Technical and Bibliographic Notes / Notes techniques et bibliographiques

The Institute has attempted to obtain the best original copy available for scanning. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of scanning are checked below.

Coloured covers /

Couverture de couleur
Covers damaged/
Couverture endommagée
Covers restored and/or laminated /
Couverture restauree et/ou pelliculee
Cover title missing /
Le titre de couverture manque
Coloured maps /
Cartes géographiques en couleur
Coloured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bleue ou noire)
Coloured plates and/or illustrations /
Planches et/ou illustrations en couleur
Bound with other material /
Relié avec d'autres documents
Only edition available /
Seule édition disponible
Tight binding may cause shadows or distortion along interior margin / La reliure serree peut causer de l'ombre ou de la distorsion le long de la marge intérieure.

L'Institut a numérisé le meilleur exemplaire qu'il lui a été possible de se procurer. Les détails de cet exemplaire qui sont peut-être uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de numérisation sont indiqués ci-dessous.

Coloured pages / Pages de couleur

Pages damaged / Pages endommagées
Pages restored and/or laminated /
Pages restaurées et/ou pelliculées
Pages discoloured, stained or foxed/
Pages décolorees, tachetées ou piquees
Pages detached / Pages détachées
Showthrough / Transparence
Quality of print varies /
Qualité inégale de l'impression

Includes supplementary materials / Comprend du matériel supplémentaire

Blank leaves added during restorations may appear within the text. Whenever possible, these have been omitted from scanning / Il se peut que certaines pages blanches ajoutees lors d'une restauration apparaissent dans le texte, mais, lorsque cela était possible, ces pages n'ont pas eté numérisées.

MORE TECRIICAL EDICATION REQUIRED IN ofr ptblic schools.

E have only to refer to the testimony afforded in the reports published by different institutions and universities in the United States, to evince the necessity of making some reform in the curriculum of our public schools which wiil prove of more utility in the sphere of life so many of the scholars will be called upon to fill in after-life. Why we particularly allude to the United States as a reference and a guide, is because an affinity and similarity exists between that country, its people and its customs, with ourselves.
It is obvious from the reports we have read that the instruction given in public schools shouid have a direct bearing upon the common avocations of life; and so strongly is this felt in the United States, that a new class of higher institutions of learning are springing up throughout the country. This new class consists of tochnical schools and technical universities, whose aira it is to prepare young men to direct, with skill and economy, the great-industries of the country which are every day assuming vaster proportions.
The number of the institutions, and the attendance upon them, it is presumed, must continue to increase, until they who seek to enjoy benefits therefrom will form no inconsiderable portion of those who leave the public schools for more advanced instruction. Hence it is essential that the work done in public schools should have a direct bearing upon the more advanced instruction of the technical universities. But it is also to be observed that the elementary instruction which is specially easential to advanced instruction, has a direct bearing upon the common avocations of life, and so is doubly entitled to be given in the public schools.

The fundamental study, the one above all on which technical instruction must rest, is Industrial Drawing.

Hardly any department of technical instruction can get on at all, and none can get on well, without this. Therofore, it is not surprising to find those in charge of technical universities in the United States urging the teaching of Industrial Drawing in the public and other elementary schools. One eminent authority on this point says that a student entering a technical school with such a knowledge of drawing as ought to be imparted to all in the public schools, would have a whole year's advantage of him who had not received such training.
The elements of drawing should be taught in every public school, and every school teacher should be trained to teach the art. A knowledge of forms, which is an important agent in all industrial education, can only be learned by the study of drawing; the time required to lay the proper foundation for future special application need not be disproportionate to that devoted to other studies. In many of our public schools, in cities, freehand drawing is taught, but seldom in the common schools of the country. Now, the teaching of so important an art should not be confined to cities. It is a branch of art training most essential to all young mechanics as a training both to eye and hand.

We address, particularly, ail Educational Boards with the hope that they will earnestly advocate reform in public education, and give more consideration to what should be taught at our primary grammar and high schools, so far as relates to a technical education; for it must be remembered that the public schools have a direct bearing upon the occupation and welfare of the whole people. We want to modify the teaching of public schools of all grades, so that it shall have a much more direct and telling influence upon the common needs of practical life. We want that when boys leave school they shall carry with chem those elements of knowledge, taste and skill that will prove of the most direct and essential service in the various pursuits in which nearly all of them must engage ; and these elements of a technical education, once mastered, further progress becomes very easy in case any, after leaving the public schools, will feel a desire to continue their studies in that branch of education which they will need most in their sphere of life.
Many of us have felt the disadvantages a boy labours under, who, in going to a new school, is put into a class whose studies are in rdvance of what he has learned, and the struggle he has to keep up with that class from the
difficulty of understanding rules which depended on preceding ones to demonstrate, and which he had never been taught ; and this desire to push on a boy before he is thoroughly grounded in the rudiments of oducation, a feeling often felt by both master and parents, is most detrimental to the acquirement of knowledge.

The common school elementary public education, which comprised a knowledge of reading, writing and arithmetic, is not sufficient for the masses in the present day, whatever it may have been thirty years ago. The common occupations of life have so increased, and the conditions of it have so changed within that period, and science and mechanics have made such startling and rapid advances, that progressive education is absolutely necessary if we would hold our own in the competition and rivalry for excellence that is going on in the world. Not many years ago manufactures in this country, and even in the United States, were hardly known. The housewife did the spinning and the weaving; and we can remember, in our own day, when the itinerant shoemaker went on his annual round. The representatives of many vast machine shops and foundries on this continent were but cross-roads' smithies, and the draughtsman and architect had scarcely then made their appearance. The cultivation of the soil in those days was done nearly altogether by mere muscular strength, and the products of the mechanics-such as the shoemaker, blacksmith, fitter, waggon-maker and carpenter-could boast only of rough strength and durability. There were no workers of skill and taste then displayed, and a simple education was enough to qualify for ordinary avocations. But not so in the present day: although the progress of education in our public schools has made even wonderful progress of late, still it has not advanced in ratio with the requirements of the times. Every year now muscle counts for less, and intelligence and skill for more. The few small and rude manufactures of the past have grown to vast dimensions, and the whole character of construction has become changed. In the cultivation of the soil, intelligence takes the place of muscle and brute force, and scientific knowledge and mental discipline, acquired by the proper study of science, become more essential to success in manufactured articles of every description; and the attainment of success has been rendered more difficult by the novel machinery employed, by the adoption of more delicate scientific procesees and by the growing taste of the people.

As the result of new discoveries in science, and of new inventions and industry, occupations have so greatly increased that even the products of the earth have become more diversified, and manufactures so multiplied in variety, as well as in extent, that they give employment to one-fourth of the population of the whole country; and, therefore, to make a country equally progressive with those around her, there must be an ever-growing demand for more technical knowledge, for greater deftness of hand, and for finer taste on the part of the producer.

The effect of the great improvement in machinery has been to elevate the character and increase the field of the workmen, and with the possession of knowledge, taste has become enlarged. It has been urged by some that the excellency arrived at in the construction of machinery has so reduced the number of operatives heretofore required as to act materially to their disadvantage. This is a very mistaken idea. The number of operatives in this
country alone has increased to a very great extent during the last decade, and in the United States much greater in proportion to their population. It was the extraordinary demand made upon manufacturers and tillers of the soil during the civil war in the States that gave an abnormal impetus to manufactures and agricultural laborsaving implements, far beyond the average requirements of a steadily growing country, and the mistake rested with those young men who were tempted from the home of their fathers and from cultivating the soil, which was their hereditary avocation, to following handicrafts in cities and at a time of unusual requirements. Had they, after the demand for labour had ceased, again taken up the plough, they would now have been producers and buyers in place of being a drag upon the community.

Fur this state of affairs many of our manufacturers are themselves to blame for encouraging an inferior class of workmen, because they worked cheap-and who would have been better off by tilling the soil-and not encouraging sufficiently skilled mechanics. Such men, from the want of education and knowledge, can have neither taste, skill nor ambition, and thus a vast quantity of inferior goods is manufactured for our home market which ill coutrasts with similar goods of other countries.

But although mechanics are now suffering from the depression of business, and the over-manufacturing of goods beyond the requirements of the country, it must be ohserved that the fleld for the exercise of taste, and the demand for its products, are practically unlimited. If hitherto the great object has been to increase the quantity of our manufactures, in future we must strive to improve their quality and thus raise their commercial value. In this work our only reliance must be upon the asthetic taste which can lend a charm to every object produced by man, and which, fortunately, is the result of education.

The subject of "More Technical Education," we consider, is of such importance that we shall continue it in the next number of the Magazine.

A Really Indelible Ink.-The ordinary so-called "indelible" inks are prepared from salts of silver, and the writing done with them can be removed by soaking the linen with a eolution of cyanide of potassium (exceedingly poisonous, it should be remembered) or of hyposulphite of soda, or by moistening with a solution of bichloride of copper and then washing with aqua ammonia. A really indelible ink, that is, one that cannot be removed by chemical agents, may be made from aniline dyes according to to the following recipe:-

Dissolve $8 \downarrow \mathrm{grs}$. of bi-cbloride of copper in $\mathbf{3 0} \mathrm{grs}$. of distilled water, then add 10 grs . of common salt and $9 \frac{1}{2} \mathrm{grs}$. of aqua ammonia. A separate solution is made of 30 grs . of bydrochlorate of aniline in 20 grs of distilled water, which is then added toe 20 grs . of a solution of gum-arabic, containing 2 parts of water, 1 part of gum-arabic, and lastly 10 grs . of glycerine. Four parts of the aniline solution thus prepared; are mised with part of the copper solution.

The tluid thus prepared has a greenish color, but becomes black in a few days after being used for marking, or at once by the application of a hot iron or on being otherwise heated. A steel pen may be used for writing with it. If the cloth after being marked is put into tepid soap-suds, the writing acquires a fine bluish tint.
The ink should be perfectly limpid, so as tn penetrate the fabric; and the solutions should be mixed only when they are to be used.-Bostan .Journal of Chemistry, xii. i6.

dESIGN FOR A CHURCH.

We copy from the London Builder a design for a church and school-room:

bOSTON SPA CONGREGATIONAL CHURCH.

It consists of a nave with small transepts, porch, lobbies, and tower, and will seat 260 persons. The length of the nave internally is 53 ft ., its width 34 ft ., the whole roofed in one spen, with open timbers, and boarded. Its acoustic properties are described as satisfactory. The seats are open benches, and the Walls are lined to a height of 3 ft . with wood.
The tower, which is intended to form a staircase to give access to an end gallery to be added at some future date, is 50 ft . high, and has a slated spire, the total height to the top of the finial being about 90 ft . The total cost was about $£ 3,000$, of which amount $£ 372$ were paid for the land, much less than it would cont in Canada.

Behind the church, and on the same level, is a school-room, 30 ft . by 25 ft ., with separate entrance, class-room, minister's vestry, and lavatory.

Civil and Mechanical Engineers' Society.-On Saturday last, the 6th inst., the members of this society paid their last Kisit to works for the present session. The gasworks in the Old fosted in were selected for the visit. Much interest was manifosted in the gas holders and tanks, the largest holder, 180 ft . diameter with a capacity of $2,200,000$ cubic feet, being conetructed without any ir iernal trusses or bracing, the, cover or crown, when empty, being supported on a timber, staging erected in the tank; but the mocit remarkable feature is the tank, 184 ft . diameter, 47 ft . deep, constructed entirely of concrete, without either brick lining, or puddle backing. Another striking example of the use of concrete was seen in the new retort houses in course of construction, the floor being raised 10 ft . above the level of the ground, was carried by piers and concrete arches
21ft. span 21ft. span, rising 1 ft . 9 in . centre, 18 in . thick at the crown. The
next segio gineeringion of the society for the reading and discussion of engineering papers will commence in December.

A NEW EDGING TO FLOWER BEDS.

Numerous plants are used as edging to flower beds, but we do not often see those that are altogether satisfactory. Where the edging is made by numerous plants set closely together, the failure of one or more from any cause, leaves an unsightly gap, and one that is very difficult to fill. A circular galvanized wireframe, of which a cross-section is a semi-circle, is made of a proper size for the bed, if a small one, or in segments, if for a targe bed ; this frame, which has wires crossing it to form a coarse basket-work, is placed around the bed, where the honeysuckle or creeping vine plants have been previously set, and as the plants grow, their shoots are worked into this wire frame. In a shorc time the frame is completely hidden; and the effect of such a circle of gorgeous foliage and rich coloured flowers in neatly kept grass, is surprisingly beautiful. This frame may be used to advantage with any edging plants, as it raises the prostrate ones, and allows them to be kept in a neat line, with very little trouble.

Judging from the number of patents'taken out, it would seem that the long pent-up talent of the Germans is expending itself on new inventions. The number of patents granted in German States, from the 1st of January to the 30th of June, 1877, is given in Trade Marks, so far as is known, as follows :- For Prussia, 566 ; Bavaria, 124 ; Saxony, 256 ; Wurtemburg, 113 ; Baden, 147 ; Hesse, 48 ; Brunswick, 57 ; Saxe-Meiningen, 16; Saxe Altenburg, 16 ; Saxe-Coburg-Gotha, 18 ; Anhalt, 22; Schwarz-burg-Sondershausen, 14; Schwarzburg-Rudolstadt, 13 ; Wadek and Pyrmont, 8 ; Reuss Old-line, 15 ; Schaumburg Lippe, 9 ; and Lippe, 10.

DESIGN FOR CITY RESIDENCE, COSTING $\$ 2,800$.

City Cottage.

Deacription of Cottage.-The first and second floor plans show the internal arrangement. On the first floor are parlor, dining-room, and kitchen. The parlor and dining-room each contain a fine semi-octagonal bay-window; that of the parlor affording a view through the street in either direction, and that of the dining-room giving the latter an exposure to the front atreet as well as in other directions. Under the main ettairs is the dining-room china-closet, and the pantry dividing the dining-room from the kitchen contains the stairs to the cellar, A capacious kitchen atore-room is provided, and wash-trays are fitted up in the kitchen, the dinensions of the latter affording ample room for laundry ns well as for colinary purposes. The kitchen is fitted up with range, boiler and sink, and the several fire-placel of the first floor are placed in the best positions for atility and effect. The sliding doors dividing the parlor and dining-room are finished with olliptical head, and trussed arches of the same form span the bay-windows.
The second floor contains four aleeping-robms and a bath-room, the former being each provided with cloeet and wash-basin. The bath-room is fitted up with bathtub and water-loset, cased and trimmed up in hard wood. A olose fight of staire leads to the attic, which is very apacions, is well floored, and would afford fine bedrooms.
The alopee of the roofe are covered with Chapman roofug alates, with ornamental courses of colored slates in out butte, as abown. The dock roof, valleys, and gutters are tinned. The house is finisbed in a manner far superior to brick filling, the materials and warkmabahip the very beat, and many novel detaile have been introduced which it is not practicable here to show.

The Formation of Mineral Veins.-Meunier has communicated to the French Academy of Sciences some observations on the formation of mineral veins, based on the fact that the nationsulphids effect the reduction of metals from theic solitions. Galena placed in a solution of chlorid of gold is at once covered with gilding, and in a solution of nitrate of silver arbores. cent growths ace formed. ©ther sulphids, including those which are most commonly associated in veins, iron and copper pyrites, blende, cinnabar, stibene, and even the sulphid of sods found in mineral waters, produce similar effects. Nor is the action confined to the sulphids. Some selenids, antinoonids, arsenids, and tellurids also behave in tie same way. Meunier thero. fore points out that if sea-water, which always contains silver, filters into a vein of galena, all the silver will be reduced and concentrated in the vein, and this actlon explains the presence of the native silver so often found in galena. When this has taken place, and the liberated sulphar does not recombine with the silver, we have the super-sulphuretled galena, sometimes so rich as to take fire in a flame. But commonly the sillver is traneformed into a sulphid.

Adultrration of Bezad.-A baker in London, Eingland, was recently arrested for selling bread adulterated with alom so as to be injurious to health. The defendant plead guilty, but urged that the adulteration was not like water added to milk, made to increase the bulk-that the alum made no difference in the bult of the loaf. The court however called his attention to the fact that the charge was that of adulteration to the injury of health. Although the defendant said he "did not mind taking ulum in his," he was fined forty shillings and costs.

Ventilator for a Cess-Pool.

A correspondent from Dodge Co., Neb., sends a sketch and description of a ventiliator for a cesa-pool. It consists of a square wooden pipe, sulliciently high to catch the wind and reaching down intu the vault. To cause a draft upwards through the pipte, caps of tin, sheet iron.or wood, are placed as shown in the engraving, bencath which there are several holes through which the draft
 passes into the pipe. The draft starts and keeps up a curreat of air, which carries off the noxious gases from the vault.

Good for the Future. - The American Manufacturer says: At no time has so mueh attention been given to the rearing of young men for fitness in special branches of trade. Our scientifio institutions are farnishing ns with young men of excellent technical eduantion, who enter their profession with a valuable stook of know. ledge, which enables thein to at once become useful and indispensable aids in the prosecution of vur great industrial enterprises.

To Krep Tools Clran.- When tools are ciean and bright, they may be kept 30 by wiping, before putting them away, with a cloth dipped in melted parafinine. If they are rusted they may be cleaned by soaking in kerosene oil, aud then rubbing with an oily rag dirped in fine emery powder.

Automatic Compound Fire Annihilator.
The inadequacy of all means thus far used for exUnguishiog fires, proceeds chiefly from the difficulty of their immediate application, and also that the very means now used to extinguish fires frequently involve great damage to merchandiso and other property, by the volume of water used in putting ont the fire itself. It is often the case, where fires are actually extinguished, that the damage through this cause exceeds that of the fire loss. Scientific and thinking minds have for years been engaged in solving the problemt of subduing fires in their earliest stages by some process that, while it should extinguish the fire, should not in volve great loss through the means employed. A Pro fessor of Chemistry at the University of Leipsic, Germany, at last succeeded in filling this long Felt defi ciency in the modern means of preventing conflagrations. He produced a dry chemical compound, which, on being ignited evolved volumes of gases antagonistic to fire. His invention was subjected to the severest practical tests, and then adopted, on its merits, by the leading governments of Europe.
After the success of his process became known, it was introduced into the United States through being patented first and afterward exhibited to the municipal authorithes of the leading cities. Its success here is none the less marvelous than attended its introduction in Europe. During the short lime it has been known in this country rapid progress has been mado in its application to use in manufactories, dwellings, depot warehouses, and shipping. It is put up in strong metallic boxes holding from 5 to 50 pounds each. A slow match or luse is attached to the box, and in case of fire, is ignited with a match and thrown into the room on fire. The com pound then barns slow.
ly, creating gases that are absolutely antagonistic to fire, thus patting out the fire and damaging nothing olse. It cannot explode, and its gases being fumigatious and disinfecting in their nature, injure nothing, while they smother effectually all fires, whether from wood, textile fabrics, spirits, kerosene oil, benzin, or any other violent inflammable material. Its cheapness, portability, ease of application, and efficiency make it the most acceptable thing for the purpose known. Without desiring to reflect upon other extin guishers, we are led to suggest that no child or woman can handle and apply for the extinguishing of fire any machine weighing 40 pounds and upwards, or work a force pump in addition thereto, or in the excitement of a sudden fire have the courage to atand and fight a fire with any of the chemical extinguishers now in general use. With this new compound no skill or strength is required in asing it, bat is simply to be ignited and thrown into the fire, the doors and win dowa closed, and it will do its work without further human aasietance. Other and important advantages of this compound are, that it will not freeze or dete rioraie, and is alwaya ready. Its antomatic principle consiata in this: Placed upon a shelf or bracket, with the fuse exposed or extended along the room, a fire occurring will ignite it, ar ${ }^{\text {' }}$ it will act itself, suppress ing fire without human, r this alone it is inval uable. On shipboard i_{1} is a want never before supplied. The horrors of a ship on fire have appalled the stoutest hearts, because nothing heratnfore invented could reach and extiuguish a fire between decks among the cargo. Thic compound, emitting gases that amother fire, will penetrate to the remotest part and accomplish that which bas, up to this time, baffled the ingenuity of man.

PRACTICAL APPLICATION OF THE COMPOUND.

Concrete Bridge.-At Seston, Eng., a threearoh bridge is being built of concrete, on a new principle invented by Mr. Brannon of London. The idea of the inventor is that concrete would. for snch work. prove far more enduring than stone The toll-house at the end of the bridge is being built on arches. Mr. Brannon suggests that by building cottages on arches, instead of on solld ground, all fear of fever caused by exhalationis from the soil would be avoided.

The Perils of the Foundry.

Few appreciate the dangers which many mechanics have to face, or give them proper credit for bravery. We read of an accident in Pittsburg, Pa., which happened as follows: A number of men were casting a chilled roll. Nearly two tons of iron were requived to make the casting, and the services of twenty men were needed to handle it. While they were pouring the molten metal into the mold there was a sudden and terrific report, which was closely followed by a shower of liquid iron. The red-hot metal flew in every direction, and dropped apon and about the workmen. They ran to escape the shower, in their terror dropping the ladle which yet contained most of the metal. The ladle was overtarned, aud immediately great streams shot out in quick pursuit of the flying laborers. Two of the workmen, closely followed by streams of the red-hot iron, fell into adjoining pits and the metal ran in upon them, burning their flesh to a crisp in many places. One man's face was burned to a crisp and his eyes burnt out of his head, and in their places the sockets were filled with chunks of chilled metal. The other man's eyes were also burnt from their sockets, and his face, hreast, arms and hands were barnt to a crisp at different places. Here

We have seen the experiment tried in a wooden hanty nearly filled with wood saturated with benzin, tar, etc., and then ignited and apparently under full headway, sn that no fire-engine could have extinguished it with water; a single box thrown in and the window closed ended the fire in a few minutes, leaving the interior blackened-that was all.

Lugt in Rallway Cars.-The Railway Age pleadk for light in our railway cars, and more especially as the season of early darkness has now set in and the need is daily growing more apparent, particularly in those composing the suburban trains whose passengers do not take their daily ride for pleasure, but eimply to reach business or home as comfortably as possible. It is now too late to say that railway cars cannot be well lighted. In the modern Pullman cars, and in the ordinary coaches of some roads, lamps suspended from the ceiling, with porcelain shades or burnished reffectors, diffuse throughoat a mild, clear light by which the finest type can be read with ease. In cars thua lighted cheerfalnese and good humor prevail, and in reading or in animated convarsation the trip appears short, and the travellers leave the train with a warm and grateful feeling toward the liberal management that has done so mach for their onmfort. On the other hand, fify or sixty people sitting in a car lighted only by the ghastly reflection from three candlea-ac may be seen on several of our ronde-become a silent, dia contented crowd, almost dangerous to accost by the dim, irreligious light of the dip.

Violet Ink for Rubber Stamps.-Mía and dissolve the following: Aniline violet, two to four drachms; alcohol 15 ozs ; glycerine, 15 ozs The solution is to be poured on a cushion and The solution is to be p
rabbed in with a lirush.
and there the red.hot metal had actually eaten its way to his bones. The cause of the explosion was attributed to a "damp cave;" in other words, the sand with which the mold had been packed was not properly dried, and perhaps, too, not properly grooved, so that the steam generated could not escape.

Fig. 2.-Section of Blind.
(See page 64.)

GOMCERMINE FLAT DRILLS:*

What a drill is for in to bore eanily in metal, a clear mooth hole that ahall be round and parallel, and of a deftoite and desired size. A goon muny drilis prodmee Work that is three-sided or oblong, tapered, ridyy, crooked. and out of size, and take much time and power. Thix is generally owing (except when in leal or copper) to the shape of the drill.

face of the drill around the guide-pin, the cutting faces are cut out in a wide ring around the guide-pin; leaving only a cutting ring at the extreme periphery of the endface (see fig. 8). This tool thus cuts away a ring and leaver a hollow core between this ring and the guide-hole. It is even more expensive to make and maintain, than the ordinary pin-drill; the apaces between pin and cutters being lard to cut out in a lathe. If however, (see fig. 9), a cutter is made from a round steel ball.having drilled in Its axis a hole the size of the guide-pin, and having its flat end cut into radiating teeth so as to form a milling tool, the central non-cutting spaces may be readily removed with it. It may also be used for making and repairing ordinary pin-drills. Another Hat drill, not nearly so good as t e pin-drill, is the tit-drill or centre-drill (fig. 10); having instead of a cylindrical guide-pi, working in a previously drilled hole, a triangular center-tit, intended to do cutting work. This tit, which requires to be carefully filed up in the vise, is very bothersome in tempering, on account of the small quantity of metal therein ; rendering it apt to be either too hard and brittle, or too soft and dull.
The principal beauty of the best flat metal drills is that they have similar cutting edges on both sides. giving even and equal pressure on both sides of the hole, and not wastiug any power in side-struins.
If there is any one particular nuisance in a mathine shop it is square-tapered drill shanks (fig. 11), no two the same length, thickneas, or bevel. A square tapered shank is likely to be untrue; its mquare-tapered socket more so. Hence this kind of a shank is liable to cause wabbling and untrue work. A round-tapered shank ik more

Fig. 9.-Rose Fix. 10.-Tit Drill

Cutter for Pin

in F wis. Square Tapereo Shank.

Fig. 12.Round Paralld
Si_{1}, ln .
expensive than the square-taper ; is hard to draw out and apt to be injured in drawing. In common with the square-taper shank, it cannot be extended in case a drill is a trifle to short too reach or bottom its work. A straight round ahank (fig. 12) is apt to be true; so is its socket; it is less likely to jam and to be injured in drawing; it can be "set out" by slipping a block in the socket. It is, too, easjer to have standard sized shauks and sockets; the saving in the time bill alone on this score, is important.

A Combined Bag-Holder and Truck,

Being recently at a railroad depot, where a good deal of grain is received, we were much intereated in a man filling some bags with whent from a car, and trundling them away to a store-house. He used a bag-holder, which served also as a truck, upon which the filled bag could be wheeled away. We quickly sketched the bag-holder in our notebook, as a good thing to make known to our readers, not knowing then the name of the maker of it ; but on our way home discovered in a catalogue of the Higganum Manufacturing Company, of Higganum, Conn., an fllustration of the same bolder and truck. We give our illustration here, which shows for itself the character of the bag-holder, and the method of using it. For use in grist-mills, and barns or granaries, this haudy contrivance would be found to save conslderable labor and time, as when the bag is filled, it may be wheeled away by taking hold of the handles at the top, and

BAG-HOLDEA $4 N D$ TRUCK.
makingr a one-wheeled truck of the machine; the bag rests between the projecting legs.

Expmeiments with the Turkish BatheSome interesting observations were related at the last meeting of the British Medical Assooietion, by William James Fleming, M. B. (Glas: gow). These experiments wers performed by the author upon himself, and congisted of obeervations on the effect of the Turkish bath at tom. peratures of from $130^{\circ} \mathrm{Fah}$. to $170^{\circ} \mathrm{Fah}$, upon the weight, temperature, pulse, respiration and secretions. The reeults showed that the immer. sion of the body in hot, dry air, produced loss of weight to an extent considerably greater than normal, amonnting, on the average, to the rate of about 40 onnces an hour. This was accompanied by an increase in the temperature of the body and a rise in the pulae rate, with at first a fall and then a rise in the rapidity of reapiration. The amount of solids secreted by the kidneys was increased and coincidently the amount of urea. The swest contijined a quan-
tity of solid matter in solution and smong other tity of solid matter in solution and among other most important effect of the bath was the stim. ulation of the emnnctary action of the skin. By this means the tissues could, as it were, be washed by passing water through them from within out. The incressed temperatare and pulse rate pointed to the necessity of cantion in the nse of the bath when the circulatory mystom whe use of the
was diseased.

"PARAGON" SCREW STOCK AND DIES.

Remembering the proverbial saying that "A jack of all trades is master of none," we are apt to regard with some distrust those wonderful tool combinations by the aid of which it is stated that any and every mechanical operation may be performed. At the satne time we are ready to welcome any shop appliance in which the number of parts is reduced, provided there be no sacrifice of efficiency. Recently, at Birmingham, some improved stocks and dies were brought under our notice, which are not only capable of cutting a given range of sizes with a less num ber of dies, none of which need be loose, but which also perform the duty of a tap wrench, thus saving the weight and cost of the latter.
The ordinary screw stock is too well known to need description, but it is well to remember that each size of screw requires ${ }^{2}$ pair of dies, from two to four of which accompany each size of atock, and that only one pair of dies can be contained in the stock at the same time. There are, therefore, at least two, and frequently six, loose pieces liable to loss and injury ; while a soparate piece, of nearly the same size as the stock, is required for turning the taps. Messrs. John Wright and Co. in their "Paragon" avoid keeping any dies loose from the stock at any time, and dispense with the separate tap wrench altogether, by arranging three sizes of screw cutters and one half diamond on the four sides of their dies, as shown at fig. 1 , while the stock is also made more simple and symmetrical. Fig. 2 shows the dies separately; fig. 3 a set of dies for cutting four sizes of screws; and fig. 4, a pair of dies to serve as the tap-wrench, required in this latter case.
It will be observed that a lock nut on the stock prevents the adjustable arm from coming unscrewed. It is also obvious that the sizes can be changed with much greater facility than in the old form of stock. It will be remembered that the usual tap wrench is not constructed with a great amount of accuracy ; indeed, the square hole, like too many of the spanners in an engineering shop, fits the tap heads so badly that they are soon spoilt for an accurately fitting wrench ; with the hardened tap die of the "Paragon," no such difficulty can occur. Again, length, weight, and cost are all in favour of the new arrangement.
The well-known firm of Tangye Brothers, after having had these stocks and dies in use at their works for some time, have expressed approval of their simplicity and efficacy.-Iron.

Why a Belf runs on the Higher Pulley.-This problem is explained by J. H. Cooper in his new book on "The use of Belting" as follows: "That end of the belt which is towards the larger end of the cone is more rapidly drawn than the other edge ; in consequence of this the advancing part of the belt is thrown in the direction of the larger part of the cone, which obliquity of advance towards the cone must lead the belt on its higher part. It may here be observed that this very provisionthe rounding of the face of the pulley-which keeps the belt in its place so long as the machinery is in proper action, tends to throw it off whenever the resistance becomes so great as to cause a slipping. To maintain a belt in position on a pulley, it is necessary to have advancing part in the plane of the wheel's rotation."
Thchnical Education.-The Executive Committee of the Livery. Companies of London, formed to promote the establishment of a Technical University, met last week to consider the reports which had been drawn up for their guidance. At the last meeting of the committee it had been determined to procure reports from qnalified persons as to the best means of utilising the fuods available in the promotion of technical education. These reports were taken into consideration by the committee, and it was decided to meet again for their further discussion.
A Frenchman, who has lived in America for several years, says: "When they build a railroad, the first thing they do is to break ground. This is done with great ceremony. Then they break the stockholders. This is done without ceremony."
In France, the average salary of workmen (without board or lodging) is sixty-eight cents ; in Germany, Italy, and Switzerland, thirty-eight cents ; in England, eighty-three cents, living being thirty per cent. dearer than in France.
Iron or steel articles placed in the following mixture maintained at boiling temperature will, says the Scientific American, take a fine blue tint : Dissolve 4 oz. hyposulphite of soda in $1 \frac{1}{2}$ pinte of water, and then add a solution of 1 oz. acetate of lead in 1 oz . of water.

NOTICE TO PATENTEES.

Inventors who are desirous of disposing of their patents would find it greatly to their advantge to have them illustrated in the Canadian Mechanics' Magazine. We are prepared to get up first-class engravings of inventions of merit, and publish them in the Canadin Mechanics' Magazine on very reasonable terms.

We shall be pleased to make estimates as to cost of engravings on receipt of photographs, sketches, or copies of patents. After publication, the cuts hecome the property of the person ordering them, and will be found of value for circulars and for publication in other papers. Apply to the Editor.

Noble lllustration.-Lord Carnarvon, in addressing the people of Birmingham. used the following illustration: "Travellers tell us that in some of the Eastorn seas, where those wonderful coral islands exist, the insects that form the coral within the reefs, where they are under the shelter of protecting rocks, out the reach of wind and wave, work quicker, and their work is apparently sound and good. But on the other hand, those little workers who work outside those reefs, in the foam and dash of waves, are fortified and hardened, and their work is firmer and more enduring. And so I believe it is with men. The more their minds are braced up by the conflict, by the necessity of forming opinions on difficult subjects, the better they will be qualified to go through the hard wear and tear of the world, the better they will be able to hold their ows in that conflict of opinion which after all it is man's duty to meet."
Safety Lamps, of an ordinary construction, are used by the night policemen and watchmen of Paris. A small glass vial holds a prece of phosphorous as large as a pea, upon which is poured hoiling olive oil sufficient to fill about one-third of the vial. The latter is then closely stopped by a cork. In use, the stopper is released for a moment, so as to permit the entrance of air to the phosphorous. The vacant inner space is thereupon lit up, diffusing a clear, and, of course, perfectly harmless light. When the light fades, it will hold good for six months without renewal.

THE HAND-POWER ROCK-DRILL.

Various forms of percussive rock-drills are constantly being invented; but never before we belicve has a hand-worked machine been offered to the mining public. This drill is not inteniled to compete, in the amount of work done, with the larger appliances driven by steam or compressed air as ordinarily used from a reservoir ; but it is destined to affurd a cheap and portable means of boring holes for blasting, whereby manual power may " j turned to better account than" in the primitive methods of "jumping" and driving with drill and sledge, without the necessity of a heavy expenditure for plant.
We were invited to a trial of this new borer on Wednesday last, at the works of the makers, Messrs. Glover and Hobson, Where the results achieved were highly satisfactory in themselves, under conditions which were most unfavourable to the machine. In the space of one minute, $1 \ddagger$-inch holes were drilled 61 inches deep in hard Portland stone, 3 inches deep in Aberdeen granite, and $5 \frac{1}{2}$ inches in sandstone; at least that was the rate at which the last hole was bord, but the sleeping of the stone put a stop to this particular trial. In the other two trials, it was evident that the hlows of the drill on the stone fere cushioned, owing to the soil benesth not heing sufficieutly frock, so that a still hetter result may be looked for in the solid rock of a mine or quarry.
The upper cover of the cylinder is air-tight ; but air is ad. mitted through ports at the lower cond, and passes round the piston, when at the lowest part of its stroke, to supply any leakage. In the upward stroke this air is compressed, so as to give a smart hlow on the next downward stroke. The piston a donnected to the drill-bar is raised, so as to compress the air, by a double cam on a shaft, turned by a conple of men with winch handles, so that two blows of the chisel are made for ench revohar b. The cams are so formed that, after raising the drillhar by means of a thrust block, they release it suldenly for giving the blow. As the thrust block is cylindrical and the camss strike it on the end, they cause it to make a partial revolution. A form of drill like two gouges united, so as to make a cutting edge like the letter S , is found to give the best results, never striking twice in the same place. The upper end of the
drill bar When this screwed, and works in a long phosphor-bronze nut. drill-bar this nut is clamped so as to be fast, the revolution of the drill-bar is to be fed down; hut by turning the nut, by means of or raised handle and hevel pinions, the drill-bar can be hand fed, or raised and lowered at the rate of a foot a minute. It will thus
be seen be seen that a simpler machine, or one with fewer working parts, it would be difficult to design, while the method of working the
piston piston is mechanical and direct, without the intervention of any
valre valve whatever.
Though the working parts are the same, there are three classes of the machine, for sinking shafts, quarrying, and driving adits, each of which has its special form of stand or frame. We obo-
served, however, that the range of boring in each was amply sufficient for its individual requirements. We defer a more detailed description of the drill and its carriages to accompany the drawings, which we shall shortly reproduce.

The Royal Cornwall Polytechnic Society awarded a silver wedal this year to the hand-power rock-drill, which, on account of its efficiency, simplicity, compactness and low cost, deserves the attention of all engaged in mining operations. It is the invention of Messrs. Thos. B. Jordan and Son, who act as managers to the Hand-Power Rock-Drill Company (Limited).-Iron.

VENTILATION.
(To the Editor of the Builder.)

Sir,-A simple and effectual method of supplying fresh air without draft to a school-room, may perhaps be thought worth notice in the pages of the Builder. The details will be seen on reference to the accompanying small plan and section. It may be described as an air-box made of sheet-iron, and placed behind an ordinary Gill stove. The box is conuected by an air-shaft with the outside wall, and has an inlet-pipe above, which admits the fresh air into the room. In passing through the "box " the air becomes slightly warmed in winter, when there is a fire in the stove, and it is a good ventilating shaft in summer. It is most effective whell it is most required, i.e., when other openings, doors or windows, are closed. Its advantage over the old plan of a simple opening under the stove, is that there is no danger of dirt or ashes falling into it and filling it up. I may add that I designed it twelve months ago, for a Board School in Leicester, where it has been found to work admirably.
[We nave frequently urged the necessity of a similar mothod of supplying warn and pure air to public and private buildings, for the latter particularly.-Ed. C. M. M.]

Fipe-Proof Jolst.-An ingenious kind of fire-proof joist, recently introduced, consists of a slip of wood five inches wide, by five-eighths of an inch thick, belted between two flanged strips of quarter-inch iron, making a beam quite as strong as those of wood ordinarily employed. The iron sides, in addition to affording strength, it is clained, ronder the joist substantially fireproof, while the centre of wood : Ifords the means of putting down floors aud uailing ou laths in the usual manner. The impediment to the manufacture of these joists heretofore has been the difficulty of rolling the flanged iron sides, but this has now been successfully overcome.

THE ELECTRIC LIGHT

No. I.
Nor many years have elapsed since the production of light by electricity ranked only as a lecture experiment. In this stage the electric light possessed no commercial value whatever. It is not our purpoee now to trace the history of the discovery that electricity could be raade to produce light. It will be enough to say that the labours of various inventora have no far developed the lecture experiment, that the electric light can now be used, with great advantage for numerous purposes, such an the illumination of lighthouses, forta, ships of war, public rooms, railway stations, and factories. For the last purpose it in now extensively employed in France, and its use is extending in this direction. We propose in this and succeeding artucles to explain briefly What the electric light is, how it is produced commercially, and bow it cau be employed to the most shipyards, or factories ; and we shall endeavour to make all we have to may on the subject an simple and intelligible a pouible, so that no difficulty may be found in applying to s practical purpose such information as we are in a position to communicate to our readers. In carrying out this object we shall avail ourselves largely of a very excellent work-Bdairags a r Electricits, Renseignements Pratiquen, by M. Hippolyte Fontaine, recently published in Paris by Baudry
There are three methods by which light may be produced by electricity-putting on one side as having nothing to do with our present purpoee the heating of a platinum wire white hot. The firat consiats in the employment, as conductors of a current of electricity, of two rode of carbon, held a nhort distance apart, between the extrensities of which play a series of brilliant sparks,
which form a apecies of flame known as the "voltaic arc." Which form a apecies of flame known as the " voltaic arc." The second consists in rendering luminous a rod of carbon
interposed hetween two carbon conductora of a section interposed hetween two carbon conductors of a section
much greatar than that of the rod. The third consists much greatar than that of the rod. The third consists
in the production of a peculiar, faintly luminous, flame in in the production of a peculiar, faintly luminous, flame in tubee irom which the air has been oxhaustod. To this mining purposes has been more than once suggeated, nor conall we speak just now of the second device; We ahal may be regarded as the only method of producing the may be regarded as the only method of producing the importance.
The electric lamp, then, consiats of a pair of carbon rods called "electrodes" why so called we need not stop to explain, seeing that almost every author writing on electricity thincs it his duty to tell us the old ntory
of the amber" and its Greek name. If two rode of carbon be placed with their onds in proximity, and a current of electricity of sufficient power be sent through them, an intense light will be produced. The amount of the light will depend on the intensity of the current, the nature of the electrodes-ior other materinis than carbon can be used - and the medinm which surrounds them. The colour of the light varies with the matorial of which the electrodes are composed or scoording to the presence of varioun, metala The appearance of the electric flame varies with the form of the electrodes. Thus if a coke point is attached to the positive wire and opposed to a plate of platinum, the flame takes the form of a cone, while between two carbon points it has the shape of an egg. The length of the flame depends more on the intensity of the current than on anything else.
Thus Davy, who may be said to have discovered the electric Thus Davy, who may be said to have diccovered the electric light in 1813 , obtained with 2000 pairs of zinc and copper plates a light 0.11 m . long. Deepretz made, in 1850 , a flame increases more rapidly than the intenaity of the current. Thus, the flame produced by 100 Bunsen colls is current. Thus, the fiame producod by 100 Bunsen celis is It will not be out of place to pate here that for come mercial purpe betteries are never used now, electricity being obtained in a far cheaper way. But the fact remains that considerable advantage accruea an regards the quantity of light given by augmenting the intensity of the current no matter how that current is obtained.
Although electrodes of very varioumatoriala may be made to produce the electric light, in practice aarbon pointa only are employed. It will be readily understood that these play so important a part that it is neceseary great care hould be taken in preparing them. Severt patentis have been taken out with the object of producing good carbon electrodes. Thus, in 1846, Meears. Staite and Edward patented a process of making electroden of angar and powdered coke, mixed, moulded to shape, promed, and barned. In 1849 M. Le Molt patented electrodes made of two parta animal charcoal, two parta wood charcona, and one part of pitch. Various improvements have been effected recently, and among the best made are those of Carre, Archerean, and Gandoin. Thoee who require further information on this subject we must refer to \mathbf{M} Fontaine'a book, to which we.have already called ttention.
It is now time to say momething more in detail of the curious phenomena which, taking place between the onds of the tro carbon electrodes, supply the electric light. Fig. 1 is a diagram, showi
The two aticks of carbon, usually round and about 8 in in diameter, are fixed in two supports, with their points at a amall distance apart, and are united with the cource of eleotricity by two wires. Fig. 1, it must be understood electric lamp is in to show the principle involved. The ratus, wa will be ceen further on.
Fig. 2, ∞ pied from M. Fontaine'f work; shows, full size, the electric light as far as it can be shown on papor. The light reaulta from the incandeccence of a jet of particien detached from the electrodee and projected in all direoone eloctrode toward the other, and more eapecially from the poitive to the negative pole. The positive electrode
always has a temperature much higher than that of the negative electrode, and thus while the latter is heated only to a dull red at a small distance from the point, the positive electrode is at a white heat for a considerable way up. Both electrodes waste away, as may be imagined, but the positive electrode is dismipated twice as fast as its fellow. The light reeembles a trembling, or vibrating fiame, of an egg shape. From time to time we

may see a billiant spark cast from one electrode to the other. Upon each of the carbons may be noticed little liquid incandeecent globules g, showing that some mineral particlen present in the carbons are fused by the heat. underatood that in observing the electric light darkened

tile mbectric light -pull size
glames must be
ndure the glare. "The voltaic arc," says M. Fontaine, "is a portion of the olectric circuit, possessing all the characteristicn of other between the two points a movable chain, poeveming mare or lewe conductivity, and more or lees hemted, according to

afCHEREAV's LAMP.
the intencity of the current on the one hand, and the nature and the dintance apart of the electrodes on the other. What occurs in precinoly an though the electrodes section; and thus it may be anid that the light produced by the voltaic are and that produced by incandesoence are rearlta of the mane oanse, namely, the heating of a bad conductor interpoed in the circuit.
As regarda the quality of the elootric light, a remarkable aimilarity exista between it and that of the sun. Thum
it exciten the combination of chlorine and hydrogen. It effects changes of colour in certain salte; it posereses the the photographer and the dyer
To oum up, then, it is to be upderstood that the alectric light is produced when two carbon points are placed clowe o each other, and a strong current of electricity is ment through them. The current breaks off, ete it wore, particles of carbon, which, momentarily suspended between the wite electrodes or carbon roda are raiser to a dazaling white heal Why this should be so, it forms no part of our purpose to explain here. The explanation may be be supplied at When ell duction of ligt from rectricity is a realt of a chape in he manifentation of a cormity is a reall of a change in all that need be or an be anid briefly on the onbject We no subject. In order that an apparatus for producing light may be serviceable in factories or workabops, it in ceantial that it ehould give a continuous illumination, the intensity of which ahould vary but little. As will be meen further on when we come to speak of the machinery employed to supply electricity, this supply can be rendered as constant in amount and intensity an may be deaired. The producing apparatus, to to spenk, will give little trouble in this respect; but the nsing apparatusthat is to say, the lamp-bohnvee very differently. It hat

FOUCAVLT AND DUBOECQB L.AMP,
alwaye been a source of trouble, and it in not too much Wo say that this troubie ham only beea baroly ditponed of. We have explaided that the carbon electrodes waeto away, but it in necesaary to the production of the light that thbe points shoald remain conemanky at an all but invariable distance from each other. We have meen that the poltive electrode wastes twice as fart as the negative deotrode. If thin were not mo, and all the carbon which one clectrode lost went to its fellow, little harm would be done, one eloctrode loaing as much at the othar guined. In practice this does not take place, and the distance between the electrodes increases continually until it becomes so great that the current will no longer leap
over it. Then the lamp in oxtinguinhed, and to ro-ight it over in Then the inmp in extinguiabed, and to ro-hight it more separated to the proper diatanca more top thet tho wroper din have to be performed every fow minater. It is not surpriaing then that meapares rere taten at a verr nor pariod in the bietory of the electric light to reary ourif lamp antomatic in the menes that it would of itmolf adjues the position of the carbons. The ordinary apring adjug lamp used with carriagea afforda an example of the antomatic adjwitment of a locue of incandeecence in a given place. Of courne the anme means could not be noed to obtain the required ond with the electric lamp; bai the ides involved is much the mame, and aprings have beem and are weed for the adjumement of electrodes. Socme of the many devices which have been tried are extremely complex in appearasce or in reality. We illustrate in Fig. 3 the electric lamp of M. Archerean, becaune it in the

Data aimple of all, and will serve admirably to render the nature of the problem to be solved quite clear. It consiat of a hollow copper bobbin, on which is wound copper sire Lamulated by having a silk thread spun closely round it; of a and of stand; of two "porte carbons," or electrode holders, by a tube a counterweight. The upper electrode is carried copper arm B, wich can slide on and turn in a projecting copper arm B, at the top of the apparatus. This arm in lower electrode connected with the negative wire. The half of iron, which resta on a amall cylinder, half of copper, D. The positire can rise or fall inside the hollow bobbin Wine wound on Dire is attached to one of the ends of the Din found on D, and the other end of the wire wound on electrode is the hollow core of the bobbin. The lower positive wire, becanee th direct commuuication. With the reats always because the cylinder on which the electrode place. A counterw the walls of the core of D in some its carrying continderght E balances the gravity of C and small, and but little force is required to cause C to rise or fall. We have said that required to cause C to rise pended oylinder inside that the upper part of the sua-
U is of iron, the lower part of copper. When the current pases it produces a magnetic action, which causes the descent of the cylindor and. the rise of the counterweight E . When the current ceases to fow, E dencends again and bolls up C.
To put the apparatus in action it suffices, the current being ready, to touch the two carbons, and then to remove them gently to a small distance, the light will at onco be produoed, the cylinder remsins fired inside the bobbin D, and the counterweight is motionless. But a moment arrives when the carbons, having been dissipated, the distance between them becomes too great to allow the electricity to pass. Then the bobbin D no longer exerte any influence over the cylinder within it. No longer held down, this riese obedient to the pull of E; but the instant it risee the current is re-established in full force between the electrodes, and \mathbf{C} is retained in its proper place until the cartoon points are once more too far separated, when the operation is renewed. This apparatus in not now in ane, as prectical difficulties were met with in its employment.
In Fig. 4 is shown a Foucault and Daboecq lamp, which will be very high reputation in franoe. Its construction will be readily understood by those' who have followed us thos far, Δ n electro-magnet is placed at the lower part of the apparatus; above the magnet A in fitted a lever. B, controlled by a helical spring, which can be regulated by a thumbeecrem in a way which will be understood without further deacription. The electro-magnet pulls against this bpring. Above the- magnet will be seen a box D con-
taining raining a clockwork movement which sctuates the porte carbon E F, which are fitted with racks as ahown, which gear with the wheela G, one of which is larger than the other, because the carbons waste at different rates. The armature B carries a vertical fod H, which rimes within the box D and stope the movement of the clockwork. when the current is just what it ahould be and the light satinpointy; but the moment the distance between the carbon pointe becomes too great the resistance to the current angments, the armature is drawn anrey from the magnet, and the movement of the rod H setin the clockwork free to ran until the carbon points are brought cloee enough for the original be re-establinhed, when the armature resumes its trainal position, and the wheel-work is stopped. Two While the mechanism are ubed, and either can be set free electrode other is at rest; one, as ye have seen, brings the only atten together, while the other meparates them. The and to ention required is to wind up the lamp every day, say, aboupply new olectrodes when required-that is to does about every four or five hours-an operation which dhe dotails occupy more than two or three minutea. All the details are very ingenious and carefully worked out.

Hints for the Workshop.

A grindstone is very seldom kept in good working order; generally it is "out of true," as it is

Fig. 1,-whurnga a GRNDSTORE.
called, or worn out of a perfectly circular shape. A now stone is frequently hang so that it does not
run "true," and the longer it is used, the worse it becomes. When this is the case, it may be brought into a circular shape by turning it down with a \#orn-out will-file. It is very diffleult to do this perfectly by hand, but it is easily done by the use of the contrivance shown in figure 1. A post, slotted at the upper part, is bolted to the frame. A picce of hard wood, long enough to reach over the frame, is pivoted in the slot. This should be made two inches wider than the stone, and be pivoted, so that an opening cau be made in the middie of it , of the same width as the stone.' This opening is made with sloping ends, so that a broad mill-file may be redged into it in the same manuer as a plane-iron is set in a plane. At the opposite end of the frame a second post is bolted to it. A long

Fig. 2.-HOLDER FOR TOOLS.
slot, or a series of boles is made in the lower part of this post, so that it may be ralsed or lowered at pleasure by sliding it up or down apon the bolt. If a slot is made, a washer is used with the bolt; this will make it easy to. set the post at any desired hight. It should be placed so that the upper plece of wood may rest upon it, exactly in the same position in which the file will be brought into contact with the stone. A weight is laid upon the upper plece to keep it down, and hold the cutter upon the stone. Wheu the stone is turned around slowly, the uneven parts are cut away, while those which do not project beyond the proper line of the circumference. are not touched.

In reply to several lnquirles for a shaving-horso, or a machine for holding shingles, or other articles that require to be worked with the drawing-knife,

A seaving-horse.

We give the accompanying engraving of one in common use. It consists of a strong stool, made of hard wood plank, four feet long and a foot wide, with four legs, which are eighteen inches long. Upon one end of the stool is fixed a bench, nearly two feet long, sloping a little from the front backwards, to make it more convenient in use. This bench may be supported upon four posts, or two walls of plank, being then open underneath at each end. A slot is cut in the beuch, to admit the end of a lever, which is pivoted in a similar slot in the plank beneath. A stout peg, similar in shape to a ruog of a ladder, is fixed in the bottom of the lever, and projects about six inches on each side. The leror is sawed out of a plece of tough white-oak plank, and a carriage bolt is passed through the jaw, at the upper part, in arder to strengthen it. Whese
ii use, the workman bestrides the stool, using a eashion if desired, setting with the bench in front oi him, and his feet upon the peg beneath it. By pushing with the feet, the jaw of the lever is pressed down very frmly upon whatever work may bo placed upon the bench. The slope at which the ivach is placed, should be such that the drawing motion will be as easy as possible to the workman.

The Future of America.

Rev. Joweph Cook recently dolivered a lecture in New York City on "Ultimate America"" Of our continent's field for progress in the future he said:
It is not commonly known that the amount of arable soil in North and South America is greater than that in Europe, Asia and Africs put together, and can therefore sustain more lives. This is no rash corclusion. I spesk from a scientific basis. The remnant of productive soil (as the scholars say, I do not ameert it on my own authority), is $10,000,000$ equare milea in the Old World, and $11,000,000$ in the New. Thus burste upon us in all the light of scientific truth the fact that America can surtain a greater population than the Old World, and if she can, it is unquestionable that ahe some day will. In this circumstance I bear the echoes of fate, with whose footfalls it is fitting that the centuries should keep step. Some of us who are not yet very old have seen our population increase from $27,000,000$ to $40,000,000$. Some have seen it increase from $8,00,000$ to 40;000,000.

Suppose that there are $100,000,000$ perwons in all America in the year 2000. This is surely a moderate entimate, for now there are $84,000,000$. Suppose that after the year 2000 our increase in one per cent. a year, or less than the present increase in England and Germany. It in said that the imagination is audacious, but the reason is more so. On this basis what do we find the future of America to be? Itm population in the year 2600 would be $6,400,000,000$. The "Encyclopedia Britannica" affirms that North and South America can furnish sustenance for 3,600,000,000 . Europe has an average population of 80 persons to the square mile. We have an area of $15,000,000$ equare miles. If we conclude (and why may we not?) that we ahall some day have as large an average, our population will be $1,200,000,000$. Before much a stupendoun future we should remember that America has been twice washed in blood because past gerierations have boen poor rudders. In this view of the case, the age has, therefore, not ceased to be a crivis.

To Straighten Warped Woods.--Of all the trisls and vexations that beset the beginner there are none more annoying than the tendency of his wood to warp. He sends to his dealer for a amall assortment of fine woods, and expects to receive them perfectly true and fist. Perhaps the woods are flat when they leave the dealer, but in transit they are very likely to twist out of shape, reaching their destination badly warped. 'The expressman may not be aware of the subtle nature of these woods, and in not a very gentle manner lays the package on a damp, cold floor. The dry wood sucks in the moisture on one side, swells and curls. It should not be a difficult matter to cure this. If the wood is in a large piece the convex or hollow side should be steamed or moistened a little, and then laid upon a dry floor, holding it down with a smooth, flat board, upon which weights are placed. Whan quite dry it will be found to have regained its original shape. If the wood is in smail pieces it can be easily straightened by gently ataaming the convex side over a teakettle, and then holding the other aide towards the heat until it becomes atraight, when it can be left in a press or under weight for a few hours. Almost any warped woode will yield under this treatment.

To Make Ropes Durable.-To prolong the duration of ropes and retard their decay, steep them in a solution of sulphate of copper, an onnce to a quart of water, and then either tar them or immerse them in sospsude, four ounces of coap per quart of water. In the latter case there is no smell.

CACHINES THAT HRAB ATB WBITR.

The propagation of sound in air is excellently illustrated in the ingenicus apparatus devised by Professor Tyndall and represented in Fig. 1. A is a stem passing through the upright, B, to which a shock can be sent from a ball, C, through a spring to another ball, thence through another spring to another ball, and so on until at last the shock reaches the last ball, which is projected against the india rubber pad at the end, D, placed there to represent in a rude mechanical way the drum of the ear. When the stem, A, is pressed, the ball. C, only moves to and fro, yet it sends a kind of pulse, f, e, e, f, which travels along the line and ultimately causes the last ball to give a smart stroke on the pad, D. That this represents what takes place in air, when sound is propagated through that medium, is shown by the apparatus represented in Fig. 2. A tube 11 feet long and 4 inches wide has its ends closed with thin india rubber. Against the rubber at one end there presses a cork, a, with which is connected a hammer, b, which is in contact with the bell, c. If now a pulse be sent from the other end of the tube, the india rubber will drive away the cork and will cause the hammer ta strike the bell. It will thus be evident that, when vibrations are caused in the air of a tube closed by a membrane, that those vibrations will be transmitted to the membrane. In the ear, as we have stated, the auditory nerves take the vibrations from the membrane to the brain, and the latter influences other nerves and muscles which cause us to write down what we hear. The problem to be solved in the phonograph is to find a mechanical substitute for auditory nerves, brain, and muscles, or, in other words, to connect some device with the body thrown into vibration by the sound, which shall register the movements of that body. The simplest and most direct method of re cording vibratory movements is by Lissajou's apparatus, by which the vibratory motions of two sounding bodies may be compared without the aid of the ear. This method, which depends on the persistence of visual sensations on the retina of the eye, consists in fixing a small mirror on the tibrating body, so as to vibrate with it, and to impart to a luminous ray a vibratory motion similar to its own. The bodies used are tuning forks, and in Fig. 3 is represented the optical combination of two rectangular vibratory motions, the figure being projected on a screen. A large number of curves are produced, wh ich are more complex when the ratios or the numbers of vibrations of the bodies are less simple; and as each curve or variation corresponds to a definite condition of the forks (pitch, etc.) it is evident that, while it is a graphic representation of the vibrations which take place in the bodies, it also represents the sound resulting from such vibrations. If the beam of light producing

TO OUR READERS.

In reply to a suggestion from a subscriber that it would be gratifying to many to have the Patent Laws of Canada printed in this Magazine, we beg to say that a summary of the Patent Laws of Canada and the United States was published in Vol. 4-1876-and that any subscriber not having that volume can obtain it by enclosing $\$ 2$ to this office.-Ed. Canadian Mechanics'

the curves were projected upon a sensitized surface, then the curve would be photographed, and consequently we should have a graphic representation of the sound.
Konig's manometric flames furnish a very delicate mode of graphically showing the nature of sounds. The apparatus used consists of a metallic capsule divided into two compartments by a thin membrane of rubber. The tube on one side of the capsule connects with a mouthpiece; the space on the other side is connected with a gas burner, the supply pipe of which also enters said space, so that on one side of the membrane is air and on the other gas. When the sound waves enter the capsule by the mouthpiece and tube, the membrane yielding to the condensation and rarefaction of the air waves, the gas in the compartment on the opposite side of the membrane is alternately contracted and
expanded, and hence are produced alternations in the length of the flame, which are, however, scarcely perceptible when the flame is observed directly. But to render them distinct they are received on a mirror with four faces, which is rotated on a vertical axis. As long as the flame burns steadily there appears in the mirror, when turned, a continuous band of light. But if the capsule is connected with a sounding
 tube for example, yielding the fundamental note, the image of the flame takes the form represented in Fig. 4, and that of Fig. 5 if the sound yields the octave. For different sounds produced before the capsule the flame assumes widely differnng appearances. It would not be impossible to photograph the representation of the flame in the mirror, and thus permanent graphic records of sounds might be obtained.

We now come to purely mechanical means of registering sound, to which class belong the Edison and other phonographs. In Fig. 6 is represented Leon Scott's phonautograph, which consists of an ellipsoidal cask, A, of plaster of Paris, and about $1 \frac{1}{2}$ feet long. The end, A, is open; that at B is closed by a solid bottom having an orifice, in which is a bent brass tube, a, which carries a ring on which is affixed a thin membrane. Near the center of the latter is a very light style; and in order that this style may not be at a node, the membrane stretching ring carries a movable piece, i, which is termed a subdivide, and which, being made to touch the membrane first at one point and then at another, enables the experimenter to alter the arrangements of the nodal lines at will. It follows that, when a sound is produced near the apparatus, the air in the ellipsoid, the membrane and the style will vibrate in unison with it, and it only remains to trace on a sensitive surface the vibrations of the style and to fix them. For this purpose a rotating copper cylinder, c is covered with lampblacked paper and the style is brought in contact with the latter, so that, when the cylinder is rotating and the style vibrating, a sinuous line is produced, the nature of which depends upon the sound. Thus in Fig. 7 is represented the trace of the sound produced jointly by two pipes, whose notes differ by an octave. This arrangement of rotating cylinder is also employed in connection with tuning forks, a style being arranged on one arm of the fork. On a note being sounded in unison with which the fork is tuned, the fork vibrates and consequently a sinuous line showing the nature and velocity of the vibrations is made upon the paper of the cylinder.
In April, 1873, Mr. W. H. Barlow read before the Royal Society a paper on the "Logograph," an invention of his own for recording sound, which consists of a small speaking trumpet about 4 inches long, having an ordinary mouthpiece connected to one end of a tube of $\frac{1}{2}$ an inch in diameter, whose other end is broadened out so as to form an aperture of $2 \frac{1}{2}$ inches diameter, which aperture is

stopped by a membrane of goldbeater's skin or thin gutta percha. Against this membrane a spring presses lightly and has connected to it a light arm of aluminum, which carries a marker consisting of a very fine sable hair pencil, projecting from the lower end of a glass tube containing coloring material, the tube and pen-
 cil together forming a kind of fountain marker, as the coloring material gradually oozes out and keeps the pencil continually moist and supplied with color. Under this marker a continuous strip of paper is made to pass, in in the same manner as the strip of paper in the register of the Morse telegraph, and the whole is so arranged that wheri the membrane occupies its normal position the marker makes a simple, straight line, as the strip of paper passes beneath it, but any force acting on the membrane will cause the marker to move, and a crooked line will be the result, the deviation from a straight line depending on the amount of force exerted on the membrane.
To provide for the escape of the air passing through the trumpet a small orifice is made in the side of the tube, so that the pressure exerted upon the membrane and its spring is that due to the difference arising from the quantity of air forced into the trumpet and that which can escape through the orifice in a given time. The pressure of the spring and the size of the orifice have to be so proportioned to each other as to admit of the movement of the marker with theslightest pressure of the breath, and yet it must not move so easily as to pass over the edge of the paper under the greatest pressure which the breatb is capable of producing. By this apparatus, when properly adjusted, the various sounds produced by speakiag will act on the membrane, causing it to mbve the marker correspondingly to the force exerted by the differing tones of the voice, and thus a series of irregular lines will be produced, exhibiting remarkable uniformity when the same phrases are repeated, as is showa by the diagrams in Figs. 8 and 9, made by the instrument when the words under them were pronounced by the same speaker successively.

One of the first peculiarities manifested in using the instrument was the action produced by the silent discharge of air from the mouth after a word was pronounced.
This silent discbarge appeared to depend on the force sequired in the last syllable, and was most developed in those syllables terminating with the consonents termed "explodents," whether with or without the silent vowel E after them. This effect is shown in Fig. 10, in which the part marked d is the silent discharge, and its appearance in the diagram is under the control of the will, for by holding the breath immediately after pronouncing the word, this part of the diagram can be altered as shown in Fig. 11. If, instead of terminating with an explodent, another syllable be added to the word, making it terminate with a consonant of softer sound, the air which would have been silently discharged is used to form the syllable sulued, and the subseauent silent discharge is very much diminizhed, as at Fig. 12.

and which would, when operating in conjunction with it, produce a strange jumble of marks that would puzzle not only a Philadelphia lawyer, but a dozen of them, to decipher.
(Scientific Americun.) 18

FIRE-PROOF CONSTRUCTION.

The great danger in our present system of construction lies in the inflammable nature of our building materials, and in the opportunity given by the arrangement of partition walls and floors, unchecked, unseen, and out of reach. It is best, if possible, to build outer walls of brick, and, with a judicious treatment and at moderate expense, they can be made to look attractive, even i the cuuntry. By making a projection or offset inside at each fiwor, an effectual stop can be put to any passage of fire up the inside surfaces; or, if hollow or vaulted walls are used, the plaster can be put directly on the brick without using any wood. But if the outside walls are of wood, the spread of fire can be greatly checked by filling them full, between the joints and against the outside boarding, with brick and mortar, or concrete, or any such incombustible material ; or, if that expense is too great, they may be filled at each floor, and for a short distance above. Then, by treating the partitions in the same way, there will be an unobstructed channel or flue for flame only one story high, and stopped tight at top and bottom. The wood will hold well and burn very slowly, even when only partially protected in this way. In war times, soldiers used to build chimneys with a cob-house construction, of small sticks plastered inside and out with clay; and these frail structures would endure the heat of roaring wood fires, simply because the flame could not reach to envelop the wood. Protect a piece of joist on two sides with plaster, and it will be very hard to make the exposed flat surface burn long, and the charred wood soon furnishes a sort of check to further combustion. And this is the correct principle to apply to the protection of wooden houses. Cover the wood so far as possible, with mortar, and stop all circulation of air. Having pugged the walls and partitions thoroughly, and treated the stairway in a similar manner, by filling in between the supporting stringers or earriages with coarse mortar, we must next make the opening Found the chimney tight, where it passes through the floor, by a filling in of mortar, or by turning trimmer arches against the surrounding timbers on the four sides.

The next vulnerable point is the floor. In France it is often the custom to cross-lathe the ceilings with lathes considerably thicker than ours, and then to puta flat surface of rough boards a short distance below the under surface of these lathes (supporting it by a staging), and to pour in from above a mixture of plaster of Paris, which hardens into a solid mass between the floor timbers and above and below the lathing. When the whole is sufficiently set, the staging is removed and the ceiling smooth finished from below.,
All these precautions against fire are also useful to make the house warmer, to deaden sound, and to help to stop leaks. And they क्षe all in one sense economical, they may save exhense in insurance. It is a good maxim in war to do what your onemy least wishes you to do. The fire fiend craves light
Wood work, loosely arranged and full of draft channels. 亡 Liet him find everything pugged solid with mortar. Make him dig for every inch of wood he seeks to devour ; check him, hold
him, worry him, cramp him in close quarters. Then with a him, worry him, cramp him in close quarters. Then with a
little presence of mind, a strong arm or two, and a few homeiy Iittle presence of mind, a strong arm or two, and a few homely
Weapons, you can drive him to a corner aud finally destroy him
altog Weapons, you can drive him to a corner and finally destroy h
altogether.-J. A.F, in the Boston Journal of Chemisiry.

The power of a horse is said to vary from five to eleven times that of a man... A new item of commerce-coffins-from Norway of a man.... A new item of commerce-coffins-from
Portable is belir, ved to exist in the human blood... Portable iron huts are in use by the Russian army; they use
condensed forage.

CAUSE OF DECAYED TEETH.

A writer in the British Medical Journal gives some valuable suggestions on the preservation of the teeth: The general prevalence of dental caries is chiefly owing to food remaining on and between the teeth after meals-from breakfast time till the following morning-when, according to custom, the teeth are brushed; brushed, but probably not cleaned, as the brush is more often used to polish the surface merely than to assist in removing what has acumnlated between them., Experiments have been referred to that prove the solvent action of weak acids on the teeth; and I think it will be conceded without proof that, were portions of our ordinary food, mixed and moistened as in mastication, kept during the night at the high temperature of the mouth, the compound would be sour. It follows that dental caries must continue to prevail as now, while it is the custom to allow the food to remain in contact with the teeth all night.

The following observations show the dependence of caries on food remaining in contact with the teeth. Whep the teeth are wide apart food is not retained, and they generally remain free from caries. The lower front teeth are seldom attacied by caries when, as is generally the case, the spaces between are closed to the entrance of food by tartar. The backs of all the teeth, upper and lower, being kept free from food, by the tongue, are seldon affected by caries. Lodgment of food takes place between the bicuspids, between the molars, in the depressions on the masticating surface of these teeth, and on the buccal walls of these molars, and these are the chief seats of caries. While mastication is performed by the molars and bicuspids, the upper front teeth remain free from food and from caries; tut, when they themselves are made to do the work of diseased molars, and the food gets between them, caries is certain to follow before long. Further proof cannot be required that, if no food remained in contact with the teeth after eating, they would be free from caries, unless acted upon by acidity from other sources. The only indications, therefore, for the prevention of dental caries are the neutralization of acid applied to the teeth and the removal of food before it has become acid. The food should be removed after every meal, and all who have not the opportunity of doing so should not fail to remove it every night at bedtime by rinsing, as the brush cannot be trusted to remove the food from between the teoth.

WHOLESOME WATER.

At a recent meeting of the New York Academy of Science, Prof. A. R. Leeds read a paper on the relation between fish and plant life and the probability of drinking water. The subject of the wholesomeness of drinking waters was brought prominently before the pablic of this section by the excessive mortality of the fish in the Passaic river during last June. This appeared of such importance to the Professor that he made two visits to Patersou to collect information. No naturalist appears to have examined into the nature of the disease. Its external indication was the formation of a soft spot on the side of the fish, and death speedily tollowed the rapid growth of this. That the refuse of factories was not the cause was plain from the fact that the fish had died in great numbers above the falls, even in the tributaries of the Passaic, and also in isolated bodies of water like Rockland lake. Mr. John Roe, one of the fish wardens, stated that the water was unusually low during the epidemic and the weather had been excessively hot. Where the disease was most prevalent, the depth of water varied from three to eight feet. It appeared also that at this time an unusual amount of acquatic plants of a low order had invaded the stream. The following inferences may be drawn: 1. That the rapid development of vegetable growth may he attended with the production of spores or gem. micles forming a specific poison to fish life. 2. That the organic impurities arising from the action of the sun upon shallow water and the gases evolved may originate disease. 3. The supply of oxygen might fall below the point requisite to the support of life by being consumed in the oxidation of vagetable matter; by the partial exclusion of the air from the water by the crust of floating alge ; and by diminution in the supply of highly \&rated water from levels by reasons of the drouth. A very heavy rain put an end to the epidemic. The third hypothesis seems the strongest.

The Hayden Geographical Survey parties are preparing their reports of last season's expeditions......The I'atent Bar Association of Washington has proposed amendments to the Fatent Laws.

CHURCH FURNITURE.
Examples of Polishfo Brass Eagle Lecterns and Carved Wooden Lecterns.

A INEW PER8PECTIVE DRAWING TOOL.

In perspective drawing it is necessary to draw lines from a distant point at one side, called the "vanishing point." This point is frequently at such a distance as to require a very long drawing-board and straight-edge to produce the vanishing lines. The simple instrument, represented in our engraving, called the "Perspective Linead," will accomplish this in the most perfect manner without requiring long boards or rules, and is therefore indispensable to all draughtsmen and artists who have to make perspective drawings.
This instrument censists of a long rule upon which are jointed two arms by a thumb-screw in such a manner that they may be set at any required angle. It will be observed on reference to the engraving that one edge of the rule and one edge of each arm come in line with the axis of the rule. In this position the instrument is adapted to produce vanishing lines from the lefthand side of the drawing only; to draw those of the righthand side another instrument of the same kind is required, both forming a pair.
In drawing with the perspective linead the arms are pressed continually agsinst two studs, which are fastened at a distance apart upon the edge of the drawing-board. One method for setting the perspective linead for use, which is the manner recommended, is as follows : After drawing the horizontal line for the intended perspective drawing, which is generally done by the T-square, a vertical line has to be drawn at right angles to it, up the side of the drawing-board, from which the vanishing lines are wished to be produced. Upon this line, at equal distances -generally about eight inches-from each side of the horizontal line, are to be placed the two studs, which are intended for the arms of the linead to slide against. These studs are fixed in position by pressing down the pin, which projects from the under side in the point of distance set off on the line. The upper or axial edge of the rule of the porspective linead is then placed along the horizontal line, and the arms (the screws of which have been previously loosened) are each brought to one of the stads, allowing the arms to take about the angle to each other thought to be required to produce the desired distance of vanishing point ; in this position the arms are to be clamped. It is then necessary to try if the linead will correspond with the line which forms the top of the building, or other object intended to be placed in perspective, which is either sketched by judgment or drawn according to the rule of perspective. This is done by moving the rule up from the horizontal line, always keeping the arms in contast with and sliding against the studs. Should the vanishing point that would be given by the perapee-
tive linead, as now set, appear too near, it will be necessary to put the rule back on the horizontal line, from which it has always to be set, unclamp the screws of the arms, and press the rule back against the studs, keeping it still on the horizontal line, so as to flatten the angle of the arms the amount thought to be required; then clamp the arms again and make another trial.
If the vanishing point appears too far, the arms will require setting at a more acute angle. It is best in all instance to make a mark at the side of the end of the linead to show its position before alteration, to insure having about the distance from the last setting thought to be required. When the instrument is once set, it is right for all the vanishing lines from one side.
The above description may perhaps convey the impression that the instrument is difficult to use, but in fact it ir quite easy in practice, as, after using the linead for a few perspective drawings, the angle at which the arms should be set for any particular drawing becomes so familiar that it may be judged sufficiently near for the first trial, or a slight alteration of this, to suffice.

Varnish for White Wood.-Copal Varnish: Take of copal, liquefied, 30 z .; essence of turpentine, 200 z . Place the mattrass containing the oil in a balneum marix, and when the water boils add the pulverized copal in small doses. Keep stirring the mixture, and add no more copal till the former be incorporated with the oil. If the oil, in consequence of its particular disposition, can take up 3ozs. of it, add a little more, but stop if the liquor becomes nebulous; then leave the varnish at rest. If it be too thick, dilute it with a little warm essence, after having heated it in the balneum mariæ. When cold, filter it through cotton, and preserve it in a clean bottle. This varnish has a good consistence, and is as free from colour as the best alcoholic varnish. When extended in one stratum over smooth wood which has undergone no preparation it forms a very brilliant glazing, which, in the course of two days in summer, acquires all the solidity that may be required. The facility which attends the preparation of this varnish by the new method here indicated will admit of its being applied to all coloured grounds which require solidity, pure whites alone excepted. Painted boxes, therefore, and all small articles, coloured and not coloured, where it is required to make the veins appear in all the richness of their tones, call for the application of this varnish, which produces the most beautiful effect, and which is more dorable than turpentine varnishes.

Edge-Laid Belt.-A better plan of making a broad belt than the usual American double leather belting sewn together, is made with the greatest ease, of any thickness or width, perfectly equal in texture throughout, and alike on both sides. It is made by cutting up the hides into strips of the width of the intended thickness of the belt, and setting them on edge. These strips have heles punched through them about one-eighth of an inch in diameter and one inch apart. Nails, made of round wire, clinched up at one end for a head and flattened at the other, are used for fasteuing the leather strips together. Each nail is half the width of the intended belt, and after the strips are all built upon the nails, the ends of the latter are turned down and driven into the leather, thus making a firm strap, without any kind of cement or splicings. When the strap is required to be tightened, it is only necessary to take it asunder at the step lines of the splice, cut off from one end of the strap at each step what is required, and piece up again with wire nails or laces, going entirely through the strap.-E. Leigh.

Preserving Wood by the Application of Lime.-The method of preserving wood by the application of lime, as pursued by M. Svostal, is published in the French journals. He piles the planks in a tank, and puts over all a layer of quick. lime, which is gradually slaked with water. Timber for mines require about a week to be thoroughly impregnated, and other wood more or less time according to its thickness. The material acquires remarkable consistence and hardness on being subjected to this simple process, and, it is alleged, will never rot. Beechwood has been prepared in this way for hammers and other tools for iron works, and is said to become as hard as oak without parting with any of its well-known elasticity or toughness, and to laat much longer than when not thus prepared.

COHEN'S SMALL DRILLING APPARATUS.

The above illustration represents a swall drilling machine manufactured by Mr. M. ('ohen, of Kirkgate, Leeds, which may be used by fastening it in a vice, or in a wood block, or attached to a small lathe in the ordinary way. It is a well-made and nicelyfinished little toul, and is one which will be found very useful for a variety of purposes, and especially useful to amateurs. Its construction, as will be seen from the illustration, is an improvement upon those hitherto made. Each machine is provid with six small drills, and its remarkable cheapness, and evident usefulness, should secure for it a large sale. (9n readers will hardly credit that they can receive it $\mathrm{p}^{\text {ost }}$ free for one shilling sterling.

IMPROVED PATENT PONY AND HORSE GEAR.

A useful improvement on the common means of transmitting power has heen patented by Messrs. Iohn Williams \& Son, of the Phenix Iron Works, Rhuddlan, near Rhyl. It will be shown, with other productions of the firm, at the fortheoming Agricultural show, at Istington. The general shape of the machine is shown in the amexed cut. It is deseribed by the makers as a new patent pony gear with dome wheel and intermediate motion encased inside of same, making it a very sate and compact implement, and it is said to be well adaptel for driving small food. preparing machines, churus, pumps, \&e. The diameter of the driving wheel is 2 feet 5 inches, a larger size being 2 feet 8 inches in diameter. The gear is fitted with two 'peeds, each making six-and-thirty revolutions to one of the puny. In days like these, when the necessity of using appliances for ceonomising manual labor is so universally felt, owners of farm stock will doubtless find it to be true economy, though it may seem costly at first, to possess themselves of machines like this, the action of which, if kept in good working order, is uniform, and nay therefore be depended upon.

We may note that the chaff and turnip cutters of these makers -described in our columns some time ago-have been very successful in this year's competition. Sllver medals at Preston and gold medals at Antwerp, with a special medal for chaff-cutters at Edinburgh, last July, are honors worthily conferred upon a firm which always aims at keeping up the high charactor long ago obtained by sound and good work.

CUCA AS A STRENGTH SUSTAINER.
In many callings it is occasionally necessury for a man to put forth extra exertion for protracted periods of time; as, for example, a sailor during a storm, a soldier on a forced march, an engincer in case of aceident or impending disas ter. Frequently, at such times, it is impossible to procure or to prepare suitable fool for the increased demands of the system, or to ohtain the sleep which both body and mind require. Yet it is desirable, perhaps imperative, that both body and mind shall be kept up to their best working capacity. In every part of the world and in all stages of civilization, men have discovered means more or less efficient, more or less harmful, for meeting such emergencies; and one of the hardest lessons of human life and experience has been to learn how to use such aids to endurance without abusing them. Even the most useful and least harmful of them-tea, coffec, wine, tobacco, and the rest-are mischicvous if not worse when used babitually or in excess; while others, like the various alcoholic beverages, are apt to disturb what is so essential in critical emergencies, the proper acto: of the brain. It is natural and proper, therefore, that these who recognize the practical need of the race for what mi:y lee called special foods, should take a lively interest in the dimonstration of means for securing the good results aim..1 at by all of them, with the least possible physical and momal risk. The latest chamant for this responsible position is the leaf so long asod by the mountaineers of South America-cuca; and prorhaps the most instructive test of its virtues thus far made is to be credited to the Toronto Lacrosse Club, a company of intelligent gentlemen, most of them occupying high social and professional positions, and all of sedentary oxcupation. The latter point is important, since men of indoor life are not the most favorable subjects for occasionally putting forth violent and protracted physical effort; while the matter of intelligence is not less important in determining the value of their estimate of the aid received by the use of cuca.

In the spring of 1876 several of the members of the club began to use cuca as a strength-sustainer, with results so satisfactory that nearly all the "first twelve" used the leaves tiring all their mportant matches. There were ten in number, and some of them lasted for several hours. The club, it will be remembered, held the champiouship of the world and maintained it throughout against all comers, Indians as well as whites.
Their practice was to serve out to each man at the beginning of a match about a drachm or a drachm and a half of the cuca leaves, to be chewed in small portions during the progress of the game, the saliva to be swallowed. The effect, the experimenters report, was a sensible increase in muscular force and an almost entire exemption from fatigue. The pulse was increased in frequency, and perspiration was augmented: but no mental effect was observed beyoud the natural exhilaration of contest and vigorous exercise. There were no subsequent disagreeable effects; and no alkaline matter was used with the leaves, as is the practice in Peru.
On one occasion, in midsummer, the thermometer mark. ing 110° in the sun, a match was played with a club of mechanics and other out-door workers, of sturdy build and in fine condition. The cuca chewers came out of the game as elastic and apparently as free from fatigue as when they began, while their opponents were thoroughly exhausted.
The experience of the past season, so far as reported, substantially confirms that of the preceding year. Nearly every member of the club is confident that the cuca has been of
great assistance in sustainiug strength. Two or three are doubtful; not one tinds it injurious. It is proper to add that amoug the South American natives, by whom cuca is used with lime and to excess, its effect is often disastrous, inbecility being a common result of its protracted use.

Improved Carmine Ink.- The English Mechanic says: The sulubility of carmine lake in caustic aque ammonia is attended with this disadvantage: that in consequence of the a/kaline properies of ammonia, the cocbineal pigment will, in time, form a basic compound, which in contact with a steel pen no lunger praduces the intense red, but ratber a blackist color. To avo d this evil, prepare the ink as fullows: Saturate 1 gramme of pure carmine with 15 .grammes of acetate of ammonia solution and an equal quantity of distilled water in a porcelain moriar, and allow the whole to stand for some time. In this way a portion of the alumnia which is combined With the carmine dye, is taken up by the acetic acid of the ammonia salt, and separates as precipitate, while the pure pigment of the cuchinal remains dissolved in ha!f saturaled ammonia. It is now filtered, and a few drops of pure white syrup added to thicken it. In this way an excellent red drawing iuk is obtained, which holds its color for a long time. A solution of gum arabic caniot be employed to thicken this iwk, as it still contains sume acetic acid, which nould coagulate the bascorine which is one of the natural coustiluents of gum arabic.

The Cord Production of the World.-Whe coal production of the world would appear to have increased to a surprising extent during the last thirty years. In 1×45. (ireat Btitain extracted $31,500,000$ tons. In $15-4$ she
 tons in 1845, and 14,669, , who tons in 187 t. The production of the Enited States in 4845 was 4 f(4). (1) in 18 it it had grown to $42,423,900$ tons. France produced
 sia extracted $3.500,060$ tons in isti, and $41.75+460$ tons in lsit. Finally. Austria and Homgary produred Tu9.ion in 1sti. and $\because, 810,900$ tons in 18.4 . The combined production of the six countries will be seen to have risen fiom
 Irmifucturer.
About Broken Bottles. What becomes of all the broken bottles? may well be asked. Thousands of tomi of bottles are broken every year in London alone, and the difterence between the sound and the broken bottle must be something very considerable. Broken "wines" and broken "sodas" are converted to many useful purposes, the latter especially. .The best soda-water bottles come from Yorkshire, and the "gingers" from Derbyshire. The sodas are no longer sent to the metropolis packed in crates, as formerly. In the crate they were pilfered to a very great extent en routsto thes ${ }^{2}$ destination, and the cost of carriage was higher. 'They are now transmitted in bags made of coarse canvas, and packed in layers of straw. Each bag holds eight dozen. The broken bottles are subsequently utilized for manufacture of cheap jewelry, chimney ornaments, and inferior household glass for the manufacturing districts. 'I hey are also used for the manufacture of emery powder, glass paper, ctc. Some idea of the Dumber of "sodas" broken in the processes of filling. corking: cleaning, and distributing, may be gathered from the ciremimstanee that one of the London mineral water manufarturer, sold last year 100 tons. The value of the "metal," as it is styled, is somewhese about 10 s. per ton, but it rarics asecord-
ing to the dit ing to the demand.-British Trade Iouraal.

CHEMISTRY, PHYSICS AND TECHNOLOGY.
Tuco Jrocesses for Prexerving Fish from decay were detailed in a recent conmmication to the Paris Academy of Science by K. M. d'Amelio. The firt process was as follows: The fisb, whetber raw or conked, is immersed in a strong solution of citric acid in water. After two or three hours, the fish is taken from the bath and dried in the open air, or by artificial beat, the latter course being preferable. Fish so prepared will kecp fresh anywhere for years. To restore its origioal flexibility it must be steeped in fresh water four or five days. The other method consists in the employment of a bath of silicate of potash and glycerine, in equal quantitits. The firh, the intestines having first been removed, is steeped in this bath for a day or two, washed in fresh water, and dried slowly. By the use of this process the author has succeeded in preserving intact the color of the fishes and the eyes.-P.S. M., vii, 384.

CHoutchour Makin! on the Ametzon.-Narrow path lead from the hut throurh the thick underbrush to the solitary trunks of the India rubber trees; and as soon as the dry season allows. the woodman goes into the seringal with a hatehet. in order to cut small holes in the bark, or rather in the wood of the aoutchouc tree, from which a milky white map begins to How through an earthenware spout fastened to the wound. Below is a piece of bambon which is cut into the shape of a bucket. In this way he goes from tree to tree until, upon his return, in order to carry the material more conveniently he begins to empty the bambou buckets into a large calabash. The contents of this are poured into one of those great turtleshells, which on the Amaton are used for every kind of purpose. He at once sets to work on the smoking process, since, if left to stand long, the gummy particles separate, and the quality of the India rubber is hurt. This consists in subjecting the sap, when spread out thin, to the smoke from nuts of the Vrucury or Cauassa palm which, strange t.e say, is the only thing that will turn it solid at once. An earthenwar. "bowl without bottom," whose neck has been drawn togrther like that of a bottle, forms a kind of chimney when placed over a heap of red-hot nuts, so that the white smoke escapes from the top in thick clouds. The workman pours a small quantity of the white, rich, milk-like liquid over a kiod of light wooden shovel, which he turns with quickness. in order to separate the sap as much as possible. Then he passes it quickly through the dense smoke above the little chimney, turns it about several times, and at once perceives the milk take on a grayish yellow color and turn solid. In this way he lays on skin after skin until the India rubber on each side is two or three centimeters thich and he considers the plancha done. It is then cut upon one side, peeled off the shovel, and hung up to dry, since much water has got in betwern the layers which should dry out if possible. The color of the plancha, which is at first a bright silver gray, bocomes more and more yellow, and at last turns into the brown of carutchouc, as it is known in commerce. A good workman an thish, in this way, five or six pounds an hour. -Scrioner's Magazine.

1 New Cur Bralie, devised by Jacob J. Anthony, of Sharon prings, N. Y., comprises a cylinder containing pistons, which are forcod apart by steam, water, or air, under pressure. By this means levers are moved so as to force the brake shoes agsinnt all the wheels simultaneously, and with an equal presure on both sides of each wheel.-C. R. Rev.

PRACTICAL GEOMETRY-APPLIED.

$B Y$ J. MANGNALL.

THE CONSTRUCTION OF SCALES

Scales.-The acale is so called from a Greek word, which signifies a wooden measure of length, and is a mathematical instrument consisting of various lines drawn on wood, ivory, brass, \&c., variously divided according to the purpose it is intended to serve, and is used for measuring straizht lines, and laying down distances. Scal's are denominated, according to their uses, as the plain scale, diagonal scale, plotting scale, vernier scale, kc.

The most useful scales for mechanical drawing are the plain scale and diagonal scale, and to the construction of these scales we confine ourselves in this part of the serics.

Plain Scales.-Plain scales consist of any number of equal divisions and subdivisions, laid down with such accuracy that any drawing constructed by them shall be in exact proportion in all its details.

In the construction of scales, the subdivisions should be carried to as low a denomination as is likely to be required. Thus, for a drawing of limited extent, the subdivisions may be inches, and the prinaries feet, but, for a drawing of large area, these subdivisions may each represent one mile, or one chain, or one foot, \&c.; and the primaries so many tens of miles, or of chains, or of feet, \&c. Therefore, the graduation of the scale must be determined by the natural size or extent of the object or area, and the space or surface to be occupied by the delineation.

Note.-In copying plans and drawings, it is often requisite to transfer a series of different lengths on one straight line, from the one plan to the other. This may be easily done with the compasees or scale, but, in practice, the following more expeditious and convenient method is preferred:-Place a thin atrip of paper-with one edge cut accurately straight, and of sufficient length-along the line to be copied, and mark upon it the several divisions with a finely-pointed pencil ; then, by placing the same upon the other line, the divisions may be tranaferred with great facility, and with sufficient accurai:y for most practical purposes,
PROBLEEI 104.-To make a Scale of one poot to an inch to show feet and inches.

1.-Draw a straight line, $\mathbf{A B}$, of any convenient length, suitable for the required drawing.
2.-From the point \mathbf{A}, set off, on $\mathbf{A B}$, equal distances of one inch in length, and, to make the points of division more conspicuous, raise small perpendiculars from each of them : these divisions each represent one foot, and are called the primary divisions; mark these divisions with figures, commencing at the second division, $\mathbf{1}, \mathbf{2}, \&$. ., according to the length of the scale, and mark the first $\mathbf{A} 0$.
3.-Divide the first division, $\mathbf{A} \mathbf{0}$, into twelve equal parts, for inches (seo Prob. 8), and figure every third division or inch as $8,6,8,12$, counting the opposite way from 0 , to that of the feet. These divisions are called subdivisions.

To tako a measurement of 2 feet 6 inches, from this scale, place ono leg of the compasses on 2 B, and the other on 6 (the sixth subdivision). Other dimensions are taken in a similar manuer.

Note.-In subdividing a line, the operation may be performed with the greatest accuracy and least trouble, by using a sort of compasses called Hair-dividers; but, in cases where the divisions are so very small (as in the above case), a sort of dividers called Spring-compasses are jreferable. This instrument has, from its principle of construction, s steadiness and firmnesa which cannot be surpassed, and its points can be adjusted to the smallest portion of space with an ease and nicety unattainable by any other form of compasses.
-

Problem 105.-To make a Scale of two feet to an inch to show feet and inches.

1.-Draw the arraight line $\mathbf{A B}$, as before, and on it set off the rcquired number of distances, each equal to half an inch in length.
2.-Figure these points or divisions, commencing at the second division, 1, 2, 3, \&c., accordin: to the length of the scale, and mark the first $\mathbf{A} 0$.
3.-Divide the first division, A $\mathbf{0}$, into ten equal parts, to represent tenths of feet, and figure the fifth and tenth division, counting the opposite from 0 to that of feet.

To take a measurement of 3.5 , or 3 fert 5 tenths, place one leg of the compasses on 3, in the larger or pimary divisions, and the other on 5 , in the smaller or subdivisions.

Dhagoval Scale. - More minute sublivisions are frequently required than those obtained from a simplydivided scale, which give only two deno-minations-primaries and tenths or twelths-o that any distance which is less than a tenth of a primary division camot be accurately taken from them; but by means of a diagomal scale, the parts of any distance, which are the hundredths of the primary division, are correctly attained.

A diagonal stale consists of a number of primary divisions, one which is divided into tenths, and subdivided into humbedths, ly diagonal lines.

PROBLEM 106.-To make a Diagunal Scate of thife-foulths of an inch to the foot, to nhow heri, tenthis of feet, and hendredids of yeitr.

1.--Draw eleven parailel equidistant lines.
2. - Set off, on $\triangle \mathbf{B}$, the lower of these lines, a number of equal distances, each three fourths of an inch long, for feet.
3.-Throngh tach of these divisions draw perpendicular lines, cutting all the eleven parallels, and number these 1, 2, 3, \&c., beginning from the second division, and mark the first A0.
4. - Subdivide the fist of these primary divisions, $\mathbf{\Delta} \mathbf{0}$, into ten cqual parts, both upon the upper and lower of the eleven parallel lines, for tenths; figure these subdivisions, $1,2,8,4, \& c$, counting the opposite way from 0 to that of fect.
5.-Draw the diagonal lines from the niuth subdivision above to the teuth below ; from the eighth above to the ninth below, and so on. These lines divide each tenth again into ten equal parts at points in the horizontal lines, or one-hundredths of the extent of a primary division.
To take a measurement of 2.68 -that is, 2 feet, 6 tenths, 8 huudredthsplace one leg of the compasses on the primary 2 , and carry it down to the ninth parallel line, and then extend the other leg of the compasses to the intersection of the diagonal, which falls from the subdivision 6, with the parallel that measures the cighth-hundredth part ; or, on the parallel indicated by the thim, figure, measure from the diagonal indinated by the second figure to the vertical indicated by the first.

Problem 107.-To make a Diagonal Scale of one and a-half inches to the foot, to show feet, inches, and eighths of inches, or the ninety-sixtif pabt of a foot.
Inches

1.- Draw nine parallel equidistant lines.
2.-Set off, on $\mathbf{A} \mathbf{B}$, the lower of these lines, a number of equal distances, each one and a-half inches long.
3.-Through rach of these divisions draw perpendiculars, cutting all the nine parallel lines, and figure these 1,2, \&r., commencing always from the second division, and mark the first A $\mathbf{0}$.
4. - Sublivide the first of these primary divisions, $\mathbf{A} \mathbf{0}$. into twelre equal parts, both upon the upper and lower of thenine parallel lines; figure every third division as $3,6,9,12$, counting the opposite way frum 0 to that of feet.
5. - Draw the diagonal lines from the eleventh division above to the tivelfth below, from the tenth above to the tleventh below, and so on, till you get from zero above to 1 below.
These lines divide each twelfth in eight equal parts at points in the horizontal lines, or one ninety-sixth of the extent of a primary division.

Problem 108.-To piodece a Given Stragiti Line beyond an obstacle which prevents the abpliance of the úsual means by which Strajgit Lenes are drawn.

Let AB be the given straight line, terminated liy an ohstacle \mathbf{O}, but requirad to be continued on the other side of the obstacle, as $\mathbf{C D}$.
1.-Take any two points in A B, and from them erect perpendicnlars to A B, and equal to one another, as $\mathbf{A} a, \mathbf{B} b$, and of such a length that $a b$ produced will clear the obstacle.
2. - In a b produced, take two other points, c, d, lieyond the olntacle, and draw $c \mathbf{C}$ and d D perpendicular to a b produced, and make each of them equal in length to $a \mathbf{A}$ or $b \mathbf{B}$.
3.-Join CD; which is the line required.

Another Metiod.

If the obstacle 0 tes such, that two points in $\mathbf{A B}$, as \mathbf{A} and \mathbf{B}, are visible from \mathbf{C} and \mathbf{D} (as, in case of ponds or boys), the proper position of \mathbf{C} and \mathbf{D} will lee easily detemined by placing the eye at \mathbf{A}, so as to see \mathbf{B}; and then all assistant, on the other side of the obstacle, places two marks or poles, \mathbf{C} and D, moving them eifler to the right or left, until all four are in one istraight line. In this case, CD being joined, will be the line required-that is, it will be in the same straight line with A B.

Nore.-This Problem is very useful in Land Surveying, when you meet with buildings, bogs, ponds, \&c., on a chain line.

QUATREFOIL.

A Quatrefnil is a piercing or panel formed by cusps or foliations into four wind or lobes. It is much used in Gothic architecture, in the tracery of window pauels, \&c.

PROBLEM 109.-TU construct the Quatrefonl.

1.-Draw the lines AB and CD at right angles to each other, intersecting in the print 0 .
2. - Ahout the centre $\mathbf{0}$ construct the square 1, 2, 3, 4, having for its diagonals a part of the straight lines AB and CD.
3.--Bisect the sides of the square by the lines $\mathbf{H} \mathbf{G}$ and $\mathbf{F F}$, cutting the sides in the points a, b, c, and d.
4. - From the corners of the square, $1,2,3$, and 4, as centres, with $1 \mathrm{a}, 1 \mathrm{~d}$, or half the side of the square, as radius, draw the arcs $a d, d f, c b$, and $b a$, and those concentric with them: the rest of the circles are drawn from the centre $\mathbf{0}$.

Probley 129.-Given tie Line of Stroese of ther Piston Rod, the lengen of the Stroke, and the Centre of the Waleimo-Beam on Leyer, to find the Radius of the Lever, 80 that the Bed Centre will deviate equally on each side of the Line of Stroke.

Let \mathbf{C} be the centre of the walking-beam, B D the line of the atroke, and $\mathbf{E F}$ the length of the stroke.
1.- Draw the straight line $C A$, indefinitely, and from C set of $C G$, the distance of the line of atroke of the piston rod from the centre of the walking beam.
2.-Through \mathcal{G} draw the straight line $\mathbf{B} G D_{\text {at }}$ right angles to $\mathbf{A} \mathbf{C}$.
3.-And from \mathbf{G} set off $G \mathbf{H}$, a distance equal to one quarter of the stroke, and join C H .
4.- From H draw H A perpendicular to C H, cutting the line OA in the polnt A. C A will be the required radius.
(To be continued.)

Dry Earth and Earth Closets.

Probably no invention, or rather application, of so much importance was ever so neglected as that of the use of dry earth in the management of what, for the want of a better name, we call " night soil." The application of earth to this purpose is as old as the days of Moses ; the invention consists in the apparatus for applying It , and for this, and for his efforts to popularize its use, the Rev. M. Moule, of England, is one of the world's benafactors. If the deposits which nature requires all to make, were simply unpleasant, and on this account were to be put out of the way as soon as possible, the use of dry earth would be an important one; but When' it has been proven, as clearly as can be, that these deposits can cause and communicate disease, and that sicknees and death may be traced directly to them in a neglected state, the matter becomes one of vital importance, and sne which cannot be too often, or too earng stly, presented to the
Fig. 1.-earth commode. heads of every household. Col. Waring, who has given much attention to sanitary matters, has ser eral times presented this matter in bis articles, where they are more likely to meet the eye of the housefather than of the house-mother, and letters we recelve asking for explanations, show that the subject is far from-being generally understood by housekeepers. Lot one travel among the rural population in any part of the country, and it will oftener than otherwise be found that the one neglected place on the premises is the privy; houses where the interior and mode of living of their occupants Indicate comfortable means, refnement, and lux ury, will often have for this most important out building an affair which is repulsive to every sense, and a standing menace to those who must visit or pass near it. The necessity for a reform in this matter is too glaring to require argument; to neglect that which concerns both comfort and health, would he wrogg were the better way difficult and expensive, but where, as in this case, the reform is easy and inexpensive, the neglect is doubly wrong. The principle is slmply to cover the deposit with dry carth, and la not patented or patentable vartous contrisances for Fig 3. section or commode. ans contrivances for
some of them very ingenious and useful, are patsome of them very ingenious and usefu, are pat-
ented, and where one can afford them, are deairable. But the absence of these need not deter any one from using the dry earth; the requirements are: a receptacle, dry earth, and some means of placing the earth on the deposit; this may be done by an automatic machine or by a simple scoop or paddie. The essential thing is the dry earth or its equivalent; sand will not answer so well; road-

Fig. 3.-earth distributer.
dust of a stifl, clayey, lonmy kind, or similar earth scraped up from the surface of a field or garden, during a dry time, dried still further on bome boards, sifted and stored under cover, is the best; the neat best, and nearly as good, is fine coal-ashes,
a material that every one who burns coal is desirous to be rid of. An ordinary outbuilding can be cleaned out, the vault filled up, and a box provided which has sled-runners, so that it may be hauled away when.full; inside of the building should be a box of the earth or ashes, with a scoop or some kind of shovel ; then if every member of the family will use the earth at eacb visit, the inexpensive arrangement will be as effective as the most elaborate; still those who can afford them will ind the firtures made for the parpose, in which the carth is thrown down by the welght of the person, much more sure and conventeni. Note. The throwing of slops of all kinds into this or any other earth closet must be abedutdy prohibited. Dry earth so completely absorbs all odors and emanations that a portable closet may be used in any convenient place in the house, and for invalids it is one of the greatest comforts imaginable. If one wishes to save expense, the matter may be greatly simplified. Provide a box to contain a receptacle, fitted with a seat and cover, also a smaller box, to hold the earth, tight, or lined with paper, to prevent sifting, with cover and scoop, these complete the affair. These may be made as ornamental as desired, or be provided with movable drapery. Several companies now make very excellent commodes in which there is a receptacle for the earth, which is let down by a pull as in an ordinary waier-closet.

A Self-Acting Device for Shutting Gatea

The following description, accompanied by a very neat drawing of a self-acting gate-closer, has We consider this more valuable than many of the patented appliances for gates, and expect it will be swidely used.
Chance or Death by Travel.-It takes the French to get up statistics. One of their learned men, skilied in that line, has demonstrated the great improvement which has taken place in the safety of travel in modern times. He says that in the old diligence days a man had one chance of being killed ip 300,000 trips and one chance of being injured in 30,000 . On the rail. way, between 1835 and 1855, there wan one chan ee of being killed in $2,000,000$ journeys and one chance of being injured in 500,000 . From 1855 to 1875, one chance of being killed in mak. ing $6,100,000$ journeys and one chance of being injured in 600,000 . Now the chances of being killed rre as one to $45,000,000$ and of heing in. jured one to $1,000,000$. * Consequently, a person traveling 10 hours a day at the rate of 40 miles an hour, would, in the first period, have a chance of escaping destruction during 321 years, during the second period during 1,014 years, and between 1872 and 1875 during 7,439 yeara.

Dose for Rats.-A writer to the Rural New Yorker says: My method of ridding myself of rats in the cellar, or about the house, is to take quanat. "i tine' potash, (I use Babbit's) partially pulverize it, moisten it with wate ; so that it will form a sort of paste, and daub this about the bottoms of their holes and run-ways, so that they are compelled to step in it, in entering the premises. I have practiced this method for several yeari, with very satisfactory results. If the first application is not sufficient, it can, of course, be repeated with but little trouble or expense, and I am confident of favorable results. Such, at least, has uniformly been my experience since I first adopted the method, many years since. The theory is, the rats step in the moistened potash while entering. Its canstic nature produces a smarting sensation in the feet. He at once proceeds to lick his feet to alleviate the pain. Thre consequence is, a not-very agreesble sensation in the mouth. He is compelled to renew the application in going out-result, he does not care to renew his visit, and probably imparts good counsel to his associates, and the rat nuisance is at once abated. I prefer this method to the use of phosphorus, or any of the "rat poisons" recommended, as it is not always safe to have the latter around.

The Way To Make a Chead Book-Caee.
I have just been making a cheap and neat book-case, which has cost only a few dollars. The case consists of two end pieces aud twu shelves, with movable shelves between the two rigid ones. The two end pieces are one and a quarter inches thick, eight inches wide and four feet high. Four inches from the lower ends, a shelf eight inches wide is neatly fitted into gains in the end pieces, and six inches below the upper ends, the top shelf is held in by other gains. Instead of nails, two large three-inch wood-screws were driven through the end pieces into the ead of each shelf. The shelves are eight feet long. Between the two end uprights, two other upright pieces eight inches wide are fitted between the two rigid ahelves; thas dividing the space between the upper and lower shelves into three equal spaces or divisions. Screws are put through the shelves into the onds of the middle upright pieces. Those sirteen screws hold the parts together with desirable firmness. The advantage of using screws instead of cails is, that in case it were necessary to transport the book-case, the screws could be taken out, the parts tied together firmly, and the book-case would occupy but little space, and the varnish would be marred less. Before the parts were screwed together, gains were cut in all the upright pieces to receive the ends of the shelves. I employed a joiner's dado to cut the gains. A dado consists of a small plane somewhat like a rabbet plane, with which a gain can be cut true and neatly, in about a minute. I made gains two inches apart in the upright pieces, so that the shelves between the bottom and top shelves can be adjusted to suit large books and small ones. After it was finished, the surface was sand-papered, after which a heavy coat of boiled linseed oil was laid on evenly. After a-few days, the surface was again sandpapered, and two coats of shellac varnish were laid on, which gave the wood a beautiful and glossy straw color. The lumber employed was white pine, but boards of any othe: timber, such as chestnut, butternut tulip, basswood, sugar maple, or oak of any sort, would look beautifully if sand-papered and varnished with shellac. Such varnish can be procured at most paint stores. In case shellac cannot be procured conveniently, use any other good varnish. I procured three boards ahout eight inches wide, and one hoard sixteen inches wide, or as nearly that width as could be found, all sixteen feet in length. Hence the waste in making was small. I purchased fifty-five square feet, at five cents per foot, \$8.75. Sixteen wood screws, 16 cents. Oil and varnish, 80 cents. The labor, nothing, as the case was made when I would have been doing nothing olse. A book-case with glass doors, that would contain as many books as this cheap. affair, would cost sixty to eighty dollars. How much more economical to provide a neat and cheap system of shelves and spend one's money for desirable books wo fill it, than to appropriate a large sum for an expensive book-case, an d then fill it with papers, pamphleta, and patent-office reports, because money is lacking to purchase beoks.

The abandonment of tile cleopatra at sea.

In the annexed illustration is represented the sceuc of the abandonment of the obelisk vessel at sea in the Bay of Biscay during a severe storm. A heavy seat struck the craft, broke starbor her rail ballasi adrift, and left her with a strong list to starboard. Fearing that another sea would swamp the vessel altogether, her raptaiu signalled for assistance and a boat's crew Whas sent to her, but the lont and all on tooard wort lost. Further elforts were then made to take the C'hopatra's crew from the towilous position, which in the "and proved staccessfifl, and Withing steamer "Olya" left the obeclisk to its fate.
Within two days" time th." "Fitzmanrice," a vessel bound
 Ferrol, S., long. $705 x^{\prime}$ W., took her in tow and carried her to errol, Spain.
It "ppears to be a very difficult quastion to decide where ihe
olelisk shall be placed, and the advantages and disadvantages of different proposed sites for the Egyptian monolithe are being freely discussed by architects in England.

A self-acting device for Shutting Gates.

the cilaraeter of goon limh mortar.

I.-Its Constituents. These, it is well known, are sand and lime. $\boldsymbol{\Lambda}$ word should be said upon each.
1st. Saud, as generaliy found, is silex-in other words, finely broken flint stone. It is found in beds, where it has been deposited by natural causes. Silex is one of the hardest and most indestructible of minerals. The sand of some beds appears under the microscope, very smooth, as though the particles had been recently rolled about in water. In other beds it is rough and angular. This last is the best for mortar, and is called sharp sand. The cleaner sand is the better, since clay or muck mixed with it unfits it to combine closely with lime. Its sharpress morcover enables it to adhere to the ime more firmly.
ad. Lime. Solid limestone rock makes a very durable material for building. But if we use blocks of it, or of rough stone or brick, we need something to cement the separate pieces tngether, so as to give firmness and beauty to the work. For this purpose we use lime and sand mortar more cormmonly than anything else. Pulverized limestone would not do this. We, therefore, burn the lime ; this drives off the carbonic acid, which had beforo constituted the particles of lime into a solid rock. Adding water to freshly burnt lime, in the proportion of about one part of water to three of lime, slakes it, so that it falls into a fine powder, called hydrate of lime. This hydrate of lime very readily absorbs corbonic acid, and returns to a condition resembling pulverized limestone, when it is entirely unfit for mortar. Lime should therefore be used soun after being slaked.
IL.- The Preptration of Mortar.
1st. Sharp, clear sand and fresa burnt lime being at hand, the first question is the proportion of each.
$\mathscr{2} l$. The principle here involved is that no more lime should be used than is just sufficient to cement the sire'e particles of aand into a solid mass. Mortar which is thus proportioned will grow hard quicker. and cause brick or stone work to stand firmer than that which has a larger proportion of lime.
$3 l$. The reason is obvious. Mortar (beyond its mere drying in the air) hardens by the re-absorption of carbonic acid into the solid mass, where it gradually reaches each particle of lime, converting it into limestone. Well-made mortar, properly hardened by lime, thas becomes a sort of silicated limestone. The mortar as it dries rapidly, becomes porous, to the extent that it was once filled with water. The graduai absorption of carbonic acid by the lime, fills up these pores, constituting the whole into a cort of stone, as alroady observed. A native of Prussia once informed the writer that some fortress, built by the Kaights of St. John, at the city of Thorn, presents this singular spectacle The bricks of which they are built have gradually disintegrated, especially at the corners, leaving the mortar like a honey-comb of rock, and so firm that persons arg able to clinb up by the insertion of the fingers and toes in the interstices once occupied by the bricks.
Yoor mortar, as the masons sometimes call it, thus makes the firmest work, if the whole be dune with care.

4th. Of the mixing of mortar, but a word need to be said. If the foregoing principles are correct, the mixing should be very thorough. It should be worked over and over agriaiu with the hoe, crin, or mortar mill, so that each particle of sand may be brought into contact with its necessary surrounding of lime.
May it not be inferred, also, that no more mortar should bo put between wall faeed stone and brick than is just sufficient to make them adhere, since a small purtion will more readily harden by the absorbtion of carbonic ucid than a large one.

Where lime is cheap, and there is no great need of firmness and durability in the structure which is being erected, lime may be used more freely, the mortar made more hastily, and the sand be less select than above directed. A large proportion of lime oonstitutes a mortar that is readily used, even when made in a very hasty manner.

The record of falling buildings shows, alas, that too many have been built under the spur of cheapness and haste, with the risk of the durability of the structure and the life of its occupants.

American petroleum is distributed to all parts of the world as the cheapest illuminator......The lamented Agassiz, located the oldest part of the world at the 'Trenton Falls, New York...... It would take four million years to distribute meteoric dust over the earth's surface in a layer as thick as this paper.....

Building in Conchete.-Mr. S. W. Lincoln, an arohitect of Hartford, has been writing to the Times, of that city, about a house built of beton, at Port Chester, N. Y. Mr. Ward, a wealthy and enterprising manufacturer, decided about two years ago to have a house that would not burn readily, aud he has succeeded in building it. The walls, partitions, floors stairs, cornices, columns, dormers, ronfs, and balconies weighing nearly four tons, projecting four feet from the building, are all one solid inde. structible mass. Iron girders, encased in beton, are used in the floors and rowf, forming deeply coffered ceilin!s; but Mr. Embler would ignore the use of iron entirely were he to repeat the work, as he deems the composition sufficiently strong for all practical purposes; and it is evident at a glance that he is correct. The iron beams used are in no case nearer than seven and a half feet between centres. A floor of eighteen feet span sustains a weight of thirty tons of cement, in barreis, without showing the least deflection. (This any one may see who may visit the building.) The rofofare the finest specimens of plastic construction ever seen in this country. A splendid circular colonnade, after the Tuscan order, is a noticeable and atriking feature.

The building is two stories high, surmounted with a Mansard rouf, with elegant dormer windows. There are two towers, the raain one being nearly seventy feet high, and both in the Norman style, with heavy battlements. The reader must bear in mind that this is a structure of elegant and substantial proportions, with heavy medallion cornices, projecting balconies, tower battlements, gargoyles, and all the various forms of thorough construction demanded by good taste; but nothing is overdone, as solidity and simplicity are the prevailing characteristics throughout.

The outer walls are two feet thick, with circular flues running up and connecting with the spaces between floors and ceilings. All the main partitions are constructed in tha same manner; and the design is to heat the building by radiation fron the partition floors, and ceilings, as the heated air from the furnace is to pass up the partitions and form a general circulation through the air spaces, and return back to the furnace room without directly entering the rooms. This is an experiment, and if successful, will give the speoulators upon heat and ventilation something to talk about. Ventilating ducts are carried up in the walls and partitious. Massive chimney pieces arf to be constructed of the same material. There are partitions thirteen feet in height, one and two inches thick, firm as a rock. There has been but one thoroughly skilled work man besidea the superintendent on the work from the start. This man has had charge of all moulds and forms for cornices, columns, etc. The cost, thus far, is one-half less than if built of cut stone, brick, and mortar.

No insurance will be needed; and this a solution of a vexed question. It will be asked, how has such a work be'n done? The answer is a simple one. Portland cement, clean sharp sand from Long Island, broken stone, carefully screened, mixed with water-and brains. That is about all there is to say, further than that there is no patent, as the materinls ure not stuck together with gum Arabic, as in the case of some patent stones. The entire substance of the building is nearly as hard as granite, and will take a polish quite like it, as the experiment has been tried.
Heat and Force Produced by the Explosion of Nitro-Glycerine.-The temperature developed by the explosion of nitro-glycerine, has not as yet been determined with accuracy; but as the combustion in the case of gun powder is nearly perfect, the elevation of temperature produced by the explosion of the former is certainly much greater than that of the latter, perhaps more than twice as great.

A volume of gun powder produces, at the ordinary temperature, 190 volumes of gas. Owing to the heat preduced, this gas occupies about four times the above mentioned volume, or about 760 volumes of gas are produced immediately after the explosion. A volume of nitro-glycerine produces 1,300 volumes of gas at the ordinary temperature, and admitting that the heat produced by the explosion is two and one-half times that sroduced by gun powder, this volume would be increased to 13,000 volumes. The force of nitro-glycerine is nearly thirteen times as great as that of gun powder, but on accounc of the energy of the combustion, the action is still further mereased. - Revue Industrielle. viii. 458.

A Diamond Drill is to be started on the 1,000-foot level of the California mine. The object is to find out what lies to the eastward. The cast clay wall has never been found anywhere beyoud a point 200 feet north of the south line. The

THE SHORT-HORNED COW TENTH DUCHESS OF GENEVA,

We copy fron the London araphic a fine portrait of a celebrated shorthorn cow, Tenth Duchess of Geneva, whose personal and family bistory is somewhat remarkable. Tradition ascribes by origin of the fauily to a breed of cattle possessed for centuries recor the family of the Duke of Northumberland, but the actual records commence in the last century, when an ancestress of this cow paesed into the possession of Mr. C. Colling, of Ketton,
Durham, who and high, who was one of the founders of theshort horn as a distinet vingighly improved breed. in 1804 Mr. T. Bates, of KirkleCognizizing Yorkshire, purchased one of the Duchess cows, and recognizing in her excellence and that of her male offspring the
superiority soperiority of her family over the shorthurns he had previously Colned, he deteruined to secure more of her sort ; and at Mr. sexiling's sareat sale, in 1810, when forty-seven animals of both unpreted all ages, from eleven years downward, made the then Ypretedented average of $\$ 832.84$, he gave $\$ 929.64$ for the two Ynar old young heifer Young Duehess, afterwards called First
Dunchess
 io 85,080 , and grant-daughter of the cow he had first pur
chased. chased. From that heifer, to the femanaw line direct, spraug
those those Duchesses which have at different periods won the the
chief honors of the Royal Agricultural society of England, and
for many years past have commanded the highest prices at public and private sales. Mr. Bates, while practicing to a conasiderable extent the system of in-and-in-breeding, crossed his Duchesses at different times with other approved shorthorn families, notably with those of Mr. Colling's Red Rose aud Princess, thus combining what he considered three of the oldest and best shorthorn families in the kingdom. In 1853, at the Totworth sale (after the death of Earl Dueie), Bixty-sixth Duchess was bought by Messrs. Becar and Morris, of New York, for $\$ 3,557.40$.

Her descendants, having changed owners in America, were finally disposed of by auction in 1873 , when Tenth Duchess of Geneva was bought by Mr. Berwiok for the Earl of Beetive at $\$ 35,000$. She had bred in America the oulls Third Duke of Oneida, Sixth Duke of Oneida, and the heifer Eighth Duchess of Oneida, bought also for Lord Bective, at the same sale, for $\$ 15,000$. In this country she has produced the bull Iuke of Underley and the heifers Suchess of Underley and Duchess of Lancaster, all of which, with Righth Duchess of Oneida, are now in the herd at Underley Hall, Westmoreland. The Jenth Duchess of Geneva died in J tnuary last, and in the same month the Earl of Bective had the misfortune to lose his old bull Second
Duke of Tregunter.

THE BANDED CHERSYDRUS.

The achrocord or banded chersydrus is a curious aquatic serpent found in the bottoms of marine creeks and mouths of rivers on the borders of the sea, in the vieinity of Malacea, the bay of Manilla, Coromandel, Java, Sumatra, New Guinea, and generally along the coast of southern Asia. The fishermen frequently catch them on their lines, not willingly, as the fangs of the reptile are provided with a deadly poison. It is distinguished from other serpents ly being almost entirely free of scales. The body is covered with grain-like particles inserted in the thin and wrinkled skin. Those on the back project slightly in the center, and those on the stomach are pointed. The modian line is marked out by two or three ranges of siales placed at angles. The nostrils can be closed with a membraneous fold. The tail is flat and compressed, resembling an oar blade. The body is generally banded with hlack and white oval rings, the tail is spotted with white, and the small head is brownish. Some specimens have yellow or brown hands. They are classed by some among the sea serpents, and by others among boas.

Tempering Thin Tooms.-To temper files, ratchets, ete., the best method is to heat them to a red heat, according to the nature and quality of the steel, on a small iron shovel, and to turn the piece on to a plate of steel or iron, which is at least a centimeter in thickness ; then cover guickly with another plate of the same thickness. If the operation is well performed a very good tem. pering will be obtained.

According to letters received in Valparaiso, there has been a grand discovery made at a place a few leagues from Arequipa. The discovery consists of a rich vein of gold and silver ores. It is said the vein is some seventy metres in length, and broader than any vein of metal yet discovered in the world: The lay of the ore is four ounces to the cajon, and according to ussays made in Copiapo of samples remited there, some of it reaches fifty ounces. Seventy-one quintals of the metal sold in Arequipa are said to have produced 20,000 soles.

To hemove rust from stepl, cover the metal with sweet oil well rubbed in; 48 hours after rub with finely pulverized unslaked line.

To coat iron with emery, give the metal a geod coat of oil and whice lead; when this gets dry and hard, apply a mixture of glue and emery.

FONT in the photestant church, bekda, holland.

 (see page 37.)We have from time to time had occasion to mention the Protestant church, formerly the cathedral, of Breda, in North Brabant. It is not our intention now to vive any descriptive account of this edifice, but simply to call the attention of our readers to the remarkable font which forms such a beautiful feature in this very interesting church. This font, as will be seen from our illustration, is a fine example of the Early Renaissance style of the Low Countries. It is entirely composed of brass, and is gilt both over its external surface and in the interior of the bowl. The workmanship is remarkably delicate, and the arabesques of the pilasters are worthy of an Italian. There cau, bowever, be no doubt hut that it is a work of that splendid school of architects and workmen who produced the stalls at Dortrecht, the side serecns at Bois-le-duc, the high altar at Venlon, and other works of a similar eharacter.-Builder.

Plausible Theory of Steam Buhler Explosions.-. At the meeting of the National Academy of Seience, an apparatus was exhibited at work which proved that steam might be decomposed by simple heat, into the constituent gases of water-oxygen and hydrogen. The heat emple yed was a little over ordinary redness, but did not rach whiteness. This experiment is of the highest value, as illustrating a possible cause of boiler explosions. The apparatus was beautifully simple-a flask in which water was heated, a tube conveying the steam into a closed platinum crucible, where it was again heated by a spirit lamp, and a tube thence carrying the super-heated steam and the liberated gases to an ordinary bneumatio trough, where the mixed gases were collected in a test tube, while the steam was absorbed. At the conclusion of the experiment, the gases thus collected were exploded by a lighted match, showing beyond question that they were the components of water. The experiment indicates that this explosive mixture of gases may be found in a steam boiler. But it can only result from the most culpable carelessness. The boiler must, at least in part, be raised to a full red heat. Then cold water must be injected, for so long as steam and the gases are mixed the latter camot explode. The injection of water muat condense the steam in the boiler before it cools the red-hot iron. All these conditions leing fulfilled, an explosion of the gases may take place. Whether an engineer, on trial for homicide, caused by the explosion of a boiler under his care, will ever allege such a set of circutastances in excuse for the accident remains to be seen. It would meed a shrewd lawyer to make a jury believe that such an explosion was an unavoidable accident.

BTORKS EATING YOUNG RABBITS.

Our engraving represents a hungry stork making his breakfast off of an unfortunate young rabbit. It is not often that the bird captures such large prey, but probably, while searching the thick grass with its bill partly open, as is its curious habit, it encountered the rabbit and pounced upon without stopping to Thander the difference between young rabbits and field mice. The latter, together with suakes, toads, frogs, and large insects, constitute the stork's ordinary food. The unhappy victim is not gorged instantly, but is carried off to the margin of some pond where its captor shakes it and beats it with its bill until it is reduced to a proper condition for easy swallowing. Then the theal is dispatched in a gulp or two, and the bird, which possessies an enormous appetite, resumes its hunting. The stork's farurite food is eels, which it captures with great dexterity. No spear in common use for taking that fish can more effectually A we it between its barbs than can the stork's mandibles. A suall eel, despite its lightuing movements, has mo chance eseaping when once aroused from its lurking place by a stork.
In Europe the stork attaches itself to man and his habitations, building huge nests on tops of houses, and tamely walking it find the streets. It especially parades about fish markets, where it finds no lack of subsistence in the offal.

CHEAP FUEL.

The reeent rise in coal has caused considerable excitement among steam users, and the old question comes up again, "What can we use to reduce the price of fuel?", The American Manu-
fact facturer sayz : Coal screenings are heroming more in use, and with a small mixture of bituminous coal can now be burut without using a blast under boilers aet with the Jarvis furnace. For years attempts have been made to utilize immense fields of peat in the New England and Middle States. To do this it was necensary to carefully sut it in squares and dry it. Machinery was invented
to do to do this, but the cost of cutting and drying was so large, es-
pecially pocially the long time required in drying, that at the present time the matter has been generally abandoned. Recent experi-
ments ments have been made with fresh dug peat wet from the meadow,
without even cutting in squares or drying, and it has been found that with a small mixture of coal screenings or soft coal this can be used under boilers set with the Jarvis patent furnace without using a blast. It makes an immense heat with very little smoke. Before, in burning dry peat it was found that the gases would fill up the flues, but in the Jarvis furnaces these are fully utilized by the hot air supplied on the top of the fires, and the flame varies from white to a clear green colour.

Swiss Patents.-The Public Ledger says in an article upon the subject of patents in Switzerland, that public sentiment in Switzerland is beginning to look with favor upon patent laws, and a loss of a good deal of their watch-making trade, mainly because a Swiss inventor could not be protected, has caused a eonsiderable feeling on the subject. Federal Councillor Droz has prepared a bill for a patent law, which has been published in the Swiss journals, and is thus presented to the people. Patents of importation will be granted to inventors living abroad only on the principle of reciprocity. The maximum duration of a patent is to be 15 years. An application fee of 30 francs will be charged, and an annual fee of 30 francs each for the second and third years. Every sutsequent year a surcharge will be levied at the rate of 20 francs more than the amount paid in the preceding year. If the inventor refuses to admit the use of his invention by voluntary agreement, the question may be submitted to the Federal Tribunal. The Federal Patent Office may, under certain conditions and circuinstances, declare a patent void or withdraw it. The Patent Office is to be composed of three permanent members, elected by the Faderal Council for six years, and several examiners. The Patent Office must transmit the appeal of an applicant who gives serious reasons for impugning the decision by which his invention was refused a patent, to a court composed of at least three examiners, among whom mast be none who made the first examinations. The applicant may appeal from this court to the Federal Tribunal, which, hearing fresh experts chosen from Switzerland and abroad, gives the final judgment. No additional fee is charged for an appeal against a firat do cision. The judgment of the Federal Tribunal is always accom panied with the costs of the appeal.

GRAFTING.

What in fr, timef? - Almost every one knows that a cutting, or plece if ine stem, of many plante, if placed in the soil, will take root, grow, aud become a new plant. In grafting, we take a piece of a stem, and instead of putting it in the soil, we plant it in the branch of another tree. Let us saw off a branch of an apple trce, and take a twig, say as large as a lead-pencil from another apple tree, whittie the lower ead of it to a chamfer, or half of a wedge, for an inch or more, then carefully, by means of a wedge, push the bark of the branch away from the wood, and slip the trig with its cut part hunermost, between the bark and wood, cover all the cut parts with some kind of an air-tigtt plaster, wo shall essentially plant the twig on the branch. It will not take root, but wood will form and unite the two, putting the twir in communication with the roots of the tree. This is oue kind of grafting, but a kind not suited to gencral use, though it illoatrates the princlple

Whij to te: Graft? To plant twigs of a kind of fruit that we know and want, upon the ruots of a Find that we know nothing ubout, or of in unde sirable kind. In the nursery, seeds of unknown kinds of apples, pears, etc., are sown; if these were allowed to grow up, they would in ten or more years bear fruit, but very likely poor fruit, and each seedling different. The nurseryman takes up these young trees, euts them off nearly to the root, and grafts, or plants on them a twig of a well tested and valuable kind. This is the usual way of making apple trees in the nurseries. If the seedling tree is allowed to grow up and branch, then a graft mas be put in each branch, all the rest of the tree belng cut away, allowingo ne growth from the grafts to form the head.
What is needed in Grafting?-Several things. 1st, Something to graft uporr, which is called the stock, whether it is a year-old seedling, or tree 20 or 30 years old. 2nd, The graft, or cipn, which should be of a desirable kind of fruit. Brd, Some air and water-proof material, to cover the wounds that must be made, until they heal over. 4th, The tool for doing the work, and, 5th, the knowledge and skill to ure the tools. Let us notice each separately :

The Slock.-At this time we will notice only the grafting of old trees, or those that have reached a conelderable size. A tree that is only one or two inches through, may be cut square off and grafted, at the hight of 3 or 4 feet from the ground. Large trees must not be renewed all at once, but the operation extend over twe or three years, grafting the brauches near the centre first. Select branches witi) a space free from knots, and from 1 to 4 inches thick.
The Ciuns are best cut in early winter, but may b. thken at any time before the buds swell, ksepfag them cool in damp sawdust or sand, until wantel. They should be straight, healthy twigs, of the previous scason's growth.

Covering Mutcial.-Several kinds are used; we give that which we have found to be the best and least trouble, which is waxed cloth. Melt together beeswir, 2 parts ; rosin, 2 parts, and tallow, 2 parts, in an iron skillet kept for the purpose. Melt very gridually over a slow Gre, and stir together thoroughly. Some old muslin or calico will be yeeded, als old dress or sheet will answer, if so much worn that it will tear easilg. Tear this into strips it to fincu wide, for small work, up to an inch for larger, or the strips may be two or more inches wide, to bo torn smaller, as needed; they may ie as long as the material will allow. Wind the strips on a stick, as seeu in figure 1, laying it on regularly, and removing any loose threads, as the winding procecels. When one strip is wound on, take an other, putting its end uruler that of the first strip, us seen in figure 1; this saves much trouble in unFinding. When the roll ls of convenient size, about
$2 \frac{1}{2}$ inches through, fasten the end of the last atrip with a ping. Furuish the end of the stick with a wire, to hang it by. Have the melted wax ready and put in the roll of eloth, keeping the wax hot enough to be liquid and penctrate every part of the roll. When the roll is thoroughly soaked through, hang it up over or near the stove, and allow it to drain, catching the drops in the vessel. When it no longer drips, bang it away to cool. Prepare what rolls may be needed, as, if kept away frum the dust, the waxed strips will keep for some months. Also keep the wax in the skillet covered
The Tooks required are: a sam with fine teeth, set rather wide; a stroner kuife, and a smaller one, both very sharp, a wedge of iron or hard wood, a wooden mullet, and,' if much work is to be lone, a graftiug knlfe or chisel, tig. 2. This has a thin blade and a

Fig. 2.--ibayting knife.
strong back, the end of which turns up to form a wedge ; the use of this knife will be sbown present1r. The wax strips, a lump of tallow, and some old cloths, for wiping the hands, may be included, which can be carried in a basket, unless one has

An Owhari Box, which will be found very convenient to hold all the implements required in

Fig. 2. -ohchari box.
working among trees and rines in the orchard or fruit garded. Figure 3 shows a box, from a drawing sent_several years ago, by a very ingenious cor respondent in Pendsylvania, and holds all the applatuces required in pruning, grafting, budding, and tise like. It is a shallow box on legs, with an up: right partition under the hainde. Some pouches and locps of leather and springs of hard wood keep the things in place. This box shows a lot of base-atrips, wrapped in oil-cloth, ou the handle; on the partition is another case of strings, a pouch of grafte, a bottle of shellac varnish, (sec notes for last month,) a heavy knife, and two smaller, with a bone to sbarpen them, a roll of waxed strips, a pencil, etc. The saw, mallet, grafting chisel, labels, and other needed articles may be put in the bottom of the box. Wo have found a shallow basket, fitted with partitions, very useful in the garden, aud any handy person can fit up a box or basket, according to his work, that will saye much runuing for and search after tools.
An $4 p r o n$ will be useful ; figure 1 gives a pattern for one, with pockets at the breast, which will como bandy when working in the tops of trees. The
stick of waxed strips may be bung from a button above one of the pockets.

When to Grajl.-The best time is when the stock is just starting into growth, as shown by the swelliog buds. If grafts are set befors this, they are exposed to drying winds long before any unlou can take place with the stock. Peaches at the North do not succeed well when. grafted. Plums do so fairly, when done very early. Apples and pears may begrafted from now up to blossoming tinie, but great care is required in later working.
The Kinde of Graffing are many, some curlous kinds being given in the French works on the subject. We can now give only the two most in use, one forsmall, and the other for large stems.
Brudding differs from grafting in be ing done with a single bud, instead of a cion with se reral bucs, and late in the season, when the buds have formed.

The essenticl point in grafting is to bring the inner barks of atork and cion into as perlect contact as possible. The growth of woody stems takes place between the wood and

Fig. 5. the bark; the wood. Increasing by layera on its outside, the bark by new layers on its inside; hicre then is the place where the work is going on, and new wood is formed to unite the clon with the stock. In every siyle of graftiug, this part of the cion mast touck somewibern - and the more the better-a similar part in the stock.
Splice and Whip Graft-ing.-If the clon and stock are of precisely the same size, and each is cut with the same slope, (fig. 5,) and the cut surfaces put together and bound, it is evident that the growing parts of both will have a wide contact, and be very sure to grow. The diftculty with this, the "splice graft," is, that the parts are casily displaced. After cutting the slopes, as in flgure 5, split each cut surface, as in the right band of figare 6, then put them

Fig. 6. together, as shown at the left band, and we have the " whip graft," one of the most servicable kinds for small work. The notehes not only belp to hold the parts dirnry, but increase the surfaces in con tact, and will rarely fail. If the stock is larger than the cion, if the parts on one side are carefully brought together, it will succeed, and may be prac tised ou stocks even an inch thick. Ouly a sharp knife is needed for this.

To Wux this Graft.-Tear off a piece trom tho wased strip, ad, beginaing well below the -eut, wrap, each layer slight Iy lapping the one beiow, as seen in tigure 7 , Inting on the cloth so ilat it will adhere close'y to the bark and to torlf ; after wimdine, slightiy grease the thntm! and fiuger, and smout the waxed strip, rubbires in the direction of the turas, this will blend the whole intost perfectly water-tight and air-tight coverting. But mosst frequently we

Fig. 7.
than the cisti, especially in grafting over old trees, avd then uge the oldest kind of grafting.

The "Cleflyraft."-Saw off the branch of the slock, being careful not to tear the bark; pare the cut surface smooth With a strong knife. If the stock is an inch or less in diameter, cut away about half with a 8 lope as in figure 8. Then, by means of a strong, thin knife, or the grafting knife, and a blow of the mallet, make a split across thif slope. Prepare the cion, Which may have 2
to 4 buds, by whit. tling it to a long
 even wedge, as in firure 9, beginniug dge, edge, making one side of the wedge somewhat thicker chan the other, as seen in the section at D. Open the epilt in flyure 8 with tine point of a knife or a Hedge, and iosert the cion, as seen in figure 10 . taking care that the vital parts, as before, come in contact, leaving the bud, A, just above the top of the stock. This it is is not absolutely vecesssiry, bul. it is a center of active growth, and increases the chances of success. The Blope in the stock is made because it
will b will become covered with new wood and bark, and heal more completely than a crose-cnt. When the stock is two or more inches across, two clons Thay be put in; the stock being sawed square across and trimmed, is split as in figure 11, with the grafting knife (fig. 2), the curved bark of which cuts the bark before the wood. The cleft is sprung open by means of the chisel point of the knife, while the cions are being inBerted, and when they are in place (tig. 12), the is taken away, and
tringing together of springing together
the cleft holds them firmoly.

FIg .12.
tear of small bite two grapts. tear of small bits of the cloth to cover every part;
Anally, atren pasaing sirooth and blend the covering together by Whing over it the greased thumb and finger. 13. It is well to will appear somewhat as in figure of the is well to put a bit of waxed cloth on the top

To wax this graft, take a strip of the waxed cloth an inch or more wide. begin below the cleft, and in two or three turns prang the edge sufficiently above the stock to lap over and cover the cut surface: having the part around the stock ciosely applied, bend in the free edge to cover the top, tearing it if need be, to fit around the cions; if any portion of the cut surface of either stock or cion is esposed,

The Wholesomeness of the Orange

Julia Colman, Superintendent of the New York cooking school, gives the Phrenological Journal the following: Not a few of those who wish to be careful as to the quality of their food have doubted the wholesomeness of the orange as it is found in the markets. A fruit, they have said, which is picked so green and kept so long can not be very desirable food. Thene queries, however, have mostly died away before the experimental proots of its wholesomeness. Invalids and all serts of well people eat of it freely without known ill effects. Many have gone to the other extreme and attributed to it health-giving properties, which they deem almost marvelous. For example, it is said to be a sort of insurance against disease to eat two oranges before breakfast for three months in the spring, say from March to May inclusive. We admit that such a course, if generally pursued, might turn many doctors out of employment.
Another prescribed use is to cure a longing for alcoholic drinks. The sufferer must eat an orange the first thing in the morning. We have faith in the remedy, so far as it goes, bot to make it effective the subject must earnestily desire to give up the drink, be determined to do so, and then the orange will be a natural help to quench thirst, to aid in healing the stomach and to induce a wholesome tendency in the system generally. This much ought to be understood to prevent any one from supposing that it acts like a charm or philter to take away the unnatural craving. That will return again and again for some days, and if the subject understands this, instead of being discouraged, he will take another orange, and calling all the moral and social aid he can command to his help, he will be much more likely to succeed.
If in hot, unhealthy countries generally, men would eat an orange in place of drinking a glass of gin, brandy or other alcoholic liquor, the result would be most advantageons. And if some juicy fruit were eaten always in place of taking unwholesome water or any other drink whatever, the malaria of the worst localities might become almost harmless. If the water be wholesome, oranges or other fruit juice mingled with it makes it very much more satisfactory, both in taste and results. If we took half the pains to provide ourselves with fruits that we do to provide ourselves with alcoholic drinks, we should soon see a beneticial charge on the face of affairs.

A Sideritere for Tin....It is stated that columbiu:a has been found in large quantities in Marion, U. S., and in the Amazon stone of Colorado. In color it stands midway between nickel and tin. It can be applied to the surface of other metals like the two just named, and the Minufacturer and Buihler prophesies that we shall soon hear of columbium-plating. It is slightly lighter than tin, and in its chemical properties, while somewhat similar to the latter, are more nearly allied to those of bismuth and antimony. At preserit there is little immediate prospect of its becoming an article of commerce. But we must remember that aluminium was not many years ago as little known and rarely seen as columbiun, alias niobium.

Lost Freight. -The item of lost freight in rail road affairs amonnts to a good deal in the course of a year. The Pittsburg, Fort Wayne and Chicago road employs four clerks to look after losit freight. Much of it is iound and restored to owners, but the losses in one year to the road amount to about $\$ 20,000$. This includes goods of all kinds, principally boots, shoes, and the finer grades of dry goods.

Dose for Rodents. - The following cheap and simple method is said to be used in Germany: A misture of two parts of well-bruised common sydulls and three varts of finelychopped bacon is made into a stiff mass, with as much meal as may be required, and then baked into small cakes which are put down for the rats to eat. Several correspondents of the German Ayricultural Gazelle write to announce the complete extirpation of rats and mice from their cow-stalls and piggeries since the adopuion of this simple pian.

Matuematies anp Medicine.-Mark Twain, in Atlantic for November, says: Among other talks to-day, it cane out that whale ships carry no doctors. The Captain ind ds the doctorship to his own duties. He not only fives medicines, but sets broken limbs after notions of his own, on sath ther: ofio and sears the stump

The Pernicious Habit of Drinking.

An English physician, Dr. Duck worth, writes as follows: "Medical men may fairly tell the healthy, robust, well-fed and well-housed to give up stimulants if they fully maintain their health without them. Total abstainers are generally large eaters, and the ultimate textural effects of excess in eating or drinking, if any, may not be very dissimilar. I think it is proved that the addition of a little alcoholic food to a meal secures a more moderate ingestion of solids, and where it agrees, which it does not always, promotes a more satisfactory digestion of them. But a large number of persons suffering chiefly from dyspepsia or insomnia are better without stimulants of any kind. A daily allowance of alcohol is manifestly wrong; more to-day and less to-morrow may be needed or instinctively called for. The rational individual must honestly and conscientiously find out for himself what the special needs of his system are, and where a right-minded christian individual is in earnest in such a matter and has a proper control over bis appetite, he is not likely to go far wrong in the matter of atimulants.
"Medical men should urge teetotalism upon the nervous classes of drunkards, persons who are careless and self-indulgent or who by their lives or callings are much in the way of drink. Stimulants should be always taken at meal times, and only then.
"I am confident that, as a body, our profes. sion is unanimous in condemning the modern American habit of taking odd glasses of stimulants at all hours and laments the grievous multiplication of the means of gratifying this mischievous custom, for truly the conduct of masses of young business men in our citios and large towns in this respect is becoming disgraceful and the practice is fast gaining in other circles and communities. Our conntrymen of these classes have no excuse for this, for they are well-fed and have liquors with their meals in addition to their hourly drams, while Americans, who are notoriously the worst dietitians in the civilized world, are water-drinkers at meal time.'

Solder as an Aid to Chucking.-Prof. Sweet in his last talk on lathe working in the Polytechnic Review gives the following hint: Very few machinists appreciate the advantages gained by the use of a. little solder. Often irregular pieces can be soldered to a block or casting, and chucked easily; and after finishing, a little heat melts it loose. I have seen varions straps, bolts and clamps put around the two halves of a brass box to hold them for boring out, when the application of a little solder would have held them together like a solid box. It is well enough to remember that if you have a piece of work which you can neither chuck on the lathe nor hold in the vise, to solder it to a piece you can hold. In setting work in a four-jawed chuck, much time is saved in adjusting it first in one direction, that is by adjusting the first and third screws, entirely disregarding ths othertwo; then when the piece is true in ons direction, turn to the second and fourth screws and adjust these in like manner.

Fig. 1.-Application of the Self-Coiling Venetian Shutters.

SELFCOILNG VENETLAN SHUTTERS.

(For fig. 2, see page 38.)

The engraving (Fig. 1) which accompanies this article represents a solidly built summer residence, the piazza of which is provided with Wilson's self-coiling and rolling Venetian shutters intended to show the great advantage to be derived from such an arrangement, as it enables one at once to convert the piazza inte a private room, keeping out sunshine, heat, and winter cold, and at the same time perfectly safe against burglars.

The slats of these shutters are $\frac{5}{8}$ of an inch thick; for inside blinds $\frac{3}{8}$ of an inch is sufficient, as for these such great strength and durability are not required as for outsid" blinds. It will also be seen how the basement door and windows may be provided with similar blinds.

These blinds, of which we represent 2 section in Fig 2, are an admirable substitute for those more ordinarily in use for windows, vestibule doors and piazzas, and are as elegant as useful. They adorn a dwelling-house, and are of no mean effectiveness as an obstacle to burglars. They are durable, simple in action, and are operated with ease and rapidity. They are composed of diamond-shaped slats, strung together on metal wire or bands, leaving a space between each slat, so that the air and light can penetrate freely. They coil on spring rollers, above or below, can be fitted inside or outside, and can in either case be worked from within. It is often a trying experience to close the averace outide blinds in a driving rain or snow storm. All such difficulties are obviated by the use of these rolling blinds. When drawn down and fastened, they cannot be opened without violence from the outside, forming an effective protection against sneak thieves.

We need not add that if made of steel, they offer the utmost protection possible against burglary and fire, and we only wonder that more persons able to pay for such improvements do not apply them to residences and stores. But we are convinced that the advantages have only to be made known to them to cause the demand they deserve, and we gladly contribute our share in diffusing this knowledge.
They are manufactured by Messrs. Wilson \& James, 68 Beckman street, New York.

FOOT-POWER CIRCULAR-SAWS.

The adjoined engraving represents one of the most effective circular-saw machines that can be driven by simple foot-power. The table can be raised and lowered so as to make the circularsaw project more or less over its surface, which contains the usual movalle guide. A smooth fly-wheel D, moving with great velocity, secures a considerable momentum, and so beconaes a store of power able to overcome temporary resistances. The treadle Λ is connected with the axis by means of a short piece of belt ruming over a pulley B ; one end of this belt is attached to the tranl!e and the other end to the pulley. The pulley turns loose on the axis, but has a pull and ratchet, so as to turn in one direction only, and a weight to pull the pulley back and the treadle upward, so that without the latter it always causes a forward motion of the axle and fly-wheel, and has no dead point. The shaft rums loose through the centre of the fly-wheel and is connected with the gearing F , which works the oblique wheel E , and this the small cog-wherl attached to the fly-wheel, which runs thus with a far greater velncity than the pulley B. The belt running over another pulley runs the saw, as seen in the engraving. By this arrangement the saw makes 102 revolutions for one of the shaft. The notion of an eight-inch saw is 102 for oneof the treadle, so that 40 steps jer minute give 4,080 revolutions in that time. High speed gives better, square, well-lined, and smoother cuts, as all experts know.

There is no doubt that this combination economizes the power applied, and that this saw is especially adapted for light work, and by raising the top properly for rebating, grooving, etc., with certainty and dispatch.

The cross-cut and miter gauges are pronounced very superior and perfect. The size of the table is 27×42 inches, the weight of the machine 360 pounds, and the price, with two saws, $\$ 110$. The cross-cut and miter gauge is extra, and costs $\$ 15$, while a boring apparatus, costing $\$ 10$, may be easily attached.

For further details, address L. C. Chelsea, Elizabeth Avenue, Elizabeth, N. J.

