CIHM
 Microfiche Series (Monographs)

> ICMH
> Collection de microfiches (monographies)

Technical and Bibliographic Notes / Notes techniques et bibliographiques

The instltute has attempted to obtain the best original copy available for filming. Features of this copy which may be bibllographically unique, which may alter any of the images in the reproductlon, or which may significantly change the usual method of filming are checked below.

Coioured covers 1
 Couverture de couleur

Covers damaged /
Couverture endommagée
Covers restored and/or laminated /
Couverture restaurée etlou pelliculée
Cover title missing / Le titre de couverture manque
Coloured maps / Cartes géographiques en couleur
Coloured ink (i.e. other than blue or black) /
Encre de couleur (i.e. autre que bleue ou noire)

Coloured plates and/or illustrations /
Planches et/ou illustrations en couleur
Bound with other material /
Relié avec d'autres documents
Only edition available /
Seule édition disponible
Tight binding may cause shadows or distortion along interior margin / La reliure serrée peut causer de l'ombre ou de la distorsion le long de la marge intérieure.

Blank leaves added during restorations may appear within the text. Whenever possible, these have been omitted from filming / II se peut que certaines pages blanches ajoutées lors d'une restauration apparaissent dans le texte, mais, lorsque cela était possible, ces pages n'ont pas été filmées.

Additional comments /
Commentaires supplémentaires:

L'institut a microfilmé le meilieur exemplalre qu'il lul a été possible de se procurer. Les détalls de cet exempiaire qui sont peut-être uniques du point de vue bibilographique, qul peuvent modifler une Image reprodutte, ou qui peuvent exiger une modification dans la méthode normaie de filmage sont indiqués cl-dessous.

Coioured pages / Pages de couleur

Pages damaged / Pages endommagées
Pages restored and/or laminated /
Pages restaurées et/ou pelliculées
Pages discoloured, stained or foxed /
Pages décolorées, tachetées ou plquées
Pages detached / Pages détachées
Showthrough / Transparence
Quality of print varies /
Qualité inégale de limpression
Includes supplementary material /
Comprend du matériei supplémentaire
Pages wholly or partially obscured by errata slips, tissues, etc., have been refilmed to ensure the best possibie image / Les pages totalement ou partiellement obscurcies par un feuillet d'errata, une peiure, etc., ont été filmées à nouveau de façon à obtenir la meilleure image possible.

Opposing pages with varying colouration or discolourations are filmed twice to ensure the best possible image / Les pages s'opposant ayant des colorations variables ou des décolorations sont filmées deux fois afin d'obtenir la meilleure image possible.

This hem is filmed st the reduction retio checked below / Ce document est filmósu taux de réduction indiqué ci-dessous.

The copy filmed here has been reproduced thanks to the generosity of:

Bibilothique seientifique,
Universit' Laval, Oubbec, Oulbec.

The images sppearing here are the beot quelity posalbie considering the condition and legibillty of the original copy end in keeping with the filming contract specifications.

Original copies in printed papar covers ere filmed beginning with the front cover and ending on the last page with e printed or lifustrated impression, or the back cover when appropriote. All other original copies are filmed beginning on the first page with e printed or iliustreted impresslon, end ending on the lest page with e printed or Illustrated impression.

The leat recorded frome on each microfiche shall contain the symboi \rightarrow Imeaning "CONTINUED'), or the symboi ∇ (meaning "END"). whichever applies.

Maps, piates, cherts, otc., may be flimed ot different reduction ratlos. Those too large to be entirely Inciuded In one exposure are flimed beginning in the upper left hand corner, left to right and top to bottom, as many fremes es required. The following diagrems lilustrate the mothod:

L'oxempieire films fut reproduit grace die géndrosité de:

Bibilothique scientifique.
Université Lovil,
OuSbec, Qubbec.
Les imeges suivantes ont dté reprodultes evec le plus grand soin, compte tenu de la condition ot de la mettete de l'oxempielre filmé, et en conformité avec les conditions du contrat de filmege.

Les exemplaires origineux dont is couverture on papier est imprimbe sont filmés en commencent par io premler piat et en terminant solt per ie dernitre page qui comporte une empreinte d'Impression ou d'lilustration, solt par lo second piat, solon io cas. Tous ies autres exemplalres originaux sont filmós on commençent per la premidre page qui comporte une emprolnte d'impression ou d'iliustration ot en terminent per is deriniare page qui comporte une telie emprointe.

Un des symbolee sulvents appareitra sur le dernitire image de chaque microflche, solon ie cas: is symbole signifle "A SUIVRE". it symbole ∇ signific "FIN".

Les cartes, pionches, tableoux, etc., peuvent étre filmís al dos taux de réductlon différents. Lorsque le document est trop grand pour êre reproduit on un seul cllche. Il est fllmé a portir de l'angio supdriour gauche, de gauche a droite. ot de haut en bes, en prenant io nombre d'ímages nécessaire. Les dlagrammes suivents iliustrant ia muthode.


```
sromplers
IN
</
|H
A:%
101%
```


BRITiSII COLUMBIA DEPARTMENT OF MINES

Hon. Wm, Sroan, Minster.
R. F. Tolmie, Ieputy Mininter. W. Fis:et Itohratmon, Irovincial Mineralogist.

BULLETIN NO. 2. 1918

BUMPS AND 0UTBURSTS OF GAS

IN THE MISES OF

CROWSNEST PASS COALFIELD

HEPORT BY
GEORGE S. RICE. E.ME

PIINTED BY
ALTHORITY OF TIIE LFGISLATIVE ASSEMBL,

VICzORIA, B.C.:
Inted by Willian H. Cellis, Frinter to the EIng's Mist Excellent Majeaty.
1018.

Hox. Wm. Sloax, MInleter.

R. F. Totnie, Iepuiy Minimter. W. Fluet Ilomembon, Profinclal Mineralogint. Gro. Wilminson, Cblef inguector of Jibnem.

BULLETIN NO. 2. 1918

BUMPS AND 0UTBURSTS OF GAS
 IN TIIE MINES OF

 CROWSNEST PASS COALFIELD

 CROWSNEST PASS COALFIELD}

RRPORT BY
GEORGE S. RICE. E.M. Chief Mining Engineer, U.s. Bureau of Mines.

PIINTED BY
AUTIIORITY OB THE LFGIRLATIVE ASSEMBLY.

VICTORIA, B.C.:

Printed by Willam II. Cillin, Printer to the King's Moet Excellent Mageaty. 1018.

Ortice of Chity Minivo binoineen, U.H. Humeau or Minem.
 Wasmington, bict., Slarch 1nt, 1017,

 Minloter of Mincra, Irvolince of Brition Columbla.
 'leforio, R.C.

IEAM Nig,-1 have the honour 10 Imal' the accompanylur refort of my Inventigalion lato
 the rear In08 and reconily In Surember, joits, In the Coal Creeh minem of the Crowanmit Janam held: and Ineldental to that laguiry, what arevualione might le taken in regart to oulburata of gas.

In rempane to a rimpeal for my nervicen mate by yur Department in the IHrector of the

 Disirict. These gentlemen, durlug the twin werk of my Inventigntion, nevempanled by the official of the diterent minew, and it tham hy W. Jt. Wilmon, general manager of the Crow's Nent Jame Coal Company, marted me In and alont the minow at Coal Creek and Nleliel,
 ocrorrene of the "hmmps" and oulburate of mellane or fire-lamp.

I ant also Indelted to W. It. Wilmon, genoral manager, and the varlous otllelais of the Crow's Nent I'uxm Coal Company, the oniy company now umprathig In the main Crowniest theld, for the eomrtewlen exteuded turing my luvewtigntlon. Biery faellity wan mfered in villlug the minew, In oblaining informallon, and the mervicim of the efticient engineering depurtnent of the company were freely given for the prepuaration of mapm, nectlons, mind olber data.
 Ibinertann and dirahan, mo lhat there misht lie no delay lit presenting my vlew lo them as to the dangers threntening and precmullons alreaty takell at the fultatire of the minhg compung; as well an by order of lhe Cr laf Jnapector of llam. Thls roport reeommendeal that permismion
 the aren nowt serlously affectenl hy the "bumjw" and in which work had been temporarily prohilited ly Mr. (i.alirm.

The Reneral islona alven in the prellminary rejort, wheh in the maln featires are adhered to In lits , repurt, were arrived at after many conferenees locally with lhome beat
 ing the geologie and other matural condithons fommal in milugg, together with the lewt means of meeling the ditticulter.

Sugrentlons of sjeclal importance were recelved from Jessry. Ruberlson and Grainm, and Generni Danager W. Jh. Wilmon, the latter showing breailth of vision in the consideration of future work and mothols of overeoming dithenitlew, and rendering my tusk fur asker, by presenthig a plan of fiture worklugs of lhe Coul Creek mines on the sonth slde of tbs ralley that met practically every suggestion thal I had to make in the matter of safety in worklug.

Inaring the favestigation muny kamples of gas und coal, ne well as of coat-dinst, he latter for deternhing the explosibilty hazard, were taken and sent to the IBrean of Nines Jaborutory at I'ltalurgh for analgsix and spevial testing. These laboratory Investigatlons, some of wheh Invelved nuecial methods of hanalling, have now Isen completed and show some'mont inferesting results, and should my recommend lon for a permment commission for continulng the Inventigatlons Into the geophyslcal and mhio.ig condilfons of the Crowsnest Held be carrled out, would be very sumpestlve of certain Ines of further invesilgation.

I trust that this requerl may he of value 3 helpife to point out what may be done to make mbing safer lu the Crowsnest coalfield, whin a ls of anch great 'mportance through lis extensive fael resonrces to the Irovince of Jsiltish Columbla and the adjoining reglons.

Very respecifully yours,
GaORGE S. RJCe.

REPORT ON BUMPS AND OUTBURSTS OF GAS

IX THE

CROWSNEST PASS COALFITLD.

NJ'MMABY of l'mincienl Finntion containgu

al.IN.
 Britioh Columbla.

 In lieighon.

 allow and thum prevent " Inmpm."

 way it meane the banmer-like blaw of lbomanin of tons of rock writhlug on the lumedate ronf

Improper iulnag in No. 2 mire wos the enusp of " br"in " In that mine 'il 1007-8, and in
 In No. 1 mine.

 dlatant lin belght nlove the mine.
 on the advance and laking down the ranh and ronf an. In the wur iur jhatem In No. 1 mine-

 of the workins-places, long drill-holem shatid lie kept drilled In ndvance.

To provide for the large regolnr Hows of methane, well-kept-all alrwigw of large nrea und trowerful fans should be employm. With ample margla of euphety.

A peramnent pommisulou shonld lie formed to further investignte nud review the avidence
 membershlp a geologist. it mhing englueer, n chemist, nid nin experienced mine jperntor.

Daring the gears 1000 to 1008 n serles of "lumjn," ennsing loms of life, ocenrrod th the No. 2 mine at Coal Creek in the Crowsment conifield of British Columbla. 1rrior to thls, "bumps" had heen noted, lut had but leen considered serloas. In Jnmuary, 1007, the first loss of life vecurred through a "Immp," and after that the othors occurred of Incrianing inlenslty, nntil on July 31 st , 100 s , four meu were kllied and twenty others tempor :ils entombed and narrowly eseaped suffocation fita gas. A great volume of gan was liberuter ly the "hump," accompanled
hy breaking-down of return overcasts and complete blocking of the main entry for 000 feet. This disastrous "hump" cansed the mining officiais of the Province to set off a district in the No. 2 mine \ln which working was prohibited on account of the dangers from the "humps."

As a further result a change was made in the system of mining, under which less than 25 per cent. of the conl is taken out, the balance to remain lu plliars untll the selected boundarien hare been reached and the retrenting work hegun. The No. 1 East mine had then been started in the so-called No. 2 hed, 1 ying about 150 feet vertically ahove No. 2 mine. It had heen opened out unsystematically along the outcrop, hat a ehange of plans was made, and the mine was devcloped on systenialic lines, with narrow rooms aud large pillars. The mining development was vigorously pushed from 1g07 to the present, nutll the area of workings covered and extended heyond the aren over the abandoned, probilited district of the No. 2 mine.

Everything procoeded nicely, except for the large flows of methanc encountered it the development of the mine, until 1818, when, without preliminary warning, on the nights of November 7th amy sth, three "bump" occurred, the first two somewhat local in effect, but the third of tremendous force, whleh broke down thmer and shook down falls of roof through a large part of the active nine-workings. It cansel earth-tremors which were felt for miles, not only In Fernle, five miles awny, hut in other towns to the north and sonth of Fernie. This was all the more extraordinary as Femile lics on a great shale-hed underiying the coal-measures.

In apile of the intensity of the "bumps" aud the great destriction In the workings, only one man was killed. This denth resulted from the second "hump"; sereral men were hadly hruised in the third great "bump." and some of the escapes of the men in the mine were almost miraculous on account of the great area of roof which had fallen. Had this great "bump" occurred during the day shift the loss of Iffeconid not but have heen very mreat, as areas in the rooms and entrles through the most actlve working sectlon. aguregatling thousands of feet in length, were beavily caved.

A fourth, milder. and more local "hump" ocenred on Novemher 13th, and, after the
 12th, 1017, accoriang to commmiention from Mr. Giralam, affecthe the west return airway
 are heard from the to the, the sonnd belug like a henry knock or a distant bast.

As a result of the "humes" of November Thanal sth. the operating company, the Crow's Nent Inss Coal Company, and the lepartment of Mines uf British Columhia were deeply concerned for the lmmedate and the future salfety of the ulne, expectily on accomit of the danger to the mine-workers. Iccordmgly. Thomas Graham. Chlef Inspector of Maen, temporarlly prohliltel work in certaln linge areas of the No. 1 Bast milne olnhy the No. 10 bast and No. 10 West). The writer was livited hy the Minister of Mines, through the birector of the tinted States burenin of Mines, to liwesugnte and report upon the mature of the "humps." and, If such are mavoldable, how danger to the undergromid workman might be minimizel. The fivitation liehg acerpted. the writer journeyed to the Crowsmest fled and livestigated, In Decemiker, 1010, several coal Creek mhes and the alkehel mines, it the north end of the fleld. Ile inspectal practionils ull necessible worklugs, arrmaged the taking of mamples of gas. coal.
 working-places to determine the gas-pressures. Ifeconferred with all the miluing men who could throw light on the broblem, expecinily W. At. Whson, Genernl Manmger of Ihe Crow's Nest Puss Coal Compmy; W. F. Itohertson, I'rovInclal Mineralogist: Thomms Graham, Chlef Inspector
 Inspector of the Allelief Insifict: and many mine othefals of the company. IIe la greatly indehted to all of those named for the lufurimilon secured for this report-to Mr. Mheheil, Minligg Assistant In Mr. Graham. who took charge of the samplige. also of the test horeholes drilled to ohtain gas-pressures, and to A. C. Fiddner. Chemist of the l'olted States Ihurean of Mhes, who made analysen and who developed a new method of testhag eonl samples fur the amonnt of occinded gases givell of lin erushing the conal.

Nateaf of livips and Oluthersta.

Hefore proceding to a more detalled stmenert of the phenomena of bumps" and "outhursts" in the Crowsnest Indd it will he well to define what is mennt by such terms, hoth as applied in the Crowsinest fleld and in other mining districts of the world. W. F. Rohertson, In
his report on "humps" In the Crowsnest coalficid, puinilsbed in the Annual Report of the Minister of Mlnes for 1 MOS , stated:-
"The term 'bump' is anmewhat dencriptive of the sensation proluced hy thelr occurrence a certain distance away-n sulden Jarring of the minc, produced liy the sudden giving-away or cracking of the strata ainove or helow the coal-weam."

Thomas Graham, at a meeting of the Mine inspector's finstlate of the I'nited States of Anerica at thelr Joplin, Missouri, meeting on June 13th. 1916, In an instructive paper entitied " Some Gaseous Mines in the Crowsnest fass Conifieid." states:-
"The term 'bunips' is a somewhat locai expression nsed to describe the ominous signs that betoken the movement of the strata overiying the several seams operated In the Crowsnest I'ass coaitleld. These 'Inmis,' although accompanieyl ly mure or less henvy discharges of gas, are not in the natnre of outbursts of gas and coal dewcrifed." (Mr. Graham bad described outhursts at the Morrlssey Colilery.)

It is to he uoted that the ricent (Novemiser. 1:10) "lumps" in the No. 1 East uine were not accompanled iy outhinests of gas. Niners sometimes use the term "hmin" to designate smail disturbances imeal in their natore. due nipmrently to lssuance of gas at the face of the uine, accompanied ly foud cracking or knocking somuds in the roof or in the face-coal which may he throwil fown. "Bumps" are not confined to the Crowssest fied: apparentiy the term originated in Great IBritaln, as violent "fiumins" occur frequentiy in uining the 10 -ynrd seam of Sonth Staffordshlre, the writer was fuformed in visiting that district in 190s, and evidently had lieell known for years. "Humis" occur in the Carionado mines in the state of Washington. aiso in the Sunnyside mines of rtah. The characteristic fentares in common are thlek or depp cover over the conl-ied, and this cover contains a series of massive rigid rocks like pongiomerates or massive sundstones.

It therefore seems lest to appiy the term " Immp" to deskinnte the very violet effect produce! ly profond rock-movements resulting lu eurth-vibrations, which on a lurge scale would be called an enrthquake. The effects are quite different from those produced lis "outioursts " of gas, mine "splueezes," or "falis" of lusufficientiy suljwrted roof. The two latter phenomena, as weli as " humps." muy or may not be accompinied lis refense of gas. On the other hand. "onthmrsts" of gas themsel ves are not productive of earth-vilurations. Accordingly, it seems wise to distingaish between the phemomenu mentioned, aithongh hoth "uuthursts" and " hmps" have this fo pomumn, that of areat thickness of cover over the cond-ied.

AIf-Bl.ints,

 dorrlasey colleries. described hy Mr. Graham in the imper rufervel to. Nor ure "hmmes" reported in the minhig regioms which are silijept to disistrons "outhursts." for exnmpie. of methane in the belgitu conifiedds and of ombiom-doxide gas In miaes in a certain conl-inasin of Central France.

On the other hand. In certalu metai-miues whed do not give off mug gas when great deyth Is nttained. as in the deep lake Superiar copmer-mines. and the dexplguldimines of South Africa aud elsewhere, serions "air-hiasts" have ecenred of a hather vory similar to "imups."

('Rownsm:xt (0.v.fiflen.

 of conl that is being mivel in the provionce." It is all elivated trongh, narrow at the north end and wide nt the south, the suulhern jart hromidelng toward the sontheast. (Sce Exhlbit 1. which is liate VI. from nitis necompunging the " (oal llesonrces of the World.") The extreme length north and south is thirty-five milles, und the greatest width aiong the sonthern half, in Iltile sonth of Coal Creek. is thirteen miles. There are aimo some ontiving patches of coal in
 contain, according to a repmert issmed on "Coni hewources of the Worid." In seams over 1 foot thlek, $20.505, C 00,000$ tons of hituminons coni in " actual reserve," $20,7 \pi 0,060,000$ tons in "probaine

and less than 0,000 feet. which might be expressed by the term "posslble rewerves"; thls making the total reserves $45,505,000,000$ tons.

Sectione or Coal-heabures.
Number of Scams over 1 Foot Thick, Aggregate Thiekness of Coal and Thickness of Coalmeasures in T'hree Typical Sections.

Iocnlity of Section.	Number of Nams	Total Thleknemem of Comb	Thickness of ('oul. be. ring messures.
		Pret.	Yeel.
Morrissey. . .	23	216	3,476
Fernic.......	23	172	2,250
Sparworxl-			
Upper measures	24	43	2,015

The data regardlug the Crowsuest Conitleld was oltalued from Menoir No. 50. "Coal Flelds and Coal lesonrces of Canada," prepared by I. W. Dow-lng. of the Geological Survey of Canada, for the Twelfth Internatlonal Geologleal Comgress, and from Thomas Girnham's paper, "some Gameous Mlites In the Crowanest I'ass Coal Fleld." also from some personal obwervations in the vielnity of Coal Creek and Mlehel.

A nuniver of seams are too thin and too lmpme to mine with eommereial success at the present time. and it is consldered that the avallable coal does not have an aggregate thlekness, In beds over 3 feet thek, of more than 100 feet. Some of the thlekest lieds, 10 to 20 feet thlek. owing to friability of the coal and poor roof. cannot under present conditions be eleanly mined ont. aud there is in eonsegnence much loss of eanl.

Most of the marketable coal-beds are in the lower part of the coal-meanires, whieh, geologically speaking, are in the Kootenay formation of the Lower Cretnepons surlis. The firnle shales, $\geq .1000$ feet Ihlek, underile the Kootenay formation, lint there appears to be some doulit whether these alhas heloug to the Lower Cretaceous or the Jurassle.

The Crowsuest basln has been luekled lito a north-ind-south synelinal trongh hy the great dynamle forces presslug from either side (enst and west) in the uplifting of the Rocky Monatalin ranges. As a consequence, aronnd the edges of the liaxin the heds have lieen steeply millfterl. (Sce photograph, Exhlhit A.) Whlle the more rigld sandstones and conglomerates overlylng the more inmortant conl-seams lave protectod the latter, there is abundant evidence of thrust under the eapolng rocks acting laterally on the coal-beds along the margln of the field nid squeezlug the conl in some places to Increased thlekness and hadly erushligg it. There is evidenee also of a gencral lateral movement whieh has ...ken place in the plaue of the No. 1 poal-lied. as demonstrated ly a sllekensided and rolled shate-hand in the upper part of the coallued. Also there has heen sone local faulling: and buckilng of the coni-beds, whleh emmes much diftienty in mining operations.

The antlellnes produeed on elther slde of the conl-hasin ly the profound east-and-west thrints have lieen deeply eroded and valleys this formen. This has leal to the hasin, proteeted ly the overylug hard samistones and eomglomerates. liceomlug an plevated plateau.

The lilk river runs along the west alde, in the Ferule shales. The elevation of the Elk Blieer valley aliove sembevel at Sparwoml. near the north end of the fiold. is 3,637 feet; at Fornle, 3,36 ; and at Morrlssey. opposite the somth-west enrner of the field. Is $\mathbf{3}, 101$. Along tl. east shle of the pintean the devation of the vallegs in from 4,00 to \quad ano feet. The esenrpuent of the phateau in from 6,000 to $\mathbf{7 . 0 0 0}$ feet nbove sea-level. The highest polnts rising from 300 to 400 feet alore thls.

The dilw of lite conl-heds from the edges of the hasin probably carry the lowest beds down, In the middle of the trough, the depths where mider the higher rlages there is from 3,000 to : , Ho feet of eover alowe the lower heds. Over the present adrance workings of the Coal Creek
 ly the coal company engineers, Exhilits 2 and 3), conslstlug largely of massive sandstones und eonglomerates in the upper pirt. The outcroppling rocks form lold escarpments skirthg the valleys and sharp projecting spurs. (See photographs A to F.)

lizbcription of Conlabeds.

The coal-lieds lu any one locallty are well deflned. lint it is difficult to carry the filentification i. om one losality to another, hecanse the conl-beds change their charneterlstles and the lmmealinte rocks, shales, and sundstones lack distluctlve features. The coals in the different beds that have beets worked at Coal Creek, Hosmer, and Michel do not differ much in ehemical composition and are coklug-coals, hut the conl at Storrlsmey had evidently been subjected to more Intense crushlug and the percentuge of fixel carbon is hlgher. As only the Milchel and Coal Creek mines could he entered. the dexerlption of the coal-herds now mined will he limited to these.

Michel Conal-bed sirifons.-The princlial hed mhed at Melel is litersected ly a fault parallel with the strike of the beds. Its seetion is as follows:-

Sretions of Cual-hed No. \& Eust, Wiehel Collirril.

Old No. 3 mine, Nlehel Colllirys. Which fidjolns the foregoing, works two lieds, with an Interval of 110 feet between. The mper one. which is miderstonel to correspond with the lied worked in No. 3 East, attalns a thlekness of 16 feet of cual.

Coal C'reck Conl-bel sections.-A gencral sectlon showing slx seams wheh have leen more or less prospected are hest shown In the sections enst to wewt and north to sonth at the Coal Creek Colilery (Exhllits 2 and 3). Of these, only Nos. 1 mid \because have heen found to be commerclally mimable at present. Normally these heds are from $\overline{i n}$ to 1.0 feet apart, but in a certaln " crumpled zone" (8ce map, Fixhlhit 4) In the west parts of No. 1 East mine and No. 2 mhtue the beds come together.

Secliom of No. 2 coul-bern.

Nection of No. 1 coal-bet.
(7.0 to $1: 01$ feet nlove No. 2 hed.)

Kind of Coal in Crowsnest Fifld.

The Crownest fied prodices a good grade of intmminons coal, the different beds in any one locally having alont the same kind of coal. Excent at Morrissey, where the flxed enrion is too high to permilt making coke in bee-hive ovens, the coal makes a good metallurgleal coke. There are 440 ovens at Fernle coking Coal Creek coal, and 4×0 at Michel.

Following are analymes of the coals proluced by different collerles, as given on page 116 of Menolr 34:-

Analuxes of Samples taken in Conl Creek Ifines, December Int tu fisth, 1916.

The gamples were taken In certaln places In the Coal Creek mines hy Mr. Mehell, under the direction of the anthor, and analyses nude at the I'nlted states Iureau of Mines laborntorles at I'ltshurph ly. A. (. Fholner, chemist. Thu sumples were gatherel at the rexpectlve polnts, ten In all, and lmmedntely placeal in thght Jars (Mason jars). On reachlag the I'litelargh lahoritory they were treated ln one of two ways: Three samples were analysed for molsture as recelved, molstime when irlod. volatile mathr, tlxal carlon, and ash; also the ealorltic value was determined. The other seven rivic openel meler water to determbe the amount of gas that had lieen glven off shee gathering; hence the molstire as recelvel could not be determhed, but the other compments were determined. as in the first lot. Whlle the jars had rubber gaskets and were wrapped with lisulating-tape. lt was evlient that gan in each case had escaped in translt, as lin all enses g.s and air in mixture in the cans was at atmospherle pressure.
 top to bottou of the conl-face. Lht hy gatherlng nut-slzed pleces from thp to hottons. Thls was done to whtain sampling for testing for weeluded gas at the laboratory, lut there ls sume question If such a sample ls an average of the face at the respective points of simpllife lin the matter of ash content. but it la mot probable that there la any essental difference in the ratlos of the other eunstluents.

The speral purpose in taklig these samples was to determine. In conjunetlon with a serles of road-dust and rib-dust sumplos taken at the same tlue, the explowilillty of the coal-dust fonnd In the Conl Creck No. 1 mine. Also for thls purpose a large $3 / / 2$ ton sample of coal was olitained from the face of the mine and shlpued to the experlmental mine at Bruceton, f'a., where it was crushed, pulverlzel, and testenl. Simllar eonl-, rib-, and road-dinst samples were sent from the Nanaluo mines, Vancouver lnland, B.C. The results obtalned lit the tests form the suliject of spechal reports to the ('hlef Inspector of Mines of Irltish Columbla ly the Unlted States Rureau of Mlnes.

Fuec Sccfion Samples. C'onl Crock 1 incs.

Colliery.	Location in Mline.	Can	Lab. No.	Mois. ture, Nine lasis.	I'mexim th Avalyain (AIX-DRIKB).				Imikd Coal	
					Mois. tare.	Visla. tile.	$\begin{aligned} & \text { Pixed } \\ & \text { Coarthon } \end{aligned}$	Auh.	Snlphur.	R.T.U.
Coal Creek-						23.25	68 94	126.65	0.31	13.52.9
No. 1 H.	Face, 10 Enst.	3 5		1.08		2135	65.05	1310	0.34	13,462
No. 1 H. .	Face, 1 N. . Face, Main level	16	27158 27158	1.12	1.6 0.70	21.35 24.05	6505	8.20	0.67	14,081

Face Scction Sumples, Coal Creck Mines-Conclnded.
Norr.-As the followtng semples were used for making oceluded gas determinations, the folsture wan not determined.

Uolliery.	Jocation in Mlne.	$\begin{aligned} & \text { Can } \\ & \text { No. } \end{aligned}$	Iab. No.	Phonimate Abalithim (AIE-DEIND).				Dmand Coal	
				Moln. ture.	Vola. the.	$\begin{gathered} \text { Mixed } \\ \text { Cartoon. } \end{gathered}$	Ash.	Sul. phur.	E.T.C.
Coal Creek-									
No. 1 H.	Face, No. 22 rowm, 10 EL .	2	27154	0.55	24.78	65.17	9.80	0.31	14,047
No. 1 H..	Face, Nu. 1 room, $\mathrm{E}^{\text {E. }}$	4	27156	$0.41)$	24.23	66.59	*.85	0.32	14,063
No. 3. .	Fuce, No. 2 incline . . .	17	27159	0.55	28.82	63.83	\bigcirc	0.54	14,319
No. 2.	Face, Main level ...	18	27180	0.5n	27.17	71.48	2.100	11.41	14.260
Nu.	Fiace of E. slope.	19	27161	0.45	26.98	61.4.48	4.111	0.45	14,479
No. 18.	Hace of Slain level.	20	2716:	0.45	27.80	6.1, 35,	6.40	0.27	14,6112
No. 1 \$.	Fiace of No. 5 incline	21	27163	(t.64	26.86	67.84	4.70	0.33	14,837

[^0] anatyen are on mir-drled bends.

(inses given off iv Coal-ariastres.

It is a normai cunlition In deeply liedded coal to fiml hydroc. wh gases both fin the coal itself uml in the enclosing rueks. There is, however, the whest dinurence in the smount of gas encountered ly mining in the various eoaltielis, and almost as great a difference between different heds in certain coalftelds. Some coul-beds are consldered non-faseons, aithough pran tically every ledg glves off a litle gas, but unless it glves it off fast enough to accumuiate as a boiy of gas it ls nsirally rated ns non-gascons.

Gas is held in the strata la two ways:-
(1.) A filling of the pures of tae crevlces, cracks, and bedding-planes under mora or less jressure. so it la given off rapidy when it is ilherated ly the advanee of the mine-workings, or where it ocenrs in a roof sirat:on when the rouf materlai lirenks down, or there ls a sllp which Intersects a mala sllp, crevice, ur \boldsymbol{r}. . jolnt in whleh the wis may be stored ander pressure.
(2.) The other form is stored a ells of the coill and is commoniy known as "oceluded"gas. Such pas is liberated slowiy when the conl is loroken, and with each crushlug of the coai more gas is liberited. Wilh some kluds of coal there ls comparatively iftele gas released; in other coals there is a large anount. (ieneraily, when thero is a large monont of socalied "oceluded" gas, the erevices und eracks of the ntraln atro olso charged with gas.

The amounts of gits thas fiod lit the coal. which for want of a letter term will bealied "oceludel" was. In different histricts has lecoll smmmarizel in lubleth 72 of the linled States

In many of the luvestlgiatlons whleh have locen made to determine the atount of gas give: off hy liroken coal, tite coal has her .i heaterl. This is not a proper melhod of deterinining, as then there is more ir loss destructive distllaton. When the tests hive leen made usiris atmospheric pressures, the volumc of gas from a unit of eosil has leen found to vary from one-haif to one and a half times the volime of the soild coal. When finely crashed and kept standing for sla months, nishracite conl gave off 1.83 of mus, chiofly methane. For shorter ;eriods the quantly given off was vary much leas than ome volume. This Chamberialn found to le true of othcr coals. so that in coniparinf one kind of coal with anothey the guestion of sige of crushing and length of time geenis to be a:i imporiant factor. It is f.sessary to know the jrocedure followed hy experlmenters in makhig comparison of results, sl tee as yet there has 'ieen no standardization of method.

Occevden Gas in Cosi from Coml Cre ${ }^{\text {G M Mines, }}$

A serics of special sampies of nut or ceg size were taken in the Coal Creek mias in different headings and rooms. fut'into Mason jars at the point of samiling, sealed, and gent to the Bureat of Mines, Pittslingh Jabmatory. Ten samples weze taken, laboratory Nos. 27154 to 27163, inclusive, and on reaching litlsl:uriph ecven of them were opened under water and were found to contain from 0.06 to 0.25 volumes of melhane per volume o coal. There was a little carbon
dloxide, and it wili he noted in the amalysem given in the table. whleh follown later, th. there was littio oxygen. That senied fin with the conl had inrgely hern alisorived by the coal.

It in evident from n atudy of the gas analyses that there was exenpe of gas froun the contalners; oxysell inus earion doxide is unch lower in ratlo to the nitrogen than should he the case. The gases in the cans on arrival were fonnil to le at atmosiberic pressure.

Method of Gיmping the (bal in Vacto.

Tests were mude on one of the sampics froul Conl Cresk, Can No. 12, Iaboratery No. 27158, to determine the amount of gns siven oif while the aoni was being kiound and subsequently in vacuo, in an apmaritum devised ly. A. C. Fieldaer, Chemist of the lurenu of Mlaes. The method, It iater apmenred, was first usediy a Fronchum, llenri (ilysen, in 190) but gipmrently without resuits of importance.

For comparison, a sampie of conl from the littshurg?, I'n, experimental mine was similarly treated, and likewise at a later date ncomi smmples from Nanalmo mines, British Columbin.
 with anmples of conl mud dust fur explosilility texting at the experimentul mine. The method usex hy Mr. Fiedduer is as follows:-

Immediately after ameniug the senled glass fruit-jar, lit which each sepurate rmall sample was taken and senied at the fice of the nine and then shipped to littslurgh, the iarge lumps

 rapidiy evacmated to 3 mo., merenry pressure. The air and gas evolved hy the conl during tae evacuation was collected, measured, aud annlysed. luasmuch as ouly a few cuhic centimetrea of gas were removel from the coarse coal during evacuation, it was assumed that practleally uo ocelnded gats would be lowt during the preliminary operations.

The eracnated mill wis rotated two homrs, which hy a prellminary test was showis suffielent to permit ! k iner cent, of the conl to pass through a gentmph sereell. (Apparently the fine griadfige is the fimportaut faeter lu gettime revilts so different than fomd by previons haboratory investlgatlons.) The milil was then commeted to a mereury-pump ind eracunted; the gas coliected over water. mensured, aud amalymed.

The samplew were grombl "as revelved" from the mine and not alr-dried. Several of the samples were ground submerged in water. in order to present the effect of heat from griming, as It had heen suggested that ethame mal gropane whith have been produeed through such henting This. howerer, did bot jrawe to he fle casp. Tlie regate are given in the following table:-

draluiled linacy in c'oul.

Nimple No. 16
logh. coal
Laboratory No. 718 718
Welpitt enal i.rammes) $1 \because$
Quantity and an. 1vxis of gas fumien out of hall-mill lifforeand after gri. 'log--
liefore grinaling -
Total volmme sals c.* 1.4!3 1,517
Amalysim perent.
 0.0 S
${ }^{\circ} \mathrm{Cl} \mathrm{H}_{n}$ 0.13
0, 20.7.. 20.76
N, 79.03
After grinding-
Total volnme of gas c.e.* 203.0
Analysis per cent.
64.6
 10.2
(O_{2}... 2.13

X X_{2}.. 20.0

X X_{2}.. 20.0 70.5 70.54.7

[^1]| C11. | 87.4 | 6.6 |
| :---: | :---: | :---: |
| $\mathrm{C}_{3} \mathrm{HI}_{1}$ | 1231. 11 | 2.5 |
| $\mathrm{C}_{1} \mathrm{I}_{1}$ | | |
| CO. | 11.9 | 8.3 |
| N_{1} | 24.4 | 81.5 |

 phas cthane, and 100 grammes of lil? siurgh conl gave off 9.9 c.c. of meth ae pius ethane. Also in the forme: emal ethane was the predombating combus. i ince gas. No (ol) or hydrogent wan olitalued from either conal. Mr. Fieldier comments that it in unfortumite that the contalners
 have been oltuined prior to grimilug.

It appears that on evacuating the containers ethame is removed frons the coal in addition to methane. No ethane was found in the gas surronndin: the coal in the glase contalner. Neither has ethane been found thus far th the hlower-gas sumpless from these or other mines Investigated hy the inited stater liurean of Nhes. It was ruggested that possilily the ethane resulted frous a beating effect turiog grinding of the coal in the hail-mili. Therefore, Nir. Flelduer had the experlment rejented. hint grinding the coal while wet ; l.e., the coal was actually covered with water in the mill while lieing ground. Fithane was agaln oltained in nuch the same ratio as hefore. Ilence there is no remson to suspect debugnsition hy heat. Other investigutors have found ethane lin the gases pumped ont of coal. although not in such large proportlons.
 gas-tight contals rs into whelh the fresh liritish Columbin eonl cond be int after sereenligg at the face of th. whe. The sented contumer should he so desimed that on urriving at the Iahoratory It could le connected directly to a vacumm-pmm, tite gases removed, and then pluced in a suitalite machine for rotating it so un to pulverize the coall biacmo, and agnins iemove and mensure the gax.
 of fresh coal taken hy Mr. Micheli, of the insjectlon'servlee of Irithsi Colmmbla, at varlons working-faces of Conl Creek Coiliery, British Columila, Deceminer ith to 13th, 1016, and sealed lmmediatels: Analyses were made after arrival of simples nt littshurgh. January 4th to sth, inclusive.

Compobition of Gaf in Comb Nimpis Contanera.

Sauple No.	Lali, No.	Welyht of	$\begin{gathered} \text { Total } \\ \text { volume of } \\ \text { Gase } \end{gathered}$	$\begin{gathered} \text { Total } \\ \text { Coltane } \\ c^{\circ} \text { chin } \end{gathered}$	Prkcextaok on Commymithe of Gan				C.C. CH_{4} per (iram) of Coal.
					CH_{4}	Cl_{2}	${ }^{\text {®. }}$	N_{2}	
		Oramimea	c.c.	c.c.					
18.	27159 27160	737 788 8	246 386	184	64.1	1.1	1.0	33.5	0.25
19.	27161	905	311	81	24.6 24.0	11.9	4.4	70.1	0.11
20.	27162	827	338	81 33	21.0 15.8	0.6	3.2	68.6 82.6	0.09
21.	27163		264		0.3	1.6	21.0	78.1	

It was evident that ail the containers permitted psenpe of gas in transit. as in all cases the contents of the cans were ut atmospherle pressure. It will be notel the ahove gases contalned no ethane.

Occhedrd Gageg in Nanaimo Coal.

Sulisequent to test' the Coal 'reek and liltahurgh coal in vacuo, samples were ohtalned from the Nanalino whes of Vaucourer island, R.C., whleh had also been ment for explosilility

[^2]tenting. Incldent to that Inquiry, tents were made of the gasen given off by the coaln, using the method of fine grind'ig in vacus. The results are giren In the following table, includ'ng for comparlson those of th, Coal Creek and Plitsinurgh coal previonsly reportel In detall.

Oceluded Gase" in Coal from Plttaburgh. Pa.; Coal Creek, B.C.; and Xanaimo, B.C., at 760 MM . and 0° ('.

Mine.	Nample.								
		Total.	*.	CH^{2}	CH_{4}	${ }^{\prime}{ }_{2} \mathrm{IH}_{6}$	$c_{3}{ }^{11} 8$.	Total	amux.
Pittaburgh, Pa......	16	48.9189.9	31.3	$\begin{array}{r} 8.3 \\ 11.9 \end{array}$	$\begin{array}{r} 6.6 \\ 37.8 \end{array}$	$\begin{array}{r} 2.5 \\ 126.0 \end{array}$...	c.c.	Yolk
			24.4				\ldots	163.6	2.12
Nanainue cialsNo. 1, Wentera Fuel Nu. 1 , Reserve mine	111	139.0		3.1		21.4			
			81.3					84.6	1.10
		169.4	9.0	$\underline{20}$		29.8		158.4	2.05
		48.9	43.1	1.3		1.10	1.5	2.3	0.03
Remivo mine	2	611.6	40.3	2.0		91.5	8.7	26.2	9.34
$11+\ldots .$.	2	\% 7	14:	0.2		10.7	3.6	14.3	61. 19
,		16.7	14.1	0.3	2.0	0.3	2.3	0.143
+	3	48.2	13.8	0.1	21.0	138		34.6	0.45
+.......	4	24.0	14.8	0.3	18	7.1	8.9 4.8	0.11
" 1	4			0.5	\ldots	18.1 5.0	11.11	$\stackrel{9.6}{18.18}$	0.12
"	5	37.0	20.1	0.0	8.0	11.1	18.17	0.22

- Remult mpproximaie an in aboolute quanilty, an a litile gan was lost in making the measurement.
\# (iround in vacilo loll under water, grinding not po ther ne when dry.
\pm Nol sround fins.

 of hydrogan, whlch wis nlisorlied to greater volnme than the other gases evolved; in the case of it the contractlon was 51.3 c.e.

Following are the malyses of gas from blowers lswing from speclal lioreholes th the rllo-side of headnges in the Coml Cropk mhes amulysed (a) liy the Canadinn Ibpurtment of Mhes, and (b) by the linled states lbinema of Mhas:-

Inaration in Sline.	(4).	${ }^{16}$	CH_{4}	N.	Als.	Exceme
1. No. 1 East mine, No. 1 lmorehole, 18 roniln, 10 Fast (a)	007	18.3	$30.7{ }^{\circ}$	2ni. 3	63.5	7. 3
Gottle loroken in Iransit (b).						
2. No. 1 East inine, Nil 1. Borehole, 22 romin, 10 East (a).	0.07	14.7	$\underline{20.8 t}$	61.8	70	7.0
3. No" ${ }^{\prime \prime}$	0.10	$\because 2.69$	0.14	79.07		
3. No. I Bast mine, No. 3 lorwhole, Comater main level (a).	11.8	17.7	10.7+	70.8	88.5	4.8
(l).	11.89	15.4.00	11.64	(i9.20)		0.5

Sote: by Annlyat, coundian Depurtment of Mincn:-

+ Xo colhane wr livilrogen derneted in sample.
\ddagger i'roliblily trace of hydrogen.

 ln translt.

Revifiw of Gin Anstiger.
Regarding the analyses of gases frotil the horeholes an the samples were gathered from special horeholes Irllied to ohtuln pressures as hereinafler aleserlhed (biage 10), these horcholes belng cased with plee set ln cement, it ls lumrohmbe that alr conld have leakel lito the holes from which the gas lssued with some preswire. The wis was collectexd ln evacnimd tubes, the
tube-opening heing beld in the mouth of the cuslug. Bither air entered at the poi.at of colleetion, In aplte of the care exercinel by George O'Brien and D. Michell, or the wax atopper fermitted entrance of alr in tranalt. Neverthpies, It will he ohmerverl that time was from $\mathbf{8}$ to $\mathbf{7}$ per cent. of nitrogen In excesm of that of normal alr; henee it in probrible that ultrogen in a constitupnt of the games given ofl hy the atrata.
it will he ohmerved thit the amalyses of the lifower-gas report no ethane content, althongh the natyst mentionn Indeations of hydrogen. In previous nmalytieal work ou the many mine-alr and gan mamplen colketed liy the Inspectors of Britisit Colunila In the Crownicst mines, no hydrocarbon gas other than methane has hern rulorted."

The contrist with results from fine grinillig are most striking; the amount of hydrocarton kames reported ly Mr, Fleldiner figured to volumes of gas to volame of coni foswuming for apiroximate figures a meetife cravity of coal of 1.3) is shown in the tahles on pages 12, 13, 14.
investigators in the pust have elther not crushel the coal to a finely divided atate, or huve only ground it to pass through 10 or at mast wo mesh. Whereas. In these tests, Mr. Fleldner ground the conl to pass through n sho-meali sieve. Ile comments that It levident that ethane and higher hydroearions are not glven off ly the eoal as rendlly na methanc. For Inatance, a mamile of Namimo coal, $1 / 4$ to $1 / 2$ laph in sla, seated in n vicuum bulh for ten days, qave of uuch more methane than ethane, while another mample of the wame coal gave off, on grinding to $\mathbf{2} 00$ mesh. nure ethane and propute than methane.

The whe diversty of volumes given of lig different coals is surprising, ne this diversity oceurs ill the sume mine as slown hy namples from the lieserve mine. To some patent the lutter may he due to the method of sumpllug in the uine and the fredinimery treatment and variation In grtuding. it in motleenble, in compining results of samples from the same mine, that the ratlos of the different gases is of the same order. l'nfortumately, the method was not developent In time to try out the varions sampiles of eonl from the Conl Creek mine: one sample, No. 16. from Coal Creek No. 3 mine was trled, and the results cansed surprise, eapecialiy after testha widlarly n sample from the experimental mine. This proved to glve uff very iltic gas. As regards the iatter sumple, the experimentaimine workhime are wo near the outcrop and under
 imrgh hed in in deeper mine. Nevertheless, the dist from the experiment-mitue poal proved th lif moro sensitive to the prigaguthon of an exploston tian the Coal creek and Nimalmo dusta.

 samples gathered systematifally from ail the (rowshest mines and other typleai mines lin liritish Colundia. It is probuhbe that hevestigations of a simblar mature will be made thy the bureatu of Mhes on conls from varions barts af the linited sintes as oporthaity prosents.
 whould he stmiled. In gis analyses liy the ordinary combustim method ethane in smatl quantities ts not detected, mud. as nsualiy the sumbles of mboralr colifected contaln outy a few per cent, of
 not be cunsidered as positlve evidelce of its not intigg given off. Fuder the great pressure of the henve eoverlug, the ('rowshest eont in the process of mining is subjected to n stmeezing aetion. whifit tends to crish and grlad the partiofes af emal one againat the other. This may promee n

 are liruken. or is it held ly elumieal honds, su matalite that on a slight relief of firessure the gan is given off? It is stated ing blysieists that extermin pressure wheh oitaine evell whith eoals at great depth is lusuficient at unemal temjeratures to liquefy the gases.

On the other hand. the surface tenslon of the coal- partieles is very great, and some physicists have coutended that films of the gas are held un the surface of the partleles of conl under such tension that the gas is lin comp.eessed state muivalent to lignefaetlon. If so, when the coal-bed Is oplued, the coal near the headlugs and roous may hegin to refease lis coutalned gas. In the

[^3]Crowshemt minew largw volumen of gan are given of at the facem such gas may bave been atored In the cmevice and open folntw, alud almo in part may be ocelnded gan.

Normally, coal of the ('retaceoua, whleh in the reologic nge of the Crowanext bedn, in "mubhituminous" coal, which in mometimes enilled black ligntte. Hit Crowanent coale have been allanceal to the bituminoun nul semi-hltuminoum atage hy beat a:sl preance In the focky Mountuln uplifting, expellag from the roal molnalance molatnre ani gan. The latter, when it in belli In by lmpervlous or nearly Im, nerrions covering, collects in or naturaten the coal-bedn and enclowlug atrata.

The amount of gas glven off liy the froshly lifoken coal in the minen of the Crowanent conineld In rery grent, far gronter than in mont conis. It wam olmperred in cortaing gameons parta of the Coal ('reek minex that, If a anfety-lamp was wet in a deprownton in a freshly broken-down pllo of conl, the gan from the coal would flame in the laup and extlagulah the light. On the other hand, as will be ahowu later, pyelt if two volumen of gan are given off per unit of coal rolnne, the amount is not nearly suttilent to necount for the gan carried ont by the return alr-murrent: In the Crowsinent coal-mines.
is alrendy Indeated, methnue mil powsilily ethane in givelt of in coal-mines in two ways:-
First, from the volume atored at high premaure In the crevices, altpm, and Joint-planen of the coal nul adjacent atrata, alpo from the caritiem, If any exist.

Hecond, to a leas extent from the coal liroken down by mining operatons, whic!, given off nore or lean alowiy gnsen atory In ita pures. The ('rowsneat conl-minew have the u.enviable ponition of lelng among the mont gasenis minew ln the world, nccorilng to the figuren olitalned through mine-alr anmpling lig the britixh Columbia Mining Depmrtment. Thene figuren nre obtalued from Thoman (irnbain's paper on "Some Gaseoum Minen in the Crow'r Neat Pass Conl Fleld" (referred to previoualy), and alan from intor recorid of the Department.

Gan-Aorr, Hichel ('ollicif,-The reeords nhow that from Michel No. 3 Eant mine there ls
 of imre methane (at atmowherle preswire), which for twenty-fonr hours maken a total of frou 1,smonno to $2,113,000$ cuble feet. On the bames of the conl mined (average ner day for the
 uethane per ton of conl prokiucen.

It ls notleenble thit on lille days the flow deereases: for example, on Septeunier 28th, 1910. thls mine had lain tdle since duguat 7 th. 'vell an explosion had oceurred, aud the flow of pure
 The question arises. Is the diverease of flow due to the lindilugen nul rooms not penetrating into new areas, or is it due to fresh conl not helug lirokem in dally work?

IA the littolmigh laboratory tests Indente that even in vaeno hut $\mathbf{2 . 1}$ volumes of methane phe cthane are given off on five grimilug. thim figure may lie considered un extreme one. Five huadred and fifty toms, t. iny's output at that tme of the mine, ocenples ahout $\mathbf{1 3 . 7 5 0}$ culle feet In-place, hul if it gives of $\mathbf{2} .1$ volumes of hydrocarion gnsex, the total of the gases for twenty-four hours wonld be $\mathbf{2 x} . \mathbf{4} 7$ \% cuble feet, or lut 1.3 per ceut. by volumic of the gas glven of on an blle day. On the other hand, the thow on an lde day after standing fifty days wan por cent. of the maxlmum outfow of n worklog-dny. Silullar resibles, difering silghtly in proportions, are found in other Crownext mimex. Accordlugly, one is forcen to conchude that the larger part of the gas entering the mines enmas from that stureal In crevicem. sllps. joints, and hediling-jinnes: second, a conslderulite part combes from exposure of frewh coni-fnces und fresh roof nrean: and. third. a small amount from the Ireaklug-nl of the pleces of coal in minng operations, in any case. It would apmear that hoad hgs dris en well in advance serve n valuatile porpose in drnwing off storel gases.
 101\%, to Oetolier $\mathbf{2}+\mathrm{th}$. 1916 , from 124 culale feet on an lde day to 1.574 cuble feet on n day of netlve prodnction of cont and corrospondingly of uncovering of new finess.

This mine appears to lif nore gnseons jer ton of coal producel, the figures ranghag froun 5,000 to 8.000 cuhle feet per tow of production, but it is lielleved that thls method of comphrlson is mislending. it is protonitit the territory minell is more gnseous.

The weight of the kas itmelf removerl or thowing from the strnta is worthy of attention. In the two mines just referred to, whileh are aljacent. the nrerage welght in tons of pure methane carried out dally ly the ventlating-current was 71 tows (of $\mathbf{2 . 0 0 0} \mathrm{lb}$.). which for a whole year

would amount to di,000 toms. Witen it is comsldered what a grent preswure the conl-ieds are wnhfected to, mid the fact thint they are so much fismered ns to he very weak when unconflied, It is a question if the foss of gnseous materini may unt canse some actuai sulisidence of the stmata In the immediate viclulty of the mines of small vertical dimerion, lint uevertheless it may be a

The Mlehei mbe on the North shale ins shallow pover, and bence the amount of methane given off is reintiveis smull-in to to culice feet per minute.

Giar-gone from c'ant crack Collicriex. -The c'oni treek mines working on the sonth side of the creek ure more extonslise thin the Michel mines. In No. 1 East mine, un Felimary gilrd, 101f, when the mine whs lide, there was 1.247 eulde feet per mimite of methane givell off and on April 14th, 1016. When the mitue whe working. 2.gWi culice feet wis diselmrged. Thls guantity reprewents the maximm discharge from nuy of the mines according to the records aecured. At this rate there was thrown ont of the mine in twenty-fonr hours, 4.184 , (n) enible feet of methane, rinch would welgh 78 tous (of $\mathbf{2 . 0 0 0} \mathrm{lb}$.). On the lmsis of the enhle fect of uethune per ton of
 mines. The promintion of coml was then aimut 1,500 toms. Fifleatly from this the greater part of the flow comes from the coal stratmin rather than liberated from the breaklug-down of the cont lin minlug.

In the other mine worklns lin No. 1 heel on the South side of Cone Creek, No. 1 Sonth, the dlacharge of methane per minute lin the "mantin refurn" rmiged from $21 s$ coble fert per minute on an lille day to 4.5 enble feet oll n worklag-dny.

The No. 2 bed lless lelow the No. 1 bed from 20 to 40 fere lin the western part worked by No. 2 mine, under No. 1 Nonth, but the Interval betweell the bels increases to 1.50 feet where No. 3 mine work under No. 1 East.

The No. \boldsymbol{O} mine mala rotum also earrles the gas-draluage from the alandoned part of No. 2 , In which the "lmmp" nrea was located. The main returif of No. \ddagger earrled on min lde day 141 euble feet of methane nud on a working-lay $\mathbf{2 5 0}$ enlice fett. The No. 3 mine main return

The records of the methane givell of liy the respective loeds maty he smmarized ne follown, representing the minimum discharge reporded for an ldle dus and the maximmin recorded for n working-lay: -

On the linsls of the total methane discharged, the upper hed appears to be more gaseons than the lower heal: lut in vew of the fact that over three thess as mueh volume of cont is taben ont from the upluer hed an from the lower. It is prolulile there in not much difference in the amount of total free gas in a unit of aren in the revpectlve heels.

Gan Condifions in Hosuar Collierf,-The llowmer mines, situated on the west excarpuent

According to the Government roport of 1012 , putited "Investigution of conls of Canada," thirteen reams were helug opmed at lionmer from 4 to 30 feet in thekness. The opening tumel,

300 feet loug, hat ent tell senmm, fire of whieh were ireing developed and which had a total working thickness of to feet, the sections being given as follows:-

No. 2 seatil, 10 feet.

$"$	6	"	$\mathbf{0}$	$"$
$"$	9	$"$	5	$"$
$"$	10	$"$	9	$"$

The senma varied from n dip of Git degrees to diengres. The tumeis started in the Fernic whafes uuleriying the coni-nensures, renehing the fatter at a distance fin of sef feet and terminating fin a hard congiomerate overiying tite coni-mensures, and therefore the seams cnt inciuded the whole veries. It apiears that very troubied or falted urens ware encountered which fed to the mintting-uj) of the uew mine n few yenrs ago. The colfiery is anid to have heen gaseous, hut outburste were not reported.
 Nest lass Conl Company In $1011-2$ on the western escarpment of tite piateau at a polut on Morriswey creek wlout seven miles in min air-ine south of Coni Creek. According to W. F. Robertson, on the "locky Monntaln (oal Fieid." pulifined in the Annual Report of the Minister of Mines for 19m, efitries driven in on the strata of the lieds show these thicknesses:-

Ife states that the ather lifels were kinwin to be abowe and iociow these, lint not deveioperd. The cual was fonnd to le vory frinife, and on acconnt of the high percentage of fixerl curbou it would nut coke properiy i: learhive ovens and was ton shali in size for focomotive use, in 1003 there were grent ontlmrsts of gas, eansing lons of life, wo that the mines were closed, but

 stteunted.

In 190:3, when the main ontries of No. 1 mine had beon driven $\mathbf{2 . 0 0 0}$ feet from the onterop,
 main entry, making a tmmel eavity 110 foet liegond the orighoni fiee. other iesser outimests
 coal thrown out fillige the lovel for fto feet sueording to lnspectors Inlek and Morgan. The mine forpman " repurted evorytilize char und diniet at face twenty minutes liefore the onthurst."

 of the shifts.

O'tirinsta of lias of V.vmol's Kinios.

above. The must common gases thus confined are: "Natural gas" (hydrocarion gas), whleh is usually assoclated or in contlguous territory with petroleuan, and is found in varlous medimelltary heds geaerally adjacent to thick shale-heds: "methane" (Cil), coramonly found in coalmeasures; carhon doxide (CO_{2}) : and uitrogen. sometlmes found adjacent to deeply limrled llmestoae and occaslonally In shattered eruptlve rocks, as at Cripple Creek, Colorado.

Great outbursts of carhon dioxlde have occurred in the coal-ailnes in certala small contbasins of Central France adjacent to anelent crystallhe rocks, throwlag out thousanda of tons of conl and caushg ioss of life, hut ontlursts of this gas (CO_{2}) are not known in the prinelpal eonlfieids of the worl :.

Inbursts of natural gas Into mines have oceurred In [eansylvanin, West Virginta, and Ithois malas, where the mensures containing sueh gas have underialn the conl-mensnres; lut, aithough the gas-pressures are sometmes ahove $1, \mathrm{~mol} 1 \mathrm{ll}$. per sumare ineh, violent outhnents hare not been reported since the distances between the gas-mensures and conl-measures hare been too great.

Outnurgts of Metuane.
Methane-onthursts lutu eoalimines liave not leen umeommon th many coalfields liesldes the Crownest field. Sueh outharsts have oeenrred only when the coal-i,d belng mined is deeply covered to n depth of over 1,000 feet or more iny strita contuining imperslous shalew. Methane fomd In conlmeasures is generaily heileved to have heen derived from martial distilation of, the iltmuinous matter ln the eoni-sieama and hiltumiaous shates. fin the natumi process of co:il formation by ehembeat renctions aded by heat and pressure from deep burying and mountaln upluild ag.

It is therefore helfevel thit thif coai-leds have produced iarge amomis of hydrocurion gases, fint where the berls are thinly covered or are eovered oniy ly pervions rocks the sandstone. or the eover is mueli broken ly fault-jhanes extenting to the surtace, the gas has escaped. Generally, the more deeply limrled the eoat-ineds, the farther ndvaneed from the lignttie stage: the iarger the volumes of the residual gas, methane, contained in the strata, and also the greater the pressure under wheh the gises are eonfined. In Great lirtain. In deen boreholes from the

 ly Relginu luvestigntors that the highest pressures are not fomid in the eoal areas suliject to outbursts. fint rather in the teuser emis.
(ireat outhirsts of methume (chiefty) have occured in the demp lingian mines, in one of wheh many venrs ago the ventilating-current was reversen inm ulant 140 men amothered, the gas taking fire at the surface and hurnhg for a day or two. Siveral hundred other onthursts

 mines-anshg fatalitles. Nmail onthursts have mixn ocemred in coni mhes of the linital States. In fhe anthathe disirlet of lemmevivanin and in Colorato.
 mines th the Crowsinest conitleju, nud on reojening the mines in 1900, when the mines were agalin

l'ressine of Gis in Conl Chekk Mines.

On aecome of the npparent grent force indented liy the onthurstes at the mines at Morrissey
 gas-pressure fin the coallied minst he very high. Tin determine whit the pressures were, three sets of inorefoles. three holes 10 to 14 feet apart in eacit set, were alriled inte the soild coal of
 deep respectively. Throe-elghth-hid pijess were set lin each hole and allowed to project about $1 / 3$ foot from the hole. The inner 1. 2. and 3 seet of ench pipe respectlvely for the s -, 16 i , and
 Ing was forced bick agalnst ench collur to serve as stemming material: then cement aud annol grouthg wis joured intu each hole, the holes heing pitehed downward 1 in 24 , mutll the gronting
nearly Hhent the hole; then cembint mortur was naed to finkh flling. After the cement had get a bressure-gange and a valve wis merowed tin the the end of the plpe.
lin all enmes gas hlew freely ont of the plas. hat the jressures olitalueal an mintlug the valven were surprishugy low. When each valve was shat abont a diy uffer leghnlug the respective lule, the maxlamm prewsure was qulekly ohtalned, ant thereafter there was prateleally no ehange.
 wore rend ly Mr. Mebell, nut ure mimmorizod ln the following tulbe:-

No. 1 Fast mine
is luom, 10 lisat entry (in solid roal on lower rib).
al rom, 10 bast entry (in solid cosi on lower rib).
No. 3 mine-
Counter to Main level (in molili emal un lower rib).........

Ihinkhula Jikitum,			Tawrkatiak Fioma.	
AFt.	16 FL	94 Fr	Hultam 2f' Hole.	Mine-air.
1.1.	1.1.	1.h.	Degreps.	13preem
3	0.5	13.5	46	40
0.5	7	18	i4)	48
1.8)	2	2	6.5	(6)

 couls il seens probable that there is a raphe emenge of gas as the mine-face nolvances. With

 had hos drabued low othor boreholes the entry wrom trivhg should cease.

'Iemphintire: in Porfiloles.

 plave into the lorelande lhslaz.

 to meet the

 and No. 3 on the sumble she of the reek. The coal varled in thickisess from tha feet on the

 very lrregular.

 the welglit of 2.0 feret of criver.

 to the rest of the workings ilme only will whow.
 extract plitars from a coutral area whlen has stom for sumbe thme If the extractlon of pillars

 such prohbithou to inelnife the matn entry amblarallela lusile of Nu. 1 West level."

 supported live what Itipuphey on the borth side of coal cres

Afler the No. 1 bed liad lerell mind by No. 1 Nior* loug-wall operations comituted mear the outcrop. this by opembig No. 9 mblue muler the No. 1, whth similar ext.
many plliturs extracterl allul sumbe werl by worklug the Xis. : sestut a by fllar-arawhag and lonp-wall:

 Dlluss No. 1 North ant No. O.)

the Nit 2, was then develoneal over the west part of Otd No. 2 aine liy what la termed the " N . 1 Sonth mine," and snlmerpinently ly the apening of No. 1 East miae, lamentiatily over the central part of No. 2 mine.

Description of No. 1 Hast Mine.

The No. 1 East mhe was the only mhe systematleally pianned of the Conl Creek mines, and the ulvance plun was righly adhered to. The matn entries run due south, whiteh is apmoximately on the strlke of the bed; the crosseatries, 10 feet wide, which on the west stide are irlven " to the rive" and on the enst side "to the diln," are foo feet npart, and in the maer part of the mine
 whithe muln entry and are also in puirs. The two rooma are co feet numrt and .ee pairs 150) fert apurt. ('ronscuts are letween each of the two rooms, lut the nairs are only commeted when

 advince work, and no bilines were to he pulted mitl the mine wis retreating as a whole. (See Fxhiblitt 4 , mation mine.)

The cenl is from 10 to 12 feci thick, to a slickemsided rasin 2 to 3 feet thek, which had no

 fluirt, but the mbers who were patal $\$ 1$ per get, usmally proferved to plate two sets to a yard.

 There are atso wher heds of eonglomerite higher the the sethon. Gwhe to the deep snow on

Tho №. 1 basi mine rabldy developed; the minhig fondithons were goom, except the tmmodiate toll, cinsisting of the rash and soft coal, weighted heavity on the thiners, und after
 the main rmof.
 easily, and a mhare combld load 7 th 8 tons per day of "elght homs from lank to bank." wheh

 hemmind in eleven others. by f a.m. they hat worked thoir wiy ant throngh a crossent into

Falls of false top were kemerni luly the No. it kast and West. Those th the maln entry

 filugs, and canshig a reversul of the enrent fin wifh strenghth that several men, one of them the keneral manager. Mr. Whson, were hurbed ontly lefure it, stheks and stones behg carrled aloag.

Thele were many narrow esenpes of those th the mine workhig to elean up the previons falls, lom all esespod, thongh surual were battered up. Whle humberls of falls had oceurred, proctcally all that conld he observed were of the rash and ton coal onty. Apparently the main roof had stool the shocks.

A fourin lint lenger "bump" ocyurred neer the maln entry on November 3ith, canaing the botton to heave ln the centre 2 fert, and for a distance of 20 feat opmosite the No. 12 Weat and outby same for 120 feet. Thls was the only "bump" which canaml the fleor to 1 ff . Sluce the fourth "bimp," there have lieen row knockg, rather than " bmom," at more or lews frequent Intervuls, emshig no damage. Neltinr the large nor the sulsequent small "bums" were accompanled ly outhurste of gas, unllke the "lump," In No. © nilne.

Mr. Grahim, Chlef Inspector of the Brovince, following the ocenrrene of the "lmuma," deckled to prohlbit, peming lnvestlyatlon and further orders, work in a certaln sectlom hing the
 No, 2 inlue.

Timeory beanding " Bebips."

 ure at great depth, usially excesthag 1,000 fert. If the measures overlylug the mine are soft and pilable, such an whate-heds, "humps "will mot ocenr, althongh "mhe squeczes" may take place. "Hmmps" therefore orenr mily when there are masslve and right beds above, anch as

 Is too wenk th whthetume the lome pit on th, throngh removal of part of the na ural simport hy
 righe rocks of great thlekiness alone.

The cunse of " lamps " la thought lige writer to he this: When an area in a coal-hed has lusin mbed out or when a "muceze" has oceurrem from the welght of the bwor-lylug roof, so that a substance or separathen of the dower strutmin from mider the rigit rowk has oumered, then the musslve rock will spin the subsilenee. If the dameter of this sinhelded area is lmited

 mosslere rock was not simported over thls space, then it is ponable that the bower lavers of such a rock would not stund the strab, and a large disk-shaped plece wond drol, 1. 2 . or is

 represented by the subsidencr. and there wond be a dat, dome-llise arch, sumpred at the sldes of the unsulalded nrea.

If the subsidence of the lower mansines contaned through entarsement of har area of

 ha Conl Creok Nos. 1 and 2 mher.

In the foregolng it is assmmed that the coal strata is not diphing at suthelent amgle to canse allpping uf the strata on the bedding-planes. stepely diphong stratu would necessarily act very diferently the the mement of the mass whinh glves the blow. When the overlyhg strata is in the form of muntahis whth steef slopmes and with great slips or fault-planes developed, the character of the rock-mowements would be profoundly ultored: lint in any case it is liedieved that when thonsands or humadre of thonsands ar even millons of tons uf rick fall only a few behes, a gigantle sledge-hammer how is glven to the mine-roof, setthg up shratory waves like the enrthtremors which are callet eurthonakes. The direct blow on the mineroof may hreak thaters and throw down great ammonts of soft roof material, canse slabhing of nll the eoal, or, where the conl ls strong and the hottom of the floor weak, canse a suden uplifting of the floor. The latter effert was the chlef manlfestation of the "hmmpe" which ocemreal in No. 2 mhe from 1000 to
 through the lireaking of timher and release of the soft "rash" and coal ahove it. The immedate roof in some cases may be permanently lowered by such a hammer.like lilow, and in the recent

Abstract

Abstract

 presinted the fullewing kilural dian:-

To renpen the maln entriew thitomph the temprarily prohilifted area nul drive them on mutil

 disirict to be worked from the mine was rendied, then n retreatheg syatom of mome wort wonld
 ns to adequitely tuke rive of the Increased flow of gas whill might be experted inf fiture.

The No. 2 mine (h) the lower beel) was to be axtended from the present matn entrles mat

 the mintural eonditions.

 plyen to the writer and the Irrovinelat anthortites.

 (No. 1 hed) hat mot laxell openaw in thes victulty.

 ly the lereaklng of thabrhig and throwherlown of false tolp, rash, and roof cond. lint withont

 laind mad th the Jake sumertor coplopembes.
 and massive sandstome in the cover orer a mine amd also beror only wholl the working are at ereat deptli-that is, 1.00 m feet or more.
(6.) There is grat damer tu madergrombd workers an well as serions damger th the mbe

 if November ath, 1916, which threw down the rask and rome cwal through in area of 30 or 40
nerem, hat aryurrel during the dhy shifl, meveral hundred nwill would have beelt expowed to the

 Weak, but the buln roof is atrong, and clome oilmervathom, mo far an the heavy falin permilted
 rove.

Your invoraligntur liefloves:-

 (w) lupimal wiurkhum.

(c.) That after ane righe stratum has blvoll why in the litertor of the mensures there is

 sineressive fill.

 is rotreathe.

 one would lae lidured.
 neconit of a mixture of lmparity with the conl, whifls wonld lis turn merlonaly damuse the coke.

 Haller or palim hat incurred.

The followhy are the chtep fincts inevelogse:-

(f.) Thit the gas-jrensurex withla 11 whort dintance of the facre of the workhige nre law.
 the wolld away from the face.

therommenditions htishanig fins-rions.

 by melviner hemithes.

 intulties masy he summariand as fohlows:

lhat all rhanuew may be chmervid, togethor with the obmervallou and menanrement of anfface erneks which may ilerelop.

 Is worklug abil wholl it is hatio.

 the prohtamisu in

In comelaslu. some Irowhare, the . Mr. Grahmm, In regira the mhars nul property tis
 cralugist. Mr. Ifobertson, amd the Chlef Inspuretor of Dllues. ux wheh roafromt thoms. Tholr past allow thenfogardime

(izoroe: n. Hice.
Washingthin, D.f'. . Iarrh 36th, 191\%.

2

al formation

ction C-D shows cover over seams on North side he above section mas bhen sos reet West of the Nel Last Main Tumel. May Naxiwill

SECTION A-B SHOW' COVER OVER NO/E
Magrent Nirts \rightarrow

EXHIBIT 2
Section of
hpproximate Geological formation
conl creen colliery

mot $=5$
Eat Entry and shown is Line A-B on Conter Map

[^0]: Nires.-The above sangles ure Feportod on a
 rom the nandian survis icpport, in which the al was rejoriod on a molsture-frog basim. The above

[^1]: - At 0° C. and $\mathbf{6} 60 \mathrm{~mm}$ pressure.

[^2]: - Corrected for alr leaking into ball-mill during grinding an Indleated liy the oxymen percentage.

[^3]:
 thani and olher hiviforarion gasea exeept metian, hare nerar bein found th the mine-nir in mines of lbe t'nlted Ntates onluse by leakage from depp naturalgan welis.

