The Institute has attempted to obtain the best original sopy available for filming. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below.

Coloured covers/
Couverture de couleurCovers damaged/
Couverture endommagéeCovers restored and/or laminated/
Couverture restaurée et/ou pelliculéeCover title missing/
Le titre de couverture manqueColoured maps/
Cartes géographiques en couleur

Coloured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bleue ou noire)

Colnured plates and/or illustrations/
Planches et/ou illustrations en couleur

Bound with other material/
Relié avec d'autres documents

Jight binding may cause shadows or distortion
along interior margin/
La reliure serrée peut causer de l'ombre ou de la distorsion le long de la marge intérieure

Blank leaves added during restoration may appear within the text. Whenever possible, these have been omitted from filming/
Il se peut que certaines pages blanches ajoutées lors d'une restauration apparaissent dans le texte, mais, lorsque cela était possible. ces pages n'ont pas été filmées.

L'Institut a microfilmé le meilleur exemplaire qu'il lui a été possible de se procurer. Les détails de cet exemplaire qui sont peut-étre uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de filmage sont indiqués ci-dessous.Coloured pages/
Pages de couleurPages damaged/
Pages endommagées

Pages restored and/or laminated/
Pages restaurées et/ou pelliculées

Pages discoloured, stained or foxed/ Pages dėcolorées, tachetėes ou piquėesPages detached,'
Pages détachées

Showthrough/
Transparence

Quality of print varies/
Qualité inégale de l'impression

Continuous pagination/
Pagination continueIncludes index !es)/
Comprend un (des) index

Title on header taken from:/
Le titre de l'en-téte provient:

Title page of issue/
Page de titre de la livraison

Caption of issue/
Titre de départ de la liuraison

Masthead/
Générique (périodiques) de la livraison

\squareAdditional comments:/
Commentaires supplémentaires:

This item is filmed at the reduction ratio checked below/
Ce document est filmé au taux de réduction indiqué ci-dessous.

Table of Contents.

Evergreens, by O. Gibb, Abbottsford.. 161
Pirst steps in farming. Young man's department..................... 166
Sheep shearing (with engravings)........ 108
Maize as a farm crop for the North 170
Lard cleese.. 171
Report of Pole-Star Creamery for season 1831 172
Grapes...... 173
Allender on dairying. 174
Eampshire Dn : $\mathrm{n} 4$. 176

EVERGREENS.

CONIFEROUS TREES AND SKRUBS.
By Charles Gibb, Abbotsford.
(Wrillen for the forthcoming report of the Montreal Horticultural Society.)
Evergreens are among the most arctic of trees. Strange this, if we consider the deciduous tree a novelty upon our planet, oring to the cooling of the carth's surface since the deposit of the eocene earths, many hundreds of thousands of jears ago.
An evergreen, to be ornamental at all, must be perfectly hardy. If a catalpa kills back a few inches, its large leafage hides all defects, but if an evergreen is "scorched" by our dry winter winds or by the heat of our winter sun, il ceases to be ornamental.
Foung evergreens under cultivation are often exposed to conditions of life far more trying than those in the woods, where they are mulched by leaves and covered with snow. An evergreen after its first season of growth must be mulched, that is, it must have leaves or straw, or some non-conductors scattered around it to prevent the frost from penetrating deeper than the roots.
Some of the western conifers first introduced into the Eastern States were from seed from the mild moist climate of the Pacifo coast, and proved quite tender in the middle States. Seed of these same varieties from elevated regions in Colorado proved quite hardy. To insure still greater hardiness, seed shoold be procured from the dry interior districts of British Colombia, where some of our eastern trees are found among them.

From Europe we have many species of value. From Eastern Asia we may expect much. The trees of Japan, though so successful farther south, seem to lack hardiness until we get seed from their higher altitudes. We have hopes too of finding news species on the shores of those high temperate and arctio islands which, by elevation, are seattered eren through the Torrid Zone.
Some of the Pacific conifers I have not seen: most of the others I have, but only as small trees or shrubs in the nurseries or parks, or private grounds of the Eastern States.
To Dr. Geotge M. Dawson I am indebted for kindly placing in my hands his as yet unpublished notes and map,shorw-
ing the uistribution of the different trees of British Columbia, noting the severe climates in whioh some of these beautiful species are found. To Dr. Robert Bell, M. D., for his valuable map, not yet published, showing the distribution of our forest trees northward even to the mouth of the Mackenzie River. To Prof. C. S. Sargent, for his pamphlet on the "Forests of Nevada," and one on "Ornamental trees for Massachusett's plantations," by Mr. J. Robinson of the Arnold Arboretum.
To Mr. Wm. Brown, our largest experimenter, who, many years ago, had the Marchmount nurseries at Côte des Neiges, I an indebted for the results of his long and expensive experience. The "Book of Evergreens" by Mr. Josiah Hooper of West Chester, Pa.. I shall often quote from. It is a very valuable work and the only complete one upon the conifers published on this continent.

abies.-Spruce.

The spruce is one of the most arctic of trees. In high northern latitudes where the ground is perpetually frozen to a depth of several hundred feet, and only thaws out a fers feet upon the surface during summer, there, even, the sprace is found.

Our own white and red spruce grow, even, near the mouth of the Mackenzie River, on the Arotio Ocean, as may be seen by that most interesting map by Dr. Robert Bell,about to be published by the Geological Survey of Canada.
A. Alba var: aurea.-In grouping evergreens, one must study their tones of color, as well as their form. The little plants of this, at Flushing, have a lively golden tint whioh is quite striking. Whether of dwarf habit, or not, 1 gannot say. Being a variety of our common white spruce there should be no doubt as to its hardiness.

Var: Corrulea.-The young trees I have seen are of light bluish tint, and decidedly ornameutal.
A. Alcocquina. Alcocli's Spruce. - Found, says M. Hooper, by Vietch, growing at elevations of 6000 and 7000 feet; on Fusi Yami, the meuntain we see upon the Japanese teachests. It is in latitude 36, yet trees from these high elevations might be worth trying.
A. Canadensis. Hemloch, and A. Douglasii: See Tsuga.A. Englemanni,see Picea Englemanni. A. Excelsa. Norway spruce.-I know of no foreiga treo that I should so like to see largely planted throughout our country. Lowdon speaks of it as "the loftiest of European trees, attaining a height of 125 to 150 feet, and even, in some cases 180 feet, with a very straight trunk of from 2 to 6 feet in diameter." It is the common spruce of northern and central Europe, and of northWestern Asia, and in Lapland it reaches latitude 691. Its beauty, its perfect hardiness, its rapid growth, the ease with which it oan be transplanted, oul show its value for extensive planting. About 7 years ago, I planted 70, received from Ontario. They all grew, aud are now from 10 to 12 feet in height, with very massive lower branohes. Three years ago, I planted about 110, received from Illinois, and only two of
these died. Of Austrian and Scotoh pine received at tho same time, I lost over one-third. These plants may be had in Scotland at very low rates, sometimes for about $\$ 400$ per thousand, and I have known those who have imported from thore with comparatively small loss. Firsi trials often prove failures. Three years ago, a friond imported 1000 trees which cost him \$4 with \$5 for freight, and heeled them in, lato in fall. The ground froze at onoe, and deeply, and but 10 per cent survived. Nest fall he imported 1000 more. Half of these he heeled in, in his cellar, of which only 4 or 5 lived. The remaining 500 he heeled in as the year before, but covered over with a foot deep of leaves. On the top of these leaves fell heavy snows, and by spring, the trees were all complotely rotten. Let those not accustomed to "heeling in" trees buy their evergreens in spring.

The Norway spruce varies a good deal from seed. To a forv grafted varietics I shoud like to draw attention. Ellwangerii, a seedling of Messrs. E. and B., a very compaet grower, dwarfish in growth, and very distinct. Gregoryana, dark in color, and as dense as it is possible for an evergreca to grow. In shape, like a huge plum-pudding, slightly flattencd. Inverta, has its branohes all bending directly to the ground. Its leader should be tied to a stake to insure its being erect. Monstrosa, a coarse, strong grower, with awkward long naked limbs, either grotesquely pretty or otherwiso, and at ay rate curious. It needs ample space.
A. Morinda. Himalayan Spruce.-Although found in Bhotan at elerations of from 7000 to 12000 feet, the plants in oultivation are very uncertsin north of Philadelphia. Three years ago, I know no better than to try it. This shows the necessity of lists like this. It was badly injured on the Centennial grounds, in Philadelphia.
A. Orientalis. Eastern Spruce.-A native of the shores of the Black Sea, and adjacent mountains, a region as far north as we are, but of far milder olimate. It has unusually long, shining. green foliage, and is decidedly ornamental. I have seen it in the experimental grounds of the Rural Ner Yorker, near Jersey City, at Flushing, and at other places. And I could hardly say that it was hurt. It is well worth trying, but ree must not assume it to be as hardy as the Norway, for I see that it is not so.
A. Polita.-Is sometimes, but perhaps wrongly known as the Tiger Tail Spruce. It is a native of Japan, and has loag, stiff, sharp-pointed foliage. I saw it in a number of places last summer, and it had stood as well as Oricntalis.

aradricaria.

A. Imbricata. Crili Pine.-To one species of this tender genus I wish to draw attention. There are vast forests of it covering the slopes of parts of the Andes, from near the basis of these mountains to far up towards their snow lines, between 36 and 46 south latitude. I have seen it struggling for life in sheltered positions in Central Park, and, in the Middle States, the plants in cultivation are far from hardy ; but,as Mr. Scott olserves, the seeds of these plants were brought from Conception Bay, in latitude 37 and near the sea, where Seott says the Fuschia grows wild. Any one who reads Loudon's desoription of the different altitudes, and high southern latitudes, in which this tree is found, will have some hopes that when we get seeds from the right quarter, we shall be able to grow it here, so that some day, we may be as proud of our Arauricarias as the Parisians are of their Pagglemonkeys in the Jardin des Plantes.

biota. - eastern arbor vitse.

All these are found by Messrs. Ellwanger and Barry to be tender and requiring winter protection, at Rookester. They are however, neat, ornamental, and worthy of extra proteotion.
ordrus.-Ocdar.
O. Atlantica. Mount Allas Cedar.-Is said by Mr. Hoopes, to be specifically custinot from the cedar of Lebanon. It is found, says Dr. James Brown, on the Atlas Range at clevations of from 7000109000 feet. The trees seem hardier than those of Lebanon, but of doubtful hardiness here.
O. Deodara. Indian or Deodar Cedar.-Is a native of tho mountains of north-eastern India, at elovations of from 7000 to 11,500 fect, and, according to Loudon, 12,000 feet; and Loudon seems to be correct, for I have spoken to those who have seen five forests of it at fully 12,000 feet.

Tho line of perpetual snows on the southern side of this part of the Himnlayas is said to be 15,000 fect, and the progeny of plants but 4,000 feot below should stand the winters here. Yet the plants in oultivation are far from hardy. Mr. Brown had 100 plants of it. Of courso they dicd, as the tree is not hardy at some distance to the south of us

Mr. Hoopes quotes Dr. Grifith, who speaks of its "gigantic dimensions... where for ncarly half the gear it is enveloped in snow." The rarity of the air and the heavy rain-fall of the higher Himalayas are conditions very different from what wo have here, yet we may expeot some day to get plants that will stand our winter temperature.
C. Libani. Cedar of Lebanon.-It is often said, that there are more cedars within 50 miles of St. Paul's in London, than upon all the Lebanon. This seems now to bo far from true. Yet what noblo trees may be seen in England, already in a státe. of deday, plantod towaràs the olose of the 15th century.
The little group at tho head of the Wady Kadisha so long known to pilgrims comprises about 400 trees, and is the only treo of any kind about there. This group,says Dr. Thompson, is over 6000 fect above the Mediterranean, but the altitudes of tho different groups fouud by travellers further north is not noted, nor can I state its altitude on the Taurus, or olber ranges. If our first European trees came from this Wady Kadisha, the extreme tenderness of their offspring seems dif. ficult to account for. It proved quite tender, of course, with Mr. Brown. It is not hardy much north of Philadelphia. Its habitat in the past cannot now be determined, on account of the almost total destruation of all tree-life in these regions. If the traveller forgets to get a switch, when he mounts his horse at Jaffa, he may not be able to cut ono till he arrives at the bush on the banks of the Jordan. Will the exception of the few plantations of orango and mulberry, and the scattered groves of olive and fig, there is no tree-life whatever. Let a man travel through those eastern treeless countries, journey. ing day by day over their barren hills, and along those dry water-courses, marked on our maps as rivers, let him note the richncss of the soils of these arid wastes, and the ruins which show the popalations they once sustained, and, if he has any love for his native land, ho will do his little best to prevent it from becoming treeless likewise. For after a country be comes treeless, when, from its geographical position, it is atall so pre-disposed, it soon becomes dry and barren, and, ceasioy to support its population, becomes waste.

cryptomeria.

C. Japonica. Japan cedar.-This is a tender plant, also tried by Mr. Brown. Mr. Hoopes says it is a perfect success at Baltimore and Washington, in favourable situations. It is less sure about Philadelphia. I have seen it injured bj winter in Central Park.

coprressus.-Cypress.

The evergreen oypress is a native of the milder climates of this and the old world. The upright cypross, (C. sempervirens), that dark, gloomy, columnar tree, so common in the cemeteries of southern Europe and the east, will scarcels stand in Philadelphia; neither will the Funereal oypress, (O. Funebris), which, last year, also proved a failure with Mr.

Brown. Both of these are classed, oven by Mr. Hooper, as tender. Lawson's oypress, a raro beauty.from California, is some what tender at Rochester. The Nootka Sound cypross, (C. Nuthaensis or Chamaecyparis Nuthaensish, is said to be decidedly ornamental, and grows to larger sizo near the coast in British Columbia. Ono might not expeot it to prove hardy here. However, Mr. Sargent has found it at an elevation of 4000 feet, and small ones at even 5,500 feet on Silver Mount. ain near Yalo, B. C. Here, then, lies our hope of being able to grow this beautiful tree, when we are enterprising enough to obtain the sced from this high clevation. The C. Thyoides or "white cedar" is much like our native, so called, white cedar, but is muoh finer and more delicate. It is common in Virginia and Carolina, but is found hero and there northwards, even as far as Lanark, Ontario, latitude 45. This tree Fas identified by Vilmorin, of Angers. France, to whom Mr. Brown had been sending sced collected in the county of Lanark.

> Junipenus.--Juniper.

We must not over-look tho ornamental value of this race of plants.
J. Communis. Common Juniper.-Is a native of Enrope and Asia, and of this continent. I see that in Prof. Sohübicler's map, it is noted as growing wild in Norway, as high as latitude 71. It usually grows from 3 to 10 feet in height, sometimes much higher, and assumes all sorts of shapes. Mr. Brown had bushes 4 or 5 feet high, imported from Scotland, and grew hundreds of little plants from them. They seemed to be pretty hardy, perhaps quite so, but were well covered rith snow, anu sur more so than the Irish.
Var. Hibernicu. Irish Juniper.-Is highly ornamental, feathery in leaf, and in form resembles a green column. It is highly ornamental, but needs protection in our climate.

Yar. Suecica. Swedish Juniper:-Proved perfectly hardy with Mr. Brown, and more satisfactory than the English or common kind. He had plants 30 jears old, most of these were very recumbent on account of the habit of growth impressed upon them, while young, by the heary snows. One of these plants was six feet in diametcr. It seeded freely, and thousands of young plants were raised from it. Its hardincss without snow-coverings, which we now so often miss, is a thing we must not assume too positively.
J. Sabina. Common English Savin Juniper.-Is another of the trailing junipers, which proved perfectly hardy with Mr. Brown. The foliage is not feathery like the Swedish, but is more yew-like, and more dense and glossy.
J. Virginiana. Red cedar.-Though we are north of the usual range of the red cedar, as a timber-tree, yet, as a shrub, Mr. Drummond says it extends high northward. In the Ottarga valleys there was one island where it had grown to large size. Mr. Sargent says it extends southwards to Florida, and from the Atlantic to the Pacifio, and is the most widely distributed of American trees.

Its foliage is decidedly ornamental, feathery, and unlike any other tree here. I have seen it in Minnesota of a rich glaucons tint, singularly beautiful. Leaving New York by rail and entering the Hudson, the traveller is often struck by the many dark cypress-looking trees growing on the hill sides. This is a local fastigiate form of this tree, usually it is more spreading.
pjoesa.-Balsam or Fir.
Those who have only seen our native balsams have no idea of the beauty of somo of the foreign piceas.
P. Amabilis. Lovely Silver Fir.-This is perhaps the most lovely of all the pieens. It has long, soft, softly tinted foliage of surpassing beauty. In northern California, it grows to a beight of 250 feet, and is found at elevations of 4000 feet: and has also been found by Mr. Sargent on Silver Mountain,
near Yale, B. O. "The specimens I have seen about Boston and on the Contonnial Grounds at Philadolphia, stood last winter well. Like all balsams it is suited to most soils. Its great beauty should induce some one to try it.
P. Apollinis. Apollo Silver Fir.-Struok mo as a great beauty and one that was not injured upon the Centennial Grounds. It is a nativo of Greeco, Mr. Hoopes says, found at clevations of 1500 to 4000 feet, and growing to a height of 60 or 70 fect.
P. Engelmanni.-Formorly known as Abies Engelmanni, is a native of the Rooky Mountains from the sub-alpine to the alpine districts, says Dr. Engelman, as quoted by Mr. Hooper. In Colorado it ocoupies a belt between 8000 to 12000 fect of elevation. It is ono of those whose appearance takes awray all doubts as to its hardiness. It has been said to bo one of the only three conifers that will endure the vinters of St. Petersburg. But, while I can readily expect it to do well there, yet there are very many other conifers that would resist their cold winters equally well. In appearance it is a spruce, not a balsam, and some of the grafted varicties are of remarkable beauty. A little plant I have is somewhat the color of frosted silver, not green. This tint is especially worthy of trial.
P. Firma.-From Japan. Two specimens in the Gentonnial Grounds, killed back 3 or 4 feet last winter. No other evergreen suffered so severely.
P. Fraseri. Fraser's Balsam Fir.-A native of the cast zn middlo States. No impruvement upon our other species.
P. Grandis. Great Silver IFir.-Dac of the coast flora of British Columbia, says Dr. George Dawson, adapted to moist localities. No assurance of its hardiness.
P. Hudsonica. Ifudson's Bay Silver Fir:-Is a dark velvety green shrub, as donse as a clipped hedge. It may grow 2 or 3 , or even 4 feet high, and is decidedly ornamental.
P. Lasiocarpa. (Abies Subalpina of Engelmann.)-Seems to be confused with P. Amabilis. All I can say is that they are equally ornamental, growing sido by side. 'This however, has been found by Dr. George Dawson in rainy, jet sovere distriots of British Columbia, in its interior plateau, at elevations of 4000 feet. It also occurs on the Rooky Mountains in the Peace River district, and grows in cold damp situations between Lesser Slave Lake and Athabasca River, when at times it must be subject to a temperature of 50 below zero. It is however a tree suited to moist soils, and to cool moist summers, not the hot, dry summers we have here. At least it is so in British Columbia.
P.Menziesii.(P Pungars or P.Sitchensis; Ifenzıes' Spruce.) -"The blue spruce of the Rocky Mountains," says Dr. Engelmann, "is entirely sub-alpino, occurrigg between the limits of 7000 and 9000 feet in low or marshy soils, especinly along the borders of streams. The plants grown from the first seed brought from California proved quite tender at Boston. Those from Colorado have proved quite hardy and decidedly ornamental, and quito hardy, I believe, with R. Douglass at Waukegan, Ill, on the border of the Wisconsin. Dr. George Dawson finds it in many parts of British Columbia, but so fur, not in the very severe climates. It delights in partial shade and moisture.
P. Nobilis.-Mr. Hoopes quotes this as groming in Califoraia to the hieght of 200 feet, at elevations of from 6000 to 8000 feet. Its foliage too, is said to bc Tery beautiful. At the Centennial, the Hon. H. G. Joly, when noting the annual rings of the different woods exhibited, found this the fastest grower from the Pacific coast.
P.Nordmanniana. Nordman's Silver Fir.-This has been found, says Mr. Hoopes, on the Adshar Mountains at an elevation of 6000 fect, and growing to a height of 80 to 100 feet, in some places, in high alpine regions intermingled with

Abies Orientalis. It is abundaut on tho hills of the Crimea. This latter place, howevor, though upon our own latitudo is the land of the peach, apricot, and almond. Even the orange is grown there with partial proteotion. I have seen a good many spcoimens of this really lovely troc in many places, and have watehed the effects of last winter upon them, and I doubt if it would stand our sevore olimate. We may expect that hardier specimens will be introduced.
P. Peetinata. European Silver Fir.-Is the common balsam of central and northern Europo. It proved hardy with Mr. Brown, and it should be so, for it is a native of high cold latitudes. Yot it is not always reliable in the middlo States, and apt to be short-lived.
P. Picta. Siberian Silver Fir.-Would seem to bo a fir that we might try with safety, as it is found at high elevations, in that cold country, on the Altai mountains, says Loudon, it forms large forests at an elovation of 4000 fect, and is cven found as high as 5272 feet. Some specimens that I have seen even rival Amabilis, perhaps tho loveliest of the Pacific piceas, while others that I have seen are not equal in beauty to our own balsam. Bearing this in mind I would urge the trial of this tree.

> Pinus.-Pine,
P. Austriaca. Austrian Pine.-Is one of those trees that has worked its way into public favor, so that it is now extensively planted. It is unusually dark in color, and coarse and stiff in leaf. It is not as fast a grower as the white or the Scotoh pincs. Mr. Hoopes says it will thrive in wetter soils. It is perfectly hardy in Montreal, hardy with me, hardy in Minnesota.
P. Balfouriana. -Mr. Sargent, in his pamphlet on the "Forests of Contral Nevada," noted this tree on Prospect mountain, at an elevation of 7500 an' 8000 feet. On account of its tufted foliage it is known to the lumbermen as the Foxtailed Pine, and in its native mountains is strikingly ornamental. Trees from this dry region are worthy of our notice. It is also a native of California.
P. Banksiana. Banksian or Grey Pine.-This pinc extends far to the northern limits of our white and red pines, and thence westward to the mouth of the McKenzie, almost to the Arctic sea. About Boston, I find it makes several growths during the year. Elliott says that when he procured specimens from the barren sands of the Islands of Lake Michigan, 25 years ago, he thought them of little use Now they are 40 feet in height and extremely beautiful. Loudon fell greatly in lope with it. Scott says, "odd and pioturesque, but not handsome." It seems to vary very much in size and in habit of grorrth, and usually forms a bush with numerous ascending shoots.
P. Cembra.Swiss Stone Pine.-This is found in the Alps, at clevations of 4000 and even 6000 fect, forming trees 50 feet in height. It is a tree of slow, ereot growth. Its foliage consists of innumerable dense little tufts of leaves, which are different from other pines, and quite ornamental. Mr. Brown planted this tree, and it, of course, proved hardy. On the Alps it is found at higher elevations than the Sylvestris.

Var. Siberica.-This is found in the severe climate of eastern Siberia, even at clevations of 3000 feet, and frcm what I have read of the cold dimates where this pine grows, I fancy that it is often exposed to even lower temperatures than car own Bauksian pine. It is even of still slower growth than that found in Switzerland.

Var. Mandschurica.-The beautiful light color of this tree struck me very much at the Parson's Nursery, Flushing, Long Island. It would make a beautiful contrast with either of the two named above.
P. Contorta. Western Scrub Pine, - Also known as the Bull, or Black Pine. Dr. George Datrson speaks of this tree
as covering large arcas in the highor olevations of British Co_{0} lumbia, on tho hills that riso abovo 3500 feet, and whero the rainfall is to great for tho healthy growth of P. Ponderosa, and states on the authority of Dall, that it is found as far north as Fort Selkirk in Alaska, in latitude 63. I have not scen it, but it is said that, as an ornamental trec, its straggling and crooked branches are objectionable.
P. Excelsa. Lofty Bhotan Pine.-This is the noble pine of the Himalayas, found at elevations of from 6000 to 8000 feet and ceen occasiosally, says Hooper, up to 11.500 fect. It is muoh like our own white pine, when young, but is longer in leaf,and is, when older,said to be more spreading and drooping. It has stood the winters in the States to the south of us, and yet has often failed there, somo think, owing to the richness of the soil in which it has been planted. The rarity of the air of its native clovations may be the oause of its tendency to throy its sap 80 much into the leading shoot,-a sort of vegetable apoplesy, if we may so speak. I would especially draw attention to the argument upon this tree in Scott's "Suburban Homes."
P. Monticola. White Pine.-This tree is much like our own white pine, and is abundant, says Dr. George Dawson, in the southern portion of the senast ranges in British Columbia, where it attains a beight of 60 to 80 feet, in some places, in rather severe climates. It elings to the regions of heary rainfalls. We want the trees from the severe and dry climates. It also extends southwards into California, whore it is found, says Mr. Hoopes, at an elevacion of 7000 feot.
P. Hugho Mugho Pine.-Is a pine bush or shrub, a native of the mountains of central Europo, growing sometimes to a height of 20 feet, but moro ofton a mere bush. It has been used largely as a foreground to larger evergreens, in Prospect Park, Brooklyn, and with very good effect. It is likely to prove hardy, but has not yet been tried here.
P. Pinaster. Cluster Pine. Is a native of both shores of the Mediterrancan, the west of Asia, and the Himalayas. In France, says Loudon, it cannot be cultivated, with a view to profit, north of Paris, and even in that latitudo is often destroyed by severe winters. In France its special use has been to cover tracts of drifting sand. This beautiful species, says Mr. Hoopes, is exceedingly unsatisfactory, and cannot be depended upon in the northern and the middle States. Mr. Brown had some young trees which proped hardy, but in this matter we must act with caution.

Pinea. Stone Pine.-A lofty tree with spreading umbrella. like head, as may be seen in photographs of different parts of Italy. It is a native of the south of Europe, and of the north of Africa. It is quite tender for some distance to the south of us. I only mention it, that it may not be confounded with the Swiss stone pine.
P. Ponderosa. Heavy-wooded Pine.-Is found in the dry interior regions of the Pacific coast. It has dark-colored, long, coarse foliage, which is strikingly ornamental. "It abounds," says Mr. Sargent, "in all the Rocky Mountain region, and extends through Nerp Mexico and Arizona to tho Sierra ?"sada, where, on the dry eastern slope it constitutes, in some of its forms, fully three quarters of the forest. Dr. George Dawson finds it in the central dry regions of British Columbia between the coast ranges and the Selkirk and Gold ranges up to latitude $51^{\circ} 30^{\circ}$. Also on the cast side of the looks Mountains, on the 49th parallel. At the height of 3000 feet it is replaced by the Douglass fir and P..Contorta. It occurs also in western Montana in severe olimates. This is a tree of wide habitat, suited to dry soils, and found in very severe climates, one that should be tried, not for its timber, but for ornamental purposes.
P. Resinosa. Red Pine.-It is strange that our nat ipe red
pino should havo beon so over-looked. It is scarcely to be found for salo in Amorican catalogues, and is seldom planted here. In foliage it is much like Austrian, but has the cne defot of boing moro opon and sparse of branches.
P. Strobus.-Oar native whito pine may yet be poddled in somo parts of our country as a rare exotic, so searco has it already become. In England it is known as the Woymouth pino, so named from tho five trees at Longleat House, Wiltshire, the scat of the Marquis of Bath (1), grown from seed, says Loudn, introduced in 1705. The following varietics are worthy of notice.

Var. Compacta. - Is a dwarf round headed little tree or shrub, liko a continually pruned white pine. Scott says it makes a growth of 2 to 5 in ., per qunum, and grows to a height of 10 or 12 feet at maturity. It is one of the best of the dwarf pincs.

Var Nivea.-I have only seen this when young, but was very much struok by its silvery white foliago.
P. Sylvestris. Scotch Pine.-Though known as the Scotch pino, the Sylvestris is found from the Moditerranean to latitude 70 in Norway, and from Spain to Kamtschatka. In the severe climates in southern Siberia it reaches latitude 63. It is a hardy species, those sent from tho Scotch nurseries showing no signs of tenderness. It is nearly as fast a grower as the white pine, and has been planted in enormous quantities in the north western States.
Var Rigensis. Riga or Russian Pine.-This is the varicty Which has been grown to the south-cast of Riga, and which, for a long time supplied the masts for the Bitish and French navies. These masts were 70 or 80 feet in length, and 18 to 25 inches in diameter. Those grown in Sweden were of smaller size, and were known as spars. A large portion of this Riga pino, says Loudon, was grown upon the banks of the Doeiper, and oarried 25 miles to the Dwina, where it was rafted down to Riga, the chief point of the mast trade. As carly as 1785, the French government sont a mast-makor to Riga for sced. This was sown in different places, and did not seem to differ from the Sylvestris pine. At least so it mould seem. The question I cannot answer, but the fact is known, for at the government Ecole Forestiere at Barres, Department of I.oiret, formerly a private estate of M. de Vilmorin, there are 30 groups of Sylvestris pine, planted with a special view to showing the comparative value of the mastpines of Riga, and other varieties. (Soe "The School of Forestry in Europe," by Dr. J. C. Brown, Edinburgh, 1877.) Seed procured by F. R. Elliott, and described in his "Popular Trees and Shrubs," proved in many ways unlike the ordinary Sylvestris.
Of the following pines I should like to say a few words. The P. Albicaulis, the whitn, or white bark pine, of Oregon and of the coast ranges, up to latitude 53, has been found by Mr. Sargent on Silver Mountain, near Yale, B. C., at an elevation of 5000 feet. The P. Australis, the long-leaved pine of the Gulf States, is not hardy even in the middle States. P. Ayacahuile, the lovely long.leayed pine from Mexico is certainly hardier than was expeoted. It did not suffer at Flushing last winter. Jeffreg's pine (P. Jeffreyii,) is very much like Ponderosa, and grows to large size in the mountains of northern California, but I do not know at what elevation, nor our chances of being able to grow it. I have scen a fine specimen of this tree, on the grounds of Ellwanger and Barry, and it seemed to show no tenderness there. Lambert's pince, (P. Lambertiana,) which grows to a keight of 2 ? 9 feet in California, is much like our own white pine, and seems to be hardy, as far as tested, to the south of us. The P. Massoniana, is one of the most widely distributed
(1) Lord Weymonth is Lord Batb'g second title, and is borae by his eldest son.
A. I. J. F.
conilers in Japan, and is found as a bush at high olovations. Tho varicty known as tho Sun-ray Pine has distinot golden radiations which are remarkably attractive. Tho littlo plants I have seon would lead ono to suppose it a dwarf species. A fow plants that I sary at Flushing on tho Experimental Grounds of tho Rural New Yorker, and in the Oentennial Grounds at Philadolphia, wore not injured by last winter. The P. Monticola of the Paoific coast, is much like our own white piac. In British Columbia, Dr. Georgo Dawson finds it on the coast ranges, and also inland, in the region of abundant rainfall. The trees of the dry regions are more likely to bo of use to us.

retinestora.

This is a family of rare beauty from Japan. They are very varied in foliage, some rasembling tho innipor, others the arbor vite, and others, the oypress. Struck by thoir beauty I watched them oarefully, noting how they stood the past severe winter in differont places noar Boston, at Flushing, in Central Park, in Philadelphia, and I find they differ in hardiness, and some seom promising oven here. Filifera (thread branched,) secms allicd to our arbor vito, but more delicate, and the ends of its branches have elongated drooping filaments, very graceful and pretty. It seems one of the hardiest. It was not hurt on the Contennial Grounds at Philadelphia.where, from some cause, the evergricens suffored more than in Central Park or about Boston. Obtusa Nana is more oypress-like in foliage, very distinet, soft and velvety, not as hardy as some others, but worthy of green house care. Pisifera (pea-fruited,) is much like our arbor vito, but more delionte. It stood well wherever I have seen it, and that in many places, but is less novel, and less worthy of trial. Plumosa is quite feathery and dease in habit of growth. It stood overywhere as well as Filifera. Plumosa aurea, I wish to dravy especial attention to. Its outer branohes are all tipped with a bright lively yellow which it maintains through the greatly part of the jear. It forms a striking contrast to other evergreens in winter when all else is leafless. In Central Park, pluwosa and filifura lost their fresh.green tint, as our white cedar so often does here, yet this golden variety did not fade in the least. In the grounds of the Rural New Yorker it tipped slightly, this is the only placo in which it seemed to shiver. It is becoming a favorite about Boston. Argentea is tipped with white, but not equal to the abovo. Squarrosa is feathery and of a beautiful tint, but not as hardy as others.
sOLADOPITYS.
S. Verticillata. Umbrella Pine.-Is a native of Japan, found in parts of the Island of Nipon, among the mountains, in latitudo 36. It is quite unlike any other tree I ever samp. In its native land it is said to grow to a height of 100 feet. It was introduced here but a ferr years ago, and is proving a very slow grower. The plants I have seen at Mr. Sargent's, near Boston, at Wellesley, Mass., at Flushing, Long-Island, showed that it had stood this late severe wincer without injury. It is woll worthy of suoh prgtection as it may need in our climate.
Se.guoia.-This is the mammoth tree of California. Fancy trees nearly 300 feet in height, and 35 feet in diamoter of trank. The tree cut down by Bayard Taylor showed by its annual rings an age of 3100 yiuars! It containcd 250,000 feet of timber. Imagine beiag able to ride, on horseback, the distance of $\mathbf{7 5}$ feet in the hollow of a fallen tree and then emerging from a knot-hole in one side 1

This tree is not quite hardy in the Middle States. The finest specimens in the east are those in the grounds of Ellwanger and Barry at Rochester, which must be, I should say, at least 25 feet in beight. These trees suffered, but comparatively little from the severity of last winter, and would appear to be rather hardier than the majority of those brought
to the castern States. Mr. Hoopes states that it grows on the Sierra Nevada range in latitudo 36 or 37 , at an elovation of 5000 to 7000 feet, so that hardier speoimens may yet bo found.

taxus.-Yow.

Tho yerr is a treo of rich sombre tint, slow growth, and long life, which thrives best in partial shado, and in moist olimates. The English yer, ('T. Baccata) has for some reason been planted largely in Énglish church-yards, whero thero are trees 800 and even 1000 years old.(1) Scott says it docs well at Nerport, and in New York, but not inland in the same latitudo. It was hurt on tho Oentennial Grounds, last winter. Mr. Brown found it much hardier than the Irish, which would not live above the snow. Mr. Hoopes says the upright Irish yew will not stand north of Philadelphia. The golden yew, (Variegata aurea,) I saw at Flushing, and was vory much struck by its bright golden colour. It was not at all hurt there by tho sovere cold of last winter, and Mr. Hoopes says of it that it is oven hardier than the species. This tree should be tried by those who will give it special wiater protection.

Our native yert, often called the ground hemlock, when cut back into compact bushy form is quite ornamental. There is a golden variety of it too, but it by no means equals that described above.

thoan.-Arbor vite.

Our nativo white cedar, (T. Occidentalis,) is our most convenient, if not our best hedge plant. For a wind break it cannot equal the spruce, nor can it equal the hemock for delicate beauty; but for a quick, cheap, good hedge it is the best plant we have. Young trees chopped out of our black muck swamps in spring, planted close, and crenly out back, if the soil be not too dry, quickly grow into a handsome hedge. One word of caution, trees from dense thickets, if planted in exposed places, often winter-kill.

I am glad to see cedar-hedging coming into vogue. In some parts of Missisquoi it is not uncommon. The firest in the province, as far as I know, for surpassing anything in Montreal, is that on the grounds of Mr. W. P. Carter, at Cormansville.
T. Gigantea. Gigantic Arbor Vitz.-This is the giant cedar (so called) of the Pacific coast. On the coast of British Columbia, Mr. George Darsson has found it measure 15 feet in diamcter of trunk, and 150 feet in height. Mr. Dawson, who has made detailed notes of its distribution in British Columbia, finds it inland in severe climates, whence we should obtain seed for trial.
T. Occ.aurea and Peabody"s Arbor Vitæ; and the "Golden" of R. Douglass, of Waukegan, Ill., are golden tipped varietics of our common cedar, which are bright in color and highly ornamental. The probable teaderness of the golden yew and the golden retinespora should canse us to prize theso all the more. There are also silver tipped varieties, but not equal to the golden, and dwarf dense little gems useful in ornamental gardening.
T. Siberica. Siberian Arbor Vitix. - Is fully as good a hedge plant as our native, more dense in foliage, and it would seem more hardy, that is, it does not so lose its freshness of color as does our own when exposed to dry cold without our usual covering of snow. Mr. Brown thought very highly of this varicty.

> TsOas.-Hemlook.

Our native hemlock is one of the most graceful and boantiful of all coniforous trees. Imagine a hemluck 50 inches across the stump grown in the open from infancy, branched
(1) Probably for the purpose of affording staves for the long bows with which the retainers of the Monasteries were armed.
A. R.J. F.
to the very ground. Thoro aro speoimens about Boston such as wo have not, and cannot have for many years to come.

It is also our most beautiful hedge plant, though not as casily transplanted, nor dous it become ornamental as soon as our white cedar. There is a beautiful hedge on the grounds of the late A. J. Downing, at Newburg, N. Y., one of those living, un-tombstone-like monuments which ho so lovgd to loave behind him.

There are two dwarf varietics of it I must mention. The round-leaved hemlook (T. Canadensis Macrophylla) is a compact. forciga-looking, bushy shrub of slow growth and dark foliage, vory ourious and unliko a hemlook. Sargent's weeping hemlook (T. Can. Sargentii pendula) found on Fishkill Mountain by H. W. Sargent. Its graceful pendulous beauty can hardly bo surpassed. I savy specimens at Flushing and on tho Grounds of tho Rural Now Yorkor not hurt by last winter.

Of other varietics, the Indian hemlock (T. Brunoniana) though found in Bhotan at an olevation of 10,000 feet, has proved quited uncertain and tender in the Middle States. Tho Douglass spruce (T. or Pseudo-Tsuga Douglasii) is a tree of whioh there are vast forests on the Pacifio slopo, where it grows to a height of 150 to 200 feet. Specimens have oven been measured, it is said, which rench 300 feet. The singular zigzags of its northern limits in British Columbia, have been carefully mapped sut by Mr. Geo. Dawson, who has found it in the interior, in latitude 55, at clevations of 3000 fect ard even higher. but then of small size ; also upon the castern slope of the Rocky Mountains, in olimates of medium moisture and of very low winter temperature. Its foliage, I must say, is of medium bearty only. The western or Californian hemlook, (T. Mertensiana) Mr. Geo. Dawson says, closely resembles our native species, but grows on the coast of British Columbia to a height of 200 feet, with a trunk 6 feet in diameter. It is found, usually, in the regions of abundant rainfall, and in some severe olimates. The (T. Palloniana or Williamsonii), has been found by Mr. Sargent on Silver Mountain, British Columbia, at an clevation of 4000 to 6000 feet.

First steps in Farming. Young man's Department.
As a summing up of the prope way of regarding organic matter, I cannot do better than q_{1} ote from the address of Dr_{r}. Aitken, chemist to the Royal and Highland Society, given in the N. B. Agriculturist of December 14th last, sinec I wrote my article on the subject.
"The great difference between farm-yard dung and artif. oial manures is its great bulk and the large quantity of organic mattor it contains. The effeots of short dung upon light soils and of long dung upon heavy soils are to improve greatly the physical character of each. Organio matter, though it is nol directly absorbed by the roots of suoh plante as form our crops, has important functions to porform in the soil. It forms a soft kindly bed for the roots to ramify in, and it is sufficiently retentive of moisture to prevent the crop from suffering much from the drought. Our forefathers had great faith in organio matter, and though chemistry has shewn that they were wrong in supposing that it formed directly the food of plants; yct, as it contains about nitrogers enough to form 1000 of ammonia, as the carbonic acid formed by its decomposition has the power of setting freo the constituents of the various minerals in our soil, and asit is, as I said before, mechanically uscful, we must not bo led by the supporters of the " mineral theory" to undervalue it."

I am the last man to undervalue dung, but I am a most determined opponent to those who, trusting in Sir H. Davy and other anoient authors, try to persuade us that it will pay a farmer to drag about a quantity of tough fibrous vegetable
matter from our swamps and pent-bods, in the vain hopo of, by contaot, converting it into is valuablo manure. If usod at all, it should bo used as an absorbent of urine, or as a means of diluting the spent lime of the gas-works.

artifiolal Manures.

This namo artificial is hardly a correct, though it is a convenient ono. Nitrate of soda, for instance, is a natural pro-duct,-sulphate of ammonia is not. Λ better term would be auxiliary or special manures.
When I first recollcot anything about farming, tho only tro manures, that could be called artificial, were bones and rapecake. Tho Scottish farmer used the one for his turnips, and the Norfolk men, on their light sandy soil, found the latter very bencficial to the wheat-orop. Here, practice was in advance of science, and very remarkably so, for bones contain a large proportion of phosphoric acid, and rape.cako contains a large proportion of nitrogen, and, as wo shall hereafter seo, Messrs. Larves and Gilbert have proved to demonstration that these two corops demand soverally these two clements of manure.
Somewhere about 1842 Oheshire, Eng, was thrown into a state of excitoment by the discovery, that on the worn out obecs-pastures a dressing of a ton of half-inch bones had a mondertul effect ; as it need have, the cost of the dressing then being about $\$ 25$. There was nothing really surprising in this, if theory be correot, for the years' milk of each cow drew from the land 80 lbs . of phosphate of lim. or bone; and the calf if killed, or the bullook, if the calf was allowed to arrive at maturity, oarried of a considerable amount; no wonder, then, that tho land became almost ineapable of supplying any milk at all. The wonder was, and is, that bones had, comparatively speaking, no effect on old grass-land except in Cheshire and a ferw parishes in the counties immediately surrounding that county! Why, no scientific men have over been ablo to say, any more than they oan say why sulphate of lime or plaster, which on all leguminous crops (pease, beans, clover, \&o., in America, works such miracles, has positively no effect in England-it is never employed there, thousands of experiments having shown its uselessness. The discovery of the benefit of bones when applied to grass-lands mas due to an acoident: a cart load was upset, and not cleared aray for a few days, owing to wet weather or something, and the shrewd tenant of the farm soon saw the marvellous differen 9 in the grass, and persuaded his landlord to give lim a few tons for experiment's sake. Just so with linseed.cake. Formerly, when the oil had been expressed the refuse of the mills was thrown away; in the neighbourhood of one of these establishments a cottager's cow was observed to be in wonderful fettle; upon inquiry, it was found that she went regularly te feed upon the rejected husks of the linseed; and now cake is worth $\$ 50$ a ton! (1)
The noxt step was the reducing the bones to the condition of coarse "dust", as it was called. but it was hardly a correct appollation. This was never much used in the south, tilla few Scotchmen, des drolles, I am sorry to say, for the most part, but good farmers, came from the north and got situa. tions as gentlemen's bailiffs. These men introduccd the drillculture for roots, and the use of bones, to the 'benighted Southron. The drill-culture for reots, I say, for sowing grain with the drill is quite another thing, and purely an Essex invention; though Jethro Tall, 300 years ago, sowed his grain in rows, the seed was deposited by hand.
Phillip Pusey, tho President of the Royal Agrioultural Socicty of England, tried to move a step further in the utilisation of bones as a special manore. That lamented friend of the farmer had a min ${ }^{\boldsymbol{r}}$ resembling, though with a wide
(1) Was, when I wroto the abore, last December; now it is only forth, thanks to cutton-cake, $\$ 40$
interval, the mind of the groat Bacon. Ho saw that, whereas whoat (fall wheat I mean) required no great amount of roady food for the first fow months of its existence, turnips, unloss thoy found a plentiful sapply of ready cooked provisions the moment they startod into lifo, had an enemy to contond with, tho hallica nemorum, or fly, that would quickly srreop thpm off. From this deduotion, Mr. Pusoy argued, that if tho boncs wore aubjeoted to a proparation whioh would assimilate them to the condition in which they were found after they had been three months buried in tho soil, tho question would be solved. Ko according!y mado a heap of bones and caritb, kept it damp, and after turning it over twico,found tho bones reduced to a pasty meal. This, when exposed to the air, soon beoame dry enough to pass equally through tho manure drill, and the quantity of bone duet necessary to produce a fair crop of roots was at once reduced from 16 bushols to $\mathbf{6}$ bushols per acre. I am sorry to say that most of our bones are exported. How long it will be before the prevince of Quebec, with its immonso exportation of butter and oheose arrives at the exhausted condition of Cheshire forty years ago, I cannot tell ; but it is elcarly on tho highroad thitherward.

Now, bones are composed, principally, of phosphate and oarbonate lime. There is a certain amount of gelatine and some fat, the former being the source of nitrogen, of whioh there is about $30 / 0$ to 4010 in raw bones, equivalent to 3,642 to 4,856 of ammonia, but samples vary a good deal. The car. bonate of lime is practically valuoless, the phosphoric aoid is what we want, and I will now try to show you, without any use of hard terms, what ohanges take place in bones treated as we have just described.

You must please to understand that there are three distinct forms of phosphate of lime. Calcium, you who have learneà (and not forgotten) latin will remember, signifies lime, and the chemist's adjective derived from it is calcic ; the three forms may be represented:

Composition of Tri.Caluic Phosphate	Composition of Bi-Oalcio Phosphate	Composition of Mono-Caloic Phosphate
Phosphoric Acid	Phosphoric Acid	Phosphoric Acid
Lime		Lime
Lime	Lime	Water
Lime	Water	Water.

You see at onse how their names and their composition are connected. Three lime phosphate-one equivalent of phosphorio acid and three of lime; two lime phosphateone of phosphoric acid and two of lime, with one equivalent of water taking the place of the missing equivalent of lime, and the onc-lime phosphate-one of lime and one of phosphoric acid, with two equivalents of water.
In each case there is one equivalent of phosphoric acid, combined with three equivalents of baso; but, in one oase, the only base is lime, in tha other two lime and water are the bases. And now observe the ohanges that take place, in the soil or in the heap, by wlich the bones are rendered fit food for the plant: The phosplate of lime in bones is the three-lime kind, and will not dissolve in water-ah! but the water which falls on our fields takes up carbonic acid in its passage through our atmosphers, and, doubtless, there is some produced in the soil itself, hence the whole thing is changed; one equivalent of lime is removed by the acid, and the threc-lime phosphates becomea two-lime phosphate and carbonate of lime. Now the two-lime phosphate will dissolve, though slowly, in water, and therefore plants can feed on it. When we broke the boies fine, the action of the carbonic aoid and water was greater on acoount of the larger surface
oxposed to their influenco, and we mado a heap of bones and earth, moistened, to soften the bones and oause a more rapid disintegration of thom when covered up by the soil The following diagram shows the action of the carbonic aoid upon the threc-lime phosphate in bone:

Composition of Tri-calcio phosphate	Ro-Agents Employed
$\left.\begin{array}{l}\text { Phosphorio Acid } \\ \begin{array}{l}\text { Lime } \\ \text { Lime }\end{array} \\ \text { Lime }\end{array}\right\}$	Products of Decomposition
Wator	Bi-calcic phosphate Carbonio Acid
Carbonate of lime	

The threc-lime, or tricaloic phosphate, contains about 46010 of phosphoric acid, and consequently $540 / 0$ of lime. Voolcker's analysis of bone-dust is as follows:

Moisture.	12.06
Organio matter.	29.12
Phosphate of lime and magnesia bone-earth.	49.54
Carbonate of lime.	6.99
Alkaline salts, common salt, \&c..............	1.91
Sand..	0.38
	$\cdot 100.00$
Containing nitrogen.	3.69
Equal to ammonia......................	4.49

It will be, perhaps, useful to compare the values of farm yard dung and bones. Dr. Madden, whose analysis of bones, though thoroughly trustryorthy, must have been taken from a sample very poot in nitrogen, gives the following result: one ton of bone equals, as regards:

Organio matter..........	1	ton farm-yard dung		
Soluble matter..........	1	"		
Easily dissolved...........	2.9	"	"	"
Nitrogen	3.9	"	*	${ }^{\prime}$
Saline matter.	5.0	"	'6	"
Earthy phosphates	18.3	"	$6:$	'8

Therefore, if all the various degrees in which bone-dust is superior to farm-yard dung be added together, one ton of it is equal to thirty tons of dung. I need hardly repeat that the organic matter is only valuable in proportion to the amount of nitrogen it contains, except as a mechanical agent for lightening the land.

Next month I hope to enter on the subject of the great discovery of Liebig. the manufacture of Superphosphate of Lime.

Artiur R. Jenner Fugt.

SHEEP SHEARING.

It may be taken as an axiom in ciconomics, that the more completcly finished for the use of the consumer any article is when it leaves the manufacturer, the higher proportionate price will it fetch. For instance; cotton yarn is much dearer in proportion than the rough cotton as the bale leaves the press in its native country; and it is clear, from this consideration, that the labour expended on the cleansing, teasing, and other manipulations it undergoes, with a proper addition to the price of the article, gocs on accumulating, until at last the purchaser of a printed calico dress pays for the whole.

Thus, I have often wondered why the farmers of this province are so fond of shearing their sheep in the unwashed state. To begin with, it will be said that the wool is wasled afterwards: true enough, but shearing a sheep with a dirty skin makes rough work, and moreover, wool washed off the
sheop's baok is doprived of its yolk, and whon dry feels harsh, and is in an unfit stato for certain processes of manufacture.
In the year 1862 I superintended tho washing of 60 sheap for tho late M. Λ mablo Demers, of Chambly. The affair was very simply managed: the sheep woro penned in a temporary fold, by the side of the "petito rividre de Chambly;" a large tub was kept full of water into whioh each sheep was plunged

Fig. 1.
and thoroughly washed, the dissolved yoll aoting as a soap; and after ten days, passed in a clean pasture, the sheep wero shorn, 50 much to the satisfaction of the proprietor and the manufacturer (Mr. Thomas Willett), that the former presented me with a two year old fat wether in acknowledgement of my assistance. I say, that the sheep were kept in a clean pasture, because it is well that there should be no roads or earthbanks for them to soil themselves against. The practice of tabwashing, as distinguished from pool-washing, has long been in use in Yorkshire, England; and was the invention of Raspail, a French chemist, who observed that "when the wool is washed this soap (yolk) is dissolved, and takes the salts with it. Hence it follows that the water that has been used in this process becomes, at each repectition, better adapted for the purpose." Stephens, in his "Book of the Farm," objects to the practice, but he seems never to have tried it, and as a set off to his opposition, I think the fact that in England tub-washed wool always brings from a half-penny to a penny a pound more than pool-washed wool will be sufficient.
Sheep should not be washed until the water has attained a temperature from 56° F. to 600 F. After washing, they should wait ten days or so, before shearing, as the wool must not only be thoroughly dry, but the yolk, the natural oil of the wool, must return into it again, and the nerr wool should have risen from the skin, before the old is taken off. Disregard to this particular renders shearing difficult, and certainly injures the appearance of the flece. Generally speaking, one may wash the first week in June and shear in the second: if the water of small streams be used, it will be found warm enough by that time.
"The yolk being a true soap, soluble in water," says Luccoc, " "it is easy to account for the comparative ease with which the sheep that have the natural proportion of it are washed in a running stream." The composition of yolk was found to be, in the rough: soap of potash, carbonate of potash, acetate of potash, muiale of potash, lime, and an

substance is designed to nourish the wool and to give it riehness and pliability. In what way is the growth of the wool promoted? By paying more attention than our farmers are accustomed to give to the quantity and quality of this substance possessed by the animels which they seleot for breeding purposes, the quantity and quality of the yolk, on which farmers seldom bestow a thought, and the nature of which they neither understand nor care about, will, at some future period, be regarded as the very essential and cardinal points of the sheep-considered as a wool bearing animal, I must add to M. Youate's expression of opinion; for wool is so lory in price and mutton so dear, that the question norp-a-days is: which sheep will produce the most and finest quality of meat?
Shearing.-A smooth barn-floor is the best place for this operation. Our flocks are so small that no extensive preparation is needed. The best shears have additional springs between the handles to separate the blades more forcibly, but they hurt the hand, and are not worth the trouble. The great thing in shearing is to keep the points olear of the skin by gently pressing the blades upon the skin-keep the hand low, and rest the broad part of the blades upon the skin-you will not cut your sheep much if this is attended to. With scissors, such as I havo seen used in the French country, but ragged work can be made.
Our engravings illustrate the three stages of shearing; Rirst, after setting the sheep on its rump, and on the supposition that the clipper is a right-handed man, he rests on bis right knee, and leans the back of the sheep against his left leg a, bent. Taking the shears in his right hand, and holding up the shecp's mouth with his left, he first elip the short wool on the front of the neck, and then passes down the throat and breast betrucen the fore-legs to the belly. Then placing
the forollegs b under his loft arm c, he shoars tho belly acoross from side to sido down to tho groins. In passing down the bolly and groin, where the skin is naturally looso, whilo tha shears d aro at work, the palm of the left hand c pulls the skin tight. The scrotum f is then bared, then tha inside of tho thighs $g g$, and lastly, tho sides of the tail h. Theso aro all the parts that are reaohed in this position. For the olipping of theso parts small shoars suffico; and as tho wool there is short, and of a detached oharaoter, it is best clipped by the points of tho shears, as carcfully held elose, like l.

Fig. 2 represents the second stage of elipping. Its position for tho sheep is gained by first relicving its forolegs b from their position in fig. 1, and, gently turning the sheep upon its far side, whilo the shearer, resting on both knees, supports its far shoulder upon his lap. You may always rely upon this faot-the more Ω sheep feels at ease, the moro readily it will lie quiet to bo elipped. Supporting its head with bis left hand, the elipper first removes the wool from behind the head, then around the entire back of the neek to the shoulder-top. He then slips its head and neok a under his left arm g, and thus having the left hand at liberty, he keeps the skin tight with it, whils ho clips the wool with the right, from where the olipping in the first position, fig. 1, was left of to the baokbone, all the way dorsn the near side. In the figure, the flecco appears to be removed about half-way down the carcass; the left hand b lying flat, keeping the skin tight; while the right hand c holds the shears at the right part, and in theproper position. The olipper thus proceeds to the thigh and the rump and the tail d, whioh he entirely bares at this time.

Clearing the sheet of the loose parts of the fleeco, the clipper, holding by the head, lays over the sheep un its clipped or near side, while still continuing on his knces; and he then rests his right knee, fig 3, over its neok on the ground, and his right foot b on its toes, the ankle keeping the sheep's head dorrn to the ground. This is the third positon in olipping. The wool having been bared to the shoulder in the second position, the olipper has now nothing to do but to commence where it was then left off, and to olear the fleece from the far side from the back-bone, where it was left off in fig. 2, in the second position, towards the belly, where the clipping was left off in the first position, fig. 1.- the left hand e being still at liberty to kee- the skin tight, while the right hand f uses the shears across the whole side to the tail. The fleceo g is now quite freed from the sheep. In assisting the sheep to rise, care must be taken that its feet are free from entanglement with the flece, othervise, in its cagerness to escoape from the unusual treatment it has just received, it will tear the flecee to pieces.*

On comparing the attitudes of the clipper and of the sheop in the different stages of clipping just desoribed, with those of a mode very common in the country, it is necessary to look again at the first stage of the procese, tig. 1, the common practice of conducting which is to place the sheep upright on its tail, and the olipper to stand on his fect, supporting its back against his legs-which is bott an insecuro and painful position for the sheep, and an irksome one for the man, who has to bow much down to clip the lower part of the animal.

[^0]In the second stage, fig. 2, the man still remains on his feet, and the sheep upon its rump, while he secures its head between his legs, in order to tighten the shin of the near side, which is bent outward by his knees. The skin is certainly tightenrd, but at the expense of the personal ease of the

Fig 2.
animal ; for the hand can tighten the shin as well, as shown n all the figures, at l and c, whilst the bowing dorn so low, and as long, until lie clips the evtire side, connot fail to pain the back of the clipper. The thi, d positiva is nearly the same in both plans, with the difference in the common one, which keeps the lcft leg bent, resting on its fuot-a much more irksome position than knecling on both Knces.
A. R.J. F.

Maizo as a Farm Crop for North.
Without any real acclimatization, for maize is a true tropical plant, as intolerant of frost or chill as the banana, our "Indian corn " is profitably grown over a wider extent of the carth's surface than any other cereal. It adapts itcelf, by an infinite power of variation, to the leugth of the summer, whether it be 12 month or 90 days. Ill it eequires is that its season, long or short, shall be warm and sunny; and whether it be the "giant maize" of Peru, or the "ereeper corn" of Canada, it is ready at its appointed time with a gencrous crop, varying in a far wider proportion to the tillage given it. than to varicty grown, or the length of its season. It is, in fact, easier to grow large average crops of corn northward and southward, ithough the largest authentic crop (147 bushels to an acrel is reported from South Carolina. Many experimentersin New England hare approached this maximum closely upon single acres, but on large arcas, north and south alike, an average of cio bushels to the aere is a large erop. The general average is about half that quantity, and even in a selected list of yond farmers, the average in a scrics of years would hardly excecd 40 bushels.

Corn demands high solar heat and sunshine, as well as freedom from frost. Without these it groms slowly, and
makes no crop. For this reason it does poorly on foggy sea. coast lands, even though the frostless scason there may be a comparatively long one; while on the other hand, with the right variety, a huadred days between frosts, and plenty of sun, there is no surcr or more profitable crop grown by farmers anywhere than Indian corn.

This corn not only yields a better average of grain to the acre than other cercals, but in its stalks it furnishes a large quantity of feeding material, much more valuable, as well as greater in amount than the small grain. Wherever it can be grown, therefore, maize is a favorite crop; and America in giving it to the world, bestored a greater boon on mankind than all the products of her mines of precious metals.

In northern New England and Canada an al. most indentical variety of this grain is cultivated, short in stalk, -from 5 to 7 fect,-with a small cob, and small, fruity, yellow grains, its roms, rarely more than 12 in number upon the cob, and preferably not more than 8, where the seasons are shortest. There is a considerable difference in the "strains" of this variety, produced by careful selection and tillage. Some of the poorer and more degencrate sorts give a very scanty yield of cars, many stalks being entirely carless, while short and abortive cars make no the bulk of a crop which, with its pitiful 15 or 20 bushels to the acre, brings down the ecnsus averages so woefully, and so discredits the skiil of American farmers. This result of carelessness ard neglect is not local. It is found in all sections of the continent alike, and testifies to as poor farming on the rich prairies of the west as is to be found in the pine barrens of the south, or the frosty valless of the north. And right alongside of these wretched crops may be found others, with carcfully selected strains of seed, adequate fertilization, and good tillage, giving an average of 60 or cven 70 bushels of grain, with a crop of stalks alone worth more than all that grows upon the careless farmer's field.

The northern farmer who grows Indian corn wants a quich maturing varicty, a variety that cars well, and one that has a small cob, which will dry out in the short season betreca harvest time and winter. Does inc want one long ear, or does he want two or more short cars ? pon a stalk? This is an important question in the selection of seed, and in efforts to cstablish a "thorough-bred strain." Perhaps some will sajg "we want two cars to the stalk, and we want them long." That is a laudable ambition, but, according to my experiency not an casy one to realize. The lodg ears are usually found single, the multiple cars shorter according to their multiplicits. If we could rely upon a single long ear to cach stalk, beariog as much grain as the tro cars which may be found upon ooe best well-bred strain, the preference rould be strongly in favor of the long ears, because it would have the expense of one of the more costly parts of the corn harvest,-the husking. Whether this result can be obtained is very doubtful. It seems to be a much more feasible way of getting a large pro duct to the car to increase the number of rows, than to strcat ly lengthen the car of an 8 rowed corn.
But the greatest dramback to large crops is the rat number of carless, or ncarly earless, stalks in our corn ficld Three hundred 8 inch cars of good 8 rowed yellow flint corn of the varicty commonly grown in Ners England or Canded will make a bushel of shelled corn. Of selected long cark, ranging from 10 inches to a foot (the latter rare), 225 cass will make a bushel. As usually planted we have about 5,000
hills to the aore, with three to four stalks in the hill, say 38,000 stalks. An average, therefore, of one good 8 inch ear to the stalk gives us 60 bushels of dry shelled corn to the acre. As the average crop of the country is less than thirty bushels, it is plain that our corn fields do not average one good 8 inch to two stalks. And yet there are strains of this corn that under good culture will avorage three good cars to tro stalks, which gives a yield of ninety bushels with hill culture, and over 100 bushels when the crop is planted in drills, one kornel every six inches, or, as I prefer for conrenience in oultivation, two kernels every foot. One great beecfit that agricultural colleges and government experiment stations night confer upon the people is in the perfecting of seed corn by selection, and its distribution among the farmers. Corn requires so little seed, and is so prolific, that the distribution of improved sced in pint or half pint packages by mail, gratuitously, from such institutions, would probably increase the yield of corn from a grain average at least 25 per cent. It would be a profitable investment, and the principle is susceptible of indefinite estension. It it useless to espect that improvements in the seed of our staple crops will be to any great extent made by the farmers themselves. Under ordinary care and culture the tendeney is to degradation rather than improvement. But a little money judiciously spent under government authority would give us a proviacial fountain of improvement, and might become a standing exemplar of the profit of skilled methods, which could not fail to have its effect in raising the standard of agricultural effort, in addition to the direct benefits it would confer.
Our corn growers err and suffer loss in the use of inferior seed, but still more by adhesion to antiquated methods of cultivation. When the land first began to be cleaned of forests it was necessary to plant the corn by hand, and till it with the hoc. In that wray a crop sufficient to give food for the family was painfully got. Now that the stumps are gone on our older farms, there remains much rocky and stony land upon which corn, if grown there at all, must be grown by hand tillage. But such land should be tilled as little as possible. It should be devoted to fruit or grass, or, in many cases, allowed to revert to forest, as its most profitable application. We have large areas of plain land which (especially when sandy, as much of it is), is the ground in which our corn delights, and upon which it is a delight to the farmer to grow it. On such lands all the work of producing the crop caa be done by horse power, the farmer riding upon and guiding his implements with little fatigue, slight expense and superior crops. The sulky plorr, the mechavical dung-cart, the horse corn-planter and fertilizer distributor, the smoothing harros and the riding cultivator will do all the work do it far better than it is usually done by hand, and at a tithe of the espenso. Only when it comes to harvesting do we return to the old methods and slow processes which limit the erop and encroach upon the profits. I believe that corn will yet be cut and husked by machinery.
By the recent discovery of ensilage, maize is made- miy to gire us grain and dry forage. but it takes the place of root crops in giving us the soft and succulent food so essential to success in dairying, if not in stock feeding. Ensilage has passed the experimental stage, for it fills a painfu' gap that has almays existed in American farming. Neither our climate nor the habits of our people are adapted to extensive root groming. The heat and sunshine that gives us the corn is unfriendly to the growth of roots, and indisposes the farmer to the slov, long continued and painful methods of tillage required by that class of crops. I believe that these points, and equecially the latter, will defeat the efforts to domesticate the beet sugar industry on this continent. It requires more band rork and bsek.breaking toil than our farmers will give

Not the least of the valuable peouliarities of our great American cercal is that, properly managed, it is a renovating rather than an exhausting crop. Unliko other corcals, it roots deep and wide, and with its broad leaves and hungry roots forages for itself in way that makes it the surest as well as the most productive crop. we have, and, at the same time, leaves the land in a superior condition and full of materials for the growth of the succeeding crop. Corn. grass, and clover, will make the American farmer who understand his business rich, with less hard work than any other species of agriculture. These crops make meat and manure, they make butter and cheese, and the farmer who makes these things is always prosperous.
Newport, Vt., January 12, I882.
T. H. H.

LARD CHEESE.

The manufacture of lard cheese is increasing, and in the words of one of the proprictors of the patent covering its manufacture are, "it is bound to win," and there is no doubl there will be an effort made to introduce the system in the Dominion of Canada the coming senson. It is my duty as a public instructor to inrestigate the matter and place the truth before the manufacturers so they may not be led to adopt the system until they know more of it than those who are pecuniarily interested in the sale of machines and royalties choose to tell.

While in the States, recently, I took considerable trouble to learn all I could relating to the manufacture of the said checse; and it was mith a desiro to arrivo at a fair conclusion, as to the merits of the said cbeese and its demands upon the public patronage and confidence. I do not think 1 am prejudiced in the matter, or influenced by any other motive than a sincere desire to alvance the interest of the dairynen at large, so far as honesty to the consumer will permit

In this article I shall not be personal ; but will try and hold up the question to the scrutiny of the public in 2 fair and just manner. In the first place, the persons who are interisted in the patent corering the manufacture of said cheese, and some others, claim that it is just as good, wholesome, and nutritious as the full cream cheese, and this being the case, it is perfertly bonest to manufucture and selt such checse without branding it so the consumer may know it is not the genuine.

They say, if it were branded or marked in such a way, that some people would not purchase it from mere prejudice, and it would not bare a fatir chance to compete for public approral. They say, also. that it is anoch more profitable to the manufacturer and dairyman to produce the said cheese than to make the genuinc, and it being made at so much less cost, it will be a great benefit to the consumer as it can be sold at a less price.

This last claim is a rather doubtful one, as the chesse is so good that the shipper ca. $10 t$ detect it and pays the price of the genume, and I cannot understand how it is going to the consumer at a lower price than pure cheese Perhaps many of the readers of tho Journat knorr the process of making this class of cheese but I will gire a short explanation here, for the benefit of those who do not know ; at the same time reminding them that it is from personal observention and not from hearsay In the first place, the muk is sel for the cream to rise and is skimmed as closely ns yessible, the ubject being to take out all the butter and hare the skim milk remain sweet.

This swect skim milk is now corichnd with lard in the following manner. two vessels, holding from 12 to 15 gallons each, and similar in construction, fitted up to heat their contents by stcam and standing in a conrenient place to the engiue, now come in use.

Into one of them a quantity of lard is placed equal to lid lbs. lard for each 100 lbs . of milk to be worked up, and in then other, about double tho quantity of sweet skim milk that there is of lard tund now, both lard and milk are lieated up to abrat 120 to 130 degrees Falirenheit

Now little faucets are turned, and the lard and milk run out and join in a spout leading into the bottom of a small machine which has an upright cylinder revolving at a speed from 2500 to 4000 rerolutions per minute. This cylinder is bristling with litte points, and tho centrifugal force cxerted by the rerolving cylinder is so great that the lard and milk are thrown up and round this cylinder until it is discharged through a tule at the top, perfectly mixed and in a foam. The inrentor of this machine claims that the fist is caught upon thos: points, and the skim milk is thrown round it, thus forming a nerr globule of fat similar to the flobule in new milk. As for this theory, it is not sound, as the milk being hearier than the fat it mould bo thrown on tho outside, while the fat rould remain in the centre. But
that it is a very thorough mixture must bo granted, for it takes several hours for the mixturo to separato if left standing.

The skim milk being poured into the cheese vat and heated up to the proper degree, the mixturo of lard and milk is poured in and stirred through the whole, and if butter-milk is used, it is now added, the renneta applied, and the operation now goes on similarly to the making of full-cream cheese.
Four or more pounds of pure butter replaced by $1 \neq \mathrm{lbs}$. of lard, brought from some western slaughter louse. rendered from hogs brought from all parts of the west and south, most of them being sound and healthy, but many aro discased and it is well known that those that are not fit for packing are rendered into lard, and we are asked to believe that one and one-half pounds of this lard of doubtful reputation if compounded with 61 lbs . of skim milk curd, will make as wholesome and nutritious food as 4 pounds of butter compounded with the same amount of skim milk curd.

Such a statement does not require any argnments to refuto it, and it is a reflection on tho common sense of the public for any onn to make it.

A great many families in the eastern Stateg raise their own pork and lard, because they do not wish to use the weatern, although they could buy the western cheaper than they could raise it. Must this
cents, and no doubt thero would be a large amount of it used br foom pcople, but no ono rould bo imposed upon when thoy did buy. Tbe claim that it is equal to full cream cheese and is dificult to dolect, is the strongest reason why it should be so distinctly marked that all may know it is not gonuine, and the claim that it is more profitable to the producer is the same claim that the counterfeiter of mosey might set up if he succeeded in producing a counterfeit bill so perfett that it could not be detec ${ }^{\text {cod. I }}$. Itako my stand right here, and I believe 1 am supported by public opinion when I say, that if all is parties who are engaged in the manufacture of said cheese, togetber with the patentees and thoso who control the sale of rights, machion, ctc., should have a private room where they issued counterfal National notes and bills and flooded the conntry with them, they Trould be guilty of no greater moral crime than they are now, asd atill they have an enviablo reputation for honesty of purpose and istegrity of character, and I know that the parties who are at the hed of the whole business are extremely sensitive as to the good opinions of the public!
In conclusion I make this statement without any personal feeling of friendship or hate, that he who engages in the nefarious enter. prise of making counterfeit cheeso and selling it for the gencine, should occupy a cell in the same prison ward with him who countr.

lass of people be compelled to eat what they do not want, by having it concealed in their cheese, which they hare a right to suppose is entirely the product of the cow?
A great many people of weak digestion and dyspeptic cannot eat lard in any form, white they can eat butter freely, and this proves that lard ckeese would not have the same effect on the stomach tbat pure cheese would have, and is not the same. But granting it is so nearly like fall cream cheese that the consumer cannot detect the diference, the claim that it is honest to sell it withoat branding it as counterfeit, is not just or reasonable.
There are tro classes of people who have an especial right to object to this, and they are, firsi, those who from religions scruples do not eat the product of the hog, at all, and think it unclean and unfit for food, and the other class, those who abstain from it cartain days and seasous of tho sear, and both of these classes eat largely of cheese, and that fair minded and tolerant man will say it is not an outrage upon human rights and religious liberty, to hide the arricle they de not desire in one of the commoditics of food in sach a manner that they will eat it unknoringly. Tbey say, all they want is a fair trial of their cheese to convince the pablic that it is just as good as ang.
If they really want a fair trial, it would be no moro than fair to oler it to the consumer for just what it is,and at is price proprortionate to the cost of the article with full cream checse which, vholesale, is less than onc-half; or when pure new milk cheese is worth 13 cents, lard cheeso can bo made, as abore described, for six cents and still pay the royalty to tho patentees and a good profit to the manufactarer.

Now giving the retailer three cents for cating per poand, when best cheese sold retail for 16 cents, lard cheeso should retail for 9]
feits the Nation's notes, or forges his neighbor's name, and if there is any choico, the counterfeiter of food is the greater sconndrel of tho tro. I earnestly hope that there may be legislation on this mattre, making it a crime of the same nature to counterfeit an article of food as to make spurious money, or to forge a name.
J. M. Jocelry.

Report of Pole Star Creamery for Season 1881.

Creamery opened June 6th, and closed November 6th. Open fir months.

Whole nomber of pounds of milk manufactared into butter 20 d checse:

736,774

Pounds of butter mado

14,429
65,532
Pounds of cheese mado
Pounds of checes made from 100 lbs . of milk, Pounds of batter made from 100 lbs , of milk,
Total pounds of solid from 100 lbs . of milk,
$8{ }^{92}$
190
108
$10 ; 8$

Cheesc sold as follows:
Jone and Joly, $\left\{\begin{array}{l}\text { 1st sale } \\ 2 d\end{array}\right.$ August,
September and
October. $\left\{\begin{array}{l}3 \text { 3rd } \\ \text { 4th } \\ 5 \text { th } \\ \text { " }\end{array}\right.$
Butter sold to July 5th
Irom Jaly 5th to August 1st.

$\begin{gathered} 1,114 \\ 25,917 \end{gathered}$	$\begin{aligned} & \text { @ } \\ & \hline \\ & \hline \end{aligned}$
18,933 "	(1) $11{ }^{\prime}$
11,426 "	© $12 \times$
8,142 ${ }^{1}$	@ 11
	20 cents 228 24 :

Previous to August lst, milk was all set for skimming; after that date only one-half was set, and the morning's milk was worked in neip.

J. M. Joorhys,

Olarenoeville, bed. 7th 1881.

To R. W. Snepierd, ja., Report Committee Montreal Horticultural Society and Fruit Growers Association of Quebee.
Dear Sir, - I have long intended to give you those promised "notes" of last season's cxperience with the new Grapes fruited by me. The most prominent in my mind as possessing special merit for earliness, productiveness, and fine fruit, is the Worden, a plant seedling of Concord brought out by Jfr . Worden, of Minetto, New-York. I have fruited it for two years and find it better in many respects then its parent, and much earlier, promising to be as productive and basdy, larger and better in flavour. Planted alongside of Moore's

The Champion, bought of J. S. Stono, of Oharlotto, N. Y. tho proprietor and introducer of it, and the Beaconsfield, bought of Monzies and Gallagher, of Point Olaire, prove idontioal in overy respeot.

Mr. Arnold's blaok grapes, orosses of Clinton with Black St. Peter, and Blaok Hamburgh, Brant. Oanada, and Othollo, were allowed to overbear. Those I had on exhibition were smell and not matured, their flavour is not developed till after frost. Brant, the earliest, may be worthy of culture with us, as it is cxcellent for table or winc. To conolude the blaok grapes Mr Burr's nem.Kans-as grape, "Early Victor," deserves notice. Prof Husmann, of Missouri, advised mo to try it, and the vines showed great vigor. It has been placed in tho market this fall and has the endorsement of prominent grapo authorities as the earliest grape known, and the best of its olass, the Labrusca. As to Red Grapes the Brighton is carly, hardy, vigorous, and good. Lindley, No. 9 of Rogers' Hybrids, is a favorito with mo, a. rampant grower, splendid bunch and berry, has to be restricted in bearing. Agawam

Farly I can see but little difierence in its time of ripening. Telegraph, though not a very new variety, claims I think, more attention than has been given it, is as large in berry as the preceding, ripens carly, and has a very compact and handsome claster. Black-Eagle, one of the late Dr. Underhill's productions, gives much promise for favorable localities in this Prorinec, ripens about with Concord, a little later perhaps, and is a grape of superior flavour. Burnett, No. 19 of our friend Dempsej's hybrids, ripens earlicr than the latter and when fully ripe, or a little past, it has a fine flavour, and the berry is very large. I consider it a Canadian triumph. Whitchall Has sent me, in request for early new grapes, by Mr. Campbell, of Ohio, ho is pronounced the best western Authority on this froit: - medium sized berry, ripening very early, and it may on further acquaintance be found very desirable, as the favour is good. Belvedere from same quarter is a littlo later, rery productive, in some respects resembling Creveling, no better. As the Talman was said to be "confused" With the Champion, I, from cariosity, obtained it from its original state, Ohio, and if not true to name, Mr. Campbell is responsible Alongside of Champion, and the so called Beaconsfield, I found it several days later and better in quality, kecping in eatable condition long after these vaxieties were rorthless.
another favorite, for its aromatio flavour, has bat one fault, imperfect bunches. Salem is very desirable and, particularly; as a long keeper.

Northern Muscadine is the earliest red grapo I have, and does not drop from the bunch as in some looalities. In white grapes, Lady, the carliest, bore for the first time, though planted three years, and was satisfaotory czeept a slight tendency to crack, Eva, one of Mr. Miller's saccesses, promises well, is vigorous, and saperior in quality to Martha, its parent, and I believe will suoceed generally in the Yrovince; ripens with Delaware. Elvira is a stronggrover, healthy foliage; Martha, though springing from Concord, when young makes a slow growth, of the tro latter I will defer an opinion until after another Year's trial. Autuchon, Arnold's No. 5, Clinton crossed with Golden Chassclos, small berry, but a long tapering bunch, fine quality, the foliage of this and all Mr. Arnold's hybrids the Thrip shows a preferenco for. Allen's Hybrid, so fine with me last year, was reduced in size beyond recognition by the ravages of this destructive insect. Mr. Oayrood's Dachess, and Mr. Rickett's, Lady Washington, both made a strong growth and the foliage was very healthy. These and the Prentis, may appear in my exhibit next year.

Professor Husmann's last Fork on grapa growing should
be in tho hands of every grape raiser, but 1 must oaution them about his opinion, from a Southern point of vierr, in referenes, on page 53, to many varieties whioh he condemns that we cannot at present afford to drop from our fruit list. Agawam, Allen's Hybrid, Diana, Croton, Diana Hamburg Northern Musoadine, Rebecca, and Hartford, ho pronounces "worthless"; and they perhaps have been superseded in the South by many better varietics we oannot grow North.
Though I find by experienco it is best to be somerrhat conservative as to system of training the vine, and try new systems cautiously, I am giving trial to the Kiifin System now being introduced on the Hudson, and in N. Jersey. Tho trellis is, tryo wires, the lowest $3 \frac{1}{2}$ fect from the ground, the upper 6 feet. The vine has but one stalk tied perpendicularly to both wires, arms are allowed to grow opposite cach wire, right and left, and all other shoots on main stalk brushed off is they appear. In fall, these arms are out back to 5 or 6 buds for fruiting next year, and the following year, the new arms that will start from the buds at the base of the present fruiting arms, at their junction with the stalk are allowed to grow to end of trellis, only clipping off cnds of shoots that may grow too rampant, after fruiting and at fall pruning the present season's wood that bore is to be cut clean away to stalk; at the same time cut back present year's arms to 5 to 6 buds as before. The system is claimed to require very little attention and was highly recommended to me by Mr. Wil. liams, secretary of the N. Jersey Horticultural Society at the last session of the American Pomological Society in Boston. The only doubt I have is, that in time the stalk will become too rigid to lay down for winter protection; if so, I will not remove vine from trellis but tie matting around it.

J. Pattison.

Messrs. D. M. Ferry \& Co., flower and seed catalogue for 1882 is at hand. It is really a work of art which should be seen, read and carcfully scanned by all our readers. By referring to the advertisement elsewhere it will be seen how to apply for this catalogue which is sent free.

We have repeatedly tried seeds from this firm, with constant and complete satisfaction.

Allender on Dairying.-Continued.

bUTTER-MAKING.

I cannot do better than advise every one who wants printed information on this subject to obtain Mr. Jenkins' "Hints on Butter-making," price 6 d .
Oac word, howerer, about churns. I am constantly asked, "Which is the best churn?" A good dairyman or womat will make good butter in any churn, but if I have to give my decided opinion, I prefer the churns that are put together like boxes, such a Bradford's, or Thomas and Taylor's, or the End-over barrel churn, as made by Waide; not forgetting my special favourite, the sswing churn, undoubtedly the best for a small dairy; any of these in preference to the old barrel churn. It is only quite recently that I arrived at this conclusion. I find that the churns I mentioned, by reason of their angles, will do the work with a minimum of dashers inside, whereas in a barrel churn a considerable amount of dasher is necessary, otherwise the milk would rotate with tho churn ; therefore, in fature, I shall avoid all barrel churns, no matter by whom made. Concussion is what we want, and not friction; and this we get, even without dashers, in a box form rather than a barrel.
Should cream be churned when sweet or when slightly "tarned"-ripened? I say the latter, but the exacl state of acidity, and how the requisite acidity is to be brought about, is yet a matter of question. This subject has receired much attention in Denmark. Mr. Jenkins lately gave me
somo very interesting information on this point, sherving that the new "world " that is being opened out by the investiga. tions of M. Pastcur, Mr. Lister, and other scientifio men hers and in France and Germany, relating to the "germ theory," will play a part in dairy work, both in the manufacture of cheese and butter." It has been found that where, for the purpose of " turning" the cream, churned daily, some sour butter. milk from the prevous day's churning is used, after a certain length of tume, say three weeks or a month, a fresh start is necessary-that is to say, some fresh milk must be allowed to become sour, and this being used instead of butter-milk, ner sced is, as it were, provided.
This is, however, too wide a question to enlarge upon here. One thing is quite certain, that both in butter and checse mal. ing there are influences, at present unknown, which materialis affect the quality and flavour of the product. A paper, ea. titled "The Effect of the ' Infinitely Little' in Gheese mak. ing," has been publishcd lately in France, bearing on this subject. I have not yet seen it myself, but have been infor: med of it by Mr. Jenkins.
" marketing," and "assoclated dairies."
In my former paper I said: "To my mind, butter factoris are quite as much, if not more, needed than cheese factories." The great advantage forcign butter bas over our home produce is, that, in addition to the greater care lastowed in its mannfacture, it is offered to the trade in a more convenient or more marketable form. Now I think this is perhaps the most important point to which I shall call attention to-day.
Take fresh butter. Trenty years ago, when I was living in Buckinghamshire, the retaii butterman in London Lad io get up early, drive to Newgate Street, and there, looking orer many hundred fats of butter at the various salesmen's stands, select that which pleased him most; the butter, received during the night from the farmers in the Vale of Aylesbury and elserrhere, being made up in 2 lb . rolls, packed in flats or biskets, these latier lined with paper (often old nerspapers) to keep out the dust, and the intter wrapped in a coarse cloth. Having made his selection, and had his purchases carried to his cart, he drove back to his shop. Empty lats and cloths had to be cared for, and duly returned. This system, doubrless, had been in vogue for years and years before the time I speak of-before railways, in the old days of the carricrs-and it is in vogue now, as you will see by the basket of butter which I have brought here to-day. That flat of butter was purchased just as you see it, in the market, and the bos of French butter that I have here, was bought at the san:e timo. The French butter cost 17, per dozen, the English 16. Nof, I want to draw attection to this-is not the way in which that flat of butter is packed a disgrace to us? Look at it in com. parison with the French butter, the one is the produce of a single farm. I suppose two such lots are sent per week, and any ono buying it would require to see it, and if they bought sis lots, each would have to be inspected, because no troo lots would be alike; whereas if any one required one handred bozes of the French butter, they need but look at a single bor, or not even that. The name of "Bretel Freres" on that bos is a sufficient guarantee. Their house is as well known, and stands as high, as any merchant in any business in tho City of London. The busuaess they do is enormous. Now they have had a profit out of that butter, the market salesman his had his commission, the box is included, and the package has come from a forciga country.
Butter marketed as you see in this flat, at one time formed the whole supply fer London; it does not now amount to : trentieth-nay, not a hundredth-part of what is required. Fer provincial towns used fresh butter, as we understand it ; salt butter only boing known. Foreign batter, as shemn by our imports, formedrthen hut a very small item in our cor-
sumption. Look at the figures now. In ten years our imports have risen from $£ 6,000,000$ to $£ 12,000,000$ sterling. What do these figures sherw? Tuke last year's return of 2,326,305 ort., or $£ 12,141,034$-equal to $£ 3,325$ per day. To produce this quantity of butter, nearly $1,200,000$ cows would be needed. Certainly the countries in which these cows are kept have no special advantage, either in climate or soil, over ours-no great adrantage over us in the value of the animals, or of labour, and the cost of transport against them; and yet thers is the fact, that a produot of daily consumption, the fresher the better, and that could be produced in this country certainly as well, if not bettor than in any other country in the world, comes here in these enormous quantities, to feed our people, not only putting moncy into tho pockets of the forcign farmer, but paying a handsome commission to two or three large marcan tile houses, who have a finger in every owt. imported. What is the answer to this question? It is this, and this only: foreign butter - whether it be fresh, from Normandy or Brittany, or salt, from Denmark or other countries-comes in a more marlietable form. The process by which this is arrived at is simple, and could be easily carried out by us. Will we do it? That is the question.
Agents of the large houses in Normandy, such as Messrs. Bretel and others, attend the local markets, buy the butter from the farmers who, in their own interest, attend to rules laid down by the iuyers. It is then carted to the stores or factories, end there put through a maohine; so that, instead of having 1,000 different lots, varying from 20 lbs to 50 lbs . cach, they turn out many tons per day of precisely the same sample. Ti'his, instead of being packed in baskets, rough cloths, and perhaps nerwspapers, as you see before you, is put into boses, each holding 24 lbs . in $2-\mathrm{lb}$. rolls, neatly made and nattily papered; and if you look at 1,000 boses, you cannot tell "t'other from which." As you see that box, so hundreds of thousands come over annually.
The result of this is, that if this butter is not any better than that sent to market by English farmers, it commands a bigher price and more ready sale, because it is in a more marketable condition. That is to say, instead of the retailer in London having to go to market at five or six o'clock in the moroing, selcet his butter, and be back in time to attend to his basiness, he can write to an importing house and order ten, trenty, or fifty boses of butter to be delivered to him just when he requires it, and in any quantity: and he is perfectly certain that so long as he is supplied rith the same brand, he will receive every box in every consigament of the same colour and quality, varying, of course, slightly with the season. The same remark applies to salt butter. In buying "Dorsct," one firkin differs from its next-door neighbour ; one is made at one farm, and another is made at another. Whereas, from Denmark and the north of Europe, and wherever there are large associated dairies, the retailer can send to the merchant, and order a certain number of firkins of this brand or that, and knows that he will get what he requires, thus saving himself immense trouble and loss of time in marketing, and enabling him to give his customer, the private consumer, day by day, butter, salt or fresh, of the same appearance and quality.
It may now be considered how this may be done in England.
I suggest that, instead of each farmer, as in Bucknoghamshire and other counties, making once or twice a week his tro to ten dozen of butter, they should work together and make amongst them from twenty to fifty dozen per day, which rould be of the same quality and appearance theoughont, and cnable tho retailer to purchase direct their produce with as little trouble as hie nor buys foreign butter.
Mr. Jenkins points all this out in the concluding centences of his littlo pamphlet, "Hints on Butter-making." He says:
"A member of tho Society recontly sent me two pats of butter of his own make. The quality was excellent, and I sent one pat to a factor in Tooley Strect. He replied, ' If your friend can send me half a ton or upwards of suoh butter per weok all the year round, I shall be happy to correspond with him.' Hercin lies the difficulty of getting at the London market, and it can only be overcome by associations of farmers, or by the creation of nery middlemen, whether companies or individuals."
A move has already been made in this direction. Mr. Carriok, stimulated by what he saw at Carlisle, has started a bu' 'r ${ }^{\text {r }}$ dairy, on a largo scale, noar that city. He buys milk to a very large extent, and has already, I believe, a most prc perous business. His customers' demands already eseced his supply, and I know that he lately had to refuse an offer of 1 s . 9 d . per 1 lb . for 500 lbs a week.
In Devonshire, a dealer is buying butter in the local market, reworking it, and sending out large quantities of an equal sample. Machines for this purpose are now to be obtained, and it is a business well worth the attention of sengetio men. But what I should prefer is that farmers should associate and carry the business out themselves, thus saving the intervention of one out of the two middlemen.
I have been told hundreds of times that farmers will not associste. I say they will, if they are so fortunate as to meet with a man they know, and in whom they bave confidence, to organize the association. I refer with the greatest ploasure to a most successful association, that has been working for the last four years-"The Gillingham Dairy Farmers' Association "-organized by my friend, Mr. J. Williams Bell. Mr. Bell, most kindly, lately sent me the figures of this society for 1880. Eleven farmers contributed 151,281 gallons of milk. This was partly sold as milk and cream, the rest made into chcese and butter; and, although chiefly summer milk (that is to say, 22,342 gallons were sent in in June, and only 3,832 in January), the sum received for the milk and its products, not counting the whey, was $£ 5,1203$ 11-equal to 8.18d. per gallon ; and the total working expenses, including rent and rates, interest on capital, manager's salary, commission, fuel, repairs and renervals-in fact, all charges-came to just gad. per gallon.
Mr. Bell writes to me: "I have no doubt that such an association as ours is a right and proper thing, but the farmers will not take a rope when it is thrown to them, and, so far as I know, it is the only one of the kind in this country.
"I shall st all times be most pleased to see you and any friends of yours, and to tell you gladly everything I know. I have ro secrets about dairy matters, and I always tell my people firmly to tell inquirers frankly and fully all that they wish to know, and then to do their utmost to beat them afterwards.
"I send you a c".y of our last year's account, with a form of members' account, and a monihly statement of milk delivered, and I willingly submit mysel ${ }^{n}$ to any farther esamination and cross-cxamination at your hands.
"I may add, that we never have a discordant mord, and if any member ventared to be disagrecable, we should tura him out by an overwhelming majority; but no one ever is disagreeable. None have left us, and we make joining a favour."
This is a model, of which I would that there were many copics.-(To be continued.)

Hampshire Downs.

A pen of this years's (1881) lambs, exhibited at the Smithfield Club show, weighed 6 cwt . 10 lbs ., or 227, live weight, per head. No other pen of lambs in the yard could touch this result, excepting lambs of the same breed. Age, 40
wecks ; carcase weight, about 40 lbs. per quarter, though tho breeder thought they would go 75070 of the live weight, i.e. 42 lbs. per quarter 1 The carly maturity of Hampshire Downs is duo to inherent qualities; to the constant use of lambs as sires; and to the great care and skill bestowed upon them by
tho shephords of their native places, a rough but a genaise and intelligent, nay a thoughtful race of men. The lst prize Southdown wethers only weighod 3 lbs . per head more than Hampshire Down lambs; not much for twelvo months growth!

AUUTION SATIEGF YAKUARI,E

 FABM STOCK.
 calfs, and vell bred uraph-Cows.

 sold at tho Farm of

Mr. GEORGE II Millir, Côte St. lauren, on Woanosany, RUth Mniola at ton o'olool.
Further partuculars whappear.
NO RESERVE!!
THOMAS J. POTTER
Auctioncer.
Cutalogue of thorouglt Breds, on day of sale.

RENOVATED SOBGIIUM SEED.

FA ARLY-AMBER CORN, FROM THE SOUTH, If is the only seod which can guarantee a good crop, srad first class syrup, th our latitude: fietd 250 to 300 gallons per arpent. Two pounds of seed aro roquired per arpelit. A circular containing unstructiong th the cultivation of sorghum and the method of manufacturmg syrup and sugar from it, in Conada, is sent with erch packet of secd. Packets of $1,2,3$, of 4 pounds are sent free by post. Larger quantities forwarded by hoal or rallon special torms. Active agents wanted lis each district to sell seod. canes, and the apparatus used in the manufacture of syrup and sugar.

Aduress:
E S. MANNY.
Beauharnos, P. C.
WTILLIAR RVANS, IMPORTER\& GROWER
of Field, Gardenand Flowor Seeds. Nursert and Seed Farms, Broadlands, Cote St. Paul.- Fruti and OrnamentalTres. Shrubs, Roses, Greenhouse and Bedding Ilants, Vegetable Plants, Small Fruiss, te. Agrifulthral Inplements, Fertilisers, fc. Warehouses, Nos.89, 91 d. 93 McGill Street (corner) $106 \&$ tos

CANADIAN PROVISIUN PACKING CO., OFU fice and Works, 30, Henderson Suroet (Palars) Quebec. Preserved Moats, Fish. Vegetables and Fruts. Wholesale only, A watds: Frrst Prize and D1PLOMA, MucbecProvincial Exhbution, 8877.TEREz Eifast Prizes, Two Medals and a Diplose, at the Dominion Grand Exlibltion, Ottawa, 1879.

THE BEST
P In A For the land.

SUPELPIHONHATE

 Of the best quality. EXCELLENT
PARIS GREEN

Pure, or mixed with ground plaster. For sale at

MESSRS. LYMAN, SONS \& CO., 332 to 386, St. Paul St., Montreal.

Wilibe malled yers to al applicante, and to exitomare withont
 plantiog 1300 varieties of Vegetoblo and Elower Seedt, Plants, Fruls Trete, etc. Invelasbleto allo. Sendforit Addreat,
D. M. FERBY \& CO., Detroit, Mich.

FOR SALE-MASMMUTH BRONZE TUR. F KEYS, descrnded from the proze flock at the L. S. Cememmal Exhathon, 1876 , $\$ 8.00$ each.
R.S. TaFT, Whists N, Vi.

THOROUGHBRED SHORT-HORNS, AYRportod shie Cattle, and Borkshiro Pigs, all from lmportod stock, and enteredinCanadianand American hord books. For salo, chcap, by Jons L. GIBB, Compton, P.Q.

H^{0}OMES IN TEXAS, is the ditle of a new illustrated painphiet, descripive of the country along and tributary to the line of the Imernational \& Great Northcrn R. R, and contains a good county map of the State. It also contains the names and alduresses of Farmers and planters in Toxas who have Farms for sale or rent, and those who will vant Farm Hands for this ycar. A copy of this book vill be manled free to those who desiro rehable nformation about Texas, upon application by letter ALLEN McCOY.
Gon'l Freight and Pass'r Agi. Palistine Tex
WES \& CO., LACHINE, P.Q.-BREEDERS and mportors of THOROVGM BRRD and CARriage horses, Aybshire cattle, and Bebksmax pigs.

BURNELL'S four point steel barb wire fencing. - The best and cheapest Farm and Railvay Fence.

Send for circulars and prices to
H. R. IVES \& Co. Manufacturers of HARDWARE, Iron, Railings.

QUEEN STREET Montreal.

OR SALE. - A FEW THURUUGH BRED Jerse, Buid Calvos, from amported cows and good milkers. On reasonable terms. Apply in
H. STEPLENS, Jr., St. Lambert, Q.

ViNE-GKOIVING.-In order 'to encourige the rultovation of pines suited to our climate, we have made arrangements with ono of the cel chrated Amorican firms. which enavio us to ofier for sume two-jear old wimes, in oxcellent condition, and fit to be planted next sprins On the receipt c ono dollar, we will semi by mail, posi-pad, three vines, dollar. we will sem oy man, post-pata, three vines,
of the foltowing sorts.at he purchaser's chofec, sel. coted exnressly for tho climote : wirme orapisAllen's Hibrid, Mariha.-RED grafes - Agawam Brighton, Delaware, Perkíus, Salem, black GEapzi -Adirondar, Barry. Crevoling, Cottage, Concord, Eumelan. Herbert, Hartford, Isabella, Janesville, Talman or Ch mpron, Telegraph, Vilder, Address, by lettor.

TO ED. BARNARD.
10 St. Vincemt Street arontreal
FSTABLISLED $839-$ FROST o WOOD D Sinth'sFalis.Ont. Minnufacturers of Mowerst Reapers, Horse Hay Rakes, Steel Ploughs, Cullf. Fators, Field Rollers \&c. \&c.
For parliculars. Address:
LARMONTH \& SONS
33 College Sircet, Montreal.
FOE NALE THROUGEBRED AYRSHIBE Stock, and Berkshire Pigs. Addresp:

No. 19, St. Jamesstreet, Aicorveni .
WT E CONTINUE TO GROW YOUNG APPLE. ureos for zale. TVe shall have nearly ton thousand trees for sale in mprung, amongst which are 30 variofles, and wo hope to bo abla to sausfo the asto of our customers. P. SIMON LACOMBE, Côtc dos Neigeb, Mlontreal.

F1 RENCH ECUNOAIIOAL RANGES. -THR most convenient ranges or cooking, comblnitg great economy fufuel with perfoct work and grem durability. Thoy are absolutely perfect in crefs ruspect. iVe callarrange them 10 warm, by metit of hot vator, all the rooms of a large house at asce, as well as performing all the requirements of hes kitchen. We have ourfurnaceg, atmonireal, in it St. Lawrenco Hall, Ottawa Hotel, City Club, the Convent of Hochelaga, Good Shepherd, St, Brgith and in the houses of Mossrs. Alfred pinsonnearit Ed. Barnard, (Dircetor of Agriculture) Varennes, am hundreds of oinets who allow as to refer to themfor confirmation of the a bove statements.
confirmation of the above statements. signed.

THE:HLLGSTOCK FARA,FRELIGHSBLRG sicep, Burkshire pigs Catalogues on applicatuou N.S. WHITNEY, Montreal, P:Q.

To Agricaltursi Societies and others. - Frining, Buok Binding and Wood Eagraving, on the most favorable terat do ne by the Printer of the llhustraledjournal of Agricullure, E. SENECAL, 10 St. Vincent St., Montreal.

[^0]: - The artist has erroneously represented the sheep lying on its far side, and the clipping to proceed from the belly to the back-bone, Which is the proper posture for the second position, as also the keeping the head of the sheep down with the left leg a, whereas the sheep should have lain upon its near side, the wool been shorn from the back-bone to the belly, and the bead d kept down with the right leg, as described above.

