

IMAGE EVALUATION TEST TARGET (MT-3)

CIHM/ICMH Microfiche Series.

CIHM/ICMH Collection de microfiches.

The Institute has attempted to obtain the best original copy available for filming. Physical features of this copy which may alter any of the images in the reproduction are checked below.

Coloured covers/
Couvertures de couleur

Coloured mars/
Cartes géographiques en couleur

Pages discoloured, stained or foxed/
Pages décolorées, tachetées ou piquées
\square Tight binding (may cause shadows or distortion along interior margin)/ Reliure serré (peut causer de l'ombre ou de la distortion le long de la marge intérieure)

L'Institut a microfilmé le meilleur exemplaire qu'il lui a été possible de se procurer. Certains défauts susceptibles de nuire à la qualité de la reproduction sont notés ci-dessous.

\square
Coloured pages/
Pages de couleur

Coloured plates/
Planches en couleur

Show through/
Transparence

\square
Pages damaged/
Pages endommagées

Bibliographic Notes / Notes bibliographiques

Only edition available/
Seule édition disponible

Bound with other material/
Relié avec d'autres documents

Cover title missing/
Le titre de couverture manque

Plates missing/
Des planches manquent

Additional comments/
Commentaires supplémentaires

\square

The i possi of thi filmir

The II conte or thi appli

The c filme instit

Maps in on uppe botto follov

Additional comments/
Commentaires supplémentaires

Pagination incorrect/
Erreurs de pagination

Pages missing/
Des pages manquent

Maps missing/
Des cartes géographiques manquent

The images appearing here are the best quality possible considering the condition and legibility of the original copy and in keeping with the filming contract specifications.

The last recorded frame on each microfiche shall contain the symbol \rightarrow (meaning CONTINUED"). or the symbol ∇ (meaning "END"), whichever applies.

The original copy was borrowed from, and filmed with, the kind consent of the following institution:

National Library of Canada

Maps or plates too large to be entirely included in one exposure are filmed beginning in the upper left hand corner, left to right and top to bottom, as many frames as required. The following diagrams illustrate the method:

Les images suivantes ont été reproduites avec le plus grand soin, compte tenu c'e la condition et de la netteté de l'exemplaire filmé, et en conformité avec les conditions du contrat de filmage.

Un des symboles suivants apparaîtra sur la dernière image de chaque microfiche, selon le cas: le symbole \rightarrow signifie "A SUIVRE", le symbole V signifie "FIN".

L'exemplaire filmé fut reproduit grâce à la générosité de l'établissement prêteur suivant :

Bibliothèque nationale du Canada

Les cartes ou les planches trop grandes pour être reproduites en un seul cliché sont filmées à partir de l'angle supérieure gauche, de gauche à droite et de haut en bas, en prenant le nombre d'images nécessaire. Le diagramme suivant illustre la méthode :

BAILLATRGÉ

THE

STEREOMETRICON.

New system of measuring

ALL BODIES
BY ONE AND THE SAME RULE.
gaxeral application of the prishoidal foriula.

NOMENCTATURE AND GENERAI FEATURE; OF EACH OF THE

$$
200 \text { MODELS ON THE BOARD. }
$$

THE AREAS OF SPHERIOAL TRIANGLES AND POLYGONS TO ANY RADIUS OR DIAMETER.

TABLES
of the Areas of Circles, Segments, Zones - see index, table of S. Secific gravities.

QUEBEC

PRINTED BY C. DARVEAU

BAILLAIRGF9S SHME

New system of determining the solid contents of a body of a

(Extract from the "Quebec Daily Mercury"

Mr. Baillairge's lecture on Wednesday evening last before the Literary and Historical Society of Quebee, proved once more how very interesting, even in a popular sense, an otherwise dry and ahstruse subject, may become, when ably handled.

The lecturer showed the relationship of geometry to all the industries of life. He traced its origin from remote antiquity, its gradual developenent up to the present time. He showed how it is the basis of all our public works, and how we are indebted to it for all the constructive arts ; its relationship to mechanics, hydraulies, untics, and all the physical sciences. The fairer portion of mankind, said Mr. B., have the keenest, most appreciative perception of its advantages and beauties, as evidenced in the ever-varying combiuations so cuuningly devised iu their desigus for needle tracery, laces aud embroidery. He showed its relationship to chemistry in crystallization and polarization; to botany and zoology in the laws of morphology ; to theology, and so ou. In treating of the circle and other conic sections, he drew quite a poetical comparisou between the engineer who traces out his curves among the woods and waters of the earth, and the astronomer who sweeps out his mighty circuits amidst the starry forests of the heaveus. The parabola was fully illustrated in its application to the throwing of projectiles of war, also as evidenced in jets of water, the speaking trumpet, the mirror and the reflector, which, in lighthouses, gathers the rays of light, as it were, into a bundle, and seuds them forth together on their errand of humanity. In treating of the ellipse, this almost magic curve which is traced out in the hearens by every planet that revolves about the sun, by every satellite about its primary, he alluded to that most beautiful of all ovals-the face of lovely woman. He showed how the re-appearance of a comet may now be predicted evea to the very day it heaves in sights, and though it has been absent for a century, and how in former ages, when these phenomena were unpredicted, they burst upou the world in unexpected moments, carrying terror everywhere and giving rise to the utmost anxiety and consternation, as if the end of all things were at hand; in a word, Mr. Baillairgé went over the whole field of geometry and meusuration, both plane and spherical ; a difficult feat within the limits of a single lecture ; and kept the audience, so to say, eutranced with interest for two whole hours, which the president, Dr. Anderson, remarked : were to hinn as but one ; and no doubt it must have been so to others, since Mr. Wilkie, in seconding the vote of thanks proposed by Capt. Ashe, alluded to the pleasure with which he had listened to the lecture as if, he said, it were like poetry to him, instead of the unpromising matter foreshadowed in the title. Mr. Baillairgé next explained in detail his stereometrical tableau, which we hope to see soon introduced into all the schools of this Dominion. He showed how conducive it will be in shortening the time heretofore devoted
to the study of solids and even to that of plan superficies, spherical trigonometry, geometric perspective, drawing the developement of surl and shadows, and the like. Mr. Wilkie, so tunity had been afforded him of proving the corroborated Mr. B.'s statement in relation to saving in time, where many abstruse problet nerally required hours or days to solve, cau no be, as Mr. Baillairgé asserts, so generally app as has been certified by so many persous in over their own siguatures,) with the help of mula and tablean, be performed in as many say nothing of the use the models are in in glance a knowledge of their nomenclature or an acquaintanceship with their varied shapes He showed how, to the architect and enginee and mechanie, the :nodels are suggestive of tl relative proportions of buildings, roofs, dom quays, cisterns and reservoirs, cauldrons, vats and other vessels of capacity, earthworks comprising railroad and other cuttings and et the shaft of the Greek and Roman column winney timber, saw-lors, the cunping teut, t splayed opening of a door or window, nieh ot a wall, the vault or arched ceiling of a chnrel billiard or the cannon ball, or. on a larger seal earth, sun and planets. Mr. Baillairsé, we i received an order for a tableau from the Mini cation of New-Brunswick, with the view of i into all the schools of that Proviuce ; and Mr writing to Mr. Baillairgé, from Frauce, on January last, to advise him of the granting patent for that comntry, says that Messrs. Hun the Président and secretary of the society for lization of education in France, have intima tention, at their next general meeting of havin of distinction conferred ou him for the bene invention and discovery are likely to coufer c Mr. Giard, in writing to Mr. Baillairgé, ou th Hon. Mr. Chanveau, Minister of Public Instr "Il se fera un devoir d'en recommander l'ai " toutes les maisons d'éducation et dans toute From the Seminary and Laval University. writes : "Plus on étudie, plus on approfondit "du cubage des corps, plus on est enchan " one marvels) de sa simplicité, de sa clarté
"sa grande généralité." Rév. Mr. MuQu "sball be delighted to see the old and tedio " superseded by a formula so simple and so e ton, or Yale College, United States : "consi "bleau a most useful arrangement for shov "riety and extent of the applications of the fo College l'Assomption " will adopt Mr. Ba" "tem as part of their course of instruction." has written to the author that "the rule is

Shyelitwolvapryincolv.

ontents of a body of any shape, by one and the seme rule.

bec Daily Mercury" of 30th March, 1872.)

olids and even to that of plane and convex rical trigouometry, geometrical projection, ring the developement of surfaces, shades, d the like. Mr. Wilkie, so far as opporafforded him of proving the calcuiations, B.'s statement in relation to the immense ohere many abstruse problems which genours or days to solve, cau now (if the rule irgé asserts, so generally applicable, and, fied by so many persons in testimonials guatures,) with the help of the new for1, be performed in as many minutes; to te use the models are in imparting at a Ige of their nomenclature or names, and hip with their varied shapes and figures. to the architect and engineer, the builder e inodels are suggestive of the forms and ous of buildings, roofs, domes, piers and ad reservoirs, cauldrons, vats. casks, tubs s of capacity, earthworks of all kinds, ad and other cuttings and embankments, Greek and Roman column, square and iw-lors, the cunping teut, the square or of a dowr or window, nieh or loophole in or arched ceiling of a chnreh or hall, the unon ball, or. on a larger scale, the moon, anets. Mr. Bailairsé, we may add, has - for a tableau from the Minister of Edurunswick, with the view of introducing it ols of that Proviuce ; and Mr. Vaunier, in Baillairgé, from Frauce, on the 10th of advise him of the granting of his letters motry, says that Messrs. Hunhert \& Noé, d secretary of the society for the generaion in France, have intimated their inlext general meeting of having some mark ferred on him for the benefit which his covery are likely to coufer ou education. iting to Mr. Baillairgé, ou the part of the eau, Minister of Public Instruction, says: sooir d'en recommander l'adoption daus ons d'éducation et dans toutes les écoles." ury and Laval University. Mr. Maingui n étudie, plus on approfondit cette formule corps, plus on est enchanté (the more e sa simplicité, de sa clarté et surtout de ıéralité." Rév. Mr. McQuarries, B. A. ted to see the old and tedious processes a formula so simple and so exact." Newege, United States : "considers the taisefal arrangement for showing the vat of the applications of the formula." The ttion "will adopt Mr. Ba llairgés systheir course of instruction." Mr. Wilkie e author that "the rule is precise and
"simple, and will greatly shorien the processes of calculation. "The tablean," stys this comnetent judge, "com"prising as it does a great variety of elementary models, " will serve admirably to educate the eye, and must great" ly facilitate the study of solid mensuration." "Again," says Mr. Wilkie. "the Government would confer a boou "on sehools of the middle and higher class by affording " access to so suggestive a collection." There are others who, irrespective of considerations as to the comparative accuracy of the formula, or of its advantages, as applied to mere mensuration, are awake to the fact that the models are so inuch more snggestive to the pupil and the teacher than their me e representation on a blackboard or on paper, and who, in thpir written opinion, have alluded especially to this feature of the proposed system. M. Joly President of the Quebec Branch of the Montreal School of Arts and Design, in a letter on the subjects to Mr. Wearer, the President of the Board, and after having himself witnessed its advantages on more than one occasion, says, in his expressive style, " the difference is enormous." Professor Tousaint, of the Norinal School, Dufresne, of the Montmagny Academy, Boivin, of St. Hyacinthe, and many others, are of the same opinion; among them MM. R. S. M. Buachette, O'Farrell, Fleteher. St. Anbiu, Steekel, Jnnean, Venner. Gallagher, Lafrance, and the late Brother Anthony, \&e., \&c. Neither will it be forgotten that the professors of the Laval University, after reading the enunciation of Mr. B.'s formula. as given in his treatise of 1866, expressed themselves thus: "Uu donte involontaire s'enpare d'abord de l'esprit, lorsqu'ou lit ie No. 1521 ; " mais "un examen attentif des paragraphes suivants, dissipe " bientôt ce donte et l'on reste étonné à la vue d'une for" mule, si claire, si aisée à retenir et dont l'application est "si générale." Mr Fletcher, of the Crown Lands Department, says : "I have compared. iu the case of seve"ral solids, the results obtained by your mode of eompu"tation with those resulting from the ordinary and more " lengthy processes, and congratulate yon sincerely on " your ennsciation of a formula so brief and simple in its " character, and so precise and satisfactory in its results." Mr. Baillairgé also took oceasion during his lecture to allude. in other relations, to his treatise on geometry and mensuration, in which he showed he has introduced many important modifications in the usual mode of treating the subject of plane and spherical geometry and trigonometry. In conclusion, we must add that the Council of Public Instruction, at its last meeting, appoiuted a Committee, composed of the Lord Bishop of Quebec, and of Bishons Langevin and Labrecque, to report to the Council at its nיxt general meeting in June, and who, it may be taken for granted, after the many flattering testimonials in reiation to the util $->$ and many advantages of the stereometrical tableau or purposes of education, cannot but recommend and direct its adoption in all the sehools of the Dominion.

BAILLAIRGE'S STEF

Honorary Member of the Society for the Generalizat
New system of measuring all bodies, segments, frustums and ung Thirteen Medals of honor and Seventeen Diplomas from France, Italy, Belgiut
United-States of America, and

This is a Case 5 feet long, 3 feet wide and 5 inches deep, with a hinged (exhibiting and affording free access to some 200 well-finished Hardwood Mo form, each of which being merely attached to the board, by means of wire, pe Student or Professor.

The use of the Tablean and accompanying Treatise, reduces the whole science and art of Mensuration from the study of a year to that of a day or two, and so simplifies the study and teaching of Solid Geometry, the Nomenclature of Geometrical and other forms, the cevelopement of surfaces, ge ometrical projection and perspective, plane and curved areas, Spherical Geometry and Trigonometry, and the mensuration of surfaces and solids, that the several branches hereinbefore mentioned may now be tanght even in the most elementary schools, and in convents, where such study could not even have been dreamed of heretofore.

Each tableau is accompanied by a Treatise explanatory of the mode of measurement by the "Prismoildal Eormula, and an explanation of the solid, its nature, shape, opposite bases, and middle section, its lateral surface developed, etc.

Agents wanted for the sale of the Stereometricon in $C a$ nada, the United States, $\&_{c}$.

Pour trouver le volume d'un

LR SRRREMLILRICON

 corps quelconque.REGLE : $\overline{\text { la }}$ somme des surfaces des extrémités paralleles, ajouter quatre fois la surface au centre, et multiplier le tout par la
sixième partie de la hausixieme partie de la hau-
teur on longuenr dusoide.

Breveté au CANA1)A, anx ETATS-UNIS et en EUROPE.
$\underset{\text { Vulgarisation de le la Société porr la }}{\text { Membere Titulaire }}$ Vulgarisation de l'Education en teur ou longuenr du soide.

For the use of Architects, Engineers, Surveyors, Students and Apprentice Mathematics, Universities, Colleges, Seminarids, Convents and other Educatior Measurers, Gaugers, Ship-builders, Contractors, Artisans and others in Canada

STEREONETRICON.

or the Generalization of Edecation in France, etc., etc.
its, frustums and ungulas of these bodies, by one and the same rule.
Crance, Italy, Belgium, Russia, Canada, Fapan, etc. (Patented in Canada, in the ates of America, and in Europe.)
leep, with a hinged Glass Cover, under Lockand Key, so as to exclude dust while ;hed Hardwood Models of every conceivable Elementary, Geometrical or other y means of wire, peg or nail, can be removed and replaced at pleasure, by the

ints and Apprentices, Customs and Excise Officers, Professors of Geometry and and other Educational Establishments, Schools of Art and Design, Mechanics, ad others in Canada and elsewhere.

BAILLAIRG

Honorary Member of th
New system of measuring all bc

Thirteen Medals of honor and Seventeen Diple

This is a Case 5 feet long, 3 feet wide arvhile exhibiting and affording free access to some 2 ther form, each of which being merely attached to the Student or Professor.

The use of the Tablear and accompanying Treatise, reduces the whole science and art of Mensuration from the study of a year to that of a day or two, and so simplifies the study and teaching of Solid Geometry, the Nomenciature of Geometrical and other forms, the developement of surfaces, geometrical projection and perspective, plane and surved areas, Spherical Geometry and Trigonometry, aud the mensuration of surfaces and solids, that the several branches hereinbefore mentioned may now be tanght even in the most elementary schools, and in convents, where such study could not even have been dreamed of heretofore.

Each tableau is accompanied by a Treatise explanatory of the mode of measurement by the "Prismoïdal Eormula, and an explanation of the solid, its nature, shape, opposite bases, and middle section, its lateral surface developed, etc.

Agents wanted for the sale of the Stereometricon in Ca nada, the United States, $\mathscr{\&}_{c}$.

For the use of Architects, Engineers, Surv, and Mathematics, Universities, Colleges, Seminariennics, Measurers, Gaugers, Ship-builders, Contractors

THE

 STEREOMETRICON.

 STEREOMETRICON.}

Originator : C. Baillairgé, M. S.

Mrmbir of the Socirty for the Gexkrafization of Education in Francr, and of severaif. Learned and Scikntific Societiks; Chevalikr of the Ohder of St. Sauvkur dic Montr-Realek, Italy; ktc., ktc.
frliow of the Royal Society, Canada.

MEASUREMENT OF ALL SOLIDS BY ONE AND THE SAME RUIE. CNIVERSAL APPLICATION OF THE PRISMOIDAL FORMOLA.

Thirtren Medal.s and seventeen Diptomas and Letteres awarded the Author from Russia, Franck, Italy, Belgium, Japan, etc.

Promoter : THOMAS WHITTY,

 PROFESSOR AT ST. DENIS ACADEMY, MONTREAL.Comprises 200 Solids representative of all conceivable elementary forms, as of the Component parts of Compound bodies.

Name and description of each solid. What it is representative or suggestive of, or that of which it forms a compouent part.

Nature and name of opposite bases and of middle section, as of lateral faces and remainder of bounding Area, including every species of Plane, Spherical, Spheroidal, aud Conoidal figures.

Division I, classes I to X : pleiue faced So'ids and Solids of single curvature. Division II, classes XI to XI: : Solids of jouble curvature.

QUEBEC

PRINTED BY C. DARVEAU

1584

INDEX

The Stereometricon : nomenclatnre and gereral feature of each of the
200 solids on the board; see the diagram at the beginning of this
pamphlet

The Areas of Spherical Triangles \& Polygons to any radins or diameter : a paper read before the Royal Society of Canada in 1833. 55

On the general application of the prismonlal formula: a paper read be- fore the Royal Society of Canada in 1832. 61

TABLES

I. Squares and Square Roots of numbers from 1 to 1600 4
II. Circumferences and areas of circles of diameter $\frac{1}{64}$ to 150 , advan- cing by $\frac{1}{8}$ 11
III. Circumferences and areas of circles of diameter $\frac{1}{10}$ to 10 J , advan- cing by $\frac{1}{10}$ 19
IV. Circumferences and areas of circles of diameter 1 to 50 feet, ad- vancing by 1 inch or $\frac{1}{12}$. 25
V. Sides of Squares equal in area to a circle of diameter 1 to 100 ad- vancing by 29
VI. Lengths of circular ares to diameter 1 diviled inte 1000 equal parts 31
VII Lengths of semi-elliptic ares to transverse diameter 1 divided into 1000 equal parts. 33
VIII. Areas of the segments of a circle to diameter 1 divided into 1000 equal parts. 37
IX. Areas of the zones of a circle to diameter 1 divided into $\mathbf{1 0 0 0}$ equal parts. 39
X. Specific gravities or weights of bodies of all kinds : solid, fluid, liquid and gazeous 22

THE STEREOMETRICON

Originator: C. BaILLAIRGÉ, M .S.

Member of the Society for the Generalisation of Education in France and of several learned and scientific Societies: Chevalier of the Order of St. Sauveur de Monte. Reale, Italy ; Fellow of the Royal Society of Canada, etc., etc.. etc.

Measurement of all solids by one and the same rule. Universal application of the prismoïdal formula.

TLirteen Medals and seventeen Diplomas and letters awarded the author, from Francs, Russia, Italy, Belgium, Japan, etc.
Promoter: THOMAS WHITTY, professor at St. Denis Academy, Montreal, etc.
RULE: To the sum of the opposite and parallel end areas, add four times the area of a section midway between and parallel to the opposite bases; multiply the whole by $\frac{1}{6}$ part of the length or height or diamett, of the solid, perpendicular to the bases; the result will be the solidity or volume, the capacity or contents of the body, figure or vessel under consideration.

For application of the rule and examples of all kinds fully worked out, see "Key to Stereometricon."

For areas of all kinds, plane, and of single and double curvature, see also "Key to Stereometricon," with tables of areas of circles to eighths, tenths and twelfths of an inch, or of any other unit of measure, tables of segments and zones of a circle, etc., etc., at end of "Key."

The tabłéau comprises 200 models, disposed in 10 horizontal and 20 vertical rows, series, families or classes. The solids may be indifferently placed, and numbered from the right or left and from below upwards or the contrary.

The solids are representative of all conceivable elementary forms and figures, as of the component parts of all compound bodies.

DIVISION I.

Plane faced solids and solids of single curvature, or of which the surfaces are capable of being developed in a plane.

CLASS I.

Prisms.

Nots.-The author uses the term "trapezium" and not "trapezoid," as the termination "oid" conveys the idea of a solid as paraboloid, hyperboloid, conoid, prismoid, etc.

For the same reason he uses the French "trapeziform" instead of trapezoidal.

Name of solid, object of which it is representative or suggestive, or of which it forms a component part.

Reference to "Key to Stereometricon," for computation of contents and of factors necessary thereto.

Nature and name of opposite bases and middle section, lateral faces and remainder of bounding surface.

Reference to page or paragraph of "Key" for calculation of areas and of factors necessary thereto.

1-The cube or hexaedron one of the five platonic bodies
Representative of any other rectangular prism, of a building or block of buildings or of one of the component parts thereof; a brick or

Each of its three pairs of opposite and parallel faces or of its six faces or bases and middle sections, perfect and equal squares. For developed surface. See "Key to Ster.," page 131.

Representative of the floor, ceiling, below

3-A right regular pentagonal prism.
On end, the base or component part of the shaft of a pentagonal pier or column; on one of its sides, a baker's, butcher's or other van; an ambulance, etc. "Key," page 61.
wall or partitions of a rectangular room or apartment, or of the bases and sides of the various objects mentioned under the name of the solid.

See "Key to Ster.," page 60.
Nee Ney wo net., page vo.

2-A right isosceles triangular prism
On end, a triangular block or building ; on its base, a ridge roof; on one of its sides, the roof of a penthouse or lean-to. "Key to Ster. p. 61.

4-A right regular octagonal prism.
Base or shaft of a column, a pier or post, a bead, baluster, hand-rail, etc. "Key to Ster.," page 61.

5-Oblique hexagonal prism
An inclined post or strut or the section of a stair-rail, a baluster on a rake, etc. Mitred section of a rail or bead. "Key to Ster," page 64.

Its opposite and parallel bases and middle section, equal rightangled isosceles triangles. Its sides or lateral faces rectangles. For areas, see "Key to Ster."" pages 19,22 and 60 . Sides suggestive of those of objects alluded to.
cut store, a wiestal, a die or cado; a pier cr qupy iux, chest, package of m_{1} "cha.idise or parcel; a cistern, bin, at or other vessel of capacity; a pile of bricks, stones, lumber, books, etc., etc., etc.
"Key to Ster.," p. 61, par. (78).

6-Oblique rectangular prism.
On end, an inclined strut or post, etc; on its parallelogram base, the pier of a skew bridge, portion of a mitred fillet, etc.

See "Key to Ster.," page 64.

Two of its three pairs of opposite and paralled faces or bases and sections, equal rectangles; the other bases and section, equal parallelograms. "Key," page 63.

Each of its three pairs of parallel faces or bases and sections, equal parallelograms. gles; on either of its parallel faces, its bases and section, rectangles; its sides, rectangles and trapeziums.
N. B. Its solid contents, like those of Nos. 2 and 8, may be computed either as prisms or prismoids.

Rule for solid contents: multiply
10-A right or oblique polygonal compound prism, decom-

On end, its bases and section, trapeziums, and sides, rectanOn end, the splayed opening of a door or window or loop-hole in a wall; on broader base, a partially flat roof; on its lesser parallel base, a bin or through or other vessel of capacity, section of a ditch excavation or of a railroad embankment on level ground, a scow or pontoon.
section, ectan: faces, ngles; trape-
ts, like be comismoids.
aultiply ee vert-
posable into right or oblique triangular prisms or frusta of prisms

An excavation or filling, etc.
A spoil bank or a borrowing pit.
Each frustum or component part may be treated as a prismoid, one of its sides being the base.
ical edges or depths of each of the component triangular prisms, or frusta of triangular prisms by the area of a section perpendicular to sides or horizontal, and add the results. Page 67, rule II, "Key."

CLASS II.

Prisms, Frusta and Ungulae of Prisms.

11-A right regular trianzular prism.
On end, a triangular building. pier or block ; on one of its sides, the gable of a wall, the roof of a gabled house, etc.
"Key to Ster.," page 61.

12-Lateral wedge or ungula
of a right hexagonal prism, by a plane through edge of base,
Portion of a mitred bead or handrail, end of stair baluster under hand-rail, ridge roof of an octagonal tower against a wall; base of a chimney stack on a sloped roof or gable.

Its parallel bases and section, equal equilateral triangles; its faces, rectangles. Compute as prismoid with rectangular bases, the upper base then being an arris or line.

One of its parallel bases a regular hexagon; its middle base a half hexagon or trapezium ; its upper base a line; its lateral faces a line, a rectangle, triangles and trapeziums ; its sloped face a symmetrical hexagon or 2 trapeziums, base to base.

- 8 -

13-Lateral ungula of a right hexagonal prism, by a plane through opposite angles of the solid.
Base of a chimney stack, vase or ornament on a sloped roof or gable, etc.
N. B.-This solid and the last, are not prismoids according to the definition thereof, page 163, par. (206), "Key to Ster. ;" but the upper half, folded over and applied to the lower half, evidently completes the prism, and hence the solidity is exactly obtained by the prismoidal formula, as it is of a like frustum of a cylinder or of an ungula thereof by a plane through edge of base.

14-Central wedge or ungula of a right hexagonal prism; a prismoid.
A wedge, the ridge roof of a tower, the base of a chimney stack, vase or ornament between two gables.

One of its opposite and parallel bases, a regular hexagon; the other, a point ; its middle section a half hexagon or two rectanguiar trapeziums base to base; its lateral faces, trapeziums and triangles ; its plane of section, a symmetrical hexagon, which, for area, regard as two equal trapeziums base to base, compute and add.

See " Key to Ster.," page 29.
Or the symmetrical hexagon may be decomposed into a rectangle and two equal triangles, for computation of area.

One of its parallel bases, a hexagon ; the other, a line ; its middle section, a symmetrical hexagon or two trapeziums, base to base ; its lateral faces, triangles and trapeziums.

See "Key to Ster.," page 29.

15-An oblique trapeziform prism.
The partially flat roof to a dormer window, the roof of a building abutting against another roof, the splayed opening of a basement window, mitred portion of a batten or moulding, section of a ditch excavation, or of an embankment on a slope.

Treated as a prismoid: its opposite and parallel bases, unequal rectangles ; its lateral faces, trapeziums.

The factors of its middle section arithmetical means between those of its opposite and parallel bases. lle section o rectane to base ; siums and f section, a on, which, equal trampute and
age 29.
sxagon may ctangle and r computa-
les, a hexa; its middle 1 hexagon base to , triangles
page 29.
1: its oppo-
s, unequal 1 faces, tra-
iddle section :ween those Ilel bases.

16-An oblique triangular prism.
The roof of a dor: eer window or of a wing to a house with a sloped roof, a mitred moulding or fillet, etc.

Treated as a prismoid : one of its opposite and parallel bases, a rectangle ; the other, a line; its lateral faces, equal triangles and parallelograms.

17-Frustum of a right triangular prism.
Ridge roof of a building against a wall, a mitred moulding, etc.

As a prismoid : one of its parallel bases, a rectangle; its opposite base, a line; its middle section, a rectangle.

Considered as a prismoid : one base, a trap zium, the other, a line; its middle section, a trapezium ; its ends, non-parallel triangles ; its sides, trapeziums. etc.

19-A right prism on a mixtilinear base.
On end, the unsplayed opening of a door or window in a wall, etc.

Note, for area of segment of circle or ellipse, "Key," pages 33, 44, 51, 53, 57, tables II, III, IV, VIII.

20-Regular frustrum of an As a prismoid : one jase, a oblique triangular prism. A ridge roof, mitred fillet, etc.

Parallel bases and section mixtilinear figures, decomposable into a rectangle and the segment or half of a circle or ellispis; the lateral face, a continuous rectanyle.

Note. - i'he segment of a circle or ellipse may be equal to, less or greater than a semi-circle.
rectangle; the other, a line; the middle section, a rectangle.

CLASS III.

Frusta of Prisms, Prismoids, Wedges.

21-The dodecahedron, or twelve-sided solid, one of the five platonic bodies.
Assemblage of twelve equal pyramids with pentagonal bases, their apices or summits meeting in the centre of the solid or of the circumscribed sphere.

The capital or intermediate section of a pentagonal shaft or column, a finial or other ornament.

The six pairs of parallel bases or twelve component faces of the solid, equal and regular pentagons; the middle section a regular decagon, the side of which is equal to half the diagonal of the pentagon, tor area of which see " Key to Ster.," page 36, rule II; or compute one of the component pyramids and multiply by twelve. For developed surface, see "Key to Ster," page 132.

22-A rectangular wedge, the head or heel broader than the blade or edge.
The frustum of a triangular prism, or may be treated as a prismoid, using either of its three pairs of parailel bases.

An inclined plane, a low pent roof, an ordinary wedge, etc.

On end : its opposite and parallel bases, a rectangle and a line; its middle base or section, a rectangle. On one of either of its other two pairs of parallel bases; one base, a trapezium, the other, a line ; the middle section a trapezium ; side faces, a rectangle and triangles.

23 - A rectangular wedge or inclined plane the head or heel of equal breadth with the edge or blade.
A right triangular prism, body of a dormer window or base of a chimney stack on a low or steep roof, etc.

Each of its three pairs of parallel bases, a rectangle and a line ; its middle sections, rectangles, respectively equal to half the corresponding bases. May also be treated as a triangular prism, with bases and section equal triangles.
lel bases or of the solid, sntagons; a regular which is nal of the which see 6, rule II; component by twelve. se "Key to
nd parallel a line; its rectangle. other two one base, a t line ; the ium ; side ;riangles.
of parallel a line ; its agles, resthe corresbe treated with bases agles.
$24-1 n$ isosceles wedge, the edge or blade broader than the heel.
May also be considered, the frustum of a triangular prism or prismoid with three pairs of parallel bases.

As a prismoid : one of its pairs of parallel bases, a rectangle and a line ; middle section, a rectangle; each other pair of parallel bases, a trapezium and a line ; middle section, a trapezium.

25-Frustum of a right rectangular trapeziform prism, or a prismoid.
A roof, partially flat, abutting against a vertical wall at one end and in rear, against a sloped roof at the other, etc.

26-Irregular frustum of an ob. lique trapeziform prism.
A roof between two ochers not parallel, irregular section of a ditch or embankment.

As a prismoid : its opposite and parallel bases, rectangles; the longer side of the one corresponding to the shorter side of the other ; its middle section, a rectangle; all its lateral faces, trapeziums.

As a prismoid : its opposite and parallel bases and middle section. trapeziums ; its lateral faces, trapeziums.

Factors of middle section arithmetic means between those of the bases.

27-Frustum of a right isosceles trapeziform prism, a prismoid.
On its larger base, a roof, section of an embankment, etc.; on its lesser base, a bin or vessel of capacity; the capital of a pilaster, a corbel; on end, a splayed opening in a wall.

28-Frustum of an isosceles triangular prism, a prismoid. Ridge roof with ends unequally sloped, mitred moulding, etc.

As a prismoid: its opposite and parallel bases and middle section, rectangles; lateral faces, trapeziums.

In all such solids, the half way factors need never be measured, as they are always means between the parallel bases of the trapezium faces.

As a prismoid: one of its opposite and parallel bases, a rectangle ; the other, a line ; its middle section, a rectangle. "Key," page 19.

29-Frustum of a trapeziform prism, a prismoid.
A flat roof, etc.; on its lesser parallel base, a bin or reservoir, a vehicle of capacity, a scow, a pontoon; on end or its parallel faces vertical, the splayed opening of a window.

As a prismoid: its opposite parallel bases and middle section rectangles ; its lateral faces, trapeziums. Factors of intermediate section or middle base, arithmetic means between those of the end bases.
"Key to Ster.," page 29.
30-A prismoid on a mixtilin.sar base.

The roof of a building, circular at one end or coved celling of a room; on its lesser base, a bathing tub, etc.; vertically, the splayed opening of a circular headed window in a wall.

Its opposite and parallel bases and middle section, mixtilinear figures; the one a rectangle and a semi-circle ; the other two, rectangles and semi-ellipses; its arched end developed, a sort of trapezium with curved bases; its area equal to half sum of bases by mean breadth or height.

CLASS IV.

Prismoids, etc.

31-The icosahedron, or twen-ty-sided solid; one of the flive platonic bodies.
An assemblage of twenty equal pyramids on triangular bases, their apices or summits meeting in a common point, the centre of the solid or of the circumscribed or inscribed sphere.

The ten pairs of parallel bases or twenty component faces of the solid are equal equilateral triangles. Its middle section, a regular dodecagon. Its middle section parallel to two opposite apices or to the bases of any two opposite pentagonal pyramids of the solid, a regular decagon, whose side is aces, trapemediate secarithmetic of the end e 29.
arallel bases nixtilinear ctangle and her two, rec,llipses ; its a sort of traases ; its area ases by mean
rallel bases or es of the solid al triangles. regular doe section pae apices or to opposite penf the solid, a whose side is

A finial or other ornament, etc. More expeditious to treat it for solidity by computing one of its component pyramids, and multiplying the result by twenty.

32-A prismoid, both its bases, lines. Irregular triangular pyramid.
Dormer or gablet abutting on a sloped roof. Component section of No. 79. "Key " p. 165, par. (212).

33-A prismold on a trapeziform base.
A cutting or embankment, etc.
34-A railroad prismold on a side slope.
Section of a railroad cutting or embankment on ground, sloping laterally or in one direction only.
equal to half that of one of the edges of the solid. For developed surface, see "Key to Ster," p. 133.

Its opposite bases - considering the solid as a prismoid resting on one of its parallel edges-lines ; its middle section a rectangle. See "Key to Ster." page 164, par, (208).

One of its paralled bases, a trapezium ; the other, a line ; its middle section, a trapezium.

Its end sections or bases and middle parallel section equal quadrilaterals, for area of which see "Key to Ster.," page 30.

This prismoid is a prism on an irregular base, and may be so treated.

Its opposite and parallel end bases and middle section, quadrilaterals, the factors of the middle section being all arithmetic means between those of the corresponding end areas.

35-A railroad prismold on a grade and side slope, or on ground sloping both laterally and longitudinally.
Its narrow base upwards, an embankment; the same downwards, a cutting or excavation.

36-A square or rectangular prismoidal stick of timber. A squared \log, a tapering post,

Its end bases and middle section squares or rectangles.

Timber is usually measured by
the shaft of a chimney or high tower, a rcducer between rectangular conduits of unequal size, etc.

Note. - 25 per cent. of the whole or true content is $33 \frac{1}{3}$ per cent., or one-third of the erroneous result.
multiplying its middle section into its length. This gives an erroneous result; the more tapering the timber is, the more so. If it tapered to a point the error would be 25 per cent., or one-quarter of the whole in defect.

37-A prismoidal stick of waney timber
A \log of waney timber; on end, the shaft of a chimney, a high tower, a tapering post.

Its opposite bases and middle section, symmetrical octagons, for area of which see "Key," p. 176, par. (272), or squares or rectangles with chamfered corners or angles.

38-A concavo-convex prismoid or curved wedge.
A corbel, spandrel, finial, ctc.; a brake, a cam, etc. "Key to Ster.," par. (141).

Its opposite bases, a rectangle and a line; its middle section, a rectangle ; its developed faces, trapeziums; sides, mixtilinear triangle.

Its opposite and parallel bases and middle section, rectangles ; its developed faces trapeziums ;its lateral faces mixtilinear trapeziums

Forareas see "Key," page 57. computation of solid contents.

40-Frustum of a rectangular trapeziform prism, a prismoid
A flat roof in a rectangular corner; on its lesser base, an angular corbel, a sink, cistern, bin, etc.

As a prismoid, its opposite and parallel bases and middle section, rectangles; its lateral faces, trapeziums.
"Key," page 104, par. (141).
ection into erroneous the timber ıpered to a be 25 per the whole
nd middle octagons, зу," p. 176, : rectangles or angles.
rectangle tion, a recces, trapenear triel bases and les ; its dens ;its late:apeziums page 57.
pposite and dle section, I faces, tra-
r. (141).

CLASS V.

Prismoids, etc.

4I-The octahedron or eightsided figure; one of the five platonic bodies.
Assemblage of eight equal pyramids on triangular bases, their apices meeting in a common point, the centre of the solid; or two quadrangular pyramids, base to base.

42-A prismoid, one of its bases
a square,the other an octagon
Base or capital of a column, roof of a square tower, a tower, pier, vessel of capacity, component section of a steeple, etc.

43-A prismoid, its opposite bases, a square and a circle.
Base or capital of a column, roof of a square tower, a tower, pier, vessel of capacity, a lighthouse, a section of steeple or belfry, a reducer between a square and circular conduit.

44-A prismoid, its bases unequal squares set diagonally. Representative of the same objects as solids, Nos. 42 and 43.

Its four pairs of parallel bases or eight component faces, equilateral triangles; its middle section, a regular hexagon ; its middle sec. tion through opposite apices and perpendicular to intervening arris or edge a lozenge; through four apices, a square. For developed surface see "Key to Ster," page 132.

Its opposite and parallel bases, a square and an octagon; the mid. dle section, a symmetrical outagon; its lateral faces, triangles and trapeziums. For area of symmetrical octagon, see "Key," par. (272)

One of its opposite and parallel bases a square ; the other, a circle ; the middle section, a mixti. linear figure or a square with rounded corners.

Its lateral surface capable of development into a plane trapeziform figure, one base circular, the other polygonal.

Its opposite bases unequal squares set diagonally to each other; the middle section, a symmetrical octagon; its lateral faces, triargles.

45-A prismoid its bases a hexagon and a rectangle.
Representative of nearly the same objects as the three last solids.

One of its bases, a hexagon; other a rectangle; its middle section a symmetrical octagon; its lateral faces, rectangles and triangles.

46-The lateral frustum of a rectangular prolate spindle. Roof of a square tower, component part of a steeple, etc.

Its parallel bases and section, squares ; its lateral surface, mixtilinear figures capable of de velopment into plane surfaces. For area of these see "Key," page 57.

47-A prismoid, its bases, an Its middle section, a mixtiliellipsis and a square.
A reducer between an elliptic and square conduit, a roof, etc. near figure or approximate oval. Its lateral surface developed, a curved trapezium, one base curved, the other polygonal. See "Key to Ster.," page 166.

48-A prismoid, its bases a Its middle base, a symmetrical symmetrical hexagon and a octagon; its lateral surface, trian-
line.
Ridge roof, coping or finial to a post, panel ornament, etc. gles. For symmetrical hexagon, area equal to double that of half the figure, which is a trapezium.

Its middle section or base, a symmetrical decagon; its lateral faces, triangles. Area of hexagon, double that of component trapezium. lesser base, a fancy basket, a disk,etc.

50-A groined ceiling or the half of a rectangular oblate spindle.
A roof, panel ornament, etc. For more exact computation of contents, decompose into two parts.

Its base and middle section, squares ; its opposite base, a point ; its lateral faces, mixtilinear figures.

For areas of mixtilinear figures see "Key to Ster.," page 57.

Pyramids and Frusta of Prramids.

51-The tetrahedon, or foursided figure ; one of the five platonic bodies. A regular triangular pyramid.
A pex roof of a triangular building, finial or other ornament, the component element of the icosahedron and octahedron.

Its base and middle section, equilateral triangles, the lesser equal in area to one-quarter the greater, its upper or opposite base, a point ; its faces, triangles. For development of surface see " Key to Ster.," page 131. For area of bases and faces, see page 36 , rule II.

One of its parallel bases, a square ; the other, a point; its middle section, a square, of which the area is one quarter that of the base. Lateral faces, isosceles tri-

54-Frustum of a right triangular pyramid.
Roof, base or capital of a post or column, base of a table-lamp or vase, a vessel of capacity, component section of other solids.
section, a point; near fi-

52-A regular square or rectangular pyramid.
The spire of a steeple, a pinnacle, roof of square tower, a bin, a vessel of capacity, a finial or other ornament, etc.

Its base and middle section, triengles ; apex, a point. Factors of middle section half those of the base-

Affords a demonstration of the theorem that in right-angled spherical triangles the sines of the sides are as the sines of the angles.

angles.

 perpendicular to base. The ungula of a rectangular prism on either of its bases. An apex roof, section of cutting or embankment, component portion of other solids, a roof saddle.Its parallel bases and middle section similar triangles; lateral faces, trapeziums. Factors of section arithmetic means between those of bases. faces, trapeziums. Factors of -

55-Frustum of an oblique triangular pyramid.
Flat roof of triangular building abutting against a sloped or battered wall ; portion of a ditch excavation, component portion of other solids.

Its bases and middle parallel section, similar triangles; lateral faces, trapeziums; factors of section, arithmetic means between those of the bases. For areas see "Key to Ster.," pages 19, 22 and 29.

56-Frustum of a right rectan-

 gular pyramid.Flat roof to tower ; reducer between conduits of varied size, component portion of an obelisk, capital or base of a post or column, a bin, vat or other vessel of capacity, the body of a lantern, etc., etc.

Its opposite bases and middle section, squares or rectangles whose factors or sides are each equal to half the sum of the corresponding sides of the bases, or arithmetic means between them. For areas see "Key to Ster.," pages 19 and 29.

57-A regular octangular or octagonal pyramid.
Roof of a tower, spire of a steeple, finial or other ornament, a funnel, strainer or filter, etc.

Its base and middle section, similar octagons; lesser area one-quarter of the greater; its upper base or opposite one, an apex or a point ; lateral faces, isosceles triangles.

58-The frustum of a regular octagonal pyramid.
On its broader base, a roof, tower, pier, quay, component part of a steeple, etc.; base of a column, lamp or vase, etc.; on its lesser base, a vat, bin, vase, or other vessel of capacity; the body of a lantern, etc., etc.

Its opposite and parallel bases and middle section, regular octagons; factors of section means to those of the bases ; its lateral faces, trapeziums. For expeditious mode of arriving at area of octagon, see "Key to Ster.," page 176 or page 26, rule II. Developed surface a regular polygonal sector or trapezium.
dle parallel les ; lateral ; factors of ns between or areas see , 22 and 29.
and middle rectangles s are each f the corres-
bases, or ween them. Ster.," pages
ile section, lesser area yreater ; its jne, an apex s , isosceles
trallel bases gular octain means to lateral faces, expeditious < of octagon, jage 176 or oped surface etor or tra-

59-Irregular and oblique pyramid on a quadrilateral base.
Apex roof of an irregularly shaped building against a battered wall or roof, a roof saddle, etc.

Its base, a quadrilateral or irregular trapezium ; its summit or apex, a point. Middle section similar to base and equal in area to one-quarter that of base.

60-Frustum of a pyramid When decomposed for computa_ with non parallel bases.
Decomposable into the frustum of a pyramid with parallel bases, and an irregular pyramid, by a plane parallel to the base and passing through the nearest corner or point of the upper, or non parallel base.

CLASS VII.

Cylinder, Frusta and Ungulae.

61-A right cylinder or infinitary prism.
A tower or circular apartment; a bin, vat, tub, bucket, pail, vase, drinking vessel, cauldron or other vessel of capacity ; a road or other roller: the cylinder of a steam or other engine; a gasometer, the barrel of a pump, etc., etc., etc.

Its parallel bases and middle section, equal circles; its lateral surface developed in a plane, a rcctangle ; its height, that of the cylinder ; its length, the circumference of the solid.

For areas of circles calculated to eighths, tenths and twelfths of unity, see tables II., III., IV. at end of "Key to Ster."

62-Frustum of lateral ungula or wedge of a right cylinder. May represent a cylindrical win-

Its base, a circle; its opposite base, a semi-circle or other segment; its middle section, a seg-
dow or opening in a sloped roof abutting to a vertical wall or surface, the liquid in a closed cylindrical vessel held obliquely, base to chimney or vase partly on a horizontal, partly on a gabled wall.
ment greater than a semi-circle; its plane of section the segment of an ellipsis; its cylindrical surface decomposable by lines parallel to bases into trapeziums. For areas of segments, see table VIII., "Key," pages 53, 38, 44.

63-A rectangular circular ring;
The difference between two concentric cylinders, or a solid annulus.

Horizontal section of a tower wall, cross section of a brick, iron or other conduit, section of a boiler, vat, tub, or other vessel of capacity, etc., etc.

Its bases and parallel section, concentric annuli; its interior and exterior surfaces continuous rectangles. The area of annulus equal to the difference of the inner and outer circles, or to the breadth of annulus into half the sum of its circumferences. See "Key," p. 39.

64-Centraı ungula or wedge of a right cylinder.
Ridge roof of a tower, a wedge, loop hole in a wall component portion of compound solid, a finial or other ornament, a strainer, etc.

65-Frustum of central wedge or ungula of oylinder No. 64
Flat roof of tower 0 on other building, base or capital of rectangular pillar. vessel of capacity, component portion of compound solid, base of chimney stack or vase between two gables.

Its greater base a circle; its lesser base, the central zone of a circle ; its intermediate base, the zone of a circle ; its lateral faces, equal segment of equal ellipses. Its cylindrical surface decomposable into trapeziums parallel to bases. See "Keỳ to Ster.," page 51.

a semi-cir-

 tion the segits cylindrical by lines patrapeziums. nts, see table $53,38,44$.rallel section, i; its interior ; continuous ea of annulus se of the inner to the breadth the sum of its "Key," p. 39.
; ; its opposite .dle section, the its sloped faces, is. Its cylindrisable into traarallel to base.
IV., IX., of pages $38,46,53$.
a circle; its itral zone of a ediate base, the its lateral faces, equal ellipses. ıce decomposable arallel to bases. " page 51 .

66-Lateral ungula of right cylinder or recto-cylindrical wedge.
Lunette or arched headway of a door or window, etc., in a sloped roof, component of a compound solid, the liquid in an inclined cylindrical vessel, base of a salient chimney shaft over a roof, etc., etc.

Its base, a semi-circle; its intermediate base or middle section parallel to base also a segment ; its opposite base, a point ; its plane of section or sloped face, a semi-ellipsis. Its curved surface developed an approximate parabola, trapeziums. etc. See "Key," pages 38, 44, 51, tables II., III., IV., VIII.

67-Frustum of lateral wedge or ungula of a right cylinder.
Lunette to arched opening in a sloped roof or ceiling abutting on a vertical wall or surface ; liquid in an inclined closed cylindrical vessel ; base of engaged column against a battered wall, etc.

Its parallel bases and middle section, segments of a circle, less than, more than, and equal to half; sloped face, the excentric zone of an ellipsis ; cylindrical surface, trapezium parallel to base. For areas of segment, see "Key," page 44, rule I., rule II., table VIII.; for zone of ellipsis,see p. 53, art.(62).

Ist base, the segment of a circle greater than half; its opposite base, a line ; its middle section, an eccentric zone of a circle; one of its side faces, the segment of an ellipsis; the other plane face, an eccentric zone of an ellipsis.

69-Concavo-convex prismoid or cylindro-cylindrical solid or concave frustum of a wedge or ungula of right cylinder
Deposit of sediment in a cylindrical sewer, section of additional

One of its bases, the lune of a circle greater than a semi-circle ; the other the lune of a circle less than a semi-circle ; the middle section, a lune equal or thereabouts to a semi-circle. Its side surfaces, convex and concave
excavation or filling, or difference between two lunettes.
70-Frustum of an oblique cylinder.
May be decomposed into an oblique cylinder and the ungula of one by a plane parallel to base, and passing through nearest point of other base.
approximate trapeziums. For areas of lunes, see "Key," page 47.

When decomposed, its bases and section ellipses ; the base of ungula, an ellipsis equal to each of those of the inclined cylinder ; its middle section half an ellipsis. For ungulæ, see Nos. 72, 73, 75.

CLASS VIII.

Oblique Cylinder, Frusta, Ungulae, Cylindroids, etc.

71-Oblique cylinder or infinitary prism
Mitred section of conduit, hand rail, moulding; inclined column, post, strut or brace, etc.; inclined cylindrical opening in a wall, etc.

Its parallel bases and section equal ellipses; its lateral surface capable of development into a plane mixtilinea! figure. See "Key to Ster.," fig. n. page 57. For area of ellipsis, see page 51 of same.

72-Obtuse frustum or ungula of oblique cylinder.
Oblique lunette inclined upwards or arched headway to a circular or elliptical opening in a sloped roof or ceiling. Component mitred portion of hand-rail, bead molding, etc.

One of its opposite bases, an ellipsis of sligh eccentricity; its opposite base, a point ; its middle section, a semi-ellipsis equal to half of base ; its plane of section or lateral face, an ellipsis of greater eccentricity ; its lateral cylindrical face developed, a figure like m page 57 of " Key. "

Same as No. 72. For developed cylindrical surface, see fig. h. page 57 of "Key to Stereometricon."
iums. For r," page 47. is bases and ise of ungusach of those ; its middle s. For un5.

jids, etc.

nd section eral surface nto a plane зe "Key to For area of samé.
bases, an ontricity ; t ; its midpsis equal e of section -llipsis of ; its lateral d, a figure :"

- developed
fig. h. page tricon."

72, but inclined downwards.
For area ot ellipsis, "Key to Ser." pages 51 and 53 .

74 Concave ungula or frustum of oblique cylinder.
Representative of same as No. 73 , but in arch roof or ceiling instead of sloped roof.

Same as No. 73, with curved instead cf plane section. Its cylindrical surface developed similar to fig. h, page 57 of "Key;" its curved or concave section developed an oval or fig. like a, p. 57, "Key."

Same as No. 72. For developed cylindrical surface, see fig. g; for ellipsis, fig. b. p. 57, "Key."

76-A cylindroid; its bases, a circle and an elipsis; infinitary prismoid,
Base or capital of elliptic column, reducer or connectiug link between a circular and an eliptic conduit; a tub, vat or other vessel of capacity; a hat with elliptic or oval head and a circular crown, etc.

Its middle section, an ellipsis of which the conjugate or lesser diameter or axis is an arithmetic mean between those of the opposite bases. For area of circle, see table II, III, IV, and of ellipses, p. 51, "Key." Lateral surface developed, a plane trapeziform fig ; its greater base, convex; lesser, concave; its area, equal to periphery of middle section into mean height.

77-Cylindroid or infinitary prismold; its bases, an elipsis and a circle.
Same as No. 76, or frustum of a conic metallic vessel, which has become flattened or battered at one end.

Its lateral surface developes into a plane trapeziform figure, with greater periphery convex ; and lesser concave. Area equal to periphery of middle section into mean height.

78-Cylindroid; its bases ellipses at right angles to each other.
Capital or base of elliptic column, connecting link between conduits; metallic envelope or tube flattened at ends in opposite directions.

Factors of middle section, arithmetic means between those of the bases. Lateral surface developed, a plane trapeziform figure of area equal to periphery of middle section into mean height, page 51 of "Key."

79-Cylindroid or prismoid; its bases an ellipsis and a line.
Ridge roof to elliptical building or tower; a hut, camping tent, a strainer of filter; a finial or other ornament.

Middle section, a mixtilineal figure with factors, arithmetic means between those of bases. For area of middle section, page 57 of "Key." Lateral surface developed, a plane trapeziform figure; its base, convex ; its opposite base, angular. Area equal circumference of middle section mean height.

80-A compound solid; a cy-

linder and a cone.

A tower or other building, a hut, tent, or camp with conical roof ; a hay rick, canister, finial ; reversed: a cauldron, cistern, tub, filter, etc.

For cylinder, see No. 61, class VII; for cone, see No. 81, class IX. The developed surface of a right cone is the sector of a cercle. For area, see " Key," page 42.

CLASS IX.

Right and inclined Cone, Frusta, Ungulae, etc.

81-A right cone or infinitary pyramid.
Roof of tower, spire, finial or other ornament, pile of shot or shells, cornet, filter or strainer, funuel, etc.

Its base, a circle; its opposite base, a point ; its middle section, a circle equal in area to one quarter that of the base. Its lateral surface developed, the sector of a circle. For area of circle, see tables II, III, IV, "Key to Ster."
ction, ariththose of the developed, a figure of y of middle ht, page 51

mixtilineal

arithmetic of bases. For , page 57 of ce developed, a figure ; its osite base, ancumference of height.

No. 61, class 81, class IX. ce of a right of a cercle. page 42.
lae, etc.
; its opposite middle section, area to one base. Its lateral the sector of a circle, see tables to Ster."

82 -Frustum of a right cone, considered as a prismoid
A tower, quay, pier, base or capital of a column, flat roof of tower, component portion of a spire, a salting tub, etc., reversed: a butter firkin, a tub or vat in a brewery or distillery, etc., a drinking goblet, bucket, pail, dish, basket, lamp shade; a vessel of capacity, the plug of a stop cock, etc., etc.

Its opposite and parallel bases and middle section, circles; its lateral surface developed, the sector of a circular ring, or a curved trapezium. The diameter of middle section an arithmetic mean between those of the opposite bases. For area of bases and section see "Key to Ster.," page 38, for lateral surface, page 43 . Tables of areas of circles to eighths, tenths \& twelfths, II, III, IV.

83-Inclined or oblique cone.
Loop hole in a wall, the liquid or fluid substance in a conical vessel inclined to the horizon; a finial or ornament adapted to a raking cornice or pediment, etc.

Its base and middle section, similar ellipses-the latter equal in area to one quarter the former; the upper base, an apex or point; lateral surface developed an irregular sector, which, for computation of area, divide into triangles.

Its opposite and parallel bases and middle section, similar ellipses; its lateral surface developed portion of an eccentric annulus, art. 39, page 33, of "Key to Ster.," Diameters of middle section, arithmetic means between those of bases.

85-Flat or low cone.
Roof to tower or circular construction; cover of a box, basket, cauldron, ete, ; finial or other ornament; a chinese hat, a pile of shot or shells, a sun shade ; reversed: a

Its base, a circle ; opposite base or apex, a point ; its middle section, a circle equal in areato one quarter that of base; its lateral face developed in a plane, the sector of a circle.
spinning top, bottom of cauldron or reservoir, a funnel, stainer or filter, etc.

For area of circle, see tables II, iII, IV, of "Key to Ster.;" ior sector, see page 42 of same.

86 - Frustum of a low or surbased cone.
Flat roof to a pavillion, tower, etc.; a hat, the cover of a vessel of capacity ; an unfinished or truncated pile of shot or shells; a lamp shade ; a finial or other ornament; the bottom, base, top or other component section of a compound solid, as of No. 100 ; reversed : a dish, pan, saucer, cauldron, cistern,

Its opposite bases and paralled middle section or intermediate base, circles; diameter of middle section, an arithmetic mean between those of the opposite bases ; the lateral area developed in a plane, the sector of a circular annulus.

For areas of circles, see tables II., III., IV. of " Key to Ster.," sector, page 43 of same.

87-Parabolic conic ungula by a plane parallel to side of cone.
Lunette to a circular headed opemng in a wall and sloped ceilling; liquid in a closed conic vessel inclined to the horizon.
N.B.-For ratio of chord of middle section or segment to that of base, see " Key to Ster.," page 143, where it is shown that the squares of the chords are proportional to the abscissae. absisa.

The base, the segment of a circle; the opposite base, a point ; the middle section, the segment of a circle; the plane of section a parabola. For areas of segment, see "Key to Ster.," page 44 and table VIII. ; for area of parabola, page 54 of same. The lateral surface developed an approximate sector of a circle. The height or versed sine of middle section segment is half that of base.
conic ngula by a plane parallel to base of cone.
Splayed opening or embrasure to a segment-shaped window or loop hole in a wall ; lunette to opening

The parallel bases and mudle section, segments of a circle ; the lateral plane face or figure, the zone of a parabola, for area of which see "Key to Ster.,". page 55, art, (66); the developed conical
see tables II, o Ster.;" ior same.
and paralled rmediate base, niddle section, vetween those ; ; the lateral ne, the sector lus.
see tables II., Ster.," sector,
gment of a base, a point ; e segment of of section a s of segment, page 44 and \checkmark of parabola, lateral surface imate sector ight or versed on segment is

3 and mudle of a circle; \geq or figure, the la. for area of iter.," page 55, loped conical
in sloped ceiling terminating in a vertical surface ; liquid in a closed vessel in the shape of the frustum of a cone, No. 82, when inclined from the vertical.

For chord of middle segment, measure solid or compute by page 143 of "Ster."
surface, an approximate sector of a circular annulus or, more correctly, a trapezium with curved concentric or parallel bases, for area of which see note page 29, "Key to Ster.," For area of segment, table VIII, and page 44 of same.

89-Frustum of a right elongated cone.
Shaft of Crecian column, tapered post, high tower or chimney shaft, funnel, pipe reducer, speaking trumpet or horn, plug of a stopcock or tap, deep drinking goblet, or other vessel of capacity large or small, shaft of a gun, component portion of many compound solids, etc.

90-A compound solid, composed of or decomposable into the frustum of a right cone and the segment or half of a sphere or spheroid.
May represent a piece of ordnance, a deep conical vessel with hemi-spherical, hemi-spheroidal or segmental bottom or top to it.

For hemi-sphere, hemi-spheroid, or segments thereof, greater or less than half, see classes $18,19,20$.

For diameter of middle section in segment of spheroid, see " Key toSter.," pages 139 and 140 , where

Like No. 82, its opposite and parallel bases and middle section circles; diameter of middle section equal to the half sum of those of the bases; the developed lateral surface, the sector of a concentric annulus.

For areas of circles to eighths, tenths and twelfths, see tables II., III., IV., of " Key to Ster. ; " for that of sector, page 43 of same.

For nature and areas of bases and middle section of the component frustum or a cone and of its lateral surface, see Nos. 82 and 89.

For areas of bases and middle section of hemisphere or hemispheroid or of the segment of either, greater or less than a hemisphere, see tables II., III., IV. in "Key to Ster."

For diameter of middle section in hemisphere or in segment thereof, see "Baillairgé Geometry," par. 539 or "Key to Ster.," par. 154, where $o a=v C \overline{O \cdot o D}$., and $o D=$
$A B: C D:: \sqrt{A o . o B}: o M$ and $C D: A B: \sqrt{\overline{C o . o D}: ~ o ~ M ., ~ o r, ~}$ the rectangle under the required radius and either axis of the spheroid is equal to that under the square root of the rectangle or product of the abscissas of the first axis and the other axis.
diam. $A B$ minus versed sine $o C$; or, the square of the half cord equals the rectangle under the versed sine and remainder of the diameter ; or, may be obtained directly by measuring the solid.

CLASS X.

Conic Frusta and Ungulae, etc,

91 -Conic wedge or central ungula of a cone by planes drawn from opposite edges of the base to meet in the axis of the cone.
Ridge roof to a tower, splayed opening or embrasure to a long narrow vertical loop hole in a wall; component section of compound solid of a cone and cylinder or of cones having their bases or apices in opposite directions.

The base, a circle ; the parallel upper base, an arris or line; the middle section parallel to bases, the zone of a circle; the lateral plane faces equal segments of equal ellipses, each greater than half; the curved or conical faces developed, equal curvilinear triangles

For areas, see pages $38,46,53$ and 57 , and tables II, III, IV., of "Ster." For area of zone, see table IX, of same.

The base, a circle ; the opposite and parallel base, a zone of a circle; the middle section, a zone; the lateral plane faces, equal segments of equal ellipses the developped conical surfaces resolvable into trapeziform figures.
For area of trapezium, page 29, "Key to Ster." in a wall, component portion of a compound solid.
ed sine $o C$; If cord equals e versed sine liameter ; or, ttly by mea-
; the parallel or line ; the llel to bases, ; the lateral :egments of tch greater ved or conical curvilinear
;es 38,46 , 53 , III, IV., of zone, see table
; the opposite a zone of a ction, a zone; as, equal segellipses the zurfaces resolorm figures. ium, page 29 ,

93-Lateral elliptic ungula of
a cone, by a plane passing through edge of base.

Splayed embrasure to elliptic opening in wall and through sloped roof or ceiling; etc.

Its base, a circle ; its upper or opposite base, a point ; its middle section parallel to base, the segment of a circle ; its plane face an ellipsis ; its conical surface developed a concavo - convex figure like h, page 97 of " Key to Ster."

94-Lateral elliptic conic ungula, by a plane passing within the base.
The liquid in an inclined conical vessel, lunette head of opening in sloped roof or ceiling ; base of structure rising from an inclined surface, roof, pediment, etc.

For area of parabola see key to Ster., page 54 ; for area of hyperbola, page 55 , or figure e, page 57 ; for ellipsis, page 51 and 53.

95-Central ungula of cone or conic wedge, by planes through opposite edges of upper or lesser base and meeting in the axis of the cone.
An embrasure, etc., etc.
The plane lateral faces, segments of ellipses if cutting planes more inclined to base than side of cone; if less, hyperbolas ; if equally, parabolas.

The base, a segment of a circle ; the upper base, a point ; the middle section, a segment of a circle; the plane lateral face, the segment of an ellipsis; the developed conical surface as in No. 87 or 94 . If the cutting plane be parallel to side of cone the face will be a parabola; if at an angle greater than side of cone to base, a hyperbola; if less, an ellipsis.

Bases and sections same as No. 91 ; developed conical surface, a concavo-convex triangle computible as per page 57 of "Key."

The lateral plane faces, equal segments of equal ellipses, equal parabolas or equal hyperbolas, as case may be.-See No. 94.

96 Frustum of conic wedge,
No 85, by a plane par llel to the base.
An embrasure; a reducer or connecting link between a rectangular and circular conduit, etc.

Its base, a circle ; other base and middle section, zones of circles, for areas of which see "Key to Stereometricon, table IX.

97-Concave ungula of a cone or a conical recto-concave wedge.
Lunette of circular headed opening in wall, reaching through vaulted, groined or arched ceiling; cone scribed to cylindrical surface, or to a shaft of elliptical section.

The base, the segment of a circle; the other base, a point or curved arris; its intermediate base or section, or its bases or sections if divided for computation of cubical contents, segments of circles. Its sides like No. 94.

98-Portion of frustum of right cone, by a plane through both bases.
Splayed segment headed opening in wall, liquid in closed tub lying on its side; base or capital of half column against sloped wall; component section of base or capital of clustered, gothic or other column.

Its parallel end bases and middle section, segments of circles ; its conical surface developed a figure of trapezium form, having parallel or concentric ares of circles for its bases; its plane face, the zone of an ellipsis or of a parabola or hyperbola according to inclination of cutting plane.
99.-Lateral conic ungula or wedge, by a plane through edge of lesser base of frustum Embrasure, liquid in inclined conical vessel, section of conical elbow or mitre, base of chimney stack to sloped roof. May be treated also as lying on its lateral plane face.

Its base, a circle; opposite base, a point; intermediate section a segment of a circle; its plane face an ellipsis, its conical surface developed a concavo-convex figure like g or h, page 97 of Ster. but with concave base. Treat on circular base as easier of computation. of circles, see "Key to X.
ent of a cira point or mediate base 3 or sections tition of cubis of circles. ses and mid3 of circles ; developed a form, having arcs of circles tne face, the or of a paraaccording to plane.
opposite base, te section a e; its plane :onical surface convex figure Ster. but with a circular base ion.

100-A compound solid composed of, decomposable or resolvable into two conic frusta and a low or flat cone.
May represent a covered dish, a basket or hamper, a vase, a finial or other ornament, an urn, a cauldron on a stand, etc., etc.

All its areas to be used in computation of solid contents or capacity are circles, and can be measured to eighths, tenths or tweltths of an inch or other unity, and the areas found by mere inspection in tables II., III. and IV. at end of Baillargés " Key to Ster. "

DIVISION 2.

Solids of double curvature, or of which the surfaces are not capable of development in a plane.

CLASS XI.

Concave Cones, Frusta and Ungulae.

10I-Right concave cone or spindle.
Camping tent ; roof of tower, pavillon, hut, etc.; spire, funnel, strainer, trumpet ; finial or other ornament.

May be decomposed into two or more frusta by planes parallel to base, to admit of more accurate determination of solid contents.

Its base and parallel sections, circles ; its upper or opposite base, an apex or point. Its lateral surface not capable of development in a plane or into a sector of a circle as is the case with a regular right cone, but may be readily and very approximately computed by division into continuous trapeziums by lines parallel to circumference of base. See "Key to Ster.," page 96.

Its bases and parallel sections, circles. Intermediate diameters not, as in No. 82, arithmetical means

Illustrative of most of the objects mentioned in No. 82, which see.

For more accurate computation of contents, divide into two sections or more, according to greater or lesser curvature of the solid, and treat each section as a separate prismoid and add the results.

103-Inclined concave cone.
Finial, or ornament on a raking cornice ; liquid in an inclined vessel, etc., as for No. 101, may be decomposed by imaginary planes parallel to base into two or more sections or slices, so that slant side of each may be sensibly a straight line. See p. 103, par. 139 " Key."
between those of the opposite or end bases, but must be measured or computed. Lateral area may be conceived as made up of a series of super or juxta-posed continuous trapeziums.

Its base and section, approximate ellipses of slight excentricity or ovoid figures ; its other base, a point.

In developing the lateral surface into a series of continuous trapeziums, the lines are not as in the right cone parallel to base or to circumferences of parallel sections but are drawn equidistant from the apex, thus leaving at the base a figure like h, page. 57 of "Key."

104-Frustum of oblique con-
cave cone between parallel planes.
Representative of same as No. 84.
105 Flat or low concave cone.
Representative of many of the objects mentioned in No. 85.

Its bases and sections parallel thereto, approximate ellipses or ovoid figures. See remarks to No. 102

Its bases, a circle and a point ; section, a circle; lateral area reducible to continuous trapeziums, par. 126, " Key to Ster."

106-Frustum of flat or low Its bases and section, circles, cone.
Representative of objects under head of No. 86.
for areas of which see tables II., III. and IV. of " Key to Ster.," to eighths, tenths and twelfths of inch or other unity.
e opposite or e measured or trea may be of a series of continuous
ion, approxilight excenres ; its other
lateral surface inuous trapenot as in the to base or to rallel sections istant from the at the base a 57 of "Key." ctions parallel te ellipses or ee remarks to

з and a point ; ; lateral area nuous trapeKey to Ster." зction, circles, see tables II., Sey to Ster.," to twelfths of inch

107-Ungula of concave cone by a plane through outer edge of base.
See No. 92, as to what it represents, etc.

See No. 92. Lateral surface reducible to trapeziums and triangles.
Base and sections, ovoid figures; areas, page 57 of Key.

Bases and section. segments of circles; upper base, a point. Lateral surface as No. 107.
sents, etc.
109-Ungula of hollow cone by Base, a circle; opposite base, a
a plane through edge of point; middle section, the seglesser base of frustum.
See No. 99, base of chimney stack to a sloped roof.

110-Frustum of (No. 109) ungula by a plane parallel to base.
See Nos. 98, 116, 126.
Base or capital of a column, or base of chimney shaft, etc., on or outside of sloped roof or gable.

Its base, a circle ; other base, a segment of a circle; its middle section parallel to bases, also a segment. For areas of segments of circles, see "Key to Ster.," table VIII., or rules, page 44 of same.

CLASS XII.

Paraboloid or Parabolic Conoid, Frusta and

Ungulae, etc.

Ill-Right paraboloid or parabolic conoid.
Dome, hut, hive, roof, finial or other ornament, shade, globe, cover, hood, cowl, etc.; reversed : a filter,

Its base and middle section, circles; its opposite base or apex, a point ; its lateral surface resolvable into a small circle at apex, and continuous trapeziums. The
canldron, or other vessel of capacity, the bowl of a cup or drinking goblet, etc., etc.
squares of its intermediate diameters, proportional to abscissae. See "Key to Ster.," page 96.

End and middle bases, circles ; squares of diameters proportional to abscissae. For areas of circles, see " Key to Ster.," tables II., III., and IV.

No. 82.

See page 142 "Key to Ster."

Its base and middle section, similar ellipses; its opposite base or other end, an apex or point. For areas of ellipses see "Key to Ster.," page 51 ; for lateral area see No. 103. on an inclined or raking molding or pediment, etc.

114-Frustum of oblique para-
boloid between parallel planes.
Represents same as frustum of inclined cone No. 84, "Key to Ster.," page 142.

Its bases and middle section, similar ellipses; for areas of which see " Key to Ster., page 51. For lateral area, see No. 103 or reduce to trapeziums by lines from base to base.

Lateral or paraboloidal surface capable of approximate development. See No. 91.

116-Portion of a paraboloidal frustum, by a plane through its greater base and edge of other or opposite base.

Its lesser base, a circle ; opposite base, the segment of a circle; middle section, also a segment. Its lateral plane face, the segment
ediate diamebscisssae. See 96.
ases, circles ; s proportional reas of circles, ables II., III.,
iddle section, is opposite base s or point. For "Key to Ster.," al area see No.
middle section, ; for areas of , Ster., page 51. ee No. 103 or iums by lines
boloidal surface :imate develop-
circle ; opposite t of a circle; lso a segment. ice, the segment

See No. 98 as to what it represents. Also, base of chimney stack, partly on a horizontal and partly on an inclined base, or sloped roof, etc.

117-Lateral ungula of paraboloid
Very similar to No. 92, as to what it represents.

118-Lateral ungula of paraboloid; elliptic, parabolic or hyperbolic, according as plane of section cuts the base at an angle less than, equal to, or greater than that of the side and base.
of an ellipsis. This face would be a parabola if angle of face equalled that of side ; if greater, a hyperbola.

Its base, a circle ; opposite base, a point ; middle section, the segment of a circle. Its plane face an ellipsis.

Its base, the segment of circle; its middle section, a segment; its upper or opposite base, a point; its plane face, the segment of an ellipsis, parabola or hyperbola, according to angle of plane of section.

119-Obtuse eliptic ungula of a paraboloid,by a plane through edge of lesser base of frustum.
Base of chimney stack, etc., to sloped roof; base of vase, statue, etc., on a pediment; a lunette, scoop, etc.

Its base, a circle ; middle section, a segment; other base, a point; its plane face, an ellipsis. For areas of segments of circles, table VIII of "Key to Ster." For area of ellipsis, page 51 of same.

120 -Frustum af a paraboloid between non-parallele bases. " Key to Ster.," page 145.
Lunette through a vertical wall and inclined ceiling, etc. For computation of solid contents decom-

Its factor areas, circles and a segment; its plane face, an ellipsis. For areas of segments of circles, table VIII of "Key." Area of circle, tables II, III and IV, of same; ellipsis, page 51 of same;
pose into a frustum with parallel lateral area, page 95 ; solidity, page bases, and an ungula by a plane parallel to base, through nearest point of upper base.

CLASS XIII.

145 of same.

121-Right hyperboloid or hyperbolic conoid.
Page 146, "Key to Ster." Representative of same as No. 111.

Hperboloid or Hpperbolic Conoid, Frusta and Ungulae, eto.

For intermediate diameter or that of middle section, see "Key to Ster.," page 147, 3rd line, or by direct measurement.

122-Frustum of right hyperboloid.
Representative of same, nearly as Nos. 112 and 82.

Except for diameter of middle section, same as No. 112, or the diameter may be measured directly.

See "Key to Ster.," p. 146. Representative of same, as No. 113.

Same as No. 113, except for diameter of middle section for which see "Key to Ster.," page 147, line 3 , or the diameter may be measured.

124-Frustum of oblique hyperboloid.
Representative of same, nearly as Nos. 84 and 114.

Same as No. 114, except for diameter of middle section for which see "Key to Ster.," page 147, line 3 , or may be had by measurement.

125--Hyperboloid wedge or central ungula.
Similar solid to No. 95 of a cone and representative of same objects.

Except for diameter of middle section, same as No. 91 or 95 . For area of zone, see "Key to Ster.," page 46 or table IX of same.

;a and

ameter or that зee "Key to d line, or by
ter of middle . 112 , or the sured directly.
except for diaion for which jage 147, line may be mea-
xcept for diaion for which page 147, line measurement.
ter of middle 91 or 95 . For Key to Ster.," of same.

126- Ungula of hyperboloid by a plane through edge of base
For solid content, treat as prismoid or by par. 185 of "Key."

Solid similar to No. 93 of cone, or to No. 117 of paraboloid.

Its base, a circle ; middle section, the segment of a circle; other base, a point. Plane lateral face, an ellipsis, its lateral surface of double curvature, as all such figures are, not capable of development, but reducible as required.

127-Frustum of hyperboloid wedge.
Similar to No. 116 of paraboloid. Base of chimney stack, etc., resting partly on a sloped roof.

128-Ungula of hyperboloid by a plane through base.
Similar to No. 118 of paraboloid.

129-Frustum of hyperboloid wedge, or of central ungula of hyperboloid.
Similar to No. 92 of cone.

Same as No. 92. For area of circles to eighths, tenths \& twelfths, see tables II, III, and IV of " Key to Ster." For area of zone, see table IX, of same. Lateral surface decomposable into trapeziums.

See "Key to Ster.," fig. on page 155 , for mode of measuring halfway diameter, when the half solid is not the frustum of a cone, but that of a conoid or of an ellipsoid or spheroid. When of a cone middle diameter equal to arithmetic mean of end diameters.

130-A compound solid: two equal frusta of cone or conoid, base to base.
Illustrative of a keg or cask, barrel, hogshead, etc., of any size or shape. Treat one-half of solid as Nos. $92,112,122$, and double the result.

Bases and section same as No. 118 of paraboloid. See table VIII, of "Key to Ster.," for areas of segments.

Bases same as in No. 116. Lateral area developes into trapeziums by lines parallel to bases. For areas of circles, segments, zones, see tables of "Key to Ster."

CLASS XIV.

Sundrv Solids.

131-Three axed spheroid.
See "Key to Ster.," page xxxix. May for measurement be supposed to lie or stand on either of its sides or apices.
Representative of a pebble, a bean, spindle, torpedoe, a shell fish, a flattened ellipsoid, etc., etc.

All its sections, ellipses ; all its parallel sections, similar ellipses. For areas of ellipses, "Ster.," page 51. Lateral area, see general formula, page 95, "Key to Ster." Or, as with the spheroid, suppose the surface divided as a melon is or orange into ungulae, terminating in apices or poles of the fig.

132-An ovoid or solid of the shape of an egg.
Divide into two or three sections and treat separately as conoid, segment of sphere or spheroid, and frustum of conoid.

All parallel areas perpendicular to longer or fixed axis, circles, which find ready calculated for all sized diameters to eighths, tenths and twelfths of an inch, or other unity of measure, tables II., III., and IV., of Key to Ster. For lateral area, see page 96 of same.

For cylinder, see No. 61. For ring compute area of section thereof as semi-circle or segment, and multiply into circumference. For area, mean circumference of ring into circumference of section.

Its bases and sections similar and equal figures. The lateral surface of each face can be developed in a plane, a trapezium o: rectangle.
lipses ; all its ilar ellipses. "Ster.," page 3 general forto Ster." Or, , suppose the melon is or , terminating he fig.
perpendicular txis, circles, ulated for all ighths, tenths nch, or other bles II., III., ter. For lateof same.

No. 61. For of section cle or seginto circumsean circumircumference
tions similar The lateral can be deveapezium or

135-A compound solid.
Two frusta of cones, their lesser basses joined.
A windlass, spool, handle, shaft, axle-tree, etc.

136-A compound solid.
Two frusta of hollow cones joined by their lesser bases.

A windlass, spool, handle, shaft, axle-tree, etc.

137-Compound solid.
Two frusta of concave cones joined by their greater bases

A windlass, shaft, axle-tree, etc.

Treat half the solid as the frustum of a cone, and double the result, either for solid content or area of figure.

Treat one half the solid as frustum of cone No. 102, and double the result.

Lateral area resolvable into continuous trapeziums.

Treat half the solid, and double the result. For areas of circles, see tables II., III. and IV. of Ster.

Sections perpendicular to axis, circles ; Area resolvable into continuous trapeziums, a circle and the sector of a circle. The circle at apex of segment of sphere or spheroid ; the sector at apex of spindle. See page 55 of "Key to Ster."

Sections perpendicular to axis, circles. Lateral surface, continuous trapeziums, a circle, and the sector of a circle at apex of cone.

140 - Compound solid : the frustum of a sphere or sphe-

Bases and sections, circles. Lateral surface resolvable into
roid and a hollow cone.
A Moorish dome, a minaret, chimney of a coal oil lamp, a decanter, a vase, a pitcher.
continuous trapeziums. See general formula, page 95 of "Key to Ster." .

CLASS XV.

Oblate or Flattened Spindle, Frusta, Segments, Sundry.

141-Oblate spindle, as two equal segrnents of sphere or spheroid base to base.
A quoit, etc.

142-Semi-oblate spindle by a Treat its two halves together as plane parallel to fixed axis. Floating caisson to entrance of
dock, etc.

Treat one half as segment of sphere or spheroid, and double the result. See classes 17 and 19.

143-Middle frustum of oblate spindle.
Fixed caisson or coffer-dam.
Treat as prismoid.

The bases and middle section each a double segment of a circle or ellipsis, or two segments thereof, base to base. Table VIII., "Key to Ster."

144-Lateral frustum of oblate spindle, between planes parallel to fixed axis.
A flai-bottomed boat or other sailing vessel or a caisson, etc.

The bases and section half-way between them, double segments of circles or ellipses, for areas of which see table VIII., "Key to Ster.," and page 53 of same.

jrments,

s segment of und double the 7 and 19.
es together as e or spheroid. 9.
niddle section gment of a or two segase to base. o Ster."
etion half-way le segments ses, for areas III., " Key to f same.

145-Lateral frustum of oblate spindle truncated at one end.
A flat-bottomed boat or other sailing vessel.

Bases and middle section, double segments, base to base. of circles or ellipses truncated at one end. For areas, see page 57 "Key to Ster."

146-Lateral frustum of oblate spindle truncated at both ends.
A flat-bottomed boat or pontoon, a scow, lighter, etc.

Bases, double segments of circles or ellipses truncated at both ends. Divide into trapeziums and compute areas by page 57 "Key to Ster."

147-Quarter of an oblate spheroid, No. 181.
The arched ceiling, roof or vault of the apsis of a church or halfgroined ceiling of a circular apartment. On its lesser base, the head of a shallow niche in a wall, etc.

Its base and middle section, semi-circles, if treated on its broader base ; if on its lesser face, its base and middle section, semiellipses. On whatever base it stands, treat as if on broader base, it being easier to compute circles than ellipses.

148-A compound body, a cone, and the segment of a sphere or spheroid.
A buoy, covered filter, etc.

Treat separately as cone No. 81, and as segment of sphere, No. 173, or of spheroid No. 182.

149-Elliptic ring, or may be called an eccentric ring.
Treat as circular or cylindrical ring, taking for bases, its least, its greater, and its mean sections; a d for length the mean of the inner and outer circumferences.

Compute half of solid as the lateral frustum of a half-prolate spindle or the frustum of an elongated cone. The solid may be conceived to be formed of the middle frustum of an elongated spindle bent till its ends meet.

150 -Compound solid : a cylinder and the segment of a spere or speroid.
A mortar, a tower with domed roof, a hall or room with groined ceiling, a hut, hive, hood.

For area of sphere or spheroid, see page 95 "Key to Ster.," or page $105,110,124$, Ex. 3. Areas of circles tables II., III. and IV. of same. Half-way diameter in segment of circle or sphere a mean proportional between abscissae of diameter.

CLASS XVI.

Prolate or Elongated Spindle, Frusta, Segments, etc.

151-Prolate spindle.
A shuttle, a torpedoe, a cigar, a sheath, case, etc.

Its sections perpendicular to axis, circles. Decompose its lateral area into continuous trapeziums and a sector.

152-Semi-prolate spindle by a plane through its greater or fixed axis.
A boat or sailing vessel, a canoe, etc.

For solidity, compute planes perpendicular to fixed axis, as segments of circles, semi-circles, while the sections parallel thereto are not so readily computed.

153-Semi-prolate spindle by a plane perpendicular to fixed axis.
A hut, roof, filter or vessel of capacity, a minaret or finial.

For greater accuracy, divide into a frustum and segment, compute and add cubical contents. Areas of bases, tables II., III. and IV. of " Key to Ster. "

154-Middle frustum of prolate spindle between planes perpendicular to fixed axis. A cask or keg, puncheon, hogshead, etc.; see page 155 "Key."

See page 149 of "Key to Ster.," and for lateral surface, page 95 of same. See page 155 of same. Bases and sections, circles, tables II., III. and IV. of Key to Ster."
a or spheroid, , Ster.," or page i. Areas of cirid IV. of same. in segment of ean proportioe of diameter.
nents, etc.
dicular to axis, its lateral area peziums and
ute planes peraxis, as seg-semi-circles, arallel thereto mputed.
cy, divide into nent, compute 3 nts. Areas of [. and IV. of

Key to Ster.," зe, page 95 of If same. Bases tables II., III. er."

155-Semi-middle frustum of Bases and middle section, semiprolate spindle.
The liquid in a cask lying on its side, a boat with truncated ends. Compute as No. 154 and take half.

156-Lateral frustum of prolate spindle by planes parallel to fixed or longer axis.
A flat-bottomed boat or other sailing vessel.

Treat as prismoid, the greater base, a double segment of a circle. The other base and section, oval figures for areas of which see page 57 of "Key to Ster."

157-Eccentric frustum of a prolate spindle by planes perpendicular to fixed or larger axis of solid.
The shaft of a Roman column. Compute each frustum from centre and add the results.

158-Middle frustum of elongated spindle by planes perpendicular to fixed or longer axis.
The shaft of a windlass, a drum or pulley, a cigar, torpedoe, etc.

Its bases and .sections, circles, for areas of which to eighths, tenths and twelfths of inch or other unit of measure, see tables II., III. and IV., " Key to Ster."

Its lateral surface decomposable into continuous trapeziums, or nearly equal to length of side into mean circumference.

Its bases and sections, circles, for areas of which see "Key to for areas of which see "Key to
Ster.," page 38 , or tables II., III. and IV. of same.
Lateral area equal nearly length
curved side into mean of circum-
Lateral area equal nearly length
of curved side into mean of circumferences. pg of Key to Stor

159-A curved halfspindle or cone.
A horn, powder flask, tusk or tooth of an elephant, etc., a supporting bracket from face of wall. circles, see page 160 of "Key to Ster." Lateral surface decomposable into trapeziums.

Base and sections circles or ellipses of slight eccentricity. Lateral area decomposable into continuous trapeziums and sector at apex.

160-Frustum of a prolate spindle between non parallel bases.
Decompose into a frustum with parallel bases and an ungula by a plane through nearest point of one of the bases.

Base and sections parallel t'iereto, circles, base of ungula a circle ; middle base of ungula, a semi-circle; apex of ungula or opposite base, a point ; lateral surface, continuous trapeziums, and a fig. like h, page 57 "Key to Ster."

CLASS XVII.

Sphere, Segments, Frusta and Ungulae, etc.

161-The sphere.
A billiard or other playing ball, the ball of a vane or steeple, spherical shot and shell, school spheres, lamp globe or well, component part of compound solid, etc. Solid content mav ${ }^{\imath}$ e had by omputing one of the component ungulae and multiplying into number thereof.

The opposite bases, points ; the middle section, a circle. The area of surface admits of approximate development into a series of equal figures in the shape of the longitudinal section of a prolate spindle, or of double segments of a circle, base to base.

Surface equal to four great circles or to four times that of a great circle.

Its base, a circle ; opposite base, a point ; its middle section, a circle, the half diameter of which equals the square root of the rectangle under the versed and suversed sines or portions of the diameter of the sphere. The lateral area equal to two great circles of the sphere.
allel t'iereto, a a circle ; a semi-ciror opposite urface, con, and a fig. to Ster."
points ; the le. The area approximate eries of equal f the longituolate spindle, its of a cir-
sur great cirhat of a great
opposite base, section, a cirter of which it of the recrsed and suons of the diae. The lateral reat circles of
163.-Segment of a sphere less than a hemisphere.
Representative of same objects as No. 162, cover or bottom of a boiler. Solid contents also equal to one of the component ungulae into the number thereof.

Base and section, circles ; other base, a point; radius of middle section for area thereof, equal to root of rectangle of parts into which it divides the diameter of the sphere of which the segment forms part. For lateral area see "Key to Ster.," page 110, or General Formula, page 95 .
164.-Segment of sphere, greater than a hemisphere.
Representative of same as No. 162, and of a Moorish or Turkish or horse-shoe dome.

Its base and section circles ; other base a point ; radius of middle section the root of rectangle of parts into which it divides diameter of sphere. Lateral area, see "Key to Ster.," pages 117 and 123.
165. - Middle frustum of a sphere.
Base, capital or middle section of a column or post, a puncheon, hogshead, clusher, roller, lamp shade, etc., etc.

Bases, er ual circles; middle sections, a circle; see tables of areas of circles to eighths, tenths, and twelfths of an inch or other unity of measure, II., III., and IV. of "Key to Ster."
166. - Lateral frustum of Bases and section, circles; lateral sphere.
Base or capital of column, coved ceiling, cauldron, dish, soup plate, saucer, etc. Radii of bases and sections proportional to square roots of rectangles of portions into which such radii or ordinates divide the diameter of which the solid forms a part.
area resolvable into continuous trapeziums; or lateral area may be had very nearly at one operation, if the frustum be low or flat and that its lateral curvature be not considerable:
167.-Sherical wedge or central ungula of a sphere by planes from opposite edges of base of hemisphere to meet in apex.
Component portion of a compound solid.

Its base, a circle ; opposite base, a ridge, or axis, or line; middle section, the zone of a circle; its plane faces, circles; and lateral area resolvable into trapeziums and triangles

Base, a circle; other base and middle section, zones of circles. For areas of zones, see table IX., "Key to Ster."
168.-Frustum of a spherical wedge or central ungula between parallel planes.
Component portion of compound solid.

169 -Spherical pyramid, ob-tuse-angled and triangular. Illustrative of the tri-obtuseangular spherical triangle, and of the fact that the sum of the angles of a spherical triangle, may reach to six right angles, when each of the component angles increases to 180°.

Base, a spherical triangle having three obtuse angles; apex or opposite base, a point; middle section, a similar triobtuse angular spherical triangle, and whose area is equal to one-quarter that of base, its factors being halves of those of base, and $\frac{1}{2} \times \frac{1}{2}=\frac{1}{4}$.
170. -Frustum of sphere between non-parallel bases.
Elbow or connecting link between two portions of a rail or bead; base of a vase or other ornament on a raking cornice.

Decompose into frustum and ungula of a sphere by a plane parallel to one of the bases and passing through nearest point of other base, or more readily and exactly, compute whole sphere, and deduct segment.

CLASS XVIII.

Spherical Ungulae, Sectors, Pyramids and Frusta.

171 -Quarter-sphere or rectangular ungula of a sphere.
Domed roof to a semi-circular plan, vault of the apsis of a church, head of a niche, " Key to Ster.," page 117.

On its base : one base, a semicircle; opposite base, a point; middle section, the segment of a circle. On end : each of its opposite bases, points; its middle section, the sector of a circle. Only
one area to compute, and easier and quicker than a segment.
divide by 4 , or treat as an ungula. See opposite par.
172.- Acute-angled spherical ungula.
Component portion of the ball of a vane or steeple; natural section of an orange, or of a ribbed melon, section of a buoy, cauldron, etc., etc., elbow of two semi-cylindrical mouldings, etc., at an obtuse angle.

Its opposite bases, points; its middle section, the sector of a circle; the spherical surface, the component of a hollow metallic or other sphere or spherical vessel, or of the covering for a racket or other playing ball, etc.

For spherical area see "Key to Ster.," page 117.
173.-Obtuse-angled ungula of Opposite bases points; middle a sphere.
Head of niche reaching into a sloped ceiling; elbow of two halfbeads at an acute angle, etc.
sections, the sector of a circle; its plane faces, semi-circles. Spherical area, page 117 "Key to Ster."
stum and unplane parallel and passing of other base, exactly, comid deduct seg-
1 triangle ise angles; , a point; imilar triэrical trianis equal to se, its factors e of base, and

Compute as a whole sphere, and

174-Spherical sector or cone, or, to avoid computing spherical areas, may be treated as a compound body, a cone and the segment of a sphere.
A buoy, a finial or ornament, a top, etc., a covered filter. For areas of circles see tables II, III and IV, of "Key to Ster."

175-Frustum of a spherical sector between parallel spherical bases.
Portion of a shell or bomb or hollow sphere. To avoid computing spherical areas, treat as frustum of cone, adding greater and deducting lesser segment.

Its base, a spherical segment; the other base, a point; middle section, a spherical segment concentric to the base and equal in area one quarter of base ; its height equal to radius of sphere, its lateral face developed, the sector of a circle. See "Key to Ster.," page 110.

Its bases and middle section parallel thereto, concentric and similar segments of spheres of corresponding radii. Its height, the length of slant side. Solidity also equal to difference between whole and partial spherical sectors.

176-Hexagonal spherical pyramid.

Its base illustrative of a spherical polygon, page 127 of "Key."

Component portion of a solid sphere or ball; keystone of a vault, finial or other ornament ; decomposable for computation into six equal triangular spherical pyramids, "Key to Ster.," page 129. See rule for spherical areas at end of this pamphlet.

Its base, a regular six-sided spherical polygon; its middle section a figure similar to the last, and equal in area to one-quarter thereof; its opposite base, a point, the centre of the sphere of which it forms part. For area of base, see "Key to Ster.," page 127. For area of component spherical triangle of base, see page 123 of same. Its plane faces equal sectors of a circle.

177-Frustum of hexagonal spherical pyramid between parallel bases.
Keystone of vault. Component

Its bases and middle section, similar spherical polygons; factor of middle section, as in cone, an arithmetic mean between those of

al segment ;

 int ; middle egment conequal in area height equal s lateral face of a circle. tge 110.e section patric and sispheres of

Its height, ide. Solidity nce between erical sectors.
r six-sided ; its middle r to the last, 0 one-quarter ase, a point, re of which it of base, see 127. For area al triangle of of same. Its lectors of a

Lle section, siygons ; factor 3 in cone, an veen those of
portion of hollow sphere. Surfaces illustrative of similar spherical polygons. Height of solid equal slant height of side.

178- Half-quarter or oneeighth of sphere or tri-rectangular spherical pyramid. Termination or stop to chamfer on angle of wall or pillar.

Compute whole sphere and divide by eight.

179-Acute equilateral triangular spherical pyramid.
Its base illustrative of the equilateral spherical triangle.
the bases. Its lateral faces, equal frusta of equal sectors \sim f a circle, or cencavo - convex trapeziums. See rule at end of this work.

Its base illustrative of the trirectangular spherical triangle, page 123 of "Key."

May compute for solid contents as the half of an ungula where only one area is required, that of a sector of a circle. See rule at end of this work.

Base and middle section similar equilateral spherical triangles, for areas of which, see "Key to Ster.," page 123, and rule at end of this work.

Bases and middle section, similar spherical triangles whose areas are as the squares of the corresponding radii ; or factors of middle section, arithmetic means between those of the opposite bases.

CLASS XIX.

Oblate Spheroid, Frusta and Segments.

181-Oblate spheroid.
Representative, in a less exaggerated ratio of its diameters or axes, of the Earth and planets which are

Treated perpendicularly to its fixed axis, its opposite bases are considered points, as in the sphere, a plane touching the solid only in
flattened at the poles or extremities of fixed axis and protuberant at the equator. An orange, lamp-shade, or globe, or bowl.
a point; its middle section, a circle. If considered parallel to its fixed axis, its middle section, an ellipsis. For spheroidal surface or area, see N. 161.

182-Semi-oblate spheroid by a plane perpendicular to its fixed or lesser axis.
Elliptical celling, dome, cauldron, basin, dish, vase, shade, globe, etc.

Base, a circle ; opposite base, a point; middle section, a circle ; for diameter of which, if not from direct measurement, see " Key to Ster.," page 139, line 10 and page 140 , line 20.

183-Semi-oblate spheroid by a plane parallel to its fixed or lesser axis
Dome or ceiling to an elliptic plan; glass globe or shade, dish cover, hut, a trough, cauldron, etc.

Equal in area and solid contents to No. 182 and of easier and quicker computation, if considered such, the factors being circles instead of ellipses. As it stands, its base and middle section, similar ellipses.

Its base and middle section, circles ; opposite base, point. Spheroidal surface continuous trapeziums and a circle at apex. For areas of circles, see tables II., III. and IV. of "Key to Ster." For factors of middle section, see No. 182.

185-Middle frustum or solid Opposite bases and middle seczone of an oblate spheroid between planes perpendicular to fixed or shorter axis.

Representative of same as No. 165.
tion, circles ; for areas of circles to eighths, tenths and twelfths of an inch or other unity, see tables II., III. and IV. of "Key to Ster." Spheroidal area, see page 95 of same.
section, a sarallel to its section, an al surface or
josite base, a n , a circle ; , if not from see " Key to 10 and page
olid contents ier and quicconsidered jing circles As it stands, ection, simi-
adle section, jase, point. continuous ircle at apex. ee tables II., to Ster." For tion, see No.
d middle seceas of circles id twelfths of ty, see tables Key to Ster." page 95 of

186 -Middle frustum or solid zone of oblate spheroid by planes parallel to fixed or lesser axis of solid.

187-Segment of oblate spheroid less than half, by a plane parallel to its fixed or lesser axis.
Representative of same as as No. 183.

188 -Lateral frustum of oblate spheroid by planes parallel to fixed or shorter axis.
Coved ceiling of elliptic plan ; reversed : a boat, a scow, a vessel of capacity, etc.

Its bases and middle section similar ellipses, for areas of which see page 51 of "Key to Ster." Spheroidal area, page 95 of same.

Its base, an ellipsis; opposite base, a point ; middle section, an ellipsis similar to base. For factors of middle section, see No. 182.

189-Halt or segment of oblate spheroid by' a plane inclined o axis of solid
Liquid or fluid in a semi-spheroidal vessel inclined from the vertical. Finial on a pediment or sloped surface.

Its opposite parallel bases and middle section, ellipses, for areas of which see "Key to Ster." p. 51.

Its spheroidal surface decomposable into continuous trapeziums of variable height.

Its base and middle section, similar ellipses; its opposite base, a point ; its spheroidal surface trapeziums, with ellipsis at apex and a curvilinear triangle at base of shape similar to fig. h. page 57 of "Key to Ster.," or lateral area may be divided and computed as triangles.

190-Frustum of oblate spheroid between non-parallel bases.
Decompose into a frustum with parallel bases, and an ungula by a plane parallel to one base and drawn tbrough nearest point of

Bases and middle section of component frustum with parallel bases, ellipses ; base of ungula, an ellipsis; middle section of ungula the segment of an ellipsis ; its other base, a point.

For factors of middle sections,
other base, or compute whole spheroid and deduct segments.
see " Key to Ster.," page 139, line 10 and page 140 , line 20 , where $A B$: $C D:: \sqrt{A 0 . o B}: o M$ and $C D: A B::$ $\sqrt{\overline{C o . o D}}: ~ o M$.

CLASS XX.

Prolate Spheroid, Frusta and Segments.

191-Prolate spheroid
Representative of a lemon, melon, cucumber, etc. ; a case, sheath, etc.

The work of computation expedited by treating circles instead of ellipses; that is, areas perpendicular instead of parallel to fixed axis.

Its middle section perpendicular to fixed or longer axis, a circle; its opposite end bases, points. Spheroidal surface, continuous trapezoids, or a series of double segments base to base as the component ribs a of melon. May treat as plane segment with length of cord equal to semi-elliptical seotion.

For solid contents and spheroidal surface, treat perpendicular to fixed axis, where factors are circles or semi-circles instead of ellipses. For areas of circles, see tables II., III. and IV. of "Key to Ster."

Base, a circle; other base, a point; middle section, a circle. For radius of middle section, see formula given in No. 190, or at page 139 , line 10 , page 140 , line 20 of "Key to Ster." Spheroidal area, see No. 191.

194-Segment of prolate spheroid greater than half, by a plane perpendicular to fixed axis.
A hut, hive, dome, a cauldron or copper, etc.

Base and middle section, circles; its other base, an apex or point. Its spheroidal surface resolvable into continuous trapeziums and a circle at apex.

195-Middle frustum or solid zone of prolate spheroid by parallel planes perpendicular to fixed axis.
A cask, keg, barrel, puncheon, hogshead, etc., "Key." page 138. dle section, a circle. Unlike the middle frustum of a spindle, the solid contents of this solid are obtained exactly by treating the whole figure at once.

196-Middle frustum or solid zone of prolate spheroid by parallel planes oblique to axis.
A boss on raking strut, etc.

197-Lateral frustum or solid zone of prolate spheroid by planes perpendicular to fixed axis.
Coved ceiling, base of column, etc. ; reversed: capital of column, dish, basin, bowl, tub, hamper or basket, stew pan, cauldron or other vessel of capacity, etc., etc.

Opposite bases and middle section, similar ellipses. Spheroidal surface, trapeziums of which take mean height.

Bases and section, circles, for areas of which see tables II., III. and IV. "Key to Ster." For diameter of middle section, measure solid or compute by formula of page 139 , line 10 ; page 140 . line 20 , where it is shown that the rectangle under the required radius, and either axis of the spheroid, is equal to that under the square root of the rectangle or product of the abscissæ of the first axis and the other axis.

198-Lateral frustum or solid zone of prolate spheroid by planes parallel to each other, and to longer or fixed axis.
Coved ceiling of elliptical plan, etc. ; reversed : a flat-bottomed boat, a scpw; a dish, basket, etc., etc.

Its parallel bases and middle section, similar ellipses ; for areas of which see "Key to Ster." page 51. Its lateral area resolvable into continuous trapeziums of varying height if parallel to bases, but of uniform height, if lines be drawn from extremities of fixed axis.

199-Segment of prolate spheroid by a plane inclined to axis.
Liquid in spheroidal vessel inclined from the vertical, a scoop, scuttle, etc.

Its base and middle section, similar ellipses ; its other base, a point ; its spheroidal surface resolvable by circles drawn from extremity of fixed axis, into a circle, trapeziums and a triangle.

Decompose into frustum with parallel bases, and an ungula. Compute separately, and add ; or compute whole segment due to frustum and deduct lesser segment. thereto.

THE AREAS OF SPHERICAL TRIANGLES \& POLYGONS

TO ANY RADIUS OR DIAMETER.

Read before the mathematical, physical and chemical section of the
Royal Society of Canada, May 22nd 1883.
Last year I laid before this section of the Royal Society my proposal to substitute in schools the prismoidal formula for all other known formulae pertaining to the cubing of solid forms.

I then showed that on this sole condition, the computation of solidities, even the most difficult by ordinary rules, as of the segments, frusta and ungulae of Conoids and Spheroids, was susceptible of generalisation and of being taught in the most elementary institutions.

I then submitted that the advantage of the proposed system consisted in this; that while he who had gone through a course of mathematics would, in three months thereafter or out of college, have completely forgotten or have inextricably mixed up in his mind the numerous and ever varying formulae for arriving at the contents of solids; the simple artisan, on the contrary, who at an elementary, school would have been taught the universal formula, and who from the fact of having to learn but one, could not forget it nor mix it up in his mind with any others, could apply it always and everywhere during a life time without the aid even of any book excepting may be, to save time, a table of the areas of circles or of other figures lengthy of computation.

What I then did for the measurement of solid forms, I now propose to do for the mensuration of areas of spherical triangles and polygons on a sphere of any radius; I mean a simple and expeditious mode of getting at the doubly curved area of any portion of the terrestrial spheroid as of every sphere great or small : interior or exterior surface of a dome for example or of one of its component parts, as well of the bottom or roof of a gasometer, boiler, or of one of the constituent sections thereof, descending even to the surface of the ball of a spire, a shell, a cannon or a billard ball.

TO THIS END :

The area of a sphere to diameter I. being Dividing by 2 , we get that of the hemisphere This divided by $4=$ area of tri-rectgl'r sph. triangle $\div 90=$ area of 1° or of bi-rect. sph. tri. with sp. $\mathrm{ex}=1^{\circ}=0,004,363,323,129,985,8$
$\div 60=$ " of 1^{\prime} or of \quad " \quad. \quad. $1^{\prime}=0,000,072,722,052,166,43$
$\div 60=$ " of 1 " or of \quad " \quad " $1 "=0,000,001,212,034,202,77$
$\div 10=$ " of 0.1 " or of \quad " \quad " $\quad \mathbf{0 . 1 "}=0,000,000,121,203,420,277$
$\div 10=$ " of 0.01 " or of " " \quad " $0.01 "=0,000,000,012,120,342,027,7$
$\div \mathbf{1 0}=$ " of 0.001^{\prime} or of " " " $\quad 0.001 "=0,000,000,001,212,034,202,77$

Find the spherical excess, that is, the excess of the sum of the three spherical angles over two right angles, or from the sum of the three spherical angles deduct 180°. Multiply the remainder, that is, the spherical excess, by the tabular number herein above given: the degrees by the number set opposite to 1°, the minutes by that corresponding to 1 'and so on of the seconds and fractions of a second; add these areas and multiply their sum by the square of the diameter of the sphere of the surface of which the given triangle forms part ; the result is the area required.

EXAMPLE.

Let the spherical excess of a triangle described on the surface of a sphere of which the diameter is an inch, a foot, or a mile, etc., be $3^{\circ}-$ $4^{\prime}-2.235^{\prime \prime}$. What is the area ?

Area of $1^{\circ}=0.004,363,323,129,985,8$	\times	$=0.013,089,969,389,955$
$1^{\prime}=0.000,072,722,052,166,43$	\times	$4=0.000,290,888,208,664$
$1^{\prime \prime}=0.000,001,212,034,202$	\times	$2=0.000,002,424,068,404$
$0.1^{\prime \prime}=0.000,000,121,203,420$	\times	$2=0.000,000,242,406,840$
" $0.01{ }^{\prime \prime}=0.000,000,012,120,312$	\times	$=0.000,000,036,361,026$
" $0.001 "=0.000,000,001,212,034$	\times	$5=0.000,000,006,060,170$
Area	red	

The answer is of course in square units or fractions of a square unit of the same name with the diameter. That is, if the diameter is an inch, the area is the fraction of a square inch; if a mile, the franction of a square mile, and so on.

Remark.- If the decimals of seconds are neglected, then of course the operation is simplified by the omission of the three last lines for tenths, hundredths and thousandths of a second or of so many of them as may be omitted.

If the seconds are omitted, as would be the case in dealing with any other triangle but one on the earth's surface, on account of its size; there will in such case remain only the two upper lines for degrees and minutes, which will prove of ample accuracy when dealing with any triangular space, compartment, or component section of a sphere of the size of a dome, vaulted ceiling, gasometer, or large copper or boiler, etc ; and in dealing with such spheres as a billiard or other playing ball, a cannon ball or shell, the ball of a vane or steeple, or any boiler, copper, etc., of ordinary size, it will generally suffice to compute for degrees only. Whence the following

RULE TO DEGREES ONLY.

Multiply the spherical excess in degrees by $0.004,363$ and the result by the square of the diameter for the required area. For greater accuracy use- $0.004,363,323$.

RULE TO DEGREES AND MINUTES.

Proceed as by last rule for degrees. Multiply the spherical excess in minutes by $0.000,073$, or for greater accuracy by $0.000,072,722$. Add the results, and multiply their sum by the square of the diameter for the required area.

EXAMPLE I.

Sum of angles $140^{\circ}+92^{\circ}+68^{\circ}=300 ; 300-180=120^{\circ}$ spherical excess. Diameter $=30$. Answer area of $1^{\circ} 0.004,363$ Multiply by spherical excess 120°

We get
$0.523,560$
This multiplied by square of diameter $30=$
900
Required area $=$
471.194,000

A result correct to units. If now greater accuracy be required, it is be obtained by taking in more decimals; thus,say area $1^{\circ}=0.004,363,323$
471.238,884,000

EXAMPLE II.

The three angles each 120° their sum 360°, from which deducting 180° we get spherical excess $=180^{\circ}$. Diameter 20, of which the square $=400$.

Answer
Area to $1^{\circ}=0.004,363.323$

$$
0.785,398,140
$$

400
$314.159,256,000$
EXAMPLE III.
The sum of the three angles of a triangle traced on the surface of the Terrestrial sphere exceeds by ($1^{\prime \prime}$) one second, 180°; what is the area of the triangle, supposing the Earth to be a perfect sphere with a diameter $=7,912$ English miles, or, which is the same thing, that the diameter of the Terrestrial spheroid or of its osculatory circle at the given point on its surface be 7,912 miles.

Answer. Area of $1^{\prime \prime}$ to diameter $1 .=0.000,001,212,034,202$
Square of diameter
62,598,744
$75.871,818,730,242,288$
Remark.-This unit 75.87 etc., as applied to the Terrestrial sphere, becomes a tabular number, which may be used for computing the area of any triangle on the earth's surface, as it evidently suffices to multiply the area 75.87 etc., corresponding to one second $\left(^{\prime \prime} 1^{\prime \prime}\right)$ by the number of seconds in the spherical excess, to arrive at the result; and the result may be had true to the tenth, thousandth, or millionth of a second, or of any other fraction thereof by successively adding the same figures
equired, it is be 4,363,323
75.87 etc., with the decimal point shifted to the left, one place for every place of decimals in the given fraction of such second: the tenth of a second giving 7.587 etc., square miles, the $0.01^{\prime \prime}=.7587$ of a square mile, the $0.001^{\prime \prime}=.07587$ etc., of a square mile, and so on ; while, by shifting the decimal point to the right, we get successively $10^{\prime \prime}=758.7$ square miles, $100^{\prime \prime}=7587$. etc., square miles, or $1^{\prime}=75.87 \times 60$ (number of seconds in a minute), $1^{\circ}=75.87 \times 60 \times 60$ (number of seconds in a degree).

RULE.

To compute the area of any spherical nolygon.
Divide the polygon into triangles, compute each triangle separately by the foregoing rules for triangles and add the results.

$$
\mathrm{OR},
$$

From the sum of all the interior angles of the polygon subtract as many times two right angles as there are sides less two. This will give the spherical excess. This into the tabular area for degrees, minutes, seconds and fractions of a second, as the case may be, and the sum of such areas into the square of the diameter of the sphere on which the polygon is traced, will give the correct area of the proposed figure.

It may be remarked here that the area of a spherical lune or the convex surface of a spherical ungula is equal to the tabular number into twice the spherical excess, since it is evident that every such lune is equivalent to two bi-rectangular spherical triangles of which the angle at the apex, that is the inclination of the planes forming the ungula, is the spherical excess.

Remark.-The area found for any given spherical excess, on a sphere of given diameter, may be reduced to that, for the same spherical excess, on a sphere of any other diameter ; these areas being as the squares of the respective diameters.

The area found for any given spherical excess on the earth's surface, where the diameter of the osculatory circle is supposed to be 7912 miles, may be reduced to that for the same spherical excess where the osculatory circle is of different radius; these areas being as the squares of the respective radii or diameters.

ON THE APPLICATION OF THE

PRISMOIDAL FORMULA

TO THE MEASUREMENT OF ALL SOLIDS

By CHS. BAILLAIRG出, M. A.,

Member of the Soclety for the Generalization of Education in France, and of several learned and scientific Societies, Chevalier of the Order of St. Sauveur de Monte-Reale, Italy, \&cc. Recepient of 13 medals of honor and I7 diplomas and letters from Russia, France, Italy, Belgium, Japan, \&c. Member of the Royal Society of Canada.

Read before the mathematical section of the Society on Saturday the 28th of May. 1882. -
" Cette formule $V=\frac{H}{6}\left(B+B^{\prime}+4 M\right)$ (Says "the late Revd, N. " Maingui of the Laval University) que Mr. Baillargé travaille à " vulgariser, a l'immense avantage de pouvoir remplacer toutes les " autres formules de stéréométrie,"

The prismoidal formula reads thus: "To the sum of the opposite and parallel end areas of a prismoid, add four times the middle area and multiply the whole into one sixth the length or height of the solid."

* See this formula at article "Stéréométrie of " Le grand dictionnaire universel du XIXème siècle par P. Larousse."

The following letter from the Minister of Education, Russia, may be considered interesting in its bearings on the subject matter of this communication

MINISTERE DE L'INSTRUCTION PUBLIQUE.
Saint-Petersburg, le ${ }_{14}^{20}$ février 1877.
No. 1823.
A M. Baillairgé,
Architecte à Québec,
Monsieur,
Le comité scientifique du ministère de l'Instruction Publique, (de Russie,) reconnaissant l'incontestable utilité de votre "Tableau Stéréométrique" pour l'enseignement de la géométrie en général de même que pour son application pratique à d'autres sciences, éprouve un plaisir tout particulier à joindre aux suffrages des savants de l'Europe et de l'Amérique sa complète approbation, en vous informant que le susdit tableau, avec toutes ses applications, sera recommandé aux écoles primaires et moyennes, pour en compléter les cabinets et les collections mathématiques, et inscrit dans les catalogues des ouvrages approuvés par le ministère de l'Instruction Publique.

Agréez, monsieur, l’assurance de ma haute considération.
Le chef du département au ministère de l'Instruction Publique,
E. de Bradker.

The following extract from the Quebec Mercury, July 10, 1878 further corroborates its importance.
" It will be remembered that in February, 1877, Mr. Baillairgé received an official letter from the Minister of Public Instruction, of St. Petersburg, Russia, informing him that his new system of mensuration had been adopted in all the primary and medium schools of that vast empire. After a lapse of eighteen months, the system having been found to work well, Mr. Baillairgé has received an additional testimonial from the same source informing him that the system is to be applied in all the polytechnic shools of the Russian Empire."

Should the Royal Society of Canada prove instrumental in the introduction of the new system throughout the remainder of the civilized world. It will have shown that its creation by the Marquis of Lorne, the Govr. Gen. of Canada, has been in no way premature.

The definition of a prismoid as generally given is understood to apply to a solid having parallel end areas bounded by parallel sides.

This parallelism of the sides or edges of the opposite bases or end areas does not imply, not does it exclude any proportionality between such sides or edges.

Therefore is the frustum of a pyramid a prismoid, as also that of a cone which is nothing but an infinitary pyramid, or one having for its base a polygon of an infinite number of sides.

Now let two of the parallel edges of either base of the frustum approach each other until they meet or merge in a single line or arris, when we have the wedge which is therefore to all intents and purposes a prismoid.

Further let this edge or arris become shorter and shorter until it reduces to a point and then have we the pyramid which is again a prismoid, as is the cone.

It need hardly be said that the prism and cylinder are prismoids, whose opposite edges are equal as well as parallel in the same way as for the frusta of the pyramid and cone the opposite edges are proportional while parallel.

Now, nine tenths or more of all the vessels of capacity, the world over, and either on a large or reduced scale, have the shape of the frustum of a cone or pyramid ; the latter as evidenced in bins, troughs and cisterns of all sizes, in vehicles of capacity ; the former, in the brewers vat, the salting tub, the butter firkin, the commom wooden pail, the drinking goblet, the pan or pie dish, the wash tub - of whatever shape its base - the milk pan and what not else ; again the lamp shade, the shaft of a gun or mortar, the buoy, quai, pier, reservoir, tower, hay-rick, hamper, basket and the like.

These are forms which in every-day life the otherwise untutored hand and eye are called upon to estimate. Why then not teach a mode of doing it which every one can learn, and not only learn but what is of greater import, retain in mind or memory when mastered.

Why continue the old routine when, as here evidenced, it is so much more simple and concise, so much quicker to apply the prismoidal formula to all these forms, than resort to one more difficult of apprehension and which to carry or work out requires tenfold the time the other does.

Legendre's formula requires a geometric mean between the areas of the opposite bases of the solid under consideration. This mean is far less easily conceivable than the arithmetic one ; and to arrive at it the end areas are to be multiplied into each other, and the square root extracted of their product; a long and tedions operation, one known only to the few, most difficult to retain, forgotten as soon as learnt and therefore useless.

With the formula proposed on the contrary, the operation is one which the merest child can master, the mere mechanic or the artisan remember all his life and readily apply; for he has been taught at school to compute areas, that of the circle as well as others, a figure which he readily sees is resolvable into triangles by lines drawn from the centre to equidistant points, or not, in the circumference, and the area thence equal to the circumference-sum of the bases of the component triangles -into half the radius, or height of the successive sectors which make up the figure.

Now, of almost all the solide herein above alluded to, the opposite
; the world the frustum troughs and the brewers on pail, the itever shape shade, the er, hay-rick,
e untutored jach a mode t what is of
ed, it is so з prismoidal of apprehenne the other
the areas of mean is far ve at it the are root exknown only learnt and
ation is one - the artisan ght at school (re which he a the centre : area thence tent triangles which make
the opposite
bases and middle section are circles and the operation can be further expedited by taking the areas ready made, to inches and even lines or less, from tables prepared for the purpose.

The labour then reduces to the mere arithmetic of adding the areas so found, that is the end areas and four times the middle area, and of multiplying the sum thereof into one sixth the altitude, or depth; that is, to the simplest form of arithmetic taught in the most elementary schools, to wit : addition and multiplication, with division added when the cubical contents in feet, inches or other unit of capacity, are to be reduced, as of inches into gallons and the like.

I would have but one formula applicable to all bodies, and it will of course be asked : why, for instance in the case of the cylinder, the whole cone or pyramid, substitute the more complex for the simpler form of computation. My reason for doing so has its untold importance to thousands of the human race. Memory is not a gift to every one. I have none of it myself or hardly any, and its absence only entails a little reasoning as I am now to show.

I have seen students, only three months out of college doubtful as to which of the ordinary formulae to apply, to this pyramid or cone, the conoid, the spheroid. In one-the first-the volume is due to the base and one third the height ; in the second, the base and one half the height; in the other, the base and two thirds the height. Any mistake is fatal to the result.

But with the one and only one, the unique and universal formula which I propose to substitute for every other, no error can obtain. Take hold of the pyramid or cone : set down its upper or one end area or that of its apex, equal nought (0) or zero, its other end area, whatever that may be. Its middle area, you see at once is one quarter that of its base ; for the middle or half way diameter is half that of the base, and the areas of similar fiçures as the squares of their homologous or like dimensions. Now, ere you have put this down on paper ; ere you have had time to do so, the reasoning process is going on within your mind and in far less time than it takes me to relate it - that four times the middle area plus the area of the base is equal to twice the base, and that twice the base into one sixth the altitude is precisely the same thing
as once the base, that is, the base into one third the altitude, and so come you back to the old or ordinary rule, the simpler of the two in this case, and without the necessity of having this formula stored in your mind as a separate process.

And so with the cylinder where you see at once that the area of each base and of the middle section being all equal quantities, the sum of these bases and of four times the middle section is the same thing as six time the base, and again that six times the base into one sixth the altitude is the old rule of the base into the altitude, without the necessity of remembering it as a separate and additional formula.

But the great advantage of this one universal rule, its beauty so to say is further evidenced and more strikingly in the computation of the more difficult solids, that is of those which are more difficult under the old or ordinary rules.

In the sphere, spheroid and conoids, the one area, that at the apex or crown is always nought or nothing, as a plane there touches them in one and only one point. The formula applled to the sphere and spheroid therefore reduces to four times the middle area into one sixth the altitude or diameter or axis perpendicular to the plane of section.

Now, let it be required to measure the liquid in a conoidal or spheroidal vessel inclined to the horison or out of the vertical. This by ordinary rules, becomes an operation of much time, trouble and anxiety, as the size of the whole body or solid of which the portion or figure under consideration forms a part, has to be made known, its factors entering into the formula for the content required; whereas by the prismoidal formula, no concern need be had as to the dimensions of the entire body of which the figure submitted to computation is a segment.

That the rule applies to all such cases, is and has been abundantly proven by myself (see my treatise of 1866) as applied to any segment of a sphere or spheroid, to any ungula of such solids contained between planes passing in any direction through the centre, to any frustum of these bodies, - lateral or central - contained between parallel planes inclined in any way to the axes; to any parabolic or hyperbolic conoid, right or inclined, as well to any parallel frustum of eitier.
and so come in this case, our mind as
the area of es, the sum me thing as ie sixth the rout the nela.
jeauty so to ation of the t under the
at the apex uches them sphere and to one sixth f section. conoidal or l. This by and anxiety, on or figure s factors enby the prissions of the a segment. abundantly any segment ned between y frustum of rallel planes bolic conoid,

This proof has been substantiated by MM. Steckel of the Dept. of Dominion Public Works, Deville a member of this society, and the late Revd. M. Maingui, professor of Mathematics at the Laval University, as well by the Revd. M. Billion, of the Seminary of St. Sulpice-Montreal; by His Grace, bishop Langevin of Rimouski, and by many other mathematicians fully adequate to the task.
M. Maingui says (page IX of his pamphlet and as already quoted from the french version): "This formula $V=\frac{H}{6}(B+B+4 M)$ is that " which Mr. Baillairgé is endeavouring to introduce ; it has the im" mense advantage of replacing all other stereometrical formulae."

This is the only formula which will allow of teaching stereometry in all schools however elementary, and as has just been shown, the application of it is the more simple, so to say, the more complex the body is, since in the conoid and segment of spheroid, one of the factors at least is zero, while two of them are zeros in the sphere and spheroid as in their ungulae.

Thus while the student at college or from a University after having devoted much time to the acquisition of a hundred rules for the cubing of as many solids, has hopelessly forgotten them in after life, the comparatively illiterate artisan, tradesman, merchant, \&c. who has never frequented ought but a village school, will, having but one rule wherewith to charge his memory, remember it all his life and be ever ready to apply it?

In the case of spindles and the masurement of their middle frusta - the representatives of casks of all varieties and sizes, - the prismoidal foimula does not bring out the true content to within the tenth or twentieth and up to the half or thereabout of one per cent; notwithstanding which, it is the only practical formula which can bring out anything like a reliable result. The true formulae for casks never can, nor will they ever be applied; they are too lengtly, too abstruse, and the wine merchant will tell you that the nearest the guage rod can come to within the truth, the guage rod founded on these formulae, is to within from one to three and even four per cent. This stands to reason, as when operating on the half cask-which is always done with all figures having symmetrical and equal halves-the half way diameter between
the head and bung, the very element by which the cask varies its capacity, enters as a factor into the occupation, while the guaging rod can take no note of it.

It remains but to say that in the case of hoof and ungulae of cones and cylinders, of conoids and of spheroids, when the bounding planes do not pass through the centre, the prismoidal formula is still the best to be employed in practice, and again brings out the volume to within one half or so of one per cent. The true rules applicable to these ungulae can never be remembered, nor are or will they ever be applied in practice. Rather than that, the fudging or so called rule of thumb system, some averaging of the dimensions is sure to be resorted to and a result arrived at, where two or three to five per cent of error is considered near enough, while the proposed application of the prismoidal formula would reduce the error to almost nothing.

Compound bodies must of course be treated separately or in parts. Thus, a gun or mortar, as made up of a cylinder or the frustum of a cone and the segment or half of a sphere or spheroid ; a morish or turkish dome, as the frustum of a spheroid surmounted by a hollow cone; a roofed tower, as a cone and cylinder, a cone and frustum of a cone or two conic frusta as the case may be and so of other compound forms.

Again when frusta between non parallel bases are to be treated, the solid is to be divided by a plane parallel to one of its bases and passing through the nearest edge or point of its opposite base, into a frustum proper and an angula, subject to the percentage of error already noticed in the volume of the angula; while, by cubing the whole conoid on segment of a spheroid of which the frustum forms a part, and then the segment which is wanting to make up the whole, the true content can be arrived it.

There are a class of solid forms where it would appear at first sight that a departure from the prismoidal formula becomes necessary; not so however as will presently be seen. I allude to the cubing of the fragment of a shell for instance, or of the material forming the vaulting of a dome as contained between its intrades and extrados. This is simply arrived at, when the inner and outer faces are parallel or when the dome or arch is of uniform thickness by applying the spherical, spheroidal or
aries its capaging rod can rulae of cones ing planes do 1 the best to to within one e ungulae can d in practice. system, some result arrived near enough, vould reduce
y or in parts. frustum of a orish or turhollow cone ; of a cone or and forms.
e treated, the and passing o a frustum eady noticed le conoid on and then the content can pear at first s necessary; ubing of the the vaulting his is simply en the dome spheroidal or
cylindrical surfaces of the opposite bases, and the equally curved surface of the middle section; while, when the faces are not parrallel or the thickness of varying dimensions, as well when the faces are everywhere aquidistant, the volume may be had by cubing the outer and inner component pyramids and taking the difference between them.

And in the making out of such spherical areas as may enter as factors into any computation, a most concise and easy rule will be found at page 35 of my "stereometricon" published in 1880 ; when any such area can in a few minutes be made up the mere multiplication and addition of the elemental quantities given in the text, and any portion of the earths surface thus arrived at when the radius of the osculatory circle for the given latitude is known.

With irregular forms, the figure can be sliced up and treated by the formula, and those forms when small and still more complex, such as carving, statuary, bronzes and the like, can be measured with minute accuracy by the indirect process of the quantity of fluid of any kind displaced, as of water when non obsorbent or of sand or sawdust etc., when the contrary.

Again may the specific gravities of bodies be applied, or their weights to making out their, volumes by simple rule of three, or the reverse process of weighing them by ratio when their volumes are ascertained.

Finally the quantities and respective weights of the separate substances which enter into analgams or alloys are obtainable as tanght by a comparison of their weights in air and water, that is of the amalgam itself and of its unalloyed constituents.

The whole field of solid meusuration is thus gone over in these few pages, instead of the volume required to contain the many separate and varied formulae which the old process of computation gives rise to and renders indispensable. The whole I say is gone over in as many minutes as the oll process requires hours or even days.

T A B L E S

OF
I. Squares and Square Roots of numbers from 1 to 1600.
II. Circumferences and areas of circles of diameter $\frac{1}{a 4}$ to 150 advancing by $\frac{1}{8}$.
III. Circumferences and areas of circles of diameter $\frac{1}{10}$ to 100 advancing by $\frac{1}{10}$.
IV. Circumferences and areas of circles of diameter 1 to 50 feet, advancing by 1 inch.
V. Sides of Squares equal in area to a circle of a diameter 1 to 100 advancing by a $\frac{1}{4}$.
VI. Lengths of circular ares, to diameter 1 divided into 1000 equal parts.
VII. Lengths of semi-elliptic arcs to transverse diameter 1 divided into 1000 equal parts.
VIII. Areas of the segments of a circle to diameter 1 divided into 1000 equal parts.
IX. Areas of the zones of a circle to a diameter 1 divided into 1000 equal parts.
X. Specific gravities or weights of bodies of all kinds solid, fluid, liquid and gazeous.

No.	Square.	Sqre. root.	No.	Square.	Sqre. root.	No.	Square.	Sqre. root.
1	1	1.0000000	61	3721	7.8102497	121	14641	11.0000000
2	4	1.4142136	62	3844	7.8740079	122	14834	11.0453610
3	9	1.7320508	63	3969	7.9372539	123	15129	11.0905365
4	16	2.0000000	64	4096	8.0000000	124	15376	11.1355287
5	25	2.2360680	65	4225	8.0622577	125	15625	11.1803399
6	36	2.4494897	66	4356	8.1240384	126	15876	11.2249722
7	49	2.6457513	67	4488	8.1853528	127	16129	11.2694277
8	64	2. $8 \cdot 2.4 \cdot 71$	68	46.4	8.2462113	128.	16384	11.3137085
9	81	3.0000000	69	4761	8.3066:39	129	16641	11.3578167
10	100	3.16*2777	70	4900	8.3666003	130	16900	11.4017543
11	121	3.3166248	71	5041	8.4261498	131	17161	11.4455231
12	144	3.4641016	72	5184	8.4852814	132	17424	11.4891253
13	169	3.6055513	73	5339	8.5440037	133	17689	11.5325626
4	196	$3.74165 / 4$	74	5476	8.6023553	134	17956	11.5758369
15	225	$3.8 \% 29833$	75	5625	8.6602540	135	18225	11.6189500
16	256	4.0000000	76	5776	8.7177979	136	18496	11.6619038
17	289	$4.1 \because 31056$	77	5929	8.7749644	137	18769	11.7046999
18	324	4.2426407	78	6084	8.8317609	138	19044	11.7473401
19	361	4.3585989	79	6241	8.8881944	139	19321	11.7898261
20	400	$4.47 \because 1360$	80	6400	8.9442719	140	19600	11.8321596
21	441	4.5825757	81	6561	9.0000000	141	19881	11.8743421
22	484	4.6904158	82	67.4	9.0553851	142	20164	11.9163753
23	529	$4.795-315$	83	6889	9.1104336	143	20349	11.9582607
24	576	4. $\times 989795$	84	7056	9.1651514	144	20736	12.0000000
25	625	5.0090000	85	7×25	9.2195445	145	21025	12.0415946
26	676	5.0990195	86	7396	9.2736185	146	21316	12.0830460
27	729	5.1961524	87	7569	${ }^{9} .3273791$	147	21609	12.1243557
28	784	5.2915026	88	7744	9. 3808315	148	21904	12.1655251
29	841	5.3851648	89	79.1	9.4339811	149	22801	12.2065556
30	900	$5.4772 \% 56$	90	8100	9.4858330	150	22500	12.2474487
31	961	5.5677644	31	8281	9.5393920	151	22801	12.2882057
32	1024	5.6568542	92	8464	9.5916634	152	93104	12.3288280
33	1089	$5.74456 \sim 6$	93	8649	9.6436508	153	23409	12.3693169
34	1156	5.8309519	94	8836	9.6953597	154	23716	12.4096736
35	1225	5.9160798	95	9025	9.7467943	155	24025	12.4498996
36	1296	6.0000000	96	9216	9.7979590	156	24336	12.489996 م
37	1369	6.0827625	97	9409	9.8488578	157	24649	$12.5299 \mathrm{c}^{\text {a }} 1$
38	1444	6.1644140	98	9604	9.8994949	158	24964	12.5698051
39	1521	6.2449980	99	9801	9.9498744	159	25281	12.6095202
40	1600	$6.3 \div 45553$	100	10000	10.0000000	160	25600	12.6491106
41	1681	6.4031242	101	10201	10.0498756	161	25921	12.6885775
42	1764	6.4807407	102	10404	10.0995049	162	26244	12.7279221
43	1849	6.5574385	103	10609	10.1488916	163	26569	12.7671453
44	1936	6.6332496	104	10816	10.1980390	164	26896	$12.806 \div 485$
45	2025	6.7082039	105	11025	10.2469508	165	27225	12.8452326
46	2116	5.7823300	106	11236	10.2956301	166	27556	12.8840987
47	2209	6.8556546	107	11449	$10.3440 \succ 04$	167	27889	12.9228480
48	2304	6.9282032	108	11664	10.3923048	168	28224	12.9614814
49	2401	7.0000000	109	11881	10.4403065	169	28561	13.0000000
50	2500	7.0710678	110	12100	10.4880885	170	28900	13.0384048
51	2601	7.1414284	111	12321	10.5356538	171	29241	13.0766968
52	2704	7.2111026	112	12544	10.5830052	172	29584	13.1148770
53	2809	7.2801099	113	12769	10.6301458	173	29929	13.1529464
54	2916	7.3484692	114	12996	10.6770783	174	30276	13.1909060
55	3025	7.4161985	115	13225	10.7238053	175	30625	13.2287566
56	3136	7.4833148	116	13455	10.7703296	176	30976	13.2664992
57	3249	7.5498344	117	13689	10.8166538	177	31329	13.304134 ,
58	3364	7.6157731	118	13924	10.8627805	178	31684	13.3416641
59	3481	7.6811457	119	14161	$10.90871 \geqslant 1$	179	32041	13.3790882
60	3600	7/7459667	120	14400	10.9544512	180	32400	13,4164079

are. Sqre. root
11.0000000 11.0905365
11.1350287
11.1803399

11.2249722
11.2694277

11.4455231 11.4891253
11.5325626 11.6189500 11.6619038 11.7473401 11.7898261 11.8321596 11.9163753 11.9582607 12.0000000 12.0415946 12.1243557 12.1655251 12.2474487 12.2882057 12.3288280
12.3693169 12.4096736 12.4498996 12.589996 12.5698051 12.6095202 12.6491106 12.6885775 12.7671453 $12.806: 485$ 12.8423236 12.9228480 12.9614814 13.0000000 13.0384048 13.0766968 1.1148770 13.1909060 13.2287566 13.2664992 13.304134: 13.3416641 13.3790882 12.4164079

No.	Square.	Sqre. root.	No.	Square.	Sqre. root.	No.	Square.	Sqre. root.
181	32761	13.4536:40	241	58081	15.5241747	301	90601	17.3493516
18%	33124	13.4907376	248	58564	15.5563492	302	91204	17.378147\%
183	33489	13.5277493	243	59049	15.5884573	303	91809	17.4068952
184	:33856	13.5646600	244	59536	15.6204994	304	92416	17.4355958
185	34225	13.6014705	245	60025	15.6524758	305	93025	17.4642492
186	34586	13.6381817	246	60516	15.6843871	306	93636	17.4928557
187	34969	13.6747943	247	61009	15.7162336	307	94249	17.5214155
188	35344	13.7113092	248	61504	15.7480157	308	94864	17.5499288
189	35721	$13.747 \% \times 71$	249	62.01	15.7797338	309	95481	17.5783958
190	36100	13.7840488	250	62500	15.8113883	310	96100	17.6068169
191	36481	13.820:750	251	63001	15.8429795	311	96721	17.6351921
19%	$36=64$	13.8564065	252	63504	15.8745079	312	97344	17.6635217
193	37246	13.8924400	253	64009	15.9059737	313	9×969	17.6918060
194	37636	13.9283883	254	64516	15.9373775	314	98596	17.7200451
195	35025	13.9642400	255	65025	15.9687194	315	992:5	17.7482393
196	38416	14.0000000	256	65536	16.0000000	316	99856	17.7763888
197	38809	14.0356688	257	66049	$16.031 \div 195$	317	100489	17.8044938
198	$39: 04$	14.0712473	258	66564	16.9623784	318	101124	17.8325545
199	39601	14.1067360	259	67081	16.0934769	319	101761	17.8605711
200	40000	14.1421356	260	67600	16.1245155	320	102400	17.8885438
201	40401	14.1774469	261	68121	16.1554944	321	103041	17.9164729
20%	40804	14.2126704	262	68644	16.1864141	3×2	103684	17.9443584
203	41209	14.2478068	263	69169	16.2172747	323	104329	17.9722008
204	41616	14.2828569	264	69696	16.2480768	324	104976	18.0000000
205	42025	14.3178211	265	70225	16.2788206	25	105625	18.0277564
206	42436	14.3527001	266	70756	16.3095064	326	106276	18.0554701
207	42849	14.3874946	267	71289	16.3401346	327	106929	18.0831413
208	4.3264	14.4222051	268	71894	16.3707055	328	107584	18.1107703
209	43681	14.4568323	269	72361	16.4012195	329	108241	18.1383571
210	44100	14.4913767	270	72900	16.4316767	330	108900	18.1659021
211	44521	14.5258390	271	73441	16.4620776	331	109561	18.1934054
212	44944	14.5602198	272	73984	16.4924225	332	1102:4	18.2208672
213	45:369	14.5945195	273	74529	16.5 ± 27116	333	110889	18.2482876
214	45796	14.6287388	274	75076	16.5529454	334	111556	18.2756669
215	46225	14.6628783	275	75625	16.5831240	335	12225	18.3030052
216	46656	14.6969385	276	76176	16.6132477	336	112896	18.3303028
217	47089	14.7309199	277	76729	16.6433170	337	113569	18.3575598
218	47524	14.7648231	278	77984	16.6783320	338	114244	18.3847263
219	47961	14.7986486	279	77841	16.7038931	339	114921	18.4119526
220	48400	14.8323970	280	78400	16.7332005	340	115600	18.4390889
2: 21	48841	14.8660687	281	78961	16.7630546	341	116281	18.4661853
2\%	49284	14.8996644	282	79524	16.7928556	342	116964	18.4932420
223	49729	14.9331845	283	80089	16.82:2038	343	117649	18.5202592
224	50176	14.9666\%95	284	80656	$16.852 \cdot 9995$	344	118336	18.5479370
225	50625	15.0000000	235	81925	16.8819430	345	119025	18.5741756
226	51076	15.0332964	286	81796	16.911534 .5	346	119716	18.6010752
297	51529	15.0665192	287	82369	16.9410743	347	120409	18.6279360
2:8	51984	15.0996689	288	82044	16.9705627	348	121104	18.6547581
$2 \% 9$	52441	I5.1327460	289	$835 \div 1$	17.0000000	349	121801	18.6815417
230	$5 \because 900$	15.1657509	290	84100	17.029:3364	350	12.5500	18.7082869
231	53:361	15.1986842	291	84681	17.0587921	3.1	$1 \cup 3201$	18.7349940
23.	53824	15.2315462	29:	85264	17.0880075	352	123904	18.7616630
233	54289	15.2643375	293	85849	17.1172428	353	124609	18.788:912
234	54756	15.2970585	294	86436	17.1464288	354	$12: 316$	18.8148877
235	55225	15.3297097	295	87025	17.1755640	355	126025	18.8314437
236	55696	15.3622915	296	87616	17.2046505	356	1267:36	18.8679623
237	56169	15.3948043	-297	88209	17.2336879	357	127449	18.8944436
238	56644	15.4272486	298	88804	$17.26 \div 6765$	358	128164	18.9208879
239	57121	$15.4596 \div 48$	299	89401	17.2916165	359	128881	18.9472953
240	57600	15.4919334	300	90000	17.3205081	360	129600	18.9736660

No.	Square.	Sqre. root.	No.	Square.	Sqre. root.	No.	Square.	Sqre. root.
361	130321	19.0000000	421	$17 \% 241$	20.5182845	481	231361	21.9318122
362	131044	19.0262976	422	178084	$20.54 \div 6386$	482	232324	21.9544984
363	131769	19.0525589	423	178928	20.5669638	483	233289	21.9772610
364	132496	19.0787810	424	179776	20.5912603	484	234256	22.0000000
365	1332.5	19.1049732	425	1-0625	29.6155×81	485	235025	22.0227155
366	133966	19.1311265	426	181476	20.6397674	486	236196	22.0454077
367	134689	19.1572441	427	1823:9	20.6639783	487	237169	29.0680765
368	135424	19.1833261	428	$18: 3184$	20.6881609	488	238144	22.0907220
369	136161	$19.20937 \cdot 27$	429	184041	20.7123152	$4<9$	239121	22.1133444
370	136900	19.2353841	430	184900	20.7364414	490	240100	22.1359436
371	137641	19.2613603	431	185761	20.7605395	491	241081	22.1585198
372	$1: 38384$	19.2873015	432	1866:4	20.7846097	492	242064	22.1810730
373	139129	19.3132079	433	$1-7459$	20.8086520	493	243049	22.2036033
374	1399876	19.3390796	424	188356	20.8326667	494	244036	22.2261108
375	140625	19.3649167	435	189225	20.8566536	495	245025	22.2485955
326	141376	19.3907194	436	190096	20.8845130	496	246016	22.2710575
378	$1421: 9$	19.4164878	$4: 37$	190969	20.9045450	497	247009	$\because 2.2934968$
378	14.2884	19.4422	438	191844	20.9284495	498	248004	22.3159136
379	143641	19.4679283	489	192721	$20.9523 \div 68$	499	249001	22.3383079
380	144400	19.48338887	440	193600	20.9765770	500	250000	22.3606798
381	145161	19.5192213	441	194481	21.0000000	501	251001	22.3830293
38.2	145924	$19.5448: 03$	442	195364	21.02:37960	502	252004	22.4053565
383	146689	19.5703858	443	196249	21.0475652	503	253009	22.4276615
384	147456	19.5959179	444	197136	21.0713075	504	254016	22.4499443
:385	148025	19.6214169	445	198025	21.0950231	505	252025	22.4722051
386	148996	19.6468827	446	198916	21.1187121	506	256036	29.4944438
387	149769	19.6723156	447	199809	21.1423745	507	257049	2.25166605
388	150544	19.6978156	448	200704	21.1660105	508	258064	22.5388553
389	$1513 \cdot 1$	$19.72308 \div 9$	449	201601	21.1896201	509	259041	2•.561028:3
390	152100	19.7484177	450	202500	21.2132034	510	260100	22.5831796
391	152881	19.7737199	4.5	203401	21.2367606	511	261121	22.60:3091
39\%	153664	19.79<9-99	452	204304	$\because 1.2602916$	512	262144	2.2.6274170
393	154449	19.8242276	453	205209	21.2837967	513	263169	ン2.6495033
394	155236	19.8494332	454	206116	21.3072758	514	264196	22.6715681
395	156025	19.8746069	455	207025	21:3307290	515	265225	22.6936114
396	156816	19.8997487	456	207936	21.3501565	516	266256	22.7156334
397	157609	19.9248 .888	457	208849	$\because 1.3775583$	517	267289	22.7376340
398	158404	19.9499338	458	209764	21.4009346	518	268324	22.7596134
399	159201	19.9749844	459	210681	21.42428 .3	519	269361	22.7815715
400	160000	$\because 0.0000000$	460	211600	21.4476106	520	270400	22.8035085
401	160801	20.0249844	461	21.2521	21.4709106	521	271411	$22.8254: 44$
40:2	161604	24.0499377	462	213444	21.4941853	522	27.2484	22.8473193
403	$16 \div 409$	20.0745599	463	214369	21.5174348	523	$2735 \cup 9$	22.8691933
404	16:3216	20.0997512	464	215:96	21.5406592	524	274576	22.8910463
405	164025	20.1246118	465	216225	21.5638587	525	2756:5	22.912×775
406	1648:36	20.1494417	466	217156	21.6870331	526	276676	22.9346899
407	165649	20.174×410	467	218089	21.6101828	527	277729	22.9564806
408	166464	20.1990099	463	219021	21.6333807%	528	278784	22.978:506
409	167281	$20.22: 37484$	469	219961	21.6564078	529	279841	23.0000000
410	168100	20.2484567	470	220900	21.6791834	530	280900	23.0217289
411	16-921	20.2731349	471	221811	91.7025344	531	280961	23.0434:32
41.2	169744	20.2977831	472	222784	21.7255610	583	$2830 \cdot 4$	23.0651252
413	170569	20.3224014	473	203729	21.748563 .2	533	281089	23. ${ }^{\text {²67928 }}$
414	171396	20.3469899	474	224676	21.7715411	534	285156	23.1084400
415	1722.5	20.3715488	475	225625	21.7944947	535	286-2,	23.1300670
416	173056	$20.3960 \sim 81$	476	2 26576	21.8174242	536	287296	23.15103738
417	173889	$20.4 \div 05779$	477	227529	21.8403297	537	2×8369	23.173205
418	174724	20.4450483	478	228484	21.8632111	538	2-9444	23.19482\%0
419	175561	20.4694895	479	229441	21.8860686	539	$2905 \cdot 1$	23.2163735
420	176400	20.4939015	480	230400	21.9089023	540	291600	23.2379001

Square. Sqre. root.	No.	Square.	Sqre. root.	No.	Square.	Sqre. root.	No.	Square.	Sqre. root.
231361 21.9318122	541	292681	23.2594067	601	361201	24.5153013	661	4:36921	25.7099203
232324 21.9544984	542	293764	23.2808935	60%	362404	24.53 .6883	662	438244	25.2293607
233289 21.9772610	543	294849	23.3023604	603	363609	24.5560583	663	439569	25.7487864
23425622.0000000	544	295936	23.3238076	604	364816	24.5764115	664	440896	25.7681975
235225 22.0227155	545	297025	23.3452351	605	366025	24.5967478	665	442225	25.7875939
236196 22.0454077	546	298116	23.3666429	606	367236	24.8170673	666	443555	25.8069758
237169 22.06<0765	547	299209	23.3880311	607	368449	24.6373700	667	444839	25.8263431
238144 22.0907220	548	300304	23.4093998	60.3	369664	24.6576560	668	446224	25.8456960
239121 22.1133444	549	301401	23.4307490	609	370881	24.6779254	669	447561	25.8650343
240100 22.1359436	550	302500	23.4520788	610	372100	24.6981781	670	448900	25.8843582
241081 22.1585198	551	303601	23.4733892	611	373321	24.7184142	671	450241	25.9036677
242064 29.1810730	552	304704	23.4946802	612	374544	24.7386338	672	451584	25.9229628
$24: 3049$ 22.2036033	553	305809	23.5159520	613	375769	24.7588368	673	4529\%9	25.94×2435
244036 22.2261108	554	306916	23.5372046	614	376996	24.7790234	674	454276	25.9615100
245025 22.2485955	555	308025	23.5584380	615	378225	24.7991983	675	455625	25.9807621
246016 22.2710575	556	309136	23.5796522	616	379456	24.8193473	676	456976	26.0000000
247009 U2.2934968	557	310249	23.6008474	617	380689	24.8394847	677	458329	26.0192237
948004 22.3159136	558	311364	23.6220236	618	381924	24.8596058	678	459684	26.0384331
249001 22.3383079	559	312481	23.6431808	619	383161	24.8797106	679	461041	26.0576284
250000 22.3606798	560	313600	23.6643191	620	384400	24.8997992	680	$46 \cdot 400$	26.0968096
251001 22.3830293	561	314721	23.6854386	621	385641	24.9198716	681	463761	26.0759767
252004 22.4053565	56.	315844	23.7065392	622	386884	24.9399278	682	465124	26.1151297
253009 22.42\%6615	563	316969	23.7276210	623	388129	24.9699679	683	466489	26.1342687
254016 22.4499443	564	318096	23.7486842	624	389376	24.97×9920	684	4678.5	26.1533837
252025 22.4722051	565	319225	23.7697286	625	390625	25.0000000	685	469225	26.1725047
256036 22.4944438	566	320356	23.7807545	626	381876	25.0199920	686	470596	26.1916017
257049 22.5166605	567	321489	23.8117618	6×7	393129	25.0399681	687	471969	26.2106848
258064 22.5388553	568	322624	23.8327506	628	394384	25.0599288	688	473341	26.2497541
59041 2..5610283	569	323764	23.8537209	629	395641	25.0795724	689	474721	26.2488095
260100 22.5831796	570	324900	23.8746728	630	396900	25.0998008	690	476100	26.2678511
61121 22.60:3091	571	326041	23.8956063	631	398161	25.1197134	691	472481	26.2868789
62144 22.6274170	572	327184	23.9165215	632	3994×4	25.1396102	692	478864	26.3058929
63169 ソ2.6495033	573	328329	23.9374184	633	400689	25.1594913	693	480249	26.3248932
64196 22.6715681	574	329476	23.9582971	634	401956	25.1793566	694	481636	26.34:36797
65225 22.6936114	575	330625	23.9791576	635	403225	25.1992063	695	$4830 \cdot 5$	26.3628529
66256 22.7156334	576	331776	24.0000000	636	404496	25.2190404	696	484416	26.3818119
67289 22.7376340	577	332929	24.0208943	637	40.769	25.2388589	697	455809	26.400756
68324 22.7596134	578	334084	24.0416306	638	407044	25.2586619	698	487204	26.4196896
59361 22.7815715	579	33.241	24.0624188	639	408321	25. 2784493	699	488601	26.4386081
0400 22.8035085	580	336400	24.0831891	640	409600	25.2982213	700	490000	26.4575131
1411 22.8254244	581	337561	24.1039416	641	410881	25.3179778	701	491401	26.4764046
2484 22.8473193	58.2	338724	24.1246762	642	412164	25.3377189	702	492 c 4	26.4952826
35 ± 922.8691933	583	339889	24.1453929	643	413449	25.3574447	703	494209	26.5141472
4576 22.8910463	584	341056	24.1660919	644	414736	25.3771551	704	495616	26.5329983
$56 \div 5$	585	342225	24.1867732	645	416025	25.3965502	705	497025	26.5518364
6676	596	343396	24.2074369	646	417316	$25.4,65301$	206	498436	26.5706605
7729 $\because 2.9564806$	587	344569	24.2280899	647	418609	25.4361947	707	499849	26.5894716
3784 22.978.2506	588	345744	24.2487113	648	419904	$25.455-441$	708	501264	26.6082694
9841 23.0000000	589	346921	24.2693222	649	421201	25.4754784	709	502681	26.6270539
0900 23.0217289	590	348100	24.2899156	650	422500	25.4950976	710	504100	26.6458 .55
9961 23.0434322	591	349281	24.3104916	651	423801	25.5147016	711	505521	26.6645833
3024 23.0651252	592	350464	24.3310501	652	425104	25.5342907	712	506944	$26.6833: 281$
1089 23.n267928	593	351649	24.3515913	653	426409	25.5538647	713	508369	26.7020598
5156 23.1084400	594	352839	24.3721152	654	427716	25.5734237	714	509796	26.7207784
23.1300670	595	354025	24.3926218	655	429025	25.5929668	715	511225	\cdots, 7*24839
2996 23.15107738	596	355216	24.4131112	656	430336	25.6524969	716	51265	06.7581763
369 23,1732605	597	356409	24.4335834	657	431649	25.6320112	717	514089	26.7568557
444 2:319482\%0	598	357604	24.4540385	658	432964	25.6515107	718	$5155 \cdot 4$	26.7950 120
521	599	358801	24.4744765	659	434281	25.6709953	719	516961	26.8141754
600 23.2379001	600	360000	24.4948974	660	435600	25.6904652	720	518400	26.8328159

No.	Square.	Sqre. root.	No.	Square.	Sqre, root.	No.	Square.	Sqre. root.
721	519841	26.8514442	781	609961	27.9463772	841	707281	29.0000000
722	521284	26.8700577	782	$6115: 4$	27.9642689	842	708964	29.0172:363
723	522729	26.8886593	783	613089	27.9821372	843	710649	29.0344623
724	524176	26.9072481	784	614656	28.0000000	844	712336	29.0516781
725	525625	26.9258240	785	616225	28.0178515	845	714025	29.0688837
726	527076	26.9443872	786	617796	28.0356915	846	715716	29.0860791
727	$5285 \div 9$	26.9629375	787	619369	28.0535203	847	717409	29.1032644
728	529984	26.9814751	788	620944	28.0713377	848	719104	29.1204396
729	531441	27.0000000	789	629521	28.0-1438	849	720801	29.1376046
730	532900	27.0185122	790	624100	28.1069386	850	722500	29.1547595
731	534361	27.0370117	791	625681	28.1247222	851	724201	29.1719033
732	535824	27.0554985	792	627624	28.1424946	852	725904	29.1890390
733	537\%89	27.0739727	793	628849	28.1602557	853	727609	29.2061637
734	538756	27.0924344	794	630436	28.1280056	854	729316	29.2232784
735	540.25	27.1108834	795	63:025	28.1957444	855	731025	29.2403830
736	541696	27.1293199	796	633616	28.2134720	856	732736	29.257.277
737	543169	27.1477439	797	635209	28.2311884	857	734449	29.2745623
738	544644	27.1661554	798	636804	28.2488938	858	736164	29.2916370
739	546121	27.1845544	799	638401	28.2661881	859	737881	29.3057018
740	547600	27.2029410	800	640000	28.2842712	860	739600	29.3257566
741	549081	27.2213152	801	641601	28.3019434	861	741321	29.3428015
742	550564	27.2396769	80%	643204	28.3196045	$86:$	74:3044	29.3598365
743	552049	27.2580263	803	644809	28.3372546	$86: 3$	744769	29.3764616
744	553536	27.2763634	804	646416	28.3548938	864	746496	29.3938769
745	555025	27.2946881	805	648025	28.3725210	865	748925	29.4108823
746	566516	27.3130006	806	649635	28.3901391	866	749956	29.4278779
747	558009	27.3313007	807	651249	28.4077454	867	751689	29.4448637
748	559504	27.3495887	808	652864	28.4253408	868	753424	29.4618397
749	561001	27.3678644	809	654481	28.4429253	869	755161	29.4788059
750	562500	27.3861279	810	656100	28.4604989	870	756900	29.4957624
751	564001	27.4043792	811	657721	28.4780617	871	758641	29.5127091
752	565504	27.42\%6184	812	659344	28.4956137	872	760384	29.5296461
753	567009	27.4408455	813	660969	28.5131549	873	762129	29.5465734
754	568516	27.4590604	814	662596	28.5306852	874	763876	29.5634910
755	570025	27.4772633	815	664225	28.5482048	875	765625	29.5803989
750	571536	27.4954542	816	665856	28.5657137	876	767376	29.5972972
757	573049	27.5136330	817	667489	28.5832119	877	769129	29.6141858
758	574564	27.5317998	818	669124	28.6006993	878	770884	29.6310648
759	576081	27.5499546	819	670761	28.6181760	879	772641	29.6479342
760	577600	27.5680975	820	672400	28.6356421	880	774400	29.6647939
761	579121	27.6862284	821	674041	28.6530976	881	776161	29.6816442
762	580644	27.6043475	822	675684	28.6705424	882	777924	29.6984848
763	$58: 169$	27.6224546	823	677329	28.6879766	883	779689	29.7153159
764	583696	27.6405499	824	678976	28.7054002	884	781456	29.7321375
765	58.52%	27.6586334	825	680625	28.7228130	885	783225	29.7488496
766	585756	27.6767050	$8: 6$	682276	28.7402157	886	784996	29.7657521
767	$588 \% 89$	27.6947648	827	683929	28.7507677	887	786769	29.7825452
768	589824	27.7128129	828	685584	28.7749891	888	788.44	$\because 9.7993289$
769	591361	27.7308492	829	687241	28.7923601	889	790321	29.8161030
770	582900	27.7488739	$8: 30$	688900	28.8097206	890	792100	29.8328678
771	594441	97.7668<68	831	690561	28.8270706	891	793881	29.8496231
772	595984	27.7849880	832	$69: 2224$	28.8444102	892	795664	29.8663690
773	597529	27.8020775	833	693889	28.8617394	893	797449	29.8831056
774	599076	27.8208555	834	695556	28.8790582	894	799236	29.8998328
775	600625	27.8388218	835	697225	28.8963666	895	801025	29.9165506
776	60:176	27.8567766	833	698896	28.91:36646	896	802816	29.9332591
777	603729	27.8747197	837	700569	28.9309523	897	804609	29.9499583
778	605284	27.8926514	838	702244	28.9482297	898	806404	29.9666481
1.779	606841	27.9105715	839	703921	28.9654967	899	$808: 201$	29.9833687
- 780	608400	27.9284801	840	705600	28.9827535	900	810000	30.0000000

No.	Squar	Sqre. root.	No.	Square.	Sqre. root.	No.	Square.	Sqre. root.
1081	1168561	32.8785644	1141	1301881	33.7786915	1201	1442401	34.6554469
1082	1170724	32.8937684	114:	1304614	33.7934905	1202	1444804	34.6698716
1083	1172889	32.9089653	1143	1306449	$33.808 \cdot 2830$	1203	1447209	34.6842904
1084	1175056	32.9241553	1144	13087:36	33.8230691	1204	1449616	34.6987031
1085	1177225	3:.939338\%	1145	1311025	33.8378486	1205	1452025	34.7131099
1086	1179396	32.9545141	1146	1313316	33.8526 .18	1206	1454436	34.7275107
1087	1181569	32.9696830	1147	1315609	33.8673884	1207	1456849	34.7419055
1088	1183744	32.9848450	1148	1317904	33.8821487	1208	1459264	34.7562944
1089	1185921	33.0000000	1149	1320201	33.8969025	1209	1461681	34.7706773
1090	1188100	33.0151480	1150	1322500	33.9116499	1210	1464100	34.7850543
1091	1190281	33.0:30:8891	1151	1324801	33.926:3909	1211	1466521	34.7994253
1092	1192464	33.0454233	1152	1327104	33.9411255	1212	1468944	34.8137904
1093	1191649	33,0605505	1153	$13: 9409$	33.9558537	1213	1471369	34.8281495
1094	1196836	33.0756708	1154	1331716	33.9705755	1214	1473796	34.8425028
1095	1199025	33.0907842	1155	13334025	$33.9-5: 910$	1215	14762.5	34.8568501
1096	1201216	$33105-907$	1156	13:363336	34.0000000	$1 \because 16$	1478656	34.8711915
1097	1203409	$33.1 \cdot 09903$	1157	1338649	34.0147027	1217	1481089	34.8855271
1098	1205604	33.1360830	1158	1340964	34.0293990	1218	1483594	34.8998567
1099	1207<01	33.1511689	1159	134:3281	34.0440890	1219	1485961	34.9141805
1100	1210000	33.1662479	1160	1345600	34.0587727	1220	1488400	34.9284984
1101	1212201	33.1813200	1161	1347921	34.0734501	1221	1490841	34.9428984
1102	1214404	$33.1963-53$	1162	1350244	$34.0881 \odot 11$	1222	1493284	34.9428104
1103	1216609	33.2114438	1163	$135: 569$	34.1027858	1223	1495729	34.9571166
1104	1218816	33.2266955	1164	1354896	34.1174442	1224	1498176	34.9714169
1105	1221025	33.2415403	1165	1357225	34.1320963	1225	1500625	34.9857114
1106	1223\%36	33.2565783	1166	1359556	$34.146 \% 492$	1226	1503076	35.0000000
1107	1225449	33.2716095	1167	1361889	34.1613817	1227	$15055 \% 9$	35.0142828
1108	1ン2\%664	3:3.2866339	1168	1364224	34.1760150	$1 ? 28$	1507984	35.02 ± 5598
1109	1229881	33.3016616	1169	1366561	$34.19064 \div 0$	1229	1510441	35.0498309
1110	1232100	$33.31666 \% 5$	1170	1368900	34.2052627	1230	$151 \because 900$	35.0570963
1111	12:34321	33.3316666	1171	1:31241	$34.8 .2987 \% 3$	1231	1515:361	35.0713558
1112	1236544	33.3466640	1172	1373584	34.2344855	1232	15178\%4	35.0856096
1113	1238769	33.3616516	1173	1:359\%9	34.2490875	1233	1520289	35.0998575
1114	1240996	33.376635	1174	1378.276	34.2636834	1234	1529756	35.1140997
1115	124322.	33.39161:7	1175	13806:5	34.2782730	1235	1525225	35.1283361
1116	1245456	33.40ti586\%	1176	1382976	34.2928564	1236	15:2696	35.1425568
1117	1247689	33.4:15499	1177	1385329	34.3074336	1237	1530169	35.1567917
1118	1249924	33.4365070	1178	1387684	34.32:0046	$1 \div 38$	15:3644	35.1710108
1119	1252161	33.4514573	1179	1390041	34.3365694	1239	1535121	$35.185 \% 242$
$11: 0$	1254400	33.4664011	11<0	1392400	34.3511281	1240	1537600	35.1994318
1121	1256641	$33.49133-1$	1181	1394761	34.3656805	1241	1540081	35.2136337
112:	12588-4	33.4962634	1182	1397124	$34.380 \cdot 268$	1242	1542564	35.2278999
1193	1261129	3:3,5111*21	1183	1399489	34.3947670	1243	1545049	35.2420204
1124	126:376	$33.5 \div 61092$	1184	1401856	34.4093011	1244	1547536	35.2561501
1125	1265625	33.5410196	1185	1404225	34.4938289	$1: 45$	1550025	35.2703842
1126	$126787{ }^{\circ}$	33.5559234	1186	1406596	34.438:3507	1246	1552516	35.2845575
1127	1270129	3:3.:\% 08.06	1187	140ء969	34.4528663	1247	1555009	35.2987252
1128	$1 \cdot 72384$	33.5857112	I188	1411344	34.4673759	1248	1557509	35.3128872
$11: 9$	1274641	3:3.6005952	1189	1413721	34.4818793	1249	1550001	35.3\%70435
$11: 30$	1276900	33.6154726	1190	1416100	34.4963766	1250	1568500	35.3411941
1131	1279161	23.6303434	1191	1418481	34.5108678	12.51	1565001	35.3553391
113:	1281424	3:3.6452077	1192	1420864	34.5253530	1252	1567504	35.3694784
113:3	$1 \cdot 283689$	3:3,660065\%	1193	$14 \geq 3249$	34.5398321	1253	1570009	35.38:36120
1134	12859.6	33.6749165	1194	1425636	34.5543051	1254	1572516	35.3977400
1135	1288.225	33.6897610	1195	1428025	34.5687720	125.5	15 5025	35.41186.4
1136	1290496	33.7045991	1196	1430416	34.58323:9	1256	1577536	35.4259792
1137	1292769	3: 3194306	1197	14:32809	34.5976879	1257	1580049	35.4400903
1138	1295044	33.7310556	1198	1435204	34.6121366	1258	1582564	35.4541958
1139	1297:321	33.7190741	1199	1437601	34.6265\%94	1259	1585081	35.4686957
1140	1299600	33.7638860	1200	1440000	34.6410162	1260	1587600	35.4823900

No.	Square.	Sqre. root.	No.	Square.	Sqre, root.	No.	Square.	Sqre. root.
1441	2076481	37.9605058	1495	2235025	38.6652299	1548	2396304	39.3446311
1442	2079364	37.9736751	1496	2238016	38.6781593	1549	2349401	39.3573:373
1443	2082249	37.9868938	1497	2:41009	38.6910843	1550	2402500	39.3700394
1444	2085136	38.0000000	1498	2244004	38.7040050	15.1	2405601	39.:3827373
1445	2088025	38.0131556	1499	2247001	38.7169214	1552	2408704	39.395431\%
1446	2090915	38.0 -63067	1500	2250000	$3 \times .72983335$	15.3	2411809	39.4081210
1447	209:3809	3б.0394.3.	1501	2253001	38.7427412	1554	2414916	39.4208067
1448	2096704	38.05.2595:	150	2.6604	38.7 .56447	15.5	2418025	39.433480%
1449	2099ti01	38.0657326	1503	-2.89009	38.76-5.439	1556	24:21136	39.4461658
1450	2102500	38.07886.5	1504	2262016	: 8.70143×9	1557	2424249	39.4588393
1451	2105401	38.0919939	1505	2 20 O\% 5	$3 \times .7943294$	1558	2423364	39.4715087
1452	2108304	38.1051178	1506	22tis034	38. 00321 L	1559	24304×1	39.4841740
1453	2111209	38.1183371	1507	2271049	38.8200978	1560	243:3600	39.4968:303
1454	2114116	38.1313519	1508	$\because 274064$	38.8:399757	1561	2436721	$39.50949 \% 5$
1455	2117025	38.14446\%	1509	¢2\% 7081	38.545 .2491	1.65	2439844	$39.5 \div 214 \% 7$
1456	2119936	38.1525681	1510	22-0100	35.85-7184	1563	2442969	39.5347948
1457	21×2849	38.1706693	1511	2280.1:1	38.87150 .4	1564	2446096	39.5474399
1458	2125764	38.1837665	1.12	2286144	$3 \times .88444 \%$	1565	$2449 \% 2$	39.5600809
1459	2128ti34	38.1968.8.)	1513	~. 89169	38.8973006	1566	24523.6	39.5727179
1460	2131600	38.2099463	1514	$22+2196$	$3 \times .9101 \div 29$	1567	2455489	39.5 ± 53508
1461	$21345 \% 1$	38.2220297	1515	2295.25	3<.9230009	1568	$\because 45 \times 6 \cdot 4$	39.5979797
1462	2137444	38.2361085	1516	229-256	38.9358847	1569	2461761	39.6106046
1463	2140369	$38.24918 \cdot 9$	1517	2301:-9	38.9486×41	1520	2464900	39.6232255
1464	2143296	38.262 5.29	$151 \times$	$\because 304334$	38.961 .194	1571	246*041	39.6358424
1465	$2146 \div 25$	38.2753184	1519	2307361	38.9243505	157\%	2451184	39.648450%
1466	2149156	38.2×83294	1520	2310400	38.9x.1754	1573	2474319	39.6610640
1467	215:089	38.3014360	$15 \% 1$	$2: 313441$	39.0000000	1.74	2477475	39.67366 -s
1468	2155024	38.3144821	$15: 2$	-316184	39.012×184	157.	2400625	:39.686: 96
1469	2157961	38.3275358	1523	2319529	39026326	1576	248:3726	$39.198-665$
1470	2160900	38.3405790	$15: 4$	2322506	39.0.88426	15%	2486999	39.7114593
1471	2163841	38.3536178	15\%	-3256\%5	39.05124×3	15.8	2490084	$39.724(4>1$
1472	2166784	$38.36665 \% 2$	1526	232-626	39.0644499	1599	249:3241	39.7363329
1473	2169729	38.37968\%1	$15: 7$	2331729	39.0768173	1580	$\because 496406$	39.7492138
1474	2172676	38.39.27076	1528	2:334784	39.0-96446	15×1	2499561	39.7612907
1475	2175625	38.4057287	$15 \cdot 29$	23:37841	39.1024296	158.	250.2724	39.7543636
1476	2178576	38.4187454	$15: 30$	23440900	$39.115: 144$	1583	25058<9	39.7669:35
1477	2181529	38.431757\%	1531	23439661	39.1279951	1584	2509056	39.7994976
1478	2184484	38.4447656	1532	$23470 \cdot 1$	39.1417716	15-5	-51.22:5	$39.81005 \sim 5$
1479	2187441	38.4577691	1533	23500e.	39.1535439	1586	2515396	$39 . x-41155$
1480	2190400	38.4707681	1534	2353156	391663120	15×7	251~569	39.83i6646
1481	2193361	38.4837627	1535	$\cdots 35625$	39.1790260	1585	$\bigcirc 521844$	39.8497177
1482	2196324	38.4967530	1536	$\cdots 354296$	$9191 \sim 359$	1589	25.249 .21	$39.36 \div 26 \%$ -
1483	2199289	38.5097390	1537	2:362369	39.2045915	1590	25こ200	39.5748040
1484	2202256	38.5227206	1538	2365444	39.2173431	1591	-531281	39.20i3413
1485	2205225	38.5356977	$15: 39$	23368:21	39. 2300905	159.	-5:34464	39.8995747
1486	2208196	38.5486705	1540	2371600	$39.24 \cdot 2 \times 3: 37$	1593	-5:37649	$39.91: 4041$
1487	2211169	38.5616389	1541	2374681	39.255 .728	1594	$2540 \times 3 \mathrm{i}$	39.9249295
1488	2214144	38.5\%460:30	1542	23:7764	39.2683078	1595	2544025	39.9374511
1489	2217121	$38.58756 \cdot 7$	1543	23-0849	39.2810387	1.296	-547:16	$39.749 \sim 6 \times 7$
1490	2220100	38.6005181	1544	2:883936	39.293765.4	1597	$\stackrel{550409}{ }$	39.96:4 -24
1491	22.23081	38.6134691	1545	2387025	$39.3064-80$	1598	255:3604	39.97499\%2
1492	2226004	38.6264158	1546	$2: 390116$	$39.319 \cdot 2065$	1599	2556341	$39.9 \times 749<0$
1493	2229049	38.6393582	1547	2393209	$39: 3319208$	1600	2560000	40.0000000
1494	2232036	38.6522962						

AREAS OF CIRCLES, FROM 立 TO 150.

96304
9940
02500
05601
18704
11809
14916
18025
24249
23364
$30+81$
36721
39844
16096
$19+25$
5489
$+6: 4$
1761
4900
4184
747
3 3ั6
6929
0084
3241
6406
9561
2724
9056
225
3396
$\begin{array}{r}569 \\ 1744 \\ \hline\end{array}$
19.21
-100
$1 \because 81$
4164
649
036

.749~6-7
$39.9624 * 24$
39.97499\%
$39.9<749<0$
40.0000000
[Advancing by an Eighth.]

Diam.	Area.	Diam.	Area.	Diam.	Area.	Diam.	Area.	Diam	Area.
$\frac{1}{64}$. 00019		12.5664	10.	78.54	16.	201.062		3=0.134
${ }^{\frac{1}{32} 2}$. 0	. 18	13.364	.1/8	80.5157	1/8	204.216	-18	384.465
		. $1 / 4$	14.1862	. $1 / 4$	82.5161	. 34	207.394	. 14	388.822
16	. 003	. 18	${ }^{15.0331} 1$. 18	84.5409 86.59	. 18	210.597	.	393.203 397.608
$\frac{1}{8}$. 01227	. 5 \%	16.8001	. 5 \%	${ }_{88.6643}$. 5	217.073	5	40\%.038
$\frac{3}{16}$.02761	. 34	17.7205	. 3	90.7628	3 3	220.353	${ }_{3}$	406.493
$\frac{1}{4}$. 04	. $7 / 8$	18.6655	. 718	92.8858	7/8	$2: 3.654$		440.972
			19.635	11.	95.0334		226.981		416.477
$\frac{5}{16}$. 0767	. 18	${ }^{20.629}$.1/8	${ }^{97.2055}$	18	230.33 233.705 2.10	1	${ }_{4}^{420.004}$
${ }^{8}$. 11045	. 34	22.6907	. 34	101.6234	. 34	237.104	3/8	429.135
$\frac{7}{16}$. 15033	.12	23.2583	.192	103.8691	1\%	240.528		433.731
$\frac{1}{2}$. 19635	. 5 \%	24.8505	. $5 / 8$	106.1394	. 58	243.977		438.363
		. 34	25.9672	. 74	108.4343	. 34	247.45	. 74	443.014 44.699
$\frac{9}{16}$.2485	.7/3	27.10¢5	.78	110.7536	$18^{.7 / 8}$	250.947 254.467	.$^{.4} 8$	447.699 452.39
${ }^{5}$. 30679	${ }^{6.1 / 8}$	28.2744	.1/8	113.098	18.18	254.464 258.016	. 18	457.115
16	. 37122	.184	30.6796	.1/4	117.859	. 18	261.587	. $1 / 4$	461.864
$\frac{3}{4}$. 44178	.3/3	31.9192	$3 / 8$	120.276	. $3 / 8$	2655.182	. 3	466.638
	. 51848	.1/2	33.1831	.1/2	122.718	1/2	268.803	2	471.436
$1{ }^{1}$. 3	34.47×47	. 38	125.184	38	272.447		476.259 481.106
$\frac{7}{8}$.6013:	. $7 / 8$	$37.1 \% 24$. $7 / 4$	130.192	$7 / 8$	299.811	. 78	485.978
15	. $690 \% 9$		$38.4>46$	13.	132.733	19.8	283.529	25.	490.875
1.	. 78.54	.1/8	39.8713	.1/8	135.297	. 18	287.27%	$1 / 8$	495.796
.1/8	. 99402	. 14	41.28\%5	14	137.886	$1 / 4$	291.039	. 314	500.741
$\cdot \frac{1}{3}$	1.2271	.3/8	42.7184	3/8	140.5	. 13	294.831	. 18	50.711
	1.4848	. 12	44.1787 45.6636	$1 / 2$	143.139 145.802	. $5 / 8$	298.648	. 1	$515.7 \% 5$
. 5	2.0739	. $3 / 4$	47.173	$3 / 4$	148.489	. 38	306.355	. 3	520.769
-44	2.4052	. $7 / 8$	48.707	.7/8	151.201	7/8	310.245	.7/8	525.837
. 8	2.7611	8.	50.2656	14.	153.938	20.	314.16	26.	530.93
2.	3.1416	.1/8	51.8486	1/8	156.699	1/8	318.099	.18	536.047
. 18	3.5465	. $1 / 2$,	53.4562	4	159.485	14	3×2.063	. 14	541.189
$\cdot{ }^{4}$	3.976	. 313	55.0885	. $3 / 8$	16.2995	. 18	326.051	. 18	546.356
.3/8	4.430% 4.9087	. ${ }^{2}$	56.7451	.1/2,	${ }_{165.13}^{1689}$. 5	330.064	. 12	${ }_{5}^{501.547}$
-1/2	5.4159	. 3	98.4264 60.1321	. $3 / 4$	167.989 170.873	. $3 / 8$	334.101 338.163	\% 8	508.002
. 34	5.9395	. $7 / 8$	61.8625	7/8	173.782	. $7 / 8$	342.25		567.267
. $7 / 8$	6.4918	9.	63.6174	15.	176.715	21.	346.361	27.	572.557
3.	7.0686	$1 / 8$	65. 3968	.1/8	179.672	.1/8	350.497	1/8	577.87
.1/8	7.6699	$1 / 4$	67.2007	\% 4	182. 654	$1 / 4$	354.657		583.208
.	8.2957	. 38	69.0293	. $3 / 8$	185.661	. $3 / 8$	358.841	. 318	588.571
.38	8.9462	. $1 / 2$	70.8823	.1/2	188.692	. 12	363.051	. $51 / 2$	${ }_{5} 93.95 \mathrm{sm}$
. $51 / 2$	9.6211 10.3206	. 38	72.7599 74.662	. 38	191.748	. 38	367.284 371.543	38	${ }_{6} 99.376$
. 38	10.3206 11.0446	. $7 / 7$	74.662 76.5887	. 74	194.828 197.933	. $7 / 4$	${ }^{371.043}$	$7 / 4$ 78	610.268
. $7 / 3$	11.793\%								

TABLE.-(Continued.)

Diam.	Area.								
28.	615.244	35.1	962.115 $96 \% 999$		1385.44 1393.7	1	1885,74 1895 180.37	56.	2463.01 2474.02
. 18	621.263 626.790	.1/8	965.999 975.908	.1/8	${ }_{1}^{1393.7}$. $1 / 4$	${ }_{1905.03}^{1895.37}$. $1 / 8$	2474.02 2455
. 31	632.:357	. 38	$98 \% .842$.3/8	1410.29	\% 3	1914.7	. $3 / 8$	2496.11
18	637.941	.19	989.8	.1\%	1418.63	.12	1924.42	12	- 2507.19
. $\%$	643.519	. 5	996.7-3	. $\%$	1426.98	. $5 / 8$	1934.15	. $3 / 8$	2418.3
	649.1×2	. 14	1003.79	. 34	1435.36	\% 7	1943.91 1953.39	. $7 / 4$	2.99 .43
.7/8	654.839	. $7 / 8$	1010.8%	..$^{1 / 8}$	1443.71	7/8	1953.69		2540.54
	660.521	36.	1017.878		14.52 .21	50.	1963.5		${ }^{2} 5551.76$
.1/3	666.297	.18	1034.959	. 18	1460.65	.188	1973.33 1983.18 1983	.1/8	${ }_{25}^{256.97}$
	671.95%	$\cdot \frac{1}{4}$	1032.065	. 38	1469.13 1477.63	. $3 / 4$	${ }_{1993.05}^{1983.18}$	$3{ }^{1}$	${ }_{2585.45}$
. 13	677.714 6×3.494	. 1.3	10.9.9.3.3	.18	1456.17		2002.97	.182	${ }_{2} 596.73$
.2	6-39.29\%	. 5	105.3.5:8	\% $\%$	1494.72	. $\%$	2612.89	. $\%$	2608.83
. 38	695.12\%	. 3	106i0.732	.384	1503.3	. 3	2022.85	.3/4	2619.36
. $7 / 8$	700.981	. $7 / 8$	1067.96	\%	1511.9	7/8	203\%.8\%	.7/8	2630.71
30.	706.86	3.	1075.213	44.	15:20.53		2042.82		2642.09
1/8	712.76:	.1/8	10*2. 49	.18	$15 \% 9.18$	$1 / 8$	206. 9	. 18	${ }_{2654}^{2653.49}$
14	718.69	. 3	1089.993 1097 1078	. 38	1537.86	. 38	$20 \% 2.98$	8	${ }_{2676.36}$
13	${ }_{730.611}$. 18	1097.148 1104.469		15.8	. $1 / 8$	2083.08	\%	2687.
8	736.619	. 58	1111.844	. $\%$	1564.03	. 5	-093.2	5/8	2699.33
	74: 644	. 3	1119.244	. 34	$15 \% 2.81$	3	2103.35	4	2710.86
. $7 / 8$	748.694	. $7 / 3$	1126.66\%	.7/8	1581.61	7/8	2113.52		2722.4
31.	75.766	38.	1134.11*	45.	1590.43	52.	2123.72		2733.98
.1/8	760.868	.1/8	1141.591	.1/8	1599.28	.18	213394	18	2745.57
1	766.992		1149.0×9	${ }_{3}^{1 / 4}$	16018.15	$1 / 4$	$\because 144.19$	4	${ }_{276884}^{2757.2}$
.1\%	779.313	8	1164.159	1	1625.97	18	2164.76		2780.51
. 5	785.51	. 5	1171.731	. $\%$	16:3.92	5/8	2175.08		2792.21
. 3	791.732	. 3	1179.3:27	, 4	164:	3	2185.42		2803.93
.7/3	797.978	. 78	1186.948		165\%.88		2195.79	8	2815.67
3%.	804.545	39.	1194.593	46.	1661.91		2206.19		2827.44
. 18	810.545 816.865	.188	120.2263 1209.95%	$1 / 8$	1620.95 1600.01	$1 / 4$	${ }_{2} 28.26 .05$		${ }_{2851.05}^{2839}$
	8833.209	. 3 \%	1217.677	. 38	16is9.1	. 38	20:37.52	8	2862.89
18	8\%9.578	. 1%	1025.4	1/2	169-.23	1%	$2: 48.01$		2874.76
5	835.972	. $\%$	1s33.18x	5/8	1707.33	5	2258.53	5/8	2×86.65
3	842.390	. 3	1240.981	$3 / 4$	1716.54		2269.07	3	-898. 57
7/8	848.83 .3	. $7 / 8$	1248.798	.7/8	1725.73	.7/8	2899.64		2910.51
33.	85.301	40.	12566.64	47.	173.4 .95	54.	$\because 290.23$		2922.47
.1/8	861.792	. 18	1264.5	.1/8	1244.18	$1 / 8$	2300.84		2934.46
. $1 / 4$	868.309	. 3	1272.39	14	1753.45	4	2311.48		2946.48
3/8	874.80	. 13	$12>0.31$	8	17×2.73	8	$\bigcirc 3.208$	1	2958.52
	-820.605	. 5	1296.21	5%	$17 \% 1.39$	8	2343.55	\%	2982.67
	894.62	3	1:304.2	\%	1790.76	3	2354.28	4	2994.78
. $7 / 8$	901.259	. 78	1312.21	7/8	1800.11	7/8	2365.05	7/8	3006.92
34.	907.9\%2	41.	13:0.26	48.	1809.56	55.	2.375. 83		3019.08
.18	914.61	. 18	13:28.32	.1/8	1818.99	$1 / 8$	2.386.65	18	3031.26
- 3	921.323	. 4	1333.4	3	182-.46	3	${ }_{-2415.34}$	34	$30+3.47$
. $1 / 2$	938.822	. 18	135.2.65	.18	1547.45	1	2419×2	2	3067.97
	941.609	. $\%$	1360.81	5	18.56. 99	5\%	2430.18		3080.25
	948.419	. 3	1369.	. $3 / 4$	1866.55	3	2441.07	4	309..56
.7/8	955. 255	.7/8	1377.21	.7/8	1876.13	.7/8	$245 \% .03$	\%	3104.89

TABLE.-(Continued.)

Diam.	Area.
56.	2463.01
. $1 / 8$	2474.02
. $1 / 4$	2485.05
. $3 / 8$	2496.11
.1/2	-507.19
. 5 \%	2418.3
. $3 / 4$	$2 \cdot .99 .43$
.7/8	2540.54
57.	2551.76
.1/8	2562.97
.1/4	2574.2
.3/8	2585.45
.1/2	2596.73
. $5 / 8$	2608.83
$.3 / 4$	2619.36
.7/8	2630.71
58.	2642.09
.1/8	2653.49
.1/4	2664.91
. 38	2676.36
. $1 / 2$	2687. ,
. 58	2699.33
. $3 / 4$	2710.86
.7/8	2722.4
59.	2733.98
.1/8	2745.57
. $1 / 4$	2757.2
. 38	2768.84
. $1 / 2$	2780.51
. 58	2792.21
. $3 / 4$	2803.93
. $7 / 8$	2815.67
30.	2827.44
.1/8	28839.23
. $1 / 4$	2851.05
. 38	2862.89
.1/2,	2874.76
. $5 / 8$	2×86.65
. $3 / 4$	$\bullet 89 \times .57$
7/8	2910.51
i1.	2922.47
.1/8	29:34.46
. $1 / 4$	9946.48
. 38	2958.59
. $1 / 2$	2970.58
. $5 / 8$	2982.67
. $3 / 4$	2994.78
. $7 / 8$	3006.92
2.	3019.08
.1/8	3031.26
.1/4	3043.47
. 38	3055.71
. $1 / 2$	3067.97
. $5 / 8$	3080.25
3/4	$309 \cdot 2.56$
.7/8	3104.89

Diam.	Area.								
63.	3117.25	80.	$3 \times 4 \times .46$		4656.64	84.	5541.78	91.	$\begin{aligned} & 6503.9 \\ & 6521.78 \end{aligned}$
	3129.63		386:2.23	77. ${ }^{\text {P/8 }}$	4671.77	$\begin{aligned} & 1 / 8 \\ & .1 / 4 \end{aligned}$	55.88 .295574.82	$.1 / 8$	
	3142.04		3876.		4686.92				6539.68
	3154.47		3×89.8		4702.1	,	5591.37	$.3 / 8$	6557.61
	3166.93		:3903.63		4717.31		5607.95		6575.56
	3179.41		3917.49	.	4732.54		5624.56	$.5 / 2$	6593.54
	3191.91		3931.:7	. $3 / 4$	4747.79	. $3 / 4$	5641.18	.3/4	6611.55
	3\%04.44		3945.:27	. $7 / 8$	4763.07	8	5657.84		6629.57
	$3: 17$.	71.	3959.2	78.	47.8 .37		5674.51	$92^{.7 / 8}$	$\begin{aligned} & 6647.63 \\ & 6665.7 \end{aligned}$
	32e9.5\%	18	3973.15	1/8	4793.7	.1/8	$5691 . \times 2$	$92 .$	
	$324 \% .18$	1	3957.13	1			5707.94	. $1 / 4$	6683.8
	325481	. $3 / 8$	4001.13	. 38			5724.69	. 318	6701.93
	32667.46	12	4015.16	. 112	45:39.83		5741.47	$.1 \%$	6720.08
	$3: 20.1$ -		41029.21		4855.26	. 5	5758.27		6738.256756.45
	329%, 4		4043.29	星	4870.71		575.1	$.5 / 8$	
	3350.56	7/8	40.7 .39	.7/8	4886.18		5791.94	. $7 / 4$	6756.45 6774.68
	3.119 .31	i.	$4071 . .1$	79.	$\begin{aligned} & 4901.68 \\ & 4917.21 \end{aligned}$	86.	5808.80$58 \% 5.72$	93.	6792.92
	33331.09	. $1 / 8$	40-5.66	$1 / 8$.1/8		$.1 / 8$	6811.2
	3343		4099.83	\% 4	4933.75$494 \times .33$. $1 / 4$	5842.64		6847.82
	:33.6.71	. 18	4114.04	. $3 / 8$			5 559.59	$\begin{array}{r} .34 \\ .388 \end{array}$	
	3369.56	. 1.2	4128.26	.1/2	4948.33 4963.9:	. 5	6.56	. $1 / 2$	6866.16
	:33 2.43	5	4143.51	. 5 /8	4979.55	. $5 / 8$	5893.55	. $5 / 8$	6884.53
	:3395.33	4	4156.78		4995.19		5910.58	. $3 / 7 / 8$	690..93
	3808.26	2. ${ }^{.7 / 8}$	4171.08	\checkmark	5010.875026.56	$8{ }^{.7 / 8}$	59:37.6.		6921.35 6939.79
66.	3121.2	73.	4185.4	80.		87.	5944.69	94.88	6958.26
	3434.17	.1/8	4199.74	18	5042.38	. $1 / 8$	5961. ${ }^{\text {a }}$.1/8	
	3447.17	,	$4: 14.11$	1.	5058.025073.79		5978.9		6976.76
	3460.19	$3 / 8$	42.28 .51	- 18		. 38	5996.05		
	3473.24	1	4:24:.9:3	$1 / 2$	$\begin{aligned} & 5073.79 \\ & 5089.59 \end{aligned}$. $5 / 8$	6013.22	$\begin{aligned} & 3 / 8 \\ & 1 \% \end{aligned}$	6445.28 $7013.8:$
	3486.3	.5/8	4.65 .38	. 8	5105.41		60.30 .41	$.5 / 2$	703.2.39
	3499.4	. 7	$4.31 .-4$		5121.255137.12	$\begin{array}{r} 3 / 4 \\ 7 / 8 \end{array}$	$604: 63$. $3 / 7 / 8$	$\begin{aligned} & 7050.98 \\ & 7069.59 \end{aligned}$
	351 3.52	.7/8	$4: 286.33$. $7 / 8$			6064.87608.14		
	35.266	84.	4300.85	81	5137.10 $515: 3.01$ -163.62	$\begin{array}{r} 88.8 \\ .1 / 8 \end{array}$		95.	$\begin{aligned} & 7069.59 \\ & 7086.24 \end{aligned}$
	35.38 .83	.1/8	4315.3.1	.1/8	5168.93		6099.43	.1/8	7106.9
	35.2.0.	. $1 / 4$	4329.96	\%	51e4.87$500 . c 3$	$.1 / 8$	6116.746134.08	. 34	7125.59
	3565. 24	. 8	4344.52	. $3 / 8$		$.3 / 8$			7163.31
	3578.48	1	4359.17	$1 / 2$	5216.50	$1 / \frac{1}{2}$	6151.45	. 18	
	3591.74	,	4:373.81		$\begin{aligned} & 5232.84 \\ & 524-86 \end{aligned}$		616×8.84		7181.81
	3605.03	4	4388.47			$.5 / 8$		$.3 / 8$$3 / 4$$7 / 8$	7×00.6
	3618.35	.7/8	4403.16	\%	5264.94	$89^{.7 / 8}$	6203.69		7219.41
68.	3631.69	75.	4417.87	8%.	$\begin{aligned} & 52 \times 1.0: \\ & 5297.14 \end{aligned}$		60.1 .15	96.	72.38 .25
	3645.05	-18	443\%.16	. $1 / 8$		89. ${ }^{1 / 8}$	$6 \% 3.64$.1/4	$\begin{aligned} & 725 \% .11 \\ & 7.2 \pi .99 \end{aligned}$
	36.88 .44		4447.37	,	$\begin{aligned} & 5: 313: 23 \\ & 53: 99.44 \end{aligned}$. $1 / 4$	6\%56. 1.5		
	3671.85	. 31	4462.16	$3 / 8$			$6 \cdot 73.63$. $3 / 8$	94.91
	3685.29	.1/2	4476.98	1	5345.63	$1 /$	6291.25		7313.84
	$3{ }^{3} 98.76$		4491.81		5366.84	5	6308.84		$733 \cdot 8$
	3 312. 24		4506.67	4	5375.08	. 3	$63: 36.44$		-3.1.79
	$3 \div 25.75$	8	4521.56	7/8	$5: 394.34$. 78	6344.08	47^{78}	7370.79
69.	3739.29	76.	4.336 .47	8\%.	5410.18	90.	6361.74		788.9 .83
	37-2. 55		45.1 .4	.1/8	54.6 .93	.1/8	6339.42		7408.89
	3766.43		4566.36	.1/4	044.80	.1/4	6397.13	. $1 / 4$	74.3 .97
	3 380.04		4581.3.)	$3 / 8$	5459.62	$3 / 8$	6414.86	. 38	7417.08
	3793.68		4596.36	1%	54\%6.01	1	$613.6{ }^{\circ}$		7465.31
	3807.34		4611.39		5492.41		64504		7455.36
	$38^{\circ} 1.02$		4626.45		$550 \times .84$		6468.21	3/4	7504.55
.7/8	3834.73	$7 / 8$	4641.53	7/8	5525. 3	.7\%	6486.04	8	75\%3.75

IMAGE EVALUATION TEST TARGET (MT-3)

TABLE-(Continued).-[Advancing by a Quarter and a half.]

Diam.	Area.								
(s). 99. $\begin{gathered} .1 / 8 \\ .1 / 4 \\ .38 \end{gathered}$ $.1 / 2$ 100. \qquad 101. 10%. $\begin{array}{r} 1 / 4 \\ .1 / 2 \\ .3 / 4 \\ 2 . \end{array}$ $.1 / 4$ 103. .3/4 104. $.1 / 4$.12 .3	754:.98		8659.03		10207.06		$1188 \% .32$		$15!74.71$
	7502.24		8.00 .3.		10251.58	.1/4	11930.67	. 1	15284.03
	$75=1.51$		8741.7		10296.79		11979.2	140.	15333.84
	7600.8 7620.15	106.	8783.18	$5_{5.4}$	10341.8 10386.91	124.4	12022.66 12076.31	$141 .{ }^{.1 / 2}$	15503.9 x 15614.03
	7639.5		8866.43	.1/4	1043:.12	124 $1 / 4$	12125.05	14.16	15745.48
	7658.68		8908.2		10477.43		12173.9		15836.8
	7678.28		8450.07		10522.84		$1 \times 2 \mathrm{E}$		15948.58
	7697.71	10%.	899\%.04	116.	10.68.34	125.	12.271 .87	143.	16060.54
	7717.16	. $1 / 4$	9034.11	.1/4	10613.94	. $1 / 2$	1×370.25	.1/2	16173.15
	7736.63		9076.28		10659.64	6	$1 \because 469.01$		16286.05
	7755.13		91 i 8.53		10705.44		12568.17	$145^{.1 / 2}$	163399.34
	7775.66	108.	9160.91	1	10751.34		12662.7\%		16.13.0:3
	7795.2	$1 / 4$	9203.37	$1 / 4$	${ }^{10797.34}$	1/2	12267.66		16627.11
	7×14.78		9245.92		10843.43		12867.99	14	16.741 .59
	7834.38		9088.58		10-86. 68	1/2	$1 \because 968.71$		16856.44
	78.4.		$9: 331.34$	118.	10935.9	12	13069.84		16971.71
	7993.32	.1/4	$9: 374.19$.1/4	$1090^{\circ} .3$	130.2	13171.35	$1 / 2$	17087.36
	7932. 74		9417.14		11028.78	130.	13.238 .26	148.	$17 \cdot 303.4$
	7972.21		9460.19	4	11075.37	1/2	13371.55		17319.83
	8011.87	11	9803.34	119.	11122.06	13	13478.25		17436.67
	8051.58	4	9546.69		11168.83	. 112	13581.33	.1/2	17553.89
	8091.39		9589.93		11215.71	132.	13684.81	150.	17671.5
	8131.3	. 4	96333.37		11262.69	1/2	13758.67	¢	17709.51
	8171.3	111.	9676.91	120.	11309.26	133	13992.94		
	8211.41		9720.73		11356.93	. $1 / 2$	13997.54		
	8251.61		9764.29		11404.2	134.	14102.64		
	¢ 291.91		9805.12	$3 / 4$	11451.57	135.	1420 c. 07		
	8332.31	11	9852.06	121.	11499.04	13	14313.91		
	8372.81		9896.09		11546.61	.1/2	14420.14		
	8413.4		9940.22		11594.27	136.	14526.76		
	8464.09	. 4	9984.45	.3/4	11642.09		14633.76		
	8494.89	113.	10028.77	122.	11689.89	13	14741.17		
	8535.78	.1/4	100:3.2		11737.85	13.\%	1484×96		
	8576.77	. $1 / 2$	10117.72		11785.9%	138.	14957.16		
	8617.85	.3/4	10162.34	.	11834.06		15065.73		

To Compute the Area of a Diameter greater than any in the preceding Table.

Rule - Divide the dimension by two, three, four, etc., if practicable to do so. until it is reduced to a diameter to be found in the table.
Take the tabular area for the diameter, multiply it by the square of the diviser, and the product will give the area required.
Example. - What is the area for a diameter of 1050 ?
$1050 \div 7=150$; tab. area, $150=17671.5$, which $\times 7^{2}=865903.5$. area required.

To Compute the Area of an Integer and a Fraction not given in the Table.

Rule - Double, treble, or quadruple the dimension given, until the fraction is increased to a whole number, or to one of those in the table, as $\frac{1}{6}, \frac{1}{4}$, etc., provided it is practicable to do so.
Tike the area for this diameter; and if it is double of that for which the area is required, take one Eourth of it; if treble, take one 9 th. of it and if quadruple, take one sixteenth of it, etc., etc.

Example -Required the area for a circle of $2 . \frac{3}{16}$ inches.
2. $\frac{3}{16} \times 2=4 \frac{3}{8}$, area for which $=15.0331$, which $\div 4=3,758$ ins.

CIRCUMFERENCES OF CIRCLES, FROM 交 TO 150.

Diam.	Area.
139.	15:74.71
$140^{.1 / 2}$	15284.03
140.	153.93 .84
$141 .{ }^{\frac{1}{2}}$	15503.9x
141.	1.614 .03 15745.47
142.	15836.8
	15948.5%
143.	16060.54
144.8	16173.15 16.26 .05
. $1 / 2$	16:399.34
145.	16.13:.0:3
$14.1 / 2$	16627.11
146.	16741.59
$147^{.1 / 2}$	16856.44
14%.	16971.71
$118^{1 / 2}$	17087.36
148.	$17: 03.4$
149.	17319.83 17436.67
. $1 / 2$	17553.89
.1/2	17709.51

receding Table.

o. until it is reduced
ser, and the product

I in the Table.

on is increased to a :able te do so.
is required, take one of it, etc., etc.

half.]

[Advancing by an Eighth.]

Diam.	Ciscum.	Diam.	Circum.	Diam.	Circum.	Diam.	Circum.	Diam.	Circum.
${ }_{6}^{1}$. 04909		12.5664	10.	31.416	16.	50		69.1152
$\frac{1}{32}$. 09817	$1 / 8$	12.9591	.1/8	31.8087	1/8	50.6583	.1/8	69.5079
${ }^{16}$			13.351s		3.22014	. 14	51.051	. 1	${ }_{7}^{69.90166}$
16	.1963:	. 1	13.745 11.13% 18.2	. 18	${ }_{3}^{3} 2.95065$		51.4437	8	${ }_{70.686}$
	.39:7	. 5	14.52	. $\%$	33.3895		58.29	5	${ }_{71.0787}$
$\frac{3}{16}$. 589	. 3	14.4220	\%	33.772:	$3 / 4$	52.651	$3 / 4$	71.4714
	. 8854	.7/8	15.315 .3	. 8	34.1649	/8	53.014	78	71.8641
4	. 885		15.703	11.	31.5576	17.	53.4072		${ }_{7}^{72.2568}$
$\frac{5}{16}$. 98175	. $1 / 8$	16.1007	.1/8	34.9543	1/8	53.7999	$1 / 8$.72.6495
$\frac{3}{8}$	1.1781		16.4933	1	35.343	$1 / 4$	54.1926	$1 / 4$	73.0422 73.4319
7	1 1744)	18	17.27	18	36.11:84	1	54.978	2	73.8276
		5\%	17.6715		36.5211	8	55.3707	5/8	74.2203
$\frac{1}{2}$	1.0808		$1 \times .0642$	3	36.9138	$3 / 4$	55.7634	$3 / 4$	74.613
$\frac{9}{16}$	1.76715	/8	1*.4569	. $7 / 8$	37.3065	7/8	56.1561	7/8	75.0057
${ }^{8}$	1.96:5		18.8496		37.6992	18.	56.54		75. 9984
16	2.15985	18	19.2423	18	38.0919	18	${ }_{5} 5.934$		76.1838
$\frac{3}{4}$	2.3	8	20.0287	$3 / 8$	38.6773	3	57. 2.269	\%	76.5765
	2.30.	$1 / 2$	$20.4 \div 04$.1/2	39.27	12	58.1196	. 5	76.9692
掊	2.5525\%	5	20.8131	5	39.6627	5	58.5123	. 38	${ }_{77.3619}$
$\frac{7}{6}$	2.7		21.205	34	40.0554	4	58.902	3	${ }^{77.7546}$
	-9	. 78	21.538	8	40.44		59.29	25.	${ }_{78.54} 78.148$
1.	3.1416		21.92	13.	$40.840{ }^{4}$		690.08:31	$1 / 8$	78.9327
.1/8	3.5343		20.3766		41.629		60.47	$1 / 4$	79.3\%54
	3.9:27		23.1693	8	4\%.0189	$3 / 8$	60.86-5	. 38	79.7181
. 3	4.3197	$1 / 2$	$\because 3.562$	1%	42.4116	1.	61.2612	. $1 / 2$	80.1102
	4.71% :	\%	23.9.954	5/8	42.-043	2	61.653 .39	5/8	80.5035
	5.10.1		24.3474	4	43.197	4	62.0466	$3 / 4$	${ }^{80.8962}$
. $3 / 4$	5.49:¢	\% 8	21.7401	. $7 / 8$	43.5897	7/8	62.4393	7/8	${ }_{81.2889}^{81.2816}$
.7/8	5. 9905	8.	25.1328	14.	43.9×24	20.	60.83		${ }_{8}^{81.6816}$
	6.23:\%	1/8	25.525\%	$1 / 8$	44.3751	$1 / 8$	63.3247 6.36174	18	${ }^{81} 8.0743$
	6.67 7.06		${ }_{26.318}^{20.918}$	1/4	44.76	3	63.6174 64.0101	3/8	82.8597
. $3 / 8$	7. 4613	. $1 / 8$	26.7036	8	45.55:32	1/2	64.40:28	. $1 / 2$	83.25\%4
. 11	7.554		27.09653	\%	45. 3459	. 5	64.795	. 5	83.6451
. 5	-2167		27.489	4	46.33> 6	4	63. 1×82	4	84.0378
. 34	8.6:394	. $7 / 8$	27.8817	7/8	46.7313	7/8	65.5809	7/8	84.4330
.7/8	9.03 .21		28.2441	15.	47.124	21.	65. 973		84.8232
	9.424 4		28.6671	.1/8	47.5167	1/8	66.33663 66.759	$1 / 8$	${ }_{85}^{85.2159}$
	9.8125		29.059\%	. 31	47.9094	$1 / 4$	66.259	\% 4	8.9 .6086 86.0013
. $3 /$	10.102 $10.60 \cdot 29$	\% 18	- 9.45%	1/8	$4 \times$ 4\%		671618 62% 14	18	86.394
. $1 / 2$	10.995.6		30\%2:39	5/8	49.0875	5	67.93:11	$5 / 8$	86.786i
. 3 \%	11.3×23	$3 / 4$	30.63096	.3/4	49.4*02	4	68.329x	$3 / 4$	87.1794
. $3 / 4$	11.751	. 78	31.623:3	.7/8	49.57\%	.7/8	68.7225	.7/8	87.5721
.7/8	12.18.36								

TABLE.-(Continued.)

Diam.	Circum.								
$2 x$.	87.964% 88.37%	35	109.986 110.319	4* 1	131.947 132	49.1	1.3 .938 154.331	56.	175.93 176.324
	80.3 .7. 88.2002		110.399 110.741	18	132.48	$1 / 8$	15.7 .724	. $1 / 8$	176.715
. 318	89.1429	. $3 / 8$	111.134	. $3 / 8$	133.125	. $3 / 8$	155.117	. $3 / 8$	177.108
2	89.5356	. $1 / 2$	$111.5 \div 8$. $1 / 2$	1:3.518	1/2	155.509	.1/2	177.5
	89.9283	. 5 /	111.919	5\%	133.911	. 5 /	155.902	. $5 / 8$	177.893
	$90.3 \% 1$. $3 / 4$	112.312	4	134.303	3/4	156.295	. $3 / 4$	178.286
	90.7137	.7/8	11.2.705	7/8	134.696	. $7 / 8$	156.687	. $7 / 8$	178.679
	91.1064	36	113.09\%	43.	1:5.089	50.	15708	57.	179.071
.1/8	91.4991	.1/8	113.49	1/8	135.4-1	.1/8	157.473	.1/8	179.464
/4	91.n91×	$1 / 4$	113.0x:3	$1 / 4$	135. 874	. $1 / 4$	157.865	. $1 / 4$	179.857
$3 / 8$	92. $2 \times 4 \mathrm{~s}$	$3 / 8$	114.276	$3 / 8$	1:36.:367	. 38	158.258	. $3 / 8$	180.249
.1/2	92.6:2.2	1/2	$114.66{ }^{-}$	1\%	$1: 36.66$	1/2	15x.651	. $1 / 2$	180.642
. $5 / 8$	9:3.0699	5/8	11..061	$5 / 8$	137.05\%	5/8	159.044	. $5 / 3$	181.035
	93.4626	$3 / 4$	11.5.454	$3 / 4$	137.445	$3 / 4$	159.436	. $3 / 4$	181.427
8	93.8553	7/8	11.1846	7/8	132.83 x	7/8	159.82:3	. $7 / 8$	181.82
30	94.248	37.	$116 \div 39$	44.	13×2.3	51.	160.2 ± 2	58.	18.213
/8	94.6407	1/8	116.63)	.1/8	138.62:3	.1/8	160.614	.1/8	18.2606
.1/4	95.0334	1/4	117.0\% 5	$1 / 4$	139.016	. $1 / 4$	161.007	. $1 / 4$	$18: .998$
. $3 / 8$	$95.4 \geq 61$	$3 / 8$	112.417	$3 / 8$	139.408	. $3 / 8$	161.4	. $3 / 8$	183.391
. $1 / 2$	95.8188	1/2	117.81	.1/2	139.801	.1/2	161.79\%	. $1 / 2$	183.784
	96.2115	5/8	11-.203	5/8	140.194	.5/8	162.185	. 5 /8	1×4.176
	$96.604 \times$	$3 / 4$	$11 \times .595$	4	140.507	3	162.578	$3 / 4$	184.569
8	96.9969	7/8	11ヶ.988	.7/8	140.979	7/8	16:.971	.7/8	184.962
3	97.3896	18	119 301	45.	141.37:	52.	16:3.36:3	59.	155.354
	$97.78 \% 3$	8	119.77	1/8	141.765	.1/8	163.756	.1/8	185.747
	98.17\%	.1/4	120.166	1/4	142.157	,	164.149	. $1 / 4$	186.14
	98.56\%\%	. 318	1\%0.659	18	14..5\%	3/8	164.541	. $3 / 8$	186.53:3
	98.9604	1/2	$1 \because 0.95$	12	$1+3.94 .3$.1/2	164.934	.1/2	186.925
	99.3531		121.314	5	14:3.335	. $5 / 8$	165.327	. $5 / 8$	1.c7.318
	99.745 x		$1 \because 1.737$	$3 / 4$	143.7.28	. $3 / 4$	165.719	. $3 / 4$	187.311
-	100.1385	7/8	123.i3	\% 8	$144.1 \because 1$	7/8	166.11	. $7 / 8$	188. 103
32.	100.5312	39.	12..52\%	46.	144.514	53.3	166.505	60.	18 \%.496
	100.9239	.1/8	$1 \because 2.915$.1/8	144.906	1/8	166.898	.1/8	186.6<9
	101.3166		12:3.305	. $1 / 4$	145.299	1/4	167.29	$\cdot 1 / 4$	$189.2<1$
	101.70.73	. $3 / 8$	$12: 3.201$. 18	145692	$3 / 8$	167.6×3	. $3 / 8$	189.674
	102.102	. $1 / 2$	124.093	$1 / 2$	146.084	. $1 / 2$	168.076	. $1 / 2$	190.067
	$10 \% .4947$. $\%$	123.4*5	5/8	146.47%	. $5 / 8$	$16 \times .468$. 5 /	190.46
	$10 \cdot 2.8 \times 74$		$1 \because 4.8 .9$,	146 -7	.3/4	$16-\sim 61$.3/4	190.8 .2
8	103.2801		12\%.2\% 1	\%	147.263	.7/8	169.254	.7/8	191.245
33.	103.673	40.	125.664	4π.	$147.65 \overline{5}$	54.	169.646	61.	191.530
	104.066		126.05\%		14s.018	. $1 / 8$	170.039	.1/8	192.113
	104.456		126.443	.1/4	14大.441	. $1 / 4$	170.43%	. $1 / 4$	19.423
	104.851	. 8	126.842	. 18	$14 \times .8 \% 33$	-38	170. $2 \cdot 5$. $3 / 8$	$19 . .816$
	105.244	1	127.23%	1/2	149.226	.1/2	171.217	. $1 / 2$	193.208
	105.636	.5\%	127.627	$5 /$	149.619	. $5 / 8$	171.61	. 5 /8	193.601
. $3 / 4$	106.0:9	$3 / 4$	12-02	4	$1: 0.011$	$3 / 4$	172.003	$3 / 4$	193.994
	106.4:2		128.413	7/8	150.404	7/8	172.396	7/8	194.387
34.	106.814	41.	128.806	48.	150.797	55.	17\%.788	62.	194.759
	107.207	.1/8	$1 \because 9.198$.1/8	151.19	. $1 / 8$	$173.1 \sim 1$. $1 / 8$	195.1:2
	107.6		129.591	.1/4	151.5×2	.1/4	173.6\%3	. $1 / 4$	195.565
	107.993	$3 / 8$	129.484	. $\%$	151.975	. 318	173.966	. $3 / 8$.	195.957
	108.385	.19\%	130.376	.	1:2.:368	. $1 / 2$	174.359	.1/2	196.35
	108.758	.5/8	130769	. 5	152.76	. $5 / 8$	174.752	. $5 / 8$	196.343
.3/4	109.171	. $3 / 4$	131.162	.3/4	153.153	$3 / 4$	175.144	.3/4	197.135
.7/8	109.563	.7/8	131.534	.7/8	153.546	. $7 / 8$	175.53\%	. $7 / 8$	197.5\%8

TABLE.-(Continued.)

		Diam.	Circum.								
56.		63.	197.921	70.	219.312	77	$\begin{aligned} & 2+1.903 \\ & \because 4 \div .296 \end{aligned}$	84.	263.894	91.	285.886
	175.93	. $1 / 8$	19x.314	1/8	220.30末				264.28%	.1/8	
	176.322	. $1 / 4$	198. 706	. $1 / 4$	$\because 20.697$. $1 / 4$	24.2689		$\stackrel{64.68}{ }$. $1 / 4$	286.671
	176.715	. $3 / 8$	199.099	. $3 / 8$	221.09	. $3 / 8$	243.181	. $3 / 8$	26: $0: 3$	3	$2 \checkmark 7.064$
	177.108	. $1 / 2$	199.49:	. $1 / 2$	と21.483	.1/2	243.474	.1\%	265.465	.1/2	287.456
	177.5	. $5 / 8$	199.884	. 5 /8	221.076	. 5%	243.267	. $5 / 8$	265. 2 \% s	. $5 / 8$	287.849
	177.893	. $3 / 4$	200.277	. $3 / 4$	222.268	. $3 / 4$	244859	. $3 / 4$	266.251	. $3 / 4$	$28{ }^{2} .242$
	178.286	. $7 / 8$	200.67	. $7 / 8$	2e2.6iti	.7/8	24.6%	.7/8	266.643	. $7 / 8$	288.634
	178.679	64.	241.062	1	22:3.054	78.	245.045	85.	$\begin{aligned} & 267.0: 36 \\ & 267.429 \end{aligned}$	92.	289,027$2 \times 9,42$
57.	179.071	. $1 / 8$	201.455		$\because 23.446$.1/8	240.4:38	. $1 / 8$			
.1/8	179.464	$\begin{aligned} & 18 \\ & .3 / 4 \end{aligned}$	201.848	. $1 / 4$	203.839	$\cdot 1 / 4$	245. 83	$\cdot 1 / 4$	$\because 67.8 \div 1$.1/8	289.813
	179.857		202.241	. $1 / 8$	$\because 2.238$		$246.28: 3$. 38	290.205
	180.249	$.3 / 8$	202.633		224.624	. $1 / \frac{1}{2}$	246.616	$.3 / 8$	268.60\%		290.598
	180.642		203.026	. $5 / 8$	32.). 017		247.008	. $51 / 2$	$26-999$. $1 / 2$	290.991
. $5 / 3$	181.1035	. $3 / 4$	203.419	. $3 / 4$	22.41	$3 / 4$	247.401	. $3 / 4$	269.392	. $3 / 4$	
	181.427	. $7 / 8$	$203 . \times 11$. $7 / 8$	225.803	$7 / 8$	$\because 47.794$. $7 / 8$	269.185	. $7 / 8$	281.786
.7/8	181.82	65.	204.204		$\because 6.195$		248.1=6	E6.	270.17 x	93.	292.169
58.8	102.213	.1/8	204.597	7%	$2 \div 6.588$	99. $1 / 8$	248.579	. 18	270.57	$\begin{aligned} & 1 / 8 \\ & .1 / 4 \end{aligned}$	2992.i6 6
8	18\%. 606	. $1 / 4$	201.9-9	1/4	2\%6.981	. $1 / 4$	24-972	. $1 / 4$	270.963		292.954
	18*. 999	. $3 / 8$	205.302	. $3 / 8$	227.373		249.365		$\because: 1.356$. $3 / 4$	293.347293.74
	183.391	.1/2	20..ã	. $1 / 2$	22\%.766	. $1 / 2$	249.757	. $1 / 2$	27.215		
	183.784	. $5 / 3$	206.168	. $5 / 8$	22ర.159	. $5 / 8$	250.15	. $5 / 8$	2\% 2.141	. $5 / 8$	$\begin{aligned} & 294.132 \\ & 294.525 \end{aligned}$
	1×4.176		206.56	.3/4	220.651	. $3 / 74$	2.0 .543	$\begin{array}{r} 3 / 4 \\ .7 / 8 \end{array}$	2\% $2.53: 3$. $3 / 4$	
	184.569	.7/8	206.953	. $7 / 8$	228.944	.7/8	250.935		27. 9.6	94.8	294.918-991.31
8	184.962		207.346	73	229.33%	$80^{.8}$	251.3:8	87.	273.319		
59.	1×5.354	.1/8	207.738		229.73		251.721	. 18	27:312	.1/8	295.703
	185.747	. $1 / 4$	208.131		$230.1 \% 2$		25.113	$1 / 4$	$\because 34.115$. $1 / 4$	296.096
	$1>6.14$. $3 / 8$	208.5\%4	. $1 / 4 / 8$	230.515	. $1 / 4$	25.506	. $3 / 8$	384.497	. $3 / 8$	296.489
	1×6.533	. $1 / 2$	208.916	. 1%	2:30.908	.3/8	-52.-99		2\%4.89	. $1 / 2$	296.681
	186.925	. $3 / 8$	209.309		2:31.3	. 5	$25 \% 2$. $5 / 8$	275.283	. $3 / 8$	$\begin{aligned} & 297.274 \\ & 297.667 \end{aligned}$
	1.7 .318		209.702	$\begin{aligned} & 3 / 4 \\ & .7 / 8 \end{aligned}$	$\because 31.693$.3/4	-53.684	$3 / 4$			
	1×7.211	$6 \mathrm{C}^{-7}$	210.095		2:32.0<6		2.4.073		2\%6.0ti*	. $7 / 8$	249.059
. $7 / 8$	185.143		210.487	74.	-32.478	81.	254.42	8- ${ }^{8}$	$\because 2.6 .161$	95.	$\begin{aligned} & 299.452 \\ & 298.845 \end{aligned}$
60.	188.496	. $1 / 8$	210.86	. $1 / 8$	23.3.871	. $1 / 8$	2.4. 86	.1/8	276. 2.3	. $1 / 8$	
.1/8	18 18. $0-9$		211.273		$23: 3.264$		25.5.255		$\because 37.046$. $1 / 4$	299.237
	189.2×1	. $3 / 8$	211.065	.144	2:33.6.7 7	. 3	255 648	.1/4	277.6:9	$3 / 8$	299.63
8	1×9.674	.1/2	212.058	. $1 / 2$	$\because 34.049$	$1 / 2$	256.04	$.1 / 8$	$27 \times 03 \%$.1/2	300.023
.1/2	190.067	. $51 / 8$	212.451	. $5 / 8$	2:3.44:3	. $5 / 8$	25:6.433		278.424	. $5 / 8$	300.416
. 5 /8	190.46	. $1 / 4$	212.843	. $3 / 4$	$2: 34.835$		256	. 58	$\because 7 \times .817$		300.808
. $3 / 4$	190.8.\%	. $7 / 8$	213.236	75. ${ }^{.7 / 8}$	$2: 35.227$. $7 / 4$	2:7.219	.3/4	$\bigcirc 79.21$. $7 / 8$	301.201
.7/8	191.245	6 m .	213.6:9	75.	$\because 35.62$	82.	257.611	$\times 9.8$	279.602	96.8	301.594
61.8	191.530	'18	214.0\%2	.1/8	236.013	1/8	258.004	.1/8	279.995	. $1 / 8$	301.986
$1 / 8$	192.113	. $1 / 4$	214.414	.1/4	2336.405	. $1 / 4$	2.8.:397	. $1 / 4$	$280.3<8$. $1 / 4$	302. 379
. $1 / 4$	$192.4 \% 3$. $3 / 8$	214.807	. $3 / 8$	236.290	. $3 / 8$	258. 7×9	. 38	280.7×1	. 318	302.772
\%	19\%.816	.1/2	215.2	. $1 / 2$	2:37.191	.1/2	$259.1 \sim 2$.1\%	281.173	. $1 / 2$	303.164
. $1 / 2$	193. 208	.5/8	215.592	. 51	$\because 3 \mathrm{C} .684$	5/8	259.575	. $5 / 8$	281.566	. 5	303.557
. $5 / 8$	193.601	$3 / 4$	215.985	$3 / 4$	237.376	. $3 / 4$	$\because 59.967$	$3 / 4$	${ }^{2} \times 1.959$. $3 / 4$	303.95
$\cdot 74$	19:3.994	7/8	216.378	.7/8	238.369	.7/8	260.36	. $7 / 8$	${ }_{2} \times 2.351$.7/8	304.343
7/8	194.387		${ }^{216.77}$	76.	2.3x.769	83.	260.753	90.	28.2 .744	97.	304.735
69.	194.759		217.163		$\stackrel{239.154}{ }$		261.146		${ }_{2} \times 3.137$		305.128
	195.1:2	. $1 / 4$	217.556	1/4	-239.547	. $1 / 4$	261.538	.1/4	2×3.209	. $1 / 4$	305.521
. $1 / 4$	195.565	. 18	217.948	$3 / 8$	${ }^{2} 399.94$. $3 / 8$	261.931	. $3 / 8$	283.92:	. 38	305.913
. $3 / 8$.	195.957	. 5 ,	218.341	$1 / 2$	240.3332	. $1 / 2$	$\because 6.3: 3$		284.315	. $1 / 2$	306.306
.	196.35	8	218.734	5/8	240.725	. $5 / 8$	262.716	.	2×4.708	. $5 / 8$	306.699
. $5 / 8$	196.743	4	$\stackrel{219.127}{ }$	$3 / 4$	241.118	. $3 / 4$	263.109		28\%. 1		3107.091
.3/4	197.135	.7/8	219.519	.7/8	$2+1.511$.7/8	263.502	.7/8	285.49:3	. $7 / 8$	307.484
. $7 / 8$	197.528										

TABLE.-(Continued.)

To Compute the fircum of a Diam ter greater than any in the pree it ng Table.
Rule.-Divide the dimention by two, three, four, etc., if practicable to do so. until it is reduced to a diameter to be found in the tible

Take the tabular circumference for this dimention, multiply by $2,3,4,5$, ete, according as it was divided, and the product will give the c reumference rey ired

Example.-What is he circumference for a diameter of 1050 ?
$1050 \div 7=150$; tab. circum $, 150=47!, 239$, which $\times 7=3299.073$, circum. required.
To 'ompute the Circumfernce for an Intrger and fra tion not give: in the Table.
Rule.-Double, treple, or quadr ple the dim ntion given. until the fraction is increase 1 to a whole number or to one f those in the able, as $\frac{1}{8}, \frac{1}{4}$. etc, provided it is nractical to do so.

Take the circumferences for in diam ter; and if it is double of that for which the circamference is requir d. tak one half of it; if t eble, take one third fit; and if quadruple, o e fourih of it.

Example.-Required the circ mfer nce of $\$ 21875$ inches
$2.21875 \times 2=4.4375=4^{7}$, which $\times 2=8 . \frac{7}{8} ;$ tab. c rcum $=278817$, which $\div 4=69704 \mathrm{ins}$.
To Compute the cireum of a Diam ter in Pre and Inches, rte. by th prereding Table.
Ruls - Reduce the $d \mathrm{~m}$ ntion to inches or eighths, as the case may be, and take the circumference in that te m from t e table for that number.

Divide this number by 8 if it is in eighths, and by 12 if in inches, and the quot ent will give the ared in feet.

Example.-Required the circumference of a circle of 1 foot $6 \frac{3}{8}$ inches.
1 foot $6 \frac{3}{8}$ ins. $=18 \frac{3}{3}$ ins. $=147$ elghths. Circum. of $147=461.815$, which $\div 8=57.727$ inches ; and by $12=4.81$ jeet .

TABLE TII.

AREAS AND CIRCUMFERENCES OF CIRCLES, FROM IO TO 100,

Diam.	Circum.
139.1/2	4336.652 438.253
140.	4399.8.4
$11^{1 / 2}$	441.395
141.	412966
14.4 .2	144.536 446107
.1/2	4
143.	449.:49
. $1 / 2$	450×2
14.	45839
$145^{.1 / 2}$	453.961
$11 / 2$	$45 \% 103$
146.2	$45 \times .674$
14.1/2	$460 \cdot 24$
14.1	$\begin{aligned} & 461 .-15 \\ & 463.3 \times 6 \end{aligned}$
188.	464957
$140^{1 / 2}$	46.58
$15.1 / 2$	469.669
.1/2	4\%\%.811

prec d ng Table.
so. until it is reduced
5, ete, according as it

quired.

ve: in the Table.
tion is increase I to a tical to do so.
nich the circumference ple, o .e fourih of it.

```
-4=6 9704 ins
```

h preceding Table.
and take the circumfe-
quot ent will give the
[Advancing by Tenths.]

Diam	Area.	Circum.	Di m	Aı ${ }^{\text {a }}$.	Circum	Diam.	Area.	Circum
			5.	19.635	i. 3.708	10.	TM, 54	31.416
	.0078:4	. 31416	. 1	20.4202	16.0221	1	- 0.1186	31.7301
.2	. 0311416	. 62883	.2	21.237^{2}	16.33i3	\because	81.113	32.04,
. 3	. 0706 \% 5	. 94.446	. 3	\%06i1,	16.4204	3	-3.323	3.3in
. 4	.12566	1.2566 1.7700	. 5	20.9023	16.6i6	5	- $\times 1.9588$	32.6920
. 5	.28:74	1.8%	. 6	24.6331	$17.59 \% 9$. 6	$8 \times .2425$	33:3019
. 7	. 38455	2.1991	. 7	2.5166	12.90;1	. 7	89.9 .214	33.61
. 8	. 50266	2.5133	. 8	26.4203	18.2012	8	91.6099	33.92
. 9	. 63618	2.8:74	. 9	97397	1*..3.4	. 9	93:3133	34.4.34
1.	. 78.4	3.1416	6.	28.2714	18.8496	11.	95.18334	34.5686
. 1	.9503	3.45\%	. 1	99.2047	19.16:37	.1	96.6991	34. 217
. 2	1.1309	3.76, 9	2	30.1907	19.4779	\because	98.520)	33.1889
. 3	1.:32:3	4.104	.3	31105	19.29\%	3	100.es:7	35.501
. 4	1.5:933	4.398\%	4	32.1699 3.1331	(10.106:	4	102.0005 103.4691	3.8 .814. 36.1284 3
. 5	1.7671 9.0106	4.7124	. 6	34.21%	00.4204	. 6	$105.68: 3$	36.44%
. 7	2.2698	5.340%	. 7	35. 35.6	21.0487	. 7	107.5134	36.75
. 8	2.5446	5.6518	. 8	36.3168	21.36:8	8	109.359	32.17010 x
. 9	2.835\%	5.969	. 9	37.3928	21677	. 9	111.2:04	37.38
2.	3.1416	6:23\%	7.	38.4846	$\because 1.9912$		113.0976	37.69
. 1	3.4636	6.5973	. 1	39.548	20:305:	\cdots	114.9904	38.0133
. 2	¢.8013	69115	.2	407151	2e.6195	\therefore	$116 . \times 989$	38.32i:
. 3	4.1547	7.2256	. 3	41.8539	20.93:36	\cdots	11×8.23	3x.64:6
. 4	4.5239	7.5398	4	43.0185	23.24is	5	124.68:1	38.9.5.
. 5	4.9087	7.854	. 6	4.1787	\cdots		122.18	39.27
. 6	5.3093	${ }_{8}^{8.1681}$. 7	${ }^{45.36 .5663}$	2.1903	. 7	126.6 ¢\%)	39.8983
. 7	5.7025		. 8	47.78:37	24.5044	. 8	102 6799	40.21:4
. 8	6.1575 6.60 .9	8.7964	. 9	$49.016{ }^{\text {a }}$	$24 . \times 186$. 9	130.6984	40.526t
3.9	7.0686	9.4248	8.	50. 26.56	25.13\%	13.	13:.3:26	40.840:
. 1	7.5476	9.7389	. 1	51.53	2.4469	.1	134.7×24	41.1549
. 2	8.0424	10.0531	. 2	5..8102	25. 7611	. 2	$136.84{ }^{-}$	41.4691
. 3	8.553	10.3672	.3	541062	26.0752	.3	138.9294-	41.7×3.2
. 4	9.0792	10.6814	. 4	55.4178	26.3894	4	141.0264	41.0974
. 5	9.6211	10.9956	. 5	56.74 .1	26.7036	. 5	14.3 .1391	+2.4116
. 6	10.1787	11 :3097	. 6	58.0281	${ }^{21} 0176$	${ }_{7}$	144.267117	42.22.
. 7	10.7521	116239 11.932	. 8	59.4469 60.8013	${ }^{27} 27.6$. 8	149.5ティ	43.354
. 8	11.3411	11.938	. 9	6×2115	27.960	. 9	151.7471	4.3.6.ix?
. 9	11.94.99	12.5i64	9.	63.616174	28.2714	14	153.9334	43.98 .4
. 1	13.20:5	12. 2×80	. 1	63. $0: 389$	28.5088	. 1	156.1453	44.2965
.	13.85544	13.1917	. 2	66.4763	24.9027	2	158.368	44.6107
. 3	$14.5 \% 2$	135083	.3	67.9:9\%	49.2168	3	160.6064	$44.934 \times$
. 4	15.2053	13.\% ${ }^{\text {a }}$. 4	69.3979	29.631	5	162. $\times 605$	45.239
. 5	15.9043	14.137\%	.	70, 8×83	29×4.2	5	165.13013	45.53
. 6	16.619	14.4513	6	7.3804	30.1593	${ }_{7}$	167.1158	45.8673
. 7	17.3494	1.8685 15.0796	. 8	$73.39-2$ $75.499 \times$	30.4735 30.2820	8	169.717 172.034	46.1815 464956
. 8	18.8574	\bigcirc	. 8	76.97\%	31.1013	9	174.3666	46.8098

TABLE.-(Continued.)

Diam.	Area.	Circum.	Diam.	Area.	Circum.	Diam.	Areit.	Circum.
15	176.715	47.124	. 6	33.2943	64.7161	\therefore	639.1299	* 2.3099
. 1	179.079	47.43×1	. 7	336.5336	65.0311	.3	54:3.2333	8.2 .624
.2	181.45~\%	47.7523	. 8	3339.2954	65. 345	. 4	547.3 .23	-2. 38:
. 3	183.8542	48.06664	. 9	343.0205	65. 65.94	5	541.5471	N3.2.:34
. 4	186.26.4	$48.3=06$	$\because 1$.	:36.3014	65.97:36	. 6	555.7176	8:3.56\%
. 5	1-n.69293	486948	. 1	349.6669	66.28:7	. 7	529.6003	83. $8-07$
. 6	$1: 11.1314$	$49.06 \div 9$	2	352.99001	66.6019	8	564.10 .6	-4.1948
. 7	193.59332	49.3231	. 3	354.3201	66.916	. 9	$56-.3 \% 3$	-4.609
. 8	196.067\%	49.6337	. 4	3596×17	67.2:302	27.	57.5 .566	84, 4×32
. 9	198.55t9	49.9514	. 5	363.0511	67. 5.5444	. 1	$576 . \sim 656$	¢5.1373
16.	$20106: 4$	$50.26 ゙ 16$. 6	366.4362	6785×5	\therefore	5-1.0703	8.5 .4515
. 1	203.5835	$60.579 ?$. 7	369883	68.17.27	.3	580.3. $0: 3$	88.8655
. 2	206.1203	50.89:39	. 8	373.2534	6-.48i8	. 4	$5 \div 1.6169$	86.0798
. 3	2086999	51.208	. 9	$376.6-56$	ti8.cot	. 5	593.95×7	86.394
. 4	211.2411	51.5204	\because.	3*1.1336	69.1152	. 6	598.2863	-6.71x 1
. 5	213855	51.8364	. 1	38:3.5972	69.4 -993	. 7	602.6895	8 c .0 (1) 23
. 6	216.4048	52.1505	\therefore	3×70765	69.7435	. 8	615.98×5	87.3336
. 7	$\because 19.0402$	$5 \because .4647$.3	390.5751	30.0.76	. 9	611.3633	si. $6: 06$
. 8	291.6212	$5 \% .778$. 4	394.0×23	70.3718	2×.	615.7536	57.9618
.$_{17} .9$	$29431 \times$	53.093	. 5	397.6087	70.686	.1	620.1596	88.3289
17.	$2 \% 6.9806$	53.41172	. 6	401.1509	71.0001	. 2	$6.4 .5 \times 14$	88.59\%31
. 1	2496588	53.7213	. 7	404.7007	71.3143	.3	6 6\% S . 19	88.9072
. 2	$232.35 \% \%$	54.0355	. 8	408.28833	71.6284	. 4	6333.47 92	$89.2 \div 14$
.3	235.1683	:4, 3496	. 9	$411 . \sim 716$	71.9426	. 5	637.9411	89.5:356
. 4	2:37.7637	54.6038	23.	415.4766	7.2.2568	. 6	642.425\%	89.8497
. 5	240.52×7	54.978	. 1	418097%	72.5709	. 7	646.9261	90.1639
. 6	243.25 5	55.2921	. 2	42, \%33:6	72.ex51	. 8	$651.44 \% 1$	90.475
. 7	2460579	55.6063	. 3	426.3858	73.199	. 9	65.). 8739	90.792
. 8	$248>461$	5 5 .92004	. 4	430.0536	73.5134	29.	$660.5 \div 214$	91.1064
. 9	251.65	56.9346	. 5	433.7371	73.8×76	. 1	96\%.0845	91.4205
18.	254.46396	56.5408	. 6	437.4363	i4.1417	. 2	669.6634	91.7347
. 1	257.3048	$56.86 \% 9$. 7	441.1511	-4.4559	.3	674:288	$92.04<8$
. 2	$260.155 \times$	57.1.7!	. 8	444.8819	74.768	. 4	678 8tim 3	$9 \cdot .363$
. 3	$\because 63.0 \div 6$	$5 \% 491{ }^{\circ}$. 9	$448.6 \div 53$	75.088%	. 5	6×3.4943	923:3:7
. 4	265.905	57.2054	24.	452.3904	75.3984	. 6	$68 \checkmark .136$	92. 9913
. 5	2688.8031	58.1196	. 1	456.1681	75.7125	. 7	692 79:34	93.3055
. 6	271.7169	58.43337	. 2	4.59 .9916	76.0267	. 8	697.4666	93.6196
. 7	274.6465	58.7479	. 3	463.770 L	\%6.340x	. 9	70\%.1534	93.9338
. 8	277.5917	59.068	. 4	467.5957	$76.65 \div 3$	30.	706.26	94.248
. 9	280.5527	5! . 3762	. 5	$4 \% 1.4363$	-6.9692	. 1	711.5002	$94.56 \% 1$
19.	-883.5294	59.6904	. 6	$475.29 \% 6$	77.2c33	.2	$716.316{ }^{2}$	94.8763
.1	286.5217	60.0645	. 7	479.1646	72.5975	.3	721.0078	95.1904
.2	$2 \times 9.509 x$	60.3187	. 8	$483.05 \% 4$	77.9116	. 4	7\%).835\%	95.5046
.3	2:+2.5536	$60.63: 28$. 9	486.1558	78.2.58	. 5	$730.618: 3$	95.818*
. 4	${ }^{295} 59.5931$	60.947	25.	490.875	78.54	. 6	735.4171	96.13 .9
. 5	298.64*3	61.2612	. 1	494.809¢	78.6541	. 7	740.2316	96.1471
. 6	301.7192	61.6753	.2	49×. 7604	\% 5.1693	. 8	715.061s	96.761.
. 7	301 30206 000	61.8895	.3	$512 . \% 66$	79.4×24	.$^{.9}$	749.9072	97.0754
. 8	307.90×2	62. 20.36	.4	504.7086	79.7966	31.	754.7694	97.3×96
. 9	3110202	62.517\%	. 5	510.7063	E0.110x	. 1	759.6167	97.70:37
20.	311.16	6. 683	.6	514.7196	811.4.45	\therefore	764.5392	98.0179
. 1	317.3094	-63.1461	. 7	518.74×6	80.7391	.3	769.4485	98.3:3
.2	$3: 0.4746$	63.460 .3	. 8	522.7936	81.0.3.	. 4	$754 .: 3729$	9+645\%
.3	323.6554	63.7544	. 9	526.8541	81.3674	. 5	729.3131	$9 \times .9604$
. 4	326.85%	64.0586	26.	530.9314	-1.6316	. 6	781.2689	$99.2 ; 45$
. 5	330.0643	64.4028	. 1	0\%5.022\%:	81.9976	. 7	$789 .: 406$	99.580%

TABLE.-(Continued.)

TABLE.-(Continued.)

Diam.	Areat.	Circum.	Diam.	Area.	Circum.	Diam.	Area.	Circum.
. 6	1-55.0-33	15:2.6.17	. 2	$\because 307.22 .4$	170.2747	. 8	2*02.6218	187.26\%6
. 7	1×52.763	52.. 959	.3	2316.814	170.5®\%:3	. 9	2 < $1 \times .023$	1-8.1818
. 8	$1570.3-4$.	153331	. 4	?3:9.2-13	1;0.90:3	60.	$2 \mathrm{z} \times 2 \mathrm{~S} 4$	188.496
. 9	$1 \times \mathrm{Cu} .10 \mathrm{ta}$	153624.3	.5	2033: -343	171.217:	. 1	2-36 5 -26	$150 . \times 101$
49	1-85 2154	153.93-4	. ${ }^{\text {d }}$	$\because 341.4103$	171.5334:3	\therefore	$2-46.3: 1$	i89.1:43
. 1	1293.4501	154.2585	. 7	$\because 349.9 \times 74$	171.8455	3	2855. 785	189.4384
$\therefore 2$	1901.1706	$15.4 .556,7$.	23\%8.5× 6	172.1596	. 4	2865.2648	1 $\times 9.75: 6$
.3	$1903.9065-$	154.s-0x	. 9	23367.21034	172.473	5	3874.7603	190.06 6\%
. 4	1:16.158\%	15\%.15	55.	2335.83:	179.88	. 6	2e84. $\because 665$	190.3809
. 5	$1: 924+203$	155..09\%	. 1	2304.4x\%	17:3.10:1	. 7	2893.7984	190.69.1
. 6	1932.2096	1\%\%. 2033	\cdots	2393.145\%	173.4113	8	290:3,34	191.009\%
. 7	1940.00-6	156.1375	.3	2401.0	173.:304	. 9	2010.c993	191.3:34
. ${ }^{\text {d }}$	1947.203	156.4 .16	. 4	211051×2	1740465	61.	992.2.4734	1916376
. 9	1955.6538	156.7508	.	$2119.22 \sim 3$	1i4.3.2\%	. 1	2932.0631	191.5517
50.	1963.5	157.08	. 6	2427.3541	174.6399	\therefore	-944.66-5	192.2659
. 1	1:371.361~	150..3941	. 7	$\because 436.6956$	174.9781	. 3	3951.2-97	$19 \% .56$
\therefore	1979.23.4		\cdots	2454.4020	1\%.30:\%	. 4	2:6019 9\%\%	193.8948
.3	$19-7.1326$	15-0 024	. 9	2454,2055	$1 \% .6154$. 5	29:0.5291	19:3.20x4
. 4	1995.0416	15x.33366	56.	2463.0144	175.929\%	. 6	2)-0.:34	193.525
. 5	290.9663	1:8.6.30-	. 1	$\because 4 i 1 . \times 180$	176.24:37	. 7	29-9.9314	193.8367
. 6	$\because 010.9067$	15-9649	\therefore	-400.63-7	176.5.29	. 8	-9999.63	1.4.1508
.7	2018.76:	1.9.9\%91	.3	24-9 475	176.-7:	. 9	3009.3464	194.465
\cdots	- 2026.3046	$15,5.53$. 4	24:15.3259	177.1~62	62.	3019.0776	194:8392
. 9	$2034 . \times 35$	159.9474	. 5	2502.1931	12\%.5004	. 1	30.28 .8044	195.09933
51.	2042.854	100.2 16	. 6	2510.076	1:7.014\%	\therefore	30:3x.5869	195.4075
1	2050.8443	160 -335\%	. 7	25:4.97:6	$1: 8.12 \sim 7$. 3	304-.36.1	$195.2 \geq 16$
. 2	2058. $2 \div 04$	160.8499	.	$2533 . \sim$ con	1ir.tiss	. 4	305~. 1591	196.0358
. 3	2066.9293	161.164	- ${ }^{.9}$	2542.81~8	178.7 .27	. 5	3067.9687	196.35
4	2074.9953	161.478	57.	2551.7646	179.0i12	. 6	3077.7 .41	196.6641
. 5	208:3.0371	$161.79 \cdot 4$. 1	2560. 206	179.3-5.3	. 7	30×76311	196.97*3
. 6	2091.1716	162.1065	\therefore	2669.7031	179.699\%	. 8	30977949	197.2924
. 7	2099.2×78	16:4207	.3	2.5~6959	184,01:36	. 9	31117.364	197.6066
. 8	$\because 10 \mathrm{~A} .416 i t$	160.7318	4	2587.7145	180.32i\%	63.	3117.2506	192.9\%)08
. 9	2155.5612	163.049	.	2596.7 .287	180.64.	. 1	31.27 .1564	198.2349
52.	$21 \because 3.2216$	16:3.36:32	. 6	$2605.76 \times \sim$	180..6.61	\therefore	$31: 37.0758$	198.5491
. 1	2131 -97i3	163.6378	. 7	2614.8043	$1 \times 1.2 \times 13$. 3	3147.0114	198. 26.3
\therefore	2140.0893	163.993.)	. $\%$	26:3.8557	$181.50+4$	4	3156.9664	199.1774
.3	214×268	$164: 3026$. 9	$\because 632.9 \times 2 \times$	181.8986	. 5	$3166.4 \bigcirc 991$	199.496
.4	2156.5199	1646198	58.	2642.08 .6	18:2.21\%	. 6	3176.9115	199.8057
. 5	2164.7.,8i	164.9.34	. 1	2651.2046	180.5×69	. 7	3186.9097	200.1199
6	2173.0133	1 1 \%.2181	\therefore	26644.3388	18\% 8.8411	. 8	3196.9\%35	200434
. 7	2181.283 .9	16\%.5tie: 3	. 3	$\because 669.4$ तx	103. $1: 50$. 9	33016.92331	200.748 .3
. 8	21×9.5695	165.8761	. 4	2tisc.65:33	18:3.4694	64.	3.16 .9934	$201.06 \div 4$
5.9	$21.97 .071:$	1 166.1906	. 5	$26 \times 8.835 \mathrm{i}$	183.7536	. 1	322\%.0593	201.3765
	2\%06.1-86	16\%.5048	.6	$2697.03 \cdot 21$	184.0977	. 2	3:33،.136	201.690%
1	2214.5216	166.8189	. 7	276.2449	$\vdots 84.4119$.3	$3247 \% \because 284$	202.0048
2	20:2.-704	167.13:1	. ${ }^{\text {人 }}$	$271547: 33$	184726	. 4	3 25\%.33365	$20 \div 319$
. 3	2331.935	167.47\%	. 9	27.24 .7175	18.0.0102	. 5	3 3261.4603	26.6.63:3
4	29.9 .6152	167.2614	59.	27333.9774	185.354	.6	3357.5998	$\because 02.9473$
. 6	¢248.0111	168.10756	.1	$2743.25 \% 9$	$1-5.6685$.7	$3287 . \% 5$	203.2615
. 6	2056. 1×27	16-.3897	. 2	$27.9 .54+2$	185.9x\%7	. 8	32997.920	203.5756
. 8	$\because 264.8 .01$	16×.7049	. 3	2761.851%	186.2696	${ }_{65}{ }^{9}$	3:308.1126	$\because 03.8-98$
. 8	-273.2931	! 69.018	4	2.71.1739	1-6.t511		3:31-35	204.204
.$^{.9}$	2tol. 5219	169.3332	. 5	$27=0.5123$	1-6.925\%	\cdots	3332*.534	$\because(4.5181$
5	$2: 0: 0: 64$	169.6464	.6	2789.8664	187.2393	\therefore	33:39.7668	204.8:323
. 1	$2: 948.7165$	169.9605	. 7	2799.2363	107.5535	. 3	3349.016:	205.1464

TABLE.-(Continued.)

Area. Ci	Circum.	Diam.	Area.	Circum.	Diam.	Area.	Circum.	Diam.	Area.	Circum.
		. 4	3359.2×14	205.4606	71.	3959.2014	223.0536	. 6	4608.3816	240.6445
	67.	. 5	3:369,562:3	205.7548	1	3970.3619	\%2: 3687	. 7	4620.4218	240.9607
$0^{*} .6218$ 187	87.2618	. 6	3379.85×9	206.0-89	. 2	3981.5381	2283.68:9	. 8	46.2.4.76	241:274
$1 \times .023$	-8. $8 \times .496$. 7	3390.1712	206.403 i	. 3	3992.7301	223.996	9	4644.5492	241.6987
27.44	s8.496 $\sim 0 .-101$. 8	3400.4:992	206.717:	. 4	4003.9373	2:4.310:	77.	4656.6:366	241.903:
$36 \sim 206$ $46.3 \% 1$. 9	$3410.84 \cdot 29$	$\because 07.03: 4$. 5	4015.1611	2:4.6\%44	. 1	4668.7396	242.2!73
46.321	89.4384	66.	3421.2024	207.3456	. 6	4026.400:	$2: 4.9355$.2	46×0.8583	242.5315
	109.75:6	. 1	3431.5775	207.6597	. 7	4037.655	225.25:7	. 3	$469: .9927$	242.5456
5	190.06tí	. 2	3441.9633	207.9739	. 8	4048.9254	2:5,5668	. 4	4705.1429	243.1598
-84 $\because 61519$	190.3809	. 3	345\%.3749	208.28\%	. 9	4060.2116	2.55 .8 c 1	. 5	4717.3087	243.474
-81.-798t 191		. 4	3462.7971	208.60:2	72.	4071.5136	2:6.195\%	. 6	4729.4903	243.7881
5.73.7984	190.09 .8	. 5	3473.2351	208.9164	. 1	$408 \% .8332$	2:26.509:	. 7	4741.6875	244.1023
30:3.341 19	191.0093	. 6	3403.6858	$209 \% 305$. 2	4094.1645	206.8823	. 8	4753.9605	244.4!64
:11.8. 9938	191:3283	. 7	3494.164	209.5446	. 3	$4105.51 \cdot 5$	22\% 13\%	. 9	4766.1292	244.7306
$\underline{922.4734} 19$	1916336	. 8	3504.6432	209. $25<8$. 4	4116.0793	22\%.4518	78.	4778.37:36	245.0448
$93 \% .063119$	191.5517	. 9	3515.143	210.173	. 5	$41: 8.2587$	2.27 .766	1	4790.63336	245.3589
1941.665519	192.:559	67.	3525.6606	210.48%	. 6	$4139.65 \cdot 24$	22\% 0<01	. 2	4 c 02.9094	245.6731
9:1. 2×97	192.08	. 1	35536.19\%	210.8013	. 7	4151.0667	22¢ 3943	.3	4815.201	245.987\%
1609808	$193 . \times 94$. 2	3546.7404	211.1155	. 8	41624943	22×. 7084	. 4	$48: 7.5082$	246.3014
19:0.2791 19	19:3.20~4	. 3	3557.3043	211.4:96	. 9	4173.9376	229.0:26	. 5	4839.8311	246.6156
? 20.0474	$19: 3.5 \div 5$.	$3567.88: 37$	211.7438	73.	415 ¢. 3966	2:9.3368	. 6	4852.1697	246.9297
?9-9.9314	19:3.8367	. 5	3578.4787	212.058	. 1	4196.8712	229.6509	. 7	4864.524 i	247.2439
29:99.63	1.44.1508	. 6	3589.0895	2123721	. 2	4208.3614	229.9651	. 8	4876.8973	247.548
3009.3464	194.465	. 7	3599.7159	212.6863	. 3	4:19.8678	230.2\%9\%	. 9	$4 \times \times 9.2799$	247.8722
3019.076	$194: 79 \cdot 2$. 8	3610.3581	213.0044	. 4	4:31 3896	230.5934	79.	4901.6814	248.1864
$30: 8.8 .844$	195.09333	${ }_{6} .9$	$36 \geq 1.016$	213.3146	. 5	4:4:.9271	-30.90:6	. 1	4914.0985	248.5005
$303 \times .5869$	195.4075	68.	3631.6896	213.628	. 6	40.4.4803	$2: 31$-2	\because	49:6.5.314	248.8147
304-36.51	192.7216	. 1	3642.37×6	213.9449	. 7	4:36.0493	231.5:39	.3	49:38.982	249.1288
$30 \div \bigcirc .1591$	196.0358	. 2	36.33 .0838	214.2571	. 8	+2:7.6:339	2:3.-5	. 4	4951.4443	249.443
3067.9687	196.35 196.6641	. 3	3663.804	214.0712	. 9	+28.9234.3	2:32 1642	. 5	49633.9243	$249.75{ }^{2} 2$
3077	1966.6641 $196.97 \sim 3$. 4	3624.541	214.8454	74.	4300.8.0) 04	2032.4i84	.6	4976.484	250.0713
30-7 6311	196.97×3 $19 \% .29 \% 4$. 5	36 ± 5.2931	2151996	.1	$4: 312.4 \times 21$	2.2.79\%	. 7	4986.9314	250.3855
:3097.4919	$\begin{aligned} & 197.29 .24 \\ & 197.6065 \end{aligned}$. 6	3696.006	215.5137	.2	4334.1296	233.1067	. 8	5061.458	250.6996
31117.364 3117.2502	197.6066 $197.9 \% 08$. 7	370 i .8445	215. 2279	.3	4335.79\%	23. $420=$	${ }^{.9}$	5014.0014	251.0138
3117.9526	$192.9 \% 08$ $19 x .0349$. 8	3717.6437	216.142	. 4	4337.471	2:34.735	80.	5026.56	251.3280
$31 \cdot 27.1564$ 3137.0758	$19 \times .2349$ $198.5+91$. 9	37.28 .4587	216.4562	. 5	4359.1603	234.049.	.1	5039.1342	251.6421
$31: 37.0758$ 3147.0114	$\begin{aligned} & 198.5+91 \\ & 198 . * 633: \end{aligned}$	69.	3739.2894	216.7704	. 6	4370.8766	234.3633	.2	5051.7:242	251.9563
3147.0114 3156.9664	$\begin{aligned} & 198.26332 \\ & 199.1774 \end{aligned}$. 1	3750.1357	217.0×45	. 7	4382.6026	234.6775	. 3	5064.3:58	252.2704
31566.9664 3166.4991	199.17\%	. 2	3760.9978	217.3987	. 8	4394.3448	2349916	. 4	5076.95 ก2	252.5846
3166.59991 3176.915	199.49 26	. 3	3771.8756	217.7128	. 9	4406.1018	235.3058	. 5	5089.5883	252.8988
3176.9115 3186.9097	199.8057	. 4	3788.7691	218.027	75.	4417.875	235.62	. 6	5102.2411	53.2129
3186.9097 $3196.9 \% 35$	200.1199	. 5	3793.6783	218.3412	.1	4429.6638	235.9:341	.7	5114.9090	253.5271
$3196.9 \cdot 35$	200434	. 6	3804.6032	218.6553	.2	4441.4684	2:36.2483	. 8	5127.5938	253.8412
33066.9831	200.748°	. 7	3815.5438	218.9695	. 3	4453.2886	236.5624	. 9	5140.2937	254.1554
$3 \div 16.9954$	\bigcirc	. 8	$38^{2} 6.5002$	219.2836	. 4	4465.1246	236.×76	81.	5153.0094	254.4696
322\%.0593	201.3765	. 9	$3847.47 \% 2$	219.5978	. 5	4476.9763	237.1906	. 1	5165.7407	254.7×37
3\%3i.136	201.690	70.	3848.46	219.912	. 6	4488.84:37	237.5049	.2	5178.4877	255.0979
3247.3884	-20.0048	. 1	3859.49\%2	220.2261	. 7	4500.7-268	237.819!	. 3	5191.2505	255.412
3:5\% 3 . 3365	202.319	. 2	3870.43×6	220.5403	. 8	4512.6256	238.1332	.4	5204.1285	255.7262
3026i.4603		. 3	3881.5174	220.8544	. 9	4524.5401	238.4474	. 5	5216.8.331	256.0404
$33: 77.5998$	3	. 4	3892.563	$\stackrel{21.1686}{ }$	76.	4536.4704	238.7616	. 6	5229.633	256.3545
3285.75	203.266	. 5	3943 $6: 343$	221.4828	.1	4548.4163	239.0757	.7	5.42.4586	256.6687
$3297.92 i$	203.5756	. 6	3914.7163	221.7969	.2	4560.37-7	239.3899	. 8	5255.2998	256.9828
3:308.1126	6 O03.6-98	. 7	39\%5. 814	$2 \% 2.1111$.3	457\%.3553	239.704	. 9	$5 \% 68.1568$	257.297
3:31-3.5	204.304 $204.5!81$. 8	3936.9274	-2\%.4252	.4	4584.3583	240.0182	82.	5281.0286	257.6112
333:3.534	$\begin{array}{l\|ll} \hline 8 & 204.5!81 \\ \hline 8 & 204.8: 32: 3 \end{array}$. 9	3948.0565	222.7394	. 5	4596.3571	240.3324	. 1	5293.918	257.9253
3339.7668 3349.0162	$\begin{array}{c\|c} \hline 8 & 204.8323 \\ 6.2 & 205.1464 \end{array}$									

TABLE-(Continued.)

Diam.	Area.	Circum.	Diam.	Area.	Circum.	Diam.	Area.	Circum.
. 2	5306.8221	258.2395	. 8	6054.5149	275.8324	. 4	6851.4840	293.4254
. 3	5319.7439	258.5536	. 9	6068.32:4	275.1466	. 5	6866.1631	293.7396
. 4	5332.6775	258.2646	88.	$608 \% .1376$	276.4608	. 6	6880.8579	294.0537
. 5	5345.6287	259.18%	. 1	6095.9684	276.7749	. 7	6×95.5685	294.3679
. 6	5358.5957	259.4961	. 2	6109.815	277.0891	. 8	6908.2947	294.68 \%
. 7	5371.5983	259.8103	. 3	6123.6774	277.4032	. 9	6925.0367	294.9962
. 8	5384.5762	260.1244	. 4	6137.5554	277.7174	94.	6939.7944	295.3104
. 9	5397.5908	260.4386	. 5	6151.4491	278.0316	. 1	6954.5677	295.6245
83.	5410.6:06	260.7528	. 6	6165.3585	278.3457	. 2	6969.3568	295.93>7
. 1	$54: 3.666$	261.0669	. 7	6179.2837	278.6599	. 3	6984.1614	296.2436
. 2	5436.727%	261.3811	. 8	6193.2:45	278.975	. 4	3998.98\%1	296.567
. 3	5449.8042	261.69%	. 9	6207.1811	279.2882	. 5	7013.8183	296.8812
. 4	5462.8968	262.0094	89.	$6 \div 21.1534$	279.6024	. 6	7028.6702	297.1953
. 5	5476.0051	262.3236	. 1	6235.1413	279.9165	. 7	7043.5025	-297.5095
. 6	5489.1291	262.6376	. 2	6:49.145	280.2307	. 8	7058.418	297.8236
. 7	5502.2689	262.9519	. 3	6263.1644	$2>0.5448$. 9	7073.3202	298.1378
. 8	5515.4243	263.264	. 4	6277.1995	280.859	95.	7088.235	29 S .452
. 9.9	5528.5958	263.5802	. 5	6291.2035	281.1732	. 1	7103.1654	298.7661
84.	5541.7824	263.8944	. 6	6305.3168	281.4873	. 2	7118.1116	299.0723
. 1	5554.9847	264.2085	. 7	6319.399	281.8825	. 3	7133.0734	299.3944
. 2	5568.2032	264.5227	. 8	6333.497	282.1156	. 4	7148.051	299.7086
. 3	5581.4372	264.8368	. 9	6347.6813	282.4298	. 5	7163.0443	300.0228
. 4	5594.6869	265.151	90.	6361.74	282.744	. 6	7178.0533	300.3369
. 5	5607.9523	265.4652	. 1	6375.885	283.0581	. 7	7193.078	300.6511
. 6	5621.2334	265.7793	.2	6390.0458	283.3723	. 8	7208.1184	300.9652
. 7	5634.5682	266.0935	. 3	6404.2222	283.6864	. 9	7223.1745	301.2794
. 8	5647.8428	266.4076	. 4	6418.4144	284.0066	.	7238.2464	301.5936
. 9	5661.171	266.7218	. 5	6432.62283	284.3148	. 1	7253.3339	301.9077
.	5674.515	267.036	. 6	6446.8474	284.6289	.2	7268.4371	302. 22 ! 9
. 1	5687.8746	267.3501	. 7	6461.0852	284.9431	. 3	7283.5561	302.536
.2	5701.25	267.6643	. 8	6475.3402	285.2572	. 4	7-298.6907	302.8:02
. 3	5714.641	267.9784	. 9	6489.6109	255.5714	. 5	7313.8411	303.1644
. 4	57.28.0478	268.2926	91.	6503.8674	285.8856	. 6	7329.0072	303.4785
. 5	5741.4703	$268.606 \times$	${ }_{9}^{1}$	6518.1995	286.1997	. 7	7344.189	303.7927
.6	5754.9085	268.9209	\bigcirc	6532.5173	2865139	. 8	7359.3864	304.1068
. 7	$5768.36 \div 4$	269.2351	. 3	6546.8909	2-6.829	. 9	7374.5996	304.42!
. 8	5781.832	269.5492	. 4	6561.2081	$287.14 \div 2$	97.	7389.8.886	304.7352
. 9	5795.3173	269.8634	. 5	6575.5651	287.4564	. 1	7405.0732	305.0493
.	5808.8184	270.1776	. 6	6589.9458	287.7705	.2	74.20 .3335	305. 3635
. 1	$582 \cdot .3351$	270.4917	. 7	$6604.32 \% 2$	288.0847	. 3	7435.6095	305.6776
.2	5835.8675	270.8059	. 8	6618.7542	288.39×8	. 4	7450.9013	305.9918
. 3	5849.4157	271.12	${ }^{.9}$	6633.182	228.713	. 5	7466.2087	306.306
. 4	5862.9795	271.4342	92.	6647.6356	289.0272	. 6	7481.5319	306.6\%01
. 5	5876.5591	271.74×4	.	666\%.0848	289.3413	. 7	7496.8707	306.9363
.6	5890.1541	272.0665	.2	6676.5597	289.6555	. 8	7512.2453	307.2484
. 7	5903.7654	272.3767	. 3	6691.0161	289.9696	. 9	7527.5956	30\%.56\%6
. 8	5917.392	272.6908	. 4	6705.5567	290.2838	98.	7542.9816	307.768
. 9	5931.0344	273.005	. 5	67:0.0787	290.598	. 1	7558.38:32	308.1909
87.	5944.6926	273.3192	. 6	6734.6165	290.9121	.2	7573.80	308.5051
.1	5958.3644	273.6333	. 8	6749.1699	291.2263	.	7589.9338	30*.8192
.2	¢972.0559	273.9875	. 8	6763.739!	291.5404	. 4	7604.68\%6	309.1334
. 3	5985.7691	274.2616	. 9	6778.324	291.8546	. 5	7620.1471	309.4476
.4	5999.4821	274.5758	93.	6792.9246	292.1688	. 6	7635.6:73	309.7617
. 5	6013.2187	274.89	.1	6807.540 s	292.4829	. 7	7651.1933	310.0769
. 6	6026.9711	275.2041	.2	$68 \% 2.173$	292.7971	. 8	7666.9349	310.395
. 7	6040.7391	275.5183	. 3	6836.8296	293.1112	. 9	7689.1623	310.7072

TABLE.-(Continued.)

Irea.	Circum.
11.4840	293.4254
;6.1631	293.7396
30.8579	294.0537
5.5685	294.3679
18.2947	294.68\%
5.0367	294.9962
39.7944	295.3104
34.5677	295.6245
99.3568	295.93*7
34.1614	296.2436
35.98.21	296.567
13.8183	296.8812
28.6702	297.1953
43.5025	297.5095
58.418	297.8236
73.3202	298.1378
88.235	295.452
03.1654	298.7661
18.1116	299.0723
33.0734	299.3944
48.051	299.7086
63.0443	$300.0<28$
78.0533	300.3369
93.078	300.6511
208.1184	300.9652
223.1745	301.2794
238.2464	301.5936
253.3339	301.9077
268.4371	302.2219
283.5561	302.536
298.6907	302.8502
313.8411.	303.1644
329.0072	303.4785
344.189	303.7927
359.3864	304.1068
374.5996	304.4ン!
389.8 .886	304.7352
405.0732	305.0493
490.3335	$30 \pm .3635$
'435.6095	305.6776
'450.9013	305.9918
466.2087	306.306
4481.5319	306.6:01
7496.8707	306.9363
7512.2:53	307.2484
7527.5956	$307.56 \div 6$
7542.9816	307. 768
$7558.38: 32$	308.1909
7573.80 6	308.5051
7589.2338	308.8192
$7604.68 \cdot 26$	309.1334
7620.1471	309.4476
7635.6:73	309.7617
7651.1933	310.0769
7666.9349	310.395
$768 \% .1623$	310.7072

Diam.	Area.	Circum.	Diam.	Area.	Circum.	Diam.	Area.	Circum.
99.	7697.7054	311.0184	. 4	7760.0347	319.275	. 8	7822.6154	313.5116
. 1	7713.2641	311.3325	. 5	7775.6563	$31 \% .50892$. 9	7838.2998	313.8458
. 2	7728.83336	311.6467	.6	7791.2936	312.9033	100.	7854.	314.16
. 3	7744.4288	311.9608	7	7806.9466	313.2175			

To Compute the Area or Circumference of a Diameter greater than any in the preceding Table.

See Rules, pages 176 and 181.
Or, If the Diameter exceeds 100 and is less than 1001.
Remove the decimai point, and take out the area or circumference as for a Whole Number by removing the decimal point, if for the area, two places to the right ; and if for the circumference, one place

Illustration.-The area of 96.7 is 7344.189 ; hence 10 967 it is 734418.9 ; and the circumference of 96.7 is 303.7927 , and for 967 it is 3037.927 .

TABLE III.

AREAS AND CIRCUMFERENCES OF CIRCLES

FROM 1 TO 50 FEET.
(Advancing by an Inch.)

Diam.	Area.	Circum.	Diam.	Area.	Circum.	Diam.	Area.	Circum.
	Feet.	Feet. Ins.		Feet.	Feet. Ins.		Feet.	Feet. Ins.
1 ft .	. 7854	$315 / 8$	3 ft .	7.0686	95	5 ft .	19.635	15 81/8
1	. 9217	3 45\%	1	7.4666	9 9 81/4	1	20.2947	15 115/8
2	1.069	38°	2	7.875%	9 113/8	2	20.9656	16 23/4
3	1.2271	311	3	8.295\%	10 थ1/2	3	21.6475	16 53/4
4	1.3962	4 21/8	4	8.7265	$10 \quad 55$	4	22. 2.34	$16{ }^{16}$
5	1.5761	$453 / 8$	5	9.1683	10 83\%	5	23.0437	17 1/8
6	1.7671	4 81/2	6	$9.6 \div 11$	10 117/8	6	23.7583	17 31/4
7	1.9689	$4115 / 8$	7	10.0846	113°	7	24.4835	$17.63 / 8$
8	2.1816	$5 \quad 23 / 4$	8	10.5531	11 61/8	8	25.2199	17 95/8
9	2.4059	5 57/8	9	11.0446	11 93/8	9	25.9672	18 3/4
10	2.6398	$59^{\text {a }}$	10	11.5409	$12 \quad 1 / 2$	10	26.7251	18 37/8
11	2.8852	6 21/4	11	12.0481	1.235	11	27.4943	$1871 / 8$
2 ft .	3.1416	6 33/8	4 ft .	12.5664	$12 \quad 63$	6 ft .	28.2744	181018
1	3.4087	6 61/2	1	13.09\%\%	12978	1	29.0649	19 11/4
2	3.6869	6 95/8	2	13.6353	131°	2	29.8668	19 43/8
3	3.976	$7 \quad 3 / 4$	3	14.1862	13 41/8	3	30.6796	19 71/2
4	4.276	$737 / 8$	4	14.7479	13 71/4	4	31.5029	19 105/8
5	4.5869	77	5	15.3206	$13101 / 2$	5	32.3376	20 17/8
6	4.9087	$7101 / 4$	6	15.9043	$14 \quad 15 / 8$	6	33.1831	$2047 / 8$
7	5. 2413	8 13/8	7	16.4986	14 45/8	7	34.0391	20 81/8
8	5.585	$\begin{array}{ll}8 & 41 \\ 8 & 51\end{array}$	8	17.1041	$14{ }^{7} 7 / 8$	8	34.9065	$20111 / 2$
9	5.9395	8 75/8	9	17.720\%	1411	9	35.7847	21 23/8
10	6.3049	$8103 / 4$	10	18.3476	$15 \quad 21 / 8$	10	36.6735	$2151 / 2$
11	6.6813	$9 \quad 17 / 8$	11	18.9858	$15.51 / 4$	11	37.5736	$2183 / 4$

TABLE.-(Continued.)

Diam.	Areat.	Circum.	Dism.	Area.	Circum.	Diam.	Area.	Circum.
	Feet.	Feet. Ins,		Feet.	Feet. Ins.		Feet.	Feet. Ins.
7 ft .	38.4846	$21117 / 8$	7	105.:394	$3641 / 2$	2	$205.2 \% 26$	
1	39.406	223	\bigcirc	106.9013	3685	3	207.3946	51 1/2,
2	40.3388	$2261 / 8$	9	106.4342	$36107 / 8$	4	209.5264	51 33/4
3	41.2×25	$2291 / 4$	10	109.972\%	$37 \quad 23 / 4$	5	211.6703	51 61/2
4	42.236\%	23 3/8	11	111.5319	375	6	213.5251	5110
5	43.242%	$23.21 / 8$	$12 f t$.	113.0976	$\begin{array}{ll}37 & 83\end{array}$	7	215.9896	52 11/8
6	44.1787	$23.63 / 4$	1	114.6732	37 111/2	8	$\because 18.1662$	52 $411 / 4$
7	45.1656	23 97/8	2	116.2607	38185	9	420.3537	${ }_{52}{ }_{5} 73 / 8$
8	46.1638	$2411 / 8$	3	117.859	38 53/4	10	24. 551	5: 101/2
9	47.173	24 41/8	4	119.4674	38 87/8	11	224.7603	5315
10	48.1926	$2481 / 4$	5	121.0876	39 39 $31 /$	17 ft	-226.9806	$\begin{array}{ll}53 & 47 / 8 \\ 53 & 8\end{array}$
11	49.2236	$24103 / 8$	${ }_{6}$	122.7187	$\begin{array}{ll}39 & 31 / 4 \\ 39 & 63\end{array}$	8	231.4525	
$8 f t$.	50.2656 51.3178	$\begin{array}{ll}25 & 11 / 2 \\ 25 & 45\end{array}$	7	124.3598 126.0127	39 63 39 $91 / 8$	3	233.7055	54 11 18
1	61.3178 62.3816	$\begin{array}{lll}25 & 45 \\ 25 & 7 / 8\end{array}$	9	126.6765	40 5	4	235.96-2	$54 \quad 53 /$
3	53.456\%	2511	10	$1 \because 9.3504$	$40 \quad 33 / 4$	5	238.243	548
4	54.5412	26 21/8	11	131.036	$40 \quad 67 / 8$	6	240.5287	$54115 / 8$
5	55.6377	26 51/4	13 ft .	1332.73380	4010	8	$\because 42.8041$	5518
6	56.7451	26838	1	134.4391	41 11/8	8	24.1316	
7	57.8628	$26111 / 2$	2	136.1574	$41 \pm 3 / 8$	9	2	5.) 918
8	58.992	$27 \quad 23 / 4$	3	137.8067	$41.81 / 2$	10	249.7581	
9	60.1321	27 53/4	4	139.626	$41105 / 8$	11	252.11×4	
10	$61.28 \% 6$	279	5	141.3771	$\begin{array}{ll}42 & 15 \\ 48\end{array}$	18 ft.	254.4696	06 $61 / 2$
11	62.4445	28 1/8	6	143.1391	$42 \quad 47 / 8$	1	256.8303	56 58
9 ft .	63.6174	$28 \quad 31 / 4$	7	144.9211	428	3	261.58%	
1	64.8006	$\begin{array}{ll}28 & 63 \\ 98\end{array}$	8	146.6949	$\begin{array}{ll}42 & 111 / 8 \\ 43 & 21 / 4\end{array}$	4	263.9807	57
$\stackrel{1}{3}$	65.9951	2098	10	148.4896 150.2943	$\begin{array}{ll}43 & 51 / 4 \\ 43 & 51 / 2\end{array}$	5	266.3864	5710
3	67.20	29383	11	152.1109	43 c	6	268.8031	5813
5	68.414	$29{ }^{2} 9$	14 ft .	153.93-4	$43113 / 4$	7	271.2293	58 41/2
6	70.8823	29 101/8	1	155,7:58	$44 \quad \div 7 / 8$	8	273.6678	58 75/8
7	72.1309	30 11/4	$\stackrel{2}{2}$	-157.6\%	446	9	${ }^{276.1171}$	¢8 $103 / 4$
8	73.391	30 43/8	3	159.4802	$4491 / 8$	10	278.6761	$\begin{array}{ll}58 & 2 \\ 69 & 51\end{array}$
9	74.662	30 71/2	4	161.353	$44 \quad 1 / 4$	11	${ }^{281.0472}$	$\begin{array}{ll}69 & 51 / 8 \\ 59 & 81 / 4\end{array}$
10	75.9433	30 115/8	5	163.2:;73	45 31/2	19 ft .		5911
11	77.2362	$31.13 / 4$	6	165.1303	45 45 63	1	288.5.49	60 $611 / 2$
10 ft .	78.54	31 31	7	167.0331 168.9479	45 $463 / 4$	2	291.0397	$60 \quad 55$
$\stackrel{1}{2}$	79.854	$\begin{array}{lr}31 & 81 / 8 \\ 31 & 111 / 4\end{array}$	8	168.9479 170.8735	$464^{4 / 8}$	4	293.5641	60 83/4
2	${ }_{81}^{81.1795}$	31 11 32 23 18	10	170.8789 172.8091	$46 \quad 71 / 8$	5	296.1107	60 117/8
4	88.8627	3251%	11	174.75t ${ }^{\text {a }}$	$46111 / 4$	6	298.6483	60 31/8
5	85.2211	$32=5 \%$	15 ft .	176.715	$4711 / 2$	7	301.2054	61
6	86.5903	$32113 / 4$,	17*.6-32	47 45/8	8	303.1747	616
7	87.9697	33 27/8	2	120.663	$\begin{array}{ll}47 \\ 47 & 107 \%\end{array}$	0	308.9448	61 35\%
${ }_{9}^{8}$	89.3608 90.7627	$\begin{array}{ll}33 & 61 / 8 \\ 33 & 91 / 4\end{array}$	4	184.6555	$48 \quad 21 / 2$	11	311.5469	62 63\%
10	92.1749	34 3/8	5	12ti. 6684	$4 \times 51 / 8$	20 ft .	314.16	$6297 / 8$
11	93.5986	$3431 / 2$	6	188.69\%3	18 r1/4	1	316.7824	$6.311 / 8$
11 ft .	95.0334	$34 \quad 65 \%$	7	10.726	$48113 / 8$	$\stackrel{2}{2}$	319.4173	$\begin{array}{ll}63 & 41 / 4 \\ 63 & \end{array}$
1	96.4783	34 93/4	8	$192 . \% 16$	$\begin{array}{lll}49 & 25 / 8\end{array}$	3	$3 \% 2.063$ 3.4 .718.	6:3 6.311%
2	97.9347	$35 \quad 7 / 8$	10	194.*28)	49	5	327.3858	6315
3	99.4	35.418	11	198.973	60	6	330.0643	64 43\%
5	102.3689	3:) 105	16 ft .	$201.06 \% 4$	$51131 / 8$	7	33:2.7522	$64 \quad 77 / 8$
6	103.8691	$36 \quad 11 / 2$	1	$\because 03.1615$	$50 \quad 61 / 4$	8	335.4 $2 \cdot 5$	64 111/2

TABLE.-(Continued.)

ea.	Circum.
et.	Feet. Ins.
2\% 26	50 95/8
3946	51 1/2
5264	$5133 / 4$
6703	51 61/2
$\bigcirc 251$	5110
9896	52 11/8
166	$5241 / 4$
3537	$52 \quad 73 / 8$
551	$5 \% 101 / 2$
7603	$5315 / 8$
9806	53 47/8
$\because 105$	538
4525	$53111 / 8$
. 7055	$54 \quad 21 / 8$
.96-2	$54 \quad 53 / 8$
$\therefore 43$	54 81/2
. 5287	54 115/8
. 8241	$55 \quad 27 / 8$
. 1316	55
. 45	$55.91 / 8$
. 7581	$56 \quad 1 / 4$
.11*4	56 31/2
. 4696	56 61/2
. 8303	56 95/8
'.20:3	57 7/8
. 5872	574
: 98807	57 71/8
i.3864	$57101 / 4$
3.8031	$58 \quad 13 / 8$
. 2293	58 51/2
3.6678	58 75/8
3. 1171	$58103 / 4$
3.5761	$58 \quad 2$
1.0472	$69 \quad 51 / 8$
3.5294	59818
3.021	59 111/2
3.5249	60 21/2
1.0397	60 55/8
3.5641	$60 \quad 83 / 4$
6.1107	60 117/8
8.6483	60 31/8
1.2054	61 61/4
3. 747	61 61/2
6.355	61 1/2
8.9448	61 35/8
1.5469	62 63/4
4.16	$6297 / 8$
6.7824	$6: 1118$
9.4173	63 411/4
$\because 2.063$	63.73
4.718\%	$63111 \frac{1}{2}$
17.3858	6315
30.0643	64 43/4
32.7522	64 -7/8
$35.45 \div 5$	64 111/2

TABLE.-(Continued.)

Diam.	ea.	Circum.	Diam.	Area.	Circum.	Diam.	Area.	Circum.
	Feet.	Fe		Feet.	Feet. Ins.		Fee	Feet
	934.8223	108 45/8	1	1199.7195	122 91/2	8	1497.5821	137
7	939.34:1	$108 \quad 73 / 4$	2	12.04.8244	123 1/2	9	1503.3046	$\begin{array}{ll}137 & 51 / 4 \\ 137 & 83\end{array}$
8	943.8753	$108107 / 8$	3	1209.9577	123 35%	10	${ }_{1514}^{1509.0348}$	$\begin{array}{lll}137 & 83 \\ 137 & 115\end{array}$
9	948.4195	$109{ }^{2}$		1215.0	$\begin{array}{ll}123 & 63 \\ 1.3 \\ 97\end{array}$	1	1514.7791 1520.5344	$\begin{array}{lll}137 & 115 / 8 \\ 138 & 23\end{array}$
10	952.972	$10951 / 8$	5	1220.2542	$\begin{array}{ll}123 & 97 / 8 \\ 124 & 118\end{array}$		1520.53971	
111	${ }_{9}^{957.538}$	109 818 109 11^{13} 10	$\stackrel{6}{7}$	${ }_{1}^{1225.4203} 1230.5943$	$\begin{array}{ll}124 & 118 \\ 124 & 41 / 4 \\ \end{array}$	$\stackrel{1}{2}$	1526.2971	[138 ${ }^{138} \mathrm{~S}^{57 / 8}$
35 ft 1	962.115 966.770	$\begin{array}{lll}109 & 113 \\ 110 & 25 \\ 110\end{array}$	8	1230.5943		2	1537.8622	13918
1	971.29	$110 \quad 53.4$	9	1240.981	124101%	4	1543.6578	$13931 / 4$
3	975.908:	11087	10	1246.1878	$125 \quad 15$	5	1549.4776	${ }_{13}^{139} 9338$
4	980.526	111	11	1251.4084	$125 \quad 13 / 4$	${ }_{7}$	${ }_{1561.165}^{155}$	139 140 18
5	985.1579	$\begin{array}{ll}111 & 31 / 8\end{array}$	40 ft .	12.56 .64	$125{ }^{125} 11^{7 / 8}$		1561.1165	lrr 140
7	9c9.200:	$\begin{array}{ll}111 & 61 \\ 111 & 93\end{array}$		$1 \begin{aligned} & 1261.8794 \\ & 1267.1327\end{aligned}$		8	15672.8	140
8	$99+.4505$ 999.1151	1118	3	${ }_{12722.397}$	126 53 18	10	1578.67	$141101 / 8$
9	1003.790	$1123{ }^{12}$		1277.669	$12681 / 2$	11	1584.54	$14111 / 4$
10	1008.4736	$112 \mathrm{67} / 8$		128\%.95	126115%	45 ft .	1590.435	141 438
11	1013.1705	11210	6	1288.25	$127 \quad \because 3 / 4$	1	1596.3286	
36 ft .	1017.878	113 11/8		1293.5572	$\begin{array}{ll}127 & 57 / 8 \\ 127\end{array}$	2	1602.2366	141 103 142 178
1	1022. 5944	1138	8	12988.876			1608.155	${ }_{142}^{142}{ }^{17 / 8}$
2	1027.324 1032.0646	113 73 113 105 18		1304.2057 1305.5433	$128{ }^{128} 8{ }^{1 / 4}$	5	1614.0819	$\begin{array}{ll}142 & 5 \\ 142 & 818\end{array}$
3	1032.0646 1036.8134	$113105 / 8$	10	1305.5433 1314.8949	$\begin{array}{ll}128 & 33 / 8 \\ 128 & 61 / 2\end{array}$	6	1625.97	142 1118
5	1041.5758	114	41 ft .	13:0.2574	128 95	7	1631.9334	$1 \begin{array}{ll}143 & 23\end{array}$
6	1046.3491	1148	1	1325.6\%76	129 3/4	8	1637.9068	$14381 / 2$
7	1051.130	114 111/8	2	1331.0119	12937	10	1643.8912	143 1438
	105. $9: 52$	$115 \quad 21 / 4$		$13336.40: 1$	129 1 7		1649.881	$\begin{array}{lll}14.3 & 1178 \\ 144 & \end{array}$
	1060.731	115		1341.8101	$\begin{array}{ll}129 & 101 \\ 130 \\ 138\end{array}$		1600.8092 16.1 .9064	
11	106i.54:	1150	${ }_{6}$	1347.2271 1352.6551	$\begin{array}{lll}130 & 13 / 8 \\ 130 & 41 / 2\end{array}$	${ }^{467} 1$	1606.900 1667.930	$\begin{array}{ll}144 & 61 / 8 \\ 144 & 91 / 4\end{array}$
37 ft .	1076.21	$11627 / 8$		i358.0908	$130 \quad 75$,	1673.969	$145 \quad 3 / 8$
	10<0.0594	$116 \quad 6$		1363.5406	$130103 / 4$		1680.019	
2	1084.9201	1168	11	1369.0012	$\begin{array}{lll}131 & 17 / 8\end{array}$		1686.0 1692.1	145
3	10~9.7915 10946711	$\begin{array}{ll}117 & 1 / 4 \\ 117 & 314\end{array}$	11	1374.469% $1379.95 \% 1$	$\begin{array}{lll}131 & 5 \\ 131 & 81 / 8\end{array}$	6	1698.2311	146 118
5	1099.564	117 61/2	$42 f$ t.	1385.4456	$131113 / 8$	7	1704.321	$\begin{array}{ll}146 & 418\end{array}$
${ }^{6}$	1104.468	117 95\%		1390.24	13221%		1710.4254	146
7	1109.3×1	1183		1396.4619	132 55		1716.5407	$146103 / 8$
8	1114.8071	1184	3	1401.988	$13{ }^{83}$	11	1722.6634	$14711 / 2$
9	1119.244	118 71/8		1107.5219	$132117 / 8$		1728.900	
10	1124.1891	$\begin{array}{lll}118 & 101 / 4\end{array}$		1413.6698 1418.6 .87	1333		1734.9486	
3-ft.	1129.147	$\begin{array}{ll}119 & 138 \\ 119 & 41 / 8\end{array}$	7	$14 / 8.62952$	$\begin{array}{ll}133 & 918 \\ 13\end{array}$		1747.273	14818
,	i139.095	119 75\%	8	1424.7خ59	134 1/2	3	1753.4545	148 $51 / 4$
2	1144.0s6	1191038		1435.3675	134 35 18		1759.6426	1488838/8188
3	1149.089	$1 \because 0{ }^{2}$	11	1440.96	$\begin{array}{ll}134 & 63 \\ 134 \\ 97\end{array}$	6	${ }_{1772.0587}^{1765.845}$	
	1154.09,7	$\begin{array}{ll}120 & 518 \\ 120 & 53\end{array}$	43 ft .	1446.5802 1452.2046	$\begin{array}{ll}134 & 97 / 8 \\ 135 & 1\end{array}$	7	1778.2795	
6	1164.591	1201138	1	${ }_{1457.8365}$	$135181 / 8$	8	1784.5148	149
7	1169.202	$121 \quad 21 / 2$	2	1463.4827	$13581 / 4$	9	1790.761	150
8	1174.259	$121 \quad 5 \%$	3	1469.1397	$135101 / 2$	10	1797.014	150
	1179.3271	$12183 /$		1474.8044	$13615 / 8$	48 ft.	1803.2826	150
10	1184.403	$1: 1117 / 8$		1480.4833	1336		1809.5616 1815.8477	
11	1189.492	122 31/8	7	14~6	$1361^{77 / 8}$	1	1815.8477 1822.1485	151

TABLE.-(Continued.)

Area.	Circum.	Diam.	Area.	Circum.	Diam.	Area.	Circum.	Diam.	Area.	Circum.
Feet.	Feet. Ins.		Feet.	Feet. Ins.		Feet.	Feet. Ins.		Feet.	Feet. Ins.
497.5821		3	1828.4602	$151 \quad 67 / 8$	11	1879.3355	153818		1930.9188	$15591 / 4$
503.3046	137 1318	4	$18: 34.7791$ 1841.17 .27	$\begin{array}{ll}151 & 1018 \\ 152 \\ \text { it }\end{array}$	49 ft .	1885.7454 1892.1724	$153111 / 4$	8	1937.3159	$\begin{array}{ll}156 & 1 / 8 \\ 156 & 31 / 2\end{array}$
509.0348	$\begin{array}{lll}137 & 83 / 8 \\ 137 & 115\end{array}$	6	1847.4571	$\begin{array}{ll}152 & 1 \\ 152 \\ 43 / 8\end{array}$	$\stackrel{1}{2}$	1898.5041	154 51.8	10	1950.4392	156
	$\begin{array}{lll}137 & 11 / 8 \\ 138 & 23\end{array}$	7	18:3.80¢7	$15271 / 2$	3	1905.0367	15485	11	1956.9691	$15693 / 4$
526.2971	138 578	$\stackrel{8}{9}$	1860.175	152105%	4	1911.4965	$154117 / 8$	50 ft .	1963.5	157 7/8
532.0742	$138{ }^{18}$	10	1866.55 ± 1	15: $13 / 4$	5	1917.9609	$155 \quad 27 / 8$			
537.8622	1398	10	1872.9365	153 37/8	6	1924.4263				
543.6578	$13931 / 4$									
549.4:76	139 638									
555.2883	$\begin{array}{ll}139 & 95 \\ 140\end{array}$,			
566.9591	$\begin{array}{lll}140 & 37 / 8\end{array}$					131				
572.8125	$140 \quad 71 / 2$									
578.6735 584.5488	14141018		ABLE O	F THE	IDES	OF SQU	ARES-EQ	UAL	IN ARE	TO
590.435	14143									

TABLE.-(Continued.)

Diam.	Side of Sq.								
36	31.9042	49.	43.4251	62.	54.9461	75.	66.467		77.98\%
.1/4	32.1257	.1/4	43.6467	.1/4	55.1676	.1/4	66.68866	.1/4	78.2095
	32.3473	$1 /$	43.868%	1	55.3892		66.9104	. $1 / 2$	78.4316
4	3.2.5688		44.0898		55.6107		67.1312	3/4	78.65:6
	3.2.7904		44.3113	63.	55.83\%3	76.	62.3532	89.4	78.8.42
4	33.0112	$.1 / 4$	44.5329	4	56.0538	1/4	67.0748	.1/4	79.095 \%
2/2	33.2335	$1 /$	44.7545		56.2754	2	67.7964	.1/2	79.3173
.38.3/4	33.4551		44.976		56.497		6*.0179		79.5389
38.	33.6\%66		45.1976	64.	56.7185		68.2395	90	79.7604
4	33.898\%	4	+5. $\cdot 9$!	.1/4	56.9401	-1/4	68.461	. $1 / 4$	$79.98{ }^{\circ}$
2/2/2	34.1197	2,	45.6407		57.1616	1/2	68.68\%\%	.1/2	80.2035
$39^{.3 / 4}$	34.3413		45.862%		57.3832		68.904 :	$3 / 4$	$80.4 \% 51$
	34.5623		46.0838	65.	57.6047	78	69.1257	91.	80.6467
.1/4	31.7884	4	46.3054	.1/4	57.8\%63	. $1 / 4$	69.3473	1/4	-0.868\%
	35.006		$46.5 \div 69$		58.0479		$69.56 \cdot 8$		81.0898
	35.2275	-3.3/4	46.7485		58.2694	4	69.7904	/4	81.3113
	35.4491 35.6706	53.	46.97	66.	58.491		70.0119	92.	81.53399
	35.6706 25.89%		47.1916 474131	.1/4	58.7125		i1) $2: 335$	14	81.7544
	36.1137		47.5347		08.9341 09.1556		[0.459 00.6766		1.976
	$36.33 \overline{5} 3$		47.8562	67	59.3772		70.8981		$8 . .4191$
	36.5569	. $1 / 4$	4×. 778	.1/4	59.5988		71.1197	. 1	82.6407
	36.7784		48.2994		59×203	2	71.3413		8\% 86
	37.	55. ${ }^{\text {c/4 }}$	48.5009	. $3 / 4$	60.0419		71. 6.08	3/4	$83.0 \sim 38$
	37.2215		48.74:5	68.	60.2634		-1.7844	94.	83.3053
	37.4431	.1/4	48.964	14	60.48%		\%.0059	/4	-3.5:269
	37.6549		49.1856	.1/2	60.706 .3		- $\because 2 \pi$	2	3.7484
$43^{.3 / 4}$	$37.886{ }^{3}$	5	49.4071	$\left(60^{.3 / 4}\right.$	60.9281	.3/4	-24:1	.3/4	83.970
43.	38.1078	56.	49.6:887	6.9	61.1497	*	- 2.6316	95.	C4.1916
	$38.329: 3$ 38.5509 8.694	.1/4	49.603	4	61.371:	.1/4	- \because - 01	.1/4	84.4131
	38.60 .09 38.75 .4		50.0718 $50.29: 34$		61.69\%		7..113i		84.6347
44.	38.994	67.	$50.514!$	70.	(6.3.0359		- 3.3 .33 .38	96.	-4,8.96\%
	39.2155		50.7365	.1/4	6\%.2574	-1/4	73 37×4	.1/4	$85 . \because 993$
	39.437:		50.95 x		62. 179	. $1 / 2$	73.,9:49		8.).5:09
	39.6507	4	51.1796	. 4	6^{6}. 70065	. $3 / 4$	74.201.		$85.74 \cdot 5$
	39.8802	58.	51.4012	71.	$6 \because .9 \cup 21$	X4.	74.4431	97	85. 9616
	40.10 i 8	. $1 / 4$	51.6 ± 27	.1/4	6:3.11:3i		74.6647		86.185
	$40.3 \times 3: 3$		51.8443		6:3.365:		$74 . \sim 86^{\circ}$		86.4071
	40.5449		-2.0658		¢i.: $5 \times 6 \times$		75.1077		86.6289
46	40.7664	59.	$5 \because .2874$	7%.		.	75.3 293	98.	86.8502
	40.958		52.50-9	$1 / 4$	64.6393	-1/4	75.5508	.1/4	87.07 i 8
	41.2096		5.2.3:305		64.25: 1	2	75.7724		87.2933
	41.4311		$5 \cdot .9521$	4	64.47:30	$3 / 4$	75.9934		87.5449
47	41.9527	60.	53.1736	73.	64. 91		76.2155	99.	87.7364
	41.874.	4	53.3952		64.9 itio		76.4371	. $1 / 4$	87.958
	42.0958		5.3 .6163	.1/2	65.1372	2	76.65-6	/2	88.1796
.3/4	4.3173		53.83×3	. 3	(5.).359.	4	\%6.s502		88.4011
48.	42.58:39	61.	54.0598	74.	63.580)		77.1017	100.	88.6227
.1/4	4. 7604 $4 \times .9 \times 2$		54.2814 34.503	. $1 / 1$	65. 80283		77.323:3	.1/4	$88.844{ }^{\text {2 }}$
-1/4	4. 9×2 43.2036	-34	54.503 64.7245	. 3	$66.02: 39$ 66.2455	1/2	77.5449	.1/3	29.065 ${ }^{8}$
. $1 / 4$	43.2036	. $1 / 4$	14.7245	. $3 / 4$	66.2455	.3/4	77.7664	. $3 / 4$	89.2874

TABLE OF THE LENGTHS OF CIRCLAR ARCS.

The Diameter of a Circle assumed to be Unity, and divided into 1000 equal Parts.

H'ght.	Length.								
. 1	1.02645	. 148	1.05743	. 196	1.09949	. 244	1.15186	. 292	1.21381
. 101	1.02698	. 149	1.05819	. 197	1.10048	$\therefore 45$	1.15308	.293	1.2152
. 102	1.0275%	. 15	1.05896	. 198	1.10147	. 246	1.15429	. 294	1.21658
. 103	$1.0 \div 806$. 151	1.05973	. 199	1.10247	. 247	1.15549	. 295	1.21794
. 104	1.0286	. 152	1.06051	. 2	1.10348	. 248	1.1567	. 296	1.21926
. 105	1.02914	. 153	1.0613	. 201	1.10447	. 249	1.15791	. 297	1.22061
. 106	1.0297	. 154	1.06209	$\therefore 02$	1.10548	. 25	1.15912	. 298	1.22203
. 107	1.03026	. 155	1.06288	. 203	1.1065	. 251	1.16033	. 299	1.22347
. 108	$1.030 ¢ 2$. 156	1.06368	. 204	1.10752	.252	1.16157	. 3	1.22495
. 109	1.03139	. 157	1.06449	.205	1.10855	. 253	1.:6279	. 301	1.22635
. 11	1.03196	. 158	1.0653	. 206	1.10958	254	1.16402	. 302	1.22776
. 111	1.03254	. 1.59	1.06611	207	1.11062	$\therefore 25$	1.16526	. 303	1.22918
. 112	1.03312	. 16	1.06693	. 208	1.11165	. 256	1.16649	. 304	1.23061
. 113	1.03371	. 161	1.06775	. 209	$1.1126{ }^{9}$	2\% 7	1.16774	. 305	1.23205
. 114	1.0343	. 162	1.06×58	. 21	1.11374	$\therefore 8$	1.16899	. 306	1.23349
. 115	1.0349	. 163	1.06941	. 211	1.11479	. 259	1.17024	. 307	1.23494
. 116	1.03551	. 164	1.07025	.212	1.11584	$\therefore 26$	1.1715	. 308	1.23636
. 117	1.03611	. 165	1.07109	. 213	1.1169\%	261	1.17275	. 309	1.2378
. 118	1.03672	. 166	1.07194	. 214	1.11796	$\therefore 62$	1.17401	. 31	1.23921
. 119	1.03734	. 167	1.07279	. 215	1.11904	. 263	1.17527	. 311	1.2407
. 12	1.03797	. 168	1.07365	. 216	1.1:011	. 264	1.17555	. 312	1.24216
. 121	1.0386	. 169	1.07451	. 217	1.121 i8	. 265	1.17784	. 313	1.2436
. 122	1.03923	. 17	1.07537	. 218	1.12225	$\therefore 66$	1.17912	. 314	1.24506
. 123	1.03957	. 171	1.07624	. 219	1.12334	. 267	1.1804	. 315	1.24654
. 124	1.04051	. 172	1.07711	. 22	1.12445	. 268	1.1816:	. 316	1.24801
. 125	1.04 i 16	. 173	1.07799	. 221	1.12556	. 269	$1.18 \% 94$. 317	1.24946
. 126	1.04181.	. 174	1.07888	. 222	1.12663	. 27	1.18428	. 318	1.25095
. 127	1.04247	. 175	1.07977	. 223	1.12\%74	. 271	1.18557	. 319	1.25243
. 128	1.04313	. 176	1.08066	. 224	1.12885	. 27.	1.18688	. 32	1.25391
. 129	1.0438	. 17%	1.08156	. 225	1.12997	. 273	1.18819	. 321	1.25539
.13	1.04447	. 178	1.08946	. 226	1.13108	. 274	1.18969	. 322	1.25686
. 131	1.04515	. 179	1.08337	. 227	1.13219	. 275	1.19082	. 323	1.25836
. 132	1.04584	. 18	1.08428	. 228	1.13331	. 276	1.19214	. 324	1.25987
. 133	1.04652	. 181	1.08519	. 229	1.13444	. 27%	1.19345	. 325	1.26137
. 134	1.04722	. 182	1.08611	. 23	1.13557	. 278	1.19477	. 326	1.26286
. 135	1.04792	. 183	1.08704	. 231	1.13671	.279	1.1961	. 327	1.26437
. 136	1.04862	. 184	1.08797	. 232	1.13786	. 28	1.19743	. 328	1.26588
. 137	1.04932	. 185	1.0889	. 233	1.13903	. 201	1.19887	. 329	1.2674
. 138	1.05003	. 186	1.08984	. 234	1.1402	. 282	1.20011	. 33	1.26892
. 139	1.05075	. 187	1.09079	. 235	1.14136	. 283	1.20146	. 331	1.27044
. 14	1.05147	. 188	1.09174	. 236	1.14247	. 284	1.20282	. 332	1.27196
. 141	1.0522	. 189	1.09269	. 237	1.14363	. 285	1. 20419	. 333	1.27349
. 142	1.05293	. 19	1.09365	. 238	1.1448	. 286	1.20558	. 334	1.27502
. 143	1.05367	. 191	1.09461	. 239	1.14597	. 287	1. 20696	. 335	1.27656
. 144	1.05441	. 192	1.09557	. 24	1.14714	.28 ${ }^{5}$	1,208\%	. 336	1.2781
. 145	1.05516	. 193	1.09654	. 241	1.1483 i	. $2-9$	1.20967	. 337	1.27964
. 146	1.05591	. 194	1.09752	. 242	1.14949	29	1.21:20	. 338	1.28118
. 147	1.05667	. 195	1.0985	. 243	1.15067	$\therefore 91$	1.21239	. 339	1.28273

TABLE.-(Continued.)

H'ght.	Length.								
. 34	1.28428	. 373	1.3373	. 406	1.39372	. 439	. 15327	. 472	1.51571
. 341	1.28583	. 374	1.33896	. 467	1.39548	. 44	1.45512	. 473	1.51764
. 342	1.28739	. 375	1.34063	. 408	$1.397 \cdot 4$. 441	1.45697	. 474	1.51958
. 343	1.28895	. 376	$1.342 \% 9$. 409	1.399	. 442	1.45883	. 475	1.52152
. 344	1.29052	. 377	1.34396	. 41	1.40077	. 443	1.46069	. 476	1.52346
. 345	1.29209	. 378	1.34563	. 411	1.40254	. 444	1.46255	. 477	1.52541
. 346	1.29366	. 379	1.34731	. 412	1.40432	. 445	1.46441	. 478	1.52736
. 347	1.29523	. 38	1.34899	. 413	1.406	. 446	1.46628	. 479	1.52931
. 348	1.2968 !	. 381	1.35068	. 414	1.40788	. 447	$1.46 \% 15$. 48	1.53126
. 349	1.29839	. 382	1.35237	. 415	1.40966	. 448	1.47002	.481	1.53322
. 35	1.29997	. 383	1.35406	. 416	1.41145	. 449	1.47189	. 482	1.53518
. 351	1.50156	. 384	1.35575	. 417	1.41324	. 45	1.47377	. 483	1.53714
. 352	1.30315	. 385	1.35744	. 418	1.41503	. 451	1.47565	. 484	1.5391
. 353	1.30474	. 386	1.35914	. 419	1.41682	. 452	1.47753	. 485	1.54106
. 354	1.30634	. 387	1.36084	. 42	1.41861	. 453	1.47942	. 486	1.54302
. 355	1.30794	. 388	$1.36 \% 54$. 421	1.42041	. 454	1.48131	. 487	1.54499
. 356	1,30954	. 389	1.36425	. 422	1.42222	. 455	1.483%	. 488	1.54696
. 357	1.31115	. 39	1.36596	. 423	1.42402	. 456	1.48509	. 489	1.54893
. 358	$1.31: 276$. 391	1.36767	. 4.4	1.42583	. 457	1.48699	. 49	1.5509
. 359	1.31347	. 392	1.36939	. 425	1.42764	. 458	1.48809	. 491	1.55288
. 36	1.31599	. 393	1.37111	. 426	1.42942	. 459	1.49079	. 492	1.55486
. 361	1.31761	. 394	$1.37 \cdot 283$. 427	1.43127	. 46	1.49268	. 493	1.55685
. 362	1.31923	. 395	1.37455	. 428	1.43309	. 461	1.4946	. 494	1.55854
. 363	1.32086	. 396	1.37628	. 429	1.43491	. 462	1.49651	. 495	1.56033
. 364	1.32249	. 397	1.37801	. 43	1.43673	. 463	1.49842	. 496	1.56282
. 365	1.32413	. 398	1.37974	. 431	i. 43856	. 464	1.50033	. 497	1.56481
. 366	1.32577	. 399	1.38148	. 432	1.44039	. 465	$1.502 \cdot 4$. 498	1.5668
. 367	1.32741	. 4	1.38322	. 433	1.44222	. 466	1.50416	. 499	1.56879
. 368	1.:32905	. 401	1.38496	. 434	1.44405	. 467	1.50608	. 5	1.57079
. 369	1.33069	. 402	1.38671	. 435	1.44589	. 468	1.508		
. 37	1.33234	. 403	1.38846	. 436	1.44773	. 469	1.50992		
. 371	1.33399	. 404	$1.390 \% 1$. 437	1.44957	. 47	1.51185		
. 372	1.33564	. 405	1.39196	. 438	1.45142	. 471	1.51378		

To Ascertain the Length of an Are of a Circle by the preceding Table.

Rule.-Divide the height by the base, find the quotient in the column of heights, and take the length of that height from the next righthand column Multiply the length thus obtained by the base of the arc, and the product will give the lenth of the arc.

Example.- What is the length of an arc of a circle, the base or span of it being 100 feet, and the height 25 feet?
$25 \div 100=.25$; and .25 per table,$=1.15912$, the length of the base, which, being multiply by $100=$ 115.912 feet.

Note.-When, in the division of a height by the base, the quotient has a remainder after the third place of decimals, and great accuracy is required

Take the length for the first three figures, subtract it from the next following length; multiply the remainder by the said fraction al remander, add the product to the first length, and the sum will be the length for the whole quotient

Example. - What is the length of an arc of a circle, the base of which in 35 feet, and the height or versed sine 8 feet?
$8 \div 35=.2285714$; the tabular length for $.228=1.13331$, and for $.229=1.13444$, the difference between which is .00113 . Then $.5714 \times .00113=.000645682$.

Hence

and
$.228=1.13331$.
the arc is to be multiplied; and $1.133955682 \times 35=39.68845$ feet .

TABLE VII.

TABLE OF THE LENGTHS OF SEMI-ELLIPTIC ARCS.
The Transverse Diameter of an Ellipse assumed to be Unity, and divided into 1000
equal Parts.

H'ght.	Length.								
. 1	1.04162	. 148	1.09119	. 196	1.14531	. 244	1.2038	. 292	1.26601
. 101	1.0426\%	. 149	1.0922x	. 197	1.14646	. 245	1.20506	. 293	1.26734
. 102	1.04362	. 15	1.0933	. 198	11476	. 246	1.20632	. 294	1.26867
. 103	1.04462	. 151	1.09148	. 199	1.14888	. 247	1.20758	. 295	1.27
. 104	1.04562	. 152	1.09558	2	1.15014	. 248	1.20884	. 296	1.27133
. 105	1.04662	. 153	1.09669	. 201	1.15131	. 249	1.2101	. 297	1.27267
. 106	1.04762	154	.i. 0978	. 202	1.15248	. 25	1.21136	. 298	1.27401
. 107	1.04862	155	1.09891	. 203	1.15366	. 251	1.21263	. 249	1.27535
. 108	1.0496\%	. 156	1.1000\%	. 204	1.154×4	. 252	1.2139	. 3	1.27669
. 109	1.05063	. 157	1.10113	. 205	1.15602	. 253	1.21517	. 301	1.27803
. 11	1.05164	. 158	$1.102 \% 4$. 206	1.15%	. 254	1.21644	. 302	1.27937
. 111	1.05265	. 159	1.10335	. 207	1.15838	. 255	1.21772	. 303	1.28071
. 112	1.05366	. 16	1.10447	. 208	1.15957	. 256	1.219	. 304	1.28205
. 113	1.05467	. 161	1.1056	. 209	1.16076	. 257	1.22028	. 305	1.28339
. 114	1.05568	.162	1.10679	. 21	1.16196	. 258	1.22156	. 306	1.28474
. 115	1.05669	. 163	1.10784	. 211	1.16315	. 259	1.22284	. 307	1.28609
. 116	1.0577	. 164	1.10896	. 212	$1.164: 36$. 26	1.22412	. 308	1.28744
. 117	1.05872	. 165	1.11008	. 213	1.16557	. 261	1.22541	. 369	1.28879
. 118	1.05974	. 166	1.111\%	. 214	1.16678	. 262	1.2267	. 31	1.29014
. 119	1.06076	. 167	1.11232	. 215	1.16799	. 263	1.22799	. 311	1.29149
. 12	1.06178	. 168	1.11344	. 216	1.1692	. 264	1.22928	. 312	1.29285
. 121	1.0628	. 169	1.11456	. 217	1.17041	. 265	1.23057	. 313	1.29421
. 122	1.06382	. 17	1.11569	. 218	1.17163	. 266	1.23186	. 314	1.29557
. 123	1.06484	. 171	1.11682	. 219	1.17285	. 267	1.23315	. 315	1.29603
. 124	1.06586	. 172	1.11795	.22	1.17407	.268	1.23445	. 316	1.29829
. 125	1.06689	. 173	1.11908	. 221	$1.175 \% 9$. 269	1.23575	. 317	1.29965
. 126	1.06792	. 174	1.12021	. 222	1.17651	. 27	1.23705	. 318	1.30102
. 127	1.06895	. 175	1.12134	. 223	1.17274	.271	1.23835	. 319	1.30239
. 128	1.06998	. 176	1.12:47	. 224	1.17897	.272	1.23966	. 32	1.30376
. 129	1.07001	. 177	1.1236	. 225	1.180%	. 273	1.24097	. 321	1.30513
. 13	1.07904	. 178	1.12473	. 226	1.18143	. 274	1.24228	. 322	1.3065
. 131	1.07308	. 179	1.12586	.227	$1.18 \% 66$. 275	1.24:359	. 323	1.30787
. 132	1.07412	. 18	1.12699	. 228	1.1839	. 276	1.2448	. 324	1.30924
. 133	1.07516	. 181	1.12813	. 229	1.18514	. 277	1.24612	. 325	1.31061
. 134	1.07221	. 182	1.12927	. 23	1.18638	. 278	1.24744	. 326	1.31198
. 135	1.07726	. 183	1.13041	. 231	1.18762	. 279	1.24876	. 327	1.31335
. 136	1.07831	. 184	1.13155	.232	1.18886	. 28	1.2501	. 328	1.31472
. 137	1.07937	. 185	1.13269	. 233	1.1901	. 281	1.25142	. 329	1.3161
. 138	1.08043	. 186	1.13383	. 234	1.19134	. 282	1.252\%4	. 33	1.31748
. 139	1.08149	. 187	1.13497	.235	1.19258	. 283	1.25406	. 331	1.31886
. 14	1.08255	. 188	1.13611	. 236	1.19382	. 284	1.25538	. 332	1.32024
. 141	1.08362	. 189	1.13726	. 237	1.19506	. 285	1.2567	. 333	1.32162
. 142	1.08469	. 17	1.13841	. 238	1.1963	. 286	1.25803	. $334{ }^{\circ}$	1.323
. 143	1.08576	. 191	1.13956	. 239	1.19755	. 287	1.25936	. 335	1.32438
. 144	1.08684	. 192	1.14071	. 24	1.1988	. 288	1.26069	. 336	1.32576
. 145	1.08792	. 193	1.14186	. 241	1.20005	. 289	1.26202	. 337	1.32715
. 146	1.08901	. 194	1.14301	. 242	1.2013	. 29	1.26335	. 338	1.32854
. 147	1.0901	. 195	1.14416	. 243	1.20255	. 291	1.26468	. 339	1.32993

TABLE.-(Continued.)

H'ght.	Length.								
. 34	1.33132	. 396	1.412 !	.45\%	1.4961*	. 508	1.58319	. 564	1.67087
. 341	1.3327\%	. 397	1.41357	. 453	1.49771	. 509	1.58474	. 565	1.67245
. 342	1.33412	. 398	1.41504	454	1.49924	. 51	158629	. 566	1.67403
. 343	1.33552	. 399	1.41651	455	1.50077	. 511	1.58784	. 567	1.67561
. 344	1.33692	. 4	1.41798	456	1.5023	512	1.5894	. 568	1.67719
. 345	1.33833	. 401	1.41945	. 457	1.50383	. 513	1.59096	. 569	1.67877
. 346	1.33974	. 402	1.42092	. 458	i. 50536	. 514	1.5925:	. 57	1.68036
. 347	1.34115	. 403	$1.422: 39$	459	1.50689	. 515	1.59408	. 571	1.63195
. 348	1.34256	. 404	1.42386	. 46	1.50842	516	1.59564	. 572	1.68354
. 349	1.34397	. 405	1.42533	. 461	$1.50 \div 96$. 517	1.597\%	. 573	1.68513
. 3	1.34539	. 406	1.42681	. 462	$1.5!15$. 518	1.59876	. 574	1.68672
. 351	1.34681	. 407	1.42×29	463	1.51304	. 519	1.60032	. 575	1.68831
. 352	1.34823	. 408	1.42977	464	1.5i45	.5:	160188	. 576	1.6899
. 353	1.34965	. 409	1.431频,	465	1.51612	. 521	1.60344	. 577	1.69149
. 354	1.35108	. 41	$1.43: 73$	466	1.51766	.52\%	1.505	. 578	1.69308
. 355	1.35251	. 411	$1.424 \cdot 1$	467	1.519:	. 523	1.60636	. 579	1.69467
. 356	1.35394	. 412	1.42569	468	1.52074	. 224	1.6081\%	. 58	$1.696 \% 6$
. 357	1.35537	. 413	1.43718	469	1.5 ± 229	$5 \% 5$	1.60968	. 581	1.69785
. 358	1.3568	. 414	1.43867	47	$1.525-4$. 226	1.611 .4	. 582	1.39945
. 359	1.35823	. 415	1.44016	471	$1.5 \% 5.39$. 527	1.61:8	. 583	1.70105
. 36	1.35967	. 416	1.44165	47\%	$1.5 \% 691$	528	1.61436	. 584	1.70264
. 361	1.36111	. 417	1.44314	. 473	1.52849	. 529	161592	. 585	1.70424
. 362	1.36255	. 418	1.44463	.474	153004	. 53	1.61748	. 586	1.70584
. 363	1.36399	. 419	1.44613	. 475	1.53159	. 531	1.61904	. 587	1.70745
. 364	1.36543	. 42	1.44763	. 476	1.53314	5 5	1.6206	. 588	1.70905
. 365	1.36688	. 421	1.44913	. 477	1.53469	. 533	1.62216	. 589	1.71065
. 366	1.36833	.42.	1.45054	47	1.53625	. 534	1.6237\%	. 59	1.71295
. 367	1.36978	. 423	1.45214	.479	153781	.535	1.62528	. 591	1.71286
. 368	1.37123	.4.4	1.45364	. 48	1.53937	. 536	$1.6: 6 \times 4$. 592	1.71546
. 369	1.37268	. 425	1.45515	. 481	1.54093	. 537	1.6284	. 593	1.71707
. 37	1.37414	. 426	1.45665	. ${ }^{\circ} 2$	1.54249	. 538	1.62996	. 594	1.71868
. 371	1.37662	. 427	1.45815	483	154405	. $5: 39$	1.63152	. 595	1.72029
. 372	1.37708	.428	1.45966	. 484	154561	. 54	1.63309	. 596	1.7219
. 373	1.37854	. 429	1.46167	. 485	164718	. 41	1.63 .46 .5	. 597	1.7235
. 374	1.38	. 43	1.46268	486	$1.548 \% 5$. 542	$1636 \% 3$. 598	1.\%2511
. 375	1.3×146	. 431	1.46419	. 487	1.55032	. 543	1.6378	. 549	1.72672
. 376	1.38292	.43:	1.4657	. 488	1.55189	. 544	1.63937	. 6	1.72833
. 377	1.38439	. 433	1.46721	. 489	1.55346	. 545	1.64094	. 601	1.72994
. 378	1.38585	. 434	$1.46 \checkmark 72$	-4:	1.55503	. 546	$1.64 \% 51$. 602	1.73155
. 379	1.38732	. 435	1.47023	. 491	1.5566	. 547	1.64408	. 603	1.73316
. 38	1.38879	. 436	1.47174	. 492	1.55817	. 548	1.64565	604	1.73477
. 381	1.39024	. 437	1.473:2	. 493	1.55974	. 549	1.64722	. 605	1.73638
. 382	1.39169	. 438	1.47478	. 494	1.5613 !	. 5	$1.648 \% 9$. 606	1.73799
. 383	1.39314	. 439	1.4763	. 495	156289	. 5.51	1.65036	. 607	1.7396
. 384	1.39459	44	1.47782	. 496	1.56447	.55\%	1.65193	. 608	1.74121
. 385	1.39605	.441	$1.479: 3$	497	1.56605	. 553	1.6535	. 609	1.74283
. 386	1.29751	. 442	1.48086	. 498	1.56763	. 554	1.65507	6	1.74444
. 387	1.39897	. 443	$1.48 \cdot 338$	499	1.56921	. 555	1.65665	. 611	1.74605
. 388	1.40043	. 444	$1.48: 391$. 5	1.57089	- 556	1.65×23	. 612	1.74767
. 389	1.40189	. 445	1.48544	. 501	1.57934	-557	1.65981	.613	1.74929
. 39	1.40335	. 446	1.48697	. 502	1.57389	. 558	166139	. 614	$\underline{2} .75091$
. 391	1.40481	. 447	$1.488 \overline{5}$. 503	1.57544	-559	1.66*97	. 615	1.75252
. 392	1.40627	. 448	1.49003	. 504	1.57699	. 66	1.6645%	. 616.	1.75414
.393	1.40773	. 449	1.49154	.505	1.57854	. 561	1.666 i 3	. 617	1.75576
. 394	1.40919	.45	1.49311	. 506	1.58009	. 562	1.66771	. 618	1.75738
. 395	1.41065	. 451	1.49465	. 507	1.58164	. 563	1.669\% 9	. 619	1.759

TABLE.-(Continued.)

ght.	Length.
564	1.67087
565	1.67245
.566	1.67403
.567	1.67561
.568	1.67719
.569	1.67877
.57	1.68036
.571	1.63195
.77	1.68354
.573	1.68513
.574	1.68672
.575	1.68831
.576	1.6899
.577	1.69149
.578	1.69308
.579	1.69467
.58	1.69626
.581	1.6975
.582	1.3995
.583	1.70105
.584	1.70264
.585	1.70424
.586	1.70584
.587	1.70745
.588	1.70905
.589	1.71065
.59	1.71295
.591	1.71286
.592	1.71546
.593	1.71707
.594	171868
.595	1.72029
.596	1.7219
.597	1.7235
.598	1.72511
.549	1.72672
.6	1.72833
.601	1.72994
.602	1.73155
.603	1.73316
.604	1.73477
.605	1.73638
.606	1.73799
.607	1.7396
.608	1.74121
.609	1.74283
6	1.74444
.611	1.74605
.612	1.74767
.613	1.74929
.614	1.75091
.615	1.75252
.616	1.75414
.617	1.75576
.618	1.75738
.619	1.759

TABLE.-(Continued.)

H'ght.	Length.								
. 9	2.24142	. 921	2.27987	. 942	2.318 .52	. 963	2.3581	. 984	2.39823
. 901	2.24325	. 922	2.2817	. 943	2.32038	. 964	2.36	. 985	2.40016
. 902	2.24508	. 923	2.28354	. 944	2.32224	. 965	2.36191	.986	2.40208
. 903	2.24691	. 924	2.28537	. 945	2.32411	. 966	2.36381	. 987	2.404
. 904	2.24874	. 925	2.2872	. 946	2.32598	. 967	2.36571	. 988	2.40592
. 905	2.25057	. 926	2.28903	. 947	2.32785	. 968	2.36762	. 989	2.40784
. 906	2.2524	. 927	2.29086	. 948	2.32972	. 969	2.36952	. 99	2.40976
. 907	2.25423	. 928	2.2927	. 949	2.3316	. 97	2.37143	. 991	2.41169
. 908	2.25606	. 929	2.29453	. 95	2.33348	.971	2.37334	.992	2.41362
. 909	2.25\%89	. 93	2.29636	. 951	2.33537	. 972	2.37525	:993	2.41556
. 91	2.25972	. 931	2.2982	. 952	2.33726	. 973	2.37716	. 994	2.41749
. 911	2.26155	. 932	2.30004	. 953	233915	. 974	2.37908	. 995	2.41943
. 912	2.26338	. 933	2.30188	. 954	2.34104	. 975	2.381	. 996	2.4:136
. 913	2.265\%1	. 934	2.30373	. 955	2.34293	. 976	2.38991	. 997	2.42329
. 914	2.26704	. 935	2.30557	. 956	2.344×3	. 977	2.3848 .2	. 998	2.42522
. 915	2.26888	. 936	2.30741	. 957	2.34673	. 978	2.38673	. 999	2.42715
. 916	2.27071	. 937	2.30926	. 958	2.34863	. 979	2.38864	1.	2.42908
. 917	2.27254	. 938	2.31111	. 959	2.35051	.98	2.39055		
. 918	2.27437	. 939	2.31295	. 96	2.35241	. 981	2.39247		
. 919	2.2762	. 94	2.31479	. 961	2.35431	. 982	2.39439		
. 92	2.27803	. 941	2.31666	. 962	2.35621	. 983	2.396331		

To Ascertain the Length of a Semi-Elliptic Are (right Semi-Ellipse) by the preceding Table.

Rule.-Divide the height by the base, find the quotient in the column of heights, and take the length of that height from the next righthand column. Multiply the length thus obtained by the base of the arc, and the product will be the length of the arc.

Example.-What is the length of the arc of a semi-ellipse, the base being 70 feet, and the height 30.10 feet.

$$
30.10 \div 70=.43 ; \text { and } .43 \text { per table },=1.46268
$$

Then $1.46268 \times 70=102.3876$ feet .

When the Curve is not that of a Right Semi-Ellipse, the Height being half of the Tranverse Diameter.

Rule.-Divide half the base by twice the height, then proceed as in the preceding example; multiply the tabular length by twice the height, and the product will be the length required

Example.-What is the length of the arc of a semi-ellipse, the height being 35 feet, and the base 60 feet?
$60 \div 2=30$, and $30 \div \overline{35 \times 2}=.428$ the tabular length of which is 1.45966 .
Then $1.45966 \times 35 \times 2=102.1762$ feet.
Note.-If in the division of a height by the base there is a remainder, proceed in the manner given for the Lengths of Circular Arcs, page 32.

TABLE VIII.

TABLE OF THE AREAS OF THE SEGMENTS OF A CIRCLE.

H'ght.	Length.
.984	2.39823
.985	9.40016
$.9=6$	2.40208
.987	2.404
.988	2.40592
.989	2.40784
.99	2.40976
.991	2.41169
.992	2.41362
.993	2.41556
.994	2.41749
.995	2.41943
.996	$2.4: 136$
.997	2.49329
.998	2.42522
.999	2.42715
1.	2.42908

-Ellipse)
heights, and take the thus obtained by the
sing 70 feet, and the

preceding example ;

 ngth required sing 35 feet, and theThe Diameter of a Circle assumed to be Unity, and divided into 1000 equal Parts.

Versed Sine.	Seg. Area.	Versed Sine.	Seg, Area.	Versed Sine.	Seg. Area.	Versed Sine.	Seg. Area.	Versed Sine.	Seg. Area.
. 001	. 00004	. 048	. 01342	. 095	. 0379	. 142	. 06822	. 189	. 10312
. 002	. 00012	. 049	.01425	. 096	. 03849	. 143	. 06892	. 13	. 1039
. 003	. 00022	. 05	. 01468	. 097	. 03908	. 144	. 06962	. 191	. 10468
. 004	. 00034	. 051	. 01512	. 098	. 03968	. 145	. 07033	. 192	. 10547
. 005	. 00047	. 052	. 01556	. 049	. 04027	. 146	. 07103	. 193	. 10626
. 006	. 00062	. 053	. 01601	. 1	. 04087	. 147	. 07174	. 194	. 10705
. 007	. 00078	. 054	. 01646	. 101	. 04148	. 148	. 07245	. 195	. 10784
. 008	. 00095	. 055	. 01691	. 102	. 04208	. 149	. 07316	. 196	. 10864
. 009	. 00113	. 056	. 01732	. 103	.04269	. 15	. 073×7	. 197	. 10943
. 01	. 00133	. 057	. 01783	. 104	. 0431	. 151	. 07459	. 198	. 11023
. 011	. 00153	. 058	. 0183	. 105	. 04391	. 152	. 07531	. 199	. 11102
. 012	. 00175	. 059	. 01877	. 106	. 04462	. 153	. 07603	2	. 11182
. 013	. 00197	. 06	. 01924	. 107	. 04514	. 154	. 07675	. 201	. 11262
. 014	. 0022	. 061	. 01972	. 108	. 04575	155	. 07747	. 202	. 11343
. 015	. 00244	. 062	.0202	. 109	. 04638	. 156	. 0782	. 203	. 11423
. 016	. 00268	. 063	. 02068	. 11	. 047	. 157	. 07892	. 204	. 11503
. 017	. 00294	. 064	. 02117	. 111	. 04763	. 158	. 07965	. 20%	. 11534
. 018	. 0039	. 065	. 02165	. 112	. 04826	. 159	. 08038	. 206	. 11665
. 019	. 00347	. 066	. 02215	. 113	. 04889	. 16	. 08111	. 207	. 11746
. 02	. 00375	. 067	. 02265	. 114	. 04953	. 161	. 08185	. 208	. 11827
. 021	. 00403	. 068	. 02315	. 115	. 05016	. 162	.08258	. 209	. 11908
. 022	. 00432	. 069	. 02336	. 116	. 0508	. 163	. 08332	. 21	. 1199
. 023	. 00462	. 07	. 02417	. 117	. 05145	. 164	. 08406	. 211	. 12071
. 024	. 00492	. 071	. 02468	. 118	. 05209	. 165	. 0848	. 212	. 12153
. 025	. 000223	.072	. 02519	. 119	.05274	. 166	. 08554	. 213	. 12235
. 026	. 00555	. 073	.02571	. 12	. 05338	. 167	. 08624	. 214	. 12317
. 027	. 00587	. 074	. 02624	. 121	. 05404	. 168	. 08704	. 215	. 12399
. 028	. 00619	. 075	. 02676	.122	. 05469	. 169	. 03779	. 216	. 12481
. 029	. 00653	. 076	. 02729	. 123	. 05534	. 17	. 08853	. 217	. 12563
. 03	. 00686	. 077	. 02782	. 124	. 056	. 171	. 08929	. 218	. 12646
. 031	. 00721	. 078	. $02 \checkmark 35$. 125	. 05666	. 172	. 09004	. 219	. 12728
. 032	. 00756	. 079	.028c9	. 126	.05\%33	. 173	. 0908	. 22	. 12811
. 033	. 00791	. 08	. 02943	. 127	. 05799	. 174	. 09155	. 221	. 12894
. 034	. 00827	. 081	. 02997	. 128	. 05866	. 175	. 09231	. 222	. 12977
. 035	. 00864	. 082	. 03052	. 129	. 05933	. 176	. 09307	. 223	. 1306
. 036	. 00901	. 083	. 03107	. 13	. 06	. 177	. 09384	. 224	. 13144
. 037	. 00938	. 084	. 03162	. 131	.06067	. 178	. 0946	. 225	. 13227
. 038	. 00976	. 085	. 03218	.132	. 06135	. 179	. 09537	. 226	. 13311
. 039	. 01015	. 086	. 03274	. 133	. 06203	. 18	. 09613	. 227	. 13394
. 04	. 01054	. 087	. 0333	. 134	.06:71	. 181	. 0969	. 228	. 13478
. 041	. 01093	. 088	.0338\%	. 135	. 06339	. 182	. 09767	. 229	. 13562
. 042	. 01133	. 089	. 03444	. 136	. 06407	. 183	. 09845	. 23	. 13646
. 043	. 01173	. 09	. 03501	. 137	. 06476	. 184	. 09922	. 231	. 137331
. 044	. 01214	. 091	. 03558	. 138	. 06545	. 185	. 1	. 232	. 13815
. 045	. 01255	. 092	03616	. 139	. 06614	. 186	. 10077	. 233	. 139
. 046	. 01297	. 093	.03674	. 14	. 06683	. 187	. 10155	. 234	. 13984
. 047	. 01339	. 094	.03732	. 141	. 06753	. 188	.10233	. 235	. 14069

TABLE--(Continued.)

Versed Sine.	Seg Area,	Versed Sine.	Seg Area.	Versed Sine.	Seg. Area.	Versed Sine.	Seg. Area.	Versed Sine.	Seg. Area.
.236	. 14154	.289	. 18814	. 342	.23737	.395	28848	. 448	. 34079
. 237	. 142339	. 29	. $1=906$. 343	.238:32	. 396	± 8945	. 449	. 34179
. 238	. 14324	. 291	. 18995	. 344	$\therefore 23927$. 397	. 29043	. 45	. 34278
. 239	. 14409	. 292	. 19086	. 345	$\therefore 24022$. 398	- . 29141	. 451	. 34378
. 24	. 14494	. 293	. 19177	. 346	. 24117	. 399	.298:99	. 45.2	. 34477
. 241	. 1458	. 294	.19268	. 347	.24212	. 4	. 89337	. 453	. 34.557
. 242	.14665	. 295	. 1936	. 348	. 24307	. 401	.29435	. 454	. 34676
. 243	. 14751	. 296	. 19451	. 349	.24403	. 402	. 295333	. 455	. 34776
$\therefore 24$. 14837	. 297	. 19542	. 35	$\therefore 4498$. 403	.23631	. 456	. 34875
. 245	. 14923	. 298	. 19634	.351	. 24.933	. 404	. 29729	. 457	. 34975
. 246	. 15009	. 299	. 19725	. 352	. 246×9	. 405	.29-27	. 458	. 35075
. 247	. 15095	. 3	. 19817	. 353	. 24784	. 406	. 29925	. 459	. 35174
. 248	.1518\%	. 301	. 19908	. 354	. 2488	. 467	. 30024	. 46	. 35274
. 249	.15268	. 302	. 2	. 255	.24:76	.408	. $301 \% 2$. 461	. 35374
. 25	. 15355	. 303	. 20032	. 355	. 25071	. 409	. 302 L	. 462	. 35474
.25i	. 15441	. 304	. 20184	. 357	\therefore 25167	. 41	. 30319	. 463	. 35573
252	. 15528	. 305	$\therefore 20276$. 358	.25263	. 411	. 30417	. 464	. 35673
. 253	. 15615	. 306	. 20368	. 359	22039	. 412	.30515	. 465	.35773
. 254	. 15702	. 307	. 2046	. 36	25455	. 413	. 30614	. 466	. 35872
.25\%	. 15789	. 303	. 20553	. 361	.25551	. 414	.30:12	. 467	. 35972
. 256	. 15876	. 309	. 20645	. 362	$\therefore 2547$. 415	. 30811	. 468	. 36072
. 257	. 15964	. 31	. 20738	. 363	.25\%43	. 416	. 30909	. 469	. 36172
. 258	. 16051	. 311	. 2083	. 364	.25839	. 417	. 31008	. 47	. 3624%
. 259	. 16139	. 312	. 20423	. 365	$\therefore 25936$. 418	. 31107	. 471	. 36371
. 26	. 16226	. 313	. 21015	. 366	. 26032	. 419	.31205	.472	. 36471
. 261	. 16314	. 314	. 21108	. 367	.2ti28	. 42	.31394	. 473	. 36571
.26:	. 16402	. 315	$\therefore 1201$. 368	. 26225	. 421	. 31403	. 474	. 36671
. 263	. 1649	. 316	. 21294	. 369	$\therefore 23 \% 1$. 422	. 31502	. 475	. 36771
. 264	. 16578	. 317	$\therefore 21387$. 37	. 26418	. 423	. 316	. 476	. 36871
. 265	. 16666	. 318	.2148	. 371	$\therefore 6514$. $4 \div 4$. 31699	. 477	. 36971
. 266	. 16755	. 319	. 21573	. 372	. 26611	. 425	. 31798	. 478	. 37071
. 267	.16\%44	. 32	. 21667	. 373	. 26700	. 428	. 31897	. 479	. 3717
.268	. 16931	. 321	. 2176	. 374	. 24804	. 427	.31996	. 48	. 3727
. 269	. 1702	. 322	.21853	. 375	$\therefore 2601$. 428	. 32095	. 481	. 3737
. 27	. 17109	. 323	. 21947	. 376	. 26998	. 429	. 32194	. 482	. 3747
. 271	. 17197	. 324	.2:04	. 377	. 27095	. 43	. 32243	. 483	. 3757
. 272	.17287	. 325	.2 2134	. 378	. 27192	. 431	. 32391	. 484	. 3767
. 273	. 17376	. 326	22:28	. 379	. 27289	. 432	. 3249	. 485	. 3777
. 274	. 17465	. 327	. 22521	. 38	.27386	. 433	. $3: 59$. 486	$\cdot 3787$
. 275	. 17554	. 328	. 22415	. 381	. 27483	. 434	. 32689	. 487	. 3797
. 276	. 17643	. 329	.22509	. $38:$. 27580	. 435	. 32788	. 488	. 3807
. 277	. 17733	. $3: 3$.22603	. 383	. 27677	. 436	. 32887	. 489	. 3817
. 278	.1782\%	. 331	$\therefore 2697$. 384	. 27775	. 437	. 32985	. 49	. 3827
. 279	. 17912	. 332	. 22791	. 385	$\therefore 28 \%$. 438	. 33086	. 491	. 3837
. 28	. 18002	. 333	. 22886	. 386	.27969	. 439	. 33185	. 492	. 3847
. 281	. 18092	. 334	. 2298	. 387	. 28057	. 44	. 33284	. 493	. 3857
. 282	. 18182	. 335	$\therefore 3074$. 388	.28164	. 441	. 33384	. 494	. 3867
. 283	. 18272	. 336	. 23169	. 389	. 28268	. 442	. 33483	. 495	. 3877
. 284	. 18361	. 337	.23263	. 39	. 28359	. 443	. 33582	. 496	. 3887
. 285	. 18452	. 338	. 23359	. 391	.28457	. 444	. 33652	. 497	. 3897
. 286	. 18542	. 339	$\therefore 23453$. 392	. 28554	. 445	. 33781	. 498	. 3907
. 287	. 18633	. 34	. 23547	. 393	20552	446	. 3388	. 499	. 3917
. 288	.18723	. 341	. 23642	. 394	. 2878	. 447	.3398	. 5	. 3927

To Asecrthin the Area of a Segment of a Circle by the preceding Table.

Rule.-Divide the height or versed sine by the diameter of the circle; find the quotient in the column of versed sines. Take the area noted in the next column, multiply it by the equare of the diameter, and it will give the area

Example. - Required the area of a segment, its height being 10, and the diameter of the circle 50 feet.
$10 \div 50=.2$, and .2 , per table,$=.11182 ;$ then $.11182 \times 50^{2}=279.55$ feet.
Note.-If in the division of a height by the base, the quotient has remainder after the third lace of decimals, and great accuracy is required.

Take the area for the first three figures, subtract it from the next following ar a. multiply the remainder by the said fraction, and add the product to the first area ; the sum will be the area for the who equotient.
${ }^{2}$ What is the area of a segment of a circle, the diameter of which is 10 feet, and the height of it 1.575 feet
$1.575 \div 10=.1575$; the tabular area for $.157=.07892$, and for $.158=07965$, the difference between which is .00073 .
Then $.5 \times .00073=000365$.

Hence
$.157=.07892$
$.0005=.000365$
.079275 , the sum by which the square of the diameter of the circle is to be multiplied; and $.079285 \times 10^{2}=7.9286$ feet.

TABLEIX.

TABLE OF THE AREAS OF THE ZONES OF A CIRCLE.
The Diameter of a Circle assumed to be Unity, and divided into 1000 equal Parts.

H'ght.	Area.								
. 001	. 001	. 029	. 02898	. 057	. 05688	. 085	. 08459	. 113	. 11203
.002	. $00 \cdot 2$. 03	. 12.2998	. 058	. 05787	. 086	. 08557	. 114	. 113
. 003	. 003	. 031	. 03093	. 059	. 05886	. 087	. 08656	. 115	. 11398
. 004	. 004	. 03.2	. 03198	. 06	. 05986	. 088	. 08754	. 116	. 11495
. 005	. 005	. 033	. 03298	. 061	.06085	. 089	. 08853	. 117	. 11592
. 006	. 006	. 034	. 03397	. 062	. 06184	. 09	. 08951	. 118	. 1169
. 007	. 007	. 035	. 03497	. 063	. $06: 83$. 091	. 04095	. 119	. 11787
. 008	. 008	. 036	.03597	. 064	. 1663×2	. 092	. 09148	. 12	.11884
. 009	. 009	. 037	. 03697	. 065	. 06482	. 093	. $09 \% 46$. 121	.119r1
. 01	. 01	.038	.03796	. 066	. 0658	. 094	. 093344	.122	. $1: 2078$
. 011	. 011	. 039	.03896	. 067	. 0668	. 095	. 09443	. 123	. 12175
. 012	. 012	. 04	. 03996	. 068	.0678	. 096	.0954	. 124	.12272
. 013	.013	. 041	. 04095	. 069	. 06878	. 097	. 096339	. 125	. $12: 369$
. 914	. 014	. 042	. 04195	. 07	.06977	. 098	. 09737	. 126	. 12469
. 015	. 015	. 043	.04\%25	. 071	. 07076	. $0: 39$. 098835	. 127	.12562
. 016	. 016	. 044	.64394	. 072	. 07175	. 1	. 09993	. 128	. 12659
. 017	. 017	. 045	. 04494	. 073	.07\%74	. 101	. 10031	. $1 \because 9$. 12755
. 018	. 018	. 046	. 04593	. 074	.07373	. 102	. $101 \% 9$. 13	. 12852
. 019	. 019	. 047	. 04693	. 075	. 07472	. 103	.10227	. 131	. 12949
.02	. 02	.048	. 04793	. 076	.0755	. 104	. 10325	.132	. 13045
. 021	. 021	. 049	. 04892	. 077	.07669	. 105	. $104 \% 2$. 133	. 13141
. 0222	. 022	. 05	. 04992	. 078	.0776s	. 106	. 1052	. 134	.13\%:38
. 023	. 023	. 051	.05091	. 079	.07867	. 107	. 10618	. 135	.13334
. 024	. 024	. 052	. 0519	. 08	. 02966	. 108	. 10715	. 136	. 1343
.025	. 025	. 053	.0529	. 081	. 08064	. 109	. 10813	. 137	. 13527
. 0.66	.02599	. 054	. 05389	. 082	. 08163	. 11	. 10911	. 138	. 13628
. 027	.02695	. 055	. 05489	. 083	. 08262	. 111	. 11008	.139	. 13719
.02\%	. 02799	. 056	. 05588	. 084	.0836	.112	. 11106	. 14	. 13815

TABLE.-(Continued.)

H'ght.	Area.								
. 141	. 13911	. 197	. 19178	. 253	. 24175	. 309	. 28801	. 365	. 32931
. 142	. 14007	.198	.1927	. 254	. 24261	. 31	. 2888	. 366	. 32999
. 143	. 14103	. 199	. 19361	. 255	.24347	. 311	.28958	. 367	. 333067
. 144	. 14198	. 2	. 19453	. 256	$\therefore 4433$. 312	. 29036	. 368	. 33135
. 145	.14294	.201	. 195454	.257	$\therefore 4519$. 313	. 29115	. 369	. 333203
.146	. 1439	. 202	. 19636	. 258	. 24604	. 314	.2919\%	. 37	. 3327
. 147	. 14485	. 203	.19\%28	. 259	. 2469	. 315	. 2927	. 371	. 33337
. 148	. 14581	.204	. 19819	. 26	. 24775	. 316	. 28348	. 372	. 33404
.149	. 14677	.205	. 1491	. 261	. 24861	. 317	. 29425	. 373	. 33471
.15	.14772	. 206	. 20001	. 26%	. 24946	. 316	.2950:	. 374	. 33537
. 151	. 14867	. 207	. 20092	. 263	. 25021	. 319	. 2958	.37\%)	. 33604
. 152	. 14962	. 208	$\therefore 20183$.264	. 25116	. 32	.29656	. 376	. 3367
.153	. 15058	. 209	.20:274	. 265	. 21201	. 321	. 29733	. 377	. 33735
. 154	. 15153	.21	. 20365	.266	. 25285	. 322	. 2981	. 378	. 33×01
. 155	. 15.248	.211	. 20156	.267	. 2537	. 323	. 29886	. 379	.33866
. 156	. 15343	. 212	. 20546	.268	. 25455	. 324	. 29962	. 38	. 33931
. 157	. 15438	. 213	. 206637	. 269	.25539	. 325	. 30039	. 381	. 33996
. 158	. 15533	. 214	.20727	.27	.25623	. 326	. 30114	. 382	. 34061
. 159	. 15628	. 215	. 20818	$\therefore 81$. 25707	.327	. 3019	. 383	. 34125
. 16	.15793	.216	. 20908	. 27%	. 25791	. 328	. 30266	. 384	. 3419
. 161	. 15817	. 217	. 20998	.273	. 25875	. $3: 29$. 30341	. 385	. 34253
. 162	. 15912	. 218	. 21088	. 274	. 25959	. 33	. 30416	. 386	. 34317
. 163	. 16006	$\therefore 19$. 21178	. 275	.2ti043	. 331	. 30491	. 387	. 3438
. 164	. 16101	$\therefore 2$.212h8	.276	. 26126	. $33 \cdot 2$. 30566	. 388	. 34444
.165	. 16195	. $2 \% 1$. 21358	.277	. 26209	. 333	. 30641	. 389	. 34507
. 166	. 1629	.222	. 21447	.278	. $26 \div 93$. 334	. 30715	. 39	. 34569
. 167	.16:384	$\therefore 23$	$\because 21537$. 279	. 26376	. 335	. 3079	. 391	. 34632
. 168	. 16478	.294	. 21626	. 28	. 26459	. 336	. 30864	. 392	. 34694
. 169	. 16572	.225	. 21716	. 281	. 26541	. 337	. 30938	. 393	. 34756
.17	. 16667	. 286	. 21805	$\therefore 8{ }^{\circ}$. 26664	. 338	. 31.012	. 394	. 34818
. 171	. 16761	. $2: 78$	$\therefore 1894$.283	.26706	.339	. 31085	. 395	. 34879
. 172	. 16855	± 288	.21983	$\therefore 84$. 26789	.34	. 31159	. 346	. 3494
. 173	. 16948	. 229	. 22672	. 280	. 26871	.341	.31232	. 397	.35001
. 174	. 17042	. 23	. 22161	. 286	. 26953	. 342	. 31305	. 398	. 35062
${ }^{.175}$.17136	$\ldots 31$.22\%	. 287	.27035	. 343	. 31378	. 399	.35122
.176	.1723	.232	.22335	. 288	. 27117	. 344	. 3145	. 4	. 35182
. 177	. 173323	.233	. 22427	. 289	. 27199	. 345	31523	. 401	. 35242
. 178	. 17417	. 34	. 22.2515	.29	. $2.2 \times$. 346	. 31595	. 402	. 35302
. 179	.1751 .17603	$\therefore 35$.22604	.291	. 27362	.347	.31667	.403	. 35361
. 18	.17603 .17697	. 23.36	-2269\%	.29\%	.27443	. 348	. 316839	. 404	. 3542
. 182	. 17697	. 238	.227868	. 293	.27594 .27605	.349 .35	. 31811	. 405	. 35479
. 188	. 17883	.239	. $2: 2956$.295	. 27586	. 351	. 31954	. 407	. $\mathbf{. 3 5 5 3 8}$
. 184	. 17976	$\therefore 4$. 23044	. 296	. 27766	. 35%	. 32025	. 408	. 35554
. 185	. 18069	.241	. $2: 3131$. 297	. 27847	. $35: 3$. $3: 096$. 409	. 3 5 \%11
. 186	.18162	$\therefore 42$. $23: 219$. 298	.27927	.354	. 32167	. 41	. 35769
. 187	. 18254	.243	. 23306	$\therefore 99$. 28007	. 355	. 32437	. 411	.358\%6
. 188	. 183447	$\therefore 244$	$\therefore 33394$.3	. 28088	. 356	. 32307	. 412	. 35883
. 189	. 1844	$\therefore 45$	$\therefore 33451$. 301	. 28167	. 357	. 3×377	. 413	. 35939
.19	. 185.32	. 246	.2:3568	. 302	. 28.47	.358	. $3: 3147$. 414	. 35995
. 191	. $186 \cdot 5$.247	2365\%	.303	.28327	. 359	.32517	. 415	. 36051
.192	. 18717	. 248	.2374:	. 304	. 28406	. 36	. 32587	$.416{ }^{\circ}$. 36107
.193	. 18809	. 249	.23829	. 305	. 28486	. 361	. 326656	.417	. 36162
. 194	. 18902	. 25	. 23915	. 306	. 285655	. 368	. 32725	. 418	. 36217
. 195	. 18994	. 251	$.2400 \%$.24089	. 307	.2ヶ644	. 363	. 32794	. 419	. 36072
. 196	.190z6	.25\%	. 24089	. 308	. $2 \times 7 \div 3$. 364	. 32862	. 42	. 36326

TABLE.-(Continued.)

H'ght.	Area.								
. 421	. 3638	. 437	. 37202	. 453	. 37931	. 469	. 38549	. 485	. 39026
. 422	. 36434	. 438	. 3725	. 454	. 37973	. 47	. 38583	. 486	. 3905
. 423	. 36488	. 439	. 37298	. 455	. 38014	. 471	. 38617	. 487	. 39073
.424	. 36541	. 44	. 37346	. 456	. 38056	. 472	. 3865	. 488	. 39095
. 425	. 36594	. 441	. 37393	. 457	. 38096	. 473	. 38683	. 489	. 39117
. 426	. 36646	. 442	. 3744	. 458	. 38137	. 474	. 38715	. 49	. 39137
. 427	. 36698	. 443	. 37487	. 459	. 38177	. 475	. 38747	.491.	. 39156
. 428	. 3675	. 444	. 37533	. 46	. 38216	. 476	. 38778	. 492	. 39175
. 429	. 36802	. 445	. 37579	. 461	. 38255	. 477	. 38808	.493	. 39192
. 43	. 36853	. 446	. 37624	. 462	. 38294	. 478	. 3×838	. 494	. 39208
. 431	. 36904	. 447	. 37669	. 463	. 38332	. 479	. 38667	. 495	. 39223
. 432	. 36954	. 448	. 37714	. 464	. 38369	. 48	. 38895	. 496	. 39236
. 433	. 37005	. 449	. 37758	. 465	. 38406	. 481	. 38923	. 497	. 39248
. 434	. 37054	. 45	. 37802	. 466	. 38443	. 482	. 3895	. 498	. 39258
. 435	. 37104	. 451	. 37845	. 467	. 38479	. 483	. 38976	. 499	. 39266
. 436	. 37153	. 452	. 37888	. 468	. 38514	. 484	. 39001	. 5	. 3927

This Table is computed only for Zones, the longest chord of which is diameter.

To Ascertain the Area of a Zone by the preceding Table.

Rule 1.-When the Zone is Less than a Semicircle, Divide the height by the diameter, and find the quotient in the column of height. Take out the area opposite to it in the next column on the right hand and multiply it by the square of the longest chord; the product will be the area of the zone.

Example.-Required the area of a zone the diameter of which is 50 , and its height 15.
$15 \div 50=.3$; and .3 ; as per table,$=.28088$.
Hence $.28088 \times 50^{2}=702.2$ area.
Rule 2.-When the Zone is Greater than a Semicircle : Take the height on each side of the diameter of the circle, and ascertain, by Rule I, their respective areas ; add the areas of these two portions together, and the sum will be the area of the zone.

Example. - Required the area of a zone, the diameter of the circle being 50 , and the heights of the zone on each side of the diameter of the circle 20 and 15 respectively.

$$
\begin{aligned}
& 20 \div 50=.4 ; .4, \text { as per table },=35182 ; \text { and } .35182 \times 50^{2}=879.55 . \\
& 15 \div 50=3 ; .3 \text {, as per table },=.28088 ; \text { and } .28088 \times 50^{2}=702.2 .
\end{aligned}
$$

Hence $879.55 \dot{+} 702.2=1581.75$ area.
Rule 3.-When the longest chord of the zone is lese than diameter, Take the height or distance from the diam. to each of the chords respectively ; find the area corresponding to each height and deduct the lesser from the greater area; the result will be the area required.

Nots.-When, in the division of a height by the chord, the quotient has a remainder after the third place of decimals, and great accuracy is required.

Take the area for the first three figures, subtract it from the next following area, multiply the remainder by the said fraction, and add the product to the first area ; the sum will be the area for the whole quotient.

Example. - What is the area of a zone of a circle, the greater chord being 100 feet, and the breadth of it 14 feet 3 inches?
14 feet 3 inches $=14.25$ and $14.25 \div 100=1425$; the tabular area for $.142=14007$, and for $143=$.14103, the difference between which is .00096 .

Then $.5 \times .00006=00048$.
Hence $.142=.14007$
$.0005=.00048$
. 14055 , the sum by which the square of the greater chord is to be multiplied; and $.14055 \times 1002=1405.5$ feet .

TABLEX.

SPECIFIC GRAVITIES.

The Specific Gravity of a body is the proportion it bears to the weight of another body of known density.

If a body float un a fluid, the part immersed is to the whole body as the specific gravity of the body is to the specific gravity of the fluid.

When a body is immersed in a fluid, it loses such a portion of its own weight as is equal to th ot of the fluid it displaces.

An immersed body, ascending or desc nding in a fluid, has a force equal to the difference between its own weight and the weight of its bulk of the fluid, less the resistance of the fluid to its passag.

Water is well adapted for the standard of gravity ; and as a cubic foot of it weights 1000 ounces avoirdupois, its weight is taken as the unit, viz: 1000 .

To Ascertain the Specific Gravity of a Body heavier than Water.

Rule.-Weight it both in and out of water, and note the difference; then, as the weight lost in water is to the whole weight, so is 1000 to the specific gravity of the body. $\mathrm{Or}, \frac{\mathrm{W} \times 1000}{\mathrm{~W}-w}=G, \quad w$ representing the weight in water, and G the specific gravity.
Example. What is the specific gravity of a stone which weighs in air 15 lbs ., in water 10 lbs . ?
$15-10=5$; then $5: 15:: 1000:: 3000$ spec. grav.

To Ascertain the Specific Gravity of a Body lighter than Water.

Rule.-Annex to the lighter body another that is heavier than water, or the fluid used; weigh the piece added and the compound mass separately, both in and out of the water. or the fluid; ascertain how much each loses in water, or the fluid, by subtracting its weight in water, or the fluid, from its weight in air, and subtract the less of these differences from the greater; then,

As the last remainder is to the weight of the light body in air, so is 1000 to the specific gravity of the body.

Example.-What is the specific gravity of a piece of wood that weighs 20 lbs . in air ; annexed to it is a piece of metal that weighs 24 lbs . in air and 24 lbs . in water, and the two pieces in water weigh 8 lbs. ?
$20+24-8=44-8=36=$ loss of compound mass in water ;
24-21 $=3=$ loss of heavy body in water.
$\overline{33}: 20:: 1000: 606=24$ spec. grav.

- To Ascertain the Specific Gravity of Fluid.

Rule.-Take a body of known specific gravity, weigh it in and out of the fluid; then, as the weight of the body is to the loss of weight, so is the specific gravity of the body to that of the fluid.

Example. What is the specific gravity of a fluid in which a piece of copper (spec. grav. $=9000$) weighs 70 lbs . in, and 80 lbs . out of it ?

$$
80: 80-70=10:: 90001125 \text { spec. grav. }
$$ bulk of $: 1000$.

เvier

erence ; 0 to the ng the ; lbs., in ch each re fluid, rom the r, so is
; 20 lbs. t lbs. in
d out of 10 is the

To Compute the Proportions of two Ingredients in a Compound, or to discover Adulteration in Metals.

Rule.-Take the differences of each specific gravity of the ingredients and the specific gravity of the compound, then multiply the gravity of the one by the difference of the other ; and, as the sum of the products is to the respective products, so is the specific gravity of the body to the proportions of the ingredients.

Example.-A compound of gold (spec. grav. $=18.888$) and silver (spec. grav. $=$ 10.535) has a specific gravity of 14 ; what is the proportion of each metal.

$$
18.888-14=4.888 \times 10.535=51.495
$$

$$
14-10.535=3.465 \times 18.888=65.447
$$

$65.447+51.495: 65.447:: 14: 7.835$ gold.

$$
65.447+51.495: 51.495:: 14: 6.165 \text { silver. }
$$

To compute the Weights of the Ingredients, that of the compound being given.

Rule.- As the specific gravity of the compound is to the weight of the componnd, so are each of the proportions to the weight of its material.

Example.-The weight, as above, being 28 lbs., what are the weights of the ingredients?

$$
14: 28::\left\{\begin{array}{l}
7.835: 15.67 \text { gold, } \\
6.165: 12.33 \text { silver. }
\end{array}\right.
$$

Proof of Spirituous Liquors.

A cubic inch of proof spirits weighs 234 grains; than, n an immersed cubic inch of any heavy body weighs 234 grains less in spirits than air, it shows that the spirit in which it was weighed is proof.

If it lose less of its weight, the spirit is above proof; and if it lose more, it is below proof.

Illestration.-A cubic inch of glass weighing 700 grains weighs 500 grains when weighed in a certain spirit ; what is the proof of it?
$700-500=200=$ grains $=$ weight lost in the spirit.
Then $200: 234:: 1$. $: 1.17=$ ratio of proof of spirits compared to proof spirits, or 1.=. 17 above proof.

Solids.

Rule.-Divide the specific gravity of the substance by 16, and the quotient will give the weight of a cubic foot of it in pounds.

OF DIFFERENT BODIES AND SUBSTANCES.

MFTALS.	Specific gravity.	Weight of a cubic inch	MFTALS.	Specific gravity.	Weight of a cubic inch.
	2560	. 0926	Palladium.	11350	4105
Alluminu.at...............	6712	. 2428	Platinum, hammered.	20337	7356
Antimony.................	5763	. 24084	6 6 native	16000	. 5787
Arsenic..	5763 470	. 017	، rolled..........	22069	. 7982
Barium	470 9823	. 3553	Potassium, 59°...........	865	0313
Bismuth..	9823	. 355	Potassium, R (edead....................	8940	3241
Brass, copper 84	8832	3194	Rhodium..................	10650	3852
" tin			Ruthenium	8600	3111
6 copper 6	7820	2828	Eelenium..................	4500	1627
"6 plat	8380	3031	Silicium.		
" wir	8214	2972	Silver, pure, cast.		3788
Bronze, gun metal......	8700	. 3147	" " hammered.		
Boron	2000	0723	Sodium	6	
Bromine	3000	1085	Steel, plates..............	7833	2833
Cadmium	8650	9		7833	
Calcium	1580			7818	28
Chromium	5900	. 2134	"s wi	7847	2838
Cinnabar	8600	. 2929	Strontium	2540	. 0918
Cobalt	8600	. 217	Tin, Cornish, hammerd	7390	. 2673
Columbium...	6000 19258	. 2178	Tin, Cornish, hammerd	7291	. 2637
Gold, pure, cas	19258 19361	. 79003	Tellurium..................	6110	221
6 hammered	17486	63-5	Thaliun	11850	4286
(6 22 carats	15709	. 5682	Tita	5300	19
	8788	. 3179	Tungsten...................	7000	. 6149
	8698	. 3146	Uranium	10150	36
${ }^{6}$	8880	. 3212	Wolfram	7119	25
Iridium	18680	. 6756	Zinc, cast		
" hammered........	23000	8319	6 rolled...............	7191	. 26
Iron, cast...................	7207	. 2607			
" 6 gun metal...	7308	264)		
" hot blast.	7065	. 2555		00	
" cold "	7218	2611		93	
" wrought bars....	7788	2817	Apple	45	52.812
" 6 wi	7774			600	43.125
6 rolled plate......e.	7704	. 2787		400	
Lead, cast	11352	. 4106	Ba	822	51.375
6 rolled.0.*.0.........	113	0213	Beech	852	53.25
Lithium. .	8	0213	Beech	690	43.125
Manganese.	8000	0633	Birch	567	35.
Magnesium......	1750	0633	Box,	1031	64.43
$\text { Mercury }-40^{\circ} \text {. }$. 4918	6, Dutch	912	7.
$\begin{array}{rr} 6 & +32^{\circ} \\ 6 & 60^{\circ} \end{array}$	13598	. 4918	" French.............	1328	83.
" 212°	13370	. 4836	Bullet-wood...............	928	58
Molybdenum.......000000	8600	. 3111	Buttern	376	
Nickel.....................	8800	. 3183	Campeachy		
	8279	. 2994	Cedar	561	
Osmium	10000	. 3613	India	1315	2. 157

WOODS, (Dry.) (Continued.)	Speci- fic gravity.	Weight of a cubic fool.	WOODS, (Dry.) (Continued.)	Speci- fic gravity.	Weight of a cu bic foot.
	441	27562	Oak, Dan	759	47.437
6، ${ }_{\text {rcoal, }}$ pine.........0.	380	23.75	" English	932	58.25
6	1573	98312	" green...	1446	71.625
6	280	17.5	" heart, 60 y	1170	73.12
6 triturated...	1380	86.25	" live, green	1260	78
	715	44687	6 "6 seas	1068	6.75
Chesnut,	610	38125	wh	860	3.75
Citron.......................	726	$45 \quad 375$	range.	5	
Cocoa.	1040	65		661	42312
Cork	240	15	Persimmo	710	44.375
Cypress, Spanish.........	644	40.25	Plum	785	
Dog-wood..................	756	$47 \quad 25$	Pine, pitch...............	660	41.25
Ebony, American.......	1331	83.187	'6 red	90	36875
6 Indian	1209	$75 \quad 562$	"6 white.	54	
Elder........................	6	43437	* yellow	4	5
	570	35625	Pomegranate.............	554	
Elm.................... $\{$	671	41937	Poon	580	23.937
Filb	600	37.5	Poplar	83	3
Fir (Norway Space)....	512	32	w	529	33.062
Gum, blue.................	843	52687	Quinc	5	
\% water. .o..........	1000	625	Rose-wo	8	
Hackmatack	592	37	Sassafras	82	30.125
Hazel..	860	53.75	Satin-wood	885	
Hawthorn	910	56.875	Spruce.	500	31.25
Hemlock...................	368	23.	Sycamore.......	523	
Hickory, pig-nut.........	792	49.5	Tama	657	
"6 shell-bark.....	690	43125	Teak (African oak). $\{$	657	46.562
Holly......................	7 0 0	47.5	Teak (African oak) -	740	46.562
Jasmine....................	770	48125	Waln	71	1.937
Juniper......................	566	35375	blac	50	
Lance-wood................	720	45	Willow...0.0............		
	544	34		85	
Larch .0.0.0.0.0.0.0.0.0.0 $\}$	560	35.	Yew, Dutch.		
Lemon.0.0.0.0.0.0..........	703	43.937	Spanish............0.	807	50
Lignum-vitæ	1333	83.312			
Lime.o........................	804	50.25	Seasoned		
Linden........................	604			22	5.
Locust	728	45.5	As		
Logwoo	913	57.062	Beec	64	
	720	45.	Ch	6	7.562
Mahogany.0.000..00000	1063	66.437	Cypress.............s........	841	52.375
6 Honduras	560	35.	Hickory, red..............	838	
6 Spanish......	852	53.25	Mahogany, St. Domg. -	720	
Maple..........0.0.........	750	46.875	Pine, white..aso....s.a.s.	47	
$6{ }^{6}$ bird's eye	576	36.	'6 yellow...o..........0		
Mastic	849	53.062	Poplar.........	587	
	561	35.062	White Oak, upland....	589	
Mulberry	897	56.062	"6 James River.	759	42.437
Oak, African	823	51.437			
66 Canadian...........	87	54.5			

Stones, Farths, \&c	Speciricgra vity.	$\begin{aligned} & \text { Weight } \\ & \text { of a cu. } \\ & \text { bic foot. } \end{aligned}$	Stones,Earths,\&c	Specinegra vity.	Weight of a cubic foot
Agat	2590		white	2550	
Alabaster, w	2730	170.625	Cornelian.	2613	
	2699	168.687	Diamond,	3521	
	171	107.125		3444	
Amb Ambe	1078	67.375	Eart	2194 1500	13
Asbestos,	3073	192.062	,	2050	128.125
Asphaltum	905	56.562	" mould, fr	2050	
	1650	103.125	" rammed........	1600	00.
ryt	4000	250.	ough sand....	1920	
Barytes, sulphate...	4865		" with gravel.....	202	126.25
Basalts.................	27	${ }_{179}^{171.25}$	Eme	4000	2
Bora	281	5			
	1900	118.75	Fluorin	132	
	1367	85.437	Glass,	2732	170.75
	2201	137.562	Cro	2487	155.437
" work in c	1800	112.50	"	2933	183.312
"	1600	100.		3200	96
	2000	125.	" gre	264	165.12
Carbon...	3500	218.75	optic	3450	215.625
Cemen	1300	81.25	" wh	2892	180.75
	1560	97.25		2642	165.125
Chalk...	15	95	Garnet.	4189	
	278	17	" black	3750	
Chry	2782		Granite, Egy	2654	165.87
Clay.	1930	120.625	Patap	2640	165.
with gra	2480	5	Quincy	2652	165.75
Coal, Anthracite.... $\{$	1436	8975	Scote	2625	64.062
	1290	102.5 80.625	Gravel, ${ }^{\text {Susque }}$	174	9.
" Cannel........	1238	77.375	Grindstone.	2143	133.937
	1318	82.375	Gypsum, opaq	216	135.5
Cakin	1277	79.812	Hone, white,	2876	179.75
" Cherr	1276	79.75	Hornblende.	3540	221.25
" Chili	1290	80.625	,	4940	
" Derby	1292	80.75	Jet	1300	
Lanc	1273	79.562	Lime, hydra	2745	171.562
" Marylan	1355	84.687	" quick.	804	50.25
" Newcas	127.0	79.375	Limestone, green	3180	198.75
" Rive de Gier......	1300	81.25	whit	3156	197.25
" Scotch..........	1259	78687	Magnesia, carb	2400	
	1300	81.25	Marble, Adelaid	2715	169.687
" Spli	1302	81.375	" Africain.	2708	16925
" Wa	1315	82.18	" Biscayan,	2695	168.437
Coke.	1000	62.5	" Carara...	2716	169.75
" Nat'l,	746	46.64	" comm	2686	167.875
Concrete,	2000	125.	" Egy	266	166.75
Copal.	1045	65.312	" Fren	2649	165.56
Coral, re	2700	-	Ital	2708	169.

[^0]Weight of a cubic foot.

137.125 93.75 050128 050 1:8 125 300100 920120 020126.25 000250 582161.375 594162.125 320 82.5 732170.75 487155.437 933183.312 20019 642165.125 450215.625
892180.75
642165.125

654165.875
640165
. 652165.75
!625 164.062
:704 169
749109.312
1143133.937
1168135.5

| 1876 | 179.75 |
| :--- | :--- | :--- |

$3540 \cdot 221.25$

Stones, Earths,\&c	Specific gra vity	Weight of a cubie foot.	Stones, Earths,\&c	Specific gra vity.	Weight of a cubic foot.
Marble Par	2838	177.375	Stone, Craigleth..Engl.	2316	144.75
" Vermont, white	2650	165.57	" Kentish rag "	2651	165.687
Marl, mean...............	1750	109.375	"6 Kip's Bay... N Y.	2759	172.
Mica.	2800	175	6 Norfolk (Parlia-		
	1384	86.5	ment House).	2304	744.
	1750	109.375	" Portland...Engl	2368	148.
Mills	2484	155.25	6 Sandstone, mean	2200	137.5
Mud.	1630	101.875	6 " Sydney	2237	139.812
Nitre	1900	118.75	6 Staten Isl'd. N.Y	2976	186.
Opl	2114		6 Sullivan Co. 6	2688	168
Oyste	2092	130.75	Schorl	3170	198.125
Paving-stone.............	2416	151.	Spar, calcareous.........	2735	170.937
Peal, Uriental...........	2650		" Feld, blue.........	2693	168.312
Peat.	600	37.5	" gree	2704	
Pat.	1329	83.062	Flu	3400	215.5
Phosphory	178	110.6 73.5		2033	50.937
Plumbago	2100	131.25	Talc, mea	2500	156.25
Porphyry, red.	2765	172.812	Ta'e, black	2900	181.25
Porcelain, China	2300	14375	Tile	1815	113.437
Pumice-ston	915	57.187	Topaz, Oriental.........	4011	
Quartz.	2660	166.25	Trap	2720	170.
Rotten-sto	1981	123.812	Turquoise.................	2750	
Red lead	8940	558.75			
Resin.	1089	68.062	Miscellaneous.		
Rock, crystal.............	2735	170.937			
Ruby. .	4283	132.125		905	56.562
Salt, comm	2130	133.125	Asphaltum	1650	103.125
Saltpetre	2090	130.625	Atmospheric Air........		. 07529
Sand, coar	1800	1125	Beeswax....................	965	60.312
"6 common...........	1670	104.375	Butter	942	58.875
6 damp and loose..	1392	87.	Camph	938	61.75
${ }_{6} 6$ dried and loose.	1560	97.5	Caoutcho	903	56.437
"6 dry..................	1420	88.75	Egg.	1090	
"6 mortar, Ft. Rich.	1659	103.66	Fat of Beef.	923	57.688
6 " Brooklyn	1716	107.25	6 Hog	936	58.5
"6 sillicious.	1701	106.33	6 Mu	923	57.687
Sapphi	3994		Gamboge	1222	
Shale	2600	162.5	Gum Arabi	1452	90.75
late $\{$	2900	18125	Gunpowder, loose.......	900	56.25
late0. $\{$	2672	167.	.6 shaken...	1000	62.5
Slate, purple............	2784	174.	6 solid... $\{$	-1550	96.875
Smalt........	2440	152.5		1800	112.5
Stone, Bath...... Engl	1961	122.562	Gutta-percha.	980	61.25
6 Blue Hill...	2640	165.	Horn.	1689	105.562
" Bluestone (basalt)	2625	164.062	Ice, at 32°	920	57.5
" Breakneck..N.Y.	2704	169.	Indigo.	1009	63.062
6 Bristol...... Engl.	2510	156.875	Isinglass....................	1111	69.437
6 Caen, Normandy	2076	129.75	Ivory.........	1825	114.062
6 Common	2520	157.5	Lard	947	59.187

(*) . 001205.

Miscellaneous.	Speci fic gra vity.	Weight of a cut bic foot.	Liquids.	$\begin{gathered} \text { Speci- } \\ \text { ficgra } \\ \text { vity. } \end{gathered}$	Weight of a cubic foot.
Mast	1074	67.125	Aquafortis, double......	1300	81.25
Myrr	1360	85.	" single.......	1200	
Opiu	1336	83.5	Bee	1034	64.625
Soap,	1071	56.937	Bitumen, liquid.........	848	
Sperma	943	58.937	Blood (human)..........	1054	65.875
Starch	950	59.375	Brandy, $\frac{5}{6}$ or 5 of spirit	924	57.75
Sugar.	1606	100.375	Cider	1018	63.625
" .66.............. $\{$	1326	82.875	Ether, ace	866	54.125
Tallow	972	${ }_{58}^{60.25}$	" mu	845	52.812
Wex	964	60.25	Honey	1450	44.687 90
	970	60.625	Milk.	1032	64.5
			Oil, Anise	986	61.625
Liquids.			" Codfis	923	57687
Acid, Acetic.	1062	66.375	" Lirseed	940	58.75
" Benzoic	667	41687	" Naph	84	53.
Citric.	1034	64.625	" Oliv	915	57187
" Concent	1521	95.062	" Pal	969	60.562
" Fluoric.	1500	93.75	" Petrol	878	54.875
" Muriatic	1200	75.	" Rap	914	57.125
" Nitric.	1217	76.062	"Sunflo	926	57.875
" Phosphoric.	1558	97.375	" Turpen	870	54.375
"	2800	175.	"Whale.	923	57.687
" Sulphuric...	1849	115.562	Spirit, rectified...........	824	51
Alcohol, pure, 60	794	49.622	Tar	1015	63.437
95 per cent....	816	51.	Vineg r .	1080	67.5
" 80 "	863	53.937	Water, Dead Sea.	1240	77.5
" 50	934	58.375	60	999	62.449
" 40	951	59437	212°	957	59.812
" 25 "	970	60.625	" distilled, $39^{\circ} \dagger$	998	62379
" 10	986	61625	" Mediterranea	1029	64.312
"	992	62.	" ra	1009	62.5
" proof spirit, ${ }^{50} 0$	934	58.375	" se	1026	64.125
" prof mirit 50		58.375	Wine, Burgundy........	992	
" proof spirit, 5^{50} per cent $\left.80^{\circ}\right\}$	875	54.687	" Champagne.......	${ }_{1} 997$	64.375
per cent Ammonia, 27.9 per $0^{\circ} \mathrm{ct}$	89	5568	" ${ }^{\text {" }}$ Port	1038 997	62.312 62.312

Compression of the following fluids under a pressure of 15 lbs . per square inch :
Alcohol
0000216
Mercury
00000265
Ether
0000158
Water
00004663

[^1]Weight of a cubic foot. $0 \quad 81.25$ 075. 464.625 853. 465.875 $4 \quad 57.75$ 863.625 654.125 1552.812 1544.687 50606
3264.5 $86 \quad 61.625$ $\begin{array}{lll}23 & 57 & 687\end{array}$

40	58.75
48	53.
15	57.187
69	60.562
78	54.875
14	57.125
26	57.875
70	54.375
23	57.687
24	51.5
015	63.437
080	67.5
240	77.5
999	62.449
957	59.812
998	62.379
029	64.312
009	62.5
026	64.125
992	62.
997	64.375
038	62.312
997	62.312

15 lbs. per

00000265

 00004663ydrometer, 920.

Elastic Fluids.

$1 \dagger$ Cubic Foot of Atmospheric Air weighs 527.04 Troy Grains. Its assumed Gravity of 1 is the Unit for Elastic Fluids.

A		,	
Ammon	. 589	Sulphureted	1.17
Azot	. 976	Sulphurous	2.21
Carbonic a	1.52	Steam, ${ }^{*} 212^{\circ}$	48
	. 972	Smoke, of bit	. 102
Carbureted hyd	. 559	coke	. 105
Chlorin	2.47	" woo	. 09
Chloro-c	3.389	Vapor of alcohol	. 613
Cyanogen	1.815	bisulphuret	2.64
Gas, coal....................	$.4$	Vapor of bromine.	
Hydroge	. 07	" ${ }^{\text {chio }}$	2.58
Hydrochloric	. 278	" hydroch	2.255
Hydrocyanic	942	" iodine.	. 675
Muriatic acid	1.247	" nitric aci	3.75
Nitrogen	. 972	" spirits of tur	4.763
Nitric oxyd.	1.094	" sulphuric aci	2.7
Nitrous acid	2638		2.586
Nitrous oxy	1.527	" sulphur.	2.214
Oxygen.	. 102		62

Weights andVolumes of various Substances in Ordinary Use.

Substances.	Cubie Foot.	Cabic Inch.	Substances.	Cubic Foot.	Cubic Inch.
Metals.	Lbs	Lbs.	Metals.	Lbs.	Lbs.
Brass $\left\{\begin{array}{l}\text { copper } 67 \\ \text { zine } 33\end{array}\right\}$	488.75	2829	Tin..	455.687 428.812	.2637 .2482
" ginn metal...	543.75	. 3147	Z	449.437	. 2601
" sheets	513.6	297			
" wire..........	524.16	3033	Woods.		
Copper, cast	547.25	3179			
" plates........	543.625	3167	Ash..................	52.812	42.414
Iron, cast............	450.437	. 2607	Bay..................	51.375	43.601
" gun metal	466.5	. 27	Cork.................		149.333
" heayy forging	479.5	. 2775	Cedar	35.062	63.856
" plates........	481.5	. 2787	Chestnut...	38.125	58.754
" wrought bars.	486.75	2816	Hickory, pig nut.	49.5	45.252
Lead, cast..........	709.5	. 4106	" shell bark..	43.125	51.942
" rolled.........	711.75	. 4119	Lignum-vitæ.	83.312 57.062	56.886 39.255
Mercury, $60{ }^{\circ} \ldots$	448.7487 487 85	${ }_{2823}{ }_{2}^{491174}$	Joywood	57.062 35.	39.255 64.
Steel, plates........ ." soft............	487.75 489.562	2823 2833	$\begin{array}{r} \text { Mahogany, Hon- } \\ \text { duras........... } \end{array}$	35. 66.437	64. 33.714

[^2]| Substances. | Cubic Foot. | Cub. Feet in a Ton. | Substances. | Cubic Foot. | Cnb.Feet in a Ton. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Oak, Canadian | 54.5 | 41.101 | Coal, Welsh,mean | 81.25 | 27.56 |
| " English...... | 58.25 | 38.455 | 'oke. | 63.5 | 35.84 |
| 6 live, seasoned | 6675 | 33.558 | Cotton, bale, mean | 14.5 | 154.48 |
| "6 white, dry... | 53.75 | 41.674 | " " pressed $\{$ | 20. | |
| " " upland | 42.937 | 52.169 | " "pressed | 25. | 89.6 |
| Pine, pitch | 41.25 | 54.303 | Earth, clay......... | 120.625 | 18.569 |
| " red. | 36.875 | 60.745 | " common soil | 137.125 | 16.335 |
| " whit | 34.625 | 64.693 | " 6 gravel | 109.312 | 20.49 |
| "6ell seasoned | 29.562 | 75.773 | " dry, san | 120. | 18.667 |
| " yellow | 33812 | 66.248 | " loose | 93.75 | 23893 |
| Spruce.............. | 31.25 | 71.68 | "6 moist, sand. | 128.125 | 17.482 |
| Walnut, black, dry | 31.25 | 71.68 | ${ }^{6} 6$ mold | 128.125 | 17.482 |
| Willow............... | 36.562 | 61.265 | "6 mud.......... | 101875 | 21.987 |
| * dr | 30.375 | 73.744 | " with gravel. | 126.25 | 17.742 |
| | | | Granite, Quincy... | 165.75 | 13514 |
| Miscellaneous | | | " Susqueh'na | 169. | 13.254 |
| | | | $\mathrm{H}_{\text {ay }}$, bale........... | 9.525 | 235.17 |
| Air.... | 075291 | 12.8 | "' pressed....... | 25. | 89.6 |
| Basalt, mean...... | 175. | 12.8 | India rubber........ | 56.437 | 39.69 |
| Brick, fire | 137.562 | 16.284 | '6 vulc | 197.25 | - |
| " mean. | 102. | 21.961 | Limeston | 197.25 | 11.355 |
| Coal, anthra | 89.75 | 24.958 | Marble, mean...... | 167.875 | 13.343 |
| | 102.5 | 21.854 | Mortar, dry, mean | 97.98 | 22.862 |
| "6 bitumin., mean | 80. | 28 | Water, fresh....... | 62.5 | 35.84 |
| "Cannel...... | 94.875 | 23.609 | " salt | 64.125 | 34.931 |
| " Cumberland... | 84.687 | 26.451 | Steam. | . 036747 | - |

Application of the Tables

When the Weight of a Substance is required. Rule. - Ascertain the volume of the substance in cubic feet; mnitiply it by the unit in the second column of tables, and divide the product by 16 ; the quotient will give the weight in pounds.

When the Volume is given or ascertained in Inches. Rule.-Multiply it by the unit in the third column of the tables, and the product will be the weight in pounds.
Example. - What is the weight of a cube of Italian marble, the sides bieng 3 feet? $3^{3} \times 2708=73116 \mathrm{oz}$, , which $\div 16=45.9 .75 \mathrm{lbs}$.
Or of a sphere of cast iron 2 inches in diameter ?
$2^{3} \times .5236 \times .26$ weight of a cubic inch $=1.089 \mathrm{lbs}$.
Comparative Weight of Timber in a Green and Seasoned state.

Timber.	Weight of a Cub. Ft.		Timber.	Weight of a Cub. Ft.	
	Green.	Seasoned.		Green.	Seasoned.
American Pine.	Lbs. Oz . 4.. 12	$\begin{gathered} \text { Lbs. Oz. } \\ 30.11 \end{gathered}$	Cedar	Lbs. Oz.	Lbs. Oz. 28.4
Ash............	58.3	50.		71.10	28.4 43.8
Beech	60.	53.6	Riga Fir..	48.12	35.8

To Compute the Capacity of a Balloon.

Rele.- From specific gravity of the air in grains par cubic foot suv* etract that of the gaz with which it is inflate i; multiply the remainder by the vo'ume of the balloon in cubic feet; divide the product by 7000, and from the quotient substract the weight of the balloon and its attachments.
Example -The diameter of a balloon is 26.6 feet, its weight in 100 lbs ., and the specefic gravily of the gaz with which it is inflated is .06 (air beng assumed at 1); what is its capacity ?
$\frac{527.04-31.62 \times \overline{26.6^{3} \times .5236}}{7000}-100=\frac{495.42 \times 9854.726}{7000}-100=597.461 \mathrm{lbs}$.
To Compute the Diameter of a Balloon, the
Weight to reised being oiven.
By inversion of the preceding rule,
$\sqrt[3]{\frac{W \times 700 \div-s-s^{\prime}}{.5236}}=d, s$ and s^{\prime} representing the weight of air and gas in grains per cubic foot, and d the diameter of the bulloon in feet.

Example.-Given the elements in the preceeding case
Then $\frac{\sqrt[3]{597} 46+100 \times 7000 \div \overline{527.04-31.62}}{.5236}=\sqrt[3]{18821.09}=26.6$ feet.

To Compute the weight of Cast Metal by the Weight of the Pattern.

When the Patlern is of White Pine.

Rore.-Multiply the weight of the pattern in pounds by the following multiplier, and the product will give the weight of the casting:

Iron, 14 ; Brass, 15 ; Lead, 22 ; Tin, 14 ; Zinc, 13.5.
When there are Circular Cores or Prints.- Multiply the square of the diameter of the core or print by its length in inches, the product by .0175 , and the result is the weight of the pattern of the core or print to be deducted from the weight of the pattern.
It is customary, in the making of patterns for castings, to allow for shriskage per lineal foot of pattern.
Iron and Lead $\frac{1}{8}$ th of an inch, Brass and Zinc $\frac{3_{1}^{3}}{}$ the, and Tin ${ }_{12}^{12}$ th.

PROBLEM.

To determine the accurate solidity of any irregular body of small dimensions or of a body composed of several elementary parts with different dimensions and forms.
(1) RULE. If it is the capacity of any vase or vessel which we want to measure, the idea generally suggest itself of arriving at the result by determining the number of times which such a vessel car give place to or contain the contenis of any other vessel of an elementary furm of which we know the capacity.
(2) But if it is the solidity of the substance itself of the vessel, \&e., which we desire to measure. the manner of operating does not immediately present itself to the mind of any one wishing to obtaia the result.
(3) RULE. If the solidity to be measured is that of a non absorbent substance, we immerse it in a vessel full of water or any other liquid of which we will, measure the displacement by means of another veisel of known capacity; or if the first vessel is large enough and it form rectangular or cylindrical and of easy gauging, we will first put in it enough liquid to cover the object to be measured ; having aftervards observed the height of the level of the water in the vessel, we will immerse in it the object in question and observe again the level of the liquid; if now we suppose that each fraction of a metre, inch line or any other unit of the height of the containing vessel corresponds to a cubio mètre, foot, inch, or line, de., we will have but to count the number of such units in the height of the displaced level of the water to obtain immediately the solidity of the proposed object.
(4) If the body is absorbent, we may for instance use sand or any other fluid substance, of the kind, that we can level the surface of by means of a rod with a rectilineal edge.

In this manner we would arrive at the solidity of the most deversified bodies of the animal, vegetable or mineral kingdom and of the thousand and one raw or manufactured objects which we have constantily under o
and of which it would often be impossible to weasure the solidities by the ordinary rules of geometry.

It is well to remind also that we may arrive by a simple proportion at the solidity of a body by comparing its weight with that of another body of the same substance and of determined solidity, that is by the system of specifie gravities which shows at the same time how to obtain the solidity of a body from its weight : which will form the subjects of the next problem.

Ex. 1. The weight of an irregular block of stone is 13 pounds 7 ounces : required to determine with the help of the given piece the weight nearly of a cubic foot of such stone.

Ans. First cube the block of stone ; to that effuct get a rectangnar vessel, say 10 inches square or 100 inches in horizontal area, and the height of which is divided into inches and hundreths of an inch; having poured into

tself of the

 r of operating hing to obtaiuhat of a non er or any other eother ve:sel of n rectangular or quid to cover the f the level of the nd observe again f a metre, inch sponds to a cubic ber of such units iately the solidity
ce use sand or any of by means of a most deversified the thousand and tily under o the vessel water enough to cover the stone to be cubed, I note the height of the water which I find 8.53 inches, I then immerse the stone in the vessel and I note again the height of the water which is now 9.89 inches ; the difference of these heights is 1.36 inches. Since the vessel is 10×10 inches, it is plain that every inch of its height corresponds to 100 cubic inches and consequently, each hundredth of an inch of such a height to one cubicinch; therefore the observed height 1.36 , of the displaced level of the water corresponds to 136 cubic inches; therefore the solidity of the stone is 13 i, and we will now obtain the weight of the cubic foot by making 1:36:215 ounces (weight of the stone) : : 1728 cubic inches (that is a cubic foot) : 2732 ounces, or, $\mathrm{di}-$ viding by $16,170 \frac{9}{4}$ pounds, the required weight.
2. In a cylendrical vessel such that each iuch of its height corresponils to $\mathbf{1}$ cubic inch of space or solidity, we have immersed a piece of silver which has displaced by 73 hundreths of an inch the level of the liquid in the vase; required the solidity of the ingot of silver ?

Ang. 73 of a cubic inch.

3. Having filled with water any vessel, we have immersed in it an object the solidity of which we want to know ; we have gathered in another vessel, the water overflown, the quantity of which is 3 gal. 2 quarts and $\frac{1}{\frac{1}{2}}$ pint ; what is the soiidity of the proposed object, the gallon made use of being 231 cubic inches?

Ans. 1 gallon +2 quarts $+\frac{1}{8}$ pint $=231+115 \frac{1}{3}+14_{16}^{7}=\frac{15}{8}$ cubic inches.
4. Required the solidity of an absorbent substance placed in a vessel one foot square filled with sand; after having removed the object to be measured, we find that the uniform height of the sand in the vessel, first levelled to that effect, is .3 of a foot, the height of the vessel being 1.5 feet ?

Ans. 1.5-3=1.2 feet $=$ height of the displaced level of the sand, and as
the vessel is 1 square foot in horizontal section, it follows that the solidity of the object is 1.2 cubic feet.
5. In a vessel having the form of the frustum of a cone is a quantity of liquid of which the diameter at the surface is 10 inches: we immerse in it an object which increases by 9 inches the height or depth of the liquid in the vessel and which gives to its displaced surface a diameter of 14 iuches ; required the solidity of the proposed body?

Ans. The volume of water displaced which is at the same time that of the object, is that of the frustum of a cone of which the parallel bases measure respectively 10 and 14 inches and of which the height is 9 inches; this sol. $=(112$, T. $)\left(10^{2}+14^{2}+4 \text { times } 12\right)^{2} \times 7354 \times 9 \div 6=872 \times .7854 \times 1.5$ $684.8688 \times 1.5=1027.3032$ cubic inches.

THEOREM.

To determine the solicity or weight of any body or substance,

 by comparing the volume or weight of such body with that of a body or substance of the same nature of which we know beforehand the weight and volume.(5) REm. The weight of a cubic foot of water at the temperature of 40° Fahrenheit (at which water nearly reaches its greatest density) is 1000 ounces avoir du poids nearly, or $6 \frac{1}{\frac{1}{2}}$ pounds (english w $\cdot \mathrm{i}$ hht) and we denominate weight or specifie gravity of any body or substance, the weight of a volume of such body or substace equal to that of the water t.iken for comparison ; whence it results that if in advance we know the weight of a cubic foot, for instance, of each of the different substances that we may be called on to measure or value, as stated in table X, we wi 1 at once determine by a simple proportion the volume of any other weight or quantity of the same substance or the weight of any other voiume of such substance, by the followisg rules.
(6) RULE. To determine the solidity of a body from its weight; make the proportion : the specific weight of the proposed body is to (:) its weight in sunces or pounls, \&e, as (::) 1 cubic foot or 1728 cubic inches, is to (:) the solidity of the body in feet or inches, as the case may be.

Ex. 1. The weight of a shell or cast iron ball or of any fragment of such a solid is 45 pounds : required the solidity of the proposed body?

Ans. It is seen by table X of specific gravities that the weight of cast iron is 450 pounds nearly, per cubic foot; we will then obtain the required solidity by making 450 pounds : 1728 cubic inches : : 45 pounds : 172.8 cubic inches.
is a quantity of immerse in it an he liquid in the f 14 iuches ; re-
me time that of allel bases meas 9 inches ; this $172 \times .7854 \times 1.5$
r or substance, ch body with ure of which 1 e.
he temperature $\mathbf{o f}_{\mathbf{f}}$ density) is 1000) and we denomi, the weight of a or t.iken for comweight of a cubic we may be called ce determine by a ntity of the same tance, by the fol-
. body from its proposed body is to $r 1728$ cubic inches, nay be.
y fragment of such I body?
the weight of cast btiain the required rounds: $\mathbf{1 7 2 . 8}$ cubic
2. Required the volume of a marble statue the weight of which is 1000 pounds, the specific gravity of the marble from which the statue is drawn being 170 pounds nearly to the cubic foot?

Ans. 170 pounds : 1 cubic foot : : 1000 pounds : 59 cubic feet nearly.
3. A quantity of sand weighs 13 pounds : what is its solidity ?

Ans. From table X, the specific gravity of sand is 1.520 , that is, 1.520 times the weight of an equal volume of water or 1520 onnces to the cubic foot (since the weight of a cubic foot of water is 1003 ounces) ; we will therefore make 1520 onnces : 1728 cubic inches : : $(13 \times 16=) 203$ ounces $: x=$ $1728 \times 208=236 \frac{1}{2}$ cubic inches.
1520
4. The weight of a tusk or tooth of an elephant is 25 pounds ; what is its solidity?

Ans. Ivory is 1825 onnces to the cubic foot; we will therefore obtain the solidity of the tooth by making 1825:1:: (25 pounds or) 400 ounces: . 22 nearly of a cubic foot, or 1825 ounces : 1728 cubic inches : : 400 ounces : 378.74 cubic inches.
5. It is required to determine in advance the probable weight of a cast iron grating which must be cast according to a carved model of pine wood the weight of which is 7 pounds?

Ans. We will first obtain the solidity of the piae model by making, as per rale (the pine being considered in this case as of 25 pounds to the cubic foot) 25 pounds : 1 cubic foot : : 7 pounds : . 28 of a cubic foot. Now, as the solidity of the cast iron is 450 pounds per cubic foot, we will obtain the weight of the proposed grating $=450 \times .28=126$ pounds.
(f) RULE. To determine the weight of a body from its volume; make the proportion : as one cubic foot is to (:) the volume of the proposed body, so is (::) its specific gravity to (:) its weight.

Ex. 1. The volume of a heap of snow on the roof of a building is 7000 cubic feet, the weight of a cubic foot of this snow, made heavy by rain, \&c. is 30 pounds required the total weight which bears on the roof?

Ans. $7000=210,000$ pounds.
2. What is the weight of a piece of pure cast gold the dimensions of which are 3 inches by $\frac{8}{4} \times \frac{1}{8}$ inches?

Ans. The solidity $=3 \times \frac{9}{4} \times \frac{1}{2}=2 \frac{3}{4}$ cubic inches; the specific gravity of pure gold is 19.258; the rule gives : 1 cubic fuot or 1728 cubic inches : 24 cubic inches : : $19.258: x=\frac{19.253 \times 225}{1723}=25.07552$ ounces
3. One desires to know the weight of a firkin of butter the volume of which obtained from the rule to article (112), is 1830 enbic inches ?

Ans. The specific weight of the butter is .940 of that of water, that is, of 940 ounces to the cubic foot; we will therefore obtain the required weight $=1830 \times 940=995 \frac{1}{2}$ ounces, $\div i 0^{\circ}=62$ pounds $3 \frac{1}{2}$ ounces.
1728
4. What is the weight nearly of a stick of english oak half-dry, the volume of which is 150 cubic feet?

Ans. The half-dry oak, from the table, is 66 pounds nearly per cubic foot, whence the required weight, is $150 \times 66=9900$ pounds.
5. What is the weight nearly of a box of bound books the volume of which is 15 cubic feet?

Ans. 15 cubic feet $\times 43$ ponuds nearly $=645$ pounds.

PROBLEM.

To determine the specific gravity of any body or substance.

(8) RULE. I. Oube and weight the proposed body, and afterwards make this proportion ; as the solidity of the body is to (:) its weight in ounces, so is (: :) a cubic foot of such body to (:) the weight of one foot of it in ounces; that is, by cutting off three figures for deci-its specific gravity.

Ex. 1. What is the specific weight of seasoned black walnut, if a simple of this wood the dimensions of which are $11 \times 7 \times 9$ inches, weighs 24 ounces?

Ans. $11 \times 7 \times 9=69.3$ cubic inches $=$ sol. of the proposed body ; now, from the rule 69.3 inches : 24 ounces : : 1728 inches : 598 ounces or 37.4 pounds; the required specific gravity is therefore .598 of that of water the weight of which is 1000 ounces to the cubic foot.
2. An irregular piece ef chalk of which the solidity has been obtained, $=432$ cubic inches, by the method of exemple 4 of the last but one problom, weighs $43 \frac{1}{2}$ pounds : required the specific gravity of that substance.

Ans. 432 inches : 1728 inches : : $43 \frac{1}{2}$ pounds $: 174$ pounds $:$ whence, the required specific gravity is $174 \times 16=2.784$ times the weight of an equal volume of water.
3. A bateau or pontoon of 100 feet by 20×10 feet and the total volume of which is consequently 20,000 cubic feet, required in its construction 5000 feet of white pine half-seasoned, the weight of which is estimated at 40 pounds for the cubic foot, 500 cubic feet of elm computed at 50 pounds to the enbic foot, and 5000 pounds weight of iron spikes : required the draught of water of the proposed body?

Ans The weight of the pine $=5000 \times 40=200,000$ pounds, the weight of the $\operatorname{elm}=500 \times 50=25000$, the iron 5000 pounds; the total weight of the bateau is consequently $230,000 \mathrm{lbs}$; the average weight or the specific grav-
urly per cubic the volume of $=645$ pounds.
substance.
and afterwards veight in ounces, lof it in ounces;
nut, if a simple lues, weighs 24
sody ; now, from or 37.4 pounds; r the weight of
been obtained, at one problom, bstance. ds : whence, the ght of an equal
the total volume construction 5000 estimated at 40 ; 50 pounds to the d the draught of
ds, the weight of al weight of the the specific grav-
ity of the pontoon is $2: 30,000$ poands $\div 20,003$ cubic feet $=11.5$ pounds te the cubic foot, that is $11.5 \times 16=184$ ounces per cubic foot, say .184 of the weight, of an equal volume of water. The weight of the pontoon is 10 feet, therefore the dranght will be .184 of the height of the pontoon or 1.84 feet, that is. 1 foot 10 inches and .96 of an inch $=1$ foot 11 incles nearly.
4. By what quantity can the bateau or pontoon of the last example be loaded without causing it to founder or sink beyond its deck or superior surface?

Ans. Since water weighs 62.5 pounds to the cubic foot and the total volume of the pontoon is 20,000 cubic feet, the total weight of the water which the pontoon must displace before sinking to the lever of the water is 20,000 $\times 62.5=1,250,000$ pounds; now the weight of the boat is but 230,000 pounds ; whence it follows that we might still without causing the bateau to founder load it with a weight equal or nearly equal to the difference between 1250,000 pounds and 230,000 that is 1020,000 pounds.
(9) NULE I1. If the body to be computed is heavier than water; first weigh the body in air, then in water, by means of a hydraulic balance; the difference between the results will be the weight lost in water, or the weight of a quantity of water equal in volume to that of the body. Make now the proportion : as the weight lost in water (:) is to the weight of the body in air (::) so is the specific gravity of water (:) to the specific gravity of the body.

Ex 1. A piece of tin weighs 183 pounds, its weight in water is but 158 pounds : what is the specific gravity of tin?

Ans. $183-158=25: 183:: 1000: 7320=$ required specific gravity.
2. A block of granite weighs 21 ounces in air and only 13 ounces in water : what is the specific gravity of the granite?

Ans. 2625
(10) RULEIII. If the body to be computed is lighter than water; tie to the proposed body by a thread the weight of which is relatively null, another body heavier than water, so that both of them taken together may penetrate or sink in the water; having fist weighed each body in air, and the heavier in water, weigh then in water the compound body, and from $t^{\text {he }}$ weight lost by the compound body, substract the weight lost by the heavier. body as weighed alone; the remainder is the weight lost by the light body. Then: as the weight lost by the light body in water, (:) is to the weight of that body in air, (::) so is the specific gravity of water (:) to the specific gravity of the body.

Ex. 1. To a piece of elm which in air weighs 15 grains, we have tied a piece of copper the weight of which is 18 grains in air and 16 grains in water, and the compound in water weighs but 6 graius : what is the specific gravity of the elm?

Ans. 18-16 $=2=$ the number of grains lost by the copper in the water.
$18+15-6=27=$ the number of grains lost by the compound in the water.
27-2 $=25=$ the number of grains lost by the elm in the water. $25: 15:: 1000: 600=$ the specific gravity of the elm.
2. A piece of copper, weighing in air 27 ounces and in water 24 ounces, is tied to a piece of cork weighing in air 6 ounces, and the compound weighs in water but 5 ounces : what is the specific gravity of cork?

Ans. 0.240 .

PROBLEM.

To determine the quantity of each ingredient or element in a compound of two substances or elements.

(11) RULE. Find first the specific weight of the compound, mixture or alloy, and of each of the component elements and multiply the difference of every two of these three specific weights by the third. Make then : the greatest product, (:) is to each of the other product, (::) as the weight of the alloy, (:) is to the weight of each ingredient.

Ex. 1. A mass of gold and silver weighs 62 ounces, and its specific gravity is 16126; what is the quantity of each ingredient, the specific gravity of gold being $196!0$, and that of silver 11091?

Ans. $(19640-11091) \times 16126=137,861,174$. Allog.
$(19640-16126) \times 11091=38,973,774$. Silver.
$(16126-11091) \times 19640=93,887,400$. Gold.
$137,861,174: 98,838,400:: 63: 45$ ounces, 3 penny weights, 19 grains of gold. $137,861,174: 38,97: 3,774: .13: 1 i$ ounces, 16 penny weights, 5 grains of silver.
2. A mass of copper and gold weighs 48 ouvees, and its specific gravity is 17150 , the specific gravity of gold is 19640 and that of copper 9000 : what is the quantity of each element of the mixture?

Ans. Gold $=42$ ounces 2 penny weights $2 \frac{2017}{406} \frac{0}{9}$ grains, copper $=5$ ounces, 17 penny weights $21 \frac{25449}{4} 56$ grains.
3. An alloy of silver and copper weighs 60 ounces, its specific gravity being 10535 : required the weight of each ingredient, their respective specific gravities being 11091 and 9000 ?
 penny-weights $14{ }_{T} \frac{238182}{468579}$ of copper.
4. An alloy of copper and tin weighs 112 pounds and its specific gravity is 8784 , what is the quantity of each of the ingredients of the mixture, their respective specific gravities being 9000 and 7320 ?

Ans. 100 pounds copper, 12 pounds tin.
5. Required the weight of gold, in a compound of quartz and gold the specific gravity of which is 3500 , that of gold being 19640 and that of quartz 3000 ?

Ans. $19640-3000=16610 \times 35110=58,240,000=$
Factor for the compound bod y.

$$
\begin{aligned}
& 19640--3500=16140,16140 \times 3000=48,420,000= \\
& 3500-3000=500,500 \times 19340=9,820,000=\quad \text { Factor for the quartz. }
\end{aligned}
$$

Factor for the gold.
Ans. 0.240 .

lement in a

md, mixture or ference of every reatest prodict, $y,(:)$ is to the
nd its specific specific gravity
y.
r.
grains of gold. grains of silver. specific gravity per 9000 : what
pper $=5$ ounces,
specific gravity spective specific

3r, 13 ounces 12
s specific gravity he misture, their

12 pounds tin.

PROBLEM.

'To determine the solidity of the largest piece of squared timber that may be got out of a round log, or out of felled or standing tree.
(12) RULE. Multiply the diameier of the tree or \log by the half-diameter, and this product by the lengh : the result will be the required solidity.

In fact, it is plain that the diam. AB multiplied by the half-diameter $O C$ (or $\frac{1}{3} A B$) given for product the area of the inscribed square ABCD , that is, the area of a section, of the timber to be compated, hy a plane perpendicular to its length, and thit area multiplied by the length of the \log gives ($78 \mathbf{~ T}$.) th requirel solidity.

REM. This rule supposes that the diam. of the tree is
 every wh re the same or that we make use of a mean diameter, as taken at middle of the length, and this generally done when there is not too much difference between the diameters of the opposite ends; but to be precise (148, T.) we must as already stated (91, T.) add to the sum of the areas of the ends of the \log or tree to be measured f,n: times the area of a section taken at the centre and multiply the whole by the sixth part of the length, or which is the same thing, multip'y the sum of the areas by the whole length and take the sixih part of the result.
Lx. I. The circumference of a \log, the length of which is 12 feet. is 6.23 feet, deduction being male of the bark if necessary: hiw many cubic feet of wood will there be in the stick of squared timber to be got out of the \log ?

Ans. The circ. 6.28 corresponds to a diam. 2, the section of the timber
will therefore be $2 \times 1=2$ square feet in area, and as the length is 12 , the solidity will be 21 cubic feet.
2. A tree th \leftrightarrow height of which is 50 feet, has for its sup. diam. 30 inches, and for its inf. diam. 3 inches, for its interm. diam. 33 inches; what is the solidity of the piece of square timber that may be got oat of it.

Ans. Area small end $=2 \frac{1}{2} \times 1 \frac{1}{4}$ feet $=3.125$ sup. feet, area large end $=3 \times$ $1 \frac{1}{2}=4,5$ snp. feet, intermediat area $=2.75 \times 1.375=3.73125,4$ intermediate area $=15.125$, the sum of the areas $=22.75$ and that sum $\times 50 \div 6=189.6$ cubic feet.
3. We have measured at 5 places nearly equidistant by means of a thickness compass, the diam. of an irregular tree just fell d; these diameters are respectively $39,30 \frac{1}{2}, 38,37 \frac{1}{2}$ and 36 inches, and the length of the tree 40 feet; what will its solidity be after it has been squared.

Ans. The sum of the diameters 190 inches $\div 5=38$ inches $=$ mean diam. $=3 \frac{1}{6}$ feet, $3.163 \times 1.583=5.012$ nearly $=$ area of the section; multiplying this latter by the length 40, we get $200 \frac{1}{2}$ cubic feet.

PROBLEM.

To cube a stick of timber AB which is but partly squared, or of which the edges or angles are wanting, called " waney timber."

(13) RULE. Square the diam. AB of the timber, and from such square subtract that of the diam. ab of the sapwood, the difference of these squares multiplied by the length of the timber, will be the required solidity.

In fact, it is plain that the surface wanting at each of the four angles, corners of edges of the timber, to complete the square A B, is the triangle abo, or a triangle equal to $a b o$, when as it is supposed, of $=g h=k l=a b$; now the square on $a b$ is worth $4 a b o$; therefore, \&c.

REM. 1. If the sides $a b, e f$, \&c. are not equal to each oher, we may take one fourth of the sum of these four sides for a mean diameter $a b$, or for greater
 accuracy, we will make separately the squares of $a b$, ef, \&c., and the fourth of the sum of those squares will be, or the sum of the fourths of those squares will be the quantity, nearly, to be subtracted from the square $A B$ to obtain the net area of the section of the timber.

LEM. II. Let us observe as in the last problem that if the timber is not throughout its entire length of equal size, its section must be taken at about the middle of its length, and this is generally what is done (148 T.) or, we will determine several sections of the timber and then take their mean, or
h is 12 , the
n. 30 inches, what is the ge end $=3 \times$ intermediate $=189.6 \mathrm{cubic}$
ns of a thickliameters are tree 40 feet;
$=$ mean diam. tiplying this
squared, or i,
m such square ares multiplied
and the fourth of those squares e $A B$ to obtain
he timber is not taken at about 148 T.) or, we their mean, or
finally we will make the sum of the areas of the opposite ends plis foar times that of the intermediate section and afterwards multiply the whole by the length and take the sixth part of the result.

REN. III. We must also observe that we may arrive at the area of any regular or symmetrical octagon or of the kind here illustrated by subtracting from the square of the p-rpendicular distance $A B$ which separates any two of its parallel sides, the square of one $a b$ of the sides adjacent to the first.

Ex. 1. An eight sides pilar is 3 feet wide or thick $A B$, the side $a b$ of the chamfer $a o b$ is 6 inches : what is the solidity of the pillar, its length or height being 10 feet?

Ans. $(3+3-(.5 \times .5)=8.75$ superficial feet, and $8.7 ; \times 10=87.5$ cubic feet $=$ required solidity.
2. A log of timber the edges of which are waney, measures 30 inches square and 30 feet long, the average of the sides $a b$, ef, \&c., of the wane is 9 inches; what is the solidity of the timber ?

Ans. (30×30) minus $(9 \times 9)=919$ square inches $=$ area of the section of the timber $=6.382$ feet very nearly, and $6.332 \times 30=171.46$ cubic feet.
3. We have reduced to 30 inches square at the large end a tree the diam, of which was at that point 36 inches ; at the small end the diam. 30 inches has been reduced to 25 inches; the wane, sapwood or defect from a true square $a b$ is from 7 to 6 inches respectively at the two ends, such as obtained by a direct measurement of the piece of wood to be cubed, or by means of a sketch made from a scale of equal parts : what is the solidity of the timber, its length being 60 feet?

Ans. Area at the large end $=(30 \times 30)-(7 \times 7)=851$ square inches, area at small end $=(25 \times 25)-(6 \times 6)=589 \mathrm{sq}$. f., the intermediate area $\left(\frac{30-25}{2} \times \frac{30+25}{2}\right)-\left(\frac{7+6}{2} \times \frac{7+6}{2}\right)=\left(27 \frac{1}{2} \times 27 \frac{1}{2}\right)-\left(6 \frac{1}{2} \times 6 \frac{1}{3}\right)=27.5^{2}-6.5^{2}=$ $756.25-42.25=714 ; 851+859 \div 4$ times $714=4296$ square inches, dividing by 144 we obtain 29.833 square feet, multiplying by $\frac{1}{6}$ of the length or by 10 we obtain 293.33 cubic feet.

Ans. Area section at the centre $=\mathbf{7 1 4}$ sqnare inches, $714 \div 144=4933$ square feet, $4.9583 \times 60=297.498$ cubic feet, that is, equal to the accurate solidity by less than one foot nearly, or by less than one 300th nearly, or by less than one third nearly of 1 per cent, sufficient accuracy (148. T.) in practice.

REM. IV. A comparison of the two answers of the last problem indicates sufficiently th it the ordinary practice of cullers, who take the dimensions of a \log at the middle of its length, and afterwands mitiply the area of the section at th t place by the length of the timber, to obtain thus its solidity, is, considering all things, (148 I.) sanctioned by circumstances.

IND』X

The Stereometricon: nomenclature and general feature of each of the 200 solids on the board; see the diagram at the beginning of this pamphlet
The Areas of Spherical Triangles \& Polygons to any radius or dia- meter : a paper read before the Royal Society of Canada in 1833. 55
On the general application of the prismoridal formula : a paper read be- fore the Rogal Society of Canada in 1832 61

TABLES

I. Squares and Square Roots of numbers from 1 to 1600 4
II. Circumferences and areas of circles of diameter $\frac{1}{64}$ to 150 , advan- cing by $\frac{1}{8}$. 11
III. Circumferences and areas of circles of diameter ${ }^{\prime} \sigma$ to 100 , advan- cing by ${ }_{1}^{1}$... 19
IV. Circumferences and areas of circles of diameter 1 to 50 feet, ad- vancing by 1 inch or $\frac{1}{12}$. 25
V. Sides of Squares equal in area to a circle of diameter 1 to 100 ad - vancing by $\frac{1}{4}$ 29
VI. Lengths of circular ares to diameter 1 divided into 1000 equal parts 31
VII Lengths of semi-elliptic ares to transverse diameter 1 divided into 1000 equal parts. 33
VIII. Areas of the segments of a circle to diameter 1 divided into 1000 equal parts. 37
IX. Areas of the zones of a circle to diameter 1 divided into 1000 equal parts. 33
X. Specific gravities or weights of bodies of all kinds : solid, fluid, liquid and gazeous 22
of each of the
yimuing of this
adius or diaanada in 1833.55
per read be-

).. 4

1) 150, advan- 11
o 100, adran- 19
o 50 feet, ad-25
r 1 to 100 ad- 29
o. 1000 equal 31
r 1 divided33
livided into 37
d into 1000 33
solid, fluid, 22

[^0]: * Spec. grav. of the earth in variously estimated at from 5,450 to 5,600 .

[^1]: * Specific gravity of proof spirit according to Ure's Table for Sykes's Hydrometer, 920. $\dagger 1$ cubic inch $=$.2522.69 Troy grains.

[^2]: \dagger Equal to .07529143 lbs avoirdupois.

 * Weight of a cubic foot, 257,333 Troy grains.

