IMAGE EVALUATION TEST TARGET (MT-3)

Photographic Sciences Corporation

23 WEST MAW STREET
WESTER, N.Y. 14500
(716) 872-4503
j

CIHM Microfiche Series （Monographs）

ICMH

Collection de microfiches （monographies）

Canadian Institute for Mistorical Microreproductions／Institut canadien de microreproductions historiques

The Institute has eftempted to obtain the best original
 mey be bibliographically unique, which may alter siny of the images in the reproduction, or which may significently change the usual method of filming, are checked below.
\square Coloured covers/ Couvertiure de couleur

Covers demaged/
Couverture endommagte
,Covers restored end/or lamineted/
Couverture restaurie et/ou palliculeCover title missing/
Le titre de couverture manque

Coloured maps/
Cel tes geographiques en couleu!

Coloured ink (i.e. other thar blue or black)/
Encre de couleur (i.e. eutre que bleue qu noire)

Coloured pletes end/or illustretions/
Plenches et/ou ilfustrations en couleur

Bound with other meterial/
Relio avec d'eutres documents

Tight binding mey cause shadows or distortion elong interior merginf
La reliure serrde peut causer de l'gmbre ou de la distorsion le long de le merge interieure

Blenk leeves edded during restoretion may appear within the text. Whenever possible, these have been omitted from filming/
II se pevit que certaines pages blenches ejouties lors d'une restauretion epparaissent dans le texte, mais. lorsque cela etait possible, ces pages n'ont pas ete filmés.

L'Institut emicrofilme le meilleur exempleire qu'il Iui e det possible de se procurer. Les dttoils de cet exemplaire qui sont peut-ftre uniques du point de vue bibliographique, aui peuvent modifier une image reprodnite. ou qui peuvent exiger une modification dans la methode normale de filmepe sont indiqués ci-dessous.

Coloured peges/
Pages de couleurPuges damayed/
Pages endommextes

\square
Peges restored and/or lamineted/
Pages restaurdes et/ou pelliculdes

\square
Pages discoloured, stained or foxed/
Pages dicolorives, tacheties ou piquies a

Pages detached/
Pages ditachtes

Showthrounh/
-Transparence

Quality of print veries/
Ouelité indgale de l'impression

Continuous pegination/
Pagnation continue
\square Includes index(es)/
Comprend un (des) index

Titis on header ieken from: /
Le titre de l'en- tête provient:

Titte page of issue/
Page de titre de le livreison.

Caption of issuc/
Titre de depert de le livralen

Masthend/
Générique (périódiques) de le livreison

Additionel comments:/
Commenteires supplémentaires:

This item is filmed et the reduction retio checked below/

The copy filmed here has been reproduced thenks to the generocity of:

Librery of the National
Arehives of Canada

The Imagee eppeering here ore the beet quoity possible comsidering the condition and legibility of the original copy and in keepling with the filming contract apectications.

Orfolnal copiee in printed peper covers are filmed beginning with the fromt cover and endling on the last page with e printed or Illustiated Impreesion. of the beck cover when eppropriate. Ali ottier origlnal coples ore filmed beginning on the first page whth e printed or illustrated Impresslon, and edring on the last page with a printed or Illustretid impreasions:

The last recorded frame on each microfiche shail contain the symbol \rightarrow (meaning "CON TINUED"). or the aymboi F'(meaning "END"), whlcheiver opipliea.

Mepe, plates, charts, etc., may be filmed et difforent reduction ratios. Those toe large to be entircly included in one exposure ere filmed beginning in the upper loft hand corner, laft to right and top to bottom. ea many frames as required. The following diagrame Illystrate the methed:

L'exempieire filmi fut reproduit grice ile genderosited de:

La bibliothique des Archives. netionales du Conada

Les imgeos suiventes ont Ĉ́l reproduites evec le plue grind soip. compte teniu de le condition et de to nettetd de l'exemplaire filmb. et en coliformith avec lee conditione du contrat de filmage.

Lee exemplairee origlnaux dont it couverture on pepier cat imprime sont fllmbe on commencent per to premier plet ot en terminant soit per is dernidre pege qul comporite une empreinte d'Impreasion ou d'illustration, sole par le second plet; selon heas. Tous ies autres exempleirces originaux sont filmas en commancent par ie premilre pege qul comporto une empreinte d'Imprecelon ou d'illuatration of en terminent per io dernibre pege qul comporte unie teile empreine.

Un des symboies sulvents ippareitra sur le dernlóra imege de chaque microfiche, selon le ces: ie symboie signifie "A SUIVRE". Ie symbole ∇ signlfie "FiN".

Les caries. pienches, tabieeux. otc., peuvent bere filmets dee toux de reduction différente. Lorsqua le document eet trop grand pour itre reproduit on un seut cileht, il eat filimb it pertir de liengle supd́rieur geuche. de geuche 1 droite. ot de haut en bas, en prenent. io nombre d'Imeges nubcessalre. Les didillammee suivente illustrent la md́thode.

4

11	2	3
4	5	6

1
\qquad Pier Ne: 3

- Dier Noit

Please fead and send in as fuil a discuasion as possible at eariiest date.

Ube Canadian \ddagger ocietp of Civil Engincers.

\&N.B.--This Suciety, as a hiny, ctiges nut hoid itself reapmaihie for the atatemente and opimiuns advanced in any of its publicatione.

THE SHUBENACADIE RIVER BRIDGE-MIDIAND RAILWAY.
(By J. J. Taylor, M. Can. Sor: C.E.)
To be read before the Generai Section, 28 January, 1904.
PART 1.
The Midiand Railway of Nova Scotia (the air iine between the towns of Truro and Windsor-fifty-eight miles iong) crosses the Shiubenacadie River on a, pingle track bridge, known as the Shubenacadie River Bridge.

The Shubenacadie River empties Into Cobequid Bay, and may be said to be really an arm of the Bay of Fundy. . The point of crossing is five miles up from the mouth of the River, and near the viiiage of South Maitland. The river at the point of crossing is about 1.220 feet wide-kigh water mark to high, water mark.

The tide at the bridge site has a maximum range of 32.7 feetextreme low to extreme high water. There are, qif course, two. tides in twenty-four hours. The tide begins to run in about two and-one-half hours before the time of high tide. About five hours

after the time of high tlde the water has largely run out agaln, thus leaving the sand fats bere twlce In every twenty-four hours for almut five hourg each the. 'When the tlile lant only the frowti water flow is left, and the" width of the rlurr (olimanal) is then ondy alsout two hundred feet.

Hetween certain elevat lons of both flomi and ebb the the rirtent Is bery swift, reaching a velocliy of ten to fourtipen miles per hour ont the spring tlies. - There is practioally nos atll water in the rlver at this point, and at the time of high wetet there is never more than forty minutes that boats. wows and materlals ran be handled on the rlver.

One of the many pecullarliles of the tlde was, that fust after it had turned from flood to ebb. and when the current was running down quite swiftly along each shore, and the water lowering vertlcally. the rurrent was stll running up quite swifily in the midde of the river. Thls contlnued for about one-halt hour after the elsb tlle set in. Wlth the coming of the tide we had fhat ls known as the Bay of Fundy " Bore." but not reaching a greater helght than iwo teet, and rarely that high. (The writer has meen the "Bore" ve feet hlgh at Moncton, N.B.)
Whe generai aspect of the Shubenaradle Rlver at the brldge slte Is shewn by photos 1 and 1a. These show the tlde about three parts fun out.

The contract for the substructure was let to the Angineering Contract Co. of New. York (since gone out of buslness). They commenced operstlons May 1,1899 ; suspended for the wlnter Dec. 1. 1899 ; resumed May 3: 1900 ; and completed Der. 12, 1900.

Borings to determine, the strata and locate the bed rock were taken in. tho manner legcribed lit specification, the following belng an extract therefrom:-
" Viff.-In regaril to borlngs. - They were made under Mr. A. G. " MiFarlane's superilsion, with a rig owned and operated by " Messrs. McDonald \& Co., of 162 Barrington St., Hallfax. It was " a sort of minlature ple drlving arrangement with a 150 lb . dolley " or hammer sllding on the" drlll. It was found lmposslble to get " a plpe down about the drlll throngh the compact gravel, etc.; and "'the 1% Inch drill was turned as it went down, but drove very " slowly. Once or twice the drlll went down for shopt distancea* " more readlly, perhape striking a streak of clay, but the grivel. " etc., was, very compact, especlally on the eastern half, growing " more open as one approached the channel. In the deepest place " It took two hours to drlye the drllitwenty feet, with four men on * "the llftlog topes."

Nalipini m ci.ive: c! Canada
Alchives ma:icnaics du Canada

3צ5 Wollington
ustawa, Onlario KIA ON3
Canada

The foliowing table showe the levations of the rock line obtained by these boringe and shown on the acrompanying section of the river, andithe actual elevations:-

One of the many lessons that this work taught was the great importance of accurateíy designating the strata through which it becomes necessary to go to reach the bed rock, and to accurately determine the elevation of the bed rock.

If the Contracting Co. for this work had not been overtaken by finamelal dificulties just before they compieted the work. the probablities are that expensive iltigation would have been the resuit of Inaccurate boringa.

It will be noticed, however, that the rock ine shown on the contract profie is marked "Nwpioncil Line of Rork," and the writer might say that the contract with the Engineering Contracf Co. contained a clause as foflows:-
"The contract price (lump sum) hereinafter meniloned covers " the works and is bassed upon quantities Indicated on the pians " annexed. Should the total work done by the contractors exceed " by more than two per cent. the totai quantities indinated ori" alajd " plans, the excess over two per cent. shali be paid for by. the Com"pany to the Contractors at the rates hereinafter mentioned. " Should it be less by more than two per cent., the shortage over " two per cent. shall be allowed for by the Contractors at the same "rates. The Company malipulata the right to aiter the site of any " of the plers and to diminish their number, provided always, the "new location of any pier be in thd Shubenacadie River, on the " line of sald Rallway ; in such case, if the c age of the site of a "pler should ipcrease or diminith the Cbigtriucors' work as shown "by said plans and surveyt, such increase shall be paid for by the

4

"Conipany, and such darease shall be allowed for by the Con-- tractors at the fillowiny rates, namely :- 15 per cublc yard of "roncrete in any pler, pedestal or abutment, to cover excavation. " Itmier. Iron, and all other itema."

This would seem to provide a baila of payment for any extra Aopth the contractorn might have io go with any pler. etc., to reach the bed rock, and It wan made to provide for it on this work.

In the writerie opinion it is due to a contractor, and more empecr lally when entering ipon a difucult, dangerous and erpenalve work such as this was, to profide him with ačicurate data: such as strats, through which he wolld have to pag in order to reach the rock: location of the riok ; facts reiating tis tides and currente ; and any and all Information that woild be of a helpfui character.

In the first place it is necessary to get all this data in order to determine the proper type of structare for any given locality, and afterwards, to dealgn it Inteligently, so that. Ip getting it, no extra expense is incurred on the contractor's account.

The collerting of this data means money, and the reasons that It is not given are nearly always the diapoation on the part of most companies to unduly cut dow in legitimate engineering expenwes.

The abutments. pedestals and plers (all of concrete). occur as follows, beginuing at the WIndsor or western end of the bridge : Back of west abutment to center of first pair of pedestals.. $34^{\prime \prime} 5^{\prime \prime}$ Center first palr pedestals to center of wecond pair ". .. 32'2"
" secontid Pler No. 1.. 31.5"

$1240^{\prime} 6^{\prime \prime}$

The superstructure on the above is arranged as follows, beginning at the Windsor or western end of the bridge :-
98 feet of steel trestle between weat abutment find pler 1 .
$40^{\prime} 2^{\prime \prime}$ Ilft span. pler 1 to pler 2 (for the passage of small craft).
$215^{\prime \prime} 0^{\prime \prime}$ each-five spans-pler 2 to east abutment.
The contractors for the sub-structure decided to make the western (or Windsor) side of the river the base of their operations for the assembiling and mixing of the concrete ingredients. Here they erected cement sheds, set up a stone crusher, laid down the mixing

Halform, Inatalled the machinery for the operation of the catleway, und mucle a general working yard.

One of the firat thinge done by them was to syan the river with p fidyerwoud cableway. the llse of whleh was parallei w centre line of bridse, and twenty-four feet distant south wardfy iffirefrom : or In wh poaltion that the bucket, when lowered, would. Junf land on the south end of pleri when fhey were at elevations haliway between high and low water, but. owing to the thetter, would not land as the pler was hullt up past this elevation.
7 The wooden towern supporting the cahlewky were erected about Tfty-nve feet back from high water mark; the span (tower to tower) belng about 1,350 feet.

The maln cible-two and a half Inchem in diameter-pasied over the towers at a helsht of slxty-six feet above high water, and was anchored into the ground about ninety to one hundred leet back of each tower hy belng securpd around three heavy hemlock loge ("dead men"), which weref.jaid in trenches some six to eisht feet deep, and heavily welghted down with stone. These tower were bullt of hig timier. very strongly put together and guyed hack. Conalderahle diniculty fas experienced in getling thls cable stretched scross the river and up on the towers. 11 was first carried over the eastern tower and secured at that end. When all at work on the fiats on the frat day of trial, the "Bore" came along, and when the tide went down agalar and the fiate were bare, olght hundred feet of the cahie was huried below five feet of sand. The cable was ralsed and in position three days later. But, It is to be borne in mind that this does not mean three working days of ten hours eacla, hut snatching a lew houra each day whon the tide was off the fats.

The utility of this cahleway in the huilding of these pler cannot be too highly spoken off. Men and materials were transferred from any point to any other point on the cahieway at all timos. It was rarely out of order, and gave endlese satimfaction. Indeed, it seems hardly too much to any that the work could not have been done without it.

As proviously etated, all abutments, pedeatals and plers are of concrete, surmounted hy granite bridge seats two feet thick? The total quantity of concrete in ithis work is about eight thousand cubic yards, and cement averages one and one-half barrels to the yard.

The concrete is in three grades: $\bar{\sigma}$
No. 1, used from the rock to two feet above low water, and of the following proportions :-

No. 2, used for fucing-one foot thick-from wo feet above low water to under slde of bridge seat, and of the following.pro-portions:-

Cement. 1
Sand.
2
Gravel. 1 (not exceeding 1 ln. In dia.)
No. 3, used for hrarting, from two feet above low water' to under side of bridge seat, and of the following proportions :-

$$
\text { Cement. } 1
$$

Sand.... $11 / 2$

Gravel
1 (not over $1 / 2$ inch dia.)
Crushed stone.
4
Ail the concrete ingredlents in this work are the very best of their several kinds. The mixing was done by hand, most thoroughiy. Cement used was J. B. White \& Brothers' English Portland. Sand, clean and coarse from Five Islands, on north slide of Cobequid Bay, thirty-five miles from bridge site, and brought in schooners. Gravel from DeBert beach, on north side of Cobequid Bay, twelve.miles from bridge slte;' towed on barges and screened to size: Stone from a veln of quartzite iocated in a biuff at the river side and one-quarter mile up river from bridge site, brought to assembing yard by scows, holsted out in one yard buckets by steam derrick, and crushed aiongside mixing platform. Siome bouider stone was aiso picked up aiong the shores and crushed. After concrete was mixed up it was shovelied into one of three one yard buckets, picked up and sent to destimation on the cable. While one loaded bucket was being sent out another was being filled.

An idea of the celerity with which the cableway worked can be had from the following note:-

The serage time consumed in sending a loaded one-yard bucket of concrete from mixing platform to No. 5 pier (a distance of 790 feet), and returning empty bucket to mixing piatform, was three and one-quarter minutes. This was for a run of 1,580 feet, hooking and unhooking, raising end lowering the bueket

The suppiy of water for concrete mlxing and for boiler use was quite a probiem, and the work was often handicapped owing to an lnsufficient and varlable supply.

The writer does not propose to dwell at any length on the methods of construction used in buiiding the west abutment, the fourpedestais, pier No. 1, and the east abutment. This was diy or shore work, and comparatively simple. Concrete for the first three of these was slmply wheeled from the mixing platform to place. Concrete for the last (east abutment), was sent over on the cabie. The east abutment dis not go to rock, but is founded weli down into the hardest of hard pan overiylng the rock. The pile foundation shown on' section " D" was not adopted.

Pier,No. 1 was oblong In shape, battered 1 to 12 on all four sides, encased with 12×12 bay shore spruce permanent casing from iow whater up to one foot below extreme high water. (Ali timber used throughout this work below low water is white hemlock). Foundation dimensions, 23×13; dimensions under bridge seat; 6×16; thickness of this bridge seat, 15 inches as it carries only a iight span.

Each stlck secured to the two below with $\%$ inch square iron drift bolts passing through $21 / 2$ tumbers, one within one foot of each end of a stick and not more than six feet apart.

Abutments and pedestals were built in three-inch deal mouids, afterwards removed.

Plers 2, 3, 4, 5 and 6 were founded by pneumatic process. Heavy tlmber calssons being in each case carried down through the overlylng strata to the bed rock below.

A general idea of the construction of these caissons can be had from plan "A." They were built at an old shipyard about threequarters of a mile up river from the bridge slte. They were buiit on iaunchways, christened and grehed simiiarly to a vessel. They were oblong and with a cutwater-on each end.
Outside length point to point.. 62 feet

Outside " shoulder to shoulder. 38 ".
Outside wlath. 24 and 26 feet.
Inside " 191/2 feét
Outside height, shoe to top of deck $101 / 4$ (on 3 tier roof, and 1 Inside helght, shoe to roof of deck 7 ." ft. less on 2 tier roof.)

They are built of 12×12 seiected white hemiock, and lined Inslde (roof and sides) with 3 -inch hemlock plank, oflum caulked, and air tight, deck foored with s-imeh hemboek phant amit owne
caulked; sides and roof double 12×12 tlmbers \ln case of Nos. 2 and 5.

In view of the possibility of having to sing lower than Indicated by the profile, the caissons for Nos. 3 and 4 were strengthened by an additionai course of 12 " 12 lnch tlmber on the roof, making three courses \ln all, the first two being lald transversely, and the upper course laid dlagonaliy. aud by 12×12 vêfical tlmber, laid ciose along the sides and.cutwaters (making three courses in all), and 1 inch screw-boluêd through the two orlginai courses of side timbers at top and bottom of verticals. and drift bolted in between, and aiso cdge bolted (the one vertical to the two adjolning it), with one inch drift bolts.

Photo No. 2 shows the caisson "Z. J. Fowler" for No. 4 pier, strengthened as above described, and on the way down from the shipyard to the hridge site. This view shows very little of the caisson proper, as that is submerged. It shows the first three $12 \times$ 12 courses of crin timber above the calsson roof, also the first steel pneumatic sectlon, the air admlssion pipe, and the blow out pipe, snd the upper timbers of a very speciai feature of these calssons, namely :-the mooring crih. to which was secured the heavy steel cahles which held the caisson in position against the fierce tldes.

As shown hy plan "A." ail these caissons were hraced against pressure from without by four 12×12 (caissons NOB. 2 and 5), and four 12×18 and 12×24 (calssons Nos, 3 and 4), hemlock tlmbers reaching across the caisson or working chamber, and placed just above the shoe. These tlmbers were cut about four Inches short. and any slack taken up hy hardwood keys at one end of each hrace.

These transverse hraces were spaced one at each pair of shoulders of caisson, and two equi-distant between. Any tendency to spreģ outwardly was taken care of by four $11 / 2$ lnch iron rods passing through the walls to the outside of the calsson, heavy nuts and washers on outside. and adjusted hy turnbuckle within. These rods were spaced similarly to tlmber braces; all as shown hy plan " A."

The first steel pneumatic section (eight feet long, 3×5, with rounded ends) for the passage of men and materials, was always huilt into the roof before launching. These sections were sometimes efht and sometimes twelve feet long. They were bolted through their flanges to the first or lower tier of roof timhers (and not as shown on plan " A "), the upper tlers of roof tlmbers butting against them. and any spaces beiag filled with grout:

The roof timbers of caissons were drift bolted along the edges to each other and to the upper courses of the slde and cutwater timbers.

The moorlng crlb, of which there were two to each caisson tone fore and one aft of the shat) was four timbers (or four feet) high above the deck, each twelve inch course screw-bolted to the two below it, and the lower two-courses screw-bolted through the caisson roof. The upper course was 12×12 hardwood, through the centre of whlch the main fore and aft anchoring cables played.

The side timhers of calssons were bolted together horizontally and vertically with $\%$ inch drift bolts 22 inches long, $31 / 2$ feet centres, and after the three lnch llning was spiked on inside. $7 / 8$ inch screw bolts 28 inches long (for two course slde) and 40 inches long (for three course side) were fut through, head, nut and washer on each bolt.

Before towing the caisson to approximate positlon, four or five of the 12×12 courses of the crib timber were built up on the roof, so that a certain quantity of concrete could be put in before finally locating the caisson.

The wrlter will now endeavor to descrlbe the means and methods used in towling the caissons out to approxlmate position, holding them there, and finally locating them.

Large, round log, stone filled crib anchors were placed on the fiats, about three to four fiundred feet up and down stream of each pier centre. These crib anchors were about $12 \times 12 \times 12$ feet; $11 / 4$ inch iron rods, 13 feet long, went through the four corners, two heavy logs underneath, around which was secured the $7 / 8$ lnch steel cable, which came up through the stone filling, and having an end loop through which was passed the mooring cables from the caisson. A day or two previous to the setting of each caisson, a scow was anchored quite near its destination, and the calsson ends of the six steel mooring cables (the other ends of which had been secured to the crit anchors) were brought on board the scow ready to be transferred to the caisson when she was towed to approximate position alongside. These moorlng cahles were arranged three up and 2 three down stream of the calsson. The direct up and down stream cahles were $1 / 4$ inch diameter, and the four breast llnes $7 / 8$ inch dlameter.

The caisson having been towed from shlpyard and beached on the fiats near the hridge site on one daylight tlde, was towed to approximate position on the day following at high water, and the ends of the six mooring cahles passed from scow to calsson and there secured. Just enough concrete to enable her to fioat on the tide immediately following was then put on the roof. This was done on account of the huoyancy of the large amount of timber in the calsson beingso great, and the time between tides being so short
that not enough concrete couid be put on between two succeeding

If the weather and tide were at ail favourable, and nothing unforseen occurred, it was finaily focated on the third dayight tide, and tended down to accurate position until it grounded, by siacking out and taking in the different cables; twenty to thirty mén bofing on board for that purpose.

Perhaps this imperfect description might give the impression that the locating of these caissons on the different pier sites was easy. On the contrary if was always attended with great difficuity and danger. For instance, in the case of No. 5 : being a trife late in towing it out from the shore they missed transferring ali the mooring cabies from the scow. Those cabley that were secured could not hold it against the strong ebb ude, and it went two miles down the river before being beached. it was brought back on the next flood tide and successfuily moored in pproxipate position, but on the succeeding fight tide it broke away from the moorings, overturning one df the ,Heavy stone filied crib anchora, and pulling out the special. mooring device on the roof (which up to this time had oniy been drift-bolted through the roof, but which was afterwards arrer-bolted.) These damages being repaired, it was flnaliy located eight days iater.

In the case of No. 4 (the last one) this caisson was iocated in approximate position as described, and the first batch (or floating load) of concrete put on the roof. It rode safely over the succeeding night tide and the next day at witg water was accurately iocated, and was being tended down as describedr when, by one of the many freaks of tide and current, the great force of the ebb tide bore directiy on the up stream west side. Two of the breast ilines parted, and it grounded several feet off position. On the following day the same process was gone through, but the strength of the tide was so great that it could not bs puifed into position. The men had just been taken off by the cableway to wait untll next day, when one of the iines parted and the caisson turned bottom up. Preparations were immediately mate to right it, and the day foliowing in attempting to do so, turnted a complete repoiution, parted ali mooring lines and went bottom up four miles up the river on the flood tide. . It 'was brought back to the shipyard, the floating load of concrete (which ali these upturnings and buffetings had failed to dis-lodge) was removed, and was,righted, repaired, and finaliy' iocated two weeks later. These are oniy two of the many similiar instances which occurred during the progress of this work.

We have now the calsson located in proper position on a pler site, and ready to proceed downwards through the sand, gravei, etc., to the bed rock, having jüst enough concrete on its roof to come bouyancy and keep it in position.

It wa next in order to tow out the machinery barge containing the compressed air and eiectric iight piants, and moor it safeiy on one side of the caisson, and the derrick barge containing the engine and.derrick for hoisting out material fromicaisson, etc., and moor it on the other side. These were twin barges, each 80 by 22 and $71 / 2$ feet deep, hardwood frames, ;spruce covered, and very strongiy built for the work. In the hold of the machinery barge were piaced as many oil casks as it wouid accommodate. These were ail connected by piping, and heid the water supply for boilers. 'The air igek was then puit on the.-first steei/ section, the shift went, in, and the caisson started down. The air lock used was a combination man and matenal, of the Moran type, with the usuai doubie doors and hitiances in which the 'material bucket is lowered and- raised tifyugh the shaft' and lock by an outside derrick, the wire cable piffing through a stuffing box in the gentre of the outer lock door. "/which consists of two semi-circuiar leáyes coming together around this stuning box. Below the lock the materigi and man shaft was separated oniy by an open iron griii work, so that it was not comfortabie for a man to be climbing or descending the ladder when a batch of secrete - was dumped down the matertal shaft.

The shifts went down in the caissons when the tide was about ${ }^{\text {t }}$ three-quarters on the ebb, and always came out when the'" Bore," or incoming tide reached the bridge site; the time in which no"men were in the caissons being the time of the strongest ruy of the tide. This made two shifts, about five to six hours each in, the twentyfour hours-fifteen to twenty-five men to a shift. One shift wouid ditch eveniy ail around the shoe, throwing material into the centre of the working chamber convenientiy near the shaft. The shift foilowing would ioad his materiai, and aiso the centre excavation, into the bucket which wouid be hoisted up the shaft and through the lock by the steam derrick on the barge; and dutsped into the river. The biow-out pipes were neverfused, as the material èncountered was too hard.

At the same time the 12×12 spruce criblbid was being put on (as the tide permitted) above the caisson, as shown by plan " A " and the concrete sent over on the cableway and piaced in position,

The caissong were lit with eiectric light and were most comfortable to work in. In the heat of summer the pipes convering thē compressed air from compressors to catsans were kastened along the machinery. barge below the water line ${ }_{\text {r }}$, thus coling the air before discharging it into the calsson

As the caisson went down the crib timbers were put on, the concrete was bullt up, the air lock was taken'off, ariother steel gection.

Once inside, the ditsson was carried down through the rock on the high end, and the temporary filiing on the low end. Two or three benches were made on this bottom, and the caisson filled up. Thls work was so near the shore that the machinery barge iay up on the hank, and the compressed alr was conveyed to the taisson hy a long pipe.

Photo No. 7 shows the eievatlon piatform huile up over the pier, and on a level with the top of the air 1detry and used to transfer the concrete (after it was dumped on the 'platform from the cahieway hucket) to the hucket fixpd, in the lock, and which the - writer wiw now, desctibe. It wili be understood that this eievated . piatform is used solely for the handiing, of concrete going Into the caisson. It Is passed down by the foilowing methed:
. A cylladrical bucket which has a hopper bottoon and is about two and one-half feet in dlameter, and about elght teet iong, ph securely wedged into place in the air lock hetween the lower and upper doors. This hopper bottom is dropped and ralsed from the elevated platform hy a wire rope, which passes up through the bucket, and (hy a stuffing box) between the two haives of the upper lalr lock door. to the pialform ahove. When the hucket". is heing filled with concrete' the hopper bottom is, of course. ciosed, as is also the lower alp lock door. When the bucket is full' the upper air lock door is shut, the-lower door opened, the hopper bottom of the hucket tripped, and the concrete fails through the shaft on to a platfor at the bottom, and is shovelied to destination and tamped. This cylindrical hucket is stationary during the process of filling the calsson. When this is completed the air lock is removed and the shaft filled up. From three to five sections of shaft are embedded in each pier.

The concrete was placed in the pier proper hy transferring, with the derrick on the harge, the ioaded hucket, which was dropped on the derriek harge from the cahleway.

The 12×12 spruce crihhing was carrled up to high water, each course being secured to the two below it with three-quarter lnch square iron drift bolts golng through two and one-half timbers, one within a foot of each end of a stick, and not more than six feet apart.

A set of four lron tle rods, one and one-quarterpincy) round, went across the pier and through the slde timbers at every fourth course and were burk in the concrete-head nut and washers on outside and turnbuckle within. Concrete from hlgh water to under slde of brldge seat was in a plank mould, afterwards stripped oft.

The bridge seats were twa reet thlck, of Halifax granite. The shoe stones were $8 \times 51 / 2$ and weighed $71 / 4$ tons, and were set by the derrick on the batige.

The cutwaters of piers, from three feet beiow low water to high water, were sheathed with 6-inch birch, piaced verticaily and drifted to spruce crib timbers with five-eight inch steei drift boits fourteen inches long. The nose and shouiders of cutwaters, from four feet beiow low water to high water, were protected from the running ice by three-eight inch steel angle piates, drift boited to hardwood gind crib timbers with three-quarter inch drift boits fifteen inches long, coghtersunk heads, and lapping three feet on each side of noses and shódiders.

The varying cutwater batters are shown by pian " A " and photos .7 and 8. It was probabiy thought by the designer of these plers that the somewhat flat intermediale hatter wouid enabie some of the ice to rest and break of its own weight. Photo No. 9 shows the ice formation in the river at low tide. In the judgment of the writer the piers wouid have presented a much better appearance and been equaliy effective and substantial, if a straight cutwater batter from top to bottom had been used.

Considering the dangerous character of this work the fatalities were few. Four men were drowned in calsstr No. 5, due to the careiessness and inexperience of a lock tender. Both doors were aliowed open at the same time, the air, of course, escaped, the water rushed in, and there fas a stampede for the shđft. Most of the shift escaped, hut fout men were caught.

One man was dropned by iosing his balance when. wheeling stone from the shore o a scow over a gang plank. He was swept out of sight in a moment by the current.

Before closing the firsţ portion of his paper, the writer wishes to add' a tribute to the eqecutive men and the rank and file who carried this most difficuit work to a successfui conciusion. The men in charge were fuil of perve and determination, and. were most rew sourcefui. Two of the best foremen have since iost their ilves while in the discharge of their duties on pneumatic work in the United States.

PART II.

Superstructure.

The second payt of this paper will be a short description of the wethods used in frecting and floating in the steel spans.

Between pier fo. 2 and the east abutment there are five spans, each 215 feet ions between end pins. The spans are of the pin
connected camei bach truss type, each span weighing about 160 tons, and were butit. erected and floated in by the Dominion Bridge Co., of Montreal.

The two spans between the east abutment and pier No. 5 were erected on steel false work during the autumn of 1900. On account of the swiftness of the current and force of the tide it.was not thought prudent to use faise work farther out than pier 5 , consequentiy the remaining three spans, between piers 5 agd," 2 , were erected on shore on wooden faise wori, and, at high water, floated to position on the large twin barges, which had previously been used by the sub-structure contractors as a derrick barge and a machinery barge, and which have been described in part I. of this paper.

The Dominion Bridge Co selected the eastern or Trurdubide of the river as the base of their operations owing to its havine rail connection with Truro. There was aiso a convenient area of levei land imediately south of the east abutment, which offered a good aite for assembling and erecting the steel. They constructed two narrow wharves exactly parallel to each other, and roughly, parailel to the centre line of brage. These wharves each projected, 130 feet. from high water mar but into the river. -They were 215 feet apart, centre to centre. Thos, each consisted of 10 narrow pile bents. $141 / 2$ feet centres, four piles to each bent. X braced and double cappea and with five lines of 20 inch I. beam stringers alongt each wharf, surmounted by wooden ties and double lines of ralis on each wharf, Top of rail, six feet above high water.

A heavy eight, wheel truck was set up on the rails of each wharf. The shoes of each span rested ypon these trucks. Wooden false work supported the span between the parallel wharves during erection. - As soon as the span was erected the trucks with their load were shoved out to the river end of the wharves. The two barges, upon which supporting false work had been erected, were mbored at the proper places underneath the span, and all was ready for lifting the span off the trucks.

It will be remembered that two spans between the east abutment and pler No. 5 were now in place on the plers, and the railway tracks lidd on them.

The writer will now endeavor to describe the floating in of the span tbetween piers 4 and 5 :-

Two Lidgerwood winding engines (engine No. 1 and engine No. 2) mounted on heary trucks of standard gauge, were in position on the last span erected, namely: the one between piers 5 and 6 , engine No. 1 being placed and secured about forty-five feet back-from pier 5, and engine No. 2 similarly secured about forty feet back of engine

No. 1. A $7 / 4$ inch wire cable was carried from the drum of engine No. 1 around the end of this span near pler 5, passing over two $18^{\prime \prime}$ sheares, thence directiy to the nearest end of the floating apan and there secured. This cable from drum to floating span was about four hundred feet long. The second $\%$ inch wire cable was carried from the drum of engine No. 2 aiong past the down stream slde of jler 5 and over to the down stream end of pier 4, where it passed around an 18 -inch sheave and thence directiy to the farthest end of the floating span; and was there secured. This cabie from drum to floating span was about ' 940 feet long. The longest lengths of both these cables, nameiy, the lengths from piers to ends of floating span, reated on the river bed. The area over which they wouid drag during the passage of the span. from the paraliel wharves to destination was roughly levelied and carefuliy cfeared of all obstructions upon which the cables might foul. .

The spans were moved out from between the ends of the paradiel wharves while the last of the flood tide was still running quite strongly up the river, in order that the two barges bearing the span would be carried away from the bridge. and would be slowiy and carefility hrought back to destantion by winding up the ca/ss on the two engine drums.

The officers of the Dominion Bridge Co. considnced this to he a - better plan than using tug boats. However, one tug boat' was in attendance at the floating in of each span, in case of cemergency.

The first span (the one hetween piers $5 /$ and 4) was fiopited to dpsitination Juiy 30 : 1901. It was raised off the trucks on the paraliel wharves hy the two harges at $11.40^{7} \mathrm{am}$. ' At $12.04 \mathrm{p} . \mathrm{m}$. the span (drawn by the two $7 / 8^{\prime \prime}$ cahles). started out from between the ends of the parailel wharves, and in elght minutes (or $12.12^{\circ} \mathrm{p} . \mathrm{m}$.) was in position between the piers and ready for the tide to lower her down on the bridge seats. At $1.22 \mathrm{p} . \mathrm{m}$. the four shoes rested on the bridge seats. The floating in of this span is well shown hy
 khe foad ns in' of the other two spans. . It will he noticed that eight iminutes is not long for a task such as this. The successfuh passage of this span from the parallel wharves to its destination had considerahle good fortune attached to it. This does not, in the slighteri degree, reflect on the foreman in charge of this work or the men under him. The foreman was a thoroughly"都 pable and careful man, and was well supported hy his men.

Previous to this floating span starting out from the parallel wharives for its destination, both the $7 / 8$ inch winding cahles (hetwen the last sheave and the end of the floating span) had not heen laying on the river hed: hut had been temporarily supported

17°

along the greater portlon of thls length by belug suxpented from the lower chord bars of the two sjans already In position. As soon as the floatlng span had cleared the ends of the parallel wharves, the shorter length tl.e., the length golng to the nearest end of tloathag span) was dropped from the lower chord bars into the water. The sag of thls cable as It dropped and sank caused the end of the span to which. It was attached to start vfolently forward. Just about this tlme the longer length (l.e.. the length golng to the (arthest end of floating spap) was dropped. the sak of whleh caused the otber end of the span to do the same. so that the Hoating spau. Instead of thoving out regularly and unlfocminy-both barges at the same tlme-zig-zagged (as It were; to position, and It might alnost be sald that the two winding engines did Iftle else than wind up the slack of the rable, as first one barge and then the other shot furward, being moved nearly altogether by the sagging of the cables.

After the varlous spans were in between the plers and ready for the fldf to lower them on to the bridge seats, they were kept to the contre Ine of tha, brifge, that ls, to the correct lateral position by the ebb tide rallsing the sldes of the spans to bear and sllde down agalnst four heavy vertleal tlmbers (two on each pler). whlch had prevlously been secured In the correct positions, and they were kept to their correct positions longitudilnally by four men with bars at each shoe, the span belng moved longltuilnaily with great ease.

A few minutes after the spans rested on the piers. the two barges dropped away on the ebb tlde, and were beached just below the bridge and brought bark on thr flood tide following. ready to take out_the next span.

The span just placed was then completed. the track lald. and the winding, engines advanced one sparf length untll they occupied slmilar positlons with respect to pler No. 4 that they had just done with respect to pier No. 5. The "in Inch windling calles (which, of course, were now longer), were again arranged as has been described. with the exceptlon that they were allowed to rest on the rlver bed In the first piace, and not looped up aiong the bridge as before. The additional portion of the rlver bed over which these cables wouid have to drag was cleared of obstructlons and all made ready for the next spaif (between piers 3 and 4.), which was floated in Aug. 14, 1901. This was the most successful of the three-everything working without a hltch. It was ralsed off the trucks on the paraliel Whar fes by the two barges at 12.19 p.m. started out from between the ends of the parailei wharves at $12.471 / 2 \mathrm{p} . \mathrm{m}$. and at $1.20 \mathrm{p} . \mathrm{m}$. was in position between the plers Seady for the tlde to drop it on the' bridge seats, upon which It rested at 2.16 p.m. This span was

is

then completed. the winding engines unce mbre advanced and necured, and the cables made ready lob drawing out the last apan (between plers 2 and 3.)
.This span was successfully foated out Aug." 28,1901 , record as follows : -

Ralsed off the trucks on the parallel wharves by the two barges, $11.02 \mathrm{a} . \mathrm{m}$. ., started out from between the ends of parallel wharves, $11.33 \mathrm{a} . \mathrm{m}$. In position between the plers ready for the tlde to drop It on the bridge seats $12.05 \mathrm{p} . \mathrm{m}$., where it landpd at $12.52 \mathrm{p} . \mathrm{m}$.

This last span had the longest distance travel; the cablea which drew it to position were, of course. longer than thowe used lor the two other spans, and had a greater area of river bed over which to be drawn. Within this area wime remalns of one of the crib anchors to which one of the calssons had beep moored. It was impossibie to dislodge this obatruction, and it wailplanked over and left so that, seemingly, the cable would silp over it during the passage of the span from shore to destination. This is just whit the cable did not do, and when this span was in the middle of the river and golng along spiendidis, it suddenly stopped. One of the cables had fouled 'the old crib anchor, Several mplates. were loat
f in endeavoring to free this llne. Thtw was found to be impossible, and it was cut away at the floating span end. The tug boat (which, fortunately, was at hand) came alongside this barge, and the span was successfully placed; the tug taking one barge and the other being drawn in by the remaining cable. Had the tug boat not been on hand, the chances are that thls span would have been wrecked.

In the judgment of the writer it would have been much better in every way-cheaper, surer, safer and quicker-to have moved these barges, with thelr load (from the parallei wharves to between the plers) by two tug boats, one to each barge, hut this wai more clearly shown after than before the work was done.

The pians showing the arrangement by which the spans were erected and moved, are from the onfe of the Dominion Bridge Co.

Plan A:

Photo 1.
γ

Photo 2.-Showing Caisson on way down from shipyard to Bridge. site.

Photo 8.-No. 5 Pler.

Photo 9.- Jee Formation.

0%
1
\star.
\rightarrow ?
$*$. .
$0^{r} \quad r$
\therefore ?
F^{-2}
,
.1
$\frac{20}{20}$
2

