The Institute has attempted to obtain the best original copy available for filming. Features of ithis copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below.

Coloured civers/
Couverture de colleurCovers damaged/
Couverture enđommagéeCovers restored and/or laminated/
Couverture restaurée et/ou pelliculéeCover title missing/
Le titre de couverture manqueColoured maps/
Cartes géographiques en couleurColoured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bleue ou noire)Coloured plates and/or illustrations/
Planches et/ou illustrations en couleurBound with other material/
Relié avec d'autres documents

Tight binding may cause shadows or distortion along interior margin/
La reliure serrée peut causer de l'ombre ou de la distorsion le long de la marge intérieure

Blank leaves added during restoration may appear within the text. Whenever possitle, these have been omitted from filming/
II se peut que certaines pages blanches ajoutées lors d'une restauration apparaissent dans le texte, mais, lorsque cela était possible, ces pages n'ont pas èté filmées.
L.'Institut a microfilmé le meilleur exemplaire qu'il lui a été possible de se procurer. Les détails de cet exemplaire qui sonf peut-être uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de filmage sont indiqués ci-desssus.

Coloured pages/
Pages da couleur

Pages damaged/
Pages endommaqéesPages 'estored and/or laminated/
Pages restaurées et/ou pelliculées

Pages discoloured, stained or foxed/
Pages décolorées, tachetées ou piquées

Pages detached/
Pages détachées

Showthrough/
Transparence

Quality of print varies/
Qualité inégale de l'impression

Continuous pagination/
Pagination continueIncludes index(es)/
Comprend un (des) index

Title on header taken from:/
Le titre de fen-tête provient:

Title page of issue/
Page de titre de la livraison

Caption of issue/
Titre de départ de la livraison

Masthead/
Générique (périodiques) de la lixraison

\square
Additional comments:/
Commentaires supplémentaires:

This isem is filmed at the reduction ratio checked below/
Ce document est filmé au taux de réduction indiqué ci-dessous.

EALIEAK，N：更

Publishea in the Interests of the Acadian Science Glub．
A．J．FINTEO，EDITOE．

Presiaint；－A．E Coliwell，A．M．，Instructor in Nitural Sclence，Acadia College， Wolfville，N．S．
Jigrators＇－Physiology－r．W．Roscoe，A M．，Inspector of Schools，Wolfville，N．S． Geology－Alexander McKay．Esq．Mathematical Master in Halifax High School，Dartmouth，N．E．
Botany－A．H．McKay，A．B．，R．Sc．，Principal Pictou Academy， Pictou．N．S．
Astrononiy－Prof．A．E．Coldwell．A．M．Wo fville．N．S．
Chemistry－T．F．Godfrey，Esq．Principal Wi，dsor Academy，Windsor，N．S Zoology／－A T．Pinen，A B．，Principal Wolfville High School，W＇olfville，N．S Mineralogy－S．K．Hitchinge．R．Sc．，Sta九e Aesayer and Principal High School．Biddeford，Maine
Natural Philosophy－Prof．F H．Eaton Provincial Normal School． Trurn．N．S ；A J．Denton．A B．；W．P Shaffner A．B．；F．H． Schofill．AB；W W．Saunders．Esq
Secretary and Treasurer－A．T．Pineo，A．B．．Wंolfville，N．S．
This Society aims to awaken and foster a more general interest in Scientific knowledge， tn induce young $m \cdot n$ and young women to en nge in systematic study at home，and to afford it members the means for mutual assistance in the plasing and enobling study of Nature＇s wor：－s．All eforts used to make the connection of students with the Club weasant and profitnhl＂．
A Course of Stuay hns been arranged extending＇ve＇three years and inc＇uding the follow－ ing suhjects：Physiology，Geology，Bntany，Natural Philosophy，＇ftronomy，Chemistry， Zrrlogy and Mineralngy
The memters report quarterly．Yearly examinations are held at the Students homes ard at the end of the c－urse certificates are given showing s^{+}anding．etc．Course of Study and full information sent upon rpplication to the Secretnry．

The Acadian Seientisto

Vol. 1.
WOLFVILLE, N. S., MAY, 1883.
No. V.

Abstract

踇家 The subscription price is only thirty-five cents a year. Canadian or United States Stan!'s taken; denominations of I cent or 3 cents prefervel.

Ir is not work that kills the brainlaborer but worry, and anxiety, and neglect of proper exercise and lack of pure air. From the worry and mental stra: ${ }^{n}$ and impure air of the schoolroom the teacher too frequently hurries home to his books and preparation for the succeeding day'swork; or, if he takes a walk of a mile it is taken in a listless manner and lacks the spirit and enjoyment that would make it of the greatest benefit. So it is no marvel that every year teachers are retreating from the ranks broken in health and spirit. If after the work of the school-room is over the teacher would spend the remainder of the day in some employment or recreation that would keep him out of doors and give him enjoyment as well as physical exercise, he would find tha: his professional work would be performed more successfully and yet with less effort. We can think of no better plan for the tired, overworried teacher than the cultivation of an interest in the study of natural history. His after-school rambles through field or forest or by the seashore would then not be purposeless but full of absorbing pleasure, while at the same time he would be gaining a knowledge of facts and an acquaintance with nature that would not only minister to future enjoyment but also be of valuable service in the daily work of the school-room.

The Society of Naturalists of the Eastern United. States is a new scientific society organized at Springfield, Mass., April io and II. It is the intention to hold yearly meetings for the purpose of discussing questions of common interest bearing upon the actual work of the members. Such are: methods of museum and laboratory work, systems of instruction in various departments of Natural Science, and the true relation of this subject to the curricula of preparatory schools, and other questions connected with the theory and practice of Natural Science. Professor .1. Hyatt, of the Massachusetts Institute of Technology. was chosen President. Professors H. N. Martin, of John Hopkins' University, and A. S. Packard, Jr., of Brown University, Vice-Presidents; and Professor S. F. Clarke, of Williams' College, Secretary. The Society has twenty-seven members representing the leading colleges of New England.
On behalf of the Acadian Science Club we desire to call the attention of authors and publishers of scientific literature to the fact that we are endeavoring to build up a library of such a character. It i, the intention to have bound, in as far as possible, all unbound papers and magazines donated to the Club, or obtained in any other way. The library will be for the exclusive use of members of the Club. Due credit will be given though our columns for all contributions.

Read our new premium offer on 3 rd page of cover.

[For the Scientist.]

AN EXCURSION TO BLOMIDON.

(Concluding part.)
And now let us briefly review the history of this interesting range as it is read from the rocky archives. It must have been many thousands, aye, probably millions of years ago, that saw the birth of this promontory and the whole ridge of which it is the eastern extremity. For untold centuries the waters of Fundy Bay had been flowing over its present site, over the valley of the Cornwallis and Annapolis rivers, now smiling in its harvest beauty, and beating upon the northern slope of the South Mountains. The detritus formed by the wearing away of those old Silurian hills as well as of the other shores of this inlund sea wos deposited, at least in part, along the line of the present North Mountains. This accumulation continued for centuries until the beds of sandstone became of considerable thickness. Then came the fiery ordeal. At various successive points along a line parallel to the present range volcanic action began. The lava flood poured forth and overflowed the sandstone. Successive overflows followed at intervals, and finally the whole southern edge of the formation was slowly raised above the waters giving the beds a northerly dip under the Bay. The craters of those volcanic fires never appeared above the surface or, appearing, sank again beneath the waves and were worn away by the strong Bay tide. ${ }^{\sigma}$ As the heds dipped under the Bay to the north that side was somewhat protected from the action of the waves by the hard igneous rock, while the tides that daily flowed backward and forward througit the valley within, washing against the southern edge of the ridge. wore away the soft sandstone atits base more rapid-
ly leaving a more abrupt slope.. Afterwards, as the rising continued thoughout the whole formation, the valley became slowly elevated above the water, as it now is. Then came a period of intense cold through Canada and northern portions of the United States, freezing the rivers and seas and covering this part of the continent with a thick manthe of snow and ice. The southward moving of portions of this great ice sheet in the form of glaciers, caused by the greater accumulation of the ice formation towards the north, is evidenced by the scratches observable on the rocks over which they passed, and the occurrence of boulders, smoothed and rounded in their transit, many miles from their native beds. By this agency hugh blocks of trap were taken up and transported from Blomidon across the entire breadth of the Province, while they were scattered in the greatest profusion throughout the Cornwallis valley and over the opposite ridge. As the climate of arctic rigor gave place to a milder temperature the ice mantle retreated northward and Nova Scotia come to enjoy conditions similar to those at present existing.

After adding fresh fuel to the smouldering fire, we wrapped ourselves in our blankets and were soon oblivious of all surroundings. When we awoke next morning "Sol" was several' degrees above the eastern horizon. After breakfast a council was called to decide upon the direction that should be taken. Each of the more prominent members submitted a programme and it was at length unanimousiy decided that the forenoon should be spent in the vicinity of the camp. Subjects to be studied: ist, Botany. 2nd, The science and art of procuring a brace of partridges for dinner. Perhaps the latter was the weightier consideration. The forenoon passed
pleasantiy, one incident occurring worthy of mention. When returning to camp, with a plump young partridge, (we had to be content with one) we discotered a fat, lazy porcupine taking his morning nap upon the limb of a tree directly before us and presenting a tempting shot. I deliberately fired; but not a motion gave sign that the little leaden messingers had fulfilled their mission. I was too much astonished to fire again. "How could I have missed it ?" Presently the animal raised its head as if just awaking, moved it slowly from side to side, slid off of the limb and fell with a heavy thud to the ground. Taking our booty we proceeded to camp, and in less than two hours the skin of said porcupine had been removed, covered internally with arsenic, and carefully rolled up to be at some future day stuffed out to its natural shape and dimensions and made to simulate, in as far as possible, the livirg animal when first we saw it.

After dinner we descended the slope and continued our search for minerals. As we proceeded the slope again became steep and rugged, and hundreds of.feet above could be seen a perpendicular cliff of columnar trap from the top of which a gentle slope stretched away to the summit of the ridge. We soon found scatiered over the beach in abundance water-worn specimens of the beautiful purple amethyst. The presence of these indicated that their source was above ; and the course of a land-slide that had fallen, prohably during the preceding spring, could be distinctly traced for a distance. With no inconsiderable labor we ascended and after long and careful search among the amygdaloid near the base of the basaltic cliff we succeeded in finding a rich seam of amethyst upon which our hammers and chisels made music for a few hours. Then as the seam became nearly exhausted and
the shades of evening began to gather around us, we filled our satchels and baskets with our booty and descendedDepositing our specimens at the foot of the cliff we ascended to our camp. After lighting our fires and partaking of our evening meal we wrapped ourselves in our blankets and were soon fast asleep.

Next morning we were up betimes. The rising sun was just flooding the mountain side with his golden glory when we descended to continue our exp'oration. A little beyond the point that we had reached the day before we came to a land-slide that had fallen in the spring and had not yet been removed by the waves. This afforded us good specimens of heulandite, a handsome mineral occurring in rhombodial prisms of white, red, or brown color. Here we found only the white and brown varieties. We continued our search some five miles from our camp but as that point of Blomidon over which we travelled is not very rich in minerals we did not succeed in obtaining a large variety. In addition to the heulandite, we secured some fine agates, chalcedony, jasper, and good specimens of acadialite, a variety of chabazite peculiar to Nova cotia. With these we returned to camp before nightfall.

According to programme next day was to be devoted to the collecting of marine invertebrates of the coast; so the early morning found us on the beach taking advantage of the low state of the tide which here rises and falls some fifty feet or more. In the little pools near low water we found specimens of the pretty Pecten Islandicus or scallop; and there also, upon a stratum of "new red" which appeared frow under the overlying 'trap debris, we secured a few specimens of Fusus tornatus. In many places the sandstone was observed to be perforated
with smooth round holes from an inch in diameter to much smaller. Use of chisel and hammer upon the yielding rock enabled us to reach the bottom of the holes and unearth the inmates-bivalves with rasp-like shells, bearing the mild and euphonious name of petricula pholadiformis. A little higher up, as we were compelled to retreat before the advancing tide, we came to the habitat of crepidula fornicetac, plana and tectura testudinalis, or the common limpet. Large specimens of buccinum sasdatum were found adhering to the slimy rocks, while here and there a water-worn shell of the same species or of fusus could be seen moving over the bottom of a little pool at a rate quite unaccountable till its active little tenant was discovered to be a hermit crab that had taken possession of the littie house vacated by its molluscan buiider. Still higher were obtained littorina litoria, l. palliata, perpura lapillus in several varieties, and the common mussel-mytilus edulis.
('To be continu "..) -

For the Scientist.]
NATURAL HISTORY LESSONS.

I.

As a rule in presenting lessons on natural history the aim should be to educate, i. e., draw out, the young and growing mind of the pupil rather than to simply interest or amuse. So in every case when objects are used to illustrate such lessons (which cannot be truly and efficiently taught without them) the pupils should be required to observe, take notes, and afterward present a written description of the specimens úsed. This ensures carefuìness of observation and the facility for ready and accurate description. In many instances the best form in which
this description could be presented would be that of an essay, giving the characteristics, distribution, uses, etc., the teacher having added such information as the pupils could not otherwise readily obtain. Pupils at once recognise such work as something altogether different from the ordinary desultory "composition writing" and undertake it willingly and even with eagerness. The offering of prizes in specimens serves to make the work still more interesting.

A few lessons on granite and its constituent minerals serve as an excellent beginning of a series on rocks and minerals. Some knowledge of the subject is of course pre-supposed on the part of the teacher. This knowledge may be quite elementary, provided that it is accompanied by a practical acquaintance with the minerals themselves, and the teacher still be able to present efficiently and in a scientific manner, simple lessons upon the common minerals and ores of his country. The teacher will find in Dana's Manual an excellent and indispensible reference book. The subject should be treated in four lessons:

First, Quartz. As many varieties as possible should be shown, such as, milky, smoky, rose, and ferruginous quartz, flint, jasper, chalcedony, quartz crystals, clear and amethystine. These should be labeled and the pupils required to note characteristics. Subsequently those specimens, with labels removed, or duplicates should be placed before the pupils and they asked to identify them from memory or by the aid of their written descriptions. The essay embodying observations on the specimens, notes given by the teacher, and any further information that the pupil might be able to obtain, should be treated in the same way as
an ordinary cor position, the pupil being required to rewrite it, corrected, in a book kept for the purpose.

Second, Fieldspar. Specimens needed are, orthoclose, albite, labradorite, Amazon stone and kaolin. Theseshould be presented, examined and described as in the case of quartz.
'Third, Mica and Hoinblende. Specimens required are muscovite or common mica, mica schist, tremolite, actinolite, hornblende and asbestus. 'This forms a very interesting lesson. The uses of these, especially of mica and asbestus can be dilated upon and perhaps some fabric shown manufactured from the latter. In this as in each of the other cases some of the specimens might be dispensed with and the lesson still prove a success, or more might be added with advantage.

In the fourth lesson the rock granite should be considered. It the pupils have learned thoroughly the preceding lessons they should be able to recognise the component minerals in any specimen of granite in which they are well defined. Examples of both common granite and syenite should be placed before the pupils who should now be able to distinguish between them.
[For the Scientist.]

> FLORAL FORMUL天.

By A, H. McKay, A. B., B. Sc.

Progress in every science involves the use of formule, for the expression of complex truths in concise forms, which in turn can then be used to arrive at still higher generalizations. Sachs of Wurzburg and Grisebach of Gottingen have used formule in botany to show at a glance the structure of a flower. We bring before our readers a system fundamentally Grisebach's, but better adapted
to the type fonts of our printers, and much more concise than Sachs'.

As brevity is essential in the few short columns of the Scientint, we shall indicate merely the principle and a few of its details in the present number. A complete flower is made up of four floral whorls or circles of flomal leaves. First, the calyx, usually green, the separate leaves of which are termed sepals. Second, the corolla, usually colored, made up of petals. Third, the andrucium, consisting of stamens. And fourth, the gynocium or pistil composed of carpels. All these are genetically leaves, but modified in form and function. The function of the calyx is to protect the delicate inner whorls; of the corolla, to lure by color and otlor fertilizing agencies; of the stamen, to prepare in its strangely contracted leaf-b!ade the fertilizing pollen; of the carpel, to form a cavity by its inrolled blate from which and in which the seed may be developed.

The fioral formula must therefore be made up of four numbers indicating the number of leaves in each floral whorl, whi th we shall separate by combinations of the period and comma to which conventional significations shall be attached. Thus two periods .. = free, no adhesion. One periol, $=$ adhesion of contiguous whorls. Colon, = alhesiun very pronounced. Comma, $=$ adhesion of let and 3 rd or 2 nd and 4 th whorls. Two commas ,$==$ adhesion lst and 4th. Parenthesis, thus () $=$ complete cohesion of the component parts of a whorl. ()' = partial cohesion-lobed. ()" =cohesion at the base. For instance, in Buttercup $f f=5 \ldots 5 \ldots \infty \ldots x$ indicates, five distinct petals free from other parts; an indefinite number of frec stamens; and an indefinite number of free carpels each of which forms a single achenium. In Mayflower, epiyca rezens, $f=(5)^{\prime} \prime$. . (5)'.. 10.. (5) indicates five sepals slightly gamosepalous, five-lobed gamopetalous corolla not inserted on the calyx but wih it on the receptacle, ten separate stamens inserted on the receptacle, a pioti! composed of five carpels forming a tive celled and five lobed p d in fruit. In this example the double periods show that there is no arlliesion between the four floral parts. In the Plum or Cherry blossom, $f f=(5)^{\prime} .5, \infty \ldots(2)$ means, five sepals
joined at their bases, five distinct peta's adhering to (inserted into) the calyx, a number of stamens insurter into the calys (the tail of the comma indicating adhesion to the whorl berond the nearest), two carpe's completely united into a single ovary and style. (2)' for carpe's would mean, ovary single, style double, (2)" would indicate, not on'y two styles but a partial separation of the two carpe's yet however united at the base. Two circ'es of sepals, petals or stanens, etc., five in each circle, if alternating might by expresied 5×5, if decussiting $5 \div 5$. If the parts have not a cyclic arrangement the angle of divergence can he expressed in the usual manner. For instance in the Linacere the sepals have the quincuncial arrangement, the angle of divergence between eacin sepal being 144°-that is, the five sepals rise at regular angular distances while going twice round the axis. . . ff of Linacere $=5$ a $2-5 \ldots 5 \ldots 5 \ldots$ (5) $=$ five distinct sepals, arrangement two-fifths, etc. It can easily be seen that the structure of a flower may by an extension of this system be represented wich a great degree of fullness in a very small space, and in the clearest manner possible for purposes of comparison.

We give the following as simple exercises for young botanists on plants flowering in May:-
Violets \& Pansies.ff $=5 \ldots, 5 \ldots 5 \ldots(3)$. Strawberry....................... $=(5+5) \cdot 5, \infty \ldots \infty$. Gold Thread. $\mathrm{ff}:=3$ to $7 \cdots 5$ to $7 \ldots 15$ to $25 \cdots 3$ to 7 . Painted Trillium.................ff $=3 \& 3 \ldots 6 \ldots$ (3).

This latter being a monocotyledon the distinction between calyx and corolla is not so markec as in the dicotyledons. $3 \& 3$ therefore indicate respectively the sepaloid and petaloid portions of the perianth.

Butanicil Notes.

Now is the time to commence the study of the flowering plants. Analvise by dissection the flower of very species as it blooms. If a description is too long for your notes, jot down its floral formula, and find its place in the flora in your manual. The only way to know anything about a natural science is to study
from natuse. Books are not substitutes - only guides.

This is the only time in which to stuly leaves in rernation and many fiowers in crstivation. Seek the budding plant or tree and observe the unfolding leaf. Nite careful y the way in which the young leaf is folded in its winter cralle-whether comluplicate, reduplicate, plicate, circinnate, convolute, revolute, etc. Fach species conforms always strictly to some definite manner of packing in the bud.
C. E. Bessy, in the "American Naturaljat" estimates, that the ammual loss to the United States from parasitic fungi such as molds, smuts, mildews, rusts, rots, etc., ancregates "at the very lowest estimate: allowable, from fifty to one hundred millions of dollars." He thinks it is the duty of the Government to appoint a scientific commission to investigate these vegetable parasites.

ZOOLOG: :

Second year students of the Club are about this time becoming interested in the study of zoology. As the prescribed text-book-an excelient little manual--is small, the student will have ample time for practical work. He should make a general collection of such animals illustrating the different classes described in the text-book as may come within his reach. Those living near the sea enjoy exceptional advantages in the stud; of invertebrates as the shore offers a fruitful field for colleciting forms of marine life, but those living inland can also find an abundance of material, by careful search.

As the protozoa are so minute as to require the aid of a good microscope in their efficient study the beginner will not be able to carry on very extensive research in that department. A few of the larger species myy however, be collected from the leaves and stems of submerged plants in pools and dit-
ches, and from stones and shells near low water, and their habits studied by placing them in a vessel of water.

The study of l:wing specimens of Radiates will be practicable to only those living near the sea-shore, but much can be learned from the examination of preserved specimens, such as star-fish,' sea-uirchins and corals. Examples of the two former can be found on almost every shore.

In the case of mollusks specimens may be found everywhere, the seashore furnishing the greatest variety and abundance. Several species may be found in almost every lake and river. whi'e careful search among leaves and roots and rubbish, in old walls and garden walks, will reveal numerous species of land shells.

During the summer months directions for collecting and preserving zoological specimens will be given in the "Sciertist." Next month directions will be given for collecting and preserving shells.

GiEneral direction:, for collecting Marine Animals. Where the retreat of the tide is sufficient, the sea-shore always affords the best field for the collector, and the specimens generally increase in number and interest in propoition as we approximate to low-water-mark. Nevertheless the whole area should be searched, as each species has its peculiar range, and many forms can live only where they are exposed in the air for the greater part of the time each day. The ground may be sither muddy. sandy, weedy, gravelly, stony or rocky, and the animals inhabiting each kind of ground will be found more or less peculiar to it, and rarely to occur on the others. Sand and mud are, honever so similar in character that their denizens are nearly the same, though o me prefer the clearer waters which
flow over sand, to the turbid tide which deposits mud. But few specimens will be found on the surface of such ground, although the little pools lying on it should be scooped with the dip net for shrimps, etc., but it is only by the spade that its true riches can be devoloped. By digging in spots indicated by small holes, a great number of worms, boring crustaceans, and bivaives may always be found.

Weedy ground is so called from the abundance of eel-grass and sea-weed which covers it. These weeds should be examined carefully for small shells and crustaceans; perhaps the best method of doing this being to wash quantities of the weed in a bucket of water and examine the sediment.

Grazelly ,round is not generaily very rich in animals life, but will repay an examination, as small crabs are fond of lurking among the pebbles.

Stony ground is by far the richest of all. Wherever there are stones, particularly flat ones, about large enough to afford a moderaie degree of exercise to a common siz d man in turning them over, there the zoologist can never fail to fill his basket and bottles; for beneath these stones ariads of rare and beautiful species retire for ninisture and protection during the retreat of the tide. Rocky ground should be searched chiefly in the pools and crevices.

Littoral or sea-shore investigations should be carried on not only in the bays, harbors, and creeks, but on the ocean beach, in each locality, to get at a true idea of its fauna, as the respective animals will be found differ-ent.-Smithsonian Directions.
IV. W. Bailey reports to the American Vaturalist the finding of a spider's web with guys or supports 15 ft . long, and web proper 3 ft . in circumference.

NOTES.

The oldest tree in the world, as far as anyone knows, is the Bo tree, of the sacred city of Annarapoor:1, in Burmah. It was planted 288, B. $\%$, and is therefore now over 2,170 years old. The King Oak in Windsor Forest, England, is 1,000 years old.

An expedition with Baron Nordenskiold at its head will be sent out by Dr. Oscar Dickson, to explore the interior of Greenland. Baron Nordenskiold is confident that in the interior of this ice-covered land an oasis exists, and believes that he can reach it. It is hoped, a'zo, to obtain some traces of the lost Norse colunies, last hearl from at the end of the fuurteenth century. Their very Jocation is matter of dispute.

LITERARY NOTICES.

Reporis of Ficit Gruwens Association and Entomologiche Suchemy of Untario are at hand. These are comprised in a bourd volume containing some 370 :ages filled with valuable information on the culture and propagation of fruits and vegetables and also of forest trees. A well sllustrated article on Inscets Affecting Forest Trees, presented by William Saunders, Est, the able and enthusiastic President of the Entomological Socieit, is of especial value. so also are the S'mpular Pupers on Entamolug! in the Society's report.

Notes on the Cuonibe Fot did in the Vicinity of Uttalw, Unt. By F. R. Leatchford, B.A. In this valuable paper, reprinted from the transactions of the Uutama Field Naturalists' Club, nearly all the bivalves, of Canadian lakes and rivers are described. - Among them is one new species Unto burealis -A. F. Gray, first noticed by Mr. Leatchford.

The May number of the "American Naturalist" has come to hand, as unail full of the most intere ting matter. "I'ampum and and Its History' and the Naturalists' Bracillian Expedition" will be enjoyable readmg for the popular as well as the scientific reader. With the seriew of "Yenhallow's Vicgetable Histology" we can hardiy agree in every point. We have been disappointer in it. The it m, of Natural Science News under their variouhearls are numerous and valuable, and on condensed that to sive a ummary of them of them would requie a wholesale repronluction.

Publications Received for the Club Library.

Five copies Nota Scotia Grologir. By Rev. D. Honeyman, I.C.L., F.R.S.C.. Curator of the Provincial Nuseum. From the Author.

Current numbers Sciexce Observeli, (Astronomical.) From Boston Scientific Society.

EXCHANGE DEPARTMENT.

Every subscriber has the privilege of inserting in this department one notice, not exceeding five lines, each year. Beyond that, and for nun-subscribers, the charge is five cents per line.

California Marine Shells and Echinodenus for sale and exchange. Will exchange for Marine Shells from any part of the world. Lint of species and terms sent free on application. G. W. Michael, Jh.,

Merro Bay, San Luis Olisbo, Co. Cal.
I have specimens of Birds' Eggs, Insects, Minerals and phants to exchange for those from other localities; also fine lot of Live Pupx. Grastinle Goomist. North Livermore, Maine.
1 wish exchanges in Minerals and Shells from all parts of tre world. Can send Invertebrates from Bay of Fundy and fine Zeolites and ciher crystalised Minerals of this region.

> A. I. Pivaro, Wolfville, N. S.

Named L. S. Fossils and Land Shells in exclange for Minerals, Archreological specimens, L. S. "Continental" and Coloniai money, and books in the A S. C. Course. Actinolite, Agates, Ametny:t, Beryl, Fluor spar, ()uartz crystal, Kose quartz and Tourmaline e-pecially desired.

$$
\begin{aligned}
& \text { W. H. Beas, } \\
& \text { Lebanon. Warren Co., O. }
\end{aligned}
$$

I have on hand quite a large collection of the Culurado Beetle in alcoho! which I made last summer in Maine I will send specimens to localaties where the pest has not yet appeared un receipt of stamps to cover postage.

Euitur Alailian Scientist.

E．B．BENJMIN，

Importer and dealer in ：；：\cdot ．

Chemical \＆Physical APPARATUS，

AND

Assayers＇Supplies

of every description．
Nos． 6 Barclay and 12 Vesey Streets， NEW YORK CITY．

Blowpipe Collection．

The Oheapest Even Offered．

The following thity mineral：for 35 cents． If Hematite；2，Pyrte；3．Franklinite；4， Gilenite；5．Sphalerite 6 （ asisterite； 7. Graphite； 8 ，Garnet； 9 Aprite；so ！holomite； 11．Talc；12，Epido e； 13 ．curundum；14， C．I stite；15．Amazon Stone； 16 1．Juorite；17， V suvianite；18，Pyrolusite；it）St lbite； 20. Apop yllite； 21 ：culand te；22．Albert te； 23．Gypsum； 24 Anhydritr； 2 elenite；26， Quartz；27，Laumonite；23．Natr lite var． Scolecite；29．Orthoclase； 30 ！at allorite

I will send the above collection by ma．l， postpaid to any part of Cnnada or Unitrd Sta：es on receipt of price．Teachers of High Schools and Academies will find this collec－ tion admirably suited in an elamentary course in blowpipe analysis．It also forms an excel－ lent addition to the young collector＇s cabinet．

From A．H．McKay，A．B．B．Se ．Principal of Pictou Academy．is S_{3} ：The paciage of minerals has come to hand ome of the zeolite specimens are perfect beauties Your enterprise in getting up this blownipe collec－ tion will give a great iupetus to the practical study of mineralogy，I have no doubt．That you will not brcome rich on it at your cheap prices is a patent fact．I wish you much success with your good work．＂

Address，－A．I P1，to
Holfr．lle，N，S．

Just Opened． TRUNKS，YALISES， SATCHELS．
 FANS，${ }^{\text {FroM }}$
 Iable INats．
 BURPEE WITTER．
 WOLFVILIE，N．S．．

Having made a specialty during the past few yeari of ordering miscellancous books，and having accounts with the leading publishers．and the beat jobbing house in New York City，we beg to solicit your ardera for Scientific Works of all kinds．Botanicts＇Paper， Genus Covers and Drjers，and all kinds ef Scientific Goods obtainable through the mails．

Western Book \＆N～wc Co_{o} ，

A．M．HOARE， Manager，

WOエE゙Vアエ゙E，N．§．

WOLFVILLE，N．S．
The Subscriber is now prepared to furnish printed to order，
Postens．Auction Billa，Proorammes， Dodgare，Bill，工ettor \＆Nota Feads：

Business，Visiting，Address and Post Cards．
Customs，Legal，and Magistrates＇Bianks．
Society Work，By－Lauws，Notices，Notes of Hand，Receipts．Checks，tic．，stc．

```
A Erpectelty.
```

A．S．DAVISON．

