CIHM
 Microfiche
 Series
 (Monographs)

> ICMH
> Collection de microfiches (monographies)

Technical and Bibliographic Notes / Notes techniques et bibliographiques

The Institute has attempted to obtain the best original copy available for filming. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of filming are checked below.

Coloured covers /
Couverture de couleur

Covers damaged /
Couverture endommagée

Covers restored and/or laminated /
Couverture restaurée etou pelliculée
Cover title missing / Le titre de couverture manque
Coloured maps / Cartes géographiques en couleurColoured ink (i.e. other than blue or black) /
Encre de couleur (i.e. autre que bleue ou noire)

Coloured plates and/or illustrations /
Planches eVou illustrations en couleurBound with other material /
Relié avec d'autres documents

Only edition available /
Seule édition disponible

\square
Tight binding may cause shadows or distortion along interior margin / La reliure serrée peut causer de l'ombre ou de la distorsion le long de la marge intérieure.Blank leaves added during restorations may appear within the text. Whenever possible, these have been omitted from filming / Il se peut que certaines pages blanches ajoutées lors d'une restauration apparaissent dans le texte, mais, lorsque cela était possible, ces pages n'ont pas été filmées.

L'Institut a microfilmé le meilleur exemplaire qu'il lui a été possible de se procurer. Les détails de cet exemplaire qui sont peut-être uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de filmage sont indiqués ci-dessous.

Coloured pages / Pages de couleur
Pages damaged / Pages endommagées
Pages restored and/or laminated /
Pages restaurées et/ou pelliculées
Pages discoloured, stained or foxed /
Pages décolorées, tachetées ou piquées
Pages detached / Pages détachées
Showthrough / Transparence
Quality of print varies /
Qualité inégale de l'impression
Includes supplementary material /
Comprend du matériel supplémentaire
Pages wholly or partially obscured by errata slip: tissues, etc., have been refilmed to ensure the bes. possible image / Les pages totalement ou partiellement obscurcies par un feuillet d'errata, une pelure, etc., ont été filmées à nouveau de façon à obtenir la meilleure image possible.

Opposing pages with varying colouration or discolourations are filmed twice to ensure the best possible image / Les pages s'opposant ayant des colorations variables ou des décolorations sont filmées deux fois afin d'obtenir la meilleure image possible.

Additional comments / Pagination is as follows: p. 385-437.
Commentaires supplémentaires:

This item is filmed at the reduction ratio checked below /
Ce document est filmé au taux de réduction indiqué ci-dessous.

The copy filmed here hes been reproduced thenks to the generosity of:

Engineering Sciences Library, Queen's University

The imeges eppeering here ere the best quality possible considering the condition end legibility of the original copy end in keeping with the filming contrect specificetions.

Originel copies in printed peper covers ere fllmed beginning with the front cover end ending on the last pege with e printed or illustreted impression. or the beck cover when eppropriete. All other originel copies are filmed beginning on the first pege with e printed or illustreted impression, and ending on the lest pege with e printed or illustreted imprescion.

The lest recorded freme on eech microfiche shell contein the symbal \rightarrow (meening "CON. TINUED"), or the symbol ∇ (meening "END"). whichever epplies.

Meps, pletes, charts, etc., moy be filmed et different reduction retios. Those too large to be entirely included in one exposure ere filmed beginning in the upper left hend corner, left to right and top to bottom, as meny frames as required. The following diegrems illustrate the method:

L'exemplaire filme fut reproduit grâce à la génórosizé de:

Engineering Sciences Library, Queen's University

Les imegas suiventes ont t:d reproduites evec le plus grend soin. compte cenu de la condition ot de le netreré de l'exempleire filmb. or en conformité evec les conditions du contrat de filmege.

Les exempleires originaux dont le couverture en pepier est imprimée sont filmés en commencent per le premier plat et en terminant soit par le derniere pege qui comporte une empreinte d'impression ou d'illustretion, soit par le second plat, selon le ces. Tous les autres exemplaires originaux sont filmés en commençant par le premiére pege qui comporte une empreinte d'impression ou d'illustretion et en terminent per le cernidre pege qui comporte une ielle empreinte.

Un des symboles suivents appareitre sur le derniere imege de cheque microfiche. selon le cas: le symbole signifie "A SUIVRE". ie symbole ∇ signifie "FIN".

Les certes, plenches, tebleaux, etc., peuvent ôre filmós à des toux de réduction différents. Lorsque le document est trop grand pour être reproduit on un seul clichd. il est filmb a pertir de l'angle supérieur gauche, de geuche à droire. et de heut en bes, en prenant le nombre d'imeges nécessaire. Les diagrammes suivents illustrent le móthode.

UNIVERSITY OF TORONTO STUDIES

ANATOMICAL SERIES

No. 3: ANATOMY OF A SEVEN MONTHS' FOETUS EXHIBITING BILATERAL ABSENCE OF THE ULNA ACCOMPANIED BY MONODACTYLY (AND ALSO DIAPHRAGmatic hernia), by James Crawford Watt
(Reprinted from the American Jutinal of Anafomy, Vul. 22)

THE UNIVERSITY LIBRARY: PUBLISHED BY
THE LIBRARIAN, 1918

University of đoronto \ddagger tudies

COMMITTEE OF MANAGEMENT

Chaiman: Sir Robert Alexander Fal.coner, LL..D., K.C.M.G.

President of the University
Professor W. J. Alexander, Ph.D
Profrssor W. H. Ellis, M.A., M.D.
Prjfessor J. J. Mackenzie, B.A., M.B.
Professor J. P. McMurrich, Рh. D.
Professor G. H. Needler, Ph.D
Professor George M. Whong, M.A.
General Editor: H. H. Langton, M.A.
Librarian of the University:

ANATOMY OF A SEVEN MONTHS' FOETUS EXHHBITING; IBILATERAL ABSENCE OF THE !LNA ACCOMPANIED BY MONODACTYLY (AND AISO DIAPHRAGMATIC HERNI.

JANES CRAWFORD WATT
Department of Auntumy, I'niversity of Toronto
four text figurba and four plates
CONTENTS
Introduction................... . .. 385
Preservation.................. 386
Parental history.. . . . 388
External appearance.. 380
Radiographs........................ 391
Dissection of left arm... 395
Muscles................ 395
Nerves........................... 409
Vessels... 411
Embryological and general considerations. 413
Dinphragmatic hernia........................ 425
Bihliography.. . . . 428

INTRODUCTION

The foetus forming the subject of description in this paper exhibits the rare deformity of complete absence of the ulna in each arm, accompanicd by the still much rarer condition of monodactyly (figs. 1 to 4). This latter condition is not to be confused with the relatively common condition of syndactyly, where more than one digit is present, but they are united by a web of skin and other tissues. Monodactyly, the presence of only one digit, is very uncommon, and in a search through the literature only one case was found that resembles the present one, and that was presented as a freak exhibit at a medical sccicty, no anatomical investigation of it having been made.

I have, therefore, undertaken to work out the special anatomical details of museles, vessels and nerves in one of the deformed limbs, in the hope that light might be thrown on some of the primitive conditions of these parts, and also with the purpose of adding a definite and exact contribution to the present inadequate knowledge of this abuormal condition. "Indeed the inquiry into several types of malformation and structural anomaly has repeatedly thrown light not only on the malformation or anomaly itself but also npon the normal process of development the disturbance of which it represents."-(Ballantyne).

DRESERVATION

This specimen was not obtained until ahout one week after its birth, and in the meantime had been kept inmersed by the undertaker who sent it to us, in an embalming solntion which, as far as can be ascertained, was practically a 10 per cent formalin solution. In the laboratory it has been kept in 80 per cent alcohol. No injection of the blool vessels was attempted, and though this has added somewhat to the difficulty of dissection, good results have been obtained.

PARENTAK, HISTORE

The parental history, as far as could ise ascertained, is practically negative concerning the deformity in this foetns. The parcuts are about twenty-five years of age, in comfortable circumstances, have good mental:ty and are free from venereal diseases as far as known. There have beell two misearriages previous to this one, with no deformities.

EATLKS.AL APPEARANCE

The body of the foetus (figs. 1 and 2) is that of a well developed child born at the end of the seventh calendar month of pregnancy. It is well formed, heal:hy looking, and apart from the upper limbs has no superfietal evidence of abmormality. The sex is male, and no aberrant development of the external genitals is present. The back is strongly eurved, the head bent forward,
and the legs strongly flexed and drawn up against th: abdomen. On following the line of the vertebral column, a slight scoliosis is observed in the thoracic region convex to the right.

The whole body is covered with a well developed lanugo moderately dark in color, and on the head is abundant fine black hair about 2 cm . in length. Nails are present on all the digits of both upper and lower limbs, but are yet some distance from the extreme ends.

The weight of the child is 1280 grams, and the lengi from the vertex of the skull to the ischial tuberosity, measu: over the back, is 325 mm . These measurements correspond fair!; well with figures given by Keibel and Mall ('10) and by MeMurrich ('15) for the seveuth month.

The deformed upper extremiti : show an upper arm segment with the forearm flexed upon it ai'd united to it by a web of skin, a narrow carpal region and a single digit. On the right arm there is also a single digit located at the inner side of the elbow. The general resemblance to the wing of a chicken plucked for cookil. 6 is strong, and led to the assertion that the mother's fondness for visiting the zoological gardens and watching the birds was responsible for this deformity, because she had spent niuch time in this way during the spring and summer months of her pregnancy. Maternal impressions have been credited with many strange and miraculous powers without any rational basis, and this is surely an example where a credulous imagination has been led far astray. A mere coincidence has been usei to work out a sequence of cause and effect, and, like much circumstantial evidence, there is here no basis for the assumntion that the two facts have in truth any assoniation wiatever. Only a very slight knowledge of human em' wlogy is n ? to shatter the theory in this case. The b' impression, if it may be so called, seized the mother during the spring and summer when she had a strong desire to be out of doors. It may be assumed that the deformity in the limbs was an accomplished fact when the limb skeleton was laid down and so was present at the time of the appearance of ossification in the limbs in the seventh week of development. Indeed it may even be
assumed that the deformity was already established at the time when chondrification began and its origin is thus earried baek to at least the fifth week and to a time when the mother would just begin to suspect that she had beeome pregnont, as her expeeted menstrual period would then be a week overdue. No visits to the zoo were yet thought of, as this was in midwinter, and yet the deformity was even then an aceomplished fact which future development could not alter, but only make more clear and aecentuated.

The deformed limbs will now be deseribed in more details In eaeh arm (figs. 3 and 4) the shoulder and scapular regions appear normal, hut slightly flattened, as though from pressure from the body lying on its side. The upper arm segment lies parallel to the long axis of the body, close in at the side, and appears flattened from side to side so that its modiolateral transverse diameter is only two-thirds that of the dorsoventral. It is gently tapering in outline, narrowing as the elbow is approached. The elbow is fairly well rounded, and from it the forearm runs forward in the same plane as the upper arm and flexed on it at an acute angle, being maintained in the position by a thiek wob of skin extending across the interval between arm and forearm. The part of the forearm beyond the attachnent of the web is rounded, with its transverse diameters about equal, and tapers gradually distally. The carpus, metacarpus and the single digit also taper eontinuously distally, and are all in a position of partial flexion, showing marked ereases or folds on the volar surface at the line of the joints. 'i'here is a well developed nail on the digit, but it does not yet reaeh to or project beyond the end of the finger, as is the case in a ehild born at full term.

The left forearm and hand (fig. 3) are in the same plane as the upper arm and in a position of complete pronation. The hand lies against the side of the cheek, the palm facing direetly ventrally. Flexion in this hand is gradual.

The right forearm and hand (fir, 4) are in a position midway between pronation and supination, a position identical with that normatly assumed when the limb skeleton is first defined (Lewis, Keibel and Mall's Human Embryology). The distal end of the
forearm curves somewhat inward and the carpus is sharply flexed upon it and the hand thus comes to lie across the body under the chin, with the palm facing caudally.

The left arm has no acressory appendages or indications of ant of the missing parts, but on tlie right one (fig. 4) there is a flattened appendage attached by a very short narrow circular stalk to the medial surface of the forearm almost at the ellow. This structure widens immediately beyond its attachment, being much compressed and rumning hack applied against the surface of the arm, and from the distal part of this broader portion a narrow finger-like process extends at right angles up in the line of the limb, pointing toward the hand. This appendage strongly resembles another digit arising at the elbow.

Mersurements of the foetus, and expecially of the deformed limbs: are here appended in tabular form:

Deformal upper armemilios

1.EN:TH*	hliht	L.F.FT
- Teromion process to print of elbow	N2 $11 \ldots$,	F! : 1 ml .
lount of eltow to distal char of radims	\therefore \% 1 \%!	i's 1111.
Find of radias to finger tip	3 i !ı!	25 IImm .
Skin wrlo		
lirom point of clbow to free crlga	3.3 mint.	37 nlm .
It resit..	23) degrees	24 degrees
Wxtemderd in atmost	-6) degrees	4.) degrees
E.stril digit		
From perlicla to ont r edge of broad portion	$1 \underline{12} 11 \mathrm{ml}$.	
Onter edge of brostel jertion to tip of digit	Is imill.	
From pedicle straiglt to tip of digit	20 mma .	

Am all at villa
drin :1 freve edge of thin fuld

Furarin here fir: free
C:urpus...
Dikit :a m: life phatans
Lixiral dimit
Pedich.

Nirlille oliat (prosimat phatalls

Ihror- witril	Tram-vore*	Durar bintrial	Tranaverse
mm.	mm.	$m \mathrm{~m}$.	mm.
3:3	$1!1$	3)	21
- 1	$1 i$	3.	17
\because	IN	- 3	17
11	1.5	11	13
$1:$	1:	10	\checkmark
1	.	1	t
7	4		
!	4		
\%	\therefore		
i	1		

The only ease reeorded that elosely resembles this one is one reported be Barabo (6 ($)$. The eomplete dereription as given by him follows:

 Bugenppize war 7 am. lame der Virderatm bis zum Handgedenk 4 em. Am Vorderam war mar bin Vorderaminowen varhanden. Von der

 kondell vorhamken. Dic Bhrigeth Finger und Xittollamelkorkell folilteli.

 men. rudimentar ent wickelt, sase dieret anf dem Handqelonk: ant unul

 handen umit am. lamy.

Der Vorttagende latest die Frage ution, wh die Mishildomge anf
 fithern sui.

From the abowe areount it will be seen that the right arm in Barables case shows eatetly the same condition of a webbed
clbow, single bone in the forearm and monodactyly as is shown in both arms of the foetus deseribed by me. This is an important point ios it leads to the assmmption that this rondition is a very definite one, which although very rare is not purely a ehanes oreurrence but may have some definite canse. This it woukd be the conerete indication of the previous working at a certai:" particular period of development of some definite vicions or teratogenie inflenee.

Four radiographs were made of the foetus in the X-ray department of the 'Toronto General Hospital. Plates were made of the whote body from the front and from the side, and also special ones of each arm from the sirde. The definition of struetures in the phates was exceftent and identifieation of various parts was an easy task. Prints made from these phates, however, were msatisfactory, simere heary prints intended to show strmetures with light shadows made heavier parts a solid mas: of shadow withont detail, while hight prints did not bring out distinetly the lighter parts. Three prints of each plate were made, a heavy, a medimm, and a light, and from these and the plates, the foftowing deweription has been pieed together. The illustrations are from actual traeings from the phates and are designed to show only essential struetures.

The radiograph of the left arm (text fig. 1 and fig. 6) shows a well-developed seaputa of normat proportions, and artieulating with it the humerus, which is fairly healy and of typieal shape. The upper ond is well expanded as is atso the lower, but as might be expected no ossification is yet present in the epiphyses. The lower end extends ahmost to the end of the bend of the elbow, and coming off in front of it is a single bone lying in the forearm. Owing to the cartilaginous condition of the epihyses, no articulation can be demonstrated, only the osseons tissues showing. That this bone in the forearm is the radins is quite erident from its shape, the upper end being narrow and the shaft round above and gradually broadening as it proeeeds distally, the entire bone being also slightly eurved in
its length. Berond the radins is a considerable clear interval inclucling all the earpal and metacarpal region where the P is yet no ossification, hit in the single digit a small rectangular ossification is seen ,roximally and another oceurs distally, these representing the shafts of the proximal and distal phalanges. Between the two is a clear space where the still mossified eartilage of the middle phalanx lies.

The right arm (text fig. 13) presents a few differences from the left. The seapula and humerus are both typical. The humerus does not, however. reach as near the point of the ellow as does

A

\checkmark

Text fig. I Fieteh from :a ratiograph of the heft arm showing the ossified portions of the skeleton.

Text fige 13 sieteh from a radiugraph of the right arm showing the ossified portions of the sheleton. Fote the extra digit at the elbew.
that of the left arm, the end of the rarlius lying under it instead of in front of it. The radius is more curved than in the left arm. Xo carpal bones yet appear, but in the metacarpal region there is a small osification representing the shaft of a single bone. As on the left side asifications for the proximal and distal phalanges are present in the digit, while no middle phalamx yet shows. The proximal phalanx is not as well developed as on the left side.
The appendage at the ellow on the right limb (text fig. 13) is interesting. Its pedicle appears in the interval between the humerus and radius and rumning dorsally in its broad part
is a well marked metacarpal ossification. and at right andes to this and lying in the narrow digital part of the appendage is the ossification representing the first phalanx. In the region of the second phalanx there is yet no bone, while the distal phalanx is represented by an extremely small centre of ossification.

Some delay is thus evidelit in the processes of ossification in these limbs since the appearance of the primary enter in a metaearpal is usually in the ninth week and for a meddle phalanx about the twelfth week. (Keibel and Mall.)

The skeleton of the lower limb (fig. 5) appears to be normal except that no middle phalanges yet show ossification. Metatarsals, proximal and distal phalanges are all ossified as are also the talus and calcaneus. The long bones are normal. Delay in ossification in the middle phalanges is again evident in these limbs.

The skull shows no almormalities, although ossification is very heavy in the base, especially in the petrous regions and body of the sphenoid, but the vertebral column and ribs show some interesting features. The vertebral body (fig. (6) shows as a transversely oval patch with a small clear spot in the center, indicating the position of the notochord. The appearance of the body indicates the occurrence of ossification from bilateral centers or else from a center indicating a bilateral origin. The ossified part of the neural arch is still dividet into its two halves, no fusion having yet occurred either with the bodies or dorsad to the spinal cord. The center in each half of the arch (fig. 5) is quite distinetly seen lying to the side of the body and on the thoracic vertebrae well marked transurse processes can also be seen. In the sacral region the centers for the neural arches are very insignificant and none are to be seen for the eoccys. The first three saeral vertel,rae show a well marked center of ossification (fig. 6) on each side in the lateral mass. There are seven well marked cervical yertebrar, thirteen thoracic, five lumbar, five sacral and one coceygeal. The first sacral may be identified by the presence of the centers in its; lateral masses, so that it is evident that the presacral vertebrae are twenty-five in number instead of the normal twenty-four. That the supernumary
vertebra is a thoraeie one is assumed from the fact that there ${ }^{\circ}$ re the normal number of lumbars and cervicals, all typical of their region in appearanee, and all free from ribs, while between these regions lie thirteen vertebrae, all of which bear ribs.

All the thirteen ribs (figs. 5 and 6) are well marked, though the first and the last are very short. It is unlikely that the rib at the upper end is cervieal, or the lower one lumbar in origin in view of the faet that these regions have their full number of vertebrae without ribs.

The eause of the seoliosis mentioned previously is shown in the radiograph. The body of the third thoracie vertebra (fig. 6) is imperfeet on the left of the mid-line. It shows ossifieation but is only half the size of the right half, and this center of ossifieation has remained separate from its fellow on the right side. The fourth body is slightly tilted up on the left to make up for the defieieney. The seventh thoraeic vertebra on the left side of its body again exhibits the same deformity, with laek of fusion of the two eenters of ossifieation in the body, and in this case the cighth, ninth, tenth and eleventh vertebrae, lying below it, ure all tilted up to eompensate for the deformity. Both defeetive vertebrae show good neural arches with well devioped ribs artieulating with them.

The only points in regard to the skeleton, whieh are not brought out by the radiographs, but becone evident on dissection, are that eight enstal eartilages articulate with the sternum, and that there are only two carpal bones. The earpal bones are not yet ossified, and so do not show in the radiographs. The proximal one is long and eylindrieal, with a convex head proximally artieulating with the lower end of the radius, and a concave facet distally for the other carpal. The second earpal is an ir regular wedge, broad dorsally, narrow ventrally, with a proximal convex articulation for the other carpal, and a coneavoeonvex facet distally for the metacarpal. It is impossible to identify either of these bones with any one of the normal carpal bones, but they resemble the navieular and lesser multangular more closely than any others.

DISSECTION OF LEFT ARA

MUSCLES
In describing the muscular system in this limb frequent reference to variations and to comparative anatoiny are made, where it would be tiresome to keep repeating the authority for such statements. In such cases it is to be considered that Le Double's book "Variations du Systeme Musculaire de l'Homme" has been followed.

Where no comments are offered regarding the variations of origin or insertion, or additional attachments of any muscle noted here, it is to be inferred that such departures from normal have been frequently noted before by others, and are not of great significance.

As is to be expected, there is little change and abnormality in the muscles belonging to the upper part of the limb, but great structural differences become increasingly evident as one proceeds distally.

```
MUSCLES FROM ANIAL SKELETON TO SHOULDER GIRDLE AND
HUMERUS
```

All the following muscles are present and exhibit normal origins and insertions (figs. 7 to 10).

Sternoclcidomastoid.
Subelavius.
Trapezius. Musele fibers end at level of ninth thoraeic vertobra, below this point there is only a thin aponeurosis.

Rhomboidei, ninor et major.
Levator scapulae.
serratus anterior.
Latissimus dorsi-with an aceessory head fiom the lower angle of the scapula. The two peetoral museles exlribit some variations from the normal.

$$
\text { Pectoralis major (figs. } 7 \text { and 8, P.Ma) }
$$

Origin. Normal.
Insertion. Into the outer lip of the bicipital sulcus by a heavy sheet of tendon. From the deep surface of this tendon two ab-
normal accessory heads of origin of the biecps. brachii are given off.
l'rom the lower free edge of the muscle and from the main tendon there arises an aponcurotic strip which gradually narrows as it passes town the arm and forms a band arehing over ${ }^{\circ}$ the hiceps muscle and inserting into the medial epieondyle and the medial epicondylar ridge of the humerns. This band is the chondroepitrocllearis musele, and is not an uncommon structure, being freguently found in the adult (8 times in tit subjects, J.e Double). It is murh more frequent in females than in males. It is a normal part of the musculature of many of the lower animals, being known under various other names in cheiroptera, bears, foxes, Dasypus, Echidna, Batrachia and Cracea, and is believed to be homologous with the tensor plicae alaris of birds (Le Domble).

Pectoralis minor (fig. 8, P.Mi)

Origin. Statements differ in various texthooks as to the extent of origin of this muscle, some (e.g., Piersol) say the third to fifth ribs, others (e.g., Morris) inelude the second rib also. In this instance the more extensive origin oreurs.

Insertion. The insertion is into the upper surface of the coracoid process and the outer part of the costocoracoid inembrane is so intimately blended with this part of the musele that I have dehated whether or not to eall it a second insertion inte the midelle third of the clavicle, an attachment which is oceasionally cexhibited. The lowest fibers are attached to the medial surface of the coracobrachialis musele, an insertion which has been noted in other cases by Winslow (vide Le Double).

ShoUlder muscles

The deltoid, supraspinatus, infraspinatus, teres minor, teres major, and subscapularis are all present, and normal in extent.

HRACHIAL MUSCLES

Coracobractialis (fig. 8, C)
Origin. From the coracoid process, and capsule of the shoulder joint, by a common tendon with the short head of the biceps. The capsular origin is uncommon. The muscle in its upper part reccives fibers from the pectoralis minor as mentioned above.

Insertion. Into the medial side of the humerus from the level of the lesser tuberosity amost down to the medial epicondyle. What are here present are thas all three divisions of the muscle, namely, superior, middle and inferior portions.

The superior portion here exhibited is rarely found in man though normal to some of the lower animals. The coracobrachialis superior, when present, inserts into the lesser tuberosity, surgical neck, and medial licipital ridge of the humerus, also frequently into the eapsule of the shoulder joint. It occurs only very rarely in the Anthropoidea but as a normal struct.ure in the Quadrmmana. It is ako present in the elephant, giraffe, bear, cat, hyena, opossum, Eehidna and several other animals.

The coracobrachiatis medius is inserted into the middle portion of the humerus and forms the main mass of the normal human musele, the remainder being constituted of the upper part of the coracobrachialis inferior. The medius is the only portion of the coracobrachialis present in the aye-aye, the bat, and the sloth, while it is absent in the kangaroo, otter, and seal.

The coracobrachislis inferior has an extremely variable insertion, extending in different cases from an attachment a con-ple of centimeters long on the shaft of the humerus bedow the m: elius, to an insertion on the inner redge of the whole lower half of the shaft of the bone and the inner cpicondyle. In the latter case it bridges the supracondylar foramen in animats where this is present and so is perforated by the median neree and brachial artery. This muscle is found in the cetacea, the hedgehog, the bear, great anteater and others. The inferior portion is much more developed here than is normal in man, but similar developinent has been frequently found before.

Between the upper and iniddle portions runs the musculoeutaneous nerve, but there is no perforation of the lower part of the muscle by the brachial artery and median nerve, as occurs when the muscle extends as fir as the medial epicondyle of the humerus. The medial edge of the upper third of the muscle is connected with the deep surface of the pectoralis major by a muscular band.

MUSCLES OF THE UPPER ARM

Biceps brachii (figs. 7 and 8, Bi)
Origin. The long head arises normally from the supraglenoid tubercle of the scapula. Its tendon is very thin and narrow.

The short head is fleshy and heavy, arising by a broad tendon from the coracoid process and the capsule of the shoulder joint, the muscle formed by this head overlapping that of the long head.

In addition to these two heads two accessory heads are present on the lateral side, arising from the deep surface of the tendon of the peetoralis major and joining the long head at the level of the bicipital groove. On the lateral surface of this united bundle comes in a tough short tendon from the deltoid tubercle and under the long head there is also a distinct bundle arising from the shaft of the humerus to join the long head. There are thus seven distinet origins $f \cdot r$ this muscle. Ill these abnormalities have been noted by Le Lic ole though some of them are extremely rare.
Insertion. The greater part of the muscle passes into a tough cylindrical tendon passing to the bicipital tubcrele on the radius.

This is a seeond trudon, however, passing from the superfieial and medial aspect of the muscle, as a broad flat band with diverging crescentic e.lges. It is attached to the anterior surface of the medial epiconilyle of the humerus, and to the shaft of the radius in front of and beyond the bicipital tubercle. Between these two points the inferior border of this aponeurosis
presents a free crescentic border under which are visible the other tendon of the biceps and the tendon of the brachialis muscle. There is some fusion of the deep fascia of the arm to the muscle at the beginning of this superficial tendon, which might be interpreted as a rudinentary semilunar fascia.

The attachment to the humerus must be extremely rare as it has not been noted by such an authority as Ie Double and no explanation of such an a^{\dagger} tachinent can be drawn from comparative anatomy. The only plausible theory to be entertained is that this is possibly an extremely well developed semilunar fascia which has obtained a bony attachment by following the intermuscular septa to the bones.

The median nerve passes on the superficial surface of this broad tendon while the brachial artery and vein pass deep to it, and also behind the round tendon.

The biceps muscle is responsible for the position of partial supination of the radius, though the hand is pronated. It is to be remembered that one action of the biceps normally is rotation of the radius to produce supination, accomplishing this by a forward pull on the bicipital tubercle which lies posterior to the long axis of the bone in pronation. In this case the radius has been rotated until the bicipital tubercle lies facing the anterior surface of the humerus. There are no muscles attached to the radius capable of opposing the biceps in this action and so the position of supination will be permanently retained.

THE BRACHIALIS MUSCLE

This muscle is divided longitudinally into two portions.

> Medial portion (fig. 8, Br.)

Origin. Normal in extent from the lower half of the front of the shaft of the humerus.

Insertion. The muscle passes dowi on the humerus almost to the articulation with the radius. It is inserted along a continuous line on the back of the neck and head of the radius, the joint capsule and the medial epicondyle of the humerus dis-
tally and deep to that part of the biecps tendon inserted here. mad derp to the origin of the museles of the forearm.

This pertion of the musele is suppied by the musenlocentaneons nerve, which is normal, as this portion of the musele devolops from the ventral museulature of the arm.

The insertion of the brachialis on the radius is to be expeeted here, as the ulna is alsent, and because it is a frequent nhormality to have acressory insertion on the radius in addition to its ulnar insertion. Indeed, in addition to the ulaar insertion in some of the lower animals, such tos the horse, the ruminants and the rodents, a radial attuchment is normal and in a few species, such as the platypus the radial insertion is the only one fommd.

Laleral portion (figs. 7, 9 and 10, Br.)

This portion is so distinet from the medial portion as to be practicadly a separate musele. It is also divided longitudinally into two completely separate bundles.

Origin. The two bundles of this musele arises alongside of each other, following the lower half of the eireumference of the deltoid tuberele.
Insertion. They patss down the arm as parallel fascieuli and are inserted on the lateral border of the radius in line with each other, the most lateral fascoculus being at least a third the distance down the shaft of the ratius. This portion of the musele is supplied liy the radial nerve and represents the portion of the musele developerl from the dorsal museulature of the :..m and has, in this instance, separated from the rest of the musele formed from the ventral eloments. The ravlial nerve normally supplies a small portion of the human brachialis musele on the latoral side, thus indicating the normal composition of the musele, which always has a small porion of the dorsal musculature included in it. Le Doul le wites cases where the brachinlis musele has heen found divided into two distinet heads, as found in this ease, either one of which may be subdivided again. He does not state the nerve supply, but it is probable the primary separation is hetween the dorsal and ventral elements of the musele.

This lateral portion forms a sharp fold projecting between the Inmerne and radius and orexpies the deeper pertion of the skin wel) previously deseribed as binding the arm in flexion at the allow, 'This musele is very tight and preverits ath extentvion of the rachus on the humerus. It is the musele so placed as on bost thoronghly prowent this movement, and the part respons ble for this is the laterat portion, due to its insertions down the shaft of the ractins. There is no opposition to this force sos the trieres is not attached to the radius.

Nthomgh this musild oerupies only about hat the projecting extent of the skin weblere, it is probably the eause of the wel), forcing the skin out in a slarp fold ahed of it. The fold has developed beyond the extent of the muscle later on.

The hateral portion of the brachialis is responsible for another displacement of the radius. Is its insertion is far down on the shaft of the radins, and its pull is all to the one side, it has swing the radius aromal laterally until the long axis of thas bone lies in a plane parallet instead of perpenticular to the line joining the two epieondyles of the humerus. This latter relation is not at first sight apparent, for the forearm appears to be ventral, not lateral to the upper arm. The reason for this is that the scaputa, carrying the humerus with it is rotated through a right angle forwarl and inward on the flattened chest wall. The scapula has medial and lateral surfaces respectively, instead of ventral and dorsal. The humerus simitarly has medial and lateral surfaces instead of ventral and dorsal, and the axis at the lower extremity passing through the epieondyles is not mediolateral in direction. but dorsoventral. The forearm thus lies in a dorsoventra! plane although actually rotated laterally through a right angle.

$$
\text { Triceps brachii (figs. } 0 \text { and 10, } T_{1}, T_{2}, T_{3} \text {) }
$$

Origin. The long head is very large and arises from part of the axillary border oi the scapula as well as the infraglenoid tubercle.
The lateral head arises from the upper third of the posterior surface of the shaft if the humerus above the groove for the
ratial nerve, and is duite large. Its border bents with that of the long heal thronghont its extent.

The medial head hes on the back of the midelle thired of the humerns, bolow the groowe for the radial meres. It is overhapped largely he the long head and bende with the deep surface and medial border of the latter.

The lower twothirts of the masele exhibit a temblon rumbing Iengthwise, at the line of gumetion of the long and hatembents. Towards this temben fibers converge in the upper part nuscle, and in the lower part they diverge again to their insertion on the bone.

Insertion. Owing to the absence of the nha no normal insertion is possible, and the whole lower attachment of this mase is transferred to the humerns. The insertion is into the whole of the lower third of the posterior surface of the thaft of the homerns and to the back of both epicombles. The ratins receives no attachment whatever from this musele, so extemsion of the foremem is an imposibility. This explains the early fixation of the foream in extreme flexion, allowing thes of the development of the skin wel) and shortening of the hatachatis masele to make this deformity a fixed one. Jhgration of the attachment of the brachialis clown the shaft of the ratins: is thus permitted by the permanent flexion of the forearm. In this position the further the muscle passes down the rathis: the shorter it becomes, as it: insertion approaches the level of its origin.

It might be asked why, in absence of the ulna the brachialis musele beomes attached extensively to the rathins but the triceps all enels on the humerus. Why does not the triceps also reach the radius:" The differenee seems reasomable in view of the following circumstances, comparative anatomy furnishing the answer 1 , the problem. The bachialis is attachef to the radius oceasiomally in man, and as before mentioned, normally in certain lower anmaks in addition to its uhar insertion, white in a few -neries the radial insertion is the only ome. In the case of the triceps, insertion on the ralins is not nomal in the
lower animals ceen where the ulna is of small importance in the forearim.

It is to be noted that although the two hameral heads of the triceps can proluer no movement, as they both arise amd insert on the humerus, yet they are both well developed misete masses.

MESCLES OF TIIE FOHESLRM

There has been great disturbance of the mushles in the forearm, dhe to the absenere of the uhta and reduetion of the hand, but it is still possible to homologise some of them with theser of the normal type. The others however are diffienth to define and the homologios given for them are more in the natare of probabilities that of definite farts. The extensors serem to be more rechered and more atypieal ihan the flexors.

FNTVNNGRS

Mowty members of the superficial gromp are here present as all of the deep gromp with one exerption are absent. There are four maseles to rombiter on this surface.

1. Brachionadialis musele (fige. : and 10. B.)

Origin. High on the laterak epieondylar ridge of the hmmerns.
Inscrlion. A rery hort eytinhtreal masele roming across the bemd of elbow to insert on the shaft of the radias at about its middle point, smd just to the side of the insertion of the lateral pertion of the brachialis musele.

This musele is probably the brachoradialis and its shomeneng is not extreme. having been moted in other cases, white in one of the anthropoids, the gibbon, its insertion is normally high up on the shaft of the radins.

\therefore Common superficial ertensor messs (fign. 9 and 10, ('.E.MI.)

Origin. Lower part of lateral epicondylar ridge and outer surface of hateral epicondyle of the hameris.

Insertion. Runs directly parallol to radins and inserts at the midelle of the shaft of that bone, just medial (owing to pronation apparently lateral) to the brachionadialis.

This musele probably represents the umbifiorentiated remaindor of the superfectal extensor mass, exeept the extensor eappi ulnaris which is separate. It will thas inchate the extensors earpi radialis longus and brevis, digitormm eommunis and digiti puinti proprins. In some reptilia and amphibia these maseles are in a eommon supinato-extensor mats:

Why none of this mass reaches she earpus or digit eannot be explained, but the fact that nome of it does an explains why the hame is carried in a position of permanent flexion. beemase there is a flesor momele attachal to the digit amd it is thess without ath opponont to its pull.

3. S゙ıpiuntor (figs. Sind 10, 1.)

Origin. (oweredby the common extensor mass it eomes from the anterior surface of the lateral condele of the humerus. This represents the superforial or humeral protion onty of the normal himman musele.

Inse rlion. It courses parallel and deep to the commom extensor mass and is inserted into the eapsule of the radio-humeral joint. head, notk and upper third of the shaft of the radios, right down to the insertion of the eommon extemsor mass.

This masele, it serems to me. is quite evidently the supinator, and so is the : gle representative here of the deep museles of the extensor series in the forearm.

Origin. Below the preeceding moselo from the lowest part of the lateral epieondyle of the hmorms. This is the last of the extensor group) and lios in contant with the flexors. It is the longest of the extensors, being over donhle the length of any of the others.

Inserlion. By a long slemder temon which is one-thire the length of the muselo, into the midelle of the dorsal surface at the
lower extremity of the radius and into the carpus. At the origin of the long tendon from the belly of the musele there comes off also a very short tendon which courses obliquely toward the flexor surface of the radius and is inserted right alongside of and practically blended with a part of the flexor digitorum profundus, about three-quarters of the distance down the bone.

This muscle is named the extensor carpi ulnaris beeause of its superficial origin from the humerus and its insertion into the carpus, and because it is the most medial of the extensor muscles here found, and is in contact with the flexors. All the muscles inserting into the carpus also show attachment to the lower end of the radius, this attachment seeming to be due to a spreading out of the tencion at its insertion, and so I do not think the radial attarhr ent here offers a serious obstacle to calling the muscle the extensor carpi ulnaris.

FLEXORS

This group of muscles exhibits members of both the superficial and deep layers and although badly disorganized it still retains a somewhat eloser homology to the normal divisions of this group than is to be found in the extensors.

SUPERFICIAL GROUP
First layer

1. Flexor carpi radialis (figs. 7 and 8, F.C.R.)

Origin. By a broad fleshy head from the upper part of the medial epicondyle of the humerus.

Insertion. This muscle is fleshy in the upper half of the forearm and has a long thin tendon coursing through the lower half to be inserted into the lower end of the radius and into the carpus.

The position of this muscle is along the lateral border of the radius on its volar surface, although it appears to be dorsal due to the rotation of the bone.

From its attachments and position it can be quite safely identified as the flexor carpi radialis muscle.

2. Flexor carpi ulnaris (figs. 7 and S, F.C.U.)

Origin. A broad, flat, fleshy origin from the front of the medial cpicondyle of the humerus and from the surface of the bone in front of and below this.

Insertion. This muscle is by far the largest of all those yct described in the forcarm. It is fleshy to about two-thirds the dist nce down the radius where it narrows into a heavy tendon wheh inserts at the lower end of the radius and into the carpus.

Second layer
 3. Flexor digitorum sublimis (superficial portion) (fig. 8, F.D.S.)

Origin. Inder the origin of the flexor carpi radialis as a thin flat fleshy muscle which courses obtiquely to join one of the deep museles arising on the radius, which will be described later.

This ! would homologise with the flexor digitorum sublimis due to its position as the second layer of muscles from the medial humeral epicondyle. There is a posibility of this muscle being the humeral portion of the pronator radii teres. Lgainst this latter view, are the facts that the muscle is entirely covered by the two carpal flexors, and that it is not inserted into the shaft of the radius but joins a muscle arising here to be inserted into the carpus.

DFFP MUSCLES

Third layer
4. Flexor digitormm profundus (figs. 7 and X,F.D.P.)

Origin. A thick fleshy muscle arising from the lower two-thirds of the volar aspect of the radius on its lateral (apparently dorsal) portion.

Insertion. This musele pasces as a compact fleshy bundle as far as the metacarpal region where it condenses into its tendon which is single and rum on the volar :mpect of the single digit
to be inscrted into the terminal phalanx. In its course it passes under the digital portion of the median nerve which divides on the digit, allowing the tendon to pass out under it in a manner similar to that usually shown by the tendons of the flexor digitorum sublimis muscle.

The flexor pollicis longus muscle is apparently entirely absent or much more probably its musele mass is indistinguishably fused with that of the Hexor digitorum profundus, since the primitive eondition of the deep flexors is a single muscie mass giving tendons to the thumb and other digits. Man is one of the very few mammals possessing a flexor pollicis longus muscle and MeMurrich ('03) has shown that in the other mammals its alsence is not due to a lack of the muscle but to the fact that it has not differentiated out from the common deep flexor mass to the digits. It is thus present as the most radial portion of the flexor digitorum profundus in these forms.

5. Flexor digitorum sublimis (Deep origin) (fig. 8, F.D.S.)

Origin. From middle third of volar aspect of radius just medial (apparently ventral) to flexor digitorum profundus.

Joining the proximal part of this musele is the superficial origin deseribed above.

Insertion. The common mass so formed passes into a slender tenclon inserted at the lower end of the radius and beginning of the carpus.

The reason of the failure of the tendon of this muscle to reach the digit I think must be sought in the failure of the palmar aponcurosis to which it is attached, to differentiate into a tendon. Me.Murrich ('03) has shown that primitively the sublimis muscle ends at the wrist inserting into the palmar aponeurosis. Muscles developed in this aponcurosis later fuse end to end with the flexor sublimis thus producing its tendons in the mammatia. The palmar structures included in the sublimis have evidently failed to form here, leaving the sublimis 10 end at the wrist.

6. Flexor Digitorsm. Profundus (delached portion) (fig. 8, F. D. P.)

Origin. From the neek of the radius and the shaft of the bone near this on the medial (apparently ventral) border.

Insertion. This musele is long and slender. As it is followed distally into its tendons it divides into a superficial and deep layer which insert separately. The superfieial tendon passes down to the lower end of the radius and to the carpus. The short deeper tendon ends almost inmediately on the shaft of the radius a short distance above the lower extremity, and is fused with the short deeper tendon of the extensor earpi ulnaris already described.

This musele I interpret as the ulnar part of the flexor digitorum profundus, which has differentiated during the musele development of the limb and become attached to the nearest part of the radius. The flexor digitorum sublimis by the extension of its deep, radial origin, comes between it and the radial portion of the profundus laver and so may have prevented their fusion. On the contrary if the lack of fusion was primary this would allow of the sublimis layer becoming attached down the radius between the two parts of the profundus. There is no possibility of this being the flexor pollieis longus as it lies medial and not lateral to the rest of the flexor digitorum profundus.

Fourth layer

7. Pronator quadratus

A thin film of transversely disposed musele fibers lying over the lower end of the radius represents the pronator quadratus musele. It is very poorly develcped and small in extent.

It is to be noted that by means of the musele in the forearm voluntary flexion of the digit is possihle but voluntary and active extension is impossible, as all extensors fail to reach the finger. A singular and interesting parallel to this case is found in a case cited by Sehultze ('04). In a training sphool he observed a nineteen year old lad who had only one digit on each of all four limbs. Voluntary flexion of these digits was easily accomplished but he
had no power of extension. The probable explanation is, that there was a condition such as present in the case I have dissceted. The fact that in both these cases the flexors are evidently better developed than the extensors is significant and seems to point to certain definite conditions in the muscles being associated with the deformity.

muscles of the hand (figs. 7 and 8, L.)

Only one muscle is present here. It is a lumbrical, arising in the metacarpal region from the lateral side of the flexor digitorum profundus as this latter muscle passes into its tendon. The lumbrical passes in a spiral direction distally and laterally on to the dorsal surface of the digit where it inserts into the dense fibrous tissue over the phalanges.

NERVES OF THE LEFT ARM
The whole brachial plexus was dissected out as shown in figurc 8 and confornied in all its arrangement and branches to the typical formetion. Therefore it is only nccessary to describe the course and distribution of its main terminal branches.

From the posterior cord

1. Axillary nerve. Normal course and distribution to skin, deltoid and teres minor muscle, and to shoulder joint (figs. 8 and 10, A. N).
2. Radial nerve. Runs ventral to the latissimus dorsi tendon, then winds behind the humerus (figs. 8 and $10, R . N$) in the musculospiral groove, here giving branches to the three heads of the triceps muscle, and then enters the space between the triceps and postaxial portion of the brachialis muscle, where it supplics this part of the brachialis and gives off the dorsal antibrachial cutaneous nerve.

A short distance further on the nerve divides into
a. The superficial radial (figs. 9 and $10, S . R . N$) which runs a cutaneous course on the lateral side of the whole length of the forcarm and hand.
b. The deep radial nerve, which lies under the three superficial extensor muscles (fig. 10) and on the surface of the supinator which is covered in by the others. The nerve supplies all these muscles.

From the lateral cord

3. Musculocutancous nerve. Supplies the coracobrachialis muscle and penetrates it (fig. 8, M/C. N.) between its upper and middle portions to pass between the biceps and the preaxial portion of the brachialis, supplying both the latter muscles and ending cutancously in the forcarm.
4. Outer head of the median nerve. The median nerve is deseribed under the inner cord.

From the inner cord

5. Inner head of the median. nerve. Unites with the lateral head over the axillary artery.

The median nerve (fig. S, M. N.) courses ventral and medial to the axillary and brachial arteries in the groove medial to the biecps muscle. It enters the forearm deep to the flexor carpi radialis and superfieial head of the flexor digitorum sublimis, and in front of the biceps tendon and is accompanied by the medial vena contes of the brachial artery, while the artery and the lateral vein lic under the two biceps tendons. As it passes the elbow, it gives branches to the flexor carpi radialis, flexor digitorum sublimis and flexor carpi ulnaris and then divides into a superficial and a decp branch.

The deep branch cvidently is the volar interosscous nerve of the normal arm, and it supplies the three deep muscles arising on the shaft of the radius.

The superficial branch of the median nerve (figs. 7 and 8 , M. N.) comes immediatcly from under cover of the flexor carpi radialis and courses subectaneously down the ventral surface of the lower two-thirds of the forcarm and over the carpus. In the distal third of the forearm it gives off a large cutaneous branch on the medial side.

It the carpus a strong cutaneous branch is given off on each side and on the lateral side also a muscular twig to the lumbrical muscle. The rest of the nerve runs on the ventral surface of the single digit, finally forking to each side of the digit about the level of the second phalanx to let the underlying flexor digitorum profundus tendon pass through it. This nerve was at first mistaken for the tendon of the flexor digitorum sublimis muscle, so typical in appearance was it to this latter structure, when only its course in the forearm and hand was uncovered.
fi. Ulnar nerve. Runs down the arm under the deep fascia (figs. 7 and $8, U . N$.) in company with the basilic vein, pierces the deep fascia a little above the elbow, and divides into two branches, a volar and a dorsal, both running subcutaneously on the medial border of the forearin.

No muscular branches whatever were f •nd on this nerve, its whole distribution being as a sensory nerve to the forearm.

All other nerves of the brachial plexus which are not specially described here are normal in their extent and distribution.

VESSELS OF THE ARM

The versels of the arm were not dissected above the axilla as it did not seem that any noteworthy changes from the normal would be likely to occur. No mjection was employed as it was feared that if a vessel wall ruptured structures around the break might be so stained as to obscure valuable results. Small vessels were thus hard to follow, and arteries to the hand could not be identified.

arteries (figs. 8 and 10)

The axillary artery and all its branches were normal in extent and position.

The brachial artery lay in the groove medial to the biceps muscle, with the median nerve on its medial side throughout its course, so that there is no crossing of nerve and artery.

The brachial artery gave origin to numerous muscular branches and also to three larger branches, the profunda brachii, coursing
with the radial nerve through the musculospiral groove, and the superior and the inferior ulnar collaterals, running inedially alongside the ulnar nerve.

At the elbow the brachial artery (fig. 8) took the astonishing course of passing behind both the biceps tendons and tying on the surface of the brachialis muscle. Just beyond this point the artery bifureated into two branches which passed down the arm, one on each side of the flexor digitorum sublimis. The lateral braneh, the radial artery, lay under the flexor carpi radialis muscle, while the medial, the ulnar artery lay under the flexor carpi uluaris. Both arteries became lost in the dissection before the wrist and hand were reached.
veins
Superficial veins (figs. 7 and 9)
The cephalic vein (C.V.) is present here, starting in the hand and running on the lateral (apparently dorsal) border of the dorsal surface of the forearm, across the skin web at the elbow, up the lateral side of the arm, dividing into two channels. These turn ventrally below the insertion of the celtoid, reuniting here, then pass between the deltoid and pectoratis major muscles to termisate deeply in the thoracoacromial vein.

The basilic vein (B. V.) starts also at the , t, and runs up on the medial border of the dorsal surface, turning medially to the ventral surface just above the medial epicondyle of the humerus. Here it passes under the deep fascia of the arm, running in the groove medial to the biceps as far up as the axilla where it unites with the common trunk formed by the union of the brachial venae comites to form the axillary vein.

Across the back of the elbow a large vein connects the basilie and eephalic veins transversely.

The median vein ($M . V$.) courses up the niddle of the ventral surface of the forearm as far as the bend of the elbow where it divides into two large branches, the median basilic and median cephalic.

The median cephalic (' V.) runs vertieally upward on the ventral surface of the postaxial part of the brachialis, receiving as it gocs the deep cubital vein from the cubital fossa. The median cephalie joins the lower half of the eephatie and the common trunk joins the upper half of the cephalie.
e'The median basilic runs (M. B. V^{\prime} :) baek over the medial epicondyle of the humerns then turns up to join the basilie. It is double in most of its eourse.

Deep reins (fig. 8)

The radia and ulnar veins coursing alongside the corresponding arteries :inte to form the vena comes lying medial to the brachial artery, and passing behind the bieeps tendons.
Another vein runs back alongside the media.a nerve in front of the bieeps tendons and half way from the elbow to the axilla the brachial vein leaves the side of the artery, crosses in front of the median nerve, and unites with the vein accompanying the nerve. This common trunk ascends to the axilia and unites with the basilie to form the axillary.
The axillary vein lies medial and deep to the ulnar nerve and medial cord of the brachial plexus and receives the usual normal tributaries.

FMBRYOLOGICAL AND (ELNIRAL CONSIDERATIONS

The first questions that naturally arise in connection with this ease are as to the causative agent and time of production of the monstrous condition here exhibited. There are several different possibilities to be eonsidered and as the time and the eause are closely related they will be taken up together.

This deformity may be hereditary and so transmitted in the germ eells. In the ease referred to previously, which was deseribed by Schultze ('04), there was only one digit on each hand and foot and this same identieal condition was found in the mother and the mother's father, while a brother had monodaetylous hands, and other deformities of the feet. It is a well known faet that monstrosities affeeting the limbs show more
temaney to be hereditary than many other kinds. Adami ('Os) gives eertain good examples of hereditary transmission of such deformities. There is, howevor, in the case studied here wo evidenec that heredity plays any part in the production of the: abmormality and the canse must be sought for elsewhere.

Igain it is possible for a monstrosity to be produced by deficiency in either germ cell, which will produce a deficiont fertilized ovim. I normal fertilized ovim may abso be injured and ('onklin) ('0.5) hass shown that even in the owim there is a differrentiation and sperific locealization of organ forming substances, one of which coold be damaged thus leading to the production of abnormal embr, os and monstrosities. This has been done by mamy workers, only one or two of whom, such as Werber ('1.i) and stoekard ('09-10) need be mentioned. In this case, however, damage to either of the germ cells and also to the fertilized ovum is improbable as there is no history of either of the parents suffering from vencreal disease, alcoholism or drug habits and neither of then work in noxious surroundings where poisoning would be possible with lead, arsenic, phosphorns or other agents.

The period of the production of this deformity is thes: excluded from the germinal stage and must be cither in the embryonic or foetal stages. The foetal stage also ran be excluded, for as pointed out by kallantyon ('(1)4) in his excellent book ou athematal pathology: foetal physiology is, if not identical, at least similar and paralled to that of the individual after birth, and thus, fortal pathology is mainly concerned with disease and disordered metabolism. On the other hand the embryonie period is a period whose plysiology is not that of functional activity of organs, but of organ formation and differentiation. Pathological conditions in the embryonic period, therefore, lead to matformations and ar if severe to the production of monsters. The deformity in this case is thus limited in its production to a period between the first and seventh weeks of intra uterine life. During this period the limib buds appear and bones and museles differentiate in them.

Shwalle ('0is) has pointed ont that there is a definite termination period for the production of any deformity. Before the coud of this perios practically all deformities of that particular type must appour, and any produced Inter than this are to be regarded in the light of accidental ocenrrences injuring originally perfect parts and so simmlating ahmormalities produced as errors of derelopment before this termination period. The termination period in cach case marks that speeial thine in which organogenesis. ceases and functional activity begins in any particular organ or part and marks the limit in time beyond which a given deformity rarely if ever has its origin. This reekoning also places the latest period for the production of the limb deformity in this case at the seventh or eighth week, when the limb is fully differentiated and ossifiention in the limb sheleton begins.
Mall ('08) after a critical study of one hundred and sixt y-three pathological embryos, has concluded that most monsters are produced ly the fauty development of norinal ova due to external influences, usually a vice of nutrition due to faulty implantation which in turn is generally due to an abnornal condition of the utrine mucosa. Such a condition for instance would be a mild, chronic endometritis which would not prevent the occurrence of a pregnancy but would the enough to cause faulty development. 'This might well be the cause here, as there is in this case a history of two mismarriages previous to the birth of this nonster, without any apparent toxic agent or disease leading to their production, thus giving presumptive evidence of an abnormal condition of the uterus, which would canse faulty implantation and eventual death and expulsion of the products of conception.
Mall has estimated from statistics from various sources that in 100,000 pregnancies there are 80,572 normal births, 11,763 abortions of normal embryos, 7048 abortions of abnormal embryos and carly monsters, and 615 monsters born at term. In view of the great prevalence of uterine disorders, superadded to the unsuitable conditions in which many pregnancies occur, the pathological deselopment of approximately 7.5 per cent does not appear unduly high. It will be noted that one monster is
born at terin in approximately every one hundred and thirty births.

For a full discussion of the many teratological theories the reader i:: referred to Ballantyue's text book on antenatal pathology. It is sufficient to mention briefly any other likely causes of the present deformity. Naternal impressions still possess many firm believers, but 1 think as a cause their utter powerlessness in this case is clearly demonstrated. The impressions were received later in pregnancy, the deformity, as shown above, must have been established very early, so the relation of the two as cause and effect was absolutcly impossible. (See page 387).
Foetal diseases do not appear as a rational sause of this deformed condition and neither do amniotic discases. Amniotie bands and adhestons have been ascribed almost universal teratological influences by devotecs of this theory, and when they could not be demonstrated, their previous existence and later disappearance has been postulated. There is no cicatrix or other evidence of any band connected to the extremities here, and the symmetry of the deformity argues against its production thus. The accompanying defects in the vertelral column are evidently not due to such bands.

There is one cause in the production of monstrosities and of pathological embryos that it seems to me is perhaps a fruitful one and which I have not found mentioned by other authors. I refer to attempts in the production of criminal abortion, which as every physieian knows, are so prevalent amongst the women of this'age. These attempts are not always immediately successful but sometimes the pregnancy is terminated by the death of the injured child at some later date and in some cases pregnaney gocs on to full term in spite of the injury. Is it not extremely possible that in these instances where the child continues to live for some time after the attempt to destroy it, that it should exhibit some monstrous condition, especiatly when the attempt is made in the first two months". Both the use of mechanical means and of drugs would result in these pathological conditions, the instrument by direet injury to the child or to the ammion, the drugs by affecting the implantation in the
uterus, and so being one cause of the condition to which Mall ascribes most pathological embryos. To show that attempts at abortion form a cause not to be negler 't in this regard I quote from the Secretary of the Indiar: state Burici of Health, Dr. J. N. Hurty ('17) who says "It las been extinald that about one-third of pregnancies end in i dued abortions, that at least 200,000 volitional abortions occer "r \mathbf{r} ' year in the United States and that not less than 12,000 women cie annually from the direct effects thereof." (This is quoted from another article as I regret I have been unable to obtain the journal with Dr. Hurty's original article in it.) Surely the arguments I have used above arc sound in view of such conditions as Hurty states to exist and attempted abortions which are not immediately successful ought to be ranked amongst the causes of pathological embryos and monstrosities.

Some of the abnormal conditions found in this foetus can be correlated with interesting embryological stages of growth which it seem's to me throw considerable light on what are otherwise obscure isolated facts. Statements as to normal skelctal and muscular development are taken from the accounts by Bardeen and Lewis in Keibel and Mall's Human Embryology ('10).

In the early development of the vertebra, as the scleroblastema becomes chondrified, this process in the bodies of the vertebrae is brought about by two centers, one on each side of the notochord. At first therc is no fusion of these two centers of chondrification dorsally or ventrally around the notochord, as there is present in the mid line a membranous perichordal septum (Keibel and Mall). Normally this septum is soon broken through both dorsally and ventrally and the notochord is completely surrounded by cartilage by about the fifth or sixth week.

Ossification then oceurs from a center which is usually single, but may divide or even arise paired.

The early presence of the perichordal septum appears significant in view of the fact that in this foetus are found two vertebrac with divided bodies, each half growing independently, and one-half growing less rapidly than normal. This septum was present at the period of embryonic life when that viee of develop-
ment occurred which produced the monstrosity of the limbs. Is it not cery probable that the ehondrification process in these two abnormal vertebrae was hindered so that the periehordal septum was not broken down, hut remained intact, thus producing a vertebra with a divided body?

Ossification as mentioned above tends to occur in the body from one center, which may be divided. Under such conditions, with the perichordal septum intact it is possible that more of the ossifying center should be in one half than the other, thus accounting for the unequal rate of growth in the two separated halves.

There are some other points of interest in the vertebral column. The lateral masses of the sacra! vertebrae ossify as follows: the first at the fifth month of intrau ${ }^{\dagger}$ rine life, the second at the sixth month, the third at the seventh month, the fourth and fifth after birth about three months. In this foetus, the age was given as seven months and the third lateral mass center is just appearing, thus showing a normal rate of growth.

The first coccygeal certehra in this foetus has a center of ossification in its body, while normally it appears in the first year after birth, so in this region there is an actual acceleration of ossification, in direct opposition to the retardation or suppression shown in the abnormal portions of the skeleton.

The eore of the limbs at the third week is filled with vascular mesenehyme which at the fourth week becomes a scleroblastemal condensation which then becomes successively ehondrified and ossified. The prinary failure of the digits and ulna of this foctus can thus be placed as far back at least as the fourth or fifth week of development, at the time when the differentiation of the skeletal parts should have orcurred. This would corre--pond with the time of procluction of the defect in the abnormal vertehrac. 'These facts would cem to indicate that at this particular period was exerted the strongest and most active influenee of the agent producing the deformities.

Dhenere of the ulna is a muen rarer condition in the forearm than absenee of the radius.' Kümmel ('95) has collected a series of eases of defeet in the bones of the forearm. Linfortunately

I could not secure the journal containing his original article but Ballantyne ('04) in his text book and Schenk ('07) in an article on a case of defect of the ulna agree in their accounts of Kümmol's cases which can be taken - correct. He found S0 instances of defect in the bones ot we forearm of which 67 were of the radius, 13 of the ulna. In the case of the ulna it was defective in 5, totally absent in 8 instances. In some of these cases there was associated absence of the ulnar side of the carpus and one or more fingers on the ulnar side of the hand.

The muscles of the limb definitely appear first proximally and differentiation proceeds distally. It might be expected that the muscles of the shoulder girdle and upper arm, being the first to appear after the skeletal deformities were produced, might show some anomalies. They do exhibit anomalies, but peculiarly not anomalies of defect, but of excess, such as supernumary heads and increased insertions. Of course, in the forearm and hand grave defects are associated with the loss of the skeletal structures.

The question naturally arises as to whether the muscle anomalies are a consequence of the skeletal defects or were independently produced by the same vice of development or nutrition to which the absence of the bones is due. In this conmection it is to be noted that th - suppression of muscles in the forearm is not confined to the ulnar border of the arm but affects also the radial side, so that more than mere absence of the skeleton underlies the anomalies. This can be proved by the fact that muscle is independent and self-differentiating. Museles develop independently of functional activity as shown here by the two humeral lieads of the triceps, inserted also on the humerus, incapable of movenient, yet well developed. Harrison ('04) also proved that museles develop independently of the nervous system, for he renowed the spinal cord in early frog embryos, before the museles had differentiatet or receised any nervous comection and yet the normal process of musele development and grouping oecurred. This power of self-differentiation goes right bark to the ovum where Conklin ('05) has
demonstrated the presence of a myoplasm or muscle forming substance.

In the forearm the extensor and supinator group differentiate hefore the flexor and pronator set. As the muscle formation follows closely upon the definition of the skeleton, if the growth suppressing influence which acted on the skelcton lasted long enough to influence the muscles it is to be expected that the extensor group would exhibit the greatest amount of damage. Such is actually the case. Only four extensor muscles are present as against seven flexors and pronators plus one palmar muscle. Only one extensor muscle reaches as far as the lower end of the radius, nearly all the flexors reach that level. No extensor tendon reaches the digit, a flexor tendon passes right out to the terminal phalanx, in addition to bearing a lumbrical musc'e to the digit. It is to be noted that in the members of the ev'ensor group here present the muscle masses are of about nor.nal proportion, covering half of the length of the radius but in only onc case is a long tendon developed, the other muscles inserting at once on the niddle of the shaft of the radius. This failure of the long tendons to differentiate out after the appearance of these muscles is a further example of the greater suppression of growth in this region. Gräfenberg ('11) describes the musculature in a casc of absence of the radius and the thumb. Here the radial musculature is present as a common mass high up in the forearm, possessing no tendons, and so appcaring very much like the extensor muscles I have de:. ribed. The other muscles both flexors and extensors, in Ci "ifenberg's case are present and normal in extent.

Regarding the muscle that I have called the common superficial extensor mass, as separation into separate portions begins at the carpus after the appearance of the tendons, it is not possible here to have such a division into its component muscles, because its tendon is entircly absent.

Absence of the thumb is not enough to cause disappearance of the abductor pollicis longus and extensor pollicis brevis, the radial members of the deep extensors, for there is still opportunity for the museles to develop over the radius. The triceps
did, fail when the mena disappeared. The same is true of th $\quad .1$ ' members of this group, the exiensor pollieis longus, al .ansor indieis proprits. All this group have been obliteraterl be a sperefie suppressing agent during myogenesis.

In the flexor museles it seems strange that the pronator teres is not present when so many of the other muscles are. Its eomplete absenee has never been noted as an anomaly although its coronoid head has often been lacking. In lower vertebrates this musele is a part of a common misalar layer kiown as the pronatoflexor mass. In this foetns it may be present in the superfieial layer, incheded with the mass of the flexor earpi radialis, having faiked to obtain an insertion at the usial level on the radius.

It is interesting to mote that in this foetus a chefinite tembeney in one direction is shown by all museles, which are properly developed and which show anomalies. This tendency, for instance is shown by all the muscles on the front of the upper arm aud is a regresion or atavistic change, the anomalies resembling normal mascles of the lower animals. Changes che wholly to hoss of normal seletal parts lead to amomalous attachments which of course camot be properly inchuted in this chases as they are in the nature of monstronities.

The guestion naturally arises as to what single digit it is that has persisted in this hamd, and also what carpal bones are present.

It may be taken as a plansible working hypothesis that with loss of the ulna womld be associated loss of the ulnar side of the earpus, with the fourth and fifth digits.

This hypothesis is supported by the faet that the main entaneons digital nerves ventrally are two strong branches from the median while dowally the radial reaches the base of the digit. The whar noree has no digital distribution, and as it normally goos to the fourth and fifth digits while the median and radial supply the other three, the digit here present cortainly ought to be one of the three on the ratial side of the hand.
This would leave three digits still to deeide betwen. This number can be further reduced to two as the thumb is certainty aisent, for the persistent digit has a motacarpal and three pha-
langes, and a hombrical musele is also fomm attached to it. The median neree normally supplies the lembricen maseld to the second and third digits, the uhar those to the fourth and fifth. The single hambrieal here present is supplied by the median, a further proof that the digit is the second or third.

The digit is thes either the index of middle tinger but to decide upon which of there two it is. is much more diflicult as there is nothing in the disposition of the mascles to help solve the problem. The distribation of the catameons brathehes of the median merer sem to offer the only key th the solution. In text figures (' and I) is given side ley side the comtaneots distribution of the median neve in this foetus and in the mormal hamed. Is the cutanems distribution of the metlim is wholly digital it is assumed that brameses foomd from the trumk of the median ruming into the hand were intended for these digits which did not appear. By cherking these off against the branches in the normal hand it is fomed that the digit here prescont ought to be the index finger.

There is a palmar contaneons branch from the median arising in the lower half of the forearm and ending in the palm. It is not to be mistaken here for one of the digitai nerves, theme latter arising in the palm. There are threre such nerves, only the middle one passing out on the digit, where it forks to supply each border, while the flexor profundas temen passes on meder it. The other two nerves end at the hase of the digit on its medial and lateral berders. To sawe a long description the reader is referved to the figure explaining the distribution of these nerees. Here at a glamere it can be seem that the part of the nerve femmel on the digit in this foetus, is the portion to the index finger from the first and seromd eommon volar digital branches. From this distrilntion it seems fairly definite that the sold remaining digit on this hand is the index finger.

On the arm which was not disededed it will be remembered that in addition to the single finger carried at the end of the limb there was a well dereloped digit found on the medial side of the elbow. Radiographs showed this to comtain a metacarpal and three plalanges. Of comres, this digit a it be logieally as-
sumed to be one of the ulaser membere wheh has differentiated in site of the total suppresion of the ulna :und part of the carpus. Its appearamere at the ellow and not the carpal region lemols eolor to the view that the ulnar ambage of the limb skeleton never appeared at all even in the early mosmehyme, so that

Trext fig. (' Wattine of the cutaneons dintribution of the median nerve in the normal humat hame.

Text fig. 1) Guther of the cat:menes distribution of the median merve in the

'lue part of the nerwe shonn in solith black in the two tigures, is reekoned as identical in the two hands. amt is used te determine what simgle digit is present in the foctus.
the primary reason for nomappearanee of the ulna was mot a lack of chondrification and ossification.
There is another view in regard to this digit, and that is that the digit is really the representative of all five normal ones, being the result of development of the original undivided digital
anlage in the carliest stage of the limb skedeton as the distal end of the eondensed aderobhastemal core

In view of the facts abready expounded it seeme to me that this hatter vew is not likely to be correct. The nhar nerve omght to have a digital cutanems distribution if the uluar fiumers of the hand are represented in this common finger. but the nhar does not pass ont on the digit. thes supplying one arginene against this hypothesis.
The presemere of one digit at the ellow joint on the right arm postulates the separation of one digital rudiment from the comnom mas:. If it soparated then clearly the tendeney to division of the skeleton of the hand into rass was present and it is just as temable to suppose that the five-raved condition of the hand was provided for, hat growth suppresied in four, as it is to sulppose all five rays of one hand and four in the othe .o be inchuded in a common mass.

The fingers here present, both in the hand and at the elbow. as with be seen from the table of meanurements, are normal in size for a singhe digi.. The development of an madivided common digital mass might bo expected to produce a condition of macronactely: which is mot fomed here. Considering all the facts, the view that the digit as found on the hand here represents only one of the five of the normal hand seems to be the eorrect riew in this case.

What carpals are present is mot capable of definite answer. There are onle two present, a proximal one articulating with the rachus and bearing bevond it a distal one which carries the digit. Thee two in their shape as previonsly described resemble the navidular and lesere multangular more than any of the other carpals. Their abolute identification, howerer, as these two, is hardly to be warranted from these facte alone. If it be true that these are the two carpals present it adds another proof for the digit being the index finger as these twe partieular carpals are in the direct line of the radins and the second digit.

In the mechanism of the production of the deformity in the limb several different conditions have to be eonsidered. First, in the early limb bud the nhar segments may not hase been
carried ont in the distal part of the evagination from the trink of to.e borly. being drawn out later only in the proximal part of he limb, so that a complete upper arm is formed but only the radial half of the rest of the limb. Secondly, these segenents may have been drawn ont, the limb bud being normal, but further differentiation not oecurring, so that what is seen in the limb represents a fused radius and ulna in the forearm, fused carpals anel digits in the hend. The arguments against the digit really representing all five have alrealy been reviewed, and against the viow of the uha being included in the forearm is the absolutely typical shape and size of the radius, the distribution of nerves and museles, and the appearanere on the right arm of a digit at the ellow, as if this point represented the distal cull of the ulnar portion of the arm. Thirdly, the limb bud again may have been normal, withont fusion of the radial and ulnar anlagen in the skeleton, only the radial half going on with its development, the ulnar half failing entirely, except for the digit at the right elbow. The presence of this digit lends color to this thirl view.

D.APMBAG.NATIC HERNAA

After the rest of this paper was written, out of euriosity aroused by the flatness of the abdomen, I opened the body cavity to examine the viscera, and was surprised to diseover a diaphragmatic hernia with a large proportion of the abdominal visecra situated in the left pleural cavity. The right half of the diaphragm was intact and perfert. but the left half was almost entirely absent. The sternal and verteloral regions were present and joined in the central tendon, forming a free edge to the diaphragm in the midsagittal plane. The left costal oricin was indirated in front by a museular ridge 2 to 3 mm . high following the costal margin as far baek as the axillary line and the whole of the left half of the diaphragm except this narrow peripheral hand was absent, leaving a wide open communieation between the pleural and peritoneal eavities. The left mediastinal pleura passed over the medial free cdge of the opening to beeome diaphragmatic peritoneum under the right half of the diaphragm,
 abdominal wall.

The hernia is the of the varuty kuown as hernia diaphras-
 hernial sar formed of diaphragmatic peritonetum and phanta insaginated into the phemal sale, wo that the ahominal viserem are but in reality in the plomal sate. In this rase howerer, there is lum hernial sale. but a comphete hole through the diaphragm and its comeriges. The gembis of this emolition I would inter-
 the orimeal rommmination hetween the pleurat and preritomeal ravities, wheh has but bexn shat off, the to the failure of the *(ptum transwermin to grow hack on this side. The left side mormally chose a litthe later than the right (keibel and Matl. (II) and this maty be one fartor in the greater presakene of heruise on the lat side.

This defeet in the diaphragm must have had its arigion daring the developmed of the structure, and so werned between the forth athd cighth werk of intr: rine life, probally, on arecomit of it- size in the first half of aperiont say the tifth werk. whel: sumention axally with the production of the defects in the linds and vertemal columm.

The heart hat been pashed ower entirely to the right side be the other visereat, hut apart from its position is quite normal. The lef. huge shows two lobers hat is extremely small and thattemed against the mediastinal wall just above the heart. The abdomina disera are all fairly normal in relation to cach othor and orem to have bern rotated en mase up and wer toward the right. The heft hole of the hiver is thms rertical, and against the mediastinal wall. The oesophagus eomes from behind the upper end of the heart into the stomach and the hatere is certical. the prlorns being in the abdomen. The duodenum lies over the vertehral cohmm and the suall intestine rums from it iuto the pleural cavity, sumesside coils being piled continuously above the previous loops up to the apes of the cavity, where the gut is refleded down medially. Opposite the hag occurs the junction with the carcum and appendix. The colon descends
as far an the duodemm, then turn- andenly latek on itself and asecolds in the grent onentum againe the atomarh to its upper mad. then turns sharply down on the herly wall, hese its mesemtery and rums on the wall to the brim of the pelvis, where it turns suddenly into a large loop extending up again as high as the liver before turning to rome down inte the reetum.
Diaphagmatid heriaia arems to be a fairly common comdition
 from lass to bam. It is a pereniar comedence, that in one of those eases, just as in this presolt one. there was also absene of the mata. This is all the more interesting beratise Ballan-
 in cominnetion with mar defects than with defects of other bues in the limbs.

In bringing this study to a clowe 1 wish to bery corlisally thatk I'rof. J. Pasfair Me. Murrich for providing the material for the work and also for his valuahle, kindly eritienm of thi- paper during its preparation.

[^0]

 Aluiar Ina：it．bul．：

 An！ot．，bal．：
 Plılarlep川nia．

 かっは1，ぶ－い。

 s．FI：

 Jevelnphtent．Am．Jour．Inat．．vol．IO．

 Sis．

－BBHELUATIONG

．I．supinator intacela I．I．，axillary artery
If．acrmaion prowsom
I．I＇．，avillary herwe
 thoracie nerves
1 I＇，axillaty vent
R．Wrachioradialia mureho．
／h．I．．benmial atters
／ii，hiectpe muscle
Br，Mrarhinaix musule
II．I．，hasilie win

 maselo mas：
Ch，chondrocpiarmehtaria mastla
＇ 1 ，claviele
ru． $\boldsymbol{1}^{\circ}$ ，cubital wem
1． 1 ．，cephatio win
1 ．deltuid masele
Dr，cut edge of deltond masth．
I：，lateral epicondyle of humern－

F．III＇，flevor digitorven profullas．
musele
F．IS．S．，flexor digitormm sublimias muselo
II．head of humurus
II．R．，head of rallig：
I．．Itedial epiomulyle of humarus
I．／3．I．，intercuatolimehnol nerve．
Inf．，infraspinaths musele

I．II，Intissimus dorst musel．
L．ぶ．，levintar se：opulat tumede
I．T．S．lateral thor：am nerb．

I／．I．f．．．i．，medarl antibutachial rin－ tillerolle merve
M．B．＇．．I．，medinl brachial motatmos． herva
I／ 161 ．．．medtan basulie vain
I／．1．Imedat eorel of bramhial plevas

IV．S．，medhen nerw
リ．I．，medinn vin

I＇＇，pmetarior cord of brachial plavis
I＇I．．postarior hameral circumblas artery
I＇．1／a．．pertoratin major mes
I．I／i．．preturalis minor mus．
R．，rib，
Rh．rlaminal masiless
R．A．，ramial uers．
s．．f．，serrathes anterior maseld

\therefore ©．．suprame．tpular u＂rve
sp．，spine of supula
$\therefore 1 / I$ ，serrallis postarior inferion muselo．

S．／R．A suprelipial malial nerve

T_{1} ．long liatil of triceps mixale
T ：．laturall head of triepus musele
T s．modial heal of tricepes musele
7．A／品．teres major muscle
7．．1／i．tures minor musele

I ．．I．Mhar herve
I．depression in hirk over defective vertebme

1'LATE: 1
\&. JIAANATION GF FIGUREK
1 Deformed foretas : asm from in front.
\because 1)chomed fuetus sem from left side
3 Left arm. viewed laterally, showing monodactyly and welbed clhow
4 Rightarm, viewed ventroncdially, Alowing monolact yoms land and extra digit loeated at and

PLITE: 2
explanation of figures
5 Radiograph of foetus from right side. Thirteen thoraeic vertebrae and ribs are shown.

R'..ITE: :

PL.I'E:

7 supk riecial diseretion of the ventral surface of the left arm

3) Superfiemal tiseretion of the dorsal surface of the left arm.

10 1) ter disseetion of the dorsal sarface of the left arm.

$1: 3$

UNIVERSITY OF TORONTO STUDIES
 anatomical. series

No. 1: The anatomy of the orang-outang, by Professor A. Primrose .
No. 2 : The skull of a human foetus of 40 mm ., by Charles
Clifford Macklin...................... Clifford Macklin.
o. p. Anatomy of a seven months' foetus exhibiting bilateral absence of the ulna accompanied by monodactyly, by J. C. Watt.

[^0]: May 1st, 1917.

