The Institute has attempted to obtain the best original copy available for filming. Features of this copy which may be bibliographically unique, which may alter any of the images in tise reproduction, or which may significantly change the wisual method of filming, are checked below.

Coloured covers/
Couverture de couleur

Covers damaged/
Couverture endommagéeCovers restored and/or laminated/
Couverture restaurée et/ou pelliculée

Cover title missingf
Le titre de couverture manque

Coloured maps/
Cartes geographiques en couleurColoured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bleue ou noire)Coloured plates and/or illustrations/
Planches et/ou illustrations en couleurBound with other material/
Relié avec d'autres documents

Tight binding may cause shadows or distortion along interior margin/
La reliure serrée peut causer de l'ombre ou de la distorsion le long de la marge intérieure

Blank leaves added during : storation may arapear within the text. Whenever possible, these have been omitted from filming/
II se peut que certaines pages blanches ajouties lors d'une restauration apparaissent dans is texte, mais, lorsque cela était possible. ces pages n'ont pas été filmées.

L'Institut a microfilmé le meilleur exemplaire qu'il lui a été possible de se procurer. Les détails de cet exemplaire qui sont peutetre uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de filmage sont indiqués ci-dessous.

Coloured pages/
Pages de couleurPages damaged/
Pages endommageesPages restored and/or laminated/
Pages restaurées et/ou pelliculćes

Pages discoloured, stained or foxed/
Pages décolorées, tachetées ou piquées

Pages detached/
Pages détachées

Showthrough/
TransparenceQuality of print varies/
Qualité inógale de l'impression

Continuous pagination/
Pagination continueIncludes index(es)/
Comprend un (des) index
Title on header taken from:/
Le titre de l'en-tête provient:Title page of issue/
Page de titre de la livraison

Caption of issue/
Titre de depart de la livraison

Masthend/
Générique (périodiques) de la livraisonAdditional comments:/
Commentaires supplémentaires:

This item is filmed at the reduction ratio checked below/
Ce document est filmé au taux de réduction indiqué ci-dessous.

FMとLSAKロ yontaly us
WALTER F. SMITH,
31 Ahcabs: Sthert, Montmeal, C.naba.

A meteor, measuring 40 by 20 feet, is said to have fallen near Elmira, N.Y., on May $2 \overline{5}$. Notwithstanding its immense size, only one mair is reported to have seen it!
A thirteenth magnitule asteroid was discovered by Charlois, at Nice, on May 28. This brings the number up to 267 .

I hope to shortly continue my articles on "The Cumstellations," commenced in the defunct Adcreate at year or two since. These, with short notices of the whole of the visille sky at intervals, will prove of value to amateurs wishing to localize the different stars and clusters.

Prof. Young declares that "each star presents a subject for spectroscopic study; for although, for the most part, the stars may be grouped into a very few classes from the spectroscopic point of view, yet in detail, the spectra of oljects belonging to the same group differ considerably and signiticimetly, almost as much as human faces do."

What an immensity of diverse conditions and possibilities as regards the forms of life pre-existing, now existing, or to exist on the millions of worlds circling these diverse sums, does this paragraph open to the thinking person. For if the constituents of these numerous suns differ as much "as human faces," must not the forms of life on their attendant worlds differ also?

MONTREAL, JULY, 1887.

PLANETS IN JULY.

Those who have not yet been able to pick up Mereury, "the only twinkler 'mongst the plamet throns," will have an opportumity so to do at the entry of this month, when he is $20^{\circ} 51^{\prime}$ lis of the sun. Inok for a star of the first magnitude lolnov Vemus, towand the sunset point during the first five days.
Yenus continues her outward course, passing Reypulus on the 4 thi. She reaches her farthest limit east of the sun at midnight on the 13.14 , beiug then $45^{\circ} 33^{\prime}$ from the god of day. The moon is near her on the might of the 23 rd . Ordinary telescopes ourht to perceive the half moon shape of Venus this month.

Jupiter is 90° from the sun on the 19th, when he is overhead at 6 p.m. Notwithstanding his increasing distance, as yet he has lost lout little of lis lustre.
Saturn attains his solar conjunction and becomes a "morning star" on the 18th.

OF REAL VALUE.

Are astronomical rescarches-and particularly amateur ones-of any value? I reply, very little, in a direct commercial sense, my friend, if it is an answer on the dollats and cents side of the argolment that you are aiming at. You are not perhaps one cent in pocket from your watching the hensens closely for the past ten years, on the contrary, you have been "wasting," as the ultra utilitarian will tell yon, hours that might have been employed in increasing your bank account or the value of your real estate. But indirectly, I fancy you have gained a great deal. Your study of the noblest, the highest, the supremest of the seicuces, has improved your intelligence. Standing with others who have not so "wasted their time" muder the canopy of heaven, any stary night you are able to expound to such men truths which seem to them like marvellons tales from another planet, but which are real nevertheless, and cannot be refuted. Besides, with increased intelligence, your brain has been strength. ened for the struggle after the daily luaf of bread that nearly all men are foreed to strive for. Show me the members of any astronomical association, and I will show you men certainly not the least worthy of respect amongst their fellowcitizens. Such men will not have been drawn from the ranks of the idle or the shiftless, but mither prove themselves amongst the busiest. lint let us leave utilitarian argmuents and ascend to a

Sl Per Annum-Ten Cents Pen Copy.

higher level. What study will so ennoble the mind, or give man a proper sense of his relations to the rest of ath infinite universe, leading him from himself up to higher and better views of his place in it, as a pursuit of the science of Astronomy? Those who smile at our devotion, should stop, smiling and get to caleulating. Let them tell us how many astronomers have been evil doers. Ifive not their lives rather been examples to their fellow-men? "By their fruits ye shall know them."

THE AUGUST EOLIPSE.

Scarcely any other astronomical phenomenon can be compared with that of a total eclipse of the sun, as regards both interest and importance. The brevity of the duration of the eclipse, the narrowness of the shadow of true totalitywhich is never over 100 miles wide-and the rapidity with which the shadow rushes along- 30 miles per minutetogether with the importance of the observations to be made, all combine to render a total solar eclipse of great interest. That of August 18-19, 1887, will be of more than usual import, as the shadow will pass over more of the inhabited portions of the globe than is generally the case. As a partial eclipse it will be seen from the Solomon Isles, in the South Pacific, to the Fast Const of Iceland, in the North Atlantic. The line of totality is more circumscribed, of course, but even that reaches from the 170 th to the 10th degree of liast Longitude, crossing the Island of Rico de Oro and the City of Yedo, Japan, in the Northern Pacific, extending over the whole of Northera Asia, and the inhabited portions of Europe, passing a little North of Moscow, Russia, and crossing the Cities of Konigsberg and Jerlin. Owing to the many possibilities of examination, it is consequently one of the most interesting cclipses. It is not visible in America, except that the moon will be seen to just graze the sum, by residents of Alaska Territory. The leading governments of the world have expeditions organized to observe, that of the United States proceeding to Japall. Astro-Mfecorologists will remember the coincident carthquake phenomens that immediately followed the ecliptic conjunction of sun and moon at the end of August, 1886, and will be prepared to hear-in this earthquake period-of further disturbances. The metcorological conditions will doubtless be disturbed greatly, so much so that
humanity will suffer, owing to great storms, tidal waves, hent, and-being in the hottest period of the yeardiseases of an cpidemic nature. Next year's eclipses are: Jan. 28, 1888, lunar, total, and visible at Washington; Fel. 11, solar, partial, invisible; July 8, solar, partial, invisible; July 22, lunar, total, visible and Aug. 7, solar, partial, invisible.

 on,

THE WORLD OF MARS.
By Waller II. Smith.
"Worh of Mars:
Wirex there o hunanilrotherhool on thee,
Without the sius and errors of mankink."
CHAPTER VI. (Contimed.)
That these Martian maidens proved so well informed concerning earthly afficirs, need not be subject for surprise, when it is remembered that information is continually being obtained from disembodied spirits, souls permitted to rest awhile on Mars. In point of fact, their earth news is but a few days behind our own, it being customary to publish in the journals of Mars, all the facts of public interest commmicated in this way.

That winter afternoon began to draw to a close. Myrina remembered that it was past the time for their evening meal. "I should have introduced you to the rest, how thoughtless of me," she exclaimed. " Jut now it has become thus late, we may as well partake of the meal here. On Mars, even as upon your earth, we are not free from the dominion of the body ; we have to eat to live, and to labor to be healthy."
"There seems to me no curse attaching to honest labor except in the minds of our lazy Orientals," I remarked.
"Curse indeed, no, mether a blessing. Who is there that can prove the idlesse of dreamy sloth equal to the inspiration of action; or that the stagnation of utter stillness is in any way compamble to the poctry of motion? We believe differently on IIars, anyway, where all is activity and progress. There are worlds, however, where the beings that answer for men in the scale of animate-I might almost say inanimate life-think differently; if they cam be said to think at all. Such ideas find favor, for instance, on such a world as one that circles a star in Prosenpe, where the inhabitants of an outer planet have an atmosphere that usually obscures their sun, and where the air is filled with a substance which, by simply breathing it, sustains life, and the heavy atmosphere is filled with moisture. Λ condition of things
similar to your modern Turkish bath is therefore continual, and the men themsulves are of the consistency of oysters.
"Your remarks remind me of the astronomical myths of that notel Frenchman, Flammation," I said.
"Myths! Your Vlammarion never imagined beings one quarter as curious as those that actually exist. We are your next door neighbors, therefore are similar to you. But pass away out to other planets, from these, proceed to other systems, and you will find the divergence in structure and conditions grow ever wider as you proceed. As the inimals of your torrid difier from those of your frigid zones, even so the highest types of existence vary on the various worlds at present sustaining life."
"On the earth at least we can have but little to say against those inhabitants in Presepene. It is the exigencies of our animal existence that uge us to action. With many of us, the condition of these human oysters you have spoken about would be considered as a perfect existence. Plenty to eat and nothing to do. This were surely the seventh heaven of the humam animal on carth!"
"Which brings us back to where we commenced," said Myrim, smiling, " Bid them bring refreslments, sister."

The younger lady here tonched am electric leell, which chimed out with silvery clearness, I counting as it rang:

Onc! two! three! four! -
At the first stroke I was startled; at the second I thought that I recognized the tones; at the thind I had left Myrina, and at the fourth - I awoke, chilled to the bone, as the mean time clock in my observatory struck the hour. It was four o'clock in the moming, as, rising from my chair; I opened a window in my turret and looked forth. Venus had arisen in the lanst:

[^0]Traces of dawn were just visible, is the twilight, grey and cold-looking, crept up over the silent plain. From the distance, came in drowsy tinklings the sound of the shecp-bells, and near by, that grim cairn, Stonehenge, rose stolid and majestic as always. Away beyond, sinking down in the darksome West, the fiery Planct of War kept watch, refusing
"Totake its tlibht.
Or latuifer that offen warn'd han thence."
Red and bold its eye gleamed like a small ruddy moon. I stood lookine at it till the daylight foreed it to creep within itself, shumning my gaze. Hide thyself now thou lurid one, yet shall the spirit of mortal return again to thee, searching out that which infinite distance strives, but vainly, to conceal!

CHAPTER VII.

ctit hafe and dual mimensions.

Thus commenced for me a history apart from the world and its surroundings. I led a donble existence, and the ideal semed the most real. I believo it is often thus with the abstract thinker. Were not Juliet and Ophelia more to the ideal life of a Shakespere than the existence of Ame Hathawry think you? Was not the benuteous live more to a Milton than his petulant, rumaway, Royalist wife? Surely, yes.

At first I was bewildered. I passed from my observatory, locked the door, walked to my parents' house, bathed my face and threw mysolf down-but not to sleep. Thoughts of the scenes I had returned from, thronged my brain. And then I began to question whether what I had experienced could by any means bo anything else than a dream. Reason assisted me to such a solution, but experience rejected it. Finally, I became convinced that what I had witnessed was not a vision but a reality.
More silent than before, I shunned even the company of my parents, making answer that I was somewhat out of sorts and wishoul to be left in quiet. My mother proposed a visit to the seaside, and an abandomment of study for a while, my father talked of consulting our good family physician, Dr. Gibb. At the moment, I was disinclined to accept either alternative.
It was with much impatience that I avaited the shades of night and the rising of Mars. I walked into the more lonely portions of our park, and heard by none but the timid deer or startled hare, repeated over and over my Myrina's name.

When night commenced I was early at my observatory, but was forced to put up with a delay, as scattered clouds were scudding across the summer evening sky, one, to my disappointment, drifting across the dise of Mars, so that a considerable time elapsed cro his red face shone out through a rift. I did not doubt now, not I! My hands trembled so with nervous excitement that I could scarcely focus my telescope, but hy and by I succeeded. My cyc arain grew tired because of the planet's painful glare ; once more I turned aside andonce more an experience similar to that of the previous evening was repeated.
Again I approached the world of Mars. But the hour was later, owing to my delay, and the noon mark had moved a considerable distance westward. I alighted, in consequence of the motion of the planct on its axis, near that forked bay of which I previously spoke, and had the satisfaction of seeing as I descended, that a city stood on the innermost fork, over whose placid harbor glided-propelled by electricity through the caln waters at a high rate of speed-hundreds of
vessels, some heading for the open ocenn which spread out toward the South-West, others for tho opposite shores of Phillip's Island,-that could be dimly seen in the distance;-and others again shaping a South-Easterly course through the strait that separates Dawe's Continent from Phillip's Island were passing out into that broadest of Martian waterways, Dawe's Ocean.

Nor vessels only. Air boats from every quarter of the compass were also arriving and departing, and o'er the broad highways, inland, strings of cars shot to and fro. Temples of immense height-it is easier to build here, owing to the lessened gravity, and stones are consequently very much less weightyresidences of considerable gmadeur all of one story, and other large one-story buildings-each covering a great deal of ground, were to be seen on all sides. It argin struck me that I had seen something similar somewhere or other before, but it was not until the next day, when I happened to look accidentally at a painting by Martin, that I saw the same grandeur of architectumal conception as that in use upon Mars. Looking down upon the streets, I saw that they were wroad, very smootl:, very hard, very clean and well ordered, with rumnels of pure water at each side. The town on every hand but that towarl the lake, was surrounded with an artificial forest planted in order to induce rain whenever possible, the min drops gathering very reluctantly in the thin, dry; frozen atnosphere of a dying woild, even at a spot only 12° degrees from its equator. The trees were also planted for use, that is, for building purposes, fuel, etc.

Passing along one of the broad business thoroughfares, where, if noticed at all, I was taken, doubtless, for a disemboolied spirit and left unmolested, it was directly apparent that the object of every merchant was not, as with us, to cheat his customer if possible, nor the object of the customer to, if at all feasible, overreach the merchant. Although, as with us, the laws of supply and demand come into play, great care is taken that the supply shall at all times equal the demand, and even when a tempomry stringency is felt, as it sometimes is, the merchant is not allowed to overreach the buyer, because the prices for all commodities are fixed by statute, which there is no gainsaying. Hut a sinless merchant and a sinless purchaser have no wish to overreach, their interests are in conmon, and all things work in perfect harmony.

Life is naturally very calm and equable on Mars. For although electricity stimulates to great energy in many cases, the absence of animal fool, fermented liquors,-for this process if known-is unpractised-bodily sickness, or mental depravity; makes life flow on peacefully:
and happily and a length of life approaching ono hundred nud fifty of our years is not uncommon.

Noticing a merchant stop suddenly in the strect, commence talking in low tones as though he were conversiug with another, and, seeing no person listening to him; I made bold to enquire of the first one who passed me, what our neighbor was doing. The one accosted saw that I was a stranger and replied, smiling;
"Theta is conversing with another merchant four hundred miles away about a cargo of grain recently shipped, it is simply a case of dual impression, such are very common on this planct."

I bowed my thanks and passed on. Immediately the thought struck me, can I not inform Msrima that I have arrived, and that I am hastening to greet her? No sooner thought than accomplished, I fixed my mind upon her and there was an immediate interchange of thouglat. In half a dozen words I bade her expect me in a short while, especially when Myrima said that the train of cars just about to overtake me would pass the highroad opposite her father's house. Hailing them, they drew up in less than their own length. I entered, and they started on again in a moment. The coaches I found exceedingly elcgant. These, when two or more persons thavel together, can be hired for the party's exclusive use. The motive power is electricity, the machinery for the supplying of it being beneath the coaches. liy a peculiar contrivance the force expended does not rum to waste as with us. By the friction of the wheels it is continually regenerated over and over again. Travelling at an extreme rate of speed, the range of mountains on which I had yesterday alighted soon came into view, and, just as we reached the avenue that led to the parental mansion of Myrima, I seemed to hear her voice telling me to alight. In a moment, I impressed my wish on the attemant-although at the time he was at the opposite end of the car-each car having a special attendant-and the train stood still. He, knowing that I was embarassed about something, came forward and requested me to alight, so that the train might proceed.
"But I have no money wherewith to remunerate jou," I said.
"We have a special siatute that provides for visitors from other orbs travelling over all our lines free of toll," he repilied. "Angelic wisdom guided us in our rond building as well as in shaping our inventions, and it is the least we can do in return to accommodate those who will soon be with the angels." He with others, took me for a spirit disembodied. I alighted, the train moved off, and was out of sight by the time I turned into the avenue.

CHAPTER VIII.

a fonkcast. - hiteraturf and art.

In approaching the conservatory, one of those peculiar reactions came over me that all mast have felt during their lives. As I stepped from the car, I was thrilling with the joyous expectation of a second meeting. Ten seconds later, I felt as if a calamity of the direst kind had overtaken me. Yet I could have given no explanation why the change should have taken place. Bounding forward to meet my beloved, I was suddenly arrested by something, I knew not what. All around remained the same, yet all seemed immediately changed. And the something that so changed my feelings was-what? The magnetic influence of a great sorrow at that moment affecting Myrina.

We met at the door of the conservatory. Myrina was alone. Shyly chiding me because of my delay, her face, as it looked down on mine, showed traces of a sadness, a sorrow of great weight, yet borne with the fortitude of an angel. Had Myrima been of the earth I should have seen traces of tears, but no such crude expressions of sorrow are indulged in upon Mars.
"May I not share your grief," I asked, as we sat once more together watching the fountain's spray.
"Surely, yes," replied Myrina, resting her hand in my own, "Scarcely had you left us last night when two of our seers, whose lives have been passed in continual contemplation of the past history of the house of Am-Ram, and almost perpetual calculations concerning its future; waited upon me. They lad much evil to communicate concerning your future $\begin{aligned} \\ \text { nd } \\ \text { mine. }\end{aligned}$
" But how was it possible for them to speak concerning the future. Away with such credence. Put not your trust in chadlatans, Myrina."
"My poor Scybold, you know not what you say." Myrina gazed at me pityingly with her fair sad eyes, and the conviction that my beloved spoke the truth, silenced my remonstrances effectually.
"Listen," she said; and I obeyed. "Every atom of the uncountable myriads that go to make up the Universe-visible and invisible-acts on every other atom. Were it possible to tear the giant Jupiter from his twelve year circle, and to place him in the orbit of Mercury, there would be chaos in this solar system in a brief space! All suns, all planets, affect all other suns and planets, and the atoms which go to make up such suns and worlds, be those atoms animate or inanimate."
(To be Continued.)

JULY, 1887.
A hot July, with mugegy, oppressive weather, too dry in many places, amd streaks of heary minfall in others, at present writing appears most likely. The likeness of the present season to that of 1881 will continue. In that year, April was a dry month, the drought increasing in May in places, and diminishing in others through part of May and June. An ahost cxact counterpart of 1887. What followed? The heat of July and August that sueceeled the relapse in Jume was extreme, the thermometer at New Orleans rising during July to 100°. It one station in Ontario the mean temperiture of July, 1881, was $88^{\circ} 9^{\prime}$ in the shade, the thermometer exceeding 90° during no less than seven days in the month of May that year. How very similar to this ! The special crop reports that so many are watching with anxiety will grow more and more interesting as the Summer goes on. At the time of writing the reports say that "the season continues a very streaky one so far as the disposition of the rainfall is concerned," and, further, that "there are no areas suffering from too much rain." My readers will perceive at once that my forecast of dry weather has been amply borne out by facts. The wheat crop in Western Kansas is already declared a failure, owing to the dry weather amd insects ("an insect pest Summer"). The corn crop, I said, would succeed, and it is gratifying to note the excellent reports coming in from many sections concerning this important cereal. In some parts of the Far West, however, it has been too dry for com even. The grass crop-in the West and South-West, especially-could not, under the circumstances, be even an average crop. But July will assert its prerogative in the way of heavy showers and disastrous local storms, just as well as by its waves of extreme heat. Sandwiched in between these, let no one be surprised at the occurrence of one or two unfavomble cool spells. An extended forecast follows:-

Opening days, July 1 and 2: Cool weather for July-Wind, rain and hail storms.

First Week, July 3 to 9 : Warmer, unsottled, thunder storms geneml-Hot, cloudy and murky-Very hot in Southern sections-A cooler change-Dry in the N. and N. W.-Rains in the S. amd S. W.

Second Week, July 10 to 16 : Favorable summer wenther-Cooler, high winds and showers, possibly frosts in the N. and N. W. States and Camada, followed by genemally heary showers, with wind, thunder and hail storms, cool niohtsEnd of week fine.

Thind Week, July 17 to 23 : line, hot and favomble-Storms of heavy min, thunder showers and high winds-Cool weather N. ; cool in S., with showers and min storms-Nights quite cool-Fine and hot at the close.

Fourth Week, July 24 to $31: \Lambda$ hot wave, great heat general-Very hot in the S., S.W. and W.-Disastrous storms W. and S.; heat and thander universal, with high winds, gales on Lakes and Atlantic amd Anroral displays-Month ends showery and cool.

EARTHQUAKE NOTES.

The June number of Astronomy and Metronology had hardly left the printer's hands, ere my expectations of additional earthquake tremors were realized. A heavy shock of earthquake was felt at the City of Mexico and vicinity at 2.50 A. M. on May 29 . The weather there had been extremely hot during the previous three or four lays, with great whirlwinds on the afternoon of the 28th. While these events were transpiring in Mexico, similar disturbances were happening the same day at Teei and Ancona, Italy. Shocks were felt in Arizona next day, and at Jamestown, N.Y., on May 31. Mount Etna was in cruption at the same time. Students of Planctary Influence will notice that Mercury was in perihelion at $9 \mathrm{p} . \mathrm{m}$. (Montreal time) on the 23 th , and that he passed superior conjunction on the day previous. As concerns future seismic shocks, the indications seem to point to a continuance of them in July, and, should there be considerable dry, hot weather, earthquakes of no common order will be recorded in August.

NOTES.

May was to end "cool, with rains." It was also to close "stormy, unsettled, with high winds and gales." New York reported $1 \frac{1}{2}$ inches of rain on the night of May 31, the water " coming down in sheets." The wind blew a gale along the coast.
"C. B. M." writes from Minn. :"'Stormy, unsettled, high winds, cool,' said your forecast for Mray 29-30. This was correct here. A little past noon on the 29th, we had two hail, rain and thumder storms, with strong wind. Today (30) is cold, raing and windy."

Mr. Pigeon's paper on "How to Construct a Cheap Astronomical Telescope," published in this issue, will be read with great interest. It has already had the effect-juldging from several letters-of stimulating the latent love for Astronomy that exists in almost every bosom. In orver to meet the wishes of a number of French speaking citizens, the paper is to be translated and reprinted in that language in Le Monde Illustré, Montreal.

Vice-President Heatwole recently lectured (by request) on "Astro-Mcteorolory" before the students of the Shenandoah Institute, Virginia. He was extremely well received, and listened to with much attention. At the close of his remarks, Mr. Heatwole placed several dozen copies of the Planetary Almanac on the table, a present from the author. They were received with thanks, in fact, after a few minutes, there was not a copy left.

The Astro-Meteorolorical Association when founded in Octoher, 1884, had 14 members. It has now (June, 1887), 83. Amongst its members are five clergymen, five medical men and five editors, besides several presidents, officers and members of sister scientific societies. The increase in associates during the past session amounted to over 40 percent. Tho lady associates now number seven.

JUNE MEETING.

"how to construct a cheap astronomical, telescope"-" meteorites, their effects and influence"-A TELESCOPE COMMITTEE csAPPONTED thanking the president.
At the twenty-fourth monthly meeting of the Central Committec of the AstroMeteorological Association, held in the Fraser Institute, Montreal, on the evening of Friday, June 3rd, there were present:--President Walter H. Smith; Councillor the Right Rev. B. B. Ussher ; Treasurer M. Austin ; Associates: J. S. Vipond, A. J. Pigeon, George Creak, E. W. Beuthner, Sydncy Ussher, H. Wray, J. Parmett, Mrs. Parratt, and Mrs. Smith. Two or three non-members were also present.

This being considered an adjournment from the Miny meeting, minutes were dispensed with. Letters, regretting in ability to attend, were real from Secretary Brown and Associate J. C. Weir.
Mr. Weir's letter to the President read as follows:-
Dear Sir,-In reply to your much esteensed letter of May bth and copy of your paper containing article "Think It Over," I think that that article should meet the approval of all the thinking people in favor of progress. The noble example set by the Illinois Legislature is a high tribute to sciunce, and I hope before long to see it passed in tho Dominion. But, dear Smith, do not be discournged at the seeming indifference of our people, as you should not overlook-might I say the crude state of the masses here. We are only emerging from the forest, where Art and Science has had little or no considenation. Do you not think the Dawn is on now? There is a nucleus, not insignificant, I trust, at the Fraser Institute, and it will increase. I hope you will get help to push on the work you have undertaken through love.
The writer sincerely thanks you for the kind invitations you sent him, although unable, through absence, to attend your last meeting. You will please excuse, if I don't come to-night, owing to pressure of husiness. [have No. 3 of Astronomy and Meteorolooy, and hope the littlo satellite will keep above the horizon. First steps are the hardest, you know. Yours truly,

J. C. Weir.

P. S.-Please find enclosed $\$ 1.00$ for subscription to "A. \& M."
The following were nominated for membership:-ByAssociate A. J. Pigeon: Mr. E. C. Iandon, Montreal. By the President: Messrs. Thos. Birt, Utica, N.Y.; Henry B. Small, Ottawa, and Miss Isabel Grant, Ottawa. The rule requiring a month's interval between nomination and election was suspended, and the applicants declared duly elected.
The President remarked that it was truly gratifying to see how the membership roll was increasing. With the Associates of Branches he understood there were now over 80 members.

Mr. A. J. Pigeon was requested to read his paper, entitled, "How to construct a cheap astronomical telescope." Full sized diagrams, prepared by himself, were shown, the reading of the paper being frequently interrupted by members asking for additional explanations, which Mr. Pigeon was most ready to give. The paper (as read) follows:
" I fear that my subject will create no little surprise. I doubt not but that some of you have had niore frequent opportunities of using telescopes than I can lay claim to have had.
"In order to create a love for our science, ns well as to facilitate our approach to it, it is of the utmost importance that the telescope-the giant eye of the astronomer-should be efficient, as low in price as possible, and devoid of all superfluous accessories. These latter only tend to place a telescope beyond tho reach of the impecunions lovers of the science.
" It is not necessary to have a powerful instrument to enable one to add to the important discoverics in Astronomy. Mr. Goldschmidt, a distinguished artist, who suddenly displayed a taste for observation at an advanced age, has justly acquired ronown as the discoverer of fourteen asteroids with a telescope of $5 \frac{1}{2}$ inches aperture, used in his humble mansard studio in Paris.
"The principal astronomical discoveries have nearly all been made with small instruments, constructed by the observers. It is only in comparatively modern times that the optician has had the making of instruments, thus unuecessarily increasing their cost, without in the least making them more efticient. The manufacturer of telescopes, as a rulo, seldom grinds the lenses of which the instrument is composed, he merely mounts them, and it is to his interest to make it as highly finished and complicated as possible.
"To the amateur observer there are certain accessories which are not really necessary, such as an equatorial mounting, clock-work movement, rack and pinion movement, finder, etc.
" Before I enter into the details of the telescope's construction, allow me to give a brief history of its discovery, which seems to have been due to chance. This discovery was made in Holland about the beginning of the 17th century. 'About 30 years ago, says Descartes in his 'Dioptric,' 'James Metius, an uneducated man, who took pleasure in making mirrors and burning glasses, having on a certain occasion lenses of different forms, he unthinkingly looked through two of them, one convex, another concave, and applied them so happily to the end of a tube, that the first telescope was the result.
"On the other hand, the opticians Jansen and Lippershey, of Magdebourg, are given the credit, if not of being the inventors, at least of having perfected the instrument.
" Lenses used in telescopes and microscopes have their surfaces ground in such a manner as to change the direction of the rays of light passing through them; this is due to 'refraction,' that is to say, that a ray of light in passing from a transparent medium into another of a different density is bent obliquely towards the perpendicular more or less; according to the difference of density.
"It is quite evident that without refmetion, which at first sight may seem troublesome, we would havo no lenses, consequently no optical instrument ; it would even be impossible for the eye to exist.
"The focus of a lens is that place back of it to which parallel rays are convorged or gathered to n point ; the focal length being measured from that point to the lens. Convex lenses collect the rays to a point, and are consequently called converging lenses, while concave ones seatter them, and are therefore called divergent.
" It is always a lens of convex form that is placed towarls the object, and is therefore called the 'objective;' it gives a very sinall and brilliant image in its focus, fringed with prismatic or rainbow colors, when that lens is a single or uncorrected one. An achromatic, or corrected lens, is composed of two lenses, one convex, of crown glass, and one concave, of flint glass. This combination corrects the chromntic aberration of the single convex lens.
"When the lonses of the eye-piece are convex, they are placed in the focus of the objective; and when a concave lens is used, it is placed a little in front of the focus, amplifying the image by dispersion. It was by this last arrange. ment that Metius stumbled upon the discovery of the telescope, a vague description of which reaching Galiteo, the latter constructed his first instrument. Kepler first conceived a combination by which he employed two lenses in the eye-piece as it is now made.
"The 'field' of the telescope is the circular space of the heavens we see when looking through it. Its apparent size is more or less acconling as we use a lower or higher power.
"The geometrical ratio of the focal distance of the two lenses measures the power, and this principle would open a possibility of indefinite amplification were it not for the difficulty of naking the lenses as well as the unwieldy length of tube, which reduces the possibility to very narrow limits.
"When we speak of a telescope having a power of, say, one hundred, it means that we see the object at an angle one hundrel times wider than by the naked eye, and not that its real size is multiplied by one hundred. Opticians generally estimate the power of an instrument by the size of the aperture, and not by the length of the focus; there is a certain relative sizo between the aperture and the focus of a lens, beyond which the instrument would be next to useless : for instance, given two lenses of equal focts,-say 36 inches--one of $3 \frac{1}{2}$ inch aperture, the other $1 f$ inch, the first would show an image without any definition, owing to an excess of light, the
last would have great definition，but its field being so limited it would lose it， with the least vibration of the instrument．
＂If the relative size is kept within proper limits，all things being equal， clensity and clearness of glase，etc．，the instrument which has the longest focus， although of small aperture，is the most powerful and will do the best work．
＂I give the length and aperture of a few of the principal telescopes，makers＇ names，and where erected ：－

Maxieh．
WHERE FHzCTED．镸第
Dien．．．．．．．．Universal Expos．， 1855 ． 42.0

Mertz．．．．．．．Fxpor， 1807 ．．．．．．．．．．．．．． 25.8
Sccretain．．．．．Parix Obaervatory．．．．．．．．．．．．．．． 16.8
Mertz．．．．．．．Copenhagen．．．．．．．．．．．．．16．8
＂．．．．．．．．Ruman Coll．Fquatorial． 14.6
Framenhofer，Dorpat ．．．．．．．．．．．．．．．．．．15．1．
I，erebours．．．Paris．．．．．．．．．．．．．．．．．．．． 11.0
＂In the construction of a cheap tele－ scope，the objective is the only part on which to make any considemble outlay． Suppose an achromatic lens of 36 inches focal length， $2 \frac{1}{4}$ inches in diameter，has been chosen，and that we wish to mount it permanently．We will make the cells of mahogany，cherry，black walnut or hard maple（mine are of lignum vita）well seasoned and varnished inside and out to protect them from absorbing moisture from the air ；a wood turner will furnish wool and turn three pieces for about 81．50．For a focussing tube get a piece of brass tubing， 12 inches long by $1 \frac{1}{4}$ inch outside diameter；a tin tube would be a cheap substitute．
＂The eye－piece（fig．2）is tumed to fit inside this tube；a recess in the collar of the eye－piece will admit to glue in it a piece of felt or cloth，to keep it from fall－ ing out．A piece of wool， $3 \frac{1}{2}$ inches in diameter，is bored out lengthwise，a little larger than the focussing tube．It is put on a wood mandril，centred and turned， as shown in fig．2．It should be about 5 inches long and have a piece of felt，cloth or velvet glued at each intemal end，so as to confine the friction to those parts only．
＂An arrangement for focussing is made as indicated in figures 2 and 3．The tube is slightly filed across so as to give it sufficient grip for the rubber－covered spindle to move it back and forth．The objective is secured in its cell（fig．4） against a shoulder，from the front，by a piece of spring－wire bent in the shape of a ring．This facilitates the removal of the objective without removing the cell．
＂To make the body of the telescope， take a piece of wood about 3 inches diameter and 33 inches long．Turn it into a roller．Upon this roll a piece of pasteboard，previously thinned on the longitudinal edges and pasted or glued on the outside．Secure until dry ；before taking it off the wood roller it would be
well to cut the ends of the paper tube 31 inches long on a lathe so as to ensure the mounting of the cell and collar（fig．2） centrally．The cell is secured at one end of the tube by three round head screws nul the collar in the same way at the other end．Four round head screws to－ wand the tapered end of the collar regu－ late the axis of the focussing tube in line with the objective．Insert into encal end of the brass or tin tube，n disk of ca． 1 － boand having a pinhole centre，remove the objective from its cell and replace it by a similar clisk with central pinhole． Place a light（this had better he done at night）in front of the objective end of the telescope，now work the four screws， until，when looking through the eye－picee end of the tubs the three pinholes coin－ cide and show a small star－like light in the oljjective disk．The astronomical or celestial eyc－piece is composed of two plano－convex lenses with their convex side towand the objective．＂Λ＂（fig．2） is called the cye－glass．＂B，＂the field－ ghass．The eye－glass should be one inch focus，and one－half inch in diameter；the field－glass， 2 inch focus，and $\frac{3}{4}$ of an inch in diameter．These should be placed in the cell at a distance of $1 \frac{1}{2}$ inches apart， with a diaphram（＂ C ，＂）having an open－ ing of about 8 inch placed a little in front of the focus of the cye－glass．When observing the sun，use a piece of black glass，cut out of the side of a fiat bottle， as described by Mr．W．H．Smith in No． 2 of Astronomy and Meteonology，secured against the flange＂D＂and held by a ring of spring wire．The lenses and diaphram are also secured in their cell in the same way．Figure 5 shows the par－ spective view of the rubber pressure roll for focussing；a mortice is made in the collar（fig．2）to receive it，and the spindle； a piece of wood is shaped，as shown at ＂E．＂It is hollowed out underneath so as not to interfere with the rubleer roll ；a piece of thin brass or tin is perforated and bent，as shown by figure 6，passed under the body of the telescope and is secured in its place by a screw，after the tube is found to work smoothly．
＂A pedestal is made of pine， 4 feet 3 inches high， 3×3 inches square，and bmeed as indicated by figure 1．Two inch pine will answer for the baso and 1 inch for the braces．The vertical move－ ment is shown at＂F ，＂（fig．3）and the horizontal at＂G．＂
＂Such an instrument can be made（if one has sulficient skill to mount it him－ self）for about $\$ 10$ ．It will give，if properly mounted，as good results as one of the same size，catalogue price in Paris $\$ 28.00$ ，without pedestal，which，laid down in Canada or the United States， would cost about $\$ 12$ more．It would bear a terrestial eye－piece of 35 and an astronomical one of 90 ．
＂A still cheaper mode of mounting would be to make the paper tube as above，
slightly larger than the diameter of the objective，and to glue internally，near end， a strip of pasteboand as a shoulder for the lens to rest against，a piece of pine would do for the collar，a tin tube for the focuss－ ing tube or even a paper tube，if shel－ lacked，would answer．The eyo cell can be made of pasteboard，with sections of lead pipe ns flanges for the lenses．A cardboard diaphrm between the lenses as indicated in figure 2．Great care will have to be taken to mount the lenses of the eye．piece contrally and perfectly parallel on their flat sides．The body of the telescope may bo painted or covered with bookbinder＇s cloth or paper and var－ nished；while the inside of it should le blackened as well as the cells and focuss－ ing tube with a mixture of lampblack， spirits and shellac．
＂Although not indispensable，a finder， ＂K，＂（fig．1）should be provided for this instrument，as it is very difficult to bring an object into its field when using a high power．A good substitute for a finder is the toy telescope ；a fifty cent one is at－ tached to the body of the telescope by means of straps or other devices．After focussing the telescope on a very small distant object，which should be in the centre of its field，focus the toy telescope on the same object and when both are central，secure．
＂Such is the astronomical telescope in its cheapest form ；is it not astonishing that such a little outlay will secure the enjoyment of seeing several celestial wonders，such as the craters of the Moon， the phases of Venus，the satellites and belts of Jupiter，the ring of Saturn，the spots on the Sun，beside some of the double stars and nebulo．
＂In conclusion，I would strongly ad． vise you，by all means，to get a telescope， however small it may be．You will love the science of astronomy the more yout see，and the more powerful the aye you use，the more enjoyment you will have．
＂Mry intention，when I first thought of this subject，was to fully investigato the powers of small telescopes and what they reveal，but as this was recently so ably treated by our President in his paper on＂Small Telescopes and What They Reveal，＂read before our Associa－ tion and published in the May number of Astronony and Meteorology，I con－ sider my task ended．I can only add that my reward will be great if I have suc－ ceeded in convincing you to try your skill in constructing a telescope．

The discussion on this paper closed by the President informing the meeting that the lowest estimate for lithographing and furnishing 500 copies of the diagrams was about $\$ 9.00$ ，an outlay which the present straitened conditions of the finances as regards Astronomy and Mr． teoroloar did not warrant．

Mr. Beuthner, however, kindly camo to the rescue by offering the uso of his cyclostyle. The offer was, of course, accepted with thanks.

By request, President Smith followed with his paper on "The Motion of Storms," read at the fifth monthly mecting, March 6, 1885, and printed in the then organ of the Associntion, the Aelvo. cate, of Huntingdon, Que.

Diagrams of the rapid veering of the wind having been shown and commonted on;
"Meteorites, their uffects and influence," by Mr. H. Beaumont Small, was noxt read as follows:-"It is estimated that on any clear evening a watchful observer may see on an average two falling stars, or meteors as they are more generally styled, ovory five minutes, and at certain periods of the year in such abund. ance as to obtain the name of meteoric showers. These apparently omanato from some point of space known as a radiant, represented by a certain constellation, whilst single meteors appear to come from no particular point, but move in all directions and from every part of the siny; these are called 'sporadic.' In their normal condition these wandering: bodies are known as meteoroids, regular circum-solar bodies, obeying the laws of motion and gravitation equally with the planets. Entering our atmosphere, they become self luminous from the heat engendered by friction with the atmospheric nedium, and the arrested motion which produces a sudden compression of the air. In traversing a space of 50 miles the meteoroid, or meteor as it has now become, is heated, melted, evaporated and extinguished in a period of a few seconds. The height from us at which thay become heated to visibility is soms times 200 miles, but the average has been put down at 75 miles, and extinction at 50 miles above the carth.
"The diameter of Jupiter is 80,000 miles, whilst that of Clio is only sixteen. Chladin, a philosopher at the end of the last century, thought that bodies might exist as much smaller in comparison as Clio to Jupiter, coming down in the same ratio to one twenty-fifth of an inch, mere cosmic dust. Myriads of these may revolve in space without our having any knuwledge of their existence; but, through some convulsion, or by some comet agency coming within the attractive power of a planet, fall towards it, and when entering its atmosphere go through the conditions of luminosity, fusion, \&e. To this cosmic dust is now attributed the appearance known as the zodiacal light, for the sun, when below our horizon, reflects on the cosmical atoms of floating star dust and meteoroids, thus causing that soft glow in the western evening sky, just as a ray of light finding its way into a darkened room through a
small orifice, reveals as motes floting in a sunbeam the particles of dust floating in the air of the room, but only visible when tho my of light falls athwart them.
" Professor Newton, of Yale, considers meteoroids as fragments of, or attendants on comets, the vust mass moving in a long, thin strem around the Sun, and the Earth at stated times in itsorbit plunges through these, taking with its atmosphere each time millions of them. Fnch comet, in its orbit, bears with it these attendunts, thus accounting for the different set periods of meteoric displays. Sporndic moteors of nightly occurrence are but outlying stragglors of a number of moteoroid streams, to find which, with their attendant comets, is the leading problem of meteor science to-day. Schiaparelli rogands meteoroids as original inmates cr portions of one of what he calls "stardififts," attondant bodies which accompany in its journey through space the general drift or star-family, of which the Sun forms part. On this assumption, they are bodies from some more distant space than the star family of the Sun, wanderers from more distant star-drifts.
"The conflagration of a star through contact with a meteoroid is not unknown. Hipparchus records one seen blazing in full day, 2,000 years ago. Similat events are recorded in 945, 1264, 1572, 1596 and 1604. In 1673, another mado its appearance, remaining visible for two years; in 1848, a similar event was noticed, and only a few years ago, another appeared, which Procter ably wrote on in Belgravia. In 1869, two meteoric masses were recorded as having fallen into our Sun, affecting the whole frause of the Earth and our meteorology. Vivid auroras were seen, where formerly they were unknown ; electro magnetic disturbance was manifested all over the earth. The telegraphs in many places refused to work, and thorough electric confusion reigned for a time. The question then arises, may not metcoric matter influence the conditions of life on the earth both in the animal and vegetable kingdom, and may it not also affect the atmospheric conditions by impregnation with various forms of cosmic dust ? The very air wo breathe must at all times contain, in ler i.ever ninute a proportion, cosmic dust brought from interplanetary spaces, where different systems are differently constituted. The London Lancet, some years ago, remarked, it is not certain that deleterious results do not occasionally flow from an excess of some of the elements contained in meteors.
"Professor Roscoe goes so far as to conjecture that the soda which all accustomed to work with the spectroscope find present everywhere, may, by $\because c$, antiseptic properties, exert a considernibis influence in maintaining the public health,
whilst a deficioncy might result in the propagation of an epidemic.
"Atmosphoric electricity is also now partially attributed to meteoric influence. Professor Govi, in 1878, argued that a cortain amount of heat is introdeced into our atmosphere by metcors entering it, and Professor Everett attributes the sudden variations of the needle of the electrometer from no apparent assignable cause to the same influence. May not sudden metcoric influence in like manner affect the weather and the seasons? The subject merits investigation.

The paper was followed by a short discussion.

Bishop Ussher here suggested the opening of a "telescope fund." The Association, with Mr. l'igcon's aid, might, he believed, easily put itself in possession of a good-sized instrument.

The President said in fund for the purpose existed, but had not been pushed. Subscriptions had last session been guaranteed to the amount of $\$ 62.00$.
l3ishop Ussher moved, seconded by Mr. Wray: "That it is desirable that this Association procure as soon as possible the lonses for an astronomical telescope, and that a committee for this purpose be named, composed of the President, Messrs. Pigeon, Bellther, Creak, and tho nover and seconder, who shall obtain quotations and other information, and report at next meeting." Carried unanimously.

The following nulditional donations were guaranteed: 13ishop Ussher, 85.00 ; Mr. Vipond, $\$ 10.00$; Mr. Wray, $\$ 5.00$; and Mr. Austin, 85.00 ; making the sum pronised, 887.00 . It was also decided that the sub-committce be authorized to sond circulars to members requesting subscriptions.

Bishop Ussher remarked that he could not allow the meeting to adjourn ere it passed a vote of thanks to the President for his earnest work, in the midst of such a busy life as his, as well as for his indefatigable efforts tuadvance the aims of the Association and the spread of knowledge.

The President said, smiling, that he supposed it was in order for him to put that motion. (Applause.)

Bishop Ussher asked to be considered Chairman a moment, that he might put the vote. He did so, and every hand was raised in the affirmative.

The President returned thanks in a brief speech, saying, that he did not consider that he had done much for the Association. He certainly felt that if ho had more time he would like to do a great deal more. (Applause.)

The meeting adjourned at 10.20 , until October, subject to the call of the President in the meantime.

Netcoralogn.

[To make the meteorological section of Asthonoxy and Mistrohologi yet moro complete, subscribers on all parts of the continent are invited to send notes on local weather and temperature. These should reach me not less often than once every month. Such notes will almost alweys be utilized.]

Cen thousand peoplo, it is said, suffered from the Michignn forest fires this May.

On May 15.16 in the Northern protion of the Red River Valley, heavy frosts were reported, which cut down the new Spring wheat and damaged garden crops.

The hay crop in Quebec will, it is thought, be a light one.

The past Winter in Montana Terr. is said to have been the severest experienced for twenty-five years.

The amount of ice on the Cape lireton Coast at the end of May this year was unprecedented. Une vessel was five days making fifty niles.

The Navy Department at Washington, owing to the number of abanioned vessels left floating around in the Atlantic, proposes that an International Convention be called and cach country assigned a certain portion of the Ocean, which its vessels would patrol in order to destroy all floating obstacles.

Mr. Redman reports that April in his section of Illinois (Cascy) was a fine month for farming, attenided as it was, with good mins. These, however, were not heavy, but thure was more dornfall than during any previous month this year. The max. ther. at noon was 94° on 13, the min. at sunrise 24° on 5 . The noon temp. on 12 was 90° and on $14,88^{\circ}$. My forceast reat, "Fine, seasonable, some warm days." 'On the fth the min. ther. was 34° and the same on 6 . Clouds and strong winds occurred during this period. Ny forecast read: "Frostia N." "High winds, unsettled," \&ic. The rest of the month appears to have talliel just as closely with my calculations.

Mr. Birt's April record sent nie from Utica, N. Y., gives the max. ther. as 73'; min. 15°, and mean $36^{\circ} 14^{\circ}$. The max. har. was 30.12 ; min. 28.62 mean 29.49 . The greatest heat occurred on 10, and greatest cold on 8. His recond for May states that the month was phenomenal, the warmest for the last 13 years. Max. ther. $88^{\circ} ;$ min. $37{ }^{\circ} ;$ mean $62^{\circ} 87^{\prime}$. Max. barom. $29.74=\mathrm{min} .29 .13$; mean 29.50 . Furious electric storm, with heavy rain, on 24th.

In the North Atlantic, the first jart of the month of May was characterizmo by strong gales from N.N.W. to S.W., extending all across the Atlantic, north
of latitude 36°. The latter part was less windy with frequent heavy fogs north of lat. 40°.

At Montreal, for May 1887, the mean temperature was $61^{\circ} .06^{\prime}$, the greatest for the month of May in thititen yarrs. The max. temperature was $85^{\circ} .5^{\prime}$ on 10 ; minimum $40^{\circ} .1^{\prime}$ on 1 , a range of $450^{\circ} 4^{\prime}$. The minumum temperature was 3° higher than any previons record for May. Kivin fell on 6 days to the extent of only 1.26 inches, as compared with a mean minfall of 2.92 inches. The maximum birometor reading was 30.351 on 14, minimum 29.554 on 26 , or a rugge of 0.797 inches.

At Toronto, Ont., the mean temperature of May was $58^{\circ} .51$ or $6^{\circ} .51$ above the averuge of tha past 47 years. It was $5 .^{\circ} 31$ higher than May 1886 . The rainfall was but 0.805 inches, or 2.202 inches below the average. It was the warmest May on recorl, the highest mean temperature previously on record having been ' $\overline{5} 8^{\prime} .10$ in May, 1881 . It was the driest also, if we except May, 1850, when 0.545 inches fell.

Sim Fruncisco, Cal, reconded its "hottest day for 15 years" on May 28. The thermometer at noon that day registered 97° in the shade ; the previous hottest lxing 95° in June, 1883 . A hot wind llew over the central parts of the state for two days, injuring wheat, strawierries and other things.

Slight earthyuakes were reported from South Carolina, Nevada, and Northem California, on Jume 3nd. Murray lkay and Les Eboulements, Que., also reported the most severe shocks since 1870. Great rocks wero hurled down, and trees levelled on the south shore of the St . Lawrence in L'Islet County. On June 4 a second shock was felt at lkic St. Paul, Quc.

Wheat was being harvested in parts of Kentucky and Tennessec during the last days of May.

Qorrespandence.

a signal service officer's oninios.
[15.] I have received two copies of that very valuable scientific journal, Astronoxi and Meteorologr. Your predictions for April were very accurate, and up to this date (15) for May, have " hit the nail on the heal" every time. Wishing you abundant succesa
(Ljeut.) W. H. I.
Virginia. Signal Corpr, U.S.A.
scientists should give it suriokt.
[16.] Your Astronomi and Metzorolocr has been reaching me regulariy. I am well pleased with it. The general
get up of the paper is such as should command the attention and support of all students of the particular branches of science it so ably sets forth.

> Virginia.
I. J. II.

heIGHT OF THE sNOW LINE.

[17.] What is the height of the perpetual snow line? Does it vary?

Travelder.
Aus.-It varies considembly according to proximity to the equator, ctc. Helialile estimates make it as follows:1solivia, 18,520 feet; Northern Hinalayis, 16,620; Andes, at equator, 15,980; Mexico, 14,760; Himalayas, South side, 12,980; Chili, 12,780; Caucasus, 11,000 ; Pyrences, 8,950 ; Alps, south side, 8,800 ; Alps, north side, 8,000 ; Alaskn, 5,500; Kamschatk:h 5,200; Norway, central portion, 5,000 , and Northern extremity, 9,300 fect.

CANNO: YOU DO LKEWISE 1

[18.] Euclosed find postal order for $\$ 10$ and subscribers' names. Have not been able to get any more yet, but will try hard. Wishing you every success.

Charleston, S.C.

Aus.-If only teu more friends would do as much for Asthonomy and Metrorowar, it would jay cost. Who will send for sample copies and try? One hundred more new subscribers could, I am sure, be easily obtained by ten of my friends in different sections getting to work in good carnest.

LKES HIS PAPER. - THIS SUMMER'S WEATRER

[19.] Your Nay number of AstronoMr and Meteorologe is an almirable one, an improvement on No. 1. Your wenther forecast for May has been romderfully true. The oppressive and unseasonable heat commenced on the $\mathbf{1 5 t h}$ as predicted. The lail storm arrived in time on the $26 t h$, since which we have had steady yrecipitation of $1 \frac{1}{2}$ inches up to now (May 29). The wrather this summer for this locality, judging from the past, will be noted for sudden and severe changes, with periods of extreme heat. The long, heated and unseasonable term we have already had, I count in, as so much heat to be exempted from what is to come. The past winter was unprecedented here. Although we had over 100 days fair sleighing, there was no continued cold. After 3 or 4 days a sudden clange would ensuc, and vice cersa. I did not mean to sky as much when I commenced. I intenied only to congratulate you on your work and wish it more publicity.

Albany, N.Y. R. I. Banke, A.M.A.
Amn.-Your conclusions are scientific, and it will doubtless be as you expect. Accept thanks for kind congratulatious.

[^0]: * Fairest of stars, last in the train of night,

 If better thon lelonir not to the dawn
 Sure lienjon olay that crown'st the smiliug morn, With thy bright circlet."

