CIHM
 Microfiche
 Series
 (Monographs)

ICMH
 Collection de microfiches (monographies)

Canadian Institute for Historical Microreproductions / Institut canadien de microreproductions historiques

Technical and Bibliographic Notes / Notes techniques et bibliographiques

The institute has attempted to obtain the best original copy available for filming. Features of this copy which may be bibliographically unlque, which may alter any of the Images in the reproduction, or which may significantly change the usual method of filming are checked below.

Coloured covers /
Couverture de couleur
Covers damaged /
Couverture endommagée
Covers restored and/or laminated /
Couverture restaurée etou pelliculée
Cover title missing / Le titre de couverture manqueColoured maps / Cartes géographiques en couleurColoured ink (i.e. other than blue or black) /
Encre de couleur (i.e. autre que bleue ou noire)

Coloured plates and/or illustrations /
Planches et/ou illustrations en couleur
Bound with other material /
Relié avec d'autres documents

Only edition available /
Seule édition disponibleTight binding may cause shadows or distortion along interior margin / La reliure serrée peut causer de l'ombre ou de la distorsion le long de la marge intérieure.

Blank leaves added during restorations may appear within the text. Whenever possible, these have been omitted from filming / II se peut que certaines pages blanches ajoutées lors d'une restauration apparaissent dans le texte, mais, lorsque cela était possible, ces pages n'ont pas été filmées.

Additional comments /
Commentaires supplémentaires:

L'Institut a microfilmé le meilleur exemplaire qu'il lul a été possible de se procurer. Les détails de cet exemplaire qui sont peut-être uniques du point de vue bibliographique, qul peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de filmage sont indiqués ci-dessous.
\square Coloured pages / Pages de couleur

Pages damaged / Pages endommagées

Pages restored and/or laminated/
Pages restaurées etou pelliculées
Pages discoloured, stained or foxed /
Pages décolorées, tachetées ou piquées
Pages detached / Pages détachées
Showthrough / Transparence

Quality of print varies /
Qualité inégale de l'impression
Includes supplementary material i
Comprend du matériel supplémentair:

\square
Pages wholly or partially obscured by tinuta slips, tissues, etc., have been refilmed to ensure the best possible image / Les pages totalement ou partiellement obscurcies par un feuillet d'errata, une pelure, etc., ont été filmées à nouveau de façon a obtenir la meilleure image possible.

Opposing pages with varying colouration or discolourations are filmed twice to ensure the best possible image / Les pages s'opposant ayant des colorations variables ou des décolorations sont filmées deux fois afin d'obtenir la meilleure image possible.

This item is filmed at the reduction ratio checked below /
Ce document est fiimé au taux de réduction indiqué ci-dessous.

The copy filmed hare hes been raproduced thanks to the generosity of:

> Oveen's University
> Documents Library
> Kingston

Tha Images appaering hara ara the bast quellty possibia considarling the condition and ieglbility of the orlginei copy and In keepling with the filming contract specifications.

Original coples in printed paper covers ara filmad baginning with the front cover and ending on the lest page with a printed or lilustreted impres. sion, or the back cover when appropriete. Ail other originai copies ere filmed beginning on the first page with a printed or illustrated Impression, and ending on the iest page with a printed or illustretad impression.

The last racorded frame on aech microflcha shaii contain the symbol \rightarrow (meening "CONTINUED"I, or the symbol ∇ (maening "END"), whichavar applias.

Maps, plstas, cherts, otc., mey be filmad ot differant reduction retios. Those too lerge to be entiraiy inciudad in one axposure are fllmad baginning in the uppar left hend corner, left to right end top to bottom, es many frames es required. Tha foiiowing diegrams iilustrete the mothod:

L'exampiaire filmd fut raproduit grice la gdndrosit' da:

> Queen's Uni versity Documents Library Kingston

Las imagas suivantes ont ótd reproduitas evec le pius grand soin, compte tenu de la condition ot de is nertate de l'axampioire fiimd, at an conformitd evec les conditions du contrat de fllmage.

Les exemploires orlginaux dont ie couvarture en pepiar eat Imprimde sont fiimds an commencent par ia premiar piat at an terminant soit per la darnidre pege qui comporta una empreinte d'imprassion ou d'iliustretion, soit per ia second piot, seion la cas. Tous ies sutras exampieires orlginaux sont filmés en commençant per le premidre pege qui comporte une empreinte d'Imprassion ou d'illustration at an tarminant per lo darnidre paga qui comporta una taile emproi. :a.

Un des symboies suivants spparaitre sur la darnidere image de chaque microfiche, selon le cas: is symboio signifio "A SUIVRE'. Ia symboio ∇ signitia "FiN".

Las cartas. planches. tabiaaux, atc., peuvent itre fiimés da das taux de rúduction diffórents. Lorsqua ie documant est trop grand pour atre raproduit on un saul ciichd. il ast filmd a partir da iangla supd́riour goucha:' de gaucha troite. ot do haut on bas, an pranant ia nombra d'imeges ndcesseire. Las diagrammes suivents iliustrent is muthode.

UNIVERSITY OF TORONTO STUDIES

PSYCHOLOGICAL SERIES

VOL. III, No. 1: COMPLE MENTARISM PHYSICAL AND PSYCHICAL. By
D. S. DIX

THE UNIVERSITY LIBRARY: PUBLISHED BY THE LIBRARIAN, 1908

COMPLEMENTARISM: PHYSICAL AND PSYCHICAL

BY
D. S. DIX, M.A., PH.D.

COMPIFMENT:URISM: PHYSICAI. AND PSYCHICAL

I.

COMPIEMENTARISM AND COLOUR THEORIES

Complementarism forms a field of investigation for both the physicist and the psychologist, but its significance for each nust be sharply distinguished. All physics is based in the last analysis not upon the directly given facts, but upon the results of constructive abstraction. Sound, light, heat, etc., physically regarded. are merely waves of ether (or ponderable matter), of certain length and amplitude, acting upon the respective physical organs. Thus, the problem of complementary colours is for the physicist the relation of two sets of waves, each of which would produce a certain colour-quality, but which, in combination, give a quality totally different from cither, colourless light.

Whatever psychology may have been in the past, to-day it can justly claim to be a science, for it seeks to investigate the facts of the given world, the world of consciousness. Its field is the same as that of the so-called natural sciences, its methods also being the same, i.e., observation and experiment. But the essential difference consists in this, that psychology finds its sulject matter in the facts as they are given, while the natural sciences build upon hypotheses deduced from these facts. But the facts from which they start are the same for both. It is, therefore, plain that only the interpretation of an experiment will determiare whether it is physical or psychical in its significance. Psychology maintains that " if the results of science shall have certainty, then science must begin with the elementary facts of consciousness, and not with contradictory pseudo-conceptions."* Thus physical optics, to be more than a merely kinetic discipline, must begin with a rigid analysis of the facts of light and colour. Modern optics rloes not do this, and as it also fails to accept the psycho-physical laws in its theory of light, so psychology must decline to make physical ideas the basis in an analysis of the facts of sensation and in its theory of visual

[^0]qualities. Psychically, there are wo mixed colours, for sensations, or sense-qualities, do not mix. Whether the nature of the organism will afford an explanation of the lack of parallelism between the stimulus and the sensation is another question. In the meantime we elserve that for the physicist colour-qualities and colour phenomena are quantitative functions of wave-lengths, while for the psychologist these sensations are the subject of qualitative and quantitative investigation. . Ind, as Kirschmann has pointed out*, any adequate description of the manifoldness of light qualities and their phenomena (e.g., complementarism) must be based on the real attributes and conditions of sensation.

Furthermore, it may be said that the exact ascertainment of the complementary relations of colours has practically no meaning at all for the physicist; for thus far no fixed relation has been found between what he regards as colour (i.e., wavelength) and complementarism. With the help of a chart of the normal spectrum. it is found that the change in colour-quality in different parts is not directly proportional to the change in wave-length. So, too, Helmholtz has found that the relation which does exist is not a fixed one for all the different pairs of complementary colours, but that it varies considerably. The following table exhibits this variation as Helmholta \dagger ascertained it (the unit of length used being the micron):

Colour	Leng! of	Complementary Colour	Lengh of	Relation of Wave-Lengths of Comple. mentaries
Red	656.2	Greenish Blue	492.1	1.334
Orange	607.7	Blue	489.7	1.240
Golden Yellow	585.3	${ }^{\text {Blue }}$	485.4	1. 206
Golden Yellow	573.9	Blue	482.1	1.190
Yellow	576.1	Indigo Blue	464.5	1.221
Yellow	564.4	Indigo Plue	461.8	1.222
Green-Yellow.	563.6	Violet	$\left\{\begin{array}{c} 433 \text { and } \\ \text { onward } \end{array}\right.$	1.301

[^1]The statements of various observers differ very much. Thus for von Kries the complementary for $556.2 \mu \mu$ is $492.4 \mu \mu$: for von Frey it is $485.2 \mu \mu$. The cunplementary for $570.1 \mu \mu$ for von Kries is 429.5 ; for von Frey this is the complementary of $566.4 \mu \mu$, whilst the complementary for $570.1 \mu \mu$ must be above $460 \mu \mu$ for him.

The discrimination of changes of colour-tone in the spectrum is absolutely independent of the numerical relations of

:"ig. 1.
wave-lengths and vibration-frequency. In Fig. 1, we represent the spectrum by the circumference of the circle as abscissæ, and the discriminative sensibility for colour-tone, as ascertained by Dobrowolsky*, as the ordinates. Thus we get a curve which

[^2]reaches its first maximum in the yellow, near D , and its second in the blue, near F; while the two minima are found in yellowgreen and violet. The three sections in this curve nearest to the circle correspond to the leginning, the middle, and the end of the visible spectrum.

Many efforts have been made by physicists to account for the facts. the most generally accepted theory being the YoungHelmholtz theory. Which starts from the existence of three primary colour-pualities-red, green, and violet. It is argued that since the misture of these in right proportions gives all the colour-pualities at a relatively great degree of saturation, therefore there are three elementary stimulations and three primary sensations corresponding to them. These stimulations are made possible by the functions (according to Young) of three kinds of nerve-fibrils, or (according to Helmholtz) of three chemical substances. The sensation of red is the result of the stimulation of one; the sensation of green the result of another: and violet of a third. Now, light excites all three of these nerve-filorils or substances, but with different intensity, according to the wavelength. Every colour-sensation, then, peripherally excited, means a certain "misture" of these three elementary stimulations.

According to this view, the sensation of white means that these three kinds of nerve-fibrils or substances are stimulated to about the same clegree of activity. But the facts of complementarism show that two so-called "colours" stimulate all the three sets of nerves, or substances, as effectually as the three fundamental ones. It is this fact, among others, that the physicist is called upon to explain, and Rool* attempts to elaborate the theory so as to account for this as follows:

[^3]and purple the first colour acts，of course，on its own set of nerves，the serond on the red and violet ncrves．＂

Furthermore Rood＊maintains，in defence，that this theory ＂enables us to understand a fact which otherwise might appear quite strange， viz．，that if we take away from white light any colour，the light which remains will have the complementary hue．Thus if we strike out from white light the orange rays，the remainder will appear of a rather pale cyan－blue． The table of complementary colours explains this result ；thus

and green－blue	make
Orange and cyan－blue	white
Yellow and hlue	
Grcen－yellow and violet	
Green and purple	make．．．．．．．．．．white

All these five pairs of colours are present in white light．If we remove from it orange，then cyan－blue is the only colour which is not neutralized； all the other colours balance up and make white light which mixes with and palcs the uncombined cyan－bluc．The explanation is the same in the other cases．It follows from this that the complementary colour；produced by the method of striking out a colour are rendered rather pale by the presence of a considerable amount of white light．This is the reason why the com－ plementary colours obtained by the use of polarized light are always rather pale．＂

This theory can be shown to be wrong by a simple experi－ ment with the so－called inverted spectrum，whose colours can all be regarded as derived by the subtraction of one part of the ordinary spectrum，and which yet show a saturation \dagger by no means inferior to that of the ordinary spectrum．Especially do the blue and the yellow show a beauty and saturation they never have in the ordinary spectrum；and the qualities between blue and red（i．e．，the violets and purples）are，with regard to saturation，not inferior to any part of the ordinary s_{i} 少化㱜．

The theory as a whole is weak，because it ignores certain facts，experimentally ascertained，and which are of the utmost importance in the formulation of a theory of vision．For example，there is no recognition of the independence of the brightness component in a colour impression，a view which is sufficiently upheld by the phenomena of colour－blindness，and of the pure brightness quality which accompanies very brief or intense stimulation．Aside from the fact that physicists should be able to agree as to what qualities are fundamental，there is no

[^4]reason to accept the term "primary sensation" as anything but arbitrary, since all other colour-qualities are as elementary as those chosen. It is by no means a necessary basis that all sensations be correlated with equally elementary processes.

On the other hand, when the phenomena of light and colour are recognized, adherents of this theory frequently resort to improbable and arbitrary hypotheses. This seems to characterize Rood's effort to explain the facts of complementarism. But five indefinitely stated pairs are cited in illustration. No effort is made to show, for example, how red and green-blue as complementaries may stimulate the nerve-fibrils to "about the same degree of activity." The explanation leads only to more indeterminate ideas as to the meaning of "primary sensation." But, even if there should be found an exact quantitative relation of wave-lengths to shed light upon the facts of complementarism (which, so far, has not been done), we should still have no adequate ground for speaking of the phenomenon as a function of wave-length. Every chance of finding a definite physical relation of wave-lengths which corresponds to complementarism will vanish if we accept the consequences of the fact that complementarism changes with a different tuning of the sense-organ, and that for certain colour-blinds* colours are complententary which for the normal eye are not. This has even been made out in a case of monocular dichromatism, where for the left (normal) eye the usual relations of complementaries obtained, whilst for the right eye the red of about $650 \mu \mu$ and the blue of $477 \mu \mu$ acted as complementaries and contrasting antagonists.

The time requiren for the origination of a visual sensation and the duration of the after-effect of a stimulation have suggested to some that the explanation of the process requires greater emphasis to be laid on the chemical side. So these see complementarism largely as a chemical function. Perhaps the most lucid theory from this physiological and chemical point of view is that of Hering. \dagger This, too, starts out with the assump-

[^5]tion of three visual substances (though no attempt is made to localize them), and the fundamental sensations are not three, but six-black and white, red and green, blue and yellow. Each of these three pairs corresponds to an assimilation or dissimilation process in one of the visual substances. Thus red light acts on the "red-green" substance in exactly the opposite way from green light, and when both kirds of light are present in suitable proportions, a balance is effected, and both seusations (red and green) vanish. Thus we have the phenomenon of complementarism. Again, according to this theory, all the colours of the spectrum also affect the black and white substance in the same way that white light does. For example, red light affects the red-green substance and produces the sensation of red, but it also acts on the white-black substance, and the sensation of red is mingled with that of white light. Mixed colours and degrees of brightness, therefore, arise from the preponderance of assimilation and dissimilation in various proportions.

In order to be just to the dependence of quality on intensity (as manifested in Purkinje's phenomenon), Hering introduces the conception of the "White-valenz" of the colours.* In criticism of this, we would say that Hering does not seem to be at all clear as to whether this "White-valenz" is a property of the sensation or of the physiological or physical processes.

There can be no doubt that as a physical theory this takes a more comprehensive survey of the phenomena of light and colour. It evidently is especially designed to explain complementary colours. Yet the complete analogy between the processes in the white-black substance and the two-colour substances has no existence in reality. In Kirschmann's article on saturationt, it is noted that the passage from the deepest black to the highest degree of white is along a continuous series of colourless sensations, but complementary colours pass into each other through an indifference point. This makes it highly improbable that one stage in the assimilating and dissimilating process corresponds to an intermediate grey, while in the case

[^6]of complementary colours it gives rise to an indifference point. Moreover, how shall we determine just what grey in the series corresponds to this point? Apart from the fact that colour sensation in indirect vision and certain forms of dichromatism are to a great extent unaccounted for by Hering's theory, we may conclude that, while it makes room for complementary colours, it by no means explains them. All purely physical or physiological theories, instead of aiming at the exploration of the processes in consciousness, seek a solution in the constitution of the physical organ. They do not deal with the psychical problem.

II.

Exact Determinition of the Complementary

Relations

(a) Milton-Bralley papers. Full saturation, tints, shades.
(b) Hering papers.
(c) Prang papers.
(d) Spectrally upproximately pure colours.
(c) Inter-relations between Milton-Bradley, Hering, and Pring systems.
(f) Painters' water-colours.
(g) Browins especially.
(h) Liquid mixtures; ordinary zater-colours, Verdin's transparent colours.

As has been pointed out elsewhere,* complementarism is of great importance to the psychologist. inasmuch as it plays an important role in the field of the phenomena of contrast and after-images, as well as in that of colour-blindness. Therefore. it is somewhat remarkable that up to the present we have been satisfied with a very indefinite statement of the complementary relations. Lately the interest in the experimental investigation of aesthetic problems has greatly increased, and, consequently, it

- Kirschmann and Dix, Experimentelle Untersuchung der Komplementürverhältnisse gebrüuchlicher Pismentfarben. (Archiv fitr die gesamte Psychol., Vol. XI., P. 128.) these reasons, we have ascertained in a systematic way in the laboratory of the University of Toronto the complementary relations of the best known systems of pigment papers, as well as of the most frequently used water-colours.

Two Marbe's apparatus were used, one with the coloured discs, the other (for comparison) with a black and a white disc. As it is only on rare occasions that there is found among the pigments a pair of exact complementaries, it is usually a combination of three colours that is required. As Marbe's apparatus only permits the variation of the sectors of two components while rotating, the changing of the angle of the third sector had to take place in the old way, i.e., by stopping the apparatus and increasing degree by degree. The experiment was as follows: Both sets of dises (the coloured and the uncoloured) were placed side by side. The coloured sectors wete varied until an iadifferent grey was reached. Then, by the aid of :'re second Marbe's apparatus, a grey, composed of the black and white, was found exactly like the other. If the exact likeness could not be found, then the grey of the coloured discs was varied again, until the

[^7]exact likeness was obtained. All experiments took place under illumination by diffused daylight. Both sets of dises were seen on a dull, black background. which was opposite the only window in a room with indifferently grey walls. The light admitted came partly from the sky and partly from the grey walls of the opposite wing of the University building.

After the experimentees had acquired the necessary practice, it required at least an hour to obtain an equation, and frequently a much longer period. The numbers given in the following Tables are the average of two double observations (i.e., the observation was made twice by eazh of two observers). Tables I, II, and III contain results of experiments with the MiltonBradley system of coloured papers (Table I with full colours; Table II with tints; Table III with shacles).

Table I.
Milton-Bradley System.

R	+1361/2 B.G.	+ $211 / 2 \mathrm{G}$. ${ }^{\text {B }}$.	=	White $+2781 /$	Black
1331/2 O.R.	+191 B.G.	+ $33^{1 / 2}$ G.B.	$=106$	White +254	Black
$1131 / 2$ R.O.	+199 B.G.	$1-47^{1 / 2}$ G.B.	7	White +253	k
99 O .	+176 B.G.	+85 G.B.	$\underline{120}$	White +240	Black
105 Y.O.	+122 B.G.	+133 G.B.	$=122^{1 / 2}$	White +23	Blach
1201/2 O.Y.	+5 B.G.	+ $2341 / 2 \mathrm{~L}$ G.B.	$=1381 / 2$	White +2	
1381/2 Y	+rio G.B.	+111\% B .	$=15$	White +207	k
147 G.Y.	+90 B.V.	+123 V .	$=1361 / 2$	White $+223^{1 / 2}$	
126 V.G.	+186 R.V.	+48 V.R.		White +221	Black
G.	\perp. 8 R R.V.	+181 V.R.	$=92$	White +268	Bla
B.G.	+ $461 / 2 \mathrm{~V} . \mathrm{R}$.	+1771/2R.	$=84^{1 / 2}$	White $+2751 / 2$	k
240 G. B.	+116 O.Y.	+ 4 Y .	$=153$	White $+2061 /$	ck
$1841 / 2 \mathrm{~B}$.	+ 69 Y Y.	+1061/2 G.Y.	$=1461 / 2$	White +213	lack
	+ 43 Y	+ $1191 / 2 \mathrm{G} . \mathrm{Y}$.	$=145^{1 / 2}$	White $+214^{1 / 2}$	lack
194 B.V.	+ +16 Y	+150 G.Y.	$=177$	White +183	Black
235 V .	+ $781 / 2 \mathrm{G} . \mathrm{Y}$.	+ 461/2 Y.G.	$=1251 / 2$	White $+234^{1 / 2}$	Black
2251/2 R.V.	+ 27 G.Y.	+1071/2 Y.G.	$=142$	White +218	Black
2281/2 V.R.	+ $105^{1 / 2} \mathrm{G}$.	+26 B.G.	$=91^{1 / 2}$	White +268	

Table 11.
Milton-Bradley Syst-m: Tints (No. 2).

120	R.	+92	B.G.	+148	C.	$=273$	White +87	Black
137	O.R.	+103	B.G.	+120	G.	$=281$	White +79	Black
134	R.O.	+126	B.G.	+100	G.	$=307$	White +53	Black
132	O.	+149	B.G.	+79	G.	$=294$	White +66	Black
130	Y.C.	+81	B.G.	+149	G.B.	$=304$	White +56	Black
146	O.Y.	+197	G.E	+17	B.	$=242$	White +118	Black
205	Y.	+145	V.B.	+10	B.V.	$=320$	White +40	Black
196	G.Y.	+135	R.V.	+29	V.R.	$=222$	White +138	Black
196	Y.G.	+22	R.V	+142	V.R.	$=287$	White +73	Black
218	G.	+75	V.R.	+67	R.	$=305$	White +55	Black
214	B.G.	+76	O.	+70	Y.O.	$=316$	White +44	Black
205	G.B.	+40	Y.O.	+115	O.Y.	$=311$	White +49	Black
173	B.	+131	O.Y.	+56	Y.	$=303$	White +57	Black
161	V.B.	+9	O.Y.	+190	Y.	$=297$	White +63	Black
171	BV.	+175	Y.	+14	G.Y.	$=297$	White +63	Black
172	V	+94	Y.	+94	G.Y.	$=300$	White +60	Black
167	R.V.	+9	Y.	+184	G.Y.	$=298$	White +62	Black
157	V.R.	+38	Y.C.	+165	G.	$=283$	White +77	Black

Table III.
Milton-Bradley Systcm: Shades (No. 2).

7	R.	+223	B.	+ 10	G.B.	$=33$	White +327	Blac
84	O.R.	+258	B.G.	+ 18	G.B.	$=37$	White +323	
87	R.O.	+235	B.G.	+ 3^{8}	G B.	$=38$	White +322	
68	0.	+251	B.G.	+ 41	C.B.	-37	White +323	
79	Y.O	+212	B.C.	+ +69	G.B.	$=38$	White +322	
109	O.Y	+116	B.G.	+139	G.B.	$=80$	White +280	
152	Y.	+ 22	B.G	+186	G.E.	$=98$	White +262	
198	G.Y	+ 14	B.V	+148	V.	$=98$	White +262	
162	Y.G	+130	R.V	$+68$	V.R	$=81$		
117	G.	+39	R.V	+204	V.R.	=91	White +269	
196	B.G.	$+44$	V.K.	+120	R.	$=74$	White +286	
1931/2	G.B.	+156	Y.	$+10$	G.Y.	$=105$	White $+2541 / 2$	
165	B.	$+156$	Y.	+ 39	G.Y.	$=89$	W.nite +271	
194	V.B.	$+60$	Y.	+106	G.Y.	$=70$	White +290	
166	B.V	$+62$	Y	+132	G.Y.	$=95$	White + 265	
158	V.	+187	G.	$+15$	Y.G.	$=133$	White +227	
196	R.V.	+ 71	G.Y.	+ +93	Y.G	$=82$	Whice + 278	
200	V.R.	+	G.	$+60$	B.C	$=73$	White +28 ;	

For a better survey, we give in Figures 2. 3. and 4 a graphic representation of these Tables. We distribute the gualities of the . Wiltom-Pradley system in equal distances on the periphery of a circle. Then we draw from each of the points which mark the colomrs a straglit line to that point on the periphery where (according to the result in the above "lables) the complementary colour is found. Naturally, the distances of that point from the two neighbouring qualities are in inverse proportion to the numbers found in the alove equation.

It will be noticed in all tirese figures that the lines do not pass throngh the centre, as would be expected, but form certain triangular figures, which are similar in all three cases. This phenomenon might be clue to the following circumstance: The eccentric position of the places of intersection of the lines is caused by the preponderance of the red, orange. and yellow qualities over the others. That the points of intersection cluster around the comers of a triangle is owing to the fact that the pigments which are used ill colouring these papers are in all likelihood not so numerous as the system would lead us to believe. Apparently. six different qualities, from red to yellow, were used, and just as many from red to blue. Whereas probably only a few pigments are usec!, and the qualities lying between are produced by mixture. The change in the qualities is greatest from yellow to green. from green to blue, and from violet to red.

If we compare the three figures, we fincl. also, a noticeable disarrangement in the complementarisn of the tints and shades. This is indicated in Table IV. Whether this disarrangement is caused by Purkinje's phenomenon or by the methods employed to produce the tints and shades in the Milton-Bradley system can harl!! be ascertained. Perhaps both factors are responsible. But so much is sure, the tints and shades in the Milton-Bradley system are not exact tints and shades of the colours of the same name.
graphic lities of hery of Il mark y where mentary ronl the he numlo not certain . This e: The lines is yellow 1 cluster that the c in all id us to yellow, robably between greatest violet to oticeable I shades. ement is mployed system ponsible. -Bradley he same

T'able IV.

$\begin{aligned} & \text { 咅 } \\ & \div \frac{0}{0} \\ & \text { ou } \\ & : 8 \end{aligned}$	Designation of the Colour	The Complementary falls								
		In the full Colours between			In the Tints between			In the Shades between		
1	Red		and	12		and	11		and	12
2	Orange Red.	11		12	10	"		11	"	12
3	Red Urange	11	"	12	10	"	11	11	"	12
4	Orange.....	11	"	12	10	"	11	11	"	12
5	Yellow Orange	11	"	12	11	"	12	11	"	12
6	Orange Yellow	11	"	12	12	"	13	11	"	12
7	Yellow	12		13		"		11	"	12
8	Green licllow	15	${ }^{\prime}$	16	17	"		15	"	16
9	Yellow Green	17		18		"		17	"	18
10	Green	17	${ }^{6}$	18	18	"		17	"	18
11	Rlue Green	18	"	1	4	"		18	"	
12	Green Blue	6	"	7	5	"		7	"	8
13	Blue	7	"	8	6	"		7	"	8
14	Violet Blue	7	"	8	6	16		7	"	8
15	Blue Violet	7	"	8	7	"	8	7	"	8
16	Violet	8	${ }^{\prime}$		7	"	8	8	"	
17	Red Violeı	8	"	9	7	"	8	8	"	
18	Violet Red		"	11	9	${ }^{\prime}$	10	10	"	11

In Table V, and the corresponding Figure 5, we give in the same way the complementary relations of Hering's colours, as procured from Mr. Rothe. Similarly, also, Table VI gives the results of experiments with the Prang Standard System of Educational Colour Papers. It may be mentioned that the investigations of the full colours of the Milton-Bradley and Hering papers were carried on by Messrs. D. S. Dix and D. C. McGregor.* and those of the tints and shades by Messrs. T. W. Murphy and L. E. Davis. The equations of Table VI are the results of experiments by Messrs. J. E. Gibson and H. R. Pickup. Figure 6 gives a graphical representation of these experiments, corresponding to the other figures.

In Table VII and Figure 7 we give for comparison the results of experiments performed seven years ago by Miss

[^8]Baker and Professor Kirschmann* (by the usual method, with out the Marle's apparatus). They correspond exactly, witl some few exceptions. The exceptions between violet an red can probably be accounted for by the fact that the Pran colours supplied were not identical during the period of seve years. Small differences, especially in the region of red-violet have frequently been noticed in different sets of papers obtaine for the laboratory.

Table V.
Hering System.

[^9]hod, withctly, with iolet and the Prang of seven red-violet, s obtained

8 Black 7 Black 351/2 Black 11/2 Black 56\% Black 191/ Black 911/2 Black 231/2 Black 32左 Black 70\% Black 59 Black 651/2 Black Black

Table VI.
The Prang Standard System of I:ducational Colours.

| (1) | 85 | R. | +137 | G.B.G. +138 | B.G. | $=45$ | White +315 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | Black

Tanle: VII.

| (1) | 111 | R. | +103 | G.R.G. +146 | B.G. | $=32$ | White +328 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | Black

It has already been remarked above that the irregular distribution of the complementaries (i.e., the relative accumulation in three regions of the colour circle-yellow, blue-green, and redviolet), and consequently the three-cornered shape of the region of intersection of the lines in the figures is not an attribute of the qualities of sensation, but rather of the pigments which are used in making the papers. This is easily demonstrated in Figure 8. This figure represents the complementary relations of twelve colours, which were obtained by illumination of the

Prang papers, with filtered and more or less monocloromatic light (by a method described elsewhere ${ }^{*}$).

In the following Table (VIII) we give the results of the spectroscopic investigation of these colours. The method of the investigation of these complementary relations is explained in the second article ly Dr. Baker. \dagger Figure 8 shows at first glance that in these spectrally pure colours the irregularity of the distribution in the colour circle is eliminated. The triangle has disappeared, and the points of intersection of the lines which join the complementaries are concentrated on a relatively small surface. This, on account of the equalization of the saturation, naturally cannot be in the centre. All the colours were brought to the same light intensity.

Table VIII.

Colour	Small opening of Slit		Wide orening of Slit	
	Visible Part of the Spectrum in $\mu \mu$	Greatest Light Intensity	Visible Part of the Spectrum in $\mu \mu$	Greatest Light Intensity
Red	$665-592 \cdot 5$	635-610	672.5-580	657.5-615
Orange Red.	622.5-:82.5	612.5-592.5	$635-580$	622.5-592.5
Orange.....	607.5-552.5	$585-562 \cdot 5$	$622.5-547.5$	607.5-562.5
Orange Yellow.	587.5-547.5	562.5-557.5	$617 \cdot 5-537 \cdot 5$	602.5-555
Yellow..	$580-512.5$	562.5-535	$615-492 \cdot 5$	587.5-555
Yellow Green...	$565-497 \cdot 5$	$535-525$	$580-480$	555-530
Green........	$542 \cdot 5-492 \cdot 5$	$530-507.5$	$\begin{array}{ll}570 & -480\end{array}$	537.5-517.5
Green Blue..	$525-472.5$	512.5-495	$550-447.5$	$525-502 \cdot 5$
Blue.	$510-460$	492.5-475	$535-445$	$5 \cdot 3 \cdot 5-492^{\circ} 5$
Violet.	$\left(\begin{array}{l}482 \cdot 5-432.5\end{array}\right.$	$470-462 \cdot 5$	$\left(\begin{array}{l}497 \\ 700-430 \\ \\ \hline 805\end{array}\right.$	A: -455
Violet Purple.	$\left\{\begin{array}{l}687.5-665 \\ 485-440\end{array}\right.$	462'5-455	$\left\{\begin{array}{l}700-665 \\ 487.5-430\end{array}\right.$	470-452.5
Purpl	$\begin{cases}680 & -645 \\ 480 & -430\end{cases}$		$\left\{\begin{array}{l}680 \\ 497 \\ 49\end{array}\right.$	$475-460$

That the complementarism of the three systems of pigment papers might be still more definitely relatell, we proceeded to

[^10]find the complementary relation of each separate colour-quality in each of the other two systems. Tables $I N$ and X contain the statements of the complementary relations of the MiltonBradley colours in the Hering and Prang systems respectively, while Figures 9 and 10 are pictorial representations of these relations. Similarly: Tables XI and XII are statements of the complementary relations of the thirteen colour-qualities of the Hering papers in the Milton-Bradley and Prang systems respectively, while Figures if and i2 exhibit these relations graphically. And, finally, the results of the similar experiments for the Prang system with the Milton-Bradley and the Hering papers are shown in Tables XIII and XIV respectively, and are diagrammatically presented in Figures 13 and I4. The outer circle in eroh instance represents the manifoldness of the colour-qualities in the system whose complenentaries we seek to find. The colour numbered 1 in each system is placed to correspond to the similar number in the rither papers. This was, of necessity. an arbitrary arrangement for diagrammatic purposes.

Table IX.
Mitton-Bradley. Herind Complenentory. Intensity.

$184 \frac{1}{2} \mathrm{R}$. $107^{1 / 2}$ O.R. 981/2 R.O.	+1061/2	B.G.	. 69	G.B.	$=47$	White +313	Black
	+124	B.G.	+1281/2	G.B.	$=55$	White +305	Black
	+1081/2	B.G.	+153	G.B.	$=62$	White +298	Black
850.	+ $67^{1 / 2}$	B.G.	+2071/2	G.B.	$=72$	White +288	ack
97 Y.O.	+ 10	B.G.	+253	G.B.	$=78$	Whitc +282	Black
104 O.Y.	+193	G.B.	+ 63	B	$=86$	White +274	Black
Y.	$+100$	G.B.	+140	B.	= 89	White+271	Black
G.Y.	+143	B.	+60	V.	-91	White+26,	Black
Y.G.	+163	V.	$+70$	V.R.	= 73	White-r287	Black
143 G.	+ 45	V.	+172	V.R.	- 53	White +307	k
B.G.	+126	R. I.	+ 24	R. II.	$=75$	White +285	Black
G.B.	130	O.Y.			99	White +261	Black
$2011 / 2 \mathrm{~B}$.	+147	Y.	+ $111 / 2$	Y.G.	$=117$	White +243	Black
208 V.B.	+ 118	Y .	-34	Y.G.	$=100$	White +260	Black
186 B.V.	+ 96	Y.	+ 78	Y.G.	= 123	White+237	Black
223 V .	+ 54	Y.	+83	Y.G.	= 93	White+267	Black
200 R.V.	+ 30	Y.	+130	Y.G.	$=94$	White +266	Black
V.R.	+110	G.	$+16$	B.G.	$=56$	White +304	Black

The of the seek to correwas, of arposes.

Black Black Black

Table X.
Milton-Bradlcy. Prang Complementary. Intensity.

131	R.	+174	G.B.G. - 55	B.G. $=52$	White+	Black
70	O.R.	+ 185	G.B.G. +105	B.G. $=60$	White+3	Black
64	R.O.	+180	G.B.G. +116	B.G. $=54$	White +306	Black
52	0.	$\underline{+8}$	G.B.G. +240	B.G. $=56$	White+304	Black
54	Y.O.	-282	B.G. +24	B.B.G. $=50$	White +310	ck
82	O.Y.	+ 59	B.G. +219	B.B.G. $=92$	Whitc +268	ck
115	Y.	+ 71	B.B.G. +74	B. $=109$	White+251	Black
78	G.	+267	+15	V.R.V. $=8 \mathrm{l}$	White+279	Black
	Y.G.	+148	+155	V.R.V. $=50$	White+310	Black
60	G	+ 24	+276	V.R.V. $=33$	White +327	Black
95	B.	+ 18	R.V. +247	R.R.V. $=52$	White +308	Bla
244	G.B.	+116	Y.Y.O.	=142	Whitc+ 218	Black
195	B.	$+124$	Y.	Y.Y.G. $=155$	White +205	Black
206	V.B.	+ 79	$\mathrm{Y} . \quad+75$	Y.Y.G. $=144$	White+216	Black
202	B.V.	+ 54	$\mathrm{Y} .+104$	Y.Y.G. $=145$	White+215	Black
248	V .	+ 7	+105	Y.Y.G. $=122$	White +238	Black
	R.V.	+ 40	Y.Y.G. +15	Y.G. $=120$	White +240	Black
181	V.R.	+ 15	G.Y.G. $\div 164$	G . $=$	White	Bla

Table XI.
Hering. Milton-Bradley Complementary. Intensity.

| 152 | R. I. | +11 | G. | +197 | B.G. | $=68$ | White +292 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | Black

Dix: Complementarism

Table XII.

Hering

Prang Complimentary.

+ 24	B.G. $=56$
B.G +64	B.G $=62$
G.B.G. +189	B.G. $=46$
G.B.G. +289	B.G. $=55$
B.G. + + 40	B.B.G. $=60$
B.B.V. +246	B.V
$+250$	V.
V.R.V. +14	R.V
R.V.	
O.Y.O.	$=9$
$+72$	G. $=1$
± 40	Y.G. $=100$

Intensity.
White +304
White +298
White +314
White +305
Whitc +300
White +278
White $+32 n$
White +328
White +310
White +262
White +238
White +260
White +298

Blaci Black Black

Table XIII.
Prang. Milton-Rradley Complementary.

155	R. +191	B.G.	+ 14	G.B.	$=114$	White +246	Black
130	R.R.O. +192	B.G.	1 +38	G.B.	$=92$	White +268	
115	R.O. +199	13.G.	+46	G.B.	$=85$	White+275	
104	O.R.O. +200	R.G.	+56	G.13.	$=117$	White +243	k
100	O. +171	B.G.	$+80$	G.B.	= 120	White+240	
85	O.Y.O. +145	B.G.	$+130$	G. 1	$=124$	White +236	
115	Y.O. +99	B.G.	$+146$		12	White+235	
120	Y. $\because 0 .+10$	B.G.	+230	G.13.	$=131$	White +229	
145	$\mathrm{Y} .+52$	G.B.	$\underline{+163}$	B.	$=140$	White +220	Black
130	Y.Y.G. +230	V			$=116$	White +244	Black
150	Y.G. $+1(9)$	R.V.	$\underline{+41}$	V.R	=10	White +259	Black
170	G.Y.G. +34	R.V.	$+156$	V.	$=93$ $=65$	White +295	Black
180	G. $\quad+180$	V.R	$+81$	R.	= 38	White +322	Black
235	G.13.G. +44	V.R.	+81 +36	Y.O.	$=51$	White +309	Black
312	B.G. +12 B.B.G +62	O. O.	+36 $+\quad 38$	Y.	$=95$	White +265	Black
260	B.B.G. +62 B. +84	Y.Y.	+38 $+\quad 75$	G.V.	$=134$	White +226	Black
201	B. +84 B.B.V. +6 I	Y.	+75 +89	G.Y.	$=116$	White +244	Black
210	B.B.	Y.	+60	C.Y.	$=90$	White +270	Black
	,	Y	+71	G.Y.	$=64$	White +296	Black
260	V. +80	G.Y.	+ 20	Y.G.	$=75$	White +285	Black
298	V.R.V. +42	G.	+ 20	B.G.	$=33$	White +327	Black
261	R.V. +10	G.	+ 89	B.G.	$=62$	White +298	Black
234	R.R.V. +126	B.G.			$=55$	White +305	Black

Table XIV.

ng.		ering	Complementary		Intensity.	
	$+$	B.G.			8	Black
136	R.R.O. +126	B.G	$+$	G.B. $=7$		
126	R.O. +	B.G	$+142$	G.B. $=$		
88	O.R.	B.G	$+176$	G.B		Black
	+ 50	B.C	+217	G.B	Whi	
98	O.Y.O. +19	B.G	+243	G.B. $=11$	Whi	Black
	Y.O. +232	G.B	+ 18	B. $=10$	White+255	Black
06	Y.Y.O. +184	G.B	+ 70	B. $=110$	White +250	Black
21	+ 87	G.B.	+15	B. $=127$	White +233	Black
45	G. +82	B.	+13	V. $=115$	White+245	Black
51	Y.G. +	V.	+88	V .R. $=85$	White +275	Black
	G.Y.G. +	V.	+ 71	$\mathrm{V} \cdot \mathrm{R}$. $=72$	White +28	Blac
	G. +	V .	+ 110	V .R. $=65$	White +295	Black
	G.B.G. +10	V.R.	-80	R. I. $=60$	White +300	Black
OI	B.G. +45	0.	+ 14	O.Y. $=65$	White +295	
	B.B.	O.	$+$	= 8	Whi	
	+ 22	O.Y	133	Y. $=139$		
27	B.B.V. +128	Y.		Y.G.	hi	la
	B.V. +84	Y.		Y.G.	Whi	
	V.B.V. +58	Y.	+ 1	Y.G.	Whi	
	+60	Y.	$+36$	Y.G.		
	V.R.V. +20	Y.G.	+ 40	G. $=$		
	R.V. +90	B.G.	$+12$	G.B. $=70$		
	R.V. +7	B.G.	$+45$	G.1. $=58$	2	

It will at once be noticed that these systems of pigment papers have a striking resemblance, and that the characteristics of the figures showing the inter-relations are very similar to those of the diagrams showing the complementaries of each system within itself. The grouping of the complementaries about three points, which are similarly located, :s i jain observed. In the case of the Hering papers, which are fewer in number, the distribution is more noticeable. In the Milton-Bradley system the complementary colours are mainly found between (1) yellow and yellow-green; (2) green and blue; (3) redviolet and red. The complementaries in the Hering papers are grouped between (1) yellow and yellow-green; (2) blue-green and blue; (3) violet and red-violet.

As will be observed, these results furnish the basis for a
very definite comparison of the three systems. Thus, we see that the complementary relation of the red in the Milton-Bradley is 1361% blue-green plus $211 / 2$ green-blue in the same system; while for the same red the complementary in the Hering is $1061 / 2$ blue-green plus 69 g.een-blue. Thus it follows that $1361 / 2$ bluegreen plus 211% green-blue in the Milton-Bradley colours marks the same quality as $1061 / 2$ blue-green plus 69 green-blue in the Hering papers. The light intensity of the Milton-Bradley complementaries is represented by $2781 / 2$ black plus $811 / 2$ white, as compared with 313 black plus 47 white, which is the intensity of same red with its complementary papers. It follows from this comparison that it is possible to place the colour-qualities of any two of the systems in their approximate relations in the third coiour-circle: and then. by rejection of poor or unnecessary colours, we may obtain a very much improved system of pigment papers.

In Table XV we give the complementary relations of a number of frequently used water-colours. The experiments in this instance were carried on by Messrs. D. S. Dix and $A \mathrm{H}$. Sovereign. Considerable difficulty was experienced in the making of the coloured discs. To get homogeneity of surface and equal saturation, some of the very transparent colours of red and violet had to be mixed with white; while with others (e. g., indigo), the fluorescence was very disturbing. Otherwise the method of experiment was the same as above.

The graphical representation of the complementary relations of these pigment colours (Figure 15) shows great similarity with those of the Milton-Bradley and Prang systems. In these water-colours, also, the complementaries fall for all the colours from red to yellow into a comparatively small region of the colour circle (e. g., the qualities between cobalt-green and cobalt-blue). As revealed by the following Table (XVI), which shows the results of experiments by Mr. M. H. Jackson for all the brown colours, the complementaries of all these can be found between cobalt-green and cobalt-blue. This, of course, does not exclucle that a complementary may be constructed consisting of other blue colours, further apart than the two mentioned above.

$t+t+t+t$	+ +																																												
\|																																								\|					

 || || || || || || || || || || || || || ||

It is well known that the mixture of the painted colours on rotating dises cannot be expected to have the same results as the mixture of the pigments in the liquid state. The mixture of two perfectly transparent liquids is. from the standpoint of colour, no mixture at all, for it is not an addition, but a subtraction. Each of the components alsorbs certain regions of the spectrum, and what one component has absorbed cannot be transmitted by the other. That is the reason why mixed transparent coloured liquids are always darker than either of the components. If the two liquids are complementary, the resultant may be colourless, yet not white, but grey. And if the components are very fully saturated, it may even be black. In fact. the best lampblack is no quite so dark as the black which the painters produce from carmine, indigo, and some green colour.

The perfectly opaque colours, on the other hand. behave, when mixed, like the mixture of coloured powders. If mixed as liquids they show the same result as when mixed as powders or on the rotating discs, with this difference only, that there is a somewhat greater saturation in the case of the suspension in the liquich. There are very few approximately perfectly transparent colours. The water-colours used by painters are, in most cases, something between an opaque and a transparent colour. some of them. like carmine, the lakes, Prussian blue, sap-green. and gamboge being rather transparent: others, like vermilion, the chromes, red lead, etc. being more or less completely opaque; whilst the qualities of all the rest are between these extremes.

Our experiments in this instance were directed to the mixture of the water-colours in a liquid state. so as to produce colourless mixtures in transmitted light. To a glass of water, sufficient of the pigment was added to give a high degree of saturation: then we sought to find another pigment, similarly diluted, which would give colourless light when combined with this. In only one case did we find the mixture of two to have this result, viz., with alizarin-green and smalt. In all other cases a third and neighbouring quality was necessary, as was required usually with the rotating discs. The results are given in Table XVII. The great majority of the mixtures :were semitransparent, those least transparent being numbered if and 15
in the Table: while the mixtures indicated by numbers 8,10 , it and 20 were the most highly transparent. In 'lable XVIll w give the results of similar experiments with highly transparen coloured pigments, known under the name of Verdin's Magi Photo Tints. In the mixture with the pink, the result wa unsatisfactory, owing to the fluorescence, but in all the othe cases almost perfectly transparent colourless mixtures we obtained.

1': inle: XVIT.

Wiater Coliurs-Liquid Mixture.

Approximately colourless mixtures (in transmitted light) can be pr Iuced by:

$8,10,16$ XVIII we ransparent n's Magic esult was the other ures were
can be pro-
Green
Blus
reen
Blue
Mue
Blue Bluc
.ake
Blowd
Yellow Pale
Lemon
ake
Green
Green

Table XVIII
Verdin's Magic Photo Tints-l'erfectly transparent Colonrs-Liquid Mixture.
C Jourless inixtures were proluced by:

Dix: Complementarism

MIL.TON-HRADLEY SYSTEM.

Fig. 2.

1. Red.
2. Orange Red
3. Red Orange.
4. Orange.
5. Yellow Orange.
6. Orange Yellow
7. Yellow.
8. Green Yellow.
9. Yellow Green.
10. Green.

1I. Blue Green.
12. Green Blue.
13. Blue.
14. Violet Blue.
15. Blue Violet.
16. Violet
17. Red Violet.
18. Violet Red.

MILTON-BRADLEY SYSTEM: TINTS (No. 2).

Fig. 3.

1. Red.
2. Orange Red.
3. Red Orange.
4. Orange.
5. Yellow Orange.
6. Orange Yellow.
7. Yellow.
8. Green Yellow.
9. Yellow Green.
10. Green.
II. Blue Greer.
11. Green Blue-
12. Blue.
13. Violet Blue.
14. Blue Violet.
15. Violet.
16. Red Violet.
17. Violet Red.

MH.TON-1BADLEV SVSTEM: SHIDDES (No. 2).

Fig. 4.

1. Red.
2. Orange Red.
3. Red Orange.
4. Orange.
5. Yellow Orange.
6. Orange Yellow.
7. Yellow.
8. Green Yellow.
9. Yellow Green.
10. Green.
II. Blue Green.
11. Green Blue.
12. Blue.
13. Violet Blue.
14. Blue Violet.
15. Violet.
16. Red Vinlet.
17. Violet Red.

HERING SYSTEM.

Fig. 5.
I. Red I.
2. Red II.
3. Orange Red.
4. Orange.
5. Orange
6. Yellow.
7. Yellow Green.
8. Green.
9. Blue Green.
10. Green Blue.
11. Blue
12. Violet.
13. Violet Red.

PRANG SYSTEM.

Fig. 6.

1. Red.
2. Red Red Orange.
3. Red Orange.
4. Orange Red Orange.
5. Orange.
6. Orange Yellow Orange.
7. Yellow Orange.
8. Yellow Yellow Orange.
9. Yellow.
10. Yellow Yellow Green.
11. Yellow Green.
12. Green Yellow Green.
13. Green.
14. Green Blue Green.
15. Blue Green.
16. Blue Blue Green.
17. Blue.
18. Blue Blue Violet.
19. Blue Violet.
20. Violet Blue Violet.
21. Violet.
22. Violet Red Violet.
23. Red Violet.
24. Red Red Violet.

PRANG SYSTEM, REPRINTED FROM MISS BAKER'S ARTICIE.

Fig. 7

SPECTRALLY PURE COLOURS.

Fic. 8.

1. Red.
2. Orange Red.
3. Orange.
4. Orange Ye!low.
5. Yellow.
6. Yellow Green..
7. Green.
8. Green Blue.
9. Bluc.
10. Violet.
ii. Violet Purple.
11. Purple.

MILTON-BRADLEY-HERING.

Fitig.

Mition-Bradley.

1. Red.
2. Orange Red.
3. Red Orange.
4. Orange.
5. Yellow Orange.
6. Orange Yellow.
7. Yellow.
8. Green Yellow.
9. Yellow Green.
10. Green.
11. Blue Green.
12. Green Blue.
13. Blue.
14. Violet Blue.
15. Blue Violet.
16. Violet.
17. Red Violet.
18. Violet Red.

Hering.

I. Red I.
2. Red II.
3. Orange Red.
4. Orange.
5. Orange Yellow.
6. Yellow.
7. Yellow Green.
8. Green.
9. Blue Green.
10. Green Blue.
11. Blue.
12. Violet.
13. Violet Red.

Dix: Complemintarism

MLLTON-BRADLEY-IPRANG.

Fig. 10.

Milton-Bradley.

1. Red.
2. Orange Red.
3. Red Orange.
4. Orange.
5. Yellow Orange.
6. Orange Yellow.
7. Yellow.
8. Green Yellow.
9. Yellow Grecin.
10. Green.
11. Blue Green.
12. Green Blue.
13. Blue.
14. Violet Blue.
15. Blue Violet.
16. Violet.
17. Red Violet.
18. Violet Red.

Prang.
I. Red.
2. Red Red Orange.
3. Red Orange.
4. Orange Red Orangs.
5. Orange.
6. Orange Yellow Orange.
7. Yellow Orange.
8. Yellow Yellow Orange.
9. Yellow.
9. Yellow Yellow Green.
11. Yellow Greent.
12. Green Yellow Green.
13. Green.
14. Green Blue Green.
15. Blue Green.
16. Blue Blue Green.
17. Blue.
18. Blue Blue Violet.
19. Blue Violet.
2.). Violet Blue Violet
21. Violet.
22. Violet Red Vinlet.
23. Red Violet.
24. Red Red Violet.

HERING-MILTON-BRADLEY.

11

Fig. 11.

Hering.
I. Red I.
2. Red II.
3. Orange Red.

4 Orange.
5. Orange Yellow.
6. Yellow.
7. Yellow Green.
8. Green.
9. Blue Green.
, 10. Green Blue.
11. Blue.
12. Violet.
13. Violet Red

Milton-Bradlev.

1. Red.
2. Orange Red.
3. Red Orange.
4. Orange.
5. Yellow Orange.
6. Orange Yellow.
7. Yellow.
8. Green Yellow.
9. Yellow Green.
10. Green.
i1. Blue Green.
11. Green Blue.
12. Blue.
13. Violet Blue.
14. Blue Violet.
15. Violet.
16. Red Violet.
17. Violet Red.

HERING-PRANG.

Fic. 12.

Hering.

1. Red I
2. Red II.
3. Orange Red.
4. Orange.
5. Orange Yellow.
6. Yellow.
7. Yellow Green.
8. Green.
9. Blue Green.
10. Green Blue.
II. Blue.
11. Violet.
12. Violet Red.
13. Red.
14. Red Red Orange.
15. Red Orange.
16. Orange Red Orange.
17. Orange.
18. Orange Yellow Orange.
19. Yellow Orange.
20. Yellow Yellow Orange.
21. Yellow.
22. Yellow Yellow Green.
ir. Yellow Green.
23. Green Yellow Green.

Prang.
13. Green.
14. Green Blue Green.
15. Blue Green.
16. Blue Blue Green.
17. Blue.

IS. Blue Blue Violet.
19. Blue Violet.
20. Violet Blue Violet.
21. Violet.
22. Violet Red Violet.
23. Red Violet.
24. Red Red Violet.

PRANG-MILTON-BRADLEY.

Fig. 13.

Green.

Green.
Violet. e Violet. 1 Violet. Violet.

Prang.

I. Red.
2. Red Red Orange.
3. Red Orange.
4. Orange Red Orange.
5. Orange.
6. Orange Yellow Orange.
7. Yellow Orange.
8. Yellow Yellow Orange.
9. Vellow.
10. Yellow Yellow Green.
11. Yellow Green.
12. Green Yellow Green.

Milton-Bradley.

13. Green.
14. Green Blue Green.
I. Red.
15. Orange Red.
16. Red Orange.
17. Orange.
18. Yellcis Orange.
19. Orange Yellow.
20. Yeliow.
21. Green Yellow.
q. Yellow Green.
22. Green
if. Blue Green.
23. Green Blue.
24. Blue.

If. Violet Blue.
15. Blue Violet.
16. Violet.
17. Red Violet.
18. Violet Red.

PRANG-HIERING.

Fig. 14.

Prang.
I. Red.
2. Red Red Orange.
3. Red Orange.
4. Orange Red Orange.
5. Orange.
6. Orange Yellow Orange.
7. Yellow Orange
8. Yellow Yellow Orance.
9. Yellow.
10. Yellow Yellow Green.
iI. Yellow Green.
12. Green Yellow Green.
13. Green.

1i. Green Blue Green.
15. Blue Green.
16. Blue Blue Greeri.
17. Blue.
18. Blue Blue Violet.
19. Blue Violet.
20. Violet Blue Violet.
21. Violet.
22. Violet Red Violet.
23. Red Violet.
24. Red Red Violet.

Hering.

1. Red I.
2. Red I'
3. Orang Red.
4. Orange.
5. Orange Yellow.
6. Yellow.
7. Yellow Green.
8. Green.
9. Blue Green.
10. Green Blue.
11. Blue.
12. Violet.
13. Violet Red.

WATER COLOURS

Fig. 13.

1. Carmine-
2. Dragon's Blool.
3. Indian Red.
4. Scarlet Vermilion.
5. Venetian Red.
6. Chrome Orange.
7. Cadmium Yellow Pale.
8. Gambore.
9. Yellow Lalce
10. Chrome Lanon
II. Alizarin Green.
11. Sap Green.
12. Emerald Greer.
13. Cobalt Green.
14. Cerulean Blue.
15. Cobalt Blue.
16. Prussian Bluc.
17. Smalt.
18. French Blue.
19. Malue.

2I. Purple Lake.

III.

Complementary Relations as Affected by Contrast

Milton-Bradlcy Papers-Thrce Scts of Backgrounds

We now come to the consideration of the problem which complementarism affords when viewed in its relation to colour contrast. From the ascertained laws of light and colour-contrast we know that a grey pattern traced on a red ground will not appear pure grey, but tinged with a colour complementary to that of the ground. If we substitute for the red any other bright colour, it will be found that the grey is more or less tinged with the complementary colour-tone. As black is really a dark grey we should expect to find it also assuming to some extent a colour complementary to that of the ground: and this is the case, thougl the effect is not quite so marked. In these cases the effect is more striking if the colour-c|uality be very bright or of full saturation. It is also increased if the grey is of comparatively small area and completely surrounded by the colour. Now if we substitute a colour for the grey, then both coloured surfac - will be modified by the mutual contrast influence. The fcllc- ; Table shows the influence of contrast, as determined through experiments performed by Hurst.* These results agree substantially with those of Rood \dagger :

Colour P'airs	Modification by Contrast
$\text { (1) }\left\{\begin{array}{l} \text { Red ... } \\ \text { Orange } \end{array}\right.$	inclines to ${ }_{\text {" }}^{\text {Violet }}$ Yellow
$\text { (z) }\left\{\begin{array}{l} \text { Red .. } \\ \text { Yellow } \end{array}\right.$	" Violet " Greenish-yellow
(3) $\left\{\begin{array}{l}\text { Red } \\ \text { Green }\end{array}\right.$	becomes more brilliant
(4) $\left\{\begin{array}{l}\text { Red } \\ \text { Blue ... }\end{array}\right.$	inclines to Urange Green
$\text { (5) }\left\{\begin{array}{l} \text { Red } \\ \text { Cyan-blue } \end{array}\right.$	" Yellow " Hlue-green

[^11]Colour Pairs Modification by Contrast
(6)

(7) $\left\{\begin{array}{l}\text { Orange } \\ \text { Yellow }\end{array}\right.$
" Red-orange
(8) $\left\{\begin{array}{l}\text { Orange }\end{array}\right.$
(9) \qquad
(10)
$\left\{\begin{array}{l}\text { Orange } \\ \text { Violet }\end{array}\right.$
becomes more brilliant
inclines to Yellow
II) $\left\{\begin{array}{l}\text { Yellow } \\ \text { Green }\end{array}\right.$
(12) $\left\{\begin{array}{l}\text { Yellow } \\ \text { Cyan-blue }\end{array}\right.$ \qquad
Greenish-yellow
(II)
Green
" IBlu
(13) $\left\{\begin{array}{l}\text { Yellow } \\ \text { Bright Blue }\end{array}\right.$
(14) $\left\{\begin{array}{l}\text { Green } \\ \text { Blue }\end{array}\right.$
inclines to Yellow
(15) $\left\{\begin{array}{l}\text { Green } \\ \text { Violet }\end{array}\right.$
" Yellow-green
" Reddish
(16) $\left\{\begin{array}{l}\text { (ireenish-yellow } \\ \text { Violet }\end{array}\right.$
becomes more brilliant
(17) $\left\{\begin{array}{l}\text { Blue } \\ \text { Violet }\end{array}\right.$
inclines to Greenish
Violet
Reddish
It will be seen from the above Table that the alterations produced by contrast are orderly. When any two colour-qualities of the chromatic circle are contrasted, the effect produced is apparently to move them farther apart. In the case, for example, of orange and yellow, the orange appears to be a quality more nearly red; the yellow tends to greenish. Colours which are com ${ }_{r}$ lementary are already as far apart in the chromatic circle as possible, hence they are not changed in quality, but merely appear more brilliant and saturated. The changes are greatest with the colours which are situated nearest to each other in the chromatic circle, and much less with those at a distance. Thus red and yellow are much changed by contrast, the red becoming purplish, the yellow greenish: while red with cyan-blue or blue
is much kes alfected in the mather of dis:obtement or change of hue. On the uther hand, the colums which are very distant from each other in the choromatio circle, while suffering but slight changes in lite, are made to appear more brilliant and saturated.

Colomes which are idemtical are affected loy contrast in exatly the apmosite way from those which are complementary -that is. they are made to appear duller and less saturated. If the two colours are ielentical except in the matter of saturation, it will also l_{e} fommel that the one which is more saturated will gain in colour. While its less siaturated rival will lose. If the less siturated is uf comparatively little saturation, it may even appear uneoloured altogether. I light pink, when surrounded loy the same cuality in very high saturation (i.e., the erimsonred). m:ty appear white. Similarly, a dark blue of little saturation. when surromuled by a fully saturated blue. may appear completely black. But it is not a necessary conclusion that the surrounded surface is always the loser. In an experiment with coloured shadows, which I'rofessor Kirschmann uses in the class-room to demonstrate contrast phenomena, it occurs very often that the comtrast colour is seen with great saturation, whilst the physical canse (i.e., the inducing colour, which is of little saturation and spread over a great surface) is not noticed at all.

To ascertain whether the same principles of light and colour contrast would oltain wh coloured surfaces were used as hackgrounds, experiments were performed with the eighteen Milton-Bradley colours under the conditions previonsly named. except that instead of the dull, Wack background. coloured backgrounds of red, orange, yellow. green, blue, and violet from the same system were used in successive experiments with the coloured discs. Then the experiments were repeated. the original dull. black background being used for the coloured dises and the six coloured backegrounds successively behind the black and the white discs. A third set of equations wat then found. when large coloured backgrounds for the two Marbe's apparatus were used. The smaller backgrounds were : 1 inches by 13 inches, while those for both sets of dises measured 23 inches by I 3 inches. The experiments were performed hy Mr. G. M. Dix and

Miss N. O. Markland: and the following 'lables are statements of equations under these conditions. Firom $\mathcal{X} X$, $\mathbb{X} X V$ the Tables state the results where colonred backgromils were used with the coloured dises; while XXVI and $\mathbb{X X X I}$ are the 'Yables giving results when coloured backgrounds were used with the uncoloured discs. Finally, Tables XXXII $0 \times X X V I I$ give the equations where the large coloured backgrommels were issed.

Table XIX.
Using the urdinary dult bheck bachground.

2181/2 R.	+120	R. ${ }^{\text {r }}$	+ $211 / 2 \mathrm{c}$ (ils.	$=70$	White + 200	Hack
134 O.R.	+1021/2	B.r.	+ $3.3 \frac{1 / 2}{2} \mathrm{CB}$.	$=87$	White +273	Black
114 R.O.	+ $198 \frac{1}{2}$	B.G.	+ $47 \frac{1}{2}$ C. ${ }^{1 / \mathrm{B}}$.	$=107$	White +253	Black
1000.	+ 175	B.G.	+ 85 G.B.	$=103$	White +257	Black
121 Y.O.	$+106$	B.G.	+133 C.B.	$=115$	White +245	Black
128 O.Y.	+ 17	B.G	+215 C.B.	$=1.40$	White +220	Black
$140^{1 / 2} \mathrm{Y}$.	+108	C.B	+1112/2l3.	$=154$	White +206	Black
160 G. Y	+ +90	B. ${ }^{\prime}$	+iro V.	$=137$	White +22.3	Black
137 Y.G.	+175	R.V.	+ 4^{8} V.K.	$=139$	Wh: $\mathrm{Wh}^{\text {Wre }}$	Black
142 G.	$+37$	R.V.	+181 V.R.	$=103$	Wh. " ${ }^{\text {\% }}$	Black
$155^{1 / 2}$ B.G.	+ 27	V.R.	+1771/2R.	$=78$	White+2u-	Black
230 G.B.	$+126$	O.Y.	-r 4 .	$=160$	White +200	Blark
1751/2B.	+ 78	Y.	+ $1061 / 2 \mathrm{G} . \mathrm{Y}$.	$=145$	White +215	Black
1881/2 V.B.	+ 52	Y	+1191/2 C.Y.Y.	$=125$	White +235	Black
194 B.V.	$+16$	Y.	+150 G.Y.	$=152$	White +208	Black
2301/2 V.	$+83$	G.Y.	+ $461 / 2$ Y.G.	$=119$	White +241	Black
2271/2 R.V.	+ 25	G.Y.	+ $1071 / 2$ Y.G.	$=115$	White +245	Black
2301/2 V.R.	$+10{ }^{1 / 2}$		+24 B.C.	$=80$	White +280	Black

Table XX.
Red Background with Coloured Discs.

| $2291 / 2 R$. | +109 | B.G. | $+211 / 2$ | G.B. | $=55$ | Whitc +305 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | Black

Tadle XXI.
Orange Buckground with Coloured Discs.

	+118 B.G	+	$=70$	290	Black
O.R.	+1841/2 B.G.	+ $331 / 2 \mathrm{G}$.B.	= 74	White +286	Black
R.O.	+1991/2 B.G.	+ $471 / 2 \mathrm{G} . \mathrm{D}$.	$=113$	White +247	Black
0 .	-1.44 B.G.	+85 G.	$=98$	White +262	Black
Y.O	+104 B.G	+133 G. B.	$=180$	White +180	Black
O.	+13 B.G.	+215 G.	$=128$	Whitc+232	Black
Y	+1081/2 G.B	+ $1111 / 2 \mathrm{~B}$.	$=151$	White +209	3lack
G. ${ }^{\text {Y }}$	+100 V .	+ go B.V.	$=137$	Whitc +223	Black
Y.G	+1;2 R.V	148 V.R.	1	White + 231	Black
G.	+ 37 R.V.	+181 V.R.	$=89$	White +271	Black
541/2 B.G	+28 V.R.	+17\%1/2R.	$=58$	White +302	Blaci
G.B	+131 O.Y.	+ 4 V	$=15$	White +208	ac
2 B	+ 80 Y .	+1061/2 G.I.	=131	White +229	3lack
$184 \% 2$ V.B	+56 Y .	+ $1191 / 2 \mathrm{G} . \mathrm{Y}$.	$=124$	White +236	
$2 \mathrm{~B} . \mathrm{V}$	-1 28 Y.	+150 G.Y.	121	White + 239	
V.	f- 79 G.Y.	$+461 / 2$ Y.G.	$=109$	White+251	
21/2 R.V.	+27 G.Y.	+ $10{ }^{1 / 2}$	$=136$	White +224	
31 V.R.	-1051/2 G.	+ $23 \frac{1 / 2}{2}$ B.G.	$=9$	White +270	

Table XXII.

Yellowe Background with Coloured Discs.

2191/2R.	+ 119 B.G.	+ $21 / 1 / 2 \mathrm{G}$. B	$=6$	White +295	Black
135 O.R.	+1911/2 B.G.	+ $33 \frac{1 / 2}{\text { G.B. }}$	$=6$	White+29r	Black
110 R.O.	+2021/2 B.G.	+ $47^{1 / 2}$ G.13.	$=80$	White +280	Black
1190.	+156 B.G.	+85 G.B.	91	White+269	Black
124 Y.O.	+103 B.G.	+133 G.B.	=80	White +280	Bla
129 O.Y.	+16 B.G.	+215 G.B.	$=137$	White +223	Black
1581/2 Y.	+ 90 G.B.	+ $1111 / 2 \mathrm{~B}$.	40	White +220	Black
178 G.Y.	+92 V.	+go B.V.	$=125$	White+235	Black
142 Y.G.	ト170 R.V.	+48 V.R.	$=118$	White+242	ck
G.	$+50 \mathrm{R} . \mathrm{V}$.	+18ı V.R.	= 72	White -288	Black
150 B.G.	+ $321 / 2 \mathrm{~V}$ V.R.	+177/2 R .	58	White +202	Black
223 G.B.	+133 O.Y.	+ 4	=132	White+228	Black
1681/2 B.	+ 85 Y .	+1061/2 G.Y.	= 110	White+250	Black
185 $1 / 2 \mathrm{~V}$ V.B.	+ 55 Y .	+ $1191 / 2 \mathrm{G.Y}$.	$=101$	White+259	Black
164 B.V.	+ 46 Y .	+150 G.Y.	$=141$	White+219	Black
$2271 / 2 \mathrm{~V}$.	+ 86 G.Y.	+ $461 / 2$ Y.G.	= 118	White+242	Blacis
$217^{1 / 2}$ R.V.	+35 G.Y.	+1071/2 Y.G.	$=115$	White +245	Black
230 V.R.	+ $1051 / 2 \mathrm{~g}$.	+ $241 / 2$ B.G.	= 55	White +305	Black

Tabre XXIII.
Green Background with Coloured Discs.

| $2161 / 2$ | R. | +122 | B.G. | $+21 / 2$ | G.B. |
| :--- | :--- | :--- | :--- | :--- | :--- |$=761 / 2$ White $+2831 / 2$ Black

Table XXIV.
Blue Background with Coloured Discs.

2041/2		+134	B.G.	+ $2111 / 2 \mathrm{G} . \mathrm{B}$.	$=75$	White +285	Black
133	O.R.	+1931/2	B.G.	+ $33^{1 / 2}$ G.B.	= 92	White +268	Black
108	R.O.	+204\%/2	B.G.	+ $47^{1 / 2}$ G.B.	$=103$	White +257	Black
98	0.	+177	B.G.	+85 G.B.	108	White+252	Black
116	Y.O.	+111	B.G.	+133 G.B.	$=90$	White +270	k
124	O.Y.	+ 21	B.G.	+215 G.B.	115	White +245	Black
135	Y.	+11.31/8	G.B.	+ $1111 / 2 \mathrm{~B}$.	=149	White+211	Black
161	G.Y.	+109	V.	+90 B.V.	$=145$	White +215	ck
125	Y.G.	+187	R.V.	+48 V.R.	$=121$	White+239	ck
	G.	+37	R.V.	+181 V.R.	$=94$	White +266	Black
1/8	B.G.	+ 22	V.R.	+1771/2 R.	88	White +272	Blȧk
237	G.B.	+119	O.Y.	+ 4 Y .	$=151$	White+209	Black
1841/2	B.	+ 69	Y.	+1061/2 G.Y.	$=126$	White +234	Black
1891/2	V.B.	+ 51	Y.	+1191/2 G.Y.	$=127$	White+233	Black
5	B.V.	+ 15	Y.	+150 G.Y.	= 145	White+215	Black
	V.	+ 76	G.Y.	+ 461/2Y.G.	=115	White+245	Black
	R.V.	+ 28	G.Y.	+1071/2 Y.G.	$=121$	White +239	Black
2221/2	V.R.	+ 32	B.G.	+ $105 \frac{1}{2} / \mathrm{G}$.	$=71$	White +289	Black

Table XXV.
Violet Background with Colourcd Discs.

1/2 R.	+	B.G.	B.	$=70$	White+290	Black
O.R.	+191	B.G.	+ $331 \frac{1212}{\text { G.B.B. }}$	=104	White+256	lack
R.U.	+198	B.G.	+ $47^{1 / 2} \mathrm{G}$ G.B.	$=124$	White + 236	Black
0.	+174	B.G.	+85 G.B.	= 98	White +262	Black
Y.O.	+104	B.G	+133 G.B.	= 91	White +260	Black
125 O.Y.	+ 20	B.G	+215 G.B.	$=108$	Whit	Black
1441/8 Y.	+104	G.B	+ $111^{2 / 2} \mathrm{~B}$.	=132	White	ck
130 G.Y	$+$	V.	+90 B.V.	=115	White+245	Black
135 Y.G	+	R.V	+48 V.R.	$=115$	White +245	Black
G.	+ 46	R.V	+181 V.R.	$=90$	White +270	Black
1551/2 B.G.	+27	V.R.	+1771/2 R .	$=70$	White +290	Black
231 G.B.	+125	O.Y	+ 4 Y .	=	White +210	Black
1821/2 B.	+ 71 +18	Y.	+1061/2 G.Y.	$=116$	White+24	Blac
1901/2 V.B.	+ 50	Y.	+1191/2 G.Y.	=	White+242	Black
194 B.V.	+ 16	Y.	+150 G.Y.	=	White +208	lack
2351/2 V	+ 78	G.Y.	+ 461/2 Y.C.	$=105$	White+255	Bla
22931/2 R.V	+ 23	G.Y.	+ $1071 / 2$ Y.G.	$=107$	White+253	Black
㤑	+ 21	B.G.	+ $10.51 / 2 \mathrm{G}$.	$=66$	White+294	Black

Table XXVI.
Red Background with Uncoloured Discs.

1/2R.	+ 11	B.G.	+ $211 / 2 \mathrm{G}$.	$=761 /$		
135 O.R.	+1901/2	B.G.	+ $33 / 2 / 2 \mathrm{G.B}$.	$=106$	White+254	Black
106 R.O.	$+$	B.G.	+ $47^{1 / 2}$ G.B.	17	White+243	Black
3.	+172	B.G.	+85 G.B.	= 101	White +259	Black
Y.O.	$+107$	B.G.	+133 G.B.	=104	White+256	Black
130 O.Y.	+ 15	B.G.	+215 G.B.	=	White+207	Blač
1461/2 Y.	102	G.B.	+111/2B.	$=173$	White +187	Black
158 G.Y.	+112	V.	+90 B.V.	$=158$	White +202	Black
Y.G.	+172	R.V.	+ 48 V.R.	$=148$	White+212	Black
G.	+ 39	R.V.	+181 V.R.	109	White +251	lack
1601/2 B.G.	+ 22	V.R.	+1771/2R.	$=76$	White +284	Black
229 G.B.	+127	O.Y	+ 4 Y .	$=163$	White +197	Black
176/2 B.	+ 77	Y.	$+1061 / 2 \mathrm{G.Y}$.	$=150$	White+210	Black
1821/2 V.B.	+ 58	Y.	+1191/2 G.Y.	$=135$	White+225	Black
182 B.V.	+ 28	Y.	+150 G.Y.	$=156$	White+204	Black
2371/2 V.	+ 76	G.Y.	+ 461/2 Y.G.	$=129$	White +231	Black
2251/2 R.V.	+ 27	G.Y.	+1071/2 Y.G.	$=139$	White+221	Black
2291⁄2 V.R.	+ 25	B.G.	+1051/2 G.	=	White	

Table XXVII.
Orange Background with Uncoloured Discs.

2101/2R.	+128	B.G.	+ $211 / 2 \mathrm{G}$	$=95$	White +265	Black
133 O.R.	+193/2/	B.G.	+ $33^{1 / 2}$ G.B.	33	White+227	Black
112 R.O.	+2001/2	B.G.	+ $47^{1 / 2}$ G.B.	= 145	White+215	Black
1150.	$+160$	B.G.	+85 G.B.	19	White+24I	Black
127 Y.O.	$+100$	B.G.	+133 G.B.	=119	White+241	Black
115 O.Y.	+ 30	B.G.	+215 G.B.	$=123$	White+237	Blac'
$151 / 2 \mathrm{Y}$.	+ 97	G.B.	+111/8B.	$=185$	White+175	Black
167 G.Y.	+103	V.	+90 B.V.	$=170$	White+190	Black
142 Y.G.	$+170$	R.V.	+48 V.R.	$=14^{\prime 2}$	White+218	ck
1 G .	+138	R.V.	+181 V.R.	=	White+236	Black
\& B.G.	+ 24	V.R.	+1771/2R.	=101	White +259	Black
G.B.	+120	O.Y.	+ 4 Y .	$=188$	White +172	Black
$n 1 / 2 \mathrm{~B}$.	+83	Y.	$+106 \frac{1 / 2}{} \mathrm{G} . \mathrm{Y}$.	$=173$	White +187	Black
01/2 V.B.	+ 60	Y.	+1191/2 G.Y.	$=169$	White+191	Black
182 B.V.	+ 28	Y.	+150 G.Y.	$=176$	White+184	Black
1381/2 V.	+ 75	G.Y.	+ 461/2 Y.G.	$=132$	White +228	Black
2141/2 R.V.	+ 39	G.Y.	+1061/2 Y.G.	$=164$	White +196	Black
2101/2 V.R.	$+44$	B.G.	+3051/2 G.	=	White +264	Black

Table XXVIII.
Yellow Background with Uncoloured Discs.

2201/2 R.	$+$	B.G.	+ $211 / 3 \mathrm{G}$. B.	91	White +269	Black
O.R.	+1941/2	B.G.	+ $33^{1 / 2} \mathrm{G} . \mathrm{B}$.	- 132	White +228	ck
R.O.	+2011/2	B.G.	+ $471 / 2 \mathrm{G} . \mathrm{B}$.	$=150$	White+210	ck
0.	+154	B.G.	+85 G.B.	$=136$	White +224	ck
Y. 0	+105	B.G.	+133 G.B.	$=133$	White +227	ck
O.Y.	+ 13	B.G.	+215 G.B.	162	White +198	Black
$1611 / 2 \mathrm{Y}$	+87	B.	+ $111 / 2 \mathrm{~B}$ B.	$=175$	White+185	ck
158 G.Y.	+112	V	+90 B.V	$=170$	White+190	Black
Y.G.	+171	R.V.	+ 48 V.R.	=145	Whit +215	Black
G.	+ 36	R.V.	+18t V.R.	-1	White+230	Black
1/2 B.C	22	V.R.	+177\% $/$ R.	$=95$	White +265	ack
G.B.	$\div 122$	O.Y.	$+4 \mathrm{Y}$	$=175$	White+185	Black
1/2 B.	+92	Y.	+1061/2 G.Y.	=181	White+179	Black
1\%/2 V.B.	$+59$	Y.	+1191212 G.Y.	$=1$	White +205	Black
B.V.	+ +2	Y.	$+150 \mathrm{G} . \mathrm{Y}$.	$=175$	White +185	Black
	+ +85	G.Y.	+ $461 / \mathrm{V}$:G.	$=140$	White +220	ck
$2271 / 2 \mathrm{R} . \mathrm{V}$.	+ 25	G.Y.	+ $107^{1 / 2}$ Y.G.	= 139	White+221	Black
233 V.R.	+2113	B.G.	$+1051 / 2 \mathrm{G}$.	$=95$	White +265	Black

Table XXIX.
Green Background avith Uncoloured Dises.

2253/R.		$\begin{aligned} & +113 \text { B.G. } \\ & +193^{1 / 2} \text { B.G. } \end{aligned}$		$\begin{aligned} & +21^{1 / 2} \text { G.B. }=95 \\ & +\quad 33^{1 / 2} \text { G.B. }=107 \end{aligned}$		White +265	Black Black
133	O.R.						
105	R.O.	+207	B.G.	+ $48^{1 / 2}$ G.B.	$=145$	White+215	lack
113	0.	+162	B.G.	+85 G.B.	= 119	White +241	Black
126	Y. O	$+101$	B.G.	+133 G.B	$=125$	White+235	Black
128	O.Y	+ 17	B.G	+215 G.B.	= 155	White+205	Black
1621/2	Y.	+ 86	G.B.	+111\% B.	166	White+194	Black
168	G.Y	+102	V.	+ 90 B.V	= 169	White+1	
125	Y.G.	+187	R.V	+ 48	=137	Wh	Black
138	G.	+ 41	R.V	+181 V.R	$=116$	Wh	Black
15	B.	+30 $+\quad$	V.R.	+1771/2 R	= 89	Wh	Black
226	G.B.	+130	0.	+Y .	$=173$	White	Black
	B.	87	Y.	-10612/2 G.Y	$=1$	White +195	Black
1882	V.B.		Y.	+ $119^{\frac{1}{2} \mathrm{G} \text { G.Y }}$	= 145	White +215	Black
172	B.V.	+ 38	Y.	+150 G.Y.	$=162$	White +198	Black
$2271 /$,	+ 86	G.Y.	$+461 / 2$ Y.G.	$=1$	White +23	Black
	R.V.	+ 28	G.Y.	+1071/2 Y.G.	= 133	White +23	
	V.R.	+ 27	.G	+1051/2 C .		White+	

Table XXX.
Blue Background zuith Uncoloured Dises.

Table XXXI.
Violet Background with Uncolourcd Discs.

2081/2		+130	B.G.	+. $21 / 1 / 2 \mathrm{G} . \mathrm{B}$.	$=85$	White +275	Black
141	O.R.	+1851/2	B.G.	+ $331 / 2 \mathrm{G}$.B.	$=105$	White +255	Black
118	R.O.	+1941/2	B.G.	+ $47^{1 / 2}$ G.B.	$=136$	White +224	Black
110	0.	$+165$	B.G.	+ 85 G.B.	20	White +240	Black
127	Y.O.	+100	B.G.	+133 G.B.	=115	White +245	Black
134	O.Y.	+ 11	B.G.	+215 G.B.	= 155	White +205	Black
1861/2	Y.	+ 62	G.B.	+111/2 B.	$=147$	Whitc +213	Black
160	G.Y.	+110	V.	+90 B.V.	= 125	White+235	Black
135	Y.G.	+177	R.V.	+48 V.R.	43	White+217	Black
139	G.	+ 40	R.V.	+181 V.R.	= 111	White +249	lack
1531/2	B.G.	+ 29	V.R.	+177/2R.	$=97$	White+263	ck
230	G.B.	+126	O.Y.	+ 4 Y .	$=180$	White +180	Black
171\%2	B.	+ 82	Y.	+1061/2 G.Y.	$=145$	White+215	Black
184\%/2	V.B.	+ 56	Y.	+1191/2 G.Y.	$=151$	White +209	Black
182	B.V.	+ 28	Y.	+150 G.Y.	$=169$	White+191	Black
230	V .	+ $833^{1 / 2}$	G.Y.	$+461 / 2$ Y.G.	$=126$	White+234	Black
2221/2	R.V.	+ 30	G.Y.	+107/2/2.G.	$=145$	White +215	Black
2331/2	V.R.	+ 21	B.G.	+ $105^{1 / 2} \mathrm{G}$.	$=83$	White +277	Black

Table XXXIt.
Red Background for Coloured and Uncoloured Discs.

1/2 R.	$+109$	B.G.	+ $213 / 2 \mathrm{G}$.B.	$=70$	White +290	Black
136 O.R.	+1901/2	B.G.	+ $33^{1 / 2}$ G.B.	20	Whitc +240	Black
IIf R.O.	+1081/2	B.G.	$+47^{1 / 2}$ G.B.	=115	White +245	Black
1100.	+165	B.G.	+85 G.B.	$=107$	White +253	Black
Y. 0	$+105$	B.G.	+133 G.B.	95	White +265	Black
O.Y.	+ 14	B.G	+215 G.B.	34	White+226	Bla
1551/2	+ 93	G.B	- $1111 / 2 \mathrm{~B}$.	=	White+222	Black
161 G.Y.	+109	V.	+90 B.V.	$=1.38$	White +222	Black
130 Y.G.	+182	R.V.	+ 48 V.R.	=12	White +232	Black
120 G.	+ 59	R.V.	+18i V.R.	= 100	White +260	Black
1501/2 B.G.	$+32$	V.R.	+1771/2R.	$=76$	White +284	lac
223 G.B.	+133	O.Y	+ 4 Y .	=163	Whitc+197	Black
1741/2 B.	+ 79	Y.	+1061/2 G.Y.	$=138$	White+222	Blac
1821/2 V.B.	+ 58	Y.	+ $1101 / 2 \mathrm{G} . \mathrm{Y}^{\text {P }}$.	$=142$	White+218	Blac
B.V.	+ 28	Y.	+150 G.Y.	$=150$	White+210	Blac
	+ 86	G.Y.	+ $46 \% / 2$ Y.G.	$=115$	White +245	Bla
2291/2 R.V.	$+23$	G.Y.	+1071/2 Y.G	$=136$	White +224	Blac:
2.661/2 V.R.	+ 18	B.C	$+105^{1 / 2}$ G.	$=78$	White +282	Bl

Table XXXIII.
Orange Background for Coloured and Uncoloured Dises.

$2271 / 2 \mathrm{R}$.	+111	B.G.	+ $211 / 2$ G.B.	$=77$	White +283	Black
135 O.R.	+191/2	B.G.	+ $33^{1 / 2}$ G.B.	$=97$	White+ 263	Black
116 R.O.	+1961/2	B.G.	+ $47^{1 / 2}$ G.B.	$=100$	White +260	Black
1150.	$+160$	B.G.	+85 G.B.	= 113	White+247	ck
Y.O.	$+100$	B.G.	+.133 G.B.	=120	White +240	Black
133 O.Y.	$+$	B.G.	+215 G.B.	$=113$	White +247	Black
1441/2 Y.	04	G.	+ $111 / 2 \mathrm{~B}$.	$=128$	Whitc +2.32	lac
G.Y.	93	V.	+ 90 B.V.	=16	White+195	Black
135 Y.G.	+177	R.V.	+ 4^{8} V.R.	=131	White +229	Black
140 G.	+139	R.V.	+181 V.R.	= 107	White +253	Black
1521/2 B.G.	+ 30	V.R.	$+1771 / 2 \mathrm{R}$.	$=80$	White +280	Black
225 G.B.	+131	O.Y.	Y.	52	White +208	Blac
17012/2.	+ 83	Y.	+1061/2 G.Y.	$=135$	White+225	Blac
1851⁄2 V.B.	55	Y.	+1191/2 G.Y.	39	White+22I	Black
180 B.V.	$+30$	Y.	+150 G.Y.	$=141$	White+219	Black
$2251 / 2 \mathrm{~V}$.	+ 88	G.Y.	+ $461 / 2$ Y.G.	= 119	White+241	Black
2271/2 R.V.	+ 25	G.Y.	+1071/2 Y.G.	-127	White +233	lark
31 V.R.	+ 105		$+2.31 / 2$ B.G.	$=88$	White+272	Black

Dix: Complementarism
Tadle XXXIV.
Yellow Bockground for Coloured and Uncoloured Discs.

	+117 B.G.	+ $21 / 1 /$ G.B.	70		
136 O.R	+ 1901/2 B.G.	+ $331 / 2 \mathrm{G}$ G.B.	$=97$	White +263	Black
113 R.O.	+ 1991/2 B.G.	+ $471 / 2 \mathrm{G}$ G.B.	= 105	White +255	Black
0.	+165 B.G.	+ 85 G.B.	$=106$	White +254	Black
Y.O.	± 97 B.G.	3 G.B.	$=117$	Whit	Black
O.Y.	+ 16 B.G.	G.B	$=162$	Whi	Black
1413/1/ Y.	+ 107 G.B.	1/8 B.	${ }_{1} 145$	White+215	Black
$177^{1 / 1 / 4 . Y}$ G.	+ 921/8	B.V.	$=146$	White +214	Black
Y.G.	+178 R.V	+48 V.R.	$=137$	Wh	Black
G.	+ 40 R.V	+ 18 I V.R.	Io	White +255	Black
1571/2 B.	25 V.R	+1771/2 R .	= 85	White+275	Black
223 G.B.	+133 O.Y	+ 4 Y .	75	White+185	Black
165	+ 88 Y .	$+1061 / 3.15$	=160	White +200	Black
1821/2 V.B.	+ 58 Y .	$+119 \%$ G.Y.	=139	White +221	
180 B.V.	30 Y .	+150 G.Y.	= 165	White +195	Black
230 V .	+ $83 \frac{1 / 2}{} \mathrm{G} . \mathrm{Y}$.	+ 461/2 Y.G.	$=115$	Whit	
2281/2 R.V.	+ 24 G.Y.	+1071/2 Y.G	= 114	White +2	
V.R.	+ $271 / 2 \mathrm{~B}$	+ $105 \frac{1}{2}$ G .	$=86$	White+	

Table XXXV.
Green Bockground for Coloured ond Uncoloured Discs.

225	R.	+ $1131 / 2 \mathrm{BC}$. .		+ $211 / 2 \mathrm{G}$ G.B.	$=771 / 2$ White $+2821 / 3$ Black		
122	O.R.	+204/1/2	B.G.	+ $33^{1 / 2}$ G.B.B.	= 90	White +270	Black
105	R.O.	+2071/2	B.G.	+ $48^{1 / 2}$ G.B.	$=120$	White +240	Black
106	0.	+169	B.G.	+85 G.B.	$=102$	White +258	Black
108	Y.O.	$+119$	B.G.	+133 G.B.	= 109	White +251	Black
128	O.Y.	$+$	B.G.	+215 G.B.	=145	White+215	Bl
139	Y.	+1091/2	G.B.	+111/2 B.	$=138$	White +222	Black
164	G.Y.	+106	V .	+90 B.V	$=142$	White+218	Blac
139	Y.G.	+173	R.V.	+48 V.R.	=	White +234	Black
146	G.	+ 33	R.V.	+18I V.R.	$=95$	White+265	Black
16012	B.G.	22	V.R.	+1771/8R.	$=75$	White +285	Bla
231	G.B.	+125	O.Y.	Y.	=147	White+213	Bla
173	B.	+ 80	Y.	+1061/2 G.Y.	=147	White+213	Blac
1881/2	V.B.	+ 52	Y.	+1191/2 G.Y.	$=127$	White +233	la
190	B.V.	+ 20	Y.	+150 G.Y.	$=148$	White +212	Black
22	V	+ 88	G.Y.	+ $461 / 2$ Y.G.	$=129$	White +231	Bla
		+ 28	G.Y.	+ $107^{1 / 2}$ Y.C.	$=125$	White +235	Bla
	V.R.	+ 36	B.C	+ $105 \frac{1}{2} \mathrm{G}$.	$=$	White+	Bla

Table: XXXVI.
Blue Background for Coloured and Uncoloured Discs.

R.	+118	B.G.	+ 21	79	White +281	mack
O.R.	+2041/2	B.G.	+ 331/2G.B.	$=125$	White+235	ack
106 R.O.	+ $2061 / 2$	B.G.	+ $47^{1 / 2}$ G.B.	=	White+253	Blac
0.	$+176$	B.G.	+85 G.B.	= 96	White +264	Blac
109 Y.O.	+118	B.G.	+133 G.B.	= 97	White +263	Blac
132 O.Y.	+ 13	B.G.	+215 G.B.	$=112$	Whitc +248	Blac
1481/2 Y.	$+100$	G.B.	+ $1111 / 8 \mathrm{~B}$.	$=134$	White +226	Bla
170 G.Y.	100	V.	+90 B.V.	$=1341 / 2$	White+ 225^{3}	
135 Y.G	$+177$	R.V	+48 V.R.	126	White +234	Blac
148 G.	+31	R.V.	+181 V.R.	$=105$	White+255	Black
15712/2 B.G.	25	V.R.	+ $1771 / 2 \mathrm{R}$.	$=75$	White+285	Black
231 G.B.	+125	O.Y.	+4 Y .	$=150$	White+210	Bla
1831/2 B.	+ 70	Y.	+106\%/2 G.Y.	$=138$	White+222	Blac
190\% $\frac{1}{2}$ V.B.	$+50$	Y.	+119/2 G.Y.	$=137$	White+223	Blac
191 B.V.	+ 19	Y.	+150 G.Y.	$=138$	White+222	Bla
2241\% V	+89	G.Y.	+ $46 \frac{1}{3}$ Y.G.	= 115	Whitc+245	Bla
2223/2R.V.	+ 30	G.Y.	+107\%/2 Y.G.	$=138$	White+229	Black
2271/2 V.R.	+27	B.G.	+1051/2 G.	$=75$	White+285	

Table XXXVII.
Violet Background for Coloured and Uincoloured Discs.

2091/2		$+129$	B.G.	+ $213 / 2 \mathrm{G.B}$.	$=74$	White +286	Bl
133	O.R.	+1931/2	B.G.	+ $333 / 2 \mathrm{G}$.B.	110	White+250	Black
116	R.O.	+1961/2	B.G.	+ $471 / 2 \mathrm{G}$ G.B.	= 111	White +249	Black
102	0.	+173	B.G.	+ 85 G.B.		White +266	Blac
125	Y.O.	+102	B.G.	+133 G.B.	=103	White +257	Blac
137	O.Y.	+	B.G.	+215 G.B.	=	White +223	Blac
1781/2	Y.	$+70$	G.B.	+111/28.	$=152$	White +208	Blac
116	G.Y	+154	V.	+ 90 B.V	$=112$	White +248	Blac
133	Y.G.	+179	R.V	+48 V.R.	$=131$	White +229	Black
140	G	+ 39	R.V.	+ 18 i i V.R.	$=85$	White+275	Bla
1531/2	B.G.	+ 29	V.R.	+ $1771 / 2 \mathrm{R}$.	75	White +285	Blac
233	G.B.	+123	O.Y.	$+4 \mathrm{Y}$	$=156$	White+204	Blac
1751/2	B.	+ 78	Y.	+1061/2 G.Y.	$=132$	White +228	Blac
1841/2	V.B.	+ 56	Y.	+11912/2 G.Y.	$=131$	White +229	Bla
181	B.V.	+ 29	Y.	- $150 \mathrm{G.Y}$.	$=140$	White +220	
23		$+80$	G.Y.	+ $461 / 2$ Y.G.	= 115	White+245	
	R.V.	$+30$	G.Y.	+1071/2 Y.G.	11	White +249	
227	R.	+ 27	B.G.	+1051/2 G.	$=71$	White +289	

A careful consideration of these results reveals some interesting facts about complementarism as it is influenced by colour contrast. Thus in the first set of experiments (coloured backgrounds with coloured discs), the following features were very noticeable: When the background was of the same quality as that of the colour of which the complementary was sought, the equation showed a marked increase in the degrees of that quality and a corresponding decrease in the degrees of the complementary. For example, under former conditions, 100° of orange were required with the complementary to produce the grey. With the orange background $13 \mathrm{I}^{\circ}$ are necessary, while with blue background only 98°. If the background be a quality different from either the colour or its complementary, then whether there will be an increase or decrease in the number of degrees of either will depend upon which of the two qualities the background is nearer to in the colour circle. The increase or decrease will be somewhat proportional to that distance. If the background be about equidistant from each, the results show an indifference. The following Table (XXXVIII) will exhibit this variation concisely.

Table XXXVIII．

Colour	Backgrounds											
	Red		Orange		Yellow		Green		Blue		Violet	
	$\begin{aligned} & \text { H } \\ & \text { dut } \\ & \text { E } \end{aligned}$		H © E	$\begin{array}{\|l} \text { U } \\ \text { u } \\ 0 \\ 0 \\ 0 \end{array}$	$\begin{aligned} & \text { H. } \\ & \text { yy } \\ & \text { ci } \end{aligned}$	$\begin{aligned} & \text { y } \\ & \text { H } \\ & \text { U } \\ & 0 \end{aligned}$	药	$\begin{aligned} & y_{1} \\ & \text { y } \\ & 0 \\ & 0 \end{aligned}$	炭	$\begin{aligned} & \text { U. } \\ & \text { Uu } \\ & \text { Uu } \\ & 0 \end{aligned}$	皆	\％
K．	11	．	2	－	1	．		2	\cdots	14	2	．
O．R	10	．．	8	．	1	．		12	．	1	，	．．
K．O	1	．	1	．	．	4		11	．	6		．
$1)$	5	．	31	．	19	．		1	．	2	1	．
Y． 0	11	．	12	\cdots	3	\cdots	6	\cdots	．	5	2	．
O．Y	6		4	．	1	．	－	3	．	4	．	3
Y	2	．	．	1／2	18	．	8	3	．	$51 / 2$	4	．
G．Y	．．	．	10	．．	18	．	20	．	1	．	4	30
Y．G	．	5	3	．	5	\cdots	1	．	．	12	．	2
G	．	4	．．	．	．	13	7	．	\cdots	．	．	9
B．${ }^{\text {d }}$	．	$11 / 2$	\cdots	1	．	$51 / 2$	5	．	5	．	\cdots	．
G． 13	\cdots	8	．	5		7	3	\cdots	7	．	1	．
13.	31／3		．	11	．	7	$11 / 2$	－	9			．
V．13	3，\％	6	．	4	\cdots	3	1	7	1			\ldots
L．V	．	19	\cdots	12	．	30	．	3	1	\cdots	．	4
V	．	\geq	4	．	．	3		2	7	．	5	．
R．V	．	．．		2	．	10		3	，	3	，	．
V．R	3		1／2		．．	1／2		16	\ldots	8	3	．

It will be seen that the greatest changes occur in the equa－ tions for orange，yellow，green－yellow，and blue－violet with the brighter backgrounds．With the darker backgrounds，blue and violet，the differences are less，althouglı sufficiently marked to show the orderliness of contrast effects．In case the background is distinctly different in quality from either the colour or its complementary，the variations are small and may show either an increase or a decrease．This is seen in equations 1,2 and 3 with yellow background，or in 4,5 ，and 6 with green background．

Table XXXIX indicates the variations for the white disc when the coloured backgrounds are used with the coloured discs only．Whencver the brighter colour－qualities are used as back－ grounds there is a decided decrease in the number of degrees of the white，（e．g．，in the case of yellow，orange，and green back－ grounds）．This is to be expected when the darker quality is induced upon the coloured discs．Yet the opposite of this is only partially the case．If we take the instance of the violet back－
ground，inducing as it does a greenish yellow，and thes requir－ ing more of violet or of the neighbouring quality in the equation， there is a consequent lessening of the light intensity with the increase of the darker quality．In the other instances the indif－ ference is indicated by the slight irregularities in increase or decrease．

Table XXXIX．
Infuence of the Coloured Background behind the Coloured Discs on the Intensity．

$\begin{aligned} & \text { Equation } \\ & \text { for } \end{aligned}$	Increase or Decrease of White with each Background．											
	Red		Orange		Yellow		Green		Blue		Violet	
	E	苞	忘	苞	!	获	H.	范	!!	نٌّ	药	it
		25	\cdots		\cdots		6\％	\cdots	5			
O．R．	12			13	．．	88	1		5	\cdots	17	
R． 0.	10	\＃	6	．	．．	25	．	9		4	17	
\％．	．	27	65	5	．	12 35	\cdots	18	5	－	\cdots	5
O．$\%$	\cdots	$\stackrel{3}{5}$	65	12	．．	12 3	\cdots	18	\cdots	25	\because	24 32
Y．	\ldots	15	．	3	．．	14	．．	28		5	\ldots	22
G．Y	．		．．		．．	12	1		8		\ldots	22
	．．	13	\cdots	10	．．	21	．	18	．．	18	\cdots	24
		13	．	14	．	31	\cdots	19			\cdots	13
B．G	3	．	．	20	．．	20	．	6	10	．	．．	8
G．	1	．	．	8	．．	28	．	5	．．	9	．．	10
		40	．．	14	．	35	\ldots	13	．	19	\cdots	29
V． B	10	．．	．	，	．	24	．．	5	2		\cdots	7
B．	．			31		11		${ }^{6}$		4	\because	
		14		10	\because	1		10		4		14
	35	．	21	．	\cdots	${ }^{\circ}$	17	is	6	－	\cdots	8
		．．	10	．．	．．	25		15	．．	9	．．	14

A marked feature of the second set of contrast experiments （in which the coloured backgrounds were used only with the uncoloured discs）consisted in the fact that the background induced the colour of its $\mathrm{cc} . .1_{i}^{i}$ mentary upon the uncoloured discs．Thus a blue background gave a yellowish tinge to the grey．This had a noticeable effect on the other side of the equation，as it called for a corresponding increase in the colour quality which had been induced upon the grey．But if this
induced colour did not approximate to cither colour quality in the equation, nuch diffouty was experiencel in obtaining an equation, and the results show many irregularities. A variation in the intensity was also notice ble. With the dull black background fewer degrees of white were almost invariably required. With the brighter colour-qualities (e.g.. yellow) as backgromends there was necessary a deciled increase in the degrees of the white sector. This may be secon in Thable XI.

Tart t. XL

$\begin{gathered} \text { Equalion } \\ \text { for } \end{gathered}$	1.a.knrounds						
	Jull Black	Red	Urange	raluw	Green	Blue	Violet
	$\begin{aligned} & \text { Degrees } \\ & \text { of } \\ & \text { White } \end{aligned}$	$\begin{gathered} \text { Wegrees } \\ \text { of } \\ \text { White } \end{gathered}$	$\begin{aligned} & \text { Degrees } \\ & \text { of } \\ & \text { White } \end{aligned}$	$\begin{aligned} & \text { Degrees } \\ & \text { of } \end{aligned}$	$\begin{aligned} & \text { Ilegrees } \\ & \text { of } \end{aligned}$	Degrees of White	Degree of While
R.	70	761\%	95	91	95	971/2	85
O.R.	87	106	133	132	107	114	105
R.O	107	117	145	150	145	107	136
	103	101	119	136	119	98	120
Y.O.	115	104	119	133	125	112	115
O.Y	140	153	123	162	155	126	155
Y.	154	173	185	175	166	155	147
C.i.	137	158	170	170	169	1381/2	125
Y.G.	139	148	142	145	137	133	143
G.	107	109	124	130	116	103	11
B. 6	78	76	101	95	89	82	97
	160	163	188	175	173	168	180
	145	150	173	181	165	140	145
V.B.	125	135	169	155	145	136	151
	152	156	176	175	1 m	160	169
V.	119	129	132	140	127	115	126
	115		164	139	133	138	145
	80	$961 / 2$	96	95	971/2	92	83

When the large coloured backgrounds were used ior both sets of dises, the variations in the colourel sectors on esponded very nearly to those observel when the smaller colosred backgrounds were used with these alune. This may be seen by a glance at Table XLI. A comparison of this with Table XXXVIII will reveal very similar results: but, while the varia-
tions in the furmer (XLI) are unally gre tex. the stae of the backgrounds was not increased sufficiently to make this a strik ing feature in the results.

The vartutuons in intensities are indicated in Table NI.II, Which states che increase of decrease in the degrees of the whre sector. Here the irregul ritio are sontewhat more numerons. as might be expected. since it as much more difficult to judge an eymality of intensity urde these conditons of looth light and colour contrast. With a bright I ackground (e.g.. ellow) there was usually a considerable increase in the degree of the white sector, wherea, with the bhe an I the vinlet Clefing qualities of lower intensity) a decr - wat enerall ea, ired. Red, orange, and gree backy irregularity of variation, hot this ie partis is the fact that the "ght contrast w as less strong. arth the fact that the colour induces upo the unc loure a accur e observation more difficul-

Table XLII.

Equaltion for	Increase or Decrease of White with the following Backgrounds:												Complementary between
	Red.		Orange.		Yellow.		Green.		Blue.		Violet.		
		$\begin{aligned} & \dot{\sim} \\ & \ddot{0} \\ & \stackrel{\rightharpoonup}{0} \\ & \stackrel{\Delta}{0} \end{aligned}$						$\begin{aligned} & \dot{\ddot{u}} \\ & \stackrel{4}{4} \\ & \stackrel{4}{4} \end{aligned}$	$\begin{aligned} & \dot{4} \\ & \stackrel{y}{\omega} \\ & \stackrel{y}{E} \\ & \underline{E} \end{aligned}$				
							7/2						B.G. and G.B.
Q. R	. 7	23	10	\ldots	เо	..	3	\cdots	38		23		B.G. "، G. B.
R.O		15		7	\cdots	2	13		\cdots		4		13.G. " G.b.
O.	6		10	.	3	.		6	\cdots	7	\cdots	12	B.E. " G.B.
Y. O	25		5		2				\cdots	28			B.G. " G.B.
O.Y		21		27	22		5	16	\because	20		2	G.B. " B .
Y.		10		26	9	9	$\stackrel{\square}{3}$	16	\cdots	$2{ }^{21 / 2}$		25	B.V. " V.
G.Y.	27	\cdots	28	$\stackrel{8}{8}$	9	2	5	13	\cdots	13			R.V. "V.R.
Y.G. G.	3 7		4	。	2			8	2			18	R.V. " V.R.
B.G.	4		2		7			13	\because	${ }_{1}^{3}$		3	O.Y. " Y .
G. 1		11	.	8	15	-		13				13	Y. " G.Y.
B.		3		10	15	\because	2		12	7	6		Y. " G.Y.
V.B		3	14		13		2	4	ir	14		12	
B.	4	9		1			10			4		4	G.Y. " Y.G.
K.V.		9	12			6	10	2	16	5		9	G. " ${ }_{\text {B.G. }}$
	10												

IV.

Complementarism in Lower Light Intensities.

Thus far our attention has been directed to the complementary relations of colours as ascertained in ordinary daylight. When we seek to discern the effects of the different intensities of light upon complementarism, the problem is at once very much enlarged. Investigation has shown that the manifoldness of qualities decreases with the approach to the extremes of light intensities. "This change of colour, the saturation being constant, is only within certain limits independent of the intensity, and, in the most recent spacial representation of light and colour
sensation, is provided for by giving the base of the colour-cone an inclination towards the axis, so that yellow occupies the highest, blue-violet the lowest, position."* As Kirschmann points out, \dagger "The only pair of complementary colours which have their maximum saturation at equal intensities must therefore be at the ends of that diameter of the base which stands at right angles to the axis, and this condition will be satisfied somewhere near red and b'se.-green." A bright illumination causes all colours to tend son: :what toward yellow in quality. Heimholtz \ddagger has made similar observations on the pure colours of the prismatic spectrum. and has found that even they undergu analogous changes. The violet of the spectrum is affected by a very slight variation in the intensity of light. In feeble illumination it approaches purple in hue: as the illumination increases the colour changes to blue, and finally to a whitish-grey, with a faint tint of violet-blue. Green, as it is made brighter, passes into yellowish-green, and then into whitish yellow; for actual conversion into white, it is necessary that the illumination should be dazzling. Red seems to resist these changes more than the other colours ; but if it be made quite bright, it passes into orange and then into bright yellow.

Changes of illumination in the other direction produce effects which are quite as remarkable. If we arrange by ordinary daylight sheets of red and blue paper which have the same degree of brightness and then carry them into a darkened room, we shall be surprised to find that the blue paper appears very much brighter than the red. Indeed, the room may be darkened so as to cause the red to appear black, while the blue still plainly retains its colour. By similar experiments, it can be shown that red, yellow, and orange-coloured surfaces are relatively brighter when exposed to a bright light than blue; but the latter, on the other hand, has the advantige when the illumination is feeble. It follows from this that photometric comparisons of the brightness of differently coloured surfaces, if made under bright day-

[^12]light, will no longer hold good in a dark day or in twilight, and that consequently we cannot. under a certain illumination, establish photometric relations that shall hold good under all other illuminations. This subject has been discussed at length by Kirschmann,* and later by Gruber. \dagger In the psychological laboratory of the University of Toronto the intensity of coloured pigment papers under different illuminations has been experimentally investigated by Mr. R. J. Wilson. \ddagger

Wilson found that uniformly there was no diminution of intensity with the blue in the case of decrease in the illumination; on the contrary, in most cases the number of the degrees of white was highest in lowest illumination. In the blue-green, the tendency was rather a decrease in the number of degrees from full intensity down to 20 tissues covering the aperture, and from that to the lowest intensity of light a steady increase in every case. At 30 tissues, the colour appeared far more blue than green. Violet showed a consistent downward tendency with the decrease of illumination. This was the case also with green till 30 papers controlled the illumination; but when colour was no longer present, the number of degrees rose, when 30.40 , and 50 papers respectively covered the aperture. The tendency downward in red was $\vdots::$ every case observable. Red and orangered became dark quickly, and lost their colour-quality when 20 tissues were used. Orange revealed the same tendency, but not to such a marked degree. Yellow was for all observers very difficult to judge, ranging from nearly cream colour in lowest intensity through a yellow with a tinge of orange in it up to a bright yellow.

Our efforts in this instance were to determine the effects of the lower light intensities upon the complementary relations of colours. The pigment papers used were those of the MiltonBradley system (which papers had been used also by Wilson in his investigations of the phenomenon of Purkinje). The condi-

[^13]tions under which the experiments were performed were similar to those already described, except for the differences in the amount of light admitted to the room. In this case the light entered through an opening 10 inches by 12 inches, parallel to the plane of the discs. The intensity of the light admitted was regulated by covering the aperture in successive experiments with sheets of tissue papers, arranged in frames, viz., 2, 10, 20, 30, 40, 50, 60, 70 tissues. In no instance could colour be discerned when more than 60 tissues were used. In most cases it was not observable beyond 40 tissues. The limit in each case is indicated by the horizontal line of division in each division of the Table. The following equations show the variations in the complementary relations under these conclitions:

Table XLIII.
Equation I.

	Red	Blue-Green		n-Blue	White	Black
Ordinary light. . 2 Tissues....	211	$+\quad 127$ $+\quad 127$	$+$	32	$=67$ $=87$	+293
	211	+ 127	+	22	$=87$	+273
20 "	197	+ 141	+	22	$=82$	+278
30 "	197	+ $+\quad 141$ $+\quad 141$	$+$	22 22	$=88$	+272
40 "	225	+ $+\quad 141$ $+\quad 131$	$+$	22 22	$=94$ $=83$	+266 +277 +290
50 "	230	+ 108	+	22	$=70$	+290
60 6	230	$+\quad 108$	+	22	$=62$	$+298$

Equation /I.

Equation III.

	Red-Orange		-Green		n-13lue	White	Black
Ordina:y light 2 Tissues	$\begin{aligned} & 113 \\ & 109 \\ & 103 \end{aligned}$	$+$	199	$+$	48	$=91$ $=112$	+269 +248 +
			209	$+$	48	$=123$	+237
20	114		198151	+	48	$=123$	+237
30	114			$+$	48	$=109$	+251
40 "	166		146		48	$=105$	+255
50	166		146	$+$	48	$=100$	$+260$
60	166		146	+	48	$=100$	+260
70 "			ible				

Equation IV.

	Orange	Blue-Green		n-Blue	White	Black
Ordinary light 2 Tissues	49 100	176 $+\quad 176$	+ +	85 84	$=120$ $=121$	+240 +239
	101	+ 176	+	83	$=115$	+245
20	107	+ 176	+	77	$=110$	+250
30	114	+ 176	+	70	$=108$	+252
40	119	+ 176	+	65	$=111$	+249
50	119	+ 176	+	65	$=100$	+260
60 "	119	$+\quad 176$	+	65	$=95$	$+265$
$70 \quad 1$		Invisible				

Equation V.

	Yellow-Orange	Blue. Green	Green-Blue	White	Black
Ordinary light 2 Tissues ...	103	+ 122	+ 135	$=104$	+256
	113	+ 122	+ 125	$=121$	+239
10 "	101	+ 122	+ 137	$=130$	$+230$
20 "	107	+ 122	+ 131	$=136$	+224
30	109	+ 122	+ 129	$=108$	+252
40 "	114	+ 122	+ 124	$=92$	+268
50	112	+ 122	+ 126	$=109$	+251
$60 \quad 4$	112	+ 122	+ 126	$=109$	+251
$70 \quad$ "	Invisible			

Dix: Complementarism
Equation VT.

Equation VII.

Equation VIII.

	Green-Yellow	Blue-Violet	Violet	White	Black
Ordinary light. 2 Tissues...	147 151	+ $+\quad 90$ $+\quad 86$	(123 $+\quad 123$	$=1361$ $=123$	+2231
10	122	$+\quad 115$ $+\quad 15$	$+\quad 123$ $+\quad 123$ +	$=123$ $=124$	+237
20	115	+ 122	1 $+\quad 123$	$=124$ $=119$	+236 +241
30 "	107	130 $+\quad 1$	123 $+\quad 123$	$=114$	+241 +246
40	107	130	123 $+\quad 123$	$=115$	+245
${ }_{60}^{50}$	107	$+ \text { Invisible }$	+ 123	$=101$	+259

Equation IX.

	Yellow-Green		-Violet		t-Red	White	Black
Ordinary light. 2 Tissues..	122124118	+	190	+	48	= 137	+223
			188		48	$=133$	+227
			194	$+$	48	$=141$	+219
20	115	+	197	$+$	48	$=133$	+227
30	89		223	$+$	48	$=122$	+238
40	65		247	+	48	$=109$	+251
50	53	+	259	+	48	$=99$	+261
60 "	53	$+\quad \begin{array}{r}259 \\ \text { Invisible }\end{array}$		$+$	48	$=95$	$+265$
$70 \times$							

Equation X.

	Green		Violet		et-Red	White	Black	
Ordinary light.. 2 Tissues.....	131131	$+$	48	+ + +	181	$=92$	+268 +268	
				+	181	$=92$ $=87$		
	130		49	+	181	$=87$	+273	
20	124		55	$+$	181	$=88$	+272	
30	128		51	+	181	$=90$	+270	
40	141	+	38	$+$	181	$=90$	+270	
50	127	+	52	$+$	181	$=91$	+269	
60 "	114	+ Invisible ${ }^{65}$		+	181	$=89$	$+271$	

Equation XI.

	Blue-Green	Violet-Red		Red	White	Black
Ordinary light. 2 Tissues	144	+ 34	$+$	182	$=82$	+278 +267
	147	+ 34	+	179	$=93$	+267
10 "	148	+ 34	+	178	$=96$	+264
20 "	146	+ 34	+	180	$=98$	+262
30	135	+ 34	+	191	$=89$	+271
40 "	128	+ 34	$+$	198	$=88$	+272
50 "	121	+ 34	+	205	$=92$	+268
$70 \quad 1$	121	$+{ }_{\text {Invisible }} 34$	+		$=87$	+273

Equation XII.

		Green-Blue		$g e-\cdots$		Yellow	White	Black
Ordinary light. 2 Tissues		238			$+$	4	$=141$	+219
		241 244		115 112	+	4	= $=146$	+214
20	"	248		108	$+$	4	$=142$ $=138$	+218 +222
30	\cdots	254	+	102	+	4	- 138	+222
40	"	238	$+$	118	+	4	$=146$	+214
50	${ }^{6}$	223	+	: 33	$+$	4	$=151$	+ 209
60	*	232			+	4	$!=159$	+201
70	"			ible		\downarrow	, 159	+201

Equation XIII.

Equation XIV.

Fquation $\lambda 1$:

Equation XVI.

		Violet		Yellow		-Cireell	White	Black
Ordinary light.. 2 Tissues.....		236	+	78	+	46	$=112$	$+248$
		227	$+$	78	$+$	55	$=117$	+243
		244	$+$	78	+	38	$=116$	+244
20	"	250	$+$	78	$+$	32	$=109$	+251
30	"	263	$+$	78	$+$	19	$=107$	+253
40	*	271	$+$	78	$+$	11	$=97$	+263
50	"	278	$+$	78	+	4	$=91$	+269
60	،	282	+	78			$=85$	+275
70	16	284	+	76			$=83$	+277

Equation XVII.

Equation XVIII.

	Violet-Red	Green	Blue-Green	White	Black
Ordinary light 2 Tissues	231 235	+103 $+\quad 109$	$+\quad 26$ $+\quad 26$	$=76$ $=86$	+284 +274
10 ¢	225	+ + + +	+ $+\quad 26$ $+\quad 26$	$=86$ $=76$	+274 +284
30 "	237	+ 97	+ 26	$=74$	+ 286
30 "	244	+ 90	+ 26	- 69	+291
40 "	256	+ 78	26	$=63$	+297
こ0	263	+ 71	+ 36	- 63	+ 297
60 70	263	$+\quad{ }^{71}$	+ 26	$=57$	+303

In the case of the equations for red, orange-red. red-orange, and orange, there was a decided increase in the number of degrees of these colours required as the illumination was made less intensive. This was obviously because the complementaries (between blue-green and green-blue) have a much higher intensity and saturation relatively under the weaker illumination. This increase, however, was not regular, except beyond 20 tissues. From ordinary daylight to the 20 tissues there was usually a somewhat regular decrease in the number of degrees of these qualities. This agrees very decidedly with the results of Wilson as to the effects of lower intensities of light on these colours. In Equations V. VI, and VII, the same variations were observable with yellow-orange, orange-yellow, and yellow, but the increases were not so large. In Equation VII it is seen that less blue is required. and the corresponding increase in the yellow is necessary.

In the case of the Equations for green-yellow, yellow-green, green, and blue-green, the decrease in number of degrees required under weak illumination is very striking. Especially is this the case with yellow-green. whose complementary is between red-violet and violet-red. For ordinary daylight, 122° yellowgreen were required, as compared with 53°, when 50 tissues controlled the illumination. In blue-green and green-blue (Equations XI and XII), the steps of degrees are less marked.

Again, for violet-blue, blue-violet, violet, red-violet, and violetred the regular increase under weak illumination is noticeable.

In Equation XIII (for blue), we find what seems at first sight a somewhat notable exception. Here the complementary is between yellow and green-yellow, and in this case a slight increase in the blue was required. There was a somewhat larger variation in the results of the different observations in this case, but the true explanation is more likely to be found by comparing with Figure 1, where blue appears as the second maximum of th: curve. As the blue of the Milton-Bradley system inclines slightly to the violet, this apparent exception is probably no exception at all.

The following Table will show the increase or decrease in degrees for each colour, between illumination by ordinary daylight and under the lowest intensity where colour is at all observable:

Table XLIV.
Behaviour of the Colours in Decrease of Intensity.

Equation for	Colour disappears beyond		Minimum change in degrees.		Complementary between
			Increase.	Decrease.	
R.		Tissues	19 $=9 \%$		B.G. and G.B.
O.R.	50		$42=30 \%$		B.C. " G.B.
R. O	40	"	53 $=44 \%$		B.C. " G.B.
Y.O.	50 40	"	$20=20 \%$ 11	\ldots	${ }_{\text {B.G. }}$ B. ${ }_{\text {C. }}^{\text {G.B. }}$
O.	40	"	$16=13 \%$		B.G. " G.B.
Y.	50	"	$12=8 \%$		G.B. " 13.
G.Y.	40	"		$40=27 \%$	B.V. " V.
Y.G	50	"		$69=57 \%$	R.V. " V.R.
B. ${ }_{\text {B. }}$	50	"	\ldots	$4=3 \%$	R.V. " V.R.
G. B	50	"		15=6\%	O.Y. " Y .
B.	50	"	21=11\%	-	Y. " G.Y.
V.B.	50	"	$19=10 \%$		Y. " G.Y.
B.	50	"	25=13\%		Y. " G.Y.
V.	60	"	$46=20 \%$		G.Y. " Y.G.
R.V.	50		$47=21 \%$		G.Y. "Y.G.
V.R.	50		$32=14 \%$		G. "BG.

It is to be observed that the Equations showing the greatest variations under these different intensities are those involving green-yellow or yellow-green: but this is evidently because the complementaries lie in that part of the colour circle easily affected by change in the illumination. This, too, would account for the large variation in Equation III. The smallest variation is found in No. X, and it is to be noticed that the complementary qualities in this case are those found in those parts of the colour circle where the maximum saturations are about of equal intensities.

The following Table ($\mathrm{X} L \mathrm{~V}$) will give a similar comparison of the variations in the black and white discs. Here, again, it will be noticed that the greatest changes are called for in those Equations involving green-yellow and yellow-green, and in each such instance there is a decrease of the white. Strangely enough, the smallest variation is again found in Equation X. Usually where one of the complementaries is in the vicinity of the yel.low quality a decrease is demanded in the degrees of white. Otherwise, the variation is not very decided. In some cases the increase or decrease when the illumnation was controlled by 20 tissues was much greater than when under a more feeble illumination. This occurred usually in the Equations where blue-green, green-blue, green-yellow or yellow-green is found. As the colour-quality of relatively greater intensity under feeble illumination required an increase, more degrees of white were necessary. Otherwise, a decrease was sieadily observable.

Tamle XLV.

F.quation for	Color disappears beyond	Maximum change in white.		Complementar between
		Increase	Decrease	
K.	so Tissues	$3=4 \%$		B.C. and C.b.
O.R.		$2=3 \%$		B.G. " G.B.
R	40 "	$14=15 \%$		B.G. " G.B.
	30 40		30 $=17 \%$	${ }_{\text {B.C.C. }}$ B. G.B.
	40	$11=8 \%$	$12=12 \%$.	B.G. " ¢.B.
Y.	50		$3=2 \%$	G.13. " 13.
G. Y	40		$211=16 \%$	B.V. " V.
Y.	50		38 ${ }^{\circ}=28 \%$	R.V. " V.R.
(i..	50		$1=1 \%$	R.V. " V.R.
	50	10=12\%	-	V.R. " R.
13.		10=7\%	$16=10 \%$	O.Y. " G.Y.
V.13.	go		$6=5 \%$	Y. " G.Y.
	50		$9=7 \%$	Y. " G.Y.
$\underset{v}{V} .$	60		27 $=24 \%$	G.Y. " Y.G.
R. ${ }^{\text {R. }}$	50	30 30 13	${ }_{\text {G.Y. " }}$
	50	.	$13=17 \%$	C. "B.G.

If we seek an explanation of these phenomena it will be found in the fact that every colour sensation has as two of its attributes brightness and saturation. Of these two attributes saturation is peculiar to chromatic sensations, while the brightness quality belongs to both chromatic and achromatic sensations. As we have seen, the grade of brightness most favourable for the saturation of a colour is not the same for all, but varies widely from red to green-blue. If then, we vary the amount of light in ascertaining the complementary relations, the proportions of the physical stimuli must be varied to obtain colourless light, unless the grade of brightness most favourable to saturation be alike, or nearly so. in the case of each colour involved.

V.

Cases of Anomalous Complementirism

For the normal eye, complementarism remains more or less the same. It is true that, according to Purkinje's phenomenon, the qualities are dependent on the intensity, but complementarism concerns, as we have already seen, not the qualities which we say are there, but those which we actually see under the varying conditions of colour sensation. Similarly, contrast and after-images may liave a grmt influence, but the character of complementarism is only apjarmenty changed, i.e., in so far as it concerns the colours which we attribute to objects, not those which we actually see.

But there is a real source of anomaly in certain cases of colour-blindness. To take as an example the case of monocular colour-blindness investigated by Dr. Kirschmann in the Leipzig laboratory ans I described as No. 5 in his article. "Beiträge zum Kenntnisse der Farbenblindlieit,"* we have there an instance in which for the one eye blue and red were the only elements in the colour system, and acted towards each other like the ordinary complementary pairs. While the left eye was quite normal for colour, the right eye could dictinguish only the red and the blue, all the other colours being seen as variations in saturation of one of these two. When careful affryimage tests vire made with spectral colours, it was found th : onectral crour seen as red left a blue negative after-im, anl : \because eversa. This condition was all the more remarkable. 30 :n! because the left eye was perfectly normal in its apprec:. because the colour-blind eye was no less normal in its appreciation of the red and the blue. which acted as complementaries.

Similar anomalies with regard to complementarism probably exist in most cases of dichromasy, though they cail be detected with certainty only in a case like thsalme mentioned, where the deviation is confined to one eye. it is easy to show that the complementary pairs of a dichromate are not the same as those of the normal, but there is no way of ascertaining how the dichromate sees them.

[^14]Apart from objections that have already been raisei to the Young-Helmholtz theory, it is plain that if white light is composed of red, green, and a bluish violet, it is altogether inexplicable how the colour-blind eye, in the first of the above cases, could see colourless light at all, having stnsibility for only two of the three. Moreover, this same case is just as impossible to explain by the theory of Hering. If red is a sensation which arises from the destruction of a certain kind of visual substance, and blue a sensation arising from the construction of a totally different kind of visual substance, we cannot explair. how this colour-blind eye could long continue to have sensibility for more than blue alone. The red substance could never be made up by the construction of the blue, and evidently must become exhausted.

Moreover it is curious indeed that there is a disturbance of the ordinary complementary relationships of the various members of the colour system when the colour surfaces are reduced to small visual angles. This has been discovered by the investigations of Lane* in the University of Toronto Laboratory. His results aiso show that coloured grounds do not seem to lower the space-thresholds of their ordinary complementaries so muck as they do that of some other colours, such as red and blue. On the red ground almost all the colours appear first as blue. and on blue nearl:' " appear first as red, including even the complementaries the ...elves of the coloured grounds. "It thus appears," he says. "that for small angular sizes of coloured surfaces there is a disturbance of ordinary complementary relations, and that for red aril blue groumds at small vistual angles a condition of things obt ; which is sontewhat similar to that present in the colour-hlind eye of Professor A. [i.e., as instanced above]. The coincidence is not quite complete, because there is not absolute failure to appreciate other colour qualities besides red and blue. I would enunciate our conclusions on this question in the following way: On red and blue grounds, below the limits of the characteristic space thresholds of blue and red respectively, there is a lack of ability in the normal eye to make

[^15]definite discriminations of the other spectral colour tones, and a tendency to confuse them with either red or blue. Thus, in a limited sphere, embracing only small angular sizes, are practically reproduced the conditions of colour sensibility exhibited by the colour-blind eye of Professor A., which form an antagonistic colour system of one dimension. founded on the two qualities, red and blue." It is easily seen that the aloove peculiarities in the complementary relations present formidable difficulties for any component theories, be it that of llelmholtz or that of Hering, or ally of their more motlern modifications.

VI.
 Complementarism in Regard to the Other Senses

If we enlarge our discussion so as to include the inquiry into complementarism in the other senses, we at once enter an immense field in which very little has been done. In the sense of hearing, we observe that the system of simple tone sensations is a continuity of one dimension. The quality of a single simple tone is called its pitch. The one-dimensional character of this system reveals itself in the fact that, starting with a given pitch, we can vary the quality only in two opposite directions. Wre speak of the change in one of these directions as raising the pitch, while change in the other direction we call lowering the pitch: thus making the difference greater all the time and never getting at a complementary of the original. But in our actual experience, such simple sensations of tone are never presented alone. They are always united with other tone sensations, and with accompanying noises. In all this series, lowever, thare is nothing akin to the neutralization of one such tone quality by another. Likewise, in the sense of touch, we find nothing analogous to this phenomenon of complementarism. Sensations of pressure form a system which reveals no two in a complenmentary relation. This does not apply to the so-called kinaesthetic sense. however. for here we find that there is an antagonism of the action of the miscles in such a way that almost every movement is regulated by a pair of antagonists. Nevertheless this ana-
tomical or physical antagonism is not represented in sensation. In the sense of sight. complementarism (i.e., antagonism) and contrast are very closely allied, whilst in other senses we find antagonism without contrast and vice ecresa. We must conclude, therefore, that this alliance is not a necessary one. Thus we ind psychically nothing of complementarism in the haptic and kinarsthetic senses, although we encounter there an abundance of contrast phenomena.

It is only when we come to the sense of temperature that we sec a striking parallel to this phenomenon. In this case there are only two qualities, but they are indeed antagonistic and complementary. These two are not as the sensations of light and dark, which do not neutralize each other, but give a series of sensations of grey. Rather, these qualities stand in the relation of opposites or contrasted sensations, like a pair of complementary colours. "Heat and cold exclude each other, because, under the conditions of their rise, the only possibilities for a given cutaneous region are either a sensation of heat or one of cold. or else an absence of both. When one of these sensations passes continuously into the other, the change regularly takes place in such a way that either the sensation of heat gradually disappears and a continuously increasing sensation of cold arises. or. conversely, the sensation of cold disappears. and that of heat gradually arises. Then, too, elementary feelings of opposite character are connected with heat and cold, the point where both sensations are absent corresponding to their indliffererice zone."* Titchener presents a somewhat different view. He says: "We are apt to think of temperatures physically as degrees of one and the same quality. Warmth and cold are. psychologically, 'fualities of different senses, proceeding from different sense-organs. If they differed merely in degree they would cancel each other when mixed, as positive and negative numbers cancel each other when summed: they could not possibly fuse together to produce a third conseious quality. Heat (warmth x cold) may be compared, psychologically, to colour (colour proper \times brightness), or taste (taste proper \times smell), or the

[^16]note of a musical instrument (fusion of a number of tones and noise). All alike are illustrations of 'fusion.' "* The fact of the adaptation of the nerve to the momentary temperature of the skin seems hardly to be in harmony with the existence of special apparatus for the two qualities of the temperature sense. But, apart from the difficulty connected with the theory oi heat and cold spots as the peculiar terminal organs, we may well ask what that "third conscious quality" is. If any considerable area of the skin receive such stinulation, we have either a sensation of heat or one of cold, and we know that these temperature sensations do pass into each other through a point r° indifference. Since we find no third quality we are justified .at believing that they do cancel one another.

In the sense of taste, we find that complementarism has a wide range. for a too prominent taste can be neutralized by others. As Brücke remarks: "Experience teaches us that certain sensations of taste do compensate ne another, although the chemical properties of the stimuli do not compensate one another." \dagger Kiesow \ddagger has followed up this investigation experimentally with a view to answering two questions: (1) Do qualitative changes occur with mixtures of the substances of taste? (2) Is this phenomenon in the sense of taste to be regarded as completely analogous to the complementary relations of the so-called colour-opposites? Four primary qualities are to be distinguished, he concludes; but bet"een these primary qualities there are many possible transitional tastes which are to be regarded as mixed sensations. The primary qualities are salt, sour, sweet, and bitter. Some investigators have been inclined to include metallic and alkaline in this list, but the former shows an unmistakable relationship to sour, and the latter to the saline taste, so that these two are probably mixed sensations. The qualities, salt and sweet, are opposite, and when these are united in proper intensities, the result is a neutral mixed sensation (which Kiesow describes as "soapy," and

[^17]Wundt as "insipid"). No combination was found by Kiesow which he could describe definitely as the indifference point, yet the qualities do weaken one another. and the principle of compensation is plainly observable. "The system of taste sensations is. accordingly, in all probability to be regarded as a two-dimen-

Fig. 16.
I. Salt.
2. Salt-Sour.
3. Snur.
; Sweet-Sour.
5. Sweet.
6. Bitter-Sweet.
7. Bitter.
8. Bitter-Salt.
sional continuity, which may be geometrically represented by a circular surface on the circumference of which the four primary and their internediate qualities are arranged, while the neutral mixed sensation is in the iniddle, and the other transitional taste
qualities are on the surface between this middlepoint and the saturated qualities on the circumference."* This would be graphically represented by Figure 16.

There are certain analogies, then, between the sense of taste and the higher sense of sight. The resultant fusion of tastes is not equal to that of colours, and consequently shows relations which need separate investigation; but the phenomenon of the complementarism of colours finds its counterpart in this neutralization of certain tastes by others which stand apparently in a complementary relation.

The sense of smell stands in a close relation to that of taste, and Zwaardemaker \dagger has endeavored to establish a complete analogy between the two. He holds that two smells can be mixed in such proportions that each may be made weaker or stronger, and that they may be graded so that the point of complete indifference is obtained. He finds this to be the case, whether the stimuli are directed to ne or to both nostrils. If the stimuli are balanced, there is no perception of smell, or else a weak and undecided impression, which can only be noticed by very close attentinn, and which is similar to neither component. Therefore, he maintains that in the sense of smell the principle of compensation obtains. This, however, has not been confirmed by other investigators, who regard it as doubtful. The most we can say as yet is that sensations of smell form a complex system of many different qualities whose arrangement is not definitely known; but it is probable that the system is a continuity of many dimensions. Wundt \ddagger expresses his view as follows: "It has been observed that many odours neutralize each other, so far as the sensation is concerned, when they are mixed in the proper intensities. This is true not only of substances that neutralize each other chemically, as acetic acid and ammonia; but also of others. such as caoutchouc and wax, or tolu-balsam, which do not act on each other chemically outside of the olfactory cells. Since this neutralization takes place when the two stimuli act on

[^18]entirely different olfactory surfaces, one on the right and the other on the left mucous membrane of the nose, it is probable that we are draling, not with plienomena analogous to those exhibited by complementary colours, but with a reciprocal central inhibition of sensations."

It is customary to classify the senses into mechanical and chemical senses. In smel! and taste we have external chemical agencies ; in sight we have light as the cause of chemical disintegrations in the substances of the retina. These are distinguished from the mechanical senses of pressure and sound, while it is as yet impossible to say definitely to which class the sense of temperature belongs. From the standpoint of complementarism this classification seems to be perfectly justifiable; for where a chemical function is associated with sensation there is the probability of a play of antagonistic processes, but we cannot expect the same phenomena from the neutralization of a mechanical function. Complementarism, then, is not to be identified with contrast; for, while the latter is found in all the senses, the former is limited to a few.

VII.

CONCLUSION

The attempt to explain complementarism from the physicist's standpoint fails, as we have seen, because there is no fixed relation of wave-length which could be claimed as a physical analogon. Thus, many have sought the explanation in the processes of the retina. The Young-Helmholtz theory is a very inadequate attempt in this direction, seeing that it was made primarily to explain the facts of colour mixture. On the other hand, Hering's theory was formulated mainly to explain the facts of complementarism; but it has the fault of all component theories, and does not explain the cases of abnormal complementaries at all, nor does it account for the influence of contrast.

A very curious theory of this class is that advanced by Ebbinghaus, it being a modification of the Hering theory. In the Hering theory complementarism is rather plausibly ex-
plained as the outcome of antagonistic processes; by Ebbinghaus the processes are not regarded as antagonistic. Instead of being an assimilation and a dissinilation, they are both states of decomposition, i.e., a certain degree of decomposition causes the one colour, a higher degree of decomposition causes the antagonist. There remains, of course. the same mystery as in the sense of temperature, where you have to admit that a certain degree of physical heat causes the sensation of cold and a higher degree causes the opposite sensation, heat. On the one side we have the quantitatively purely one-dimensional system, on the other side the bipolar or antagonistic system; hence nothing is explained.
G. E. Miiller* in his new colour theory seems also to treat complementarism completely from the physiological side. Only the outer excitations are bound to one another in pairs of antagonistic processes, whilst the more centrally located inner excitations are inclependent. All these theories, cven if they were correct, would (as Kirschmann states in Normale und anomalic Farbensysteme) treat at best the complementarism or antagonism of retinal or cerebral processes, but do not deal with the sense qualities at all.

The only theory which does not make "our knowledge of the physical processes the 'Prokrustes Bed' for the analysis of the psychical facts" is Wundt's theory (Stufen-Theoric) of colour. \dagger He points out that a careful observation of the whole system of light and colour sensations leads us to expect a different relation hetween the psychological facts and the physical or physiological processes from that occurring, for example, in the auditory sense. In the latter, the principle of parallelism holds largely both for the physical and the physiological processes of stimulation. Thus a simple sensation has its corresponding simple form of sound vilration, and a combination of these the corresponding compound form. The quality varies with the form of the vibration, and the intensity with the amplitude of

[^19]the wave-length. But in the system of light and colour sensations, we find somewhat different phenomena. While the simple sensations correspond to vibrations of certain wave-lengths, the quality varying continuously with the wave-length and with the rate of vibration, yet we observe that red. which corresponds to the longest and slowest waves, and violet, which corresponds to the shortest and most rapid, are yet approaching one another again in quality. Not only so, but every change in the amplitude of the vibrations corresponds to a change in both the quality and the intensity of the sensation (Purkinje's phenomenon, etc.). Furthermore, every light sensation is psychically simple, even though it responds to many kinds of vibrations. It is therefore apparent that light which is physically simple may produce not only chromatic but also acliromatic sensations. From the quality of the achromatic sensation, we cannot say whether it is produced by a change in the amplitude of the vibrations or througl a mixixture of simple vibrations of different wave-lengths. Thus, a sensation of pure brightness of a given intensity may result not only from a mixture of all the rates of vibration in solar light, but it may also result when only two kinds of light waves are mixed in proper proportions, as we have seen in the phenomenon of complementarism. The kinds of light necessary thus to produce a sensation of pure brightness are those which correspond to sensations subjectively the most different. Then, too, each colour sensation may have more than one source, for if we mix two objective colours nearer than the complementaries in the colour-circle, we obtain not a white but an intermediate colour-quality.

In view of these phenomena, it is clear that no simple relation can exist between the physical stimuli and light sensation, but it is possible that such a relation may exist between the physiological processes and sensation. As different kinds of physical light produce like chemical changes, the same sensation may result from various kinds of objective light. Therefore Wundt pre-supposes in the retina two sulstances, chromatic and achromatic, in each of which a light stimulation sets up an excitation. In the former, this is a somewhat periodic function of wave-length; in the latter. it depends upon the relative
intensity of the wave-length. The intensity of the light also affects the two differently. Thus the achromatic begins at a low degree of stimulus intensity and increases continuously with it; but the chromatic is greatest at moderate intensities of stimulus. Wundt* says:

Abstract

" If we take the principle of parallelism letween sensation and physical stimulation as the hasis of our suppositions in regard to the processes that occu: in the retina, we may conclude that the photochentical processes corresponding to chromatic and achromatic sensations are relatively independent of each other in a way analogous to that in which the corresponding sensations are relatively independent Twe facts, one belonging to the subjective sensational system, the other to the objective phennmena of colour-mixing, can be very naturally explained on this basis. The first is the fact that every colour sensation tends to pass into one of pure brightness as the grade of its brightness decreases or increases. The fact is most simply interpreted on the assumption that every colour stimulation is made up of two physiological components, one corresponding to the chromatic, the other to the achromatic stimulation. . . The second fact is that there are complementary colours. This fact is more easily understood when we issume that opposite colours, which are suhjectively the greatest possible differences in sensation, depend upon objective photochemical processes that neutralize each other. The fact that as a result of this neutralization, an achromatic stimulation arises is rery readily explained by the pre-supposition that such an achromatic stimulation accompanies every chromatic stimulation from the first, and is, therefore, all that is left when antagonistic chromatic stimulations counteract each other."

It must be remembered that, according to Wundt's theory, we should suppose that the retinal or cerebral substance for the achromatic excitation is of a comparatively simple chemical nature; whilst the chromatic substance (i.e., the substance whose decomposition corresponds to the colour sensations) must be of the nature of a very complex chemical compound. Applying this same principle of psycho-physical parallelism to the chromatic stimulation itself, we must suppose that the complementary colours, which correspond to largest differences in stimulation, really are associated with processes which nettralize each other. As such neutralization can only occur when they are somewhat opposite in character, and as each sensation has a complementary quality, there is probably a complementary process for each stage in this chemical manifoldness of colour stimulation. This chemical prucess, as mentioned above, must occur in a very complex chemical molecule which can be

[^20]attacked by decomposing intluences in as many different ways as we can distinguish colour qualities. The circle of colour sensations, then, has in all probability a corresponding circle of chemical processes, in which each one has its neutralizing opposite. In this event, the return of the colour-circle to its beginning finds a corresponding physiological parallel in the return of the chemical processes to similar forms.

The adherents of the component theories take objection to the complex nature of the chemical compound constituting Wundt's chromatic substance. They forget that simplicity is only a principle of interpretation, and not a principle which is inherent in the facts. The higher the development of an organism and the more sensible it is to the various stimulations, the more complex is the chemical constitution of its parts. This is something which organic and physiological chemistry has clearly demonstrated; and we should not object to the complexity simply because we do not completely comprehend it. In fact, the more we try to understand the mystery of the connection between the vast manifoldness of the physical and physiological processes and that one unity and continuity, the mind, the greater is the complexity which confronts us. And if we would not end in logical inconsistencies, we must assume, as Wundt did in his Physiology, that the whole human body, regarded from a chemical standpoint, is one very complex molecule.

[^0]: - Kirschn in, Dunkles im Getiefe des Lichrs (Bericht uber den II. Kongress fur Experimentelle Psychologie, p. 229.)

[^1]: * Kirschmann, Normate und Amomale Fiarbensysteme (Archiv fir dio gesamte Psychologie, Band VI., p. 397.)
 \dagger Ifelmholtz, Physiological Optics, p. 317.

[^2]: - Archiv filr Ophthalmologie, Bd. 18, I. Vide Wundt, Physiolagisehe Psychologie, Vol. II., p. 144.

[^3]: "Red and green-blue are complementary colours. hecause red light stimutiates the red nerses, and green-blue light loth the green and the violet nerves; the joint action of the three sets gives white light. Orange and cyan-blue is the next pair: orange light sets in action the red nerves powerfully, also somewhat the green nerwes: eyan-blue sets in action the green and the violet nerves: all three sets of nerves acting, the result is the sensation of white. The case is much the same with yellow and genuine ultramarine-blue: both colours stimulate two sets of nerves: that is, the yellow acts on the red and green nerves, the blue on the green and violet nerves. With green

 - Rood, Text-Boot of Colour or Modern Chromatics, p. 176.

[^4]: ＊Ibid，p．17\％．
 ＋Cf．Kirschmann＇s discussion of Saturation in American Journal of Psychol．，Vol． VII．，p．395，and in Archiv tilir die gesamte Psychologie，Val．VI．，p． 399.

[^5]: *Kirschmann in Philosophische Studien, Vol. VIII., p. 196, also in Archiv für die gesamte Psychologie, Vol. VI., p. 413. See also Wundt, Physiologische Psychologie, Vol. II., p. 229.

 + IIering, Lehre vom lichtsinne.

[^6]: * Kirschmann, Normale und anomale Farbensy'steme. (Archiv fur die gesamte Psychologie, Vol. VI., p. 402.)
 + American Journal of Psychology, Vol. VII., p. 395.

[^7]: - Cf. Rood, Text-Book of Colour on Modern Chromatics, pp. 160-171.

[^8]: * University of Toronto Sıudies : Psychological Series, Vol. II, No. 2.

[^9]: - University of Toronto Studies : Psychological Series, Vol. I, No. 4.

[^10]: - University ol Toronto Studies: Psychological Series, Vol. I, pp. 24 ei seq.
 + University of Toronto Studie: : Psychological Series, Vol. II, pp. 27 ef seq.

[^11]: * Hurst, Colour, p. 107.
 \dagger Text-Book of Colour or Modern Chromatics, p. 245.

[^12]: - Wilson. On Colour Fhotomelry, etc. (University of Toronto Studies, Psychological Series, Vol. II, p. 47).
 + Colour Safuration (American Journal of Psychology, Vol. VII, p. 394.)
 + Thysiological Optics, p. 297.

[^13]: *Kirschmann, Lieber die quantitativen Verhältnisse des simultanen Contrasles. (Philosophische Studien, Vol. VI, p. 10.)

 + Gruber, Unterswchwngen uhber die Kelligkeit der Farben. (Philosophische Studien, Vol. IX, P. 429.)
 \ddagger On Colour Photometry and on some Qxantitative Relations of the Phenomenon of Purkinje. (University of Toronto Studies, Psych. Series, Vol. II., p. 47.)

[^14]: - Philos, Stutien, Vol. VIII, p. 197.

[^15]: - Lane, Sifacr Threshold of Colours and its dependence on Cowtrast Phenomena. (Univ. of Toronto Studies: Psychol. Series, Vol. 1, p. 53 ef sec̣.)

[^16]: - Wund, Oufines of Psychology (2nd i:dition), P. 54.

[^17]: - Titchener, Experimental Pychology, p. 91.
 + Vorksumsen uiber Physiologic, Bd. 11, p. 247.
 \ddagger Kiesnw, Bripodyr awr physiologisehen Psychologie des Geschmochssinnes. (I hilos phische Sturien, Vol. XIf, p. 255). See also Philos. Sludien, Vols. IX and X.

[^18]: - Wundt, Outlines of Psycholosy, p. 61.
 + Die Physiologie des Ceruchs, p. 165 it seq.
 \# Wundt, Ontlines of Psycholesg (2nd Edition), p. 60.

[^19]: - Zur Prochophysik der Gesichisempfindunzen. (Veitschrif fur Pychologie und Physiologie der Sinnesorgane, Vol, XIV, P. 106!.
 + Physiologische Prychologic, Vol. 11, pp. 25: ef seq. See also his Outtions of Pywhology, pp. 78 ef seq.

[^20]: - Outlines of Prychology, p. 79.

