BULLETINS

OF THE

Aertal Exprrintent Agsmiation

Bulletin No. xyorvi

Issued MONDAY, MAR, 15, 19093

MR. MeCURDY'S COPY.

BULLETIN STAFF.

Alexander Graham Bele
Gardiner H. Bell Assistant Editor

Charles R. Cox
Mabel B. McCurdy Stenographer

TABTE O2 covgiant．

1．Butcoriay Hotes and Comenta：－

> Yeb. 26, Rensuris eonoerning fygnet II.......... -1
> Mar. 1, Oatline of Wark for Maroh...............2-5
> Marr. 10 , Sympathetie Vibration........................... 8
> Lar. 11 , The Fights of the 311 ver-Dart........9-9
> var. 12, Brake Teats of Dingine....................... 9 - 10
> Mar. 12 , Brake Zests Continued......................11-12
> Mar.12, Changea in Cygnet II.......................2-13

2．vork of tha AoBoAs＊

Peb． $2^{7} 7$ ，Thduranee Tasta of lingine．．．．．．．．．．．．． $133-14$
Mar．I，Indurance Tests contimund．．．．．．．．．．．．．14－15
Mar．2，治duranee Feats continued．．．．．．．．．．．．．．15－16
Mar．2，Resting gtrength of Gygnot II．．．．．．．17－17
Mar．S，The Rusaian Propel2 er．．．．．．．．．．．．．．．．．．．．．．．．．．18

Mtar．6，Hyarodrome roy．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．26m－26
Kar．6，验duran Testis of Batterien．．．．．．．．．．26－27
Mar．A，期ght Miles in the SilverwDart．e．．．．28－30

Mar． 21 ，Brake Fagth of Yingline．．．．．．．．．．．．．．．．．．．．34－35
Mar．12，Brake 管estin Contimued．．．．．．．．．．．．．．．．．．．．．．． $50-37$
सar．22，Tev Propell for forgnet II．．．．．．．．．．．．37－38

3．Hisce L2anoous Gonnunications：－
Charles J．Bell to \％． 11 （yureh 8）about replneing
the Aasociation by a Joint Stock Coripany．．．．．．．．．．．．．．．．44m4t
Hauro，Comeron，Levita \＃Mansie to Bell（March 5）

4．Tha Outhook on Ariationt－By Y．W．Baldwin．．．．．．．．．．．．．．．．．．．50－52
（XI2uatrations eontimund on next page）

2abis of conzars (comermuid).

Thuatrationg.

1. Two photegraphs of the iee-bort se used in the enturance teate of the Curtiss He. 3 engiac. Upper picture shows the vartical radiator employed in meparizunta March 2. Lower picture shows the A.Z. radiater with square face used Harch 2....... 39
2. The a0 ealled wiusaian Propeller". Threen photographst. Opper shows arrangemont (in plan) or curved ribs in the blade. Hiddie pieture illustrates the eurvature of the blades. Lower pieture shows the propeller in ylan.. 40
3. MeCurdy making his 8 mile flight in the Silver-Dart March 8, 2909. Two photom graphs.41
4. HeCurdy in the silver-Dart March 10, 1909. Zwo photographa.42
5. Ta0 photegraphs illustrating recent ohanges made in Cygnet II. Upper pieture showa the exrvature of the runn ars and how they have been atrengthened with wood. Lower picture hhowa the vertical rudder below the front control - an awkward arrangonent and only temporary for the preaent experisents, as te cannot put it above without intertering with the working parta of the front control, and do not care to put it in the raar on neeount of the large propeller there. In its proviaional position it will sorve as a buffer in front in the avont of a header in it bad landing.... 43

Cypan II.

Yeb. 26, 1009te During the 2ast experiment with Drome Ho.5, Boll's Cygnat II, a gay wire mapped Juat wen it was beginning to leok probable that the machine woula take the air. Inis ahows that there was oonsiderable tonsional atrain in the machine at the time reaulting from an attouyt on the part of the Cygnet II to rise. What leasons ean we learn from thia fact?
(1) Ve usust sumpend the ayparatas so as to aupport the load by tenaional atrain to be aure that the fraceevork and gou wires are auffieient for the purpose. It would certainly not be a croditable thing to have the body of the machine drop out while in the ais one guy wire after anether breating like the first. We must be sure by actwal trial that the machine ia strong encugh to sustain the bedy by gusponaion from the uyper truas.
(2) It woula be well alat to exazine the amehine to see stether the long sledge runners to not oppoae reaiatance to turning up the bow on account of their prolongation behind the conter of gravity wich 1 ios about 15 en in front of the canter of nurfaee. Might it not bell to allow the aledge runners ta terainate at a point under the ounter of surfmee or to alope upuarde from the t point to the rear. In fret make the rear part of the sladge runnera a aort of rocker upon which the msehine eould turn when the front control is ralsed. I rather think that the reaistance to turning upwards at the bow prow duced by an tanneceanary pralongation of the sledge runners at the rasy must introauce an element interfering with the rise of the maehine inte the aire A.G.B.

gursiys or woik yon unicy 1909.

Kargh 1. 1909ge The firat of dareh has corn and we huve only one month to complete whatever experiments we have to do. In orter to eaonomise our time ve ahould eloarly plaee
 ary value.

The Aswectation started out with the intention of tosting a machino of purs tatrahedral conatruetion in the air propelind by ita ovm metive power and oarrying a man.

Prolininary to this acoired experirzont wo put up the tstrehedrah kite Cygnet I with tisut. Selfritge on beard. Unfortuante2y, sfter earpleting waceessfally this prelininary expestant, the kite wan wrecked by boing arugged through the witer by the Blue 1411. Thia was in Booomber 1907; and not having snother large atrueture of ainilar kind, nor rateriale pherowith to rake it in whortime we adjourned the Aasociation to Hemondaport and carried on an untirely different meries of experimenta ithile matcrial was being
 preventea aur return to Boinn lhresgh Bill quite late in 1908, and permitted of the mapuracture of four aerodrones, . upon a difrerant plan from the Gygnet at Ilemonduport.

As apon as I could get bsek to Beinn Bareagh the nety Cygres IX whis cormenced. It mas bean aubotantialiy completed for a long time, but we were atili further alelayed by the nonmarrival of the ongine frotiluanendeport, and ohen at last 1t arrived it mat found to be soe heavy for the intended
purpeas of being aent aloft in the Cygnet II Plown as a kite after the manner of Cygnet $I_{\text {, }}$ and the aeasen fas ae far advanced whon it arrived that the gteomer Blue hill wae frozen in at her whare in Baddeck. Only one month nore revaing to the Asooulatkonfor experimental work, and the only poselble way of teating the Cygnet II now ia to start it upon the 1 ee.

Wo ald ao at the ifrst posaible noment after the arrival of the ongine and on Feb. 22 ve made our firnt proliminary experimont when the 20 ft . propelier provided was broken.

Another experiment made with the silvar-Dart prom pelier inatead of one suited to the cygnet atructure was made Fob. 34, but on the snapping of a guy \#ire, NeCurdy shut off power, and as it was then beglnning to becone dark It was thought best to peatpone further experivente to another day.
(1) I think then that our firat effort ahould be to eonglete our tests with the Cygnet II, and make every atm teapt to get her into the air if it is poasible to do se eonsidering the great weight of the atructure with the man and ongine oll board. Thit ahould be our primary objeet for the short time remaining to us and every thing else arould be made aecondary to this.

It nuat be obvioua to ua all that we ean put a structe ure of pure totrahatral conatruetion into the air with a man and ongine on board; and until this is eone the experimont Which atarted the Association has net been corpleted.

This exjesi ment bloeks the wiy to further advanee with tetrahotral atruetures. I how alogy boen anxious to try en aerodrome built upon the Oiones plan but have pruposely postponed any wuch tirial until after we have teated thoropithy the stability of nerodrones of pure tetrahodral form in inich no horizontal aurfaces are employed.
(2) 诲ila theae experinents are in progreas horio zontal aoreplanes on the Oionos rite we have, ahould be converted inte acremcurves so sal to ensble us to ascoltain by aotual experinent, the ther acromeurves in auch a Etructure are really morv erilelent then aeroplanes. This is the point we should aseertain ivusedstely as the reaults (ull guide vs in the form of suyporting aurfacea to be used In Drome Jo.6. Fixperiments with the Oienes zite oan be earried on stmultaneoualy with the Cygnet II experinents.
(3) As aoon sa we have tetsrminet the paint as to whethar curved or rhat supporting surfaees are best in the Oiones farm of structure we choule begin the oonatruction of the serial past of Hrome Wo.6. This need not Interrupt exporimente with Gygnet II, or the 612 v ar-Dart.
(4) The sisperwibart ahoule be experimented with an such as pasaible without interrupting the above work. The engine wil2 be needed for experimente with Gygnet II but thore will be plenty of opportunity turing repeire upon that structure and after we have raised it into the air for easo perimenta to ba nnate shth the 3 siver-Dert. A great many trial flights ahowa be mode on the lee spocially with the objeet of p raetieing to make sood kanding. Short flights
and many of thera and also practiee in turning so as to grin control ower the qparatus. Iont Mifeta thould bo mate in os circle of Largo dimeter on Boddeck Bey, ane not at firet in a atraight Iine.

In theac auntained P2ights it ia important that wr. wecurty thould not ge far away from absiatance. The Laboratory Staff (and incidentanit the coctor) shouldtake their atation on the ice at about the oenter of the eirele so that they will not have far to go athould any acelaent hayposio

Mr. MeCurdy shoula not atteryt \& Long sustained Pilent in a gtraight ine until we are attiafied, by experiment, that the engine will hold out ror aueh a long nlegt and that MoCurdy has had auffieient practiee to render it advisable for hin te ge miles amey from sasistance. A. G.B.

Syagathetio vibrationa

Yaroh 10, 190g:- I notieed yotertay that sorve of the gtruta in the silvor-bart were thrown inte vigorous vibration by periodic impulaes traannitted from the ongine. The arplitude \#as ao grent as to sugceat the adviambility of taking precautions aguinat the rupturing erfects of ayapathetie vibration.

My pirat theught was to gry the atrut at the miedie paint, but this would only pa: $t 2 y$ meet the difficulty. It oricht oheck the funfamental vibrasion of the wtrut but woula not provent a sympathetie vibration reayonding to the ectave, for the darpening erfect would cone upon a natidras nodel point, and the tues aggrent s of the atrut on oithar sice, boing in thie caso of aqual longth, woule bo capable of vibrating 21 xo the two pronga of a tuning fork and wotule reinforee oneh othars aetion.

If we load one prong of a tuning fork so as to throw it alichtiy aut of tune with the other prong the fork is "dead". In applying this principle to the atrut attach the guy wire to one side of the madale point ao that the two segronte are anegail and in this manner we may rander the atrut ingonaitive to aympathetic vibration. It will be "deade ao to apoak in the acoustical annae. In attaching the gry wire it night be well te avoid any of the natural nodal pointe of a vibrating evord.

If the nomal fraguencien of the turo segsenta of a atrut are not the awne, and are not malitiplea of one nnothar, the tendenoy of one aggont to vibrate ayypathetieally with
sone outaide periodic diaturbance whli be chacked and neutralized by the tendency of the other segnent te vibrate at a different rate.

Womentric gwy miring may thus afford a renedy to the dangers aue to syupathetie vibration. Owy wires thosm aelvea have atrong tendeney to be throvm into vibration and the extra atrain prosuced by the $1 x$ sympathetic vibration night be quite aurficient, eapecially uith thin wiros, to cauge then to sump. If their vibration in canpencel at a point near sheir central perta and not natural nodel point so that the frequencies of the twe aegnonts are not the same and are not hamonies of one another, or harmonies of a cowon fundamental, the vibration of the unequal acgnenta, under the influence of sympathetic vibration, will ellock snd noutralize one another. The nore I refleet upon the prineiple involved the more I realime ita importanee in a rlying-machine. In such s structure there mugt necesmarily be wimy parts ao thin in proportion to their length as to be aubject to periodie vibration. All such parta will be eminently atuaceptible to sympathotie vibration from cisturbancea propagated frem the ongine and thua unamapeeted straine nuy be introduce eayable of producing rupture in irmortant parts of the structura and eapeeialiy in those parts, like guy wires, which are under tensional atrain. In ny opinien all suoh parts ahoula have a ttachnonts to aet as dampers nesr, but not at, their eontral points ac as to cause then to be aivided into two unegral aegmate having differont nornal rates of vibration so arranged as to
neutralise each others sotion when under the influence of periodie alaturbanceis from ousaide saurees. In a word the

The Finghts of the andrer-Dart.

Mareh 11. 1909:- On Mareh a and again on March 10 MeCurty cade rlighta in the gilver-Dart of mare thun 0 miles each. This domonatratea that the Aariad Taverivent Aasociation hua puahed ita investigetsons relating to the Hurvonaaport type of zackine beyond the experimental atiage. I Ac not howver Peel. ruil conridence in the engine and I think that under the beat esreumatnpees we aro not obtaining her full power. On ytareh 9 we could not raize the gilver-Dart inte the atr when going in the save direction with the wind; and even when going againat the wind ehe plev in a very -logey* manner . It is obvious that we have no murplae pover ont a very iittle wind robs the silver-part of its aupport. The ongine is nominally 50 K.P., but I don't think under the best cireuestences we get halp that acoount. Brake teats have beon ortared before any other experiments are made to let us cee exaetly what power te are entting. I have so 1ittle conrideneo in the engine that I feel our only ohanee of winning the Beientirie Ameriean Trophy 21 es in the weather, unlesa at least $M \boldsymbol{T}$. Curtisa ahoule be able to be prowent. Ho has only to look at the engine to get it to run well! without his presonee the result will be very problenatienk. A.a.s.

Brake Yoatg.

March 11, 1909:- Braice teste of the Curbias Mo. 3 engino ware made this afternoon with the astonishing reault that wo seem to be getting only fram aix to elght horae-powor. Surely the
engine must have been more efrieient when the Plights wore nade. It seems hardiy poselble that the silver-Durt eoula have sustained h eraelf in the alr without an output of three or four times thet mount. The tegte will be repeated tometry for verification. A.G.B.

Taroh 12, 1909:- Great eonsternation prevail od here yesm tertay (Harch 11) over the resul ts of our brace testa which indieated that we were only getbing a horae-power from our 50 horac-power engine. Our hopes of expturing the Frophy for the asoond time soersed to be auddenly dnahed to the sround.

To add so our mortification we expect delagetes fron the Aero Club to errive here very soon to witness the flight and we have no other ongine avallable for the sile ver-Dart. Mr. Curtiss toe notiried us he will probebly be unable to be preaent to help us with hia expert adviae.

Under theae circuratanees wo nll of us felt very blue last night; and we kept the telegraph wires hot with apperla to Curtiss for augeations, ane with telegraps to the prineipal makers of Automobile enginea in Canada and the United Statea te Pind out whether reliable comercial motors coula be obtained at once that would be suitable for our use.

At present we are entirely dependent upon an ongine which has ancaral timos given trouble, even in the hands of Mr. Curtias hivasif, mile, in our hands, it oecasionally balks and losea its power.

Fe look back upon last nidity, Thuraday March 11, as upon a nightenare. Eblack Thursday" we may all call it, the darkeat day in the history of the Aasociation. It is always darikest howver juat before dewn, and tida morning (Mareh 12) the aause of the trouble with the engine was aiseovered.

In the forenoon seven of the eight cylindera ware working well yielaing about 26 BolloPof and this afternoon
the elghtlr eylinder began to behava and tho engine gave us 31 Boll.P. We now have nueh more conflitence in the onm हine; but feel that it might be wise to seeure a good reILable autanobile engine to be uaed as a subatitute in the event of another break down of power. A.C.B.

Chances in Cympt IX.

発等ch 12, 1909:- The runners have beon bent as show in a photograph in thia Bulletin and have been strongthened by a backing of wood. The aviator' a acat has been raiaed and atreng thened.

The vertical ruder has been phaced below instead of above the front contrel, pereltting the front control to bs oporated as in the silver-Dart, and sfforeing a buffer in front in case of a bad landing.

The steering sheel is pulied by the aviator whon he wiahes to rise and puahed when he cesires to come dom, favoring leanin beckwards when steering up and leaning forwurta when ateering down. Thue the change in the position of the eenter of gravity produced by the nevement of the aviatorts body comoperates with the setion of the front control. The oppoaite was formerly the oase. A.G.B.

Zonearance Feat of Curtise You Zurdne.

Yab. 27, 2909:- The exper wente with the silver-Dart (Hob. 23-34) acen to indieate that HeCuray could fly in the sil-ver-Dart al long as the ongine hold out. Hefore eeciding to try for the Selentifie Aroriean Frophy which demands a flight of 16 miles invelving about 20 minutes in the air. it was thought well to teat the anduranee of the Curtisa He. 3 anglne. We decided that if wo had reason to believe thet the ongine would run satiafrectorily for half an hour, we would ayply for the Trephy, but if the ongine broxe down or became evcricated in a ahert period of time we would make no application at the jreaent time. The ondurance teate wore comaneed to-day (\%b.27), but the reaults were not satisfactery. I give belew wecounts of experiment by HeCurdy and Boewin. A.C.B.

HeCurty"s Account:- This aricimoon (Pob.EV) proparationa were made to cenduet the andugnee teat of Curtias Mo. 3 wile mounter on tre soeseat.

The iee brakea were fiznt "put on", so us to prevent the angine from advancing, and ime ongine atarted up a a proliminary teat before we ventured out on the lee. After a fow minutes of running it was netieed thait the counter ahart bearing was ofting wark and upon atoping the engine it wan isseovered that the harcenee aleeve over the shaft mith comes in direet contaet with the roller bearings had alipped out of place owing to the shoaring of the pin which was to
hald it in place. A few rollers will have to be replaeed and
 realy for another trial. J.A.D. MeC. Yedzin* Angounte Put Curtins Mo. (Fobez7) and on ruming tha ongino for bout three ninutes Pound that the sleeve on eounter-shaft hat shearee the pin that held it to ahaft proper snd as this allowed sleeve to
 had to postpone endurance teats. This eoun ser shat and E ons stan only designed for use with the ilght poser motor but think it will be all right with finw slight changes. 18.3.3.
 Curtian Fo. engine were continued te-day (march 1). In order to put the engine in aa fiearly as possible the some condition it would be in the air, it was decided to pleve it in the ieemboat and propel it over the lee se as so aliov the wind of sdranee to aet on the radiator. A vartieal radiator was enyloyel as ahown in a photogrogh in this Bulletin. The reaukt wa not antiafaetory ab the ongine beosuc hetted
 of thia experingent.

MoCurdy* Aogeunts- Curtiss Yo.3 engimo was put through an enduranee test this afternoon (Mareh 1).

Fe wiahed to aseertain whether the vertical radiator ohich has bein used se far in the 8ilver-Dart, was surIfeient to geep the water for cooling the motor, below the boiling peint. The propoller uged to-day whe the new porfoet
sorev 22° at tip and 6 2t. in Giameter. Fhia produeed a puah of $250-200 \mathrm{lbs} \cdot$, genred $16-24$ with the engine turning over 300 - 860 rpm. It can be easily seen that this is about the proper load te apply to the sngine at that gearing. We ran the ioc-boat down the marbor, round the peint and up the Baddeck ahare to the WeLean property. This took pour minutes of time and then we were eempelled to ahut off the power as stean was aeen issuing from the radiator.

It was aoen thet the water was boiling and hence the proper molyt of eooling aid net take place although the relative wind velecity was about 40 miles per hour.

As we whut off the power the brake was appliod and its cificioncy wha demonatrated by the boat stopping quite sudteniy causing ne to gently rell orr in frento

Wo waited there a \boldsymbol{f} (minuten till the water acemed cool enough to run uis home and thon hoaded the boat for the end of Long Gland Point. We were foreed however to atop egain owing to the heating of the water in the radiator. A thire atart and we arrived asfely at the boat house.

We planned to replace this vertical radiator by the autonobile A.z. radiator we have on hand and a teat will be Eade temorrew.

If this alae proves inofficient the eooling oan be offected by the asaistianee of a eentrifugel blower exiven fram the engine. J.A*D. MeC. Hareh 2, 2909:- An expariment waa zisec tomay to teat the ondurance of the Curtise Fo.s engine with an automebile radiator having a square faee ahown in a photograph in this Bulletin.

The reailt mats satiafactery an the radiator remained eool noter a run of 20 mimutes, mat there ia no reaeon to bee liove that it would be heated by a lenger run. We have thorefore deelded to apply for the Selentifle Asericen Trophy. I eive below MeCurty" a meount of this exper ivent. A.0.3.

MeCurdy was given the endurance toet proyosed in conroction with the ice-botat. We replaced the vertical type of radiator bo the apeaially atelgne sutemobile rakiater built by the A.z. Comyary.

The teat was entirely atiafactory the radiator being Just as eoal sfter a 20 minute run as it was when we starte ed. The propellar enployed whe the anye one used in yesterday ${ }^{\circ}$ s oxperiment. 8 ft. In alameter, perfect aered throughout and $2 \sigma^{\circ}$ at the $t 1 P$. This gives a pitch speed of 10 feet per ravolution of propeller.

The ice was covered over with about Sob inchea of hard snow and even with this extra lose we went from the ahed around the Long sand Point and up to Baddeck Fiparf in \& $1 / 2$ minutes. We sit not obtain securabe taka coneerning the push of the propelier, as the lee-bont advanced, but the gen aral eonclusion wass thst the push droppet.

This ia a satiafmetery teat mad with everything else ซorking aa wli ve feel gure that our eontemplated hour or more r2icht with the si2vermart ean be essily sceompliahed. J.A.D. MeC.

Zoating the Btronath of cyenet II.

Yarch 2. 1909:- In the zecond trial of Cygnet II (Yob.24) onc of the guy vires attached to the engine bed had snappod and it thas therefore thought well to test the tenaional atrength of the parts aupporting the angine and soan by aupperting the rashine so aw so alloz the enginc efe. to hong Fithouf touching the P2oor (Itulletin Xoorv p.32). In all our previous teata the enfine part had been aupported from below, wheress in sctual rlight it woule be supported from above. The experinent of aupporting the body part containIng the ongine and man Pros above instead or below was trice to-day (Tarch, 2), and the atrueture aeemed to be sufficientiy atrong for the purpose. I give belov 整eCurdy's account of this experiment. AGB.

學cCurdy' a Aecount:- Tonday (Hareh 2) the center panel of Cygnet was tested by auspending machine by its aings alone ath then placing three men, along the reel atick, to rew present the weight of the power plant and aviator. Fo derlection whe noticed. J.A.D. WeC.

The Rugsian Propelier

March 3. 1909:- Zxperiments ware made to-day with the proo paller eonstrueted to test tho essertial features of the Ruasian propelier of Col. Oehtehouny (see Bulletin 2xoxv pal) ala see photograph in thia Bulletin. the mazimuen push obtainod wha 25 2ba. with 650 rpm. The paak foll off with lean rotation and with greater. I give below aecounts of this exper inent by MeCurty and Bewdine A.a.3.

YcCurdy ${ }^{\text {a }}$ Aesount:- Rusaian propellar given test on $1 e 0-$ boat thia morning (larch 3). Ieembat not fllowed to advance. Goar 15-24.

Pull Rot o of engine

$$
\begin{array}{rrr}
\text { 1bs. } 25 & 650 & \text { Havepuah } \\
0 & 750 &
\end{array}
$$

Thic accens to metan that the puah of the propella docraases on both siaes of 650 revelukions.

The puah indicator atands st zere before the engine 1a atarted. As the ayced of the engine is incrasaet the puah indicator peinter sivances showing m slow increase in puah till the epced of the engine is 650 rpto. The puah now is 25 1bs. As the syeat of tho engine iz increased the push falle off 6111 finally at. 750 rpta. she puah is again sero. Two aeparate axperiventa were mate.

I weuld augcest that perhays the reason for the faling eff in puah we the rotstions were increased might be that the curves of the blatte fiattened out as the apoed inoreased.

Wo atationed Maleom Keharlan at one aide so obmerve wether or not tifis rlattoning took plaee as the opeed of rotation man increaved snd he reportad thet there was a deciued rlattoning of the curves in the blades. J.A.B. Mde. Hodian's Acoeants- $20-1$ an (varch 3) on running ongine with reterded sparit turning up 650 rpta pull wee 25 1be. Immediately on advancing apark pull irepped to nothing. Think it tue to twisting of the arm zupporting bladea redueing the piteh of blade to sero angle under the incrassed speed of rotation.

Maroh 6. 2909: We tried comparatively tomalay two kitea or the Froat-iClng form, one of red silk and the other of Japaym ese watarmproof paper. The object was to aseertain whether alight poroaity in the surfaces omployed affoets the efficieney of a kite in s senaible degree. The red silk used Is sizilar to that omployed in prome Ho.5, Be12" Eygnet II. It ia slightly porous as we readily diseover by blowing through it. Tac Japuncese water-proof paper is aboolutely impervious to air. Nach kite ia 300 en vide on top, and 150 wide at bottam, 250 m deap from fore to aft, and 150 en high (obligue), and containg 102 celle, huving a total aurface of 9.8507 sq. $\mathfrak{3}$ oblique. 3ilk kite weigh 4081 gaz. Paper kite weight 4654 gme. Iine 100 m long weighe 1100 gnts. Line attached +50 cm from center of kite.

3xP. 2. Sink
Wind $\mathbf{1 5 . 3 0} \mathrm{mph}$
Pull
A1t
$\begin{array}{ll}16 & 40 \\ 12 & 41 \\ 10 & 43 \\ 12 & 42 \\ 16 & 40 \\ 16 & 39 \\ 12 & 38 \\ 14 & 38 \\ 10 & 36 \\ \frac{12}{130} & 398\end{array}$

13p. 2 Pever.
wind 12.50 mph
Pull Alt

8	34
10	38
6	30
9	28
18	34
6	35
6	30
11	30
16	32
$\frac{10}{100}$	$\frac{28}{324}$

Bulletin He.xocurI
Pre Se 8ily
Wind 23.50 mph

PuLl ALt

16	35
26	42
12	44
18	39
18	38
16	36
20	38
10	42
6	40
18	32
146	395

390.5. silk
wind 25.30 mph
Pual ALE

16	40
12	42
12	42
13	38
10	35
16	34
15	40
16	38
18	40
16	12
14	390

vind 12.80 mph
Pual alt

10	33
12	35
8	36
16	35
10	36
10	36
7	35
10	38
7	38
6	39
98	359

- 8

Yere_ Se Paper. Find 10.80 mh
Pual A2t

12	30
12	30
10	32
10	26
12	27
8	26
4	18
9	16
6	16
6	289
89	285

B2. 6. Pereer.
tind 10.40 mph
PuLI A.t

8	31
10	50
7	30
6	29
5	36
8	26
10	25
11	30
8	35
7	35
80	308

3R. B. Paper.
vina 16.90 myh
PuLl Alt

26	40
25	41
32	45
35	44
34	46
26	46
28	45
38	47
98	46
30	49
297	48

3ape.9. 84178.		3ape 10. Pazer.	
Wind 25.20 mph		vind	.\%
Puis	A1t	Pull	A2t
16	38	12	87
26	38	18	36
10	39	24	38
12	37	20	40
24	39	16	38
12	33	14	38
13	36	10	45
16	36 -	9	43
14	34	16	37
17	33	15	36
140	366	184	388

Fine. 21. sixk
pual alt
Fap. 12. Paper
Vind 14.10 mph

16	45
16	44
20	45
20	44
18	38
20	38
15	40
14	44
10	46
$\frac{8}{157}$	$\frac{43}{432}$

16	50
25	50
20	49
20	46
17	45
20	53
14	58
18	50
20	50
16	$\underline{55}$
186	500

3ane 14. Pang
Fint 12.60 mph
Pwal att

18	43
16	45
18	42
20	42
20	40
25	41
20	41
16	40
18	40
18	42
183	415

Pull	ALt
26	45
16	40
27	35
24	43
20	46
34	39
18	36
28	38
20	40
38	39

312.15. S418		3ane 20. Punar.	
Vind 2	. 60 ugh	Wind	.40 mph.
Pull	Alt	Pual	Alt
26	60	34	40
26	40	23	42
24	40	32.	45
20	40	25	45
18	39	34	48
22	38	28	45
32	36	25	46
50	45	34	48
28	42	24	45
26	43	30	43
247	402	268	485
迤. 17. 3ilk		Era 23. Paper	
Wind 10.60 mph		Vind 27.50 mph	
PuLl	A2t	PuLI	al.t
32	39	38	48
30	35	30	45
34	42	34	43
28	40	35	42
38	40	40	43
34	39	33	41
28	37	36	40
28	40	32	42
30	40	38	44
38	49	34	48
302	392	346	488
290.29. 397x			
Hind 18.70 mph		Find $\mathbf{2 7 . 2 0} \mathrm{mph}$	
Pu21	A2t	Pusd	A2t
28	42	30	44
25	38	32	44
24	40	36	40
26	38	28	42
25	40	28	4
22	38	30	41
22	39	38	48
24	41	36	48
20	40	88	44
248	597	306	428

cotoor or come mor hime por		
\%\%tit	Win of oix or	
\%rom		\%
(
\%		
patio		
	कगत	

311 k Kitos- Avorage antitude $39^{\circ} .43$ say $89^{\circ} 30^{\circ}$. Avorago puil 27.87 1bs. Fieight ag kite and line 12.42 2ba.

Pu11 17. 37 1ba.

$$
\left(\begin{array}{ll}
\text { Vertieal } & 11.3 a ~ 1 b e 。 ~ \\
\text { (Harisontal } & 13.82 \\
\text { 2ba. }
\end{array}\right.
$$

Tho total weight infted, consisting of kite and line. 31.41 1bse, and the veritieal pull of the plying line, 11. 3a Lbac. amounted to 22.79 lbs. Thin is the 1 Ift element.

The horisontal pull of the flying line, 23.32 2bse, conatlitutues the erift eloment.

$$
\text { HePicioney }=\frac{\text { Thft }}{\text { Hrith }}=\frac{22.79}{13.82}=1.64
$$

Japanaze Paper Kites-Average altitude $38^{\circ} .69$ may $38^{\circ} 45^{\circ}$.

Angle $30^{\circ} 45^{\circ}\left\{\begin{array}{l}\text { (3in. .62598 3ay . } 626 \\ \text { (Cos. .77988 any .780 }\end{array}\right.$

Pu21 20.77 1bs。 $\begin{array}{ll}\text { fVartical } & 13.00 \mathrm{Lbs} . \\ \text { (rorizontal } & 16.30 \mathrm{ibs} .\end{array}$

The tothl weight ilfted, conaiating of kite and IIne 12.67 lhase and the vertheal pull of the flying line, 13.00 2bse, avountod to 25.67 iba. This is the lift alement.

The horisontal puil of the flying 1ine, 26. 20 Ibae, eonstitutes the frift sloment.

$$
\text { Hrieieney } \frac{\text { Itift }}{\text { Drift }}=\frac{25.67}{15.20}=1.38
$$

Comparisone.
risfiakenay of ailk......................................

It thut appears that there is not such aifference between the erficiency of a kito horing ailk wurfacea like these onployed in Gygnet II, and a kite hewing perreetly hir-tight wurfaces of Japanese mater-proof paper. In both cases the efficiency in substantialiy 2.6. That is the Iift Is 1.6 times the fript.

The silk Kito seems, if anything, to be silghtly nore efficiant than the Jupanese paper kite (1.64 against 1.58). Cocparing the twe we nay nete that the silk kite wetghed leas thon the other and raei at a greater altitude in a greater tina with leas pull. A.G.B.

Harch Ge 1909ge the Itytrodrone Toy roforred to in Bullotin roxxy paen, whieh had been ment baek to the Laboratory (Mob.l6) to have larger hydremur races attmohod, was cors pleted a number of Anys ago but, in the intereat aroused by the triala of the gilvermpart and cygnet II, itr. Bectrin forget to repart it. Tt was produeed at Conierenee tomday fund was irmediately taken up to the Itelvesl Ipring and towed Wy a rianime line attached to a bamboo pelo. It rose very prettily out of the water whon towod at a vory sisteht apeed. It interestod sal of us very much ase we hewe no doubt that it nay be made the basis of an atitraetive toy.

It momens mare than a toy to me ror I farey we axn work out the form and mrrangemant of nydro-aurfaces, as well, on a mani model of thic kind an on machinen of the sime of the "Phontuas Mowg" and aquary". A.G.B.

 would be woll to have an ondsurnee test for the voltaie Batetorica englayed on the curtise Ho.s engine. Ve have pound that the autanoblie radiater apole tho oncine perfeetzy se that there oun be ao coubt that we can rely upon her vorking for halt an hous, which ia more than anough tine for the asiver-bart to rua the 10 miles regatred to win the Eleiontific Ans riean Froghy, wad it was thought wiae to toest the endure ance of the batteries to be gure that they toe would lant for nowe than onewhat houria eontlautoss une.

The bottery ealla, with busmer attached, were taicen to the Paint te-tay. The arperage wan aveertained bse fore starting the busser and after half sh hour the found not to have fallen materially.

To be perfeotiy oure of the reault another axperiment was mede the buazer being left on for $42 / 2$ houra. At the conclusion of this experiment it was found that the buazer was atili working vigoroualy and that the mperage had only fralen from 19 to 12.

There is no ranson, therefore to fear that the battery would fall un on a half hour teat of the gilver-bart.
A.C.B.

Harch 3. 1909te Baperisments with silvequmurt resuan thia morninge-ntetuxty zude four short Inights te praetiee landIng on the iee, and then Rew 8 miles without stoppinge going to stony Iskand and back passing through Buateek Harbor. The folloulng secounta of to-day ${ }^{*}$ axperinente are by Mecurty and Beldurin. A.GeB.
 progran a suriea of short ilights so that praetiee coula bo obta ined in wnking the landinge.

Wo Pirat attached the oight foot Minater, 22° at tip parreet aerev propelier and took the machine out on the ice. The wind wae south-mast by west having a varying veloelty froen 3 te 7 niles an howr. The Dart wes taken off the Ioboratory and houded for maek Island and ropon the alem nal being given to let go she movet foruera very slowy and falled to respond to the lifting effeet of her frent eontrol. It was guit evident after a mounents rusning the th she woule n^{*} tida and so to give the ongine a gooa rum \mathbf{T} took a wite cirele in the ifreetion of the Baideek ehore snd brought the pachine bsek to the starting point. On the supposition that this propelier was soe heavy a lend we romoved it and athechpd inatead the siane propelier uaed in Pilghts of Mob.23 428. The tachomnter showod after a ilttie traning or the engine
 reetion of inack Ishand and this time node a istete jrap of hbout 200 rt . at an alevation of 6 ft . and effected a londing
wi thout any gar to the machine. Bhe was now headod round direethy with the wind wnd thia then a n wigt or a bout $1 / 2$ mile was made and a good Ianding negetiated. We reasoned that perhaps a dittle mere oil in the erathloonse wotula be a benerit to the ongine and so injectad $s i x$ squirtegun fulle. In tho zile plight wich followed I huggee the Buddeck ahore until off the Iog Cabln, then teok a wide circle to the left. On appreaching the Beinn Fhreagh chore the engine gradually alowse up dropping me gontly to the 1ee. After landing wes made in front of the Todge whary we discovered that the gasolikne cock hod becovne partially cloaed frotn vibration. This was tigtoned up and the machine whecled down the Bay till about orf Pragerta Pond. Hore as bufore ahe was surned round and a might atarted up the Bay. I Rew elose along the Baddeck ahore pansing Moddeek Ingite of Kitaton ${ }^{\circ}$ a Italant; took a long turn to port aroand Stony Isiand coning back over the owne route and Landing In front of the Durt ${ }^{\prime}$ s shea eowering a Alatanee of about 0 - miles in 12 sinutea and 15 veeonda ass reeorded by Itr.

Balderin' ${ }^{\text {a }}$ Acoountze Got away to a comparatively early atart start about 0 otelook thia morning (March a). Wenther and ioe porfeet. Zngtne when cold ran badly but warmed up and ald better. Houtver it would not drive the 8 ft. propeller with 384 goesring moren thma sbout 800 rpte. Snirted to old propele ler 7^{*} e aiameter sam gearing. This worked much better engine sperited uy to about 900. After serne tuning got engine apeed up to 1000 rpan. With the fite proynilar Dart. would
not my but with arniler one was able to suatain herself.
John mate a mumber of ahort misgte praetieing landing. Then moile long filfth of about s / s of inile. Thon cecided to try longer filght vith turn. John gtarted
 went on through Baddock Marbor and rounden Stony Isiand. Cone back very steadily landed easily. Fime 11 minutes, 15 aeconds. Distrunce sbout a milew. Jigine cooled partectly but judging fron propeller apeed ild not seent to be ievelog

March 9. 20098- The 5 Silvor-Dart man taken out on the iee thia afternoon there having been too mach oind in the farenoen for experiments. The afternoon wind was frou the HT about 10 milea per hour shd dying fow but purfy. It mat decided to be inadvisable to attempt a long flight on this account and beeauae the engine was akipping and evicently net giving ite rull power.

Colng againat tha wind a flight of about one-half mile waie rade at an slevation of about three feet. (NeCurdy ariator). Trsvoling with the wind the machine ald not rise. The machine aypeared to be mogne and the engine mas not verining setisfactorily.

While the nachine was held atationary upon the iee curing an engine teat I noticed that twe of the wiruta in the frent of the naehine on either aide of where MeCurdy was sitting were throm inte aymathetie vibration by the shaking of the engine. It aight be matter of preeaution to cerapen their vibrations by cuy wiree in the mbele ar tune them by loading so as not to reapond to tranemitted vibrations, from the engine. A.G.B.

Maroh 20, 190. 3 Itro MeCurdy and Mr. Balduin rey ort two long plighte of the silver-Dart thia morning. Jach exeveding eiftht milea, probnbly at least nine milea.

Yeaterany (yareh 9) two afruee bumes were inbedded In the iee at a moasured aiatance of foke nilus from ons another. One of those is in the rudde of Badecer Bav. The 0 othor if in tite Patrici** Channel about a nile beyond Stony Ialand. Starting in Badeeck Bavy licCuray riov tomay in the Silvermpart past Baddeck into gt. Patriek'a Channel and startea a turn arter panaing the apruce bush shere. Heking a wide turn he returned thrount Baddeck Harbor back to hia etarting point in Baddeck Fay. He hat intoneed to make this cour to twice $\begin{gathered}\text { (in thout atopping an it would con- }\end{gathered}$ stitute a Might equivalent to that requirea to win the Scientirio Ameriean Frophy (25 kilometers, about 16 miles). The englne, however, did not seen to be working astiaractorily and he touchod the lee two or three times in returninge

After tuning up the oncino another flight around the courae was mate without touching. The following are the reporta sulmitted by Mecturdy and Baldmint-
 this sorning. Fonutiful day; wind recosted by anumeneter $21 / 2$ nailes per hour, about sच ty \#.

Caur at chowen was nlong the Haddeek shore through Baddeck Harbor pant 3tony Island and sround on punh plaeed on the see about a rille above stony Iiskenc, the direet difer tanee fross this bush to the atarting bush off Itatheson' $\frac{1}{s}$ forge being four miles.

In coming beek the powar gave out and the machine touehed the iee Juat orf Bert Mart' s . I realinee that the ngine was hasting ao slowed her dum under retarted apark till I remohed the Weatern end of Kideton'n Ialand. Here I advanced the ayark and the nachine roge and flew shrough Baddeck harbor and down to San Campeli's. Here ahe fell acain, and from there hoeve it was a serion of fumpe. Fine 20 minutes. It was eiscovered that the stop-cock in the water-pipe had jarred round ac that moat of the water h ed escaped. This defect was remedied and the reaister filled again. The time the sance carae wes eoveree in full flimt Fine 13 minutea. The Pall diatanee including the turn and atart wha about $9 \times 91 / 2$ miles. Wienember Chicage* put an end to the experiments. J.A.D. MeC.
Baldainta feoounts: During rinat long flight Mecurdy wae away 20 minates. Cwow back along the lee. Fime for last $1 / \mathrm{s}$ nile over ice 30 eeconda. Seeond le ef flight lasted 13 minutee. vind before flight on throe readings $5-7=6$ siles per hour. Give for last $1 / 2$ mile 47 gooonde (45 Bedvin'a Fatoh. Find at tine 2.5 milea per hour quartering. This givea apeod of 38.3 nilos por hour, neglecting wind which weerse to be alaw, howover se thed of getting tize may have given rise to a certsin annunt of error. Joon allowing for last time in firat flight mhile minhine was on tee there seers to be a wise variation in apeed. Ingine uneertain Bhroughout. F.w. .

3rake ${ }^{\text {2 }}$ eats.

March 21 . 2909:- itr. MeCurdy roparta brake teat this afternoon as follewst-

MoCurdy* Aocount: This artornoon ongine Curtisa Ho. 3 was subjeated te a brake horse-power tent.

It man mountee on the ies-boat and a ganoline barrel Wha provided filled with winter for eireulation through the jackets te prevent over heating. In this why the water was kopt at practically a eonatinnt tampernture all through the teat.

The reeently obtained water-eooled brake pulley whit bolted to the rlange and a brake atm 5° sul long attsched in the uaual maner, the loak being applied by tightoning up tho serews of the fibre inted band wich arrovouds the pulley. The swotor was not in sa goo shape sa she must neceasarily be to fly the silver-part. This was ahow by a congtant ixregularity in the expanaions. However goveral readings word taken which indieate not what the motor may be eapable of eveloping, but wht the developed at that axperiment. The beat reault obtained wae 3 horne-power at 800 rpme J. $\mathrm{A}_{*} \mathrm{D}_{0}$ Hec,

The following in Mr. Balawin's raport of the same Tent.
 attoryts to Ry aliver-Dart we took advantage of the opporm tund ty offered by ahafting notor into wo. 5 to put the brake on her. The ongine was ruvining vory badiyh leway valves and eglintars probably boing partly responalble. There was alnont
continual bnck-firing through the intalse pipe and antige factory anixture for ali ojinnatara eould not be obtained. Howover meveral readinga wore obtalned euring all of whieh the cylindera were firing.

Brake am wha $5^{\circ} 3^{* \prime}$ in length. Jingine apeeds were tain tanhoanter. Feight of brace sam on ay ring balance alac was balanced by lead weight so no allownee mas mine for it.

P.	H.P.25.	M. H.P.
1.0	800	6.00
6	1200	6.60
5	1200	6.00
5	1200	6.00
5	1200	6.00
7	1050	7.35
7	900	6.30

These readinge of courae do not glve sny ldes of That power the motor is capable of protucing, but indicate that the power we sare getting from it is abaurdly 100.

Hargh 12, 1999:- Zno brease teata made somany with the h Curtiaa Mo.s ongine aro more astiarmetory and eneouraging. The oause of the trouble with the ongine hae evidently been discovered at the Laberatory and romedied.
 at th only 7 eylindora ruming. It is molloved that with all the aylindare runnting wo can rely on 30 Baltap. I give belaw Baldusn'a acoount of this morning's experiments, wich were made by Hr . Wecturdy.
Yaldwin's Aceount:- Shis norning brike seat was continued to find out whit was the trouble with the notor. the trouble wae aoon diacovored and romodied. The buning was found to be 30
far off that the engine would not run. It was evident that the ons on the eistributor has benn slipping for nome time past ao that the sparik carne much too early. Then the timiny \#ha corrected the angine geve much better roaults an the follouing reatiss were obtaines.

P.	R.P.M.	B.H.P.
14	1400	19.60
16	1200	19.20
22	1100	26.20
22	1100	26.20
26	1000	26.00
26	900	23.40
27	900	24.30
27	900	24.30
26	1000	26.00
28	000	22.40
16	1400	22.40
23	1100	25.30
20	1250	25.00
20	1000	20.00
16	1300	20.00
15	1200	18.00
16	1200	19.200
12	1400	16.80

Only aeven cylindera were firing during this teat as it Fas taken juat before luneh and there Fas no tine to take out bad waricing plug on the eylinder wich was dead.

So R.P. whould be available all right then the eight cylinders are all firing. F. Fog.

In the experimonts mate this morning (March 12) only sevor cylindara were working. This aftornoon the eighth eytinder was put in good oract and nurorous brake testa were mate with the rollowing rasulta wheh have beon reported by Itre MeCuraty:-

P.	H.P.M.	B.H.P.
32	950	30.40
34	900	30.60
28	1100	30.00
18	1300	23.40
16	1400	28.40
26	1200	32.20
27	1100	29.70
28	1100	30.80
32	950	30.40
34	850	28.00
28	1000	28.00
24	1200	26.80
20	1350	27.00
18	1400	25.20
13	1400	25.20
16	1500	24.00
24	1200	23.80
26	1050	27.30
24	1150	27.60
26	1100	28.60
24	1200	28.00
26	1050	27.30
28	100	26.60
26	1050	27.30
16	1450	23.20
12	1500	18.00
10	1550	15.60
20	1100	28.00
20	1100	28.00

We were all in great tribulation ovor the poor resulta
 H.P. ror our angine. Tomay's expurimicnts howevor have resasurad us ent indicate that we may rely upon gatiing at lasust 30 B.H.P. whathe engine is in good running order. A.G.B.

Hew Propeller for CyRnet II.

March 22, 19098- Thn now ninu-roet propelier for the Cygnet II haa bsen corapletaly. Mr. Hedrin reports as followas-

- Put 9 ft. perpoct acrow propetler on gear 2 to i on fee-boat tomay (Mar.12) aith Cursiss IHo.3 ongine. The gear soomed juat right, engine turning up 1100 rpra; Prapaller is $9 \mathrm{ft}_{\text {. in }}$ in inneter, $29^{\circ} 30^{\circ}$

IVe attompt was mate to sacertain the puah of the propulier an MoCurdy' in Indicator requires re-adjuatment, and ro-testing before it can be uace. This remadjuatment of the seale would thke st least hale a tay to aceomplish, se, sa time is preeieus, it has been decided t put tha engine and propelier on Cygnet II imaedistely vithout waiting to aveertain the puah. A.O.B.

Chat 2es Jo Bed1 te Ho12.

Dashingtong BoGea Itorch Be 1909z- Your telegraen of the 6th rasched we on the 7 th, being delayed I presumg on account of the iremendous gtorn which greeted the inconing of itr. Taft ad Preeident on Mareh 4th, and wheh aid a great deal of danage to our telegraph and telephone 11 nes.

The Bulletin 30. 34 of litarch Iat reschod se on the fourth, but on account of it being inauguration weok I did net have tiae to read it until yeateriny, Sundny.

I ven velearly of the opinion that plan Ho. 1 ia the only feasible anc te rollew at the preaent time. The Aasociation having no patenta, not evon an mplication por one on file in the Patent Orfiee, would naice it ingoselble to inturest outaide partiea at this time, and even ir mon could be intereetod Pinancially it voule ontall a moral obligation on you and your sasociates to nec thnt the inventione, wish you clain to have matte, were in fact patentable and to not infringe on the inventions of othore, which poaition of courat you would not care to manue.

Taking it for granted that plan reol would be sopted, I ean only malce one or twe auggentiona as fo the detail of organiantion.

Ones I to mot know whether the Laws of Yew York ar as favorable as thoae of Veat virginia for such an orcुanization. This shoula be looked into hy a corperation Laryer infore final ieciaion as to the gtate is node.

urge his to aet promptly in the matter.
The last Buluetin is an extremely intereating one, ospecinliy the photographs in tho latter portion. (8ignea) Charlea J. Bell.

Havro, Comeron. Tawin \& Hagaie to Boд1.

Yashington, D.C.ea Hareh 5, 1909:- Mvine Ilichine gneeifleationse Ve herewith anclose two apecifieationa in thia
 the other by the joint inventoris.

In the Balawin application we have included the aube Ject matter of former ω Lains, 40 , 42 and 42 as cladms 18_{0} 19 and 20. Wa note 3tr. Baldinn a suggostion that elain 20 (former 42) ahowld be onittod, beeauce aome dotail of the method orgioyed in rendering the truss members adjuatable was not original with any of the mombers. It is not st all easentiax that it should have been mo. You are quite right in your ides thet the elain is for a combinstian es eioments and the fact that it ineludea some fosture that enay have beon suggeated by others, or may have been derived from some outale sovree, is tholly immaterial. Jnder the law, an inventar is entitled to receive auggestions and to ghthe er ideas from any souree, and to utilize them in the strueture of mis invention.
toreover, if tre Baldwin is the inventor of elaims 1 ite 27 of the appliestion sent herewith, then elaims 28,19 and 20 of asda application belong to him, und no one elae. Claiss 18 and 19 aover the aectional feature of the frame, and under the law, Mr. Baldwin, being the imventor of the rigid frame defined in the other elaims, is entitied to acoept from other sources the suggestion that the frame ooula be a sectionnt one, and the faet that such suggestion is mate
and adopted by hin coes not, in the eyo of the law, in the lesst militate against him an the inventor of such structm ure

The joint wplication will have to be oxecuted by Bell. Metrurty, Buldwin and Curtias, and by the atniniatrator
 father has beon appointed adnintatrator of his eatase, and will axecute the specification as much.

After the other mornber: have exeeuted the oath, we sucgeat bhat you forward the papera to tro Belfridget father Por esocution, making auch explanations as you see proper, and as would be within the seope of your undorstanding with hin.

In exceuting the papers, wo wieh to enil your atw* tention to the raet that by a recent rule of the Patent orfice, it will be neeessary for the Fotary Public before man the papers are expcuted to ingreat hia genk inte each gheet
 Notary wo twases the oath of you gentlemen in Fovs 3cotia, and thon eall Mr. Selrridge ${ }^{\text {a }}$ attention to the faet that thia muat be aono by the Fotary whe takes his onth.
grusting that you will fint the paper antiarmetory, *e remains

primeztons.

Wie are oncloaing the original apecifieation in eneh cazo and two osrbon copies. The original is to be exeeuted and roturned to ust the carton eopies are to be retained for jour filea. Wife wive enclosing twe ate of the blue prints in ouch case, which you mey retain for your files.

In executing the apeciriention, ploane have the aignatures in the order indiested with two mitnansen to ench gianalurg. Please be cereful to 1 ill m all the blanks indicating citinenship, reaidenee wne poateoffice adaress for each person, not only in the oathes, but in the petition. In view of the nueber of blanks neceasarily loft, great eare will bave $t o$ bo taken to avoid ouisalona, Be carcrul that the Fobary Publie affixes his seai.

Ir you have to send the payera to tro. Curtias at Hemmendayort to be exceuted, he can pimply aign the oath and thion have the Iotary Public affix hia jurat, being alae curcrul to actix his semb, and have the asal impromgot in aggh gheat of the apacifiention.

```
3nea. 2 apeea*,
    2 carbons, and
    2 seta b. prta.
```

 (3ignod) Hauro, Camron, Lewis a Hassie:。
 THS OURLOOK ON AVIATIOH: By p.w. Baldwin.
The sonaation of the week is the formation of the HerringCurtiss Co. Presumably the objeet of this company is to manufacture heavier-than-air machines on the Herring patents. Mr. Curtiss diaposes of his motor-cycle manufacturing plant to the new company and assumes the managership of $1 t$.

Mr. Cortland F. Bishop, President of the Aero Club, is the originator of the enterpriae and asaociated with him are several wealthy members of the Aero and Automobile Clubs.

The papers have given themselves rather a free rein in outlining the immediate program for the new company according to some aceounts. One hundred aerodromes a week is to be the output of the Hemnondaport works until a larger factory can be built.

That level-headed American buginess men should back itr. Herring has created quite a furore in aeronautical cireles. It probably moans that Mr. Herring has sone more convineing arguments that he has over made public or - is it really the Curtiss Conpany with Mr. Herting patenes to flourish in the eyes of bewlidered capitaliata? So far as we aetually know the Herring patents are only talking points at present.

All of wich revives interest in Mr. Herring' a machine built for the U.S. War Department. It is reported to weigh 175 lbs. conplete without the aviator and be able to fly at 22 miles per hour minimum. It is also whispered that the maximun may exceed 80 miles an hour so that the public are atill looking forward with great intereat to the trials at Fort Meyer. Other enterpriding papers have a story that Dr. Bell is building a machine to eross the Finglish Channel. For
nor aecurste information on thia or any other abronautieal question we refer them to Mr. Milton Brove of the Sydney Psot.

We are in reeeipt of the rirst eatelegue advertieing aeroplanns for sale. The FraneomAcierican Auto Co. of Montrenl opfor to supply fulky tried out Voigin machines. Aaso Chanute Glideriz for begirners.

In the last nuriber of Automobilia there is an lilustration of a good looking Pour-oylinder Renamit motor. It ia ainllar to the new notor Mr. Curtiss is getting out in its valve gear and cooling arrangement. Both intake and exhaust valvea are in the head operated by a aingle rocker arn. The atroice of the engine, judging from the illuatrations, is however much langer in propertion to the bore than the proposed Curtisa engine.

That the ordinary marine gasoline angine will 3 on be available for meronsutieal work wes clearly denonatrated by the Yew Yory Hotor Boat shew. The trenc of all motora exe hiblted was towards roduced weight and more positive lubrication. The kind of work a marine motor in ealled upon for is very-mueh the asma aa an aeronautienl motor. A raeing marime motor in dealgned to run continuously at ita higheat apeed for houra at a time and it is eneoraging to noto that in marine practice meveral feliable makers now find it poselble to make a motar at 20 1bso por brake hornempower. Thla yearta show was renaricuble for the inerease in two-eyele motiora over the four oyele type. Lat year there were about the wave nuriber each exhibited. Finia year there were nearly three times as many twomolele as four cyle. Powe.

