THE JOURNAL

BOARD OF ARTS AND MANUFACTURES

PR

UPPER $\mathcal{A} \mathbf{A N A D A .}$

EDITED BY THE SECRETARY OF THE BOARD.

> VOLUME V.

TORONTO:

PRINTED FOR THE BOARD OF ARTS AND MANUFACTURES FOR UPPER CANADA, by W. C. Chevet \& CO., king street east.
1865.

BOARD OF ARTS AND MANUFACTURES FOR UPPER CANADA,

FOR THE YEAR 1865.

EX-OFFICIO MEMBERS.

Ter Minister of Agrioulture,
Tre Chief Supirintendent of Eduoation fon Upprr Canada,
Tal Professors and Leoturers on the various branogis of Peithioal Souenor, in tabe
Cbartered Universities and Colleges of Upper Canada, Tie Direotor and Prinotpal Offioers of the Geologioal Survey.
Ter Presidents of Incorporated Meobanios' Institutes in Upprr Canada, Ter Prrsidents of Inoorporated Arts Absoolations in Upper Canada, Ter Prigidents of Boards of Trade in Upper Canada.

Ayr James Gladstones.
Cobourg John Beatty, M.D., and E. A. MoNavgeton.
Dundas Tbos. Shrldrick, (President).
Guelph James Gow, Thos. Mair, and Robert Melvin.
Hamilton.... Tromas Molewratte, (President), Samuel Sharp, Aroeibald MoCallems, H. M. Melville, James Cumminas, Thos. B. Harris, Anthony Copp, and C. W. Meabins.
Toronto F. W. Coate, W. H. Saeppard, H. Langley, H. E. Clarkf, Geo. Carroit, W. Edwarde, C. W. Buntina, Daniel Spry, and Benj. Walton.
Whitby Jobn Shier, Jobn Bemgovge and M. Thwaitr.
Toronto Board of Trade. .Rioe Lewis.

OFFICE-BEARERS.
President. Joun Beatry, M.D., Cobourg Mechanics' Institate.
Fice-President W. Finoks, F.L.S., Prof. of Natural Fistory, University College, Toronto
Secretary \& Treasurer.. Wm. Edwards, Delegate Toronto Mechanics' Institute.
Sub-Committee George Buokland, Professor of Agriculture, University College, Toronta. Thomas Sheldrion, President Dundas Mechanice' Institute.

John Shier,	Delegate	Whitby	"	*
E. A. MoNaughton,	"	Colonrg	"	*
W. H. Sheprard,	"	Toronto	"	"
I. E. Claree,	"	"	"	,
Henry Lanalet,	${ }^{6}$	"	"	"
F. W. Coate,	"	"	"	u
Benj. Walton,	"	"	μ	*

INDEX.

Page.
"A. 1 " 193
Accidents 54
Acorn coffee. 84
Acre, number of plants to the 108
Acetic acid 158
Advertising 251
Agricul. Association, U.C., annual meetings..258, 303
A griculture, how to dignify tit 280
Albumen 9
Alabaster, to join 270
Ale, condensed 308
Alloys, or miscellaneous metais 106, 189
density of 107
American publications, recent 230
"6 ingenuity, a Scotch opinion of. 84
Artisan 176
Amber, joining and working 317
Animal substances, their preservation 40

- manures 52
Aniline 158,317
Anvil, a monster cast-iron 216
Apple wine 184
Architectural ornamerts 168
Art schools 210
Arts, the lost 214
" the coarse 224
Atmosphere, its weight and temperature 79
Australia, South 83
Barrels, hermetic 53 317
Balance of trade, the
Balance of trade, the 174
Bandoline 241
Balloon, scientific experiments in 248
Beef, jerked 5
" fresh, from solt junk 110
Beer, spruse 209
Bensine as ar insectitude 49
Benzol in Canadian petroleum 222
Bebsemer cast-steel 306
Bilo 8
Bird-skin, a new way for preparing 280
Bleaching 828
Blacking 217
Blaokberries, the way to raise.
109
109
Black dye for strew 270
Blood
8
8
Blow-pipe, a new 217
Books, notices of. $128,131,147,175$ 176
Boots, why they should be polished 111 111
Boeckh's hrushes at the Dublin Exhibition
Boeckh's hrushes at the Dublin Exhibition 284
Bottles, travelling 111
Boiler explosions
Boiler explosions 50, 53 824
، incrustations 270
" filters 246
oilers, punched vs. drilled holes in. 242
" preservation of. 165
" wear and tear of 216
Notices.

5. 176
6. 176
Annual meoting and Report 32
Trade marks
Trade marks 262 262
Titles of Designs 36
Books added to the Free Library of Refereuce 6B3, 230
Board of Arts and Manufactures, U. C. :
Page.
Meetings of Sub-Committee
Minister of Agriculture's Report 93 116
Goods sent to Dublin Exhibition Goods sent to Doblia Ezaibition 127
Annual Final Examination and Papers......176, 204
Brantford Engine Works 29, 61, 148
Stoneware Works 60
British publications, recent $7,63,154,231$
" American Provinces 24
" Empire, and Army and Navy 100
"، national debt 167,190
" population, and of towns. 276
Britain, trade and revenue of 190
Brick clay 180
Bread, superphosphates for 110
Burglars, a trap to catoh 195
Business rules. 222
Canada Slate Company 4
" as a field for chemioal minufactures 157
" a geographical, agricultural and mincral sketch 179
" and the United States, progress of 274
c، the resources of 275
"d at the Dublin Exhibition 320
Canadian Patents 206
" Emigration 218
" Manufactures
" Manufactures 305 305
Carriages and omnibuses, weight of 193
Camphor, to powder 242
Cancer, to relieve pain of. 317
Calculation, a curious 251
Capital, want of, for industrial purposes 261
California and the climate of. 279
Cements... 97, 104, 163, 184, 185, 209, 241, 270, 317
Centre of attraction, equilibrium, friction, gra- vity and gyration 79
Children, education of our 1
Chemistry 26, 55
Chemical freak 39 250
Cheese, preservation of 105
Chronometric mechaniam, a masterpiece 50
Chimney built without a scaffold 140
Champaign region 160
Chesnut, the horse 162
Chromium 188
Charcoal, animal, revivification of 319
Cities in Great Britnin 109
Civil lists of European Sovereigns 249
Clothes, old 100
Closets, dry soil 223
Corbebpondence:
On the most economical use of eteam...61, 148, 231
Distillation of turpentine 62
House drainage 63
Ventilation 126, 151
Mechanios' Institute evening classes 263
Agricultaral products of Canada 263
Cause of hydrophobia 264
Peale's Wages Calculator 294
Epilobium, or northern cotton 294
Coral fisheries of Italy 83
Cotion supply restored 82
Coffee, acorb 84
PAGE.
Cotton vs. Flax 104
Colonial resources, New South Wales 18
Colouring matter in potatoes 47
Coloured flames 73
Colour in a dress 168
" vehicle for 270
Colours, aniline 317
Conducting power of materials 54
Conversation, the decny of. 111
Cone, solid contents of a. 187
Condensation of steam in long pipes 164
Combustible, a new 278
Coach varnish, water on 217
Copying papers 49
Coberion 79
Copper 157, 82
" mines, Lake Superior 218
Corns, cure for 241
Copyright, Canadian 117
Crossley's carpets 103
Crystallising glass windows 184
Cunard line of Steamers 54
Cylinders, oubic capacity of 137
Davy, Sir Humphry, and laughing gas 101
Dextrine 47
Dead, identification of the 251
DeCourtney's Vineries, stereoscopic views of 284
Decimal measure, the standard unit of 295
Debts and taxation, municipal 323
Diptheria, cure for 97
Diagrams 168
Distance, to estimate 272
Disinfection, processes of 278
Donaldson, J. A., treatise on flax 131
Doge, mad 221
Drowned, reatoration of the apparently 134
Drunkenness; an English cure for 140
Drills, twist 103
Dublin Internat'l Exhibition..4, 93, 127, 277, 284, 314
Dyeing, by W. Edmunds 236
Eastern Townships 160
Education of our children 1
" " " young mechanics 225
" " the adnlt claeses 3
"، in Upper Cauada 25
" What a boy ought to leard 109
" and labour 220
" in Upper Canada, statistics of 249
Egge, to keep 252
Elasticity of bodies 24
Electro-plating 78
Electricity, animal 196
the ocean a source of 328 328
Ellipse, oiroumference of the. 187
Emery, discovery of a bed of
Emigration returns for 1865 324
Enamelling 52
Engine, safety 189
Engineering opinions 211
Enbalming 193
Entimological specimens 209
Epilobium, or northern cotton 294
Fxamination notices 34, 92, 127
Examination, final, and exam. papers...177, 204, 205
Exhibi 320
" awards to Canadians 81
6 Toronto Mechanics' Institute.......61, 94
Provincial, U. C., Arts and Mauufac- tures Prize List 119
6
Provinoial197
Exhibition, Provincial, Statistics
PAGF.
" " G.W.R. Co.'s collection at 818
" Corrected Prize List 282, 316
66 Prizes awarded in Arts and Manufac- tures departments 285
Exhibitions, Arts and Manufactures 61
our Annual Provincial 281
Explosive substadce, a new 808
Exports and Imports of Canada 278
Frc-similes, to take 49
Farm, the largest English 108
Felon, cure for a 97
Fire, how to act when the clothes catch 27
Fleah, its composition 822
17Flowers, to preserve cut
Flax, dispensing with the steeping of 28
" the commercial interest in 85
" vs. Cotton 104
" a study for the political economist 141
" in Canada 169
" manufactore, and winter employment. 228
" and flax cotton 198
machinery, the inventor of 238
Food, good 64195

- and work
Foot-pounds of work 190
Foils, yellow liquid for 270
Fourteen ways by which people get sick 194
Fruit-growing, profit of 252
Furniture paste and varnish 49, 242
Galvanize, to 15
Galvanizing iron 75
Gas machine, a new patent 189
Gas.lighting, early discoveries in 283
Gears, definition of 51
Geology of New Brunswick 175
Gilding on glass and China 52
Girder, the Hydrostatio 161
Girard, Philippe 238
Glue, the manufacture of 245
" liquid 817
elabtio 184 163
(1)
(1)
Glass, drilling and turning 103, 221 218
- to pach a holo in
- to pach a holo in
Glycerine, a new explosive substance. 279, 808
Gold. 182
" test 210
a solvent for 317
Grease from oloth, to extract. 242
Green colour, a new 184
Gum paste 49
Gun, rules to observe in handling a 224
Guppowder, protected 235
G. W. R. Co.'s collecticn at Provincial Exhibition 313
Gypsum 179
Hamilton Mechanics' Institute $.93,178$
Hand-loom weaving 105
Hard times, cause and cure. 57
Health statistics 219
Heat, capacity of bodies for transmitting
pagm.
Horses, statistics of. ... 249
Horse-taming 828
Hunt, T. S., sketch of Canada............. 181, 159, 179
Human race, the..................... 324
Hydrostatic girder 164
Hydrophobia, cause of 264
cure for.........221, 251
Hydraulic lifts for warehouses 321
Ice, preservation of... 209
Imports and Exports, 1850 to 186359, 108
Immigration 117
India ink, a substitute for 14
India ru'bber ... 824
Ink, red .. 97
Interest, new method for computing 107
Insects, to preserve from :................................. 270
Iodine.. 158
Iron 157
" mountain in Canada 28
" Lake Superior....... 252
"، wrought, melting by electricity.................. 56
" cast, a new method of treating................... 185
"s galvanizing 75
"f thin plates ... 167
" ores. 182
"، pyrites.............- 183
" a monstrous cast-iron anvil 216
" and steel, to varnish artioles of 97
" ." browning 163
". " manufacture of......................... 271
Journal, the fifth volume 316
Kingdoms, the regetable and animal 193
Kitchener's relish 97
Knife handles, to fasten 49
Laboratory, death in the.................................. SE
Lard factory, an English76, 125
Laurentian region, Canada 159
Labels, paste for.. 210
"s for bottles, indestructible....................... 241
" zinc, ink for............................ 242
" on tin ... 242
Lnke, \& sunken, in Oregon 328
Laughing gas, and Sir Humphrey Davy............ 101
Leotures and Papers:
On Chemistry applied to the Arts 8, 39
Good food......... 64
Ventilation, applianoes for 69
Seasoning and drying lumber and timber...98, 818
Canada as a field for chemical manufactures... 157
"، by T. Sterry Hunt 150
157
On certain methods of treating cast iron......... 185
The raw material of the linen trade.................. 231
Oil and oilcake factory, Dublin... 264
On the relative advantages of the Inch and the Metre as the standard of decimal measure ... 295
Recent application of magnesium 301
Leather, for preserving................ 209
grease for
Lead ore grease for.. 84
.......... 182
Lectures and their influence 259
Library of Reference.6, 84, 68, 92, 280
Libraries, publio.. 278
Liberality is the economy of States....................... 194
Linimen \hat{i}... 193,241
Liquors, comparative strength of.. 53
Linen manufactures in Ireland................................ 104
Linen trade, the raw material of 201
Linoleum manufactare 163
Lime 181
"phosphate of 179
Life, duration of 219
Light, a new artifioial 827
Loom, pneumatio. 189
Looking-glase manufacture, Montreal 806
Lumber, seasoning and drying 98, 818
Map colours. 49
Match, a new safety. 272
Mats, sheep skins for 78
Magnesia 158
Magnesium light, power of the 167
". in the ocean 308
" experiments with 250
recent applioation of 301
Manufactures, Canada as a field for 167
Cunadian 306
Materials, strength of 165
Maratime Provinces, the 167
Manures, artifioial 180
Marble 181
Mechanics' Institutes and adult education 3
Classes, and rules for 200
". Institute, Toronto, Arts Eshibition 61, 94
66 Annual meeting 151
". " ". 152 152
263, 304
 4
" . ". " Arts exhibition ... 178".." Montreal, evening classes 153". . " Whitby, annual meeting.... 179
Metallic vegetation 14
alloys 106
Memoranda, practioal 24, 53, 79, 106, 137, 165, 190
823Mechanism, velocity of
24
Mechanics, the education of 225
Metals, manipulation of 75
" polisbing, 270
Metalli 276
198" coating
Measurement of heights 190
Mines, French 5
Mica 183
Milk 10
Microscope, al 1-50th objeotion 168
Microscopical mounting fluid 14
Minister of Agrioulture's Report 116
Miscellaneots Sommary:
ritannia Bridge-thin iron plates-MagnesiumLight - Lenoir Engines-Silk-worm-Kola-nut-Cork life-boats-Cassipore Sugar Re-finery-Steam-boat shafts- Vine culture-Magnesium Wire-Coffee-Wire elothes line-Coal Ashes-Pneumatic Railway167
Snails in Paris-Crude Petroleum-Stamping-plate-Bombay Exhibition-Bessemer Steelin New York-Death by pure spirits-Seeds-Ground-bone-Musical Instruments-Hogs in orchards---Steam Omnibus-Smelt-ing iron with Gas - Pine-weed - Factoriesin Virginia - Pneumatic Railway - Gun-powder : non-explosive"- Guano deposit-Streetisteam-oars-Rairoad Insuranice ticket:- Handel Festivel - A new light - Themagnesium light224
Mortar and limes 28

PAGE.
Moral algebra 192

Moral algebra 192
Momentum 248
Monarch, an industrious 327
Moodie's Rotary Indicator 294
Music, physical effect of 133
Museum, British 249
Municipal debts and taxation 823
National debt of Great Britain 167, 190
" " United States 191
" 6 and national prosperity. 228
New York city, population of 250
New-South Wales, wood manufactures 18
Neat's-foot oil, make your own 78
Niagara, a greater than 192
Nitro-glycerine, an explosive compound 279, 308
Notioes of books, \&o. :
The correlation and conservation of forces 128
Canada, geographical, agricultural, \&c. 181
Practical hints on the treatment of flax 181
The Montreal Trade Review 147
Geology of New Brunewiok 175
The American Artisan 176
Notices, Editorial 4, 31, 61, 92, 93, 125, 127, 147, 203
282, 284, 316
Nuts, their sizes, equal in strength to their bolt 323
Ochres 183
Oil-stones, cleaning 24
Oil for watches 188
Oiled paper 49
Oil and oil-caike factory, Dublin 264
Ornaments for mantel 28
Organs and Harmoniums, improvements in 168
Originar Abtioles:
The education of our children 1
Rosin and turpentine 2, 200
M.C.Luke's 81
Hand-loom weaving 92
Adult eduaition and Mechanics' Institute classés 3
Jerked beef 5
Brantford Engine Works 29
Hard-times, the cause and cure 57
Brantford Stone-ware Works 60
Toronto Mechanics' Lnstitute Exhibition 60
The commercial interests in flay 85
The Reciprocity treaty and our manufacturing interests 90
Want of punctuality 91
Flax a atudy for the political economist ... 113 141
Burear of Agrioulture and Statistics 116
Flax in Canada 169
The balance of trade 174
Public buildings and plases of amusement 184
Provincial Exhibition 197
Waste substances 198
Flax and Flay-cotton 198
Mechanics' Institute classes and rules 200
The education of our young meohsnios 225
Reaping and Mowing machines 226
National debts and national prosperity 228
Flax manufacture, and winter employment for the poor 228
Agricultural Association Exhibition; 1865..253, 813
Lectures and their influence 259
Want of capital for industrial purposes 261
Cultivation of strawberries 262
Our Annual Provincial Exhibition 281
Exhibition first and second prizos 282
Early discoveries in gas lighting 283
Orfainal Articles:
Our present prosperity 284
Hall's Agricultural and Engine Works, Oshawa 809
Overwork 27
Oxygen, a convenient method for preparing 218
Patent laws 268
Patents and Copyrights, Canadian 6, 38, 36, 37,
95, 117, 206, 230
Paints, flexible 49
" valuable 209, 223
Papier-mache 49
Paraffined wood 105
Parchment, vegetable 140
Pavements, iron slag for 189
Pasteboard, stiffened 196
Paxton, Sir Joseph 220
Paine, Tom, and cellular bridges 221
Paper, waterproof 242
" collars, how made 246
Peat 180
Petrify, to, wooden objecta 210
Petroleum 183, 193
" as fuel .53, 71
" trade in Canada 109
" purification of 193
" as an insectitude 163
" blacking 217
" exports 218
" Canadian 220, 222
" residuum substituted for india-rubber 280
Photosculpture 19
Phosphate of lime 179
Photographio:
The Wöthly improvements 21, 327
Photographio printing, new method of 22
Phjalological effect of cayanide of potassium 28
Lea's cleansing solution 23
Importance of the art 80
Its application to legal purposes, and to sclence 81
Reproduotion of documents, \&c 82
Photography in colours 277
without a nitrate-of-silver bath 325
Power of the magnesium light 82
On the glass room and portrait gallery 137
Flattery in photographic portraits 192
Recovery of silver from old baths 276
Photographs of shadows in water 277
Photography at the Dublin Exhibition 325
Obtaining photographs 325
Hërr Wothly's formula, for negatives 327
New artificial light 327
Pickles, greened 52
Pipes, weight of water in 79
" weights of, of various metals 272
Pins of commerce 228
Picture cleaning, new process 250
Plants, to water 195
، useful 250
Pneumatic dispatch and telegraph 83
Potash 158
" Prussiate of 42
Poison in rooms, organic 49
" antidote 110
Polishing paste 72
Post-office, English 83

PAGE.
Prize list of Arts and Manufactures department of Provincial Exhibition119
Prizes awarded in Arts and Manufactures depart-ment of Provincial Exhibition285
Precision 272
Prosperity, our present 284
Punctuality, want of 91
Publications, recent British 231
Putrefaction and fermentation 44
Public baildings and places of amusement 174
Pump which cattle can work themselves 247
Quartz 183
Queen's Metal 163
Razor paste 49
Railway items 54, 108, 825
Rancidity, to remove 101
Rat-catcher, the "cratur" as a 251
Rat-trap, a new 317
Resin and turpentine 200
Reflectors for street lamps 28
Reciprocity treaty, its operation 55, 90
Reading, three rules for good. 220
Reaping and mowing machines. 226
Reabipts:
Mounting fluid, microscopical-Metallic vege-tation - Tinning - India ink - Silvering-Staining wood and ivorj-Blacking-To gal-vanize14
Fac-similes-Glue-To fasten knife-handles-Poison in rooms - Copying papers - Oiledpaper - Flexible paints - Papier-mache -Benzine as an insectitude-Gum paste-Mapcolours - Furiniture paste - Razor paste-Zeiodite.49
Polishing paste-Pomatum-Colored̃ fiames-Poison antidoto72
Cure for diptheria-Cure for a felon-Eitch-ener's relish-Red ink-Varnish for iron orsteel-Cement for ivory and mother-of-pearl
Cement for India rubber-Liniment-Browningiron and steel-New use for petroleum-Water-proof glue-Composition for coatingwood - To stain wood black - Solution ofrubber-Queen's metal-Architectural orna-ments163
India-rubber varnish - Apple wine - Shoeblacking - Preparing walls - To crystallizeglass windows-Cement for glass-Saladdressing-Liquid glue-Elastic glue-Newgreen colour-Rubber cement184
Liquid portable vinegar - To soften ivory- Transfer paper-Tracing paper. 208
Test paper-Aguaria cement-Preserving lea-ther- Valuable paint-Preservation of ice-Spruce beer - Entymologioal specimens -97
Metallic coating 209
Gold teat210
Cement for leather-To remove rust-Labels-Corns-Bandoline-Liniment......................Grease for cloth-To preserve flowers-Ink forzinc labels-Labels on tin-Furniture var-nish - To powder camphor - Water-proofpaper.241
Welding oast-steel... Rosewood and walnut dye 242
Bottle was-To colour straw black-Yellowliquid for foils-Good cement-Vehicle forcolour-Chemical cement-Preservative frominsects-Zincing-To join alabaster270

Receipts:

To discover lead in tin-Glue-To relieve pain of oancer-New rat-trap-Aniline colours- Oaken barrels-Cement for aquaria-Pre- serve colour of flowers-Joining and work- ing amber-Solvent of gold. 817
Restoration of the apparently Drowned 134
Ruttan, H., on Ventilation 126
Riust from white stuff; to remove 241
Salt, common 158
Sal ammoniac 158
Salad dressing 184
Safe, a trap tó eatch burglara 195
Sanitary precautions 215
Schools of art 210
Sewer pipes 188
Sewage of English towns 195
Seasoning lumber and timber. 318
Sharp, Saml., machinery at Provincial Exhibition 313
Ships; New Brunswick built 56
Shot-making in New York 321
Shoes, screw-soled 247
Shoddy leather. 78
Silvering. 14
" and gilding on wood 112
Silk, articies bf, folded 24
Slate Company of Canada 4
" roofing 182
Smoke-consuming furnaces 267
Snake River Falls 192
Sound, the velocity of 80
Soap 247
" from coal oil 112
ct on Arkansas stones 218
Soapstone 183
Solution of rubber 163
South America, trade with 240
Steam boilers 50, 186
" 6 corrosion of 187
" 6 wear and tear of 216

" punched vs. drilled holes in.

" punched vs. drilled holes in.

" punched vs. drilled holes in. 242 242 242

"6 inorustation of...140, 155, 165, 248,

"6 inorustation of...140, 155, 165, 248,

"6 inorustation of...140, 155, 165, 248, 270 270 270
"6 inorustation of...140,
" Boiler Assurance Company
"6 inorustation of...140,
" Boiler Assurance Company
"6 inorustation of...140,
" Boiler Assurance Company 186 186 186
186"، "، fractures.
" explosions. 187
"، "، explosion8....
" safety valves
" safety valves 187 187
s filters
s filters 246 246
66
66 15

expansively, the use of

expansively, the use of 66
engines and machinery exported from
engines and machinery exported from 324
England
England
Engine Works, Oshawa 309
" the most economical use of....61, 73, 148, 231
" density of, at various atmospheres 107
" at high pressure, temperature of. 217
" in long pipes, condensation of 164
vessels of the United Kingdom. 324
Statistical information..24, 51, 82, 108, 118, 166, 190$218,249,273,318,315,323$
Statistioal summary. .166, 191, 219823
Staining wood and ivory
Starch, its manufacture 45,162
Steel, the manufacture of 271
" hardening and tempering 79
"c cast, composition for welding 269
" the Bessemér 306
" pen disease 280
Stone, artificial 322
Strawberries, cultivation of 262
Street railways 194
Sulphuric acid. 158
Superphosphate for bread. 110
Pade.

Summary, miscellaneous167, 196, 224	United States, wealth in lands 325
"6 statistical 166, 191, 219	and Canadian progress.............. 274
Sulphur; plasticity of.................................... 192	
Swallows.......... 224	Varnish, India rubber 184
Syrup, concentration by freezing..................... 307	" coach 217
System : 133	"s furniture 242
	Vaponr batb, turpentinei........... 252
Tanbark, how to burn spent...oc............. 51	Ventilation....................................69, 126, 151
Tanning .. 247	Vegetable and animal kingdoms, the................. 193
Tar, the way it is obtained 820	Velocities... 249
Thomson, Colonel E. W., death of.................... 154	Vinegar, a dry portable
Titles of designs6, 86	
Tinning............... 14	Wages Calculator, Peale's... 279
Tin, to discover lead in 317	Waste substances .. 198
Tinder 110	Water, consumption of
Titaniam. 183	" supply of, London............................... 27
Toad, the..................... 280	" over wiers, discharge of 108
Trade marks6, 36, 203, 230, 262	tanks, area of roofing to supply........... 165
Trade with South America 240	" power in warehouses... 307
" International 241	Wax, bottle 270
Transfer, test, and trecing papers 208	Weaving, hand-loom $2,92,105$
Traction of horses at various rates of travelling.. 218	Weights of railway carriages and omnibuses...... 193 " of substances of construction.............. 24
Transagtions of Socibtirs: ...	Whey.. 12
Hamilton Mechnnics' Institute..................98, 178	What a boy ought to learn 109
Toronto ". "94, 151, 152, 304	Whitby Mechanios' Institute, annual meeting..... 179
Montreal ، " 153	Window cleaner, a new patent....................... 322
Whitby ، 6 179	Wind, speed of, and force of at different velocities 323
Board of Agriculture, U. C. 154	Wood, composition for coating........................ 163
Agricultaral Association, U. C...... 253, 303	"6 to stain black 163.
Tungsten, Metallic 828	" ${ }^{\text {c }}$ quality of different kinds 165
Turpentine and Resin.................2, 81, 62, 158, 200	"6 rendering plastic................................ 248
Tyndall and the climate of California.................. 252	Woollen manufactures.................................... 187 Work ... 252
	* foot-pounds of 190
Drea and Urine.. 13	Working and thinking 194
United States, public debt of 191	
" petroleum exports..................... 218	Zeiodite........... 50
"6 import duties............ 274	Zincing.. 270
6 industry of......... 274	

THE JOURNAL

of tre

FOR UPPER CANADA.

JANUART, 1865.

TIIE EDUCATION OF OUR CIILDDREN.

In referenco to a pariety of subjects we often hear the question asked, "Whither are we tending?" It might be productive of a world of good, if we would seriously seok an answer to it, in reference to the future prospects of our children and our hopes for the good of posterity. We have received the basis of our present progress and mental superiority from our ancestors, and the most practical way in which we can testify our veneration and gratitude, is to make all the provision in our power for those who are to succeed us. Every man is desirous of doing this for hig bown immediate children in the matter of a good粦品 uneucumbered estate; but beyond this we pave a duty of a more universal kind to perform. We have to bequeath the world to socioty. Not only the material with its unimaginable riches and its wonderful and brilliant progress, but the moral world such as we mag mate it. Nior is this all; wre shall bequeath human organisations and conatitutions which we transmit to our offspring; Whether these shall consist of suind minds in Buand bodies or the reverse depends upon us, and purs is the responsibility. Ours is therefure the auty to ourselves and to posterity to be chaste, temperate, purc in body and mind-to cherish all the virtues, as truthfulness, unselfistiness aod honour, in our most secret thoughts and feelings, hat we may ensure the transmission of thoee Gualities to our children. Every well informed physiolugist knows that this has a far deeper meanGing than the world generally believes, and well Todeed would it bo for us if our popular teachers and advisers were in a position to explain thoso inevitable laws of nature, the violation of which most surely leads to the visitation of the sins of the parents upon their children to the third and fourth generation.: The world to-day is full of sad experience of the truth of this. Having but few faithful teachers to enlighten them, error and misery are perpetuated without reasonable hope of their termination. Our chief hope lies in the education of the musses, and for that purpose we have in this country a school system perhaps not inferior to school systems in general, though like others inadequate to the requirements of the age.

This however is not so much the fault of the system, as of the want of that kind of information amongst the adult population which would enable them to work it up to its highest capability of usefulness. The prevalent predilection in favour of purely intellectual to the exclusion of physical culture is one of the cardinal orrors of our time, and an error of so insidious a character as, if persisted in, must, by producing first physical and its consequent mental degeneracy retard the world's progress. It therefure becomes the duty of all who desire that the world should be handed down to the next generation in a state of accelerated progression, including that of man, to enquire into the tendency of over tazation of the brain and prolunged inaction of the body, especially in childhood and youth ; and in prosecution of their investigation they should bear in mind that, in nearly all cases, both the action of the brain and the inaction of the body are not spontaneous or voluntary, for then comparatively little harm would be done, but both are compulsory, producing cessation of that reciprocal action between the brain and muscles and viscera which constantly reiterated leads to the most lamentable results. To the professional man it is apparent that brain work in the young, even when it is not carried to extremes, is productive of injury to the physical system; the abstraction of blood to the brain from other parts of the system preventing the necessary circulation in those parts.

When the action of the brain is very great, as it often is in all sehools, the mischief is correspondingly great, and a state almost death-like exists through the system-the brain alone exceptedand that is labouring on through algebraical analgsis to insanity, or at best to premature structural development and cessation of growth in that organ, even in early youth. It is within the experience of nearly all, that persons do sometimes stop growing very suddenily, years before they were expocted to do so; and so boys and girls who were regarded as prodigies of learning, have all at once come to a dead stand, and were left standing there by the dullest scholars of their aequaintanee as they passed by.

If, aided by the lights of modern science, we could look into the economy of our nature, and behold the myriad beautiful contrivances for carrying on all the functions of our organisationits endless variety of wonderful adaptation of means to ends-remembering that nothing is there in vain, butt that all is indispensable to healthy vitality; remembering ton, that upon the uninter: rupted discharge of all these functions, the mind itself depende for its normal manifestarions, we
should no longer need to be told that "the first requisite to success in life, is to be a good animal."

If we continue to pursue the course which has unhappily been inaugurated nearly all over the civilised world, we nay reasonably expect to reap the bitter fruits of degeneracy and premature decay., If we continue to violate the laws of nature, by educating the mind at the expense of the body, its sad effects will be transmitted to a puny generation, utterly incompetent to discharge those momentous duties which must arise out of the events with which this age is pregaant. In the great battle of life the victory will be with the strongest.
Enough is known to guide us in the work of reform, and if we fail to transmit to the future a superior race, capable of securing for themselves the greatest amount of happiness, the blame will rest with us. The first most practical step to be taken is, for the people in every school section to insist on and secure the rutroduction of gymaastics into their public schools. That this has all along been contemplated by the system is clearly shewn by the fact that the pupil-teachers, mate and female, in the Normal School, are instruoted in gymnastics, so that they may be' capable of teaching others. It is also introduced in the male and female departments of the Model School, which, as its name implies, is intended as a pattern for the common schools throughout the country. Let parents look to these things-the physical as well as the mental development of their children-and they will realise that the well developed normal man and woman are infinitely more virtuous and pure, and worthy to become the parents of thore to whom grent. worke are to be committed.

In conclusion we would ask the serious atteotion of the young, and all concerned, to the subject of the article in our last number, entitled "Books and Reading," and would warn those whose tastes are not yet perverted by flash literature, to beware that they lose not all relish for those "feasts of reason" to be found in the works of our best authors.

RESIN AND TURPENTINE.

We have received from Mr. Peter Irish, of Brighton, County of Northumberland, several samples of resin and one of spirits of turpentine, of his manufacture. Mr. Irish took the first prize for both these articles at the late Provincial Exlibition in the city of Hamilton. The samples of resin comprise black and white, with many intermediate shades, both trinsparent and opaque.

We regret not having an analysis of Mr. Irish's. tarpentine; we have, however, Prufessor Crofter
analysis of the gpecimens exhibited by Messrs. Connell \& Cotter of Hastinge, which was awarded the second prize, and of Mr. Luke's specimen, of Angus, highly commended by the judges. The notes of nalysis on Messrs. Connell \& Cotter's turpentine are, " emell much like pure turpentine, boiling point $\mathbf{5} 54^{\circ} \mathrm{e}$, specific gravity 0.865, ," and on Mr. Lake's "smell of oil from pine-wood by diatillation, boiling point $153^{\mathrm{o}} \mathrm{c}$, specific gravity 0.868 ," The boiling point of pure spirits of turpentine is $155^{\circ} \mathrm{c}$, specific gravity 0.865 .

In a eonsmunication from Mr. Irish, accompanying his samples, he gives a description of his process of procuring the raw article, which correspondo very nearly to the description we gave io the number of this Journal for Augnst 186f. He says he obtains it from the white (not the Norway) pine; by cutting notches or boxes, about two feet from the ground, with long-bitted axes-a good a=e-mar catting about 300 boxes per day. These boxes are made disking, so as to hold from a gill to m half pint each, and should be cut between the twentieth of May, and the end of June. During the hot weather it will be peceseary to gather the sap from these boxes at least once a week. Io a tree one foot in diameter he cuts one boz, tivo feet in diameter two boses, and so on-this he sayy will injure the trees but little, as the bozes be cut in some forty yeare ago are now completely grown over.

During the past year Mr. Frish paid \$10 per berrel for the raw article, and we believe will be prepared to purchase, during the coming season, any quantity that may offer, or will distil it on shares with any parties who may furnish it. The price obtained by hinx for regin during the past year averaged 8 cents per lb., and spirits of turpentine $\$ 1.75$ per gallon.

We suggest to parties possessing facilitíes for entering into these manufaeturefr the fullest consideration of their importance before next eeason's operations commeace. There is no danger of the supply exceeding the demand. In the year 1863, as per Trade and Navigation returns for the Province, the imports of spirits of turpentine were 13,913 gallons, valued at $\$ 26,312$, and of resio 3,650 barrels, valued at $\$ 63,484$, showing that for these twio articles alone we paid in cash the sum of $\$ 89,796$. The computed value of resin and turpentine imported into the United Kingdom for the same year, as shown by tables published in the November number of this Jonroal, was $\$ 2,846,445$, of which $\$ 35,000$ worth alone wise imported from thence to this Province, the remainder coming principally from the United States. Here then, for the United Kingdom and Canada, was a de-
mand in the gear referred to for resin and turpentine amounting in value to no dess a sum than \$2,811,422.

It is by the promotion of such manufactures as these, for which we possess both the raw material and the home marker, that the country will prosper. The capitalist who thus invests his money, confers, beyond comparison, a greater benefit upon his country than he could possibly do by investing it in the importation of the luxuries and superfluities of life, to pay for which the capital is sent directly out of the country, imporerishing it to the extent that the balance of imports exceeds its exports.

HAND.LOOM WEAVING.

A gentleman, resident in this city, who has long taken a deep interest in matters of public benefit, is ancious to know the price of hand-looms for weaving plain woollen or linen fabrics, and where such looms can be obtained. He is of the opinion, and rightly so, that a large measure of the distress prevalent amongst portions of the working population of this country, is owing to the absence of any regular means of employment during the winter months; and that if an inespensive loom of simple construction, suitable for the manufacture of common woollen cloths and flannels, or linen bagging, towelling, bed-ticking, \&o., could be introduced amonget them, their winter days would be spent in productive labour, and themeelves, their families and the state, would be equally benefited.

We remember the good old times we had in our native village, in a rural district in England, when the old-fashioned bombazines were worn by the ladies, that every man, woman, and youth, not engaged in other employment, was working at the hand-loom at their own fireside.

With a view to furnishing the gentleman referred to the information he seeks, we have waded through encyclopoodias, dictionaries of art and manufactures; and treatises on weaving, without meeting with success. The subject is an important one, and if any of our readers are sufficiently aequainted with it to furnish the information sought, we shall feel obliged by their doing 83 .

We notice that in April of the year 1859, Mr. Joseph Brickly, of S. Dorchester, patented a selfaoting hand-loom, which was at the time highly spuken of. In the year 1862, there were exhibited at the Proviucial Exhibition held in Toronto, a hand-power loom by Mr. Thomas Welsh, of Brantford; which was awarded an extra prize; and a double-box loom by Mr. James Davidson, of Cobourg, to which was awarded an extra prize
and a diploma. These machines were in operation, and we believe gave satisfaction to the judges and to the public.
We beg to suggest the formation of a jointstock company, as the only sure means of introducing domestic weaving amongst the working classes. The company should obtain and furnish to the operatives all necessary information, purchase looms and let them out to hire to trustworthy individuals, purchase farn and other necessary material and furnish to the weavers at the lowest possible price, and assist them in finding a market for their goods when ready.

Here is an opportunity for gentlemen of pecuniary means and philanthropic feelings, which we hope to see taken advantage of ere another year shall pass away.

ADULT EDUCATION AND MECHANICS' INSTITUTE CLASSES.

The Hiead Master of King Edward's School, Birmingham, having been requested to distribute the prizes to a number of successful candidates, at a recent school examination, observing that there were some fifty or more copies of Smiles' "SelfHelp" among the prizes, cautioned his young audience against being misled, by the stirring contents of that book, into supposing that any individual among them, who might be gifted with energy and ability, could therefore have the opportuaity of beooming a $W_{\text {att }}$ or a Stephenson. He bade them rather receive and remember this truth, that any working man who learnt to do his daily laborious task from the highest motives of duty and responsibility, was filling his situation and discharging the purpose of his life as honorably and usefully as though he had attuined the eminence of either of those great men.

The idea, though not expressed in so many words, is nevertheless prevalent now-a-days, that a labourer has only to obtain an education, to make him either a genius or a gentleman. We do not say that all who possess a laudable desire for knowledge entertain this idea, but we do say that it prevails to too great an extent. The object we aim at in quoting the remarks of the Head Master; is to impress upon the minds of our youth the desirability of acquiring, or of soeking to acquire, knowledge for its own sake, for its own intrinsio value, for the pleasure and increased measure of happiness which it is calculated to impart, as well as the increase: in value, of the man who has obtained it. No one will deny that knowledge is calculated to impart pleasure; and to increase a man's capacity for enjoyment. Much less will any
one deny that, in proportion as a skilled mechanic increases his stock of knowledge, be increases his value both to himself and his employer.

IIere, then, is the aim and object of a Mechanics' Institute. It supplies to the illiterate and uneducated man the means of acquiring knowledge, at such rates as he is able to pay. By doing so, it may enable him to rise to the top of his profession, or, what is more probable, it may simply increase his stock of information sufficiently to enable him to do his work with less labour, fewer errors, and much more pleasure to himself aud others. The great change produced in the masses of the people within the last balf-century, is the effect of reading. Men who labour with their hands all the time, used to be, and are now to a very great extent, disinclined to omploy their minds in reading or thinking, and this must always result from an overworked body. On the contrary, those who will engage the mind in reading, and in useful study, in addition to their ordinary labour, will invariably find that they are able to do their work with more pleasure, with less labour, and at an increased pecuniary value.

Young men of the present day have very superior educational advantages over those of days gone by. Let us instance the case of the members and pupils of the Toronto Mechanics' Institute as an example. Classes have been organized for the study and practice of book-keeping, penmanship, English grammar and composition, practical arithmetic, architectual and mechanicai drawing, ornamental drawing, and French. Over one hundred pupils have connected themselves with one or more of these classes, at an average cost of two dollars and a quarter per annum. Euch class receives forty lessons, meeting two nights per week during the five winter months. At a glance it will be seen that here is the vucleus of a great work. Some thirty are learning book-keeping, which, to the clert, the employer or man of business anywhere, tends essentially to success in life. Ilow large a proportion of men fail in business, and themselves and their families beconce ruined, because of their incompetency to take charge of their own books, aud to make proper business calculationd About trenty are learning the art of penmanship, one of the most desirable of accomplishments. A few industrious apprentices are working hard to learn mechauical drawing; and so on. Perbaps out of them all, not one Watt or one Stephenson míay be produced; but undoubtedly their value to the atate, and to themselves, will be immeasurably increased; and their capacity for observation, for understanding, and for enjoying, will be proportionatoly augmented.

We sincerely hope that the trustees or directors of Mechanics' Institutes in our towns and villages, as well as in the larger cities, will see it to be the interest and welfare of their severil institations to make strenuous effirts to organize one or more classes; and that, at the neat annual examination of this Buard, instead of two institutions, as last year, ten or a dozen will be sending for the necessary examination papers for their numerous candidates.

CANADA SLATE COMPANY.

We have received the Prospectus of a Company now in course of formation, to be called "The Canada Slate Company," with a capital stock of $\$ 100,000$ in 20,000 shares of $\$ 5$ per share.

The property of the Company is situated in the Township of Melbourne, adjoining the Walton Quarry, Richmond Cuunty, Canada East, and con. sists of i block of land of five hundred acres; two hundred acres of which is composed of Argillacious slate-rock, of smooth and even cleavage, and uniform color, suitable for roofing slates, slabs, and every other purpose to which slate is applied.

The demand will no doubt be ample for all the slates that can be quarried from thid and the Walton property, should it go into operation. Subscription lists are open at the office of II. Pellatt, 60 King Street East, Toronto.

DUBLIN INTERNATIONAL EXHIBITION.

We have received programmes of an International Eshibition of Arts and Manufactures, to be held in the city of Dublin, Ireland; to be opened in the Eximition Palace Buildings, on Tuesday; the 9 th day of May next, and to remain opea until the end of the month of October. The productions of all nations will be admitted; and the general plan for their division will be, as far as practicable, as follows:-Raw Materials, Machinert, Textile Fabrics, Vitreous and Ceramic Mantfactures, Miscbllaneous Manujactiones, Fine Arts.

All goods and articles must be delivered at the Building, at the risk of the exbibitor, some time between the 1st of March and the 15 th of April. Rough counters and wall space provided free. Prices of articles may be affixed thereto, except in the Fine Arte section. Medals and certificates will be awarded in all sections but Fine Arts. Distinctive labela will be attached to such works of Art as are intended for sale, the price of which must be ontered in a book, to be kept by an officer of the Committee, through whom all sales must be made. A commision of 5 per cent. will be charged on such sales.

In the Machinery department, steam and water motive powers will be provided. The address on packages should be-

To the Commillec for the
International Exhibition for 1865, Exhibition Palace,

Dublin.
From (state country and exhibitor's name).

JERKED BEEF.

We learn from the London Grocer of a recent date, that, through the instrumentality of a commission that had been appointed and sent out for the purpose, South American jerked and pickled beef is becoming. a regular article of commerce in the British markets, and that the poor of the north of Ireland, and also in many of the poor districts of England, have been greatly benefited by it. A clergyman near Worcester writes:
"Many of the cottagers about here think and any that the offer of your beef is a great benefit to them, and thank me for introducing it in this neighbourhood. One man says he is much stronger from eating it, and that he does not consume nearly so much bread as formerly."

The Grocer says:-"We can speak to the genuine and wholesome character of the meat, and to its excellent keeping properties, although it (the pickled) is not salted to an offensive degree. * * A sample hundredweight was sent to us some months since, and we were surprised at the satisfaction expressed by some of the recipients amongst whom wo distributed it. It is a subject of regret that greater efforts are not made to render this, and other wholesome forms of preserved meats, standard articles of food."

Although this is a question that may not directly interest us, with whom good food-both animal and regetable-is abundant, yet we cannot but rejoice at the introduction amongst the hardworked and, in many cases, poorly-fed classes at home, of a cheap, wholesome and nutritious article of food, such as is now being imported from the abundant-and hitherto waste-supplies of the South American continent.

The meat is sold at 3 d . per 1 b . in the English market, being about one-third the price of homeproduced beef.

French Mineso

France works 400 coal mines, 202 iron mines, and 207 mines of other substances.

 FOR UPPER CANADA.

NOTICE TO SUBSCRIBERS.

The present number, commencing a new volume, is sent to almost all the old subscribers. Those who do not return it before the next number goes to press, will be understood as desiring to continue their subscriptions. It is particularly requested that all arrears, as well as new subscriptions, be forwarded to the Secretary of the Board as early as possible.

The issues hereafter printed will be limited to a very small number over those actually subscribed for.

ANNUAL MEETING OF THE BOARD.

According to the requirements of the statute, the Annual Meeting of the Board for the reception of Report of the retiring Committee, and olection of office bearers for the ensuing year, sbould be held on the first Tucsday of this month (Jinuary) ; but as the various Municipal Elections are held at the same time, it bas been usual to adjourn the meeting of the Borrd to the second Tuesday of the month. The same course will no doubt be pursued this year as formerly, the adjourned meeting being held at 2 o'clock, p. m., on Tuesday the 1Cth instant.

For the information of Boaids of Trade and Mechanics' Institutcs, we publish the clauses of the act relating to the electing and certifying of Delegates to the Board.

In addition to the elected Delegates, the exofficio members are the Minister of Agriculture, Professors of Physical Science in Colleges and Universities, Chief Superintendant of Education, and Presidents of all Incorporated Boards of Trade and Mechanics' Institutes in Upper Canada.

A full meeting of the Board is desirable.

(Extracts of Act.)

Sec. 23.-The Board of Trade in each City and Town in Upper Canada, shall, at its first meeting in the month of January, in each and every year, elect and accredit to the Board of Arts and Manufactures for Upper Canada, one of its body as π member thereof.
Sec: 25. - Each incorporated Mechanics' Institute in Upper and Lower Canada respectively, shall, at its inst meeting, in the month of January, in every year, elect and accredit to the Board of Arts and Manufactures in Upper or Lower Canada respectively faccording:as its place of meeting is in Upper or Lower Canada) one delegate for every
twenty members on its roll, being actual working mechanics or manufacturers, and having paid a subscription of at least one dollar each, to its funds for the year then last past.

Seo. 27.-The names of the Delegates so elected shall be forthwith transmitted by the Secretary of the Board or Institute electing them, to the Secretary of the Board to which they are elected, who shall thereupon inscribe their names upon the Roll of the Members of the said Board, for the year then about to commence; with the names of the Delegates when transmitted by the Secretory of a Meohanics' Institute, there shall be transmitted a statement verified by the oath of the Secretary transmitting the same, to be taken before a Justice of the Peace, of the names of all the members on the roll of such Mechanics' Institute, being actual working mechanics or manufacturers, and having paid subseriptions of at least one dollar each to its funds, for the year then last past.

TRADE MARKS AND DESIGNS.

We have received from the Department of the Hon. the Minister of Agriculture, copies of all trade marks and titles of designs registered up to the 19th December ultimo, in accordance with 24 Vic. cap. 21, sec. 25 , which provides that copies thereof shall be forwarded to this Board and the Board for Lower Canada, from tine to time, and that "the same shall be open to the inspection of the public in the offices of such Boards, during the usual office hours of each day, free of charge."

Trado Minrig.

Vol. A.
Folio 1-617, R. J. Andrews, "Good Samaritan Balm." (Dated 8th May, 1863).
Fol. 2-477, F. A Whitney \& Co., "Patent Prepared Flour." (Dated 8th May, 1863).

Fol. 2-503, 3. Ryckman, "Stockwell's Magnetic Oil." (Dated 8th May, 1863).
Fol. 7-529, W. Rodden \& Co., " Prince of Stoves." (Dated 14th January, 1862).

Fol. 9-529, Do., "Queen's Choice" Stove. (Dated 14th January, 1862).

Fol. 11-529, W. Rodden, "Plantrgeaet" Water. (Dated 14th January, 1862).
Fol. 15-403, S. J. Lyman \& Co., "Elliot's Dentifice" (Drted 18th August, 1863).

Fol. 15-493, Do., "Arctusine". (Dated 18th Au. gust, 1863).

Fol. 17-506, B. L. Judson \& Co., "Mountain Herb Pills." (Dated 11 th May, 1863).

Fol. 19-506, Do., "Mountain Herb Worm Tea." (Dated 11th May, 1863).

Fol. 23-506, Do., "Dr. Morse's Indian Root Pills." (Dated 8th May, 1863).

Fol. 25-606, Do., do. (Dated 8th May, 1863).
Fol. 27-501, Allen, Taylor \& Co., "The Lion of the North" Stove. (Dated 3rd October, 1862).

Fol. 31-501. Do., "Prince of Wales" do. (Dated 3rd October, 1862).
Fol. 83-501, Do., "The Mammoth" do. (Dated 3rd October, 1862).
Fol. 35-501, Do., "Young Canada" do. (Dated 3rd October, 1862).
Fol. 37-500, J. Mathewson \& Son, "The Royal Amber Sonp." (Dated 8th May, 1863).
Fol. 39-500, Do., "Soaps, Candles and Oils." (Dated 8th Mny, 1863).
Fol. 41-500, Do., "Soaps." (Dated 8th May, 1863).

Fol. 43-506, B. L. Judson \& Co., "Carlton's Condition Powders." (Dated 8th May, 1863).
Fol. 45-677, N. Samuel, "Pens." (Dated 8th May, 1863).
Fol. 47-502, DuBerger \& Co., "A Medicine." (Dated 29tb March, 1864).
Fol. 49-689, A. Savage \& Son, "Bons Machinery Oil." (Dated 13th April, 1864.)
Fol. 51-639, Do., "Lax's Heary Engine Oil." (Dated 13th April, 1864).
Fol. 53-528, Robert Stark, "Nelligan's Worm Candy." (Dated 19th July, 1864).
Fol. 65-624, W. \& R. Griffith, "Ground Coffee." (Dated 27th September, 1864).
Fol. 57-485, S. J. Lyman \& Co., "The Adirondack Grape Viae." (Dated 24th October. 1864).
Fol. 69-477*, E. Murdoch, "Patent Prepared Flour." (Dated 17th December, 1864).
Bureav of Agriculture and Statistice,
Quebeo, December 19, 1864.

THiles of Designs.

H. Bernier \& Cie., of the parish of Lotbiniere, "Design for treble and double Stoves." Dated 20th December, 1851, Vol. A. Ful. 2).
J. G. Beard \& Son, of the city of Toronto, "Design of a pattern for stoves made of cast iron, and of a reservoir for hot water thereon affixed, composed of sheet copper." (Dated 18th May, 1863. Vol. A, Fol. 9).

William Clendenning \& Co., of the city of Montreal, "Design of castings for double or single box stoves." Duted 26th December, 1861, Vol. A, Ful. 1).

Auguate A. Meilleur, of the city of Montreal, and Jean Baptiste Alphonse Meilleur, of the town of Sorel, "Design of a pattern for bedstends composed of metal or mixed metals." (Dated 20th March, 1863, Vol. A, Fol. 7).

John MeGee, of the city of Toronto, "Design of a pattern for conl cooking stoves." (Dated 22nd September, 1863, Vol. A, Fol. 13).
John MoGee, of the city of Toronto, "Desiga of a pattern for dampers for the Canadian cooking atove." (Dated 1st Oatober, 1864, Vol. A, Fol. 15).
T. Parrot \& Cie, of the parish of Ste. Emilie de Lotbiniere, "Design of a treble or double stove." (Dated 13th July, 1863, Vol, A, Fol. 10).

Wm. Rodden \& Co., of the city of Montreal, "Design of castings for double or single box stoves." (Dated 26th December, 1861, Vol. A, Foi. 1).

- This cancelled No. 475; Folio 2, Issued 8th May, 1869.

gbsip No.

F. 52 \& '53. The Illustrated Catalogue of the Industrial Department of the International Exhibition of 1862 . Imp. $8 \mathrm{vo}, 2$ vols.
G. 59. The Practioal Cotton Spinner and Manufacturer, and comprehensi ve system of Mill Gearing and Maohinery, from the primary moving power through all the various processes. 870

Scotl \& Byrne.

BOOKS ADDED TO THE FREE LIBRARY OF REFERENCE-Continued.

G. 60.

The Arts of Tanning, Currying, and Leather Dressing; theoretically and practically considered in all their details. 8vo
C. Mrorfit.
G. 61. Industrial Drawing; including the description and uses of Drawing Instruments, \&e. 8vo..
D. M. Mahan.
G. 62. General Theory of Bridge Construction; containing demonstrations of principles and application to practice, calculations of strains, \&c., with ill. 8vo
H. Haupt.
G. 63.

English and Latin Dictionary. Ed. by Morell. 8vo Ainsworth.
Surveying and Levelling; being a plain exposition of the subjeot and of the Instruments employed. 8vo

Brees.
G. 64.

Introduction to Conchology; or Elements of the Natural History of Molluscous Animals. 8vo
G. Johnston.
H. 60.

Alementary Trestise on Mechanics. 8vo
Potter
H. 61.

The Mechanics of Engineering. 8vo
Whewell.
H. 62.

Tine Landscape Gardener, illustrated. 8vo
J. Dennis.
H. 63.

Hand-book of the Useful Arts. 12mo
Antisell.
K. 40 .

Manual of Photography, 4th edit. 12 mo
R. Hunt.
K. 41 .

Manual of Electro-Metallurgy ; including applications of the art to manufacturing purposes, 2nd edition. 12 mo

Napier.
K. 43.

History of Sculpture and the Plastic Art. 12 mo
K. 44 to 46. History of Painting in Italy, from revival of the Fine Arts to end of Eighteenth Century. Translated by T. Roscoe. 3 vols. 12 mo

Lanzi.
K. 47.

Manual of Metallurgy, or practical treatise on the Chemistry of the Metals. 12 mo Phillips.
M. 46

Complete Practical Distiller and Rectifier
Byrn.
M. 47.
M. 48. Complete Practical Brewer
"،
M. 49.

Dictionary of Terms used in all the various Fine and Industrial Arts
J. Weale.
M. 50.

Treatise on the Power of Water
Glynn.
M. 51 .

Pneumatics, for the use of Beginners
Tomlinson.
M. 52 to 54. Treatise on Civil Engineering. 3 vols. (Weale's).... H. Law.
M. 55. Mechanics' Pocket Dictionary W. Grier.
M. 56. Mechanics' Calculator
M. 57. Illustrations of Arts and Manufactures; being a selection from a series of papers read before the Society of Arts
A. Aiken.
M. 58.

The Moulder's and Founder's Pocket Guide F. Overntan.
M. 59. Treatise on Mechanics

Kater \& Lardner.
T. S

Results of Meteorological Observations, 1854 to $1859 . \quad$ Vol. 2, Part I. Smithson. Inst.

RECENT BRITISH PUBLICATIONS.

RECENT AMERICAN PUBLICATEONS.

Allen (H., M.D) Monograph of the Bats of North America, cuts.....a.............. Bowen (F.) Treatise on Logic, or the Laws of Pure Thought, 12mo
Church (A. E.) Elements of Descriptive Geometry, \&c., $8 \mathbf{0} 0$
Draper (H., M.D.) Silvered Glass Telescope, and use in Celestial Photography, 4to, ill. Grace (W.) Army Surgeon's Manual, cont'g regulations of U. S. Medieal Dept. $12 \mathrm{mo} . \mathrm{Ca}$ Heath's Infallible Counterfeit Detector at Sight, 18mo, 8 plateo
History of Manufacture and uses of Printing, Gas-light, Pottery, Glass and lron, ill, From. Ency. Britannica, 12mo
Root (M: A.) The Camera and the Pencil; a Text-book and Hand-book of Daguereo typy, Photography; \&c., 12 mo
Thomes (J., M.D.) Comprehensive Dictionary of Medicine and kindred Sciences, \&ro
$\$ 000$ Smithson. Instit.
200 Sever $\$$ Brancis.
350 Barnes \& Burr.
000 Smithson. Instit.
150 Bailliere Bros.
150 Eeath.
250 Jno. Bradburn.
300 Lippincott \&. Co. 360.

Silected grticles.

PROCEEDINGS OF TIIE SOCIETY OF ARTS.
CANTOR LEGTURES.
"On Chemistry Applied to tife Arts.". By Dr. F. Crace Calbbrt, F.R.S., F.C.S.

Lecture V.

Delivered on Thürsday Evening; May 5, 1804.
Bile, its properties. Blond, its composition, and application in tho refining of sugar and monufasture of albumen. Albumen, is application to ealieoprinting and photography. Millo, its composition, properties, falsification, and preservation. Urine, its uses. A fow words oll putretinction.
In this lecture we shall examine the composition of the various liquids secreted in the human body and in those of animals, and the uses to which these fluids are applied in arts and manufactures.

Bile.-The composition and apperrance of bile vary greatly in different animals. Usually it is a yellow, green, or brown, thick fluid, with a marked alkaline reaction, and containing about 14 per cent. of solid matter, the most important constituents of which are, in human bile, mucus, two colouring matters, one ycllow (cholepyrrhine) the other green (biliverdine), sugar, albumen, two organic acids (cholic and choleic), combined with soda, oleate and margarate of soda, a non-saponifiable fatty matter (cholesterine), and several mineral salts. The two most interesting substances in bile are choleic acid and cholesteine, which, when produced in urdue proportion, give rise to those calculi, the passage of which through the biliary duct is so dangerous and painful. One of the most valuable papers published of late is that of Mr. G. Kemp, in the Iransactions of the Royal Suciet.y, on the conversion of the hepatic bile into cestic-thus he has shown that as the former is secreted by the liver, and arrives by the biliary duct in the gall bladder, it.is there converted into cestic bile by means of a anecial fermentation, induced by a mucus secreted in the walls of the gall bladder. It is believed by most physiologists that the principal function of bile is to neutralize the acid fluids tresultion from digestion in the stomach, as they enter the sinall intestines, rendering them better adapted for their sojourn there, and also facilitating their formentation, one of the most important phenomena of.digestion. The employment of bile as, a scouring agent has much diminished of late gears; owing to the substitution fur it of benzine and Sheruood spirit.

Blood.-The study of this all-important fluid is most interesting in a physiological point of view, for the 27 pounds of blood (the average amount in an adult) which travels through the whole of the human frame in about three minutes, fulfils three distinct functions, viz, -it carries the various elements of food, as modified by digestion, into the different parts of the body requiring them; it helps to remove from the ejstem thore sibbstances which have fulflled their required functions in it, and which have been rendered useless by the wear and tean of life; and it convegs through the system the heat generated by the oxidation, through respiration, of the substances which hare been absorbed
during digestion, as well as of those which have performed their part in the human economy, and require to be remored therefrom. It will, therefore, be easily understood that blood mast be a complicated laid; and the following table will give an idea of the truth of this assertion :-

$1000 \cdot 00$

It will facilitate our study of this complicated fluid if we class the various compounds existing in it under six different heads. Firstly, if blood, immediately after being drawn from an animal, is whipped with a birch-rod, the ends of the twigs will have hanging from them a stringy mass, which after being well washed, is grey and elastic, and is called fibrine. Secondly, if the blood so treated is mised with a solution of sulphate of soda of sp . gr. 1-16, and the whole thrown on a filter, the corpuscules and the colouring matter called hematosine, will remain on the filter, and these substances with the fibrine, form, as shown in the table, the clot of blood. Further, if the matter left on the filter is treated with conceutrated acetic acid, the colouring matter is dissolved and the corpuscules are left as yellow disce. Thirtly, on boiling the fluia which passes through the fiter, albumen is coagulated and can be easily separated, leaving whiter and a few saline substances, which are easily separated by evaporating the liquid portion. Allow me now to add a few remarks on some of the substances above mentioned. Fibrine represents the fibrous or muscular part of animals, but has no direct application in manufuctures. The blood corpuscules in man are ellipsoid dises, containing the colouring matter of blood. The most interesting fact connected with the latter is that it is united with a compound contrining iron; and although iron does not appear to be an integral partof the colour, still its presence appears essentinl to the existence of the colour itself. The external part of the dises is composed of fibrine, whilst the interior contains an albuminous fluid (which differs from the albumen of the serum in the fact that it is not coagulated by heat) and which is called globuline. The relative proportions of fibrine, globuline, and hematosine, vary considerably in
different individuals, according to health; age, and sex, and even during the process of digestion. When blood is examined under the microscope, large colourless globules are found to float with those just described. . Dr. William Roberts, of Manchester, who has examined the corpuscules of blood, has observed that when they are dipped into a solution of magenta, they assume not only a pink colour, but that the pucleus of the dise acquires a much deeper shade. Further, that on the sides of the disc there are small projections which he calls pullulations, and which acquire a much deeper tint than the remainder of the dises when plunged into the magenta solution. Aoother curious fact lately observed by. M. Pasteur is that if blood is kept for several weeks in a cold situation, rir being excluded, the corpuscules disappear, and are replaced by myriads of beautiful red welldefined crystals. Lastly, there is a slight difference of composition between arterial and venous blood.

	Arterial.	Venous.
Carbon $50 \cdot 2$	65.7
Nitrogen 16.3	16.2
Hydrogen $6 \cdot 6$	6.4
Oxygent... $26 \cdot 3$	21.7
	99.4	100.0

It is strange that while blood is so extensively employed on the Continent in varions branches of manufacture that in Paris 2;000 tons of blood are used by sugar refiners alone, hardly any such application of this fluid is made in our own country. It appears to me that the explanation is to be found in the fact that on the Continent beasts are generally slaughtered in public abattoirs, by which means many of the refuse matters can be collected with advantage, and without being spoilt or polluted by unscrupulous persons, whilst in this country, where avimals are slaughtered in innumerable private slaughter-houses, the difficulty and expeuse of collection, together with the absence of guarantee of quality, reoder the successful use of blood on a large scale impracticable. There is an additional advantage in the system of public abattoirs, which I cannot help noticing en passant, viz., the guarantee thereby obtained that the public food is notfurnished from diseased animals. The only employment of blood in its integrity in this country is ns an article of diet, and to some extent in the manufacture of prussiate of potash. The serum of blood is sometimes used in England; as well as on the Continent, as one of the substances essential in the process followed to communicate to cotton the magaificent colour called "Tarkey red."
Albumen (blood). -The employment of this sub stance in the art of calico printing is of comparatively recent date, as it is chiefly due to the introduction of the tar colours and pigment styles into that art. To fix colours with this albumen (or that of egg) it is only necessary to dissolve in a gallon of water several pounds of albumen and gum Senegal, adding a little tar colour such as magenta, \&c., or a pigment, such as ultramarine blue, these unixtures are then printed on the cotton fabrio, and the colour fised by the congulation of the albumen under the influence of high pressure stenm. But the quantity of albumen used for this purpose has greatly décreased of late years, owing
to the introduction of tannin by Mr. Charles Lowe and myself, Messrs. Roberts, Dale, and Co., and Mr. Gratrix, and also that of the arseniate of alumina by Mr. W. A. Perkin. The substitution of blood albumen for that of egg is chiefly due to Messrs. Ruhart, Roger, and Co., who, I believe, prepare it by separating carefully the serum of blood from the clot, adding to it a small quantity of alum to separale any colouring matter that may be mised with it, and evaporating the water of the serum by a current of air heated to 100°, which leaves the albumen in the form of yellowish scales, freely soluble whon placed agaia in contact with water. The most abundant source of albunen, however, is the white of egg, and therefore let us glance at a fem facts con̄ected with this substance, doubly importantias an article of manufacture, and as oue of food. To give some idea of the extensive use of egge, I may state that in Paris there are annually consumed $178,000,000$ eggs, weighing $28,000,000$ pounds. The composition of \mathfrak{a} hen's egg may be stated to be as follows:-

$$
\begin{aligned}
& \text { Shell i....... 11.5 } \\
& \text { White ... } 380 \\
& \text { Yolk }
\end{aligned}
$$

$$
1000
$$

The following are the respective compositions of the yolk and white :-

Yult.	White.
Water $51 \cdot 47$	Wrter 86.34
Vitelline 15.76	Albumen 12.50
Oleine	Membrane 0.50
Margarine \}...... 28.97	Phosphates, \} . 066
Cholesterine	Cblorides, \&c. \} 066

Phospho-glyceric acid 1-26
Colouring matters ... $1 \cdot 20$
Mineral salts 1.34
10000
100.00

An egg may be considered as consisting of four parts, the shell, membrane, white, and yolk. The shell is composed of carbonates of lime and magnesia, phosphate of lime, and oxide of iron, the whole bound together by a nitro-sulphuretted substance. The presence of sulphur in this substance, as well as in albumen, explaine why egge give off sulphuretted hydrogen when boiled. The membrane lining the shell is also a nitrosulphuretted substance, much resembling in its composition that of horn: I have already had occasion to speat of the interesting composition of the yolk of egg, when mentioning its application in the glove manufacture, abd on that occasion I drew your attention to the remarkable substance called vitelline, and to the peculiar nature of the fats contained in yolk of eggs, but more especially the phospho-glyceric acid, attributing to them the peculiar properties imparted to leatber through their use. The white of egg chielly consists, ns the above table shows, of a substance called albumen; which you will remember is also found in blood, and, I may add, that it exists in the satp of nll plants. Albumen is a fluid of an alkalino reaction, soluble in water; nad congulates at 160° when undiluted, but when dissolved in water the temperature at whigh it congulates is raised according to the extent of its dilution. Albumen gives a precipitate with all metallic salts, but one of the most characteristic and delicate tests
for albumen in solution, is bichluride of mercary or corrosive sublimate. In fact, albumen is the best antidote known to the astion of this violent poison, when taken internally, as was proved by its saving the life of a mest eminent chemist (Baron Thenard) in 1825. All acids, except phosphoric and acetic, precipitate albumen from its solutions, but that which separates it with the greatest nicety is nitric acid. When placed in contact with hydrocholoric acid for a few hours, it assumes a very beautiful purple colour. When albumen is placed in shallow vessels, and then stored in a chamber where air at 100° is allowed to circulate, the water evaporates and leaves the solid albumen in the form of yellowish semi-transparent scales, which, strange to say, will, if kept dry, resist putrefaction for any length of time, although in its liquid form the large amount of nitrogen it contains renders it highly putrescible. It is this solid albumen which is used by calico printers, as it is easily dissolved in water and rendered applicable to their purposes. Albumen is often used in manufactures to clarify fluids. In some instances the albumen in solution is added to the flaid and carried to the boil, when the dissolved albumen coagulates, and in falling through the fluid carries with it mechanically the matters in suspension, when it is only necessary to decant the clarified fluid. In others it is added at natural temperature, as in the case of wines, where the tannin, alcohol, and acids are agents which coagulate the albumen. Albumen was first applied to photography by Niepce de St. Victor, in the following form: he mixed together intimately 10 fluid oz. of distilled water with the white of 10 fresh eggs; to this he added 200 grains of chloride of sodism or chloride of ammonium. The whole was well shaken in a bottle for about ten minutes, and then allowed to stand. All that was then required was to decant the clear liquor, and apply it to the surfaces intended to receive the photographic image. [Here the lecturer shortly described this photographic process, and alluded to the recent application of the light resulting from the combustion of magnesium wire, manufactured by Messrs. J. Mellor and Co., of Salford, showing its applicability to photography, by using this light to take photographe during the lecture, etating that the cost was only a few pence.] A great many attempts have been made to preserve eggs from decay, the most successful of whioh have been those of La Maisora Cormier du Mans, who cevers the egg with an impermeable varnish, packing them in sawdust, so that the egg shall always rest on one end. Another process is that of immorsing the eggs in limewater. Lastly, the whole of the egg has been emptied out of the shell and evaprated to a solid mass. I must not conclude the subjeot of the albuminous and vitelline substances without oasling your attention to the following table, which will give an idea of the different albumens and vitellines which Mr. E. Fremy has succeeded in insolating and eharucter-ising:-

Egas of Birds.		
Albumen	coagulated by heat?	
Eudophacine	"	
Albumen	" ncid	ces are character
Mets albumen	neither	ized by eontaining
Exophroine	* * ${ }^{6}$	

Eags or Fibirs.

Ray Goldfish Carp Salmon Tartle Milk.-The composition of this important fluid varies not only in different classes of animals, but also in different individuals of the same class. Further, the composition of milk is modified by the influence of food, climate, degree of activity, and health. Notwithstanding these variations an average can be arrived at by numerous analyses, and the following table will give a general idea of milk:-

	Woman's.	Come'.	As8e8.	Goats'.	Emes'.
Dried Caseine	15.2	44.8	182	40.2	45.8
Butter	33.5	31.8	1,1	38.2	120
Sugar of Milk	65.0	47.7	60.8	52.8	50.0
Salts	4.5	6.0	3.4	58	6.8
Water	881.8	870.2	916.5	8680	885.4
	$1000 \cdot 0$	1000.0	1000.0	$1000 \cdot 0$	$1000 \cdot 0$

The various substances comprised in milk may be classified under three heads-cream, curd or caseine, and whey.

Cream, àcoording to Dr. Voelcker's* analysis, is composed of:-

Water 61.67	64.80
Butter 33.43	. $25 \cdot 40$
Caseine 262	
Sugar of mils...... 1.56	\}
Mineral matters ... 0.72	$2 \cdot 1$
100.00	10000

And may be considered as consisting of small, round, egg-shaped globules, composed of fatty matters, enclosed in a thin cell of caseine, which, being ligbter than the fluid containing them, rise to the surface and constitute cream, and in proportion to the quantity of this removed from the milk, the latter becomes less opaque, and assumes a blue tinge. When exposed to the air for a short time in a dry place it loses water, becomes more compact, and constitutes what is called cream cheese. When churned, cream undergoes a complete change; the caseine cells are broken, and the fatty globules gradually adhere one to the other and form a solid fatty mass, called butter, and it is found, on an average, that 28lbs. of milk will yield one pound of butter. Fresh butter is composed of:-
Fatty matters $\left\{\begin{array}{l}\text { Margarine, } \\ \text { Oleine, } \\ \text { Caproine, } \\ \text { Caprine, } \\ \text { Butyrine, } \\ \text { Caproleine, }\end{array}\right\}$

Caseine
Whey.. 209
1000

[^0]But as butter rapidly becomes rancid，it is neces－ cary to adopt means to prevent this as much as possible，and the following are the usual methods， qiz．－working the butter well with water，and then adding 3 or 4 per cent．of comman salt，or， meltiag the butter at a temperature below 212° ； but the following method，employed by M．Breon， appears to give general satisfaction．It consists in adding to the butter，water containing 0.003 of acetic or tartaric acid，and carefally closing the vessels containing it．The rancidity of butter is due to a fermentation gencrated by the caseine existing in it，whieh unfolds the fatty matters into their respective acids and glycerine，and as the volatile acids，butyric，caproic，\＆c．，have a most disagreeable taste and odour，it is these which impart to butter the rank taste．Allow me to add，en passunt，that whädst butyric acid posses－ ses a repulsive smell，its ether has a most fragrant odour，viz．，that of pine apple，for which it is fold in commerce．

Ohre of billc or Caseäne has，aceording to Ir． Woelcker，the following composition：－

Carbon	53.65
Hydrogen ．－．．．．．．．．．．．．．．．．．．．．．．．	$7 \cdot 14$
Nitrogen ．．．．．．．．．．．．．．．．．．．．．．．．．．－	1541
．Oxygen ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．	22.03
Sulphur ．．ris ．．．．．．．．．．，＋．．．．．．．．．．．．．	$1 \cdot 11$
Whosphoras ．．．．．．．．．．．．．．．．．．．．．．．．．	0.74
Total	$100 \cdot 00$

And is easily recognisable by its white floceulent appearance．It is insipid and inodorozas，like albumen，from whiek it differs in its iasol：；bility in water，though it is dissolved by a weak solution of alkali or aeid．But what chiefly distinguishes caseine is that it is not eoagulated on boiting，and that rennet precipitates it from its sodutions．Or． Woelcker has proved，however，in his researches on cheese，that the commonly－received opinion， that rennet eoagulates milk by decomposing the daetine into lactic acid，is ineorrect，for he mas coagulated milk while in an alkaline condition， and it is owing to the difference in the retion of pennet on albamen and caseine，that chemists have been able to detect the presence of $\frac{1}{2}$ to $\frac{3}{4}$ per cent．of albumen in mill．This important organic substanoe not only exists is milk，but is also found in small rquantities in the blood of some animals，such as the ox，and in a large class of plants，but more especially in the legusainous tribe，buch as peas，beans，\＆o．Caseise is the basis of all eheoses，and when these are made arith milk from which the cream has been pro－ aiously taken，the cheese is dry，but when part of the cream has been left the cheese is rich in fatty matters as well as in caseine；and I may add that the peculiar flavours characterising different cheeses are caused by modifying the conditions of the fermentations which the organio matters andergo．The following researches mado by M． Blondear illustrate this point，as well as the modifications which cryptogamic dife under pecu－ diar circumatances may elfect in the composition of organic substances，and his interesting resulte spere obtained in studying the conversion of curd into the well－known cheese of Rioquefort．He placed in a cellar some curd of the following
Caseine $85 \cdot 43$
Fatty matters． 1.85
Lactic acid． 0.88
Water 11.84
$\$ 100 \cdot 00$
so which be added a small quantity of salt． After a month，and again after two months，he analysed portions of the same，with the following results：－

	After 1 month．	After 2 months．
Caseine ．．．．．．．．．．．．．．． 6133		$43 \cdot 28$
Fatty matters．．．．．．．．．16．12	．．．．．．．．．．	32.31
Caloride of Sodium． 4.40	．．．．．．．．．．	$4 \cdot 45$
Water ．．．．．．．．．．．．．．．．．．18－15	．．．．．．．．．．	$19 \cdot 16$
Butyric acid		067
160.00		9987

The above figures show a most extraordinary change in the caseine or curd，for we observe that the proportion of caseine gradaally decreases， and is replaced by fatty matters．Considering the circumstanees under which this phenomenon has occurred，there can be no doubt that this curious conversion of an animal matter into a fatty one is due to a cryptogymic vegetation or ferment；and if the Roquefort cheese be exposed to the air under a bell jar for 12 months，the de－ composition becomes still more complete；for it is no longer the caseine which undergoes a transfor－ mation，but the cleine of the fatty matters．The fullowing analyses clearly illustrate this curious action．Composition of the cheese after 2 and 12 months：－

After 2 monthg．After 12 months．

Caserae ．．．．．．t．．．．．．．．．．．．．． 4828	4023
Margarine ．．．．．．．．．．．．．．．． 18.30	16.85
Oleine ．．．．．．．．．．．．．．．．．．．．． 1400	$1 \cdot 48$
Butyric acid ．．．．．．．．．．．．． 0.67	
Comraon 8altu．．．．．．．．．．．．4．45	45
Water ．．．．．．．．．．．．．．．．．．．．． 19.30	$15 \cdot 16$
Butyrate of ammonis．	$5 \cdot 62$
Caproate of ammonia．．．	$7 \cdot 31$
Caprylate of ammovia．	$4 \cdot 18$
Cuprate of ammonia ．．．	$4 \cdot 21$
00.0	99.4

The substances to which cheases owe their pecu－ liar flavour are ammoniaeal salts，chiefly com－ posed of various organic acids，such as acetic， butyric，capric，caproic，and caproleic．I cannot betier eonclude my remarks oa cheese than by extracting from Dr．Wuelcker＇s interesting papers a few of his numerous analyses of different kinds of cheese：－

	$\begin{aligned} & \stackrel{y}{5} \\ & \text { O} \\ & \text { D } \\ & \hline 0 \end{aligned}$	$\begin{aligned} & \text { 害 } \\ & \frac{3}{7} \\ & \text { 住 } \end{aligned}$	$\begin{array}{r} \text { 응 } \\ \text { 范 } \end{array}$	象宮		
Water	3259	$20 \cdot 27$	$30 \cdot 32$	32．44	28－10	27.29
Butter．．．．．．．．．．．．．	32.51	43.98	35．53	$30 \cdot 17$	$33 \cdot 68$	35－41
tCascine．．．．－．．．．．．．	26.06		28.18	31．75	30.31	$25 \cdot 87$
Sugar of milla．$\}$	4.53	） $33-55\}$	$1 \cdot 66$	$1 \cdot 22$	3.72	6－21
\dagger Mincral matter．	$4 \cdot 31$	2020	$4 \cdot 31$	$4 \cdot 42$	$4 \cdot 19$	6.22
	10000	$100 \cdot 00$	100．00	$100 \cdot 0$	100．00	$100 \cdot 00$
＋Nitrngen ．．．．．．．．．．	$4 \cdot 17$	$3 \cdot 80$	451	$5 \cdot 12$	4.85	4．14
fCoummon salt．．．．．	1.69	0.29	1.65	$1 \cdot 41$	1－12	1.97

The principal application of caseine in arts and manufactures is that first introduced by Mr. R. T., Pattison, who used it under the name of lactarine for fixing pigments in colico printing. His process consists in drying the washed curds of milk, which he sells to the calico printer, who mixes it with a solution of ammonia or wenk alkali, wtich swells it out and renders it soluble in water. 'To a solution of this substance, of proper consistency, he adds one of the tar colours, prints it, submits the goods to the action of steam, which drives off the ammonia, leaving fixed on the firbric the caseine and colour. In consequence of the insoluble compound which caseine forms with lime it has often been used as a substitute for glue or linseed oil in house painting, and it may be useful to some of my audience to know that when caseine is dissolved in a concentrated solution of borax, an adhesive fluid is formed, which is capable in many casee of serving the purposes of glue or starch. Mr. Waguer has made another useful application of easeine, mising it with 6 parts of calcined magnesia, and one part of exide of zine, and a sufficient quantity of water to make a pasty mass, which he leaves to solidify, and when dry it is extremely hard, susceptible of receiving a high polish, and is sold as a substitute for meerscbaum.

Whey.-According to Dr. Voelcker, the composition of whey is as follows:-

When whey is concentrated to the state of syrup, and kept in a cold place, it gradually deposita fine well-defined crystals, which. on further purification and re-crystallisation, yield white quadrangular prisms of a substance called lactine, or sugar of milk, which is highly interesting, It is remarkable that while sugar of milk has only been known in Europe for a comparatively short period, where homoupathists are its principal employers, in India lactine has been known for a great number of years. Let us now study some of the chemical facts connected with sugar of milk. Thus cane sugar, when ncted upon by nitric acid, gives ozalic acid, whilst lactive gives mucic acid; cane sugar, when unfulded under the influence of a ferment, gives alcolol and carbonic acid; lactine yields lactic acid. As tho latter transformation is most important, in a \quad ysiological and chemical point of viers, allow me to dwell upon it for a few minutes. The substance which possesses the property of most readily converting lactine into lactic acid, is caseine after it has uodergone some peculiar modification, which renders it a ferment. Thus when milk leaves the cow it is alknline, but when exposed to the air it rapidly becomes acid, and this is due to the conversion of lactine into lactic acid, a change must interesting as a chemical fact, since both lactine and lactic acid bare the same composition, the only difference being that two equiralents of oxpgen and two of hydrogen oease to exist as
such in the acid, but may be considered as combined in the form of water with the remaining elements-

> Lactine $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{O}_{12}$
> 2 Lactic acid (C. $\left.\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{5} \mathrm{HO}\right)$
M. Pasteur has shown that this lactic fermentation is not merely confined to milk, but that it is a peculiar fermentation, differing from the previous one, which frequently occurs during the decomposition of organic mattera, and is due to a distinct ferment of its own; and his researches on lactic fermentation have explained the fact, observed by M. Pelruze, some years since, that when a vegetable substance, such as sugar or stareh, was put in contact with chalk or other alkali and an animal subutance, lactic fermentation ensued, but until the researches of M. Pastéur, we did not know why sugar and etarch, in these circumstances, should give a lactic acid instead of alcohol and carbonic acid, which would be the result of a fermentation produced by yeast. Lactio acid is. a most interesting substance to the physiologist, fir it is found in large quantities, free or combined with lime, in gastric juice, in the muscular part of animals, or with soda, in blood, and its production is easily accounted for when we remember that it can be produced from the starch and sagar existing in our food. When lactic acid is purified by various chemical means and separated from the flaid in which it is combined, it presents itself no a syrupy fluid, of an intensely acid reaction, which, when submitted to the action of heat, first loses its one equivalent of water, and becomes anhydrons lactic acid, and on a further appliention of beat loses still one equivalent of water, and is transtormed into a neutral substance calle lactide. This acid, in a free state, bas not yet received any important application in arts and manufactures, brt I have little doubt that it will some day be largely employed, for we have noticed in a former levture its advantageous use when produced from rye and other nmylaceous substances in romoving the lime from various stins intended to be tinned or prepared as there described, and Mr. E. Hunt has used it in the form of sour milk for the conversion of starih into destrine (see Journal of the Society of Arts, December 23rd, 1859). I wish now to say a few words on the miseral substances existing in whey, and which play a most important part in mills as a nutritious substance. We are all of us too apt to overlook the importance of the mineral elements in food, and to consider as essential the orgamic matters only. In milk, however, its alkaline salts, and especially the phosphate of lime, are as exsential (as food) as cneine or fatty matters, for if an infant requires the lactine to maintain respiration and the beat of the body, the caseine to contribute to the formation of blood, the phosphate of lime is equally essential to the produstion of bone ; permit me bere to state that the practice adopted by some mothers of feeding infunts upon amylaceous substances, such as arrowroot, sago, tapioca, \&c., in place of milk, is most pernicious, fur these contain neither flesh nor bone forming eleazent, and milk is the only proper food for infants.
Having now examined the general properties of some of the mest important constituents of milk,
let us say a few words on that fluid in its intogrity. We all know how: rapidly milk becomes scur, especially at a temperature of 70° to 90°, and as this is owing, as already explained, to the formation of lactic acid, the best why to preserve milk sweet for domestic purposes is to add to it every day a few grains per pint of carbonate of soda, to keep the milk alkaline. The possibility of preserping milk for a lengthened period has repeatedly occupied the attention of scientific men, as a most important problem to solve for the benefit of persons undergoing long sea-voyages, but up to a recent date with very imperfect success. One of the best plans, proposed is to add to milk seven or eight per cent. of sugar, and evaporate the whole, agitating all the time to prevent the formation of the skin, and when reduced to one-fifth of its bulk to introduce it into tin cans, which, after being subjected for half an hour to a temperature of 220°, are hermetically sealed. In 1855, L'abbé Moigno drew the attention of the members of the British Association at Glasgow to this milk, which be stated contained nothing injorious, and which would keep for a long period. This statement has proved correct, for I have here some milk which has been in the hands of the secretary of this Suciety since that period, and which, on being opened to day, was found perfectly sweet. But if l'Abbe Moigno's process has remained a secret, M. Pasteur has succeeded in effecting the same end, and probably by the same method. Thus he has foand that if milk be heated to 212° it will only remain sweet for a few days, if heated to 220° it will remain sweet for several weeks, but if to 250° (under pressure, of course) the milk will keep for any length of time. This, according to M. Pasteur, is owing to the spores or eggs. which generate lactic fermentation being destroyed by the high temperature, and thus the possibility of fermentation is put an end to. The adulteration of milk by various substances stated to have been discovered therein, has, I think, been greatly overestimated, as I hape never found any of them in the samples of milk which I hare analysed, in fact the most easy and cheapest of all is the addition of water. It is comparatively easy to iseertain if milt has been tampered with; but, without entering into details of the methods necessary to estimate the exact extent of adulteration, I may mention the following plan:-If a glass tube, divided ioto 100 equal parts, is filled with milk and left standing fur twenty-four hours, the creans will rise to the upper part of the tubo, and, if the milkis genaine, will occupy from 11 to 13 divisions. Anotlier practical method is to add to the milk a little caustic soda, and agitate the whole with a little ether and alcohol, which dissolves the fatiy matters; this ethereal solution is removed from the milk and evaporated, when the fatty mattera remain, and experience has shown that 1,000 parts of good milk will yield 37 parts fatty matters. Any milk leaping no more than 27 must have been tampered with. Dr. Voelcker suggests the employment of a hydrometer as a meaus of ascertaining the quality of milk, as the specific gravity of that fluid is an excellent test. From a great number of experiments he has ascertained that good new milk has a sp. gr. of 1.030, whilst if gond milk is adulterated with 20 per cent. of water, its ep. gr. 11 fall to 1.025 .

Urine is a fluid secreted by the kidneys, which organs separate from the blood as it circulates through them any excess of water it may contain, as well as many organic substances which have fulfilled their vital function in the animal economy, and which require to be removed from the system. The couposition of urine varies greatly in different individuals, and in the same individual at different times, and is influenced by diet, exercise, state of health, \&er., as shown by Dr. Bence Jones and Dr. Edward Smith; but without detriling these variations, which would occupy far more time than the limits of a lecture would permit, allow me to call your attention to the following table, showing the composition of haman and herbivorous animals' urine:

HUMAN.	
Water...........................	. 933.000
Urea........................... $30 \cdot 100$
Lactic acid........................)	
Laetate of ammonia	
Extractive matter	
Kreatine	$17 \cdot 140$
Kreatinine	17140
IIippuric acid.,	
Indican...	
Colluid acid (W, Marcet))	
Uxic acid	1.000
Nuccus.	0320
Mineral salta	$18 \cdot 440$
	1000.000
morses.	
Water	$910 \cdot 76$
Urea	$31 \cdot 00$
Hippurate of potash	4.74
Lactate of do.	- 11.28
Do. of soda........	$8 \cdot 81$
Bicarbonate of pocash..............	15.50
Carbonate of lime	10.82
Carbonate of magnesia	$4 \cdot 16$
Other salts	$2 \cdot 93$
	$1000 \cdot 00$

The substances in human urine which call for special notice are urea and urie acid; in herbivorous animals, bippuric acid; and in birds, uric acid.

Urea is a substance crystallizing in various derivative forms belonging to the prismatic system ; it is very soluble in water and alcohol, and gives benutiful and well defined salts with nitrie and ozalic acids. Urea, under the influence of a mucous substance secreted at the same time, and which is ensily modified into a ferment, is rapidly converted, by the fisation of two atoms of water, into carbonate of ammonia, as seen by this formula:

This will explain the strong ammoniacal odour arising from urine after being kept for a short time ; and as it may be most important for medical men to be able to preserve urine in its normal condition for several days, I observed a fow years since a most effectual method of preserving it, which is merely the addition of a few drops of carbolice neid immediately after the production of the urine. Orea is peculiarly interesting to chemists,
as it was the first organic substance which they succeeded in producing artificially from mineral compounds. This interesting discovery was made by Wöhler, in 1820, in acting upon cyanate of silver by hydrochlorate of ammonia. Since then Baron Liebig bas devised a more simple process, which consists in decomposing cyanate of potash by sulphate of ammonia, which gives rise to sulphate of potash and cyanate of ammonia or urea. The average quantity of urea ejected daily by an adult man is about an ounce, or $2 \frac{1}{2}$ per cent. of the fluid itself. Although haman urine does not contain more than 1 per cent. of uric acid, and this generally combined with soda, still I deem it my duty to eay a few words respecting it; for it is often. the principal source of gravel and calculus, owing to various influences which make the urine strongly acid before its rejection, whereby the soda is neutralized; the uric acid liberated, and this, being nearly insoluble, separates, and has a tendency to form gravel or calculus. In faet, the deposit which occurs in this fluid is generally represented by urie acid, phosphate of lime, and magnesia, mucus, and colouring matter. It may be here stated that calculi were formerly held in great estimation, especially those formed in the intestine, and called bezoards, aud this was the case in Eastern countries until very recently. Thus it is refated that a Shah of Persia sent to Napoleon the First; among other viluable presents, three bezoards, which were considered to be of great antiquity, and capable of curing all diseases. The urine of birds and reptiles being almost entirely composed of urate of lime, explains why their refuse is of such vatue as a manure, which arises from ite transformation into carbonate of ammonia. When large masses of this refuse undergo a elow and gradual decomposition, as in the dry climate of the Pacific islande, on the coasts of Peru aind Chili, it constitutes guano. It may be interesting to know that in 1855 ,' ' 6 and ' 7 , a most beautiful oolour was prepared from the urie acid c.ntained in gaano, and used largely by calico printers and silk dyers, under the name of Roman purple or murozide.*
Before leaving the study of this important animal secretion, let me say a few words on the urine of herbivorous animals. It is generally alkaline, and contains, besides an aromatic principle, an acid, discovered by Liebig, and called hippuric acid, together with urea and uric acid, also found in human urine. Hippuric acid is easily ohtained, in the form of well defined crystals, by rapidly evaporating the fluid containing it. This acid does not exist in the food of the animal; but benzoic acid, or its homologues, are fuund there, and during the phenomena of digestion the nitrogenated principles produced by the wear and tear of life, fix themselves on the benzoic acid, and concert it into hippuric, as seen by this formula:
Benzolo Aclid. . Huppurle Achu.
$\mathrm{C}_{14} \mathrm{H}_{6} \mathrm{O}_{\mathrm{s}}+\mathrm{HO} \mathrm{H} \ldots \ldots \mathrm{C}_{83} \mathrm{H}_{8} \mathrm{O}_{6} \mathrm{~N}_{2}+\mathrm{HO}$.

A further proof of the correctness of this view is, that whed hippuric acid is treated with atrong acids or alkali, it traneforms itself into benzioio acid, which can be easily extracted.

[^1]
Gseful 易ecipts.

Mounting Fivid for Micoroscopical Objects.

Best gelatine, 1 or.; hones, 5 on.; distilled water, 5 oz. ; rectified spirits, 1 oz.; ereosote, 6 drops. Dissolve the gelatine in the water by heat, and add it to the honey, previously made boiling hot. When ceoled a little, sodd the creosote dissolved in the spirit, and, While still hot, filter through coarse filtering paper, or fine flunnel. For wse, the bottle in which it is contained may be set in a vessel of hot water.-Deane.

Mretallic Vegetation.

(Tin Tree) Muriate of tin, ${ }^{3}$ dran ; nitric acid, 10 to 15 drops; diatilled op rain water, 1. pint. Dissolve in a white glass bottle, cond hang in it by a thread a small rod of aine.
(Sivver Tree.). Nitrate of silver, 20 grs. ; water. 1 oz . Disonlve in a vial, and add about $\frac{1}{2}$ dr. of mercury. Wery brilliant and beautiful.

In the above experiments the laminye are observed to shoot out, as it were, from nothing, assuming forms resembling real vegetation.

Tinuing:

Plates or ressele of brass or copper, boiled with a solution of stannate of potasea, mised with turninge of tin, becone, in: the course of a few. minutes, envered with a frmly attached layer of pure tin. 2. A similar effect is produced by boiling the articles with tin filings and caustic alkali, or cream of tartar. In the above way chemicak vessels made of copper or brass may be easily and perfectly tinned.

年 Subustituse cor Indiaciniza

A substance much of the same nature and applicable to the same purposes as india-ink may be formed in the following manner:-Take of isinglass three ounces: make it into a size by dissolving over the fire in six ounces of soff water. Take then Spanish liquorice one ounce, dissolve it in two ounces of soft water aver the fire in another vessel, then grind up un a slab with a heavy muller one ounce of ivory-black with the Spanish liquorice mixture. Then add the same to the isinglass size while hot, nnd stic well together till thoroughly incorporated. Evaporate awny the water, and then cast the remaining composition into a leaden mold slightly oiled, or make it up in any other convenient way. This composition will be found guite as good as the genuine article. The isingluss size, mized with the color works well with the brush. The liquorice rendess it easily dissolvable on the rubbing up. with water, to which the isinglass alone would be somewhat raluctant; it also prevents its crocking and peeling off from the ground on which is is laid.-British Journal of Photography.

Sulvoring.

Cold silvering may be performed on brass nud copper which is well cleaned and quite bright, by rubbing with a moistened cloth, dipped in the following powder:-1. Chloride of silver, 2 parts; pearlash, 6: parts; salt, 3 parts; whitidg 2 parts; mix. Or, 2. Precipated silser, 1 part; common
salt and cream of tartar, each two parts ; mix. When the metal is silvered, it should be washed in a hot weak solution of alkali, rad then washed dry. Other silvering powders are:-3. Nitrate of silver and salt, of each 1 part; cream of tartar, 7 parts. 4. Nitrate of silver, 1 part; cyanide of potarsium, 3 parts. 5. Bath. Nitrate of silver, 15 parts; sulphate of soda, 100 parts; dissolve in water, and dip the article into the solution.

Staining Wood and Ivory-

Yellow.-Dilute nitric acid will produce it on wood.

Red.-An infusion of Brazil wood in stale urine, in the proportion of a pound to a gallon for wood; to be laid on when boiling hot, and should be laid over with alum water before it dries. Or, a solution of dragon's blood, in spirits of wine, may be used.

Black.-Strong solution of nitric asid, for wood or isory.

Mahogany.-Brazil, madder and logwood, dissolved in water and put on hot.

Blue.-Ivory may be stained thus:-Soak it in a solution of verdigris in nitric acid, which will turn it green; then dip it into a solution of pearlash boiling hot.
Purple.-Soak ivory in a solution of sal-ammoniac into four times its weight of nitrous acid.

Imitation of Mahogany.- Plane the surface smooth and rub with a solution of nitrous acid. Then apply with a soft brush one ounce of dragon's blood, dissolved in about a pint of alcohol, and with a third of an ounce of carbonate of soda, mized and filtered. When the brilliancy of the polish diminishes, it may be restored by the use of a little cold drawn linseed oil.

Day and Martines Blacking-

According to Mr. W. C. Day, the method of making the famous "Day and Martin's" blacking is as follows:-The bone black, in a state of powder, is mised with sperm oil until the two ard thoroughly incorporated. The sugar or treacle is then mized with a small portion of vinegar and added to the mass. Oil of vitriol is next added, and when all effervescence has ceased, vinegar is poured in, until the mixture is of a proper consintence. This constitutes the liquid blacking of Day and Martin.

To Galvantze.

Take a solution of nitro-muriate of gold (gold dissolved in a mixture of aquafortis and muriatic acid) and add to a gill of it a pint of ether or alcohol, then immerse your copper chain in it for about fifteen minutes, when it will be coated with a film of gold. The copper must be perfectly clean, and free from oxide, grease, or dirt, or it will not take on the gold.

THablimery and adtamfactures.

THE USE OF STEAM EXPANSIVELY.

There are many strange things to be found in ongineering practice, and possibly there is nothing more strange than the general ignorance which
exists of the true value of expansion in the use of steam, and the prinuiples upon which that value depends and can be realised. The subject bas unfortunately been invested with a certain amount of mystery, consequent upon the profuse employment of algebraical symbols by standard authors. We have no intention of deprecating this use of mathematical phraseology, but it is certain that not only may every question connected with the use of steam be explained and solved by the aid of the simplest formulæ, but that the use of this phraseology is distasteful and repulsive to the vast majority of the employers of steam power. In order that steam may be used with due economy it is absolutely nesessary that a considerable proportion of its power be developed during its expansion while yet in the cglinder, but unless considerable attention is bestowed upon the observance of particular conditions, it is practically impossible to secure fair results from any measure of expansion great or amall; and we find that the non-observance of these conditions has tended to bring a great principle into disrepute.

In order to illustrate the action of expanding steam, we will suppose the existence of an engine having a piston exactly one square foot in area, making 1,000 strokes, each twelve inohes long, in the space of one hour. 1,000 cubic feet of steam will therefore pass through such a cylinder per hour. Let us further suppose that the steam has an initial pressure of 100 lbs . per square inch, and that the cylinder is so situated that the steam passing through it will suffer no loss of pressure from condensation due to frigorific influences. In a recent article we pointed ont that the mare development of energy or performance of work occasioned a certain loss of heat; but for the present it will simplify matters if we neglect this loss altogether. Now the: whole amount of work done by the piston during one hour represents 14,400 lbs. raised to the height of 1,000 feet, the gross distance traversed by the piston in the stated time, or $14,400,000$ foot pounds. It will be understood that 1,000 cubic feet of stenm of an initial pressure of 100 lbs. per square inch, will be discharged from the oylinder into the vacuum, which may be supposed to exist in absolute perfection in the condepser. Perfectly dry and clean steam in all respects obeys the lawe which regulate the action of fixed gases. One of the most important of these laws is that originally disoovered by Mariotte, and whioh may be briefly stated in the following terms. The pressure of any quantity of gas varies in the inverse ratios of the spaces which it is made to occupy; that is to say, a cubic foot of dry steam having a pressure of 100 lbs. per inch, will, if suffered to expand to double its volume, have half the pressure. If then, instead of discharging the steam at 100 lbs. pressure, the moment the piston had made eacb stroke, into the condenser, we discharge it into a second cylinder, a further amount of work might be obtained from it. We may perhaps put this in a clearer light by supposing the case of a oy linder of an indefinite length. fitted with a piston one square foot in area. If, now, 1,000 cubic feet of ateam at 100 lbs . pressure are passed into this oylinder, tho piston will rise and develope $14,400,000$ foot pounds in its ascent. If the further influx of steam is stopped; we bhall then have 1,000 cubic feet of steam isolated with-
in the cylinder. If the load upon the piston be now reduced one-half, the piston will move through another 1,000 feet, and at the end of that time the pressure of the steam will have fallen to 50 libs. upon the square inch, and by continuously reducing the load the piston will continue to ascend until, we will say, the pressure is reduced to 1 lb . on the inch ; and we thus find that the whole distance traversed by the piston will be 100 times 1,000 feet, or 100,000 feet, and the work done during 99,000 feet is accomplished independently of all aid from the boiler, other than that originally furnished to ceuse the motion of the piston through the first 1,000 feet, and this constitutes the gain to be derived from expansion. The pressure upon the piston through any given portion of the expansion stroke, as we may term it, may be approximately estimated by taken the mean between the pressures at the beginning and the end of that section-the exact method of finding this average we shall find presently to be very simple. Thus during the second 1,000 feet the average pressure may be found by adding together the initial pressure 100 and the terminal pressure 50 , and dividing the result by 2, which gives 75 as a quotient, agd. 75 $\times 144$, area of piston in inches, and by 1,000 , length of stroke in foet, gives 10,800;000 foot pounds as the approzimate mechinical result obtained of this first measure of expansion. On the completion of the stroke so far, we find that 2,000 cubic feet of steam remain in the cylinder, having a pressure of 50 lbs ; and in order to reduee this ove-half again, or to $25 \mathrm{lbs} .$, it must be suffered onee more to double its volume. The work done in doing so will be found, as before, by multiplying the area of the piston in inches by the mean between the initial and terminal pressure, or say, 37.5 tenths pounds per inch, and the foot pounds of work done will therefere be once more $10 ; 800$;000, the piston in this instance moving through double the distsace under half the pressure. We find, then, that the amount of work done by expansion so far is equivalent to $21,600,000$ foot pounds, the piston moving through a distance of 3,000 feet, while the work done by the steam without expansion is but $14,400,000$ foot pounds, and even under these conditions we still have 4,000 cubic feet remaining in our suppository cylinder, with a pressure of 25 lbse. per square inch. Having thus brielly illastrated the principle of expansion, we may proceed to consider its practical application. Before doing so it is as well to give a very simple rule for estimating the average pressure within the eylinders of exgines worked expansively. Let 1 in all cases represent the full-pressure part of the stroke; add to this the Napierian or hyperbolic logarithm corresponding to the ratio of expansion as given in readily accessible tablies, and the result, multiplied by the pressure, and divided by the ratio of expansion, will give the mean pressure per square inch; this, multiplied by the area of the piston, and by the speed in feet per minute, and divided by 33,000 , will give the actual horse power, including all resistances. Thus the initial pressure on a piston being 80 lbs . per inch, and the steam rexpanded 5 times, to find the average pressure: the hyp. log. of 5 is 1.609 , and $1.609+1=2.609$, and $\frac{2.609 \times 80}{5}=41.74$ pounds.

The results to be obtained in practice from the expansive use of sterm are never: so great as those given above, the amount of the difference, or loss of effect, boing mainly determined by the ekill and care with which the principle is carried out. Were it possible to retain all the heat which the steam had at the commencement of its work; to the end, and that no such things as clearance spaces had existence, then would the useful effect obtained in practice exactly correspond with that deduced from mathematical invertigation. It. is obvious that physical conditions of perfection cannot be secured under any circumstances, and therefore it only remains to approximate to them as closely as possible. But after:all has been done which possibly cai be done, it will still be found that the gain to be derived from expansion, in practice, falls short of that promised by theory: In an article like the present, any very profound investigation of the subject would be out of place, and we must therefore rest contunt with pointing out the general tendency and bearing of the results obtained by those who have conducted their inquiries on a strictly philosophical basis.

Apart from every external frigorific influence, steam loses heat in two ways, namely, in the performance of work, and in the mere act of expanding; but the exact nature of the clanges which steam undergoes within a cylinder while expanding, and the causes which lead to these changes, are yet far from being quite: as accurately determined as might be desired: Even in the calculated results obtained by the most scientific men of the age, very startling discrepancies will be found to exist. The fact is, that we still stand on the confines of scientific truth, and that, until we can plunge fairly in, many things, doubtless simple enough, must remain to a great extent involved in mystery. Every question, however, connected with steam has been determined with sufficient accuracy to satisfy most practical purposes; and with this we have every reason to rest content for the present:

We have said that steam loses heat in the performance of work, simply because heat and work are interchangeable. The total quantity of hoat required to evaporate ove pound of water from and at a temperature of 212 deg. Fahr., represents 745,812 foot pounds; and conversely, for every 745,812 foot pounds of work done by the engine, one pound of steam must be condensed. With an increase of pressure the quantity of heat rendered latent by evaporation slightly diminishes, and consequently a slight gain is realised from this fact alune by the use of the higher pressures. But the operations of external and internal cooling influences are far more powerful in reducing the eff. ciency of steam than the mere performance of work. Steam in the act of expanding becomes condensed, or, in other words, a certain portion of the sensible heat necessary to maintain the steam in its initial approximate condition of a gas, is converted into latent heat, and as a result, a proportionate quantity of the steam is converted into vapour or mist, pervading the space within the cylinder. Thus steam, which, on entering the eylinder, and even at the moment the cut-off ralve closed, was dry and clear, becomes fully saturated by the act of expansion, provided the expansion is carried far
enongh, and that no external source of beat acts through the metal of the cylinder. The reason is, not that heat is necessarily lost, but that: a proportion of that which was known as heat to, the thermometer is converted into work, which the thermometer of course cannot recognise; and this work, it must be understood, is not expended in giving motion to the engine, but in separating the ultimate : atoms of the water of which the steam expanding is composed to a greater distance than they were before. This work is done on the steam itself, and is wholly distinct from the work also done in driving the piston against a given resistance. We may put this into more strictly scientific phraseolugy by saging that with decrease of density the latent beat of steam diminishes faster than the sensible increases, and therefore, when it is reduced by expansion from one density to another and lower, the latent heat, or work done internally on its molecules, increases, and to an extentannihilates an equivalent of sensible heat, and. the amount of this equivalent can in all cases be determined "by the consideration of the entire quantity of heat necessary to evaporate the given weight of water at the two pressures-initial and terminal.

As steam is employed in practice, however, we cannot neglect the influence which the temperature of the cylinder exerts on the changes in the condition of the steam. The cast iron absorbs beat when the steam first enters at its full temperature, and it subsequently restores this heat towards the end of the stroke when the pressure falls, and thus, to a certain extent, we may. regard every unjacketed cylinder as acting the part butt of a boiler and a condenser. Dry steam absorbs heat with extreme slowness-in this, as in other respects, obeying the law which obtain with the true gases. Prufessor I'yndal states, for example, that moist air absorbs heat with not less than 6,000 timen the power of perfectly dry air. On first entering the cylinder the steam, fresh from the boiler, comes in contact with the cool piston and cooler cylinder lid. A portion is at once condensed ; and we shall shuw presently that, strange as it may seem, the entire loss with the best engines must take place while the cut-off is open, and not subsequently to its closing, as commonly believed. The result of this primary condensation, is wo may term it, is that the steam is-unless previously super-heated -rendered damp, and it therefure imparts yet more of its heat to the metal with which it is in contact. As a consequence the cylinder lid and the piston are raised to the full temperature due to the pressure with the speed of lightning. This action is of course confined to one end of the cylinder. The other, from which the piston has just come, is in contact with moist steam or vapour from the condenser, at a temperature of little more than 100 dogrees, and as this absorbs heat, its pressure rises sufficiently to cause it to flow into the condenser. Moisture is deposited on the interior of the cylinder and re-evaporated, and thus heat is carried to-the condenser, not by radiation, as commonly stated, but by the direct convection of the most powerful cooling agent known-moist vapour. This vapour pervades the whole cylinder, and if time enough is allowed the surface of this last will be reduced to the temperature of the condebser. In practice, the piston cominences its
return immediately upon the completion of the forward stroke, and the vapour is thus swept into the condenser and the sides. of the cylinder are perfectly dried. Even with the highest attainable speed, however, the cooling action of the vapour is 80 energetic that a very considerable loss must take place; and the amount of this loss increases as the speed of the piston becomes less, and thus we find that short strokes and high velocities are important direct elements of economy.

As the steam follows up the piston, successive portions of the now cool cylinder are uncovered, and, so long as the sensible heat of. the steam is in excess of that of the metal, condensation and a deposit of moisture will take place. As the pressure falls, however, so does the temperature, and, once a certain point in the stroke is reached, condensation will cease. As the piston proceeds, and as the pressure and temperature of the steam continue to fall, the heat which the cylinder has received will be restored, and the deposited moisture will be re-evaporated. The cylinder then really becomes a boiler, and we find that, 80 far from an immediate loss ensuing on the frrst, condensation, this re-evaporation actually tends to keep up the pressure to the end of the stroke. If no condensation or re-evaporation took place the curve of the indicator diagram would be a nearly true byperivola, correspopding to the operation of Mariotte's law ; but it is a fact that actual diagrams show a considerable departure from this law apparently favourable, the terminal pressures being. higher than they eught to bo. : This gain is only apparent, however, and is due to the re-evaporation of the large quantity of water condensed at the commencement of the stroke, with a eorresponding loss. Apart from the infuence of external radintion, all the kass of useful effect is due tu the presence within the cylinder during the exhaust, of vapour of ouly the same temperature as the condenser.

From the foregoing it will be evident that al true waste of stenm must take place while the cylinder is in communication with the boiler. Proctical diagrams show that, so-far from any loss enauing upon expansion, the pressures are really greater than those given by theory. It is true that the indicator in all cases shows, when properly fitted, a slight increase on the true pressure, but the error is so slight that it may be wholly disregarded. With the Richard's indicator it becomes all but evanescent, It is evident, therefore, that waste is not to be sought for during the expansion portion of the stroke. It is also evident that during this period, the boiler being completely isolated from the cylinder, nothing going on within the one can at all effect the other. Fet wo know that the practical use of the engine proves that nearly three times as much fuel is used, even under the most perfect system, as that laid down by theory as necessary. In other words, three timos too much steam enters the cylinder. But the steam can only enter the cylinder during the full pressure portion of the stroke; and it follows that it is during this portion of the stroke all the drain on the boiler must take place. Now during this period but a small portion of the oglinder is uncovered; and we find, therefore, that the surplus sterm introduced is emploged in re-heating the oylinder lid cooled
down by radiation (external) and by convection to the condenser (internal) ; the piston cooled down by convection only; so much of the cylinder as is uncovered during this portion of the stroke; and re-evaporating all the water found between the cutoff valve and the piston. The water is evaporated during the first instant of admission, and doubtless is, in part at least, re-deposited again before the valve closes, through the agency of the chilled metal ; and the fact is that the cylinder contains on the steam side at the moment the cut-off valve closes nearly three times as much steam and water as the boiler should theoretically supply in the form of steam alone, and it is the partial reovaporation of this water which feebly compensates for a portion of the loss during the remainder of the stroke.

In the high pressure non-condensing engine the vapour present within the cylinder can never fall below 212 deg., and this fact will go far to account for the circumstance that the comparative advantage to be derived from the condenser falls short of that deduced from theoretical investigation. When steam is super-heated moderately we find that the cylinder is always maintained at too high a temperature to permit the deposition of moisture, and thus there is a direct and considerable gain over and above that derived from the increased efficiency of the boiler. We have not dwelt on the influence of external radiation or on that of the clearance spaces. It will easily be perceived, however, that clothing or jacketing a cylinder is comparatively useless while the ends or lids are left unprotected. Clearance operates most injuriously with the higher measures of expansion, and it should therefore be invariable reduced to the lowest pnssible limit compatible with safety. A cylinder 32 in . stroke and one square foot in area, expanding the steam eight times, should receive, apart from condensation, but 576 cubic inches of steam ; but we must add for 5 in . clearance space, one-eighth of this quantity, or 72 in .. and if we include the space between the cut-off valse and the cylinder, the whole amount will hardly fall short of one-fourth of the entire quantity supplied. The loss from this cause alone frequently amounts to as much as 20 per cent. of all the steam supylied from the boiler.-Mechanics' Magazine.

DEVELOPMENT OF COLONIAL RESOURCES.

Gawing Machinery,

Perhaps there are few countries in the world so well provided with timber suited to the purposes of man as New South Wales, and certainly nowhere until within a very recent period was so little effort made to turn natural capabilities to acconnt. Three or four years ago almost all the window sashes, doors, flooring, and other carpenters' and joiners ${ }^{\circ}$ work used in the colony were imported, as well as most of the ordinary articles of furniture and cabinet-maker's goods. Now, on the contrary, owing to colonial enterprise and ingenuity, almost every article of this kind is made in Sydney, and at a much lower price than it can be imported for. Two jears since the market was glutted with imported doors, Bashes and furniture, since then no articles of the former deseription and very few of the latter bave been introdueed; and
owing to the adaptation of machinery to cabinetmaking and carpeutry, there does not now exist the slightest chance of the revival of such an anomalous state of things, as a colony producing the finest timber in the world, importing inferior articles manufactured from inferior timber, from a country thousands of miles distant. It is all the more gratifying that this change has been brought about, not by absurd protective duties, not by excluding by legislative enactment the products of the industry and commerce of other countries, but by colonial energy and capital actiog in open competition with the world; and, for that very reason, certain to be more permanent in its effects and successful in its operations.

We think it due to those to whom the colony is mainly indebted for producing the beneficial change alluded to, that attention should be drawn to their efforts; and we feel sure that a notice of the machinery used, and a description of the process by which a \log of wood is changed into doors, bed-steads, or packing cases, will be read with interest.

There are are several establishments in Sydney for machine-bawing and the manufacture of woodwork, but by far the most extensive is that of Messrs. Moon \& Co., at the foot of Bathurst street, and to a description of this we shall at present confine ourselves. The premises occupied in the operat ons of this firm covers several acres of ground, and the number of persons in their employment is upwards of 150 . Their machinery is driven by three steam-engines, and all their engineering and machine making is done on the premises. Most of the machines used were not only made under the direction of Mr. Nicolle, their engineer, but several of the most important are of his own invention. To understand perfectly the operation of the various mechanical appliances, it will be necessary to watch the progress of a log of wood-say of cedar or pine, for nearly all the timber used is the produce of the country \rightarrow from the time it is drawn from the water at the foot of Liverpool street, until it is changed into chnirs, bed-steads, and tables, ready for the purchaser. The log of timber is drawn from the water up an inclined plane, and placed on the moveable frame of an engine, called a breaking-down machine. This is the invention of Mr. Nicolls, and is one of the most powerful sawing machines in the world. It is remarkable for the simplicity of its construction, and works very much on the principle of Nasmyth's steam hammer. The blade of the saw is a mere extension of the piston-rod, 80 that its action is perfectly direct. It is capable of sawing a log eight feet in diameter, with as much eare as a man would cut with a handsaw through a plank of an inch in thickness. After being broken down, as it is called, by this machine, the timber is sawn into thinner portions by other more complicated ones. For this parpose there are two perpendicular sawing machines, each eapable of carrying from eight to sizteen vertical saws, according to the required thickness of the planks. . The perfect truth and smootaness with which these machines turn out their work is admirable. We may remark that it is necessary that wood intended to be planed, grooved, tenoned and morticed by machinery, should be perfectly square and true, and
of a uniform thickness throughout. All these conditions, which could not be obtained by hand sawing, are incidental to machine work.

As soon as the log has been broken down, and cut into boards of the requisite thickness, it is, if wanted for immediate use, placed in the seasoning house. This is a steam-tight building, constructed of rivetted iron plates, in the same manner as the boiler of an engine. It is fitted with steam-pipes, and it is by the action of the steam that the wood is seasoned-a few hours being sufficient to produce the same effect by this process, as would require months in the ordinary way. When seasoned it is handed over to the department by which it is intended to be worked up.

There are separate buildings, each having the necessary staff of workmen, for the manufacture of each description of article. One set of men make nothing but bedsteads, another only chests of drawers, a third packing cases, a fourth doors, a fifth sashes, a. sixth doors, and so on. The wrood for each kind of article is sawn out by the machinery and atacked separately. It may give some idea of the amount of work produced in this establishment by this division of labor, when we state that a thousand bedsteads are undergoing the process of manufacture at once; that a single boy, with a morticing machine, is capable of morticing one hundred doors in a day; that, on an average, four hundred pairs of sashes are sent out, glazed, and ready for use every week; that the wood consumed annually in making soap, candle, wine and other cases, alone, amounts to four million feet, and that the value of this single article of production is over $£ 6,000$ annually.

The rapidity and ease with which the circular saws, working on rack benches, reduce heavy pieces of timber into boards is something startling. A log, say fifteen inches square, and fifty or sixty feet long, is reduced into strips as easily, and almost as rapidly as a lady could cut a shest of paper with a pair of scissors. These rack-benches are among the most expensive machines used. They were made on the premises, at a cost of about $£ 1,500$ each. The men attending them have little else to do than look on, and supply the machine with fresh timber as often as required.

Another ingenious tool, and one peculiar to this establishment-the invention of Mr. Nicolls, and made on the premises-is a machine for outting laths. It is capable of producing ten thousand laths per day, and is said to be superior to any thing of the kind ever before invented. To onumerate all the purposes to which steam machinery is here applied would be tedious. In addition to the large sawing machines there are others for planing, for cross-cut sawing, for grooving and tongueing, for mortioing, for cutting tonons, for moulding and for various other purposes.

The consumption of cedar amounts to 80,000 feet of cedar and 40,000 of pine weekly. No imported wood is used, unless, from some unusual circumstance, colonial cannot be procured-as the latter is deemed proferable on many accounts. The stock on hand usuilly amounts to about $2,000,000$ feet. The consumption in 1862 was upwards of $4,000,000$ feet, and is fast increasing. A considerable export trade is rapidly springing up to Victoria, Queensland and other places. The

Sydney made articles are fast driving the American out of the market to the other colonies, as they can be produced much cheaper than foreiga goods can be imported, and are very superior in finish and general quality.
It is somewhat surprising to know that notwithstanding the enormous quantity of goods manufactured, and with all the facilities at their command, Messrs. Moon \& Co. are unable to supply orders fast enough. The demand is always in advance of their powers of production, although new adaptations of machinery are constantly offering greater facilities for the supply of the goods which they manufacture.

We may mention, in order to show the facilities effected by machinery, that a boy can mortice 100 four-panel doors daily, at a cost for wages of 3 s .4 d . and that this work, if performed by hand-labor, would cost about £10. That is, perhaps, an extreme instance, but the difference in the oost of making mouldings, \&c., if not quite so great, is sufficiently remarkable. Most persons not acquainted with the facts ars under the impreseion when seeing packages of doors and sashes being taken into the interior from Sydney that they are imported American goods. This used to be the case, but it is not so at present. We are assured that very few sashes and doors have been imported during the past two years, and that they cannot now be introduced for less than about 50 per cont. over Sydney manufactarers' prices.'

筑gotogxaygy.

PHOTOSCULPTURE.

BY A. OLAUDET, F.R.S.
Read before the British Association for the Advancement of Science.
If in our time opinions are divided as to whether photography is finally to exercise a beneficial influence upon the fine arts, or the contrary, there is no question that its innumerable useful applioations are a boon to the community.

After having been habituated to photography, we can scarcely suppose it pussible to do without photography, as we might say of railways or of the electric telegraph.

Photography may have been the enemy of all that was inferior in the arts of painting and engraving, but is that to be regretted?

Instead of the dabblers in portraiture who were satisfying a morbid taste, we have a great army of photographers capable of representing the human form and features in the utmost perfection. Printing itself, that universal and powerful aid of civilization, was only established by superseding a class of artists who had, at least, the merit of spreading by their work knowledge and literature during many centuries. They indeed produced true vorks of art, which, though no longer repeated, are to be admired in the museums where they are preserved.

As to the art of painting, instead of being injured, it is served by photography, which enables artists to be more perfect in their design,
and to study the beauty of forms yielded by the photographic mirror.

Photography, in multiplying marvellous representations of the beauties of nature, tends to inculcate the taste for artistic productions. There will be fewer bad painters becuuse there will be less and lese demand for inferior paintings. Fine works only will be esteemed, and the taste for art will increase in proportion to the value of its productions.

Is it not the same in literature? Who can deny that the more refined and pure it is, the more it educates and disposes the mind to reject whatever has not the stamp of genius?

In an enlightened age inferior literature cannot exist. So the fine arts will be improved by photography. Notwithstanding the alarm of narrow minds incapable of appreciating progrese, the discoveries which are based upon science will ultimately produce good, and benefit society. To the painter, photegraphy affords the means of being absolutely correct in design. Reference to photographs in painting portraits, representing draperies, \&c., saves immense trouble, and obviates the necessity of long and repeated sittinge.

But how can it be said that photography prevents the artist from imparting to his work the impress of genius? Photography is for him only a useful auxiliary.

Nothing, however, can arrest the strides of photography; it extends every day its applications, and gradually invades every art.

Who would have expected that photography was to be the means of sculpture?

Yet, however extraordibary such a prognostication might appear, bowever difficult at first thought it may be to understand the possible connexion between flat representation of cbjects and their solid form, it has been proved that from flat photographs a bust, a statue, or other object of three dimensions can be made by a mechanical process without the necessity of the sculptor's copying the original, or even seeing it at all. Yet the result is a perfect fac-simile of the original! Moreover, the worls is executed in one-tenth of the time required for modelling by hand.
This beautiful application of photography is called Photosculpture, and is the invention of Mr. Willème, an eminent French sculptor.
Before explaining bow Mr. Willome was led to this discovery, let me remind you that photography itself was invented by painters of talent, by artists, who, while using the camera obscura for studying the subject of their intended pictures, were struck with the benuty of those natural representations. In contemplating them they naturally desired that the pictures could be permanently fixed. Oonsidering that these pictures were formed by the light reflected by the objects, they essayed to fix them by availing themselves of the known seientific fact that light had the property of blackening certain chemical compounds.

The flash of that iden was enough; their genius and perseverance solved the problem, and they created that art which they desired so muchPhotography !

A similar and no less instructives story may be told of photosculpture. Mr. Willeme wias in the habit, whenever he could procure photographs of
his sitters, of endeavouring to communicate to the model the correctness of those unerring types. But how was he to raise the outlines of flat pictures into a solid form?
Yet these single photographs, such as they were, would serve him to measure exactly profile outlines. He could indeed, by means of one of the points of a pantograph, follow the outline of the photograph. while with the other point directed on the model be ascertained and corrected any error which had been communicated to his work during the modelling. What he could do with one view, or one single photograph of the sitter, he might do also with several other views if he had them. This was sufficient to open the inquiry of an ingenious mind. He saw at once that if he had photographs of many other profiles of the sitter, taken at the same moment, by a number of cameras obscuras placed around, he might alternately and consecutively correct his model by comparing the profile outline of each photograph with the corresponding outline of the model. Such was the origin of a marvellous and splendid discovery. But it soon naturally occurred to him that instead of correcting his model when nearly completed, he had better work at once with the pantograph upon the rough block of clay, and cut it out gradually all round in following one after the other the outline of each of the photographs.
Now supposing that he had 24 photographs, representing the sitter in as many points of view (all taken at once), he had but to turn the block of clay, after every operation, $\frac{1}{2}$ th of the base upon which it is fixed, and to cat out the next profile, until the block had completed its entire revolution, and then the clay was transformed into a perfect solid figure of the 24 photographs the statue or bust was made!

When this is once explained, every one must be struck with admiration at the excellence of the process. It is so sure and so simple, that we are surprised it had not been thought of before. But so it is with the most valuable inventions. They wait until some genius grasps the idea, and conceives how to make them practical.

It will, perhaps, be argued as. a defect of photosculpture, that, being the result of a mechanical process, it leaves no opportunity for the display of artistic taste or feeling, and that its produotions must therefore be only vulgar and matter of fact. This would be a mistake; because the sculptor, who has to direct the last aperation, will exercise his skill in communicating to the model all the refinement with which, as a sculptor merely, he could have ondowed it. For supposing the photographs to have been deficient in attitude or expression, in giving the last touches to the model, the sculptor can correct those imperfections. The pantograph of photosculpture will oommunicate to the elay the true character and the propurtions of the object, with all the correctness of the photographs; it will produce a perfect likeness, and it will be necessary to give to this first draught the softness and finish of a work of art. These of course cannot be imparted except by the skilful band and the intellectual feeling of a true artist. In short, as the model must be touched by a sculptor, it is clear that the sculptor so engaged shonld be such as will not spoil the work of the unerring
machine, but, on the contrary, improve it in many particnlars, and even add to it the sentiment of art. Therefore the process of photosculpture is to put into the hands of a skilful sculptor a model perfect in its proportions, correct in design, full of character, including draperies of the most elegant outlines, such as only are represented by photograplis; and this model, so prepared for him, would have required a tedious labour with the disadrattage of much uncertainty.

As photography has been the means of improving the art of painting, so photosculpture is destined to improve sculpture, and to spread in all classes the taste for this noblest branch of the fine arts. It may be said that sculpture is understood only by a very limited number of educated minds. It is seen only in palaces, in the publio galleries, and in the mansions of the rich. Good sculpture is very expensive, and for this reason it is not customary for the middle classes to employ sculptors to execute busts or statuettes of relatives or friends. Besides the question of price, there are very few artists capable of producing such a work as shall be an inducement to the possession of this kind of similitude. Photosculpture, therefore, epens a new era by the advantages of its procedure. The work is done with greater accuracy, in a very short time, and consequently at a moderate price. The original has only to sit once for the photograph, and then in a few days, without further trouble, or the necessity of appearing repeatedly before the sculptor, a bust or statuette is produced. Such facilities cannot fail to make the demand very general, and this must cause the employment of a great number of artists. The "ateliers" of photosculpture are indeed to be the best school of scilpture, from which will-issue a succession of skilful artists, who, having practised the mechanical process, will be able, when photographers cannot be obtained, to model by hand. Therefore the art of sculpture must in every way benefit from the practice of photosculpture, which, undoubtedly, we shall see hovoured in the dwellings of thousands, not only ne regards portraiture in general, but also as to the resemblances of those who by their genius and virtues have deserved our admiration and esteem.

Again, photosculpture will be the easy and inezpensive means of reproducing in various sizes, and with unerring faithfulness, the beautiful remains of antique sculpture, whether statues, vases, or other objects which can only be seen in museums and galleries, and thus the public can pnssess, at a small cost, copies or rather facsimiles of the great creations of past ages. The only copies exieting of those works cannot often be repeated, for they must be made at some risk of injuring the original, the only process hitherto known. being that of taken casts; hence they are expensive and rare. To obtain a certain number of photograpbs of these precious relics is all that will be needed for their re-production by the photosculpture process.

Photography has already been the means of confing the paintings of celebrated masters existing in public and private galleries. By these photographs every one is enabled to possess copies of the noblest works in the art of printing. These copies contain composition, design, and everything
capable of conveying the feeling of the artist; but they are deficient in one essential-colour!

It is otherwise as regards the representation of statuary, which. leaves to the mind to imagine colour. Photosculpture has then the advantage of reproducing works in sculpture without depriving us of any of the attributes which have made them famous.

Photosculpture will further be applied to the representations of animals, showing them in true and natural attitudes; by this means faithful models will be introdaced in the manufacture of porcelain, clocks, furniture, and much that contributes to the embellishment of our dwellings.
In a word, photosculpture is calculated to spread the taste for the beautiful in form ; it opens a new era, which will be remarkable in the history of the fine arts.
I have thought that I could not give to the meeting a better illustration of the process of photosculpture than by executing the bust of our illustrious president, Sir Charles Liyell. I invited Sir Charles for this purpose, and he was kind enough to sit for his photographs on the 16th August.
The machine has done the work, the sculptor has given the finishing-touch to the model, and here is the bust completed, Sir Charles not having seen it before I brought it to the meeting!

Iu so short a time I have also been able to obtain of the same bust a model in bronze, and I leave to the meeting to form some opinion of photosculpture by this and other examples now near me.

At the conolusion of the lecture; Mr. Claudet illustrated, by means of a model, the mode of working in photosculpture, and also exhibited a number of buste and statuettes produced by the process, which were examined with much intereit.

PIIOTOGRAPHY.

tII WOTHLY IMPROVEMENTS.

From the Reader we learn that "A new discovery is roported to have been made by IIerr Wothly, a German photographer, by means of which it is asserted that photographic impressions, hitherto more or less subject to change and decay, will berendered permanentand imperishable. The process by which this improvement upon the present method of preparing photographic paper is said to be secured, consists in the substitution of a double salt of uranium for nitrate of silver, and of collodion for albumen, which have hitherto been used in the preparation of photographic paper. The ordingry method of preparing sensitive paper is to size it with albumen, the surface of which is then submitted to the silver preparation, which is sensitive to light and fitted to retain the printed image. But this process has been long folt to be defective; the impressions obtained under these conditions is not only less perfect than the reversed image upon the glass, known as the "negative"" from which it is printed, but the production of any number of impressions of unvarying excellence is well-nigh impossible. We know also that all these impressions are liable to change, and in many cases to dieappear. There can be little doubt that the film of collodion-which, under Wothly's pro-
cess, is rendered sensitive, not by nitrate of silver, but by being combined with the salt of uranium would yield a far better surface to the action of the light; and the impressions fixed upon it would be free from all those blots and inequalities which mark more or less all photographic impressions hitherto produced. This alone is a great gain. The other advantages claimed by the inventor-of absolute permanence and simple and easy manipu-lation-are not so clearly established; but there seems great reason to think that an important step in advance has been made. Time alone can be accepted as the true test of all claims for permanence ; but the impressions obtained by the new process are said to bave been exposed to the action of sun and rain for weeks together without betraying any sign of change."

At a recent meeting of the London Photographic Society, a letter was read from Mr. Tunny, the well-known photographer of Edinburgh. He says: "I have been all out of breath, so to speak, in anxiously waiting the disclosure of the 'Wotblytype,' but I suppose we are destined to remain somewhat longer in suspense. In the meantime I have not been idle; I have been endeavouring, if possible, to ascertain what can be made of uranium, as that is the hinted-at salt, in combination with other metallic compounds. I have, in the first place, got very vigorous prints by the nitrate of uranium and chloride of gold-also good results with the uranium and silver; perhaps as good as any-have been the result of the ammonia phosphate of silver; all these, and many others that will suggest themselves, give very vigorous prints, simply combined with collodion; but there is the drawback of want of sensitiveness, taking nearly double the ordinary time to print; however the weather has been very bad for conducting my experiments.
"I cannot, as jet, give the definite formulæ for the above, as I have used then in every conceivable proportion; but if any of your readers will take, firstly, half an ounce of spirit of wine, add nitrate of uranium (as much as it will dissolve by long and continual shaking) now add half an ounce of ether, three grains chloride of gold, and six grains of gun-cotton, they will bave a collodion that will print by its being simply poured over a sheet of paper laid upon a piece of glass. The prints are fixed by being placed for a few minutes in a bath of water slightly acidulated with nitric or oxalic acid.
"Seoondly: The phosphate of silver being dis. solved with the smallest quantity of ammonia, just sufficient being added to redissolve it, added to ordinary plain collodion, in the proportion of six grains to the ounce, makes a very sensitive printing collodion.
"Thirdly: Nitrate of silver three grains, disaolved in a drop or two of distilled water, added to the first or uraniumized collodion, without the gold, also makes a good printing collodion:

The Scientific American says:-"Until the patent is granted here all our photographers are at liberty to make use of the process, and for their convenience we subjoin the following directions, extracted from the British specification:
To one pound of plain collodion add from $1 \frac{1}{2}$ to 3 ounces of nitrate of uranium and from 20 to 60 grains of nitrate of silver.

The paper is prepared for printing by simply. pouring the above sensitized collodion upon its surface, and hanging thes sheets to dry in the dark.

The printing is accomplished by exposing the paper to light under the negative in the usual manner, and for about the usual time required for silvered paper ; print until the desired depth is reached. It is not necessary, as in the ordinary process, to print the positive to a greater intensity of color than the fixed picture is intended to have.

After printing immerse the piciure in a bath of acetic acid for about ten minutes, or until that portion of the salts not acted upon by the light has been dissolved. The picture is now fixed and finished by thorough washing or rubbing with a sponge or brush, or by rinsing in pure water; then dry. Clanges in the tone of the picture to suit the taste may be made before drying, by uising a bath of chloride of gold, or of hyposulphite of soda.

Such, in brief. is the new Wothlytype process. We have given it a few trials, with the most gratifying success. We presume that it will ere long be recognized among photographers as an established and excellent method of printing. It is not claimed that it surpasses the silver printing, but the superior convenience of the Wothlytype process will be a very strong reason for its employment, if the pietures it produces prove equal, or nearly equal, in durability or other qualities, to those resulting from the old method of printing.
The uranium sensitized paper, it is stated, can be preserved for an indefinite time in properly-prepared receptacles, from which light is excluded. This is another important advantage, as the common silvered paper loses its value soon after preparatiod.

The uranium prints, made as above described, have a smooth and glossy appearance. When an unglazed surface is desired the sensitive salts are dissolved in alcohol and. water, adding some saccharine substance. The paper is then coated with the mixture

The best results of the Wothlytype process ensue when a well-sized, fine and very hard-rolled paper is employed. It is recommended to coat the surface of the paper with a sizing of starch, arrowroot or gum tragacanth."

PHOTOGRAPHIC SOCIETY OF SCOTLAND.

Now niothod of Photographic Printing.

Mr. Thomas Fox, of Alloa, read the following communication:-
"I beg to submit to your notice a process of printing without nitrate of silver; it is very simple, very rapid, and the ingredients required are of the cheapest, and at the same time it produces pictures very distinct, the shades of an intense black, equal if not darker than any known process, and which will not fade from ordinary exposire, from the known chemioal combination of the materials used. It is the exact counterpart from printing with nitrate of silver, and whitens the paper where exposed to light, the shaded parts becoming black, and yielding very fine and soft gradations of tone when treated with the following simple prcsess.

The process consists of bringing the bichromate of potass in direct contact with logrood; and the plan I adopt is to sensitize the paper with a solution of the bichromate of potase and sulphate of copper, mixed in the proportions of one part of the former to two of the latter, and to either float or steep the paper for a few minutes, then dry it by the fire in the dark (this paper will retain its sensitiveness for some days, if carefully preserved from light); you then place your copy to the sensitive side, if a glass transparency, with the printed side down, and with a paper prist, either with the printed side down or the plain. With the printed side down you get a reversed picture, but which suits admirably for transferring. The time of exposure is much the same as in printing with nitrate of silver: in sunshine from one to three minutes is amply sufficient from glass, and for a paper print or piece of printing it will be rather longer, according to the thickness of the paper; , the thinner it is the better. Of course; in dull weather it is proportionably longer; at the same time I would say, paper thus prepared is much more sensitive than the silvered, and will print considerably quicker.

I have then a strong decoction of logwood ready, and filter such a quantity as will fluat the print; I add a little hot water to hasten the development, float the sensitized picture from half a minute to π minute, print-side down, and then, holding it by one corner, gradually raise it from the logwood; a perfectly delineated copy is the result. I then dip it in hot water, which carries off the superflaous logwond that may be hanging to the paper, then dip it in hot or cold water, and varnish. This gives a very distinct picture, with the shades of a deep black, and the lights of a rather greyish-yollow tint. In order to obtain a white ground, I use a weak solution of alum, put in hot water.
The same logrood will do a great number of prints. The sensitizing solution retains its power until dried up. There is no danger of baths going wrong, as in the silver baths; and the tedious precess of toning, \&c., is avoided, not to speak of the great uncertainty and variations in these processes; and it will do all that the carbon process professes to do in transferring, \&c. The whole process may be done in a few minutes; the paper being sensitized and dried by the fire at once, may be immediately exposed, developed, and varnished.

For transferring the unvarnished print, I simply pass it under a roller-press, which gives a beautiful impression on albuminized paper, leaving the ground pure white; it also transfers to cotton, linen, glass, stone, wood, and any other material.
I may mention that by varying the strength of the sensitive soltion, and the intensity of the logwood, many different shades of colour may be obtained, as you can get blue and purple, aud deep black to the lightest shade of black. I see no reason why this process may not alyo be used in the camera, with an albumen or other transparent medium, using logwood as a developer."

Physiological Eftectg of Cyanide of Potaggiunc.

M. August Busch, writing in the Photographic Nevos, describes the action of cyanide of putassium upon the syetem as follows:-

If cyanic acid be inhaled pure, unmized with air, instantaneous death is the consequence.

In the chemical laboratories where prussic acid is manufactured, the assistant who conducts the process must take the greatest care in breathing; if he inhale a little too much of the escaping gas, he feels his eyesight suddenly leave him, and he is in complete darkness; then he has to retreat quickly, or he will fall on the floor.
Electroplaters and gilders, who have to work constantly over strong solutions of cyanide of potassium, feel, after a time, if their working room be not well ventilated, many very bad effects from the poisonous exbalation. Listlessness, weariness in the limbs, dimness of sight, deafness, and loss of memory are some of the effects produced; painful, obstivate ulcers breat out on different parts of the body, especially on the hands, when these have been immersed in the fluid.
Strong oyanide of potassium, when applied to an open blood-vessel, is deadly: applied to a broken skin, it produces great pain, and generally a bad ulcer ; and if applied to a whole strin for any length of time, it must have the same consequences, especially if that skin be already decomposed by nitrate of silver; for it must be remembered that the elements of cyanide of potassium are so ready to part with each other, that not only the cyanic nets as if it were free, but the potash acts like free caustic potash, viz., dissolves skin, fat, \&c., and leaves the deadly poison at liberty to act upon the blood-vessels underneath.

It is, therefore, proper to advise photographers again and again-

1st. To seep their sulphuric, nitric, and muriatio acid bottles far enough from the cyanide of potassium.
2nd. To have their dark rooms always ventilated asaperfectly as possible.
3 rd. To rather show the stains of honest work, than allow themselves to be rendered unfit for work by employing so dangerous a detergent; but if they will apply cyanide to clean their bands, never do so where the skin is broken, nor, if the skin is whole, to continue the operation long, and always to ricse well with water afterwards.

The fact that most of the commercial oyanide is largely adulterated with carbonate of potash does not lessen at all the danger of employing the article; it merely compels. the photographer to buy three pounds of cynnide of potassium to do the same amount of work for him that one pound ought to do."

Loa?s Cleanlug Solution.

The photographic fraternity is under great obligations to Mr. Carey Lea, of Philadelphia, for the knowledge of the following glass-cleaning prepara-tion:- Water, 1 pint ; sulphuric acid, $\frac{1}{3}$ ounce bichromate pitash, $\frac{z}{2}$ ounce. The glass plates, varnished or utherwise, are left, eay 10 to 12 hours, or as much longer as desired, in this solution, and then rinsed in clean water, and wiped or rubbed dry with aoft white paper. We have used the solution in our laborutory long enough to be satisfied of its superior excellence for the purpose specified. It quickly removes silver stains from the skin without any of the attendant dangers of the oyanide of potassium. We think that photographers who once give Mr. Lea's preparation a trial will be glad to disoardiall others.

能uacticul gitunuxumbay

Table of the Weight of Substances of Construction, showing the weight of a cubic inch, and a cubic foot, in ounces and pounds avoirdupois; and also the number of cubic inches in one pound, of the substances most used in construction.

NAMES OP BODIES.	Weight of a cubic foot in lbs.	Weight of a cubic inch in oz.	Number of cubic inches in a pound.
Copper, cast	549.25	5086	$3 \cdot 146$
Copper, sheet	$557 \cdot 18$	5.159	3.103
Brass, cast	524.75	4.852	$3 \cdot 293$
Iron, cast	$445 \cdot 43$	$4 \cdot 203$	3-802
Iron, bar	47693	4410	$3 \cdot 623$
Lead	709.00	$6 \cdot 466$	$2 \cdot 437$
Steel, soft	489:56	4.527	$3 \cdot 530$
Steel, hard	488.50	4.517	$3 \cdot 587$
Zinc, cast..	$449 \cdot 37$	$4 \cdot 156$	3.845
Tin, cast	455.75	$4 \cdot 215$	$3 \cdot 790$
Bismuth	619.50	5:710	2.789
Gun-metal	54900	50075	$8 \cdot 147$
Sand.	95.00	. 8787	$18 \cdot 190$
Coal	78.12	. 7225	$22 \cdot 120$
Brick .	12500	1.166	18824
Stone, paving	151.00	1.396	11.443
Slate......	167.00	1.644	10.347
Marble..	171.37	1.585	10.083
White Lead	19760	1.826	8.750
Glass .	180.00	1.664	9600
Tallow	59.06	:5462	29.258
Cork	1500	. 138	$115 \cdot 200$
Larcl	34.00	. 315	50.823
Elm ...	34.75	. 321	49.726
Pine, pitch	41.25	. 382	41.890
Beech	43.50	. 403	$39 \cdot 724$
Teak..	46.56	. 431	37-113
Ash	47.50	. 440	$36 \cdot 370$
Mahogany	53.25	. 493	32449
Oak	$60 \cdot 61$.	. 561	28.505
Oil of Turpentine ...	$54 \cdot 37$. 503	31.771
Olive Oil	$57 \cdot 18$. 529	$30 \cdot 220$
Linseed	58.25	. 539	$29 \cdot 655$
Spirits, proof	57.93	. 536	29.288
Water, distilled	60.50	. 678	27.618
" sea	64.25	. 594	26.894
Tar	63.43	. 587	$27 \cdot 242$
Vinegar	$64 \cdot 12$. 693	26.949
Mercury	848.00	7.851	2.037

A correspondent of the Americañ Artisan says: I am indebted to you for your favor; and I now send you a practical recipe for the cleaning of oil-stones and hones, which may be worth publishing in the American Artisan for the benefit of those who use edge-tools. Take potash, or pearlash, or. saleratus, or borax or any alkali; and put from half an ounce to one onnce in a half-pint bottle, fill with soft water, corls and keep it for use. When wanted, pour as much upon the stone as will spread over the same, and let it stand until the oil is "cut," then wash it off. . Try it ; you will be able to hone as good as when the stone was new. I have found all oil-stones to become fouled and little or no "grit" after using a while; though the best of oil is used. I think the steel which is cut off by use gives the oil a drying property, hence the
store is fouled, and takes twice the time to set an edge that it would to clean off and renew as the stone becomes dry. Water will not unite with grease, but it often happens that water-stones become fouled with oil from the using. The alkali unites with oil, a soap is the result, and this can only be washed off with clean soft water, and then fresh oil or water can be put on, as the case may require.
EHlasticity of Bodies.
Modulns of clasticity.

All known solid bodies are imperfectly elasticthat is, in all, the force of restitution is less than the force of compression; but we have none without some force of restitution, or which are perfectly non-elastic.

The above table of moduli, and the rules for bodies of different hardresses, are the results of experiments of Mr. Eaton Hodgkinsor.

Articles of Silk.

Silk articles should not be kept folded in white paper, as the chloride of lime used in bleaching the paper will impair the color of the silk.

Veloctty of Mechanism.

A. 60 -inch fan running 4,000 revolutions an minute, has a velocity at the periphery of 1,100 feet per second. This is just about the average velocity of cannon bulls.

Statistical enformation.

BRITISH NORTH AMERICAN PROVINCES.

The Financial Position.

Mr. Galt's speech at Sherbrooke has been published in pamphlet form. Appended to it we find the following interesting statements:-

The Financial Position of the Provinces-1868.

	Debt.	fincomo.	Outlay.
Nova Scotia......	\$4,858,547	\$1,185,629	\$1,072,274
New Brunswick	6,702,991	899,991	884,618
Newfoundland $\}$	946,000	480,000	479,420
P. E. Island......	240,672	197,384	171,718
M. Provinces ...	11.748.211	2,763,004	2.608,025
Canada............	67,263;944	9,760,816	10,742,807
Totals	79,012,205	12,523,320	13,350.832

Increased Revenues in 1864.			
Canada, without the produce of the new taxes......... \$1,500,000			
New Brunsw Nova Scotia.			100,000
			100,000
			,00
Deficit of 1863 88827,512			
$\$ 1,700,000$ Total revenacs of ail the colonies, 1861 ... $14,223,220$			
Estimated surplus \$882,488			
The Position of the Confederation, estimated on the basis of 1864.			
	Revenue now prodncod for Government.	Jocal Revenve which would geineral chest	Subsidy to be patd to each province.
Canada New Branswict P. E. Island ... Newfoundland.	\$11,250,000	\$1,297,043	\$2,006,121
	1,800,000	107,000	264,000
	1,000,000	89,000	264.000
	200,000	32,000	153,728
	480,000	5,00	367,000
	\$13,2:0,000	\$1,580,043	\$3,056,849

Difference available for the purposes of the
general governiment $\$ 9,548,108$

	Expenditure.	Local Ontlay.
Canada	\$9,800,000	\$2,260,149
Nova Scotia	1,222,355	667,000
New Brunswick	834,518	424,047
Prince Edmard Isinad...	171,718	124,016
Newfoundland	479,000	479,000
	12,507,691	\$3,954,212

Difference payable by the geueral govern-
ment $. .58 .553,379 ~$
Surplus at the disposal of the Government, $\$ 1,089,729$.
Average of the Present Tariffs.

Future Position of the Provinces.

	Local Revenues.	Estimeted Oatlay for 1864, under present Government.	Estimated Local Ouilay under the Union.
Nova Scotia	\$107,000	\$667,000	\$371,000
New Brunswick.	89,000	404,047	353,000
P. E. Island......	32,000	171,718	- 124,015
Newfoundiand ...	5,000	479,000	250,000
Canada	18233,000	$\left\{\right.$	\$1,198,015
	\$1,530,043	\$3,981,914	

[^2]The Auditor's Statement of the Liabilities of Canada.
Debenture debt, direct and indirect... $\$ 65,238,64921$
Miscellaneous liabilities
64,426. 14
Common School Fund 1,181,958 . 85
Indian Fuad 1,577,802 46
Banking Accounts 3,396,962 81
Seignorial Tenure:
Capital to Seigniors, $\$ 2,890,71109$
Chargeable on Municipulities':Fund, 196,719 66
On acct. of Jesuits' Estates...............
Indemnity to the
Townships
140,271 87
891,500 00
4,118,202 62
$\$ 75,578,02209$
Less—Sinking funds... \$4.883,177 11
Cash and Book ace'ts. 2,248;891 87
7,132,068 98
\$68,445,953 11
From which, for reasons given in his
speech, Mr. Galt deducted the
Common School Fund
1,181,958 85
Leaving as net liabilities.......... $\$ 67,263,99427$
Imports, Exports, and Tonnage of the Provinces.

	lmports.	Exports.	Sea-going tonnage, inward and outward.
Canada.	\$ $45,964,000$	*41,841,000	2,133,000
Nova Scotia .	10,210,391	8,420,668	1,481,953
New Brunswick	7,764,824	8,964,784	1,386,980
P. E. Islund.....	1,428.028	1,627,540	No returns
Newfoundluad..	5,242,720	6,002,212	" ،
	$\$ 70,600,963$ $66,846,604$	\$66,846,604 Lake T'ge	$\begin{aligned} & 4,952,034 \\ & 6,907,000 \end{aligned}$
Total trade......	\$137,447,567	Total tons	11,859,984

EDUCATION IN UPPER CANADA.
(From the Chicf Superintendent's Annual Report for 1883.) COMMON sCHOOLS.
Number of Sohool Sections........................ 4;278

Schools open				4,138
*	" fre	ee by act	ion of ratepayers	3,228
"	School E	Houses		4,173
*	Pupils a	ttendiog		360,808
"	Children	not-atte	ciding any Sobool	44,975
" T	Teackers, m	tes 8,69	4, females 1, 410^{*}	4,504
verage	salnry paid	male T	enchers in cities.	\$.558
*	*	"	$4{ }^{4}$ towns.,	470
*	* ،	${ }^{6}$	counties..	261
*	" "	femile	" citico..	225
${ }^{6}$	* 6	4	«. towns.,	227
6	" ${ }^{6}$	${ }^{6}$	* counties.,	1.72

Receipts from Legislative grant:i: 166,928
": : Municipal assessments.: 919,525
" Rrite bills in Sch. not free 72,680
"c : Clergy Reserve:fund,isc. 100.467
" Balance of 1862........... 167,285
1,432,885

* Eplacopaliang, 747 ; Roman Catholics, 504; Prosbyterians, 1,316; Methodiats, 1,313; other denominations, and not reported, 624.

Exp. for Salaries of Teachers..... $\$ 987,055$	
	and Libraries 20,775
*	School houses and sites. 106,637
${ }^{6}$	Rents and repairs. 84,864
c	School books, stationery and fuel \qquad 104,618
Balances	nnexpended 178,438

Number of Schools established... 120

* Pupils attending...................... 15,859

Appropriated from Legislative grant... $\$ 8,178$
Provided from local sources25,629
$\$ 33,807$
GRAMMAR SCHOOLS.
Number of Schools............. 95
" Pupils................................... 5,352

Receipts from Leg. grant and fund... $\$ 44,724$
" Municipal grants.............. 15,636
". Fees of pupils 20,462

* Balances, \&o................... 8,786
$\$ 89,608$
NORMAL SCEOOL.
Students admitted to be trained as Common School Teachers.

291
Had previously been Teachers.. 147
Admitted from commencement, in 1847.......... 3,981
Had previously been Teachers 2,086
colleges.
Colleges reported in Upper Canada 16
Students attending 1,820
Income from Legislative aid......... $\$ 150,000$
4 "Fees 44,000
$\$ 194,000$
ACADEMIES AND PRIVATE SCHOOLS
Number reported.................... 840
© of Teachers., Bi.............. 497^{6}

* of Pupils..................................... 6, 653

Total Educational institutions in U. Canada.. 4,588
"t Pupils.......... 875,838
" Expenditure for their support......... $\$ 1,621,805$

Congumption of Water.

A man is generally supposed to require about half a gallon of water per day for drinking, cooking, \&c., and about four gallons more for waehing, bathing, and other purposes; a family of five heade will require about nine gallons per day. In Paris the consumption of this liquid is officially atated to be

53 gallons for every man per diem.

| $21 \frac{3}{2}$ | " | " | horse |
| :--- | :--- | :--- | :--- | :--- |
| $14 \frac{1}{2}$ | $"$ | " | two-wheeled carriage per diem. |
| $21 \frac{1}{2}$ | $"$ | " | four |
| 12 | $"$ | " | square yard of garden |

The following is the consumption, in gallons, of water, per day and individuals, in the chief towns of Europe and America:

Rome, 248 ; New York, 125 ; Marseilles, $103 \frac{1}{2}$; Besancon, 54 ; Dijon, 44 ; Bordeaux, 371 ${ }^{2}$; Hamburg, 28; Genoa, 261 ; Madrid, 26 ; Glasgow, 25 ; London, 241 ; Gette, 23 ; Lyons, 19 ; Manchester, 181 ; Brussels, $17 \frac{1}{2}$; Monaco; 17 ; Toulouse, $16 \frac{1}{2}$; Geneva, 16t; Narbonne, 16; Philadelphia, 15 $\frac{1}{2}$; Paris, 15 ; Grenoble, $14 \frac{1}{2}$; Montpelier, 13 ; Nantes, 13 ; Voiron, 12 ; Clermont, 12; Edinburgh, 11 ; Havre, 10; Angouleme, 9; Liverpool, 6; Metz, $5 \frac{1}{2}$; St. Etienne, $5 \frac{1}{2}$; Altona, $5 \frac{1}{2}$; Constantinople, 4 $\frac{1}{2}$; Rio de Janeiro, 2.

This statement only comprises the quantities of water supplied by aqueducts; those-yielded by wells and othor means are not easy to ascertain.

思iztellanemus.

CHEMISTRY.

BY CAMPBELL MORFIT, M.D., F.C.S.,
Late Professor of Analytical and Applied Chemistry in the University of Maryland.
In all the advances of either Civilisation or the Arts, ind whether pertaicing to those which minister to the wants, the industry, or to the protection of man, Chemistry has been a prevailing good, and has left marks of its usefulness. It is, indeed, the Alma Nater of the sciences; a great store-house filled with knowledge suited to the wants of all; its boundaries being co-extensive with Nature itself.
Chemistry is the only true socialist; for while it furnishes benefits to every community; it is upon fixed rules which.neither policy, persuasion, nor legislation can change. She is immutable in her ways: acting as naturally as astronomy, with nicer precision than mathematics, greater certainty than human jurisprudence, and more industry than art or handicraft, for her sperations never cease. It acts; too, with as much béneficence to mankind as all the theories of faith; because in her work she manifests, by unvarying attributes, and by her fruitfuiness of universal blessinge, the unmistakeable existence of a Great First Causea Providence.

Chemistry, in its theoretical signification, is that science which teaches us the internal properties of bodies and the mutual netion of their elements. Its grand practical division is into-1. Inorganic or mineral chemistry ; 2. The chemistry of organised bodies, which we so term because, though now dead, they have had their origin in a vital principle; and 3. Organic chemistry, comprehending those substances which have a present vital existedce.
Analyticial chemistry devises methods for detecting the various elements of a compound, and estimating their proportions. : Synthefic chemistry eaubles us to form homogeneous compounds of dis-
similar substances, and is used to verify the results of analysis. Arraying or docimacy is the dry method of analysis.
Practical or applied chemistry comprises the application of chemical principles to the a.ts ; for example; to the making and fixing of colours for paints and dyes; to the processes of tanniog, distilling, and brewing; to the manufacture of glass, porcelain, and artificial stones; and to domestic and culinary purposes. It is more clegantly termed tecbnological chemistry, and to this branch belongs also metallurgy, or the art of separating metals from their ores.

Pharmacentical chemistry relates to the preparation of remedies employed in medicine.

Medical chemistry is allied to physiology, and treats of the application of chemical principles in the theory and practice of medicine.

Toxicological chemistry refers to poisons, their special action upon the system, and the neeans of detecting them.

The subdivisions of the science are still increasing, and the varied uses to which it is now applied are so great, that even subordinate bravches are growing or taking place out of those that had previously existed.

It was said of Mercury, in the days of mythology, that he plundered Neptune of his trident, Venus of her girdle, Mars of his sword, Vulcan of his implements, and Jupiter of his sceptre. This is but an allegory referring to Chemistry, of which Mercury was the patron, and through the means of which he collected so much knowledge from unseen as well as visible sources; and now, Justice, acting upon ber principle of retribution as to matters of this world, makes him return, with interest, to us, the prizes pillaged from the elemente and the gods.

No one can tell to what extent the investigations in Chemistry may go ; no one can define its limit. It enabled Daguerre to seize the fleeting shadows of the air and fix them immutable upon metal; and hereafter its discoveries may tranefix the very sounds of human voices, and hold them quivering in the hand as echoes to the wind. Even thought itself may be reached, and the very breath that gives it silent aspiration be made to stand out upon tablets like recorded words of atterance.
It is a searching agent, which exposes the errors of those who blander in the studies of Nature-a confirmer of truths-a spirit that dives into the deep bosom of the earth and reveals her riches, that soars into the high region of the heavens and brings away its lightning-that, like light, penetrates everywhere, and, like light, clears away all obscurities.

It is true that Sir Francis Bacon was the first to teach us how to follow the genius of Nature through her many mansions. He began at the beginning in this particular; and yet wonderful as was his learning then, and as it still is, he had only reached the threshold of the great temple of science which succeeding generations have only partly built op. It is still an unfinished : edifice; not because it is labouring under the ban of a sopernatnral power, but because it is a structure to be made of mind, not matter-whose materials are to be drawn from the profoundest intellects, the tests of whose strength must be submitted to
ages upon ages-whose increasing lights are beacons to guide its builders, and whose completion will be perfection.

How to Act when the Clothes take Fire.

Three persons out of four would rush right upto the burning individual, and begin to paw with their hands without any definite ain. It is uselese to tell the vietim to do this or that, or call for water. In fact, it is generally best to say not a word, but seize a blanket from a bed, or a cloak, or any woollen fabric-if none is at hand, take any woollen material-hold the corbers as far apart as you can, stretch them out higher than your head, and, running boldly to the person, make a motion of clasping in the arms, most about the shoulders. This instantly smothere the fire and saves the face, The next instant throw the unfortunate person on the floor. This is an additional safety to the face and breath, and any remnant of flame can be put out more leisurely. The next instant, immerse the burnt part in cold water, and all pain will cease with the rapidity of lightning. Next, get some common flour, remove from the water, and cover the bornt parts with an inch thichness of flour, if possible; put the patient to bed, and do all that is possible to soothe until the physician arrives. Let the flour remain until it falls off itself, when a beautiful new skin will be found. Unless the burns are deep, co other application is needed. The dry flour for burns is the most admirable remedy ever proposed, and the information ought to be imparted to all. The principle of its action is that, like the water, it causes instant and perfect relief from pain, by totally excluding the air from the injured parts. Spanish whiting and cold water, of a mushy consistency, are preferred by some. Dredge on the flour until no more will stick, and cover with cotton batting.

Water Supply of London.

At the beginning of the present century the water mains of the City of Loondon were wooden -the trunks of trees bored out-and in no case of more than one foot in diameter. How the metropolitan giant must have grown, the size of his present iron arteries is a proof. The mains of the eipht water companies not only supply London proper, but push out far into the country, invading even the agriculturaldistricts, and supplying its farms. They distribute in the aggregate upward of $100,000,000$ gallons daily, through 3,000 and odd miles of main, and supply 375,000 houses.and factories, through capillary pipes upward of 7,000 miles in length. If all the water daily used in this great city were collected in one great reservoir it would cover seventy acres in extent and six feet in depth. As the spectator watched this great expanse of water he would see it hour by hour draining to the bottom by the collective millions in the metropolis as calmly and noiselessly as a cup is drained by a dusty ruadside traveller. The collective iron beart, the steam engines which propel this flood, possesses a force of not less than 9,000 hurses.

Overwork.

Unwise above many is the man who considers every hour lost which is not spent in reading, writ-
ing or in study, and not more rational is she who thinks every moment of her time lost which does not find her sewing. Wo once heard a great man advise that a book of some kind be carried in the pocket, to be used in case of an unoccupied moment, such was his practice. He died early and fatuitous. There are women who, after a hard day's work, will sit and sew by candle or gas light until their ejes are almost blinded, or until certain pains about the shoulders come on, which are almost insupportable, and are only driven to bed by physical incapacity to work any longer. The sleep of the overworked, like that of those who do not work at all, is unsatiafying and unrefreshing, and both alike wake up in weariness, sadness and langour; with an inevitable result, both dying prematurely. Let no one work in pain or weariness. When a man is tired he ought to lie down until he is fully rested, when, with renovated strength; the work will be better done, done the sooner, and done with a self sustained alacrity The time taken from seven or eight hours' sleep out of each twenty-four, is time not gained, but time much more than lost; we can cheat ourselves, but we cannot cheat nature. A certain amount of food is necessary to a healthy body, and if less than that anount be furnished, decny commences the very hour. It is the same Fith sleep, and any one who persist in allowing himself less than nature requires, will only haste his arrival at the mad-house or the grave. This is especially true of brain work.-Scientific Anerican.

Reflectors for Street Lamps.

The American Artisan suggests that reflectors over the street lamps would send down the light that now goes towards the fixed stars. In the absence of such reflectors one-third of the gas used is wasted. This suggestion is worthy the consideration of municipal rulers, anxious to economise their finances and keep down taxes.

A Remarkable Iron Mountain in Canada.

The existence of an inmense iron mountain, almost on the shores of Lake Superior, outrivaling the famous iron mountains of Marquette, seems too marvelous for belief, yet the fact is even so. It is surprising that such a wonderful mineral deposit should remain undiscovered until a recent date. This mountain is sis hundred feet above the level of the plain, and nine bundred feet above the level of the lake, being about twice as high as the iron mountains of Marquette. The first examination.: was made in July this year, by Professor Duffield, of Detroit, who, from the general features, concluded that the range was identical with that of Marquette, and to satisfy himself he visited Marquette to get the range, by which his theory was sustained. A company was formed, which obtained a patent from the Canadian government for 3.200 acres, which comprises the mineral tract in question. Four weeks ago, some of the representatives of the company, with a few, scientific gentlemen, set out for the district upon a tour iof exploration. The party returned a day or two fince, and report that the most sanguine expectations concerning the extent and richness have been more than realized. The ore is of the fineat quality, and extending several miles, in deporits many feet in thickness. It is'so plentiful that by no human agency can the supply be exhausted for hundreds
of years! A quantity taken from the depth of only fifteen feet from the surface, and smelted in a common blast furnace, realized 60 per cent. of pure iron. As 30 per cent. is a good working average, the richness of the newly discovered ore will be apparent. At a greater depth its purity will be on a corresponding scale, in accordance with a wellknown mineralogical law.-Detroit Tribune.

Limes and Mortar.

On the enbject of slaking lime for a considerable timo before use, a writer in the Builder says: "My experience, after many triale and careful attention, convince me that for all rich, fat, or very meagre limes, this is the best plan; but it is, of course, necessary to keep the lime from contact with the air, by submersion or otherwise. With limes that are moderately or even slightly hydraulic, I hold such a process injurious, as, when once these limes have begun to set, they could not be disturbed, as the setting properties cannot again be restored except by. a. eecond calcination, to drive off the chemically combined matter."

Dispensing with the Stceping of Elax.

It appears from the Socicty of Arts Journal that a French manufacturer named Bertin has invented what is reported to be a successful method of dispensing with the steeping of flax. After the fibres have been crushed in the ordinary way, M. Bertin submits them to a new process, that of friction between two channelled tables, which have a sideway as well as to-and-fro motion; in fact, the action is similar to that of rubbing the fibres between the palms of the hands, but under considerable pressure and with great rapidity. The fibre is afterwards beaten in water, which carries off every particle of woody matter, and leaves the flax completely unbroken and in parallel masses. The principle of friction tables has been applied by M. Bertin in other cases, and is said to furnish an economical, rapid, and perfect mochnaical action. The same gentleman has adopted a new syistem of chemical steeping to get rid of the résinous and wither matter which attaches the fibres together, which is said to produce the required effect in less than two hours, at a cost of about 18. 8d. per owt., leaving the flax nearly white; but the particulars are not given. By M. Bertin's system it is affirmed that the yield of fiax is raised from 12 or 15 to 20 or 22 per cent. of the grose material. Lastiy, M. Bertin collects the refuse beneath his crushing machines, burns it in his boiler furnaces, and uses the ashes and the water in which the flax is steeped as manure, giving' back, as he 'ufirms, the whole of the mineral salts and azotised matter contained in the crop, and the cost of so much artificial manure saved to the cultivator.

Maintol Ornament.

An acorn suspended by a piece of thread within half an inch of the surface of water in a hyacinth glass, will, in a fow months, burst and throw, a root down into the water, and shoot upwards its straight and tapering stem, with beautiful little green leaves. A young oak tree, growing in this way on the mantel-shelf of a room, is a very elegant and interesting object.

[^0]: * Pur further particulars on this subject the reader is referred to Dr. Voelcker's paper. publighed in the Journal of the Royad Agricultural Society of England, volume 24.

[^1]: * Soe, for farther detaflis, the paper read by Dr. Calvert before the Dociety, Lebruary 5 th, 1862.-Journal ${ }_{2}$ vol. x. p. 169.

[^2]: * Average cf the last four years.
 † Interest on excese of debt.
 \ddagger Not estimated by Mr. Galt, for reasonis given in the speech.

