ICMH
 Collection de microfiches (monographies)

Technical and Bibliographic Notes / Notes techniques ei bibliographiques

The Institute has attempted to obtain the best original copy available for filming. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of filming are checked below.

Coloured covers /
Couverture de couleur

Covers damaged /
Couverture endommagéeCovers restored and/or laminated /
Couverture restaurée et/ou pelliculéeCover title missing / Le titre de couverture manque
Coloured maps / Cartes géographiques en couleurColoured ink (i.e. other than blue or black) /
Encre de couleur (i.e. autre que bleue ou noire)Coloured plates and/or illustrations /
Planches etou illustrations en couleurBound with other material /
Relié avec d'autres documentsOnly edition available /
Seule édition disponibleTight binding may cause shadows or distortion along interior margin / La reliure serree peut causer de l'ombre ou de la distorsion le long de la marge intérieure.

Blank leaves added during restorations may appear within the text. Whenever possible, these have been omitted from filming / Il se peut que certaines pages blanches ajoutées lors d'une restauration apparaissent dans le texte, mais, lorsque cela était possible, ces pages n'ont pas été filmées.

Additional comments /
Commentaires supplémentaires:

L'Institut a microfilmé le meilleur exemplaire qu'il lui a été possible de se procurer. Les détails de cet exemplaire qui sont peut-être uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de filmage sont indiqués ci-dessous.

Coloured pages / Pages de couleur
Pages damaged / Pages endommagées
Pages restored and/or laminated/
Pages restaurées et/ou pelliculées
Pages discoloured, stained or foxed /
Pages décolorées, tachetées ou piquées
Pages detached / Pages détachées
Showthrough / Transparence

Quality of print varies /
Qualité inégale de l'impression
Includes supplementary material /
Comprend du matériel supplémentaire
Pages wholly or partially obscured by errata slips, tissues, etc., have been refilmed to ensure the best possible image / Les pages totalement ou partiellement obscurcies par un feuillet d'errata, une pelure, etc., ont été filmées à nouveau de façon à obtenir la meilleure image possible.

Opposing pages with varying colouration or discolourations are filmed twice to ensure the best possible image / Les pages s'opposant ayant des colorations variables ou des décolorations sont filmées deux fois afin d'obtenir la meilleure image possible.

This item is silmed at the reduction ratio checked below /
Ce document est filmé au taux de réduction indiqué ci-dessous.

The copy filmod here has been reproduced thanks to the generosity of:

Memorial University of Newfoundland Queen Elizabeth II Library
St. John's
The images appearing here are the best quality possible considering the condition and legibility of the original copy and in keeping with the filming contract specifications.

Original copies in printed paper covers are filmed beginning with the front cover and ending on the last page with a printed or illustrated impression. or the back cover when appropriate. All other original copies are filmed beginning on the first page with a printed or illustrated impres. sion, and ending on the last page with a printed or illustrated impression.

The last recorded frame on each microfiche shall contain the symbol \rightarrow (meaning "CON. TINUED"), or the symbol ∇ (meaning "END"). whichover applies.

Maps, plates, charte, etc., may be filmed at different reduction ratios. Those too large to be entirely included in one exposure are filmed beginning in the upper left hand corner, left to right and top to bottom, as many frames as required. The following diagrams illustrate the mothod:

L'exemplaire filmé fut reproduit grâce à la générosité de:

Memorial University of Newfoundland Queen Elizabeth II Library
St. John's
Les images suivantes ont été reproduites avec le plus grand soin. compte tenu de la condition et de la netteté de l'exempiaire filmé, et en conformits avec les conditions du contrat de filmage.

Les exemplaires originaux dont la couverture en papier est imprimée sont filmés en commencant par le premier plat et en terminant soit par la derniere page qui comporte une empreinte d'impression ou d'illustration, soit par le second plat, selon le cas. Tous les autres exemplaires originaux sont filmés en commençant par la premidre page qui comporte une empreinte d'impression ou d'illustration et en terminant par la dernidre page qui comporte une telle ompreinte.

Un des symboles suivants apparaitra sur la dernierre image de chaque microfiche, selon le cas: le symbole \rightarrow signifie "A SUIVRE", le symbole ∇ signifie "FiN".

Les cartes, planches, tableaux, etc., peuvent ètre filmós à des taux de réduction différents. Lorsque le document est trop grand pour etre reproduit en un seul cliché, il est filmé à partir de l'angle supérieur gauche, de gauche à droite. et de haut en bas, en prenant le nombre d'images nécessaire. Les diagrammes suivants illustrent la méthode.

1	2	3
4	5	6

MICROCOPY RESOLUTION TEST CHART

(ANSI and ISO TECT CHART No. 2)

QUDSTIONS
FOR

Rmbracing all of that science required by the Marine Boards of Examination in England.

QUESTIONS FOR EXERCISE
I.

NAVIGATION,
 NECESSARY TO EFFECT

EXPEDITION AND ACCURACY

IN

NAUTIICAL CALCULATIONS.

> In Tiwo Parts.

Part 1st.-Logarithms-Log-line-Trigonometrythe various sailings-Latitude by observation of any of the heavenly bodies-Variation of the CompassTides, \&c.
Part 2nd.-Chronometer-its error and rate--Equation of time-Apparent time from the altitude of the sun, moon, star, or planet-Greenwich mean time by Lunars-Great circle sailing.

By James Campbell.

"Old sages say, Dame Truth is known to dwell (Strange place enough) at the bottom of a well And Questions are the windlass and the rope 'Io pull the grave old gentlewoman up."-1'. Pindar.

St. John's Nexfoundland: rrinted at the "telegrapi" oftice, by john t. bleton.

ERRATA.

Question 113-For 3h. 92 m , 20s., read 3 h .42 m .20 .
(i 141 -For cyo 24 fect, read 20 feet

- 151-Equation of timo ... $0 \mathrm{~m}, 11.4 \mathrm{~m}_{\mathrm{s}}$.

QUESTIONS FOR EXERCISE,

IN
Navigation,
RESPECTYULLY INSCRIDED
AND
(by TERMISSION)
DEDICATEL
TO his ExCellency
Sir ALEXANUER BANNERMAN, Knight, Governor, \&c.

His Excellency's prompt and courteous proffer to give all the patronage in his power to " A. work of so great utility and of so great necessity to our Mariners" deserves the gratitude of every one desirous to promote Nautical Science; and as no one can be more desirous to promote this science, so no one can be more grateful to his Excellency than the

PREFATORY ADDRESS

To Sir A. Bannerman, Knighl, Governor, \&c.

Sir,-Some few observations seem due to your Excellency, regarding the "Questions for Exercise in Navigation" of which your Excellency so graciously accepted the Dedication, with a frank and earnest proffer to give all the patronage in your power to "a work of so great utility and of so great necessity to our Mariners." These observations seem due also to the public, as it is hoped, through your Excellency's patronage that the expense of publication will be afforded from the public funds.*

Your Excellency has declared yourself but too weil aware of the deficiency of our seamen in Nautical Science, how to best remedy this deficiency has been to me a subject of much consideration. I kn nw that to understand the Science of Navigation thc. 'ughly, it would be necessary to learn systematically both branches of Trigonometry, Plane and Spherical--the first to understand the Sailings, the second to understand Nautical Astronomy; but to become masters of a science so abstruse to them, cannot be expected from the class of men generally, who are destined to navigate the ships of the merchant service. 'Io learn Navigation by lectures or written treatises is quite impossible, so that no ot her means seems left to acquire a practical knowledge of

[^0]Navigation than by practice in working out, and solving questions for exercise in Navigation, to acquire an accurate knowledge of the application of the rules deduced from the above science. These rules are concise and easy to those who understand fully the terms in which they are expressed, but experience enables me to say that our seamen are very deficient in this respect, and consequently have the more need of questions for exercise,certainly for more than is given in Norie's Epitome of Navigation, the only work on that science used in our Schools. To find the altitude of the heavenly bodies, for example, at a given time and place, is a problem of the greatest importance to the navigator, and yet, though Norie gives the rules, he does not give even one question for exercise on them.

In these questions for exercise which I have the honour to present to your Excellency, there are bui four or five questions for each particular rule, the answers are given to three or fou:, so that one or two are left to the skill of the learner to find the answer. As the Nautical Boards of Examination in England require some particulars to find which there is no rule given in Norie's Epitome, I have given the requisite rules in the Appendix, so that all of navigation required by the Marine Boards of Examination cstablished by law in Great Britain, is embraced in these exercises, and he who learas to solve these questions thoroughly, will be qualified to undergo an examination in navigation for a firstclass Master at any of those Boards.

But questions for exercise in navigation, as your Excelleney must know, are not sufficient for the nautical stadent; a school in which to learn to solve these questions, is necessary for him. In this school he should be tanght to use the Nautical Almanac, a thorough knowleris" of which is indispensable to the navigator. In this school he should be taught to adjust the nautical in-
struments and find the amount of the crror arising from the want of due adjustment, with the proofs of such adjustment or error being correctly found. In this school, in short, the young student in navigation should be taught and made to practice taking altitudes and distances of the heavenly bodies, : " from these altitudes and distances find the appare and mean time, and thence the error and rate of a chronometer, the greatest desideratum in the modern practice of navigation. Finally, an efficient nautical school is requisite not only for the practitioner, but also for the teacher of Navigation; the means of duly qualifying themselves for their profession should be afforded to both.

Your Excellency is aware that since September 1st, 1851, no ship or vessel is allowed to clear out from any Custom-House in Great Britain, unless the Master and Mate produce Certificates of competency granted thein, after a rigid examination by the Marine Board of Examination established by law for that purpose. Should not the example set by England be sufficient to induce the Colonists to endeavour to raise the qualifications of the Masters and Mates of their merchant vessels? England understands well the interests of trade, commerce and navigation, and to promote these interests, she has determined to raise the qualifications of those destined to navigate, her merchant vessels. Would not the interests of the trade, commerce and navigation of the Colonies be promoted by a similar procedure? As it is the peculiar province of persons in your Excellency's position, to inaugurate and give effect to measures calculated to advance the public weal, these suggestions are here respectfully submitted by
N.B.-" In all our sea-port towns, Night Schools are now established, and well attended by our merchant seamen, especially the apprentices and junior officers and there receiving instructions and qualifying themselves for the respective grades of their profession; whereas, formerly these people generally spent their nights in tippling-houses and other resorts of immorality. Such are some of the benefits resulting from the late amendment in our Marine Laws."-Shipping Gazette.

Part the First.

Logarithms-Log-line-Trigonometry-The various Sailings-Latitude by Observation of any of the Heavenly bodies-Variation of the CompassTides, \&c.

1. Find the \log for the natural number 87683 .

Answer-4.942915.
2. Find the log for the decimal number .0764 .

Answer- 8.883093 .
3. Find the decimal number for the $\log 6.987645$.

Answer-. 0009719.
4. Find the whole number for the $\log 5.989665$.

Answer-976484.
5. Find the \log for the whole number 36.558 .

Answer-1.562982.
6. Find the \log for the number $3 \frac{7}{9}$.

Answer- 0.577230 .
7. By logarithms multiply 76.4 by 5.4 .

Answer-412.56.
8. By logarithms divide 479.5 by 25.2.

Answer-19.03.
9. If a Chronometer loses 3.7 seconds daily, required the loss in 7 weeks, 4 ds .8 h . by logarithms.

Answer- $3^{\prime} .17^{\prime \prime} .3$.
10. Find the log. co. secant for $81^{\circ} 17^{\prime} 41^{\prime \prime}$.

Answer-10.005032.
11. Find the log. sec. and co. sec for $105^{\circ} 19^{\prime} 25^{\prime \prime}$.

Answer- $\left\{\begin{array}{l}\text { sec. } 10.577951 . \\ \text { co. sec. } 10.015727 .\end{array}\right.$
12. Find the log. sine for $0^{\circ} 21^{\prime} 35^{\prime \prime}$.

Answer-7.797839.
13. Find the log. co.tang. for $89^{\circ} 48^{\prime} 43^{\prime \prime}$.

Answer-7.516153.
14. Find the logs. co. sine. co.tang. and co. sec. for $47^{\circ} 34^{\prime} .35^{\prime \prime}$.

The length of the knot of the log-line depends on the number of seconds the glass rums. The most common method is to see how many seconds a glass runs and to the seconds annex a cipher, then divide by 6 , the quotient will be the length of the knot in feet and fraction of a foot.
15. Required the length of the knot when a glass runs 31 seconds, 310 divided by 6 gives for answer, 51 feet 8 in.
16. If a glass runs out in 27 seconds, what should be the length of the knot.
17. If a ship is running $7 \frac{1}{3}$ knots an hour by a logline of 45 feet, used with a glass that runs 29 seconds, what will be her true rate of sailing per hour.

Answer-7 knots.
18. A ship sails 300 miles by a \log-line of 50 feet to a knot used with a glass that runs out in 29 seconds. Required the true distance run.

Answer-310 miles.
In whatever direction a vessel sails off the meridian, the distance she runs forms the side of a triangle, and the compass indicates the angle: thus all sailings are triangles, the solution of which (called plane trigonometry) should be thoroughly understood by the navigator.
19. A ship from lat. $20^{\circ} .95^{\prime} \mathrm{N}$. sailed in a direct course between south and west 280 miles and then her departure is $\mathbf{7 7}$ miles more than her difference of latitude. Required the course steered and latitude in.

Answer-course steered S. $56^{\circ} .13^{\prime} \mathrm{W}$. lat. in $17^{\circ} .59^{\prime} \mathrm{N}$.
20. The base of a triangle is 20 . the angle opposite $48^{\circ} 30^{\prime}$ the sum of the other sides 36 . Required the other angles and the sides separately.

$$
\begin{array}{rc}
\text { Answer- } \text { Angles } & 23^{\circ} \cdot 26^{\prime} . \\
& 108^{\circ} .4^{\prime} . \\
\text { Sides } & 10.62 \\
& 25.39
\end{array}
$$

21. One side of a triongle is 20 . the adjacent angles are 28° and 45°. Required the other two sides and
angle. Or, a light bears from a ship E. 98° N. then having rum eastwardly 20 miles, the same light bears $\mathbf{W} .45^{\circ} \mathrm{N}$. Required the ship's distance from the light at the time of taking each bearing.

Answer- Δ t 1 st bearing dist. 14.79^{\prime}.
22. Given the two sides and the contained angle, to find the other angles and third side. Or, a ship is bound to a port which bears S.b.W $1 \mathbf{W}$ W. distant 150 miles. sails S.S.E. ${ }_{2}$ E. 130 miles. Required her course and distance to her port.

Answer-course S. $74^{\circ} .35{ }^{1}{ }^{\prime}$ W. dist. 108.7 miles.
23. A ship sails from a port, (suppose St. John's N. F.) 250 miles, in the south east quarter: then has to heave to in a gale in which she drifts 235.5 niles in the north west quarter: when she bears up and after a run of 141 miles, anchors at St. John's. Required the courses steered and her drift.

$$
\begin{array}{r}
\text { Answer-1st eourse } \\
\text { Drift } \\
\text { S.E.B.S.S. } \\
\text { 2nd course N.E.b.N. }
\end{array}
$$

24. Required the course and distance from Baccalicu island N. F. to the isle of Valencia, Ireland, by Mercators sailing.

$$
\text { Answer-Coursc N. } 82^{\circ} .8^{\prime} \text { E. }
$$

25. How many miles to a degree of longitude on the parallel of St. John's latitude, viz. $47^{\circ} 34^{\prime} 3 \overline{5}^{\prime \prime}$.

Answer- 44.29 miles.
26. Find by Mercator's sailing, the courses and the whole distance from St. Jolm's N. F. to Hobart 'Town, Van Diemen's land by the Cape of Good Hope.

Answer-Course to the Cape S. $38^{\circ} .1^{\prime} .20^{\prime}$ L. dist. 6241
Do from Cape to Hobart 'T., S. $85^{\circ} .9^{\prime} \mathrm{E}$. dist 6050
Distance from St. John's to IIobart Town 12291
27. A ship sails due east 100 miles and then had made 170 miles dif. of longitude. Reduired on what parallel of latitude she sailed.

Answer- $\mathbf{H}^{\circ} . \mathrm{N}^{\top}$ or S .
28. A ship runs a direct course 111.7 miles and then finds her difference of latitude double her departure. Required the course, and difference of latitude and departure made good.

Answer-Course $26^{\circ} 23^{\prime}$
Dif. of lat. 100 miles Dep. 50 do.
29. A ship sails N. $13^{\circ} 38^{\prime}$ E. till she had made 291 miles dif. of longitude, then dropt anchor in the narrows of St. John's N. F. Required the port sailed from.

Answer-Bermudas.
30. The wind at S.W. a ship beating to windward runs 225 miles on her port tacks, and 225 miles also on her starboard tacks, and then finds she has made 150 miles directly to windward. Required the courses steered and how near the wind did the ship lie.

Answer-Course on port tack N. $64^{\circ} 28^{\prime} \mathrm{W}$. Do on starboard tack S. $25^{\circ} 32^{\prime} \mathrm{E}$. The ship lay $6 \$$ points from the wind.
31. In what latitude will one mile of departure make two miles dif. of longitude. Answer- 60°.
32. A ship sailing at the rate of 9 miles an hour and wanting to double a cape bearing from her N.W.b.W. finds she is in a current setting S.S.W. $8 \frac{1}{2}$ miles an hour. What course must she steer to counteract the effect of the current.

Answer-N. $33^{\circ} 50{ }^{\circ} \mathrm{W}$.
(This question is taken from $\stackrel{\mathcal{N} \text { orie's Epitome of }}{\text { Na- }}$ vigation, page 125 and the answer there given is \mathcal{N}. $36^{\circ}{ }^{\prime} 3^{\prime} W$. but this answer is evidently wrong.)
33. The altitude of Rider's Hill, back of Trinity taken on the ice, was $5^{\circ} 26^{\prime} 30^{\prime \prime}$ then having walked 300 steps, equal to 900 feet, in a direct line towards the hill, the altitude was then found to be $7^{\circ} 4^{\prime} 30^{\prime \prime}$. Required the height of the hill over the level of the sea.

Answer-368 feet.
34. A steam ship bound to a port bearing N.W. 60 miles, runs 11 knots an hour in a current setting N.N.
E. 5 miles an hour. Required the course to be stecred, and the distance to be run, to arrive at her port in the shortest time possil :

Answé--Course N. $69^{\circ} 50^{\prime}$ W. dist. to run ${ }_{50^{\prime}}{ }^{\prime} 4$.
35. In a current known to set N.W. b N. a ship from latitude $38^{\circ} 20^{\prime} \mathrm{N}$. sailed 24 hours, when by her reckoning she is in latitude $38^{\circ} 42^{\prime} \mathrm{N}$. having made 44 miles of easting, but by observation she finds she is in latitude $38^{\circ} 58^{\prime} \mathbf{N}$, Required the true course and distance made good, and the drift of the current.

> Answer-Course N $41^{\circ} 14^{\prime}$ E dist. $50^{\prime} \overline{0}$. Drift of current $19^{\prime} 24$.
36. The wind at N.E. the bearing of the port N. b E. $\frac{1}{2}$ E. distant 18 miles, the ship to make her port, ran on her port tack 48 miles, with a course made good 6 points from the wind. She now heaves about. Required what course she must steer, and what distance must she run to reach her port.

Answer-Course N. $47^{\circ} 42^{\prime}$ W. dist. 53^{\prime}.
37. Suppose the bearing and distance from Trinity to Perlican be S.S.W. 28 miles; and the wind at S . now, if the Packet make her course good $5 \frac{1}{2}$ points from the wind, and purposes to fetch Perlican in two boards. Required the course and distance to be run on each.

Answer-Course S.W.bW. $\frac{1}{2}$ W. dist. 33.5 miles. S.E.bE. $\frac{1}{2}$ E. dist. 21.4 miles.
38. A ship from latitude $48^{\circ} 28^{\prime} \mathrm{N}$. and longitude $5^{\circ} 4^{\prime} \mathrm{W}$. sails between south and west in a direct course, when by observation she is found to be in longitude $10^{\circ} 40^{\prime} \dot{W}$. having made 232 miles departure to the westward. Required the latitude in, the course steered, and distance run.

$$
\text { Answer-Course S. } 43^{\circ} 5^{\prime} \mathrm{W} \text {. lat. in } 44^{\circ} 20 \mathrm{~N}
$$ Distance run 340 miles.

39. A ship from St. John's, N.F., sailed S. and W . till her departure was 568 miles, and then she was in
longitude $65^{\circ} 5837^{\prime \prime}$ W. Required the course steered, latitude in, and distance run. Answer-Course steered S. $60^{\circ} 19^{\prime} \mathrm{W}$. Lat. in $41^{\circ} 57^{\prime} 2 i^{\prime \prime} \mathrm{N}$. Distance run 660.4 miles.
40. A ship taking her departure from Cape St. Roque in latitude $5^{\circ} 28^{\prime} \mathbf{S}$. longitude $35^{\circ} 17^{\prime} \mathbf{W}$. sailed N . $42^{\circ} 27^{\prime}$ E. till she made 600 miles difference of longitude. Required the lat. and long. of the ship.

$$
\text { Auswer-Iat, } \delta^{\circ} 28^{\prime} \mathrm{N} .
$$

41. A clipper ship making her course good 4 po° is from the wind, made her port on two boards: the tirst in the S.W. quarter on the port tack 50 miles, and the other on her starboard tack 70 miles, and by observation the port arrived at is 42 miles southward of the port left. Required the bearing and distance of the port and the direction of the wind.

Answer-Bearing of the port S. $57^{\circ} \mathrm{J}$. dist. 77 miles the wind S. $42^{\circ} 15^{\prime} \mathrm{E}$.
42. In a current setting S.S.W. $3 \frac{1}{2}$ miles an hour, a vessel stcered N.W. $\frac{3}{4}$ W. 9 miles an hour. Required the true course, and distance made good in 24 hours.

Answer-Course N. $76^{\circ} \mathrm{W}$. dist. 211 miles.
43. A ship arrived at James' 'Town, St. Helena, after a course made good N. $49^{\circ} 41^{\prime} 34^{\prime \prime} \mathrm{W}$. having made 1450 miles dif. of longitude. Required the distance run and the latitude and longitude left.

Answer-Dist. run 1710 miles
Place left Cape of Good Hope.
44. Required by Mercator's sailing the course and distance from Cape Clear, Ireland, to Sandy Hook, New York.

Answer-Course S. $76^{\circ} 12^{\prime} 45^{\prime \prime} \mathrm{W}$.
Distance 2758 miles.
45. Required by Mercator's sailing, the difference to a stcamer from Liverpool to New York, (making Cape Clear her departure) by calling at St. John's N. F.

Answer- 49 miles shorter by Calling at St. John's
46. A master of ship finds the true bearing of his
ship to her port to be N.b.E. $\frac{1}{2}$ E. a current is known to set S. $\frac{1}{2}$ E. 3 miles an hour-the variation of the compass is know to be $2 \frac{1}{4}$ points W. and the ship ruming 8 knots. It is required to find the course by compass to run direct into port.
L. 15 wer-N. $33.56^{\prime} \mathrm{E}-\mathrm{F}$ N.E.b.N. nearly
47. Required the dinerence of latitude between two parallels on opposite sides of the equator the meridian distance in one parallel being 338 miles and in the other 196 miles, while at the equator, it is 358 miles.

> Answer $-70^{\circ} 3^{\prime}$, or $19^{\circ} 15^{\prime}$ on one side, And $56^{\circ} 48^{\prime}$ on the other side of the equater.
48. Suppose a ship is bound to a port directly north and distant 25 miles, has the wind directly ahead. Now if the ship make her course good 6 points from the wind, what distance should she run on each of two tacks to fetch her port.

Answer-32d miles on each.
49. Required by Mercators sailing, the course and distance from Cape East, New Zealand, in lat. $37^{\circ} 44^{\prime}$ 30 S. long. $178^{\circ} 36^{\prime} 15^{\prime \prime}$ E. to Cape Horn in lat. $55^{\circ} 58^{\prime}$ $40^{\prime \prime}$ S. long. $67^{\circ} 12^{\prime} 25^{\prime \prime} \mathrm{W}$.

Answer-Course S. $76^{\circ} 40^{\prime}$ E. dist. 47.44^{\prime}
50. A ship is in latitude by observation $51^{\circ} 40^{\prime} \mathrm{N}$. and longitude by chronometer $54^{\circ} 50^{\prime} \mathrm{W}$, the true bearing of a Cape was observed to be N. $44^{\circ} \mathrm{W}$. and having run W.N.W. 30 miles, the Cape bore N. $12^{\circ} \mathrm{W}$. Required the latitude and longitude of the Cape, and find on the Chart what cape it is.

Answer-Lat. of the Cape $52^{\circ} 14^{\prime}$ N. long. $55^{\circ} 43^{\prime}$ W. Cape Charles Labrador.
51. Suppose England at war with Russia, and the British Consul at New York sends a telegraph message to the Admiral or Governor at St. John's, N. F. to the effect that-a Russian agent at New York had purchased, and freighted with munitions of war and specic, a large steam ship which had sailed for St. Petersburgh and,
therefore, her course should be from Sandy Hook, to Cape Scaw, north of Demmark, and her speed supposed to be 10 miles an hour Tointercept this vessel, a man of war straner is dispaterem St. John's whose speed may be made 12 knots $m_{1} 1$, urr, and stap1s 7 : hours after the depurture of the Russian Steamer from New York. It is required to find what course shond be seeped, what distance must be run, and what time it will take the British stamer to fall in with the Russian, and what will lie latitude and longitale of the place of interception.

Answer- Mritish strm's. course S. 25° 5. V.
l histance to run 18° miles
Time $15 \mathrm{~h}, 26 \mathrm{~m}$.
Place of interception lat. $44^{\circ} 51^{\prime}$. N.
Long. $51^{\circ} 442^{\prime} \mathrm{W}$.
52. It is required to find the latitude and longitnde of the Russian steamer (in the last question) when m the nearest point to St. John's, and what time after her departure from New York, the British steamer shonkl start from St. John's to intercept her in that point, and what course should be steered and distance should be run to do so.

Answer-In the R. Str's, course, the nearest point to St John's is latitude $45^{\circ} 31^{\prime} \mathrm{N}$. Longitude $51^{\circ} 42^{\prime}$.W. British steumers course S. $17^{\circ} 31^{\prime}$. L. Ditto's distance to run 130 miles Time to start 89 h .52 m . after the departure of the Russian from New York.
As there is no question in Norie's Epitome similar to the two last questions, they are here given and explained by projection for the learner
has 6
tude

N.S.F. W. represent the complass. A. the centre, St. John's. B, New York, the line B G the course fi The line $A 13$ the course and distance from St. Jolm's to New York, C, 720 miles from New York, is t when the British steamer started from St. Jolms. From C to D lay off 10 miles from any seale of equa take 12 miles in the compasses, and put, one ley on D , and the other leg will reach to F in the line 1 throngh A, draw A II which is the distanee the British steamer has to rum, viz., 185^{\prime} and H AS her place of interecption in latitude $44^{\circ} 51^{\prime} \mathrm{N}$. longituw.c $54^{\circ} 44 y^{\prime}$ W.
For the sceond question-From A let fall a perpendienlar on B G at I, then A I is the distance, 130 has to run. S. A I hcr course S. $17^{\circ} 31^{\prime}$ E. I the nearest point to St. Jolur's, is the point of intercept tude $51^{\circ} 42 \mathrm{l}$.

York, the line BG the course from New York to Cape Scaw. C, 720 miniles from New York, is the place of the Russian steamer 10 miles from any seale of equal parts. From the samo scale leg will reach to F in the line $\perp \mathrm{C}$. Join D F and parallel to it to run, viz., 180^{\prime} and II $A S$ her course $S .28^{\circ} 5^{\prime}$ W. and II the

I I, then A I is the distance, 130 miles which the British steamer t. Joln's, is the point of interception in latitude $45^{\circ} 31^{\prime} \mathrm{N}$. longi-

Lat. in

Co. lat.

Decl.
\odot 's tru

Latilude by Observation, Variation of the Compass, Tides.

Note.-As the Meridian altitude of the sun, or any other of the heavenly bodies, is always equal to the sum of the co. latitude of the place of observation and the declination of the object, when they are both north or both south, or to their dilference when one is north and the other south: then when the latitude of a place is known the meridian altitude of the sun or other object can be easily found: and it would be advisable for a person not well skilled in the use and adjustment of the quadrant or sextant, to find when he knows his latitude, what the neridian altitude should be on his quadrant if correctly taken: when the altitude on his quadrant agrees with the altitude found by account, he may be sure of the correctness of his instrument and of his own skill, but if they do not agree, he may be certain that his instrument or his skill is in fault.
53. May 27, 1857, in lat. $48^{\circ} 42^{\prime} 40^{\prime \prime}$ N. long. 53° W. (Gull Islaud, Bonavista) the meridian altitude of the Sun's l.1. was taken and read off the quadrant 62° 10^{\prime} the ey 18 e feet over the sea. Required the error.
\bigcirc Decl. May 27,1837, N. A. $21^{\circ} 20^{\prime} 30^{\prime \prime}$ N. Correction for long. $53^{\circ} \mathrm{W}$. 1.26

Redueed declination $21: 21: 50 \mathrm{~N}$.

Lat. in	$\begin{aligned} & 48^{\circ} 42^{\prime} 40^{\prime \prime} \mathrm{N} . \\ & 90 \end{aligned}$	Observed alt. sun's	$62^{\circ} 10^{\prime} 0^{\prime \prime}$
Co. lat.	41. 17. 20 N .	Dip for 18 feet	4.4
Decl.	21. 21. 56 N.	Refraction	62. 5. 56
\bigcirc 's true alt. 62, 39. 16			$\text { 62. 5. } 26$
		() sem. diameter	
	62. 21.10	¢'s obseryed alt.	62: 21. 15

54. March 21, 1853, about 15 miles cast of Cipe Spear, the observed meridian altitude of \odot is $42^{\circ} 43^{\prime}$ the eye 20 feet. Required the crror of altitude.
 the observed meridian altitude of the \odot is $39^{\circ} 51^{\prime}$ the cye 22 feet. Required the error of altitude, if any.

Answer-5 miles.
56. Scpt. 19, 1858, in latitude $14020^{\prime} \mathrm{S}$. long. 176° W. What should the meridian altitude of the \odot be on the quadrant, the eye 18 feet over the sea.

Answer $74^{\circ} 9^{\prime} 43^{\prime \prime}$.
57. Sep. 23, 1858 , in lat. $43^{\circ} 22^{\prime} \mathrm{N}$. long. $53^{\circ} \mathrm{W}$. Required the altitude of the moon's centre when on the ineridian.
 ridian, June the 104 h , and what will be its allitude at that time in latitude $51^{\circ} 28!\mathrm{N}$.

Auswer-On the meridian 11 h .4 m. r.M. Mer. alt. $\quad 12^{\circ} 24 \frac{1}{2}$
59. What star will be on the meridian about halfpast cleven p.m., Jan. 6th, and what will be its meridian altitude in lat. $2^{\circ} 12^{\prime} \mathrm{S}$.

Answer-Sirius, its mer. alt. $75^{\circ} 41^{\prime}$.
60. June 2 nd , 1858, in longitude $129^{\circ} \mathrm{W}$. the observed meridian alt. of the \odot, the observer south of the sun, was $67^{\circ} 31^{\prime} 10^{\prime \prime}$ index error $+1^{\prime} 10^{\prime \prime}$ the eye 20 feet over the sea. Required the latitude. meridian alt. of the $\odot \mathbf{N}$. of observer $67^{\circ} 43^{\prime}$ index + $1^{\prime} 38^{\prime \prime}$ the cye 18 feet over the sea. Required the latitude.
62. May 7, 185 ? Answer-4037 s. $10^{\prime} \mathrm{W}$ Wy $10^{\prime} \mathrm{W}$. by account, the observed meridian alt. of the \odot was $83^{\circ} 44^{\prime}$ the observer south of the sun-Index error
$2^{\prime} 20^{\prime \prime}$ to subtract-the eye 20 feet over the sea. Required the error of the latitude by account.

Lat. by observation $10^{\circ} 49^{1 /} \mathrm{N}$
do. by account
Answer-Error

63.-Sep. 15, 1858, in long. $60^{\circ} 32^{\prime}$ E. the observed meridian allitude of the \odot was $84.32^{\prime} 17^{\prime \prime}$ the observer south of the sum: the index crror of the sextant $+\mathfrak{2}^{\prime}$ $48^{\prime \prime}$-the eye 22 feet over the sea. Required the latitude of the place of observation to the nearest second.

Arswer- $2^{\circ} \mathbf{u}^{\prime} 44^{\prime \prime} \mathrm{S}$.
64. June 10, 1858 , in long. $172^{\circ} \mathrm{W}$. the observed meridian alt. of the \odot was $66^{\circ} 31^{\prime} 42^{\prime \prime}$ the observer south of the sum-index error $+1^{\prime} 20^{\prime \prime}$ the eye 20 feet over the sea. Required the latitude to the nearest second.

Answer- $0^{\circ} 12^{\prime} 14^{\prime \prime} \mathrm{S}$.
65. Oct. 11th, 1858, (about midnight) the observed meridian altitude of the star Spica was, $73^{\circ} 38^{\prime}$ the observer north of the star-the index error $+45^{\prime \prime}$ the cye 18 feet. Required the lat.

$$
\text { Answer- }-6^{\circ} 0^{\prime} \mathrm{N}
$$

66. April 12, 1858, (about 3h. A.m.) the meridian altitude of Autares, south of the observer, was found to be $78^{\circ} 13^{\prime} 10^{\prime \prime}-$ no index crror, the eye 20 fect over the sea. Required the latitude.

$$
\text { Answer }-14^{\circ} 16^{\prime} \mathrm{S}
$$

67. Nov. 9,1858 , (about 0 h. 30 m. м.м.,) the observed meridian altitude of the star Areturus was $71^{\circ} 24^{\prime}$ the star north of the onserver, the cye 18 feet over the sea, and no index error. Required the latitude.

Answer- $1^{\circ} 15^{\prime} \mathrm{N}$.
68. Nov. 95,1858 , in longitude $45^{\circ} \mathrm{W}$. the altitude of the planet Jupiter on the meridian, north of the observer, was $67^{\circ} 48^{\prime} 45^{\prime \prime}$ the index crror $2^{\prime} 10^{\prime \prime}$ to sub-tract-the eye 16 feet over the sea. Required the latitude.
69. Oct. 12, 1858, in longitude $59^{\circ} 30^{\prime} \mathrm{W}$. the observed meridian altitude of the 1.I. of the planet Venus, south of the observer, was $33^{\circ} 35^{\prime}$ the index error- 2^{\prime} $10^{\prime \prime}$ the eye 20 feet over the sea. In what latitude was the altutude taken.

$$
\text { Answer-In lat. } 32^{\circ} 18^{\prime} 42^{\prime \prime} \mathrm{N} .
$$

70. Dec. 10,1858 , in longitude $12^{\circ} 20^{\prime} \mathrm{E}$. the observed meridian altitude of Mars, north of observer, was $75^{\circ} 5^{\prime} 24^{\prime \prime}$ the index error, $3^{\prime} 20^{\prime \prime}$ to add-the eye 22 feet over the sea. Required the latitude.

Answer- $30^{\circ} 45^{\prime} 10^{\prime \prime} \mathrm{S}$.
71.-Sept. 20, 1858 in longitude $36^{\circ} 40^{\prime} \mathrm{W}$. the meridian alt. of the moon's l.1. was $35^{\circ} 40^{\prime}$ the observer north of the moon: the cye 20 feet over the sea, and the index error $3^{\prime} 10^{\prime \prime}$ to add. Required the latitude.

$$
\text { Answer-In lat. } 43^{\circ} 13^{\prime} \mathrm{N} .
$$

72. Oct. 18, 1858 in longitude $48^{\circ} 45^{\prime}$ E. the observed meridian altitude of the moon's l.1. north of the observer, was $61^{\circ} 5^{\prime} 10^{\prime \prime}$ the index error $3^{\prime} 10^{\prime \prime}$ to sub-tract-the eye 24 feet over the sea. Required the latitude to the nearest minute.

Answer $37^{\circ} 35^{\prime} 52^{\prime \prime} \mathrm{S}$.
73. Dec. 17,1853 , in longitude $52^{\circ} 40^{\prime}$ W. the meridian altitude of the moon's l.I. south of the observer, was $64^{\circ} 22^{\prime} 15^{\prime \prime}$ the index error $1^{\prime} 20^{\prime \prime}$ to subtract-the eye 21 feet over the sea. Required the latitude.

Answer- $46^{\circ} 46^{\prime} 15^{\prime \prime} \mathrm{N}$.
Cape Bollard.
74. June 16,1858 in longitude $161^{\circ} 40^{\prime} \mathrm{W}$. the altitude of the sun's l.l. at midnight, that is on the meridian at midnight, was $7^{\circ} 10^{\prime}$, the height of the eye above the sea 26 feet, no index error. Required the latitude.

Answer- $73^{\circ} 50^{\prime} \mathrm{N}$.
75. July 2, 1858 in longitude $570^{\text {Answer- }} 56^{\prime} \mathbf{W}$. the observed altitude of \odot on the meridiau below the pole, was $5^{\circ} 20^{\prime}$ the height of the eye 21 feet over the sea, the index error $1^{\prime} 20^{\prime \prime}$ to add. Required the latitude.
the olst Venus, error- $\mathbf{2}^{\prime}$ tude was
${ }^{2 \prime} \mathrm{~N}$.
the obver, was
eye 2
$b^{\prime \prime}$ S.
the meobserver sea, and latitude. $3^{\prime} \mathrm{N}$. . the ob)the of the " to subthe lati-
${ }^{2 \prime \prime} \mathrm{~s}$.
the meobserver, act-the
W. the he meriye above latitude. $0^{\prime} \mathrm{N}$.
observoole, was sea, the ide.
" N.
76. Junc 10,1858 in longitude $109^{\circ} 25^{\prime} \mathbf{W}$. the altitude of the $\bar{\odot}$ on the meridian below the pole, was $6^{\circ} 22^{\prime} 2^{\prime \prime}$ the index error $3^{\prime} 15^{\prime \prime}$ to subtract, the eye 25 feet over the sea, Required the latitude.

Answer- $72^{\circ} 4 \bar{a}^{\prime} 28^{\prime \prime} \mathrm{N}$.
77. Oct. 8, 1858 the altitude of the star Vega (a Lyrae) when on the meridian below the pole was $12^{\circ} 10^{\prime}$ the index error 0 the eye 16 feet over the sea. Required the latitude.

Answer-In lat. $63^{\circ} 22^{\prime} \mathrm{N}$.
78, Feb. 12, 1857 the observed meridian altitude below the pole, of the star a Crux, was $12^{\circ} 20^{\prime} 15^{\prime \prime}$ the the index error $\mathfrak{2}^{\prime} 20^{\prime \prime}$ to subtract, the eye 25 feet over the sea. Required the latitude.

$$
\text { Answer-In lat. } 39^{\circ} 50^{\prime} 14^{\prime \prime} \text { S. }
$$

79. March 4, 1857 the observed meridian altitude of the star Capella (a Aurigae) below the pole, was $14^{\circ} 45^{\prime}$ the instrument exactly adjusted, the eye 20 feet over the sea. Required the latitude.

Answer-In lat. $58^{\circ} 45^{\prime} 49^{\prime \prime} \mathrm{N}$.
80. July 7, 1857 the observed altitude of Canopus (a Argo) below the pole, was $10^{\circ} 20^{\prime}$ the index crror $1^{\prime} 40^{\prime \prime}$ to add-ihe eye 22 feet over the sea. Required the latitude

Answer-in lat. $47^{\circ} 35^{\prime} \mathrm{S}$.
SI. Jan. 6, 1858 in longitude $53^{\circ} 16^{\prime} 50^{\prime \prime} \mathrm{W}$. at 9 h . 30 m . p.n., mean time at place of observation, the observed altitude of the pole star was $49^{\circ} 17^{\prime} 15^{\prime \prime}$. Iudex error $1^{\prime} 20^{\prime \prime}$ to add, the eye 18 feet over the sea. Required the latitude.

Answer- $48^{\circ} 21^{\prime} 33^{\prime \prime} \mathrm{N}$.
Trinity N. F.
82. July 20, 1858 in longitude 35° W. at 10 h .20 m . p.m., mean time, suppose the altitude of Polaris to be $54^{\circ} 10^{\prime}$ the eye 20 feet over the sea, the index error $+2^{\prime} 18^{\prime \prime}$. Required the latitude.

Answer- $54^{\circ} 28^{\prime} 49^{\prime \prime}$ by N. A. method. $54^{\circ} 26.20^{\prime \prime}$ by Norie's method.
83. Sep. 6, 1858 in longitude $38^{\circ} 30^{\prime} \mathrm{W}$. at 11 h .
51^{\prime} P.m., apparent time, the olserved altitude of Polaris was $33^{\circ} 30^{\prime} 25^{\prime \prime}$ the cye 22 feet over the sea, index crror $+2^{\prime} 10^{\prime \prime}$. Recuired the latitude, Answer- $32^{\circ} 12^{\prime} 32$. N. by N. A. method.
84. March 1, 1858 , in ${ }^{320^{2}} 14^{\prime} 39^{\prime \prime}$ N. by Noric's method. 30n. mean time, the altitudl for index error, dip. and refinetio pole star corrected Required the latitude.
85. May 7, 1858 Answer- $71^{\circ} 392^{\circ} \mathrm{N}$. by one method. and longitude $18^{\circ} 20^{\prime} \mathrm{W}$. the in latitude $27^{\circ} 20^{\prime} \mathrm{N}$. rected for index crror, dip. the altitude of the sun corwas $79^{\circ} 25^{\prime}$ at 11 h . 53 p . refraction and semidiameter observation. Required apparent time at place of 86. Aug. 1, 1858 by accoun Answer-270 173 N . and longitude $70025^{\prime} \mathrm{F}$ account in latitude $34^{\circ} 13^{\prime} \mathrm{S}$. sun's I.I. was $370^{\circ} 40^{\prime}$. the observed altituc' ? of the noon-the index crror- at 0 h .25 m . 12 s . ap. time past sea. Required the true latitude. ${ }^{\prime}$ eye 20 fect over the
87. Dec. 16, 1858 in latitude Answer- $34^{\circ} 6^{\prime}$ S. and longitude $50^{\circ} 45^{\prime} \mathrm{W}$. the by account $3^{\circ} 40^{\prime} \mathrm{N}$. $62^{\circ} 20^{\prime}$ when a chronometer altitude of the \odot was accumulated rate showed corrected for error and index error + 1' $20^{\prime \prime}$-the 3h. 45. Gr. M. Time, the Required the true latitude. cye 24 feet over the sea.
88. Oct. 18,1858 Answer $3^{\circ} 22^{\prime} \mathrm{N}$. and longitude $16^{\circ} 20^{\prime} \mathbf{W}$. accomimt in latitude $43^{\circ} 10^{\prime} \mathrm{S}$. by a watch which was too fast. 86 m . 20s. P.M. ap. time the sun taken A.m.-the altitude of 10s. by altitudes of observer south of the sun-tract-the eye 21 fect-and the shipr $2^{\prime} 20^{\prime}$, to submiles of east longitude sine the ship having made 32 determined. Required since the error of the watch was atitude.

$$
\text { Answer- } 14^{\wedge} 22 z^{\prime} s .
$$

de of Polaris
89 . Nov. 3,1858 in latitude $17^{\circ} 30$ N. by account, and longitude $46^{\circ} 50^{\prime} \mathrm{W}$. the altitude of the stu's l.I. was observed to be $94^{\circ} 13^{\prime} 16^{\prime \prime}$ at 10 h . 40 m . apparent time A.m. his centre bearing at the time S.S.E. and at Oh. 45m. p.m., the altitude of his l.I. was observed to be $95^{\circ} 54^{\prime} 16^{\prime \prime}$ the ship's course during the interval between the observations, was $\mathbf{S} . \frac{3}{4} \mathbf{E}$. running at the rate of 9 I knots per hour-the cye 20 feet over the sea, the index error $3^{\prime} 10^{\prime \prime}$ to subtract. Required the true latitude when the last altitude was taken.

$$
\text { Answer- } 47^{\circ} 19^{\prime} \mathrm{N}
$$

90. Jan. 16, 1858 iu latitude $12^{\circ} 18^{\prime} \mathrm{S}$. and longitude $150^{\circ} 0^{\prime} \mathrm{W}$. the altitude of the $\bar{\odot}$ was observed to be $58^{\circ} 36^{\prime} 38^{\prime \prime}$ when a watch shewed 9 h .52 m . 15 s . apparent time A.m. the sun bearing at the time E.S.E. $\frac{1}{4}$ E. and at 11 h .42 m . a.m. by the same watch, the altitude of the \odot was observed to be $80^{\circ} 12^{\prime \prime}$ the ships course between the observations N.b.E. $\frac{1}{2} \mathrm{E}$. on her larboard tack, making $1 \frac{1}{2}$ points lee-way, and running $7 \frac{1}{2}$ knots per hour. The index error $2^{\prime} 20^{\prime}$, to add: the eye 22 fect over the sea. Required the true latitude of the ship when the greater altitude was taken.

Answer- $12^{\circ} 163^{\prime} \mathrm{S}$.
91. July 12, 1858, in latitude $40^{\circ} 20^{\prime} \mathrm{S}$. and longitute $110^{\circ} 15^{\prime} \mathrm{E}$. by account, the obs rved altitude of the $\bar{\odot}$ was $25^{\circ} 0^{\prime} 0^{\prime \prime}$ at 10 h .36 m . apparent time 1.3 . and at 2 h .6 m. p.ar., by the same watch, the altitude of the \odot was $20^{\circ} 50^{\prime} 8^{\prime \prime}$ beariug at the time N. N. W. $\frac{3}{4} \mathrm{~W}$. the ship's course during the interval S. S. E. on her starboard tack and making $\frac{1}{2}$ a point lee-way, and running 10 knots per hour. No index crror, the eye 22 feet over the sea. Required the latitude of the ship when the greater altitude was taken.

Answer- $40^{\circ} 4^{\prime} \mathrm{S}$.

92. April 1, 1853 in latitude $30^{\circ} 2 \mathrm{~N}$. by account and longitude $67^{\circ} 59^{\prime} \mathrm{W}$. the observed altitude of the \odot was $310944^{\prime} 13^{\prime \prime}$ bearing east, at 8 h . 16 m .48 s . A.m., appa-

16

rent time, and at $11 \mathrm{~h} .1 \mathrm{~m} 5 \cdot 4^{\prime \prime}$ A.m., ap, time, the olserv ed altitude of his l.l. was $61^{\circ} 0^{\prime} 9()^{\prime \prime}$. 'The course and distance in the interval S.I.E. ${ }^{1} \mathrm{E}, 28$ miles, no lee-waythe instrument perfectly adjusted-the eye 22 feet over the sea. Required the true latitule when the greater altitude was taken.

Answer- $30^{\circ} 4^{\prime} \mathrm{N}$, by Norie's method. $29^{\circ} 582^{\prime}$ by Turnbull's method.
93. Aug. 1st, 1858 in lat. $5^{\circ}: 8^{\prime} \mathrm{N}$. by account, and longitude $42^{\circ} 24^{\prime} \mathrm{W}$. the altitude of the sun's l.l. was observed to be $63^{\circ} 9^{\prime}$ at 10 h .48 m . $15 \mathrm{~s} . ~ A . m$, ap. time the sun's centre bearing at the time N.E.b.N. and at Oh. 55 m .10 s . р.м., the altitude of his l.I. was $71^{\circ} 1 \%^{\prime}$ the course and distance in the interval S.b.E. 12 E. 18 miles, no lee-way-the eye $2: 2$ feet, the index error 0 . Required the latitude when the greateraltitude was taken. Answer- $0^{\circ} 9^{\prime}$ N.
The latitude fomm by double altitudes as well as that by a single altitude of the sun taken near the meridian is, by the usual methods of calculation, but an approximation to the truc latitude. This approximation, however, is sufficiently near the truth, for the practice of Navigation. The calculations are rather long and intricate in all, but Ivory's method is most recommended for pracice. Students in Navigation should be well practised in double altitudes as the Nautical Boards in England require a thorough knowledge of them from all candidates for certificates of qualification as competent navi,gators. Several other methods for finding the latitude are given in books and treatises on Navigationsuch as Sumner's method of double altitudes,* and 'Towson's method by ex-meridian altitudes, \&c.

Variation of the Compass, Tides.

94. Jan. 21, 1858 at 6 h .15 m . 20s. A.m., ap. time in $10^{\circ} 20^{\prime} \mathrm{S}$. longitude $72^{\circ} 15^{\prime} \mathrm{W}$. the sum's rising ampti-

[^1]the obsery course and lee-wayfeet over the greater
methool. ll's method. ccount, and m's I.1. was м., ap. time . and at 0h. $71^{\circ} 1^{\prime \prime \prime}$ the C. 18 miles, ror 0 . Rewas taken. $-j^{\circ} 9^{\prime} \mathrm{N}$.
as well as en near the tion, but an approximaor the pracher long and commended ald be well l Boards in 1 em from all s competent ing the lati-Vavigationtudes,* and \&c.
les.
, ap. time in rising ampti-
tude by compass was S.E.ete. Required the variation.
95. Dec. 4, 1858, at 21.57 m. p.m., ap. time, in lat. $47^{\circ} 20^{\prime} \mathrm{N}$. and longitude $51^{\circ} 18^{\prime} \mathrm{W}$. the observed altitude of the sun's l.I. was $10^{\circ} 36^{\prime}$ bearing at the time $S .66^{\circ} \mathrm{W}$. by compass. The index error $2^{\prime} 41^{\prime \prime}$ to add, the eye 19 feet. Required the variation.

Answer-26 $54^{\prime} \mathrm{W}$.
96. April 5, 1858, at 6h. 2m. л.m., ap. time, in lat. $5^{\circ} 30^{\prime} \mathbf{S}$. longitude $140^{\circ} \mathrm{E}$. the sum's rising amplitude by compass was observed to be N. $73^{\circ} \mathrm{E}$. Required the variation.

$$
\text { Answer-10 } 0^{\circ} 57^{\prime} 11^{\prime \prime} \mathrm{E} .
$$

97. May 20, 1858, at 9 h. 10 m . 20s. л.m., ap. time, at ship in lat. $38^{\circ} 40^{\prime} \mathrm{S}$. long. $108^{\circ} \mathrm{W}$. the altitude of \odot was $18^{\circ} 54^{\prime} 45^{\prime \prime}$ bearing by compass N. $42^{\circ} 14^{\prime}$ E. no index error, the eye 20 feet. Required the variation.

Answer-No variation.

98. April 10, 1858, required the a.m. and p.m. tides at New York.

> Answer-A.M., Tide.
> 5h 49 m. 6 h .14 m. 6 h .3 m.
99. Aug. 15, 1858, requircd the p.m., tide at Rio Janeiro (Brazil) and at Hamburgh (Germany.)

Arswer-p.m., T. at Rio. 6 h .50 m . Norie's do. do. do. do. 6 h .29 m . Turnbull's do. do. do. Hamburg 9 h .59 m . Norie's do. do. do. do. 9 h .44 m , Turnbull's.
100. Dec. 15, 1858, required the time of high water p.m., at St. John's N. F., and at St. Johm, N. B.

Answer-II. W. at St. John's N. F. 2h. 58 m . ap. time P.M.
Norie's Ind method
do. do. do. $2 \mathrm{~h} .5 \overline{\mathrm{~m} m .}$ Turnbulls 2nd
do.

18

The times of high water camot be found and deter* mined with precision, owing to the influence of the winds. Turnbull observes" From the influence of the winds $\mathbb{E} c$. on the ocean, the time found by the most accmate computations will be seldom found to agree with the actual time of high water found by observation in any port." The time of high water found by computation will, however, be sufficiently accurate for nautical jurposes.
mid deterhe winds. winds \&c. rate comthe actual my port." ation will, ourposes.

Part the Second.

Chronometer-Its error and rate-Equation of time - Apparent time from an altitude of tha sum, moon, star or planet-Greenwich mean time by LanarsGreat Circle Sailing.

Time is the great, the paramount object to be found -to be accurately determined in all the calculations and problems of Nautical Astronomy. If the time be accurately known the skilful navigator, with good nautical instruments, will have no difficulty in finding what he wishes to know by his observation.

As the learner will find sufficient for his instruction in the article "'Time" of his Epitome, and in the Natutical Ahmanac it is enough to say liere, that 'Time and Longitude may ie considered as convertible terms, if one be known the other can be found. For, as the Larth or Globe always turns fully round on its axis in equal spaces of time, which space is divided into twentyfour equal parts, or hours, and as the circumference of the globe is divided into 360°, then we have the following:

From these figures any other interval of time or longitude can easily be found, when either of them is known by the simple rule of proportion; for example, what will be the time at St. John's, N.F. longitude $52^{\circ} 38^{\prime} 37^{\prime \prime}$ W. when it is noon or 12 o'clock at Greenwich.
which is the difference of time between St. John's and Creenwich, and as St. John's is to the west of Greenwich, $3 \mathrm{~h} .30 \mathrm{~m} .34 \frac{1}{2} \mathrm{~s}$. subtracted from 12 h . leave 8 h. $29 \mathrm{~m} .25 \frac{1}{\frac{1}{4} \mathrm{~s} . ~ A . n ., ~ t h e ~ t i m e ~ a t ~ S t . ~ J o h n ' s . ~ B u t ~ t h e ~}$ most convenient way of turning time into longitude, and longitude into time, are these two

R ULES.
1st.-To turn time into longitude reduce the time to minutes and divide by 4 , the quotient will be the degrees, minutes and seconds of longitude. Example, required the longitude for 9 h . 25 m .41 s .

h.	m.	s.
9	25	41
60		

4 $\frac{\sqrt{565}-41}{141^{\circ}-25^{\prime}}-15^{\prime \prime}=$ the longitude.
2nd.-To turn longitude into time, multiply the fongitude by 4 and divide the degrees by 60, the quotient will be the hours, the remainder the minutes and seconds of time. Example. Required the time corresponding to $74^{\circ} 33^{\prime} 31^{\prime \prime}$.

$$
6 0 \longdiv { 2 9 6 } 1 4 \quad 4
$$

4 h .56 m .14 s .4 -tenths $=$ the time.
It can now be easily comprehended that when the navigator finds by the altitude of the sun, moon, star or planet, the precise time at place of observation, and having a chronometer shewing Greenwich time at the same moment, he can, by the difference of time, find his longitude exactly. It may here be remarked, that chronometers are set and rated to Greenwich mean time, while it is only apparent time at place of observation that can be found by the altitude of any of the heavenly
t. John's e west of 12h. leave But the itude, and
he time to e the deample, re-
tude.
ly the lonie quotient inutes and the time
$=$ the time.
t when the moon, star rvation, and time at the f time, find narked, that h mean time, observation he heavenly
bodics. The Greenwich meen time, is found by the observed distance between the noon and the sun or any other of the heavenly bodies, marked in the Nauical Almanark for that purpose.

The nautical student may now observe the importance of finding the precise time at ship, and to do this he should be well practised in all the questions that here follow in this second part.
101. April 10, 1858, at noon a chronometer is fast 9 m .25 s . on G. m. t. and gaining daily 1.4s. On May 19 , the same chronometer shewed 7 h .35 m .44 s . р.m., civil time. Required the corresponding ap. time at St. John's, N.F., that is, longitude $52^{\circ} 38^{\prime} 38^{\prime \prime} \mathrm{W}$.

Answer-May 19d. 3 h. 58 m .37 s. r.m.
102. Sep. 29, 1858, at noon a chronometer is $4 m$. 18 s . slow on G. m. t. and gaining daily 2.7s. When this chronometer shewed Nov. 10d. 17h. 18m. 10s. in longitude $27^{\circ} 19^{\prime} 42^{\prime \prime}$ E. Required the corresponding ap. time on that meridian.
103. April 14, 1858, (civil time) in longitude 76° $12^{\prime} \mathrm{W}$. it is 7 h .17 m .10 s . A.m., ap. time. Required the corresponding astronomical G. m. t.

Answer- 14 ds . 0 h .22 m .15 s . ast. G. m.t.
104. Dec. 4, 1858, at noon on the meridian of 16° $20^{\prime} 30^{\prime \prime} \mathrm{E}$. a chronometer shewed 10 h .47 m .38 s . and on the 22 nd at noon on the meridian of $76^{\circ} 16^{\prime} \mathrm{W}$. it shewed 5 h .5 m .4 s . p.m. Required the daily rate of the chronometer.

Answer-Losing 5.1s. daily.
105. March 17, 1858, in longitude $170^{\circ} 16^{\prime} \mathrm{E}$. at 8 Sh . 50 m .20 s . А.м., ap. time, a chronometer shewed March 16 ds .9 h .40 m .10 s . and on the 25 th in longitude 120° 10^{\prime} E. at 3 h .5 m . 10 s . p.m. ap. time, it shewed March 24 ds .19 h .13 m .48 s . Required the daily rate of the chronometer.
106. Aug. 1, 1858, at 7h. 2 Answer-Gaiming 6.6s. dany. A.3., ap. time at

Trinity, longitude $53^{\circ} 16^{\prime} 50^{\prime \prime} \mathrm{W}$. a chronometer shewed July 31ds. $23 \mathrm{~h} .57 \mathrm{~m}, 13 \mathrm{~s}$. Required the error of the chronometer on G. m. t.

Answer-Chron. shewed G. m. t ,-no error.
107. Feb. 1, 1858, at $18 \mathrm{~h} .40 \mathrm{~m}, 15 \mathrm{~s} . \mathrm{G}, \mathrm{m} . \mathrm{t}$. Required the sun's right ascension and declination.

Answer-R. A. 21h. 2m. 39s.
1 1)cel. $16^{\circ} 52^{\prime} \quad 21^{\prime \prime} \mathrm{S}$.
108. April 12, 1858, at 6h, 30 m .10 s . p.1., ap. time in longitude $20^{\circ} 30^{\prime} 15^{\prime \prime} \mathrm{W}$. Required the sun's R. A. and declination.

Answer-12. A. 1h. 23m. 3us. Deel. $8^{\circ} 4 \overline{7}^{\prime} 58^{\prime \prime}$ N.
109. July 25, 1858, at 6h. 15m. p.m., ap. time, in longitude $86^{\circ} 18^{\prime} 0^{\prime \prime}$ E. Required the R. A. and decl. of the planet Venus.

Answer-R. A. 10h. 44m. 27s. Decl. $9^{\circ} 22^{\prime}$ - $S^{\prime \prime}$ N.
110. June 1,1858 , at 14 h .16 m .10 s . G. m. t. Required the moon's right ascension and declination.

Answer-R. A. 20h. 51 m .51 s .
Decl. $20^{\circ} 29^{\prime} 41 \mathrm{~s}$. S.
111. July 25,1858 , required the G. m. t. when the moon will be on the meridian of St. John's, N. F., (lat. $47^{\circ} 34^{\prime} 35^{\prime \prime} \mathrm{N}$. longitude $52^{\circ} 381_{2}^{1} \mathrm{~W}$.) and what will be its altitude at that place and time, and also its R. A. decl. sem. diameter and hor. parallax at that time.

> Answer-On Mer. of St. Jchn's at 12 h .16 m .12 s . Alt. at that time, and place, $19^{\circ} 53^{\prime} \quad 14^{\prime \prime}$ R.A.................... . . 20 h .23 m .17 s. 1) ecl..................... $22^{\circ} 32^{\prime} \quad 11^{\prime \prime} \mathrm{S}$. Sem. diam. $14^{\prime} 54^{\prime \prime}$ Hor. Par. $54^{\prime} 34^{\prime \prime}$
112. Feb. 12, 1858, required the ap. time when the sun bears due east, and due west in lat. $34^{\circ} 30^{\prime} 5^{\prime \prime}$.

Answer-1)ue East at 7h. 25m. A.m. dn, West at $\mathrm{th}, 35 \mathrm{~m}$, P. M.
meter shewthe crror of
-no error.
m. t. Retion.
2 m .39 s.
$52^{\prime \prime} \quad 21^{\prime \prime} \mathrm{s}$.
м., ap. time e sun's R. \boldsymbol{A}.

23m. 35s.
$4 \mathrm{r}^{\prime} \quad 3 \mathrm{~S}^{\prime \prime} \mathrm{N}$.
ap. time, in 12. A. ant

44m. 27 s.
$22^{\prime} 5 \mathrm{~s}^{\prime \prime} \mathrm{N}$.
. m. t. Renation.
.51 m .51 s.
$29^{\prime} 41 \mathrm{~s}$. S.
t. when the , N. F., (lat. id what will also its R. A. at time.

16 m .12 s .
$53^{\prime} 14^{\prime \prime}$
1.23m. 17s.
$32^{\prime} \quad 11^{\prime \prime} \mathrm{S}$.
me when the $4^{\circ} 30^{\prime} 5^{\prime \prime}$.
25 m, A.м.
35 m, P.N.

The Appurent Time from the ullitude of the S'un, Moon, isc.
the artificial homzon.
As already observed, time is the all-impor ant object in Nautical Astronomy. The artificial horizon seems to afford the most convenient means to attain this object. 'iurnbull observes, (and other authors of Navigation use language to the same effect) ihat "Of all the methods for ascertaining the rate and error of a chronometer, that by equal altitudes of the sun, or an artificial horizon is to be preferred in practice, both on account of the simplicity of the computation and the great degree of accuracy attainable by it. 'This method is also free from the instrumental error" and Noric says,"The rate of a chronometer may be found nearly as correct as with an astronomical clock, by equal or single altitudes taken on shore with a sextant and an artificial horizon; indeed these two instruments may be considered a portable observatory, and a person with their assistance will be enabled to regulate chronometers wherever he may chance to stop a few days."
113. Sep. 1,1858 , at Trinity, in lat. $48^{\circ} 22^{\prime} \mathbf{N}$. and long. $53^{\circ} \quad 17^{\prime} \mathrm{W}$. the following double altitudes were taken on an artificial horizon, with the corresponding times by a watch which was at the time of observation, 3 h .92 m .20 s . slow of a chronometer whose error on \mathbf{G}. m . time, was required to be determined. The instrument was truly adjusted. Required the error.
Ap. times by watch. Obserd. doubl. alt. \odot 's centre.

p. times by watch. 845 m 10s. 4.				Obserd. doubl. nlt. \odot 's cent		
				62°	41^{\prime}	44"
"	35	52		62	42	4
6	36	32		62	42	24

Answer-M. T. at Trinity by observation $\begin{aligned} & 8 h .35 \mathrm{~m} . \text { Es. }\end{aligned}$

114. Sep. $1: 3,1858$, to determine the rate of the chronometer in the last question, the following double altitude of the \odot were taken on an artificial horizon in the same place, with the corresponding times by the chronometer. 'The sextant, as before, truly adjusted. Required the rate.

> Times by chron..... Double alt. © 11 h .43 m .18 s.А.м..... $45^{\circ} 42^{\prime} 8^{\prime \prime}$
> 1144 28......... $45 \quad 5215$
> Answer-Chron. gaining 1.25s. daily.
115. June 2, 1858, equal altitudes of the sum were taken in lat. $48^{\circ} 22^{\prime} \mathrm{N}$. and long. $53^{\circ} 17^{\prime} \mathrm{W}$. (Trinity) on an artificial horizon, to determine the sea rate of a chronometer, purchased in London April 25th, on which day at noon, it was set to G. m. t. its rate, gaining 4.8 s . daily. The means of the times corresponding to equal altitudes were, by Chron. Jume 1d. 22 h . 53 m . 22s. and June \mathcal{L} d. 8 h .12 m .56 s . Required the true searate of the chronometer.

$$
\text { Answer-Gaining } 5.3 \mathrm{~s} \text {. daily. }
$$

116. June 8, 1858, at Calcutta in lat. $22^{\circ} 35^{\prime}$ N. and long. $88^{\circ} 21^{\prime}$ E. equal altitudes of the sun were taken in artificial horizon, when the corresponding times by chronometer were 8 d .13 h .46 m .36 s . and 8 d .22 h .26 m . 38s. Required the error of the chronometer on m. t . at Calcutta and also on m . t . at Greenwich.

Answer -.Chron, slow on m, t. at Calcutta 5h. 52 m .11 s . do. fast on m. t. at Green. 0h. 1 m .13 s .
117. Aug. 8, 1858, at Valparaiso lat. $33^{\circ} \mathbf{2}^{\prime}$ S. long. $71^{\circ} 41^{\prime} \mathrm{W}$. equal altitudes of the sun were taken, when the corresponding times were 8 d .2 h .23 m .22 s . and 8 d . 6 h. 48 m .383 . by a chronometer which was slow on
 Required the crror of the Chronometer on m. time at
rate of the owing double al horizon in times by the uly adjusted.
lt. \odot
' ${ }^{\prime \prime}$
30
15
1.25s. daily.
the sun were W. ('Trinity) e sea rate of a 5th, on which , gaining 4.8s. iding to equal 53 m .22 s . and rue sea rate of g j. 3 s . daily.
$22^{\circ} 35^{\prime} \mathrm{N}$. and in were taken nding times by 18 d .22 h .26 m. meter on m. t. ch.
5h. 52 m .11 s. 0 h .1 m .13 s .
$33^{\circ} 2^{\prime}$ S. long. re taken, when m. 22s. and 8d. in was slow on G. mean noon. on m. time at

Valparaiso, also on m. time at Greenwich, and its daily rate.

> Answer-Chren. fast on m. t. at Valparaiso 4 h .30 m .28 s , do. slow on (i. m. t. 16 h .16 m .16 s . Its rate losing..............

Time from altitudes taken on the Set Horizon.
118. March 17,185 , Λ, м., at ship, in lat. $47^{\circ} 30^{\prime}$ N. the following altitudes were taken, with the corresponding times by a chronometer, which was fast 12 m . 10s. on G. m. t., Feb. 25th at G. m. noon, and gaining daily $\mathbf{D . 4 s}$. The eye 16 foet over the sea. Index error $2^{\prime} S^{\prime \prime}$ to subtract, Required the ap. time, and m. time at ship when the observation was made, the G. m. t. by chronometer, and the longitude.

119. Scp. 30, 1858, r.м., at ship in latitude 34° $10^{\prime} \mathrm{S}$. the mean of several altitudes of \odot was, 23° 16^{\prime} the eye 21 fcet, index error $+3^{\prime} 17^{\prime \prime}$ the corresponding time by chronometer 30 d . 0 h .20 m .15 s . which was slow 14 m . 28s. on G. m. t., July 10th, and losing daily 2.7 s . Required the longitude.

Answer-In long. $51^{\circ} 13^{\prime} 30^{\prime \prime}$ E.
120. March 25,1858 , p.м., at ship in lat. $4^{\circ} 56^{\prime} \mathbf{N}$. the mean of a set of altitudes of the \odot was $23^{\circ} 24^{\prime}$. Index curor 0 . cye 22 feet. The mean of the times was 05 d . 7 h . 0 n .14 s . by chronometer which hat been rated Jan. 19, at G. m. noon when it was fast 18 m . 10 s. on G. m. t. and gaining daily 1.9 s . Required the longitude.

[^2]121. Oct. $12,189^{\circ}$, A.m. at ship in lat. $29^{\circ} 2^{\prime}$'s. the observed alt. of the \odot was 16° ig 9^{\prime} when 11 d . 8h. 7 m . 15s. were shewn by a chonometer which was slow 6 m . 42 s . on G. m. t. at noon, June $\mathfrak{2 0}$, and losine daily 3.2 s . Index error $+1^{1} .48^{\prime \prime}$-the cye $2-1$ feet. Required the longitude.

Answer-In long. $106^{\circ} 50^{\prime} \mathrm{F}$.
122.- 1 pril 12,1859 , A.m., at ship in lat. $30^{\circ} 21^{\prime} \mathrm{N}$. the observed alt. © was $16^{\circ} 20^{\prime}$ at 12 d .6 h .44 m .48 s. by chronometer which was fast 10 m .40 s . on G. m. t. Jan. 20, at G. m. noon, and graining daily 0.7 s . Index error $2^{\prime} 20^{\prime \prime}$ to subtract-the eye 24 feet. Required the longiturle.

Answer-In long. $174^{\circ} 8^{\prime} 45^{\prime \prime} \mathrm{W}$.
123. Jan. G, 1858, in lat. $48^{\circ} 22^{\prime}$ N. long. 520171 W. the alt. of the star Aldebaran was observed to be $41^{\circ} 14^{\prime} 42^{\prime \prime}$ (east of meridian) when a watch shewed 6 h .16 m .22 s. ap. time, p.m., the eye 20 feet. Index error $1^{\prime} 4^{\prime \prime}$ to add. Required the error of the watch on ap. time, and the G. m. t. when the altitude was taken. Answer-Watch fast on ap. time 17 s .
G. m. t..... 9h. 51m. 32s.
124. July 15,1858 , p.s., at ship in lat. $9^{\circ} 10^{\prime}$ S. the observed alt. of the star Arcturus west of meridian, was $29^{\circ} 6^{\prime}$ when 15 d .13 h .48 m .21 s . were shewn by a chronometer which was fast on G. m. t. 12 m . 20s. June 1 at G. m. noon, and gaining daily 1.2 s.- the cye 20 feet -Index error $2^{\prime} 10^{\prime \prime}$ to subtract. Required the longitude.

$$
\text { Answer-In long. } 50^{\circ} 33^{\prime} 15^{\prime \prime} \mathrm{W} .
$$

125. April 9, 1858, in lat. $30^{\circ} 42^{\prime}$ S. about midnight the alt. of the star Antares, east of meridian was observed to be $49^{\circ} 45^{\prime}$-the cye 22 feet. Index crror $1^{\prime} 10^{\prime \prime}$ to add: The time 9 d .16 h .33 m .6 s . by chronometer, which was slow 45 m . 25 s. on G. m. t. January 20, at noon, and losing daily 3.7s. Required the longitude.

Answer-790 $40^{\prime} 45^{\prime \prime} \mathrm{W}$.
126. Feb. 1,1858 , in lat. $6^{\circ} 4^{\prime} \mathbf{N}$. and long. $160^{\circ} \mathrm{W}$.
at 9 h. 37 m . P.an, ap. time by watch, the observed altitude of the centre of the planet Jupiter west of meridian, was $26^{\circ} 31^{\prime} 51^{\prime \prime}$ a chronometer at the time shewing 1d. 20h. 31 m . Sextant truly adjusted. The eye 20 fect. Required the crror of the watch on ap. time at ship, and the error of chronometer on ($\mathrm{G} . \mathrm{m}$. t .

Answer-Wateh showed ap, time correctly. Chron. showed (. m t. no erroi.
127. Oct. 13, 1858, in lat. $15^{\circ} 50^{\prime} \mathrm{S}$. the observed altitude of the centre of the planet Venus, west of meridian, was $4 \mathscr{E}^{\circ} 0^{\prime} 44^{\prime \prime}$ when a chronometer corrected for error and rate, shewed Oct. 13 d . 1h. 3m. 53 s . Index error $3^{\prime} 35^{\prime \prime}$ to add-the eye 24 fect. Required the longitude.

Answer-Long. $76^{\circ} 20^{\prime} \mathrm{E}$.
123. May, 10, 1858, lat. $4 s^{\prime} 10^{\prime} \mathrm{S}$. thic observed altitude of the planct Mars, cast of meridian, was 2705^{\prime} when 10 d .13 h .55 m .34 s . were shewn by a chronometer, which was fast, 15 m .10 s . on G. m. t. March 12 th at G. m. noon, and gaining daily 3.8 s . Index error $+3^{\prime} 30^{\prime \prime}$-the eye 24 feet. Required the ap. time at ship, and the longitude.

$$
\begin{aligned}
& \text { Answer-Ap, time at Ship 7in. 42m. 6s. p.ar. } \\
& \text { longitude } 89^{\circ} 36^{\prime} \mathrm{W} \text {. }
\end{aligned}
$$

129. Oct. 31,1858 , lat. $4^{0} 10^{\prime} \mathrm{S}$. the observed alt. of the centre of the planet Venus, west of meridian, was 9° $28^{\prime} 43^{\prime \prime}$-the eye 20 fect. Index crror $2^{\prime} 40^{\prime \prime}$ to addthe time 31d. 7 h .49 m .52 s . by chronometer which was slow 16 m .24 s . on G. m. t . when the altitude was taken. Required the longitude.

Answer-Jong. $0^{\circ} 0^{\prime} 0^{\prime \prime}$.
130. Aug. 27, 1858, in lat. $26^{\circ} 36^{\prime} \mathbf{N}$. the alt. of the moon's 1.1. was obscrved to be $24^{\circ} 24^{\prime} 0^{\prime \prime}$ east of meridian. Index crror 3^{\prime} to add,-the eye 18 feet. The G. m. t. by chronometer when the alt. was taken 27 d . 12 h .54 m .34 s . Required the ap. time at ship, and the lougitude.

$$
\begin{gathered}
\text { Answer-Ap. time at Ship } 10 \mathrm{~h} .4 \mathrm{~m} . \text { P.M. } \\
\text { Long......... } 42^{\circ} 20^{\prime} \mathrm{W} .
\end{gathered}
$$

131. Nov. 15,1958 , in lat. 501 C 'S. the observed alt. of the mom's l.1. west of meridian, was $41^{\circ} 50^{\prime} 41^{\prime \prime}$ the sextant adjusted, the eye 19 feet, the G. m. t. 15 d . 12 h .46 m .27 s . by chronometer corrected for error and rate. Reguired the ap. time at ship, and the longitude.

Answer-Ap. time at ship $11 \mathrm{~h} .0 \mathrm{~m} .0 \mathrm{~s} . \mathrm{l}$ 'as. Long. $30^{\circ} 24^{\prime}$ W'.
132. Dec. 21,1855 , in lat. $15^{\circ} 27 \mathrm{~N}$. the observed alt. of the moon's 1.1 . east of meridian, was $39^{\circ} 20^{\prime} 15^{\prime \prime}$, index error $2^{\prime} 18$ to subtract, eye 22 feet. 'Time by chronometer 21d. 21h. 50n. 27s. which was rated Oct. 18 th at noon, when it was 16 m . 10 s. fast on G. m. t. and gaining daily 4.2 s . Required the longitude.

$$
\text { Answer- }-166^{\circ} \mathrm{W} \text {. }
$$

At a given lime to find the Altitude of the Sun, Moon, Star or Planel.
133. June 18, 1858, at St. Johm's i.e. lat. $47^{\circ} 34^{\prime} 35^{\prime \prime}$ N. long. $52^{\circ} 38^{\prime} 37^{\prime \prime} \mathrm{W}$. at 5 h .20 m .15 s . p.m., ap. time. Required the true alt. of the sun's centre, and also the ap. alt. of his 1.1. above the horizon.

$$
\begin{aligned}
& \text { Answer-True alt. } \odot^{\circ} \text { s centre } 23^{\circ} 3 \overline{3}^{\prime} \mathrm{i} 8^{\prime \prime} \\
& \text { Ap. alt. © } 23189 .
\end{aligned}
$$

134. Dec. 20, 1858, in lat. $34^{\circ} \overline{3} 0^{\prime} \mathrm{S}$. and long. 150° E. Required the true altitude of the suin's centre at 7 h .15 m .20 s . A.m., ap. time at ship.

Answer-True alt. \odot 's contre $27^{\circ} 59^{\prime} 40^{\prime \prime}$
135. Oct. 2,1858 , in lat. $4^{\circ} 45^{\prime} \mathrm{N}$. and long. $34^{\circ} 20^{\prime}$ W. Required the true and ap. altitudes of tive centres of the sun and moon, at 8 h .45 m . ap. time A.M. at ship.

Answer--True alt. sun's centre $40^{\circ} 33^{\prime} 30^{\prime \prime}$
Λ p. alt. do. do. $40^{\circ} 36^{\prime} 49^{\prime \prime}$ True alt. moon's do. $73^{\circ} 32^{\prime} 15^{\prime \prime}$ Ap. alt. do. do. $73^{\circ} 15^{\prime} 34^{\prime \prime}$
136. March 24, 1858, in lat. $46^{\circ} 40^{\prime} \mathbf{N}$. long. 52° 59^{\prime} W. (Cape Race, N. F.) at 7h. 30 m . p.м. ap. time at place. Required the true altitude of the plane
served alt. $50^{\prime} 41^{\prime \prime}$ m. t. 15 d . error and longitude. Is. 1.....
e olserved $1020^{\prime} 15^{\prime \prime}$, Time by rated Oct. i. m. t. and
$66^{\circ} \mathrm{W}$.
Sim, Moon,
$7^{\circ} 34^{\prime} 35^{\prime \prime}$., ap. time. id also the
long. 150° 's centre at
$59^{\prime} 40^{\prime \prime}$
1g. $34^{\circ} 20^{\prime}$ the centres m. at ship.
. long. 52° m. ap. time the plane

Jupiter, and of the moon's cent:e, and also the true distance between them at that moment.

> | Answer- Jupiter's true alt. $21^{\circ} 51^{\prime} 20^{\prime \prime}$ |
| :--- |
| Moons true alt. $61^{\prime \prime} 51^{\prime \prime} 50^{\prime} 9^{\prime \prime}$ |
| True لlistance. $82^{\circ} 21^{\prime \prime} 4^{\prime \prime}$ |

137. Nov. 12, 1858 , in lat. $10^{\circ} 14^{\prime}$ N. loug. $78^{\circ} 45^{\prime}$ E. when a chronometer shewed 12 d 0 h .35 .10 s . G. m. t. Required the true al of Venus and of the moon, and the true distance between them at that moment.

Answer-Venus' true ait. $26^{\circ} 56^{\prime} 3^{\prime \prime}$
Moon's do. do. $5 r_{1}^{\circ} 399^{\prime \prime} 2^{\prime \prime}$
True dist. $\quad . \quad 53^{\prime} 28^{\prime \prime}$
138. Aug. 29, 1858, in lat. $5^{\circ} 30^{\prime} \mathrm{S}$. long. $163^{\circ} 30^{\prime} \mathrm{W}$. when a chronometer shewed Aug. 30d. 3 h . 28 m .42 s . G. m. t. Required the altitudes of the stars Fomalhant and Pollux, and their distance each from the moon at that time.

$$
\begin{aligned}
& \text { Answer-Fomalhaut's alt. } 24^{\circ} 31^{\prime} 4^{\prime \prime} \\
& \text { Pollux's alt. } 17^{\circ} 17^{\prime} 42^{\prime \prime} \\
& \text { F'nmalhaut's dist. } 81^{\circ} \bar{\omega} 8^{\prime} 19^{\prime \prime} \mathrm{W} \text {. } \\
& \text { 1’ollux's do. } 59^{\circ} 41^{\prime} 6^{\prime \prime} \mathrm{E} \text {. }
\end{aligned}
$$

To find the Greenwich Mean Time and thence the Longitude by Lanars.
139. Sep. 10,1858 , in lat. $48^{\circ} 20^{\prime} \mathrm{N}$. at 5 h .42 m . p.s., ap. time by watch at ship-a set of observations of the sun and moon were taken, of which the means were,-the observed alt. $\odot 6^{\circ} 31^{\prime} 23^{\prime \prime}$ the observed alt. D $12^{\circ} 14^{\prime} 24^{\prime \prime}$ the observed distance of nearest limbs 40° $22^{\prime} 6^{\prime \prime}$-the mean of the times by chronometer 10 d .8 h . 50 m .8 s .-the instrument adjusted-the eye 20 feet. Required the error of the watch on ap. time at ship, the error of chronometer on G. m. t. and the longitude.

Answer-The watch showed ap. time Chron, slow 7 m .28 s . on G. m. t. Jong. $49^{\circ} 41^{\prime} 40^{\prime \prime} \mathrm{W}$
140. Aug. 2, 1858, м.м., at ship in lat. $30^{\circ} 45^{\prime}$ N. the observed alt $\odot 34^{\circ} 14^{\prime} 56^{\prime \prime}$ the observed alt. $\overline{\mathbb{C}} 47^{\circ} 21^{\prime}$ $54^{\prime \prime}$ the observed distance between their nearest limbs
$85^{\circ} 52^{\prime} 11^{\prime \prime}$ the time by chronometer 21.41 t .97 m .0 s . the cye 24 feet, instruments adjnsted. Required the error of the chronometer on G. m. t. and the longitude by lunars.

> Answer-Chron, fast I.ong, 110°, $40^{\prime} \mathrm{W}$
141. Nov. 11, 1858, at 5 h .38 m .50 s. r,m., ap. time, by watch at ship, in lat. $10^{\circ} 15^{\prime} \mathrm{S}$. the observed alt. moon's 1.1. $68^{\circ} 7^{\prime \prime}$ the observed alt. of Vemus's centre (west of meridian) $44^{\circ} 42^{\prime}$ the observed distance between the centre of Venus and the moon's nearest limb $24^{\circ} 19^{\prime} 24^{\prime \prime}$-the eye 24 fect. The instruments ad-justed-the time by chronometer 10 d .21 h .17 m .40 s . Required the error of the watch on ap. time at ship-the error of the chrenometer on G. m. t. and the longitude.
^nswer-Watch slow 2 -ws. on ap, time. Chron. fast 1 m . 0s. on G, m. t . Longitude $121^{\circ} 41^{\prime} 10^{\prime \prime} \mathrm{L}$.
142. March 21, 1858, suppose a ship bound for Si. John's, N. F., in lat. $47^{\circ} 31^{\prime \prime}$ N. and longitude by account $51^{\circ} 30^{\prime} \mathrm{W}$. took a set of altitudes and distances of the moon and Jupiter, with the corresponding times by watch, the means of which were-alt. moon's up. I. $58^{\circ} 44^{\prime}$, Jupiter's centre $21^{\circ} 42^{\prime}$ (west of meridian) distance between Jupiter's centre and moon's farther limb $41^{\circ} 16^{\prime} 25^{\prime \prime}$. Tine by watch 7 h .48 m ap. time, r.m. No index error-eye 16 teet. Required the error of the watch on ap. time and the true longitude by lunars.

Answer-Watch slow 36s.
True longitude $50^{\circ} 42^{\prime} 30^{\prime \prime} \mathrm{W}$.
143. April 28,1858 , in lat. $46^{\circ} 40^{\prime} \mathrm{S}$. and by account in longitude $88^{\circ} 45^{\prime} \mathrm{W}$. at 10 h .40 m . p.m., ap. time by watch at ship, the observed altitude of the moon's l.l. was $55^{\circ} 21^{\prime}$, the observed alt. of Antares, (a Scorpii) $46^{\circ} 24^{\prime} 30^{\prime \prime}$, east of meridian. The observed distance of moon's nearest limb $16^{\circ} 46^{\prime} 30^{\prime \prime}$. Instruments ad-misted-eye 15 feet. Required the error of the watch
11. 27 m .0 s. quired the longitude G. m. t.
, ap. time, oserved alt. us's centre istance becarest limb uments ad17 m .40 s. t ship-the longitude. ap. time. nG. m. t. $\tilde{5}^{\prime \prime} \mathrm{E}$.
und for si . tude by ac1 distances rding times oon's up. 1. ridian) disarther limb time, p.м. ne error of by lunars. - $42^{\prime} 30^{\prime \prime} \mathrm{W}$. by account p. time by moon's I.I. (a Scorpii) ed distance ments adthe watch
on ap. time at ship, the G. m. t. and the longitude by lunars.

Answer-Watel fast 27 s . on nup. tinue.
G. m. t. 28d. 16h. 33m. 7 s .

Long. $89^{\circ} 4^{\prime} 30^{\prime \prime} \mathrm{iV}$.
144. Nov. 29, 1858 , in lat. $12^{\circ} 16^{\prime} \mathrm{N}$. suppose the observed alt. of the moon's I.I. was $9^{\circ} 40^{\prime}$ the alt. of the star Regulus, east of meridian, was $48^{\circ} 57^{\prime}$ the observed distance of moon's nearest limb $39^{\circ} 23^{\prime} 45^{\prime \prime}$ when 20 d .14 h . 0 m .55 s . were shewn by a chronometer, which was slow on G. $1 \mathrm{~m} . \mathrm{t} .10 \mathrm{~m} .8 \mathrm{~s}$. on the 5 th at noon, and losing daily 3.8s.-eye 21 feet. Instruments adjusted. Required the longitude by lunars and by chronometer.

Miscollaneous questions such as are put by the Ninttical Boards in Einglamel, to Candidates for Certificales of Celulificution us competent Niavigutors.
151. Dec. 24, 1858, at noon, the equation of time is 0 m .11 s .42 and on the 25th it is +0 m .18 s .46 what will be the time when the apparent and mean time coincide, and what will be the equation at midnight.
152. The true course is N.bE.t E. the distance 250 miles, the variation of the compass 1 points E. at current setting N.W.bW. 2 ! miles an hour. Required the course by compass whicha steancr, rumning 92 knots an hour, should steer and what distance she must run to reach her port in the shortest possible time.
153. If the sun's alt. be $10^{\prime} 20^{\prime}$ at 7 h . 15m. 48s. and $11^{\circ} 49^{\prime} 25^{\prime \prime}$ at 7 h .31 m . 16 s. What will be its alt. at 7h. 21m. 3.3s.
15\%. A ship) at neon is in lat. $4^{\circ} 10^{\prime} \mathrm{S}$. ant long. $178^{\circ} 40^{\prime} \mathrm{E}$. and next day at noon found by observ.tion
 rum by log 156 miles, stecing E.N.L. Required the conse and fore of the current, suppesing it the only (a) ade " (bay.

 fient, index error $3^{\prime} 13^{\prime \prime}$ to add, longitude by aecount on $20^{\prime \prime}$ W. Bergured the latitude.

$$
\text { Dece \& } \mathrm{t}^{20} \text {, ahont } 5!\text {. } 15 \mathrm{~m} \text {. ap. Kipo nt ship }
$$

\qquad
 servat aitot the san's !. . was $7^{\circ} 10^{\prime}$ at minnight, the eyc 17 fect, indox erro: $1^{\prime} 10^{\prime \prime}$ to add. Recuired the latitude.
158. Required the natural whole number corresponding to the log. 5.805437.
159. Required the length of a degree of longitude on the parallel of Cape Farewell in lat. $59^{\circ} 49^{\prime} 12^{\prime \prime} \mathrm{N}$.
160. Oct. 7, 1858 , in longitude $66^{\circ} 40$ E. the observ-ed meridian alt. of Procyon (a con. min) was $55^{\circ} 35^{\prime}$ observer south of star-cye 21 feet, index error $+2^{\prime} 15^{\prime \prime}$ Required the latitude.
161. A ship from lat. $34^{\circ} 20^{\prime} \mathrm{S}$. rumning in the south east quarter for 24 hours fomd her difference of lat. and difference of long. were equal. Required the course stecred.
162. Nov. 18, 1858, (astronomical time) in lat. 48° $22^{\prime} \mathrm{N}$. and long. $52^{\circ} 20^{\prime} \mathrm{W}$. what will be the ap. time at place when the moon bears due west.
163. April 2, 1858, in lat. by account $30^{\circ} 2^{\prime}$ N. long. $67^{\circ} 59^{\prime} \mathrm{W}$. the observed alt. © was $31^{\circ} 24^{\prime} 13^{\prime \prime}$ (bearing east by compass) at 8 h .16 m .48 s . A.m., ap. time and
 -course and distance in the interval S.bE $\frac{1}{2} \mathbf{E} .28$ milesthe eye 22 feet. No index error. Required the lat. when the latter alt. was taken.
164. March 24, 1858, p.м., at ship lat. $9^{\circ} 4^{\prime}$ S. the observed alt. \odot is $29^{\circ} 50^{\prime} 30^{\prime \prime}$. Index error $1^{\prime} 10^{\prime \prime}$ to add, eye 17 feet, the time by chronometer 24 d .1 h .3 m . 10s. which had been rated Jan. 2, when it was fast 3 r 13s. on G. m. t. at noon, and losing daily 3s. Requir the longitude.
165. Nov. 18, 1853. Required the times of high water p.м., and д.м., at Croguc iarbour, N. F.
166. Dec. 15,1858 , required the ap. time when the moon will be on the meridian of St. John's, N. F. and what will be her true and apparent alt. at that time, and also her semi-diameter horizontal parallax, R. A. and declination.
167. March 25,1858 , lat. $18^{\circ} 20^{\prime}$ N. long. $140^{\circ} ? 20^{\prime} \mathrm{W}$.
equal altitudes of the sun were taken on an artificial horizon when the corresponding times by chronometer were 25 d .6 h .31 m .20 s . and 250 d .12 h .30 m .35 s . Required the error of the chronometer on ap. and mean time at place, and also its error on G. m. t.
168. Supposing the wind at S.W. and a ship beating to windward, runs on her port tacks 220 miles and then on her starboard tacks 295 miles, and now finds she has made 160 miles directly to windward. Required the courses steered on eath tack, ant how near the wind did the ship lie.
169. May 1st, 18ã8, the meridian altitude of the star Deneb (a cignus) below the pole is 13040^{\prime} the eye 18 feet-index error $+3^{\prime} 12^{\prime \prime}$. Required the latitude.
170. Nov. 4, 1858, lat. 0° long, $177^{\circ} 30^{\prime}$ W. the observed alt. $\odot 14^{\circ} 18^{\prime}$ at 5 h . ap. time at ship-the nagnetic azimuth of the sun's centre was $\mathrm{S} .74^{\circ} 7^{\prime} \mathrm{W}$. Index error- $1^{\prime} 20^{\prime \prime}$, eye 19 feet. Required the variation of the compass.
171 Required the arithmetical compliment of the log, corresponding to the decimal number. 87694.
172. April 3, 1858, in lat. $5^{\circ} 36^{\prime}$ S. about half past four A.m., at ship. Several sets of altitudes and distances of the moon and Spica were taken, of which the means were-observed alt. moon's l.I. $63^{\circ} 45^{\prime}$, observed alt. of spica, (west of meridian) $30^{\circ} 19^{\prime} 41^{\prime \prime}$, observed distance between star and moon's nearest limb $32^{\circ} 32^{\prime} 0^{\prime \prime}$, mean of times by chronometer, corrected for error and rate2 d .18 h .15 m .49 s . the eye 22 feet, index error $+1^{\prime} 20^{\prime \prime}$. Required the error of the chronometer on G.m. t. and the longitude.
173. July 21, 1858, in lat. by account, $122^{28^{\prime}}$ S. and long. $20^{\circ} 10^{\prime} \mathrm{W}$. the observed alt. \odot near the meridian was $56^{\circ} 30^{\prime} 40^{\prime \prime}$ when 21 d . 1 h .48 m . 54 . were shewn by a chronometer corrected for error and rate, the eye 16 feet. Index error- $3^{\prime} \mathfrak{2}^{\prime \prime}$. Required the true latitude.
174. A ship from lat. $10^{\circ} 10^{\prime}$ S. sailed in a direct course between north and west, for several days, when it was found by observation, that her difference of lat, her difference of long. and her departure were equal, and the degrees and minutes of her latitude, were also equal to those of her longitude. Required the course stecered, the distance run, the lat. and long. in, and the longitude left.
175. Scp. 21, 1858, in lat $46^{\circ} 20^{\prime}$ N. long. 160° W. at 9 h .20 m .30 s . p.m., ap. time at place. Required the apparent and truc altitude of the moon, and a Arietis, and also the true distance between them at that time.
176. Required the ap. time at Port Jackson, New Zealand long. $174^{\circ} 23^{\prime} 30^{\prime \prime}$ E. and at San Francisco, California, long. $192^{\circ} 27^{\prime} 23^{\prime \prime}$ W. when it is noon May 1st, at St. John's, N. F.
177. A man of war, bound to the Western Isles, Whose distance then S.E. was ninety miles, With flying topsails bent her watry way In a swift current through the briny spray : Fifty miles on her larboard tack she bore ; Sixty on her starboard, and then reached the shore From hence, ye sons of the raging main, The course made good upon each tack explain.
178. Oct. 13, 1858; the sun, Venus, Antares, Fomalhaut, and a Pegasi are given in the Nautical Almanac for lunar observation ; requred to which of these preference should be given in order to obtain the greatest degree of confidence in the accuracy of the time found by observation.
179. Nov. 22, 1858, (civil time) about 2 h. 50 m . A.м. at ship, supposing a vessel bound for St. John's, N. F. after a long continuance of fog, got a clear sky and horizon, and took the altitude of the star Sirius on the meridian, and found it $26^{\circ} 41^{\prime} 15^{\prime \prime}$, at the same time the altitude of Dubhe (a Ursac Majois) cast of meridian,
was observed to be $51^{\circ} 40^{\prime} 16^{\prime \prime}$, when a chronometer corrected for error and rate, shewed 21d. 18 h .0 m .28 s . the error of the sextant $+3^{\prime} 10^{\prime \prime}$, the eye 16 feet. Required the lat. and long. of the vessel when the altitudes were taken, and her course to, and distance from Cape Spear.
180. Suppose the vessel in the last question sees Cape Spear bearing N.W. distant 25 miles the wind W.N.W. blowing fresh, and the vessel making one point lee-way, lying within $5 \frac{1}{2}$ points of the wind, and running at the rate of 6 knots an hour. Suppose a current setting N.bE. 2 knots an hour, and a swell from N.E.bE. 1 knot an hour, and it is purposed to fetch the Cape in two tacks, the first on the starboard. Required the course made good, the distance to be run on each tack add in what time she will fetch the Cape.

Great Circle Sailing.

It is a great defect in Norie's Epitome of Navigation, that there is nothing of Great Circle Sailing in it. In the present advanced state of Nautical practice, when ships are rendered almost independent of wind and tide by the use of steam as a propelling power, it becomes indispensable for masters of vessels on long voyages, to make themselves familiar with the mode of conducting their ship the nearest way to her intended port; and this can be accomplished only on the principles of Great Circle Sailing. The shortest track should be matter of importance, now that the time occupied in the voyage is reckoned not alone to days but even to the hours and minutes. To masters of sailing vessels a knowledge of Great Circle Sailing is useful when adverse winds render it impossible to run the ship on her direct course, then Great Circle Sailing teaches on which side of the plane track to lay the ship with most advantage in order to make the shortest course; under any circumstances
it is impossible to run a ship directly on the Great Circle course ; but by changing the course at every 5 or 6 degrees of longitude, a very close approximation to it, can be effected. There are but six cases in Great Circle Sailing, and two of these require no calculation whatever, for the first case is sailing due east or west on the equator so that the difference of longitude is the shortest distance; in like manner when a ship sails due north or south, her difference of latitude is the shortest distance which is the second case; so that four cases only require calculation-and these are as follow:1st. Case-When the place of departure and that of destination are on the same parallel of latitude \mathbf{N}. or \mathbf{S}. but differing in longitude.
2nd Case-When one of the places is on the equator in a given longitude, the other \mathbf{N}. or \mathbf{S}. of it, in a different longitude.
3rd Case-When the places are on different sides of the equator and on different meridians.
4th Case-When both places are on the same side of the equator, having different latitudes and longitudes. This last case is the most important, an example is here given.
Required the Great Circle Course and distance, (the ship changing her come at every five degrees of longitude) from St. Joh . $47^{\circ} 34^{\prime} \mathrm{N}$. long. $52^{\circ} 38^{\prime} \mathrm{W}$. to Galway, lat. $53^{\circ} 1 \sigma^{\prime}$ N. long. $8^{\circ} 51^{\prime}$ W. the calculations are tabulated as follows:-

S'r. John's.	No.	Courses	Dist.	Lat.	Long.	
	1	N. $61{ }^{\circ} 45^{\prime} \mathrm{E}$.	48	$47^{\circ} 57^{\prime}$	$51^{\circ} 35^{\prime} \mathrm{W}$.	
	2	" 62. $32{ }^{\circ}$ "	220	49. 31	46. 35	
	3	" 66. 17 "	207	50.48	41.35	
	4	" 70. 8 "	197	51. 49	36. 35	
	5	${ }^{\prime} 74.2{ }^{\text {7 }}$	189	52. 35	31. 35	
	6	" 77. 59 "	187	53. 7	26. 35	
	7	" 81. 58 "	180	53. 25	21. 35	
	8	" 85. 59 "	178	53.32	16. 35	
	9 10	S. 85. 59 "	178	53. 25	11.35	
	10	" 83. 47 "	98	53. 17	8.51	Galway.

A diagram is here given, shewing the Creat Circle Track which is pricked off from the foregoing table of latitude and longitude; the Vertex or highest latitude is $53^{\circ} 32^{\prime} \mathrm{N}$. and $16^{\circ} 35^{\prime} \mathrm{W}$. longitude; the point of maximum seperation is $52^{\circ} 38^{\prime} \mathrm{N}$. rat. and $31^{\circ} 5^{\prime} \mathrm{W}$. long. In this case of Great Circle Sailing it is worthy of particular remark, that the Great Circle Course is alway in a higher latitude, be that latitude \mathbf{N}. or \mathbf{S}. than the plane or Mercator's course.

As this work is intended for exercise in applying the various rules by which all the problems of Navigation are solved, it is necessary the learner should have these rules before him to work the questions, and as these rules are not in Norie's Epitome, the only work of Navigation used in our schools, exercise in Great Circle Sailing would be useless here. The learner is referred to 'Towson's, Turnbull's or Mrs. Janet Taylor's works on Great Circle Sailing.

Cireat Circle egoing table of nighest latitude ; the point of and $31^{\circ} 5^{\prime} \mathbf{W}$. ng it is worthy ircle Course is itude \mathbf{N}. or \mathbf{S}. n applying the of Navigation ould have these and as these ly work of Nan Great Circle ener is referred「aylor's works

To find
Great Br marked in paramoun Boards of which the Almanac they are 1
1.-Find change Nautic: less fro or add time at the dif 2.-Take the giv and 52 found result, water, but if t mornin tract 1 time o this tid of the der wi day ne followi

APPENDIX.

'To find the time of high water in all the ports of Great Britain and Ireland, and in ports contiguous marked in the Nautical Amanack, is made matter of paramount importance, and insisted on by the Nautical Boards of Examination in England, and as the rules by which the time of high water is found by the Nautical Ahnanac method, are not given in Norie's Epitomethey are here given.

R ULES.

1.-Find the time of high water at place, on the full and change of the moon, and also at Iondon Bridge in the Nautical Almanac page 524, and 525, and take the less from the greater, the difference to be marked + or addative when the time at place is more than the time at London, but when the time at place is less, the difference to be marked - or subtractive.
2.-Take the time of high water at London Bridge for the given day from Nautical Almanack, pages 522 and 523 , and to this time add or subtract the difference found above according as it is marked + or - the result, if less than 12 hours will be the time of high water, afternoon of the given day at the given place; but if the result is more than 12 hours, it will be the morning tide of the following day, in which case subtract 12 h .24 m . from it, and the remainder will be the time of the afternoon tide on the given day, and it is this tide that is generally required, and from the time of the afternoon tide, subtract 24 m . and the remainder will be the time of the morning tide of the same day nearly, but when precision is required, use the following.
3.-'Take the London tide for the preceding day and app: to it the difference found by rule the 1 st.
Note,-When the London tide is marked -, take the preceding tide, if the differenee found above is marked + but the following tide when the differenee is marked -. In the margin of pages 522 and 523 of the Nautical Almanac, the learner will find directions to use these tables.

EXAMPLE.

April 2,1855 , required the time of high water p.м., at Cork.

Time of H. W. at full and change at Cork 4 h .30 m . do............................ London 27

$$
+2.23
$$

Time of high water at London bridge 4. 29

Time of high water at Cork, Ap. 2 p.m. 6. 52

Sumner's Method of Verification of the Latitude by Double Altitudes of the Sun.
The Nautical Boards of examination in England require this method of finding the latitude, and as the rules by which it is thus found are not given in Norie's Epitome, they are here given.
Rule 1st.-Find the true altitudes of the sun by the usual method of double altitudes.
Rule 2nd.-Find the Greenwich time of each observation Rule 3rd.-Find the suns declination at each time.
Rule 4th.-Assume two latitudes, one greater and the other less than the latitude by account, and such that there may be a difference of one degree exactly between the two latitudes chosen.
Rule 5th.-Find the apparent time from noon in each of the following cases.
(a) With the first altitude, the corresponding declination and less latitude.
(b) With the second alt. the corresponding declinatim and less lat.

With the first alt. the corresponding declination and greater lat.
(d) With the second alt. the corresponding declination and greater lat.
Rule 6th.-Obtain the elapsed time corresponding to each assumed lat. thus-If one observation be a. m. and the other \mathbf{r}. м. take the sum of the apparent times found by (a) and (b), if both be A. M. or p. M. take the difference of the results of (a) and (b), call this sum or difference the elapsed time (e) for the less lat. Proceed in the same manner, using the results of (c) and (l) to find the elapsed time (f) for the greater lat.
Rule 7th.-Take the difference of elapsed time (e) for the less lat. and the true apparent elapsed time, calling the remainder too little if the former is less than the latter but too much if the reverse is thec ase. Find also the difference of the elapsed time (f), for the greater lat. and the true apparent time, naming the remainder on the same principle as before.
Rule 8th.-When one elapsed time is too much and the other too little, take their sum, but if both are too much or both too little, take their difference for the error of elapsed time, caused by an error of one degree of lat.
Rule 9th.-Make this proportion which can be computed by proportional logarithms: thus

As the error of elapsed time on 1° of lat.
Is to 1°
So is the error of elapsed for the less or greater assut ed lat.
To a correction to be applied to that assumed lat.
It will be seen that when the elapsed time of one assumed lat. is too little and that of the other too much, the true lat. is between the two assumed ones, consesequently the correction must be added to the less or subtracted from the greater lat. according to which is used for the determining of the correction. But both
the elapsed times of the two assumed latitudes, may be too much or both too little, each case is possible, then the correction must be applied to satisfy the following conditions-if the elapsed of the less assumed lat. differs from the true elapsed time by a given quantity, and that of the greater assumed lat. by a less quantity, then the true lat. must be greater than the greater assumed one; also if the elapsed time of the greater assumed lat. differs from the true elapsed time by a given quantity, and that of the less assimed lat. by a less quantity, then the true lat. must be less than the less assumed one.

Questions $89,90,91,92$, and 93 , will serve for exercise by this method.

Steamers Lights and the Late of passing Vessels or the Rules of the Road.

1.-All steamers, when under way, must show the following Lights between sum set and sun rise.

A Bright light at the fore-mast head. A Green light on the starboard bow.
A Red light on the port bow.
Remark.-The bright light should be seen at least 5 miles in a dark night, with a clear atmosphere, and the lantern so constructed that the light may be seen round an are of the horizon of 20 points, that is, 10 points on each side, being from right-a-head to 2 points abaft-the-beam on each side. The colored lights should be seen at least 2 miles, and round an are of the horizon of 10 points, being from right-a-head, to 2 points abaft the beam. The colored lights are seen only on their own side; as to prevent them being seen across the bow, an inboard screen, of at last 3 feet in length is fitted to each light ; they being placed in a fore-and-aft line with the imer edge of the side light.
2.-All steamers when at anchor, must show a bright light at the foremast head, visible all round the hori\%on. Sailing vessels must do the same.
3.-Sailing vessels at night, approaching any other vessel, must show a light so as to be best seen by that other vessel.
4.-In meeting vessels, steamers and saiting vessels with the wind free, have to comply with the same rule, that is, they must give way to those on a wind on either tack.
5.-Sailing vessels close hauled on the starboard tack always keep their wind.
6.-Sailing vessels close hauled on the port tack must give way to those on the starboard tack.
7.-In passing vessels, whether they are proceeding in the same or in an opposite direction, pass them on your port hand.
8.--In passing a vessel which is proceeding across your bow, go asteri.

Examinations of Masters and Mate co talisi ed in consequence of the Mercantile Marine let of 1850.
After the first day of September, 1852, no foreigngoing vessel will be permitted to clear out from any Custom-house in the United Kingdom without the Masters and Mates respectively being in possession of Certificates either of service or of competency.

The Certificate of service entitles an officer, who has already served as either Master or Mate, in the British Merchant Service before the first day of January 1851, to go in those capacities again, and may be had by application to the Registrar-Gencral of seamen, Custom House, London, on the transmission of the necessary Certificates and testimonials.

Certificates of competency will be granted by the

Board of Trade to all Mates and Masters who have passed examination, whether under the old or the present regulations, and also to all officers who have passed Lieutenants' Masters' and second Masters' examination in the Royal Navy and East India Company's Service, unless special reasons to the contrary exist: and any person desirous of exchanging a passing Certificateobtained under the former Boards of Examiners-for a competency Certificate, should send it to the RegistarGeneral, as before mentioned, with a request to that effect, and state the port to which he wishes it to be sent, where it will be delivered to him by the Collector of Customs or the Shipping Master.

All other officers, entering for the first time upon their duties, whether as mate or master, will be required to undergo an examination before one of the Local Marine Boards before they can act in either of those capacities.

The qualifications required for the several ranks undermentioned, are as follows:-

A Second Mate must be seventeen years of age, and must have been four years at sea.

In Navigation.-He must write a legible hand and understand the first four rules of arithmetic, and the use of logarithms. He must be able to correc. the courses steered for variation and lee-way, and find the difference of latitude and longitude therefrom, be able to correct the sun's declination for longitude, and find the latitude by the meridian altitude of the sun; and work such other easy problems of a like nature, as may be put to him. He must understand the use of the sextant, and be able to observe with it, and read off the arc.

In Seamanship.-He must give satisfactory answers as to the rigging and unrigging of ships, stowing of holds \&c., \&c.,-must understand the measurement of the log-line, glass, and lead-line, be conversant with the
rule of the road, as regards both steamers and sailingvessels, and the lights carried by them.

An Only Mate must be eighteen years of age, and have been four years at sea.

In Navigation.-In addition to the qualification required for a Second Mate, an Only Mate must be able to work a day's work complete, including the bearings and distance of the port he is bound to, by Mercator's method. He must know how to lay off the place of the ship on the chart, both by bearings of known objects, and by latitude and longitude; must be able to observe and calculate the sun's amplitude, and deduce the variation of the compass therefrom. He must be able to use a sextant and determine its error, and adjust it, and find the time of high water from the known time at full and change.

In Seamansimp.-In addition to what is required of a Second Mate, he must know how to moor and unmoor, and to keep a clear anchor ; to carry out an anchor ; to stow a hold, and make the requisite entries in the ship's log.

A Finst Mate must be nineteen years of age, and have served five years at sea, of which one year must have been as cither Second or Only Mate, or as both. (Service in a superior capacity is in all cases to be equivalent to service in an inferior capacity.)

In Navigation.-In addition to the qualification required for an Only Mate, he must be able to observe azimuths and compute the variation; to compare chronometers and keep their rates, and find the longitude by them from an observation of the sun; to find the latitude by a single altitude of the sun off the meridian; and be able to use and adjust the sextant by the sun.

In Seamanship.-In addition to the qualification required of an Only Mate, a more extensive knowledge of seamanship will be required, as to shifting large spars
and sails, managing a ship in stormy weather, taking in and making sail, shifting yards and masts, \&c., and getting cargo in and out; especially heavy spars and weights, \&c.; casting ship on lee-shore, and securing the masts in the event of accident to the bowsprit.
A Master must be twenty-one years of age, and have been six years at sea, of which one year must have been as First Mate, and one year as Second Mate; or two years as First and Only Mate.

In addition to the qualification for a First Mate, he must be able to find the latitude by a Star, \&c. he will be inquired of as to the nature of the attraction of the ship's iron upon the compass, and as to the method of determining it. He must possess a sufficient knowledge of what he is required to do by law ; as to entry and discharge, and the management of his crew ; as to penalties and entries to be made in the official \log. He will be questioned as to his knowledge of iuvoices, charter party, Lloyd's agent, and as to the nature of bottomry, and he must be acquainted with the leading lights of the Channel he has been accustomed to navigate, or which he is going to use. In cases where an applicant for a Certificate as Master ordinary, has only served in fore-and-aft rigge 1 vessels, and is ignorant of the management of a square-rigged vessel, he may obtain a Certificate on which the words "Fore and aft rigged vessel" will be writen. This however is not to apply to Mates, who being younger men, are expected for the future to learn their business completely.

An Extra Master's Examination is intended for such persons as wish to prove their superior qualifications. Before being examined for an Extra Master's Certificate, an applicant must have served one year either as a Master with an ordinary certificate of competency, or as a Master having a first class cerificutie, granted by one of the former Boards of Examination.

In Navigation.-As the vessels which such Masters will command, frequently make long voyages, to the East Indies, Pacific, \&c., the candidate will be required to work a lunar observation by both sun and star to determine the latitude by the moon and star, by Polar Star off the meridian, and also by double altitudes of the sun, and to verify the result by Sumner's Method. He must be able to calculate the altitudes of the sum or star when they cannot be observed, for the purpose of lunars -to find the error of a watch by the method of equal altitudes-and to correct the altitudes observed with an artificial horizon.

He must understand how to observe and apply the deviation of the compass, and to deduce the set and rate of the current from D. R. and from observation. He will be required to explain the nature of Great Circle Sailing, and know how to apply practically that knowledge; but he will not be required to go into the calculations. He must be acquainted with the law of storms so far as to know how he may probably best escape those tempests common to the East and West Indies, and known as hurricanes.

In Semmaxship.-The extra examination will consist of an inquiry into the competency of the party to heave a ship down, in case of acculent befalling her abroad; to get lower masts and other heavy weights in and out; how to construct rafts, and as to his resources for the prescruation of the ship's crew in the event of wreck, and in such operations of a like nature as the examiner may consider necessary.

The candidates will be allowed to work out the various problems according to the method and tables they have been accustomed to use, and will be allowed five hours to perform the work ; at the expiration of which, if they have not finished, they will be declared to have failed, unless the Local Marine Board see fit to extend the time.

Applicants for examination are required to give their names to the Slipping Master, or to the Local Marine Board at the place when they intend to be examined, on or before the day of examination, and to conform to the regulations in this respect which may be laid down by the Local Marine Board, and if this be not done, a delay will be occasioned.

The examinations will commence early in the forenoon on the days appointed, and be continued from day to day until all the candidates whose names appeared tion, are examined.
Testimonials of character on which sobriety and trustworthiness must be written, will be required of all applicants, and without which no person will be examined: and as testimonials may have to be forwarded to the office of the Register-General of seamen in London for verification, before any Certificates can be granted, it is desirable that candidates should lodge them as early as possible. Upon application to the Shipping Master, candidates will be supplied with a form, which they will be required to fill up and lodge with their testimonials in the hands of the examiners.
The fee for examination must be paid to the Shipping Master. If a candidate f il in his examination, half the fee he has paid will be returned to him by the Shipping Master on his producing a document which will be given him by the examiner.

The following are the fees to be paid by applicants for examination.

Second Mate	£ s.d
lirst and Only Mates, if previously posscss............................... inferior certificete	100
If not.	0100
Master	$\begin{array}{lll}1 & 0 \\ 2 & 0\end{array}$

Any one who has been one year in possession of a Master's first-class Certificate granted by one of the for-
mer Boards of examiners, or an Ordinary Master's certificate of competency granted under the present examiners, may pass an extra examination, and receive an extra Certificate in exchange for his former one, without payment of any fee. But if he fails in his first examination, he must pay half' a Masters fee on his coming a second time; and the same sum for every subsequent attempt.

If the applicant passes, he will receive a document from the examiner which will entitle him to receive his certificete of competcncy from the Shipping Master at the port to which he has directed it to be forwarded. If his testimonials lave been sent to the Registrar to be verified, they will be returned with his certificate.

If an applicant is examined for a higher rank and fails, but passes an examination of a lower grade, he may receive a certificate accordingly, but no part of the fee will be returned.

As the examinations of Masters and Mates are made compulsory, the qualifications have been kept as low as possible ; but it must be distinctly understood that it is the imention of the Board of 'Trade to raise the standard from time to time, whenever, as will no doubt be the case, the gencral attainments of officers in the Merchant Service shatl render it possible to do so without inconvenience ; and officers are strongly urged to employ their leisure hours, when in port, in the acquirement of the knowledge necessary to enable them to pass their examinations: and Masters will do well to permit apprentices and junior officers to attend schools of instruction and to alford them as much time for this purpose as possible.

Lights of Newfoundland.

Name of Light				$\begin{aligned} & \stackrel{\rightharpoonup}{3} \\ & 0 \\ & 0 \end{aligned}$	Description of Light	
Fort Amherst	110	12			Fixed White	
Cape Spear	275	36	$47^{\circ} 31^{\prime}$	$52^{\circ} 33^{\prime}$	White revolving one minute	$29^{\circ} \mathrm{W}$
Cape Bonavista H. Grace Island	150	30 30	$48^{\circ} 42^{\prime}$ $47^{\circ} 42^{\prime}$	$\left[\begin{array}{ll}52^{\circ} & 59^{\prime} \\ 53^{\circ} & 5^{\prime}\end{array}\right.$	Red and white alternate revolving 2 minates White fixed	$30^{\circ} \mathrm{W}$
II. Grace Beacon	40	10			White fixed double one over the other	
Green Island	92	12	$48^{\circ} 30^{\prime}$	$53^{\circ} 3^{\prime}$	Fixed white	$30^{\circ} \mathrm{W}$.
Offer Wadham	96	12	$10^{\circ} 36^{\prime}$	$53^{\circ} 46^{\prime}$	Fixed white	$32^{\circ} \mathrm{W}$.
Cape Pine	314	36	$46^{\circ} 37^{\prime}$	50 20'	White revolting 30 secoluts	$27^{\circ} \mathrm{IV} .$
Cape Race	180	17	$46^{\circ} 39^{\prime} 11^{\prime \prime}$	$53^{\circ} \times 2 s^{\prime \prime}$	Fixed white	$271^{\circ} \mathrm{W}$
Dociling Head	410	36	$47^{\circ} 0^{\prime}$	$100^{\circ} 0$	White revolving 20 seconds	$26^{\circ} \mathrm{W}$
Baccalieu Is'and	'380	36	$48^{\circ} 0^{\prime} 9^{\prime}$	$52^{\circ} 30^{\prime}$	ITVhite revolving 20 seconds	$30^{\circ} \mathrm{W}$
Cape St. Mary	230	28	$46^{\circ} \quad 33^{\prime}$	$34^{\circ} 11^{\prime}$	Revolving alternate red $\mathbb{\&}$ white one minute	$27^{\circ} \mathrm{W}$

Remarks.

At entranee of St. John's Harbour. Stone building.

Wood building. White with bands of red on the roof.

Wood building. White with red stripes.

Woou milling. White with red bands on the roof.

House painted white-lied roof.

Ilonse white. Tower brick, detaehed.
Tower iron-painted with alternate bands of red \& white-House separate painted white-roof red.
Tower iron painted in stripes red and white-Dwelling detached, white, roof red.

Tower striped red and white vertically.
House and Tower as at Green Island, painted white-Roof red.

Tower detached from dwelling-painted white roof red.
(Not yet finished.)

Lights in Gulf of St. Lawrence and Straits of Belle Isle.

Note.- Signals are given at or near each of the above Housez, by means of an air or fog-whistle, sounded at short intervals during foggy weather and snow storms-or by a nine-pounder gun fired every hour, in ease of the
whistle being out of order.

Remarks.

Whole Horizon lighted from sun rise to sun set.

Circular stone tower, faced with fire brick of light colour $\frac{7}{3}$ of horizon illuminated.

Tower \&c., same as Point Amour.
Tower and light same as Anticoste.

SUBSCRIPTION LIST

Government House, April 14, 1859.

I consider that such a work as Mr. Campbell propuses to publish would be very aseful in this colony for those young men who may wish to acquire a knowledge of Navigation. I have not read the work, but as Mr. C. intends to publish by Subscription I shall readily coutribute towards that end $£ 10$.

Governor.

[^0]: *The business of the Assembly having been elosed before the arrival of this work in St. John's, His Excellency regretting the circumstance, and anxious to promote the Science of Narigation by atl the means in his power, surgested the publication by subscription from Merchants, Ship-owners, \&c., he himself subscribing for that end ten pounds-(vide list of Subscribers.)

[^1]: *The rules for this method are given in the Λ ppendix.

[^2]: Answer-In long. $31^{\circ} 58 a^{\prime}$ W.

