The institute has attempted to obtain the best original copy available for tilming. Features of this copy which may be bibliographically unique. which may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below.

Coloured covers/
Couverture de couleurCovers damaged/
Couverture endommagéeCovers restored and/or laminated/
Couverture restaurée et/ou pelliculéeCover tit!e missing/
Le titre de couverture mariqueColoured maps/
Cartes géographiques en couleurColoured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bleue ou noire)

Coloured plates and/or illustrations/
Planches et/ou illustrations en couleur

Bound with other material/
Relié avec d'aurres documents

Tight binding may cause shadows or distortion along interior margin/
La reliure serrée peut causer de lombre ou de la distorsion le long de la marge intérieure

Blank leaves added during restoration may appear wishin the text. Whenever possible, these have been omitted from filming/ Il se peut que certaines pages blanches ajoutees lors d'une restauration apparaissent dans le iexte. mais. lorsque cela était possible. ces pages n'ont pas été filmées.

L'Institut a microfilmé le meilleur exemplaire qu'il lui a èté possible de se procurer. Les dètals de cet exemplaire qui sont peut-ètre uniques du point de vue bibliographique, qui peuvent modifier une image reproduite. ou qui peuvent exiger une modification dans la méthode normale de filmage sont indiqués ci-dessous.

Coloured pages/
Pages de couleur

Pages damaged/
Pages endommagéesPages restored and/or laminatied/
Pages restaurées et/ou pelliculees

Pages discoloured, stained or foxed/
Pages décolorées, tachetées ou piquèes

Pages detached/
Pages détachėes

Showthrough/
Transparence

Quality of print varies/
Qualité inégale de l'impression

\square
Includes supplementary material/
Comprend du ma:ériel supplèmentaire

Only edition available/
Seule édition disponible

Pages wholly or partially obscured by errata slips, tissues, etc.. have been refilmed to ensure the best possible image/
Les pages totalement ou partiellement obscurcies par un feuillet d'errata. une pelure. etc.. cn: été fi!mées à nouveau de facon à obtenir la meilleure image possible.

Additional comments:/
Pagination is as follows : [97]-128 p . There are some creases in the middle of pages.
Commentaires supplèmentaires:

This item is filmed at the reduction ratio checked below/
Ce document est filmé au taux de réduction indiqué ci-dessous.

THE
 CAmbithm Acraculpurast
 AND

©Tansactions
OF THE
board of agriculture of upper canada.
VOL. IV.
SCIENCE APPLIED TO AGRICULTURE.
The following address, by Dr. Frankland, is
taken from the Transactions of the Royal
North Lancashire Agricultural Society, in North Lancashire Agricultural Socicty, in England. The Doctor, we believe, is the Professor of Chemistry in Owen's College, Man-chester;-an institution recently established by the princely munificence of the individual whose name it bears:-

Dr. Frankland addressed the andience to the following effect:-The subject for discussion, as most of you are aware, is "The importance of coimbining science with practice in farming operations." I have only this afternoon, whilst present on the field where the agricultural implements were being tried, been requested to introduce the subject to your notice. I think the onus of introducing the subject would possibly have better devolved upon some of the eminent agriculturists present, since in the printed announcement of the discussion, "practice" comes before "science." In fact, it appears to me that the best mode of conducting these discussions is for practical men to express their opinions on the subject to which attention is directed, and then to put questions to the scientific men present which they might not be able to answer from their own practical knowledge. However, as the onus of introducing the subject has devolved upon me, I will endeavour, in as few words as possible, (as the time has been so much delayed) to convey to you What in my opinion are the principal points of connexion between the science of chemistry and that of agriculture. You will perceive that the subject in the prospectus is not confined to chemistry; it is the advantage of science in general, combined with practice in farming pperations. Now chemistry, I beg you to understand, is only one of many sciences which can thus be applied with advantage to agricul-
ture. We have, for instance, the science of mechanics, which is perfectly indispensable to agriculture. We have also the science of physics, which is perhaps as important as chemistry. We have also natural listory, which, as you are all aware, has a most intimate connexion with the subject before us. Now I would commence by a very broad assertion-namely, that without this combination of practice with science, all farming operations are empirical and lead to no trustworthy results. This will not perhaps be admitted by many of the agriculturists present; for we usually find that farmers, and especially tenant farmers, are exceedingly averse to adopting principles which can be deduced from the laws of science in their agricultural operations. You will, however, readily see that such a combination must take place, if we wish to have universal laws in the science of agriculture. A thousand farmers may try a thousand experiments upon a thousand different fields; and one farmer may produce an amazing crop of corn by the application of a certain manure. Another farmer may try the experiment with a different result, or with the same result; if with the same, it is looked upon as a confirmation of the original experiment, and very properly so; and there is additional reason for a third farmer to try the experiment in confidence of producing the same successful result. But if this third farmer has a field in which the chemical constituents of the soil are widely different from those of the first two, he will be mortified to find that in his case the manure completely fails. This we find an every day occurrence in agriculture. We find manures that are introduced with eulogium into certain districts, entirely fail when applied in other districts. If we would ascertain the cause of these failures, we must go to the very bottom of the subject. We must ascertain the composition of the soils upon which the manure may have been tried, and we must also have plainly before us the composition and modus operandi of the manure which is used upon those soils.

It is evident that this portion of the inquiry can only be set at rest by an application to chemistry. It is chemistry alone which can furnish us with a clear idea of the composition either of the soil or of the manure with which we seck to operate upon that soil. I might mention many instances in support of this position, but I will content myself with one-that of a farmer in whose soil there is a large quantity of phosphoric acid present in a form of combination in which we meet with it in bone-earth, or as earthy or alkaline phosphates. When he tries the effect of ammonia for its salts, and applies a top-dressing of sulphate of ammonia, he finds a greatly increased crop-a greater quantity of grass than would otherwise have been produced. Another farmer, whose soil is entirely destitute of phosphoric acid, tries the same experiment, and finds perhaps no benefit at all from the application of ammoniacal salt-for instance, sulphate of ammonia derived from gas liquor. What is the explanation of this? The art of agriculture itself can give us no explanation whatever. Both may be clayey, or gràvelly, or sandy soils, and yet this difference of result obtained. A difference in point of mechanical structure has no influence whatever in this matter; it does not in the least explain the difference in result obtaned by the application of this sulphate of ammonia. We find, however, on reference to the schemical constituents of grass, that those constituents which afford nutriment to the cattle feeding upin it must contain, as one of their essential ingredients, phosphorus. This phosphorus cannot'be manufactured by the plant itself; it cannot be manufactured by any process in the soil; it must be present in the soil, or it cannot be conveyed into the pores of the plant and converted into the nutritive constituents which it is our object to form in the cultivatios of plants. The consequence is, that the nitrogen contained in these nutritive con-stituents-this nitrogen which we wish to supply in the sulphate of ammonia, although an essential constituent of the nutritive matters referred to, is of no use whatever as supplied in the sulphate of ammonia, umess phosphoric acid be present in the soil. This is one of the many instances which we mightadduce as showing the advantage of combining science with practice in ordinary tarming operations.

Another advantage is, that by the aid of science we are enabled to economize our manures and apply to our fields just the kind of ingredients which they require. Take, for example, the case of a farmer who has land, perhaps, rich in nitrogenous constituents, and with a deficiency of phosphoric acid in the soil. Now if, by the advice of a neighbour or other person, be uses sulphate of ammonia or other ammoniacal
salts which may be in the market, he throws away just as much moncy as he pays for the salts in quistion. If, however, he knew that lis land did not require these ammoniacal salts but was in want of other constituents, such as phosphoric acid, then he would use bone-dust or guano, both of which contain these phosphates in large quantities, and would therefore supply the deficiency. Another advantage flowing from the cornexion of science with a arriculture is, that we are enabled to ascertain by these means what kind of crops will produce the greatest amount of nutritive and fat-forming matter from a given surface of land. It is evident this question can only be set at rest by an application to chemistry. We must ascertain, in the first place, what ingredients it is necessary that we should give to our stock in order to fatten and bring them to their full growth. We find two distinct classes of substances requisite for effecting this object-namely, substances rich in nitrogen for the formation of muscles, and another class of compounds for laying on a superstratum of fat, which is now such a great destderatum in the feeding of cattle. The first class of substances which it is requisite to produce in the food we give to animals consists of those containing a large amount of nitrogen and phosphoric acid; the second class, for the production of fat, consists of substances which may be entirely void of those two elements, nitrogen and phosphorus. It we wish simply to fatten cattle upon our land, we know, by reference to chemical science, that we must endeavour to produce as much combination of carbon and hydrogen, in the form of sugar, starch, \&c., as we can; and we need not particularly trouble ourselves about producing large quantities of flesh-forming principles, since the animals we seek to fatten are usually in a full-grown state. But in rearing your animals, we must look to muscle-forming principles, and give a sufficient quantity of phosphates to enable them to form a due proportion of bone.

Another advantage which agriculture bas already derived from the science of chemistry is this, that chemistry has shown us from what sources plants derive their constituent elements. Formerly, farmers imagined that the richer the land was in humus, or humic acid, the larger the crops it produced. They imagined that these carbonaceous substances were dissolved in the rain water which descended, or were in some other way conveyed to the roots of the plants, and administered to the nourishment of those plants just in the manner that soup operates in feeding man. This was the mistake: the comparison of the life of plants with the life of animals-two states of existence which are precisely opposite to each other. The function
of plants is nothing more than the restoration of the equilibrium which has been disturbed by the function of animals. Animals restore to the atmosphere and to the soil those constituents which it is necessary for plants to obtain to form their tissues. This was shown by Liebig, wh: proved that in the extensive pine forests grown in Germany, the carbon and hydrogen contained in the wood of those trees must be derived from other sources than the soil upon which they grow ; such soil containing scarcely a trace of carbonaceous matter. Upon a single acre of this land, there was reared in the course of a few years trees which contained several thousand pounds of carbon. How could this find its way into the tissues of those trees if it were not derived from the atmosphere? A Inowledge of the atmospliere gives the solution. The atmosphere contains the whole of the carbon requisite for the formation of the carbonaceous tissues of plants. When we take into consideration the enormous extent of the atmosphere, the quantity of carbon contained in it in the form of carbonic acid, and the manner in which the atmosphere is brought into contact with the leaves of plants, we can find sufficient to account for the whole of the carbon discorered in the tissues of plants. It is now well known that the leaves of plants exposed to sunshine or diffused daylight absorb this carbonic acid very rapidly from the atmosphere, and eliminate from their surfar.e pure oxygen gas. Now the carbonic acid is composed of carbon and oxygen: hence, it is mathematically certain that the carbon must remain in the leaves. It does not remain as charcoal, but is assimilated with the elements of water, and is conrerted into sugar, starch, woody fibre, or other substances which contain carbon along with the elements of water. In the same way, nitrogen has also been proved to be derived from the ammonia in the atmosphere. This is a most important point for agriculturists, especially for those on poor soils; because a large quantity of the manure applied to soils are manures rich in nitrogen-a material which is capable of being abstractel from the atmospinere by 1 lants, providing they have the other mineral requisites to build up the organic substances, which they form from carbon, nitrogen, and water. If we supply these mineral subṣtances, we cal: rely upon plants deriving sufficient nitrogen from the atmosphere to form the compounds before spoken of-namely, those nutritive properties which are the chief objects contemplated in agriculture.

We then see clearly that plants dorive their nutriment from trip sources: from one source which is perfectly independent of all man's operations-namely, the atmosphere; and from a secogd source-namely the earth. We also
find that it is necessary to provide certain ingredients if they are not already present in the soil. The principal of these ingredients are phosphoric acid and the alkalies; sulphuric acid is also requisite; these materials being essential to the formation of the nutritive properties already alluded to. We therefore need only look, in agricultural operations, to the supply of these inorganic constituents-namely, phosphoric acid in the form of bone-dust, and potash in some cheap form, as from decomposing materials; the nitrogen (such an essential constituent in these nutritive principles,) and the carbon being entirely derived from the atmosphere. There is, however, one condition in which we can apply nitrogenous manures with advantage, and that is, where a soil is exceedingly rich in mineral ingredients, and on which we want to raise large crops of plants which are rich in nitrogen. In order to effect this, we must supply manure artificially, and in the form of ammonia; this being the only condition in which nitbogen can be assimilated by plants. We are also enabled to see, from the application of chemistry to agriculture, the causes of the advantage derived from the rotation of crops, fallow, and quick lime. The advantages of the rotation of crops is now appreciated by most agriculturists in almost all distriçts. But the way in which this. advantage is derived is not by any means soclearly understood. It is well known to chemists and scientific agriculturists, that different kinds of plants absorb different kinds of constituents from the soil. Wheat, for instance, requires a large quantity of silica and phosphorus for its perfection. Another class of plants. scarcely requires silica at all; while a third. class probably needs only salts of potash or soda. In this way we divide plants into three classes: plants which require silica; plants which principally require potash or soda. Now when we: plent wheat upon a soil, we withdraw fromith large quantity of silicious materials, silica
flint in a soluble state, and a considerable:am
of phosphoric acid. Consequently, if yr tinue tọ, çrop the land with wheat, finv
your crops diminish in quantity, and' cannot grov any more wheat on tb if in the same soil, yqu.plant pot have an abundant crop, eran w cation of any manure. An where potatoes almost cea grow d ectsiderable cr circumstanifes are rep táke into consideratir from the soil by er
Nop in we wis
the same desc
we wish to same surfo
.
will find mally Bou but
cland. stoes, you may thout the appli-
again, upon soil 1 again, upon may
to exist, jou op of clover. when we dily explained withdrawn n the ingredients withdrawn. ch of these classes of prop land with
continually antinually plant; if, for instan th
iption of plas every year
lanat rincat es plant riluat every year nothing nore
do than to supply the requisite amount of silicious materials, phosphoric acid, \&c., in order to effect this object. Probably, however, up to the present tume these ingredients cannot be obtained sufticiently cheap to carry out this system; but if agriculturists were upon the watch for these compounds, there is little doubt that eventually a cheap supply of them may be rendered available, and the same land be cropped with grain crops every year in succession, without impoverishing the soil. Phosphoric acid can be supplied by bone-dust ; but this is too expensive for common use. It is, however, fortunate for agriculturists that fossil supplies of this phosphate of lime occur in immense quantities in various parts, embedded in the soil to the depth of several inches, and occasionally to the depth of one or two feet. This "coprolite," as it is termed, (or excrement of animals that have long ceased to exist) contains from 80 to 90 per cent. of pure phosplate of lime. Now comes the question of supplying silicious materials to the soil-a matter which is engaging the attention both of agriculturists and of chemists at the present time. If we supply the requisite quantity of manure to a given space of land to crop it yearly with wheat, after two or three years the straw fails in strength, and the least wind beats it down, the straw not being sufficiently strong to bear the ears upon it. How are we to get sid of this difficulty? Simply by the application of these silicious materials, which are not requisite for the formation of nutritive matter, but are required to give strength to the stalk by which to elevate the grain to the atmosphere that it may ripen. It is important that we should be able to supply these silicious materials in the cheapest form. Bunson has discovered that in volcanic regions there are extensive layers of lava, known under the name of pelagonite, which contains silica in large quantities, and in such a state that it readily becomes soluble by the action of the atmosphere, and capable of being conveyed to the plants by rain water. All our soils contain a sufficiency of silicious matter, but being in an insoluble form it can only be reduced to a soluble condition by the action of air and moisture through a jong series of years. This pelagonite yields silica in a comparatively short space of time, and smight be imported for that purpose.

There is also another plan I would propose for adoption in places where it could be carried out to adsantage-that is, the heating of silicious substances with quick lime. The chemist knows that when silicious substances are to be brought into solution, they must be heated with alkalies or alkaline earth. Now this is precișely the operation we have to apply to the silicious materials which constitute 40 to 50 , and in some
cases 60 to 80 per cent. of our soils, to bring them 'ito solution, and into a condition in which they are capable of being assimilated by plants. If we take these silicious materials-hamely, gravel on the coasts, and flints in the south of England-and mix them in alternate layers with coal and chalk or limestone, and ignite the whole mixture, we convert the chalk into quick lime, and heat the flints to redness. If we then turn upon the mass a stream of cold water, so as to cool it very rapidly, we slake the line, convert it into lydrate of lime, and reduce the flints or silicious slones into an almost impalpable powder ; at any rate we disintegrate them to a very great extent, and bring a large surface of them into contact with the lime; and the consequence is, we obtain a large quantity of silicate of lime, which furnishes silica in a soluble form to the plants upon the soil to which it is applied. A few months ago, one of my students tried this experiment on a small scale in my laboratory with successful results. There can be no doubt that where corn or other grain crops are liable to heavy rams or rough winds, the application of such manures would be of the very greatest advantage. There are many other points which we might mention illustrative of the advantages which agricultare may derive from the application of chemistry; but as the time is already so far advanced, and as I am sure that many of the agriculturists before me will have questions to ask in reference to the application of manures to particular solls, or on other matters, I will content myself with the few observations I have already made, and conclude by assuring you that I shall be very glad, so far as I am able, to answer any inquiries that may be put to me on these subjects, or on other subjects relating to the application of chemistry to agriculture.

Consusption or Bread.-Estimating that there are 24 millions of bread-consumers in Great Britain and Ireland, (learing out the four milhons of potatoeeaters,) and allowing each person one and a halfloaves per week, it is 36 millions of loaves. Admitting that each quarter of wheat makes 136 loaves of bread it requires 168,656 quarters of wheat per week. To this add 10 per cent for flour used in other articles, and it gives 291,521 qrs. as the weekly cousumption of wheat, or $15,367,093$ qrs annually. London and suburbs, with its two milliong of a population, consume three million loaves weekly, and with flour, require 24,626 qrs. of wheat. A quarter of wheat will give 501 bs of flour per bushel, of the quality which makes best seconds bread, 400lbs altogether; and that quantity of flour will make 134 quartern loaves. A quartern of wheat, ground into flour, and taking out only the rough bran, say about 51 lbs to the bush., will yield 581bs. per busbel of such flour, and that will make 141 loaves the quarter. A quartern of wheat ground down into rough meal without taking any bran, will give 62 or $631 b s$ of meal, and that will. make about 166 loares of healthy good brown bread.

The Agritulturist.

TORONTO, APRIL, 1852.

PLAS; ITS CUITIVATION AND MANAGENENT. NO. I.

Having been favoured with several of the best greatises on the cultivation and management of the Flax-plant, through the kindness of Fredemek Winder, Eiq., of this City, Commissioner of the Canada Company, we propose compiling thetefrom a serics of papess o.2 this subject, which from various causes is beginning to excite more than ordinary attention in different sections of the Province. As the time for sowing will speedily arrive, we shall commence with some remarks on the climate and kinds of soil best calapted to this crop, the preparation of the land, and the sime and method of sowing.
The climate of Western Canada is no doubt sufficirntly humid for the successful growth of Flax, which has been raised in small quantities in dufferent districts for a number of years; the jroduce having been used for domestic purposes. Our position may not be equal to regions possessing an insular character-such as the British Islands, for example; but we should think it as good as most of the flax-growing countries of continental Europe, where severe droughts frequently occur in the spriag, after the plant has seached a height of two or three inches; a circumstance very unfavourable to its subsequent progress. The growth of Flax may be said, indeed, to have a very wide range over the surface of the globe. "It flourishes in the light soil of Flanders, in the deep alluvial deposits of Holland, in the limestone and peaty soils of Ireland, and on almost, if not on every variety of land in England. Gocd crops have been produced on reclaimed bog, and it has grown on the Wicklow mountains a thousand feet above the level of the sea, and flourished even at that elevation on cold granitic noory soil, which in its natural state produced nothing but heath. Like grain and other crope, flax may show a preference for other soils and situations, but it will flourish and, attain maturity in all, if proper care is bestowed on its cultivation." (Nicholls.)
The best soils for flax are deep rich loams, resting on a clay subsoil. It is of much importance that the land should be naturally sound and dry, or made so by draining; and deep cultivation is, in all cases, to be strongly recommended,
since the roots will fiequentls descend to a depth equal to the length of the phant above ground;a condition deserving much attention by the cultivator, particularly in countries (among which Canada must, to some extent, be included,) that are liable to severe droughts in spring and summer. It would be a gnod practice, especially on heavy lands, to plough deeply ir the fall, leaving the ground in ridges, sufficiently furrowed to allow the water, after the melting of the snow in spring, to find a ready exit. Care should be taken not to work the land in the spring till it is q aite sound and dry;-a precaution indeed that may be said to apply to cultivation in general, as the mechanical texture of the soil is often seriously injured for one or more seasons by the treading of horses when in a wet state; thereby causing it to consulidate to an injurious estent, pres nting the free penetration of the roots of the growing plant in their search for food, and excluding the healthy action of air, warmth and moisture. Experienced flax-growers, however, find that a very loose soil is not favourable, as is the case with wheat, beans, clover, \&c., all which require a soil moderately adhesive.

Rich pasture lands are those best adapted to the growth of flax. But it this crop is too frequently repeated, the very richest lands will soon cease to yield a proftable return, under the ordinary system of cultivation. Flax is no more an exhauster of the soil, per se, than cultivated cereals in general;-but when it is allowed to ripen its seed, which, with the fibres wholly removed from the land, and nothing in the shape of manure returned,-a practice that has too commonly been pursued,-there can be no doubt that flax culture, in such circumstances, rapidly exhausts the land. But so it is with all kinds of crops:-particularly the grain bearing plants. From the chemical composition of flax,-particularly the seed, it must draw largely on the soil for phosphates;-which, however, can be readily restored by the manure of animals fed on the refuse of the seed after the oil has been expressed; and all those portions of the plant not used by the manufacturer, ought to be converted into m:nure and returned to the land, instead of being, as has been too commonly the case, absolutely wasted. Even the water in which flax is steeped, possesses considerable manuring qualities, and will pay for economising, and applying to the land. In Belgium, where flax-culture is the most successfully carried out, liquid manure, properly
prepared and applied, is fund to be extremely beneficial Strong attificial manures, however, auch as guano, bone dust, \&c., reguire much caution and judgment in using them for flax. Indeed, it has been generally found most beneficial where a heavy dressing of manure is applied to land intended for flas, to use it for the previnus grain crop, as the flax-plant usually succeeds well immediately after either wheat or oats. Fresh, stimulating manures, are apt to canse the plant to grow too rapidly, therefore producing a weals and coasse fibue; whereas strensth of fibre is the quality which constitutes its principal value for manufacturing purposes.
The ground properly prepared and clear of wecds, the seed may be sown broadcast, an operation that should be performed with the greatest care with regard to uniform distribution. Sowing hould commence as early in spring as the weather and the state of the land will admit, which in this climate will not be the case, in general, before May. The quantity of seed should be varied to suit special purposes and conditions. If the raising of heavy, plump seed be the principal object, the: a smaller quantity will suffice-say about 6 pecks per acre; but for ordinary purposes from 2 to $2 \frac{1}{2}$ bushels will be required. If prticularly fin fas is desired, such as is used in making the best lace and cambrics, 4 bushels, or even mort, must be sown. Riga seed is said to produce the finest quality of flax; but the American wonld answer our purpase generally, at least for the present; but in -flax, as in other things, a fiequent change of seed is advantageous and necessary. Before sowing the seed, too much pains cannot be taken to free it from all descriptions of weeds, with which it is more or less commonly mixed. Select that which is plump, shining and heavy. The practice of sowing clover and grass seeds with flax cannot be commended, except for special occasions. After the seed is sown, it should be evenly covered, about an inch in depth, by the action of a light harrow, being careful to leave the land in a smooth, firm state, with the roller, with no nore open furrows than are absolutely required for the taking away of superfluous water.

We would strongly urge upon the attention of rur readers the inexpediency of having more land ider flax culture than can be properly prepared Ithoroughly managed. This caution is indeed edlul as regards the cultivated plants of the \therefore m generally ; but in respect to flax, and the 1 w . crops especially, the :!ff ace between
good and indifferent cultivation, will in the main be found to consist gither in an encournging and remunerative return, or a disheartening and serious loss. Begiuners, esperialiy, should commence with a little, alud, to conclude this paper, we would saj, emphatically, cultieate that litlle well.

irrigation by liouid manume ia great BRITAIN.

The February number of the Farmers' Magazine, contains an intetesting paper from the prolific pen of Mr. Cuthbert Jolinson, on the progress making in Eingland as well as Scotland of fertilising whole farms by means of liquid manure ;-a substance which till late years was Eoo frequently allowed to run almost entirely to waste. Capacious tanks are made for the reception of the fluid excrements of cattle, which, when properly diluted with water, become a safe and efficient fertiliser, and is distributed over the fields belonging to the farm by means of pipes made of iron and gutla percha, attached to a pump, worked by a steam engine. The outlay in the first instance is of course very considerable, but in all cases, it would appear, when the experıment lias been fairly and judiciously tried, the benefit produced has far exceeded the expense.

Myer Mill Farm in Ayrshise, occupied by Mr. James Kennedy, consisting of 400 Scotch acres, is an instance that may be cited for showing the bencficial and cconomical application of liquid manure on an extensive scale. The whole expense of the apparatus for fertilising this farm is stated as follows:-

Four TanIs complete	£300	
Steam Engine (12 Horse-porfer)	150	0
Pumps - - -	80	
Iron pipes, laying, and hydrants	- 1000	
Gutta percha distributing-pipes, \&c.	56	
	£1,586	00

Annual interest on $£ 1,586$, and wear and
tear, at $7 \frac{1}{2}$ per cent. - - - - - £ 118190
Annual wages - 10400
Fuel $5 \leqslant 100$
£281 90
This amount, divided by the number of acres, is equal to the annual sum of 14 s . per acre.

The results are said to be highly satisfactory. Four or five heavy crops of grass have been cut in one season from the same land, which, by repeated dressings of liquid manure, not only suffers no diminution by the removal of such crops, but its fertility actually increases. The
same farm, previous to the introduction of this system of manuring, would not heep more than a lullock or five sheep to an acre;-now it maintains, by the crops being taken and consumed in the stalls, live bullocks or 20 sheep to an acre. Some bran and oil-cake are bought for the stock, but one third or more of the farm is kent in grain, yielding heavy crops.

These few facts will afford the reader some imperfect idea of the advanced state at which farm management has already arrived in some favoured lacalities of the Mother Country; where the farmer's pursuit is justly entilled to the apprllations, in their lighest signification, of a scienec and an art.

DEPRESSED Stitt of imisif AGriculuture.
A recent number of the Irish Farmers' Gazctte, contains the following painful facts:

In 1817, the average price of wheat in Dublin, was 41 s . 3d. per barrel of 20 stones, and [reland raised $2,926,733$ qrs. In 1850 , the average price was reduced to 20 s . 3 d . per barrel (more than 50 per cent.!) and the amount raised was only $1,550,196$ quarters; showing a similar rate of decrease. Barley and oats do not appear to have fallen off in amount so largely as wheat, but equally as much in price. In 1841 there wese in Ireland $13,464,303$ acres of arable land under cultivation. In 18.50 that amount was reduced to $5,758,292$! "What," says the Gazette, "has become of the eight million seven hundred and sie thousand acres which constitute the difference?". The following higures will answer the question:-

Farms occupied and cultivated.
$1847 \ldots-\ldots$
$1850-\ldots$

In regard to population, the Census tells us the following tale:-

Total ropuiation of Ireland.
$1841-. . .--8,175,124$
1851
Diminution, $1,659,330$
The Gazette attributes a large amount of this national misery and decline to the operations of "a one-sided free tracle," which has caused Ireland to lose nearly all her export trade with England; government contracts for provisions even being made in foreign markets, prorided only such markets are cheaper than her own. Without mooting the much vexed questions of free trade and protection, we think it must now be apparent to every anprejudiced mind, that

Enghand, ere she had finally committed herself to the former, would much better have consulted her own peace and prosperity by accompanying that important ehange in her commercial policy, with such fiscal and legislative modifications in reference to her agricultural and colonial interests, as should have enabled those interests to partake of the benefits which free trade was designed to confer;-thereby preventing discontent, and almost open rebellion in the colomies, the iopeless prospects and utter ruin of thousands of British farmers and their dependants; and the present disorganization and prostration, apparently hastening towards a national extinction, of the warm-hearted inhabitants of the beautiful "Green Iste;"-who, instead of being only a source of weakness and annoyance to England, might have been made her strongest pillar of strength and defence.

SIIEEP HISBANDRy in canaba.

We present our readers with the conclusion of Mr. Hume's excellent Essay read before the Township of Hamilton Farmers' Club, Jan. 24th, as reported in the Cobourg Star. The first portion of the Essay was published in our January number.

In concluding my last paper on Sheep husbandry, I gave up at a point, where I am satisfied the experience of many of our number would have enabled them to do the subject more justice than can be expected from me, who am comparatively a novice in the farming of this country. It is therefore with the utmost diffidence that I now, at your request, carry out the matter, and submit opinions at the best crude aud indefinite, in the presence of those who are so much my seniors in Canadian sheep farming. In the management of stock, the circumstances of locality, climate, food, \&c., exert such a powerful influence that it is only from the accumulated experience of mary successive generations of practical men, in a given locality, that we can hope to attain any degree of success. Gradually, certain facts are established, on which men of judgment can found their reasoning and push on more rapidly in a career of improvement. But in a new country like ours, it takes some time before these principles can be fairly ascertained, and firmly grounded. The Geologist, from studying the formation of the earth, may, on finding deposits of a certain character, lead you to those places where the desired substances are to be found. The chemist, by analyzing such substances can ascertain precisely their various ingredients and properties; shewing their value in the arts and manufactures. Then comes the mechanic, and by adapting his tools and mechanism to a precise knowledge of these properties he proceeds at once to use them in the carrying out of his manufactures. But where the vital princtple is concerned, there our powers of reasoning are at fault; fresh data enter into
the calculation, a thoro' knowledge of which, our Creator seems to have reserved to beings of a superior order to us mortals. We can take away life, but we camot even discenn the sources whence it arises, and it is only by the accumulation of facts as to its action that we can deal with the principle.
Under these circumstances it may be seen of what great value are societies like the present,they induce a habit of thinking, a habit of thinking leads to the observation of facts and the circumstances of their relations one to another ; relations which though often of the utmost importance are neglected where habits of reflection are not cultivated. By the way a regular memoranda of ordinary occurrences as they happen would be found to be of incalculable advantage to farmers generally, affording them an opportunity of comparing season with season, and the circumstances attending one year's operations might thus be made to bear upon the difficulties of another.
But to return to the subject immediately benore us, the management of slieep farming in Canada. The consideration of it seems natually to fall into two branches: First, the mode of investment of capital in a sheep stock, so as to yield the largest profit to the farmer; next the mule of management of that stock so as to keep it in the most health.j condition; assuming alwaya, that stock kept in the most healthy, lliniving condition, will yield the best and safest return to the holder. This position I think we may safely take, notwithstanding the fact, that pampered animals, covered with an extraordinary superabundance of fat, often yield a large profit as show animals. although they cannot be said to be in a naturally healthy state. On the same ground of whom some actual diseases may, perhaps, be made occasionally to yield a profit. 1 remember a lawyer dining at the table of a friend of mine; when, on his expressing himself much gratified with the excellency of the mutton, his host told him that it was a sturdied wedder. The next day, he went to his butcher and begged to be supplied as often as possible with sturdied mutton, as that was the finest kind of sheep he had ever tasted.

The chief view of the farmer in the investment of capital in stock is to make a profitable market for the various productions of his soil; not in their raw state, immediately available for the use of man. There is however another consideration by no means to be neglected, that is the returning in the shape of manure a full equivalent at least to the crop taken off the land. It is true that in some localities, as near towns, a large amount ${ }^{-f}$ stock is kept entirely independent of the farmer, except, in making a market often of a most remunerating character, for his coarser grains, hay, and roots. In such case a large amount of stock would often seem not to be required by the agriculturist ; but here he would do well to be particularly on his guard against the disadvantage arising from a short stock, a short supply of manure ; and to avoid that evil by he constant use of the large quantities so easily obtained in the vicinity of a dense population. Speaking approximately; there are three modes of manage-
ment of a sheep stock, which, in the extension of that husbandry, now lie open to us. First, the rearing, holding always in the highest condition, and selling ofl as soon as pursible our own stuck on a comparatively limited scale; recond, the searing and bringing to a certain point, hy one party, whose position may be must fitted to the purpose; and the feeding of by a second party (who may be more favourably situated for that object) atter purchasing from the raiser at a remunerating pice; thifl, the rearing, leeping, and feeding off, ou a more extendeu scale; an article usually kept to a greater age than the first class, and hardly until the finel stages maintainel in such high condition. In the latter mode of management, a larger flock could undoubtedly be maintained with less expense of labour than on the first plan, and, as the wool is one source of profit, it remains a guestion whether the return on the food consumed might not even be greater, especially as that food during a areat part of the period might be of coarser guality. But the farms would require to be of sufficient range to allow to each class of sheep its proper distuict locality. It is however a doubfful matter, wh.ther our present ready money market weald be capable of absorting any great amount of suc:i stuah, cn masse, as it would require to be turneil wf. Shoull ever nur market beeome more ex. tented and steady, his would be a cotirse of mamagement vell adapted to our back country : much might also be urged in favour of the second mode in back destricts, where hay and othes coarse fodder is often of little salue, or will be so when lumbering becomes worn out. A large amount of sheep might, in such places, be with advantage, reared and sold, to the feeder more immediately on the market to finish off. There would by this arrangement be less loss from deterioration in bringing forward, and the putcher can always affusd to give a better price to the man who keeps an article ready for him close at hand, when he may require it ; instead of himself seeking it at a great expense of time and labour. At the same time, the front farmer who can sell his heavy fodder to advantage, and whose land is of high value, and consequently minutely subdivided, would not by this arrangement be required to keep a large stock, in its earlier, and to him, least profitable stages. The objection to this mode of management would at present chiefly be the slovenly mode of rearing stock so general through the country, rendering it difficult to procure an article of such quality as would make it desirable as a feeder. Here is a motive to the man living backward, to rear stock of a bettes description than he at present dues; for, assuredly, the time has now arrived when such stock, were it produced in any quantity, would find a ready market. Another difficulty, perhaps, lies in what I have before alluded to, the absence of fairs bringing together stock, so that a purchaser can, with little trouble, select such as is peculiarly adapter to his purpose.

Considering, however, the class of sheep to which I have already given the preference, the heavy Teeswater or Leicester, I should, under the present circumstances of our country, choose the first mode of management. A thorough founda-
tion for such a stock, requires now to he laid, and the rearmg of thes class of sheep is hardly yet in a sutherent number of ham:ls to accor-plish that object; under such circumstances, the laising for hinaself, is the ouly way by which a farmer can be supplied with a rood atticle, at a price which will pay for feeling. By heeping this class of sherp in crood order, they can be thmed ofl at an carly age, not emeumbering our senall farms with a heary stex in duferent stages of growth. They may be kept ever ready for any demamd, reymiless of season. At the same tme it is an impont. atht consideration in the present state of our allairs, that no actual onthay in money is required at any stage of the operation, excepp in the fitst acquirement of a breeding stock. Whei, capital is suflicient, I should certainly recommend begiming at the rout by buying as many good breeding ewes as circumstances may requite, using to which, one of the best tups, you at ouce obtain your object. But as meams are not usually too abundant here, it may frequently be desirable to begm crossing trom the very buttom, or with only one or two superior ewes. In such a case, it may often scarce be worth while to use a very coitly tup for the general flock, but rather to spare the experse, to be applied in semding a frw of your best ewes to one of the best tups to be found in your vieinity-I siy one of the best tups, forl would suggest that the very best thp to be found is not consequently the best for your purpuse. Great expense and trouble are in all cotintrics, and especially in this, thrown away by a want of attention to the truc principles of breeding. In entering on breeding, you ourght as a first consideration, to lay down definitely the qualities you wish to attain; be it long wool, be it short, be it fat, be it leanness, be it speed, be it sluggishness. or be it a combination of these qualities; keep your object ever in view, and never without some good reason swerve so either side; you may seck by one cross to impart a fine head, fine quarters, fine wool, or any other quality in your brad ; but remember that by persistime in this crowing, y, are not only engrafting this on" desiral: 1 point, but mixing up all the other points also; many of which may be in direct opposition to the chameter you have all along beren striving to m,intuin. There is one consideration, however, which seems: to have become a fixed atiom in breeding, that while the male should have every point possible of symmetry and beauty, size is ouly a secouddry consideration. In the female, on the other hand, every point may be in perfection, but where there is a deficiency in size, there is alsays at danger of a want of due development in tiee ofispring. There is of course a limit to which yon may carry this iclea; but, it wac a fanourte whe of the successful and juctly celebrated Bakewell, and has been verified in the gemeral experience of breeders. I remember (not personaliy, but as a family tradition,) an instance in point, when the Culiies, the first breeders of the Ceicesters on the Borders, aud the intimates of Bakewent, started the introduction of this breed into. Northumber'and -they were in the halit of holding an ammal Jetting and sale of Tups, in which they were very suecessful for two or thiee years, and dhe now sheep became quite the rage. On this, some

Yorkshiremen bethought themselves of trying their success in a trade so fortumate, and exposed in Morpeth market a lut of Tups of enormous size, with heavy curly wool. These were at once tought up as lar outstripping their finer competiors, proluced by the Culfies, and the hater qeatlemea tound their occupation rapidly guing, if not gome. If I mistake not, this lasted two yeare, mutil the result of the cross on the small county and fitie Leicester ewes began to show itself, when the next scason the Yorkshiremen, with rueful countenances, had to carry back therr now large impontations by the road they came; and a Lincoln Tup, for I fancy by the description, of that character they were, has not been scen in Northumberland since. Under the mole of manarement we now speak of, it will seldom be found desitable to keep the average of the ewe flock bevond the age of five years. A number of this age might be cast every season, and either sold off in the fall, or held over on turnips until toward spring, when they would generally command a good price. In entertaining at all the t. ousht of an extended sheep husbandry, we must tut be alarmed at the fear of sntue additional labour; a dozen to 20 sheep may fend for themselves on a farm and do well, with almost no attention, but as the number extends, the competition becomes greater, and their care must thell be made a distinct object, if success is hoped for.

But we are now arrived at the home of the practical farmer, his snug barn yard where he can bid defiance to the Chemist, Geologist, and every other Theonist, who has dared to enter the lists with him. Give me a good muck heap hefore all your hydıo-sulphuretted, desicated composts.

The calm stillness of our Indian summer, the rich coloring of the falling woods, the rustling carnet of leaves under your feet; not unaccompanied by the still white frost of morning, through which the sun urges his ruddy beams, remind us that another seavol is at hand, with its due proportion of cares and pleasures. Such signs mark the time to select your breeding ewes. Though dusing the previous busy period they may very properly have ranged the stubbles in a somewhat neglected state, if is now desirable to put them on as good feed as you can command, a rough oat stubble, or, if your new grass be at all thush, suffer them to have the benefit of it before it is cut down by the earliest frost. I have always found it best to have the ewes rising in condition, at the time they go to tup. Mark me, I want them rising in condition, not dead fat. To rise, they must have been previously somewhat leaner. Nothing, however, seems to me more injurious than to have the ewe too fat during the time of restation, a few white turtips or rape would be fourd of great value at this season.

Meantime allowing our flocks to enjoy themselves on the best we can afford, let us make our winter arrangements for their accommodation. For this purpase, a situation should be chosen where a dry sheltered shed can be erected, wet is the sheep's eneiny in Spring, and especially at lambiar time; the yard of this shed should if possible have a Southem or South Eastern expo-
-ure, and be devoted to sheep alone. It is always dangerous to have cattle in a yard among sheep at any time, but especially when heavy with lamb. The vicinity of the stable is also desirable, as inferior hay is oflen pulled duwn and rejected by the hurses which mas be with great advantage hatuded vit to the sheep, furgut not also some means for a constant steply of water to the ewes dumg the mole and anced pat of the season. Slaning constructed a shed suitable to your purpose, and lage emough not to be too much crowded, racks ouglat to be artanged in the yard of sufficient capacity to admit of all the sheep feeding at once, and so constructed as to dirty the wool as litte as possible. It is a slovenly and wasteful plan in a crowded sheep yad to scatter fodder around,-as sheep, well fed, seldom like to return to food they have trampled over. Troughs, also, for feeding out roots or grain, should if possible be placed cader cover of the shed, in order to heep cut snow and ice; and so managed by cross-bars, ou sume when device, as to prevent the sheep standing in herm. Here again there should be ample aceommulation for all; or you will see your weaher sheep grow daily poorer, sacrificed to the stronges and mone fendy ruffians.
I have always fuund pea straw, eluver straw, or even oat straw if nut too well threshed, and liberally supplied, accompathied by the stable refuse, sufficiently nourishing feed uatil the early part of February-during very stormy and severe weather, a litle hay may be given. As the season advances, a few cut turnips or carrols may be added after their morning's fodder; at that lime of day they are not apt to frecze, if they reneain fora time uneaten. As lambing time approaches, I have found a few bran mashes with a litte boiled Indian or Pea meal mised though then, prove very advantageous in bringing ewes to their milk. I never hate been su suecessful in this respect as the first year I was in Canada; I then simmered over night one guart of Indian meal in a common iron pot, full of water; with this I mixed about a pail full of thin bran mash in the morning, and gave it amung 20 ewes,-wa this they milked better than I have siuce lound them do on a good surphy of carrots.

You should particumalis guard against bars, or any low fences around your ewe pen; have grod gates and high fences. 1 lad catelessly leaving up the bottom bar, when the rest wese down, has been the cause of many a fine ewe casting her lamb, frecuently involiang the loss buth of the mother and her offspring. If jou have amy of your best ewes on which you can atiord to bestuw a little additional care, you may venture them to lamb a little earlier than the general flock; so that the lambs may be got out of ham's way before the more busy time comes on ; with this object in view, I have always found the seasun from about 15 hh March to the 12 th of April, whe particularly shumned as a lambing time. The sun has then attained much pover; and it is generally wet and sloppy through the day, often freczing up most fiercely with a cold Nouth Wester at night. This weather destroys you wheat, and it will sweep off your lambs as rapidy ; such a night tells its tale in the morni:ly.

I have found my ewes for the last six years produce the first lamb invariably five current mouths after the day the tup was put anong them. Thus I should advise your early ewes to be put to about the dith September, where your genend floch is at all mumerons, not withstanding the pemak I have made, with regard to the "euther in the early pant of Apil; 1 cannct adwee wo withhod the tup bey ond the first ten day: of Nus ember, as the weather often after that periud becomes so boisterons, as much to aflect the general heartiness of the flock.
Lanbing time has at length arrived, jour first care must be to provide three or four small pens, in the most sheltered part of your shed; each furmshed with some convenient mode of feeding. I have always found it desirable, where enes are lambing in a crowded pen, to shut the mother and her offopring up torether, fur the frot night at least ; if thene is any difliculy in mothening the lainb, it may be cuntinued for une or two days, but never longen than is absolutely pecessary, as there is a danger of the ewe being shy of feeding in her new position. But there is a caution which I find here absolutely necessary; every ewe, on recuyering from lambing, seems to require water; this I invariably pravide for by giving a very liquid mash, which also assists in buinging furward the milk. Should this precaution be ueglected, you will generally in six or eight hours find the ewe sicken, and have a giddy stupid appearance; while the lamb at once be. gins to scuur ; but this will generally be relieved in its earlier stag ss by administering the requisite liquid. If the lamb is not relieved, I have given with success a s.nall quantity of opium in the white of an egg. The danger more to be feared here to your limbs, when confined in a crowded pen, is a stoppage of the evacuations caused by exposure to wet, intense cold, or the neglect of the nuther during the night. The extremities become cold and a deadly stupor rapidly supervencs. Here I have found the administering a little warm milk, taking the lamb into a not too warm pant of the house for an hour or so, not more, accompanied by continued friction of the limbs, quarters and loins, very frequently successful. But the lamb must as soon as possible be seplaced with the mother in one of your small pens and suckled. In piving milk to lambs, it is necessary to know, that about a table spoonful at a time, is sufficient for the capacity of the stomach. A sreai cause of the wint at success in lringing up young lambs on milk, is, that people offen vainly endeavour to squeeze the whole coments of a tea pot into a cavity not langer than a walnut shell. The plan ussally adopted by shepherds is to cariy a small bottle of new mill somewhat diluted with water, and sweetened with sugar, so litte as searcely to he perceptibie ; this is kept warm by being carried in the breant pocket, and when about to administer it , a litte is taken into the shepherd's mouth, and tetained until he no longer feels any coldaess in its taste; it is then dopped into the mounh of the lamb held open for that parnose. During the busiest part of hambing, your ewes should if possible be ratembed to, once at least in the course of the night; your pens will then be found nost
valuable, as any ewe, having the appearance of lambing, may be placed by herself and can be seen at once, without your perishing in the cold for half an hour.

Spring now brings to the farmer anxieties about other matters; and your flock, on getting ont to grass, will not require that close attention. Your lambs should be castrated at the age of about a fortuight, while the weather is yet moderately cool. Fiom that period, the reed and managenent of each farmer will depend on his own peculiar arrangements. The ewos ought to be dried in the course of July, if possible, or at latest early in August; after the stubbles are open, there can be no excuse for keeping lambs sucking the vitals out of the ewes. The ewe lambs, of course, no judicious farmer will think of breeding from, the first year; and he will take care to provide them with the best of feed duriug the first winter; in a situation apart from the older sheep, which would utherwise drive them from their feed. Towards spring, it will be found neressary to slice pretty fine any roots given to the lambs, otherwis:, as their front teeth are getting loose, they will refuse to eat them.

I have now travelled over more ground than I purposed at starting; I have freely expressed my opinions founded on experience, abstaning from what some people call book farmmg, from an impression that these meetings are more for the purpose of gathering tugether, and digestung our mutual experience, than for repeating mformation from books, which we can read at our own tiresides; at the same time that I would be the last to depreciate any information from whatever source darived. \bar{I} trust, by thus collating our experience, we shall be enabled mutualiy to benefit each other, and advance the callmer to which we belong. - I am proud, gentlemen, ot being a farmer; people tellme it is an melependent mode of life, but I would rather call it a slependant one, and its dependance constintes its pleasure. God has formed his creatures for snciety, each dependant on the rest for his comfort and happiness; and no man is in a position to realize this feeling so directly as the farmer. Hes food, bis employment, his comfurt, are derived from sources directly around him;-earth, anr, and water, each contibute to the fruits of his labour, and there is no creature of God's creation, no law of his omnipotent providence, a knowledge of which will unt assist the farmer in his every day pursuits. A field is thus opened up for the cultivation of both the mental and bodly powers, which is most in aceordamee what the purpose for which they were oi irinally created. Aud breathing the pure air of IIeaven, and surrounled by the gifts of nature, which a bountuful providence has strewed around him, hus position makes the nearest approach to that of man in his prineval and happiest state. Always reminded, however, of his present position and future prospects by the curse that rests on him, that he shall earn his fread by the sweat of his brow.

A goon Aprorism.-Always do as the sun dnes-lonk at the bright side of everything, it is just as cheap, and threo times as good for digestion.

THE COW : DAIRY IHUSBANDRY AND CATTLE BREEDING.

By M. M. Milburn, Author of Prize Essays of the Royal Agriculiural Society. London, Urr \& Co.This is one of the admirable series known as "Richardson's Rural IIandbooks." The various kinds of milk-producing and fat-producing breeds of cattle are deseribed, and the important subject of dairy management as practi-ad in various localities in this countryand abroad, is detailed, evidently by a practical hand. Altogether, a mass of information is brought before the reader which might even be looked for in vain in borks of a more pretending charactel. We extract,

THE GLOUCESTERSHIRE DAIRY SYSTEM.
"In this district, celebrated for its double Gloucester cheese, the practice is not so entirely dissimilar to the Junlop and Cheshire modes, as to require a very minute detail. They weigh usually about tweny-two pounds each, are a rich and useful cheese. The single Gloucester, or one halfnew mik, and one hali blue or skimmed, are disappearing fiom public approbation. The milk tresh from the cows is taken and mixed at once with the rennet and anatto, and left for an hour covered up to prevent the esrape of the heat, which is maintained, so far as it can be, at the same degree as in Cheshire, and the curd is broken by a knife with three blades. or a sieve made of wire. The whey is taken out with a woocien dish, and is placed in the vat, over which a linen cloth is spread. Inte this cloth the curd is put, and pressed with the hands until it will bear the cover of the vat, which is then placed npon it, and loaind with a weight, or it is placed in the cheese press. The curd is then torn in pieces by a curd mill, and arain placed with a clean cloth in the vat, and pressed. In four or five days the curd is thoroughly deprived of the whey, and is taken out to undergo the process of drying. It may be observed that salting has not been described. No salt is mixed with the curd, but it is rubbed upon the exterior of the cheese, some twelve to twenty hours after it has been put in the pross. It is rubbed in whth the hand, so long as the curd appears to absorb it; and the cherse is again transierred to the press. This takes place three times each day, and the quantity of salt allowing for waste, which a cheese of iwenty-two pounds will absorb, will be about ten ounces. When taken frorn the cloth, they are wiped and laid to dry, in the ordinary manner, being frequently turned.When intended for sale in London, they are scraped and painted. A coat of red colouring mater, dissolved in ale, is used, which is rubbed on the cheese with fannel. Of course this has no beneficial tendency."

The Mistory of Coffer is perhaps not known, or remembered by every one. A writer in Hunt's Merchant's Magazine says that in the 16th century an Ottoman ambassador, Suliman Aga, presented some of the secds to a king of France, as a pleasant beverage produed in Arabia in $10-4$ an Armenian, named pasquel, opened the first shop for the sale of coffee (an infusion of it) in Paris. It is now in gencral use all over the world: and nearly all the coffee drunk is the produce of the new continent, where about one century ago it was not cultivated at all. The people of the East in piace of raising it thenselves, borrow it from the Americans.
W. Gavirf, Eifl, of Milton Mills, has reccired a Bronze Medal similar to that anvarded to Mr. Patersmu of Dundias, which we noticed last week. No doubt the distribution to Ganadian Exhibitors, who were successful, has been simultancous. Such are the peaceful trophies of our young country. Hort much better than those of warl

MR. SOTIAAK ON IMPROVED BREEDS OF CATMLE.

\{ Piffardinia, Limingston Co., N. Y., Jan. 31, 185).

Mr. Editor:-I see, by Mr. Parson's first letter, the reason he gives for the superiority of Short Ilorns, is, by their great number over cther breeds. This is a very will thought. Twothirds of them, even whth herd-buok pedigrees (which he well knows) have their hides stretched over them as if tightened with a pair of pmeers, and not worthy to be classed with any improted breed. Those who are so strongly then advocates, should be prepared with some better calle for their preference than their becoming fashionable.

I will here ask Mr. Parsons whether it was his judgment, as Chairman of Short Horn Committec, in deciding the first premium for the best Short Horn Cow at Niagara, 1850. If so, I differ very widely with him there. I should not have noticed the first premium cow; so either he or mysell must be incompetent to judge of improved breeds of cattle; which of the two, remains to be proved. There were several far better cows in my estimation. I will here deseribe her so that there will be no "mistake," for I was very much surprised when the decision was made. She was a young cow, very long on the legs, tery coarse bone, a narrow hollow crop, large paunch, le.ell chine, very scanty brisket, medium breadth of hips, rumps very good in shape, and flat sides,these were covered with thick "flabby flesh" of very inferior quality, which conceaied a mulliplicity of faults to the eye. but couid not deceive the hand. There was noreasticity about it. Her udder was small, but handsumely shaped. The calf, whech was in the pen with her, was thin in flesh and indicated her lack of milkiug properti.s, -neck long and thick-head a stagery appear-ance-colour red and white. This seems to nie to be as correct a statement as my recollection serves to guide "my opinion" of the animal. I will call upon ohter disiaterested judges, who saw her at the time, whether these are facts or not. If this was a model of a good premium cow, I am no judge, and I think it is an importint point for a man who wites for an asricultual paper on the "qualitics" of improred breeds of cattle, to first show his judgment and capability. I did not advance this controvers; ; thercfore, i am "on the defensive." This is not the only time Mr. Parsons has given the preference to an animal with "soft flabby fesh"" when he has been judge; and I cau name it, if necessary.
This, Mr. Editor, is one of cur most importamt errors; judges are too apt to give the prefercive to fleshy breeding amimals, no matter what tha breed, or quality; they always look at the ani-1 mals as they are, and will not allow for adverec circumstances. λ goodjudge ought to be abre to discriminate a good symmatrical a aid high quatily animal in low, or medium condition, fiom a common animal loaded with inferior fesh. If he camot do this, he never ought to be put on an! Committec. But enough of this-I. suppose i shall make some enemics; but, if fucts wil to it, I must encounter them.

Another point. Mr. Parsons said to me, at Rochester, that I must have a better quality of Herefords to contend against the Short Homs than those I had there. I will admit that they were low in condition-not one of them ever had a peck of meal in their lives, to my knowledg. I have a propusition to make to hint, which he camot do less than accept, after mahing such an assention. I will show six of those Cowe, ard Heifers, and a Bull, next July or Angust, in their own pastures, against a like number of Mr. Parson's, for guatity atone, or weight in addition, as I considen them to be the veriy best quatity thas Eagland can produce of any breed, ind an willing to back my opinion. The judges shall be Canadians. I will name It n. Aldam Fergussen for mine; although a Shont Horn Breeder, he is a straighforward, honest man-a good and unprejudiced judge-which is all 1 ask. Mr P. may select his. Those two, naming the third, the losens to pay the expenses of the judges, while on duty, in examining each lut. When this is decided, I will meet him on the weight of butter made by said six mimals. He may serd a Canadian to test miue; I will send an Englishman to test his. The time of trial may be made by him. Any intelligent person, in whom Mr. ${ }^{\prime}$ '. has confidence, call fill this office, who is not "ashamed to work" while the trial is being made; set and skim the milk himself; see the butter made up, and, in fact, look closely that there is no deception. I can send one to him in whom I have comfidence. This can be done at litule expense, which will suit my circumstances best. It is an important trial, and one Mr. Parsons proposes; therefore, let us thy it. When these are ended, another trial may come forth. A pair of two-year-old Steers may be shown for early maturity; a yoke of oxen to test the plough in tleep ploughing; a fat ox or cow to thy the weight and quality of meat-(I sold a Hereford cow at hoston, in 1Si6, for one hundred and lifly dollars, that weighed 2,313 lbs. alive, on the scales, and never had any meal until Dee'r 1st, and was sold the latter end of Mareh following.) The quamity of food consumed can be acted upen.
I will here leave Mr. P. to meditate on these proposals, and show you "my opinion" of S. H. and Herefords ; but, before 1 pioceed to this, 1 will ask MI. P why he fed "thousends of Devons and huadereds of Herefords," if Shont Horns were so profitable as he is tryins to make thern appear? My opinion of S. II. is this: they are fashomable animals, supported by men of money, nursed, erromed, prim zered and fed, without reard to expense or profit. They are large to appeatace, and with a sleck meal coat on, fine looking to the eye, but. like all other " h ght fed" and fahhomable things, very deceiving.

I shall now aibute to three important points of jectanable to Shont lloms. First. Their apparrat larse size and coamenes. Large, is a tem ofter given to an ainibal standing gh higin les, wi.h : t , y extended paunch, without correpombing widh, or deph of fame. Secondly. Ther hant class S. II. are fre ghently conered with a thia sim-a tue molieation of deliancy and lack of constitution. Thirdls. They generally
possess a quality of flabby flesh, which is considered very soft to the touch, and which is always connected with a thin skin. It is the union of these three qualities which often characterizes the first class Short Homs, and which is considered by the best judges to be only second rate, under the term called good handing. It is the union of the two later, that establishes the con-stitution,-and it is from this reason, only, that they require nursing and extra care. It is not so with the Herefords-they have maintained a higher standard of excellence, for which the best of the breed has always been esteemed. A moderately thick mellow hide, with a well apportioned combination of softness, with elasticity. I prefer the touch to be moderately firm and elastic. They generally stand on shoit legs, over which is a straight compact paunch, wide hips, level back and crops, round ribs, meaty chine, possessing weight with compactness, their udders generally of medium size with very little flesh, and will stand the test for rich milk and butter, for the food they consume, against any other breed. This is the character of my herd, which I am always ready to maintain.

The following extract, from the Marli Lane Express, Sept'r 15, 1850, is proof of what I have said, as some of mine are descended precisely from the same herd: "The prize Hereford Bull, shown at Windsor by t..e Right Hon. Lord Berwick, Cronk Hill, near Shrewsbury, agȩd four and a-half years, was unquestionably the best bull in the yard. He has a 'large' square frame of great depth, well covered with flesh of good quality. He has a good skin, short legs, grirts nine feet, and is sin feet in length;-aliogether, he is a large, compact animal. The second prize Hereford Bull, belonging to Mr. Price, was aiso a remarkable animal, but not to be compared with Lord Berwick's bull. Although but three years and twenty days old, he ginted eight feet seven inches; whilst the prize Short Horn Bull, a much higher and apparently a much lerger animal, girted two inches less, although three months older. The other classes of Herefords contained some admirable specimens, and, although not so numeronsly exhbited as the Short lloms, yet we think as a class they stood unequalled." There seems to be something in this account of the Herefords that contains "proof." Since writing the above, my Mark Lane Express has come to hand, containing the aceount of the Smithfield Show, in which it seems the Herefords nearly carry every thing in classes of Steers and Oxen-10 prizes; to Devons, 3 ; to Short Horns, 1 ; and the Hereford Ox wiming the cup as the best in all classes; in Cows and Heifers-Herefords, 1 ; Short Horns, 6. In Cows, there were but very few Herefords shown ; the Shot Horns were "great in numt ber:" In the report, the Herefords and Devous were all sold, the names of the purehasers given. Of the Short Horns, two only wete sold-tho report says: "not sold"--pposite cach amimal, which is a proof of the demand for bret quality. The report further says that Mr. Phillips' two years and tea months old Hereford, was remark-
ahle for its form and carlymaturity, and that the Short Horns were apparently toolurge and coarse for prize animals or for sale.

Yours, \&c.,
Wh. Hy. Sotham.
IMPROVEMENT OF PASIURE LAND, \&G.

Walpole, 26th Feb., 1852.

Sin:-Obiersing by the newspapers that there is to be an Agricultural Mmister in the Cabinet, and an Agricultural Professur in the University, I, along with many of my neighbours, begin to think about what is most likely to benefit the farmers of this Province. And here I will just state that I am only a plain home-spun farner, with neither a classical nor scientific education. But having been brought up to farming in England till thinty years of age, and having spent tho last ten years in Canada, I have had some practical experience.
The principal disadvantage the fo"...er in this section of country labours under, is, that the only. paying crop is wheat. Now, there is no need of my trying to prove to you that the Euglish farmers make more money out of their stock, than of their wheat;-may, many of them make more from their stock than by all the grain they grow of every kind. This I have no doubt you will admit. Now, Sir, I have nc doubt you are seady to say, but we cannot gro turnips to the extent they do, at least, not proftably,-and here I would agree with you, for we cettainly cannot. But may we rot improve our pastures? Go into one of the Western counties of Old England, in the middle of May; take a morniu.g's walk into a meadow, observe the variety and luxuriance of the herbage, to say nothing of the beauty of the scene (and surely no artificial flower garden ever conld be compared with it!) and no one would wonder at the amount of stock the farmer raises on such pastures. Timothy, though an excellent grass for hay, gives scarct i, any after grass, or fog, as some call 1 t.

It is reported that you, Sir, are to have an example farm under your direction, in comexion with the professorship of Agriculture. If it be so, I believe one of the best experiments you could make, would be to seed down a piece of land with as extensive a collection of grass seeds as you could obtain, not forgetting the rib grass, or tony plantain, from Britain. I believe the best posisible mixture are the grass seeds found in the farmers' hay-lofts in Euyland. I have often collected bushels after the winter was over, in my tathci's hay-lotis, to sow in the spring, and we always found that they filled the ground well with every needfal variety. Seeds ought to be new, for atter they become more than a year old, they (d) not half grow.

It will be but of little use to improve stock, everyt we inprove pastures. Every farmer will acknowledge Shoyt IIorns to be the most splendid catte in the world, but they are the aristocracy of the farm yard, and must have splendid accommodations and food, or they will quickly degenerate. If we cannot have improved pastures,

Devon cattle or the native breed will suit us better. The after grass or fog, as the Yorkshire people call it, was always considered woth the rent of the land in the county of Somerset, where I was born; here all the fog we have is a little second clover. A grood cow made about 15 pei annum, in butter and cheese, in England; here few make one-third of that sum. Affer mowing, we frequently bought sheep of the hill farmers, so poor with fulding and being kept so thick, that they scarcely could walk liome; but in six weeks' feeding, on nothing but after grass, we have had them so fat as to weigh from 25 to 30 lbs. per quarter.
I am very sorry that we heve no club here to take the Agricullurist, but next year I hope we shall, and learn what practical good you and Mr. Cameron are likely to do us farmers.

> I am, Sir, Yours most respectfully, William Hedges.
We are obliged to our correspondent for the information and suggestions which his communication coutains, and shall be glad to hear from him again upon any maters that have come under his ubservation as a farmer in this country. It is in this aray principally that our Journal can be made the most beneficial to that important class of the commenity. Farmers residing in different, and often widely separated sections of the country, may interest and benefit each other in a high degree, by the mutual interchange of individual thought, and the results of varied experience. With this view ue are desirous of receiving occasionally short and practical communications from experienced farmers in every Tounship of Upper Canada. Our correspondent's suggestion respecting grasses, has frequently occurred to us, and we intend, as soon as practieable, to make some experiments in commexiun with that and sever:th other matters, possessing great interest and importance to the farmers of this country. After the next meeting of the Board of Agriculture, we hope to be able to submit to the public the completed arrangements of the Professorship of Agriculture in our Provincial University, and the Experimental Farm conneoted therewith. The Hon. M. Cameron, we learn, is already actively engaged in preparing for his department.

Pectharities of the Desert--It is curious to - obsuive the prevalence of the sandy color df the soil in the creatures that have to exist upon it. Sandycolored eagles devour sandy-colored vipters and lizards which in their turn prey on grasshoppers of the same complexion; and partridges andspariows, by means of their resemblance to the ground, avoid the prying eyes of the falcons and hawks.-Melly's Nhartoum anil the Nile.

SUMMIER FALLOWS.

Mr. Entor,-

It ought to be the study of all Farmers in these hard times to try to raise such crops as will be most profitable, and at the same time the least likely to impoverish the soil.

I have always been of opinion that the general system of naked Summer Fallows in Canada, altho a good method of cleaning, are nevertheless a great means of impoverishing the soil. When we take into consideration the fact, that each Summer Fallow is generally ploughed and harrowed, at least three times, during the very hottest period of the year; and when thas turned up so often to the heat of the sun, there can lee little duabe that, under the circumstances a great proportion of the Gaseous and Organic matter contained in the soil is exhaled by the action of the heated atmosphere.
Therefore, instend of the naked Summer Fallow, I have for some years past turned my attention to Pea Fallows; which I find, in the first place, to pay best, having two crops instead of one: and in the second place, the land is generally as clear when prepared fur the sowing of Fall wheat, as it otherwise would have been by the naked Falluw, and in the third place, I have gencrally as heavy a crop, and even a larger sample of wheat than by the ordinary system.
The manner in which I lahour my Pea Fallows is as follows:-I cross plough the ground in the Fall, in the Spring it is larrowed well first, then it is ploughed into twelve feet ridges, taking care to liave as much comb as possible on the furrows, so that the secd may be well covered. Then I sow (if early peas) at the rate of four bushels per acre, or more, if the ground is not clear. For Marrowfats, three bushels will be sufficient if well covered. Three or four days after sowing 1 roll the ground with a roller, laving a box or platform on the top of the frame, upon which is collected all stones, roots \&c., which are earried to the end of the land, where the stones arothrown off and the routs are pited up and burned. My early peas are generally cut and taken off the ground about the middle of July, and the land is cross ploughed immediately afterwards. The Marrowfits are a later pea, and are not generally ready to havest before the last week of July, or the first week of August; but still they are always of the ground in time to admit two ploughings, before sowing the Fall Wheat. By this system I not only have my land clean, but I have also something in my barn, which will make the Americans feef fur their purse in the Spring, when they find that their peas have so many holes in them that they woin't grow.

$$
\begin{aligned}
& \text { I am, Dear Sir, } \\
& \text { Yours, \&c., }
\end{aligned}
$$

G. S.

Newcastle, March 19, 1852.
Novel. Apphication of Water-power to BellRinging. - The hours of six in the morning and ten in the evening are regularly rung from the spire of St. Peter's Church, Dundee, by a chime of bells produced by the application of water-power to a complicated piece of machinery.

LEICESTER EWES.

The above cut is taken from a steel engraving in the Farmers' Magazine for January last.It represents a pen of Leicester ewes, the property of William Sanday, Esq., of Holme Pierrepoint, Notts, England. They obtained the first prize of twenty sovereigns at the Ruyal Agricultural Society's Show, at Windsor, in July last.

USE OF TAR FOR SIIEEP.

Having had some experience in the management of sheep, I propose to say a few words on the use of tar for sheep, as a preventive of disease. 1 have been in the practice of feeding to my sheep 4 or 5 gallons of tar to each 100 sheep, per year. My plan of feeding is to mix it with salt, by scattering salt in a long narrow trough, and pouring the tar upon the salt. In this way I have no difficulty in getting the sheep to eat it. In addition to this, every time I handle my sheep, except when washing them, I apply a little tar to the nose of each; this external application I deem more imporiant in the summer and fall menths, when the gad-fly is troubling the flock.
This is the only article that I have used to prevent disease in sheep fur a number of years in which I have been engaged in wool growing; the result has been that I have not lost one per cent. of my sheep, by diseases of all kinds, annually. When I sheared my sheep last May, I had over 600, and I am not aware of losing but one since. I ascribe the unform health of my flock to the free use of tar.

I make these statements, that others may have the benefit of my experionce.

Respectfully yours,
-Ohio Cultivator.
War. S. Wright.
Deer Paowing.-" How dnes deep plowing improve the soil?" asks an inquiring farmer. The simple answer is, by increasing its depth. "But," says the inquirer, "if I plow deep Ishall turn up the clay and inert earth that contain no nousishment for plants." Well, if clay and inert
earth, containing no nourishment for plants, lie \mathbf{s}^{0} near the sun face as to be within reach of your deepest working plow, they ought to be turned up and exposed to the influence of sun, air, frost, rain, snow, and manure and cultivation, that they may become rich. "But," says the inquirer, (it is strange how many "buts" such people can find for use on such occasions,) "it would require too much hard work and too long a time to do this, would it not?" That depends upon whether you would prefer five dollars profit per acre now, and forever hereafter, to two or three dollars now, this year and next, and ten or twenty dollars per acre heroafter.

Protecting Tender Roses.-After trying rarious modes of sheltering tender roses during winter, including the use of moss, inverted turf, straw, tan-bark covered with boards, \&c., none appears to be equal, says the Albany Cultivator, to a covering with the branches of evergreens. Plants, but slightly tender, need very little shielding in this way; while those the most susceptible of injury should be encased several inches threk. One eminent advantage which this treatment possesses, is the entire freedom from decay in the bark and stems of the shielded plants, which sometimes results from other modes. Fine, hemlock, white cedar, \&c., may be used for this purpose. Where evergreen hedges or screens have been planted, the shearings or clippings may be employed with great convenience.

[^0]
NEW PLAN OF CANADIAN FARMING.

To the Editor of the Canadian Agriculturist.

 SIR:I hope you will give me space in your valuable publication for the following remarks, on the Farming of Canada West as far as I have seen compared with that of England, - proposing some plan to reduce the expenses of Farm work, together with a rotation such as appears to me suitable to the climate and resources of
the country, at the same time soliciting those who have practical knowledge to point out any defects that may occur.

I propose for the salke of example to take one hundred acres of land, 50 acres under actual cultivation-20 under some kind of pasture, and 30 in requisite wood, and shall divide the land under actual tillage into 10 acre fields, and the rotation I propose is as follows:-

5 Acres.

5 Acres.
10 Acres.
10 Acres.
10 Acres.
10 Acres.

Turnip or Mangold Wurtzel.	Potatoes, Corn, Garrots, peas or Cabbage.	Oats or Barlcy, or both with Clover.	Clover Hay.	Clover Ilay or Pasture.	WIIEAT.

The 20 acres in pasture may be renewed every five years, by taking up one half and bringing it into the rotation taking care to put some other grasses into the land when it is to be left for pasture.

I prefer seeding down with Oats or Barley, because the Clover gets a start at the same time the uceeds do if there are any, (and where are there none?) and by putting plenty of seed in there is every probability of keeping them well under.
The quantity of ploughing necessary for this rotation is annually as follows:-
10 Acres of Clover to be turned for Wheat.
10 Acres after Peas and Turnips, \&c., to prefor the spring sowing of Oats or Barley.
10 After wheat to prepare for Turnips, \&c., making only 30 acres of fall plougling, or a little over a month's work.
10 Acres in Spring for Barley and Oats, \&c.
10 Acres for Turnips, Wortzel, Peas, \&c.
Fifty acres in the course of seven or eight months are most easily done by one man and a pair of Horses. In this rotation should the land require a fallow, it can be done in the second clover year without at all interfering with the course proposed; a point of importance to the Farmer.

The general method of Farming in Canada, appears to me, to be most exhausting to the soil, and unproductive to the Farmer; on the same sized clearance as above he has generally half under Wheat and summer fallow, half under Peas and Oats.' Now let us see how much work be lias to do with the plough.
$12 \frac{1}{2}$ acres in Fall Wheat.
$12 \frac{1}{2}$ acres under fallow, giving $37 \frac{1}{2}$ acres to plough.

12: acres to be ploughed in the Fall, and again in the Spring for Oats.
121 to be ploughed in the fall and again in the Spring for Peas, making in all $87{ }_{1}$.
Now it is almost impossible for the farmer to do this and get his crops sown and harvested. He therefore dispenses with the fall ploughing altogether and most frequently with one summer fallor ploughing, leaving his land when the wheat comes off almost as dirty as before he started. Am I too severe?
I am of opinion that the rotation I propose may be worked with one man and a yoke of oxen with a boy through the summer months, and a mare for hoeing requisite between Turnips, Potatoes, \&c., which would not prevent her giring a colt to pay the expenses of her keep.
I shall now give the probabie yearly expenses of working the two plans, and also the profits, if any. I shall then eompare the expenses with those of England.
1st. The expenses of working the plan proposed for one year in Canada:-
Hire of the man for the year............... £25 00
Moard and washing at $\$ 6$ per month.... 1800
Boy for eight months at $\$ 5$ per month.... $10 \quad 0 \quad 0$
Board and washing at $\$ 6$ per month..... $12 \quad 0 \quad 0$
Rent of 50 acres cleared land including
taxes and statute labor
Yoke of Oxen. 150
One Mare 20 0
One Plough........................ 3100
One Harrow. 150
One Cultivator................... 150
Onc Horse Hoc. 2 . 0
One Waggon..................... 150
£58 0
At 12 ner cent per annum for wear not in-
cluding repairs 6192
Plough points and sundries................ 150

Brought upward £98 42	
10 acres of Wheat, 20 bushels required for	
10 acres of Clover, 1 bushel of sc	50
5 acres of Oats, 15 tushels of secd at 1s. 10	0163
5 acres of Barley, 15 do. do. it 2s. $6 d$.	176
5 acres of Peas, 15 do. do. at 2s. 6 d .	17 6
1 acre of Potatoes 12 do . do. at 1s. 3d.	189
3 acres of Turnips 3 lbs of do. at 1s. $10 \frac{1}{2}$	05712
3 acres of Mangold 6 lbs of do. at 2 ; 6d.	0150
l'o hire of a man in Hay harvest for two weeks at 3s. 9d. a day, and 1s. 3d. for his keep.	300
Fo hire of man in Wheat harvest for one weak at $\$ 1+$ per diem.	1176
To hire of a man for a month to assist in getting root crops housed, and to help in thrashing \&c., including his keep..	00
Io thrashing 10 acres of wheat.	6100
$125 \quad 733$	

Peas and Oats to be done by man in winter menths and straw fed to the cattle daily.

200 bushel of Wheat at 3s. per bushel	. 300
30 tons of Clover Hay at 25 s . per ton	. 37100
150 'ushel of Oats at ls. 1d. per bushe	826
125 do. of Barley at ls. $10 \frac{1}{2} \mathrm{~d}$ do.	$11144 \frac{1}{2}$
125 do. of Peas do. do.	$11144^{\frac{1}{2}}$
150 do. of Potatocs at 1s. do.	7100
40 tons of Turnips at los. per ton	$30 \quad 0$
60 co. Mangold Wurtzel at . 2s. 6d.	37100
20 aces Fall pasture after Hay.	200
	£176 1

I have in the purchase of seed in this estimate ot given the quantity of Clover I consider necessiry, by some pounds; 10 lbs . is little enougt for this plan, as far as I can judge by comparison.
I nois proceed to the other system-i. e. one fourth wheat, one fourth oats, one fourth peas, and fourth fallow-a portion of the grass l.nd will of course be hayed, leaving only a small quantity of pasture. There are now 377_{1} acres of ploughing to be done, if the land is worked to the same standard as the first system, and that has to be done all at once, or nearly so, at the most busy time in the yeur and will require two men, two teams, two ploughs, besides the hire of hands to assist larvesting and haying.

Brourgt forward. £105 126 $£ 6910$ s. at 12 per cent per annum...... $869 \frac{1}{2}$ To shocing llurses........................... 100 Two tons of Hay at $\$ 5$ for their keep.... 2100 400 bushel of Oats for Horses and Oxen
at ls. 1d... 21 13 4
Plough points and sundries for 2 plourlis $\begin{array}{llll}1 & 17 & 6\end{array}$ to puncuase of sern.
25 bushels of wheat for $12 \frac{1}{2}$ acres at $3 \mathrm{~s} . \ldots \quad 315 \quad 0$ $37 \frac{1}{2}$ do. of Oats for do. at $1 \mathrm{~s} .1 \mathrm{~d} . \quad 2 \quad 07!$ 27_{2}^{\prime} bushels of Peas for do. at 2s. 6d. $413 \quad 9$ 'Yo tbrashing 12\} acres of Wheat........ if 0 o

$£ 153 \quad 953$

Oats and Peas as before done by hand in the winter months.

VALUE OF CROPS.

250 bushels of Wheat at 3s. per bushel. . 137100
375 do. Oats at ls. 1d. do. .. 2063
$312 \frac{1}{2}$ do. Peas at $1 \mathrm{~s} .10 \frac{1}{2} \mathrm{~d}$. do. .. $29 \quad 5 \quad \frac{1}{4}$
£87 1.31
expenses ef rain prorosed.
Dr.
To Expenses .$\left\{125 \quad 73 \frac{1}{2}\right.$
Cr.
By Returns.... 1 3
Profits....50 $1311 \frac{1}{2}$
EXPENSES OF FALLOW.
Dr:
By Expenses
.$£ 158 \quad 95 \frac{3}{4}$
Cr.
By Returns
£ 87131
Loss
$.57182 \frac{1}{2}$
Now this would allow of a failure of a root crop every other year without loss-or the root coop might be grown only every second year. In fact any plan would appear better than that pursued at present.
I now corpare the same system in the two countries, and also give the price of stock, wool, meat, \&c., as near as possible.
I must also state that in the eastern division of Kent which these calculations are made for, land giving the yield stated cannot be hired for the sum charged. Sheep it would be almost impossible to buy for less than 25 s . each, they get no more for the wool there than we did here last year, and not often so much. Of this I am certain that wool which will here resize 1s. 3d. would not there bring one shilling sterling, and many are the sheep here to be bought for 6 s . str., whose wool would bring 1s. str. per pound.
As for the difference of meat it is sold in England at 4s. the eight pounds for good quality, which is only about twice the price of mutton here, the skin any old country butcher will tell you is worth next to nothing, and the tal-

Iow is above the price of English tallow. Why then do farmers in Canada leave the shoep in the Concessions for me to ride and fall over in the night, and send them bur hunting in the day? Having made these remarks, I shall at once proceed to a comparison between a 50 acre farm in

Kent and a 50 acre farm in Canada, in the County of Oxford. Then conclude with a few remarks on the subject of Mangold Wurtzel growing and its yield per acre in England, Ireland, and the lsland of St. IIelena, from ac. counts worthy of credit.

bILANCE SIIEET UNDER PROPOSED SYSTEM IN ENGLAND.

recapitilation.					
Dr.			Cr.		
Wheat .	560	Wheat.	135	0	0
Barley	5910	Barley	85	0	0
Hay .	360	ITay ..	72	0	0
Hay.	360	Hay .	62	0	0
Profts	20010				
	476 0		£:76	0	0

BALANCE SHEET UNDER A PROPOSED SYSTEM IN CANADA.

Dr.
To rent of 10 acres of land as above.... $£ 5 \quad 0 \quad 0$

30 bushels of Barley at 2 s.
One bushel and a halt of

Tharvesting
Marketing ...

Cr.

It appears to me strange that when any plan is propoed and the feasibility of it is shown that no one has enerys enough to try the scheme, and one answer is made to all hints on improvement, It won't pay. Maving now shown, and I think fairly, how much better the proposed plan is to that pursued geuerally, and also the difierence between English and Canadian Farming, looking at the price of stock of all common kinds, and their inctosed value when fed, I hope no one will blame me in advising the farmers even should wheat bring its 万ूs. a bushel, to follow my plan, because I will promise them that they will have much more to the acre, and can also grow it for centuries in this way. But let them go on in the way they are doing and I predict it will be in Canada as it was in the olden States, about 15 bushel to the acre will be the average crop.
I will now give a few extracts from the Oxford Encyclopadia on the subject of the Mangold Wurtzel. Turnips may be grown anywhere, and I might also say to any amount of tons per atere, for the proof which I refer you to a work published in England, viz: The Farmers' Magazine.
"We are told that this pint is not affected by excessive drought and that no insects will touch it. The leaves which measure from 30 to 40 inches in length and 52 to 25 across are usually gathered once a fortnight, both leaves and roots are good for man and beast. Willis's Calender for 1814, says, Jernard Ifoward, Esq., grows ammally 10 or 12 acres, obtaining the acreable produce of from 40 to 50 tons. Col. Bentson, Guvernor of St. Helena, grew it extensively the quantities then obtained on experimental ground were immense-after the rate of $60 \frac{1}{2}$ tons per acre, manured with hogs dung and ashes-7is with dung of sea fowl-without manu:e it only gave 19 f tons."

To shew its powers of re; etation and alko its eudurance of drought, I copy the following:
\because On a barren ridge between two deep ravines, on which from its declining surface no moisture could be retained, Col. Bentson caused 16 different sorts of seeds to be sown at the same time, viz:-Mangold Wurtzel, Coffee, Cotton, Wheat, Barley, Oats, Peas, Buckwheat, Nping Tares, Lacern, Burnet, Sainfoin, Silla, Chicory, hape and Sum-flower. For a long time there was no sign of vegetation, at length seven months after sowing, being soaked by rains, the Mangrold Wurtzel appeared one connected line of thriving plants, and not a plant of the rest ever appeared."
I have myself proved the strong vegetating powers of the plant under a hot Canadiansun in July, when I trancplanted some which were unshaded, set in quick sand as it is called, thrown
out in the process of making a drain, they were to all appearance quite dead, but after some tme a shower of rain made them look quite green, and when pulled they averaged 5 lbs . each plant. I must now conclude my long letter, hoping to have a reply from some practical man, which is one great reason of my troubling you with the effusions

> Of yours,
> Dear Sir,

Thomas II. ${ }^{\top}{ }^{\top}$ att, M.R.C.S.E.
Woodstock, March, 185.

A DOUBLE FURROWER.

I send you the plan of a Double Furrower, which we have used five years. We find it very landy. It furrows twice as much as the old fashioned way. In can be set two, three, or four feet apart.

Explanation of the Cut.

A. The shoe made of plank, 2 inches thick.
B.B. Shares; same as these on a double mould board plow, bolted on the shoe.
C.C. These pieces are made of 2 inch plank, and morticed in the shoe.
D.D. These rods are made with heads on one end, and nut on the other. They pass through the stanchion, C. C., through the plank, E., and the upsright F., which forms a binge ; the holes are a little larget than the rode, and work frecly.
G. Crosspiece, on which are two handles; it is bolted loosely on the uprights, and works same as plank: E .
II. Beam bolted firmly on the plank, E .
I. Rod to stiffen the beam.

The plank uprights and crosspicee, are $1 \frac{1}{2}$ iuch staff It is necessary to have a wheel on the beam, the same as on a plow.-Cultivator.

A Short Cueen.-A sceptical young man, one day conversang with the celelorated Dr. Parr, said he would believe nothing which he could not understand. "Then, young, man, your crecd will be the shortest of any mand know."

HORTICUTURE.

GUELPII HORTICULTURAL SOCIETY:

We observe with much pleasure that a Horticultural Society has recently been formed in this place ;-a fact that speaks well for the taste and public spirit of the inhabitants of this thriving town and neighbowhood. The county of Waterloo, although of comparatively recent settlement, is well known for its entcrprising farmens and breeders of improved stock; and now it seems that carnest attention is being directed to the subject of gardening, which cannot be otherwise regarded than as the natural ally of improred farming. We wish the Society every success.

GLASS WALLS FOR GARDENS.

The use of glass for garden walls, in lieu of brick or stone, is being experimented upon in England; and, if it should be found to answer, the additional expense involved by such a substitution of material, will not prevent its introduction, where IIorticulture can boast of so many spirited and wealthy patrons. The sides of the wall are constructed of thick shect glass, manufactured for the purpose, a sufficient intervening space being allowed for trees, which are trained to iron wires. Such structures must be infinitely more elegant in appearance than common walls, and have many advantages as regards regulating the degree of heat and light, and the important processes of ventilation. The price at present varics from $£ 11 \mathrm{~s}$. to $£ 16 \mathrm{~s}$. per lineal foot, for walls 9 feet high, glazed with 16 oz . sheet glass. The Gardeners' Journal observes: "They are, of course, as yet wholly untried; and for the present, the wisest course for those who wish to be near the truth will be to make some deductions from those who pronounce them to be perfection, and a like deduction from those who proh, pook! and call them toys; for they are neitber the one nor the other. The thing is right in principle; and if the present application be less perfect than future experience may ultimately make it, that forms no valid argument against the present effort. The first step once talken is always something gained. The idea contains enougit of promise to claim for it at least a fair trial."

Names of Plants.-The importance of having all plants, including fruit trees, properly ramed oven in small gardens, cannut be too clearly pointed out. A phant may have beautiful foliage and flowers, but without a name it yields comparatively little interest.

Every plant has a history of its own, and the first step towards obtaining a knowledge of that history is its name; the next its native comntry. A garden of plants mithout mames is like a hibrary of books without their exterior superseriptions.

OBSERYATIONS ON THE GROWTH OF PLANTS in absormal atmuspheres.

As oxygen is the most important constutuent of the atmosphere, w far as animal life is concerned, so it is on the canbunic acid, ammonia, and aqueous vapour, that the vegetable world is emineully dependent. Do the oxygen and nitrogen of the air play no impoltant part in the process of vegetation? The following experiments, with a view of setting this and similar inquiries, have been pablished by the Messrs. Gladstone :-A pansy Ined for 24 days in an atmosphere of hydrogen, containing 5 per cent. of carbonic acid; one similanly placed in an atmosphere of copmon air, remained healthy fur a longer period. Five onions, just commencing to sprout, were severally placed in carbonic acid, carbonic oxide, coal gas, air containing 8 per cent. of light carburetted hydrogen, and ordinary atmospheric air. The genmination in the first two was entirely stopped; while the hydro-carbons appeared to considerably accelerate the growth of the vegetable. The plants in each case lost weight. A pansy in flower, a young stock, and a grass plant, were pliced in pure nitrogen gas. The first two soon died; but the grass was left growing a month after the commencement of the experiment. Another pansy was placed in a misture of hydrogen and oxygen gases, in the proportion requisite to form water. In order to imitate the balance which exists in nature between animal and regetahle life, some flies were introduced, along with some sugar to serve as their food. No change, for the space of two weeks, was observed in this plant. Owing to the specific gravity of the mixed gases, the flies were unable to mount on the wing, or make the usual buzzing noise; but the substitution of hydrogen for nitrogen in the atmosphere had no marked effect upon their breathing, thus confirming the observations of Reynault by an instance drawn from aticulata.
At the British Association, Mr. Drubeny stated that he had ferns growing in an atmosphere containing one per cent. of carbonic acid in excess above that ordinarly contained in air, and although it was thought similar ferns growing under the same conditions, but without carbonic acid in excess, were the mest luxuriant, it appeared that they thrived well in this atmusphere. Ferns supplied with water containing one per cent. of carbonic acid, grew much more luxuiiously than those which were supp:ied with pure water, so that the conclusion might be come to, that, although very great quantities of carbonic acid were injurious to plants, yet that, when present in water from one to five per cent., it was beneficial.--London Chemist.

Thinhing and Speaking.- We must not always apeak all that we know-that were mere folly; but, what n man says, should bo what he thinhs; otherwise, it is knavers.

TIIE SCIENCE AND PRIVCIPLES OF GAR-

NO. IV.

the agents which affect rlants.
4.-Witer.

This agent is composed of two parts of hydrogen gats and one part of oxyren. In its simple state, it is therefore not unfited partially to sustain plants. But it is very rarely found thus free from other ingredients, and is capable of taking up all the various matters which go to preserve and develope life. It is, in short, the principal medium by which plants feed.

Water exists buth in a liquid and fluid state, according as it is found in or upon the earth, or the atmosphere. It is always more or less naturally present in soils, and is discharged from the atmosphere, to which it travels by means of evaporation, it the foim of rain, dew, \&e. Without water, veretables would speedily die. It must therefore be supplied when it is natually lacking, and to such platits as are kept in an artilicial state. The soil in which plants grow should be constantly moist, but not wet. In extremely wet soils, there can never be sufficient lieat or air, and the vessels of plants placed in them will soon become turgid and diseased. This is the basis of all draining, whether in the natural ground, or in pots.

A great varicty of nutritive matters are conveyed by nature to plants through thre medium of water, and nay be applied attilicially by the same means. As only liquids can be absorbed, nothing that will not dissolve in thera can be expected to enter the plant, or do it a particle of good.

Water is very necessary and very refreshing to the leaves of plants, to wash away dust and dirt from them and keep their pores in healthy action; besides checking any extravagant drain on their re:ources in dry weather. Rains and dews are beneficial in their ways, for the most part, and in artificial water, whether given to plants in the open ground or in pots, syringing over the leaves will be an important addition, without which common watering at the roots would be of comparatiorly little avail. But it should be seen that the water, however applied, is not of an injurious nature, and does not contain deleterious matter.

5.-Electricity.

For the absence of any definite knowledge of this mysterivus power, it can only be mentioned as a thing that acts decidedly and strongly upon plants. There can be no doubt that it promotes, healthiness, when present in only its ordinary condition and quantity. But it also seems, at least, to occasion disease, and to be in some sort productive of what are popularly termed "blights," which are sometimes in no way attributable to insects. How far it may go, in its usual state, towards composing or upholding vegetable life, it is impossible to say. Neither can it be determined by any means at present known or understood, to what extent (if at all) it has been productive of the disease which has so unhappily become notorious as the "potato blight," though
this is most commonly ascribed to atmospheric influences. But as the further discussion of this principle could not tend to any positive practical result, it may be dismissed with a simple reference to the known potency of its action on vegttable life.

6.-Weather.

The wonderful variations of the weather consequent on atmospheric changes, and form. ing the climate of a district, exert a powerful agency upon plants, and require to be well considered and studied. The barometer, thermometer and even the hygrometer, to measure the heat and moisture and calculate the changes of the atmosphere, will be useful instruments to the cultivatur, as indicating, what the senses, however nicely tutored, can never so accurately make known. The occurrence of frost, reminding him of the need of protection for some plants-ol rain, admonishing him to gather in crops that require to be stored while dry, or to plant such as will be benefitted by moisture-of gales of wind, pointins but the necessity of shelter and support-may thus often be foreseen and provided against. A few simple rules, such as a good almanac will furnish, relating to the leading signs of the weather, may be of great service in gardening.
Frost commonly occurs when the sky is cleat and during the time the moon is above the horizon, or after hail storms. A lurid redness in the sky about sun-rise, or a very sudden and extensive fall of the barometer, portends violent winds. Rain generally follows a heavy gale, or a sudden fall or rise in the temperature ; and cold showery weather mostly succeeds to thunder storms. In summer, rain seldom comes with the first cloudjness after a week or two of drought, but is Jingering and tady in its arrival. Very low elouds, however thin, are commonly charged with rain.Near tidal rivers, or the sea, a continued rain may be expected if it commencs steadily just about the occurrence of high water.

Such rules might easily be extended to a great length, were they of more universal application; but different localities have each various weather symptoms; and general directions of this sort are not entirely and at all times to be depended on. They are only useful as common (not invariable) guides.
7.-Soils.

These, as far as the mere matter of which they are made up is concemed, are of little consequence in themselves. But they are of the highest value as the means of conveying other things, and may contain ingredients which plants will largely feed upon. They may be considered with reference to their teature, and their capacity for being pervaded by roots, or for receiving liquids and gases and transmitting them to the plants.

The mechanical properties or texture of soils are of first concern. No soil that is not open, and comparatively unretartive of tise latter, will evel be fit for growing plants in unless it can be reduced to a better state by art. Stiff and unctuous clays, with close and fatty bog earth, are entirely unsuitable for the cultivation of plants, until they are thoroughly broken up, and drained, and pul.
rerised, and mixed with lighter ingredients. The mere draining and working of bog soil will do a great deal towards improving its texture. But (atys will require long tillage, ant? the liberal use of such things as coal, ashes, sand, lime, and tome rubbish, light manures, or saudy peat, to tring them at all into a grom condition. And cen with these unch time and patience will be demanded. Throwing them up in rideres during dathan, and leaving them thes till Spring expused to the action of the Winter's frosis will be trealy conducive to their pulverization. Very light sandy soils, on the other hand, possess faults ot testure of an opposite description, though they gre much more easily remedred. They qive off water too freely, admit ant too thoroughly, and become parched and dry in the Summer, not being able to sustain any crop whose roots lie near the surface, or any strong-growing kind of plant. Their defects may be currected by the application of marl and the clays, and by the use of such manures as cow and pig durg. They should nes ar be ralged up in Winter, nor turned up more than is really necessary.
The best kind of soil for garden purposes is a modenately strong lighi-coloured loam, or such an alluvial earth as is produced by deposits from streams and rivers. This will be open, if properly worked, and yet never become dried up in 'ordinary summers. It will possess sufficient substance not to be soon impoverished, and may lat any time be got into new "heart" by manure. Chalky soils are often, however, good; and pos-1 pess the mertt of keeping away many insects. But soils that are gravelly are mostly poor, and easily dried up, and unsatisfactory as to produce, and obstructive of the roots of growing crops.
The mineral part of the soil, which is composed of clay, lime and flint-earth, in the form of sand and gravel of various degrees of fineness, together (with, sometimes, magnesia, iron, and a few other metals, contributes little or nothing to the nourishment of plants. These portions of the soil appear to be chiefly used mechanically or chemically, in improving the texture and distributing the more nutritive parts, or in mixing with other things, or operating upon them, to produce nourishing compounds.
On these principles, we may easily account for the barrenness of stiff clays, dry sands, and, more particularly, soils chiefly consisting of granite sand, as those in Arran, and near Plymouth; While in the instance of sand or clay, from basalt or whinstone, as well as from limestone and chalk, when mixed with other soil, the carbonic acid gas tends to promote greater fertilhty, as in the Lothians, Ayrshire, and Kent. Volcanic Pocks, as in the Campagna of Rome, are very sertile for the same reasou. No mixture, then, of clay and sand will be productive, without limeptone, chalk. or basalt, (that is, whinstone) and more particularly, without decayed. plants and manures.
Some mineral substances, such as iron, are njurious to soils, and, perhaps, all the metals are so when combined with oxygen gas or acids. Many good soils, it is true, contain iron, known by the reddısh rusty colour it imparts; but their
fertility appears not to be owing to the iron, but to exist in spite of it.-Kemp's Principles of Giardening.

Tue Varce of Steav and Ramends.-The value of Orean steam comn unication, and hailraal conveyance is already leeing experienced in lytown. Two of for caterprising merchants lately sent an order to Lever, in England, for a large patantity of goods, and in les than fifty days from the date of the order, the grods were received in liytown, although they had to be manufactured after the order was received in Leeds. So soon as our own hailroad is completed, goods can be deliverel in Bytown in frem two to three weeks from liritain, and ai as luw rates as to the Montreal importers. It will be necessary only to have a bonding warelocuse here, to secure to the Mytown merchants, all the advantages that go to make up the sources of profit to the importers in the Atlantic cities. And instead of being obliget to provide six months' or a year's stock at once, and loso the use of the moner invested in goods that must lie orer fur months, orders cuuld be received at all seasuns at reasohably low rates of cost.-Bytown Cutizcn.

A Littla Learnisa is a Dangerocs Tuing.-Tt is universally admitted that the first draughts of knowledge are apt to intoxicate the soul. A deeper acquaintance with the mysteries around him maj indeed tend 10 humble any mas, by fixing his eyes on his own absolute lack of knowledge, rather than on his relative superiority. But as he first energes from the mere level, it is rather with those below him than with the heights which soar far above, that he is disposed to contrast his standing-place : and so the lowest eminence may swell easily into a mountain, and the half-learned mais may be fearfully elated, with an amount of knowledge which would seem to one above him to be nothing but a marrellous ignorance.Bishop Wilberforce's Scrmon at Oxfurd.
"Pourin Knowledge Gently."-Plato observed that the minds of children were like bottles with very narrow mouths; if you attempted to fill them too rapidly much knowledge was wasted and little received; whereas wih a small stream they were easily filled. Those who would make young children prodigies, let them act as wisely as if they would pour a pail of
water into a pint measure. water into a pint measure.
Russia a Nation of Mandfactlerers.-Commerce is, moreover, a thing so natural, so indispensable to Russian life, that despite climate and despotism, industry takes gigantic strides. Now from Moscow to the Black Sea all the villas are transformed into factories, all the seris into worhmen. The highest nobility has become manufacturing. Princes, generals, have become cotton spinners and cloth makers. Industry presents such advantages that there is still a profit for nobles without capital to borrow money at 6 per cent. from the Lombard. In 1832 there was at St. Petersburgh but one merchant for every 48 inhabitants, and at Moscow one out of every 54 . This fig.rre has increased tenfold at Moscow.-Roberts' Monde Slave.
Cleaning Cmina and Earthenware.-They should be washed in plenty ce soap and warm water, rinsed clean in a second bowl of water alone, either warm or cold, should be then turned down to drain, and afterwards wiped dry with linen tea-cloths. Settlings of any liquid which have been suffered to dry up ar the bottum of earthen vessels, nay be dissolved by a little pearlash and water, or with soda instead of
pearlash. pearlash.

SCIENTIFIC.

ARTESIAS WELLS.
A correspondent having sent us some inquiries respecting the conditions under which Artesian wells act, we have had the above cut engraved; which, with the following description, condensed from the best authorities, will, we trust, prove satisfactory.

Artesian wells derive their name from the fact that as early as the begiming of the twelth century, artificial borings for spring water were successfully made at great depths, in the French province of "Artois;" where no appearances of springs could be discovered at the surface. The great advantage which they offer is that of enabling us to procure a copious, and frequently a continuous, supply of pure :water, from depths, and under conditions, which would either preclude our sinking a well altogether, or withont such an expense as would be impracticable. The plan has been adopted with success in varions countries, where the conformation and character of the stratification are favourable; -a few remarkable instances we shall notice presently.

In the 'lertiary formation resting on the chalk, such as the London and Paris basius, these wells have been made to immense depths, and never cease in sending up large supplies of water. The above cut represents the action of such a well made by boring through the impervious slays on which the city of London is built, to the subjacent stratum, consisting of loose, porous materials, resting immediately on the chalk. The upper stratum, a, a, rising to the surface, consists of impervious materials, denominated the London and plastic clays;- ζ, ζ, is a porous deposit of sand and gravel, through which water finds a ready access, either downwards by its own gravity, cr upivards by hydrostatic pressure;-c. c. represents the chalk, which is of immense thickness, of a retentive
character, and the whole deposits forming a basin-like structure. Now it is obvious that the water which falls on the chalk hills, c.c., canact penetrate that stratum, it may acemmulate and form suhterrascan reemoirs, and must, by corr tinued pressure, be forced into the porous bei above $i t, b$. b., which becomes thoroughly sat: rated; and nothing but the impervious stratur of elay ahove, a. a., prevents the water from reaching the surface. Now borings made throughi this retentive stratum into the gravelly beds beneath, as at d.c.f., the water contained is those beds will be forced to the surface, and frequently many feet above it, in obedience to the well known law of hydrostatic pressure. If a word, the water will rise in the pipes to a level with the source of its supply. There are in most countries several circumstances and several geological conditions by which Artesian wells may be formed, but the principle is the same in all, and the modifications must be decided on by the Civil Enginecr, in accordance with the actual geological phenomena of the particular locality.

The Artesian well completed a few ycars since at Cirenelle, one of the suburbs of Paris at the s"ggestion of a number of scientific men is wortlyy of a brief notice; showing as it does the intimate connexion which exists between a knowledge of geological science and the most important wants of daily life. This work was commenced in 1834, with an auger of umsual dimensions (being about a foot in dianeter) and as the undertaking progressed, the different underlying formations were successively passei through with augers diminishing from 9 to 6 inches aperture. At 1,500 feet, no wati was obtained, and the Government began to be disheartencd. At the earnest entreaty, horrever, of MT. Arago, the work was proceceded with, and at an additional 300 fect (making thic entire depth 1800 feet) the rushing up of a ras! body of water olleted the most satisfiactorj proof of the correctness of the principles o: which the work was commenced. This .spring has lost none of its original force or quantity. and continues to supply about hedf a mallion if gallons, in twenty-four hours, of perfectly limpic water!

In the noighbourhood of Loudion, water ha: generally been obtained by borings from two ti
six or seven hundred feet, and it is in all cases fresh. In several parts of the Western States, borings have been successfully made for salt trater as deep as 800 or 900 feet. In the cities of New York, Baltimore, Albany, and in various parts of New Jersey, \&c., brrings for fresh water have been carried, and in most instances with success, to the depth of nearly 400 feet, though water has usually been obtained at a much less depth. An excavation in the city of New York, 100 feet deep and 16 feet diameter, fields 8000 gallons daily; and another in the bame city, 442 feet deep, yields 44,000 gallons dialy (Ifitchcock).-The deepest Artesian well in North America, is probably the ene recently completed at Charleston, S.C., which is said to fave reached nearly 1000 feet.
' The decpest well of this kind, or indeed of Iny other, if we except those reported to exist In China, is the one commenced in 1832, near fue Baths of Kissengen, in Bavaria, for the purpose of supplying saline water for the manufacture of salt. On August 12th, 1850, the fuger penetrated the earth to the immense depth forced out feet, when a column of salt water was forced out with such prodigious power as to flerate it 58 feet above the surface of the Kround! The water is remarkably clear, and as a temperature as it issues from the surface of $90 \circ \mathrm{~F}$., charged with 31 per cent. of pure yit, at the rate of 100 cubic feet per minute. Alarge quantity of carbonic acid gas was met Fith at a depth of 1,680 feet, at a junction of frata consisting of gypsum and sandstone; this fas will in some measure account for the great frce with which the water is ejected above the
burface. It is thought that an immense stratum forface. It is thought that an immense stratum f carbonic acid gas underlies the whole valley if Kissengen, imparting to the springs in the pinity a peculiarly piquant and pleasant chaacter.
The tcmperature of the earth is found to crease, though not always in a uniform ratio, as we descend, and it has been inferred by atural philosophers from this and other conderations, that the central mass of the globe, bich must be of very great density, is in a ate of perpetual incandescence, so that we who cupy the crust may be said to dwell on the ell of a mass of molten materials. Careful periments made with the water of the Charlesfuell, show an average temperature at the esent depth (952 feet) to be $821^{\circ} \mathrm{F}$.; the ban temperature at the surface being $65^{\circ} \mathrm{F}$. bis result is not in agreement with the one ptained at the Grenelle well, near Paris,-the plh of which is, as before stated, 1800 feet; emean temperature of the water being $83^{\circ} \mathrm{F}$. dhat at the surface $51^{\circ} \mathrm{F}$. (Scientific An(al, 1851.)

It is observed by Dr. Buckland, in his Bridgewater Treatise, that, until recently, these borings have been generally performed by means of a continuous iron rod, sharpened like a drill at the lower end. But a far more convenient and economical method, which has long been in use in China, has lately been adopted; viz., to use a heavy cylinder of iron in the same manner, by means of a rope attached to its upper end; a borer with valves being connected with the lower end, for bringing up the comminuted materials.

WASHING MACHINE.
A boy ten or twelve years of age will work this machine with great tacility, and it requrres not a third of the labor of rubbing on the best wash-board In is worked by an altemating motion of the lever A, turning on the hinge or pivot B, and communicating thrusting motion to the bar C, which moves the perforated board like the swinging of a pendulum in the trough. The leverage is precisely like the elbow-jont of the old-fashioned printing press, and hence the box should be strong, for the pressure exerted against the side is enormous. The notched end of the bar C enables the operator to regulate the space occupied by the clothes. The levers are all made of cast-iron. The whole cost of one of these machines is five or six dollars. We know of no good washing machine worked by horse power.
A wringing machine for bed-clothes, is made. by providing a shallow trough about seven feet long, set on legs like those of a bench, and one end of which is fixed, directly over the trough, a simple wooden screw-vice. At the other end is a winch (or hand windlass) which is also furnished with a small screw vice. The article to be wrung is secured at its extremities in these two vices, when by turning the winch any degree of twisting may be given, the water pouring out into the trough benealh. Where but few bedclothes are washed, a shorter troush may be made, wringing half at a time, and serving for ordinary
wearing crarments. The trough should be lower at one end, under which a pail is to be set for 1 eceriving the water. Blow of the water in washed elothe may be perssed fom them by means of the washing machane just descobed, tirst drawmy the phag with which it is fumbehed.

Since writing the above, we have been fasored by a kind neighter and shilfal housewife with the following directions, founded on full experience, for the use of Crane's Sorp, which we believe is pretty widely disseminatad through the country, and which may be had at a moderate price. Uur onn experience confirms its value, more especially on those oceasions when domestics are missing, and the mi.tress or her daughters are compelled to do their own washing.

After having tried varions methods of washing, and numerous varieties of soap, to cleanse clothre with little labor, I have become quite a convert to the ellicacy of "Crane's Patent $\begin{gathered}\text { and }\end{gathered}$ " for this purpose. I hare used it weekly for three months, and find it all that the inventor represents it to be. Whe orebinary clothing for a family of six persons, is senorally wishod, rinsed and hane up in tie conse of three hours.

The process is very simple. I tahe a half pound of the sab, and shec it intu two quarts of hat water: and keep it hot until the stap is disenlow; then four it into a tub contaimug ten gallons of water, heated to about 100°. Let them soak half an hour-then rub them slightly with the hands, and it any articles are unusually soiled, I rub them on the board. It is astouishing with what ease every spot is removed. As you rub them out, throw them intor a tul, or builer of scaldiug water, which may be kept hot by addang a dipper of hot water occasionally. Ten minutes in the scalding water is sufficient-then ritise and blue them as usual. The water in which the cluthes ware soaked may have a quater of a pround, (or less according to the number of colored articles, of somp added to it, and a litule hot water. Then soak your color d clothes just as the white ones were; scald, rinse, starch, de., as is usually done. Afy experience telis me that they do not fade nearly so much as with the ordinary hard soap."- Cultivator.

Nem Discovermes:-In Iondon, among the scientific questions of a practical kind muci. discussed, is that of a patent process for contracting the fibres of calico, and of obtaining on calico thus prepared colors of much brilliancy. It is regarded by chemists as likely to lead to valuable results. In the liritish Association, it was described as the discovery that a solution of cold but caustic sodia acts peculiarly on cotton fibre, immediately causing it to contract; and although the soda cin be readily washed out, yet the tibre has undergone a change. Thus, taking a cuarse cotton fabric, and acting upon it by the proper solution of caustic soda, this could be made much finer in appearance; and if the fimest calico made in En"rland -known as one hundred and eighty picks to the web-be thus acted on, it immediately appears as fine as two hundred and sixty picks. Stockings of open weaving assume a much fince texture by the condensation process; but the effect of the alteration is most strikingly shown by colors; the tint of pint: cotton velvet becomes deepened to an intense degree; and printed calicoes, especially with colors hitherto applied with little satisfaction-such as lilac-come out with strength and brilliancy, besides producing fabrics finer than could be possably woven by hand. The strenglh, too, is increased ty this process; for a string of calico which breaks with a weight of thirteen ounces when not soaked, will bear twenty ounces when half condensed by the caustic soda.

MR. RUTITAN'S REJOINDER TC CARBONIC ACID.

To the Editur of the (iunadiun ensriculturist.

Sir,-I had hoped that the discussion whit: had commenced upon so important a subject as the ventilation of buidines, in your popular ar: wide-spread Jommal, would have proved instane ive and beneficial to some of your thousands a readers; but the abusive letter of my opponent, contained in your last number, of course puts is end to it, so har as I am concerned.

My friend tind that he has gone quite beyond his depth, and that he has no way of baching e:: except under cover of vituperation. He is, ex: dently, some Tyro; for no mactised whter : scielutitic man would so far forget himself as: lase temper to such a degree as to induce himt: make use wh the hard mames and naughty perso:alities which compose his letter-even thought. was worsted in the argument-of which. so fara your correspondent aind I are concerned, you readers must be the juderes.

Sufaras I am persomaliy concemed, I canm regtet this abupt termination of the discussio: for, haviner been for some years, and being a plesent, engaged in a very extensive correspond. ence upon the subject, public and private, in bo:: the Canted States and C'anada, and out of which 1 Hatter myself las, in a great measure, grows the very seneral awakening of the people up: ti:is continent to the necessity of a mitigations the evils resulting fiom the filthy manner in wha: we are living, I have no time, nor, is it to b supposed, have your readers patie:.ce, to thro away upon any merely personal altereation, be tween any parties; much less where one of th parties is anohymous.
"Carbonic Acid" says that by my "acut ness" I have discovered who he is. This is it whole secret of the very amiable temper displayi in his last production. Now, I berg he will r . flatter himself with the idea that I ever cared 0 : straw who he was. It is to your readers that addressed my arguments, not to him. He quite mistaken if he supposes that we have at right to occupy the columns of any paper wi malter which does not concern its readers-a them only.

In another thing I wish to set him right. correspondent, writing over his real name, has right to complain of personalities-an anonyme writer has no such privilege. He voluntarily: sumes a fictitious character-he must take alit responsibilities attached to it. Not only 1 "Carbonic Acid" thus sheltered himself, butt has gone the length of writing in the first perse and this is the character who complains of $p t$ sonalities! Suppose I were to tell my querule friend that he was a murderer? He might c: this outrageous; yet it is the truth. You scarce take up a newspaper in which you do not fi: deaths by "Carbonic acid gas" recorded. If the thing in this light in order to show my th skinned opponent the utter absurdity of his co! plaining of "personalities."
Again; he is paying you a rather left-hand
compliment by his assertion that my "acuteness" has wormed the secret out of you; for of course it must have come out in that way, if any -I say nothing of the exalted opinion he must entertain of me as a gentleman, who would descend to so mean an action as to attempt it.
Now, Sir, in order to exonerate you fiom so foul a charge as the betrayal of your correspondents, J beg to assure "Carbonic Acid" that I never inquired, either from you or any other person, who he was-no one has ever told methat I am just as ignorant of has name and place of residence as 1 am of those of the Khan of Tatary; and 1 now further assure my opponent that he need have no fears that I shall ever take the trouble to ascertain either.
As that "strong narcotic poison," carbonic acid nas, is daily murdering its scores and hundreds, and against whose ravages I am endeavouring to arm its victims, I should now oo on and show your readers the modus operundi by which this arch-enemy of the human family can be bound in chains, and confined to his legitimate sphere, as a constituent in the great eco-
nomical arrangements of nomical arrangements of nature-but for two reasous: one is, that I know your readers are impatient of long articles; and the other is, that, if I should do so before your correspondent had lime properly to digest and comprehend the ordinary iules and usages incident to p. blic discussions of this kind, he might think that I meaut him!
I shall, however, at some future time, when my sensitive friend shall have cooled down, and clearly discerned that while writers may be "perbody can be personal to nobody, take advantage of your kind permission to pursue this important eubject.

Your obedient Servant,

Cobourg, March, 1852.
h. Ruttan.

The Alchemists not all in the łVrong. In our day, men are only too much disposed to fegad the views of the disciples and followers fit the A rabian school, and of the late alchemists, on the subject of transmulation of metals, as a finere hallucination of the human mind, and, frangely enough, to lament it. But the idea of sersal experience, and always precedes that of the unchangeable. The notion of bodies, che-
nically simple, was first firmly nically simple, was first firmly established in he science by the introduction of the Daltonian
loctrine, which admits the existence of solid partine, which admits the existence of solid particles, not further divisible, or atoms. But he ideas connected with this view are so little naccordance with our experience of nature, that fo chemist of the present day holds the metais, bsolutely, for simple undecomposable bodies,
or true elements. Only a few years since, Beror true elements. Only a few years since, Ber-
olius was firmly convinced of the compound plius was firmly convinced of the compound nd we allow our so-called simple substances to fiss for such, not because we know that they are ireality undcomposable, but because they are
syet undecomposed, that is, because we cannot
yet demonstrate their decomposability so as to satisfy the requirements of science. But we all hold it pussikle that this may be done to-morrow. In the year 1807, the alkalies, alkaline earths, and earths proper were regarded as simple bodies, till Davy denonstrated that they were compounds of metals with oxygen.-Liebig's
Letters on Chemistry.

Important Discovery.-The Glasgow Herall says, that at the meetung of the Philosophical Society of Glasgow, Dr. Penny communicated the importont discovery, made by himself, of the presence of a considerable quantity of potash salts in the soot trom blast iron furnaces. The soot experimented upon was obtained from the Coltness Iron Works, wheere it coll in the flues that lead the heated gases and other products of combustion, from the top of the pronaces to the air-heaters and steam-boilets. Dr. Penny, gave the particulars of a careful analysis of the soot. and exhibtted specimens of the potash selt, which had be n extracted in large quantities by Dr. (Quinlan. of Hurlet. The salts has been pronounced by competent judges to be a goud marketable article, consisting chiefly of carbonate and sulphate of potash, with a small admixture of soda salts. According to the results of experiments described by Dr. Penny, it appears that the soot will yield about fility per cent of this marketable salt comaining forty-three per cent of pure potash. It has been found that the amount of potash in soot procured in wther iron works is subjected to variation, arising, no doubt, from the use of different coals in the blast-fuinaces. From the nell-known value ol potash salt, there is every sason to expect that this discovery will prove of consiucrable impuestance to those who are interested in these commenial products, and also to iron-masters, who will now be entaded to turn to account a substance which has not hitherto been ap-
plied to any practical use.

Proper Lexgin of Lightning Condectons.-The rule prescribed by the French Academy is that a lighthing rod will protect a circle whose radius is twice the height of the rod; but Prof. Ioomis cited
to the American Association to the American Association at New llaren an instance which he says "demonstrates to my mind that it is unsafe to rely upon a rod to protect a circle of a radius larger than one and a half times the height of the rod, at least upon the west side, whence most of our thunder showers come." These observations drew out various remarks. Prof. Henry stated that be had found in trees struck by lightning that there would be no traces of electricy on the upper branches, but it appeared to strike at the main trunk. He had observed that when the color of the electric discharge is red, it indicates that the electricity is wers high.

The reason why candles with platted or twisted Wicks do not require suuffing is this:-the burning wick by the force of the torsiun of the fibre which composes it, presents itself to the air, and, finding a due supply of oxygen, the carbon burns away. The litthe beads of yitreous matter, which are seen to accumulate at the end of the wick, are so many beads of glass. Formerly the dropping of ashes into the tallow or stearine of the candle was productive of much inconvenience, when it was surgested that the wicks previously to being covered with their greasy coating, should be steeped in a solution of borax. The plan was found to succeed perfectly; the ashes fusing with borax, formed a glass; which no longer soiled the searine by uropping upon it.

LBCTCRE OS THE STRUCTURE OF THE BAIPTH.
 slldiman.

We take the following interesting lecture upon the Strncture of the Barth from the Sew York Herald. The lecturer said, It wats his purpose this evening to pasis on to Sicily, and to call the attention of his anditory more particulaly to the contemplation of litna. IIe then gave a brief account of his voyage to Sicily, and of the istands in the bay of Naples. The morning after leaving Niaples, he satid, they were up with the bolian islands, and close to the volcamo of Stromboli. These islands are ten in number, and lie between Sicily and continental Italy. Strombuli, it is said, has never ceased its volcanic action a single day-its fires are in unsemitting activity, the ernpLions taking place at regular intervals, varying from three to eight minutes ; but as the yessel passed it in the day time, the fire was not visible, which would have been apparent at might, and they merely witnessed the emission of smoke and steam, at an elevation of fifteen or sixteen hundred feet. They passed ou, and discovered Sicily, with the horn of Etna towering above the adjacent mombains, the cone of which is capped with lava-then comes the region of ice-then the woody region, and then that of a highly fertile character. They passed through the strait, about two miles in length, and completely landocked, in which is situated Sylla and Charybdis, without seeing anything of the famous whirlpool, so remarkable in classic story, although it was stated that at a particular turn of tide danger might be apprehended. The party landed at Massoiri, and distinctly traced the ravatges of the earthquate of 1783 , in which poor Calabria was destroyed, and from fifty to eighty thousand persons perished. They then visited Saourminia, and thence proceeded to Can ania, that they might hare a better view of Mount Dina. At hartford, Connecticut, the Professor said, there is in the posiession of Mr. Cole, a sketch of the mountain, raken from this spot. Lavat is so abundant here, that all the houses and other structures are built of this material, and which must hare been discharged at a very early date. The first olject that attracted attention was an immense field of lava, that overflowed in 1669, which is three miles long and three broad. It flowed on to the walls of Gat:mia, which had been constructed to the height of sixty feet in articipation of such an occurrence. When it had arrived near the walls it seemed to pause, and then mounted up, and withont touching them, fell over and overflowed the city, and thence flowed to the sea, where it formed a cove, and created a harbour where none existed before. The arrest of the pregress of the lava opposite the walls, the Professor attributed to the gasses which were emited in advance, and thus obstructed the onward movement. The lava in this place, he said, was not decomposed, although it frequently decomposes, and becomes a fertile soil. The party now commenced the ascent of Mount Etna. From Catania to its summit the distance is thirty miles; and the latter is upwards of eleven thousand feet above the level of the sea. Its circumference atits base is one hundred and eighty miles, and on its sides are seventy-seven towns and villages, containing 115,000 inhabitants. The mountain, as has before been obferred, is divided into three regions-the fertile, the woody and the barren. The cultivated country abounds with all that is required in civilized life, and extends through an ascent of from twelve to eighteen miles The woody temperate region, extends in a direct line eight or ten miles, and forms a zone of bright green
all round the mountain, exhibiting a pleasing contrast to the snow and see above, and parto are contidered as the most delightina spots upon earth. Around the matin cone, are numerous parasitical or subordinato cones. From these different sthstataces are thrown out sometimes gases, sometimes water, sometimes ashes and somethmes small stones. The Protessor stated that he had mentioned, on a former evening, that the diameter of the eup of the crater of Damma Loa is seven miles in diameter, with a depth of one thonat: fect; but here is a crater with a diameter of twenty miles, and a cup of upwards of three thousand feet deep. Ditna, he contimued, had beea eruptive, and its eruptions were recorded from the earliest periods of history; but during the present century they have not taken place oftner than once in four years; the noise that is made, which resembles the firing of artillery, being heard at regular intervals of three minutes. And alhough dming one of the eruptions upwards of fity thousand people were destroyed, yet the inhabitants dwell on the sides and at the base of the monntain, entirely unapprehensive of danger. The Professor said he might multiply instances of volcanic phenomena; but after what had been deseribed, it would only be a waste of time. IIe gave a mimute aecount of the ascent and descent of Nount Etna on the backs of fathtil mules and donkess, who are left to select their own path, wading through asher, the person who is momed having to hold only the mane in the stef) ascent. but who, in desceading, experiences more difliculty and danger. The seene, he satid, on arriving at the summit, is magnificent beyond conception; and its beauty was enhanced by the subordinate, or as he termed them, parasitical cones, of which, it is said: there are three hundred; at one time he counted fifty. After all that had been stated, l'rofessor Silliman remarked, his andience could need no other proof of the existence of lires in the interior of the globe, and which may break out at any time. Connect the circumstance of the existence of these voleanoes with the heat that is found to exist beneath the surface of the earth, and there could remain no doubt that internal fires are constantly raging bencath. There cannot be a greater fallacy than the popular idea which prevails, that cold water may be obtained by digging deep, for, at a depth of two miles from the surface, such is the heat of the globe at that point, that water will boil. Still, he said, this internal heat has nothing to do with the temperature of the atmosphere on the surfite of the earth. The lrofessor here stated that, in his introductory lecture, he gave some gencral definitions of the trap and basaltic formation. Of the former of these were the palisades in New Jersey, on the North river ; the Giants Causeway in Ireland, and a mountain of trap forma. tion near the Columbia river in Oregon-drawings of which were exhibited. The term tiap he explained, was derived from the Swedish word trappa-a stair, which these strata very much resemble, between each of which, on that near the Columbia river, is a layer of pebbles and debris-the cause of which he did not very satisfactorily account for. He considered it however, as a submarine mountain-of which there are doubtless many under the ocean-in full volcanic activity; and if they do not protrude above its surface, it is because of the superincumbent weight of water. The Professor here diverged to touch upon Siberin, where there is only three fect of soil orer a bed of ice, through which a well has been sumk ninety feet; and it was expected that water would be reached at the temperature of 32 degrees. On this thin soil, however, rye will grow, and even trees are to be found. After alluding to the circumstances of igneous rocks not being always volcanic, the imperceptible transition from compact lava to basalt and trap in their varieties, and various rocks used in architecture and the arts, he concluded by illustra.
ling the theory of internal heat by some experimental illustrations. Having satisfactorily proved the existence of internal fires, he said the quesfoat derived? fresented itself-whence is this beat derived? Werner, owing to his limited field tarth's surface, for the most part, the changes on the farthited the combustion wost part, to water, and attation, to the burning of which produces volcanic Gelds known to be in the fields. But all the coal fiid. would not supply the world, the Protessor of this internal heat howerer mud. Of the sources formed us. About, however, modern science has inthe discovery, of whity years since, Galvani made ent had heard. While doubtless, mauy of those presal is much used for food dissecting a frog-which anifouched it with a mood on the continent-some one mmediately convulsedlic substance when it became vent discoveries in galvanism, which was at first tought to be peculiar to animal life. But in 1800 , the chastruction of the voltaic pile-which the Professor teribed-showed that such was not the fact, and at it was not restricted to animal life. By taking than matenials from the ca'th itselt, and applying lranic action, an intense heat is produced. Here th is the secret of central fires. The fact being asfitained that this internal heat exists, it is equally ident, owing to the progress of scientific discovery, What manner that heat may be generated. The ths themselves were regarded as simpie bodies until e brilliant researches of Sir llumphirey Davy proved m to be compounds; and who, by mears of the laic apparatus, made potash to undergo fusion, and mit extracted small metallic globules called potastallic base of equally successful in discovering the asalt, and from which forms one-third of coms evident, therefore, whon he extracted sodium.ranism, not only tu decompose comperider of fees, but to generate intense heat, that the sublains within her bosom agencies which are competo produce the volcanic phenomena that had been subject of the three last leclures, and to perpetuate fe central fires, of which they are the undoubted tence.
oruola for an ink that resists the action of acids, dies, water, or any of those substances usually in defacing writing :-Shell lac, 2om.; borax, lor.; lyd or rain water, 18oz. Boil the whole in a y covered tin ressel, stirring it occasionally a glass rod until the mixture has become homoous: filter when cold: and mix the fluid solution an ounce of mucilage of gum Arablic prepared siolving 10z. of gum in $20 z$. of water, and add erized inligo and lampblack ad libitum. Boil the again in a covered vessel, and stir the fluid to effect the complete solution and admixture of um Arabic. Stir it occasionally while it is cooland after it has remained undisturbed for two or hours, that the excess of indigo and lampblack subside, bottle it for use. The above ink for nentary purposes is invaluable, being, under all ary circumstances indestructible. It is also cularly well adopted for the use of the laboratoive drops of creosote added to a pint of ordinwill effectually prevent its becoming mouldy Wi Mode of Planting Aprle Trees.-A horarist in Bohemia has a bueautitul plantation of nor aple trees, which have neither sprung from nor grafting. The plan is, to take shoois from in the sorts, insert them in a potato, and plunge shoot while it having put an inch or two shly springs it pushes out roots, and the shoot ghy springs up, and becomes a beautiful tree,
of the best fruit, without requiring to be grafted.

MIISCELLANEOUS.

We take the following humorots lines from n recent number of the lamerian Mastaine, pmblinhed in England. They camot fail to be rend with neterest in Canada, where hapily the system of communication by means of Railroads has been auspiciously commenced.

RHYME OF THE RIIL.

Singing through the forests,
Rattling over ridges,
Shooting under arches,
Rumbling over bridges,
Whizaing through the mountains,
Buzzing oter the vale,
Bless me! this is pleasant, Riding on the Rail!
Men of different "stations" In the eye of Fame.
Here are very quickly Coming to the same.
High and lowly people, Birds of every feather,
On a common level
On a common level Travelling together!
Gentlemen ips shorts,
Looming very tall;
Gentlemen at large,
Talking very small;
Gentlemen in ti-ghts,
With a loose-ish mien;
Gentlemen in grey,
Looking rather green.
Asking for the news ;
Gentlemen in black,
In a fit of blues;
Gentlemen in claret,
Sober as a vicar;
Gentlemen in. Tweed,
Dreadfully in liquor!
Stranger on the right,
Looking very sunny,

Obviously reading

Something rather funny;
Now the smiles are thicker,
Wonder what they mean?
Faith he's got the Kvicien-
Bocker hagazine!
Stranger on the left, Closing up his peepers,
Now he snores amain,
like the Seven Slecpers;
At his feet a volume
Gives the explanation,
How the man grew stupid
From "Association!"
Ancient maiden lady
Anxionsly remarks,
That there must be peril
Mong so many sparks;
Roguish-looking fellow,
Turning to the stranger,
Says it's his opiuion
She is out of danger!
Woman with her baby,
Sitting vis-a-vis;
Baby keeps a squalling,
Woman looks at me,
Asks about the distance,
Says it's tiresome talking,
Noises of the cars
Are so very shocking!

Market woman careful Of the precious casket, Knowing ergs are eggs, Tightly holds hee b:asket;
Feching that a smash, If it came, would surely,
Send her eger to pot lather prematurely!
Singing through the forests, Rattling over ridges,
Shooting under arches, Rumbling over lridges,
Whizaing through the mountains, Buzaing oer the valo;
bless me! this is pleasant, Riding on the Rail!

DOMESTIC MANPULATLON.

0. THE OPER.AIION AFIECTING WATER.

The subject of the Water sapply to the Metropohs and otier large towns is one of the highest mportance to the well-being of the communty at large, in whatever puint of view it may be re-garded-whether as aflecting the comiont, the health, or the pooket of the consumer, its inlluence can scarcely be overrated. To enter, however, into this matter, affecting, as it does, so many varied and coulhecting interests, would be to pass beyond the limits set to this series of papers: what remains for us to do is to avail ourselves of the vast amount of scientific knowledse which has been receatly brogegt to bear upon the queston, and to cull from it such pottions as bear direetly upon Domestic manipulation.
The quality of water for domestic purposes ${ }^{s}$ depends mamily upon its degree of hardness or sottness; and this in its turn depends almost entirely upon the quantity of lime dissolved in some form or uther in the water. In speaking of the quality of watel, the temn "degree of hiadness" is much used ; thus we say that the water of the Thames is of 1.4 degrees of hardness, that of the Hampstead springs about 10 degrees, \&c. \&c. In these and most uther cases the hardness is owing to a certain amount of chalk, carbonate of lime, dissolved, and the degrees of hardness correspond with the number of grains contained in a gallon of water. The Thames water, of 14 degrees of hardness, has in each gallon 14 grains of chalk, and the Hampstead 10 grains. It is found, upon experiment, that one gallon (weighing 70,000 grains) of pure water will not dissolve more than two grains of chalk, and so acquire two degrees of hardness; and that whenever more is contained in water, the excess is always owing to the presence of carbonic acid gas, which enables it to dissolve a much larger quantity. The practical part of our subject depends upon this fact ; for if by any means we can get rid of carbonic acid, the dissolving chalk is necessarily precipitated, and the hard water, unfit for culinary and domestic purposes, becomes soft, and well adapted to both these uses. Carbonic acid is in part expelled from water by heating it to the bollmer pomit; a still larger çuantity is got rid of after builing for some few minutes, and nearly every trace disappears at the end of half
an hour ; and just in proportion as the carbonis acid gas is expelled, so does the chalk fall, rendering the water in the first instance turbid, ani becoming deposited on the intelior surface $:$ kettles, and where it forms the well-known roci or fur.

It has been found that water of 14 degrees of hardness lost two degrees when merely made tr boil; boiling for five muntes reduced the hart ness to six degrees; and for a quater of an hour. to little more than four degrees. The practica application of this knowledge need scarcely be pointed out. Whenever a sott water is requi red, boil for several minutes before using. I making tea, for instance, the cconomy and gene ral superiority of a soft water is well knows Those, however, who use 'Thames water ju: made to boil, employ a water of upwards of ! decrees of hardness; those who boil for tir mmute, diminish the haduess of the water t nearly one-half; and by boiling for a quarter an hour, it can be lessened to one-third. Th circumstance is one of those that prove how gre a substratum of troth there is at the bottom most popular notions. How many a young ge: tlennan, with a smattering of science jnst enoug to inform him that water gets no hotter howes: long or violently it is boiled, has laughed at $:$ gramdmother's antiquated notions, because s! requested that the water might be made to b . thoroughly before the tea was made; the o lady could give no very satisfactory explanatio of her projudice, yet it was nut the less a corre one.
Before going further in this matter, it may stated that there are some waters in which t lime is dissolved in the form of gypsum (sulphe of line); in these, which fortuna'ely are rare, t harduess is of a permanent character, and cans be lessened by builing. Tea made under suchc cumstances may be improved, either by the ad tion of a very small quantity of carbumate of so. or the tea should be kept soahing for half an ho mader such circumstances as will retain the he Tlits latter is the plan followed in Greens Iospital, where they use a well water of 19 grees of permanent hardness.
In washing, the use of hard water is, as is w known, extremely prejudicial. The explanat is cxceedingly simple : every degree of hardt in a gallon of water destroys ten grains of $s t$ and by following out the calculation, it will found that 100 gallons of unboiled Thames r wastes exactly two pounds of soap hefore any proach to a lather can be made. Now whi the remedy for this evil? Simply to boil water some time before use; one quarter 0 . hour's boiling will reduce the waste of somps iwo pounds to ten ounres; and half an ho boiling will still further lessen it to osix oun. but no amount of boiling will make Thames ter equal to rain water, which is without b ness.
There is one practical matter of great im tance to which we wish to draw the attentio all concerned: it is the effect of boiling line. hard water. If clothes are put into cold w and then boiled, the precipitation of chalk (w
has been so often alluded to) takes place on the clothes, and whatever colvuring matter exists in the water goes down with the chalk, and also becomes attached to the linen, rendering it of that disagreeable and unremovable dirty hue which is so characteristic of certain laundries. If boiling is absolutely requisite for white fabrics, it should be done in water which has been boiled half an hour, allowed to stand, and then poured off from the sediment; otherwise, from the immediate precipitation of the chalk, the dirt is boiled in and thoroughly fixed to the fabric. A moment's consideration will convince any one that a deposit to the fur in a tea-kettle cannot be expected to improve the appearance of white linen. Where clear rain water can be obtained, there is no objection to the hoiling of clothes in it, as, being absolutely free from lime, no precipitation can take place. The use of soda in softening water employed in washing, is well known; but the remedy is not without its own evil: it weakens the fibre of the cloth, and unless it is much more thoroughly removed by rinsing than is usually the case, it occasions a very permanent yellow tuge when the cloth is heated, as in ironing, or in airing; and the evil effect of it upon vailius colours is well known.

For the purpose of removing on a large scale the hardness of the water, a very ingemous proeess has been proposed by Dr. Clark, and is now in active operation in many parts of Lancashire; at one printworks alone it is employed daly to the extent of suftening 300,000 gallons of water. Although the account does not in strictness come within our limits, inasmuch as it is scarcely a tomestic operation, it is so beaut:ful in its theory,
and so successful in practice, that we may renand so successful in practice, that we may
ture to devote a few words to its explanation.

We have already stated that the hardness of nater is usually owing to chalk or carbonate of lime, dissolved by excess of carbonic acid gas, evisting in the water; and that on the removal of that by boiling, the chalk falls as a sediment, entangling and taking down many of the other impurities. Dr. Clark's plan proceeds on the apparent contradiction, that by adding more lime to water, we shall remove that already dissolved; and this is found perfectly effectual in practice. The principles on which it proceeds are these: Pure lime, recently burned, is soluble to a considerable extent in water; when united to carbonic acid gas, it forms chalk, which is nearly insoluble in pure water, but which is dissolved readily by water containing an excess of carbonic acid. Now if pure lime, in the proper proportion $1 s$ added to such hard water, it unites with the excess of carbonic acid, and forms chalk, which falls, and at the same time throws down that portion of chalk which was previously disiolved; and water so treated becomes, on standing, beaulifully clear, soft, and pure. This process, however, is one which can scarcely be conveniently performed on a smal! scale; it should be done in immense reservoirs, the lime being mixed with the water as it flows in. The process, though not in active operation in London, has been repeatedly tested on $3,000,000$ to $4,000,000$ gallons at a lime at the Chelsea water-works; and it has been found that the Thames water is by it redu-
ced fiom 14 to 4 degrees of harduess; that it is rendered clear, bright, and much puer, without acquiring any odeur or taste; and that the expense may be regarded as being about $E 1$ for so puitying every million gallons.
We take the above fiom an excellent little London periodical, haviug an immense cirenlation, entitled the Famity Friend, from which we shall occasionally furnish our pages.

A Singular Relic.

Capt. D'Auberville, of the bark chieftain, of Boston, writes to the editor of the Louisrille Varieties that he put into Gibraltar on the 27 Th of dugust last to repair some damages his vessel had sustained, and, whle waiting, himself and two of his passengers crossed the straits to Momnt Abylus, on the African coast, to shoot, and rick up geolegical specimens. Before returning the breeze lad ireshened so much as to render it necessary to put more ballast in the boat, and one of the crew lifted what supposed to be a piece of rock, but from its cxtreme lightness and singular shape was indaced to call the attention of the captain to it, who at fisst towk it fur a piece of pumicestone, but so completely covered with tarnacles and other marine animalcule as to deny that supposition. Un further examination he found it to be as cellar keg. Un opening it he found a cocoa-nut, enceloped in a kind of gum or resinous substance; this Ge also opened, and foumd a parchment covered with Gothe characters, nearly illegible, and which neither he nor any one on buard was able to decipher. He, however, fiund on shure an Armenian book merchant, who was said to be the most learned man in Spain, to whom he took it, who, after learning the circumstances of its discovery, offered 300 dollars for it, which offer Capt. D'Auberville declined. He then, says the letter, read word for word, and translated it into French as he read each sentence; it was a short Lut concise account of the discovery of Cathay, or further India, addressed to Ferdinand and Isabella, of Castile and Aragon, say ing the ships could not possilly survive the tempest another day; that they then were between the Western Isles and Spain; that two like narratives were written and thrown into the sea, in case "Carnaval" should go to the bottom, that some mariner would pick up one or the other of them. The strange document was signed by Christopher Columbus in a bold and dashing hand. It also bore the date of 1493 , and consequently had been
floating over the Atlantic floating over the Atlantic 258 years.

Achnowlengments.- Our best thanks are tendered to the cditors of the Mark Lane Express and the I, ish Farmer's Gazette, for the receipt of those valuable Journals; and we hope to have soon the same pleasing duty to perform to the North British Agriculturist; when we shall be fully able to give our namerous readers such information as is peculiar to each great division of the United Kingdom.

Portrait of J. G. Bowes, Esq.-Mr. Moppner Meyer, the well known artist, of this city, has faroured us with an excellent likeness of our much esteemed Mayor. Both the original painting and engraving fully sustain Mr. Meyer's well-merited fame in this department, and are highly creditable to the state and progress of the Fine Arts in Toronto,

TO BREEDERS OF IMPROVED STUCK.

We have re.eived from Lewis G. Morris, Esq., the following announcement of his next annual sale, which such of our subscribers as ate desirous of improving their stock could not do better than attend. Mr. Morris's sound judgment, great industry and enterprise in his particular department, coupled with his high standing for honorable dealing, fairly entitle him to the confidence and support of a discerning public.-Enitor C. A.

Lewis g. MORRIS'

Thirl anneal S.d., by. Alaction, of Improted Breeids of Dume. lie . Diaiaul., uial tuhe phace al Muant Fuodham, Westchester Cownty, (11 miles frum the Cily Hall, Neal lurh,) un W'. liceodity, June 9, 185:. James ML. Miller, duclionecr.
Applicatoon need not be made at private sale, as I decline in all cases, so as to make it an object sor persons at a distance to attend. Sale positive to the highest bidder, without reserve.

Numbering about filty head of horned stock, including a variety of ages and sex, consisting of pure bred shoit horns, Devons, and Ayrshires; Southdown buck lambs, and a very few ewes; Suffolk and Essex swine. Catalogues, with full pedigrees, \&c., will be ready for delivery on the first of May-to be obtained fiom the subscriber, or at the offices of any of the princupal Agricultural Journals or stores in the Union. This sale will offer the best opportunity to obtain very fine animals I ever have given, as I shall reduce my hord lower than ever brfore, contemplating a trıp to Europe, to be absent a year, and shall not have another sale until 1854.

It will be seen by reference to the proceedings of our State Agricultural Soriety that I was the most successful exhibitor of domestic animals, at the late State Fair.

I will also offer a neu feature to American Breedersone which woths well in Europe; that is, lelting the services of motle uniads; and will solicit propositoons from such as see fit to try it. Conditions-The animal hired, to be at the risk of the owner, unless by some positive neglect or carelessness of the hirer; the expense of transportation to and from, to be borne jointly; the term of letting, to be one year or less, as parties agiee: price to be adjusted by parties-to be paid in advan:e, when the bull is taken asay; circumstances would vary the pice; animal to be kept in accordance with instructions of owner, before taking him away.

I offer on the fure going conditiuns, three celebrated prize bulis, "Major," a Devon, nine years olc; "Lamartine," short horn, four years old; "Lord Eryholme," short horn, three years old. Pedigrees will be given in catalogues.

At the time of my sale, (and I would not part with them bufars) ishili have secured two ur three yearly setts of their progeny; and as I shall send out in August next a new importation of male animals, I shall not want the services of either of these next year. I nould not sell them, as I wish to keep contive of thear propagated qualities hereafter.

I also have one imported buck, the prize winner at Rochester last fall, inpouted direct from the celebrated Junas Welbb, and also five yearling buchs winners also, bred by me, from bucks and ewes imported direct from the above celebrated breeder; they will be let on the same conditions as the bulls, exceptiug that I will keep them until the patty hiring wishes them, and they must be returned to me again on or about Christ-
mas dar. By this plan, the party hiring gets rid of the risk and trouble of keeping a buck the year round: All cummanications by mail must be prepaud, and I will prepay the answers.

L. G. MORRIS

Mount Fordham, March, 1852.

Markets.

Agriculaturist Office, Tonosto, Арии, 1, 185̃. $\}$

Our market has been very thinly supplied this week up till to day, owing to the bad weather and very heavy teads. We hud, however, from 300 to 400 bushels of wheat in to-day which was disposed of at prices ranging from 3s. 3d. ©3 3s. 7d. There was a good supply of common field pease "hich brought fiom 1 s . $10 \frac{1}{2}$. to 2 s . Marrowfat pease are however very scarce, and bring from 5 s . to 6 s . 3d.
potatoes are also very scarce, and command 4s. readily.

Fresh butter still holds at 1 s .
Egss have declined to 7d.
There is little Timothy seed coming in, and prices are rather dowr.

Clover seed has advanced.
The following are the quotations:-

The Canadian Agriculturist,

EDITED by G. BUCKLAND, Secretary of the Board of Agriculture, to whom all communications are to be addressed, is published on the First of each month by the Proprietor, William McDougall at his Office, curner of Yonge and Adelaide Streets, Tutuntu, tu whoin all business letters shuuld be directod

TERMS.

Sivgle Cories-One Dollar per annum.

Cllas, or Members of Agricultural Sucieties ordering 25 copies or upwards-Half a Dollar cocti Copy.
Subseriptions always in advance, and none taben kut frum the commencement of each year. The volỉ. for 1849-'50-'51, at 5 s . each, bound.
N. B.-No advertisements inserted. Mateex β_{r} however, that pussess a general interest to agricultap rists, will reccive an Editorial Notice upon a persomal or written application.

[^0]: Horse Power Ditchisa Macmine.-Mr. Charles Bishop of Norwalk, Ohio, has invented and taken measures to secure a patent for a good improvement in ditching machines, whereby the old spade method of ditcling by manual power is entirely thrown into the shade. His machine is worked by horse power, and is provided with a revolving excarator, the shaft or axle of which lies in the direction of the length of the ditch. The excavator is of a screw form, and is operated by an endless clain.The ditch is cut of a semi-circular form, and it deposits the cut clay; or other kind of excavated earth in a bos, from whence it is delivered at one side on the road by serapers attached to the endiess chain. The machine being propelled forward by a friction whel, or roller, moving in the diteh, and operated by the excarator's shaft.-Family Visitor.

