> IMAGE EVALUATION TEST TARGET (MT-3)

CIHM/ICMH Microfiche Series.

CIHM/ICMH Collection de microfiches.

Canadian Institute for Hisiorical Microraproductions / Institut canadien de microreproductions historiques

The Institute has attempted to obtain the best original copy available for filming. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of filning, are checked below.

Couverture de couleur

Coloured covers/

Covers damaged/
Couverture endommagée
Covers restored and/or laminated/
Couverture restaurée et/ou pelliculée

Cover title missing/
Le titre de couverture manque
Coloured maps/
Cartes géographiques en couleurColoured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bleue ou noire)Coloured plates and/or illustrations/
Planches et/ou illustrations en couleur

Bound with other material/
Relié avec d'autres documents
Tight binding may cause shadows or distortion along interior margin/
La reliure serrée peut causer de l'ombre ou de la distortion le long de la marge intérieure

Blank leaves added during restoration may appear within the text. Whenever possible, these have been omitted from filming/
Il se peut que certaines pages blanches ajoutées lors d'une restauration apparaissent dans le texte, mais, lorsque cela était pessible, ces pages n'ont pas été filmées.

Additional comments:/
Commentaires supplémentaires:

L'Institut a micrafilmé le mailleur exemplaire qu'il lui a été possible de se procurer. Les détails de cet exemplaire qui sont peut-être uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de filmage sont indiqués ci-dessous.

Coloured pages/
Pages de couleur
Pages damaged/
Pages endommagéesPages restored and/or laminated/
Pages restaurées et/ou pelliculéesPages discoloured, stained or foxed,
Pages décolorées, tachetées ou piquées

Pages detached/
Pages détachéesShowthrough/
Transparence

Quality of print varies/
Qualité inégaie de l'impressionIncludes supplementary material/
Comprend du matériel supplémentaireOnly edition available/
Seule édition disponiblePages wholly or partially obscured by errata slips, tissues, etc., have been refilmed to ensure the best possible image/
Les pages totalement ou partiellement obscurcies par un feuillet d'errata, une pelure, etc., ont été filmées à nouveau de façon à obtenir la meilleure image possible.

This item is filmed at the reduction ratio chacked below/ Ce document est filmé au taux de réduction indiqué ci-dessous.

The copy filmed here has been reproduced thanks to the generosity of: nt modifier xiger une de filmege

Library of Congress
Photoduplication Service

The images appearing here 8 re the best quality possible considering the condition and legibility of the original copy and in keeping with the filming contrect specificetions.

Original copies in printed paper covers are filmed beginning with the front cover and ending on the last page with a printed or illustrated impression, or the back cover when appropriate. All other original copies are filmed beginning on the first page with a printed or illustrated impression, and ending on the last page with a printed or illustrated impression.

The last recorded frame on eech microfiche shall contain the symbol \rightarrow (meaning "CONTINUED"), or the symbol ∇ (moaning "END"), whichever applies.

Maps, plates, charts, etc., may be filmed at different reduction ratios. Those too large to be entirely included in one exposure are filmed beginning in the upper left hand corner, left to right and top to bottom, as many frames as required. The following diagrams illustrate the method:

L'exemplaire filmé fut reproduit grâce è la générusité de:

Library of Congress
 Photoduplication Service

Les images suivantes ont été reproduites avec le plus grand soin, compte tenu de la condition et de la netteté de l'exem:laire filmé, et en conformit́́ ayec les conditions du contret de filmage.

Les exemplaires originaux dont la couverture en papier est imprimée sont filmés en commençant par le premier plat et en terminant soit per la dernière page qui comporte une empreinte d'impression ou d'illustration, soit par le second plat, selon ie cas. Tous les autres exemplaires originaux sont filmés en commençent par la première pege qui comporce une empreinte d'impression ou d'illustration et en terminant par la dernière page qui comporte une telle empreinte.

Un des symboles suivants apparaîtra sur le derniere image de chaque microfiche, selon le cas: le symbole \rightarrow signifie "A SUIVRE", le symbole $\boldsymbol{\nabla}$ signifie "FIN".

Les cartes, planches, tableaux, etc., peuvent être filmés à des ísux de réduction differents. Lorsque le document est trop grand pour âtre reproduit en un seul cliché, il est filmé à partir de l'angle supérieur gauche, de gauche à droite, et de haut en bes, en prenant le nombre d'images nécessaire. Les diegrammes suivants illustrent la méthode.

THE CARDIOIDE

AND

SOME OF ITS RELATED CURVES.

INAUGURAL-DISSERTATION

der mathomatisohen und naturwissonsohaftliohen Faoultit
der
KAISER-WLLHELMS-UNIVERSITÄT STRASSBURG aur Erlangung der Doctorwifde.

Vorgelegt von
RAYMOND CLARE ARCHIBALD aus NOVA-SCOTIA, Canada.

STMASBBURG I. E.
JOSEF SINGER, BUCHHANDLUNG.

$$
1900 .
$$

ANALYTIC INDEX.

CHAPTER I:

Page

Introductory
Historical sketch. The scope of the thesis

Fundamental § 1. A theorem of roulettes.

Conceptions. $\S 2$. Definition of the terms epicycloide and hypocycloide.
§ 3. The cardioide an epicycloide; its polar equation.
§ 4, 5. Some cardioide properties.
§ 6. The cardioide, an epicycloide (second mode of generation). Two other possible definitions.
§ 7. The cardioide as pedal of a circle; a theorem of Quetelet.
8. Analogous modes of generation of the cardioide, to those of the conchoide of Nicomedes and the cissoide of Diocles.

Deductions therefrom.
§. 9. Relations of the cardioide with the cissoide of Diocles and the conchoide of Nicomedes,
§ 10. The evolute of a cardioide is a cardioide. Two related strophoides. The sextic $r=\dot{C a}\left(1-\frac{\cos 2 \theta}{\cos \theta}\right)$.
§ 11. Nine-point circles and Maclaurin Trisectrices.
§ 12. The $\mathrm{n}^{\text {th }}$ catacaustic of a circle passing thro the luminous point. $n=1$ a Cardioide; $n=2$ a Nephroid; $n=11$ an "Eleren curs".
§ 13. A Nephroid as catacaustic of a cardioide.
\S 14. A Nephroid as catacaustic of a circle.
§ 15. A Nephroid as evolute of the cardioide cuspidal pedal, a Cayley sextic
§ 16. A Nepirroid as parallel curve of a Cayley sextic.

Some facts $\&$ 17. Some forms of cardioide equations. A Theorem of of use later Steiner

§ 18. Singularities: Foci.

CHAPTER II:

Cardioide Pedals.
Some Curves of the Family $\mathrm{r}^{\mathrm{m}}=a^{m} \cos m \theta$.
Positive Cus- § 19. The equations of, and geometrical construction for,
pldal Pedals
§ 20. Parabolas and positive pedals.
§. 21, 22. Sume envelopes.
§ 23. The .Cayley sextic $r=4 a \cos ^{3} \frac{\pi-\theta}{3}$. A simple Folium.

Negative Cus- § 24. The Parabola as fourth negative pedal and inverse pidal Pedals curve of the cardioide.
§ 25. Two harmonic ranges.
\S 26. The Cissoide of Diocles as locus of a fourth harmonic point; as directrix of the cardioide.
$\S 27-31$. Applications of the theory of inversion.
§ 32. The Cubic of Tschirnhausen, as fifth nagative pedal of the cardioide. The equation of any negative cuspidal pedal.

The Carres §33. Nomenclature, special cases. $\mathrm{r}^{\mathrm{m}}=\mathrm{am}^{\mathrm{m}} \cos \mathrm{m} \theta$
34. Some envelopes conuccting the cardioide with the lemniscate, retangular hyperbola, etc.
§ 35. A general theorem and a special caso.
The first focal pedal of a cardiolde and its inverse.
§ 33. The first tangential and normal focal pedals of a cardioide as well as its radial curve are similar.
§ 37. A polar reciprocal curve of the cardioide; the Trisectrix of Maclaurin. Some of its equations. Relations with Folium of Descartes and hyperbola.
§ 38. The Cissoide of Diocles, Strophoide, Trisectrix of Maclaurin.
§ 39. A vector equation of the Trisectrix.

CHAPTER III:

Tangents, Normals.
§ 40. The orthoptic curve of a cardioide is a circle and a Limaçon.
§ 41. The isoptic curve a Limaçon.
§ 42, 43. Some other Limaçons connected with the cardioide.
§ 44. The cardioide focns. Three theorems.
§ 45. The line joining the points of contact of parallel tangents to a cardioide envelops a Maclaurin Trisectrix.
§ 46. Some more Limaçons, the Maclaurin Trisectrix and the cardioide.

Index of Related curves with a Name.

Abbreviations.

A. E. Acta Eruditorum Lipsiensis.
A. Gr. Grunert's Archiv der Mathematik und Physik.
E. T. The Educational Times (London).
E. T. R. Reprint of Ma hematical Questions frem T. TR.
I. M. L'Intermédiaire des Mathomoticiens (Paris).
J. S. Journal de Mathématiques spéciales (Paris).
N. A. Nonvelles Annales de Mathématiques (Paris).
(n) $n^{\text {th }}$ series.

ERRATA.

Page 8, line 7-8, instead of, Its shape and position are indicated by the dotted form ... read: a similar and similary placed nephroid is indicated by the -.-.-. form...
" 8, " 13, omit theore.
" 8, " 15, instead of (Fig. I) read: figure I.
$" 13$, ". 20, after, $x=m$ insert : (Fig. 2, p. 14).
" 14, Fig. 2, instead of W. read : ω.
" 24, " 5, the line CD, cuts the circle in 0.
π

CHAPTER I.

INTRODUCTORY.

The heart-shaped curve commonly known as the Cardioide is an exccedingly interesting one from many points of view.

Its form, length, area, Cartesian equation and generation as an epicycloid, seem to have been first indicated by Jacob Ozanam in 1691.* Early in 1692 ,James Bernoulli showed the curve to be a catacaustic of a circle and further, that the catacaustic of the cardioide for a luminons cusp is the (so called) "two-cusped" epicycloid or nephroid; in the Lectiones (1691-92) of his brother, John Bernoulli, the cardioide was again treated as a catacaustic.

A presentation of previous results was given by de l'Horital (a pupil of Johr Bernouldi) in his Analyse d. Inf. Petits etc. 1696 p. 113-117. Similarly, we may speak of an article in 1703 by Louis Carre, who wrote the first complete work on the integral calculns.** In 1705 Carre discussed a portion of a curve which he derived in the manner of a circular conchoide, but it was de Reaumur, 1708, who first pointed cut that Carré had thus generated a part of the cardioide. The cardioide was, however, first, both named and generated in ; completeness as the conchoide of a circle, by de la Hire in 1707 (Mém. acad. franc.); here too, it is pointed out for the first time that the cardioide is a particnlar case of a Pascal Limaçon. The next alditions to the cardioide properties were made by Colin Maclaurin. In the Philos. Trans. 1718 and his Geometria Organica 1720, he showed that the cardioide is a pedal of a circle; that the parabola is the fourth, and the cubic of Tschirnhausen (§32) the fifth, negative pedal of a cardioide with respect to its cnsp. He showed further, that particnlar cases of curves defined by the equation

[^0]$\mathrm{r}^{m}=\mathrm{a}^{\mathrm{m}} \cos \mathrm{m} \Theta$ (sinusoidal Spirals, $\S 33$) are: the cardioide and all its cuspidal pedals (positive and negative), the parabola (fourth negative pedal), straight line (third negative pedal), circle (first negative pedal), rectangular hyperbola and lemniscate of Bernouldi. He also found interesting expressions for the areas and lengths of such curves and the laws of force under which a particle will describe them.

During the next hundred years, practically nothing further was added to our knowledge of the cardioide, so we will pass, over less known names and merely note, that some old results were given by Joilannis Castilleoneus in 1741; by Euler Introductio analys. 1748 II 224-225 and by Cramer Introd. à l'analyse des lignes courbes 1750.

In the present century, 1823, Quetelew showed an interesting use for the cardioide in graphical astronomy [cf. note $\S 7$]; and a few years later, that the cardioide could, by two stereographic projections be transformed into a conic.

In 1832-33 Magnus showed the cardioide to be the inverse of a parabola and deduced by the method of inversion some interesting properties.

In later years further properties have been published by the physicist J. C. Maxwell, the astronomer Richard Proctor, and Prof. Wolstenholme; by MM. Weill, Laguerre, Brocard; and by Profs. E. Wevr; K. Zahradnik (whe in his six papers treats the cardioide as a micursal quartic), W. Jeřábek, A. Kiefer, Shbeck etc. etc.'

The literature of the cardioide is very extended, including as it does, over 30 magazine articles, dissertations, and school programmes (devoted entirely to the cardioide), beside the hundreds of isolated theorems scattered abont in the memoirs and problems of the various mathematicol journals, and other mathematical works.

We have indicated above that the cardioide may be considered as:

1. An epicycloid
2. A unicursal quartic
3. A catacaustic of a circle
4. A sinusoidal spiral
5. A conchuide of a circle
6. A conic inverse
7. A pe.al of a circle
8. A limaçon

As we shall presently see, it is further:
10. A bicircular quartic
11. A tricuspidal quartic
14. An envelope of systems of:
(a) circles
(b) lemniscates
(c) rectangular hyperbolas
12. A Cartesian oval
13. A curve of the third class
15. The polar reciprocal of two interesting and much studied cubics of the fourth class
etc. etc.
pedals pedal), He also laws of to our pte, that troductio ardioide could, ola and GUERRE, ats the
lagazine beside of the

The object of the present paper is to set together in a connected fashion, a series of theorems (many are beiieved to be new) concerning " i he Cardioide and some of its related Curves". The scope of the paper allowed, of course, only a swall selection from such curves; those selected whici have reccived a name, are indexed at the end of the thesis.

In the treatment, the only knowledge presupposed is of analytic geometry, the calculus, and the theory of inversion.

1. Introductory Theorem. A well known theoren to which we shall have occasion to refer very often in the following pages is: "If a ronlette is traced by the point P, of a curve rolling on a fixed curve, in the same plane, the line joining P to the point of contact of the fixed and rolling curves is normal to the roulette."
2. The terms pnicycloid and hypocycloid are applied by different writers to a great variety of curves; the most common definition is as follows:

The epicycloid (hypocycloid) is the curve traced out by a point on the circumference of a circle which rolls withont sliding on a fixed circle, in the same plane, the two circles being in external (internal) contact.

With Euler,* I will, however, adopt the following definition:
The epicycloid (hypocycloid) is the curve traced out by a point on the circumference of a circle which rolls without sliding on the circumference of a circle in the same plane, the rolling circle touching the outside (inside) of the fixed circle.

That this latter is the more correct definition, is proved by the fact, that while the former leads to an altogether unsymmetrical classification of the resulting curves, the latter leads to a classification perfectly symmetrical. According to the former, every epicycloid is a hypocycloid but only some hypocycloids are epicycloids; according to the latter no epicycloid is a hypocycloid, and no hypocycloid is an epicycloid.
3. Since the name cardioide has been applied to several curves,** it will be well to state here, that we will use the name only in speaking of the "Cycloide geométrique"

[^1]of Ozanam.* This curve is the epicycloid generated by equal circles. Accoraing to our definition, the cardioide is not then, a hypocycloide, as so often** stated.

The point P (Fig. I) on the circumference of a circle with centre C and radius a was formerly at the point S of the equal fixed circle or base, with sentre $0 ; \mathbf{R}$ is the present point of contact of the circles. Let us choose S as the origin of coordinates and the line $0 S$ produced, as axis of X. If $S P=r$ and $\angle P S X=\Theta$ (since $\angle R O S=\angle R C P=\angle P S X)$ we find at once from the geometry of the figure, that the polar equation of the cardioide traced by P may be written:
(1)

$$
r=2 a(1-\cos \theta)
$$

a form first given by Euler. \dagger
4. If the line $O R C$ be produced to meet the generating circle in T_{1}, we see (introductory theorem) that $P T_{1}, P E$ (E being the point where $P R$ again meets the base) are respectively tangent and normal to the cardioide at P . Whence, the tangent to a cardioide at any point makes with the radius vector an angle equal to half the polar angle of the point: and, the cardioide has a cusp ut S.

If a is variable, the equation $r=2 a(1+\cos \theta)$ evidently represents a family of cardioides: indeed those obtained by turning (1) around the cusp thro an angle of 180°. Hence, the orthogonal trajectories of a family of cardioides is another family of cardioides.
5. The line S O produced meets the base again in B and the cardioide in the vertex A. The line $S I$ is the axis of the curve. From (1) it is at once evident that all cuspidal chords of the cardioide are of constant length, double the diameter of the base, and further, since the lines PS, EO produced meet in a point b on the base, and the figure $\mathbf{P C O b}$ is a parallelogram, these cuspidal chords are all bisected by the base; from § 4 we see also that, the tangents to the cardioide at the extremities P, P^{1} of any cuspidal chord intersect at right angles in T_{2} on a circle uith centre O and radius $O A$; while the normals to the curve at P, P^{\prime} intersect orthogonally on the base in E.

The normals $P \mathrm{E}, \mathrm{P}^{\prime} \mathrm{E}$ are evidently bisected at R and J respectively, points which are the ends of a diameter of the base.
6. It is now easy to see that the circle thro the points P, T_{2}, P^{\prime}, is tangent to the base at E. Hence, the second mode of generation of the cardioide as an epicycloide, the radius of the basc being one half that of the generating circle. It is further evident, that,

[^2]if the points T_{1}, T_{9} travel uniformly and in the same direction around the circle with centre O and radius $O A$, the angular velocity of T_{2} being twice that of T_{1}, the line $T_{1} \Gamma_{8}$ envelops the cardioide whose base has the same centre, and radius one third, that of the given circle. Or, as this result may be stated (since $\angle A T_{1} O=\angle O T_{1} T_{2}$): the catacaustic of a sircle for rays radiating from a luminous point, A, on its circumference, is a cardioide whose vertex is at the luminous point and whose base has the same centre, and radius one third that of the given circle.*
7. Yet another point of view.

If $P C$ be produced to meet the gencrating circle again in Q, the line $B Q$ meets the base in E and the generating circle in F. We sec that the line $P F$ is perpendicular to S P and BF, and that BF $=$ BS. Hence our cardioide is the pedal of its axial circle, with respect to a point, S, upon it.**

Since the circles on the focal radii of a parabola as diameters are tangent to the tangent at the vertex of the parabola, ws can now infer the theorem first stated by Quetelet:*** The locus of the vertices of the parabolas with a common jocus, and passing thro a fixed point, is a cardioide with vertex at the fixed point and cusp at the common focus. Conversely, if the vertex of a parabola lies on a cardioide whose cusp is at the focus of the parabola, the parabola will pass thro the cardioide's vertex.
8. From the results of $\S 5$ we infer the well known fact first stated by de la Hire, \dagger that the cardioide is a conchoide of a circle: the reason of the name is, that the mode of generation is analogous to that for the conchoide of Niccmedes which has a straight line instead of a circle, as base. From b along $\mathbb{S} b$ produced, we measure in both directions, lengths $\mathrm{b} P, \mathrm{~b} \mathrm{P}^{\prime}$, each equal to the diameter of the base circle; the locus of $\mathrm{P}, \mathrm{P}^{\prime}$ is a cardioide.t+

[^3]A second curve of the Greeks with which the cardioide has an analogous mode of generation is the Cissoide of Diocles. For, from equation (1) it is at once evident that points on the cardioide we are considering, may be found by means of the circles with diameters $B D, S D$. Any chord thro S, cuts the smaller circle in S_{1} and the larger in P_{1}. From S measure the length $S P=S_{1} P_{1}$: the locus of P is the cardioide.

Now tor the cissoide of Diocles we tako a circle with diameter SD, and the tangent to it at D (which may be considered as another circle, of infinite radins). Any line drawn thro S meets theso two circles in \bar{S}_{1}, \bar{P}_{1} respectively; from S measure $S \bar{P}=\bar{S}_{1} \bar{P}_{1}$: the locus of \bar{P} is the cissoide of liocles whose equations* are at once found to be

$$
\begin{equation*}
y^{2}(2 a-x)=x^{3} \quad \text { or } \quad r=2 a \sin \Theta \tan \Theta . \tag{2}
\end{equation*}
$$

9. It will be interesting at this point to seek the locus of the point of intersection $\mathbf{P}\left(r^{\prime} \Theta^{\prime}\right)$, of corresponding tangents to the cardioide and its generating circles. Since the arcs $S R, P R$ are equal, the tangent to the base at R lisects $S P$ perpendicularly in p. We have then $2 \theta^{\prime}=\Theta$ and $r / 2=r^{\prime} \cos \theta^{\prime}=a(1-\cos \theta)$ or $r^{\prime}=2 a \sin \theta^{\prime} \tan \theta^{\prime}$ the very cissoide wo have above considered. Hence, the lacus of the point of intersection of the tangents at correspmuling points of the cardioide aud its generating circles is a cissoide of Diocles.

To the conjugate points $\mathrm{P}, \mathrm{P}^{\prime}$ of the cardioide will correspond the pair of conjugate points $\overline{\mathbf{P}}, \overline{\mathrm{P}}^{\prime}$ of the cissoide of Diocles, subtending a right angle at its cusp: M. Cazamian has shown** that the envelope of the line $\overline{\mathrm{P}} \overline{\mathrm{P}}^{\prime}$ is an hyperbola with vertex S .

Since the line $\bar{P} S$ when produced passes thro J we can infer the following theorem:
If the base angle, J, of an isosceles triangle $J \bar{P} T_{1}$ moves round a given circle with centre O, thile the middle point of the base (which alvays passes thro 0) also moves on the circle: if, furthermore, the side bordering the tracing angle always passes thro a fixed point S, of the circle, the rertex of the triangle traces out a cissoide of Diocles, while the free side envelops a cardioide. If $O S=a$ and S be taken as origin, if further, r^{\prime}, r be the radii vectores of the cissoide and cardioide respectively for a given $\theta, r^{\prime}: r=\tan \theta: \tan \theta / 2$.

* It may be worth no ing that, referred to the point, $(-a, o)$, as origin the equation of this
cissoide assumes (in polar coorlinates) the graceful form $\frac{r}{a}=\frac{1+\left(\tan \frac{1}{2} \vartheta\right)^{2 / 5}}{1-\left(\tan \frac{1}{2} \vartheta\right)^{2 / 3}}$. The equation of thepedal of the curve with respect to the origin may be written :

$$
\theta=2 \tan ^{-1} \frac{\sqrt{9 a^{2}-r^{2}}}{21}-\tan ^{-1} \frac{\sqrt{y a^{2}-r^{2}}}{r} \text { or } \frac{r}{3 a}=\frac{1-\left(\tan ^{1 / 2} \theta\right)^{9 / 3}}{1+\left(\tan ^{1} / 2 \theta\right)^{2 / 3}}
$$

[^4]Suppose now, that instead of two circles, as above, we take as ground curves the cardioide and cissoide, we get the interesting result: Thro S is drawn any chord cutting the cardioide in P and the cissoide of Diocles in $P^{\prime \prime}$; from S measure off in this chord $S L=P P^{\prime \prime}$, the locus of L is the conchoide of Nicomedes with the same cusp and asymptote as the cissoide of Diocles, its equation being $r=2 a\left(\frac{1}{\cos \theta}-1\right)$.
10. The angle $\mathrm{SR} O=\angle O \mathrm{RE}$; hence (last theorem \S 6) the evolute of a cardioide is a cardioide of one third the linear dimensions, whose base has the same csntre as that of the original curve and whose vertex lies at the cusp of the original curve.

Observing that FBS is an isosceles triangle, perpendiculars on whose side and base are SE, BR respectively, we can now state the theorem: One side, $B S$, of an isosceles triangle $F B S$ is held fast while the other turns about the vertex B; the line joining the feet of the perpendiculars from S and B on the opposite sides, envelops a cardioide.

Consider B as origin and ((Ω, Φ) the coordinates of the point of intersection of SE, BR : then $\mathrm{BE} / \rho=2 \mathrm{a} \cos \theta / \rho=\cos \theta / 2$. But $\Phi=\theta / 2$ whence the locus of the point of intersection of $S E, B R$ is the curve defined by the equation $\varrho=\mathbf{2 a} \frac{\cos 2 \Phi}{\cos \Phi}$ i. e.. a right strophoide.

Similarly BS_{1} being an isosceles triangle, the locus of the point of intersection of FS and Bb is a strophoide, whose equation mar be witten : $\varrho=-2 a \frac{\cos 2 \Phi}{\cos \Phi}$.

Further, if the radii vectores of this strophi de (S origin), be produced the constant length 2a, we get the sextic curve $r=2 a\left(1-\frac{\cos 2 \theta}{\cos \theta}\right)$ which is also found by producing the cardioide radii rectores, $S P$, the length $S P^{\prime \prime}$ equal to the corrsponding cissoide radii vectores.
11. Let us again refer to our triangle FBS and seek the locus of the centre of its nine-point circle. If its centre be $f(r, \theta)$ we easily find for its equation $r=B R-f R$ $=2 \mathrm{a} \cos \theta-\frac{a}{2 \cos \theta}$ which defines a Trisectrix of Maclaurin with double point at B and asymptote $x=-a / 2$: a curve of great elegance and, as we shall sce, related to the cardioide in a variety of ways. Similarly, the locus of the centre of the nine-point circle of the triangle $P_{1} S B_{\text {is the }}$ Maclaurin trisectrix $r=\frac{a}{2 \cos \theta}-2 a \cos \theta$, whose dovsle point is at the cusp of the cardioide and whose asymptote is the cardioide's double tangent.

This carve is indicated in Fig. III.
12. Let us again turn to our circle with centre 0 and passing tiro a luminous point A, and suppose a ray emannting from A to be reflected from the circle n times, instead of once, it is a well known theorem, given for example by Cayley,* that the envelope of the $n^{\text {th }}$ ected ray, or the $n^{\text {th }}$ catacaustic of the circle, is an eplcycloid whose base has for radius $\frac{3 a}{2 n+1}$ and the radius of whese generating circle is $\frac{3 n a}{2 n+1}$.

For $n=1$ we evidently have the cardioide treated in $\S 6$. For $n=2$ we find the (so called) "two-cusped" epicycloid or nephroid."* Its shape and position are indicated by the dotted form of Fig. 1.

For $\mathrm{n}=11$ we get the epicycloide of "eleven cusps" which is the curve enveloped by the line joining the hands of a watch, supposing the hands to 'se of equal length.
13. If S , be a luminous point of the cardioide, from which the ray SP (parallel to 0 C) emanates, his ray will be refected from the curve in the direction $P C$, since $\angle S P R=\angle R P C$. Hence, the catacaustic of a cardioide for a luminous cusp is the envelope, of the diameter (thro the tracing point), of its geserating corcle i. e. a nephroid and indeed the very nephrod of figure I; with the same base as that of the cardioide, and generating circle with diameter RC. This interesting, tho little known theorem is due to James. Bernoulli.***
14. With centre O and radius $O C$ describe a circle. The line thre C, parallel to the \dot{X}-axis makes with OC the angle θ. Hence the theorem due to Huyghens, t 1678. The nephroid we have been comsidering is the catacaustic of a circle (with centre O and radius $O C$). for rays parallel to the X-aris.

* "A memoir on saustics", Philos, Trans. 1857, vol. 147.
** I have followed Proctor (Geometry of Cycloids 1878) in using this name. It is to be noted however, that 'I'. J. Freeth (Proc. London Math. Soc. 1879, X 228) so names the curve $\mathbf{r}=11(1+2 \sin \boldsymbol{\vartheta} / 2)$ a curve of which he makes use to describe a regular heptagon in a circle. The polar equation of Proctor's n 'phroid may be written $\left(\frac{\mathrm{r}}{\mathrm{a}}\right)^{2 / n}=(\sin 1 / 2 \vartheta)^{2 / 4}+(\cos 1 / 2 \theta)^{2 / 3}$.
*** A. E. June 1692, p. 291-296.
\dagger Traité de la lumiere, 1690, p. 123-12t. As is well known this work was written in 1678 and in that year known to members of the French Academy. The theorem was first published by Tschirnhausen, A. E. Nov. 1682 , p. $364-365$ but was known to him still earlier (17. April, 1681) as we see in one of his letters to Leibnitz (Vgl. Math. Schriften v. Leibnitz herausg. v. Gerhardt IV 484, 1859). The curve was further studied, and for the first time drawn in its completeness by Tschirnisuyser A. F. April 169', p. 169-172: Feb. 1690, p. 68-73.

15. If F_{1} be the foot of the perpendicular from the cusp S of the cardioide on its tangent at any point P , the locus of F_{1} is the first positice ruspilal pelal of the cardioide. I have named this curvo, a Cayley Sextic, for ceasons which will appear latos; it will evidently be tangent to the cardioide at its vertex, will pass thro its cusp, and have a double point where the double tangent of the cardioide mects its buis produced.

Suppose now that $S F_{1}$ be produced to F^{\prime} so that $S F_{1}=F_{1} F^{\prime}$; it is not hard to show, on making use of our introductory theorem, that $F^{\prime} P$ is normal at $F^{\prime \prime}$ to the curve traced by F^{\prime}; and is, moreover the direction of the reflection from the cardioide of any ray SP enanating from S . But the locns of F^{\prime}, is simply the above Cayley Sextic doubled in its linear dimensions. Hence, (\$ 13), the poolute of this Cayle!g sextic is a mephroild and indeed the one considered in the last two paragraphs.
16. This nephroid is, however, the evolute* of another nephroid whose cusps coincide with the vertices of the one under consideratio.. ; we can therefore state of the sextic of which it is the evolute: If at rach point P of thr Cuyley sextic, we take " length $P Q=3 a$ along the normal at P, towned the centre of curruture, the locus of' Q will be an epiciceloid (nephroid) generated by a circle of radius a rollimy on " fixed circle of cudlins 2 a, the centre of this fixed circle coinciding with the centre of the cardioilde's base.

The cardioide's pedal and its nephroid evolute are indicated in Fig. II. A more particular study of the sevicic will be made in the next chapter.
17. In closing this chapter it may be well to add a few notes of which some, will be of use later.

From (1) we immediately find for the cardioide equation:

$$
\left\{\begin{array}{l}
x=a(2 \cos \theta-\cos 2 \theta)-a \\
y=a(2 \sin \theta-\sin 2 \theta) \tag{3}
\end{array}\right.
$$

and
(4)

$$
\left(x^{2}+y^{2}+2 a x\right)^{2}=4 a^{2}\left(x^{3}+y^{2}\right)
$$

which on transformation to the origin 0 , become:
(5)

$$
\left\{\begin{array}{l}
x_{1}=a(2 \cos \theta-\cos 2 \theta) \\
y=a(2 \sin \theta-\sin 2 \theta)
\end{array}\right.
$$

and
(6)

$$
\left(x_{1}+y^{2}-a^{q}{ }^{2}=4 a^{2}\left({\overline{x_{1}}-a^{2}}^{2}+y^{2}\right) \text { where } x_{1}=x+a\right.
$$

* Kimpre, Znvei Brennlinien des Kreises, Frauenfeld 1892.

From (3) we find $d x=4 a \sin \frac{\theta}{2} \cos \frac{3 \theta}{2} d \theta$; if s be the length of the are of a cardioide measured from the cusp and if ψ, be the angle which any tangent makes with the X-axis, $\frac{d x}{d s}=\cos \psi=\cos \frac{3 \theta}{2}$; therefore $d s=4 a \sin \frac{\theta}{2} d \theta, o r$

$$
\begin{equation*}
s=8 a\left(1-\cos \frac{\theta}{2}\right) \tag{7}
\end{equation*}
$$

or
(8) $s=8 \mathrm{a}\left(1-\cos \frac{\psi}{3}\right)$ which is Whewell's intrinsic equation of the cardlolde.

It will be noted that (7) is exactly the form for the length of the are of a cycloid: This is not chance but a special case of a theorem of Steiner.*
"If any curve roll on a straight line, the length of the arc of a roulette described by any point in the plane of the curve, is equal to that of the corresponding arc of the curve's pedal, taken with respect to the generating point as origin."

Hence, if a circle roll along a straight line, any point in its circumference traces a cycloid whose length is equal to the pedal of the circle with respect to the point i.e. (§ 7), a cardioide.
18. We have already shown (§ 4) that the cardioide has one real cusp; if in (4) we substitute $1 / x \backsim x, 1 / y \sim y$ and seek the nature of the curve at the origin, defined by the resulting equation, we find that the cardioide has a cusp at each of the circular points at infinity. From the mode of gencration in $\$ 6$ it is not hard to show that the cardiolde is of the third class. Hence, the cardioide is a 'trictspidal, bicircular quartic of the third class.-

The term "one-cusped epicycloid" as frequently** used in speaking of the cardioide, is therefore incorrect.

Finally, results indicated by Weyr, Laguerre and Kiefer*** may be thrown into the following form:

The cardioide has a single focus and that a triple one at the centre, O, of its base.
We may consider the cardioide as a particular case ($c=0, a=b$), of a Cartesian Oval which is defined by the equation $r^{2}-2(a+b \cos \theta) r+c^{2}=0$, and possesses three distinct foci. \dagger

[^5]
CHAPTER II.

CARDIOIDE PEDALS.

Some Curves of the Family $\mathrm{rm}_{\mathrm{m}}=\mathrm{am} \cos \mathrm{m} \theta$.

Positive Cuspldal Podals.

19. $S A$ is a given line of length $4 a$ and the variable angles $P_{0} S A, P S P_{0}, F, S P$ are taken equal (Fig. 1). The perpendicular from A on $S P_{0}$ meets it in P_{0}; from P_{0} on $S P$, in P; from P on $S F_{1}$ in F_{1}. The locus of P is a cardioide ($\$ 7$) with cuisp S and axis $S A$. The locus of F_{1} is its first

Fig. 1.
positive cuspidal pedal (§ 4), a Cayley sextic. The equations of cardiolde and sextic are respectively $r^{1 / 2}=(4 a)^{1 / 2} \cos \frac{\pi-\theta}{2}$ and $r^{1 / 3}=(4 a)^{1 / 3} \cos \frac{\pi-\theta}{3}$. From this last equation. it may be at once found that the tangent to the sextic at F_{1} viz.: $F_{1} F_{2}$, makes with its
radius vector $S F_{1}$ an angle $\frac{\pi}{2}-\left(\frac{\pi-\underset{3}{-G}}{3}\right)$ i. e. if we add a fourth angle $F_{1} S F_{2}=F_{1} S P=$ cte. and draw the perpendicular $F_{1} F_{2}$ on S_{2}, the locus of F_{2} is the second cuspidal pedal of the cardioid or the third pedal of a circle with respect to a point upon it. The equation of this pedal is evidently $r=4 a \cos { }^{\pi-\Theta}-$

The above geometrical construction can be continued; and the $\mathrm{n}^{\text {th }}$ positive cuspidal pedal of the cardioide $r=\mathscr{O}_{a}(1-\cos \theta)$ may be fome to have the equation:

$$
\begin{equation*}
r^{\frac{1}{n+2}}=(4 a)^{\frac{1}{n+2}} \cos \frac{\pi-\theta}{n+2} \tag{9}
\end{equation*}
$$

The corresponding pelal equation the cordioide $r=2 a(1+\cos \theta)$ is:

$$
\begin{equation*}
r^{\frac{1}{n+2}}=(4 a)^{n+2} \cos \frac{\theta}{n+2} \tag{10}
\end{equation*}
$$

20. In § 7 we noted that a parabola with focus S and vertex P was tangent to $P_{0} A$ at A. We can now extend the idea and deduce the following theorems: - The locus of the rerticess of the paratolas with "common focus, tunyent to a fired circle thro the focus is a Cuyley sextic.*

A sprips of purabolus with a common focus S, are tangent to a circle thro the focus, and with rentre O. Ther enrelope of, (a): the tangents at their rertices is a cardioide with cusp. S; (b) : their dirretrices is "cardioide with cusp S and focus O. And in general: A series of parabolas with "common focus are tangent to the ${ }^{\text {th }}$ cuspinal pedal of a cardioide, (the pole being at the common focus) ; their vertices lie on the $(n+2) n d$ pedal of the cardioide with respect to its cnsp, while the tamgents ut the rertices murelop ifs $(n+1)^{\text {st }}$ pedal; their directrices envelop a curre similar und smilarly situatml to the $n+1$ st pelal, but of double the linear dimensions.
21. From the construction of the cardioide and its pedals in $\S 19$ the following theorems are evident. The envelope of the circle: described on the radii vectores of the circle $r+4 a \cos \theta=0$ us diameters is the cardin:de $r^{1 / z}=(f a)^{1 / 2} \sin \theta / 2$ whose base is the locus of the centres of the radii vectores. Conversely, the locus of the centres of circles tangent to a cardioide and passing thro its cusp, is a circle, the cardioide's base.

The envelope of the circles described on the radii vectores of the cardioid $r^{1 / 2}=(4 a)^{1 / 2} \sin \theta / 2$ as diameters is its first cuspidal pedal $r^{1 / 3}=(4 a)^{1 / 3} \sin -\frac{\theta+1 \cdot \frac{\pi}{2}}{3}$; and more generally the envel

[^6]ope of the circles on the rudii vectores of the $n^{\text {th }}$ cuspidal pedil of the cardioide $r^{1 / v}=(4 \text { a })^{1 / s} \sin \theta / 2$ is its $(n+1)$ at cuspidal pedal $\frac{\frac{1}{n+3}}{r^{n+3}}=(4 a)^{\frac{1}{n+3}} \sin \frac{\theta+(n+1)^{\pi}}{n+3}$. The limiting rurve of all cuso

22. We saw (Fig. 1) that the locus of P was a cardioide on $S A$ as axis and tangent to $P F_{1}$ at P. Similarly, the cardioide on $S P^{0}$ as axis passes thro F_{1} and is tangent to $\mathrm{F}_{1} \mathrm{~F}_{9}$ at F_{1} : and so on. Hence, the envelope of the cardioides on the radii rectores of the circle $r-4 a \cos \theta=0$ us axes, is the Cayley sestic $r^{1 / s}=(t a)^{1 / s} \cos \theta / 3$. The enrelupe of the curdioides on the radii vectores of the cardioide $r^{1} 2=(4 a)^{1 / 2} \cos \theta_{,}^{2}$ as usess, is its secomd raspidat peetat $r^{1 / 4}=(4 a)^{1 / 4} \cos \theta / 4$. In general, the envelope of the cardioides on the rutii rectores of the nth cuspidal peds! of the abore rardioide, as uxes, is the cardioides $(1+2)$ mad cuspindal pedat:
$$
r^{\frac{1}{n+4}}=(4 a)^{\frac{1}{n+4}} \cos \frac{\theta}{n+4}
$$
28. The Cayley Sextic $r=4 a \cos ^{\frac{3}{} \frac{\pi-\theta}{3}}$ or $4\left(x^{2}+y^{2}+a x\right)^{3}-27 a^{2}\left(x^{2}+y^{2}\right)^{2}$.

Altho this curve was first found (and indeed as a cardioidal pedal) by Maclaurin,* I have so named it, because the nature of the cerve, geometrical constructions for the same, and its place in the theory of catacaustics were first treated by Cayley* who did not however, indicate any connections with the cardioide.

In $\S 19$ we have indicated one geometrical onstruction for the curve; this will now be followed by two others.

We have a circle of radius a whose centre ω is the origin, and a line Δ whose, .equation is $x=m$. A tangent at any point Q of the circle meets Δ in T and the perpendicular from Q on Δ meets it in M. The perpendicular $M N$ on $Q T$ is produced to P so that $M N=N P$. Let us find the locus of $P(x, y)$ whose ordinate is $P R$. If $\angle Q \omega X=\Theta$ we find $M N=1 / \mathrm{g} M P=(m-a \cos \theta) \cos \theta$. Whence without difficulty

$$
\begin{array}{cl}
x=m-2(m-a \cos \theta) \cos ^{2} \theta & y=a \sin \theta-2(m-a \cos \theta) \sin \theta \cos \theta \\
\hdashline \begin{array}{c}
\text { or }
\end{array} \\
x=2 a \cos ^{8} \theta-m\left(2 \cos ^{2} \theta-1\right) & y=a \sin \theta\left(2 \cos ^{2} \theta+1\right)-2 m \sin \theta \cos \theta
\end{array}
$$

or

[^7]\[

\left\{$$
\begin{array}{l}
x=\frac{3}{2} a \cos \theta-m \cos 2 \theta+\frac{a}{2} \cos 3 \theta \tag{11}\\
y=\frac{3}{2} a \sin \theta-m \sin 2 \theta+\frac{a}{2} \sin 3 \theta
\end{array}
$$\right.
\]

Cayley proved that these equations also define the envelop of the circles with their centres on the above circle and tangent to Δ. Now, I say, eqns. (11) define ou: Cayley

Fig. 2.
sextic reforred to the middle point of $O S$ (Fig. II) as origin, if $m=\frac{3 a}{2}$; i. e. Δ is the sextic's double tangent. For:- from the general equations of an epicycloid* we find the equation of the nephroid with origin at the centre of its base (which is of radius a), to be
(12)

$$
x=\frac{3 a}{2} \cos \theta+\frac{a}{2} \cos 3 \theta
$$

$$
y=\frac{3 a}{2} \sin \theta+\frac{a}{2} \sin 3 \theta
$$

wherg the X -axis passes thro the vertices of the nephroid and $\boldsymbol{\theta}$ denotes the angle between the centres of the generating circles. .Further, from general forms* we find that any tangent to this nephroid makes an angle $\left(2 \theta+\frac{\pi}{2}\right)$ with the X-axis. Hence if m denote the distance between the nephroid and any parallel curve, the equation of the parallel curve is got by adding $-\mathrm{m} \cos 2 \theta,-\mathrm{m} \sin 2 \theta$ to x and y respectively in (12): Whence (\$ 16), the eqnation of our sextic may be written

$$
\left\{\begin{array}{l}
x=\frac{a}{2}(3 \cos \theta-3 \cos 2 \theta+\cos 3 \theta) \tag{13}\\
y=\frac{a}{2}(3 \sin \theta-3 \sin 2 \theta+\sin 3 \theta)
\end{array}\right.
$$

* Carr," "Synopsis of pure mathematics", 1896, p. 721.

It was shown by Caykey that the carve is of the sixth degree and the fourth class; that it has six cnsps, four double points and three donble tangents. A stady of the curves defined by (11) will make clear that the apparently simple point 8 (F'ig. II), and the two circular points at infinity, are triple points formed by the union of two cusps and a donble point; with the double point, 0^{4}, all singularities are then accounted for. The position of the conjugate imaginary double tangents is treated by Retali.

It may be noted in closing this paragraph, that it (Fig. 1) we measure off in $S P_{0}$, lengths $S F=S F_{1}$, the locus of F will be the curve $r=4 a \cos ^{8} \theta$, nune other than the simple folinm;* pedal of a Steiner hypocycloide or tricuspide with respect to a cusp.

Negative Cuspldal Pedals.

24. Returning to fig. 1 we see, that since the perpendiculars at the onds P of the cardioide radii vectors envelop the axial circle, this circle is the first negative pedal of the cardioide (traced by P) with respect to the cusp S; so also the second is the point A; the third, the line thro A perpendicular to SA , while the fourth negative pedal is the parabola $\mathbf{r}^{1 / 2} \sin \theta_{i} 2=(4 a)^{1 / 2}$, traced by $N_{4},($ Fig. IV) which is the inverset of the fundamental cardioide with resplect to a circle of radius 4 a about its cusp.

It will be found more convenient if we choose a parabola whose parameter is one quarter of the above, i. e. whose equation is $r(1-\cos \theta)=2 a$. This curve will be the inverse of the cardioide with respect to a circle of radius $2 a$; and conversely.

Its position is indicated in Fig. I: S is the focus. The directrix of the parabola inverts into the cardioide's base, while the tangent at the vertex inverts into its pxial circle. The curves cut orthogonally on the line $L_{1} L_{z}$ perpendicular to the axis at S.
25.- Any cuspidal chord PSP^{\prime} of the cardioide when produced meets the circlo of inversion in P_{1}, P_{8} and the parabola in $Q^{\prime}, Q^{"}$. Evidently SP.SQ $=S P^{\prime} . S Q^{\prime \prime}=(2 a)^{2}$ $=\mathrm{SP}_{1}^{2}=\mathrm{SP}_{\mathbf{2}}^{\prime 2}$. Hence, the point-pairs $\left(Q^{\prime} P\right),\left(P^{\prime} Q^{\prime \prime}\right)$ form harmonic ranges with P_{1}, P_{2}.

[^8]218. Further, let us seek the locus of the fourth harmonic point, $P^{\prime \prime}$, to P^{\prime}, S, P. If the coordinates of this point are ($\mathrm{r}^{\prime}, \boldsymbol{\theta}^{\prime}$) we have,
\[

$$
\begin{gathered}
2 a\left(1-\cos \theta^{\prime}\right): 2 a\left(1+\cos \theta^{\prime}\right)=r^{\prime}-2 a\left(1-\cos \theta^{\prime}\right): r^{\prime}+2 \mathfrak{a}\left(1+\cos \theta^{\prime}\right) \quad \text { or } \\
r^{\prime}=2 a \sin \theta^{\prime} \tan \Theta^{\prime} \text { the Cissoide of Diocles of } \S 8 \text { Equation (2). }
\end{gathered}
$$
\]

If $Q^{\prime} Q^{\prime \prime}$ be any focal chord of a parabola, the fourth harmonic point to $Q^{\prime}, S, Q^{\prime \prime}$, isf the point $Q^{\prime \prime \prime}$ on the directrix.

The Cissoide of Diocles may therefore be considered as the directrix of the curdioide.
27. It will be interesting, and useful later, to give some applications of the theory of inversion.

Given two fixed lines cutting in Q, and a fixed point S not in either of then. Thro Q and S a circle is described cutting the fixed lines in M_{1}, M_{2}. The envelope of the line $M_{1} M_{2}$ is a parabola with focus S. The point where $M_{1} M_{\text {a }}$ touches the paraboia is determined by the intersection of the circles thro S tangent to the fixed lines at $\mathrm{M}_{1}, \mathrm{M}_{2}$. The angular points of the triangle formed by three tangents to a parabola lie on a circle thro the focus.

Two circles intersect in Q and S. Any straight line thro Q intersects the circles again in M_{1}, M_{2}. (a) The envelope of the circles thro S, M_{1}, M_{2}, is a cardioide with cusp S. (b)* The tangents to the circles in $M_{1} M_{2}$ intersect on the same cardioide.

From 521 we further see that the centres of the fixed and rarialle circles lie on the base of the cardioide.

Any three circles thro the cusp S of a cardioide and tangent to the curve meet again. in three points M_{1}, Q, M_{2}, which lie in a line.

Now it may be shown by inversion that: - If three circles passing thro a point, S, again intersect in three points on a line (M_{1}, Q, M_{2}), the centres of these circles lie on a circle thro S . Hence these results may be thrown into the following form: about the triangles formed by drawing uny four lines in a plane, circles are described. These circles meet in a point S aud their four centres lie on a circle, x, thro S. Let us form a system of circles, Σ, pussing thro S and with their centres on x. The envelope of the system Σ, is a cardioide with cusp S and base, x. (Cf. the first theorem of $\S 21$.)
28. A slight investigation of the geometry of the figure in the last paragraph leads to: - The vertex of an angle equal to the angle of intersection of two circles, and whose sides always touch the circles, treces a cardioide. And finally a form of P. Mansion: -** The

[^9]82. It is a well known fact* that the first negative pedal of the parabola $r^{1 / 2} \sin \frac{\theta}{2}=(4 a)^{1 / 2}$ with respect to its focus, is the curve defined by the equation:-
$$
r^{1 / 8} \cos \frac{\theta-\pi}{3}=(4 a)^{1 / 3} \quad \text { or } \quad(-x+16 a)^{3}=108 a\left(x^{2}+y^{2}\right)
$$

Since the perpendicular at P to the radins vector of any point P of the parabola, makes the same angle with the normal at P as the perpendicular from F on the parabola's

* E. g. salmon, Higher Plane Curves 3rd Ed 1879, p. 107. Cf. also p. 184.
axis, this cutic is the catacaustic of the parabola for parallel rays perpendicular to the axis. This fact was first shown by Tschirnhausen*; hence I have called the curve Tschirnhausen's Cubic; it has been called cubique de l'Hopital,** and as one of a class of curves which we shall consider in the next paragraph, has received several otner names.

A geometrical construction for points of the clurve is at once indicated by its polar equation. For (Fig. IV) draw $N_{4} N_{5}$ perpendicular to $S N_{4}$ where $\angle N_{5} S N_{4}=\angle N_{4} S N_{3}=\angle N_{3} S_{A}$. The locus of N_{5} is the cubic.

In fact, this construction for the cardioide's negative pedals may be at once generalized, and the equation of the $\mathrm{n}^{\text {th }}$ negative pedal found to be:

$$
r^{\frac{1}{n-2}} \cos \frac{\theta-\pi}{n-2}=(4 a)^{\frac{1}{n-2}}
$$

It is observed that the nth negative cuspidal pedal of the cardioide is the inverse of the ($n-4$) th positive cuspidal pedal with respect to a circle of radius $4 a$. In particular,

T'schirnhausen's Cubic $r^{1 / 3} \cdot \cos \frac{\theta-\pi}{3}=(4 a)^{1 / 8}$ benig the inverse of Cayley's Sextic $r^{1 / 3}=(4 a)^{1 / 3} \cos \frac{\theta-\pi}{3}$, is the polar reciprocal of the cardioide $r^{1 / 2}=(4 a)^{1 / 2} \cos \frac{\theta-\pi}{2}$ with respect to the circle of radius 4 a about the cusp.

The polar reciprocal curve with respect to a circle of radius $2 a$ is indicated in Fig. III. Its equation is $\mathrm{r}^{1 / 3} \cos \frac{\theta-\pi}{3}=\mathrm{a}^{1 / 3}$ and is evidently the negative pedal of the cardioide's inverse with respect to the same circle. The curve is π very interesting one.

Any tangent to it makes with the radius vector of the point of contact, an angle $\frac{\pi}{6}+\frac{\theta}{3}$. Whence, any chord thro S cuts the curre in three points the tangents at which form an equilateral triangle.

Tschirnhausen's cubic is connected with the semi-cubical or Neil's parabola. For, by the method of $\$ 15$, it can be shown that the catacaustic of the cubic for the luminous point S is a semiculical parabola [since the evolute of a parabola is a semicubical parabola].

[^10]** Cazamian, N. A. 1894, p. 307.
to the e curve a class - names. its polar $\angle \mathrm{N}_{3} \mathrm{~S}_{\mathrm{A}}$.

Further, we may mention what was pointed out by Fuss, 1790; the arc $\mathrm{ON}_{5}=\mathrm{NP}_{2}+\mathrm{P}_{2} \mathrm{~N}_{5}$ where to any point P_{2} (the foot of whose ordinate is N) of the parabola, corresponds the point N_{5} of the cubic.

Tschirnhausen's cubic is of the third order, the fourth class, with a single real double point and three points of inflexion (one real) at infinity. This and other properties are found by reciprocation but we will not continue the method further.

From § 20, by inversion we have: the locus of the vertices of co-cuspidal cardioides tangent to a given line is a Tschirnhusen Cubic.

And finally, according to the geometrical construction for the cubic which we have above indicated we deduce the theorem :

If a parabola always has its vertex on " given parabola with the same focus, the envelope of its directrix is a Tschirnhausen Cubic.

Inversion of this, give: a theorem at once evident from $\$ \Sigma 21,22$.
33. Now all the cardioid cuspidal pedals which we have been considering are but particular cases of the curves defined by the equation $r^{m}=a^{m} \cos m \theta$. If Φ be the angle which a tangent to one of these curves makes with the radius vector of the point of tangency $\Phi=\frac{\pi}{2}+m \theta$. Where the name of Laquière* as applied to the curves: spiral a inflexion proportionelle. Allggret** gave the name orthogénide, while the name spiral sinusoïde, now used almost entirely, was given by Haton de Goupillière.***

Beside the cardioide pedals we get a lemniscate for $m=2$; a circle for $m=1$; a cardiode itself for $m=1 / 8$; a parabola (i.e. a pedal) for $n=-1 / 2$; a rectangular hyperbola for $m=-2$.
34. I will now prove the following theorem which has several special cases of interest: If 0 be the pole and P any point of the curve $r^{n}=a^{n} \cos m \theta$, and if with O° for pole rad P for vertex a curve similar to $r^{n}=a^{n} \cdot \cos n \theta$ be described, the envelope of all such curves is $r^{\frac{m n}{m+n}}=a^{\frac{m n}{m+n}} \cos \frac{m n}{m+n} \Theta$.

We have (Fig. 3) $\bar{a}=a \cos ^{\frac{m}{m}} \mathrm{~m} \theta^{\prime}$

$$
r=\bar{a} \cos ^{\frac{1}{n}} n\left(\theta-\theta^{\prime}\right)=a \cos ^{\frac{1}{m}} m \theta^{\prime} \cos ^{\frac{1}{n}} n\left(\theta-\theta^{\prime}\right)
$$

Fig. 3.

* N. A. 1883, p. 118.
** Annates de l'école normale supérieure, (2), II, 167, 1873.
*** "Thee de Mecanique : sur le movement d'un corps etc.", 1857, p. 33.

Differentiating and setting $d r / d \theta^{\prime}$ equal to zero, we get $\sin (\overline{m+n} \theta-n \theta)=0$ whence $\theta^{\prime}=\frac{\mathrm{n}}{\mathrm{m}+\mathrm{n}} \boldsymbol{\theta}$ and hence the equation of the envelope.

The theorems of $\S \S 21,22$ are at. once deduced as special cases. Further, if $m=-2 / 8$ or 2 $\mathrm{n}=2$ or $2 / \mathrm{s}$ we have:- The anvelope of a series of lemniscates whose axes arc the radii vectores of the carve $r^{2 / 3}=a^{2 / 3} \cos \frac{2 \theta}{3}$ is a cardioide. Or, if " series of curves $r^{2 / 8}=a^{2 / 3} \cos \frac{2 \theta}{3}$ similar tho the centrul pedal of the lemmiscate $r^{2}=a^{2} \cos z \theta$ le described on the radii vectores of the lemniscate as diameter their envelone is a cardioide.

Similarly,
The enrelope of a series of rectangular hyperbolas $r^{2} \cos 2 \theta=a^{2}$, with a common centre and vertices on the curve $r^{2 / 5}=a^{2 / 5} \cos ^{2 \theta} \frac{\theta}{5}$ is a cardioide. Or, the envelope of the curres $r^{2 / 5}=a^{2 / 5} \cos \frac{2 \theta}{5}$ on the radii rectores of the hyperbola $r^{2} \cos 2 \theta=a^{2}$ as axes is a cardioide.

On the radii rectors of the curre $\mathrm{r}^{8 / 4}=\mathrm{a}^{8 / 4} \cos \frac{3 \theta}{4}$ as axes, are described the curves $r^{8 / 2}=a^{8 / 2} \cos \frac{3 \theta}{2}$. Their envelope is a cardioide - or, turned about, as above.

On the radii rectores of the curre $\mathrm{r}^{8 / 2} \cos \frac{3 \theta}{2}=\mathrm{a}^{8 / 2}$ as axes, are described the curves $r^{3 / 8}=\mathrm{a}^{8 / 8} \cos \frac{3 \theta}{8}$; their envelope is a cardioide: and turned about, as above.

The envelope of the cardioides on the radii vectores of the Bernoullian Lemniscate as axes is the lemniscate's second central pedal; etc.

And in general:-
The envelope of the cardioides similar to $r^{1 / 2}=a^{1 / 2} \cos \frac{\theta}{2}$ on the radii vectores of the curve $\mathrm{r}^{\frac{2}{\lambda}}=\mathrm{a}^{\frac{2}{\lambda}} \cos \frac{2 \theta}{\lambda^{2}}$ as axes is the curve $r^{\frac{2}{\lambda+4}}=a^{\frac{2}{2+4}} \cos \frac{-2 \theta}{\lambda+4}$, where λ is a positive integer.

These are, of course but a selection of the infinite number of theorems which could be stated.

Intcresting properties of the curve $r^{8 / 2}=a^{8 / 2} \cos \frac{3 \theta}{2}$ and its inverse $r^{3 / 2} \cos \frac{3 \theta}{2}=a^{3 / 8}$ have been given by W. Roberts.*
35. We will close this section, in pointing out one more theorem for spiral sinusoides, and a special case:

[^11]The polur reciprocal of the curve $r^{m \prime \prime}=a^{m} \cos m \theta$ with regard to the hyperbola $r^{2} \cos 2 \theta=a^{2}$ is $r^{\frac{m}{m+1}} \cos \frac{m}{m+1} \theta=a^{\frac{m}{m+1}}$.

For, it is not hard to show that the equation of any tangent to the curve $r^{m}=a^{m} \cos m \theta$ is, $x \cos \overline{m+1} \theta+y \sin \frac{m+1}{\frac{m+1}{m}} \theta=a \cos ^{m} \theta$. The equation of the polar of the point $\left\langle x_{1}, y_{1}\right.$) with respect to the hyperbola $r^{2} \cos 2 \theta=a^{2}$ is $x x_{1}-y y_{1}=a^{2}$. If these lines are idential we get $x_{1}=a \cos \frac{m+1}{\frac{m+1}{m}} \theta / \cos ^{m} \theta, y_{1}=-a \sin \frac{m+1}{\frac{m+1}{m+c^{m}} \theta} \theta$, or

$$
x_{1}=\mathrm{a} \frac{\cos \Phi}{\frac{m+1}{m} \Phi} \quad y_{1}=\mathrm{a} \frac{\sin \Phi}{\frac{m+1}{m} \Phi} \text { where } \Phi=-\overline{m+1 \theta} \text {. Hence etc. }
$$

Hence, (§ 32) the polar reciprocal of the cardioide $r^{1 / 2}=a^{1 / 2} \cos \theta .2$ with respect either to the hyperbola $r^{2} \cos 2 \theta=a^{2}$, or the circle $r=a$, is the same Tschimhausen Cubic $r^{1 / 3} \cos \frac{\theta}{3}==a^{1 / s}$.

The first focal pedal of a cardioide and its inverse.

86. Taking the focus of the cardioide as origin, we see that if (ϱ, Φ) be the coordinates of the point of intersection of a perpendicular from the origin on any tangent, $T_{1} T_{2}$, $\varrho=3 \mathrm{a} \sin \frac{\theta}{2}$ and $\Phi=\frac{3 \theta}{2}-\pi / 2$ or,$\theta=\frac{2 \Phi+\pi}{3} ; \because \varrho=3$ a $\sin \frac{\Phi+\pi / 2}{3}$. Setting for $(\rho, \Phi) ;(r, \theta)$, the equation of the first tangential focal pedal may be written :

$$
\begin{equation*}
r=3 a \sin \frac{\theta+\pi 2}{3}=3 a \cos \frac{\theta-\pi}{3} \tag{14}
\end{equation*}
$$

Since the focus of the cardioide is the focus of its evolute, we see ($\$ 10$ first theorem) that the equation of the first normal (i.e. the normal is treated as the tangent just above) focal pedal is:
(15)

$$
r=a \cos \theta / 3
$$

From $\S 29$ we further find (since the normal makes an angle $\frac{3 \theta}{2}-\frac{\pi}{2}$ with the axis) that the Radial Curve* of the cardioide has for equation:

[^12]\[

$$
\begin{gather*}
-22- \\
r=\frac{8 a}{3} \sin \frac{\pi / 2+\theta}{3}=\frac{8 a}{3} \cos \frac{\theta-\pi}{3} \tag{16}
\end{gather*}
$$
\]

From (14) (15) (16) we infer: the rudial curre of a cardioide, and its focal, tanyentiat and normal pedals are similar Rhodonea.* The polar reciprocal of the cardioide with respect to " circle of rudius $\sqrt{\frac{3}{2}}$ a about the fochs, is the Ebit whose equation is $r \cos \frac{\pi-\theta}{3}=a / 2$. [For, the polar reciprocal of a curve is the inverse of a pedal of this curve].
37. Referring to the cusp of the cardioide as origin the equations of this polar reciprocul assume other forms. The equation $r \cos \frac{\theta}{3}=a / 2$ becones $2 r\left(4 \cos ^{3} \frac{\theta}{3}-\cos \theta\right)=3 a$, or $-r \cos \theta+4 r\left(\frac{a}{2 r}\right)^{3}=\frac{3 a}{2} 0 r-2 r^{3} \cos \theta \cdot a^{3}=3 a r^{2} o r\left(x^{2}+y^{2}\right)(2 x+3 a)-a^{3}=0$. If for x we substitute $-x$, we have the Cartesian equation of the polar reciprocal, which on transformation to the cusp becomes: $\left(\overline{x+a}^{2} \cdot y^{2}\right)(2 x-a)+a^{3}=0$ or

$$
\begin{align*}
& \left(x^{2}+y^{2}\right)(2 x-a)+4 a x^{2}=0 \tag{17}\\
& 2 r \cos \theta=a\left(1-4 \cos ^{2} \theta\right) . \tag{18}
\end{align*}
$$

This last equation we at once recognise as that of the Trisectrix of Machurin treated in $\S 11$.

Therefore, the polar reciprocal of a cardioide with respect to a circle about its focus, is a Mucluerin Trisectrix.

Equation (17) may be thrown ints the more usual form

$$
\begin{equation*}
y=x \sqrt{\frac{3 a+2 x}{a-2 x}} \tag{19}
\end{equation*}
$$

Let us turn the axis about the origin thro an angle of 225°, and the equation of the trisectrix may then be written:

$$
\left(\frac{x}{\sqrt{3}}\right)^{3}+y^{9}=3(n 2 \sqrt{3}) y
$$

[^13]Hence, the Trisectrix of Maclaurin passes, by the rery simple transformation $x=\sqrt{3} x^{1}$, $y=y^{\prime}$ over into the Folium of Descartes, a fact first shown by Maclaurin*.

Equation (18) may be written:

$$
r=-a \frac{\sin 3 \theta}{\sin 2 \theta}
$$

and in the next chopter, $\S 45$, we will see that the tangents to the trisectrix at the origin make an angle of 120° with one another. Whence,

The Trisectrix of Maclaurin is an Arameidet: its inverse with respect to a circle about the double point is an hyperbola whose asymptotes are parallel to the tangents to the trisectrix at the double point.

The right strophoide ($\S 10$) is the inverse of a rectanyular hyperbola with respect to a circle about the vertex.
38. The Cissoide of Diocles, strophoide, and Maclaurin Trisectrix arc respectively pedals of a parabola with respect to its vertex, the foot of its directrix, and the symmetrical point from the focus with regurd to the directrix.

This theorem is easily shown from the following geometrical construction for the three curves. Given a circle aith centre B ard diameter $O A: B O$ is bisected in C and produced to D and E so that $B O=C D=O E$ (Fig. 5). The lines $\triangle_{1}, \Delta_{9}, \Delta_{y}, d_{3}, d_{2}$ are drawn

* Maclaurin, Fluxions 1742, I 262-268; French ed. 1749, p. 198. It was here that the ourve was studied for the first time ; and it was for this reason, (and the fact that if P_{1} be any point on the curve (Fig. III), $\angle P_{1} O A=3 \angle P_{1} S A$), that the curve is so named, lt has becn further studied by:-Wassersohleben, "Zur Teilung des Winkels", A. Gr. LVI, 335-336, 1874. - Wolstenholme, Math. Problems, 1878, no. 1840. Wolstenholme, Nash Townamnd E. T. 1881, XXXV, 65. - B. Sporer, "Beitrag zur Trisection des Winkels" A. Gr. 1883, LXIX, 224. - P. S. Schoute, J. S. 1883, p. 221-222; Archives Nérlandaises XX, 76-78, 1885:"Sur la Construction des Courbes Unicursales par points et par tangents". - G. DE LongChamps, "Trisectrice de Maclaurin", J. S. 1880̃, p. 176-179; Súpplément au courrs de mathématique spéciales, Ire Ed., p. 159. - L'annuaire, de l'association frangaise, congrés de Grenoble, 1885. - HABICH, Gaceta cientifioa 1885 no. 9-12, p. 248 etc, "Division de une angulo en Parties iguales". - D'Almeida Lima, Journal de Sciencias Mathomaticas e astronomicas (Coimbre, Portugal) 1885, p. 13, "Sobre une curva do terció gras". - J. KOKhler, "Exercises: de geometrie", Ire Partie 188f, p. 309. - G. De Longohamps, J. S. 1856, p. 204-200." D'OOAGNE, J. S. 1886. P. S55-256; 1887, p. 193-199, "Note sur la cardioide et la trisection de Maclaurin". G. DE Longohamps, Comptes Rendus 7. Mars 1887, CIV, 676-678: "Sur la rectification de la trisectrice de Macluurin an moyen des transeandantes elliptiques", - Catalan, Ertract of a'letter dated, Feb. $1^{\text {ch }} 1888$ relative to the Cardioide and Trisectrix, J. S. 1888, p. 116-119. - SVECHNICOFF, "Sur la polnire reciproque de l'epicyclotde [Cardioide]", J. S. 1890, p. 169-170. - G. DE Longchamps. Geometrie de la regle, 1890, p. 102-104. - H. Brocard, J. S. 1891, p. 245-246. - Lemaire, Malo, N. A. 1892, (8), XI, 49-70. - DEPREZ, Mathesis 1893, Question 852, p. 274. - AUBRY, J. S. 1896, p. 82-38. H. Brocard, I. M., 1898, p. 104. -- V. Jarabek, Mathesis 1899, p. 61-63: "Sur la Trisectrice de Maclaurin". - E. N. Barisien, J. S. June 1899, p. 139-140 [If. a=2 R].
t Name given by Prof. W. Heymann to the curves $\mathrm{r}=\mathrm{c} \frac{\sin n \vartheta}{\sin (\mathrm{n}-1) \vartheta}, \mathrm{r}=\mathrm{c} \frac{\sin \mathrm{n} \boldsymbol{\theta}}{\sin (\mathrm{n}+1) \boldsymbol{\vartheta}}$ (Schlbmilcb Zeitschrift "Ueber Winkeltheilung mittelst Araneiden" Nov. 1899.
perpendicular to $A E$ thro the points A, B, C, D, E rexpectively. Any chard os of the circle, cuts Δ_{1} in $\delta_{1} ; \Delta_{2}$ in $\delta_{2} ; \Delta_{3}$ in δ_{3}. Measure off $O C_{1}=\delta \delta_{1} ; O C_{2}=\delta_{8} \delta ; O C_{3}=\delta_{3} \delta$. The locus: of C_{1} is the cissoille of Diocles with asymptote Δ_{1}; of C_{2}, the strophoide with asymptote d_{9} : of C_{3} the trisectrix of Mactaurin with asymptote d_{3}; the doulle points of all three curves. are at 0 .

Fig. 5.
For, consider for example the trisectrix (locus of C_{3}); we would have to prove that the perpendicular $\mathrm{C}_{3} \mathrm{P}$ to 0δ at C_{3} is tangent to the parabola with focus A and directrix $\triangle_{2} ;$ in other words, to show that the point of intersection of $\mathrm{C}_{3} \mathrm{P}_{8}$ and the perpendicular thereto from A, is on the tangent at the vertex of the parabola. This fact is evident, since $0 \delta_{3}=\mathrm{C}_{8} \delta$. Suppose that $Q\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ is the point of intersection of the lines thro δ_{2} and $\boldsymbol{\delta}$ parallel to $O A$ and \triangle_{2} respectively. If $\angle \delta O A=\theta$ and θ be chosen as origin we have $x_{1}=2 a \cos ^{2} \theta \quad y_{1}=a \tan \theta$ or on eliminating $\theta, y^{2} x_{1}+a^{2}\left(x_{1}-2 a\right)=0$ which defines the cubic commonly known in England as the Witch of Agnesi.*
39. On expressing the condition that the line $x+i y=p ;[i=\sqrt{-1}]$ is tangent to. our cubic (17), we ind that, the curve has a double focus at the origin (i. e. the cusp

[^14]$$
-25-
$$
of the cardioide sec . Fig. III) and two single foci at the points $-a, 3 a$. Let r_{3}, r_{3}, r_{1}, be the distances of any point on the curve from these three foci respectively. Then we find
$$
r_{2}^{2}=-\frac{4 a x^{2}}{2 x-a} ; r_{n}^{2}=-\frac{a^{3}}{2 x-a} ; r_{1}^{2}=-a \frac{(4 x-3 a)^{2}}{2 x-a}
$$

Whence the vector equation of the curve:
(20)

$$
r_{1} \pm 2 r_{6}+3 r_{3}=0
$$

the positive sign being taken for the sinuons branch; the negative for a point on the oval. See. Fig. III.

For other properties and several elegant geometrical constructions of the carve, consult the bibliography above.

CHAPTER III.

TANGENTS, NORMALS.

40. The equation of a tangent to the cardioide $r=2 a(1-\cos \theta)$ at the point (r, θ) is: --

$$
\begin{equation*}
x \sin \frac{3 \theta}{2}-y \cos \frac{3 \theta}{2}=4 a \sin ^{8} \frac{\theta}{2} \tag{21}
\end{equation*}
$$

of a normal:

$$
\begin{equation*}
x \cos \frac{3 \theta}{2}+y \sin \frac{3 \theta}{2}=4 a \sin ^{2} \frac{\theta}{2} \cos \frac{\theta}{2} \tag{22}
\end{equation*}
$$

From Equation (21) and the fact that the cardioid is of the third class, we h ve the theorem: - In amy direction three parallel tangents can be drawn to a cardioide: and the points of contact of such tangents subtend angles of 1200 at the cusp.

If these radii of contact be produced to cat the curve a second time, the tangents at these points will be parallel to one another, and perpendicular to the above three tangents. We see then, that there are two sets of tangents to the cardioide, which cut one another at right angles. (1) Those whose points of contact subtend angles of 1800 at the cusp. (2) Those whose points of contact subtend angles of 600 at the cusp. The locus of the points of intersection of the first set, we found (§5) to be the circle with centro at the focus of the cardioide, and tangent at its vertex. The locus of the points of intersection of the second set is the Limaçon of Pascal whose equation is: -

$$
\begin{equation*}
r=\frac{3 a}{2}(\sqrt{3}+2 \cos \theta) \tag{23}
\end{equation*}
$$

and which is an epitrochoid, generated by the rolling of a circle of radius $\frac{3 \sqrt{3} a}{4}$, on an
equal circle, the point of gencration being distant 3 a 2 from the centre of the rolling circle. Hence, the complete orthoptic curre of a carrlioule is, " circle anil a Puscal Limason.*

Referred to the centre of its base, 0 , as origin, the Cartesian equation of the Limaçon may bo writton (after Woistenholme) :

$$
\begin{equation*}
8\left(x^{4}+y^{2}-9 a^{2}\right)^{2}+54 a^{2}\left(x^{2}+y^{2}-9 a^{2}\right)+81(2 x-3 a) a^{3}=0 . \tag{24}
\end{equation*}
$$

The curve (which is indicated in Fig. II) will evidently have a node at the point where the axis of the cardiode produced, meets the double tangent; and, the points R_{3}, R_{9} where the donble tangent meets the tangents parallel to the axis are evidently common to both parts of the orthoptic curve. It is also obvions that the Limaçon has double contact with the cardioide, at the points where the normals to the cardioide are also tangents. From (21), (22) theso two points are determined from the equation $\sin ^{3} \frac{\theta}{2}=\sin ^{2}\left(\frac{\theta}{2}-\frac{\pi}{6}\right) \cos \left(\frac{\theta}{2}-\frac{\pi}{6}\right)$ which reduces to $\tan \frac{\theta}{2}= \pm \frac{\sqrt{3}}{5}$.
41. The more general problem of finding the isoptic curve of the cardioide is best treated analytically; the method is olvions, so I will merely give the final result:-

The isoptic curce of the cardioide is a Pascel Limacon whose generating and fixed circles have the same radius $\frac{3 a}{2} \frac{\sin \frac{2}{3} a}{\sin a}$, the generating point of the moving circle being distant $3 a \frac{\sin \frac{a}{3}}{\sin a}$ from its centre, where a is the angle thro which one tangent (always in contact

Abstract

*This theorem was first annonnced by Prof. J. Wolstenholme Proc. London Math. Soc. April 1873, IV 827-830 "On the locis of the point of concourse of perpendiculur tangents to a cardioid"). His proof is analytic: á geometric one was given by W. W. Basset (E. T. R. 1890, LiIII, 45). The theorem was the subject of numerous articles in Nour. Corresp. Muth. Dec. 1876. II, 401: 1877, 1II, 58-63: 123-125: 408-410. The locus is very rarely given in its completeness. On the oue hand a. Cazaman (N. A. July 1894, XIII, s07) states that the locis is a circle, incorrecily referring for the result to Laqukrare. On the other hand Loucheur (N. A. 1892 p. 374-384) starting from a theorem of Chasles, declares the locus to be a Pascal Limacon. The theorem ot Chasles referred to, is given without proof in his Apersu hietorique, 1837, p. 125: "Si d'une épicycloide, engc: drés par un point d'une circonférence de "cercle qut zoule sur un nutre cercle fixe, on circonscrit des angles tous egaux entre eux, leurs "sommets serent ditués sur une épleyclozde allongén on raccourcie". The particular case of the candioide or hoptic curve shows that this theorem is Inaccurste. One may, of course regard tho orthoptic carve as two apitrochoids, if the cirole be thought of as gencrated by two infinitely small oireles, the tracing point of the rolling sircle being distant $3 a$ from its centre.

with the curve) would turn, in passing into the position of the other. When $a=\pi 2$ we get the Limaçon of the last section.
42. It may be worth while to indicate some other Limaçons which are connected with the cardiolde.

The coordinates (ξ, η) of the centre of the circle on a radins of curvature of the cardioide as diameter, one casily finds (Fig. I) (0 origin) to be $\xi=a / 8(4 \cos \theta-\cos 2 \theta)$, $\eta=\mathrm{a} / \mathrm{s}(4 \sin \theta-\sin 2 \theta)$ since P is the point [Eqn.(5)]: $[\mathrm{a}(2 \cos \theta-\cos 2 \theta), \mathrm{a}(2 \sin \theta-\sin 2 \theta)$] and R the point $[a \cos \theta$, a $\sin \theta]$. Whence we can deduce that the circle in question cuts the base orthogonally. For $\xi^{8}+\eta^{2}=a^{2}+\left(\frac{4 a}{3} \sin _{\frac{\theta}{2}}\right)^{2},(\S 29)$.

The tangents from the focus of a cardioid to the circles on the radii of curvature of the curce us diameters, are of constant length and equal to the radins of the base. The centres of these circles lie on a Puscal Limuson whose fixed and rolling circles have equal radius $\frac{2 a}{3}$, the generating point of the rolling circle being distant $\frac{a}{3}$ from its centre.
48. Suppose (Fig. I) $P R$ be divided in any constant ratio $\lambda: \mu$ instead of the ratio 1:2 above; we find for the coordinates of such a point of division:
$\xi=\frac{a}{\lambda+\mu}[(2 \lambda+\mu) \cos \theta-\lambda \cos 2 \theta] \quad \eta=\frac{a}{\lambda+\mu}[(2 \lambda+\mu) \sin \theta-\lambda \sin 2 \theta]$. Hence the locus of the point which divides in a constant ratis $(\lambda: \mu)$ the portions of the normal to the cardioide, intercepted between it and its base, is an epitrochoide whose generating circles have cqual radius $\frac{a(2 \lambda+\mu)}{2(\lambda+\mu)}$ and the tracing point of the rolling circle being distant $a \lambda /(\lambda+\mu)$ from its centre.

We can evidently extend this theorem and say: -
The locus of the points which divide the radii of curvature of a cardioide in a constant ratio is a Pascal Limaçon.
44. The focus, 0 , of a cardioide has some interesting properties in connection with the parallel tangents to the curve.
I. If the cusp S be origin and the tangent at any point (r, θ), meet the double tangent in p_{1}, the angle $p_{1} O S=\theta_{1}$. For, (Fig. I) the equation of the double tangent is $x=a / 2$ and $0 T_{1}=3 a$; if then we erect a perpendicular to $O T_{1}$ at it's middle point Z, say, it passes thro p_{1} and we have the three triangles $T_{1} Z p_{1}, Z O p_{1}$, and the triangle formed by $p_{1} 0$, the axis and the double tangent, equal in all respects. So that $\angle p_{1} T_{1} O=\angle T_{1} O p_{1}$ $=\angle \mathrm{p}_{1} \mathrm{OS}=\theta / 2$. Whence (first part of $\S 40$) the theorem: -

If the three points p_{1}, p_{v}, p_{a} where any three parallel tangents to a cardioile, cut the alouble tungent, are joimed to the focus 0 , the anglex $p_{1} O_{p_{2}}, p_{2} O_{p_{3}}$ are each equal to 60°.
II. We have observed, that if the tangent at any point P_{1} of a cardioide meet the double tangent in $p_{1}, \angle p_{1} P_{1} S=\angle p_{1} O S=\theta 2$ Hence a circle can be described thro $p_{1}, P_{1}, 0, S$. Conversely, if $\angle p_{1} P_{1} S=\angle p_{1} O S=\theta / 2$ (where p_{1} is a point on the double tangent, and P_{1} a point on the cardioide whose polar angle is θ), the line $p_{1} P_{1}$, is tangent to the cardioide at P_{1}. But the circle cuts the double tangent a second time in p_{2} and the cardioide a second time in P_{2}; hence $p_{2} P_{2}$ is tangent to the cardioide at P_{2}. Now by inversion of a property of the parabola* we can show that the line $P_{1} P_{2}$ is also tangent to the cardioide. We have then the following theorem: - Any circle thro the cusp and focus of the cardioide cuts the curve agin in two (real) points P_{1}, P_{8}, and its double ingy, tin p_{1}, p_{4}. Then, the lines $P_{1} P_{2}, P_{1} p_{1}, P_{2} p_{y}$, are tangent to the cardioide. Conversely, any tangent to a cardioide meets the curve again in P_{1}, P_{y}. If the tangenta to the curve at P_{1}, P_{2}, meet the double tangent in p_{1}, p_{t}, the points $P_{1}, P_{2}, p_{1}, p_{2}$, lie on a circle thro the cusp and focus of the cardioide.
III. It was shown by Kiefort that the area of the triangles formed by joining the points of contact of parallel tangents to the cardioide $r=2 a(1-\cos \theta)$, is constantly equal to $9 \sqrt{\overline{3 a}} 4$; further, these triangles have a common centre of gravity, 0 , the centre of the base.
45. The analytic work of finding the envelop of the sides of the triangles mentioned in part III of the last paragraph is very long; the final result, is however worth stating:-

The envelope of the sides of the triangles formed by joining the points of contact of parallel tangents of the cardioide $r=2 a(1-\cos \theta)$ is the Trisectrix of Maclaurin, of Chapters I and $I I$, whose equation is $r \cos \frac{\theta-\pi}{3}=\frac{a}{2}$.

In particular, the tangents to the trisectrix at its double point make an angle of 1200 with one another. For, the tangents are the lines joining the points of contact of the cardiode tangents parallel to the axis.
46. We will close this chapter in noting yet other Limaçons connected with the car-

[^15]dioide. The locus of the middle points (ξ, η) of the chords, Δ, of a cardioide subtending a constant angle, a, at the cusp is a Limaçon.

For, from Equation (3),

$$
\begin{aligned}
& 2 \xi=\mathrm{a}[2 \cos \overline{\theta-a}-\cos 2 \overline{\theta-a}-1+2 \cos \theta-\cos 2 \theta-1] \\
& 2 \eta=\mathrm{a}[2 \sin \overline{\theta+a}-\sin 2 \overline{\theta+a}+2 \sin \theta-\sin 2 \theta] .
\end{aligned}
$$

Hence, the centres of the sides of the triangles enveloping the Maclaurin Trisectrix of $\S 45$ lie on a Pascal Limaçon and further, from $\S 30$, the envelope of the circles passing thro the cusp of the cardioide and the points of meeting of Δ with the carve, is a Limagon.

INDEX

of the

RELATED CURVES WITH A NAME.

No.

1. Cissoide of Diocles
2. Conchoide of Nicumedes.
3. Parabola
4. Strophoide (oblique)
5. $\left\{\begin{array}{l}\text { Nine-point circle } \\ \text { Feuerbach's circle }\end{array}\right\}$
6. $\{$ Trisectrix of Maclaurin
7.

Epi
7. Nephroid
8. "Eleven cusped" epicycloid
9. Cayley's Sextic
10. Cycloide
11. Cartesian Oval
12. Simple Folinm
$\left\{\begin{array}{l}\text { Tschirnhansen's Cabic } \\ \text { Cnbique de l'Hopital }\end{array}\right\}$.
14.
(Semicubical Parabola) (Neil's Parabola Spirale à inflexion proportionelle
15. Orthogénide Sinusoidal Spiral
16. Lemniscate
15. $33,34$.
15. $34,35,37$.

No.
Paragraph number
Q. $\left\{\begin{array}{l}\text { Radial Curve } \\ \text { Rhodoncae }\end{array}\right\} r=\cos \frac{\Theta}{3}$.
19. Foliuin of Descartes .
120. Hyperbola
37.
21. $\left\{\begin{array}{l}\text { Witch of Agnesi } \\ \text { Versicra }\end{array}\right\}$.
22. Limaçon of Pascal 26, 27 ; $8 \uparrow$ t, 40, 41, 42, 43, 46..
23. Astroide .
24. Positive cuspidal cardioidal pedals .
25. Negative cuspidal cordioidal pedals.

19 to 23.
26. Orthoptic Curve

24 to 32.
27. Isoptic Curve
40.
41.

1, Raymond Clare, son of Abram Newcomb Archibald, was born in Nova Scotia. Canada, on the $7^{\text {th }}$ of October, 1876. From the Fall of 1885 to the Spring of 1889, I was student at tho "Mount Allison Male Acculemy" Sackville, New Brunswick, Canada.

In the Fall of 1889 I matricnlated into the Monnt Allison Universit!, and.received my B. A. degree with fitst class honors in mathematics, in the Spring of 1894 ; during the whole of my course I studied mathematics with Prof. Sidney W. Hunten. Further, in the Spring of 1894, I received a "TPorher's Diploma" from the Mount Allison Comservatory of Music, having completed the required three years' course in violin playing and the theory of music. In 1894-95 I was teacher of Mathematics in the Monnt Allison Ladies' College and in the Spring of 1895 received an "Artist's Diploma" for violin playing from the Comservatory.

In the Fall of '95 I matriculated into Ifurmil Uniremsit!, Cambridge (Mass.) United States, and here, for the next three years, I continned my studies in Mathematics and Astronomy under Profs. W. E. Byerly, B. O. Peirce, J. M. Peirce, W. F. Osgood, Maxime Bôcher and Asaph Hall. At the end of my first year, $189(6$, I received the diploma of B. A.; at the end of the second, 1897 , the diploma of M. A.; while during the third, I was pursuing advanced work.

In the Fall of 1898 I matriculated into Berlin Uwiversit!, and remained two semesters, hearing lectures by 'Profs. Schwarz and Fuchs. Since Oct. 1899 I have studied Mathematics and Astronomy at the Uuiversity in Strassthuy, under Profs. Wéber, Reye, Roth and Becker. For the invariable kindness shown to him by all, the author would like at this point to express his gratefnl appreciation; but especially would he like to mention, Prof. Reye who bas ever been so ready with his help and counsel with regard to the accompanying thesis.

Fig.II

Fig. II.

$$
\nabla
$$

[^0]: * Te this and other dates more exact references are given in the body of the paper.
 ** Methode pour la meoure des surfaces, la dimension des solides, leurs centres de pesanteur, de percuseion, et d'oscillation par l'application du calcul integrvl. Paris 1700.

[^1]: * EULER was the discoverer of the double gencration of the epicycioid and hypocyeloid, and gave both analytic and geometric proofs thereof in his memoir: "De dupliel genesi tam asicycloidum quam hypocycloidum", Acta acad. Petrop. V1, 48-59, 1781. Cf. Proctor, "Geometry of the cyeloids", 1878, Preface.
 ** To the astroide or (so called) "fourcusped" hypocycloid: Nouv. Corresp. Nath. 1877, III 62, 123. By Cesaro, N. A. 1885 (3) IV, 257.

 To a particular case of the oblique strophoide by W. J. C. Miller, E. T. R. XLV, 75 Ex, no. 7896. For, the equation of an oblique strophoide has been given by Brocarn (Notes de Bibliographie des courbes geometriques $\mathrm{I}, 140$) as $\mathrm{r}\left(1+\left.\mathrm{m} \tan \boldsymbol{\theta}\right|^{2}\right)=\mathrm{d}$, w and d being constants. The equation of Mr. Miller is the particular case of this ourve for $m=2$.

[^2]: * Jacob Ozanan, Dictionaire Mathématiques on Idée générale de Mathématiques, Amstordam 1691, p. 102-104.
 ** E. g.:- M. Simon, Analytisclie Geometive der Ebene, 1900, p. 299.
 \dagger Euler, Introductio in analysin iuffinitorum, 1748 II 225.

[^3]: * Theorem first stated by James Bernoulli, A. E. June 1692, p. 291-296.
 ** Theorem due to Maclaurin, Philos. Trans. 1719, p. 803-812.
 *** Nour. mém. acad. Bruxelles, 1826, III 116 [Memoir read Feb. 1823]; Quetelet returns to the theorem a second time later in the same volume p. 169-171 "Mémoire sur quelques constructions graphiques des orbites planetaires'. After threo observations a parabolic orbit is, from the above theorem at once determined in its plane, since its vertex is the point of intersection of threa cardioides.
 \dagger Mém. de lacad. royale d. sc., 10. Dec. 1707, p. 50-54. Cantor (Vorlesungen aber die Geschichte d. Math., III, 1898, p. 772-778) gives as the history of the cardioide that it was named, and generated as a conchoide, by Castilleoneus (Phil. Trns. no 461, 1741, p. 778-881): that the curve was in part imagined by Carré (Mem. acad. d. sciences, 28. Feb. 1705, p. 66-61) who attributed the knowledge to "Koenersme". The name Koenersma is incorrect; it should be Koêrsma. The cardioide was imagined at least a dozen times in its completeness before Castilleoneus: in fact by OARRE himself (Mém. acad. d. sc., 24. July 1703, p. 183). For othere see the "Historical Sketch" p. 1-2.
 \dagger It is well known that. if the lengths bP, bP' be measured equal to some other constant length than the diameter of the base circle, the points P, P^{\prime}, trace a limagon of Pascal.

[^4]: ** N. A. 1894 (8) XIII, 303.

[^5]: * Steiner, C'relle's J/. 1840, XXI 30.
 ** E. g.: L. Orlando, Mathesis 1899, (2), IX 112.
 *** Emil WEyr "Uréováni nekonečně vzdálených prvkủ utvarủ geometrických" Casopis pro pèstávani mathematiky a fisiky (Prag) 1872 I 161-186 "Kardioida" p. 183-185. " Laguerre N. A. Feb. 1878 (2) XVII 55-69 "Sur la Cardioide". A. Kıefer "Ueber zarei specielle Brennlinien des Kreises" (Progr. d. Thurgauischen Kantonschule) 1892 [Cardicide p. 1-26]. The cardioide foci are also treated by A. Fuchs "Untersuchong der Brennpunkteigenschaften höherer algebraischen Curven" (Diss. Marburg), 1857; Cardioide p. 33. This author's results are incorrect since he finds that the cardioide has no foci.
 + SALMON-FiedLer, "Analytische Geometrie der hotheren ebenen Curven", Leipzig 1878, p. 312.

[^6]: * This theorum is due to Strebor N. A. 1848, VII, 45 ; geoméryical solution by Emery (ibid) p. 194-195. The connection of the curve with the cardioide is not noted.

[^7]: * Maclaurin, Philos. Trans., 1718, no. 355. - Cayley, "A supplementary memoir on caustice", Phil. Trans., 1867, Vol. 157, p. 7-16. Collected Math. Papers, V, 454-464; E. T. R. IV, 70-7I, Question 1771; p. 107, Question 1812. - PlagaE (Progr, Recklinghausen) 1868, p. 18-21. - W. J. C. Milleer, E. T. R. 1894, LX, 69. - Barisimn, I. M. Sert. 1895, II, 376-877. - Prof. V. Retali, J. Sc, Feb. 1897, p. 32-35 "Note sur une courbe du sixieme ordre"; I. M. July, 1900, VII, 244-248.

[^8]: * First studied by Viviani Quinto libro di Enclide, overo Scienze universule delle proporzioni spiegate .colle dottrine de Galifeo de Vincenzo Viviani, Firenze 1647. - Later treated by Madlaurin, Geomeltia Organica, 1720, p. 118. Ed. Bartl, "Ueber aie Eilinie", (Progr. Kaadner) 1873; (Progr. Prag) 1879, p. 15-17. -- G. de Longohamps, J. S. 1886, p. 278-275; Geom. de la Règle, 1890, r. 126-127. - Dr. Armin Wirtstenn, "Notiz nber das eigentliche Oral", A. Gr., 1895, XIV, 109-111: 241.
 \dagger First pointed out by Magnes, Crelle t832, IX, 135-138; Aufgaben u. Lehreitzen aws a. analytiechen Geometrie der Ebene, 1833, p. 292. Properties of the cardioide have been obtained by the method of inversinn by: J. K. Ingrax, J. W: Stubbs, Diblin Phil. Soc. Trans., I 1842-43: Phil. Mag. vol. 23, Nov. 1843. - H. M. Taylor, Meseenger of Math., April 1866. - Chas. Taylor, Ancient and modern Geometry of Conics, 1881, p. 854-358. - Weill, N. A. April 1881, p. 160-171, "Note sur la cardinide eet la Limason de Paseal". - Weingerster, "Die. Herzlinie", Leipzig (Teubner) 1884. - Rieas, "On Pascal's Limason and the Carlioide", Kansas Univ. 'Quarterly, 1892, I, 89.94.

[^9]: * First shown by Siebecr. from an entirely different point of view. Crelle Jl. 1866, vol. 66, p. 361.
 ** Nouv. Correep. Math. 1876, II, 189; Neuberg, II, 358.

[^10]: * A. E. 1690, p. 68-73. The curve has been also treated by: John Bernoulli, Opera, 1742, III 471-472. - L'Hopital, Iuf. Petits., 1696, § 119, p. 109-112. - Carrit, Mem. acrd. d. Sc., 1703, p. 194. Hayes, Fluxions, 1704, p. 298-240. - Fuss, Nora Acta Petrop., 1790, VIII, 182-200. - Miller, Booth, E.T. R. 1872, XVI, 77-82; E. T., Dec. 1862; March, Nov. 1863. - N. A. 1863, p. 97-104. - Monssard, Barbier, Lucas, N. A. 1866, p. 21-31; 1878, p. 240; 1895, p. 5*-8*. - Hameblit, Le Catacaustiche della jarabola, Trieste 1877, p. 5-8. - Lord M'LAREN, Monthly Notices Roy. Astr. Soc., 1887, XLVII, p. 396 etc.; Proc. Roy. Soc. Edin. 1891, XVIII, 85. - Peesohkr, Die negativen Fusspunkten-Kírren der Kegelschnitte dargestellt als Rolleurren, (Diss. Rostock), 1890, p. 7, 25, 27. - Etc.

[^11]: * Journal de Math. pures et appliqués, (1) XII, 447.

[^12]: * The Radial Curve or Radial of a given carve, is the locus of the ends of the vectora drawn from a given point parallel and equal to the curve's radii of curvature. These corvee were first named and defined by R. Tucker, E. T. Feb. 1863 eto.

[^13]: * Name first applied by Guido Grandi to curves of the family $r=a \operatorname{cosk} \boldsymbol{\vartheta}$, because of the fancied resemblance to roses. They are epitrochoids and can be easily constructed geometrically. Fig. 4. The arcs A'N, AH are in a given proportion \boldsymbol{k}. In OH take OM equal to the perpendicular from N on $O A=a$; the locus of M is the curve $r=a \cosh \boldsymbol{\vartheta}$ if $\boldsymbol{\vartheta}$ be measured from a perpendicular to 0 A .

 Fig. 4
 \dagger Name given by Aubry (J. S. 1895, p. 2 11) to the inverse of the Rhodoneae: $\mathbf{r} \cos \mathbf{k} \boldsymbol{v}=\mathbf{a}$.

[^14]: * This curve was named the Versiera by Agnesi in her "Instituaioni analitiche etc.", 1748. The curve was also studied by Gregory "Geom. pars universalis", 1667; Barrow "Leotiones geometricao", 1672; Newton, Fluxions.

[^15]: * Given a parabol $y^{2}=4 a x$ with focus 8 , and the flxed point ($-3 a, 0$). If any line thro the fixed point outs the parabola in $\mathbf{P}_{1}, \mathbf{P}_{\mathbf{2}}$, the circle $\boldsymbol{\$} \mathbf{P}_{\mathbf{1}} \mathbf{P}_{\mathbf{2}}$ is tangent to the parabola.
 + Kirfrar. "Ueber zwei Brennlinien des Kreises" (Progr. d. Thurgauischen Kantonschule) 1892.

