The Institute has attempted to obtain the best original sopy available for filming. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below.Coloured covers/
Couverture de couleurCovers damaged/
Couverture endommagéeCovers restored and/or laminated/
Couverture restaurée et/ou pelliculée

\square
Cover title missing/
Le titre de couverture manqueColoured maps/
Cartes géographiques en couleur

Coloured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bleue ou noire)Coloured plates and/or illustrations/
Planches et/ou illustrations en couleur

Bound with other material/
Relié avec d'autres documents

Tight binding may cause shadows or distortion along interior margin/
La reliure serrée peut causer de l'ombre ou de la distorsion le long de la marge intérieure

Blank leaves added during restoration may appear within the text. Whenever possible, these have been omitted from filming/
Il se peut que certaines pages blanches ajoutées lors d'une restauration apparaissent dans le texte, mais, lorsque cela était possible. ces pages n'ont pas été filmées.

L'Institut a microfilmé le meilleur exemplaire qu'il lui a été possible de se procurer. Les détails de cet exemplaire qui sont peut-étre uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de filmage sont indiqués ci-dessous.Coloured pages/
Pages de couleurPages damaged/
Pages endommagéesPages restored and/or laminated/
Pages restaurées et/ou pelliculées

Pages discoloured, stained or foxed/
Pages décolorées, tachetées ou piquées

Pages detached/
Pages détachées

Showthrough/
TransparenceQuality of print varies/
Qualité inégale de l'impression

Continuous pagination/
Pagination continue

Includes index(es)/
Comprend un (des) index
Title on header taken from:/
Le titre de l'en-téte provient:

Title page of issue/
Page de titre de la livraison

Caption of issue/
Titre de départ de la livraison

Masthead/
Générique (périodiques) de la livraison

Additional comments:/
Commentaires suppiémentaires:
This item is filmed at the reduction ratio checked below/
Ce document est filmé au taux de réduction indiqué ci-dessous.

CaNADIAN NATURALIST

AND

(9uaterly fillunal of sicuce.

ON THE ORIGIN OF SOME AMERICAN INDIAN TRIBES.

By John Campbeli, M.A.,

Professor of Chureh Mistory, Presbyterian College, Montreal ; Délégne Régional de l'Institution Ethnographique; Correspondant de la Societé Americaine de France, \&e.

SECOND ARTICLE.

In the former paper I indicated the existence of a broad line of distinction dividing the :boriginal languages and proples of this continent into two well-defined groups, the one Malay-Polynesian, the other Turanian in origin. It is with the latter that I now propose to deal. The Turanians of America stand in geographical relation to Canada chiefly through the WyandotIroquois family, two important divisions of which, the Hurons and the Six Nations, occupy no inconspicuous position in the early history of the country. Originally this family extended as far south as the Carolinas, and the isolation of the northern Iroquois in the midst of an Alyonquin area is due to that intrasive character and love of conquest which made the warlike Mohawk and his fellows the terror of other Indian tribes. The Assineboins or Stone Indians, whose name is Algonquin, are also Canadian, dwelling upou the banks of the Red River and its tributaries, but they are Dacotahs belonging to the great family commonly known as Sioux, most of whose tribes are found west of the Mississippi. Mr. Lewis H. Morgan, who has investigated many questions relating to the aborigival population of America, maintains that the Wyandot-Iroquois and the Dacotahs are branches of the same original stem, and all that I know
of the two families confirms his opinion. A third great family which has no representative in the Dominion is brought into relation with the Iroquois and Dacotah classes by Dr. Latham, who, for comprehensiveness of view and extent of knowledge, has found no superior in the field of American ethnology. This is the Cherokee-Choctaw family, whose tribes, among which Dr. Latham counts the Catawbas, Woccoons and Caddos, originally extended from Tennessec to Florida. I unhesitatingly state that the Iroquois, Dacotahs and Cherokec-Choctaws are of Turanian or Northern Asiatic origin.

Commencing with grammatical forms, these fumilies agree in making use of postpositions exclusively, thus differing from the Algonquin and its parent Malay, and agreeing with all the varieties of Turanian speech. In the order of the verb, a second point of difference from the former and of accordance with the latter languages equally marks Iroquois. Dacotah and Choctaw; the temporal index follows the verbal root. The aceusative precedes the governing verb in ${ }^{\text {D Dacotah and Choctaw, and, as I }}$ have already stated, the same principle finds illustration in Iroquois. This is one of the radical distinctions which characterize the Turanian as contrasted with the Malay grammatical system. Once more, the Iroquois, Dacotah and Choctan languages prepose the genitive to its governing noun, which, as Dr. Edkins says in China's Place in Philology, is essentially 'Turanian. In the use of postpositions, the postrosition of the temporal indes to the verbal root, the preposition of the accusative to its verb, and of the genitive to its nominative, four importint features in a grammatical system, the Iroquois, Dacotah and Choctaw languages cut themselves off from all Malay Polynesian relationship and claim affinity with the great 'Turanim family. But the great Iuranian family is very large and very widely spread over Europe and Asia. Its Finuic class includes the Finn, Lapp, Esthonian, Vogul, Mordwin, Magyar, and other European and Western Asiatic dialects. In its Turkic class we find the Turk, Uigur, Kirghis, Bashkir, Yakut, and many more. The Mongol contians the Mongol, Khalkha, Kalmuk, Buriat, de.; and the Tungusic, the Tungus, Lamute and Mantehu. Then in Thibet, Hindostan, and the Iodo.Chinese area, many classes are found, the most important and best known of which is the Dravidian, embracing the Tamil, Telugu, and other dialects of southern India. Leaving the Siberian Samoyeds, Yukahiri and Yeniseans
out of account, we find in north.eastern Asia an extensive group of hamgayes spoken by the peoples whom Dr. Latham has classed as Peninsular Mongolide, languages that in al! their leading features are Turanian. Such are the Koriak-Tchucktchi, the Kimtchatdale, Corean, Aino and Japanese, conceruing which Dr. Latham says: "they have a general glossarial connection with each other ; the grammatical structure of only one of them, the Jipanese, being known." He also adds: "What applies to the language of the Peninsular tribes applies to their physical appearance also."

It beiug gramted that the Iroquois, Dacotahs and Choctaws are I'uranian, to which of the 'Juramian classes, Finnic, Turkic, Mongolic, Tungusic, Dravidian, or Peninsular, do they belong? Were they very ancient peoples like the Peruvians, grammar could not settle the question, owing to changes that have taken place in the systems of some 'lluramian languages. These changes prineipally affect the pronoun. Jhus Dr. Wdkins points out the fact that in the Mongol class alone the Buriat renders "I kill" by alana-p, while with the Bastern Mongol it is bi-alana; the pronoun being in the one case terminal, in the other a prefix. Dr. Edkins regards the latter as the older form, but, apart from the analogous case presented in a comparison of the Latin with its modern representatives, the occurrence of the clema-p form in the ancient dialects of Peru seems to give it the prior claim to antiquity. Now the Lroquois, Dacotah and Choctaw systems prefix the personal pronouns. In the Finnic, Turkic and Dravidian Turamian classes the pronoun is terminal, as in the Quichua of Peru. In some of the Mongol dialects, in the Tungusie and Penimsular classes, the pronoun occupies the sameinitial position as in the North American languages of Turamian origin. But Dr. Jatham says "in his most typical form the American Indian is not Mongol in physiognomy "; and certainly none of the tribes we are now considering have anything in common with the Tungus, apart from a common grammatical system. Once more I quote Dr. Latham: "In the opinion of the present writer, the Peninsular languages agree in the general fact of being more closely akin to those of Americ:a than any other." Many writers on the Tchuktchi-Koriaks of the Peninsular area have compared them with American tribes, such as Von Matiushkin, who says: "They are distinguished from the other Asiatic races by their nature and physiognomy, which appears to me to resemble
that of the Americans." Mr. Baldwin, in his Ancient America, asserts that "Our wild Indians have more resemblance to the nomadic Koraks and Chookchees found in Eastern Siberia, throughout the region that extends to Behring's Strait, than to any people on this continent. Those who have seen these Siberians, travelled with them, and lived in their tents, have found the resemblance very striking; but I infer from what they saly that the Korak or Chookehee is superior to the Indian." Mr.J. Mackintosh, whose book on "The Discovery of America and the Origin of the Indians," was published at 'Toronto in 1836, exhibited many interesting parallels between the American Indians and the Koriaks, but as he considered the former as one people and united the latter with the Tungus, his parallels are practically useless. So common is the statement that the languages of the Tehucktehis and Esquimaux are virtually one, that in my article on the affiliation of the Algonquin lamguages I was misled by the universal consensus moto a homologation of it ; but the exploring expeditions undertaken by the United States government have proved that the statement is unfoumded, and that the Tchucktchis of Asia differ from the Esquimaux physically as well, being taller and thinner, with redder complexions and more prominent features, in every respect a superior body of men. The error arose in confounding the Aleutans and Kadiaks with the Esquimaux or Innuit, for the identity in language of these peoples with the Tchucktchis is beyond doubt.

While the Iroquois traditious, according to Dr. Oronhyatekha, assert the autochthonic origin of that people, those of the Dacotahs and Choctaws, as related by C-tlin and others, refer to a migration from the north-west, where they dwelt for a time amid snow and ice. It is evident that the original home of Dacotahs and Choctaws was that also of the Wyandot Iroquois, and that the autochthonic theory is of a piece with the same doctrine among the ancient Greeks, a mere form of national vanity. Iroquois, Dacotah and Choctaw grammar agrees in all points, even to the preposed pronouns, with that of the Peninsular languages. The tall muscular form, red complexion and prominent features of the Tchucktchis agree with the physical appearance of the three American families. The encroaching, warlike, in domitable spirit of the Koriaks, of whom the Tchuktchis are a branch, can find no better parallel than among the three warrior peoples of North America. Some of the Koriak tribes flatten
the head; so did the Choctaws, the Catawbas, and some of the Dacotahs. I know of no Mongolic or Tungusic peoples-the only others with whom grammatical forms permit us to compare the Iroquois, Dacotahs and Choctaws-who practised this artificial compression of the skull. All these facts tell powerfully in favour of a peninsular derivation. Add to this the fact that the three Americau families were sun worshippers, and that their religion thus agrees with that of the Koriaks, Ainos and Japanese; that Arioski, the Koriak war-god, corresponds to the Wyaudot-Troquois Areskoui, and the Japanese Jebisu, to the Choctaw or Muskogulge Eefeckesa, and the evidence becomes irresistible.
In one of the families under consideration, tribal names serve to confirm the comnection with Peninsular peoples. This is the Cherokec-Choctaw. In the Cherokees we readily recognize the Koriaks, who call themselves Koraeki, and in the Choctaws it is not hard to find the Tshekto, as the socalled Tchuktchi are properly designated. Now the Koriak-Tchuktchis and the Choctaws agreed in flattening the head, as we have already seen. They also agree in being great lovers of manly sports, and I canuot but think that "the game resembling prisoners bars" with which Martin Sauer in his account of the Tchuktchi connects "their dexterity in throwing stones from a sling," is the well known "ball play" or "lacrosse," in which the Choctaws specially excel, but which is also common to the Iroquois and Dacotahs. A grame closely resembling lacrosse is played in Japan.

There are many Koriak-Tchuktchi words in Choctaw and Cherokee, such as the Tchuktchi ischtamat 4, tahlimai 5, avinljak 6, kolle 10, in which we recognize the Choctaw ushta, tahlapi, hannali and pokoli. Others are annalih father, the Choctaw unkey; ikahlik fish, the Choctaw kullo and Cherokee agoula ; ijuk foot, the Choctaw iyi; mujak hair, the Choctaw nutnkhish; unnjule night, the Muskogulge nennak; liukk and uegim river, the Choctaw hucha, olhina; matschalis sun, the Chickasaw neetalhusseh; utut tree, the Muskogulge ittah; agranal woman, the Cherokee ageyieng; imagh sea, the Cherokee amuquaohe; unaleo tomorrow, the Choctaw onahe, \&c. But so far as I am able to judge from the materials at my disposul, the Cherokee-Choctaw vocabulary has greater affinity to the Japanese and Loo Choo than to the Koriak-Tchuktchi. Thus, in Japanese the words denoting bone and boat or canoe are nearly
identical, the former being fone, the latter fune. Now in the Choctaw, strange to say, foni is bonc and peni boat. Whe day is nitthi in Loo Choo and the sun is nitji in Japanese, and these correspond to the Choctaw nectuk and the Muskogulge neetuhusa. Mim is hito, otoko in Japanese, and hutche in Choctaw ; while woman is tactiki in Loo Choo and tekehi in Choctaw. The Choctaw ecbuk and the Chickissaw skoboch head, find their equivalents in the Loo Choo bosi and the Japanese kubi. So, house is chookke in Choctaw and chukutsche in Jipanese; rain being emat in the former and ame in the latter. These instances will suffice to indicate, whit I have more fully set forth in the Canadian Journal, the radical unity of the Cherokee-Choctary and Peninsular vocabularies. What better proof of a common origin could be demanded than that which is presented in a comparison of the Japanese otoko-no-fone, "the man's bone," with the Choct:aw Tutuk-in-foni; or of the Loo Choo takliki-noo-eebee, "the woman's finger," with the Choctaw tekehi-in-ibbuk? The Japanese past tense in ta and the Loo Choo in tee, which find their equivalent in the Choctaw t ole, illustratd the final check that marks the ibbuk of the latter as compared with the eebee of the former, and refer the philologist to the allied Koriak 'Tchuktchi which abounds in such terminations. While it is true that the Koriaks have been frequently regarded as the parent stock of Ainerican tribes in general, I am not aware that any writer has ever specifically placed them in relations with the Cherokee Choctaw confederacy. To find Koriaks in Alaska has been deemed a reasonable enough thing, but snow in harvest would have been thought as likely a phenomenon as Tchuktehis in Tennessee. Thus we find Chateaubriand gravely asserting that the Chickasaws, a Choctaw tribe, came from Peru at the time that the Natchez immigrated from Mexico. Tennessee and Mississippi are the elephant of the Chickasams and Natchez, Peru and Mexico their tortoise, but we ask in vain on what does the tortoise stand, for of all American populations the Mexican is the hardest to affiliate. I willingly admit that the Chickisaws, with all the other members of the Cherokee-Choctaw confederacy, belong to the same parent stock as the sun-worshipping Peruvians, but, inasmuch as this parent stock is found in the north-west, evidence of no common character would be required to render probable a retrograde movement from South to North America. To sum up the
argument for the Peninsular Asiatic origin of the CherokeeChoctaw family, we have found it to be proved by language in its grammatical and verbal forms, by tribal designations, physical features, moral character, religion, and at least oue peculiar custom.
For the Wyandot-Iroquois family I have so far found no tribal designations in the Peninsular area that correspond, but the identity of the two war-gods Arioski and Areskoui undoubtedly links them with the Koriaks proper. This is confirmed by the many resemblances that are found to exist between the Cherokee (Koracki) and Iroquois vocabularies, some of which are indicated in the Mithridates. Such are the Cherokec galnee and the Cayuga kenoh, arrow; oostckuh, child, and the Tuscarora yetyutshoyulh; choosu, die, death, and the Mohawk leeahheyouth; keira, keethluth, dog, and the Onondaga tschierla and Tuscarora checth; cheela, cheera, fire, and the Caughnawaga ojechluh and Tuscarora ot-cheere; atsecai, man, and the Minekussar ituatsin, and Mohawk ratsin ; naune, mountain, and the Wyandot onontal ; yahnoguh, tongue, and the Iroquois honacha; ageyung, woman, and the Tuscarora eleening. The relations of Iroquois and Peninsular words are numerous and close. The following is not a selection but a chance collation of them:

Wyandot-Iroquots.
arm..........onentcha lroquois.
axe.........askwechia "
bad........ washuh T'uscarora. hetken Iroquois.
boat, canoc..gahouhwa "
boy, sonyung Oneida.
brother......jattatege Onandaga.
child........... kotonia Iroquois.
earth....... .ohetta
eat...........hiquekch "
cgg..........onhonchia "
father......ata Tuscarora. hance Senect. lahkeni Oneida.
fire.yoneks Tuscarora.
fish...........keyunk Mohaiok.
foot.........auchsee Tuscarora. achita Wyandot.
como.............
go............higue Iroquois.
hair.........ahwerochia "
hand.........chotta " osnonsa "

Perinsular.
oondee Insu. kvasqua Kamtchatka. wasa Loo Chno. khatkin Koriak. cahani Aino, huni Loo Choo. iegnika Tchuktchi. ototo Japenese. kodoma ${ }^{\text {a }}$
ttati Cored, tjidsi Japances.
cwa Japanese. ngach Kamtchatha. atta Tchuktchi, teti Japanese. annakh 'Tchuktchi. illiguin " annak " sakkana Jupancse. assi gitkat Tchuktchi. kura Japmesc. yuki kurrazzoo Loo Choo. settoo Kamtchatka. soan Corea.

Pringular.

kokurro Japencse.

ting
Khigan Koriak. aino dino.
kounetsou Aino. geilgen Koriak. anak Tchuhtchi.
ekigin
chynga T'chuktchi, honna LooChoo
kiuk Trchektchi.
uicinan Kamtchatha.
anighu T'chuktchi.
tida Loo Choo.
nitji Jupunese.
nutshol Kamtchatka.
mok, nouma I'chuktchi. sheeroosa Loo Choo.
innago "
tackki "
aganak Tchuktchi.
zin Aino.
ainhanka Tchulitchi.
teeroo Loo Choo.
dzoo "
korossu fajunesc.
katchoong Loo Choo.
kanujak T'chulitchi, sintju Japan-
kouda Kamtchutka.
[ese.

Such are a few of the resemblances which lie on the surface, in connection with which, and this will equally apply to the Cherokee-Choctaw languages, it may be said that the Iroquois dialects are more closely related through their vocabularies to the Peninsular tongues than are the English and the German to one another. Like the Cherokec-Choctaw family, the Iroquois have also been found to agree with the Asiatic peoples in their grammatical forms, physical features, and religion. The sun or chief divinity, matschule in Tchuktchi, nitji in Japanese, and neetalchasseh in Choctaw, has appeared as ontelea in Iroquois; and the Catawba noteeh, the Adahi nestach, the Cuchan nyatch, the Peruvian inti, and the Araucanian antu, antaigh, carry on the sun-worshippers of north-eastern Asia far into the southern continent. The warlike, intrusive Koriak, who has driven his relative the Kamtchatdale to the south of his peninsula, and almost exterminated the Yukagir, is, apart from all other considerations, the fittest Asiatic \cdots ith whom to compare the similarly warlike and intrusive Iroquois.

The third family of North American Turanians, but really
the first of the three in geographical order, and therefore probably the last in chronologiaal, is the Dacotah. Some of its tribes contain the finest specimens of native humanity on the continent, and some have exhibited a degree of culture muci in advance of other northern aborigines. They are essentially landsmen like the Iroquois and Choctaws, and, like them, never dreamed of an insular heaven. The past few years have shewn that even now they retain their old indomitable spirit, for they are to the United States what the Koriaks are to Russia. They have their traditions of a deluge, like the Iroquois, Choctaws, Cherokees and Caddos, traditions that do not appear in the Algonquin and Malay-Polynesian areas, but which flourish in Kamtchatka and other Peninsular regions. They are in fact unadulterated Turanians. Nor can they have long been occupants of American soil, for their language bears traces too clearly defined of a Peninsular origin to have stood the wear and tear of many centuries. Lieut. Clifford, R.N., in his short preface to the Loo Choo vocabulary in Basil Hall's voyages, calls attention to the fact that the infinitive or simple form of the verb in that language ends in ng preceded by a vowel, as in coyoong bite, ooyoong break, nintoong die. simmatong dwell, katcheeming shake, irreechang bake, \&e. This is preessely what we find in the Dacotah proper or Sioux, as in opetong buy, dowang sing, manong steal, nahong hear, echong make, asniyang heal, \&c. But in Kamtchatdale the simple form of the verb ends in tsh, a totally different form. Thus kwutshquikotsh is to see, looogatsch to cry, kassoogutsh to langh, letsheemgutsh to sing, leanhilkitsch to lie down, kowisitch to go, koquasitch to come, \&c. But here again, in spite of the apparent diversity of the form from that of the Dacotah, evidence of relationship is manifest, for the Assiniboin, a Dacotah dialect, exhibits the Kamtchatdale form. Examples are wunnaeatch go, eistimmatch sieep, aatch speak, waulitaitch kill, waumnahgatch see, aingatch sit, mahnnitch walk, \&c. This double identity in the form of a part of speech establishes a closer connection than that which is afforded by a common syutax, and links the Dacotahs unmistakeably with the stock to which the people of Loo Choo and the Kamtchatdales belong. Nor is the vocabularywanting in confirmation of such a connection, as may be seen from the following brief comparison :

Dacotah.

arm..........ada llithtan.
shoulder.....hiyete Ducutedh.
bad.........shiehat "
bone.........hidu lidutsar.
bont.........viat:a lucutuh.
boy, son.....eencek Wimeliago.
blood........idi Ifidutsit.
bull, buffalo.bisha Uparrolas.
child.waheheesh Dacotah.
cold..........simace "
jce...........a;ha "
day..........eans "a
doz..........shone Arviniboin.
ear...........akuhi /hidutsce.
fatherate Dacotrh.
fire............pytshi Wimelagn.
fishho Dicentuh. poh Mendan.
fnot..........sihas Ducotul. itsi Mineturce.
good shusu Mromdun. wihta Ducotrah.
hairpahhte -. nijihah (outmpa. bode Corct. nujak Tchuhtchi.
head.........pahhih (Muru), n, nahsso Wianc- bosi Lu, Choo. naskok "

man........wic: Ducomh. uika Tchnte:thi. ocetek: * :
meonminnatatehe Ujwaroka.
mother......enah blacomalh.
mouthiiptsh:up:ah Mincturce.
neck.........apteelh "
night........hausyetu Ducotah.
small........ecat Upwarultr.
star..........peekahhai Oto.
sun..... .. wee Ducotah.
water........midi Ililintsta. ninah Winucheten.
wife, woman..cnauh Oxugc. wingy Ducotah. taviculdrcotah. wakka-angka Dutcutah.
laketehhar Ẅ̈nclago.
leaf..........ape linemtah.
grass.........\}и7i "
sick..........: yaznnz "
white........ataki Hidrtan.
makeechons Dreumht.
writeakiakashi Mine:tn.
dio, death . .tehe Ihilutst, tha Dacotah.
2............dopa Ifidutu.
3.............none Ottr.
5.............kihn Midutsa.
G........... thata dorray.
7.............shagoa Arvinibnin.
s............. dopapi Ifidutsa.
peminsular.
ude Jupenese.
k:ada "
kuso "
cutsi Lon Choo.
amwat Korul.
iesnik: Tchulteli.
tji ./erpenese.
woushe Ian Choo.
rassasso Instu.
anu T':hultchi.
cign horint.
gaunak Trhultchi.
ins Lero Choo.
qui Crorce.
att:a Tchalltehi.
pansitsh hemtchatha.
co Loo Chom, ivo Japmese.
assi. attehi . lumancse.
jukiar .hummexe. hutir Corea.
otokn .lapuncsc.
mangets .*
anak Tchulethi.
jeep Corar.
kubi Lon Choo.
umnjuk I'chuktchi.
ckitachtu "
fosi /orijemosc.
$f i$
meze L Lo... Chno.
nouna Tchuftchi.
innazo Loo Choo.
t:akki
as:anak Tchulitchi.
touga
bit.fepmencs.
jhee Corror.
y:adong Lim Choo.
attagho Kemtehatlia.
ootchoons Loon Ghoo.
kaku Jorpuncec.
tokok Tchuktchi.
dupk Aino.
nee Loo Choo.
500 \quad "
ittitso .Tapmencse.
siz.
duhpyhs ding.

In the above, as well as in other verbal comparisons made in these papers, it must be remembered that the scanty materials in my possession .prevent anything like a full representation of
the agrecment between the languages compared. This is especially the case with the Assiniboin and Kamtchatdale, which have been found to agree so remarkably in the simple form of the verb. Sufficient evidence, however, has been afforded of the Peninsular origin of the Daeotahs.

The question naturally occurs, "At what point did the Turanian Americ:us first appe:r upon the continent?" That point can be no other than the termination of the Aleutan chain, which extends from the coast of Kimutchatka to the peninsula of Alaska or eren to Cook's Inlet. There we find at least four different Indian families. One of them is the Esquimans or Inmuit, whose dialects do indeed contain many Penimsular (Tchuktehi, de.) words, but whose affinities are greater with the Greenlanders on the one hand and the Asiatic Samoyeds on the other, che very word Innuit being the S:moyed cuncte, man. Next come the Thlinkeets or Koljush, a people in some respects superior to the Asquimane in whese language the termination in l and $l l$, so characteristic of the Nahuat or Mexic:m, first makes its appearance. These I would incline to associate with the Yukahiri of Siberi:, and with the mask-using tribes of the Aleutan chain. Following the Thlinkeets appears a vast family of tribes extending from the Yukon to Mexico and from Cook's Inlet to the Agonquin Cree region about Hudson's Bay. These are the Timeh Indians, whose name, derived from the word denoting man, language, physical appearance, character, dress and appliances, religion, mamers and customs, comect them with the Siberian Tungus. And, lastly, we find in the north-western part of this same areas a number of tribes known as American Tchuktehis, Tchugaz, Aliaskas, dic., who have generally been regarded as part of the Esquimaux stock, from which, however, they are well differentiated. These American Tchuktehis or Tchugaz possess a language identical with that of their Asiatic namessikes and constitute one family with them, the connecting links being found in the Aleutims proper, the Unalashkans and and the Kadiak tribes. A sketch of Aleutan grammar furnished by Governor Furnhelm, is contained in the first volume of Contributions to American Ethology, but as it is so varue as to supply absolutely no information in regrard to cardinal poiuts of syntax, the vocabulary must be our test of relationship between the Alcutan and Peninsular langunges. In numerals the Asiatic Tchuktchis agree with the Kadiak aud Tehugaz of America.

Tсnuктси	Amemian.
1. atasehok................attutschik Kadial. Tchut	
	atakan Alcuten, atoken Unalushlan.
2. malgokmallok, uldha Kiediak, atteha Tehutgaz	
	allak Alcutan, arlok Unulashkim.
3. ningaju.................. pingaiun hiuliak, pingaijuat Tchumaz,	
4. ischtamat..................schtama Kediak. tschitanmi Tchuynz setschen Aleutun. seecheen Uualushlit	
5. tatlimat.....................tadlimu Kudialk, t:mimi \% chugaz, techan Alentan, chatan Unulawhian.	
6. awimlak...................agvinligin Kadicti, achomhign Tchauaz, atun Alcutum. ateon Unulushlion.	
7. malguk.................... malchungin Kudiak, matchumin I'chuga $\begin{aligned} & \text { olung Alcutan, ooloon Unalushlian. }\end{aligned}$	
8. pisajumga............... ingeljulin Kudiuh, Tchuyuz, katichin. kamthing Mleutun, kameheen Unalushk	
9. agbinlikkoljungojan Kadial;, Tchagaz. schyset Mleutum, seecheen Unmusintur	
10.	kollin Kediul, koln Tchutuz, hasuk Aleuten.

The ordinary vocakulary exhibits the near relationship of the transitional Aleutans and their American cousins with the Peninsular family.

	Prinssular: ${ }^{\text {a }}$	Almutan, mic.
arm..	.ude duram. setto Kamtchatka	tsha Alcztun, aijgit Kadiak.
	.een Lio, Chno.	kio Alicska.
lly	ksoch Kıamtchatior.	ksyek Kudisk.
bluod...	. .ank:, ankwe Tchulteli. messon Kumtchatlice.	auk Kıdink, anku T'chugaz. ampyk Alcutrn.
bos,	..paca, pahats, " iegmika Tchulitch	bsagutaga, awakuta Kadink. nekthoi Alcutun, tanoghak "
black	-tanjachtu **	annechtuk Kiediul, tannacktok T'chugn:.
	. kiodai /apan.	choyothar Aleuten. ooyitagia
	nni	magaga Kulids. [Kudiak.
	.kanujak Tchuht	kanujak Alcutan, K゙ediuk, kannah
	, kanjukakok	kiuskak Alcutur. [Tchugaz.
	.cigu Koriul, tshikuta Tchult	. caguk 'Tchugaz, tsiku Kadie
	tokok-Tchntichi.	tokok " tokook "
	k, achynak	achanak " chanak
	Kırmtchatia.	uikuk Alcutan, nikolk
	.nana Tchulitchi.	nuna 'Tchunaz, Kerdied.
	cnut Kori	tannak Alcutan, tannok Unalash-
	tijdsi , /rpan.	tshekak dleutan. [ka.
	. $\mathrm{kamon}_{\text {a }}$ Lou Choo.	aiangen
cye	Jilenki Koriak.	ingelak Kíuliol.
eg.	manni 7chulithi.	mannek
father..	.atta, attaka *	ataga Kediak, ataaka Tchugaz. athan Alcutan, adan Unalanhkan.
	.eknok T'chuktchi, finoko, Japon.	kignnk "* knokKadiak.
	.ikahlik Tchulitchi.	ik:lljuk Kiadiak.
foot	. .juk Tchuktchi, atschi Japman.	iuch, idchuk "
	gitkat	kita Aleutan.
	.tunni "	nnut Kadiek, tunecchoo
	gauli Loo	adn flcutun, akatscha Unalath
ood	matschinka Tchuktchi.	matschiskuk Alcutan. [k

penissular.
girl dauginter..pannika T'chukitchi.

Ag.futas, mec.
pummiaka Keulial.
noget " muett Tchugaz. ugnit " ungit " naskok " Tchuguz. anghogikoo Aleutun. toioch tugid:k Alcuttm. tangeik Tchutuz. amak Alcut annaga Kudiuck, Tehugaz mek anghosin Aleutun, knak Kadiak. ansazenak Aleatun.
nulcki "

Such examples may be multiplied indefinitely. From those that have been given it appears that the Aleutan and Unalashkan, while differing in some respects from the Kadiak and 'Tchugaz, still exhibit ample eridence of a common derivation with them from the Peninsular family. Mimy of the words in all of these languages are found in the Imnuit or Esquimaux dialects, but in spite of this it may be said that there is between the AleutanKadiak and t'ic Esquimaux a radical difference in vocabulary. Still they have largely influenced each other, and traces of this influence are not wamtiug in the Dacotah and other southern languages of Turanian origin. Thus the Dacotah tipi, Yankton tecpec, Assiniboin teib, house or tent, is undoubtediy the Esquimax topeh, tupeck, and many like examples of Innuit influence might be afforded.
The relations of the Transitional Turanians, as we may term the Aleutans, Kadiaks or Kimiagmutes, de., with the Dacotahs, adme of ample illustration from the vocabulary.

Trassitional.	
bad..........kabigwaskak Kudiak.	
awakutta	
cold.........tshiknk Tchugrz-	
kinakak dleuta	
potsnatok Kadiak.	
das chanak "	
	hunnukhpak " (to-day)
dog.........piuchta Tchugrta.	
cat......... pittonaga Kadiak.	
eyc.thack Alentan.	
father.......ataki Kindiak.	
athan Alcutan.	

Dagotath.

kubbeck Unsaroka. skakatte \quad eencek Winncliago, sec. tasikia Dacotoh. shinechush Mandan. oisnaitch Assiniboin. cang Dacrith. aungpa Yankfon, anipa Dacotah. . biska Uysarnka. wota Jacotah, wautnh Assiniboin. cshtike Dacotah. ate " tantai Minctarce. itsi "

Dacotari．

itsicka Ulsatoka．
tamek：Ilacotuh．
homsk：
onka Mundets．
nahsso Wianchago，naso Otto，\＆c．
cangte Jlucutah．
cekunah Wiancbego．
meena loukton．
wie：Dacotah
vecteka＂
enah
hamaset！＂
pute，pasu Dacotah，peso Otto．
hade Midetsoce．
camis Ducotah
piza＂
wingy：an＂
e：tze Ducotah，dazi IFidatsa．
tehe Midutwe．
tongw：arg lucotah．

Similar relatious appear in the Wyandot－Iroquois．

Ifansimionat．		Wrasmot－Inoquois．
boat．．．	．．．．kaisakh Liuliak．i	FY：Huren．
mother．	．．．．chovotiat－lleutan．	cankotk：Tuscurura．
coppler．．．	．．．．k：ınowy：at ．．．	kanadzia lronuois．
come ．．．．	．．taicerhnok＊	dasne／runteris．
d：sy．．．．．．	．．．ukhn＂${ }^{\text {a }}$	cruisera Mrhentk．
drink．．．．	．．．．tı：1m：atha ．lleuten．	uttanote ．Sencer．
lire．．．．．．		yoncks＇ruscorora．
fout．．．．．．	．．kitit Al．mıu．	achita Ituron，sita Iroquois．
give．．．．．．	．．．．alatshat L＇unlashkar．	wahethy／ropunis．
go．．．．．．．	．．．ithat ．leutron． achook hireliak．	yehateatyese Mwhank． bintre／rogluis．
h：unl．．．．． hend．	．．．．shuw：ank：ı，aiigit hadiak． ．．．．imalown	sesnonke Mohurk．chotta lioquois onoalagone lioguois．
leñ．．．．．．	．．．irruhk：＂	Grusily Tusemmara．
lite．．．．．．．	．．．anghurikon Alcutan．	youlse Mehenck．
muon．．．．．	．．cahaloak Kudicik．	kelatumaw＊＊
nose．．．．．	．．anghosin ．l／cutem．	enuchsake Comuga．
river．．．．．	．．大nik Tchutuz．	kaihyoch：ikouh ．Mohark．
snow．．．．	．kanneek $.1 / \mathrm{chtm}$ ．	ouniyemite＂
spuak．．．．．	．．．vukhten Kıuliuk．	haguctat lionguis．
star．．．．．．	．．．sthak ．lleutun．	ojistok Ifmhark．
tonive．．	．．．aphnak－．	honstch：liogtunis．
tooth．．．．．	．．．choodit，hutuka K゙adiak． noonting：Tchuguz．	otoatseh Tuscarora． onotchia formusin．
witer	．nunak＂－	ohnck： 4
－	taangak dlcuten．	tsamdmosteek Ihuron．
wind．．．	．kiob：uik K゙rulink．	gaol Mrupurix．
womat．．．．	．．．aiyat：ar ．／lcuen．	cehrs＂
		onherhtye ．lfokath．
	ak：anak Kadink．	ekening T＇usctrara．
sod．．．．．．	．．aghuguch Alcutan．	ocki Ifuren．
salt．．．．．．．	．．attagook Katliak．	hotehiketa Lrozuois．

The same are found in the Cherokec-Choctaw.

Trassitional.	Chmonem-Cuoctam.
arm.........ipik Fadiak.	sakpa Muskonndoc.
blood.ank "	issish Chickusuo.
amgek Alcuten.	hommar Choctav.
bos, sonabagutıga Ǩudiak.	pooskous "
bird........ ${ }^{\text {cissu Alcutent. }}$	hushi *
gouse........3ak "	shilaklak "
mother......ansaurı Kıudiak.	noeksish "
child00skulik dieutan.	nllat 6
dog.pewatit Kudiak.	opho
ear..........tottusak dlentun.	istehnehtsko Muskogulgr.
fish.........ikalljuk Kadiak.	Fullo Chocttuc agaula Cherokec.
so.........ammowit -4	anmya Choctum.
good........assiktok Thchugaz.	seohstagu: Charokec.
head........ ischipi Alcutten.	ceau Mheskotulge.
man........tsioch *	atseeai Cherokce.
muon........tangeik ''chugaz.	teenomentorhe "
mountain...ingajek Kudick.	nunichaha Choctevo.
night.unuk "	nemmak Mu,kognlge.
river........kuik "	huchat Choctuc.
sun.........madxshak	neetakhasseh Chickasazo.
tongre.aghu:sk Alentan.	yahnogah Cherokec. soulish Chickusuro
death, die.. aschalik Alcutron.	selle, illi choctano.
tooth.........noonting: Trchugaz.	notech Mus logulge.
wod.........opohak Kadiak.	upi Chactane.
woman......agamak "	ageyuns Cherolice.
shoec........ihlhuchik **	shulush Choctaro.
to-morrow. whnmaho "	onatha '.
sea.........immak Tchugaz.	amsamauhe Cherokec.

The Kadiak and Tchugaz numerals being almost identical with those of the 'Ichuktchi, exhibit intimate relations with those of the Choctaw. The Aleut:ms, Kamiagmutes, Tehugaz, Unalashkans, ©e., may therefore be regarded as the hatest wave of the Peminsular tide of migration, which from a remote period has been pouring in no stinted flow into the American continent, from the time when the Fuegians of the Chileno family in the far south first left their Asiatic home till the present day.
Within the limits of this article I have space barely sufficient to give an outline of the argument which carries the Peniusular family far into South America. The sun-worshipping Nathez of Mississippi, and the Cuchan, Maricola and Dieguno tribes of Ners Mexico, as well as the Catawbas, Woccoons, Adahis, Uches and Caddos, to whom I have already alluded, all belong to the line of Peninsular migration, and the extinct mound builders, if extinet they be, as sun-worshippers must have been of the same parent stock. But for the preseut I must pass them by as ethoologically of less importance than the South American members
of the family. In New Granada we meet with the Muyscas of Bogota, a sun worshipping race whose solar hero, the god Pesca or Bochica, is the Muskegulge Eefeekecsit and the Japanese Jebisu or Zhizobogats. But their solar deity proper is Zuhe, the same as the Huron Ionskeha and the Aleutan Agugax. They also worship Toca, the Huron Atahocan. and, perhaps, the Kamtchatdale Hutka; ;is well as Aghajun, the Koriak Angsam. Their tradition of the deluge is well defined, and agrees with that of the K:mmtchatdales, Dacot"hs, Iroquois, Cherokees, Choctaws, Uches, Caddocs and Peruvians. The Muysea verb ends in selue or suce, and is thus not unlike the Kadiak in ol: or tok. In the use of postpositions; the order of the verb, as 1st. pronoun, 2nd. verbal root, 3rd. temporal index; the preposition of the accusative to the verb and of the genitive to its groverning noun: the Muyscal completely accords with the Peninsular and allied North Ameriean languages. For the agreement of its vocabulary with those of the Peninsular, Dacotah, Iroquois, Choctaw and Peruvian languages, I must refer to the comparative tables in the Camadian Journal. More important than the Muysca are the dialects of Peru, the Quichaa, Quitema, Aymara, Cayubaba, Sapibocono, Atacamena, \&c., and they deserve more than a passing notice.

The Peruvians, one of the oldest and perhaps the most civilized of native American peoples, have long been known as par excellence the sun worshippers of America. The sun, Inti among the Quichuas or Incas, is the same god as the Japanese Nitji, the Loo.Choo Nitchi, the Iroquois Onteka, the Cherokee Anantoge, the Choctaw Neetak, the Catawba Noteeh, the Adahi Nestach, the Coco-Maricopa Nyatz, and the Araucanian Antu, Antaigh. This name seems to have been the peculiar property of the Turanian worshippers of the solar orb. Another Peruvian god, like Pesca or Bochic:a of the Muyseas the hero of a deluge, was Apachic or Pachacimac, and in him we recognize the Muskogulye Eefeekesa and the Japimese Jebisu. Eruchi was the Sapibocono, and Huiracocha the Quichua war-god, and these again recall the Iroquois Areskoui and the Koriak Arioski. The Peruvian Chinchas practised the artificial compression of the skull like the Choctaws, Catawbas, Natchez and Koriaks. The Quichuas and other Peruvian tribes embalmed their dead like the Ainos. The umbrella was a mark of dignity in ancient Peru as in Japan. The astronomical system of the Incas was virtually that of the

Muyseas, concerning which Dr. Hawks, in his Narrative of Commodore Perry's Expedition to Japan, says, alluding to the Japanese system: "We camot leave it without the remark that on a comparison of it with that of the Muiscas, an ancient, semicivilized and now extinct race that onee inhabited the phains of Bogota in New Gramada, the resemblances were so striking that they produced on our mind a conviction that the astronomical systems of the two peoples were substantially the same." There can be un doubt that the arcient civilization of Peru was that of Japan, and that the comecting links between the two countries are to be found in the mysterious mounds that mark the line of Peninsular migration in America. In confirmation of this I may state that Mr. Domald of this Society has recently called my attention to the fact that similar mounds have lately been discovered in Japan. Physically, so far as we have the means of judging: there secms to have been little in common between the Perucians and the North Americin Turanians, and the skull of the former has been showa by Dr. Daniel Wilson of Toronto and other craniologists to be ahmost without parallei for smallness of capaeity, a peculianity that links it in some degree with that of the Kentucky mound-builders. But language in such a case must be our main test of relationship. In regard to grammatical forms, we find that the Peruvian languages employ post-positions, and that they place the possessive before its governing noun and the accusative before the verb, thus agrecing with all the langutares that have so far occupicd our attention. The Quichua has been said to differ from other American tongues in the possession of a full declension of the noun, but the same may be found in the Japanese and all its related languages, if we regard the postposition as inseparable from its regimen. The Quichua case terminations are simply cohering post-positions. The Aymara senitive answers perfectly to that of the Loo Choo, as in "the man's head," which is chacher-na-ppekei in the former, and ickegenonoobosi in the latter. In the Peruvian dialects, however, the place of the pronoun is terminal instead of initial as in the Japanese, so that the Quichua verb, as the Rev. Richard Gamett has shewn, corresponds with the Dravidian and thus. with the Fimnie and Turkic in its order of verbal root, temporal index and pronominal suffix. The Peruvians, therefore, must have separated from the Peninsular stem when the verb in the Japanese and its allied languages was still in the Ural-Altaic vol. Ix.

No. 4.
stage of development. The Peruvian vocabulary confirms the theory of a Peninsular origin.

In the vocabularies published in the Canadian Journal, to which I have had so often to refer, will be found, together with a fuller illustration of the agreements between the Peruvian and Peninsular languages, others as complete with the Trausitional Aleutim, \&e., the Dacotah, Irorquois, and Choctaw-Cherokee. They are all members of one family. Finally the Chileoo languages, embracing the Arateanian of Chili, the Puelche of the Pampas, the Patagonian and Fuegian, have all their grammatical and verbal relations with the Peruvian, and thus connect with the Peninsular stock of Asia. These dialects, like the Peruvian, exhibit cridence of great anticuity, although mere geographical position camot determine that they are spoken by earlier immigrants tham the civilized (Quichuas, across whose lines they may possibly have passed on their way to a more southern home. They also were worshippers of the sun, and their gods Ngen, Eutagen, Pillan, and Toquichen, are the last representatives of the Koriak Angeg:m, the Kamtchatdale Hutka and Bilukai, and the Huron Atahocan, the latter appearing also in Peru as the Quichut Atahumea. Their I'oguis or Governors are the 'lokoks or Chiefs of the Aleutans, terms recalling the Tagus or chicf magistrate of the ancient Thessaliam States. The Araucmians also are the Koriaks and Iroruois of South America, indomitable wariors, the memory of whose valour is embalmed in a Chilian epic poem, thus preserving the martial chanacter of one branch of the Peniusular family, as the Peruvians did the civilization of another. The Kamtehatdale and the Fuegian may perhaps ilhustrate a third and degraded class of tribal characteristics. But on the whole the family is a noble one, worthy of a better fate than that which has overtaken all its American representatives, if we except the Cherokee-Choctaw confederacy, which has risen to higher things.

It may be asked whether the Peruvian dialects, secing that their grammatical forms agree with those of the Ural-Altaic and Dravidian languages, shaild uot be comeeted with these rather than with the Peninsular tongues. Now it is true that in the Peruvian and Iroquois numerals there are Finnic and Turkic forms, such as the Peruvian pisca and Iroquois wish, wish, 5, which are the Turkish besh and Yakut bes, as well as the Finnic viisi, the Esthonian wiis, and Teheremissian vis. The Aymara ppelici head, also is the Turkish bush and Yakut bas, and the Fiunic poja and Maggar fej, while the Iroquois presents in the two remarkable forms iofennores, rain amd leanadra, bread, the
undoubted equivalents of the Twkish yaghmur and the Magyar Runyer. But in spite of these resemblances, which it cannot be denied do attest connection if not relationship, a careful comparison of the Peruvian and Iroquois vocabularies with those of the Ural-Altaic languages has convineed me that the connection is one which ${ }^{\text {Pa }}$ must be established through the Peninsular forms of speech, with which the American languages have relations vastly more intimate and numerous thau with the Finnic or Turkic classes. The Iroquois agrain is in no respects a Cartar, nor is there any native Finnic or Turkish civilization with which that of the Peruviaus may be compared. As for the 'Juranians of southern Asia, even in the valuable comparative tables of Hyde Clarke, but a distant resemblance to the Peruvian appears in their rocabularies, aud we possess not a shred of evidence to show that they ever became a maritime people or occupied the line of Malay immigration to the coasts of America. Dacotalhs, Iroquois, Choctaws, Muyscas, Peruvians, Chilenos, were not maritime peoples but essentially landsmen, who, but for the stepping stones of the Aleutan chain, never would have found their way to this continent.

All the American tribes of Turanian origin came originally, therefore, from the north in successive waves, which gradually overflowed the northern continent and poured their tide into the south. They came in at least two different forms or types of national character; the civilized Japanese, represented by the Muyscas and Peruvians, and in a minor degree, if these were not the Peruvians in progress southward, by the mound-builders, the miners of Lake Superior, the potters and weavers of the Ohio valley, by the Dacotah Mandans and the Natchez; and the uncivilized warriors of Koriak blood, from whom a succession of Araucanians and Cherokec-Choctaws, Iroquois and Dacotahs, have descended. And to tell the story of migration and make it plain so that all the world may understand, and the baseless fabric of an autochthonic American race may melt before it; the process still goes on across the bridge that spans the northern ocean from Kamtc. atka to Alaska, over which so many generations have passed to an American home. There Aleutans and Unalashkans, Kaniagmutes and American Tchuktchis link the populations of two continents, and, with the facts that prove the advent of the intrusive Malays, who, wedge-like, entering from the west, split into many fragments the once solid Turanian phalanx, answer the oft-repeated question-"Whence came American man?"

PREGLACIAL FORMATION OF THE BEDS OF: THE GREAT AMERICAN LAKES.

By Prof. E. W. Claypore, B.A., B.Sc. (Lond.) of Antioch Coll., Ohio.
In a paper by the writer of these lines which appeared in the Canadian Naturalist in April, 1877, under the title "Pre-Glacial Geography of the Region of the Great Isakes," an attempt was made to shew that the beds of those inland seas of North America are not results of glacial crosion during the ice age, but that they antedate the ice age altogether, and are due to the action of fresh water streams which flowed in the region at an earlier time, and when the land, especially to the northward, stood at a higher level compared with the sea than at present. The beds of Lakes Huron, Erie and Ontario were attributed to the action of a pre glacial Mohawk having its sources somewhere in the basin of the first named lake, and flowing past Detroit, where a deep channel is known to exist, into the basin of Lake Erie, thence through a similar old and lost channel somewhere near Niagara, into the Ontarian basin, and thence through a yet deeper but now filled up passage near Syracuse and Lake Onondaga into the valley of the Mohawk, and through that and the present Hudson into the Atlantic. In like manner it was maintained that the bed of Lake Michigan was a valley formed by the upper waters of a river whose later course was through a deep but buried channel running southward through Illinois, and which has been traced as far as Bloomington, where it is at least 200 feet deep. The bed of Lake Superior, it was also suggested, may be the valley formed or occupied by the head waters of a river which flowed away at some point cast of Marquette, and traversed the State of Wisconsin along the lines of Lakes Winnebago and Horicon and Rock River, until it met the Mississippi near where Rock Island now stands.

Many of the facts upon which the opinions then expressed were founded were derived from the Geological Survey of Ohio, and the whole tenor of the paper was largely in accord with many passages from Dr. Newberry's pen, though in some points the writer was at issue with the distinguished director of the Ohio Survey, and in others he went beyond any conclusions reached in that work. Since the publication of the paper, Dr.

Newberry has however expressed his entire dissent from thewriter's views in the following words (Geol. of Ohio, Vol, III. p. 46) : "The considerations which oppose this theory" (that the beds of these lakes are only portions of the valleys of pre-glacial rivers blocked up in the ice period by beds of drift) "are so apparent and formidable that it never could have been proposed or accepted by any one who had carcfully studied the problem." While yielding to none in due respect for Dr. Newberry's labours and his contributions to the geology of the Western and Midland States, without which the very materials for the paper in question would not have been attainable, the writer must maintain that his theory was not hastily put formard and that in his opinion, for reasons hereinafter given, the objections urged by Dr. Newberry are not valid, and further that Dr. Newberry's own position is not tenable. These objections are as follows:

1st. "The lakes occupy a series of boat-shaped rocl-basing which have almost nothing in common with river-valleys. The notion that the valley of a river could be beaded in this way by the broad excavation of such portions as lay in soft rock and the formation of canons through hard strata, has no warrant in any facts yet observed on the earth's surface."

It nay be quite correct technically to speak of the beds of the great lakes as basins, but the impression generally produced by this use of the term is far from accurate. As was pointed out in the paper referred to, if the water were drained away their beds would appear not as deep valleys nor to the eye as valleys at all, but as wide almost level plains. The bed of Lake Erie would show a slope from its north and south shores to its middle averaging about ten feet to the mile. Lake Michigan, with a depth of 900 feet and breadth of 90 miles, would become a vast plain sloping only 20 feet in the mile. Such slopes would be utterly undiscoverable by the eye, and consequently the lakebeds would appear as immense prairies rather than basins. Now such broad slightly sloping vales are precisely what large rivers form when flowing for long ages through a region of the softer rocks. If at any spot cliffs of such material are ever formed, the weather ere long destroys them and reduces all to a smooth outline. It is for this very reason that a practised cye can to a great estent read the geology of a country by observing its surface. One portion consists of smooth, rounded hills, sloping
down into wide, shallow valleys; another, of different structure, shows a rugged outline of cliff and gorge, of plateau and canco. In the former case crosion is so rapid that the streams are unabic to carry away the material as fast as it is broken down by the weather. The erosive agents surpass the transporting. In the eecond the rocks afford less material than the streams can remove, and the transporting power exceeds the croding. Hence come the two great types of surface-contour, the rugged and the smooth, the former characteristic of resisting, the latter of yielding material. It must therefore evidently follow that a river flowing through regions composed of rocks of both kinds will produce alternately the broad open vale and the deep narrow chasm.

But apart from theory, Flisée Réclus (The Earth, p. 132) says: "Some valleys present a succession of rounded basins separated from each other by narrow passes. In the Pyrences, the Jura and the calcareous regions of the Alps, valleys of this kind are very numerous." "The variations in the shape of valleys may be explained by the different natures of the rocks which thewaters have had to hollow out. Wherever the materials operated upon-gravel, sandstone, granites, schists or lavas-are of analogous composition, and thus everywhere present an equal resistance to the action of the water, the latter is able to pursue its normal movement and adopts a meandering course. On the contrary, where the rocks consist of strata of unequal hardness, or are traversed by obstructing walls, the water is necessarily compelled to spread out into a lake-like accumulation, in the meantime eating away the banks in a lateral direction, until the barrier being at length penetrated, the sheet of water is poured down to some lower level. In this way there has been formed during a course of ages a serits of basins one above another, some of which are still partially filled with water, others entirely empty, all being linked together by narrow defiles through which pours the mountain torrent."

In years past the writer resided on the banks of the Avon in. England. This river affords a remarkable illustration of the same phenomenon. In its upper course it flows over the Oxford clay in a wide open vale or plain, but before reaching the city of Bath it comes upon the harder beds of the great oollite through which its course lies in a deep valley bordered by high hills of that formation, to which the city owes much of its attractiveness.
and beauty. Emerging from the great oollite, the A zon wanders at will over a wide plain or open valley of the Keuper marls and alluvium until it reaches a spur of hard Carboniferous and Devonian rocks through which it has cut the romantic gorge of Clifton more than tro miles long and in some places 300 feet deep between almost vertical walls. With its suspension bridge of 800 feet span, no more exact counterpart of the Niagara rift as seen from the Canadian namesake of the English "Clifton" can well be found, except that in the latter case the work of erosion is still in progress, while in the former it is complete and the cataract has disuppeared.

But coming nearer home, our own rivers in Ohio supply many similar instances. The Little Miami in its upper course flows through a wide shallow valley of glacial drift of depth unknown. But on reaching the village of Clifton (Greene Co.) it comes upon a ledge of the hard Niagara limestone through which it has long been and is still engaged in cuttiug a deep narrow chasm, in some phaces about 60 feet in depth and less than 20 feet from side to side with overhanging walls. Lower down the stream where the gorge is older, it is more than 100 feet deep and 200 fect from bank to bank. Afer leaving the Niagara formation, the river comes upon the soft slales and thin stone beds of the blue limestone of the Cincinnati group, where the valley again widens out a til its sides are more than a mile apart with smooth and gentle slopes.

Numerous other examples might be quoted to show that this "beaded" appearance of the channel of a river flowing for long ages over rocks of rarious powers of resistance is not by any means an uncommon phenomenon on the earth's surface. Not only should it occur in theory but it does freçuently occur in reality. There is therefore no improbability in the supposition that this pre-glacial Mohawk cut for itself such a channel.

2nd. Dr. Newberry says: "The great and unequal depth of the lake-basins renders it impossible that they can have been excavated by a continuous flowing stream." "Lake Hurou is S00 feet in depth, while the buried channel which comnects it with Lake Bric is not more than 200 feet deep." "Lake Bric is generally very shallow, and while its bed is no doubt traversed by an old river channel which is very much deeper than most parts of the lake itself, it is incomprehensible that it should not have been cut as decply by the old river as Lake Huron was, since the rocks to be removed were the same."

In this connection it must be borne in mind that the theory which Dr. Newberry is here criticising is founded on the fact, generally admitted by geologists, that before the glacial cra and at the time when this old river existed, the relative levels of land and sea were not the same as now, but that the land was higher, especially to the northward. Of this it is scareely necessary to adduce proof (see Dana's Manual, 1874, p. 540). Prof. New. berry himself says (Geol. of Ohio, Vol. I, p. 44): "The rocky bottoms of these gorges," in N. E. Ohio, "are deeply buried, and the erosion which produced them begran before the ice period and was mostly aecomplished during an interval of continental clevation." Again (p. 172): "This excavation was anterior to the drift period, when the continent was raised several hundred feet higher then now." Again (p. 433): "It is easy to see that the crosion" of Mill Creek valley in Hamilton Co. "could not have been effected under existing conditions. It can only be explained by a higher altitude of the continent." Again (Vol. II. p. 6): "At the commeneement of the ice period this continent must have stood several hundred feet higher thau now."
Facts gathered from North American and Europan geology show that the elevation was not uniform but increased towards the north, and the only assumption in the paper already alluded to was that this northward elevation was at the rate of three feet per mile. Now if this estimate be applied to Lake Huron and the buried chamel at Detroit, we have the following results:The central part of Lake Huron then lay about $5 t(0$ feet higher than now, or 260 feet below the present surface. The buried channel at Detroit has been explored to the depth of 200 feet, but its bottom has never been reached. Dr. N. says (Vol. II, p. 13) : "Its greatest depth is unknown." This places the bed of Lake Hurou at the time in question ouly 60 feet below the bottom of the deepest kuown boring (not the real bottom) in the Detroit channel, and remores all serious difficulty from this part of the subject.
A similar argument will meet the objection urged in the case of Lake Erie and quoted above. Lake Eric lying to the south of Lake Huron, has becu relatively less depressed since that time and may actually have then been more deeply eroded than the latter.
3rd. "Lake Ontario is again a deep basiu, being 150 feet deep, with a surface level of ouly $23 \pm$ feet abore the occan. Every-
thing indicates that the basin of Lake Ontario is comected by a buried channel with the Hudson, but we have no proof that this pre-glacial channel is cut as low as the rock-bottom of the basin."

The buried channel at Onondagsa, to which allusion is here made, has not, it is true, been proved as deep as the bottom of Lake Ontario at present. But it has been explored to the depth below the lake level of " 414 feet, and we are not certain that rock was reached in this boring." (Vol. II, p. 16.) Nor, it may be added, cau we be sure that this bore was made in the decpest part of the channel. The buried chamel at Onondaga has therefore been explored almost to the level of the bottom of Lake Ontario at present in its deepest part. But on the estimate mentioned above of the elevation of northeru land, the bed of Lake Ontario at the time in question was relatively to the buried channel 100 feet higher than now, and in that case the channel was many feet below the lake bed, and the flow of the pre-glacial Mohawk from the Ontarian vale to the Hudson ziver was both possible and casy.

4th. "The bottoms of some of the great lakes are now several hundred feet below the ocean level," and "their rock bottoms may be corered with a great depth of mud." "They could not have been drained into the occan when it stood at its present level. It is true that the continent was 500 or 600 feet higher than now at the time the old buried channels were cut, but even this does uot afford sufficient fall for a stream which should wear the rock-basins of Lakes Michigan and Huron to their bottoms. They are undoubtedly" (?) " 1000 to 1200 feet below the water surface, and reach nearly to the old ocean level, a relative depth far too great for rivers to excavate rock a thousand miles from their mouths."

The very basis of this objection is a supposition of which no proof is given, that the beds of Lakes Michigan and Huron are covered with 200 to 300 feet of deposit. In this way they are brought down nearly to the level of the pre-glacial Atlantic. But with any more moderate estimate they lay considerably higher, and if this deposit is disregarded, were more than 300 fect abore that level. If we halve Dr. Newberry's figures and allow 150 fect of deposit in the beds of Lakes Huron and Michigan, the former was betreen 300 and 400 , the latter between 200 and 300 feet above the occan. These heights would give ample fall for the old Mohawk river in its course of 1000 miles,
and it need scarcely be added that where there is fall enough for a river to flow, there crosion will take place. It mnst moreover be remembered that even allowing Dr . Newberry's supposition to its full extent, the objection has no force, for it can only apply to the lowest points of the lake beds and the latest days of our preglacial rivers. The geological destiny of every river is to cut its bed down to the ocean-level, and time enough being given every river will fulfil its destiny. The greater part of the lakebeds, even on Dr. Newberry's supposition, must have been so far above the old ocean as to give an ample fall, and in all but its latest years the old river must have been equally high. It is not surprising that a stream which, so far as we can judge, flowed through that region for many ages, should ere its day of extinction came, have so far fulfilled its destiny as to leave what we may cilll its death-bed but little elevated above the contemporary oceau. It would be more surprising were the result otherwise. On either view therefore little force lies in the objection.
Similar arguments apply to Lake Michigan. Though the lake is 900 feet deep, and the greatest known depth of the buried channel, whose Zottom has never been reached, is only 200 feet, yet the latter is about 240 miles so:th of the middle of the lake, and in the time of pre-glacial elevation the depth of the lake was diminished by 720 feet, and its outlow along the line previously iodicated through the State of Illinois not only possible but probable.

The above arguments seem fully to meet the objections urged in the third volume of the Ohio Survey. Let us advance a little further. Dr. Newberry agrees with the writer in admitting the existence of the pre-glacial river to which allusion has been so often made. He says (Geol. of Ohio, Vol. II, p. 77) : "Prerious to the glacial period the elevation of this portion of our continent wras considerably greater than now, and it was drained by a river system which flowed at a much lower level than at present. At that time our chain of lakes-Ontario, Eric and Huron-apparently formed portions of the valley of a river which subsequently became the St. Lawrence, but which then flowed between the Adiroudacks and Appalachians, in the line of the deeply buried channel of the Mohawk, passing through the trough of the Hudson and emptying into the occan 80 miles south-east of diew York. Lake Michigan was apparently then a part of a river course which drained Lake Superior and emptied into the Mississippi."

But while asserting the existence of the old and lost river along the whole course indicated, Dr. Newberry does not allow that the excavation of the lake beds is due to its action. He inclines to the view that though a small and shallow or narrow channel existed previously, yet the formation of these broad hollows in which our great lakes lie was the work of another and later agent. He says (Vol. I, p. 49) : "The basin of Lake Eric in all its length and breadth-as well as the smaller but deeper one of Lake Ontario, and the broader and far deeper ones of Latke Michigan and Lake Huron-has been excavated by mechanical force from the solid rock. The agents were the same that have produced all the great monuments of crosion seen elsewherewater and ice, and of the two that which was by far the more potent, and that which alone could excavate broad boat-shaped basins such as these, was ice."

To this view there are many formidable objections, some of which are very evident. Allusion was made to one of them in the former paper, which may however be repeated here. Speaking of the glacial markings in the basin of Lake Erie, Dr. Nerrberry says (Geol. of Ohio, Vol. VII, p. 10): "The glacier which moved from the cast westward in the lake basin, following the continental glacier, was a local glacier of later date, and the one by which the excavati n of the lake basin was principally effected." But on the same page we read: "In this portion (N.W.) of the State, a series of glacial marks which have a nearly north and south bearing are obliterated (nearly?) by the stronger, fresher, and more numerous grooves, of which the bearing is nearly east and west."

As was before remarked, it seems uttenly impossible to attribute the excavation of the bed of Lake Brie, which means the removal of about 1000 feet of rock, to a glacier which was cridently unable to remove pre-existing grooves upon the surface over which it flowed.

Again (Vol. III, p. 47) Dr. Newberry quotes from a paper published by Mr. G. J. Hinde, in which that writer mentions having traced glacial furrows at the castern end of Lake Outario from one hundred feet above the lake to the water's edge in a southwesterly direction, and also having found similar stria ai the sonth-western end of the lake running the same course. "This strikiug instance of glacial action seems to me," he adds, "to furnish itrong proof of the basin of this lake at least having been excavateiu by ice."

The evidence here given completely fails to support the conclusion drawn. Instead of inferring from the presence of glacial grooves in the bed of Lake Ontario that that lake-bed had been entirely formed by the action of ice, the only logical inference is that it was occupied by ice long enough to allow time for the production of these marks. It would be as correct to argue from the presence of the scratehes made by sandpaper upon an ormamental moulding that the whole of it had been worked out by the carpenter by that me:ans.
This reply may be carried a step farther. Admitting just for the sake of argument that the beds of Lakes Erie and Ontario sere filled for a longer or shorter time towards the cod of the great ice age by a local glacier, we may fairly ask, "What caused these local ghaciers to exist there and move from east to west? A narrow gorge such as that at Niagara would not defleet a glacier. It would be filled with glacial drift, and the ice would then pass over it as if it did not exist. This has happened in numerous instances both in east and west and in north and south gorges. To deflect a glacier the depression must be wide enough to allow the ice to sweep or scrape its bottom clear of deposit. We need in fact a wide open valley not a deep ravine for this purpose, and if such deflection of the margin of the continental glacier really occurred, the valleys of Hrie and Ontario must have been valleys of this kind, in fiact nearly what they are at preseni. It would have been more logical to assume the existence of these valleys as the caluse of the diversion of the local glacier, otherwise the fact of this diversion remains without apparent cause. The excavation, to whatever cause due, was earlier than the glacier which filled it. To suppose otherwise is to make the glacier produce its own cause. But further: "Is it possible to admit the existence of these local glaciers in the beds of Lakes Ontario, Eric, Huron and Michigan?" Without the pre-existence of the lake beds this question may be auswered promptly and decidedly in the negative. That the edge of the great contiuental iec-sheet was not regular we may consider certain. What it stretched farther southward on low ground than on high ground, may be assumed, it being quite in accord with the phenomena of recent glaciers. But that it was capable of throwing out long narrow tongucs of ice where scarcely any depression of surface existed, is incredible. It is contrary to what we know of the physics of ice to believe in the existeuce of an
ice tongue 200 miles long and 40 miles wide occupying for ages the place of Lake Ontario and only comnected with the ice sheet at its eastern end. The same is true of the glacier supposed to have excavated the bed of Lake Eric. Yet more incredible is the theory that would require us to accept the existence of a glacier tongue 350 miles long by 80 miles wide occupying the site of Lake Michigan and employed in scooping out that lakebed. For be it remembered these are not Alpine glaciers lying in deep narrow valleys hemmed in by rocky walls, which prevent all escipe and bar all progress except downward. These glaciers must have hain upon the level or nearly level surfiee of the continent, and towered above it for hundreds of feet in order to possess the weight necessary to grind or scoop out the lakebeds as the theory of Dr. Newberry refuires. Such a phenome. non, so far as the writer knows, is, without parallel on earth, and moreover its existence is opposed to what we know of the physics of ice. Such a mass must move cither by its own weight or by a propelling forec belind it. The former is exeluded, because a glacier tongue thus extended would lie not in the zone of accumulation but in the zone of waste, and must be maintained by supplies of ice from behind it. But ice thus supplied from behind would find much less resistance at the sides of the mass and would consequently spread out laterally instead of urging forward the ice in front, and would thus form a wide semicircular sheet rather than a long and narrow tongue. To suppose such a glacier occupying the site of Lake Michigan for so long a time as to scoup it out to the depth of 900 feet is therefore contrary to the principle of dynamies, which maintains that when a glacier moves it moves in the line of least resistance.

If howerer we admit the existence of the lake beds to nearly their present depth and width before the ice age, we may without dificulty admit that as the continental glacier was retre.ting, a short projecting tongue would be found occupying each of them in part and exteuding a small distance southward or westward from the main body of the ice. This would not necessitate the persistence of such glaciers long enough to fill the whole valleys at once or to scoop them out to their present depth, but only long enough to produce those superficial cast-west seratches which Dr. Newberry admits have not always effaced the earlier northsouth grooves made by the great contineutal ice sheet. On this vier we have a reason for the deflection of the ice, ample depth
to retain a ghacier of sufficient mass to produce such markings, and moreover we are not driven to violate any laty of glacial physics in trying to explain the phenomena.
the argument, however, is not yet quite complete. Suphosing we admit all the premises which Dr. Newberry lays down-that the continental glacier during its retreat was capable of extending tongues of ice several hundred miles long and only 40 to 80 miles wide, and that these tongues of ice lying on a nearly level surface and rising above it to a height of several hundred feet without side walls to confine them, persisted in pushing forward their edds where the resistance was greatest instead of spreading laterally where it was less--let us enguire next whether these tongues could posibly accomplish the task assigued to them.
In a lecture on New York Island and Harbour, published in the Popular Science Monthly for October, 187S, Dr. Newberry estimates the mass of material worn off the surface of that part of the State during the ice age and by the action of the ice as not improbably "one hundred feet." 'Ihis estimate seems rather high, especially as that region cousists of the hard primitive rocks. We have no reason to believe that so large an amount was remored from the surface of northern Ohio by the same agent. Probably the ice age in Ohio did not last quite so long as in New York, New England, and Lower Canada. We have fortunately, however, a galuge, though at present a somewhat rough one, of the amount eroded in this regiou. Deposition is the true measure of erosion, and if we can form an estimate with tolerable accuracy of the mass of the drift clays, dec., that cover our own and neighbouring States, we shall theu have to that extent a key to the amount of degradation they suffered at the hands of the northern ice. Observation shows that as a rule the material was not trausported very far, but that what was eroded from one locality was pushed on to another a little south or southeast of it. The deposit on one spot may thercfore be used to a great extent to measure the denudation a few miles to the northward. Now it is on the whole very rare to find the drift much exceeding 100 feet in thickness in this or adjoining States. Such districts are never very extensive. The bulk of the transported material was not carried on the top of the ice but shoved along underneath it, constituting a ground moraine. There can have been few spots to the northward from which superficial moraine-matter could be obtained during the greatest extension
of the glacier. Accordingly we find the greater part of the drift in any county consists of material brought from the counties to the northward, mixed with a smaller quantity from a greater distance, and some metamorphic boulders or pebbles from Canada. It becomes thinner as we go southward, probably because the propelling power of the ice became less with decreasing thickness. By noting the depth of the glacial drift in the northern part of the State, therefore we take it at its maximum, and we deal with material brought for the most part from the region of the great lakes. We can thus obtain approximately the amount of crosion which that region suffered during the glacial era. The following figures from the Geological Survey of Ohio show us the thickness of the drift through the three northern tiers of counties.

TaUle shewing the thickness of the drift in Northem Ohio:

Williams		127	-		Vol. I,		E. 46
Fulton -		- 85.1216	-		" I,	"	5.46
Lucas		- 65-89	-		"	"	*
Ottawa	-	50	-	-	، IX,	"	233
Lucas ('Tol		100					
Eric -		- thin	-			"	185
Lorain		not given	-		" II,	"	209
Cuyahoga		- 238*	-		" I,	"	175
Lake -	-	110	-	-	" I,	"	517
Cuyahoga	-	12	-	-	" I,	"	197
Asitabula	-	90	-	-	" I,	*	489
Defiance	-	7-118	-	-		"	+35
Ifenry	-	8-i.	-	-	" II,	"	421
Wood	-	75	-	-	" II,	"	383
Sandusky*	-	100	-	-	" I,	"	606
Huron -	-	$42+$	-	-	" III,	"	295
Ashland -	-	12?	-	-	" III,	"	525
Medina	-	- ?	-	-	" III,	"	362
Summit -	-	60	-	-	" I,	"	204
Portage	-	- 10-100	-		" 111 ,	"	13i
Summit -	-	$200 *$			" I,	"	20:
Trumbull	-	?	-	-	" I,	"	493
Pauldins	-	45		-	" II,	"	3.45
Jutham -	-	23-94		-	" II,	"	395
Hancock	-	30-80		-	* II,	"	36;
Seneca -	-	$60+$		-	" I,	"	623
Richland	-	$10+$	-	-	" III,	"	:21
Wayne	-	18		-	" III,	"	531
Stark	-	- 10-100	-	-	" JII,	"	155
Mahoning	-	45	-	-	" 1II,	"	799

[^0]These figures shew plainly that we have no grounds for making any enormous estimates of the crosion of our State and the lake
district by the continental glacier. Omitting the two measurements in Summit and Cuyahoga counties, which as shown above in the note are altogether exceptional and accidental, and taking the mean depth wherever two extreme limits are given, we find that the average thickness of the drift over all these northern counties of Ohio scarcely exceeds 50 feet. The thinning out to the southward of the clays and sands of which it is composed is moreover easily noted even in the list above quoted, the upper names being those of counties near the lake and the lower of those more distant.

From the facts and figures now given we may draw the inference that as the mass of deposited glacial matter in northern Ohio does not exceed fifty feet in average thickness, and as this matter was mainly derived from the region lying immediately north of Ohio, therefore the average thickness of surface-erosion accomplished by the great ice-sheet during its whole duration did not overpass this limit.

It may be urged that some of this material has since been removed by streams. This amount, however, except in the streamvalleys is not large. On the uplands and plateaux this factor in the problem may safely be disregarded, and these are not the places in general where the greatest depth is found. Moreover an allowance in the opposite direction must be made for that portion of the drift which was brought from land yet farther north in Canada. Though not very large in comparison with the whole it is large enough to form an important offset to the portion removed by the action of fresh watcr.

Returning now to the line of argument followed above, we may conclude if the great continental glacier prevailing over the lake region and Ohio for so many ages, possessing a thickness of many hundred feet (which can scarcely be doubted) and probably moving at a rate (for a glacier) exceedingly rapid, could only remove from the surface a layer of earth and rock (surface soil included), not exceeding fifty feet in thickness, that the local glaciers in the lake-beds, thinner and smaller by far, shorter-lived and probably less rapid in movement, must have been utterly powerless to scoop out those beds to their present depth. Is it rational to believe that one of these puny ice-tongues lying on the site of Lake Ontario, could excavate in a short time to the depth of $4 \check{5} 0$ feet, those rocks from which its gigantic ancestor of longer duration could only scrape off at most some fifty feet?

And with yet stronger reason we may ask, "Is it possible that similar ice-tongues-a mere fringe of the great Canadian ice-sheet -could cut out the valleys of Michigan and Huron 800 and 900 feet below their present water surface and more than 1500 feet below much of the surrounding land, and thus perform from sisteen to thirty times as much work as the massive grinding continental ice-sheets have performed?" Surely this is varying the effect inversely with its cause.
Summing up the results thus obtained we find :-
1st. That the objection founded on the beaded nature of the old Mohawk valley is overruled by high authority in Physical Geography and by the phenomena of existing rivers.

2nd. That the objection drawn fror. the great and unequal depth of the lake-beds is answered by appealing to the elevation of the northern part of the contiuent at the time referred to.

3rd. The same reply meets the objection drawn from the want of sufficient fall for the old river in question.

4th. That Dr. Newberry's' ${ }^{\text {'own }}$ theory of the origin of these lake-beds is open to the following very serious objections, if not indeed altogether untenable.
a. The evidence afforded by glacial striae in the bed of Lake Erie is not sufficient to prove the excavation of the whole of that valley by the action of ice.
b. The same is true of similar markings in the bed of Lake Ontario.
c. Instead of attributing to the action of local glaciers the excavation of the deep vales of Michigan, Erie, Huron and Ontario, we are compelled to assume the pre-existence of these valleys as the only possible cause of the local glaciers; for the existence of such local glaciers without the lake-beds, and perhaps with them, is incompatible with the laws of the motion of ice.
d. We cannot assume the erosion of the great continental iccsheet at more than 50 feet over the lake district.
e. Granting for the sake of argument the existence of these local glaciers it is utterly impossible to suppose them capable of eroding broad valleys 500 to 1000 feet deep, for this would be to suppose them capable of accomplisning many times as much work as their more massive continental predecessor had performed.

APPENDIX.

As any contribution however small to the Preglacial Geography of the lake region and the course of the old "Mohawk must possess some value I add the following:

During the summer of 1877 when on the St. Lawrence I met one of the inspectors on the new Welland Cannal. In the course of conversation he mentioned that some difficulty had been found in choosing a site for Loock No. 1, Port Dalhousie. Visiting the spot soon afterwards he explained to me that where it was at first intended to construct this lock no rock could be found by probing the soil except at the southern end. It was consequently determined to remove the site back from the lake about the length of the lock in order to place it on a solid foundation. Lock No. 1, therefore now stands upon the very edge of a buried eliff, its north-western corner projecting beyoud the line and being supported ou piles. The same gentleman also informed me that at the distance of a few feet from the lock-sill towards the lake a rod was sunk to the depth of forty feet through soft ooze or peat without finding anything solid.

It may be that we have here another small link in the chain of evidence which will some day map out for us the Preglacial Mohawk. This buried cliff it should be remembered is below the water level of Lake Ontario and consequently more than 300 feet below the surface and about 100 feet below the bottom of Lake Erie, and of the buried channel of Detroit. It would therefore appear as if there may have been a swift current or possibly rapids between these valleys in Preglacial times as there is now.

NOTE ON RECENT CONTROVERSIES RESPECTIN EOZOON CANADENSE.

By Principal Dawson, LL.D., F.R.S., \&c.

In a recent article, published in the American Journal of Science, I have remarked that
"Eozoon Canadense has, since the first announcement of its discovery by Logan in 1859, attracted much attention, and has been very thoroughly investigated and discussed, and at present its organic character is generally admitted. Still its claims are ever and anon disputed, and as fast as one oppoient is disposed of, another appears. This is in great part due to the fact that so few scientific men are in a position fully to appreciate the evidence respecting it. Geologists and mineralogists look upon it with suspicion, partly on account of the great age and crystalline structure of the rocks in which it occurs, partly because it is associated with the protean and disputed mineral Serpentine, which some regard as eruptive, some as metamorphic, some as pseudomorphic, while few have had enough experience to enable them to understand the difference between those serpentines which occur in limestones, and in such relations as to prove their contemporaneous deposition, and those which may have resulted from the hydration of olivine or similar changes. Only a few also have learned that Eozoon is only sometimes as ociated with serpentine, but that it occurs also mineralized with loganite, pyrozene, dolomite. or even earthy limestone, though the serpentinous specimens have attracted the most attention, owing to their beauty and abundance in certain localities. The biologists on the other hand, even those who are somewhat familiar with foraminiferal organisms, are little acquainted with the appearance of these when mineralized with silicates, traversed with minute mineral veins, faulted, crushed and partly defaced, as is the case with most specimens of Eozoon. Nor are they willing to admit the possibility that these ancient organisms may have presented a more generalized and less definite structure than their modern successors. Worse, perhaps, than all these, is the circumstance that dealers and injudicious amateurs have intervened, and have circulated specimens of Eozoon, in which the structure is too imperfectly preserved to admit of its recognition, or even mere
fragments of serpentinous limestone, without any structure whatever. I have seen in the collections of dealers and even in publio museums, specimens labelled "Eozoon Canadense," which have as little claim to that designation as a chip of limestone has to be called a coral or a crinoid."*

These statements were called forth by the appearance of a learned and well illustrated paper, disputing the animal nature of Eozoon, by Prof. Karl Moebius of Kiel, and in which, on the evidence of several specimens given to him by Dr. Carpenter and myself, he assumes that he has "investigated more closely and described more minutely" than any other naturalist, its forms and structures, and that by his labours Eozoon has been "suo. cessfully eliminated from the domain of organic bodies."
Since the appearance of this memoir, and of my criticism upon it, Moebius has published in the same Journal a reply, which has appended to it a note by the principal editor, closing the controversy in so far as that Journal is concerned, by stating that the editor had pledged himself that no rejoinder would be permitted. This, of course. excludes the advocates of the animal nature of Eozoon from any farther argument, in so far as the principal organ of scientific opinion in the United States is concerned; and it is partly for this reason that I appear at present in the attitude of a defender of Eozoon on its own soil, instead of, as heretofore, carrying the war into the enemy's country.

Still later than this reply of Moebius, are two additional papers of still more remarkable character. For, while Moebius is content to take up a purely negative position, these undertake to account for the structures of Eozoon by other causes than that of animal growth, and by causes altogether inconsistent with one another. The first of these is an abstract of a memoir "On the origin of the mineral, structural and chemical characters of Ophites and related rocks," presented to the Royal Society of Londou by Professors King and Rowney. The second is a quarto pamphlet of 96 pages with 30 plates, by Dr. Otto Hahn, entitled "Dic Urzelle," the "Primordial cell."
I confess I do not regard either of these papers as of any scientific value, in so far as Eozoon is concerned, but as they are at least bold and confident in their tone, and emanate from quarters which may be supposed to give them some little influ-

[^1]eace, I think it well to notice them along with the reply of Prof. Moebins.

Mocbius has thought proper to take advantage of the security guaranteed to him by the Editor of the American Journal, to reply to my courteous and somewhat forbearing criticism, in a manner which relieves me from any obligation to be reticent as to his errors and omissions. I shall, however, confine myself to those points in his rejoinder which seem most important in the interest of scientific truth.

1. With reference to the geological and mineral relations of Eozoon, I cannot acquit Moebius of a certain amount of inexcusable ignorance. More especially, he treats the structures as if they consisted merely of serpentine and calcite, and neglects to consider those specimens which, if more rare, are not less important, in which the fossil has been mineralised by Loganite, Pyrozene and Dolomite. If he had not specimens of these, he should have procured them before publishing on the subject. He neglects also to consider the broken fragments of Eozoon scattered through the limestorics, and the multitudes of Archeoo. spherince lying in the layers of deposit. Nor can I find that he has any clear idea how the structures of Eozoon could have been produced otherwise than by living organisms. Still farther, he makes requirements as to the state of preservation of the proper wall and canal system which would be unfair even in the case of Tertiary or Cretaccous Foraminifera injected with Glauconite, how much more in the case of a very ancient fossil contained in rocks which have been subjected to great mechanical and chemical alteration.
2. In his reply he reiterates the statement that Eozoon is so different from existing Foraminifera, that, if this is a fossil, we must divide all organic bodies into " 1 . Organic bodies with protoplasmic nature (all plants and animals); and 2. Organic bodies of Eozoonic nature (Eozoon, Dawson)." Without referring to the somewhat offensive way in which this is stated, I need only say that Dr. Carpenter has well replied that the structures of Eozoon are in no respect more different from those of modern Foraminifera than those of many other old fossils are from their modern representatives. All palæontologists know, for example, that while we cannot doubt that Receptaculites, Archeoocyathus, and Stromatopora are organic, and probably Protozoan, it has proved most difficult to correlate their structures with those of modern animals.
3. I took occasion to mention certain errors of Prof. Mocbius, due to his limited information on the subject of which he treats. He admits two of these, which were particularly pointed out, but taunts me with not producing others. This, however, would not have been difficult had I been disposed to enter in detail into a task so ungracious. Another example may be taken from his plate XXXV, in which he represents together, and obviously for comparison, portions of the pores or tubuli of the modern Polytrema, and an imperfect fragment of the proper wall of Eozoon, and this more especially, as appears in the text, to show the comparative fineness of the latter. But the specimen of Eozoon is magnified only 75 diameters, while that of Polytrema is magnified 200 diameters, or in the proportion of 5625 to 40,000 . Again he has affirmed and repeats in his reply that the casts of the canal systems of Eozoon do not present cylindicical forms but are "fat and irregular branched stalk-like bodies." If they appeared so to him, he must have possessed most exceptional specimens. Some canals, especially the larger, no doubt have flattened forms, particularly at their points of bifurcation; but this is comparatively rare, more especially in the vastly numerous minute canals which are more frequently filled with dolomite than with serpentine. I have indeed been able to detect only a few out of very numerous specimens in which the majority of the casts of canals are not approximately round in cross section, even in the case of the larger canals. It is a question also if some flattening may not be due to pressure; and there are flat stolon-like tubes which can scarcely be called cabals.*
It occurs to me here to remark that Mocbius secms to have overlooked the extremely fine canals injected with Dolomite that fill the upper and thinuer calcite walls of the better preserved specimens, and which in the thinner walls are nearly as fine as the tubuli of the proper wall, into which in many eases they almost insensibly pass where these last are themselves filled with dolomite. Possibly these structures have not been present in his specimens, or may have been destroyed or rendered invisible by his methods of preparation, and if so this would account for

[^2]some of his conclusions. These fine canals are best seen in wellpreserved serpentinous specimens free from chrysotile veins, and etched with very dilute nitric acid. They have scarcely been done justice to in any of the published figures either of Dr. Carpenter or myself, and do not appear in those of Prof. Moebius.
4. In reply to my objection that he has confounded the proper wall of Eozoon with veins of chrysotile, and that both are represented in his figures, he challeages me to point out which of the latter are chrysotile and which proper wall. Of course doing so will be of little importance to the argument, but I may indicate his figs. 18, 43,44 and 48 as in my opinion taken from portions of proper wall, and fig. 45 seems to show the proper wall along with chrysotile. I may farther now point out to him that even Profs. King and Rowney in their recent paper admit that the proper wall is not continuous chrysotile, but consists of "aciculæ separated by calcareous interpolations," though they try to account for this structure by complicated changes supposed to have occurred in veins of chrysotile subsequently to their deposition.

In truth, the chrysotile veins cross all the structures of Eozoon, and those specimens are best preserved which have suffered least from this subsequent infiltration of chrysotile into cracks formed apparently by mechavical means. T!!is has been amply shewn in figures which I have already published, but J have now still more characteristic specimens which I hope may yet be eugraved.
5. Prof. Moebius sucers at my statement that when the proper wall of Eozoon is merely calcareous and not infiltrated, its structures are invisible, and that in many cases it has become opaque, while in thick slices its structure is always indistinct; but he should know that this is the case with all fine organic tubuli or pores in fossils penctrated with mineral matter, and emiuently so with fossil Nummulites, as the researches of Carpenter have loug ago demonstrated, and as any one possessing slices of these fossils can see for himself. I may add that in some decalcified specimens in my possession, where the proper wall has been wholly of calcite, it is indicated merely by an emphty land intervening between the serpentine cast and the supplemental skeleton filled with casts of canals.
6. Lastly, he seems to think that no offence should be taken at his insinuation that the figures printed by Dr. Carpenter and myself are idealized or untruthful representations, aud he repeats the accusation in the following terms: "The individual peculi-
arities of diagrams should not exceed the limits of the known variability of the real specimens, but iu the Eozoon diagrams of Carpenter and Dawson these limits are exceeded." There could not, I think, be a more plain charge of wilful falsification, and this is made by a naturalist who discusses Eozoon without having taken the pains either to study it in situ, or to avail himself of the large collectious of specimens which exist in England and in Canada. I can only reply that while I have been unable to figure all the peculiarities of the canal systems of this complicated aud often badiy preserved fossil, I have cedeavoured to select the most characteristic specimens; and that my representations are pribcipally, nature-prints, photographs, and camera tracings, some of the latter by artists in no way interested in Eozoon. Dr. Carpenter's representations appear to me to be equally truthful. Neither of us have taken the trouble to represent badly preserved or imperfect specimens, any more than we should do so in the case of any other fossil, when better examples were procurable.
In convection with this, Mocbius seems to think that in my criticism I should have gone into all the details into which he enters. This was unnecessary, except to expose his principal errors or mis-statements. It could not have been done without publishing a treatise as long and as expeusively illustrated as his own; and this I should prefer to do in some other form than as a mere reply to him; and with reference to much larger and more varied collections than those at his command. It is to be hoped that his expectations will be satisfied in this respect by a monograph which Dr. Carpenter proposes to undertake.

He is good enough to add that if I will send him more and better specimens, he will willingly "forgive" me for " disappointing" him aud other naturalists. I must say that I cannot purchase forgivenuess on such terms, but if he will take the trouble to visit Canada and inspect my collections, he shall have every opportunity to do so.

I think it is only due to the interests of palxontological science to add here, that I attach more blame to the editors of the German publication "Palæontographici," in which his memoir appears, than to Prof. Mocbius himself. We have been in the habit of regarding this publication as one in which the matured results of original observers and discoverers are given, and when it devotes 40 costly plates to the labours of a naturalist who is not of this character, in so fir as Eozoon is concerned, and who has
not even studied the principal collections on which other naturalists equally competent have based their conclusions, they incur a responsibility much more grave than if they were merely the conductors of a popular scientific journal, open to cursory dis. cussions of controverted points. They cannot relieve themselves from this responsibility till they shall have published a reallyexhaustive description of Eozoon by some one of the original workers on the subject. This is the more necessary, since if Eozoon is really a fossil, its discovery is one of the most important in modern palæontology, and since its claims cannot be settled except by the most full investigation and illustration.

The second paper referred to above contains little that is new, being a re-habilitation of that hypothesis of "Methylosis," or chemical transmutation, which the authors have already fully explained in the Transactions of the Irish Academy and elsewhere. Its bearing on Eozoon is simply this:-that if any one acquainted with geological and chemical possibilities can be induced to believe that the Laurentian limestones of Canada are "Methylosed products," which originally "existed as gneisses, hornblende schists, and other mineralised silacid metamorphics," he may be induced also to believe that Eozoon is a product of merely mineral metamorphism.

When we consider that these great limestones have been so fully traced and mapped by Sir William Logan and his successors on the Geological Survey; that, some of them are several hundreds of feet in thickness and traceable for great distances, that they are quite conformable with the containing beds, and themselves exhibit alternating layers of limestone and dolomite, with layers characterized by the presence of graphite, serpentine, and other minerals, and subordinate thin bands of gneiss and pyrosenc rock, the idea that they can be products of a sort of pseudomorphism of gneisses and similar rocks, besomes stupendously absurd, and can only be accounted for by want of acquaintance with the facts on the part of the authors.

To explain the structures of Eozoon, however, even this is not altogether sufficient, but we must suppose a peculiar and complex arrangement of laminae, canals. and microscopic tubuli or fibres simulating them, to be produced in some parts of the limestones and not in others; and this by the agency of several different kinds of mincrals.

In other words we have to suppose a conversion on a gigantic-
scale of gneiss into dolomite, limestone, graphite, serpentine, and other minerals, consisting for the most part even of different elements, and this at the same time or by still more mysterious subsequent changes, producing imitations of the most delicate organic forms. The mere statement of this hypothesis is, I think, sufficient to show that it cannot be accepted either by chemists or palxontologists, and it only serves to illustrate the difficulties which Eozoon presents to those who will not accept the theory of its organic origin.
Dr. Otto Hahn regards the matter from an entirely different point of view. He has himself visited Canada, has collected specimens of Eozoon, and now proposes to effect an entire revolution in our ideas of the palæontology of the Eozoic rocks.
In a former paper he had maintained that Eozoon is altogether of mineral origin, that its serpentine is hydrated olivine, and the canal system merely cracks in calcite injected by the expansion of this mineral. This hypothesis he now finds untenable, and he regards Eozoon as a vegetable production, or rather as a series of such productions. He regards the laminæ as petrified fronds of a sea-weed, and the canal systems as finer alge of several genera and species. Not coutent with this, he describes as phants other forms found in gramite, gneiss, basalt, and even meteoric iron, and others found included in the substance of crystals of Arragonite, Corundum and Beryl. All these are supposed to be algex of new species, and science is enriched by great numbers of gencric and specitic names to designate them, while they are illustrated by thirty plates representing the quaint and grotesque forms of these objects, many of which are obviously such as we have been in the habit of regarding as mere dendritic crystallisations, cavities, or impuritics included in crystals.
Among other curious discoveries the author refers to a plant which he honours me by naming Photophoba Daussoni, and which he discovered in certain "amoeba-like" nodules of flint found in the Silurian of Montreal, and used to adorn the grounds of MeGill College. I was puzzled for some time by this, until it occurred to me that at the time of the Doctor's visit some Eoglish gravel had been laid on our College terrace, and that several heaps of large irregular flints from this gravel had been gathered in front of the buildings. These had apparently afforded the new plant in question. Some other plants stated to be found in hornblende from Montreal mountain, and in limestone said to be called "fancy stone," are more difficult to account for.

All this plant theory, advanced with the utmost confideuce, has no evidence whatever except the assertion of the author and his belief as to the imperfect character of the observations of his predecessors. The following extracts, kindly translated by our colleague Dr. Sommer, will serve to show his mode of treatmeut:-
"I was convinced of the inorganic nature of Eozoon, or at least of the fact that it could not be an animal. But the fine "canal systems". as Dr. Carpenter had named them, were the source of much anxious thought on my part, and this was necessarily augmented by the following consideration, of which I could not rid myself. "Gneiss is formed by water and therefore a sedimentary rock. Its layers of limestone must contain the first organic enclosures; for, life cannot begin with the silurian rocks." This is a hypothesis, but, like many others that are true, one of which I have not yet rid myself."
"It happened, then, that I had to go to Canada, in consequence of an invitation from the Camadian Government. ${ }^{\text {. I visited Dr. Dawson }}$ and thence went to Côte St. Pierre, Petit Nation, there I saw the stratified layers and obtained a great number of pieces of Eozoonic Limestone and of Eozoonic specimens. On my return I examined the material. The result of my examinations I publish here: the Limestone of the Laurentian Giviss of Canala, the oldest sedimentary strata of our eurth, contains a plant organization belonging to the family of the Alg:c."
"Till now there have been but few new species established different from the modern; lut, I am persuaded, that by continual researches, the number will soon be increased. All these plants, I found enclosed in the true "Eozooic Rock," which I shall henceforth call Eophyllic Limetonc. I shall draw attention to the words that my honorable friend Dr. Dawson also used: "all is not Eozoon!" \dagger

Then follows a description, condensed from Canadian reports, of the Laurentian formation, after which occur the following statements:-
si It is incomprehensible that on looking upon this form, a plant did not occur to the mind, at unce. It can only be explained thus. that, at first, when such pieces were not jet discovered, they were so prepossessed by the idea of Foraminifera, that it pervaded all their investigations; while the opponents, (myself included) arrived at once at the obvious conclusion; namely that not being animal it was therefore mineral."

[^3]"I found the species which I first culled Eophyllum in a piece of Eozoon, in the first white band of limestone overlying a layer of serpentine; in other words between two layers of serpentine. Then first this question occurred to me: Are not the whole lumps of Eozoon plants? I was forced to yield to the inference after I had exposed, by applying Hydrochoric acid to the limestone, some larger lamelix which were in connection with serpentinic layers; indecd, the forms are so permanent and so constantly reappearing that they camnot be explained otherwise. Of course with this there was gained the best argoment against the animal theory; for, hitherto the discovered species of Algie have never been found in either stones or shells. This plant belongs to the family of the Alge. They either rest immediately upon dolomite and gneiss, or, are found in the proper Eophyllous limestone, i.e. in the layers of serpentine limestone, between the large strata of dolomite and serpentine. They are, however, not only to be found in the limestone, but also in the serpentine of the strata. No plants or but few, are found in the thick layers of serpentins which enclose the Euphyllous limestone; certainly none in the lowest. Some of them may be seen with the naked eye, while with the microscope, we come to the smallest conceivable forms. Being replaced by silicates, they may be exposed by the application of acid to the limestone. This done, the plants make their appearance as shining white stems, calyses, and leaves. In thinly ground plates, they appear a yellowish brown. This, probably, is the reason that Mobius describes their color as being a light brown. In reality, it is the refraction of the light in the opaque masses." *
"There was scarcely ever a more dificicult task given to natural science, than the determination of the nature of "Eozoon." When I made my first amomeement of Eophyllum in the "Ausland" I little thought that the large ribbons of serpentine were also plants. I had already haif-finished this work after my origimal plan, when I came across a defective specimen of rock, in which, in consequence of its defectiveness, the serpentiue parts were very clearly distinguishable.
"I looked at it over and over again, till it struck me that the sarcode-chambers were nothing but cells of plants. Thus the fate of the mieroscopist is decided. What others can see with the naked cye he does not see at all. Then came the more dificult part : the examination of the case. Now, I had no more doult. And in this manner only facts become clear. The ribbons of serpentine which constitute that which is called Eoxoon, belong to an alga with broad leaves-if the expression is permitted-which radiating from one point arranges itself in regular forms. The basal-cell rests upon serpentine or dolomite. Roots I found only in one case, of which, however, I am not sure. The limestone is the replacing-materini. The germ-cells

- Thus far, the author refers principally to the serpentine casts of the canal system.
are still visible in it, for in ground pieces for the microscope they still shine through. This may be proved by dissolving the limestone by means of acid. Here the leaves are perfectly covered with germcells, the " warkenansatze" of G ambel. This is still clearer where er the plant has been altered into dolomite. The brood-cells are then visible withont the aid of the microscope. There appear, also, calyxlike cells, clear as water, which have weathered out upon the dolomite.
"But by far the most beautiful are the limestones in which the plants are changed, partly into serpentine, and partly into mica. The same cells are observed in a spar, changed into copper and malachite, visible to the naked eye. The camal-systems, therefore, of the "intermediate skeleton" are the microscopical plants which, partly, are simply of a limestone nature or have grown firmly upon large alge, or are deposited there, dead. As I remarked in the beginning, a key to this new creation is, at all events, necessary. I say new, for it is entirely new to our imagination. The microscopical forms constitute this key. Now from these safe premises. we may easily come to a conclusion; but I must here caution against the exclusive use of ground microscopical plates.* It is only by mere accident that, by this means, a view is gained ; hundreds of them may be made, but only a very trained eye can decipher them."

It seems scarcely necessary to criticise the above statements, as it is probable that very few naturalists will be disposed to accept the supposed plants described by Dr. Hahn as veritable species. It may be observed, however, that in regarding the thick plates of serpentine, interrupted, attached to each other at intervals, penetrated by pillars of calcite, and becoming acervuline upward, as fossil algæ, he disregards all vegetable analogies; while in supposing that the calcite is a filling, and that the delicate fillings of canals coutained in it are fine thread-like alga, he equally asserts what is improbable. Farther, no vegetable structure or remains of carbonaceous matter have been discovered in the serpentine. Had he discovered these supposed regetable forms in the graphite of the Laurentian, this would have been far more credible.

Hahn's paper, however, suggests one or two points of interest respecting $E 0 z o o n$, which have perhaps not been sufficiently insisted on. One of these is the occurrence of rounded "chamberlets" in the calcareous walls. These are his "germ-cells,"

[^4]and they sometimes present the curious character that they are hollow vesicles of serpentine filled with calcite, and when these have been cut across in making a section, and the calcite has been dissolved out with an acid, they present very singular appearances. They may in some cases have been germs of Eozoon, or smaller foraminiferal of the type of Archaespherinee, overgrown by the calcareous walls. Lt is farther to be observed, as I have also elsewhere remarked, that the serpentine filling the larger spaces between the calcareous lamine sometimes shows indications of deposit as a lining of the cells, and in some specimens this lining has not filled the original space but has left a drusy cavity afterwards filled with calcite.
Again, in parts of the canal system, especially when filled with dolomite, there occur little disc-like bodies or trumpet-shaped terminations of canals. These, I fancy, are the calyx-like objects figured by Hahn. Their precise significance is not known, further than that they may represent the expanded ends of canals. Another appearance deserving of notice is the occurrence of portions of specimens of Eozoon in which little or no serpentine occupies the chambers. In this case the lamine have either been pressed close together, or the chambers have beeu fill-d with calcite not distiuguishable from the walls, in which, however, the casts of groups of eanals often occur, and might then be more readily mistaken for alge than when they occur between lamine of serpentine.
Lastly, I have recently found in a specimen oi Eozoon, structures which may possibly indicate contemporancous plants. I have previously remarked the occurrence of deep pits or cylindrical cavities in some specimens of Eozoon, and have supposed that they might be of the nature of oscula. Those now referred to are, however, more definite than any previously observed. They are cylindrical perforations penetrating the whole thickness of the mass, and filled with culcite. One of them is simple, another seems to bifurcate. They are about an eighth of an inch in diameter, and present indications of alternate swellings and contractions. In approaching them the plates of serpentive split into two, and then unite, forming a continuous close wall of sarcode. This proves that these tubes are not perforations of any boring animals. They must be either definite canalls penetrating the mass while living, or must represent cylindrical stems of algæ or other perishable orgauisus, around which the Eozoon
has grown. As they are only exceptionally seen, the latter supposition is perhaps the more probable. Yeculiarities of this kind, to which perhaps heretofore too little attention has been given; are of some importance with reference to the controversies respecting Eozoon.

It may be said, in connection with the attacks in question, that if Eozoon is an object of which so many and strange explanations can be given, it is probable that no certainty whatever can be attained as to its real nature. On the other hand it is fair to argue that, if the opponents of its animal nature are driven to misrepresentation and to wild and incoherent theories, there is the more reason to repose confidence in the sober view of its origin, consistent with its geological relations and microscopic characters, which has commended itself to Carpenter, Gumbel, Rupert Jones, Sterry Hunt, and a host of other competent naturalists and geologists. For my own part the arguments adduced by opponents, and the re-examination of specimens which they have suggested, have served to make my original opinion as to its nature seem better supported and more probable; though of course I would be far from being dogmatic on such a subject, or claiming any stronger conclusion than that of a reasonable probability, which may be increased as new facts develop themselves, but cannot amount to absolute certainty until the discovery of Jaurentian rocks in an unaltered state shall enable us to compare their fossils more easily with those of later formations.

In point of fact, the evidence for the organic nature of a fossil such as that in question, is necessarily cumulative, and depends on its mode of occurrence and state of mineralisation, as well as on its general form and microscopic structure ; and it is perhaps hopeless to expect that any considerable number of naturalists will be induced to undertake the investigations necessary to form an independent opinion on the subject. It may be hoped, however, that they will fairly weigh the evidence presented, and will also take into consideration the difficulty of accounting for such forms and structures except on the hypothesis of an organic origin.

PROCEEDINGS OF THE NATURAL IISTORY SOCIETY OE MONTREAL:

The first regular meeting for the Sessiun 1879-80, was held in the Sneiety' Rinom= on Monday evening, Oct. 27 th. The minutes of the list mereting were read and confirmed. An eisgle presented to the Society by J.J. Gibb, E-q. of Como, and mounted by Mr. Pasmore, was exhibited and carefully esamined.

There being a very small attendance, owing to some misunderstamliug as to uight of meeting, a general discussion of the affairs of the Sneiety was held, after which the meeting adjourned.

The second meeting was held on the evening of December 1st, the President, A. R. C. Selwyn, Eat., F.R.S., in the chair. The minutes of last meeting being read and approved, the following sentlemen were elected members of the Society:-Dr. Angus MacDonnell and Messre. Wm. Crowther, I. Bamburgher, and W. J. Morris.

Prineipal Dawson then read a paper entitled "Recent Controversies respecting Eozoon." In this paper the Principal discussed the memmir of Prof. Karl Moebias, of Kiel, published in the "Palaontographica," and a reply by Moebius to a previous criticism; also am abstract of a memoir presented to the Royal Soceety of London by Professor: King and Rowney, of the Queen's Hniversity of Treland, and a memoir lately published by Dr. Otto Hahn in Germany. Ho referred to the points in which the several writers in question had misapprehended the structures and relations of En:oon, and illustrated these by specimens and drawings.
At the close of the paper, Dr. T. Sterry Hunt stated that inammel as Principal Dawson had mentioned his name in connection with the subject of E_{0} oion, he might be permitted to say that he thought quite too much notice had been taken in the paper of the views of Hahn and others, whose statements with regard to Eo:oon were really too absurd to be worthy of consideration. On the occasion of his reeent visit to Europe (in 1878) he had carricd with him a collection of specimens of bozaon, placed in his hands by Principal Dawson. The collection had been studied by Kirkel and Renard, and both these
most distinguished observers in the field of mieroscopic petrography had expressed their belief in the orgamic chanacter of Eozoon Cunculense.
(Principal Dawson's paper appears in full in this number of the Nutturalist.)

There was also exhibited during the erening a collection of rocks forwarded by Albert J. Hill, Esq., C.E. These are an extensive series of rock specimens representing the cutting; on the Camada Pacific Railway between Kaministiquia and the English River, a distance of ninety-three miles. They consist of a variety of guesses, homblende sehists, and other highly crystalline recks, with clay slates, quartaites, chlorite slates and serpentine, and belong to the Iluronian and Laurentian series of that region.

NOTLS ON A FEW CANADIAN ROCKS AND MINERALS.

By [. .J. Anaramatos, B.A., D'h. D.'

I.-on some of the mortes of moxtreal.

There are probably few regions of such limited extent that furnish a greater variety of interesting eruptive rocks than Montreal and its vicinity. Jhis fact long :go attracted the attention of Dr. Hunt, and though many of the roeks were ably described by him, there still remains a wide field for investigation, both as regards the character of the rocks and their relative ages. Numerous facts bearing upon these points have recently been accumulated, but many additional det:ils are required before the subject can be fully discussed.

In the Geology of C'ancele the intrusive rocks of Montreal are deseribed as dolerites, trachytes and phonolites, the first af these constituting the main mass of Mount hoyal as well as numerous dykes, while the others occur only in dykes, which are stated to cut the dolerites in some instances. No mention is, however, made of the numerous dykes of diorite which occur, and which,

[^5]in some eases, have also been observed to cut the dolerite of the mountain. These diorites vary considerably in their characters, ranging in colnur from light to dark gres, and in specific gravity from 2.75 to over 3.* They are usually medium to fine grained in texture, and often porphyritic with crystals of hornblende. Sometimes, too, they are amyedaloidal, the cavitics containing calcite, zeolitic minerals, and rarely epidote. They all appear to contain carbonates, the quantity of which, however, varies in different cases. Their principal constituents are hornblende, it triclinic feldspar, and titanic iron; but they commonly contain other minerals, the most important of which is, perhaps, mica. Augite is also sometimes present. The mica is occasionally so abundant that the rock becomes the mica-diorite of some litholocrists.

A dyke occurring in the reservoir extension consists of what may probably be resurded as a typical varicty of the diorites referred to above. It is dark grey in colour, rather fine grained, but still showinge, without the lens, quantities of acicular prisms of a black mineral which proves to be hornblende. The dyke was about two fect thick and very homogencous, showing neither porphyritic nor amygdaloidal texture. Specimens sliced and examined with the microscope are seen to consist essentially of homblende, a triclinic feldspar, and numerous opaque grains of titamic iron. Mical apatite, calcite. and a little of a green choritic mineral, are also commonly present. The hornblende appears mostly fresh, though in phaces slightly altered to the chloritic mineral just mentioned. It is of a rich brown colour and strongly dichroic. In eross sections the cleavage of the prisms is often beautifully displayed. The feldspar is in part altered, but in places fresh. It is triclinic, and judging from the unusually basic character of the diorite, must be a feldepar low in silica. The black mineral oceurs mostly in irregular grains, but here and there in curious fantistic forms after the manner of titamic iron ore. That it consists mainly of this mineral. and not of magnetite, is crident from the considerable preportion of titanimm dioxide shown by the analysis, and aho from the fact

[^6]| 2.74! | $0 \cdot 9.4$ | $2 \cdot 93: 3$ | 8000 |
| :---: | :---: | :---: | :---: |
| 2-scs | $2 \cdot 97$ | $4 \cdot 917$ | |
| $\because \cdot \mathrm{Suj}$ | $\because 07$ | $\because \cdot 0.7$ | |

that when the rock is pulverised the magnet removes almost nothing. The specific gravity of different. fragments of the rock varied from 2.927 to 3.005 . An analysis was made some time ago, and, as the composition appeared unusual, search was made for deseriptions of similar rocks from other localities, but none could be found. Since then, however, Mr. G. W. Hatwes hats described rocks of wonderful similarity from Campton, in the State of New Hampshire.: An analysis, by Mr. Hawes, of one of these diorites is given under II. for comparison with I., which is an amalysis of the diorite from Montreal just deseribed :-

	1.	II.
Siliciz	$40 \cdot 95$	+1.9.4
Alaminat	16.45	15:36
Ferric oxide \dagger	1:347	$: 27$
Ferrous oxide.	...	9.89
Mangmous axide.	$0.33 \ddagger$	0.25
Titanimm dioxide.	3.39	4.15
Lime.	10.35	9.47
Maymenia	6.10	\%. 01
Potish.	1.25	0.19
Sodia	4.00	5.15
Phosphoris Acid	0.29	
Carhm dioxide.	\cdots	2.47
lass on ignition.	3.8 .4	: 2.2 ¢

On boiling I. with hydrochlorie acid for several hours, and filtering, the insoluble residue after ignition amounted to only 51.50 per cent. Although the amount of carbon dioxide was not determined, it must constitute a large proportion of the loss which the rock sustains on ignition; for acetic acid dissolves 4.02 per cent. of lime and 0.67 of ferrous oxide, and these bases, if calculited as carbonates, would require 3.57 per cent. of carbon dioxide. The basic character of the rock, and the extent to which it is dissolved by hydrochloric acid, seem to indicate a feldspar of the nature of anorthite. In that case a considerable proportion of the alkalies must belong to the hornblende; but

[^7]this is not improbable, as some varieties of hornblende are known to contain several per cent. of alkalies.

Another dyke, occurring within a few yards of that just described, is also of much interest. It is dark grey in colour, and, like the last, shows numerous acicular prisms of hornblende penetrating the mass in all directions. Here and there macroseopic scales of dark brown mica are seen, and the rock is dotted with numerous spots-oceasionally as much as a quarter of an inch across-of a glassy, colourless to white mineral, which, on analysis, proves to be analcite. The specifie gravity of the analeite is $2.2 \overline{\mathrm{y}}$, and its composition as follows:-

Silici	5:30
Almminat	23:33
Ferric oxid	trace.
Lime.	0.64
Mastuesia	trace.
Sorda.	14.5. 4
Water.	8.47
	100.27

The mineral was ex:mined for potash, but none found. Before the blow-pipe it fuses easily to a colourless glass. Wheu thin sections of the rock are eximmined with the microscope the analcite appears very transparent and shows but few inclusions. It is traversed by aumerous reticulating cracks, but displays no characteristic cleavage. The feldspar is mostly dull, but here and there is sufficiently transparent to show its triclinic character with polarized light. The hornblende and titanic iron appear exactly similar to what occurs in the ordinary diorites of the locality. No augite has been observed, but one slide shows numerous green crystals, which are evidently pseudomorphs of serpentine after olivine.

In so far as its constituents are concerned, this rock appears to be somewhat similar to that which Tschermak, many years ayo, called teschenite, after Teschen in Austria. Tschermak regarded the analeite as one of the normal constituents of the rock, and this it a,azy possibly be in the present instance. On the other hand, the general similarity of the other constituents of the rock to those of the ordinary diorites of the vicinity would lead one to infer that the analeite is at secoudary mineral, and that the rock is simply an altered diorite.

The diorites described above traverse not only the Lover

Silurian limestones, but also the dolerite of Mount Royal. Rounded masies of the diorite of precisely similar character occur in the Lower Helderberg conglomerate or breceia of St. Helen's Island. Those, therefore, who would classify eruptive rocks according to age, would say that Mount Royal is a diabase and not a dolerite. Admitting such to be the case, how is it, the question may be asked, that dykes of phonolite are abruptly cut off by the diabase, when phonolite, according to the chronological theory, ought to be of Tertiary or more recent age? It may be that future investigations will solve the difficulty, but, in the meantime, the eruptive rocks of Montreal do vot seem to fall into their proper place in a classilication based upon age.

II. pyonene and uradite.

Of all the mineral associates of apatite in the Ottawa region, pyrosene is the most constint and the most abundant. In one form or another it is probably present in all the apatite deposits, excepting, perhaps, some of the calcarcous veins with imbedded apatite crystals. The most common variety appears to be an aluminous sahlite or lime-magnesia-iron pyroxene, but a lightcoloured variety, probably diopside or malacolite, is also common. Less frequently a beautiful black kind may be observed, excellent. examples of which have been obtained from the thirteenth lot of the eleventh range of Templeton. It is here associated with green apatite, white orthoclase, scapolite, graphite and small grains of titanite. The pyroxene crystals often contain little round or irregular mases of the orthoclase as well as scales of graphite, and their surfaces are sometimes coated by broad plates of the last-named mineral. The crystals differ from those of the more ordinarily occurring silhlite not only in colour, but also, to a certain extent, in chemical composition and form, having the faces of the inclined rhombic prism usually much more fully developed than the elinopinacoid, and presenting rather different pyr:umidal terminations. The observed planes are those of the inclined rhombic and rectangular prisms ∞ P. ∞ P ∞. [∞ Pos], combined with the pyramidal faces P. 2 P.-P. and the clinodome [$2 \mathrm{P} \infty$]. The faces of the rhombic prism are often developed almost to the exclusion of the ortho- and clinopinacoid. In some crystals the pyramidal planes are pretty equally developed, but in others much distorted. In the specimens examined the basal plane oP. is absent, but there is a very distinct basal cleavage.

The fracture varies from unceen to conchoidal. The colour is mostly black, but in some specimens blackish-wretu. On the edges or in thin splinters the mineral is translucent, and by trams. mitted light appears deep bottle-green. The lustre is vitreous, and sometimes almost splendent. The harduess is about six, and a crystal, of which the following is :m analysis, was found to have a specific gravity of $3: 385$:

Silica.	\%
Alumina	2.821
Ferric axide.	1::17
Perrous oxide.	4116.4
Magatoms cexide	$0: 329$
lime.	23:3:4
Mtushesii..	11.612
Loss min isnition.	0.17 .4

The analysis shows that this is an aluminous lime magnesia-iron pyroxene, and its composition and other characters seem to connect it with the variety sometimes called fassaite.

Examples of other varieties of pyroxene may be met with at almost any of the apatite mines. They vary much in colour, usually boung of some shade of green or grey, but sometimes white or brown. Lower down the Ottawa, in the augmentation of Grenville, a beautiful lilac pyroxene occurs, the crystals of which are sometimes imbedded in a pale lemon-yellow seapolite.

Now and then erystals of large dimensions are obtained. One, for example, from the township of Templeton is eleven and a half iuches in circumference, nine inches long, and weighs eight and one-third pounds. Large crystals have also been found on the sixth lot of the first rauge of Portland township, and a portion of one now in the museum of the Geological Survey weighs about twelve pounds. Some of them, though dull ontwardly are glassy within, and of a pale bottle-green colour.

The simplest forms observed are erystals of sahlite showing the following combination: $\infty \mathrm{P} \infty . \infty \mathrm{P} .[\infty \mathrm{P} \infty]$. Poo. P . Other plames are, however, frequently present, and among them -P. 3 P.-l': and op. Sometimes the erystals of sablite are striated longitudinally, and they are often much flattened in the direction of the orthodiagonal. One, for example, having a width of an inch aud cight-tenths, measured only seven-tenths of an inch in thickness; another, an inch and a half wide, was
five-cighthe of an inch thick. while a third measured two and a - quarter inches by eight-tenthe of an inch-giving an average width of over two and at half times that of the thickness.

In the township of 'Templeton well erystallised pyrosene is often found in veins unaccompanied by apatite, for which mineral. however, it has frequently been mistaken. As affording a goon example of this, a vein oceuring on the twenty fourth lot of the ninth range may be mentioned. Good crystals of more or hess grlassy, subtramslucent green pyrosene are here imbedded in a pale flesh coloured calcite. They vary in length from a couple of inches downwards, and are often well terminated at both eids. They are almost invariably flattened in the direction of the clino diagnial, and show the following plates: $\approx \mathrm{P} .[\approx \mathrm{P}<0] \cdot \approx \mathrm{P}$ α. Pos. P. 2 P.-1'. oP ., and snmetimes $[\because P s$]. The specific grarity of a crystal was found to be 3.2:32. Scales of mica sometimes coat the erystals, or are enclosed in them.

On lot thirten in the eighth range of 'Templeton a white to greyish-white or greenish-white pyrosene oceurs, small quantities of which were at one time mined under the supposition that the mineral was apatite. The erystals exhibit the same planes as those just described, but are less frequently flatemed in the direction of the clinopinacoid.

The enclosure of mica in pyroxene erystals, which has already been alluded to, m:y frequently be observed, and in some instances the seales or crystals of mica may be seen to be more or less symmetrically arranged with reference to the planes of the pyrosene. On the sevententh lot of the winth range of Templeton large erystals were observed, showing a central portion of dark sreen pyroxene surrounded by a zone of minute seales of mica, while the outer portion of the crystal was pale green pyrocene. Other inclusions also are common, and amons them calcite, apatite and orthoclasc. Not infrequently also pyroxene crystals are rounded as if by the action of some solvent, but this is much less common than in the case of apatite. Sometimes they have been cracked or broken in two, and the spaces between the pieces filled up with ealcite: apratite, or some other mineral. In one case, a crystal four inches in diameter was observed which had been firactured and re-cemented with apatite.

The most interesting peculiarity observed, however, is the tendency which the pyroxene in some localities exhibits to become altered into a kind of uralite. This mame was long ago
given by Gustav Rose to crystals possessing the form of pyroxene but eleavage and other chazacters of hornblende, and first observed by him in certain rocks from the Urals, which he termed uralite porphyris. The larger erystals were found to frequently contain a kernel of pyroxene, which in the smaller ones had entirely disappeared. In the case of pyroxene from Arendal in Norway also, lose observed a perfect tramsition from lustrous crystals showing uo apparent trace of hornblende within to others with drusy surfaces, in which no trace of augite could be detected. $\%$
Cry:als of pyrosene from 'raverselia afford mother example of a change of this kind. The unaltered crystals are deseribed as tramsparent and glassy, but on being altered become opaque, and often assume a silky lustre. In this opaque portion fine fibres ruming parallel to the principal axis begin to be developed, and, as the change advances, distiuctly recognizable individuals of homblende are formed, also parallel to the principal axis and looking like actinolite. \dagger

Of late years, by the aid of the microscope, it has been demonstrated that the development of uralite has taken place in many crystalline rocks, not only in Europe but on this side of the Athantic. In the case of diabase, the change of this kind has been deseribed by hosenbusch as follows: \ddagger-" The alteration processes to which the augite of diabase is subject is one of most varied character. Otdinarily, they begin with the formation of a vertical fibrous structure. At the same time the fibres often t:ike the form of well-defined uralite, and in this case the process commonly begins from the entire periphery of the augite, :ad proceeds thence towards the centre, in general more rapidly in the direction of the vertical axis than at right angles to it. So lons, then, as the process is not wholly completed, there remain in the interior portions of augite with irregular outline. lees frequently, or rather only in exceptional cases, the formation of utalite docs not begin along the whole circumference, but attacks only siugle narrow strips in a vertica! direction, so that thin columms of augite and uralite, parallel to the vertical axis, alternate with one another. The uralite itself passes, on still fur-

[^8]ther alteration of the rock into chlorite, and this finally into a mixture of brown iron ore, quartz and carbonates. *"

The above facts have been cited because of interest in connection with what now follows concerning the alteration of certain pyroxenes in the apatite region of Quebec. The best examples were observed at the mines of Mr. Breckon, on the twenty-third lot of the thirteenth range of Templeton, where erystals have been obtained showing perfectly the transition from pyroxene to what may be called uralite. The erystals are mostly flattened in the direction of the orthodiagonal, and while some of them are apparently quite unaltered, others have been converted into hornblende for a greater or less depth from the surface; others, again, are entirely changed to hornblende, and show no trace of pyroxene even when sliced and examined microscopically. In the first stage of alteration the pyroxene, which in its original condition is glassy and of a grey color, becomes more or less dull and greenish or greyish-white, still, however, retaining the cleavage of pyroxene. In this pale portion acicular prisms of green hornblende begin to be developed, gradually increasing until in some cases, all trace of pyroxene is obliterated. The change appears to have always begun at the surface of the crystals, extending inwards more rapidly in some parts of the crystals than in others, but although the hornblende prisms at the surface appear to be mostly parallel with the principal axis, within they are seen to run in every direction, or in some cases to be arranged in radiating groups. Intermingled with the hornblende prisms a little calcite occurs in places.

Even when the crystals have been entirely changed to hornblende the pyroxene angles remain perfectly distinct, and one crystal with terminal planes shows the following combination: $\infty \mathrm{P} \infty . \infty \mathrm{P} .[\infty \mathrm{P} \infty] . \mathrm{P} \infty .-\mathrm{P} . \perp \mathrm{P}$. The crystal is an inch and seven-eighths wide and a little over half an inch thick. The remaining portion of another crystal, which has lost its terminal planes, is three inches wide and an inch thick, and apparently wholly uralite. The crystal which supplied the material for the following analyses was about an inch and threequarters wide and an inch thick. The centre consisted of glassy grey pyrosene, surrounded, however, by the dull and pale material described

[^9]above, and this was surrounded in turn by an aggregation of hornblende prisms. These three portions may be called respectively A., B. and C. A. resembled in appearance much of the ordinary pyroxene of the region, from which also it probably does not differ much in composition. The specific gravity was found to be $3 \cdot 181$, and it gave on analysis the following results:

Silica.	50.868
Alumina	$4 \cdot 688$
Ferric oxide	0.970
Ferrous oxide	1-96.3
Manganous oxide	$0 \cdot 148$
Lime	$24 \cdot 438$
Masnesia	15.372
Potash.	0.497
Soda.	$0 \cdot 218$
Loss on ignition.	$1 \cdot 439$
	$100 \cdot 481$

This is the composition of an aluminous diopside or malacolite, and, except in the larger proportion of iron, resembles that of pyroxene from Grenville and Bathurst.* The following analysis of B., the white portion of the crystal, shows that, chemically, no great amount of change had taken place. The specific gravity ($3 \cdot 205$) was also about the same as that of $\mathrm{A}:-$
b.

It will be observed that although the total amount of iron in A. and B. is almost identical, more of it exists as ferric oxide in B. than in A. The quantity of alkalies is also only about onethird of the amount found in A.

[^10]If now we pass to C., the uralitic portion of the erystal, the changes are much more striking, as will be seen from the following analysis:

The specific gravity in this case, was only 3.003. Comparing C. with A. and B. we find that the lime is diminished by about nine per cent., while there is a gain of about four and a-haif per cent. of magnesia. The ratio of loss and gain, however, is not that of the molecular weights of lime and magnesia; that is to say, for a molecule of lime lost a molecule of margnesia has not been gained. A portion of lime has been lost without its place being taken by magnesia. At the same time there is a slight increase of silica relatively to the other constituents, and, as would be expected, a decrease in density.

It is well known that proxene commonly contains more lime and iess magnesia tham hornblende, and in the present ease loss of lime and gain of maguesia would appear to be the principal cause determining the change to homblende. The iarger proportion of alkalies in the uraltic or hornblendic proportion of the crystal is also worthy of note, because hornblende is commonly richer in alkalies than pyroxene. On the other hand, it is interesting to observe that there is less alumina in the hornblendic product thau in the original pyroxene, for, as a rule, hornblende is apt to contain more alumina than pyroxene. This subject has recently been discussed by Mr. G. W. Hawes in his valuable report on the mineralogy aud lithology of New Hampshire. He there gives some interesting analyses to illustrate the differences in the composition of pyroxene and hornblende, and seems to regard preponderance of alumina as the principal cause determin. ing the formation of the latter species. At the same time, however, he does not lose sight of the fact that pyroxene usually contains more lime and less alkalies tham hormblende.

III. on the occurrence of olivine in canad.a.

The occurrence of olivine in the eruptive rocks of Rougement, Montarville and Mount Royal, as well as in a doleritic dyke cutting the Hudson River formation at St. Hyacinth, and in the dolomitic conglomerate or breccia of St. Helen's Island, near Montreal, was described by Dr. Hunt many years ago, and an analysis of that from Montarville given. Recently it has been found in a number of other localities, and a few facts concerning its occurrence at some of these are of sufficient interest to be given here.

Owing to the difficulty of navigating the Ottawa River below the railway bridge at Ste. Aune's during the time of low water, communication with a deeper channel than the one ordinarily followed was deemed necessary, ind was finally effected by cutting aeross a ridge of rock in the bed of the river. Coffer-dams were built enclosing the required areat, and when the water was pumped out an excellent opportunity was afforded of seeing the bottom of the river. The rocks exposed were saudstones and conglomerates of the Potsdam formation, strikiag nearly cast and west and dipping to the south $<3 \frac{1}{2}^{\circ}-4^{0}$. Traversing these beds with a course of $\mathrm{N} .20^{\circ} \mathrm{W}$., a vertical dyke about tiree feet thick was found. It consisted of a rather fine grained ground mass holding large plates of mica sometimes an inch or more across, irregular masses and occasionally large erystals of black augite, and angular masses of olivine occasionally more than an inch in diameter. The last-named mincral gives the rock a very striking appearance, as much of it is of a bright red colour. An analysis of this red olivine gives the following results:-

Silicil.	38:560
Magnesia	$44 \cdot 369$
Ferric oxide	1.361
Ferrous oxide.	12.649
Manganous oxide*	$0 \cdot 112$
Water (ign.).	2.914
	$99 \cdot 965$

It is, therefore, a variety with much less iron than that from Montarville, which, according to Dr. Hunt's analysis, containsSilica $39 \cdot 17$, ferrous oside 22.54 , maguesia $39 \cdot 68=99 \cdot 39$.
When thin sections of the olivine from Ste. Anne's are examined with the microscope, the usual fissured or cracked appear-

[^11]ance is seen. Along some of the cracks an alteration to serpentine has taken place, while along others a little red oxide of iron is visible. Although the amount of this peroxide is small as shown both by the microscope and by analysis, it is nevertheless, evidently the cause of the general red colour which the mineral has assumed.

Another locality in which olivine has recently been found is a short distance to the south-east of Mount Albert, just south of the south second fork of the Ste. Anne River, Quebec. The explorations of Mr. Richardson during the past season have shown that it there forms important rock-masses close to the serpentines of Mount Albert, which have evidently been produced by the alteration of the olivine. A specimen of the rock collected by Mr. Richardson is fine granular, slightly friable, and pale yellowish to greyish-green in colour. It shows a few minute black grains, probably of chromite, and rarely a little of a fibrous mineral which resembles enstatite. Altogether, the rock looks remarkably like one variety of that from North Carolina, which was many years ago described by Genth, and regarded by him as the source of the serpentine and tale of the same region.*

The origin of such olivine rocks as those of Carolina and Mount Albert is a difficult and disputed question, but one which still remains, whether we believe that the serpentines which accompany them where derived from them or not. In opposition to the view that they owe their origin to chemical precipitition, Clarence King sugesests that they may repreent accumblations of olivine sands like those now oceuring on the shores of the Hawaiiam Islamds. \dagger Whether such aceumulations did take phace in the carlier geological formations we do not know, but there is certainly nothing unreasonable or unlikely in the view that magnesian precepitates may then, as in later times, have been formed and subsequently altered to olivine.

A thin section oi the olivine rock or dunite from near Mount Albert, when examined with the microscope, presents the andar ance shown in Fix. 1%. It is seen to consist almost entirely of gramular olivine, with occasional black grains of chromic iron. Owing to an alternation of layers with finer and coarser texture,

[^12]it shows a move or less banded structure. As observed above, an enstatite-like mineral may occasionally be seen in the hand specimen, but none of it happened to occur in the portion sliced.

Fis. 1.

Fig. $1 b$ is drawn from a seetion of one of the so-calied serpentines occurrins near the dunite. Its relation to the latter is evident, for it still contains numerous grains of unaltered olivine. In some specimens the change has not advanced so far as here, but in other cises the olivine has almost, if not entirely, disap. peared. The chromite, however, always remains.

Another example of the occurrence of clitine is to be found in the case of a dark grey dolerite occuring near South Lake, in Antigonish County, Nova Scotia. When a section of the rock is esamined with the microscope, it is seen to consist of a beautifully banded trielinic fildspar, brownish angite, magnetite, and very numerous irreghlar grains, or occasionally rude erystals, of olivine. The wivine resembles that sometimes seen in qabbro. It is traversed by the usual eracks or rifts, which in this case appear very broad and black, and also contains great quantitics of black and opague microlites, which are probably maguetite. and which are sometimes so abundant as to render the mineral almost opaque. Some of them are arranged in parallel rod-like shapes, white others occasionally assume star-like or other more or less symmetrical forms.

Olivine has also been detected in several of the cruptive rocks of British Columbia. One of these, of Tertiary age, from Kimloops, affords most beautiful examples of the alteration of olivine to serpentine. It is massive, rather fine-wrained, and of a very dark olivegreen colour. The examination of a slide with the microseope shows that originally the rock must have consisted of
crystals and grains of olivine, ausite (nustly in crystals) and a small proportion of plasioclase feldspar and magnetite. But while the augite mostly remains fresh, a large part of the olivine, which appears to be the most abundant constituent of the reck, has been altered to serpuntine. Most of the olivine ery tals and grains retain a nucleus of the unalterd mineral, showing the characteristic rifts, and the outlines of many erystals which are partly or entirely converted into mepentine are still perfectly sharp. In the accompanying figure (Fig. 2) " represents a group of crystals which are mainly composed of serpentine, but show nuclei of olivine and a few opaque grains probably of magnetite; b is an irregular mass allo partly changed to serpentine; a represents a crystal which has been entirely converted into serpentine; while d is an almost perfectly fresh crystal of olivine.

Fig. 2.

On further alteration such a rock might be almost entirely converted into serpeutine. Such a change has been observed elsewhere, as, for example, in the case of many of the Wurtemberg basalts, which are said to be "little more than serpentine rueks containing some magnetite, since the olivine and augite which composed the basalt are changed into serpentine."

In this country we have other examples than those already given of the production of serpentines by the alteration of other rocks. That such is the origin of many of the serpentines of the Eastern Townships there can be little doubt. The fact of their being commonly chromife:ous suggests that at least they may have been derived from such peridotic rocks as lherzolite, dunite, olivine-gabbro, \&c.

[^0]: * This thickness is measured in the deeply excavated and buried channel of the Cuayhoga, and is therefore far above the average.

[^1]: * Amer. Jour. of Science. March, 1879.

[^2]: -The forms of the canals are perhaps best seen in decalcified specimens; but Mr. Weston, who has done so mucin toward this investigation, has mamaged to cut slices so aceurately at right angles to the general course of groups of canals, as to show their round cross sections with great distinctness.

[^3]: - Dr. Hahn seems to have been employed on some mission connected with emigration from Germany.
 \dagger This, I suppose, refers to the fact that I warned Dr. H. that he would find the greater part of the Laurentian limestone to be destitute of distinguishable Eozoon.

[^4]: - If this is intended to apply to Canadian and English students of Eozoon, it is quite inaccurate, as they have always employed decalcified specimens as well.

[^5]: - Vrom the Leport of the Geolosical Survey of Camada for 1sia-is.

[^6]: - Whe followins are the specitie gravities of a number of opecimens:

[^7]: Science: 1879: p. 14s.
 \dagger All the irm is calculated as ferric oxide, the ferrons oxide not having been determined.
 \ddagger With it little colalt. § Water.

[^8]:

[^9]: - For other interesting details concerning uralite see Zirkel, Mik, Beschaff, d. Min. u. Gest. p. 178. Also Rosenbusch, Mik. Mhysioy. d. Min., p. 316 .

[^10]: - Sec analysis, Report of Progress, 1874-75, p. 302, and Geology of Camadia, 1863, p. 467.

[^11]: - With a little oxide of cobalt.

[^12]: - Am,rictan .fourmal of Sicimer, Vol. XXXIII.; 1S62, p. 199.
 \dagger Linited States Liculowical Exploration of the Forticth Paralhl. Vol. I., p. 11%.

