# CIHM Microfiche Series (Monographs) 

ICMH
Collection de microfiches (monographies)

Canadian Institute for Historical Microreproductions / Institut canadien de microreproductions historiques


## Technical and Bibliographic Notes

The Institute has attempted to oblain the best original copy available for filming. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of filming are checked below.

## Coloured covers /

Couverture de couleur


Covers damaged /
Couverture endommagée


Covers restored and/or laminated /
Couverture restaurée etou pelliculée
Cover title missing / Le titre de couverture manque
Coloured maps / Cartes géographiques en couleurColoured ink (i.e. other than blue or black) /
Encre de couleur (i.e. autre oue bleue ou noire)Coloured plates and/or illustrations /
Planches evou illustrations en couleur
Bound with other material /
Relié avec d'autres documentsOnly edition available /
Seule édition disponible
Tight binding may cause shadows or distortion along interior margin / La reliure serrée peut causer de l'ombre ou de la distorsion le long de la marge intérieure.

Blank leaves added during restorations may appear within the text. Whenever possible, these have been omitted from filming / II se peut que certaines pages blanches ajoutées lors d'une restauration apparaissent dans le texte, mais, lorsque cela était possible, ces pages n'ont pas été lilmées.

L'Institut a microfilme le meilleur exemplare quil lui a ete possible de se procurer. Les detals de cet exemplarre qui sont peut-ètre unıques du point de vue biblıographique, qui peuvent modifier une image reprodulte. ou qui peuvent exiger une modificatıon dans la méthode noımale de filmage sont indiqués ci-dessous.

## $\square$ <br> Coloured pages / Pages de couleur

## Pages damaged / Pages endommagees

Pages restored and/or laminated /
Pages restaurées evou pelliculées
Pages discoloured, stained or foxed /
Pages décolorées, tachetées ou p:~
Pages detached / Pages détachée:


## Showthrough / Transparence

Quality of print varies /
Qualité inégale de l'impression


Includes supplementary material /
Comprend du matérıel supplémentaire
Pages wholly or partially obscured by errata slips, tissues, etc., have been refilmed to ensure the best possible image / Les pages totalement ou partiellement obscurcies par un feuillet d'errata, une pelure, etc., ont été filmées à nouveau de façon à obtenir la meilleure image possible.

Opposing pages with varying colouration or discolourations are filmed twice to ensure the best possible image / Les pages s'opposant ayant des colorations variables ou des décolorations sont filmées deux lois afin d'obtenir la meilleure image possible.

Additional comments /
Commentaires supplémentaires:

Pagination is as follows: p. 195-217.
La pagination est comme suit: p. 195-217.

This item is filmed at the reduction ratio checked below /
Ce document est filmé au taux de réduction indiqué ci-dessous.


The copy flimed here has been reproduced thanks to the generosity of:

## Gerstein Science Information Centre University of Toronto

The Images appearing here are the best quellty possible consldering the condition and leglbllity of the original copy and in keeping with the filming contract specifications.

Original coples in printed paper covere ore filmed beginning with the front cover and ending on the last page with a printed or lllustrated Impression. or the back cover when appropriate. All other original copies are filmed beginning on the first page with a pilnted or Illustrated Impresslon, and ending on the last page with a printed or lllustrated Impression.

The last recorded frame on each microflche shall centain the symbol $\rightarrow$ (meaning "CONTINUED"), or the symbol $\nabla$ (meaning "END"). whichover applies.

Maps, pletes, charts, otc., may be fllmed at clfferent reduction ratios. Those too large to be entirely included in one exposure are fllmed beginning in the upper left hand corner, left to right and top to bottom, as many frames as required. The following diagrams illustrate the method:

L'oxemplaire fllm' fut reproduit grice alo géndrosité de:

```
Gerstein Science Information Centre
    University of Toronto
```

Les images suivantes ont d́t reproduites avec le plus grand soin. compie tenu de la condition et de le notraté de l'exemplaira filmb, ot en conformité avec les conditions du contret de filmage.

Les examplalres originaux dont la souverture en pepler est Imprimde sont flimds en commencent par lo promier plat ot en terminant soit par la dernídre page qui comporte une empreinte d'Impression ou d'illustration. soit par le second plat. selon le cas. Tous les eutres exemplaires originaux sont filmds en commençant per le premid́re page qui comporte une empreinte d'Impression ou d'llustration ot en terminent par lo dernidre page qui comporte une telle emprelinte.

Un des symboles suivants apparaitre sup la dernid́re image de chaque microfiche. selon le cas: le symbole signifie "A SUIVRE". le symbole $\nabla$ signifie "FIN".

Les cartes, planches, tabisaux. otc., peuvent dere flimes des taux de peduction différents. Lorsque le document est trop grand pour dtre reproduit en un seul cllché, il est filme a partir de l'angle supdrieur gauche. de gauche à droite. et de haur en bas, en prenent 'e nombre d'images núcessaire. Les diagrammes suivents illustrent in muthode.



#  



## THE CHARACTER OF THE STAR IMAGE IN SPECTROGRAPHIC WORK

J. S. PLASKETT

THE CHARACTER OF THE STAR MM.IGE N SPECTRO. GRAPIIC WORK

liy J. S. I'I..ISKL:I"

The olject of this paper is to describe some experiments on the size and form of the star image given loy the combination of objective and correcting-lens, with an investigation into the callses of the observed effects and suggestions for the improwement of existing conditions.

The equipment of the Dominion Obervatory, ()tawa, for rathalvelocity work consists of a 15 -inch telesoper with a Brashatar vimal obsetive and photographic correcting-lens, and as spectrosiope of
niversal type, also by Brashear. The objective for visual pur-
:s is excellent, and the spectroscope is admirably adapterl for general spectroscopic work, but, as the experience of others as well is myself hats shown, is not suitable for the accurate determination of radial velocities. Its design ats a universal spectroscope does not give sutficient stability, and, in exposures of any length, thexure will not only ruin the definition, but is liable to introluce systematio crrors in the velocities ohtained. Pencling the construction of a spectrograph specially designed for the required purpose, atn attempt was made to render the present instrument capable of giving arcurate velocity values. The investigation and remosal of the known sources of error led to the cliscovery of the aberrations to be presently described. A brief description of the steps leading theretto laty be of interest.

Trusses connecting the various parts of the instrument, where flexure could occur, with the supporting tubes were applicd to such effect that an initial displacement of the spectral lines, equivalent to a velocity of 30 km per second, occasioned by a movement of telescope and spectroscope through two hours in right ascension, was reduced to $1 \frac{1}{2} \mathrm{~km}$. The prisms were tirmly clamped in place, without inducing strains in the glass, by screws passing through the base of the prism-box and the minimum-deviation linkwork inte the prismcells. The slit-jaws, originally too thick on the edge, were reground,
and the occulting diaphragms for star and spark light were removed from the slit-head and placed on :an independent frame attached to the supporting tubes. The comparison apparatus was remonded, the direction of the spark being made transurse to, insterd of parallel with, the slit-jaws, and many other smaller details were earefully attended to.

After all known sources of error in the spectrosiope itself had been overome, and after it hasd been placed in thorough adjusiment, it was found that test seectra of the standard-velocity stars occasionally give values difering ley as much ats 3 km per serond from those oltained bey other obersers. As the probable croor of the mean of the measured lines dial net exceet four-tenthes of a kikometer, and .es all the other known causes of esstematic: erour hat been overcome, it seemed probable that this mighte be to unsymmetrical distribution of the star light over the collimator and camera lenses. Evidently such unsymmetrical distribution can catuse a displacement of the lines only when the camera is not in exact focus. The camer:a was alwats carefulle foctased by a modification of Newall's methol, which readily detce displacements of the sensitive surface from the focal plane of less thim 0.05 mm in : focal length of 375 mm . But as the plates are supported only at the ends of the phate-holders, differences in the curvature of the ghas may easily catuse diferences of 0.3 mm or more in the position of the center of the sensitive surface, where all measurements are made. 12 the case of a displacement of 0.1 mm from the focus, a distribution of the star light on the collimator objective so that its center of intensity is 5 mm to one sille of the axis, is
 equivalent to at velocity of 1.8 km per second.

An examination of the iilumination pattern on the collimator lens, both wisual and photograp hic showed how easily such or even greater displacements of the center of intensity could occur even with the utmost care in guiling. The illumination could never be made uniform, no matter how the relative positions of slit and correctinglens were altered. The pattern was either a diametrical bar paralled to the slit of a width about one-third or one-fourth the aperture, or else such at bar with the aldition of a peripheral ring; while a very slight morement of the slit-jaws to one side or other was sufficient to cause
one side only of the lens to be illuminntert, without cousing any apreti.tbe change in the aprearemee of the imnge in the guiting telewope, guting being done by means of light coming through the

 ing at diphacement of the star lanes unk the phate Were in exate foctus.

The appearance of this pattern and it behatior for change of atit pesition indicater apherical alseration of the combening s.atem. That aberrations of some noture were presemt wis indicated mot only be the long cepmetures reguired upwarl of two hours for a star of the fourth photegraphic magnituld but aho be the l.rge efletise diameter of the image ats hown lye wile opming, 0.25 mm , of the slit repuired to ottain muitorm illumination.

An examination of the corretting lens shewed that part of the dilticulty might arise from tixe accilental insersion of the diverging chement, whid hat been so placed in the cell that suriactio of unlike curvature were adjacent to each wher on inserting this concaise dement so that surfaces of like radius of cursature were in contact, the illumination pattern became more uniform, the reguired expseure time was diminisherl loy 50 per cent. and no creurs of a greatler mognitude than shouk be expected with the dispersion employed, appeared in velocity determinations of stambard atars. If the dianmer of the object-glass, 15 inceres, and the linear dispresion of the spetregraph, 18.6 wenthemeters, miliimeter at $/ 1 \%$ be taken into accoum, the exposures repuired tess than an hour for stars of the fourth photographie magnitude compar: very faworably with those of other equipments.

Notwithstanding the great improwement shown, photographic tests of the star focus for different temperatures indicated thit the star stectrum wats much wider than coukl reasomahly be accounted for by amospheric disturbance, and I was led to make thorough tests of the chatracter and diameter of the image.

To determine whether a narrower suectrum could be obtained by a change in :aljustment, a plate wats mathe for each of six settings of the correcting-lens, abowe and betow its computed position, ower at range of four inches. A simple device applied to one of the phate-
holders enabled ten successive star "t trat to be made side by side on each of these plates, at different settings of the slit position in the neighborhood of the star focus; the sixty spectra forming a record of the diameter of the star mage under varying conditions. To insure that the spectrum had not been wideneal by at drift of the star image along the slit, the spectroscope was turned in position angle until the slit-jaws were parallel to an hour circle. By opening the slit 0.2 mm , and by using a bright star, Vega, a fu!ly exposed linear spectrum wats obtained in eight or ten seconds, evilently with no chance of widening due to drift. The width of the narrowest part of the narrowest spectrum on each plate, presumably where the star was in focus on the slit, wats measured, and these widths ranged from 0.085 to 0.115 nmm. As the camera and collimator objectives are of the same focal length, and as one second of are in the focus of the refractor is equisadent 100.0275 mm , the dian:eter of the star image according to this test must be between $3^{\prime \prime}$ and $+\frac{5}{5}$. The diameter of the central diffraction disk as given by the formulat $d=\frac{12: 97 \lambda}{r}$ is, for a 15 -inch objective and $/ I \gamma$ light, about 0.57 , while the actual effective diameter as obtained from the widh of star spectra is ive to cight times as great.

This enlargement of the difiraction image may be due to three causes: (1) aberrations in the spectroscope; (2) atmospheric disturbances; (3) aberrations in the system of objective and correcting-lens.

1. Aberrations in the spectroscope.-It is a simple matter to determine whether the wide star spectrat obtained are due to this caluse, for by direct photography of the star image no aberrations in the spectroscope can affect the result. A series of star trails was therefore mate on ordinary plates by the system of objective and correctinglens. A small plate, held in guides in the slit-cap of the spectroscope, could be moved in these guides between exposures so as to make a number of trails on each plate. The collimator tube, carrying the plate with it, was moved by the rack and pinion about a quarter of a millimeter between each exposure, to insure having one of the trails within an eighth millimeter of the focus. A plate each was made of six stars ranging from the third to the sixth magnitude, and the width of the narrowest trail on each plate, corresponding to the

























 the tremer that to inc reane the with of - peetrum or trail, then the diameter of the imbage given by the ill we hige. ive ant correting.





 ant a comparion with the widthe given be obje tive and correcting Hons in photographic light, shouk at onoe des ithe whe the rhe whersert

[^0]effect is due to atmospheric tremor. The correcting-lens was therefore remowed, the spectroscope was adjusted for yellow light, and spectrit were made similarly to the previous ones, though on Cramer Isochromatic phates, which have a pronounced band of sensitiveness almost identical in wave-kength with the turning-point of the color-curve of the objective. The widths of the spectra produced varied between 0.050 and 0.065 mm , about $2^{\prime \prime}$, but as the seeing was very unsteady (about $1 \frac{1}{2}$ in scede of 5 ), these widths are doubtess about 25 per cent. greater than would be the case with good seeing. For the star trails the same make of plate was used, light of shorter wavelength than $\lambda 5000$ being absorbed be a yellow screen of plane glass placed in contact with the plate. Owing to the insensitiveness of the plate to light of wave-lengths between $\lambda 5000$ and $\lambda, 5100$, and to longer wases than $\lambda 5800$, only the light which is effective in forming the visual image car act in producing the trails. As before, the widh of the trails varied with the brightness of the stars. ranging from 0.025 mm in fatint trait: 100.055 mm in stronger traits, or from $1^{\prime \prime}$ to $2^{\prime \prime}$, white the average width over a longer strip of trail wats about 20 per cent. greater. Nowithstanding the bad seeing, both trails and spectra were much more sharply defined than those made with the correcting-lens in photographic light and of only half the width.

These experiments conclusively prove that the abnormal width of spoctra and trails in photographic light is not the to aberrations in the spectroscope nor to atmospheric disturbances, and clearly point to aberrations in the condensing sistem as the caluse of the observed effects. A short summary of the experimental data will render this more evident. The theoretical diameter of the central disk, or rather of the first dark ring, for visual light $\lambda_{5} 500$, is 0 :- - f, for photograthic light, $\lambda_{4.3+0,}$ is $0: 5 \%$. The actual width of visual spectrat and trails is from $1^{\prime \prime}$ to $2^{\prime \prime}$, or one and one-half to three times the theoretical diameter. The actual width of photographic spectra and trails is from $3^{\prime \prime}$ to $+?^{\circ} 5$, or five to eight times the theoretical diameter.

Some further information regarding the size and character of the photographic image may be gained by considering its effective diameter under another aspect, that of the loss of light at the slit. Referring again to 'ewall's paper, and taking, as he does for an example, a tremor-disk of $5^{\prime \prime}$ diameter with a core of $2^{\prime \prime}$, we find that
a slit 0.025 mm wide will transmit ir per cent. of the incidert star light; a slit $0.0 .57 \mathrm{~mm}, 4+\mathrm{p}^{\mathrm{er}} \mathrm{r}$ cent.; a slit $0.05 \mathrm{~mm}, 58 \mathrm{pe}$...nt.; and so on. I am indebued to a sughestion by I'rofessor Campbell for a metherl of testing this theoretical result experimentally. A series of star spectra were matle at different slit-widthe, and the resulting intensities were compared. As it is practically impossible to make " number of wide spectrat of uniform intensity throughout their width, photometric measurements cannot be retied upon and recourse must be ad to visual estimates. Such estimntes can be made more accurately if the exposures are so regulated ats to give spectrat of equal intensity, and, moreover, within the limits of exposure time and intensity used here, errors due to the chatacteristics of the plate emploved are to a great extent avoidet. The spectrum of a $L$ yrar, the star used, is practica! ${ }^{\text {a }}$ continuous cxecent for the $I I$ series, and is therefore well suited for the estimation of intensities, while its brightness is such that only short exposures are required. Ten different slitwidths between 0.012 and 0.25 mm were used, and ten spectra, one through each slit-opening, were made vide bey side on the same plate. The expoures were so regulated as to render the resulting spectra as nearly equally intense at pesible, and the final estimate is the mean from a number of plates and from spectrat of different widths. To render the comparisons more direct, slit-widths will be represented by divisions, a single division corresponding to 0.025 mm , and the relative expesure times will be reduced to a unit of 100 with a slit-wilth of one division, 0.025 mm , or 0.99, the normal width with the dispersion employed here.

The following table shows that the exposure repuired is inversely proportionai to the slit-width until this reaches 0.1 mm . linving out of account widthe less than a single division. where difiractional loss within the collimatur phays an important part. It abo shows that with normal slit-width less than 17 per cent. of the light incident on the slit is transmitterl. In Newall's hypothetical case 31 per cent. would be transmitted. The experimental datal given athere, using Newall's method of calculation, indicate a tremordisk $8^{\prime \prime}$ or $10^{\prime \prime}$ in diameter with a core of about $3^{\circ} 5$, and, as the previous expriments have shown, this is much larger than can be actounted for by atmospheric disturbances.

T:MBIE: 1
Lass ue linhtat citr

| S.1T-W in mils |  |  | Comparamp. Times for lucal |  |
| :---: | :---: | :---: | :---: | :---: |
| Divs. | Mm | Sirs. | 1 antimental | $\begin{aligned} & \text { Conputed: } \\ & r=5^{\prime \prime} y=2 \end{aligned}$ |
| 1 | 0.012 | 0. 45 | ; 0 |  |
| 1 | . 055 | $0 \cdot 1$ | 100 | 100 |
| 112 | . 037 | 1.35 | 17 | -0 |
| 2 | $0{ }^{\circ}$ | 182 | 50 | 51 |
| 3 | cis | 27.3 | 3.3 | (1) |
| 1 | 100 | 36 | 24 | i4 |
| 5 | 125 | $+55$ | 25 | 31 |
| $\stackrel{8}{6}$ | 150 | 545 | 217 | $\cdots$ |
| $s$ | -200 | 7: | 18.3 | , |
| 10 | .250 | 0.07 | 16.7 | 31 |

The above experiments print conclusively to aberrations in the system of objective and correcting-lens, when used with photographic light, as the caluse of the observed effects, but they give no information coneerning the nature of these aberrations beyond indicating in a general way, from the appearance of out-of-focus photographs of spectra and trails, that spherical aberration is present. It was clecided therefore, to make quantitative tests to ascertain if possible the nature and magnitude of the aberrations and the best means of removing them.

The most simple and accurate method of determining the zonal errors and axial astigmatism of a telessope objective is Hartmann's methorl ${ }^{2}$ of extri-focal measurements. The principle of the method and the measurements and reductions necessary are extremely simple, while it gives aceurate salues with the expenditure of comparatively litte time and without the use of any appliances excep such as can be readily made by anyone. For the benefit of those who have not the above paper at hand, and in order to render the present article complete. the essential principles of the methorl will be brietly describerd.

It depends upon the determination of the intersecting point of pencils of light coming from different parts of the objective. Suppose a diaphragm containing two small openings, equidistant from the

[^1]center and atong at dameter, be placed ower the objective. If the distance between the pencils of ligite coming from these opening be measured at two points, one within and one without tre focts, the print of intersection of the pencils, and conserpuentle the focus for the particular zone in question, can be at once ohtained from smilar

triangles. For let $d_{1}$, Figig. i, be the distance between the pencils at the scate-reading $A_{2}$ within the focus, $d_{2}$ the distance at the seate realing.$I$ I $x$ erond the focus. Evidently then the scale-reatling for the focurs $A$ is $. I_{1}+\binom{d_{1}}{d_{1}+d_{2}}\left(d_{2}-A_{1}\right)$. The distances $d_{1}$ and $d_{2}$ may be determined directly micrometer measurements on the pencils from a star or distant artificial peint source, or by making exposures on photographic plates in the two positions and meaturing the diatances between the rewting imate hy a mearuring microstope. The latter method is preforable and wis thed evelusively. extept that the photegraphic determinations were checked by micrometer measures.

A zone phate . 1, Fig. 2, similar to that deseribet lỵ Itarmam, wats emplowed. The apertures, except the four inner ones, were


each :bout 25 mm in diameter, and the radii of the nine sones we re respectively $28,47,66,85,104,123,12,60$, and 178 mm . In order to determine the atigmatiom atong the axis, wats pair of emen-
ings is duplicated ly a second similar pair at right angles, so that the focus of each zone of the objective is determined for two dements perpendicular to each other. In the cate of the zone of 142 mm ratius the focus can be obtaincel for four elements $45^{\circ}$ apart. Thus ate exposure within the focus, and a second onc without the focus, give data sufficient to determine the focus of eath of nine zones of the objective in two directions perpendicular to each other. These two directions are distinguished from one another in the measurement by making an extral aperture in the zone plate, which, on being reproduced in the negatives, serves th dentify the origin and direction ot the angle $\phi$.

To determine the wonal errors of objective and correcting-lens, the zone plate was placed in position in front of the objective and a small photographic plate was plated in the guides in the slit-cipe of the spectroscope. The epectrosicope is supported on two parallel tubes carried by an adipter on the eyeend of the tetcope, and can be readily moved up and down through a range of about 20 cm . Experience showed that the images were most sharply defined, and the best measurements could be obtained when the plates were between 6 and 10 cm from the focus. As the photographic focus was to be tested, an ordinary Seerl 27 plate wats first tried; but it was not found possible to make very accuratte settings, as the pencils from the zone plate were spread out into radial spectra owing to the long range of wavelength ( $\lambda 5000$ to the limit passed by hat object-glass, sty $\lambda_{3}(600)$ to which such a plate is sensitive. Several means of overcoming this difficulty were tried. As a yellow sereen in front of an ordinary plate did not improve matters, the diepersion of the pencils must evidently be chictly due to the light around $/ / \beta$. In ordinary lantern plate, which is sensitice from about $\lambda$ foo down, was therefore next tried, and gave good imares capable of accurate measurement; while if a yellow sereen were used with such at phate the resultant images were again efongated, showing that the prolonged exposure entailed therebeg had extented the action on the phate toward the red and reintroduced the dirst difticulty. A yedlow or red star was used in preference to at white or blue, as limiting the action in the volet, shortening the effective range , peetrum, and thus giving images with les: spectral dispersion and with no aplarent elongation.

Four sets of "etra focal phates were mate whin h, wa leing measured, reduced, and atserged, gite the focal peritions of the nime sones ats tabulated felow flable 11 . $1 / 1$ four meatures are in sulstantial agrement, which of couree is clower for the outer ants where the consergeney of the :umbe is grater. There the prohsthe aror of a single determination of the focus dees not exocel 0.1 mm, while near the conter it may be as great as 0.5 mm . It will be noticed that the fer us for the celge of the objective and correcting len* is upwarl of 2 mm longer that the focus near the center, and if atigmatism be taken into acoount aloo, the difference is greater than 2.5 mm . The values are photed graphically in the curse ( 1 ) of Fige . ., the vertical distance being magnited some -ix or selon times, the appendeal scale repreanting millimeters. The horizontal line is drawn in the pestion of focu- $75.3+$ that gives the smallest circles of confusion, in this case 0.04 mom in diameter. The astigmatiom will increase this to some extent, so that probal)ly the diameter will be nearly $z^{\prime \prime}$. Lolese the - lit is set exactly at this mean pesition, which is not likely,

 beref, howerer, that in -paking of cirlece ciconfusen the conctutons of erometrical opties alone are being considered, and no actount is taken of difiration phenomeds, which mas hase some difet on the geometrically calculated dime n-ions of the -tar disk reatting from aberrations of the magnitude here present. However, the experiments on the widh of epetra and trails showed condusively that the photographic image wats about $z^{\prime \prime}$ greater in diameter that the vistal ime se, presumably unaffected be aberrations, and this agrees with the geometrical theory.
'Io determize where the atherations arine it is necesary to aceurately compare the performance of the obigetive used vistally with the periormance of the oljective and correting lens in the photographic pert of the yectrim. Kom: thats were therefore mathe of the objective alone. For the purpere the wate lometh of the light ued must be limited to $\lambda 5+00 \lambda 5800$, the range to which the eye is most sensitive, which in the most luminous in the setetrum, and whith coincides with the turning point of the color curse of the objective. Fortunattely, ats the band of color-sensitioness of Cramer lowhero-

TABI.F: II

matic plates atmost exactly winciles with the same region, all that is necessary in oreler to obtain photographic test plates is to absorl) the bue and viole light bey sutable screen, and thus confine the action to the visuat part of the spectrum. A deep getlow screen with plane paratlel surfaces was used in contace with the phate. Although the percils from the ane plate are displaced slightly on patwing through this screen, these displacements are proportional, and the only effect with be to lengthen the focus for ath the zones by the same amount, about one-third the thickness of the sereen, whthout in the keat attering the relative positions of the pencils. In exposure of about a minute on Capella, through the sereen, with the plate from 00 to toe mm from the focus, gives a negrative of good intensity in which the images of the pencits are quite round and free from any noticeable spectral clongation, thus allowing accurate measurement.

Five sets of extratfocal expoures were made in the visual part of the spectrum, and the miten values resulting from the measurement and reduction of these plates are given in Table II and photted graphi-


cally in curse $F$ of Fig. 3. An examination of this curve shows that no point or focus is at a grater distance than 0.2 mm from the position
of mean focus, shown be the horikontal line, "xcept amall region nas the center of the objective, which has at lonerer focus. The effect of this region on the perform nee of the objective must, howewer, be excerelingly small, owing to its small area, less than one-tenth of the objective, and to the weak consergency of the pencits proceceling from it. In fact if Hartmann's criterion $T$ as to the quality of an objective be computed from the above nean talues, it is found to be O. Ifl. . deording to this clasification an objective is moderately ("masig") drowl when $T$ is greater than 1 . 5 , goorl when $T$ is betwern 0.5 and 1.5 , and cescedingly ("hervorragend") groxl when $T$ is less thin 0.5 . In the ideal, absolutely zoneless objective $T$ is 0.

Bevidently the objective when used vistailly is of the very first guality, and the abrerrations appear only when it is used in conjunction with in auxiliary corrector for spectrographic work. Whether the aberrations there present are due to the correcting-lens, or to the objective when used in the photof, "phic pert of the sper trum, remains to be determined. For this purpese a further application of Hartmann's method wits necessary to lind the color curves of the objective atone, and of the system of objective and correcting-lens for a number of zoncs. It was hoped that such ohsersations would throw light on the cause of the aberrations and sugerest apossible remedy. They would also serve as a chere upon the zone-plate determinations, as, in this cater, no spectral diepursion of the pencils could affect the accuracy of setting. Tofind such color-curses, the pencils of light coming from a \%one plate fall on the spectrosicope blit, and the distance between the resulting spectrat taken with the slit within and beyond the focus gives a measure, calculated in the same way as before, of the focal position of any desired walle-length for any particular zone.

It wis decided to determine the color-curves of eight zones of 38, 57, $76,95,114,1,3,152,171 \mathrm{~mm}$ radius; and, to prevent the spectra from merging into one another, two zone plates were repuired, one ( $B$ ) , Fig. 2 , of the four \%ones of $57,95.13,3$ and 171 mm radius, and the other ( $C$ ), Fig. 2, of the remaining four. The central openings were eath 20 mm soluare, and the outer 20 by 25 nm . The zonce plates were so phaced on the objective that the row of openings wats paratlel to an hour cirche, and the spectroscope wats turned in

[^2]position angke until the slit was paratied to the oproning in orthr that irregularities in driving would not wilen the - peter.t. 'Fodiminish the exposures as much as pensible, bright stars. leg and wirius, were used and the atit wis widely opened, i.s no incocorar! wodd bo thereby introduced in the distance between the epetra. The whe. sures were mate on a night wnen the temper,ture w..t ne: rl! -t.tionary, and were arranged in the following order:


| - | (i) | " | * | so | " | - |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $3 ;$ | (c) | " | " | 40 | Inyonl | $\cdots$ |  |
| 4 | (B) | " | " | +0" | " | * |  |

 tive displatement of the foed determinations of the two art due to slight changes of temperature of the objective. That momeanar.ble displatement hats occurred is shown by the continuity of the somal curses of Fig. 3 drawn from the combination of the two spratate determinations, and by their agrecment with those mothe bẹ the regular zone-plate method.

Each of these plates contains cight spectra nide by site, one irom each light pencil transmitted bey the zone plate. and the porition of the focus for each zone and for any desired wase hoghth in the range on the plate cat be determined in exactly the same waly ats lefore. The hydrogen lines, in the first type star, used, serve as datum marks for the identitication of wave-lenghs, and measurements were mate at elven positions between $\lambda, 39,0$ and $\lambda 50.30$. The correpuonding focal points, as calculated from these measurements, are given in Talcu III for eight zones of the objective alone, and in 'Table IN' for the stme eight zones of the objective with correcting-lens, the latter being about fo mm nearer the focus than its computed pasition.

The reason for using the correcting lens betow its computed position at once appears on inspection of Fig. \&, which represents, in their correct rulatise positions, the color-curses of a median zone of 108 mm radius, determined in exactly the same way ats above. Curse A (Fig. 4 ) is the color-curve of the visual objective between the limits $\lambda 6250$ and $\lambda 3970$, which shows that the minimum focus is at about $\lambda 5600$, exactly in its computed position. Curse $B$ is the color-curve of the system of objective and correcting lens between $\lambda 6250$ and


Fis. 4.-Color-Curves for a Median Zone
$\lambda .397^{\circ}$, which shows that the minimum focus is at about $H \delta$, instead of $I I \gamma$, its computed position. When the correcting-lens is moved

1111.1 .111



T．111．1． 11


| ＊ |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 5 O 3 | ${ }_{4}^{11801}$ | Arimo | 455 | 444 | $11 y$ | 4250 | 11：9 | $\begin{aligned} & 118 \\ & 11 \end{aligned}$ | 115 | 118 |
| － | 5512 | 5475 |  |  | 50 15 | 3012 | ら） $1 \times$ | 517 |  | il in |  |
| 57 | 53 か | Sisim | こ：55 | 51 心 | －1 21 | \101 | 50 | 5011 | ¢ 115 | ： 1 ： 0 | \％$\because$ |
| ； | 5151 | 53.67 | 52 51 | 516 | 51 $\quad 1$ | ：1 11 | こ110 | 5111 |  | 511 |  |
| 15 | 55 | 3t 3 | ら； | 5240 | 51.95 | 51； | 51 mm | こ！！ | 51 M | ：2． 30 |  |
| 114 | 55.45 | 518： | $55^{3}$ | 5312 | 52： \％$^{10}$ | こごい | ごこ | $\because$ | 5：0： | ： 3 |  |
| 19 | 55 | 5510 | 53 S | 53. | ¢ ：on | 5－品 | 5－＂； | こ；く5 | 5： 1 | － 10 | こ：${ }^{\text {；}}$ |
| 15： | 5： $\mathrm{S}_{1}$ | 55 1： | 5105 | $5: 51$ | －\％ | ： 07 | こ： 2 | ：${ }^{\text {c }}$ | こ： 1 | こ： 10 |  |
| $1 ; 1$ | 51.05 | 553 | 51.3 | ミ！ | 係似 | 525； | － $5^{\prime \prime}$ | こ リ 17 | 515 | 51：7 |  |

down，away from the objective，some fo mom we grt curve（ and at 7o mm．curve 1 ）．In curve（ the minimum focus is nearly at $/ / \%$ and in $D$ at $\lambda$ ffoo．Evidently the lowering of the correcting lens some fo mme effects considerable improwement in the color correction without，as the earlier experiments showed，appreciably entarging the image，and the lens has been used in this position almost from the tirst．

Athough all the data in regird to the complete color ries are given in＇rables III and IV，still the actual curves drawn from these figures show all the conditions at a glance，and are hence winin giving．＇To prevent too great a confusion of lines，the curves for four zones only（zone plate（B），Fig．1），of $57,95,13,3$, It mm radius，are shown here in Fig．5，the upper curves being of objective


Fhi. S.-Color-Curves of Fuer \%anes of Objective and of Objective with Corrector
alone, the lower of objective and corrector. 'Ihese curves show at a glance that, in the photographic part of the spectrum, the forus for
the edge of the coljective in konger than tre iome for the wher. that

 glases, and the only remely is to compenabe for it lo imerotheing the corred amount of postitive alorration by the corretting thes. Howerer, the lower curser bow that, in-towl wi comperating for this chrom the diference, the correctingetent h.ss on the comerars.
 2 mm longer than the focts for comeral rats. This agrow dhent axactly with the previost determinaten of the mall int of wher

 out that the crossing of the curse from the 58 min ame wer the whers in passing from short to long wase is dur to the lonemer athe the cemeral \%ones in the sisual part and is firther wistene in fisor of the atcuraty of the determination.

To obtain a still more striking tomprason of the 1.116 and magnitude of the aberrations present in the -9 istem, the wher curne can be presented in another form. that of anoll foxi curse like . I and $f$, Fige 3, previomsly determand. Wi hawe the coldercurse. or the positions of focus, of the wheie phogeraphic region for cight
 photed in the sume way and on the same sate ats $A$ : $\mathrm{nd} f$. Figs a If such curves wore motted for cory wate lengh in these tables. they would show a striking agrememt in form. Dut I hate satiofied myself with representing the positions o. he fox un of tight ante for /f $\gamma$, the wavelength for which the system was computal ame for the mean of $\lambda+250,4.30,4+40$ and 4550 . the range of sinctrum used here in velocity determinations. Fi, lige 3 , is the curse it $/ / \gamma$ of the objective alone: $\mathcal{C}$ is the curse for $/ 1 \gamma$ of objective and curretur. 1 is the curse for $\lambda+250$ to $\lambda+550$ of the obje tive : tone: $B$ is the curse for $\lambda+250$ to $\lambda+550$ of the objective and correctur.

A comparison of curves $/$ ) and $f$ : with $f$ fhows in a striking manner the chromatic differences of spherical aberation in the objective when used with photographic light. If we leave out of acount or allow for the deviations in the central zones, we see that the focus of the outer is about 1.8 mm longer than the focus for the central
zones, a thare that agres almo-t exactly with the computed ditference as furnished me by Profesor Hastings. A comparison of curves A. $B$ and ( with $I$ ) and $E$ show that this ditïerence, inste:al of being remowed or diminished bey the introfluction of the correting-tens hats on the contrary been incrased by about 0.0 mm. se that th difïerence in foctus betwern outer and central zones is now abour 2.5 mm , which, as before stated, will give a confusion disk nearly $z^{\prime \prime}$ in diameter. I wish to point out, before leaving these curses how the form of the curve is maintainel throughout irem $F$ up to A execpt that the asis of the curve is inclined dowasarel by the chromatic difierences in the photographie region, and further tilted by the introfuction of the correcting-lens. To show this I hase detted in approximate positions of such axce in the curse $E$ to .4 to correpond with the horizontal axis in $F$. It will be noticel that the irregularities in the visual curve are continued throughout. but in an intemificel form, as is to be expected when it is considered that the objective was computed and figured for wisuat work, and its use in the photographic region with an atuxiliary corrector wate only at seconctary consideration.

I ser no reason to doubt, howerer, if sulficient positive aberretion were left in the cofecting lens to comper.site for the negative alderration introxuced by the chromatic differences, that the performance of the system could be much improwed, athough it is not likely, from the matanifying of the unavoitable \%onal aberrations, tha: it would equal its visual quality. If the curse A, Fig. 3 , representing the present condition of the sytem, could be tifted through the angle between the horizontal and doted lines, be such a change in the correcting-lens, the resulting confusion disk would certainly hase a diameter less that hali its present magniture, while the percentige of the inceident star light trimsmited bey the stit wouk he considerally. increased, probable foubled, with a prepertiomate diminution of the reguired exposure times for stellar repectrat.

Such an improweme would be well worth considerable effort. and I hate en in communication with the Brathear Company and with I't essor II: atings to that end. With their well known willingness, I maty exen say anxiety, to produce the highest ghatity. of optical work and to make any improwements that maty be sughested
to them, the Brashear Company are underaking to make a new correcting-lens to computations be. Profesor Ihastings, to whom I I am very much indebted for criticisms and sugge-tions, on the present paper. I may say that Professor Itasting, fints at wry marhel agreement between his computed datia of the objoctive, color curses. and chromatic differences, and my observations. II. whtain- the failure of the correcting lens to compens: te for the chromatic difierences of focus, which it was computal to do, be the fact that this lens has to correct the errors of an objective of mearly fifty times the area, that the small departures of the wasesurface from a true sphere have grown enormonsly when the surface hate contrate to one-fiftieth their original areat, and that a lery perfect correction by spherical surfaces can hardly be hoped for. He thinks, howerr, that considerable improwement can be effected, and I hase no doubt meself that he and the Brashear Company can do mueh better than he says when they have quantitative salues of the existing aborations.

The reason for publishing this paper in its present incomplete form, before the new correcting-lens is reaty, is to bring before :tellar spectroscopists the important matter of the siae and character of the star image given by their telescopes. I hate gone fully inte the details of the investigation and explained the difieulties that arose with the mans of overcoming them, in order to smooth the way for similar investigations into the character of the star image given by other systems of objectise and correcting-tens. It stoms to me extremely probable that, in the major part if not ath of the telesopes emploped in spectrographic work, aberrations of the same or a similar nature are present. If a correcting tens computa: to compensithe for the chromatic difierence fails in one case, it is posible, ewn probable, that it may fat in others. . Inother hasis for this belief is a comparison of the relative expesure times required for different installations taking into account size of ohject-ghtss, : Ait width, and dispersion of the spectrograph. I am well anare that such at comparison must necessarily be incomplete, and the results reathed subject to an uncertainty, say, of 25 per cent., owing to the difficulty of comparing different installations under different conditions of secing, cte. We have already seen how important a part is playd by atmospheric disturbances in enlarging the star image so that the linear
dimeter of the image increases nearly in prewrtion with the focal lengeth, and therefore approximately, ats the ratio of aperture to focal lengit does not vary much in large instruments, with the dianeter of the object-ghos. Conserguently, the Hective value of increase of aperture is not propertional to the increase of area, but more nearly to the increste of diameter, which was accordingly used in the conparison. So far its regigh the rellative dispersion of differem inseruments, the "xporare time was taken as directly proportional to the linear disperton, presuming the same height of spectrum in cach case. No atcount wats taken of the difference in the loss due to absorption and redlection in the prism-train, alhough this may be guite important in some casts. 'The expocure time required was taken as inversely propertiomal to the slit-width, and this, as one of the experiments detailed above shows, is probably nearly in acoordance with the fiacts. In the following 'Table V, data of the rarious equipments which are and have been used aradial velocity work, so far as they were available to the writer, :ppear, but these data are incomplete and mity in some cisses be in error, although probably not to a marked degree.
T.1B1.1\% V


The above comparison shows that the Lick, Bonn, and Lord
 than the Otta wa, Dut the Yerkes, Lowell, Newall, and Pulkowa depart farther from it.

There seems therefore reasonable ground for believing that unsiderable improvement in the efficiency, and considerathe ine resee in the range of the maority of spetrogriphic cytipments con be ath, ithed be ${ }^{1}$ soking into the tharacter of the star image given lig the comble ming statem. Athough the exate effect of atmopheric disturbances on the effective diameter of the star inage is difticult of determination, I fed satisfied, if I can obtain a correcting-fons that will give a star image reasonably free from aberration, that the expente times re. quired here can be sery mattrially reduced, I hope by so premt. and I see no reason why a similar or cwengreater improwement could not be cffected in some of the other equipments.

I acknowledge with phasure my indldtelnes to Ir. II. F. King, the Director of the Observatory, for help and encouragement in the prosecution of the work, and to Mr. W. V. Ilarper for making duplicate measures for comparison purposes on some of the test plates.

DOMINJO (OBSFRVITORY, OTTAWA
Jinuary, mo:



[^0]:    

[^1]:    1Zits hrit fier Instramentenkunde, 24, 1, 3, 1, 1,1 got.

[^2]:    1 Leitschrift /ur Instrumentenkunde, 24, 40, 190.4.

