I. Aeshna interrupta lineatu, Regina, Sask.
ra. " " " " "
". 2. " " interna, Beulah, New Mexico.
" 2a. " " " " " "
" 3. " cremila, Algonquin Park, Ont.
3a. " " Heycken, Ont.
" 4. " clepsydra, Shriner L.ake, Ind.
"
4a. " "
Go Home Bay, Ont.
5. " canadensis, De Grassi Point, Ont.

5a. " " Oden, Mich.
6. " verticalis, De Grassi Point, Catt.

6a. " " Fort Wayne, Ind.

$$
\begin{aligned}
& 18 \\
& \text { 部 } 117 \\
& \text { IT }
\end{aligned}
$$

PLATE 1%.

Male aboriminai appendages.
Fig. 1. Aeshma tuberculifera. Isleboro, Maine, dorsal view lateral view.
umbrosa umbrosa Algonquin Park, Ont.,
do sal view.
Late Simcoe, Ont., dorso-internal view.
3. ". constriche, l.ake Simcoe, Ont., dorsal view.

3 .
4.

4 4.
californica, Fresno, Cal., dorsal view.
Departure Bay, Vancouver'Is .
B.C., lateral view.
5. "" multicolor, Winslow, Ariz., dorsal vir'w.
" 5a. " " Departure Bay, Vancouver Is., B.C.. lateral view.
". 6. ". mutata, Bluffion, Incl., dorsal vieu.
6a. " " " " lateral vieu.

$$
\begin{aligned}
& 71
\end{aligned}
$$

$$
\begin{aligned}
& \text { VID }
\end{aligned}
$$

PLATE 18.
Female genitalia and appendages, vientral. and lateral views.

Fig. 1. Aeshna caerulea septentrionalis, Bay of Islands, Nfd.
Ia.
"
"
-"
"
2.
$2 a$.
sitchensis, Bay of Islands, Nfd.
3.
$3 a$.
4.
4.
juncea, Banff, Alberta.
"
subarctica, Nipigon, Ont.
 AND laterai views.
Fig. 1. Aeshra eremita, Heyden, Ont.
12.
2.
$2 a$.
3.

3 a.
4.
$4 a$.
". clepsydra, Lake Simcor, Ont.
". canadensis, Temagami, Ont.
" verlicilis, Toronto, Ont.
" " "

PI.ATE 20.

Firmale Genitalia and appendaglis, venteal and lateral views.

Fig. 1. Aeshna interr: spla intorrupla, Algonquin Park, Ont. " Ic. " " " Temagami, Ont.
". ${ }^{\text {". }}$ 2a \quad " uberculifera, Manchester, Me.
" 3. \quad ". "mbrosa, lake Simcoe, Ont.
.. 4 " palmata, Kodiak, Alaska.
12. " " Twin Lakes, Col.

PLATE 21.
Female Genitalia and appendages, ventral AND LATERAL VIEWS.
Fig. 1. Aeshna constricta, Lake Simcoe, Ontario.
1 a.
2.

2 a.
3
3.1.
4.

4 a.
californica Peachland, B.C. Sunnyside, Wash.
multicolor, Sunnyside, Wash.
Departure Bay, Vancouver Is. mutata, Fort Wayne, Ind.

PLATE 22.
Fig. 1. Aeshna caerulea septentrionalis ơ, Labrador.
($\times 1.5$.)
\%, Bay of Islands. Nfd. ($\times 1.5$.)
σ^{7}, dorsal view of head.
4. "" sitchensis $\sigma^{\prime \prime}$. dorsal view of head.
5. .. mutata \&, Fort Wayne, Indiana. ($\times 1.5$.)
6. -. " interrupta interrupta \&, Bay of Islands,

Nfd.
8. ". " " O Magdalen Islands, Que.
9. ". ". nevadensis ơ, Reno, Nevada.
10. ". " interna ơ, City Creek Cañon, Utah.
11. " " $\%$ Lambs' Cañon, Wasatch Mountains, Utah.

PLATE, 23.'
Fig. 1. Aeshna sitchensis σ^{7}. Westbourne, Man. (Dried.)
2.
3.
4.
5.
6.

$"$	
$"$	j
$"$	
$"$	

$1 \sigma^{7}$. Nipigon, Ont. (Fresh.) 9 . (Alcoholic.)
: $\quad \sigma^{\circ}$, Nipigon, Ont. (Fresh.) ९. " " (Fresh.)

1 The figurey on this and the fillowing plates are all entarsed one-half.

$$
\equiv
$$

PIATE: 2.
Fix. 1. A-shna eremita of. 1 in Honse Bay. Ont. (Fresh.)
$2 . \quad$ " \quad Q. Nipigotn, Ont. (Fresh.)
3. ". interrupta interruptn ơ", Nipigon, Ont.
(Fresh.) Q. Nipigon, Ont. (Fresh.)
" 5. ". " Lineuta σ°. Waterton I.ake. Alta.
(Dried.)
" P. Regina, Sask. (Alcoholic.)

ILATE :
Figs. 1. Aeshna clepsydra o' (io Home Bay, Ont. (Fresh.)
" 2. " ". \&, De Cirassi Point, Ont. (Fresh.)
". 3. "c canadensis or. (;o Home Bay, Ont. (Fresh.)
" 4. " " \&
... "
5. ". verticalis of' Toronto, Ont. (Frcsh.) 6.
6. ". ¢. De (irassi Point, Ont. (Fresh.)

PIATE:
Figs. 1. Aeshno tuherculifera on, Fir Home Bay, (In). (A). coholir.)
\%. Fithicoke Creek, Ont. (Alcoholic.)
3. "palmata 0°, Inparture Bay, Vancouver Is.
B. C. (Alcoholic.)
4. " " 8. Twin Jakes, Col. (Dried.)
5. "~umbrasa umbrosn ơ. Toronto, Ont. (Fresh.)

PLATE 27.
Fig. 1. Aeshna umbrosa occidentalis of, New Bridge, Or. (Dried.)
". 2. "constricta o", De Grassi Point, Ont. (Fresh.)
3.
4. Point, Ont. (Fresh.)
o (heterochromatic), De Grassi Point, Ont. (Fresh.)

PLATE 28.
Figs. 1. Aeshna californica o's. Departure Bay, Vancouver Is. (Alcoholic.)
2. ." " 8. Departure Bay, Vancouver Is. (Alcoholic.)
3. " mulata σ°, Blutfton, lind. (Dried.)
4.
\because multicolor σ^{*}, Departure Bay. Vancouver Is. (Alcoholic.)
5. Q, Departure Bay, Vancouver Is (Alcoholic.)

|

[^0]: ${ }^{1}$ Those of one pair of wings are sometimes without the brace in Ac. cnerulea and sitchensis.

[^1]: 'No females of umbrisa from Manicoba have bren seen.
 ${ }^{3}$ These and the following temperatures were kindly furnished by Mr, R. F. Stupart, Director of the Neteorological Observatory, Toronto.

[^2]: Determined by Mir. Natban Banka.

[^3]: Determaned by Mr, Nathan Banks.

[^4]:

 - Including dro merta latr. and fire affonis van der Linden.
 - Includning .te taceles Muller and .te muptin selys, and possibly others.
 - Includaris :hiv vpeciev ablone 1°.

[^5]: II have a specimen from the Isle d'Orleans, Quebec, in which a minutethird cell is present on each side, including the outer basal angle.

[^6]: In European specimens the fork is often before the proximeiend of the stigma.

[^7]: - Since the above was writien I have seen a few males hovering over small pools on the borders of woods near Turontu. One uf these pools is a favourite breeding spot fur Ae mmbrosa but as a rule it is not frequented by other specied of the genus.

[^8]: Material. delermined - 45 or 17 8. British Coluxbia: Loon Lake, Ainsworth (Lixxtenay), July 11, 1903 (Currie, U.S.N.M.. 2 ${ }^{\prime}$): Victoria, July (Crotch, M.C.7.. ${ }^{1}$: Departure Bay, Vancouver 1s.,. June 20, July 4-23. 1908 (Huntsman, $120^{\circ} 3$) : Diver Lake, Vanc. 1s., July 23. 1903 (Huntsman.
 Orecon: Portland, July 12,1 105 ((u urrie, U.S.N...I., 1\%). Idaho: Moscow Mt. July 27 (H.E. Burke, US.N.M.., $\%$). Colorado; Fort Lupton, July 22, 1900 (Osburn, coll. Williamson, $10^{\prime \prime}$, 'ragments); Denver (E. V. Beales. coll. Calvert, 1 O). UTAH: Red Butte Cañor, Salt lake Co., June 18, 1899 (Browning. coll.'

 Claremont (Baker, coll. Calvert, $1, Q$): Kiceler, July 6 (Wickham, cill. Calvert, 1 γ): Ontario, July 13, 1907 (Willianson, 3 , ${ }^{\prime \prime}$): Los Angeles (U.S.N.M., A. Davidson. coll. Calvert, ${ }^{\circ}{ }^{\circ} 1 \%$): Pasallena, Sept. $5 \cdot 13,1900$ (Fordyce Grinnelli,
 Arizona: Winslow. Juty 31, 1901 (Barber and Schwarz, U.S.N.M., 1 0^{*}); Williams, July (Barber and Schwarz, U.S.N.M. 10°). NEw MExico: Beulihh, Aug. 19ol
 Kiver (M.C.Z., $\mathrm{i}^{*} 2$ O $^{\circ}$). Mexico) San Josi det Calo, Baja California, Oct. 1893 (G. E.sen, colt. Calvert, 1 , 0°): Tacubaya, D.F. Aprit. 18999 (O. W. B. Burrett. coll. Calveri, 10^{*}); Santa Maria, Puebla, June (O.W. Barrett, coll. Calvert, $1 \mathrm{o}^{*}$).

 Nymphs-Nıgger Pond, Sunnyside, Wash., May 8, 1910, 80' 30 (St. H1) :

 Distribution-Upper and Lower Sonoran, Mexico (Distrito Federal and l'uebla) to Texas, Colorado and southern British Columbia. Of the material recorded by Professor:

