The Institute has attempted to obtain the best original copy available for filming. Features of this copy which may be bibliographically unique. which may alter any of the innages in the reproduction, or which may significantly change the usual method of filming, are checked below.Coloured covers/
Couverture de couleur

Covers damaged/
Couverture endommagée

Covers restored and/or laminated/
Couverture restaurée et/ou pelliculèe

Cover tit!e missing/
Le titre de couverture manque

Coloured maps/
Cartes gėographiques en couleur

Coloured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bleue ou noire)Coloured plates and/or illustrations/
Planches et/ou illustrations en couleur

Bound with other material/
Relié avec d'autres documents

Tight binding may cause shadows or disiortion alang interior margin/
La re liure serrée peut causer de l'ombre ou de la distorsion le long de la marge intérieure

Elank leaves added during restoration may appear within the text. Whenever possible. these have been omitted from filming/ I! se peut que certaines pages blanches ajoutées lors dune restauration apparaissent dans le texte. mais. lorsque cela érait possible. ces pages nont pas èté filmées.

L'Institut a microfilmé le meilleur exemplaire qu'il lui a èté possible de se procurer. Les détails de cet exemplaire qui sont peut-ètre uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de filmage sont indigués ci-dessous.

Coloured pages/
Pages de couleurPages damaged/
Pages endommagéesPages restored and/or laminated/
Pages restaurėes et/ou pelliculèes

Pages oiscoloured. stained or foxed/
Pages décolorées, tachetées ou piquèesPages detached/
Pages détachées

Showthrough/
Transparence

Quality of print varies/
Qualité inégale de l'impression

Includes supplementary material/
Comprend du ma:ériel supplémentaire

Only edition available/
Seule édition disponible

Pages wholly or partially obscured by errata slips. tissues. etc.. have been refilmed to ensure the best possible image/
Les pages totalement ou partiellement obscurcies par un feuillet derrata. une pelure. etc.. cr:t été f!!mées à nouveau de facon à obtenir la meilleure image possible.

This item is filmed at the reduction ratio checked below/
Ce document est filmé au taux de réduction indiqué ci-dessous.

Cuandian groxitluriwt，

OB

DURNAL AND TRANSACTIONS OF THE BOARD OF AGRICULTURE

OF TTPP円IRCAINADA．

The Germination of Seeds．

The season is now close at hand when the und has to be prepared for the reception of seed of the various descriptions of spring
os．Every farmer or gardener is aware how h depends on bringing the soil into a prop－ ilth by ploughing，digging，harrowing，\＆c．， cesses which，if neglected，or imperfectly formed，will be sure to affect the bulk and lity of the crop．A certain depth of friable finely－reduced earth，readily admitting air， moth，and moisture，is as necessary to the with and development of the cultivated crops re the various ingredients of an organic and granic nature that constitute plant－food，and $\mathrm{ch}_{\text {，}}$ ，if it does not already exist in the soil， t be supplied artificially in the shape of tis well known under the name of manure． resent we propose to consider the earliest of development in．the life of a plant and conditions or agents which affect it，．usually gnated germination．A cursory view．of this Yesting subject will afford the practical man ral useful suggestions，as well as pleasing nce of the wisdomand goodness of crea－ nd power．
growth of the seed consists in the devel－ at of the germ into a perfect plant，and is mas germination．Supposing the condi－ of growth to be fawourable，the first pre－ ary is a softening of the cost of the seed， ich means water gains an entrance，and s pervaded the mass，causes it to swell When the water reaches the germ of
the seed，the gluten or albuminous matter near to it undergoes a chemical change，and we have a very important and powerful body formed which is called diastase．Whether or not the germ in any way participates in this change，we have no proof；but，if not，it is certain that at least by its presence it exerts a controlling power． The same addition of moisture to any other portion of the seed would not produce the same effect，for this agent（diastase）is only found in close proximity to the germ，and its existence in the seed appears to be simultancous with the first stage of germination．Upon the diastase thus formed devolves the important office of preparing food for the growth of the germ；for the bulk of the seed；although abundant in quantity；and exactly suitable to its constituent elements，is not ready for use until it has： become soluble in water，and thus been made capable of entering into the circularion of the germ．This is accomplished by means the dias－ tase，by the agency of which the necessary supplies are prepared，so long as the stere of food in the seed is needed．An immediate ex－ tension of the cellular matter accompanies the entrance of the food into the circulation，and we have the external evidence of life by the sprouting of the seed．In whatever position the seed may be placed，the radiclesat once－ strike perpendicularly down into the soil，and the tender rootlets fix themselves there with but little delay．As soon as this is effected，the gemmule grows in the opposite direotion，and becomes developed into the stem and．leares of the plant．

The conditions which control the growth of seeds are, the presence of air, moisture, and warmth; and, to produce healthy germination, all ave required in difinte proportions. When seed is protected f.om these agencies it will retain its powers of growth for long periods of time. Thus, wheat, preserved in Egyptian mummies between 3000 and 4000^{\prime} ycars, has, after the lapse of time, germinated and produced a large increase. The preservation of the power of growth is entirely dependent upon the soil being kept from those agencies which. would excite its vital energy,-moisture is the first essential for germination, as it is.in consequence of the chemical action excited in the seed by the entrance of water that the seed is aroused to action; and after this process of growth has been excited, if it become checked, it cannot be renewed. This shows the necessity of leecping seeds dry when they are not required to germinate. Moisture alone is not sufficient for the process of growth, as the seed requires a supply of atmospheric air to enable the necessary chemical changes to proceed. Stagnant water in the soil must of necessity be unfavorable to germination, because it renders the land cold, and excludes the free access of air, both of which conditions are prejudicial.

The exceptions to this rule are very few; one, however, may be found amongst agricultural seeds in the floating sweet water-grass (Glyceria fluitans), grown in weter meadows, in which instance immersion in water is absolutels nocessary for the growth of the sted. In this case we have a seed which has the power of extracting its supply of air from water, -a power which very few other seeds possess. The supply of air is as necessary for these aquatic seeds as for any others; for if we drive out the air from water by boiling, they can no longer germinate. For the same reason, seeds which are buried decply in the earth remain there for many years; not because they want moisture; but because it is anaccompanied by the presence of atmospheric air. The earth raised from wells, or brought from railway cuttings, or ploughed up by a furrow of extra depth, often becomes covered by a growth of vegetation, the produce of seeds which have long been dormant in the soil.
Warnith is anotheressential condition of germination, which, within moderate limits, is rendered more rapid by an increase of:tempera-
ture ; but it must be accompanied by a propor. tionate increase of moisture, otherwise it b. comes destructive. The action of heat promotes chemical chauges in the seed, but a fres supply of water is necessary, not only that it may exert a like chemical influence, but also bo cause it enters largely into the most dellate body into which the dry matter of the seed has. to be transformed. Thus we see that health germination depends upon the combined action' of the three agents-heat, water, and air.

The opinions which are entertained respat. ing the influence of light are conflicting. Soss consider that light retards the process. of ge: mination, whilst others consider that it des not influence it prejudicially. The experi: ments which have been made, although is from conclusive, are calculated to favour the former opinion; for the growth, althoogl equally perfect, has not been so rapid unde the action of light as when the seed has bea covered from it. We know that, as soon asthe seed has made sufficient growth to throorod its leaves, the action of light is favourable, it presence enabling the plant to decomposer: bonic acid and to retain the carbon for itsory whilst the oxygen is thrown off into the ii But at this earlier stage of existence, -or, a other words, during the period of germination, growth is favoured by an action just the etein of this. The seed and its sprouts want tos sorb, not to thrcer off oxygen, and to cuit instead of taking in carbonic acid. Dung germination, then, the action would tend paralyze the vital powers of the seed, an limit its growth to the hours of darknessin stead of allowing the development to beat tinuous. Another great advantage gained covering the seed is the more equable suph of moisture which is preserved bencath the facc, as well as the better-opportunity affoin to the roots for firmly fixing themselves int soil. Those who are practically engagd: - conducting the operations of tie farmorb den may gain much insight into these infem. ing but somewhat intricate matters, by fregia, and:accurate observations, from the "horigs: the seed; through all the successive staga: its development to the perfect mataring of crop, and comparing the reasulys obtainedt. the principles laid down by the teaching chemical'and pliysiologicai bcíezticẽ.

Agricultural Hall, Toronto.

This building occupies a plot of ground on he North side of Queen Street, at the corner iYonge Street, and as it is situated in one of he principal thoroughfares of the city, public rosity maly be gratified by a sketch of the sign. We have been favoured with a sight of eplans and elevations, and the following deription (dravn up on the supposition that the nilding were completed, which it will shortly 9) will be found pretty accurate :-

The front to Yonge Street is 41 feet in length, nd the facgade to Queen Street is 82 feet. It intains on the ground floor-at the angle of e two strects-a substantial and excellent arehonse, for the sale of seeds, plants, \&e., ith a smaller store eniering from Yonge Street, bich will be rented to a suitable party. The ntrance to the Offices and museum is in the ntre of the Queen Street front, whence a large droomy staircase leads to the first floor, on ich is the Board room, lighted by two large ndows on the Yonge Street front, Secretary's 1 m , and Porter's room, also a large and comNions store room, connected with the seed re on the ground floor. The entire of the per floor is in one large apartment., the interdimensions of which are 79 feet in length, 38 feet in width. The side walls are 19 feet height from the foor to the top of cornice. e roof is in one span, the framed trusses boing ought, having carved wall-braces springing m moulded and, carved stone corbels. The ling rises from the side walls at an angle of at twenty-seven degrees, being in the centre feet from the floor to the ceiling. It is diid by moulded ribs into panels, with plaster uldings and enriched centre pieces, which ore iorated for ventilation. This spacious aparttis intended as a museum, for agricultaral lements, patented inventions, and other articonnected with agriculture, and open to the lig free of charge. This it is considerwill be a great boon to farmers and others, rested in the progress of agriculture, where atility and economy of the several implets exhibited may be studied.
he brilding is constructed in the Italian v of architecture. The principal fronts are -with the best red pressed brickes; and the
ornamental masonry and other dressings are of Ohio stone. The entrance door,-which, as already r° marked, is in the centre of the Queen Street front-has rosticated and moulded stone jambs, semi-circular head, with radiating rustics. On either side of the door-way are two windows with setai-circular stone hcads. Over the ground floor windows there is a bold belting course, which will tr. enriched by parti:coloured mosaics, a system of decoration whiph we believe has never been attempted in this country, although in English and other European cities, it is much used for external and internal decorations. The windows of the first floor rest on moulded sills, with small cast-iron balconies in front of them, the windows having stone jambs and mas. sive cornices. Over thite are moulded consoles, supporting the balconies, in front of the upper row of windows, which are finished with handsome stone faciñs; the whole being surmounted by a bold and enriched cornice, producing an excellent effect. Whale the genersl symmetry is well preserved, the disposition of the windows, ana the great proportion of solid wall, contribute to give the building a massive character. In this respect alone the design exhibits some novelty and piquancy, particularly in the centre compartment, where the five openings are brought pretty closely together, leaving a large pier on either side of the adjoining opening. Thas the front may be said to be divided into three main compartments, the centre being greater than the other two, which assume the appearance of wings; producing a good architectural contrast, combining solidity and strength-yet without either blankness or heaviness. The plans of the building have been furnished by Mr. Joseph Sheard, architect, under whose superintendence the works are being carried out. The contractors are,for the bricklaying and masonry, Mr. John Platt; and for the joiner and carpenter work, Mr. John Harmer. The painting will be executed by Mr. Alexander Hamilton. The whole expense of the building will not exceed the original estimate of $\$ 12 ; 400$.

The principal object of the Board in erecting this capacious and commodious boilding is to secure a permanenic office for the transaction of its increasing basiness; much incouveniezice having:been hitherto experienced from inelequate accommodation, and frequent remorals.-

In the preamble of the Agricultural Statute， 20 Vic，cap．32，among the objects which the Board is required to promote，is the establish－ ment in Toronto，of a public Library of reference， comprising both agricultural and horticultura publications，and also aMuscum，embracing both those departments of industry．The ：ormer has already，to some extent，been accomplished，the nucleus of a library having been formed；but for waut of adequate accommodation of a per－ manent nature，the latter has necessarily been kept in alcyance．It is intended that the capa－ cious Hall set apart for a Nuseum，shall com－ prise characteristic specimens of the natural as well as the cultivated productions of Canada； implements and machines，or their models； specimens of soils，and their related rocks and minerals；with whatever can throw light on the agricultural condition and capabilities of the Pro－ vince．The Board will therefore have＇to appeal to farmers and others interested in these important objects，（and who is not？）to assist in carrying them to completion．Our agricultural Societies should see that the choice productions of their respective localities are represented in this col－ lection；and horticultursts it is hoped，will fol－ low their example．The firm of James Floming \＆Co．，will always keep an extensive and reliable assortment of all kinds of agricultural and gar－ den seeds，suitable to this climate；and they in－ tend，we urderstand，to form a Depot for the various implements and machines belonging to the departments of industry．Numbers will doubtless visit the Agricultural Hall for pur－ poses of business or enquiry，and there can be little doubt that this new enterprise of the Board will be found in its practical working of great general convenience and public adrantage．

An Experiment of Wheat Growing in 1766.

In the Gentleman＇s Magazine of May 1770， the following statement appears of the wonder－ ful power of increase which the wheat plant possesses when subjected to extraordinary triat－ ment：－
＂In the avitumn of 1.765 and spring of 1766 ， Mr．Miller，of Cambridge，produced 2000 ears of wheat from a single grain，by dividing and transplanting it．He repeated his experiment in Jone，1766，with jet greater success．
＂He sowed on the 2nd of June．some grais of the common red wheat；on the 8th of dr gust he took up a plant and divided it into eighy parts，each of which he planted again separatest by the middle of September they pushed ad several side shoots，and were again dividedith 67 plants；these plants remained throught winter，and were then divided into $500 ; 1 \mathrm{tg}$ soon became stronger than many in the rbead field，and some of them produced 100 e from a single root．Nany of the ears re 7 inches long，and contained between 60 add grains．The whole number ố cans yuvuแ⿰丬犬 this process from a single grain was 21, ix which yielded three pecks and three quartes． grain，and the number of grains being a_{w} 576，800．

The Provincial Exhibiton of 1862

The Local Committee for the Proring Exhibition at Toronto this year hare be appointed，and have aiready hedd stiuly meetings．The committee consists of the？ lowing gentlemon ：－

F．W．Jarvis，Esq．，Sheriff York andPr J．P．Wheler，Esq．，Warden，York andPe J．G．Bowes，Esq．，Mayor of the City of Te． to；Hon．G．W．Allan，President Torontolu cultural Society；Jas．Beachall，Esq．，Prein Toronto Electoral Division Agricultund； ciety；The President of the Mechanicit tute of Toronto；Aldermen Brunel， h Strachan，and Hynes；Professor Crof； F fessor Hind；Captain Shaw；Arch．Bu Esq．，Markham ；J．P．Bull，Esq．，York． ship；together with all the mpabersol． Board of Agriculture，ex－officio．Chai of the committee，Hon．G．W．Allan； tary and Treasurer，Wm．judwards，Esq．． committee have commenced work eras cally，and．we hope that those on 5 ． the exhibition must mainly depend in material elements of success，we meai producers of the country，the stock 础． farmers，gardeners，mechanics and ati will not be behind hand in their preps． to carry out their part of the progrem The Prize list will be published as the season as possible，but in the ment： the lists of previous years will server ret as a guide．The subjuined letter fre

Denison, who is on the committee as a member of the Board of Agriculture, will give some iden of the preparauons the Local Committee propose making.

PROVINCIAL AGRICULTURAL ASSOCIATION.

moronto locan committee.
Edifors of Arriculturist,
Farmers who intend to exhibit at the Prorincial Agricultural Show this autumn ait Toronto will be ghorl to lemer, thai extensive preparations are being made, to accommodate stock, far beyond any ever before prepared at ouch exhibitions in this country.

1. Horse Slables.-Four buildings to be crected in the form of a quadrangle, each building to be 130 feet by 30 fect, and 1.2 feet high, and divided into double and single stalls. Doors well hinged and furnished with basped staples,-exhibiters to furnish their own locks. These stables are to be permanent and woll lighted and ventilated, and are io be built with the view of accommodating aralry and artillery in case of necessity.
2. Catlle stables are to be also four in number, 150 feet by 30 feet and eight feet alls. These buildings are to have an cight Dot passage through the centre which will eare the stalls 11 feet deep on cach side, be outer walls and partitions are to be only 3 eet 6 inches high-the walk down the centre 0 be raised 2 fect to give a commanding iew over the stock. These stable are calcuated to hold 26 Durham bulls, 20 Down bulls, 2 Ayrshire bulls, 12 Galloway bulls, and Hereford, 60 Durham cows and heifers, 50 eron, 30 Ayrshire, 30 Gallc way, 20 Hereford, ltogether 265 stalls. This building also to epermanent.
3. Sheep Folds.-A building 900 feet long, 2 wide, and 7 ligh, divided into 150 pens, \checkmark accommodate 600 sheep, the whole to be sered and partitioned 3 feet high, with orable bars in front, to put the sheep in or ke out.
4. Pig.Pens.-This building is to be cored and divided into 150 pens 6 feet square, culated to hold 300 pigs.
5. Poultry--This shed is to be 100 feet ng and 12 wide, and the walls are to be 7 t high, open all around, and to be furnish-
mith two rows of coops down the centre, 3 three coops high, with lattice fronts, and nished with doors.
6. Machine Shed.-This building is to be 6 feet long, 32 feet wide, and 12 ligh, good -gle roof, and strongly framed, to stand on lar posts without sills, to be-open and acsible on all sides, and fitted up with a line
of shafting at least 50 fect long, and to be a permanent building.
7. Forage Barn.-To contain hay and straw, and titted with bins for bran and oats, and to be convenient to the other buildings.
8. Hurdles.-There will be in addition to this accommodation, sufficicity hurdles on the ground to make a hundred pens if required.

It is intended by the local committee, if not by the Corporation, to enclose 8 or 10 acres of land more than we had under fence at the last Exhibition in Toronto. This of course will afford ample room forevery purpose, and make the show ground a more convenient shame than before.

Before closing I would advise all friends of the Agricultural Association who have suggestions to offer with regard to the prize list for the current year, to do so at once, before the prize list committce set to work to revise. These suggestions should be forwarded to the Secretary of the Board of Agriculture, Toronto.

It is much to be desired that we have a good show this year. The country never was so full of good stock before, and prosperity is fast returning; indeed we were never in a better position to get up a good show than now. The location is central and accessible, having Rail Roads and Steamers in all directions, the heart of an old settled country, well filled with good stock and good farmers, and nothing can prove a good farmer better than giving a hearty support to our own peculiar Institution, the Provincial Agricultural Association of Upper Canada.

I think I need not apoligise for the length of this letter, for the information will be gladly reccived by your readers.

Yours truly,
Richard L. Denison.
Dover Court, Toronto, Feb. 1862.

Maple Sugar.

This is the season for making maple sugar; and this industrial product is of considerable importance in some sections of the country, and might be made of much more value if due attention were paid to the processes of manufacturing and refining. A really excellent and highly palatable description of sugar, almost as white as the best loaf, may be made from the sap of the maple, by the exercise of proper skill and care in these particulars: The following article on "Clarify"ing," one of a series on the "Importance and best mode of manufacturing maple sugar;"
written by Hon. S. F. Perley, of the State of Maine, for the Maine Farmer, will be found to contain some useful suggestions:-

CLARIFYING.

Whem the sediment has well settled, draw off carefully, by a faucet, all the clear syrup from the "settling tub;", leaving the residuum to be diluted with sap, which reduces its specific gravity, when the sediment will be more thoroughly precipitated, and the clear sap, after a few hours, can be drawn off and returned to the boilers, to be included in the next batch; thus making a saving of nearly all the swect, and rejecting the dirt. The clear syrup may be now poured into the graining kettle; and to a quantity of syrup which will make sixty pounds of sugar, add about one quart of skimmed milk for a clarifur, and thoroughly intermix the two by stirring. The white of eggs well beaten, bullock's blood diluted with water, and other albuminous substances may be used for clarifying; but upon the farm, milk is most easily oltained, is the cheapest, and best. Skimmed n. .x, if sweet, is equally as good as new milk ; for it is the caseine, or curd, acting mechanically by entangling the fine particles of dirt, which the former strainings have not removed, that give it its value as a clarifier. Now place the graining kettle with its contents over a slow fire, and gradually heat the syrup to near the boiling point. This curdles the milk, and as the curd forms it cmibraces the impurities still remaining; and the curd, by the increasing heit, becomes sprecifically lighter than the syrup, and eventually floats upon the surface in a thick, somewhat tenacious scum. Care should now be exercised to prevent ebulition, as that would break up the sum, and the action of boiling would carry much of it down to be again mingled with the mass. Now swing it from the fire, and allow it to remain undisturbed an hour, more or less; during which time a great part of the feculencies will attract each other and -ise with the scum. The scum is to be carefully removed with a fine skinmer; to draw the syrup from beneath the scum with a syphon, or stop-cock, would be a better way, for then there would be no digturbance, as in the case of using the skimmer; but this would be attended with some inconvenience and expense. Here, again, economy demands that the scum, which has so much sweet in it, should not be cast away; but be placed in a tub and diluted with sap, the allow it to settle a few hours; after which, the sap, much sweetened by the process, may be poured off and returned to the boilers. It is found by considerable experience, that, with the utwost care, the curd and dirt cannot be entirely removed by the skimmer; consequently, resort must be again had to the fan-
nel strainer. This last straining is usualiy omitted by suga-makers, but it is quite important, if a clean, pure, sugar is wanted. a still better process would be to filter the syrup through animal charcoal, (bone black,) asis done in cane sugar refining; for by this process not only the dirt, but all coloring matter, would be removed, which would greatly im. prove the appearance of the sugar. Bone black, however, cannot be readily obtainedin country towns; and the expense and trouble in procuring and using it would hardy be compensated where only a small business i carried on, as is the case in most of the sugur orchards in Maine. If any one desires to e periment in this direction, a filter made of finely pulverized and thoroughly washed wood charcoal will serve as an imperfect substitute for one made of bone black. So late as 1811, wood charcoa! was exclusively ues in refining syrups; at which time the superior quality of animal charcoal was discovered, and the former soon went out of use. But by the use of the milk clarifier and the fianod strainer, a very fair sugar for home ase can be made; and the ease with which these artilles can be procured, and the simplicity of this process of manufacture, comme:id this method for general adoption.

The first boiling or "turxing off", as itis termed, is simply reducing the thin syrup, by boiling, until it is of sum able consistence to be used as a table syrup, like that from re fineries; or until it wiil granulate in sugut No uniform rule for the consistency of symp prevails; each maker adopts a standard to suit his own private taste; or else, taking counsel of his cupidity, he refrains from n ducing it to a rich, honest, heary syrup, wb that he may have the greater number of ght lons to market. Accordingly, much of tht offered for sale will pour like water, whenif should have the weight and consistency d good W. I. molasses. It should be redues almost to the graining point, which can ody be determined by cooling a small quantityis a saucer or other vessel, and testing it by jigtid and taste. A first quality syrup will grains little after straining a few weeks.

To produce sugar, still further boiling it necessary, and the precise point at which ite boiling should cease is an item of experienty more easily recognized in practice thand it scribed. Several test.s are relied upon, ssax of which are as follows: 1st, where the stal! forcing its way up through the foaming mas on reachlng the surface, escapes by burstixy its bubble with a slight explosion, similath that observed upon hasty pudding wia nearly cooked: 2 d , when a spall quanit. say a table spoonful, taken from the kith and poured hot, upon a compacted snowht after melting the spow a little, will lay

3 d , when a drop taken hot from the kettle, on being lut fall from the edge of the skimmer or spoon into one inch of colla water will pass directly through the water without mingling with it, and rest upon the bottom in the furm of a flattened hemisphere: Ath, when a droptaken upon the finger on being touched by the thumb will draw out a thread firom onefourih to one-half an inch long: and 5 th, mhen a small quantity taken into a saucer or epoon, and thoroughly cooled, will gramulate, so that it can ' detected by the eye, the taste, or when crushed between the teeth; then it nay be removed from the fire for "it is donc." These tests, particulary the ord and 3th, are usetul to berinners as ade in forming al correct judgment; but one long practised in the businesy seems, intuitively, to recognize the ime when the grain will furm, and the boiling should cease.
The liquid sugar may now be "turned off" nto vesects to cool and granulate. If a tine zrain is desired, rapid cooling in shallow bus, with rapid stirring while the crystals re forming will produce the result. If coarse harp crystuls are preferred, leave it undisurbed, in larger quantities until the crystalzation is completed. There will be a portion hich will not granulate, but will reman as ark coloured molasses filling all the spaces otween the crystuls of sugar. The quantity f this varies with the scason, being greatest ear the close; and varies somewhat in difrent seasons, owing prowably to the varying uality of the sap, and the skill used in the rocess of manufacture.
To obtain a dry sugar, after the gramulation completed, throw the whole into a tub or arrel, prepared for the purpose by boring the stom with several holes, these holes to be osed until the crystals are well compacted gether, say one or two weeks; then remove e plugs and allow the molasses to drain way. The draining will be more perfect, d consequently the sugar of lighter colour, a wet cloth is spread upon the surface of e sugar, and renewed daily until the draing is completed. The moisture from the jith, gradually settling down into the sugar, utes the molasses, rendering it more liquid, dof course it passes away more thoroughly. little of the sugar becomes dissolved and ried away by the descending water, but \because is not lost, as it mingles with, and bees a part of a ver: good molasses. The yining should be done in a warm room, for t also renders the molasses more liquid Ithe draining more perfect.
nstead of barrels or tubs with perforated toms, inverted pyramidal, or hopper-shapboses are sometimes used in draining. se boxes may be 12 or 15 inclies square 'open at the top; by two inches square and
it without riffusing itself through the ball: closed at the bottom, and three feet long; with a hole at the smaller end for the escape of the molasses; to be suspended like a hopper. These are hetter than those harrels, for the reason that the quantity of sugar near the bottom, where the drainage is always imperfect, is comparatively smail.

Thus we have a crude sugar equal in every respect to the correaponding grade of cane sugar: and superior to it in this, that we know it has been prepared under circumstances far more favourable to cleanliness than exists on Southern plantations, where the operators are driven to their tasks, and care only to avoid the dreaded lasl.

It was my intention to offer some suggestions upon the subject of refining, a branch wholly distinct from the manufacture of crude sugar: but the undue length to which the subject has already extended leads me to forbear a further trespass upon your columns. I stop here the more willingly from the fact that the further process of refining, adds nothing to the real value of the sugar, but rather the reverse; for by it weight, and the peculiar maple flavour are, in a measure, sacriticed for an improvement in colour.

> Osier Willow.

To H. C. Thomson, Esq.,

Secretary, Board of Agriculture.

Dear Sir,-The following paper ou the cul. ture and management of the "Osier Willow" has been reprinted in England frorn the $\boldsymbol{R u}$. ral Nevo. Yorker. It is a subject which every common farmer may casily understind, and there are hundreds of places in Canada well adapted for planting the Osier Willow with success and profit; therefore, without further preface, the following is a copy of the printed paper:-
"Having lately seen several inquiries respectinct the Osier Willow and its culture, and being asked almost daily, 'Do you think it will pay?' I have concluded to send you my experience in its cultivation. Three years ago thas spring after corn-planting, I set two acres of the Frencu Osiers, placing them in rows three feet apart, at a distance of one foot from each other; the first year I cultivated and hoed the same as corn, and many of the shoots attained the height of four feet. The next spring I cut them, but having no machine for peeling lost the crop, except a few used for sets. Last spring I cut, and commenced peeling by liánd; which I found rather an unhill business, and almost resolved to abandon their calture if they must be peeled in this way. A bout this time a machine was invented for peeling willows. Timmediately procured one, which worked to my entire satisfaction, and with it finished peeling my crop, which when ready for market, in
cluding some sold for sets, a little exceeded a tou. These I shipped to a Commission Agent in New York, and received for them $\$ 110$ per ton. This year I have a much heavier crop.For an experiment I have weighed those cut from 12 stools, which amount to 18 lbs . I have found in peeling and drying they waste nearly one half. The produce of an acre stands thus: 14,520 stools per acre $\frac{1}{2} \mathrm{lb}$. each, $21,780 \mathrm{lbs}$. Ready for market, $5 \frac{1}{2}$ tons, $\$ 110$ per ton, $\$ 605$, cost of cutting per acre, $\$ 6$; cost of peeling per ton, $\$ 7, \$ 38$, binding and taking to market, $\$ 5 \frac{1}{2}$ pe: ton, \$27, total, \$72. Deducting expenses, this leaves a profit per acre of $\$ 533$. ."
"According to directions at the time I planted, I have not cultivated mine since the first year, but think they should be cultivated once every spring, to loosen the soil and keep them free from weeds and grass. I am confident that any one who has suitable ground and will bestow proper cultrvation can realize this amount from an acre of willows, perhaps more. After reading these facts I think no one can hesitate to answer the query, will it pay?"'

The foreroing computation shews a liberai profit on the experiment. Is it not worthy the consideratson of the Board of Agriculture to of fer a scale of prizes for the encouragement of the cultivation of the Osier Willow? The season for planting being very convenient, about the same time of planting Indian corn, there is scarcely a farm in Upper Canada without a low swampy plot, which, with open drains, may easil \bar{y} be made fit for its successful cultivation.

The premium should not be less than for one acre, the cultivation to be certified by the President of the County Agricultural Society, wherein the plantation is situated.

Your obedient servant, J. B. Miares.

Bath, Englaud, Feb. 1862.

Experiments on Manures,

A ahort time ago some experiments were published in theGardeners' Chronicle in reference to the beneficial action of coprolites (ground to an impalpable powder) on swedes, in comparison with other manures. The results have, contrary to the opinions of myself and others, induced me to try similar experiments on swedes, the result of which I now lay before- your readers. I quite agree with Dr. Voelcker in'saying that very little good can be obtained from the result. of a single experiment, but often a great deal of harm; and with this viem of the case, I intend pursuing the same experiments for several years to come, as I think it is the duty of every one who holds a similar position to myself to do all in their power to connect science with agriculture, and I shall be very glad to join any person in making agricaltural experiments who is situated in a different part of England, so as to be able to arrive at more satisfactory conclesions.

The ground experimented on was lately arem old and badly drained piece of pasture to which after being well drained, salt was applied at th rate of 25 bushels per acre. The field was the ploughed and harrowed in the usual manner, a. divided into two parts of $4 \frac{1}{2}$ acres each. Ontle one half onts were so wn, and on the other manged and swedes drilled in rith superphosphate of fiey lesving the width of one drill across the fieldes manured. Out of this one drill was divided is plots side by side, mensuring 4 by 3 yards, ead containing eight drills. The plots were manand and sown on the 13th May, 1861, as followsi--

> Cot. por per fore fore

No. 1. B nedust nt the rate of $2 b^{2}$ at 8800 equal to $f 1$ of
2. Ground coprolites.... 5 " 40 " 101
3. Unmanured.
4. Ground bone-ast . . . 4 " ${ }^{5}$ ㅇ 0 " 11

The soil was in a fine state of division, th weather dry, and the manures in a finely pro dered state, and well mixed with ground aits before being drilled in with the seed. Ontt 18th inst. the seed had all appeared above grows? and very regular. On June 3rd the plantsi each plot were looking well, but those in Na. were decidedly the most forward, and thosi No. 3 the most backward. Plots 5 and 64 peared equal throughout the season, and were treated in the ordinary manner. If amount of phosphate of lime per cent. in th manures used were as follows:-
In No. 1. Bone dust. 55.35 per cent. phosphate of lime.

On looking at the above we find that
cwivt.
$21 / 2$
of boue dust per acre is equal to 165 of phosphate ol
$21 / 2$ of bone dust per acte is equal to 165 of phosphate offer
5 of ground coprolites of ground coprolites of bone ash 300
$701 / 2$
$77 y_{2}$
(mostly solaty of sup rphosphate
Thas showing the preponderance of inadan phosphates in Nos. 1, 2, and 3, or the natm manures. All the plants are a greas dealh green, and were attacked by mildew just bth being palled and cleaned on the 12th of 0roid. The namber and weight of the roots in di plot, with the weight per acre, was as follon

From the above statement it will beplit

$\mathrm{c} a$ that the swedes were most benefitted by tz manure which contained the largest amount iphosphate of lime rondered soluble by means fralpharic acid, aithough the total amount of one earth (insoluble phosphates) was less in foe. 5 and 6 than in Nos. 12, and 3, more sfecially in No. 2. The whole of these exfriments vere superintended by myself with Ferr prossible care, so as to avoid any error. the greatest objection to the above experiment
tas the small quantity of ground experimented a; therefore next season I intend allotting oneghth of an acre to each experiment. In conbaion. I may mention that the season was fenerally fine, not much rain having fallen ustil her the roots were nbout two thirds grown.T. Kexsngton, F. C. S.-Gardener's thronicle.

Insects the Past Year.

The following letter of Dr. Fitch to the frectors of the New York State Agricultural pciety, and published in the last number of gir monihly journal, will be found to contain och aseful and interesting matter.-EDs.]
Gentlemen:-The past year has furmished an insual amount of impertant material for invesgation in the departnent in which I am occu.ad. And I bad contemplated with much satisstion, the account of the year's researches jich I should have to present in this address the annual meeting. I will endeavour to stily sketch the leading topics I had inbded to speak of, and if you deem this will of any interest to the meeting, it may be ad as some amends for my non-appearance.
The insects with which my attention was bost occupied the past year, were the grain his, the army worm and the wheat midge.d I wih aim to notice some of the more inftant facts that have been thus come to with pect to these is sects.
The first of these. the grain aphis, made its fent in a most remarkable manner. That an ect never seen before and not known to be sent in our country should suddenly be fuund dywhere in New England and most of the te of New York, in profuse numbers in every in field of this wide extent of territory, and Frally swarming upon and smothering the Po in many fields, was a phenomenon which thably has no parallel in the annals of science. Tit was possible for this insect so suddenly recome thus astonishingly nureerous. was a fitery which seemed to most persons to be eppicable. It is the most prolific of auy ect which has ever been observed. I find it mences bearing when it is but three days and produces four young daily. Thus the eendants of a single aphis will in twenty dass Funt to upwards of two millions, each day
increasing ther number to almost double what they were the day before. This serves to account for the surprising numbers which we had of this insect.
'?' ? aphis was everywhere supposed to le a new insect, and one writer went so fas as to name and describe it scientifically, in full contidence that the world had never before known anything like it. Aly examinations, however, fully assured me that it was identical with a species which has tong 'reen known in the grain fialds of Europe And on my announcing this, the crroncous views which one and another were adopting, were speedily abandoned.

Our best Europen accounts of this insect, however, are very imperfect. They only speak of it as occurring in June and July, whereas I find it is present on the grain the whole year round. And when the grain is but a few inches high, if half a dozen of these insects happen to locate themselves on the same plant, they suck out its juice to such an extent that the plant withers and dies.
As yet I have never been able to find a male of this species. They are all females. This is proved by placing any one supposed to be a nale in a vial; next morning too or three young lice are always found in the vial with it. The general habits of insects of this lind are well known. The aphis on the apple and other fruit trees, when cold weather arrives, give birth to males. The sexes then pair, and the female thereupon deposits eggs, vihich remain through the winter to start these insects again in the following year. I had suppcsed it would be the same with this aphis on the grain. I thought, when autumn arrived, I should meet with males and find eggs dropped on the blades of the grain. But there were none. The females and their young continued to appear on the grain till the end of the season. They are everywhere on the grain now, bunced under the snow, ready to warm into life and activity again when the spring opens. And on grain growing in flower pots, on which I am keeprog these insects in full activity through the winter to notice what I can of their habit, no males have yet appeared. When, and under what circumstanpe: this sex will be produced, is a most curious subject, still remaining to be ascertained. It at present looks as though the female and their descendants were prolific permanently, without any intercourse of the sexes.

Last summer, such multitudes of parasites, lady-bugs and other destroyers of this aphis, had become gathered in the grans: fields at harvest time, that it seemed as though it would be exterminated by them. But at the end of the season, this insect appeared as common on young rye as I had noticed it at the opening of spring. The present indications, therefore, are that this aphis will be as numerous on the grain the coming summer as it was the past, if the season proves favourable to its increase.

As to the army worne, it may be remarked that for almost a century it had been known that in this country was a kind of worm whose nabit it was to sudenly appear in particular spots in such immense numbers as to wholly consume the herbage over an extent frenuently of several miles, and then abruptly vanish, nothing being seen of it afterwards. Thus it was one of the most singular and alnost ane of the most formidable and alarming creatures of this class that was known to be in the world. Yet, what kind of worm this was, and what insect produced it, remained wholly unknown down to the present day. Appearing here and there al over the country, the past season, this army worm became the object of the decpest, interest; and from Illinois on the one hand and Massachusetts on the other, specimens of the muths brel from these worms whe sent to me, for information as to what the name of this insect really was. To these inquiries I was able to give an answer so full and explicit that there has been a general acquescence in the correctness of my decision or this subject.
With regard to the wheat midge, I would observe that, in a lecture before the Society a few years since, I stated that in this comutry injurious insects were much more numerous taan in Europe, occasioning us far greater lusses than are there experienced. I was assured of this fact from carefully comparing the statements of foreign authors respecting the depredations of particular insects, with , what we know of the same insects here. But I did not suppose it wonld be possible to show by any more decisive proof that the facts were as I stated. A year ago, however, I received from France a vial filled with insects as they were promiscuously gathered by the net in the wheat fields of a district where the midge was duing much injury. It thea occurred to me that, by gathering the insects of our wheas felds here in the same manner, it would furnish materials for a very accurate comparison of the wheat insects of this country with those of Europe. As the result of a comparison thus made, I find that in our wheat fields hear, the midge formed :59 per cent. of all the insects on this yrain, the past sumuer; whilst in France, the preceding sammer only 7 per cent. of the insects on wheat were of this species. In France, the parasitic destroyt is of the indge amounted t) 55 per eent.; whlle in this country, our parasites form oaly 10 per cent. And after the full investigation o: the snbject which I have now made, I can state this fact with confidence-we have no parasites in this country that destroy the wheat midice. The insect so common on wheat, and whinh resembles the Eurcpean marasites of the midee so closely that, in the Nrw York Natural ITistory: it is described as heing one of that species, and in the Ohio Agricultu al R-ports it is confident. ly set down as another of thrm.- I find has no. thing to do with the wheat midze, but is the
parasite of an ash gray bug whech is common on grain and grass, laying its eggs in the eggs of this bug, and thus destroying them.
In my lecture a year aro, I stated to the so ciety that the wheat midge had wholly varisted the plevious summer ; not une of its larva could I find, on a careful search over \approx extensive dis trict around me. But the past season this in. sect appeareel in the whrat again, as numprows as usual. This has led us into important changes in our viess of the habits of this insect. How was it possiole for it to utterly disappear from the wheat one year, and be back in it in swarms the neat ycar"? Obviously it must hare ? other places of breedmg than in the wheat And, therefore. if no wheat was grown in this country for a few gears, as has often been proposed, it would not. starve and kill oat thisis. sect. The insect would resort to these other situations, and would sustain itself there, returning into the wheat again as numerous as before when its cultivation was recommenced. And what ceuld it be that banished this insect from the wheat in 1860, and brought it back againin : 1361? The remarkahle difierence in the weab. er of these two years furmshes an answer to this question. When the midge fly came out to ds posit its eg rs in June, 1860, the weather waser. cessively dry; in 1861, it was very wet and showerg. Aud thus we learn the fact that thes: Hies cannot breathe a dry, warm atmosphere; they are forced to retreat to places where les air is damp and moist. When the uplands, te? plowed fields, are parched with drouth, th midge cannot abide in them; it must go tote lowlands along the margins of the streams, when it must remain so long as the drouth contince Here it must lay its egrs and rear its yons. depositing them probally in the grass groxizy in these situations. And hence we alsolem that if the last half of June is unusually $d f_{1}$ ez wheat that year will escape injury from te midge: but if the last half of June is very and showeis, this crop will be severels derate ted. Time forbids inv pursuing this sulagy further.

Yours traly,
Asa Firch.
(From t?ue Mark Lane Express.)

Experiments on the Potato Disease

So multifazous and vague have been theow tions of this widely spreading disease, that ites now becoms: almost habitual, especially in rix districts, to regerd a solution of it supzax vararies as honeless, and a moderation of antive proseres as an alsolute imnractiatiz. Now however, that it has assumed so consita ble an importanee in a social, moral, mefat economical, and cren political point of viser. are impressed with the desirability of diraz. the results oir series of investigations eatio nature of the disease, the laws it obsercoss
the modification of which it, at present, admits. Sone 14 or 15 years have clapsed since this intractable disease was by some ill-fated importa. fion brought to our flourishing crops, and from one or more as yet unascertained focuses, swept orer this and the sister-isle, dealing uneasiness and sorrow to every abode, from the princely ball to the hutch of the begrar. Speculations innumerable have spent their influence in complicating the matter, and in dishearteniner many snoble aspirant in the cause; but soon, we hope, me shall be able so to simplify (by accumulation of facts and well authorised inferences) its presumed abstrusities as to render its leading fatures encouragingly familiar to all. System isesential to the success of the least complex of investigations, and remindful thereof, must the trin sisters Theory and Practice co-operate, therwise the inductions of the one will be nulfited by the more tan rible evidence of the other, ndall their cssays cud in irrespondence and wofusion; and, with the latter views at heart, re have been actuated, through a series of years, . an attentive study of the potato disease. and are well satisfied ourselves (as botanists have efore) that it consists of a fungus, and for the ollowing reasons:-
1st. There exists, without exception, on every isased leaf, a parasitic fungus, visible as a light mould, to the unaided eye, and forming a a autiful microscopic oijeect.
2nd. The same fungus is discoverable in the iseased tubers, and in the soil contiguous to the pot on which the latter rotted.
3rd. A like fungus has, we believe, never yet en demonstrated on the healthy haulm, or bers.
th. This fungus, when carefully removed om the discased leaf, and transterred to the hstance of the healthy tuber, will (in from ur to eight days) cateris paribus, originate e enerific disease therein at the point of incolation.
th. With this fungus in your hand you may feet the haulm of a flourishing crop at pleare.
6th. All remedies, of any practical value in ecking the disease, are reconcilable with its ngoid origm.
th. All the so-called vagaries of the disease, soling in its attacking one and not amother d, one part in preference to another of the me bed, now spreading slowly and again infr, or even leaving your crop comparatively ai, are readily explained by the laws which rolate fungoid development, and referable to accive or passive migration of the seeds of fangas ('ratanical spores) being interfered th hr local peculiarities of site; or to their raination brins checked or permmently artel by atmospheric or telluric ajencies of tited operation. To popularize a fungus, atisit? A veretable of the humblest struc", "a miniature mushroom," that in every
instance springs from a parent fungus, often leading an independent existence and obtaining a considerable marnitude, as the meadow mushroom, puff-ball, ©c., \&c.; but, so disposed to play the parasite, that nearly "every earthly thing" is infested with its fungus; a few-to wit, the human tecth, tongue, throat, and respiratory organs, the "wounds of living men,": the helpless cateryillat-may have all organic structure transfomed to an exuberant fungus; the wheat, halley, and other cereal crops may be anuililated by their respective funguses; and the mellowing of fuits, their last chemico-vital process, is one prepatatory to their decay by the fungus. A fungus diffiers from all other vegetable structures, in having uearly the whole of its substance composid of reproductive matter, and in effecting its gereration by means of minute variouslyshaped and tinted budies, called spores, and which differ fiom seeds in possessing the capacity of germination from any part of their circumference to "hich favorable co-existence of heat, air, and moisture, may be presented; whereas a seed can only germiinate from one constant point.

We will now pass in brief review the several plans that have been proposed, and had their value tested, for the prevention of the potato discase, viz., the following :-

The method of Mr. Hardy. $\begin{array}{ll}\text { do. } & \text { the } \text { S. of Hornsey. } \\ \text { do. } & \text { The Russian Professor. } \\ \text { do. } & \text { Mr. Short. }\end{array}$

Own methods.

Mr. Hardy's plan is pretty well known in the south of lugland, and has for its object the destruction of a presumed (but by him undemonstrated) fungus. The tubers are planted in the usual way, or what is best, in ridges, and as soon as the disease appears in the leaves, the haulm is turned down and so retained. Mr. Hardy believed that by so placing the stems you would favour their ablution from the fungus by the rains, and that the parasite, falling on the ground, would, from lack of its waned ground to play upon, ignominiously perish. The spores alone are washed off by the rains, not the fungus bodily. Potatoes cultivated on the Hardy principle become affected in their stem equally soon as the most nerjected; but the tubers suffer, as a rule, mumerically less, and, occasionally, considerably less than those uninterfered with. The average proportion of discased to sound, which we have repeatedly ohserved, was one of the former to sesen of the latter.

The C. of Hornsey aspirant turns the baulm right and left, and places a little soil over the roots, believing that he does, thereby, exclude the rains, and so pressres the tubers from infection; the trae exphanation of the preserving influence of his plan is found in the fact of the majority of the spores (when put in motion by their own or extrancous force) having in conse-
quence of the horizontal direction of the stems, a greater chance of falling on the bare suil and perishing, than of descending to and about the tubcis. This method, when modified by planting the tubers in raised beds as hereafter described, gives most satisfactory results, the tubers being fine, full flarored, and diseased in the ratio of from one in fifteen to one in fifty.

The Russian Professor's principle resolves itself into the conviction of the existence of the disease.generating agent on, in, or about the seed-tubers, and the remedy thereby surgested seemed plausible enourh; it was to effect its destruction by artificial heat; viz., by drying the seed tubers in ovens until they were shrunken and wrmkled to almost apparent destruction. Potatoes so treated grew in the ratio of 66 per cent.; their stems were, as a rule, weak, and became infected as sown as any uther; whilst the tabers, moderately suund at the getting up,
apidly rotted at the proportion of 60 per cent.
Mr. Short offered to the pablic a remedy which, at first sight, seemed to be the must feasible, and of the greatest awail, of any heretofore proposed; it was given as original, and, as far as he was concerned, probably was so; but it had been previously carried out in pinciple by ourselves, and stigmatized as scarcely worthy of comment. It consists in planting the tubers in rupres; the former six inches apart, the latter thirty; and as soon as the disease is unequivocally established in the haulm or tuber, in turning down the stems, and covering them with six inches thickness of suil. Nuw such a plan is, in limine, laborious, expensive, almost impracticable in sume gardens, from scarcity of soil, and, practically, of scarcely any worth, even when all the skill and patience of the most liberal experimenters are thereon bestuwed; for if you cover the haulm on the first appearance of the disease in the leaves, you do it at a time when the young tubers are nu langer than marbles, or to be more precise, from $\frac{1}{2}$ to $\frac{?}{7}$ of an inch in diameter, and though they are absolutely sound, they are of no culinary usef niness; a rain, if sou wait till the disease has ad:anced further down the stem, till the tubers are tulerably fue, and only just tunted, here and there, with the disease, you find the great heat and moisture evolved by the decaging stems and the fungus thereto adherent, so to favour the spread of the disease, that in one week the number of diseased would reach 1 in 10 , and go on rapidly increasing till your potatoes would be diseased in the proportion of 1 to G. Moreover when the haulm is covered with earth, all true ripening processes at once cease, and Mr. Short was premature in his remarks on the quality of the tubers grown by his method, as they always are, and must necessarily be, smaller, closer, and less flavourous when cooked, than the typically perfect tuber, but comparatively good when the generally anferior quality of the potato crop sis cunsidered.

Owx Mermons.-No. 1. When the haulm is diseased about half way down, cut it off close to the ground, rake the soil over the lower portions of the stems, and leave them in the ground one month; this plan is simple, inexpensue, and rives in must seasons a very fair result, e. g., in the best of our yields only three, in another only ten per cent. were diseased; the potatoes in all cases, were of good size, fainly mealy when cooked, and kept remarkably well.

No. 2. Plant the seed tubers in 'ridges, and when the disease appears in the haulm tion it right and left, as in the Hornsey method, asd place a hitle carth over the roots; then proced as in the previous (own method No. 1) and yon will still have better results.

No. 3. Decidedly the best method hitherto made public, but une unfintunately almost too tedivas and expensive to be carried out excep fur experinent, or in thuse gardens in which io expense is of su much consequence as an abo dant crop of fine sound putatoes, is the follow. ing:-Mamure your land in autumn, ridge it afresh on some mild day in the winter, and at the planting season raise therewith a series of beds or rideres 30 inches distant from each other, as high as half of the intermediate soil on eate side will admit of, and ponting northeast and south-west; in these let a treach be made enth inches deep, therein the sced tubers placedin inches apatt, and the whole covered with soile fine and light as procurable. (We find the best time for planting potatoes, to be treated on th plan, to be from the middle of March to the lid or l2th of April); after the haulm is well ${ }_{\text {b }}$ rake the soil up each side of the ridge io the stems, once or twice a month, and whente discase appears, carefully watch its pregraj and when the disease appears, carefully mitd its progress, and as soon as the main stem ${ }^{\circ}$ affected, stip off all the leaves and the distad part of the main: stem, carrying them carefty away, and deeply bury them, leaving the desk ated stems to desiccate, or to throw out frat leaves for one month. On a fine dry darg up the tubers, remove all superfluous dirt thar from, and when perfectly dry, stow them anti for spring use, resting assured that all fon tid rutten in the spring were tainted and orefleds. al the harvest; this method gave in one instiay only one, and in another only two and a halifa cent. diseased, in both of which cases the tok were fine, of excellent quality: and kepira fectly somed.

Frum the.t other sumilar investigatio. we may make the following general oberia tions:-

No. 1. The fungus, as a rule, first attacisit stems (but not necessarily so), and then scends to the tubris.

No. 2. The extirpation of the drease fit our island is an impossibility, except bras veisal concurtence and through a scries of fes of preventive measures.

No. 3. Every sort of potato will, under faourabie relatious, suffer; but, as a rule, the ficier the sisin the less prone is the tuber to fer a timely nidus to the spores.
No. 4. Potatoes grown on virgin soil, whether ff to their fate or not, will be, numerically, less Beased than those grown on beds that have en, previously, continuously cropped.
No. J. Land that bas lain turf, waste, or ppse, for, at the fewest, 30 years, will not grow olatos proof against the disease-one of the orst crops we ever saw grew on soil that h?d in undisturbed turf for 30 years.
No. 6. Diseased stems and tubers slould be ecaried out of the garden, and either buried t burnt.
No. 7. No compost or stytic dressing, e. g., we, tan, vitriol, or artificial manures, employed a propurtion compatible with luxuriance of orith, will impart to the soil the property of reecrimg the tubers from infection.
No. s. Warm, humd weather, with gentle reze blowing from a variable point, is favoura? to the invasion and rapid progress of the jease; whilst cold, dry weather immediately res an obvious, but usually temporary cheek, its advance.
No. 9. Manure used at the time of planting Il esert no influence in determining the invaon of the disease in either stem or tuber, but pears slightly to increase its activity after it sdeclared itself in the tubers.
No. 10. Soils which are well exposed, light, j, and rich in character, are those that predisse least to the spread of the disease in the bers; whilst wet soils, especially if shaded, nder them much more amenable to its influce.
Yo. 11 . In the present state of science no ecan renture to aim at, or propose, an infalle remedy; the best we dare aspire to is to ing the disease by feasible and mexpensive asores within such limits as to be practically no universal consequence; and with a view stimulatin. 5 others to join in the furcherance so beneficial an object, we sincerely offer sei data as bases or ands to their enquiries, ping, ere long, to substantiate, by conjoint in:tirations, this desideratum of the Palace and - Mauy.
E. Hoitann, M.B., \&c., \&c. Bhoughton, Sussex, Feb. 11, 1862.

A Analogy between Plants and Animals

The analogy between plants and animals, ilher as it is, has not yet been appreciated in Hs consequeners. Every one knows that nf of the vital functions are represented by Ttispouding processes in vegetable physiology; tnutrition, absorption, secretion, respiration, dreproduction, are essmutial parts, in no meta ancal sense, of the life of flowers and trees.

In some of their habits ond properties, especially those comected with the circulation of their sap and the adaptation of their external coating to the exigencies of climate, these simple organisms, which we sometimes rudely term inanimate, display, if we may so say, a discriminatiou and a self-protecting instinct which have excited the marvel of naturalists. The conditions of health are not, indeed, the same, but similar, in the case of a tree and in the case of an animal ; and the violation of these conditions is equally fatal in its effects. Hardier in many respects, in some othe strees are far more delicate than animals, and, if their diseases could be ascertained and catalogued, they would probably look almost as numerous and formidable as those which fill medical text-books. Considering the immense value of timber, as well as the lieemmess of our national taste for ornamental woods, it is certainly strange that the pathology of trees should have been comparatively neglected in this country. The most recondite experiments have been carried on by scientific men to find out the exact proportions in which earth, air, and water contribute to their sustenance, and the ingenuity of landscape gardeners has been exhausted in devising methods for their safe transplantation. But all this time trees have been pining and dying in the prime of life, and strewing the forests with their almost worthless carcases, and yet no one seems to have bethought himself of ministering to their infirmities, and curing their maladies by timely remedies. Hitherto pruning and lopping have been almost the only operations known to foresters and gardeners; and if the site of a plantation has been selected with due regard to soil and shelter, and its surplus wood periodically thinned out, no other precautions against premature decay have been deemed necessary or practicable.
Our neighbours, the French, thongh they may be less alive to the beauties of scenery than ourselves, have always shown wuck skill in economizing the bounty of Nature. Roadside avenues are commoner in France than in England, and the utility of trees is thoroughly ap. preciated by the peasantry. We are not surprised, that the first step in the medical, or rather the surgical treatment of trees should be taken by a Frenchman. AK. Robert, the gentleman to whom we refer, began lis labours some twenty years ago, and since that time has undertaken the cure of rast numbers of trees, especially elms, in mavy parts of France and Belgium. He has taken out a patent for his ssstem, and, if we may judge by tiuc testimonials and honours which he has received from scientific societics and public bodies, his success must have been remarkable. His theory is, that the most inveterato enemies of trees, and especially youns trees, are not excessive moisture or unfavorable peculiarities of gromid affecting therr roots, but certaia tribes of sylophagous insects. Of these the clief and most truculent are the scolytes
and the cossus; and the art of curing the ligneous consumption, which has hitherto been considered moital, consists, according to him, in destroying these insatiable parasites, and furtifying the trunk against their future ravages. His first experiments were made on the large trees bordering the pablic walks of Paris, and with these he proceeded cautiously and sralually. He scored them in longitudinal sections, hoping in this way to quicken the circulation of sap in the bark between the incisions, at the same time that he laid bare and extirpated the tumelshaped nests of numberless tree-consuming insects. Encouraged by the results of this attempt, he ventured to try the effect of stripping trees thus affected of their whole bark-an operation not mnoh less bold in its usn way thau that of flaying a human being. However, we are told that it succeeded to admitation, that "the scolytes and cossuses found themselves instantancously annihilated," and the grubs still in a state of unconsciousness, were buried alive in the process of cicatrization. The trees threw out new layers of "liber," or inner bark, and even in reased in bulk, as we learn from another source, more rapidly than their unmutilated contemporaries. Ever since the discovery was made, the more slashing practice has been universally adopted, and we are told that thousands of clms, already with one foot in the grave, are now convalescent patients or restored to perfect health by the benevolent exertions of M. Robert.

No English trees, so far as we are aware, have yet come under M. Robert's scalpel, and we should be the last to recommend a hasty application of so trenchant a srstem to the noble clumps and single trees of our public and private parks. But it is certainly worth a trial ; for, if there is any trath in the theory, it goes to prove that the hostile scolytes and cossuses are not only responsible for the damare done by themselves, but serve as sappers and miners of other invading insects, besides opening cracks and channels in which the wet lodges and eats into the wood which they generally spare. It is not impossible that further researches will disclose some means of prevention which would be preferable to MI. Robert's cure. Meanwhile, however, we have every motive for endeavouring to save the scanty remnant of those woods which once covered Great Britain, As far back as the beginning of this century the neglected state of the Royal forests, and the wastefulness of permitting great oaks to fall, without taking any ac count of their value or supplying their places with young saplings, were pointed out hy Nelson. Since that tune we foar that the growth of new plantations has not kent pace with the cutting down of old ones, and that we are becoming more and more dependent on foreign countrics for our timber. On free trade princinles we have no right to object to this, but so long as it continues to be our interest to grow timber at all, it is surely a dictate of prudence to make it as remuncrative as possible by preserving it from
needless decay. Especially in the metropolie where vegetable shade is so scarce and so grate ful, the loss of a piece of fuliage is a serious misfon tune. How injurious the Loudon atmosphere is to trees has lony been known, and it has been remarked as a significant fact that the one whind Hourshes best in this smoliy medium is the plane, which chauges its outer bank anıually. The chns have no such resource, aud whether insect or impeded exhalation be the cause, these char acteristic ornaments of our parks have a sickly look. It has been predicted by a prophet of dendrology that elins will be extinet in Englacd before another century has elapsed. The bse idea of such a calamity should rouse the Woods and Forests-for the functions of that depan ment have not expired with its name-from theit lethargy on this subject. A generation must pas away before the place of a full-grown tree cas be supplied, and the stately verdure of our pats testifies to a forethought which is still rarer nor than in the days of our grandfathers. Mento often plant for themselves, and for themselra only, filling up with horse-chesmuts, and othe trees of rapid growth, but short-lived beaut, the gaps in ancestral avenues of oak and ela We lament this selfish short-sightedness whe we see its effects on the country seats of indind uals; but we have a right to exclaim againstia when it affects the interest and pleasure of te nation. We cannot, indeed, blame Mr. Compa and his predecessons for not having been the first to hail M. Robert's new invention. Nor, however, that it has been sanctioned by espeis ence, we are warranted in hoping that notion will be lost in emploging some new Evelyato report upon its application to the forest trad which Englishmen, from the earliest times, harif learned to love and almost to reverence.-Timen

Care of Cows before Calving.

The following extract from a Prize Essay ${ }^{\text {es }}$ the "Rearing of Calves," by Thomas Boriat published in the Journal of the Rosal Agir cultural Society, (Eng.), is applicable to ${ }^{\text {E }}$ latitudes:
"The health and condition of the corbefan calving, greatly influence subsequent resilts A late milked, lean, raking, ill-cured for best has oftentimes an easier parturition than thes that are better farnished in these respectsBut her after milking has a tale to telld neglect somewhere; and the scraggy, "sid condition of the calf throughout its sitio course, often arises more from this cause the from any other. Hence, we would say dy the cow a fair time before calving, and ss that she lias something better than bals straw to live on, clse the calf and its onps will assuredly lose by it. lBut what is reger ed as a fair amount of time for being dij! If a cow brings her first calf when from 1 m
to three years old,-whicl the majority do, though all will admit that it is too canly -we should not care to milk her more than fre or six months after calving. By this means she will grow and increase in size and ralue her second calf. But a cow from the fourth to the cighth year, if in good condition, eded not be dry more than six weeks or two noonths before calving; i. e if fed with a horoughly liberal hand throughout the year. imore sparingly fed, or if the cow exceeds he latter age, then we should preter her being iry three montlis before calving. But, of -urse, there are exceptions to be met with, lich camot coine under any general rule, uch as the calse of animals whose flow of filk is so strong as to continue almost up to hetime when a new hacteal secretion comwences."

How to Feed sut Roots.

As root culture is greatly upon the increase this country, and many are trying their first xperinatents with them this winter, we will rop a few hints upon their economical use. othing is more common than for beginners the business to confine an animal entirely the use of routs. They go upon the prinple that ful cannot lave too much a good ing, and sive one to three bushels of turnips a day. The change in diet probably sets e animal to scouring, and turnips are voted humbug, when the humbug lies altogether ignorance of the feeder. All animals like a riety of food in their dict, and hay or nav should always form a part of their daily der, no matter what else may be added.his course should be followed, whether we e secking to maise milk or beef, or merely heep an animal in a thriving condition.fattening a bullock, a bushel or so may be ren according to size, making out the rest the feed in hay, with some kind of grain meal. In feeding milch cows, the same -antity may be given, mixing the sliced roots ith the cut hay, at three meals danly. The cal will add more to the quality than to the antity of the milk. Stock cattle with caty of hay and roots will not need meal keep them thriving. A good root cutter is dispensable in feeding out roots.
Then, as to the order in which the various sts should be used up, we always begin with ewhite, or soft turnips. These grow quickand remain in their best condition but a w. weeks. By the first of Jamuary they gin to sprout, and lose something of their lue. The ruta bagas and white French turskeep well through the winter, and may used at any time; carrots and sugar bects jbe used as soon as they are dug. The gel wurzel aceds to undergo a curing
process, and should not be used before February. They are excellent kecpers, and will hold on until June. If fed out the first part of the season, they make the howels loose, and lead to a false estimate of their value.Analysis shows that the mangel has nearly twice the nui,itive matter contained in the Swedish turnip, and experiments in feeding confirm the results of the laboratory. They will yield from fifty to one hundred per cent. more in quantity, under ordinary circumstanees, and are much the moreprofitable root to raise. We find our root crops enlarging from year to year, and that, perhaps, is the best testimony we can give of their value. Our list this year embraces several varieties of the white timips, rock turnips, and ruta bagas, ycllow and white carrots, sugar bects and inangel wurzel.-American Algriculturist.

The Royal Farms.

the shim and hone farms, windsor.
[The following description of the late lamentcd Priace Cunsort's farms at Windsor, from a recent number of the Agricultural Gazette, will be read with interest on this side the Atlantic, and will probably afford some usetul sugges tions of a practical nature to some of our readers. Establisbments of a similar description are now getting common on the Home farms of a number of the wealthy land owners of the United Kingdom.-Tivs.]

As you wall down the "Long Drive" trom the Castle you pass the grounds of Frogmore upon your left, and beyond them on the same side lies the compact homestead and residence known as the Shaw Farm. It has always been a home farm for the supply of the Castle. The late Prince Consort became its tenant in 1849; but up till 1853 it was more directly under the management of the late General Wemyss.Since then it had been placed in the hands of the late Mr. Wilson, as steward for the Pince Consort; and his successor, Mr. Tait. the present manager, has accordingly been here but a comparatively short time. The manager has altered but little since 1853, when Mr. Wilson, under the Prince's instructions, commenced the iormation of the short-horn herd. The principal fea:ure of the farm even stili is the admirable equipment of the land with buildings-the exceedingly complete and well arranged farmery at the Shaw, and the perfect arrangement of sheddings, houses, and yards for stock nearer Frogmore, where also the royal dairy has been erected. The herd is, however, groxing in numbers and in merit, and though the late Prince Consort had hitherto been an exhibitor of short-horned breeding stock, two or three
had been selected last antumn for a first illus. tration of his achievements as a short-horned breeder at the great show of 1862 .
Though not landlord, as at Barton, the other relations in which he stood gave scope for the illustration of his character as an employer and a neighbour. And one of the most interesting of these illustrations was to be seen in the interest which he took in the welfare of the young men whom he emploged. One part of the building at the Shaw farm is an eight-roomed house, where a number of them lodged. It is furnished with a room where they took their meals, sad another used as a reading room and for an evening class. The attendance at this winten's evening school was registered, and "copies" and other marks of progress in education were periodically inspected by the Prince, who awarded prizes for attendance and improvement.
The Shaw farm includes 800 acres of land in the Park and elsewhere, 120 acres being arable. It is worked by six pairs of horses-a larye number for the land, and more than would be needed were it not for the considerable extra labour connected with roads and estate manarement. About thirty men are employed, besides other hands, at haymaking and harvest times. The farm stud is wholly Clydesdale, and the Prince had been frequenily successful as an exliibitor of them at English Agricultural Society's shows. His last act as the temant of the Shaw farn about three weeks before his death, was to direct Mr. Tait to nail up over the stalls the premium cards which had been placed over two of his horses at Leeds, and which had lain till then in the farm-house unattached. In anecdotes of this kind, in the frequent walks tahen by the Queen and himself round the two farmeries, in his personal inspection of the monthly report presented through Sir C. Phipps, in the instructions given with reference to competition at the national exhibitions, and in his frequent inquiries and conversation about the eveningschool, the Prince chiefly showed his interest in these arms.
The small quantity of arable land attached to the Shaw farm is managed on the five-field system, two corn crops being taken in succession. There is no lack of manure ; the Park supplies immense quantities of fern, which 15 used as litter in the yards; and great store of yard dung is obtained thus, and from the consumption of hay by the large dairy herd, and that of hay and roots by the young stock. The arable land is accordingly in a high state of cullivation. Forty tons of mangel wurzel per acre are a common crop, and as mucl as sixty has been obtained. Those lying in store and now in daily use are certainly a zemarkably fine sample. The corn is carried home and built in round stacks in a yard near the fixed steam engine. The roots are stored close by.
The buildings are remarkably complete and well arranged. They stand upon a square of
ground, the sides running north and south, east and west, respectively. They consist in the firt place of two rows of buildings along the tro sides of this square, ruming north and soutb. The row upon the eastern side includes cartshed at either end, two.storied lodging.house and school in the middle, and boxes and farm-hore stables.
The row on the western side incluades carpen. ters' yard and shed, thrashing barn and gran. nerics, steam engine and boiler house, floor for mixugg claff with pulped roots, and piggeris around three sides of a small square, in the midst of which is the food house for their supply. Between these two north and south lines, on the east and on the west sides of the square, there are three rows of buildings, icc., with roadmass, between them, and also between their extrem. ties and the two lines already described.
The first row on the northern side include foreman's honse, stable, poultry house, and blacksmiths and carpenters' shops. The scoord row includes a series of boxes, hamels, (small yards) facing south, and double stalls, with a large root house for the supply of tha whole, where Gardner's and Moody's turnip cilters are fixed and worked by strap froma slaft to which the motion is given by a small oscillating one-horse steam-ongme standing on the floor, steam being brought for it alonga pipe from the thrashing engine boiler hor:ie just across the road. The third row oceupis nearly half the width of the square, and is whole length between the two lines of building at its east and west ends. It is divided midnä? by a wide shed in which shed.feedng of shepp on sparred floors is adopted, and on either side with sheds at their further ends are two capial yards for young stock. The sheep sheds ars now full; they are said to answer well. One hundred and fifty Cheviot wethers are now fattenng there. The floor is divided into pers about 9 feet square, holding about six sheeps piece; they recelve cut roots and cake, wid thrive fast compared with the progress made out of doors. As much as 100 cart-loads of capida solid dung are taken out from benealh them towards spring. The ouly fault in the arrage ment is the imperfect aecess given to the railh where it accumulates, and from which it hasio be lifted through trap doors in the floor. The place was perfectly sweet, and dry and deant The buildings are well supplied with com and cake crushers, millstones, chaff cutters and tor nip catters, all worked by steam power. Tte granaries are on a third floor over the thasth ing barn ; the corn is thrashed by Messs. Col. linge \& Co's engine, and delivered by trarelling cups to the granary bins above, whence it ms be sacked and delivered into carts outsideby overlanging crane and pulless from the end of the department.
Wood's combined reaper and mowing machire and other first-class implements of cultiration,
are lying in the sheds. The horses by th they are worked are managed on the tilis plan; the men working during the summer day from 6 to 11 and then com. in, and again from 12 to $5-10$ hours a day. ρ are worked hard and well fed, receiving lushels of corn a week, and a daily feed of sinaddition during seed time and severe ; and hay in effect ad lib. One foreman ployed over the men, through whom Mr. gives his orders; humself receiving them
any unusual arrangement is directed gogh Sir C. Phipps.
short walk takes you across this to the e Farm and dairy beyond Frogmore. It is that the dairy herd is chiefly kept, and that rinciple piggeries, those of the white Windreed, are placed. The whole accommodafor live stock here is of the most perfect
eprincipal feature in the arrangement is aguificent double-rowed cow-house, with its central gangway, lofty roof, and roomy arement generally. The arrangements for ning and for draining these and all other of this farmery are most perfect. There omplete system of pipage for the supply of rto troughs on one level throughout the ing. It is impossible in a short description smerate the many clever points of detail bich Mr. Turnbuli, the Castle architect, has ase buildings of his designing obviated a - many difficulties, with liabulities to nuiThe whole of the soakage and drainage esheds and yards is conducted to a manure , whence the liquid, collected in a tank, be cither pumped into water-carts and re-- for direct application to the land, or disted, as it more generally is, over the stallre, which is moved at intervals and stored rotection from the weather.
3dy access is given to all the yards and - for litter, chiefly fern-leaf mown from the and stowed away for its winter purposes, here pir-food, hay, and roots are stored, access is given by gangways to all the feedosses, stables, cribs, and boxes where the are kept.
ie of the chicf features in these buildings ally is the ample accommodation for pigs. .umparatively smaller white Windsor breed olf to 20 breeding sows-are kept here. pare Berkshire-10 to 12 sows-are kept other farmery. In both cases there is demand for the young stock for breeding sti. Mr. Tait gives the preference to the ior breed, both for fecundity and for pre"i As much as $£ 700$ worth of prodiuce has sold out of the piggeries at the Home alone in a single year.
edairy stock for which ample accommodahere provided, is for the most part kept se premises. Nearly 200 head of stock -5 kept-about 80 cows in general of the tem breed, besides 10 to 12 Alderneys.

The short-horns, of course are not get all pure pedigree stock-the pure-bred herd has been growing into existence only during the last cight or ten years.

But since 1855 pure Booth bulls have been used over the whole. Prince Alfred (successful at the North Lincoln Show in 1859, and hired in succession by the late Prince, the Emperor of the French, and Lady Pigott), Fitzclayence, and now Lord Hopewell, have been used over both the pedigree cows and the other stock, and the whole are thus rapidly acquiring a highbred and common family character.

The pure pedigree herd are descended chiefly from the following cows:-Alix (1853), by Earl of Dublin, bred by Sir C. Knightly, and bought at the Fawsley sale. Rachel, (1850), bred by the Prince Consort, by Goldsmith (10,277), dam Matchless, by Fitzhardinge (8073). Narcissus (185l), bred by Mr. Trotter, of Bishop Middlehan, by 3rd Duke of York (10,166), dam Norma by (7996). Coldcream (1851), another Fawsley cow, also got by Earl of Dublin (10,178). Graceful (1852), bred by Mr. Majoribanks, cot by Factotum (11,455). Bracelet (1856), bred by the Prince Consort, by Prince Alfred. dam Cowslip, by Bellville, de; and Sally (1853), bred by the Prince, by Lord Poppington (10,437), also out of Cowslip. Sally was the second prize heifer at the Paris show in 1855. Besides these, a few others more recently introduced and some of shorter pedigree might be included. The cows first named have all been good breeders. Alix and Coldcream have each had five calves and Sally six since 1856. Graceful and Rachel have had six each, and Narcissus five since 1855. They are lept in farr breeding condition. Much of their milk goes to the dairy, and no roots, therefore are given them; they have hay, pasturage, and water. A ready sale at long prices is, of course, obtained for young bulls, and the heifers are taken into the herd and have already begun to add to its number, as by Annette, daughter of Alix; Rosewood and Raby, daughters of Rachel, \&c.
The Prince had not been an exhibitor of short-horn stock in this country. He was, however, a successful exhibitor at the International Show at Paris, as already named, and had proposed exhibiting at the International Show this year at Battersea, to which end Prince Arthur, a yearling bull by Fitzclarence (14,552) oat of Annette, a daughter of Alix, by Prince Alfred, and two yearling hifers out of Coldcream and Narcissus are being got ready-whether this plan will now be carried out is uncertain. The late Prince was, however, as is well known, a constant exhibitor of other stock at English shows, and a large case full of medals won by him lies on the table in the Queen's apartment at the farm-house. No fewer than 27 silver and 5 gold medals and 6 cups have thus been collected.

Near the Home Farm stands the royal dairy
-a most beautiful sight to sec. An appartment some 36 - feet by 20 teet in height-the roof supported by pillars-provides marble shelving all around it and marble tables in the midst, on which the white milk dishes stand. The floor, wall, ceili ${ }_{\mathrm{g}}$ are all of porcelain-either Xinton's tiles an on the floor and roof (the latter presenting an openwork for ventilation), or white porcelain as on walls, or embossed and coloured poreelain as in cornicing and other ornamental parts. The whole is as perfect a combination of form, colour, and lustre as was ever provided for the pupuse which it serves, and which is observed in the design throughout. The utensils are of the best common kind-common barrel churn, \&e.
Hard by is the aviary and poultry house-a subdivided range of shed and wirework caged-inyards, in which the varous breeds of poultry and kinds of furn-yard fowl are kept.
You rerain the Shaw Farm and the residence of Mr. Tait by a walk through the now deserted grounds of Frormore Huase, beautiful in the magnificence of its timber trees, the smoothness of its grassy ghads and slopes, and the mixture of its groves and mounds and ornamental water; interesting, too, for the mausoleum newly erected in their midst, where lies the body of İ. R. H. the late Duchess of Kent; soon, however, to be more sadly interesting still for another resting. place soon to be provided, where the remains of the late Prince Consort will lie in the midst of scenes of quiet beauty, and close by the scenes just visited of intelligent activity, both of which he losed so well.

Alsike Clover.

Trifolium hybridum or Alsike Clover, is a species which appears to a certain extent, 0 combine the properties of the red and white clovers. It was considared by Linnæus to be a hybrid, and is cultivated to a considerable extent in the district of Alsike, in Sweden, from whence it derives its name; and was, we believe, first introduced into this country about 1834 or 1835.

It has for the last few years engaged the attention of agriculturists in Scotland and various parts of England to a considerable extent; and its reputation is now so firmly established, that we think it is likely to become much more extensively sown this season than ever it has been before. Its chief advartage consists in i's succeeding $r n$ land which, from repeate 1 sowings of red and white cloverssed, has become cloversick.

The treaiment required for it appears to be very much the same as for other clovers. Our practice and that of our neighbnurs, on clay land, has been to drill about eiyht or nine pounds of seed an acre, on barley or wheat, about the first week in April, care being taken that the seed is not deposited too decp in the soil. After barvest, if it has been a growing season, we let our sheep occasionally ran over
it, for a month or two, if the wealher is fice, r opinion being that the treading of the sth consolidates the land, and is of great aspadey to the Alsike, giving it firm root-hold. Abs the middle of October, it should be dressed pi about six or eight loads of farm-yard dang, short as can fairly be got. In the spring, iti require the usual bush-harrowing ; and when: has made a fair growth, the sheep may again! put on to it, and allowed to remaiu until first week in May, if intended for ssed: if r it can be depastured, as other clovers.
We are decidedly of opinion that it sbos not be fed later than the first week in May,if: seed. Still, we have seen it fed unill June; t the advantage appears doubtful, as it shonit barvesting of the seed too late on in he sest and if dry weather sets in these is some differ in getting it to make a good start. Last vest a considerable quantity was left for $:$ and the yield is said to be good, the quast fine, and the price more moderate tuan it! ever been before. It generally plants well; last season was an exception, a large bra' of the land sown having missed plant altoget It has been ploughed up for beans, mainlsor we consider, to the inferiority of last jear'ss In ordinary seasons, even when thin ins spring, it tillers very much and fills upins: marlable manner.

When required for mowing, it is leftin' same way as red clover, and on land ing: fair condition will cut two tons of hay an sc The feeding qualities of the hay are said in considerable, but we have seen no aualysisd value compared with ordinary clover bay.
Some difference of opinion is entertaindis the comparative merits of this rariety and. clover for the despasturing of sheep; it beity firmea by many growers that sheep will leare. owher kind ${ }_{2}$ di grass or clover to feed on theds whilst others consider that its principal unerih sists in its succeeding so well on cloversicts its perennial habit and fibrcus root beinges. similar to the red or white clover. Wha. has been grown, it has invariably beenforst excellent preparation for wheat; and net no doubt it will shortly become sown quit extensively as either red or white cloret. prove a most valuable acquisition to onration ial grasses. The more it becomes knoma, greater will be its cultivation; the high p that the seed has previously borne, ans scarcity, have hitinerto prevented ifs mor. tended use.-Mark Lane Express.

How to choose a good potato.- do pondent of a Scottish paper gives the follon: rule:-"'The finest, mealiest. and most nati: potatoes are always denser and heavier thas. soft and waxy. lBy taking advantage of. difference in their special gravity, the ligt inferior potatoes are made to sivim onde. face of a solution of salt, while the heag. good sinls to the bottom."

Agricultural Intelligutce.

Spring Shows.

- are informed of the following Shows to e phace this Spring. We request secretaries Agricultural Societies to inform us of the e of their cxhibitions at as early a date as sible, so as to admit of publication in time : of use to those interested:-
ullarton, Logan, and Hibbert Agricultural iety, at Mitchell, April 2.
iest Riding of York Agricultural Society, at ton, April 23.

Patents of Invention.

ureio of Agricuitite and Statistics, $\}$ Quebec, 20th Feb., 1862.
is Excellency the Governor General has pleased to grant Letters Patent of invenfor a period of fuarteen years from the sthereof, to the following persons, viz :mes W. McLaren, of Lowville, in the ny of Halton, "An improved feed gear for ${ }^{7}$ Cutters.- Dated 26th November, 1861.
mis Comer, of the township of Hinchinδ_{8}, in the County of Frontenac, Mechanic, improved Bec-Hive."-Dated 29th Nov.,
omas Blanton, of Drummondville, in the ty of Welland, Carpenter and Joiner, "An ured Broad.Cast Sced Sower and Drag." ted 291h November, 1867.
rin R. Langs, of the township of Brantford, e County of Brant, Farmer, "A portable abstantial Fence-post and Fence."-Date November, 1861.
ilip Cady Van Brocklin, of the town of ford, in the County of Brant, Iron Founder, improved combined Grain Drill, Cultivator, arse Hee."-Dated 29th November, 1861. a Branch Southwick, of Mont St. Hilaire, Counts of Rouville, Manufacturer of Wool lax dresser, "A new and useful machine parating shives, chaff and dust from the of Fhax, Hemp, \&c., to the be called thwick's Tow Cleaner." -Dated 5th Dec.,
thew Henry. of the township of Compton, County of Compton, Cabinet-maker, "A iow, to be called Henry's complete Plow." ed 9th December, lis6l.
thew Henry, of the township of Compton, \& County of Compton, Cabinet-maker, improved Fanning Mill."-Dated 9th ber, 1861.
es Howell, of the township of Dereham, County of Oxford, Moulder: "An Iron rmoulding and casting Plow Shares."16 th December, 1861.
lian Mahaffy, of the cown of Brampton, County of Peel, Blacksmith, "An im-, Plow.'-Dated 16th December, 1861.

forticultural.

Fruit Growers' Association.

We again insert the fulluring questions, and trust that those who have opportunities for observation, will give them their atention.

The Fruif Growers' Asscciation of Upper Canala

Desirous to collect and circulate information relative to the production of the several kinds of fruits in the various parts of the Province, respectfully requests the several Horticultural societies, County and Electoral Division Agricultural societies, Township Agricultural societies, and all gentiemen interested in the subject of fruit culture to cause answers to the following questions to be prepared, and sent to the Secretary, Mr. D. W. Beadle, at St. Catharines, C.W., on or before July lst, 1862

As the questions are all numbered, the answers may be numbered to correspond, and thus avoid writing down the question intended to bo answered.

QUESTIONS.

APPILES.

1. What varieties would you recommend as most suitable to be planted in your locality?
2. What varieties are most profitable for market?
3. What varieties are the most hardy?
4. What varieties have been tried in your neighborhood and found too tender?
5. Are apple trees subject to any disease, or the attacks of any insects in your section, and if so what?

SEASON FOR TRASPLANTING.

6. What season has been fuund most favenrable for transplanting, spring or fall?

DWARF TNEES.

7. Have dwarf apple, pear, or cherry trees, or either of them, been planted in your vicimity and with what success?

rear.

8. What varieties of pear would you plant in jour section?
9. What varicties are most profitable in your locality for growing fruit for market?
10. Have any varieties been planted and found too tender for your climate, and if so what are they?
11. What parieties do you find to be the moss hardy?
12. Are pear trees subject to any disease with you, or to the attack of any insect, and if so what?

PIUMS.
13. What varieties of plums suceed best in your section?
1.1. Have any varieties been tried which proved too tender for your cimate, and if so, what?
15. Which varieties would prove most profitable for growing fruit for marhet?
16. Is the fruit stung by any insect in your locality, thereby causing the fruit to fall prematurely, and if so what insect?
1%. Is the tree liable to any disease, or to the attacks of any insects: and if so what?

CIERRIES.

18. What varicties of cherries succeed best in your neighbourhood?
19. Have any varieties proved too tender to endure vour climate, and if so which are they?
20. What varicties can be profitably planted for marketing the fruit?
21. Are the trees subject to any disease, or to the attacks of any insects, and if so, what?

peaches.

22. Can the peach tree be grown in jour section, and if so, what varieties succeed the best?

APPRICOTS AND NECTARINES.

23. Can the apricot or nectarine be grown in your section, and if so what varjeties succeed the best?

Qunce.

24. Can the quince be grown successfully in your section?

STIC.AWBERRIES.

25 What varieties of strawberry have been found to succeed well in your neighbourhood.
26. What varieties would you plant for market?

raspiermies.

27. What varieties of raspberries have been found to succeed best in your locality?
25 What varieties do you recommend to plant in four neirhburbood, for growing fruit for market?
gooseberries.
28. What varieties of gooseberrics succeed best in your section?
${ }^{2} 30$. Is the fruit ever covered with mildew?
29. Do you know any varieties that are exempt from mildew in your section?
30. Du you know any means of preventing the mildew, and if so, what?

BLACKBERRIES.

33. Has the new Rochelle blackberry been tried in your vicinity, and with what success?

currants.

34. What varicties of red, white, and black currants are most esteemed in your locality?

gr.apes.

35. What varieties of grape have been planted in jour section?
36. Have any of them proved altogether too tender for your climate, and if so, which?
37. Have any of them proved perfectly hard and if so, which?

38, Do any of them invariably ripen the fruit well every season, and if so which?
39. Are there any vineyards planted in jo: neighborhood, and if so with what varietiesi
40. Any other information, pertinent to ${ }^{2}$ subject, such as the character of the soil tw predominates in orchards of your section; L^{2} soil found to be most suitable to the kindst, fruits, \&c.
41. Do you know of any seedling froitc macit in your vicinity? If so please give its B tory and description; lind, size, color, qualit time of ripening, growth of tree, \&c., de.

Editors of papers throughout the Proriz, are requested to give the above one or troi sertions, in order that there may be every upy tunity afforded to make the information song as full as possible.

Fruit Culture in Orchard Honses.

Read by Mr. D. Murray, Nursemyman, llt ilton, before the Hamilton Horticultr Club, on the 6th February, 1862.
Mr. President and Gextiemen,-In mft mer paper on the orchard house and culture, I gave a general view of the system: ${ }^{*}$ a representation of my hopes of its future; $:$ as I promised at that time, now make a fer: marks on the culture and management, α : ing myself principally to my own experias

I stated in my last paper that few treese. more satisfaction in the orchard house than. peach, the nectarine and vine; this as $\#$ being the most valuable fruits. The aprices. plum, the cherry, the pear, and fig, are also! adapted for pot culture. With many rana of the smaller fruits, the system adopted is: simple, and may be accomplished by any: who will give the attention. During thes mer months we select and mark amonst. maiden plants in the nursery lines the dita' kinds we want for fall potting. Those somsi are stopped and pmehed during the seasa their growth; much is gained in this my giving the trees a good start, whether aif mid or bush. We also make it a pointib. none but rooted trees of best quality; the lifted early in the fall, dressed and poted twelve inch pots; this size I find laracem: for any tree for the first few years; mbes. plants are weak smaller pots may be used..: compost we use is the top spit of rich a $\frac{1}{2}$ pasture land, say of it two-thirds, and cat of well decomposed manure and leaf mad well mixed together, but not sifted, pry three months previous to use; a good dxs of oyster shells, broken crocks, or cham the bottom of the pots. The roots of thep being then drained, they are potted; care a taken that the fine roots are all nicels spret
the mould well primed about them. When is done, give a good watering, and set 1 aside on an outside border, where they remain until there is appearance of frost; renore them under cover, lay on their side, pat on a good covering of straw to protect severe frost duriug winter. Examine them peutly when in their winter quarters in case maeks of rats or mice. When spring ar, uncover and place them in the orchard ${ }_{8} ;$ at first, water sparingly, but as vegetabegins to move and the plants commence Hi. watering is increased. Ventilate freely n the weather is favourable. Trees are clas\because pyramids, dwarfs, or bushes. During the nas of growth particuiar attention is paid to orm of the trees. Care must be taken in hing and stopping, the only means by which 11 proportioned tree is got at, and well furto with fruit spurs. The' syringe must be freels morning and evening, when the trees of in blessom. When at this stage the are subject to be attacked by the aphis; must be carefully watched, and when they their appearance, either fumigate or ge with tobacco water. Some of the young trees will show fruit buds the first season, eren produce fruit, but this must not be itted, as it is injurious to the future welfare e tree.
e fruit trees are all top-dressed in fall or spring, the latter period I prefer in this inf, the trees being kept in a dry state all r exhausts the soil. If this is properly it is not necessary to change the pots for a vof years. We use the same compost in resing as formerly recommended in potting rees. Take the old mould out about half dorn the pot, taling care not to injure the g rootlets or spongioles that are clusround the stem. When that is done, we fill up the space with fresh compost, ramt firmly down with a piece of stick made he purpose; give a good watering, thor f wetting the whole of the ball. The old aken out of the pots, if examined, will be quite exhaused, and full of small fibrous , the greater portion of which will be found dead or dying; this is a natural consee, they having done their work.
pot culture there is an annual provision of rootlets emanating from the stem as ils referred to, they get hold of the fresh sist, very soon run through it, and become mincipal feeders of the tree. We occaIs use liquid manure for all our trees duregrowing season, but only by the hand of perienced person, otherwise there would isk, many of the liquids being very powWhen it can be obtained, a liquid from droppings is very excellent, and may be mithout danger. When the trees are in Jn air is given freely, but if so at an period in the season, when the weaiher will
not permit of 1 t, or of the bees being in to assist in the work of impregnation, we must do it by occasionally giving the stem of the tree a gentle rap with a stick when in bloom, always making choice of a clear day. We find this simple method quite sufficient for the dispersion of the pollen. Those having plenty of time at their command may do this nice piece of work with a campl's harr brush, and do it very effectually by passing the same slightly over the anthers when the pollen is full up. This is a very interesting piece of work. Care flust be taken in thinning the fruit in proper time, and not to over-crop the trees. In dry weather continue to give plenty of water, be watchful of the red spider, and all other pests that affect the trees at this season. When the fruit is well advanced give pienty of air both day and night, without which the fruit will not be high in flavour.

For vines, add to the former compost a little crushed bones, giving plenty of water; and as soon as the roots begin io fill the pots give a good watering with liquid manure every third day; attend punctually to stopping the shoots and laterals; stop one joint above the fruit branch, and the laterais two from base on the shoot they spring from.
In conclusion, I beg to state I might have gone more minutely into this subject, but my main object was to convey to you my views as shortly and briefly as possible, trusting you will all encourage the orchard house and pot culture.

> The , \#poultry Warì

Something about Hens.

A correspondent of the N. H. Journal of Agriculturve says: "It is a pleasant recreation to tend and feed a bevy of laying hens. They may be trained to follow the children, and will lay in a box. Egr shells contain lime, and in the winter when the earth is bound with frosts or covered with snow, if lime is not provided they will not lay-or if they do lay the eggs will of necessity, be without shells. Old rubbish lime from chimneys and buildings is proper, and only needs to be bronen for them. They will often attempt to swallow pieces as large as a wainut. I have often heard it said buckwseat is the best food for hens; but I doabl it. They will sing over Indian corn with more animation than any other gram. The singing hen will certainly lay egrs, if she finds all things agreeable to her; but the hen is such a prude, as watchful as a weazel, and as fastidious as a hypocrite-she must, ske will have secresy and mystery about her nest-all eyes but her own must be averted-follow her, or watch her, and she will forsake her nest and stop laying. She is best pleased with a box, covered at the top. with a backside aperture for light, and side door by which she can escape unseen. A farmer niay
keep one hundred hens in his barn, and allow them free liberty to trample over his hay-mow, set where they please, and lay where they please -and get fewer eggs than one who hes a department espectially for his fowls, and keeps but half as many, and furnishes them with corn, lime, water and gravel, and who takes care that his hens are not disturbed about thpir nests.
"Three chalk eggs in a nest are better than a single eqy. Large eggs please them. Pullets will commence laying carlier in life when nests and errs are plenty, and other hens are cackling around them. A dozen fowls, shut up away from the means of obtaining other food, will require something more than a quart of Indian corn a aay. I think fifteen bushels a year a fair provision for them; but more or less, let them always have enough by themand after they have become habituated to finding enough at all times, they take but a few kernels at a time, except just before retiring to roost, when they will till their crops. But just so sure as their provision comes to them scantily so surcly will they raven and gorge themselves to the last extremity and will stop laying. One dozen fowls, properly tended, will furnish a family with more than 2,000 eggs per year, and 100 full grown chickens. The expense of feeding the dozen fowls will not amount to eighteen bushels of Indian corn. They may be kept as well in cities as in the country, aud will do as well shut up the year round as to run at largeand a grated room well lighted, ten by five feet, or larger if you car. afford the space, partitioned off from the stable or other outhouse, may be ased as a hen-house In the spring, (the proper geason) five or six hens will hatch at the same time, and the 50 or 60 chickens give to one hen. Two hens will take grod care of one hundred chickens, $\mathrm{u}^{\text {"il }}$ they are able to climb their little stick rosts. They should then be separated from the hens entirely. They will wander less, and do better, away from the parent fowls.Chickens pat in the garden will eat up the May buess and other destructive insects; but for my own pait I much prefer four or five good sized toans; for they are not particular about their food, but will snap up ants and bugs of any kind, and will not, if a good chance offers, refuse the honey bees, but will down them in a hurry. In case of confiuing fowls in summer, it should be remembered that a ground floor is highly necessary, where they can wallow in the dirt, for they like it as will as the hog likes muck."

Ueterinarn.

The Progress of Veterinary Science.

The following is a trief report of the introductory lecture, delivered by Mr. Andrew Smith, Veterinary Surgeon to the Board of Agriculture-
at the ecmmencement of his course of lett on Veterinary Science the present winter:

In commencing a course of study and systematiu enquiry into the details of a pro sioo, it is desirable and interesting to knon 1 tle of the early history of such profession. I will, therefore, first endeavor to give as outline of the progress of the Veterinary! During the last century, the study of thediso of the lower animals may be said to havety in a somewhat scientific manner, althoug find, previous to that time, even before Christian era, that celebrated and emineal practised both human and veterinary medic Hippocrates, the most eminent physician of times, wrote an elaborate work on the tr and practised the healing art indiscriminated both man and beast. During the 17th oct numerors treatises on the lower animis. their di_eases were brought before the publia number of them were but of little vale, all tended to direct attention to the diz of these animals.

In 1761, the first public school for thety ing of the Veterinary art was establityst Lyons, under the patronage of the Frends vernment, which institution had for pins: the celebrated Bourgelat, well known to Medical profession by his writings on dat and Medicine. A regular course of Veter' Medicine was there taught, under whichster acquired an acquaintance with the varioust: of disease, and the action of Medicines a mestic anmals. A few years later was 6 : lished the present school at Alfort, near? which is still supported by the Goveramest, of course is in a most flourishing conet. Subsequently, schools were established iat. sia, Germany, Austria, London, \&c.

About the year 1780 , St. Bel, a Freach came to London, and made proposals to. lectures on Veterinary Medicine; homerie propositions did not meet with success ad returned to France. Two years aftervark Bel made a second attempt to found a sclax London, and this time he was taken nois by the A Aricultural Society of Odeham, 2 : institution was founded, called the Velain College of London, of which St. Bel זม cipal and Mr. Blain assistant. Honeria Bel was not spared to see the fruit of hish brought to maturity, being suddenly catio the midst of his usefuluess. After Sti death, it was necessary to appoint a pes. fill the vacant chair. Mr Clarke, of Edio. the King's Farrier for Scotland, was aste. come forward as a candidate, but declined. Morecroft, an eminent practitioner of la who had written a treatise on Lamenesis Horse, and who also had studied the Y Profession, and afterwards learnt the Vetin. Science in France, was r.ext brought for and also Mr. Coleman, who had somentad tinguished himself by some experimeribs
a. These two gentlemen were elected as Professors. A regular course of, lectures delivered, and dissections of the horse caron. A committee was appointed, consisting e most distinguished Medical practitioners ondon, to examine the pupils, and such sas this committee considered to have acta sufficient knowledge of the Art were red Certuficates.
e students attending those lectures were ad the privilege of attending the lectures fis) of the Medical committe, a number of embers composing it being teachers of cine. And among the first to whom the inary profession are indebted, was that atizable promote: of human medicineHunter. The British Government now la sum of money ammually for its suppi.t, the rank of Commissioned Officers was ed to such as were appointed to the Army. ast India Company, seeing the beneficial s produced by such appointments, also apal Veterinary Surgeons to serve with their in India. After Mr. Coleman's death, Mr. 1, formerly assistant professor, was appointead Professor. He again was succeeded r. Spooner, who is at present Principal of orai Veterinary College, London.
Simonds has instituted lectures on the ma, Physiology, and Diseases of the $0 x$, and Dog, and Mr. Morton on Chemistry, fateria Medica. Mr. Morton has now reand is succeeded by Mr. R. E. Tuson.
:average attendance of students at the a College is about 100; and a student attend all the different courses taught at stitution for at least two years before preghimself for Examination to be granted oma. The Board of Examiners consists uical Professors and Practitioners, aiso a n number of Veterinary Surgeons, who liated as members of the Board. Of , numbers of these students do not intend sttice professionally, but are gentlemen mers, \&c., who perhaps, attend for one n, and get some insight into the Anatomy brsingogy of the horse, and the nature of Jee common diseases affecting Horses and , and which is of the utmost benefit to as orners of Stock.
e than forty years ago, Professor Dick, inburgb, commenced to give instruction terinary Medicine, and was recornized by ighland Agricultural Society of Scotland, succeeded in establishing the Edinburgh sary College.
subject of Veterinary Surgery was first ht permanently under the consideration of ghland Society of Scotland, at its general in June, 1823 , when a committee was ap-
wand arrangements nade with Professor uand arrangements made with Professor to deliver a course of lectures. But preto this, he had given publicly a series of re, for several years.
lectures under the auspices of the Society
were continued in 1824, '25, '26, '27 and '28during which time the attendance of pupils was limited. The number of students educated at the Edinburgh College, who obtained the Highland Society's Diploma from 183s to 1844 were 263; the number who obtained the Diploma of the Examining loard, which was appointed by the Royal Cullege of Veterinary Surgeons, and sat at Edinburgh from 1845 to 1845 , was 59 ; and the number who have received the Diploma of the Highland Society, after resuming its examinations from 1848 to 1861 , was 333 ; and in all 655.

The average annual attendance for the two or three past years, -professional, amateur and others, has been over one hundred.

The lioard of Examiners consists of Professors in the Edinburgh and Glassow Universties, Medical practitioners of distinction, and eminent veterinary surgeons from diferent parts of Britain.

The course of study of the London and Edin burgh Colleges is the same, and consists of the Anatomy and Physiology of the horse, and other domestic animals, and their diseases; Chemistry, Veterinary Nateria Nedica, and clinical instruction.

The branches taught by the different icachers are, at the London College:-Anatomy, Physiology, and Pathology of the Horse, Prof. Spooner.

Anatomy, Phys:ology, and Patholozy of other domesticated animals, Prot. Simonds.
Descriptive Anatomy, Assistant Prof. Varnell.
Chemistry and Materia Medica, R. E. Tuson.
Anatomical demonstrations, M. W. Pritchard.
Subscribers of Two Guineas per annum, or of Twenty Guineas for life, are entitled to have horses examined as to sonndness upon purchase free of any charge; also to have horses treated by the Professors in the infirmany of the College by paying only for their keep, at the rate of one gunca per week, for each horse.

At Edinburgh the classes are as follows:-
Treterinary Medicine and Surgery by Prof. Dıck.

Veterinary descriprive Anatomy and Physiol ogy, Mr: Stiangway, V.S.

Practical Anatomy, Strangway, V.S.
Chemistry, Veterinary Materia Medica and Pharmacs, Dr. Dalzell.

Physiolcgy, Dr. Young.
Practical Pharmacy and Clinical instruction, Prof. Dick, assisted by Mr. Worthington, V. S.

About four years ago another Veterinary College was commenced in Edinburgh, conducted by Mr. Gamgee, a graduate of the Eondon College, and afterwards an assistant to Professor Dick. The number of students attending the new Veterinary College last season was between 30 and 40, and the course of study is similar to that of the Edinburgh and London Colleges.

Veterinary Students in Britain are rapidly increasing and so is the demand for the services of the Veterinary 'surgeon. The prospects of the
profession impiove with the progress of agricultural pursults; districts are opening up for the Veter inaly practitivnter, in wich at one time every sick aumal was believed to be bew.tched, and the trichs of the surverer were trusted by credulous and timid people.
Agricultural Literature is improving so much, and farming in the remotest districts is being carried on with such intnlligence and enterprise, that there is nuw profitable employment for Veterinarians, where, certainly, a few years back they could only have expected to starre:
Veteriuary science is more appreciated on the Continent of Europe than anywhere else. In France, there are upwards of 3,000 Veterinarians, and the Emperor grants $£ 20,000$ to support the French \downarrow eterinary Colleges.
Veterinary Science is to the lower animals what Human Medicine is to man; and it must, therefore, be highly beneficial to the lower orders of creation: and it can only be properly attained by a regular er rise of study. Facts in Medicine can only be discovered by patience and industry. The duly qualified Veterinary pracitioner enters upon the duties of his profession with an understanding of Anatomy, Physiology, Nature of Diseases, Chemistry, ©c.., the same as the Medical practitioner: The Medical mau often experiences a difficulty in coning to a correct diagnosis of disease, althougt he finds a useful guide in conference with his patient. How much more dif ficult must it be for the Veterinary Surgeonwhose patients are dumb animals, and therefore, he can only judge of the state of their health by physical examination? Hence the greater need of a proper system of training. Even supposing a correct diaguosis caunot be come to, such rational treatment can be adopted by which, upon a second examination, symptoms may be developed by which the precise nature of the dis ease is detected; and not in that hap hazard method which is practised by many, who attempt to prescribe for the sick and dying, without the least idea of the disease, and the nature of the drug which they are giving, supposing, perhaps, they have inherited medical skill from their ancestors.
The Veterinary practitioners are in a much better position for prosecuting their studies along with the practice of their profession than were the practitioners in the Medical Department, as frum their class of patients, they have ample opportunity of prosecuting Plysiological and Anatomical studes, aud when cases prove fatal, of making post mortem examinations. But to make a post morten examination, it is necessary to be conversant wih the state of the different organs of the animal body when in healch. To treat any organ when in a diseased state, it is also essential to hnow the structure and functions of that organ, or organs, and therefore, in the first place, , before undertaking the treatment of diseases of the lower animals, we must study their Anatomy and Physiology.

The Veterinary Surgeon is now convin that no en. 1 sure way lies open to him as broad and accessible one through the disse ing room. In the Medical profession, the \mathbb{m} eminent trace their success to their Anatoni acquirements, and it is owing to this that sciet so triumphantly exercises the sway orer t Medical world at large. By learning Anato: we become acquainted with the situation, fo connexion, use, and structure of every par the body.
Percivall says:-"A Professor of Nedie with a mind unfurnished with a knowledge Anatomy and Physiology, is preciscly in t situation of a mechanic who undertakes to pair a deranged or broken machine wthout? acquaintence with its mechanism or opertis Both such persons are impostors in their pri sion, either of them perchance may $\dot{\alpha} / \mathrm{gc}$ but there is ever much to be appy heser ${ }^{2}$ that they may be working some arreparabier chref. We hear of wonderful rures being formed by persons having no pretensions : ever to medical science, and in this hit ore manner, it camnot be denied that some refy: uable discoveries have been made. Conldhowever, but set against these discoverieg, cellent as some of them may have turneder be, a true catalogue of the failures attere upon the experiments in which they had origin, we are sorely afraid that the pit would exhibit a complexion, which eren discoverers themselves could not regard : ont mingled dissatisfaction and remorse.

The Veterinary profession, I am glad tot has progressed equally with other profaic in fact more so than many, as it ranks ef with professions which can boast hunderis years' standing, and is still improving. I not mean to say it has reached the same de? of perfection, but it is recognized as ascia and can claim kindred with human medií They spring from the same source. To Agriculturist, and especially to the onfers Stock here m Canada, where qualfied Tet ary practitioners are few, a l.nowledge of diseases most common to Cattle and How of great advantage, not only as to trescic: bet what is better, prevention, especially s. there is much quackery carried on. In fix person ignorant of the nature of disexis, better trust more to nature than toremin such severe measures as are sometines which instead of relieving only aggraxid disease. Some poor animals receire teo 1 trealment, and I have met with not a feit of such in Toronio.
In Britain,teaching the farmer how totar Stock does not do away with the serviceo of Veterinary Surgeon. He may help be when no other means are at hand, but beis vain enough to think that he can superak regular professiunal man. On Cotix Europe and in Britain, the services of tel
arr Surgeon, I may say, are almost in as do repuest as the services of the Medical q and I have no hesitation in sayingthat such ces will be recognized in Canadn, for bere are the people more intelligent and zerering, and the stock produced in this attry will compare favorably with those of other.

From the Scotch Farmer and Horticulturist.

The Diseases of the Pig.

ere are many admirers of the "payer of tis wio bestow as much care and attention hesty as the lord of the ifianor does to his write horses. Cleanliness, good food, and larity in feeding, \&c., tend to develop a ling into the proportions-frightful to the - of many-which insure a prize at agriunal shows. We rather admire the cleanly pig, not overburdened with fat, which fof the thrifty villagers in England rear, mider to cke out the scanty wages on which ref family has to be kept. Disease now then appears amongst these animals, but of the most frequent causes of death and biting hopes is perhaps the hand of the *, trio, if consulted, should the pig seem of sorts, may try his hand at giving it a of castor-oil, when, as in the process of ring such an animal, he gets " more noise mool," as a few loud screams precede the tof the physic, which far more frequently than cures. There is no animal so easily ed as a pig; and we can mention several nces in which young practitioners have dd mistures fearlessly into the mouth of uming pig, but only to feel a dead weight their hands and see the poor animal hed lifeless at their fect. It is therefore e that tasteless medicine in powder should be used for this animal, and the most ble is tartar emetic. There is no medimore generally useful in the diseases of ig, and it is given in some cases in doses iently large to produce vomiting-that sar, from tive to ten grains in a little slop. better to give rather a full dose for such pose than too small a one, because if the is not at once apparent, the drug cnters Istem and does more harm than good. onot adrise the combination with calobut a very worthy rival to antimony in imation of some of the best informed rians in the diseases of the pig is the hellebore in doses of from five to fifteen \because This drugis: an active nauseant readily in food, and is regarded as a specific in equent and severe attacks of sore throat, so often present armalignant character pig. But we must revert to the adminso of tantar emetic in small: doses, re--st short interpalsi About 8 thirdi of a
grain, with ten grains of nitre, given in a little slop several times a day, and stopped when it induces sickness. In severe inflammatory affections, we can recommend this even more than the white hellebore. Although Youatt mentions antimony as an ingredient in many applications for this animal, it is not to be recommended, and we prefer cleaner mixtures than train-oil and sulphur, \&e.; but half an ounce of white hellebore, over which a quart of boiling water is poured, constitutes a good lotion for this disease in the pig White hellebore is, in some animals, a very dangerous poison, but the pig appears to resist its effects in a remarkable manner; and Tabourin, one of the most distinguished authors on veterinary medicines, says that the poisonous dose of white hellebore is unknown. As a useful purge for the pig, we may mention a couple of croton Deans bruised and mixed with food. Nitre and sulphur are amongst the remedies often of service, and easily administered in food.

The foregoing remarks on medicines to be used for the pig are, we think, called for in agricultural journals, because far too little attention is paid to the kind of medicine, and mode of administration to be adopted, in treating the disorders of the porcine tribe.Bleeding is the great and universal panacea; but we do not agree with Youatt when he says " this is a most uscful and necessary operation, and one which, in many diseases, is of vital importance." It is far less called for in the pig than other animals, and we cannot sufficiently deprecate the plan of docking a bit off the tail, or cutting the ear of the pig whenever he appears a little mopish. Paddy's story irnparts a useful lesson. He bled the pig so oftem by cutting the tail, that in one attack the animal died, because, said Paddy, "he had no more tail to cut, and had to wait for it to grow again." The amount of blood lost by the tail is trifing, and the operation may be justly condemned as useless.

To see a sick pig is in the estimation of some even more rare than seeing a dead donkey, and it may be deemed a waste of time to devote valuable space to the consideration of the diseases of the animal. But thereare those whose experience would:indicate a heary mortality, anchit is undoubtedly the fact that very dangerous contagious fevers, destructive parasitic disoxders, and other maladies are to be witnessed in well-stocked sties.
'Just as all diseases of the dons are called " distemper," many of these of the horse are termed influenza, and a large number in cattle are at once declared to be pleuro-pneumonia, so are all the diseases of thepig krom.by the absurd name of measles. We say absurd because there is no similarity at all betrseen the many forms of cisease termed measles in the pig and the same affection as secn in man.

We could cite several instances of sudden deaths in the pig which veterinarians hase declared to te due to measles, whereas this ame hats been applied by the better informed exclusively to that spechled condition of the skin due to hydatids beneath it, and which hydatids-all members of the genus Cysticer-cus-persate the soft tissues in the body, and if swallowed uncooked, produce tape-worm in man. This fact alune proves the importance of knowng more than is ustally done re-- garding pig discases.

We have recently discussed the injurious effect of overfeeding hurses, sheep and cattle. We can farnish an admirable illustration of the plethoric state in pigs. Our readers must not forget that plethore signifies that condition of the system when the blood is in exreas both as to quantity and richness; but chiefly the latter. A brever in Elinburgh kept a few young pers to satply himscli with choice morsels of pork and ham. During the part winter un a showery hay, the vigs were declared to lo trembling, foming, and frming. All, without caception. manifested symptoms of disturbance, varring in severity, hut the best were most dimecreously ill. Three died in rapid succestion, and advice was sought. The poor pigs had reccived an extra rich supply of food, containing a heavier proportion of good barley than they were accustomed to; their high condition would not admit of such an addition to their supply, and they were thus destroyed. Our readers will perhaps remember the instance before recorded of high fed cattle being killed by a too liberal supply of the best oil-cake. It is a parallel case to the one here mentioned among the pigs.

It is evident that moderation in feeding, and perhaps an oceasional dose of medicine. are as cssential for the health of the pig as for that of other clomestic quatruperls.

Bots in Horses.-The editor of the Indiana Farmer says he publishes a receipt for the third time, by special request of those who have used it with perfect success. It is as follows:-
"'rake a tablespoonful, a little heaped, of alum, and the same quantity of copperas, pulverize them fine and put them into a pint of rinegar. Pour it down the horse's throat. It will generally aftiord relief in tive or ten minutes."

fltiscllantons.

Historical and Scientific Facts aboat Petroleum,

Within the last three years there has sprung op in this country an important and extensive branch of.indistry-the refiving of petroleum,
or, as it is sometimes called, a mineral oil, . is already a staple article, and its use ns an minator, is becoming every day more ester When properly manufactured it is not esplow it affords a brilliant flame, it can be furnitst a moderate price, and, moreover, its soum supply in this country are abunjant. The: ject is one of so much geaeral interest thal are induced to publish the following infera aticle concerning this substı ne, which rer to us by a member of the Chemical Socita Schenectady, N. T.:-

Petrolelum is not of constant compost but is a variable mixture of numerons hydro-carbons, as beuzole, naphtha, berosit \&c., with paraffine, naphthatine, aud asphes solid hydro-carbons. It is of a very darts colour, and in üeusity varies from a thin lighter than water, to a thick riscous if beavier than water. The lighter qualities the larger proportion of burning cil.

The evidence of the most ancient occor of petroleum is among the ruins of Niz whose existence dates back more than trow and years before the Christian era. In to: struction of this city, an asphaltic moty extensively emploged, the asphaltum beia: tained by the evaporation of petroleum.

A later mention is fuond in the acconntsi bylon, whose walls were cemented with tum, which was poured, in a melted eta'? tween the blocks of stone, and an indestm: mortar thos secured. This aspinaltum ha cured from the fountains of 1 s , which neri one hundred and twenty miles above Babje the Euphrates. Together with saline os, phurous water, it issaed from a rock ed conducted into large pits. The oily matis then skimmed off and solidified by atmos evaporation. These springs, from the abois of their products, attracted the attenis Alexander, Trajan and Julian, and erend present time, asphaltum procured fromth sold in the neigbbouring villages of Hita,

From time immemorial asplaltun $h 3$ found on the shores of the Dead Sea, and. oue of the most remarkable localities forit. sea, as is welı known, is oisupposed volaris $\mathrm{g}: \mathrm{n}$; and is the probable site of the accist. of Sodom and Gomorrah. Its surfaceisiti hundred feet below the surface of the octs it has been fathomed to the depth of tro. sand feet. In several places no bottombs reached, and, owing to internal coivalias depth changes f:om time to time. Ther very dense, holding in solation imentfen. cent. of solid matter, of which seven pera. calt. The bitaminous substance is ap.tbron belois and towards the centre of the sesiti. in a liquid state, like petroleam; batiti bably solidified by evaporation, as it ith upon the shores in hard compact masss: explanation of this phenomerion is thats
on botween the sea and some internal volcawst, waence thes suostance is ejected.
te vicinity of the Caspian, the Bakoo gs have ylelaew lange augntities of cil, a a a ively celebrated. Some of the Persian bare furnished fifteen hundred barrels a and throughout this region this material, the name of Naphtha, is vert generally for its light.
Rangoon, in Burmah, petroleum has been ref for many years, and at this time there ef fire bundred wells, which annually afford bundred thousand hogsheads. The oil ocna stratum of blue clay; wells about sisty apare dug, into which the petroleam oozes, ssometimes used in its natural state, but frequent/5 it is first purified by distillation team. The raw material is also mixed with toid ased as fuel.
arope there are a few abundant springs. a of the Ionion Islands there is an oil founbich has flowed for over two tbousand - and the oracalar fires of ancient G.eece een attributed to similar sources. Oil also occar in Bavaria, in the Grand of Modena, at Neufchatel, at Clermont bbian in France, and near Amiano in Italy. som procared from the last named locality for lighting the city of Genoa, but elsein Earope it is not emploged, to aby exan illuminator.
bis side of the ocean there is an enormous pof this substance. Upon the Isiand of d, one of the West Indies, at a distance of oribs of a mile from the sea, is a lake of as three miles in circumference. Near lss the asphaltum is hard and cold, but as proach the centre the softness and the atore increase, antil finally it is liquid jig. From the bubbling mass proceeds gin $_{1}$ salphurous odour, which is perceptible tance of ten miles. Between the banks the and the shore of the island is an eletract of land, covered with hardened om, upon which vegetation flourishes. lanation pat forward in connection with dSea, is equally applicable in this case. others of the West Indies petroleum has lained, as well as at several places in Cen\downarrow South America; but it is in the portion of this continent that the lecervoirs of this sabstance are located; sms traly wonderful that their extent reis should not have been d:scovered at - period. For many years the Seneca collected petroleum, and, under the name \therefore oill sold it as a remedy for rherratic \& At numerovs places in the Middle was found in salt borings. and was colsburnt by the farmers, bet it was not ast 1859 , that it was obtained in noticelities At this time oil was "strack" Geek, Venango Oounty, Penneylvania,
by sinkingan Artesian well to the d_{t} ptn of seventy feet, and for many weers a thousatic gallons a day were pumnea frem it. 'I'be news of this digcovery spread far and wide, and gave rise to an "oil fever." Thnusands flocked to this ricinity in the bope of making their fortune. Before the close of 1860 there had been over a themeand wells bored, many of which were productive, bat a large proportion returned nothing. Sume of the adventurers have been very snccessful, and have made large amounts of money; bue, as in all commercial "fevers," a li ree number of persons have been utterly impoverished by their speculations. The mere sinking a well by no means insures a bountiful sunply of oil. The petrolenm is stored in fissures formed by the uphesving of the earth's crast by volcanic action; and these fissures are perpendicular rather than horizontal in tendency, as is proved by the fact that at wells but a few rods apart, the oil is "struck" at very different depths. The lowest parts of the fissures contain water, above which is oil, while in the highest portion there is a quantity of gns. If, therefore, the well strikes the fissure at the lowest part, the water will be forced up by the pressure of the supernatent oil, and gas. Persons ignorant of the formation sink a well at random, and perbaps strike a fissare; but obtaining nothing but water, they abandon the spot as wortbless, whereas after removing the water by pumping, a large quantity of oil might bs obtained.

In some localities in Ohio, as is the case in Burmah, the ground is saturated with the oil, and wells several feet in diameter are dug, into which the oil oozss, Porous limestone, contaning petroleum, is found in some sections of the West, and has been snbjected to distillation with profitble results.

In regard to the origin of petroleum, scientific authorities differ; but the theory most generally favoured is, that it is the product of the slow distillation, at low temperatures, of organic matter in the interior of the earth; the vapours boing condensed in the previously-mentioned fissures and the surrounding soil. The lake of Trinidad and the bitaminous matter of the Dead Sea may also be referred to a similar source. But for how many centuries mast this operation have been going on to have effected such enormovs resalts?

Of the many uses to which petroleum and its derivatives are anplied, that of illumination is the most important; and ibe process of refining, is extremely simple. The crade material is put into a largo iron reiort, connected with a coil of iron pipes, sarrounded by cold water, called the condenser. Heat is applied to the retort, and from the open extremity of the condenser, a light coloared liquid of strong odour soon flows. This isnaphtba, and is very volatile and very explosive. Some refiners mix it with the barning oil, and numerous accidents havo resulted frem such mes-
cenary indiscretion. It is asually run into a seperade tank. After the naphtha has passed over, th9 oil used for illuminaion distills off. S:eam is now forced into the retort and the heary lubricating oil driven over. There now remains a black, oll, tarry matter, sometimes used to grease heavy machinery, and a black coke, employed as fuel. There are, theefore, five substances separated in this operation, but only the first three are of any economic importance.

The naphtba is uaed as a substitute for turpentine in paints, or by repeatod d stillations the benzole is separated from it and employed to remove spots from fabrics This, however, is rather a drug in the hands of the refiner.

The burning oil, as it comes from the retort, is of a yellow colonr, and in order to remove this, it is placed in a large lead lined cistern, and agitated with about ten per cent. of sulphuric arid After the acid and impurities bare subsided the oil is drawn of into an ther tank and agita'ed with four per cent. of zodilse. This last operation is to renove any acid remaining with the oil, and also to extract the residue of the colouring matter. In fant it is sometimes employed alone and a very good oil ohtaiced. The oil is now agitated with wator to remove the soda lye, and is then ready for consumption. The colou-less oil is by no means the most cconomical, but on the contrary more light is obtained from the yellow article.

The heavy oil is cooled down to 30 degrees Fah. when the parafline crystallizes out, and is separated fiom the oil by pressing. it is further purified by auother pressing and by alternate agitation, in a melted state, with sulphuric acid and soda lye. It is then moulded into candles. It is a curiors fact that the composition of paraffine aud good coal gas is exactly the same.

In Egypt a substance derived from petroleum was used in embalming bodies; and in Persia and the neighbouring conatries asphaltum is used to cover the roofs of the honees and to coat the boats. In France aspbaltic parenents bave been saccessful in sereral cities, and for the protection of stone no material is better adapted. 3 Iixed with grease the Tricidad asphaltum is applied to the sides of vessels, to prevent the borings of the teredo, and with quicblime it affords an excollent disinfectant. Among the prodacts of the dis illation of petroleam are naphthaline and keresolene. The former is the substance from which is obtained aniline, the base of the heantiful colours manre, magenta, and solferino. The later has been proposed as a substitute for chloroform and ether. Many other sabstances have been separated, but as yet none of them have been applied. As this is comparatively a new field mady discover:es mas be crofidently expect. ed in the course of a fer jears.-Scientific American.

Great 0il Spring:

The somewhat celebrated Mr. Shaw 0° Springs village, is not destined to share : the honour and profits of that remarkabl cality. Yesterday, Tuesday, the 18ib: another person, Mr. Bradley by name.bs been boring at a spot situated about t_{0}. dred yards distant from Mr. Shaw's spring having reached to about an equal depthis rock as be attained, was rewarded for his: tions by an up-flow of oil to an extent of ga!lons per minute. There being no mes saving it, it has overfowed the land, as as case with Shaw's spring, when it firstas and a pitible waste is going on. Blact (has become literaily a sewer for oil, ox waters are covered over to a deptio of. three inches with the dark green fivis wastes from the surrounding wells and \bar{y} \% The last saccess of Mr. Bradley was gi known to the men in the district, each of left his well and proceeded to witnesster wonder. They saw in astonishment, andr: ed to their respective lots, each deterairy bore deeper and deeper until the soarce ${ }^{*}$ supply stould be tapped, and each pasi his own right not, an oil wel merely, hots. table oll spring, which should bubble op: ianeously to the surface.

The fact is, the whole district is impret with oil. The soil is made viscid bjit piece of earth adheres to your boot, ged become at once odoriferous and offenire is every where. One tastes it in ithe bix even whiskey fails to kill it out. The: is detected in the bread. You eat bas:. you taste oil. You smell it and taste iti air, and hold your nose to lessen its ungte infuence upon the olfactories. Yongot but the sheets are oily. You open adx, yonr hand which has touched the hard c. ught the contagion. You proceed io. ard find a film of oil upon the water, and wipe your face, the skin 18 imbuded bye genous deposi from the towel. Oildom a its s way, and Oil is King?

But the means of transporting the is supply of oil is altogether inadegqa't! necessity of the case. Lumbering ban $\$ 2$ each are behind the age, even if tif to be had in sufficient numbers, and itisi ative, therefore, that some, new mode of: away the precious unctaous flow sbo adopted. The plan now proposed in. down a five inch iron pipe to Sarnia, at the oil to flow into a common reservis. and from thence to be filled into ine and so conveged to the seaboard. Nor or implements once used in this traficist able for other parposes, as the odont tin oil is so pungent and persisient, tbat ifs itself into every cranny of a sbip in को

- quantity of it may be conveyed. Not g since a few barrels of oil wese taken across Allantic in a large grain vescel, and the all wis thas the great portion of the grain ispoled. It is thought, then to press into ecrice, as a kind of retributive justice, the mbale ships, for if the supply of the oil conges, the whales will be left to enjoy their sitrous gambols undisturbed by'the harpoon. pess from the pursuit of the whale to be the nies of ready-made oil, would not be difficult, ggh decidedly unromantic.
Tsome such plan were adopted, this natural Fell, if the supply contiraes, become one of most useful and economical substances Tro and will find its way into hundreds of \therefore Already such experiments have bcen ie as to conver the conviction that gas of a rior kind can be made from it at sixty cents thonsand feet, while for the ordina:y pur\Leftrightarrow of light, the supply being so plentiful and arestly unlimited, the illuminating fluid now 'must fall in price to such an extent as to eartificial light, to use a vulgar phrase " as ap as daylight." From whatever point this ect is viewed, whether as regards the origin he oil ; its supply; the extent of country er which it is found : the uses to which it can applied; the revolution it is making in the of artificial light, in each and all it is most defful, and we question if a more interesting tthan that of the Canadian Oil Springs at ming exists in any part of the world.-LonFree Press.
ar Land of Paradox.-The quicksilver, I rill sometimes disappear, like the water in pipe of the Great Geyser, and even then the ther will be tolerable. But that is as it Id be, and quite in keeping with the regions arador which we are approaching, where the det forgets its affection for the pole; where ang as nipe suas have been seen in winter ont offordiog the warmth of one; where the tite time for thonder and lightning is m:d$r ;$ there a river of to-day becomes a mere tin of to-morrow, nad vice versa, where d_{3} rise out of the ocean, and sink down g, as if nothing had happened; where ting Is according to the testimony of veracious Hlers, at timesssuop down like falcons on the of the wayfarer and disorder his brains. A out of whlch is dug that mysterious sartur\checkmark Fhich geulogists have been addling their sto explain the origin of, bat in vain; a There the people get their wood from the ard where ocean cod are talen in inland - Where, if you find a stalactite, it is due to istead of water; where dark. dacks with rings round their eyes swim in the boiling -and where ice and fire are often on the rms with each other. So that fine weather - low plass are really quite the correct --ine Oxonian in Iceland.

A Plage waere no Winter is.-Tibe excep. tional warmth of the winter climate of Mentone, even for the Riviera, is proved by the presence of groves of large, bealthy lemon trees, which occupy the sheltered ravines and warmer hillsides, wherever water can be obtained, constant irrigation, summer and winter, being necessary for their cultivation. They are, indeed, much more numerous than the orange trees, alshough many fine plantations of the latter are found throughout the district. Orange trees can bear without injury several degress of frost, pibereas one degree destroys the fruit of the lemon tree, and two or three degrees destroy the tree itself. On one side of the second bay, near the Port St. Louis, the warmest and most sheltered region of Mentone, the side of the mountain is partially covered with lemon trees, which ascend on terraces to a considerable height above the sea. In these "warm terraces' winter certainly may be said not to exist. Throughout its entire duration insect life is abundant, and the swallows cons quently never migrate. They are constantly seen arching among the rocks. The harebell, the red valerian, violets, and our own pretty veronica. fluwer in December and January in this favoured spot, long before they appear elsewhere. The lemons produced at Mentose are known throughout northern Europe, and fetch a high price in the market. The lemon tree at Mentone flowers all the year round, never resting, and bears four distinct fruit crops. Its existence in groves of large trees, from trwenty to thirty or more years old, without artificial protection, and its profitable cultivation throughout the jear, prove that there must have been freedom from frost for many years I was told, however, that about twenty-five years ago nearly all the lemon trees in the country were destroyed in one night, which may account for no very old trees being seen.-Mentone and the Riviera as a Winter Climate ; by J.H. Bennet, M.D.

Tee Morn's Ting.-Touch with a camel'shair brush any part of the wing, so as to remove scales, dab the brash on a pane of gloss, put it under the microscope, and then see how each particle of the almost imperceptible and impalpable coloured dust which clothes the wings becomes manifest as an elegantly formed scale, eculptureà with designs of singular beauty and regularity, formed of at least two, if not three separate membranes, and waved, toothed, or fringed at the ϵ stremity, according to its position on the wing. Jast consider how many hundreds of thousands of these scales are needed to cover a surface so great, and the inconceivable care which is required, not only in making them, but in setting them in rows more regular than the slates on a house-top, each overlapping the otter, and arranged so as to defend the delicate membrane of the wing from moisture. You cannot wet a moth's wing with water, for it rans of in drops as if the wings were covered with oil.St, James's Magazine,

The Poet Taurtate and the Late Prince Consort.

A new edition of the Idylls of the King contajos the following dedication:-

These to his memorg-since he held thein dear, Perchance as finding there, unconsciously, Some image of himself-I dedicate, I dedicate, I consecrate, with tears.
These Idglls,
And, indeed, he seems to me
Scare any other than my own ideal knight, Who revereaced bis conscience as his king; Whose glory was redressing human wrong;
Who spake no slander-no, nor listened to it;
Who loved one oniy; and who clave to her-
Her, over all whose realms to their last isle,
Commingled with the gloom of eminent war,
The shadow of his loss moved like eclipse,
Darkening the world. We have lost him; he is gone;
We know him now: all narrow jealousies Are silent; and we see him as he moved, How, modest, kindly, all-accomplisbed, wise, With what sublime repression of himself, And in what limits, and how tenderls-
Not swaying to this faction or to that;
Not making his high place the lawless perch
Of wing'd ambitions, nor a vantage-ground
For pleasure; but, through all this tract of years,
Wearing the white flower of a blameless life,
Before a thousand peering littlenesses,
In that fierce light which beats apon a throne,
And blackens every blot: for where is he
Who dares foreshadow for an only son
A lovier life, a more unstain'd than his
Or how should England, dreaming of his sons,
Hope more for these than some inheritance
Of such a life, a heart, a mind as thine,
Thou noble Father of ber Kings to be-
Laborious for her people and ber poor,
Voice in the rich dawn of an ampler day,
Far-sighted summoner of war and waste
To fruitful strifes, and rivalries of peace, Sweet nature gilded by the gracious gleam
Of letters, dear to Scievce, dear to Art,
Dear to thy land and ours-a Prince indeed,
Beyond all titles, and a household name,
Hereafter, through all times, Albert the Good?
Break not, 0 woman's heart, but still endure; Break not, for thou art Royal, bat endure,
Remembering all the beanty of that star
Which shone so close beside thee; that ye made
One light together, but has past and left
The Orown a lonely splendor. May all love
H: love, unseen bat felt, o'ershadow thee;
The love of all thy sons encompass thee, The love of all thy daughters cherish thee, The love of all thy people comfort thee,
Till God's love set:thee at his side again.

Valde of a Dead Horse in London.from 8d. to 1s.: used for haircloth mattrasti crashing seed in oil mills. Hide and tendons leather, glue, gelative. Flesh, £1 8s.: mess men, dogs, and poultry. Heart and tonge mystery. Intestines: covering sausages and like. Fat, 3 y 4 d : : used for lamps after distid Bones, 49. 6d. per cwt.: knife handles, phopi ous, and superphosphate of lime. Hoofs, 8, $10 \mathrm{~s} .:$ buttons and gelatire. Shoes 2 s to: old iron. Total value, from $£ 217 \mathrm{~s}$. 6 d , th 4s. 10d.

(f)ditorial Notices, KL.

Pure Short Horn Stock.-We beg leas direct the attention of brecders of Shoth: ed Cattle, to the advertisement in anotheri of pure bred cattle for sale liy Dr. Phillip Prescott, C. W., the stock being at pr placed for keeping on the opposite sided river, near Ogdensburgh, N. Y. 'These r were exhibited at the London Provincial 8 last September, where they gained several miums, and although from their recentps across the Atlantic, and rather poor keept! arrival, they were not in so high conditir they should have been to show to adran. they yet attracted the attention of conno by their good points and evidenthigubrat The cattle are from some of the best her the old country, and have all good hedt pedigrees. We understand that privaterio have induced Dr. Phillips to return to the country to reside, instead of settling pr nently in Upper Canada, as was his inte when he imported his cattle, but we trus the stock may remain in the country forti. provement of our native herd.

Imported Thorough Bred Catt

FOR SA工玉.

THE SUBSCRIBER OFFERS FOR the whole of his lateiy importeds improved Short horns. Full pedigreefo. authenticated by refercace to Coates' ${ }^{1}$. Herd Book.

> G. W. Pumurs
> Ogdensburgh,

March 6th, 1862.
gricultural, Horticultural, \&e.falluwing Books on these subjects to behad atBAIN'S BOOK STORE,10 KING STREEAT EAST.
:Hodern Horse Doctor, cl. \$l 00

- mencm Cattle Doctor, cl.... 100
nos's Treatise on Milch Cows. cl. 60 60
an on the Horse. Smo 250
At ispooner on the Howse. 125 125 125
is Cattle Doctor, 12mo
is Cattle Doctor, 12mo
is Fariery, lemo. 125
art's stanle Economy, 12mo 100
on the Hurse's Foot ธ0
an on the Food of Amimals 75
and their Mianagement by Mayhew. 63
on on the Cow. 25
ann Cattle 38
a on tac Horse 25
a on the Sheep 25
on Domestic Poultry 150
on the Poultry Yard. 25
as and Rabbits by Deiamee 25
on the Pi 25
inault's Rural Economy 125
s.lack Manual. 100
's Agricultural Chemistry 38
on's 1 , ricultural Chemistay. 125
ton's Elemens 100
(R. S.) Hints for Farmers. 25
on Firm Drainage, 12 mo 100
a Grasses 120
roille on the Honey Bee. 125
Fruit, Flower and Vegetable Garden 100
man's Kitchen Garden 60
- Family Kitchen Garden 75
den's American Kitchen Gardener 25
\therefore American Fruit Culturist 125
a Pear Culture 100
on the Fruit Garden. 125
American Lruit Book. 50
a the Grape Vine. 100
n's Grape Grower's Book. 50
is on Graperies. 125
s^{\prime} Orchard Honse 4.0
on Strawberry Culture 60
Hower Gardener's Drectory 100
Fhwer Garden 100
d's Ladj's Flower Gardener. 25
of thusp Books can be sent by Post toIt of Canada, upon remitting the pricethe rate of 20 . cents on the Dollar for
ato Fei. 28, 1962. 4 t.
FOR SA工上.

JT of thorough bred improved Berkshire: iss of various ages.

$$
\begin{aligned}
& \text { R. }{ }^{\text {Diser }} \text { Dorer Court. }
\end{aligned}
$$

BOARD OF AGRICULTURE.

THE Office of the Board of Agriculture has been removed to 188 King Street West, a few doors from the late location adjoining the Government House. Agriculturists and any others who may be so disposed are invited to call and examine the Library, \&e., when convenient.
Toronto, 186J.
Hugir C. Thomson, Secretary.

Notiee of Co-Partnership.

rIHE Undersigned have entered into Partner ship as Seedsmen and dealers in all kinds of Agricultural and Horticultural Implements, under the firm of James Fleming \& Co.

JAMES TLEEMING, GEORGE W. BUCCKLAND.

NOTITPA

TAMIDS FLEMING \& CO., Seedsmen to the \int Agricultural Association of Cpper Cana da will carry on the above business, wholesale and Retail, at 126 Yonge-st., 4 doors North of Ade-laide-street, until next July, when they will remove to the new Agricultural Hall, at the corner of Qucen and Yonge-streets.

JANES FLIEMING will continue the business of Retail Seedsman and Florist at his old stand, 330 Yonge-street.

Toronto, January lst, 1861.

FOR SAIT.

at

WOODHILL, WATERDOWN P. 0.

MR. FERGUSSON expects to have several pure Durham bull calves to dispose of next Spring, 1862, not intending to raise any this season. These calves will be all of the well knizon DUCHESS'tribe, and will be pus on the G. W. R. R. at six weeks old for eighty dollars each.
N. B.-Frst come, first served.

Waterdown, Nov. 14, 1861.
4-t.

THOROUGH BRED STOCK FOR SALE.

${ }^{\prime}$ TIEE SUBSCBIBHR has for Sale Durkam and Galloway Cattle, male and female.
leicester, Cotswold, and Lincolnshire Sheep, male and femaIe.

January 1, 1862.
tf.

Joys Snetl,
Edmonton, P. O., C. W.

VETERINARY SURGEON.

ANDREW SIIITH, Licentiate of the Edinburgh Veterinary College, and by appointment, Veterinary Surgeon to the Board of Agriculture of Upper Canada, respectfully announces that he has obtained those stables and part of the premises heretofore occupied by John Worthmgton, Lisq., stuated corner of Bay and T'emperance streets, and which are being fitted up as a Veterinary Infirmary.
Medicmes for Horses and Cattle alwass on hand. Hurses exammed as to sunadness, de.

Vetermary Establishment, Corner of Bay and Temperance Sts.

Toronto, January 22nd, 1862.

FOE SAIE.

A FEW PUREBRED SOCTII-DOWN RATIS and Ewe Lambs, from

IMPORTED STOCK,

Sefected from the Best Fluck-dealers in Dorset, Wilts, and Hants!
The Subscriber will Warrant these Lambs to produce as much Wool and Matton, and of equal Quality, as those of Jonas Webb, or any other Flock of the same kind and number in England.

Jomn Spencer, Brooklin, Post Office, Ontarıo County C. W.

'TIE

SOURNAL OF THE BOARD OF ARTS aND NANUFACTURES,

FOR UPPER CANADA,

Is Published on the first of every Month,

AT\$l per annum for sngle copies, or to clubs of ten or more at 75 cents. per copy; to members of Mechanics' Institutes, and of Literary, Scientific, and Agricultural Societies, through their Secretary or other officer, 50 cents per annum per copy.

Subscriptions payable in advance.
Printed for the Board of Arts and Manufactures
for Upper Canada, by W. C. Chewett \& Co., King Street East, Toronto.

FOR SALE.

ALOT of thorough bred Essex Pigs,-bred from recently imported 1st prize animals and who have this season taken premiums at. both Township, County, and Provincial Exhiz-. bition.

James. Coway,
ORochmhor, Galt P. O., Oct. 19, 1861.

Contents of this Number,

The Germination of Seeds
Agricultural Hall, Toronto...............tor
An Experiment in Wheat Growing, in
1766.

Provincial Exhibition of 1862.
Maple Sugar
The Oiser Willow
Experiments on Manure
Insects the past year
.................
periments on the Potato Disease
Analug, leetween Plants and Animals... Care of Curs before Calving.
How to Feed out Roots
The Royal Farms, England
Alsike Clover.
Agricultural Intelligence:
Spring Shows
Patents of Invention

Honticultural:

Fruit Grower's Association
Fruit Culture in Orchard Houses.
The Poultry Yard:
Something about Hens

Veterinary.

The Progress of Veterinary Science...... The Diseases of the Pig.
Bots in Horses

Miscellaneous:

Historical and Scien tific Facts abo. Petroleum
A Great Oil Spring
The Land of Parador A Place wher
Winter is, The Moth's Wing.........
The Poet Laureate and the late Pria Consort
Editorial Notices, igc.

Tu) $\mathfrak{A g r i c a l t a r i s t ,}$

Or Jucrnal and Transactions of ris of Agriculttire of Úpper Cata'

IS published in Toronto on the 1st sk each month.
Subscription-Half a dollar per a Single copies ; Eleven copies for Fire. Twenty-two copies for Ten Dollars, def:

Editors-Professor Buckland, of \mathbb{V}. College, Toronto, and Hugh C. Thomm tary of the Board of Agriculture, Ma whom all orders and remittances arsdressed.

Printed at the "Guardian" Steam:In"
Street Easty Toronto.

