CIHM Microfiche Series (Monographs)

ICMH
Collection de microfiches (monographies)

Technical and Bibliographic Notes / Notes techniques et bibliographiques

The Institute has attempted to obtaln the best original copy available for filming. Features of this copy which may be bibliographlcally unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of filming are checked below.

Coloured covers /
 Couverture de couleur

Covers damaged /

Couverture endommagée

Covers restored and/or laminated /
Couverture restaurée et/ou pelliculéeCover title missing / Le titre de couverture manqueColoured maps / Cartes géographiques en couleur

Coloured ink (i.e. other than blue or black) /
Encre de couleur (i.e. autre que bleue ou noire)Coloured plates and/or illustrations /
Planches et/ou illustrations en couleur
Bound with other material /
Relié avec d'autres documentsOnly edition available /
Seule édition disponibleTight binding may cause shadows or distortion along interior margin / La reliure serrée peut causer de l'ombre ou de la distorsion le long de la marge intérieure.Blank leaves added during restorations may appear within the text. Whenever possible, these have been omitted from filming / Il se peut que certaines pages blanches ajoutées lors d'une restauration apparaissent dans le texte, mais, lorsque cela était possible, ces pages n'ont pas été filmées.

Additional comments /
Commentaires supplémentaires:

L'Institut a mlcrofilmé le meilleur exemplaire qu'il lui a été possible de se procurer. Les détails de cet exemplalre qui sont peut-étre uniques du point de vue bibliographlque, qui peuvent modifier une Image reproduite, ou qui peuvent exiger une modiflcation dans la méthode normale de filmage sont Indiqués ci-dessous.

Coloured pages / Pages de couleur

Pages damaged / Pages endommagées
Pages restored and/or laminated /
Pages restaurées et/ou pelliculées
Pages discoloured, stained or foxed /
Pages décolorées, tachetées ou piquées
Pages detached / Pages détachées

Showthrough / Transparence

Quality of print varies /
Qualité inégale de l'impression

Includes supplementary material /
Comprend du matériel supplémentaire
Pages wholly or partially obscured by errata slips, tissues, etc., have been refilmed to ensure the best possible image / Les pages totalement ou partiellement obscurcies par un feuillet d'errata, une pelure, etc., ont été filmées à nouveau de façon à obtenir la meilleure image possible.

Opposing pages with varying colouration or discolourations are filmed twice to ensure the best possible image / Les pages s'opposant ayant des colorations variables ou des décolorations sont filmées deux fois afin d'obtenir la meilleure image possible.

This hem is filmed at the reduction ratio checked below /
Ce document est filme au taux de réduction indiquf ci-dossous.

The copy filmad here hes been reproducad thenks to the generosity of:

National Library of Canada

The imeges eppearing here are the best quelity posslble considering the condition end legibility of the orlginel copy end in keeping with the filming contract specificetions.

Original copies in printed peper covers ere filmed beginning with the front cover snd anding on the last pege with e printed or iilustreted impression, of the beck cover when sppropriete. All other original copios sre filmed baginning on the flrst pege with e printed or lllustrated Impression. end ending on the lest page with e printed or Illustreted impression.

The last recorded frsme on eech microflche shell contein the symbol \rightarrow (meening "CON. TINUED"), or the symbol ∇ (meaning "END"). whichever epplies.

Maps. pletes, cherts, etc., mey be filmed st different reduction retios. Those too lerge to be entirely included in one exposure ere filmed beginning in the upper loft hend corner, left to right and top to bottom. as meny fremes es required. The following diegrems illustrete the method:

L'exemplaire filmd fut raproduit gràce to gónórosité da:

Bibliothèque nationale du Canada

Les imeges suiventes ont dt' reproduites susc le plus grsnd soin, compte tenu de lo condition st de ie nettoth de l'sxempieire filme. st sn conformlet evec las conditions du contrst de filmega.

Lee exempleires origineux dont le couverture en pepier est imprlmde sont fllmús en commençent par le pramler plat et en terminent soit psr la dernidre pege qui comporte une empreints d'Impresslon ou d'lllustration. soit par le seecend plet, selon le ces. Tous les sutres exemplairgs orlgineux sont fllmds en commençant psite premidre pege qui comporte une empreinte d'impression ou d'illustration et en terminant per le dernidre pege qui comporte une tslle empreinte.

Un des symboles sulvents appereitra sur is dernltre imege de cheque microficho, selon le ces: le symbole \rightarrow signifie "A SUIVRE". Ie symbole ∇ signifie "FIN".

Les certes, pienches, tebleeux, otc., peuvent eitre filmés 1 des teux de reduction différents. Lorsque le documant est trop grand pour ètre reproduit en un seul cliche, il est filmé a partir de l'sngie supdrieur geuche, de gsuche à droite. et de heut en bes, en prenant le nombre d'imegas nécessaire. Las diagremmes suivsnts lllustrent le mathode.

MUCROCOPY REE \&UTION TEST CHART

(ANSI and ISO TEST CHART No. 2)

NOTES ON
 PRACTICAL ASTRONOMY
 AND GEODESY

13)

L. B. STEWART, I.T.S.

Toronto

QB201
573
1914
$p * * *$

These notes contain an outline of the course of lectures in Practical Astronomy and Geodesy, that, for over twenty-five years, has been given to the students of the Third Year in the department of Civil Engineering in the Faculty of Applied Science of the University of Toronto. They are designed to fulfil the requirements of candidates desirous of obtaining a commission as a Dominion or Ontario Land Surveyor, and at the same time to provide a course of study suited to the needs of the engineer who does not intend to devote himself specially to this class of work.

Louis B. Stewart.

NOTES ON PRACTICAL ASTRONOMY AND GEODESY.

IRAMTICNI. ASTRONOMI".

In these notes it is proposed to set forth in outline the most useful methods for determining positions and divertions on the surfuce of the parth. It is assmmed that the obserter is prosided with an engineer's "ansit, or a mantical sextant, so that the methols described are only such as are adapted to the use of those instruments. More precise methods, necessituting instruments of the highest class, ure therefore entirely omitted, or but briefly referred to.

1. Splligical. Co-orimatbis. Soldtion of tr....ntronomical. Trianici.f.

Determination of the position of a point.

In Fig. $1 C A O$ and $A B O$ are fixed plames of reference; O is the point of observation The div. ction of the line $O S$ is determined when the ang also when the spherical angle AiJB and BOS are known; S and the ar= CS are known.
Flanes of reference-
The planes of r ferener used in astronomy are those of the equator, the ecliptic, ive meridian, and the horizon.
The plene of the flator is that of the earth's equator. As the dirce ion of the earth's axis is nearly fixed in space, being sulj,u: only to slow changes of direction due to precession and nutation, therefore the plane of the equator is nearly a fixed plane.
The plane of the ecliptic is the plane of the earth's orbit.

The plane of the observer's meridian is a plane determined by the earth's axis and the point of observation.
The plane of the hqrizon is a tangent plane to the earth's surface-i.e., to the surface of standing water-at the point of observation. It is therefore perpendicular to the observer's plumb line.

The celestial sphere-
This is an imaginary sphere of infinite extent, whose centre is coincident with the centre of the earth. Upon its surface the heavenly bodies may be assumed to be, as they apparently are, set like brilliants.

The reference planes above defined are assumed to be produced to intersect this sphere in great circles. The plane of the horizon, as above defined, may be assumed to intersect the sphere in the same circle as that determined by a parallel plane through the earth's centre, owing to the infinite extent of the celestial sphere.

Fig. 2 shews a projection of the celestial sphere on the plane of the meridian, the reference circles being represented. Thus
$P Z H R$ is the meridian,
$E F R$ the equator, or equinoctial, $H D N$ the horizon.

The ecliptic is not shewn, but V is a point in which it intersects the equator.

If S now be the position of a star (by that term denoting any heavenly body), and secondaries $Z S D$ and $P S F$ to the horizon and equator respectively be drawn through it, these arcs, with the meridian $P Z$, form a spherical triangle $P Z S$, which, from its frequent use in the solution of astronomical problems, is termed the astronomical triangle.

Definitions-

The circle $Z S D$ is a vertical circle; PSF a declination or hour circle. P is the celestial pole; Z the zenith. $S D$ is the altitude of $S ; Z S$ its zenith distance; $S F$ its declination; $P S$ its polar distance; the angle PZS its azimuth; and ZPS its hour angle. $P S Z$ is generally called the parallactic angle.

As the observer's latitude is the angle between the direction of the plumb line at the place of observation and the plane of the equator, it follows that the latitude is the angle $Z O F$ or the arc $Z E$. This is also equal to the are $P N$.

The following notation will be used:
h denotes the altitude $S D$ of S.
ζ denotes the ze ith dista ce $Z S$.
δ de otes the declination $S F$.
p denotes the polar distance $P S$.
τ denotes the hour angle ZPS.
A denotes the azimuth PZS.
C denotes the parallactic angle.
ϕ denotes the observer's latitude $E \%$ or $P N$.
a denotes the right ascension VEFF.

Systems of Spherical Co-ordinates.

1st system-Altitude and azimuth.
The ares $S D$ and $D N$ serve to determine the position of S with reference to the horizon and the meridian.

A small circle parallel to the horizon is termed an almucantar.

A vertical circle is a great circle perpendicular to the horizon.

The prime vertical is that vertical circle which passes through the east and west points of the horizon.

2nd sistem-Declination and hour angle.
The ares $S F$ and $F E$ determine the position of S with reference to the equator and the meridian.

A parallel of declination is a small circle parallel to the equator.

3rd system-Declination and right aseension.

The planes of the equator and the ecliptic intersect in a right line called tice line of the equinoxes. This line intersects the sphere in the vernal and autumnal equinoxes. The vernal equinox is the point through which the sun passes in going from the south to the north side of the equator: it is shewn at V, Fig. 2.

The equinoctial colure is the declination circle passing through the equinoxes. The solstitial colure is the declination circle passing through the solstices-the points of greatest north and south declination on the ecliptic. It is therefore at right angles to the equinoctial colure.

The co-ordinates in this system are the ares $S F$ and $F V$.
4th system-Celestial latitude and longitude.

In Fig. 3 VEAR is the equator, VIIAK the ecliptic, VA the line of the equinoxes, VFA the equinoctial colure, and $E P R$ the solstitial colure.

The co-ordinates in this system are $S G$, the latitude of S, and $G V$ the longitude. These are denoted by β and λ respectively.

In the first system the co-ordinates change continually and irregularly on account of the diurnal rotation of the earth. In the second system the declination is unchanged by that rotation, and the hour angle changes uniformly with the time. In the third and fourth systems the co-ordinates are unchanged by the diurnal rotation.

The third system of co-ordinates is for this reason used in the construction of ephemerides.

Although unchanged by the diurnal rotation, the co-ordinates of the third and fourth systems are changing continually though slowly on account of precession and nutation.
Solution of the Astronomical Triangle.
(1) Given the altitude and azimuth of a star, and the latitude of the place, to find the star's declination and hour angle.

If we denote the angular points of the astronomical triangle $Z P$ and S by $A B$ and C, respectively, then in Fig. 4 we have given

$$
A=A, b=90^{\circ}-h, c=90^{\circ}-\phi ;
$$

and it is required to find

$$
a=90^{\circ}-\delta, \text { and } B=\tau
$$

These are given by the first of (1) and (5), Sph. Trig., p. 69 which become

$$
\begin{aligned}
& \sin \delta=\sin h \sin \phi+\cos h \cos \phi \cos A . \\
& \sin A \cot \tau=\cos \phi \tan h-\sin \phi \cos A .
\end{aligned}
$$

The first of these may be written

$$
\sin \delta=\sin h(\sin \phi+\cot h \cos \phi \cos A)
$$

Then introducing the auxiliary θ such that

$$
\begin{equation*}
\tan \theta=\cot \mathscr{h} \cos A \tag{1}
\end{equation*}
$$

it becomes

$$
\begin{aligned}
\sin \delta & =\sin h(\sin \phi+\cos \phi \tan \theta) \\
& =\begin{array}{c}
\sin h \sin (\phi+\theta) \\
\cos \theta
\end{array}
\end{aligned}
$$

The second equation may be written

$$
\begin{aligned}
\tan \tau & =\frac{\sin A}{\cos \phi \tan h-\sin \phi \cos A} \\
& =\operatorname{san} h(\overline{\cos \phi-\sin \phi \cot h(\cos A)} \\
& =\sin h(\cos \phi-\sin \phi \tan \bar{\theta}) \\
& =\begin{array}{c}
\sin A \cos \theta \\
\tan h \cos (\phi+\theta)
\end{array}
\end{aligned}
$$

Eliminating $\tan h$ by (1) this becomes

$$
\begin{equation*}
\tan \tau=\frac{\tan A \sin \theta}{\cos (\phi+\theta)} \tag{3}
\end{equation*}
$$

Equations (1), (2) and (3) give the solution.
(2) Given the declination and hour angle of a star, and the latitude of the place, to find the altitude and azimuth of the star.
in the spherical triangle, Fig. 4, we have given

$$
a=90^{\circ}-\delta, c=90^{\circ}-\phi, \text { and } B=\tau
$$

and

$$
b=90^{\circ}-h \text { and } A
$$

are required. These are given by the second equations of (1) and (5), Sph. Trig., which become

$$
\begin{aligned}
& \sin h=\sin \delta \sin \phi+\cos \delta \cos \phi \cos \tau \\
& \sin \tau \cot A=\cos \phi \tan \delta-\sin \phi \cos \tau
\end{aligned}
$$

These may be written

$$
\begin{align*}
& \sin h=\sin \delta(\sin \phi+\cos \phi \cot \delta \cos \tau) \\
& \tan A=\frac{\sin \tau}{\tan \delta(\cos \phi-\sin \phi \cot \delta \cos \tau)} \tag{4}
\end{align*}
$$

Then substituting $\cot \theta_{1}=\cot \delta \cos \tau$ they become

$$
\begin{align*}
& \sin h=\frac{\sin \delta \cos \left(\theta_{1}-\phi\right)}{\sin \theta_{1}} \tag{5}\\
& \tan A=\frac{\sin \tau \sin \theta_{1}}{\tan \delta \sin \left(\theta_{1}-\phi\right)}
\end{align*}
$$

Then eliminating $\tan \delta$ from this last by (4) it becomes

$$
\begin{equation*}
\tan A=\frac{\tan \tau \cos \theta_{1}}{\sin \left(\theta_{1}-\phi\right)} \tag{6}
\end{equation*}
$$

θ_{1} being given by the equation

$$
\begin{equation*}
\tan \theta_{1}=\tan \delta \tag{7}
\end{equation*}
$$

These two problems serve for the transformation from the first system of co-ordinates to the second; and conversely.
(3) Given the altitude and declination of a star, and the latitude of the place, to find the azimuth and hour angle.

In this case we have given

$$
a=90^{\circ}-\delta, b=90^{\circ}-h, \text { and } c=90^{\circ}-\phi
$$

and are required to find

$$
A=A, \text { and } B=\tau
$$

These are given by the first and second of either set of equations (6), (7) or (8), Sph. Trig. In these equations we have

$$
\begin{array}{ll}
s=\frac{1}{2}(a+b+c)=90^{\circ}-\frac{1}{2}(\phi+\delta-\zeta) \\
s-a=\frac{1}{2}(-a+b+c)= & \frac{1}{2}(\zeta+\delta-\phi)
\end{array}
$$

$$
\begin{aligned}
& s-b=\frac{1}{2}(a-b+c)=90^{\circ}-\frac{1}{2}(\zeta+\phi+\delta) \\
& s-c=\frac{1}{2}(a+b-c)=\frac{1}{2}(\zeta+\phi-\delta)
\end{aligned}
$$

so that on substituting $s^{\prime}=\frac{1}{2}(\zeta+\phi+\delta)$ they become

$$
\begin{align*}
& \sin ^{2} \frac{1}{2} A=\frac{\cos s^{\prime} \sin \left(s^{\prime}-\delta\right)}{\cos \phi \sin \zeta} \tag{8}\\
& \cos ^{2} \frac{1}{2} A=\frac{\cos \left(s^{\prime}-\zeta\right) \sin \left(s^{\prime}-\phi\right)}{\cos \phi \sin \zeta} \tag{9}\\
& \tan ^{2} \frac{1}{2} A=\frac{\cos s^{\prime} \sin \left(s^{\prime}-\delta\right)}{\cos \left(s^{\prime}-\zeta\right) \sin \left(s^{\prime}-\phi\right)} \tag{10}\\
& \sin ^{2} \frac{1}{2} \tau=\frac{\sin \left(s^{\prime}-\phi\right) \sin \left(s_{1}-\delta\right)}{\cos \phi \cos \delta} \tag{11}\\
& \cos ^{2} \frac{1}{2} \tau=\frac{\cos \left(s^{\prime}-\zeta\right) \cos s^{\prime}}{\cos \phi \cos \delta} \tag{12}\\
& \tan ^{2} \frac{1}{2} \tau=\frac{\sin \left(s^{\prime}-\phi\right) \sin \left(s^{\prime}-\delta\right)}{\cos s^{\prime} \cos \left(s^{\prime}-\zeta\right)} \tag{13}
\end{align*}
$$

(4) Given the altitude, declination, and hour angle of a star, to find its azimuth, and the latitude of the place.

The data here are

$$
a=90^{\circ}-\delta, b=90^{\circ}-h, \text { and } B=\tau
$$

and the required quantities

$$
A=A, \text { and } c=90^{\circ}-\phi
$$

These may be found by (3) and the second of (1), Sph. Trig., which become

$$
\begin{aligned}
& \sin A=\frac{\sin +\cos \delta}{\cos h} \\
& \sin h=\sin \delta \sin \phi+\cos \delta \cos \phi \cos \tau \\
& \text { hes (see eq. } 5 \text {) } \\
& \sin h=\frac{\sin \delta \cos \left(\theta_{1}-\phi\right)}{\sin \theta_{1}}
\end{aligned}
$$

This last becomes (see eq. 5)

Then transposing, we have

$$
\begin{equation*}
\cos \left(\theta_{1}-\phi\right)=\frac{\sin h \sin \theta,}{\sin \delta} \tag{15}
\end{equation*}
$$

θ_{1} being given by the eq.

$$
\tan \theta_{1}=\frac{\tan \delta}{\cos \tau}
$$

There may be two solutions of this problem; but the ambiguity may be removed by first determining ϕ and then A by either of the equations (8), (9) or (10).
(5) Given the declination and azimuth of a star, and the latitude of the place, to find the bour angle and altitude.

Thus we have

$$
a=90^{\circ}-\delta, A=A, \text { and } c=90^{\circ}-\phi
$$

and are required to find

$$
B=\tau, \text { and } b=90^{\circ}-h .
$$

The first of these is given by the second of (5), Sph. Trig., which becomes

$$
\sin \tau \cot A=\cos \phi \tan \delta-\sin \phi \cos \tau
$$

or $\quad \sin \tau \cot A+\sin \phi \cos r=\cos \phi \tan \delta$
which may be thus transformed:
$\cot A(\sin \tau+\tan A \sin \phi \cos \tau)=\cos \phi \tan \delta$
or, substituting $\tan \theta_{2}=\tan A \sin \phi$
this becomes

$$
\begin{equation*}
\frac{\cot A \sin \left(r+\theta_{2}\right)}{\cos \theta_{2}}=\cos \phi \tan \delta \tag{16}
\end{equation*}
$$

or, transposing

$$
\sin \left(\tau+\theta_{2}\right)=\cos \phi \tan \delta \cos \theta_{2} \tan A
$$

Then eliminating $\tan A$ by (16) we have

$$
\begin{equation*}
\sin \left(\tau+\theta_{2}\right)=\cot \phi \tan \delta \sin \theta_{2} \tag{17}
\end{equation*}
$$

Equations (16) and (17) determine τ.
We may now find h by applying one of equations (3), Sph. Trig., to the astronomical triangle, which gives

$$
\begin{equation*}
\cos h=\frac{\sin \tau \cos \delta}{\sin A} \tag{18}
\end{equation*}
$$

We may also find h directly from the data by means of the first of (1), Sph. Trig., which gives
$\sin \delta=\sin h \sin \phi+\cos h \cos \phi \cos A ;$
whicn may be written

$$
\sin \delta=\sin \phi(\sin h+\cos h \cot \phi \cos A)
$$

in which substituting

$$
\cot \theta_{3}=\cot \phi \cos A
$$

we have

$$
\begin{align*}
& \sin \delta=\sin \phi\left(\sin h+\cos h \cot \theta_{3}\right) \\
& =\frac{\sin \phi \cos \left(h-\theta_{3}\right)}{\sin \theta_{3}} \\
& \therefore \quad \cos \left(h-\theta_{3}\right)=\begin{array}{c}
\sin \delta \sin \theta_{3} \\
\sin \phi
\end{array} \tag{19}
\end{align*}
$$

Also $\quad \tan \theta_{3}=\begin{gathered}\tan \phi \\ \cos A\end{gathered}$
(6) To find the altitude, hour angle, and azimuth of a circumpolar star when at elongation, or maximum azimuth.

It is assumed that the latitude of the place is known. When a star is at elongation the angle C, Fig. 4, is a right a. gle, and the solution is given bvequations (20), (28) and (27), Sph. Trig., which become
$\sin h=\frac{\sin \phi}{\sin \delta}, \cos \tau=\frac{\tan \phi}{\operatorname{ta} i} \delta, \sin A=\frac{\cos \delta}{\cos \phi}$.
(21), (22),
(7) To find the altitude and hour angle of a star when on the prime vertical.

Here the azimuth A is equal to 90°, and it is ned that ϕ and δ are given. Then applying equations (26) and (28), Sph. Trig., we find

$$
\begin{equation*}
\cos r=\frac{\tan \delta}{\tan \phi} \quad \sin h=\frac{\sin \delta}{\sin \phi} \tag{24}
\end{equation*}
$$

(8) Given the right ascension and declination of a star, and the obliquity of the ecliptic, to find the latitude and longitude of the star.

In the triangle $P P^{\prime} S$, Fig. 3,

$$
\begin{array}{rlr}
P S=90^{\circ}-\delta & P^{\prime} S=90^{\circ}-\beta \\
S P P^{\prime}=90^{\circ}+a & S P^{\prime} P=90^{\circ}-\lambda \\
P P^{\prime}=\epsilon &
\end{array}
$$

and we have by equations (1), (4) and (3), Sph. Trig.,
$\sin \beta=\sin \delta \cos \epsilon-\cos \delta \sin \epsilon \sin a$
$\cos \beta \sin \lambda=\sin \delta \sin \epsilon+\cos \delta \cos \epsilon \sin a$
$\cos \beta \cos \lambda=\cos \delta \cos a$
Then substituting

$$
\left.\begin{array}{l}
m \sin M=\sin \delta \tag{27}\\
m \cos M=\cos \delta \sin a
\end{array}\right\}
$$

they become

$$
\begin{align*}
& \sin \beta=m \sin (M-\epsilon) \tag{28}\\
& \cos \beta \sin \lambda=m \cos (M-\epsilon) \tag{29}
\end{align*}
$$

These may be written

$$
\left.\begin{array}{rl}
\tan M & =\frac{\tan \delta}{\sin \alpha} \\
\sin \beta & =\frac{\sin \delta \sin (M-\epsilon)}{\sin M} \tag{30}\\
\tan \lambda & =\frac{\tan a \cos (M-\epsilon)}{\cos M}
\end{array}\right\}
$$

The quadrant in which M is situated is determined by equations (27), m being assumed always positive.
(9) Given the latitude and longitude of a star, and the obliquity of the ecliptic, to find the right ascension and declination of the star.

As in the last case we have
$\sin \delta=\sin \beta \cos \epsilon+\cos \beta \sin \epsilon \sin \lambda$
$-\cos \delta \sin \alpha=\sin \beta \sin \epsilon-\cos \beta \cos \varepsilon \sin \lambda$
$\cos \delta \cos a=\cos \beta \cos \lambda$
in which substituting

$$
\left.\begin{array}{l}
n \sin N=\sin \beta \tag{32}\\
n \cos N=\cos \beta \sin \lambda
\end{array}\right\}
$$

they become

$$
\begin{align*}
& \sin \delta=n \sin (N+\epsilon) \tag{33}\\
& \cos \delta \sin a=n \cos (N+\epsilon) \\
& \cos \delta \cos a=\cos \beta \cos \lambda
\end{align*}
$$

From these we derive

$$
\begin{align*}
\tan N & =\frac{\tan \beta}{\sin \lambda} \\
\sin \delta & =\frac{\sin \beta \sin (N+\epsilon)}{\sin N} \tag{36}\\
\tan \alpha & =\frac{\tan \lambda \cos (N+\epsilon)}{\cos N}
\end{align*}
$$

2. Time.

The sidereal day.
The earth's motion of rotation, as far as can at present be ascertained, is uniform; though theoretical considerations point to a possible retardation of its velocity. If such retardation exists, its amount must be extremely minute, as up to the present time none has been detected. The time of apparent rotation of the starry sphere is therefore sensilhy. constant, and may consequently le adopted as a unit of time and be denoted the sidereal day. Owing to the proper motions of the fixed stars the practical sidereal day is the tine of rotation of the vernal equinox.

Sidereal time.
The sidereal day is assumed to begin at the instant of upper meridian transit of the vernal equinox, which point will in future be denoted by and referred to as the point V; and the sidereal time at any instant is the hour angle of V at that instant. It is thus equal to the right ascension of any star which is on the meridian of the observer at that instant.

The solar day.
A unit of time dependent on the sun is necessary for the purposes of daily life.

On account of the earth's orbital motion about the sun the latter body has an ipparent motion among the stars,
mo that it returns th the meridian of a place mearly four minntes later on any given day thatn on the previous day, is shewn ly a clock regulated to sidereal time.

This apparent motion of the sum, however, is not miform. The earth moves in and cllipser, of which the stin oceupies one of the foci, and its angular velocity alsont the stin varies inversely as the square of its radius vector; the angular velocity of the sun on the erliptic therefore varies in the same mamer. An inequality in the lengths of the wolar days resintts from this; but a further irregularity is clue to the oblignity of the ecliptic; for, even if the sun's motion on the ecliptic were uniform, its motion in right asceonsion would not lee so.

This is illustrated in Fig. 6, which is a projection on a plane perpendicular to the earth's axis. P_{1} and P_{2} are two consecutive positions of the earth in which the sun is on a given meridian. The earth in the interval has performed a complete rotation on its axis plus the angle $M^{\prime} P_{2} M^{\prime \prime}$, which equals $P_{1} S P_{2}$, which is the angle through which the projection of the radius vector has revolved during the interval. This angle varies from day to day, owing to the causes above mentioned, viz., the eccentricity of the earth's orbit and the obliquity of the ecliptic. The solar day, being equal in length to the time of an absolute rotation of the earth on its axis plu, the variable angle $P_{1} S P_{2}$, is therefore variable in length. The angle $P_{1} S P_{2}$ is clearly the motion of the sun in right ascension in the solar day.

To obtain an invariable unit of time dependent upon the sun astronomers invented a fictitious sun, caller the mean sun, and denoted by S_{o} in Fig. 7, which is assumed to move at a uniform rate on the equator and to return to the vernal equinox at the same instant as another fictitious sun S_{1},
armed to more at aliform rite ont the ecliptic. St is
 al the sallie iltatillt at the trite still.

The relative positions of the three sums at different times of the rear are shewn in Fig. 7. These the points V'B.X. 1 shew the positions of the sum when the earth is all correspumbling points in Fig. $\overline{\text { on }}$.

Solar time.
Apparent solar time at any instant is the hour angle of the true sum at that instant.

Mean solar time is the hour angle of the me: tn sum.
Apparent nom is the instant when the sm in in on the meridian of a place. Mean noon in the int ant when the mem ant is on the meridian.

The equation of time is the difference between apparent
 of the trace illut mean sulls.
'Pracing ont the relatior penstions of the three sulns in Fig. Eshew- that the "rpation of time changes its atgebraic sign four times in the pear, aloult diril líth, Jume Ifti,
 vilun's.
(iiail and ustronomiad lime.
The civil diy lngins att the instamt of lower meridian transit of the ntem sum, or at midnight: while the astronomical ding of the same date legens at upger meridian transit 12 h. lither.

Time al didferent meridiaus.

At any instimt at two places in different longitudes, the hour angles of the sim, or of V, differ by an amount erpial to their lifference of longiturle; consequently the difference between the local times of the two places, either solar or sidereal, is expial to their difference of longitude.

This is shew by liig. 8 . Thus if $P A$ and $P B$ are the meritians of two places. \oiint_{o} and V the mean sun and the vernal erpinos, respectively; then the M.T. at A is the angle $A P S_{0}$, and the sidereal time the angle $A P D^{\circ}$. The corresponling times at B exceed these by the angle $A P^{\prime} B$ (denoted by I.).

Standurd time.
For comeniene , since 1883 the time used at any place in X. Americal, instead of lecing the local time of the place, is theoretically the sime which differs by the nearest whole number of honrs from (ireonwich time. This is called stan-
lard time. Thas, the time which defers in on from tir.

 uned in N. Amerie:t:

Athatic, differing ley fromlir. time:
Fistern, difforing low from (ir. lime:
Coutral, difer:ng le inh $^{\text {h }}$ from (ir. time:

lukom, differing ly $\mathbf{0}^{\boldsymbol{n}}$ from (ir. time.
Relarion between the lengths of the solar and sidereal units of time.
The tropical year is the interval of time letween two consecotive pasages of the mean stin through the metm vernal erpininos

In Fig. 9 let S and $S^{\prime \prime}$ be the positions of the mean sun relatively to V at the instamt: of two consecutive transits over the meridiat of some place: Then it is evident that the mean solar day is equal to the sidereal day plus the motion of the mean sun in right ascens. tin one mean solar day. (Sce also Fig. 6.) Therefure it
$D=$ the length of the solar ding, and
$\mathrm{D}^{\prime}=$ the length of the sidereal diay, and
$n=$ the number of mean solar days in 1 tropical year: then

$$
\begin{aligned}
1 \text { tropical year } & =n D) \\
& =n\left(D^{\prime}+\frac{1}{n} D^{\prime}\right) \\
& =(n+1) D^{\prime}
\end{aligned}
$$

But 1 tropical tear $=363 \mathrm{n} .24222$ mean solar diys
$\therefore 1$ tropical year $=366.2+222$ sidereal days.
?f then
i/ = any interval of time expressed in mean solar days, IS $=$ the stme interval expressed in sidereal ditys;
$\therefore \quad . / I=\begin{aligned} & 305.2+2 \cdot 2 \\ & 306.2+222\end{aligned}=1-k$, assume;
and

$$
\frac{S}{M}=\frac{366.2+222}{365.2+222}=1+k^{\prime}
$$

in which

$$
k=0.001273013
$$

$$
k^{\prime}=0.0029: 3791
$$

Als,

The consersion of a given intersal of M.S.T. into the corresponding interval of Sid. T., or comsersely, is best elfected by means of tables given in the vaitical Almanac.

To conert the mean time at a witen meridian into the corresponding sidereal time.

Let $T=$ the given lowal M.'I:;
$0=$ the corresponding sid. T.:
$L=$ the longitude of the phace:
$\mathrm{F}_{0},=$ the (ir. Sid. 'T'. at the previons (ir. mean nom.
Then

$$
\begin{equation*}
\theta=(T+L)\left(1+k^{\prime}\right)+V_{o}-L \tag{.37}
\end{equation*}
$$

V_{0} is taken from the ephemeris. Instead of using the factor k^{\prime} the reduction of $T+L$ to the equivalent sidereal interval is made be means of tables given in the N. A.

To contert the sidercal time at a siten moridian into the corresponding mean time.

Using the same motation, and in addition demoting by M the mean time at Cir. of the previons (ir. sidereal noon, we hatwe

$$
\begin{equation*}
T=(0+L)(1-k)+. I I-I \tag{38}
\end{equation*}
$$

Here again the table of the $\mathcal{N} . \mathrm{A}$. are nsed instead of the factor k.

The value of M, to $1 x$ taken from the $N . A$., is to the that for the date of the transit of 1° immediatele preceding the given time. Thus: if

$$
(9+L)(1-k)+M>2+4
$$

then the value of $I /$ must be taken for the prestous date.

$$
\begin{aligned}
& 24 \text { Sid. T. }=23 \text { ही } 0 \text { 0. .0! } 11 \text { M.S.T. }
\end{aligned}
$$

To contert the apparent solar tiane at a sierll meridian iuto the correspondins sidercel tiunc.

This may be donte he hirst retucing w M.T. be applying the equation of time-to be taken from the N. A.-and then reducing to sidereal time be the method given abowe.

A more comsenient method. however. is to interpolate from the N. A. the value of the sunds right asemsion at the (ir. instant corresponding to the given time. Then if in Figg. 8 S_{0} represents the true sum it is clear that if $t=$ the hour angle of the sum, or the apparent time, then

$$
\begin{equation*}
0=t+a \tag{39}
\end{equation*}
$$

To determine the hour angle of a henarnly body at "siten time.

If in (39) it is assmed that the hour angle t may have any value up to $24^{\text {th }}$, then that equation is general and applies to coery case and any heavenly boty: haty be necessary in some cases to deduct $24^{\text {h }}$ from $t+a$. Tramsonsing we have

$$
\begin{equation*}
t=0-a \tag{.10}
\end{equation*}
$$

Here it may be necessary in some cases to increase o by 24^{h} to remer subtraction possible.

The hour angle chenoted by τ, found by solving the astronomical triangle-the parts of that triangle being limited to values less than 180° - being given, we have

$$
\begin{aligned}
& t=\tau \text { if west } \\
& t=24^{h 1}-\tau \text { if cast. }
\end{aligned}
$$

The hour augle of the sum mave bomel ber equation (10) if the sidereal time is given. If the mein time is gisen, it may be reduced to apparent time by applying the equation of time, thas finding the reguired hour angle.

Reduction of time to are ; and conzersely.
These reductions may be male by means of the following numerical relations:

$$
\begin{array}{ll}
1^{\mathrm{h}}=19^{\circ} & 1^{\circ}=4^{\mathrm{ma}} \\
1^{\mathrm{m}}=15^{\prime} & 1^{\prime}=4^{\prime} \\
1^{\mathrm{s}}=15^{\prime \prime} &
\end{array}
$$

3. Determinition of Time by Obeflithon.

Correction and rate of a chronometer.

As the term implies the correction of a chronometer is the amome that must be added to the chronometer time to give the true time.

The rate of a chronometer is the amount it loses in a unit of time.

Thus, if
T_{1} and $T_{2}=$ the true times at given instants;
T_{1}^{\prime} and $T_{2}^{\prime}=$ the chronometer time at those instants;
ΔT_{1} and $\Delta T_{2}=$ the chronometer corrections;
$\delta T=$ the chronometer rate .
Then

$$
\begin{align*}
\Delta T_{1} & =T_{1}-T_{1}^{\prime} \prime \tag{+1}\\
\Delta T_{2} & =T_{2}-T_{2}^{\prime} \\
\delta T & =\begin{array}{c}
\Delta T_{2}-\Delta T_{1} \\
T_{2}^{\prime}-T_{1}^{\prime}
\end{array} \tag{42}
\end{align*}
$$

These equations give the corrections and rate with their proper algebraic signs. The rate is thus given in terms of the chronometer interval.

1st method-By transits.
(a) Meriuian transits.

A transit instrument having been adjusted in the meridian, the time of transit of any heavenly body across the , wire may be obsersed by a chronometer whose correcti is to be found.

If the chronometer is regulated to sidereal time the true sidereal time of transit is at once given by the right ascension of the body; whence the chronometer correction at once follows by (41). If regulated to mean time, the sidereal time of transit of the body must be reduced to mean time.

If the sum is olserved, the time of transit of each limb should be noted and the mean taken; thus finding the time of transit of the centre. If only one limb can be observedf then the observed time must be corrected by the "time o, scomi-diameter passing the meridian", which may be taken from the N. A., or computed by the equation

$$
\begin{equation*}
\delta t=\frac{S}{15} \sec \delta \tag{43}
\end{equation*}
$$

in which S is the angular semi-diameter of the sun.
If the correction of a M.T. chrononeter is to be found by a transit of the sun, the true M.T. of transit may at once be found be applying the equation of time to the apparent time of transit ($)^{\mathrm{h}}$.
(b) Transits across any iert. circle of knowin asimuth.

In the case the latitude of the place and the derlination of the heaventy Ioxly must be kowne then the hour angle may be computed by means of (16) and (57). whicla may be written

$$
\begin{aligned}
\tan \theta & =\tan A \sin \phi \\
\sin (\tau+\theta) & =\cot \phi \tan \delta \sin \theta
\end{aligned}
$$

The sidereal time then follows by (39), or the M.T. De applying the equation of time as alrealy shewn.

The rate of a chronometer mate tound be observing two conseculive transits of a star across the same vert. circle. The true interval between the transits is $24^{\mathrm{h}} \mathrm{Sid}$. T. or 23^{h} है $\mathrm{f}^{\mathrm{m}} 04^{4}$. $0: 9 \mathrm{M.T}$.
(c) Transits across the vertical circle of Polaris.

This method will be described under Azimuth.
2 nd method- By a single altitude.
The method of observing an altituele of a heavenly boxly is described below, p. 65 et serg.

Corrections to b: applied to an Obseried Altitude.

(a) Refractinn.

The ray of light that reaches an olserier from a star, in traversing the earth's atmosphere is continually bent downwards from a rectilinear path by the increasing refractive power of the air with lensity as the surface of the earth is approached. In consequence, the apparent direction of a

Fig. 10

star is that of a tangent the curved path of the ray at the point where it reathes the observer. This is illustratel in Fig. 10.

An observed altitude must then be diminished by an amomen equal to the angle between the final direction of the raty and the straght line drawn to the star, as appears in the figure. The magnitude of r decreases ats the altatude increases, and its value is best found from tables. These contain corrections depending upon the readings of the barometer and thermometor. An approximate value of r may he found by the erpuation

$$
r=5 \overline{7}^{\prime \prime} . \overline{7} \text { tan } \zeta
$$

or a closer approximation by the formula

$$
r=\frac{08: 3 b}{4(60+t} \tan 5
$$

in which
$b=$ the harometer reading in inches; and
$t=$ the temperature of the air in degrees F.
(See Field Astrone:ny for Eingineers, Iy Prof. (.. C. Comstock).
(b) Semi-diameter.

In observing the sun or moon the altitude of its upper or lower limb is observerl. To find the altitude of its centre a correction for semi-diameter must be applied. This may be found in the $\mathcal{N} . \mathrm{A}$.
(c) Parallax.

As the centre of the celestial sphere is coincident with that of the earth, if the directions of a heavenly body from tho. point and from 2 point on the earth's surface differ sensibiy,

then a correction must be applied to any observed co-ordinate to reduce it to the centre of the earth. This is only necessary with members of the solar system.

In Fig. 11.5 is the centre of the heavenly bobly observed, ${ }^{6}$ the centre of the carth, I the point of obervation. The triangle ASO gives

$$
\sin p=\sin \xi^{\prime} \quad \begin{aligned}
& a \\
&
\end{aligned}
$$

p being the parallax in altitude. If $5^{\prime}=90^{\circ}$ the resulting value of p is the horizontal parallax. Demoting it be we have

$$
\begin{equation*}
\therefore \quad \sin p=\sin \pi \sin r^{\prime} ; \tag{+4}
\end{equation*}
$$

or very nearly

$$
\sin \pi=\begin{aligned}
& a \\
& J
\end{aligned}
$$

$P=\pi \sin 5^{\prime}=\pi \cos h^{\prime}$
This gives the correction for parallia with sufficient aceuracy for any tody except the monn.
(d) Dip of the horizon.

At sea the altitude of a heavenly body is measured with a sextant from the sea horizon, the observer standing on the deek of a ship. A correction must therefore be applied to the observed angle on account of the dip of the visible below the true horizon.

In Fig. 12 we have from Pl. Ceom.

$$
\begin{gathered}
\left.\tan D^{\prime}=\begin{array}{c}
a b= \\
a \\
D^{\prime}=\sqrt{(2 a+h) h} \\
=\sqrt{2 h}
\end{array}\right)=\sqrt{2 a h} \text { nearly }
\end{gathered}
$$

or

This gives the dip uncorreted for refraction: but, as shewn in Fig. i3, the ray of light which reaches the observer from the horian followis a curved path, so that the apparent dip
D is less than D^{\prime}. The mean valate of the ratio of D to D^{\prime} is . $9216: 1$, so that

$$
D=.9216 \sqrt{\frac{2}{2}}
$$

or in seconds of are

$$
J=\frac{.0216}{\sin 1^{\prime \prime}} / \overline{2} \quad \overline{2}
$$

Sulstituting at mean walue of a in feet, this becomes

$$
\begin{equation*}
D=58^{\prime \prime} .82, ~ \sqrt{h} \tag{46}
\end{equation*}
$$

4 being in feet.
The rule known to navigators: "Take the spuare ront of the height of the eye above sea level in feet and call the result minutes", is thus very approximately correct.

Having applied the necessary corrections to the observed altitude, the reduction may be made by either of the equations (11), (12) or (13). If a number of observations are to be reduced an equation derived as follows is fore convenient: Taking the equation

$$
\cos \zeta=\sin \delta \sin \phi+\cos \delta \cos \phi \cos \tau
$$

it may be written
$1-\operatorname{versin} \zeta=\sin \delta \sin \phi+\cos \delta \cos \phi(1-\operatorname{versin} \tau)$
$=\cos (\phi-\delta)-\cos \phi \cos \delta$ versin τ

$$
=1-\operatorname{versin}(\phi-\delta)-\cos \phi \cos \delta \operatorname{versin} \tau
$$

$$
\begin{equation*}
\operatorname{versin} \tau=\frac{\operatorname{versin} \zeta-\operatorname{versin}(\phi-\delta)}{\cos \phi \cos \delta} \tag{47}
\end{equation*}
$$

This repuires the use of tables of natural and logarithmic versins. In the absence of such a table the following form of the equation may be used

$$
\sin ^{2} \frac{1}{2} \tau=\begin{gather*}
\cos (\phi-\delta)-\cos \zeta \tag{48}\\
2 \cos \phi \cos \delta
\end{gather*}
$$

Example-The following ofservations were taken with a sextant and artificial horizon on Aug. 1, 1892, at a place in latitude $52^{\circ} 31^{\prime} 04^{\prime \prime}$, and approximate longitude $7^{\mathrm{h}} 50^{\mathrm{m}} \mathrm{W}$.; to find the watch correction.

Index error $=+20^{\prime \prime}$.

$$
\begin{aligned}
& 2-a l t . \bar{\circ} \\
& -2^{\circ} 11^{\prime} 30^{\prime \prime} \\
& \text { 52 38 } 10 \\
& \text { :0.? } 0.5 \quad 30 \\
& 8.3 \quad 2430 \\
& \text { it } 4 \quad 16 \quad 10 \\
& \text { it } 4410 \\
& \text {.万. } 0: 310 \\
& \text { Watch } \\
& \mathrm{F}^{\mathrm{h}} 21^{\mathrm{m}} 2 \mathrm{~g} \text { A.M. } \\
& 2234 \\
& 24 \quad 27 \\
& \text { 25) } 28 \\
& 28 \quad 18 \\
& 29 \quad 52 \\
& 30 \text { 54 }
\end{aligned}
$$

First find the approximate (ir. M.T., thus:
Mean of extreme times $=7^{-1} 26^{m} 11^{*}$
Ast, time, July $31=1!9611$
l.ong $=7.30$
(ir. M.T., Aug. $1=31611$
For this time we take from the \mathcal{N}. A.

$$
\begin{aligned}
& \delta=+17^{\circ}+8^{\prime}: 56^{\prime \prime} \\
& s=\quad 1548 \\
& E=\quad 1 \mathrm{im}^{\mathrm{m}} 0 \mathrm{~B}^{3} .6
\end{aligned}
$$

Reduction of first observation:

h^{\prime}
r
S
p
h
ζ
Eq. (13)

$\log \sin \left(s^{\prime}-\phi\right)$
$\log \sin \left(s^{\prime}-\delta\right)$
$\log \cos s^{\prime}$
$\log \cos \left(s^{\prime}-i\right)$
$\log \tan ^{2} \frac{1}{2} \tau$
$\log \tan$
$\frac{1}{2} \tau$
3
1
2 τ

2)52 11 in	
	0.5 0^{5}
$=$	1 52
260403	
	1548
254815	
	8
$=25 \quad 48 \quad 23$	
$=64 \quad 11 \quad 37$	
$=67^{\circ} 15^{\prime}+8^{\prime \prime} .5$	
	$=14+4+4.5$
$=4!$	26 52
$=\begin{array}{lll}3 & 0.4 & 11\end{array}$	
$=0.40 .738$	
$=9.880708$	
$=0.5871+3$	
$=0.9093375$	
0.286446	
0.950 .50	
$=0.699926$	
$=9.8 .49096$	
$=70$ 3.5 17.8	

\therefore App Time	$=71738.8$
$1:$	(i) 10.3 . 1
Ne:an Time	$=723$ +2. 4
Wiatch	$=7.19!$
± 7	1. 213.4

Having redred the remaining oberrations the complete results are as follows:

$$
\begin{aligned}
& \pm T
\end{aligned}
$$

$$
\text { Me:tIt }=+214.16
$$

Another example will be foumd on p. 43.
To find the effect of errors in the data on the lime computed from an obserted allitude.

Taking the equation (see Fig. 4):

$$
\cos b-\cos a \cos c-\sin a \sin c \cos B=0
$$

and differentiating by means of the expression

$$
-\frac{d f}{d B} d B=\frac{d f}{d a} d a+\frac{d f}{d b} d b+\frac{d f}{d c} d c
$$

we find
$-\sin a \sin c \sin B d B=$
$(\sin a \cos c-\cos a \sin c \cos B) d a$
$-\sin b d b+(\cos a \sin c+\sin a \cos c \cos B) d c$
$=\sin b \cos (d a-\sin b d b+\sin b \cos A d c$
by applying equations (4), Sph. Trig. Then substituting in the left-hand number

$$
\sin a \sin B=\sin b \sin A
$$

we have

$$
-d B=\frac{\cos c d a}{\sin c \sin A}-\frac{d b}{\sin c \sin A}+\frac{d c}{\sin c \tan A}
$$

Then introlucing the astronomical co-ordinates, and remembering that

$$
d a=-d \delta \quad d b=-d h \quad d c=-d \phi
$$ we have finally:

$$
\begin{equation*}
d \tau=\frac{\cos (d \delta}{\cos \phi \sin A}-\frac{d h}{\cos \phi \sin A}+\frac{d \phi}{\cos \phi \operatorname{tin} A} \tag{49}
\end{equation*}
$$

The errors being small may be resariled as difteremtials, so that ($\mathbf{4 9}$) gives the effert of errors in δ, h athe ϕ insen the resulting hour angle 9 . It shews moreower that the effect of those errors is hatst whend amel (are buh large, or when the star observed is near the prime verticat.

Bral methot-By erpail altituke of a hearenty bots:
Method of olservaltion with at trmait or mextamt.
Equist altitudes of a heavenly borly on opposite sides of the meridian correspond. generally apotking, to equal homr angles. This is the case of a tixed star, wheme change of declination between the two positions may la megherted. The mean of the times of erpual altitudes is ihen the time of meridian transit. The method is therefore an indirect one for oberving the time of meridiant transit.

In the case of the sum, howerer, allowance must be made for the change of acelination in the interval between the two observations. An expression for the correction to be applied to the mean of the olserved times is derived ats follows:

Fig. it shews a projection of the celestial splere on the plane of the horizon. S_{1} and S_{2} are the two positions of the sun's centre at the instants of the two ohservations: S^{\prime} : the position it would have occupied if there had been mo change of declination. The two triangles $P Z S_{1}$ and $P Z S^{\prime}$, are then equal in all respects. It is therefore reguired to find the change of hour angle resulting from a smath change of declination. Taking the equation $\cos 5-\sin \delta \sin \phi-\cos \delta \cos \phi \cos \tau=0$
we fint by wiffromtiation

$$
\begin{aligned}
& d r=\cos \delta \sin \phi+\sin \delta \cos \phi \cos r \\
& =\frac{1: 111 \phi}{\operatorname{sint} T}+\begin{array}{l}
1: 111 \delta \\
1: 11 T
\end{array}
\end{aligned}
$$

If we now write

$$
d \tau=-2 J T_{n} \quad d \delta=2 J \delta
$$

this beromes

$$
-2 J T_{0}=\left(\begin{array}{c}
\text { ann } \phi \\
s i, \tau
\end{array}+\frac{1: 11 \delta}{1 a 11 \tau}\right) \cdot 2 J \delta
$$

or in seconds of time

$$
J T_{0}=-\frac{J \delta}{1 i}\left(\begin{array}{c}
\tan \phi \tag{50}\\
\sin \tau
\end{array}+\begin{array}{c}
\operatorname{tin} \delta \\
\operatorname{tin} \tau
\end{array}\right)
$$

This is the "equation of equal illitudes."
In this eguation
$\Delta \%_{o}=$ the correction to be applied to the mean of the olserved times to find the time of meridian transit;
$\Delta \delta=$ half the change in the sun's declination in the interval between the observations, positive if the sun is moving north.
τ may be assumed equal to half the elapsed interval between the observations. Attention must be paid to the algelsaic sign of δ; it is positive if north.

The advantages of this method are that the absolute altitudes need not be known; and small errors in ϕ and δ have no appreciable effect.

To find the time of rising or setting of a heavenly booly.

Tiake the equation

$$
\begin{equation*}
\sin h=\sin \delta \sin \phi+\cos \delta \cos \phi \cos r \tag{51}
\end{equation*}
$$

which maty be written
$\cos \tau=\sin h \sec \phi \sec \delta-\tan \phi \tan \delta$
In the case of the sun, when its upper limb is just visill le in the horizon it is in reality below the horizon by the amount of the refraction, 34^{\prime} approximately: and its centre is below the limb hy the ameunt of the semi-diameter, which may be taken as 16': parallax may be neglected. Therefore $h=-00)^{\prime}$, and sin $50^{\prime}=0.0145 ; \therefore$ the above equation becomes

$$
\begin{equation*}
\cos \tau=-0.0145 \sec \phi \sec \delta-\tan \phi \tan \delta \tag{52}
\end{equation*}
$$

The time of rising of the moon's centre is usually computed. In this case the effect of parallax is important. Assuming its amount as $\delta \mathrm{r}^{\prime}$, the altitule of the moon's centre when it is
apparently in the horizon= $3^{\prime \prime}-31^{\prime}=2.3^{\prime}$. . Now sin $2: 3^{\prime}=$ O.OOfir: : wh that (it) hecomess

Havitg computed the home allghe, the time re:dily follows.
Construction of sing dials.
The horizontal dial atud the prime vertical dial ouly will be combilerexl.

In ally form of dial the erlge of the gummon which ratst the shatlow must lae paratled to the cartho axis. as the pemition of the shatow catst upolt itny plate is then independent of the stin's declination

Fig. 1is shews the construction of the horizomtal dial. The edge of the gnomon if produced will intersect the celestial

sphere in the pole P. Fig. 16. PO.V is the meridian plane. NOI, a horizontal plane, and $P() L$ a plane through the sun's centre. LO.V (flemoted by a) is the angle which an hour line, correspondug to a given hour imgle r. make with the noon line. The triangle P'L.N then gives litn $a=\sin \phi$ tall τ
(.7.1)

The comatrintion bur a prime vertical dial in ala wo in leis. 1%. Op' is the meridian plane: O.M\%' that of the .0

prime vertical: and of $P^{\prime} M$ a plane through the sunnis centre. is is the required angle correspemeling to the homer angle r. 'The tri..mgle P'A/\%' gites

$$
\begin{equation*}
\text { tam } \beta=\cos \phi \text { tan } \tag{iii}
\end{equation*}
$$

A sm o dial gives apparent solar time.

4. Detekmenifion of l.aftrete al (olat: hithos.

Is shewn on pre 3, the latiturle of a place in erpual to the altitade of the pale, or the deelination of the arnith, i.e., to either are PNor I:\%, lig. 2.

Ist methen - 13 y meridian altitulen or anith distances.

If the altitule or zenith distance of a heavenly berly ine obsersed when crassing the meridial, and the necessary corrections lee appled, the latitule att onve follows by one of the following ergations, depending man the position of the borly: For the star

$$
\begin{align*}
& S_{1} \ldots \phi=\zeta+\delta \\
& S_{2} \ldots \phi=\delta+\delta(\delta \text { leing negative }) \tag{5it}\\
& S_{3} \ldots \phi=\delta-\zeta=h-p \\
& S_{1} \ldots \phi=180^{\circ}-\delta-\zeta=h+p
\end{align*}
$$

If S_{3} and S_{1} are the positions of the same star observerl at beth culminations, then ley taking the mein

$$
\phi=\begin{gather*}
h+h^{\prime} \tag{.37}\\
2
\end{gather*}-p-p^{\prime}
$$

the arcented letters Idelonging to lower combination.
If S_{1} and S_{s} are two .tars observed at nearly equal zenith distancon we hase by taking the mean of the first and third of (infi)

$$
\phi=\begin{gather*}
\delta+\hat{o}^{\prime} \\
\underline{2}
\end{gathered}+\begin{gathered}
\zeta-\zeta^{\prime} \\
\underline{y}
\end{gather*}
$$

the arcented letters belonging to the north star. This formula is the basis of Talcott's methorl of determining latitude, the observed guantity being the difference of zenith distamee of the two stars, which are selected so that that difference is smatl enongh to be measured be a filar mirrometer placed in the forms of a telescope. Details of methot ontinerl.

If the direction of the meridian is not known the maximm ahtude of the heatwenty body may be observed. If that boty is the sun the miximuni altitude differs slighty from the meridian altitule, owing to its rapidly changing declination. The resthing error is emtirely negligible, especially if instrmments of omly moxlerate precision atre used; its value is given by the exprenson
in which $\Delta \delta$ is the hourly change in the declination expressed in seconds. The correction is always subtractive.

Example-On July 10, 1914, the meridian altitude of the sun's uper limh wats obsersed (Cir. I) to be: $\left(68^{\circ} 11^{\prime} 30^{\prime \prime}\right.$.
Tol find the inclex error of the transit used the following V.C.K's were taken on a terrestrial penint:

$$
\text { (ir. } 10^{\circ} 34^{\prime} 30^{\prime \prime}
$$

(ir. R....... 0 0 31
Wiff. $=3: 30$
I. $\mathrm{E} .=14$

Ohs'd alt

$$
\begin{aligned}
& =68^{\circ} 11^{\prime} 30^{\prime \prime} \\
& \begin{array}{ll}
= & 14 \% \\
= & 6805 \\
= & 05 \\
= & 23
\end{array}
\end{aligned}
$$

I. $1:$.

180922
$=1511 \mathrm{i}$
$\begin{array}{lll}\text { (i7 } & \text { i33 } & 36 \\ & & 3\end{array}$
$\begin{array}{llll}4 & =64 & 53 & 39 \\ 5 & =29 & 06 & 21\end{array}$
$\begin{array}{llll}\delta & =2 & 17 & 48\end{array}$
$\phi \quad=14 \quad 2+19$

2nd method- 3 y an ahtitule obsersed out of the meridian, the time being known.

To the observed altitule the neressary corrections must be applied, and the hour angle derived from the olserved time. The latitude then follows be means of (1 i)

$$
\cos (\phi-\theta)=\begin{gathered}
\sin h \sin \theta \\
\sin \delta
\end{gathered}
$$

θ being found by the expation

$$
\operatorname{tilli} \theta=\begin{aligned}
& \text { till } \delta \\
& \cos \tau
\end{aligned}
$$

To find the effect of errors in the data we hase by trans:" (his (49)
$d \phi=-i n C \sec A d \delta+\sec A d h+\cos \phi \tan A d \tau$
fine erfat: in shews that the effect of errors in the data is feass when A is small and C large, thongh the second con$\because t, 0$, is unimportant, as the error in the declination is always small in comparison with the other errors. These conditions are fulfilled, however, by observing a close circumpolar star near elongation.

Hence the method by means of the pole star.
As the altitude of this star never differs much from the latitude, the method consists in computing a correction to apply to the forms to give the latter. An expression for this correction is derived as follows:

Taking the equation

$$
\sin h=\sin \phi \sin \delta+\cos \phi \cos \delta \cos \tau
$$

and substituting in it

$$
\begin{aligned}
& \phi=h+x \\
& \delta=90^{\circ}-p
\end{aligned}
$$

we have

$$
\sin h=\sin (h+x) \cos p+\cos (h+x) \sin p \cos \tau
$$

Then expanding the sin and cos of $h+x$, and again expanding the sin and cos of x and p and neglecting the powers of their circular measures above the second, we have

$$
\left.\left.\left.\begin{array}{rl}
\sin h= & \left\{\sin h\left(1-\frac{x^{2}}{2}\right)+x \cos h\right\}\left(1-\frac{p^{2}}{2}\right) \\
+ & \left\{\operatorname { c o s } h \left(1-x^{2}\right.\right. \\
2
\end{array}\right)-x \sin h\right\} p \cos \tau\right\}
$$

Whence

$$
x \cos h=-p \cos h \cos \tau+\frac{1}{2}\left(x^{2}+p^{2}+2 p x \cos \tau\right) \sin h
$$

or

$$
x=-p \cos \tau+\frac{1}{2}\left(x^{2}+p^{2}+2 p x \cos \tau\right) \text { tin } h .
$$

Assuming now as a first approximation

$$
x=-p \cos \tau
$$

and substituting in the right-hand member, we have

$$
\begin{aligned}
x & =-p \cos \tau+\frac{1}{2}\left(p^{2} \cos ^{2} \tau+p^{2}-2 p^{2} \cos ^{2} \tau\right) \tan h \\
& =-p \cos \tau+\frac{1}{2} p^{2} \sin ^{2} \tau \tan h
\end{aligned}
$$

or in seconds of are

$$
x=-p \cos \tau+\frac{1}{2} p^{2} \sin 1^{\prime \prime} \sin ^{2} \tau \tan h
$$

We have then finally

$$
\begin{equation*}
\phi=h-p \cos \tau+\frac{1}{2} p^{2} \sin 1^{\prime \prime} \sin ^{2} \tau \tan h \tag{60}
\end{equation*}
$$

The effect of the omission of the smaller terms in the above expansions can never amount to $0^{\prime \prime} .5$.

Example.-The following observations of Polaris were taken on June 14, 1904, with a small transit:

Cir.	$V . C . R$.	Watch
R.	$45^{\circ}+4^{\prime}$	$14^{\mathrm{h}} 50^{\mathrm{m}} 04^{\mathrm{s}}$
L.	4543	5346
R.	4.545	5510
L.	4.	44

The watch was regulated to sid. time, and its correction was -20^{4}. The star's co-ordinates were:

$$
\begin{aligned}
& \alpha=1^{\mathrm{h}} 24^{\mathrm{m}} 26^{\mathrm{s}} \\
& \delta=88^{\circ} 47^{\prime} 27^{\prime \prime}\left(\therefore p=4353^{\prime \prime}\right) .
\end{aligned}
$$

The mean of the first and second observations being taken, and that of the third and fourth, the reduction is made as follows:
Eq. (60) T
$=14^{\mathrm{h}} 51^{\mathrm{m}} 55^{\mathrm{s}}$

$$
\begin{array}{lr}
=14^{\mathrm{h}} 58^{\mathrm{m}} 27^{\mathrm{s}} \\
= & -20
\end{array}
$$

ΔT
$=\quad-20$
θ
$=145135$
$=14 \quad 58 \quad 07$
a
t
$=12426$
$=12426$
$=132709=133341$
τ
$=10 \quad 32 \quad 51$
$=1026 \quad 19$
$=158^{\circ} 12^{\prime} 45^{\prime \prime}=156^{\circ} 34^{\prime} 45^{\prime \prime}$
h^{\prime}

$\begin{array}{llll}= & 45 & 43 & 30 \\ = & & 56\end{array}$	$\begin{array}{ll}45 & 4+30 \\ \\ & 56\end{array}$
$=454234$	$=454333$
$=3.638789$	3.638789
$9.966813 n$	9.962659 n
$=3.6006602 n$	$=3.601448 n$

$\log 0.5$	$=\overline{1.698970}$	1.6i98970
$\log p^{2}$	7.277578	- 7.277578
$\log \sin 1^{\prime \prime}$	6.685.575	$=\overline{6} .685 .575$
$\log \sin ^{2}$ T	$=9.139134$	$=9.198(634$
log tan h	$=10.0107 .50$	$=10.011009$
log 2nd term	$=0.812013$	$=0.871766$
h	$=45^{\circ}+2^{\prime} 34^{\prime \prime}$	$=4.5^{\circ} 433^{\prime} 34^{\prime \prime}$
1st term	$=10722$	$=10634$
2nd term	$=6$	1 ,
ϕ	$=465002$	46 50) 15

Meill $=46^{\circ} 50^{\prime} 08^{\prime \prime}$
Circum-meridian Altitudes.
If a number of altitudes of a star be olserved in quick succession when near the meridian, cach will differ by but a small amount from the meridian altitude. A correction may then be computed for each altutude which, when applied to it will give a value of the meridian altitule. The nean of these resulting values having been taken the latitude then follows by means of one of the equations (56).

To find an expression for this correction we return to the equation

$$
\sin h=\sin \phi \sin \delta+\cos \phi \cos \delta \cos \tau
$$

which is transformed as follows:

$$
\begin{aligned}
& \sin h=\sin \phi \sin \delta+\cos \phi \cos \delta\left(1-2 \sin ^{2} \frac{1}{2} \tau\right) \\
&=\cos (\phi-\delta)-\cos \phi \cos \delta \cdot 2 \sin ^{2} \frac{3}{2} \tau \\
&=\cos \delta 0-\cos \phi \cos \delta \cdot 2 \sin ^{2} \frac{1}{2} \tau \\
&=\sin h_{0}-\cos \phi \cos \delta \cdot 2 \sin ^{2} \frac{1}{2} \tau \\
& \text { b) }
\end{aligned}
$$

by (56), ζ_{0} being the meridian zenith distance and h_{0} the meridian altitude. If we now write

$$
h=h_{0}-y
$$

we have $\quad \sin h=\sin \left(h_{0}-y\right)=\sin h_{0}-y \cos h_{0}$ by expanding and discarding powers of y above the first. Substituting in the above expression for $\sin h$, it becomes

$$
\sin h_{o}-y \cos h_{0}=\sin h_{o}-\cos \phi \cos \delta .2 \sin ^{2} \frac{1}{2} \tau
$$

or

$$
y=\frac{\cos \phi \cos \delta}{\cos h_{1}} \cdot 2 \sin ^{2} \frac{1}{2} \tau
$$

or in seconds of arc

$$
\begin{equation*}
y=\frac{\cos \phi \cos \delta}{\cos h_{0}} \cdot \frac{2 \sin ^{2} \frac{1}{2} \tau}{\sin 1^{\prime \prime}} \tag{61}
\end{equation*}
$$

This gives the required correction.

If the squares of small quantities be retained an the above expansions the following term will be added to (61)

$$
-\binom{\cos \phi \cos \delta}{\cos h_{o}}^{2} \tan h_{o} \begin{gathered}
2 \sin ^{4} \frac{1}{2} T \\
\sin 1^{\prime \prime}
\end{gathered}
$$

The value of the term

$$
\frac{2 \sin ^{4} \frac{1}{2} \tau}{\sin 1^{\prime \prime}}
$$

amounts to $1^{\prime \prime}$ for $\tau=18^{m}$, and to $7^{\prime \prime} .55$ when $\tau=30^{m}$, so that for moderate hour angles, and when using small instruments, (61) may be considered practically exact.

Many collections of tables give the values in seconds of arc of the terms
for given values of τ.
Example.-The following observations were taken with a sextant and artificial horizon on Sept. 2, 1893:

2 alt.	\odot	Watch
89°	59^{\prime}	$\frac{15}{15}$
90	00	15
90	00	45
89	59	15
89	58	30
89	57	30
89	55	15

Index error $=0$; watch correction $=-8^{s}$.
An approximate value of the latitude is found by regarding the maximum observed altitude as the meridian altitude, as follo $\%$ s:

Max. 2-alt. Eccent:ic error	$\begin{gathered} =90^{\circ} 00^{\prime} 45^{\prime \prime} \\ +200 \end{gathered}$
	900245
Obs'd alt.	$=450122$
r	58
	450024
S	$=1554$
	45 1618
p	$=6$
h_{0}	$=45 \quad 16 \quad 24$

Y_{0}	$=44$	43	36
δ	$=7$	37	36
ϕ (approx.)	$=52$	21	30

The hour angles corresponding to the observed times may be found by first finding the watch time of culmination, thus

App. time of culm'n	$=12^{\mathrm{h}} 00^{\mathrm{m}} 00^{\mathrm{s}}$
E	-21
M.T.	$=11 \quad 5939$
ΔT	$=-08$
Watch time of culm'n	$=11594$

From this follow the hour angles tabulated below. The corrected zenith distances are also found as above. We then proceed as follows:

The remaining corrections are comput $: 1$ in a similar manner, and are tabulated below.

$44^{\circ}+4^{\prime} 21^{\prime \prime}$	$6^{\mathrm{m}} 11^{\text {a }}$	$h_{0}-h$ $1^{\prime} 05^{\prime \prime}$	$44^{\circ} \stackrel{\zeta_{0}}{4} 3^{\prime} 16^{\prime \prime}$
$43 \quad 51$	310	17	$4{ }^{4} 4316$
4336	019	00	36
4421	± 10	29	52
4443	589	100	43
4513	724	132	41
4621	9) 26	230	51
		${ }_{\delta}^{\text {Mean }}$	$\begin{array}{lll} =44 & 43 & 3! \\ = & 7 & 37 \\ 5 \end{array}$
		ϕ	$=522133$

Bral methorl-By two observed altitules of a star, or the altitules of two stars, and the elapsed time between the observaltions.

In addition to the latitule this method also ser ies to determine the time and akimuth.

Let S_{1} and S_{2} be the pesitions of the star or stars at the instants of observation. The first step in the reduction is to determine the difference of hour angle $S_{1} P S_{2}$. If the sun is observed wice, this angle is equal to the elapsed interval of apparent time between the observations, though usually the effect of the change in the equation of time may be neglected. If one fixed star has been observed the angle $S_{1} P S_{2}$ is equal to the elapsed sidereal interval between the observations. If wo stars are observed at the times T_{1} and T_{2}, the right ascensions being a_{1} and a_{2}, then

$$
\begin{equation*}
S_{1} P S_{2}=\left(a_{1}-a_{2}\right)-\left(T_{1}-T_{2}\right) \tag{62}
\end{equation*}
$$

S_{1} being the more easterly star. The interval $T_{1}-T_{2}$ must be in sidereal time.

Then, $P S_{1}$ and $P S_{2}$ being known, the triangle $S_{1} P S_{3}$ may be solved, finding $S_{1} S_{2}$ and $P S_{1} S_{2}$. The three sides of the triangle $Z S_{1} S_{2}$ are now known, so that it may be solved, finding the angle $Z S_{1} S_{g}$. Then $P S_{1} Z=Z S_{1} S_{4}-P S_{1} S_{2}$. The triangle $P Z S$ is finally solved, finding $P Z$ the co-latitude, Completing the sohtion gives also the hour angle $Z P S$ and the azinuth PZ.S.

This method is further developed in works on mavigation. in which graphical solutions are given.
themethod-13y transits of stars arross the prime vertical.
A star whose dedination lies between the limits 0° and ϕ will cross the prime vertical above the horizom wice in its diarnal course.

The times of transit across the p.e: may be observed be means of a transit adjusted in the p, N . If S_{5} and S_{2} are the two positions of a star at the instant of olservation, then the elapsed sidereal interval between the olsorvations is equal to the angle $S_{1} P S_{2}$, and half that intertal is the home angle of the star at either olseervation. Tramsposing eq. (24) we have

$$
\tan \phi=\begin{align*}
& \tan \delta \tag{63}\\
& \cos \tau
\end{align*}
$$

by which the latitule may be found.
This method is little used with small instraments, but when applied to the astronomical transit instrument it is one of the most precise methods known for determining latitude.

5th method-By observations of stars at clongation.
If two circumpolar stars be selected, whose times of elongation, one east and the other west of the meridia:s, are not widely different, we have for the two stars, applying eq. (23)

$$
\sin A_{1}=\begin{gather*}
\cos \delta_{1} \tag{6-4}\\
\cos \phi
\end{gathered} \quad \sin A_{4}=\begin{gathered}
\cos \delta_{2} \\
\cos \phi
\end{gather*}
$$

whence

$$
\frac{\sin A_{1}}{\sin A_{2}}=\frac{\cos \delta_{1}}{\cos \delta_{z}}
$$

From this by composition and division

$$
\frac{\sin A_{1}+\sin A_{2}}{\sin A_{1}-\sin A_{2}}=\begin{gathered}
\cos \delta_{1}+\cos \delta_{2} \\
\cos \delta_{1}-\cos \delta_{2}
\end{gathered}
$$

or $\quad \tan ^{\frac{1}{2}\left(A_{1}+A_{2}\right)} \quad \tan _{\frac{1}{2}\left(A_{1}-A_{2}\right)}=-\cot \frac{1}{2}\left(\delta_{1}+\delta_{3}\right) \cot \frac{1}{2}\left(\delta_{1}-\delta_{2}\right)$;
from which finally
$\tan \frac{1}{2}\left(A_{1}-A_{2}\right)=-\tan \frac{1}{2}\left(A_{1}+A_{2}\right) \tan \frac{1}{2}\left(\delta_{1}+\delta_{2}\right) \tan \frac{1}{2}\left(\delta_{1}-\delta_{2}\right)(65)$
From this may be found the difference of the azimuths of the two stars when their sum is known. The sum of the azimuths may be observed by pointing the telescope of a transit to each star in turn, when at elongation, noting the
rearlings of the horizontal circle and taking their difference. From the sim and difference of A_{1} and A_{2} their separate values may le found. The latitude then follows by either equation

$$
\begin{equation*}
\cos \phi=\frac{\cos \delta_{1}}{\sin A_{1}}=\frac{\cos \delta_{2}}{\sin A_{2}} \tag{6i6}
\end{equation*}
$$

This methorl wats due to Prof. J. S. Corti.
The best stars for observation are those having large azimuths when at elongation, or whose declinations do not greatly exceed the latitude. Their elongations then occur at high altitudes, and therefore this principle must not be pushed to an extreme, as the effect of an unknown inclination error of the horizontal axis of the transit increases rapidly with the altitude.

5. Determinition of Azimltif IIV Oial:RVAtion.

1st method-13y meridian transits.
'The time of meridian transit of any star may le computed as shewn on pp. 11 and 16 . If the correction of a chromometer be known, the chronometer time of transit may be found. By directing the sight line of a well adjusted tramsit to the star at that instant, it will thas be plared in the meridian plane, and a meridian line may then be established on the ground; or by horizontal circle readings when pointing to the star and a mark, the azimuth of the later may be determined.

It is clear that a slow-moving circumpelar star is lest for this observation, as then the effect of an error in the computed time of transit is a minimum. The rate of change of azimuth of a star when crossing the meridian is given by the relation

$$
\begin{equation*}
\Delta A=15 . \Delta \tau \frac{\cos \delta}{\sin (\phi-\delta)} \tag{67}
\end{equation*}
$$

(see erg. 75) ΔA being expressed in are and $\Delta \tau$ in time. In the case of the pole star over $2^{\mathbf{m}}$ are required for a change of azimuth of 1^{\prime}, when crossing the meridian.

2nd method-By tionsits across any vertical circle, the latitude being known.

Having computed the lour angle from the observed time, the data of the problem are τ, δ, and ϕ, and the azimuth of the star may be computed by means of (6) and (7), or

$$
\tan \theta=\frac{\tan \delta}{\cos \tau^{\circ}} . \tan A=\frac{\tan \tau \cos \theta}{\sin (\theta-\phi)}
$$

The same considerations as in the last method lead to the choice of a close circumpolar star for this olservation. The equation from which (5) was derived may be placed in more convenient forms. Thus it may be written,

$$
\tan A=\frac{\sin \tau}{\cos \phi \tan \delta-\sin \phi \cos \tau} ;
$$

then multiplying the right-hand member through by sec ϕ $\cot \delta$, this becomes

$$
\tan A=\begin{gather*}
\sec \phi \cot \delta \sin \tau \tag{68}\\
1-\tan \phi \cot \delta \cos \tau
\end{gather*}
$$

This form is convenient when subtraction log's are arailable. (See Manual of Suriey of Dominion Lands.)

Again, the aluse equation maty be written

$$
\begin{aligned}
& \text { tant } A=\frac{\sin t}{}=\frac{\cos \phi \operatorname{con} p-\sin \phi}{} \phi \\
& =\frac{\sin t}{\cos \phi \cot p(1-\operatorname{tin} p \tan \phi \cos r)} \\
& =\underset{\sin \phi \text { tinn } \phi}{\cos \phi}(1-\tan P \text { tanl } \phi \text { (ons } \rho)^{-1}
\end{aligned}
$$

Then expanding and megecting powers of A and p alove the secomd, we have

$$
A=\underset{\cos \phi}{p \sin \tau}(1+p \tan \phi \cos T)
$$

A and p are here expressed in circular measure. Writing them $A \sin 1^{\prime \prime}$ and $p \sin 1^{\prime \prime}$, in which they are now expressed in seconds, the equation becomes

$$
A=p \sin T\left(1+p \sin 1^{\prime \prime} t \tan \phi \cos \tau\right)
$$

The omittel terms in the above expansions become important in ligh latitures, but up to latitule 50°, in the case of the pole star, they will not exceed $2^{\prime \prime}$ and up to latitude $60^{\circ} 4^{\prime \prime} .5$. "They attain a maximum value when $r=2^{\text {h }}$, about, and vanish when τ slightly exceeds 4^{h}.

In taking the olservation the procelure is as follows:
Point to the reference point and note H.C.R.
Then point to the star, note time and H.C.R.
fir n reverse instrument and again point to the star and wote time and H.C.R.
Then point to the reference point and note H.C.R.
The means of the H.C.R's on the star and reference point are then taken, increasing or diminishing one in each case by 180°; and also the mean of the times of pointing to the star, from which the hour angle is derived.

Having computed the azimuth by (68) or (69), let:
A_{s} denote the azimuth of the star reckoned from the north in the direction ESW;
A_{p} that of the reference point.
R_{s} the H.C.R. on pointing to the star
K_{p} that on poisting to the reference point.
Then

$$
\begin{align*}
& A_{p}-A_{s}=R_{p}-R_{s} \\
& A_{p}=A_{s}+R_{p}-R_{s} \tag{70}
\end{align*}
$$

Cixample-Tle foll ag olnerviltione were taken in Aug., 1 (M) f, at a place ... latitude 40° i I^{\prime} :

I'l. olss'd.
R.I'
(ir.
R. $\quad 178^{\circ} 14^{\prime} .5$

Polaris \quad I. 18102 .ij 1001010
k.i.
l. $3 \mathrm{Bix} \quad 14.5$

The watch correction was fonnd by olserving the meridian transit of a Scorpii, as follows:

Watch time of transit	$=1 i^{\prime \prime} 233^{\prime \prime \prime}(10)^{4}$
R't ascension of star	$=162: 3: 3$
Watch corr'n	$+34$

From the N.A.

$$
\begin{array}{ll}
a \text { (of Polaris) } & =1^{\mathrm{h}} 25^{\mathrm{mm}} 033^{\prime} \\
\delta & =88^{\circ} 47^{\prime} 28^{\prime \prime} \\
p & =43.02^{\prime \prime}
\end{array}
$$

The computation then procereds ats follows:

Watch corr'n
$=\quad+34$
Fif. (40) Sid. time

$$
=1.5 \text { is } 10
$$

a
1

$$
=143337
$$

τ

$$
=12.50 .3
$$

$$
=9 \quad 21 \quad 23
$$

$$
=141^{\circ} 3 i^{\prime} 4 i^{\prime \prime}
$$

F.4. (68) $\log \sec \phi=10.16 .50 .5$
\log till $\phi=10.02 \times 82^{\circ}$
$\log \cot \delta=8.324328$
$\log \sin t=9.793235$
$\log \cot \delta=8.32432 x$
$\log \cos \tau=9.8!4122 n$
8.2×2968
8.2472

Subt. $\log =0.007610$

$$
8.2 \cdot 7: 2
$$

$$
\begin{aligned}
\log \quad \tan A & =8.27533 x \\
A & =1^{\circ} 04^{\prime} 48^{\prime \prime}
\end{aligned}
$$

$\mathrm{Eq} .(70) A_{s}=1^{\circ} 04^{\prime} 48^{\prime \prime}$

$$
R_{g}=178 \quad 14: 30
$$

$$
179 \quad 19 \quad 18
$$

$$
R_{s}=10000
$$

$$
A_{p}=178^{\circ} 19^{\prime} 18^{\prime \prime}
$$

The computation by (69) in ats follows:

', 发 p	$=3.183 \times 1 \mathrm{sm}$
60, sill	$=9.7032035$
loge cosi ϕ	$=\begin{aligned} & 9.83+4598 \\ & 3.43192 .4 \end{aligned}$
log lst term	$=3.517329$
loge p	$=3.16381689$
log sill 1"	
loge till ϕ	$=10.02 \times 8 \times 2.5$
log cose 9	$=0.98+12 \cdot 2 n$
log 2nd term	$=1.8445 \cdot 40 n$
1st tern	$=1^{\circ} 0 i^{\prime} 5 i^{\prime \prime}$
2nd term	$=-110$
. 1	$=10447$

This method may be used to adyantage in finding the variation of a compass. An explorer's instrumental equipment may consist of a sextant and a compass. With the former instrument an observation of the sun for time may be taken. If the compaiss bearing of the sim's limb then be taken, the true arimuth of that looly may be computed in terms of $\tau \delta$ and ϕ, which, compared with the magnetic azimuth, will give the variation. The quantity S see h must b eveded to or subtracterl from the azimuth of the sinn's centre to obtain the aximuth of the limb. I is given by (i) and need only be known approximately.
The equations then are:

$$
\begin{aligned}
& \tan \theta=\begin{array}{l}
\tan \delta \\
\cos \tau
\end{array} \quad \sin h=\sin \delta \cos (\theta-\phi) \\
& \sin \theta
\end{aligned}
$$

The best time for this observation is when the sun is near the prime vertical.

3rd method- By an obsersed altitude.
The method of ohservation is described on p. 6is et seq.
The data are $h \delta$ and ϕ, and the reduction is made by one of the equations (8), (9) or (10).

Fixample. -The following observations of the sun for aximuth and time were taken on July 30, 1914, at a place in latitude $44^{\circ} 24^{\prime} 09^{\prime \prime}$, and approximate longitude $5^{\mathrm{h}} 18^{\mathrm{m}} 15^{\mathrm{s}} \mathrm{W} .:$

The reduction is as lollows: I'o find thr aミimulh:

To find the lime:
$\log \sin \left(x^{\prime}-\phi\right)=\{1.141: 20(0) 3$
$\log \sin \left(x^{\prime}-\delta\right)=11.8 \mid 1.9 .5$

$$
4.333+8 x
$$

$$
11.6 t i 30!1 . i
$$

log tan! $\quad=$ I.N. 3 iotx 1
${ }_{1}^{1} \tau \quad=34^{\circ} \cdot 23^{\prime}$ i4"

$f:=+1 ; 16.0$
M.T. $=1+127.2$

1N 1i
Stind. T $=1$ in! 12.2
Wiltch $=4$ is 13.2
$\Delta T \quad=+12!1.0$

log tatie $\frac{1}{2}$ d	$=10.012171$
\log tian $\frac{1}{2} 4$	$=10.006085$
$\frac{1}{2}$.	$=100^{\circ} 24^{\prime} 00^{\prime \prime}$
A	$=110.1810$
A_{5}	$=2(5) \quad 11$ in
R_{p}	$=23261 i$
	292830
R_{s}	$=21!$ is
A_{p}	$=7210 \mathrm{ll}$

Example.-The following observations were taken with a small transit in Sept., 1899, to determine azimuth, time and latitude.

A mean time watch was used. Arcturus was to the west of the meridian, and Altair near the meridian and east of it.

The approximate meridian altitude of Altair was obseried to be

$$
34^{\circ} 39^{\prime} 30^{\prime \prime}
$$

whence a value of the latitude for relucing the azimuth observations was found as follows:

$$
\begin{aligned}
& h^{\prime}=34^{\circ} 39^{\prime} 30^{\prime \prime} \\
& r=123 \\
& h=34 \quad 38 \quad 07 \\
& 5=55 \quad 21 \quad 53 \\
& \delta=+8 \quad 36 \quad 23 \\
& \phi=6358816
\end{aligned}
$$

The apparent places of the two stars were:

$$
\begin{array}{llll}
\text { Arcturus } \ldots \ldots \ldots & 14^{\mathrm{h}} 11^{\mathrm{m}} 05^{\mathrm{s}} & +19^{\circ} 42^{\prime} 24^{\prime \prime} \\
\text { Altair. } \ldots \ldots \ldots . & 195^{45} 5 & +8623
\end{array}
$$

The reduction of the first azimutl observation is as follows:

V.C.R., Cir. R	$=27^{\circ} 27^{\prime}$	
V.C.R., Cir. L	$=27$	06
Mean	$=27$	$1630{ }^{\prime \prime}$
r	=	151
h	$=27$	1439
5	$=62$	4) 21

Eq. (10)

$\log \cos s^{\prime}$
$\log \sin \left(s^{\prime}-\delta\right)$
$\log \cos \left(s^{\prime}-\zeta\right)$
$\log \sin \left(s^{\prime}-\phi\right)$
$\log \sin \left(s^{\prime}-\phi\right)$

Eq. (70)
$\log \tan ^{2} \frac{1}{2} A$
$\log \tan \frac{1}{2} A$
${ }_{2}{ }_{2} A$
A
A_{s}
R_{p}
R_{s}
A_{p}
$=73^{\circ} 13^{\prime} 00^{\prime \prime} .5$
$=914+4.5$
$=533036$. 5
$=10 \quad 27 \quad 3!$. 5
$=9.460 .524$
$=0.905235$
$=9.902721$
$=9.205930$
9.365759
9.198651
$=10.167108$
$=10.083554$
$=50^{\circ} 28^{\prime}+0^{\prime \prime} .5$
$=100 \quad 57 \quad 21.0$
$=259 \quad 0239$
$=225 \quad 45$
$484 \quad 4739$
$=1.57 \quad 34$
$=327 \quad 13 \quad 39$

Reducing the remaining azinuth observations in a similar manner, and taking the mean, the result is

$$
A_{p}=327^{\circ} 13^{\prime} 31^{\prime \prime}
$$

In order to reduce the latitude observations it is necessary to find the hour angle of Altair corresponding to each of the observed times. This may be done by computing the hour angle of Arcturus from the observations of that star, and combining it with the difference of right ascension of the two stars. Thus:

$\begin{array}{r} \text { Eq. (13) } \\ \frac{\log \sin \left(s^{\prime}-\phi\right)}{\log \sin \left(s^{\prime}-\delta\right)} \end{array}$	$\begin{aligned} & =9.205930 \\ & =9.905235 \end{aligned}$
$\begin{aligned} & \log \cos s^{\prime} \\ & \log \cos \left(s^{\prime}-\zeta\right) \end{aligned}$	$=9.460524$
	$=0.902721$
	$9.11116{ }^{5}$
	9.453245
$\log \tan ^{2} \frac{1}{2} \tau$	$=0.6 .57920$

Reducing the remaining observations in the same way; the hour angles are:

$$
\begin{aligned}
& 4^{h} 31^{n 4} 5^{5} .2 \\
& 3845.1 \\
& 4554.4 \\
& \text { Mean }=4 \quad 38 \quad 52.9
\end{aligned}
$$

The difference of r.a. of the two stars is $5^{\mathrm{h}} 34^{\mathrm{m}} 50^{3}$;
therefore the hour angle of Altair

$$
\begin{aligned}
& =\begin{array}{r}
4^{\mathrm{h}} 38^{\mathrm{m}} 53^{\mathrm{s}} \\
-53450 \\
= \\
=-5557
\end{array}
\end{aligned}
$$

(the star being east of the meridian) at an instant equal to the mean of the observed times, or $7^{\mathrm{h}} 51^{\mathrm{m}} 37^{\mathrm{s}} .5$
Then as the change of hour angle of a star is equal to the change in the sidereal time, the hour angle of Altair at the time of the first latitude olsservation is found as follows:

Observed time, 1 st obs'n	$=8^{\mathrm{h}} 16^{\mathrm{m}} 55^{\mathrm{s}}$
Mean of times of az. obs'ns	$=75137.5$

Diff.
Equivalent sid. interval
Hour angle at mean of times

Hour angle at 1st lat. obs'n. $=-3035$
The hour angles of Altair are thus found to be
$-30^{\mathrm{m}} 35^{\mathrm{s}}$
2819
$26 \quad 12$
2429
2244
$20 \quad 10$
The latitude observations are now reduced as follows: Eq. (61)

h^{\prime}		$=34^{\circ} 23^{\prime} 00^{\prime \prime}$
r		124
h		$=342136$

ζ	$=55 \quad 38 \quad 24$
ϕ	$=\begin{array}{llll}3 & 58 & 16\end{array}$
δ	$=83623$
h_{0}	$=3438807$
$\log \cos \phi$	$=9.642291$
$\log \cos \delta$	$=9.995082$
$\log \cos h_{0}$	$=9.915287$
	$\begin{aligned} & 9.637373 \\ & 9.722086 \end{aligned}$
$\log m$	$=3.2{ }^{4 \cdot 9} 53$
$\log y$	$=2.985439$
$y=967^{\prime \prime}$	$=0^{\circ} 16^{\prime} 07^{\prime \prime}$
ζ	$=55 \quad 38 \quad 24$
ζ_{0}	$=55 \quad 22 \quad 17$
δ	$=83623$
ϕ	$=63 \quad 58 \quad 40$

The complete latitude res.ilts are:

$$
\begin{array}{rrr}
\phi=6 \iota^{\prime} & 58^{\prime} & 40^{\prime \prime} \\
& 59 \\
& 28 \\
& 28 \\
& 53 \\
& 46 \\
\hline & & 63 \\
& 58 & 42
\end{array}
$$

The inclusion of the small term in the expression for ϕ increases this result by less than $1^{\prime \prime}$.

The effect of the error of $26^{\prime \prime}$ in the value of the latitude used in the computation of A is found by the formula

$$
d A=-\frac{d \phi}{\cos \phi \tan \tau}
$$

to be about $21^{\prime \prime} .5$.
4th method-By an observation of a circumpolar star at elongation.

The azimuth and hour angle of the star may be found by (22) and (23). From the former the time of elongation may be computed.

Description of method of taking the observation.
In the case of the pole star, assuming $a=1^{\mathrm{h}} 26^{\mathrm{m}}, \delta=88^{\circ} 50^{\prime}$, we find $r=5^{\mathrm{h}} 58^{\mathrm{m}} 20^{\mathrm{s}}$, and $\therefore \theta=7^{\mathrm{h}} 21^{\mathrm{m}} 20^{\mathrm{m}}$, the sidereal time of western elongation. This may be used to compute approximately the time of either elongation at any time of the year.

5th method-By transits of stars across the vertical circle of Polaris.

From the observed times of transit of two stars across the same vertical circle, the azimuth of that circle may be computed.

To find the azimuth: In Fig. 21, S_{1} is the position of Polaris at the time of transit and S that of an equatorial star. $S Z S_{1}$ is then the vertical circle of the instrument, and $P Z$ the meridian. The angle $S P S_{1}$ (denoted by Δ) differs from the difference of r.a. of the two stars by the sidereal interval between their transits, or

$$
\begin{equation*}
\Delta=\left(a_{1}-a\right)-\left(T_{1}-T\right) \tag{71}
\end{equation*}
$$

T_{1} and T being the observed times of transit of Polaris and the other star, respectively, a_{1} and a their right ascensions. In computing Δ the sulbtractions should be algebraic; Δ will then be affected by the + sign if the star S is west of the meridian, and by the - sign if east.

We next take the equations:

$$
\begin{gathered}
\sin \Delta \cot C=\cos \delta \tan \delta_{1}-\sin \delta \cos \Delta \\
\sin \tau \cot C=\cos \delta \tan \phi-\sin \delta \cos \tau \\
\sin A=\frac{\cos \delta \sin C}{\cos \phi}
\end{gathered}
$$

which are obtained from (5) and (3), Sph. Trig. From the first of these we have

$$
\begin{aligned}
\tan C & =\frac{\sin \Delta}{\cos \delta \cot p-\sin \delta \cos \Delta}, \\
& =\frac{\sin \Delta}{\cos \delta \cot p(1-\tan p \tan \delta \cos \Delta)},
\end{aligned}
$$

$$
\begin{align*}
& =\frac{\sin \Delta}{\cos \delta} \tan p(1+\tan p \tan \delta \cos \Delta+), \\
& \left.=\frac{p \sin \Delta}{\cos j^{\circ}} 1+p \tan \delta \cos \Delta\right) \tag{72}
\end{align*}
$$

neglecting p^{3}. Again, from the second equation we have
or

$$
\begin{aligned}
\sin \tau \frac{\cot C}{\sin \delta}+\cos \tau & =\frac{\tan \phi}{\tan \delta}, \\
\tau \frac{\cot C}{\sin \delta}+1-\frac{\tau^{2}}{2} & =\frac{\tan \phi}{\tan \delta},
\end{aligned}
$$

again neglecting the cube and higher powers of small quantities; \therefore

$$
\tau \frac{\cot C}{\sin \delta}-\frac{\tau^{2}}{2}=\frac{\tan \phi}{\tan \delta}-1=\frac{\sin (\phi-\delta)}{\cos \phi \sin \delta}
$$

Then assuming as a first approxination

$$
\tau \frac{\cot C}{\sin \delta}=\frac{\sin (\phi-\delta)}{\cos \phi \sin \delta}
$$

or

$$
\tau=\frac{\sin (\phi-\delta)}{\cos \phi} \tan C
$$

we have by substitution for r^{2} in the above equation

$$
\begin{aligned}
\tau & =\frac{\sin (\phi-\delta)}{\cos \phi} \tan C+ \\
& =\frac{p \sin (\phi-\delta) \sin \Delta}{\cos \phi \cos \delta}(1+p \tan \delta \cos \Delta)
\end{aligned}
$$

by (72), o seconds of arc

$$
\begin{equation*}
\tau=\frac{\rho \sin (\phi-\delta) \sin \Delta}{\cos \phi \cos \delta}\left(1+p \sin 1^{\prime \prime} \tan \delta \cos \Delta\right) \tag{73}
\end{equation*}
$$

If the time star be observed below the pole, then δ changes its sign, and τ becomes the hour angle reckoned from lower culmi ration.

To find the azimuth we have from the third of the above equations
or by (72)

$$
A=C \frac{\cos \delta}{\cos \phi}
$$

A and p being in seconds of arc.
Comparing equations (73) and (74) we see that

$$
\begin{equation*}
\tau=A \frac{\sin (\phi-\delta)}{\cos \delta} \tag{75}
\end{equation*}
$$

Example.-The following observations were taken at Toronto, Mar. 29, 1899:

Pt.obs'd.
R.P.

Polaris
ζ Hydra
II.C.R.
$45^{\circ} 18^{\prime}$
$73 \quad 33.5 \quad 8^{\mathrm{h}} 30_{9, \mathrm{~m}}^{\mathrm{m}} 51^{4}$
$\begin{array}{llll}73 & 33.5 & 8 & 34\end{array}$

Watch

The apparent places of the stars were:

	${ }^{\text {a }}$	δ^{δ}
Polaris.	$1^{\mathrm{h}} 21^{\mathrm{m}} 21^{\text {a }}$	$+88^{\circ} 46^{\prime} 23^{\prime \prime}$
5 Hydra	85006	+61935

We have then the following data:

$$
\begin{aligned}
& \Delta=111^{\circ} 13^{\prime} \text { (Eq. 71.) } \\
& \phi=433936^{\prime \prime} \\
& \delta=61935 \\
& p=4417^{\prime \prime} ;
\end{aligned}
$$

so that the computation proceeds as follows:
Eq. (74)

Ec. (70)

Eq. (75)

$\log \sin \delta$	$=9.96952$
$\log p$	$=3.64513$
$\log \cos \phi$	$=9.85941$
	3.61465
$\log 5692$	$=3.75524$
$\log \tan \delta$	$=9.04480$
$\log \cos د$	$=9.55858 n$
$\log p$	$=3.64513$
$\log \sin 1^{\prime \prime}$	$=\overline{\mathbf{6} .68557}$
$\log -5$	$=0.68032 n$
$A=5687^{\prime \prime}$	$=1^{\circ} 34^{\prime} 47^{\prime \prime}$
A_{s}	$=358^{\circ} 25^{\prime} 13^{\prime \prime}$
$R_{\text {p }}$	$=4518$
	4034313
R_{s}	$=73 \quad 3330$
A_{p}	$=330^{\circ} 09^{\prime} 43^{\prime \prime}$
$\log A$	$=3.75+48$
$\log \sin (\phi-\delta)$	$=9.78280$
$\log \cos \delta$	$=9.99735$
$\log 3470$	$\begin{array}{r} 3.53768 \\ = \\ 3.54033 \end{array}$

6th method-By the observed angular distance of the sun from a terrestrial point.

This method is useful when the sextant is the only instrument available.

In Fig. $22 S$ is the centre of the sun, and O the terrestrial point. The observation comprises:

Measuring the angular distance SO),
Noting the time of observation, and
Measuring the altitude of O.
The latitude being known, the altitude and arimuth of the sun's centre are computed by (4), (i) and (i). The apparent altitude is then found by subtracting the parallax and addine the refraction The measured angular distance is correcter. or semi-diameter. Wir have then
in which

$$
\begin{aligned}
\tan ^{2 \frac{1}{2}} a & =\frac{\sin (s-Z S) \sin (s-\%())}{\sin s \sin (s-5()} \\
s & =\frac{Z . S+Z(0)+S O}{2}
\end{aligned}
$$

If then, $h^{\prime}=$ the apparent altitude of the sun
$I I=$ the altitude of O
$D=$ the angular distance $S O$
we find on sulsstituting

$$
\begin{gather*}
s^{\prime}=\begin{array}{c}
h^{\prime}+I I+D \\
2
\end{array} \\
\tan =\frac{1}{2} a=\begin{array}{c}
\sin \left(s^{\prime}-I I\right) \sin \left(s^{\prime}-h^{\prime}\right) \\
\cos s^{\prime} \cos \left(s^{\prime}-D\right)
\end{array} \tag{76}
\end{gather*}
$$

If $I I$ is so small that it may be neglected, as is often the case in hydrographic surveys, then (76) becomes

$$
\begin{equation*}
\tan ^{2} \frac{1}{2} a=\tan \frac{1}{2}\left(D \times h^{\prime}\right) \tan \frac{1}{2}\left(D-h^{\prime}\right) \tag{77}
\end{equation*}
$$

The azimuth of O then is

$$
A \pm a
$$

If the correction of the watch is not known the olserver may f oceed as follows:

Measure the altitude of the sum, then the angular distance SO, then again the altitude of the sun, noting the watch time of each of the three measurements. The altitude of the sun at the instant of measuring $S O$ may then be interpolated. The altitude of O is measured as bet. 2. A may then be computed from the data $h \delta$ and ϕ by either (8), (9) or (10). The remainder of the reduction is as before.

6. Determination of Loniitede: by Observation.

The engineer is seldom called upon to determine longitude, so that only some methods useful to the explorer will be here described, and also in outline the most precise method known, viz., that by the electric telegraph.

The difference of longitude between two places may be defined as the angle between the planes of their meridians.

It was seen-p. 14-that the local times of two places differ by an amount equal to their difference of longitude. expressed in time. Any methixl, therefore, that serves to compare the local times of the two places, at the same alsolute instant of time, will determine their difference of longitule.

Ist method-By portable chronometers.
If the correction of a chronometer on the local time of a place A is found by observation, and also its rate, and the chronometer is then transported to another place B, and its correction on the local time of that place found, the local times of the two places maly be thus compared: Let
$\Delta T, \delta T=$ the correction and rate found at A it the time T :
$\Delta T^{\prime}=$ the correction found at B at the time $T^{\prime}(=T+\ell)$
Then at the instant T^{\prime} the true time

$$
\begin{aligned}
& \text { at } A=T+t+\Delta T+t . \delta T \text {, } \\
& \text { at } B=T+t+\Delta T^{\prime} ;
\end{aligned}
$$

the difference of which is

$$
\Delta L=\Delta T+\ell . \delta T-\Delta T^{\prime},
$$

or the difference of the corrections of the chronometer on the times of the two places at an assumed instant of time.

2nd method-By signals.
Any signal that may be seen at the two places may be used to compare their local times. A chain of olsserving stations may be established between the extreme stations, with interS_{2}

FIG. 23

mediate signal stations, so that the method may be used between points at a considerable distance apart. The signal used may be the disappearance of a light, a flash of gunpowder, etc.

Let A and B be the terminal stations, C and D intermediate stations, and $S_{1} S_{2}$ and S_{3}, signal stations (Fig. 23). Then if a signal be made at S_{1} which is perceived at A at the time T_{1}
and at C at ne time T_{2}; and if then a signal be made at S_{z} which is perceived at \dot{C} at the time T_{3} and at D at the time D_{t}, etc.; then, A being the noore easterly station, we have

$$
\begin{aligned}
\Delta L & =\left(T_{1}-T_{2}\right)+\left(T_{s}-T_{4}\right)+\left(T_{s}-T_{n}\right) \\
& =T_{1}-\left(T_{2}-T_{3}\right)-\left(T_{4}-T_{s}\right)-T_{b} ;
\end{aligned}
$$

which shews that it is not necessary to know the corrections of the chronometers at the intermerliate stations, but only their rates. The times T_{1} and 7_{6} are the true local times at A and B, respectively.

Fclipses of Jupiter's satellites are also used in longitude determinations. As the atellite appears to fade ou: gradually the observed time of an eclipse will depend upon the power of the telescope used. But for this objection this method would be a siseful one for finding longitude.

Reference may le mado to the ephemeris.

3rd method-By the electric teleg; aph.

The observer at each station must be provided with a transit instrument, chronometer, and electro-chronograph, for determining time with precision, and also a portable switchloard oy which connections can le made with the main telegraph line for sending signals to the other station.

Fig. 24
The connections for olserving the transi of stars in determining time are shewn in diagram in $\mathbf{~} 7$, and for sending arbitrary signals in Fig. 25.

The procedure at each station is to obser $:$ a set of stars for determining time and the instrumental constants. Then a series of signals is sent to the distant station, which are also recordect on the local chronograph. A second set of stars is then observed. By means then of the two time sets the correction of the chronometer on local time at the epoch of the signals can be interpolated.

These operations may be repeated on as many mutually clear nights at the two stations as may be cousidered necessary ay five nights.

In Figs. 24 and 20-
C is the chronometer, B_{1} the chronometer battery, R_{1} the chronometer relay, B_{2} the chronograph battery, II the chronograph magnet, K the transit key.

Also in Fig. 25-
$L L$ is the main line.
R_{2} the sounder relay,
S the sounder.
R_{3} the signal relay,
$R h$ a rheostat.
G a galvanometer,
K^{\prime} the telegraph and signal key.
A signal is made by breaking the main line circuit by means of the signal key, which may be a special break-circuit key.

If now at a time T_{1} at station A a signal is made which is recorderl at B at the time T_{1}^{\prime}; and if $\Delta T_{1} \Delta T_{1}^{\prime}$ are the chronometer corrections on local time at the two stations, and x the time of transmission of the signal; then the difference of longitude is:

$$
\begin{aligned}
\Delta L & =\left(T_{1}+\Delta T_{1}\right)-\left(T_{1}^{\prime}+\Delta T_{1}^{\prime}-x\right) \\
& =\Delta L_{1}+x
\end{aligned}
$$

in which $\Delta L_{1}=\left(T_{1}+\Delta T_{1}\right)-\left(T_{1}{ }^{\prime}+\Delta T_{1}{ }^{\prime}\right)$

If a signal wo le made at B at the time T_{z}^{\prime}, and recorded at A at the time 78 ; then

$$
\begin{aligned}
\Delta I & =\left(T_{2}+\Delta T_{2}-x\right)-\left(T_{1}^{\prime}+\Delta T_{2}^{\prime}\right) \\
& =\Delta L_{2}-x
\end{aligned}
$$

ill which $\Delta L_{2}=\left(\Gamma_{2}+\Delta T_{2}\right)-\left(T_{2}{ }^{\prime}+\Delta T_{2}{ }^{\prime}\right)$
'laking the nu": of these values of $\Delta L_{0} x$ is climinated, and we have

$$
د L_{2}=\begin{gathered}
\Delta L_{1}+\Delta L_{0} \\
2
\end{gathered}
$$

tik matiol iby moon culminations.
An ('xi chl : 1,11 the monn's hourly cphemeris contained in the $\mathbf{N} . \quad$. $11-\mathrm{N}$ w that the motion of that lexfy in right ascension , ven picl. If then a value of that co-ordinate le found in \therefore : tion, a dion corresponding Cr. time be interpolated $\cdot \ldots 11$.... \quad ' 111 the error in the time due to the enrer "1 1 : " quantity will not be excessive. The Gr. 1%. ist :... \quad und at the instant of the olservation, whicl 'ro as ${ }^{\prime}$. determine the local time, the longitude follow: hy tah...., difference of the two times.

To determme the mowits ras. the meridian transit of the monn's limbland that of mone neighbouring star are observed. Then let
θ and $\theta^{\prime}=$ the sidereal time's of transit of the moon's centre and a star.
a and $a^{\prime}=$ their right ascensions
and we have
or

$$
\begin{aligned}
& a-a^{\prime}=\theta-\theta^{\prime} \\
& a=a^{\prime}+\theta-\theta^{\prime}
\end{aligned}
$$

which gives the moon's right ascension.
To find the sidereal time of the semi-diameter passing the meridian in order to correct the observed time of transit of the limb, let
$\sigma=$ the sid. time of the S.D. passing the meridian
$S=$ the moon's angular S.D.
$\Delta a=$ the increase of the moon's r.a. in 1^{m} of M.T.
then $\frac{\Delta a}{60.164}=$ the increase of the moon's r.a. in 1 sid. second; and
$\sigma \frac{\Delta a}{60.164}=i t s$ increase in the interval σ;
and $\therefore \quad \sigma-\sigma{ }_{60.16-5}^{\Delta a}=\frac{S \sec \delta}{15}$
as each side of the equation expresses the time of S.D. passing the meridian if there were no change of r.a.; \therefore

$$
\begin{aligned}
& \theta=\frac{s}{15 \cos \delta(1-\underset{\Delta 0.164}{ })} \\
& \text { 60.104 S } \\
& \text { Ib cos } \delta(60.16-\Delta a)
\end{aligned}
$$

This quantity is given in the N.A.
To interpolate the Gr. M.T. corresponding to an observed value of the monn's ria., let
$a_{o}=$ the ephemeris value nearest to a.
$T_{o}=$ the corresponding Gir. M.T.,
$T=$ the Gr. M.T. corresponeling to a.
$x=T-T_{o}$ (in seconds),
$\Delta a=$ the increase of a in 1 minute of M.T. at the time T_{c}. $\delta a=$ the increase of Ja in 1 hour.
Then the increase of Δa in the interval x is

$$
\frac{x}{3600}-8 a ;
$$

\therefore the value of Δa at the middle instant of the interval x is

$$
\Delta a+\frac{x}{7200} \delta a
$$

and \therefore the increase of a in the interval x is

$$
\frac{x}{60}\left(1 a+\frac{x}{7200} \delta a\right)
$$

and .

$$
a=a_{0}+\frac{x}{60}\left(\Delta a+\frac{x}{7200} \delta a\right)
$$

Then

$$
\begin{aligned}
x & \left.=\frac{60\left(a-a_{0}\right)}{\Delta a+\frac{x}{7200}-\delta a}=\frac{60\left(a-a_{0}\right)}{\Delta a\left(1+\frac{x}{7200}\right.} \frac{\delta a}{\Delta a}\right) \\
& =60\left(a-a_{0}\right) \\
\Delta a & \left(1-\frac{x}{7200} \frac{\delta a}{\Delta a}\right), \text { nearly }
\end{aligned}
$$

in which $x^{\prime}=\frac{60\left(a-a_{0}\right)}{\Delta a}$
Then $\quad T=T_{o}+x$
If then θ is the Gr . sid. time corresponding to T we have

$$
L=\theta-a
$$

A more accurate method than the foregoing is to take observations for determining a on the same night at the
station whose longitude is required and also at another station whose longitude has been well determined. Thus the increase in a while the moon is passing over the interval between the two meridians is determinet. This increase, divided by the increase in 1 hour of longitude, gives the difference of longitude in hours. Thus if
a_{1} and $a_{2}=$ the values of a found at the two stations,
$I I=$ the increase of a in 1 hour of longitude white passing over the interval between the two meridians;
then

$$
\Delta L=\frac{a_{2}-a_{1}}{I I}
$$

II may be taken from the ephemeris.

7. The Theomeite and the Sientant.

The Theodolite.
For a knowledge of the construction and method of adjustment of the engineer's transit theodolite reference may be mate to any standard work on surveying.

A well constructed and idjusted transit should fulfil the following conditions:
(1) The vertical and horizontal axes shoukd pass through the centres of the horizontal and vertical circles, respectively, and should be perpendicular to their planes.
(2) The axis of the alidarle of the horizontal circle should coincide with the axis of the circle.
(3) The line joining the zeros of the verniers of either circle (assuming that each is read by two verniers) should pass through the centre of the circle.
(4) The extreme divisions of each vernier should coincide at the same time with divisions of its circle.
(5) The horizontal axis should be perpendicular to and intersect the vertical axis.
(6) The sight line of the telescope should be perpendicular to and intersect the horizontal axis, and in all positions of the focusing slide. It should also intersect the vertical axis.
(7) The two threads in the telescope, whose intersection determines a point on the sight line, should be truly horizontal and vertical, respectively, when the instrument is adjusted for observation.
(8) The levels attached to the horizontal plate should read zero when the vertical axis is plumb.
(9) When either vernier of the vertical circle reads zero, and also the level attached to the alidade of that circle, the sight line should be horizontal.

Conditions 1, 2, 3, 4 and the second part of 6 are fulfilled by the maker in the construction of the instrument; the others, and sometimes 3 , can be attended to by the observer. With regard to 9 , the alidale of the vertical circle of a transit intended for astronomical observation should be provided with a level capable of detecting a change of inclination considerably smaller than the least count of the vernier. The position of the alidade should be adjustable be means of a slow-motion screw, so that the bubble of its level may readily be brought to the centre, after plumbing the vertical axis of the instrument.

It is proposed to examine the effects of these errors of construction and aljustment, shewing how in most cases they may le eliminated.
(1) The effect of an inclination of the horizontal axis.

In Fig. 26, which is a projection of the celestial sphere on the plane of the horizon, the horizontal rotation axis of the transit is assumed to be inclined at a small angle to the horizon, so that the collimation axis-defined as a right line through the optical centre of the objective perpendicular to the horizontal axis-traces on the celestial sphere the great circle $A^{\prime} P Z^{\prime}$. P being any point and $A P Z$ a vertical circle,

the true altitude of P is the $\operatorname{arc} A P$; and the apparent altitude, affected by the inclination of the axis, the arc $A^{\prime} P . \quad Z^{\prime}$ is the zenith of the instrument, and $Z Z^{\prime}$ is equal to the inclination b. It is clear that the effect of b on the H.C.R. is shewn by the spherical angle $A Z A^{\prime}$. To find an expression for this angle we have in the triangle $P Z Z^{\prime}$
or

$$
\begin{aligned}
\tan P Z Z^{\prime} & =\frac{\tan P Z^{\prime}}{\sin Z Z^{\prime}} \\
\cot \Delta A_{1} & =\frac{\cot h^{\prime}}{\sin b}
\end{aligned}
$$

or

$$
\tan \Delta A^{\prime}=\tan h^{\prime} \sin b ;
$$

or, as ΔA_{1} and b are small, we may write this

$$
\begin{equation*}
\Delta A_{1}=b \tan h^{\prime}, \tag{79}
\end{equation*}
$$

or the effect of an inclination of the horizontal axis on the H.C.R. varies as the tangent of the altitude of the point sighted.

In measuring the horizontal angle between two points it is evident that the effect of b is nil if the altitudes of the two
points are equal, and that it imereases with the difference of the altitudes. A reversal of the instrument reverses the algebraic sign of $\pm . I_{1}$, so that its effect on a horizontal angle is eliminated by the reversal.
To find the eflect of b on the measurement of a vertieal angle we again refer to the triangle $P \% \%^{\prime}$, from which we have

$$
\cos P Z=\cos P Z^{\prime} \cos Z Z^{\prime}
$$

or $\quad \sin h=\sin h^{\prime}$ cos h
Then denoting $h^{\prime}-h$ by $\quad \Delta h$ and expanding cos b we have

$$
\text { or } \quad \sin h^{\prime}-\Delta h \cos h^{\prime}=\sin h^{\prime}-\frac{h^{2}}{\underline{2}} \sin h^{\prime}
$$

by expanding the sin and cos of Δ / h and neglecting its spuare and higher powers; \therefore

$$
\Delta h=\overrightarrow{2}_{2}^{b^{\prime}} \mathrm{tinn} h^{\prime}
$$

It appears then that the effeet of b on a vertical angle varies as the square of b. Introducing the values of Δ / h and b in seconds we have

$$
\begin{equation*}
\Delta h=\frac{\sin 1^{\prime \prime}}{2} b^{\prime \prime} \tan h \tag{80}
\end{equation*}
$$

This is a very small quantity; for, assuming $b=1^{\prime}$ and $h^{\prime}=$ 45°, we find $\Delta /=0^{\prime \prime} .0087$; it may therelore be safely neglected. It is not eliminated beversal.

(2) The effect of a collimation error; i.e., an error arising from non-coincidence of the sight line and the collimation axis as above defined.

Assuming that there is no inclination error the sight line in this case will trace on the celestial sphere a small circle parallel to the great circle traced out by the collination axis. In Fig. $27{ }^{\prime \prime} Z^{\prime}$ is the small circle, and $A^{\prime} B Z$ the great circle traced out by the collimation axis. $I I$ and H^{\prime} are the poles of those circles, Z^{\prime} being the zenith of the instrument; $Z Z^{\prime}$ or $P B$ is the collimation error, denoted by c.

To find the effect of c on a H.C.R., denoted by ΔA_{2}, we have in the triangle $B Z P$
or very nearly $\quad \Delta A_{2}=c \sec h^{\prime}$
or the effect of a collimation error on a H.C.R. varies as the secant of the altitude of the point sighted.

The effect of this error on the measurement of a horizontal angle evidently also increases with the difference of the altitudes of the two points sighted, and is eliminated by a reversal of the instrument.

To find the effect of c on the measurement of a vertical angle we have in the triangle $B Z P$
$\cos P Z=\cos B Z \cos B P$
$\sin h=\sin h^{\prime} \cos c$
or
As this is the same equation as was derived in the discussion
of the last error, it follows that equation (80) also expresses the error in this case.
(3) To find the effect of a non-fulfilinent of condition 1,2 or 3 , so that the line joining the zeros of the two verniers does not pass through the centre of the circle.

The circle in Fig. 28 represents the graduated circle, of which O is the centre. O^{\prime} is the centre of the alidade. Also the line joining the zeros of the two verniers does not pass through the point O^{\prime}. It is clear from the figure that if in any position of the alidade the reading of the vernier V_{1} is less than what it would be if the line $V_{1} V_{2}$ occupied a parallel position passing through O, then the reading of V_{2} will be in excess by the same amount. By taking the mean of the two values of an anple, found by taking readings of both verniers, the effect of eccentricity is therefore eliminated.

By a different process it may be shewn that the effect of eccentricity may be eliminated by any number of equidistant verniers.

With regard to condition 8 , it is convenient that the plate levels should be in good adjustment, but in any case it is advisable to use the more precise level attached to the alidade of the vertical circle, or the telescope level, in plumbing the vertical axis. The effect of the error arising from imperfect leveling may be shewn as follows:

In Fig. $29 Z$ is the zenith, Z^{\prime} the point to which the vertical axis is directed. P is any point. The triangle $P Z Z^{\prime}$ gives : the equation

$$
\sin \theta^{\prime} \cot \theta=\sin d \tan h^{\prime}-\cos d \cos \theta^{\prime}
$$

Then expanding sin d and cos d and noglecting all but the first power of d we hate

$$
\sin \theta^{\prime} \cot \theta=d \text { tim } h^{\prime}+\cos \theta^{\prime}
$$

or $\quad \sin \theta^{\prime} \cos \theta-\cos \theta^{\prime} \sin \theta=d$ tall $h^{\prime} \sin \theta$
or

$$
\sin \left(\theta^{\prime}-\theta\right)=d \tan h^{\prime} \sin \theta
$$

or ats $\theta^{\prime}-\theta$ is small

$$
\theta^{\prime}-\theta=d \tan h^{\prime} \sin \theta
$$

Now if there are two points sighted in turn, and $\theta_{1}{ }^{\prime}$ and $\theta_{3}{ }^{\prime}$ are the values which θ^{\prime} takes, respectively, we have

$$
\begin{align*}
& \theta_{1}^{\prime}-\theta_{1}=d \text { tan } h_{1}^{\prime} \text { sin } \theta_{1} \\
& \theta_{2}^{\prime}-\theta_{2}=d \text { tan } h_{2}^{\prime} \sin \theta_{2} \tag{82}
\end{align*}
$$

so that, taking the difference
$\left(\theta_{2}^{\prime}-\theta_{1}^{\prime}\right)-\left(\theta_{2}-\theta_{1}\right)=d\left(\tan h_{2}^{\prime} \sin \theta_{2}-\tan h_{1}^{\prime} \sin \theta_{1}\right)$
This expresses the error in the horizontal angle between the two points. It appears to be a maximum when $\theta_{2}=270^{\circ}$ and $\theta_{1}=90^{\circ}$, and for high altitudes its value may exceed d. It is not eliminated by reversal.

To find the effect on a vertical angle, we have in the triangle $A P A^{\prime}$

$$
\cos f=\begin{gathered}
\tan h \\
\tan h^{\prime}
\end{gathered}
$$

or $\quad \tan h^{\prime}=\begin{aligned} & \tan h \\ & \cos f\end{aligned}=\frac{\tan h}{1-\frac{f^{2}}{2}}=\tan h\left(1+\frac{f^{2}}{2}\right)$,
nearly. Then writing $h^{\prime}=h+\Delta h$ we have

$$
\begin{aligned}
\tan h^{\prime} & =\tan (h+\Delta h) \\
& =\tan h+\Delta h \sec ^{2} h
\end{aligned}
$$

by Taylor's theorem. \therefore
or

$$
\begin{aligned}
\Delta h \sec ^{-} h & =\frac{f^{2}}{2} \tan h \\
\Delta h & =\frac{f^{2}}{2} \tan h \cos ^{2} h
\end{aligned}
$$

Again, in the triangle $P Z Z^{\prime}$
or

$$
\begin{aligned}
\sin f & =\frac{\sin \theta^{\prime} \sin d}{\cos h} \\
f & =\frac{d \sin \theta^{\prime}}{\cos h}
\end{aligned}
$$

Substituting in the above expression for Δh we have

$$
\Delta h=\frac{d^{2}}{2} \frac{\sin ^{2} \theta^{\prime}}{\cos ^{2} h} \tan h \cos ^{2} h
$$

$$
\begin{equation*}
=\frac{d^{2}}{2} \sin ^{2} \theta^{\prime} \tan h \tag{83}
\end{equation*}
$$

or in seconds $\Delta h=\frac{\sin 1^{\prime \prime}}{2} d^{2} \sin ^{2} \theta^{\prime}$ tan h
This is never appreciahle.
(5) It is comenient that adjustment 9 be nearly perfect, though not essential, as the effeet of imperfect adjustment is eliminated by reversal.

In Fig. 30 the circle represents the vertical circle of the transit; $O P$ is the sight line, directed to some point P. The error of $V A$, the reading of the vernier V, is evidently $=$

$$
e+e^{\prime} .
$$

If the telescope now be transited, turned in azimuth, and again directed to the point P, it amounts to the same thing as transiting and directing to a second point P^{\prime} which has the same absolute zenith distance as P. The reverse reading is then VA' whose error is: $=$

$$
-\left(e+e^{\prime}\right)
$$

The mean of $V A$ and $V A^{\prime}$, the two readings of vernier V, is therefore the altitude of P freed from the effect of index error.

To observe an altitude of a heavenly body with a transit.
It has been shewn that errors of aljustment have no appreciable effect upon a vertical angle, except the index
error, whose effect may be eliminated by reversal. In observing the altitude of a star, therefore, the method is to make two pointings to the star, reversing the instrument between the pointings. The telescope is first directed so that the star is very near and approaching the horizontal thread at a point a little to the right or left of the centre. The time of crossing the thread is then noted, and also the V.C.R. The instrument is then reversed and directed as before, with the star at about the same distance on the opposite side of the centre, thus eliminating the effect of any inclination of the thread. The time of passage across the thread is again noted, and the V.C.R. If azimuth is required as well as time, the star must be observed on the intersection of the horizontal and vertical threads. The mean of the two V.C.R's. is then the observed altitude-freed from the effect of index error-corresponding to the mean of the observed times.

It is thus assumed that the change of altitude of a star, during short intervals of time, is proportional to the time. This assumption will seldom lead to an error exceeding $0^{\circ} .1$ for an interval of 3^{m} between the observations.

In observing the sun the same general method is followed as in observing a star, but as there is no definite point at the sun's centre that can be observed, the procedure is as illustrated in Fig. 31. The sun's image is first brought to the

position shewn by the broken circle S_{1}, so as to be in contact with the horizontal thread and slightly overlapping the vertical thread. It may the be $k e_{1}$ t in contact with the horizontal thread by turning the alditude tangent serew; its own motion will then bring it into contact with the vertical thread, as shewn by the full circle S_{1}. After no $: 1$: and
recording the time and the readings of the circles the instrument is reversed and the observation repeated, bringing the sun into the position S_{3}. The figure represents an afternoon observation for time and azimuth, taken with an inverting telescope. If time alone is required the contact of the sun's image with the vertical thread is not important. The means of the readings of the two circles may now be regarded as corresponding to a pointing to the sun's centre at an instant equal to the mean of the times.

A form of record is shewn on p. 43.

The Sextant.

The principle and construction of the instrument.
In Fig. $32 A B$ is the graduated are, M_{1} the index mirror, M_{3} the horizon mirror, $M_{1} V$ the index arm to which the mirror M_{1} is attached, and carrying the vernier V at its extremity. The instrument embodies the principle that if a ray of light $S M_{1}$ be incident upon the mirror M_{1}, then

reflected from it to the mirror M_{2}, from which it is again reflected, then the angle c between the first and last directions of the ray is equal to double the angle d between the mirrors. This is readily proverl, for in the triangles $M_{1} M_{2} C$ and $M_{1} M_{2} D$ we have, respectively.
and
or

$$
\begin{aligned}
2 b & =2 a+c \\
b & =a+d \\
2 b & =2 a+2 d \\
c & =2 d
\end{aligned}
$$

The mirror M_{2} is attached permanently to the frame of the instrument, and half of its surface is unsilvered, while
M_{1} is attacherl to the index arm and turns with it. The sighting teleserope is direeted along the line $\left(: I_{2}\right.$. The mirrors are so placel that when their planes are paralled the index l is at the ares A of the gradnaterlare $1 B$. Whe are is divided into twice the momber of degreen that it subtemets att its celltre . $1 /$.

To mensure the angle between two points the inserment is held sut that its platle passes through the two priuts, and the left-hand primt is seem in the fick of the observing tellesoppe through the insilvered half of the mirror.M_{2}. The index arm is then turned mitil the other point, secoll by double reflection from the two mirrors, appears to coincide with the first. The reading of the are is the angle subtemelerl be the two proints at the point C°. It is to be remarked that C^{\prime} is not a fixed point for all amghes.

Adjustment of the sextannt.
To observe ant altitude of the sun with a sextant and artificial horizon.

The artificial horizon is a horizontal reflecting surface, usually the surface of mercury contained in at iron trough. In obsersing the altitucle of a heavenly bocly the angle is measured between its image, seen by retlection in the artificial horizon, and that seen ly reflection from the mirrors of the instrument. Fig. 32 shews that this angle is equal to double the apparent altitucle of the borly. In observing the sull, instead of superposing the two images seen in the fiek of the telescope, it is best to bring them into external contact. thus observing either the upper or the lower limb. As the horizon image appears erect in the field of an inverting telescope, and the other image inverted, the identification of either image shews which timb has been observed.

To determine the index error of the instrument after olserving the stin, set the vernier nearly at zero and then direct the sight line to the simn; the two intages will now be scen nearly in coincidence. Then turn the tangent serew until the intages are in external contact, and read the are Then reverse the motion of the screw, allusing the images to pass one over the other until they are again in contact. and again read the are. One of the reathing will be on the extra are. Half the difference of the two readings is the index error, positive if the reading on the extra are is the greater. The sum of the readings is twice the sun's angular diameter.

$\cos a=\cos b \cos c+\sin b \operatorname{sint} \boldsymbol{c}$ cos .1 $\cos b=\cos a \cos c+\sin a \sin \cos \beta$
$\cos C=\cos a \cos l+\sin a \sin b \cos (\cdot \mid$
$\cos A=-\cos B \cos \left(6+\sin B \sin C^{\circ} \cos A\right.$

$\cos C^{\circ}=-\cos .\left|\cos B+\sin A \sin B \cos \theta^{\prime}\right|$

$$
\begin{equation*}
\frac{\sin A_{-}}{\sin a^{-}}=\frac{\sin B}{\sin h}=\frac{\sin 6^{\circ}}{\sin } \tag{き}
\end{equation*}
$$

$\sin a \cos \beta=\sin c \cos b-\cos c \sin b \cos$ a
-in acos $C^{\circ}=\sin b \cos r-\cos b \sin r \cos .1$

$\sin \cos -1=\sin b \cos a-\cos b \sin a \cos \left({ }^{\circ}\right.$
$\sin \operatorname{cocos} B=\sin a \cos b-\cos a \sin b \cos (\dot{ }$
$\sin A \cot B=\sin c \cot b-\cos c \cos A$
$\sin B \cot A=\sin c \cot a-\cos r \cos B$
$\sin B \cot C=\sin a \cot c-\cos a \cos B$
$\sin C \cot B=\sin a \cot b-\cos a \cos C$
$\sin A \cot C=\sin b \cot c-\cos b \cos A$
$\sin C \cot A=\sin b \cot a-\cos b \cos C$

$$
\left.\begin{array}{rl}
\sin ^{2} \frac{1}{2} A & =\begin{array}{c}
\sin (s-b) \sin (s-c) \\
\sin b \sin r \\
\sin a \sin (s-c)
\end{array} \\
\sin ^{2} \frac{1}{2} B= & \sin (s-a) \sin (s) \\
\sin ^{2} \frac{1}{2} C & =\frac{\sin (s-a) \sin (s-b)}{\sin a \sin b}
\end{array}\right)
$$

$$
\text { Where } \left.\quad \begin{array}{rl}
\sin ^{2} \frac{1}{2} a & \left.=-\begin{array}{c}
\cos S \cos (S-A) \\
\sin B \sin C \\
\sin ^{2} \frac{1}{2} b
\end{array}\right) \\
\left.\sin ^{2} \frac{\cos (S-B)}{} \frac{\sin A \sin C}{}=-\begin{array}{c}
\cos S \cos (S-C) \\
\sin A \sin B
\end{array} \right\rvert\, \\
S & =\begin{array}{c}
A+B+C \\
2
\end{array} \\
\cos ^{2} \frac{1}{2} a & =\frac{\cos (S-B) \cos (S-C)}{\sin B \sin C} \tag{11}\\
\cos ^{2} \frac{1}{2} b & =\frac{\cos (S-A) \cos (S-C)}{\sin A \sin C} \\
\cos ^{2} \frac{1}{2} c & =\frac{(\cos (S-A) \cos (S-B)}{\sin A \sin B}
\end{array}\right\}
$$

Delambre's analogies-

$$
\begin{array}{cc}
\sin \frac{1}{2}(A+B) & =-\cos \frac{1}{2}(a-b) \\
\cos \frac{1}{2} C & \cos \frac{1}{2} c \\
\sin \frac{1}{2}(A-B) & \sin \frac{1}{2}(a-b) \\
\cos \frac{1}{2} C & \sin \frac{1}{2} c \\
\cos \frac{1}{2}(A+B) & =\frac{\cos \frac{1}{2}(a+b)}{\cos \frac{1}{2} c} \tag{15}\\
\sin \frac{1}{2} C & = \\
\frac{\cos \frac{1}{2}(A-B)}{\sin \frac{1}{2} C}= & \sin \frac{1}{2}(a+b) \\
\sin \frac{1}{2} c
\end{array}
$$

Napier's amalogies-

$$
\begin{gather*}
\tan \frac{1}{2}(A+B)=\begin{array}{c}
\cos \frac{1}{2}(a-b) \\
\cos \frac{1}{2}(a+b)
\end{array} \quad \cot \frac{1}{2} C \tag{16}\\
\tan \frac{1}{2}(A-B)=\frac{\sin \frac{1}{2}(a-b)}{\sin \frac{1}{2}(a+b)} \begin{aligned}
2
\end{aligned} \cot \frac{1}{2} C \tag{17}\\
\tan \frac{1}{2}(a+b) \tag{18}
\end{gather*}=\frac{\cos \frac{1}{2}(A-B)}{\cos \frac{1}{2}(A+B)} \tan \frac{1}{2} c
$$

Formulie for right-angled triangle:-

Solution of oblique-ningled triangles.
Case 1.-Given a, b and c, the three sides
solution by means of equations (i), (7) or (8).
(Case 2,-Civen A, B and $($, the three angles.
Solution by means of equations (9), (10) or (11).
Case 3.- Ciistoll two sides and the incluted angle, as a, b and C :

1st wolution- $18=$ moth- of erpllion- (16), (17) and (3).
 \cdots. . $=\cos a \cos a+\sin a \sin b \cos C^{\circ}$

$$
\sin c^{c} c+1+-11 \text { cor } a-\cos b \cos C
$$

$$
\sin \left({ }^{\prime} \operatorname{ron} t=-i r \quad \text { von } b-\cos a \cos C\right.
$$

These equations lnatme. when adapted for logarithmic computation

$$
\begin{array}{rlr}
\tan \theta=\tan a \cos c & \tan \theta_{1}=\tan b \cos C \\
\cos c & =\cos a \cos (b-\theta) & \cos \theta \\
\tan B=\begin{array}{l}
\tan C \sin \theta_{1} \\
\sin \left(a-\theta_{1}\right)
\end{array} \\
\tan C \sin \theta &
\end{array}
$$

Case 4.- Civen two angles and the inctuded side, a. .: : and c.

Ist solution-By moans of equations (18), (19) al.
2nd solution-13y means of equations (2) and (5), w.
$\cos (B=-\cos .1 \cos B+\sin A \sin B \cos C$
$\sin A \cot B=\sin r \cot b-\cos c \cos A$ $\sin B \cot A=\sin r \cot a-\cos C \cos B$
These equations become

$$
\begin{array}{ll}
\tan \theta_{2}=\tan A \cos c & \operatorname{con} \theta_{3}=\tan B \cos c \\
\cos \left(\cos ^{\prime}=-\frac{\cos A \cos \left(B+\theta_{2}\right)}{} \quad\right. & \tan b=\begin{array}{l}
\tan \theta_{2} \sin \theta_{3} \\
\sin \left(A+\theta_{3}\right)
\end{array} \\
\operatorname{tinn} a=\begin{array}{l}
\tan c \sin \theta_{2} \\
\sin \left(B+\theta_{2}\right)
\end{array} &
\end{array}
$$

$$
\begin{align*}
& \cos c=\cos a \cos b \quad\left(C^{\prime}=(\mathrm{m})^{\circ}\right) \tag{20}\\
& \sin A=\frac{\sin a}{\sin r} \quad \sin B=\frac{\sin b}{\sin r} \tag{21}\\
& \cos A=\begin{array}{l}
\tan b \\
\tan \frac{b}{c}
\end{array} \quad \cos B=\begin{array}{c}
\tan a \\
\tan r
\end{array} \tag{22}\\
& \operatorname{tanl} A=\begin{array}{c}
\tan a \\
\sin b
\end{array} \quad \tan B=\tan b \tag{23}\\
& \cos C=\operatorname{rot} A \cot B \tag{24}\\
& \sin A=\begin{array}{c}
\cos B \\
\cos b
\end{array} \quad \sin B=\begin{array}{c}
\cos A \\
\cos a
\end{array} \tag{25}
\end{align*}
$$

(ase is.-Civen two sides and an :angle opposite one of them, ats a, b allul A.

Ist solution- By means of equations (3), (16) and (18), or

$$
\sin B=\frac{\sin b \sin A}{\sin a}
$$

$$
\tan \frac{1}{2}\left({ }^{\circ}=\cos \frac{1}{2}(a-b) \quad \cos \frac{1}{2}(a+b) \quad \cot !(a t+B)\right.
$$

$$
t \ln \frac{1}{2} c=\left(\cos \frac{1}{2}(1+B)\right.
$$

2nd sohation-By means of equations (3), (i) and (1), or

$$
\sin B=\begin{aligned}
& \sin b \sin A \\
& \sin a
\end{aligned}
$$

$\sin C^{\circ} \cot A=\sin b \cot a-\cos b \cos C^{\circ}$
$\cos a=\cos b \cos c+\sin b \sin c \cos A$
These coplations may be thas adapted for log's.

$$
\begin{aligned}
& \tan \theta_{1}=\tan A \cos b \\
& \sin \left(\theta^{\circ}+\theta_{1}\right)=\tan b \cot a \sin \theta_{4} \\
& \operatorname{tinn} \theta_{3}=\tan b \cos A \\
& \cos \left(c-\theta_{3}\right)=\cos a \cos \theta_{3} \\
& \cos b
\end{aligned}
$$

Case 6i- (Biven two angles and a side opposite one of them, as $A B$ and a.

1st sohntion-13y means of equations (3), (16) and (18), as in the last case, (3) being written

$$
\sin b=\frac{\sin B \sin a}{\sin A}
$$

2nd solution- By means of equations (3), (2) and (5), or $\sin b=\sin B \sin a$
$\sin b=\sin B \sin A$
$\cos A=-\cos B \cos (+\sin B \sin C \cos a$

$$
\sin B \cot A=\sin c \cot a-\cos c \cos B
$$

Adapting for log's. we have

$$
\tan \theta_{6}=\tan B \cos a \quad \tan \theta_{7}=\tan a \cos B
$$

$$
\cos \left(C+\theta_{6}\right)=-\frac{\cos A \cos \theta_{6}}{\cos B} \quad \sin \left(c-\theta_{7}\right)=\tan B \cot A \sin \theta_{7}
$$

1. Figitel: of the li.iktio.

In any survey the extent of which is such that the curvature of the earth's surface must be taken into consideration, the figure of the earth may be regardere ass that of an ohbate spheroid, the elements of a meridian sertion of which are, ats determine ol he Col. A. R. Clarke. 1stiti:

Minor semi-axis, $b=2085.5191 \mathrm{ft}$.
Denoting the cremtricity be we have

$$
\begin{equation*}
c^{2}=\frac{a^{2}-b^{2}}{a^{2}} \tag{1}
\end{equation*}
$$

'The following log's are of frempent use:

$$
\begin{aligned}
& \log a \quad=7.320685 \\
& \log \mathrm{e} \quad=\overline{2} .91: 02.513 \\
& \log \mathrm{c}^{2} \quad=3.830 ; 026 \mathrm{i} \\
& \log \left(1-e^{2}\right)=1.0970 .0 .4 \\
& \log \frac{c^{2}}{1-e^{2}}=3.833 \cdot 4.222 \\
& \log 1 / \frac{e^{2}}{1-e^{2}}=\overline{2} .9167261
\end{aligned}
$$

Radii of curcature-Any section of the spheroid by a plane is an ellipse. If the plane comtans the normal, or plumb line, at a point, the resulting section is a normal section. Any straight line-so called-traced on the earth's surface is therefore a portion of an elliptie arc: for practical purposes, however, if its length does not exceed 100 miles, it may be regarded as a circular are whose radiats is the radius of curvature of the normal section, of which it is a portion, at its middle point. If Ile normal section cuincides with the meridian an expression for its radius of curvature is

$$
\begin{equation*}
\rho_{m}=\frac{a\left(1-e^{*}\right)}{\left(1-e^{2} \sin ^{2} \phi\right)^{\frac{1}{2}}} \tag{2}
\end{equation*}
$$

If the normal section is perpendicular to the meridian its radius of curvature is

$$
\begin{equation*}
\rho_{n}=\frac{a}{\left(1-c^{2} \sin ^{2} \phi\right)^{1}} \tag{3}
\end{equation*}
$$

This is also the length of the nomal-A. V or $B V^{\prime \prime}, \mathrm{Fig} .39-$ terminated in the minor axis of the spheroid. These are termed the "principal radii of curvature" at a point whose latitude is ϕ. The radins of curvature of a mormal section whose azimuth is a may be expressed in terms of these; thas

$$
\begin{align*}
\frac{1}{\rho_{\alpha}} & =\cos ^{2} a+\frac{\sin ^{2} \alpha}{\rho_{n}} \tag{4}\\
\text { or } \quad-\frac{1}{\rho_{\alpha}} & =\frac{1}{\rho_{n}}\left(1+\frac{e^{2}}{1-e^{2}} \cos ^{2} \phi \cos ^{2} \alpha\right)
\end{align*}
$$

By substituting in (2) and (3)

$$
\begin{align*}
\sin \theta & =e \sin \phi \\
\rho_{m} & =a\left(1-e^{2}\right) \sec ^{3} \theta \tag{6}\\
\rho_{n} & =a \sec \theta \tag{7}
\end{align*}
$$

Eq. (4) may also be placed in a convenient form for computation. Thus writing it

$$
\rho_{a}=\frac{\rho_{m}}{\rho_{n} \cos ^{2} a+\rho_{m} \sin ^{2} \alpha}
$$

it may be thus transformed

$$
\rho_{\alpha}=\frac{\rho_{n}}{\sin ^{2} a+\frac{\rho_{n}}{\rho_{m}} \cos ^{2} a}=\frac{\rho_{n}}{\sin ^{2} a\left(1+\frac{\rho_{n}}{\rho_{m}} \cot ^{2} a\right)}
$$

Then writing $\frac{\rho_{n}}{\rho_{m}} \cot ^{2} a=\cot ^{2} x$
it becomes

$$
\begin{aligned}
\rho_{a} & =\frac{\rho_{n}}{\sin ^{2} a\left(1+\cot ^{2} x\right)}=\frac{\rho_{n}}{\sin ^{2} a \operatorname{cosec}^{2} x} \\
& =\rho_{n} \frac{\sin ^{2} x}{\sin ^{2} a} .
\end{aligned}
$$

ρ_{a} is then given by the equations

$$
\begin{equation*}
\tan x=\sqrt{\frac{\rho_{m}}{\rho_{n}}} \tan a \quad \rho_{\alpha}=\rho_{m} \frac{\sin ^{2} x}{\sin ^{2} \alpha} \tag{8}
\end{equation*}
$$

By expansion in series the log's of these radii of curvature may be thus expressed:

$$
\begin{align*}
& \log \rho_{m}=7.3199482-[\overline{3} .3448221] \cos 2 \phi \\
&+[\overline{6} .27371 \ldots] \cos 4 \phi- \tag{10}\\
& \log \rho_{n}= 7.3214243-[\overline{4} .8677005] \cos 2 \phi \\
&+[\overline{7} .79659 \ldots] \cos 4 \phi- \tag{11}\\
& \log \rho_{a}=\log \rho_{n}-[\overline{3} .4712365] \cos ^{2} \phi \cos ^{2} a \\
&+[\overline{5} .00366 \ldots] \cos ^{4} \phi \cos ^{4} a- \tag{12}
\end{align*}
$$

The numbers in brackets are the log's of constant numerical coefficients.

For tables giving the values of $\rho_{m} \rho_{n}$, etc., see the Supplement to the Manual of Dom. Land Surveys.

2. A Trigovometric Survey.

Objects of such a survey.
Choice of stations. Well-conditioned triangles. The base net.

Height of stations in order to overcome the earth's curvature:

Fis. 33

Let A and B be two stations whose heights above sea level are H_{1} and H_{2}, and distance apart s. O is the centre of curvature of the ares. The curved line $A B$ is the path of the ray of light beeween the two stations. z is the zenith distance of B observed at A. We have then in the triangle $A B O$:

$$
\frac{B O}{A O}=\frac{\sin R A O}{\sin A \overline{B O}}
$$

or $\frac{\rho+H_{2}}{\rho+H_{1}}=\frac{\sin (z+r)}{\sin (z+r-\sigma)}=\frac{\sin (z+r)}{\sin (z+r) \cos \sigma-\cos (z+r) \sin \sigma}$;
or $\frac{1+\frac{H_{2}}{\rho}}{1+\frac{\Pi_{1}}{\rho}}=\frac{1}{1-\frac{\sigma^{2}}{2}-\sigma \cot (z+r)}$;
or

$$
\left(1+\frac{H_{2}}{\rho}\right)\left(1-\begin{array}{c}
H_{1} \\
\rho
\end{array}\right)=1+\sigma \cot (z+r)+\frac{\sigma^{2}}{2}
$$

$$
\text { or } \quad \begin{aligned}
& I_{2}-I_{1} \\
& \rho
\end{aligned}=\sigma\left(\cot =-r \operatorname{cosec}^{2}=1+\frac{\sigma^{2}}{\underline{2}}\right. \text {; }
$$

expanding by Tithor's theorem. Then an

$$
\rho \sigma=s, r=m \sigma .
$$

m chenting the coeflicient of refraction, and z is nearly 90°. we hase

$$
\begin{align*}
I_{2}-H_{1} & =s(c)\binom{m \cdot}{\rho}+\begin{array}{c}
s^{2} \\
2 \rho_{\rho}
\end{array} \\
& =s c \cdot 1=+\begin{array}{c}
s^{2} \\
2_{\rho}
\end{array}(1-2 m) \tag{13}
\end{align*}
$$

If $I I^{\prime}$ now be the height of the ray $A B$ at at distance s^{\prime} frem d. we have

$$
I^{\prime}-I I_{1}=s^{\prime}(0)=+\begin{aligned}
& s^{\prime}: \\
& 2_{\rho}
\end{aligned}(1-2 m)
$$

Writing k for $\begin{gathered}1-2 m \\ 2 \rho\end{gathered}$ and eliminating cot $=$ between this elf. and (13), wr find

$$
\frac{I_{2}-I_{1}}{s}-\frac{I I^{\prime}-I_{1}}{s^{\prime}}=k\left(s^{\prime}-s\right)
$$

Then whing for H_{1} we have

$$
\begin{equation*}
H_{1}=\frac{I^{\prime} s-I_{2} s^{\prime}}{s}-s^{\prime}+k s s^{\prime} \tag{14}
\end{equation*}
$$

This gives the height necessary for a station at A in order that it distant station B. of knowin bight I_{2}, may be visible over an intervening elevation $I I^{\prime}$.

If we molve for If we have.

$$
\begin{equation*}
I^{\prime}=I_{2}-I_{1} \quad s^{\prime}+I_{1}-k s^{\prime}\left(s-s^{\prime}\right) \tag{1.5}
\end{equation*}
$$

Which gives the height of the ray of light at a given distance from. 4 .

Clarke gives the following values for m :
For rays crosising the sea, $\quad m=.0809$
For rati-not rensing the seat, $m=.07 .00$
Measurement of a buse line ceotetic base lines are now measured with tapes or wire of insar, an alloy comprosed of iren and nickel in the proportion of 6 t 4 w 3th. This materid has an extremely small coefficient of expansion, so that the diffieuty experienced in determining the temperature correction, when other materials are used, is thus obviated. Good
results may also be obtained with a well standardized steel tape by working in cloudy weather or at night so as to avoid sudden changes of temperature.

In making a measurement the tape is stretched clear of the ground by applying a considerable tension, and rests at its zero points on supports in the form of tripods or stakes driven firmly into the ground. The rear zero division of the tape having been placed in coincidence with a fine mark on the head of its support, the relative positions of the forward zero division of the tape and the mark on its support may then be measured with a scale. The distance between the marks on the two supports may be found by applying certain corrections to the tape length. These corrections are:

> For temperature,

For tension,
For satg, and
For grade.
Correction for temperature:

$$
\begin{equation*}
c_{1}=\alpha L\left(t-t_{n}\right) \tag{16}
\end{equation*}
$$

in which
$L=$ the standard length of tape;
$t_{0}=$ the temperature at which it is standard;
$t=$ temperature at time of measurement;
a = coefficient of expansion.
Correction for tension:

$$
\begin{equation*}
c_{2}=e T L \tag{17}
\end{equation*}
$$

in which
$e=e x t e n s i o n$ of unit length due to unit tension.
$T=$ tension in lbs.
Correction for sag:

$$
\begin{equation*}
c_{3}=\frac{L^{3} w^{2}}{24 T^{2}}=\frac{L}{24}\left(\frac{W}{T}\right)^{2} \tag{18}
\end{equation*}
$$

in which

$$
\begin{aligned}
& i^{\prime \prime}=w t \text {. of unit of length of tape } \\
& W^{\prime}=w t \text { of tape. }
\end{aligned}
$$

Correction for grade: Denoting the difference of elevation of the end supports, determined by levelling, by h, we have

$$
\left.\begin{array}{rl}
c_{4} & =L-\left(L^{2}-h^{2}\right) \frac{1}{2} \\
& =L-L\left(1-h^{2}\right. \\
L^{2}
\end{array}\right)^{\frac{1}{2}} .
$$

$$
\begin{equation*}
=\frac{h}{2} \cdot \frac{h}{L}+\frac{h}{8}\binom{h}{L}^{3}+ \tag{1!1}
\end{equation*}
$$

This first term in this expression is nearly always sulficient.
The following may be used as the coefficients of expansion for steel and invar tapes:

$$
\begin{array}{ll}
\text { Steel, } & 0.0000114 \\
\text { Invar, } & 0.00000041
\end{array}
$$

In the alsence of experinental data the extension of a steel tape may be comphted from its morlulus of elasticity 280000000 ll s. The extension of invar may be taken to be 0.00000004394 ft .
per llh., per foot, per sq. in. of cross section.
The distance between the supports, reduced to the horiantal, then is

$$
\begin{equation*}
L_{0}=L_{2}+c_{1}+c_{2}-c_{3}-c_{4} \tag{20}
\end{equation*}
$$

Reduction of a base measurement to sea level-

Let, $B=$ measured length of base, h leing its height :hme sea level:
$b=i t$ length reduced to sea level.
Then we have

$$
\begin{aligned}
& b=\begin{array}{c}
\rho \\
\beta+h
\end{array} \quad \text { or } b=B \begin{array}{c}
\rho \\
\rho+h
\end{array} \\
& \therefore \quad B-h=B\left(1-\frac{\rho}{\rho+h}\right)=\beta \underset{\rho+h}{h} \\
& =B_{\rho\left(1+\begin{array}{c}
h \\
\rho
\end{array}\right)}^{h_{\rho}}=B_{\rho}^{h}\left(1+\begin{array}{l}
h \\
\rho
\end{array}\right)^{-1} \\
& =B{\underset{\rho}{\rho}}_{h}^{h}\left(1-\frac{h}{\rho}+\frac{h^{2}}{\rho^{2}}-\frac{h^{3}}{\rho^{3}}+\right)
\end{aligned}
$$

$$
=B\left(\begin{array}{l}
h \tag{21}\\
\rho
\end{array}-\frac{h^{\prime}}{\rho^{\prime}}+\right)
$$

The first term here is ustally sulficient.
A broken base-It is sometimes necessary to measure a biter line in two parts, deflecting through a smatl angle at this point of junction.

Fig. 35

Let a and b, Fig. 35, be the two parts, making the small angle $(\cdot$ with one another. It is reguired to find the length c We have

$$
\left.\begin{array}{rl}
r^{2} & =a^{2}+b^{2}+2 a b \cos C, \\
& =a^{2}+b^{2}+2 a b\left(1-\begin{array}{c}
c^{2} \\
2
\end{array}\right), \text { nearly, } \\
& =(a+b)^{2}-a b c^{2}, \\
& =(a+b)^{2}\left(1-\frac{a b c^{2}}{(a+b)^{2}}\right), \\
\therefore \quad i & =(a+b)\left(1-\begin{array}{c}
a b c^{\prime 2} \\
(a+b)^{2}
\end{array}\right), \\
& =(a+b)\left(1-\frac{1}{2} a b c^{\prime 2}\right. \\
(a+b):
\end{array}\right), \text { nearly. }
$$

or, if C^{\prime} is in serombls

$$
\begin{gather*}
c=a+b-\frac{\sin ^{2} 1^{\prime \prime}}{2} \cdot \frac{a b c^{2}}{a+b} \tag{22}\\
\log \frac{\sin ^{2} 1^{\prime \prime}}{2}=11.070110 \mathrm{x}
\end{gather*}
$$

To interpolate a portion of a base-sometimes a pmrtion of at base camot be directly measured. In Figg. Bti, a and b and the angles $P^{\prime}()$ amd R are measured; it is regpired to find the length x. We hise

$$
\begin{aligned}
& B E=\frac{\sin A \quad(E}{a}=\frac{\sin A}{\sin P \quad a+x}=\frac{a \sin Q}{B E}=\frac{a}{(a+x) \sin P} \\
& C E=
\end{aligned}
$$

Again,

$$
\begin{array}{cc}
\text { Again, } \begin{array}{c}
B E \\
b+x= \\
\sin (A+R) \\
\sin (R-P) \\
\\
\therefore \quad \\
\\
\end{array} \quad \frac{B E}{C E}=\frac{(b+x) \sin (R-Q)}{b} \sin (R-P)
\end{array}
$$

\therefore equating, we have

Then write

$$
\begin{aligned}
\frac{a b \sin Q \sin (R-P)}{\sin P \sin (R-Q)} & =(a+x)(b+x) \\
& =a b+(a+b) x+x^{2}
\end{aligned}
$$

$$
\tan ^{2} K=\begin{gather*}
4 a b \sin Q \sin (R-P) \tag{2:3}\\
(a-b)^{2} \sin P \sin (R-Q)
\end{gather*}
$$

and we have

$$
\begin{align*}
\therefore \quad x & =-\frac{1}{2}(a+b) \pm \sqrt{1}(a+b)^{2}-a b+\frac{1}{1}(a-b)^{2} \tan ^{2} K \\
& =-\frac{1}{2}(a+b) \pm \sqrt{1}(a-b)^{2}+1(a-b)^{2} \tan ^{2} K \\
& =-\frac{1}{2}(a+b) \pm \frac{1}{2}(a-b) \sec K
\end{align*}
$$

If $a=b$ this solution fails. In that case write

$$
\begin{equation*}
\tan ^{2} K^{\prime}=\frac{a b \sin Q \sin (R-P)}{\sin P \sin (R-Q)} \tag{25}
\end{equation*}
$$

then we have

$$
\begin{align*}
& x^{2}+(a+b) x+a b-\tan ^{2} K^{\prime}=0 \\
& x=-\frac{1}{2}(a+b) \pm \sqrt{\ddagger(a+b)^{2}-a b+\tan ^{2} K^{\prime}} \\
& =-\frac{1}{2}(a+b) \pm \sqrt{(a-b)^{2}+\tan ^{2} K^{\prime}} \\
& =-\frac{1}{2}(a+b) \pm \tan K^{\prime} \tag{26}
\end{align*}
$$

and

Meusurement of angles-The angles of a triangu'ation may be measured either with a direction theodolite, or one of the repetition pattern. The circle of the former instrument is usually read by three equidistant verniers or microscopes. In measuring the angles at a station each of the distant stations is sighted in order, from left to right, and the microscouper read. The telescope is then transited, or reversed in
the standards, and each station is again sighted, in the order from right to left, and the microscopes again read. A value of each angle is thus obtained from each microssope, and in each position of the instrument, direct and reversed. The mean value of the angle thus oltained is free from the effect of eccentricity and errors of adjustment of the instrument. With three microscopes the effect of reversal is to give, for each station sighted, six readings distributed at equal intervals round the circle, thus minimizing the effect of division errors of the circle. If the construction of the stand permits the circle may now be turned to a new position and the angle measurements. repeated, etc.. thus further diminishing the effect of division errors.

A repetition theodolite is usually read by verniers, and with this pattern of instrument the repetition principle may be used to advantage. It may be thus described:
l.et A (the left-hand station) and B be two stations, the angle between which is to be measured.
Point to A and read verniers. Lonsen upper clamp and point to B and read verniers. Then lossen lower clamp and again point to A. Then loosen upper clamp and again point to B, thus obtaining a reading equal to double the angle. This process may be repeated until a final reading is obtained equal to, say, six times the angle between the two stations.
Next lowsen the lower clamp, transit the telescope, and point to 8 . Then loosen upper clamp, turn vernier plate in a clockwise direction, and point to A, thus diminishing the final reading of the first set of repetitions by the amount of the angle between the two stations. Repeat this operation as often as in the first set, thus obtaining a final reading approximating closely to the initial reading.

It is to le noted that in both sets of repetitions the vernier plate is always turned in a clockwise direction; that in the first set the instrument is turned from A to B with the upper clamp loose and the lower clamp tight; and that in the second set these conditions are reversed.

The required angle is now found by taking the mean of the differences between the initial and final radings in the two sets, and dividing by the number of repetitions. This result is largely free from the effect of a drag of the circle by the vernier plate.

Reduction of an observed angle to centre of station-This reduction is necessary when for some reason the centre of a station cannot be occupied by the observer.

In Fig. $37 A$ is the centre of the station, O the point occupied. The angles $O \beta$ and γ are measured, and the distance m. The angle A is required. We have

$$
A=B /)(-x=0-x+y ;
$$

$$
\text { and } \quad \sin x=\begin{gathered}
m \sin \beta \\
c
\end{gathered} \quad \text { in } 1=\begin{aligned}
& m \sin \gamma \\
& b
\end{aligned}
$$

Then x and y lebing small we may mhatitute ohoir circular measimres for their sines, and write them ion the form x sin $\left.\right|^{\prime \prime}$ and y sin $1^{\prime \prime}, x$ and y being expressed in ecomel- an that wo. have

Distant stations are rendered visible lọ means of awotyeme lamps for night work, inll heliotropes for daty work. |le scription of some forms of heliotrope.

The portion of the surface of the spleroded contained within a triangle is assumed to be a portion of a spherical surfile Whome radites is the geometric mean of the principal ratlii of curvalture at the cemtral poilt of the triangle.

Spherical reserss of a triangle-It is shewn in spherical geometry thatt the sum of the angles of a spherical iriang!e exverls iwo right anglew by all amonnt termed the "sphericall "xcers" of the eriangle.

To find the spherical ewoss of a giten triangle:

Let $1 B C^{\circ}$ be a spherical triangle, and $A^{\prime} B^{\prime}$ and $C^{\prime \prime}$ points diametrically opposite $A B$ and C°. The surface of the hemiwhere is marle up of the three homes $A B A^{\prime} C, B C B^{\prime} A$, and (. $1 C^{\prime \prime} B$ - this list being eqpal to the sumb of the two triangles ($A B$ and C $A 1^{\prime} B^{\prime}$ less wice the area of the triangle $A B C$. tenoting these be lane A, ete., and the area of the triangle by 1 . we have

$$
\begin{aligned}
& \text { 1.11וに } A=\frac{.1}{\pi} 2 \pi R^{2}=2.1 R^{2} \\
& \text { 1.1nceB } \quad=2 B R^{2} \\
& \text { 1.1me } \quad=2 C^{\circ} R^{2} \\
& \therefore \quad 2.1 R^{\prime \prime}+2 B R^{2}+2 C R^{\prime \prime}-2 د=2 \pi R^{2} \\
& \text { or } \\
& A+B+C-\pi=\frac{\rightharpoonup}{R^{2}}
\end{aligned}
$$

MICROCOPY RESOLUYION TEST CHART

(ANSI and ISO TEST CHART No. 2)

APPLIED IMAGE Inc
1653 East Moin Street
Rochester, New Yark 14509
USA
(716) 482 - 0300 - Phone
(716) 288 - 5989 - Fax
or, denoting the spherical excess by \in we have in seconds

$$
\begin{equation*}
\epsilon=\frac{\Delta}{R^{2} \sin 1^{\prime \prime}} \tag{28}
\end{equation*}
$$

For a triangle on the earth's surface this may be written

$$
\begin{equation*}
\epsilon=\frac{\Delta}{\rho_{m} \rho_{x} \sin 1^{\prime \prime}} \tag{29}
\end{equation*}
$$

The area of the triangle, in all but extreme cases, may be computed as if the triangle were plane, so that we may write
or

$$
\begin{align*}
& \epsilon=\frac{a b \sin C}{2 \rho_{m} \rho_{n} \sin 1^{\prime \prime}} \tag{30}\\
& \epsilon=\frac{a^{2} \sin B \sin C}{2 \rho_{m} \rho_{n} \sin 1^{\prime \prime} \sin (B+C)} \tag{31}
\end{align*}
$$

The value of $1 / 2 \rho_{m} \rho_{n} \sin 1^{\prime \prime}$-which we may denote by m may be computed by the expression

$$
\begin{equation*}
\log \frac{1}{2 \rho_{m} \rho_{n} \sin 1^{\prime \prime}}=1 \overline{0} .372023+[\overline{3.469754}] \cos 2 \phi \tag{32}
\end{equation*}
$$

the number in brackets being the log. of a constant coefficient.
The following table was computed by (32):

ϕ	\boldsymbol{m}	ϕ	\boldsymbol{m}
40°	10.37253	50	10.37151
41	243	51	141
42	233	52	131
43	223	53	121
44	213	54	111
45	202	55	101
46	192	56	092
47	182	57	082
48	171	58	073
49	161	59	064
		60	055

Legendre's theorem-This theorem may be thus stated: If the sides of a spherical triangle are small in comparson with the radius of the sphere, it may be solved as a plane triangle by first diminishing each angle by one-third of the spherical excess of the triangle.

To prove this, let
$A B$ and C be the angles of the triangle,
$a b$ and c the sides, expressed in radians,
$A^{\prime} B^{\prime}$ and C^{\prime} the angles of a plane triangle, whose sides a β and γ have the same lengths expressed in feet as those of the spherical triangle.

Then we have

$$
\cos A=\frac{\cos a-\cos b \cos c}{\sin b \sin c}
$$

$$
=\frac{1-\frac{a^{2}}{2 r^{2}}+\frac{a^{4}}{24 r^{4}}-\left(1-\frac{\beta^{2}}{2 r^{2}}+\frac{\beta^{4}}{24 r^{4}}\right)\left(1-\frac{\gamma^{2}}{2 r^{2}}+\frac{\gamma^{4}}{24 r^{4}}\right)}{\left(\frac{\beta}{r}-\frac{\beta^{3}}{6 r^{3}}\right)\left(\frac{\gamma}{r}--\gamma^{3}-r^{3}\right)}
$$

$$
=\frac{1-\frac{a^{2}}{2 r^{2}}+\frac{a^{4}}{24 r^{4}}-\left(1-\frac{\beta^{2}}{2 r^{2}}+\frac{\beta^{4}}{24 r^{4}}-\frac{\gamma^{2}}{2 r^{2}}+\frac{\beta^{2} \gamma^{2}}{4 r^{4}}+\frac{\gamma^{4}}{24 r^{4}}\right)}{\frac{\beta \gamma}{r^{2}}-\frac{\beta \gamma^{3}}{6 r^{4}}-\frac{\beta^{3} \gamma}{6 r^{4}}}
$$

$$
=\frac{\frac{\beta^{2}+\gamma^{2}-a^{2}}{2 r^{2}}+\frac{a^{4}-\beta^{4}-\gamma^{4}-6 \beta^{2} \gamma^{2}}{24 r^{4}}}{\frac{\beta \gamma}{r^{2}}\left(1-\frac{\beta^{2}+\gamma^{2}}{6 r^{2}}\right)}
$$

$$
=\left(\frac{\beta^{2}+\gamma^{2}-a^{2}}{2 \beta \gamma}+\frac{a^{4}-\beta^{4}-\gamma^{4}-6 \beta^{2} \gamma^{2}}{24 \beta \gamma r^{2}}\right)\left(1+\frac{\beta^{2}+\gamma^{2}}{6 r^{2}}\right)
$$

$$
=\frac{\beta^{2}+\gamma^{2}-a^{2}}{2 \beta \gamma}+\frac{a^{4}-\beta^{4}-\gamma^{4}-6 \beta^{2} \gamma^{2}}{24 \beta \gamma r^{2}}
$$

$$
+\frac{\beta^{4}+\beta^{2} \gamma^{2}-a^{2} \beta^{2}+\beta^{2} \gamma^{2}+\gamma^{4}-a^{2} \gamma^{2}}{12 \beta \gamma r^{2}}
$$

$$
\begin{equation*}
=\frac{\beta^{2}+\gamma^{2}-a^{2}}{2 \beta \gamma}+\frac{a^{4}+\beta^{4}+\gamma^{4}-2 a^{2} \beta^{2}-2 a^{2} \gamma^{2}-2 \beta^{2} \gamma^{2}}{24 \beta \gamma r^{2}} \tag{a}
\end{equation*}
$$

Now in the triangle $A^{\prime} B^{\prime} C^{\prime}$ we have

$$
\begin{gather*}
\cos A^{\prime}=\frac{\beta^{2}+\gamma^{2}-a^{2}}{2 \beta \gamma} \tag{b}\\
\therefore \sin ^{2} A^{\prime}=1-\left(\frac{\beta^{2}+\gamma^{2}-a^{2}}{2 \beta \gamma}\right)^{2} \\
=- \tag{c}
\end{gather*}
$$

\therefore by (a) (b) and (c) we have

$$
\begin{equation*}
\cos A=\cos A^{\prime}-\sin ^{2} A^{\prime} \frac{\rho \gamma}{6 r^{2}} \tag{d}
\end{equation*}
$$

Then as ime $A=A^{\prime}+\theta$ and we nave $\cos A=\cos A^{\prime}-\theta \sin A^{\prime}$
by Taylor's theorem. Therefore comparing with (d) we have

$$
\theta \sin A^{\prime}=\sin ^{2} A^{\prime} \frac{\beta \gamma}{6 r^{2}}
$$

$$
\begin{aligned}
\theta & =\frac{\beta \gamma \sin A^{\prime}}{6 r^{2}}=\frac{1}{3 r^{2}} \cdot \frac{1}{2} \beta \gamma \sin A^{\prime} \\
& : \frac{\Delta}{3 r^{2}}=\frac{\epsilon}{3}
\end{aligned}
$$

This proves the theorem.
If the three angles of a triangle are measured, the spherical excess may be computed by (30) or (31) using the values of the angles given by measurement. The closing error then is

$$
180^{\circ}+\epsilon-(A+B+C)
$$

which may be divided among the angles, giving to each a correction which is inversely proportional to its weight. One third of the spherical excess is then deducted from each angle, and the triangle solved as a plane triangle. If the three angles have equal weights the closing error may therefore be found as if the triangle were plane and divided equally among them.

For triangles the lengths of whose sides do not greatly exceed 6 miles the error due to the neglect of spherical excess is not likely to amount to 0.01 ft .

In the case of a triangulation consisting of an intricate chain or network of triangles, the angles must be subjected to a rigid process of adjustment before the triangles are solved. The adjustment of a triangulation constitutes a subject in itself, which is beyond the scope of these notes. (Leading principles outlined).

4. Geodetic Positions.

The latitude and longitude of one of the stations, and the azimuth of a triangle side extending from that station, having been determined astronomically, the geographical co-ordinates of all the stations of the triangulation may now be computed. The problem thus presented for solution is:

Given the latitude and longitude of a point on the earth's surface, and the length and initial azimuth of the line drawn from it to a second point, to determine the latitude and longitude of this point, and the azimuth of the first point as seen from the second.

In Fig. $39 A$ is the first point and B the second; C is the $\because A C$ and $B C$ are the meridians of A and B. O is the re of the spheroid. $A N$ and $B N^{\prime}$ are normals to the
spheroid at the points A and $B . A^{\prime} B^{\prime} C^{\prime}$ is a spherical triangle, the centre of the sphere being at N. We have given then

$$
\phi_{1} a_{1} \text { and } s
$$

and are required to find

$$
\phi_{2} \Delta L \text { and } \alpha_{2}
$$

To find $\Delta \phi\left(=\phi_{9}-\phi_{1}\right)$ -
In the triangle $A^{\prime} B^{\prime} C^{\prime}$ we have given $b c$ and $A^{\prime}\left(=a_{1}\right)$, and must find $a\left(=90^{\circ}-\phi_{2}{ }^{\prime}\right), C(=\Delta L)$, and B.

We have

$$
\cos a=\cos b \cos c+\sin b \sin c \cos A^{\prime}
$$

or

$$
\sin \phi_{2}^{\prime}=\sin \phi_{1} \cos c+\cos \phi_{1} \sin c \cos \alpha_{1}
$$

$$
=\sin \phi_{1}\left(1-\frac{c^{2}}{2}\right)+c \cos \phi_{1} \cos a_{1}
$$

or $\quad \sin \phi_{2}^{\prime}-\sin \phi_{1}=c \cos \phi_{1} \cos \alpha_{1}-\frac{c^{2}}{2} \sin \phi_{1}$
But $\quad \sin \phi_{2}^{\prime}-\sin \phi_{1}=\sin \left(\phi_{1}+\Delta \phi^{\prime}\right)-\sin \phi_{1}$

$$
\begin{aligned}
& =\sin \phi_{1}\left(1-\frac{\Delta \phi^{\prime 2}}{2}\right)+\Delta \phi^{\prime} \cos \phi_{1}-\sin \phi_{1} \\
& =\Delta \phi^{\prime} \cos \phi_{1}-\frac{\Delta \phi^{\prime 2}}{2} \sin \phi_{1}
\end{aligned}
$$

$\therefore \Delta \phi^{\prime} \cos \phi_{1}-\frac{\Delta \phi^{\prime 2}}{2} \sin \phi_{1}=c \cos \phi_{1} \cos \alpha_{1}-\frac{c^{2}}{2} \sin \phi_{1}$
or $\quad \Delta \phi^{\prime}-\frac{\Delta \phi^{\prime 2}}{2} \tan \phi_{1}=c \cos a_{1}-\frac{c^{2}}{2} \tan \phi_{1}$.
Assuming as a first approximation

$$
\Delta \phi^{\prime}=c \cos \alpha_{1}
$$

and substituting in the term in $\Delta \phi^{\prime 2}$, we have

$$
\begin{align*}
\Delta \phi^{\prime} & =c \cos a_{1}-\frac{c^{2}}{2} \tan \phi_{1}+\frac{c^{2}}{2} \tan \phi_{1} \cos ^{2} a_{1} \\
& =c \cos a_{1}-\frac{c^{2}}{2} \tan \phi_{1} \sin ^{2} a_{1} \tag{33}
\end{align*}
$$

Then substituting $c=\frac{s}{N}$
we have ($\Delta \phi^{\prime}$ being in seconds)

$$
\begin{equation*}
\Delta \phi^{\prime}=\frac{s \cos a_{1}}{N \sin 1^{\prime \prime}}--\frac{1}{2}\left(\frac{s \cos a_{1}}{N \sin 1^{\prime \prime}}\right)^{2} \tan \phi_{1} \tan ^{2} a_{1} \sin 1^{\prime \prime} \tag{34}
\end{equation*}
$$

This gives the difference of latitude on an imaginary sphere whose radius is $N\left(:=\rho_{n}\right)$, whereas the radius should be
assumed equal to the value of ρ_{m} for the mean of the latitudes of A and B, or, with sufficient precision, for the latitude $\phi_{1}+\frac{1}{2} \Delta \phi^{\prime}$. We have then

$$
\begin{align*}
\Delta \phi & =\Delta \phi^{\prime} \frac{N}{\rho_{m}} \tag{35}\\
\phi_{2} & =\phi_{1}+\Delta \phi \tag{36}
\end{align*}
$$

Also
To find $\Delta L-$
Again, in the triangle $A^{\prime} B^{\prime} C^{\prime}$, we have
or

$$
\begin{aligned}
\sin C^{\prime} & =\frac{\sin c \sin A^{\prime}}{\sin a} \\
\sin \Delta L & =\frac{\sin c \sin a_{1}}{\cos \phi_{2}^{\prime}}
\end{aligned}
$$

or, substituting arcs for sines

$$
\begin{align*}
& \Delta L=\frac{c \sin a_{1}}{\cos \phi_{2}^{\prime}} \\
& \Delta L=\frac{s \sin a_{1}}{N \sin 1^{\prime \prime} \cos \phi_{2}^{\prime}} \tag{37}
\end{align*}
$$

or in seconds
To find $\Delta a\left(=a^{\prime}-a_{1}\right)$.
We have

$$
\tan \frac{1}{2}\left(A^{\prime}+B^{\prime}\right)=\frac{\cos \frac{1}{2}(a-b)}{\cos \frac{1}{2}(a+b)} \cot \frac{1}{2} C^{\prime}
$$

$$
A^{\prime}+B^{\prime}=a_{1}+180^{\circ}-a^{\prime}
$$

$$
=180^{\circ}-\left(a^{\prime}-a_{1}\right)
$$

$$
=180^{\circ}-\Delta a
$$

$$
a-b=90^{\circ}-\phi_{2}-90^{\circ}+\phi_{1}
$$

$$
=-\left(\phi_{2}-\phi_{1}\right)=-\Delta \phi
$$

$$
a+b=90^{\circ}-\phi_{2}+90^{\circ}-\phi_{1}
$$

$$
=180^{\circ}-\left(\phi_{1}+\phi_{2}\right)
$$

$$
\therefore \quad \cot \frac{1}{2} \Delta a=\frac{\cos \frac{1}{2} \Delta \phi}{\sin \phi_{m}} \cot \frac{1}{2} \Delta L
$$

or

$$
\tan \frac{1}{2} \Delta a=\frac{\sin \phi_{m}}{\cos \frac{1}{2} \Delta \phi} \tan \frac{1}{2} \Delta L
$$

or, substituting arcs for tangents

$$
\begin{equation*}
\Delta a=\Delta L \frac{\sin \phi_{m}}{\cos \frac{1}{2} \Delta \phi} . \tag{38}
\end{equation*}
$$

This is termed the convergence of the meridians of A and B. Then finally

$$
\begin{align*}
a_{2} & =180^{\circ}+a^{\prime} \\
& =180^{\circ}+a_{1}+\Delta a \tag{39}
\end{align*}
$$

An expression giving Δa directly in terms of the data is sometimes useful. It may be derived as follows: Taking the equation

$$
\sin A^{\prime} \cot B^{\prime}=\sin c \cot b-\cos c \cos A^{\prime}
$$

it may be thus transformed

$$
\begin{aligned}
\tan B^{\prime} & =\frac{\sin a_{1}}{\sin c \cot b-\cos c \cos a_{1}} \\
& =-\frac{\sin a_{1}}{\cos a_{1}\left(\cos c-\sin c \frac{\cot b}{\cos a_{1}}\right)} \\
& =-\frac{\tan a_{1}}{1-\frac{c^{2}}{2}-c \cot b} \\
& =-\tan a_{1}\left(1+\frac{c \cot b}{\cos a_{1}}+\frac{c^{2}}{2}+\frac{c^{2} \cot ^{2} b}{\cos ^{2} a_{1}}\right) \\
\therefore \quad \tan B^{\prime}+\tan a_{1} & =-\tan a_{1}\left(\frac{c \cot b}{\cos a_{1}}+\frac{c^{2}}{2}+\frac{c^{2} \cot ^{2} b}{\cos ^{2} a_{1}}\right)
\end{aligned}
$$

But $B=180^{\circ}-a^{\prime}, \therefore$

$$
\tan a^{\prime}-\tan a_{1}=\tan a_{1}\left(\frac{c \cot b}{\cos a_{1}}+\frac{c^{2}}{2}+\frac{c^{2} \cot ^{2} b}{\cos ^{2}} a_{1}\right)
$$

Also $a^{\prime}=a_{1}+\Delta a, \therefore$ by Taylor's theorem

$$
\begin{aligned}
\tan a^{\prime} & =\tan \left(a_{1}+\Delta a\right) \\
& =\tan a_{1}+\Delta a \sec ^{2} a_{1}+\Delta a^{2} \tan a_{1} \sec ^{2} a_{1}
\end{aligned}
$$

\therefore, substituting, we have
$\Delta a \sec ^{2} a_{1}+\Delta a^{2} \tan a_{1} \sec ^{2} a_{1}=\tan a_{1}\left(\frac{c \cot b}{\cos a_{1}}+\frac{c^{2}}{2}+\frac{c^{2} \cot ^{2} b}{\cos ^{2} a_{1}}\right)$
or $\quad \Delta a+\Delta a^{2} \tan a_{1}=c \cot b \sin a_{1}+\frac{c^{2}}{2} \sin a_{1} \cos a_{1}$

$$
+c^{2} \cot ^{2} b \tan a_{1}
$$

Assuming as a first approximation

$$
\Delta a=c \cot b \sin a_{1}
$$

and substituting in the term containing Δa^{2} we find after reduction

$$
\Delta a=c \cot b \sin a_{1}+\frac{c^{2}}{2} \sin a_{1} \cos a_{1}\left(1+2 \cot ^{2} b\right)
$$

or in seconds

$$
\Delta a=\frac{s}{N} \frac{\tan \phi_{1} \sin a_{1}}{\sin 1^{\prime \prime}}+\frac{1}{2}\left(\frac{s}{N}\right)^{2} \frac{\sin a_{1} \cos a_{1}}{\sin 1^{\prime \prime}}\left(1+2 \tan ^{2} \phi_{1}\right)
$$

By writing
equations (34), (35), (37) and (40) become

$$
\begin{align*}
\Delta \phi & =\frac{y}{\rho_{m} \sin 1^{\prime \prime}}-\frac{x^{2} \tan \phi_{1}}{2 \rho_{m} \rho_{n} \sin 1^{\prime \prime}} \tag{41}\\
\Delta L & =\frac{x}{\rho_{n} \cos \phi_{2}^{\prime} \sin 1^{\prime \prime}} \tag{42}\\
\Delta a & =\frac{x \tan \phi_{1}}{\rho_{m} \sin 1^{\prime \prime}}+2 \rho_{n^{2}} \sin ^{\prime \prime} 1^{\prime \prime}\left(1+2 \tan ^{2} \phi_{1}\right) \tag{43}
\end{align*}
$$

These equations should not be used for distances exceeding 20 miles. (38) should be used in preference to (40) or (43) when all the unknown quantities are required.

For longer distances-approaching 100 miles-the following equations may be used:

The following log's are here useful:

$$
\begin{array}{rlr}
1 / \sin 1^{\prime \prime} & =5.31442513 & \log \sin ^{2} 1^{\prime \prime} / 6=\overline{12} .59300 \\
3 \sin 1^{\prime \prime} & =4.83730 & \\
\hline / 2 \sin \sin ^{2} 1^{\prime \prime} / 12=5.12 .29197 \\
=5.0133951 &
\end{array}
$$

$$
\text { ple,-Let } s=20 \text { miles, } \phi_{1}=44^{\circ} 30^{\prime}, a_{1}=48^{\circ} 20^{\prime}
$$

To find $\Delta \phi^{\prime}$, eq. (34)

$\log s($ in ft.$)$	$=5.0236639$
$\log \cos a_{1}$	$=\mathbf{9 . 8 2 2 6 8 8 3}$
$\log \rho_{n}$	$=$7.3214108 $\log \sin 1^{\prime \prime}$
	$=\mathbf{6 . 6 8 5 5 7 4 9}$

$$
\begin{align*}
& x=\frac{s \sin a_{1}}{\rho_{n}} \quad y=\frac{s \cos a_{1}}{\rho_{n}} \\
& \Delta \phi^{\prime}=\frac{y}{\sin 1^{\prime \prime}}+\frac{y^{3} \tan ^{2} a_{1}}{3 \sin 1^{\prime \prime}}-\frac{x^{2} \tan \phi^{\prime}}{2 \sin 1^{\prime \prime}} \tag{44}\\
& \phi^{\prime}=\phi_{1}+1 \text { st two terms } \\
& \Delta \phi=\Delta \phi^{\prime} \frac{\rho_{n}}{\rho_{m}} \\
& \Delta_{2}{ }_{2}=\frac{x}{\cos \phi_{2}^{\prime} \sin 1^{\prime \prime}}+\frac{\sin ^{2} 1^{\prime \prime}}{6}-\left(\Delta L^{\prime}\right)^{3}\left(1-\frac{\cos ^{2} \phi_{2}^{\prime}}{\sin ^{2} a_{1}}\right) \tag{45}\\
& \Delta L^{\prime}=1 \text { st term } \quad \phi_{2}^{\prime}=\phi_{1}+\Delta \phi^{\prime} \\
& \Delta a=\frac{\Delta L \sin \phi_{m}}{\cos \frac{1}{2} \Delta \phi}-\frac{\sin ^{2} 1^{\prime \prime}}{12}\left(\Delta a^{\prime}\right)^{3}\left(1-\frac{\cos ^{2} \frac{1}{2} \Delta \phi}{\sin ^{2} \phi_{m}}\right) \tag{46}\\
& \phi_{m}=\phi_{1}+\frac{1}{2} \Delta \phi \quad \Delta a^{\prime}=1 \text { st term } .
\end{align*}
$$

	$\begin{aligned} & 4.8463!22 \\ & 2.00608: i 7 \end{aligned}$
$\log 090.8225$	$=2.8393 \mathrm{C} 65$
	5.67873
$\log 0.5$	$=\overline{1.69897}$
$\log \tan \phi_{1}$	$=0.99242$
$\log \tan ^{2} a_{1}$	$=10.10129$
$\log \sin 1^{\prime \prime}$	$=6.68 \% .57$
$\log 1.435 \%$	$=0.15698$
$\Delta \phi^{\prime}$	$\begin{aligned} & =689^{\prime \prime} .387 \\ & =11^{\prime} 29^{\prime \prime} .387 \end{aligned}$

To find $\Delta \phi$, eq. (35)-

$\log \Delta \phi^{\prime}$	$\begin{aligned} & =2.8384631 \\ & =7.3214108 \end{aligned}$
$\log \rho_{m}$	$=7.3199151$
	10.1598739 $=28399588$
$\log \Delta \phi$	$=2.8399588$
$\Delta \phi$	$\begin{aligned} & =691^{\prime \prime} .765 \\ & =11^{\prime} 31^{\prime \prime} .765 \end{aligned}$
ϕ_{1}	$=44^{\circ} 30^{\prime}$
ϕ_{2}	$=44^{\circ} 41^{\prime} 31^{\prime \prime}$

To find ΔL, eq. (37)-

$\log s$	$\begin{aligned} & =5.0236639 \\ & =9.8733352 \end{aligned}$
$\log \rho_{n}$	$=7.321+108$
$\log \sin 1^{\prime \prime}$	$=\overline{\mathbf{6} .6855749}$
$\log \cos \phi_{2}{ }^{\prime}$	$=9.8518109$
	$\begin{aligned} & 4.896 y 991 \\ & 1.8587966 \end{aligned}$
$\log 1091.952$	$=3.0382035$
ΔI.	$\begin{aligned} & =1091^{\prime \prime} .952 \\ & =18^{\prime} 11^{\prime \prime} .952 \end{aligned}$

The second term in eq. (45) in this example $=0^{\prime \prime} .0005$.

To find Δa, eq. (38) -

$\log \Delta L$	= 3.0382075
$\log _{\operatorname{gin}} \sin \phi_{m}$	$=0.844016$
$\log \cos \frac{1}{3} \Delta \phi$	- 0.9009983
	2.8846091
$\log 766.672$	=2.8846098
Δa	$=12^{\prime} 43^{\prime \prime} .172$

The second term in eq. (46, h te amounts to $0^{\prime \prime} .001$.
To find a_{2}, cq. (39) -

$$
\begin{array}{ll}
a_{1} & =48^{\circ} 20^{\prime} 00^{\prime \prime} \\
a_{a} & 12^{\prime} 46^{\prime \prime} .672 \\
a_{2} & \\
& =220^{\circ} 30^{\circ} 00^{\prime} 40^{\prime} 40^{\prime \prime} .672
\end{array}
$$

The above equations (41), (42), (43) and (38) may readily be adapted for the solution of a variety of problems. Thusgiven $\phi_{1} \phi_{2}$ and ΔL to find $a_{1} a_{3}$ and s.
We have $\quad x=\Delta L . \rho_{n} \cos \phi_{2} \sin 1^{\prime \prime}$

$$
\begin{align*}
y & =\Delta \phi \cdot \rho_{m} \sin 1^{\prime \prime}+\frac{1}{2} \frac{x^{2} \tan \phi_{1}}{\rho_{m} \rho_{k} \sin 1^{\prime \prime}} \rho_{m} \sin 1^{\prime \prime} \tag{47}\\
& =\Delta \phi \cdot \rho_{m} \sin 1^{\prime \prime}+\frac{x^{2} \tan \phi_{1}}{2 \rho_{n}} \tag{48}
\end{align*}
$$

Then $\quad \tan a_{1}=\frac{x}{y}$

$$
\begin{align*}
& \Delta a=\Delta L \frac{\sin \phi_{m}}{\cos \frac{1}{2} \Delta \phi} \tag{49}\\
& a_{2}=180^{\circ}+a_{1}+\Delta a \\
& s=\frac{x}{\sin a_{1}}=y \tag{50}\\
& \cos a_{1}
\end{align*}
$$

Again, given ϕ_{1} and a_{1},

$$
\text { to find } s, L \text { and } a_{2} \text {. }
$$

We have from (48) and (49)

$$
\begin{align*}
y & =\Delta \phi \cdot \rho_{m} \sin 1^{\prime \prime}+\frac{y^{2} \tan ^{2} a_{1} \tan \phi_{1}}{2 \rho_{n}} \\
& =\Delta \phi \cdot \rho_{m} \sin 1^{\prime \prime}+\left(\Delta \phi \cdot \rho_{m} \sin 1^{\prime \prime}\right)^{2} \frac{\tan ^{2} a_{1} \tan \phi_{1}}{2 \rho_{n}} \\
x & =y \tan a_{1} \tag{51}
\end{align*}
$$

$$
\begin{aligned}
s & =\frac{x}{\sin a_{1}}=\frac{y}{\cos a_{1}} \\
\Delta L & =\frac{x}{a_{1} \cos \phi_{2} \sin 1^{\prime \prime}}
\end{aligned}
$$

Any other problem in which three of these six quantities are given may be solved in a similar manner.

The ?oregoing equations may be used in reducing to differences of $1:$ titude and longitude the courses of a traverse line. Only the fir ${ }^{-}$forms are here necessary, so that we may write

$$
\begin{align*}
x & =s \sin a \quad y=s \cos a \\
\Delta \phi & =\frac{\rho_{m} \sin l^{\prime \prime}}{x} \\
\Delta L & =\frac{-}{\rho_{m} \cos \phi} \overline{\sin 1^{\prime \prime}} \\
\Delta_{a} & =\frac{x \tan \phi}{\rho_{m} \sin 1^{\prime \prime}}=\Delta L \sin \phi \tag{52}
\end{align*}
$$

In latitude 45° the maximum values of the second terms of the above expressions, for a length of 1 mile, are, respectively
$0^{\prime \prime} .0066$
.0093
.0098
The use to be made of Δa is to correct the azimuth of a course referred to the meridian of the initial station of the traverse, to refer it to the meridian of the initial point of the course. As a correction it is additive. The algebraic signs of x and y must le carefully observed.
6. Certain Problimm which occur in the Dominion Lands System of Survey.

A general description of that system of survey.
(1) To find the amplitude of a meridian arr having a given length; and conversely.

We have

$$
\Delta \phi=\begin{gather*}
s \tag{53}\\
\rho_{m} \sin 1^{\prime \prime}
\end{gather*}
$$

$\Delta \phi$ being in seconds; and conversely

$$
\begin{equation*}
s=\Delta \phi: \rho_{m} \sin 1^{\prime \prime} \tag{54}
\end{equation*}
$$

If the arc is at a height Π above sea level, then

$$
\begin{align*}
\Delta \phi & =\frac{s}{\left(\rho_{m}+H\right) \sin 1^{\prime \prime}} \\
& =\frac{s}{\rho_{m}\left(1+\frac{H}{\rho_{m}}\right) \sin 1^{\prime \prime}} \\
& =\begin{array}{c}
s \\
\rho_{m} \sin 1^{\prime \prime}\left(1-\begin{array}{c}
I I \\
\rho_{m}
\end{array}\right)
\end{array} \tag{55}
\end{align*}
$$

nearly. Conversely

$$
\begin{equation*}
s=د \phi \cdot \rho_{m} \sin 1^{\prime \prime}\left(1+\frac{I I}{\rho_{m}}\right) \tag{56}
\end{equation*}
$$

Example. -Find the amplitude of atn are whose length is 24 miles, middle latitude 52°, and height inove sea level 1200 feet.

Eq. (55)	$\begin{aligned} & \log 24 \\ & \log 3280 \end{aligned}$	$\begin{aligned} & =1.3802112 \\ & =3.7226330 \end{aligned}$
	$\log s$ (in ft.)	$=5.1028451$
	$\log \rho_{m}$ $\log \sin :^{\prime \prime}$	$\begin{aligned} & =7.3204817 \\ & =6.6855749 \end{aligned}$
		2.0060566
	$\begin{aligned} & \log 1249.650 \\ & \log I I \end{aligned}$	$\begin{aligned} & =3.09678 \times 55 \\ & =3.07918 \end{aligned}$
	$\log \rho_{m}$	- 73.3048
	$\log 0.0717$	$\begin{array}{r} 6.17597 \\ =\frac{2.85549}{} \end{array}$
	$\Delta \phi$	$\begin{aligned} & =1249.578 \\ & =20^{\prime} 49^{\prime \prime} .578 \end{aligned}$

For finding the length of a meridian arc exceeding about a degree the following expression may be used:

$$
\begin{aligned}
s & =[5.56182842] \Delta \phi \text { (in degrees) } \\
& -[5.0269884] \cos 2 \phi_{o} \sin \Delta \phi \\
& +[2.0527848] \cos 4 \phi_{o} \sin 2 \Delta \phi \\
& -[1.17356 \ldots] \cos 6 \phi_{o} \sin 3 \Delta \phi+
\end{aligned}
$$

in which
$\Delta \phi=$ the difference of latitude of its extremities, $\phi_{0}=$ the mean of the extreme latitudes.
The numbers in brackets are logarithms.
This expression is sufficient for finding the length of a whole quadrant.
(2) Given two points on the same parallel of latitude, at a given distance apart, to find their difference of longitude, and the convergence of their meridians.

A and B are the two points; $A D B$ a normal section, and $A E B$ a parallel of latitude. $P D$ is drawn at right angles to $A D B$. The triangle $P D B$ gives
or

$$
\begin{aligned}
& \sin B P D=\frac{\sin B D}{\sin P B} \\
& \sin \begin{array}{c}
\Delta L \\
2
\end{array}=\frac{\sin 2 N}{\cos \phi}
\end{aligned}
$$

or, as ΔL is assumed to be small, this may be written

$$
\Delta L=\frac{s}{N \cos \phi}
$$

or in seconds

$$
\begin{equation*}
\Delta L=\frac{s}{N \cos \phi \sin 1^{\prime \prime}} \tag{58}
\end{equation*}
$$

If the higher powers of ΔL and $s / 2 N$ are retained in the expansions, this becomes

$$
\begin{equation*}
\Delta L=\frac{s}{N \cos \phi \sin 1^{\prime \prime}}+\frac{\sin ^{2} 1^{\prime \prime}}{24}\left(\Delta L^{\prime}\right)^{3} \sin ^{2} \phi \tag{59}
\end{equation*}
$$

in which ΔL^{\prime} is the first term. As

$$
N \cos \phi=P,
$$

the radius of the parallel of latitude, this may be written

$$
\begin{equation*}
\Delta L=\frac{s}{P \sin 1^{\prime \prime}}+\frac{\sin ^{2} 1^{\prime \prime}}{24}\left(\frac{s}{P \sin 1^{\prime \prime}}\right)^{3} \sin ^{2} \phi \tag{60}
\end{equation*}
$$

For a chord 6 miles in length, in latitude 52°, the second term of (60) amounts to only $0^{\prime \prime} .00008$, a quantity quite inappreciable, so that the first term may be considered exact.

Again, in the triangle $P D B$ we have

$$
\begin{equation*}
\cos P B D=\frac{\tan B D}{\tan P B} \tag{61}
\end{equation*}
$$

or

$$
\begin{aligned}
\sin \frac{\Delta a}{2} & =\frac{\tan \frac{s}{2 N}}{\cot \phi} \\
\Delta a & =\frac{s \tan \phi}{N}
\end{aligned}
$$

- Δa being small-; or in seconds

$$
\begin{equation*}
\Delta a=\frac{s \tan \phi}{N \sin 1^{\prime \prime}} \tag{62}
\end{equation*}
$$

The higher terms are here also inappreciable. From (58) and (61) we have

$$
\Delta a=\Delta L \sin \phi
$$

(See eq. 52).
The deflection angle between two consecutive chords of the same length is clearly

$$
\Delta a=\frac{s \tan \phi}{N \sin 1^{\prime \prime}}
$$

and the azimuth of a chord at either extremity

$$
90^{\circ}-\frac{\Delta a}{2}
$$

To find the difference in length of s and the arc of the parallel p we have
and

$$
\Delta L=\frac{s}{N \cos \phi}+\frac{1}{24}\left(\frac{s}{N \cos \phi}\right)^{3} \sin ^{2} \phi
$$

$$
\Delta L=\frac{p}{N \cos \phi}
$$

Equating these we have

$$
\begin{align*}
p-s & =\frac{1}{24}\left(\frac{s}{N \cos \phi}\right)^{3} \sin ^{2} \phi N \cos \phi \\
& =\frac{s}{24}\left(\frac{s}{N}\right)^{2} \tan ^{2} \phi \tag{63}
\end{align*}
$$

To find the length of an offsel from the chord to the parallel of latitude.

Applying eq. (33) to the arc $D E$, Fig. 40, we have, denoting $A D$ and $D E$ by x and y, respectively,

$$
\begin{gathered}
\frac{y}{N}=\frac{x}{N} \cos a-\frac{1}{2}\binom{x}{N}^{2} \tan \phi \sin ^{2} a \\
\cos a=\frac{s}{2} \bar{N} \tan \phi
\end{gathered}
$$

and by (61)
\therefore writing $\sin ^{2} a=1$ we have

$$
\begin{align*}
\frac{y}{N} & =\frac{x}{N} \cdot \frac{s}{2 N} \tan \phi-\frac{x}{2 N^{2}} \tan \phi \\
& =\frac{x(s-x)}{2 N^{2}} \tan \phi \\
\text { or } \quad y & =\frac{x(s-x)}{2 N} \tan \phi .
\end{align*}
$$

6. Trigonometric Levelling.

A and B are two stations whose difference of elevation is to be determined; A^{\prime} and B^{\prime} are the apparent positions of A and B, affected by refraction. The altitude h of B, observed at A, and the distance s, are assumed to be known.

Denoting the height $B C^{\prime}$ of B above A by H, we have

$$
H=A C^{\prime} \frac{\sin B A C^{\prime}}{\sin A B C^{\prime}}
$$

But

$$
\begin{aligned}
B A C^{\prime} & =h-r+C A C^{\prime}=h-r+\frac{\sigma}{2}, \\
& =h-m \sigma+\frac{\sigma}{2}, \\
& =h+\left(\frac{1}{2}-m\right) \sigma ; \\
A B C^{\prime} & =90^{\circ}-h+r-\sigma \\
& =90^{\circ}-h+m \sigma-\sigma \\
& =90^{\circ}-\{h+(1-m) \sigma\} .
\end{aligned}
$$

and

$$
\begin{equation*}
\therefore \quad \quad I=s \frac{\sin \left\{\frac{h+\left(\frac{1}{2}-m\right) \sigma}{\cos \{ } \frac{h+(1-m) \sigma\}}{} .\right.}{} \tag{65}
\end{equation*}
$$

See Supp. to Manual of Dominion Land Surveys.
For the numerical value of m see p. 76.
In eq. (65) it is assumed that the distance s is equal to the chord $A C^{\prime}$. If A and 3 are stations of a trigonometric survey and s is obtained by the solution of a triangle, then it is the distance $A B$ reduced to sea level. The correction to s for elevation is

$$
s \begin{gathered}
H_{1} \\
\rho
\end{gathered},
$$

$H_{\mathbf{1}}$ being the height of A above sea level. Also the correction to reduce from the are to the chord is

$$
s_{4}^{\prime}\left(\frac{s}{\rho}\right)^{2}
$$

so that the length of the chord $A C^{\prime}$ is

$$
s\left(1+\frac{I_{1}}{\rho}\right)\left\{1-\frac{1}{24}\left(\frac{s}{\rho}\right)^{2}\right\}
$$

the second correction only becoming appreciable for considerable distances.

Reciprocal zenith distances-

If the zenith distances z and z^{\prime} be observed simultaneousl y at the two stations the effect u_{t}^{e} refraction is eliminated, if it can be assumed to affect the two zenith distances equally. Thus, returning to the above equation for $I I$, we have

$$
\begin{aligned}
& B A C^{\prime}=90^{\circ}-z-r+\frac{\sigma}{2} \\
& A B C^{\prime}=180^{\circ}-z^{\prime}-r
\end{aligned}
$$

But we have also

$$
\begin{gathered}
A^{\prime} A B=z+r=180^{\circ}-\left(z^{\prime}+r\right)+\sigma \\
r=\frac{180^{\circ}-z-z^{\prime}+\sigma}{2}
\end{gathered}
$$

so that
which therefore becomes known. Substituting this we have

$$
\begin{aligned}
& B A C^{\prime}=\frac{z^{\prime}-z}{2} \\
& A B C^{\prime}=90^{\prime}-\frac{z^{\prime}-z+\sigma}{2}
\end{aligned}
$$

\therefore substituting in the first above expression for $I I$ gives

$$
\begin{equation*}
I I=s \frac{\sin \frac{1}{2}\left(z^{\prime}-z\right)}{\cos \frac{1}{2}\left(z^{\prime}-z+\sigma\right)} \tag{66}
\end{equation*}
$$

s having been corrected for elevation, and if necessary for curvature.

