IMAGE EVALUATION TEST TARGET (MT-3)

Photographic Sciences
Corporation

CIHM/ICMH Microfiche Series.

CIHM/ICMH Collection de microfiches.

Canadian Inscitute for Historical Microreproductions / Institut canadien de microreproductions historiques

The Institute has attempted to obtein the best original copy available for filming. Faatures of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below.Coloured covers/
Couverture de couleur

Covers damaged/

Couverture endommagée
Covers resiored and/or laminated/
Couverture restauréa et/ou pelliculéeCover title missing/
Le titre de couverture manqueColoured maps/
Cartes géographiques en couleur
Coloured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bleue ou nolre)
\square Coloured plates and/or illustrations/
Planches et/ou illustrations en couleurBoisnd with other material/
Relí́ avec d'autres documents

Tight binding may cause shadows or distortion along interior margin/
La reliuro serrée peut sauser de l'ombre ou de la distortion le long de la marge intérieure

Blank leaves added during restoration may ippear within the text. Whenever possible, these have been omitted from filming/
Il se peut que cartainas pages blanches ajoutées lors d'une restaura.ion apparaissent dans le texte, mais, lorsque cela était possible, ces pages n'ont pas été filmoes.

Additional comments:/
Commentaires supplémentaires:

L'Institut a microfilmé le meilleur axemplaire qu'il lui a été possible de se procurer. Les détails de cet exemplaire qui sont psut-être uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification duns la méthodo nermale de filmage sont indiqués ci-dessous.

Coloured pages/
Pages de couleur
Pages damaged/
Pages endommagéesPages restored and/or laminated/
Pages restaurées et/ou pellicuiées

Pages discoloured, stained or foxed/
Pages décoiorées, tachetées ou piquées
Pages detached/
Pages détachéesShowthrough/
TransparenceQuality of print varies/
Qualité inégale de l'impressionIncludes supplen.entary material/
Comp end du matériel supplémentaireOnly edition available/
Seule édition dispo.ible

Pages wholly or partially obscured by orrata slips, tissues, atc., have been refilmed to ensure ihe best possible image/ Les peges totalement ou partiellement obscurcies par un fauillet d'errata, une pelure, utc., ont été filmées à nouveau de façon à obtenir la mellieure linage possible.

This item is filmed at the reduction ratio chreked below/ Ce document est filmé au taux de réduction indiqué ci-dessous.

The copy filmed here has been reproduced thaniks to the generosity of:

Dana Porter Arts Library
University of Waterloo
The images appearing here are the best quality possible considering the condition and legibility of the original copy and in keeping with the filming contract specifications.

Original copies in printed paper covers are filmed beginning with the front cover and ending on the last page with a printed or illustrated impression, or the back cover when appropriate. All other original coples are filmed beginning on the first page with a printed or iliustrated impression, and ending on the last page with a printed or Illustrated impression.

Tho last leccrded frame on aach microfiche shall contain the symbol \rightarrow (meaning "CONTINUED"), or the symbol ∇ (meaning "END"), whichever applied.

Maps, plates, charts, etc., may be filmed at different reduction ratios. Those too large to be artirely included in one exposure are filmed beginning in the uppe: left hand corner, left to right and top to bottom, as many framcs as required. The following diagrams illustrate the method:

L'exemplaire filmé fut reprinduit grâce à la générosité de:

Dana Portar Arts Library University of Waterlco

Les images suivantes ont été reproduites avec le plus grand soin, compte tenu de la condition et de la netteté de l'exemplaire filmé, ot en conformité avec les conditions du contrat de filmage.

Les exemplaires uriginaux dont la courerture en papier est imprimée sont filmés en commençant par le premier plat et en terminant soit par la dernière page qui comporte une empreinte d'impression ou d'illustraticn, soit par le second plat, selon le cas. Tous les autres exemplaires originaux sont filmés an commançant par la première page qui comporte une empreinte d'impression ou o'illustration et an terminant par la dernibre page qui comporte une telle empreinte.

Un des symboles suivants apparaitra sur la dernière image de chaque microfiche, selon le cas: le symbole \rightarrow signifie "A SUIVRE", le symbole ∇ signifie "FIN".

Les cartes, planches, tabseaux, etc., peuvent étre filmés à des taux de réduction differents. Lorsque le document est trop grand pour être reproduit en un seul cliché, il est filmé à partir de l'angle supériaur gauche, de gauche à droite, et de haut an bas, en pronant le nombre d'images nécessairn. Les diagrammes suivants illustrent la méthode.

UNIVERSITY OF WATERLOO

Robinson, We
Report on the proposisd trunk line
of railway from an eastern port in

HE2810.G7R6

REPOR'1
 3912
 ON TIIL PROYOMED

 TRUNK LINE OF RAILWAY

 TRUNK LINE OF RAILWAY}

FROM AN EASTERN PORT IN NOVA SCOTIA, THROUGH NEW BRUNSWICK, TO QUEBEC.

BY MAJOR WILLIAM ROBINSON, CAPTAIN, ROYAL IMGINEERS.

(1) ttama:

PRINTED BY HUNTER, ROSE \& COMPANY. 1868.
(

MESSAGE.

ELGIN AND KINCARDINE.

The Governor General transmits, for the information of the I egislaiive Assembly, copies of the Despatches from Her Majesty's Secretary of State for the Colonies, enumerated in the annexed Schedule.

Government Hcuse, 30th January, 1849.

SCHEDULE.

jROK	mo.	Datr.	subjiot.
Earl Grey to the Earl of Elgin...	166	1848. 11th Febrnary ...	Cusloms' Act-Assented to by the Queen-with letter from Treasory and the Board of Trade, respecting it.
Do. . \cdot	167	11th February...	Ditto-With Memorial from certain Iron Founders.
Do.	175	6th March......	Ditto-With Memorial from certain Glasgow Merchants.
Do.	186	31st March......	Ditto-Views of Her Majesty's Government.
Do.	252	7th Jnly	Respecting the Canada Act, to extend Copy-right to persons resident in the United Kingdom.
Do.	299	17th November...	Halifax and Qusbec Railroad-Transmitting Report of Commissioners, and desiring to be informed of the views of the Provincial Legislature.
Do.	Milltary	$\left\{\begin{array}{l}15 \text { th Sept.... } \\ \text { 22nd Deo... }\end{array}\right\}$	Respecting the necessity of exempting from duty, articles imported for the Military Service.
Do.	174	24th February ...	Respecting the Montreal and Lachine, and the St. Lawrence and Industry Railway Acts.
Do.	202	20th April.......	Enclosing Order of the Queen in Conncil, confirming seven reserved Rallway Bills of 1847, and pointing out amendments required.
Do.	206	29th April.......	Reporting the confirmation of certain Acts, and suggesting amendments to the Acts frr incorporating the Montreal and Echo Lake Miniog Companies.
Do.	231	15th June.	Suggesting amendments to the Act incorporating the Western Telegraph Oompany.

(

REPORT

PROPOSED TRUNK LINE OF RAILWAY

FROM AN EASTERN PORT IN NOVA SCOTIA, THROUGH NEW BRUNSWICK, TO QUEBEC.

Hatifax, Nova Scotia, August 31, 1848.

Three principal lines or routes for a trunk line of railway present themselves for consideration ; and by combining portions of two of these lines together, a fourth and fifth route may be formed.

1st. Commencing at Halifax and crossing the Province of Nova Scotia to a port in the Bay of Fundy, from thence by a steamer to St. John, in New Brunswick, and then by Fredericton along the St. John River, to the Grand Falls.

From the Grand Falls by the best practicable route across to the mouth of the Riviere du Loup, on the St. Lawrence, and by the right bank of the St. Lawrence to Quebec.

The distance by this route would be as foliows :-

$$
\begin{aligned}
& \text { Halifaz to Windsor.. } 45 \\
& \text { Windsor to Annapolis }
\end{aligned}
$$

Total distance, Halifax by the St. John River to Quebeo 600

This line may be termed a mired route-hy railway and steamboat.
2nd. Commencing at Halifax and running to Truro at the head of the Bay of Fundy, thence over the Cumberland Mountains to Amherst, then along th 3 coast from Bay Verte to Shediac, thence by a north-westerly course, crossing the Rivers Richibucto and Miramichi, a bove the flow of the tide, so as not to interfere with the navigation.

Then by the valley of the North-western Miramichi to Bathurst, on the Bay Chaleurs, along the cost of this bay to the Restigouche Biver, and by it and the valley of the River Metapedia to the St. Lawrence, and by the right bank of the St. Lawrence to Quebeo.

The distance by this route would be as follows:-
Halifax to Truro
yiles. 55
Truro to Amherst and Bay Verte 69
Bay Verte to Shediac 26
Shediae to Miramiohi River 74
Miramichi River to Bathurst 56
Bathurst to the Eel River, near Dalhousie. 48
Dalhousie to the mouth of the Metapedia River 30
Metapedia River to the mouth of the Naget River, near the St. Lawrence 86
Along the St. Lawrence from this point to Quebeo 191
Totai distance by this route 635

This, for the aake of reference, may becalled the Halifax and Eastern or Bay Cbalears Route, through New Brunswick to Quebeo.

3rd. Commencing at the harbour of Whitehaven, near Canso, at the north-ciantern extremity of Nova Scotia, thence along the Atlantic Coast to Country Harbour and Valley of the River St. Mary, thence by or near to Pietou and along the northern shore to Bay Verte.

From Bay Verte to or near the Bend of Petitcodiac, thence across to Boistown, and northerly to the Restigouche River, crossing it several miles to the east of Grand Falls.

From thence by the most direct and prastical course to the Trois Pistoles River, and along the right ban's of the St. Lawrence io Quebeo.

The distance by this route would be uearly as follows:-

$$
\text { Total distanee from Whitehaven by Boistown to Quebec.......... } 652
$$

This may be termed the Direct Route.

4th. Combining the Halifax route through Nova Scotia, and the direct route through the centre of New Brunswick.

The distanees will be probably as under:-

\(\left\{$$
\begin{array}{c}\text { Miles. } \\
124\left\{\begin{array}{c}\text { In Nova } \\
235 \\
\text { Soctia: } \\
\text { In New } \\
\text { Brunswick. }\end{array}
$$\right.

75

30

131\end{array}\right\}\)| In Canada. |
| :---: |

Total distance from Halifax to Quebee by this route... $\overline{595}$

[^0]to t
exa
and

[^1]Bay Chalears
orth-cuastern and Valley horo to Bay
pistown, and and Falls. 3 River, and

Milen.

> From Whitehaven by Dictou and the North Coast to $\}_{1}^{\text {Miles. }}$ Mouth of the Mi etapedia River to the mouth of the Naget Algng the St. Lawrence to Quebeo

Total distance from Whitehaven to Quebee by this route 692
Thus thu distanoes will be as under:-
Mlles.
1st. By the mixed route, Halifax to Annapolis, by the St. John to
Quebee, the distance will be...................................... 600
2nd. By the Halifax and Eastern, or Bay Chalenrs Moute, to Quebec... 635
3rd. By the Direct Route, Whitehaven, Boistown and Quebec......... 652
4th. By the Halifax, Truro, Amherst and Boistown, to Quebee.......... 595
5th. By the Whitehaven, Bay Verte and. Bay Chaleurs, to Quebec..... 692
The first line fails in the most ussential object contemplated by the proposed Railway, viz., a free and uninterrupted oommunication at all times and seasons of the year, from the port of arrival on the Atlantio terminus in Nova Scotia to Quebeo.

The intervention of the Bay of Fundy is fatal to this route.
In sammer the transhipment of passengers and goods to and fro would be attended with the greatest inconvenience-loss of time and additional expense; whilst in winter it would be even still more inconvenient, and liable to be interrupted by storms and the floating masses of ice whieh then oecur in the bay.

In the case of the conveyance of troops, transport of artillery and munitions of war, the crossing the bay would at any time be most objectionable, and if suddenly required in oritical times might be attended with the worst consequences.

Commercially, too, it would destroy the fair prospect of the proposed line from Quebec to Halifax competing suecessfully with the route by the Gulf of the St. Lawrence, and with rival lines in the neighbouring States.

But there are also other serious objections to be offered against it.
Passing through New Brunswick and on the right bank of the St. John River, as it must necessarily do, to the Grand Falls, it would for a considerable distan ce, both before and after the reaching of that point, san along and close to the frontier of the United States.

In case of war, therefore, or in times of internal commotion, when border quarrels or border sympathies are excitud, this line, when most needed, woald be the most sure to fail, for no measures could be taken which would at all times effectually guard it from an open enemy and from treacherous attacks.

The passage across the Bay of Fundy so close to the shores of Maine, would invite aggression, and require a large naval foroe for ita protection.

The engineering difficulties as the line approaches the Grand Falls from Woodstock would not be easily overcome.

The space between the St. Joha River and the Boundary Line becomes gradually contracted to 2 width of not more than two or three miles, and the conntry is broken and rough, whilst the banks of the St. John are rocky and precipitous for Luany miles below the Falls.

From the Grand Falls to the St. Lawrence, a distanoe of more than a hundred miles, the country is so far known as to make it certain that there is very difficult and unfavorsble ground to be encountered, which would require carefal explorations and extensive surveying.

This intervention of the Bay of Fundy, therefore, and the proximity of this line for a considerable distance to the frontier of the United States, was so ©3jectionable and fatal to this route, that the attention of the offieers and the exploring parties was, after a slight examination of the country between Halifax and Aunapolis, directed in searsh of other and more favorable linea.

To understand the comparative advantages possessed by the other routes as well as to be able to weigh the objections whioh may be raised against eaoh; and afterwards determine from their relative merits, whioh is the best direction for the proposed line to talce, it will be necessary, previously, to give some desoription of the country through whieh the lines pass, the present aminunt and distribution of the population, and the engineering difficulties which were met with along the lines examined.

As it will be seen in the end, that only one of the lines, viz. the second, has been explored and carried out successfully from its terminus on the Atlantic quite through to Quebec, it may be perhaps considered superfuous to enter upon the disojssion of rival lines, but the object to be gained by so doing, is to show that so mrich has been done, and is know:s of the country as to render further explorations for new ines unnecessary, beoause, if completed, they would not be likely to be reoummended in preference to the one which will be proposed for adoption.

The distance from the Atlantic coast of Nova Scocia, to the bank of the St. Lawrence is about 360 miles in a straight line. Intersecting the sountry which must be traversed by any line of railway and crossing its course at right aagles, are five great obstacles which have to be either surmounted or avoided :-

1. Is a broad range or belt of high ard broken land whioh runs along the Atlantic shores of Nova Scotia, from Cape Canso to Cape Sable. The breadth varies from aboat twenty miles in its narrowest part up to fifty or sixty miles in other places. Its average height mas be about five hundred feet. The strata of which it is composed consist of granite, slate, and a varinty of rocks, hard and diffioult to cut through. The charaoteristic features of the surface are sugged and uneven, and therefc:e very unfavcrabls for railway operations. No useful mincrals of the metallic kind have been found in it, in quantities sufficiert to work to advantage.

Valuable quarries of stone for building purposes are abundant, kut these will be found everywhere nearly along the proposed line.

This formation is estimated to cover nearly two-thirds of the surface of Nova Scotia. It is, generall speaking, unfavorablo for agriculture ; the tim'Der on it is stinted in growth, and it is an object of some importance to pass through it and leive it behind as soon as possible.

If a line be drawn from the head of the estuary of the Avon, near Windsor, to the Great Shubenacadie Lake, and then scruse the Steniaoke River, along the upper parts of the streams in the County of Pietou, to the Gut of Canso, all the portion lying to the south of this line belongs to this formation, and all to the north of it to the more favorable and highly valuable formation of tho carboniferous system.

The narrowest and shortest line by which this range or belt can be crossed occurs at Halifax, and at the same time, owing to a favorable break in the chain, at the lowest point in altitude ; the summit levei through it not exoeeding ninety feet.

The Halifax line (Route No. 2) is clear of it in twenty miles. Before the same can be done by the Whitehaven and Direet line (Route No. 3), it mast follow the coast for upwards of thirty miles, as far as Country Harbour, and then a further course across it of another thirty miles; involving in this distance two if not three tunnels, and mast surmount a summit level of 400 feet.
2. The second great obstacle is the Bay of Fundy. This, as is stated, is fatal to the first route. By the other routes it can be turned and livoided.
3. The third obstacle is the range of Cobequid Hills. These extend all aloug the north shore of the Bay of Minas and very nearly aeross jut not quito to the shore of the Straits of Northumberlond. In breadth the range preserves njarly an uaiform wita of about ton milsa. In altitude the hills average from 800 to 1000 feet. The lowest point, after a caryful survey, was found to be at the Folly Like, 600 feet above kine sea. This range can be avoidec and passed by the Whitehaven and Direet Route, but must be surmounted and orossed over by the Halifix and Eastern line (Rnute No. 2).

The prevailing rocks are granite, porphyry, ard clay slate, in the apper portions; along the shores of the Bay of Minas and on the northera side, the formation is of the red sandstone and the coal meacures.
iron ore carriage with ab belongin 4.

This range abounds with the most valuable minerals, of whioh a large mass of apeoular rrards de. ine to take, whioh the eering dif, has been tinrough to n of rival done, and y, because, one which

Lawrence traversed acles which
(e Atlantic from about ts average consist of racteristic for railway quantities 11 he found
va Scotia. in growth, as soon as
or, to the parts of ing to the favorable
occurs at west point
same can ooast for cross it of and must
tal to che
aloug the re of the rita of est point, 3. This it be surportions ; is of the
iron ore; of unequalled richness, occurs olose to the line, and oaly requires facility of carrisge for bringing coals to the spot, to be worked with profit.
Δ large portion of this tract still remains ungranted, and timber of excellent growth, with abndance of the finest stine for building parposes, are to be met with, and stili belonging to the Crown; can be had for the expense of labour only.
4. The fourth obstacle is the broad and exiensive range of highlands which ocoupies nearly the whole apace in the centre of New Brunswick, from the Miramishi River, north ts the Restigouche. Some of these mountains rise to an altitude exceeding 2,000 feet.

The Tobique River runs through them, forming a deep valley or trough, which must be crossed by the direct line, and increases greatly the difficulty of passing by them.

The lowest point of the ridge overlooking the Tobique River, at which any line of railway must pass is 1,216 feet abovo the sea. Then follows a descent to the river of 796 feet in 18 miess, and the summil level on the opposite ridge or crest between the Towique and Restigouohe waters, is 920 feet above the sea, or a rise of 500 feet above the point of crossing at the Tokique water. These great summit levels, which must be surmounted, form a serions objection to this route.

The Eastern line, by the coast, avoids this chain altogether. The greatest summit level along it will not be above 368 feet, while the distance by each, from the Province line to Bay Verte to the Resitgoucie River (the northern limit of New Brunswick) will be, as a . arly as possible, the same, there being onily a difference of one mile in these two routes throagh this Province.

The recks composing this chain of mountains are granite, various kinds of slates, grauwacke, limesthe, sandstone, \&c.
5. The fifth aud last obstacle to be overcome, aud which oannot be avoided by any of the routes, is the mountain range ranning along the whole course of the River St. Lawrence in a very irregular line, but at an average diotance from it of about twenty miles. It ocoupies, with its spurs and branohes, a large portion of the space betveen the St. Lawrence and the Restigouche River. The rocks and stratc composing the range are of the sa.no character and kiod as the Tobique range. The tops of the mountains are as elevated in the one range as in the other.

The exploring partics failed in findiug s linc through this range, to join on to the direct line through New Brunswick, bu, succeded in carrying on the Eastern or Bay Chaleurs Route, owing to the fortunate interventinu of the valley of the Metapediac River.

The line wiich was tried, anu failed, war across from the Trois Pistoles River, by the Leedd of Green River, and down the Pseudy, or some of the streams in that part, running intu the Restigouche River.

A favorsble line from the Trois Pistoles was ascertained along the Eagle Lake and Toroadi River, as far as the Rimooski; and it is probable that by ascending this river, snd descending the Kedgwick River, this line, Route No. 4, could be completed.

But it is mesic improbable that it conld compete in favorable grades with the Metapedia.

It will bn aicowing it sufficient latitude to ruppose it will be equal in engineering merits; and that, if accomplished, it will give the Route No. 4 an apparent advantage of forty miles in distance.

A very striking charaeteristic in the geological formation of North America, and whioh has been noticea in the writings of persons who have deseribed the conntry, is the tendency of the rock strata to run in parallel 1 idges in courses north-casterly and wouthwesterly.

On referring to the General Map No. 1, and ennfining the attention more particularly to that portion of couutry east and north of the St. John Rive. through which any line must pass-this general tendency cannot fail to be remarked.

The River St. Lawrence-ihe main Rastigouche River and intermsdiate chain of mountains-the Tobique River and mountains-all the streams in Ncw Brunswiok (the main trunk oi St. John and a braneh of the Miramiohi excepted).

The Cobequid Range, the Bay of Fundy, and the higu und rocky range along the Athantis shore, have all this sorth-eastern sad south-western tendency.

It will be evidont, therefore; that any ling from the coast of Nova Scotia to the St.

Larrence has a general direction to follow, which is the most unfavorable :hst could have occurred for it, having to oross all these mountain ranges, streams, and valleys at right angles nearly to their courses.

The lines explored for the Direct Route throngh New Brunswiok were obliged, on this account, to keep the elevated ground crossing the upper parts of the streamm.

By so doing, a line was found to the Restigouche which may be considered just within the limits of practicability, but having very unfarorable summit levela to surmount.

And the peculiar formation of the sirata, and general course of the valley and streame, renders it most improbable that any further explorations to improve this direet line through New Brunswick would be attended with muoh sucoess.

Very fortunately for the Eastern line, one of the iranches of the nortl-western Miramichi presented itself as an exception to the genersl tendenoy, and enabled that line to reach the coast of the Bay Chaleurs.

The caistance across, in a direct line, from the ccast of Nova Scotia to the St. Lawrence, Las been stated at about 360 miles, forming the difficult and unfavorable portion of the line. When the St. Lawrence mountains are passed, then the tendeney of the strata and courses north-easterly and south-westerly becomes as favorable for the remaining 200 miles along that river as it was k fore adverse.

The general character of the ground between th, St. Lawrence River and the mountains, is that of irfegular terraces or broad, valleys, rising one above another by steep short banks, having the appearance as if the river had at some former pericds higher levels for its waters.

The streams run along these valleys parallel with the course of the St. Lawrence, until, meeting some obstruction, they turn suddenly off, and find their way over precipioes and falla to the main river.

Having described suoh of the physical features of the oonntry whioh form obstacles in the way of the lines under consideration, it is proper next to desoribe those featuren and other resources which are advantagen, and should be sought for by competing lines.

The geological systems which prevail through the iutermediate ecuntry to the mourtain ranges are the carboniferious and new red sandatone.

They include large deposits of red marl, limestonc, gspsum, freenione of excellent quality for building purposes, and extensive beds of coal. Indicstions of the latter are met with in abundance from the banks of Gay's River, (trenty miles from Halifax,) up to the Restigouche River, and along the shores of the Bay Chaleurs.

Wherever these systems and mincrals are found, a strong and produotive soil, cavorable for agricultural pursaits and setclement, is sure to accompany them. The surface of such a country, too, is gencrally low, or moderately undulating, and therafore the more of such a district that a line can be led through, the bette: for it.

In Nova Scotia this formation ocoupies its northern seetion, and amounts to nearly one-third of its whole arca. It then extends all over the southern and eastern parts of New Brunswick.

In this respect, therefure, the Route No. 2 has a deeided advantage.
The greatest and most valuable coal-field is that of Pictou.
It is situated on the south side of that harbour. The exset extent of the bed is not known, as it is broken by a great (goological) fault. It ocnupies, however, an area of many square miles.

The coal is bituminons, of gool quality, and the veins of most unusual thicknoss.
Mines in it are extensively worked, and large exports from them are made to the United States. Ircn ore is abundant.

This is an adrantage in favor of the Whitehaven and Direot Route.
The next great coal district is the Cumberland field, and it is scoond only in importanee to that of Pictou.

It is supposed to extend from the Macen River, west of Amherst, over to Tatmagouche in the Straits of Nor chumberland.

Some mines in it have been recently opened, and promise to be very produotive.
The Line No. 2 passes over this field for miles, and may be considered from that oircumstanoe, as not being deprived altegether of an advantage possessed by the other routo.

The great agricultural oapabilities of the eastern Countion of Now Brunswiok have
bren
were
printe
tleme
line, I
331.
most
such
worth
with
exper
to me
temp
Line
eleva
the se
creps
the d
whol
atruo
of ne
line.
nume
12000
the e
arisi
entir
eage
time
exee
the
distr
the
prep
St. 1
cont
Cha
of it
could have ys at right
obliged, on wis.
just within punt.

nd streams,

 direct linestern Mirathat line to
e St. Lawportion of the strata aining 200
r and the or by steep gher levels

Lawrence, precipices
n obstacles features g lines. the mour.
excellent latter are ax,) up to
soil, ïvorbe surface the more
ito nearly n parts of
jed is not
a of many

noss.

lo to the
import.
augouche
ive.
that oir. or routo. iok have
bren deacribed in the Reports of Mr. Perley, the Goversment Emigration Agent, which were presented to the New Brunswick Legislature in February, 1847, and ordered to be printed.

One most important objeot to be attained by the construction of a Railroad is the settlement of the public lands, and the encouragement of emigration from the Mother Country.

As bearing very strongly upon this point in the choice of the best direction for the line, I subjoin the following extract taken from Bouchette's Work on Canada, vol. 1, pago 331. It is a quotation made by him from "The Commissioners' Report of 1821 ":-
"The Bay of Gaspé, and particularly the Bay des Chaleurs, are susceptible of the most improved agricaltare. For the establishment of emigrants no part in Canada offers such immediate resources of livelihood as may be derived from the fisheries. It is a faot worthy of notice, that in the year 1816, when the lower parts of the Province were afflioted with a famine from the destruction of the harvest by frost, no such inoonvenience was experienced at Paspebiac, nor at any other place within the level tract above mentioned."

The tract allsded to here is not clearly defined by the cuotation, but it is supposed to mean the whole distriot along the south shore of the Bay Chaleurs.

This tends to show the effect produced by the vicinity of the sea, in moderating the temperature and saving the crops from untimely frosts. In this respect, therefore, the Line No. 2 has an important advantage over the one through the central and more elevated land of New Brunswick.

As the interior is approached, and the distance from, as well as the elevation abovo, the sea increases, the danger to crops from cold nights and early frosts also inoreases.

In the تIadawaska Settlement, and on the Uppor St. John River, great failures of crops have ocourred from this oause, and wheat and potatoes are very liable to be destroyed,

From the bend of Petitcodiao to the St. Lawrence, a distance of upwards of 300 miles, the direct line would pass through a perfeot wilderness, with not a single settler on the whole line, sicept a few at or near to Boistown.

Leaving engiceering difficulties for the moment out of the quistion, the cost of construction wonld be materially increased by the extra difficulties atteadant on the transport of necessary materials, and in supplying with food the labourcrs and others engaged on the line.

This disadvantage is not shared by the seocad route, which can be approaohed in numernus places along the Gulf shore by means of bays and navigable rivers.

The Direct Live No. 4 will not have such advantages to present to settlers as the eecond. On the oontrary, if adopted, it might be found necessary to incur expenses for the establishment of amall communities along the line to repair and keep it open.

The faoilities for external as vell as internal communication, and other advantages arising from commerce and the fisheries, which will be developed by the Eastern line (and entirely wanting along the Dirgot Route), will, it is fully expected, make its viciaity eagerly sought for by settlers, and thec it will, in the course of no very great length of time, lead to the extensiun of that long-oontinued villago whioh now exists with but little exception from Quebeo to Metis (200 milen), from the shores of the St. Lawrence to the Atlantic Ocean.

An importantitem bearing upon the consideration of the best route is the present distribution of the population in New Brunswick and Nova Scotia.

In illustration of this part of the subject, and to afford a better idea of the nature of the country than can be given by a merely nutlipa plan, a model map (No. 8) has been prepard, showing the whole course of the lines, (Routes Nos. 2 and 4) from IIalif3x to the St. Lawrence, and by the latter over the Trois Pistoles River, beyond which the line is continnüd through a level, fertile and densely poopleí district to Queboo.

The red line shows the proposed Route No. 2. The Halifax and Eastern or Bny Chaleurs line.

The blaok line shows the Direct Route, No. 4. from the bend of Petitoodiac.
The yellow tint shows the present settlementa
The green is the wilderness of ancleared fosest, unsettled, and tho far larger portion of it still ungranted and waiting for ocoupation.

It ment be promised that a branoh Railroy frcm the Oity of St. John in contemplated

to pass up the valley of the Kennehecasis, and connect with the main trunk at the Bay of

 Shediac.The survey of this line, crdered by the Provincial Government, is in progress ; and from the latest information received, the line promises most favorably.

The total popuiation of New Brunswick has been estimated to amount, at the beginning of 1848, to 208,012, distributed in the proportions as under :-

County of Restigouche.. 4,214
"، Glouceater.. 10,334
" Northumberland....... 19,493
" : Kent.. 9,769
" Weatmoreland and Albert..... 23,581
" King's........ ... 19,:285
" A St. John................. 43,942
43,810
" Queen's... 10,976
" Sunbury.................. 5,680
86,808
" York.. 18,660
" Carleton
17,841
16,656
" Charlott 24,237

Total..208;012
Of these, the first four, amounting to 43,810 , are on the line of the proposed Route No. 2, and will be entirely thrown out by the adoption of the other.

Campbelltou, Dalhousie, Bathurst, Chatham on the Miramichi, and Richibucto-seaports and shipping places of consequence on the Gulf shore; all of thom sasceptible of the gruatest development, will be left isolated and cut off.

These ports are ice-bound during the winter months; and railway communication will be to them of the greatest importance.

It will affeot most materially the interests of the City of St. John, and the reosipts upon their branch Railway.

It will affect also most sensibly the receipta of the main trunk line.
Along the south bank of the St. Lawrence, from Quebec to Métis, there are settled along it in what oan be only compared to one continued village for 200 miles, 75,000 inhabitants.

Of these, also, a large population, probably 12,000 in number, residing between the Rinouski and Métis River, will bo deprived of the benefit of the railway, if the Direet Line be adopted.

To counterbalance the serious detriment which would thas be caused, this line would diminish the length of the branoh line, likely to be made to connect them with Fredericton, which is the seat of Government, and contains about 6,000 inhabitants.

The population of Nova Scotia may be estimated to be about, viz.:-
City of Halifax and County.. 40,000
County of Cumberland...................... 10,601
" Colehester... 14,900
" Piotou.......... 30,300
" Sydney and Quysbozough....................................... 23,200
Remaining Counties.. $\frac{111,260}{\text { Total...230,200 }}$
The population of Cape Breton is entimated at 49,600 .
Of the above, if the Whitehaven and Direct Roate be adopted, the Oity of, Halifax and County, amounting to 40,060 , will baogaoluded from the benefit of the line.

If the Halifax and Eastorn ling (Routo No. 2) bs adopted, then the population of Sydney and L'iotou, amounting to 58,500 , will be ozoluded.
t the Bay of
rogress ; and
ount, at the

3;810

6,808
6,656

6,501
4,237
8,012
oposed Route
hibucto-seaasceptible of
mmunication
the recsipts
e are settled
ailes, 75,000
between the the Direet
line would with Freder-

To the popalation in the southern or remaining counties $(111,200)$, 约 Halifpx Route will be of essential benefit.

From the other route they would derive no advantege whatever.

It is now proposed to give an account of the explorations and their results.
The dotted lines on the General Plan, No. 1, shew were these were made, and the courses taken.

In the season of 1846, the Cumberland Hills were carefully examined; sections with the theodolite were made, and barometrical observations taken, to ascertain the lowest and most favorable point for crossing them.

The line which has been cut out and axplored for the military road was followed from the Bend of Petiteodiac to Boistown.

From Boistown the general course was followed, and levelled as far as the Tobique River, but the country was so unfavorable that new courses had to be constantly sought out.

A new line altogether was tried from the Tobique, as far as the Wagan Portage.
The results deduced from the observations and sections proved this line to be quite impraeticable for a Railway.

Whilst the line was being tried, other parties explored from Newcastle on the Miramiehi River, quer to Crystal Brook on the Nipisiguit, the valleys of the Upsalquitch and its tributari.3s, and as far as the Restigouche River.

The country at the upper waters of the Nipisiguit, and the whole of the Upsalquitch valleys, were found to be rough, broken, and totally impracticable.

Thu result of this season's labours went to show, that the best, if not the only, route that would be likely to bo practicable, would be by the North-west Miramichi to Bathurst, and then aleng the Bay Chaleurs.

During the winter, a small reconnoitring party (on snow shoes) was sent up the Metapediao Valley, as far as Metallis Brook, and they made their way across the country, from thence to the mouth of the Torcadi River on the Rimouski.

Their report on this line was rather favorable, and had there been any necessity for it, it would hare been more fully explored the next season (1847).

As soon as this was sufficiently adranoed to admit of the partics cntering the woods, the explorations were resumed.

A grade line was carried over the Cumberland Hills. It was cut out through the woods, from the foot on side to the foot of the slope on the other, a dist:nce of ten miles, and earefully levelled with a theodolite. This proved to be quite practicable.

The exploration of the Eastern line was again taken up.
It was commenoed on the head of the tide, on the south-west Miramichi, and was carried up the valley of the north-west Miramichi over to and down the Upsalquitch River to Bathurst, and along the shores of the Bay Chaleurs to the Kestigouche, up the Metapediac to the Métis, anćalong the bank of the St. Lawrence to the Rimouski and Trois Pistoles River.

The result of this exploration was so satisfactory that the party engaged upon it returned up the same route, surveyed it, and took the ievels along it back to the Miramiehi River.

An exploratory line was then cut through the greater portion of the flat and generally level country between this river and the Province line at Bay Verte.

An examination of the country was made from the Trois Fistoles River along the St. Lawrence to Quebee; which, with what had been done in Nova Scotia, during this and the former season, completed the whole of one good and favorable line from Halifax to Quebec.

The details are given in the accompanying Report, Appendix No. 1, General Plan No. 1, Model Map No. 2, and Buok contaiuing exploratory sheets, No. 16, containing plans and sections of the whole route, and compriaes the line recommended to be adopied.

Unvilling to abandon the Direat Route through the eentre of New Brunswiek, by which, if a line could be auccessfully earried out, the distance would be so materially shortened, is is apparent hy the mileage given in Routo No. 4, it was determined to use
every effort to deoide either the practicability or impracticability of such a line. To this end large parties were employed the whole season.

One party explored, cut, and levelled a line the whole way between the Napadogan Lake and the Restigouche River, a distance of ninety-six miles.

The line explored was a very great improvement upon the one of 1846.
It is considered to be so far satisfactory as to prove that a line for that distance can be found which would be within the limits of railway gradients.

The details are given in the Assistant Surveyor's Report, Appendix No. 2, with three exploratory sheets, Nos. 17, 18, 19, containing plans apd sections of the ground passed over.

A largc party was engaged in trying to find a line from Trois Pistoles River on the St. Lawrence, through the Highlands to the Restigouche River, for the parpose of connecting on to the New Brunswiok party. The winter overtook them whilst still embarrassed in the Highlands at the head waters of the Green River.

The dotted lines on the General Plan No. 1, will show their attempts.
A line was tricd up the Valley of the Abersquash, but it ended in a cul-de-sac.- There was no way out of it.

A second line was carried from Trois Pistoles over to Lac-des-Isles, Eagle Lake; and by the middle branch of the Tuladi River, the north-west branoh and head waters of the Green River were gained.

But this point was not reached except by a narrow valley or ravine of four miles in length.

A theodolite section was made of it, and it was found to involve a grade of at least oue in forty-nine, and to attain that, heavy outtings at one part and embankments at another would be necessary.

There is no occasion at present to enter upon the diseussion of whether this should condemn a whole line, for having attained the Forks, at the head of tho main Green River, no way was found out of it, and this explored line, like the first mentioned, must be considered to have ended in a cul-de-sac also.

Further details are given in the Report of Mr. Wilkinson, the Surveyor intrusted with the more immediate oharge of this part of the line, in Appendix No. 3, with sketches attaohed to it.

It is jast probable that a line might be found by way of the Kedgwick River and the Rimouski as far as the mouth of the Torcadi River, from which to the Trois Pistoles, there was ascertaiaed to be no dificulty.

But as the advantages in every way, except distance, are so much in favor of the Eastern Line, it would only be incurring delay, and perhaps uscless expense, in further explorations of this part of the country.

In the Report (Appendix No. 3) there is a third route auggested for examination and trial, viz., by one of the lower branohes of the Green Rivor and the Squattock Lakes.

Whether successful or not, it is liable to the objection of approaching the frontier of the United States.

There remains to be notioed the exploration for a line of railway from Whitehaven on the eastern ooast of Nova Seotia towards Piotou and Bay Verte.

This was rendered necessary in consequence of the suggestion made by Captain. 0 wen, R.N., to make Whitehaven the Atlantic terminus of the railway.

The details of this exploration are given in the accompanying Report, Appendir No. 4, and Exploratory Sheets, Nos. 20, 21, 22 and 24.

Engineering difficulties and expensive outtings nocut on this route.
From the commencement in the Harbnur of Whitehaven the line must pass along a a barren sad roeky coast, for upwards of thirty miles, to Country Harbour, before it can turn off towards the interior. And it cannot do this and get clear of the sea shore without the necessity of making a tunnel of about a mile in length through a ridge of whinstone.

Again, at the Falls of the St. Mary River there will be required a tunnel of about a quarter of a mile, and a viaduot across a valley, of about 500 feet in length.

The summit level occurs between Lako Eden and Beaver Lake, and is 400 feet abcre the rea.

At necessari The From H If t trunk lin But the Prov proposed sailway, Or Route N the sam To most par Equival Thi or othe preferen It i Cunard fields of ${ }^{\mathrm{Du}}$ of Whit fax thei In year rou that the thick,*
made th tateme of the i

Th
Tb
general
of Cans
path of
Tt
Tl
with H
R
It in ob
the obj
the pre
ficult t
I have
lead, sc
neighb
uncert
westwa

- ∇
line. To this
he Napadogan

t distance can

2, with three round passed

River on the se of connectI embarrassed
le.sac. There
le Lake; and waters of the
four miles in
ade of at least bankmenta at
er this should Green River, must be con-
ntrusted with with sletches

River and the Pistoles, there
favor of the se, in further
mination and k Lakes.
he frontier of
hitehaven on
aptain Owen,
ppendix No.
pass along a : it can turn without the nstone.
el of ajont a
0 feet abcre

At Grant's Bridge, on the East River, for nearly three miles in length, there would nocessarily be several expensive outtings through rocks of sandstone and limestone.

The length of this line from Whitehaven to Bay Verte is estimated at 181 miles. Brom Halifax to the same point is 124 . Leaving a difference of fifty-seven miles.

If the Direct Route (No. 3) could be established, it would add seventeen miles to the trunk line.

But as it is not to be snpposed that Halifax, the capital and great commeroial city of the Province, would in such a case allow itself to be excluded from the benefits of the proposed Railway, then it would involve, in addition to this seventeen miles of trank railway, a branch line of probably ninety miles.

Or if the Eastern (Bay Chaleurs) line through New Brunswiok be added on to it, as in Route No. 5, then it will involve no less than fifty-seven miles extra of trunk line, and the same necessity for the branch line of ninety miles mentioned.

To compensate for such disadvantages it must be shown that Whitehaven has the most paramount claims to be'selected as the Atlantic terminus, in preference to Halifax.

The Harbour of Whitehaven is 120 miles nearer to England by sea than Halifax. Equivalent to, in ocean navigation by the steamers, ten hours.

This, it is readily conceded, is a very great advantage, and wero there no drawbacks or other considerations in the way, it would be quite sufficient to give that port the preference.

It is a well-known fact, however, that there is a time and season in the year when the Cunard steam ars cannot kcep their direot course to Halifax even, bu' are compelled, by fields of ice, to keep to the southward, and sometimes pass to the south of Sable Island.

During this time, which ocours in the spring of the year, and may last for two or three months, there would be some risk in there making direct for the more northern port of Whitehaven. And if for these three months the steamers were obliged to make Halifax their port, then for that time the Whitehaven line would be useless.

In respect to the advantages mhich it is said to possess, of remaining open all the year round, it is not quite olear that it does so.

From enquiries made on the spot in the summer of 1847, Captain Henderson learned that the preceding winter the harbour had been frozen over entirely, five to six inches thick,* and that it was sometimes blookaded up and "much incommoded by ice.

Subsequently, however, and during this winter, when the objects of the enquiries made there in the summer became known, ond the advantage of the Railway spoken of, a atatement accompanied with affidavits was forwarded with a view to connteract the effect of the information given to Captain Henderson and the parties exploring there.

They are given in the Appendix No. $\%$ to this Repurt.
They tend to show that though the immediate entrance to the harbour may be, and generally is clear, yet that large quantities of fioating ice find their way through the Gut of Canso, and by Cape Breton, which pass off in a southerly direction, crossing the direct path of steamers and vessels from Europe.

The coasting vessels keeping in shore are not so liable to be molested by it.
The harbour is admitted to be a fine sheet of water, but it does not and cannot vie with Halifax, either in appearance or capacity.

Referring to Lientenant Shortland'e Repori, Appondix No. 5, who made a aurvey of it in obedience to the directions of Captain Owen, R.N., it appears that it is not free from the objection which is made against the Port of Halifax, and is its only drawback, viz., the prevalonce of fogs.

Lieutenant Shortland says, "that in foggy weather the harbour (Whitehaven) is difficult to approach, espocially to a stranger, as soundings in shore are very irregular, and I have not been able to learn any good indications of its vicinity to be gathered from the lead, so as to render its approach by that mbans certain; and Torbay, its immediate neighbor to the westward, is a dangerous place to get into.
"From the fishermen and small coasters I understand the currents round the point are uncertain and generally depend upon tho wind, though the prevailing current is to the westward.

[^2]"I experienced this current in a boat when I visited the outer break; it was then setting to the westward, at the rate of one mile and a half per hour at least. I also perceived vessels in the offing setting rapidly in the same direction, the breeze was from the eastward and light, though it had previously blown hard from the same point.
"We also, on our passage from Halifax to Canso, during a fog, with theíwiad from south-west, experienced an easterly nurrent, but the land once made, the harbour is eacily attained, especially by a steamer."

This cas scarcely be considered a favorable report of its advantages as a harbour intended for the great Atlantic terminus.

Accommodation and safety for a fleet of merehantmen could be expected there, as is to be found at Halifax.

To make it is safe approach Lieutenant Shortland continues thus :
" A judicione nrrangement of fog-signals and light-houses with buoys, on the prinoipal. dangers, and a geod survey with the sea-soundings well laid down, would make the approach in the night, or during fogs, attended with small danger to a careful seaman."

One of the undoubted results of the Railway will be to make Halifax, if it be made as it ought to be, the Atlantic terminus, the great emporium of trade for the British Provinces and for the Far West.

Whitehaven has not the capacity for this, and in winter it is evidently dangerous for sailing vessels, and the selection of it as a terminus would be to exclude Halifar altogether, or to compel the formation of a branch railway of ninety miles in length, in addition to fifty-seven miles of trunk railway.

It involves also the vecessity of making expensive arrangements; light-houses muat be built, depôts for the supply of the steamers must be made, fortifications must be ereoted, and accommodation for a garrison provided. For the terminus of a great line of railway would need protrction in time of war:

At present there are only a few fishermen's huts.
The probable sajing of tea hours of time in an ocean voyage which varies even with the Cunard steamers, from uine to eighteen days, is not of such all-absorbing magnitude as to entail by the choice of the terminus, suoh a fearful amount of extra expense and inconvenience to a whole Province.

At a more advanced period, perhaps, when the Provinces have attained all the prosperity they have a right to expect from this and other great works which would follow as surely as effect follows cause, then it may be time to consider the propriety of making a branch to Whitehaven.

Its selection now as tho terminus would most materially affect the receipts to be expected from the traffic.

Whitehaven, therefore, with its longer and more expensive line of railmay, full of engineering difficulties, passing for miles through a distrior of country, rooky, barren, and unfavorable for agriculture, benefiting a comparatively small proportion of the inhabitants, to the exolusion of the capital and the greatesi amount of the Province;-or else involving the necessity of making a branch line of ninety miles in length; is decidedly reoommended to be rejected.

And the City and Harbour of Halifax (ons of the finest in the world) is recommended to be selected as the Atlantio terminus for the 1 reposed line of railway.

TLat part of the Direct Roate (Nos. 3 and 4), viz., the line from the Bend of Petitcodiac by Boistown to the Restigouche and the St. Lawrence, orossing the range of New Brunswick mountains, having to surmount 2 wo summit levels of 1,216 and 920 feet, causing heary grades, and increasing materially the oost of transport; passing through a totally unsettled and wilderness country; involving greater diffioulties in the transport of the materials necessary for its construotion, and supplying food to the labourers engaged in its formation; excluding the towns and settlements on the Gulf shore, and so proventing the development of the vast resources of the country to be derived from the fisheries; and also inflicting a serious loss to the interests of the main line, and to the intended branch from the City of St. John in Now Brunswick, is, notwithstanding its one great advantage. of diminished distance, recommended most atrongly to be rejected.

And the Route No. 2, from Halifax to Truro, at the head of the Bay of Fandy, passiog over the Cobequid Hills, and on or near to Amherst and Bay Verte; orosoing from

; it was then t. : I slso perwas from the 6. hei wind from bour is eanily

a harbour in-

there, as is to
the prinoipal. th make the I seaman."
if it be made o the British
tly dangerous Halifax altoh , in addition
t-houses must st be ereoted, ine of railway
ies even: with gg magnitude expense and
all the prosuld follow as of making a eceipts to be

Imay, full of barren; and inhabitants, ise involving commended
ecommended
od of Petitnge of New eet, oansing ghat totally port of the saged in its renting the eries; and ded branoh advantage of Fundy, ssing from
thence over to the Rivers' Riehibucto and Miramichi, above the flow of the tide, so as not to interfere with their navigation; then by the valley of the North-west Miramichi and Nipisiguit River to Bathurst; ' then along the whore of the Bay Chaleurs to the Restigouche River; then by tho valley of the Metapediae over to or near to the River St. Lawrence; then by the route as shown in the General Plan No. 1, along the banks of the St. Lawrence to Rividre du Loup, and from thenee continued through either tho second or third coheessions along the river until it approaches Point Levi, is recommended as the best directinn for the Proposed Trunk Line of Railway from an Eastern Port in Nova Scotia, through New Brunswick, to Quebee.

It combines in the greatest degree tho following important points:-
1st. The immediate prospect of direct, as well as the greatest amount of remuneration for the expenditure to be incurred; the opening up a large field for provincial improvements, for the settlement of emigrants, and by affording the opportunity in addition to internal, of external communication, by means of tho Gulf of St. Lawrence and the Bay of Chalcurs, it. will tond to * velop in the highest degree the commerce and the fisheries of the Province of New Brunswicik.

2nd. Passing along the sea coast for a great distance, and capable of being approached at several points by bays or navigable rivers, it possess as the greatest facilities for construction, tending to reduce the expense, and by its more favorable grades, also the cost of working and subsequont maintenance.

3rd. By passing over a less elevated country, and at the least distance from the sea, there will be less interruption to be apprehended from elimate, whilst the more favorable grades will increase the efficiency and rapidity of intercourse.

4th. Passing at the greatest possible distance from the United States, it possesses in the highest degree the advantage to be derived from that circumstance of security from attaek in case of hostilities.

The best general direction for the Proposed Trunk Line of Railway being admitted to be that of Route No.2, viz., the Halifax and Eastern, or Bay Chaleurs Route, some additional remarks may be made upon its peculiar advantages, as well as upon the few engineering difficulties which occur, and in explanaticn of the plans and sections forwarded.

The details of the line are given in the Appendix No. 1. The plans referred to are the General Plan No. 1, the Model Map No. 2 (which should be stretched out on the floor to be properly viewed), and the book containing fifteen nxploratory sheets of plans and sections whieh relate exelusively to this line.

The City of Halifax is situated on the vestern side of the harbour, whilst the best site for the terminus is on the opposite shore at Dartmouth.

The distance to Quebec from the latter will be four miles shorter than from the former; and one great advantage is, that its shurt line is as yet comparatively free from wharves and commercial establishments, and an extensive terminus can be formed there at less expense and ineonvenience than on the Halifax side, where tho Government doekyard and private establishments would interfere materially in the selcetion of a good site for it.

At Dartmouth it is expeeted that vessels cutcring the harbour will be able to unload at the railway premises, or probably into the railway cars, whilst an equally good terminus is to be had at Point Levi, opposite to Quebee. The same railway cars, loaded from the ships in harbour at Halifax, will thus, after running an uninterrupted course for 635 miles, be delivered of their contents into the boats if not into the holds of vess 3 ls in the River St. Lawrence. The same can of oourse be done from the River St. Lawrence to the vessels waiting in Halifax Harbour.

Suel an uninterrupted length of railway, with such facilities at its termini, will be, it is believed, unequalled in the world.

In the transmission of yoods and merchandise this will be a most favorable point in eompeting with rival lines. The American railways, especially along the Atlantio States, are constantly interrupted, and passengers have to transfer themselves not only from cars to ateamboats, but sometimes, from one set of carriages to another set, in waiting for them on opposite banks of a river.

In Nova Scotia the passage over the Cobequid Hills cannot be effected without heavy grades of one in seventy-nine and ono in eighty-five; but as these occur, the one ascending, and the other immediately descending, and only for ten miles, the inconvenience can be easily got over by affording an assistant engine for the goods' trains at that part. No engineering difficulties are expected to occur from this up to Restigouche River.

It is necessary, however, to make some remark in reference to the sections shown in the Book of Exploratory sheets 6 and 7, eomprisiug that part of New Brunswick lying between Shediac and the North-west Miramichi:

The whole of this portion of the country is believed to be generally low and flat, with occasional undulations. The section run through it in the previous season of 1846, towards Boistown, confirmed this impression.

Its exploration and examination, therefore, was left to the last, and is was not until the really formidable-looking obstacles had been explored and successfally got over, that the attention of the parties was turned to it.

As at this time the season was rapidly closing, the exploring parties were directed to cut straight lines through it, as the best meaus of obtaining the general altitudes and a knowledge of the country. No attempt was made to contour the hills. The sections, therefore, in these two sheets are not grades for the railway, but of the ground passed over by the straight lines. With the exception of the immediate banks of the St. Lawrence, this is expected to prove one of the easiest portions of the line.

When the line reaches the month of Eel River, it cannot proceed direct on to Dalhousie, but must turn off up the valley of that river.

Two courses are afterwards open to it, one to turn off through a valley, by which it can soon gain the Restigonche, the other to proceed on to the head waters of Eel River, and then turn down to that river. Which is the best of these two routes can be better determined when the detailed surveys of the route are made.

The most formidable point of the line is next to be mentioned,--this is the passage up the Metapediac valley.

The hills on both sides are high and steep, and come down, either on the one side or on the other, pretty close to the river's bank, and involves the necessity (in order to avoid curves of very small radius) of changing frequently from one side to the other. The rock, too, is slaty and hard. From this cause, twenty miles of this valley will prove cxpensive, but the grades will be very easy.

About fourteen bridges of an average length of 120 to 150 yards will be required up this valley. There is also a bridge of 2,000 feet long, mentioned in the detailed leport as necessary to cress the Miramichi River.

But bridging in this eountry is not the same formidable affair that it is in England.
The rivers are nearly always fhallow, and the materials, wood and stone, are close at hand.

The bridges in the United States, on the best lines, are built of wood on the trusswork principle, with stone piers and abutments.

On the Boston and Albany lines, and on many others in the New England States, the bridge generally used and approved of is known as "Howe's Patent Truss Bridge."

The cost of this kind of bridge, as furnished by the parties who have purehased the patent, is as follows:-

For Spans of 60 feet, single track, $\$ 11$ por foot.

The cost for double track would be about 55 per cent. additional.
The price includes the whole of the superstructure ready for the rails, but not the piers and abutments.

The bridge over the Connecticut River at Springfield, is built on this principle; it has seven spans of 180 feet each, and the sill of tho bridge is 30 feet above low water On other lines the same kind of bridgo is used, but no iron work is permitted (the unequal
expan
introd
$\$ 40,0$
chain
bowev
and d
opposi
heigh
Lawre
the ba
formid
above
£5,200
almost
T
far as
and stc
found
In
which
in New
the set
Ir
still un runs th

1 without heavy one ascending, renience can be that part. No inver.
is shown in the lying between
∇ and flat, with ason of 1846,
is was not until got over, that
ere direeted to altitndes and a The seetions, and passed over St. Lawrence,
rect on to Dal.
y, by which it of Eel River, s can be better
is the passage the one side or order to avoid er. The roek, ove expensive,
be required up iled lieport as
is in England. e, are closo at d on the truss.
nd States, the ridge." purehased the
expansion and contraction of this metal is objected to), and the addition of an arch is irtroduced.

A bridge built on this principle on the Reading Railroad, $\mathbf{i}, 800$ feet long, cost 340,000 , equivalent to $£ 8,330$ sterling.

Soon after passing the valley of the Metapediac, the great obstacle of the St. Lawrence chain of mountains is got over, and the line may range away towards Quebre, having, however, occasionally a river or ravine to cross, whose passage requires oonsideration.

At the Trois Pistoles, the stream in the course of ages has worn cut a very awkward and deep ravino. The bank on one side is generally steep and abrupt, whilst that on the opposite is low and sloping away back for a long distance, before it again reaches the height of the table land.

The most favorable site for crossing it occurs at about eleven miles from the St. Lawrence, where the two banks become nearer to each other, and are more equal in height.

At this point the breadth of the stream is 100 feet at bottom. The width between the banks at top 500 , and the depth is nearly 150 feet. The banks are rooky. Though formidable it is by no means impracticable.

On the New York and Erie Railway there is a bridge whose roadway is 170 feet above the bottom of the ravine, which it erosses by one span of 275 feet. Its cost was £5,200.

From Rivière du Loup to Quebee, the Railway might but for the snow be carried almost at a surface level.

Through the whole of New Brunswick, for $23 \pm$ miles, and through Lower Canada as far as Riviere du Loup, 167 miles, there will be -ound along the line abundanee of timber and stone (including linestone) of the best quality for building purposes. There will be found also, in New Brunswiek more especially, abuadanee of gravel for the superstructure.

In Nova Scotia, the Railway will have to pass with but little exception through land whieh has been sold or granted away to individuals. The exception will be the other way in New Brunswick. It will be seen on reference to the Model Map, that it approaehes the settlements between Bay Verte and Shediac, and skirts along the Bay Chaleurs.

In Canada, from the mouth of the Metapediac to the Trois Pistole, it runs through still ungranted land. But for the last 110 miles between Riviére du Loup and Quebec, it runs through a densely settled conntry.

Until the detailed surveys are made, and the precise location of the line marked on the ground, it will be impossible to state precisely the exact number of miles it will pass throngh Crown land.

If the following estimate be taken, it will not be much out-

> In Nova Scotia
> 15 miles.
> New Brunswick... 200 "
> Canada... 160 "
> Total... . 375

The following synopsis will show approximately the quantities of ungranted land in the Counties through which the line passes:-

In Nova Scotia.

In Canada.

Tho land for the Railway will havo to be purchased in Nova Scotia for nearly its whole course, and in. Canada for the 110 miles mentioned.

The latter, however, it is expeeted, will cost very littlo more than the expense which it would be necessary to incur in cleaning, getting out tho stumps, and preparing the wild lands for the Railroad.

No part of the line will ever bo at any great distance from Crown lands; but it will be a question of detail for this part as well as for the Nova Scotia section, whether it will be more advantageous to cut and convey from them the timber and materials requived, or purchase them.

The direction of the proposed line being determined upon, the next points which present themselves for consideration are, the character of the road and method of construction.

In the first instance it is considered that one line of rails will be sufficient, but in taking ground for the Railway and stations, and wherever the lino passes, regard should be paid always to the prospect of its being made at some future time a double track. And in the anticipation of a heavy traffic, which there is a fair prospect of scon passing along it, and with a view to ultimate economy, as well as tho saving of much inconvenience, it is recommended that the road (being intended for the great trunk line) should be constructed at once in a substantial and permanent manner, with a good heavy rail, capable of bearing high rates of speed for passenger trains.

On all the principal lines of railway in the United States, the flat iron bar is everywhere being disearded, and tho H or T rail, gencrally of 561 lb . to the yard, is being substituted for it.

On several of the lines also a double track is being made, and the works constructed are of a more permanent character than formerly.

Much has been said in praise of the cheap method of making railmays in America, add the advantages to bo derived from it in a new country.

As an examplo of this system and its practical results, the Utica and Syracuse Railway may be here quoted.

This road is fifty-three miles in length and forms part of the Great Western Line, connecting Albany on the Hudson River, with Buffalo on Lake Eric-one of ihe principal lines in the eccantry:

In its cunstruction more than a usual amount of timber was used. For a considerable portion of its length (upwards of nineteen miles) it passed through a deep swamp. Piles were driven into this, to support a long continued trestle-bridge, over which the railway traek was carried unon lengitudinal bearers.

For the other thirty-three miles the grading was made in the usual manner by excavations and embankments: but the superstructure was of wood.

Upon the grading in the direction of its length, a small trench was exsavated, and a sill of wood was firmly bedded in it. Where the sills abutted ond to end, they were supported by a piece of wood, of the same section, laid beneath them. At right angles to and upon the upper surfaces of the sill were spiked cross-tipe, and again, at right angles to the cross-ties, and immediately over the sills, were laid the longitudinal wood-bearers, to which the iron plates were firmly spiked. The centre of the rail and sill were in the same vertical plane.

Thus everything was done for economy: as much wood as possible being ased. This railway for its construction and equipraent coost on an average only $£ 3,600$ per mile.

It was thought worthy; in 1843, to publish an account of it in London; and it forms
whi
ann
stru
the
the ohief subject of a volume, thus entitled, "Examples of Railway Making, whieh, although not of English practice, are submitted to the Civil Engineer and the British and Irish Public."

The following Report is extraeted from the Aunual Statement of the Seoretary of State to the Assembly of the State of New York, dated 4th Mareh, 1847 :-
"Syracuse and Uticr Railroad has been opened for the transportation of passengers for the last eight years.
"The company having determined to relay the road with an iron rail of the mest improved form, have contraoted for a considerable portion of tho iron necessary, and are proceeding with the intention of laying a substantial structure adequate to the proper performance of the business required.
" Present wood structure has cost the company
$\$ 417,075 \mathbf{5 5}$
"The iron now laid thereon is the flut bar, and will be useless, and therefore will be sold. It is hoped that there may bo derived from the sale of it

$$
80,00000
$$

" Leaving a sum of

$$
\$ 337,07555
$$

which has been expended for the cost of the wood structure, which, in addition to a large annual amount for repairs, will be practically worn out, sunk and gone, when the new structure is laid and used. The new structure, it is supposed, will cost about the same ns the former, toward whieh, it is hoped, the old iron will pay, as above, 80,000 dellars, leaving the sum of about 300,000 dollars to be raised by the company on its credit.
"This will, when paid, roimburse the capital of the company for the equivalent amount, which has been appropriated to the worn-out structure. In addition to the cost of the new structure, there will be required a considerable sum for ner engines, cars, ©e. The demand upon the company for the transportation of property at the close os the canal has entirely exceeded its capacity to do this business. Property destined for sale in the eastern markets, in large quantities, was stopped at most points upon the line of railroad contiguous to the canal. Being practically confined to the winter months in this branch of business, it cannot be expected that the company could provide a supply of cars for this sudden and extraordinary demand, when they must stand idle and go tn waste during twothirds of the year.
"When the road shall be relaid with the proposed iron rail, the public will require that the trains shall be run with increased speed. In relation to this subjeet it is deemed proper to refer to the following suggestions contained in the report of this company, made last year:-
"'Very great embarrassment is experienced from the fact, that cattle are allowed to run af large, and to impede and so often delay the trains as at present. It is a serious matter, and unless more care shall be bestowed by the owners in restraining them, either at their own suggestions or in pursuance of some proper law to be passed, it will be found very difficult to make good time upon this line. A part of our business must be aiways done in the night, and it is then we experience the great hazard. The trains are frequently thrown off by them, and the dange: to the persons in charge and to the passengers is imminent. The owners always insist upon pay for their animals destroyed, witheut refleeting upon the great damage chat they eause to the property of the company, and the mere fearful injury that might ensuc to passengers. If the owners will not take care of them, it is impossible to keep them off. In Massachusetts much less difficulty in this respect is experieneed; for there, it is belioved, a penalty is incurred by the owner of domestic animals that go upon the railroad. Our business is conducted with all possible care in this respect, and the enginemen suitably fecl the risk of life or limb (whieh to them is almost as important) that they incur from the growing evil.
"' A very proper law in this State has guarded the publie and the company against direct wanten injury to the trains by individuals. It is submitted that negligence in allowing animals to run upon the railroads chould be prevented by some suitable restraints.'"

Somo of the inconveniences arising from a cheap railway may bo learned from this Report.

At this time the total amount spent upon its construction appears, from the same report, to have been $1,098,940$ dollars, equivalient to $£ 4,520$ sterling per mile.

The new superstructure, it was supposed, would cost about the same as the former, viz., 417,075 dollars, or about $£ 1,64 \mathrm{~L}$ sterling additional, which will make the price of this railway, when completed as intend \mathfrak{d}, $\mathfrak{£ 5 , 9 6 0}$ per mile.

In other parts of the States where th se trestle bridge or skeleton railways have been made, instances have been known of the iocomotive slipping down between the rails, which have warped outwards.

With a view, thercfore, to ultimate economy and to save inconvenience and interruption to the craffio when once established, it is most strongly recommended that the line, whencver commenced, shall be at oncs properly and efficiently made.

In determining the form of the road it is neeessary to bear in view that it will pass thenirnh a country everywhere liable to be cbstruoted by heavy falls of snow. It does not appear, horever, from the results of enquiries made in the United States, that anything beyond inconvenience, anả some additional expense in the cost of working the line, is to be apprehended from this cause.

The Railway from Boston to Albany, which crosses tho range of mountains between the Connceticut and Hudson Rivers, attaining upon them an elevation of upwards of 1,400 feet above the sea, to which it ascends by a grade of about eighty feet per mile for thirteen miles, traverses a country aubjected to the same sort of winter is the British North American Provinces.

The ave: age depth of snow in the woody is from three to four feet, which is not much less than it is in the woods of New Brunswick and Canada.

In 1843, a year remarkable for the great number of snow storms which oocurred, there were sixty-three falls of snow, but the traffic was uot interrupted to any very serious extert, not more than two or three $\mathfrak{\text { ripips. }}$

To keep the roads clear, two descriptions of snow plougas are used, one for the double track, and another for the single.* In the former, the share of the plough travels mmediately over the inner rail, throwing the snow outwards from the track. It is first used on one track, and then runs back zion the other.

In the single line the ploughshare travels in the cenire of the track, throwing the snow off at once upon both sides.

For the double track, the snow plough weighs from five to six tons, and costs about £125. For the single track it is somewhat lighter.

The plough requires gencraliy, wheu run without a train, two engines of 20 tons each, or with a train, three engines.

When the fall of snow does not excced a few inches, the smell plough always fixed in front of the engine, consisting of an open frame-work projecting abont five feet in front, and called a "Cowo scraper," is found, when cased over, to be suficient to clear the line. When the fall is deeper, the plough is used immediately after the snow has ceased to fall.

It can te propelled by three 20 ton engines through hree feet of newly fallen snow at the rate of six miles an hour.

If tho fall does not exceed two feet, it can travel at the rate of fifteen miles an hour.
The drifts through which it is propelled are sometimes fifteen feet deep, and from 2 n 0 to 300 feet long, and at others cight or ten feet deep, and from a quaiter to half a mile in length.

The line of railway is marked in divisions of about eight miles, to sach of which eight or ten men are allotted, who pass along the line each day with small hand-ploughs, pieks, \&o., olearing away the show and ice which the trains colleet and harden beiween tio rails and the roadway.

It in found that the freezing of the snow or rain upon the rails does not impede the heavy engines, as the weight of the forward wheels is sufficient to break it, and enaile ihe driving wheels to bite.

Whenever, from local causes, the snow is found to drift on the line of railway, snow.
, from the same iile.
e as the former, the price of this
ways havo been the rails, which
e and interrupd that the line,
that it will pass snow. It does tates, that anyorking the line,
intains between lwards of 1,400 ile for thirteen h North Amer.
ch is not much
hich occurred, y very sorious
d, one for the plcugh travels ck. It is first
, throwing the
nd costs about
aes of 20 tons
dways fixed in feet in front, clear the line. has ceased to
ly fallen snow miles an hour. eep, and from to half a mile
toh of which hand-ploughs, rden beiveen
ot impede the it, and enaile
ailway, snow-
sonces are erected, which are very effectual. They are simple board fences from ten to fifteen feet high, placed from ten to tronty feet back from the roadway.

In wet weather the rails become vary alippery, but the dificulty is overcome and the heels enabled to bite upon tha steep gradients by the use of sand bozes, which are fixed fin front of the engine and immediately orer the rails. These can be opened at pleasure by the engine-driver, and the sand is used wherever necessary,

The means thus successfully aciopted to overcome the obstacles arising from ice and snow are employed much in the same way upon all the railways which are exposed to them.

In the year ${ }^{184}{ }^{7}$ the expense incurred under this head (removing ice and snow) upon the Western Railroad in Massachusetts, was, according to the official return, \$2,763, equivalect to $£ 575$ sterling.

Upon many of the other lines expenses under the same head are returnod, but very much smaller in anzount.

In plases where the rails are not raised above the general level of the country, much greater difficulty is exporienced in keeping the lines clear of snow than in parts where there are embankments.

From the foregoing it does not appear, thercfore, that snow need be considered an insurmountable olstacle to the formation of a line of railway from Halifax to Quebec.

To obviato, as much as possible, the liability to interruption from this oause, it is recommended that in the construction of tho inne, it be adopted as a principle, that the top of the iron rail be kept as high as the average depth of snow in the country through which the line passes.

In Nova Scotia this will require probably an embankment of two feet high, gradually increasing as it proceeds northward to the St. Lawronce and along the flat open country Cu its banks, to five or eveu six feet.

The wholo of that part of British North America through which this line is intended to be run, being as yet free from railways, the choice of gauge is clear and open.

Without entering into and quoting the arguments which have been adduced in favor of the broad or narrow gauge of England, as it is more a question of detail than othewise, it vill be deemed sufficient for tho present Report to recommend an intermediate gauge. - Probably five feet six inches will be the most suitabie, as combining the greatest amount of practical utility with the leait amount of increased expenditure.

With the object if proceeding on to the consideration of expense of construction, the proposed trunk line will be supposed to have a single track with one-tenth additional for side lincs and turn outs, to have a rail 65 lbs . to the yard, supported upon longitudinal sleepers with cross-ties, similar to the rail nsed upon tho Londou and Croydon line, tho wood to be prepared according to Payn's process, to have a gauge of fivo feet six inches, and, as a principle, the top of the rails to bo kept above the level of the surface of the ground, at a height equal to the average depth of the snow. For the best information as so the cost of making such a railway, reference must be made to the works of a similar character in the United States.

At about the close of the year 1847, there were in that country nearly 5,800 miles of railway completed or in progress. The average cost for those having a single track, has been estimated at $\$ 22,000$, equivalent to $£ 4,166$ sterling, per mile. For the double track $\$ 32,000$, or $£ 6,666$ sterling per mile.

But the extreme differeaces which are to be observed in the cost of construction in the various States are so great, ranging from $£ 1,600$ up to $£ 24,000$ por mile, that no oriterion can be established from averages obtained trom such discordant data.

The State of Massachusetts affords the lest materials for acourato information.
All the railroad corporations are hy law obliged to make annual returns to the Legislature, and very valuable statistical infurmation is thereby obtained upon railway affairs.

From the Official Reports for the year 1847, the following tablo has been oompiled:-
RAILROADS IN THE STATE OF MASSACHUSETTS.

Natec of Read.	$\begin{gathered} \text { Length } \\ \text { of Road } \\ \text { in Miles. } \end{gathered}$	$\begin{gathered} \text { Total Cost of } \\ \text { Rcad and } \\ \text { Equipment. } \end{gathered}$	Cost per Mile.	Form of Rail, and lbs. per yard.	Miles of Single Rail.	Mites of Double Rail.	Dividend for 1847.	Cost per Mile of Single Track, Sterling.	. ${ }_{\text {demarks }}$
		\$	\$. lbs .				\pm	
Boston and Lowell	26	1,956,719	75,253	II $\left\{\begin{array}{cc}20 & 56 \\ 33^{\frac{1}{2}} & 63\end{array}\right\}$	None	26	8	7,830	\%. ${ }^{3}$
Bostcn and Maine	73	3,021,172	41,385	$\left\{\begin{array}{cc} \text { He } 6 \mathrm{~m} . & 45 \mathrm{fbs} . \\ \text { rest } 45 & 45 \\ \text { to } 60 . \end{array}\right\}$	68	5	9	8,069	
Eocton and Provicience	48	2,545,715	53,014	T 56 to 58.	321	154	72	8,316	
Boston und Worcester.	$\left\{\begin{array}{l}44 \frac{1}{2} \\ 14\end{array}\right\}$	4,113,603	70,318	T or H co to 64.	14	44.	8	7,583	Including Branches.
Connecticat River...................	$\left\{\begin{array}{c}36 \\ 2\end{array}\right\}$	1,167,156	30,714	H 56 fbs .	33	None	7	6,393	do
Exstern	$\left\{\begin{array}{l}38 \\ 20\end{array}\right\}$	2,937,206	50,641	Hand Chair $\left\{\begin{array}{l}57 \\ 46\end{array}\right\}$	42	16	8	8,263	do
Pall River	42	1,070,988	25,499	H 52 to 56	42	None		5,312	
Fitchburgh.	\{ $\left.\begin{array}{c}492 \\ 2 \\ 2 \\ 2\end{array}\right\}$	2,406,723	46,732	T 56 lls .	461	51	10	8,835	do
Lexington and W. Cambridge........ . Nashan and Lowell.	$\begin{array}{r}63 \\ 144 \\ \hline\end{array}$	$\begin{aligned} & 221,309 \\ & 500,000 \end{aligned}$	$\begin{aligned} & 34,947 \\ & 35,087 \end{aligned}$	56 Ibs. T 56 Ibs.	$\begin{aligned} & 6 \frac{1}{3} \\ & 1 \frac{1}{2} \end{aligned}$	$\begin{gathered} \text { None } \\ 13 \end{gathered}$	10	$\begin{aligned} & 7,093 \\ & 3,822 \end{aligned}$	
New Bedford and Tannton...........	$\left\{\begin{array}{c}20 \\ 1\end{array}\right\}$	483,882	23,042.	56 Ius .	21	None	8	4,800	do
Norwich and Worcester	$\left\{\begin{array}{r}59 \\ 7\end{array}\right\}$	2,187,249	33,140	T 56 加.	64	13	6,725	do
Gld Colony	$\left\{\begin{array}{c}37 \\ 7\end{array}\right\}$	1,636,632	37,196	H 56 lbs .	44	None	$6 \frac{1}{1}$	7,749	do
Pittsfield and N. Adams Western	19 118	$\begin{array}{r} 446,353 \\ 6,982,233 \end{array}$	$\begin{aligned} & 23,492 \\ & 59,171 \end{aligned}$	H 56 fbs . 56륜 to 70	$\begin{aligned} & 19 \\ & 99 \end{aligned}$	$\begin{gathered} \text { None } \\ 19 \end{gathered}$	$\begin{array}{r} 4,894 \\ 10,617 \end{array}$	
Total	$\begin{aligned} & 6833 \\ & 146+ \end{aligned}$	31,675,946	1462		-7,950	
Single Track...............	830								

* Average for Single Track per Mile.

for t
pectio
per
gener
What
rails
table
and
by se
lines
and
ueigh
bespi
unde
cove
that
line,

This table comprises, with the exception of about fifty miles, upon which there occar some doubts as to what the account precisely embraces, the whole of the Railroads at present completed in the State of Massachusetts. The table shows $683 \frac{1}{2}$ milcs of railway, inoludiag branches, which have cost in their construction and equipment, $\$ 31,675,946$, or 26,599,155 sterling.

There are 146 miles of double track. They have been taken at so much additional single track. A double track would not oost exaetly twioe that of a single one in its conatruction; but as these lines were made originally only with single tracks, and bavo been added to from time to time as circumstances would admit, it must have teaded to increase the cost, and in calculating the average expense per mile, it is oonsidered the result will not be much in error. The eost per mile, it appears then, has been $£ 7,950$ sterling.

There is no other State in the Union whieh presents equally good data for maiking az approximate estimate.

The olimate and nature of the country bears also strong resemblauce to that through Which the Halifax and Quebec line will pass, and in this respeet the analogy of the two onses is extremely favorable.

The New York and Erie Railroad, 450 miles in length, now in course of oonstruction, will, it is supposed from the latest information, cobst $\mathfrak{E} 6,250$ per mile, exclusive of equipment.

The estimate for the Hudson River from New York to Albany, now in progress, is for the single track, $£ 7,440$ sterling per mile.

The estimate for the Montreal and Portland line is about $£ 5,080$ aterling per mile.
For the Great Western Railroad in progreass in Upper Onnada, the estimate for that mection of the line which would most resemble the Halifax und Quebeo Road, is $£ 5,638$ per mile.

On referring to the tablc, it will be seen that all the lines have either the H or T rail, generally 56 lbs to the yard.

The price of railroad iron in the States is vory muoh greater than in England, or what it can be procured for in the British Provinces. It pays a very high duty on importation into the States.

On some of the lines upwards of $£ 15$ per ton for rails has been paid. In England rails can now be bought for $£ 8$ or $£ 9$ per ton.

The advaniage whioh the Malifax and Quevee line will possess over the lines in the tablo in respect of iron alone, may be estimated at $£ 500$ per mile.

When these lines were construeted alco, the demand for labour was extremely great, ad wages much higher thm in the present day.

The average (of $£ 7,950$) derived from the table, hay therefore very fairly be reduced by severai hundred pounds.

The Halifax and Quebeo line will hove also maíy idranteges whioh the Amerieun lines had not.

The land for the greater portion of the road will not have to be parobased. Timber and stone will be had nearly along the whole line for the labour of outting and quarrying.

Judging then from the analogy afforded by a similar, or nearly similar, lines in the ueighhouring States, giving due weight to the conslderations which have a tendency to undify the eost io the partisular case of the Halifaz and Quebeo line, and formigg the best estimate to be derived from the data obtained upon the exploratory survey, which under the circumstances of a perfeotly new oountry, only recently explored, and still covered with a dense forest, is all that can in the first instanoe be done; it is considered that if the sum of $£ 7,000$ sterling per mile be assumed as the probable cost of the proposed line, it will net be far from the correct amount.

The total distance from Halifax to Quebeo will be about 635 miles.
C35 miles, $£ 7,690$ per mile, will be. 24,445,000
Add one-tenth for contingencirs.
444,500

Or, in round numbers, five millions.

It is estimated, therefore, that the cost for construction and equipment of the Pruposed Trunk Line, from Halifax, through New Brunswick; to Quebec, will amount to $£ 5,000^{\prime} 00$ sterling.

The question whech presents itself next for consideration is a very important one, namely, the probable returns for such an expenditure.

The information to be afforded on this head can only to be derived in a very gencral way, from a consideration of the present population and resources of the three Provinces.

The direct communication between the two termini, Halifax and Quebec, is of a very limited nature.
liy land, it is confined almost to the conveyance of the mails. . Passengers proceed generally by the way of the United States.

By sea, in 1847, the communioation was by seventeen vessels, which arrived at Quebec, having a tonnage of 1,257 , and eighteen departed from that port for Halifax, whose tonnage amounted to $1,1,86$ tons.

This amonnt of intereourse does not at the first view appoar encouraging to expect rcceipts, but when it is made to appear that this limited intercourse arises entirely from the want of good means of inter-communication, such as would be afforded by the proposed railway, it becomes a strong argument in favor of making the line, rather than s gainst it.

The communication of the Provinces with each other is cramped and restricted beyond measure by the same want.

By sea the amount of intereourse may be judged of by the return given in Λ ppendix No. 6, furnished by the Quebee Board of Trade.

The chief clements which enter inte, and upon which depends, the succoss of every ıailway enterprise, are population, agriculture and commerce.
A^{*} the extremities of the line, and for some miles along the St. Lawrence, thero is an abundant population. External commerce, there is in an eminent degree. In that of agriculture its deficiency is great-at present, but as there are millions of acres of good productive land only waiting for the hands necessary to cultivate them, and tha means of access to which will be afforded by the railway, this very circumstance mny be made to conduce to the advantage of tha line, and pay a large portion of the expense of its construction.

The population of Halifax (the Atlantic terminus) is estimated at 25,000 souls. It is the capital of the Provinoe, the seat of Government, and its commerce extensive. The value of its imports and exoorts is estimated at $£ 2,500,000$.
The City of Quebeo, the other terminus, according to the census of 1844, contained (including the county, whioh is not given separately) 45,000 persons.

But this city derives additional importance from its being the one great shippiag port and outlet for all Canada. By its port passes the whole trade of that Province. It may be regarded as the foous of commerce for a million and a half of souls. The value of the imports and exports together may be estimated at $£ 5,500,000$ sterling, giving employment to a very great amount of shipping.

This immense trade is of necessity erowded into six months, the navigation of the St. Lawrenco being elosed for the remainder of the year.

In additicu to these two great termini there are lying on each side of the lii. 1 two most important tributaries, viz., the City of St. John and Yrinee Edward's Island. The former with a population in oity and county together, of nearly 44,000 persons, with a commerce of the value of $£ 1,800,000$ in exports and imports, giving employment also to a great amount of shipping. The latter with a population of 50,000 engaged principally in agriculture and the fisheries. The exports and imports of this island a,d about $£ 200,000$ annually.

Betiveen the City of Quebee and the Rivar Metis there are, soitled along the south bank of the St. Lawrenco, 75,000 inhabitants, all engaged in agriculture. These people are French Canadians, and almost every family has a small farm and homestead.
Λ striking peculiarity of these farms aro their clongated shape, tho length being gencrally thirty times that of the breadth, oftentimes a greater disproportion exists. The bouses and farm-buildinge are always built at one oxtremity, that which adjoins the road

Pruposeà $5,000{ }^{\circ} 00$
rtant one, ey gencral ?rovinces. of a very

8 proceed
arrived at Halifax,
to expect reiy from proposed rainst it. restricted

Appendix
of every
e, thero is In that of of good tho means be made of its con-
souls. It ve. The
contained
ping port It may ue of the ployment
f the St .
lì. ${ }^{\text {two }}$
d. The , with u t also to neipally 200,000
e south people
ng gen-

- The
he road
dividing ono set of concessions from another. There are generally three or four lines of houses and roads running thus along the St. Lawrence.

The effect produced by this manner of parcelling out the land and building has been to form what can only bo compaied to one long and continued village for 200 miles.

For the first 100 miles out of Quebes, as far uearly as the Riviere du Lioup, the proposed line of railway will run through the centre of this extended village, and with a train of moderate length, the last carriage will scarcely have cleared the door of one house beforo the engine will be opposite another. For the seeond 100 miles it will leave these concessions and farms a little on one side, but still within reach. A more favorablo disposition oí a population (comprised of small farmers) for contributing to the way traffic of a railroad could scarcely have been devised.

In the count:y lying between the Restigcuche River and Halifar, the ishabitants who will be near to the railroad will amount to about 100,000 ; making the population, either opon or near to the line, including the two termini, 250,000 persons. But if the total population be taken within the area, whioh will be bencfited by and become contributors to the line, thea it may be - ${ }^{\text {ted }}$ at not less than 400,000 souls.

In a Report of the Direetors, made upon the New York and Erie Railroad in 1843, when the question of proeeeding with that line was under consideration, one of the data upon whioh its futuro receipts was caloulated was desived from population and relative distance. And using the data obtained from the working of one portion which had been completed and was in operation, it was calculated that 531,000 persons on a line of 425 miles in length, would return in net earnings to the railway $\$ 1,343,500$, or $\$ 2.50$ pearly per head, equivalent to ten shillings sterling. As the railroad is not yot completed, the true result cannot yet be seen.

The net earnings of the railroads in Massachusetts for the year 1847 were $\$ 2,290,000$. The population of that State, over whose ares railways are everywhere extended, and tho whole of which may therefore be considered as tributary to them, being at the time about 800,000 . This gives $\$ 2.75$ per head, equivalent to eleven shillings, or the same result ncarly.

Applying the same ratio (of ten shillings per head) to the 400,000 inhabitants who are within the frea, and likely t, beoome tributaries to the Quebeo and Halifax Railway, it would give $£ 200,000$ as its probable revenue.

The great staple of trade of New Brunswiok is its timber. For tais all absorbing pursuit the inhabitants negleot agrioulture, and instead of raising heir own supplies they import provisinns in largo quantities from Canada and the United States. In the year 1846, New Brunswick paid to the latter for provisions alone $£ 216,900$ sterling, whilst, in retur:, the United States only took from them $£ 11,000$ in coals and fish.

Of Nova Sootia the great staples are timber and the products of the fisheries. The inhabitants import provisions also largely.

Canada is an exporting country, and oapable of supplying the demands of both.
In the winter of 1847.8 the prico of flour at falifax and St. Tohn was at forty shillings the barrel, and it was being imported from the ohief ports in the United States, even from as far as New Orleans in the Gulf of Mexico. At the same time, at Quebee the priee of flour was only twenty-five shillings per barrel. A very great difference, which, had the railroad been in existence, would not have occurred.

Another great souree of revenue likely to be developed by the railway is that of coals, to be derived from the great Cumberland Field.

Quebee and the upper country would no doubt tuke large quantities for their own consumption. Halifax the same for itself, and also for exportation to the United States.

Considerable returns would arise from the fisheries and from the products of the forest, lying contiguous to the line, whioh would find thoir way by it to the shipping ports.

The eountry through which the road will pass possesses, therefore, in itsciff, elements which, when fully devoloped, oannot fail to realize large reoeipts.

But there are, exelusive of these, other and highly important souroes, for prodnotive revenue.

Halifax may be considered to be the learest great sea-port to Europe.
Passengers travelling between Eagland and the Canadas would adopt this railway, as the shortest and best lion which they could take. Emigrants would do tho same.

The mails, troops, munitions of war, commissariat supplies and all publie stores, would naturally pass by it, as the safest, speediest and oheapest means of oonveyauce.

If a straight line be drawn from Cape Clear in Ireland, to New York, it will out through or pass close to Halifax.

The latter is therefore on the direct route; and as the sea voyage across the Atlantio to New York may be shortened by three days nearly, in steamers, it is not improbable that on that necount, when the braneh railroad to St. Jobn is corapleted, and other line to conneet on with those in the United States, the whole or the greatest portion of the passenger traffic between the Old and the New World would pass through Halifux, and over a groat section of the proposed railroad.

But the great objeet for the railway to attain, and which, if it should be able to accomplish, its eapability to pay the interest of the capital expended would be undoubted, is to supersede the long and dangerous passage to Quebec by the Gulf of St. Lawrence.

To make two voyages in a season vessels aro obliged to leave England earlier, and encounter the dangers of the ice in the Gulf, muoh sooner than it is safe or prudent for them to do.

The loss of life and property which has occurred from this eause, and returning late in the autumn, has been enormous. It eannot be asoertained, but probably it would have more than paid for the railway.

An opinion, may, however, be fcrmed of it from the rates of insurance, whieh in the spring and autumn ure as high as ten pcr cent. A much higher rate than to any other part of the world.

The navigation of the St. Lawrence is closed for about six months of every year. Juring the whole of this period all the produce of the country is locked up, and neeessarily lies unproductive on the hands of the holders.

The surplus agricultural produce of the year cannot be got ready to be shipped in the season it is produced. In the wioter of $1846-7$ it has been stated on good authority, that $50 C, 000$ barrels of flour were detained in Montreal at the time when famine was raging in Ireland. As soon as the season oposed, there was such a demand for shipping to oarry provisions, that the ordinary course of the timber trade was deranged by it.

All this would huve been prevented had the railway been then in existence.
For six months in the year, then, the St. Lawrence would eease to be a competitor with the railway, and large quantities of produce would be certain to be forwarded by it.

For the other six months of the year it would have also the following stroug olaims to preference:-rapidity of transport; the saving of heavy insurance; clieaper rate of freight from Halifax ; vessels engaged in the Canadian trade could make three vogages to Halifax for two to Quebeo.

The trade which is now crowded into six months, to the great inconvenience of cvery one concerned, readering large stooks necessary to be kept on hand, would be diffused equaily over the whole year.

It is most probable that those adrantagoe will bo found so great, that only the bulky and weighty artioles of commerce, suoh as the very heavy timber aod a few other goods, will contiaue to be sent round by the Gulf of St. Lawrence.

If such should prove to be the case, then the proposed railway would have as much or perhaps more traffio than a single track could accommodate.

The cost of transportation, it is caloulated, will not be too high on this line to admit of the above results being realized, and in that case, more ospecially if the capital ean be raived at a moderate rate of interest, it is onnsidered highly probable that it will, even in a commeroial point of view, be a piofitable undertaking.

From evidenee given to the Gauge Commissioners in England, it appears that tho cost of transport for goods on the undermentioned lines of railway was as follows:-

This is supposed to be gross weight, including carriages, \&c.
One-fifth of a penny per mile per ton will be a liberal allowance for the net weight.
From a very carefully prepared document,* extracted from a Report of the Commissioners appointed in 1846 by the Legisluture of the State of New York, to locate certain portions of the New York and Erie Railroad, it appears that the cost of motive power on

Atlantio sable that e to conpassenger 3ragreat be able to adoubted, rence. rlier, and udent for rning late juld have
ich in the any other
very year. reeessarily
ped in the ority, that raging in g to earry
sompetitor ded by it. claims to of freight to Halifas
of every je diffused
the bulky her goods,
is much or
e to admit ital can be , even in a nat tho cost some of the principal railroads in the United States was 40 cents per train per mile, equivalent to 1 s .8 d , sterling.

With the expected grades on the Halifax and Quebec line, it is calculated that an engine of good power, having the assistance of an extra engine for 25 miles of the distance, will convey 100 tous of goods at a moderate speed of eight to ten miles an hour over the whole 'ine.

$$
\begin{aligned}
& \text { The total cost per train would then be一 } \quad \mathcal{E} \text { s. } d \text {. } \\
& 635 \text { miles, at 18. } 8 d \text {. per mile. } \\
& 52184 \\
& 25 \text { milas, at ls. 8d. for extra engine.. } 2218 \\
& \text { Total for } 100 \text { tons. } \\
& \begin{array}{lll}
& 555 & 0
\end{array}
\end{aligned}
$$

Or 11s. per ton for the whole distance. Equal to .207 drs. per ton per mile, the same nearly as the average on the English railways.

At this rate, the actual cost of carrying a barrel of flour from Quebec to Halifax will be only $1 \mathrm{~s} .1 \mathrm{~d} . ;$ and if it be doubled to pay interest on capital, then 2 s .2 d . might be the price charged for its conveyance.

The freight of flour from Quebeo to England may be taken at 5s. por barrel; from Halifax at 3s.

The difference in freight would therefore pay its transit by railway, and the difference in the rates of insurance would be to the profit of the owner; and the voyage being shorter, there would be less risk of its arrival in the market in a heated or deteriorated condition.

Provisions and all other articles whose value is great in proportion to their bulk, would be as advantageously forwarded by this route.

It is fully expected, therefore, that the railway will be able to compete succossfully with the shipping in the St. Lawrence even during the summer season.

But there is still another great and imprataut source from which traffic may be expeoted, viz.:-From those vast and extensive regions in the Far West, round the Lakos Huron, Michigan, and Lake Superior.

By the completion of the canals along the River St. Lawrence, the produce of these lake countries now finds its way to the markets of Nontreal and Quehee.

Large oargoes, consisting of 3,000 barrels of flour, can now pass from their ports down to Quebee without once breaking bulk.

Already produce which found its way to Nerv York by the circuitous route of the Mississippi ard New Orleans, has been diverted to the ohannel of the St. Lawrence.

The extent to which this will take place it is not possible yet to calculate ; but there is no doubt that large quantities of produce which formerly found its way to the Atlantio ports of New York and Boston, will be diverted to the St. Lawrence.

Of the enormous exports of provisions from the United States, the following will give some idea :-

	In 1816.	In 1847.
Flour -bar	2,289,476	4,382,496
Wheat-bus	1,013,795	4,399,951
Corn -bashels	1,826,068	16,326,050
Meal -barrels	293,720	918,066

The great portion, if not nearly all this immense produce, of which the above forms only a few items in the grcat account, was reeeived at the Atlantio Ports from the Far West. And it is for this most important and still increasing trade, that Montreal and Quebec will now, by means of the St Lawrence Canals, have the most favorable ohance of a sucoessfui competition with new York and Boston.

[^3]It has been calculated that the cost of transport for a barrel of flour from the lakes to New York was 5 s. 1d. sterling; to Boston 6s., exclusive of charges for trausshipment.

By the Quebec and Halifax line, it is estimated, now that the Canals are open, a barrel of flour may be delivered at Quebec for 2s. sterling, and carried to Halifax for 2 s . $2 d$. ; total, $48.2 d$.

By the Montreal and Portland, $18.8 d$. has been estimated as the priee per the railway, to which if $2 s$. more be added as freight to Montreal, the price by that line will probably be only 3 s . 8 d . sterling per barrel. The Montreal and Portland will have, therefore, an apparent advantage over the Quebee and Halifax line, arising from its mueh shorter distance. But there are some drawbacks attending it, which may cause the preference to be given to the latter notwithstanding the line passes through the United States.

A transit duty of $2 \frac{1}{2}$ per cent. ad valorem, has to be levied upon all foreign produce, and introduces the inconvenience of custom-houses and custom-house offieers.

Portland is a foreign port, and is 400 miles by sea farther from England than Halifax.
It has been seen in a former part of this Report, when speaking of the Utiea and Syracuse Railroad, how inadequate that line was to take all the traffio which was required to be forwarded by it at the time the Erie Canal is closed.

The growiug population and produce of the Western States are so gigantie, that it is probable there will be more than sufficient to employ fully both the Montreal and Portland, and Quebec and Halifax Railroads.

From the foregoing remarke, it will appear then, that although no very good or precise estimate of the returns for the expenditure of five millions sterling can be given, yet that here are very good general grounds upon which to form an opinion, that altimately, if not at once, the line will, in a commercial point of view, be a very productive one.

The Montreal aad Portland, which will be the great competitor with that of the Quebce and Halifax line, is an enterprise of a purely commercial and local nature. As such, it is not likely shareho!ders will be contented, unless they receive what they have every right to expeet-a high rate of interest for the expenditure they have insurred, and the risk they have encountered in the undertaking.

But with the Quebee and Halifax it is very different. The enterprise is of general interest. It concerns the prosperity and welfare of each of the three Provinces, and the honor as well as the interests of the whole British Empire may be affeeted by it. It is the one great means by which alone the power of the Mother Country can be brought to bear on this side of the Atlantic, and restore the balance of power now fast turniuy to the ride of tàe United States.

Every new line of railway made in that country adds to their power, enabling them to concentrate their forees almost wherever they please, and by the lines, of which there are already some, and there will soon be more, reaching to their northern frontier, they can choose at their own time any one point of attack on the long-extended Canadian frontier, and direct their whole strength against it.

The Provinces, therefore, and the Empire, having sueh interest in the formation of the Halifux and Quebee line, it should be undertaken by them in common as a great publie work for the public weal.

If so undertaken, the Provinces, supported by the credit of the Mother Country, could raise oapital at a rate of interest which could not be done by any Company of Shareholders. And if to this advantage be added the disposal for the exelusive benefit of the railway, of a portion of the wild lands along the line, and in the immediate country which it would be the means of opening to settlement and cultivation, then it is highly probable that it would be constructed for three millions sterling.

In a former part of this Report it has been estimated that there are in the oounties through which this line will pass, fourteen millions of acres of land yet ungranted, and therefore remaining at the disposal of the Provincial Government.

The ordinary priee of an acre of wild or uncleared land is about $\mathbf{2 s}_{8 .} \mathbf{6 d}$. to 3 s. per aorr. But where public roads are made through them, the value immediately increases, ind it wi I not be considered an extravagant estimate, to suppose that the land along it, or in tho immediate vicinity of the railway, will be worth $£ 1$ per aore.

For prospect Imperial wards at receiped The of four guarante acres to

Up amount other pe taxes an extent celled.

Th
would the sam inconve bank fo ourrenc emigrat afforded

To the effe preven Many want less thi and th
the lakes sshipment. ro open, 2 far for 2 .
ho railway, 1 probably erefore, un h shorter ference to tates.
a produce,
a Halifax. Utios and s required
that it is Portland,
good or be given, that ultiroductive
at of the ure. As they have rred, and
f general , and the it. It is cought to ug to tho
ing them oh there ier, they frontier,
lation of a great

Jountry, Share; of the 7 which robable
ounties ed, and
er sorf.
lit wi 1
in tho

For the construction of the great St. Lawrence Canal, by which Canada has now the prospect of reaping such immense advantages from the trade of tho western country, the Imperial Government guaranteed the interest on a loan of two millions sterling and upwards at four per cent. This loan was easily raised, and a large premium per cent. was reeeived in addition for it.

There can be little doubt that another loan of three millions sterling, at the same rato of four per cent. interest, could be raised upon the credit of the Provincial revenues if guaranteed by the Mother Country. With this anount of capital, and two millions of aeres to bo reserved, and sold from tine to time, it is conceived the railway may be mado.

Upon the strength of these two millions of acres, and the loan as a basis, a large amount of notes might be issued in payment of the wages and salaries of the labourers and other persons employed on the works of the railway. They should be made receivable for taxes and customs duties. The amoznt authorized to be issued might be limited to the extent of the acres, and as these were sold, an equal amount of the notes should be cancelled.

The issue of a number of notes which would pass ourrent over the three Provinees, would be conferring a great benefit upon the community at large. The ourreney is not the same throughout, and persons who travel from one Province to another are now put to inconvenience, and have often to pay a discount upon exchanging the notes of one colonial bank for those of another. Advantage might be taken of the measure to assimilate the ourrency of the colonies to each other, and make it "sterling," the same as in England.

By a little arrangeraent, also, these notes might be made payable at the chief ports of emigration in the United Kingdom; and in that case a very great convenicnce would be afforded to a large class of persons on both sides of the Atlantic.

To remit small sums now, nequires the intervention of bankers or agents. This has the effect upon persons resident in the settlements (and no doubt, also, often in towns), of preventing their sending the assistanee which they otherwise would do to friends at home. Many a small note would be put up and sent in a letter, which is now never thought of for want of the convenience.

In remitting sums from Halifax to England, the banks do not like to give bills at less than sixty days' sight. These notes would, therefore, become a great public benefit, and there would be no fear of their being kept in circulation almost to any amount.

Upon the loan of three millions, the interst at four per cent. would amount to $£ 120,000$ per annum.

Of this sum it may be fairiy assumed that for the convoyance of the mails between Halifax and Quebec, the Post Office Department would be willing to pay annually an equal amount to what is now paid for the same service. This has not been officially obtained, but there are good grounds for supposing that it is nearly $£ 20,000$.

In the case, then, that beyond this the railway only paid its own working expenses, the sum of $£ 100,000$ would have to be made good out of the revenues of the Provinces.

The proportion of this, or of whatever sum might be deficient to pay the interest on the loan, would have to bc arranged; and it may, for the sake of illustration, be supposed to be as follows :-

Fir the proportion guaranteed by the Provinces, they would reeeive the benefits conferred by the railway in developing their resourees, increasing the value of all property, promoting the sale and settlement of their wild landd, increased population, and increased revenue.

For the proportion gaarantced by the Imperial Government, all Government officers, civil or military, troops, munitions of war, supplies, \&co., for the publio serviee, and amigrants, should be 'transported over the line at the cost price,

New Brunswiok and Nova Scotia, it is understood, are most willing to gaarantee the iatereat to the extent of their means, and in a fair proporiou.

Canada having done so much already for the eommunioations above Montréal, it is fully expected will not be baekward in perfecting those below Quebec.

In the extreme case supposed ajove, viz., of the railway yielding no returns beyond working expenses, it is not conceived that either one of the Provinces or the Empire would not receive an equivalent in some other form for its direet contribution to make good the interest.

An account is at present being taken of the existing way traffic between Halifiz and Amherst, by the Commissioner appointed by Nova Scotia to colleet statistics for the rail. way. The same is being done for that portion of the line along the banks of the St. Lawrence.

There is some reason to believe that these two portions of the line will be found to have suffieient traffic to pay, over and above working expenses, the moderate interest on capital of four per cent.

If such should prove to be correct, then the foregoing statement would be modified and itand thüs:-

If the total line can be done for $£ 3,000,000$, then the proportion for the 400 miles would be $£ 1,889,600$ or $£ 2,000,000$ nearly.

The interest for which. woild amount to $£ 80,000$.
Deducting $£ 20,000$ for the conveyance of the mails, then the sum to be responsible for would be $£ 60,000$, which divided proportionally aa before, would give for

Therefore, for the responsibility (perhaps for assuming it only) of $£ 100,000$, or as the case may prove, $£ 60,000$, the Quebec and Halifax Railway may be made.

But to lojk at this great work only as a commercial speculation, and as yielding mere interest for the expenditure incurred, would be to take a very limited view of the objects it is oapable of achieving.

In the United States they are well aware of the increased value which internal im. provements and communications give to property of every kind.

In those countries works have been undertaken for that object alone, not for the mere return which the work, whether railway, road or canal, would make of itself.

The indebtedness of the several States has been ineurred almost entirely in making great internal improvements. And in the boldness and unhesitating way in which they have inceurred debts and responsibilities for the parpose of developing their resources, may be seen the sccret of their unrivalled prosperity.

The State is in debt, but its citizens have been enriehed beyond all proportion.
Most unfavorable comparisons are made by travellers who visit the British Provinces and the. United States. And some have gone so far as to state, that travelling along where the boundary is a mere conventional line, they could at once tell whether they were in the States or not.

On the one side the State Governments become shareholders to a large amount in great public works, lead the way and do not hesitate to incur debt, for making what has been termed "war upon the wilderness;" employment is given, and by the time the improvement is completed property has been created and the employed beoome proprietors.
arantee the ntreal, it is
rns beyond the Empire on to make

Halifis and for the rail. s of the St.
be found to interest on be modified
e 400 miles
responsible

0, or as the
elding mere the objects
internal im.
or the mere
in making which they ources, may

On the other side the Provincial Governments do not take the initiative in the same manner, and hence in the settlements and in the provinces gencrally, may be seen this marked difference in the pregress of people who are identically the same in every respect.

Until the British Provinces boldly imitate the policy of the States in this regard, and make "war upon their wilderness,". their progress, will continue to present the same unfavorable contrast.

The creative or productive power of canals, railways, \&o., may be traced in the history and progress of the State of New York.

The Erie Canal was commenced in 1817 , and completed in 1825 , at a cost of $\$ 7,143,789$, $\boldsymbol{£ 1 , 4 0 0 , 0 0 0}$ sterling. In 1817 the value of real and personal property in the City of New Yor's, was from official documents estimated at $£ 16,436,000$ sterling. In 1825, it was estimated at $£ 21,075,000$ sterling. In 1829 , the population of the State was $1,372,000$, and in 1830 t ! • p population of the State was $1,918,000$.

The caral was found so inadequate to the traffic, that between the years 1825 and 1835, a farther sum of $£ 2,700,000$ was expended in enlarging it.

Making the total cost to that date, $£ 4,100,000$ sterling.
It has been seen that in the City of New York-
In 1817, the official value of real and "personal property was... $£ 16,436,000$
In.1835, " " ".... 45,567,000
Being an increase of $2 \frac{3}{4}$ times in eighteen ycars.
For the State of New York-
In 1817; the official value of real and personal property was.. $£ 63,368,000$
In 1835, " " \quad " \quad.. 110,120,000
Or an increase of nearly $£ 47,000,000$ sterling in the value of property, attributed chiefly, if not entirely; to the formation of the canals.

In 1836, the amount conveyed to tide water by the canal was 697,357 tons.
And on the first of July of that year there had accumulated in the hands of the Commissioners an amount sufficient te gxtinguish the whole of the outstanding debt incurred in its construction.

The né' receipts from all the State canals, after deducting the expenses of collection and superintendence, for the jear 1847, was $£ 449,270$. Villages, towns; and cities have sprung up along its course.

The population of the State, which was-

$$
\begin{aligned}
& \text { In } 1810 . \\
& \text { 959,949 } \\
& \text { Was in } 1845 \\
& \text { 2,604,495 }
\end{aligned}
$$

In 1846 the value of real and personal property was estimated at $£ 128,500,000$.

- It will be seen from the above, therefore, that in addition to the wealth created for individuals, the canals produce a large annual revenue to the State.

Tho following extracts from the financial affairs and statistios of some of the States may be quoted in illustration of this part of the subject:-
1847.

Massachusetts.
Total indebtedness of the State 1st January, 1847................ \$ $999,65 \pm$
Credit of the State, lent to Railroads.. $\mathbf{B , 0 4 9 , 5 5 5}$
Total liabilitios of the State................................. $\overline{\$ 6,049,209}$
As security for the redemption of the serip lent to Railroads, the Commonwealth holds a mortgage on all the roads, and also 3,000 shares in the Norwich and Woreester, and 1,000 in the Andover and Haverhill.

Pennoylvania.

Public property, canals and railroads, at original cost........... \$28,057,432
Maryland.
Receipts from Baltimore and Ohio Railroad........................ $\$ 42,402$
Ditto from Oanal Company.. 11,550
5
Worth Carolina.Debt of the State, on account of Railroad Companies$\$ 1,110,000$
Ohio.Dcbt contracted for the zole purpose of the construction ofPublic Works within the State.................................... $\$ 19,246,000$
Canals, 820 miles in length, cost. 15,122,503
Net reoeipts in 1846, after paring repairs and expenses. 408,916
In 1810 the population of this State was. 45,865
In 1820

" 581,434 581,434
" In 1840 $1,519,467$
or tripled nearly in twenty years, during the progress of her oanals.Michigan.Debt on 30th November, 1845$\$ 4,394,510$Total length of Railroads finished, and belonging to the State, 222 mills.This State was authorized to raise a loan of $\$ 5,000,000$ for internal improvements.For the same purpose, Congress granted to this State 500,000 acres of land.
In 1840, the population was. 212,267
In 1845, 304,278
or an increase of fifty per cent. pearly in five years.
Indiana.
1st January, 1847, the publie debt was \$14,394,940

By the terms of the Act adjusting this debt, it is to bo equally divided between the Stato and the Wabash and Erie Canal. Of this canal, which is to be 458 miles long, 374 miles are in Indiana; 174 of this portion are finished, and in operation. There remain 200 miles to be completed, upon which part about $\$ 1,200,000$ havo been oxpended by the State. It is estimated to cost the further sum of $\$ 2,000,000$ to complete the entire eanal. To cover this amonnt, tho State is to transfer to trustecs 963,126 acres of land adjoining to or in the neighbourhood of the canal.

or doubled in ten years.

Illinois.

\$14,174,268
The population in 1830 was....................................... . 157,455
" " 1840 " 476,183
or tripled in ten years.
The sales of the public lands during ono year (1845) in the
\qquad
Producing
1,843,527
Producing. $\$ 2,470,298$
or an average of 5s. 7d. sterling per acre.
But to shew the effect produeed by a canal or railway passing through property, the following extract may be quoted from the Report of a Board of Direotors of the New York and Erie Railroad Company in February; 1844:-
"The Board find that they have omitted one description of property which has herotofore been considered of great value, but the right to most of which has been lost to tho Company by failure to complete the road within a certain period; the most valuable
of which esonsisted of 50,000 acres cf wild lands in Cattaraquas County, near Lako Erie. aud one-fourth part of the Village of Dunkirk.
"An offer in $\sqrt{ }$ riting was made in 1837, by responsible parties, to tako these donatione, and pay furtitar the sam of $\$ 400,000$, provided certain portions of the railroad were completed within a specified time."

That is ..bout $\$ 8$, or $33 s, 4 d$. sterling per acre.
In Michigan 461,000 acres were granted by Congress for the endowment of a University. These lands were selected in seetions from the most valuable of the State. The minimum price of these was at ono time $\$ 20$, or $£ 46 \mathrm{~s} .8 \mathrm{~d}$. sterling per acre, but because lower afterwards; 17,142 acres, tho quantity sold up to 30 th November, 1845 , brought £2 9s. per aero.

Sixty-nine thousand aeres, devoted to schools, wero sold for £1 7s. per acre.
Such, then, are some of ih o rosults of making "Wir upon the wilderness."
Ir. New Brunswick there are, acoording to an Oficial Report of the Surveyor Gen. cral, dated 15th December, $1847,20,000,000$ acres, of which aboui $6,000,000$ are cither granted or sold, and $3,000,000$ may be considered as barren or under weter; !eaving, therefore, at the disposal of the Government, $11,000,000$ of acres of forest land fit for settlement.

Of the $6,000,000$ granted or sold, only 600,000 acres are estimated at being aetually under cultivation.

By a statistical table published by W. Spackman, London, there are-

	Acres Cultivated.	Acres Uncultivated.	Aeres Unprofitable.	rotal Acres.
In England.............	25,632,000	3,454,000	3,256,400	32,342,000
Wales...............	3,117,000	530,000	1,105,000	4,752,000
Scotland.............	5,265,000	5,950,000	3,523,930	19,738,000
Ireland..............	12,125,280	4,900,000	2,416,664	19,441,944
New Brunswick....	600,000	16,400,000	3,000,000	20,000,000
Population of England... 14,995,508				
"	Wales.	 911	
"	Scotland.			
"	Ireland.		8,20	
*	New Brunswi			

In Ireland thero appears to be from the above table, $17,000,000$ acres of ground fit for caltivation, and it has a population of $8,000,000$ to support.

In Nerv Brunswiok there is an equal amount of ground to cultivate, and it has only a population of 208,000 persons.

If the land yet uncleared and fit for cultivation be added which remains in the northern section of Nova Scotia, and again between the boundary of New Brunswiok and the River St. Lawrence to the east of Quebee, then there would be a quantity of nearly equai io that of England itself, supporting a population of 400,000 souls.

It is not too much then to say that between the Bay of Eundy and th.e St. Lawrence, in the country to be traversed by the proposed Railway, there is abuodant room for all the surplus population of the Mother Country.

Of the climate, soil, and capabilities of New Brunswick, it is impcssible to speak too highly.

There is not a country in the world so beautifully wooded and vatered.
An inspection of the map will show that there is scureely a seotion of it without its streams, from the renning brook up to the navigable river. Two thirds of its bouncary aro washed by the sea ; the remainder is embraced by the large rivers-the St. John and Restigouche.

For beauty and riohness of scenery this latter river and its branches are not surpassed by anything in Great Britain.

Its lakes are numerous, and most beautiful ; its surfaee is undulating, Jill and dale, varying up to monatain and valley.. It is everywherc, except a few pealks of the highest mountains, covered $\begin{array}{r}\text { ith a dense forest of the finest growth, }\end{array}$

Tho conntry can everywhere be penctrated by its streams.
In some parts of the interior, for a portage of thrce or four miles, a canoe oan float away either to the Bay Chaleurs and the Gulf of St. Lowrence, or down to St. Joins, in the Bay of Fundy.
-Its agricultural capabilities, its climate, \&e., are desoribed in Bouchette's works, in Martin's British Colonies, and other authors. The country is, by them, and most deservedly so, highly praised.

There may be montioned, however, two drawbacks to it, and only two.
The winter is long and severe; and in summer there is the plague of flies.
Tho latter yield and disappear as the forest is oleared; how far the former may be modified by it experience only can show.

For any great plan of emigration or colonization, there is not another British Colony which presents such a favorable field for the trial as New Brunswiek.

To $17,000,000$ of productive aeres there are only 208,000 inhabitants.
Of these $11,000,000$ are still publio property.
O_{u} the surface is an abundant stoek of the finest timber, which in the markets of England realize large sums annually, and afford an unlimited supply of fuel to the settlers.

If these should ever become exhausted, thero are the coal-fields uaderneath.
The rivors, lakes and sea-coasts abound with fish.
Along the Bay Chaleurs, it is so abundant that the land smells of it ; it is used as manure, and while the olfactory senses of the traveller are offended by it on the land, he sees out at a sea immense shoals darkening the surfaco of the water.

For about the same expense five emigrants could be landed in New Brunswiek for one in the Antipodes. Beigg within a fortnight by steam from London, any great plan of colonization could be direeted and controlled by the Home Goverament.

In case of distress or failure, it would be long previously forsseen; tho remedy or assistruce could be applied; or, if beyond these, there would be the upper country and the Far West always open, ard ready to receive the colonists.

The present limited population being so generally engaged in the pursuit of the timber trade and in the fisheries, there is the riohest openiag for agriculturists.

New Bruaswiek annually pays to the Uuited States upwards of $£ 200,000$ for provisions and other artioles whioh she onn raiso upon her own soil.

Nova Sootia does very nearly the same thing.
Whilst within a few miles' reach of their own capitals, there is abundance of land for agricultuaal productions; these two l'rovinces aro dependent for large supplies of food upon the United States.

Fluur is importod irom as far as New Orleans.
Wheat grown in tho valley of the Mississippi is shipped at $8 t$. Lovis, and imporied into New Brunswick; it is ground iato flour at tho mills of St. John, and furnished a large share of tho bread eaten by the labourers of that city.

Thero exists, therefore, a good market already on the spot for agricultural produce; ard it would b_{5} a strange anomaly, indeed, if a coustry situated within three or four wceks' sail of the markets of Eagland, could not compete with the growers of produce in the valley of the Mississippi and the counties round the great lakes in the Far West.

One thing, however, is greatly to be deprecated, that is any audden or large enigration without previous preparation.

Before wheat or food of any kind ean be growu the forest has to be removed, and thut is a work of time and hard labour, during whieh those evgaged in it must be fed from other sourees.

With some little previous detailed surveying, the proposed railway can be commenced both at the Quebee and Halifax ends as soon as deeided upon, and carried on for miles. Duriag whioh time the further detailed eurvey necessary for the remainder of the line, ard partioularly the pertion through the wilderness, might be made, and the line actually marked and out throughout.

This line, when out, would form a bacis for laying out extensivo blocks of land, and dividing them into allotments for settlers.

It will be unnecessary in this Repart to recapitulato ail the good effeets prodnced uron every oountry in which railwaya hafh been egtablighod ; bat some may be peutionct!
oan float Johns, in
works, in most dc-
r may be Colony
arkets of b settlers.
is used as pland, he
swick for at plan of
remedy or y and the
f the tim-
for provi-
f land for of food
imported arnishes a
produce; ur wceks oc in tho migration , and thut rom other for miles. line, and actually revitiong!

They have become neeessary to the age, and that country whieh has them not must fall behind in the onward march of improvement and in the development of its resources. And the longer it is suffered to do so, the greater and more unfavorable will be the contrast whieh it will present to the world.

Already in this respeet the British Provinces of Nova Scotia and New Brunswiek are far behind their enterprising neighbois.

One of the immediate effects of making this railway would be to place them in a position of equality. They are now dependent upon thom for food.

At the elosing of the navigation of the St. Lawrence, if the United States were merely to prohibit the exports of provisions from their own harbours, the consequences would be aerious to these two Provinces. Canada could not then supply them.

In May, 1847, when the exploratory nowties wore being formed at Fredericton and provisions were being forwarded to the woom ui their use, there was a seareity of flour at St. John. It was said that sufficient for only two or three days' consumption remained in that eity. The prices rose considerably, and the scarcity was only averted by the arrival of some cargoes from the United States, intended for Eastport.

The railway, had it been established, would have prevented such a state of things, and may save it for the future.

For the waut of such a communication, Nova Sootia now finds 26 easier and more advantageous, notwithstanding a heavy daty of 20 per cent. against her, to export her great staple of fish to the States than to Canada; whereas, if the railway were made, it would pass on to the latter, where there would be an extensive market for it, and flour would be received in retarn.

Halifax would become the grand emporinm of trade for the British provinces.
With the assistance of the eleetrio telegraph, an order from Quebeo could be received in a few minutes, and the articles wanted could be sent off by the next train.

As the vessels now arrive in fleets in the spring, and again in the autumn, it is a matter of forethought and consideraticn to the merehant of Canada, to know what he shali provide himsclf with.

To the iutending emigrant it will afford him the choice of any month in the year to set out for his new country, and if by means of friends previously settled, his place of abode has been chosen, he can time his arrival so as to have the shortest possible time to wait uatil his own crops are ready to supply him with food.

Arriving now, as thousands annually do, in the spring when the seed-time is at hand and the land uncleared, they lose the valuable opporianity of that yoar's orop, and have to wait over, existing, perhaps, upon their little capital for nenrly eighteen months, until the suoceeding harvest comes to them. To all such emigrants nearly a ycar may be saved.

Surprise has sometimes been expressed that out of so many who yearly land in the Provinces, so many pass on and become setilers in the States.

To the poor man his labour is his eapital, and he must transfer himself to the place where omployment is to be found.

The proposed railway would be such a work as would engago thousands in its immediate construction. While the stimulus and new spirit it would infuse into the whole community, now cribbed and confined as it were to their own loeations, would give rise to branehes and other works which would employ additional thousands.

It has been seen that the population of some of tho Weatern Statos have doubled and oven tripled themselves in the course of ten years.

Tho population of New Brunswick is now only 208,000. Her revenue in 1847 was $\$ 106,000$ sterling, or 10 s . per heać.

There is no appurent reason why, if the same faeilitios of employment and land for settlement were afforded, that her progress should not be also very great.

Every emigrant, induced to scttle and remain in the eountry, may be caleulated as produeing 10s. annual revenue to the Provinee.

If tho formation of the railway incroased the population of New Brunswiok by 40,000 persons only, th.an her proportion of the guaranteed interest wonld be covered from that cause alone.

The same night ocour also to Nova Scotia and Lower Canada.
It may be asked what is to beeome of the labourers employed upou the rail ray during
the winter. This is the season when lumbering or outting of timber commences. They might engage in it also. But with the wages earned in ths summer they should be ineitod to purchase small lots of ground of about fifty acres eaoh.

The labours of the season over, or suspended upon tho railway, they could most advantageously employ themselzes in olearing, logging and improvijg their own lots. This they could do to such an extent that in the spring the women and older children could burn the logs off and put in some sort of crops for food, such as potatoes, Indian corn, \&e.

Mechanies might either do the same, if railway work could not be found for them, or find emplcyment in the towns.

Another great effect of the railway would be to enhance almost immediately the value of all real and personal property. The effeets produced by the Erie Cazal in doubling and nearly tripling that of tho City of New York have Deen stated.

Villages and towns would, no doubt, spring up in its coarse the same as on the Canal. The railway would give them birth. Agriculture and external commeree would support and enrich them.

But if, by its means, the uavigation of tho Gulf of St. Lawrence is spared, what an amount of human suffering and loss of life will it not save.

The losses from shipwreek has been great, but not equal to that arising from protracted voyages and crowded emigrant ships.

In 1847, 89,733 persons emigrated to the British Provinces, of whom 5,293 persons perished at sea, and 10,000 are said to have died after their arrival.

This wis a most unusual year, and it is to be hoped by every friend of humanity, that anything like it wili never occur again.

No human means could have saved all this loss of life, but there is nos. , a less protracted voyage and a more favorable tims than the spring of the year in the St. Lawrenco would have prevented somo of tho fatal results.

The railway established, the passage may be shortened, and the time of emigration may bo selected at choien.

Troops aro ann"ally moved to and from Canada. About the elose of the navigation in 1843, transport, having the 1st Royal Regiment on board, was wrecked in the mouth of the St. Lawret se. The men got safely on shore, but there were no roads or means of getting away from the place. By the personal cxertions of one of the officers, who made his way through the woods on snow shoes to the nearest settloments and thenee to Quebeo, information was given of tho wrcek, and a steamer sent down to take them off. But for this, the consequences must have been that tho Regiment would have had to winter there in the best manner they could.

Embarking and disembarking at Halifax, all danger and ineonvenience from the Gulf navigation would be avoided. Time and expense would be saved, and the season might be disregarded.

The mails to and from Canada couid pass over British territory exclusively, and they would be reseived at Quebee beforo the steamor reached Boston, and at Montreal abuha the same time as it arrived at that port.

In a political and military point of view, tho proposed railway must be regarded as Decoming \& work of necessity.

The inereasing population and wealth of the United States; and the diffusinn of railways over their territory, capecially in the direetion of the Canadian frontier, render it absolutely necessary to counterbalance, by some corresponding means, their otherwise proponderating power.

Thoir railway communications will enablo them t : seleet their own time and their own points of attaek, and will impose upon the British the neeessity of being prepared at all points to meet them.

It is most essential, therofore, that the Mother Country should bo able to keep mp her communications with the Canadas at all times and seasons. However powerful England may be at sea, no uavy could save Canada from a lanú foree.

Its eonquest and annexation are freoly spoken of in the United States, even on the floors of Congress.

Weakness invites aggression, and as the railway would be a lever of power by which

They acited IdvanThis could n, \&e. m, or value g and

Janal. بpport tat an 1 prorsons anity, ${ }^{\omega}$ less Law-

Great Britain could bring her strength to bear in the contest, it is not improbable that its construction would be the means of preventing a war at some no distant period.

The expenses of one year's war would pay for a railway twe or three times over.

The following extract from the Report of Lord Durhan, Her Majesty's High Commissioner and Governor General of British North America in 1839, is so apposite and just, and bears so strongly upon tho subject under consideration, that it is conceived no better conclusion can be made to this Report than to insert it :-
"These interests are, indeed, of great magnitude; and on the courso which Her Majesty and Your Parliament may adopt with respect to tho North Ameriean Colonies, will depend the future destinies not only of the million and a half of Your Majesty's subjeets who at present inhahit these Provinces, but of that vast population whioh those ample and fertile territori 3 are fit and destined hereafter to support. No portion of the American Continent possesses greater natural resourees for the maintenance of large and flourishing communities. An almost boundless range of the richest soil still remains unsettled, and may be rendered available for the purposes of agriculture. The wealth of inexhaustable forests of the best timber in America, and of extensive regions of the most valuable minerals, have as yet been scarcely touched. Along the whole line of sea-coast, around each island, and in every river, are to be found che greatest and riehest fisheries in the world. The best fuel and the most abundant water-power are available for the ccarser manufactures, for which an easy and certain market will be found. Trade with other Continents is favored by the pussession of a largo number of safe and spacious harbours; long, deep, and numerous rivers, and vast inland seas, supply the means of easy intercourse, and the structure of the country generally affords the utmost facility for every species of communication by land. Unbound3d materials of agricultural, commeroial, and manufacturing industry are there. It depends upon the present docision of tho Imperial Legislature to determine for whose bencfit they are to be rendered availablo. Tho ceuntry which has founded and maintained these Colonies at a vast expense of blond and treasure, may justly expeet its compensation in turning their unappropriated resources to the aecount of its own redundant population; they are the rightiul patrimony of the English people, - the ample appanage which God and nature have set aside in the New World, for thoso whose lot has assignod them but insufficient portions in the Old."

And if, for great political objects, it ever become necessary or advisabie to unite all tho British Provinces under ono Legislativo Governmeni, then thoro will bo formed on this side of the Atlantie one powerful British State, which, supported by the Imperial power of the Mother Conntry, may bid defiance to all tho United States of Amcrica.

The means to the end, the first great step to its accomplishment, is the construction of the Halifax and Quebee Railway.
(Signed,)

WM. ROBINSON, Captain, Royal Enainecre, Brevet Major.

Major-General Sir Jonn F. Burgoyne, K.C.B.,
Inspector General of Fortifications, \&o., \&o., \&c.
August 81, 1848.

LIST OF INCLOSURES TO MAJOR ROBINSON'S REPORT OF AUGUST 31, 1848.

Report on the Proposed Trunk Line of Railway from an Eastorn Port in Nova Scotia, through Now Branswiok, to Quebec, with seven Appendices.

Bound Book containing sixteen Exploratory Plans.
Printed Map of Nova Scotia, New Brunswick, and a portion of Lower Canada, showing the explored route, for the proposed Truak Line of Railway from Halifax to Quebec.

Model Map.
General Sceticn.
The foregoing rolate to the line of railway recommended.
Plans Nos. 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, and 31, of a Lino of Railway Reported upon.

APPENDIX.

APPENDIX NO. 1.

Plang referred to:-General Plan No. 1, Book of Plans 16, Detailed Plana, Nos. 28, 26, 37, 28, 29.
Report on and Description of the Proposed Trunk Line of Railway from Halifax, through New Brunswick, to Quebec.

The exploratory surveys which have been carried on daring the years 1846-47, for the purpose of ascertaining the practicability of establishing a line of railway from the Atlantio shores of Nova Scotia, through the Province of New Branswiok, to the City of
Scotia, Quebec, on the River St. Lawrence, having resulted sucoessfully, I have the honor to furnish yeu with a Report upon the line which has been found practicable, and which has fallen under my mure immediate observation and directiou.

The port of Halifax, in Nova Scotia, being selected as the Atlantio terminus of the railway, the chief difficulties to be surmounted between that port and the St. Lawrence have been ascertained, to be the range of highland in Nova Scotia, known as the Oobequid Hills, averaging from 800 to 1,000 feet in height; and two ranges of highlands, one of which, crossing the Provinoe of New Brunswick from the River St. John, below the Grand Falls, in a norti-easterly directicn, riges to a considerable elevation at the head waters of the Rivers Tobique, Niirumichi and Nepisiguit, and thence desoends gradually to the shores of the Bay Chaleurs.

The other range, lying between the Rivers Restigouche and St. Lawrence, and nearly parallel to their general courso, is very broken and lofty, some of the mountain ranges attaining ${ }^{3.0}$ elevation of 3,000 feet above the sea.

Another obstacle of a gencral nature exists, and which increased the difficulty of ascertaining a practicable line through New Brunswick, inasmuch as the oourse of the :.. of railway is at right augles to the general course of tho numerous rivers which intersect that Province.

The proposed line passes the first of these obstacles, the Cobequid Hills in Nova Scotia, about sixty-five miles from Halifax, by the valley of the Folly River, in the Township of Londonderry, attaining its summit level 600 feet above high water at Halifax, at the lake from which that river flows, being the lowest point on the hills to which there is a favorable approach which has been asoertained.

The line avoids the brokea and lofty chain of highlands in New Brunswiok by following the level shores of tho Bay Chaleurs, and it asoends the range of highlands north.of the Restigouche by the valley of the Matapediac River and the lakes at its head waters, by tosy grades, attaining its summit level 760 feet above high water at a point sbout sir miles notth of tho Great Metapediac Lake, from which it then descends along the valleys of difierent tributariss of the St. Lawronce to the Métia Rivor, whioh it orosses about ten miles above its mouth, and is then clear of the highlands.

The distance from Halifax to Quebee, by the proposed line of Railway, will be about 635 miles.

Of these 124 miles are in the Province of Nova Scotia, 284 miles in New Brunswiok, and 277 miles in Canada:

Commencing at Halifax, the comparative advantages of having the terminus in the city which is situated on the western shore of the harbour, or in the Village of Dartmouth, which is on the eastern side, and immediately opposite the city, becomes a matter of detail for future consideration.

From Dartmouth, the lino passes through the broken chain of land which runs parallel with the south-east coasts of Nova Scotia, by the valley formed by the chain of lakes which extend from Dartmouth to the great Shubenacadie Lake, a distance of about twenty miles.

The highlands come in pretty close to the lakes on both sides, leaving here and there narrow flats along their borders. The rock is ohiefly slate, and along the bottom of the vallej: are large quantities of loose fragments of rock from the adjacent hills, boulders, gravel, \&c,

The gradients on this portion of the line, which has been calculated ohiefly from the sections made for the Shubenaeadie Canu, which was intended to follow this chain of lakes, will be favorable, though, from the rocky and broken character of the ground, it will be probably expensive.

For the first nine miles the line follows the western shores of the lakes. The hills are a short distance back, learing. a stripo of irregular, low ground, indented with bays, the water in which was shallow.

The summit level is at the south end of Lake Charles, from which the water flows into the Shubenacadie. The Dartmouth lakes, the first of the chain, empty themselves into Halifax Harbour, being sixty-five feet above high water, the rise from them to the summit level, Lakc Charles, is only twenty-five feet, the distance being one mile.

After reaching the northern extremity of Lake William, nine miles from Dartmonth, the line crosses to the eastern shores of Lake Thomas, the next in the chain, and thence by the eastern shores of Lake Fletcher to the Grand Lake.

The western shores of theso two lakes are bold and rocky, with deep water. The eastern are easy as respects curvatures, and the water is shallow, should it be necessary to build into them.

Thes railway will, however, probably interfere with the present line of road.
Sisuld the terminus be in the City of Halifax, the line thence would join one ooming from Dartmouth at tho northern extremity of Fletcher's Lake, fifteen miles from Dartmouth, and nineteen from Halifax. The lattar would be consequently the longest by four miles.

The summit level in the line from Halifax, between the waters flowing into Halifax Harbour and those falling into the Shubenacadis, is 232 feet above tide-water in the former. The gradients will be consequently more severe.

For the first seven miles after leaving Halifaz, the line follows the shores of the Bedford Basin, a portion of Halifax Harbour, which are broken and rocky. To obtain curves of half a mile radius, heavy embankments will be necessary across the deep bays; for the remainder, the expense and difficulties will be about the same with a line following the lakes.

After learing Bedford Basin, the line ascends the Valley of the Sackville River for about three miles. On the east side of this valley is the ridge of land separating the Halifax and Shubenacadie waters.

Tho most favorable point ascertained for crossing this is about $5 \ddagger$ miles from the hend of the Basin, and is 232 feet above its waters. The heaviest grade involved to reach this will be forty-three feet per mile for three miles. It will also involve a heary embankment, abont 700 fect long, between the summit level and the shores of the Long Lake, from which it will descend to the north end of Lake Fletoher, by the valley of the Rawdon River, where it joins the line from Dartmouth.

Between the north end of Fletcher's Lake and the point where the line will strike the Grand Shubenacadie Lake, aro three ridges projecting into the lake, which will roquire to be out through; the two next t^{2}.e Grand Lake heing about thirty feet deep. Thenoe it follows the shore of the Grand Lake for about three-quarters of a mile. The high land comes out close on the lake, but tho water is shallow.

Leaving the Lake shore at the $17 \frac{1}{2}$ milo it crosses to the west shorc of the Gasporean Lake. There is a low ridge between the two whioh will require cutting.

It will be neoessary to carry the line along the shallow water on the west shore of the Gasperean Lake, leavirg which it again strikes the shores of the Grand Lake at Sandy Cove, and follows it for half a mile to the outlet of the Shubenacadie River, which flows into the Bay of Fundy.

After leaving the Grand Lake, the line for ninetecn miles follows the general course of tine Valley of the Shubenacadie River, as far as the mocth of the Stewiacke River.

About two miles from the Grand Lake, it crosses the Shubenacadio River, and then follows the western side of the valley, which comes in with an easy slope to the river, and offers no obstruction. An embarkment of some eight or ten feet high will be required across the Valley of the Nine Mile. River, from which, to Barney's Brook, at the 27th mile, the valley is broad and open, and nearly flat, and thence for a mile it will be on the level margin of the river.

At this place, Black Rock Point, the lsnd runs out high upon the river at both sides. A outting will be necesssary on the eastern side, about $t_{\text {_ }}$.rty feet deep, and a quarter of a mile long.

The rock being Plaster of Paris, with a covering of clay, it will be easily quarried. The line then crosses the river, the valley of which is crooked below this point, and passes through the high land on the western side by a grade of about thirty feet per mile, for less than a mile, and thence descends into a broad flat.

Between this and the mouth of the Stewiacke River, it crosses the Shubenacadie twice; the ground offers no obstrations, except an embankment whish will be required at the 31st mile, about six feet high, for one mile, where the line crosses the broad marshes of the Shubenacadie, which are flooded by high freshets.

Between the crossing of the Stewiacke River, about 38 miles from Dartmouth, and the head of Truro mill-stream at the 50 th mile, which is the water-shed of the Truro. and Shubenacadie waters (145 feet above high water at Halifax), there will be several cattings of from 15 to 20 feet deep, so that none of the gradients may exceed 40 feet in the mile, and these will be short.

From the 50 th mile the line descends by the Valley of the Truro mill-stream, by an easy grade oi about 17 feet per milc, to the Village of Truro, at the 55th mile, which it will pass a quarter of a mile to the westward, and cross the head of the Cobequid Bay by a bridge which will require to be about 500 feet long. From thence it commenees the ascent of the range of hills known as the Cobequid Hills, which run north-east and southwest, nearly parallel with the bay, and direetly across the line of the railway.

The rock formation, through which the first portion of the line passes, ceases at the Grand Lake: from thence to Truro the country, generally speaking, is of a fertile description, the hills being composed of a strcng clay, with here and there limestone and gypsum rooks. The soil of the fertile valley in which Truro is situated; as well as the shores of the Cobequid Bay, is red sandstone.

After urossing the head of the Cobequid Bay, the line passes along the southern slope of the hills to the foot of the ascent ji the 66th mile. In this distance it will have to cross the Chiganois and De Buit Rivere', and the swell of land lying between them, the highest elevation being between those rivers about 170 feet above high-water, but none of the gradients, it is calculated, will exceed 40 feet per mile.

The summit level which the line has to attain is by actual seetion determined to be 600 feet above high water, being at the lake frow which the Folly River flows.

The section which has been accurately made, shows a gradient of one in 85 feet, or about 62 feet per mile, for 54 miles; but by keeping a higher level, the ascent to the tike may be overcome by a grade of 57 feet per mile for $6 \frac{1}{2}$ miles.

In this distance there are eight ravines to be erossed, four of which will require heary bridges.

The Valley of the Finebrook will require a heavy embankment, material for which will be supplied by a deep outting necessary at the crossing of the road beyond.

The upper portion of the ascent, for four miles below the lake, is composed of hard ignoons rocks, with a covering of carth in most places, but the rock will probably be met with if cuttings to any depth become necessary.

At about four miles on the south side of the lake, 71 miles from Dartmonth, there is a breadth of about half a mile of conglomerates, shale and sandstono, in which a
valuable deposit of speculative iron ore has been discovered: it is of very rich qualic, and operations have bcen commenced by a compary to work it.

The heavy grade ceases at the saw mill, half a mile below the lake, in which distance there are three small ridges to cut through, which will furnish material for crossing the shallow arm of the 'ake; thence the western shore is nearly straight, with shallow water, admitting of a level line, with easy curvatures, along its margin.

- At the 75 th mile a small ridge at the north end of the lake separates its waters from those of the Wallace River.

The descent from the lake is very rapid into the valley watered by that river. By actual measurement it has been ascertained that the ground falls 356 feet in the first three miles northwardly from the lake; thence the valley is broad and flat. The hills on the eastern side rise very abruptly, those on the western side having a gentler slope towards the valley, afford the most fevorable ground for the loostion of the railway.

The actual section line, which has been run at a gradient of 70 feet per mile, may be improved apon by keeping a higher level, and the descent may be overcome by a gradient of about 66 feet per mile for $4 \frac{3}{4}$ miles along the western -side of the vallcy.

Here the hills turn abruptly to the westward, and on reaching the foot of this descent, at the 79th mile, some cutting will be ne gessary to carry the line with a radius of half a mile for one mile, round the shoulder of the hills.

A lesser range of hills lies north of the Cobequid range, whick, at this point, is separated from them by the valley of one branch of the Wallaoe River which tue line ascends for 21 miles, at a grade of thirty-five feet per mile, and thence passes through this lesser range by the valley of the west branch of the Wallace River. Then crossing the valley of the Little Wallace River, it falls, at a grade of thirty-five feet per mile, to the valley watered by Tulloap's Creek, by whioh it descends at easy grades for about seven miles to the 95th mile, where it turns the shoulder of the ridge of land lying east of the Rivor Philip by a curve of three quarters of a mile radius, involving some cutting, but to no great depth.

From thence it descends at a grade of twenty feet per mile for four miles along the fertile valley of the River Philip, which it will cross at a short distance below the confluence of tho Black River, and ascend, far five miles, by the valley of the Little River, by a very easy grade.

From this to Bay Verte tue country presents a very level appearance, and the line will probably deviste but little from a direct line.

The gradients will be most favorable, and none, it is expected, will exceed fifteen feet per mile.

At the 120th mile, the line crosses the Tidnish River, about a mile above its mouth, and thence follows the level ahores of the Bay Verte, at the distance of from one to half a mile.

It leaves the Province of Nova Scotia 124 miles from Halifax Haroour.
The section of country traversed by the line, from the Cobequid Hills to Bay Verte, is, generally speaking, through light soil of good quality. There is little or no rook. Should any be met with, it will be sandstone, furnishing excellent building material.

Much of this portion of Nova Scotia is well cultivated and populous.
The line from Bay Verte enters the Province of New Brunswick, and as far as tho orossing of the Miramichi River, at the 223rd mile, although running nearly at right angles to the course of the rivers flowing into the Gulf of St . Lawrence, will deviate but little from a general straight course and from the level nature of the country, although it will have to cross the awells of land lying between the different rivers, it may be expected confidently that the heaviost gradients will not exceed 40 feet per mile, the generality being very tavorable.

As lar as the Cocayne River the country traversed by the line is very lovel. The section line, which was run along the head waters of the rivers flowing into the Gulf of St. Lawrence, shows that the highest point is little more than 200 feet.

By following the general direction laid down on the plan, dependent, of course, apon the bridge sitee which ahall be selected on the different rivers, no difficulties of a serious nature will be encountered. Should any outtings be necessary, they will not be expensive, as no rock is likely to be met with.

west

elev

the

west
cross
high
stren
the
mile
nort
dead
ing
follo
dists
on t
Rivi
four
is CB
are
Scot
tigo
the
phe
whi
mild
ir d
Esl
five
tha
the
Car
of
isla
it i
the

The section of country which will be opened up between Bay. Verte and the Richibucto River, offers much excelleni land for settlement. From thence towards the head waters of the Rouchibouguac are extensive flat barrens, and the country between that and Miramichi is very level.

The rivers are all small; and no hcavy bridging will, it is expected, be required.
It is proposed to cross the routh-west branch of the Miramichi River near the head of the tide, opposite the mouth of Indian Town Brook. It will require a bridge about 500 feet long and 30 feet high. There are heavy freshets in this river; but no damage need be apprehended to a well-constructed bridge, either from ice or freshets.

Between this and the north-west Miramichi River a detour will be necessary to the westward, to avoid the swell of land between these two rivers, and which runs to an elevation of about 500 feet. The line crossing the Miramichi, opposite to the mouth of the Indian Town Brook, will ascend by the valley to that brook, and then diverge to the westward, through a flat cedar country, to the north-west Miramiehi River, which it crosses at the 234 th mile, by a bridge which will require to be 2,000 f.at long and 30 feet high, the river here being very wide and shallow. A sight requiring a bridge of less strength may probably be selected on further examination.

From the line follows the broad valley watered by the north-west Miramichi, as far as the 260th mile, at gradients varying but slightly from a level, excepting the first five miles, which will require gradients of about 25 feet per mile. The land between the north-west Miramichi waters and the Nipisiguit River traversed by the line is almost a dead level; and it descends to that river by a grade of 25 feet per mile for three miles.

It is proposed to cross the Nipisiguit River near the Pabineau Falls, and after following the valley of the Nipisiguit a ehort distance it continues as far as the 325 th mile to follow the general direction of the shoros of the Bay Chaleurs, passing within a short distance of the Town of Bathursi.

The precise direction of the line will of course depend upon the bridge sites selected on the several streans and rivers flowing into the Bay Chaleurs.

As far as the 305 th mile, the land is very level, and the streams small. The Jaquet River lies in a large deep valley, but it is believed may be approached and crossed about four miles from its mouth without any great difficulty.

The gradients on this portion of the line will be found very favorable, and will not, it is oaleulated, exceed seventeen feet per mile, the greater portion being very much less.

The shores of the Bay Chaleurs are thickly populated. The inhabitants near Bathurst are chiefly Canadian French. Towards the Restigouche the inhabitants are principally Scotch, many of them having excellent farms.

After reaching the valley watered by the Eel River, the line may approach the Res: tigouche River, either by following the valley of the Eel River to its source, and thence by the vallcys of several small streams, and reach that river either at the mouth of Christopher's Brook, seven miles above Campbellton, or at a point five miles above that.

The summit level at the head waters of the Eel River has been calculated at 368 feet, which will probably be found too high. This would involve a grade of about 18 feet per mile for 16 miles.

It will perhaps be better to avoid this gradient and the curves which will be necessary ir. desoending the valleys of the small streams flowing into the Restigouche, to cross the E6l River and pass through the range of hills lying south of the River Restigouohe, about five miles from the Town of Dalhousio. The hill which rises immediately in the rear of that town here falls away almost to the level of the country about Eel River, and from thence the line would follow the bank of the Restigouche, passing through .the Village of Campbellton, and continuing jetween the present road and the shore ss far as the mouth of Christepher's Brook. The gradients on this portion would be very slight.

Opposite to and above the mouth of Christopher's Brook, the Restigouche is full of islands; the muntains especially on the south shore, come down boldly to the river; and it is propcsed to take advantage of these islands to cross the broad chanael of the river to the more favorable ground on the north shorc.

There is no accurate survey of these islands, but they are so numerous that the oxpense of bridging will not be greater than if the line were to cross above, when it would require a bridge at least 1,800 feet long and a heavy embankment on the north shore,

The danger from the rush of the ice freshets, which sometimes occar in the spring of the year in this river, will be less if the bridge be carried over among these islands.

After crossing the Restigouche River, the line will follow the north bank as far as the mouth of the Metapediae River, at the 350th mile.

The section of country lying between the Restigouche and St. Lawrence Rivers is a vast tract of high land, intersected in every direetion by deep valleys and vast ravines, through which the rivers flowing to the St. Lawrence and Restigouche wind their course.

The height of land from which these rivers flow respectively north and south, is full of lakes, and along them the mountain ranges rise to a great elevation.

The average diste $=09$ between these two rivers is about 100 miles.
The only available valley which my knowledge of the conntry, or the explorations we have carried on, enable me to report upon, by whioh a line of railway can be carried through this mass of highlands, is that of the Metapediac River.

This valley extends from the Restigouche to the Great Metapediao Lake, a distance of between 60 and 70 miles; and as the summit level to be attained in that distance is only 763 feet above tide-water, the gradients, generally speaking, are extremely favorable.

From the broken and rocky character of this section of country, some portions of this part of the line will be expensive, especially the first twenty miles of the ascent, in which the hills in many places come out boldly to the river, and will render it neoessary to cross it in several places.

The rock formation is nearly all slate. There are settilements on the Metapediao River, as far as the Mill-stream.

Generally speaking, however, the greater portion of this section of country is unñt for cultivation, consisting of a gravelly rocky soil, covered with an endless forest of spruce, pine, birch, cedar, \&c.

From the mouth of the river, as far as the 365th mile, the line continues upon the east bank. Above this, at the mouth of Clark's Brook, the rocky bank of the river is very unfavorable, and to obtain proper ourves, it crosses to the point opposite, and then recrosses immediately above, to the more favorable ground on the east bank.

Between this and the mouth of the Ammetssquagau River, the line, to obtain good curves and avoid those places whero the hills come out bold and rocky, crosses the river four times.

The position of the line for three miles above and below the Ammetssquagau River, where the hills are steef and rocky close on the river, will be the most expensive part of the line.

Above this the line follows the eastern bank to the 377 th mile. The hills on either sido are very high, but the eastern bank is pretty favorable. Between the 378 th and 380 th mile, the river turns twice almost at right angles, shut in on the south by a rocky precipice 150 feet high.

It will be neeessary to cross the river three times hare. The centro bridge will be a heavy one, but there is an island in the elbow, which will serve as a natural pier. Above this from the 380th mile to tho forks (the mouth of the Casupscul River) at the 395th mile, the valley becomes more favorable. The hills on either side are not so lofty, and reeede further from the river. The line crosses the river twice between the 385 th and 390 th milo, to avoid a rocki precipice on the left bank; and again about one mile below the Forks, making in the ast 38 miles up the Valley of the Metapediac, twelve bridges in all. These bridges will average from 120 to 150 yards long.

From the 395th mile to the Metapediae Lake, the line continues on the eastern side of the valley; the ground is stony and unoven. The gradients will be very favorable, and, with exception of "The Grave," at the 405th mile, where there is a rooky spur running out on the river, there are no very serious difficultics.

The linc again crosses the river at the 409th mile, and from thence follows the eastern side of the Metapediac Lake to the 420 th mile.

The mountain ranges to the westward are very lofty. There are two spurs running out on the lake, at the sonthern end, whioh the line turns at easy curves close to the shore; beyond this it passes through a cedar swamp into more favorable ground at Broohers, clearing at the north end of the lake; from this it ascende to the summit level, 763 feet
ing of the k as far as Rivers is a st ravines, ir course. th, is full rations we be carried a distance listance is favorable. ns of this in which y to cross
[etapediac
s unint for of spruce,
upon the or is very recrosses
tain good the river nu River, e part of on either nd 380th precipice

will be a

 Above he 395th fty, and 5th and ie below bridgesern side ble, and, running
eastern
running e shore; rochers, 63 feet
above tide-water, at the 426 th mile. This is the water-shed between the Restigouche and St. Lawrence waters:

Between this and the St. Lawrence the country is intersected and crossed by a constant auccession of idges, rising to a considerable elevation between the different small tributaries of the Tartigau and Métis Rivers. The line descends at casy grades by the valley of the former to the 432nd mile, where it turns to the westward, and ascends to the 435th mile, by the valley of one of its small tribataries. The water-shed here between the waters of the Metis and Tartigau is about 750 feet, and the deseent from this t - the Métis, by the Valley of Pachet's Brook, is rapid, and will involve a grade of fifty-five feet per m:le, for eight miles, which will carry the line clear of the highlands.
r'urther explorations may probably suggest improvements upon this line through the highlands, which, however, as far as regards gradients and curves, is as favorable as can be expeoted.

A party was sent to explore for a line from the Metapediae River, westward, following the valley of one of its tributaries, and thence aeross to the Rimonski River, and, from the reports I received from them, it appears probable that a practicable line may be obtained following the Valley of Metallio's Brook, five miles below the forks of the Metapediac, and along a succession of lakes to the Rimouski, and thence by the Valley of the Toreadie River to the Abersquash, and by its valley to the point where the proposed line crosses it.

It would require a whole season to explore this section of country.
The proposed line, after descending the Valley of Pachet's Brook and the Valley of the hiver Métis, crosses the river at the 445 th mile, aboui ten miles above its mouth, and ascends by the Valley of the River Haget, one of its tributaries, almost on a level to the water-shed at the 459 th mile betwcen the Métis and Rimouski waters, an 1 descends to that river at the 469 th mile, at a grade of 44 feet per mile, for five miles.

The Rimouski River lies in a deep valley, and the line descends to it at this grade by the valley of the "Ruisseau Bois Brale"" to gain the opposite valley of the Rigamard stream, by which it is proposed to ascend to the table land lying between it and the Trois Pistoles River. A bridge, 500 feet long and 40 feet high, will be required across the Rimouski, as it is necessary to pass it opposite the mouth of the Rigamard. The hills on either side for the first two or three miles of this valley are steep; abovc that it widens, and the line reaches the table-land which extends to the Trois Pistoles River, at a grade which it is calculated will not be more than 20 feet per mile for six miles.

An improvement on this line may, perhaps, be made br descending the valley of the River Bois Brale, and ascending by the vallay of the stream of the Little Rimouski.

The line proceeds at almost nominal grades to the Abersquash River, which it crosses at the 500 th mile.

Four miles further the table-land is intersected by the deep ravine formed by the stream of the Trois Pistoles River.

This will require a heavy bridge. The width between the banks at top is 300 feet, the stream at the bottom is 100 feet wide; the ravine being 150 feet deep, it will be neeessary to have the centre span as large as possible, to diminish the great height required for the piers.

The line from this continnes at very favorable grades, crossing the Rividre da Loup at the 527 th mile, about fire miles above its mouth; and thence (either in the second or third concession) for 100 miles through a densely populated country, of the most favorable deseription, to the Boyer River at the 620th mile, from whica it rises to Beaumont Church, 278 feet above tide water, and desecnds at a moderate grade for about nine miles, to Point Levi, opposite the City of Quebec.
G. W. W. HENDERSON,

Captain, Royal Engineer:.
Major W. Robinson, R.E.,
\&tc., \&t., \&c.

TABLE of probable Gradients on proposed Halifax and Quebec Railway.

Prevalling Gradients.	Oanada. Qnebec to Restigouche River.	New Brunswick. Restigonche River to Bay Verte.	Nova Scotia: Bay Verte to Hallfax Harbonr.	Total.
$\left.\begin{array}{c}\text { Level and under } 20 \text { feet per mile, } \\ 20 \text { to } 40 \text { ftot } \\ 40 \text { to } 50 \text { feet } \\ \\ 50 \text { to } 60 \text { feet } \\ 60 \text { to } 70 \text { feet }\end{array}\right]$	Miles.	Miles.	Miles.	Miles.
	222	151	66	439
	42	71	37	150
	5	8	10	23
	8	4*	7	19
	None.	None.	4	4
Tot	277	234	124	635

* This gradient will be avoided by foliowing the Reatigouche Instead of the Eel River.
(Signed,) G. W. W. HENDERSON. $\underset{\text { Captain, Royal Engineers. }}{\text {) }}$

APPENDIX No. 2.

Plans referred to:-Nos, 17, 18, 18.

Report on the Explorations from the Miramichi Lake, across the Valley of the Tobique, to the Restigouche River.

The explorations carried on during the autumn of 1846, having shown that the chief difficulties to be encountered by any line of railway passing through the central portion of New Brunswick was the large valley watered by the river Tobique, which, running directly across the general direction of the line, must be crossed by it; and that the height of land on the southern side was of great elevation. The explorations were directed in the following year (1847) to ascertain the practicability of ascending to this height of land from the table land between the waters of the Miramichi and Naswaak Rivers to the westward of Boistown, and to which there is easy approach from the level country to the southward; and having gained that height of land south of the Tobique River, to ascertain the practicability of crossing its valley at the most favorable grades.

This valley is about 30 miles wide. The highlands bounding it on the soath side are very lofty. The lowest point at which they can be passed, as ascertained by our explorations, being at a point about nineteen miles south of the River; 1,216 feet above the sea, or 874 above the river.

The height of land or water-shed on the north side of the valley is about twelve miles from the river, and 418 feet above it, 838 feet above the sea.

The exploration was commenced between the Napadogan Lake atd the Miramichi Lake, about 20 miles north of the portage road from Boistown to Frederio!nn.

The line which has been reported upon as practicable involves, as will be seen, very heavy grades.

From the point of starting the line desoends at a grade of about 54 feet per mile for two miles to the Miramichi Lake; thence it passes through a dry spruce country to the south-west of Miramichi River, which it reaches at the fifth mile; from this it follows the valley of that river for seven miles, at very easy grades, to the forks of the river, where it erosses the west branch and descends by the valley of the north branich, as shown by the
black line on the Plan to the point D, at the $21 \frac{1}{2}$ mile, at easy grades, shown by the red line on the Section; nond exceeding 16 feet per mile.

Then it meets a ridge of land which will cause it to diverge to the eastward, and involve a grade of about 50 feet per mile for two miles; and thence follows the valley of the north branch of the Miramichi, at a gradient of 44 feet per mile. The valley here is very narrow and broken, the highlands coming in close on either side.

The line leaves the valley of the River Miramichi at the 26 th mile, and follows the valley of one of its tributaries, called the Dead Water Brook, at the same grade of 44 feet per mil to the 28 th mile, at the point F.

From this it continues along the same valley, but at an easier grade of 20 feet per mile, to the water-shed between the Tobique and the Miramichi Rivers, 1,205 feet above the sea, at the $30 \frac{1}{2}$ mile.

The Odell and Beaver Brooks take their rise on this height of land, being tributaries of the Tobique, and the line attains its summit level, 1,216 feet above the sea, at the small lake which is the source of the Odell, at the 31st mile.

A small ridge divides this lake from the vaters of the Beaver Brook, which would have to be cut through.

From this poict commences the descent into the Valley of the Tobique.
The direct descent by the Valley of the Odell, \&c., had been found impracticable, the fall being far too rapid.

The most favorable gradient, which can be maintained, is ore of 58 feet per mile, for nine miles, by keeping along thas side of the hills as far as the River du Chute, crossing several streams, one of which, that of Beaver Brook, will require heavy bridging.

After crossing the River du Chute, which will also require a heavy bridge, the live descends, at a gradient of 15 feet per mile, for three miles.

Here it has to cross the Valley of the River Wapsky, about two miles wide, which will involve an ascending and descending grado of 66 feet per mile, each one mile, and a bridge of 40 feet high across the stream.

This point (C2 on the plan) is the water-shed between the Wapsky and the Little Gulquac, and the line descends, at a gradient of 48 feet per mile, for $5 \frac{1}{2}$ miles, to the Rive: Tobique, by the Valley of the Little Gulquac.

The Tobique, which the lino crosses at the 50 th mile, will require a heavy bridge, 50 or 60 feet high; the river is about 442 feet wide; on the south side the bank is bold and favorable for bridging, on the north is an interval flat, which will increase the length of the bridge to about - fcet.

After crossing the Tobique, the line, keeping to the westward of that actually explored, ascends, for the first tive miles, at a gradient of about 20 feet to the mile, through a dry level tract of country.

From this the grade increases to about 44 feet per mile for three miles, to the point E , from which the line ascends by the valley of the west branch of the stream, called the Two Brooks, for four miles, at a grade of about 43 feet per mile.

It continues to ascend at this grade for four miles (to the point a), the water-shed between the Jobique and Salmon Rivers, being 12 miles sonth of the former and 418 feet above it.

Thence the line keeps westward of the exploratory line, avoiding the high ground erossed by it, following the valleys of the Salmon and Grand Rivers.

The first of these, it is calculated, will involve an ascending and descending grade of 20 feet per mile each four miles.

The line will ascend to the water-shed, between the Grand River and Beaver Brook, a tributary of the Restigouche River, about 920 feet above the sea, by an easy grade of about oight feet per mile.

From this point at the $78 \frac{1}{1}$ mile (b on plan) it descends to the Restigoache River, by the Valley of Beaver Brook.

It is calculated that the first $4 \frac{1}{\lambda}$ miles will require a grade of 45 feet to the mile, and thence one of about 24 feet to the Restigouohe River, about 11 miles. Thie whole distanco being obout 94 miles from the Miramichi Lake.

Other valleys also exist by which it in believed the Restigouche may be reached, after leaving the Tobique Valley, and by about the same grades.

The Valley of Boston Brook would bring the line to the Restigouche more to the westward ; that of Jardine's Brook would carry it moro to the castward and nearer to the vailey of the Kedgwiek River, whish is the only tributary of the Restigoucho, by which it is believed a practicable route can be obtained through the highlands botwecn the Restigoucho and St. Lawrenco Rivers, on this general diroction.

The tract of country which this line passes thorough, and would open up north of the River Tobique, is vory excellent soil, and offers finc land for settlemeats.

APPENDIX NO. 3.

Sketches attache

Report of Mr. Wilkinson.

Fredenicton, Decomber 31, 1847.
Sir,-I have the honor to state to you the general results of the exploratory survey in which I have been ongaged, under your directien, during the past summer and autumn, with the viow to a discovery in part of a line fa"orable for a railway between Quebee and Halifaz. In doing so, I will as much as possiblo observe the brevity which you desiro mo to regard as sufficicont.

Passing by the subject of preliminary arrangeulents, and tho circumstances which enotrolled tho selection of tho lines examined, it will be sufficient to say, that the general object was to discover a favorable route between the Valley of the Λ bawisquash, a branch of the Trois Pistoles, and a point on the Restigoucho River, favorable for union with another division of the general line, in progress of exploration by Corporal Dumble, from the Valley of the Tobique River.

Tho line first examined I will describe as Route No. 1, so distinguished in the sketoh hereto annezed.

Between the head of Lae des Ilos, discharging itself into the Toledi, and the Abawisquash River, is a low dopressiou in the sumnit level, or height of land, favorable, as I believe, for our object. From this point the ground appears gencrally practicablo, followiag the margin of Lau des lles, and theneo the course of its discharge towards the outlet of Wagle Lake, a distance by estimation of sbout nine milos. From Fagle Lake, it is very probable that a communieation with the Rimouski would be found by following the valley of the left hand branch of the Toledi to its souree, and thence deseending the Valloy of the 'Touradi. But the more direct course, by Route No. 1, was experimentally continued. Between Sagle Lake and tho Middlo branch of the Tolodi is a continuous ridge of 300 or 400 fect average elevation above the former. Like other ridges in the neighborhood, it consists of mueh good land for settlement, but apparently affords no pass suitable for our objezt, within an extent of six or seven miles. On explorirg from the Middlo branch westerly to the head of the lake, however, the desceat appuarod to exeeed the ascont as much as 150 or 200 fect. Λ very direct communication would therefore be ineligible. The course to be recommended passes by an casy curve southward of the lake and the southern extremity of the ridge in the manner indicated in the sketch; thenee, northeasterly by the Valley of the Middle branch. Where the line would enter this valley tho general inclination is apparently about 25 or 30 feet per mile, until approaehing within about threo miles of the last of four succossive rapids or falls. It is probable that the inclination here may be from 40 to 60 feet per mile, until we reach the dead or smooth
water. The banks of the Middle branch afford only a small extent of flat ground, say from one to three ehains in width, on each side alternately, seldom on both sides at onoe; but the slope of the rising ground is commurly moderate, and without abrupt angles or turns, with the exception of the three miles just mentioned. Here some degree of difficulty might oecur in determining the best site for the line. A small extent of rook outting at one or two points, would probably be necessary. Time did not permit an instrumental examination of the ground, but nothing like impracticability is indicated.

Passing the Falls, the Valley of Middlo branch south is level for a distance of about seven miles in a direct line south-westerly, including, in that distance, a lake of about two miles in extent. The bed of the valley censists of an alluvial deposit of great depth, through which the stream has a very tortuous channcl, with a current searcely peroeptible, frequently very deep, and always remarkably clear. The next fivo miles of this valley ascend somewhat rapidly, say at the rate of 40 to 50 fect per mile.

From a distant but commanding point of view, I judged that the remaining riso might not be less favorable ; but upon examination of the last four miles, the rate of ascent proved to be much more objectionable. The result, however, of a series of elevations and depressions, taken by your directions over thio portion of the route, and which at leisure moments have been somowhat hurriedly computed, do not warrant me in saying that the rate of inclination of the four miles in question is more than objectionable. Its practicability is, I believe, proved by at least two examples of much stecper inclined planes daily ascended by locomotive power, with beth passengers and freight. I refer to the Lickey Inelined Plane of one in thirty-seven on the Birmingham and Gloucester Railway, and another of one in thirty-four, which I understand to exist on the Hartlepool and Stockton. Tho sketeh hereto annexed (No. 1) exhibits with regard to these the proportion of the moro favorable acelivity, by which it appears practicable to cscape from the valley of the branch of the Toledi under examination. No exploration has however been made in order to discover facilities, the existence of which I am not prepared to doubt, of improving or avoiding this aelivity. Muoh lateral exploration must at some points be expeeted. We could scarcely hopo that we should succeed, at the first attempt, without map or guide, in passing through a wide extent of primeval and almost unknown forest, over a line in no respeet objectionable.

Passing the summit level at the source of the Middle branch south, the route descends by the valley of the north-west branch of Green River. For the first five miles the rate of inclination is very moderate, deviating but little from a level; two lakes and mueh small water being included in that distance. From thence to the confluence of the east branch of Green River, a less regular and and often more rapid deseent is indicated. ${ }^{\top}$ he judicious distribution of the irregularities over a continuous descent in actral constr in however, I am not prepared to say, that an inclination exceeding 30 or 35 feet per milo would anywhero be neeessary.

Doseending the last nine miles of the north-west branch, the valley becomes more contracted, the llat margin generally narrower, the banks steeper and higher, and the turns more abrupt. But these charaeteristics do not become so remarkable as apparently to affect the practicability of this portion of the route, until we approach to within about three miles of the conflux of the two branches, or upper fork of the main Ctreen River; nor do they continue of the same kind beyond about two miles along the eastern branch.

This part of the line having come under your personal observation in order to ascertain its praeticability, by curves of admissible radius, a more particular survoy of the apparent obstacles, nad a rough plot of the same, were made for your satisfaction. For more ready illustration I avail myself of a trace from the original, No. 2, hereunto annexed, to whioh I beg leave to refer.

From \mathbf{A} to I, being a distance of four miles and about 30 ohains, aro introduood six curves, of one mile radius each, arranged in a manner, the effeet of which would be as follows:-From $\mathbf{\Lambda}$ to C the cutting would bo insignificant; at \mathbf{B}, about five or six ehains in extont, partly of clay, slate may oceur; at the point D, perhaps for an oxtent of ton ohains in each dircetion, deep cutting may be necessary, but no sufficient examination has boen made to determine this faet; or whether to some extent, a gap or depression may not exiss, as at the point G. From L to I, tho cutting would apparently be light, these points boing nearly on the aame cemmon leval vith tho infervening point at, or say thirty or
forty feet above the surface of the water at the confluence of the two iranehes. In order that in this part of the valley the roadway may be clear of water, snow, ice, and driftwood, at all times, perhaps a less elevation than about ten feet abovo the lowest level of the stream could not be recommended.

Assuming that the maximum depth of cutting to be admitted, should not exoeed twenty-five feet, then the highest ground whioh could be intersected, would be thirty-five feet above the lowest level of the water. With the exception of the point D , the elevation of which is uncertain, it does not appear, from the facts aseertained, that the intersection of any peint so high as thity-five feet, would be necessary, in order to obtain curves of one mile radius; on that cutting approaching to twenty-five feet in depth, would occur to an aggregate extent exceeding fifty or sixty chains along the portion of the line shown on the sketeh. Were it a desideratum to pass this, apparently the most confined and orooked portion of the route, without eutting, it would appear that curves of from twenty to eighty chains radius, would accomplish our object.

Pursuing the route along the east branch by an ascent apparently not exceeding thirty feet per mile, another branch oecurs on the left, distinguished on the sketeh as "Otter Branch." An opening here to the eastward was noted for further expioration. In the meantine, following the main stream about due south for three miles, another opening elaims attention. It was at first deemed probable that this would lead to the souree of the main Restigouche. It may indeed lead to a favorable communication with this stream. But it was subsequently discovered, as it will be again necessary to notice, that the opening in question was really at the head of the valley of a principal branch of Green River, distinguished on the sketch as Green River East. Resuming the exploration at the end of the southerly range just notieed, of the east branch, this stream again turns suddenly to the eastward, flowing somewhat tortuously through a narrow valley bounded by very high hills, and having a fall varying from sixty to ninety feet per mite. Having traced the stream to its source in a pass between high hills, and continuing an easterly course, we shortly meet with a spring, no doubt a tributary of the Restigouche, flowitg south-easterly down a narrow and deep ravine. Crossing the head of this ravine, and possing over a high ridge, we descend suddenly 700 or 800 feet into the valley of the object of our seareh, the Gounamitz, a principal braneh of the Restigouche. It was deomed probable that tha souree of tho east branch of Green River, and that of the Gounamitz, might prove to be continuous and nearly on the same level. But it was now manifest, that the sourco of the former was in a high group oî hills, bounding not the souree, but the main Vailey of the Gounamitz, where this stream is still comparatively large, say forty feet wide, with a brisk and copious ourrent. Satisfied of the unfavorable prospect of a communication at this point, with Valley of the Restigouche, I returned to the cpening by way of the Valley of the Utter Branch. Cireamstances preverted my personal examanation of the ground in this direction ; byt Mr. Ramsay, to whon I confided that serviee, reports that the source of the Otter Branch is surrounded by high ground without an opening; but that about two miles from the mouth of the streari, on its right or northern banic, is a low depression, affording a favorable communication with the valley of a stream flowing northwredly and eastwardly, and no doubt a tributary of the Restigouche. It is most probably the main branch of the south branoh of the Quatawamkedgwick. He followed this newly diseovered stream downwards, to where it receives a branch from the south, and then traced this branch upwards nearly to its source. By olimbing he had a good view southerly beyond the souree, and down tho Valley of the Gounamitz, but was prevented, by unfavorablo weather and other hindrances, from completing all I had directed him to periorm. Ho does not doubt, however, the existeuee of a practicable comaunication between the cast branch of Green River and the valley of the Gounamitz by the route he examined; but there will be about two to threo miles of rough ground and steep banks. Whether these may occasion any real difficulty, an instrumental examination here, as well as at other points which have been noticed, will be necessary to determine. The general fact of practicability or otherwise, was, under the ciroumstances, all that we could hope to ascertain.

A route has now been traced from the Valley of the Abawisquash, to the Valley of the Gounamitz, which, with sush corrections as might bo expected would be necossary on a first examination, I believe to be practicable. I have also no reason to duabt, but many to induee me to confide in the practicability of the Yalley of the Gounamitz down to the Res,
tigouel is a far the ent the To tigouch hence will bc mined

In after tr favorab Tolcdi of Gre seemed the Ott way of with a River, Valley ticable, scason, might a tinguis

Ot tion at at an as favorab of view f:vorab Jiver, the sea. hand b ing por with sa less fav would
and sou Wagan stream the ban much very fa

Tl
mile by appare rate th by Rot head 0 kedgw 1,200

Quatav favoral latter state 0
part o
tigouche, with a general inclination, varying from 30 to 50 feet per mile. From ils mouth is a favorable communication down the left bank of the Restigouche, to a point opposite the entrance of Beaver or Boston Brook, the termination of Corporal Dumble's route from the Tobique before mentioned. A bridge of 100 or 120 icet span at this part of the Restigouche would be necessary, and would probably be the only one of so large a span from hence to the St. Larrence. In that distanee numerous bridges will be required; but they will be generally small, and neither their number nor their several sites could be determined without an instrumental demareation of the line.

In order to explain the further course of tho exploration, it is neeessary to say, that, after traning the east branch of Green River to its source, and being yet uncertain of any favorable descent into the valloy of the Restigouche, whilst that into the Valley of the Tolcdi also remains unimproved, it seemed probable that the abandonment of the Valley of Green River might eventually be necessary. The hope of avoiding this alternative seemed to rest upon the success of the three lateral explorations; the first, that by way of the Otter Branch, the succoss of which has alrcady been mentioned; the second, that by way of the southerly opening, towards the supposed head of the Restigouche; the third, with a view to the discovery of a more favorabio descent to the north-west branch of Green River, into one of the more northerly valleys of the Toledi, or, if necessary, into the Valley of the Rimouski.

Leaving Mr. Ramsay with directions to make these three explorations, as far as practicable, I procecded to employ as much as might be available of the rapidly advaneing season, in order to ascertain, by canoe, the character of such other routes as the country might afford from tho Restigouche north-westwardly. The routes I had in view are distinguished on the sketch as No. ${ }^{2}$ and No. 3.

Omitting the circumstancial matters of the exploration, I will commence my deseription at the Wagan Stream, the most southerly branch of the Restigouche. From hence, at an asectained elevation of about 550 fect above the level of the sea, appears to be a favorable rauge of comparatively flat country, as observed from several commanding points of view, and as deseribed by those who lave passed over it towards the Sisson Braneh, a f:vorable stream of moderate eurrent, through a flat valley, and joining the main Tobique Jiver, where the elevation has also been approximately ascertained at about 600 feet above the sea. The exploration of this extension of our route, continued by way of the righthand branch of the Tobiqua towards Boistown, would probakly have oecupied the remaining portion of the scason, had circumstances permitted me to leave the country behind me with satisfaction. This route, as marked by 10 dotted line in the sketeh, is not much less favorable for communication with Route No. 1 than with No. 3 ; but natural obstaoles would render it apparently mere difficult for continuation north-wostward by Route No. 2.

I may indeed here remark, that natural obstacles seem to magnify, both to the north and south of the Restigouche, as we advance eastward. Above the confluenee of the Wagan, the banks of the Restigouehe are comparatively favorable all the way up the stream as far as explored or observed. Descending the same stream below the Wagan, the banks become more abrupt and steen, but are neither so close or angular but that much eutting may be avoided by oceasional bridging, and the inelination of the valley is very favorable.
'Tho mean rate of deseent from tho Wagan to tho sea eannot exceed seven feet per mile by the course of the river, but the much grenter part of the aggregate descent must apparently occur above the Quatawamkedgwick, and cannot be estimated at a less mean rate than ten to fifteen fect per mile. But, diverging from the Valley of the Restigoucho by Route No. 1, we find the banks of the Gounamitz higher and steeper than those of the head of the Restigouche, by lioute No. 3, and agnin we find the banks of the Quatawamkedgwick, by Route No, 2, still hiogher and steeper than either, rising, in faet, 1,000 or 1,200 feet, very abruptly, above the bed of the river.

With regard to the last mentigned route, it was at first my design to exploro the Quatawamkedgiviek, by canoe, to its extreme northerly source, to have found the most favorable communieation thence to the Valley of the Rimouski, and to have explorsd the latter as far as practicable. But insufficient opporunity of preparation, the r.dvanced state of the season, and unforeseen causes of delay, obliged me to abandon the more diffeult part of the undertaking, and I discontinued my aseent of the Quataramkedgr ick about a
mile up the north or main braneh, returning thence and ascending by the soath branch, less for the parpose of exploration than for a more direct return to the party I had left at Green River. As far as I am able to speak from personal observation of Routé No. 2, the rate of inciination of the Valley of the Quatawamkedgwick is no doubt favorable, say not exoeeding 15 to 30 feet per mile up to the south branch. Above this point, the inelination of both the north and south branehes appears to de stecper, at least for some distance, say not less than 35 feet per mile; but I have reason to believe that towards the head of each of these branehes, but especially the north branch, there is much flat ground. But to render these inclinations available, however, it is most probable that the amount of bridging and cutting would prove to be heavy, owing to the very limited portion of Hat margin, and the abruptly steep, and generally rocky character of the banks. An exact survey might prove these obstacles to be more avoidable than they appear to be; but without such survey, no safe opinion could be formed.

These remarks will be understood to apply only to the main Quatawamkedgwiek. The valley at the south branch is at several points wholly unfavorable for a railway, but it affords lateral openings which might be available.

Upon returning to Green River, by way of the portage from the south branch, I found that the party I left there, having explored the Otter Branch Route, and cat out and surveyed the portage, had proceeded on their way to explore from the north-western branch of Green River, with the view already explained; but having met you on the way, received your direetions to return, and to explore more minutely the ar parently objectionable part of the Vslley of Green River, before desoribed, and shown in Sketch No. 2, until I shouit rejoin them. This cireumstanco fortunately coincided with directions which in the meantime I had found it necessary to send them, to retarn and meet me at the portage; foreseeing, in consequenee of unexpected easualties and dalays that it would be impractieable to rejoin them either in the Valley of the Rimouski, or of tho Toledi, as at first intended.

We had already been warned by nnow and severe frost that only a small portion of the season remained. It appeared most desirable that th:s should be employed in tracing the supposed communication southerly from the east branch of Green River to the head of the Restigouche, and to join the survey to the end of my exploration by canoe, a little above the branch distinguished as "Return Branch" in the sketch, and also to examine, as far as possible, the features of Route No. 3, between the Valley of the Restigouche, and the Valley of the Squatuck, with the view to the connection of these by means of the lateral valleys of Green River

I thereforo directed Mr. Ramsay to proeeed by the east branoh, and to survey by way of the southerly opening referred to, until he found the termination of my oanoe exploration on the leestigouche, if it should prove that tho opening led dirootly to the vailey of this river. But as it was equally probable that ho might find himself descending a branch of Green liver, in order in this oase to cut him off, my own undertaking was at the samo time to survey from tho main Green liver eastwardly by its lateral valleys, towards the same point on the Restigouche. Mr. Ramsay's oourso proved to be down the branch of Green River distinguished in the sketch as Greon Rivor East, and ho opportunely intorseoted my exploration a few hours aftor I had passed.

The connection with the Restigoucho was shortly afterwards made, and the party returneci with the view to explore north-westwardly for a favorablo communication with the Squatuck. Somo progress was made in the latter object, whon another fall of snow and the increasing severity of the weather rendered it inpossible further to prosecute the survey beyond the reach of our canoes, which were left at the main Green River, and on which we chiefly depended for our retreat.

It remains only to state tho imporfect knowlodgo whioh an unfavorable opportunity enabled me to acquire of Route No. 3. I have already remarked that indications existed of a favorable communication between the head of the Restigouohe and the oast branch of Green River, if such an object were desirable, either as an improvement or variation of Route No. 1. I have also stated that Route No. 3 is favorable as far as it adheres, to the Valley of the Restigouelie. From thence to the Valley of the Squatuck, are several lateral valleys and openings, which require more or less pains for due examinatiou.

The only object whioh a cursory exploration could acoomplishy was the dis oovery of
whicl
have
skete
an ag
Rive
Squa
surve
railw
of Ro
I
as far
elevat
severa inferr
struct
I
that
the \mathbf{T}
P
unfavo
cultiva
very b
ticable probal
an apl
prolim
point
tionshi
offer ar
becaus
unnece
River

Major
C

SI
country and bof
T)
ranch, left at 2 , the ray not nelina. stanco, load of - But ount of of flat 1 exact e; but lgwiok. ; but it canch, I cat out western the way, jection2, until which in portage; impracas at first
ortion of n tracing the head ρ, a littlo examine, rehe, and ho lateral
survey by oanoe exthe valley cending a og was at il valleys, down the he oppor-
tho party tion with ll of snow prosecute River, and
pportunity ns existed branch of ariation of ress, to the tre several iu. soovery of
which of these valleys and onenings might appear most entitled to a particular survey. I have reason to believe, that practicable lines, approximating to those indicated in the sketch, would be found. My opinion is, that the difficultics of this route are confined to an aggregate distance of perhaps five or six miles on each side of the Valley of Green River, and that they are not of great magnitude.

I have not personally examined, and have only partially seen, the Valley of the Squatuck, but it is generally better known than any part of the ground inclucled in this survey, and is reported to be, as I belicve it is generally, flat and favorable for: a line of railway. From thence up the Valley of the left-hand branch of Toledi to t:c intersection of Route No. 1, the ground is flat with a very moderate ascent.

In the absence of barometers, by which to obtain an approximate section of the routes, as far as traced, the apparently difficult inclinations were occasionally tested by angles of elevation and depression ; and from those, checked by the approximately known height of sarcral points in the country examined, the assumed rates of inclination have been inferred: They would in most instances, I believe, prove to exceed what in actual construction would be necessary.

I may remark with regard to the habitable character of the routes, as far as examined, that No. 3 would be the most favorable for continuous settlement from the Valley of the Tobique to the Valloy of the St. Lawrence.

Probably one-third, consisting of the more elevated parts of Route No. 1, would be unfavorable for settlement. Routo No. 3, as far as cxamined, would not be suitable for oultivation immediately olong the line, except at a few detached points, on acconnt of tho very broken and precipitous oharacter of the banks of the Quatawamkedgwick.

I believe that each of the routes described, necessarily in very gencral terms, is practicable, as far as I have examined the same. Of the degree of practioability, or of the probable expense of construction, I conccive that no safe opinion could be formed without an approximate location. To discover what route or routes may be most oligible for preliminary survey, I deem to be the object of the exploration. A judgment upon this point with regard to any subdivision, must of course be materially governed by its relationship to the whole line. As far, therefore, as it may be cither my duty or privilege, to offer an opinion, it is, upon its special merits, in favor of Route No. 3; and more generally because upon both national and eolonial grounds, it appears most desirable to avoid any unnecessary deviation from the most direct line between the Bend of Petitoodiao and the River du Loup, which the natural facilities of the country will permit.
(Signed,)
I have, \&c.,
J. WILKINSON.

Major W. Robinson, R.E.,
Commissionor of Quebec and Halifax Railway Exploratory Survey, \&o., \&o.

APPENDIX NO. 4.

Plans Referred to :-Nos. 20, 21, 22, 23.

Report on a Line of Railway from Whitehaven to Amherst.
Halifax, March 14, 1848.
Sir,-Having been directed by you to explore and report upon the capability of the country for a line of railroad from Whitehaven to Λ mherst, wo have attended to that duty, and beg leave to lay betore you the following Report:-

The gencral tormation of the eountry consists of long continuous ridges, with valleys between them, in an esatern and western direction. One of theso ridges commenoes at

Cape Canso, passes Country Harbour, runs westerly on the south of the west branch of the St. Mary River, and continues onwards to the western parts of the Province. The crest of the ridge is near the northern side, whence it slopes gently to the sea-coast; the height is about 600 or 700 feet. It is cut through by the Valleys of Country Harbour River and of the St. Mary. There are several indentations across it between Country Harbour and Canso ; viz., from Now Harbour to Salnon River, abcut ten miles above its mouth; from Torbay, by Ingersol Betts Lake, to Salmon River, near its mouth; from Whitehaven to Crow Harbour ; and from White Point to Gox Island.

Northwardly of this ridge there is another range of high lands, whieh, commencing at Cape Porcupine on the Gut of Canso, runs parallel to the former, and terminates in the highland southward and eastward of Truro. It is cut across by indentations from Country Harbour to Antigonish; from Glenelg to Antigonish, by College Lake; from Glenelg to Merigonish, by the cast branch of the St. Mary and the French liver, and by way of the East River to Pictou; also from Upper Stewiacke to Pictou, by the Middle River; besides several minor indentations. This ridge is of about the same gencral height as the former.

Between these ridges is a valley running from Chedabucto Bay, on the east, to the Basin of Mines, on the west. It is interrupted by some hills at the head of the Stewiacke, but it generally preserves the character of a continuous valley. The highest parts at the bottom of this valley, more immediately connected with the present survey, are between Guysborough and Country Harbour, about the head of Salmon River, and betweer. Country Harbour and the St. Mary at Glenelg.

The latter of shese is found, by barometrical measurement, at the place where we crossed with the line, to be 226 fect above the sea; the former appears to be about the same height.

The rock formation of the southern ridgo is generally g 'anite and various kinds of trap; that of the nor'hern, coarse slates and shales, variously inclined to the horizon, but mostly vertical, with sime patches of trap.

The valley is soft sandstone and slate in layers, horizontal, or but slightly inclined.
The coasts of the Atlantic and Chedabucto Bay are, so far as we could observe, composed of slate and shales of various linds; the trap rocks, being confined to the high grounds. The general direction of the strata of these rocks is S. 60 E. by N. 60 W .

Our first care was to make enquiry of surveyors and others aequainted with the peninsula on which Whitehaven stands, as to its general features; and we were informed that the coast was rugged, but that in the interior there were extensive elevated flats, which, once gained, but littie difficulty would be experienced in proceeding.

We accordingly adopted that course, and found a barren, rocky country, with elevated grounds, intersected with deep hollows, running across the course of the line. We pursued this line as far as Ingersol Betts Lake, and then abandoned it. It was now settled that we must either find a passage along the coast to Couitry Harbour, or get through to the northern side of the ridge, and follow the Valley of the Salmon River; but as this was known to be rough and difficult, and withal circuitous, we resolved to make the first trial upon the coast.

Commencing at Whitehaven, at A, near Haulover Cove, the line may be carried across a level neek of land to Molasses Harbour, and thence along the shoro to that harbour to B , at its head. Thence about three-eighths of a mile up a pretty deep valley, brings us to the water-shed C, between Molasses Harbour and an extensive bay on a pretty large stream which flows into Cole Harbour at D. This water-shed is only about 20 feet above the high-tide mark, giving a passage as easy as can be desired.

The length of this section, $\mathbf{\Lambda}$ to \mathbf{D}, is about eight milos.
From D) to E, four miles, the line is along the shore, passing through low points of ground and shallow bays. On this section cuttings and embankments of about 20 feet at greatest will produce undulations within 40 fect to the mile.

From E' to F, at the head of Torbay, six miles, there is a belt of flat ground betweeu the high lands and the sea coust, upon which tho road can bo carricd so level as to require wo particular remark.

From F to G, aeross the peninsula, $3+$ miles. The highest part of this section is
ranch of ce. The past ; the Harbour Country above its th; from
mencing es in the Country lenelg to yy of the River ; 1 heiglt st, to the the Steest parts irvey, are 1 betweer.
there we about the
kinds of rizon, but
inclined. rve, comthe high W. with the informed ated flats,
elevated We purw settled t through r; but as make the
e earried e to that ep valley, 1 a pretty it 20 fect
half a mile of the coast, where it is 50 feet in height ; from which place it may descend, with a uniform grade of 40 feet to the mile, to G.

From G to the head of New Harbour at I, about two miles, there are several bluffs of slate rock, onc of which will require a deep cat, or possibly a tunnel of about 300 yards in length.

Or, by passing over a ridge of about 100 feet in height at K , which may be done at grades of about 50 feet per mile, a mile and three-quarters would be saved in distance between Torbay and New Harbour; the expense not greater than by the shore. This will probably be found to be the most eligible route.

From New Harbour to L, Coddles Harbour, four miles; for the first two miles of this seotion, a track may be obtained quite smooth and level, on the remaining two miles there are a namber of small slate ridges, about 30 or 40 feot high, with valleys but litule above the sea level between them.

The direction of the strata is S .60 E. by N. 60 W . They have not been examined, but it is probable that some of them will have to be cut through.

From Coddles Harbour at M, to the head of Isaac's Harbour, $8 \frac{1}{2}$ miles, there is but little difficulty in getting along the shore, except about a mile and a half at Coddles Harbour, where there is some broken ground that has not been particularly examined, but we do not apprehend much difficulty with that part. The remainder of the shore is sufficiently fiat. It is : supposed that a straight line can bo found from L to M, but this has not been examined.

Between Isane's Harbour and Country Harbour, three miles, is a ridge of $\mathbf{1 8 4}$ feet in height at N, which is its lowest part. On the castern side of this ridge, from M to N, the rise is one in thirty-two; on the western side, from N to 0 , the descent may be brought to eighty feet to the mile.

It is possible that a better passage may be found about a mile to the northward; it has not been examined, but from the gencral formation of the country, there seems but little hopes of suecess.

It is probable that the only alteruative in crossing this ridge, will be the employment of stationary power, or the tunneling of about a mile in length through whin-rock.

From 0 to P, about seven miles, there is between the hills which bound the valley and the water, a range of low ground with an irregular surface, upon which a line may be earried, so as to produce nearly a level by cuttings and embankings of twenty feet at the maximum.

Turning off at P, we proceed up the Valley of West Brook, a small stream which flows along the northern base of the southern ridge of hills formerly mentioned. Near the head of this stream at R , there is a water-shed, from which waters flow to the St . Mary by MoKeen's Brook. The distance from the mouth of the West Brook to R, is four miles, and the height, by barometer, 226 feet; giving an aseent of 56 feet per mile. The cheapest route is along West Brook, the valley of which appears open and smooth; but if it be required to reduce the grade, the ascent may commence one or two miles further down Country Harbour River, keeping along the face of the highlands as showu by the line on the plan. The face of the highlands along the river is steep and broken, and would probably require a heavy expense, but along West Brook it appears pretty even.

By carrying the line to the river, one mile below the mouth of West Brook, the grade would be reduced to 45 feet per mile.

From R to S , two miles, -there are several small lakes with low ridges of ground between, which we did not particularly examine, but as seen from the road, we concluded it will be quite practieable to find a tolerably fair line between the lakes; the avarage descont will be about 15 fect per mile. Thence to T , at the St . Mary, $3 \frac{1}{2}$ miles, there is the Valley of MoKeen's Brook, which, as appears, is smooth and open; the descent is about 40 , feet per mile.

From T to Mr. Alezander Sutherland's, the highest settlement on the east branoh of the St. Mary, 13 miles, the valley is, with few exceptions, pretty broad, with intervals along the river, and will present no obstacles except from freshets. We could not ascertain the depth of the freshets very correctly, but from information, and from ice-marks on trees, we conoludo it would not exceed four fect.

The river may have to be orossed several times. The scotional area of water-way
required, will be from 300 to 500 square feet, according as the bridge may be higher or lower on the stream. The height of the river intervale at Sutherland's is, by a mean of five observations, 194 feet above the sea; and by a mean of two observations on different days, the height of T at MoKeen's Brook is 54 feet, giving a rise of 140 feet in 13 miles,about 11 feet per mile.
Δt about a mile above Mr. Sutherland's is the foot of the Falls, where the rivor descends in a rooky crooked channel, between cliffs of trap-rook, 90 feet in about a mile. This is a formidable obstacle; the river is too crooked to admit of a line in the chasm through which it flows, and the hills on the western side are high and steep; it will therefore be necessary to cut across the point on the eastern side. On this side we have, at the head of the Falls, a narrow ridge of trap-rock, of 60 feet in height, jutting upoa the river from the eastward; and at the foot of the Falls, a deep valley, in which flows Campbell's Brook, coming in also from the east; both of which must be orossed. The valley will require a bridge or embankment of 500 feet in length and 30 or 40 feet in height, and the ridge, a tunnel of a quarter of a mile in length. By these means a grade of 60 feet to the mile may be obtained, as ahown by the section.

Southwards of Camphell's Brook there does not arpear to be any obstruction to a descending grade of 40 feet per mile, along the river hills down stream to the level of the river.

Froil the Falls to Lake Eden, about two miles, there are no difficulties: the banks in some places are near the river, and flat ground between them of moderate breadth; but there appears to be sufficient room for fair curvatures, though it may be necessary to cross the river two or three times. The rise in these two miles is about 15 feet.

From Lake Eden to Beaver Lake, about four miles, the line may pass close along the southern shore of Lake Eden, under a high range of hills, about a mile, to the entrance of 2 range of ponds and low ground two miles in length, leading westward to Beaver Lakethe head of the East River of Pictou. The height of Lake Eden above the level of high tide at Pictou is, by a mean of nine barometrical observations, taken on three successive daye, 381 feet; Beaver Lake is, by a mean of five observations, taken on two different days, 398 feet above the same datum, and 17 feet above Lake Eden.

The water-shed between Lake Eden and Beaver Lake, at U, is within half a mile of the latter, about 40 feet above Lake Eden, and 23 feet above Beaver Lake.

There may be a uniform grade from Lake Eden to U, and from U, by the southe:n side of Beaver Lake, for about a mile and a half; giving for the former 30 feet and ior tho latter 16 feet to the mile.

From the foot of a range of flats connicted with Beaver Lake, the East River of Pictou, which is here of a small size, begins to descend between high banks to the bridge on the St. Mary's Road, six miles. On this section the line must follow the river flats, which appear sufficiently wide to admit of fair curvatures, except a distanoe of about three-eighths of a mile above the bridge, when it will be necessary to run through a valley on the southera side, to avoid a narrow crooked channel through which the river flows between limestone rocks. On this section the river will have to be crossed several times. The section of water-way of the bridges may be from 100 square feet, near Beaver Lake, increasing as we descend to 300 feet. The flowage of the intervals does not exceed three feet.

The average descent will be, for the first three miles, about 15 feet, and for the remainder 33 feet per mile.

From the St. Mary's Road to Grant's Bridge, seven miles, the valley is broad and contains large intervals. The line, by cutting through some low upland points may be carried pretty straight. The average descent is about ten feet per mile.

From Grant's Bridge to the foot of the rapids, near three miles, the river is crooked and conined between highlands of stratified sandstone and limestone, several points of whieh would have to be cut through.

This will be an expensive section. There is one circumstance, however, that would tend virtually to reduce the expense ; the stowe, owing to its structure and dip, which is about 50 degrees with the herizou, will be easily quarried, and will oome in for drains, ballast, \&zo., on the road, as oheap, probably, as materials wonld from any other sourco. It will also open some capital limestone quarries, and it is not improbable that building stone
would be met with, though we did not observe any seams of the sandstone sufficiently thiok for that purpose. The average descent of this section is about 40 feet ${ }_{\text {rer }}$ mile.

From the foot of the Rapids to the Fish Pools, three miles, the line must keep along the river.

There will be little cutting through points, but it is likely there will be some bridging. The grade will be about 40 feet to the mile.

From Grant's Bridge, mentioned above, to the Fish Pools, there will be several bridges. It is impossible, by a mere passing glance at the river, to even guess very correetly at the number; but it is not likely that there will be less than five or six. The apan may be about 60 feet, till we get below the west branch, when it may be enlarged to 80 feet. The bottom is of rook; and it is not unlikely that stone for the abutments will be found in the exoavations for the road.

From the Fish Pools to the height of land between the Albion Mines and M'Culloeh's Brook, at V, about three miles, there is a rise of about 133 feet. The ground will adnuit of a uniform grade, being about 44 feet per mile. At the Fish Pool it will be necessary to cross the river upon a bridge 30 feet in height, in order to get upon a ridge of tolerably level ground immediately above the steep banks of the river.

From V to Middle River at W, three miles, there is a dip of 40 feet into the Valley of M'Culloch's Brook, and then a swell of ground between this valley and Middle River. This swell may be crossed at grades of about 50 feet to the mile.

From \mathbf{W} to H , two miles, the ground rises about 70 feet, being an average of 35 feet to the mile. It will be necessary to cross the Middle River, at the height of 40 or 50 feet; in order to get upon a flat table of ground on its western side.

From X to the West River at Y, four miles, there is a descent of 172 feet. The ground will admit of a nearly uniform grade, averaging about 43 feet per mile:

From Y to $\mathrm{Z}, 1 \nmid$ mile, there is a rise of nearly 80 feet, giving an average of 53 feet per mile. The ground, though somewhat rough in some places, does not appear to contain any very formidable obstruotions to a regular grade.

The point Z is on a flat table-land, from which the line runs off to the westward.
From Z to $A^{\prime}, 2 \frac{1}{\frac{1}{3}}$ miles, the line passes over some undulations into the Valley of the Saw Mill Brook, thence up that stream in a broad valley, which, continuing westerly, becomes the bed of Black River, a branoh of the River John.

The height of the water-shed between Saw Mill Brook and Black River at A', is 227 feet above tide-water, and the height at $\mathbf{Z} 96$ feet above the aame datum; the difference is 131 feet, and distance $2 \ddagger$ miles, giving an average of 58 feet per mile.

It is likely that a uniform grade can only be obtained on this scction by means of a good deal of earth-work. By embanking 16 feet at Y, and cutting 29 feet at A^{\prime}, the grade from Y to A, may be brought to 47 feet per mile; and from the peculiar form of the ground, it doos not seem likely that there would be muoh additional expense.

From A' to the mouth of Black River, $8 \frac{1}{1}$ miles, the valley is nearly half a mile broad, the stream meandering through flat lands with a sluggish current, showing the fall to be very trifing.

The height at the mouth of Black River is not measuren, but msy be supposed about 100 feet, and the descent along the valley 14 feet per mile.

It will not 心 expedient to eross the River John below the month of Black River, because, though the general surface of the conntry is level, the river flows in a decp, narrow valley which would have to be crossed. Above this place the banks are low, and moreover advantage may be taken of the Valley of Nabiscump Brook, to obtain an easy rise to the table-land on the west of the river.

From the Forks of Rivor Joho, mouth of Black River, we did not travel through the country, but asoertaned it to be of the same charactar as tha region along Black River, a fat country, with sluggish streams flowing through it, and offering no material obstruction to the formation of a railroad.

From Wangh River, Tatamagouche, towards A mherst, we made no observations relative to this line, but the country is known to be so level that there would be little or no diffioulty in getting a good railroad line aoross it.

With regard to curvatures, from our limited means of making up a judgment, we can say but little ; but from the slight observations that we were enabled to make, we think there will be none of less radius than half a mile.
The distances are as follows:-
From Whitehaven to Cole Harbour 8
Miles.
Cole Harbour to Torbay
Torbay to New Harbour $5^{\frac{1}{2}}$
New Harbour to Isaac's Harbour $12 \frac{1}{2}$
Isaac's Harbour to Country, Mr. Arohibald's. 6
Country Harbour to Glenelg 131
Glonelg to the summit of the highlands two miles west of Lake Eden. 20
Summit of highlands to Albion Mines 2140
54Albion Mines to West River.$\overline{10}$
West River to River John 1212
River John to Tatamagouche 14
'Tatamagouche to Wallace 12
Wallace to the Province Line at Otter Creek 38

- 84
Total from Whitehaven to tho Western Boundary of the Province. 181

Respecting the ice at Whitehaven, the result of a good deal of enquiry amongst the inhabitants, and of shipmaters accustomed to the navigation of the coast, is as follows:-That the harbour is frozen regularly in winter as far down as Fisherman's Island. Haulover Cove is also regularly frozen. - yond these limits, though it is sometimes frozen, the liakility does not seem to be greater than in Halifax Harbour. It was in consequence of this information that we fixed upon the point A for the terminus of the line. The ground will admit of a branch to the upper part of the harbour, which we have shown upon the plan.

The sea iee breaks up in Maroh, and floats to the southward; that which passes through the Gut of Canso is in no great quantity, and in ordinary weather is set off by the current of Chedabucto Bav towards Sable Island. The main body of ice met with in that sea, passes castwardly of Cape Breton, and with northerly and westerly winde is carricd out to sea; but easterly weather brings it on to the coast of Nova Scotia. We could not learn that Whitehaven had ever been completely slosed with this ice, but it has often been iu such quantity as to make navigation in the night dangerous, and sometimes, at distant intervals of time, it has been in such quantity as to make the approach in daylight very difficult. On the whole it would appear that between the last of February and last of April, it may be accounted dangerous for a steamer to run in the night near Cape Breton, and direct from thenee to Whitehaven ; as there would be almost a certainty of having to cross a stream of floating ice in some part of this sea, though it but seldom happens that it approaches Whitehaven.

All which is respectfully subnitted by,

Major W. Robinson, R.ID., \&o., \&o., \&o.

APPENDIX NO. 5.

Remarks on the inner part of the Entrance of Whitehaven.
Columbia, Halifax, N. S., August 27, 1846.
Sin,-In pursuance of your orders, I have made a rough sketoh of the inner part of
the Entrance of Whitehaven, which, with the accompanying remarks, I beg to submit for your consideration:-

In fine clear weather, and by day-light, the spproach to Whitehaven is easy, the shores bsing bold, and no out-lying dangers, if we sxcept two rocks nearly a mile distant from the shores of White Island, one to the south-west and the other to the south-east. These generally break and so show themselves.

White Island forms the turning point of the shore of Nova Sootia, as it deflects toward the northward to Cansean. The white roo'ss, and its elevation of 140 feet, make it stand out prominently, and easily distinguish it.

There are several channels in Whitehaven. Three ean be used by stcamers of any size. The middle, which is between White Island and the ledges to its westward, appears to be best, is about 250 fathoms broad in its narrowest part, and oarries bold water on bnth sides, and is besides the shortest and most direct, not exceeding half a mile in length. However, as the directions of the channels differ, and all radiate nearly from the same point, a sailing vessel can use the most favorable with respect to the winds. The western is also a very good channel, and is preferable for vessels going or coming from that direotion. The soundings without this harbour are (near the shore) very irregular, especially in the approach to the eastern channel, which is also injured for vessels of large draught of water, by a rocky patoh of thirteen or fourteen feet water. It is situated near the entrance, and rather more than one-third across channol, from the small island (Grassy Patch) off White Island.

When inside the harbour, care mast be taken, as there are several shoal rocky patohes (see Plan), which render the navigation difficult to strangors, and require to be weH determiued and buoged, should the harbour be used for commernial purposes. There is an abundance of safe anchorage, with good holding ground, black muddy bottom, land-looked, and perfectly smooth.

In foggy weather this harbour is difficult of approach, especially to a stranger, as the soundings inshore are very irregular; and I have not beth able to learn any good indications of its vicinity to be gathered from the lead, so as to rendar its approach by that means certain; and Torbay, its immediate neighbour to the westward, is a dangerous place to get into.

From the fishermen and small coasters I understand the currents round the point are uncertain, and generally depend on the wind, though the prevailing ourrent is to westward.

I experienoed the current in a boat when I visited the outer break; it was then setting to the westward at the rate of one mile and a half per hour at least. I also perceived vessels in the offing setting rapidly in the same direction; the breeze was from the castward and light, though it had previonsly blown hard from the same point. We also, in our passage from Halifax tc Canseau, during a fog, with the wind from the south-west, experienced an easterly current; but the land once made, the harbour is easily attained, especially by a steamer.

A judioious arrangement of fog-sigoals and light-houses, with buoys on the principal dangers, and a good survey, with the sea-soundings well laid down, would make the approach in the night or during fogs attended with small danger to a careful seaman.

Latitude of observation, Rock Whitehaven, $45^{\circ} 14^{\prime} 0^{\prime \prime} \mathrm{N}$. Longitude of observation, Rock Whitehaven, $61^{\circ} 11^{\prime} 4^{\prime \prime} \mathrm{W}$. Variation, $21^{\circ} 42^{\prime} 20^{\prime \prime} \mathrm{W}$. Rise of tide from three to six feet. High water at the change of the moon, 7 h .40 m .

In the Admiralty Plan of this place, the general features and soundings appear correct, if we aceept some of the inner dangers, which are not noticed; but the scale is discrepant.

> I have, do., (Signed,)

The Hon. W. F. Owen, Captain, R.N., \&c., \&o., \&c.

(Received from Mr. Des Barres, Solicitor General, May 2, 1848.)

To the Board of Directors of the Projected Railroad from Nova Sootia to Quebec:
Genticmen,-We, the undersigned, Magistrates uf the County of Guysborough in the Provinec of Nova Scotia, hereby beg to state, that believing a Report to have been made to the surveying party engaged in the survey of the contemplated railroad from this Province to Quebec, and that such Report has been made by certain inhabitants in the Settlement of Torbay, near Whitehead, who supposed (in igoorance of the nature of such lines of communication) that the present facilities of interoourse with the interior of the country for purposes of procuring fuel from the woodlands, \&c., would be entirely broken up in the event of the railroad terminus being at Whitehaven, and therefore have stated to the surveying party on the Whitehead Route, that the "winter navigation to the spacious harbour of Whitehead is quite impracticable from ice."

We therefore, in view of the injurious tendency that such falso information is calculated to produce on the minds of those unaequainted with the locality referred to, have obtained the accompanying affidavits of persons residing at Whitehead, and likewise of captains of coasting vessels residing in other places in this Province, and of long experience in the winter navigation on the coast of said Province, testifying to the capabilities of Whitehead Harbour at all seasons of the year.

To all of which we, as the residiog Magistrates of the County of Guysborough, wherein Whitehead is situated, beg hereby to record our certificate of their correctness.

Dated at Canso, Nova Scotia, Jenuary, 1848.
(Signed,)
Robert Hartshorn, J.P., R. M. Cutler, J.P., Wentworth Taylor, J.P., E. H. Wadoheville, J.P., Abr. N. Whiteman, J.P.,* W. J. Beylou, J.P., David Dobson, J.P., \dagger
E. J. Cunningeam, J.P., William Hart, J.P., Franors Cook, J.P., R. V. Refyrman, J.P.

Copies of afidavits referre s in the above communication.

(1.)

William Spears, of Whitehaven, in the County of Guysborough, fisherman, maketh oath and saith, -That he hath resided at Whitehead aforesaid for twenty-eight years, and is well acquainted with the Harbour of Whitehead aforesaid, and also with the drift ice which passes from the eastward, also from the Gut of Canso to the westward, in the spring of the year; that the ice seldom comes into the said harbour in large bodies, and very seldom remains there long enough to prevent vessels entering the said harbour at any time of the year, it being carried away by the winds and currents, and dispersed over the ocean, generally in a sonth-westerly direction; that during deponent's residence at the said harbour he has not known a day on which vessels of the largest olass would be prevented entering therein by ice, the said harbour being perfectly accessible at all seasons of the year.

Sworn before me, at Whitehead, this 25th day of December, A.D., 1847.

> (Signed,)

DAVID DOBSON, J.P.

[^4]fh in the
en made his Proe Settleteh lines country en u_{p} in d to the spaeious
is caleu. to, have ewise of perience lities of wherein

Robert Spears, of Whitehead, in the County of Guysborough, fisherman, maketh oath and saith,-That he hath resided at Whitehead aforesaid for twenty-eight years; that he is well acquainted with the Harbour of Whitehead, and also with the action of the ice which ceeasionally comes through the Gut of Canso, and also round the Island of Cape Breton, passing on to the westward, in the spring of the year; that the ice very seldoms comes into the said harbour in large bodies, and very seldom remains therein long enough to prevent vessels entering the said harbour at any time of the year, it being carried away by the winds and currents, and dispersed over the ocean, generally in a south-westerly direction; that during this deponent's residence at the said harbour, he never knew the ice to come into the said harbour in a large quantity but once, and that was in the year 1828, aud then not to prevent vessels to enter said harbour, the harbour being perfeotly safe and accessible at all seasons of the year.
(Signed,) ROBERT SPEARS.
Sworn before me, at Whitebead, this 25th day of Deeember, 1847.
(Signed,) DAVID DOBSON, J.P.
(3.)

John Munrow, of Whitehead, in the County of Guysborough, fisherman, maketh oath and saith,-That he hath resided at Whitchead thirty years; that he is well acquainted with the Harbour of Whitehead, and also with the navigation of the said harbour, from the entrance to the extremity; that he is acquainted with the action of the ice, which occasionally makes its appearance off the said harbour, passing on in a south-westerly direction; that it seldom comes in in large bodies, and very rarely remains therein long enough to prevent vessels conveniently entering the said harbour at any time of the year, it being generally carried away by tho winds and ourrents, and dispersed over the ocean in a sonth-westerly direction; that during this depenent's residence at the said harbour, he has never known a day on whieh vessels of the largest olass would be prevented entering therein by ioe, the said harbour being perfectly safc and accessible at all seasons of the year.

$$
\text { (Signed,) } \quad \text { JOHN } \underset{\text { mark. }}{\substack{\text { his }}} \text { MUNROW. }
$$

Sworn before me, at Whitehead, this 25th day of December, 1847.

> (Signed,) DAVID DOBSON, J.P.
(4.)

John Feltmate, of Whitehead, in the County of Guysborough, fisherman, makoth oath and saith,-That he hath resided at Whitehead aforesaid for twelve years ; that he is acquainted with the action of the ice, whieh occasionally comes through the Gut of Canso and around the Island of Cape Breton, and which passes Cape Canso to the westward in the spring of the year; that the ice very seldom comes into the Harbour of Whitehead aforesaid in large bodies, and never remains there long enough to prevent vessels entering the said harbour at any time of the year, it being carried away by the winds and currents, ard disparsed over the ocean, generally in a south-westerly direction; that during this deponent's residence at the said harbour, he has but once only known a few clumpits of ice to come into the said harbour, whioh went out the next day; and nas not known a day dusing the above period on whieh vessels of the largest size would be prevented entering therein by the ioe, the said harbour being perfectly free and accessible at all seasons of the year.

> (Signed,) JOHN FELTMATE.

Sworn before me, at Half Island Cove, in the said County, this 25th day of December, 1847.
(Signed,)
DAVID DOBSON, J.P.

(5.)

Thomas Monro, of Whitehead, in the County of Guysborough, mariner, maketh oath and saith, -That he hath resided at Whitehead aforesaid about twenty-eight years, and during the greater part of the years aforesaid owned a vessel and sailed her as master; that he is well acquainted with the action of the ice which oecasionally appears off Whitehead, passing on in an oblique direction from the shore to the south west; that the iee never during his residence at said harbour came in in large bodies but once, and remained but a short time ; with this one exception, deponent docs not remember one day that vessels of the largest class would be prevented entering said harbour, it being perfectly safe and accessible at all seasons of the year ; deponent further saith, that he hath been coasting to Halifax, and all along the shores of Nova Scotia, at all seasons of the year, and has never, on his return or outset, been prevented going or entering the aforesaid harbour duxing the time of his residing as aforesaid.
(Eigned,) THOMAS MONRO.
Sworn before nee, at W.hitehead, this 12th day of January, A.D. 1843.

> (Signed,) DAVID DOBSON, J.P.

(6.)

Alraham Whiteman, of Canso, in the County of Guysborough, maketh oath and saith,-That be is now in the eighty-seventh year of his age, and that he was a eoasting trader on the coast of Nova Scotia for more than half a century and was in and about Whitehead, on the coast of said Prevince. at all tinces of the year, and always found the harbour there aeeessible and perfectly safe at all times.

> (Signed,)

ABRAHAM WHITEMAN.
Sworn before me, at Canso, January 14, 1848. (Signed,)

ABRAHAM N. WHITEMAN.

Heads of information obtained by Cantain Henderson, Royal Engineers, at Whitehaven, in 'October, 1847.
The iee from the Gulf of St. Lawrence, ©c., comes round Cape $\mathrm{R}_{\text {reton }}$ and through the Gut of Canso, in the spring of the year, and is brought by the easterly wind off the N.E. eoast of Nova Seotia, and if the wind chops round to the southward, it drives this ise into Whitehaven, Torbay, de.

The harbsur had been blockaded nine or ten times in the recollsction of my informant, who had lived on that coast for ncarly forty years.

Four years ago the Harbour of Whitchaven was blocked up with drift ice for about ten days.

Qenorally speaking, it is more or less incommoded by drift ice, every two or three yeers.

It was frozen over in the winter of 1846-17, five or six inches thick all the way down to Big Island, an the wowth of the harbour.

This was considerod unusual, as it requires the weather to be cold and very calm to frecze so much of the harbour. It freezes, however, overy winter as far down as the long point opposite Fisherman's Island.
(Signed,) E. W. HENDERSON.
Captain, Royal Engineers.

APPENDIX No. 6.

Report of the Sub.Committee, to whom was referred the communication from Lieutenant E. Walcott Henderson, Royal Engineers.

Council Room of the Quebec Board of Trade, Quebec, May 12, 1847.

The Sub-Committee, to whom was referred the coummunication from Lientenant E. Walcott Henderson, Royal Engineers, have to Report that, owing to the manner the accounts are kept at the custom-house, and the nature of the trade with the Lower Ports, the valne of the imports and exports cannot with any degree of accuraey be ascertained, and more especially to that portion of our trade with Gaspé, as, being in the Province, a mere matter of form of clearance and entry inwards is observed.

Your Committee beg to hand at foot a statement of the number of clearances and arrivals to and from the various ports named in Licutenaut E. Walcott Henderson's letter, for which they are indebted to the Colleetor of the Customs, and although they abstain from giving the nature of the cargoes, owing to the causes above stated, they would renark, that, with the exception of but one vessel which cleared in ballast, the remainder had eargoes; those from Halifax in gencral with valuable cargoes of West India Preduce, and from the other ports, fish and oils. The outward eargoes eussisted almost exclusivcly of flour, provisions, \&c.

With respect to the eastern ports of new Brunswick, your Committee are not of opinion that the trado between that portion of the above Province and Canada has materially incressed within the last few years; and with respect to the trade with ports in the Bay of Fundy, regret to say that it has all but ceased, which your Commitiee attribute to the ehanges in the Imperial laws, more especially the Act passed in 1842, generally ealled Gladstone's Aet ; before the passing of which all American provisions, by passing througb the Canadas, were allowed to take the privileges and character of Canada produce aud imported into our sister colonies as such, but with that change all inducements to receive their supplies from this ceased, as the proximity of those ports to Boston and New Yors, sind the cheapness of breadstuffs and provisions in those markets, offered superior advantages, and the result has been as stated; the same remarks apply, to some extent, to Halifax, and other ports in Nova Scotia, where merchants, from their large increasing trade with Boston, by shipments of coals, plaster, de., are cnabled to take advantage by the return vessels of very moderate rates of freights, and a selection from a comparative cheap market.

With Gaspe the trado has been gradually increasing, and your Committee confidently look forward to be ablo to report the samo with respect to our sister colonies, as our unrivalled canals are now being brought to a completion, and the spring of 1848 will see a fresh trade with the west brought inte existenee, and craft containing three to five thousand barrels of flour loading in Lakes Eric, Miehigan, and Ontario, brought to our doors. With this a reduction in freights must follow ; and your Committee do not soe why a barrel of flour or pork eannot be sold as cheap in Quebee and Montreal as it can in New York or Boston; and if one of thoinducements to purchase in tho Λ meriean markets is removed, the other, viz., the proximity, will vanish with a railroad communieation with Halifax, for wo do not entertain any doubt but that St. Johns will conneet herself with the Trunk Line by a brancl.

Among the almost numberless advantages that would follow the building of a railroad, both politically and commeroially, your Committoe would point out the certainty of a transportation to a sea-port in either New Brunswick or Nova Scotia, during the period our asvigation is impeded with ice, of a largo poition of breadstuffs whioh every winter is looked up in Quebeo and Montreal, to the great injury of the Province at large, to which may be added the advantage that would follow by the transmission of the mails by the road, for which the Government now pay so large a sum for the transmission through the United States, which, for many weighty reasons, is objoctionable, and, we may add, offensive to the feelings of a large portion of the inlabitants of both Canada Last and Canada Went.

The Committee do not conceive they are called on to go into any length on the vast benefits that might follow by the line of railroad that is now engaging the attention of Government, to which the attention of this Province as well as that of New Brunswick and Nova Sootia is so earnestly drawn, and in closing this Report, the Committee would in the most urgent manner bring the attention of the Imperial Government, through the present channel of communication, to the absolute necessity of freeing the inland navigation of the St. Lawrence from all obstructions that now exist, and which prevent hmerican vessels from bringing their produce (for your Committee would not recommend their being allowed to carry any other than their own) direct to Quebeo, or should they wish it, to use our oanals to take their produce to any market they think proper, without breaking bulk; this course we think highly desirable, as well as the equally desirableness of all our tolls being reduced to the lowest practicable scale, which, if followed up, must draw the vast produce of the West down our noble river, and for which trade there are now so many rivals in the field.

Arrivals from-					
....a.....................	Vessels.		Tons.		${ }_{\text {Men }}$
New Carlisle......	20		796		71
Antigonish.	16		972		59
Aichat...	14		792		55
Bathurst	1		44		3
Caraquctte	7		245		20
Dalhousie..	- 1		37		3
Guysborough	- 4		205		15
Halifax.	17	1,257	71
Miramichi.	3		400		30
Pietou	2	..	79		6
Richibuoto.	7	250		23
Syduey......	3	563		27
Clearances for-					
	Vessela.		Tons.		Men.
Aichat..	12				
Bathurst..	. 7	320	25
Canso...	. 1	68	4
Caraquette.....................................	103	10
Coeayne......................... 1		38		3
Dalhousic.		349	...	30
Guysborough.	- ${ }^{2}$		95	8
Inalifax...	- 18		1,386	...	74
Miramiohi.	27		1,376		96
Pietou......			184	11
Riohibucto.	9	418	...	28
1Restigouch	,	.	315	23
Shippigan	1	47		3
Sydney..	. 2	215		10
Shelbourne.................		30		3
Gaspé	- 84		3,334		249
Carleton.	3		107		10
New Carlislo..	10		489		32

benefits ernment, ra Scotia t urgent rannel of the St . sels from lowed to ar canals is course reduced of the he field.

APPENDIX NO. 7.

Extract from the Report of the Commissioners appointed by the Legislature of the State of New York-by the Act of May 11, 1846-io locate sertain Portions of the New York and Erie Railroad-made to the Legislature, January 18, 1847.
cost of motive power on railroads, per train, per mile.
1st. Engine-men, Fire-men, and'Station-men :-

2nd. Fuel :-

Reading	Railroad,	Wood..	83.50	23.70	
Boston and Worcester	"	"	4.90	22.20	
Fitchburgh	"		4.25	14.17	
Baltimore and Ohio	"	Coa	2.00	8.00	
New York and Erie	"			18.09	

3rd. Repairs of Engines and Tenders :-
Reading \quad Railroad........................ . 4.90
Boston and Worcester " 9.05
Utica and Sohenectady " 7.93
Fitchbargh " 5.20
Western (Mass.)" "......................... 6.50
Baltimore and Ohio " 9.00
Y " " $-42.58 \div 6=7.08$
4th. Oil and Cotton Waste :-
Reading Railroad........................ 1.74
Boston and Woreester " 1.24
Fitchburgh " 1.30
Baltimory and Ohio " 1.46
$5.74 \div 4=1.43$
Now Yorik and Erie " 2.94
5th. Interest on cost of Eingines:-
Baltimore and Ohio Railroad. 8.01
6th Couduetors and Brakemen :-
Reading Railruad. 4.11
Fitchburgh " 6.20 $10.31 \div 2=5.15$
Take 63 per cent. for brakemes (which is the ratio or Reading Road), as conductors should not be ineluded, and the oxpense for brakemen is.. $5.15 \times .63=3.14$
Do Baltimore and Ohio Railroad, as per estimato for coal trade.. $=2.40$

Now York and Erio Rnilroad........................... $=6.52$

[^5]
$$
\nabla
$$

[^0]: Bay Chaleurs Route through New Brunswick to Quebec, the distances will be as under :-

[^1]: yiles.
 55
 69
 26
 74
 56
 48
 30
 86
 191
 635

[^2]: - Vide Appendisi Ifo. 8.

[^3]: Pl|fe Appondix No, 7,

[^4]: * One affidarit sworn before him, January 14, 1848.
 \dagger Four almaritt, Decombor 25; One affidavit, January 12.

[^5]: 7th. Repairs of Mailroad, chargeable to Locomotive and Tender :-
 1st. Ordinary repairs; of these one-fifth is regarded as chargeable to wotive power:-

 2nd. Deterioration of iron, not yet settled by experience. Hali of this wear is believed to be chargeable to locomotives and tenders, on account of their greater weight. Suppose rail cost $\$ 7,000$ per mile, and will bear transport of $20,000,000$ tons on a level road, average (say) 250 tons freight per train, equal to 80,000 trains. The cost per train will be $\$ 8.75$; and half of this is.
 4.37

 The weight of engines in the eases above detailed is not known, but is supposed to average less than 15 tons; for an engine of 20 tons on driving wheels would require an additional expense ; but the fuel on the line of road under consideration would be lees expensive, about seven cents, than the average for the same size of engine. In view of both considerations, it is belicved a reduction should be made from the preceding result of (say)
 4.79

 And the estimate for a 20 ton engine is. ...Cents 40.00 Forty cents per train per mile, equivalent to $18,8 d$. sterling.

