CANADA DEPARTMENT OF MINES MINES BRANCH

HON. W. TEMPLEMAN, MINISTER; A. P. LOW, LL.D., DEPUTY MINISTER; EUGENE HAANEL, Ph.D., DIRECTOR.

REPORT OF ANALYSES

POF

ORES, NON-METALLIC MINERALS, FUELS, ETC.

MADE IN THE

CHEMICAL LABORATORIES

DURING THE YEARS

1906, 1907, 1908

ARRANGED BY

F. G. WAIT, M.A., F.C.S.,

Chief Chemist.

OTTAWA
GOVERNMENT PRINTING BUREAU
1909

No. 59

ORES, N

CANADA DEPARTMENT OF MINES

MINES BRANCH

HON. W. TEMPLEMAN, MINISTER; A. P. LOW, LL.D., DEPUTY MINISTER; EUGENE HAANEL, PH.D., DIRECTOR.

REPORT OF ANALYSES

OF

ORES, NON-METALLIC MINERALS, FUELS, ETC.

MADE IN THE

CHEMICAL LABORATORIES

DURING THE YEARS

1906, 1907, 1908

ARRANGED BY

F. G. WAIT, M.A., F.C.S.,

Chief Chemist.

OTTAWA
GOVERNMENT PRINTING BUREAU
1909

No. 59

To Eugene H.

SIR,—I be laboratories of the Mines Bra

The analysis Mr. M. F. Connected to them

OTTAWA, A

To EUGENE HAANEL, Ph.D.,

Director of Mines Branch,

Department of Mines.

SIR,—I beg to submit, herewith, a report of work done in the chemical laboratories of the Geological Survey during the years 1906 and 1907, and of the Mines Branch of the Department of Mines in 1906, 1907, and 1908.

The analyses recorded in the report have been made with the assistance of Mr. M. F. Connor, B.Sc., and Mr. H. A. Leverin, Ch.E., and their work has been credited to them in all instances. Any not so allotted, were done by myself.

I have the honour to be, sir, Your obedient servant,

F. G. WAIT,

OTTAWA, April 24, 1909.

I. ROCK ANALY 1. Crushed 2. Porphyr 3. Harzbur 4. Augite-b B.C.. 5. Augite-b

6. Augite-o 7. Hornble 8. Alkaline

9. Granodi 10. Monzoni 11. Dunite

Koote 12. Porphyr 13. Augite 1

14. Hornble 15. Kersant 16. Monzoni

17. Olivine-18. Basic gr 19. Augite 1

20. Crushed 21. Granodi

22. Biotite 23. Gneissic

24. Augite-h Moun

25. Quartz

26. Granodi

27. Rhombe

II. COALS AND Lignites from

1. 2. 3. 4. 5. 6. 7. 8. 9.

11. 14, 15. 16.

10.

17. 18, 19. 20.

21, 22. 23, 24, 25

CONTENTS

	PAGE.
I. ROCK ANALYSES.	14
1. Crushed granodiorite—Osoyoos lake, B.C	
2. Porphyritic olivine-syenite—Baker creek, B.C.	14
3. Harzburgite—one mile northwest of Monument 172, B.C.	14
4. Augite-biotite syenite porphyry, between Sophie mountain and Kettle river,	14
B.C	14
5. Augite-biotite latite—Record Mountain ridge, west of Rossland 6. Augite-olivine (-biotite) latite flow, associated with preceding specimen	14
	14
7. Hornblende-augite minette dike—west bank of Columbia river, B.C	15
8. Alkaline biotite granite—east of Lake mountain, B.C	15
9. Granodiorite—two miles west of Trail, B.C	15
11. Dunite intrusion—four miles and a half west of Coryell station, West	10
	15
Kootenay, B.C.	15
12. Porphyritic missourite dike—west of Rossland, B.C	15
13. Augite latite—three miles N.N.E. of Record mountain, near Rossland	15
14. Hornblende augite latite—east of Sayward station at Columbia river, B.C.	16
15. Kersantite dike—one mile north of Lost creek, B.C	16
16. Monzonite stock—two miles north of Lost creek, B.C	16
17. Olivine-augite minette—summit of Selkirk range, B.C	16
18. Basic granodiorite—six miles and a half north of Irene mountain, B.C	16
19. Augite minette dike-two miles and a half N.N.E. of North Star mountain.	16
20. Crushed biotite (muscovite) granite—Port Hill, B.C	16
21. Granodiorite—along Similkameen river, B.C	17
22. Biotite granite—summit of Bannerman ridge, B.C	17
23. Gneissic biotite granite—two miles southwest of Cathedral peak, B.C	11
24. Augite-hornblende-biotite gabbro—four miles and a half west of Cathedral	17
Mountain ridge, B.C	17
25. Quartz mica diorite—five miles west of Cathedral peak, B.C	17
27. Phombon foldown Poskioneck Vettle viven R.C.	17
27. Rhomben feldspar-Rock/creek, Kettle river, B.C	1.
II. COALS AND LIGNITES.	
Lignites from:—	
1. North and west of Cumberland lake, Sask	18
2. Bow river, twenty miles south of Brooks, Alta	18
3. Sec. 9, Tp. 17, R. 17, W. of 4th meridian, Alta	18
4. Sec. 30, Tp. 28, R. 23, W. of 4th meridian, Alta	19
5. Bore hole No. 2, on Jasper Ave., Edmonton, Alta	19
6. River lots 22 and 24, Edmonton, Alta	19
7. River lot 26, Edmonton, Alta	20
8. River lot 7, Strathcona, Alta	20
9. River lot 19, Strathcona, Alta	20
10. Sec. 18, Tp. 48, R. 19, W. of 4th meridian, Alta	21
11. Sec. 28, Tp. 46, R. 20, W. of 4th meridian, Alta	21
12, 13. Sec. 12, Tp. 38, R. 22, W. of 4th meridian, Alta	, 22
14, 15. Sec. 34, Tp. 38, R. 23, W. of 4th meridian, Alta	
16. Sec. 22, Tp. 31, R. 24, W. of 4th meridian, Alta	23
17. Sec. 26, Tp. 31, R. 24, W. of 4th meridian, Alta	23
18, 19. N.W. 1, Sec. 24, Tp. 55, R. 24, W. of 4th meridian, Alta	, 24
20. N.E. 1, Sec. 23, Tp. 55, R. 24, W. of 4th meridian, Alta	24
21, 22. S.E. 4, Sec. 8, Tp. 55, R. 24, W. of 4th meridian, Alta	, 25
23, 24, 25. Sec. 25, Tp. 51, R. 25, W. of 4th meridian, Alta	

Ι.	COALS AND LIGNITES-Continued.	
		PAGE.
		26
		26
	20. 20. 1, -p. 20, 21. 2, 20. 20. 20. 20. 20. 20. 20. 20. 20.	27
	-, -, -, -, -, -, -, -, -, -, -, -, -, -	27
		28
	g, -1,,,,,,,,,	28
		29 29
	35, 36. N.E. 4, Sec. 33, Tp. 53, R. 7, W. of 5th meridian, Alta	30
	37. Wolf creek, Tp. 52, R. 15, W. of 5th meridian, Alta	
		31
	The commence of the control of the c	32
	44-47. Tantalus butte, Yukon	
	48, 49. Opposite 69th mile-post on Whitcherse and Dawson, wagon road,	50
		34
	Lignitic coals from:—	
		0.
		34
		35
		35
		35
		36
		36 36
		37
		37
		37
		37
	61. "The W. Gamble" claim, in Sec. 10, Tp. 40, R. 19, W. of 5th meridian, Alta	38
	the same and a same and	39
	63. "The Big" seam (S.E. of), in Sec. 2, Tp. 40, R. 19, W. of 5th	1747
		39
	64. "The H. B. McGiverin" claim, Sec. 27, Tp. 39, R. 17, W. of 5th	30
	11. 411	39
	65. Sec. 9, Tp. 7, R. 3, W. of 5th meridian, Alta	40
	66. Sec. 28, Tp. 42, R. 19, W. of 5th meridian, Alta	40
	67. Wapiabi creek, in Sec. 34, Tp. 40, R. 18, W. of 5th meridian, Alta	40
	00 C 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	41
	00 C IV C I 1 1 1 1 1 C 1 I C 1 I D D	41
	TO THE CONTRACT OF THE CONTRAC	41
	71. Shaw's mine on N.W. 4 of Sec. 7, Tp. 22, R. 3, W. of 5th	
	meridian, Alta	42
	72. Sheep creek, Sec. 30, Tp. 19, R. 4, W. of 5th meridian, Alta,	42
	73. "Sec. 36, Tp. 19, R. 5, W. of 5th meridian, Alta	42
	74. "Sec. 30, Tp. 19, R. 4, W. of 5th meridian, Alta	43
	75. Foothills of the Rockies, 200 miles W. of Edmonton, Alta	43
	76. A 24 ft. seam, near McEvoy's trail	43
	77-79. "Dockrill" coal, Morice river, Skeena mining division, B.C	44
	80. West side of Okanagan lake, B.C	45
	81. Northwest quarter of the Indian Reserve, in Nicola valley, B.C	45
	82. From banks of stream flowing into Elk river, on east side of Fox	4.5
	Mountain, B.C.	45
	83. Goat creek, Omineca mining division, B.C	46
	84. Aldrich creek, Elk river, B.C.	46
	85. Whitehorse coal fields, near Dugdale siding, Yukon	46

11. COALS AND Lignite coals 86-88. 89-91. Anthracitic (97-98. Semi-anthrac 100, 101. Anthracite fr III. PEAT. (1.) Mer Blet (2.) Alfred, I (3.) Welland (4.) Newingt (5.) Perth, L (6.) Victoria IV. LIMESTON British Colu Ontario-Quebec-Nova Scotia 12, 13. A

92. 93. 94. 95. 96.

99.

102.

1. T 2. V 3. V

5. A 6, 7 8, 9

10. M 11. (11. 8

14-57. (59-64. (65-67. (68-71. C 72. I 73-157. 1 158-167. 1 168-183.

V. IRON ORES Yukon-1. Vicini British Coli Magneti Van

II. COALS AND LIGNITES-Continued.		
Lignite coals from—Continued.		Pagi
86-88. Tantalus coal mine, Lewes river, Yukon		. 47
89-91. Five Fingers mine, Lewes river, Yukon		. 48
Anthracitic coal from:		. 49
92. Bragg creek, Alta		
93. Seam No. 6, Canmore mine, Alta	Alto	
94. Coxcomb mountain, on Sec. 34, Tp. 2, R. 7, W. of 5th meridian,	Aita.	. 50
95. Sec. 1, Tp. 25, R. 11, W. of 5th meridian, Alta		. 50
96. Hudson Bay mountain, B.C W. of Dundale, Yukon		50 51
97-98. Whitehorse coal fields, twelve miles W. of Dugdale, Yukon	ukon	. 51
99. Opposite 114th mile-post on Whitehorse and Dawson road, Y	ukon.	
Semi-anthracite from:		
100, 101. P. Burns' mine on Sec. 11, Tp. 19, R. 7, W. of 5th meridian,	Alta.	. 51, 52
Anthracite from:— 102. Whitehorse coal fields, twelve miles west of Dugdale, Yukon.		. 53
102. Whitehorse coal fields, twelve filles west of Daguare, Takon.		
TIT DUATE		
III. PEAT. (1.) Mer Bleue, Carleton and Russell counties, Ont		. 53
(2.) Alfred, Prescott county, Ont		. 53
(3.) Welland county, Ont		. 54
(4.) Newington, Stormont county, Ont.		. 54
(4.) Newington, Stormont county, Ont		. 55
(6.) Victoria Road, Victoria county, Ont.		55
(6.) Victoria Road, Victoria county, Ont		
THE THE PROPERTY AND DOLONITES		
IV. LIMESTONES AND DOLOMITES.		
British Columbia—		56
1. Texada island		
2. Vancouver island		
3. Vicinity of Trail		55
Ontario—		
4. Glengarry co., lot 27, con. V, of Kenyon tp		56
4a. Timagami dist., lot 3, recorded number 1347		56
Quebec		
5. Argenteuil co., lots 9-13, range II, of Montcalm		57
6, 7. Wolfe co., lot 22, range VII, of Canton of Weedon		57
8, 9. Wolfe co., lots 194, 195, and 196, of village of Lake Weedon		57
Nova Scotia—	e.	57
10. Morrison's mill, near East Bay, Cape Breton Co		
11. Churchill quarry, Hants co		
11. Stephens manganese mine, Hants co		
12, 13. Antigonish county		
14-57. Cape Breton county		
59-64. Colchester county		
65-67. Cumberland county		
68-71. Guysborough county		
72. Hants county		
73-157. Inverness county		
158-167. Richmond county		
168-183. Victoria county		66
ST TRON ORDA		
V. IRON ORES.		
Yukon-		6
1. Vicinity of Takhini spring		в
British Columbia—		
Magnetite from:—		
Vancouver and Toyada islands		67. 6

. IRON ORES—Contin British Columbia—Co							PAGE.
Limonite from:							PAGE.
	- land, Quatsino	sound		1			68
Alberta—	, ,						
Magnetite from:	_						
0	orth of Burmis	siding					69
Limonite from :-	- 7						20
	er, east of Kne	eniii					69
Clay ironstone f Bow river							69
	Crows Nest Pa						69
Saskatchewan—							
Clay ironstone fr	rom:						
Pas mountair							69
Manitoba-							
Hematite from n	ear Deepdale.	on C. N. Ry					69
	2					-	00
Ontario— Magnetite from :-	_						March Co.
	west of Port	Arthur, on C	'. N. Ry.				70
	V, of Homer to						70
	I, of Homer to						70
	est of Savant 1						71
	tain mine, Tiu	nagami dist.					71
Hematite from :-							
	, Thunder Bay o., Victoria co.						72 72
	iver at N.W.						. 72
Limonite from:		The same	iningon.				
	XIX, of Tiny t	p., Simcoe c	ountv				72
" 26, "	III, of Oakley						73
" 27, "	III, "	"					73
" 28, "	III, "	"					73
" 29, " " 29, "	III, "	"					73
" 17, "	V, " III, of Draper						73 73
	III, of Diagre	,					10
Quebec-							Po.
Missisquoi count Pontiac county							73
Ottawa county							75
Pontiac county					/		76
New Brunswick-					(1	-	
Gloucester count	y-				1		
At Austin br	ook, on lot 12,	range XVII	of Bathu	rst			76-79
Nova Scotia-							
	inty: hematite	from					80
	" magnetit						81, 82
Antigonish	nematite						
Cape Breton	" hematite " magnetit	** ** *		-		84,	85, 90 86
Colchester	" hematite	·					87
"	" magnetit						87
Cumberland *	" hematite						87
Guysborough	" hematite						88
	" limonite						90
Hants	" hematite						88

V. IRON ORES Nova Scotia-Hants Inverness Richmone Westmor VI. CHROME II Megantic cou Township Lot 70,11 Lots 25 at Lot " .. 4 Block A Lot 28, ra Wolfe county Lots 36 aı VII. COPPER O British Colur Moresby i ${\it Ontario}-$ Algoma d Lot 10 Nipissing Lot 2, $\mathrm{S.E.}_{\ell^4}^{1}$ Lot 2, Quebec-Megantic S.W. VIII. GOLD AN Yukon distric British Colun

> Quebec.... New Brunswi Nova Scotia..

Saskatchewan Ontario....

IX. NATURAL V
From a sprin
From Vancou
From a brine

meridian, From lot 22, c " 9,

V. IRON ORES—Continued. Nova Scotia—Continued. Hants county limonite from		PAGE 88 90
Inverness "magnetite with hematite from hematite from hematite from hematite "hematite		
VI. CHROME IRON ORES.)	
Megantic county, Black lake	, ,	91 91 91
7, "B, " 26, "B, "		91 91 91
Lot 26, " II, "		91
Block A B		91 91
Wolfe county— Lots 36 and 37, range V, of Garthby		
VII. COPPER ORES.		
British Columbia - Moresby island		. 93
Ontario— Algoma district— Lot 10, con. V, of Cobden		93
Nipissing district— Lot 2, con. VI, of James S.E. 4 of lot 6, con. VI, of James Lot 2, con. III, of Field		93 93 93
Quebec— Megantic county S.W. ½ of Lot 14, R. 14, and the S.W. ½ of Lot 14	, R. 'B' of Leeds	93
VIII. GOLD AND SILVER ASSAYS.		
Yukon district. British Columbia. Saskatchewan. Ontario. Quebec. New Brunswick. Nova Scotia.		
IX. NATURAL WATERS.		
From a spring on the bank of Shuswap river, eight m From Vancouver island From a brine spring on left bank of Carrot river meridian, Sask	in Tp. 52, R. 2, W. c	of 2nd 104
From lot 22, con. X, of Clarence, Russell co., Ont 9, "I, of Firch, Stormont co., Ont 28, "VI, of Cambridge, Russell co., Ont		

Κ.	NATURAL WATERS-Continued.	PAGE
	From The Timagami spring, near Cobalt, Ont	108
	Cunegonde, a suburb of Montreal, Que	10 8
	" L'Epiphanie spring, L'Assomption co., Que	109
	" Lot 7, range V, of Eardley, Ottawa co., Que	110
	" 6, " VIII, " "	111
	,	
	BRICK AND POTTERY CLAYS.	
	Cascade mountain, B.C	112
	Morden Estate on Sec. 22, Tp. 30, RW. of 4th meridian, Alta	112
	Sec. 9, Tp. 31, R. 23, W. of 4th meridian, Alta	113
	Sec. 15, Tp. 29, R. 23, W. of 4th meridian, Alta	113
	North bank of the South Saskatchewan, six miles above Medicine Hat, Sask	113
	'Crockford' mines, south bank of South Saskatchewan, six miles above Medicine	
	Hat, Alta	113
	'Underclay' from a coal seam on the south bank of the South Saskatchewan, three	
	miles and a half above Medicine Hat, Alta	113
	Sec. 32, Tp. 30, R. 3, W. of 4th meridian, Alta	113
	Twenty miles south of Moosejaw, Sask	113
	Roche Percee, near Souris Coal mine, Sask	114
	North and west of Cumberland lake, Sask	114
	Sec. 14, Tp. 2, R. 8, west of the 2nd meridian, Sask	114
	N.E. 4, Sec. 28, Tp. 36, R. 7, W. of 3rd meridian, Sask	114
	E, 1, Sec. 28, Tp. 12, R. 24, W. of 2nd meridian, Sask	114
	Vicinity of Riding mountain, Man.	116
	Sec. 12, Tp. 5, R. 20, E. of principal meridian, Man	116
	LaRivière, Lisgar co., Man.	116
	E. ½ lot 9, con. XI, of Greenock township, Bruce co., Ontario	117
	Whitefish river, ten miles and a half north of Lake Abitibi, Ont	117
	Lot 17, con. III, of March, Carleton co., Ont	117
		117
	Lot 14, R. IX, of Hull tp., Ottawa co., Que	117
	Vicinity of the Minto mining district, Sunbury co., N:B	118
	Underlying a seam of coal on the farm of Fred. Sypher, Flowers cove, Grand lake,	110
1	Queens co., N.B.	118
	Underlying a seam of coal in shaft No. 2 of the Rothwell Coal Company's mine,	110
	Queens co., N.B.	118
	Diogenes brook, River Denys dist., Inverness co., N.S	118
	John McDonald's farm, Cross Roads, Leitch creek, Cape Breton co., N.S	119
	The state of the s	110
ίI	. MISCELLANEOUS EXAMINATIONS.	
	Quartz sand—from lots 48 and 49, con. I, of Oneida, Haldimand co., Ont	120
	Graphitic shale—from Frenchvale, Cape Breton co., N.S	120
	Graphitic shale—vicinity of West bay, Cape Breton co., N.S	120
	Carbonaceous shale—Stewart brook, Piotou co., N.S	120
		1.00

Description of H. A. Lever List of Mines B

Plate I.—Appar Plate II.—

b			APPENDIX.			
				,	I'A	Ĝ
			and apparatus to			2
List of Min	es Branch Publi	cations.			refile:	
	5	11.	LUSTRATIONS.			
			Photographs.	_		
Plate IA	pparatus for de	terminatio	n of Crude Oil		Facing p. 12	2
Plate II	11	**	Ammonium Su	lphate	" p. 12	4

ORES,

The follochemical and in the laboraber 31, 1908, 29, 1907—th ferred.

The respective dates in dealt with, it locality from hence they we

Many of ious reports ment of Mir those of eccarranged.

CHEMICAL ANALYSES

OF

ORES, NON-METALLIC MINERALS, FUELS, ETC.

DURING THE YEARS 1906, 1907, AND 1908.

ARRANGED BY

F. G. WAIT, M.A., F.C.S.,

Chief Chemist.

INTRODUCTORY.

The following report contains a detailed account of the more important chemical analyses of ores, non-metallic minerals, fuels, etc., made during 1906-7 in the laboratory of the Geological Survey; and from May 15, 1907, to December 31, 1908, in the laboratories of the Mines Branch: to which—on November 29, 1907—the chemical laboratory of the Geological Survey Branch was transferred.

The respective analyses represent only a minor portion of the work done within the dates indicated; for, with regard to many of the specimens and samples dealt with, it was found impossible to obtain accurate information as to the locality from whence the material was taken, or of their mode of occurrence, hence they were of interest to the sender only.

Many of the analyses recorded may be found scattered throughout the various reports issued by the Mines and Geological Survey Branches of the Department of Mines; but, for the purposes of comparison and ready reference, only those of economic interest have been extracted, classified, and systematically arranged.

ROCKS.

Names and Localities of Rocks Collected during the Seasons of 1902-5, by R. A. Daly, Ph.D., Geologist, International Boundary Commission along the Cordilleran Section of the Forty-ninth Parallel of Latitude.

Analyses by M. F. Connor, B.Sc.

No. of specimen.

- 1 Crushed granodiorite; 1,500 ft. contour at creek emptying into Osoyoos lake, east side, 2.5 miles north of the boundary line. Type specimen of the Osoyoos batholith.
- 2 Highly porphyritic olivine-syenite; on Canadian Pacific railway, at creek two miles north of Baker creek, east side of Christina lake.
- 3 Harzburgite (perhaps extrusive); one mile northwest of Monument 172, between Santa Rosa creek and boundary line. West Kootenay sheet.
- 4 Augite-biotite syenite porphyry in irregular intrusion; ridge bearing Monument 172 (between Sophie mountain and Kettle river, West Kootenay sheet).
- 5 Augite-biotite latite (extrusive equivalent of monzonite); Record
 Mountain ridge four miles north of boundary line, west of Ross-
- 6 Augite-olivine (-biotite) latite; flow associated with that represented in specimen 5.
- 7 Hornblende-augite minette dike; west bank of Columbia river, about 300 yards south of boundary line.

ROCKS: TABLE I.

	1	2	3	4	5	6	7
`		-				0	'
		*	40.00	20.54			
O ₂	68 43	52 95	42 99	60.51	59.06	58 67	53.6
1,0,	15.80	14.00	1 11	16.71	16 24	15.67	16.8
e ₂ O ₃	1.06	2.57	1 · 87.	1 72	0.43	2.85	1.2
eO	1.85	5.55	5.91	3 34	4.88	$3 \cdot 28$	5.5
IgO	1.46	$7 \cdot 29$	43 14	2.53	3.51	3.86	3 7
aO	4.08	6.93	0.10	3.62	5.59	5:33	6.0
a.O	3 · 47	2.73	0.29	4 64	2.84	4:77	4.0
	2:51	5.09	0.13	5.20	3 95	3:08	4 3
0 +	0.53	0.50	4:00	0.27	0.19	0.54	1.8
20	0.05	0.16	0.21	0.03	0.21	0.02	0.1
ď,	0 00	0 10		0 00	0.70		0.1
.0	. 0 20	0.70	trace.	0.60	1.08	1.00	0.9
iO ₂	0.07	0.47	0.04	0.16	0.21	0.16	1 0
	0 07	0 47	0.01	0.10	0 21	0.10	1 0
r ₃ O ₃			0.15				
10	0.10	0.19	0.05	0:10	0.00	0.11	
(h)	0.10	0.13	0.00		0.20	0.11	0.1
0	0.02	0.11	/	0.12	0.12	0.09	0.1
8aO	0.09	0.32		0.10	0.11	0.11	0.3
	99 72	99:50	100 29	99:65	99 · 32	99.54	100 0
Specific gravity	2.708	2 · 872	2 075	2 · 667	2:796	2:751	2.72

8 Alka

9 Gran

10 Mon

Dun

11

12 Port

13 Aug

14 Horn

"SiO₂
Al₂O₃
Fe₉O₃
Fe₉O
MgO
CaO
Na₂O
K₂O
H₂O +
H₂O +
CO₂
Ti O₂
P₂O₄
Cr₂O₃
NiO
MnO
SrO
BaO

Specific gravity.

- 8 Alkaline biotite granite; intrusive stock four miles due east of Lake mountain (southeast of Rossland). Type of Sheppard granite.
- 9 Granodiorite; railway cut two miles west of Trail, West Kootenay sheet; type of Trail batholith.
- Monzonite, facies of Coryell syenite batholith; railway cut one mile west of Coryell railway station, West Kootenay sheet.
- Dunite intrusion; railway cut 4.5 miles west of Coryell station, West Kootenay sheet.
- 12 Porphyritic missourite dike, cutting Coryell syenite batholith; in col northeast of Record Mountain summit, west of Rossland.
- 13 Augite latite; on conical peak three miles north-northeast of Record mountain, near Rossland.
- 14 Hornblende-augite latite; 3,100 ft. contour due east of Sayward railway station at Columbia river.

ROCKS: TABLE II.

	8	9	10	11	12	13	14
SiO ₂	77:09	62:08	52.38	41.36	42 31	54:54	52 17
Al ₂ O ₃	13.04	16 61	15 29	1 21	11:40	18:10	16.59
Fe ₂ O ₃	0.82	1.53	99	9:18	4:07	1.14	8:32
FeO	ð·26	3.72	5.53		6.11	4.63	
MgO	0.12	2.44	5.84	42.90	11 31	4.56	3.87
CaO	0.63	5.20	~ 7:30	1:34	11:02	5.85	8:25
Na _o O	3.11	3.18	3.68	0.04	0.82	3.38	3.91
K,0	4.50	3 29	3.84	0.04	3.69	5:44	4:00
H.O+	0:07	1.00	0.63	1 94	2.72	0.50	1:17
H ₂ O	0 03	0.16	0.21	0.16	2.28	0.10	0.13
00,				0.50			0:56
Ti O,	0.05	0.73	1.10		2 00	0.96	0.80
P,O,	0.10	0:30	0.75	0:04	1:44	0.46	0 24
Cr.O				0.15	0:055	0 10	8 1 37
8112				0.15			15 1 01
MnO	trace.	0.11	0:10	0.10	0.11	0.10	0.11
SrO	UT LECOT	0.03	0.15	8 0:50	0.16	0.15	0.05
BaO		0.09	0.25		0.64	0.21	0.15
	99 82	100 · 47	100.04	99 61	100 13	100 · 12	101 69
Specific gravity	2.600	2.754	2 847	3 · 160	2 817	2.749	2 852

15	Kersantite dike;	cutting	limestone of	on ridge	one	mile	north	of Lost
1	creek and two	miles ea	ast of Salme	on river,	West	Koo	tenay sl	neet.

- Monzonite stock; 2.5 miles north of Lost creek and 0.7 of a mile east of Salmon river, West Kootenay sheet.
- Olivine-augite minette; dike cutting grit one mile north of Dewdney trail, summit of Selkirk range, West Kootenay sheet.
- Basic granodiorite, type of Bayonne batholith; at Bayonne mine, four miles due east of 7,770 ft. summit of Quartzite (Schkirk) range, and 6.5 miles north of Irene mountain, West Kootenay sheet.
- Augite minette dike; summit of ridge 2.5 miles east-northeast of North Star mountain, West Kootenay sheet.
- Crushed biotite (muscovite) granite (gneissic), type of Rykert batholith; about three miles from ferry over slough, Kootenay valley at Port Hill, on Boundary Creek wagon road, West Kootenay sheet.
- 21 Granodiorite, type of Similkameen batholith; near boundary-slash, wagon road along Similkameen river.

ROCKS : TABLE III.

	3		-				-
	15	16	17	18	19	20	21
SiO ₂	47:95	50.66	48:33	60:27	53.32	70.78	66:550
Al ₂ O ₅	15.65	16.91	12.56	17:17	14:16	15.72	16 210
$\operatorname{Fe}_{2}^{2}\operatorname{O}_{3}^{3}\ldots\ldots$	2.66	1.71	1 87	2:36	2.15	0:36	1.980
FeO	4:05	6:17	5:26	3.67	5:08	1:61	1:800
Mg()	4:90	5:50	9.07	2:45	7:90	0:46	1:320
CaO	8:56	8:26	8:94	6:49	7:12	1:92	3.850
Na ₂ O	2:60	2:89	1:81	2.92	2:39	3:48	4 '070
K ₂ Ö	4:10	4:45	4:67	3.25	4.80	5 23	2:840
H ₂ () +	2:60	1:06	2.63	0.23	1.24	0.25	0:240
H ₂ O	0:30	0.14	0.97	0.15	0.26	0:10	0:010
CÓ ₂	6:24		2:64				
TiO ₂	0:70	1:32	0.81	0.63	0.90	0.20	0.400
P ₂ O ₅ ,	0:54	0.91	0.78	0.20	0.66	0.26	0:150
Cr ₂ O ₃							
NiO							
MnO .	0.10	0.16	0.13	0.14	0.10	0:03	0:120
SrO	0.10	0.08	0.05	0.04	0.05	trace.	0:016
BaO	0.14	0.23	0.24	0:04	0.12	0.01	0.033
	101 19	100:45	100:76	100:01	100 25	100:41	99:589
Specific gravity	2 740	2.843	2 771	2:785	2 831	2:654	2:693

22 Biotit li 23 Gneis Augit 24 tł 25 Quart m 26 Grane C Η 27 ' Rhor iı C

 $\begin{array}{c} Al_{\nu}\hat{O}_{\pi} \\ Fe_{\nu}O_{\pi} \\ Fe_{\nu}O_{\pi} \\ FeO \\ MgO \\ CaO \\ Na_{\nu}O \\ K_{\nu}O \\ H_{\nu}O + \\ H_{\nu}O + \\ H_{\nu}O - \\ CO_{\nu}O \\ TiO_{\nu}O \\ Cr_{\nu}O \\ NiO \\ MnO \\ SrO \\ BaO \\ \end{array}$

Specific gravity.

- Biotite granite, type of Cathedral batholith; Boundary Commission trail on summit of Bauerman ridge, 2,300 yards south of boundary line, Okanagan range (Cascade system).
- 23 Gneissic biotite granite, metamorphic phase of Remmel batholith (Eastern Phase of report); two miles southwest of Cathedral peak and two miles south of the boundary line, Okanagan range.
- Augite-hornblende-biotite gabbro, type of Ashnola gabbro body; 4.5 miles west of Cathedral Mountain ridge and 350 yards north of the boundary line, Okanagan range.
- Quartz-mica diorite verging on granodiorite, type of Remmel batholith (Western Phase); five miles W 15° S of Cathedral peak and 2.3 miles south of boundary line, Okanagan range.
- Granddiorite, type of Castle Peak stock; two miles north-northeast of Castle Mountain summit and 600 yards north of boundary line. Hozameen range (Cascade system).
- 27 'Rhombenfeldspar' from 'rhombenporphyry,' of Rock Creek chonolithic intrusion west of Rock Creek post-office, at Kettle river, British Columbia.

ROCKS : TABLE IV.

ø	22	23	- 24	25	26	27
SiO ₂	71 21	70:91	47:76	63:30	66.55	54:60
Al ₂ Ö ₃	15:38	16:18	18:58	17 64	15:79	22 17
Fe ₃ O ₃	0:25	0:51	2.19	1:58	0:15	2:00
FeO	1:47	1 09	9:39	3.08	3.08	2 00
MgO	0:33	0:37	4:15	1 23	2 14	1:30
CaO	1:37	2.92	9:39	5:03	3:47	4 62
Na ₂ O	4 28	1:33	3:61	4:56	4:39	4:46
ζ,δ	4.85	5.53	0:47	1:16	2:80	5:58
I ₂ O+	0.43	0.12	0.23	0:51	0:05	2 33
H ₂ O	0.02	0.03	0.12	0.14	0.40	0.17
rio,	0 16	0.20	2.26	0.20	0.69	0.60
P ₂ O ₅	0.05	0.11	0.78	0.27	0.04	
NiO						
MnO	0:06	0:04	0 29	0:47	0.06	
rO			0.03	0:005	0.01	0.80
3aO	0.09	0.10	0.05	0.05	0.03	1 0
	99:95	99:44	99:51	99 52	99:56	99:75
Specific gravity	2:621	2:654	2:957	2:721	2 678	

COALS AND LIGNITES.

1. Lignite—from	an	${\bf unsurveyed}$	area	some	ten	miles	south	of	Lac	LaRonge	,
Saskatchewan.											

Fixed carbon. 34-5 Ash. 23-2	Moisture			
Ash	Volatile combust	ible matter	 	28.9
	Fixed carbon		 	34.5
100.0	Ash		 	23.25
				100.00

It yields, by fast coking, a non-coherent coke. Colour of the ash, pale yellow-ish-white. Its powder imparts an intense brownish-red colour to a boiling solution of caustic potash.

2. Lignite—from Bow river, at a point twenty miles south of Brooks Station, (Canadian Pacific railway) Alberta.

n analysis, by fast coking, gave:— Moisture	. 15.0
Volatile combustible matter	. 34.84
Fixed carbon	. 43.64
Ash	6.43
	100.00
Coke	. 50-09
Ratio of volatile combustible matter to fixed carbon	. 1: 1.2

It yields, by fast coking, a non-coherent coke. The ash is of a reddish-brown colour. The powdered material imparts a deep brownish-red colour to a boiling solution of caustic potash.

3. Lignite-from Sec. 9, Tp. 71, R. 17, west of the 4th meridian, Alberta.

Moisture	35.87
,	
Fixed carbon	44.41
Ash	$6 \cdot 36$
	100.00
Coke	50.77
Ratio of volatile combustible matter to fixed carbon	. 1: 1.24

It yields, t brown. Its po caustic potash

4. Lignite-

An analys

Moistur

Volatile

Fixed c.

Ash...

Coke.. Ratio of

By fast columnities. Its post caustic potash.

The twenty-t

5. Lignite— Ave., Edmontor

> Its composi Moisture Volatile Fixed ca Ash...

> > Coke—no Ratio of

It imparted potash.

6. Lignite—i river lots 22 and 10843—2½ It yields, by fast coking, a non-coherent coke. Colour of ash, light reddishbrown. Its powder imparts a deep brownish-red colour to a boiling solution of caustic potash.

4. Lignite—from Sec. 30, or 34 (?), Tp. 38, R. 23, west of the 4th meridian, Alberta.

An analysis, by fast coking, gave the following results:-	,
Moisture	10.75
Volatile combustible matter	30.66
Fixed carbon	48.61
Ash	9.98
	100.00
Coke	
Ratio of volatile combustible matter to fixed carbon	1:1.58

By fast coking, it yields a non-coherent coke. Colour of ash, light reddishwhite. Its powder imparts a deep brownish-red colour to a boiling solution of caustic potash.

The twenty-three specimens next following were collected by Mr. D. B. Dowling, in 1908.

5. Lignite—from hole No. 2, sunk by the N.W. Gas and Oil Co., on Jasper Ave., Edmonton, Alberta. Taken from a depth of 1,440 feet.

s composition, as	shown	by a	prox	imate	analysis,	was as	s follows:—
Moisture							6.67
Volatile combust	tible ma	tter.					38.26
Fixed carbon							49.92
Ash						··· · · ·	5.15
							100.00
Coke—non-coher	ent						55.07
Ratio of volatil	e combu	stible	e mat	tter to	fixed ca	arbon	1: 1.30

It imparted a deep brownish-red colour to a boiling solution of caustic potash.

6. Lignite—from the property of the Parkdale Coal Company, Limited, on river lots 22 and 24, Edmonton, Alberta.

10843--21

1

ζe,

A proximate analysis gave the following results:-

proximate analysis gave the following results.	Its com
Moisture	follows:-
Volatile combustible matter	Moi
Fixed carbon	Vola
Ash	Fixe
•	Ash
100.00	11011
Coke—non-coherent	
Fuel ratio	Cok
	Fue
It imparted a deep brownish-red colour to a boiling solution of caustic	Till
rotash.	Colour
	1
7. Lignite-from a 5 ft. seam in the Standard mine, on river lot 26, Edmonton,	10. Lig
Alberta.	19, west
The results of a proximate analysis, by fast coking, are as follows:-	
	A pro
Moisture	Mo
Volatile combustible matter.,	Vo
Fixed carbon 40.40	Fi
Ash 5.87	As
	-
100.00	
44.07	
Coke—non-coherent	Co
Fuel ratio	Fu
Colour of boiling solution of caustic potash—deep reddish-brown	It ga
8. Lignite—from a 5'-1" seam in the Strathcona mine, on river lot No. 7.	11. L
Strathcona, Alberta.	46, R. 20
A proximate analysis, by fast coking, gave the following results:	Its c
Moisture 18-37	М
Volatile combustible matter	V
Fixed carbon	F
$\mathbf{A}\mathbf{s}\mathbf{h}\dots$	A
. 100.00	
Minimum minimum	
Coke—non-coherent.:	, C
Fuel ratio 1: 1.10	F
It imparted a deep brownish-red colour to a boiling solution of caustic potash.	Potas
9. Lignite—from a 5 ft. seam, taken at a depth of 161 feet in the Twin City	
Coal Company's mine, on river lot 19, Strathcona, Alberta.	12.
company o miner on 11101 for 10, ottation, timeria	D 00

Its compos

oistur latile xed c h...

oke—n iel ra

r of

agniteof the

> oxima loistur olatile ixed c sh...

> > oke-n uel ra

ave a c

Lignite-20, west

composi Moisture Volatile

Fixed ca Ash.. .

> Coke—n Fuel rat

ash solut

 $Lignit\epsilon$ R. 22, west of

Its composition, as shown by a proximate analysis, by fast confollows:-	oking, was as
Moisture Volatile combustible matter Fixed carbon Ash	16.61 37.24 39.10 7.05
	100.00
Coke—non-coherent	
Colour of boiling potash solution—deep brownish-red.	
10. Lignite—from a 5 ft. seam in Rakowski's mine on Sec. 119, west of the 4th meridian, Alberta.	
A proximate analysis, by fast coking, gave the following resu	lts:—
Moisture	11.78
Volatile combustible matter	38.71
Fixed carbon	46.20
Ash	3.31
	100.00
Coke—non-coherent	
It gave a deep brownish-red colour to a boiling solution of ca	austic potash.
 Lignite—from a 4 ft. seam in Bower's mine at Canmore, 6 R. 20, west of the 4th meridian, Alberta. 	on Sec. 28, T
	llows:
Its composition, as shown by a proximate analysis, was as for	
Its composition, as shown by a proximate analysis, was as fo Moisture	8.32 42.13 45.80
Moisture. Volatile combustible matter Fixed carbon	8.32 42.13 45.80
Moisture. Volatile combustible matter Fixed carbon	8·32 42·13 45·80 3·75 100·00

stic

12. Lignite—from a 3'-8" seam in the Ben Nevis mine, on Sec. 12, Tp. 38, R. 22, west of the 4th meridian, Alberta.

MoistureVolatile combustible matter	
Volatile combustible matter	11.40
	33.92
Fixed carbon	44.95
Ash	9.73
	100.00
Coke—non-coherent	54.68
Fuel ratio	1: 1.33
Potash solution—deep brownish-red.	
13. Lignite—a second sample from the same locality as the precedut from a different part of the same seam, yielded by proximal ast coking, the following results:—	
Moisture	16.03
Volatile combustible matter	35.56
Fixed carbon	41.48
Ash	6.93
	100.00
Coke—non-coherent	48-11
Fuel ratio.	
It imparted a deep brownish-red colour to a boiling solution of	caustic potash
14. Lignite—from the lowest seam, 9" in thickness, in Gillm Sec. 34, Tp. 38, R. 23, west of the 4th meridian, Alberta.	uth's mine, or
A proximate analysis, by fast coking, gave the following resu	lts:—
Moisture	10.01
Volatile combustible matter	42.39
Fixed carbon	34.85
Ash	12.75
	100.00
	100.00
	47.60

15. Lignite
ing specimen,
fast coking:

Moistur
Volatile
Fixed c
Ash..

Coke—r Fuel ra

Colour of

16. Lignit Tp. 31, R. 24,

A proxima

Moistur

Volatile

Fixed c

Fixed c

Coke—r Fuel ra

.Potash solı

17. Lignit 31, R. 24, west

Its compos

Moistur Volatile Fixed c Ash...

> Coke—r Fuel rat

Potash solu

18. Lignite Tp. 55, R. 24,

and the second s	41	
15. Lignite—from the upper, or 4" seam, at the same locality		
ing specimen, gave these results when submitted to a proximate	analysis,	Бу
fast coking:-	11.11	
Moisture	14.44	
Volatile combustible matter	35.42	
Fixed carbon	41.71	
Ash	8.43	
· · · · · · · · · · · · · · · · · · ·	100.00	
-		
Coke—non-coherent	50.14	
Fuel ratio	1: 1.18	
Colour of potash solution—deep brownish red.		
%		
16. Lignite—average sample from the Threehills mine, situat	ed on Sec.	22,
Tp. 31, R. 24, west of the 4th meridian, Alberta.		
A proximate analysis, by fast coking, gave the following resu	lts:—	
. 41		
Möisture	7.70	
Volatile combustible matter	35.36	
Fixed carbon		
Ash	8.34	
	100.00	
	100.00	
Coke—non-coherent	56.94	
Fuel ratio		
ruel ratio	1. 1.00	
.Potash solution—deep brownish-red.		
17. Lignite-from the Shaft mine, Threehills, Alberta, being of	on Sec. 26,	Tp.
31, R. 24, west of the 4th meridian.		
Its composition was found to be as follows:-	-	5
Moisture	8.08	
Volatile combustible matter	34.94	
Fixed carbon	47.60	
Ash	9.38	
ψ., nt		
	100.00	

Coke—non-coherent		
Fuel ratio	1: 1.36	

Potash solution—deep brownish-red.

^{18.} Lignite—from a 15" seam in Cardiff mine, on the NW ½ of Sec. 24, Tp. 55, R. 24, west of the 4th meridian, Alberta.

A "province to analysis I a Cost Ni	
A proximate analysis, by fast coking, gave the following result	Its:
Moisture	9.44
Volatile combustible matter	38-87
Fixed carbon	45.25
Ash	6.44
	100.00
	7
Coke— non-coherent	
Potash solution—deep brownish-red.	
19. Lignite—from the upper part of the seam of the Cardiff miville, Alberta, on the NW 4 of Sec. 24, Tp. 55, R. 24, west of the 4	ine, at Morin- th meridian.
The composition of this specimen was as follows, as shown analysis:—	
Moisture	17.74
Volatile combustible matter	36.66
Fixed carbon	39.91
Δsh	5.69
-	100-00
Coke—non-coherent,	45·60 1: 1·09
Potash solution—deep brownish-red.	
20. Lignite—from the lower part of the same seam as in specimen, but belonging to the Alberta Coal Mining Compan Alberta, on the NE 1 of Sec. 23, Tp. 55, R. 24, west of the 4th mer Its composition was as follows:—	y, Morinville,
Moisture	18.11
Volatile combustible matter	36,64
Fixed carbon	41.90
Ash	3.35
	100.00
Coke—non-coherent	45.95
Fugl ratio.	
Potash solution—deep brownish-red.	
21. Lignite—average sample of a 40'-10" seam in Curwen and F Sturgeon valley, being on the SE ½ of Sec. 8, Tp. 55, R. 24, west of	
dian, Alberta.	

An anal Moist Volat Fixed Ash... Coke— Fuel 1 It impar potash.

as the preced

A proxii
 Moisti
 Volati
 Fixed
 Ash...

Coke— Fuel r

Potash so

23. Ligna Strathcona, b The mater found to be a

Moistu Volatil Fixed Ash..

Coke— Fuel ra Potash sol

24. Ligni lower part of

25	S
An analysis, by fast coking, gave the following results:-	di
Moisture. 17.42 Volatile combustible matter. 37.02 Fixed carbon. 40.83 Ash. 4.73	
100.00	
Coke non-coherent	
It imparted a deep brownish-red colour to a boiling solution of caust potash.	ic
22. Lignite—from a different part of the same seam, at the same locali as the preceding specimen.	ty
A proximate analysis, by fast coking, gave:-	
- Moisture 9.51	
Volatile combustible matter	
Fixed carbon	
Ash	
7 100.00	
Coke—non-coherent. 51.44 Fuel ratio. 1: 1.20	
Potash solution—deep brownish-red.	
23. Lignite—from a 5'-8" seam in White Star mine, on White Mud riv. Strathcona, being on Sec. 25, Tp. 51, R. 25, west of the 4th meridian, Alberta. The material of this sample shows a woody structure. Its composition w	
found to be as follows:—	
Moisture	
Fixed carbon	
Ash	
100.00	
Coke—non-coherent	
Fnel ratio	

11-

24. Lignite—from the same locality as the preceding specimen, but from the lower part of a 5 ft. seam.

Potash solution-deep brownish-red.

Its composition, as determined by a proximate analysis, by fast coking, was as follows:—

Moist	ıre													,		٠		,								,				16.7
Volati	le	co	m	b	u	ti	b	le	1	11	μ	t t	e	٠.												,				$35 \cdot 1$
Fixed	ca	rb	or	ı .												,				,	,							٠.		45.0
Ash																			•											$2 \cdot 9$
																														100.0
																													_	
Coke-	n	m.	c	oh	ıe	re	n	t.		9																				48.0
Fuel 1	rat	io.																								,		. ,		1: 1.2

Potash solution—deep brownish-red.

25. Lignite—a third sample from the White Star mine, showing woody structure and taken from the lower bench, was found to possess the following composition, when submitted to proximate analysis, by fast coking:—

Moisture		 		16.40
Volatile combustible mat	ter	 		37.04
Fixed carbon		 		40.88
Ash		 		$5 \cdot 68$
				100.00
Coke—non-coherent		 		46.56
Fuel ratio		 		1: 1.10
Potash solution—deep brown	ish-red.		A	

26. Lignite—being the average of 7 to 8 ft. seam on the property of the Clover Bar Coal Company, lying along the west bank of the river, above the Grand Trunk Pacific Railway bridge, on the NW 4 of Sec. 7, Tp. 23, R. 53, west of the 4th meridian, Alberta.

It yielded the following as the results of a proximate analysis, by fast coking:-

Moisture Volatile combustible				 	 	 			19.82	B
Volatile combustible	matter	٠		 	 	 			35.04	H
Fixed carbon				 	 	 			39.91	.4.
Ash				 ٠.	 	 ٠.	٠.		$5 \cdot 23$	
				•				-		
									100.00	
					A			-		
Coke-non-coherent				 	 	 			45.14	
Fuel ratio				 	 	 ٠.			1: 1.14	
otash solution—deep br	ownish	ı-re	d.							

27. Lignite—taken from a boulder of coal meauring 30 x 30 x 10 feet, lying at or near the southeast corner of Strathcona town site, on Sec. 22, Tp. 24, R. 52, west of the 4th meridian, Alberta.

Its comp follows:—

> Moist Volat Fixed

> > Coke-Fuel

Ash.

Potash so

28. Lign river, on Se formation.

A proxim
Moista
Volati
Fixed

Coke-Fuel r

Ash..

It imparts

29. Lignit
top of Forget
R. 7, west of
A proxima

Moistu Volatil Fixed

Ash-l

Coke-Ratio

30. Ligni

Its composition, as shown by a proximate analysis, by fast co	oking, was as
follows:—	
Moisture	17.08
Volatile combustible matter	38.36
Fixed carbon	41.02
Ash	3.54
_	
	100.00
Coke—non-coherent	44.56
Fuel ratio.	
ruel ratio	1: 1.07
Potash solution—deep brownish-red.	,
28. Lignite-from south bank of Bragg creek, about 4 miles u	p from Elbow
river, on Sec. 7, Tp. 23, R. 5, west of the 5th meridian, Alberta formation. Width of seam 2'-6". An average sample of the whole	
A proximate analysis, by fast coking, gave as follows:-	
Moisture	9.31
Volatile combustible matter.	35.59
Fixed carbon.	
	41.72
Ash	13.38
_	100.00
4	100.00
Character and another	FF 10
Coke—non-coherent	55.10
Fuel ratio	1: 1.17
It imparts a deep brownish-red colour to a boiling solution of ca	austic potash.
29. Lignite—from the 4 ft. seam in Kootanie coal measures, exp	posed near the
top of Forgetmenot ridge, one-half mile north of Elbow river, on S	
R. 7, west of the 5th meridian, Alberta—an average sample of the	
A proximate analysis, by fast coking, gave the following results	-
Moisture	6.68
Volatile combustible matter	20.68
Fixed carbon	64.71
Ash—light grey	7.93
<i>f</i> * * -	100.00
Coke—non-coherent	72.64
Ratio of volatile combustible matter to fixed carbon	
Latio of volatile compustible matter to fixed carbon	1: 0.10

30. Lignite—from a 5'-4" seam, at the same locality as the preceding specimen.

A proximate analysis gave the following results:-	
Moisture. Volatile combustible matter. Fixed carbon. Ash—faint reddish white.	7·77 18·58 39·98 33·67
	100.00
Coke—non-coherent. Ratio of volatile combustible matter to fixed carbon. It imparted a deep brownish-red colour to a boiling solution of colour to be noted, as regards Nos. 28, 29, and 30, that owing to lengthy interval which necessarily elapsed between the date of the and time of examination; and also to the fact of their having be canvas bags, it is reasonable to infer that they had parted with me their moisture, and volatile combustible matter, and that the amount the foregoing analyses do not correctly represent their content of tuents, when mixed.	austic potash. the somewhat heir collection her put up in hore or less of his indicated in hese consti-
31. Lignite—from Sec. —, Tp. 52, R. 7, west of the 5th meridian An analysis, by fast coking, gave:— Moisture Volatile combustible matter Fixed carbon Ash	10·87 (9) 33·46
	100.00
Coke	1: 1.55 h yellow. In
32. Lignite—from Jocks crossing, Pincher river, Tp. 53, R. 7, w meridian, Alberta.	est of the 5th
The results of a proximate analysis, by fast coking, are as follow	rs:—
Moisture	10.21
Volatile combustible matter	38.17
Fixed carbon	43.52
Ash	8.10
	100.00
Coke	
Ratio of volatile combustible matter to fixed carbon	1: 1.14
It yields, by fast coking, a non-coherent coke. Colour of ash—br. It imparts a dark brownish-red colour to a boiling solution of caus	ownish-yellow.

33. Lign
An anal
Mois
Volat
Fixed

Ash

Coke.
Ratio
Characte
parts, when
caustic pota

34. Ligni
the burnt sh
above the cr
meridian, A
Analysis,
Moist

Volati Fixed Ash—

Coke-Ratio

Colour in

35. Lignit of the Pembir west of the 5

An analys

Moistu Volatil

Fixed Ash—l

Coke— Ratio

It imparts

29	
33. Lignite—from Sec. 27 and 28, Tp. 53, R. 7, west of the 5th mer. An analysis, by fast coking, showed it to possess the following of	
Moisture	14.58
Volatile combustible matter	34.52
Fixed carbon	47.60
Ash	3.00
	100.00
Coke	1: 1:37 ellow. It im-
34. Lignite—an average sample, from across the outcrop of a 13 the burnt shale outcrop, on the east bank of the Pembina river, at above the crossing of the river, SE ‡ of Sec. 33, Tp. 53, R. 7, w meridian, Alberta. Analysis, by fast coking, gave the following results:— Moisture Volatile combustible matter Fixed carbon Ash—light reddish-brown.	out 400 yards
- -	100.00
Coke—non-coherent	55 11
Ratio of volatile combustible matter to fixed carbon	
Colour imparted to a boiling solution of caustic potash—deep b	
35. Lignite—taken across the outcrop of a 13 ft. seam, nearest of the Pembina river, on the east bank of the stream, NE‡ of Sec. 33 west of the 5th meridian, Alberta. An analysis, by fast coking, gave:—	
	10 =0
Wolstile combustible metter	13.78
Volatile combustible matter	32.01
Fixed carbon	47.35 6.86
Ash—light readish-brown	0.50

t

f

> 100.00 Coke—non-coherent..... Ratio of volatile combustible matter to fixed carbon.. ..1: 1.479 It imparts a deep reddish-brown colour to a boiling solution of caustic potash.

: 4	
36. Lignite-from across the outcrop of a 6 ft. seam on the we	st bank of the
Pembina river at the crossing, NE 1 of Sec. 33, Tp. 53, R. 7, west of	f the 5th meri-
dian, Alberta.	
An analysis, by fast coking, gave:—	
Moisture	13.07
Volatile combustible matter	32.03
Fixed carbon	47.56 7.34
Asii—ngiit feddisii-blowii	1.01
1	100.00
}	
Coke—non-coherent	54.90
Coke—non-coherent	
It imparts a deep brownish-red colour to a boiling solution of	caustic potash.
OT T' ' C WIS I II TO DATE A CALLED	. 1: A 11
37. Lignite—from Wolf creek, Tp. 52, R. 15, west of the 5th mer An analysis, by fast coking, yielded the following results:—	ndian, Alberta.
Moisture	8.57
Volatile combustible matter	40.39
Fixed carbon	46.74
Ash	4.30
-	100.00
-	
Coke	51.04
Ratio of volatile combustible matter to fixed carbon	1: 1.15
It yields a non-coherent coke, by fast coking. Ash-pale ye	ellowish-brown.
It imparts a dark brownish-red colour to a boiling solution of cau	
28 Liquite this and the three following environment are from	
38. Lignite—this and the three following specimens are from	
described as unsurveyed territory, in the foot-hills of the Rockies, s	some 200 mnes
west of Edmonton, Alberta.	6
Sample from lower part of seam number 6.	
An analysis, by fast coking, gave the following:-	
Moisture	14.04
Volatile combustible matter	30.13
Fixed carbon	34.15
Ash	21.68
	100.00
Coke—non-coherent	55.83
Ratio of volatile combustible matter to fixed carbon	1: 1.13
It imparts a deep brownish-red colour to a boiling solution of	caustic potash.

39. Lign middle porti An anal; Moist Volat Fixed

> Coke-Fuel 1

Ash..

40. Ligni that of the t Analysis, Moistr

Volati Fixed Ash...

Coke— Fuel ra It also in potash.

41. Ligni from seam nı It yielded, Moistui

Volatile Fixed c Ash...

Coke—r Fuel rat It imparts

42. Lignite Forks Mining

- 3	
the	39. Lignite-from the same locality as the preceding specimen, from the
eri-	middle portion of seam number 6.
	An analysis, by fast coking, gave the following results:-
- 1	Moisture
- 3	Volatile combustible matter
3	Fixed carbon
	Ash
	100.00
	Coke—non-coherent
- 1	Fuel ratio
	It imparts a deep brownish-red colour to a boiling solution of caustic potash.
sh.	40. Lignite—from the upper part of seam number 6, at the same locality as
	that of the two preceding specimens.
ta.	Analysis, by fast coking, gave the following results:—
	Moisture
	Fixed carbon
	Ash
	100.00
	Coke—non-coherent
	Fuel ratio
	It also imparts a deep brownish-red colour to a boiling solution of caustic
n.	potash.
n	41. Lignite—from the same locality as the three preceding specimens, but from seam number 7.
38	
	It yielded, by fast coking, the following results on analysis:—
	Moisture
	Volatile combustible matter
	Fixed carbon
	Ash
	100-00
	Coke—non-coherent
	Fuel ratio
	It imparts a deep brownish-red colour to a boiling solution of caustic potash.
	42. Lignite—from a tunnel on Similkameen river (worked by the Vermilion
-	Forks Mining Company) R.C.

Forks Mining Company), B.C.

45. Ligni
sample from
An analy
Moistt
Volatil
Fixed
Ash—1

Coke— Ratio (

, Its powder potash.

46. Ligni

Coke—1 Ratio of In powder

47. Lignite
the Yukon riv

A proximat

Moisture
Volatile
Fixed ca
Ash—lig

Coke—n Fuel rat: It imparts ε

ash.

10843-3

potash.

An analys

Moistur

Volatile

Fixed c

Ash—p:

An analysis, by fast coking gave:—	
Moisture	16.17
Volatile combustible matter	
Fixed carbon	
Ash	4.58
	100.00
_	
Coke	46.25
Ratio of volatile combustible matter to fixed carbon1	
Character of coke—pulverulent, non-coherent. Colour of a llow; imparts a deep brownish-red colour to a boiling solution of c	
43. Lignite—from a 12 ft. seam, at the bottom of 350 ft. slope, ine, twelve miles up Coal creek, which empties into the Yukon si ortymile river, below Dawson. Collected by Mr. D. D. Cairne arvey.	x miles below
An analysis, by fast coking, gave as follows:-	
Moisture	14.46
Volatile combustible matter.	33.94
Fixed carbon	40.52
Ash.	11.08
Asil	11.00
and the second s	100.00
Coke	F1 00
Ratio of volatile combustible matter to fixed carbon	51.60 1: 1.19
	1: 1·19 eam on Tan-
Ratio of volatile combustible matter to fixed carbon 44. Lignite—an average sample from the outcrop of a 6 ft. s lus butte, opposite Tantalus mine, on Lewes river, midway be	1: 1·19 eam on Tan- tween White-
Ratio of volatile combustible matter to fixed carbon 44. Lignite—an average sample from the outcrop of a 6 ft. s lus butte, opposite Tantalus mine, on Lewes river, midway be rise and Dawson, Yukon.	1: 1·19 eam on Tan- tween White-
Ratio of volatile combustible matter to fixed carbon 44. Lignite—an average sample from the outcrop of a 6 ft. s lus butte, opposite Tantalus mine, on Lewes river, midway be rise and Dawson, Yukon. A proximate analysis, by fast coking, gave the following result.	1: 1·19 eam on Tantween White-
Ratio of volatile combustible matter to fixed carbon 44. Lignite—an average sample from the outerop of a 6 ft. s us butte, opposite Tantalus mine, on Lewes river, midway be rse and Dawson, Yukon. A proximate analysis, by fast coking, gave the following result. Moisture	1: 1·19 eam on Tantween White- 3:— 12·87
Ratio of volatile combustible matter to fixed carbon 44. Lignite—an average sample from the outcrop of a 6 ft. s lus butte, opposite Tantalus mine, on Lewes river, midway be orse and Dawson, Yukon. A proximate analysis, by fast coking, gave the following result Moisture	1: 1·19 eam on Tantween White- 3:— 12·87 31·72
Ratio of volatile combustible matter to fixed carbon 44. Lignite—an average sample from the outcrop of a 6 ft. s lus butte, opposite Tantalus mine, on Lewes river, midway be orse and Dawson, Yukon. A proximate analysis, by fast coking, gave the following result Moisture	1: 1·19 eam on Tantween White- 3:— 12·87 31·72 49·51
Ratio of volatile combustible matter to fixed carbon 44. Lignite—an average sample from the outcrop of a 6 ft. s lus butte, opposite Tantalus mine, on Lewes river, midway be cree and Dawson, Yukon. A proximate analysis, by fast coking, gave the following result Moisture	1: 1·19 eam on Tantween White- 3:— 12·87 31·72 49·51 5·90 100·00
Ratio of volatile combustible matter to fixed carbon 44. Lignite—an average sample from the outcrop of a 6 ft. s lus butte, opposite Tantalus mine, on Lewes river, midway be orse and Dawson, Yukon. A proximate analysis, by fast coking, gave the following result Moisture	1: 1·19 eam on Tantween White- 3:— 12·87 31·72 49·51 5·90 100·00 55·41
Ratio of volatile combustible matter to fixed carbon 44. Lignite—an average sample from the outcrop of a 6 ft. s lus butte, opposite Tantalus mine, on Lewes river, midway be orse and Dawson, Yukon. A proximate analysis, by fast coking, gave the following result Moisture	1: 1·19 eam on Tantween White- 3:— 12·87 31·72 49·51 5·90 100·00 55·41 1: 1·56
Ratio of volatile combustible matter to fixed carbon 44. Lignite—an average sample from the outcrop of a 6 ft. s lus butte, opposite Tantalus mine, on Lewes river, midway be orse and Dawson, Yukon. A proximate analysis, by fast coking, gave the following result Moisture	1: 1·19 eam on Tantween White- 3:— 12·87 31·72 49·51 5·90 100·00 55·41 1: 1·56
Ratio of volatile combustible matter to fixed carbon 44. Lignite—an average sample from the outcrop of a 6 ft. s butte, opposite Tantalus mine, on Lewes river, midway be rse and Dawson, Yukon. A proximate analysis, by fast coking, gave the following result Moisture	1: 1·19 eam on Tantween White- 3:— 12·87 31·72 49·51 5·90 100·00 55·41 1: 1·56
Ratio of volatile combustible matter to fixed carbon 44. Lignite—an average sample from the outcrop of a 6 ft. s us butte, opposite Tantalus mine, on Lewes river, midway be rse and Dawson, Yukon. A proximate analysis, by fast coking, gave the following result Moisture	1: 1·19 eam on Tantween White- 3:— 12·87 31·72 49·51 5·90 100·00 55·41 1: 1·56
Ratio of volatile combustible matter to fixed carbon 44. Lignite—an average sample from the outcrop of a 6 ft. slus butte, opposite Tantalus mine, on Lewes river, midway be orse and Dawson, Yukon. A proximate analysis, by fast coking, gave the following result Moisture	1: 1·19 eam on Tantween White- 3:— 12·87 31·72 49·51 5·90 100·00 55·41 1: 1·56

45. Lignite—from the same locality as the preceding specimen, an average sample from the outcrop of an 11 ft. seam.

An ana	lysis	hv	fast	coking	OBVA	93	follows:-	
All alla	LY515.	D.y	Tast	COKIIIM.	gave	21.5	TOHOWS	

	100.00
rish—pale brownish-yenow	100.00
Ash—pale brownish-yellow	
Fixed carbon	42.15
Volatile combustible matter	
Moisture	

Its powder imparts a deep brownish-red colour to a boiling solution of caustic potash.

46. Lignite—an average sample from the outcrop of an 8 ft. seam, at the same locality as the two preceding specimens.

An analysis, by fast coking, gave the following results:-

Moisture												13.64
Volatile combustible matter.												31.83
Fixed carbon		*										51.84
Ash—pale reddish-brown				٠					×			2.69
											_	100.00
Coko non cohoront											_	54.59

Ratio of volatile combustible matter to fixed carbon..... 1: 1.63

In powder it imparts a deep brownish-red colour to a boiling solution of caustic potash.

47. Lignite—an average sample from a 5 ft. outcrop, at Tantalus butte, across the Yukon river from Tantalus mines, Yukon.

A proximate analysis, by fast coking, gave the following results:-

Moisture	 	9.48
Volatile combustible matter	 	32.28
Fixed carbon	 	53.51
Ash—light brownish-red	 	4.73
		100.00
Coke—non-coherent	 	58.24
Fuel ratio	 	1: 1.66

It imparts an intense brownish-red colour to a boiling solution of caustic potash.

10843-3

ishash.

low ical

> anite-

> > stic

from Whitehorse, on the Whitehorse and Dawson wagon road, Yukon district. The sample was an average of the outerop of an 18" seam. An analysis, by fast coking, gave the following results:— Moisture
An analysis, by fast coking, gave the following results:— Moisture
Moisture. 8.98
Volatile combustible matter 29.62 Fixed carbon 48.30 Ash 13.10 100.00 Coke—non-coherent 61.40 Ratio of volatile combustible matter to fixed carbon 1: 1.63 Its powder imparts an intense brownish-red colour to a boiling solution of caustic potash. 49. Lignite—an average sample from a 7'-6" seam, at the same locality as the preceding specimen. A proximate analysis, by fast coking, gave the following results:— Moisture 12.02 Volatile combustible matter 34.28 Fixed carbon 42.56 Ash 11.14 100.00 Coke—non-coherent 53.70 Fuel ratio 1: 1.24 It imparts an intense brownish-red colour to a boiling solution of caustic potash. 50. Lignitic coal—from the first exposure, at Genest's first stake, on Coal creek, a tributary of Prairie creek, the latter an affluent of the Athabaska river, Alberta. Seam 30" thick. An analysis, by fast coking, gave the following results:— Moisture 5.23 Volatile combustible matter
Fixed carbon.
Ash
Coke—non-coherent
Coke—non-coherent
Ratio of volatile combustible matter to fixed carbon
Ratio of volatile combustible matter to fixed carbon
Its powder imparts an intense brownish-red colour to a boiling solution of caustic potash. 49. Lignite—an average sample from a 7'-6" seam, at the same locality as the preceding specimen. A proximate analysis, by fast coking, gave the following results:— Moisture
caustic potash. 49. Lignite—an average sample from a 7'-6" seam, at the same locality as the preceding specimen. A proximate analysis, by fast coking, gave the following results:— Moisture
49. Lignite—an average sample from a 7'-6" seam, at the same locality as the preceding specimen. A proximate analysis, by fast coking, gave the following results:— Moisture
A proximate analysis, by fast coking, gave the following results:— Moisture
A proximate analysis, by fast coking, gave the following results: Moisture
Moisture. 12.02 Volatile combustible matter. 34.28 Fixed carbon. 42.56 Ash. 11.14 100.00 Coke—non-coherent. 53.70 Fuel ratio. 1: 1.24 It imparts an intense brownish-red colour to a boiling solution of caustic potash. 50. Lignitic coal—from the first exposure, at Genest's first stake, on Coal creek, a tributary of Prairie creek, the latter an affluent of the Athabaska river, Alberta. Seam 30" thick. An analysis, by fast coking, gave the following results:— Moisture. 5.23 Volatile combustible matter. 33.87 Fixed carbon. 43.54
Volatile combustible matter
Fixed carbon
Ash
Coke—non-coherent
Coke—non-coherent
Coke—non-coherent
Fuel ratio
Fuel ratio
It imparts an intense brownish-red colour to a boiling solution of caustic potash. 50. Lignitic coal—from the first exposure, at Genest's first stake, on Coal creek, a tributary of Prairie creek, the latter an affluent of the Athabaska river, Alberta. Seam 30" thick. An analysis, by fast coking, gave the following results:— Moisture
ash. 50. Lignitic coal—from the first exposure, at Genest's first stake, on Coal creek, a tributary of Prairie creek, the latter an affluent of the Athabaska river, Alberta. Seam 30" thick. An analysis, by fast coking, gave the following results:— Moisture
50. Lignitic coal—from the first exposure, at Genest's first stake, on Coal creek, a tributary of Prairie creek, the latter an affluent of the Athabaska river, Alberta. Seam 30" thick. An analysis, by fast coking, gave the following results:— Moisture
A tributary of Prairie creek, the latter an affluent of the Athabaska river, Alberta. Seam 30" thick. An analysis, by fast coking, gave the following results:— Moisture
A tributary of Prairie creek, the latter an affluent of the Athabaska river, Alberta. Seam 30" thick. An analysis, by fast coking, gave the following results:— Moisture
An analysis, by fast coking, gave the following results:— Moisture
Moisture. 5.23 Volatile combustible matter. 33.87 Fixed carbon. 43.54
Moisture. 5.23 Volatile combustible matter. 33.87 Fixed carbon. 43.54
Fixed carbon
Ash
Ash
100.00
Coke—coherent, but tender 60.90
Fuel_ratio 1: 1.29
In powder it imparted a brownish-yellow colour to a boiling solution of
eaustic potash.

51. Lignit river, Alberta Its analys Moistur

> Volatile Fixed c Ash...

Coke—1 Ratio o

It imparted

52. Lignitic dian, Alberta. A proxima

Moisture Volatile Fixed ca Ash...

> Coke—fi Fuel rat

It imparted Colour of ash-

53. Lignitic points, none of of the Rockies,

Moisture Vol. com Fixed car Ash....

Coke—sli Fuel rati They all imp 10843—3½ юst,

of

the

51. Lignitic coal—from an 8" seam, on Coal creek, Prairie creek, Athabaska river, Alberta. Exact point of occurrence not specified.

Its analysis, by fast coking, yielded the following results:-

Vol. Fix																	35·14 49·11
																	5.74
																	100.00

It imparted a dark brownish-red colour to a boiling solution of caustic potash.

52. Lignitic coal—from the N $_2$ of Sec. 28, Tp. 15, R. 27, west of the 4th meridian, Alberta.

A proximate analysis, by fast coking, gave:-

Moisture	0.0		7.59
Volatile combustible matter			37:96
Fixed carbon			
Ash		,	7.52
,	/	-	100.00
V			
Coke—firm, coherent			54.45

53. Lignitic coal—The four samples here tabulated were taken from different points, none of which were well defined, in unsurveyed territory, in the foot-hills of the Rockies, some 200 miles west of Edmonton.

	1	2	3	4
Moisture	8.94	9.46	10.25	9.91
Vol. combustible matter	35.55	34.70	35.62	33.78
Fixed carbon	47.43	49.18	46.77	45.46
Ash	8.08	$6 \cdot 66$	7.36	10.85
	100.00	100.00	100.00	100.00
Coke—slightly fritted	55.51	55.84	54.13	- 56-31
Fuel ratio	1:1:33	1:1.40	1:1.31	1:1.34

They all impart a brownish-red colour to a boiling solution of caustic potash. $10843-3\frac{1}{2}$

ot-

ek.

of

meridian, Alberta.
A proximate analysis, by fast coking, gave:-
Moisture. #.82 Volatile combustible matter. 34.54 Fixed carbon. 51.66 Ash—light grey. 8.98
100.00
Coke—firm, coherent
It imparts a brownish-yellow colour to a boiling solution of caustic potash.
55. Lignitic coal—from the centre of valley, east of Elk lake, B.C. (near station A 10, Survey). Coll. 11, 7.05.
The results of a proximate analysis, by fast coking, are as follows:-
Moisture 4.90
Volatile combustible matter 30.06
Fixed carbon
Ash—faint reddish-white
100.00
100,00
Coke—slightly fritted
Ratio of volatile combustible matter to fixed carbon 1: 1.86 The powdered material imparts a deep brownish-red colour to a boiling solu-
Ratio of volatile combustible matter to fixed carbon 1: 1.86 The powdered material imparts a deep brownish-red colour to a boiling solution of caustic potash. 56. Lignitic coal—from Collins gulch, near Granite creek, Tulameen river, B.C. From an 8 ft. seam, some two miles back from the river.
Ratio of volatile combustible matter to fixed carbon 1: 1.86 The powdered material imparts a deep brownish-red colour to a boiling solution of caustic potash. 56. Lignitic coal—from Collins gulch, near Granite creek, Tulameen river, B.C. From an 8 ft. seam, some two miles back from the river. Its analysis, by fast coking, gave the following results:—
Ratio of volatile combustible matter to fixed carbon 1: 1.86 The powdered material imparts a deep brownish-red colour to a boiling solution of caustic potash. 56. Lignitic coal—from Collins gulch, near Granite creek, Tulameen river, B.C. From an 8 ft. seam, some two miles back from the river. Its analysis, by fast coking, gave the following results:— Moisture
Ratio of volatile combustible matter to fixed carbon 1: 1.86 The powdered material imparts a deep brownish-red colour to a boiling solution of caustic potash. 56. Lignitic coal—from Collins gulch, near Granite creek, Tulameen river, B.C. From an 8 ft. seam, some two miles back from the river. Its analysis, by fast coking, gave the following results:— Moisture
Ratio of volatile combustible matter to fixed carbon 1: 1.86 The powdered material imparts a deep brownish-red colour to a boiling solution of caustic potash. 56. Lignitic coal—from Collins gulch, near Granite creek, Tulameen river, B.C. From an 8 ft. seam, some two miles back from the river. Its analysis, by fast coking, gave the following results:— Moisture
Ratio of volatile combustible matter to fixed carbon 1: 1.86 The powdered material imparts a deep brownish-red colour to a boiling solution of caustic potash. 56. Lignitic coal—from Collins gulch, near Granite creek, Tulameen river, B.C. From an 8 ft. seam, some two miles back from the river. Its analysis, by fast coking, gave the following results:— Moisture
Ratio of volatile combustible matter to fixed carbon 1: 1.86 The powdered material imparts a deep brownish-red colour to a boiling solution of caustic potash. 56. Lignitic coal—from Collins gulch, near Granite creek, Tulameen river, B.C. From an 8 ft. seam, some two miles back from the river. Its analysis, by fast coking, gave the following results:— Moisture
Ratio of volatile combustible matter to fixed carbon 1: 1.86 The powdered material imparts a deep brownish-red colour to a boiling solution of caustic potash. 56. Lignitic coal—from Collins gulch, near Granite creek, Tulameen river, B.C. From an 8 ft. seam, some two miles back from the river. Its analysis, by fast coking, gave the following results:— Moisture

57. Coal—
the 200 ft. le
Analysis,
Moista
Volatil
Fixed

Coke— Ratio (58. Coal—

It afforded

Moistu Volatil Fixed (Ash—r

Coke— Ratio o It imparte 59. Coal—

Hugh Fletche
The first a
taken from to
selected portio
An analysi

Moistur Volatile Fixed c Ash...

Coke—f Fuel rat Both sampl made.

Both sampl 60. Coal—f

mond, Richmo

	37	
	57. Coal-from Cariboo cove, Cape Breton county, Nova Scotia.	Sample fr
	* the 200 ft. level.	
	Analysis, by fast coking, gave:—	
	Moisture.	0.98
	Volatile combustible matter.	25.68
	Fixed carbon	52.10
	,	21.24
	Ash—brownish-red	21.24
- 3		100,00
		100,00
		F9 94
	Coke—firm, coherent	73.34
	Ratio of volatile combustible matter to fixed carbon	1: 2.03
£	58. Coal-from the 8 ft. seam, Mabou coal mines, Inverness cou	inty, N.S.
	It afforded, by fast coking, the following results:-	
	Moisture	5.29
	Volatile combustible matter	41.87
		50.08
- 6	Fixed carbon.	2.76
	Ash—reddish-brown	2.10
1		100.00
- 18		100.00
		50.64
- 18	Coke—firm, coherent	52.84
	Ratio of volatile combustible matter to fixed carbon1	
	It imparted a brownish-yellow colour to a boiling solution of car	ustic potasl
	59. Coal-from Big Marsh, Antigonish county, Nova Scotia. Co	llected by
	Hugh Fletcher.	
	The first analysis was made upon material representing an av	erage sam
	taken from top to bottom, of a 5'-8" seam. The second shows the c	
	selected portions from the same seam.	(III) posicion
	An analysis, by fast coking, gave as follows:—	
	No. 1.	No. 2.
		0.66
	Moisture	
	Volatile combustible matter	28.39
	Fixed carbon	41.55
	Ash	29.40
	A	
	100-00	100.00
	Coke—firm, compact	70.95
	Fuel ratio	1: 1.46

Both samples were slightly pyritiferous, but no determinations of sulphur were made.

Both samples were slightly pyritiferous, but no determinations were made.

60. Coal—from the Richmond mine, situated $3\frac{1}{2}$ miles northeast of Port Richmond, Richmond county, Nova Scotia

sh.

Moisture 0.83	26.39		Moisture
Fixed carbon. 46-12 Ash. 18-10 Sulphur. 8-56 100-00			1
Ash	40.10		Volatile combustible matter
Sulphur. S.56	46.12		Fixed carbon
Coke—firm, coherent. 68-50	18.10		Ash
Coke—firm, coherent	8.56		Sulphur
Coke—firm, coherent			
Fuel ratio	100.00		
It imparted a very pale brownish-yellow colour to a boiling solution of causotash. Ash—dark brownish-red. The sample submitted for examination was highly pyritiferous, the sulpound by analysis—8.56 per cent—representing 16.05 per cent by weight of pyrites in the sample. 61. Coal—The six specimens here tabulated are from as many different set of different parts of the same seam, of the W. Gamble claim, on the south brack of the Brazeau river, a tributary of the Saskatchewan, in Sec. 10, Tp. 40, R. west of the 5th meridian, Alberta. The results of the analyses are as follows:— Seam	68.50		Coke—firm, coherent
The sample submitted for examination was highly pyritiferous, the sulptound by analysis—8-56 per cent—representing 16-05 per cent by weight of pyrites in the sample. 61. Coal—The six specimens here tabulated are from as many different set of different parts of the same seam, of the W. Gamble claim, on the south brack of the Brazeau river, a tributary of the Saskatchewan, in Sec. 10, Tp. 40, R. west of the 5th meridian, Alberta. The results of the analyses are as follows:— Seam	1: 1.75		Fuel ratio
The sample submitted for examination was highly pyritiferous, the sulptound by analysis—8.56 per cent—representing 16.05 per cent by weight of countries in the sample. 61. Coal—The six specimens here tabulated are from as many different sear different parts of the same seam, of the W. Gamble claim, on the south brace of the Brazeau river, a tributary of the Saskatchewan, in Sec. 10, Tp. 40, R. west of the 5th meridian, Alberta. The results of the analyses are as follows:— Seam	ling solution of caus	boiling solu	It imparted a very pale brownish-yellow col
tound by analysis—8-56 per cent—representing 16-05 per cent by weight of syrites in the sample. 61. Coal—The six specimens here tabulated are from as many different set of different parts of the same seam, of the W. Gamble claim, on the south brack of the Brazeau river, a tributary of the Saskatchewan, in Sec. 10, Tp. 40, R. west of the 5th meridian, Alberta. The results of the analyses are as follows:— Seam	O .	0	otash. Ash—dark brownish-red.
tound by analysis—8.56 per cent—representing 16.05 per cent by weight of spyrites in the sample. 61. Coal—The six specimens here tabulated are from as many different set of different parts of the same seam, of the W. Gamble claim, on the south brase of the Brazeau river, a tributary of the Saskatchewan, in Sec. 10, Tp. 40, R. west of the 5th meridian, Alberta. The results of the analyses are as follows:— Seam	vritiferous, the sulp	v pyritifero	
## Seam Seam			
61. Coal—The six specimens here tabulated are from as many different ser or different parts of the same seam, of the W. Gamble claim, on the south brack of the Brazeau river, a tributary of the Saskatchewan, in Sec. 10, Tp. 40, R. west of the 5th meridian, Alberta. The results of the analyses are as follows:— Seam Seam Seam Seam No. 1. No. 2.	out of worder of a	per cont of	
or different parts of the same seam, of the W. Gamble claim, on the south brase of the Brazeau river, a tributary of the Saskatchewan, in Sec. 10, Tp. 40, R. west of the 5th meridian, Alberta. The results of the analyses are as follows:— Seam Seam Seam No. 1. No. 1. No. 2.			
ff the Brazeau river, a tributary of the Saskatchewan, in Sec. 10, Tp. 40, R. vest of the 5th meridian, Alberta. The results of the analyses are as follows:— Seam No. 1. No. 1. No. 2.			
The results of the analyses are as follows:— Seam No. 1. No. 1. No. 2.			
The results of the analyses are as follows:— Seam No. 1. No. 1. No. 2.	Sec. 10, Tp. 40, R.	, in Sec. 10	f the Brazeau river, a tributary of the Saska
Seam No. 1. No. 1. No. 1. No. 2.			est of the 5th meridian, Alberta.
No. 1. No. 1. No. 2.	*		The results of the analyses are as follows:
Moisture. Top. Lower. 3'-11''.			
Volatile combustible matter. 23.79 24.43 23.87 Fixed carbon. 66.40 64.22 64.75 Ash. 8.71 10.72 10.11 100.00 100.00 100.00 100.00 Coke—firm, coherent. 75.11 74.94 74.86 Fuel ratio. 1: 2.79 1: 2.63 1: 2.71 All imparted a brownish-yellow colour to boiling potash. Seam No. 4. No. 5. No. 6. No. 6. Moisture. 1.29 2.90 3.18 Volatile combustable matter. 23.17 24.20 21.80			
Fixed carbon. 66.40 64.22 64.75 Ash. 8.71 10.72 10.11 Coke—firm, coherent. 75.11 74.94 74.86 Fuel ratio. 1: 2.79 1: 2.63 1: 2.71 All imparted a brownish-yellow colour to boiling potash. Seam No. 4. No. 5. No. 6. — 6 ft. — Moisture. 1.29 2.90 3.18 Volatile combustable matter. 23.17 24.20 21.80	0.63 1.27	0.63	Moisture
Ash	24.43 23.87	24.43	Volatile combustible matter
100.00 100.00 100.00 100.00	64.22 64.75	$64 \cdot 22$	Fixed carbon
Coke—firm, coherent. 75·11 74·94 74·86 Fuel ratio. 1: 2·79 1: 2·63 1: 2·71 All imparted a brownish-yellow colour to boiling potash. Seam No. 4. No. 5. No. 6. — 6 ft. — Moisture. 1·29 2·90 3·18 Volatile combustable matter. 23·17 24·20 21·80	10.72 10.11	$10\!\cdot\!72$	Ash
Fuel ratio. 1: 2.79 1: 2.63 1: 2.71 All imparted a brownish-yellow colour to boiling potash. Seam No. 4. No. 5. No. 6. — 6 ft. — Moisture. 1.29 2.90 3.18 Volatile combustable matter. 23.17 24.20 21.80	100.00 100.00	100.00	,
Fuel ratio. 1: 2.79 1: 2.63 1: 2.71 All imparted a brownish-yellow colour to boiling potash. Seam No. 4. No. 5. No. 6. — 6 ft. — Moisture. 1.29 2.90 3.18 Volatile combustable matter. 23.17 24.20 21.80	74.94 74.86	74.94	Coke—firm, coherent
All imparted a brownish-yellow colour to boiling potash. Seam No. 4. No. 5. No. 6.			
Moisture No. 4. No. 5. No. 6. 1.29 2.90 3.18 Volatile combustable matter 23.17 24.20 21.80	-,	`	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			
Moisture			
Volatile combustable matter 23.17 24.20 21.80			Moisture
77: 1			
00.00			
Ash			
100.00 100.00 100.00	100.00 100.00	100.00	,
Coke—firm, coherent	72.90 *75.02	72.90	Coke—firm, coherent
10.02			
	l	1	Fuel ratio

Colour imparted to boiling potash-brownish-yellow.

*Coke only slightly fritted

62. Coal preceding sin Its comp Moist Volati Fixed Ash..

> Coke-Fuel r It impart

> > 63. Coal-

of the Brazes Its compo Moistu Volatil Fixed

Ash..

Coke-Fuel ra It imparts

64. Coal-Bighorn river of the 5th me A proxima

> Moistu Volatile Fixed

> > Ash..

Coke-Fuel ra

Each of th solution of ca

62. Coal—from an 11'-9" seam on the Daly claim, at the same locality as the preceding six specimens, in Sec. 10, Tp. 40, R. 19, west of the 5th meridian.

Its composition, as shown by a proximate analysis, was as follows:—

_	The state of the s	
	Moisture	. 1.27
	Volatile combustible matter	. 22.49
	Fixed carbon	. 69.37
	Ash	. 6.87
		100.00
	Coke—firm, coherent	. 76.24
	Fuel ratio	. 1: 3.39
т.	the state of the s	

It imparted a pale brownish-yellow colour to boiling potash.

63. Coal—from an 8 ft. seam, southeast of the Big seam, on the south branch of the Brazeau river, in Sec. 2, Tp. 40, R. 19, west of the 5th meridian, Alberta.

Its composition is as follows:-

stic

hur

ms,

nch 19,

8 combostue																		
Moisture.																		1.98
Volatile co	mbus	tible	e m	at	te	r.					٠.		٠					$24 \cdot 17$
Fixed carl	oon																	$62 \cdot 79$
Ash				٠.														11.06
																		100.00
Coke—firm	ı, coh	eren	t															73.85
Fuel ratio																	1	: 2.59

It imparts a brownish-yellow colour to a boiling solution of caustic potash.

64. Coal—from three different seams of the H. B. McGiverin claim, on the Bighorn river, a tributary of the Saskatchewan, on Sec. 27, Tp. 39, R. 17, west of the 5th meridian, Alberta.

A proximate analysis, by fast coking, gave the following results:-

	Seam No. 1.	Seam No. 2.	Seam No. 3.	
Moisture	2.20	0.98	0.89	
Volatile combustible matter	$25 \cdot 27$	22.89°	21.95	
Fixed carbon	59.00	67.53	70.52	
Ash	13.53	8.60	$6 \cdot 64$	
·	100.00	100.00	100.00	4
Coke—firm, coherent	72.53	76.13	77.16	
Fuel ratio	1:	2.33 1: 2.95	1: 3.21	

Each of the above samples imparted a pale brownish-yellow colour to a boiling solution of caustic potash.

65.	Coal—Two	samples-from	Sec.	9,	Tp.	7,	R.	3,	west	of	the	5th	meridian,	
Alberta	а.													

Their composition, as shown by a proximate analysis, was as follows:--

	Sample 1	Sample 2
Moisture	 0.50	0.75
Volatile combustible matter	 35.33	28.58
Fixed carbon	 56.10	61.04
Ash	 8.07	9.63
	100.00	100.00
Coke—firm, coherent	64.17	70.67
Fuel ratio		,

Neither imparted any perceptible colour to a boiling solution of caustic potash.

A third sample from the same locality carried 47.76 per cent of shale associated with it.

66. Coal—from a 7 ft. seam, on a tributary of the Brazeau, in the Bighorn coal basin, on Sec. 28, Tp. 42, R. 19, west of the 5th meridian, Alberta.

A proximate analysis, by fast coking, gave the following	results:—
Moisture	1.04
Volatile combustible matter	22.61
Fixed carbon	68.89
Ash	7.46
f	100.00
Coke—firm, coherent	76.35
Fuel ratio	1: 3.05

67. Coal—from a 4 ft. seam on Wapiabi creek, in the Bighorn coal basin, in Sec. 34, Tp. 40, R. 18, west of the 5th meridian, Alberta.

Its composition, as shown by a proximate analysis, is as follows:-

Potash solution—pale brownish-yellow.

Moisture															0.96
Volatile combustible ma	tte	er.													30.80
Fixed carbon															64.88
Ash									 ,						3.36
						1									100.00
Coke—firm, coherent				, .											68.24
Fuel ratio						. ,				f.					1: 2.30
Potash solution—all but	+ 0	ol.	011	rl	000										

68. Coal— Alberta.

> An analysi Moistur Volatile Fixed ca

> > Coke—fi Ratio of

Ash-wl

It imparts

69. Coal—fi Crows Nest Pa A proximate

Volatile
Fixed ca
Ash...

Coke—fir Ratio of

70. Coal—fr creek, in Sec. 8, sample from an

A proximate
Moisture.
Volatile c
Fixed car
Ash—ligh

Coke—slig Ratio of v It imparts a

	41	
lian,	68. Coal—described as coming from Crowsnest pass, two miles from Frank, Alberta.	,
	An analysis, by fast coking, gave:+	
	Moisture 0.71	
1	Volatile combustible matter	
	Fixed carbon	
	Ash—white	
	100.00	
	Coke—firm, coherent	,
pot-	It imparts but a slight coloration to a boiling solution of caustic potash.	
ted	69. Coal—from a point southwest of Frank, Alberta, along the line of the Crows Nest Pass railway.	2
	A proximate analysis, by fast coking, gave:-	
	Moisture	
oal	Volatile combustible matter	
	Fixed carbon	
	Ash	
	100.00	
	Coke—firm, coherent	
	70. Coal—from Kootanie coal measures at Thorn mine, at head of Braggereek, in Sec. 8, Tp. 23, R. 6, west of the 5th meridian, Alberta. Average outcropsample from an 18" seam, being top seam in the measures.	
	A proximate analysis, by fast coking, gave:—	
in	Moisture	
	Volatile combustible matter	
	Fixed carbon	
-	Ash—light reddish-brown	
	100.00	6
	Coke—slightly fritted	
	Ratio of volatile combustible matter to fixed carbon	
	It imparts a brownish-red colour to a boiling solution of caustic potash.	
198		

	71. Coal—from Shaw's coal mine, on south branch of Fish creec. 7, Tp. 22, R. 3, west of the 5th meridian, Alberta. An average sterop. Width of seam 2 feet. Edmonton formation.
:	A proximate analysis, by fast coking, gave the following results
3.76	Moisture
33.91	Volutile combustible matter
56.37	Fixed carbon
5.96	Ash—reddish-brown
100.00	0
	_
62.33 1: 1.66	Coke—firm, coherent
	Colour of potash, solution—brownish-yellow.
	72. Coal—an average sample from the outcrop of a 7 ft. seam, expand of south branch of Sheep creek, Sec. 30, Tp. 19, R. 4, west of the lberta. Edmonton formation.
	An analysis, by fast coking, gave:—
$2 \cdot 50$	Moisture
35.88	Volatile combustible matter
$56 \cdot 64$	Fixed carbon
4.98	Ash—light reddish-brown
100.00	
61.62 1: 1.58	Coke—firm, coherent
	Colour of potash solution—pale brownish-yellow.
	73. Coal—from Kootanie coal measures, exposed on north bank ranch of Sheep creek, Sec. 36, Tp. 19, R. 5, west of the 5th merithe sample represents an average of the outcrop of a 3 ft. seam.
	A proximate analysis, by fast coking, gave as follows:—
0.69	
19.98	Moisture
73.12	Volatile combustible matter
6.21	Volatile combustible matter
0.21	Volatile combustible matter
	Volatile combustible matter
100.00	Volatile combustible matter
100.00	Volatile combustible matter
100·00 79·3	Volatile combustible matter

It imparts no colour to a boiling solution of caustic potash.

74. Coal—formation, ex 20, Tp. 19, R. The result Moistur Volatile

> Coke—1 Ratio o

Fixed (

It imparts potash.

75. Coal—1 miles west of
Its composi

Moisture Volatile Fixed ca

Coke—fi

Potash s

76. Coal—fr from the headw Evoy's trail, Al

> It was of the Moisture Volatile of Fixed can

> > Ash.... Sulphur.

Coke—col Fuel ratio

1 of of the

orth

dian,

outh

erta.

74. Coal—an average sample from the outcrop of a 5 ft. seam in the Edmonton formation, exposed in the south bank of the south branch of Sheep creek, in Sec. 20, Tp. 19, R. 4, west of the 5th meridian.

The results of a proximate analysis, by fast coking, are:-

Moisture													÷				2.16
Volatile combustible	m	at	te	r.													34.63
Fixed carbon						,		,								÷	56.42
${\bf Ash-reddish-brown}.$,										6.77
																	100.00
Coke—firm, coherent																	63.19
Coke—firm, coherent Ratio of volatile con																	

It imparts a very pale brownish-yellow colour to a boiling solution of caustic potash.

75. Coal-from unsurveyed territory in the foothills of the Rockies, some 200 miles west of Edmonton, Alberta.

Its composition was as follows:-

Moisture	5.14
Volatile combustible matter	. 36.58
Fixed carbon	45.83
Ash	12.45
	100.00
Coke—firm, coherent	58.28
Fuel ratio	

Potash solution—brownish-yellow.

76. Coal-from a 24 ft. seam, dipping west, on the banks of a stream running from the headwaters of the Brazeau, to the northwest of McLeod river, near Mc-

Evoy's trail, Alberta. It was of the following composition, as determined by a proximate analysis:-

	-								-	-			-
Moisture													4.32
Volatile combust	ible	mat	ter	 							 		33.43
Fixed carbon													56.94
Ash				 		. ,					ø		$5 \cdot 14$
Sulphur											 . ,		0.17
												-	
													100.00
												-	
${\bf Coke-\!$	but t	end	er.										$62 \cdot 16$
Fuel ratio													1: 1.70

77. Coal—'Dockrill' coal—from Morice river, Skeena mining Sample from seam No. 1.	division, B.C.
Its analysis, by fast coking, yielded the following results:-	
Moisture	4.32
Volatile combustible matter.	28.86
Fixed carbon.	
Ash	12.20
_	
	100.00
Coke—non-coherent.	
It imparted a brownish-red colour to a solution of boiling c Colour of ash, reddish-brown.	austic potash.
78. Coal—'Dockrill' coal—from the same locality as the precede but from the upper part of seam No. 2.	ling specimen,
Its composition was found to be as follows:—	
Moisture	4.48
Volatile combustible matter	
Fixed carbon	55.57
Ash	14.04
	100.00
Coke—slightly fritted	
This sample imparted a brownish-yellow colour to a boiling policy ash was of a pale reddish-brown colour.	otash solution.
79. Coal— Dockrill' coal, the third sample, from the same local preceding specimens. Taken from the bottom of seam No. 2.	
A proximate analysis, by fast coking, gave the following result	lts:—
Moisture	3.59
Volatile combustible matter	. 28.18
Fixed carbon	53.94
Ash	14.29
	100.00
Coke—coherent, but tender	
Colour imparted to boiling caustic potash—brownish-yellow; brown.	ash, reddish-

80. Coal—
end, and abou
by Mr. Charle
Its compos
Moistur
Volatile
Fixed c

Coke—c Fuel rat Colour of 1

Ash...

81. Coal—f
the Indian rese
An analysis
Moisture
Volatile
Fixed es
Ash—lig

Coke—fin Ratio of Potash se

82. Coal—fr
of Mount Fox,

A proximate

Moisture.

Volatile

Fixed car Ash—red

Coke—mo Ratio of

It imparts a

tash.

men,

tion.

two

ish-

80. Coal—from the west side of Okanagan lake, at a point opposite its south end, and about a mile and a quarter back from the shore. Specimen collected by Mr. Charles Camsell.

Its composition was as follows:---

3	compe	33111	OII	wa:	o a	5 T	01	10	w.	,														
	Moist	ure.						1.	×														. 1.59	
																							33.95	
	Fixed	car	bon														. "			,		,	55.36	
	Ash			٠.,					١.										,	,	. [-	9.10	
									+													4	\	

Colour of potash solution-brownish-yellow; of the ash, reddish-brown.

81. Coal—from a boring at a depth of 540-544 feet, on the northwest quarter of the Indian reserve, Nicola valley, B.C.

An analysis, by fast coking, gave :-

Moisture		1.32
Volatile combustible matter		29.01
Fixed carbon		
Ash—light reddish-brown	· · · · · · · · · · · · · · · · · · ·	28.20

	2		
		i,	100.00
			-

Potash solution—pale brownish-yellow.

82. Coal—from the bank of a stream flowing into Elk river, on the east side of Mount Fox, B.C. Collected by Mr. D. B. Dowling.

A proximate analysis, by fast coking, gave:-

Moisture			0	٠,								3.36
Volatile combustible matter					1				,			45.27
Fixed carbon			÷			. ,					:	47.70
$Ash{-}reddish{-}white\dots\dots$												3.67
											-	
												100.00
											_	

Ratio of volatile combustible matter to fixed carbon..... 1: 1.05 - It imparts a dark brownish-red colour to a boiling solution of caustic potash.

83. Coal-from Goat creek, in the Omineca mining division, B.C.	
A proximate analysis, by fast coking, gave:-	
Moisture	4.53
Volatile combustible matter	28.18
Fixed carbon	53.14
Ash	14.15
	100.00
Coke	67.29
Fuel ratio	; 1.87
84. Coal—from a prospect tunnel on a coal seam on the north sic reek, Elk river, B.C. Collected by Mr. D. B. Dowling.	le of Aldrich
A proximate analysis, by fast coking, gave:-	
Moisture	1.60
Volatile combustible matter	32.47
Fixed carbon	63.44
Ash—light reddish-brown	$2 \cdot 49$
	100.00
Coke—firm, coherent	65.93 : 1.96
Colour of potash solution—pale brownish-yellow.	, ,
Samples 85-89 were collected by Mr. D. D. Cairnes, in 1906.	
85. Coal—an average sample of the outcrop of a 10'-4" seam in Whields, situated about twelve miles west of Dugdale siding, Yukon.	itehorse coa
An analysis, by fast coking, gave the following results:—	0.70
Moisture.	3.78
Volatile combustible matter	10.06
Fixed carbon,	38.38 47.78
Ash—light reddish-brown	41.10
	100.00
Coke—non-coherent	86.16
Ratio of volatile combustible matter to fixed carbon 1	
Colour of potash solution—brownish-yellow.	

86. Coal—1 the 700 ft. tur The results

> Moistur Volatile Fixed ca

Coke—fi

Ash—re

Ratio of Potash s

87. *Coal*—A of the 350 ft. t

A proximate
Moisture
Volatile
Fixed can
Ash—red

Coke—fir Ratio of

Potash so

88. *Coal*—an 700 ft. tunnel at

As shown by lows:—

Moisture.
Volatile co
Fixed carl
Ash—very

Coke—firm Ratio of v

Potash solu

86. Coal—an average sample from the bottom seam, 8 feet thick, at the end of the 700 ft, tunnel at Tantalus coal mines, Lewes river, Yukon.

The results of a proximate analysis by fast coking are as follows:-

Moisture	0.75
Volatile combustible matter	
Fixed carbon	$55 \cdot 21$
Ash-reddish-white	$20 \cdot 43$
,	100.00
Coke—firm, coherent	
Ratio of volatile combustible matter to fixed carbon	1: 2.34
Data-landari and a landari	

Potash solution-colourless.

87. Coal—An average sample from the middle seam, 6'-11" thick, at the end of the 350 ft. tunnel at Tantalus mines, Lewes river, Yukon.

A proximate analysis, by fast coking, gave the following results:-

Moisture						
Volatile combustible matter						24.74
Fixed carbon						58.60
Ash—reddish-white						15.90
					-	
^						100.00
		4			_	
Coke—firm, coherent						74.50
Ratio of volatile combustible	mat	ter t	o fixed ca	rbon		1: 2.37

Potash solution—colourless.

Potash solution—colourless.

88. Coal—an average sample from the top seam, 3 feet thick, at the end of the 700 ft. tunnel at Tantalus coal mine, Lewes river, Yukon.

As shown by a proximate analysis, by fast coking, its composition is as follows:-

Moisture	 	0.82
Volatile combustible matter	 	$25 \cdot 12$
Fixed carbon	 	66.03
Ash—very light reddish-brown	 	8.03
		100.00
Coke—firm, coherent		

coal

drich

89. Coal—an average sample	from a 2 ft. seam	at the bottom of	f a 500 ft. slope at
Five Fingers mine, Lewes river,	Yukon.		

The results of a proximate	analysis, by fast	coking, were as	follows:-
Moisture			4.26
Volatile combustible mat	ter		40.26
Fixed carbon			44.67
Fixed carbon		Š	10.81
			100.00
Coke—firm, coherent			55.48
Ratio of volatile combust	tible matter to fix	ed carbon	1: 1.11
Potash solution-colourle	983.		

The two following samples were collected by Mr. D. D. Cairnes, of the Geological Survey, in the summer of 1907:—

90. Cpal—an average sample of the best 20" in a 4 ft. seam, at the bottom of a 783 ft. slope, on Five Fingers mine, above Five Fingers rapids, Lewes river, Yukon.

 Λ proximate analysis, by fast coking, gave as follows:—

Moisture										
Volatile combustible m	atter.	٠								40.46
Fixed carbon										45.16
Ash—reddish-brown			 							8.43
									-	
										100.00
									_	

It imparts a brownish-yellow colour to a boiling solution of caustic potash.

91. Coal—average sample of a 5 ft. seam, at the bottom of a 26 ft. winze, sunk in slope, 450 feet down, Five Fingers mine, Lewes river, Yukon.

The results of a proximate analysis, by fast coking, are as follows:—

Moisture				. 5.29
Volatile combustible	e matter			. 36.14
Fixed carbon				. 40.12
$Ash-brown\dots\dots$. 18.45
				$100\!\cdot\!00$
Coke—firm, coheren				
Coke-firm, coheren	ıt., ,			. 58.57
Ratio of volatile co	mbustible matter	to fixed carb	on	. 1: 1.11
Potash solution—co	lourless			

92. Anthrac Bragg creek, to, and three-7'-6" seam. C

A proximat
Moisture
Volatile
Fixed cs
Ash—wh

Coke—n Ratio of Colour o

93. Anthrac the slope from Mr. D. B. Dow

A proximate
Moisture
Volatile
Fixed ca
Ash—red

Coke—fir Ratio of Potash so

94. Anthraci Sec. 34, Tp. 20, the outcrop of a

A proximate

Moisture

Volatile o

Fixed car Ash—redo

Coke—nor Ratio of volume It imparted a ash.

10843---4

рe	А	

92. Anthracitic coal—from Kootanie coal measures, exposed at the head of Bragg creek, taken from a point one-quarter of a mile north of the creek opposite to, and three-quarters of a mile from Thorn mine. An average sample from a 7'-6" seam. Collected by Mr. D. D. Cairnes, in 1905.

 Wolatile combustible matter.
 13.54

 Fixed carbon.
 69.77

 Ash—white.
 15.52

100.00

Ratio of volatile combustible matter to fixed earbon..... 1: 5.15

Colour of potash solution—pale brownish-yellow.

logical

n of a

ukon.

ash.

sunk

93. Anthracitic coal—from seam No. 6, Canmore mine, Alberta, 20 feet in on the slope from the outcrop, 350 feet horizontally from seam No. 5. Collected by Mr. D. B. Dowling, in 1905.

A proximate analysis, by fast coking, gave the following results:-

Moisture		 		0.49
Volatile combustible	matter.	 		16.04
Fixed carbon		 		81.14
Ash—reddish-white		 		2.33
			to.	
				100.00
			_	

Potash solution—very pale brownish-yellow.

94. Anthracitic coal—from Coxcomb mountain, south of Jumpingpound creek, Sec. 34, Tp. 20, R. 7, west of the 5th meridian, Alberta—an average sample from the outcrop of a 3 ft. seam. Collected by Mr. D. D. Cairnes, in 1905.

A proximate analysis, by fast coking, gave:-

Moisture																						1.64
Volatile combustible	e n	nat	te:	r.																		14.26
Fixed carbon	٠.													- 0								82.01
Ash—reddish-brown	1		٠.																			2.09
																					-	(
																						100.00
																					-	
Coke—non-coheren	t				.′																	84.10
Ratio of volatile co	mb	ous	til	ole	r	n٤	itt	eı	. 1	0	f	x	ec	1	ca	rl	00	n				1: 5.75

It imparted a pale brownish-yellow colour to a boiling solution of caustic potash.

10843-4

95. Anthracitic coal—from Sec. 1, Tp. 25, R. 11, west of the 5th meridian, Alberta.	
A proximate analysis, by fast coking, gave the following results:—	8
Moisture	
Volatile combustible matter	
Fixed carbon	
Ash	
100.00	
Coke—non-coherent	
Fuel ratio	
Potash reaction—all but colourless.	
96. Anthracitic coal—from Hudson Bay mountain, B.C. Specimen collected by Mr. W. W. Leach.	
A proximate analysis, by fast coking, gave the following results:-	ŀ
Moisture 9.16	
Volatile combustible matter 5.63	
Fixed carbon	
Ash	
A	
100.00	
Coke—non-coherent	
Fuel ratio	
It imparted a very pale brownish-yellow colour to a boiling solution of caustic potash.	
97. Anthracitic coal—an average sample from the outcrop of a 30" seam at the Whitehorse coal fields, twelve miles west of Dugdale siding, Yukon. Collected by Mr. D. D. Cairnes, in 1906.	1
A proximate analysis, by fast coking, gave:—	
Moisture 3.76	
Volatile combustible matter 8.34	
Fixed carbon	
Ash—light reddish-brown	
· · · · · · · · · · · · · · · · · · ·	
100.00	
· · · · · · · · · · · · · · · · · · ·	
Coke—non-coherent	
Ratio of volatile combustible matter to fixed carbon 1: 7.49	
It imparts a pale brownish-yellow colour to a boiling solution of caustic potash.	

98. Anthra
age outcrop sa
The followi
Moistur

Coke—n

Ratio of Colour c

Volatile Fixed ca Ash—lig

99. Anthrace
one-quarter of a
horse, on the V
Its composit
Moisture
Volatile

Coke—no Fuel rati Potash re

Fixed ca

100. Semi-A from P. Burns' Sec. 11, Tp. 19, Collected by Mr

A proximate
Moisture.
Volatile of
Fixed can
Ash—whi

Coke—no

It imparts n 10843—4½

	. 31
eridian,	98. Anthracilic coal-from the same locality as the preceding sample, an aver-
	age outcrop sample of a 6 ft. seam. Also collected by Mr. D. D. Cairnes, in 1906.
	The following results were obtained by a proximate analysis, by fast coking:-
0	Moisture
1	Volatile combustible matter
7	Fixed carbon. 42.27
2	Ash—light reddish-brown
0	100-00
-	
)	Coke—non-coherent
3	Ratio of volatile combustible matter to fixed carbon 1: 6-36
	Colour of potash solution—faint brownish-yellow.
ollected	99. Anthracitic coal—an average sample taken from a 16" seam at a point one-quarter of a mile east of the roadway, opposite the 114th mile-post from White-horse, on the Whitehorse and Dawson wagon road, Yukon district.
	Its composition, as shown by a proximate analysis, is as follows:—
1	Moisture 4.68
1	Volatile combustible matter
	Fixed carbon
	Ash 7.47
	100.00
	Coke—non-coherent
	Fuel ratio
austic	
	Potash reaction—pale brownish-yellow.
- 8	100. Semi-Anthracite—an average outcrop sample from an 8'-8" seam, taken
at the	from P. Burns' coal mine, near the head of the south branch of Sheep creek, on
llected	Sec. 11, Tp. 19, R. 7, west of the 5th meridian, Alberta, Kootanie coal measures.
	Collected by Mr. D. D. Cairnes, in 1905.
	A proximate analysis, by fast coking, gave:-
-	Moisture
	Volatile combustible matter
	Fixed carbon
3	Ash—white
	100.00
	100.00
	Coke—non-coherent
otash.	
o yastii	It imparts no colour to a boiling solution of caustic potash. 10843—4½

101. Semi-anthracite—from the same locality as the preceding average sample from a 10'-4" seam, at the end of a 50 ft. tunnel. Mr. D. D. Cairnes, in 1905.	1000	,
The results of a proximate analysis, by fast coking, are:-		
Moisture	0.52	
Volatile combustible matter	13.19	
Fixed carbon	76.00	
Ash—white	10.29	Material c
		Ontario, and
	100.00	been examine
~		1. From 1
Coke—coherent, but tender	86-29	Carleton cou
Ratio of volatile combustible matter to fixed carbon	1: 6.49	Material (
Potash solution—colourless.		
102. Anthracite—an average sample of a 9'-6" seam, at the end of Whitehorse coal fields, twelve miles west of Dugdale siding, Yukon. Mr. D. D. Cairnes, in 1906. A proximate analysis, by fast coking, gave the following results Moisture Volatile combustible matter Fixed carbon. Ash—light reddish-brown.	Collected by : 2·15 6·01 69·86 21·98	Number of Sar Volatile matter Fixed carbon Ash Phosphorus—P Sulphur S Nitrogen—N Calorific value, per lb
Coke—non-coherent	91.84 : 11.62	=
It imparted no colour to a boiling solution of caustic potash.		2. From to
		Material c
		analysis:—
	130	

Volatile matter Fixed carbon.. Ash

Phosphorus-P. Sulphur-S.... Nitrogen-N...

Calorific value,

nen, an

2 9

) -)

-)

tunnel,

5 L 3

)

PEAT.

Ontario.

Material collected by Mr. E. Nystrom, M.E., at the undermentioned localities in Ontario, and fully described by him in Bulletin No. 1 of the Mines Branch, has been examined by Mr. H. A. Leverin, with the following results:—

1. From the Mer Bleue peat bog, situated in the townships of Gloucester, Carleton county, and Cumberland, Russell county. Area of bog, 5,004 acres.

Material dried at 100° C. (212° F.) gave the following results:-

PEAT: TABLE I.

,							
Number of Sample.	1	2	3.	4.	5.	6.	7.
Volatile matter Fixed carbon	65 90 24 22 9 88	67 57 25:25 7:18	68 40 25 00 6 60	63 22 24 86 11 92	68 76 25 73 5 51	68 73 26 27 5 00	69 49 26 0- 4 47
	100:00	100:00	100:00	100.00	100:00	100:00	100 00
Phosphorus—P. Sulphur—S Nitrogen—N		0:026 0:314 1:400				0 024 0 317 1 130	
Calorific value, B.T.U. per lb	\$ 8821	9021		8805	9126	9441	930

2. From the Alfred peat bog, in the townships of Alfred and Caledonia, Prescott county. Area of bog, 6,800 acres.

Material dried at 100° C. (212° F.) gave the following results, by proximate analysis:—

PEAT: TABLE II.

Number of Sample.	1.	2.
Volatile matter Fixed carbon	68:13 26:56 5:31	68:72 24:22 7:06
Phosphorus—P	0 029 0 292 1 230	0 02 0 37 1 92
Calorific value, B.T.U. per lb	8730	900

3. From the Welland peat bog, in the townships of Humberstone and Wainfleet, Welland county, covering an area of 4,900 acres.

Material dried at 100° C. (212° F.) yielded, by proximate analysis, the following results:—

PEAT: TABLE III.

Number of Sample.	1	2	3
Volatile matter	67:14	70 90	70.53
Fixed carbon	26 48	24 84	24.28
Ash	6:38	4 26	5.19
	100:00	100:00	100:00
Phosphorus – P	0:027	0:024	
Sulphur_S	0.317	0.248	
Sulphur—S Nitrogen—N	1.130	1.740	
Calorific value, B. T. U. per lb	9118	8596	8667

4. From the Newington peat bog, in the townships of Cornwall, Osnabruck, and Roxborough, all in Stormont county.

The area of this bog is estimated at 3,800 acres.

Material dried at 100° C. (212° F.) contained:-

PEAT: TABLE IV.

Number of Sample.	1	2	3	4	5	6	7.
Volatile matter Fixed carbon	66 75 25 77 7 48	67 07 26 27 6 66	68 84 26 65 4 51	71·32 24·44 4·24	69 54 26 75 3 71	65:77 27:30 6:93	66 · 97 26 · 70 6 · 33
	100.00	100.00	100.00	100.00	100.00	100.00	100 00
Phosphorus	0:028 0:530 1:850	0:030 0:494 1:800		0.632 0.345 1.630			
Calorific value, B.T.U. per lb.	8721	8465	8877	8636	9102	8210	8312

5. From the covering an are Material the

proximate anal

Volatile matter ...
Fixed carbon
Ash....

Phosphorus...
Sulphur...
Nitrogen...
Calorific value, B.

6. From the of Carden and Material dri analysis:—

Volatile matter... Fixed carbon.... Ash....

Calorific value, B.1

These several No. 1, entitled during the seaso Wain-

follow-

3

8667

bruck.

100 00

312

5. From the Perth peat bog, in the town-hip of Drummond, Lanark county, covering an area of 3,800 acres.

Material thoroughly dried at 100° C. (212° F.) gave the following results, on proximate analysis:—

PEAT: TABLE V.

Number of Sample.	1.	2	3.
olatile matter for	70:34 25:35 4:31	71:51 24:60 3:89	64 80 21 74 13 46
	100:00	100:00	100:00
Phosphorus. ulphur. Sitrogen.	0:030 0:405 1:660	0 027 0 334 1 940	
'alorific value, B.T.U. per lb	9067	9148	3319

6. From the Victoria Road peat bog, covering some 67 acres in the townships of Carden and Bexley, in Victoria county, Ont.

Material dried at 100° C. (212° F.) yielded the following results, on proximate analysis:—

PEAT: TABLE VI.

Number of Sample.	1.
Volatile matter. Fixed carbon Ash	69:52 25:18 5:30
	100:00
Calorific value, B.T.U. per lb	8649

These several deposits have been more fully described in Mines Branch Bulletin No. 1, entitled Investigation of the Peat Bogs and Peat Industry of Canada during the season 1908-9,' by E. Nystrom, M.E., and A. Anrep, peat expert.

LIMESTONES AND DOLOMITES.

British Columbia.

LIMESTONE: TABLE I.

No.	CaCO ₃	Equivalent to CaO	$\rm MgCO_{\pi}$	Equivalent to MgO	$\begin{array}{c} {\rm Fe}_2{\rm O}_3 \text{ and} \\ {\rm Al}_2{\rm O}_3 \end{array}$	Insoluble Residue.
1 2 3	96:54 96:98 92:41	54:16 54:31	1 47 0 67 3 63	0 71 0 33	0.78 0.49 1.30	1 17 0 96 1 31

Locality of Occurrence.

1—¹Texada island—Collected by Mr. É. Lindeman. 2—Vancouver island—Nimpkish—Collected by Mr. E. Lindeman, 3—Vicinity of Trail—Collected by Mr. W. W. Leach.

Ontario.

4. Limestone-from the uppermost bed, which has a thickness of 2 feet, in a quarry on the southwest quarter of lot 27, con. V, of Kenyon tp., Glengarry co.,

After drying at 100° C. (hygroscopic water=0.03 per cent), its composition was found to be:-

Calcium carbónate					94:02
Magnesium carbonate.					
Magnesium caroonate					1:99
r errous carbonate					0.32
Alumina.				0.18	0.02
Silica, soluble				0:06	
Carbonaceous neatter				0:03	
Insoluble matter, consisting of:				0.00	3.87
Insoluble matter, consisting of: Silica	9	-79		1	0.0,
Alumina, with a trace of ferric oxide			- 1		
Artifulling, with a trace of ferric oxide		70			
Lime	()	01		3:60	
Magnesia.,	0	05			
Alkalis, by difference	()	12	j		
					100:90

4a. Limestone-from lot 3-recorded number 1347-of Timagami district, Ontario. Collected by Mr. B. F. Haanel.

It contained:-

Calcium carbonate																			75.63
Magnesium carbonate	12													ž.					4.91
Iron and alumina			٠										٠						8.56
Insoluble matter		*		 ٠	1	٠	٠	٠		. :							٠.	٠.	10.76
																			99.86

Summary Report of Mines Branch for 1907-8, p. 42.

5. Limes county, Que

A somev irregularly (somewhat la ous small ro

A partial following re-

> Calciu Magne Insolu

6-9. Lime localities, al Blais, Manas Nos. 6 an

Nes. 8 an Wolfe co., Q Their con

Calcium carbon: Magnesium cart Ferrous carbons Alumina . Insoluble minera

10. Limest mill, on the n Bay P.O., Cal A very fin

limes ne, of After dryin was found to

Calcium carbona Magnesium carbo Ferrous carbonat Manganous ca: be Calcium sulphate Calcium phospha Alumina. Silica, soluble Organic matter Insoluble matter,

Silica. Alumina and a Lime Magnesia

Alkalis, by diffe

5. Limestone—from a quarry on lots 9-13, range II, of Montcalm, Argenteuil county, Que.

A somewhat coarse-crystalline, greyish white limestone, through which are irregularly distributed a null quantities of graphite, and of pyrrhotite, and a somewhat large quantity drangue, composed principally of quartz, with numerous small rounded grains of pyroxene.

A partial analysis, embracing only the more important constituents, gave the following results:—

Calcium carbonate											
Magnesium carbonate								 	 	 	3.86
Insoluble mineral matte	r.			-		 				 	16.00

6-9. Limestone—The four following limestones, from the undermentioned localities, all in Wolfe co., Que., were collected and forwarded by Mr. Joseph Blais, Manager of the Royal Lime Co., of Lake Weedon, Que.

Nos. 6 and 7 are from lot 22, range VII, of the Canton of Weedon.

Nos. 8 and 9 are from lots 194, 195, and 196, of the village of Lake Weedon, Wolfe co., Quebec.

Their composition was as follows:-

	No. 6.	No. 7.	No. 8	≈ No. 9.
Calcium carbonate. Magnesium carbonate. Ferrous carbonate Alumina. Insoluble mineral matter.	94-20 -0:84 -0:56 traces, 5-22	96 20 1 40 0 43 traces, 2 72	88 16 1 30 0 11 traces, 10 37	93-75 1-47 0-36 traces, 5-14
	100:82	100:75	99-94	100 72

Nova Scotia.

10. Limestone—Fossiliferous limestone, from a large outerop at Morrison's mill, on the north branch of the Sydney river, one mile and a half south of East Bay P.O., Cape Breton co., N.S.

A very fine-crystalline, almost compact, ash-grey to bluish grey, fossiliferous limes ane, of Carboniferous age.

After drying at 100° C. (hygroscopic water = 0.15 per cent), its composition was found to be as follows:—

Calcium carbonate		94 49 per cent.
Magnesium carbonate		0.57
Ferrous carbonate		0.47
Manganous ca: bonate		0.52
Calcium sulphate.	0.0	7 1
Calcium phosphate	0.1	9
Silica, soluble		
Organic matter	0.9	7 5 4 25
Insoluble matter, consisting of :-		
Silica.	0.97	4
Alumina and a trace of ferric oxide		
	0.02 - 3.5	9
Magnesia		0
Alkalis, by difference	0.14	10.0.20
	- 3-	19 (50

oluble sidue.

1:17 0:96 1:31

et, in a

ion was

94:02 1:99 0:32

3.87

100:20

istrict,

11. Limestone—from an extensive deposit of lower Carboniferous limestone, in contact with the Devonian, at the (a) Churchill quarry, near the mouth of Walton river; and (b) at the Stephens manganese mines, about three-quarters of a mile west of the Churchill quarry, in Hants county, Nova Scotia.

A fine-crystalline, massive, purplish-grey and brownish-grey, mottled limestone.

An average sample, prepared from equal weights taken from each of five specimens, from as many different points in the above-mentioned deposits, gave, on analysis:—

After drying at 100° C. (hygroscopic water = 0.08 per cent).

Calcium carbonate	78:43 per cent
Magnesium carbonate	0:34
Ferrous carbonate.	0.18
	0.40
Manganous carbonate	0 49 0
Calcium sulphate	
Calcium phosphate 0 04	
Alumina 0 02	
Silica, soluble	
Insoluble matter, consisting of :—	00.71
Barium sulphate 12 57	20.75
Silica. 3 35	
Alumina 1 28	
Manganous oxide	
Lime 0 09	
Magnesia 0.15	
Organic matter 0.34	
Alkalis, by difference	
That is a second of the second	100:19
	B 12.7

The 172 partial analyses of limestones and dolomites next following, arranged in tabular form, were made by Mr. Leverin, upon material collected at the different localities indicated by Dr. J. E. Woodman.

LIMESTONE: TABLE II.

ANTIGONISH COUNTY.

,						
Number.	CaCO ₃	Equivalent to CaO	$\rm MgCO_{s}$	Equivalent to MgO	$_{1}^{1}$ Fe $_{2}$ O $_{3}$, and $_{2}^{2}$ O $_{3}$.	Insoluble Residue.
12	92·41 87·23	51 75 48 84	1 · 71 9 · 36	0·82 4·48	2·00 2·34	2 19 7 12

Locality of occurrence.

12—Arisaig. Louis McDonald's property. From along brook. 13— " 1 mile west of McAras brook. CAPE BRE

Number.

14. 15. 16. 17. 17. 18. 19. 20. 21. 22. 23. 24. 26. 26. 27. 28. 29. 30. 31. 52. 33. 34. 35. 36. 36.

14—Barachois, 15— 16— ... 17—Ben Eoin.

39. 40. 41. 42. 43.

19—Bull creek. 20—

22— " 23— " 24—Catalone. R 25—Crane cove. 26—Dixon point

26—Dixon point. 27—East Bay, M deposit. 28—East Bay, M 29—

32— 33— 34— 35— 36— 37—

38— " 39—Eskasoni,

eas wes

noi

up

LIMESTONE: TABLE III.

CAPE BRETON COUNTY.

stone,

th of ers of

stone. specire, on

: cent.

anged differ-

> luble idue.

119

| Number. | CaCO _s | Equivalent
of CaO | $\mathrm{MgCo}_{\mathrm{s}}$ | Equivalent
of MgO | $\operatorname{Fe}_2 \overset{\circ}{\Omega}_{\mathfrak{g}} \overset{\circ}{\operatorname{and}} \overset{\circ}{\Omega}_{\mathfrak{g}} \overset{\circ}{\Omega} \overset{\circ}{\Omega}_{\mathfrak{g}} \overset{\circ}{\Omega} \overset{\circ}{\Omega}_{\mathfrak{g}} \overset{\circ}{\Omega} \overset{\circ}{\Omega}_{\mathfrak{g}} \overset{\circ}{\Omega} \overset{\circ}$ | Insoluble
Residue |
|---------|-------------------|----------------------|------------------------------|----------------------|--|----------------------|
| 4 | 84 10 | 47:10 | 8:65 | 4:14 | 1:38 | 6.24 |
| 5 | 92:19 | 51 63 | 5:09 | 2 14 | 0.52 | 2 56 |
| 6 | 77 23 | 43 25 | 16:04 | 7 67 | 1:00 | 5 52 |
| 7 | 97 14 | 54 40 | 1 31 | 0.63 | 0.36 | 0:40 |
| 8 | 79 82 | 44:40 | 13:08 | 6 26 | 1 42 | 0.16 |
| 9 | 90 27 | 50:50 | 2 19 | 1 05 | 1 20 | 4 70 |
| 0 | 89 91 | 50:35 | 2.73 | 1 31 | 0.94 | 4 60 |
| 1 | 93 21 | 52 20 | 0.94 | 0.45 | 0 64 | 3:06 |
| 2 | 64 37 | 38 85 | 2 60 | 1. 25 | 1 60 | 26:16 |
| 3 | 91 34 | 51 15 | 3:97 | 1:90 | 0.88 | 3:04 |
| 4 | 92 21 | 51 65 | 0 .7 | 1 ,747 | 1 52 | 4:00 |
| 5 | 70:43 | 39:44 | 1.71 | 0.82 | 0.30 | 27 68 |
| 6 | 95:09 | 53 25 | 1 21 | 0.58 | 0.26 | |
| 7 | 92 82 | 51 90 | 1 23 | 0.60 | 0.26 | 2 16 |
| 8 | 94 19 | 52:75 | 1:37 | 0.66 | | 4:64 |
| | 54 55 | 30.55 | 43:89 | | 0:40 | 4 (0) |
| 9 | 96:78 | 54:20 | | 21:00 | 0:50 | 1 28 |
| | | | | 1 01 | 0.22 | 1:00 |
| 1 | 95:62 | 53:55 | 1 21 | 0.58 | 0.40 | 2 00 |
| | 96:39 | 53:98 | 1.52 | 0.73 | 0.36 | 1:40 |
| 3 | 69:82 | 39:10 | 15:17 | 7:26 | 1 · 44 | 10.92 |
| 4 | 95 62 | 53:55 | 1 27 | 0.61 | 0.38 | 2:32 |
| 5 | 94:19 | 52.75 | 1.80 | 0.87 | 0.36 | 2\80 |
| 6 | 93 39 | 52:30 | 1.79 | 0.86 | 0.24 | 3 60 |
| 7 | 91:07 | 51:00 | 1:37 | 0.55 | 0.48 | 5:40 |
| 8 | 92:59 | 51.85 | 0.29 | 0.14 | 0:52 | 7 38 |
| 9 | 94:46 | 52 91 | 1 26 | 0.59 | 0.86 | 2 44 |
| 0 | 86:14 | 48 24 | 3 11 | 1:49 | 0.80 | 10 12 |
| 1 | 87:32 | 48:90 | 10:23 | 4:90 | 1:00 | 2.52 |
| 2 | 70:43 | 39:44 | 1.71 | 0.82 | 0.30 | 27:68 |
| 3 | 86: 94 | 48:69 | 7.72 | 3:70 | 0.88 | 4 82 |

| Locality of occurrence. | |
|---|-----|
| 14-Barachois, McPherson iron pit. Best at big pit. | |
| 15— "Across a 40 ft. trench, in limestone belt, 1 mile S.W. of iron mine. 16— "From dolomite belt, in field outcrop, 150 feet wide, 50 yards N.E. of | of |
| trench. | |
| 17-Ben Eoin. General sample along 750 feet of rear zone of limestone, 100 feet wid
18- Sample across breadth of front zone limestone. | de. |
| 19—Bull creek. Average sample of ledge behind hill and \(\frac{1}{2}\) mile E. of French Vale ros | a d |
| 20— "D. Guthrie's property. From small quarry along roadside. | ıu. |
| 21- "Off old dam. Selected samples, best of D. I. & S. Co.'s quarry. | |
| 22 Calcareous grit. Largely shell fragments. | |
| Scotch road. Boulders from ledge crossing road. | |
| 24—Catalone. Robertson property. Drift below railway bridge. | |
| 25-Crane cove. Eskasoni Indian reserve. From a small dump.
26-Dixon point. From an 8 ft. bed of Carboniferous limestone on water front. | |
| 27—East Bay, Morley brook. Average of a 75 yard exposure, at centre of a 1 mile wi | abi |
| deposit. | ue |
| 28-East Bay, Morley brook. Average of 100 feet square, near west side of deposit. | |
| 1st grade white dolomite, main part of quarry. | |
| Location No. 1. | |
| Location No. 2. | |
| LOCATION 110. F. | |
| Docution 1.0. o. | |
| 34- " Location No. 7. Boulders near road. Location No. 9. | |
| 36— " Location No. 10. | |
| 37- " Location No. 11. Contact with conglomerate. | |
| 38— " north side. McKinnon property, 2 miles up McIntosh brook. | |
| 39-Eskasoni, upper side of road. General samples from ledge and boulders. From | om |
| 100 ft. ledge, E. of mouth of McIntosh brook. | |
| east side of Indian reserve. Drift boulders. | |
| 41- "west side of Indian reserve. From old quarry. 42- "Crane cove. From a small dump. | |
| 43- " 11 miles N.E. of shore. From many boulders. | |
| and the tribit of shore. I fold many bounders. | |

LIMESTONE: TABLE III.- Continued.

CAPE BRETON COUNTY.

| Number. | CaC 7 _a | Equivalent
to CaO | ${ m MgCO}_{5}$ | Equivalent
to MgO | $\operatorname{Fe_2O_3}$ and $\operatorname{Al_2O_3}$ | Insoluble
Residue. |
|---------|--------------------|----------------------|-----------------|----------------------|---|-----------------------|
| 14 | 87:32 | 48 90 | 10.61 | 5 08 | 0.68 | 1:60 |
| 15 | 77 85 | 43:60 | 10:20 | 4.88 | 1 22 | 11 44 |
| 16 | 96 87 | 54:25 | 1:17 | 0.56 | 0.46 | 1 04 |
| 17 | 50:18 | 28 10 | 45 37 | 21:17 | 0.88 | 4 12 |
| is. | 86:87 | 48:65 | 5 01 | 2:40 | 0.68 | 7 12 |
| 19 | 95 28 | 53 36 | 0:54 | 0.26 | 0.56 | 0.76 |
| 50, | 82 85 | 46:40 | 1:00 | 0.48 | 1 (40) | 12 80 |
| 1 | 92 05 | 51 55 | 1:67 | 0:80 | 0.44 | 6:00 |
| 52 | 95:71 | 53:60 | 1:10 - | 0.53 | 0.28 | 2:32 |
| 3 | 90:00 | 50:40 | 1 23 | 0.59 | 1 00 | 5:60 |
| | 93 31 | 52 25 | 1:04 | 0:49 | 0.60 | 3:38 |
|)4 | 95 33 | 53:50 | 0:71 | 0.34 | 0.60 | 1:50 |
| 55 | 8 78 | 45 80 | 0:33 | 0.16 | 4 04 | 12:00 |
| 6 | 74 10 | 41:50 | 22 15 | 11 06 | 0.72 | 2 00 |

Locality of occurrence.

| 44-George | river. | Boulders at foot of mountain N.W. of Routledge's quarry. |
|----------------|----------|--|
| 45- | ** | Dolomite underlying Carboniferous limestone in bottom of |
| | | Routledge's lower quarry. |
| 46 | ** | Routledge's quarries, upper and lower, half from each. General |
| | | sample of stone as shipped. |
| 47 * | | D. I. & S. Co.'s quarry. Average of present shipments. Taken |
| | | from a chute of loose rock: |
| 48- Grand | Mira cre | ek. Taken from Carboniferous limestone, 4 mile wide. |
| 49-Irish e | ove. San | aple from limestone above 1,000 ft. cliff at shore. |
| 50-Leitch | creek. | From a small opening near Forester lake. |
| 51- | " | From refuse in a caved in quarry, N.E. of middle road, leading |
| | | from Leitch's to Ballerk's. |
| 52-Rudder | ham cree | ek. Upper 3 feet of ledge. |
| 53-Point | Edward, | west of new quarry of N.S. Steel Co. Sampled across whole of |
| | | first or lewer bench. |
| 5'- " | | west or new quarry of N.S. Steel Co. Across middle bench. |
| 55- " | | west or new quarry of N.S. Steel Co. Across upper bench. |
| 55— "
56— " | | boulders near road running N. from Crawley creek. Same lime- |
| | | stone as N.S. Steel Co.'s quarries. |
| 57 " | | boulders near turn in road running from Crawley creek to |
| | | Sidney River bridge. Same limestones as in N.S. Steel Co.'s |
| | | quarries. |
| | | |

COLCHEST

Number. 59... 60... 61... 62... 63... 64...

59—Brookfield,
Thickness
60—Johnsons of beside broof
61—Johnsons of 62—Kempton.
opposite of 63—Lanark. 1
64—Shubenaca
of limestor

CUMBERLANI

Number.

65.. 66.....

65-Upper Pugy 66-

67 -

GUYSB ROUGE

Number.

68—Lime cove, so 69—Steep creek, 70—

LIMESTONE: TABLE IV.

COLCHESTER COUNTY.

soluble esidue.

2:32 5:60

3 38 12:00

ttom of

General

, leading whole of h.

me limecreek to Steel Co.s

Taken

| Number. | $CaCO_3$ | Equivalent
to CaO | $\rm MgCO_{5}$ | Equivalent
to MgO | $\begin{array}{c} \operatorname{Fe}_{2} \operatorname{O}_{5} \text{ and } \\ \operatorname{Al}_{2} \operatorname{O}_{3} \end{array}$ | Insoluble
Residue. | |
|---------|----------|----------------------|----------------|----------------------|--|-----------------------|--|
| 59. | 96:60 | 54 10 | 1 31 | 0.63 | 0.79 | 0:30 | |
| 60 | 54 64 | 30:60 | 40.80 | 19:52 | 2 64 | 2 24 | |
| 51 | 94 55 | 52:95 | 1 40 | 0.67 | 1 21 | 1 04 | |
| 52 | 80:53 | 45:10 | 3:15 | 1 51 | 1:00 | 13 72 | |
| 33 | 92:77 | 51:95 | 1 42 | 0.68 | 0.60 | 3:40 | |
| 64 | 90 62 | 50:75 | 1 25 | 0.60 | 5.60 | 2 30 | |

Locality of occurrence.

- 59—Brookfield, west of. General sample from hanging walls in quarry north of road. Thickness 25 feet.
 60—Johnsons Crossing, west of. General sample representing two kinds of limestone, beside brook and west of station.
 61—Johnsons Crossing and McNut creek, between. Quarry west of road.
 62—Kempton. General sample of 51 feet of limestone on east bank of river nearly opposite cemetery, argillaceous bands being excluded.
 63—Lanark. McDonald's quarry. General sample of loose rock.
 64—Shubenacadie river. Anthony Rose property. General sample of upper 15 feet of limestone.
- of limestone.

LIMESTONE: TABLE V.

CUMBERLAND COUNTY.

| | | • | | | | X | | |
|----------------|-------------------------|-------------------------|----------------------|----------------------|---|-----------------------|--|--|
| Number. | ${\rm CaCO_3}$ | Equivalent. | MgCO_3 | Equivalent
to MgO | $\begin{array}{c} \mathrm{Fe_2O_3} \text{ and} \\ \mathrm{Al_2O_3} \end{array}$ | Insoluble
Residue. | | |
| 65
66
67 | 92 60
86 34
94 82 | 51 86
48 35
53 10 | 0 94
1 42
0 81 | 0 45
0 68
0 39 | 1 08
1 12
0 36 | 3 96
10 00
3 36 | | |

Locality of occurrence.

| 65−U ₁
66− | per Pugwash. | G.
A. | Dewar's property. Wilson's property. | General | sample f | rom
of a | sm
a 15 | all
ft. | quarr
bed | f | white |
|--------------------------|--------------|----------|--|---------|----------|-------------|------------|------------|--------------|----|-------|
| 67- | i. | Α. | limestone in quarry
Wilson's property.
limestone in quarry | General | sample | of | a 10 | ft. | bed | of | dark |

LIMESTONE: TABLE VI.

GUYSB ROUGH COUNTY.

| Number. | CaCO ₃ | Equivalent
to CaO | ${ m MgCO}_{5}$ | Equivalent
to MgO | ${ m Fe}_2{ m O}_3$ and ${ m Al}_2{ m O}_3$ | Insoluble
Residue. |
|---------|-------------------|----------------------|-----------------|----------------------|---|-----------------------|
| 68 | 87:50 | 49 00 | 2 34 | 1 12 | 2 00 | 8 00 |
| | 84:82 | 47 50 | 1 14 | 0 55 | 0 72 | 12 60 |
| | 85:09 | 47 65 | 0 91 | 0 44 | 1 00 | 11 32 |
| | 94:10 | 52 70 | 0 33 | 0 16 | 0 44 | 4 44 |

Locality of occurrence.

| 68—Lir | ne cove, se | outh of. | | |
|--------|-------------|-----------|-----|-------|
| 69—Ste | ep creek. | Mulgrare. | Sea | face. |
| 70- | *** | 7. | | face. |
| 774 | 4.0 | 4.4 | 9/ | |

south half. Sea face, north half.
% of a mile up the brook, red limestone.

LIMESTONE : TABLE VII.

HANTS COUNTY. .

| Number. | ${\rm CaCO}_3$ | Equivalent
to CaO | MgCO ₃ | Equivalent
to MgO | ${ m Fe_2O_5}$ and ${ m Al_2O_3}$ | |
|---------|----------------|----------------------|-------------------|----------------------|-----------------------------------|------|
| 72 | 83:91 | 46:99 | 3:19 | 1 53 | 3.72 | 9 05 |

Locality of occurrence.

72-Selmah. General sample of limestone quarry.

LIMESTONE: TABLE VIII.

INVERNESS COUNTY.

| Number. | ${\rm CaCO_3}$ | Equivalent
to CaO | ${\rm MgCO}_3$ | Equivalent
to MgO | $\operatorname{Fe}_2\mathrm{O}_3$ and $\operatorname{Al}_2\mathrm{O}_3$ | Insoluble
Residue. |
|---------|----------------|----------------------|----------------|----------------------|---|-----------------------|
| 3 | 95:18 | 53:30 | -2 19 | 1:05 | 0.40 | 0.70 |
| 4 | 87 - 77 | 49.15 | 4:07 | 1:95 | 1:00 | 5:90 |
| 5 | 90:41 | 50:63 | 7:71 | 3:69 | 0.72 | 1 40 |
| 6 | 95.62 | 53:55 | 1 40 | 0.67 | 0.28 | 1:80 |
| 7 | 84:10 | 47:10 | 9:09 | 4:35 | 1:46 | 5:00 |
| 8 | 87:32 | 48:90 | 3 51 | 1.68 | 1:40 | 6:68 |
| 79 | 93 93 | 52.60 | 1:04 | 0.50 | 0.52 | 3:28 |
| 80 | 58:39 | 32.70 | 38.62 | 18:47 | 0.68 | 2:40 |
| 31 | 53 93 | 30 20 | 41:80 | 20:07 | 0.90 | 3.72 |
| 32 | 55:58 | 31 25 | 37:91 | 18:14 | 1:04 | 3:64 |
| 33 | 57:14 | 32:00 | 35:74 | 17:10 | 1 32 | 5.28 |
| 84 | 52:69 | 29:51 | 34:36 | 16:44 | 0.76 | 9:10 |
| 85 | 86:14 | 48 24 | 3.72 | 1:78 | 2.52 | 7:56 |
| 86 | 80.15 | 44:90 | 4:20 | 2.01 | 1:52 | 12 34 |
| 37 | 52:50 | 29:40 | 36:99 | 17:70 | 2:12 | 8:90 |
| 88 | 80:09 | 44 85 | 3.65 | 1:75 | 2:60 | 12:56 |
| 89 | 90.62 | 50:75 | 6:47 | 3:10 | 0:50 | 2:56 |
| 90 | 85:44 | 47:85 | 5:68 | 2.72 | 1 · 20 | 7:08 |
| 91 | 92 41 | 51:75 | 1:88 | 0.90 | 0:40 | 4:00 |
| 92 | 56:51 | 31:65 | 39 22 | 18:76 | 0.56 | 0.76 |

Locality of occurrence.

| 73—Glene
74— "
75— " | I | t. Campbell's property. Part of blue limestone, 200 to 400 feet sampled. Campbell's farm. Average of 500 feet measured south from road. Trom a 250 ft. outcrop along the road W. of Campbell's farm. |
|----------------------------|-----|--|
| 76— " | Α | . McAskill's farm. Average from a 500 ft. belt N. of clearing |
| | | N. McMullen property. Average across limestone belt. |
| 78— | " | D. McAulay property. Average across limestone belt. |
| 79- | " | D. McAulay property. Blue limestone, from hill S. of brook. |
| 80 — | 11 | Campbell's farm. From a 650 ft. outcrop along road. |
| 81- | | Sample of dolomite for 125 feet along brook. |
| 82- | ** | Sample of dolomite in brook. |
| 83- | 18 | J. Campbell's property. Average of wide dolomite belt. |
| 84 | 6.6 | A. Campbell's farm. Average across a 300 ft. belt. |
| 85- | " | K. Campbell's property. Average across a 200 ft. belt on hill. |
| 86- | " | McKinnon's east grant, blue limestone, across end of exposure. |
| 87- | " | McInnes' grant, E. branch of Dallas brook. From boulders. |
| 88- | " | " From 30 ft. cliff. |
| 89- | 4.4 | McInnes brook. From 20 ft. face of blue limestone in old quarry. |
| 90- | " | N. McKinnon's E. and W. grants. From 100 ft. belt of blue limestone. |
| 91- | " | between McKinnon and McLeod grants. From 250 ft. belt. |
| 92— | " | Hillside E. of Campbell's house. From boulders. |

INVERNESS

| | Number. |
|---|---------------------|
| - | |
| 93. | |
| 94. | |
| 90. | |
| 96. | |
| 97 | |
| 38. | |
| 99 | |
| 100. | West and the second |
| 101. | |
| 102. | |
| 103 | |
| 104 | |
| 105, | |
| 106 | |
| 107 | |
| 108 | |
| 109. | |
| 110 | |
| 111 | |
| 112 | |
| 113 | |
| 114 | |
| 115, | |
| 116 | |
| 117 | |
| 110. | |
| 1139 | |
| 120 | |
| | |
| 122 | |
| 123 | |
| | |
| 95—
96—
97—
68—
99—
100—
101—
102— | orth mou |
| 103- | " |
| 104 | |
| | |

105-

106—Lime Hill. 107— " 108— " 109— "

105— "
110— "
111— "
1112— "
113— "
114—Marble mour
115— "
116— "
117— "
118— "
119— "
120— "
121— "
122— "
123— "

"

LIMESTONE: TABLE VIII.-Continued.

INVERNESS COUNTY.

| | Number. | CaCO ₂ | Equivalent | MgCO. | Equivalent | $\mathrm{Fe}_2\mathrm{O}_3$ and | Insoluble |
|---|---|--|--|--|--|---|---|
| ble | | | to ('a() | .meers \ | to MgO | $\mathbf{A}1_{2}\mathbf{O}_{3}$ | Residue. |
| ie. | | | | 1.9 | | | |
| - 38 | 93 | 83 21 | 46:60 | 14 06 | 6.73 | 0.48 | 1.36 |
| | 94 | 93:75 | 52:50 | 4 93 | 2 36 | 0.72 | 1:20 |
| 05 | 95 | 89 28 | 50:00 | 5.39 | 2 58 | 1 22 | 4 60 |
| 100 | 96 | 97 94 | 54 85 | 1 04 | 0.50 | 0.46 | 0.64 |
| - 1 | 97 | 95:30 | 53:35 | 1 08 | 0.52 | 0.72 | 2 88 |
| 170 | 98 | 87 94 | | | | | |
| 788 | 99 | | 49 25 | 1 37 | 0.66 | 0.84 | 8 20 |
| 1/28 | 100 | 61:00
55:69 | 34 20 | 36 82 | 17 62 | 1 36 | 1 38 |
| 100 | 100 | | 31 18 | 43 33 | 2) 73 | 0.04 | 0.48 |
| 198 | 101 | 51-16
86:16 | 28 65 | 46 21 | 22 26 | 1.28 | 0.94 |
| 138 | 109 | | 48 25 | 8 69 | 4 16 | 0.86 | 4 20 |
| 238 | 103 | 81 43 | 45 60 | 7.81 | 3.74 | 1 (10) | 5 28 |
| 138 | 104 | 91:69 | 51:35 | 1.75 | 0.84 | 0.68 | 5 26 |
| 39 | 105 | 95:89 | 53:70 | 0:64 | 0.31 | 0.48 | 2 24 |
| 338 | 106 | 66 25 | 37 10 | 23:72 | 11 35 | 0.92 | 8 98 |
| | 107 | 68:75 | 38,50 | 24 28 | 11.62 | 0.44 | 5 32 |
| 100 | 108 | 60:80 | 34:05 | 26:01 | 12:44 | 0.44 | 3 82 |
| 150 | 109. | 96 16 | 53 85 | 1 (69) | 0.82 | 0.14 | 0.84 |
| | 110 | 91:96 | 51 50 | 2:50 | 1 20 | 0.60 | 1 96 |
| | 110 | 95 89
84 46 | 53 70 | 2 46 | 1:18 | 0.24 | 0.96 |
| luble | 112 | 84.46 | 47:30 | 14:88 | 7 12 | 0.40 | 1.20 |
| due. | 113 | 88 30 | 49:45 | 2:17 | 1:04 | 0.98 | 7-74 |
| duo. | 114 | 83.93 | 47:00 | 10.28 | 4 82 | 1:40 | 4:12 |
| | 115, | 91:69 | 51:35 | . 2:08 | 1.00 | 0.56 | 5:20 |
| | 116 | 87:50 | 49:00 | 1.71 | 0.82 | 0.98 | 9:08 |
| 70 | 117 | 90:71 | 50.80 - | 1.88 | 0.90 | 0.88 | 5 24 |
| :90 | 118 | 92:41 | 51.75 | 1:54 | 0.74 | 0.40 | 4.66 |
| 40 | 119 | 76:25 | 42:70 | 4:13 | 1.98 | 3 18 | 17:10 |
| 80 | 196 | 90.27 | 50:55 | 4:30 | 2:06 | 0.52 | 5:04 |
| | 120 | | | | | | 1 00 |
| 00 | 121 | 92:50 | 51.85 | 2.88 | 1:38 | 0.56 | 4.00 |
| 5 · 68 | 121 | 92:50
86:96 | | | 1:38
4:90 | 0.56 | 2 44 |
| 5 00
5 68
3 28
2 40
3 72
3 64
5 28
9 10 | 121.
122.
123.
93 — North mounta | 86:96
84:28 | 51 85
48 70
47 20
Locality | 2.88
10.24
14.65 | 4:90
7:04 | 0.44
0.40 | 2 44
0 86 |
| 5 00
6 68
3 28
2 40
3 72
3 64
5 28
9 10
7 56
7 56
8 590 | 121.
122.
123. | 86-96
84-28
in. Squir
Squir
D. Mo
K. Mo
J. Mo | Locality of McDonald's e McDonald's west Donald's west Don | 2.88
10.24
14.65
of occurrence
claim. East
claim. Act
tt grant. So.
North 100 ff
y, W. side.
ide. Avera,
1 pit on N.
1 75 feet on
age sample | 4 90 7 04 ce. tternmost exposs a 60 ft. edge 50 yar nuires cave. from 800 ge of N. ha side of dep face of lec from 70 y. of N. band | or 44 0:40 Appeare on bit dip on McD ds E. of mou N. belt. feet of bluff lf of dolomit soit. Averag dge, close to ards on N. l, taken E. o | 2 44
0 86
ack range.
conald lake
intain trai
e quarry.
e.
the S. sid-
band.
f road. |
| 5 00
5 68
3 28
2 40
3 76
5 28
3 76
5 28
9 10
7 56
7 56
2 34
8 90
12 56
2 2 56
4 00 | 93 - North mounta 94 - " | 86-96
84-28
in. Squir
Squir
D. Mo
K. Mo
J. Mo | Locality of McDonald's e McDonald's west Donald's west Don | 2-88 10-24 14-65 of occurrence claim. East claim. Acrit grant. Let grant. So North 100 feet. Average l pit on N. 175 feet on age sample age sample age sample | 4:90 7:04 ce. ternmost excoss a 60 ft. edge 50 yar uires cave. t. faces of 1 From 800 From 800 face of lef face of lef face of lef from 70 y of N. band of white 1 | cposure on bedip on McDds E. of mot
N. belt. feet of bluff if of dolomitosit. Averaging, close to ards on N. 1, taken E. o art of S. be | 2 44
0 86 ack range. conald lake intain trai e quarry. e. the S. sid band. f road. |
| 5 00
5 68
3 28
2 40
3 76
5 28
3 76
5 28
9 10
7 56
7 56
2 34
8 90
12 56
2 2 56
4 00 | 93 - North mounta
94 - " * * * * * * * * * * * * * * * * * * | 86-96
84-28
in. Squir
Squir
D. Mo
K. Mo
J. Mo | Locality of McDonald's e McDonald's west Donald's west Don | 2.88
10.24
14.65
of occurrence
claim. Eas
claim. Act
tt grant. Sc
North 100 f
y, W. side.
ide. Averal
l pit on N.
n. 75 feet on
age sample
age sample
ards from
age sample | 4 90 7 04 ce. ternmost exposs a 60 ft. edge 50 yar uires cave. From 800 ge of N. has side of dependent of N. hand of white pluff to so of blue 1 | o.44 0.40 Appeare on bit dip on McD ds E. of mou N. belt. feet of bluff lf of dolomit soit. Averag dge, close to ards on N. l, taken E. o art of S. be uth edge. imestone free | 2 44
0 86 ack range, onald lake intain train tr |
| 5 00
6 68
3 28
2 40
3 72
3 764
5 28
9 10
7 56
2 34
8 90
12 56
2 56
2 56
4 00
0 76 | 93 - North mounta 94 - " | 86-96
84-28
in. Squir
Squir
D. Mo
K. Mo
J. Mo | Locality of the McDonald's e McDonald's west Donald's West | 2-88 10-24 14-65 of occurrence claim. Eas claim. Act try grant. Let grant. So North 100 ft. W. side. Averagl pit on N. 175 feet on age sample age sample age sample ards from age sample arcs from age arcs from age arcs from age age arcs from age arcs from age ar | 4:90 7:04 ce. ternmost excess a 60 ft. edge 50 yar uires cave. t. faces of l. From 800 ge of N. ha side of dep face of lee from 70 y of N. band of white p bluff to so of blue l N. side of the | or 44 0°40 Appeared on be dip on McD ds E. of mot N. belt. feet of bluff ff of dolomit osit. Averag dige, close to ards on N. I, taken E. o art of S. be uth edge. imestone fre te second bet | 2 44
0 86 ack range, onald lake intain train tr |
| 5 00
6 68
3 28
2 40
3 72
3 64
5 28
9 10
7 56
2 34
8 90
12 56
7 08
4 00
0 76 | 93 — North mounta 94 — " | in. Squir. Squir. D. M. D. M. K. M. J. McRa | Locality of McDonald's e McDonald's west Donald's west Don | 2.88 10.24 14.65 of occurrence claim. Ease claim. Acret grant. Ext grant. So North 100 ff y, W. side. dec. Averag l pit on N. 175 feet on age sample age sample age sample age sample age sample ards from age sample ards from age sample along bluff idong bluff | 4.90 7.04 ce. ternmost excess a 60 ft. edge 50 yar, quires cave. t. faces of 1 From 800 ge of N. ha side of dep face of lee from 70 y of N. band of white 1 N. side of thu. | or 44 0:40 Appeare on briding on McD ds E. of mor N. belt. feet of bluff lf of dolomit soit. Averag lge, close to art of S. be ards on N. it taken E. o art of S. be imestone free second belt or 40 vds. | 2 44
0 86 ack range, onald lake intain train tr |
| 5 00
5 08
3 28
2 40
3 72
3 64
5 28
9 10
7 56
2 34
8 90
2 56
7 08
4 00
0 76
sampled. | 121. 122. 123. 93 - North mounta 94- 95- 96- 96- 97- 100- 101- 102- 103- 104- 105- 106-Lime Hill. B | in. Squir. Squir. D. M. D. M. K. M. J. McRa | Locality of McDonald's e McDonald's west Donald's west Don | 2.88 10.24 14.65 of occurrence claim. Ease claim. Acret grant. Ext grant. So North 100 ff y, W. side. dec. Averag l pit on N. 175 feet on age sample age sample age sample age sample age sample ards from age sample ards from age sample along bluff idong bluff | 4.90 7.04 ce. ternmost excess a 60 ft. edge 50 yar, quires cave. t. faces of 1 From 800 ge of N. ha side of dep face of lee from 70 y of N. band of white 1 N. side of thu. | or 44 0:40 Appeare on briding on McD ds E. of mor N. belt. feet of bluff lf of dolomit soit. Averag lge, close to art of S. be ards on N. it taken E. o art of S. be imestone free second belt or 40 vds. | 2 44
0 86 ack range, onald lake intain train tr |
| 5 00
5 08
3 28
2 40
3 72
3 64
5 28
9 10
7 56
2 34
8 90
2 56
7 08
4 00
0 76
sampled. | 93 - North mounta 94 - | in. Squir
Squir
D. M.
D. M.
J. McRa | Locality of the McDonald's e McDonald's west Donald's West | 2-88 10-24 14-65 of occurrence claim. Eas claim. Act try grant. Let grant. So North 100 flower of the claim o | 4:90 7:04 ce. ternmost excess a 60 ft. edge 50 yar uires cave. t. faces of l. From 800 ge of N. ha side of dep face of lee from 70 y. of N. band of white 1 bluff to so of blue 1 N. side of th and south f ell propert t. From b | or 44 or 40 | 2 44
0 86
ack range,
conald lake
intain trained
e quarry,
e,
the S. side
band,
f road,
elt, over 7 |
| 5 00
5 08
3 28
2 40
3 72
3 64
5 28
9 10
7 56
2 34
8 90
2 56
7 08
4 00
0 76
sampled. | 93 - North mounta 94 - | in. Squir. Squir. D. M. D. M. K. M. J. McRa | Locality of McDonald's e McDonald's west Donald's west Don | 2.88 10.24 14.65 of occurrence claim. Ease claim. Act tr grant. Sc. North 100 ff. w. W. side. ide. Average sample age sample age sample ards from age sample ards from the fallong bluff it of Camph McPhie gran pole taken i | 4:90 7:04 ce. ternmost exposs a 60 ft. edge 50 yar, quires cave. t. faces of 1: From 800 ge of N. ha side of dep face of lee from 70 y, of N. band of white 1: N. side of the hand south facel propert tt. From 1: | or 44 0 40 dip on McD ds E. of mou N. belt. feet of bluff lf of dolomit osit. Averag lge, close to art of S. buth edge. imestone from esecond belt for 40 yds. y. ooulders. rom N. edge from N. edge | 2 44
0 86
ack range,
conald lake
intain train
e quarry,
e,
the S. sid
band,
f road,
elt, over 7 |
| 6 00
6 68
3 28
2 40
3 72
3 64
5 91
7 56
2 34
8 90
2 56
7 08
4 00
0 76
sampled. | 93 - North mounta 94 - | in. Squir
Squir
D. M.
D. M.
J. Mc
McRa
est along a
ast of Mcl
ast of Mcl | Locality of the McDonald's e McDonald's west and the grant. The propert e grant, W. s. Small "Fron "Aver "Av | 2-88 10-24 14-65 of occurrence claim. Eas claim. Acrist grant. Ext grant. School for the constant of the const | ternmost excess a 60 ft. edge 50 yar uires cave. t. faces of 1 From 800 ge of N. ha side of dept face of ledge from 70 y. of N. band of white 1 bluff to so of blue 1 N. side of the hand south ft. From 1 250 yards ft. | course on be dip on McD ds E. of mot M. belt. feet of bluff if of dolomit osit. Averag dge, close to ards on N. i, taken E. o art of S. buth edge. imestone from the second belt or 40 yds. y. ooulders. rom N. edge of trap. | 2 44 0 86 ack range, onald lake untain trained the S. side band. If road, elt, over 7 on the W, measured of belt. |
| 5 00
5 08
3 28
2 40
3 72
3 64
5 28
9 10
7 56
2 34
8 90
2 56
7 08
4 00
0 76 | 93 - North mounta 94 - | in. Squir
Squir
D. M.
D. M.
J. Mc
McRa
est along a
ast of Mcl
ast of Mcl | Locality of the McDonald's e McDonald's west and the grant. The propert e grant, W. s. Small "Fron "Aver "Av | 2-88 10-24 14-65 of occurrence claim. Eas claim. Acrist grant. Ext grant. School for the constant of the const | ternmost excess a 60 ft. edge 50 yar uires cave. t. faces of 1 From 800 ge of N. ha side of dept face of ledge from 70 y. of N. band of white 1 bluff to so of blue 1 N. side of the hand south ft. From 1 250 yards ft. | course on be dip on McD ds E. of mot M. belt. feet of bluff if of dolomit osit. Averag dge, close to ards on N. i, taken E. o art of S. buth edge. imestone from the second belt or 40 yds. y. ooulders. rom N. edge of trap. | 2 44 0 86 ack range, onald lake untain trained the S. side band. If road, elt, over 7 on the W, measured of belt. |
| 5 00
5 08
3 28
2 40
3 72
3 64
5 28
9 10
7 56
2 34
8 90
2 56
7 08
4 00
0 76 | 93 - North mounta 94 - | in. Squir
Squir
D. M.
D. M.
J. Mc
McRa
est along a
ast of Mcl
ast of Mcl | Locality of the McDonald's e McDonald's west and the grant. The propert e grant, W. s. Small "Fron "Aver "Av | 2-88 10-24 14-65 of occurrence claim. Eas claim. Acrist grant. Ext grant. School for the constant of the const | ternmost excess a 60 ft. edge 50 yar uires cave. t. faces of 1 From 800 ge of N. ha side of dept face of ledge from 70 y. of N. band of white 1 bluff to so of blue 1 N. side of the hand south ft. From 1 250 yards ft. | course on be dip on McD ds E. of mot M. belt. feet of bluff if of dolomit osit. Averag dge, close to ards on N. i, taken E. o art of S. buth edge. imestone from the second belt or 40 yds. y. ooulders. rom N. edge of trap. | 2 44 0 86 ack range, onald lake untain trained the S. side band. If road, elt, over 7 on the W, measured of belt. |
| 5 00
6 68
3 28
2 40
3 72
3 64
5 28
9 10
7 56
2 34
8 90
12 56
7 08
4 00
0 76 | 93 - North mounta 94 - | in. Squir Squir D. M. D. M. K. M. J. M. M. C. M. | Locality of McDonald's e McDonald's west Donald's west Don | 2.88 10.24 14.65 of occurrence claim. Ease claim. Act tr grant. St. North 100 fi de. Averaging age sample age sample age sample age sample age sample to form to form to form the fallong bluff it of Cample McPhie gran ple taken sers in W. et sure of blue of feet north | 4.90 7.04 ce. ternmost excess a 60 ft. edge 50 yar, quires cave. t. faces of 1 From 800 ge of N. ha side of dep face of lee from 70 y. of N. band of white 1 N. side of the luft to so of blue 1 N. side of the sell propert tt. From 1 Limestone Limestone Limestone Limestone Limestone | or 44 0:40 Appeare on briding on McD ds E. of mor N. belt. feet of bluff lf of dolomit soit. Averag lge, close to art of S. be ards on N. it taken E. o bart of S. be imestone fro esecond belt for 40 yds. y. boulders. rom N. edge of trap. on N. side of te limestone. | 2 44
0 86 ack range, onald lake untain trainer the S. side band. If road, elt, over 7 cm, the W, measured of belt. |
| 5 00
6 68
3 28
2 40
3 72
3 64
5 28
9 10
7 56
2 34
8 90
12 56
7 08
4 00
0 76 | 93 - North mounta 94 | in. Squir Squir D. M. D. M. K. M. J. M. M. CRa set along ast of Mclast of Mc | Locality of the McDonald's e McDonald's west Donald's west | 2.88 10.24 14.65 of occurrence claim. Ease claim. Act tr grant. Sc. North 100 ff. w. W. side. ide. Averaging age sample age sample age sample age sample ards from age sample to ff. w. W. St. W. | 4.90 7.04 ce. ternmost excess a 60 ft. edge 50 yar, quires cave. t. faces of 1 From 800 ge of N. ha side of dep face of lee from 70 y. of N. band of white 1 N. side of the ell propert, had south f ell propert and south f ell propert but in front but i | or 44 0:40 sposure on br dip on McD ds E. of mor N. belt. feet of bluff for dolomit soit. Averag ge, close to art of S. be art of S. be imestone froe second belt or 40 yds. y. oulders. rom N. edge of trap. on N. side of te limestone. il. mountain t | 2 44 0 86 ack range, onald lake untain trail e quarry, e. the S. side band, froad, elt, over 7 om the W, measured of belt. of brook. |
| 5 00
6 68
3 28
2 40
3 72
3 64
5 28
9 10
7 56
2 34
8 90
12 56
7 08
4 00
0 76 | 121. 122. 123. 93 - North mounta 94 - | in. Squir Squir D. M. D. M. K. M. J. M. M. CRa set along ast of Mclast of Mc | Locality of the McDonald's e McDonald's west Donald's west | 2.88 10.24 14.65 of occurrence claim. Ease claim. Act tr grant. Sc. North 100 ff. w. W. side. ide. Averaging age sample age sample age sample age sample ards from age sample to ff. w. W. St. W. | 4.90 7.04 ce. ternmost excess a 60 ft. edge 50 yar, quires cave. t. faces of 1 From 800 ge of N. ha side of dep face of lee from 70 y. of N. band of white 1 N. side of the ell propert, had south f ell propert and south f ell propert but in front but i | or 44 0:40 sposure on br dip on McD ds E. of mor N. belt. feet of bluff for dolomit soit. Averag ge, close to art of S. be art of S. be imestone froe second belt or 40 yds. y. oulders. rom N. edge of trap. on N. side of te limestone. il. mountain t | 2 44 0 86 ack range, onald lake untain trail e quarry, e. the S. side band, froad, elt, over 7 om the W, measured of belt. of brook. |
| 5 00
6 68
3 28
2 40
3 72
3 64
5 28
9 10
7 56
2 34
8 90
12 56
7 08
4 00
0 76 | 93 - North mounta 94 - | in. Squir Squir D. M. D. M. D. M. | Locality of the McDonald's e McDonald's west Donald's west | 2.88 10.24 14.65 of occurrence claim. Ease claim. Acres to grant. Let grant. So North 100 for one age sample age sample ards from age sample ards from age sample to for the 2 claim of th | ternmost exposes a 60 ft. edge 50 yarquires cave. t. faces of 1. From 800 ge of N. ha side of dep face of lee from 70 yr of N. band of white 1. N. side of the hand south facel propert tt. From 1. From 1. Imestone ward. Blu feet at traited to 1. E. of new stone on his stone on h | sposure on be dip on McD ds E. of mot N. belt. feet of bluff If of dolomit osit. Averag Ige, close to ards on N. 1, taken E. o mart of S. be uth edge. imestone free second belt or 40 yds. y. boulders. rom N. edge of trap. on N. side the limestone. il. mountain t Il N. of Mat | 2 44 0 86 ack range, onald lake intain trail e quarry, e, the S. side band. f road, elt, over 7, on the W, measured of belt. of brook. |
| 5 00
6 68
3 28
2 40
3 72
3 64
5 28
9 10
7 56
4 2 56
2 56
2 56
2 56
4 00
0 76 | 93 - North mounta 94 - | in. Squir- Squir- D. M. D. M. J. M. J. M. McRa est along ast of Mclast of M | Locality of McDonald's e McDonald's west Donald's west Don | 2.88 10.24 14.65 of occurrence claim. Eas claim. Acrist grant. Let grant. Selection of the control of the contr | ternmost excess a 60 ft. edge 50 yar yuires cave. t. faces of l. From 800 ge of N. ha side of dep face of let from 70 y. of N. band of white 1 bluff to so of blue l N. side of thand south feel propert t. From 1 georgia from 1 georgia for the limestone ward. Blu feet at tra E. of new stone on hill | o 44 0 40 kposure on by dip on McD ds E. of mot N. belt. feet of bluff ff of dolomit osit. Averag dige, close to bards on N. I, taken E. o buth edge. imestone fro the second belt for 40 yds. y. boulders. rom N. edge of trap. of trap. il. mountain t Il N. of Mathes N. of Mathes | 2 44 0 86 ack range, onald lake intain trail e quarry, e, the S. side band. f road, elt, over 7, on the W, measured of belt. of brook. |
| 5 00
5 08
3 28
2 40
2 5 28
3 64
5 28
9 10
7 56
2 34
8 90
12 56
7 08
4 00
0 76
sampled. | 121. 122. 123. 93 - North mounta 94 | in. Squir Squir D. M. D. M. D. M. | Locality of McDonald's e McDonald's western and the grant. Phie propert e grant, W. s. Smal Fron Aver Aver Aver Aver Aver Aver Kenzie's, on If ft. expox. W. side, 10 ft. expox. W. sid | 2.88 10.24 14.65 of occurrence claim. Ease claim. Acrete grant. Ext grant. So North 100 ff y. W. side. dide. Average sample age sample age sample age sample age sample ards from age sample acres in W. et across 75 100 grands. Blue lime to 100 grands. Blue lime to 1200 grands. Blue lime thrace limest trace limes turface limes trace limes across 75 100 grands. Blue lime thrace limest trace limes trace | ternmost exposes a 60 ft. edge 50 yar- quires cave. t. faces of From 800 ge of N. ha side of dep- face of lee from 70 y. of N. band of white 1 limestone and south feel propert t. From 1 limestone award. Blu feet at trainer on hill tone, N. of tone, N. of | o 44 0 40 kposure on by dip on McD ds E. of mot N. belt. feet of bluff ff of dolomit osit. Averag dige, close to bards on N. I, taken E. o buth edge. imestone fro the second belt for 40 yds. y. boulders. rom N. edge of trap. of trap. il. mountain t Il N. of Mathes N. of Mathes | 2 44 0 86 ack range, onald lake intain trail e quarry, e, the S. sid band. of road. elt, over 7 on the W, measured of belt. of brook. |
| 5 00
6 68
3 28
2 40
3 72
3 64
5 28
9 10
7 56
2 34
8 90
12 56
7 08
4 00
0 76 | 93 - North mounta 94 - | in. Squir Squir D. M. D. M. D. M. M. J. M. M. M. CRa st of Mclast | Locality of the McDonald's e McDonald's wester the grant. The propert e grant, W. s. Small "From Aver Aver Aver Aver Aver Aver Aver Aver | 2-88 10-24 14-65 of occurrence claim. Eas claim. Acrist grant. Ext grant. School for the second of t | ternmost excess a 60 ft. edge 50 yar ruires cave. t. faces of l. From 800 ft. face of lee from 70 y. of N. band of white lbluff to so of blue l l. N. side of thand south foell propert tt. From leel propert tt. From leel propert tt. E. of new setone on hill tone, N. of new istone on hill tone, N. of roadside. | o 44 0 40 kposure on by dip on McD ds E. of mot N. belt. feet of bluff ff of dolomit osit. Averag dige, close to bards on N. I, taken E. o buth edge. imestone fro the second belt for 40 yds. y. boulders. rom N. edge of trap. of trap. il. mountain t Il N. of Mathes N. of Mathes | 2 44 0 86 ack range, onald lake intain trail e quarry, e, the S. sid band. of road. elt, over 7 on the W, measured of belt. of brook. |
| 5 00
5 08
3 28
2 40
2 5 28
3 64
5 28
9 10
7 56
2 34
8 90
12 56
7 08
4 00
0 76
sampled. | 93 - North mounta 94 - | in. Squir Squir D. M. D. M. D. M. M. J. M. M. M. CRa st of Mclast | Locality of McDonald's e McDonald's western and the grant. Phie propert e grant, W. s. Smal Fron Aver Aver Aver Aver Aver Aver Kenzie's, on If ft. expox. W. side, 10 ft. expox. W. sid | 2-88 10-24 14-65 of occurrence claim. East claim. Acrist grant. Let grant. Select on the control of the control | ternmost excess a 60 ft. edge 50 yar unires cave. t. faces of l. From 800 ge of N. ha side of dependence of let of the from 70 y. of N. band of white pluff to so of blue I bluff to so of blue I thand south feell propert t. From 1250 yards find in front limestone ward. Blu feet at tra: E. of new stone on hill tone, N. of roadside. stone. | or 44 0°40 Appeared to be dip on McD ds E. of mot N. belt. feet of bluff for dolomit osit. Averag dards on N. I. taken E. o oards of S. be uth edge. imestone fro the second belt for 40 yds. y. y. y. y. the second belt on N. side the limestone. Il N. of Mat N. of Mat N. of Mather road. | 2 44 0 86 ack range, onald lake intain trail e quarry, e, the S. sid band. of road. elt, over 7 on the W, measured of belt. of brook. |
| 5 00
5 08
3 28
2 40
3 72
3 64
5 28
3 64
5 28
5 28
9 10
7 56
2 34
8 90
12 56
7 08
4 00
0 75
sampled
1 road. | 121. 122. 123. 93 - North mounta 94 | in. Squir Squir D. M. D. M. D. M. M. J. M. M. M. CRa st of Mclast | Locality of the McDonald's e McDonald's western and the grant. Small of the grant, W. s. Small of the grant o | 2 88 10 24 14 65 of occurrence claim. Ease claim. Acrete grant. Ext grant. Sc. North 100 ff y. W. side. ide. Average sample age sample age sample age sample ards from age sample ards from age sample taken in the front of the linest of the l | ternmost exposes a 60 ft. edge 50 yar- quires cave. t. faces of From 800 ge of N. ha side of dep- face of lee from 70 y. of N. band of white 1 limestone and south feel propert t. From 1 limestone award. Blufeet at trained to the feel propert of the limestone on hill feet at trained to the N. of roadside. Stone. om waste described in waste described in the front on hill tone, N. of roadside. | or 44 0°40 Apposure on bridip on McD ds E. of mor N. belt. feet of bluff for dolomit osit. Averag ge, close to art of S. be uth edge. imestone from the second belt or 40 yds. y. or M. edge of trap. or N. edge of trap. in M. edge it limestone. il. mountain t ll N. of Mather road. | 2 44 0 86 ack range, onald lake intain trail e quarry, e, the S. sid band. of road. elt, over 7 on the W, measured of belt. of brook. |
| 5 00 6 6 68 3 28 2 40 3 72 2 3 64 4 5 28 9 10 7 5 6 2 3 4 4 00 12 5 6 6 7 08 4 00 7 7 5 6 2 7 08 4 0 0 7 6 1 7 0 8 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 121. 122. 123. 93 - North mounta 94 - | in. Squir Squir D. M. D. M. D. M. M. J. M. M. M. C. Ra st of M. C. ast | Locality of the McDonald's e McDonald's west and the State of the McDonald's west and the State of the McDonald's west and the McDonald's west and the State of the McDonald's west and the McDonald's west and the McDonald's west and the McDonald the McD | 2.88 10.24 14.65 of occurrence claim. Ease claim. Acres to grant. Let grant. See North 100 for age sample age sample age sample ards from age sample ards from age sample taken it of Campb McPhie grannple taken it of Campb McPhie grannple taken. Sure of blume of feet north across 75 1.200 yards. Blue lime hite limester from Pink lime Sample from Pink lime Sample from Beach nor stage of sample from Beach nor Beach | ternmost excess a 60 ft. edge 50 yar uires cave. t. faces of 1. From 800 ft. face of leg of N. ha side of depface of leg of N. band of white 1 bluff to so of blue 1 N. side of than south feell propert int. From 1 250 yards find in front in limestone improved the stone on hill tone, N. of roadside. Stone on waste of th of waste of the stone. | or 44 0°40 Apposure on bridip on McD ds E. of mor N. belt. feet of bluff for dolomit osit. Averag ge, close to art of S. be uth edge. imestone from the second belt or 40 yds. y. or M. edge of trap. or N. edge of trap. in M. edge it limestone. il. mountain t ll N. of Mather road. | 2 44 0 86 ack range, onald lake intain trail e quarry, e, the S. sid band. of road. elt, over 7 on the W, measured of belt. of brook. |
| 5 00
6 68
3 28
2 40
2 5 28
3 72
3 64
5 28
5 28
3 72
3 64
5 28
8 90
12 56
7 08
4 00
0 76
sampled.
1 road. | 121. 122. 123. 93 - North mounta 94 | est along ast of Mclast of | Locality of the McDonald's e McDonald's wester the grant. The propert e grant, W. s Small "From Aver Aver Aver Aver Aver Aver Aver Aver | 2.88 10.24 14.65 of occurrence claim. East claim. Acrist grant. Let grant. See North 100 for 10.00 feet or 10.00 feet north 1 | ternmost exposes a 60 ft. edge 50 yar quires cave. t. faces of From 800 ge of N. ha side of dept face of lee from 70 y. of N. band of white pluff to so of blue 1 thand south feel propert t. From 1250 yards f. different for the limestone ward. Blu feet at tra: E. of new stone on hill tone, N. of roadside. stone. om waste deth of waste ck pile. | or 44 0°40 Apposure on bridip on McD ds E. of mor N. belt. feet of bluff for dolomit osit. Averag ge, close to art of S. be uth edge. imestone from the second belt or 40 yds. y. or M. edge of trap. or N. edge of trap. in M. edge it limestone. il. mountain t ll N. of Mather road. | 2 44 0 86 ack range, onald lake intain trail e quarry, e, the S. side band. f road, elt, over 7, on the W, measured of belt. of brook. |

LIMESTONE: TABLE VIII.-Continued.

INVERNESS COUNTY.

| | | | | 5 | | |
|---------|----------------------|----------------------|-------------------------------------|----------------------|---------------------------------|-----------------------|
| Number. | ${\rm CaCO}_{\rm s}$ | Equivalent
to CaO | $\mathbf{Mg}\mathbb{C}\mathbf{O}_3$ | Equivalent
to MgO | ${f Fe_2O_3}$ and ${f Al_2O_3}$ | Insoluble
Residue. |
| , | | | | | | |
| 124 | 92 14 | 51:60 | 6.56 | 3 14 | 0.32 | 0.82 |
| 125 | 93.78 | 52 53 | 2 34 | 1:12 | 0.30 | 3:60 |
| 126 | 87 32 | 48:90 | 10:42 | 4.98 | , 0.60 | 2:04 |
| 127 | 95 18 | 53 20 | 1 21 | 0.58 | 0.28 | 3 · 28 |
| 128 | 89:46 | 50.10 | 2.71 | 1 30 | 1.16 | 6-60 |
| 129. | 68 21 | 38 20 | 9.82 | 4:70 | 6.00 | 16.28 |
| 130. | 93 39 | 52:30 | 2 38 | 1 14 | 0.68 | 3.84 |
| 131 | 94 82 | 53:10 | 1.58 | 0.76 | 1:10 | 2 26 |
| 132. | 82 14 | 46:00 | 14.02 | 6.71 | 1 96 | 3 28 |
| 133 | 87 23 | 48:85 | 8:38 | 4.10 | 0.72 | 2.44 |
| 134 | 87 32 | 48:90 | 2 21 | 1:06 | 1 62 | 6.72 |
| 135 | 91:71 | 51:40 | 5:49 | 2.63 | 0:36 | 2.64 |
| 136. | 82:41 | 46.15 | 7 29 | 3:49 | 1 34 | 9:04 |
| 137 | 80.75 | 45 20 | 3:10 | 1:48 | 1:56 | 14:28 |
| 138 | 87 85 | 49:20 | 3-97 | 1:90 | 1 36 | 6.80 |
| 139. | 82 14 | 46:00 | 1:58 | 0.76 | 0:90 | 14:70 |
| 140 | 84:73 | 47:45 | 3:07 | 1 47 | 0.90 | 3:84 |
| 141. | 82 41 | 46:15 | 0.86 | 0.42 | 1:00 | 15:56 |
| 142. | 79:64 | 44:60 | 14:75 | 7:06 | 1:50 | . 4 56 |
| 143 | 89 64 | 50:20 | 8 23 | 3:94 | 0:34 | 1:04 |
| 144. | 94:55 | 52 95 | 3 13 | 1:50 | 0:32 | 1:80 |
| 145 | 95 18 | 53:30 | 1:85 | 0.89 | 0.32 | 1.78 |
| 146 | 91 43 | 51:43 | 4:45 | 2 13 | 0.86 | 3 36 |
| 147 | 56.78 | 31 80 | 40 47 | 19:36 | 060 | 3 20 |
| | 55 35 | 31:00 | 41:84 | 20 02 | 1:00 | 2.16 |
| | 91.78 | 51:40 | 3.88 | 1 86 | 0.56 | 3 48 |
| | 87 41 | 48:95 | 2 17 | 1 03 | 1:20 | 8 44 |
| 150 | | | 42 01 | 20:10 | 0 41 | 18 20 |
| 151, | 45 85 | 27-90 | 42 01 | 20 10 | 0.41 | 10 20 |

Locality of occurrence.

| 19t-Marble mon | ntain, D. I. & S. Co.'s quarry. Fine-grained variety. |
|-----------------|---|
| 125— | Dark blue variety. |
| 126— " | " Grey variety. |
| 127— | "(From Lime Co.'s quarry. |
| 128— | McPhie property, east quarry. Blue and white crystalline. |
| 129— | east quarry. Cheesy white stone. |
| 130— " | " west quarry, 50 feet of white stone at centre. |
| 131— " | "Sample from dump of pits. |
| 132— | |
| 1.02- | McAskill's east grant. Taken across 100 feet of stone. |
| 13.5— | McLachland's property. Main or N. part of North belt. White. |
| 131 | S. side of N. belt. Blue limestone. |
| 199— | D. I. & S. Co.'s quarry. Across 200 feet of N. band, S. of lake. |
| 1.)() | W. side of Bras d'Or lake, 600 feet of N. belt. |
| 137- | K. D. McPhie's farm. From boulders. |
| 138— | grant. Boulders near east quarry. |
| 139 — " | property. Along 200 feet from N. to S. on rear of fine |
| | near house. |
| 140 | " property. Across a 200 ft. exposure of bluish grey |
| | limestone. |
| 141 " | D. McLeod grant. McLachland's property. Across a 100 ft. hill. |
| 142 " | From a 75 ft. belt near the N. edge of, and one-third of the way from |
| | E. line across Campbell's grant. |
| 143-Upper River | Denys. D. McPhail property. From a 40 ft. belt on McPhail brook. |
| 144 " | " Ungranted land. From a 100 ft. belt in gorge near McPhail |
| | brook. |
| 145— " | A. McAskill's property. Average of a 500 ft. outcrop at falls |
| | on E. branch of McPhail brook. |
| 146— " | " McLeod property. From a 1,000 ft. outcrop on road to |
| 110 | Glencoe. |
| 147-West Bay n | |
| 148— " | "Campbell property. Sample taken along brook. |
| 149 '' | " McMillan property. Best of belt near house. |
| 150— " | " McMillan property. 200 ft. bluff N. of brook. Average. |
| 151— " | McCushvrie brook. Average of a 50 ft. bed. |
| 101 | Mentalistic offort. Michael of a on the sour |

INVERNESS

Number.

RICHMOND C

158—Corbett cov sections 159—Dundes. Mc 160— " Mc

shell lim
163—Lennox Feri
164—Red Islands
165—Robertson o
165—Sti Peters.

108**4**3—**5**

LIMESTONE: TABLE VIII.-Continued.

INVERNESS COUNTY.

soluble -sidue.

tre.

Vhite. N. belt.

of line sh grey ill.

ay from

il brook McPhail at fallroad to

| | | 1 | | | | |
|---------|-------------------|----------------------|-------------------|----------------------|---|-----------------------|
| Number. | CaCO ₃ | Equivalent
to CaO | MgCO ₃ | Equivalent
to MgO | ${\operatorname{Fe_2O_3}\atop\operatorname{Al_2O_3}}$ and | Insoluble
Residue. |
| 152 | 59 19 | 33 15 | 30:50 | 14:60 | 1:40 | 9 60 |
| 153 | 59 64 | 33 40 | 35 47 | 16.97 | 0.76 | 4 84 |
| 154 | 63 66 | 35:65 | 31:60 | 15 12 | 1:56 | 4.02 |
| 155 | 58:57 | 32 80 | 38 12 | 18:24 | 1:06 | 2:00 |
| 156 | 56:52 | 31.65 | 41.80 | 20.00 | 0.80 | 0.90 |
| 157 | 77 72 | 45 41 | 8.73 | 4.18 | 8:31 | 4.78 |

Locality of occurrence.

| 152—W | est Bay | Marshes. | D. McKenzie property. Average of lower ledge and drift on side of hill. |
|-------|---------|-----------|---|
| 153- | " " | ** | D. McKenzie property. Drift from a 250 ft. belt at top of hill. |
| 154- | " | ** | Ross property. Average of drift on hillside N. of road. |
| 155 | " | " | White limestone on west end of hill. |
| 156-W | hycocor | nagh, McI | Oonald's quarry: an average sample. |
| 157- | " | Ge | neral sample from dolomite belt. |

LIMESTONE : TABLE IX.

@ RICHMOND COUNTY.

| Number. | CaCO ₃ | Equivalent
to CaO | MgCO ₃ | Equivalent
to MgO | Fe ₂ O ₃ and
Al ₂ O ₃ | Insoluble
Residue. |
|---------|-------------------|----------------------|-------------------|----------------------|--|-----------------------|
| 158 | 85:5) | 47 · 85 | 6.70 | 3.21 | 1.08 | 6:48 |
| 159 | 89.02 | 49.85 | 0.33 | 0.16 | 1.68 | 6:00 |
| 160 | 92 32 | 51:70 | 2.04 | 0.98 | 1.12 | 2.80 |
| 161 | 93:57 | 52:40 | 0 96 | 0.46 | 1.12 | $2 \cdot 32$ |
| 162 | 96 · 60 | 54 10 | 0 87 | 0.42 | 0.52 | 0.76 |
| 163 | 90.89 | , 50.90 | 7 14 | 3 42 | 1 08 | 0.76 |
| 164 | 94 41 | 52.87 | 0.33 | 0.16 | 0.64 | 2 44 |
| 165 | 85.18 | 47:70 | 1.71 | 0.82 | 2.48 | 10.18 |
| 166 | 77 84 | 43 59 | 1 · 33 | 0.63 | 3 · 20 | 15:14 |
| 167 | 87:50 | 49:00 | 2.50 | 1 20 | 2.44 | 7:84 |

Locality of occurrence.

| 158—Corbett cov∌ near | | | Average | sample | from | two | vertical |
|-----------------------|-----------|----------------|----------|---------|------|-----|----------|
| sections of face | | | | | | | |
| 159—Dundee. McIntosh | | | | | | | |
| 160 " Morrison | property. | Sample from sm | all dump | near ro | ad. | | |

Average sample taken across a 300 ft. face of limestone.

C. B. Kaulbach's property. Average sample of a 50 ton dump of 161-

162—Lennox Ferry. C. B. Kaulbach's property. Average sample of a 50 ton dump of shell limestone.

163—Lennox Ferry. Shannon property. General sample from 50 ton dump.

164—Red Islands limestone quarry. General sample across 100 feet.

165—Rebertson cove, Barra Head. Sample of best or darkest limestone.

165—Sh Peters. Average sample, taken at 1 to 2 ft. intervals across a 50 ft. quarry face.

167— "Sandy point. McDougall property. Average sample of ledge.

10843-5

LIMESTONE : TABLE X.

VICTORIA COUNTY.

| Number. | \mathbf{CaCO}_3 | Equivalent
to CaO | ${\rm MgCO}_3$ | Equivalent
to MgO | ${\operatorname{Fe}_2\mathrm{O}_3}$ and ${\operatorname{Al}_2\mathrm{O}_3}$ | Insoluble
Residue |
|---------|-------------------|----------------------|----------------|----------------------|---|----------------------|
| | | | | 4.00 | | 0 |
| 168 | 91.78 | 51 40 | 2.13 | 1.02 | 0:56 | - 3.52 |
| 169 | 95.18 | 53:30 | 1.14 | 0.55 | 0:56 | 2.12 |
| 170 | $62 \cdot 32$ | 34 · 90 | 37.01 | 17.71 | 0.68 | 0.48 |
| 71 | 51:78 | 29:00 | 39.86 | 19:07 | 1.80 | 6.44 |
| 72 | 49.19 | 27:55 | 40 84 | 19:54 | 1.54 | 8:64 |
| 173 | 73 18 | 40 98 | 14:54 | 6.96 | 1.16 | 10.88 |
| 74 | 75.85 | 42 48 | 21 32 | 10.29 | 0.52 | 2 44 |
| 75 | 63 66 | 35 65 | 35 22 | 16.85 | 0:32 | 2 1:20 |
| 76 | 92 23 | 51 65 | 1.98 | 0.95 | 0:54 | 3.56 |
| 77 | 94/10 | 52:70 | 2.13 | 1.02 | 0:40 | 2.64 |
| 78 | 95 27 | 53:35 | 1.50 | 0.72 | 0.28 | 2.28 |
| 79 | 94:37 | 52.85 | 1:62 | 0.78 | 0.30 | 3.00 |
| 80 | 83:48 | 46:75 | 2:17 | 1:04 | 1.24 | 11:60 |
| 81 | 80.62 | 45 15 | 2:11 | 1:01 | 1.28 | 13:06 |
| 82 | 54:64 | 30:60 | 41:09 | 19:66 | 1:00 | 1:20 |
| 83 | 61:34 | 34 55 | 32 64 | 15 62 | 1:50 | 5:00 |

Locality of occurrence.

| 168—Cape Dan | nhin. Fa | iry Hole. Sample from a 20 ft. section, beside and below hole. |
|--------------|-----------|---|
| 169— " | | om a 35 ft. section, upward from water's edge. |
| 170— " | | om 50 feet of shell dolomite on W. side of lower Carboniferous on |
| 170- | I I | |
| | 1 114 | N. shore, next to conglomerate. |
| 171—New Cam | pbeliton. | Dolomite quarry. Best grade blue dolomite. |
| 172— " | | Blue dolomite in front of quarry, 6 feet thick. |
| 173— '' | ** | Kelly cove. Carboniferous limestone at road. |
| 174— '' | " | Kelly cove. Sampled across 100 feet near E. side of limestone. |
| 175— " | | Kelly cove. From W. side of limestone stratum, for 63 yards |
| | | at turn of road. |
| 176— '' | ** | Kelly cove. Sample across a 95 yard exposure |
| 177 " | 4.6 | Kelly cove. Sample across a 125 yard exposure at a point |
| 111- | | 200 yards S. of preceding sample. |
| 178- " | ** | |
| 178— | | Kelly cove. Average of 155 yards at S. end of ridge, and 200 |
| | | yards S. of preceding |
| 179— " | " | Kelly cove. Northernmost exposure. |
| 180 '' | " | Jubilee. Farm W. of M. W. McLeod's grant. From a 4 ft. |
| | | bed on bank of stream, on N. W. side of the deposit. |
| 181—" | " | Jubilee. M. W. McLeod's grant. Boulders lying N. of house |
| 101 | | and E. of brook. |
| 100 11 | ** | |
| 182— " | " | Iron deposits at W. end of mountain. |
| 183—" | •• | P. MacNeil's property. Taken near shore. |
| | | |
| | | |
| | | |

1. Yellow

Yukon Territ From an o mate mixture quantity of an

It was fou
Metallic

Insolub

The following material collected deposits from Report on the

VANCOUVER A

| | |
11 | | н. | 91 | | | | 11 |
|----|---|--------|---|----|----|---|---|-----|-----|
| 1. | | | | | | | | | 58 |
| 2. | | | | | | | | 1 | 'n |
| 3. | | | | | | | i | - | 37 |
| 4. | | | ĺ | | | ï | | - | ¥ |
| 5. | | | | | | | | - 6 | 14 |
| 6. | | | | î | | | | ì | 13 |
| 7. | | | | 1 | | | | ì | SF |
| 8. | ì | | | | | · | | ì | VO. |
| 9. | | • | • | | • | | | B | |
| 0 | | • | • | | | • | | 3 | Q |
| 1. | | | | | | | | 5 | 9 |

1-Vancouver
23456789101110843-5½

oluble sidue.

hole.

estone. yards

> point and 200

a 4 ft. posit. house

IRON ORES.

Yukon.

1. Yellow ochre—From the immediate vicinity of the Takhini mineral spring, Yukon Territory. Collected by Mr. D. D. Cairnes.

From an ochreous deposit surrounding a hot spring, and consisting of an intimate mixture of calcium carbonate, calcium sulphate, ferric hydrate, and a small quantity of argillaceous matter.

It was found to contain:-

| | - | | | | | | | | Per cent. |
|-------------------|-------|---|------|------|------|---------|----|------|-----------|
| Metallic iron | | |
 |
 |
 |
 | |
 | 11.83 |
| Insoluble mineral | matte | r |
 |
 |
 |
. ; | ٠. |
 | 5.20 |

British Columbia.

The following analyses—31 in number—were conducted by Mr. Leverin, upon material collected in 1907 by Mr. E. Lindeman, M.E. Full particulars of the deposits from which these samples were taken may be found in Mr. Lindeman's Report on the Iron Ore Deposits of Vancouver and Texada Islands.

IRON QRES.-MAGNETITE: TABLE I.

VANCOUVER AND TEXADA ISLANDS.

| Number. | Iron. | Sulphur. | Phos-
phorus. | Insoluble. | Silica. | Alumina. | Lime. | Magnesi |
|---------|-------|----------|------------------|------------|---------|----------|-------|---------|
| 1 | 58:30 | 2.750 | 0.013 | 8.88 | | | | 1 |
| 2 | 56:57 | 2.750 | 0.121 | 8 52 | | | | |
| 3 | 67:09 | 1.600 | 0.009 | 4.51 | | | | |
| 4 | 66 17 | 0.017 | 0.016 | | 6.10 | 0.35 | 1.15 | 0.44 |
| 5 | 64 23 | 0.233 | 0.008 | 4 12 | | | | |
| 6 | 63 89 | 0 017 | 0:008 | | 5:30 | 1.74 | 0.80 | 1.86 |
| 7 | 56 45 | 0.530 | 0.014 | | 7:00 | 2:07 | 3.77 | 1 2 |
| 8 | 59.77 | 0.533 | 0.024 | 11.00 | | | | |
| 9 | 59:37 | 0:716 | 70.006 | 13 36 | | | | |
| 0 | 39 82 | 0 170 | 0.030 | 33 · 36 | | | | |
| 1 | 52 09 | 0.230 | 0.025 | 16.52 | | | | |

Locality of occurrence.

| 2- | ouver island. | Gordon River dist. From tunnel on Baden-Powell mineral claim. Sirdar claim. Sirdar claim. |
|----------------|---------------|---|
| 3 | | " Conqueror mineral claim on Bugaboo creek. |
| 4 | ** | Head bay, Nootka sound. |
| 5 | ** | Klaanch river. Iron Crown mineral claim. |
| 6- | ** | |
| 7— | ** | Quinsam river. From a 60 ft. tunnel. |
| 6—
7—
8— | | " From face of bluff. |
| 9 | . " | Sechart, Bald Eagle mineral claim. |
| 10- | 1-311 | Blue Bird mineral claim. |
| 11— | ** | Copper island in Barclay sound. |
| 10843- | -51 | • |

IRON ORES .- MAGNETITE: TABLE I -- Continued.

VANCOUVER AND TEXADA ISLANDS.

| Number. | Iron. | Sulphur. | Phos
phorus. | Insoluble. | Silica. | Alumina. | Lime. | Magnesia |
|---------|---------------|----------|-----------------|------------|---------|----------|-------|----------|
| 12 | 48.06 | 0.623 | 0.006 | 23 · 22 | | | | |
| 13 | 63.86 | 0.070 | 0.004 | 4.00 | | | | |
| 14 | $64 \cdot 39$ | 0 040 | 0.062 | 5.75 | | | | |
| 15 | $63 \cdot 97$ | 1.000 | 0.010 | 3 70 | | | | |
| 16 | 66 89 | 0.060 | 0.024 | 4 · 37 | | | | |
| 17 | 50.96 | 0.083 | 0.004 | 25 95 | | | | |
| 18 | 54 85 | 2.876 | 0.014 | 5.52 | | | | |
| 19 | $63 \cdot 07$ | 0.043 | 0.016 | 7.64 | | | | 1 |
| 20 | 60.89 | 0.763 | 0.004 | 3.81 | | 1 | | 1 |
| 21 | 66 49 | 0.040 | 0.042 | 5.55 | | | | |
| 22 | 59.69 | 0.040 | 0.016 | 12.76 | | | | |
| 23 | 64 48 | 1 886 | 0.002 | CuO,0 22 | . 4 47 | 0.66 | 1.32 | 1.13 |
| 24 | 63 27 | 0.347 | 0.006 | CuO,0.09 | 4 37 | 1 18 | 2.58 | 1.05 |
| 25 | 62.57 | 0.403 | 0.024 | 6.46 | | | | |
| 26 | 58.76 | 0.113 | 0.011 | 12.00 | | | | |
| 27 | 59:57 | 0.137 | 0.024 | CuO,0.08 | 8 · 30 | 1.71 | 3.82 | 1.05 |

Locality of occurrence.

| | | e2 | |
|--------------|--------|--|--|
| 12-Vancouver | island | l. Sechart, Crown Prince mineral claim. | |
| 13— | " | Klaanch river. | |
| 14 | " | Lord of the Isle mineral claim. Sechart district. | |
| 15 | " | Nimpkish. | |
| 16— | " | Defiance mineral claim, N. shore of Alberni canal. | |
| 17— | ** | Smith landing. Darby and Joan claims. | |
| 18 | 11 0 | Letitia mineral claim. | |
| 19 | ** | Kennedy lake. | |
| 20- | ** | Sarita river. From 120 ft. tunnel on S. bank. | |
| 21— | " | Ingersoll River district. | |
| 22 | " | Sechart, Western Steel mineral claim. | |
| 23-Texada is | land. | Paxton mine. Sample along 45 ft. tunnel. | |
| 24- " | | Prescott mine. Sample from tunnel. | |
| 25 " | | " Second level. | |
| 26— " | | "Third level. | |
| 27— " | | Lake mine, From open-cut. | |
| | | | |

IRON ORES.—LIMONITE (BOG IRON ORE): TABLE II.

| Number. | Iron. | Sulphur. | Phos-
phorus. | Insoluble. | Silica. | Alumina. | Lime. | Magnesia |
|---------|--|----------------------------------|----------------------------------|--------------------------------------|---------|----------|-------|----------|
| 1 | 43 · 87
46 · 23
56 · 97
54 · 46 | 1 087
0 977
0 447
0 150 | 0 012
0 026
0 038
0 038 | 3 · 12
2 · 25
1 · 40
2 · 32 | , | | | |

Locality of occurrence.

| 1—V | ancouver | island. | Quatsino | sound. |
|-----|----------|---------|----------|--------|
| 2- | | ** | | 4 |
| 3 | | 44 | - | 6 |
| 4- | | " | | 4 |

1. Magnet
A slightly

It contain
Metalli
Insolub
Titaniu

2. Limonii It was fou

Metalli Insolub Titaniu

3. Clay ir Alberta.

A light, cl Metallic Insolub Titanic

4. Clay iro
Crows Nest P
A brownish
which is assoc

It was four Metallic Insolubl Titanium

1. Clay iron
An analysis
Metallic
Insolubl

Hematite—
dale, west of R
A bedded s
It contained
Metallic

Insoluble Titaniur

Alberta.

agnesia

1 · 05

Aagnesia

\$

| Alberta. |
|---|
| Magnetite—from a point some two miles north of Burmis siding, Alberta. A slightly weathered magnetite. |
| It contained:— |
| Metallic iron |
| Insoluble mineral matter |
| Titanium dioxide None. |
| 2. Limonite—from Red Deer river, east of Kneehill, Alberta. |
| It was found on analysis to contain:- |
| Metallic iron |
| Insoluble mineral matter 7.20 |
| Titanium dioxide None. |
| 3. Clay ironstone—from Bow river, some twenty miles north of Brooks, Alberta. |
| |
| A light, clove brown, compact, massive ironstone. It yielded on analysis:— Metallic iron |
| 4. Clay ironstone—from a short distance east of Bellevue, on the line of the |
| Crows Nest Pass railway. |
| A brownish-grey, reddish-brown weathering, compact, massive ironstone, with |
| which is associated a small quantity of limonite. |
| It was found to contain:— |
| Metallic iron |
| Insoluble mineral matter |
| Titanium dioxide |
| Saskatchewan |
| 1 Classic and the Property of Society Plants I by W. W. Halland |
| 1. Clay ironstone—from Pas mountain, Sask., collected by Mr. W. McInnes. |
| An analysis, conducted by Mr. M. F. Connor, showed it to contain:— |
| Metallic iron |
| Insoluble mineral matter 9-20 |
| Manitoba. |
| Hematite-from along the line of the Canadian Northern railway, near Deep- |
| dale, west of Roblin, Manitoba. |
| A bedded siliceous hematite. |
| It contained:— |
| Metallic iron |
| |
| Insoluble matter. 30.20 Titanium dioxide. None. |
| |

Ontario.

1. Magnetite—from a point some eighty miles west of Port Arthur, on the line of the Canadian Northern railway.

A fine-grained, massive magnetite, in association with which was a somewhat large quantity of actinolite.

It was found to possess the following composition:-

| | Per cent. |
|--|---------------|
| Ferric oxide | . 37.18 |
| Ferrous oxide | . 20.92 |
| Manganous oxide | . 0.14 |
| Lime | . 2.50 |
| Magnesia | . 2.26 |
| Alumina, | . 2.78 |
| Silica | . 32.80 |
| Phosphoric anhydride | . 0.35 |
| Sulphur | . 0.04 |
| Titanium | . None. |
| Water-hygroscopic, loss at 100° C | . 0.44 |
| Water—combined loss above 100° C | . 0.58 |
| Alkalis—by difference | . 0.01 |
| · · · · · · · · · · · · · · · · · · · | |
| . , | $100\cdot 0Q$ |
| | |
| Iron—present as Fe ₂ O ₃ | . 26.03 |
| Iron—present as FeO | . 16.27 |
| | |
| Total metallic iron | . 42.30 |
| Phosphorus—P | . 0.15 |
| | |

2. Magnetite—from southeast quarter of lot 1, con. IV. of Homer tp., Ont., north of Lake Superior.

A fine crystalline-granular, massive magnetite.

| It was found on analysis to contain: | |
|--------------------------------------|---------|
| Metallic iron | . 60.82 |
| Insoluble siliceous residue | 7.40 |
| Titanium dioxide | |

3. Magnetite—from the northeast quarter of lot 1, con. II, of Homer township, Ont.

An association of fine granular, massive magnetite, and quartz; is slightly pyritiferous.

| T. | con | | |
|----|-----|-------|--|
| 11 | con | tains | |

| Metallic i | ron | | | | | | | | | |
, | | | 32.29 |
|------------|-----------|-------|-----|--|--|--|--|--|--|-------|-------|--|--|-------|
| Insoluble | siliceous | resid | ue. | | | | | | |
, | | | | 53.39 |
| Titanium | dioxide. | | | | | | | | | | | | | None. |

4. Magnedistrict. Conductive An associative of quart

Metal Insolu Titani

5. Magne Mountain mi Their cor

| _ | Number. | |
|---|---|--|
| | 5 6 6 7 7 8 9 10 111 12 13 114 15 16 117 18 119 20 21 22 22 24 25 6 27 28 9 30 31 2 33 34 35 36 37 38 39 40 14 42 43 44 | |

4. Magnetite—from a point ten miles west of Savant lake. Thunder Bay district. Collected by Mr. W. H. Collins.

An association of magnetite, with some hematite, together with a large quantity of quartzose gangue.

It contained:

| Metallic iron |
 |
 |
 | . , |
 |
 |
30.74 |
|---------------------|------|------|------|-----|------|------|-----------|
| Insoluble siliceous | | | | | | | |
| Titanium dioxide. |
 |
 |
 | | |
 | None. |

5. Magnetite—40 samples—from claims 1346/1347, and 1348, of the Huron Mountain mine, Timagami district, Ontario. Collected by Mr. B. F. Haanel, B.Sc.

Their composition is shown in the following table:-

IRON ORES.-MAGNETITE: TABLE III.

| ber | 1 | G. 1. 1 | Di | 9.11 | | | |
|-----------------------|----------------|--------------------|--------------------|------------------|--------------------|----------------|-------------------|
| Number | Iron.
(Fe) | Sulphur. | Phosphorus.
(P) | Silicon.
(Si) | Manganese.
(Mn) | Lime.
(CaO) | Aluminium
(Al) |
| 5
6
7
8
9 | 38 42
61 92 | , | | | | | |
| 7 | 55.65 | | 7 | | | | |
| 8 | 57 97 | | | | | | |
| 9 | 60.80 | l i | | | | | |
| 10 | 58:55 | | | | | | |
| 11 | 51 15 | 0.024 | trace | 6:40 | 0.20 | 6:00 | 0.16 |
| 12 | 56:57 | 0 021 | trace | 0 10 | 0 20 | 0 00 | 0 10 |
| 13 | 45.82 | | | | | | |
| 14
15 | 62 37
50 55 | | | | | | |
| 16 | 36 95 | | | | | | |
| 17 | 38 42 | | | | | | |
| 18 | 27 67 | 11 | | | | | |
| 19 | 58.72 | 1) | | | | | |
| 20 | 52 10 | 45 | | | 1 | | 1 |
| 21 | 50.78 | 0 027 | 0:002 | 6:00 | 0.33 | 5:30 | 0.04 |
| 22 | 51 62 | | | | | | |
| 25 | 43 67 | 0.740 | 0.022 | | | | |
| 24
25 | 35 35
43 92 | 0 · 540
0 · 080 | 0.010 | | | | |
| 26 | 46 52 | 0.030 | trace | | | | |
| 26
27 | 60.87 | 0 005 | 11 | | | | |
| 28 | 67 02 | 1 | | | | | |
| 29 | 65.55 | | | | | | |
| 30 | 57 92 | 0.018 | trace | 2 22 | 0:22 | 8:00 | 0 21 |
| 31 | 67 65 | 0 010 | trace | 2 22 | 0.22 + | 0 00 | 0 21 |
| 32 | 57 92 | | | | | | |
| 33 | , 56:05 | 6.010 | | | | | |
| 34
35 | 45 60
55 02 | 0.012 | trace | | | | 7 w. |
| 36 | 50.27 | trace | . " | | | | |
| 37 | 60.82 | 0.022 | | | | | |
| 38 | 51:02 | 0.014 | | | | | 100 |
| 39 | 48 40 | trace | | | | | |
| 40 | 21 82 | 0:008 | | | | | |
| 41 | 52 22 | 0.007 | | | 1 | | |
| 42 | 50.15 | none | none | 7:55 | | | |
| 43 | 50.77 | trace | trace | 7:08 | | | |
| 44 | 42.50 | 0.007 | 10.1 | | | | |

Ont.,

he line

rewhat

nship,

lightly

IRON ORES.-HEMATITE: TABLE IV.

| Number | Iron. | Sulphur. | Phosphorus. | Silica. | Alumina. | Lime. | Magnesia. | TiO ₂ |
|--------|-------|----------|-------------|---------|----------|-------|-----------|------------------|
| 1 | 52:10 | 0.195 | 0.046 | 22 · 25 | 1.04 | 0.10 | 0.22 | trace |

Locality of occurrence.

1-Gunflint lake. Thunder Bay district. Specular iron.

2. Hematite-from the farm of Mr. William Stewart, Somerville tp., Victoria co., Ont.

A fine, crystalline-granular, massive hematite.

It contained:-

| Metallic iron | 65.08 |
|-----------------------------|-------|
| Insoluble siliceous residue | 6.20 |
| Titanium dioxide | None. |

3. Hematite—from a point northeast of Wabamush (most probably intended for Wabinosh) river, some ten miles south of the Grand Trunk Pacific railway, at the northwest part of Lake Nipigon.

Massive, siliceous hematite.

It contained:

| ٠ | contained: | |
|---|-----------------------------|-------|
| | Metallic iron | 49.72 |
| | Insoluble siliceous residue | 28.30 |
| | Titanium dioxida | None |

A second sample from the same locality, consisting of specular iron in association with a somewhat large quantity of siliceous (in part, jaspery) gangue, contained 36.76 per cent of insoluble mineral matter.

4. Limonite—chreous. From lot F, con. XIX, of the township of Tiny, Simcoe county. Collected by Mr. B. F. Haanel. Analysis by Mr. H. A. Leverin. Colour—light yellow.

Its composition was as follows:-

| | rei | r cent. |
|---------------|-----|---------|
| Metallic iron | 3 | 37.520 |
| Sulphur | | 0.122 |
| Phosphorus | | 0.150 |

5. Limona Collected by This sam tain, as show

> Metall Sulphu Phosph

Tle five fo

6. Limonia trict, Ontario It containe

Metalli Insolub

7. Limonit

It contains

Metallic

Insolubl

8. Limonite
Analysis sh

Metallic Insoluble

9. Limonite
It was foun

Metallic Insoluble

10. Limonit
Its composit

Metallic Insoluble

11. Limonite
Partial analy

Metallic i

27

| 5. Limonite-ochreous. From the same locality as the | he preceding | specimen |
|--|--------------|--------------|
| Collected by Mr. B. F. Haanel. | ne preceding | орестием: |
| | , | |
| This sample, which was of a dark reddish-brown c | colour, was | tound to con |
| tain, as shown by an analysis by Mr. H. A. Leverin:— | | |

| , | | | | | | | | | | | | | | | | | | Per cent. |
|---|----------------|--|--|--|--|--|--|--|--|---|--|--|--|--|--|--|--|-----------|
| | Metallic iron. | | | | | | | | | , | | | | | | | | 38.060 |
| | Sulphur | | | | | | | | | | | | | | | | | |
| | Phosphorus | | | | | | | | | | | | | | | | | 0.179 |
| | | | | | | | | | | | | | | | | | | |

The five following analyses were conducted by Mr. M. F. Connor:-

ictoria

tended ilway,

associ-

e, con-

, Simeverin.

| 6. | ${\it Limonite}{\it} {\rm from}$ | lot | 26, | con. | III, | of | the | township | of | Oakley, | Muskoka | dis- |
|--------|----------------------------------|-----|-----|------|------|----|-----|----------|----|---------|---------|------|
| trict, | Ontario. | | | | | | | | | | | |

| The live following analyses were conducted by Mr. M. P. Connor | r .— |
|---|-----------|
| 6. Limonite—from lot 26, con. III, of the township of Oakley, triet, Ontario. | Muskoka d |
| It contained:— | |
| Metallic iron | 45.60 |
| Insoluble mineral matter | 29.00 |
| 7. Limonite—from lot 27, con. III, of Oakley, Muskoka district. | Ontario. |
| It contained:— | |
| Metallic iron | 53.50 |
| Insoluble mineral matter | 3.60 |
| 8. Limonite-from lot 28, con. III, of Oakley, Muskoka district. | |
| Analysis showed it to contain:- | |
| Metallic iron | 29.30 |
| Insoluble mineral matter | 45.90 |
| | |

| 9. | Limonite-frem | lot 29 | , con. | III, of | Oakley, | Muskoka | district. |
|----|---------------|--------|--------|---------|---------|---------|-----------|

| It was found to contain:- | |
|---------------------------|-----------|
| Metallic iron |
27.40 |
| Insoluble mineral matter | 49.10 |

| 10. Limonite-var. bog ore. | From lot 29, con. V, of Oakley, | Muskoka district. |
|----------------------------|---------------------------------|-------------------|
| Its composition was found | to be as follows:- | |

| | Per cen | |
|-------------------------------|---------------|----|
| Metallic iron | 50-8 | 31 |
| Insoluble mineral matter-clay | and sand 16-5 | 0 |

| 11. Limonite—from | lot | 17. | con. | III. | of | Draper. | Muskoka | district. |
|-------------------|-----|-----|------|------|----|---------|---------|-----------|

| Partial analysis gave the following results:- | |
|---|-------|
| Metallic iron | 54.70 |
| Insoluble mineral matter | 4.00 |

Quebec.

1. Hematite-from lot 6, range I, of Dunham, Missisquoi county, Quebec.

A dark purplish-brownish-red, very fine granular, almost compact, schistose, massive hematite. Examined for Mr. John F. Yeats.

| Ferric oxide 1 | | | | | | | | | | | | | | | | | | |
92.74 |
|----------------|---|---|--|--|--|---|--|---|---|---|--|---|--|---|---|---|---|---|------------|
| Manganous oxid | е | | | | | | | | | | | | | | | | | |
Trace. |
| Alumina | | | | | | | | | | | | | | | | | | |
3.69 |
| Lime | | | | | | | | | | | | | | | | | | |
0.51 |
| Magnesia | | | | | | | | | | | | | | | | | | |
0.18 |
| Silica | | | | | | | | | | | | | | | | | | |
3.2 |
| Phosphorus 2 | | | | | | | | | | | | | | | | | | |
0.0- |
| Sulphur | | | | | | | | | | | | | | | | | | |
Trace. |
| Titanic acid | | | | | | | | | | | | | | | | | | | None. |
| itanic acid | | • | | | | ٠ | | ٠ | • | • | | ٠ | | • | ٠ | ٠ | • | ٠ | |
| | | | | | | | | | | | | | | | | | | | 100.43 |

 1 = Fe 64.92. 2 = P₂O₅ 0.09.

The deposit from which the above sample of ore was taken is said to be quite an extensive one, it having been traced over a considerable area. In addition to its occurrence on the above-mentioned lot and range, it has also been found, amongst other places, on lots 1 and 2 of range III, and lot 2 of range II, of the same township. A specimen of the same from the deposit occurring on the property of Mr. Levi J. Blake, on the aforementioned lot 1 of range III, was found to contain 89.58 per cent of ferric oxide, equivalent to 62.71 per cent of metallic iron.

2. Magnetite—from the head of Big Pipestone rapids, on the Quinze river, Pontiac county, Quebec.

Magnetite and quartzite banded.

An average sample of the specimen furnished was submitted to analysis, and found to contain:—

| Metallic iron | | | | | | | | | 'n | | | | | | | , |
, | | | $34 \cdot 47$ |
|---------------------|---|----|----|----|----|--|--|---|----|--|--|--|--|--|--|---|-------|--|--|---------------|
| Insoluble siliceous | m | ıa | tt | eı | r. | | | , | | | | | | | | | | | | 51.50 |
| Titanium dioxide. | | | | | | | | | | | | | | | | | | | | None. |

The forty-four tabulated, partial analyses, next following, were made by Mr. Leverin, upon material collected by Mr. Fritz Cirkel, M.E., and referred to by him in his report on Iron Ore Deposits along the Ottawa and Gatineau rivers.

OTTAWA C

| Iron | | 1 | North Park | |
|------|---|---|------------|-----|
| 65 | | | | 3. |
| 61 | • | | | 4. |
| 65 | | | | 5. |
| 47 | | | Ċ | 6. |
| 50 | | į | Ī | 7. |
| 62 | | | | 8. |
| 66 | | | | 9. |
| 50 | | | | 10. |
| 58 | | | | 11. |
| 59 | | * | | 12. |
| 64 | 1 | | • | 13. |

3—Haycock I

5— 6—

8— 9—

10-Viau's prop 11-Darley pro 12-Lot 22, R. 13-Lot 23, R.

OTTAWA COU

| Number | Iron. |
|--------|-------|
| 14 | 56:69 |
| 15 | 62 98 |
| 16 | 63:46 |
| 17 | 58:26 |
| 18 | 63 87 |
| 19 | 56:56 |
| 20 | 56.65 |
| 21 | 54 71 |
| 22 | 53 88 |
| 23 | 54 39 |
| 24 | 60:46 |
| 25 | 57:13 |
| 26 | 62:12 |
| 27 | 65 14 |

14—Baldwin min 15— " 16— " 17— "

19—Forsyth mine 20— ... 21— ... 22— ...

24—Scott's prope 25— 26— 27—Lot 23, R. VI

IRON ORES.-HEMATITE: TABLE V.

OTTAWA COUNTY.

ebec. nistose,

quite an

n to its

mongst ie same perty of contain on. e river,

sis, and

by Mr. by him

:7

(1)

| Number | Iron. | Sulphur. | Phosphorus. | Titanic
Acid. | Silica. | Lime. | Magnesia. |
|--------|-------|----------|-------------|------------------|---------|-------|-----------|
| 3 | 65:56 | 0.004 | 0:012 | 3:52 | 3 00 | 0.10 | 0.60 |
| 4 | 61 15 | 0.008 | 0:001 | 8:10 | | | |
| 5 | 65:74 | 0.009 | 0.003 | 6:00 | 1 33 | 0.08 | 0.36 |
| 6 | 47 23 | 0.009 | 0:006 | 0.90 | 10:50 | 3:90 | 2:30 |
| 7 | 50:78 | 0.018 | 0:047 | 1:76 | 11:41 | 0:55 | 3:69 |
| 8 | 62:37 | 0.036 | 0:065 | 2.96 | 5 55 | 0.15 | 0.53 |
| 9 | 66 92 | 0.036 | 0.010 | 5.95 | 0.96 | 0.25 | 0.41 |
| 0 | 50:98 | 0 000 | | 13:58 | | | |
| 1 | 58:21 | | | 16:80 | | | |
| 2 | 59 70 | 0:046 | 0:006 | 5.97 | 1.86 | 0.25 | 0:30 |
| 3 | 64 72 | 0.004 | 0:179 | 0.25 | 3 96 | 0.27 | 0:33 |

Locality of occurrence

| 400 | | | | | LOC | arit | , 0 | d occurrence. | | | | | | | |
|-----------|------|-------|-----|----|-----|------|-----|----------------|------|---------|-----|-----|----|------|---|
| 3-Haycock | Iron | mine. | Lot | 1, | R. | XI | of | Hull township, | and | lots 26 | and | 27, | R. | VI o | f |
| | | | | | | | | Templeton | town | ship. | Pit | No. | 1. | | |
| 4 | " | | 6 . | | | 4.4 | | Pit 3 | | | | | | | |

| 4 | *** | | . ** | Pit 3. |
|----------------|-------------|------------|--------|--|
| 5— | ** | 6.6 | ** | Pit No. 4. 125 feet W. of Pit 3. |
| 5—
6—
7— | ** | 16 | 44 | Pit No. 5. 30 feet N. of Pits 1 and 2. |
| 7— | f i | 66 | 4.6 | Pit No. 7. S.W. of Pit No. 1. Average of |
| | | | | 18 inches. |
| 8—
9— | ** | Pit N | 0. 8. | W. of Pit No. 7. Average of 20 inches. |
| 9 | ** | Pit N | io. 9. | 1,200 feet S.W. of Pit No. 1. |
| 10-Viau's | property. | Lot 3, R. | X of | Hull township. |
| 11—Darley | property. | Lot 1, H | R. XI | of Hull township, outcrop. |
| 12-Lot 22 | R. IX of | Templeton | n town | ship. |
| 13—Lot 23 | , R. VII of | f Templete | on tow | nship. |
| | | | | • |
| | | IRON OR | FS _N | IAGNETITE: TABLE VI. |
| | | 111021 011 | 110. 1 | IAGABITIN, TABIN TI. |

IRON ORES.-MAGNETITE: TABLE VI. OTTAWA COUNTY.

| Number | Iron. | Sulphur. | Phosphorus. | Insoluble. | | | |
|--------|-------|----------|-------------|------------|------------|----------|----------|
| 14 | 56:69 | 0.263 | 0 006 | 11:00 | | | |
| 15 | 62 98 | 0.173 | 0.012 | 6.78 | | | |
| 16 | 63 46 | 0 170 | 0.006 | 5:36 | | | |
| 17 | 58 26 | 0:054 | 0.018 | 15:38 | | | |
| 18 | 63 87 | 0 200 | 0.012 | 7:68 | | | |
| 19 | 56 56 | 0.075 | 0.010 | 6.00 | | | |
| 20 | 56.65 | 0.440 | 0:026 | 16:00 | | | |
| 21 | 54:71 | 0.230 | 0.004 | 14:16 | | | |
| 22 | 53 88 | 0 370 | 0:004 | 11:58 | | | |
| 23 | 54:39 | 0.567 | 0.010 | 19:30 | | | |
| 24 | 60:46 | 0.390 | 0.014 | 11.00 | | | |
| 25 | 57:13 | 1:971 | 0:040 | 17 22 | | | |
| 26 | 62 12 | 0.473 | 0.006 | 8 00 | | | |
| 27 | 65 14 | 0.023 | 0.001 | SiO.0 250 | TiO., 2:98 | CaO 1:10 | MgO 0 59 |

Locality of occurrence.

| | | | Locality of occ | urrence. |
|--------------|----------|------------|-------------------|------------------------------------|
| 14-Baldwin | mine. | Lot 14, R | . VI of Hull tow | nship. Pit No. 1. Most westerly. |
| 15— | ** | 11 | ** | Pit No. 2. 70 feet E. of No. 1. |
| 16— | 61 | ** | | Pit No. 3. 80 feet N.E. of No. 2. |
| 17— | ** | 6.6 | " | Pit No. 4. 540 feet N.E. of No. 3. |
| 18— | ** | 4.4 | ** | Below Pit No. 5, 100 feet from |
| | | | | No. 4. |
| 19-Forsyth | mine. | Lot 11, R. | . VII of Hull tow | nship. From lower cut. |
| 20— | ** | ** | ** | From big cut. |
| 21— | | 4.6 | 44 | From dump at big cut. |
| 22— | | 61 | *** | From lower cut. |
| 23— | ** | | 44 | 11 |
| 24 Scott's I | property | , near Fo | orsyth mine on 1 | ot 12, R. VII of Hull township. |

26- ". 27-Lot 23, R. VI of Wageneld township.

IRON ORES.-MAGNETITE AND HEMATITE: TABLE VII.

PONTIAC COUNTY.

| Number. | Iron. | Sulphur. | Phos-
phorus. | Titanic
Acid. | Silica. | Man-
ganous
Oxide. | Lime. | Magnesia |
|---------|---------|----------|------------------|------------------|---------|--------------------------|-------|----------|
| 28 | 54 25 | 0.310 | 0 007 | 0.50 | 17:12 | | 1.66 | 3.70 |
| 29 | 51 58 | 1 350 | 0.010 | 0.12 | 17 24 | | 1 10 | 4 53 |
| 30 | 61 · 48 | 0.846 | trace. | 0.10 | 8.83 | | 0.65 | 0.80 |
| 31 | 58 61 | 0.767 | 0.004 | 0.25 | 8.99 | | 0.80 | 2.00 |
| 32 | 55 93 | 0.559 | 0.003 | 0.10 | 12 20 | | 0.60 | 1.30 |
| 33 | 60 39 | 0.696 | 0.006 | 0 12 | 9 37 | | 0.10 | 2.04 |
| 34 | 52 17 | 0.747 | 0.011 | 0.11 | 17 65 | | 1.15 | 1.59 |
| 35 | 43.76 | 1 · 233 | 0 015 | 0.18 | | | | |
| 36 | 43.86 | 0.128 | 0.005 | 0.25 | 28 40 | | 1.97 | 1.85 |
| 37 | 56:03 | 2 · 484 | 0.006 | 0.25 | 16.00 | | 0.05 | 0.60 |
| 38 | 34 25 | 0.063 | 6.003 | 11.78 | | | 1 | |
| 39 | 54 94 | 0.800 | 0.001 | 7 · 23 | 7.84 | 1 . 92 | 0.86 | 1.76 |
| 40 | 39.08 | 0.023 | 0.001 | Trace. | 7 . 77 | 0.32 | 12.23 | 6.95 |
| 41 | 55.98 | 0.921 | 0.008 | 13.03 | 4.00 | 0.90 | 0.07 | 2.08 |
| 12 | 53 68 | 0.078 | 0.010 | 15.75 | 2.75 | 0.40 | 0.57 | 1.16 |
| 43 | 47.92 | 0.084 | 0.004 | 15:44 | | | | |
| 44 | 60.71 | 0.221 | 0.007 | 5.91 | 2 · 20 | | 0.10 | 0.06 |
| 45 | 32.65 | 0.122 | 0.004 | Trace. | 50.03 | Trace. | 1.25 | 0.35 |
| 46 | 52.67 | 0.038 | 0.010 | 0.25 | 22:00 | | 0.10 | 0.06 |

Locality of occurrence.

| | | | | | | 1997 | |
|-----------------|-------------|-------------|-------------|-------------|-----------------|------------------|--------|
| 28—Brist
29— | ol mine, l | ot 21, R. | II of Bri | stol townsl | hip. Pit
Pit | No. 1.
No. 1. | |
| | ** | " | | ** | Pit | | |
| 30— | " | " | | " | | | |
| 31— | | " | | " | | No. 2. | |
| 32- | ** | " | | " | Pit | No. 3. | |
| 33- | " | " | | ** | Pit | No. 4. | |
| 34— | " | ** | | " | Pit | No. 5. | |
| 35- | " | " | | " | Pit | s Nos. 6 | and 7. |
| 36- | ** | " | | ** | | No. 9. | , |
| 37— | ** | ** | | | | No. 10. | |
| 38-Lot 2 | 2, R. I of | Bristol to | wnship. | | | | |
| | 27, R. VII | | | ship. | | | |
| 40-Lot 1 | | " | | | | | |
| 41-Lot 1 | 2, R. V of | Litchfield | township | | | | |
| | 0. R. VIII | | " | • | | | |
| | | | 11 | | | | |
| | 4 and 5, | | | | | | |
| | 12 and 13 | | | | | | |
| 45—Hem | atite-lot 2 | 25, R. II o | of Clarence | lon townsh | ip. | | |
| 46 | " 13 | 8, R. VII | of Calum | et. | | | , |
| | | | | | | | |

New Brunswick.

The 79 analyses, next following, relate to samples taken from a deposit of iron ore situated at or near the confluence of Austin brook with Nipisiguit river, on lot 12, range XVII, of the township of Bathurst, Gloucester county, N.B.

Reference to this deposit will be found in the summary report of Mr. E. Lindeman, as published in the Annual Report of the Superintendent of Mines for 1907.

IRO

Nun 1... 3. 4. 7. 8..... 9.... 14..... 16. 17. 19 20.... 21. 22. 23. 24. 25. 26. 27. 28. 29.

All from Gr Specimen for From the single-From boreh 11— 12— 14-15-16 17-From boreho 18-19-20-21-22_ 23-24 25 26 — 27— 28-

IRON ORES.-MAGNETITE AND HEMATITE: TABLE VIII. GLOUCESTER COUNTY.

| Number. | Iron. | Sulphur. | Phosphorus. | Insoluble. | Manganese |
|---|---------|----------|-------------|-------------------|-----------|
| | - | 1.5 | | | |
| 1 | 42 49 | 0:026 | 1:197 | 34:60 | |
| 2 | 47.3 | 0.05 | 0:640 | 26:30 | 1:0 |
| 3 | 48.01 | 0.107 | 0.949 | 17:54 | 1.0 |
| | 50:49 | 0.100 | 1:007 | 15:50 | |
| 5 | 45 64 | 0.070 | 0.870 | 21 20 | |
| | 45 54 | 0.429 | 0.686 | 18.42 | |
| | 50.89 | 0.091 | 0.486 | 16:18 | |
| | 51 57 | 0.699 | 0.865 | 8:04 | |
| | 39:60 | 0.101 | 0.852 | 24 72 | |
| | 51 67 | 0.047 | 0.790 | 12:30 | |
| | 44 55 | 0.078 | 0 755 | 20:92 | |
| • · · · · · · · · · · · · · · · · · · · | 41 . 28 | 0.134 | 0.569 | 27:74 | |
| | 53 95 | 0.650 | 0.737 | 12 64 | |
| | 57 22 | 0.687 | 0.865 | 11:90 | |
| • | 49 80 | 0.780 | 0.936 | 16:64 | |
| | 55 74 | 0.305 | 0.764 | 8 40 | |
| | 49.86 | 0 035 | 0.740 | 25:56 | |
| | 58 12 | 0.152 | 0.582 | | |
| | 58.70 | 0.026 | 0.700 | 17 10
13 32 | 4 |
| | 49 66 | 0.170 | 0.912 | 23 64 | |
| | 44 46 | 0.268 | 0.832 | 12:38 | |
| | 51 69 | 0 208 | 0.600 | 12.38 | |
| | 50.08 | 0 040 | 0.880 | | |
| | 48 26 | 0 194 | 0.716 | 19:64 | |
| | 50:08 | 0.096 | | 16 00 | |
| | 52:00 | 0.580 | 0.708 | 16:44 | |
| | 45:05 | 18:21 | | 14 60 | |
| | 35:00 | 31 97 | 1:080 | 10.12 | |
| | 44:05 | 37:08 | 0:528 | 15 · 22
6 · 92 | |

Locality of occurrence.

1.85

of iron ver, on 3. Linder 1907.

| All fr | om Group No. | 1. | | | |
|----------------------------|------------------|-----------------|--------------|---|-------------------------------|
| 3—Fron | i the surrace, 2 | 30 leet from th | e northern e | of Nipisiguit riv
nd of the deposit
f deposit at a de | pth of 40 feet. |
| 5—
6—
7—
8—
9— | " | ** | 4.6 | *** | 50 "
60 " |
| 6 | " | " | 1.6 | " | 70 '' |
| 7— | " | + 6 | 11 | | 80 ' |
| 8 | 1 " | " | *** | ** | 90 " |
| 9 | " | 1.6 | ** | ** | 100 " |
| 10- | " | | 6.6 | | |
| 11— | " | " | ** | " | 110 "
120 " |
| 12- | *** | " , | | , | 1,20 |
| 13- | *** | i i | 1.6 | 11 Mg | 130 " |
| 14- | " | " | ** | a. | 140 |
| 15— | " | 1.6 | " | " | 130 |
| 16— | " | " | ** | " | 100 |
| 10 | borehole No. 2 | , 950 feet from | northern end | of deposit at a de | 162 '' epth of 50 feet. 60 '' |
| 19— | ** | ** | *** | ** | 70 " |
| 20— | " | " | | ** | 72 " |
| 21— | " | ** | | | 90 " |
| 22— | " | " | , 14 | ** | 100 " |
| 23— | " | " | +.6 | ** | 110 " |
| 24— | | " | ** | | 120 " |
| 25— | ** | *** | 44, | ** | 130 '' |
| 26 — | " | 1.6 | *** | cc. | 140 ((|
| 27— | ** | 14 | ** | ** | 150 " |
| 28- | " | ** | 1.6 | ** | 160 " |
| 29— | ** | ** | 4.4 | ** | 169 " |

IRON ORES.—MAGNETITE AND HEMATITE: TABLE VIII.—Continued. GLOUCESTER COUNTY.

| Number. | Iron. | Sulphur. | Phosphorus. | Insoluble. | Manganese |
|---------|-------|----------|-------------|------------|-----------|
| | | | | - | |
| 30 | 44.23 | 0:045 | 0:385 | 28:05 | |
| 1 | 40.20 | 0.086 | 0.732 | 24 04 | |
| | 40.55 | 0:046 | 0:981 | 17:31 | |
| 2 | 45.00 | 0.056 | 1:000 | 16:12 | 1 |
| 3 | 40.50 | 0.082 | 1 080 | 16:25 | |
| 4 | 46.72 | | | 14.76 | |
| 5 | | 0 150 | 0.870 | | |
| 6., | 50.07 | 0.750 | 1:130 | 15:28 | |
| 7 | | 19:400 | | | |
| 8 | | 10.800 | | | |
| | | 0.050 | 1.210 | 21 57 | |
| | 10.00 | 0.020 | 1:040 | 24 70 | 1:76 |
| 0 | 49:41 | 0.020 | 0.820 | 25 21 | |
| 1 | | | 0:400 | 33 10 | 0.50 |
| 2 | 43.60 | 0.007 | | | |
| 3 | 44 55 | 0.035 | 0.827 | 28 52 | 1.00 |
| 4 | 47:50 | 0.054 | 0.650 | 22.70 | 1 20 |
| 5 | 01.70 | 0.026 | 0.119 | 7 · 21 | |

Locality of occurrence.

Group I (continued). From the core of a diamond drill. From borehole No. 4, situated 500 feet west of borehole No. 2, on the property of the Twin Tree Mining Co.

| 30-I | enth | 434 | feet | to 444 | feet, | avera | ge. | | | |
|------|-----------|-------|---------|--------|-------|--------|------|-----------|---------|------------|
| | d | 444 | ** | 454 | ** | " | | | | |
| 32- | " | 454 | " | 464 | " | " | | | | |
| 33- | " | 464 | 4.6 | 474 | " | | | | | |
| 34- | ** | 474 | " | 484 | ** | | | | | |
| 35— | 6.6 | 484 | " | 494 | ** | " | | | | |
| 36- | | 494 | | 504 | ** | 56 | | | | |
| 37→ | 1.6 | 504 | ** | 514 | " | " | | | , | |
| 38— | ** | 514 | | 524 | " | " | | | | |
| 39_(| From | II. | east | of Au | stin | brook. | from | deposit | No. 1. | |
| 40- | · · · · · | , | 11 | | + 4 | " | " | * ** | 2, | south end. |
| 41- | | 4 | 6.6 | | ** | 4.6 | ** | ** | 2. | north end. |
| 42- | | | ** | | ** | " | " | " | 4. | |
| | | 111 | 1 604 | foot | north | of G | coup | II surfa | ce spec | imen |
| 45-0 | rroup | , 111 | , 1.000 | 1660 | поти | 01 (1) | oup. | II, surfa | ce spec | |
| 44- | | | " | | ** | " | " | | • | |

IRON OR

> Group III. F borehole N

IRON ORES.-MAGNETITE AND HEMATITE: TABLE VIII.-Continued.

anese.

1.76

1.20

Nd. 4, Tree

| Number. | Deptl | h | Iron. | Sulphur. | Discourse | |
|---------|--------|------|--------|----------|--------------|-----------|
| rumoer. | Гери | 11. | fron. | Sulphur. | Phosphorus : | Insoluble |
| | Feet | | | | - | |
| | 23 to | 32 | 50 52 | 0.093 | 0.900 | 17:80 |
| · | 33 | 42 | 52:17 | 0:030 | 1 612 | 10:75 |
| S | 43 | 52 | 52 06 | 0.037 | 1 031 | 13 80 |
| | 53 | 62 | 52.83 | 0.037 | 0:520 | 14:10 |
| | 63 | 72 | 55 82 | 0 043 | 0:900 | 10:50 |
| | 73 | 82 | 48 81 | 0 063 | 1:042 | 18:00 |
| | 80 | . 92 | 50.16 | 0:057 | 0 955 | 18:00 |
| | | 102 | 41 65 | 0:040 | 0.372 | 22:50 |
| | | 112 | 42.97 | 0:040 | 0.810 | 20:45 |
| | | 122 | 39 52 | 0 033 | 1 222 | 23.10 |
| | | 132 | 51:09 | 0 040 | 0.975 | 15:00 |
| | | 132 | 54:08 | 0.060 | 0:530 | 15:00 |
| | | 152 | n#2 74 | 0:347 | 0.800 | 17:85 |
| | | 162 | 41 73 | 0 117 | 0.640 | 18:50 |
| | | 172 | 45:11 | 0.070 | 0.879 | 18:00 |
| | | 182 | 46:97 | 0.107 | 1 181 | 17:51 |
| | | 192 | 47 92 | 1:383 | 0.735 | 16 85 |
| | | 202 | 38:24 | 1 492 | 0.960 | 21 81 |
| | | 212 | 47 92 | 0.093 | 0.620 | 12.65 |
| | | 222 | 51 63 | 0 143 | 0.915 | 13:80 |
| | | 232 | 49.52 | 2:433 | 0.965 | 16:65 |
| | | 242 | 53:51 | 0 080 | 0.810 | 13 41 |
| | | 252 | 56:52 | 0.080 | 0.675 | 12.65 |
| | | 262 | 55:33 | 0:135 | 0:695 | 7:92 |
| | | 272 | 48:54 | 0 130 | 1.095 | 15:32 |
| | | 282 | 42.65 | 0 093 | 0.710 | 19:07 |
| | | 292 | 47:96 | 0:030 | 0.891 | 17:36 |
| | | 302 | 45 47 | 0 071 | 0.785 | 21:10 |
| | | 312 | 51 48 | 0 050 | 0.975 | 13:75 |
| | | 322 | 52 29 | 0.030 | 1:075 | 13.00 |
| | | 332 | 54:90 | 0 062 | 0 929 | 13 35 |
| | | 342 | 50.71 | 0 370 | 0 785 | |
| | | 347 | 59 49 | 0.200 | 0 785 | 14:65 |
| | 010 11 | 071 | 00 40 | 0 200 | 0 720 | 6:52 |

Locality of occurrence.

Group III. From the core of a diamond drill, at the depths indicated, from borehole No. 5, on the property of the Twin Tree Mining Co., at Austin Brook.

Nova Scotia.

The 191 partial analyses, arranged in tabulated form, were made upon material collected by Dr. J. E. Woodman, at the several undermentioned localities, and referred to by him in his Report on the Iron Ore Deposits of Nova Scotia, Part I.

IRON ORES.—HEMATITE: TABLE IX.

ANNAPOLIS COUNTY.

| Number. | Iron. | Sulphur. | Phos-
phorus. | Silica. | Alumina. | Lime. | Magnesia |
|---------|-------|----------|------------------|---------|----------|-------|----------|
| 1 | 40.52 | | | | | | |
| 2 | 55 10 | 0.003 | 1:07 | 8.83 | 4:00 | 2:50 | 0.28 |
| 3 | 48.92 | 0.008 | 1 27 | 16 74 | 3.20 | 2 85 | 0.58 |
| 4 | 54 11 | 0.004 | 1 31 | 9:36 | 3.50 | 2.50 | 0.43 |
| 5 | 46.61 | 0 004 | 1.28 | 14:40 | 4 13 | 5.98 | 0.62 |
| 6 | 47 62 | 0.054 | 1 17 | 17 81 | 5.23 | 2:35 | 0.45 |
| 7 | 30.81 | 0 001 | | 11 01 | 0 20 | 2 | 1 20 |
| 8 | 33.10 | | | | | | 1 |
| 9 | 30 22 | | rw. | | | | 1 |
| 0 | 44 20 | | 87 | | | | |
| 1 | 43 13 | | | | | | |
| 2 | 54 22 | 0.019 | 0.90 | 11.86 | 3.12 | 0.90 | 0.25 |
| 3 | 45 31 | 0.119 | 1:48 | 2:00 | 3 67 | 3 40 | 0.52 |
| 4 | 43 87 | 0 110 | | - 00 | | | |
| 5 | 39 21 | | | | | | |
| 6 | 17:45 | | | | | | 1 |
| 7 | 49 80 | 0.002 | 1:32 | 11 32 | 7:00 | 2.80 | 0.55 |
| 8 | 48.71 | 0 006 | 1.68 | 17:07 | 2:16 | 4 35 | 0.43 |
| 9 | 43 20 | | | | | | |
| 0 | 52.25 | 0 017 | 1:44 | 10:40 | 5.20 | 2.65 | 0.33 |
| 1. | 36 81 | - 011 | | 20 .0 | - | _ | |
| 2 | 31.90 | | | | | | |

Locality of occurrence.

| 1—To | rbrook. | Wheelock shaft. Sampled from a train load of ore. |
|--|---------|---|
| 2- | ** | Hoffman shaft. General sample from ore pile. |
| 3_ | ** | Pit 28, first E. of Hoffman shaft. Best ore obtainable. |
| 1 | ** | Pit 27, second E. of Hoffman shaft. From a 11 ton dump. |
| - | ** | Holland property. From a shaft on Shell vein. |
| 3- | ** | |
| 6 | | Holland property. East pit, Leckie mine. |
| 7— | | Pit on Stanley Brown's property. |
| 8- | 6: | Josephine Wheelock's property. From a core, upper 2 feet of a 60 ft. bed |
| 3—
4—
5—
6—
7—
8—
9— | ** | Josephine Wheelock's property. From a core, lower 10 feet of a 60 ft. bed |
| 10- | ** | Edward Martin's property. From a 5 ton dump. |
| 11- | ** | Edward Martin's property. From a 4'-5" belt. |
| 12- | ** | Leckie mine. Sample from loaded cars. |
| 13- | 41 | Leckie mine. From underhand slope, level No. 6. |
| 14- | 4. | Messenger vein, Pit No 2. S. Mountain bed. Average of 500 lbs. |
| 15— | ** | Messenger vein, Pit No. 1. S. Mountain bed. Average of 200 lbs. |
| 16- | 1.5 | Clementsvale, Milkway farm. From dump on S. side. |
| 17- | ** | E. Bank's estate. Pit on Shell vein. Average of a 7 ft. belt. |
| 18 - | ** | Allen property, E. side. Northernmost of two pits. |
| 19- | / | Allen property. Sample across belt. |
| 20- | 4 | H. P. Wheelock's property, Pit 44. From shallow pit in trench. |
| 21- |) | J. Parker's property. From a small dump. |
| | ` | Uhlman property, near Canaan Mountain road. Average of 1 ton. |
| 22— | | Uniman property, near Canaan Mountain road. Average of 1 ton. |

ANNAPOLIS

Number.

23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 89, 404, 41, 42, 43, 44, 46, 47, 48, 49, 50, 50, ...

23- Torbrook.
24- "S
26- " J
27- " C
28- " F
30- " F
31- " F
32- " S
33- " S
33- " S
34- " S
35- " M
36- " M
37- " M
40- " H
41- " W
42- " W
42- " W
43- " W
44- " F
45- " E
46- " E
48- " N
49- " FI

10843--6

IRON ORES.-MAGNETITE: TABLE X.

ANNAPOLIS COUNTY.

upon ilities, Scotia,

gnesia

 $0.25 \\ 0.52$

0·55 0·43 0·33

ft. bed ft. bed

1 ton.

| Number. | Iron. | Sulphur. | Phos-
phorus | Silica. | Alumina. | Lime | Magnesia |
|----------|------------------|----------|-----------------|---------|----------|------|----------|
| 3. | 46 21 | 0.004 | 1:160 | 19:93 | 5 22 | 3:08 | 0.50 |
| 1 | 46 21 | 0:004 | 1:090 | 20.93 | 4:33 | 2 20 | 0 37 |
| 5 | 34 92 | | | | | | |
| 6 | 35:83 | | | | | | |
| 7 | 43 40 | | | | | | |
| 8 | 48 03 | 0.005 | 1 320 | 19 11 | 6 20 | 2 95 | 0.38 |
| 9 | 47:09 | 0.051 | 1:390 | 20.20 | 3:70 | 4:55 | 0.45 |
| 0 | 45.82 | 0.010 | 1:440 | 22 16 | 4 · 93 | 4 15 | 0 42 |
| l | 49 51 | 0.009 | 0.745 | 19.56 | 5 46 | 2 15 | 0:90 |
| 2 | 54.53 | 0.003 | 1:000 | 12.68 | 2:50 | 0 95 | 0.43 |
| 3, | 36 41 | | | | | | |
| ł | 38 52 | | | | | | |
| 5 | 36 41 | | | | | | |
| 6 | 34 73 | | | | | | |
| 7 | 22 11 | | | | | | |
| <u> </u> | 24 72 | | | | | | |
| 9 | 23/61 | | | | | | |
| 04, | 19 60 T
28 80 | | | | | | |
| 1 | 47 70 | 0 018 | 1:270 | 8 07 | 3 62 | 8 80 | 0.90 |
| 3 | 9 80 | 0 018 | 1 270 | 5 01 | 0 04 | 0 00 | 0 90 |
| | 40:90 | | | 1 | 1 | | |
| 5. | 52 33 | 0:003 | 1:920 | 9.37 | 0.35 | 7:80 | 0.75 |
| 6 | 53 32 | 0 005 | 1 310 | 9.68 | 4 69 | 2:75 | 0:65 |
| 7 | 43:52 | 0 000 | 1 310 | 2 00 | 4 03 | 2 10 | 0, 16.1 |
| K | 48 52 | 0.017 | 1:690 | 13:73 | 5 00 | 4:40 | 0.55 |
| 5 | 45 62 | 0.365 | 1:105 | 10.98 | 7:02 | 8:65 | 0 96 |
| Ď | 47:36 | 0:505 | 1:115 | 9:00 | 6:00 | 8.72 | 1 00 |

Locality of occurrence.

| 23-Tor
24- | brook. | Whitfield Wheelock property. Timbered pit on mountain bed. |
|---------------|--------|--|
| 24- | | Stanley Brown's property. Pit No. 6, South Mountain bed. Old timbered shaft. |
| 25— | " | |
| 26— | ** | Stanley Brown's property. South Mountain bed. Picked sample. |
| 27- | " | I. J. Whitman's property. South Mountain bed. Average of 100 lbs. |
| 28— | " | Obadiah Brown's property. South Mountain bed. From a 15 ft. trench. |
| 28- | | E. and M. Baker's property, No. 1 pit. South Mountain bed. Average of |
| 29— | " | 1 ton. |
| 30- | | E. and M. Baker's property, No. 2 pit. South Mountain bed |
| 31— | ** | Baker, No. 1 pit. General sample of ore in cross section. |
| | *** | Baker, No. 2 pit. General sample of ore of 4'-5" bed. |
| 32- | | S. McConnell property, No. 1 pit, South Mountain bed. Average of 2 |
| 00 | ** | tons. |
| 33— | | S. McConnell property. No. 3 pit, South Mountain bed. Average of 3 |
| 34- | ** | tons. |
| 35— | 11 | S. McConnell property. Core. |
| | | McConnell property. No. 1 pit. Selected sample of belt. |
| 36- | | McConnell property. No. 3 pit. Average sample of 4 ft. belt. |
| 37— | | M. and E. Armstrong's property. Best in a 6 to 7 ton dump of ore and |
| 90 | " | waste. |
| 38— | " | M. and E. Armstrong's property. Least slaty ore from pit. |
| 39- | | Pit No. 19, on left bank of river, 4 mile N. of South Mountain bed. |
| 40 | " | Selected. |
| 40 — | " | Hoffman & Bidito's property. Least siliceous in a 10 ton dump. |
| 41- | | Ward property. From a pit, south of the western end of the trench. |
| 42- | " | Ward property. East pit. Best ore from a 10 ton dump. |
| 43— | | Ward property. East pit. Most calcareous ore. |
| 44 | | Fletcher Wheelock's property. General sample from dump. |
| 45— | " | Edward Martin's property. Average from surface pit on a 4 ft. belt. |
| 46- | ** | Edward Martin's property. Shell vein. Average of a 1 ton dump. |
| 47- | | Edward Martin's property. Shell vein. Average of a 3'-8" belt. |
| 48- | 11 | Near Goucher and Wheelock's property. From a 6 ft. belt. |
| 49— | | Fletcher Wheelook's property. Average sample from an old dump. |
| 50- | | Fletcher Wheelock's property. Average sample from No. 1 level |
| | | |

10843---6

IRON ORES .- MAGNETITE: TABLE X .- Continued.

ANNAPOLIS COUNTY.

| | | | | | | 196 | |
|-----------|--------------------|----------|------------------|---------|----------|-------|----------|
| » Number. | Iron. | Sulphur. | Phos-
phorus. | Silica. | Alumina. | Lime. | Magnesia |
| 51 | 42:41 | | | | | | |
| 52 | $18 \cdot 20$ | | | | | | |
| 54 | 24 · 81
32 · 62 | | | | | | |
| 55 | 31 12 | | | | | | |
| 56 | 30 32 | | | | | | |

Locality of occurrence.

| 51-Torbrook. | Fletcher Wheelock's property. Average sample from No. 2 level. |
|--------------|---|
| 52 - " | Wheelock shaft. General sample across Leckie vein in north cross-cut. |
| 53— '' | Page and Stearns' property. Doane ore. |
| 54- " | Page and Stearns' property. From small ore dump. |
| 55→ " | Heatley pit. West of Nictaux river. |
| 56— " | J. B. Foster property. From small dump derived from two pits. |

IRON ORES.-HEMATITE: TABLE XI.

ANTIGONISH COUNTY.

| Number. | Iron. | Sulphur. | Phos-
phorus. | Silica. | Alumina. | Lime. | Magnesia |
|---------------|-------------------------------|----------|------------------|---------|----------|-------|----------|
| 7 | 29:70
38:82 | | | | | , | |
| 9.
0
1. | 25 · 81
25 · 29
39 · 23 | | | 1 19 | E BOX 1 | | |
| 2 | 36 · 45
38 · 10 | | | | * 1 | 1 -1 | |
| 5 | 34 · 97
37 · 09 | | | | | | |
| 7 | 40 · 07
37 · 37 | | , | | 1 | | |
| 8 | 26 · 3 2
38 · 91 | | | | | | |
| 0 | 40 · 09
39 · 52 | | | | | | |
| 2 | 46:38
39:10 | 0.012 | 0.715 | 23 56 | 4 · 83 | 1 65 | 0.22 |

Locality of occurrence.

| 57—A | risaig. | Doctor | brook. | east | branch. | Average | samı | ple | of a | 5 ft. | belt. |
|------|---------|--------|--------|------|-----------|------------|------|-------|-------|--------|--------------|
| 58- | " | | " | | ** | " | " | | | 3'-9" | |
| 59- | " | | ** | | " | ** | ** | | from | face. | |
| 60 | ** | | " | | ** | West sie | de. | | | | |
| 61- | 4,6 | | ** | | " | ** | | Ave | rage | from | face. |
| 62- | ** | | 44 | | ** | ** | | | | sample | |
| 63 | ** | | ** | | " | East sid | | | | | |
| 64- | ** | | ** | | ** | General | | | | | |
| 65— | ** | | 4.6 | | | East sid | | | | | t. |
| 66— | * * | | 4.6 | eas | t side. G | deneral sa | | | | | |
| 67— | 116 | | ** | | | , east ban | | | | | inable. |
| 68- | 44 | | 4.4 | | ** | " | | | | | dump. |
| 69— | ** | | ** | 5th | branch. | west bank | . Se | lect | ted d | ump | sample. |
| 70- | ** | | + 6 | eas | t branch. | east bank | . Se | elect | ted f | rom 5 | 00 lb. dump. |
| 71- | 4.4 | | ** | | " | | | | | | ton dump. |
| 72- | ** | | ** | | ** | ** | | | | | 20 ton dump. |
| 73- | ** | | ** | | ** | öolitic or | | | | | |
| | 405 | | | | | | | | | | |

ANTIGONISH

Number.

74.
75.
76.
77.
78.
79.
80.
81.
82.
83.
84.
85.
86.
87.
88.
89.
90.
91.

74—Arisaig. Iro 75—" 76—"

75— 76— 77— 78— 79— 80— Ros Gil 81— 82— $Gr\epsilon$ 83— 84— Mcl 85— 86— Tru 88-89-D. : 90— " D. 91 -** 93 -94 ...

John

97—Arisaig. Joh 98— " Loui 100— " 101— " 102— "

 $10843 - 6\frac{1}{2}$

95- "

96- "

IRON ORES.—HEMATITE: TABLE XI.—Continued.

ANTIGONISH COUNTY.

mesia

ss-cut.

agnesia

0.22

mp. mp. 1mp.

| Number. | Iron. | Sulphur. | Phos-
phorus. | Silica | Alumina. | Lime. | Magnesia |
|-----------|--------|----------|------------------|--------|----------|-------|----------|
| 4 | 34 95 | | | | | | |
| 5 | 31 93 | | | | | | |
| 6 | 35 81 | | | | | | |
| 7 | 37:23 | | | | 1 | | |
| 8 | 46.00 | 0.012 | 0:700 | 18 63 | 8:70 | 2:70 | 0.86 |
| 9 | 42.32 | | | | | | |
| 0 | 46 52 | 0.011 | 0.785 | 14:68 | 6:23 | 4:90 | 1 12 |
| 1 | 40.23 | | | | | | |
| 2 | 26:31 | | | | | | |
| 3 | 41.10 | | | | | | |
| 1. | 39:61 | | | | | | |
| | 45:00 | 0.015 | 0:530 | 28:40 | 0 84 | 1 05 | 0.42 |
| 5 | 38 82 | | | | | | |
| | 35 26 | 0.019 | 0.850 | 17:60 | 7:00 | 11:75 | 0 42 |
| 3 | 35.62 | | | | | | |
| 9 | 21.21. | | | | | | |
| 0 | 29:51 | | | | | | |
| 1 | 44:00 | | | | 1 | | |
| 2 | 32.81 | | | | | | |
| 3 | 28:42 | | | | | | |
| 4 | 24 22 | | | | | | |
| 5 | 51 80 | 0:007 | 0:705 | 15:06 | 5.23 | 1 65 | 0.62 |
| 6 | 9.20 | | | | | | |
| 7 | 34 85 | | | | | | |
| 8 | 40.93 | | | | | | 1 |
| 9 | 22:32 | | | | | | 1 |
| 0 | 49.06 | 0.003 | 0.585 | 16:13 | 7 · 27 | 1:60 | 0.28 |
| 1 | 43 62 | | | | | | |
| 2 | 35:31 | | | | | | |

Locality of occurrence.

| | 74-Ari | | Iron brook. General sample from belt. |
|---|--------|------------------|---|
| | 75 | " | " South side. General sample from belt. |
| | 76— | 14 | " West side. General sample of face belt. |
| | 77— | " | " A dump sample. |
| | 78- | 16 | Ross brook. General sample from face of belt. |
| | 79- | 4.6 | Gilles brook. From a new opening on east bank. Average sample. |
| | 80- | " | " From an old exposure on brook bed. |
| | 81- | 64 | Grants brook. Lower pit. Average sample of least siliceous ore. |
| | 82- | | " Upper opening. |
| | 83 | " | McInnes brook, just west of. Average of an 8 ft. bed of öolitic ore. |
| | 84 | 4.6 | " east branch, east bank. Average of a 3 ton dump. |
| | 85 | 4.6 | " east branch, east bank. From a 4 ft. lead. |
| | 86- | 11 | " short distance from. From a 10 ft. lead S. of tunnel lead. |
| | 87- | 61 | Trunk Road, N.E. pit. General sample of belt. |
| | 88- | ** | "S.W. pit. General sample of belt. |
| | 89- | ** | D. McKenzie proporty, east opening. Average of whole, except 3" on S. |
| | | | wall. |
| | 90- | 44 | D. McKenzie property, west opening. |
| | 91- | 43 | " E. of Doctor brook. From 500 lb. dump at west end. |
| ٦ | 98 | 4.6 | " From 500 lb. dump at east |
| | | | exposure. |
| | 93 | + 6 | " Average of lead, S. of McKenzie |
| | | | lead. |
| | 94 | 64 | " Pit 34. Best from 1,000 lb. |
| | | | dump. |
| | 95 | 11 | John McPherson's property. Average of 4 feet of good ore on hanging |
| ı | , | | wall. |
| ı | 96- | ** | " Average of 2'-4" siliceous belt, S. of foot-wall. |
| l | 97—Ar | issia | John McPherson's property, W. of McInnes brook. Average sample. |
| ı | 98- | isaig. | Louis McDonald's property. General sample of belt. |
| ı | 99— | 4.6 | Louis McDonald's property. General sample of belt. |
| ı | 100— | ** | " Sample from dump of tunnel. |
| ı | 101- | ** | " Selected sample from dump. |
| ŀ | 102— | " | selected sample from dump. |
| ı | | 9 61 | |
| ŧ | 1084 | $3-6\frac{1}{2}$ | |
| | | | |

IRON ORES.-HEMATITE: TABLE XI.-Continued.

ANTIGONISH COUNTY.

| Number. | Iron. | Sulphur. | Phos-
phorus. | Silica. | Alumina. | Lime. | Magnesia |
|----------------------|-------------------------|----------------|-------------------|----------------|--------------|------------------|--------------|
| 103 | 43 62
47 58 | 0.007 | 0.725 | 17:50 | 6.73 | 2 · 20 | 0.56 |
| 105.
106.
107. | 40 23
53 27
43 45 | 0 013
0 004 | 0 · 840
1 · 23 | 12 00
24 60 | 7·26
5·33 | 2 · 00
3 · 90 | 0 32
0 12 |
| 108. | 52·37
48·50 | 0.013 | 0:486
0:815 | 13 64
16 13 | 6·36
8·50 | 1 30 | 0:46
0:50 |
| 110. | 47·15
24·02 | 0.003 | 0.720 | 18.19 | 7.80 | 1.65 | 0.72 |
| 112. | 41 · 40
33 · 52 | | | | | | |
| 114. | 34 · 51
28 · 71 | | | | | | |
| 116 | 27 18 | | | | | | |

Locality of occurrence.

| | | The state of the s |
|-------|---------|--|
| 103—A | risaig. | R. McDonald's property. Average sample of belt. |
| 104- | " | Alex. McDonald's property, W. of McInnes brook. Average of 5 ft. belt. |
| 105— | ** | " Drift boulder. |
| 106- | " | Andrew McDonald's property, E. of McInnes brook. Pit S. of tunnel lead. |
| 107- | 44 | Pit in tunnel lead. |
| 108- | ** | " From tunnel leading E. |
| 109- | " | Alex. McDonald's property. From 14" of good ore on south wall. |
| 110- | " | John McDonald's property, E. of McInnes brook. Pit in tunnel lead. |
| 111- | ** | Angus McIsaac's property. Average sample of 4 ft. belt. |
| 112- | ** | John McInnes' property. A dump sample. |
| 113- | ** | " W. of McInnes brook. Average. |
| 114- | " | <i>a</i> , |
| 115- | . " | 5 66 |
| 116- | ." | From a 21 ft. vein of ore, north of pit No. 1. |
| | 6 | |
| | | |

IRON ORES.-HEMATITE: TABLE XII.

CAPE BRETON COUNTY.

| Number. | Iron. | Sulphur. | Phos-
phorus. | Insoluble. | Silica. | Alumina. | Lime. | Magnesi |
|---------|-------------------------|----------------|------------------|----------------|---------|----------|-------|---------|
| 117 | 24 50
43 58 | 6 | | | | | | |
| 19 | 32 · 62
48 · 70 | 0.087 | 0.065 | | 4.62 | 1:90 | 9 25 | 0.68 |
| 21 | 35·00
62·97 | 0.020 | 0.010 | 7:20 | | | | |
| 23 | 55 56
56 79
42 51 | 0 005
0 022 | 0.008 | 16 02
12 75 | | | | |

Locality of occurrence.

| 117—Ba | rachois. | Ingraham | property. | Westernmost trench of small body of ore. |
|---------|----------|-----------|--------------|--|
| 118— | " | " | | Pit No. 3, N.E. of big pit. Sample of face. |
| 119— | ** | " | " | " From 3 ton dump. |
| 120— | " | " | " | Big pit. Average of surface of 500 ton dump. |
| 121- | " | " | " | Lower pit. Average of spathic and specular ores. |
| 122-Bet | n Eoin. | Simon Gil | lies' prope | |
| 123-Big | Pond. | Pit on Mc | Intyre's far | rm. Best ore on the dump. |

124—East Bay. Currie property. Average from large ore dump.
125—
"Campbell property. Average from \(\frac{1}{2} \) to dump.

CAPE BRETON

| Number. | I |
|---------|----|
| 126 | |
| | 56 |
| 127 | 62 |
| 128 | |
| 129 | |
| 130 | 64 |
| 131 | 60 |
| 132 | 63 |
| 133 | 62 |
| 134 | |
| 135 | 59 |
| 136 | 59 |
| 137 | 62 |
| 138 | 34 |
| 139 | 59 |
| 140 | 52 |
| 141 | 62 |
| | |
| 143 | 60 |
| | |
| 145 | 54 |
| 145 | 60 |
| 147 | 65 |

126-Enon. J. A.
127- " A. A.
128- " McIr
129-Gabarus. V
130-Grand Mira
131- "
133- "
134- "
135- "
136- "
137-Lorraine. S
8-Marion Brid
139- "
140- "
142- "
142- "
143- "
144- St. George c
145-Sydney river
146-Upper Beefr

IRON ORES.-HEMATITE: TABLE XII.-Continued.

CAPE BRETON COUNTY.

| Number. | Iron. | Sulphur. | Phos-
phorus. | Insoluble. | Silica. | Alumina | Lime. | Magnesia |
|---------|---------------|----------|------------------|------------|---------|---------|-------|----------|
| | 1 | | | | | | | |
| 126 | 56.60 | 0.110 | 0.008 | 10.00 | | | | |
| 127 | 62.12 | 0.030 | 0.007 | 9:70 | | | | |
| 128 | 56:37 | 0.022 | 0.007 | 11 93 | | | | |
| 129 | 62 47 | 0.137 | 0.187 | 9.28 | | | | |
| 130 | 64 17 | 0.016 | 0.244 | 6.60 | | | | |
| 131 | 60.82 | trace. | 0.419 | 9.48 | | + | | |
| 132 | 63 22 | 0.010 | 0.251 | 8.70 | | | | |
| 133 | 62:35 | 0.007 | 0.113 | 7 24 | | | | |
| 134 | 53.76 | 0.030 | 0.206 | 15.84 | | | | |
| 135 | 59 03 | 0.004 | 0.726 | 12.75 | | | | |
| 136 | 59:40 | | | | | | | |
| 137 | 62 47 | 0.173 | 0:568 | 8 48 | | | | |
| 138 | 34 00 | 0.002 | 0.118 | (MnO 1.69) | 11.98 | 3 38 | 16:48 | 0.73 |
| 139 | 59.63 | | | 8.00 | | | | |
| 140 | $52 \cdot 12$ | | | 18:60 | | | | |
| 141 | 62.70 | 0.040 | 0.007 | (MnO 0.13) | 5 52 | 2 31 | 0:38 | 0.12 |
| 142 | 53 23 | | | 8.80 | | | | |
| 143 | 60.72 | | | 7:80 | | | | |
| 144 | 55 09 | trace. | 0.216 | 12.72 | | | | |
| 145 | 54.70 | 0.013 | 0.012 | 6 98 | | | | |
| 146 | 60:47 | 0.023 | 0.012 | 9.20 | | | | |
| 147 | 65.19 | trace. | 0.023 | 4 40 | | | | |

Locality of occurrence.

dump.
imp.
ar ores.

56

belt.

lead.

gnesia

0.68

IRON ORES.-MAGNETITE: TABLE XIII,

CAPE BRETON COUNTY.

| Number. | Iron. | Sulphur. | Phos-
phorus. | Insoluble. | Silica. | Alumina. | Lime. | Magnesia |
|---------|-------------------------------|----------|------------------|------------|---------|----------|-------|----------|
| 148 | 55 47 | 0.024 | 0.030 | | 7 06 | 1 96 | 0:30 | 9:16 |
| 149 | 30 · 40
48 · 38
32 · 32 | 0 254 | 0.040 | | 9.60 | 2 12 | 2.15 | 8.62 |
| 152 | 43 · 39
40 · 63 | 1 | | | | | | |
| 154 | 49:07
26:72 | 0.837 | 6.040 | | 9.60 | 2.57 | 1:60 | 10.06 |
| 156 | 25 51
40 52
38 29 | | | | | | | |
| 159 | 62 08 | trace. | 0:368 | 6.62 | | | | |
| 160 | 61 09 | 0.021 | 6.340 | 7.68 | | | | |
| 161 | 59:46 | trace. | 0.013 | 7:36 | | | | |

Locality of occurrence.

| 148-Baracho | is. McPherson's pro | perty. General s | ample from big pit near road. |
|-------------|-----------------------|--------------------|--------------------------------|
| 149 '' | " | | 1. Nearest road. |
| 150 " | ** | | 2. Average of 10 ton dump. |
| 151 " | ** | | 2. Average of 200 pounds. |
| 152 " | ** | | 2. From a cut on N. end. |
| 153 '' | ** | | 4. Average of a 20 ton dump. |
| 154— " | ** | | 5. Average of a 5 ton dump. |
| 155— " | " | | nost pit. |
| 156— " | 66 | | 0 lb. dump, highly sulphurous. |
| 157 | Sheriff Ingraha | am's property, Pit | No. 1. |
| 158 " | | | No. 2. |
| 159—Grand | Mira, John Gillies' p | property. From | ore on dump. |
| 160- " | L. Gillies' prop | perty. Samples of | dark siliceous ore on dump. |
| 161 | " | | ected from dump. |
| | | | |

IRON

(b) Magnetit

167— 168— 169—

CUMBERLAND

l. 2....,....

171—Pugwash "J1 172—

$\label{eq:tronormalize} \textbf{IRON ORES.-HEMATITE AND MAGNETITE: TABLE XIV.}$ COLCHESTER COUNTY.

(a) Hematite.

| Number. | Iron. | Sulphur. | Phos-
phorus. | Silica. | Alumina. | Lime. | Magnesia. |
|---------|----------------|----------|------------------|---------|----------|-------|-------------------|
| | | | 0.1012 | 0.08 | 1.81 | 0:10 | 0°22 MnO, 0°2 |
| .62 | 55 77
10 71 | 0 016 | 0.085 | 9 96 | 1 81 | 0.40 | 10 22 MINO 2 17 2 |
| 63 | 14 80 | | | 1 | 1 | | |
| 65 | 14.80 | | | | | | |
| 66 | 15.84 | | | i | | | |
| 67 | 39 20 | | | | | | |
| 68 | 39:82 | | | | | | |
| 69 | 43 62 | | | | | | |

(b) Magnetite.

| | | | | | | | 1 | |
|-----|-----------|-------|-------|-------|------|------|------|-------------|
| 170 |
56:09 | 0.200 | 0.210 | 17:18 | 0.10 | 0.15 | 2.02 | CuO
0 15 |

Locality of occurrence.

(a) Hematite.

| 162 - Clif
163 Lon | ton. Gene
donderry. | ral sample of ore from dump by shaft.
Sample of paint in drift, Miller brook. |
|-----------------------|------------------------|--|
| 164 | " | Old Mountain mine, ankerite stock pile. |
| 165— | 6.6 | Old Mountain and East mines, siderite stock piles. |
| 166 | ** | " general sample. |
| 167- | ** | " mine. From paint, fine limonite stock pile. |
| 168 | ** | " mine. A mixture of specular, siderite, and limonite. |
| 169 - | | Roger's pits. Average of No. 1 ore from stock pile. |

(b) Magnetite.

170-Londonderry. Gerrish mountain. Sample of a 30 ton dump. Diorite gangue.

IRON ORES. HEMATITE: TABLE XV.

CUMBERLAND COUNTY.

| Number. | Iron. | Sulphur. | Phosphorus. | Insoluble. |
|---------|--------------------|----------|-------------|---------------|
| 171 | 41 · 18
49 · 62 | trace. | 0:301 | 20 10
6 48 |

Locality of occurrence.

171—Pugwash Junction. Tuttle property. From large dump. 172—From small dump.

IRON ORES.-HEMATITE: TABLE XVI

GUYSB ROUGH COUNTY.

| Number. | Iron. | Sulphur. | Phosphorus | Insoluble. |
|-------------|-------|----------|------------|------------|
| | | | | |
| \173 | 67:20 | 0 908 | 0.018 | 2.16 |

Locality of occurrence.

173-Guysborough. Intervale. Drumphy brook. Drift and dump at mouth of tunnel.

IRON ORES.-HEMATITE AND LIMONITE: TABLE XVII.

HANTS COUNTY.

(a) Hematite.

| Number. | Iron. | Sulphur. | Phos-
phorus. | Silica. | Alumina. | Lime. | Magnesia. | |
|---------|-------|----------|------------------|---------|----------|--------|-----------|----------------------|
| 174 | 59:86 | 0 012 | 0:045 | 5·79 | 1·80 | 3 · 05 | 0·18 | Mn ₂ 0 63 |
| 175 | 56:88 | 0 011 | 0:055 | 5·99 | 1·81 | 3 · 12 | 0·20 | Mn ₂ 0 48 |

(b) Limonite.

| | | 1 | | 1 | |
|-----|-------|---|------|---|--------------------------|
| | | | | | |
| 177 | 34 41 | |
 | *************************************** |
Mn_2 0.66 |

Locality of occurrence.

(a) Hematite.

174—Selma. Ells property. General sample of ore dump of Sweeney pit.
175— "15 ton dump near old shaft.

(b) Limonite.

176—Cambridge. Tomlinson property. Samples from an old dump.
177— "Goshen mine.

IRON

INVERNESS O

| Nı | 11 | n | 1 | H | eı | r. | Iro |
|------|----|---|---|---|----|----|------|
| 178. | | | | | | | 62 |
| 179. | | | | | | | 38 |
| 180. | | | | | | | 57 (|
| 181. | | | | | | | 53 |
| 182. | | ĺ | | | | | 47 |
| 183. | | i | | | | | 56 6 |
| 184. | | Ī | Ì | | | | 56.7 |
| 185. | | | | ì | Ĵ | | 46 2 |
| 86. | ì | ĺ | ĺ | | | | 48 7 |
| 87. | | | | • | | | 50.1 |

| 178—Wh | VC000ms |
|--------|----------|
| 179— | , cocome |
| 180— | - 11 |
| 181— | " |
| 182— | 4.6 |
| 183 — | " |
| 184 | " |
| 185— | " |
| 186— | ** |
| 187- | 1.1 |

| RICHMON | D | COU |
|---------|---|-----|
|---------|---|-----|

Num

| _ | _ | _ | _ | | _ | | _ | _ | | | |
|--------------|---|---|---|--|---|---|---|---|---|---|---|
| 188. | | | | | | | | | | | |
| 188,
189 | | | | | | | | | ۰ | * | |
| 189.
190. | | • | | | | | | | ٠ | | ٠ |
| 101 | | | | | ۰ | * | | | | | |

188—Barra Head. 189— 190—Loch Lomond. 191—Madame islan

192. Hematite

Hematite, car. ciated a very sma Its compositio

> Metallic ire Insoluble r Sulphur... Titanium c

| Number. | Iron. | Sulphur. | Phosphorus. | Insoluble. | Silica. | Alumina. | Lime. | Magnesia |
|---------|-------|----------|-------------|------------|---------------|----------|-------|----------|
| 78 | 62 45 | 0:234 | 0:024 | | 7:20 | 1 19 | 1 75 | 0.28 |
| 79 | 38 81 | | | | | | | |
| 80 | 57:05 | 0.006 | 0:490 | | 11.16 | 5:20 | 1:80 | 1:66 |
| 81 | 53 40 | 0.016 | 0.770 | | $12 \cdot 92$ | 4:41 | 2:05 | 1:60 |
| 82 | 47:40 | 0.128 | 0.570 | | 23 70 | 3 40 | 1.55 | 1:74 |
| 83 | 56:60 | 0.009 | 0.805 | | 9 00 | 7 96 | 1 95 | 1:68 |
| 84 | 56:70 | 0.127 | 0:506 | | 15:07 | 3:52 | 1 16 | 1:70 |
| 85 | 46 20 | 0.020 | 0.100 | | 25 77 | 5:01 | 0.55 | 0.42 |
| 86 | 48:70 | 0:017 | 0.525 | | 24 30 | 4 62 | 1 95 | 1:00 |
| 87 | 50.10 | 0.060 | 0.003 | 10:00 | | | | |

Locality of occurrence.

| | | | 2 |
|----------------|-------------|-------------|--|
| 178—W1
179— | nycocomagh. | lron brook. | Sample from dump on S. bank Campbell brook.
From an old opening in dried up stream. |
| 180- | ** | 16 | From boulders lying in front of lower tunnel. |
| 181— | " | " | Drummond area, close to S. side. Surface of 150 ton dump. |
| 182- | " | " | Drummond area. Average sample of back of tunnel. |
| 183 — | " | | Drummond area. Average sample from centre of vein, back of tunnel. |
| 184- | 4.4 | ** | Drummond area. Average sample from small tunnel. |
| 185— | , , , | u | Logans glen. General sample from a depth of 20 feet. |
| 186- | " | ** | Skye mountain. |
| 187— | ** | ** | Drummond mine. Best ore from a recent working. |

1RON ORES.-HEMATITE: TABLE XIX.

RICHMOND COUNTY.

| Numbeř. | Iron. | Sulphur. | Phosphorus. | Insoluble | |
|----------------------|-------------------------|-------------------------|-------------------------|----------------------|--|
| 18h.
189.
190. | 48 92
45 10
63 57 | 1 850
0 009
0 137 | 0 092
0 554
0 014 | 7 20
8 40
5 57 | |
| 191 | 60.19 | trace | 0.025 | 10.20 | |

Locality of occurrence.

188—Barra Head. Micmac mine. Leonard shaft. From dump.
189— "Best ore obtainable at old shaft.
190—Loch Lomond, east shore. Sample taken from boulders.
191—Madame island. Mackerel cove. Selected sample.

192. Hematite-from East Roman valley, Guysborough county, Nova Scotia.

Hematite, carrying an occasional minute particle of pyrite, with which is associated a very small quantity of siliceous gangue.

Its composition was found to be as follows:-

| | Per | cent. |
|--------------------------|-----|-------------|
| Metallic iron | | $\cdot 960$ |
| Insoluble mineral matter | | 2.17 |
| Sulphur | | .016 |
| Titanium dioxide | N | one. |

193. Hematite—from Ben Eoin, on the shore of Great Bras d'Or lake, Cape Breton county, N.S. Examined for Mr. Daniel MacLean.

Hematite, with a little red ochre, in association with a small quantity of gangue, composed for the most part of calcite and quartz.

| con | | |
|-----|--|--|
| | | |
| | | |

| Metallic iron | $53 \cdot 64$ |
|----------------------------|---------------|
| Insoluble siliceous matter | 8.62 |
| Titanium dioxide | |

194. Hematite—impure—from a point some two miles from Dorchester Corners, Westmorland county, N.B.

Massive, earthy hematite, in association with a large proportion of siliceous and argillaceous' gangue.

Its analysis yielded the following results:-

| Metallic iron | 30.81 |
|--------------------------|-------|
| Insoluble mineral matter | |
| Titanium dioxide | None. |

195. Limonite-from the head of Indian harbour, Guysborough county, N.S.

An average sample prepared from the specimen sent—some five pounds in weight—was found, on analysis, to centain:—

| * | Metallic iron | | ħ, | | |
 | | | | | 48.29 |
|---|--------------------------|--|----|--|-----|------|--|--|--|--|-------|
| | Insoluble mineral matter | | | | | | | | | | 5.20 |
| | Titanium dioxide | | | | . : | | | | | | None. |

196. Limonite—from the river bank, below George Clark's, near the mouth of Black brook, where it empties into West river St. Mary, Caledonia, Guysborough county, N.S.

An average sample was found to contain:-

| Metallic iron | 45.63 |
|--------------------------|-------|
| Insoluble mineral matter | 16.20 |
| Titanium dioxide | None. |

197. Clay iranstone from the township of Falmouth, about four miles southeast of the town of Windsor, Hants county, N.S.

It contained:

| Metallic iron | | | | | | | | |
|--|---------|--|--------|------|--|--|------|-----------|
| Insoluble mineral Another sample from | | | | | | | | |
| Metallic iron | | |
٠. |
 | | |
 |
23.81 |
| Insoluble mineral | matter. | |
 |
 | | |
 |
14.90 |

u1 in

60

Num

1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-

16-17-18-19-20-21-22-23ce. Cape

of gan-

32

rchester

siliceous

11

ty, N.S. unds in

outh of borough

s south-

ined:--

CHROME IRON ORE.

The following partial analyses, 27 in number, were made by Mr. H. A. Leverin, upon material collected by Mr. Fritz Cirkel, C.E., at the undermentioned localities, in Megantic and Wolfe counties, Quebec.

Mr. Cirkel's report—Chrome Iron Ore: Its Properties, Refining, and Usescontains full particulars of the deposits from which these samples were taken.

CHROME IRON ORE: TABLE I.

MEGANTIC COUNTY.

| Number. | Chromic
oxide
(Cr ₂ O ₃) | Equivalent of Chromium. | Alumina
(Al ₂ O ₃) | Ferrous
oxide
(FeO) | Magnesia
(MgO) | Lime
(CaO) | Silica
(SiO ₂) |
|----------------------------|---|--|--|---------------------------|-------------------|---------------|-------------------------------|
| 1
2
3
4 | 43·57
41·20
51·18
7·47 | 29 83
28 21
35 00
5 10 | 13:90 | 17 61 | 3:86 | 0.20 | 12 62 |
| 5
6
7
8
9 | 43 29
34 86
0 07
45 95
45 39 | 29 64
23 87
0 05
31 46
31 28 | 1:36
8:90 | 8:36
22:50 | 46 86
4 90 | 0·10
0·12 | 38 34
7 68 |
| 10
11
12
13
14 | 3 · 23
2 · 76
6 · 42 | 2 21
1 91
4 39
20 71
trace | 6:90 | 12 47 | 20:92 | 0 90 | 27 48 |
| 15
16
17 | 30 80
43 24
43 82 | 20 · 75
29 · 47
30 · 00 | 7.12 | 17:74 | 4:60 | 14:17 | 8-26 |
| $\frac{18}{19}$ | 18 57
0 73 | 12:24
0:50 | 4:79 | 15:30 | 24 72 | 0.10 | 25, 25 |
| 20
21 | 43 · 44
35 · 90 | 29·87
24·58 | 6 · 45
8 · 72 | 19 42
16 96 | 6:50
10:20 | 0·12
0·10 | 11 28
16 00 |
| 22
23 | 45 · 87
41 · 35 | 31 : 59
28 : 31 | 12 39 | 16 32 | 6 20 | 0:15 | 6 64 |

Locality of occurrence.

- 1-Crude ore, main shaft, Black Lake Chrome & Asbestos Co., near Black Lake. Picked samples. 3-

- 4—Tailings from mill, Black Lake Chrome & Asbestos Co.
 5—Crude ore, main pit, Standard Asbestos Co., Black Lake.
 6—Disseminated ore, main pit, Standard Asbestos Co., Black Lake.
 7—Serpentine from main pit, lot 16, range A, of Coleraine, Canadian Chrome Co.
 8—Crude ore from main pit, lot 16, range A, of Coleraine, Canadian Chrome Co.
 9—No. 1, concentrates from the mill of The Canadian Chrome Co.

- 8—Crude ore from main pro, 100.

 9—No. 1, concentrates from the mill of The Canadian Unrome Co.

 10—Tailings from the same mill.

 11—Coleraine, lot 6, range B, pit No. 7. Picked ore, American Chrome Co.

 12— " lot 7, range B. Fibred hornblende, American Chrome Co.

 13— " lot 26, range B. Disseminated ore.

 14— " lots 25 and 26, range II. Serpentine from main pit, Dominion Chrome Co.

 15— " lots 25 and 26, range II. Disseminated ore, main cut on Ross lot.

 16— " lot 8, range XIII. No. 1, crude ore, Dominion Chrome Co.

 17— " lot 8, range XIII. Indian reserve, crude ore.

 18— " lot 5, range IV. Disseminated ore.

 19— " lot 19, N.W. Dr. Reid's property. Serpentine.

 20— " " Crude ore from open-cut.

 21— " block A, near Black Lake, Frechette's property. Crude ore.

 22—Ireland tp., lot 28, range II. Crude ore.

 Disseminated ore.

CHROME IRON ORE: TABLE II.

WOLFE COUNTY.

| Number. | Chromic
oxide
(Cr ₂ O ₃) | Equivalent
of
Chromium. | Alumina
(Al ₂ O ₃) | Ferrous
oxide
(FeO) | Magnesia
(MgO) | Lime
(CaO) | Silica
(SiO ₂) |
|---------|---|-------------------------------|--|---------------------------|-------------------|---------------|-------------------------------|
| 24 | 23 27 | 15 80 | 6 52 | 15 20 | 17 75 | 0:10 | 21 30 |
| 25 | 27 55 | 18 89 | 8 10 | 15 82 | 12 96 | 0:10 | 20 76 |
| 26 | 32 51 | 22 26 | 6 28 | 16 84 | 23 40 | 0:20 | 7 78 |
| 27 | 32 51 | 22 26 | 9 20 | 18 12 | 16 92 | 0:15 | 15 69 |

Locality of occurrence.

| 24-Gar | thby tp | ., lotš | 36 and 37, r | ange V. | Crude ore from main p | oit of Brousseau mine. |
|--------|---------|---------|--------------|---------|-----------------------|------------------------|
| 25 — | *** | " | 36 and 37, | 1.71 | " " | " |
| 26- | ** | " | 36 and 37. | | | " |
| 97 | ** | ** | 96 and 97 | ** | " | " |

Chromite—from Black Lake, Quebec, two samples. Their composition was found by Mr. M. F. Connor to be as follows:—

| | P1, | Sample A. | Sample I |
|----------------------|------|---------------|----------|
| . * | | large Milderl | |
| Chromium trioxide |
 | 45:30 | 48 20 |
| Alumina | | | 11.2 |
| Ferrous oxide | | | 15.6 |
| Mangahous oxide | | | 0.3 |
| Lime | | | 1.5 |
| Magnesia | | | 15.6 |
| Titanic oxide—TiO | | | 0.1 |
| Silica | | | 4.1 |
| Carbonic anhydride. | | | 1.4 |
| Water—loss at 110° C | | | 1 |
| " above 110° C |
 | | 2.0 |
| | | 100:37 | 100:3 |

¹Collected by Mr. J. A. Dresser, M.A., and referred to by him in his Report on the Asbestos and Chromite deposits of a Portion of the Eastern Townships of Quebec.

X

pro an

COPPER ORE.

British Columbia.

silica SiO.)

20·76 7·78

15 69

ı mine.

on was

1:50 15:66

4.10

1.45

2.05

00:34

rt on the

1. From Moresby island, Pacific coast. Sample marked 'Ruth No. 1, 14 ft. level.' Quartz carrying very little copper pyrites. It was found to contain:-Per cent. Metallic copper..... 2. Another sample, marked 'Ruth No. 2, 28 ft. level,' similar in character, from the same locality, contained:-Per cent. Metallic copper............... Ontario. 3. From lot 10, con. V, of Cobden, Algoma district, Ont. Quartz, carrying copper pyrites. It contained:-Per cent. 4. From lot 2, con. VI, of James, in Nipissing district, Ont. An association of calcite and copper pyrites. It contained:-Per cent. Metallic copper..... 5. From SE 1 of lot 6, con. VI, of James, Nipissing district. Siliceous rock, carrying a somewhat large quantity of copper pyrites. It contained:-6. From lot 2, con. III, of Field tp., Nipissing district, Ont. Feldspar, carrying copper pyrites. It contained:-Per cent. Metallic copper..... Quebec. 7. From the SW 1 of lot 14, range XIV; and the SW 1 of lot 14 B, range XIII, of Leeds, Megantic county, Que.

Copper pyrites, and a very little bornite, in association with a somewhat large proportion of siliceous gangue, composed mainly of quartz, mica, chloritic schist, and a trifling quantity of feldspar.

An average of the whole sample was found to contain:-

Per cent.

GOLD AND SILVER ASSAYS. Yukon Territory.

| 1. From the Dome, thirty miles from Dawson. |
|---|
| White quartz. |
| It contained:— |
| Gold |
| 2. Also from the Dome. |
| Quartz carrying a small quantity of galena. |
| It contained:— |
| Gold |
| British Columbia. |
| 3. Black sand from hydraulic workings, fifty miles southeast of Lillooet, on |
| Alexander creek, a tributary of Bridge river, which flows into the Fraser. |
| The material of this sample was separable into a magnetic portion consisting |
| of magnetite, and a non-magnetic portion consisting of small particles of hematite, |
| garnet, prase, white quartz, and feldspar. These portions were separately examined for the presence of platinum, but that metal was found to be absent. |
| |
| 4. From Butterfly claim, situated near Beaverdell, Yale district. |
| Quartz, in part crystalline, carrying a small quantity of zinc blende and of iron pyrites. |
| It contained: |
| Gold 0.33 of an ounce. |
| Silver 1.00 ounce to the ton of 2,000 lbs. |
| 5. From Lyon claim, Skeena district. |
| Quartz, carrying a small quantity of mispickel. |
| It yielded on assay:— |
| Gold |
| 6. From O'Hara claim, Skeena district. |
| Quartz, carrying a small quantity of mispickel. |
| It contained:— |
| Gold |
| 7. From Moresby island, on the Pacific coast. Sample marked 'Ruth No. 1, |
| 14 ft. level.' |
| Quartz, carrying a small quantity of copper pyrites. |
| It contained:— |
| Gold 0.01 of an ounce per ton. Silver 3.00 ounces per ton. Copper 1.58 per cent. |
| |

Th

rive

of :

 \mathbf{of}

whie divi

8. A second sample from the same locality, marked 'Ruth No. 2, 28 ft. level,' and of the same general character, was found on assay to contain:—

 Gold...
 Trace.

 Silver...
 1 · 13 ounces per ton.

 Copper...
 9 · 88 per cent.

9. From the Tulameen river.

This sample, collected by Mr. R. W. Brock, consisted principally of magnetite.

- 10. A second sample—green serpentine—from the same locality as the preceding specimen, contained only a trace of platinum.
- 11. From a claim on the west side of Clearwater river, a tributary of the Thompson.

Calcite, carrying small quantities of zinc blende, and of galena.

It contained:-

12. Teslin river.

Four samples of black magnetic sand, obtained by washing the gravels of the river bed at the following points:—

- (1) From a bar at Sixmile cabin, six miles from the mouth of the river.
- (2) From O'Brien and Cumming's bar, about forty to forty-two miles from the river mouth.
- (3) From a point about sixty miles up stream, and one mile below the mouth of Boswell river.
 - (4) About seventy miles up from the mouth of the river.

Content, expressed in grains per cubic yard of gravel, calculated on the basis of 125 pans per cubic yard:—

| Sample. | Gold, | Silver. | Platinum. | Osmiridium. |
|---------------------|------------------------------|---------------------------|----------------------|-------------|
| (1). (2). (3). (4). | 98 6
18 8
20 8
15 6 | 20 2
2 8
4 4
2 4 | 2:30
1:20
0:34 | Trace 0:025 |

The eight following specimens are from the several claims as indicated below, which are all situated in Hudson Bay Mountain district, in the Omineca mining division.

13. From 'Humming Bird' mine. Granitic rock, carrying galena.

Result of assay:-

isting natite, nined

et, on

nd ôf

o. 1.

| 14. From the Hastings claims. | |
|---|-------|
| Granitic rock, carrying galena. | |
| 4 It contained: | |
| Gold | |
| 15. From another of the Hastings claims. | |
| Quartz, carrying mispickel. | |
| Assay showed it to contain:— | |
| Gold | |
| 16. From the Coronado mine. | () |
| Granitic rock. | |
| Content:— | |
| Gold | |
| 17. Coronado mine. | |
| Galena. | |
| It was found to contain:— | |
| Gold | |
| 18. Another similar sample from the same locality as the preceding | con- |
| ained:— | |
| Gold | |
| 19. From the Victor mine. First sample. | |
| Galena. | |
| This commined:— | |
| Gold. Trace. Silver. 43-33 ounces per ton. | |
| 20. Also from the Victor mine. Second sample. | |
| Galena. | |
| Assays.gave the following:— | |
| Gold | |
| Saskatchewan. | |
| 21. From Sec. 27, Tp. 49, R. 22, west of the 3rd meridian. | |
| Iron pyrites, in association with quartz and argillaceous matter. Assays showed it to contain neither gold nor silver. | |
| 22. From the vicinity of Lac LaRonge. | |
| Quartz. | |
| It yielded, on assay, the following result:- | |
| Gold | |
| 23. A second specimen from Lac LaRonge, consisting of a pyritiferous gra | nitio |
| ock, was assayed and found to contain:— | |
| Gold | |
| | |

of

are

tov

chl

Niı

mil rail

nort vein

lake.

and

sistii iron

> 3: A

10

Ontario.

24. From the border of Trout lake, near the Edeson mine, Nipissing district.

An association of quartz and calcite, carrying small quantities of galena and of chalcopyrite.

Assay showed it to contain:-

25. From the south half of lot 14, con. V, of Coleman, Nipissing district.

An association of quartz and feldspar, chlorite and dolomite, through which are distributed small quantities of galena, copper pyrites, and iron pyrites. Weight of sample, 9 ounces.

It contained:

26. From the so-called Monetteville mine, situated on lot 6, con. V, of Maitland township, Nipissing district.

An association of quartz and feldspar, with small quantities of calcite and chlorite, carrying occasional minute particles of pyrite and copper pyrites.

It contained neither gold nor silver.

27. From Sargenson's claim, at Portage bay, southeast of Lake Timagami, Nipissing district.

Calcite, carrying small quantities of cobaltite and of niccolite.

It yielded on assay:-

 Gold...
 None.

 Silver...
 0.50 of an ounce to the ton of 2,000 lbs.

28. From Dreany location, claim south of T.R. No. 169, seventy-six and a-half miles from North Bay, on the line of the Timiskaming and Northern Ontario railway, Nipissing district.

Quartz, carrying small quantities of molybdenite and copper pyrites.

It contained neither gold nor silver.

29. From near the apex of the south bend of Montreal river, seven miles north of Indian chute and two miles west of Wilson township.

This specimen, consisting entirely of smoky quartz, was representative of a It contained neither gold nor silver.

30. From unsurveyed territory two miles south of the southwest arm of Larder

An association of quartz, with smaller quantities of feldspar and hornblende, and a very little partially altered mica, carrying a small quantity of specular iron.

It contained neither gold nor silver.

31. Another specimen from the same locality as the preceding specimen, consisting of an association of quartz, calcite, and chlorite, carried a small quantity of iron pyrites.

It contained neither gold nor silver.

32. From the northwest shore of Larder lake, two miles from Larder city.

An association of quartz and chlorite.

It contained neither gold nor silver. 10843—7

mitic

con-

33. From a point about three miles north of the Narrows of Gold lake (Larder lake), Nipissing district.

N

C

Q1

cl

ar

co

di

tov

Nij

An association of quartz, with a small quantity of chlorite, carrying a little chalcopyrite.

It contained neither gold nor silver.

34. From lot 1, con. II, of Bucke township.

An association of quartz, feldspar, and chlorite, carrying a very little pyrite. Sample weighed 11 ounces.

35. From Ohlman's claim on the southwest side of Cripple creek, which flows into the northeast angle of Larder lake.

Quartz, carrying small quantities of pyrite, copper pyrites, and chalcocite.

36. From a point seven miles east of Cobalt, in Lorrain township, Nipissing district.

Vein matter consisting of quartz and calcite, with a little chlorite, carrying small quantities of zinc blende and copper pyrites.

It contained:-

37. From lots 9 and 10, con. V, of Coleman, Nipissing district.

An association of galena and pyrite, together with a small quantity of calcareous gangue.

It contained:-

38. From a point situated four miles west and four miles north of Missinaibi station, Canadian Pacific railway, Algoma district.

Grey quartz, carrying a small quantity of pyrite.

It contained neither gold nor silver.

39. From lot 5, con. I, of Mack, Algoma district.

An association of quartz with small quantities of feldspar and chlorite, carrying a little copper pyrites and a few particles of iron pyrites. The fragments of this specimen were slightly weathered and rust-stained, and, in parts, coated with a very little green carbonate of copper.

It contained neither gold nor silver.

40. From lot 14, con. V, of Lount, Parry Sound district.

Quartz, carrying some chalcopyrite and iron pyrite, the whole being more or less weathered and rust-coated.

It contained neither gold nor silver.

41. From a point situated two miles north of the northeast corner of township 83, southwest of Sudbury, on the Whitefish Indian reserve, Nipissing district.

An association of quartz and iron pyrites.

It contained neither gold nor silver.

little

yrite.

flows

rying

cal-

naibi

arryts of with

e or

ship

42. From the south shore of Lake Penage, near the middle of township 91, Nipissing district.

An association of quartz, a very little calcite, and a small quantity of feldspar, carrying some partially decomposed iron pyrites.

It contained neither gold nor silver.

43. From mining location 8586, Larder Lake district.

One piece, an association of white calcite and grey slate, carrying a small quantity of iron pyrites; and one piece of white quartz in association with grey chloritic schist, carrying iron pyrites.

An assay by Mr. M. F. Connor showed it to contain neither gold nor silver.

44. From lot 2, con. I, of James township, Nipissing district.

An association of small quantities of galena, of cobaltite, and of erythrite, and a very little native silver with quartz, the whole forming narrow veins in a coarse diabase.

45. From the SE ½ of the S ½ of lot 6, con. VI, of James township, Nipissing district, Ont.

Copper pyrites, distributed through a quartzose gangue.

It contained:-

 Metallic copper
 10.28 per cent.

 Gold
 Trace.

 Silver
 1.25 of an ounce per ton.

46. From lot 4, con. VI, of Otto township, Nipissing district.

Quartz, carrying a small quantity of iron pyrites.

Assay showed it to contain:-

47. Locality—unsurveyed territory situated on the northeast corner of Willet township, Nipissing district.

Niccolite.

It was found, on assay, to contain:

Silver.... 0.5 of an ounce to the ton.

48. From mining location 249, on lot 1, con. I, of the township of James, Nipissing district.

Diabase, carrying some argentite and native silver.

Assays showed it to contain:-

Silver..... 1081-64 ounces per ton.

49. From the same locality as the preceding specimen.

It contained:

Silver.... 1021-2 ounces per ton.

50. From lot 1, con. I, of James township. Mining location or claim not stated.

10843-71

Smaltite.

fa

py

de

ne

vil

 $th\epsilon$

gal

bro

| 51. From the shore of the northeast arm of Sturgeon lake, Rainy River dis- |
|--|
| trict, Ontario. |
| It was found, on assay, to contain:— Silver |
| 52. From the immediate vicinity of St. Joseph, on the shore of Lake Huron, |
| Huron county, Ont. |
| Black sand—magnetic iron sand. |
| It contained:— |
| Gold |
| Quebec. |
| 53. From St. Margaret mine, St. Margaret parish, Lotbinière county. |
| A weathered schistose rock, carrying small quantities of magnetite and of |
| copper pyrites. |
| It contained neither gold nor silver. |
| 54. The three following specimens are from the township of Matapedia, Bona- |
| venture county. |
| An association of garnet and calcite, with small quantities of epidote and |
| quartz, carrying a very little pyrite. |
| It contained:— |
| Gold |
| 55. An association of quartz and calcite, carrying very small quantities of |
| pyrite and chalcopyrite. The specimen was somewhat weathered and rust-stained. |
| It contained:— |
| Gold |
| 55a. Weathered and rust-stained quartz, carrying a small quantity of copper |
| pyrites. |
| It contained:- |
| Gold |
| 56. From the vicinity of St. Damien, Berthier county. |
| A siliceous schist, associated with a small quantity of weathered, brown mica, |
| carrying a very little iron pyrites. |
| It contained:— |
| Gold. Trace. Silver. None. |
| 57. From lot 19, range IX, of Chester, Arthabaska county. |
| An association of quartz and iron pyrites. |
| It contained:— |
| Gold |
| 58. From lot 12, range V, of Litchfield, Pontiac county. |
| A siliceous rock, in association with a little calcite. |
| It was found, on assay, to contain:— |
| Gold. Trace. Silver. None. |
| |

59. From Lorrainville, near Ville Marie, Pontiac county. r dis-Quartz, carrying a small quantity of iron pyrites. It contained:
 Gold...
 Trace.

 Silver...
 0 6 of an ounce to the ton of 2,000 lbs.
 uron. 60. From a point some eight miles above Maniwaki, near Eagle river, on the farm of Martin Daly. An association of quartz and hornblende, carrying a small quantity of iron pyrites. It contained neither gold nor silver. 61. From Pike lake, Ottawa county. An association of quartz, feldspar, and black mica, all more or less weathered. It contained neither gold nor silver. 62. From the vicinity of Chapeau, Pontiac county. id of An association of pyrite with smaller quantities of pyrrhotite and of molybdenite, and a little copper pyrites. Assays of the mixed sulphides and of the pyrite were separately made, and in Bonaneither was any gold or silver found. 63. From Rock island, in Quinze river, directly opposite North Timiskaming and village, Pontiac county. Quartz, carrying a very little pyrite. It contained:-
 Gold...
 Trace.

 Silver...
 0.25 of an ounce to the ton of 2,000 lbs.
 s of 64. From the property of the Pontiac Mining and Smelting Co., situated in ined. the township of Fabre, Pontiac county. An association of calcite, with a little feldspar, carrying small quantities of galena and a trifling quantity of iron pyrites. pper It contained:
 Gold...
 None.

 Silver...
 3 · 12 ounces to the ton of 2,000 lbs.
 65. From the vicinity of Orford mountain, in Castle Brook township, Sherbrooke county, Quebec. Quartz, carrying small quantities of iron and of copper pyrites. nica. It was found, on assay, to contain:-Gold..... None. 66. From Moe River valley, Compton county, Quebec. Quartz. It contained: 67. From the west shore of Lake Massawippi, Stanstead county, Quebec. Quartz. It yielded on assay:—

Silver...

68. From lot 21, range X, of Eardley township, Ottawa county, Quebec. Red jasper.

Assay showed it to contain neither gold nor silver.

69. From lot 2a, range B, of Wright township, Ottawa county, Quebec. Calcite, carrying a small quantity of galena.

It contained:-

70. From lot 8, range VII, of Bristol township, Pontiac county, Quebec. Quartz.

It contained neither gold nor silver.

71. From lot 6, range II, of Chichester, Pontiac county, Quebec. Quartz.

It contained neither gold nor silver.

New Brunswick.

0

la oi

h

 \mathbf{p}

V

to

CS

72. From an unspecified locality in Albert county.

An association of copper pyrites and bornite, with a small quantity of gangue, composed principally of barite.

It contained:-

 Gold...
 None.

 Silver...
 1.64 ounces to the ton of 2,000 lbs.

 Copper—metallic...
 7.10 per cent

Nova Scotia.

73. From Wagamatcook gold district, Middle river, Victoria county, N.S. Examined by Mr. J. P. Joy.

An association of quartz, with a small quantity of iron pyrites.

It contained neither gold nor silver.

74. Also from Middle river, Victoria county, N.S. Examined for E. W. Mc-Curdy.

Quartz, carrying a small quantity of pyrite.

It contained:-

75. From St. Ann, North river, Victoria county, N.S.

Quartz, carrying a small quantity of oxide of iron.

It contained neither gold nor silver.

76. From rear of Beaver cove, Cape Breton county, N.S.

An association of galena, with a small quantity of pyrite, and a rather small quantity of quartzose gangue.

It was found, on assay, to contain:-

 Silver...
 25 ounces to the ton of 2,000 lbs.

 Gold...
 None.

77. From Margaree, Inverness county, N.S.

Quartz, carrying a small quantity of iron pyrites.

It contained neither gold nor silver.

NATURAL WATERS.

British Columbia.

1. From a spring on the bank of the Shuswap river, about eight miles north of Enderby, Yale district, B.C.

At the time of its receipt the water was perfectly clear, bright, and colourless. On removing the stopper of the vessel, however, there was a somewhat brisk disengagement of carbonic acid, and the water gradually became turbid, and after the lapse of a few hours deposited a very appreciable sediment, consisting of carbonates of calcium and magnesium, with a very little ferric hydrate. It was odourless, had an agreeably acidulous (piquant) taste, which, however, subsequently gave place to a faintly bitter one; reacted faintly acid, when evaporated to a small volume, and was decidedly alkaline. Its specific gravity at 15.5° C. was found to be 1002.4. Boiling produced a small precipitate of calcium and magnesium carbonates, with a very little ferric hydrate.

One thousand parts by weight of the water, at 15.5° C., were found on analysis to contain:—

| Potassa | | | 0.013 |
|------------------------------------|----|---|--------|
| Soda | | | 0.273 |
| Lime | | | 0.231 |
| Magnesia | | | 0.234 |
| Ferrous oxide | | | 0.023 |
| Sulphuric arhydride | | | 0.610 |
| Carbonic anhydride | | | 2.960 |
| Chlorine | | | 0.012 |
| Silica | | | 0.055 |
| Organic matter | | | Trace. |
| | | | 3.841 |
| Less oxygen equivalent to chlorine | | | 0.003 |
| | 10 | , | 3.838 |

Lithia, baryta, strontia, bromine, iodine, and horic acid were not sought for. Hypothetical combination:—

(The carbonates being calculated as monocarbonates and all the salts estimated as anhydrous.)

| Potassium sulphate | 0.022 |
|--|-------------------------|
| Potassium chloride | 0.002 |
| Sodium chloride | 0.018 |
| Sodium carbonate | |
| Calcium carbonate | |
| Magnesium carbonate | |
| Ferrous carbonate | |
| | 0 005 |
| Silica | |
| Organic matter | Irace. |
| Carbonic anhydride, half combined | 1·519
0·640
1·680 |
| Carbonic anhydride, free | 1.000 |
| Total dissolved saline matter by direct experiment, dried at 180 | 3.839
1.642 |

gue,

ſ.S.

ſc-

. ı11 An imperial gallon of the water, at 15.5° C., would contain:

(The carbonates calculated as anhydrous bicarbonates, and all the salts without their water of crystallization.)

| | | Grains. |
|-------------------------|------|---------|
| Potassium sulphate |
 | 1.54 |
| Potassium chloride |
 | 0.14 |
| Sodium chloride | | 1.26 |
| Sodium bicarbonate |
 | 44.76 |
| Calcium bicarbonate |
 | 41.75 |
| Magnesium bicarbonate |
 | 52.49 |
| Ferrous bicarbonate |
 | 3.58 |
| Silica |
 | 5.96 |
| Organic matter |
 | Trace |
| | | |
| | | 151.49 |
| Carbonic anhydride free |
 | 117-88 |
| | - | 269-37 |
| | | |

2. From a spring some 900 feet above sea-level, on a mountain side on Vancouver island, B.C.

This water was collected by and examined for Mr. W. A. Robertson, of Victoria, B.C., who says that the temperature of the spring is 48° F., while that of the surrounding air is 60° F.

As received, the water contained a trifling quantity of pale-brown, flocculent organic matter in suspension, which was removable by filtration, after which operation the filtered water was clear, bright, and colourless. It was odourless and devoid of marked taste; reacted neutral both before and after concentration. Its specific gravity, at 15.5° C., was 1000.5—pure water being 1000. The total dissolved saline matter, dried at 180° C., in 1000 parts by weight of the filtered water, amounted to 0.92 of a part—equivalent to 6.446 grains in one imperial gallon.

It was found, by a qualitative examination, to contain:—

| , | | | | |
|-------------|-------|------|---|----------------------|
| Soda | | | · | very small quantity. |
| Potassa | | | | trace. |
| Ferrous ox | ide | | | trace. |
| Lime | | | | small quantity. |
| Magnesia | | | | very small quantity. |
| Sulphuric a | anhyd | ride | | very small quantity. |
| Carbonic a | nhydr | ide | | small quantity. |
| Chlorine | | | | very small quantity. |
| Silica | | | | trace. |
| | | | | |

Boiling produced a very small precipitate, consisting principally of calcium carbonate, with a very small quantity of magnesium carbonate and a trace of ferrous carbonate.

The limited quantity of water sent did not admit of search being made for any of the more rarely occurring constituents.

Saskatchewan.

3. Brine from a spring situated some twenty yards from the left bank of Carrot river, two miles above its junction with Sipanok channel, in Tp. 53, R. 2, west of the 2nd meridian, Saskatchewan.

This sample was collected by Mr. William McInnes, of the Geological Survey staff, who writes as follows of the occurrence: 'The pool is about six feet in

the per

di he

sli

no

fili

bon

mac

tain sodi the

sam

X, o

was had smal

B hydra ferrio hout

diameter, and is fringed with a border of the little red salt plant, Sali cornea herbacea, and the salt-loving Triglochin maritinum. The water in the spring is slightly milky in appearance, strongly saline to the taste, and gives off a very noticeable odour of sulphuretted hydrogen.'

As received, the water, about one quart, contained a trifling quantity of palebrownish-white, flocculent, organic matter in suspension, which was removable by filtration. The filtered water was clear, bright, and colourless. To the taste it was strongly saline. It was devoid of any distinctive odour, and reacted neutral, both before and after concentration.

Its specific gravity at 15.5° C. was found to be 1024; pure water being 1000.

The total dissolved saline matter, dried at 180° C., in 1,000 parts by weight of the filtered water, amounted to 28-14 parts; equivalent to 2017-07 grains per imperial gallon.

A qualitative examination showed the presence of:-

Potassa.... very small quantity. large quantity. Ferrous oxide..... trace. small quantity. Lime.. small quantity. Magnesia.. Sulphuric anhydride..... rather small quantity. Carbonic anhydride..... small quantity Chlorine..... .. large quantity very .. not detected. Organic matter....

Boiling produced a small precipitate consisting, principally, of calcium carbonate, with a little magnesium carbonate, and a trace of ferrous carbonate.

The quantity of water available was too limited to admit of search being made for the presence of bromide, iodine, baryta or strontia, or boric acid.

The principal saline constituent of the water is sodium chloride. A proximate determination of the chlorine showed that 100 parts by weight of the water contains 15.465 parts of that element; which quantity is equivalent to 25.48 parts of sodium chloride. Portions of the chlorine may, not improbably, be combined with the calcium or maginatum, but this can only be definitely determined by a complete quantitative examination. For this there was not sufficient water available in the sample submitted to me.

Ontario.

4. From spring No. 2, situated on the southwest quarter of lot 22, concession X, of the township of Clarence, Russell dounty, Ontario.

The sample, as received, contained a trifling quantity of light coloured, flocculent, organic matter in suspension. After removal of this by filtration, the water was clear, bright, and of a faint brownish-yellow colour. It was quite odourless; had a very mild saline taste; reacted faintly alkaline; and when evaporated to a small volume, strongly so. Its specific gravity, at 15.5° C., was 1003.35.

Boiling produced a slight precipitate, consisting principally of magnesium hydrate, with a little calcium carbonate and magnesium carbonate, and a trace of ferric hydrate.

an-

Victhe

ent ich and

on. otal red

ial

m

of

ot

One thousand parts by weight of the filtered water, at 15.5° C., contained:

| | | | | - | v | | | 0 | | | | | | | | | | | | | , | | | | | | | | , | | | |
|---------------|----|----|-----|-----|----|---|---|----|---|----|----|----|----|----|----|----|----|---|----|--|----|---|----|-----|---|---|----|-----|----|-----|----|---------|
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Parts |
| Potassa | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 0.63 |
| Soda | | | | | | | | | | ٠. | | | | | | | | | | | | | | | | | | | ٠. | | | 1.90 |
| Ferrous oxide | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Trace |
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 0.02 |
| ime | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| Magnesia | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 0.16 |
| Carbonic anhy | dr | id | le. | | | | | | | ٠. | | | | | | | | | | | | | | | | | | ٠. | | ١. | | 0.71 |
| Chlorine | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 2.43 |
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 0.02 |
| Bilica | | ٠. | | | ٠. | | | | | ٠. | | | | | ٠. | ٠. | | | | | | | ٠. | ٠. | | ٠ | | | ٠: | . • | | |
| Organic matte | Γ. | ٠ | ٠. | | | | | ٠. | | | | ٠ | | | ٠. | | | ٠ | ٠. | | | ٠ | | v e | r | y | 8 | m | al | I | q١ | nantity |
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - | r 00 |
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | - 4 | | | | 5.89 |
| Less oxygen, | eq | ui | v a | ılı | en | t | t | 0 | c | hl | lo | ri | n€ | ٠. | | | ٠. | | | | ٠. | | | ٠ | | | ٠. | Ť | | | | 0.54 |
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - | 5.34 |
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | _ | |
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 5.3 |

It may be reasonably assumed that the foregoing acids and bases exist in the water in the following states of combination:—

(The carbonates being calculated as monocarbonates, and all the salts estimated as anhydrous):—

| | Part |
|---|--------|
| Potassium chloride | 0.99 |
| Sodium chloride | |
| Sodium carbonate | |
| ferrous carbonate | |
| Calcium carbonate | 0.04 |
| Magnesium carbonate | |
| Silica | 0.02 |
| Organic matter—small quantity | . unde |
| | 4.96 |
| Carbonic anhydride, free and half combined | 0.38 |
| | 5.3 |
| Cotal dissolved saline matter by direct experiment, dried at 180° C | 4 .7! |

An imperial gallon of the water, at 15.5° C., would contain:

(The carbonates being calculated as anhydrous bicarbonates, and all the salts without their water of crystallization).

| Grains |
|----------|
| . 70-10- |
| . 226.75 |
| Trace |
| . 4.86 |
| . 36.38 |
| 1.40 |
| undet |
| 371·87 |
| 375-45 |
| |

The limited quantity of water sent did not admit of any examination being made for the presence of baryta, strontia, lithia, bromine, iodine, or boric anhydride.

Eight other samples of water, from as many different springs on the same lot and in the immediate vicinity of No. 2, were qualitatively examined, and were found to possess the same general characters, while differing in the amount of saline constituents.

I,

 \mathbf{m} a \mathbf{t} h ϵ

two

gal

titie and the

to b

quar

brida A wate was ated

is soc water gallo

Т

Bo magn 5. Water from well, sunk 10 feet in earth and 8 feet in rock, on lot 9, con. I, of Finch, Stormont co. Received from Mr. A. A. McLean.

The sample, as received, contained a trifling quantity of pale brown, flocculent matter in suspension. This was removed by filtration, and found to consist, for the most part, of organic matter, with a very little ferric hydrate.

The filtered water was just perceptibly turbid, and, when viewed in a column two feet in length, of a brownish-yellow colour.

It was devoid of distinctive odour, and of marked taste, and reacted neutral, both before after concentration.

Its specific gravity, at 60° F., was 1002.

The total dissolved saline matter, dried at 180° C., amounts, in one imperial gallon, to 101 grains.

A qualitative examination showed the presence of:-

Soda. small quantity.
Ammonia. very small quantity.
Ferrous oxide. trace.
Lime. rather small quantity.
Magnesia. small quantity.
Sulphuric anhydride. small quantity.
Carbonic anhydride. somewhat large quantity.
Chlorine. very small quantity.
Silica. trace.
Organic matter small quantity.

The principal constituents of the water are: bicarbonates, with small quantities of sulphates, and very small quantities of chlorides of lime, magnesia, iron, and soda.

In addition to the above-mentioned constituents, it is especially noted that the water gives a strong reaction for ammonia, and also possesses a high oxygen consuming power, both of which place it under grave suspicion, if it is intended to be used as a beverage or for domestic purposes.

Boiling produced a copious precipitate of calcium carbonate, with a smaller quantity of magnesium carbonate, and a trace of ferric hydrate.

6. From an artesian well, 100 feet in depth, situated on lot 28, con. VI, of Cambridge township, Russell county, Ontario.

After filtering from a small quantity of suspended argillaceous matter, the water of this sample was all but clear, and of a faint brownish-yellow colour. It was odourless, possessed a mildly saline taste, reacted neutral, but when evaporated to small volume became strongly alkaline. Its specific gravity, at 15.5° C., was 1005, and the total dissolved saline matter, the principal constituent of which is sodium chloride, dried at 180° C., in one thousand parts by weight of the filtered water, amounted to 5.423 parts, which is an equivalent of 381.5 grains per imperial gallon.

The results of a qualitative examination were as follows:--

Potassa. trace.

Soda. rather large quantity.

Lime. small quantity.

Magnesia. small quantity.

Sulphuric anhydride. very small quantity.

Carbonic anhydride rather small quantity.

Chlorine. rather large quantity.

Silica. trace.

Organic matter trace.

Boiling produced a small precipitate consisting of carbonates of lime and of magnesia, in apparently nearly equal proportions.

1 the

ated

alts

ing

me nd

ınt

7. From what is known as the Timagami spring, vicinity of Cobalt, Nipissing district, Ontario.

The water, as received, was very faintly turbid, owing to the presence of a trifling quantity of slightly ferruginous, argillaceous matter. The filtered water was clear, bright, and colourless. It was devoid of odour, or any marked taste; reacted neutral, but when evaporated to a small volume was very faintly alkaline. Its specific gravity, at 15.5° C., was 1000.5; and the total dissolved saline matter, dried at 180° C., contained in 1,000 parts, by weight, of the filtered water, amounted to 0.3343 of a part, which is equivalent to 23.413 grains in one imperial gallon.

A qualitative analysis showed the presence of:-

| Soda very small quantity. | |
|--|--|
| Lime small quantity. | |
| Magnesia very small quantity. | |
| Sulphuric anhydride very small quantity. | |
| Carbonic anyhdride., small quantity. | |
| Chlorine trace. | |
| Organic matter faint trace. | |

Boiling produced a small precipitate, consisting of calcium carbonate, with a very little magnesium carbonate.

The principal constituent of this water would appear to be calcium bicarbonate.

This water is well adapted for all domestic purposes, and, by reason of its high organic purity, represents an excellent beverage.

Quebec.

8. From an artesian well, 45 feet deep, at or near the junction of Duvernay and Lévis streets, in Ste. Cunegonde, a suburb of Montreal.

As received, the water contained a trifling quantity of suspended organic and mineral matters, which were removable by filtration. The filtered water was clear, bright, and colourless. It was odourless, tasteless, and reacted neutral, both before and after concentration. Its specific gravity, at 15.5° C., was 1000.5, pure water under similar conditions being 1000.

Boiling produced a small precipitate, consisting principally of calcium carbonate, with some magnesium carbonate.

One thousand parts, by weight, of the filtered water, at 15.5° C., were found to contain:—

| **** | |
|--|--------|
| Potassa | 0.0222 |
| Soda | 0.0208 |
| Lime | 0.2370 |
| Magnesia | 0.0495 |
| Additional and the state of the | 0.0493 |
| Sulphuric anhydride | 0.1530 |
| Carbonic anhydride | 0.3970 |
| Chlorine | 0.0285 |
| Silica | 0.0165 |
| | |
| Organic matter | Trace. |
| | 0.9245 |
| Less oxygen equivalent to | 0 0064 |
| _ | 0.9181 |

the

with

Ach

less, conc duce sium

to cc

ter

to

The foregoing acids and bases may be reasonably assumed to be present in the water, in the following states of combination:—

(The carbonates being calculated as monocarbonates, and all the salts without their water of crystallization).

| | | | | / - | | | | | | | | | | | | | | | | | | | |
|--------------|--------|-----|----|------|----|----|----|--|-----|--|---|----|-----|----|----|---|----|----|-----|----|---|----|----------|
| Potassium c | hlorid | е., | | | | | ٠. | | · * | | | | | , | | | | | , , | | | | 0.0090 |
| Sodium chlo | ride | | | | | | | | Ţ. | | | | | | | | | | | ٠. | | | 0.0392 |
| Potassium si | ulphat | е | |
 | | | | | | | | | | | | | | | | | | | 0.0314 |
| Calcium sulp | phate. | | | | | | | | | | | | | | | | | | | | | | 0.2356 |
| Calcium car | | | | | | | | | | | | | | | | | | | | | | | 0 2500 |
| Magnesium o | carbon | ate | |
 | ٠. | | | | | | | | | | | | | | | | | | 0.1039 |
| Silica | | | | | | | | | | | | | | | | | | | | | | | |
| Organic mat | ter | | | | | | ٠. | | | | ì | ٠ | | ٠, | ٠. | ٠ | | | | | | | trace. |
| Carbonic an | hvdnie | lo. | | | | | | | | | | | | | | | | | | | | | 0.6856 |
| Half con | bined | | |
 | | | | | ٠. | | | | . , | | | | | | | | | | 0 · 1644 |
| · Free | | | ٠. | | | ٠. | | | | | | ٠. | | | | | ٠. | ٠. | | ٠. | ٠ | ٠. | 0.0682 |
| | | | | | | | | | | | | | | | | | | | | | | - | |

An imperial gallon of the filtered water, at 15.5° C., would contain:-

Total dissolved saline matter dried at 180° C..

(The carbonates being calculated as anhydrous bicarbonates, and all the salts without their water of crystallization).

| <i>\$</i> | Grains. |
|--------------------------|---------------------|
| Potassium chloride |
. 0.630 |
| Sodium chloride | |
| Potassium sulphate | |
| Calcium sulphate | |
| Calcium bicarbonate |
25 213 |
| Magnesium bicarbonate |
. 11.087 |
| Silica |
. 1.155 |
| Carbonic anhydride, free |
59·529
4·776 |
| | 64.305 |
| | |

9. Water from what is known as L'Epiphanie spring, situated on the banks of Achigan river, one mile from L'Epiphanie village, L'Assomption county, Quebec.

The sample sent for examination was clear, bright, and colourless. It was odourless, had a mildly saline, faintly bitter taste; reacted neutral, both before and after concentration, and had a specific gravity, at 15.5° C., of 1008.12. Boiling produced a slight precipitate, consisting of calcium carbonate, with a little magnesium carbonate and a trace of ferrous carbonate.

One thousand parts, by weight, of the filtered water, at 15.5° C., were found to contain:—

| | | Parts. |
|------------------------------------|---|-----------------------|
| Potassa | |
0.0744 |
| Soda | |
4.6612 |
| Lithia | |
trace. |
| Ferrous oxide | | |
| Lime | | |
| Magnesia | | |
| Carbonic anhydride | | |
| Chlorine | | |
| Bromine (very small quantity) | | |
| Iodine (very small quantity) | | |
| Silica | | |
| Organic matter | |
trace. |
| Less oxygen equivalent to chloring | e |
12·1458
1·3520 |
| | | 10.7938 |

The foregoing acids and bases may reasonably be assumed to be present in the water, in the following states of combination:—

(The carbonates being calculated as monocarbonates, and all the salts estimated as anhydrous).

| | Parts. |
|---|---------|
| Potassium chloride | 0.1178 |
| Sodium chloride | 8.7962 |
| Lithium chloride | trace. |
| Magnesium chloride | 0.8103 |
| Magnesium bromide | undet |
| Magnesium iodide | undet |
| Calcium carbonate | 0.5432 |
| Magnesium carbonate | 0.1823 |
| Ferrous carbonate | trace. |
| Silica | 0.0095 |
| Organic matter | trace. |
| • | 10-4593 |
| Carbonic anhydride, half combined | 0.3345 |
| Total discolud colina matter has disast associated data at 1990 C | 10.7988 |

Total dissolved saline matter, by direct experiment, dried at 180° C. 10 2340

An imperial gallon of the water, at 15.5° C., would contain:-

(The carbonates being calculated as anhydrous bicarbonates, and all the salts without their waters of crystallization).

| | Grains |
|-----------------------|-----------------|
| Potassium chloride | 8.313 |
| Sodium chloride | 620-734 |
| Lithium chloride | trace. |
| Magnesium chloride | 57.162 |
| Magnesium bromide | undet. |
| Magnesium iodide | undet. |
| Calcium bicarbonate | 55 · 190 |
| Magnesium bicarbonate | 19 -604 |
| Ferrous bicarbonate | trace. |
| Silica | 0.670 |
| Organic matter | trace. |
| | |
| | $761 \cdot 693$ |

Boric anhydride, baryta, and strontia were sought, but with negative results.

10. From a boring near Breckenridge station (Canadian Pacific railway), on lot 7, range V, of Eardley, Ottawa county, Quebec.

The water comprising this sample was slightly turbid, owing to the presence of a trifling quantity of suspended argillaceous matter. After removal of this by filtration, the water was found to be clear, bright, and of a faint yellow colour. It was devoid of marked odour, and possessed a very mild saline taste. It reacted neutral, but after evaporation to a small volume it became slightly alkaline. Its specific gravity, at 15.5° C., was found to be 1002. The total dissolved saline matter, dried at 180° C., amounted to 2.604 parts in 1,000 parts by weight of the filtered water, equivalent to 182.644 grains per imperial gallon.

A qualitative analysis showed it to contain:-

| Soda | | | ٠ | | | ٠. |
 |
٠. | rather small quantity. |
|-----------|-----|----|------|-----|------|----|------|--------|------------------------|
| Lime | | | | | | |
 |
 | small quantity. |
| Magnesia | | | | | | |
 |
 | small quantity. |
| Sulphuric | an | hy | drie | lе. | | |
 |
 | very small quantity. |
| Carbonic | anh | yd | rid | θ., | | |
 |
٠. | small quantity. |
| Chlorine | | | | | | |
 |
 | small quantity. |
| Silica | | | | |
 | |
 |
 | trace. |
| Organic r | | | | | | | | | |

Potassa and lithia were sought for, but with negative results.

Boiling produced a small precipitate, consisting principally of calcium carbonate, with some magnesium carbonate. filt: was neu spe

tho 180

tity

and

11. From a spring on lot 6, range VIII, of Eardley, Ottawa county, Quebec.

filtration, the water was clear, bright, and of a pale brownish-yellow colour. It was odourless, and possessed a taste which was just perceptibly saline. It reacted neutral, but when evaporated to a small volume, became decidedly alkaline. Its specific gravity, at 15.5° C., was 1001.5. The total dissolved saline matter in one thousand parts by weight of the filtered water was 2.569 parts, equivalent to

The sample submitted for examination contained a very small quantity of pale brown, flocculent, organic matter in suspension. After removal of this by

n the

nated

alta

on

of by It. ted Ita atthe

A qualitative examination showed the presence of:-.. somewhat large quantity. Soda.. ..

Chlorine somewhat large quantity.

Organic matter trace.

180.1 grains per imperial gallon.

Potassa and lithia were sought for, but were not detected in the small quantity of water comprising the sample.

The principal saline constituent is sodium chloride, and it amounts to, approximately, three-fourths, by weight, of the total saline matter.

Boiling produced a small precipitate, consisting mainly of carbonates of lime and of magnesia, with a trace of ferric hydrate.

BRICK AND POTTERY CLAYS.

British Columbia.

1. Brick clay—from Cascade mountain, B.C. Specimen taken from the mountain side, some 400 feet from its base.

A rather feebly plastic clay, containing a large proportion of fine siliceous sand, a very small quantity of finely divided magnetite, and a few minute scales of yellow mica. It disintegrates rapidly on immersion in water; is rather strongly ferruginous, slightly calcareous, and somewhat highly magnesian. When moulded into a form and burnt it yields a strong but easily fusible product. It might be employed in the manufacture of ordinary building bricks.

Alberta.

2. Clay-from the Morden estate, situated on Sec. 22, Tp. 30, R.-, west of the 4th meridian, Alberta.

The first sample, taken from the west side of the townsite of Pincher Creek, was a light brownish-grey, feebly plastic clay, which disintegrated rapidly when immersed in water. It contained a somewhat large proportion of fine siliceous grit. When moulded into a form and burnt, it yielded a strong but readily fusible product.

The second sample, from the same locality as the preceding, but from the east side of the townsite of Pincher Creek, was a slightly greenish weathering dark brownish-grey clay. It was strongly plastic, and disintegrated very slowly on immersion in water. It contained a rather small quantity of fine siliceous grit, and yielded, when burnt, a strong but readily fusible product.

An analysis, made upon air-dried material, showed them to have the following composition:—

| | No. 1. | No. 2. |
|-------------------------------|--------|--------|
| ilica | 60:40 | 55:04 |
| itanic oxide—TiO _y | 0.60 | 0.60 |
| lumina | 10.23 | 14.89 |
| erric oxide | 2.05 | 3.64 |
| errous oxide | 0.82 | 1.10 |
| ime | 7 10 | 3:50 |
| Iagnesia. | 4 32 | 2 20 |
| arbonic anhydride | 7:60 | 2.60 |
| Vater—loss at 100° C | 2.98 | 5.48 |
| loss above 100° C | 4.65 | 8.50 |
| lkalis by difference | | 2.45 |
| | 100.75 | 100.00 |

ferr fine bric

mer

plas a st the

Med (

ous, grit, it yi

6

bank by I

calca silica feebl

river
A
carec

4th i ferru powd

8.

assur and

line (

of fin

108

3. From Sec. 9, Tp. 31, R. 23, west of the 4th initial meridian, Alberta.

A bluish-ash coloured clay, which was found to be slightly calcareous, slightly ferruginous, and rather feebly plastic, and to carry a rather small quantity of fine siliceous grit, and a little coaly matter. It yields a weak, readily fusible brick, of a dull reddish-brown colour.

4. A dark greenish-grey clay from Sec. 15, Tp. 29, R. 23, west of the 4th meridian, Alberta.

It was found to be slightly calcareous, slightly ferruginous, and rather feebly plastic, and to carry a small quantity of fine siliceous grit. It yields, when burnt, a strong reddish-brown coloured, readily fusible brick. It might be employed in the manufacture of ordinary building brick.

5. Clay-from the north bank of the South Saskatchewan river, six miles above Medicine Hat.

Colour, brownish-grey; is rather highly ferruginous, somewhat highly calcareous, and rather strongly magnesian. It carries a small quantity of fine siliceous grit, and is only moderately strongly plastic. When moulded into a form and burnt, it yields a strong, but readily fusible product.

6. Underclay—from a coal seam in the Crockford mines, situated on the south bank of the South Saskatchewan river, six miles above Medicine Hat. Collected by Dr. R. Chalmers.

A light greenish-grey, rather strongly ferruginous clay, which is also slightly calcareous and slightly magnesian, and contains a rather large proportion of fine siliceous grit, approximately 30 per cent by weight of the whole. It is rather feebly plastic and affords a moderately strong and difficultly fusible brick.

7. Underclay—from a coal seam on the south bank of the South Saskatchewan river, three and a half miles above Medicine Hat. Collected by Dr. R. Chalmers.

A dark brown, highly ferruginous and highly siliceous clay. It is slightly calcareous, and slightly magnesian, and only feebly plastic. When moulded into a form and burnt, it yields a strong, but easily fusible product.

8. Claystone—from the southeast quarter of Sec. 32, Tp. 30, R. 3, west of the 4th initial meridian, Alberta.

It proved to be somewhat highly calcareous, slightly magnesian, and slightly ferruginous, and to contain a small quantity of siliceous grit. When reduced to powder and moistened it formed a feebly plastic mass, which, when burned, assumed a light reddish-brown colour. It is readily fusible, affords a strong brick, and might be employed for the manufacture of ordinary building brick.

Saskatchewan.

9. Clay—from a point about twenty miles south of Moosejaw station, on the line of the Canadian Pacific railway, in the Province of Saskatchewan.

On examination this clay proved to be non-calcareous, slightly ferruginous, and rather strongly plastic, and to have distributed through it a large proportion of fine siliceous grit. It yields a weak brick, fusible only at a high temperature.

un-

nd.

of gly

 $\frac{\mathrm{ded}}{\mathrm{ght}}$

the

ek.

ien

rit.

ast

m-

nd

10. Clay-from Roche Percee, near Souris coal mine, Sask.

This is a rather highly calcareous, somewhat strongly magnesian, slightly ferruginous, strongly plastic, easily fusible clay, through which is disseminated a very small quantity of fine siliceous grit. It affords a strong brick, of a light reddish-brown colour. This material might very well be employed for the manufacture of ordinary building brick, drain tile, and most, if not all, kinds of common earthenware.

11. Clay—described as coming from that section of country lying north and west of Cumberland lake, Sask.

One sample—greenish-grey in colour—was found to be strongly calcareous, rather strongly magnesian, slightly ferruginous, and easily fusible. It contained only a trifling quantity of siliceous, gritty matter; and yielded, when burned, a strong brick, of a reddish-brown colour.

Another sample, from a different deposit in the same area, proved to be but slightly calcareous and very slightly ferruginous, and to be strongly plastic. It carried a very small quantity of fine, disseminated, siliceous grit, and a little carbonaceous matter. It gave a strong brick which was white in colour, and very difficultly fusible. It would make a fairly refractory firebrick.

- 12. Clay—two samples—from Sec. 14, Tp. 2, R. 8, west of the 2nd initial meridian, Sask.
 - (1) from an 8 ft. seam, underlying a seam of lignite.

A very slightly calcareous, somewhat strongly ferruginous, rather strongly plastic, readily fusible, light greenish-grey clay, through which is distributed a small quantity of fine siliceous grit. When moulded into a form and burned, it yields a strong brick of a light reddish-brown colour.

(2) From a 2 ft. seam interposed between two beds of lignite.

This clay is slightly calcareous, slightly ferruginous, rather strongly plastic, and readily fusible, and of an ash-grey colour. It carries a somewhat large quantity of fine siliceous grit, and assumes, on burning, a light reddish-brown colour.

Both the foregoing ought to prove well adapted for the manufacture of building brick and for some of the commoner kinds of cheap earthenware.

13. Clay—from the northeast quarter of Sec. 28, Tp. 36, R. 7, west of the 3rd initial meridian, Sask.

A slightly calcareous, somewhat strongly magnesian, rather strongly ferruginous, feebly plastic clay, through which is disseminated a large proportion of fine siliceous grit, and a few root fibres. It affords, on suitable treatment, a strong reddish-brown coloured brick, which is readily fusible.

14. From the east half of Sec. 28, Tp. 12, R. 24, west of the 2nd initial meridian, Saskatchewan.

In 1886, a sample of the clay from this deposit was sent to the Geological Survey by Mr. W. H. Stevenson, of Regina, for examination. In reporting upon it at that time, Dr. Hoffmann, then chemist to the Survey, wrote as follows:— 'Colour, pale bluish-greyish-white; is non-calcareous; highly plastic; burns white, or nearly so; is very difficultly fusible at a high temperature. It is well

ma pot

Ma desa Rer

to tl was quer

lines

Leav

suited for the manufacture of ordinary building brick, stove-linings, and would make a fairly refractory firebrick; it could also be used for the manufacture of pottery, including the finer varieties of stoneware.'

Another sample, from the same deposit, was sent, in 1905, by Mr. E. C. Matthews, of Moosejaw. It possessed the same physical characters as that above described, and on analysis was found to have the following composition (see Report of Section of Chemistry and Mineralogy, No. 958, page 64.):—

| | | | 32.30 |
|---|------|------|-------|
| | ` \. | 2 | 22.24 |
| | | | 2.07 |
| | | | 0.60 |
| | | 4.3. | 0.18 |
| | | | 3.21 |
| | | | 9.40 |
| * | | 10 | 00.00 |
| | | ce) | ce) |

In order to ascertain the nature and amount of the siliceous grit, with a view to the employment of this material in the manufacture of pottery, a third sample was collected, in 1906, by Mr. D. Divers, of Ottawa. By elutriation and subsequent sieving of material from the upper stratum, it was found that:—

A sieve of 16 meshes to the linear inch retained only a few particles.

| 66 | 20 | " | " | * 6 | 0.023 | per cer | nt of grit |
|----|-----|----|---|-----|----------------|---------|------------|
| " | 40 | " | " | 66 | 0.310 | " | 66 |
| " | 60 | " | " | ** | 1.647 | " | 64 |
| " | 80 | " | " | 44 | 20.893 | " | 66 |
| " | 100 | 44 | " | 44 | $22 \cdot 110$ | 6: | " |
| " | 128 | 44 | " | *6 | 38.571 | " | " |

Of the grit (38.57 per cent) separated by the sieve having 128 meshes to the linear inch, there passed consecutively:—

| | 16.46 | per cent | t through a | sieve | of | 100 | meshes | to | the | linear inc |
|---------|-----------------|----------|-------------|---------|----|------|--------|----|-----|------------|
| | 1.22 | | " | " | | 80 | 66 | | 44 | " |
| à | $19\!\cdot\!24$ | | " | " | | 60 | 14 | | 44 | " |
| | 1.34 | " | " | " | | 40 | 44 | | 46 | " |
| | 0.29 | " | " | " | | 20 | " | | 44 | " |
| Leaving | 0.02 | per cent | retained by | a sieve | 0 | f 20 | 46 | | 66 | 44 |

38.57

fer-

d a

ight

ınu-

om-

and

ous, ned l, a

> It car-

> tial

gly

tic,

ld-

3rd

ine ng

> eal on

ns ell Material from the lower stratum, on like treatment, yielded the following results:-

A sieve of 16 meshes to the linear inch retained but a few particles.

| " | 20 | " | 66 | 66 | 0.011 p | er cen | t of grit. |
|---|-----|----|----|----|----------------|--------|------------|
| " | 40 | | " | 44 | 0.937 | 66 | |
| " | 60 | " | " | " | 8.411 | " | " |
| " | 80 | " | " | 44 | $37 \cdot 154$ | 66 | " |
| " | 100 | α, | " | 66 | 38.383 | " | " |
| " | 128 | " | " | " | 49.143 | 66 | 66 |

Of the 49.143 per cent separated by a sieve of 128 meshes to the linear inch, there passed consecutively:—

10.76 per cent through a sieve of 100 meshes.

| 1.23 | " | " | " | 80 | 66 |
|-------|---|------|---|----|----|
| 28.74 | " | 66 * | " | 60 | 66 |
| 7.47 | " | 66 | " | 40 | " |
| 0.93 | | " | " | 20 | " |

Leaving 0.01 per cent retained by a sieve of 20 "

49.14

Manitoba.

15. Brick clay-from the property of the Canadian Northern railway, near Riding mountain, Manitoba.

This material, which it was surmised by the sender might prove to be a natural cement stone, was in reality a slightly ferruginous, strongly calcareous, highly magnesian clay. It contains a small quantity of fine siliceous grit, disintegrates rapidly on immersion in water, and is rather feebly plastic. It yields on burning, a strong, but readily fusible product, but is not, per se, a cement stone. It might be utilized in the manufacture of bricks and coarse pottery.

16. Two samples from Sec. 12, Tp. 5, R. 20, east of the principal meridian, Manitoba.

The portion designated 'umber' clay is strongly plastic, slightly calcareous, slightly magnesian, and slightly ferruginous. It carries only a small quantity of fine siliceous silt, and yields a strong, but easily fusible brick.

The 'green' clay is also strongly plastic, is slightly magnesian and slightly ferruginous, and readily fusible. It differs from the 'umber' clay in being much more strongly calcareous, and in carrying a larger quantity of fine siliceous gritty matter.

Both the foregoing clays might be utilized in the manufacture of building bricks, and, if mixed with the proper proportion of carbonate of lime, of cement.

17. Brick and pottery clays—from six different strata, on the property of the Pressed Brick and Tile Co., at LaRivière, Lisgar county, Manitoba.

Mat

1 ceur

take
of C
I
sligh
rath

brick not

ous, tity some

2

clay, yield fact

Paci I what

mou

be u

2

stroi very redd A partial analysis of each was made, and the following results were obtained. Material dried at 100° C. was found to contain:—

ing

ch,

191

19.

nt

n.

18.

of

ly

ch

ty

ıg

| | | | | | | | | | | - | | |
 | | | | 4 | 100 | |
|-----|----|----|-----|-----|----|----|--|--|--|---|--|-------|------|-----|----|--|---|-------|-----------|
| No. | of | sį |)ec | ein | ne | n. | | | | | | | | | | | | Lime. | Magnesia. |
| | 1 | | | | | | | | | | | | | • : | | | | 0.42 | 0.89 |
| * | 2 | | | | | | | | | | | | | | ٠. | | | 0.58 | 1.13 |
| | 3. | | | | | | | | | | | | | | | | | 0.71 | 1.28 |
| | | | | | | | | | | | | | | | | | | 1.39 | 1.56 |
| | 5. | | | | | | | | | | |
, | | | | | | 0.49 | 1.22 |
| | 6. | | | | | | | | | | | | | | | | | 0.96 | 1.23 |

Ontario.

18. Clay-from the east half of lot 9, con. XI, of Greenock township, Bruce county, Ontario.

This material, together with a sample of marl, of dolomite, and of peat, was taken from a lake bottom, and it was thought by the sender—Mr. Freeman Taylor, of Cargill, Ont.—that one or other might be petroliferous.

The sample of clay was found to be highly calcareous, highly magnesian, and slightly ferruginous, and to carry a small quantity of fine siliceous grit. It was rather strongly plastic, and yielded, on burning, a strong, but readily fusible brick. It might well be utilized in the manufacture of brick and tile. It did not contain any oil.

19. Sub-soil from Whitefish river, ten miles and a half north of Lake Abitibi.

A faintly yellowish, light-grey, very slightly calcareous and slightly ferruginous, rather feebly plastic clay, through which is distributed a rather small quantity of very fine siliceous silt, and some root fibres. It is readily fusible at a somewhat elevated temperature. Yields a weak, reddish-brown coloured brick.

20. From lot 17, con. III, of the township of March, Carleton county, Ontario.

A strongly plastic, slightly ferruginous, strongly calcareous, highly magnesian clay, containing a small quantity of fine siliceous grit. It is easily fusible, and yields a strong brick of light reddish-brown colour. It is adapted for the manufacture of building brick and drain tile.

21. Clay—from a point just west of Bell river, on the line of the Grand Trunk Pacific railway. Collected by Mr. W. J. Wilson.

It is rather strongly plastic, slightly ferruginous, slightly calcareous, and somewhat strongly magnesian. It carries little or no siliceous grit or silt, and when moulded into form and burnt yields a strong, but readily fusible product. It might be utilized in the manufacture of ordinary building brick.

Quebec.

22. From lot 14, range IX, of Hull, Ottawa county, Quebec

A greenish-grey, somewhat highly calcareous, rather strongly ferruginous, strongly plastic clay, through which is distributed a somewhat large quantity of very fine siliceous grit, and numerous minute scales of mica. It yields a strong, reddish-brown, readily fusible brick. It constitutes an excellent clay for the manufacture of ordinary building brick, and all kinds of common earthenware.

New Brunswick.

23. From a lake bottom in the parish of Salisbury, Westmorland county, N.B. It is slightly calcareous, slightly magnesian, slightly ferruginous, rather strongly plastic and readily fusible. Through it is disseminated a large proportion of very fine siliceous grit—not less than 38 per cent—and a very small quantity of pyrite. It yields a very strong brick of a dingy reddish-brown colour. This clay is suitable for the manufacture of ordinary building brick, drain tile, and similar ware.

yiel

refi

gra

plas

redo

for

24. From the Minto mining district, Sunbury county, N.B. This and the following sample were collected by Mr. W. C. Hunter, manager of the New Brunswick Coal and Railway Co.

First sample—colour, reddish-brown. A slightly calcareous, non-magnesian, rather strongly ferruginous, somewhat strongly plastic, readily fusible clay, through which is distributed a rather large proportion of fine siliceous grit. It affords a strong brick of reddish-brown colour. Such a clay would be well adapted for the manufacture of ordinary building brick and drain tile.

Second sample—from the same locality as the preceding specimen. Colour, greenish-grey. A slightly calcareous, slightly magnesian, rather strongly ferruginous, somewhat feebly plastic, easily fusible clay, carrying a small quantity of fine, disseminated particles of iron pyrites, and a trifling quantity of fine siliceous grit. It yields, on burning, a strong brick of a somewhat light, reddish-brown colour. It would serve for the manufacture of ordinary building brick.

- 25. These two samples were collected by Mr. W. B. Evans, of the Rothwell Coal Co.
- (a) First sample—found underlying the coal on the farm of Fred. Sypher, Flowers cove, Grand lake, Queens county, N.B., is a slightly calcareous, slightly ferruginous, but very slightly magnesian, rather strongly plastic clay, through which is disseminated a somewhat large proportion of fine siliceous grit. It yields a strong, difficultly fusible brick, of a light reddish-brown colour.
- (b) Second sample—found underlying the seam of goal in shaft No. 2 of the Rothwell Coal Company's mine, is a very slightly calcareous, slightly ferruginous, very slightly magnesian, rather feebly plastic clay, through which is disseminated a small quantity of fine siliceous grit. It yields a strong, somewhat difficultly fusible brick, of a light reddish-brown colour.

Of the foregoing, it will be observed that No. 1 is the more difficultly fusible, and might be employed in the manufacture of a firebrick in which a high degree of refractoriness was not called for. Both might be used for the manufacture of stove linings. They would make a good building brick, and might also be employed, No. 1 more especially, for the manufacture of common pottery.

Nova Scotia.

26. Clay—from a bed on Diogenes brook, River Denys district, Inverness county, N.S.

A slightly ferruginous and slightly calcareous, strongly plastic clay, carrying a small quantity of fine siliceous grit. When moulded into form and burnt it yields a strong, and all but infusible, white product. It would furnish a fairly refractory firebrick, and would be well adapted for the manufacture of certain grades of potters.

.B.

gly

of

of

lay

lar

he

ew

in, iy, It ed

ır,

of

m

11

h

d

27. From John McDonald's farm, Cross Roads, Leitches Creek, Cape Breton county, N.S.

Colour, brownish-red; is highly calcareous, rather strongly ferruginous, feebly plastic, and contains a somewhat large quantity of fine siliceous grit. Burns reddish brown, is readily fusible at an elevated temperature. Might be employed for the manufacture of ordinary building brick.

MISCELLANEOUS EXAMINATIONS.

1. Quartz sand—from a deposit, some fifty acres in extent, occurring in part on lot 48 and in part on lot 49, of concession I, of the township of Oneida, Haldimand county, Ontario.

A very fine, light greyish sand, composed essentially of translucent to sub-transparent rounded grains of quartz.

Its composition was found to be as follows:-

| Silica | ! |
 |
 |
99.06 |
|------------------|---|------|------|-----------|
| Ferric oxide | | | | |
| Alumina | | | | |
| Lime | |
 |
 |
0.13 |
| Magnesia | |
 |
 |
0.03 |
| Manganous oxide | |
 |
 |
Trace |
| Loss on ignition | | | | |

100.000

2. Graphitic shale—from Frenchvale, two miles southwest of Guthro lake, Cape Breton county, N.S.

This particular sample, which was in a much broken down condition, contained 12.39 per cent of graphite.

Analyses of two samples from this locality—one made in 1878 and the other in 1898—showed respectively 38.34 and 45.43 per cent of graphite.

3. Graphitic shale-from vicinity of West bay, Cape Breton county, N.S.

After drying at 100° C. (hygroscopic water=3.20 per cent), it was found to contain:-

| Rock mat | ter | | | | | | | | | | | | | | | | . ` | | 67. | 28 | |
|----------|-----|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|-----|---|------|----|--|
| Carbon | | | | | | | | | | | | | | | | | | | 32. | 72 | |
| | | | | | | | | | | | | | | | | | - | _ | | | |
| | | | | | | | | | | | | | | | | | | 1 | 100. | 00 | |

4. Carbonaceous shale-from Stewart brook, Pictou county, N.S.

A black, argillaceous shale, of Carboniferous age, through which is evenly distributed a small quantity of carbonaceous matter. It yields, on destructive distillation, a very small quantity of tarry, bituminous matter, with water and combustible gases.

on nd

| | 10 | 0.00 |
|---|---------------------------------------|------|
| | Ash—rock matter, shale, etc | 5.29 |
| | | 3.96 |
| | Bituminous matter, soluble in benzol | 0.30 |
| | Moisture—loss on drying at 100° C | 0.45 |
| 5 | proximate composition was as follows. | |

It is not an oil-bearing shale, as was thought by the sender might be the case.

APPENDIX

DESCRIPTION OF COMMERCIAL METHODS AND APPARATUS FOR THE ANALYSIS OF OIL-SHALES

BY

Harold Leverin, Ch.E.

The commercial value of oil-shales depends chiefly on the amount of crude oil and ammonium sulphate—per ton of shale—obtainable therefrom. With a view to providing for the accurate determination of the amount of these products in Canadian oil-shales, methods have been adopted which have been carefully checked, and are found to be in accord with the latest improved manufacturing methods. The following is a brief description of the methods adopted and apparatus installed in the chemical laboratory of the Mines Branch, Department of Mines, Ottawa, for the distillation, etc., of oil-shales.

DETERMINATION OF CRUDE OIL.

Hitherto, the nature of the carbonaceous matter in oil-shales has not been determined; but it can be affirmed with certainty that it does not exist in the shale in the same condition as the substances obtained by destructive distillation of the shale; since none of these substances can be extracted by solvents, such as petrolic ether, benzine, etc., but are formed by destructive distillation.

The apparatus for this determination (Plate I) consists of a malleable iron tube, 2½" inside diameter × 36" long, closed at one end with an iron cap, and at the other by a disc B, secured by means of a clamp A, and packed with a lead washer in order to seal the retort perfectly. The retort is inclined at a convenient angle to enable the oil to run off. The oils, in both gaseous and liquid state, pass through tubes C and D, the oils already condensed being collected in the copper receptacle E. The others pass through condenser F into flask G, which is connected to flask H. Both the flasks are immersed in ice water. Generally, two-thirds of the distilled oils are received in receptacle E, the remainder in flask G, except a few drops, occasionally, in flask H. The retort is heated in a gas tube furnace of the American Gas Furnace Company's make.

The process of destructive distillation (Plate II) is comparatively simple. One pound of shale, crushed into pieces, ½" square, is placed in the retort, and heated gradually to a dull red heat, great care being exercised not to raise the temperature too suddenly or higher than a dull red heat, otherwise considerable losses will occur. At lower temperatures the hydrocarbons of the fatty series are

to a-d,

s.

n le if

n it d it is

a.

е е

Apparatus for the determination of crude oil.

10843—р. 122

a wito lidist

follo

6'-0' oper The

suita resu pass

I obtain the check is us this

in oi the p mant as ur in th sulph sulph the ' It is

the E

fully

evolved; but at higher, those of the aromatic. When the temperature is too high, a white smoke is readily noticed in the glass flask, so that it is comparatively easy to keep the right temperature in the retort. The time generally required for distillation is $2\frac{1}{2}$ hours, after which the oil obtained is cooled, separated from water, measured, and its specific gravity determined.

When the chemist has not at his disposal the apparatus described above, the following simple and cheaper arrangement may be used instead:—

The tube used is made of a t inch wrought iron tubing, 2" inside diameter × 6'-0" long. The tube is sealed at one end by an iron cap, the other end remaining open. No condenser is used, but the oil is collected as it runs out of the tube. The method of procedure is the same as mentioned above.

Although this method is used extensively in Scotch oil-shale works, and is suitable for most practical purposes, it is capable of giving only approximate results; as the lighter oils and naphtha are lost, and cannot be collected except by passing them through a condenser.

DETERMINATION OF AMMONIUM SULPHATE.

The method of analysis adopted for the determination of ammonium sulphate obtainable from oil-shale is known as the Bailey method. This method has been checked against the manufacturing process in which the 'Pumpherston' retort is used, and gives like results; but as improvements are made in manufacturing, this method of analysis will have to be changed accordingly.

It seems a reasonable deduction that a determination of the nitrogen present in oil-shale, and calculation of the equivalent ammonium sulphate, would give the possible amount of ammonium sulphate obtainable from the shale; but in manufacturing considerable losses occur, a large part of the nitrogen is evolved as uncombined nitrogen, a smaller amount as cyanogen, while the balance remains in the spent shale. The 'Henderson' retort yielded 16 to 20 pounds of ammonium sulphate from a shale containing nitrogen—equivalent to 74 pounds of ammonium sulphate per ton of shale; the 'Young and Beilby' retort, twice as much; while the 'Pumpherston' retort gave a still greater return—calculated at 52 pounds. It is evident that the Bailey method can only be applied to the process in which the 'Pumpherston' retort is used.

The possibility of extracting nitrogen in the form of ammonium sulphate by the Bailey method was tested as follows:—

A sample of oil-shale from Taylorville, Westmorland county, N.B., was carefully analysed, the results being:—

| Volatile matte | r., | | | | | | | | | | | | | | | 37.4 |
|----------------|-----|--|--|--|--|--|--|--|--|--|--|--|--|--|--|-------|
| Fixed carbon. | | | | | | | | | | | | | | | | 4.3 |
| Ash | | | | | | | | | | | | | | | | 58.20 |
| | | | | | | | | | | | | | | | | 100.0 |
| Nitrogen | | | | | | | | | | | | | | | | 1.9 |

By destructive distillation, and by Bailey's method, the following values were found:—

Crude qil........ 45.000 imperial gallons per ton (2,240 lbs.).

Specific gravity of oil.. 0.905

Ammonium sulphate.... 89-300 pounds per ton (2,240 lbs.).

Nitrogen in the shale was determined by the Kjeldahl method, and the shale was found to contain 1.21 per cent of nitrogen—equivalent to 5.70 per cent or 127.7 pounds of ammonium sulphate per ton of shale. The coke remaining in the tube was analysed by the same method, and showed 0.16 per cent of nitrogen—equivalent to 0.75 per cent or 17 pounds of ammonium sulphate per ton of spent shale; which is a rather inconsiderable amount: only 0.10 per cent of nitrogen in the oil-shale; the spent shale containing 95.55 per cent of ash.

Thus, 70.2 per cent of the nitrogen in oil-shale can be obtained by the Bailey method, the loss being 29.8 per cent. Of this loss 8.2 per cent remained in the spent shale, 21.6 per cent being volatilized as uncombined nitrogen, and a smaller part as cyanogen.

The Bailey Method: 30 grammes of shale in small pieces are heated in a ma'leable iron tube to bright redness, and subjected to a current of steam for one hour and a half, the resulting gases being led into a flask containing 2 N, sulphuric acid. In this solution, ammonia is determined either by nitrometer or by redistilling with caustic soda.

The apparatus used consists of a malleable iron tube, \(\frac{3}''\) inside diameter \(\times 28''\) long, one end being closed by an iron cap, through which passes a brass tube, while the other end is connected with the steam supply. Pieces of previously ignited firebrick—about 5 millimetres in diameter—are dropped into the tube, so as to occupy about 8" of the tube next to the stop-cock. Then, 30 grammes of shale—3 millimetres in diameter—are dropped into the tube, which is placed in the combustion furnace, with the portion containing the shale well in the centre of the furnace, so that it may readily be heated to a bright red. Into the open end of the tube next to the shale is fitted a cork, through which a glass delivery tube passes into a 600 c.c. flask containing 50 c.c. of 2 N sulphuric acid. A second flask may be used to catch any ammonia that may be carried over. These flasks are immersed in ice water.

To start operations, the furnace is lighted, and the tube heated as rapidly as possible to bright redness, the time being noted when this is attained. It is essential that the time should not exceed 10 to 15 minutes. As soon as vapours begin to show in the glass tube, the stop-cock is opened and a moderate current of steam allowed to pass through the tube. The proportion of steam should be such that after 1½ hours' heating to bright redness, about 400 c.c. of liquid are contained in the first flask. During operation the end of the iron tubes should be kept cold by wet lint or cloths wrapped around and kept moist in order to prevent charring the cork.

After 1½ hours the apparatus is disconnected, care being taken that neither then nor at any time does any of the liquid go back into the tube, owing to reduc-

t n

y e r

e d l.

Apparatus for the Determination of Animonium Sulphate.

10843—p. 124

tio eth aft or

disl this all is t and vol

at . amı

trat how

hyd sulr indi

amr conf be q '.' mad Cha

tion in pressure. The flasks are then rinsed out. To the liquid is added petrolic ether or other solvent for oil, thoroughly shaken and the oil and liquid separated after standing for a few minutes. The liquid is made up to a volume of 500 c.c., or other convenient quantity, and then thoroughly mixed by shaking.

A measured portion of this liquid—say 250 c.c.—is evaporated in a porcelain dish on a water bath, until its volume is reduced to 5 or 6 cubic centimetres, and this residue is rinsed into the cup of a nitrometer, precaution being taken that all ammonia salts are transferred into the cup. Excess of sodium hypobromite is then added, the nitrometer is shaken, and the volume of nitrogen, temperature, and pressure is read off with all necessary corrections, from which data the total volume of nitrogen from 30 grammes of shale is calculated. One c.c. of nitrogen at N. T. P. is equivalent to 0.001562 grammes ammonia, from which the yield of ammonium sulphate per ton of shale may be readily calculated.

Sodium hypobromite is made by dissolving 5 c.c. bromine in 50 c.c. concentrated sodium hydrate solution. This solution is of such an unstable nature, however, that a fresh mixture has to be made for each determination.

Instead of using the nitrometer, a redistillation of the liquid with sodium hydrate may be made in the usual way: collecting the free ammonia in N sulphuric acid, and titrating the excess of acid with N alkali, using cochineal as indicator.

The assertion made by other chemists, that organic bases distil over with the ammonia, and hence render the resulting percentage of the latter too high, is not confirmed by the Mines Branch distillation tests; for this method was found to be quite accurate.

The following is a statement of Mines Branch analyses, compared with those made in the laboratory of the College of New York, under the direction of Dr. Charles Baskerville:—

| Sample from | (Hamor)
Nitrometer
Method. | (Levering) Distillin Method. |
|---|----------------------------------|------------------------------|
| | Lbs. Am. Sulp.
per ton. | Lbs. Am. Sulp.
per ton. |
| No. 1—Baizley's farm | 67 | 112
70 |
| ,, 3—Adam's farm.
,, 4—Taylor's farm | 93
110 | 96
104 |

¹ See Mines Branch Report on Oil-shales, by Dr. R. W. Ells-Part I., p. 17, 1909.

126

ANALYSES OF OIL-SHALE

(LEVERIN.)

| Locality. | Crude Oil
Imper. Gal. | Specific Gravity
of Oil. | Ammon. Sulp |
|--|--------------------------|-----------------------------|---------------|
| | Per ton. | ^ | Lbs. per ton. |
| 1. Baizley's farm, Baltimore, Albert co., N. B | 52:0 | 0.904 | 112.2 |
| 2. Stephens, Albert co., N.B | 45.5 | 0 892 | 70.0 |
| 3. Turtle creek, " | 56.8 | 0.891 | 30.5 |
| 4. Stellarton, Pictou co., N.B. | 44.8 | 0.875 | 14.5 |
| 5. Albert mine, Quarry I, Albert co., N.B. | 22 2 | 0.892 | 28.0 |
| 6. Albert mine, Quarry II, Albert co., N.B. | 48.5 | 0.898 | 82.8 |
| 7. Albert No. 2, Albert co., N.B | 38.8 | 0.892 | 60.3 |
| 9. " " 4. " " | 45:5 | 0.891 | 48:0 |
| | 43 5
27 0 | 0·896
0·895 | 56·8
49·1 |
| 1. Albert mine, (Albertite) Albert co., N.B. | 112.0 | 0 857 | 93.5 |
| 2. Taylorville, Westmorland co., N.B | 42.3 | 0.897 | 96.5 |
| 3. " " " " | 47 3 | 0.901 | 88.7 |
| 4. " | . 46 8 | 0.902 | 85.0 |
| 5. " " | 45.0 | 0.903 | 104.0 |

p.

.

41

,

1. M

2. G1

3. In

4. Ra

5. On

7. Lir

8. Cla

9. Hy

10. Mic

11. Asb

12. Zino

CANADA

DEPARTMENT OF MINES

MINES BRANCH

HON. W. TEMPLEMAN, MINISTER; A. P. LOW, LL.D., DEPUTY MINISTER; EUGENE HAANEL, Ph.D., DIRECTOR.

REPORTS, AND MAGNETOMETRIC SURVEY MAPS OF ECONOMIC INTEREST.

PUBLISHED BY THE

MINES BRANCH

REPORTS.

- Mining Conditions of the Klondike, Yukon. Report on—by Eugene Haanel, Ph.D., 1902.
- Great Landslide at Frank, Alta. Report on—by R. G. McConnell and R. W. Brock, M.A., 1903.
- Investigation of the different electro-thermic processes for the smelting of iron ores, and the making of steel, in operation in Europe. Report of Special Commission—by Eugene Haanel, Ph.D., 1904. (Out of print.)
- 4. Rapport de la Commission nommée pour étudier les divers procédés électrothermiques pour la réduction des minerais de fer et la fabrication de l'acier employés en Europe. (French Edition), 1905. (Out of print.)
- On the location and examination of magnetic ore deposits by magnetometric measurements. Eugene Haanel, Ph.D., 1904.
- Limestones, and the Lime Industry of Manitoba. Preliminary Report on by J. W. Wells, 1905.
- 8. Clays and Shales of Manitoba: their Industrial Value. Preliminary Report on—by J. W. Wells, 1905. (Out of print.)
- 9. Hydraulic Cements (Raw Materials) in Manitoba: Manufacture and Uses of. Preliminary Report on—by J. W. Wells, 1905.
- Mica: its Occurrence, Exploitation, and Uses—by Fritz Cirkel, M.E., 1905.
 (Out of print.)
- Asbestos: \$ts Occurrence, Exploitation, and Uses—by Fritz Cirkel, M.E.,
 1905. (Only a few copies available.)
- Zinc Resources of British Columbia and the Conditions Affecting their Exploitation. Report of the Commission appointed to investigate—by W. R. Ingalls, 1905.

- 16. Experiments made at Sault Ste. Marie, under Government auspices, in the smelting of Canadian iron ores by the electro-thermic process. Final Report on—by Eugene Haanel, Ph.D., 1907.
- 17. Mines of the Silver-Cobalt Ores of the Cobalt district: Their Present and Prospective Output. Report on—by Eugene Haanel, Ph.D., 1907.
- 18. Graphite: its Properties, Occurrence, Refining, and Uses—by Fritz Girkel, M.E., 1907.
- 19. Peat and Lignite: Their Manufacture and Uses in Europe—by Erik Nyström, M.E., 1908.
- Iron Ore Deposits of Nova Scotia. Report on (Part 1)—by Dr. J. E. Woodman.
- 21. Summary Report of Mines Branch, 1907-8.
- 22. Iron Ore Deposits of Thunder Bay and Rainy River districts. Report on—by F. Hille, M.E.
- 23. Iron Ore Deposits along the Ottawa (Quebec side) and Gatineau rivers. Report on—by Fritz Cirkel, M.E.
- 24. General Report on the Mining and Metallurgical Industries of Canada, 1907-8.
- 25. The Tungsten Ores of Canada. Report on-by Dr. T. L. Walker.
- 26. The Mineral Production of Canada, 1906. Annual Report on—by John McLeish, B.A.
- 27. The Mineral Production of Canada, 1908. Preliminary Report on—by John McLeish, B.A.
- 28. Summary Report of Mines Branch, 1908.
- 29. Chrome Iron Ore Deposits of the Eastern Townships. Monograph on—by Fritz Cirkel, M.E. (Supplementary Section: Experiments with Chromite at McGill University—by Dr. J. B. Porter.)
- 30. Investigation of the Peat Bogs and Peat Fuel Industry of Canada, 1908.

 Bulletin No. 1—by Erik Nyström, M.E., and A. Anrep, Peat Expert.
- 31. Production of cement in Canada, 1908. Bulletin on-by John McLeish, B.A.
- 32. Investigation of Electric Shaft Furnace, Sweden. Report on—by Eugene Haanel, Ph.D.
- 42. Production of Iron and Steel in Canada during the Calendar years 1907 and 1908. Bulletin on—by John McLeish, B.A.
- 43. Production of Chromite in Canada during the Calendar years 1907 and 1908.

 Bulletin on—by John McLeish, B.A.
- 44. Production of Asbestos in Canada during the Calendar years 1907 and 1908.

 Bulletin on—by John McLeish, B.A.
- 45. Production of Coal, Coke, and Peat, in Canada during the Calendar years 1907 and 1908. Bulletin on—by John McLeish, B.A.
- 46. Production of Natural Gas and Petroleum in Canada during the Calendar years 1907 and 1908. Bulletin on—by John McLeish, B.A.
- 47. Iron Ore Deposits of Vancouver and Texada Islands. Report on—by Einar Lindeman, M.E.

55.

58.

59.

62.

63.

67.]

68. 1

71. I

69. *I*

.

6. N

13. N

14. M

15. M

33. M

34. M

- 55. Report on the Bituminous, or Oil-shales of New Brunswick and Nova Scotia; also on the Oil-shale Industry of Scotland—by Dr. R. W. Ells.
- 58. The Mineral Production of Canada, 1907 and 1908. Annual Report on—by John McLeish, B.A.
- 59. Chemical Analyses of Special Economic Importance made in the Laboratories of the Department of Mines, 1906-7-8. Report on—by F. G. Wait, M.A., F.C.S. (With Appendix on the Commercial Methods and Apparatus for the Analysis of Oil-shales—by H. A. Leverin, Ch.E.)
- 62. Mineral Production of Canada, 1909. Preliminary Report on—by John McLeish, B.A.
- 63. Summary Report of Mines Branch, 1909.

the the

Tinal

rkel.

röm,

ood-

)n--

ers.

ada,

ohn

ohn

-by

ro-

108.

.A.

ene

nd

08

67. Iron Ore Deposits of the Bristol Mine, Pontiac county, Quebec. Bulletin No. 2—Einar Lindeman, M.E., and Geo. C. Mackenzie, B.Sc.

Schedule of Charges for Chemical Analyses and Assays.

IN THE PRESS.

- 68. Recent Progress in Electro-Metallurgy. Bulletin No. 3-Dr. Eugene Haanel.
- 71. Investigation of the Peat Bogs, and Peat Industry of Canada: with Appendices I, II, and III—the last named being a translation of the Ekenberg Wet Carbonizing Process. Bulletin No. 4—A. Anrep, Peat Expert.

IN PREPARATION.

- 69. Asbestos: its Occurrence, Exploitation, and Uses—by Fritz Cirkel, M.E. (Second Edition, enlarged.)
 - Coal and Coal Mining in Nova Scotia-by J. G. S. Hudson.
 - Coal Tests at McGill University. Report on-by Dr. John Bonsall Porter.

MAPS.

- 6. Magnetometric Survey of Calabogie mine, Bagot township, Renfrew county,
 Ontario. Vertical Intensity—by E. Nyström, M.E., 1904.
- 13. Magnetometric Survey of the Belmont Iron mines, Belmont township, Peterborough county, Ontario—by B. F. Haanel, B.Sc., 1905.
- 14. Magnetometric Survey of the Wilbur mine, Lavant township, Lanark county, Ontario-by B. F. Haanel, B.Sc., 1905.
- 15. Magnetometric Survey of Iron Ore Deposits at Austin brook, Bathurst township, Gloucester county, N.B. Vertical Intensity—by E. Lindeman, M.E., 1906.
- 33. Magnetometric Survey, Vertical Intensity: Lot 1, Concession VI, Mayo township, Hastings county, Ontario—by Howells Fréchette, M.Sc., 1909.
- 34. Magnetometric Survey, Vertical Intensity: Lots 2 and 3, Concession VI,
 Mayo township, Hastings county, Ontario—by Howells Fréchette, M.Sc.,
 1909.

35. Magnetometric Survey, Vertical Intensity: Lots 10, 11, and 12, Concession IX, and Lots 11 and 12, Concession VIII, Mayo township, Hastings county, Ontario—by Howells Fréchette, M.Sc., 1909.

64. I

65. I

66. A

Depar

- 36. Survey of Mer Bleue Peat Bog, Gloucester township, Carleton county, and Cumberland township, Russell county, Ontario—by Erik Nyström, M.E., and A. Anrep, Peat Expert.
- 37. Survey of Alfred Peat Bog, Alfred and Caledonia townships, Prescott county, Ontario—by Erik Nyström, M.E., and A. Anrep, Peat Expert.
- 38. Survey of Welland Peat Bog, Wainfleet and Humberstone townships, Welland county, Ontario—by Erik Nyström, M.E., and A. Anrep, Peat Expert.
- 39. Survey of Newington Peat Bog, Osnabruck, Roxborough, and Cornwall townships, Stormont county, Ontario—by Erik Nyström, M.E., and A. Anrep, Peat Expert.
- 40. Survey of Perth Peat Bog, Drummond township, Lanark county, Ontario—by Erik Nyström, M.E., and A. Anrep, Peat Expert.
- 41. Survey of Victoria Road Peat Bog, Bexley and Carden townships, Victoria county, Ontario—by Erik Nyström, M.E., and A. Anrep, Peat Expert.
- 48. Magnetometric Map of Iron Crown claim at Klaanch river, Vancouver island, B.C.—by Einar Lindeman, M.E.
- 49. Magnetometric Map of Western Steel Iron claim, at Sechart, Vancouver island, B.C.—by Einar Lindeman, M.E.
- 50. Vancouver island, B.C.-by Einar Lindeman, M.E.
- 51. Iron Mines, Texada island, B.C.—by E. H. Shepherd, C.E.
- 52. Sketch Map of Bog Iron Ore Deposits, West Arm, Quatsino sound, Vancouver island, B.C.—by L. Frank.
- Iron Ore Occurrences, Ottawa and Pontiac counties, Quebec, 1908—by J. White, and Fritz Cirkel, M.E.
- Iron Ore Occurrences, Argenteuil county, Quebec, 1908—by Fritz Cirkel, M.E.
- 57. The Productive Chrome Iron Ore District of Quebec-by Fritz Cirkel, M.E.
- 60. Magnetometric Survey of the Bristol mine, Pontiac county, Quebec—by Einar Lindeman, M.E.
- Topographic Map of Bristol mine, Pontiac county, Quebec—by Einar Lindeman, M.E.
- 70. Magnetometric Survey of Northeast Arm Iron Range, Lake Timagami, Nipissing district, Ontario-by Einar Lindeman, M.E.

IN THE PRESS.

- 72. Brunner Peat Bog, Ontario-by A. Anrep, Peat Expert.
- 73. Komoka Peat Bog, Ontario— " "
- 74. Brockville Peat Bog, Ontario— " "
- 75. Rondeau Peat Bog, Ontario— " "
- 76. Alfred Peat Bog, Ontario— " "
- 77. Alfred Peat Bog, Ontario: Main Ditch profile-by A. Anrep.

IN PREPARATION.

- 64. Index Map of Nova Scotia: Gypsum-by W. F. Jennison, M.E.
- 65. Index Map of New Brunswick: Gypsum-by W. F. Jennison, M.E.
- 66. Magdalen islands: Gypsum-by W. F. Jennison, M.E.

sion ings

and

.E.,

nty,

and

wn-

ria

ver

7er

J.

Magnetometric Survey of Huron Mountain mine, Timagami Forest Reserve, Ontario—by B. F. Haanel, B.Sc.

Magnetometric Survey of Lot 7 Λ, Range V, Leeds township, Quebec—by B. F. Haanel, B.Sc.

Note.—All applications for Reports, or Maps issued by the Mines Branch of the Department of Mines, should be addressed to

EUGENE HAANEL, Ph.D.,

Director of Mines,

Ottawa.