CIHM
 Microfiche Series
 (Monographs)

ICMH
Collection de microfiches (monographies)

Technical and Bibliographic Notes / Notes techniques et bibliographiques

The Institute has attempted to obtain the best original copy available for filming. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of filming are checked below.

Coloured covers /
Couverture de couleur

Covers damaged /
 Couverture endommagée

Covers restored and/or laminated /Couverture restaurée et/ou pelliculée
Cover title missing / Le titre de couverture manqueColoured maps / Cartes géographiques en couleurColoured ink (i.e. other than blue or black) /
Encre de couleur (i.e. autre que bleue ou noire)

Coloured plates and/or illustrations /
Planches et/ou illustrations en couleur
Bound with other material /
Relié avec d'autres documents

Only edition available /
Seule édition disponible
Tight binding may cause shadows or distortion along interior margin / La reliure serrée peut causer de l'ombre ou de la distorsion le long de la marge intérieure.

Blank leaves added during restorations may appear within the text. Whenever possible, these have been omitted from filming / II se peut que certaines pages blanches ajoutées lors d'une restauration apparaissent dans le texte, mais, lorsque cela était possible, ces pages n'ont pas é éé filmées.

Additional comments /
Commentaires supplémentaires:

L'Institut a microfilmé le meilleur exemplaire qu'il lui a été possible de se procurer. Les détails de cet exemplaire qui sont peut-être uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de filmage sont indiqués ci-dessous.

Coloured pages / Pages de couleur

Pages damaged / Pages endommagées

Pages restored and/or laminated /
Pages restaurées et/ou pelliculées
Pages discoloured, stained or foxed /
Pages décolorées, tachetées ou piquées
Pages detached / Pages détachées
Showthrough / TransparenceQuality of print varies /
Qualité inégale de "'mpression
Includes supplementary material /
Comprend du matériel supplémentaire
Pages wholly or partially obscured by errata slips, tissues, etc., have been refilmed to ensure the best possible image / Les pages totalement ou partiellement obscurcies par un feuillet d'errata, une pelure, etc., ont été filmées à nouveau de façon à obtenir la meilleure image possible.

Opposing pages with varying colouration or discolourations are filmed twice to ensure the best possible image / Les pages s'opposant ayant des colorations variables ou des décolorations sont filmées deux fois afin d'obtenir la meilleure image possible.

This item is fimed at the reduction ratio checked beiow /
Ce document ast fitmé au taux de réduction indiqué ct-dessous.

The copy filmed here hes been reproduced thenks to the generosity of:

National Library of Cancida

The imeges appeering here are the best quality possible considering the condition and legibility of the originel copy and in keeping with the filming contrect specificetions.

Original copies in printed peper covers are fllmed beginning with the front cover end ending on the last pege with a printed or illustreted impression, or the back cover when eppropriote. All other original copies are filmed beginning on the first page with a printed or illustroted impression, end ending on the last page with e printed or illustrated impression.

The last recorded frame on each microflche shall contain the symbol \rightarrow (meening "CONTINUED"I, or the symbal ∇ (meaning "END"). whichever epplies.

Maps, plotes, charts. etc., mey be filmed et different reduction ratios. Those too large to be entirely included in one exposure are filmed beginning in the upper left hand corner, left to right and top to bottom, as many frames as required. The following diagrems illustrate the method:

L'examplaire filmé fut reproduit grâce à la gendrosité de:

Bibliothèque nationale du Canada

Les images suivantes ont óté reproduites avec le plus grand soin, compte tenu de la condition of de la netterd de l'axemplsire filmb. at an conformith avec les conditions du contrat de filmage.

Les exemplaires originaux dont le couvarture en papiar est imprimes sunt filmds en commencant par le premier plet et en terminant zoit par la dernitre pege qui comporte une empreinte d'impression ou d'illustration, soit par le sec and plat, selon lo ces. Tous les autres exemplairas originaux sont filmés en commençant par la premidre page qui comporte une empreinte d'impression ou d'illustration ot en terminant par le dernidre pege qui comporte une talle empreinte.

Un des symboles suivants apparait:a sur la dernióre image de cheque microfiche. selon le cas: le symbole \rightarrow signifie "A SUIVRE". le symbole ∇ signifie "FIN".

Les certes, planches, tableaux, etc., peuvent ètre filmes a des toux de reduction differents. Lorsque le document est trop grand pour ètre reproduit en un seul cliché, il est filmé à partir de l'angle supórieur gauche. de gauche à droite. et de haut en bas, en prenant le nombre d'imeges nécessaire. Les diagrammes suivants illustrent la mothode.

MICROCOPY RESOIUTION TEST CHARI
(ANSI and ISO TEST CHART No 2)

Mannda
 国epartment of Inimes

Hon. LOUIS COUERRE, Minister;
R. W. BROCK, Deputy Minivier.

Mealogical Suruen

Museum Bulletin No. 5

Percy F. Raymond

Canada

Geological Survey Museum Bulletin No. 5.

GEOLOGICAL SERIES, No. 21.

A Beatricea-like Organism from the Middle Ordovician.

By Percy E. Raymond.

Species of Beatricea have long been known from the Richmond formations of Anticosti, the Manitoulin islands, Manitoba, and Kentucky, but until very recently it was not suspected that this type of organism occurred in any older strata. In a paper by George W. Stose on the "Cambro-Ordovician limestones of the Appalachian Valley in Southern Pennsylvania," ${ }^{1}$ Ulrich has listed Beatricea n. sp. as being very common in the Lowville. In later papers the name Beatricea gracilis was given to this species by Ulrich, bu: so far as 1 know, no description has yet been published. Through the kindness of Dr. Bassler, of the United States National Museum, I have been able to see specimens purporting to be Beatricea gracilis, and from them it would appear that the form so named is much more slender than the species about to be described. The material which I have seen showed no internal structure, and was not suitable for sectioning, and it is, therefore, impossible to make any real comparison with Beatricea gracilis at the present time.

The specimens about to be described were found just below the range of Tetradium cellulosum and Bathyurus extans, and, therefore, just below the base of the Lowville. The writer's first acquaintance with these fossils was in the autumn of 1910, when he found a bed containing great numbers of them on the hill north of Aymer, Que., in the highest layer of the formation

[^0]which underlies the Lowville. Although abundant, all the specimens were so badly preserved that they were at first thought to be "sea-weeds" or other indeterninable objects, until finally a single weathered specimen containing septa (Plate III, figure 2) was obtained. Being then unaware of Ulrich's finds in Pennsylvania, the writer believed he had been the first to extend the geological range of these Beatricea-like forms, but soon came upon Ulrich's list in Stose's paper. Further in. vestigation revealed the presence of these fossils both in and below the Lowville at Mechanicsville, on the Ontario side of the river near Ottawa. These occurrences, listed as "Bealricea sp." were noted in a paper in the Ottawa Naturaiist for February, $1911 .{ }^{1}$

In June, 1911, the writer had an opportunity of visiting northern New York, and there, at the top of the Upper Pamelia and just below the Lowville, found the layer containing the saine organisms at a number of places south of Clayton. About the same cime, Mr. W. A. Johnston, of the Geological Survey, to whom I had shown $m y$ spec:mens, sent in from the field specimens much better than any I had found. They were obtained, as usual, from strata just below those cuntaining Tetradium cellulosum ars 1 Bathyuras extans, and the locality is near a wood road along the northern fence of lot 25 , concession VI, of the town of Carden, east of Lake Simcoe, Ontario, about 150 miles west of the localities near Ottawa. This locality was visited again later in the year by Mr. Johnston and the writer, in 1912 by Mr. E. J. Whittaker, and a second time by the writor in !913, so that a considerable amount of material has been aci. sulated. A list of the fossils from this locality so far determined was published by Mr. Johnston in the Summary Report of the Director of the Geological Survey of Canada for 1911 (1912), page 255. The most striking fossils are a remarkable Teiradium (T. halysitoides Raymond), Onchometopus simplex Raymond and Narraway, and Bathyurus johnstoni Raymond. On the basis of these species, which have been found by the writer both at Ottawa and in northern New York at this same horizon just

[^1]below the Lowville, these beds are correlated with the upper part of the Pamelia formation of New York.

At the locality in Carden, the Beatricer-like fossils are foumsl on the weathered surfaces of the Hat-lying strata, and have the form of long, narrow chambered toles. They have the seneral appearance of phe loposis, but are essily distinguishowl from them because they do :at taper appreciably, though wome specimens are 18 inches long, the chambers are of irregular depth, there is no siphuncle, and while usnally nearly straight, many of the specimens are irregularly or abruptly curved. Most of the specimens lie parallel to the bedding planes, and are usually incomplete; but some are found which were buried in a vertital position and on cutting and polishing these, some are found to preserve a good deal of their original structure.

It will be remembered that Beatricea is one of those unfortunate genera whose systematic position has not been sutisfactorily determined. Originally described by Billings, these fossils have been called plants, fotaminifera, rugose corals and cephalopueds, and at last have found a resting place as a fami! ${ }^{\text {e among the }}$ etromatoporoids, this position having been fixed for them by Nicholson. ${ }^{2}$

dESCRIPTION OF TIIE SPECIMENS.

This fossil has a long flexuose, cylindrical form of unknown length, only the uppe: termination having been seen. liragmerts from 12 to 18 inches long are not uncominon. The diameter appears to be approximately uniform throughout the length of the fragments observed. Most of the specimens are fr 10 to 20 mm . in diameter, but as will be hereafter shown, this .not show the true thickness of the fossil, as in nearly all specimens a part has failed of preservation. No well preserved outer surface has been: seen, but from the evidence of sections of embedded specimens, it would appear th t the surface is covered with small papillae. Sections perpendicular to the long axis show that the fossil is made up of concentric zones of

[^2]very different structure. The inner zo, seems to consist of a tube with al definite wall, this tube being divided be deeply concavo-convex sac-like transverse partitions which have the appearance of the tahulae of cirals. These tah ulae seem to be convex upwarrl, or at least they arcupy that position in sperintens found cmbededed in an upright prestion in the strata. In sections, the centre of this tule is opern and fillel with transparent calcite. or often empty, while around this spate, close to the wall of the tule, is an area with numerous incomplete tabulae or cystose diaphragms (Ilate II, figures 1, 2; Plate IV, figures 2, 4). This central tule, therefore, corresponds to the whole section of B. nodulosa Billings, as shown by Nicholson in figures 2 and 3 of Plate VIII, of the publications cited above, but in B. nodulosa there is evidently much more of the cystose tissue than in the present speries. This axial tulse is nearly central in position in most of our sperimens and is of variable diameter in proportion to the total diameter of the fossil. In one gorel section it is 3 mm . in cliameter, and the total diameter is 14 mm . In another it is .5 mm . of at total diameter of 24 mm . In other formis it secms to sccupy a much larger proportion, as in Plate I, figure 2.

Outside the axial tube there is a zone which in the best specimens is filled with clear calcite or is hollow, while in others it is filled with a very fine-grained brownish lime-mud containing more or less elear calcite. None of the sections show any trace of structure in this zone, and there is notl.ing to indicate that it ever contained iny contirious skeletal structures, though it is very possible that at intervals was crossed by some sort of supporting processes (Ser Ilate 1I, figures 1 ard 2: Plate IV. figures 2, et al).

The outer zone consists of a number of concentric sheaths traversed by radial canals. This structure is well shown in the best preserved of the specimens (Plate II, figures 1, 2).

The radial structure is well shown in several figures, particularly in Plates II and III. The appearance produced is that of the radi ' .ota of corals. That these are not septa, but radial . ubes ...th intervening pillars is, however, shown both by sections and by weathered specimens. For instance, figures
st of ceply the to be hens iuns, cite, the tose This 1 of d 3 losa the ion roion In
her
in

1, Pate III, and 1, Phate IN: in which the actions ate aterent exactly merpendicular to the axis whw woby in te.ul of atrapht lines, and atangent 'section clearly shows the truen ife of the structure (1llate 111, bigures 4,5). In the weathered specimens the outer shell is frecfently presersed. and the filling of the thles weatherel away, so as to reprofle almost exately the original structure.

In only a single case have 1 found a specimen showing on end, and this specimen shows only one end (Ilate 1, fienre 2). The specimen as now pre wed is about 210 mm. lones, din 1 assuming that the natural position of the diaphramms is really convex upward, it showa the upper end of the specimen. The specimen enlarges into a surt of lull, at the top, both the iuncr tule and th:- ter sheath being enlarged. The yercimen was originally weatinered away about one-half the the lower end and apparently smewhat more than half at the bulbons ent. lizure 2, Plate 1, shows the specimen as it wats found. This specimen, like the others, slows the inner cube to be eutirely distinct from the outer sheaths, and where the specimen is weathered, a zone 2 mm . wide has weathered away, so that there is a narrow and deep trench on each side of the inter tube. The whole diameter of the specimen at the smaller end is 2.3 nm . and the tube is 13 mm . in diameter at this point. At the widest part of the bull the whole specimen is 35 mm . across, and the bull, of the tube itself is 21 mm . wide. The specir . se ms , the bulb, to be cut down below the median pla so that thern dimensions probably do not express thr full si. f the bulbous end. The outer sheath seems to consist of 4 or 5 thin layers and is most decidedly Stromatoporal in appearance, wen suggesting that it is an in-".station n_{1}, n the inner tube. The sheath seens to have entire lo rmeloped the upper end. and sends out a curved portion of the shecath whizh extends some 20 mm . beyond the apex of the bulb. The ;reaence of this sheith over the upper end of the organism effectually disposes of the idea that the animal could have been a coral.

The condition of preservation of the inner tut 3 of this specimen is of some interest in connexion with the question of the possible nature of the organism. In the untapering part
of thecylinder, the tabulacordiaphragms are mostly well preserved and apparently in their natural positions. In the enlarged, bulloous part, all of the diaplragms are broken and none extends across the full width of the bulb. This portion of the tube is filled with the same limestone in which the fossil is embedded, whereas, in the cylindrical part lower down, where the diaplragms are unbroken, the chambers are, generally, filled with crystalline calcite. Beginning at the bulbous end the inner tube shows, first, 4 mm . with cystuse tissue, such as is seen around the inner part of the tube in some sections. Then 39 mm . in which all diaphragms are broken and the filling is like the matrix. Next, 20 nm . of clear calcite filling. Next, three unusually deepchambers (18 mm . in all) filled with limestone matrix. Then follow 33 mm . in which the diaphragms are rather close together (twelve chambers in the interval), and the filling material is all calcite. Next a single deep chamber (6 mm .), filled with matrix, then three (6 mm . in all) with calcite, one partially empty. Next two (9 mm .), empty except for a lining of calcite crystals. Then three (13 mm .), with clearcalcite. Thena deepone partially filled with clearcalcite and partially with matrix. The filling with limy r ud seems to have taken place after the death of the organism and after it had fallen from its erect to a horizontal position. The chambers with unfractured walls and diaphragms were evidently cut off from the supply of mud, and the filling consists of such material as could be filtered in in solutions. The mud-filled parts must, on the other hand, have had openings by which rather coarse material could enter, and that these openings were accidental and not natural is indicated by the fact that the diaphragms or side walls are seen to be fractured in most cases. The supply of mud does not, however, seem to have entered directly from the outside to the chambers which it now fills, but has been conveyed along the "empty zone" surrounding the tube. This zone is filled with clay, and served to feed mud into the inner tube through any fractures which might be present. In most cases this zone is filled with clear calcite (as in figure 1, Plate III, and figures 1 and 2, Plate IV, for instance), but in such cases there is often another and outer one mud-filled (figure 2, Plate IV). The explanation of these "empty" zones is
eserved oullous across ed with hereas, ms are stalline shows, e inner ich all Next, mbers ow 33 welve alcite. three mm .), nm.), alcite seems after ham$y \mathrm{cut}$ nateparts ther acci-diaThe ctly seen ube.

```
into
```

ent.
ure
but
lled
s is
not obvious. In no section so far cut does this zone show anything more than the vaguest trace of structure, and the only explanation which suggests itself to the writer is that the inner tule may have been entirely surrounded by a sheath of organic matter which depended for support on the calcareous walls on either side of it. The presence of this zone seems to militate against the idea of the outer sheaths being a separate organism parasitic upon the interior tube-like portion, for if the tule were entirely coated with organic matter, it would not be apt to attract a parasite which secreted a calcareons skeleton.

Judging from the natrie of the upper end of the specimen just described, it would appear that the inner tube of this structure was not the habitation of an animal, otherwise the top would not have been enclosed. The one conception which appeals to the writer is to think of this as a colonial organism built up by mamerous small polyps which secreted a skeleton at the tase, the skeleton being, therefore, internal. The inner tube was a structure deposited as an axial support giving rigidity to the colony, and the zoids were on the exterior of the mass, and secreted the successive sheaths as they grew outward. The raclial pores may have been the lodging places of the separate zoids, all of the pores being of the same size, and, therefore. no differentiation into gastropores and dactylopores as in Millepora.

This way of thinking of the organism also serves to explain the empty rings which are otherwise so puzzling. Among the Hyd omedusae we have the order Tubulariae, in which a chitinous periderm is secreted. It is quite possible that the zoids of this early Palaozoic organism secreted a basal layer of calcareous matter and then surrounded themselves at the sides with chitinous material. The next generation founded their calcareous basement upon the chitinous layer of their progenitors, thus producing alternating bands of calcarcous and chitinous material. After death, the calcareous material being much more resistant than the chitinous is preserved, while the more easily decomposed material is replaced by an infiltration of mud or crystalline calcite.

Owing to the slight development of the cystose tissue and
the great development of the sheath zone in the form unde consideration, it does not seem proper to refer it to Beatricea and the following new generic naine is, therefore, proposed.

Genus CRYPTOPHRAGMUS nov.

(Kryptos, concealed phragmos, partition.)
Colonial organisms, presumably Hydromedusae, of elongate upright, unbranched form, small diameter, and slight taper Skeleton consisting of internal camerate tube with distinct wall, the tube crossed by irregularly spaced partitions which are convex upward, and further strengthened by a deposit of incomplete partitions (cystose material) on the inner side of the wall of the tube. The inner tube enveloped by con entric, often slightly separated sheaths of calcareous material, the sheaths traversed by numerous circular openings at right angles to the long axis of the colony. The sheaths extend over the upper end of the inner tube, which may be enlarged and bulblike. Type, Cryplophragmus antiqualus sp, nov.

Cryptophragmus antiquatus sp. nov. Plates I-IV.

Since I have not differentiated the rather numerous varieties that are found in the locality at Carden, the generic description will serve also for the species. Should Ulrich's Beatricea gracilis prove to belong to this genus, it may be necessary to enter intc the question of specific characters. At present, Beatricea gracilis has the status of nomen nudum. It may be possible to differentiate species on the basis of the relation of the diameter of the inner tube or support to the total diameter of the colony, in which case the specimens figured on Plate I, figure 2, would not belong to the same species as those shown in figures 3 and 4, Plate I, and 1 and 2, Plate II. In view of this contingency, I have designated the specimens with the large tubes as the types of the species C. antiquatus, and, in particular, would designate the most complete specimen Plate I, figure 1, as the holotype of the speries.

Some of the specimens have the axial tube 15 mm . in diameter
rm under Beatricea, sed.
elongate, It taper. distinct is which deposit side of 1 entric, ial, the t angles ver the d bulb-
and one such has the clear band 2.5 mm . wide. The presence of this structureless "clear zone" explains the state of preservation of most of the specimens found on the weathered surfaces of the rocks. It being either hollow or filled with a soft substance, the outer sheath zone and the axial tube were easily separated, and in the specimens usually found such separation had occurred before the specimens were buried in the rocks.

Summary. Transverse sections of Crytophragmus antiqualus show that it is composed of three distinctly separated and well marked concentric layers. The inner axial tube has a large cavity, divided into chambers by bulging partitions, and around this cavity is a narrow band of cystose tissue, without radial elements of any kind. The axial tube has a well-defined outer wall, and is surrounded by the second zone which seems to be structureless and is usually marked by a band of clear calcite. The outer zone is composed of concentric sheaths traversed by numerous radial canals.

Comparison with Beatricea nodulosa and B. undualata.
The skeleton of this species has a much smaller habit than either of Billing's species and the surface is evidently much more nearly smooth. As to the internal structure, as revealed by thin transverse sections, there seem to be rather striking differences. A distinct differentiation into three zones exactly comparable to those described above has not been noted by students of the above species. As noted above, the sections given by Nicholson in figures 2 and 3 of Plate VIII of his article do not appear to represent a section of a complete skeleton, as Nicholson supposed, but are comparable to the axial tube of Cryplophragmus antiquatus. If this latter comparison is correct, then the central tabulate zone of B. nodulosa is very small as compared with tha in the axial tube of B. antiquata, and the surrounding cystose zone very thick. In C. antiquatus there are no indications of radial elements in the cystose zone, nor are there anvwhere the granular deposits on the walls, such as both Nicholson and Parks have described. As seen in this section the walls are perfectly sharp, and though each wall has a cloudy border, this border, as seen under a high power, seems to be due to alter-
ation products of the wall distributed along minute crack the calcite which fills the cells.

While descriptions of Beatricea nodulosa and B. undulato not specifically describe the three zones, yet an inspection of macroscopic character of specimens from Anticosti shows both the outer or "sheath" zone and the axial tube are pres in well preserved specimens, and certain of them indicate presence of a "clear" zone as well. Parks, in his "Ordovic Stromatoporoids," ${ }^{1}$ thus describes a section of B. undula which, unfortunately, he does not figure: "This specimen is mm . thick and presents in cross section a series of concent layers of very different aspect. The inner tube has a radius of on 3 mm . This is surrounded by a ring, 20 mm . thick, of ordina vesicular tissue with the granular element well developed, b with scarcely a trace of radial pillars. Surrounding this rit is an outer zone, 15 mm . thick, which is fairly well demarke by a sharp line of separation. This outer layer is strikingl different from the middle annulus, being composed of continuou laminae and well marked radial pillars."

Parks does not state that his inner tube, only 3 mm . radius, has a d...tinct wall, and as he copies Nicholson's figures where such a wall is absent, we are inclined to think that bot his inner tube and the 20 mm . thick band of vesicular tissu around it are to be correlated with the "inner tube" of C. anti quatus. The outer band is probably the same as our "sheath" zone, and there is apparently no "clear" zone present.

Some of Nicholson's sections seem to have been cut from the "sheath" zone of B. nodulosa, for he states in a footnote that in one section he noticed perpendicular calcareous septa crossing the vesicles. The relation of the present form to Beatricea is now being studied by the writer, and will probably be set forth in a later paper.

The photographs which illustrate this article were, with the exception of figure 2, Plate I, made at the Geological Survey of Canada and all the types are in the collections of this Survey. Except where otherwise noted, the specimens are from the locality in Carden.

[^3]undulata do ction of the shows that are present ndicate the 'Ordovician undulata, cimen is 75 concentric lius of only ordinary oped, but this ring demarked strikingly ontinuous 3 mm . in 's figures, hat both lar tissue C. anti"sheath"
cut from footnote is septa form to robably
e, with urvey of Survey. om the

I:xplanation uf l'ate I.
 (ryptophragmus antiguatus Raymiond.

Figure 1. Fragment of a specimen from which
have leen removed by weathering only a part of the outer sheath is broken the transverse partitions In places where the specime in a reversed position, up side down. thay be seen. The figure 2. A photograph of the only specimen so down. About natural size. The bulb-like enlargeniment of far found preserving a termination curved extension of the outer sheath upper end is shown, also the Notice the calcite-filled chambers above. (Indicated by arrcu) those filled with lime-nud (C). Six-), the empty ones (B), in 3. Jhotugraph of polished longitudinal section showitural size. convex partitions, the "clear zone" near showing inner tube with outside. Natural size. 4. The upper, naturally weathe Notice the differcntial weathering, and specimen, enlarged. radial tuhes of the sheaths.

Iter sheaths e specime: he figure is size. rmination. n, also the by arrcw). (B), and tube with e sheaths

Cryphuphragmus anligmatus Kaynund
Figure- 1 atil 2. Transwerme and longitulinal thin at Larkerl 4 diameters. Vinte the inumer tute whit in al - werimeth.
 and lime-fileed zones, and the radial tubers fof of $^{-1}$ preserve of this same sperimen, wer Plate lll. fivures. For wher sution

 pilrijtisha - 1rescrved

Enilanaton of Plate Ill.

Cryptophragmus antiqualus Raymond.
Figure 1. I someshat diagonal transwerse thin section, she- $\cdot \checkmark$ the cent and the radial tubes of the outer cross-section o se partitio
and wall and the sheath zone is an aren of tone. ween the ti are coated with a brown substance, calcite in which the cryst graph, an appearance of structure in the "clear zone," the phot 2. A surameters.
ature of some specimens. Stawa, showing the somewhat abrupt cur north of Ayimer, Que. Natural size. top of the Pamelia, 2 mit 3. Transverse section , Que. Natural size. the dark circleat the centre being of one of the convex partition of the structures seen in this section top. Just what the meanin mined. $\$ 3$. angen:ial secti. excerlingly numerous tubecimen shown in Plate II, showing th

* 5. Section similar to figure tubes in the sheath. $\mathbf{X} 3$, strictly tangential. At the centre it cuts into one of the structure
less zones. $\$ 3$.
g the central partitions, ech the tube the crystals ite photoEnlarged
brupt curvelia, 2 miles
partitions, he meaning been deter-
howing the n, but not struct ure-

1

2

Cryptophragmus entiquatus Raynomad.
Figure 1. A transwerse section, net at right angles to thre axis. X 3
 with demmte uall, " "cleirr zone," then al pore-pierert sheath thmere-mud filled storturetess zone, and finally atm outer si -perimen is aitl in contact withe of the outer surface wher devaltons are at the antact with the matrix, and note that watls. Nso that the cuberes of the tuhes, and not at the mud. X 3 .

is esperially well in which the vesicular wall of the inner is especiatly well preserverl. X 3.
being entirely. dest troyert. Such specimens aresert, the she fomal ? nilural size. Such specimens are very fropue
the inner tule d shath zone, duter sheath face where the note that the ot at the tube and not with
he inner tube , the sheaths ry frequents.

 33286089346312

 | 1..1 1

lis 1 11. 1 .atil.

1.5 He migin of :hatio.\rightarrow butarla.

[^0]: 1 Jumrnal of fif+ulugy, I 1 l. 16, 1908, p. 714.

[^1]: ${ }^{1}$ Prelininary Notes on the "Chazy" Formation in the vicinity of Ottawa. Ottawa Naturalist, vol. 24, p. 193, 1911.

[^2]: ${ }^{1}$ (ieul. Sury. of Canarda, Rept. of Prog. for 1356, 1857, p. 343.
 ${ }^{2}$ Mono. aph British Stromatonoroils, Palazontographical Society, London, 1886, . $86-89$, fi. 8, figs. 1-8.

[^3]: ${ }^{1}$ Univ. of Toronto Studies, Geological Series, No. 7, p. 44, 1910.

