The Institute has attempted to obtain the best original sopy available for filming. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below.

\squareColoured covers/ Couverture de couleur

Covers damaged/
Couverture endommagéeCovers restored and/or laminated/
Couverture restaurée et/ou pelliculéeCover title missing/
Le titre de couverture manqueColoured maps/
Cartes géographiques en couleurColoured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bleue ou noire)Coloured plates and/or illustrations/
Planches et/ou illustrations en couleur
\square
Bound with other material/
Relié avec d'autres documents

Tight binding may cause shadows or distortion along interior margin/ La reliure serrée peut causer de l'ombre ou de la distorsion le long de la marge intéricure

\square
Blank leaves added during restoration may appear within the text. Whenever possio-ie, these have been omitted from filming/
II se peut que certaines pages blanches ajoutées lors d'une restauration apparaissent dans le texte, mais, lorsque cela était possible. ces pages n'ont pas été filmées.

L'Institut a microfilmé le meilleur exemplaire qu'il lui a été possible de se procurer. Les détails de cet exemplaire qui sont peut-étre uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de filmage sont indiqués ci-dessous.

Coloured pages/
Pages de couleur

Pages damaged/
Pages endommagéesPages restored and/or laminated/
Pages restaurées et/ou pelliculées

Pages discoloured. stained or foxed/
Pages décolorées, tachetēes ou piquéesPages detached/
Pages détachées

Showthrough/
Transparence

Quality of print varies/
Qualité inégale de l'impression

Continuous pagination/
Pagination continueIncludes index(es)/
Comprend un (des) index
Title on header taken from:/
Le titre de l'en-tête provient:

Title page of issue/
Page de titre de la livraison

Caption of issue/
Titre de départ de la livraison

Masthead/
Générique (périodiques) de la livraison

\squareAdditional comments:/
Commentaires supplémentaires:

This item is filmed at the reduction ratio checked below/ Ce document est filmé au taux de réduction indiqué ci-dessous.

The Canadian Engineer

Che Canadtan Engineer.

JBSUED MONTHLY IN THE INTERESTS OT THE

CIVIl, mechanical, electrical, locobotive, stationary MARINE, MINING AND SANITARY ENGINEER, THE SURVEYOR, THE MANUPACTURER, THE CONTRACTORAND THE

MERCHANT IN THE METAL TRADES.
Susscaption-Canada and the Unitod States, 8.00 per year; Great Britala forelgn, 6s. Advertising rates on applicatlon.

Orficzs-6a Church Street, Toronto: and Fraser Bullding, Montreal.
 BIGGAR, SAMUEL \& CO., Poblishers, R. B. Biogar

Address-Frases Bullding.
Taronto Telephoze, 2898. Montranl Talephone, 2889. United States Agemi:
H. E. BURNETTE, Cor. Fourth and Locust Sts., Philadelphin

All builneas correapondence ahould be addrenced to our Montrenl oneo. Taltorial matter, onts, olectros and draplog shomid be posilble, by mall, not by exproes. The pablinheris do not undorteke to pey duty on cuis Rrom abrond. Chanses of adrortisomenta shonld be in our hands notiater than the lit of esch month to eneure neortion.

CONTENTS OF THIS NUMBER:

	Pagz		Page
Asphalt Block, The.....................		Kiliey,	35
Bleycle Combioation, the Canadian	140	Ltterary Notes	O
Casadian Water Poprer and its		Lachlae Raplds Works, Proposed	
Electrical Product in Relation to.		Improvement $2 t$......................	123
the Undeveloped Resourecs of		Mining Matters	14
the Dominion	224	Marine News	145
"Compressed Air" Firsle, That...	127	Metal Imports from Great Britalu	188
Cemeat Industry, The	127	Ataeral and Metal Productions in	
Drill Grinder, The Yankec.	148	1893, United States..................	135
Draft, Theinduence of Mecbanical,		Personal...................................	14
upon the Ulimate Efficiency of		Rallmay Eagincerink	14
Steam Boilers	239	Rallway System, Revolution of the	
Electric Elashes7.7...	J42	Present by tho Advent of the Ele.	
Firemen's Assoclatiod, Ontario Vol.		Vated Electric Railsay..............	321
unteers	236	Rallway Subaldies.....................	137
Fires of the Month..................	146	Rallway Miatiers	144
Filitrion, Sand, of Public Water		Stationary Engincers, Tenth An-	
Supplies ………..	148	nual Conrentlon, Canadian Asso-	
Grand Trunk, Portand Terminus		ciation of..............	129
ofi.9 :..............................	127	Vise, Pipe, Hough's Extra Heavy	
Indostin Notes	841	Combination.	248
lsle of Man Tramway.................	137		

For The Canadian Engineer.
REVOLUTION OF THE PRESENT RAILWAY SYSTEM BY THE ADVENT OF THE ELEVATED ELECTRIC RAILWAY.

By A. DAVIS, CONSULTING ENGLNEER, MONTREAL.

About sixty years ago England gave birth to the steam surface railway, and inaugurated the present system, and nowit is'about to inangurate the railway of the future. England waits the proper time before adopting any shew invention, and spending money aselessly. Her people will generally make sure of the new undertaking, and will then wait to see if anything better will turn up that can replace what is already in operation with lasting advantage, as they have done in the present case. They have waited sixty years for new developments in railway systems, but in reality there has been comparatively no change in the last fifty years, although it must be admitted that the speed has been increased on passenger trains during the past forty years about twenty niles per hour. The changes in themselves have not been elementary, but consist oniy in making the cars more comfortable for the traveling public. The weight and size of the railway rolling stock has been increased greatly for facility and cconomy in operating railways of America, but not so rapidly in Ergland. In this fact the prudence of the Erglish people again shows itself. They correctly
think there is a limit, and have stopped increasing the weight of their rolling stock, and have turned their attention to how it would be best to meet the emergency which demands greater facilities and quicker means of transit, with more absolute safety.

Our American railway managers as yet see no limit, and they are increasing the size of the carrying capacity of their rolling stock. From ten to thirtyton car engines are also increased in power and corresponding weight; all this with one idea in view, and that to reduce the cost of operation of their line. Of course, this looks well calculated to give the company the desired result. The main substance in this decision is the great saving of labor; in fact the managers will tell the directors of their companies that in place oi two trains being required to move a given quantity of freight, one train with one staff will do the work, so that 50 per cent. is saved on engine drivers, firemen, conductors, and brakesmen, and 50 per cent. on locomotives. This is for freight trains only, as the number of passenger trains remains the same. When this report is made at a directors' meeting, there are smiles and happiness all round. They are also shown the great change made by steamship companies of replacing the small steamers with those of four times the carrying capacity. In this, no doubt, a great saving is obtained without so great an outlay. A large expensive steamship must be paid for to replace, say four of the smaller ones, but it cannot be compared with the change that follows in the railways increasing the carrying capacity of their rolling stock proportionately. The changing of the small steamers to the large ones means one steamer to each four, hence one crew, one set of officers, one set of engines and boilers, in fact, one complete silip at sea, ore reamer berth at harbor, all in place of four. It is thie: that the crew will number a few more men than on a small steamer, and the consumption of coal is greater, but not nearly as much coal will be used as on four smaller ones. The risk of accidents at sea is lessened by 75 per cent., therefore the saving must be very great. Also, the steamship company does not lose the small steamers, as steamers of almost any size can be put into service at various classes of carrying on the sea, so that reduces the expense to a large extent, and the extra expense ends there.

Now let us see how differently the change affects the railway companies when the carrying capacity is proportionately cianged. In place of one ship, thousands of new cars are required, and in place of one engine, hundreds of new locomotives are needed. This is not all. The very moment this new heavy rolling stock is ready to be put into operation, new and heavier rails, new and larger ties, and new and stronger bridges are required for the whole line, as well as new turntables for locomotives; the road-beds require additional ballast, and in many cases new engine-houses are needed. In the repairing shops additional machines to
take in the larger parts of the larger locomotives will be necessary; in fact the companies may look to the expense of a new railway. less the right of way and roadbed, to meet the change. all in addition to almost the total loss of the rolling stock, rails, bridges, etc., as all of it can only be scrapped at best, as when the change on a few of the tronk lines takes place, all other lines will have to follow or they could not compete, so that old rolling stock will be discarded, hence the great lusis: so that when all the cost of this change has been correctly figured it will change the net receipts after the interest has been paid un many milions of outlay. Again, the maintenance of the new heave rolling stock, and the wear and tear of the rails, bridges, road-bed, and rolling stock iteeli, will be much greater. The same number of bearings will have greater friction, hence a large increase of lubrication and wearing material. The road-bed and bridges will suffer in proportion; the extra friction, which will have to be applied to the wheels to stop, these heary trains, and to moderate their speed on down grades, and likewise on the pull-up grade-the extra adhesion required to the rails-all this will callse quicker destruction, and again the accidents.

While it is strange to say that the system of steam surface railuays has been in existence abuut sixty years. there have been comparatioely no improvements vatside of the enlarging of the cars and lucumotives. and making them stronger and more comfortable for travellers, and inded fulluwing the catravagant luxury of hotels, etc. Outside of this the system is comparativel! the same. The speed of passenger trains has leeell increased about thenty miles per hour in furty sears. The cost of transit for persons and freight remains about the same on the all around average. Regarding accidents: While various devices have been applied, the only une which has been of any conse:puence in minimizing the number of accidents to the employees is the automatic coupler, which is still far irom periection. The number of aceidents on railways of all kinds and under all circumstances have been continually on the increase, and the cause of this is that the competition of railways has become greater as new railways have been built contimuall, and railway managers have had but one object in vien, and that is, cheapness of operation of their line, $s s$ that cheap material and construction has been used; anything that would call for a little additional expense for the minimizing of accidents not being entertained. The crowding of railways intu large cities has become so congested that accidents. are almost of daily occurrence. Now, what is to be donn(1) insure safety of travel on railways-quicker transit?

The elevated electrical railway is no doubt the railway of the future, and as England gave birth to the first system of steam railways, that country is about to give birth to the coming system. They are about to build an elevated railway in a district full of railways. that is, between Liverpool and Manchester. This proves that they feel sure that the new mode of transit will and must be this system, that will gradually take the place of the surface railways, both for passengers and express freight. First, there is the surety that an elevated raihway can be made so as to insure positive safety from all accidents whatever, rmming at 100 miles per hour. or more. because being elevated no contact with moving or other objects on the ground surface
will be liable, no accidents from floods or washouts, landslides, or misplaced switches will necur, nor hom broken wheels or rails, or any kind of collisions resulting from the mal-intent of anyone putting anyshing on the track. In the case of trains following each other, the comnections would be cut from the power of the following train by the operations of the first train, which might be stopped from any unforeseen emergency; so that the following train would have no propelling power in case of the necessity to stop the first train, and the electric signal would automatically strike the bell on the train that followed. As to falling off the track, that would be prevented by a gab grip that would follow the T of the top cord of the truss, so that it would be impossible for the wheels to mount the rail or get the body of the car lower than the top cord of the girder, only four inches distant. The side of the car is also protected by the sides of the girders, which have a flat, smooth plate rumning on both sides, which would come in contact with rollers fitted on the sides of each car. There would be no snow to ever block the line or canse any expense or accidents; no grades of any consequence, so that the miform speed would be constant; no short curves to create danger or extra friction, the trach would always be uniform and the cars would aluays run ver! smoothly; no dust and cinders or grit (i) cin up bearings and the machinery, thus all axles could be made to run smoothly in ball bearings with comparatively little lubricant, and the cars would be free from smoke and dirt of any kind.

One can fancy the comfort to travel in cars that are perfectly safe, ruming smoothly, with good and clan ventilation, also the enjorment of looking over all the surrounding country as a good panorama. The elcetric single rail projected by F . B. Behr, for the elevated railway to be built from Liverpool to Manchester, is not the style of railua! that can be practically successful. With the single rail system, the one wheel would not be sufficient to attain a very high rate oi speed, as the one rail system would cause the wheels to slip, the extra friction would be a great detriment, which would be caused by oscillation that must take place from the uneven loading of cars, wind, etc. While the new system invented is perfectly free from any interference from the above causes, and the railway itself can be built much cheaper, lighter and safer, the cars remain the same type as the surface cars are at present. Of course the cost of building an elevated railway would be greater on the first outlay than a surface raihray, on account of the height it must be made at some places, such as crossing rivers, towns, ctic. This will require pillars or piers to be made very heavy and strong for perfect saiety. But on the other iand the mileage can be reduced on the average at least 25 to 30 per cent. There would be comparatively no right of way to pay for, as only the pillars will take up any valuable space in the country, and very little anywhere. No embankments, no ditches, water culverts, stone or brick arches for roadways, no tumels to be cut through mometains, no fences, no men to guard level crossings or on the track, no accidents to trains on crossings, and no expense caused by the killing of people or beasts on crossings, and no ballast required, which with its maintenance is a very large item.

After all the above items and the constant maintenance of the same is carefully summed up, it will go
very largely to make up the difference in first cost. Then comes the difference in cost of operation of the two systems. One, the electric elevated, comparatively no dead weight of locomotives, and only the motor car, and less than half the dead weight of the cars to be hatiled over the line: the staff of engine drivers and firemen with all the assisting staff at engine houses reduced; no haulage of coal and water over the line; no water stations, water pipes, and water pumping entgines; coal stations and the staff-all will be reduced to thee power stations per 100 miles, where its boilers, engines, and machinery are stationary ; no cost for its haulage; also the engines, as alrearly stated. use up the line with their heare weight; all the heavy gear wears away much faster. No damage from fire caused from sparks of locomotives, and no more burning up of trains and passengers when trains are run oft the track and down embankments or in collisions. Also by removing the passenger trains from the suriace railways will give much more facilities to freight trains, which will also prevent many accidents and delay to the freight in transit. Now this is only a question of the first outlay, which cannot help but double itself in a short time, and be a blessing to the human race in its advance with the commercial progress of each year. I am quite sure that my system of elevated railway will accomplish all I claim here, and even more when all the details are fully considered.

Now. as to its possibility of revenue sufficient to warrant the outlay. Say that such a line should be built from New York to Chicago. The present time consumed to make that run is about 35 hours, while the time would be only 7 hours by the elevated, the distance being reduced to 700 miles, and the train ruming at 100 miles an hour, would be 7 hours in place of 35 hours, or 14 hours in place of 70 for the round trip; ontside of the person arriving by the elevated perfectly rested and ready for business, in place of requiring six or eight hours to rest after one has travelled to Chicago by the present system. As to number of passengers, they could afford to go a distance of 300 or 400 miles, to start for Chicago from New York. Say passengers irom Quebee, Montreal, or Boston, could reach New York in one night and take the elevated, they would still make the journey in about half of the present time, and the same in the vicinity of Chicago. An elevated line built now between these two points would b; only a begiming of the new system, which would not only be a great rate of interest on the outlay. but a general benefit to the travelling human race.

PROPOSED IMPROVEMENT AT LACHINE RAPIDS WORKS.

The Lachine Rapids Hydraulic \& Land Company is undertaking a considerable amount of work this year, at the Lachine Rapids, the experience of the past two winters having exhibited the action of the water and ice both at the head and tail races. Last winter. tor instance, the water in the tail race was abnormally nigh, higher, it is said, than it has been for thirty or forty years. and while the head race was not materially affected, so far as the supply of water was concernerl in the river, yet the ife entered the intake and would not permit of sufficient quantity of water entering, withcut drawing down, so that they had to meet the worst
conditions possible, namely, the highest back water and low head water inside the intake. Various schemes have from time to time been suggested for preventing the entrance of this ice into the head race, principally by means of large and deep booms.
W. McLea Walbank, the original promoter of the company, and one of its engincers, was decidedly against this principle, inasmuch as he contended it would be almost impossible to construct a boom that could be held there, and in addition to which, the current is so strong that even a deep boom would be of little or no use.

After the iee went out of the river this spring, Mr. Walbank had his assistants carefully sound the river above the intake, and submitted to the directors a scheme for the improvement of the works and suggested consultation with outside engincers. The result of the soundings taken in the river showed that there was a deep channel comnecting with the main channels of the river at McDonald's Point, as shown on the accompanying plan. This deep channel contimued down to almost in front of ice breaker, where the water was turned almost at right angles into the river. The result was that the current had a tendency to draw the ice from the river opposite McDonald's Poin, following the deep channel and discharging between the shoal and ice breaker, and maturally depositing ice at the mouth of the intake, which gradually filled up and impeded the flow of water. The channel between this shoal and the ice breaker is somewhat over 20 feet deep. The plan proposed by Mr. Walbank was as follows: Raise the existing wing dam the level of the water in the head race during the month of December, so that there would be absolutely no water rumning over during winter; also extending the wing dam the same level about $\mathrm{r}, 000$ feet further up the river. The result of this would be to make the intake, in place of 525 feet wide, nearly 2,000 feet wide, and the water in place of being 12 feet deep, would be between 30 and 40 feet deep. The current at present there would be destroyed and the river freeze over. The main direction of the river current would then be at an angle with the head race, rather than leading into it, as at present. For the improvement of the tail race, he suggested the raising of the guard pier about 4 feet. and the extending the same down stream, a distance of about 1,000 fect, and excavating of a deep channel between the guard pier and main shore, and removing the shoals. The object of the extension of the pier was to deflect the ice into the stream. The river below the rapids freczes over in some winters, and forms natural dams in the river itself, which raises the water very considerably, last winter coming one foot over the present guard pier. The object of raising it was to prevent a re-occurrence of this and to allow the tail water to take the discharge of the wheels only, without being influenced by the water in the river, except the natural backing up which occurs every year to a greater or less extent, and which is allowed for in the original plans. In addition to the foregoing, a glance pier from McDonald's Point, ruming completely down stream, was suggested.
T. C. Kecfer, an engineer of very high standing in lydraulic matters, and well-known to our reacers, was consulted by the company, and he has reported to the Lachine Rapids Company, endorsing the scheme
here outlined. He says, in lis report: "The closing of this cross river channel will not only send the river current and its ice above and outside of, instead of below and inside the shoal, and move it at least one thousand fect from the comparatively narrow and shallow entrance to your head race, but it will destroy the current leading to its month. It will move the entrance from its present position to a line opposite the head of the shoal. where the water is both wider and deeper, so that it will be three times greater in area than at present. Above MeDomald's Poimt the shore line trends to the right, and its course. if produced down stream, would strike the shoal about where the extended wing dan would have its ice breaker. When this extension is made, the shore tine of river current, instead of rounding Mc.Donald's Point and flowing in shore, will llow nearly in a straight line toward the aew ice breaker and outside the shoal. Your entrance basin, instead of being five hundred feet wide and twelve feet deep. will be about four times as wide and three times as deep. Its current will, even when all your wheets are going. inave little attraction for the frazil compared with that of the St. Lawrence, where it has a fall of twelve inches per mile. At present you have no entrance basin, but feed
the bordage ice. The extension of the wing dam will have the effect of raising the level of the head race (thus increasing the water power), but to what extent it is impossible to say, probably not exceeding six inches. The level of your wing dam should be such that no water can flow over it when ice is ruming in the river, especially frazil, because the draught caused by this overflow might exceed that caused by your wheels and bring in too mach ice. When the cross river channel is closed, I do not think there would be any tendence of 'field' ice to enter the new basin for reason stated above, and then the level of the wing dam could be governed by the frazil level, as that will be after the extension."

Mr. Kecfer further endorses a separation of the tail race from the river and the deepening of its channel, but was of opinion that the glance pier was unnecessary. The company, has decided to immediately carry out these works, and the contract has been awarded to W. J. Poupore, M.P., Ottawa, as mentioned in the last issue of the Canadian Engineer, and whose firm are now making good progress in the work, the contract calling for its completion by December rst. In addition to the foregoing, the Lachine Rapids Co. will protect its

Imboviments in Lachine Rapins anil Hinkaulic Company.
direct from one of the deep chamels of the river which brings its frazil to your doors. but with the proposed extension you will have a deep basin covering over two acres of surface. which will ireeze over nearly to the line between MeDonald's Point and the shoal on which your new ice breaker will be planted. This bordage ice on its river edge will be thickened by wind and wave, and act as a boom to exclude passing frazil. It will not entirely exclude it, for when the river above is covered at its wider part, and its ice is crowded into the narrower width. as it approaches the rapids the frazil will flow deeper and some of it will be forced under the bordage ice and out of the influence of the river current, when it immediately rises to the under side of the bordage, is frozen to it and thus thickens the ice boom. When the full draught of all your wheels is in foree, some of the frazil cllowed out of the river may descend farther down, but will be arrested by its friction against the surface ice and laid up for the winter in the new basin before it can reach your head race. This ice boom will probably take a curved form (chiefly toward the lower end). and more frazil be forced under on the side toward the wing dam than near McDonald's Point, leaving an inshore unobstructed chamel under
patrons by installing an auxiliary steam plant, which will place the works beyond any question of being able to supply their demands.

CANADIAN WATER POWER AND ITS ELECTRICAL PROduct in relation to the undeveloped RESOURCES OF THE DOIINION.*

(Concluded from last issite).
In order to present more fully the recently. enhanced value of our Canadian water power. some reference is necessary to certain properties of electricity, the power which has happily been described as "the most romantic form of energy," by Wm. Henry Precec, C.B.F.R.S., in his recent address as president of the Institution of Civil Engineers. Inasmuch as the cost of production of electrical energy depends upon continuity of output, water power must be the ideal one for this purpose, at least until some cheaper power is discovered. In some places where steam is now used for electric light, other industries have been added to secure the more continuous use of the power in daylight hours. The only guality in which any deficiency has been cxhibited by electricity is for lighthouse purposes,

[^0]a lesser pows of penctration in fogs, in which respect it is inferior to oil or gas; but even this has in the present year been more than compensated for by the successful application of "wireless telegraphy," by which, in any weather, communication between the ship and the shore can be established. The shores of the St . Lawrence from the Atlantic to the lakes are lined with water power which can be used to light, in fair, or protect, in foul weather. the passing vessel; to ring the bell or blow the horn. When water is applied for light and power purposes, its economy is always the important factor: but it is chiefly to its value for electro-chemical industries that Canada will look to reap the greatest bencfits, because in these it is not merely a question of competition of power producers, but one in which intense electricity has the monopoly, and in the case of some of them, as in the production of aluminium, calcium carbide, carborundum, etc., their existence depends upon ample supplies of an intense electric current, for the generation of which abundant and cheap water power is indispensable.

Touching electro metallurgical processes. Mr. Preece says: "Every electrolyte requires a certain voltage to overcome the affinity between its atoms, and then the mass decomposed, per minute or per hour, depends solely upon the current passing. The process is a cheap one and has become general. Three electrical h.p., contimously applied. deposits io lbs. of pure copper every hour, from copper sulphates, at the cost of one penny. All the copper used for telegraphy is thus obtained. Zinc in a very pure form is extracted, electrolytically. from chloride of zine produced from zine blende, in large quantities. Caustic soda and chlorine are produced by similar means from common salt. The passage of electricity through certain gases is accompanied by their dissociation, and by the generation of intense heat. Hence the are furnace. Aluminium is thus obtained from cryolite and bauxite. Phosphate is also separated from apatite and other mineral phosphates. Calcium carbide, obtained in the same way, is becoming an important industry. Electrical energy can be generated on a coal field, where coal. of good calorific value, is raised at a cost of three shillings per ton, cheaper than by a water fall, even at Niagara."

Eastern and Western Canadian coal fields are separated by thousands of miles, but water power is abundant throughout nearly all this coalless region. Our Western coal fields are vast and their market at present limited. If coal can be raised cheaply enough and the raw material for the work be discovered in the neighborhood, they may give rise to electro-chemical and electro-metallurgical industries without the intervention of water power. The commercial production of calcic carbide (acetylene gas) by electrolysis, is the discovery of T. L. Wilson (a grandson of the late Hon. J. M. Wilson, of Saltfeet, Ontario), who has established works on the water powers of the Welland Canal and has shipped this product all round the world. The electric production, commercially, of caustic soda and chlorine, is under the patent of Ernest A. Lesueur, son of the Secretary of the Gencral Post Office Department, Ottawa. This manufacture is now being carried on by a Boston company at a New England water power.

There is another field nearly as widespread as our water power in which electricity is destined to play a
most important role, and this is mining, which is now spreading over the Dominion with the same rapidity as the utilization of our forests for pulp and paper purposes. Over this area minerals have been discovered and in many cases tested and successfully worked, and from recent results we appear to be on the threshold of remarkable developments in this direction, especially as so small a portion of so great an area has been prospected sufficiently for mining purposes. For power purposes alone, electricity is invaluable in mines, and its multifarious uses (as enumerated by Mr. Preece) are "for moving trams and for working hoists; it lights up and ventilates the galleries, and, by pumping; keeps them free from water. It operates the drills, picks, stamps, crushers, compressors, and all kinds of machinery. The modern type of induction motor, having neither brushes nor sliding contacts, is free from sparks and free from dust. Electric energy is safe, clean, convenient, cheap, and produces neither refuse nor side products." The Canadian mining districts are well supplied with water power, and all the wonderful effects of electricity are available for us upon a larger and more economical scale than elsewhere. In connection with this abundance of water power, and from the fact that a large proportion is at present situated remote from present railways and present settlements, the question of profitable limit of electrical transmission is most im-portant-if indeed, it be now possible to put a limit on anything connected with electricity, with or without the aid of a wire. If, as reported, Lord Kelvin has placed the profitable limit at 300 miles, this is sufficient to utilize the greater part of the water power upon the two watersheds north of the St. Lawrence river. Professor Elihu Thomson says: "Up to the present time it was practicable to transmit high pressure currents a distance of 83 miles, using a pressure of 50,000 volts. If a voltage higher than that were used, the electricity would escape from the wires into the air in the form of small luminous bluc flames." As showing how far we are yet behind nature, Professor Thomson says the estimated voltage from a lightning discharge ranges from twenty to fifty million volts. Wherever the raw material for electro-chemical, electro-metallurgical, or other industries, affords sufficient inducement, and the water power is at iand, the forest will be penetrated much more rapidly than heretofore. and settlements adivanced in new directions. What can be done in this direction is best illustrated by the development of a single industry in the wilds of Minnesota, north of Lake Superior, and adjoining Canadian territory. Over four hundred miles of standard gauge railways have been built, through what was a trackless wilderness in 1885 to reach iron ore beds, the ore from which is shipped to Lake Eric and thence again railroaded 200 miles into Pemsyivania. This one business has, in mines, railways, docks and fleets of steamers, required an investment of $\$ 250,000,000$, and has led to as low a rate, by water, as I cent per bushel for wheat between Chicago and Buffalo, and 20 cents per ton for coal from Lake Erie to Duluth, nearly 1,000 miles. One-half of the charcoal iron, and more than half of the pig iron made in the United States, is smelted from Lake Superior ore.

The substitution of electricity for steam as the motive power for railways on many roads is regarded as inevitable sooner or later. It has already taken place
as regards suburban railways, notably in the case of the Charlevoix road and Hull and Almer railway. where water is doing the work which has heretufore been done by coal. The chief obstacles to an early change on the larger roads are the hundreds of millions: invested in locomotives, and the very large ontlay required to equip existing steam roads with the electric system. The principal inducement would be the passenger service, owing to the increased speed possibleit being contidently stated that, with electricity, a speet considerab!y over one hundred miles per hour could be attained. Moreover, there would be the entire abolition of the poisonous smoke which drops upon the Pullman in preference to any coach ahead of it. While the conversion of trunk lines would be attended with a cost which is for the present prohibitory, this objection does not apply to new lines which may be worked nidependently, or in comection with electric ones. When the time arrives for such raihwas, water power will have a field of usefulness of which we can at present form little conception. Water wheels and wires would displace the coal docks, the coal laden vessels, the huge coal yards, and the trains required for distributing their contents over hundreds of miles of lines. An interior line comnecting Lake St. John, on the Saguenay, with Lake Temiscamingue, on the Ottawa, which could ultimately be extended, via Missanabi, Nepigon, and Lac Sewl to the Saskatchewan, would be a colonization road, removed from the frontier-one which could be worked possibly altogether by water power, and would open a virgin tract in which electro-chemical and electro-metallurgical industries might arise, as well as those comected with the products of the forests and the mine.

The more extended use of our water power, in the immediate future. for manufacturing and mining purposes, especially for the electro-chemical and metallurgical productions, naturally leads to the consideration of the character of the output, especially with regard to markets, and transportation problems generally. Transportation, next to production, is the most important commercial question to a country of vast distances and low-priced products. affording great tomage, such as we produce; and for which we have expended hundreds of millions in canals and railways, harbors, light-houses and steamers, a sum disproportioned to our realized wealth, as it certainly is to our population. But. "noblesse oblige," we possess a vast estate, are compelled to develop it-and await results. The question of transportation determines, to a great extent, the existence, or otherwise, of a possible industry, and emhances or diminishes the value of every article of export just in proportion to its efficiency and economy. On the other hand, where transportation is necessarily expensive, cheap production may maintain an industry-and here is where our abundant water power may come in. The geographical position of Canada in relation to the commercial centre of gravity of the North American continent is at least noteworthy. This centre is very near Lake Eric. From the western end of this take the water romte to the Atlantic at the Straits of Belle Isie follows the general direction of a great circle which cuts the commercial heart of Europe, and is therefore upon the shortest route. or "air line." Our two peninsulas, Sarnia-Detroit and Sault Ste. Marie, which are the rail-
way gates of the lake region, afford the most direct rontes to the Atlantic for all the North-Western States, and are traversed by the trunk lines of railway. From Lake Eric water communication on the largest scale extends through Lake Huron to the extremities of Lakes Michigan and Superior. One-third of the population of the United States are dependent upon the Cireat Lakes, largely as to exports and imports, and wholly as to rates-which are fixed by the water for the tail routes. One-half of the population of the United States is found within a radius of 400 miles from Cleveland, a Lake Eric port clamed to be second only to the Clyde, as a shipbuilding one, and also the largest inon ore market in the world. The paper and pulp industry, as well as some of the electro-chemical and metallurgical ones (to the present list of which many additions may be made), are distinguished by the large tomage produced, the output of several pulp mills exceeding one hundred tons per day. For this the St. bawrence is the matural route for exportation, and to it this heavy tomage is of the greatest importance as a means of attracting "tramps," as well as liners during the open season. Increase of sea tomnage into the St . Lawrence is essential to our inland commerce; by it only can sufficient west-bound freights be secured to Buract a proper share of the commerce of the lakes, after all has been done to give to the latter quick despatch at Montreal or Quebec. There is probably no place in the world where inland transportation is carried on with greater expedition and, economy than in the valley of the St. Lawrence. 'This is due to the character of the inland navigation, unequalled elsewhere, and to the inhisence which this exerts upon the railways competing with it; and also, because the valley of the St. Lawrence is not only the greatest highway for agricultural products, but of mineral ones, as well as of the products of the forest and the fisheries. More than half of the iron ore produced in the Linited States is mined around Lake Superior. Into this lake an increasing number of railways are pouring the produce of the vast wheat fickls between it and the Rocky Mountains, and thus placing this grain within a thousand miles of Montreal, which is the nearest seaport, by hundreds of mites, and the only one which can be reached by vessels capaule of navigating the lakes. Wheat grown in the foot hills of the Canadian Reckies has already reached Lake Superior by an all rail haul of 1,500 miles, a distance considered prohibitory in the early days of railways, as one which would absorb the whole value in the cost of carriage. The lateness of harvest in our North-West, and the carly closing of navigation in the St. Lawrence, will soon.over-tax all our means of transport, both water and rail, during the interval between September and December. The Welland and St. Lawrence canals and the portage railways between Montreal and Lake Huron constitute the Canadian routes, and much, which cannot arrive by water in time for export, will be stored up it nearest lake ports for winter railway carriage to tide water warehouses on the St. Lawrence, for export at Athatic ports-or for conversion into flour at Ontario and Quebec water powers. This accumulating tomage from our Western plains and our Eastern forests must cail for a proportionate extension of export facilities which should attract tomage to the St. Lawrence. Already Montreal has cighteen regular lines of
steamers to transatlantic ports, exclusive of tramps. New York alone of the Atlantic ports exceeds this in number. Montreal has five regular lines to Liverpool and the same number to London, two lines to Glasgow, and two to Hamburg, and one each to Bristol, Manchester, Belfast and Antwerp. Baltimore has twelve regular lines of steamships to Europe, Boston nine, and Philadelphia eight. No doubt all these Athantic dines exceed Montreal in number and tonnage of vessels, as well as in cargo carried. They have twelve months' navigation against seven for the St. Lawrence. The real significance of Montreal's cighteen regular lines of steamships is the demonstration that, in spite of climatic drawbacks, or inferiority in other respects, the St. Lawrence is the route towards which northern exports will gravitate during its open season.

portland terminus of the arand trunk.

From Chicago on the west, to Portland on the east, change and improvement everywhere meet the eye of the traveller on the Grand Trunk Railway System. In all these changes nothing has been done for mere display or whim, but in every case money has been spent to give increased comfort and safety to passengers or to afford increased facilities for transportation of freight. An instance of the latter may be cited at Portland, where every provision is being made for the winter traffic, which the company will need to provide for at this terminus. Nature has marked out Portland as one of the great sea-ports of the United States in the 'uture. Possessing a wide and deep harbor, well protected from storms by its archipelago of rock-ribbed isle -Is across Casco Bay, of which Portland Bay is an arm, it is not only a safe winter port, but is so guarded by islands and capes as to be easily made a station of immense strength in time of war. Along this harbor the Grand Trunk owns a sea front of nearly a mile, and during the past two years the present management, foreseeing the needs of the sea-borne traffic of the port, have prepared to provide what the steamship companies are even now demanding, for arrangements are conciuded which will make Portland the winter port of call of steamship lines, enough to give it practically a daily service to Europe. These contracts include a weekly boat each by the Allan and Dominion lines to Liverpool, a weekly boat to London direct by the Tlompson line, fortnightly boats to Glasgow by the Allan and Donaldson lines cach, fortnightly boats to Bristol by the Elder-Dempster line, to Hamburg by the HamburgAmerican line, while there are reports of a fortnightly service to Antwerp by the Leyland line, and to Manchester by the Manchester line, though the last two proposals have not yet taken shape. To neet this traffic, which will be inaugurated in November, the Grand Trunk recently joined hands with some Portland capitalists in building a second grain elevator, the new one having a capacity of a million bushels, and being provided with three conveyors rumning direct to tineir own wharves, so that three or more steamers can take in grain at the same time. Ten cars can unload grain at one time in this elevator, which is provided with all the latest machinery for quick work, being able to deliver 30,000 bushels per hour. While the grain trade has been well louked to, other merchandise is amply provided for by four new freight sheds, each about 500
fect long and 100 fect to 120 feet wide. This gives six sheds alongside of which tracks are laid, and from which seven or eight ships can load at a time. In fact, ten vessels have been loading or discharging cargo at a time at the G.T.R. wharves, which can accommodate vessels of 500 feet length. There are also two coal wharves owned by the company, having ample capacity for present needs. Last year new tracks were laid in the company's yards to accommodate 1,500 cars, and this has been followed by the erection of new stock yards to accommodate the growing export cattle trade. The city of Portland, which has now a population of about 60,000 , including the suburbs of Deering and South Portland, and which has an active board of trade, with a membership of over 300 , appears to be fully awake to its opportunities. Its suburbs and the islands of Casco Bay are every year being resorted to more by Canadians, who alvays meet with a hearty welcome from the hospitable people of the Maine coast, and who find in the temperate climate and bracing sea breezes of this region an ideal summer resort.

THE CEMENT INDUSTRY.

The great increase in the production of Portland cement in Canada is causing considerable remark among those interested in engineering and the building trades. There does not appear to be a corresponaing expansion in the business of the producers of the natural rock or hydraulic cements, and these latter complain that there is a prejudice growing up which is against them, and in favor of Portland cemeat makers.

The peculiar qualities of Portland cement, as distinguished from the natural or rock cements, are: A very much higher strength at early dates; greater aniformity in manufacture, due to the constituents being brought together artificially and therefore being controlled with ease. It can be laid in frosty, even winter weather, with safety; it will stand wear of pavements, ctc.

The characteristics of natural or rock cements, which commend them to use, are: Their continually increasing strength, by which in time they are nearly equal to Portlands; safeness, as they are not over-limed; cheapness, near point of manufacture, where early strength or frost proofness are not requisite, and where concretes are not to be immersed in water for several months.

THAT "COMPRESSED AIR" FIZZLE.

Readers of The Canadian Engincer will remember our discussion on some of the auto-car schemes exploited in the United States, and particularly the Croker-Leiter schene, relating to compressed air autotrucks. Complete verification of our prophecies is to hand, in the form of an announcement that all the compressed air companies and affiliated concerns-nominally capitalized at about forty millions-are all to be merged into one central corporation, with H. Payne Whitney, son of William C. Whitney, as president of the new company, which will have a nominal capital of one hundred millions. Does this mean that we are to see the auto-trucks by hundreds doing work in our strects? Not at all; for, as the Cycle Age well says, "Nothing has as yet transpired in the way of inventions or tests that would make compressed air appear as
arailable for ordinary motor velicles. The compressedair motor is chielly adapted for strect railway power and for heavy freighting over very short routcs." But the compressed air exploiters started in to revolutionize all traffic in the big cities. and cartage companies and all hatage vans were to be done away with. Is there nothing left, then, for the compressed air magnates to exploit? Yes: electricity! It is soberly stated that "the American rights, under the Krieger electric patents, are reported to have been purchased by them, and they are known to be pursuing further investigations into motive powers." This statement is corroborated by the fact that the word "air" has been dropped from the title of the new company, which is "The International Power Company." The Horseless Age semarks: "P'utting two and two together, therefore, it looks as if the sceptics were right, and we should not be allicted with these barbarous 'auto-trucks' after all. Perhaps when the company really gets down to business we shall have good, common, everyday motor trucks propelled by steam. gasolene, kerosene, or anything but compressed air." Now we will be prepared for the collapse of the Whitney-Elkins-Widener windbag.

Canadian association of stationary engineers tenth annual convention.

Berlin, Ont., lad the honor of entertaining the members oi the C.A.S.E. for thir temh ammal comention, and she proved a worthy hostess. The convemion opened on the $15 i h$ dugust. and ended with a banguet on the evening of the 17 th. The de!egates, who were accompanied by their wives, made the Brumswick llotel their headquarters. The executive and the balance of the delegates were assigned to the American House, and the banquet rook place in the hall of the Walper House. The convention held their business meetings in the Christadelphian Ilall.
steam, and its appliance to power. I hope each brother will be decorous and attentive to the business of the evening. I now declare this association open for its legal business."

The following committees were selected by the president, the first named in each case being chairman:

Committec on Credentials-Bros. Edkins, Marr and Turisinston.

Committee on Finance-Bros. WVebb, Wickens and Pettigrev.

Committec on Mileage-Bros. Bain, Ironsides and Jamieson.
Good of the Order-Bros. Dixon, Wickens, Oclschlager, Moseles.

The following answered the roll call: Executive-Bro. W. $\dot{\text { V }}$. F. Chapman, president; Bro. R. C. Pettigrew, vice-president; Bro. G. C. Mooring, treasurer and acting secretary; Bro. W. Bear, conductor; Bro. J. Wendell, door-keeper. The delegates from branch associations were: A. E. Edkins, J. D. Moseley, J. W. Marr, W. J. Webb, J. G. Bain, oi Toronto No. 1; John M. Dixon, Toronto No. 18; Jos. Ironsides, Hamilton No. 2; J. Ogle, J. Forsyth, Brantiord, No. 4; W. Jamicson, Dresden No. 8; W. Oelschlager, Berlin No. 9; R. Turkington, Brockville No. 15; F. A. Phlug, Waterloo No. 17. Other mehbers present were, A. M. Wickens, E. J. Philip. J. G. Bain. Jas. Baman, of Toronte; R. W. Greenc, Guclph; Nathan Lithey, Watcrloo; W. Liedt, J. Schneider, G. Steinmetz., W. Oclschlager, of Berlin; Jos. H. Walker, of Kincardinc. Amons the visitors present at the meetings were T. J. Halsey, of the Fairbanks Co. of Montreal, and his samples of valves, asbestospacked blow-off cocks and asbestos ring gate valves, interested the members very much. W. V. Uitley, of Berlin News-Record, was unwearying in his attendance, and coming of an engineering family took an active interest in the mecting.

Welcome to Visiting Delegates by President Oelschlager, C.s.S.E., No. 9.

On behalf of the Berlin Association No. 9, I have great pleasure in extending to you, Mr. President, and delegates oi the Canadan Association of Stationary Engineers, a hearts welcome to our town, on this the roth anmual convention. The growth oi the association here has been slow but sure. The members of the Berlin branch, realizing the benefit of the meetitigs, are good in attendance. In conclusion we welcome your

Tenth Annual Convention Canadian Associntion Staticnary Enginegrs

It was nearly noon on the 1 th when President Bro. iv. F. Chapman, in the chair, supported by Vice-Pres. Bro. R. C. Petigrew, opened the session with the following opening charge from the C.A.S.E. ritual: * Brothers-It is my duty to rule with justice, promptness and iorbearance, and it is your duty to make our meetings chtertaining and instructive, avoddng all useless discussions and personalities, upholdmg your obligations by using toward each obler brotherly love and kinduess. Thus sreuring the great object for which we are organized, that oi meeting together socially for mutual improvement and discussing the best methods of managing the world's greatest motor,
collectively and individually, and trust that your stay in this German city will be most pleasam and profitable.

Ammal Address of President Chapman.
Brethren-I have the honor to welcome you to this our tenti annual convention. I am aware that in selecting you as delegates. our various branches have sent their best men. Consequently, I an confident that your deliberations will result in the advancement of our organization, and that in dealing with the various subjects brought before you, the one and only aim sot:ght shall be the greater good of the C.A.S.E. I am sure that naught but good will shall prevail, indeed, such is one of
the cardinal principles on our order. I need not ask for your hearty support, as this has anays been given to the occupant of the chair. We have not increased the membership durms the past year. only one new association organized, and very few new members added to replace those who withdraw and those taken by dealh. But brethren, I have the pleasure of saying that we have received into the C.A.S. E., out in Calgary, a lot ot energetic members, that in the near inture will have their subordinate lodge second to none in our far Dommion. I thac also in my possession a letter from Bro. Wm. Cross, also one from a Mr. Cook, chairman of a commillee appointed by the engmeers out at Rosslami. asking information as to the stareing of an association in that place. So you see if we have lost in the east we have gained in the far west, where everything grows in abundance, and to an chormons size. You will be asked to look over a bill drafted by a committee appointed by the Ontario Association, also to give your opimions and cooperalt:ons, that a greater effort may be put forth to have the bill become law. at the next mecting of the Local House. in this comection I should say that in this movement, not only are the members of the two associations a unit in favor of such a law, but I might add, almost all the qualified engineers oi this country are with us, as well as most of the steam users. It may be necessary at the present convention to agan take up the natuer of bi-anmal conventions, with a view to the curtabment of the expense necessary for an anmal meeting. Steps should also be taken to arouse the engineers of the Dominion to the loss they sustain in not being of our membership. I regret very much the steps taken by our secretary, also by Montreal No. I. I presume most of yon have seen the item in The Canadian Engineer, that Montreal had moved to withdraw from the cxective. For what reasons? Because they did not get from the executive the results desired in accordance to what they pay in, also that the cost of attending the convention was too great Now, brethren, do you think that is the object? They have hiat for the past two years the executive secretary, a man possessed of good ability, and I consider it the most important office in the executive. So if they have not obtained what they want in the way of information it is their own fault. I thank it "ould be wise to appoint some good past president to the secretaryship, and keep him for a term of years, and have him devise some scheme whereby the subordinate associations will be drawn in closer touch with the executive head. For instance, he might send out problems to the different lodges, for them to work out and return, and any errors they might make cruld be rectified by him, whereby keeping up a correspondence, and making the cxecutive head a medium of instruction. These are a few points I lave brought out for your consideration, and I feel satisfied that your best judgments will be used in dealing with them. The finances will be dealt with by the eaccutive treasurer, thereiore I will not touch on them. Brethren, in conclusion, I desire to express to you my deep sense of gratitude for the great honor you conferred on me a year ago, when you elected me to the high and honorable position of president of this association, and for the loyal ananner you have stood by me. In closing I wil! only add it is my heartielt wish that your deliberations at this couvention may be so conducted towards cach other that everything we shall do will redound to the benefit and honor of our good association.

Moved by Bro. Wickens and seconded by Bro. Pettigrew, that the president's address be handed to the Committee on the Good of the Order for discussion.

The minutes of the last mecting were then read by Treasurer and Acting Secretary Bro. G. C. Mooring, who was handicapped badly, owing to the poor notes of last meeting, ami press of business coming on him in his dual capacity; lie regretted that they had not been put into proper shape. They: were adopted on a motion by Bro. Dixon, seconded by Bro. Edkins. The president informed the married men arcompanied by their wives that carriages would be ready for the ladies at 2.30, for the purpose of giving them a drive round the twin citics. On a motion by Bro. Marr, seconded by Bro. Ironsides. and carried unanimously, it was decided to adjourn until 3 p.m.

At the afternoon session Bro. Oelschlager introduced Mayor Eden, and several of the councillors, and the delegates and visiting enginecrs listened with great pleasure to the following speech, in which the mayor gave them welcome:

Address of Welcome by Masor Eden, oi Berlin
It affords me very much pleasure to meet the delegates of the Canadian Association of Stationary Engineers, and canecially is it a pleasure to greet you in our town of Berlin. I am glad to see that a number of the delegates have bronght their wives with them, for I feel satistied that thes will retire nuth earlier in consequence. The stationary engineer fills a most important position in connection with the welfare of the comitry. In the first place, they virtua!!\} hold the key to our mantifacturing industries, whereby the trade and commerce of the land is very much intereased. They also control to a great c:ient the labor employed in cities and towns, and without this employment, the cities and towns oi our country would be very mach reduced in prosperity and population. 'This must show to the engineers the necessity of each of you being intelligent and ingenious. A man to-day to be of any use in any profession must be more than a machine. You are showing your wisdom in forming yourselves into an association and meeting regularly to discuss new requirements in your particular lines. No doubt many of you are clever individually, but all can learn from one another. It should be your object to try and benefit your employer by giving him as much power as possible with the least expense. Now as mayor of this town, I extend to you all a hearty welcome to our town of Berlin-a town which we hoast of as being the best in this fair Dominion-a town whicb eniptoss to-day more stationary engineers than any other town its size in Canada. I understand that only a few of our engineers have as yet joined the association, but I trust your meeting here will act as a stimulus and result in having all our engineers identify themselves with the organization. Our town is known as a mor bospitable one, and I can assure you the freciom of the cit, wherever you go. No doubl you will be most interssted in our manufacturing establishments, and I can assure you from what I know of our manufacturers, it will be a pieasure for them to show you through their iactorics. I trust you will enjoy your visit here in such a way that you will see fit to meet here again in the near future, at which time we will have all our streets fixed up in keeping with the rest oi the town. I again extend to you, friends, the freedom of our tcwn.
Reply to Address of Welcome irom Mayor Eden, of Berlu, by President Chapman.

Mr. Mayor and Altermen:-

On behalf of the delegates here presem, attending our tenth annual convention, I thank you for the honor you have done us in welcommg us in such a handsome manner to your beautilul tuwn, noted not only for the proverbial hospitality of its citizens. but also for their well known go-aheadativeness and pubiic spirit. We join with yon, Mr. Mayor, in pride of the beautiful cities, towns and waters of this Canada of ours, and not only those are we proud of, but we are prond of our fair Dominion at large, believing that it is bound to become one of the greatest and grandest coll:ries on this carth. And, Sir, appreciating this truth, it becomes us as engineers, to sow the seed oi theors ami practice combined, which are the fundamental principles oi cur order. I am sure the delegates, one and all, appreciate as lighly as I do your presence amongst us. We have come together to combine business with pleasure. The object of our association is to help one another, not only in a social and bretherly way, but chiefly to educate oursclves in our calling. thus benefiting our employers as well as ourselves; and I ari stare we are more than pleased to hear irom the eloquent welcome you have tendered us, that yon thoroughly understand our aims and objects. I fecl sure that our sojourn in your town will be most agreeable and pleasant for us all, and that we shall return home carrying with us happy recollections of our stay in the beautiful town of Berlin. Our branch here is composed of energetic citizens, as is cridenced by the programme of enjoyment provided for the entertainment of their visitors. When we add to this the hearty co-operation with them of the Chicf Magistrate, and citizens generally, we have indeed reasons to approve of the decision of last year's convention, in deciding to come to Berlin. I need liardly say, Mr. Mayor and Gentlemen. that during the procecdings of this convention, we shall at all times be pleased to have you attend our sessions when you fecl disposed to do so. We have met with cordial receptions wherever the conventions of the association have been held, but
nowhere has it been more gencrous and hearty than in Berlin. Again Mr. Mayor and Aldermen, on behalf of the delegates here assembled, I thank you ior your welcoming us to your town.

Bro. G. C. Mooring, in his capscity as acting secretary. then read the ammal report, and his report as read brouglt member after member to their fect. It was certainly incomplete in many details, and it looked at one time as if the exeentive were somewhat to blame. Secretary Roberison had, according to his lether of explanation, met with varions and trying achaents, and other expernences, which had all tended to a complete abandonment of his oflicial duties, and the report was tisally referred, on a motion by lbros. Dixon and Museley, to the Finance Commuttee for analysis. Bros. Wickens, Webb and Pelligrew demanded an investigation, and were answered by: Bro. Edkins, who said it would not help matters any eren if the executive were dragged into the matter; he was followed by acting secretary Mooring, who explained matters from his standpoim as acting secretary, and had done all he could to give them facts. For a few minutes the executive had a busy time answering questions. which eame thick and fast, and the atnocsphere cleared onty when Bro. Mooring read a private letter to himseli, and in which the secretary took all the blame. It was a revelation to the representative of The Canadian Engineer how such matters could be discussed in such a fair manner, atid how straight questions such as were asked could be answered calmly and without any show of personal feeling. It speaks well ior the manliness of the individuals composing tite C.A.S.E., and many executive heads could get good pointers irom our C.A.S.E. in convention. The matter, however, was firaily reierred to the following special committec, consisting o: Bros. Wehb, Wickens, Pettigrew, Edkins and Dixon.

Forwarded to the Committee on the Good of the Order ior a report on same, and moved by Bro. Edkins, seconded by Bro. Pettigrew. that the committee be given until Thursday a.m. 10 prepare their report. The ireasurer, Bro. G. C. Mooring. then read his report for the year.

The iollowing notices oi motion were then given:
That our conventions in future be held every alternate year or bi-annually, instead oi anmually as at present -John M. Dizon

That the per capita tix be reduced from 70 . to $50 c$. per year. -Chas. Moseley:

That two days session in future be the limited time apporsioned conventions.-John Marr.

The report oi the Credential Committee was on motion by Bro. Dison, seconded by Bro. Wiekens, accepted and reierred to the Mileage Committec. Bro. Dixon, who is an indefatigable worker, and one of long experience, then read the report of the J'arliamentary Committec. A discussion followed the reading of this, led off by Bro. Ironsides, and participated in by Bros. Wickens and others, and aiter being fully discussed and ample caplanation given it, was recsived by Bro. Edkins and seconded ty Bro. Bain, and the committee was dismissed. In consicction with this report it might be said that last year a committec was formed, and Bro. Dixon was the convener. The members of the committee were stationed far apart, and as a result no concerted action was possible, so they had failed in their object. It was brought out in the discussion, beiore referred to, that to be a success the new committec would be chosen differently.

A copy oi the new bill, which is proposed to be submitted to Parliament. was distributed at this stage of the proceedings. and aiter a motion had been made by Bro. Mooring, a committee of one, Bro. Oclschlager, was appointed to have badges naide for the delegates. Mecting adjourned.

The programme for the evening was varied, and it was thoroughly cnjoyed by all. it 9 p.m. special trolley cars. supplicd by Manager AfeLelan of the Street Railway Company, corried the cxecutive, delegates and ladies to the Zimmerman House at Waterloo. where a reception was tendered them by Wiaterloo Association No. 17. A pleasant time was spent. Bros. John M. Dixon and J. W. Marr supplying the vocal music, and the varicty of the contributions was very great; many of the choruses were taken up by the crowd, and Bro. Dixon gave a creditable exhibition of the duties of a choirleader. his invarialile good nature and sympatitetic remarks leading the chorus singers far above the plane on which they had started, and the presence of a number of German friends
did not deter him in achieving his object. Tho gentlemen friends of the party having received an invitation to a German supper from Mr. Wegener, the party left for Berlin about to p.m., and soon afterwards were enjoying this unigue feast of pretzel, Limburger cheese, brown bread, weiners and other delicacies of the Fatherland. Past Presidemt E. J. Philip pat in an appearance, having travelled from Toronto in his anton:chile, accompanied by his mother, an old lady of 74 years of age. Toronto was left at 11 a.m. and Berlin was reached at 8 s.m., having travelled 70 miles. This was the first anto-mobile to enter Berlit, and attracted great attention. Bro. Philip was the centre of attraction for the newspaper men, and the fact really was, he was the most talked of man in town. He introduced his brother, G. O., who is one of Berlin's successful merchants, the manager of tite Opera House, and a liberal-minded citizen. Songs and stories helped pass the time, and the host sang several German songs, his rendering of the well-known "Der Wacht Am Rhine," being particularly enjoyed by the English members of the party. The imn, which is named the "Progress," is a fac-simile of the German style.

Itandsome mural paintings adorn the walls, and scrolls centaining motoes similar to the following are entwined with the figures: " First weigh, then risk it;" "Love what is rare," "Drink what is clear." "Speak what is fair," "Eat what is pure." Necdless to say this supper was a grand success and was one of the most pleasant experiences of the Berlin meetings.

The convention re-assembled at 10.30 , Wednesday morning. The first business attempted was the reading of Finance Commitece's report. It was adopted and the committee discharged on a motion of Bros. Moscley and Webb. Next came the report on the Good of the Order. and it was decided to take up the renort clause by clause. Bro. Dixon read the report through and then submitted

Clause 1. Resolved that tire president's aciress contains mach that is essential to the vitality of the association. His references regarding our development has a slightly regretiful tene, but the causes certainly cannot be laid to our charge; they rather lie at the doors of those associated with us at the time, whem it was impossible to control. much less coerce into activity. Adopted on a motion by Bros. Wickens and Moseley.

Clause a. Resolved that the outlook for our extension in the near future inas a hopeful aspect, inasmuch as enquiries have reached us irom the Pacific Coast, requesting organization under the C.A.S.E. charter, wishing to enroll themselves as comrades in the march. We sugecst that all such enquiries be closely attended to by our incoming executive. Alopted on a motion by Bros. Ironsides and Oelschlager.

Clause 3. Relative to Bill proposed at last session of 180 S convention. Your committec formed at last convention found it impossible to take action for the following reasons: The Q.A.S.E. took up the matter enthusiastically, and obtained an interview with the Hon John Dryden, M.L.A., and at his stisgestion they amended the Bill, and intend presenting the new version at the next session. We, your committee, desire to inpress upon the individual members the necessity of supporting this association in their efforts on your behalf. Amendment to Clause 3. proposed by Bro. Moseley and seconded by Bro. Pettigrew, That the committee should recommend that a special committec be appointed to act in conjunction with the O.A.S.E.. as a further means of support, also that funds be placed at its disposal to help in the forwarding of their object, and that they be realized by a special appeal through the executive to the primary associations. The amendment was incorporated with the original and adopted.

Clause 4. Resolved that president's suggestion that a past president be elected to the office of secretary is a wise one. We wish to add the following, that said office of secretary be feld for a term of not less than two years, and the official be eligible ior re-election at the pleasure of the convention. Adopted on a motion by Bros. Pettigrew and Mooring.

Clause 5. This clause aiter a great difference of opinion was withdrawn. It provided for the holding of the C.A.S.E. convention bi-annually. Since the subject was first brouglit forward some years ago, no method of coming to anl agreement had been proposed. The general opinion in former conventions was against it. Converts. however. have been made. and yet many of the delegates had come uninstructed as to how their
vete shond be cast. lnteresting discussion for and against resulted. Bros. Pettigrew, Dixon, Bain and others spoke against the change, and argued strenuously for an annual meeting. Some of the speakers demanded a live, working executive as a cure for the apparent waning of interest. Bro. Divon, in a fair, impartial manner, took up both sides of the question, and left it in the hands of the individual members, by suggesting a plebiscite vote, and wished to move an amendment to that cfiect, which was done, and the amendment carried by a majority of threc. In connection with above Bro. Pettigrew advanced an argument. which, perhaps, was not noticed much at the time. but was discussed frecly outside the convention. It was argued by him that the Canadian Electrical Association was a competitor of the members individually of the C.A.S.E. Now the Canadian Electrical Association is composed altogether of electrical experts and employers of labor in plants operated primarily by steam power or water, and it does not appear reasonable to consider them in the light of competitors of an itstitution which exists chiefly for the education of steam producers.

Clause 6. Notice of motion by Bro. Moseley, thax per capita tax be reduced from 70c. to joc. Alopted on a motion by Bros. Pettigrew and Edkins.

Clause 7 was witherawn. It dealt with the time limit of corventions, and it was found that the constitution had covered the ground fully.

Clause 8. Resolved that the executive be reminded that a motion stands on the books regarding the issuing of instruction papers. So far no course oi instruction has been brought to our notice which would be so effective in retaining the interest of our members and to cmable them to come in closer tonch. Your committec begs leave to emphasize this present motion and suggests that strong pressure be brought to bear on your excentive in regard to the preparation of these question and answer papers. oi such paramount importance to our individual members. Adopted on a motion by Bros. Edkins and Ironsides. All of which is respectiully submitted. Bros. Dixon, Oelschlager, Moseles, Wickens, committec.

The president received a telegram irom Goldic, McCulloch Co., inviting the delegates to visit their works in Galt. and it was decided unamimonsly to accept the invitation for the afternoon. The contention at 12.50 decided to adjourn until 930 a.m., Thursday.

After dinner the train was taken for Galt, and the trip down was very enjoyable. In fact beautiful weather during the whole comvention was the order. Just a short distance from Berlin we ran quite elose to the sewage iarms, and so far the disposal oi their sewage has been aecomplished suceessiully by this system.

The C.P.R. bridge at Galt was alse an object of interest, particularly because the bridge has been raised some few fect withow in any way intericring with the t:affic. At last Gait was reached, and as it was the first visit of many to this thriving and pretty city of factorics, many were the exclamations of interest as delegates recognized the familiar names of machinery manufacturers whose products they had used. Easily the largest of them all was the immense stone block of their hosts, and as they filed into the office oi the firm Mr. A. R. Goldie met them and personally conducted them throug't the different departments. Mr. Goldic has the faculty of comecying very much information in few words, and is perhans the youngest man in Canada eccupying such a responsible position, being gencral superintendent of the entire works.

It is needless to say that the visitors were very much interested, they having no idea that the Goldic \& McCulloch establishment was so large. They were much interested in the engine deparment: the immense floor of the erecting room was completely filled with engines in different stages of constructien. Some of these were as large as 400 and $500 \mathrm{~h} . \mathrm{p}$.; there were Wheclock slow speed engines. and Ideal high speed engines, the latuer suitable for direct connected electric lighting. After visiting this shop they went into the machine shop where the very latest improved lathes, planers, etc, were all busily engaged turning out work ior these engines and other machinery: System and good management were apparent on every hand. The very best iacilities for handling heavy work are placed for the convenience oi she workmen all through the shops. The writer noticell that the most modern of machinists-
teculs were used by the workmen, and it might be of interest :o lathe and planer users to know that Goldie \& McCulloch Co. was the first in Canada to install the patent tool holders and boring bars manufactured by the Armstrong Bros. Tool Co. of Chicago.

If these two shops were of interest, perhaps the moulding slimp proved even more interesting. This immense department is ico feet long by go feet wide, equipped with all the very latest apuliances for handing ladles and heavy castings. There is one Whiting travelling crane, entirely operateci with compressed air. the capacity of which is $40,000 \mathrm{lbs}$. In addition to this ale six hydro-pneumatic swinging cranes, placed on each side of the floor, making it possible to pass ladles and castings from one cud of the shop to the othe:. The rupolas, of which there are three very large ones, are placed at one end of the shop, as are alsn three great core ovens; at the other end is the cleaningr room, which has cranes and compressed air appliances of all kit:ds for cleaning cas:ings. The brass foundry is in this same building. but separated from the moulding shop proper. After visiting the shops mentioned above the visitors were taken through the other departments, the wood working machinery, the gas engine and the flour mill machinery department, th: saic works and the boiler and other shops. While these diferent departnents were of nuch intercst to the engineers, of course it cannot be expected that thes took the same interest here that they did in the engine construction department. Pac!ident W. F. Chapman, in a few well chosen words before the delegates leit, tendered a very hearty vote of thanks to Mr. Goldic ior his kindness and courtesy in showing them througi the works, and Mr. Goldie fittingly replied, after. which three hearty eheers were given for the Goldie \& MeCulloch Co., Limited, of Galt, Ont.

The balance oi the time in Galt was spent in sight-secing and visiting the many friends of the delegates. and at 7.30 alt arrived back in Berlin, the evening being spent in visiting Virteria Park and other points of imerest.

The final session commenced at 9 a.m.. Thursdas. The Mitcage Committec read their report and it was adopted on a motion by Bros. Edkins and Pettigrew. In consideration oi his long services and ever ready assisiance, Bro. A. M. Wickens' name was added to the list, on a motion by Bros. Dixon and Moseley.

Report of special committee was then read by Bro. Dixon. They had the dificult duty of analysing the reports and letter of the secretary: After deliberation they had drawn up a letter which was decmed satisfactors, and to show their good-will to the anembers of the Montreal branch, which had withdrawn, it was embodied in the letter that the C.A.S.E. ask them io accept as a sift the charter, by way of a practical illustration of the good will extended.

The new Bill occupied the attention of the mecting for a shert time, and on a motion by Bros. Moseley and Pettigrew a new Parliamentary committee was formed. Bro. Dixon, convener, and Bros. Edkins, Webl. Moseley and Mooring members. The sum of $\$ 50$ was put at their service for contingencies. A motion was also carried to the efiect that the incoming secretary be requested to purchase a new supply of by-law and constitution books, and was adopted unanimously.

The election of officers was the next order of business. Two scrutinecrs were appointed, Bros. Walker and Bear. For president, Bro. Pettigrew, acclamation; vice-president, Bro. Mooring, acclamation. Bro. Dixon was also nominated but refused to stand. The secretary, under the new law, was to be selected from the past-presidents, and Bro. A. M. Wickens was elected 0.1 his past record, unanimously. The treasurer's position was the first to regnire a vote, and Bro. Moseley was the choice. The pesition of conductor also required a vote, and Bro. Oelschlager was declared elected. The position of doorkecper was the most cxciting and last official voted for. Three candidates offerel were Bros. Bear. Turkington and Dixon, and Bro. Bear was the fortunate one. Past President Chapman then installed the rew officers: Bro. Wcbb acting as conductor for the occasion. A vote of thanks was tendered the serutineers. Toronto was selected as next place of mecting. The new president presented the retiring presiderit with the handsome past president's jewel, and the few words spoken by Bro. Cliapman were full of iecling, and expressed his deep gratitude for the honor done
him, marking the cessation of duties as the representative hen: of such an honorable body of men.

Votes of :hants wer: passed to the Berlin association and the chairman of the Reception Committee for his arduons and successful work. which had made their visit so pleasant, to which Bro. Oelschlager replied; the ladies of Berlin for their hespitatity in entertaining the visiting ladies, and Bro. Steinmet: was appointed the bearer of this vote to them. The acting secretary, Bro. Mooring. was voted a sum of money as a slight ac!:nowledgment of his services, and his reply was an expression of his desire to reach the highest onfiee in the C.i.S.S.E.. and he thanked them for placi,g hom a step nearer his goal. Bros. Wickens and Moseley also expressed their thanks for the honors tendered them. A vote of thanks was tendered the local press. The Berlin News-Record being mentioned in jarticular. The Canadian Engineer was also tendered a hearty rote of thanks. President Pettigrew then delivered the closing address. and intimated his desire to build up the association. He was mond of the excentive chosen, and the election oi a past-president to the position of secretary would do much 10 strengethen his hands. and could only lead to the best of results. II. prophesied a great future for the C.A.S.E. The present convintinn had done much to clear away the obstructions hinde:ins their progress. and the next convention would prove what he said. The National Anthem was sunig heartily, and the cancention was over.
the maxnuet.
The convention was brought to a close by a banquet in the dining hall of the Walper House. The attemiance was good. and the Berlin association could be congratulated on the manner in which everything was arranged. Ero. Oclschlager acted as chairman, and was supporied at the head of the table by the oficials and prominent guests. The chairman read letters oi regret irom Mayor Eden; Goldie, MeCulloch Co.. Galt: J. J. York. Montreal, and others.

The toast of the Queen brought into evidence the patrotic spirit of the guests, and the National inthem was sung hearthl. - Canada Our Home." was responded to lyy l. J. Breithaupt. M.L.A., and in reviewing the history oi Canada the speaker made the statement that the diamond jubilec was the means of making Canada better known than any other event in her histery. As an cmployer oi labor he dwelt on the dignity of labor. the great future in store ior as, the increase of the exports irom Berlin and her sister city. He said much had yet to be done in the making of Canada's great and umhoanded possessions t:nown. Great ignorance of the actual condition of affars in Canada at simes came to his notice, whether ieigned or not he could not say, but he did not think our resources wer. realized by the nation to the south oi us. He believed that there wa: no reason why in course of time Canada should not develop her resources so as to rival the progress of the United States. In the unavoidable absence of Mayor Eden, Dr. Bowlby, deputy. recre, spoke to the soast of "Mayor and Council. Tise trade and commerce oi Berlin was his subject. The great manuiacturing concerns were fully described, and the speaker informed them that they were there to stay. Nessrs. Rumpel and llagen also spoke a few words in their position as aldermen. Mayor Diebel. of Wiaterioo, although far irom being a well man, made a pleasame speceh, and hus jocular references to the leading products oi Wiaterloo were fully apprectated. The executive lead and delegntes came next. President R. C. Pettigrew landed the: C.A.S.E. ior their efforts along educational lines and conside:ed shem the greatest colucational body in Canada, ounside the Public schools. Education and progress were the corner stone and motto respectively of the society; although only in existence for a little more than iwelve years, having had great difficultics in its path, and many prejudices to overcome. it kept stcadily advancing, and now numbered over 20 branches. and if legislation such as they asked for was granted they would fecl as if they had accomplished something. Vice-President Mooring and Trensurer Moscley followed with remarks of gratification suggestive oi the good tume they had enjojed in Berfin. Manufacturing Interests was responded to by Samuel Rogers, presulent Queen City Oil Co. Mr. Rogers is a selimade man. and in his remarks commenced with reminiseences of the winter oi 1 ,hat his experiences are typical of the hard road to suceess travelled by the iarmer's son in tian
early days of a new commry. At that time hiv sole ambition was to own a farm; however, when that object was gathed, his ambition was still far from satisfied, and up through the years le kept advancing until his present position rewarded him. Canada's great wealth atad the great future were subjects upon which the speaker spoke eloquently. Ilis advice to the Cimadians was to keep their resoures and young men in Canada. peoticularly referring to the eagerness with which young men from our country were soughe after by the business men of the l:eighboring Republic. Mr. Rogers concluded his speech with a detail of figures, and a very interesting account of the saving; made in the oil factortes from the milization of the byproducts. Mr. Anthes, a prominent manufacturer of Waterlou. also spoke. Educational interests were ably championed by Hugo Krantz., and his remarks were interesting in the extreme. With Germany as an example he related how she had taken step when her trade was satall, compared with other mations, to find out what she lacked. The establishment of technical schools and polytechnic institutions marked the beginning of a new era in her affairs of commerce, and to-day she stands in the front rank of the manuincturers. He made a strong plea ior cducation of the practical man, and has worked ior yeats on llese lines, and the material in Canada, and the men were the erguals of Germany; and Canada would prosper ii that same idea thet was embodied in the German manuiacturing circles oi training the working man hrst practical. then theoreticat, was adopted. Sister associations were ably spoken for by E. J. Ihilip and λ. M. Wickros, and their endorsation of the demand inr legislation was strungly put, particularly by the last named. The Press were well represented, and as the hour was late thear remarks were short. Messrs. Motz, Journal; Lutz, NewsRecord: Young. Electrical News, and Archid W. Smuth oi The Canadian Engincer, all replied to the toast. Tine Ladies were well cared for by: D. B. Dover of the G.T.R. and G. O. Philip. loth oi whom spoke as if the subject was a pleasing one. Our liost and Hostess-in the absence oi A. Walper, G. O. Philis enoke in his place. and the meeting dispersed whth the fambar stains of "Auld lang Syne," and "God Save the Queen."

Amongst the guests piesent were: H. D. McConochic. Galt: A. F. Masters. Detroit; Otto Nerner. Scbastian Englert. R Cossey: Aureleas Moses, Alfred Vice. Albert Armd, D. B. Doar. J. P. Wegener. Conrad Gildner. J. E. Belger. John Schucider, of Berlin; R. W. Turkington. Brockrille; J. H. Clappisron, Hamitón; G. Byers Towers, Jas. Bannam, Jas. Bain. A. E. Edkins, Toronto: H. A. Simpson. John L. Wendell, M. D. Caldwell. A. Stockfisch, Niath. Beam. Joinn Nihell, Gideon Beam, F. A. Phug, Jno. R. Uitley, oi Waterloo; W. Miclke, New Hamburg.

w. OELSCHLAGER.
W. Oelschlager is of German desecnt, and was born in Waterloo county, Ont., in 1857. Ife learned the machinist's rade with J. Bricker \& Sons, of Waterloo. Had two years' course in Worcester School of Technologs, Mass., and gradtated with honors. Was employed in the following shops: CF caso. West Michigan Railroad shops, Muskegon; E. P. Allis Co., Milwanke: Cinicago, Milwauke and St . Panl railrond shops. Milwankec: A. O. Pray \& Co.. Minncapolis; C.P.R.. Winnipeg. and E. E. Gilhert \& Sons. Montreal; was with this firtu. ior three years, and ind charge of their machine shop for
two years, and left then in 1884 to start a shop himself in Port Elgin. Mr. Oclschager carried on the shop for ten years, and five years ago removed his shop to Berlin. IIe has been a number of C.A.S.E. No. 9 for four years. and holds O.A.S.E. first-class certificate.

Chas. moseley.
Chas. Moseley, the newly elected treasurer of the Canadan Association of Stationary Euginecrs, was born at Chart, near Sutton, Eng. At the age of 11 he began his mechanical education by entering the machine shop of Steaven, Hooker \& Co, and at 16 had charge of their steam plant. In iSS 4 he left England and sailed for Canada. Arrwing in Toronto, he eccured a position with John Fletcher, bulder and contractor, as engineer. He remained with Mr. Fletcher for six years, leaving to accept a position with the Mail Publishing Co., Toronto, but after six months returned to his former cmployer, for whom he worked one year. Later Mr. Moseley secured the position of engineer of the North Toronto Electric light and Waterworks, and in August, 1893. he aceepted his present responsible position as chici engineer of the Incandescent Toronto Electric Light Co., on Terauley strect. Toronto.

The portraits and biographical sketches of the other officers lone already appeared in former issues of Tiae Canadian Engineer.

DRAFT OF BILL.

An Act for the protection of Life and Property in the use of Stationary Boilers and Engines, and the Examination and Licensing of persons in charge of them.
Whereas special provisions have been made by law for inspecting marine boilers and engines, and, as a result, the precautions nade necessary by the owners in complying with the said law have had the effect of reducin plusions to a minimum; and whereas the boiler cepplosions in the use of stationary engines and boilers bave of late years increased alarmingly and been the means of destroying a large number oi lives, and a great amount of property, through defective plant, the carelessness of owners. and the, lack of knowledge of the men in charge; and whereas it is expedient in th: interests of the public that the like means of prevention of sach explosions and accidents should be applied to stationary boilers and engines, as to marine boilers and engines:

Her Majesty, by and with the advice and consent of the Lesislative Assembly of the Province of Ontario, enacts as ioliows:

1. This Act may be cited as An Act for the Protection of Liic and Property in the use of Stationary Boilers and Engines and the Licensing of Engineers in charge of them.
2. In this Act uniess the contents otherwise requires.
(1) The expression " Boiler" does not include boilers used for heating water for domestic purposes or low pressure stean heating boilers, uniess the pressure cxeceds fitteen pounds per square inch, or mailway locomotive or steamboat boilers, but means and includes all other steam boilers and every part thercof. or thing connected therewith, and all apparatus and things attached to or used in connection with any such boiler.
(2) The expression "Owner" means and includes any person. firm or corporation, the owner or lessec of the boiler, and the manager or other head officer in charge of the business of zu:y such firm or corporation.
(3) The expression "Engincer" means any person having charge of or operating a steam boiler, under the provisions oi this Act.
(4) The expression "Inspector" means any inspector of steam boilers appointed by the Lientenant-Governor-in-Council under the provisions of this Act.
3. The Lieutenant-Governor-in-Council shall appoint an inspector or inspectors of steam boilers for the province, for the purpose of carrying out the provisions of this Act, and may fix the remuncration to be paid such inspector or inspectors, and uray divide the province into districts, and appoint one or more inspectors in each district. Such inspectors shall constitute a board of boiler inspection, who shall meet from time to time as may be required, and who shall have power to formulate culform rales and regulations for the inspection of boilers, and the examination of candidates for certificates of fitness as enginecrs under the provisions of this Act, and upon the approval oi same by the Lieutenant-Governor-in-Council, such rules and regulations shall have the same force as the provisions of this Act.
4. No person holding the office of inspector under the provisions of this Act shall be cither directly or indirectly interested in the sale of boilers or steam machinery, or any kind of suyplies used in connection therewith.

5-(1) Every inspector appointed under the provisions of this Act shall, before entering upon the periormance of his duties, take and subscribe an oath that he will fathfully and mepartially periorm the duties of his office, and also give security for the due performance of his duties in the sum of $\$ 2,000$. HI shall have had at least five years experience as a practical engineer in charge oi a steam engine.
(2) Every inspector appointed under the provisions of this Act shall be practically conversant with the manufacturing and working of boilers, and shall also be a competent and practical ergineer, especially conversant with the manufacturing and working of stean boilers, and shall hold the highest grade of certificate granted by the Ontario Association of Stationary Engineers. or a first-class engincer's certuicate from the Minister of Marine and Fisheries, under R.S.C., chapter 78. section 41 .
6. The inspectors appointed under this Aet shall, under the direction of the Licutenant-Governor-in-Council, make such rules for the uniform inspection of all steam boilers coming within the provisions of this Act, as will ensure the careful, tl:orough and systematic inspection of all boilers once, at least, in every year.
7. The provisions of this Act respecting the inspection of boilers shall not apply to any boiler insured and inspected by a duiy incorporated or duly lieensed boiler insurance company. legally doing business in Canada, if the owner or owners of such boiler shall. when required by an inspector appointed under the provisions of this Act, produce the certificate of inspection from such a company.
S. The inspectors shall cxamine all persons applying for certificates under this Act, and shall have power to issue certificates of competency according to the experience, knowledge and qualifications, subject to the rules and regulations made and approved of by the I.icutenant-Governor-in-Council, from time to time.
9. All certificates shall be exposed to view in a conspicuous place in the engine or boiler room.
10. Every enginecr or fireman, or holder of a special certi fieate who undertakes to operate or take charge of any steam plant, requiring a higher grade of certificate than he possesses. shall be liable to a penalty: not cxicecding Fiity Dollars, and not less than Ten Dollars, upon the conviction of the same offence, and the inspector may reroke his certificate.
11. Every person who has charge of an engine or boiler to which this Act applies at the time of the passing thereof, shall upon the payment of a fee of two dollars to the inspector, be cutitied to receive a permit to operate such steam plant for the term of one year, and every such engineer or fireman who applies ior a renewal or higher grade of certificate, may procure the same by passing the necessary examination before the inspector, and shall pay for the certificate the sum of five dollars.

12-(a) Every person 10 whom the provisions of the next preceding section does not apply, who presents himself for ex-
ammation, shall pay the sum of five dollars for such examination. Each certificate shall have force and effect for the term of one year, unless sooner revoked for cause, and for each renewal the sum of one dollar shall be paid. The inspector shall not issuc in any case a certiticate to a persoin of intemperate labits, however skilful he may be.
(b) Every person who has had clarge of an engine or boiler to which this Act applies at the time of the passing therenf. for the period of ten years prior to the time of the passing lereof. shall upon the pasment of a fee of five dollars to the inspector, and unon iurnishing proof of such service and of good character from his employers, be entuted to receive a second class certificate.
13. Every inspector appointed under this Act shall have porrer to revoke the certificate of any engincer in his district. ii the person holding the same shall have commmed any act or acts that shows hum to be unworthy, incompetent or intemperate; lut such person may appeal from the decision of the irispector to the Minister of Agriculture.
14. 入o person shall employ another as engineer, and no person shall serve as engineer unless the person serving or as cumpoyed as engineer is then licensed by an insuector as aforesaid. and any one who violates any of the provisions of this section shall be liable to a penalty not exceeding two hundred dollars. and not less than fifty dollars.

1s.'All moneys collected for cerrifieates or renewals under this Act shall be paid to the inspector who issues the certificates, and who shall remit the same to the Provincial Secretary, together with a statemem showing the names and addresses of the persons paying the same.
16. All prosecutions under this Aet may be brought before any of Her Majesty's justices of the peace in and for the count: in which the offence was committed, and in cities, towns and incorporated villages where there is a police magistrate, before such magistrate.
17. Every inspector shall keep a true record of all boilers: inspected, and all repairs ordered by him. of all boilers condemned by him as unsafe, oi all aecidents to boilers in his district whether by explosion or otherwise. oi all casualties in connection with bollers in his district.
18. Whenever any licensed engineer or inspector shall discover that the boiler he is operating has become weakened or unsaic, lie slatl at once notify the proprictor, owner or manager of the fact. and demand that they be repaired and made sate. If the owner. proprictor or manager shall refuse or neglect to have the needed repairs made, the engineer or inspector shall at once notify the board oi inspectors of such refusal or neglect.
10. The board shall thereupon order a thorough inspection to be made. and, if said boiler proves on iuspection to be unsaic. the proprietor or manager shall forthwith have the needed repairs made, and any owner, proprictor or manager who shall attempt to operate any hoiler atter such inspection, before having the necded repairs made. shall on conviction be fined not lesis than 5 nor more than $\$$
20. Any boiler operated at a pressure of fitieen pounds or less to the square meh, shall not corne under the provisions of this Act, except those under sidewalks in citics or fowns.
21. On the occurrence of an explosion irom any boiler to which this Act applics, notice thereof shall be sent within twenty-four hours thercafter, to the inspector within wiose jurisdiction the explosion took place, by the owner or by the wiser, or by the person acting on belialf oi the owner or user.
22. The notice shall state the precise locality, as well as the day and the hour of the explosion, the number of persons injured or killed, in addition to the parposes for whicll the boiler is used, and generally the part of the boiler that failed. and the extent oi the failure, and such other particulars, if ang: as the Lieutenant-Governor-in-Council may from time to time require.
23. If deiault is made in complying with the requircments of this section, the person in deiault shall on summary conviction be liable to a fine not excecding one hundred dollars.
24. On the receipt of a notice of a boiler explosion the inspector shall fully investigate the causes and circumstances aiending the explosion, and such investigation shall be beld at or as near the place of such explosion by the said inspector, in sucin a manner and under such conditions, as the Licutenant-

Goveruor-in-Council may from time to time deem most effectual, for ascertaining the catuses and circumstances of the explosion, and for enabling the said inspector to mate the report hereimafter mentioned.
25. The inspector making such investigation with respect is any boiler explosion shall present a full and clear report to the Minister of Agriculture, stating the cause of the explosion, and all the circumstances attending the same, as shown by the evidence, adding thereto any observation thereon, or on the evidence, or on any matters arising out of the investigation. which they may think right to make.
26. In the case of an explosion taking place on any stationary boiler for which the owner or user has not obtamed a certifieate of fitness, from an inspector under this Act. or from an inspector of a duly incorporated boiler insurance company, and any persons killed or mjured thercby; or any property destrojed or injured, the owner or user of such boilers shall prima facie be deemed guilty of negligence, and liable for any injury occasioned by stich explosion, and the onus shall be on the owners or users of the said boilers, to show that all reasonable and preper precautions had been taken to prevent such explosion or accident.

27 . Yrovided that no part of this Act, except section 20 , shall be deemed to apply or to affect the operations of steam engines or boilers, upon any farm for threshing, or other agricultural parposes.
28. For every inspection and certificate thereof under the provisions of this Act, the inspector shall be entitied to receive fient the owner or user of a boiler a ife of five dollars. If two boilers are inspeeted at the same time a ice of eight dollars, and if three boilers are inspected at the same time a fee of ten dellars, and ior each additional boiler inspected a lee oi two dellars more.

MCLACHLAN ELECTRIC AND GASOLINE MOTOR CO., TORONTO.

Uisers of power do not need to be introdueed to J. C. McLachlan, formerly of the Toronto Electric Motor Co., Ltd.. and will be interested in the departure which he has made by adding the manuiacture of gesoline engines, both marine and vehicle types, to the electric motors which he bas successfully supplied for many years. The vehicle shown in the illustra-

tion is equipped with one of these motors and weighs complete leis than joo lbs. These engines can be applicd to owners' traps. When equipped with base this motor is valuable ior use as a small stationary engine. The marine type is very light, ant weighs under 175 libs. for 3 h.p. It has been installed in a launch 21 iect by 3 feet. for T. E. Cuffe, of the Empira Cloak Co., Toronto, and is said to afford the most complete satisiaction in cerery way. All particulars may be had oi the builders. The McLachian Electric and Gasoline Motor Co., 94 Adelaide street west. Toronto.
C. F. MeGilf. mechanical superintendent of the Canadian Gencral Electric Co.. Peterborough. Ont., has moved his famil: from Selienectady; M.Y., to Peterborough.
phoulction of ohes and minelalg in the onited btates. (fher modects.)

UNITED STATES MINERAL AND METAL PRO. DUCTION IN 1898.

The statistics of mineral production in the United States, as iurnished by the producers and others for The Mineral lndustry, Volume VII., compiled by Richard P. Rothisell, cditor of the Enginecring and Mining Journal, have now been completely collected and arranged, and are presented in the accompanying tables. Lu.cse show a production which, in nearly all the more important substances, is the greatest ever recorded. The United States was, in 1808 , by far the largest producer ri iro: and stecl in the world; was second only to Great Britainand then by a very small quantity-in the production of coal: and furnished more than half of the total copper supply of the werld.

In accordance with the usual practice there is added to the co:umns containing the customary measures, others giving the weights, in metric tons, or other measures. Comparison with fercign reports is then easy, and the statements are recoriled in a form which will be oi still greater value hereafter. Mr. Rothwell hopes that, in a very few years, we may be able to dispense altogether with the columin of "customary measures." and that the metric measures will then be the customary ones also. The figures in the table and the brici notes which follow wili fully explain the course of the mineral production during the year 1808 . The total value of the mincral production of tire United States in 1 SgS was $\$ 709.816 .750$, against $\$ 648.804,899$ in 1897. Of the production in 1898 , $\$ 314,255.620$ was the value of
metals against $\$ 272,178,392$ in the previous ycar, and $\$ 433,659,14 t$ ores and minerals, against $\$ 407,913,912$ in 1897. The values given for ores and minerals include $\$ 38,098,011$ in 1803 and $\$ 31.2 \mathrm{~S}_{7,405} \mathrm{in} 1 \mathrm{Say}$ for bauxite, manganese and iron ores, which were used ior making aluminum, ferromanganese and pig iron. These duplications were deducted in the aggregate values stated above. Eighteen secondary products for which statistics were cullected, derived from some of the ores included in these totals, liad an aggregate value of $\$ 49,432,829$ in 1898, against $\$ 1,718 .-$ 420 in 1897. There was also a production of copper, lead, silver and gold from forcign ores and bullion, valued at $\$ 58,948,125$ in is 88 , against $\$ 47,127,174$ in 1897 . In the preparation oi the statistics for this volume the figures previonsly reported ior 1S97 have been revised in the light of later and more minute investigation.

the late J. h. Killey.

The name oi the late J. H. Killey; of Hamilton, Ont, was very familiar io the readers of The Canadian Engineer two or three years ago, when he was a frequent contributor to its columns. Mr. Killey died very suddenly from heart iailure. Alugust 10th. Just before retiring he complained of a slight cold, but about $2 \mathrm{a} . \mathrm{m}$. he awoke Mrs. Killey; telling her that he had a choking sensation in his throat. Within a iew moments he fell back on his pillow, expiring before medical aid conld be procured. He leaves a widow and three sons, the latter being Wm. Killey. of Finmiton, Ont.: James. of British
inoncetion of mietilis in tile dinted atatis．

Prolucts．	cus．cont．nirynleMelsunes．	1635.				1004.			
		Quantits．		Yilue at of I＇roduct	Hince Cion．a	Qumutits．		Painem Minceof I＇ruluchon．n	
		Castonirs Mensurna．	Hetric Tous．	Tounts． 1	$\begin{aligned} & \text { Wur M. } \\ & \text { Ton. } \end{aligned}$	Cinstom＇s Mensur．s．	Merte	Totals．	Prirnt.
Aluminum		4．000，100	21．314， 2×4	m1.4in.000	80．0．0	5.200 .000	12，349．509	m1，${ }^{\frac{8}{6} 10.000}$	${ }_{10}^{8} 9$
	ib．	1．4．30，000		t50， 10	159	－			
		－	180，埌	20，tio	［3： 2×1	\％1300	215，189	v10， 41.104	${ }^{18} \times 14$
ifferromolsums＇m		2，Mili ${ }^{\text {a }}$	Kstios ${ }^{\text {a }}$	50．210．30，	cieij：cio	3，148．104	20，\times cs	65． 1.020	102
Ötlirm，phi．	1． T ． ．	9，＋3：45，	8，430，64！	291，005，043	5， 45	$11,140.140$	11，i＋3，1：8	110，140，98	0，
Fipridium．		込		cos．		$8 \cdot 5$			
	成，	19：018	190，369	m14， 150.605	78.40	20．4．tio	M，		צ－
－itucke．．		3xion	kis．${ }^{\text {ciow }}$	milichis	70：\％	11.14	25，0is 3	mesis	20.0
sitplatinum．	（1）2，	200	R0， 0^{-1}	010	594．78	300	$10 \cdot 3$	49.85	ㅅN11．
		50， 450	Ti．0．aty	33．750．815		53，7041293	11．$\frac{1.08}{1,28}$	34， $1,000.45$	M， 1.43 .09
silmumaten		Sii．	Niil．	Pit．		842， 200	［i5，039	＋2160	ki 18
si zinc．	sh． 7.	$3(1), 38$	91.000	8 8：	$\xrightarrow{\text { ma0．k8 }}$	114，10：	103.614	10．429．100	1200．55
				202，103， 582	．．．．．			314，25， 020	

REFERENCES

In using the statistics in the foregoing tables，reference should also be made to the detailed inbles under the respective captions further on in this volume，where many explanatory notes as to the statis－ tics will be found．The following notes refer to the four preceding tables：（a） Exeept where otherwise specified．（b） Not cummerated．（c）Amount or value of crude mineral．（d）Partly estimated． （c）Estimated．（f）Amount recovered as a by－product．（ g ）Barrels of 300 lb ．（h） Barrels of 400 lb ．（i）Includes mangan－ iferous iron ore；this is not duplicated in the report of iron ore．（i）Value per square．i．c．， 100 sq．ft．lapped and laid； the weights are calculated on the basis 3 squares $=2,000 \mathrm{lb}$ ．but these figures are only approximately correct．（k） Kilograms or per kilogram．（l）Re－ duced to a basis of $66^{\circ} \mathrm{B}$ ．（m）Aver－ age market price at New York．（n） Nominal．（o）Value before grinding． （p）Includes ocher，umber，sienna，and oxide of iron．（q）Includes salt used for the manufacture of alkali；the barrel of salt weighs 230 lbs．（ r ）Reduced to a basis of 58 per cent ash．（s）Includes a small amount made from spelter．（t） Average value of lake copper at New York．less 0.25 c ．per lb．（a）Includes spiegeleisen．though the total value is rechoned as if the whole product were ferromanganesc．（v）Average market price at Pittsburg．（iv）Troy oz．（ x ） Flasks of 76.5 lb ．（ y ）Barrels of 42 gal ． （a）Includes a comparatively small amonnt made directly from ores．（aa） Not included in the preceding tables．

Abbreviations：Sh．T．，short tons （ 2.000 li.$)$ ．L．T．，long tons（ $2,240 \mathrm{lb}$ ．）； II．T．．metric tons（ $2,204.6 \mathrm{lb}$ ．）．

Culumbia，and juseph，oi Liverpool，tug．The late Mr．Killes was born in Castetown，Isle of Man，on April 2th，182．4．He cudied in the Grammar School in that town，and received a zencral commercial education．He had had irom has carlest ？ars a great love ior machinery．Ils parcmis purchased for hin＂Lardner on the Steam Engne，＂and thes he mastered leciere he was 12 years old．At it he constructed a crude model engine and boiler，and so excited was he when at was nearing cempletion that he could not sleep ior thinking of it．His gitents abom this time determined on sending him to Liver－ joiol．to one of the large ioundries there，and prepared him for the ioundry business by seading hum ior a counge oi years to cabinct－making．There was great difficulty in getting the posi－ tion of apprentice at liverpool．as many paremts at that time wished to have their sons learn engmeering．He eventually e：ucred the Brunswick fomndry，and ended his apprenticeship in the Vulcan iron works，then owned by a cousin of the late W．E．Gladstone．Mr．Killey afterwards became forcman oi a ：arige foundry and later mechanical manager and partner in the Windsor machine works，near Liverpool．The American war． however．interfered with business to such an extent that he leit England with his brother and came to Canada in tiget．He ob－ saiaed employment with I^{F} ．G．Beckett \＆Co．．Hamilton，and iater was ioreman of the St．I．awrence Foundry in Toronto． Fie repaired．while in this firm＇s employ，the steamer＂Rothsay Castle．＂a blockade runner．which liad been brought up from Jialifax by Captain Teach，after she had run one season．He
was appointed engineer of this boat，which position he held for three years，matil the Fenian raids were threatened．He was then appointed engineer of the gun boat＂Prince Albert，＂ which was engaged in guarding the river and lake coasts．She took troops and munitions of war from Collingwood to Sault Ste．Maric during the first Red River rebellion．Mr．Killey left the boat to build an oscillating marine engine and boiler which he had desigued for the composite steamer＂Adelaide Horton．＂The engine was built in Ifamilton and the hull in Goderich．After this engine was completed，Mr．Killey began busincss in 1870 in a small way in Hamilton．but it soon increased to an important industry．In 1894 the business be－ came the Osborne－Killey Manufacturing Company，and turned out steam road rollers，boilers，engines，and sewer pipe machinery．Since the winding－up of this company，Mr．Killey was associated ior some time with the late F．G．Beckett，and latterly has been employed as a consulting engineer．

ONTARIO VOLUNTEER FIREMEN＇S ASSOCIATION．

At a convention of the Ontario voluntect firemen，held Alugust 3tst，in Toronto．a permanent organization was formed． and the following officers were clected：R．C．Clarke，chief of Merritton．president：E．F．Earl，Milton．first vice－president： J．H．G．Horey：Merritton，financial secretary：Dr．Crecgan． of Thorold．corresponding secretary：and William Miller，of Smith＇s Falls，treasurer．Executive Committec：George

Johuston, Woodstock: Geo. Turner, Thorold: W. Smith, Trentenf; A. Sargent, Toronto; and W. A. Thomas, Niagara Falls. Committee on By-laws: Riddell. St. Catharmes; Skimer. Niagara Falls; J. II. L.uscombe, Simeoe, and Tait, Nivinston. The next meeting will be held at Niagara Falls, Ont.

ISLE OF MAN TRAMWAYS.

The Isle of Mata is the gem of the Irist Sen. It is ouly about 33 miles long and 12 miles wide, but every acre of its green, gorsegrown hills and rugged coast line is beautiful, and the quaint Manx language and customs which still survive make it doubly interesting to the visitor. It is situated almost in the centre between England, Ireland and Scotland, and being within easy reach, by swift steamers, of Manchester. L.iverpool and Glasgow: has besome a favored summer resort. Douglas. the principal town, situate on a beautiful bay, has a fised population of albout 30,000 , which in summer rises to about 50,00n. Every steamer irom Liverpool, and other ports, oi which there are several daily, bring hundreds who spend a few
accumulator house, the whole making one of the most complete railway power houses in Great Britain. All the work of th: Ramsey extension, including road-bed, electric lines and power stations, was done by the company's engineers.

RAILWAY SUBSIDIES.

(Continued from last issue).

For a line of railway from Paspebiac, Quebec. to Gaspe, in the said province, not exeeding a distance of 82 miles.

Lake Erie and Detroit Rivar Railway Company, for a line of railway from Ridgetown, Ont., to St. Thomas, a distance not exceeding 44 miles, this subsidy to be payable only in the event of adequate rumning rights over the Canada Soutitern Railway, between the two points above mentioned not being granted to the first-mentioned company on terms to be approved by the Railway Committee of the Privy Council.

Kingston and Pembroke Railway Company, for the construction of branclies from the Company's main line to the

Intarior of Power Station, Balifglass, I.O.M
hours, days or weeks in this lovely spot. One of the chicf attrictions is the beamiint glens which indem the coast linc. running up into the interior of the island between the hills The Isle of Man Tramways Co., which operates an extensive system of cable and clectric tramways in Douglas, has recently exiended its electric line from Douglas to Ramsey, the next la:gest town in the island. The tramway runs around the precipitous cliffs overlooking the sea, skirting the beautiful Groudle, Laxey and Ballaglass glens. This drive, about 14 miles in length, winding in and out in full wew of the sea, in an open electric car on a bright summer day, is very beautiful and most invigorating.

The recemly completed extension oi the I.O.M. tramway; is a tine example of modern railway building and electrical construction. It is double tracked throughout. the roadbed is rock ballasted, and the bridges and culverts are of solid masonry. The over-head trolley is used, all the details of electric work being of the latest and best design and construction. Two large accumulator stations are used to equalize the load and assist the cars over the steep grades.

The motive power of the tramway is supplied from five power stations placed at various convenient points throughout the extensive system. The illustration represents the interior oi the new power station at Ballaglass; it contains two $150 \mathrm{k} . \mathrm{i}$. clectric gencrators, manufactured by the Electric Construction Co., of Wolverhampton. England, directly connected to two 250 h.p. tandem compound condensing Robb-Armstrong ergines, manufactured by the Robl Engincering Co., Amherst, N.S., Cinada. for Dick, Kerr \& Co., of London, who were coniractors for the equipmem. The station is also provided with two standard Galloway boilers and Iecdwards electrically driven ejector condensers. Adjoining the power station is a large
iron mine at Bluff Point, and to the Martele mine, in the County of Renirew, not exceeding five miles.

For a railway from Parry Sound extending northerly towards Sudbury, not excecding a distance of 20 miles.

Resolved, That it is expedient to authorize the Governor-in-Council to grant the subsidies hereinaiter mentioned toward the construction of the railways, also hercinatier mentioned, that is to say: The Ontario and Rainy River Railway Contpany, for a railway from Stanley station, on the Port Arthur, Duluth and Western Railway, to Fort Francis, for a distance of 140 miles, at $\$ 6,400$ per mile. not excecding in the whole $\$ \$ 96,000$.

To the Quebec Bridge Company, towards the construction of a railway bridge over the St. Lawrence river at Chaudiere Basin, near Quebec, one million dollars, payable 40 per cent., on monthis progress estimates approved by the Government engineers of materials delivered and work done.

To the South Shore Railway Company, towards. the restoration and rencwal of the railway bridge over the Yamaska river at Yamaska, Que., $\$ 50,000-R e-v o t c$.

Towards the construction of a bridge over the Richelicu river at Sorel, 15 per cent., upon the amount expended thereon, not creceding $\$ 35,000$, re-vote. $\$ 35,000$.

Towards the construction of a bridge across the 5 . Francis river, 15 per cent. of the amount expended thercon, not excecding $\$ 50,000$.

Towards the construction of a bridge across the Nicolet river, 15 per cent. upon the amoult cepended thereon, not cxeceding $\$ 15,000$.

To the Midjand Railway Company, Limited. towards the construction of a bridge across the Shubenacadic river, 15
per cent. upon the amount expended thereon, not exceeding $\$ 33,750$.

To the Great Northern Railway Company towards the construction of a bridge across the St. Maurice river, is per cent. upon the amount expended thereon, not exceeding $\$ 16,+25$.

Also towards the construction of a bridge across the Riviere du Loup, 15 per cent, upon the amount expended thercon, not exceeding $\$ 15,000$.

Also towards the construction of a bridge auross the Lac river, 15 per cent. upon the amoumt expended thereon, not excceding $\$ 15,000$.

Resolved, That the subsidies granted to the Ontario and Rainy River Raiway Co., the Canadian Northern Railway Company and the Edmonton, Yukon and Pacific Railway Company, are granted upon the condition, and if received and paid under the authority of this Act, to the above-mentioned companies, respectively, shall be received upon the condition, that the said companies shall not, nor shall any of them, at any time amalgamate with any other railway company, or lease its line to any railway company; nor shall any of the said railwass be leased to or operated by any other company; nor shall any of the said companies make all agreement for a common fund or for pooling its reccipt with any other railway company, and any such lease, amalgamation or agacement shall be absolutely void, excepting in so far as such agreement may extend to traffic or running arrangements, which have been approved by the Governor-in-Council. Resolved, That the subsidies herein before mentioned, as to be granted to companies named for that purpose, shall, if granted to companies named for that purpose, shall, if granted by the Gov-ernor-in-Councit, be granted to such companies respectively; the other subsidies may be granted to such companies as shall be approved by the Governor-in-Council, as having established to his satisfaction their ability to construct and complete the said railways respectively; all the lines for the construction of which subsidies are granted, unless they are already commenced, shall be commenced within two years from the first day of August next, and completed within a reasonable time, not to excced four years from the said first day of August, to be fixed by order-in-council, and shall also be constructed according to description and specifications, and upon conditions to be approved by the Governor-in-Councal, on the report of the Minister of Railways and Canals, and specificd in an agreement to be madc in each case by the company with the Government, which agrement the Government is hereby empowered to make; the location also of ciery such line of railways shall be subject to the approval of the Governor-in-Council. Resolved, That the granting of such subsidies, and the reccipt thercof by the respective companics, shall be subject to condition that the Governor-inCouncil may at all times provide and secure to other companies running powers, traffic arrangements and all other rights as will afford to all railways connecting with those subsidized, reasonable and proper facilitics in exercising such running powers, fair and reasonable traffic arrangements with connecting companics, and equal mileage rates between all such connecting railways, and the Governor-in-Council shall have absolute control at all times over the rates and tolls to be levied and imposed by any of the companies, or upon any of the railways hereby subsidized. Resolved, That the said subsidies respectively shall be payable out of the consolidaied revenue fund of Canada by instalments, on the completion of each section of the railway of not less than ten miles, propertionate to the value of the portion so completed in comparison with that of the whole work undertaken, to be established by the report of the said Minister, or upon the completion of the work subsidized, except as to subsidies with respect to which it is hereinbefore otherwise provided. Resolved. That every company receiving a subsidy under this Act shall each year furnish to the Government of Canada transportation for men, supplies, material and mails over the portion of its line in sespect of which it may have received such subsidy, and whenever required shall furnish mail car properly equipped for such mail service, and such transportation and serviec shall be periormed at such rates as may be agreed upon beticen the Minister of the department of the Government for which such service is being rendered, and the company per-
forming the same, and in case of disagreement, then at such rates as may be approved by the Governor-in-Council, and in or lowards payment for such charges the Govermment ot Camada shall be credited by the company with a sum equal to three per centum per annum on the amount of subsidy received by the company under this Act.

THE INFLUENCE OF IECHANICAL DRAFT UPON THE ULTIMATE EFFICIENCY OF STEAM BOILERS.•

(Concluded from June issue).
 Relative: Costs.

2,800 nominal. hip. plant, with chimiey draft.
2 additional boilers $\$ 6,167$
Sertings, etc., for two boalers.............................. . . . 1,250
Addition to building, etc.................................... . . 2,700
$\$ 10.117$
2,400 NOMisil h.p. plant, With mechanical draft.
Fan, dampers and ducts.................................... $\$$ 1,500
Saving by using mechanical draft......................... 8, 817
$\$ 10,117$
Considering the matter of increased output solely in the light of comparative cost between the introduction of more beilcrs or the introduction of mechanical draft, and distegarding any possible cost of change in the chimncy, we may again take for illustration the plant of 2,400 rated h.p. Suppose it is desired to increase its capacity to $2,800 \mathrm{~h} . \mathrm{p}$. or by $162-3$ per cent. Then the relative costs under the two conditions will appear as here indicated.

We may now turn to that portion of our discussion which relates to the quantitative efficiency of a boiler plant. No greater waste occurs in modern steam boiler practice than that which is inherent in the employment of a chimney for the production of draft, namely, the loss of heat in the escaping gases. As the chimney depends for its action upon the maintenance of a temperature difference between the internal gases and the extemal air, it is manifest that with a chimney this waste can never be eliminated. It may be palliated, it is true, by the building of higher chimneys so that the same intensity of draft may be obtained with a lower stack temperature. Dut such means of providing for the utilization of the otherwise waste heat is expensive. In the case of a fan, however, the power cepended as measured in heat units necessary to produce the same results, may, under ordinary conditions, be only abont one-seventy-fifth of that necessary with a chimney. In other words the fan renders available for utilization, practically all of the heat wasted by the chimney, while it possesses the further advantage of readily creating the additional draft required when heat abstracting devices are introduced. Donkin and Kennedy in seventeen independent boiler tests found the heat lost up the stack, when no coonomizer was used, to range between 9.4 per cem. and 3 s .3 per cent. of the total heat of combustion. As it is not practicable to cool the gases to atmospheric temperature it is evidently impossible to utilize all of the heat, but the ordinary cconomizer should, with mechanical draft, show a saving of between 10 and 20 per cent.

The importance of mechanical draft in the adoption of means for utilizing the waste heat, is well exemplified in the introduction of retarders and of ribbed tubes. Both of these increase the resistance and almost intariably require fan draft to cuable them to create the saving of 5 to 10 per cent., which may be thus secured. The facility with which the intensity of the drait, and the volume of air supplied can be regulated when a fan is employed for draft production, has always been reconnized as one of the most valuable characteristics of this method. Such regulations makes possible the most perfect distribution of the air, and its reduction to the minimum amount which will produce satisfactory combustion. For the mere chemical requirements of the combustion of one pound of ordinary coal. about 12 pounds or 150 cubic fect of air is required. But under the conditions of chimney draft this amount is greatly execeded. Donkin and Kennedy showed in the results of 16 tests that the air supply ranged from 16.1 pounds to 40.7 pounds.
${ }^{7}$ From a lencure by Waller B. Snow. beloro the Applied Science Graduato Soclets, JicGill University.

As the gases pass onward through the tubes they become cooled, but those of higher temperature part most readily with! their heat, and at the same time their volume and conseruent velocity are reduced, still further facilitating heat transmission. On the other hand the gases of lower initial temperature transmit their heat less rapidly and the final result is that within practical limits the temperature of the escaping gases is least with the greatest excess of the air supply. The fact just presented points toward the coonomy to be secured by comparatively high rates of combustion, when the proper rate of heating surface to grate surface is provided. A high combustion rate manifestly requires a thicker fire, which in turn presents a better opportunity for contact between fuel and air with consequent economy in the supply of the latter. Less air results in a more intense fire, a higher furnace temperature, a greater transmission of heat to the water within the boiler, and is resultant higher evaporative efficiency. But a thicker fire requires a greater intensity of draft to overcome the increased resistance, while the relatively smaller area for passage of air necessitates a higher velocity of that air, and furthermore, the increased intensity to produce this velocity must be proportional to the square of the rate of tlow. This condition is most readily met by the fan, which, under normal conditions, produces an intensity cxceeding that of an ordinary chimney, and whicl: can without trouble maintair the highest practicable rate oi combustion.

The loss resulting from the formation of smoke is absolute, for it is equivalent to directly robbing the fire of a part of the fuel from which not only has no heating effect been secured, but upon which heat has actually been wasted in raising it to the -temperature of the escaping flue gases. For the prevention of smoke, sharp, intense draft is necessary, properly regulated and capable of furnishing the required amount of air, both below and above the coal at the very moment when it is most needed. This result can be best secured by the introduction of mechanical drait which is ordinarily so regulated that the decrease in steam pressure resulting from the opening of the fire doors. the charging of the furnace, or the clearing of the fires, instantly causes an increase in the speed of the fan and in the intensity of the drait and the volume of air. A loss incidental to poor draft is that due to the formation of carbonic uxide. The formation of this gas instead of the complete product of - combustion, carbonic acid. results from a lack of air. Sufficient :air can best be secured by some means like the fan, which under automatic regulation increases both the intensity of the -draft and the volume of the air when required. As a result, the p-essure forces the air in sufficient quantity to all spaces between the fucl, and renders the combustion practically perfect.

By far the most important of the factors connected with the -operating expense of a boiler plant is the cost of the fuel. When burned under suitable conditions, the decrease in its cost 'far outstrips its decrease in efficiency, so that the solution of the problem involves itself with the provision of the proper -conditions. As a rule the cheap fuels, like the fine anthracites,
reatuire for their combustion an intensity of draft which the ordinary chimney is incapable of producing. The draft acmally required under given conditions is clearly shown by these results of tests by Coxe:
results of tests oif pen and duckivheat conl.

Kind of Coal	Rate of com. bu. -0n pct squire foot of krato per hour.	Pounds of water ovapo. rated from and $\left[\begin{array}{c}1 t 2189 \\ 6\end{array}\right)$	Air pressure in faches of water.	MaxImum limit to sizo of coal in inclies.
Oncida Pca Coal.	13.63	';6	0.375	7-8
Orcida No. 1 Buckwheat \qquad	13.58	7.94	0.5	9-16
Oncida No. 2 Buckwheat \qquad	11.40	8.60	0.625	3-8
OncidaNo. 3 Buckwheat	- 11.34	8.65	1.04	3-8
E.ckley No. 3 Buckwheat \qquad	9.44	8.75	1.125	3-16

These coals, which are among the smallest in size, were burned on a special form of traveling grate, and the air pressure was maintained in the chamber bencath. It is noticeable that with practically constant combustion rate and craporative efficiency, the draft increases very rapidly as the size of the coal decreases.
relative efficiencies of various coals.

Kixd oy Coal.	Water evaporated from and at 211° by Dry Coal.	Relative efficiency In p.c. $\ln p . c$. Cumberland $=100$.	Costofcoal pezton	Fucl cost of evap oraing of water fromand at 252°	Relative in per cent messured by cost 80 evaporate z, 000 lbs. Cumber. 12 nd $=100$. $=100$.
Cumberland	11.04	100	\$3.75	\$0.1698	100
Anthracite, broken...	9.79	89	4.50	0.2297	74
Anthracite, chesturt.	9.40	85	5.00	0.2660	04
Tua parts Pea and			$11:$	-10	
Dust and one part		:		11 :	1.ty
Cumberland	9.38	85	2.58	0.1375	213
Two parts Pea and					
Dust and one part					
Culm	9.01	82	2.58	0.1432	119
Anthracite, Pca.	8.86	80	4.00	0.2259	75
Nova Scotia Culm.	8.42	76	2.00	0.1187	156

The comparative efficiency of various coals as determined by Barrus is indicated in the accompanying table, which speaks for itself. The evidence in favor of burning low grade fuels is conclusive. Such results can, however, only be secured by pesitive and intense draft. It is true that as the quality of coal grows poorer and the size of the particies less. it becomes more necessary to provide some special form of grate or stoker for its proper burning. But even without an economizer to utilize the waste heat. the burning of cheap fuel by mechanical draft will, under perfect conditions. show a decided saving. after due allowance is made for fixed charges on the special furnace arrangements and for the cost of operating the fan:

$\begin{gathered} \text { Water } \\ \text { evap.trom } \\ \text { 2ant at } 1 \text { z7 } \\ \text { pee } 16.0 \text { of } \\ \text { coai. } \\ 11.00 \end{gathered}$	\$0.50	0.75	anoual savings resulting frojs durnivg cheap fuel- cost per ton.										$\begin{array}{r} 3.50 \\ 2,446 \end{array}$	$\begin{array}{r} 3.75 \\ \mathbf{x}, 223 \end{array}$	$\begin{array}{r} 4,00 \\ 0,000 \end{array}$
			1.00	1.25	1.50	1.75	2.00	2.25	2.50	2.75	3.00	3.25			
											4,892	3,669			
10.50										5,474	4,193	2,912	1,630	349	
10.00									6,115	4,770	3,424	2,079	734		
- 9.50							8,240	6,823	5.407	3,991	2,575	1,159			
9.00						9,105	7,610	6.115	4,621	3,126	1,631	136			
8.50					10,074	8.491	6,909	5,326	3.743	2,160	578				
S.00				11,180	9,478	7,797	6,115	4.433	2.752	1,070					
7.50			12,393	10.599	8,805	7,012	5.218	3,424	1,630						
7.00	15,724	13,803	11,88I	9.959	8,037	6.115	4.193	2,272	350						

The possible savings with low grade fucls and mechanical - draft are still further cvidenced by the accompanying tables, which show for a 1,000 li.p. plant, the annual saving, based on 312 days of 10 hours each, which would result from the substitution of a cheaper iucl for say Cumberland coa!. costing, in round figures. $\$ 4$ per ton, and evaporating il pounds of water from and at 212° per pound of coal. Under these conditions the
annual fuel expense would be $\$ 19,568$. If the assumption be made that a coal costing. $\$ 2.50$, and evaporating only 9 pounds of water is substituted, the annual saving would be $\$ 4.621$. The cost of operating the fan even if the exhaust steam. was not utilized, and. it required $x \not y=$ per cent, of the total coal burned. would be only $\$ 224$, and if this vere charged against the saving it would still amount to $\$ 4,397$, a sum sufficient to show a most
creditable reduction in operating expenses, even if there was also clarged against it amy additional labor and the fixed charges on a complete equipment of the special appliances for burning the lower grade fluel. is reduction of over $\$ 125$ per week, equivalent to $\$ 6,500$ per jear, has been made in actual practice in the case of a boiler plant of $\mathrm{x}, 000 \mathrm{~h}$.p., by the introduction of mechanical draft and the burning of yard screenings with a slight misture of Cumberland.

Of the advantages of mechanical draft which are purely qualitative in their character much might be said, but time will not permit. It must suffice to merely refer to the more prominent points of advantage. When the fan is employed for draft production, the steel plate construction, the comparative lightness, the portable character and the absence of heaty foundations, reader extremely simple its adaptation to the exact reguirements. Being portable it is also salable. and hence ath asset of real value as compared with the chimney. It may be used either for foreed or induced drait, and placed where it will occupy no valuable space. It may be operated by direct-connected or beited engine or motor, and so proportioned as to produce any desired drait pressure. In operation, the fan is both positive and flesible, independent of the weather but capable of regulation to the finest degree, and of adjustment to the necessities of the fire at any particular moment. A mere increase in the cut-off of the fan engine brings about a result on:ly secured with a chimuey at the expense of adding to its height, while a change in the fan speed alters both the volume handed and the intensity of the drait produced.

If this discussion of the influence of mechanical draft on boiler efficiency has rendered clear the factors concerned, it has with equal force shown that this influence is beneficial-in many ways markedly so. In the light of this fact the present active interest in the subject points to the future general substitution of the fan for the chimney.

the canadian bicycle combination.

A combination has been effected. which meludes four of the leading bicycle makers in Canada, the Massey-Harris Bicycle Co., H. A. Lozier \& Company. Toronto; the Goold Bicycle Company, Brantiord, and the Welland Vale Bicyele Company. St. Catharines. The leading members of the new firm are: Geo. A. Cos. Toronto; Warren Y. Soper, Oltawa: IV. E. H. Massey, Toronto; E. R. Thomas, Toronto, and Hon. Lyman M. Jones. Toronto. The probability is that W. E. H. Massey will be president of the company. There will be a general head office in Toronto, but the manufacturing will be done at the places where the present plants of the different firms of the company are located. The company will be a joint stock company, with a capial oi six million dollars, so that the concern will have ample capital in its business; it has cost now several millions of dollars to buy these firms out. The name of the new company has not yet been chosen, but at once will make application ior incorporation, cither by obtaining a provincial charter, or by making special application to the Dominion Parliament for the charter. This year the output of these iour firms has been more than 30,000 wheels, and with such excellent plants will not be compelled to have a new one for the manuiacture of the automoliles. The firms mentioned are the only ones who were asked to deal in the mater, and it is the intention of the company to employ the same men on each staff as are now in the employ of the several companies. The new company will also build antocars.

LITERARY NOTES

Fox and Mellea, of 49 Taylor strect. Springfield. Mass. U.S.A., have put a new mipple holder on the market. Some n the reasons why this "Fos" nipple holder should be used are given on a neat blotter. the title of which is "Ten Reasons," and parties interested in the cutting oi pipe nipples, cither plain, brass or nickel-plated. should investigate this matter.

The Toronto Brase Mamiacturing Co. issue a handsome 20 -page cataloguc, beautifully printed and illustrated, showing display stands in great variety. papier-mache figures. etc. One of their speciaties is the manulacture of brass hand railings for engine rooms. stair rails; one of their fatest contracts called for
\cos feet of brass railing $21 / 2$ inch diameter, for new hall in ex. hibition gromds, Toronto.

Catalogue No. 3 of the Toromo Electrical Works Co., Ltd., manufacturers of electrical supplies, has reached us. it is unigue in its construction: perforated ends in the place of binding allow the insertion of new sheets illustrating new goods added from time to time, and also allow of the dropping out oi discarded lines. A glance through shows the differemt hines to which they give prominence. They manofacure the "American Watchman's Time Detector," which won the only medal for its class awarded at the Clicago World's Fair. The "Toronto Time Register" is a new time check, and is of unique construction, and they chaim that it is the only time register which will not allow errors to creep in through mistakes made by the time clerk. A complete line of electrical supplies and toois, pole ard line fittings, telegraph instruments, battery motors, lamps, con: lips, electro-magnets, lightning arresters, blow lamps, long and short line telephones, etc., all of which are profusely illustrated and described. Catalogue sent on receipt of enquiry.

The past decade has witnessed a great adrance in the art oif catalogue making, particularly in the machinery trades. The :modern catalogue must not only be attractive, and this seems to have been the sole idea in some recent publications. but it must above all serve in the best manner possible its primary purpose of furnishing information. Illustrations must be clear. explanations explicit, and all information concisely given. The substanial character of most machinery demands similar character in the make-up of the catalogue describing it. Boft, clear type, black ink, good cuts, simplicity in composition, and first-class paper of good weight, all have a subtle influence in inpressing the reader with the idea of the high quality of the articie described. An excellent example of good catalogue making. in which this is the controlling iden. is presented by the B. F. Sturtevamt Co. Their publications are of two classes. First. those which are purely educational in their character, comprising treatises on varions special applications of inas blowers, reprints of lectures on similar subjects, leafets regarding the attendam advantages, cte. Second, the regular trade catalogues of the standard dimensions, $61 / 2$ inches by 9 inches, each devoted to a specific line of manufactured goods. Separate catalogues in the same class bear the same cover design, but are printed and bound in different colors with proper titles. so that they may be readily distinguished. Alt catalogues are designated by individual numbers, the latest being No. 110. The most recent products are imumediately presented by bulletins (desiguated by letters), preliminary to the issuance of complet: cutalogucs regarding the given machines. Loss of time is thereby avoided, and the new designs can be sooner placed before the pablic.

The Journal of the Western Society of Engineers for June cemtains some specially interesting papers as "Experiments to Determine the Effects of Freczing on Concrete," by W. A. Rodgers, and the "Preservation of Timber," by S. M. Rowe.

We are in receipt of a copy of the fifth edition of the Slide Rule, a practical manual by Chas. N. Pickworth. Wh. Sc., which is a valuable aid to the use of this necessary instrument

The Indicator Handbook is a practical mamal for engineers, by Chas. N. Pickworth, editor of The Mechnuical World. This book contains chapters devoted to the construction of the indicator. errors of the indicator, attachmemt of the indicator, indicator reducing gear, use and eare of the indicator.

The new Camadian school songs have been composed for school celcbrations by J. M. Harper, Ph.D.. for many years eector of the Boys' High School, Quebec. They are "Hail to the I mand." dedicated to Sir Wilfrid Laurier. and "Our Flas and Empire," dedicated to G. W. Ross, LL.D. The music is by F. C. Robinson and H. O'Connor Budden.

A featurc of the National Export Exposition at Philadelphia will be an exhibit by the International Correspondence Schools. Scranton. Pa., illustrating their method of teaching by mail. The bound volumes of their instruction and question papers, as well as work done by students, including numerous drawing plates, will be shown.

THE YANKEE DRILL GRINDER.

"Cant Grind Wrong." This suggestive heading has been used by the manufacturers of the Yankee Drill Grinder, with great success. As everyone knows that a twist drill badly ground will not bore true, nor will it bore a hole the exact size

oi drill, it goes without saying that a grinder which does grind right is a great addition to any machine shop. The illustration printed herewith gives a good idea of the style of the machine. The Fairbanks Co. of Montreal is sales agent for Canada of this machine.

hough's extra heavy combination pipe vise.

This combination vise is of inestimable value to engineers in mills, mining plants, steamboats. or to plumbers reçuiring a heavy vise. The makers claim that the castings used are of the highest grade, careful selection and the proper and intelligent mixing of the component materials, all tending to great strength. The workmanship is of the very best. The steel jaws firmly welded and finely tempera; the whole vise scientifically proportioned for strength and durability as well as convenience in use, and have no parts to get out of order. The particular vise illustrated is also fitted with reversible pipe jaws, giving prat-

tically two sets of jaws, as they can be turned end. for end. Width of filing or plain jaws 4 inches; weight, 63 lbs . Swivel base, allowing the operator to work in any position, holds pipe from $1 / 8$ to 2 inches, the larger vise holding $1 / 4$ to 3 inches. They also make a stationary base vise; capacity $1 / 2$ to 4 inches.

The Hollands Manufacturing Co., of Eric, Pa., is not only vise manufacturer, but in their complete catalogue show planer. chucks ranging from 6 inches to 30 inches capacity, "Acme. pipe tongs, Primo \& Stillson wrenches, roller and three-wheel pipe cutters, cutter wheels, pipe stocks and dies, also ratchet screw cutting stocks.

RAILWAY ENGINEERING.

Beggar, Samuel \& Co.,
Gentlemen:-I received the copy of "Railway Engineering," by Prof. Smith, and while I was very pleased with the articles as they appeared in the "Canadian Engineer," I am more pleased with them in book form. I have read the book with interest, and often find it useful for reference, although I am not engaged in railroad work now. Wishing you success, I remain, yours truly,
F. W. Salmon.

Burlington, Iowa, August Eth.

Industrial $\sqrt{\text { OLes. }}$

E. F. Munro is building the new town hall in Windsor, N.S., at $\$ 8,286$.

Macdonald Manufacturing Co., Strafford, Ont., is about to greatly enlarge its premises.

Jos. Orr, Strafford, Ont., furniture manufacturer, is illstalling a new Leonard engine.
J. S. Hogg is now manufacturing peat on the patented compression system near Gait, Ont.

Workman \& Ward, London, Ont., iron founders and agricultural implement builders, are about to build new buildings.

Crescent Mill and Timber Co., London, Ont., is now completing its new factory, which is almost ready for the machinery:
W. W. Ogilvic will establish a 25,000 barrel mill and an elevator of 500,000 bushels capacity at Fort William, Ont., shortly.
R. S. Portuous, Stratiord, Ont., is starting up a furniture factory for export trade in buildings formerly occupied by John Becker.
W. Partlo \& Son are equipping the King mill at Ingersoll. 'Ont., as an oatmeal mill, and will put in new machinery, incheding steam plant.

The Toronto Cold Storage Co., Ltd., now has its plant in operation. The capacity is 80 tons per 24 hours, and is operated by a 150 hip. engine.
J. W. and J. B. McManus, Memramcook, N.B., have a contract for Provincial Government on Tobique Narrows bridge substructure, and two Highway roads.

Willis Chipman, who was the engineer for the Petrolia waterworks system, now has a similar position for the town of St. Mary's, where a $\$ 150,000$ system is being put in.
J. W. Walters has started a machine and blacksmith shop in Dawson City, Yukon, and is going to turn out engines. boilers and mining machinery. During a recent visit to Montreal he bought supplies amounting to $\$ 30,000$.

The shareholders of the Hamilton Steel \& Iron Company have elected the following officers and directors: A. T. Wood, M.P., president; C. E. Doolittle, vice-president; A. E. Carpenter, C. S. Wilcox, John Milne, A. M. Wilcox and Wm. Southam. Robert Hobson is secretary.

The Massey-Harris Company is completing plans for the erection of a fine club house and library for the use of their employees on the north side of King street, opposite their premises in Toronto. The building, which will probably cost from $\$ 50,000$ to $\$ 75,000$, will include baths, reading room, library and social rooms, with a fine hall for public recitals.

Daniel and Ira Jacobs of Winona, Ont., narrowly escaped d cath, near Basingstoke, Ont., by the explosion of a traction boiler. The water tank became detached from the engine, and the Jacobs stepped down on the road to connect them. A few seconds later the boiler exploded, and scattered sections of the engine over the countryside; but, rather strangely, the Jacobs were not hurt it the slightest.

The Carter-Crume Company, check book manufacturers, Niagara Falls, N.Y., has been reorganized with a capital stock of $\$ 2,000,000$. The new directors are: W. Caryl Ely of Buffalo. president of the International Traction Company; J. L. DIorrisen, S. J. Moore, W. E. H. Massey, president of the MasseyHarris Company of Toronto; J. W. Flavelle, president of the National Trust Company of Toronto, and Robert Kilgour, Toronto. S. J. Moore will be general manager.

The Fairbanks Company of Montreal has just furnished the Ontario Rolling Mills Co., of Hamilton, with an improved furnace charging scales of the suspension pattern. In this scale all the levers supporting the load are over head, thus leaving all the working parts free for inspection, and making them all the more durable. The scale has six beams to indicate the various required amounts of different material necessary for the proper composition of the product of the furnace. The scale is built of steel and iron throughout.

The income from Woodstock's waterworks this year amounts to $\$ 9,200$.

A $\$ 35,000$ waterworks by-haw will be submitted to the ratepayers of Medicine Hat.
J. B. and J. W. Mc.Manus are to build the Burnt Church,入.B., whari at $\$ 13,000$.

The Hamilton, Ont., Bridge Co., is to build the Appleton. Oul., bridge; price, $\$ 2,560$.
R. Gramt, contractor, Toronto, is building the waterworks dam, London, Ont., at $\$ 40,000$.

Hunter Bros., Kincardine, Jnt., have finished the bridge ower the Grand River at Elora, Ont.

Camplell Reeves, Montreal, has bought a controlling interest in the Canadian Locomotive works at Kingston, (mt.

The business of the Tingley \& Stuwart Manufacturing Co., Toronto, rubber stamps, dies, etc., has been bought by Bernard Cairus.

Willis Chipman, C.E., is superintending the construction of waterworks for St. Marys, Ont., for which the council recemty: appropriated $\$ 25,000$.

Leamington. Ont, has a tax rate this year of 15 mills. The town owns the water and gas plants, and the profits from these permit oi this low rate.
C. IV. Cadwell, oi the Cadwell Silex Stone Co., has been arpointed by the Amberstburg, Ont., Quarry Co. to take charge of the whole quarry output.

The Goldic-McCulloch Co. has recently been given an order ior $\$ 4,000$ worth of sugar making machinery by a company doins business in the city of Mexico.

The contract for supply of lumber and timber for the construction of the Dominion Iron and Steel Co.'s works at Syiney, C. B., has been awarded to A. F. Bury Austin, Montreal.

The Moureal Rolling Mills Co., has, secured a site comprising about sisteen acres from the Dominion Iron and Steel Ccmpany, near the southern boundary of their works at Sydney. Cape Breton.
Mc.Namus and Lowe, contractors, of Halifas. N.S.. have the contract for the foundations of the works of the Dominion Iron and Steel Co. at Sydney, C.B., the price being $\$ 150,000$. Two years will be required to complete the plant.

The drilling of artesian wells for the Waterloo, Ont., water.works by Leaper Bros., of Hawkesville, Ont., has been successful, as not only is the flow abundant, but the water is of excellent quality. The supply from the three wells sunk will be in the neighborhood of 750,000 gallons in 24 hours, at least five times the quantity consumed at the present time.

The Trent Valley Peat Fuel Co., Peterborough, Ont., has placed an order with the F. D. Cummer \& Son Co., Cleveland, O., for a Cummer Dryer. The dryer will be used for drying peat preparatory for pressing into briquettes. The dryer will have capacity for evaporating $21 / 2$ tons of water hourly from the wet peat, which would give about 60 tons of dried peat per day oi 24 hours.

A prophet is not without honor, etc. The aphorism would seem to apply to City Engineer Jones, who visited London, by ibvitation, a short time ago, to advise the aldermen how to stop . damage from flood in West London, while Brantiord city council consults a Hamilton engineer to devise means to prevent West Brantiord from being flooded.-Brantford Expositor.

The Alberta Railway and Coal Co., Lethbridge, N.W.T.. has ordered two 150 h.p. Mumiord improved boilers from the Robb Enginecring Co. It has had three of them in use for aleut a year, and this order speaks well for the satisiaction they have given. The makers of these boilers claim they are more elincient than any other type in use, while they cost less than a water tube boiler.

The Hamiiton Bridge Works Company is rushed with orders, and is said to have work enough aliead for eighteen motiths to come. Its premises are too limited to permit of incuasing its facilities on the site now occupied, but negotiations are proceeding through R. Mackay, for a five-acre site in the northeastern part of Hamilton, Ont., where a considerable ex:ension of the works would be made.

The Revelstoke, B.C., council has appointed S. L. Saunilers chicf of the fire brigade at a salary of $\$ 80$ per month or the balance of 1899 . The council will establish an electric fire alarm system at an estimated cost of $\$ 600$.

Frederic Duclos, plumber, 78a Inspector street, Montreal, has assigned at the instance of the Star Iron Company, with liabilities of abo:t $\$ 25.000$. The chief creditors are: Dame F. Duclos, \$,000; Royal Institution for the Advancement of Learning, morigage, $\$ \$, 700$; Walter Andrews, mortgage, $\$ 3.500 ;$ D. Nicholson \& Co., $\$ 1,333$; Star Iron Co., $\$ 859$ A. Prudhomme et Frere, $\$ 614 ;$ T. It. Goulet, $\$ 520$; Chas. Depocas, $\$ 600 ;$ J. Douglas, $\$ 500 ;$ S. A. Phillips, mortgage, $\$ 1,250$.

The Maritime Stove Foundry Association was in session carly in August in St. John, N.B. Halifax, Yarmouth, Monc10n. Sackville, Amherst and St. John makers were present. A satisfactory agreement as to prices of hollow ware was reached. It was determined to increase the price of repair castings to sis cents per pound and to increase the price of stoves and other foundry products five per cent., the change to take effect at ones. A resolution was adopted urging retailers to form local associations to overcome the evil of price cutting.

The Hoepfner Refining Company, Ltd., Hamilton, Out., has been granted letters of incorporation. Carl Hoepfuer, oi Frankiort-on-the-Main, Germany, dector of philosophy, is at the head of the undertaking. The company purpose "to mine smelt, refine, manufacture and sell zinc, lead, copper, nickel and other metals." The share capital of the company is placed at $\$(00,000$. The provisional directors are Messrs. Carl Hoepfner, David Maclaren, Ottawa; Andrew T. Wood, John M. Gibson. John Moodic and John Patterson, Hamilton, and Nathaniel Dyinent, of Barric.

The MeEachren Heating and Ventilating Co. had a very: prominent exhibit of their lans, blowers and valves at the Toronto Exhibition. One feature was a handsomely decorated ad-inch fan in operation. There' was a stock oi blowers ranging from 30 inches to 90 inches in diameter; a boiler leed pump. and samples of the firm's new back pressure valve, ranging from 2 inches to 6 inches, and which can be used on either horizontal or vertical pipe. The firm's hot water heater "Little Wonder." was also shown in the stove building. This firm has the contract for the heating and ventilating plant of Prince oi Wales College at Charlottetown, and the P.E.I. hospital of the same city. The 90 -inch steel-plated fan shown at the Exhibition lias been sold to the Granby Rubber Co., to be used for drying rubber.

Slectric Tlashes.

D. F. Whidden has bought out the Antigonish, N.S., electric light works.

The Kay Electric Motor Company has assigned to Sheriti Middleton, Hamilton.

At a recent directors' meeting the Royal Electric Co. declared a quarterly dividend of 2 per cent.

The electric light building at Woliville, N.S.. which was destroyed by fire a short time ago, will be rebuilh at once.

A project to put in an electric street railway will probably come before the Chatham, Ont., council in the near future.

The electric plant at Petty Harbor, Nid., is now under censtruction. A liead of 200 fect is being made available.

The Rossland Sentinel lias installed in its printing establishment one of the Royal Electric Co.'s S.K.C. two-phase motors to drive the presses.

A project is mooted to connect the various small towns along the Rideaut canal and lakes by means of a trolley line. A very large water power is available at Jones' Falls, Ont.

Frenyear and Hatmeyer of the Westinghouse Electric Co., Buffalo, and E. Baxter, Fort Eric, Ont., propose to build an electric line from Fort Eric to Chippewa, Ont.

It is said that the Royal Electric Co., of Toronto, has made application for a franchise for an electric railway between Barric and Allandale, a distance oi about a mile.
T. W. Clark, Bridgewater, N.S., has the contract for constructing a power house, wheel pit, conduit and tail race at Niton, N.S., for Liverpool's electric light system, at $\$ 2,750$.

The several companies that control the pulp mills, the electric plant and water mains, the carbide and iron works at Sault Ste. Marie, Ont., have been consolidated and capitalized at $\$ 0.000,000$.

It is stated that the two electric companies of St. Hyacinthe, Que., may soon pass into the hands of M. Dubrocard, Lyons. France. It is said that the price to be paid is in the viehnity of $\$ 175,000$.

The name of the Cataract Power Company of Hamilon has been changed to the Hamiton Electric Light \& Cataract rower Company, and the capital is permitted to be increased from $\$ 250,000$ to $\$ 3,750,000$.

An action for $\$ 10,000$ damages has been entered against the Royal Electric Company by J. Cyr, father of the boy who was killed on St. Louis street, Montreal, a few weeks ago while trying to eatch a bird on the branch of a tree.

We understand that the Cleveiand Seed Co., Pieton, Ont.. las placed an order with the Royal Electric Co. for a complete electric lighting plant for its warehouse. The dynamo is of 200 iglit capacity, and about too lights wired, up.

The city of Hamilton has received $\$ 3,780.55$ in street railway percentage for the last three months. The city of Toronto has reccived $\$ 12,721.03$ from the same source for the month of July alone. The city of London has just paid out $\$ 3.400$ for militia expenses on street railway account.-London Advertiser.
J. C. Clark, Ayr, Ont., is ps moting an electric railyay irom Berlin to Port Dover, Ont. No bonus is asked, only the right of way through the towns. The road starting from Berlia is to pass through Waterloo, Ayr, Paris, Brantiord, Boston. Wateriord and Simeoc, to its termimus at Port Dover.

A number of the electrical men employed by the Electric Light \& Power Company and Bell Telephone Company met at the Victoria Hotel, Hamilton, Ont., and discussed the andvisability of forming a local branch of the International Electrical Association. Another meeting will be held shortly, when the electrical workers, including linemen, etc., may organize.

The Central Manufacturing Co., Chattanooga, Tenn., has furnished materials for the power plant at Ogden. Utah, U.S.. and the plant of the Telluride Power Co., Salt Lake City. U.S. The Central Manufacturing Co. makes a specialty of yellow pine cross-arms, oak and locust insulators, pins and brackets.

The Renfrew Electric Light Company is being organized with a proposed capital of $\$ 50,000$, of which about one-half has: been already subseribed. The net company will embrace at least one of the existing electric lighting companies, and will V undertake to supply power as well as light. It is an outcome of the development of the water power of the Bonnechere river. at Renfrew.

Thos. Vaughan, a young man emplojed in the Royal Electric. Co.'s works, Montreal, was seriously injured, August zoth. lie was working at one of the dynamos, and turned the wrong switch, with the result that he received a current of 10,000 volts. He fell unconscious, but when taken to the hospital revived. and is recovering.

Users of electric lights in Parrsboro, N.S., pay 19 cents for ${ }^{10}$, and 30 cents for 16 candic power, with an all night service. Until lately, although the streets are well lighted with 28 are lights, enough profit was made out of the incandescent services r at the prices charged to nay for the street lighting, which in many towns would cost between two and three thousand ciollars.

At a recent meeting of the directors of the Lachine Rapids Hydraulic and Land Company the statement of the company's business for the half year ending June 30 was very satisfactory. showing a gain of a hundred per cent. over the corresponding period last year. The directors declared a half-yearly dividend of 2 per cent. on the paid-up stock of $\$ \mathrm{t}, 250,000$. This dividend was earned after paying 6 per cent. interest on $\$ 600,000$ worth of bonds. It was also stated that W. Davis \& Son, contractors, had been paid in full; and that satisfactory progress was being made at the new works.

The Hamitoon street railway has been taken over by a syndicate representing the Cataract Power Co., composed of Hon. J. M. Gibson, J. Dickenson, J. Moodie, Hamilton, and J. A. Kammerer, Toronto.

The Aptus Vencer Company, Albert, N.B., has placed an order with the Royal Electric Co. for a complete electric lighting plant for its works, the plant to be in operation within four weeks of date of order.

Bennett Bros., who own and operate a Rour mill at the corner of Parke and Market strects, Hamiton, Ont.; are installing in their premises a 40 h.p. S.K.C. motor to drive their mill. power being supplied by the Cataract Power Co.

The Willson Carbide Works Co. has orders much in excess of its capacity. When the new works at Ottawa are completed the company expects to be better able to keep up with this enormous and growing demand for calcium carbide.

Work has been begun on the development of the Shawenegan Water and Power Co.'s plant at Shawenegan Falls, Quebec, and is being pushed night and day. The Royal Electric Co. has installed for the contractors one of their 15 light T.H. are machines and lamps, lighting the entire work.

The Hamilton screw works of the city of Hamilton are another of the converts to electric power, having shut down their steam plant, and are now being supplied with power from the wires of the Cataract Power Co. The Royal Electric Co., of Montreal, is installing a $40 \mathrm{~h} . \mathrm{p}$. S.K.C. two-piase motor. This adds another smokeless chimney to the many now in Hamilton.

Henry T. Duck, Toronto, of the Enginecring Contract Company of New York, has just been awarded a contract by the Canadian Electric Light Company of Quebec for a large concrete dam, with sluiceway and bulkheads, the foundations oi power house, supports for flume pipes, tail race, etc., at the Chaudiere Falls. The contracts for the power house, the hydraulic and electric machinery and the transmission line will be awarded in a short time, and it is expected that the company will have power to dispose of in this city within some nine months. T. Pringle \& Son, of Montreal, are the engineers in charge.

Liverpool. N.S., is installing a complete electric plant to fumish arc and incandescent lights ior the strects, and incandescent lights for indoor use. The by-law was voted on some time ago. and an order has been given to the Royal Electric Co. for a complete electrical equipment, consisting of one 75 k.w. S.K.C. two-phase alternating current generator, with exciter and switchboard complete, also a complete switchboar:l and regulating apparatus for twenty-five 2,000 C.P. enclose:1 alternating are lamps for the streets, as well as the necessary transformers and materials for installing 2.000 incandescent lemps, the whole plant to be in operation within six weeks.

Contracts have been let for the construction of a building in be temporarily occupied by the Edgerton Storage Battery Company, Hamilton, Ont. The building will be 75 by 125 fect, one story high. As soon as the building is in running slape another building will be erected for a main faciory, and this one will be used as a storchouse. It is said the company will shortly be capitalized at about half a million dollars, and has work now ahead sufficient to guarantee its success. It is the intention of the company to use the Hamilton works for its export business. The zinc that will be used in the construction of the batterics will be supplied by the Hoepfner Refining Company.

The new steam plant power house of the Metropolita: Street Railway Co. at Bond Lake, has been equipped by the Goldie \& MeCulloch Co., of Galt. There are two cross compound condensing Wheclock engines, $171 / 2$ inches and 32 inches iv 42 inches, and supplying $\mathbf{t , 0 0 0} \mathrm{h} . \mathrm{p}$. The fly-wheels are t8 feet diameter and 44 inches face. There is a battery of four boilers, each 73 inches diameter and 16 feet long. The clectrical equipment is of the Westinghouse type, the order having been placed with W. A. Johnson, ander whose superintendence the plant was instafled. There are two 275 k.w. generators at Bond Lake, and two $250 \mathrm{k} . \mathrm{w}$. generators at the sub-station at York Mills. The plant is arranged so that alternating and direct current can be used interchangeably.

One man was instantly killed and ano:iber seriously injured Iy coming in comact with a live electric wire at Sherbrouke. Gue., Augnst 26th. Lonis Benoit, whose home is near Waterloo, Que., was killed, and Simeon Roy, of Sherbrooke, seriunsly injured. They were in the employ of the Gas and Water Company, and had been instructed to remove a certain are lamp. Not having a crant to the windlass by which the lamps are lawered. Roy took hold of the cable which runs up the nole. :and to which the lamp is suspended. In lowering the lamp in this way he pulled this wire to one side, and it came in contact - ith the electric light wire above. When be felt the shock li: shouted to Benoit to cut the wire. The latter seazed his pliers i.s one hand and with the other grasped the deadly wire above the place where Roy held it. The result was that the full cur1.at oi 2.000 volts passed through Benoit, and Roy, who leeld the wire lower down, was relieved and fell to the ground uncomscions. hut alive. Benoit was dead before lelp reached him. koy will recover.

Railway] [atters.

The C.A.R. train between Montreal and Ottawa. Ont. jumped the track lugust gth and seven persons. including the angineer, were killed.

Two locomotives for the Quebec \& Central Railway are leing built at the Kingston locomotive Works. The boiler: ior these wo were tested recentle.

The Hull City Council has decided to give H. J. Beemer a $\$ 30.000$ bonus towards the erection of railway shops, cic., in Hull. A by-law will be submitted to the people.
C. R Reid is buitding the stations on the Coast Railway, N.S.. at Lower East Pubnice. Wond's Harbor, Upper Wood's Harbor. Shag Ilarbor, and Barrington Passage.

In anticipation of an extraordinarily large grain crop in the Aorth-West and Manitoba, the C.P.R. has this season added 2.000 box cars, making 6.500 availabic for sandling the present croj.
E. Berryman. C.E.. has completed the exploration survey oi the Atlantic \& I ake Superior Railway Compan:y. between Port Daniel and Gaspe Basin. The raiway will reach Gaspe luasin by the valley of the York river.

A nell station buibding at Rat Portage, and a twenty-stall condhouse with turnable. ior the Canadian Pacific Railway, toeether with rock excavation in: citension of tracks to company's yards at Rat Portake, as now goug on.

It : said that aiter many months of survering and the expenditure oi much money. the C.P.R. enginecr: have at last discovered a ieasible ronte for a railway over the divide between the Kettle and Okanagan River valleys, and to the south oi Camp McKinney.

Win. Mackenzic has closed coniracts in five-mile sections wi the Rainy Rwer railway with John C O'Acill. ni Kemptville: John R. Turnbull. Winnipeg: McGillivay and Glecson. Hugh Mam, and Luke Madigan, aggregating fity-five miles (1) be finished beiore winter sets in. John R. Turnbull also ecceived a contract for buldang all bridges and trestles beween Sanioy and Fort Wilham.

Sotice is hereby given that an application will be made to line Parlament of Canada, at the next session. for an act in incorporate a company under the name of the Densche Kiondeik Gesellschait. to construct a sailway irom Dawson City in the linkon Territory, along Ronanas Creek and across the i ome to Dominion Creck. covering a distance of about fityfice miles, with power to buld branch lines, cte.

A horse and carriage containing five passengers made a irial trip across the new Victoria Jubilec bridge last month from the Montreal side, and returned. The occupants of the s:arriage were G. B. Recuc, gencral trafic manager; F. H. MeGuigan, gencral superintendent; J. M. Herbert, superintendent oi the eastern division: R. P. Dalion, superimendent ri: Montreal terminal, and F. H. MeGuigan, son if the gencral wperintendent.

The mammoth new romnd honse of the Grand Trunk Railroad at Sarmia has been turned over to the company. It is one of the finest of the kind on the Grand Trunk System!? The round-house. which is situated about a half mile west of the depot, is buile of white brick, with stone foundation and gravel roof. The total length is about 760 fect, the depth 76 feet, and the height 20 fect. There are 30 engine stalls, each accommodating one locomotive. The foundation of these stalls is composed of four fect of brick, and two feet of cement. They have been thoroughly tested and have proved entirely satisfactory to the company's inspector. In addition to the round-house proper, there has been constructed an office and machine shop building, 56 fect by 32 feet, and a 70 -foot turntable.

J [ining $]$ [atters.

A single crystal, weighing over half a ton, was taken irom the 'Tell Bros'. mica mine, near Westport, Ont., recently.
T. B. Caldwell has sold his iron mine at Calabogic, on the K. \& P. railway, to the Hamition Sted \& Iron Co., Limited, Ilamilton.

George E. Vickers, vice-president and manager of the Canadian-simerican Oil and Natural Gas Co., is boring for oil near Belleville, Ont.

Natural gas has been discovered at Clarkson, between Toronto and Oakville, Ont. But as yct the quantity avalable has not been detuermined.

The British Columbia Southern Mine, Ltd., operating the Gertude mine in Rossland, B.C., has ordered a complete lighting plant from the Royal Filectric Co.

A rich find of free gold is reported as having been made necar liabigoon. Ont.. north of Dinoric, in the neighborhood oi Lake Minnisturtle, by Jos. Bouston, a prospector.

Nichols \& Son, of New York, have secured an option on the Greorge Mellraith iron mining property on the fourtis concession of Darling. I-anark County, Ont., and will develop it in the next few months.

It is reported that a large vein of copper has lacen discovered, cxiending from White Horse Rapids, on the Yukon. to a point on the Dalton trail forty miles from the Lynn camal. It is said to be exceedingly rich.

Near Cascade, on tise Columbia and Western railroad. which the Canadian Pacific is building from Rossland into the Boundary Creck district. McKenzic \& Mann, contracturs, have discovered ore. running high in copper, gold and silver. Assays have shown as high as $\$ \equiv 0$ to the ton.

The Coleraine Chrome Mining Company has been incorperated with an authorized capital of $\$ 300,000$. and licadcinarters at Montreal. The incorporators are: Hanson and Ferguson. brokers: R. Wilson-Smith. Hon. A. A. Thibaudenu. V. E. Blumhart and Honore Favreau, Montreal, and Hon. A. Desjardins. Maisonucuve.

Paul Johnson. MI.E., a graduate of the Royal Technical High School and Mining Academy, of Stockholm, Sweden. is to superintend the building of the smelter of the British Columbia Copmer Sriching Co.. at Grecuwond. is.C.. ©sperth:r with John Nirborn, of the Union Iron Works. San Francisco. which company has the contract ior the iron work.

The Sultana mine. Iake oi the Woods, has been sold by J. F Caldwell, the sole owner. to an English company int Si50.000. The mine comprises about 70 acres. with a vein about 30 fect wide on the surince, and rummer about $\$ 7$ to the ton in gold. Its gross ounnt for three years, with a ten-stamp mill. averaging $\$ 3.000$ per weck, and with the thirty-stamp mill put in last fall the carnings have beer: at the rate of \$151,000 per year.

James P. Howley, F.G.S., geologist to the Goverament of Newioundland, has recently presented an oflicial report on the mincral exports oi the colony from 1858 to 1809 , inclusive, which will shortly be published. In regard to the coppet ore. Mr. Howley gives a list of figures showing the export of
copper each year from 1888 to 1898; the value of which he finds to be $\$ 5.007 .638$. The value of iron pyrites, mainly shipped from Pilley's Island, during the same period, was $\$ 1, \$ 22,250$. Chrome iron was shipped to the value of $\$ 70,800$, mainly from Port-au-Port. The value of iron ore shipped from 1895 to 1898 was $\$ 200,140$. The total value of all minerals exported, $1888-88$, was $\$ 7,829,158$. Of slate, $\$ 1,350$ worth was shipped in 1803, and of the last-mamed article Mr. Howley states that some of our deposits are counal in quality to the best Carmarvon slate in England. and betuer tinau any used in the United States. Of the petroleum wells at Port-an-Port, Parsons' Pond and other places, Mr. Howley speaks in favorable terms. Indications of petrolemm have been found over large areas on the west coast.

甲ersonal.

S. S. Glass has been appointed to the charge of the electrical and steam plamt in the Victoria Hospital, London, Ont.
E. I. Sitton, manager of the Electrical Construction Company, London, Ont., was married a short time ago in that city to Miss Kate Kelley.
J. J. York, enginecr, in charge of the plant in the Board of Trade Building. Montreal, has resigned, and accepted a similar position in the St. Lawrence Sugar Refinery.

Arch. Rankin, marine architect, who formerly practised in Teronto, and is now chief architect to the American Shiplutilding Co., a combination of shipping interests recently efiected at Cleveland, was recently in Toronto on a visit.
J. A. Calder. of Halifax, N.S., and member of the weilknown firm of Wim. Muir \& Sons, spent a day in Toronto on his way west. Mr. Calder was taking estimates for a cormmeal plant he proposes to install at Dartmouth, N.S.
H. P. Archibald, engineer, formerly of Antigonish. N.S. has been appointed superintendent of the Lethbridge. N.W.T. Waterworks \& Electric L.ight Co., Ltd., and has now taken over the charge oi these works.
W. A. Peck, representing the O. W. Bullock Co., of Springfield. Mass., was in Toronto for a few days last month. Mr. Peck is a well posted travelier, and has been engaged in the tool supply trade for some years past.
W. B. MeLean, a graduate of McGill College. Montreal, for the last three montis employed in the drafting rooin of the Robb Enginecring Co., Amherst, N.S., will continue his technical studies in Manchester, England.

John Bosence. becomotive fireman. Fairville, N.B.. was seriously injured in a very unusual way. The water glass on the boiler exploded and the shattered tube flew, one piece striking with great force in the young man's back, entering on the right side near the border of the shoulder blade, penetrating right through the right lung and then striking a rib.

Archibald MicBride. Kingston, Ont., died after a short illness August Gilh. He cante from Ircland 60 years ago with his parents, settled in Kingston, and has lived here ever since. During that time he was continuously employed by the Richelicu \& Ontazio Navigation Company, as engineer, serving on all their boats. His last boat was the "Corsican," on which he was working till within three weeks of his death. He was a brother of Robert MeBride, engineer on the R. \& O. stcamer "Bohemian," and Samucl McBride. carpenter at the Royal Military College, Kingston.

Four of a gang of 16 men engaged in laying the foundation of a pier of the Midland railway bridge acioss the Shubenacadic river. Nowa Scotia. were drowned August zoth in a caisson sunk to the bottom of the river. It was supposed to be air tight, the pressure of air from a plant on the shore kecping the water out. Through some blunder the saicty valves were opened and the air rushed out, and the water rushed in to take its place. The men scrambled for the ladder in the narrow air shait. Twelve ascended in safety and four perished in the rising flood. Their names were I.uke Peters. James Wilkes, William Donegan and James Donahoe, of New York.

William Power, a veteran chipbuilder, died in Kingston. Ont., August 29 th, after a prolonged illness. He was 78 years of ag̃e, and was born in Prince Edward Island. He was engaged in shipbuilding at Quebec, Montreal and Kingston, and many samsus ciaft were of his handiwork.

Three rescarch scholarships of $£ 150$ a year, temable for two years, have been granted by the Exhibition of $\mathbf{8 5 1}$ Commissioners to W. B. McLean, McGill University. Scholarships have been continued for a second year to W. G. Smeaton, Toronto University, and E. II. Archibald, Dalhousie University, Halifax.
W. F. Pike, M.f., Ph.D., for twents years polessor of chemistry at Toronto University, has resigned, and will remove shortly to England, where he has purchased an estate. He had a private mechanical laboratory, which be equipped at an expense of about $\$ 20,000$, which was acknowledged to be the most perfectly appointed machine shop in Torento.

While raising vie of the trusses for the rooi of the new Methodist church building at Fergus, Ont., John Moffat, contractor for the woodwork, was almost instantly killed. The truss was being hoisted with block and tackle, and was almost at the required height when one of the guy-ropes broke. Mr. Moffat saw what had happened, and was running to aroid the falling timber, when he was struck between the shoulders and died almost immediately.

$] \sqrt{\text { arine }} \sqrt{\text { ews. }}$

P. Griffith, St. James strect, St. John, ג̇.b., boat builder. has received an order from the Fishery Deparment. Oltawa, to build a 20 foot gasoline launch, for use at the biological station, St. Andrew's, N.D.

A despatelt from Halifax, Ni.S., states that the barque "Strathome," Maitland, N.S., now at Cork, Ireland, has been sold on foreign account for $\$ 14,000$. She was buik in $18 \$ 3$. and is 1,008 tons register. This is said to be the fifth large Nova Scotian ship sold within a month to Italians. Within the past twelve months there has been a demand ior wooden shijps oi this class, and prices have advanced materially.

There is considerable speculation going on is marine ciecles orer the rumor from Ogdensburg that in all probability the five large steamers of the Ogdensburg line will be made passenger boats by the opening of next season. Plans, it is said, have already been approved oi. This, if it goes into effect. will give Chicago direct communication with the lower lakes.

The Allan line steamship "Sicilian" has been hunched. The "Sisilian" is of 5,000 tons, and is especially intended for freight service, but will have accommodation for about 60 first cabin as well as for a number of stecrage passengers.

The Lake Eric Navigation Co., Lid., $\$ 40.000$ capital, has been incorporated by E. C. Walker, Walkerville: F. H. Walker and J. H. Walker. Detroit: S. A. King. M.D., Kingsville. Ont.: W. Woollatt, Walkerville.

The item in the estimates of $\$ 350,000$ for Pors Colborne is "on account." The plan now in the department contemplates. the Minister of Public Works states. not only the deepening of the harbor, but the erection of berths and slips for the mooring of ships as well as the construction oi breakwaters.

At a mecting a short time ago of the promoters of the Quebec. Hamilon \& Fort William Navigation Company it was understood. that R. A.-Lucas, Hamilton. Ont., would take the place of the late Senator Saniord as one oit the incornorators of the company. It is the intention to have two new boats buite this year, in readincss for next spring's business.

The R. \& O. Navigation Co. made a service sest of the syeced and coal consumption of the new steaner "Toronto" the olher day. The builder's guarantec was a speed oi 17 miles per hour oa a consumption of 2 lhs. of coal per h.p. per hour. On the test mate she attained an average speed of $17 \mathrm{i}-3$ miles per hour on a consumption of 1.76 lbs . oi coal per h.p. It is said that the best secord hitherto made by a side-wheel steanacr having a tripic expansion engine, and showing a like speed, is a consumption of s . 80 lbs .

FIRES OF THE MONTH.

August 1st. Flectric light phant, Woliville, N.S.; damage, $\$ 8,000$ - Mugust i,ph. Monty's planng mill, Roxion Poul, ue:ar Gramby. Que.; damage, \$15.000; msurance, St $\mathbf{5 0 0}$ - - lugus t.ph. Munson $太 心$ Burghts sitw-mill Magog. Quebec: damages, $\$ 5.000$. insurance, $\$ 1,000$. August fith. James Rubson \& Son's tamery. Oshawa Ont ; loss. $\$ 4.500$ - - Iugust iSth. St. Ferdmand d'llahfas, Que. convent of the Sisters of Clarty; damag:. $\$ 50,000$. August solh. Ontario Bux Co. Hamiton, Ont.: damage, Sto.000.-August 2fth. Scarfe \& Co., Brantiord. varmsh factory; damaged slightly.--September sth. Power house of the Niagara Falls Park \& River Ratway; loss on plant \$75.000; building. \$10.000.

THE ASPHALT BLOCK.

II: C. uilli.AlkGt, C.E.

The new asphat block favement, so-called, is new to Canada. though known and used in a few places in the United States ior some time. It is now being laid along the Grande Allee, or St. L_ouis road. Quebec, extending from the Gate to De Salaberry strect. a rmoin 3.700 feet; and the width being 17 fece from curl) to carl. The area. anchudmg crossugs. wall be scme 20.000 yards. which at 25 bricks to the yard (the block being $12 \times 4 \times 4$ inches), will require half a milhon blocks. The writer was not slow to recommend their use; as, beiore he ewer heard of them. he had urged on the city conncil in his yearl: reports, an addition oi grit or crushed quartz to the powdered rock asphatt, to suit it to grades where the ordinary sheet asphalt would be dangerous. An English engineer naned l.ivingstonc had also. aiter an exhaustive visit to United States reported iavorably on the use of the asphatt block; his aeport apparing at length in The London Surveyor, an enginecring journal highly thought of by the proiession.

The asphatt block we are using is made at Hastings an th: Ifudson, some 30 miles from New لork. by the Hastin; Paving Company; 60 Broad strect. Sew lork. The block or brick, as it may be called, is made up of some S_{7} to 90 per cent. oi crushed quartz. granite or trap rock. reduced to the cons:st eney of coarse sand or fine gravel, in a matrix or binding maxthre oi Trinidad asphalt, heated to a temperature oi 250° to $300^{3} \mathrm{~F}$ the two thoroughly mined and forced imto and out of stect monlds several inches in thickness in staml the stress, utider a jressure oi 5.000 thes to the square inch. This siate ment is exact. the writer having visited the company's premises and witnessed the process; while he also saw the paving beine iain by the company at iS3rd strect. New lork.

Chere is no doubt but what the mixture oi grity matter with the asplalt or bitumen is the only thung eapable oi rendering the material suitable to certain grades of roadway. A portion of 183 rd strect, New York. falling iowiards the lindson. has a grade of nearly 1 in 7 or S. and will. I beheve, prove in lie too alrupt a one for such material: grante setis bemg better adnpied io such inclines as in Mountan. Palace. Canotterne. Dambouracs and Genciese strect hills. Quehec. Nenther ss ithe scoria brick suited to such slopes. as wituess the upper portion oi Nommain Mill, Quebec. Where against the written opinion oi the city engineer, they were haid. instead oi contmange the stome paving to the north side oi the electrac ralwar track, at the corner oi the nostofice and preslyitery. where the outer rail at curic had to be haid to grade oi inner ratl at least. and sianha be eren higher to guard against deraiment by centriiugnal artion.

The paving on Grande Allec is laid on a bed of sand about bali an inch thick or more. overlying a ioundation oi 4 inclic: oi concrete Thic is laid on the old bottom on which the tamarack blocks were laid some 12 years ago. This ioundation is composed of two thicknesses of inch boards at right angles. cach to the other. The boards are still int a sound state of peeseriation. as wood gencrally remains when removed from atmospheric influences, and especially when in or under water. or in wet or moist scils: while wond haid in dry sand or loam does not endure beyond a ic:s years companatively. I should have preierred. nevertheless, hav:ng the wood remeved and replaced by so much concretc: but the extra cost would have been some 25 to 30 cents a yard ne mure. and reasons of cconomy
prevailed, as i: was held that the boards having already stoud gond for twelve years would hoid oun indefinitely; timber underlying old macadam having been taken up in other parts of the eity, which had been there for over 50 jears, and still as sound ind clear of disculoration as the day it was laid

The 4 -ineli concrete, as stated, was land drect on the wooden Hooring, where the height of the electric track allowed of no intermediate material, but where the rals are lad at a higher lued to rectify grade of roadway, the concrete is lasd on a 2 i0 3 iach bed of broken stone-hat is, of the old macidam picked from between the tracks and rails and spread over the boards. after removal oi the old wooden block pavement-the portion thereof ocenpied by the tracks having been taken :p two gears ago, when they were laid, and the levelling made up of broken stome.

And just here it may be well to state with regard to the life of a wooden pavement of round tamarack blocks, that while that laid on the Grande Allec, twelve years ago, as stated, was found to be in a dilapidated condition from dry rot, blocks are r:ow to be fonnd in the sample room, city engineer's office, city hall, Quebec, which on the occasion of laying water and drainage in Conillard street, were taken up after being there for more than thirty gears, and which though worn down by trafic some $=$ to 3 inches. or whole height of block reduced from S to 6 and sinches, were found to be, and are to this day as periectly su: ind as when laid some fifty years ago. The reason for this is that the Couillard strect blocks were cut and laid green. or will the sap in them, and which under the influence of moisture irom rain and the subsoil retained their sap, kecping the wood greet and wet, and thus preventing dry rot; whereas. due to the grub cpidemic of iS5j to 1889 , the worm feeding on the needle .il the tree, killed the tamarack, and this sapless wood being used on the Grande Allee instead of the live material, decay set in and dry rot ensued. The life of a wooden pavement is quoted at only seven years, execpt when creosoted or infiltrated with some antisejtic, while I had in my sample room, already mentioned. specimens of Australian hard woods. "Tallow" wood. " Mahogany:." "Blue Gum" and Jarrah, which to test their comparative endurance under similar circumstances of raific and exposure. were laid in one and the same street at Sydney: They were taken up after being there eleven years, and show only from $\ddagger \leqslant$ to $5 \leqslant$ of an inch reduction in height during the interval. and are still absolutely sound to the very heart. though slightily discolored.

Returning now to the asphalt block. which may cither be laid on a bed of sand overlying the concrete, as stated, or preicrably on a coating oi hall an inch of cement moriar; the blocks are haid close jointed, and are well ied to the layers, at the rate of 10 to 15 yards per man per hour (100 to 150 yarts pir day of to hours), but cxclusive of closers along curb stone. which require another man or two to cut them to length and liy: The overlap of the brick as laid in Niew York is 4 inches (:-3 of the whole block). and thus the opposite joints occur at only every third course: but as laid here. the lap is 6 inch:s (l:alf of the block). the joints thus breaking at every second or intermediate course instead oi at every third. engineers differins as to which is preferable. The whole is intelligently carried on under the loremanship of - Watson oi New Haven, on recommendation to F. Parent. the cotitractor, by the liastings Company. The next operation is ramming down. which is done by two men with a heavy bectle (some 90 lbs.), while a third drass a balf-inch plate of steel about 10 inches wide and a foot and a hali long. thus always cmbracing more than a brick in length and iwo in width, and this is moved backwards and for wards along the pavement in a way always to overlap the last portion receiving the impaet or the already consolidated surface.

Following this is the sanding oi the joints. for though the blocks are said to touch. there are always interstices of $1-16$ to $1 / \mathrm{of}$ an inch due 10 roughacss of surface, which allows fine dry sand to percolate the joint and fill it. This sand filling was a matter of anxicty to me. as I icared that during raing weather water might get at the loundation layer of sand and cause the blocks to settle; but no such settiement has occurred anywhere. cves: aiter a continuous and heavy two days min. This nonpercolation of suriace water into the joints between the bricks I autribute to the bricks' antipathy for water, the oily and greasy nature of the bitumen being antagonistic: or may be water percolates the broader of the joints to a certain depth only, due
to the repulsion referred to, and then acts as a bridge over which the rain water passes on and down the roadway.

When thoroughly sanded, or supposed to be, to all appearantes, the paving is openced to traflic. Then a slight tremor of the bricks causes the sand to settle in the joints and the sandillif process is repeated to saticty; the sand requiring to be srreened fine and absolutely dry (sun or Sire dried), without which it will not run into the narrower interstices. It is said, thungh I was not long enough in New York to notice the thing. that under trafice the edges or arris oi the brick gives, due to its plastic nature, and that thus the joint beomes filled in and absolutely impermeable to water.

The cost of the blocks is some $\$ 60$ per 1.000 , delivered at the mill or factory. Thus for transportation to Cimada, some $\$ 2$ per ton has to be added for freight, or $\$ 17$ jer 1,000 , the blocks weighing about 812 tons to the thousand. Again. there iv 20 per cent. duty to pay, a toll at Rouses Point of say $\$ 1$ to $\$ 1.50$ per large load. whariage, harbour dues, etc., cartage to site of paving at say 100 blocks or 4 yards sup., per cart load (1,700 to $1,800 \mathrm{lbs}$. with us). Now add taking up and removing old pavement, grading, levelling, coneretmg, sand ioundation and laying, and a minimm is arrived at, allowing 10 per cent. profit, of about $\$ 3.37$ per yard sup. of finished paving; while the unders ior the work ranged nu to $\$ 4.27$ per yard.

Certain precantions are to l:e observed in the delivery or rather before delivery, or wntil the blocks have sufticiently cooled down 10 allow of handling. piling and rough usege in barging and unloading. The bricks to prevent sticking or adhering should be sanded between the lajers. and especially on board the barge, witere during the hot weatior of July and August, and duc (o) superincumbent weight, they are liable to cling together, but can be easily separated with the chisel and hammer. I have also found some of the blocks (very few) to be slighly curaed, :s ii under pressure of overlying load, urged to hug the curved outline of the containing vessel.

The blocks, to save handling and hauling, are piled along the sidewalks on cither side. It requires about three or four lavorers, according to width of street, to keep the pavers or layers supplicd. The brick cuts well, and square, and casily urider a blow or :wo of the hammer. with a chisel 4 inches wide on edge, or wide enough to cover the whole breadth of block.

Between the track rails a row or course of bricks is first haid longitudinally within the rail on each side. This border course is laid to enter an inch, or as far as it will go under the upier flange or projecting liead of the rail; titting it the while to about the camber required (a quarter of an inch), when iour stretches just fills the remaining space between the oprosite berder courses. and the anderlying sand bed is, by the use of a mold or template run along the track, resting upon the rails, cambered up in a way to cause the paving between the rails to crown at level, or a quarter or hali inch over it, as may be desired; while the border courses so tilted and put in under the top of rail afford the space necessary for the car whed Range to run in; and again, the sloped groove or depression thas leit along the rail. instead of being square, which woulid catch and hold the whecls oi vehicles. allow the whed to m:ove out sideways without, as in the case of the square groove, tending to haul the gaving after it.

Where the fish plates and connecting wires occur (at every 30 feet or length oi rail). some of the border bricks inside the rail have to be cut longitudinally, which is casily and neatly dene by jumping the chisel along the brick, back and iorth, as in spliting a stone parallel to its length, or along the line of proposed fracture.

When the roaduay is donbie tracked, the space between the tracks is filled in Aush with top oi rait. or, as outside the tracks. a fuarter of an inch higher to allow of settling by ramming and under traffic; and as laid here, it takes just three and a hall hricks or stretches to reach from rail to rail. This space is alse cambered up by a sand template $t o$ hali an inch additional ahove the concrete; as any pavement laid fat always looks hollow, and any such hollow in a roadway looks as bad as wonly a hollow foor or deck. instancing at the same zime a want oi
forelhought by the engineer or architect aganst settlement. To ensure uniformity of curve or camber in cross section of roadway from the curb to curb or curb to rail, when the paving goes on along one side of the street, while the other remams olen to tralfic, the best, tasiest and quickest mode is to measure down from a line held tat across the roadway and resting on curb and curb or curb and rail. It requires two hands to hold the line, but where only one is available, the string at one end can be tied to a peg or to a brick left hanging in rear of curbstone, or in rear of rail before the track is pawed or stdewalk laid. This line is s:!ecessiacly held at distances of 3 to 4 fect along the roadway-when ordinates or vertical offsets are measured down from it to level of top of concrete-the ordinate aiones the rail being $4^{1 / 2}$ inches, or the thickness of the brick plus that of the sand-bed (less, if you wish, a quarter of an inch (o) allow for settlement by ramming and traftic) ; at or along the curb, the ordinate is say 9 to to inches, including depth of paving and height of curb there; over half way or thereaboat (the ege will do) between these extreme points another or third offset is taken, and two more, a fourth and fifth at points again half way (by eye) between the olhers.

To regulate height or level of peegs to be driven for top ai concrete, Mr. Watson lias an ingenious mode of offsetting by means of a stick with a notch in it at $41 / 2$ inches from leret oi string, one at 9 inches, and three others at intermediate heights as required and calculated in advance, or measured from a template cut to camber of roadway. He then sets and drives his peg home, or umti. , op of it is just at proper level io suit offset. These five . Ifsets have oi course to be repeated ior as many pegs on the other side oi the roadway, when in turn that side is being paved. and the paved side handed over to iral?:c.

To iorm the sand-berl, strips or templates $1 / 2-$ inch thick are: laid at distances along the road of 8 to to ieet; when iwo men. one at each end of a straight edge, move it and the sand with it along the templates in a direction parallel to rail and curb and back and forth until the sand is worked down to proper level. I had omitted to say that the paver or layer, instead of, as usual, standing on the mupaved portion, kecps on the portion already had; as standing on the sand-bed when prepared as abere stated would altogether jeopardize the regularity of the wor!:

This asphalt block patement is certainly an improvement oun the sheet asphalt as far as durability is concerned, it beina \ddagger inches thick, while the sheet is but one to one and a quarter irch. Again, the grit in it suits it to ordinary grades where the sheet would prove slippery and dangerous. D'either will this asphalt block be suitable for heavg traftic or ior quick or steep grades or inclines, where nothing but granite setts should be used. The sliect has been laid, against my advice. in such narrow and trafficy strects as St. Paul and St. Pcicr, Quebec, where on account of whecis travelling constantly in same line. the asphalt will soon be worn into ruts and hollows. The sliect is suitable ior residential strects, and especially where there are no rails, as in some of the strects at Wiestmount, Montreal. where. after, they say, nine years laid, it shows no sign of failure: but in St. James. Notre Dame and other strects, where the traffic is comparatively heavy and tracks exist, the asphalt lugins to give a quarter of an inch at a time along the rails znder the crosive action of the whects oi vehicles. and then it gocs on crumbling. a fraction of an inch at a time. until wide ruts are formed. which liave to be repaired.

The Hastings Company also manufacture hexagona! blocis for sidewalks. They make them ahout 2$\}$ thich, which is 200 heavy and expensive. I have adrised the company to reduce these to $13 / 4$ inch. or cten $11 / 2$ inch, as sufficiently thick to stand foot passenger traffic for years to come. We are about laying a quantity oi sidewalks in Quebec with these, which on account oi the greater measure of grit in them will prove preferable to the "mastic." as laid hot and rolled or smoothed with wooden pallets. The latter becomes somewhat disagrecable to walk on during hot weather. and especially while the sun shines hot upon it. when it almost instantancously softens to the consistency of putty or of soft or kneaded clay pualde. and the foot aclizally sinks into it. perceptibly, or say a sixtecnth of an inch or so. though it immeriately hardens agsin the moment the sun is obscured.

METAL IMPORTS FROM GREAT BRITAIN.

The following are the sterling values of the imports from Great Britain of interest to the metal trades in July, 1898.99 , and the seven months ending July, 1898 and 1899 :-

Hardware	Month of July.		Seven Months to July.	
	1898.	1899.	sigs.	
	t2,190	61.695	£12,502	E13,145
Cutlery	11.301	3.497	30.79S	29617
Pig iron	928	2.023	7.086	7.072
Bar, etc.	383	2.373	6.042	8.089
Railroad	-	36,533	6.972	57,228
Hoops, sheets, etc.	7.772	16,620	24,047	55,455
Galvanized sheets	8.236	5.071	32,071	35,474
Tin plates.	11.940	20.997	83503	98,091
Cast, wrought, etc., iron	1.839	6.877	15.208	24.412
Old (for re-manufacture)	499	$3+4$	3.574	2,003
Steel	5,001	13.079	32,643	43.626
Lead	+1.126	5.860	16.058	27.329
Tin, unwrought	2.550	2.925	11.223	12.44 ${ }^{2}$
Alkali	3.547	2,056	24.419	25.658
Cement.	2,270	3.534	12,153	16.236

SAND FILTRATION OF PUBLIC WATER SUPPLIES.*

bi k. S. hen, ISSOC. N. Cas. SOC. C. E. (Continued from last issue).
The layes of gravel serves to support the sand and to conduet the water horizontally to the under-drains. The exeessive thickness used in some oi the old filter beds is not at all necessary: 12 or 15 inches being quite sufficient. It should consist oi three or iour layers of graduated sizes. the top one being fince enough to support the sand without any liability of the layers getting mixed. Argund the openings mo the underdrains the separate stones should be carcinlly placed so as to avoid any possibility oi movement when the water begins to flow. If necessary the gravel must be thoroughly washed before being put in place.

In arransing the underdrainage system oi a fiter. which includes the gravel bed. the object to be aimed at is to cause the water to sink vertically through the sand, and as nearly as possible at a uniorm rate in all parts of the bed. In order to effeet this it is evidem that the resistance to horizontal motion in th: underdraining system mast be everywlere nearly the same. Attempts have been made to calculate the proper sate oi the andercanins, using formulae ior the now of water through gravel and sand oi various sizes. A discussion oi the matter will be found in the lieport oi the Mass. State Board oi Health for ISy2, and also in Allen Hazen's book on the "Filtramon oi Pablic Water Supplies." ply. 32-41. With round tile drains, and a daily filtration rate oi 2.5 million gallons per acre, Mr. Mazen suggests the following limits to the area whech pipes of the different sizes siould be allowed to drain:

Corresponding
To drain an area not

Diam. of drain.
4 inches
sinches
Sinches so inches
12 inches
velocity of water in drair.
0.30 it . per sec. 0.35 it . per sec. 0.70 ft . per sec. 0.46 it . per se:0.51 it . per sec. and a cross-sectumal area for the larger and man drams wi at least 1 - 6000 of the area dramed. With the rate mentioned this wrould give a maximmm velocity in the drain of 0.55 iect per second. These underdrains are variously constructed oi open jeinted clannels of stone or brickwork, or oi tile pipes with perforations or open joints. There is no advantage in spacin, ise laterats more than about 16 fec: apara. as the extra quantity of coarse gravel necessary would cost more than the saving in the pipe. In some filters the underdraining has been aecomplished by means oi a double buttom of open brichwork supported on arches or other arrangements of the same material. The lateral drainc usually rest unon the hottom of the basia. bat the main drain is often placed lower. If the top oi the drain is higher that the coarsest hayer oi gratel. that part should be closed to prevent the entrance of the fine gravel. In several of the ole! filiers vertical ventilating pipes extend from the under-drains

[^1]above the surface of the water on the bed. These are for the purpuse of allowing the escape of air from below, so as not to couse disturbance by passing through the sand. They are not used in the latest filters, as it was found that they were of no advantage, but rather a source of trouble, through the iormation of chanmels between them and the sand, which allowed water to pass withont filtration.

The basin which encloses the filtering materials must of course be water-tight; and in that respect the same care must be experienced in its design and construction as would be necessary in the case of any reservoir for holding water. Its depth will depend unon the thickness of the bed and the height to which the water is to be allowed to rise. but does not usually execed 10 or 12 feet. The bottom is usually level, or perhaps with slight depression for the lateral drains. The walls may be either vertical or sloping, depending upon the material used. Takins: into account the necessity of uniformity in the filtration rate a: different points of the bed, vertical sides are probably preferable to sloping. Local circumstances will as a rule, determine the best method of construction and the material to be used. The latler may include stone masonry, brick, concrete, earth embankments, puddle, cte. Concrete is a very satisfactory, and in most cases an cconomical material to use for any part of the structure.

If a roof is required it should consist of groined arches. supported on pillars, preferably of brick. Care is necessary to obtain a solid foundation for the latter, as the form oi roof will not admit of much unequal settlement. A good plan is to form the bottom of flat inverted arches, which will give a from and eren support for all the pillars; and the lateral underdrains will then lie along the hollows midway between the rows oi piers. With a rooi of this kind, vertical side walls will be more cconomical than sloping ones. But the plane suriace between the wall and the bed must be broken by projections, in orde: to prevent the liability of unfilered water passing along the junction: which remark also applies to the piers. It is to prevent this same contingency that the gravel layer is only carried to within 2 or 3 fest of the walls, its place being filled b; the sand which here composes the whole depth of the bed. Around the inlet and outlet chanbers there should be no gravel within 5 or 6 fect of the walls.

Manholes must be construeted in the roof for the admission of hght and air. Also a "run" for entering and removing the sand scrapings. etc. With piers spaced if or 16 feet on centres a light and strong roof can be buitt oi concretc at a very moderate cost. When the roof is finished it is covered io a depth: oi two or three fect with earth surmounted by a layer oi loam, which may be seeded down or laid out in flower beds, ete. For open filters the sides may be of earth embankments, made water-light by a layer of puddle or concrete. If of the iormer. a paving of brick is neecssary, which must be of sufficient strength to withstand the action of the iec where it is exposed.

Before proceeding wish the methods of operating a filtration plant we will discuss it with reierence to these imf:ortant ieatures. the inlet. outlet, underdrains, ete. With at gi:e: fow of water through the bed, the vertical distance H represents the head required to force this quantity through the surface film. the sand. gravel and underdrains. It is variously termed " loss oi head," "head on the filter," "filtering head." The depth of water in the majority of European fileer beds is usually irom 3 to 4 fect, with the fuil depth of sand. In some of the:c filiers it was allowed to rise and fall according to fluctuations in the removal oi the effuent. Such variations in depth, howeser, are found to bave and injurious effect upon the surface lager, and on the efficiency of the filtering process: in the newer plants. thereiore, they are provided against by an apparatus on the mouth of the inlet pipe. by which the water when it reaches a ceriain height automatically closes the inlet. These consist asually oi some form of balaneed valve worked by a fiont. In cref.uection whi an open filter. such an arrangement must be pretected from froct The inist opens into a small chamber at the side of the bed. from which it is separated by a wall. The water hows over the wall on to the bed. and is prevented from disturbing the suriace of the sand by patine it in- a short didance irom the chamber. Sometimes the water eiters by cucrfowing an open masonry channel extendine acrois the surface of the bed. The loss of head, corresponding io a given rate of fow ni water throuph the filter. will depend unon the catent to which the surface film has formed. and the friction in
the samd, gravel and underdrains; but under any given conditions it varies (within practical limits) directly as the rate. In some of the old filters, the outlet was connected directly to a clear water basin, or pump well; and the difference in level between the surface of the water in the filter and of that in the well was, of course, equal to the loss of head. Fluctuations in the draft upon the well produced corresponding fluctuations in the filtering head, and therefore in the rate, which was thus autu. matically adjusted to the demand. In others, however, sonte sort of apparatus was placed between the filter and the elear water basin by which the rate could be kept constant. This is now considered to be of the greatest importance for the reason that bacterial tests of the effluents have shown that marked deteriorntion invariably follows fluctuation in the rates. This is probably caused by the mechanical disturbances produced it the sand-bed and surface film. For details of such tests, see Report Mass. State Board of Health for 1894 .

In the newest plants, therciore, some kind of an arrangement is always provided for the regulation of the flow. Since the rate varies directly as the loss of head, it is immaterial which is regulated. Some of these devices, therefore, regulate the now directly, while others accomplish the same result by the indirect method of regulating the loss of head. In order that the iormer may be kept the same from one day to another, the later must be gradually increased as the period of service of the bed extends, so as to correspond with the increasing resistance of the surface layer. This is effected automatically in the device which was desigued by Lindley for the filters at Warsaw. The apparatus is contained in a water-tight chamber, connected on one side with the filter, and on the other with the clear water basin. The rate at which the water can pass from one to the other depends upon the depth to which the slits in the sliding pipe extend beneath the surface of the water. This is adjusted by weights at the other end of the chain which passes over a pulley: Thus the rate can be kept constant; and as the resistance of the bed increases the level of the water in the chamber will automatically adjust itself to produce the necessary differ. ences in level or loss of head.

In the method oi regulation devised by Gill ior the 「ege werks of the Berlin water supply, the outlet from the middle chamber is through a weir; and the depth of water on its crest, and, therefore, the discharge, is indicated by the height of the foat read on the scale. This is kept constant by means of the gate. The corresponding loss of head is shown by the differcnce of the readings on another scale. Kecping the water in the filtet always at the same level, a constant rate can only be maintained by the gradual falling of the level in the right hand chamber and a consequent wider opening of the gate.

As to the limit beyond which the loss of head should not be allowed to go, the gencral opinion seems to be that it sho:!ld not be greater than the depth of water on the bed, though the Lawrence experiments have not shown any bad effects from excecding this limit. As a general thing it may be stated that. everything else being equal, the higher the rate the poorer the quality of the filtrate. But with fairly low rates this deterioration is slight, so that entirely satisfactory results can be obtained with rates up 103 or $31 / 2$ million gallons per acre per day. Probably higher rates could be safely employed if very great care were exercised in the operation oi the filter. The relative effects of high and low rates from a financial point of view are discusscd iurther on.

When the elogging of the filter bed has become such as tn rencire a loss of head greater than the preseribed limit, the iniet is closed and the water allowed to drain away until it has sunk some distance below the surface of the sand. When this has become sufficiently firm, workmen enter the bed with planks wheclbarrows and broad flat shovels. With qiacse they carefully semove the suraice layer and pile it up in litle lueaps. which they aiterwards remote with the barrows. The depth removed varies from $1 / 2$ to 1 inch, and averages about S-to of an inch. The surface of the sand is then raked to loosen up the packing caused by the boots of the workmen. and aiter smoothing down any irregularities the planks are removed and the fitter is ready for another period oi service. The refilling begins from below by admitting through the underdrains filtered water from another bed in action. The object of this is to drive oatt the
air from the pores of the sand, where its presence in the form of bubbles would cause considerable unnecessary friction. When the water has risen a few inches above the surface of the sand, the lower comection is shut off, and the refilling is completed by means of the surface inlet. Before filtration proper begins the water should be allowed to stand on the bed for several hours; or the first million gallons or so should be wisted. The amount wasted can be reduced by beginning the filtration at a low rate, and gradually increasing it to the maximum. When the scrapings have reduced the sand-bed to the: minimun allowable thickness, the total amount remored, which has in the meantime been thoroughly washed, is replaced at one time. Before doing so the surface of the permanent layer, which is never removed, should be loosened up by being spaded over in a depth of six inches or so. If this is not done, there is a liability of sub-surface clogging at its junction with the clean sand. When the filter is started again, it is, except for the permanent layer, in the condition of a new filter, and so requires extra care in operating it, and the filtrate should be wasted for a much longer time than is required after the scrapings. Piefke of the Berlin waterworks places this period at six days. Considering the labor necessary, and the time the bed is out oi use. this replacing of the sand is an expensive operation, and should not occur oftener than can be avoided. In most plames the usual period is about once a year.

Sonsetimes it is possible to obtain new clean sand at less cost than is necessary to wash the old. But this is rarely the casc; hence an important part oi the equipment of a iair-sized filtation plant is the apparatus for the washing of the sand. The simplest of the methods employed for this purpose consists of a broad shallow box, which is set in an inclined position. The dirty sand is thrown into this box, and a jet of water played upon it from a hose. The water overfows from the lower enc! oi the box and carries the dirt with it. This is contimued until the water runs off clean. The more claborate methods anplo: mechanical means to force the water through the sand. Drun:washers, operated by horse or steam power, are largely used in Gcrmany. They are set in an inclined position, and the sanci. with streams of water playing upon it, is forced irom the lower to the upper end by means of revolving spiral blades. Varions other methods more or less on the same principle are employed.

The "Ejector" washer is probably the most eflicient oi all the methods cimployed. It consists of a series oi conical hop. pers: arranged in a row. At the bottom of each hopper is an cjector througll which a stream of water passes under a pressure of 15 or 20 lbs. The dirty sand is thrown into the first and largest hopper. From this it is cjected through a vertical pipe into a trough, from which it falls into the next hopper. Here the same thing occurs; and the process is repeated until tite water, which is continually overflowing from she hoppers. comes off clear. The whole arrangement must be enclosed in a urasonry pit. irom which the dirty water is conducted by drains. Sis or cight hoppers are required for each machine, whicth will have a capacity of irom 5 to 6 cubic yards per hour. Sauc: washers oi this type are used in the new filters at Hamburg. and are to be used in the plant now under construction a' Albany, D.Y. Details of the latter are given in Enginecring News. Fehruary 10, s8g. The volume of water required ir. som:d-washing varies, according to the method used, from 12 in 20 times that of the sand; the ejector machines apparently requiring the most. The question of cost will be reierred io uxier maintenance.

(to be cominued).

The ammal summer chass in practical surveging in con...getion with the faculties oi applied science of McGill Uuiversity. hegan September 1. Carillon, P.Q., is the headquarters ot the class this year, and here a scrics of practical surveys oi prospective railwass and a continuation of the partial survey of the Oltawa rivar are being carried out. Upwards of forty-five students, who intend entering upon the courses oi arehitecture. mining, and civil and clectrical enginecring, are attending the class, which will continue until the session of the Faculty of Applied Science opens. C. IF. MeLcod. professor of surveying ard geodesy: J. G. G. Kerry. lecturer in surveying, and R. S Lea, assistant proiessor of civil engincering, are in charge oi the work of the class.

Price Bros. \& Co.'s saw mill at Amqui, Que., was burned down Sept. 5. The loss will amount to about $\$ 100,000$.

Abraham Leyer, contractor, of Montreal, has assigned at the instance of Ovid E. Galarneau, with liabilities of about $\$ 20,000$.

Bylaws to raise $\$ 18,000$ for a new central school and to raise $\$ 4,000$ to extend the waterworks system were both carried in Owen Sound recently.

The industries at Deseronto, Ont., are in a very flourishing condition, both the cement works and the new charcoal iron sn:elter being ordered many months in advance.

Darling \& Pearson, architects, Toronto, have been asked to prepare plans for a large hotel in Muskoka, Ont. This hotel will accommodate 500 people. Hamilton capitalists are interested.

The flour mill and shingle mill of Mills Bros., Merrickville. Ont., was destroyed by fire Sept. 5th, The flour and oatmeal mill belonging to H . Easton was also burned, and Watchorn \& Co.'s woolen mill was damaged.

Inspectors Noxon and Christie, and Architect Heakes of the Ontario Government staff, are preparing plans for the reconstruction of the Penetanguishene Reformatory into an asylum. The Government has decided to build a new reformatory in Ovford county

A bylaw was passed at Vancouver, B.C., recently, giving council power to raise a loan of $\$ 150.000$ for the purpose of extending and improving the city sewage system. At the same time a bylaw to raise a loan of $\$ 20,000$ for the purpose of acquiring certain lands fronting on English Bay for a public bathing beach and recreation grounds was lost.

The city of Winnipeg has decided to purchase a softening plant for its new waterworks, the plant to cost $\$ 17,430$ and the installation work $\$ 12,500$, or a total of about $\$ 30,000$. The Pittslu.rg Testing Laboratory, Pittsburg, Pennsylvania, has been awarded the contract for the plant by the fire, water and light ccmmittee subject to the approval of the council.

The Ottawa Electric Company has forwarded to Ald. Campbell, acting Chairman of the Civic Railway and Lighting Committee, the following letter, which sets forth the liabilities which the city will have to assume in case of its purchasing the entire plant and equipment of the company: "In compliance with your request I beg to submit the following to enable you to arrive at the amount that the city would be required to assume to take over the business, franchises, etc., of this company, as set forth in our letter of April 27 th last. I might add that the figures are taken from our statement of April 3oth last, the date of last closing of books:-Capital stock, fully paid up, \$765,ooo; debentures bearing interest at 5 per cent., $\$ 320,000$; accounts owing, bills payable, $\$ 155,940.41$; total, $\$ 1,241,740.41$. I might further add with reference to the item of $\$ 155,940.41$, that this is about offset by such assets as accounts due to the company, merchandise, stores, etc., on hand. Trusting that this inforration is satisfactory. (Signed) D. R. Street, SecretaryTreasurer."

[^2]$W^{A N T E D-A ~ F i r s t-c l a s s ~ M i n i n g ~ F o r e m a n, ~ w h y ~ h a s ~ h a d ~ e x p e r i e n c e ~}$ In Galena, Zinc and Silver Mining. Send references and rate of wages expected to P. W. RESSEMAN, 3I Central Chambers, Ottawa, Ont.

FOR SALE

A good W /ater Power, 500 horse, situated one-half mile from rallway, ever facility for making siding to power. Address J. THEUNISSON, Cookshire, Que.
-Dr. Andrew MacMeans, of Mexico, a native of Toronto, and a graduate of Trinity University, was in the city recently. spending a few days. Chatting with a Toronto World reporter, Dr. MacMeans said: "I paid my first visit to Mexico ten years ago, and was highly pleased with the progress that country was making, in fact my expectations were surpassed. The vast improvement Mexico has made in the last quarter of a century is almost phenomenal. Twenty years ago there was hardly a railroad, to-day the country possesses over 12,000 miles, and 18 miles of street railway. He further states that the exports of Mexico are the imports of Canada, and the imports of Mexico are the exports of Canada. There is a very great hatred in Mexico for the United States, and everything coming from that country and Canada should profit by this.
-The discovery of the extent and importance of the hematite or limonite deposits in the Michipicoten district seems to promise an enormous development in the iron-smelting industry of Ontario. A realization of the immense area and valuable nature of the deposits has been obtained by the receipt of a $43-\mathrm{lb}$. sample of brown hematite at the Bureau of Mines, accompanied by an explanatory letter from Prof. A. P. Coleman, Provincial Geologist, who has been spending some time in the Michipicoten region. The ore specimen in question contains 60 per cent. of iron, and it was taken from a deposit on the claim of Mr. E. V. Clergue, of Sault Ste. Marie, which is about ten miles north of Michipicoten Post.

A CETYLENE...
 THE FUTURE LIGHT
 TEE Perfect light for Public Buildings, Offices, Stores and Dwellings.
 The Kerr Acetylene Generator
 Patented in Canada, Great Britain, United States, France and Germany. Other Canadian and foreign patents pending. The only perfect apparatus for the generation of A from Calcium Carbide. Neat, compact and durable.
 BIMPLE, SAFE AND RELIABLE
 No Valves or complicated Mechanism to mystify and confuse. No Copper, Bras, or other dangerous element used in its entire
 KERR ACETYLENE GAS GENERATOR CO.
 Box 94, NIAGARA EALLS, Ont.

CROCKER
The Jenckes Machine

downe Stret
SHERBROOKE, que

[^0]: - Iresidential Address read befere the Sociect, May 23rd, 1002, by Thos. C. Keefer, C.M.G., Presldent of the Royal Society of Canada.

[^1]: -Fircma paper rean liefore the Canadian Society of Civil Enninerra,

[^2]: WANTED-Young man familiar with installing and repairing electric recording meters. Give particulars of exnerience. Only hustlers and first-class penmen need apply. Advancement if satisfactory. Address "WATT," Canadian En-
 gineer, Montreal.

