IMAGE EVALUATION TEST TARGET (MT-3)

Photographic
Sciences
Corporation

CIHM/ICMH Microfiche Series.

> CIHM/ICMH Collection de microfiches.

The Institute has attempted to obtain the best original copy available for filming. Features of this copy which may be bibliographically unique. which may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below.Coloured covers/
Couverture de couleurCovers damagad/
Couvertire endommagéeCovers restored and/or laminated/
Couverture restaurée et/ou pelliculér
Cover title missing/
Le titre de couverture manque
Coloured maps/
Cartes géographiques en couleur

Coloured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bleue ou noire)
Coloured plates and/or illustrations/
Planches ot/ou illustrations en couleur
Bound with othar material/
Relié avec d'autres documentsTight binding may cause shadows or distortion along interior margin/
Lare liure serrèe peut causer de l'ombre ou de la distorsion le long de la marge intérieure

Blank leaves added during restoration may appear within the text. Whenever possible, these have been omitted from filming/
Il se peut que certaines pages blanches ajoutees lors d'une restauration apparaissent dans le texte. mais, lorsque cela était possible, ces pages n'ont pas été filmées.

L'Institut a microfilmé le meilleur exemplaire qu'il lui a été possible de se procurer. Les dètails de cet exemplaire qui sont peut-ètre uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de filmage sont indiqués ci-dessous.

Coloured pages/
Pages de couleurPages damaged/
Pages endommagées
Pages restored and/or laminated/
Pages restaurées et/ou pelliculées
Pages discoloured, stained or foxed/
Pages décolorées, tachetées ou piquèes
Pages detached/
Pages détachées
Showthrough/
Transparence
Quality of print varies/
Qualité inégale de l'impression
Includes supplomentary material/
Comprend du ma:ériel supplémentaire
Only edition available/
Seule édition disponible
Pages wholly or partially obscured by errata slips, tissues, etc., have been refilmed to ensure the best possible image/
Les pages totalement ou partiellement obscurcies par un feuillet d'errata. une pelure. etc., ent été filmées à nouveau de fac̣on à obtenir la meilleure image possible.

This item is filmed at the reduction ratio checked below/
Ce document est filmé au taux de réduction indiqué ci-dessous.

The copy filmed here has been reproduced thanks to the generosity of:

> Library of tine Public Archives of Canada

The images appearing here are the best quallty possible considering the condition and leglbility of the originai copy and in kueping with the filming contract specifications.

Original copies in printed paper covers are filmed beginning with the front cover and ending on the last page with a printed or iiiustrated impression, or the back cover when approprlate. Ail other uriginal copies are filmed beginning on the first page with a printed or iilustrated Impression, and ending on the last page with a printed or illustrated impression.

The last recorded frame on each microfiche shall contain the symbol \rightarrow (meaning "CONTINUED"), or the symbol $\boldsymbol{\nabla}$ (meaning "END"), whichever applies.

Maps, plates, charts, etc., may be filmed at different reduction ratios. Those too iarge to be entizely included in one exposure are filmed beginning in the upper ieft hand corner, faft to right and top to bottom, as many frames as required. The foliowing diagrams iilustrate the method:

L'exemplaire fiimé fut reproduit grâce ê la générosité de:

La bibliothèque des Archives publiques du Canada

Les images suiyantes ont été reproduites avec le plus grand soin, compte tenu de la condition et de la netteté de l'exemplaire filmé, et en conformité avec les conditions du contrat de filmage.

Les exemplaires originaux dont la couverture en papier est imprimée sont filmés en commençant par le premier plat et en terminant soit par la dernière page qui comporte une empreinte d'impression ou d'illustration, soit par le second plat, selon le cas. Tous les autres exemplaires originaux sont filmés en commençant par la première page qui comporte une empreinte d'impression ou d'illustration et en terminant par la dernière page qui comporte une telie empreinte.

Un des symboles suivants apparaitra sur la derniere Image de chaque microficho, selon le cas: le symboie \rightarrow signifie "A SUIVRE", le symbole ∇ signifie "FIN".

Les cartes, planches, tableaux, etc., peuvent être filmés à des taux de réduction différents. Lorsque le document est trop grand pour être reproduit en un seul cliché, Il est filmé à partir de l'engie supérieur gauche, de gauche à droite, et de haut en bas, en prenant le nombre d'images nécessaire. Les diagrammes suivants illustrent la méthode.

ADVANCE PROOF-(suriject to revisinn).

This prowf is sent to you for disenssion only, and on the express understanding that it is mot to he nsel for any other purpose what. ever.-(Nee sec. 17 of the Constitution).

INCORPORATED 1887.

TRANSACTIONS.

N.B.-'His suciety, as a boty, fues not hold itself responsibte for the facts and opinions stated in any of its publications.

RALLWAY TUUROUTS.

(To lee read Thursday, 1st Fehruary, 1894.)
By II. K. Wickstefid, M. Cam.Soe.C.E.
Having occasion to lay gut a railway terminal yard unt long ago, and being eromped for room and strel, end having frogs of only 2 ar 3 numbers on hatul, which, ont of respect for the shareholders' pockets, le felt bomel to use up if possible rather than have others made, the w: ter lad quite a lot of figuring and seheming to du, und was struek with the utter inadequicy of the poeket-book tables and formulas.

In the first plaee, all the books with which le is fauiliar take a slide rail stwinging on its heed through an angle of from 45 mimites to 30 as a point, or rather a line of departure, and with this as a tangent and the swinging end as $\mathrm{P}^{\prime} \boldsymbol{6}$, sta't a enrie muning to the frog and proneed to investigate its form and length. This always has secmed to the writer wrong anl elnmsy, not only in theory but in practice. In the first place, the sille-rail is not a rigidl $k_{1, \text {, and }} 10$ matter how well lubricated its bearings, a sted rail 24 to 2 g ft , lomg will spring slightly in being thrown, and instead of forming a tangent to the lead there is an are from the heel to toe and then a sharp elbow in the reverse direction.-(sce plate.)

In the sreond place, t's wheel path, even should it eomtorn with that intended, is out theoretieally or protically the most perfect. A sharp elange in direction, neecssitating an angular movement of the car truck about its renter, then a piece of traight line necessitating a seeond movement in the opposite direction, and lastly a enrve neeessitating a third slight. movement in the -ame direction as the first. Practieally, I lurlieve all these movements are rendered unneesssary by play between rail and flange, and a bodily transverse slidiug on the rail ; but, honwer they take place, here is a comene of inereasoll wear and teat ant resistance.
'Thirdly, the leal requited is momersatily long, which mems inereased yard romin and mores sted ham abohutely wanted; and lastly, and by no mans mimportant, the mathemation formulas are so complex, that to my haowhige no angineer tries to ligure them for himself, but takes what lie ear from the tables and leaves the batance to the forman's eye, it indeal low trombes abont the matter at all begond painting ont the pusition of the heal-bluek. 'I'ake, fire instanere, the following fir the very simplest problem of all - (1) time the frog
 verbatim from 'Tratwime's purket-book:
Frog distance $=2$ (gance-throw) $x^{\text {eotann witch angle } x \text { cotan frog }}$ cotan switch angle + cotan frog
\because (gange-throw)
sin frog angle swith angle:

It will be noticed that the draominalurs of the fractions prechede the use of logarithouic fimetions.

The writer askel one very painstahing and competat ongineer of long experience, whou he finnd we day superintending the laying
down of a donble throw switch with snewhat musual clements, how he ohtained the prositions of froges, ete., be replied that he got them all by seale from : $f^{\text {lot }} 0 \mathrm{~m}$ a large seale-graphically, in fact, which is the way 'rantwine reommonds. Nov, the nuthor is far from beinis opposd tc erraphic methols, and is erpecinlly fond of them in bis own practice ; but in the case of complicated switeh and turnont problems, the ermphie metlod (exeept as a cheek on fimal results when it is invahable) is extremely tedious, and necessitates a largo amount of trial and error work, plenty of paper and table room and lots of time. A man cannot have all thene thinges with him in the fiedd, and more time is waster? in qoing to his aflice perhaps 30 or 10 miles and coming back with the results.
For nbave mentioned rensons, the writer long ago came to the canclusion that the lead of the turnont shonld be circular from the heel of switch to tho point of the frog, the slite rail being part of the circular curve instead of external to it , and being bent around stop spikes driven into the thes to this cirenlar form. So far, so good; and he believes that this is not only his own practice but that of many others. Now to find the frog distance. Iet Λ, fig. 2, be the froy, and a its angle. Prodnce its line to meet the orposite rail al 1 '. then $\mathbf{A P . C}=u$. Let ε represent tho gaire of traok

$$
\mathrm{Al}^{\prime}=\mathrm{g}, \text { cosec } a \text { or } \frac{\mathrm{g}}{\sin a}
$$

but A.P. is the subtangent of the cirenlar are $A B$, and the angle being small the are and chord are for practical purposes effal to one another, and also to the smm of the mbtimgents $=2 \Lambda P=$ frog dist.
Frog distmnce, $\quad ト=\frac{2 g}{s \mathrm{~m} ~} 4$ (1)
Now the number of the frog is the reciprocal of the chord of the angle, or in small angles such as generally oceur on railways prac. tically of its sino. Thus a No. 10 frog has a chord or sine of ${ }^{1}{ }^{1}$.

Hence approximately the frog distanee

$$
\mathrm{F}=2 \mathrm{~N}_{5} \cdot(2)
$$

g being taken as 4.7 feet a No. 10 fiog will then have a frog distance of 94 feet. We shall see further on how well this agrees with another formula obtained in a different wry.
F in this and subsequent formulas and equations means the listance of frog point from the heel of the switch instead of from the toe, as in the poeket-book tables we have quoted.
This last distance we shall refer to as the lead, and ilenote by the letter L. The length of slide rail we will coll $\stackrel{\mathrm{s}}{ }$.
g is the ginge usmally 4.7 ft .
I is the 'row of switeh nsually 5 inches, which for simplicity and with ang? senracy we meny eonsiler at $\cdot 1$ ft.
Now to obtain the length of dide rail S. Take the diagram in Fig. 3, a simple turnout with a l in 10 frog. For such a smallare as 94 ft , wo may eonsider the earve as being a parabola and that the
 distances from the heel of swith or peint of mevature.

Now at the toe we have an offise hy hypothousis of ' I , or . 1 ft . It the frog we have the gaure or 4.6 ft

$$
\begin{aligned}
& \text { Hence } \begin{array}{l}
\frac{\mathrm{S}^{2}}{\mathrm{~F}^{2}}=\frac{\mathrm{J}}{\mathrm{H}} \\
\mathrm{~S}^{3}=\mathrm{F}^{2}\left(\frac{\mathrm{~T}}{\mathrm{~g}}\right) \\
\text { and } \mathrm{S}=\mathrm{F} \frac{\mathrm{~J}}{\mathrm{H}}
\end{array} \text { (3)}
\end{aligned}
$$

For all ordinary railway cases 'T and dire constints

$$
\text { and } \sqrt{\frac{\mathrm{H}}{\mathrm{r}}}=\underline{2}
$$

Hence $\quad \mathrm{S}=.29 \mathrm{~F}$ (4)
or in Fry. $3 \boldsymbol{H}=29 \times 94=27.3$ fent.

$$
\begin{aligned}
& \mathrm{F}_{1}=66.6 \\
& \mathrm{~L}_{1}=40_{0} \text { (nearly) }
\end{aligned}
$$

This last problem can of course be readily solved by a drawing, but not withuut considerable construction work and tabour.

3

These threo equations:

$$
\begin{align*}
& \mathrm{F}=\frac{29}{\sin a}=2 \mathrm{Ng}=\frac{9.4}{\sin 6} \text { or } \mathbf{9 . 4 \mathrm { N }} \\
& r^{\prime}=.29 \mathrm{~F} \\
& \mathrm{~L}=\mathrm{H}=\mathrm{B} \quad \mathrm{H}) \tag{5}
\end{align*}
$$

will solve all tho simpler problems of single throw turnout, but in tho douhle and treblo throw something more is wanted. It was eases like figs, 4 and is which set the writer thinking on the following lines.

Potnming to fig, 3 again, the offset at the end of a 100 feet chord of a 1° enrve is 0.87 ft , and inereases proportionally to the degree of curvature. Hence for a eurve of D° it will be .87 D and as above for any other distanee (within moderate limits) from the point of enrvaturo, it will be for N feet

$$
87 \mathrm{D} \times\left(\frac{\mathrm{n}}{100}\right)^{2}
$$

The total deflection "ut the end of this distance will be $\frac{D_{0}}{100}$
Then for fig. 3 we have $\frac{\mathbf{F}^{2}}{100} \times .87 \mathrm{D}=\mathrm{g} \quad$ (a)

$$
\text { and } \frac{\mathrm{F}}{100} \times \mathrm{D}=n(b)
$$

Simplifying (a) ard (b) $\mathrm{F}^{2} \mathrm{D}=\frac{10000 \mathrm{~g}}{.87}$ and $\mathrm{F}^{\prime} \mathrm{D}=100 a$

$$
F^{2} D=100 a F
$$

$$
\text { therefore } 100 a \mathrm{~F}=\frac{10000 \mathrm{~g}}{8.87}
$$

$$
\mathrm{F}=\frac{100 \mathrm{~g}}{.87}=115 \frac{\mathrm{~g}}{\mathrm{a}} \quad(6)
$$

Substituting in (h) $\begin{gathered}100 \\ .87 \\ \mathrm{~g}\end{gathered} \times \frac{\mathrm{D}}{100}=$ 化 $\mathrm{D}=.87 \frac{a^{2}}{\mathrm{~g}} \quad$ (7).
Substituting for-a and g-the same values as before, 1 in 10 or $5^{\circ} .75$ —and for $\mathrm{g}-4.7 \mathrm{ft}$, we get:

$$
\begin{aligned}
& \mathrm{F}=94 \mathrm{ft} \text { as before } \\
& \mathrm{D}=6^{\circ} .12 \text { or } \mathrm{b}^{\circ} 07^{\prime} \\
& \mathrm{S}=27 \mathrm{ft} \\
& \mathrm{~L}=67 \mathrm{ft}^{\circ}
\end{aligned}
$$

and
Comparing with Trautwine's tahles, we find for a 26 ft . slide rail, a keal of $72.7 \mathrm{or} F=99.7$.

$$
\operatorname{and} \mathrm{R}=877 \text { or } \mathrm{D}=6^{\circ} 30^{\prime}
$$

We have therefore saved $f \mathrm{ft}$. of lead or 12 ft . of' steel, and got a shightly easior eurse on it.

Lower down in the same table we will find that with a 16 ft . slide rail, we will have a lead of 67.8 and a eurvature of $6^{\circ} 15^{\prime}$ practically the same as above, but with :th angle at the heel of $1^{\circ} 30^{\circ}$ which is rather abrupt for high spectis and certainly not as desirable as a continuons curve.

Let us now take up fig. 4, a three throw switeh with two 1 in 10 trogs, on the main line. We wish to determine the longitudinal position of the thirl frog. We have given the cuatate $\mathrm{D}=6^{\circ} .12$ the offict for which for 100 ft or $0=87 \mathrm{D}=\approx: 3 \mathrm{ft}$. (fiom the tables).

Sine: the third fion is evitently in the eentre of the gange, we have the total offset $=\frac{1}{2} g$ or 2.35 . hemee the equation

$$
\begin{gathered}
\left(\frac{F_{1}}{100}\right)^{2} \times 5.3=2.35 \\
F_{1}{ }^{2}=4434 \\
F_{1}=66.6 \\
\mathrm{~L}_{1}=40 \text { (nearly) }
\end{gathered}
$$

This last problem cau ol' course be readily solved by a drawing, but not willuut considerable construetion work aud labour.
 arrangement because notwo frops come opposite one cther, and there is ${ }^{n}$ a point on the main line unpotected by a gnatrd rail as there is in fis. 4.

The frog in nortl, rail, fiy. 4 , being 1 in 8 from erfuation (9), we get :

$$
\mathrm{F}=2 \mathrm{Ng}=2 \times 8 \times 4.7=75.2 \mathrm{ft}
$$

from $(4) \mathrm{s}=29 \mathrm{~F}=75.2 \times .29=21.8$, say 22 ft .
(5) $\mathrm{L}=\mathrm{H}-\mathrm{S}=75.2 \times 22=53.2$
(7) 1) $=87 \frac{n^{2}}{g}=\frac{.87 \times(7.16)^{2}}{4.7}=9 .^{\circ} 49$ or $9^{\circ} 30^{\prime}$ nearly.

Now, "to determine the position of the shird foog, which is not now in the contre ol track. The tamgential offect for the south eurve is as :10::e, 5.3, for il 1 north 8.:3. If F be the fiog distan? on the north line, $\mathrm{F}+6$ will he that on the ronth, the switch being 6 ft . longer. This we may sty, before oroing for her, incolves no diffienty in practiee, the spikes on the north side bring Iriven 6 ft., or 3 ties, nearer the tere than on the south.

Now we have for the distance of tho frog from the north rail the expression $\left(\frac{\mathrm{F}+6}{100}\right)^{2} \times 5.3$
from the south rail the expression $\left(\frac{F}{100}\right)^{2} \times 8.3$
But the sum of these two is the gauge.
Whenee we get the equation :-

$$
\left(\frac{\mathrm{F}+6}{100}\right)^{2} \times 5.3+\left(\frac{\mathrm{F}}{100}\right)^{2} \times 8.3=4.7
$$

Simplifying- $\left(\mathrm{F}^{2}+12 \mathrm{~F}+36\right) 5.3+8.3 \mathrm{~F}^{\mathrm{n}}=47000$

$$
13.6 \mathrm{~F}^{2}+63.6 \mathrm{~F}=47000-191=46809
$$

$$
\mathrm{F}^{2}+4.68 \mathrm{~F}+(2.34)^{2}=3442+5.5=3447.5
$$

$$
\mathrm{F}+2.34=58.71
$$

$$
\mathrm{F}=56.4
$$

$$
F+6=62.4
$$

$$
\mathbf{L}=34.4
$$

This determines the longitudinal position-substituting the above vaiues ${ }^{\text {din }}$ the expressions $\left(\frac{\mathrm{F}+6}{100}\right)^{2} \times 5.3$ and $\left(\frac{\mathrm{F}}{100}\right)^{2} \times 8.3$-we get the values.

$$
\begin{array}{rrr}
\text { Distanee from Northinail............ } 2.06 \\
\text { " } \\
& & \text { Nouth ".......... } \\
& 2.64 \\
& & 4.70
\end{array}
$$

The anglo of the frog will be the sum of the deflections of the two turnouts.

$$
\begin{aligned}
& a=\frac{\mathrm{F}}{100} \times 9.5+\frac{\mathrm{F}+6}{100} \times 6.1! \\
& =\frac{15.6 F+36.6}{100}=9 . \circ 16 \text { or } 9010
\end{aligned}
$$

A No. 6 frog, pinched a little with the crow or mail hender and with the point set baek : triffe from the theoretical as oltained above, will fit the place quite well in practice; but if we wish to be very exaet about it, the following analysis of the problem in Fig. 6 a donble throw both on same side of main line will suggest a means of ealenlating. This is not a eommu combination, but it actually,or rather one almost identieal with it, oceurred in the writer's practice. One turnont was for a main siding and the other fin a Y, and in order to save room aud switch frames and unneecsary compieation it was deeided to start both from the same headblock. The main turnont was already hid with a 67 ft . lead and a 1 in 10 frog, fis in Fig 3. We had on hand a No. 6 and a No. 10 frog, which we desired to use. Putting the 1 in 6 first in the main line we get from erfation (2)

$$
\mathrm{F}=2 \mathrm{~g} \times \mathrm{N}=9.4 \times 6=50.4
$$

4
or an in sulf ath whte angle as $9^{\circ} 32^{\prime}$ the sine and chord comuence to differ apreiably - we may take the more exact value by (1):

$$
F^{\prime}=\frac{\theta_{1}}{\sin n}=\frac{9.4}{\sin 9^{\prime} 32^{\prime}}=56.8
$$

I' is in this case 10 inches or $8: 8 \mathrm{ft}$.

$$
\begin{aligned}
\frac{F 1)}{100}=(1, \text { therefure } 1 & =\frac{100 a}{F} \pm(8) \\
= & 16^{\circ} .78 \text { or } 16^{\circ} 44^{\prime}
\end{aligned}
$$

We have still to oltain the position of the 1 in 10 frog-between the two lurnout rails. let x be the urknown distance frou the point of the last one considered (the 1 in (i), and It the eurvature per 100 ft . over this piece x.

Then $\frac{x D}{100}$ will be the dettection of the south turnout between the two frogs, and the total deflection from uat line to point of 1 in 10 frog will be $\frac{x \mathrm{I}}{160}+3^{\circ} 32^{\circ}{ }^{\circ}$ On the north turnout the deflection t, same point will be that for a distance $27+33+x=x+60$, aind will be represented by the expression $\frac{x+60}{100} \times 6$. 12 . But by hypothesis the difference between these is the angle of the frog or $5^{\circ} 44^{\prime}$ henee the equation :

$$
\begin{gathered}
\frac{x 1}{10^{\prime}}+3 .{ }^{\circ} 53-6.12 \frac{x+60}{100}=5 .{ }^{\circ} 73 \\
x \mathrm{D}+953-6.12 x-367=573 \\
x \mathrm{D}=6.12 x-13 \\
\mathrm{D}=\frac{6.12 x-13}{x}
\end{gathered}
$$

Again we have for the lateral position of the froy from sonth rail of main line:-
on the north turnout $\left(\frac{x+60}{100}\right)^{2} \times 5.3$
on the south " $x \sin 9^{\circ} 32^{\prime}+87 \mathrm{D}\left(\frac{x}{160^{-}}\right)^{2}$
equating $\begin{array}{r}\frac{(60+x)^{2} \times 5.3}{10400}=.1656 x+\frac{.87 \mathrm{D} x^{2}}{10000} \\ (60+x)^{2} \times 5.3=1656 x+.87 \mathrm{D} x^{2} \\ 19080+636 x+5.3 x^{2}=1156 x+87 \mathrm{D} x^{2}\end{array}$

$$
19080+636 x+5.3 x^{2}=1556 x+.87 \mathrm{D} \cdot x^{2}
$$

substituting the value of D in torms of x abore,

$$
\begin{aligned}
5.3 x^{2}+636 x & +19080=.87 x^{2} \times \frac{6.1 x-13}{x}+1656 x \\
& =5.3 x^{2}-11.3 x+1656 x \\
1003 x & =19080
\end{aligned}
$$

$$
x=18.9
$$

Substituting in the equation of D in terms of x,

$$
\mathrm{V}=\frac{6.1 x-13}{x}=\frac{115.3-13}{18.9}=5^{\circ} .41 \text { or } 5^{\circ} 25^{\prime}
$$

Substituting in the expression for the offect or lateral position of the frog point, we have:

$$
0=\binom{10+x}{100}^{2} 5.3=.789^{2} \times 5.3=3.3 \mathrm{ft}
$$

Fig. 7 is n combination of the arrangementa in Fiys. 5 and 6 , and is an example of a 4 throw switeh, something m t ofter seen in actual practiee. For reasons explaind fintler ou. it would not be advisable to break up the sharp curve foming the lead of south turnout by inserting another frog. A 1 in o las therefore been instituted.

$$
\text { Making } \mathrm{F}=75.2, \mathrm{~J}=3^{\circ} 30^{\prime}, \mathrm{N}=31.6, \mathrm{~L}=436
$$

Theonly dement left not solved as $i \cdot \frac{1}{\text { the preedingy is the position of }}$ frog between the extrime north and south turnonts and its angle.

Beth tracks have now a eurvature of $9.30 .0=8.3$, but one curve starts $10 \mathrm{ft}^{\text {a behind the ether. We have then the equation :- }}$

$$
\begin{aligned}
& \left\{\binom{\mathrm{F}}{100}^{2}+\left(\frac{\mathrm{F}+10}{100}\right)^{2}\right\} \cdot 8.3=4.7 \\
& 2 W^{2}+20 \mathrm{~F}+100=\frac{17004}{8,4}=5642 \\
& F^{2}+10 V+(5)^{2}=2831-20+2.5=280 t \\
& \mathrm{~F}+\mathrm{i}=5 \cdot \mathrm{j} \\
& \mathrm{~F}=48 \quad \mathrm{~J}=26
\end{aligned}
$$

Distance from outh rail and main line ns nbove

$$
\begin{array}{r}
\mathbf{F}^{2} \times 8.3 \\
100 t 19
\end{array}=1.9 \mathrm{lt}^{\prime} \text { o1' } \mathrm{t}^{\prime} 11^{\prime \prime}
$$

For the ancle of frog we have:

$$
a=\frac{2 \hat{F}+10}{100} \times!.5=10.007 \text { or } 10^{\circ} 04
$$

It is quite possible wold a fifth track making a 5 throw switeh; ont as it necessitates 4 extra finges and 8 guarl rails, the extra complexity and cost vill generally ontwitigh the advathtages of eonvenienen in operation.

Some of the writer's mathematical enntemprar:es, who disensicd the transition curve, will, he feelssure, ke disatisfied with some of the above methods, becanse they are not precise. For the sake of simplicity in resulting tormulas he has treatel the emrve ef the tumont at one moment as a circular are and at the next ass ir parabolic. He bas assumed the sum of the subtansents as being eq口al to cherd and the eo sine of a considerable angle: being unity. IIs answer to them is that a difference of of few inches in the lead on either side will make no difference whate, r in the practical utility of the results; and as frogs are wade in a forge and machine shop, and not by a mathematieal instrument maker, the errors in them will oftem amount to more than those due to the want of precision in the formatas. And, further, whether the eurve be eircular, parabolie or somethine a little different from either maters not ons partiele, provided the radiu* of eurvature is nearly constant and there are no whap angles or breaks in it. The methods and formulas given alove have bean repentedly tested in practice, and found to yield good results in every case.

Un the other hand, sime of the practical men will say that it is use. less to spend time and figures on suld werk, and that a foremon with a good sye will run them out by himsill just as truly as can be dono ly the engineer. The writer has been a good deal with track men, and has repeatedly officiated a foreman himse ff: and believes lee has an trone an eye as most. He has fombl that, if left to themeives, they will make, even the best ol' them, s'un most surprising errors, not of inehes but of feet, in the simplest problmas, suchas in litig, ib. The track layer, who is judged mamly by the quatity "e :ens he dies, wili almost invariably get his hats too short; atid the sectionforeman, who is judged by the grallity, and who sus the failing of his predecesson's work, is amost invariably impursond with the necossity for very homg leads, and acts wemedmely. As a mather of tace, a leat cxtremply lones neerssitates a stap hinh sonsewhome, just as an catrumblow one doce, and is only a trifle lew ebjectionable mid musightiy. Such problems as have been solved in the preceling witla the use of moly one unknown quantity may uncmily he worked unt on the ground ly any tolerably intelligent man by atakis and tape measuremont, in somesnea way as Trautwine suggests, lut this is merely a graphicel aolntion on a full sized drawing, (hat a rad where tratis are passing and sometimes standiner every few minotes, it will not be fiuund a very ceonomical methot, especially when baff a dozen or more menare waiting to go to work; and in any case it is a longer opration thath the algeloraie solutions given above. The problems alove, in which we have ued two unknowns, are almost ' determinate on the ground, cxepet by the method of sucensive trials ams aproximations, which also is not eeonomical of titue.

Giaboll the paititu wi liogas and tor of'switeh, and almot any fore

 phace details of at railway, which are so oftern megheted is ten simple

 day detail, if only becanse they are so nit a repeated, wro thosa which eally haver most to dio with the sate and econamical sperntion
 ther explanation of his decming it worth while to stuly the eprestion anil to lay the regnlas befere the engineering Iraternity.

Split switehes ma diaplacing the ald fashoned stule switehes wo lave heretofore been considering lor any service involving high speed. 'the advantage is af course the enntinnity of the rails ame the absence ol' jar nud jerk. The olyections are higher cont and that they are not suseeptible of being worked iats, 3 and I throw turuouts, henee they will probably never displawe them eltogether. I'he split switeh differs essentially from the stub, in haviner a mureahle rail planed down
 into position a!mgside its neighbour inatend ol ciscrers to its conl. There is thes an inevitable angle as in the smb switches divinssed in the poeket wooks. As it is impractieable to bring this bevelling to un acinal feather edge, tho virtual point is a font or so lack of the actual. For eonvenienec of eal 'ation and other pritetieal rensons, which need not io gone into here, buw whieh may be muterstoon firon : stuly of the diagram of the position of the wheels of an ordinary 8 -wheetal encine on a curve (F "ig. 8), the" writen's practice is to consider this angle as merely an eltow in the continuons turuont curve, as worked out in the first example, lig. 3 , and the virtual puint an the intersection point of the snbtangents correspondints to the angle. If, as in Figs. 1 , the trog angle be $1 \operatorname{ir} 10$, the enve 6° and the angte of flyrail $1^{\circ} 30^{\prime}$ we shat have these subtangent 12.5 fit ench, the P. U. will therefore be 12.2 ft . back ol the virtmal, or $1: 3.5 \mathrm{ft}$. frou the aetual poin' of the fly-rail, and the inner edge of this last must bo straight for 112 ft ., ilter π^{\prime}.ieh it will be bent to the enrve ul the throob. Ifs total length must be at least sufficient to secure tho neressary clearance for tho wheel flanges, whieh we have heretolore taken at 4 ft . For an angle of $1^{\circ} 30^{\prime}$ this will be 15 lt . and for $2^{\circ} 11 \mathrm{ft}$, The total liog distance in Fig. 3 was 94 ft , Subtendiar 1:3.5, we get 80.5 lor the length of leat.

With these conviderations borne in mind, the varions problems for $\because 2$ and 3 throw thruouts may he work just as in the ease of stul, switches. I have already sail that : 3 throw switches are impossible with the split switches, but it is gnite common to finu a double turnont arraliged as in Fig. 9, with ore switch : little aheal of the other. bseept that the distances are limer, this is a precisely similar ease to that in lig. 5. The writer hats alreally alluced to the diagram in Fig.s. \&. It is introduced for the sake of demontrating the objection to a frigg in the atidde of a sharp curve. The leading driver will inevitably strike the ellow, if indeal it hoes wot rite over it; ant the trailer will wrench the ghard tail badly. The truck wheels traborse well enough, and as both drivers tend twards the inside rail the point of fros is easily taken carre of. Itence, while the low may be made fairly sharp witl: safety, there shomblel always he is pinee of straight or easy curve beyont the frog, hence the flatening in Fig. 6 in the south tamout hetween the 1 in find 1 in 10 lirogs, In regard to guard rails, they will be men in the ohler roals mate so as to be parallel with the main rail for quita: a distanes, with is arap kink nt each culd. Fig. 10 i. These are required to be made in the forge. 'Tho writer
 the stray wheel granlually inta its proper line and then letting it :30 iumediately the point of from is passed. 'These eatn be made on the ground in a few minates with a jimerow and coill chisel, and he is glat to see them coming into general use.

If, as the writer believes, the methorls and prineiples enunciatel above have never bern used in eonnection with turnout problems except by himself, be thinks the maintenance of way engineer will be well repaid by a study of them, as he has himsolf been in the inereaset rapidity with which he ean arrive at aceurate results, and wheh is pethaps of more eonsequence in clean ent casy enrves and turnouts.

Inasmuch as the equations often involve large numbers, squares and spuare roots, he can never be far astray in plotting the rewait, alterwarts as a check on the arithmetical work, It is mueh easier and takes less time to plot a re-nlt than to arrive at it graphieally; and as an evilenee of its being worth while to employ some means of leatin'; frogs and switehes before going to work, it is only neeessary to point out one or two of the many elamsy, ill-fitting ones whieh any tyro ean deteet in almost any large yard as the result of haphazard work under no system whatever.

$$
\square
$$

