Technical and Bibliographic Notes / Notes techniques et bibliographiques

The Institute has attempted to obtain the best original copy available for scanning. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of scanning are checked below.

Coloured covers /

Couverture de couleur
Covers damaged /
Couverture endommagée
Covers restored and/or laminated /
Couverture restaurée et/ou pelliculée
Cover title missing /
Le titre de couverture manque
Coloured maps /
Cartes géographiques en couleur
Coloured ink (i.e. other than blue or black) /
Encre de couleur (i.e. autre que bleue ou noire)
Coloured plates and/or illustrations /
Planches et/ou illustrations en couleur
Bound with other material /
Relié avec d'autres documents
Only edition available /
Seule édition disponible
Tight binding may cause shadows or distortion along interior margin / La reliure serrée peut causer de l'ombre ou de la distorsion le long de la marge intérieure.

L'Institut a numérisé le meilleur exemplaire qu'il lui a été possible de se procurer. Les détails de cet exemplaire qui sont peut-etre uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de numérisation sont indiqués ci-dessous.

Coloured pages / Pages de couleur

Pages damaged / Pages endommagées

Pages restored and/or laminated /
Pages restaurees et/ou pelliculees
Pages discoloured, stained or foxed/ Pages décolorées, tachetées ou piquees

Pages detached / Pages détachées
Showthrough / Transparence
Quality of print varies /
Qualité inégale de l'impression

Includes supplementary materials / Comprend du matériel supplémentaire

Blank leaves added during restorations may appear within the text. Whenever possible, these have been omitted from scanning / Il se peut que certaines pages blanches ajoutees lors d'une restauration apparaissent dans le texte, mais, lorsque cela etait possible, ces pages n'ont pas eté numérisées.

Notes on the new canadian tariff.

OW that the new Tariff Act has received the sanction of Her Majesty, we begin to feel that a third point has been gained in Canadian legislation of greater importance to her people than either Free Trade or Protection, and that it is now the acknowledged right of Canadians to impose such duties as they may think fit to protect their own industries, even though it be to the disadvantage of British mercantile interests. No politician, of whatever side of politics he may belong, can honestly believe in his heart that any duty Which we may impose on English foreign imports is in any way intended to injure British trade. A few insignificant manufactures in Great Britain may feel a light effect from our competition, but the day is far distant when Canada will be in a position, both in popula-
tion and in thand wealth, to become a rival to the Mother Country in those important manufactures which form the maindring of England's wealth and greatness. When that do dees arrive, Britain will find that she will have more menteive in return than she has to give. The encouragement that a fresh impetus, about being given to immigration, and the colonization of the country, which is a greater be systematized, will, in a few years, bring about Will lose return to English manufacturers than they Unte by our present law.
Until the tariff resolutions become law, each political and the a decided rigit to vote according to his own haring the views of the majority of his constituents, but extreme done his duty, it would be injudicious in the of the cound endeavour to throw obstacles in the way a sufficientry giving the new tariff a fair trial. If, after bext thent trial-and it cannot fully be tested for the it will bee as much to the advantage of the manufacturers
who opposed the protective duties, as it will be to those who were in favor of them; but until it shall have been plainly shown that a moderate protection to our industries is bringing ruin to the country, the subject should be allowed to rest.
The main object of the present protective duty on imports is to save our country, to some extent, from being made the slaughter market for American manufactures at periods of depression in American trade, or to meet some financial crisis in a large manufactory, which could sell its surplus stock in Canada at a low figure to realize ready cash, without injuring its own market. So great a differenco is there between the population of the United States compared with the actual buying population of the Dominion, that one large factory alone could, out of its surplus stock, send into this country sufficient to effectually stop the demand for such goods as it manufactured for months afterwards, and thus not only throw out of employment our mechanics, but completely paralize our manufactures.

The object of the majority of the people in demanding protection, was not for the purpose of creating monopolies in trade or manufactures, or for the benefit of particular firms at the cost of the country, for such could not possibly happen with our enterprising neighbours so close at hand, and our own competition, to keep down prices: the intention was simply this, that when we can manufacture as cheap, and produce as good articles as made in the States, we deserve to have the privilege of making what we require in our own country, to employ our own mechanics, use our own raw materials, keep our money in Canada and spend it among ourselves for our own benefit and pleasure. Let us now, theiefore, set earnestly to work and endeavour to bring about good results from the present change in our tariff by giving it a fair trial.

There is one important feature in which the success of our manufacturers depends, and that is upon the machinery they use, and the skill of the workmen they employ. In our machinery, it must be confeased, we are behind the Americans, and it cannot be expected that we can compete successfully with them; even with the tariff in our favour, until we put ourselves upon an equality in that respect. We have had an opportunity of visiting the principal manufactories in New England States, and can
aver as to the disadvantages under which we lie in comparison. Not long since we visited a first-class factory in which was a machine which cost the proprietor about three times to manufacture a certain article what it does for work done by a superior machine used in the States. It is herein that lies the great advantage that Americans possess over Canadians-that is in superior machinery, skilled workmen, and a systematic method of conducting their business. Birmingham and Sheffield have awakened up at last to this fact, and now, instead of being outdone by their American cousins, are, by their improved machinery (thanks to the lesson taught them, which they were tardy to learn), outdoing them in quality and underselling their instructors. It is to be hoped, therefore, that the present protection given to our manufactures will not lull them into security, but lead them on to look more closely into these matters on which so much of their prosperity depends.

Whether Free Trade or Protection will ultimately be best for Canada, experience will soon tell. The present state of dppression has been universal over the world, and ours cannot be set down entirely to what we have lust from the want of procection. A good deal of it in fact has to be attributed to there having been so many unscrupulous men in business-to extravagance, and a general lack of prudence and saving. We can trace the origin of our present poverty to many sources, and although we may deplore the present depression in trade, there is another source from which poverty has had its origin, and this has been from the increase of the growing social evil. Statistics have shown that the amount spent annually upon drink in Great Britain is nearly as great as the total of her export trade! Is not this something frightful 9 And yet when we see our own taverns so frequented by mechanics (we speak of mechanics only, having their interests particularly at heart) evening after evening, and knowing how much of their hardearned money is spent in intoxicating drinks, we cannot but feel how much this ill-spent money would have stood them and their families in good stead in times of depression, and when the doors of the workshops were closed, had it been placed in a Savings Bank.

EngLish yand facturers and foreigi conpetition.

What Eaglish mechanics think on business prospecta and re ciprocity :-
To the Editor of Martineau \& Smith's Hardware Trade Joúrnal.
SIr, - Your article on the prospects of oar staple industries draws attention to several important points. But there are one or twe suggestions I would make to Euglish manufacturers. When they see a foreign article gradually superseding their own, they should at once alter their style, and by putting down proper machinery, seek not only to beat their rival in England, but, if tariff permit, bid for foreign trade.
Hundreds of articles are being poured wholesale into this country which ought to be made here at a profit if made by suitable machinery, worked by labourers, who must not expect more than their rivals abroad, or they cannot have employment. Every shop is now stocked with foreign goods, and on the one hand we see shiploads of foreign manufactures, while thousands of starving mechanics stand idle.

Our working classes must now begin to see that unless they work at the same price their foreign competitors are content with, they cannot expect employment.

Yours truly,
THOS. M. BEAR.
Britannia Works, Colchester, Jan.; 1879.

THE DETIAND FOR RECIPROCITY.

To the Euitor of Martineat \& Smith's Hardware Trads Journal.
Sir,--Your leading article on "The Look-ont A head," must have been read everywhere with no little interest. You seem to think, however, that by putting a stop to all bribery and corraption, by treating our mayors with proper respert, and by "patting mind into our work," we shall be able to keep level with the, keen wits in other countries, and "need not fear extinction." This is all very well as far as it goes; but to my mind it does not go far enough. It is useless for us to try and do all these thing if our rulers do not help us. We are supposed to govern our selves, but if we did, do you think we should allow the manafactures of other countries to be sold here while our poor working men have nothing to do, and their wives and children aro starving for bread?
It is all very well for you, Mr. Editor, sitting snugly by your fireside, and writing about the acquisition of "technical educs tion founded on sound scientific acquirement; appreciation of beauty, learned by study of art;'" it is all very fine for you to write in this way, but, "while the grass is growing, the steed is starving." Our rulers ought to have seen that we had the meand of acquiring technical education years ago, and not have let other countries get ahead of us; but as they have done so, the thinl that stould be done is to tax the manufactures of other countries, and not let them in to cause the final "extinction" of those who can only get half a living now. Here we buy American corn), oil, cotton, and a little hardware and other manufactured goods; and we let all these things in free, while they charge sixty pes cent. and more on our goods. I dorr't want to go back on Freo Trade entirely, but let us have " Reciprocity."
What are the Germans doing? They see the en or of their ways fast enough, and they are not going to let their manufacturers be undersold. Why can't we follow their example? If sif man in Etrop knows his way about, it is Bismark, and he would not recommend going back to Piotection unless he was quite sure it was the right thing. Look at America, too. Why, by adopting Protection they have been able to make their "greepr backs" worth half as much again as they were ten years aflo Why, sir, if we were to have Reciprocity, I wonld undertake to say in a year's time we should all have full work again.

I am, Sir, yours respectfully,

A WORKING MAN:

IWe publish this letter, although full of what we think dan. gerous fallacies. Our correspondent should remember that " Reoiprocity" simply means buying dear-in homely words, "cutting off our noses to spite our faces." We have treated the subjecf from our point of view in a leading article ; but we should be glad to have the expression of their views from other correspondent
-EDI iorn]
A Mountain Sinking.-It is not uncommon in the Gulf and Southeastern Atlantic States for large bodies of land to sipls below their original levels, but such phenomena have generally occurred in the low and sandy countries. The Toccoa (Georgio) Herald, however, 1 eports the subsidence of a whole mountain il that country whish is composed of, at least, half rock. A hoor storm was felt on the 20th of March accompanied by thander an lightning and a terrible shaking of the ground. Immediately following this, it was found that the whole north side of Chattoofo mountain, sloping down at an angle of 45 degrees to the Chat tongo river and 1,200 feet in hight, was gradually sinking. Ther was a break near the top, and at one point, over the top sloping ridge, a perpendicular rock showed itself, the depth which was aiout 16 feet and the extent 30 or 40 acres. The ban was in the form of a horseshoe, the toe being at the top of tby mountain. Trees were standing with their roots up, and lar stones cast out upon the surface. About three years ago an e quake cracked the mountain at the point where the present b occurred, but no notice was taken of it at the time. Some is manifested by the inhabitants as to the results of this subal dence and the depth to which it may extend.

Steel-Faced Iron Plates.-A cast-iron mould is di into two sections by means of a transverse plate of thin iron. The two metals are then poured into the respective partments. The sheet-iron partition prevents the mixture the metals and facilitates the welding by itself being broug into a state of fusion. It is said that the product is well adap for safes, and that it resists drills.

Fig. 1.-ACCIDENT TO a stag in Windsor park.

Pig. 2.- Fore leg of Stag caught by forked branchfe.

REILAREABLE ACCIDEET TO A RED DEAKR.

The accompanying engravings represent a curious mishap to one of the red deer in Windsor Park, the following account of which is given by Mr. Frank Buckland, in Land and Water:
On the 16th of January last, one of the keepers who has charge of the deer in the royal domains was going his rounds, when he suddenly came upon the scene as represented in Fig. 1. A mag. nificent red deer was lying on his back, with his leg tightly fixed in the forked branch of a white-thorn tree. This unfortunate animal was lying on his near or left side, with the tip of his right shoulder resting against the trunk of the tree. The chest and fore part of his body were clear of the ground, suspended by his right or off foot in the fork of the tree. Immediate examination showed the keeper exactly what we see in the engraving, Fig. 2, except that the body of the animal (in the engraving) is no longer attached to the foot. The keeper attempted to remove the foot, but found it so tightly fix \cdot dhat with all his force he was quite unable to do so. The shank bone of the stag's foot was fractured and splintered diagonally. The fractured bones had made their exit by a cut through the skin, thus causing a compound comminuted fracture. The portion of the bone below this fracture-tough and strong as the red deer's shanks arewas shattered into minute fragments the size of dice. The bone was again fractured at its lower part, and the thick skin entirely lacerated through. The large sinews at the back of the bone, as well as the wire-like sinews that work the toes of the foot, were elongated and pulled out, and in fact everything was broken right off except two very slender sinews and a small portion of the skin. The total length of the portion of the deer's leg caught in the tree is seventeen inches ; from the fracture to where it was torn off, eight inches. The leg was caught by the branches of the tree about four feet from the ground, and the lowest boughs carrying leaves were about nine feet from the ground. The deer was dead, and it is not known how long he had been held a prisoner by his foot.
As there were no eye-witneases as to how this occurred to the stag, it becomes somewhat difficult to account for this extraordinary event. It is probable, however, that in consequence of the
weather the animal was short of food, and that in his wanderings he had observed above his head something edible on the lower branches of the thorn tree, possibly leaves, moss, or lichens, on which deer feed in snowy weather. These he could not reach when standing on all fours. He, therefore, probably raised himself upon his hind legs, and when stretching himself upward and forward, the hoofs of his hind legs slipped from under him, or else, when letting himself down again, his right leg slipped saddenly between the forked branches of the tree, and was instantly held there tight. The animal then probably began immediately to straggle, but the more he kicked and fought the tighter the wrist of his foot got wedged in ; in fact, when the preparation was brought to me the foot was so tightly fixed in to the notch of the tree that it could not have been more jammed if it had been hammered down, and then a long screw passed through it. In his struggles to get loose the first thing that happened was the fracture of the leg bone. This allowed the animal to fall on his back, from which position, of course, he could not rise. Terribly alarmed at what had happened to him, the poor stag then began to pull and tug at his captive leg. assisting himself so to do by means of his horns. In his frantic exertions to get free, the stag a second time broke his leg, then the skin gave way, and lastly, the large tendons. If his strength had lasted long enou, h to have ruptured the two small tendons, it is possible that he might have escaped, leaving his leg in the fork of the tree. Prince Christian, having beea informed of the accident, judiciously ordered the portion of the tree which held the foot to be sawn off bodily. He then kindly sent the whole thing to me, with a ruquest that the foot should be preserved for him without luing removed from the fork in which it had been so tightly jammed by the animal itself.
The preparation will he the most unique specimen of an accident that ever occurred in the royal forest in the annals of English history.

THE ANTIQUITY OF MAN.

By Sydney B. J. Skertchly, F.G.S., of H.M. Geological SURVEY.
The written history of our land commences with the Roman occupation in the early part of the Christian era. The Keltic tribes which then inhabited England have long been looked upon as savages running wild in a wood, and exhibiting their woad-stained bodies to their friends with a paucity of clothing that should have called forth vigorous remonstrance from the whilom Lord Chamberlain. But these ideas are fast dying out amongst students, and it is becoming clear that no small degree of culture and civilisation appertained to them, and that the Roman occupation exercised rather a degrading than an elevating influence upon our ancestors.

These early Britons were skilled workmen in metal. They possessed good roads, built well-constructed towns, engaged in extensive foreign commerce, struck their own coins, and possessed a literature (alas ! totally lost) written in Greek characters. Perhaps no better proof of their culture can be adduced than their voluntary subnission to the rule of a woman. Speed, translating Tacitus, gives us a splendid picture of Boadicea, who, "in her chariot, doing the parts of a most noble Generall drove from troope to troope to see and commend their forwardnesse ; and dismoanting, atteuded with her two daugliters, and two hundred and thirty thousand Britaines, gat her to a seat made of murish turfes. apparelled in a loose gowne of changeable colours, wearing a Kirtle thereunder, very thick ploited, the tresses of her yellow haire hanging down to the skirts. About her necke shee had a chaine of gold, and in her hand a light speare, being of personage tall, and of a comely, cheerful countenance."

This is no pisture of savagery ; and we may rest assured that, whatever might be said of some of the inland tribes, the inhabitants of the coast were a very well conditioned people, of much culture. Such is the earliest notice of our forefathers.

Where history fails us, science takes up the tale, and carries us backwards to the most remote antiquity. The story is very far from complete, but it possesses the inestimable merit of adhering to the plain unvarnished truth, free from every touch of partisanship.

In the barrows and tumuli, in the stone circles and dolmens, and even preserved in morasses now reclaimed, we come upon the relics of the prehistoric peoples. Further back yet, in the gravels of the present rivers, and, as will be shown, iu gravels of rivers now no more; even under beds of glacial drift, and associated with extinct animals, articles of human workmanship are found.

Space will not permit as to dwell apon the times immediately. anterior to the historic age ; but it is proposed to enter somewhat fully into the question of man's antiquity, and so expound the geological reasoning which has led some geologists-an increasing host-to date man's appearance in England some two hundred thousand years ago, long before the close of that wonderful epoch known as the Glacial Epoch.
Before Iron was known in Eugland, Bronze was used for metallio weapons ; and strange as it may appear, a Bronze Aga preceded the Iron Age all over Eurasia and over some parts of Africa.

Nor is this testimony altogether unsupported by historical evidence. In ancient Egypt, for instance, no iron implements are recognized as being older than the twelfth dynasty, whereas copper-mines dating as far back as the second dynasty are known in Waly Magarha, and old Latin writers speak of bronze chisels found in old Egyptian gold-mines, which were used before iron was known.
In ancient Greece the heroes are stated to have been equipped with bronze weapons, and the truth of this tradition $h \neq s$ been atundantly proved by the splendid researches of Schlieman on the site of Troy. The very names, chalkeys and chalkeyein, nsed to desiguate working in iroin, show that the old terminology of a former Bronze age had lingered on. Old Romin writers bear similar testimony to the priority of the use of bronze.
The great difficulty in aceepting this testimouy has always been in the irreducible natare of copper and tin ores as compared with those of iron; and the complexity of an alloy like bronze, as distinguished from the simplicity of a single metal like iron.
It is, indeed, true that, as a rule, simplicity is a test of antiquity; but the evidence in this particular instauce is so weighty that we are bound to admit that, as a matter of fact, comples bronze did actually precede simple iron.
The geological testimony upon this point is singularly clear. In Denmark, where the succession of the Iron, Bronze and Stone ages was first satisfactorily determined, there are immense deposits of thick peat; and, buried in this peat at different depths, are three sucuessive forests.
The lowest of these forests is composed of trunks of the Scotch fir-a tree not now indigenous to Denmark. Associated with this forest are found remains of man, such as bones and weapons of stone-but never a trace of any metallic tool.
The pines seem to have died awny from Dinmark, and to have been succeeded by oak-trees, whose relics are found in the peat ahove the horizon of the pincs. With these oak trunks are found weapons of bronze, but none of iron.
The oaks in their turn gave way, and were succeeded by beech-trees, whose relics form the third and highest of the zones of buried furests. Associated with these beech-trees occur tools of iron.
Here, then, we have clear geological proof of the intercalation of the Bronze period between the uge of Stone and tiat of Iron; and similar uvidence might be cited from other localities.
But perhaps the strongest testimony in farour of the adopted classification is afforded by the nature of the tools themselves. Implements, like other thing;, have not suddenly been designed, but have gradually been developed; the simpler furms having preceded the more elaborate as skill and culture advanced. If, then, bronze succeeded stone, we might reasonably expect to find some of the bronze tools fashioned after the type of pre-existing stone implements. This is actually the case. The finely* wrought stoue axes known as celts have been copied in every feature by the workers in bronze ; and, as if to leave no room for doubt on this point, we find that bronze tools were afterwards copied in iron.
These facts teach us a more important lesson even than the succession of stone, bronze and iron. They show us that from the Stone Age man has ocoupied our land continuously and has progressed steadily in arts and civili-ation.

We must here pause to remark that the Stone Age of which we are now speaking is known as the Ncolithic, or Newer Stone Age; and that there was an older, or Palosolithic Age, whose features will be hereafter discussed.
Let us now glance at the evidence that has been accumnalated respecting the physical characteristics and habits of these prehistoric people. It wonld be quite out of our province to attempt, even in the most meagre munuer, to epitomise the varions trains of reasoning, founded upon discoveries all over Eurupe and elsewhere, that huve brought our knowledge to its present state. We can, indeed, do little more than give baro results.
Over Great Britain and Irelaud remains of the Neolithic and Bronze Ages are scattered truadcast. In the tumuli we have Bronze Ages are scattered truadcast. In the tumuli we
their burial-places, in certain caves their dwellings, and from the
atudy of these and kindred relics we have been able to build up a ore or less connected histery.
The richest stores upon which we have been able to draw are preserved on the borders of the Swiss lakes, and for twenty It have yielded materials of the greatest interest.
It appears that in Switzerland, and, indeed, in other places, the prehistoric people lived in wooden dwellings, erected on platforms, supported by piles driven into the bed of a lake at a short the East from the shore. Similar lake-dwellings are still in use in by Eire Indies. Many of the ancient villages were destroyed ledge, and to these calamities we are indebted for cur know. ledge, for the household goods sank t, the bottom and were preservel by the growing peat, even the charred fragments eing still recognisable.
The first point of interest is the comparative rarity of human bolves brlonging to the Bronze Age. This holds good for the Whole of Europe, and is explained by the custom of burning the read. That cremation was in vogue among the Bronze folk is rendered certain by the discovery of the preserved calcined
bones are not tumuli belonging to the period. Skeletons of this age compot entirely missing, and it appears that the race was composed of tall individuals, with broad skulls and small hands. the latter fact being attested by the small size of the handles of The N.
The Neolithic people, on the other hand, did not practise cremation, but buried their dead in a contracted posture, which races have been due to the position in which they died, some races to this day sleeping in a crouching attitude. This posture of the dead distinguishes Neolithic interments from those of the
Iton Age, it being the custom at that time to bury the dead in
an extended The sted position.
The stature of the Neoliths was less than that of their succesbears, averaging about 5 ft . 5 in . They belouged to the longVery varieties of the human race.
early pery careful studies have been made of the skeletons of these existed. people, and it is abundantly clear that two distinct races known The Bronze folk agree in all respects with the wellblue.eyed Keltic type, and we niay infer that the people were fair, The Ne and yellow-haired.
The Neolithic race, on the other hand, agree in all respects dark that singular race to which the name of Melanchroi, or are Kelts, has been given by Prufessor Huxley. These neople rious known to us historically and at the present tine under vaand Nribal designations. The Basques of South-western France and North-eastern Spain, and the Berbers and Kaligles of or former Africa belong to this race ; as did also the Guanches, demeanor inhabitants of the Canaiy Isles, of whose gentle them, tell and simple habits the Spaniards, who exterminated This rall such touching stories.
eres, and long, black hair. They formerly complexion, dark
efes, and long, black hair. They formerly spread all over
Europe and Nox forining and Northern Asia, and seetn to have come from Asia, These part of the great Turanian people.
to These dark Kelts, possessing no knowledge of metals, appaar equipped been invaded and conquered by the stronger, betterequipped, fair Kelts, before whom many fled to the mountain recognies of the land, where their descendants may still be ple of $W_{\text {ale }}$ in the short, dark-eyed, black-haired, oval-faced peoThe wales and parts of Ireland.
their conquest was one of fusion, and not of extermination, as tain relics testify ; and Casar and Tacitus each relate that BriIn our occupied both by fair and dark people.
early our next paper we will examine into the habits of these chronology, and the attempts that have been made to fix a
anglish Mechanic.

TRARSMITTHG PCWER BY SEATTDTG.

[^0]one of these wheels is in gear with the before-described wheel of the motive-power shaft, while the other conical wheel is in gear with a similar wheel fasteued to the end of a shaft that revolves in the boring of the other box of the second right-angle bracket. By means of this gearing the shaft of the second bracket is put in motion, and the axis of this shaft can be turned into any position within the plane of a circle, after loosening the beforementioned set serew, and turning the second bracket in the boring of the first one. After having brought the shaft of the second bracket in the desired direction, the position of the two brackets to each other is secured by means of the set screw. By means of two further pair of conical wheels, two more angle brackets of similar construction and connection, and another short axle, the transmission can be continued upon a third shaft, and the movableness of this third shaft will be greatly increased. The transmission of motion and power can in such manner be continued as far as necessary to other shafts, and the end of the last shaft may be constructed for the reception of a tool, or a pulley may be placed upon this shaft for driving a tool or implement. The conical wheels can be furnished with protecting covers.

AN INDELIBLE WRITING AND CANCELLING IKK.

Improvements in writing and cancelling inks have been patented in this country recently by Messrs. H. and W. S. Richmond, of New York city. Intended mainly to supply indelible cancelling inks, well adapted for marking postage and other stamps, they can, by suitable dilution, be used for legal, commercial, and 0^{+}her writings, in which permanency of the ink is of importance. The inks consist of the following inyredients, namely :-Eosine, aniline black, aniline blue, cupric chloride, sodium chlorate, ammonium chloride (sal-ammoniac), glycerine, lampblack, water, and oil. These substances are taken in the follewing proportions :- Eosine, one part; aniline black, four parts ; aniline blue, two parts : cupric chloride, one part ; ammonium chloride, three parts; sodium chlorate, two parts; and of the remainiug ingredients a sufficient quantity to bring the ink to the proper consistency for the use for which it is intended. The ingredients are thoroughly incorporated by grinding or stirring, when the composition is ready tor use. The ink described is absolutely indelible. Stamps cancelled therewith are effectually destroyed, and the frauduleut alteration of matter written therewith is impossible. The rationale of the operation of the ink is as follows :Besides having as an ingredient aniline black, it embodies also the substances necessary to produce that colour-to wit, an aniline, an oxidising agent, and a cupric salt. The re-actiou of these substances is, however, retarded by the oil, which also forms a part of the ink. As a consequence the aniline black, which is a proluct of the reaction of the ingredients of the ink, is partly formed within the body of the stamp paper.

In preparing the composition for ordinary writing ink, the oil and lamplack are preferably omitted, a small portion of gum arabic being added in their stead, the latter subserving the same end as the oil. To prevent moulding a small proportion of some antiseptic agent, such as salicylic acid, may also be adiled. The inventors sre aware that it is not new to employ aniline black, or its homologues, in inks, and therefore do not claim it, their invention consisting essentially in such a compound as contains the ingredients for forming aniline black, and for retarding the reaction sufficiently to defer its completion until after the ink shall have been applied to the paper or surface upon which it is to be used.

A writer to the English Mechanic gives the following instructions for making concrete :
"Having made a good many experiments in concrete, I found that I best succeeded by observing the following rules :-1st. To use stones neither too large nor too fine, but an average mixture. 2nd. That they should be free from sand or earth, angular stones to be preferred to round, so if a stone-crusher can be used so much the better. 8rd. Mix no sand with cement, and use the best articles. 4th. I built a wall, seven inches thick, with seven parts of "beach shingle" and one of cement, and find it very strong. 5th. Avoid using more than enough water to moisten stones and coment, after they have been stirred over previously so that each stone is covered; if too much water, the cement settles at the bottom of each new coat, making the work look streaky. Never make more up at a time than needed. Use weights for stones, cement, and water, rather than measures. Age confers strength on concrets. Let each layer get well set before shifting shield or planka for a fresh course.

Fig. 4
2kchougter

inchito thefoot

THE CARPENTER'S STEEL SQUARE AND ITS USES.

THE CARPERTER'g " gTEEL SQUARE" AND ITS USES.

BY T. F. HODGSON.

We have recently given two illustrations of the uses of the steel square, and we feel much pleasure now in publishing in full an article which appeared some time since in the American Builder by T. F. Hodgson, Architect, Collingwood, Ontario. We regret that we have not Hace to insert the preliminary remarks made by Mr. Hodgson on this subject, but will proceed direct to the
deescription description, given by the writer, how this useful instrument is the best that can be used when properly understood and applied. Such is Mr. Hodgson's statement from 24 years of practical application, both in the United States and Canada، in the erection of many large timber
etructures :ructures :-
The "Square," as a constructive tool, must of neces-
sity have found a place in the "kit" of the earliest builders. Evidences of its presence have been found in
the rning of the the ruins of pre-historic of nations, and are abundant in the
remaing Temains of ancient Petra, Ninevah, Babylon, Etruria, and
India $\mathrm{P}_{\text {razil }}$ South American ruins of great antiquity in racesil, Peru, and other places, show that the unknown races that once inhabited the South American Continent,
Were well posted in the use of the square. Egypt, howerer, that posted in the use of the square. Egypt, how-
most nut of all the arts, furnishes us with the most numerous, and, perhaps, the most ancient instances
of the nes and of the use of the square ; paintings and inseriptions on
the ing its unt tombs, the temples, and other works, showing its use and application, are plentiful. In one Thebes, whiche "kit" of tools was found in a tomb at nails, small which consisted of mallets, hammers, bronze etc.; small tools, drills, hatches, adzes, squares, chisels, Thot.; one bronze saw and one adze had the name of blathmes III., of the 18th dynasty, stamped on their blades, showing that they were made nearly 3,500 years
ago. The Wore The constructive and decorative arts at that time Tere in their zenith in Egypt, and must have taken the least 1,000 years to reach that stage. Consequently, conntry four thousand years ago. The four thousand years ago.
toric British Museum contains many tools of pre-hisHerculgin, and the square is not the least of them. imeculaneum and Pompeii contribute evidences of the
inportance of this useful tool. On some of the paintingor rance of this useful tool. On some of the paint-
artisang artisans can be seeen at home in their own workshops,
with their were ing, their work-benches, saw-horses, tools, and surroundpenter's about the same as we would find a small carPenter's shop of to-day, where all work is done by hand;
the ond the tools difference being a change in the form of some of as theols, which, in some instances, had been better left These old workmen designed them.
Torke young mechanic will now come with me to the "aattor in in, and he and I will talk over this steel square "Tool" a free and easy manner. We first examine the hag been that we are to work with. We find that there blade is good judgment displayed in its purchase ; the tongo is exactly 2 inches wide and 24 inches long, the the gue is $1 \frac{1}{2}$ inches wide and 18 inches long; it lies on the right bench before us with the blade running from us. Oight hand to the left, and the tongue pointing from upper sidose examination we find that the inches on the twelfths, as it lies on the bench, are divided into ocours all round the a convenient scale. This division The other round the outside edge of blade and tongue. ther edge of this side of the square is divided into
quarters of an inch. When the tool is turned over, we find that the outside edge is laid off into sixteenths, and the inside edge into eights. The board rule, which often is of use to the carpenter, is laid off on one side; the brace rule and diagonal decimal scale are found on the tongae. To insure good work and true, it was necessary to be careful in selecting this square, to see that the tongue was exactly at right-angles with the blade, or, in other words, to see that it was square. To test this question, we get a board, about 12 or 14 inches wide, and four feet long, dress it on one side, true up one edge as near straight as it is possible to make it. We lay the board on the bench, with the dressed side up, and the trued edge towards us; we then apply the square, with the blade to our left, and mark across the prepared board with a penknife blade, pressing close against the edge of the tongue ; this process done to our satisfaction, we reverse the square, and move it until the tongue is close up to the knife mark, we find that the edge of the tongue and the mark coincide, which is proof that the tool is correct enough for our purposes. Being satisfied on this point, our next step will be to prep re what we shall call, for the want of a better name, an adjustable fence. This is made out of a piece of black walnut or cherry 2 inches wide, and 2 feet 10 inches long (being eut so that it will pack in our tool chest), and 15 inches thick ; we run a saw kerf cutting down these guage lines at least one foot from each end, leaving about ten inches of solid wood in the centre of fence. We now take our square and insert the blade in the saw kerf at one end of the fence, and the tongue in the kerf, at the other, the fence forming the third of a right-angle triangle, the blade and the tongue of the square forming the other two sides. Oir next step will be to make some provision for holding the fence tight on the square; this is done by putting a No. $101 \frac{1}{2}$-inch screw in each end of the fence, close up to the blade and tongue; having done this, we are ready to proceed to business.

We will now take the square and the fence as shown at A, leaving the fence loose for further adjustment.

Our first attempt will be to make a pattern for a brace, for a four-foot "run.". Taking a piece already prepared, six feet long, four inches wide and half-inch thick, guage it three-eighths from jointed edge.

We take the square as arranged at A, and place it on the prepared stuff, as shown at c, Fig. 2. Adjust the square so that the twelve-inch lines coincide exactly with the gauge-line $0,0,0,0$. Hold the square firmly in the position now obtained, and slide the fence up the shank and blade until it fits snugly against the jointed edge of the prepared stuff, screw the fence tight on the square, and be sure that the $12^{\prime \prime}$ marks on both the blade and the shank are in exact position over the gauge-line.

I repeat this caution, because the successful completion of the work depends on exactness at this stage.

We are now ready to lay out the pattern. Slide the square to the extreme left, as shown on the dotted lines at x, mark with a knife on the outside edges of the square, cutting the gauge-line. Slide the square to the right until the $12^{\prime \prime}$ mark in the shank stands over the knife mark on the gauge-line ; mark the right-hand side of the square cutting the gauge-line as before, repeat the process four times, marking the extreme ends to cut off, and we have the length of the brace and the bevels.

Square over, with a try square, at each end from the gauge-line, and we have the toe of the brace. The dotted
lines, s, s, shown at the ends of the pattern, represent the tenons that are to be left on the braces. This pattern is now complete ; to make it handy for use, however, we will nail a strip 2 " wide on its edge, to answer for a fence as shown at k, and the pattern can then be used either side up.

The cut at Fig. 3 shows the brace in position, on a reduced scale. The principle on which the square works in the formation of a brace can easily be understood from this cut, as the dotted lines show the position the square was in when we laid out the pattern.

We hope that it is unnecessary to inform the young student, that the " square" as now arranged, will lay out a brace pattern fer any length, if the angle is right, and the run equal. Should the brace be of great length, however, additional care must be taken in the adjustment of the square, for should there be any departure from truth, that departure will be repeated every time we move the square, and where it wouldn't affect a short run.

We will now endeavour to lay out a pattern for a brace with an irregular run. We want a pattern for a brace where the run on the beam is three feet, and the run down the post four.

Prepare a piece of stuff, same as the one operated on for four feet run, joint and gauge it. Lay the square on the left hand side, keep the $12^{\prime \prime}$ mark on the shank, over the gauge-line, place the $9^{\prime \prime}$ mark on the blade, on the gauge-line, so that the gauge line forms the third side of a right-angle triangle, the other sides of which are nine and twelve inches respectively.

We now proceed as on the former occasion, and as shown at Fig. 4, taking care to mark the bevels at the extreme ends. The dotted lines show the positions of the square, as the pattern is being laid out.

Fig. 5 shows the brace in position, the dotted lines show where the square was placed on the pattern. The young student will do well to thoroughly understand the obtaining the lengths and bevels of irregular braces; by a little study he will soon be able to make all kinds of braces.

If I want a brace with a two feet run and a four feet run, it must be evident that, as two is the half of four, so on the square we must take 12 " on the shank, and $6^{\prime \prime}$ on the blade, apply four times, and we have the length, and the bevels of a brace for this run.

For a three by four run, we take $12^{\prime \prime}$, on the shank, and $9^{\prime \prime}$ on the blade, and apply four times, because, as 3 feet is $\frac{8}{4}$ of four feet, so $9^{\prime \prime}$ is $\frac{5}{4}$ of $12^{\prime \prime}$.

From these few examples, it is hoped that all enquirers w:ay be able to master this method of laying out braces. Should there be any fellow-workman, however, who does not fully understand this system, and who is desirous of further information on the subject, he will always find us willing to answer.

Next month we propose dealing with the "Rafter question," and we venture to predict, that what appears to be a great mystery to the young and inexperienced workman, will resolve into a very simple matter.
(To be continued.)
A Giant Tres.-A patriarch of the forest has been lately felled in California, and the greater portion of the wood taken to San Francisco. It was known by the epithet of "Old Moses." If one might infer with accuracy its ago from the number of its ringe, it must have been 4,840 years old. Its capacity is said to have been so great that 200 persons could tind room within its trunk.

Zasefal zutornation.

Slohts Seen from a Railroad Train.-Some new optical delusions have been described by Dr. L. P. Thompson. Thope connected with the railroad may serve to relieve the tedium of travel by affording an agreeable exercise to the mind in endes: voring to explain them. When a landscape is observed from s, moving train, all objects to the remote horizon appear to be paspo ing in the contray direction, those nerrest having the greatest velocity. Consequently, if the attention be rixed upon any object at some distance from the line, all objects beyoud will relatively appear to be moving forward with the train, while objects nearer appear to be moving backwards. The conbined effect is to make the landscape appear to be revolving centrally round whatever point we fix our attention nopon. Rain seep from a moving train always seems to be falling obliquely (except in a very strong gale in the direction of the train's motion) in ${ }^{2}$ direction opposite to that of the motion of the train. Bnt if another train happens to pass in the opposite direction, and we
l.ok out at this and follow it with our eves raindros falliwg l.ok out at this and follow it with our eyes, raindrops fallisg between the two trains will seem to be flying forward with our' selves. If we stand upon the platform of a station and watch train approach, the end of the engine appears to enlarge or swal as it approaches, and occupies a larger area of the field of visiop. Conversely the end of the last car oua returaing train appears to shrink down and contract as it diminishes in apparent magnitude. An observer at some slight elevation above a railrogd, seeing two trains pass aleng simultaneously in opposite direct tions, will receive the impression of one long train moving rond a circle.
New Nicrel-Plating Solution not Patented.-In view of the recent decision in regard to nickel-plating, the followis information from the SFanufacturer and Buildrr may be foutd of useful interest: Messrs. Boynton, Wiler \& Co., in England, have for sile a new nickel-plating solution, which they code fidently recommend for the following reasons: 1st. It is a sotr tion of the double salt of cyanide of nickel and potassium, and consequently not a solation which is used and prepared by the alleged Aulams process. 2nd. It will plate on all metals directir, including zine, lead and solder, and penetrates deeply into the pores of the cathode, thereby preventing oxidation. 3rd. It will positively plate faster than any known process; sometimes id about eight minutes. 4th. It never requires a special regulatiop by electricity, thereby preventing the burning of the smalleft articles by the strongest currents. 5th. Articles to be plated never become injured from oxidation in the solution. 6th. 16 produces a coherent, tenacious and flexible deposit, superior to any known to science. 7th. No acid dips are required for any kind of work, while Dr. Adams claims that acid dips are very essential for good results. 8th. The expense of keeping the solution in perfect working order does not exceed $\$ 5$ per 100 gal . lons per month, if ordinary care is used, as in all other solutions. They are prepared to sell this solution on favorable terms, thereby dispensing with the license or royalty business altogether.
To Mare a Razor Strop.-Select a piece of aatin, maplé or rose wood, 12 inches long, $1 \frac{3}{4}$ inches wide, and sa inch thick; allow $3 \frac{1}{2}$ inches for length of handle. Half an inch from wheto the handle begins, notch out the thickness of the leather so ss the make it flush toward the end. Taper also the thickness of the leather; this precaution prevents the case from tearing op the leather in putting the strop in. Then round the wood verf slightly, just enough (say one-twelfth of an inch) to keep from cutting by the razor in stropping and turning over the sameNow select a proper sized piece of French bookbinder's calfskid. cover with good wheat or rye paste, then lar the edge in the it notch, and secure it in place with a small vice, proceed to rut it down firmly and as solid as possible with a tooth-brush handle (always at hand, or should be), and, after the whole is thorongly dry, trim it neatly aud make the case.

Bronzing Wood, Leather, Paper, Etc.- The Ahonitcur Industriel, of Paris, describes a process for bronzing wood, leathers paper, etc., as follows: The inveutor dissolves gum lac in fort parts by volume of pure alcohol, and then adds hronze or aty other metal powder in the propartion of one part to three parts ${ }^{n}$ the solution. The surface to be covered must be very smoots: In the case of wood, one or several cats of Meudon or Spenish white are given, and the ohject is polished with an iron of proper ahap The mixture is painted on, and when a bufficient number of c have been given, the object is well rubhed. A spocial advant
of this process is that the coating obtained is not dull, but can be burnished. A transparent varnish is applied to preserve the metallic appearance thus obtained.
Coloring Matter of Hair. - Mr. H. C. Sorby has succeeded In extracting the coloring matter fo m human hair. Diluted thene cic acid he found the best solvent; he found that there are shite coloring pigments - yellow, red and black-nai that all the thrite fore produced by the mixture. In pure golden yellow hair thipe is ouly the yellow pigment; in red hair the red pigment is med with more or less yellow, producing the various shades of red and orange; in dark hair the black is always mixed with fel fow and red, but the latter are overpowered by the black; and cont found that even the blackest hair, suoh as that of the negro, clades for as much red pignent as the very reddest hior. He conclades from this, that if in the negro the black pigment had not yeellow developed the hair of all negroes would not be white or yellow, but as fiery a red as the reddest hair of an Eaglishman.

- Cemernt for Joinina Mptala with Non-Metallic Sub-
 Nood-ashabstances, mix liquid glue with a sufficient quantity of Kood ashes to form a thick mass. The ashes should be ailded in sfirred. quantities to the glue while boiling, and constautly the two A sort of mastic is thus obtained, which, applied hot to together stirfaces that are to be joined, make them adhere firmly Lopether. A similar nubstance may be prepared by dissolving in of guan water two and one-fourth pounds of glue and two ounces ounces of ammoniac, adding, in small quantities, about two anpers of sulphuric, acid.
the Pari of the Stomach.-In a paper recently read before the Paris A cademy of Medicine, the author expressed the opinion fonad iod does not produce gas, and that the gases which are blood in the digestive tubes proceed from the external air, the by the and fecal matter ; these gases are continually put in motion intestin thathological contractions of the muscular fibers of the ad tines; exirelled by the mouth, they arc constantly renewed, ade their production may be as incessant in a starving man as in fore, who is well fed. This symptom of production of gas, theresecutignifies an irritation of the stomach, which is always conagent ueed a long-standing gastric dyspepsia. No therapeutic agent ueed be sought to combat these gases.
Previntives of Lead Colic.- If working in lead, wash the
hande sevtives of Leead Colic.- If working in lead, wash the
Ketp seral times a day in a strong decoction of oak-bark. The elothe hair short, and (if a painter) wear a clean cloth cap. The elothes should be frequently washed; and the hands also, be rinsy before touching food. Before eating the mouth should be rinsed with cold water. A weak oak-bark decoction should bo nsed as a wash several times a week. The body should hilir thood night and morning with cold or tepid water, and the should contghly washed every evening after work. The food thoald contain a large proportion of fatty substances, and milk How token in large quantities.
Wam to Make Court-Plaster-Soak isinglass in a hittle gontle Water for 24 hours, then evaporate nearly all the water by gentle heat, dissolve the residue in a little proof spirits wine, and
strain the thould the whole through a piece of open linen. The strained mass tapean be a atiff jelly when cool. Now stretch a piece of silk or threat. Ma a wooden frame, and fix it tight with tacks or packmithad. Melt the jelly, nad apply it to the silk thinly and evenly, the firat hadger hair brush. A second coating must be applied when face twas dried. When both are dry, apply over the whole sur in said to or three coatings of balsam of Peru. Plaster thus made Cost be very pliable and never breaks.
dredstliness of Food. - Thousands of persons, we might say hunduring thousands, in our great republic, begin life poor, live poor foods thif, and die poor because of the exceeding costliness of the When they eat. Think of our eating butter at 35 cents a pound, of bictore can buy Indian coru at 60 ceuts a bushel. One bushel Ope bushel nuts has more oil in it than five pounds of butter. of the best of Indian corn has more nutriment in it than \$2 worth flour best beefsteak you can find. One bushel of real graham 50 pounds more nutriment in it than a burrel of superfine flour and aned cost us beefsteak. We spend ever so much to live when it 4echange. but little, and our health will be all the better. -

the glue which holds the emery. Hare the emery heated to 200° Fah., and coat the belt or wheel with glue about as thick as molasses and roll it in the hot emery. If a wheel or belt thus treated is allowed sutieient time to becone thoroughly dry, it will be very serviceable.

How to Succeed as a Mechanic.-Every mechanic should study to be progressive. He should atudy to rake every new piece of n ork a little better, in some way than the lastsimilar work which he has turned out. An eminent Piench coachmaker says: "I never build two carriages exactly alike, not becatise I do not build each one as woll as I hnow how, bat in building that I learn hou to make the next one Letter. When I placed these carriages of mine in the exposition building, I thought them perfect, but now that I have spent three montis fookitig over the carriages of other builders, I see that they are not so:".". Here is an illustration of the value of close observation and stady.

Galvanic Destruction of Ships.-In marine structures of any kind, cr structures only occasionally at sea, great care should be taken to avoid the use or combination of copper, or its usual alloys, with iron or steel. The galvanic action set up by even indirect connection of these metals is productive of rapid corrosion and pitting. This has long been observed and wellknown to many, but its truth, though now strongly asserting itself, has been negiected by the constructors of shipa, and especially in the navy, where gun-metal screws of many tons weight are used.
To Temprer Drills.-Select none but the finest and best steel for your drills. In making them, never heat higher than a cherry red, and alwuys hammer till nearly cold. Do all your hammering in one way, for if, after you have flattened your piece out, you attempt to hammer it back to a square or a round, you spoil it. When your drill is in proper shape, heat it to a cherry red, and thrust it into a piece of resin or into quicksilver. Some use a solution of cyanuret potassa and rain-water for tempering their drills, but for my part, I have always found the resin or quicksilver to work best.
Wax Pencils. - Now that such enormous deposits of mineral wax have been found in Utah, it may be of interest to point to a minor use of this substance for wax pencils, which, it is stated, are made by an Austrian firm, Mersrs. Olenheim. Griffen \& Co., for marking and writing on all kinds of wood, linen, cloth, and paper, and as a substitute for chalk for blackboards. It is stated that the marks with these pencils are not obliterated by moisture or rubbing, nor are they affected by acids.

Cleaning Sponges.-A gelatinous substance frequently form ${ }^{8}$ in sponges after prolonged use in water. A weak solution of pernanganate of potassa will remove it. The brown stain caused ly the chemical can be got rid of by soaking in very dilute mu.iatic acid. An old and dirty sponge may be cleaned by first soaking it for some hours in a solution of permanganate of potassa, then squeezing it, and putting it into a weak solution of hydrochloric acid, one part acid to 10 parts of water.

Grease Spots on Clothing.-In using benzole or turpentine, people make the mistake of wetting the cloth with the turpantiue and then rubbing it with a sponge or piece of cloth The only way to radically remove grease spots is to place soft blottiug papar bueath and on top of the grease spot, which spot has first heen thoroughly saturated with the benzole, and then well pressed. The fat gets now dissolved and alsorbed by the paper, and entirely removed from the clothing.

Purity of Milk.-It is stated in a German paper that the purity of milk may be tested by the following very simple method: A well polished knitting-needle is dipped into a deep vessel of milk and immediately withdrawn in an upright position; when, if the sample be pure, some of the fluid will be found to adhere to it, while such is not the case if water has been adiled to the milk, even in the smallest proportions.

Simple Mode of Silvering Metals.-Small articles may easily be coated with silver by diping them tirst into a solution of conmon salt, and rubbing with a nixture of one part of precipitated chloride of silver, two parts of potassa alum, eight parts of common salt, and the same quantity of cream of tartar. The article is then washed and dried with a soft rag.

To Temper Gravers.-Gravers, and other instruments larger than drills, may be tempered in quirksilver as above; or you may use lead instead of quicksilver. Cut down into the lead, say half an inch; then, having heated your instrument to a light cherry red, press it firmly into the cut. Tho lead will melt around it, and an excellent temper will be imparted.

CABINET IN THE ROYAL PALACE IN MADRID.

ant ELEGANT CABINET.

When, under the reign of Louis XVI. (towards 1780), the true principles of art began to prevail again, the degenerated and capricious forms of the preceding epoch, under the Regence and Louif XV., disappeared gradually to make room for straight forms of a purer character, suggestod by the revival of classical art. Nowhere more than in cabinet work and furniture do we re mark this new tendenoy: classical entablatures replace the contorted forms of the Rococo ; caryatides, a canthus leaves, and enriched mouldings in ormolu, plaques of por celain, painted with pastors scenes and flowers, cameo medallions in porcelain and glass, are introduced instead of the confused scroll work and aumeaning decoration of the style of Louis XV
The piece of furniture ${ }^{\text {re- }}$ presented here belongs to this style of art, and shows rich ornaments in bronze gilt and inlaid plaques of Sèvres porcelain, pate tendre, with bouquets of flowers.

Libraries. - The largest library in the world is statod to be the National Library at Paris, which in 1874 contaiped 2,000,000 printed books and 150,000 manuscripts. The British Museum and the [m perial Library at St. Peters* burg both contained aboat $1,100,000$ volumes in 1874, and the relation is probably the same now. The Rogial Library of Munich contains 900,000 books. The Vatican Library at Rome is sometimes erroneously supposed to be among the largest, while in point of fact it is surpassed, ${ }^{80}$ far as the number of volumes goes, by more than sixty Earopean collections. it contains 105,000 printed books and 25,500 manuscripts. In the United States the largest is the Library of Congress ${ }^{\text {st }}$ Washington, which in 187^{4} contained 261,000 volumes. The Boston Public followed very closely after it with 260 , 500 volumes, and the Harvard University collection came next with 200,000 . The Astor and Mercantile, of New York, are next, each having 148,000 . Among the colleges after Hayvard's Library comes Yale's with 100,000 . Dartmouth's is next with 50,000 , and then come in order Cornell with 40,000 ; the University of Virginia with 36,000 ; Bori doin with 35,000 ; the University of South Carolina with 30,000; Ann Arbor, 30,000 ; Amherst, 29,000; Princeton! 28,000 ; Wesleyan, 25,500 ; and Columbia, 25,000.
| were alive from top to toe, inside and out; but this is found to be a mistake. Only about one-fifth part is alive; the rest is formed material. Everybody knows that a tree may become so hollow that only a shell is left; yet the tree may grow and mature buds and leaves and fruit. It is because the outside of the tree-the bark-is alive ; the wood is non-living ; it is simply formed material. Now the body is not like the tree-alive only on the outside; but the living portion and the formed material exist together in every part-in every tissue, organ and vessel.

A slight abrasion of the cuicicle, or the rupture of a cell, is followed by particles of fluid which were formerly overlooked as of no account. But the microscope has revealed to us that this apparently useless, insignificant ooze is the vital, living part of ihe body; it is bioplasm.

This is the mechanic, the skilled artist, that consilucts the cells, builds the organ, and perhaps, under the direction of a higher power, adapts each part to one harmonious whole.

For the last 15 years certain English and German physiologists have spent much time with the microscope, watcking this little workman. They have seen it forming tissue, muscle and nerve, changing food into blood, making the secretions; and, as part of the body became worn and effete, silently disintegrating and utilizing them, or removing the useless parts from the body.

The first decided knowledge of bioplasm came by accident (if finding a thing we are searching for can be called accident; is it not rather revelation?), by ascertaining that when a piece of live tissue is immersed in a solution of carmine the bioplasm is stained, and the formed material is not stained. This discovery has enabled observers to find and watch this little workman, while busy in constructing every part of the body.

Bioplasm is the builder not only of the body, but of all animals and plants. To it every organized form, wheilher animal or vegetable, owes its formation and growth.

Bioplasm is a clear, colorless fluid, like thin mucus. Only microscopes of the highest power are of use in studying the substance ; for the largest normal masses are not one-thousandth of an inch in diameter ; but such microscopes fail to detect in it the least sign of organization.-Journal of Chemistry.

LAKING LULDREB, FROM STRAW.

A person named S. H. Hamilton, of Eushnell, Illinois, has been in this city for two or three days past, with samples of lumber which has attracted much attention among the lumbermen and which, if it possesses all the virtues that are claimed for it, is one of the most important inventions of its kind ever brought to notice. If it is a success it will form a new era in the art of building. To make hard wood lumber out of common wheat straw, with all effects of polish and finish which is obtainsble on the hardest of black walnut and mahogany, at as little cost as clear pine can be manufactured for, is certainly wonderful. Such are the claims of Mr. Hamilton for the straw board Iumber which he has been exhibiting in this city, and the samples which he produces would go far towards verifying his claims. The process of manufacture, as explained by Mr. Hamilton, is as follows: Ordinary straw board, such as is manufactured at any paper mill, is used for this purpose. As many sheets are taken as are required to make the thickness of lumber desired. These sheets are passed through a chemical solution, which thotoughiy softens up the fiber and completely saturates it. The whole is then passed through a succession of rollers, dried and hardened during the passage, as well as polished, and comes out of the other end of the machine hard, dry lumber, ready for use. Mr. Hamilton claims that the chemical properties hardening in the fibre entirely prevent water soaking, and render the lumber combustible only in a very hot fire. The hardened finish on the outside also makes it impervious to water. The samples which Mr. Hamilton exhibits could hardly be told from hard wood lumber, and sawing it the difference could not be detected. It is susceptible of a very high polish, and samples of imitation of marble, mahogany, etc., were shown, which might deceive the most experienced eye. Not only does Mr. Hamilton claim a substitute for lumber in sash, doors and blinds and finishing stuff, but also as a substitute for black walnut and other woods in the manufacture of all kinds of furniture, coffins, etc., and also an excellent substitute for marble in marble-top tables, mantle pieces, bureaus, etc. He claims that it will not warp in the least. Mr. Hamilton is negotiating with parties here, with the view of establishing a manufactory in this city for making the various articles of building material for which his lumber is suit-able.--Oshkosh, Wes., Northwestern.

Santaxy.

HOW TO POISON A HOUSE.

The fillowing, which we extract from the New York Times, agrees so well with our own ideas on the subject, that we cannot refrain from publishing it :-
" Many remarkable and sudden outbreaks of disease and cases of sudden death have occurred during the past few years in houses in New York, where every sanitary circumstance seemed favorable. The favorite child of a wealthy family has been suddenly carried off by diphtheria, where the house was on the hill with the drainage apparently excellent, and the rooms were never crowded or overheated. Another, living in the most airy and elevated portion of the city, has suddenly been seized with that most mysterious and terrible of the 'foul air diseases,' spinal meningitis, and, under every care and precaution which wealth could supply, has died in great agony. Here a family, living in what might be called a palatial house, has been attacked with typhoid, and the children or other members have struggled for months with death. Virulent fevers have broken out in the finest houses, and some of the handsomest quarters of the city have not been exempt from pestilential diseases. Malaria has been everywhere, anil Fifth avenue has fe!t it as well as the streets made over old water pools. It should be remembered, too, in a sanitary point of view, that the best parts of New York ought to be utterly exempt from. these foul-air diseases. There is nothing 'providential' in the sense of mystery in these sudden deaths of the children of the rich. They are as much the effect of law as would he the drowning of these same children, if they had been put under the water. Modern science can as certainly reduce the death-rate from foul-air diseases as it can elevate the land or keep down the water on the banks of a given lake. A skilful modern prison and sanitary inspector has said that if he discovered a case of small-pox or diphtheria in his wards, he shoull at once charge himself with defect of administration.
"The best parts of a city cannot, of course, escape the diffusion of poisonous gases from the wortt parts. Moreover, nuisances like our gas works and bone factories contribute their poison for miles on every wind. But each house in New York has a private and individual machine for diffusing the germs of diphtheria or the seeds of scarlet fever, sore throat, cholera infantum and typhoid. Almost every bed-room in the richest quarters of the city has a private connection with the sewer, in which are the infecta of typhoid patients, or the fermenting and disorganizing animal aud vegetacle matter, which either produce the seeds of disease, or furnish the fertile soil for these seeds to ripen in The especial means of infection in many diseases is by sewer products. In the Croton water-bowl there is, of course, a drainfipe connected with the main drain of the house. Ordinarily the water-traps keep the gases back. But some night, when the sleeper is most unprotected against such influences, and the vital energy is at the lowest, a flood from the sea or rain fills the sewers, or a strong wind blows through them. The gases are forced violently back. The water in the trap-bend forms no obstacle. They rush up through the chamber water-pipes, and diffuse themselves through the apartment. Had we a supernatural power of sight, we should undoubtedly see on such a night a cloud of microscopic sporules of scarlet fever, or currents of diphtheria gerins, or showers of typhoid seeds scattering themselves through the house, and entering the systems of the unhaply sleepers. Such as are vigorous would throw them off, but with the weak and the young the seeds would take root, spring up and bear fearful truit. The next day there would be a 'providential ' case of malignant fever in the house, and in a few weeks a life would be extinguished, whose loss many coming years could not cause to be forgotten.
"The only prevention aguinst such escapes of gases is to banish all water drains from the bedrooms, and to put escape vertilation pipes on the traps. We must return to the old howl and pitcher. The pipes should all end in the bath-room; all water be drawn from there, and this room ventilated so as to permit no contamination of the house. The little extra trouble would he well sepaid by the safeguard to life. Such an arrangement excludes all chamber hath-rooms. But safety is the first thing, courcuience afterward."

THE BAITTART CONDITION OF TENEMENT HOUSES

It is a rery sweeping assertion to say, yet I do say without the least hesitation, and fully underatanding all that it implios, that every tenement hnuse in New York or elsewhere which was
built so long as five years ago ought to have its whole drainage system entirely removed and replaced by the very best work of which the modern art of plumbing is capable, arranged according to the very best plan which modern sanitary kuowledge cs1 devise. I date back five years as a saving clause. It is possible, but it certainly is not probable, that a few of the more modern tenement houses may be properly drained. The objection will naturally be raised that to compel the owners of these houses to undertake such costly work would be a hardship, if not an actual invasion of their private rights. The objection is of no value. Capitalists of the class under consideratiou depend for their in come upon the necessities of ignorant, heedless, and helpleas people, - of men, women, and children who hold their lives daily subject to the most imminent danger.

A great outcry is raised ggainst the bad sewers of the older parts of all our cities, and they are bad enough to justify the outh cry. At the same time, the houses connected with them get their bad effect only at arm's length, and they need not get it at all. As at present arranged, there is no doult that they do receive an injurious amount of sewer gas from them. At the same time, there is just as litt!e doubt that their own private drains, soil pipes, and waste-pipes are active and constant producers of equally deleterious gases, sufficient to account for the unhealthy condition which is so often ascribed exclusively to the sewer in the street.

It would be a comparatively small matter so to disconnett every house from the sewer that it need be in no danger of an invasion of its gases. If only this' were needed to remove the drain diseases which we know to be so rife, our problem wonld be a very simple one. Unfortunately what is needed is very much more serious than this, and must be very much more costly.

The health officers of every city know, or it is their duty to learn, and they may learn very easily, the relations existing hetween defective drains and waste-pipes and the ill-health of those who live in houses containing them. This knowledge must qualify them to pass a decree of absolute condernnation agaiust every one of these wrongly arranged and badly constructed appliances. Trashy soil-pipes, imperfectly jointed, unventilated, unflushed, and inadequately supported, as they exist in so many of our tenement honses; corroded waste-pipes, half choked with foul accumulations and sagging in their course ; traps so shallow, so badly placed, and so badly arranged that they are traps only to catch those who trust them, and open-mouthed sink-wastes pouring their mephitic exhalations into the interior of close all closely-packed houses,-to say nothing of the worst possible water-closets in the worst possible condition,-these are the rule, not the exception, in nearly all our tenement houses. Eved where inspection is rigid, and it is probably nowhere more 80 than in New York city, the standard by which plumbing is measured is by no means that of the best modern work; it is no even that of the "first-class" houses up-town. It should be and if tenement houses are to be made fit residences for the poor, the overworked, and the careless, it must be something very mual higher and better.-Colonel Waring, in the Plumber.

A WARIILG TO PLUMBERS AND THEIR PATRONS.

Diphtheria, scarlet fever and pneumonia bave been particulat ly active in certain parts of New York and Brooklyn during the past year, and the cause is criminal carelessness, official stupidity, and extraurdinary recklessness on the part of property owners, and of builders and plumbers. Altiough the life of a person in ordinary circumstances is of as much value as the life of a millio naire, it is quite natural that the latter, dying in a costly man sion where money has been lavished on devices for protection and comfort, should attract the greater attention, especially if it were a reasonable inference that sewer-gas was in any degree a predis posing cause. Fortunately the death of the late Mr. Rockwelle in Brooklyn, was brought to notice of the authorities, and the result of an official investigation is most surprising.
When Mr. Rockwell's family began to die, and one atter the other was carried to Greenwood, public attention was attracted to the several possible causes of this extraordinary fatality, but no ond dreamed that the death-trap was the trap in the millionaire's cost Ir but worse than useless plumbing.
The Sanitary Superintendent of Brooklyu examined the pipes and general plumbing, assisted by an expert. Amorg other thingb they found that some of the main lines of soil-pipe that are cond tinued to the roof do double duty-carrying off the sewer-gas and acting as rain leaders. One of the pipes receives the water from 1,200 square feet, and during heery rains is so filled with witor tho to empty every trap connected with it. The water-closet in the
beth. neaty-room was found attached to this pipe, and its trap was so trance ofptied of water that it offered no obstraction to the en. ing roof sewer-gas. Mr. Rockwell had wash-basins in his sleepcourse the and nursery, but the traps do not hold water, so of coutse the gas had no difficulty in gaining entrance. In fact, if nish trilder had desired to turn his house into a hospital and furof defective patients, he could not have devised a better system of defective plambing.
8 8wfr $V_{\text {entilation by }}$ Furnaces.-The ventilation of all ers is never perfect till it is constant, and sufficient to prevent this Lave proble smells, and all complicated plans for effecting Tas have proved miserable failures. More than 30 years since it ont and prosed to connect all sewers with furnaces so as to draw Batterse consume the foul vapors. The scheme was tried at 0 ccarion and acted with a vengeance at times, the air being of the traply drawn through the houses, breaking the water seals hate ang tra, while at intervals the operation was too sluggish to Das tony good effect. One day some coal gas leaked from the Yet the sewer mains, and the works at Battersea were wrecked. an a novel same idea has been put forward within the past four years ploston of and practicable idea, notwithstanding the literal exSew of the theory in 1844.-Prof. Corfield.
on urwilize Utilization a Failure.-From exhaustive articles
Boand of Hion of sewerage, in the valuable reports of Massachusetts
Q. Kaf Health, 1873, 1876, 1877, and also from the report of nuast arrive, C. E., on the sewerage of Washington, D. C., we that no proce the conclusions therein determined by statistics, at a parifier of of settling sewerage has proved satisfactory either into a profitable the affuent, or as a converter of its heavy parts sixty profitable fertilizer. In many places where some of the no yaricesses for this purpose have been used, there has been only way for the resulting lertilizer. Irrigation seems to be the plau is way of utilizing sewerage with hopes of a profit, aud this tion.-E'ngineer its ivfancy and does not give universal satisfac"A Engineer Guthrie, of Buffalo.

lower end the roof. He did so, bat was satistied to insert the i_{n} er end in the woodwork below the seat, without connecting it
igworamus should either the soil pipe, trap or rectiver 1 Such an
trode natil hould be heavily fined and forbidden to work at the
hew antil he had served an apprenticeship with some one who If a little abont plumbing.'
plumbers ine to reveal some of the imperfect work done by
${ }^{4}$ its death the City of Montreal, our citizens would not wonder
an " ignor rate. The above writer calls the Brooklyn plumber
"iligi neglignus," but we suffer from stupidity, iguorance, and
continent negligence all combined. Probably in no City on the
Whmbers is so much bad work done by men calling themselves rate cora. It is not from our street drains that our great death af theires, but from our house drains, which if made perfect in
out the joints and properly trapped and ventilated would keep
poisonous gase bred in the street draius.
-Editor Scientific Canadian.

To the Edititon of the Scientific Americiles, MOTES, two.
 At Eltisor of the Scientific American:

At this season we are frequently besieged by inquiries in rela-
they
mo the "carpet may be the "carpet beetle," moth, etc. Many of your readers Firet. Slad to know of the following simple remedies :
bailon. - Steep one quarter of a pound of Cayenne pepper in a and pour water; add two drachms of strychnia powder. Strain iton pour this tea into a shallow vessel, such as a large tinued each thilk pan. Before unrolling a new carpet, set the roll on eliongh alternately in this poisoned tea for ten minutes, or long 4ter beating to ine the saturation of its edges for at least an inch.
to to the fating an old carpet, roll and treat all its seams and edges it toe tame bath. Let the carpet dry thoronghly before tacking
the the floor, in order to avoid the accidental poisoning of the thekers fingers in order to avoid the accidental poisoning of the
thet the liquid. It is perhaps nanecessary to state that the residue of the liquid should be thrown out where it
Fiil not be drant fature not be drunk by any domestic animal, or it preserved for This pre, carefully labeled "poison."
Detals in preparation will not stain or disfigure carpets nor corrode
cotrosits contact with the carpet, as will most preparations of corroive in contact with the carpet, as will most preparations of of Cecond. - One por
of Cayd. - One pornd of quassia chips, one quarter of a pound ha as abe pepper steepled in two gallons of water. Strain and himan above. This preparation, althongh irritating to the
being poisonons.

To either of these teas from one quarter to one half more boiling water may be added at the time of first using, if greater depth of the liquid in the vessel be required. When it is desirable to treat carpets that are not to be taken up, either of the above preparations may be applied by means of any of the common atomizers to every seam and margin with good results, although a second, and even third, application may be needed.

Francis Gregory Sanborn,
Consulting Naturalist.
Andover, Mase., April 10, 1879.

BRITIBH ve. AMERICAN TOOLS.

What the English say about American-made tools.
The importation into this country of American-made tools is becoming a somewhat noticeable feature in Transatlantic trade. We have been accustomed for many years past to get our notions from across the water, and very ingenions and very aseful many of these little contrivances were. Yankee mousetraps enable our cats to live in dignitied idleness. But for Yankee egg. flipper forks would still do duty in this necessary process. Yankee appleparers and peashellers, carpet sweepers and ash sifters have saved not a little labour, and contributed not a little to our comfort. (The future historian, with characteristic logic, will prob:bly conclude that a nation so addicted to saving labour must have been extremely lazy.) Although, however, the introduction here of most of these and similar articles is due to American enterprise, it is probable that British industry has succeeded in producing them at prices under those at which they can be imported, so that much of the work sold as American is really of British manufacture. And it would appear as though in the future importations from America will become more and more confined to novelties, and continue for given articles only so long as the novelty lasts. In other words, so soon as any considerable demand for a novelty is created here, home manufacturers will supply the demand on terms leaving little scope for importation. In the matter of cutting tools, it is an undoubted fact that American manufactures have gained a very appreciable footing in Russian, Australian, and Canadian markets, hitherto supplied almost wholly by British manafacturers. But, according to the Engineer, the late reductions in the prices of English houses have cousiderably checked the success of American competitions, and there are indications that by the employment of improved machinery foreign enterprise will be yet more effectually met. The Engineer proceeds to say :-"An examination of certain tools obtained by a Midland hardware merchant from an American firm, to the order of certain Australian customers, has convinced us that they would have been sent out by no tool-making firm in this country, having other than the very lowest standing; they would most certainly not have been issued by our leading toolmakers. It could hardly have been with goods of this quality that the Americans succeeded in getting the position in the Antipodean markets which led to the preference indicated in the order."
This country may justly be considered the birthplace and home of what are known as muchine tools, such as lathes, shaping, drilling, and other machines used in mechanical operations. It is, therefore, somewhat disquieting to find American-made machine tools competing here with tools of home make. Having occasion some time since to buy a number of light machine tools, the writer thought it advisable to caretully examine the American productions of that class, with a view of getting the best tools, whether British or American. The result was not favourable to the American machines. The impression produced by the examination was-first, that the American tools were all too light, much lighter than British tools of same nominal capacity. In a machine tool it is difficult to err on the side of solidity. Mass, indeed, is essential to steady, hard cutting. Secondly, that the workmanship was in no case up to our British standards. It was wanting in that absolute accuracy which characterises the workmanship of our first-rate toolmaking firms. Thirdly, the prices were anything bat low. No lower than (if as low as) those of Whitworth, or other firms of the highest standing in this country. The writer concluded that those who required first-rate tools should not go to America for them, whilst those who require cheaf tools could procure the cheapest bere at home.
American machine tools are not often met with in our engineering workshops proper, but are chiefly found in manufaciories devoted to the production of bycicles, sewing machines, and in other such light mechanical industries. Chiefly also in the sualler establishments of this kind. In short, American machine tools are in most favour among those who know least about tools. Amateur mechanics are recommended to think twice before in. vesting in them.

'To centre a cylindrical piece of metal readily and accurately is a very simple matter when the workman is provided with tools especially designed for the purpose, and it is not difficult when an engine lathe or even an engine rest is available; but to do it easily and properly in an ordinary plain foot-lathe may puzzle some of the amateur mechanicians. Although some of those methods are well-known they will nevertheless be described for the benefit of some who may require the information. The method of centreing shown in Fig. 1 is one of the most cummon where the lathe is provided with an engine rest. A forked tool, A, is clamped in the tool postin such a position that a line drawn from the point of the tail centre will bisect the angle of the fork. A square-pointed centre, G, is inserted in the tail spindle and moved against the end of the rod being centered with a slight pressure; the tool, A, being at the same time moved forward by the screw of the engiae reat until the rod tarns smoothly in the fork and the square-pointed centre has found the centre of the rod; the tail spindle is then moved forward until the cavity is sufficiently deep to permit of starting the centre drill. The angle of equare centre, G, for very hard material, should be a little more obtuse than that shown in Fig. 4. In any case, it should be of good material and well tempered.
In Fig. 2 is shown a centreing tool which is designed to take the place of the engine rest and fork in Fig. 1. The part B is fitted in place of the ordinary tool rest, and the jaw, C , which has in ic a V.shaped notch, is hinged to the part B at D. A screw, \mathbf{E}, passes through the upper end of the part \mathbf{B}, and bears against the jaw, C. After what has already been aaid in connection with the engine rest, the manner of using this contrivance will be readily uuderstood.

In Fig. 3 the hand tool, F, is employed for stealying the shaft and bringing it to a centre. This tool is bent to form a rightangled notch for receiving the shaft, and when in use it is supported by the tool rest after the manner of an ordinary hand tarning tool.

Work that is too large to be readily centered in this manner often centred approximately by means of the universal square, shown in Fig. 5. A diametrical line is drawn along the tongr of the square, the nork is then turned through a quarter of o 5 volution, and another line is drawn. The intersection of thon lines will be the centre, at least approximately. This point mas now be marked with a centre punch, and the work may be testep in a lathe. If it is found to revolve truly on the centres it mesf be drilled, otherwise the centre must be corrected with the centiv punch, and the work again tested in the lathe. After centroinc by any of these methods, the centre must be drilled and counter sunk with a suitable tool, so that it will fit the lathe centre, shown in Fig. 6. The angle of the Jathe centres should be sist degrees. To insure uniformity in everything pertaining to the fof centres, the centre gauge, shown in Fig. 7, should be used dile getting the required angle on the lathe centres and on the drile used in centreing.
The matter of steadying long, slender rods while being turnen in the lathe is often perplesing. In some cases it may be don tolerably well in the manner illustrated in Fig. 8. The forkp is supported by the standard, $\}$, which is inserted in the rock of the rest support, J. The device shown, in Fig. 2, may used in a similar way. Fig. 9 represents a steady rest, the struction of which will hardly need explanation. For light it may be made of wood ; the upright being secured to the piece, L, which rests upon the lathe bed. The sloited pi M. are adjustable lengtinwise to accommodate the size and p tion of the shaft. When it is required to support a ber whid not round, the sleeve, N, shown in Fig. 10 , is employed. slips over the shaft and revolves in the steady rest. The bat centered by the screws, 0 .
The device shown in Fig. 1 is used where a hollow mandulal lathe is not at hand. A piece of gas-pipe, Q, is held by the olucher P, and is secured by a set screw in the sleeve, B, whid journaled in the standa!d, S, and carries the chack, T. arrangement may also be employed for taning the ends of lomed rods where it is not desinable to put them regalanly on the contris of the laihe.-Scientific American.

Latest myproveicgits in brici hainig hachmeriv
Considering the hard and disagreeable labor required to make bricks by hand, and the monotonous motions the brick-maker yeara painually to go through, it is not surprising that for some years past the minds of inventors have been exerted to contrive Machinery by which this could be accomplished by steam-power. leese suchts of various inventors have been crowned with more or They success, and several brick machines are now in the market. They, however, labor under the defect that the bricks made by cana, after being burned, are not of equal dimensions. The calase of this is to be found in their different densities when the
clay leaves clay leaves the mold, a result of the fact that it was found prac-
tically theally impossible to furnish an equal amount of clay to each of
the the mold boxes, hence a different amount of compression, of density, and of shrinkage during the baking process. Another lefect is cresoincident, namely, the bricks which have undergone leesp preseane, and are less dense, are weaker and fragile, lose their chaeres and corners, become unsuitable for face or front bricks, and It was theatly reduced in value.
and thas the purpose of Mr . Gregg to overcome these difficulties, it molds result was the machine which we represent on this page; it molds bricks of uniform size, density, and strength. In order
to understand to nnderstand its nature we will speak first of brick machines in general ; they may be divided into three classes-dry clay ma-
chines,

boxes" or graduating measures are used to fill the mold boxes, the clay must be dried and granulated to be capable of being filled with any degree of regularity into the "filler boxes," and thence into the molds ; and when molds are grouped together it becomes a physical impossibility by the dry clay system to fill them alike, hence those deficient in clay will but partially develop the bricks; this added to the fact of the cohesive quality of the clay being destroyed by extracting the moisture before molding, complete vitrification cannot take place in the burning, und the result is that bricks made from dry clay disintegrate with the action of the elements.

In the manufacture of slush brick the other extreme is met. To facilitate molding in the "haud way"a large proportion of water is added, and the bricks being so soft must be spread upon floors to dry. The slow out-door process of drying, or evaporation, is one of the most favorable processes for the hand brick maker, but it requires the continuous insurance of favorable atmospheric influences and a continuity of fair weather, which practicaily can never be relied upon. Clay, to be made into bricks by hand molding, must of necessity be so wet that at least 25 per cent of water has to be evaporated before it is safe to burn, so that in fact in works producing 30,000 bricks per day, upward of 23 tons of water have to be evaporated therefrom every 24 hours. The labor attending this is an expensive item, and the bricks are rendered porous by the operation.

Gregg's triple pressure and combination machines occupy a medium position between dry clay and slush machines, and a

first great saving is effected, as the machines accept the crnde clay and mannfacture it to advantage in so stiff a state as not to contain more than one-eighth of the above amount of water to be evaporated, and y t all of its cohesive yualities are retained.

In regard to the mechaniral construction of these machines for moist clay, we must state that the heavy developing pressures take place while the mold table is at rest, thus requiring but a nominal amount of power to operate them, and avoiding strain, wear and tear, and breakage, as well as the great propelling power which is the general concamitant of other machin $/ \mathrm{s}$. When the bricks made of such clay and molded to a great and equal density, are baked, the fusion is more complete, the bond between the clay particles more perfect, the bricks less porous, therefore they absorb less moisture, and are much stronger.

Comparative hydraulic pressure tests have been made betwoen the bricks made by the Gregg machine and hand-made bricks; the result was that while hand-made front bricks were crushed at a pressure of 42,000 pounds, the machine-made front bricks stood 60,000 pounds; when burned hard, the hand-made bricks were crushed at 49,000 pounds, while the machine-made bricks stood 55,000 pounds. When half and quarter bricks were tested the difference was still larger, as the hand-made bricks showed a falling off in strength nearly proportional to their size. This was by 110 means the case with the machive-made bricks, of which half and even a fourth part were almost as strong as the whole brick. These experiments were verified by direction of the supervising architect of the United States at the Treasury Department, and the result was an order that the Gregg bricks should be used for government work.
This fact, in connection with the highest premiums at all the exhibitions in Europe and in the United States, makes it needless to give here any of the testimonials which are published in the catalogue of the manufacturers, from which we will only extract the result of a tabular caculation of the comprative expense of hand-made brick and that of bricks made by the No. 1 Gregk triple pressure brick machine bere represented; it is that the wages of ten molders, ton hearers, ten wheelers, one temperer, and oue pitman amount to $\$ 252$ per week, producing 150,000 bricks; while the expense of one engineer and machine man, ove feeder of machine, two off-bearers, one wheeler, expense of coal, vil, and waste amounts at most to $\$ 52$, also producing 150,000 bricks. Thus we have here a saving of $\$ 200$ per week, which sonu pays for the cost of the machine, while the profit on the bricks is largely increased, the hand-made bricks costing $\$ 1.68$ per thousand, made ready for burning, and the machinemarle bricks 30 cents.

Ine machine is made by Gregg Brick Co., 402 Walnut street, Pbiladelphia, Pa., manufacturers and builders.

THE GENESIS OF THE MOSQUITO.

To the Elitor of the Secientific American.

For sevelal years past I have noticed in warm weather, that my wooden cistern, which is above ground, has been infested with peculiar looking little red worms. I have heard many others like myself complain of these worms, and I had taken it for granted that they were a species of earth worm. However, last summer I procured a glass jar and sprinkled the bottom of it with a very small quantity of sand and clay. I then half filled the jar with clear fresh water, and, after putting a dozen of these worms in the jar, I tied a piece of cloth over the month, and placed it in a light, airy place.

The worms were froin half to three fourths of an inch in length, of a bright red color, and had rather a jointed appearance a hout the body. They would crawl on the bottom of the jar, swim through the water hy a rapid bending of the body backward and forward, and occasioually come up to the surface of the water and float.

Within twenty-four hours after placing them in the jar, I noticed that they had all gone down to the bottom of the vessel, and had enveloped themselves separately in a kind of temporary shell made of earth and sand.

In a few days after this I saw one of these worms crawl out of his temporary house at the bottom of the jar, and swim to the surface of the water. Here, after twisting about for a few seconds, he ruptured a thin nembrane that enveloped his body, and came out a ful fledged mosquito ready for business. I noticed many of the other worms going through the same performance within a short while afterward. Some of the mosquitoes were much larger than others, but, as I have already stated, some of the worms were also larger than others.
f. W. Coleman, M.D.

THB FATE OP A HERD OF BUFFALOES.

An army officer who recently arrived in Chicagn from the Yellowstone Valley, tells a story of what happened to a herd of butfaloes as they were migrating sonthward. The herd numbered 2,500 head, and had been driven out of the Milk River country by the Indian hunters belonging to Sitting Bull's band. When they reached the river they ventured upou the ice with their customary confidence, coming upon it with a solid front, and beginning the crossing with closed ranks. The stream at this point was very deep. When the front file, which was stretched out a quarter of a mile in length, had nearly gaiued the opposite shore, the ice suddenly gave way under them. Some trappers who were eye-witnesses of the scene said it seemed as if a trench had beru opened in the ice the whole length of the column. Some four or fire hundred animals tumbled into the opening all in a heap. Others fell in on top of them and sank out of sight in a twiukling. By this time the rotten ice was breaking under the still advancing herd. The trappers say that in less than " minnte the whole body of buffaloes had been precipitated into the river. They were wedged in so thickly that they could do nothing but struggle for a second and then disappear beneath the cakes of ice of the swift current. Not a beast in all that mighty herd tried to escape, but in a solid phalanx they marched to their fital bath in the "Big Muddy." In a minute from the time the first ice broke not a buffalo's head or tail was to be seen.

Possibly occurrences of this sort, in ancient tertiary timess helped to form the remarkable deposits of bones found in the of lake beds of the great. West and elsewhere. In these deposits the earth is literally crowded with the bones, sometimes chiefly of one type, sometimes comprising many distinct species. In the latter case the victims were probably swept away by sudded floods, their remains mingling confusedly in quiet basins.

NEW PATENT-OFFIGE ROLE.

The Commissioner of Patents has issued a rale for correcting errors in letters patent. Its provisions are as follows : Where ${ }^{4}$ mistake, incurred through the fault of the office, is clearly dirp closed by the records or files of the office, a certificate, showi日g the fact and nature of such mistake, signed by the Secretary of the Interior, countersigned by the Commissioner of Patents, and sealed with the seal of the Patent Office, will, at the request a the patentee or his assignee, be indorsed, without charge, apol the letters patent and recorded in the records of patents.
Where a mistake, incurred through the fault of the office, coll stitutes a sufficient legal ground for a reissue, such reissue mil be made, for the correction of such mistake only, without charfe of office fees, at the request of the patentee.
Mistakes not incurred through the fault of the office, and not affording legal ground fur reissues, will not be corrected after the delivery of the letters patent to the patentee or his agent. No changes or corrections will be made in letters p.tent after the delivery thereof to the patentee or his agent, except as abot provided.

Railway Parcel Exprebs Stamps.-A circular has boes issued by Mr. A. Atkinson, which states that twenty-five raib way companies of England, Scotland, and Wales have resol ail that from and after the 1st of January next, they will issue way stamps of the value of 4 d . and 8d., which shall carry cels of 2 lbd . and 4 lbs . respectively throughont their systems, and that they have agreed to accept parcels of weights and rates throughout the whole of their systems, and the grant an insurance up to 203. at these rates, this placing all the stations on these twenty-five companies at the command of the public for the receipt and delivery of parcels not exceeding $1^{\text {th }}$ in weight.

A Varnish for Replacing Turpentine and Linseed 0ily Paints.-Fr. Thies, of Bissendorf, prepares a varnish consisting of 100 parts of colophoniam, 20 parts of crystallized carbonste of sodium, and 50 parts of water, by heating these substand together and mixing them with a solution of 24 parts of strobs liquor of ammonia in 250 parts of water. With the mass th obtained, the pigments are levigated without the addition of 1 ll a seed oil or turpentine; the paint dries readily without the a a drier, and looks very well especially when varnished. paint keeps well even under water and becomes very hard. cost is said to amount to about one-third of that of ordinary ol paints.-Dcutsche Gewerbe Zeitung.

An improvement in the construction of locomotive fire-boxes motive Sutented by Mr. J. F. Stephenson, the Assistant-Loco$R_{\text {ail }}{ }_{\text {way }}$ Superintendent, Southern Division of the North-Eastern the man. The invention relates to the staying of fireboxes and bold of the plure of plates for the same, the stays retaining ample d_{0} on to the plates without renewal until the plates are worm of firebore lowest point consistent with safety. The lifetime effecting great furnaces is thus considerably lengthened, thereby of inxiety great econumy in maintenance and removing a source plished to locomotive engineers. The improvement is accomaccompanying very slight additional cost, as will be seen by the The plating diagrains.
those plates of a hoiler exposed to the action of fire, particularly by stayhich form the sides of the firebox, are asually supported
outer passed or serewed through them and secured to the outer shell or to other plates separated from the former by a
Water or steam becomer steam space. As the plate and the head of the staybolt plate and corroded, scaled, or burnt the hold of the stay on the frequend the plate itself are so much weakened that the latter this cause. gives way, and serious accidents sometimes occur from plates in the oliject of the invention is to strengthen such staybolts a betarts through which the staybolts pass, to give the at the strengther holll therein, und to protect the stays as well action of thenthened portions of the plates from the deatructive throung the heat. For this purpose those parts of the plates action which staybolts are to pass are subjected to a squeezing punches and proded either by piessure or blows between blunt btay place hollowed in so that the metal of the plate is at each bors on the howed in on the one side and made to project as a as atiove deother side. In some cases the stay bosses produced panches described are subjected to a further squeezing between it out lateratles, so as to thin the middle of the boss and swell Porsing therally. The embossing may obviously be effected by
projection plates between rollers having suitable hollows and Projections plates between rollers having suitable hollows and
booseses may when the metal will permit, the required Welding may be formed by casting thein on the plates, soldering or ncrew- thread thereon. T.rougls each boss a hole is made and a of which appears on it for the reception of the staybolt, the head the action appears on the side of the plate that is to be exposed to
the what, whilst its screw-thread extends throughout he whole depth of the whilst its screw-thread extends throughout bead in the boss may be countersunk to receive the partly-coned body of the staybolt, which can thus be partly sunk into the bay be much embossed plate. Plates thins prupared and stayed heads of the sthinned down by the action of the heat, and the good hold staybolts quite burnt away, and yet the stays retain a hold by the depth of screw-thread still remaining in the
bosses which project on the side of the plate that is not exposed to the destructive action. Fig. 1 represents a section of the embossed plate at a staybolt; Fig. 2 represents the same when worn out; and Fig. 3 represents the ordinary staybolt and plate when worn out.

Tatathmakers aud glaxllexs' graxik.

Charcoal Assay.-By this process an assay accurate enough for small quantities, can be made in a short time. Suppose you have melted and refined some gold filings, you now have the gold and silver, and wish to know the carat. Try it on the "touch-stone" and approximate its quality. Weigh very carefully 12 grains; reduce this by means of fine silver to 8 k ., or a little less; melt this into a shot and flatten on a clean piece of steel, then anneal and roll into a thin ribbon, coil it loosely like a watch spring, then anneal and put in a glass retort; cover with nitric acid one-half, water one-half ; boil for 10 minutes, then pour off the solution again, rinse well and then boil for five minutes in pure nitric acid; rinse several times with hot water. Dry the gold and melt it into a shot, then weigh this shot. Twice the weight will be the carat of the metal. It is unnecessary to say that the utmost care must be taken as to weight and the manipulations to succeed in arriving at accurate results by tbis process.

Touch Stone.-Obtain a piece of silica or "black stone," as it is called, from the lapidary and have it made smooth on one side. Solder on the ends of brass wire a small piece of $4,5,6,7$, $8,9,10,11,12,13,14,15,16,17,18,20,22, \mathrm{k}$. gold. You may not need all of these, $10,12,14,16,18,20,22 \mathrm{k}$. will answer. Be sure that these pieces are alloyed correctly. Trke the gold you wish to test, rub it on the stone, the same as you would rub a pencil on paper, it will leave a streak. Now after forming something of an estimate by its looks, as to its quality, (suppose you think it 14 k .) rub point 16 k . on one side and 12 k. on the other, and place the acid on each streak the same instant. If the 12 k . streak disappears first, the object streak next, and 15 k . last, you may infer that the gold is better than 12 k . and poorer than 16 k . Try again with 13 k . and 15 k . and judge as before.

To Remove the Devil or Tin from the Stock.-Just before pouring the gold throw a small piece of corrosive sub. limate in the pot, stir well with a long piece of pointed charcoal, and allow the pot to remain on the fire about half a minute afterward. This will take tin from the alloy; while the tin is in, the gold will not roll without cracking. To remove emery or steel filings, \&c., from gold, when melting, use a small piece of glass-gall, it will collect them in the flux.

To Temper Brass, or to Draw its Temper.- Brass is rendered hard by hammering or rolling; therefore, when you mane a thing of trass necessary to be in temper, you must prepare the material before shaping the article. Temper may be drawn from brass by heating it to a cherry red, and then simply plunging it into water, the same as though you were going to temper steel.

To Temper Staffs, Cylinders, or Pinions, without Springing Them.-Prepare the articles as in the preceding process, using a steel plug. Having beated the key-pipe to a cherry red, plunge it into water; then polish the end of your steel plug, place the key upon a plate of brass or copper, and hold it over your lamp with the blaze immerliately under the pipe till the polished part becomes blue. Let cool gradually, then polish again. Blue and cool a second time, and the work will be done.

Testing. -The acid to be used is nitric, slightly diluted, with the addition of a small quantity of salt. You' should have two or three bottles containing fluid of different strength; for 22 to 18, use the above; for lesser grades dilute with more water. After a little practice a good observer can arrive within half a carat of the quality.

To Remove Quicrsilver from Rings, Chains, \&c.--Sometimes quicksilver will get on a piece of work and completely cover it. 'l'his makes the article very brittle, as well as spoiling its appearance. Heat the article gradually and under the spot where quicksilver is on-avoid the flume. It will entirely remove it.

To Tighten a Ruby Pin.-Set the ruby pin in asphaltum varuish. It will become hard in a few minutes, and be much firmer and better than gum shellac, as generally used.

MILI FOR GRINDITG YAVAE.
In the usual operation of grinding maize, the stones have to be set so far apart that the meal is not delivered of sufficient fineness for human food at one operation, and therefore a double grinding is required.
In a mill constructed by Messrs. Ransomes, Sims, and Head, of Ipswich, as shown in the engraving, the maize is first cracked quite fine by the corn cracker whioh is placed over the mill, and therefore when it enters into the mill, being in pieces about the size of an ordinary kernel of wheat, the stones can be suitably dressed and set sufficiently close for producing meal for household purposes at one operation. The barrel of the curn cracker is hollow, and is formed by number of separate triangular steel cutters arranged round the circumference of two end rings, and so they can never choke; each tooth having three edges they can easily be successively used. The corn is cracked or cut between the edges of these teeth and a cutting plate, the edge of which is adjusted by a screw until it is sufficiently close to produce the required degree of fineness in the maize.

These mills have been largely used and are very economical in their operation. They will grind wheat equally as well as maize ; they are specially adapted for those districts where the food of the country consists of both maize and wheat.-Engineering.

AT IMPROVRTEANT IT 8EDPNING CABRIAGE TOFW

The accompanying illustration represents n new inventios lately patented by Messrs. Gillespie \& True, of Laclede, Missouri.

It relates to certain improvements in shifting tops for carriages, buggies, \&c.; and it consists in a horizontal bottcm rail, to which the top frame is attached, which said rail is slid into grooves, around the top edge of the seat and held therein by locking-key. It also consists in a double set of vertical support ing-props for the top, whereby the latter is more securely held in an elevated position.

Around the top edge of the buggy seat is formed, by horizontal flanges, a groove. The frame of the buggy top is constructed upon, and attached to, a bottom rail, which slides into the groore of the seat. Said rail is made preferably square, but may be of any other shape, and is slided from the rear of the buggy into its groove. A spring-locking kev passes through two extensions of flanges of the buggy seat, and locks the horizontal rail securely in its position in the groove, the ends of said rail being firmly secured in sockets. In order to give greater rigidity to the top and prevent its falling from the wind or accidental contact with trees, the inventors construct upon the bottom rail two knucklon jointed props, instead of one, each bending in an opposite direction from the other, so that the top is braced in both directions in the most thorough and substantial manner.

The advantages claimed for this shifting top are, ease of cone struction, convenience of adjustment, and general adaptation to buggies already in use, with but little alteration.

To remove the top, all that is necessary is to take out the locking-key and slide the top to rear, so as to withdraw the rail from the groove, thus affording a much more convenient adjust ment than the old form of unscrewing the top.

SHIFTING CARRIAGE TOP.

IMPROVED ROOFING TONGS.

Our illustration represents an improvement in roofing tongh recently patented by Thomas Beeson, of Wilmington, Del. It is claimed for these tongs that they are unusually easy to worl with, and that they hook and close sheets securely withont the use of the mallet.
The construction is quite simple, and readily understood by any mechanic at a glance. The lower jaw, X, is V-shaped whate it bears against the edfe of the sheet, and the upper is pivoted with it on the line $G C$, and carries a journaled roller, whic
slides down over the V when actuated by the handes E, carrs slides down over the V when actuated by the handles E E, canrl ing the sheet tin down with it to an acute angle. By reveraipg the position of the jaws, end for end, and closing them again, the
sheet is laid home and the job done without a touch of mallet.

The The roller being free to turn, relieves the metal from much of the friction, and makes thi operation of the tongs easier and anoother. One of the handles is furnished with a foot-piec it A, to give odditional power when required.
There is no lost motion in the jaws; and it is impossible to make "spews" in making grooves when the jaws bite the same at the ends and the middle.-Plumber and Sanitary Enginecr.

IMPROVED ROOFING TONGS.
Noumb Varnish for Foundry Patterns.-A varnish for Thich patterns and machinery has been patented in Germany, face, dries as soon as put on, gives the patterns a smooth surface, thus insuring an easy slip out of the mold, and prevents the patterns from warping, shrinking or swelling, as it is forfcetly impervious to moisture. This varnish is prepared as Manilla : Place in a vesscu ers pounds of shellac, 10 pounds of the ext copal, and 10 pounds of Zanguebar copal, and heat it by in +r . potato mpiritime constantly. Then add 150 parts of the finest Fhato spirit, and heat the whole during four huta: to 190 teg. and can be liquid is then dyed hy the addition of orage color, $i_{\text {be }}$ and can be used for painting the patterns. When used for paintpuand glazing machinery, the varnish may consist of 35 Muag f f shing macchinery, five pounds of cocoriel copal, 10 pounds of the abobar copal, and 150 pounds of spirit. Similar varnish to conabove is used quite extensively by patiern-makers in this inge is due and much of the superior appearance of American castings is due to its use.

IMPROVEMENTS IT PLANES.

The accompanying engravings represent an improved bench plane, recently patented by Mr. Patrick Gallagher, of Eureka, the intern Ir Fic 1 the side of the plane is t moken away to show supporting construction, and Fig. 2 is a detail itu of $5 ?$ jack plang device. The improvement is applicable to either a bit, B lane, fore plane, or jointer, of wood or iron. The iron or forming screwed by a clamp serew in the body of the plane, A , in position all angle with the bottou of the plane, and it is held on a pin near its cutting edge by the cap, C , which is pivoted of the cap ihat runs icansversely through the plane. The position that cap above its pivot is pressed forward by two strong springs
of the plane. These springs keep the cover down on the lower

end of the bit or iron, holding it firmly in place. As the cutting iron lies more nearly flat than in ordinary planes it will make a "noother surface, and it is more easily adjusted than irons fastened with a wedge in the usual way.

Fig. 3 shows a new adjusting derice for plane bits or irons, recently patented by Mr. L. Baily, of Hartford, Conn. It is especially designed for metallic planes, and consists in a stud which supports the bit, and is adjustable in a socket that is cast with the body of the plane. A differential screw passes through this sicic, an 1 engages a nut having a pin or stud projecting from one of its sides, which may be inserted in any of the several holes in the bit. The differential screw has a jointed handle which answers the purpose of a lever, by means of which the bit may be nicely adjusted.-Scientific American.

"VICTORIA" PATEAT SPRITA BED BOTIOIL.

The Victoria Manufacturing Company, Wolverhempton, aro no" senuing nut a new patent spring bed bottom, the principle of which is shown in the accompanying illustrations. It is constructed of light and fragile-looking wood laths and stretch bars upon steel coil springs, which latter suffice to impart an easy and comfortable alasticity to the bed, so essential to rest and repose. The main features of the invention are its extreme portability, cleanliness, and cheapness, and its equal adaptabulity to iron as to wooden bedsteads.

CENTERING MACHIME.

A writer to the English Mechanic on the above subject says:Many amateurs find a lifficulty in centering their work truly for the lathe, and various devices have been designed to overcome this difficulty. One consisted of a kind of box, with conical recess, which is placed over the end of the bar to be centred, and a centre funch is driven down through the handle; but if this centering cone is held a little on one side, instead of the dent being in the centre, it is eccentric. I have designed two or three machines intended to overcome this difficulty. The following consists of a bed or plate, 1 , which may be of a suitable length, and placed either vertical or horizontal. There are two kinds of poppits shown, each having a hollow cone. The one shown at 2 has a mandrel like a lathe, being kept to the left by a spring. One end carries a drill, or hollow cutting cone, for pointing small bars, to be used with a hollow centre chuck. The handle, 3 , is to feed the drill in its work. The poppit, 4, has a centre punch, which is also kept back by a spring. The handle, 5 , is forced against the end of the punch by a spring behind it. To use it, pull back the ball at the end of the handle as far as it will go, and let it spring back against the end of the punch.

THE COMPOSITION AND WOREHNG OF ALTOY8.

Bronze Alloys.

A bronze in imitation of gold may be made of 45.5 parts copper, $3 \cdot 5$ parts tin and 1 part zinc- 50 parts. Bronze medals are generally cast of an alloy of 50 parts copper and 28 parts tin. This alloy is very hard. A softer bronze for medals than the above is composed of 46 parts copper and 4 parts tin. Ancient bronze nails were made of 40 parts ropprer to 1 part tin, and were very flexible. Soft brouze is composed of 18 lb . copper to 2 lb . tin. Hard bronze is composed of 201 b . copper to 5 lb . tin. The ancient bronze mirrors are said to have contained 16 parts copper to from 7 to 8 parts tin. At the time of Louis XIV. of France, a period when the art of castiny statues was much cultivated in France, staturs were cast of an alloy of 30.6 parts copper, 0.11 parts tin, 2 parts zinc, and 06 parts lead. The statue of Louis XV. is cast of 82.4 parts copper, 103 parts zinc, 4 parts tin, and 3.2 parts lead. The bronze of the ancient Greeks consisted chiefly of copper and tin, but was frequently alloyed with arsenic, zinc, gold, silver, and lead. All their shields and weapons of war were male of bronze, as well as coin, nails, kitchen ustensils, \&c. All the ancient nations seem to have understood the : \mathbf{r} : of tempering bronze and copper, and the ancient Mexicans uuderstood the art of converting bronze into edged instruments in a high degree, hut the art of tempering and hardening bronze and copper has been lost to modern nations; but as we understand the working of iron better than the ancients, and have steel, an alloy of iron aud carbon, which the ancients did not have, we do not miss this art much.

Bell-metal Alloys.

One hundred and forty-four pounds copper, 53lb. tin, and 3lb. iron, are said to make a sunerior bell. Iron, copper and tin do not unite well, if each is adued separately to the other. but if tinplate scraps are melted in a crucible together with tin, and then this tin and iron alloy added to the molten copper, it will unite realily. Another alloy that is highly recommended is composed of 53.5 parts copner, $6 \cdot 11$ parts iron, $2 \cdot 13$ parts lead, and 3.9 parts tin. This alloy has a good, sonorous sound, even if the mould is not thoroughly dry. House bells are made of 4 lb . tin to 16 lb . copper. Soft musical bells are made of 3lb. tin to 161 b . copper. Common bell-metal consists of 501 b . copper to 15 or 20 lb . tin. The silver bells of Rouen, France, consist of 40 lb . copper, 5 lb . tin, 3 lb . zinc, and 2 lb . lead. Too much tin causes hell-netal to be brittle. The gongs or cymbals and tam-tams of the Chinese are composed of 40 lb . copper to 10 lb . tin. To give these musical instruments their proper tone, they are plunged it cold water while hot, after being cast; cooling in water deprives the metal of almost all its sound. It is tempered and very slowly cooled, which imparts to it peculiarly powerful sound. If bell-metal is suddeniy cooled, it becomes less dense and hard, and is increased in malleability, but the tone of the metal is decidedly impaired, and bells ought never to be cast in damp moulds. When bells are cooled suddendly they should be reheated and tempered by cooling slowly.

Type Metal.

Six parts lead and 2 parts antimony form a very hard and brittle alloy used for small type. Eight parts lead and two parts antimony form a softer alloy that is used for larger type. Ten parts lead and two parts antimony form an alloy that is still softer, and is used for medium-sized type. Fourteen parts lead and 2 parts antimony form an alloy that is softer than any of the above alloys,
and is used for the largest-sized type. A small amount of tin is sometimes added to the above mixtures, and some typefounders add 1 or 2 per cent of copper. Both of these metals improve the quality of the type, when used in small quantitiea. Forty parts lead, 8 parts antimony, and 2 parts tin form an alloy that is used for stereotype plates. Six parts lead and 2 parts tin forin" coarse solder, used by plumbers. This alloy melts at about 500° Fah. Two parts lead and 4 parts tin form the fine solder used by tinners. It melts at about 358° Fah.

Lead Alloys.

Ninety-four parts lead and 6 parts antimony form an alloy that may be rolled into sheets, and is a little harder than pure lead. This alloy is much used for sheathing for ships. Twenty four parts lead and 4 parts antimony form an alloy that is used in place of Babbitt metal for flling small boxes and bearings. Twenty parts lead and 4 parts antimony form an alloy that is ${ }^{2}$ little softer than the above, and is used for the same purpose. Either of these may be hardened by the addition of more antimony ; but care must be taken not to use too much antimony, for it will cause the alloy to lose its fluidity, and it cannot be run into the boxes. All alloys of lead and antimony are rendered more fluid by melting them under a eovering of oil. Five parts lead and 5 parts tin make a beautiful white alloy, used for organ pipes. The mottled or crystalline appearance, so much admired in the pipe, is caused by using an abundance of tin. One hundred parts leal and 2 parts arsenic form an alloy from which drop shot is made. Eighteen parts lead, 4 parts antimony, and part bismuth form an alloy that expands on cooling. This alloy is much used for metallic patterns for snap mouldiugs.

Spelter-solder Alloys.

A good solder for copper and iron is comnosed of 3 parts zinc and 4 parts copper. A softer solder that is used for ordinary brass-work is composed of equal parts of zinc and copper. A very hard but fusible solder is composed of 2 parts zinc and 1 part copper. This solder is so hard and brittle that it can be easily crumbled in a mortar when coll. The two first solders are first alloyed and cast into ingots. The ingots are allowed to cool in the mould and then reheated nearly to redness upon a charcosl fire, and are broken up on the anvil, or in a mortar, into a finely granulated state, for use.

Hard-solder Alloys.

The following metals and alloys are usually us ${ }^{\circ}$ d as solder in the art of hard soldering :-Fine or pure gold rolled or beatep into sheets, and into shreds or small pieces, is used as the solder for soldering chemical vessels made of platinum. Silver solder is composed of 4 parts silver and 2 parts yellow brass. Yellow brass is much used for hard soldering. The brass is used in this sulder, so that the operator can tell when the solder is fused by seeing the blue blaze caused by the burning of the zinc. This solder is either rolled iuto thin sheets and cnt into small bits for use, or is granulated while hot. The gold solder, the composition of which is given under the head of gold alloys, is rolled into thin she and used for soldering gold alloys. Gold soldering is generally done with the blowpipe, as the work is seldom larye enongh to require the brazier's nearth. Pure copper, in shreds, is sometimes used for soldering iron. Spelter solders, granulated while hot, are used for soldering iron, copper, brass, gun metal, German silver, and sometimes fur gold and silver alloys. As a cheap substitute for silver solder the white or button solders are con ${ }^{12}$ monly employed for the white alloys, such as German silver, gal ${ }^{11}$ metal, \&c. The flux most generally used in hard soldering ${ }^{\text {is }}$ borax. In fact there is very little hard soldering done withont the aid of this flux. It is generally granulated, and used in tha is dry state for large or heavy work, and for small work it is generally used in solution with water.

Soft-solder Alloys.

The soft solder used by plumbers, called sealed solder, is comp posed of 2 parts tin and 4 parts lead. This sold $\cdot r$ melts at 450° Fah. The common solder used by tinsmiths is composed of parts tin and 2 parts lead. This solder melts at 350° Fah.
bismuth solder is composed of 7 parts bismuth, 5 parts lead, and 3 parts tin. This solder melts at about 225° Fah. All the tin and lead solders become more fusible the more tin they contain. Thus I part tin and 10 parts lead melt at about $550^{\circ} \mathrm{Fuh}$. whil the 6 parts tin and 1 part lead melt at about $375^{\circ} \mathrm{Fah}$.; and all the tin, lead, and bismuth solders become more fusible the more lead and bismuth they contain. The fluxes used in soft soldering and borax, sal-ammonia, chloride of zinc, common resin, Venice turpentine, tallow, and sweet oil. Those most commonly used fos ordinary work are common resin and chloride of zinc.

Babbitr Anti-friction Metal.

The metal is made of 1 part conper, 3 parts tin, 2 parts antimony, and 3 parts more tin are added after the composition is
in the in the molten state. This composition is called hardeuing, and
When When the metal is used for filling loxes, 2 parts tin are used to 1 of hardening. The above alloy constitutes the best anti-attrition
metal in Metal in use, but on account of its expense it is very little used. Posed anti-attrition metals commonly used are principally com. posed of lead, antimony, and a little tiu, but they are not nearly
oo good ${ }^{20} \mathrm{good}$ as the above.

GRINDING TWIST DRITIS.
 (Sce page 182)

What is described as a "simple, cheap, and efficient" means for grinding described as a simple, cheap, and efficient means the in Mr. A. K. Rider, of Wialden, New York. The object of The invention is to ensure the most perfect form of cutting edge without the employnent of skilled labour. The invention con-
bists first sists first in a device composed of a stock, A, for supporting the
drill, drill, consisting of grinding perforated face, B, provided with a Krooved id ihank, C , angularly disposed in relation to the perfor-
ated f and ated face, B, and means for holding the drill within the groove
formed in recmed in the shank, wherehy the body of the drill may be firmly secured to the shank, and the cutting end of the drill caused to
extend Pxtend any desired length through the lace, B, of the stock, and inven allow of the ready and accurate grinding of the drill. The invention further consists in a means for securing a drill within
said shank said shank in such a minner that the drill shall be prevented
fromil rom any lateral movenent, while it will admit of a predeter-
mined dined axial monvenvent in order that the edges or lips of the
drill may be relative may be ground in an equal degree, and always at the same A per angle to each other.
A perforated to each other.
grinding plute or face is also provided with a G, for secuank, angularly d'siosed to perforated face, a clamp, c, for securing the drill firmly within the grooved shank, and a
collet, H, collet, H, allapted to be removably secured to the drill and also
to the to the shank, wherehy the drill may be adjustably secured within
collet iol $_{\mathrm{a}}$ plat, H , and the latter adjustably locked to the shank. Fig. 1 tha plan view of the improvement, Fig. 2 is a side ele vation of
the same, and Fig. 3 is a side elevation of the tool for grinding
thpered ${ }_{\mathrm{B}}^{\mathrm{B}}$, and a hank drills. The stork is formed of the grinding face, Ont piece or a a , which parts may be cast or forged solid in at theie, or may he made separate, and secured to each other matheir points of juncture, either in a rigid or in an adjustable $\mathrm{V}_{-\mathrm{sh} \text { her. }}^{\text {mape }}$ The shank, C , is provided with a groove, prelerably of V-bhar. The shank, C , is provided with a aroove, preierably of
the dipen wich extends throughoat its length and merges into 0 he diamond or other shapred opening, E, formed in the lace, B. Opening E extenher shapled opening,
contract
emper The v.ed in size from the upper to the lower surface of the face. she V-shaped groove forned in the shank, and the diamnd. shaped opening in the face, together constitute a continnous V . about midove for supporting different sized drills. Shank C , Or opening may between its length, is provided with a through slot it opening, within which is placed the head of a clamp, G, while
its lower surfaceaded shank or stem projects through or beyond the able washer of the shank to allow of the attachnient of a suitupon ther and nut. Clamp G consists of a perforated head spon the upper portion of which is formed an elongated bearing surface, which is of sufficient length to overlap one of the sliral Operat grooves of the drill to be ground or sharpened, and thus tendenty of secure the drill firmly in place and prevent any lenden.fy of secure the drill firmy in ppace and prevent any
cient size the drill to revolve. The eye of clamp, G, is of suffi. the smalt to admit the largest size drill, and it is obvious that She emaller sized drinlly can be firmly gecurad hy the single clamp
owing to the fuct that it is adapted to be adjusted at right angles
to to the to the fact that it is adapted to be adjusted at right angles evident that in the present instance the eye is circular, but it is erident that it in the present instance the eye is circular, but it is
H
hs represents or any other desired shape.
a colet. In the present instance it is shown as represents a collet. In the present instance it is shown
or luing made of a single piece and split on one side through ears
or or lugs, each of a single piece and split on one side through ears
to be held which has a thumbserew, J , as the drill requires ting held firmly against axial movement in order that the cutcollet is may be ground or sharpened in an accurate nanner. A outwardly turded for each size of drill. When the screw, J, is adjuardmen turned the ears separate sufficiently to allow of the thumbent of the drill within the collet, and by tightening the prombider wiw the drill is securely held in place. Collet H is thereof, with two rectangular projections formed on one end of the the and located diametrically opposite each other. The end withe shank is provided wittra a correaponding rectangular receess ithin Whink is provided witir a corresponding rectanguar receens
tho devico is ono of the projections of the collot is received when
versal of the drill just one-half of a circle or revolution, and prevent the endwise movement of the drill in order that the opposite lips or cutting edges of a drill may be subjected to the same grinding action, and the same angle of each lip or cutting edge always secured.
It will be observed that the collet is adapted and arranged to have a movement at right angles to the shank in order thit different size drills may be firmly seated within the groove, but the endwise or axial movement of the drill when the latter is being sharpened or ground, is effectually prevented by the collet. The operation of the improved device is as follows :-The drill to be ground or sharpened is insertel in the V -shaped groove, and through the eye of the clamp, Fig. 2, the cutting end caused to project the desired distance below the lower surface of the face or plate, B. The cutting angle of the entering edge made more or less acute according to the relative radical position of the elge or lip of the drill relative to the plane of face, B , should the lip coincide with the bottom of the groove a cutting edge of 90° would be formed, and if placed at right angles to this plane it would result in securing the most acute cutting angle the device is capable of procuring. It is, therefore, easy to impart any desired angle to the cutting edges, as this matter depends solelv on the relative radical position of the edge of the drill to the plane of the face.
The amount to be ground off and the angle of cutting edge being determined, the drill is securely fastened in its proper position by means of the clamp, the nut of which is turued down snugly against the washer or surface of the shatik. The rollet is theu slid over the drill and one of its projections entered into the rectungular recess in the end of the shank, when the thumbscrew is turnel down, and the collet thus firmly secured to the drill, preventing an axial movement of the same. The fice, B, is then applied to an ordinary grindstone, and the projecting end of the drill is ground off plane with the under surface of face The clamp is then released sufficiently to allow the collet an: drill to be withdrawn to release the projection from the recess in the shank, when the collet is given a half revolution and the opposite projection is entered into the recess. The clamp is then secured in place, and the opposite side of the drill is then ground off to a plane with fice, B. This operation causes the cutting edges of the drill to be ground to identically the same form, angle, and length, and gives the advantage of a straight entering edge, which causes the drill to enter easily, particularly at its nentre or neutral axis. The groove is usually made V -shaped for receiving the drill, and extends the whole length of the shank, C, while in other cases, us represented in Fig. 3, for grinding tapered shank drills, ouly a portion of the shank is provided with the V .groove. The shank, C , in this case is provided with a slot in which the stopper, P , moves for regulating the axial or longitudinal movement of the drill by engaging with the collet, H . The clamp, G, in this case for holding the drill to the stock, is acted on by a thumbscrew from the top of the tool, as represented in Fig. 3. If it is desired to grind or sharpen ordinary drills the collet may be dispensed with, and the shank lengthened out to afford the necesssary support for the end of the drill. The device may also be used to grind up end drills, in which case the shank is set at nearly right angles with the face.

a chance for inventors.

The Secretary of the Treasury has constituted a board, consisting of Captain Forbes, manager of the Massachusetts Humane Society, Captain Moore and Lieut. Sparrow, of the Revenue Marine Service ; together with Mr. B. C. Sparrow and Captaiu Patterson, of the Life Suving Service, to investigate all plans, devices, and inventions for the improvement of apparatus for use at life saving stations, which may appear meritorious and available, and to examine and test as far as practicable all such as may be submitted by the general superintendent, and to make detailed reports of the results of the investigations and tests for his information. The scope of the board embraces action upon all devices for the improvement of life saving apparatus intended to be used at the life saving stations, except wreck ordnance and its immediate appurtenances, which will be referred to a board comnosed of experts in gunnery, and two practical surfmen to give them aid upon points connected with the actual wreck service. Devices intended to be carried on board ship do not fall within the scope of the action of the board, as this class of life saving apparatus is taken cognizance of by the steamboat inspector's service. Capt. Forbes has been designated president, and has been directed to call a meeting of the board as early as practioable, as there are already on hand several inventions to bo examined.

LATHE CHUCK-PLATES.

HATHE CHUCE-PLATE.

By Joshua Rose, M.E.

The chuck-plate is simply a large face plate (its diametor being it provided nearly as large as the full swing of the lathe). It Chownided with radial slots and numerous square holes (as dann in Fig. 1), to receive bolts and other devices employed to Dhape (as in to its radial face. Its radial face should be a true athading indeed should the faces of all face plates and chucke), choold rat a right angle to the line of centres of the lathe, and a struight rane. If a face plate is hollow when tested by held trest edge placed across ite radical face, work that should be it in trouls by being bolted against its face will not be true unless - For exaly cylindrical and is fantened centrally on the chnck-plate. faco. Axample, Fig 2 represents a chuck-plate hollow acrose the hat A is the chnck-plate shown in section, and B is an arm D. The hole throagh its double eye, C, and one through its hub, Cuntre line centre line of the lathe is denoted by E E, while the the hole in D the hole in D is denoted by F. Now, suppose that grinat th \mathbf{D} had been bored, and the radial face of D (which is bolted to the chuck-plate) was turned true with that hole, when With to the chuck-plate, the centre line of F not being parallel catting and the latter representing the line of travel of the paralle tool, it is obvious that the hole in C will not be bored of hollo to that in D. If the chuck-plate was rounding instead Tonald oxist a similar error in parallelism would occur, but it Hold oxist in the opposite direction, the centre line of D standIt in denoted by the dottod line, G.
tite is obvious, therefore, that the face of the plate should be foe as teated by a straight edge, and that the plane of its thethe. It is and at a right angle to the line of centres of the thepe. It is better, however, that whatever amount of orror the following should be in hollowneagrather than roundneas, for hollowinging reasons:-In Fig. \%' In shown a face plate that is curying, and in Fig. 4 one that is rounding. Both are shown roceng a truly cylizdrical washor, bored true, faced and

A \mathbf{A} are the chacks shown in section, and B are the respective discs held to the chack-plates by the plates, C, and bolts, D, while E represents the lines of centres of the lathe. The face, \mathbf{F}, of the washer in Fig. 3 stands at a right angle to E, notwith, standing the hollownees of the chuck-plate, while the face, F, in Fig. 4 may stand at an angle, as shown, in which event truing up the face, G, would leave the washer thinnest at one part of its circumference and thickest on the diametrically opposite side The trath of the chucking in this case depends on whether the clampe, C, were screwed by the bolts with equal force to the face plate. A hollow chuck-plate will lose this adrantage in proportion as the work covers more of one side of the chuck-plate than it does of the other, but in any event it will chuck more true than a rounding one. Suppose, for example, that instead of the discs being chacked concentric to the chuck they were chucked eccentrically, as shown in Figs. 5 and 6, the chucks being the one as much hollowing as the other is rounding. That shown in Fig. 5. would stand out of true to an amount greater than is the chuck in the length of its radius, while that shown in Fig. 6 would be nearer true than is the chuck in the length of its radius, both amounts being in the proportion of the length of the line, A, to the length of the line, B, the line of centres of the lathe being $\mathbf{E} \mathbf{E}$.
If either of these errors are known to exist, pieces of paper of sufficient thickness to remedy the error may be placed at C and D respectively. It is better, however, to true up the faces of plates so that the surface of the work bolted against it will be true and stand at a right angle to the line of lathe centres.
In truing up a face plate, the bearings of the live spindle should be adjustod so that ihere is no play on them, and the crew or other device used to prevent end motion to the live spindle should be properly adjusted.
A bar or rod of iron should also be placed betwoen the lathe contres to further steady the live spindle, and the square holes or radical slots should have the edges rounded or bevelled off as shown in Fig. 7, so that when the tool point strikes the sides, $A_{\text {, }}$ of the holes or slot, it will leave its out
gradually and not with a sudden jump or jerk, while, when it again meets the cut on the side, B, it will take the cut gradually, and will not meet the sand of the casting, which would rapidly dull the tool-cutting edge.

The first or roughing cut should be commenced at the circumference of the chuck, and fed towards the centre for the following reasons :-Suppose Fig. 8 represents a chuck-plate, the two tools, A B, taking their resnective cuts. The metal being rut by B will sever more easily from the main body than will that cut by A, because it is not so well supported by the metal hehind it ; hence less strain under equal depths of cut is sustained by B than by A, and it will, therefore, not dull so quickly.
ln turning up a new chuck -plate it may be necessary to take off three cuts, in which event the second should also be fed from the circumference to the centre. In truing up a chuck plate that has worn out of true, or in taking the finishing cut on a new one, the straight-edge should first be applied to the face, and if the latter is found to be rounding, the finishing cut should be started of the centre and fed to the outside, so that whatever amount the tool-edge may wear away in traversing across the face, will tend to strenghten the face, whereas were the cut started from the perimeter and traversed inwards, the roundness of the rluek would be increased to the amount of the wear of the tool. Conversely it is ohvious that if the plate is hollowing, the cut should be started from the outside and fed inwards.

If the lathe has a self-acting feed motion, that motion should be put in gear, and the cut put on by operating it by hand, the object being to prevent the lathe carriage from moving back while the cut is proceeding. - English Mechanic.

gitiscellaneows.

A Curious Mode of taking Turitle.-In the neighbourhood of Cuba a peculiar method of securing the turtle is pursued by the natives, advantage being taken of the habits of a species of remora, or sucking-fish, peculiar to those waters. Three or four species of remora are known, having collectively a wide range. The white-tuiled remora (Echeneis albicauda, Mitch.) frequents our North Atlantic coast, avd is sometimes taken in Long Island Sound, where it is known as the shark-sucker. The chief peculiarity of all these fish consists in an oval disc on the top of the head and the adjacent parts of the back, the surface of which is crossed by transverse cartilaginous plates, arranged somewhat like the slats of a Venetian blind; on the middle of the under surface are hook-like projections, connected by short bands with the skull and vertebræ, and their upper margin is beset with fine tceth. According to De Blainville, this organ is an anterior dorsal fin, whose rays are split and expanded horizontally on each side, instead of standing erect in the usual way. By means of this apparatus, partly suctorial, partly prehensile by the hooks, the remora attaches itself to rocks, ships, floating timber, and the bodies of other fish, especially sharks, which it uses either for anchorage or for labour-saving transit. The species of remora inhabiting Cuhan waters (called Keve-that is, reversed-by the Spariards, because its back is usually mistaken for its belly) is employed by the native fishermen. The boatmen in quest of the turtle carry several reves in a tub, and when they approach their game a properly tethered reve is cast off. On perceiving the turtle the fish quietly attaches itself so firmly that the prize can be easily secured. Colcomb states that the fish's hold is so strong that it will allow itself to be torn asunder without letting go This living fish-hook is held by means of a ring attached to the remora's tail, and a stout line made of the fibre of palm bark. By a peculiar manipulation the fish is induced to let go its hold upon the turtle, when both have been hauled into the boat. The remora is then returned to its tub, to await the discovery of another turtle.

The Milk of the Cow Tree. - Alexander Humbolit remarks that among the many very wonderful natural phenomena which he had during his extensive travels witnessed, none impressed him in a more remarkuble degree than the sight of a tree yielding an abundant supply of milk, the properties of which seemed to be the same as the milk of a cow. The tree itself attains a height of from 45 ft . to 60 ft ., has long alternate leaves, and was described by Linden as Brosimum galactodendron. The milk which flows from any wound made in the trunk is white and somewhat viscid; the flavour is very agreeable. Some time ago, on the occasion of M. Boussinganlt going to South America,

Humboldt requested him to take every opportunity of investigating this sulject. At Maracay the tree was first met with, and for more than a month its excellent qualities were daily tested in connection with coffee and chocolate; but there was no op portunity for a chemical analysis. Nor does such appear to have occurred till the other day, when, amid the many curious things exhibited by the Venezuelan Government at the Paris Exhibition, there happened to be several fiasks of this milk; and after a long period M. Boussingault has been enabled to complete his analysis of this substance, which is unique in the vegetable world. In a memoir laid before the Academy of France he gives a detailed analysis, and concludes by stating that this vegetable milk most certainly approaches in its composition to the milk of the cow; it contains not only fatty matter, bat also sugar, caseine, and phosphates. But the relative proportion of these substances is greatly in favour of the vegetable milk, and brings it up to the richness of cream, the amount of butter in cream being about the same proportion as the peculiar waxy material found in the vegetable milk, a fact that will readily account for its great nutritive powers.

A remarkable accident happened a few weeks ago at l'Ecole Normale to M. Zédé, who was studying the properties of a composition formed of equal parts of gun-cotton and nitrate of ammonia. This was inflamed in a bronze tube of 6 mm . internal diameter, and expanded without detonation. Thirty experiments had been made, and M. Zede then reduced the size of the tube to 5 mm . When he tried the experiment anew under these couditions a frightful explosion occurred. The tube was shattered into 60 pieces, some of which passed through the roof of the laboratory and penetrated about 4 ctr . into a brick wall. The operator liad one of his legs broken.

This arcident is engaging the attention of the French Commission des Poudres et Saljêtres. M. Saint Claire Deville, in the Academy, pointed out that the fact belonged to a category including already several others, and he recalled an oliservation by Prof. Abel. About 0.2 gr . of chloride of nitrogen is placed in a watch-glass, and exploded with a piece of phosphorus; the noise is tremendous, but the explosion has little or no shattering effect. Now repeat the same experiment, after having breathed on the chloride so as to deposit a thin envelope of moisture (which cannot be more than a thousandth of a mm. thick). In this case the explosion is less noisy, but the effects are quite differentNot only is the glass pulverised, but the table supporting it is perforated.

Two deaths, under peculiar and painful circumstances, are re corded in a receut number of Les Mondes. One was that of ${ }^{\text {a }}$ farmer of Landas, who took a foolish bet that he would swallow his pipe, the stem of which was 10 centimetres. He did so, then returned it intact; but he died ten hours afterwards. The other case is that of a young man who was leaving Paris for Lyons to visit his family, whom he had not seen for long. At the station, before entering a cairiage, he wished to smoke a cigarette, and lit the match by scratcking the phosphorus with his finger-nail. Some of the incandescent phosphorus penetrated under the nail. producing a burn, to which he gave no heed. In an hour, howiever, the pain was intolerable; finger, hand, and forearm swelled and inflamed. He got out and went to a doctor, who said immediate amputation of the forearm was absolutely neeessary. The man wished to wait a while, and telegraphed for his father, who, however, arrived too late. The purnlent disorder reached the shoulder, and operation was now impossible. Death ensued in twenty-eight hours.

BONE AND MUSCLE.

Liebig has shown that oatmeal is almost as uutritions as the very best English beef, and that it is richer than wheaten bread in the elements that go to form bone and muscle. Prof. Forbesp of Edinburgh, luring some 20 years, measured the breadth and height, and tested the strength of both the arms and loins of the students in the university-a very numerous class, and of various nationalities, drawn to Edinburgh by the fame of bis teaching. He found that in height, breadth of hest and shoulder-, and strength of arms and loins, the Belgians were at the hottom of the list; a little above them the French; very much higher the English; and the highest of all the Scotch and Scotch-Irish, from Ulster, who, like the natives of Scotland, are fed in their esrly jears with at least one tueal a day of good oatmesl porridge.

ELECTBIC BEEVITIES.

Division of the Electric Light.-The mode in which this is effected is by parting a large wire into numerons branches, each branch of the same length and conducting power, and re. further an equal proportion of the current. Th., branches are regulated main wire In practice, Mr. Edison will make use of two large mach wires of copper, one for the outflow of the curreut from the machines, the other for its return. The mains will not be united into outer ends. The positive wires will throw out a branch branch will reting it passes which takes the electric light. This circuit will return to the negative main, thus comploting the any number is exmected that the current can thus be sulb.diviled delugember of times. The mains are to be supphed with a beluge of electricity, if the expression may lee allowed, g-nerated and it is ex machines, built for quantity and not for untensity, share of expected that each building will receive its proportional patented the currat. A sub-division of the current has buen patented, by which the lights ar: placed in branch eircuits, running across from the positive to the negative conductor ; any Yoverned which the machine will support may be used and A Ney switches.
A New Detective.-A gentleman living near Calcutta has mises to a now practical use for the mirrophone, which prosome to remder it useful in the detection of crime. Having for tear the missed oil from his golown, he fixed up a microphon: after the oil cans, carrying the wire up-stairs to his bedroom, and aiter the house had heen closed for the night, sit up to await the
result. He result. He was not long waiting before he heard the clinking from one, followed by the gurgling sound of liguid being poured bearer in receptacle to another. Hastening down he eaught his
congrante delicto, filling small bottles with oll for easy conveyance fiagrante delicto, filling small bottles with oll for easy
Color of the Elfoctric the premises.
Solobor of the Electric Light. - By the com?ination of the saturation afterals during the manufacture of the carbons, or by The naturafterward, almost any colored tint may be olitained. grains in eal violet rays are neutralized by the addition of a few tint like each carbon of chloride of sodium, producing a yellow and like the sunlight. Magnesia proluces a very white light, the eonell adapted to photography. A mixture of arsenic, on Varions pry, produces a light almost devoin of chemical effect. bined as totosalts and sulphates of the metals may be so comTre to proluce almost any desired color.
The Electric Light Put Out.-Seviral American minu. facture Electric who had introduced the electric light into their works,
have withdrawn out. Several American manu. light withdrawn it, owing to the intermittent character of the workmen, thus injuriously affecting the optic nerves of the not $\mathrm{u}_{\mathrm{men}}$, interfering with a steady gaze. This intarmission is gen unfrequently due to the engine employed for working the not a necessary machine being employed for other operations, and is How Edison's teature of electric lighting.
How Edison's Light is Pronuced. - The light is produced
by incandescence. The conductor, which is made incanderent
by the by the electricace. The conductor, which is madr incandesent thaped electrical current passing through it, is a small, curionsly
iridiam apparatus, consisting of a high allos of platinum and Iridinm, which can not be melted under 5,000 derrem Fihhrenheit. give a light quantity of this metal is pliced in that of a gas jet. Edison's Claim to an Englisu Patent secured. - The
British Commissioners of Patents have decided liavorably on Mr.
Rdison's claim to a patent for his moile of producing, sub-divi-
ding, and distributing the electric light.

To Cast Brass Solid.-The metal should not be run any hotter than is necessary to insure sharp casting. The most probable cause of the honey-combing x of castings is that the air can not get out of the way; and there ought to be proper vents made for it from the highest parts of the mold ; the metal should be run in near or at the bottom of the mold. If about one pound of lead be ad led to every 16 pounds of old hrass, when just at the melting point, solid good brasses will be the result. In melting old brass, the zinc, or lead, contained in it (when fluid) oxidizes freely, consequently the proportions of the metals are altered, and require an addition similar to the above. If the brass has not been recast, a little less lead will do, but if recast several times, it may take the full quantity.

3tectanics.

Cunious Facts about Inon.-Colonel Cizen, in a recent article on the subject, says: During his sojourn in the arm manufactories of St. Etienne and Tulle, at the central depot of artiliery, and at the manufactory of Chatellerault, he was able to make important researches on iron. The fracture of iron may be norvous, in grains more or less fine, or in facets sometimes having a surface of several square millimeters; often it presents a mixture of these three features. Thus it is impossible to judge of the quality of an iron before breaking it; and it is on this account that in arm mauufactories they break a certain number of hars with which they make a certain number of pieces for which they are intended, and which are afterwards broken to ascertain their resist unce-that is, the goodness of the iron, which, moreover, is still reudered brittle in presence of phosphorus, arsenic, or sulphur. The best irons are the nervous, then those of fine grain and with farets. On railways it has heen proved that ralls placed in the direction of the magnetic meridian are affected quite differently from rails placed at right andes to this direction ; the former oxidize and do not become brittle. In intermediate directions the rails participate more or less in the qualities of those which are placed in the two extrene Lirections. What becomes of the iron which is now so plentifully used in the construction of buildings-girders, ainong others ?

Apparatus for Feeding Boilers.-Signor Chiazzari, of the Alta Italia Railway, has recently described a new apparatus for feeding the boilers of locomotives and other non-condensing engines with water heated to within a few degrees of the boiling point. The apparatus consists in bringing the feed-water in a finely divided spray into contact with a portion of the exhaust steam during its passage through the feed pump, and of an antomatic arrangempnt for shutting off the supply from the tender the moment the regulator is closed, thus preventing the admission of cold water to the boiler. Mechmically the pump appears to be successful, as it has worked without trouble since January, 1876. Economically it spems also to have answered, for the saving in fuel, in a trial of four months, is said to have been very large.

Fifetric Car Signal.--A trial will soon be made of a neir signal recently patented by Mr. 1. A. Sherman and Mr. C. E. Mees, of Louisville, Ky. The first named gentlemon is an areomplished electrician, and connected with the Louisville and Nashville Railroad. The invention consists in combining sgual levie, upon the locomotive with two condurting wire extroding through the cars of the train, and terminating at the end of each car in adjacent contact flates, forming seats, together with a tlexible cable having two insulated wires terminating in metal plates separated by a solt rubber block, to continue the circuit, but permitting it to be broken when the cars separate, and transmit a signal to that effect to the engineer. It can be applied to freight as well as passenger cars. The cost will be som+thing more than that of the system now generally in use. - Nat. Car-Builder.

Cement for Eixing Metal Letiers on Glass. - Copal vainish, 15 parts ; drying oil, 5 parts; turpentine, 3 parts; oil of turpratine, 2 parts; liquified marine glue, 5 parts. Melt in a water bath. and add 10 parts liry slacked lime.

A NEW clay mosaic is being brought out, the advantages claimed for which are that one setting is sufficient for one humired copies, the cost beiny comparatively small. It is said to wear well.
Tur Electric Light Company of Baltimore, Md., has been formed, with a capital of $\$ 300,000$, to produce light, heat and power by eloctricity.

ghackine Cowsturction \& Dranuing.

(From Collin's Elementary Science Series.)
(Continued from page 127.)

As our space would not admit of the continuation of this work in May number, we give this month 2 extra pages. The plates we canuot furnish until near the completion of the work, which will be completed before the en 1 of the year.
The value of this work cannot be too much appreciated by young machinists. They are actually getting a work for nothing that cost $\$ 2$.
43. We will now define the term pitch, so that it shall be independent of the number of threads in the screw, which we consider to be the clearest manner of expressing it. In all cases either the screw or the nut is fixed, and prevented from moving lengthwise (in direction of the axis of the screw); we shall consider the nut to be the moving piece, as being most suitable for the definition. The pitch of a screw is the distance moved through by the nut during one revolution of the screw. To find the size or thickness of the thread for square-threaded screws, divide the pitch by twice the number of threads. in the screw, and the quotient will be the required size. In fig. 96, $a b=$ the pitch, and therefore the thickness of the thread $=\frac{1}{4} a b$.
44. Screws are right or left-handed, according to the direction in which the nut moves; when the screw is turned round in the direction of the hands of a watch, the nut moves in the direction $b a$; figs. $92,94,96$, from left to right, the screw is therefore right-handed; and lefthanded if vice versa.

A left-handed square-threaded screw, $2 \frac{1}{2}^{\prime \prime}$ diameter, $\frac{1}{2}^{\prime \prime}$ pitch, is shown in figs. 97,98 ; drawn to a scale of $\frac{1}{4}$. Fig. 98 shows a common approximation to the true form of the thread. If the screw be turned round in the direction indicated by the arrows, the nut will move in the direction ab, from right to left.

Screws are considered to be right-handed single thread, unless otherwise stated. Left-handed screws are only used in special cases.
45. For square-threaded screws there is no strict standard for the number of threads per inch of length according to the diameter of the screw, as there is for the V-threaded screw. In some establishments the rule is, for the same diameter of screw, to allow the number of threads per inch to be one-half that of the V-threaded screw. This rule agrees very nearly with the following table :-

TABLE III.

Dia. of Screw.	No. of Threads per in	Dia. of	$\left\|\begin{array}{c} \text { No. of } \\ \text { Threads } \\ \text { per in. } \end{array}\right\|$	Dia. of Screw.	No. of Threads per in.	Dis. of Scrow.	$\left\|\begin{array}{c} \text { No. of } \\ \text { Threads } \\ \text { per in. } \end{array}\right\|$
4	10		7	1	5	18	2 t
$\frac{5}{18}$	10	$\frac{18}{4}$	7	$1 \frac{1}{8}$	4.	${ }^{17}$	2
$\frac{8}{7}$	9	$\stackrel{3}{4}$	6	$1{ }_{4}$	$3{ }^{3}$	2	24
$\frac{7}{18}$	8	$\frac{18}{18}$	6	$1{ }^{6}$	3	21	24
-	7	${ }^{\frac{7}{8}}$	6	$1 \frac{1}{2}$	3	24	2
18	7	$\frac{18}{18}$	6	15	29	2t	2

46. Is this chapter we shall consider some of the kinds of wheels used as connecting pieces between shafts for the direct transmission of motion.

Spur Wheels are used for the purpose of transmitting motion from one shaft to another when the shafts are
parallel. If the wheels are circular the motion is regular; and it is irregular in the case of elliptic and lobed wheels We shall only consider the former kind, and confine ourselves to the simplest form of spur wheels, those having teeth projecting from the rim and parallel to the axis 01 the wheel. By giving proper diameters to the wheels wi may obtain any required number of revolutions, withil certain limits, for each shaft respectively.
47. In figs. 99, 100 , Plate IX., A and B are the centres of two shafts, which are required to be connected by spur wheels, so that B shall make two revolutions to one of A. Required the diameters of the wheels. From A draw any line $\mathrm{A} b$, making an angle of about 30° with AB , and upon it set of $\mathrm{Ac}, c b$, so that $\mathrm{Ac}=2 c b$. Join $\mathrm{B} b$, and from c draw $c \mathrm{C}$, parallel to $\mathrm{B} b$, cutting $A B$ in C, then $A C, B C$ are the required semi-diameters or radii. We could have.found C by dividing AB by trial, as the division is a simple one; but the plan adopted can be applied whatever be the ratio of the diameters of the wheels, and is therefore a general solution. The wheel \mathbf{A} we shall term the driver and \mathbf{B} the follower.

The act of giving motion to a piece is termed driving it, and that of receiving motion from a piece is termed following it.*

In this example we have considered the wheels to be toothless, and to be rolling together without sliding, so that for each inch or fraction of an inch of the circumfer ence of the wheel A passing the point C, an equal length of the circumference of the wheel B passes the same point. The two shafts rotate in opposite directions; thil if A turns in the direction of the hands of a watch, B wil turn in the opposite direction. Wheels used to transmiv motion are usually provided with teeth to ensure regru larity of motion and the transmission of greater forio than could be obtained conveniently with toothless wheald The circles CDE, CFH, then become the pitch circles the the wheels, which are situated near the middle of length of the teeth. See Ch. IX. on the Teeth of Wheels
48. The diameters of wheels are generally referred to their pitch circles; thus we speak of the diameter the pitch circle of a wheel of, say, 30 teeth, $1^{\prime \prime}$ pitch Figs. 101, 102 represent a pair of wheels in outline. (noy showing the form of the teeth), A has 24, and B teeth, $\frac{3}{4}^{n}$ pitch. The pitch is the distance, measure along the pitch circle, from the centre of one tooth to centre of the next tooth. In fig. 101 the dotted cir marked t represents the top, and that marked b bottom of the teeth. A is a plate wheel, the boss marked $a ; c$ is the plate, and d the rim of the wheel The wheel B is solid, having projecting pieces, e, on ee side, termed facings. The figures are drawn to a of $\frac{1}{4}$. To draw the wheels it is necessary to know distance $A B$ and the diameter of one of the whe from which we can readily obtain the diameter of other, or the diameters of both wheels. We will the problem as follows :-
49. Given the number of teeth and the pitch of a pair spur wheels, and the kind of wheels (solid, plate, or arms), to make a drawing of them in outline. Having forf drawn the common centre line $A B$, fix upon A or B fors one centre; now find the diameter of each pitch circles, which may be done as follows:-The diameter of a circli is bears a constant ratio to its circumference, the ratio $1: 3 \cdot 1416$, or $1: 3 \frac{1}{7}$ nearly, that is to say, the circumfer
ence is 3.1416 times the diameter; therefore, knowing o number of teeth and the pitch, we can easily find the iameters of the pitch circles. The number $3 \cdot 1416$ is usually denoted by the Greek. letter π. Using decimals

 from C mark off $\mathrm{CB}=\frac{1}{2}$ of $4^{\frac{5}{10}}{ }^{\prime \prime}$ (these dimensions being
laken according to A and B according to the scale of the drawing). From $d_{\text {ascribe }}$ a as centres with radius AC, BC, respectively, ${ }^{\text {AB }}$ B the top pitch circles PC. From C mark off along making top and bottom of the teeth of each wheel, through the top $\frac{57}{\frac{5}{15}}$, and the bottom $\frac{63}{15}$, of the pitch; Wheel. These points describe the circles t, b, for each Theel. The remaining dimensions for A are as follow:hockness of rim $d 3^{\prime \prime}$; diameter of boss $21^{\prime \prime}$, diameter of
hale in boss for shaft $1_{4}^{4^{\prime \prime}}$; key for shaft $\frac{5^{\prime \prime}}{16}$ square, fixed half in boss for shaft $11^{\prime \prime}$; key for shaft $\frac{5^{\prime \prime}}{16^{\prime \prime}}$ square, fixed
throun wheel and half in shaft; width of teeth $f 1 \frac{3}{4}^{\prime \prime}$; width through boss and half in shaft; width of teeth $f 13^{\prime \prime}$ "; width
sions are thickness of plate $\frac{3^{\prime \prime}}{8 / .}$ These dimensioung are bass $2^{\prime \prime}$; and thickness of plate $8_{8}^{\prime \prime}$. These dimensection. 50. We will give a formula which connects the three Varying quantities (the pitch, number of teeth, and D theter) of the pitch circle. Let P stand for the pitch, theth, diameter of the pitch circle, and N the number of , Pand D being given in inches and parts of an inch;

$$
\begin{equation*}
\text { then } \mathbf{P} \times \mathrm{N}=\mathrm{D} \times \pi \tag{1}
\end{equation*}
$$

then $P \times N=D \times \pi$
Which may be put in the forms-

[^1]Wheels. Fig. 103 is an elevation, fig. 104 a plan, of the
${ }^{52}$ Wh. We will now extend the case to include bevel
former whose axes are not at right angles; but, as in the
any variation of the distance between the shafts does
not alter their rate of motion, as the band can be adjusted
to suit the change, and the pulleys can be made of a
orelative diameter, so as to produce the required number 6 , of revolutions per minute of each shaft independent of

$\mathfrak{A s p f u l}$ 罗eceipts.

Imitation Caryed Ivory.-A correspondent in the English Mcchunic says-"Ornaments for the parlour," \&c., may possibly fiud interesting and profitable amusement in the construc. tion of articles in imitation carved ivory. I will endeavour to exphain the modus operandi. In the first place we must have something to ornament-a work box, card case, a tea-caddy, or what-no.. If the article is of mahogany, rosewood, or walnut, polished, we can only lay our "carvings" on it without disturbing the polish; but if common wood, or without polish, it must be coloured white, or ebonized. If, for instance, then, our work box is not made of white wood, we must take $\frac{1}{3}$ oz. of isinglass, and boil it gently in half-pint of water tili dissolved; then strail: and add flake-white, finely powdered, till it is as thick as cream. Give the box three or four coats of this solution, lating each dry before the other is laid on; then smooth it with a bit of danp rag. When the composition is dry, we can put on imitation ivory figures, which are to be made as follows:-Boil $\frac{1}{2}$ lb. of best rice in one quart of water, till the grains are soft enough to bruise into a paste; when cold mix it with starch powder till it becomes as stiff as dough ; roll it out about as thick as a shilling. Cut it into pieces ahout two inches :quare, and let it dry before a moderate fire. When required for use, get a course cloth, makr is thoroughiv wet, then squerze out the water, and put on a large dish four times duable; phace the rice cakes in rows between this cloth, and v! , +1 sufficiently soft to knead into the consistence of new I, ravi, make it into a small lump; if too wet, mix with it mare starch powder, but it must be sufficiently kneaded to lose a. 1 apparauce of this powder before you take the cast. The moulds are gutta-percha, about $\frac{1}{2}$ in. thick ; cut it into pieces of 2 in . square, and soften it in hot water: then obtain, if possible, some specimen of real carved ivory or other suitable work, cameohords, $c: g$. , and take oft the impression on pieces of gutta-percha, by pessing it carefully upon the carving till a deep impressiou is iaken. When the moulds are quite dry and hard, and paste in a proper state, with a small camel-hair brush touch lightly with oil the inside of the moulds, and then press the rice paste into them. If the impression is quite correct on removing it, take a chin, sharp, small knife, and cut the paste smoothly, just -o as to leave all the impression perfect ; then, with a slarppointed p pa-kuife, turn all the rough edres, and with a solntion of isinglass and acetic acid, or liquid glue, place the figures on the box in large or small pieces, just as your own taste directs. The figures adhere better if put on before they are quite dry. Suln thmes, from freynent kneading, the paste gets discoloured; these pieces should bo set aside and used separately, as they can be panted in water-colours to imitate tortoise-shell or carved oak; this should be done after being stuck to the hox. Having completed the work, finish by varnishing it very carefully with ivory vannish, which should be almost colourless; paper varnish or the best "white hard" will answer very well. This design so nearly resembles carced ivory, that it has heen mistaken for it when micely done ; and it is very strong if carefully cemented, and looks well for boxes, card-cases, \&c., either as ivory or tor-toise-shell. Instead of ciling the noulit a pleasing effect can be produced by asing powdered French chalk (steatite) or blacklead, as the lubricating medium between the paste and th.. gutta-percha. The ohjects when cast may he readily dyed with liquil colours, such as the aniline dyes. The "carvings" nust be thoruaghly dried before the varnisi, is laid on, so the work must be put away in some place free from dust, till it can be com-pleted.-Quinton.

To Fix Drawings. - The first methods for fixing works of art executed in chalks, charcoal, and cther suhstances in danger of destruction from the slightest touch, date from very far back, and in some cases are periectly successful. Sometimes the draw. ing i, mindly dipped into a hath of some plutimous liquid, and sometimes the liquid itself is applied with a hrush. This, how. ever, camiot be dotie with chalk or charcoal drawings. A very thin and tramparent sheet of hibulous paper is laid on the drawing, and the brush is then passed over the protecing sheet ; the glunavis hiquid penetrates to the drawing, and the wished.for effect is produced. In the case of chalk drawings (pastels), however, this process has the inconvenience that certain tints, on being weltid, clange their t une, and do not return to their former state on dyying. This circumstane led to some experiments with a view to find a better fixing Huid, and after many trials it with a view to nad a beter fixing fuid, and after many trials it
was found that the psilicates of potash and soda answered very
well, but with the drawback that during the application the colours were likely to be disturbed so as to give the appearance of being "smudged." At length, however, this was obviated by a very simple plan, merely executing the pastel upon a thick but unsized papler, :uch as is used in copper-plate printing, and afterwards applying the fixing liquid to the back; it is thus quickly absorbed, without causing any disturbance of colours on the other side. To this must be added that none but mineral colours should be used, these being the only ones that can combine with the silicates, which have no action on vegetable colours. These rules being observed, the picture will not only resist damp, but will even resist washing with water. Acid vapours have no effect upon it, and it will become almost incombustible. For pencil drawings a thin solution of isinglass answers the purpose. It should be allowed to run over the drawing, or be very carefully applied with a soft camel's hair pencil. For chalk drawirgg make a thin solution of size, put it into a flat dish, pass the draw. ing from one side to the other under the lipuid, taking care thast the liquid comes in contact with every part of it. The friction of camel's hair pencil would injure the drawing. When it is completely wetted, fasten it to the edge of the table or to a string, by means of two or three pins, until dry. Crayon or charcosl drawings would be spoiled ly this process, and for fixing them the the paper should be washed over with a solution of size in the first instance. When quite dry the surface is in a good state for making the drawing, atter which it should be inverted and held horizontally over steam. The ste m melts size, which alisorbs the charcoal or erayon, and when it has again become dry the drawing is fixed. This process may be repeated several tinies during the progress of a drawing, the effect being increased eacth time.

Imitation Ivoby Carvings.--"Quinton," whose account of this process we have already quoted, further says:-"The quan" tity of starch powder varies with the quality of the rice p ste, but certainly half a pound ought to be sufficient for half a pound of rice. Boil the latter thoroughly, by which time the quart of water will be considerably reduced, but if the paste is too thin it will be a guide to boil longer till the water is still further reduced. A little boiled sago may be added when the paster is found to be too thin. Like everything else, the art requires practice before you become proficient in it. Isinglass size mint also be used, and many other things which 1 did not thint it necessary to mention in these columns. As to ebonizing wood the receipt has been given before; but here is a method that I use with sucenss. Take a pint of water that has been boiled ; put in a handful of logwood chips, and simmer till you have a strong decoction-about a quarter of a pint. Apply this liquor hot to the wood to be stained, about iwo or three times
according to the nature of the wood, letting each coat dry according to the nature of the wood, letting each coat dry
thoroughly. Add about half a pint of boiled water to the remainder of the solution, and place in it some rusty na ${ }^{\text {ils }}$
or some sulphate of iron, and a couple of bruised nut-galls; boil, or some sulphate of iron, and a couple of bruised nut-galls; boil, be and apply two or three coats hot. This solution should be black, so the right quantities are easily ascertained. The stains should be prepared in a glazed ripkin, and be applied with a sponge or clean brush; but each coat of both liquids mosk thoroughly dry before putting on another, going over the wo also with a very fine glass-paper. When the stain has beconle dry, gret some French polish and add sufficient thumb-blue (an) oilshop) to slightly colour the polish; apply in the usual ma 1:1r, doing the work in a dry and warm room. This nethod pro duces an appearance equal to that of ebouy. Beware of grease

Imitating Rosewood.-1. A transparent liquid rosepink used in imitating rosewood, consists in mixing $\ddagger \mathrm{lb}$. potash in gallon hot water, and $\ddagger \mathrm{lb}$. red sanders wood is added thereto; when the colour of the wool is extracted, $2 \frac{1}{2} \mathrm{lbs}$. gum shellac aro added and dissolved over a quick fire. The mixture is the ready to be used on a groundwork made with logwood stain. 2. Boil $\frac{1}{2} \mathrm{lb}$. logwood in 3 pints water till it is of a very dark red and add $\frac{1}{2}$ oz. salts of tartar. While boiling hot, stain the with two or three coats, taking care that it is nearly dry betweel each ; then with a stiff flat buash, such as is used by painters for graining, form streaks with black stain. This imitation will ver :learly equal the appearaner of dark rosewood.-3. Stain with black stain, and when dry, with a hrush as ahove dipped in the brightening liquid, form red veins in initation of the graill of rosewood. A handy brush for the purpose may he uade out flat brush, such as is used for varnishing; cut the sharp p off, and make the edges irregular by cutting out a fow hairs hert and there, and you will have a tool which will actually imitato the grain

A Fast Cement.-A very valuable cement has been dis Dingler' by Mr. A. C. Fox, of which details are published in prepler's Polytechnisches Journal. It consists of a chromium only pation and isinglass, and forms a solid cement which is not neither insoluble in hot and cold water, but even in steam, while prepar acids or alkalies have any action upon it. The chromium lact untion and the isinglass or gelatine do not come into conto adhtil the moment the cement is desired, and when applied especiallve envelopes, for which the author holds it to be especially adapted, the one material is put on the envelope covered by the flap (and therefore not tonched by the tongue), "hile the isinglass, dissolved in acetic acid, is applied under the fap. The chromium is made by dissolving crystallised chromic acid in water. You take :-

Grammes.

Crystallised chromic acid. $15.5^{2.5}$
Water . 15

Ammonia 15
forally solution about ten drops of sulphuric acid are added, and framp thirty grammes of sulphate of ammonia, and four applied of fine white paper. In the case of envelopes, this is applied to that portion lying uider the flap, while a solution acid to by dissolving isinglass in dilute acetic acid (one part accid to seven fissolving water) is applied to the flap of the envelope.
The part chromicer is moistened, and then is pressed down upon the said, a preparation, when the two unite, forming, as we have cartes a firm and insoluble cement. In the case of mounting to apple-visite or other photographs, it would perhaps be wisest of alf, and chromic preparation uniformly to the mounts first for use and permit these to dry, when they would be ready be faced any moment. The print would then merely have to be faced with the solution of isinglass and acetic acid, and pressed
to the mint would then merely have to cement mount. We have ourselves no practical experience of the ment, but it would be well worthy of trial by photographers.
Imitarion Inlaying.-S Suppose I want an oak panel with a
design inlaid design inlaid with walnut. I grain the panel wholly in oil. grain thot a bad ground for walnut. When the oak is dry, i grain the whole of the panel in distemper. I have a paper with place it on drawn thereon, the back of which I rub with whiting, I then it on the panel, and with a pointed stick trace the design. design. With a brush and quick varnish trace the whole of the remove When the varnish is dry, with a sponge and water I remove the distemper, where the varnish has not tonched. This, if well executed, presents a most heautiful imitation
of inlaid wood. S. B. D. wood. Marbles are executed in a similar manner.Kerosene Dangers.-A correspondent mentions a source of danger in using kerosene lamps which seems to have been
generally entarally nverlooked, namely, the habit of allowing lamps to they becor hot stoves, on mantelpieces, and in other places where unfrequeme heated sufficiently to convert the oil into gas. Not stove wintly persons engaged in cooking or other work about the the topill stand the lamp on an adjacent mantelpiece, or even on the top of a raised oven; or when ironing will set the lamp near large apon which the heated iron rests. It is needless to enupon the risky character of such practices.
Method of Cleaning Prints. - Immerse the print for an ithr or so in a ley made by adding to the strongest muriatic acid one of red ght in water, and to tirree parts of this mixture adding may red oxide of nanganese. A print, if not propirly clean, Indian remin in this liquid for twenty-four hours without harm. hot pater stains should in the first instance be assisted out with ns noter; peucil marks taken out with inciarubber so carefully the paste injure the eugraving. If the print has been mounted, Water. The the back s!.ould be thoroughly removed with warm
by rep. crystal left by the solution may be removed
by repeated rinine crystal left by the solution may be removed Cleated rinsings in warm water.-Art Union.
board and cover it thinly with common salt finely powdered Squeeze lemon it thinly with common salt finely powdered.
portion of portion of it ; juice upon the salt so as to dissolve a considerable
angle of ene end of the board so that it may form an angle of it ; elevate one end of the board so that it may form an
waler frum 45 or 50 degrees. Pour on the engraving boiling Washed off. The kettle until the salt and lemon juice be all froln stains. The engraving then will be perfectly clean and free
face face grains. It must be dried on the board or some smooth sur-
with a yellow. If dried by the fire or the sun it will be tinged
it How to make Plaster of Paris hard enougi for turn.
ing. - Mix with fresh plaster of Paris from two to four per cent
of powdered marsh mallow root, then add sufficient water until
it forms a mass. This will set in abont an hour and berome so hard and dry that it may be sawed and turned. It is used in the manufacture of dominoes, dice, \&c. When eight per cent of the root is added a still harder mass is obtained which may be rolled into leaves and painted or varnished.

A small quantity of alum added makes it set harder and quicker.

Diamond Cement.-Diamond cement, or whitefish glue, is made of isinglass dissolved in dilute spirits of wine or common gin. The two are mixed in a bottle loosely corked, and gently simmered in a vessel containing boiling water; in about an hour the isinglass will be dissolved, and ready for use. When cold, it should be an opaque, milk-white, hard jelly; it is re-melted by inmersion in water, but the cork should be at the same time loosened. After a time a little spirit should be added to replace that lost by evaporation.-The Boston Cabinet-Maker.

To Gild a Small Wooden Flower-Stand.-Rub the wood smooth, and prime with glue size ; then put on two coats of oil paint and one of flatting. Smooth over, when dry, with washleather. Put on gold size, and when it is sticky to the touch, it is ready for the leaf, which put on carefully and dab with cotton wool. A thin transparent glazing can be used to deaden the gold in places.-Scientific American.

SIEMENS' $\triangle N D$ HALSKE'S ELECTRIC LAMPS.

The distinguished firm of electrical engineers, Mersrs. Siemens and Co., have patented several forms of electric lamps, most of them in the names of Siemens and Halske, the proprietors of the siemens dynamo-electric machine. Perhaps the most useful regulator devised by them is their modification of the Serrin, but the illustrations on page 182 will strve to exhibit the diversity of form taken by lamps using only the cominon rods of carbon. In Fig. 1 the carbons fall to each other, but are separated at their upper extremities by a rod formed of some refractory substance. This rod is moved in a vertical direction by the lever arm L , which is actuated by the electro-magnet. When the current passes through the electro-magnet and the carbons, the rod, K , thrusts the carbons apart. If the current should decrease in strength, the carbons fall together again. The current is not broken by any similar lamp on the circuit failing to pertorm its function. In Fig. 2 one carbon is set in oscillation or vibration by means of the lever arm, D, which is terminated by an iron cylinder forming the movable core of the electro-maguet. The carbon has to vibrate merely 32 times a second to cause the appearance of a steady light. The lamp admits of severai lights in the same circuit. Fig. 3 represents another form of the same idea, and resembles in its chief features the lamp invented by Profs. Elihu Thompson and E. J. Houston. The upuer carbon falls gradually upon the lower, whici is set into vibration by means of the lever arm, L, astuated by the electro-magnet. The lower carbon moves so quickly that the upper carbon, which is forced down merely ly its own weight, cannot srmpithise with it, and a small voltaic arc is therefore produced. 'Ihe fluctuations of this arc are so rapid (about 30 per second) that they produce no apparent alternation in the light.

THE MYSTERIES OF A LUMP OF COAL.

For years no one supposed that a lump of soft coal, dug from its mine or bed in the earth, possessed auy other purpose than that of fuel. It was next found that it would afford a gas which was combustible. Chemical analysis proved it to be made of hylrogen. In process of time mechanical and chemical ingenuity devised a mode of manufacturing this gas, and applying it to the lighting of buildings and citi-s on a large scale. In doing this, other products of distillation were developed, until step by step, the following ingredients are extracted from it:

1. An excellent oil to supply lighthouses, equal to the best sperm oil, at lower cost.
2. Benzole-a light sort of ethereal fluid which evaporates easily, and, combined with vapour or moist air, is us d for the purpose of portable gas lamps, so-called.
3. Naptha-a heavy fluid, used to dissolve gutt:r-percha, India rubber, etc.
4. An excellent oil for lubricating purposes.
5. Asphaltum, which is a black, solid substance, used in making varnishes, covering roofs, and covering over vaults.
6. Paraffine-a white crystalline substance, resembling white wax, which can be made into beantiful wax candles; it melis at a temperature of 110°, and affords an excellent light. All these ubstances are now made from soft conal.
the distance between them. One important advantage of the pulley and band arrangement is, that if, through accident or otherwise, any sudden strain is thrown on, which might cause breakage in wheelwork, the band will slip on the pulley; by adjusting the band any required degree of tension may be obtained.
7. The band or other connecting piece between the pulleys is made of various materials and of two principal forms-flat and round. As the flat band (belt or strap) is the one chiefly used, we shall confine our examples ta this form. The material commonly used is leather, as it possesses several important qualities suitable for the purpose; there are, however, several composite materials used for the purpose.
8. In figs. 109, $110, S_{1}, S_{2}$ represent two parallel shgfts, of which S_{1} is the driver; they are to be connected by pulleys and belt, so that for every revolution of $\mathrm{S}_{1}, \mathrm{~S}_{\mathbf{2}}$ shall also make a revolution, and the direction in which they turn shall be the same, as shown by the arrows in fig. 109. The diameters of the pulleys on S_{1} and S_{2} will therefore be equal, as would be the case if they were toothed wheels. The amount of belt surface in contact with the pulley on S_{1} is equal to baa, and that on S_{2} to $b b$; and as the pulleys are of the same diameter $a a=b b$.
This is termed the open belt arrangement.

9. If the shafts are required to turn in opposite directions the belt is crossed, as shown in figs. 111. 112: not only is a difference produced in the direction of the motion of the shafts, but also a greater amount of belt surface is brought into coutact with the pulleys than in the open belt, as shown at $a a, b b$, fig. 111. The belt, in passing from a to b, turns through two right angles; at c, where the two portions of the belt, $a b, a b$, cross, they are at right angles to the position in which they leave the pulleys at $a a, b b$.
10. In the two examples shown in figs. 109-112 the pulleys are of equal diameter, therefore the number of revolutions of each pair of shafts will be the same; but
by varying the diameters of the pulleys in the same manby varying the diameters of the pulleys in the same manner as in a pair of toothed wheels, we can give any ratio of number of revolutions to the two shafts within certain limits; for example, if the pulley on $S_{1}=24^{\prime \prime}$ diameter, and that on $\mathrm{S}_{2}=8^{\prime \prime}$ diameter, then S_{2} will make three revolutions to one of S_{1}.

When a very great difference in the number of

Fig. 113. volutions of two shatis is required, one, two, or more intermediate shafts and pulleys mas be employed.
59. Pulleys are gen erally curved on outer surface, as at p d fig. 119, Plate XII, which tends to keef the belt on the pulley. The greatest diameter of the pulley is in the middle of its breadth $p q$; and as the tep dency of the movish belt is to rise to highest part of pulley, the belt thereby kept centrid on the pulley; convexity $=\frac{1_{2}^{\prime \prime}}{}$ ner of the breadth of pulley.
60. The two raugements shown in figs. 109-112 are often combine and omployed as a reversing motion, which is illustrated in figs. 113,114 , where S_{1}, S_{2} are two shafts, S_{1} beipe the driver and S_{2} the follower; a, b, c are three pulleys the shaft $\mathrm{S}_{2} ; a$ and c are keyed to the shaft, but b loose upon it, so that it may turn without turning shaft ; d is a pulley keyed to the shaft S_{1}. Two are used, an open one e and a crossed one f, and they so arranged that one of them is always upon the 1 pulley. In the position shown in fig. 113 the o belt is on the fast pulley a, and the crossed one on loose pulley b, so that S_{2} turns in the same direction as S_{1}; if now the two belts are moved so that e is upan the pulley b, and f upon the pulley c, then \mathbf{S}_{2} will in the opposite direction to S_{1}. By this means a revery ing motion is obtained for the shaft S_{2}. It is employen in p laning machines, screw-cutting lathes, \&c.
81. By using a fast and a loose pulley on the shaft Sy and a single belt, the shaft may be stopped and started pleasure; this is termed the fast and loose pulley arrant ment.
62. Cone or Speed Pulleys are employed where limited change in the rate of motion (number of revold tions per minute) of two shafts is required. Figs. $1{ }^{10}$ 116, Plate XII.,represent an arrangement of speed pullef 6 S_{1} and S_{2} are the two shafts, on each of which are fixed speed pulleys A and B respectively. Each pulley made up of three pulleys or speeds, b, c, d, of differe diameters, increasing in radii by a common quantity The pulleys are arranged as shown in the figures, so the smallest speed of the set on \mathbf{A} is connected with largest of the set on \mathbf{B}; and as the diameters b, c, d of pulleys A and B are equal, the length of the belt constant for each of the three positions in which it le placed when connecting the speeds $b-d, c-c, d$ Let A be the driver, then when the belt is in position shown (on $b-d$), s_{1} rotates a greater numbe of times in a given time (a minute) than S_{2}; the belt is on $c-c, S_{1}$ and S_{2} rotate the same numb
of times per minute; and when the belt is on $d-b$,
rotates a less number of times per minute than S_{2}. wheels in outline; we will now complete the example for B_{y} increasing the number of speeds a greater amount the wheel A showing the teeth.
of
of variation can be obtained; however, it is not usual employ more than six speeds.
63. The common quantity a is termed the fall or
tep; if the diameter of the smallest pulley $=b$, then the
diameter of $c=b+2 a$, and the diameter of $d=c+2 a$;
thus, let the diameter of $b=12^{\prime \prime}$, and $a=11^{\prime \prime}$, then the Theter of $c=12^{\prime \prime}+3^{\prime \prime}=15^{\prime \prime}$, and of $d=15^{\prime \prime}+3^{\prime \prime}=18^{\prime \prime}$.
The sums of the diameters of the two connected pulleys are constant, thus $b+d=12^{\prime \prime}+18^{\prime \prime}=30^{\prime \prime}$, near to one or other of the above sets. The form of the $c+c=15^{\prime \prime}+15^{\prime \prime}=30^{\prime \prime}$, and $d+b=18^{\prime \prime}+12^{\prime \prime}=30^{\prime \prime}$. The tooth (efg, fig. 120) is of considerable importance; there arrangement is independent of the distance between the are three chief forms in use; in the examples in this book axes e Speed independent of the distance between the we shall use the cycloidal form of tooth.
machines Speed pulleys are employed in a variety of 67. In figs. 123, 124, Plate XIII., is shown in elevalathe.
64. Figs. 117-119, Plate XII., are elevations of a speed pulley; the fall is $11^{\prime \prime}$, and the elamations of a ${ }^{\text {speeds }}$ are $1^{\prime} . .5^{\prime \prime}, 1^{\prime} . .21^{\prime \prime}$, and $1^{\prime} . .0^{\prime \prime}$. In this example the cycloids which form the curved surfaces of the tecth, as pulley is fixed on the end of a shaft a, one of the bear the usual in scale drawings; however, in making the wheels, ings of which is marked e, fig. 119. Fig. 117 is an end- then approximations may be used for drawing purposes.
elevath
 E. an end-elevation of fig. 119 projected in the direction near the true form.

E; the top half of this figure shows the inside of the Having drawn the centre lines ex, fy, the pitch circle pulf sh, the plate f having been removed; the bottom SP, and the circles for the top and the bottom of the teeth, fig. 119 is the plate in position. The greater portion of divide the pitch circle into 24 equal parts; take one of show is in section, portion of the shaft is also in section the pitch points, as a, and mark on each sile of it a disshaft. of three The plate f is connected to the pulley by means $\left(=\right.$ the pitch $\left.+\frac{1}{2} W\right)$ describe the top of the tooth $b b$; and in thee screws g, one of which is shown in figs. 118,119 ; from c as a centre with a radius $c b$ ($=$ the pitch $-\frac{1}{2} \mathrm{~W}$) receive the half of fig. 118 are shown the two holes g_{1}, to describe the bottom of the tooth $b b^{\prime}$ (the points d and c Which is the screws g : this plate is provided with a boss h, are the centres of the teeth on each side of a). Then $b b b^{\prime}$ Which it bored out to the same diameter as the shaft upon is one side of a tooth; by repeating the operation its other connection runs loose. k is the boss of the pulley; the side can be drawn, and in like manner the remaining means of a between the shaft and pulley is made by teeth of the wheel. The student will find it better first Wrasher of a key let into this boss and the shaft; l is a to draw all the tops and then the bottoms of the teeth, aso is to fixed to the shaft by means of a set-screw o, its so that only one alteration of his drawing instrument will shaft. The prevent the pulley from working loose on the be necessary. Fig. 123 is an elevation, and fig. 124 is a Width The following are the remaining dimensions:- plan, of the wheel; the right-hand half of the plan is in through of each speed $3^{\prime \prime}$; boss $k 45^{\prime \prime}$ diameter $\times 32^{\prime \prime}$ Bhaft a ; boss $h 4^{\prime \prime} 4^{\prime \prime}$ diameter $\times 3^{\prime \prime}$ through ; diameter of the

 Cong. Thasher $l 3 \frac{1^{\prime \prime}}{2}$ diameter $\times \frac{3^{\prime \prime}}{8}$ thick; key $\frac{1_{2}^{\prime \prime}}{2}$ square and $3{ }^{\prime \prime}$
screws screws g and o, and the washer l, which are of wroughtron, and the key, which is of steel. The outer surface of
the heripeeds is curved as shown at $p q$, the amount of con-
ver that stated in Art. 59, page 48 . The is that stated in Art. 59, page 48.
to the drawing'of these figures should present no difficulty straigh student, as there are no lines to be drawn other than Straight ones, circles, and arcs of circles ; and they should be drawn to a scale of not less than $\frac{1}{4}$. In all cases the
student student should work from the written dimensions when given,
rather the dimen than apply a scale to the figures, or copy off the to all the figures in this book, and generally in all cases. On the Teeth of Wheels.-In chapter VII. we considered spur and bevel wheels, without respect to we considered spur and bevel wheels, without respect to T . $\mathrm{ram}_{\mathrm{m}}$ of spur and bevel wheels, without respect to the equal parts, and number them as shown; from T draw portions of teeth; we shall now proceed to state the pro-TC so that the angle BTC contains 75°. The tables are methods of the teeth of such wheels, and certain practicil to be copied from the figure; the top one contains the the various drawing them, leaving the consideration of centres for the flanks, and the bottom one those for the Advancous. curves used in their construction for ourfaces of the teeth; the first column in each table contains are Work. In Art. 47, page 41, it is stated why a list of certain wheels of from 13 to 150 teeth; the whole are necessary for wheels, and in Arts. 48 and 49, of the wheels are not given, because the crror in taking 42, we worked out an example of a pair of spur
(To be continued.)

NOTES IN REGARD TO DIET.

A correspondent of the New York Sum, in a letter defending an exclusively vejetable diet, in support of his views, says that in Dr. Hall's Journal of Health. a few years ago, the frollowing statement of the mount t nutrinent in various articles of food was given :
"Raw apples, 10 prer cent; I ,iled heam, 87 ; roasted beef, 20 ; haked bread, 80 ; hutter, 96 ; looild dabbage, 7 ; raw cucumb. ers, 2 ; boiled fish, 20 ; fresh milk, 7 : roasted mutton, 30 ; roasted pork, 24 ; roas ed poultry, 27 ; boiled potatoes, 13 ; boiled rice, 88 ; sugar, 96 ; boiled turuips, 4 ; roastod veal, 25 ; and boiled venison, 22.'

From this loose statemeut of Dr. Hall he makes the following deductions:
"The cheapest articles of food, excerit butter, are the most nourishing. A pint of white heans, rosting a few cents, contain the same amount of nutriment as $3 \frac{1}{2}$ pounds of prime roasting beef, which is twelve times as expensive. Furthermore, a pound of Indiarn meal wili go as far as a pound of fine flour.'

We called it a loose statement, and so are all the statements made in various books in regard to the comparative nourishing qualities of various kinds of food, as they are all based on some false premise ; sone, for instance, on the percentage of nitrogen in the food, others on the amount of water in it, \& c. The result is an erroneons comparison, and the deductions drawn must be f_{1} ise. Thus in the ahove tahle, sugar is 96 per cent, and turnips 4 per cent, making 24 pounds of tumips equivalent to 1 pound of sugar ; rice 88 per cent and roasted beef 26 , making 1 pound of roasted beef not much more nourishing than 4 ounces of hoiled rice. The whole assertion is simply absurd and the table worthless, as every one will maintain who properly attemis to the duty of selecting his food juciciously in regard to the wants he feels.

We dehbr rately call it a duty to be careful in selecting our fcod; we even go fuither, and call it a crime not to feed well, or to te negligent in our selection, eating or drinking things we dislike, or, what is worse than all, eating when we have no appetite, simply because it is time for weals.

The correspondent above referred to closes his article thus: " I remember reading in the Tribune, while Horace Greely was editor, that one pound of cracked Southern corn, boiled nine hours, adding water and stirring sccasionally, to keep it from burning, would form a glatinous, nutritive mass of nine younds wh in cold, and that a person could live and keep healthy on ten ceuts' worth of corn a week."

To this we remark that very fow constitutions can stand a corn diet. In most cases corn has a thedeney to sour on the stomach, and hy its contin ned une chronic dyspepsia and premature death result.

Man, and especially civilized man, needs a variety of food. Tine man who does a great deal of brain work requires ditferent food than the man who only works with his muscles, as the ore consumes more nervous inaterial, and the other muscular ; and as different as the chemical composition of the brain and nerves is from that of the muscles, equally different must be the character of the food needed to supply the waste.

\triangle THEORY IN REGARD TO FOOD.

The Pall Mall Gazctte says: "A German physician has started a new theory with regard to food. He maintains that both the vegetarians and meat-eaters are on the wrong track. Vegetables are not more wholesome than meat, or meat than vegetables, and nothing is gained consuming a compound of both. Whatever nutritive qualities they may possess, he says, are destroyed in great measure, and often entirely, by the process of cooking. All food should the eaten raw. If this practice were adopted, thele would be little or no illness among human beings. They would live their apportioned time and simply fade rway, like animals in a wild state, from old age. Let those afflicted with gout, rheumatism and indigestion, try for a those the effect of a simple uncooked diet, such as ysters for instance, and they will find all medicines unnecessary, and such a rapid improvemient of their health, that they will forswear all cooked articles of food at once and furever. Intemperance would also, it is urged, no longer be the curse of civilized communities. The yearning for drink is caused by the unnatural abstraction from what are termed 'solids' of the aqueous element they cuntain-uncooked beef, for example, containing from 70% to 80% and some vegetablestven a larger proportion of water. There would be less thirst,
and consequently less desire to drink, if our frod were consumed in its natural state, without first heing subjected to the action of fret Clothing, our adviser also thinks, is a mistake, but he admits that the world is not yet far enough advanced in civilization to go aboutg
undressed. Whatever differences of oninioumay exist as to this undressed. Whatever differences of opinion may exist as to thid anti-cooking thoory, there cannot be a doubt that in getting rid
of the kitchen with all its abuses, including the cook, housek eeper would he sparel a vast amount of worry, and probably on account alone would live to a greater age than at present."
Are Fat Peofle Healthy. - Why are fat jeople always comb plaining? asks some one who entertains the popular though erto neous notion that health is synonymous with fat. Fat peop complain because they are diseased. Obesity is an abnormal con dition of the system, in which the saccharine and oleaginous elo ments of the food are assimilated to the partial exclusion of the muscle-forming and brain-producing elements. In proof of th it is only necessary to assert the well-known fact that excessive fat people are never strong, and seldom distinguished for ment yovers and activity. Besides they are the easy prey of acute and
epidemic diseases, and they are the frequent victims of goult epidemic diseases, and the
heart disease and apoplexy.

ALUM.

Alum, familiar to every one as a white, crystalized, astringen saline substance, is what is called a double salt, being compose of the sulphates of alumina and potash, and comes largely fron Civita Vecchia, fiom the alumstones of the mines of Tolta, aid from the coal mines of Hurlett and Campsic, near Clasgow, whose shales are rich in alum, and also from the alum slates ol Whitby, in Yorkshire, cliffe of which extend for thirty milgh along the Enolish coast. These slates and shales are calcined and lixivaten, and the " mother liquor," as it is called, allowd to crystalize. The first product is largely colored by iron, and the finer qualities are re-dissolved and crystalized until pure. Alum is chiefly used as a mordant to fix dyes in textile fabrion owing to its excess of alumina, which has a strong attraction for such tussues. It is also used in tanning leather, is a powerfis astringent for arresting hemornhage and other excessive dis charges, and owing to the beauty of its crystals is largely used in crystalizing vases, baskets, grasses, seed vessels, etc. Owing the latge amonnt of its "water of crystalization," it has beep used as a packing for firo-proof safes and vaults, which give ouk steam for hours in the centre of conflagrations, and repel hea instead of becoming red hot. Its use liy bakers to give bread snowy whiteness and firm consistence can not be too highly preliended, but it is a useful cement when simply melted securing the tangs of knives and forks, and lamps, knobs other glass objects in their sockets.

Freshly Painted Rooms.-The impression that those inhabit rooms freshly painted are in danger of lead poisoning lias been shown by Dr. Clement Biddle to he quite unfounded He bases this statement upon the result of the following expe ment: He introduced into a close box a number of sheets paper saturated with white (lead) paint, and upon the botton the box placed a shallow dish of pure (distilled) water, viously tested to make sure of its perfect freedom from imp ties, aid from lead in particular. After an exposure to atmu-phere of the box for three lays, the water-dish removed, acirlulated with nitric acid, and treated with sulphur hydrogen, when not a trace of lead precipitate occurred. Biddle therefore attributes the colds and other unpleasant sequences experienced by sleeping in freshly-p inted apartm to the irritating action of the vapors of turpentine on the linips membrane of the air-passages.

Dangerous Houses.-Hcuses that have been empty maf become fever breeders when they come to be reoccupied. Ad English sanitary officer alleges that he has observed typhoid diphtheria, or other zymotic affections to rise under these circul stances. The cause is supposed to be in the disuse of cister the pipes and drains, the processes of putrefaction going on in impure air in them, the unobstructed access of this air to house, while the clocure of windows and doors effectually out fresh air. Persons moving from the city to their ccu homes for the summer, should see that the drains and pipe in perfect order, that the cellar and closets are free from rub and the whole house thoroughly aired before occupying. bolic acid used freely in the cellar is a cheap and good fectant.

[^0]: In order to transmit the motion and power of a shaft, fitted in able possition to one more shafts occupying any deaired and changeposes ovarion, Mr. Wilhelm Ritter, of Altona, Germany, proof a right-ang of the ends of a motive power shaft to place a box the ought-angle shaped bracket, and a conioal wheel fastened to litewiser end of this shaft. The other angle of the bracket is larged formed as a box, the outer part of the boring being en-
 breception of a cylindrical prolongation of a similar bracket, and isception of a cylindrical prolongation of a similar
 brecket, whished with a set screw to secure the second Grocket, which can be turned within the onlarged boring of the
 throne in any desired position of a cirole. A ghort axle passes througe in any desired position of a cirole. A short axle passes jection and box of the second bracket, the corresponding prothort axle the box of the first bracket, and each end of this

[^1]: figures.

