## IMAGE EVALUATION

 TEST TARGET (MT-3)

Photographic Sciences


Corporation

## CIHM Microfiche Series (Monographs)

> ICMH
> Collection de microfiches (monographies)

## 回

Canadian Institute for Historical Microreproductions / Institut canadien de microreproductions historiques

## (C) <br> 

The Institute has attempted to obtain the best original copy available for filming. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below.

Coloured covers/
Couverture de couleur

Covers damaged/
Couverture endommagée

Covers restored and/or laminated/
Couverture restaurée et/ou pelliculée

Cover title missing/
Le titre de couverture manque

Coloured maps/
Caı tes géographiques en couleur
Coloured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bleue ou noire)

Coloured plates and/or illustrations/
Planches et/ou illustrations en couleur

Bound with other material/
Relié avec d'autres documents
Tight binding may cause shadows or distortion along interior margin/
La reliure serrée peut causer de l'ombre ou de la distorsion le long de la marge intérieure

Blank leaves added during restoration may appear within the text. Whenever possible, these have been omitted from filming/
II se peut que certaines pages blanches ajoutées lors d'une restauration apparaissent dans le texte, mais, lorsque cela était possible, ces pages n'ont pas été filmées.

Additional comments:/
Coınmentaires supplémentaires:

L'Institut a microfilmé le meilleur exemplaire qu'il lui a étó possible de se procurer. Les détails de cet exemplaire qui sont peut-etre uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de filmage sont indiqués ci-dessous.

Coloured pages/
Pages de couleur

Pages damaged/
Pages endommagéesPages restored and/or laminated/
Pages restaurées et/ou pelliculées
Pages discoloured, stained or foxed/
Pages décolorées, tachetées ou piquéesPages detached/
Pages détachées


Showthrough/
Transparence

Quality of print varies/
Qualité inégale de l'impression

Continuous pagination/Pagination continueIncludes index(es)/
Comprend un (des) index

Title on header taken from:/
Le titre de l'en-tête provient:

Title page of issue/
Page de titre de la livraison
$\square$ Caption of issue/
Titre de départ de la livraison


Masthead/
Générique (périodiques) de la livraison

This item is filmed at the reduction ratio checked below/ Ce document est filmé au taux de réduction indiqué ci-dessous.


The copy filmed here has been reproduced thanks to the generosity of:
University of Guelph

The images appearing here are the best quaiity possible considering the condition and legibility of the original copy and in keeping with the filming contract apecifications.

Original copies in printed paper covers are filmed beginning with the front cover and ending on the last page with a printed or illustrated impression, or the back cover when appropriate. All other original copies are filmed beginning on the first page with a printed or illustrated impres. sion, and ending on the last page with e printed or illuatrated impression.

The last recorded frame on each microfiche shall contain the symbol $\rightarrow$ (meaning "CON. TINUED"), or the symbol $\nabla$ (meaning "END"). whichever applies.

Maps, plates, charts, etc., may be filmed at different reduction ratios. Those too lerge to be entirely included in one exposure are filmed beginning in the upper left hand corner, left to right and top to bottom, as many frames as required. The following diagrams illustrate the method:

L'oxemplaire filmd fut reproduit grâce à la générosité de:

> University of Guelph

Les images suivantes ont otd reproduites avec le plus grand soin, compte tenu de la condition et de la netteté de l'exemplaire filmb, it en conformité avec les conditions du contrat de filmage.

Les exemplaires origineux dont le couverture en pepier est imprimde sont filmés on commençant par le premier plat et en terminant soit par la dernidre page qui comporte une empreinte d'impression ou d'illustration, soit par le second plat, selon le cas. Tous les autres exemplaires originaux sont filmés en commençant par la premidre page qui comporte une emprainte d'impression ou d'illustration et en terminant par la dernidre page qui comporte une telle empreinte.

Un des symboles suivants apparaitra sur la dernidre image de chaque microfiche, selon le cas: le symbole $\rightarrow$ signifie "A SUIVRE", le symbole $\nabla$ signifie "FIN".

Les cartes, planches. tableaux, etc.. peuvent ètre filmés à des taux de réduction différents. Lorsque ie document est trop grand pour ètre reproduit en un seul cliche, il est filmé à partir de l'angle supérieur gauche. de gauche à droite. et de haut en tas, en prenant le nombre d'images ndcessaire. Les diagrammes suivants illustrent le méthode.


| 1 | 2 | 3 |
| :--- | :--- | :--- |
| 4 | 5 | 6 |



Sames Anills. ang:'Y2.

## EUCLID'S

# ELEMENTS OF GEOMETRY, BOOK I., 

BASED ON SIMSON'S TEXT;

WITH

## EXPLANATORY REMARKS, ETc.

## BI

FRANCIS YOUNG.

The steps are guided by no lamp more clearly, through the dark manew of Nature; by no thread more surely, through the infintte turnings of the hbrrinth of Philosophy; nor, lastly, ts the bottom of Truth sounded more happily by any other line.-Barrow (on the Study of Mathematics).

## TORONTO:

 JAMES CAMPBELL \& SON.1. GE tigate th they be
2. The pronoun Geometr means, "
3. Geo tised by that wer dation of
4. Fro count be Experim definite any prop reasoning compasse Geometry and Surv intimatel
5. The establishe flourished Plato, Eu - 6. It w corinected been taug
6. Som birthplace It is certa matics at
B.C., in th his death
7. His his works The fourt been adde monk of 1 lated the Ileury Bil remalered

## NTRODUCTORY REMARESS.

1. Geometry is the science which enables ns to investigate the relations existing between parts of space, whether they be lines, surfaces (superficies), or solids.
2. The term Geometry is derived from two Greek words, pronounced Ge (g hard), the earth, and Metrine, to measure: Gcometry, therefore, in the simplest acceptation of the word, means, " measurement of the earth."
3. Geometry in this form is said to have been first practised by the Egyptians, in order to restore the landmarks that were swept away and destroyed by the ycarly inundation of the river Nile.
4. From this germ of practical measurement (if the account be true) Geometry grew into a theoretical seicuce. Experimental processes gradually indicating and forming definite rulcs, by which we are enabled to test the truth of any proposition in Theoretical Geometry by mathematical reasoning, and construct or build up, by the use of rule and compasses, various forms and figures in practical or applied Geometry, to which Architecture, Engineering, Mapping and Surveying, and other kindred arts and scicaces, are so intimately allied.
5. The first schools of Geometry are said to have been established by Thales, 600 n.c., and Pythagoras, who flourished sixty years later: the science was advanced by Plato, Eudoxus, and others.
6. It was left for Enelid to bring into a well-ordered and connected chain the first prineiples of Ceomets hitat had been taught by these early geometers.
7. Some historians assign Alexandria, in Egypt, as the birthplace of Euclid; others assert that he was born at 'Iyre. It is certain, however, that he founded a school of mathematics at Alexandria, and flourished there circa 323-284 b.c., in the reign of Ptolemy, the son of Lagus: the time of his death is not known.
8. His writings were numerons; the most renowned of all his works is his, "Elements of Geometry," in fifteen books. The fourteenth and fifteenth books, are supposed to have been added by Hypsicles of Alexandria, about 170 A.D. A monk of Bath, named Adelard, is said to have first translated the "Elements" into Latin in the reign of Henry I.: Ilenry Billingsley, afterwards lord-mayor of London, first rendered them into Inglish A.D. 1570.
9. The translation from the Greek text, used in the present day, was made by Dr. Robert Simson, Professor of Mathematics in the University of Glasgow: the first edition of which was published about $1758-9$. This is, however, superseded by the valuable annotafed edition of the "Elements," by Mr. Potts of Trinity College, Cambridge-a standard work that is indispensable to the requirements of the advanced student.
10. All boys should learn and lay to heart Euelid's reply to Ptolemy, when he asked if there was any easier method of acquiring the science of Geometry than by the "Elements?" "Theme is no Royal road to Geometiy," was tho philosopher's answer-and there is no short cut to a knowledge of any branch of learning: we must follow the track that has been patiently and laboriously trcdden out for us by those who have gune before us, remembering that diligence, with thoughtful attention to the first steps, can alone make ns proficients in any subject of study, always under the blessing of Almighty God.
11. In studying Euclid, first be sure that you thoroughly understand his meaning; do not attempt to pass on to the second definition or proposition until you have mastered the first.
12. Learn the definitions, postulates, and axioms by rote, and associate them in your mind with the numbers affixed to them as they stand in order, that you may be able to repeat any one without turning back, when reference is made io it in any proposition to substantiate the reasoning employed.
13. In going through the Propositions, do not attempt to learn them by rote, and never try to repent them without following cyery link of reasoning on your diagram.
14. When you think you are master of a Proposition, lay aside your book and endeavour to write it from memory, constructing your diagram, as you procced, with different letters and in a different form from that given with the text, as pointed out in Propositions 1, 2, and 3, where extra diagrams are given which correspond, one equally well with another, with the requirements of the text : this will firmly fix in your mind the method of proof or demonstration employed.
15. Lastly, remember that your faculties of reasoning and argumentative powers will be sustained and matured by a course of mathematical study: it will enable you to distinguish that which is solid and useful from that which is specious and flimsy, gold from tinsel, truti froin falsehood.

Tm Defis first criptic forms to con shape

The divide furthe
Sect

$$
3
$$

$\theta$
$\boldsymbol{\omega}$
SEC
I. A no ma
Eucl cannot smalles and bre
II.

Here other, r drawn Euclid, and lin
III. The
ed in the rofessor of rst edition however, the "Ele. bridge一a rements of
lid's reply method of lements?" the philoowledge of $k$ that has $s$ by those fence, with e make 11 s : the bless-
oughly unthe second the first. ns by rote, s affixed to e to repeat made io it employed. attempt to m without m. osition, lay m memory, th different th the text, here extra ly well with will firmly tration emsoning and atured by a in to distinhich is speALsEHOOD.

## EUCLID'S ELEMENTS OF GEOMETRY.

## BOOK I.

## DEFINITIONS.

Tie word Definition is detived from the Latin verb Definine, to mark out a limit or boundary; we may then at first consider a Definition, for the most part, as a short description of the properties belonging to certain geometrical forms and figures, giving us marks whereby we are enabled to conceive an iden of them in our minds, and to trace their shapes on any flat surface.
The Definitions of Book I. of Euclid's Elements may be divided into four Sections as follows, the third admitting of further subdivision :-
Section 1. Point, Line, and Surface ........Def. I.-VII.
" 2. Angles ..............................Def. VIII.-XII.
, 3. Tigures..............................Def. XIII.-XXXIV. A. The Cirele and its parts...Def. XV.-XIX.
D. Rectilineal Figures ..........Def. XX.-XxXIV.
a. Triangles ...............Def. XXIV.-xxix.
b Quadrilateral Figures.Def. $\mathbf{x x X}$.-XXxIV
"
4. Supplementary Def. $\mathbf{X x X V}$.-Etc.

Section I. Point, Line, and Surface. Def. I-VII.
I. A point is that which has no parts, or that which has no magnitude.
Euclid's point is therefore Imaginary, shewing position only : we cannot make a point, however smali, without size or magnitude; the smallest dot we can make with a pen or peucil must have length and breadth to be visible.
II. A line is length without breadth.

Here a llne is merely an imaginary track from one point to another, whether straight or curved :-as in the case of the point, a line drawn on paper must have length and breadth to be visible. Eucild's definitions of a point and line apply only to ideal points and lines, which can exist only in innagination.
III. The extremities of a line are points.

The points denote the position of either end of the line.
IV. A straigit line is that which lies evenly between its extreme points.

A straight line, therefore, is the shortest possible distance between any two points or positions. The difference between a line and a straight line is this: let us take any two points on the surface of a table which is perfectly level, a line may be represented by a plece of wire passing from one point to the other, above, below, or through the table, bending to the right hand or to the left; but a straight line between the same points is one that may be traced with the ald of a ruler on tho diat surface of the table, in a direct course, without the slightest turning to one side or the other.
V. A scperficies (or surface) has only length and breadth.

Like Euclid's point and line, his superficies can exist in imagination only; there is nothing in nature that has length and breadth without thickness; the superficies of any thing is merely the surface or outside: Supeaficies, the Latin term for surface, is derived from the Latin preposition Super, above, and the noun Facies, a fuce.
VI. The extremities of a superficies are lines.

Lines mark or determine the extent of any surface, and clearly define its limits or boundaries.

VII: A plane superficies is that in which any two (or more) points being taken, the straight line (or lines) between them lies wholly in that supericies.

The surface of a level table or loor is the best example that we can have of a plane superficies: the word plane means even or level ; hence the reason why the instrument with which the carpenter renders the surface of a rough piank even and level is called a Plane.

Bear in mind the difference between a superficies and a plane superficies; the former may be applied to the surface or outward. face of any thing in nature, however uneven it may be; but the latter can only be used when we are speaking of the surface of any thing that is perfectly flat and even.

## Section II. Angles. Def. VIII-XII.

VIII. A plane angle is the inclination of two lines to each other in a plane, which meet together, but are not in the same direction.

A plane is an even aurface; we may draw two lines of any deecription meeting each other on the even surface of a table, slate, or black boird; the corner enclused by the lines bending towards each other it the point of meeting, is called a plane angle.
nce between line and a surface of a d by a plece r , or through t a straight ed with the course, with-
ength and
in Imaginaand breadth y the surface is derived icies, a face. nes. and clearly
ny two (or lines) be-
aple that we ans even or the carpenil is called a und a plane or outward be; but the rface of any
IX. A plane nectllineal angle is the inclination of two straight lines to ene another, which meet together but are not in the same straight line.

The term rectilineal means formed by straight lines, derived from the Latin adjective Rectus, straight, and the youn Linea, a line.

To form a correct idea of what an angle is, snppose $A B$ and $C D$ to be two very narrow strips of paper, fastened together by a pin thrust through the point E, where they cross each other; the corner BED, formed by the opening of the lines from the point E, is called an angle; the corner or angle will be smaller or 'greater in size as we move the end $D$ of the strip of paper CD. nearer to or farther from the end $B$ of the strip of paper $A B$; thus by moving the strip $C D$ into the position GF, we make an angle BEF, greater in size than the angle BED,
 formed by the previous position of the lines.

Remember that it is the extent of opening between the lines that is called the angle contained by the lines; the length of the lines themselves have nothing whatever to do with the size of the angle.
N.B.-When several angles are at one point B, either of them is expressed by three letters, of which the letter that is at the vertex of $A$ the angle, that is, 'at the point in which the straight lines that contain the
 angle meet one another, is put between the other two letters, and one of these two is somewhere upon one of these straight lines, and the other upon the other line. Thus the angle which is contained by the straight lines $A B, C B$, is termed the angle $A B C$ or CBA ; that which is contained by the angle A.B, DB, is named the angle ABD or DBA ; and that which is contained by DB, $C B$, is called the angle DBC or CBD. But if there be only one angle at a point, it may be expressed by the letter at that point as the angle at $E$.
X. When a straight line standing on another straight line makes the adjacent angles equal to each other, each of
the angles is called a might angle; and the straight line which stands on the other is called the perpendicular to it.
Adjacent, lying next to or neighbouring, from the Latin preposition AD, to or near to, and Jacere, to lie, a verb. Perpendicular, from the Latin noun Perpendiculum, a plumb line.
In the figure, $C D$ is perpendicular to $A B$, and the angles $A D C, B D C$, are
 riglit angles adjacent or lying next to each other, formed by the perpendicular line $C D$ standing on the straight line $A B$.
XI. An obtuse angle is that which is greater than a right angle.
Obtuse, from Ontusus, blunted, participle of the Latin verb ob'rundere, to blient.
In the figure, the angle ABC is an obtuse angle; the opening formed by the inclination of the straight lines AB CB to each other, is greater than the inclina-
 tion of the straight lines $A B D B$, forming the right angle $A B D$.
XII. An acute angle is that which is less than a right angle.

Acute, from Acutus, a Latin adjective, meaning sharp or pointed.

In the figure the angle ABC is an acute angle; the opening formed by the inclination of the straight lines $A B C B$ to each other, is less than the inclination of the straight lines $A B D B$, forming the right angle ABD.

## Section III. Figures. Def. XIII-XXXIV.

 XIII. A term or boundary is the extremity of any thing. Term, fruin Terma, a Greek noun, so pronounced, meaning limit or extent.XIV. A Figure is that which is enclosed by one or more boundaries.

Figure, from Figura, a Latin noun, meaning shape or form. If the figure is enclosed by one or two lines, they must of necessity be curved; but if lyy more than two boundaries, they can then be stralght lines.

XX by on. such $t$ from : figure equal

Circ uvs, $a$ CUMFE tion bearin the 1 carry.

X,V
Cen point.

XV throus circur - DIa ing to

XV a diar off by
SEm half.
In t
the ci
throug contai is as
semici from $t$ they a

A circle

XI

## A. The Circle and its Parts. Def. XV-XIX.

XX. A circle is a plane (flat or even) figure, contained by one line, which is called the circumference, and is such that all straight lines drawn from a certain point within the figure to the circumference are equal to one another.
Circle, from the Latin noun CircuLus, a round figure, ring, or hoop. Circumperence, from the Latin preposition Circum, around, and Ferens, bearing or carrying, participle of the Latin verb Fenue, to bear or carry.


X,VI. And this point is called the centre of the circle.
Centre, from a Greek noun, pronounced Lentron, meaning a point.
XVII. 4 diameter of a circle is a straight line drawn through the centre, and terminated both ways by the circumference.
Diameter, from a Greck verb, pronounced Diametrine, meaning to measure across.
XVIII. A semicircle is the figure contained by a diameter, and the part of the circumference which is cut off by it.
Semicincle means half a circle, Semi, a Latin particle, meaning half.

In the above figure the line $A B C D E$ is the cracumperence of the circle, $F$ is the centre; $D A$ and $B E$, straight lines passing through the centre $F$, are diameters of the circle. The figure ABD. contained by the diameter $A D$, and hair the circumference $A B C D$, is a semchacle. The figures AED EDB, and BAE, are also semicircies. All the straight lines FA, FB, FC, FD, FE, drawn from the centre $F$ to the circumference, are equal to one another; they are called madit of the circle.

A wheel is the best practical illustration that we can have of a circle and its various parts.
XIX. A segment of a circle is the figure contained by a.

## EOCLID.

 through the centre), and the circumference it cuts off.Segment means a portion cut avcay, derived from the Latin noun Segmentuar.

In the circle ACEDBF the figures AFB, AEB; CFD, CED, EAF, EDF, are segments formed by the straight lines $A B, C D, E F$, and the parts of the circumference lying on

B. Rectilineal Figures. Def. XX-XXXIV. XX. Rectinineal figures are those which are contained
XXI. Trilateral figures or triangles, by three Trilateral, three-sided, from the Latin numeral adjective Tres, fria; three, and the noun latus, a side. Triangle, a figure noun angulus, a corner.

## XXII. Quadrilateral figures, by four straight lines.

 Qundilatrial, four-sided, from Latin numeral adjectiveQuat-vor, four, and Latus, a side. XXIIT M XXIII. Multilateral figures or polygong; by more
than four straight lines.

Multilateral, many-sided, from the Latin adjective Muite
many, and Latus, a side. Poirgon, a figure having many angles, from a Greek adjective, pronounced PoL-use, mavy, and Gongles, an angle, a Greek noun so pronounced.

## a. Triangles. Def. XXIV-XXIX.

XXIV. Of three-sided figures, an equilateral triangle is that which has three equal sides (and three equal angles).
Equilateral, equal-sited, from the Latin adjective equal-siuled, from the
Latus, $a$ side.

noolid.
XXV. An isosceles (pronounce $C$ as K ) midangle is that which has two sides equal.
Isosceles, having equal sides or legs, from a Greek adjective, pronounced Is-os, equal, and a Greek noun, pronounced Sket-Los, a leg. An, equilateral triangle may be termed isosceles.

XXVI. A scalene triangle is that which has three unequal sides.

The word Scalene is derived from a Greek adjective, pronounced Ska-Lee-nos, crooked or un-
equal.

XXVII. A migut-angled trianale is that which has

XXVIII. An obtuse-angled triangle is that which has an obtuse angle (2).
XXIX. An acote-angled triangle is that which has three acute angles (3).
b Quadrilateral Figures. Def. XXX—XXXIV. XXX. Of quadrilateral or four-sided figubes. A EQUARE has all its sides équal, and all its angles right angles (1).

XXXI. An oblong is that which has all its angles right angles, but has not all its sides equal (2). The oblong has its opposite sides equal to one another.

## EUCLID.

XXXII. A ritombus has all its sides equal, but its angles are not right angles.

The word Rhomnus is derived from a Greck noun, pronounced Riombos; a term applied to a parallelogram with equal Eides, not having its angles right angles.
The Rhombus may be formed by placing two equilateral triangles of the same size together, base to "ase.
XXXIII. A riomnom has its opposite sides equal to each other, but all its sides are not equal, nor its angles right angles.
Rhomoid means having the shape or form of a rhombus, from Rhomnos and Eidos, a Greck noun so pronounced, meanipg shape.
XXXIV. All other four-sided figures besides these are called Trapeziuas.
Trapezium, from the Greek noun Tra-pe-zi-on, a small table.
Section 4. Supplementart. Def. XXXV-cte.
XXXV. Parallel straigitit lines are such as are in the same plane, and which, being produced ever so far both ways, do not meet.
The term parallel is derived from two Greek words, pronounced Parrade-teee-la, which means by the side of each other.
Parallel Hines will run on slde by side for any distance without approaching closer to each other, always preserving exactly the same space between them. The ruled lines of a sheet of musio paper, and the printed lines of this book, are parallel straight lines;

nounced parraleelo.gramma, which means a parallel drawn figure. See the derivatlon of the word pahallizl above.

## Postulater.

The term Postulate is derived from the Latin verb Postulare, to ask or demand. We are asked to allow that certain assertions are true, without requiring any proof of the truth of the statements made in them. . On inspection, we see at once that what is demanded is possible, and that proof by a chain of mathematical reasoning is unnecessary. Let it be granted,
I. That a straigiet line may be drawn from any one point to any other point.
Look at definition IV. "A straight line is that uehich lies evenly between its extreme points," it matters not where the extreme points of the straight line may be in positton; thercfore, wherever wo may determine the position of any two points, it is possible for us to draw a straight line between them.
II. That a terminated straight line may be produced to any length in a straight line (in the sume stringht course).

We wiah to extend the length of a certain straight line that we have drawn. We do this, in practice, by placing the edge of our flat ruler agalnst the line already drawn, and tracing a continuation of the same by passing our pen or pencil along the edge of the ruler to the distance desired, whatever length thint distanre may be.
III. That a circle may be described from any centre, at any distance from that centre.

We can place one leg of our compasses on any point we choose, and trace large or small circles with the other leg, accordingly as wo bring the legs of the compasses farther apart or closer together.

Axions.
The word $\Lambda$ xiom is derived from a Greek noun, pronounced Ax-i-o-ma, which means a statement which claims belief by reason of its self evident truth. ,

An Axiom is an assertion worthy of credit, $\Omega$ simple truth which is self-evjdent, admitting of no argument with respect to its correctness, and requiring no proof. The first seven are alike applicable to numbers, superficial extent, and solids.
I. Things which are equal to the same thing are equal to one another.

In numbers $3+2=5,4+1=5$; therefore $3+2=4+1$, since both compound quantitics are cqual to the sarie simplo quantity.

## EUCLID.

In superficial extent, or meanarement of surface, 7 square fect +2 square feet $=1$ square yard, and 5 square feet +4 square feet $=1$ square yard ; therefore 7 square feet +2 square feet $=$ 6 square feet +4 square feet, sinco both compound quantities are rulua. to the same simple quantity.
In solids 20 cubic fect +7 cubic fect $=1$ cubio yard, but 15 cublo feet +12 cubic feet $=1$ cublo yard; therefore 20 cubio feot po und quantities $=15$ cubio fect +12 cubio feet, since both com-

The pupil may apply a similar mode simple quantity. Axioms.
next $61 x$
II. If equals bo adDed to equals, the wholes are equal.
III. If equals bo tainen from equals, tho remainders aro rqual.

TV. If equals be admed to unequals, the wioles are N. If equals be taren from unequals, the remaindens are nnequi:!!
VI. 'lings which arc Doubles of the same, are equal to one another.
VII. Things which are matves of the same, are equal to one another.
VIII. Magnitudes which convcroe with aach other, that is, which exactly fill the same space, are equal to one another. If we turn a round picce of wood of suoh a sizo that it will exactly fit into a metal cylinder or tube, and then turn nnother plece, which will also exactly fit into the same cylinder we noother that the pleces of wood are exactly similame cylinder, we conclude of the Axiom, that the magnitudes coincil in size, or, in the words another.
IX. The whole is greater than its Part. X. Two straight lines cannot enclose a space. Hefer to note on Definition 14, to see what is the lowest number of straight lines that can enclose a space.

## II. Aill right angles are equal to one another.

Every right anglo is measured by the fourth part of the circum. ference of a circle, or an arc of 90 degrees.
XII. If a straight line meets two straight lines, make the two interior angles on the stratght lines, so as to than two right angles, these straige same side together less produced, shall at length meet upor lines being continually the angles which are less theet upon that side on which are

To underatand this Axiom it is necessary to become acquainted with the early propositions of Book I., that depend on the properties of parallel straight lines.
The Axloms were originally termed "common notions," as the first seven were applicable to the measurcs of numbers and solids, as well as to Geometrical measurement.

## Tine Propositions.

1. Before entering on the Propositions, it is necessary to inquire what a proposition is, and into what parts it may be divided.
2. The term Proposition is derived from the Latin verb Proponere, to put forward, to propose; a Proposition, then, is some statement put forward to us, and this statement will require solution or demonstration by mathematical reasoning, founded on the truths implied or conveyed in the Definitions, Postulates, and Axioms.
3. If the Proposition require solution, it is called a ProbLem, from a Greck word pronounced Pro-mLee-Ma, meaning something put forward or proposed; the Proposition, theng, is a Problem when it puts forward something to bon, then, 4. If, on the contrary, the Propositiening to be done. ment or assertion requiring Proposition conveys a stateTheorem, from a Greek word pronstration, it is called a meaning a thing to be looked at pronounced The-o-hee-sra, 5. $\AA$ Problem requires you at, something for contemplation. that what you have done is correct.
4. A Theoren stite correct. or complied with, certain results certain conditions are allowed shev that these results are true. will follow, and you have to 7. We may divid Probue. follows; although diff Problem and Theorem into six parts as by Proclus, they may be more intelligibe divisions adopted

5. In the Problem, the Enonciation, a term derived from the Latin verb Enunciare, to declare, is printed at the head of the Proposition in italics, and declares what conditions are granted or given, and what you are required to effect on these conditions.
6. That which is given, asserts the conditions that are granted in particular terms, indicating the things given by letters.
7. That which ts sovait, shews what is required to bo done on the conditions given.
8. The Constriverion, a term derived from the Latin verb Construere, to pile together, to build, is the course adopted to build up, step by step, by the Postulates, a figure or diagram, which will satisfy in every particular that which is required to be done, or which will shew that the thing which is sought is effected.
9. The l'roof, by reasoning founded on the Definitions and Axioms (and by reference to the truths proved in preceding Propositions as we advance), shews that the con clusion to which the steps of the construction have brought us, is correct.
10. In the Theorem, the Enunciation states what conditions we are allowed to assume, and the particular conisequences that must follow from the truth of these assumptions
11. The Hypotiesis, from a Greek word pronounced nupotuesis, meaning supposition, asserts the conditions assumed or supposed, indicating them particularly by letters.
12. The Srquence, a term derived from the Latin verb Sprou, to follow, points out what must follow, the con ditions supposed in the hypothesis being considered correct.
13. The Constroction, in the Theorem, consists of a slight addition to the figure indicated by the Hypothesis, to aid us in the demonstration of the truth of the Sequence.
14. The Demonstration, from the Latin verb Jemonstrare, to shew or point out, is the chain of mathematical reasoning by which we shew the assertion conveyed in the Sequence to be truc.
15. The Conclusion, in the Problem: states that what was reguired to be done has teen effected on the given conditions: in the Theorem, it is the enunciation repeated as a statenent, of which the truth has been fully shewn.
16. In some Theorems, in order to shew that the Sequence inferred from the Hypothesis is true, we have to assume a false Hypotilesis, and then, by arriving at an absurd con-
clusi that dem is th 20.
will
vatio To straig stood (AD-1 laying anoth the ed to cac

The
grams
tion w
is deri

To des
Givi
Soud
upon it

Cons
AB , des
2. Fr circle A
3. Frc draw th (Postula The tr
${ }^{2} \mathrm{Co}$
clusion, shew that the Hypothesis so assumed is false, and that the first Hypothesis must be correct. This kind of demonstration is termed indinect. Proposition 6, Book $\mathrm{I}_{5}$; is the first example we meet with.
20. In the course of Book I. the following expressions will be found, which may need some explanation as to derivation, \&\&. :-

To APPLY one figure to another, or a parallelogram to a straight line. The sense of the word apply will be understood from the meaning of the Latin verb Applicare (Ad-pLicare), from which it is derived, conveying the idea of laying or placing one thing closely and exactly by the side of another, as when we fold a piece of eloth together so that the edges may coincide or touch in every part, fitting exactly to each other.
The complements of a parallelogram are the parallelograms, which make up the whole parallelogram in conjunction with those about the diameter: the term complement is derived from the Latin verb complere, to fill up.
 Given.-Let AB है
Sovght.- It is requanverto ven straight line. npon it.


Construction.-1. From the centre $A$, at the distance AB, describe the circle BCD. (Postulate 3.)
2. From the centre $B$, at the distance $B A$, describe the circle ACE. (Postulate 3.) 3. From the point C , in which the circles cut one another, draw the straight lines $C A, C B$, to the points $A$ and $B$. (Postulate 1.)
The triangle ABC shall be an equilateral triangle. ${ }^{1}$ Construct would perhaps be a better word than describe

Proof.-1. Because the point $A$ is the centre of the circle BOD, $A C$ is equal to $A B$. (Definution 15.)
2. Because the point $B$ is the centre of the circle ACE, BC is erqual to BA. (Definition 15.)
3. Therefore $A C$ and $B C$ are each of them equal to $A B$.
4. But things which are equal to the same thing are equal to one another. Therefore AC is equal to BC. (Axiom 1.)
5. Wherefore $A B, B C$, and $C A$, are equal to one another.

Conolusion.-Therefore the triangle $A B C$ is an equilateral triangle, and it is described on the given straight line AB. Which was to be done.

## PROPOSITION 2.-PROBLEM.

From a given point to draw a straight line equal to a given straighi line.
Grven.-Let $A$ be the given point, and $B C$ the given straight line.
Sovalir.-It is required to draw from the point $A$ a straight line equal to BC .


Construction-1. From the point $A$ to $B$, draw the straight line AB. (Postulate 1.)
9. Upon $A B$ describe the equilateral triangle DAB. (Prqu). 1, Book I.)
3. Produce the straight lines DA, DB, to E and F. ( $P_{0 \text { os }}$ tulate 2.)
4. From the ceutre $B$, at the distance $B C$, describe tile circle CGH. (Postulate 3.)
5. From the centre D, at the distance DG, describe the circle GKL. (Postulate 3.)

AL shall be equal to BC.
Prony-1. Because the point $B$ is the centre of the circle CGH; 3 is equal to BG. (Definition 15.)
2. Bee $\because$ e print $D$ is the centre of the circle $G K L$; DL is ecras 2 O . (Definition 15.)
5. But DA, DB, parts of them, are equal. (Definition 24.
-Prop. 1, Book I.)
4. Therefore the remainder AL, is equal to the remainder

Ba. (Axiom 3.)
5. But BC has been proved equal to BG. (Proof 1.)
6. Wherefine $A L$ and $B C$ are, each of them, equal to $B G$.
7. But things which are equal to the same thing are equal to ono another, therefore the straight line AL is equal to the straight line BC. (Axiom 1.)
Concrusion.- Wherefore, from the given point A, a ftraight line AL has been drawn, equal to the given straight Line BC. Which was to be done.
In constructing a figure for this Proposition vith any relative positions of the given point and given. straight line, it will be observed that the apex of the equilateral triangle, the point in which the jiven straiglt tuct of the ctrcles, will equilateral triangle meet, ant the point of conluct of the ctrcles, will always be in the same straight line.

PROPOSITION 3.-PROBLEML
Arom the greater of two given straight lines to cut off a part equal to the less.
Given.-Let $A B$ and $C$ be the two given straight lines, of which $A B$ is the grenter.

Sought. - It is required to cut off from AB, the greater, $a$ part equal to $C$, the less.
 line $A D$ uncil to $C$. (Prop. 2, Book I.)
2. From the centre $A$, at the distance $A D$, describe the circle DEF. (Postulate 9.)
$A E$, a part of $A B$, shall be equal to $C$.
Proof.-1. Because the point $A$ is the centre of the circle $D E F, A E$ is equal to AD. (Definition 15.)
2. But the straight line $C$ is also equal to $A D$. (By Construction 1.)
3. Whence $A E$ and $C$ are each of them equal to $A D$.
4. Wherefore the straight line $A E$ is equal to $C$. (Axiom 1.)

Conclusion.-Thereforc, from $A B$, the greater of two straight lines, a part AE has been cut off, equal to $C$, the less. Which was to be done.

## PROPOSITION 4.-THEOREM.

If two triangles have two sides of the one equal to two sides of the other, each to each, and have likewise the angles contained by those sides equal to one another, they shall likewise have their bases, or third-sides, equal; and the two triangles shall be equal, and their other angles shall be equal, each to each, viz., those to which the equal sides are opposite.
Hypotiresis.-Let ABC, DEF, be two triangles which have-

1. The two sides $A B, A C$, equal to the two sides $D E, D F$, each to each;
viz., $A B$ equal to $D E$, and $A C$ equal to $D F$.
2. And the angle BAC equal to the angle EDF:-then-

Sequence.-1. The base BC shall be equal to the base EF.
2. The triangle $A B C$, shall be equal to the triangle $D E F$.
3. And the other angles to which the equal sides are opposite, shall be equal, each to each.

Viz., The angle ABC to the angle DEF, and the angle $A C B$ to the angle DFE.


Demonstration.-1. For if the triangle $A B C$ be applied to (or placed upon) the triangle DEF.
2. So that the point $A$ may be on $D$, and the stiaight line $A B$ on $D E$.
3. The point $B$ shall coincide with the point $E$, because AB is equal to DE. (Hypothesis 1.)
4. And $A B$ coinciding with $D E, A C$ shall coincide with $D F$, because the angle BAC is equal to the angle EDF. (Hypothesis 2.)
5. Wherefore also the point $C$ shall coincide with the point $F$, because the straight line $A C$ is equal to $D F$. (Hypothesis 1.)
8. Because the point $B$ coinciding with $E$, and $C$ with $F$, if the base $B C$ do not coincide with the base $E F$, two straight lines would enclose a space, which is impossible. (Axiom 10.)
9. Therefore the base BC does coincide with the base. EF, and is therefore equal to it. (Axiom 8.)
10. Wherefore the whole triangle $A B C$ coincides with the whole triangle DEF, and is equal to it.
11. And the other angles of the one coincide with the remaining angles of the other, and are equal to them.

Viz. : The angle ABC to the angle DEF, and the angle $A C B$ to the angle DFE. Conclusion.-Therefore, if two triangles have, \&c. (Sce Enunctation.) Which was to be shewn.

## PROPOSITION 5.-THEOREM.

The angles at the base of an isosceles triangle are equal to one another; and, if the equal sides be produced, the angles upon the other side of the base shall be equal.
Hypothesis.-1. Let ABC be an isosceles triangle, of which the side $A B$ is equal to the side $A C$.
2. Let the straight lines $A B, A C$ (the equal sides of the triangle), be produced to D and E . (the equal sides of the Sequevce - The ACB , (angles at the base.) ABC shall be equal to the angle
2. And the angle CBD shall be equal to the angle $B C E$, (angles upon the other side of the base.)
Construction.-1. In BD take any point $F$.
2. From $A E$, the greater, cut off $A G$, equal to $A F$, the less. (Prop. 3, Book I.)
3. Join FC, GB.

Demonstration.-1. Because AF is equal to AG. (Construction 2.) And $A B$ is equal to $A C$. (Hypothesis 1.)
Therefore the two sides FA, $A C$, are equal to the two GA, $A B$, each to each.

2. And they contain the angle FAG, common to the two. triangles $A F C, A G B$.
3. Therefore the base FC is equal to the base GB. (Prop. 4, Book I.)
Book Ind the triangle AFC to the triangle AGB. (Prop. 4,
5. And the remaining angles of the one are equal to the remaining angles of the other, each to each, to which the equal sides are opposite. .

Viz. : The angle $A C F$ equal to the angle $A B G$, and the angle AFC equal to the angle AGB. (Prop. 4, Brok I.)
6. And, because the whole $A F$ is equal to the whole $A G$, (Construction 2.) of which the parts $A B, A C$, are equal. ( $H y$ puthesis 1.)
The remainder $B F$, is equal to the remainder $C G$. (Axiom 3.)
7. And FC was proved to be equal to GB. (Demon-
stration 3.)
8. Therefore the two sides BF,FG, are equal to the two sides CG, GB, each to each.
9. And the angle BFC was proved to be equal to the angle CGB, (for the angle $A F C$ was proved equal to the angle AGB. Demonstration 5.)
10. And the base $B C$ is common to the two triangles $\mathrm{BFC}, \mathrm{CGB}$.
11. Wherefore these triangles ( $B F C, C G B$ ) are equal. (Prop. 4, Book 1.) And their remaining angles each to each, to which the equal siles are opposite. (Prop. 4, Book I.)
12. Therefore the angle FBC is equal to the angle GCB, and the angle BCF to the angle CBG.
13. And since it has been demonstrated that the whole angle ABG is equal to the whole angle ACF. (Demonstration 5.)

The parts of which the angles CBG, BCF, are also equal. (Demonstration 12.)
14. Therefore the remaining angle $A B C$, is equal to the remaining angle ACB. (Axiom 3.)

Which are the angles at the base of the triangle ABC.
15. And it has been proved that the angle $F B C$ is equal to the angle GCB. (Demonstration 12.)
Which are the anyles upon the other side of the base.
Conclusion. Therefore, the angles at the base, \&c. (See Enunciation.) Which was to be shewn.

Corolarir. Ilence every equiluteral triangle is also equi-:

Let $A B O$ be an equilateral triangle, then, since the triangle is equilateral, the side $A B$ is equal to the alde AC; and, by Proposition 5 , the angle $A B C$ Is equal to the angle $A C B$, belng angles at the base EC of the isosccles triangle ABC (for an equilateral triangle is also an isosceles triangle); for the same reason the angle BCA is equal to the angla CAB, and the angle BAC to the angle ABC. The three angles of the equilateral triangle ABC are then equal to one
 anotber, and the triangle is therefore equi-angular.

## Proposition 6. Theorem.

If turo moles of a triangle be equal to one another, the sides also which subtend, or are opposite to, the equal angles, shall be equal to one another.
Hrpornesis. Let $A B C$ be a triangle having the angle $A B C$ equal to the angle $A C B$.

Sequince. The side AB shall be equal to the side AC.
If $A B$ be not equal to $A C$, one of them must be greater than the other. Let $A B$ be the greater. (False Ifpoothesis.)
Construction-1. From AB the greater, cut off a part DB, equal to AC the less. (Prop. 3, Book I.)

## 2. Join DC.

Demonstration-1. Because in the triangles $D B C, A C B, D B$ is equal to $A C$, and $B C$ common to both.

2. Therefore the two sides DB, BC, are equal to the two sides AC, CB, each to eacli.
3. And the angle DBC is equal to the angle ACB. (Hypothesis.)
4. Therefore the base DC is equal to the base $A B$. (Prop. 4, Book I.)
5. And the triangle DBC is equal to the triangle $A B C$ (Prop. 4, Book I.)
The less to the greater, which is absurd.
6. Therefore $A B$ is not unequal to $A C$; that is, $A B$ is equal to AC.

Conclusion.-Wherefore, if two angles, \&c. (See Enurcidtion.) Which was to be shewn.
Conoluary.-Hence every equi-angula, triangle is also equi-
This Proposition and Coroliary are the converse of Proposition 5 and its Coroilary, part of the Iypothesls of Proposition 5 becoming tho senguence of Proposition 6, and vice versa. In the former the equality of the aides of the triangle is granted, and the resulting faci of the equality of the angles at the base is required to be demonstrated. In the latter, the equality of the angles at the base is allowed, and demonstration is required of the consequent reality of the equality of the sides of the triangle.
The demonstration of the above Proposition is termed negative or indirect, as the absurd conclusiou to which we are led by reasoning on the second or faise hypothesis, shews that the first hypothesis, and that only, can be, and must be true.

## PROPOSITION 7.-THEOREM.

Upon the same base, and on the same side of it, there cannot be two triangles that have their sides, which are terminated in one extremity of the base, equal to one another, and likewise those which are terminuted in the other extremity.
Hypotiesis-1. Let the triangles $A C B, A D B$, upon the same base AB, and on the same side of it, have, if possible, 2. Their sides CA, DA, terminated in the extremity $A$ of the base, equal to one another.
3. And their sides $C B, D B$, terminated in the extremity $B$ of the base, likewise equal to one another.
We have ussumed the possibility of the equality of the sides, in order to denonstrate the inipossibility of such a case, by arriving at an alsurd conclusion, which will follow from reasoning on a false supposition.
Construction.-Join CD.
Cassi I. First let the vertex of each triangle be without the other triangle. (See Ftgure 1.)
Demonstration-1.Because AC is equal to AD. (Hypothesis 2.)
2. The triangle ADC is an
 isoseeles triangle, and the angle $A C D$ is therefore equai to the angle ADC. (Prop. 5, Book I.)
3. But the angle $A C D$ is greater than the angle $B C D$. (Axion 9.)
4. Therefore the angle $A D C$ is also greater than BCD.
5. Much more, therefore, is the angle BDC (which ie greater than the angle $A D C$, Axiom 9) greater than BCD.
6. Again, because BC is equal to BD. (Iypothesis 3.)
7. The triangle BCD is an isosceles triangle, and the angle BDC is equal to the angle BCD. (Prop 5, Book 1.)
8. But the angle BDC has been shewn to be greater than the angle BCD. (Demonstration 5.)
9. Therefore the angle BDC is both equal to, and greater than the same angle BCD, which is impossible.

Case II.-Now let the vertex of one of the triangles fall within the other.-(See Figure II.) The figure is constructed with the vertex $D$ of the triangle $A D B$, within the other triangle $A C B$.
Construction.-Produce AC, $A D$, to $E$ and $F$.
Demonstration-1. Because $A C$ is equal to AD. (Hypothesis 2.)

2. The triangle $A D C$ is an isosceles triangle; and the angles ECD, FDC, upon the other side of its base CD, are equal to one another. (Prop. 5, Book I.)

- 3. But the angle ECD is greater than the angle BCD, (Axiom 9.)

4. Wherefore the angle FDC is likewise greater than BCD, (for it has been proved equal to the angle ECD.)
5. Much more then is the angle BDC (which is greater than the angle FDC, Axiom 9) greater than BCD
6. Again, because BC is equal to BD . (Hypothesis 3.)
7. The triangle BDC is an isoseeles triangle; and the angle BDC is equal to the angle BCD. (Prop. 5, Book I)
8. But the angle BDC has been shewn to be greater than the angle BCD. (Demonstration 5.)
9. Therefore the angle BDC is both equal to, and greater than the same angle BCD, which is impossible.

Case III. -The case in which the vertex of one triangle is upon a side of the other needs no demonstration, as it is shewn to be impossible by Proposition 6.
Conclusion. - Therefore, upon the same base, \&c. Enunciation.) Which was to be sheun. same base, \&c. (See

## EOCLID.

## PROPOSITION-8.-THEOREM.

If two triangles have two sides of the one equal to two sides of
the other, each to each, and have likewnse their bases equal, the angle which is contained by the two sides of ths one shall be equal to the angle contained by the two sides, equal to them, of the other. have
riangles which each to cach, viz. : AB AC, equal to the two sides DE, DF,
2. And the base $B C$ equal to $D E$, and $A C$ equal to $D F$.

Sequexce.-The augle BAO the base EF. EDF. DEF,
applied to
2. So that the point $B$ may be on $E$, and the straight line
3. The point $C$ shall coincide with the point $F$, becance $B C$ is equal to $E F$. (Hypothesis 2.) the point $F$, because

4. Therefore BC, coinciding with EF, BA and AC shall coincide with ED and DF.
5. For if the base BC 'coincide with the base EF ,
6. But the sides BA, AC, do no coincide with,

ED, DF, but have a different not coincide with the sides
7. Then upon the same bituation, as EG, GF, it, there can be two triangles, and upon the same side of nated in one extremity of the which have their sides termilikewise their sides, which base equal to another; and extremity.

But the impossibility of this statement has been shewn in Pronosition 7.
8. Therefore, if the base BC coincide with the base EF, the sides BA, AC, must coincide with the sides ED, DE.
9. Wherefore the angle BAC must coincide with the angle EDF, and is equal to it. (Axiom 8.) Concrusion.-Therefore, if two triangles, \&c. Enunciation.) Which was to be shewn tringles, \&a, (Ses

## PROPOSITION 9.-PROBLEM.

To bisect a given rectilineal angle, that is, to divide it into two equal parts.
Given.-Let BAC be the given rectilineal angle.
Sought.-It is required to bisect it.
Construction.-1. Take any point $D$ in AB.
2. From AC (the greater), cut off a part $A E$, equal to $A D$ (the less). (Prop. 3, Book I.)
3. Join DE.
4. Upon DE, describe an equilateral triangle DEF (on the opposite side of the base, to that on which the triangle DAE is formed.)
5. Join AF ; the straight line AF shall bisect the angle BAC.


Proof.-1. Becunse AD is equal to AE (Construction 2). and $A F$ is common to the two triangles DAF, EAF.
2. The two sides $D A, A F$, are equal to the two sides $E A$, $A F$, each to each.
3. And the base DF is equal to the base EF. (Construction 4.)
4. Therefore, the angle DAF is equal to the angle EAF. (Proposition 8, Book I.)

Conclusion.-Wherefore the given rectilineal angle BAC is bisected by the straight line AF. Which was to be done.

PROPOSITION 10.-PROBLEM.
To bisect a given finite straight line, that is, to divide it into two equal parts.
Given.-Let $A B$ be the given straight line.
Sotart.-It is required to divide it into two equal parts. Constrcotion.-1. On AB construct the equilateral triangle ABC. (Prop. 1, Book I.)
2. Bisect the angle ACB by the straight line CD. (Prop. 9, Book I.)
3. Let the straight line $C D$ meet $A B$ in the point $D$.
$A B$ shall be cut into two equal parts in the point $D$.

Proor 1. Because AC is equal to CB (Construction 1), and $C D$ eominon to the two triangles, $A C D, B C D$.
2. The two sides, $A C, C D$,
 are equal to the two sides $B C, C D$, each to each.
3. And the angle ACD is equal to the angle BCD. (Construction 2.)
4. Therefore the base $A D$ is equal to the base $D B$ (Prop. 4, Book I.)
Conclusion. - Wherefore the straight line $A B$ is divided into two equal parts in the point $D$. Which was to be done.

## PROPOSITION 11.-PROBLEM.

To draw a straight line ut right angles to a given straight line from a given point in the same.
Given,-Let $A B$ be the given straight line, and $C$ a given point in it.

Sought. - It is required to draw a straight line from the point $C$ at right angles to $A B$.

Construcizon.-l. Take any point $D$ in $A C$.
2. Make CE
2. Make CE equal to CD (Prop. 3, Book I.) (producing $A B$, if necessary, in the same straight line from $A$ or $B$, should the given point be identical with either extremity, or too close to allow us to make CE equal to $C D$
3. Upon DE describe the equilateral triangle DFE. (Pro-
4. Join FC:-the straight line FC, drawn from the given point $C$, shall be at right angles to the given straight line AB.

Proof.-l. Because DC is equal to CE (Construction 2), and FC common to the two triangles DCF, ECF.
2. The two sides DC, CF, are equal to the two sides EC, $C F$, each to each.
3. And the base DF is equal to the base EF. (Construction 3.)
4. Therefore the angle DCF is equal to the angle ECF. And they are adjacent angles.
5. But when the $\varepsilon$ Jjacent angles which one straight line makes with another straight line are equal to one another, cach of them is called a right angle. . (Definition 10.)
6. Therefore each of the angles DCF, ECF, is a right angle. Conclusion.-Wherefore from the given point $C$ in the given straight line AB, a straight line FC has been drawn at right angles to AB . Which was to be done.
Corollart.-By help of this Problem, it may be demon-
Two straight lines cannot have a common segment.
Hypothesis.-If it be possible, let the two straight lines ABC, ABD, have the segment AB common to both of them
Constroction.-From the point B, draw BE at right angles to AB. (Prop. 11, Book I.)
Demonstration. - 1. Because $A B C$ is a straight line, the angle CBE is equal to the angle EBA. (Definition 10.)
2. But because ABD is a straight line, the angle DBE is equal to the angle EBA. (Definition 10.)

3. Wherefore the angle DBE is equal to the angle CBE. (Axiom 1.)
The less angle equal to the greater; which is impossible.

PROPOSITION 12.-PROBLEM.
To draw a straight line perpendicular to a given straight of unlimited length, from a given point without it.
Grven.-Let AB be the given straight line which may be produced to any length both ways, and let $C$ be a point
without it.

Sougut.-It is required to draw from the point $C$, a straight line perpendicnlar to $A B$.

Construction.-1. Take any point $D$ upon the other side of AB.
2. From the centre
$C$, at the distance $C D$, describe the circle EGF. (Postulate 3.)
3. Let the cirele EGF meet the straight line $A B$ in the points $F$ and $G$.
4. Bisect $F G$ in H .
 (Prop. 10, Book I.)
5. Join CH :-the straight line CH , drawn from the given point $C$, shall be perpendicular to the given straight line $A B$
6. Join CF, CG.

Demonstration.-1. Because FH is equal to HG, (Construction 4,) and HC common to the two triangles FHC GHC.
2. The two sides $\mathrm{FH}, \mathrm{HC}$, are equal to the two sides CH , HC, each to each.
3. And the base CF is equal to the base CG. (Dcfini-
4. Therefore the angle CHF is equal to the angle CHG, (Prop. 8, Book I.) and they are adjacent angles.
5. But when a straight line, standing on another straight line, makes the adjacent angles equal to one another, each of them is a right angle, and the straight line which stands upon the other is called a perpendicular toit. (Definition 10.)

Conclusion.-Therefore, from the given point C , a perpendicular has been drawn to the given straight line AB. Which was to be done.

PROPOSITION 13.-THEOREM.
The angles which one straight line makes with another upon one side of it, are either two right angles, or are together equal to two right angles.
Hypothesis.- Let the straight. line AB make with CD, upon one side of it, the angles CBA, ABD.
Sequence.-These angles shall either be two right angies, or shall together le egual to two right angles.
he point $C$, a pon the other

rom the given aight line $A B$ to HG, (Conangles FHC
wo sides GH ,

## G. (Dcfini-

 angle CHG, ther straight nother, each hich stands Pefinition 10.) nt C, a perfht line AB.her upon one her equal to
e with CD, ight angles,

Demonstimiton.-1. If the angle CBA be equal to the angle ABD, each of them is a right angle. (Definition 10.) 2. But if the angle CBA be not equal to the angle $A B D$, sum the point B , draw BE at right angles to CD. (Propo-
sition 2, Book L.)


3. Therefore the angles CBE, EBD, are two right angles. (Definition 10.).
4. Because the angle $C B E$ is equal to the two angles CBA, $A B E$, together, add the angle $E B D$ to ench of these equals.
5. Therefore the angles CBE, EBD, are equal to the three angles CBA, ABE, EBD. (Axiom 2.)
6. Again, because the angle DBA is equal to the two angles DBE, EBA, add the angle ABC to each of these equals.
7. Therefore the angles $D B A, A B C$, are equal to the three angles DBE, EBA, ABC. (Axiom 2.)
8. But the angles CBE, EBD, have been shewn to be equal to the same three angles. (Demonstration 5.)

And things which are equal to the same thing, are equal to one another.
9. Therefore the angles CBE, EBD, are equal to the angles DBA, ABC. (Axiom 1.)
10. But the angles CBE, EBD, are two right angles. (Demonstration 3.)
11. Therefore the angles $D B A, A B C$, are together equal to two right angles. (Axiom 1.)
Conclusion.- Wherefore the angles which one straight Line, \&c. (See:Enunciation.) Which was to be shewn.

## PROPOSITION 14.-THEOREM.

If at a point in a straight line, two other straight lines upon the opposite sides of it make the adjacent angles together equal to two right angles, these two straight lines shall be in one and the same straight line.
Hypothesis.-At the point $B$ in the straight line $A B$, let the two straight lines $B C, B D$, upon opposite sides of $A B$,
make the adjacent angles $A B C, A B D$, together, equal to two right angles.
Sequence.-BD shall be in the same atraight line with BC.
(False Hypothissis.)For if BD be not in the same straight line with BC, let BE be in the same straight line with it.
Demonstration.-1. Now, because the straight line $A B$ makes, with the straight line CBE upon one side of it, the angles $A B C$, ABE, these angles are, to-
 gether, equal to two right angles. (Prop. 13, Book I.)
2. But the angles $A B C, A B D$, are also together equal to two right angles. (Hypothesis.)
3. Therefore the angles $A B C, A B E$, are equal to the angles ABC, $A B D$. (Axiom 1.)
4. Take away the common angle ABC.
5. The remaining angle $A B E$, is equal to the remaining angle ABD, (Axiom 3,) the less angle equal to the greater, which is impossible.
6. Therefore BE is not in the same straight line with BC .
7. And, in like manner, it may be demonstrated, that no but BD.
8. Therefore BD is in the same straight line with BC.

Conclusion.-Wherefore, if at a point in a straight line, \&c. (See Enunciation.) Which was to be shewn.

PROPOSITION 15.-THEOREM.
If two straight lines cut one another, the vertical, or opposite angles shall be equal.
Hypotirsis.-Let the two straight lines AB, CD, cut one nother in the point $E$.
Sequence. - The angle AEC shall be equal to its opposite angle DEB, and the angle CEB to its op. posite angle AED.

wil
eq

Demonstration.-1. Because the straight line AE makee, with CD, the angles CEA, AED, these mugles are, together equal to two right angles. (Prop. 13, Brook. I.)
2. Again, becanse the straight line $D E$ makes, with $A B$ the angles AED. DEB, theso angles are, together, equal to two right angles. (Prop. 13, Book 1.)
3. But it has bsen shewn that the angles CEA, AED, are, together, equal to two right angles. (Demonstration 1.)
3. Wherefore the angles CEA, AED, are equa! to the angles AED, DEB. (Axiom 1.)
4. Tuke awry the cemmon angle AED.
5. The remaining angle CEA, is equal to the remaining angle DEB. (Axiom 3.)
6. In the same manner it can be shewn that the anglea CEB, AED, are equal.
Conclusion. - Therefore, if two straight lines, \&e. (Siea Enunciation.) Which was to be shewn.
Corollary.-1. From this it is manifest, that if two straight lines cut one another, the angles which they make at the point in which they cut, are, together, equal to four right angles.
Corollary.-2.: And, consequently, that all the angles mode. by any number of lines meeting in one point, are, together, equai to four right angles.

## PROPOSITION 16.-THEOREM.

If one side of a triangle be produced, the exterior angle ie greater than either of the interior opposite angles.
Hypotiesis.-Let ABC be a triangle, and let its side BC be produced to D .

Sequence.- The exterior angle ACD shall be greater than either of the interior opposite angles CBA, BAC.

Consthuction.-1. Bisect AC in E. (Prop. 10, Book I.)
2. Join BE and produce it to $F$, and make EF equal to BE. (Proposition 3. Book I.)
3. Join FC.

Demonstration. -

1. Because AE is equal to EC , and BE equal

to EF, (Construction 1, 2.)
2. $A E, E B$, are equal to $C E, E F$, each to each.
3. And the angle AEB is equal to the angle CEF, because they are opposite vertical angles. (Prop. 15, Book I.)
4. Therefore the base AB is 'equal to the base CF. (Prop. 4, Book I.)
5. And the triangle AEB is equal to the triangle CEF, (Prop. 4, Book I.)
6. And the remaining angles of the one, to the remaining angles of the other, each to each, to which the equal.sides are opposite.

Wherefore the angle BAE is equal to the angle ECF. (Prop. 4, Book I.)
7. But the angle ECD is greater than the angle ECF.
8. Therefore the angle $A C D$ is greater than the angle $B A E$.
9. If the side $B C$ be biseeted, and $A C$ be produced to $G$, it can be shewn in the same manner that the angle BCG, that is, the angle ACD (since they are opposite vertical angles) is greater than the angle ABC.

Conclusion.-Therefore, if one side of a triangle, \&c. (See Enunciation.) Which was to be shewn.

## PROPOSITION 17.-THEOREM.

Any two angles of a triangle are, together, less than two right angles.
Hypothesis.-Let ABC be any triangle.
Sequence.-Any two of its angles together shall be less than two right angles.
Construction.-Produce $B C$ to $D$.
Demonstration.-1. Because ACD is the exterior angle of the triangle $A B C$, it is greater than the interior and opposite angle ABC. (Prop. 16, Book I.)
2. To each of these add the angle $A C B$.
3. Therefore the angles $A C D, A C B$, are greater than the angles ABC, ACB. (Axiom 4.)
4. Bat the angles $A C D, A C B$, are, together, equal to two right angles. (Prop. 13, Book I.)
5. Therefore the angles ABC, ACB, are, together, less than two right angles.

6. In like manner it can be shewn that BAC ACB, and also $C A B, A B C$, are less than two right angles. Conclusion.-Therefore any two angles, \&c. (See Enunciation.) Which was to be shewn.

The greater side of every triangle is opposite to the greater angle. Hypothesis.-Let ABC be a triangle, of which the side $A C$ is greater than the side AB.
Sequence.-The angle ABC shall be greater than the angle BCA.
Constriction. -

1. Because $A C$ is greater than $A B$, make $A D$ equal to AB. (Prop. 3, BookI.)
2. Join BD.

Demonstration. -

1. Because ADB is

the exterior angle of the triangle $B D C$, it is greater than the interior and opposite angle BCD. (Prop. 16, Book I.), 2. But because the triangle ABD is an isosceles triangle, for the side AB is equal to the side AD. (Construction.)
2. The angle ADB is equal to the angle ABD. (Prop. 5, Book I.)
3. Therefore the angle $A B D$ is greater than the angle BCD (or ACB.)
4. Much more, then, is the angle ABC (which is greater than the angle $A B D$ ) greater than the angle ACB.
Conclusion. - Therefore, the greater side, \&c. (See Enunciation.) Which was to be shewn.

## PROPOSITION 19.-THEOREM.

The greater angle of every triangle is subtended by the greater side, or has the greater side opposite to it. Hypotiesis.-Let ABC be a triangle, of which the angle $A B C$ is greater than the angle BCA.
Sequence. - The side AC shall be greater than the side AB.

- Demonstration.1. If $A C$ be not greater than AB, it must either he equal to or less than


2. It is not equal, heceuse then the angle $A B C$ would be equal to the anglo BCA. (Prop. 5, Book I.)
3. But the angle $A B C$ is not equal to the angle BCA. (Ihypothesis.)
4. Therefore $A C$ is not equal to $A B$.
5. Neither is $A C$ less than $A B$, because then the angle ABC would he less than the angle BCA. (Prop. 18, Book I.)
6. But the angle $A B C$ is not less than the angle BCA. (Hypothesis.)
7. Therefore $A C$ is not less than $A B$.
8. And it has been shewn that $A C$ is not equal to $A B$.
9. Therefore $A C$ must be greater than $A B$.

Conclusion.- Wherefore the greater angle, \&e. Enunciation.) Which was to be shewm.

Any two sides of a trianqle, are together greater than the third side.
Hypotiesis.-Let ABC' be any triangle.
Sequence.- Any two sides of it together, shall be greater than the third side: viz., the sides $B A, A C$, greater than the side $B C$; and $A B$, $B C$, greater than $A C$; and $B C, C A$, greater than AB.
Construction.-1. Produce BA to the point $D$, and make AD equal to AC. (Prop. 3, Book I.)
2. Join DC.


Demonstration.-1. Beeanse DA is equal to AC, the angle ADC is equal to the angle ACD. (I'rop. 5, Book I.)
2. But the angle BCD is greater than the angle ACD. (Axiom 9.)
3. Therefore the angle BCD is greater than the angle ADC (or BDC.)
4. And because the angle BCD of the triangle DCB, is greater than its angle BDC, and that the greater angle is subtended by the greater side.
5. Therefore the side DB is greater than the side BC. (Prop. 19, Book I.)
6. But since $A D$ is equal to $A C$. (Construction 1.)
7. The straight line BD is eaual to $8 A$ and $A C$.
8. Therefore the sides BA and AC are greater than BC, the third side.
9. In the same manner it may be demonstrated, that the sides $A B B C$ are greater than $C A$, and $B C C A$ greater than AB.

Conclusion.-Therefore any two sides, \&c. (Ses Enunciation) Which was to be shewn.

## PROPOSITION 21.-THEOREM.

.If from the ends of the side of a trianyle there be drawn two straight lines to a point within the trimule, these shall be less than the other two sides of the triangle, but shall contain a greater angle. Hrpotnesis.- Let ABC be a trinngle, and from the points $B$ and $C$, the ends of the side $B C$, let the two struight lines $B D, C D$, be drawn to the point $D$ within the triungle. Sequence.-1. BD DC, shall be less than the sides BA $A C$ of the triangle BAC.
2. But BD DC shall contain an angle, BDC, greater than the angle BAC. Construction.
-Produce BD to E.
Demonstration.
-(I.) 1. Because two sides of a triangle are greater than the third side (Prop. 20, Book I.), the two sides BA $A E$ of the triangle $B A E$ are greater than $B E$.
2. Add, to each of these, EC.
3. Therefore the sides BA, AC, are greater than BE, EC. (Axiom 4.)
4. Agnin, because the two sides $\mathrm{CE}, \mathrm{ED}$, of the triangle CED, are greater than CD. (Prop. 20, Book I.)
5. Add to each of these DB
6. Therefore the sides $C E, E B$, are greater than the sides CD, DB. (Axiom 4.)
7. But it has been shewn that BA, AC, are greater than BE, EC. (Demonstration 3.)
8. Therefore much more are BA, AC, greater than BD, DC.

Demonstration.-(II.) 1. Again, beeause the exterior angle of a triangle is greater than the interior and opposite
angle, $B D C$, the exterior angle of the triangle $C D E$ is grenter than CED.
2. For the same reason, CEB (or CED), the exterior angle of the trimgle $A B E$, is greater than BAC (or BA 1 ).
3. And it has been demonstrated that the marle BDC is greater than the mgle CEB.
4. Much more, then, is the angle BDC greater than the angle BAC.

Conclusion.-Therefore, if from the ends, \&c. (See Enundiation.) Which was to be shewn.

## PROPOSITION 22.-TROBLEM.

To make a triungle, of which the sides shall be equal to three given straight lines, but any two whatever of these must be greater than the third.
Given.-Let A, B, C, be the three given straight lines, of which any two whatever are greater than the third, vir. :$A$ and $B$ greater than $C, A$ and $C$ greater than $B$, and $B$ and C rreater than $A$.

Sougat.-It is required to make a triangle, of which the sides shall be equal to $A, B$, and $C$, each to each.
Gonstruction.1. Take a straight line, $D E$, termimated at the point D, but unlimited towards E .
2. Make DF equal to $A$, FG equal to
 B, and GH equal to C. (Prop. 3, Book I.)
3. From the centre $G$, at the distunce $G H$, describe the circle HLK. (Postulate 3.)
4. From the centre F, at the distance FD, describe the circle DKL.' (Postulate 3:)
5. Join KF, KG. (or $L F, L G$.)

The triangle KFG (or the triangle LFG), shall have its sides equal to the three straight lines $A, B, C$.
Proor-1. Because the point $F$, is the centre of the circle DKL, FD is equal to FK. (Definition 15.)
2. But FD is equal to the straight line A. (Construction 2.)
8. Therefore FK is equal to the struight lins A. (Axiom 1.)

EUCLID.
4. Agıin, because the point $G$ is the centre of the circle HLK, GH is equml to GK. (Difinition 15.)
5. But GH is equal to the straight line $\mathbf{C}$. (Construction 2.)
6. Therefore GK is equal to the straigitt line C. ( $A x i-$ om 1.)
7. And FG is equal to the struight line B. (Construction 2.)
8. Therefore the three struight lines KF, FG, GK, are equal to the three straight lines $A, B, C$, each to ench.

Concluston.-Therefore the triangle KFG has its three sides, KF, FG, GK, equal to the three given straight lines, $\mathrm{A}, \mathrm{B}, \mathrm{C}$. Which wers to be done.

A similar mode of proof will shew thut the triungle LFG also has its three sides, $L \dot{F}^{\prime}, \mathcal{H}^{\prime} \mathcal{C}^{\prime}, G L$, equal to the three given straight lines $A, B, C$.

## PROPOSITION 23.—PROBLEM.

At a given point in a given straight line, to moke a rectilineal angle equal to a given rectilineul angle.
Given-1. Let $A B$ be the given straight line, and $A$ the given point in it.
2. And let DCE be the given rectilineal angle.

Sovarr.-It is required to make an angle at the given point $A$, in the straight line $A B$, thes shall be equal to the given rectilineal angle, DCE.

Construction.-1. In CD, CE, (the sides which contain the given rec-
tilineal angle $D C E)$, take any points, $D$, E.
2. Join DE.
3. On AB, construct a triangle AFG, the sides of which shall be equal to the three straight lines CD, DE, EC. (Prop. 22, Book I.)

Viz.-AF equal to $C D, F G$ equal to $D E$, and $E C$ equad
The angle FAG shall be equal to the angle DCE.
Phoof.-1. Because DC, CE are equal to $F A, A G$, each to

all have its of the circle
$\qquad$
ealch, and the base DE equal to the base FG. (Construo-
tion 3.) 2. The angle DCE is equal to the angle FAG. (Prop. 8, Book I.)
Conclusion.-Therefore at the given point $A$, in the Fiven straight line $A B$, the angle $F A G$ is mado equai to the given rectilinenl angle DCE. Which was to bo done.

## PROPOSITION 24.-THEOREM.

Lf two triamyles have two sides of the one equal to two sides of the other, euch to each, but ihe angle contained by the two sides of one of them, greater thom the angle contaimed by the two sides equal io them of the other, the buse of that ichirh. has the greater angle shatl be greater than the base of the other. Hypotuesis.-I et AEC, DEF, be two triangles, which have,

1. The two sides $A B, A C$, equal to the two $D E, D F$, each to euch; riz., $A B$ equal to $D E$, and $A C$ to $D F$.
2. But the angle BAC greater than the nngle EDF.

Sequence.-The base BC shall be greater than the buse EF.
Construction. 1. Let the side DF of the triangle DEF, be greater than its side $D E$.
2. Then at the point $D$, in the straight line ED, make the ingle EDG equal to the angle BAC. (Prop.
 23, Book: I.)
3. Make DG equal to DF or AC. ( (Prop. 3, Book I.)
4. Join EG GF.

Demonstratlon.- 1 . Because $A B$ is equal to DE, ( $H y$ pothesis 1,) and AC to DG, (Construction 3,) the two sides $B A, A C$, are equal to the two ED, DG, ench to each.
2. And the angle BAC is equal to the angle EDG. (Construction 2.)
3. Therefore the base BC is equal to the base EG. ( Prop. $^{2}$ 4, Book I.)
4. And because DG is equal to DF, (Construction 3,)

FG. (Construo FAG. (Prop. 8, point $A$, in the ade equi to the bo dune.

## IT.

mal to two sides tained by the two contained by the se of that which. base of the other. riangles, which

DE, DF, each rie EDF. ater than the

, Book I.)
to $\mathrm{DE}, \quad(I y-$ the two sides , each. EDG. (Cone base EG. nstruction 3,)
(the triangle DFG is an isosceles triangle, and) the angle DFQ is equal to the angle DGF. (Prop. 5, Book I.)
5. But the angle DGF is greater than the angle EGF. (Axiom 9.)
6. Therefore the angle DFG is grenter than the angle EGF.
7. Much more then is the angle EFG (which is greater than DF'G, Axiom 9,) greater than the angle EGF.
8. And because the angle EFG of the triangle EFG, is greater thun its angle EGF, and that the greater angle is subtended by the greater side.
9. Therefore the side EG, is greater than the side EF (Prop. 19, Book I.)
10. 13nt EG was proved to be equal to BC.
11. Therefore BC is greater than EF.

Conclunton.- Therefore if two triangles, \&c. (Soe Enumciation.) Which was to be done.

## PROPOSITION 25.-THEOREM.

If two triangles have two sides of the one equal to two sides of the other, each to cach, but the buse of the one greater than the base of the other, the anyle contained ly the sides of that which has the greater base, shall be greater than the ungle contained by the sides equal to them of the other.
Hypotuesis.-Let ABC, DEF, be two triangles, which have-

1. The two sirles $A B, A C$, equal to the two sides $D E, D F$, each to each ; viz., $A B$ equal to $D E$, and $A C$ equal to $D F$.
2. But the base $B C$, greater than the base $E F$.

Sequence.-The angle BAC shall be greater than the angle EDF.
Demonstration.-l. For if it be not greater, it must be either equal to it or less than it
2. But the angle BAC is not equal to the angle EDF, because then the base BC would be equal to the base EF. (Prop. 4, Book I.)
8. But the base BC is not equal to the base EF. (Hypothesis 2.)

## zoourd

4., Thercfore the angle BAC is not equal to the angle EDF.
5. And the angle BAC is not less than the angle EDF, because then the base BC would be less than the base EF. (Proposition 24, Book I.)
6. But the base BC is not less than the base.EF. (Hy-
thesis 2.) pothesis 2.)
${ }^{7}$. Therefore the angle BAC is not less than the angle
8. And it was shewn that the angle BAC is not equal to the angle EDF. (Demonstration 4.)
9. Therefore the angle BAC must be greater than the angle EDF.

Conclusion. - Therefore, if two triangles, \&e. (See Enumciation.) Which was to be shewn.

## PROPOSITION 26.-THEOREM.

If two triangles have two angles of the one equal to two angles of the other, each to each, and one side equal to one side; viz., either the sides adjacent to the equal angles (1), or the sides opposite to the equal angles (2), in each, then shall the other sides be equal, each to each, and also the third angle of the one to the third angle of the other.
Hypotiesis.-Let ABC, DEF, be two triangles, which have-

1. The angles $A B C, B C A$, equal to the angles $D E F, E F D$, each to each; viz., ABC to DEF; and BCA to EFD.
2. Also one side cqual to one side.

Case 1.-First, let those sides be equal which are adjacent to the angles' that are equal in the two triangles; viz., BC equal to $E F$.

Sequence.-1. The other sides shall be equal each to each; viz., $A B$ to $D E$, and $A C$ to DF.
2. And the third angle BAC, shall be equal to the third angle EDF.

Hypothesis. - (II.) For if $A B$ be not equal to $D E$, one of them must be greater than the other: let $A B$ be the greater of the two.

Construction.-l. Make BG equal to DF


## soown.

## 2. Join GC.

Demonstration.-1. Aceanse BG is equal to DE, (Construction 1,) and BC equal to EF, (Hypothesis 2,) the two sides $\mathrm{GB}, \mathrm{BC}$, are equal to the two sides $D E, E F$, each to cach.
2. And the anglo GBC is equal to the angle DEF. (Hypothesis 1.)
3 Therefore the base GC is equal to the base DF. (Privosition 4, Buok I.)
4. And the triangle GBC, to the triangle DEF. (Proposition 4, Book I.)
5. And the other angles to the other angles, each to each, to which the equal sides are opposite.
6. Therefore the angle GCB is equal to the angle DFE. (Proposition 4, Book I.)

7hesis 1.) angle DFE is equal to the angle BCA. ( $H_{y}$ pothesis 1.)
8. Therefure the angle GCB is equal to the angle BCA (Axiom 1,) the less equal to the greater, which is impossible.
9. Therefore $A B$ is not unequal to $D E$; that is, $A B$ is equal to $D E$; and $B C$ is equal to $E F$. (Hypothesis 2.)
10. Therefore the two, $A B, B C$, are equal to the two, $D E$ $E F$, each to each.
11. And the angle $A B C$ is equal to the angle DEF. (Hypothesis 1.)
12. Therefore the base $A C$ is equal to the base DF. (Proposition 4, Book I.)
13. And tho third angle BAC, to the third angle EDF. Case II.-(Hypotuesis.) Next, let the sides which are opposite to equal angles in each triangle, be equal to one another; viz., $A B$ equal to $D E$.

Sequence - 1. Likewise in this ease the other sides shall be equal; viz., EF $A C$ to $D F$, and $B C$ to EF.
2. And also the third angle BAC to the third angle EDF.
Hypothesis.-(II.) For if BC be not equal to $E F$, one of them must be
 greater than the other: let BC be the greater of the two.

## EUCLID.

## Construction.-1. Make BH equal to EF. (Proposition Book I.)

 2. Join AH.Demonstration.-1. Becaase BH is equal to EF, (Construction 1), and $A B$ equal to DE, (Hynothesis), the two sides $A B B H$, are equal to the two sides DE EF, each to each
2, And the angle ABH is equal to each to each. pothesis.)
(Hyposition 4, Book I.) position 4, Book I.) ABH to the triangle DEF. (Pro-
5. And the other angles to the other angles, each to each, to which the equal sides are opposite.
6. Therefore the angle BHA is equal to the angle EFD. (Proposition 4, Book I.)
7. But the angle EFD is equal to the angle BCA. (Hy-
8. Therefore the angle BHA is also equal to the and BCA. (Axiom 1.) ande
9. That is, the exterior angle BHA of the triangle AHC, is equal to its interior and opposite angle BCA, which is impossible. (Proposition 16, Book I.)
10. Therefore $B C$ is not unequal to $E F$; that is, $B C$ is equal to $E F$; and $A B$ is equal to $D E$ (Hypothesis.) $B C$ is 11. Therefore the two, AB, BC, are (Hypothesis.) $E F$, each to each. $\mathrm{A}, \mathrm{BC}$, are equal to the $\mathrm{two}, \mathrm{DE}$, 12. And the angle $A B C$ is equal to the angle $D E F$ (Hypothesis 1.)
13. Wherefore the base AC is equal to the base DF. (Proposition 4, Book I.)
14. And the third angle BAC is equal to the third angle Conclusion - The fore if two Conclusion. - Therefore if two triangles, \&c. (See

## PROPOSITION 27.-THEOREM.

If a straight line falling upon two other straight lines make the alternate angles equal to one another, these two straight lines Hypothesis.-Let the straight line EF, which falls upon the two straight lines $A B, C D$, make the alternate anglea Enunciation.) Which was to be shewn. triangles, \&c. (See $A E F, E F D$, equal to one another.

EUCLID. Hypothesis.-(II

For, if they be not parallel, $A B$ and will meet either towards B, D, or towards $\mathrm{A}, \mathrm{C}$; let them be produced, and meet towards $B$ and $D$ in the point G .
Demonstration.

-1. Now, by Hypothesis II., GEF is a triangle.
2. And its exterior angle. AEF, is greater than
and opposite angle, EFG (Prop. 16, Book I.) the interior
3. But the angle, $A E F$, is also equal to $E F$
which is impossible.
and $C D$ being produced, do not meet
5. In like manner it may be shewn that they do not meet towards A, C.
6. But those straight lines which meet neither way. though produced ever so far, are parallel to one another. (Def: 35.) 7. Therefore $A B$ is parallel to $C D$.

Conclusion.-Wherefore if a straight line, \&c. (See Enunciation.) Which was to be shewn.

## PROPOSITION 28.-THEOREM.

If a straight line falling upon two other straight lines make the exterior angle equal to the interior and opposite upon the same side of the line, or make the interior angles upon the same side together equal to two right angles, the two straight lines shall be parallel to one another.
Hypothesis.-Let the straight line EF, which falls upon. the two straight lines, $A B, C D$, make,

1. The exterior angle, EGB, equal to the interior and opposite angle, GHD, upon the same side;
2. Or make the interior angles on the same side, the angles BGH, GHD, together equal to two right angles.

Sequence.-AB shall be parallel to CD.
Demonstration.-(I.) 1. Becanse the angle EGB is equal to the angle GHD (Hypothesis 1.)
2. And the angle EGB is equal to the angle AGH, (Prop.

## EUCLID.

3. Therefore the angle AGH is equal to the angle GHD (Axiome 1), and these angles are alternate angles.
4. Therefore $A B$ is parallel to CD. (I'rop. 27, Book 1.)

(II.) 1. Again, hecause the angles BGH, GHD, are equal to two right angles, Mypothesis 2.)
5. And that the angles $\mathrm{AGH}, \mathrm{BGH}$, are also equal to two right angles, (Proposition 13, Book I.)
6. Theretore the angles AGH, BGH, are equal to the angles BGH, GHD. (Axiom 1.)
7. Take away the common angle, BGH.
8. Therefore the remaining angie, $A G H$, is equal to the remaining ungle GHD (Axiom 1.), ard these angles are alternate angles.
9. Therefore AB is parallel to CD. (Prop, 27, Book I.) Conclusion. Wherefore, if a straight line, \&c. (See Enunciation.) Which was to be shewn.

## PROPOSITION 29.-THEOREM.

If a straight line fall upon two parallel straight lines, it makes the alternate anyles equal to one another, and the exterior angle equal to the interior and opposite upon the same side, and, likewise, the two interior angles upon the same side, together equal to two right angies.
Hrpotitesis.-Let the straight line EF fall upon the parallel straight lines $A B, C D$.
Sequence.-1. The alternate angles, AGH, GHD, shall be equal to one another.
2. The exterior angle, EGB, shall be equal to GHD, the interior and opposite angle upon the same side.
3. And the two interior angles, BGH, GHD, upon the same side, shall
 be together equal to two right angles.
Hypothesis. - (II.) For if AGH be not equal to GHD, one of them mustbe greater than the other; let $A G H$ be the greater.

Demonstration.-1. Now, becanse the angle AGH is greater than the angle GHD, add to each of these the angle BGH.
2. Therefore the angles AGH, BGH, are greater than the angles BGH, GHD. (Axiom 4.)
3. But the ungles AGH, BGH, are equal to two right angles. (Prop. 13, Book I.)
4. Therefore the angles BGH, GHD, are less than two right angles.
5. But those straight lines which, with another straight line falling upon them, make the interior angles on the same side together less than two right angles, will meet together if they be produced far enough. (Axiom 12.)
6. Therefore the straight lines $A B, C D$, will meet if produced far enough.
7. But they cannot meet, beeause they are parallel straight lines. (Hypothesis.)
8. Therefore the angle $A G H$ is not nnequal to the angle GHD; that is, the angle AGH is equal to the angle GHD.
9. But the angle AGH is equal to the angle EGB. (Prop. 15, Book I.)
10. Therefore the angle EGB is equal to the angle GHD. Axiom 1.)
11. Add to each of these the angle BGH.
12. Therefore, the angles $E G B, B G H$, arc equal to the angles BGH, GHD. (Axiom 2.)
13. But the angles EGB, BGH, are equal to two right angles. (Proposition 13, Book I.)
14. Therefore, also, the angles BGH, GHD, are equal to two right angles.
Conclusion.-Wherefore, if a straight line, \&c. (See Enunciation.) Which was to be shewn.

PROPOSITION 30.-THEOREM:
Straight lines, which are parallel to the same straight line, are parallel to each other.
Hypotiesis.-Let AB, CD, be each of them parallel to EF.
Sequence.-AB shall be parallel to CD.
Construction.-Let the straight line GHK be drawn. on'ting AB, Er, and CD.
Demonstration.-1. Because GHK cuts the parallel straight lines $A B, E F$, the angle $A G H$ is equal to the angle GHF. (Proposition 29, Book I.)
2. Again, because the straight line GK cuts the parallel straight lines $E F$, CD, the angle GHF is equal to the angle GKD. (Prop. 29, Book I.)
3. And it was shown that the angle AGK (or AGH)
 is equal to the angle GHF. (Demonstration 1.)
4. Therefore the angle AGK is equal to the angle GKD, (Axiom 1), and they are alternate angles.
5. Therefore the straight line $A B$ is parallel to the straight line CD. (Prop. 27, Book I.)

Conclusion.-Wherefore, straight lines, \&c. (See Enunciation.) Which was to be shewn.

## PROPOSITION 31.-PROBLEM.

To draw a straight line through a given point, parallel to a given straight line.
Grven.-Let $A$ be the given point, and BC the given straight line.

Sovart.-It is required to draw a straight line through the point $A$, parallel to the straight line, $B C$.


Construction.-1. In BC take any point D.
2. Join AD.
3. At the point $A$, in the straight line $A D$. make the angle DAE equal to the angle ADC. (Prop. 23. Book I.)
4. Produce the straight line EA to F, EF shall be parallel to BC .
Proof.-1. Because the straight line $A D$ meets the two straight lines $B C, E F$, the alternate angles $E A D, A D C$, are equal to one another.
2. Therefore EF is parallel to BC. (Prop. 27, Book I.)

Conolusion.-Therefore, the straight line EAF, is drawn through the given point A, parallel to the given straight line, BC. Which was to be done.

PROPOSITION 32.-THEOREM.
If a side of any triangle be produced, the exterior angle is equal to the two interior and opposite angles; and the three interior angles of every triangle are equal to two right angles. Hypothesis.-Let ABC be a triangle, and let one of ita sides, BC, be produced to $D$.

Sequence.-1. The exterior angle, $A C D$, shall be equal to the two interior and opposite angles, $C A B, A B C$.
2. And the three interior angles of the triangle, viz., $A B C, B C A, C A B$, shall together be equal to two right angles.

Construction.-Through the point C, draw CE parallel to AB. (Prop. 31, Book I.)


Demonstration.-1. Because $A B$ is parallel to $C E$, and $A C$ meets them, the alternate angles $B A C, A C E$, are equal (Prop. 29, Book I.)
2. Again, becanse $A B$ is parallel to $C E$, and $B D$ falls on them, the exterior angle, ECD, is equal to the interior and opposite angle, ABC. (Prop. 29, Book I.)
3. But the angle $A C E$ was shewn to be equal to the angle BAC. (Demonstration 1.)
4. Therefore the whole exterior angle ACD (made up of the angles $A C E, E C D$ ), is equàl to the two interior and opposite angles, $\mathrm{CAB}, \mathrm{ABC}$. $A$ micm 2 .'
5. To each of these equals, add the angle ACB.
6. The angles $A C D, A C B$, are equal to the three angle CBA, BAC, ACB. (Axiom 2.)
7. But the angles $A C D, A C B$, are equal to two right angles. (Prop. 13, Book I.)
8. Therefore, also, the angles CBA, BAC, ACB, are equal to two right angles. (Axioin 1.)

Conclusion.-Wherefore if a side of any triangle, \&c. (See Enunciation.) Which was to be shewn.

Corollary.-I. *All the interior angles of any rectilineal figure, together with four right angles, are equal to twice as many right angles as the figure has sides.

1. For we can divide any rectilineal figure, $A B C D E$, into as many triangles as the figure has sides, by drawing straight lines from a point $F$, within the figure, to each of its angular points.
2. Now, by the preceding proposition (which shews us that the three interior angles of a tritngle are equal to two right angles), we see that all the angles of these triangles must be equal to twice as many right angles as there
 are triangles.
3. Or, in other terms, that all the angles of these triangles must be equal to twice as many right angles as the figure has sides.
4. But all the angles of these triangles are equal to the angles of the figure, together with the angles at $F$, the common vertex of the triangles.
5. Aud the 2nd Corollary of Prop. 15; shews us that the angles made by any number of lines meeting together at one point, are equal to four right angles.
6. Therefore the angles made by the meeting of the lines $A F, B F, C F, D F$, and $E F$, in the point $F$, are equal to four right angles.
7. Therefore all the angles of the triangles are equal to the angles of the figure, together with four right angles.
8. And, consequently, all the angles of the figure, together with four right angles, are equal to twice as many right angles as the figure has sides.

Corollary.-II. All the exterior angles of any rectilineal figure, are together equal to four right angles.

1. The interior angle ABC, with its adjacent exterior angle ABD, are equal to two right angles. (Prop. 13, BookI.)
2. Therefore all the interior, together with all the exterior angles of the figure, are equai to twice as many right angles us the figure has sides.
iangle, \&e. rectilineal to twice as

CDE, into

e triangles the figure
qual to the at $F$, the
us that the ogether at of the lines ual to four
re equal to angles. e , together many right
y rectilineal
at exterior
13, Book I.)
all the exmany right
3. Therefore, by the foregoing corollary, all the interior with all the exterior angles of the figure, are equal to all the interior angles of the figure, together with four right angles.
4. Take away the in-. terior angles of the figure which are common to both, and we find that the exterion angles of the figure remaining on one side are equal to the fous right angles remaining on the other.
5. Therefore all the exterior angles of any rectilineal figure are equal to four right angles.

## PROPOSITION : - -THEOREM.

The straight lines which joir retremities of two equal and parallel straight lines tow witts the same parts, are also themselves equal and parallel.
Hypotnesis.-Let $A B$ and $C D$ be equal and parallel straight lines, joined towards the same parts by the straight lines AC, BD.

Sequence.-AC and BD shall also be equal and paiallel. Construction.-Join BC.
Demonstration.-1. Because $A B$ is parallel to $C D$, and $B C$ meets them, the alternate angles $A B C, B C D$, are equal. (Proposition 29, Book I.)
2. Because AB is equal to $C D$, and BC common to the two triangles, $A B C$, DCB, the two sides $\mathrm{AB}, \mathrm{BC}$, are equal to the two sides BC, $C D$, eseh to
 each.
3. And the angle $A B C$ is equal to the angle $B C D$ (Demonstration 1.)
4. Therefore the base AC, is equal to the base BD. (Prop. 4, Book I.)
5. And the trian lo $A B C$, is equal to the triangle $B C D$. (Prop. 4, Book I.)
6. And the other angles are equal to the other angles, each to each, to which the equal sides are opposite.
7. Therefore the angle $A C B$ is equal to the angle $C B D$.
8. And because the straight line BC meets the two straight lines $A C, B D$, and makes the alternate angles $A C B, C B D$, equal to one another.
9. Therefore the straight line AC is parallel to BD. (Prop. 27, Book I.) A ${ }^{\text {d }}$ AC has been shewn to be equal to BD. (Demonstration 4.)

Conolusion.-Therefore, straight lines, \&c. (See Enunciation.) Which was to be done.

## PROPOSITION 34.-THEOREM.

The opposite sides and angles of parallelograms, are equal to one another, and the diameter bisects them, that is, divides them into two equal parts.
Hypotiiesis.-Let ABCD be a parallelogram, of which $B C$ is a diameter.
Sequence.-1. The opposite sides and angles of the figure shall be equal to one another.
2. And the diameter BC shall bisect it.

Demonstration.-1. Because $A B$ is parallel to $C D$, and BC meets them, the alternate angles, $A B C, B C D$, are equal to one another. (Prop. 29, Book I.)
2. Because $A C$ is parallel to $B D$, and $B C$ meets them, the
 alternate angles $A C B, C B D$, are equal to one another. (Prop. 29, Book I.)
3. Wherefore the two triangles $A B C, C B D$, have two. angles, $A B C, B C A$, in the one equal to two angles, $B C D$, CBD, in the other each to each.
4. And they have one side, BC, common to both triangles, adjacent to the equal anglos in each.
5. Therefore their other sides are equal, each to each; viz., the side $A B$ to the side $C D$, and the side $A C$ to the side BD. (Prop. 26, Book I.)
6. And the third angle of the one is equal to the third angle of the other; viz., the angle BAC, equal to the angle BDC. (Prop. 26, Book I.)
7. And because the angle $A B C$, is equal to the angle $B C D$, and the angle CBD to the angle ACB.
8. Therefore the whole angle $A B D$, is equal to the whole angle ACD. (Axiom 2.)
9. And the angle BAC has been shewn to be equal to the angle BDC. (Demonstration 6.)

Therefore the opposite sides and angles of parallelograms are equal to one another.
10. Also their diameter bisects them; for $A B$ being equal to $C D$, and $B C$ common, the two, $A B, B C$, are equal to the two, $B C, C D$, each to each.
11. And the angle $A B C$ has been proved equal to the angle BCD. (Demonstration 1.)
12. Therefore the triangle $A B C$ is equal to the triangle BCD. (Prop. 4, Book I.)

And the diameter BC, therefore, divides the parallelogram ABDC into two equal parts.

Conclusion.-Therefore, the opposite sides, \&c. (See Enunciation.) Which was to be done.

## PROPOSITION 35.-THEOREM.

Parallelograms upon the same base, and between the same parallels, are equal to one another.
Hypothesis.- Let the parallelograms ABCD, EBCF, be on the same base BC, and between the same
parallels, AF, BC.

Sequence. - The parallelogram $A B C D$, shall be equal to the parallelogram EBCF.

Case I.-If the sides $A D, D F$, of the parallelograms ABCD,
 DBCF, opposite to the base $B C$, be terminated in the same point $D$, it is plain that-

1. Each of the parallelograms is double of the triangle, BDC. (Prop. 34, Book I.)
2. And that they are therefore equal to one another. (Axiom 6.)

Case II.-But if the sides AD, EF, opposite to the base $B C$, of the parallelograms $A B C D, E B C F$, be not terminated in the same point; then-


FiG. 1


FIG.s

Demonstration.- . Beeause ABCD is a parallelogram, AD is equal to BC. (?rop. 34, Book I.)
2. For the saine reason, $E F$ is equal to $B C$.
3. Wherefore $A D$ is equal to $E F$. (Axion 1), and $D E$ is common.
4. Therefore the whole (fig. I.) or remainder (fig. II.), $A E$ is equal to the whole (fig. I.), or remainder (fig. II.), DF, (Axiom 2), (fig. I.), (Axiom 3), (fig. II.)
5. And AB is also equal to DC. (Prop. 34, Book I.)
6. Therefore the two, $E A, A B$, are equal to the two, $F D$, DC, each to each.
7. And the exterior angle FDC, is equal to the interior, EAB. (Prop. 29, Book I.)
8. Therefoie the base EB, is equal to the base FC. (Prop. 4, Book I.)
9. And the triangle EAB equial to the triangle FDC.
10. Take the triangle FDC, from the trapezium $A B C F$, and from the same (or from a similar) trapezium ABCF, take the triangle EAB.
11. The remainders are equal. (Axiom 3.) That is to say, the parallelogram $A B C D$, is equal to the parallelogram EBCF.

Conclusion.-Therefore, parallelograms upon the same base, \&c. (See Enunciation.) Which was to be shewn.
The latter part of this demonstration would be rendered more intelligibie to the learner's mind, if.the ofleration of taking away the triangles from the trapeziums were actually performed on two similar trapeziums, cut out in paper or card-board. This metiod is also usetul where super-position is
the triangle, one another. to the bass $t$ terminated

1.2
trallelogram,
), and $D E$ is er ( fig. II.), er (fig. II.),

Book I.)
the two, FD, the interior, e base FC.

FDC. zium ABCF, sium $A B C F$,

That is to aradlelogram
on the same shewn.
d more inteiliatriangles from eziums, cut out uper-position is

## PROPOSITION 36.-THEOREM.

Parallelograms upon equal bases, and between the same parallels, are equal to one another.
Hypothesis.-Let ABCD, EFGH, be parallelograms upou equal bases, $B C F G$, and between the same parallels, AH, BG.

Sequence.-The parallelogram ABCD shall be equal to the farallelogram EFGH.

Construction.-Join BE, CH.
Demonstration. - 1. Because BC is equal to FG (Hypothesis), and FG to EH. (Proposition 34, Book 1.)
2. BC is therefore equal to EH , (Axiom 1,) and they are parallels, (Hypothesis,) and joined towards the same parts by the straight lines BE , CH.
3. But straight
 lines which join the extremities of equal and parallel straight lines, are themselves also equal and parallel. (Prop. 33, Book I.)
4. Therefore the straight lines, $\mathrm{BE}, \mathrm{CH}$, are both equal and parallel.
5. And EBCH is a parallelogram. (Definition 35, Note.)
6. And it is equal to the parallelogram $A B C D$, because they are on the same base BC, and between the same parallels, BC, AH. (Prop. 35, Book I.)
7. For the like reason, the parallelogram EFGH is equal to the same EBCH, (being on the same base EH, and betueen the same parallels, $E H, B G$.)
8. Therefore the parallelogram $A B C D$ is equal to the parallelogram EFGH. (Axiom 1.)

Conclusion.-Wherefore, parallelograms, \&c. (See Enunciation.) Which was to be done.

PROPOSITION 37.-THEOREM.
Triangles upon the same base, and between the same parallele, are equal to one another.
Hypothesis.-Let the triangles ABC, DBC, be upon the same base, BC, and between the same parallels, $A D, B C$.

Sequence.-The triangle $A B C$ shall be equal to the triangle DBC.

Construction.-I. Produce AD both ways, to the points E, F. (Postulate 2.)
2. Through $B$ draw $B E$, parallel to $C A$, and through $C$ draw CF parallel to BD. (Prop. 31, Book' I.)
3. Therefore each of the figures EBCA, DBCF, is a parallelogram. (Def. 35, Note.)
4. And EBCA.is equal to DBCF, because they are upon the same base BC,
 and between the same parallels BC, EF. (Prop. 35, Book I.)
5. And the triangle $A B C$ is the half of the parallelogram EBCA, because the diameter AB bisects it. (Prop. 34, Book I.)
6. And the triangle DBC is the half of the parallelogram DBCF, because the diameter DC bisects it.
7. But the halves of equal things are themselves also equal. (Axiom 7.)
8. Therefore the triangle $A B C$ is equal to the triangle DBC.

Conclusion.-Wherefore, triangles, \&e. (See Enunciation.) Which was to be slewn.

PROOPOSITION 38.-THEOREM.
Triangles upon equal bases, and between the same parallels, ars equal to one another.
Hypothesis.- Let the triangles ABC, DEF, be upon equal bases $B C, E F$, and between the same parallels $B F, A D$.
Sequence.-The triangle $A B C$ shall be equal to the triangle DEF.

Construction.-1. Produce AD both ways to the points G, H. (Postulate 2.)
2. Through $B$ draw $B G$ parallel to $C A$, and through $F$ draw FH parallel to ED. (Prop. 31, Book I.)
3. Then each of the figures GBCA, DEFH, is a parallelogram. (Definition 35, Note.)
4. And they are equal to each other, because they are on equal bases, $\mathrm{BC}, \mathrm{EF}$, and between the same paraliels, BF , GH. (Prop. 36, Book I.)
jual to the the points through $C$


35, Book I.) rallelogram 34, Book I.) -allelogram sèlves also he triangle e Enuncia-
rranels, ars
be npon Is BF, AD. to the tri-
the points through $\mathbf{F}$ a paralleney are on allels, BF,
5. And the triangle $A B C$ is the half of the parallelogram GBCA, because the diameter AB bisects it. (Prop 34, Book I.)
6. And the triangle DEF is the half of the parallelogram DEFH, because the diameter DF bisects it. (Prop. 34, Book I.)
7. But the halves of equal things are equal; therefore the triangle $A B C$ is equal to the tri-
 angle DEF. (Axiom 7.)

Conclusion.- Wherefore triangles upon equal bases, \&c. '(See Enunciation.) Which was to be shewn.

## PROPOSITION 39.-THEOREM.

Equal triangles upon the same base, and upon the same side of it, are between the same parallels.
Hypothesis.- Let the equal triangles, AEC, DBC, be upon the same base $B C$, and upon the same side of it.
Sequence.-They shall he between the same parallels; or, in other words $\rightarrow$ oin $A D$, then $A D$ shall be parallel to $B C$.

Constinuction.-1. For if $A D$ is not parallel to $B C$, through the point A draw AE parallel to BC. (Prop. 31, Book I.)
2. Join EC.

Demonstration.-1. The triangle ABC is equal to the triangle EBC, because they are upon the same base BC, and between the same parallels, BC, AE. (Prop. 37, Book I.)
2. But the triangle ABC is equal to the triangle DBC. (Iypothesis.)
3. Therefore the triangle DBC is equal to the triangle EBC (Axiom 1), the greater equal to the less, which
 is impossible.
4. Therefore $A E$ is not parallel to $B C$.
5. In the same manner it may be demonstrated that no other line but AD is parallel to $B C$.
6. $A D$ is therefore parallel to $B C$.

Conclusion.-Wherefore, equal triangles, \&e. (See Enunciation.) Which was to be done.

PROPOSITION 40.-THEOREM.
Equal triangles upon equal bases in the same straight line, and towards the same parts, are between the same parallels.
Hypothesis.-Let the equal triangles ABC, DEF, be upon eqnal bases $B C, E F$, in the same straight line $B F$, and towards the same parts.
Sequence.-The triangles, ABC, DEF, shall be between the same parallels; or, in other words-Join AD, AD shall be parallel to BF.

Construction.-1. For if AD is not parallel to BF, through A draw AG parallel to BF. (Prop. 31, Book I.)
2. Join GF.

Demonstra-tion.-1. The triangle $A B C$ is equal to the tri-
 angle GEF, becanse they are upon equal bases, BC, EF, and between the eame parallels BF, AG. (Prop. 38, Book I.)
2. But the triangle $A B C$ is equal to the triangle DEF. (Hypothesis.)
3. Therefore also the triangle DEF is qual to the triangle GEF (Axiom 1), the greater equal to the less, which is impossible.
4. Therefore AG is not parallel to BF.
5. And in like manner it can be demonstrated that there is no other parallel to it but AD.
6. AD is therefore parallel to BF .

Conclusion.-Wherefore equal triangles, \&c. (See Enunciation.) Which was to be shewn.

PROPOSITION 41.-THEOP FIM.
If a parallelogram and a triangle be upon the same base, and between the same parallels, the parallelogram shall be doulur of the triangle.
Hypothesis.-Let the parallelogram ABCD, and the
\&c. (See
ight line, and arallels.
, DEF, be line $B F$, and
be between $\mathrm{D}, \mathrm{AD}$ shall
llel to BF, between the angle DEF. 1 to the triless, which
d t'lat there
\&c. (See
me base, and all be douther
and the
triangle EBC be upon the same base EC, and between the same parallels, $\mathrm{BC}, \mathrm{AE}$.

Sequence.-The parallelogram ABCD shall be double of the triangle EBC.

Construction.-Join AC.
Demonstration.-1. The triangle $A B C$ is equal to the triangle EBC, because they are upon the same base BC, and between the same parallels BC, AE. (Prop. 37, Book I.)
2. But the parallelogram $A B C D$ is double of the triangle $A B C$, because the diameter AC divides it into two equal parts. (Proposition 34, Book I.)

3. Wherefore the parallelogram $A B C D$ is also double of the triangle EBC.

Conclusion,-Wherefore if a parallelogram, \&c. (See Enunciation.) Which was to be done.

## PROPOSITION 42.-PROBLEM.

To describe a parallelogram that shall be equal to a given triangle, and have one of its angles equal to a given rectilineal angle.
Given.-Let ABC be the given triangle, and $D$ the giveu rectilineal angle.
Sought.-It is required to describe a parallelogram that shall be equal to the given triangle $A B C$, and have one of its angles equal to $D$.

Construction.-1. Bisect BC in E. (Prop. 10, Book I.)
2. Join AE.
3. At the point $E$, in the straight line $C E$, make the angle CEF equal to D. (Prop. 23, Book I.)
4. Through A draw AFG parallel to EC. (Prop, 31, Book I.)
5. Through C draw CG parallel to EF. (Prop. 31, Book I.)

The figure FECG is a parallelogram (Definition 35, Note), it shall be the paralielogram required.
Demonstratron.-1. Because BE is equal to EC (Construction 1), the triangle ABE is equal to the triangle AEC. (Prop. 38, Book I.)
2. For they are upon equal bases $B E, E C$, and hetween the same parallels $\mathrm{BC}, \mathrm{AG}$.
3. 'Therefore the triangle $A B C$ is donble of the triangle AEC.
4. But the parallelogram FECG is likewise double of the triangl AEC. (Prop. 41, Book 1.)
5. For they are upon the same base EC, and between the same parallels EC, AG.
6. Therefore the parallelogram FECG is equal to the triangle ABC. (Axiom 6.)
7. And it has one of its angles CEF, equal to the given angle D. (Construction 3.)
Conclusion.-Wherefore a parallelogram FECG has been described equal to the given triangle ABC, having
 one of its ? angles, CEF, equal to the given rectilineal angle D. Which was to be done

## PROPOSITION 43.-THEOREM.

The complements of the parallelograms which are about the diameter of any parallelogram, are equal to one another.
Hypothesis.-Let ABCD be a parallelogram, of which $A C$ is the diameter (1), and EH, GF parallelograms about AC, that is, through which AC passes (2), and BK, KD the other parallelograms, which make up the whole figure ABCD, which are therefore called the complements (3).

Sequence.-The complement BK shall be equal to the complement KD.

Demonstration.-l. Because ABCD is a parallelogram, and AC its diameter, the triangle $A B C$ is equal to the triangle ADC. (Prop. 34, Book I.)

2. Again, because EKHA is a parallelogram, the diameter of which is AK, the triangle AEK is equal to the triangle AHK. (Prop. 34, Book I.)
3. For the same reason the triangle KGC is equal to the triangle KFC.
4. Therefore because the triangle AEK is equal to tho tringle $A H K$, and the triangle KGC equal to the triangle KFC.
5. The triangles AEK, KGC, are equal to the triangles AHK, KFC. (Axiom 2.)
6. But the whole triangle $A B C$ was proved equal to the whole triangle ADC. (Demonstration 1.)
7. Therefore the remuiuing complement BK (of the whole triangle $A B C$ ), is equal to the remaining complement $K D$ (of the whole trianyle $A D C^{\prime}$.)

Conclusion.-Wherefore, the complements, fr. Alice Enunciution.) Which was to be shewn.

## PROPOSITION 44.-PHOBLEMS.

To a given straight line to apply a paralleloyrain, whici shall be equal to a given triangle, und have one of its angles equai to a given rcctilineal ungle.
Given.-Let $A B$ be the given staight line, $C$ the given triangle, and $D$ the given rectilineal angle.

Sought.-It is required to apply to the straight line $A B$, a parallelogram equal to the triangle $C$, and having an angle equal to D.

Construction.-(I.) 1. Make the parallelogram BEFG equal to the triangle C , and having the angle EBG equal to D. (Prop. 42, Book I.)
2. And let the parallelogram BEFG be made so that BE may be in the same straight line with $A B$.
3. Produce FG to H.
4. Through A draw AH parallel to BG or EF. (Prop 31, Book I.)

5. Join HB.

Proof.-(I.) 1. Because the straight line HF falls upon the paraliels $A H$, EF, the angles AHF, HFE are together equal to two right angles. (Prop. 29, Book L.)
2. Wherefore the angles $B H F, H F E$, are together lees than two right angles.

But straight lines, which with another straight line make the interior angles upon the same side less than two right angles, do meet if produced far enough. (Axiom 12.)
3. Therefore $\mathrm{HB}, \mathrm{FE}$, shall meet if produced.

Construction.-(II.) 1. Produce HB, FE, towards BE, and let them meet in K.
2. Through K draw KL parallel to EA or FH.
3. Produce HA, GB, to the points L, M.
4. HL.KF is a parallelogram, of which the diameter is HK, and AG ME are parallelograms about HK, and LB $B F$ are the complements; $L B$ shall be the parallelogram required.
Prōof.-(II.) 1. Because LB BF are the complements of the whole figure, HLKF, LB is equal to BF. (Prop. 43, Book I.)
2. But $\mathrm{BF}^{-}$is equal to the triangle C. (Construction 1.)
3. Therefore LB is also equal to the triangle C. (Axiom 1.)
4. And the angle $G B E$ is equal to the angle $A B M$. (Prop. 15, Book I.)

5 . But the angle GBE is equal to the angle D. (Construction 1.)
6. Therefore the angle $A B M$ is also equal to the angle D. (Axiom 1.)

Conclusion.-Therefore the parallelogram LB is applied to the straight line $A B$, equal to the triangle $C$, and having the angle $A B M$, equal to the angle $D$. Which was to be done.

## PROPOSITION 45.--PROBLEM.

r'o describe a parallelogram equal to a given rectilineal figure, and having an angle equal to a given rectilineal angle.
Given:-Let ABCD be the given rectilineal figure, and $E$ the given rectilineal angle.
Sought.-It is required to describe a parallelogram equal to $A B C D$, having an angle equal to $E$.

Construction.-1. Join DB, (dividing the rectilineal figure $A B C D$ into two triangles, $A D B, D B C$.)
2. Describe the parallelogram FKFiG, equal to the triangle ADB, and buing the angle FKH equal to the angle E. (Prop. 42, Book I.)
3. To the straight line GH apply the parallelogram
ards BE,
GHML equal to the triangle DBC, having the angle GHM equal to E. (Prop. 44, Book I.)
The figure FKML shall be the parallelogram required.
Proof.-1. Because the angle $E$ is equal to each of the angles FKH, GHM. (Construction 2 and 3.)
2. Therefore, the angle FKH is equal to the angle GHM. (Axiom 1.)
3. Add to each of these the angle KHG.
4. Therefore, the angles $F K H$, KHG are equal to the angles KHG, GHM. (Axiom 2.)

5. But the angles FKH, KHG are equal to two right angles. (Prop. 29, Book I.)
6. Therefore, also, the angles KHG, GHM are equal to two right angles. (Axiom 1.)
7. Now because at the point H in the straight line GH , the two straight lines HK, HM, upon opposite sides of it, make the adjacent angles equal to two right angles.
8. Therefore, HK is in the same straight line with HM. (Prop. 14, Book I.)
9. And because the straight line HG meets the parallels KM, FG, the alternate angles, MHG, HGF are equal. (Prop. 29, Book I.)
10. Add to eaeh of these the angle HGL.
11. Therefore, the angles MGH, HGL are equal to the angles HGF, HGL. (Axiom 2.)
12. But the angles MHG, HGL are equal to two right angles. (Prop. 29, Book I.)
13. Therefore, the angles HGF, HGL are equal to two right angles.
14. And, therefore, $F G$ is in the same straight line with GL (because at the point G in the straight line HG , the two straight lines GF, GL, upon opposite sides of it, make the adjucent angles equal to two right ungles.) (Prop. 14, Book 1.)
15. And because KF is parallel to HG , and HG parallel to ML. (Construction 2, 3.)
16. Therefore, KF is parallel to ML. (Prop. 30, Book I.)
17. And KM, FL are parallels. (Construction 2, 3.)
18. Wherefore KFLM is a parallelogram. (Dej. 35, Note.)
19. And hecause the triangle $A B D$ is equal to the parallelogram HF, and the triangle DBC cqual to the parallelogram GM. (Construction 2, 3.)
20. Therefore, the whole rectilineal figure $A B C D$ is equal to the whole parallelogram KFLM. (Axiom 2.)

Conclusion.-Therefore, the parallelogram KFLM has been deseribed equal to the given rectilineal figure $A B C D$, having the angle FKM equal to the given angle D. Which was to be done.

Corollary.-From this it is manifest how to a given straight line to apply a parallelogram which shall have an angle cqual to a given rectilineal angle, and shall be equal to a given rectilineal jigure, viz., by applying to the given struight line a parallelogram equal to the first triangle $A B D$, and having an angle equal to the given angle. (Prop. 44, Book I.)

## PROFOSITION 46.-PROBLEM.

To describe a square upon a given siraight line,
Given.-Let AB be the given straight line.
Socget.-It is required to deseribe a square upon AB.
Construction.-l. From the point A draw AC at right angles to AB. (Prop 11, Book I.)
2. And make $A D$ equal to $A B$. (Prop. 3, Book I.)
3. Through the point D, draw DE parallel to AB. (Prop. 31, Book I.)
4. Through the point B, draw BE: parallel to AD. (Proposition 31, Boor I.) ADEB is a parallelogram. (Def. 35, Note.)

Proof.-1. Because ADEB is a parallelogram (Construction 3, 4), therefore, $A B$ is equal to $D E$, and $A D$ equal to BE. (Prop. 34, Book I.)

2. But BA is equal to AD. (Construction 2.)
3. Therefore, the four straight lines $B A, A D, D E, E B$ aro. aqual to one mother. (Axiom 1.)
4. And the parallelogram ADEB is, therefore, equilateral.
5. Because the straight line $A D$ meets the parallels $A B$,
$D E$, the angles $B A D, A D E$, are equal to two right angles (Prop. 29, Book I.)
6. But the angle BAD is a right angle. (Construction.)
7. Therefure, also, the angle $A D E$ is a right angle (Axiom 3.)
8. But the opposite angles of parallclograms are equal. (Prop. 34, Book I.)
9. Therefore each of the opposite angles $A B E, B E D$ is a right angle. (Axiom 1.)
10. Therefore, the figure ADEB is rectangular, and it has been shewn to be equilateral. (Proof 4.)
Conclusiun.-Thercfiore, the figure ADEB is a square (Definition 30), and it is described upon the given straight line AB. Which was to be done.

Corollany.-Hence every parallelogram that has one righe angle, has all its angles right angles.

## PROPOSITION 47.-THEOREM.

In any right angled triangle, the square which is described upon the side subtending the right angle is equal to the squares described upon the sides which contuin the right angle.
Hypotinsis.-Let ABC be a right angled triangle, having the right augle BAC.


Sequence.-The square described upon the ride BC thall be equal to the squares described uron $B A, A C$.

Construction.-1. On BC describe the square BDEC. (Prop. 46, Book I.)
2. On BA, AC, describe the squares ABFG, ACKH. (Prop. 46, Book I.)
3. Througla $A$ draw $A L$ parallel to $B D$ or $C E$. (Prop. 31, Book I.)
4. Join AD, FC.

Proof.-1. Because the angle BAC is a right angle (Hypothesis), and that the angle BAG is also a right angle. (Def. 30.)
2. The two straight lines AC AG, upon opposite sides of $A B$, make with $i$, at the point $A$ the adjacent angles equal to two right angles.
3. Therefore $C A$ is in the same straight line with AG. (Prop. 14, Book I.)
4. For the same reason $A B$ and $A H$ are in the same straight line.
(Let the pupil fuily shew why $A B$ and $A H$ are in the same straight line.)
5. And because the angle DBC is equal to the angle FBA (Axiom 11), each of them being a right angle (Definition 30 ), add to each the angle $A B C$.
6. Therefore the whole angle DBA is equal to the whole FBC. (Axiom 2.)
7. And because the two sides $A B, B D$, are equal to the two $F B, B C$, each to each, and the angle $C$ equal to the angle $F B C$.
8. Therefore the base AD is equal to the base FC, and the triangle ABD to the triangle FBC. (Prop. 4, Book I.)
9. Now the parallelogram $B L$ is double of the triangle ABD, because they are on the same base BD, and between the same parallels BD, AL. (Prop. 41, Book I.)
10. And the square $G B$ is double of the triangle $F B C$, because they are on the same base FB, and between the sane parallels FB, GC. Prop. 41, Book I.)
11. But the doubles of equals are equal to one another, therefore the parallelogram $B L$ is equal to the square $G B$.
12. In the same manner, by joining $A E, B K$, it can bo shewn that the parallelogram CL is equal to the square HC .
(Let the pupil prove that the parallelogram $L C$ is equal to the square $H C$.)
13. Therefore the whole square BDEC is equal to the two squares GB, HC. (Axion 2.)
14. And the square BDEC is described on the straight line $B C$, and the squares $G B, H C$, upon $B A, A C$.

## the

des
15. Therefore the square described upon the side $B C$, is equal to the squares described upon the sides BA, AC.

Oonclusion.-Therefore in any right angled triangle, \&c. (See Enunciation.) Which was to be shewn.

## PROPOSITION 48.-THEOREM.

If the square described upon one of the sides of a triangle be equal to the squares described upon the other two sides of it, the angle contained by these two sides is a right angle.

Hypothesis.-Let the square described upon BC, one of the sides of the triangle $A B C$, be equal to the squares described upon the other sides, BA, AC.

Sequence.-The angle BAC shall be a right angle.
Construction.-I. From the point A draw AD at right angles to AC. (Prop. 11, Book I.)
2. Make AD equal to BA. (Prop. 3, Book I.)
3. Join DC.

Demonstration.-1. Because DA is equal to $A B$, the square of $D A$ is equal to the
 square of $A B$.
2. To each of these equals add the square of AC.
3. Therefore the squates of DA AC, are equal to the squares of BA, AC. (Axiom 2.)
4. But the square of DC is equal to the square of DA, AC (Prop. 47, Book I.), because the angle DAC is a right angle. (Construction 1.)
5. And the square of $B C$ is equal to the squares of $B A$, AC. (Hypothesis.)
6. Therefore the square of $D C$ is equal to the square of BC. (Axiom 1.)
7. And therefore the side $D C$ is equal to the side $B C$.
8. And because the side DA is equal to $A B$ (Construction 2), and AC common to the two triangles DAC BAC, the two sides DA, AC, are equal to the two BA, AC, each to each.
9. And the base DC has been proved equal to the base BC. (Proof 7.)
10. Therefore the angle DAC is equal to the angle BAC. (Prop. 8, Book I.)
11. But DAC is a right angle. (Construction 1.)
12. Therefore, also, BAC is a right sngle. (Axiom 1.)

Conclusion.-Thercfore if the square, \&c. (Sce Raunciation.) Which was to be done.

## END OF BOOK L

$\square$
cangle BAC.
$n$ 1.)
(Axim 1.)
(Sei Sinuncia-


## 

FOR ONTARIO.

## ARNOLD'S FIRST LATIN BOOK.

 ARNOLD'S SECOND LATIN BOOK.ABNOLD'S LATIN PROSE COMPOSITLON.
eanadian virst buok of heading lessons. parti. Canadian flisic book of reading lessons. paril.
fanadian second book of reading Legsons. CANADIAN THIAD BOOK OF READING LESSONS. CANADIAN FOURTH BOOK OF READING LESSONS. CANADIAN FIFTH BOOK OR READING LESSONS.CANADIAN SPELLING BOOK, a Companion to the Readorw. canadian three pabt songs. colliets eng dish literatube.
COLLIER'S HISTORY OF THE BRITISH EMPIRE COLLIER'S GRLAT EVENTS OF HISTONY. collier's outlines of oeneral history. CURTIUS' SMALLEI GREEK GRAMMAR. de fivas grammaine des grammaires. DE FIVAS' FIRST FRENCH REIDING BOOK. HISTORY OF CHARLES $X$ LI Horace by connellige
POTT'S ELEMENTS OF OEOMETR: SURENNE'S DICTIDNARX OF THE FRENCIA AND ENGLISH LANGUAGES, SURENNE'S STANDARD FRENCH DICTIONATE SMITH'S LATIN DICTIONARY.
syith's smaleer latin dictionary.
SMTTHESMALLER LATIN GRAMMAR
Pur salo by all Eooksollors in Cinado
JAMES CAMPBELL \& SON, PUBLISHERS, tormato.



