CIHM Microfiche Series (Monographs)

> ICMH
> Collection de microfiches (monographies)

Canadian Institute for Historical Microreproductions / Institut canadien de microreproductions historiques

Technical and Bibliographic Notes / Notes techniques et bibliographiques

The Institute has attempted to obtain the best original copy available for filming. Features of this copy which may be bibliographically unique, which may alter any of the Images in the reproduction, of which may significantly change the usual method of filming are checked below.

Coloured covers /
Couverture de couleur
Covers damaged /
Couverture endommagée
Covers restored and/or laminated /
Couverture restaurée eVou pelliculée
Cover title missing / Le titre de couverture manque
Coloured maps / Cartes géographiques en couleur
Coloured ink (i.e. other than blue or black) /
Encre de couleur (i.e. autre que bleue ou noire)
Coloured plates and/or illustrations /
Planches eV/ou illustrations en couleur
Bound with other material/
Relié avec d'autres documents

Only edition available /
Seule édition disponible

\square
Tight binding may cause shadows or distortion anig interior margin / La reliure serrée peut causer de l'ombre ou de la distorsion le long de la marge intérieure.

Blank leaves added during restorations may appear within the text. Whenever possible, these have been omitted from filming / II se peut que certaines pages blanches ajoutées lors d'une restauration apparaissent dans le texte, mais, lorsque cela était possible, ces pages n'ont pas été filmées.

L'Institut a microfilmé le meilleur exemplaire qu'il lui a été possible de se procurer. Les détails de cet exemplaire qui sont peut-étre uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qul peuvent exiger une modification dans la méthode normale de filmage sont indiqués ci-dessous.

Coloured pages / Pages de couleur
Pages damaged / Pages endommagées
Pages restored and/or laminated/
Pages restaurées et/ou pelliculées
Pages discoloured, stained or foxed /
Pages décolorées, tachetées ou piquees

Pages detached / Pages délachées

Showthrough / Transparence
Quality of print varies /
Qualité inégale de l'impression
Includes supplementary material/
Comprend du matériel supplémentaire
Pages wholly or partially obscured by ef $1,3: 1, \pm$. tissues, etc., have been refilmed to ensurt :'? ?s, possible image / Les pages totaleme't \because partiellement obscurcies par un feuillet d'errata. t e pelure, etc., ont été filmées à nouveau de façon à obtenir la meilleure image possible.

Opposing pages with varying colouration or discolourations are filmed twice to ensure the best possible image / Les pages s'opposant ayant des colorations variables ou des décolorations sont filmées deux fois afin d'obtenir la meilleure image. possible.

Additional comments / Pagination is as follows: p. [5]-395.
Commentaires supplémentaires:

This item is filmed at the ieduction ratio checked below /
Ce document est filmé au taux de réduction indiqué ci-dessous.

The copy filmed here hes been reproduced thenks to the generosity of:

National Library of Canada

The images appeering here ere the best quality possible considering the condition and legibility of the original copy and in keeping with the filming contrect specificetions.

Original copies in printed peper covers ere fllmed beginning with the front cover end ending on the laet pege with a printed or illustreted impres. sion, or the beck cover when eppropriete. All other original copies are filmed beginning on the first page with e printed or lllustroted imprescion, end ending on the last pege with e printed or illuerroted impression.

The leet recorded freme on each microfiche shell contein the symbol \rightarrow (meening "CON. TINUED"), or the symbol ∇ (meaning "END"). whichever epplies.

Maps, plares, charts, etc., may be filmod at different reduction retios. Thoee too large to be entirely included in one exposure are filmed beginning in the upper lett hend corner, left to right and top to bottom, es many fremes es required. The following diagrams illustrate the method:

L'exempleire filmd fut reproduit grace ta géndrosite de:

Bibliothèque nationale du Canada

Les imeges suivantee ont dtt reproduites avec le plus grand soin, compte senu de la condition ot de le nettere de l'exemplaire filmb. at en conformite evec lee conditions du controt de filmage.

Les exemplaires origineux dont la couverture en pepier est Imprimbe sont filmes en commen-ant par le premier plet et en terminant soir per la dernibre pege qui comporte une empreinte d'Imprescion ou d'illustration, sois par lo second plat, selon le cas. Yous los autres exemplaires origineux sont filmds en commençent par le premidre page qui comporto une emprainte d'impression ou d'illustration et en terminent par le dernitre page qui comporte une telle empreinte.

Un des symboles suivants appereitre sur la dernidre imege de chaque microfiche. selon le cas: Io symbole signifie "A SUIVRE", le symbole V signifie "FIN".

Les certes, planches, robleeux. atc., pauvent otre filmbs à des taux de réduction differents. Lorsque le document est trop grand pour otre reproduit on un seul clichd. il est filme à partir de l'angle superieur gauche, de gauche à droite. or de hour on bes. en prenant le nombre d'images necesseire. Lee diagrammes suivents lllustrent lo mithode.

(ANSI and ISO TEST CHART No. 2)

APPLIED IMAGE Inc
1653 East Main Street
Rochester, New York 14609 USA
(716) 482 - 0300-Phone
(716) 288 - 5989 - Fax

-
 LIGHT AND HEAVY TIMBER FRAMING MADE EASY

Balloon Framing, Mixed Framing, Heavy

 Timber Framing, Houses, Fact ries, Bridges, Barns, Rinks, Timber-roofs, and all other kinds of Timber Buildings : : :Belng a coplous treatise on the modern practical methods of executing all kinds of timber framing, from the simple scal ing shed or lean-to. to the heavy and complicated timber wrikes, centers, needing and sinring, roothag and rallwas work, tank frames and taper structures
 Author of The Starl Square and its Uses, Monern and Practical Carpentry, Stairbuilding Made Fasy, Cements, Mortare and Stuccos, and Mang Other Technical Wores

Over Four Hundred and Fifty lifustrations and Diagrams

PUBLI. 3 HEKE
Frederick J. Drake \& Co. CHICAGO
こ. S. A.

TH2301
H64

$$
\begin{aligned}
& 1909 \\
& p * * *
\end{aligned}
$$

Cofymight 1909
BY
FREDERICK J. DRAKE \& CO. Cuicago

Printed in C. S. A.

INTRODUCTORY

JOINTS IN WOODWORK FRAMING.

The joints shown in the fo', wing illustrations are such as are mostly emplo: 1 in framed woodwork, and although they do not cover the whole ground, or show all the styles and methods of framing known to the expert workman, they include nearly : ill of the principal joints in general use, both in light and heavy framing; later on I may show other joints and splices that are not included in the figures shown in this portion of the work.

The introduction of steel in the construction of buildings has in a great measure displaced woodwork in the erection of large buildings in towns and cities, yet til ${ }^{\prime}$. or work $:$ is still of sufficient importance to warrant a reful study of the properties of wood and its uses, hence the following descriptions of var woods are offered in order that t_{i} worker nay have a more or less intelligent idea of the nature of the materials he is manipulating.
This short treatise it is hoped will be found useful, interesting and instructive tc the reader, and while it is not intended to be exhaustive, it
may be depended upon to be reliable as far as it goes.

All trees are divided by botanists into three classes; Exogens, or outward-growers; Endogens, or inward-growers; and Ecrogens, or summit growers-according to the relative position in which tie new material for increasing the substance of the tree is added; viz., whether towards the outside, the inside or the top. Typical trees of each class would be the oak, the palm, and the tree fern. We have to deal with the exogenous class only, as that furnishes the timber in general use for construction, the term "timber" including all varieties of wood which, when felled and seasoned, are suitable for building purposes.
If the stem of an exogenous tree be cut across, it will be found to exhibit a number of nearly concentric rings, more or less distinct; and, in certain cases, radial lines intersecting them. These rings represent the annual growth of the tree which takes place just under the bark. Each ring consists of bundles of woody fibre or vascular tissue, in the form of long tapering tubes, interlaced and breaking joint with each other, having a small portion of cellular tissue at intervals. Towards the outer edge of each ring the woody fibre is harder, more compact, and of a darker color than the remaining portion. The radial lines consist of thin, hard, vertical plates formed entirely of cellular tissue, known to botanists as "Medullary 1 shows the woody fibre as seen in a magnified vertical section, Fig. 2 the cellular tissue and Fig. 3 a typical section of the stem of a young tree, a being the woody fibre, b the pith, c the medullary rays, and d the bark; the three latter consisting

Fig. 1.

Fig. 2.
of cellular tissue and enclosing the woody fibre in wedge-shaped portions. As the tree advances in age, the rings and rays become more irregular, the growth being more vigorous on the sunny side, causing distortion. The strength of wood "along the grain" depends on the tenacity of the walls
of the fibres and cells, while the strength "across the grain" depends on the adhesion of the sides of the tubes and cells to each other.

Tredgold proposed a classification of timber according to its mechanical structure, this, as modified by Professor Rankine which is given in the following table, also by Trantwine and others.

Class I. Pine-wood (coniferous trees)-pine, fir, larch, cowrie, yew, cedar, etc.

Fig. 3.
Class II. Leaf-wood (non-coniferous trees), Division I with distinct large medullary rays.

Sub-division I. Annual rings distinct-oak.
Sub-division II. Annual rings indistinct, beech, birch, maple, sycamore, etc.

Division II. No distinct large medullary rays.
Sub-division I. Annual rings distinct-chestnut, ash, elm, etc.

Sub-division II. Annual rings indistinct-mahigany, teak, walnut, box, etc.

Knowing now the microscopical structure of the rrood , we are in a position to understand the
process of seasoning, and the shrinking incidental to that cperation. While wood is in a growing state there is a constant passage of sap, or nutritive fluid, which keeps the whole of the interior of the tree moist and the fibres distended, but more especially towards the outside. When the tree is cut dorn, and exposed to the air, the moisture gradually evaporates, causing the fibres to shrink according to certain laws; this is the natural process of seasoning. There are various methods of seasoning timber artificially, in each case the object in view is to expedite the process of evaporation. The shrinkage in length is very slight, and need not therefore be considered; but the shrinkage transversely is so great that it is necessary to look closely into the nature of it, as the question of jointing is affected considerably thereby.

If Fig. 4 be taken as representing the section of a newly felled tree, it will be seen that the wood is solid throughout, and on comparing Fig. 5 with this the result of the seasoning will be apparent. The action is exaggerated in the diagrams in order to render it more conspicuous. As the moisture evaporates, the bundles of woody fibre shrink and draw closer together; but this contraction cannot take place radially, without crushing or tearing the hard plates forming the medullary rays, which are unaffected in size by the seasoning. These plates are generally sufficiently strong to resist the crushing action, and the contraction is there-
fore compelled to take place in the opposite direction, i. e. circumferentially, the strain finding relief by splitting the timber in radial lines, allowing the medullary rays in each partially severed portion to approach each other in the same direction

as the ribs of a lady's fan when closing. The illustration of a closing fan affords the best example of the principle of slirinking during seasoning, every portion of the wood practically retaining

FIg. 6.

Fig. 7.
its original distance from the center. If the tree were samn down the middle, the cut surfaces, although flat at first, would in time become rounded, as in Fig. 6, the outer portion shrinking more than that nearer the heart on account of the greater
mass of woody fibre it contains and the larger amount of moisture. If cut into quarters each portion would present a similar result, as shown in Fig. 7. Figs. 8 iu 12 show the same principle ap-

plied to sawn timber of various forms, the peculiarities of which are perhaps indicated more clearly in Fig. 14. If we assume the tree to be cut into planks, as shown in Fig. 13, it will be found, after
allowing due time for seasoning, that the planks have altered their shape, as in Fig. 14. T'aking the center plank first, it will be observed that the thickness at tl e middle remains unaitered, at the edge it is reduced, and both sides are rounded, while the

Fig. 14.

Fig. 15.
width remains unaltered. The planks on each side of this are rounding on the heart side, hollow on the other, retain their middle thickness, but are reduced in width in proportion to their distance

Fig. 16.

Fig. 17.
from the center of the tree; or, in other words, the more nearly the annual rings are parallel to the sides of the planks the greater will be the reduction in width. The most striking result of the shrinkage is shown in Figs. 15-17. Fig. 15
shows a piece of quartering freshly cut from unseasoned timber; in Fig. 16 the part colored black shows the portion lost by shrinkage, ar ! Fig. 17 shows the final result. These renarks apply more especially to oak, beech and the stronger firs. In the softer woods the medullary rars are more yielding, and this slightly modifies tine result; but the same principles must be borne in mind if we mish to avoid the evils of shrinking which may cccur from negligence in this respect.

The peculiar direction which "shakes," or natural fractures, sometimes take is due to the unequal adhesion of ti.e woody fibres, the weakest part yielding first. In a "cup shake," which is the separation of a portion of two annual rings, the medullar! ra!s are deficient in collesion. This same fault sometimes occurs in white pine and has been attributed to the action of lightning and of severe frosts. So far we have considered the slirinking only as regards the cross section of various pieces. Turning now to the effect produced when we look at the timber in the other direction, Fig. 18 represents a piece of timber with the end cut off square; as this shrinks, the end remains square, the width alone being affected. If, however, the end be bevelled as in Fig. 19 we shall find that in shrinking it assumes a more acute angle, and this should be remembered in framing roofs, arranging the joints for struts, etc., esp cially by the carpenters tho have to do actual
work of fitting the parts. If the angle be an internal one or bird's mouth, it will in the same way become more acute in seasoning. The transverse shrinkage is here considered to the exclusion of any slight longitudinal alteration which might occur, and which would never be sufficient to affect the angle of the bevel. When seasoned timber is used in position subject to damp, the wood will swell in exactly the reverse dircction to the shrinkage, and induce similar difficulties unless this point lias also received due attention. Of course it will be seen from a study of the cross sections

Fig. 18.
illustrated in the diagrams that the pieces might be selected in such a way that the shrinkage and expansion would take place chiefly in the thickness instead of the width, and thus leave the bevel unaltered. In this consists the chief art of selecting picces for framing; but in many instances motives of economy unfortunately favor the use of pieces on stock, without reference to their suitability for the purpose required.

We may now leave the question of shrinkage, and procecd to a consideration of the more immediate intention of the book. In the following
table, which shows the English method of classification, an attempt has been made to place timber under the different terms by which it is known, according to its size, and other accidental characteristics. This is only a rough approximation, as no definite rule can be laid down; but it may be of some assistance to those who have occasionally to deal with workmen using the trerms.

CLASSIFICATION OF TIMBER CCORDING TO SIZE (Approximate)

Pieces largor than planks are generally called timber, but when sawn all round, are called scant-
ling, and when sawn to equal dimensions each way, are called die-square. The dimensions (width and thickness) of parts in a franing are sometimes called the scantlings of the pieces. The term "cut stuff" is also used to distinguish wood in the state ready for the joiner, from "timber" which is wood prepared for the use of the carpenter. A "log" or "stick" is a rough whole timber unsawn.
The use of wood may be discussed under the two heads of carpentry and joinery. The former con-

Fig. 17.
sists principally of the use of large timbers, either rough, adzed, or sawn, and the latter of smaller pieces, almays sawn, and with the exposed surfaces planed. The carnenters' work is chiefly outdoor; it enbraces such objects as building timber hridges and gantries, framing roofs and floorr, constructing centering, and other heavy or rough work. Joiners' work is mostly indoor; it includes laying flooring, making and fixing doors, window sashes, frames, linings, partitions, and internal fittings generally. In all cases the proper connection of the parts is an essential element, and
in designing or executing joints and fastenings in woodwork, the following principles, laid down by Professor Tredgold should be adhered to viz.:-

1st. To cut the joints and awange the fastenings so as to weaken the pieces of timber that they connect as little as possible.

2nd. To place earll abutting surface in a joint as nearly as possible perpendicular to the pressure which it has to transmit.

3 rd . To proportion the area of each surface to the pressure which it has to bear, so that the timber may be safe against injury under the heaviest load which occurs in practice and to form and fit every pair of such surfaces accurately in order to distribute the stress uniformly.

4th. To proportion the fastenings so that they may be of equal strength with the pieces which they connect.

5th. To place the fastenings in each piece of timber so that there shall be sufficient resistance to the giving way of the joint by the fastenings shearing or crushing their way through the timber.

To these may be added a $6 \mathrm{th}^{2}$ principle not less important than the foregoing, viz., To select the simplest forms of joints, and to obtain the smallest possible number of albutments. The reason for this is that the more complicated the joint, or the greater the number of hearing surfaces, the less probability there will be of getting a sound and cheaply made connection. To insure a fair and
equal bearing in a joint which is not quite trne, it is usual, after the pieces are put together, to run a saw cut between each bearing surface or abutment, the kerf or width of cut being equal in each case, the bearing is then rendered true. This is often done, for instance, with the shoulders of a tenon or the butting ends of a scarf, when careless workmanship has rendered it necessary. When the visible junction of two pieces is required to be

Fig. 20.
as cluse as possible, and no great strain las to be met at the joint, it is usual to slightly undercut the parts, and give clearance on the inside, as in Fig. 20, which shows an enlarged view of a tongued and rebated heading joint in flooring. In patternmaking the fillets which are placed at the internal angle of tro meeting surfaces, are made obtuse angled on the back, in order that when bradded into place the sharp edges may lie close, as shown in Fig. 21. The prints used by pattern-makers for indicating the position of round cored holes are also undereut by being turned slightly hollow on
the bottom, as shown in Fig. 22. The principle is adopted in nearly all cases where a close joini is a desideratum. Clearance must also be left in joints of framing when a settlement is likely to take place, in order that after the settlement, the the strain.

ト゚g. 21.

Fig. 22.

The various strains that can come upon any member of a structure are:

Tension: Stretching or pulling,
Compression: Crushing or pushing,
Transverse Strais: Cross strain or bending,
Torsion: Twisting or wrenchin; Shearing: Cutting.
But in woodwork. when the latter force acts along the grain, it is generally called "detrusion," the term shearing beins, limited to the action across the grain. The first three varicties are the strains which usually eome upon ties, struts, and heams respectively. The transerse strain, it must be observed, is resolvable into tension and compression, the former ocenring on the convex side of a loaded beam, and the latter on the concave side, the tro being separated br the neutral
axis or line of no strain. The shearing strain occurs principally in beams and is greatest at the point of support, the tendency being to cut the timber through at right angles to the grain; but in nearly all cases if the timber is strong enough to resist the transverse strain it is amply strong for any possible sliearing strain which can occur. Keys and other fastenings are especially subject to shearing strain, and it will be shown in that portion of our subject that there are certain precautions to be adopted to obtain the best results.

The following tables will serve as an introduction to this portion of the subject:

CLASSIFICATION OF JOINTS IN CARPENTRY.

Joints for lengthening ties, struts and beams; lapping, fishing, scarfing, tabling, building up.

Bearing-joints for beams; halving, notching, cogging, dovetailing, tusk-tenoning, housing, chasemortising.

Joints for posts and beams; tenon, joggle, bridle, housing.

Joints for struts with ties and posts; oblique tenon, bridle, toe-joint.

Miscellaneous; butting, mitering, rebating.

CLASSIFICATION OF FASTENINGS IN CARPENTRY.

Wedges, Keys, Pins, Wood pins,

And for joinery must be adided glue.
We will consider these joints in the order given above. One of the first requirements in the use of timber for engineering purposes is the connection of two or more beams to obtain a greater

length. Fig. 23 shorrs the method of lengthening a beam by lapping another to it, the tro being held together by straps and prevented from sliding by the insertion of keys. Fig. It shows a similar joint, through-bolts being used instead of straps, and wrought-iron plates instead of oak keys. This makes a neater joint than the former, but they are both unsightly and whenever adopted
the beams should be arranged in three or five pieces in order that the supports at each end may be level and the beams horizontal. This joint is more suitable ior a cross strain than for tension and compression. Fig. 25 shows the common form

of a finished beam adapted for compression. If required to resist tensile strain, keys should be inserted in the top and bottom joints between the bolts. Fig. 26 shoms a fished joint adapted for a cross strain. the whole sectional area of the orig. inal beam taking the compressive portion of the cross strain, and the fishing piece taking the tensile portion. Fig. 27 shows a fished beam for the same purpose in which a wrought-iron plate turned up at the ends takes the tensile strain. Tabling consists of bedding portions of one beam into the other longitudinally. Occasionally the fishing pieces are tabled at the ends into the beams to resist the tendency to slip under strain, but this office is better performed by kevs, and in practice tabling is not much used. The distinction betreeen fished beams and scarfed beams is that in the former

the original length is not reduced, the pieees being butted against each other, while in the latter the beams themselves are cut in a special manner and lapped partly over each other ; in both cases adrlitional pieces of mool or iron are attached to strengthen the joint. Fig. 29 shows a form of scarf adapted to short posts. Here the srorf is cut square and parallel to the sides, so twat the full sectional area is utilized for resisting the compressive strain. When the post is lnnger and liable to a bending strain the scarf should be inclined, as in Fig. 29, to allow of greater thickness being retained at the shoulder of each piece, the
shoulder being kept square. In this joint a considerable strain may be thrown on the bolts from the sliding tendency of the scarf, if the shoulders should happen to be badly fitted, as any slipping would virtually increase the thickness of the timber where the bolts pass through. The width of each shoulder should be not less than one-fourth the total thickness. Joints in posts are mostly re-

quired when it is desired to lengthen piles already driven, to support a superstructure in the manner of columns. Another form of scarf for a post put together without bolts is shown in Fig. 30, the parts heing tabled and tongued, and held together by wedges. This is not a satisfactory joint, and is moreover, expensive because of its requiring extra care in fitting; but it may be a suitable joint in some spectal cases, in which all the sides are re-
quired to be flush. Fig. 31 shows the commor form of scarf in a tie-beam. The ends of the scarf are bird's mouthed, and the joint is tightence! up by wedges driven from opposite sides. It is further

secured by the wrought-iron plates on the top and bottom, which are attached to the timber by bolts and nuts. In all these joints the friction between

the surfaces, due to the bolts being tightly screwed up, plays an important part ii the strength of the joint; and as all timber is liable to shrink, it $:$,

necessary to examine the bolts occasionally, antl to keep them well tightened up. Figs. 32 and 33 show good forms of scarfs, which are stronger but not so common as the preceding. Sometimes the
scarf is made vertically instead of horizontally, and when this is done a slight modification is made in the position of the projecting tongue, as will be seen from Fig. 34, which shows the joint in ele-

vation and plan. The only other scarfs to which attention need be called are those shown in Figs. 35 and 36 in which the compression side is made

with a square abutment. These are very strong forms, and at the same time easily made. Many other forms lave been designed, and old books on carpentry teem with scarfs of every conceivable
pattern; but in this, as in many other cases, the simplest thing is the best, as the whole value depends upon the accuracy of the workmanship, and this is rendered excessively difficult with a multiplicity of parts or abutments.

In building up beams to obtain increased strength the most usual method is to lay two together sideways for short spans, as in the lintels over doors and windows, or to cut one down the middle and reverse the halves, inserting a wrought iron plate between, as shown.in the flitch-girder,

Fig. 37. Fig. 37. The reversal of the halves gives no additional strength, as many workmen suppose, but it cnables one to see if the timber is sound throughout to the heart, and it also allows the pieces to season better. A beam uncut may be decayed in the center, and hence the advantage of $c^{\prime \prime}$ 'ting and reversing, even if no flitch-plate is to be inserted, defective picces being then discarded. When very long and strong beams are required, a simple metlod is to bolt several together so as to break joint with each other, as shown in Fig. 38, taking care that on the tension side the middle of one piece comes in the center of the stand with the two nearest joints equidistant. It is not necessary in a built beam to carry the full deptli as far as the supports; the strain is, of course, greatest in the center, and provided there is sufficient depth given at that point, the beam may be reduced towards
cises)
the ends, allowance being made for the loss of strengtl at the joints on tension side. A single piece of timber secured to the underside of a beam at the center, as in Fig. 39 is a simple and effective mode of increasing its strength. It will be observed that the straps are bedded into the sides of the beams; they thus form keys to prevent the pieces from slipping on each other. This weakens the timber much less than cutting out the top or bottom, as the strength of a beam varies not only in direct proportion to the breadth, but as the square of the depth. The addition of a second piece of timber in the middle is a method frequently adopted for strengthening shear legs and derrick poles temporarily for lifting heavy weights.

We now come to the consideration of bearing joint; for beams, the term 'beam'" being taken to include all pieces which carry or receive a load across the grain. The simplest of these is the halving joint, shown at Fig. 40, where two pieces of cross bracing are halved together. This joint is also shown at Fig. 41, where the ends of two wall plates meet each other: When a joint occurs in the length of a beam, as at Fig. 42, it is generally called a scarf. In each of these examples it will be seen that half the thickness of each piece is cut away so as to make the joint flush top and bottom. Sometimes the outer end of the upper piece is made thicker, forming a bevelled joint and acting as a dovetail when loaded on top. This is shown

TIMBER FRAMING

at Figs. 43 and 44 . When one beam crosses another at right angles, and is cut on the lower side to fit upon it, the joint is known as single notching, shown in Fig. 45. When both are cut, as in Fig.

46 , it is known as double notehing. These forms occur in the bridging and ceiling joists shown on the diagrams of double and doublu-framed flooring. When a cog or solid projecting portion is
${ }^{\text {e }} \mathrm{t}$ in the lower piece at the middle of the joint it is known ats cogging, cocking, or caulking, and is shown in Fig. 47. Figs. 48 and 49 show two forms of the joint occurring between a tie-beam and wall plate in roofing. Dove-tailing is not much

Fig. 48.

Fig. 49.
used in carpentry or house-joinery, owing to the sluinkage of the wood loosening the joint. Two wall plates are shown dovetailed together at Figs. 50 and 51 ; in the latter a wedge is sometimes in-

Fig. 50.
serted on the straight side to enable the joint to be tightened up as the wood shrinks. Tredgold proposed the form shown in Fig. 52 which is known as the "Tredgold notch"; but this is never seen in practice. Tusk-tenoning is the method
adopted for obtaining a bearino for one beam meeting another at right angles at the same level. Fig. 53 shows a trimmer supported on a trimming

Fig. 51.

Fig. 53.

「ig. 54.
joist in this manner; this occurs round fireplaces, hoistways, and other openings through floors. Fig. 54 shows the same joint between a wood girder and binding joist, it is also seen in the diagram of
double-framed flooring. The advantage of this form is that a good bearing is obtained without. weakening the beam to any very great extent, as the principal portion of the material removed is taken from the neutral axis, leaving the remainder disposed somewhat after the form of a flanged girder. When a cross piece of timber has to be framed in betwer : two beams already fixed, a tenon and chase tortise (Fig. 55), is one of the

Fig. 55.
methods adopted. If the space is very confined, the same kind of mortise is made in both beams, but in opposite directions; the cross piece is then held obliquely, and slid into place. Occasionally it is necessary to make the shase-mortise vertical, but this is not to be recommended, as the beam is more weakened by so doing-it is shown in Fig. 56. ('eiling joists, fixed by tenons and chase-mortises, are shown on the diagram of double flooring.

In sorm vases, a square fillet is nailed on, as shown in the same diagram, to take the weight of the joists without cutting into the beam. While speaking of floors, the process of furring-up may be mentioned; this consists of laying thin pieces, or strips, of wood on the top of joists, or any surfaces, to bring them up to a level. Furring-pieces are also sometimes nailed underneath the large beams in framed floors, so that the under side may be level with the bottom of the ceiling joists, to give a

Fig. 56.
bearing for the laths, and at the same time allow sufficient space for the plaster to form a key. Brandering is formed by strips about one inch square, nailed to the under side of the ceiling joists at right angles to them; these strips help to stiffen the ceiling, and being narrower than the ceiling joists, do not interrupt the key of the plastering so much-this is also shown on the diagram of double flooring. Housing consists of letting one piece of wood bodily into another for a short
distance, or as it were, a tenon the full size of the stuff. the is shown in the diagram of staircase det ils, where the treads and risers are seen housed into the strigs, and held by wedges. Housing is likewse adopted for fixing rails to posts, as in Fig. 57, where an arris rail is shown honsed into

Fig. 57.

Fig. 58.

Fig. 59.
an oak post for fencing. The most common joint, however, between posts and beams, is the tenon and mortise joint, cither wedged or fixed by a pin; the former arrangement is shown in Fig. 58, and the latter in Fig. 59. The friction of the wedges,
when tightly driven, aided by the adhesion of the glue or white lead with which they are coated, forms, in effect, a solid dovetail, and the fibres being compressed, do not yield further by the shrinking of the wood. In the diagram of a framed door will be seen an example of the application of this joint and in the adjacent diagram will be seen the evils produced by careless fitting, or the use of unseasoned material. When it is desired to tenon a beam into a post, without allowing the tenon to show through, or where a mortise has to be made

Fig. 60.

Fig. 61.
in an existing post fixed against a wall, the dovetail tenon, shown in Fig. 60 is sometimes adopted, a wedge being driven in on the straight side to draw the tenon home and keep it in place. In joining small pieces, the foxtail tenon, shown in Fig. 61 has the same advantage as the dovetail tenon, of not showing through; but it is more difficult to fix. The outer wedges are made the longest, and indriving the tenon home, these come into action first, splitting away the sides, and filling up the dovetail mortise, at the same time
compressing the fibres of the tenon. This joint requires no glue, as it cannot draw out; should it work loose at any time, the only way to tighten it up would be to insert a very thin wedge in one end of the mortise. Short tenons, assisted by strap bolts, as shown in Fig. 62 are commonly adopted in connecting large timbers. The post is

Fig. 62.
cut to form a shoulder so that the beam takes a bearicg for its full width, the tenon preventing any side movement. When a post rests on a beam or sill piece, its movement is prevented by a "joggle," or stub-tenon, as shown in Fig. 63; but too much reliance should not be placed on this tenon, owing to the impossibility of seeing, after the pieces are fixed, whether it has been properly
fitted, and it is particularly liable to desay from moisture settling in the joint. For temporary purposes, posts are sommonly secured to heads and sills by dog-irons, or "dogs," Fig. 64; the pieces

Fig. 63.

Fig. 64.
in this case simply butt against each other, the object being to avoid cutting the timber, and so depreciating its value, and also for economy of labor. Other forms of tenons are shown in Figs. 65 and 66. The deuble tenon is used in framing

Fig. 65.

Fig. 66.
wide pieces, and the haunched tenon when the edge of the piece on which the tenon is formed is required to be flush with the end of the piece containing the mortise. Examples of both these will
be found in the diagram of framed door. In Figs. 67 and 68 are shown two forms of bridle joint between a post and a beam. Tredgold and Hatfield recommended a bridle joint $w i^{4} h$ a circular abut-

Fig. 67.

Fig. 68.
ment, but this is not a correct form, as the post is then equivalent to a column with rounded ends, which it is well known is unable in that form to

Fig. 69.
bear so great a load before it commences to vield. A strut meeting a tie, as in the case of the foot of a principal rafter in a roof truss, is generally tenoned iuto the tie by an oblique tenon, as shown in Fig. 69 ; and the joint is further strengthened
by a toe on the rafter bearing against ε shou!der in the tie. Tredgold strongly advised rhis joint being made with a bridge instead of a temon, as shown in Fig. 70, on account of the abutting surfaces being fully open to view. A strut meeting a post as in Fig. 71, or a strut meeting the principal rafter of a roof-truss (Fig. 72) is usually connected by a simple toe-joint. The shoulder should be cut square with the piece enntaining it, or it should bisert the angle formed between the two

Fig. 70.

Fig. 11.

Fig. 72.
pieces. It is sometimes made square with the strut, but this is incorrect, as there would in some cases be a possibility of the pieces lipping out. In battoned and braced doors or gates this joint is used, the pieces being so arranged as to form triangles, and so prevent the liability to sag or drop, which is so difficult to guard against in square framed work without struts or braces. When a structure is triangulated, its shape remains constant so long as the fastenings are not torn away, because, with a given length of sides, a triangle can assume only one position; but this is not the case with four-
sided framing, as the sides, while remaining constant in length may vary in position. The diagram of a mansard roof shows various examples of a toe-joint; it sl, רws also the principal framing kingpost and queen-post roof trusses, each portion being triangulated to insure the utmost stability.

Fig. 73.

Fig. 74.

Fig. 7.

Among the miscellaneous joints in carpentry not previously mentioned the most common are the butt joint, Fig. 7.3, where the pieces meet each other with square ends or sides; the mitre joint, Fig. 74, where the pieces abut against each other with bevelled ends, bisecting the angle between them, as in the case of struts mitered to a corbel piece sup-

$$
\text { Fig. } 77
$$

Fig. 78.
porting the beam of a gantry : and the rabbeted or "rebated" joint, Fig. 75, which is a kind of narrow halving, either transverse or longitudinal. To these must be added in joinery the grooved and tongued joint, Fig. 76. the matched and beaded joint, Fig. 77, the dowelled joint, Fig. 78, the dove-
tailed joint, Fig. 79, and other modifications of these to suit special purposes. The application of several of these joints is shown on the various diagrams of flooring, ete. To one of these it uicay be desirable to call particular attention, viz.: the flooring laid folding. This is a method of obtaining close joints without the use of a cramp. It consists of nailing down two boards and leaving a space between them rather less than the width of, say five boards, these boards are then put in

Fig. 79.
place, and the two projecting edges are farced down by laying a plank across them, and standing on it. This may generally be detected in old floors by observing that several heading joints come in one line, as shown on the diagram, instead of breaking joint with each other. It is worthy of notice that the tongue, or slip feather, shown in Fig. 76, which in good work is formed generally of hard wood, is made up of short pieces cut diagonally across the grain of the plank, in order that any movement of the joints may not split the tongue, which would inevitably occur if it were cut longitudinally from the plank.

With regard to fastenings, the figures already given show several applications. Wedges should be split or torn from the \log, so that the grain may be continuous, or if sawn out, a straight-grained piece slould be selected. Sufficient taper should be put on to give enough compression to the joint, but too much taper would allow the possibility of the wedge working loose. For outside work, wedges should be painted over with white lead before being driven, this not being affected by moisture, as glue would be. In scarf-joints the chief use of wedges is to draw the parts together before the bolt-holes are bored. Keys are nearly parallel strips of hard rood or metal; they are usually made with a slight draft to enable them to fit tightly. If the key is cut lengthwise of the grain, a piece mitl curled or twisted grain should be selected, but if this cannot be done, the key should be cut crossmays of the \log from which it is taken, and inst..ed in the joint with the grain at right angles to the direction of the strain, so that the shearing stress to which the key is subject may act upon it across the fibres. In timber bridges and other large structures cast iron keys are frequently used, as there is with them an absence of all ..ifficulty from shrinkage. Wood pins should be selected in same way as wedges, from straightgrained, hard rood. Square pins are more efficient than round pins, but are not often used, on account of the difficulty of forming square holes for their
reception. Tenons are frequently secured in mortises, as in Fig. 59 , by pins, the pins being driven in sucis a manner as to draw the tenon tightly into the mortise up to its shoulders, and afterwards to hold it there. This is done by boring the hole first through the cheeks of the mortise, then inserting the tenon, marking off the position of the hole, removing the tenon, and boring the pinhole in it rather nearer the shoulders than the mark, so that when the pin is driven it will draw the tenon as above described. This method is called "drawboring." The dowelled floor shown in Fig. 78 gives another example of the use of pins.

Nails, and their uses, are too well known to need description; it may, however, be well to call attention to the two kinds of cut and wrought nails, the former being sheared or stamped out of plates, and the latter forged out of rods. The cut nails are cheaper, but are rather brittle; they are useful in many kinds of work, as they may be driven witholit previously boring holes to receive them, being rather blunt pointed and having two parallel sides, which are placed in the direction of the grain of the wood. The wrought nails do not easily break, and are used where it is desired to clench them on the back to draw and hold the wood together. The following table gives the result of some experiments on the adhesion of hails and screws.

AdHESION OF NAILS.

Dencription of Nallouret.	$\left\|\begin{array}{c} \text { No. tio } \\ \text { the el } \\ \text { Avorr. } \end{array}\right\|$	Incheslong.	$\begin{aligned} & \text { Inches } \\ & \text { Inreved } \\ & \text { inte } \\ & \text { wount. } \end{aligned}$	Lbs. Prossure to lorce ln.	Lhen nreasure	
				Dry $\begin{aligned} & \text { Dine } \\ & \text { leal. }\end{aligned}$	Mry	
Fine lirads.	45 F,	0.44	. 40	-	22	-
"	:3200	0.53	. 44	--	37	-
Threepenny brads	618	1.25	. 50	-	58	-
Cast-iron nails.	380	1.00	. 9	-	72	-
Sixpenny nails	73	2.50	. 50	24	--	-
"	"	:	. 50	76	-	-
"	"	،	1.00	235	187	337
"	"	،	"	end grain	37	257
"	"	"	1.50	400	327	-
"	"	"	$\underline{\text { 2. } 00}$	610	530	-
"	"	"	،	end grain	$\bigcirc 57$	-
Fivepenny nails	$1: 39$	$\because .00$	1.50	-	320	-

French or wire uails have almost driven the cut and wrought nails out of the market. Wire nails, i.vwever, are not as lasting as the old fashioned ones, but they are clean, handy to work and can be clinched whenever necessary. They rust quickly, and should not be used for shingling or where damp is likely to get to them.
sUMMARY.
Across Grain. With Grain.
Adhesion of nails in Pine.... to 1 Adhesion of nails in Elm.... 4 to 3

Entrance to extraction is as 6 to 5.
Common serew $.2^{\prime \prime}$ diam. equals 3 times the adhesive fore of a six-penny nail.

Spikes are nearly of the same form as nails, but much larger and are mostly used for heavy timber work. Treenails, so-called, are hard wood pins used in the same way as nails. In particular work, with some woods, such as Oak, they are used to prevent the staining of the wood, which would occur if nails were used and any moisture afterwards reached them. Compressed treenails are largely used in England for fixing railway chairs to sleepers as they swell on exposure to moisture, and then hold more fimuly. Serews are used in situations where the parts may afterwards require to be disconnected. They are more useful than nails, as they not only connect the parts, but draw them closer together, and are more secure. For joiner's work the screws usually have countersunk heads; where it is desired to conceal them, they are let well into the wood, and the holes plugged with dowels of the same kind of wood, with the grain in the same direction. For carpenters' work the screws are larger and have often
square heads; these are known as coach-screws. The bolts, nuts, and washers used in carpentry may be of the proportions given in the following table:-an example is shown in lig. 80.

Fig. 80.
Thichiass of nut 1 diam. of bolt Thickness of head3/4 diam. of holt Diam. of head or nut over sides. $1 \% / 4$ diam. of bolt s.de of sulare wather for fir. . $31!$ diam. of holt Side of square washer for oak. $21 \frac{2}{2}$ diam. of bolt Thickness of washer $1 / \frac{2}{2}$ diam. of bolt

The square nuts used by carpenters are generall! much too thin; unless they are equal in thickness to the diameter of the boit, the full advantage of that diameter cannot be obtained, the strength of any connection being measured by its weakest part. The best proportion for muts is shown in the diagram of a standard hexagon nut. A large square washer is generally put under the nut to prevent it from sinking into the wood and tearing the fibres while being screwed up, but it is also necessary to put on a similar washer under the head to prevent sinking into the wood. This is, however, often improperly omitted. Straps are
bands of wrought-iron placed over a joint to strengthen it and tie the parts together. When the strap is carried round one piece, and both ends secured to a piece joining it at right angles, as in a king-post and tie-beam, it is known as a stirrup, and is tightened by means of a cotter and gib-keys as shown in Fig. 81. When straps connect more

Fig. 81.
than two pieces of timber together, they are made with a branch leading in the direction of each piece; but they are usually not strong enough at the point of junction, and might often be made shorter than they are without impairing their efficiency. Sockets are generally of cast-iron, and may be described as hollow boxes formed to receive the ends of timber framing.
With regard to the use of glue for securing joints, it has been found that the tensile strength of solid glue is about $4,000 \mathrm{lbs}$. per square inch, while that of a glued joint in damp weather is from 350 to 360 lbs . per square inch, and in dry weather about 715 lbs . per square inch. The lat-
eral cohesion of pine wood is about 562 lbs. per square inch, and therefore in a grood giüe joint the solid material will give way before the junction yields.

These joints, thougli quite numerous, do not exhibit all that are used in carpentry and joinery, but are quite sufficient for our present purpose, as others will be illustrated and described as we proceed.

In balloon or scantling buildings of all kinds, good solid foundations should in every case be provided, for most of the defects often found in frame buildings such as cracks, breaks, sags, etc. are in a great measure due to the settlement of foundation walls, pins, posts or undue shrinkage. When possible, all wood materials such as studding, joists, rafters, collar-beams, trimmers, sills, plates, braces and all other timber or lumber used, should be well seasoned, particularly the joists, as the shrinking of the joists causes the partitions to drop and this makes cracks in the angles of the walls, causes the doors to drag on the floors or to bind at the top and thus disarrange the locks, bolts, catches or other fastenings. Shrinkage of wall studs causes trouble around the windows and outside doors, leaving openines for wind to make its way through into the interior of the house. These things, though apparently of little moment, are quite necessary to be taken into consideration if a good warm and substantial building is desired.

We are now ready to undertake some examples of real work. The first thing to be considered when preparing for a balloon frame after the foundation wall is ready to put on the frame work, is the sill on which the studding is to stand. Of these there are many kinds and I propose to illustrate a selection from which the builder may choose the

Fig. 82.
one most suitable to his purpose. Fig. 82 is about the most simple of any and is nothing more or less than a 2×4-inch scantling halved at the corner, and may be fastened by a wooden pin or nailed together as shown. A sill of this kind should be laid in mortar and levelled up to take the joists and studding. The joists in this case will rest on the sill altogether, as shown in Fig. 83 or they may be cut or "checked" so as to rest both on stone wall and sill. Fig. 84 shows another method of forming a sill in the old fashioned way. This
makes a good strong sill and secures a warm connection between sill and wall. Another grood plan is shown at Fig. 85. Figs. 86, 87, 88, 89, 90 and 91 show a number of various methods of forming sills all of which are good. All sills of this kind should be bedded in mortar and levelled up on their top

Fig. 83.

Fig. 84.
flats, and when convenient the spaces between the joists on the wall should be filled in with stone or brick-work level with the top of the upper edges of the joists. By doing this, the building is made more comfortable, stronger, and vermin of all kinds will be prevented from getting into the build-

Fig. 85.

Fig. 87.

Fig. 83.

Fig. 86.

Fig. 88.

Fig. 90.
ing, and the joists are held together solid in their places. Of course the stone or brick work must be laid in mortar and well flushed up.

Sometimes balloon frames are built up on timber sills of various dimensions and it may be well to give a few examples here of this method, although the matter of framing and laying the sills is simple enough.

Flg. 91.

Fig. 92.

Some timb ${ }^{\circ} r$ varies in size, often from onefourtl to one-half an inch, and in framing the corners this fact must be noted and provided for or the studs will be too long or too short as the case may be, and the joists will not be in line on top. The sills should be all sized to the same dimension, and all joists slio:ld be sized and made equal in widtl. Fig. 9^{2} exhibits one method of using a timber sill. This is rather a troublesome method and costly, but is really an excellent way as it gives a bearing to the edge of the joists both on the sill
and on the stonework. At Fig. 93 we show another method of using a timber sill. Sometimes, in cases of this kind a tenon is worked on the end of the joists and a corresponding mortise is made in the sill to receive it; more frequently, however, the ends of the joists are nailed to the sill by be-

Fig. 83.
ing toe-nailed to it. This method of using a timber sill is not to be recommended, but when it is employed it is always better to cut in boards tight between the joists and nail the boards solid to the sill. This makes a fair job and insures the joists staying in their places. Another method, with a part of the studded wall-in section-is
shown in Fig. 94. This illustration also shows the second and third joists and their manner of attachment to the wall studs. The rafter and scheme for forming the cornice are shown so that the diagram may be followed by the workman without

Fig. 94.
trouble. Fig. 95 shows another example of heavy sill with a portion of the wail at the corner and at one side of a window opening. It will be noticed that the corner stud and the jamb stud
at the window are made 4×4 inches in section. Where such studs can be obtained it is best to get them solid, but the usual way of forming these corners, is to nail two studs together which answer

Fig. 95.
the purpose very well. The joists are notched or checked onto a " "x4" scantling which is spiked to lower edge of the sill to receive the joists. This is not a good way unless the lower edges of the joists rests on the stonework as shown in Figs. 92
and 93, as the joists are apt to split at the corner of the notching if a heavier weight happens to be placed on the floor than was at first intended. The old-fashioned way of framing a heavy sill to receive joists is shown in Fig. 96. This method now is almost obsolete and is only used where joists are to be carried across a large room and

Fig. 96.
where a beam or bearer is not adnissible as nothing must show in the room below the ceiling, and where joists are in tro lengths. It will be noticed that there are three different methods of framing the joists in the sill. The first shows the mortise too low down on the sill, the second too high up, while the third is in the strongest point where a siugle tenon and mortise are employed. In the top of the sill the stud mortises are shown, with two
studs in situ and one out to show the tenon. There were various methods of framing the joists into the sills in order to obtain the greatest resistance to pressure, among which was the double tenon, the tusk tenon, such as shown in Fig. 97, the upper example being disengaged and the lower one in place. There are also many other methods of framing joists into heavy timber sills, but I have

exhibited sufficient examples to give an idea of the general methods, and when we get to heavy framing, I will say more on the subject and offer a few extra examples. Fig 98 shows another oldtime method of framing a sill. This is called "Gaining and mortising a sill," and was often
put in specifications under this term. Fig. 99 shows a method of forming a sill called a "box sill," as a matter of fact it is no sill at all, being formed of two joists. It is simple, however, and is fairly effective. Anotlier box sill is shown at Fig. 100. This is often used where there is a

Fig. 99.
good foundation under it, it makes a very good sill, when the studding is cut so as to go down io the bottom and occasionally when spiked in the joist as well as the sill it makes a very strong job.

Fig. 101 is another strong way which can be con-

Fig. 100.

Flg. 101.
structed a little quicker and is good for a cheap job, but I prefer the other. Fig. 102 is cheaper still and used a good deal, just the one piece laid flat on the wall, the joist put on and a 2×4 nailed on the joist, and then the studding nailed to that. Or let the studding run down to the sill and do away with the $2 x t$ on the joist.

Fig. 102
In forming partitions and wa's in alloon and scantlin buildings much care is required in arranging the studding ot the rorner: and about the doors and windows in ord to get the best results with as little exp ad cure of materials and li,bor as possible, and 1. urder to aid the workman in this direct , I have gathered together from various sources a rumber of examples, the very best obtainabl for this purpose and embody them in this denartmont The for instance the corner posts in a bal trame where it has to serve fc receiving the in. hing materials-board-
ing and lathing-on both its inner and outer angles. These should be straight, firm and solid, and constructed so as to make a good outside and inside corner. Fig. 103 shows a substantial way, simply by nailing four together strong with a good outside and nice inside corner to lath on. Fig. 104 is another way practically as good and saves one studding. But if the thickness of two was not the width of one it would bother a little.

Fig. 105 is a method of nailing together the corner studding in a way to avoid the difficulty just mentioned and makes a good corner.
Fig. 106 shows how a good corner for a cheap job can be made with two studding; if the building is not sheathed a five-inch corner board nailed together at the corner works alright, and chamfered on the corner looks well, too. Of course, if there was to be a quarter round in the corner that corner shown would not do at all. I think you all have a corner on that subject and now we will mention partitions. Fig. 107 shows that where the cross partition comes, the studding should be 3 inches (not 4) apart, and then spike the cross partition studding to them and you have a solid corner that the plastering will have no excuse to crack in. Fig. 108 shows corner of partition where the par-

Fig. 106.

Fig. 107.

Fig. 108.
tition is put up the 2 -inch way, as they often are in closets and light work. If you wish the building to show as high as possible on the outside and not have the ceiling too ligh on the inside, Fig. 109 shows a good method for plate and ceiling joists; for better job the plates could be doubled. Fig. 110 shows a double plate ceiling joist on top corner, cut to keep from projecting above rafter, which makes the best job for general purposes.

At Fig. 111 I show two other corners sometimes used. One of these shows the least amount of material that can be used for an outer corner while the other one shows a solid corner formed

Fig. 109.

Fig. 110.

Fig. 112.
with four pieces and is similar to Fig. 103, and the other to Fig. 107. At Fig. 112 is shown two examples, the upper one is for the starting point of a partition, the lower one shows the double stud
to be used for the jamb studs for windows and doors. Fig. 113 shows the proper method of running lath behind a partition wall, X showing the stud starting the partition. This is not a good

method, though very often made use of, as the angles are likely to crack. A much better way is shown at Fig. 114, which, if adopted, and done well will prevent the plaster from cracking. The 2x3inch piece indicated by A in Fig. 114 should be

Fig. 114.
cut in every 2 feet in height of partition and well nailed, especially to the $2 x 5$-inch B. When 2x3inch studding is used in the main partition we would suggest employing 1×5-inch piece B, instead
of a 2×5-inch. Fig. 115 shows a section of a will intended for a house laving two stories, a cellar and attic. This shows the sill, cellar wall and

Fig. 115.
rafters of additional annex, the annex being only one story and cellar. Another sectional view of outside mall with inside and outside finish is shown at Fig. 116. This shows the manner of forming

the sill, placing in window headers, cornice and general finish. As this section is drawn to a scale of half-inch to the foot, it may be worked from if desired. Another section of an outside wall

Fig. 118.
of a simpler kind is shown at Fig. 117. This is for a one and a half story house, finished quite plainly inside and out.
In setting up inside partitions more care and
attention than is usually paid to the openings should be given. A careless haphazard openings trimming the heads of doorways and the way of quent result after a few years, is shown at Fig.

118. This figure, of course, shows the condition in an exaggerated form, but the condition does often occur very much to the detriment of the door and its trimmings. Fig. 119 shows a good old-
fashioned way of framing a door head so that no movement or distortion like that shown in 118 can possibly take place as the braces at the head

Fig. 120.
are toed, or notched, into the top stretcher which prevents them from pressing out the jamb studs. Another method which is quite common, and which
should be avoided, is shown in Fig. 120. This last is a cheap slip-shod way of fixing partitions over doors but it very often leads to trouble after the building is occupied, and it should be avoided in the interests of good and permanent work. The difference in cost between building a doorway as at Fig. 1:0 and Fig. 119 is so small that no

Fig. 121.
contractor should for a moment hesitate in adopting the better plan. The sill, or girder and joist shown in Fig. 119 need not be followed, they are exhibited just to show the old methods of doing good substantial work and may yet be employed in some situations. At Fig. 124, I show a portion of a floor with the end of the joist resting on a

Fig. 122

Fig. 123.
bond timber which is supported on a ledge formed in the brick wall by making the upper story one half a brick thinner than the wall below. This is

FIg. 124.
a very good way to carry the joists when it can be accomplished without injury to the wall and where the building is not more than three stories in height. Fig. 125 shows a section of a floor with

Fig. 125.
joists, floor, ceiling and cross bridging. This is a good example of building a good solid floor for all ordinary purposes.

Fig. 126 shows cross bridging with floor or ceiling and Fig. 127 exhibits the p- per way to cut in the joists in a brick wall where it is necessary to run the joists in the brick wall. The joists should rest on a timber which is built in the wall as the bricks are laid.

Fig. 126.

Fig. 127.

Fig. 128.

A good way to set up second or third-story studs is shown at Fig. 128. Of course, where the studding can be obtained long enough to run the whole height of the building it is better to get them if the cost will admit, if not, the method shown will
unswer very well. Fig. 129 shows a guod method of trussing a partition, it is simp'e and can be done without much labor and is quite effective.

At Fig. 130 I show a method of preparing a wall of scantling for veneering with brick; it is simple and does not require much skill to make a good wall. The proper way is to put down a stone foundation wall of sufficient thickness to carry both
framing and brick wall, as shown at Fig. 130. The brickwork is tied every sixth course with proper anchors, as shown, which are about 6 inches long, and which are nailed to the sides of the studs. The studding may be $2 x 4$ or $2 x 6$ inches, and framed in the ordinary manner. It is considered the better way to rough board the outside of the studding and then cover the boarding with good building

Fig. 130.
paper, and hrick against this. A good warm job is the result if the work is properly done. The bricks are all well laid as "stretchers" when done this way, and the best bricks should be selected for the work. At this point it may not be out of place to show some of the methods of laying down joists and securing hearth and stair trimmers, and other similar work. As I have shown in Fig. 127, ail
joists entering in a wall should be cut with bevel ends, so that in case of fire and the joists being burned or broken in or about their centers, then should they fall down, they would pry out either the bricks or stone above them and thus tend to destroy the wall. The employment of bridging as shown in Figs. 125 and 126 is for the purpose of stiffening the joists by keeping them from twisting, and distributing the strain over a larger number of joists than those on which the weight comes. The bridge piers should be 2×2 inches, though 1×2 are frequently used, and they should be accurately cut to the required angle and firmly nailed. A good w...y to find the lengths and bevels of the pieces required for the braces is to snap a chalked line across the top edges of the joists, parallel with the side of the wall, and a second line distant from the first, just the depth of joists, and of course, parallel to the first line. The length and angle of the braces can then be obtained by laring the piece diagonally on the joists, with its edges just touching the chalk lines on the inner edge of both joists, keeping the thickness of the stuff inside the two lines. In this position mark the underside of the bridge piece with a pencil, and both the proper angles and right length are given. Each piece obtained this way answers for the second piece in the same space. Two nails should be driven in each end of the bridge piece, if a good permanent job is desired.

In trimming around a chimney or a stair wellhole, several methods are employed. Sometimes the header and trimmers are made from material twice as thick and the same depths as the ordinary

Fig. 131.

Fig. 132.
joists, and the intermediate joists are tenoned into the header, as shown in Figs. 131 and 132. Here we have T, T, for header, and T, J, T, J, for trimmers, and b, j, for the ordinary joists. In the western and also some of the central states, the trimmers and headers are made up of two thicknesses of the header being mortised to secure the ends of the joists. The two thicknesses are well nailod together; this method is exhibited at Fig. 133, which also shows one way to trim around the hearth; C, C, C, C, shows the header with tusk tenons on ends, which pass through the trimmers A, A.

FIg. 133.

At Fig. 134 I show another scheme for trimming around a fireplace in which the trimmers and headers T, T, are seen, the headers being tenoned through the trimmer joists with tusk tenons and keyed solid in place. The central line of hearth is seen at X Y, the intermediate joists at $b j$ and the trimmers at $t j$, while the bond timbers are in evi.
dence at $w p$. Here there are two flues shown, also the hearth tiling. In this example there are two holding bolts shown by dotted lines on each side of the fireplace anchored into the brick-wall and passing under the hearth and through the header to which it is secured with a nut and washer. A dump grate is shown at $s s$. This is for the purpose of letting ashes down a shute into the cellar where there should be an iron receptacle to receive them.

Flg. 134.

Fig. 19.5 shows a sectional view of the hearth X Y, of Fig. 1:34. This shows a brick arch turned under the hearth to support it, the center for which the carpenter is expected to make. There is an
oak or other suitable hardwood strip mitred around the tiles and of the same thickness as the flooring. The flooring is shown at b, and the joists and trimmer are shown at $b j$ and $t j$, respectively ; the dump shute is shown at the shaded part and may continue to cellar floor, or cut through the wall at any desirable point convenient to remove ashes.

FIg. 135.
In ordinary buildings the brick arch is seldom emploved, the header being placed pretty close to the brick work and the joists tenoned into it, and the tops of the joists being cut down enough to allow a layer of concrete cement and tiles on the top of them without raising the tiles above the floor. In such cases strips are nailed to the sides
of the joists, three or four inches below the top of the cut joists. Rough boards are then laid in these strips after which the space is filled in with coarse mortar to the level of top edges of joists, then the concrete cement and tiles are laid on this. which makes the liearth pretty safe from taking fire and brings the tiles to the floor level; where it may not be considered safe to trim down the joists to this requirement, the joists may be beveled on their top edges saw-tooth shape, and this will serve the purpose nearly as well as cutting them down below their top edges three or four inches.

Frequently it hippens that a chimney rises in a building from its own foundation, disconnected from the walls, in which case the chimney shaft will require to be trimmed all around as shown in Fig. 133. In cases of this kind the trimmers A, A, should be made of stuff very much thicker than the joists, as they have to bear a double burden, B, B, shows the heading, and C, C, C, C, the tail joists. B, B, should have a thickness double that of C, C, etc., and A, A, should at least be t'inee times as stout as C, C, this will to some extent equalize the strength of the whole floor, which is a matter to be considered in laying down floor timbers, for a floor is no stronger than its weakest jart.

There are a number of devices for trimming around stairs, freplaces and chimney stacks by which the cutting or mortising of the timbers is avoided. One method is to cut the timbers the
exact length, square in the ends, and then insert iron dowels-two or more-in the ends of the joists, and boring holes in the trimmers and headers to suit and driving the whole solid together. The dowels are made from $3 / 4$ to $1^{\prime \prime}$ round iron. Another and better device is the "bridle iron," which may be hooked over the trimmer or header, as the case may be, the stirrup carrying the abutting timber, as shown in Fig. 136. These

Fig. 137.
"bridle irons" are made of wrought iron, $2 \times 21 / 2$ inches or larger dimensions if the work requires such; for ordinary jobs, however, the size given will be found plenty heavy for carrying the tail joists, and a little heavier may be employed to carry the header. This style of connecting the trimmings does not hoid the frame work together, and in places where there is any tendency to thrust the work apart, some provision must be made to prevent the work from spreading. This
may readily be done in many ways that will suggest themselves to the workman. Perhaps the best way is to nail a hoop iron across the points lapping one end up the side of the trimmer or header, and bending it over the arris, running it along the edge of the joists across the joints, and extending it beyond the joints ten or twelve inches.

In no case where a trimmer or header is placed alongside a chimney stack should the woodwork be less than $11 / 2$ inches from the brickwork. This is a precaution taken to prevent the heat of the stack from setting fire to the timbers; the flooring of course is obliged to be within one inch of the brickwork, but the bare board always covers the joint.

I show a few examples of trimming around a fireplace or chimner. Fig. 137 shows a very good way, and one very frequently employed. Another way, and one deserving of consideration is shown in Fig. 138. The ends of the stretchers enter the brick wall of the chimney, into which has been inserted cast-iron shoes to recoive them. These shoes prevent sparks or fire from reaching the timbers fron the flue and make them secure against burning. At Fig. 139 I show at trimmer with double mortises, also noteles in the ends of the stretchers. These notches are to fit over a raised rib of iron in the cast-iron shoes, I show ir Fig. 138. Notches are sometimes cut in the stretchers, to fit over a bar of iron which is sometimes used to carry joists over an opening where

Fig. 138.

Fig. 139.

Fig. 140.
joists cannot be let into the brick wall, as shown at Fig. 140. This also shows how joists may be carried over small openings by making use of a flat iron bar which has serew bolts run through them to carry the joists below. Where a girder or timber is used to rarry joists it is sometimes necessary to drop the timbers two inches, thereby affording greater strength in the beam, but with the disadvantage of projecting below the ceiling. Fig. 141 shows the proper proportions for framing

rig. 141.
the end of the joists. In trimming for a chimney in a roof the "headers," "stretchers" or "trimmers" and "tail rafters' may be simply nailed in place, as there is no great weight beyond snow and wind pressure to carry, therefore the same precautions for strength are not necessary. The sketch s!own at Fig. 142 explains how the chimney opening in the roof may be trimmed-the parts being only spiked togethei: A shows a hip rafter against which the cripples or jacks, on both sides
are spiked. The chimney stack is shown in the center of the roof-isolated-trimined on the four sides. The sketch is self-explanatory in a measure and should be easily understood.

We may now venture to build a small house and finish same on the lines laid down, that is to say, a balloon frame house. We already know enough

Fig. 142.
to raise the walls, put up and complete partitions and trim and finish openings. Suppose our building to be 24×42 feet on the ground. This should be laid off as shown in Fig. 143, first the foundation, then the first floor as shown, then the second floor with three bed-rooms, hall and closets. The manner of laying the joists is shown in Fig. 145. The joists are laid on the cellar or foundation

MICROCOPY RESOLUTION TEST CHART

(ANSI and ISO TEST CHART No. 2)

walls, for the first floor, then a roug. Aloor may be laid on these joists, and the string pieces for the partitions may be laid on this floor, or the partition studs may rest on the joists, good solid provision being made for this purpose.

Before the partitions are built in, the outside walls must be put up and properly plumbed and braced. These walls must rest on sills formed on the lines of some one of schemes or sections shown in the preceding pages. A section of one side of the house showing tle bare walls is produced at Fig. 144. This figure shows the openings for windows, also ends of porch and kitchen, with two sections of roof on different levels. The lines of joists on the second floor are slown in Fig. 145, also the direction of rafters, ridges and hips in the various roofs. While the house under discussion is a small one, the methods of erection are those that may be applied to the building of all kinds of balloon structures, large or small.

A huilding of greater pretensions is shown at Fig. 146. The windows and doors show double studding all round. This is always a good plan to adopt, hut necessarily uses np çuite a lot more material than is actually required; $2 x 4$ blocks nailed on the studs here and there, would answer quite well to nail the finish to, but if a building be boarded on both sides of the wall, neither blocks nor a second stud would be neressary. One objectionable feature in this frame is the use of 2×8 -

Fig. 146.
inch joists in the attic floor. These joists are too light for the space they un over; they should at least be 2×10-inch, then there would be little danger of the floor sagging, particularly if the floor joists were well briaged.

Fig. 147°
Do mers sl suld be framed as shown in the section drawing, Fig. 147. An opening of the proper size to receive the dormer should be framed in the roof, and the studs of the dormer should be
notched ont one inch over the roof boarding and trimmer rafter and extended to the floor. Notching the studding onto the roof prevents the roof from sagreing or brealing away from the sides of the dormer and thus camsing a leak, and the studding being extended to the floor also stiffens the trimmer and gives a lomogencons surface to lath on, withont fear of plaster cracks. In enlarged seetion througl the dormer sill is also given in Fig. 147 showing the way in which the flas shing should be plared. The flashing sloonld be laid over the second shingle and the third shingle laid over it. This lieeps the flashing in place and looks better. The upper edge of the flashing should be secmrely mailed to the bark of the sill. Is soon as the walls of it frame building are up they should be covered with hemlock, spruce or pine hoards, dressed one sidr :in! free from shakes and large knot holes. ste . mudi: g is set up. The sheathing or boarding slould he nailed at each bearing with two tenpemse nails, although eight-penmy nals are often used. If the buidding is built with a balloon frame it is nocessary to put the boarding on diagonally in order to secure sufficient rigidity in the frame. With the hraced frame diagonal sheathing is not necessary, although it makes a better job than when had horizontally, and all towers, cupolas, etc.. should be sheathed in this way.

In covering the roof two different methods are pursued, in the first the roof is tightly covered with dressed boarding, like the walls, and in the second narrow hoards are nailed to the rafters

horizontally and with a space oi two or three inches between them. The latter method is considered to make the more durable roof, as it affords ventilation to the shingles and causes them to last longer. But if the attic is to be fin-
ished smeln a roof is rery hot in smmmer and cold in winter, and most arehiteres prefer to eover the roof with boarding la de ase together and than lay tarred paper over the boarding and under the shingles or shate; this not only better protects the attio space from changes in temperatmre, hat also prevents fine snow from sifting in under the slate

Fig. 149.
or shingles. The specifications should distinctly mention whether the boards are to be laid close together or laid open, as well as the kind and qualit! of the boards.

Tinned roofs should be covered with matched boards, dressed one side, and all holes covered
with sheet iron, umd the ridges planed oft. Figs. 148 and $14!$ show how a village chmed spire may be constructed he the nse of scantlings "x6 and 2x8 inches. Thre rorner posts are formed of three pieres exf inchos spiked tors ther. The othor heary parts are formed in like mammer. Plams of the strmoture are shown at λ and 13 . Of course this style of strowture can lee changed and adapted to suit almost any style of spire or tower; but it is not my intention to give mamy examples of spires, roofs, towers or stecples in this part, as I intend to show a number of surh in Part 2 of this volume. I will. however, add a few light timbered examples, as ther may be considered as balloon framing.

In tha formation and ronstruction of an ogee roof, many things are to be considered, and as many of these wofs are built mof light timbers and rovered with thin and flexihle materials it will not be eo - deroul wht, Hare to notice a few ex-
 plan A 13 of the timbe of an ogee roof to a circular tower. The the whins uloo shown in the blan are muthed 1 , the elevation. The division for the hoar the outside is indi cated by C I), that fom " inside boards being indicated hy G II. while fordiate bearers for additional fixing for boar w ats numbered 4 to 8 in the elevation. Soms of wo , mem may be
omitter at discration. Fire and vertical sections of the louss elevation lif whirh is

Fig. 150.
formed of $:$, pleres, eald. 2 in. thick is $41 / 2$ in. wide, with joints crossed, and having crossed bearers ont of 6 in . by 4 in . stuff, halved together nt the center and at the plate; all being flush both sides and scourely holted to the plate with 4 lin in. by $1 / 2$ in. bolts. The center post is out of 3 in. by 6 in . octagonal stuff, is stump-tenoned into the bearer at the soot, and secured with 1 in. solts. This post may at option be carried up above the

cap, and finished with ornamental turned or octagonal worked finial. The ogee rafters are ' 2 in. wide and are made up of two $11 / 1$.1. thicknesses. The joints are erossed and securely fixed together with screws or clenched nails, are stump tenoned into the plate at the bottom, and are shouldered into the pr it at the top, as shown by the solid line, and stump tenoned as shown by dotted lines (see section Fig. B).

The rafters are secured to the plate at the foot with angle irons 6 in . or 8 in . long by $21 / 2 \mathrm{in}$. or 3 in . wide and $1 / 4 \mathrm{in}$. or $3 / 4 \mathrm{in}$. thick, fixed with $3 / 8 \mathrm{in}$. coach screws or bolts. Purlins 1 to 3 are the main purlins. Additional purlins 4 to 8 may be introduced if necessary. Dotted lines carried down from section to plan show the length required, and the section Fig. 155 shows the size of stuff required for cutting. Fig. 151 shows the main purlins (1

Fig. 152.

Fig. 153.
to 3) for one-quarter; the sections, and the surplus stuff to be cut away, being shown by black shading. These purlins can be cut out of 4 in . by 9 in . deals, and with very little waste of material if the inside (commonly called the belly) is cut out first and glued on tlie back edge, two ribs being thus got out of each 9 in . deal.

Fig. 152 shows the intermediate purlins or bearers for one-eighth of the circle. Moulds are taken from the plan in the same way as for the
main purlins, and the bevels for squaring are obtained in the same way in each case. Fig. 153 shows (looking upwards) the turned cap, perforated to allow of sliding on to the octagonal post. The shape of the outer thickness of the cover boarding is shown by Fig. 154. The method of obtaining the mould for these boards is as follows: First, divide the quarter C to D into the same number of spaces as the predetermined number of boards to be used. Next, divide, on the outside, the line of covering into say twelve equal spaces-the more spaces the greater the accuracy (see section numbered 0 to 12). Lay out these spaces in a straight line (see Fig. 154) to get the stretchout of the ogee from the back of the ogee (see the dotted lines on the plan), carry down a line to the center of one of the boards on the quarter (see I X). Take in the compasses the width of the board each way from the center, and transfer these widths on the stretch-out line as Fig. 154. Trace the widths from point to point, and the necessary mould will be complete. Let the mould be of the full given width. To allow for the slight difference made by the curve of the board, the joints will be slightly wreathed. This wreathing may be accurately obtained by following for the lower thickness the same instructions given for the upper, when the difference in the widths of the two boards will give the wreathing necessary. The boards, for convenience of bending, may consist of two
thicknesses of :is in. of $\overline{7}, 16$ in. stuff ; if is in. that thickness has been specified. In fixing, let then lap over the joints by allowing the renter line of the lower hoard to be the joint line of the niper board. Fig. 15:) shows the inner edge of the rallters, with

Fig. 154.

Fig. 155.
their joints and tenons. Circular towers in framed construction may be divided into two classes, namely: those which have their foundations on a line connected with the main foundation of the

Fig. 157.
house, and second those which are carried up from the second floor, resting on, or being supported by, the floor beams of the second story. The latter class will be considered, as it embodies more important construction, although some of the matters which will be treated are applicable to all circular

Fig. 158.
towers. The first thing for the practical carpenter or builder to consider is how to so construct the floor as to support the tower in a proper manner; that is, so that it will sustain with pe "fect safety. the weight to be placed upon it.

Referring to Fig. 156, which is supposed to rep-
resent the general appearance of a tower built or: in angle to a ho.se. It is placed at the right hand of the front of the building, and is designed to furm an alcove closet, or an extension to the corner room. Its plin, as may be seen in Fig. 158, is a three-quarter circle, the apex of the angle at the corner being the center from which the circular plan is struck. 'ille radius of the plate outside is three feet nine inches thus making the tower 7 feet 6 inches in diameter. It is intended that the tower floor shall be level with a room in the second story and the beams or joists must be framed in such a manner that the flooring can be laid in the circle of the tower, while at the same time being so secured as to support the weight of it. The form of construction indicated in Fig. 158 of the engravings is well adipted for the purpose, and an inspection will show that it consists of a double header milde of $2 x 10$ inch timbers placed diagonally across the corner at a sufficient distance back from it to give ample leverage to counterbalance the weight suspended oniside the plate. The tower beams are framed square into this header on the outside and the floor beams are framed into it on the inside. By this construction a cantilever is formed, for the header in carrying the main beams forms a counterpoise for the superadded weight, whi * is borne by the unsupported beams which project outside. It will be readily seen that this, obviously, is a good construction, and
much better than introducing many short timbers after the manner indicated in Fig. 159. In the latter case the leverage outside being much greater than that inside, the plate being the fulcrum, there is a strong probability of its tearing away from the main framing. For the same reason it is regarded as a serious mistake to attempt to

Fig. 159.
radiate the timbers as indicated by the dotied lines in Fig. 139. The position of the timbers are shown $i: 1$ the elevation of the framing, Fig. $15 \overline{7}$, and we have no doubt that practical builders will fully appreciate what has been pointed out.

When the beams are inserted and the main framing has been nailed, a bottom circular plate,
or template, marked A, in Fig. 157, is made from two thicknesses of 1 inch stuff, and nailed on exactly the size required. The position of the windorr studs is also marked on it, as represented in Fig. 158. The upper plate, or which is really the wall plate proper, and indicated by 3 in Fig. 157 of the engravings, must also be made, and this will rest on the top ends of the studding and support the rafters. This plate will be a complete circle measuring 7 feet 6 inches in diameter and struck with a 3 foot 9 inch radius rod and laid out upon the floor, as indicated in the roof framine olan, Fig. 160. The pieces necessary to form the upper and lower plates may be sawn out of rough 1 inch pine boards from one pattern, which may be any one of those drawn in the plan, and a number of which go to make up the whole plate. The studding are cut 11 feet 8 inches, which being added to 4 inches, the thickness of the plates, makes the entire leight 12 feet. The window headers, both at the top and bottom are likewise circular and are framed in after the manner represented in Fig. 157 to form the openings and cripple or short studding cut in under them in the center. All studding must be set perfectly plumb and all plates and headers perfectly level. In order to insure this it is well to be certain that the bottom plate is level by placing a parallel straight edge with a spirit level on top of it, across the plate at different points. Then, if the studding be eut in equal length

Fig. 160.
the upper plate must, in conserguence, be placed in a level position. I number of horizontal sweeps, \because incles thick and 4 inches wide, as in'roated at
 or pieres nailed in 16 inehes apart, to which the vertical hoarding ontside and tho lathand plaster inside aro fastemed. It will be seen that if this ronstruction is followed the whole er lindrical wall dan be very strongly and eronomically built mo. To save time and labor and also to expedite matters, the sweeps mily be sawed ont at the mill with a hamd saw, althongh it can be done in pine with the rompass saw.

With regard to the molded roof. it may be said that having a molded ontline it will nevessarily require molded rafters sawn to the comvature called for in the elevation. Is a general thing, arehitects furnish a full size working detail for roofs of this kind, but it often himpens that it is not fortheoming and the carpenter or buider is obliged to strike out a pattern rafter himself. To do this quickly ind as accurately as possible, it is well to lisy ont the whole roof on a floor, something after the following mammer: Referring to Fig. 161, draw any hase line 7 feet 6 inches in length, as A B, and divide exactly in the renter, or at ? feet 9 inches, as C. From (${ }^{\prime}$ square up the line to 9 feet high, as C^{\prime} D, and divide this line into 13 equal divisions, as $1,2,: 3, \dot{4}, 5,6$ eic. Through these points draw lines parallel to A r square $C D$

any length on ealdi side of C D. Now, from the point D dress the יurve of the rafter, as indicated by the letters E, F, G, H, I, J, K, L, M, N, O and P, as near to the outline as possible. A very good method of obtaining these rurves is to divide the areliteret's tinel scale drawing ly horizontal division lines similar to those in Fig. 161, and to scale off the lemgths: from the axis or vertieal line C D. By sotting off these measurements on a full size lay ont. points will be oltained throngh which the flexure of the curves may be very acemately determined.
The 16 mafters may all be drawn from the one pattern, as they are all alike and should be framed to fit against a 3 inch wood (boss), as indicated by X in Fig . 160, in order to ohtain a solid nailing at the peak. In this engraving rafters are shown in position in elevation and also in plan as well as the way they radiate or are spaced around the rircle 16 inches apart on the plate. A it is always best to hoard such roofs as this vertically, ribbing or horizontal sweeps will have to be cut in between the rafters, and as there shonld be as many of these as possible for the pmopose of giving a stroug in maneork to hold the covering boards, it is advisable to cut in one at each of the divisions marked on the elevation shown in Fig. 161. The outline plan of this figure represents the top lines of these weeps. which are well naled in between the rafters. Hig. 162 of the engravings shows the
exact size of the headers and their positions when nailed in. They are struck from different radii, which slorten as they go upward. It will be noticed that each set of sweeps is consecutively numbered with the lines C $1,2,3$, ete., from C to D of Fig. 161. There will be 15 sweeps in each

course and, therefore, 15 different pattern: They may be conveniently numbered and marked in the following manner: For No. 2, for example, a pattern can be cut and marked "Pattern for 15 sweeps, No. 2." There will, therefore, be 180 altogetlier to be cut out, and these should be cut

Fig. 163.

Fig. 164.
a trifle longer than the exact size, in order to allow for fitting.
At Figs. 163 to 166, I show the construction of a domical roof with a circular opening in the center for a skylight. Twu of the main principals, C D and the corresponding one, are framed with a king-post c, as shown in Fig. 165; the others at

right angles to these, with queen-posts, as seen in Fig. 166. The main ribs correspond to the principals, and the shorter ribs are framed against curbs between them, as at a Figs. 163 and 165.

Figs. 167 and 168 show the framing of an ogee domical roof on an octagonal plan. The construction will be readily understood by inspection; and the method of finding the arris ribs, shown in Fig. 169 will be understood from what may be said when treating of hip-rafters.

Fig. 166.

Fig. 167.

Figs. 170, 171, 172 and 173 show the construction of a domical roof with a central post b, Fig. 172, into the head of which four pairs of trussed rafters are tenoned; four intermediate trusses Fig. 173, are framed into the same post at a lower

Fig, 168.
level. The collars are in two fitches as shown at c Fig. 172, and are placed at different heights so as to pass each other in the middle of the span. The collars of tro trusses at right angles to each other may be on the same level, and halved together at

Fig. 169.

Fig. 170.

Fig. 171.

Fig. 172.
their intersection, as shown at Fig. 173. The curved ribs are supported by struts from the principals, as sern in Figs. 17. and 173 . The plan and elevation Figs. 170 and 171 exhibit the curved
arrises which the sides of the horizontal ribs assume when cut to the curvature of the dome, as at a Fig. 17:.

In comnection with these domical or curved roofs it may not be amiss to give a few examples of the methods by which the various curves are obtained for the hips and cripples or jack rafters, that are to cut in against the hip. Generally, the major or regular rafter, will be cut on an irregular curve.

Fig. 173.
or elliptical as will be seen at Fig. 174 this sketch, the dotted curved line from A to g represents one method. while the curved line between the two points following the intersections of lines at $A b$ c de and f with horizontal lines H I J K and Y, must be the exact position for the major rafter at each of these points. More points may be taken in the same manner, acoording to the requirements of the case. The major rafter can be taken in this
manner from any shape that it may be desirable to employ in the minor rafters.

Another example is shown at Fig. 175. Here the common or major rafter is laid down first, then

Fig. 174.
mark the seat of the hip rafter and draw in the ordinates, as shown by the dotted lines, and employ as many as seems desirable, the number being inmaterial. Extend them downward until they cut

Fis. 175.
the seat of the hip rafter. Square out from the seat, and make the different heights measured from it correspond with the lines from which they are derived. Then take a thin batton strip and bend it to suit the points thus established. Mark in around the batton. This will give the true shape of the lip rafter. Now lay off half the thickness of the hip rafter, parallel with the seat as shown, and where the ordinates cut it, square out, as shown by the dotted lines. Also square out with the ordinates in the hip. Draw in the short lines cutting the sweep and the dotted ordinates. This gives the recuired backing, as may be seen by the dotted sweep. In the third place, to more thoroughly understand why all this should be, take a piece of large cove molding as shown in Fig. 176, then cut one end square and one end a miter and square down the ordinate as seen on the square sections. Carry the lines along the bottom of the piece, and square them again across the miter section. When this has been done, let him see if it will fit a taite rircle. Let me here remark that when any circular body is cut on an angle the section ceases to be round and becomes elliptical. This is a fact well worth keeping in mind. There are many other methods of o ining eurves for this kind of work, and when I come to discussing heavy timber framing and roofing, I may take the subject up again.

In the framing of mansard and curb roofs with

light scantlings, many methods are in vogue, some very good, some other wise. I will have more to say on this subject, too, later on. The method I

Fig. 177.
show h. 冫e at Fig. 177 should commend itself to all good framers, as being neat, strong and economic. It is built up with small timbers and is quite sufficient.

The two schemes for mansard roofs shown at Fig. 178, are in a measure self-explanatory. They are formed with light seantlings and joists, the

sizes of timbers being given on sketches. The joists of the attic floor serve as the main ties, and are spikel to the wall-phates. In No. 1 the common rafters forming the lower slopes of the roof are
nailed to the joists, and supported in the middle by studding. They are cut out at the top in bird'smouth form to support the continuous plate, on which the upper ralters and eeiling joists rest. A more elaborate arrangement is shown in No. -3, where the lower slopes of the roof are curved, and an eaves cornice of wide projection is comstructed. A partition is introdnced at Λ, so that the walls of the rooms are vertical. For roofs of ordinary buildings, cottages, dwollings or even country villas the examples shown will be quite strong enough to do all serviee required of them. For larger and more extensive buildings, heavier and larger timbers will he rerpired, and under the head of Heary Timber Roofs in the second part of this volume. I will deal with mansard and other roofs at length.

For a light trussed roof, that is self-supporting, the German Truss, so called, for liont : iff work, is an excellent arangement. Fig. l.". shows the method of construction and Fig. 180, some details of same. This truss is generally known as the scissor-beam truss. Here the collar-beam is in compression, and the parts or timbers mostly being double as shown in details C and 13 . The rafters being supported in the middle are more than twice as strong as in a couple-close roof of the same span. The ends of the collars may be halved on to the rafters and secured with nails or bolts. A board may be clinch-nailed to unite the three pieces
at the apex. rusied-rafter roofs of this and other kinds invol ing a con derable amount of labor,

may, for the sake of economy, be spaced farther apart then ordinary rafters, stronger slats being

TRUSSED ROOFS

Fig. 1 so.

used for the slating, and furring strips being fixed to receive the plasterer's laths.

Another roof, somewhat similar to the one just shown, is exhibited at Fig. 181. This is mure eco-

Fig. 182.
nomical than the previons example so far as labor is concerned, but is by no means as good or efficient, but will be fornd quite efficient where the span is not more than 30 feet; where the timbers cross each other they must be either well spiked
together, or have carriage bolts put through them and well tightened. It often occurs that the carpenter is called upon to build a ventilator or belfry on a stable or other building and in order to meet this emergency I submit the sketches Figs. 182 and 18:3, which I think will often prove usefni. We suppose the roof to be already constructed and the upper work, as shown at 182 , built over the ridge with very light timbers ; Fig. $18: 3$ shows the ventilator and a portion of the stable in a finished condition.

Many bay windows are now built without having a foundation from the ground, the whole being projected from the wall of the building and a few hints and suggestions as to the construction of a window of this kind may not be out of place at this point.

In Fig. 18t, is shown a detail of the manner in which the sills and joists in a house are built. The foundation wall is of cement, the sill of axs inch material. The joists are $2 x 10$ inch material placed sixteen inches on centers. On the plan where the bay-window comes the joists shomld be longer and should be extended past the wall eighteen inches, as shown in detail, Fig. 185. These joists support the bay. As a rule a templet is made from plan and is used to lay out window on joists and they are cut to conform with it. It is customary to spike on the iads of the joists pieces of the same material to strengthen the work. I have found

that by using studs $2 x 4$ inches as plates and spiking them on top of the joists, as shown in Fig. 185, was all that was necessary to make a good strong job. After plates have been nailed on the joists they are cut plumb down from the ourside edge of plate, so that the sheathing may be nailed on. Care must be taken to have the plates true with plan. The studding being erected in the main building, put up the studding in the bay window. There should be two at each angle or a solid piece may be got out to place here. The other studding

Fig. 18.4.
should be placed sixteen inches on center. Double plates are used and stay lathed true with templet. The roof plan is shown in Fig. 186. The roof has a raise of one foot above the plate. Rafters are framed and put on as in detail Fig. 186. Then they are cut off on plumb sleven inches from sheathing. Lookouts are nailed on rafters and toenailed in sheathing, care being taken to have them all the same distance from the top of plate and
true. The material for lookouts may be 1×6 inches framed as in Fig. 187. The planceer board is fitted and mailea on lookouts, facia boards iitted

and put on, also crown mralding, the top of which should be even with top of roof boards. Shingles being used the hips should be hashed with galvanized iron, also flashing put on against sheathing
on house. The window is sheathed up and the window frames set true. Then we can put on the water-table. Friese boards are put on and the bed mould, which finishes between friese and planceer boards, as in Fig. 187. Sometimes corner boards are used on angles. Of course they make the work easier, but a better looking job can be done by mitering the clapboards on these angles. Often a small strip of inch and one-eighth material is

Flg. 187.
fitted to use in the angles against main building. This gives good results as the main part or bay can be clapboarded separately as well. We would advise that a miter-box be made and used to cut clapboards at angles, and if care is taken in laying it out and in the way the siding is put on it to expedite the work. "story-rod should be used to lay off for siding. We have often seen many jobs where poor workmanship and slack methods were
used, also on some johs where three or four more elaphoards were used on one side than on the other, illnstrating the need of a story-rod. It Fig. 1ss i: :hown the skeleton framework complete reals. to recoive whaterer eovering may be derided upon. The window frames will, of course, be made to fill the openings and should be put in place alter the frame is romgh boarded and papered. Good paper should be well wrapped areund the window studs in order to exelnde wind, and if the work is properly done, the whole wan be made as warm amd as airtight as any ohtor part of the house.

In many localities long somelings are hard to get and are rery eostly. To overeome this. . at inch scantlings mat be spliced by putting the ends together and nailing pieeres of inth stuff on each side of the joint from 18 to $-t$ inches long and this will make a strong splice for studs that stand on end. Of course, if the stud happens to be for a corner or for a door, or a wiulow jamb, the splieing piece must not show inside the opening as it would interfere with the window or door frame. Sometimes studs are lengthened by allowing them to lap over each other and the lap spiked together with four inch spikes or nails. This is not a good method and should only be made one use of in certain conditions whan little or no weight is to rest on the studs. A stont piere of scantling of the same section as the studding, may be nailed or spiked along

Fig. 188.
the end joints, making a splice that does its work very well.

In putting up a balloon frame with short studs it is usual to put it up in single stories. The first story should be completed as far as the framing is concerned and a rough floor laid for the second

Fig. 189.
store, on this floor 2xt inch stringers should be laid all around the hil! ling on a line with the outside walls and the window and other openings should be marked off on these stringers, and where possible this upper studdirg should stand direct over
the studding in the lower story; and if this occurs beiween the jois .s of the second floor short pieces of studding shonld be "cut" in between the plate of the first story and the stringer and nailed in solid, which will throw the weight of the upper studding onto the lower studs. Buildings evected this way are strong enough to resist all ordinary wind pressures, bui in all cases it is best to

Fig. 190.
board up the outside of the frames diagonally. This insures the tring of the stories together, making the whole hilding very much stronger and rendering it so that the wind would have to be strong enough to blow over the whole building before the upper portion would budge.

Before leaving balloon or light framing, it will not be amiss to show a few examples of eave or cornice framing suitable to both light or heavy
timber work. Fourteren examples are exhibited froul Figs. 189 to $20: 3$ inclusive. Fig. 189 shows a vere plain eornice with the rafter but so ats to partly rest on the plate, with a portion moning ower the pate to form the projection and eave. 'The method of finishing is also shown. Fig. 190 exiblita a so arbat more elaborate rornice with shtter tron: \quad B. In this case the planceer

Fig. 191.
Fig. 191 :hows a mafer properting ont and over the wall ahout three and a half feet and dressed and monded. It will be seen that the projection is of different pitell to the main roof, and this necessitates the projecting and being a separate piere with the inside end spiked to the main rafter as shown.

Fig. 192 shows a cornice where the projecting ends of the reiting joists play an inportint part in the construction of the work. The rafter rests on the ceiling joists and is notehed over the plate, which may be notched into the joists or spiked in them ass shown. The ends of the joists are trimmed off to stone oi roof.

Fig. 102.
Fig. 193. also :how: projecting ceiling joists with ends of rafters spiked to joists. This is not good construction bint may be used where the roof is not extensive.
Fig. 194 shows an old time cornice with a wooden gutter. This style is seldom usem now-alays, but sometimes people living in the comitry insist on employing it.

Fig. 193.

Fig. 194.

Fig. 196 exhibits another cornice on nearly the same lines as Fig. 194. I may say here, that instead of wooden gutters, heavy galvanized sheet iron gutters could be employed to advantage.

Fig. 196.

Fig. 197 shows a rafter resting in a foot mortise or crow-foot in a solid heavy timber frame. This style of framing rafters is of ten used in neavy timber work, such as barns, stables, warehouses, freight sheds and similar structures.
Fig. 198 shows another cornice which is intended

Fig. 197.

Fig. 198.
to have a wooden gutter. The method of finishing the rafter on the lower end to receive the gutter is shown.
Fig. 199 shows a cornice designed for a brick or stone house having a curve at the eave. The method of finishing is shown and is quite simple,

Fig. 109.
the furring being the main thing in forming the curve for the bed of the shingles or slate.

Fig. 200 shows a very good method of forming a cornice for a balloon frame. It is very simple, easily formed and quite effective.

Fig. 201 shows a cornice where the pitch of the roof suddenly changes at the projection, as is sometimes the case with towers, balconies and over bay windows. The method of construction is shown very clearly in the illustration and may readily be followed.

Fig. 200.

Fig. 202 shows an ornamental cornice which mav be used either on cottage or veranda work. \bar{A} portion of the rafters shows as brackets below the planceer.

Fig. 203 shows a part of a veranda roof, with brackets, gutter, and facia. Here the roof has a very low pitch and the rafters are nailed against

Fig. 201.

Fig. 202.
the sides of the ceiling joists and the depression for the gutter is cot out at the end of the rafter as shown. The gutter, of course, like all similar rutters, is lined with galvanized iron, zinc or tin.

These examples of cornices are quite sufficient for the framer to have by him; if other designs are

Fig. :208.
required, the workman should experience no difficulty in forming what he wants, having these designs at his command.

INTRODUCTION TO PART II.

"Heary Timber Framing" is an art that requires considerable skill on behalf of the man who "lays out" the work, because of the fact that this work must be carried on without "trying" how the work coincides, or in other words, withouit being able to make use of the good old-fashioned rule of "cut and fit." The lengths, cuts, locations and duties of each piece of timber used in the construction of heavy frame work, must be considered by the framer, and each piece entering into the building, must be mortised and wrought separately. This is no easy task, and the person undertaking it assumes no small responsibility and his position is such as should insure to him a remuneration commensurate with the position and responsibility he accepts. Unfortunatel, , the "boss framer" receives as pay but very little more than the regular carpenter, something that is not as it slould be, and if he were not ambitious, and proud of his ability as a framer, he would not accept the position, but rather take a place among the ordinary workmen and thus escape the responsibilities of "Bosship."

PART II.

HEAVY TIMBER FRAMING.
"Is heavy timber framing a lost art?", This question has been asked me many times during the past twenty years and I have invariably answered it in the negative.
"Heary timber framing is not a lost art." If necessity arose tomorrow in the United States or Canada, for the services of five thousand competent framers they would be fortheoming within a perion of sixty days if inducements were sufaciently attractive. Since the introdnction of steel frames into building construction, the use of timber fiames in roofs, buildings, bridges and trestle work has greatly fallen off, particularly in or near large cities, where timber has become scarce and costly, but in the west, north, and south, timber structures are often made use of, and will be for many decades yet. Indeed, even when steel is made use of timber has to be frequently employed in special cases; so that a knowledge of framing is as necessary to the general workman to-day as it ever was. When I say this, I do not mean that it is necessary to become an expert framer, but that a knowledge of the proper way to handle and
lay out timber, should be possessed by every man who aspires to be a comnetent carpenter.

Heary framing is an art that requires considerable ability and intelligence on the part of the operator, inasmuch as it is not one of those branches of the trade where the "cut and fit" process can be applied. Each piece of timber, wheth r it be a girt, a chord or beam, a post, brace, sill, girder, strut or stringer, must be dealt with, and given its proper shape, length and relationship to the part or parts it is to be connected with, without its being brought in direct contact with it until all is ready to be put together and pimed up solid. A clear head and a good memorv, along with the faculty of exactness, are absolutely necessary qualifications for the making of al good framer. He must see to it that all tenons are the right size to suit the mortises which they are intended to fill, and that all mortises are clearly and smoothly finished and not too large or too small to suugly receive the tenons, and all this must be done without any "trving and fitting." The clam of good framing lies in the fact that every mortise and tenon must be "driven lome" with a heavy wooden mall; but tenons should not fit so tight as to require more than ordinary driving.

The tools required by the heavy timber framer are not numerous, but are heavy and somewhat
costly. I give a list of most of the tools employed herewith:

An ordinary chopping axe.
A good heary headed adze.
A hearys or 10 inch hade broad-axe.
A carpenter's 4 or 5 inch hatchet.
A ten foot pole made of hardwood.
A steel square, ordinary size.
A bridge builler's square with 3 inch blade.
Two or three grood serateh awls.
Chalk lines, spools and chalks.
Several carpenter's heary lead pencils.
One or two pairs of "winding stieks" or battons.
One "slick" or slice with $3 \underline{2}$ or 4 ineh blade.
A good jack plane and a smoothing plane.
A boring machine with fonr augers.
Three or four assorted augers for draw-boring
An ordinary sized steel crow-bar.
An adjustable cant-hook, medium size.
A couple of good hickory or ironwood handspikes.

A half dozen 4 inch maple rollers.
Four good framing chisels, 2 in., $11 / 2$ in., $11 / 4 \mathrm{in}$., and 1 in .

A two-hand cross-cut saw about 5 feet long.
I good hand-sam, also a good rip-saw.
Two oil stones, and a good water-of- Iyr-stone.
Sometimes a medium weight logging chain will be found very useful.

An adjustable bevel will come in handy at time:s.

These, with a few other tools that will suggest themselves from time to time as the work progresses, will be all that will be necessary to frame the most complicated frame structure.
While I do not intend to give a lengthy description of these tools or give prosy directions regarding their use, care and management, I deem it proper to say a few words on the subject: The common chopping or woodman axe is so well known

to every American that I need not say molh of it at this juncture. It is one of the most useful tools the framer possesses, as it can be used for so many. purposes; indeed, in the lands of some workmen it can be made to take the place of several tools. It is sharpened from both faces.
The next in order will be the adze, which should have a good heary steel fared pole or head. This should have a well tempered cutting blade not less than three inches wide, and should have a handle shaped as shown in Fig. 204. This is a dangerous tool for the inexperienced workman to use, and
differs from the axe, as the cutting edge is at right angles with the handle. It has been named "The Devil's shin hoe." as it has made many a sorious wound in workmen's shins. It is grumd from one

Fig. :

Fig . H_{5}.
face only. It Fig. - (0) - le style of chisel that shot I be used i ming. These can be obtaned an any sizes from half inch to thres
inches. They are heavy and strong and with care will last a lifetime.
The hatednet shown at Fig. 206 is a very handy tool for the framer, and may be used for many purposes, more particularly for making pins or legs to fit the draw-bores. It is also useful for splittine off the surblus wood from the shoulders of the temons.

Fig. 27.

The mallet shown at Fig. 2nt is a common trpe ond is used for hating mortises or hammering the whisels. These mallets are made in several forms, some with square head like the one fhom, or with roum heak, Fise 20.7... hating flat faces. inc are ofton mentected on th r working faces he leather, ame
to protert tho
hattering w.
The lourin.e for relieving ing thenl ear

111 them
ing or
mallet. This machine can be adjusted for angle boring as well as vertical. A loose auger is also shown. Generally four augers of various sizes are sold with each machine.

Hand saws will be found very useful, the crosscut, as shown at Fig. 209, for cutting the shoulders, and the rip-saw for cutting the tenons, and uses for both will be found in much other work about a frame building besides shoulders and tenons.

Fig. 90.1%
The long cross-eut saw is an indispensable tool to the framer (Fig. 210) for cutting off timber, cutting shoulders and other work. It is scarcely necessary to show illustrations of the other tools required by the framer, as we may have ocasion to refer ant illustrate them later on.

Thirty years ago it was the custom in most of the States where there was standing timber for the framer to go into the woods, choose the timber for his work, fell it, rough hew it, and finally have it hauled to the location, by oxen or horses,

Fig. 209.
to where the barn, house, or bridge was to be erected. This practice, I am informed, is still continued in Maine and several of the Western States. but owing to the fact that saw-mills are so numerous in wooded districts, capable of cut-

Fig. 210.
ting timber to any reasonable length, the praetice of hewing has fallen almost into disuse; and because of this fact I deem it inexpedient to show and describe the various methods of manufacturing square timber from the round.

It is often necessary to mortise and tenon round logs for rough work, and to enable the young workman to accomplisl this I show, at Fig. 211, a simple method of finding the lines for this kind of work. The illustration shows a round stick of timber, with chalk lines oo and RR struck on two sides of it. These lines are first laid out on the pattern x, as shown, from which thay are transferred to some point on the timber, s nearly the center of its cross section as possible at each end of the stick and as plumb from the center as can be obtained. The pattern x which is formed of

Fig. 211.
two boards-any reasonible lengtlı-nailed together exactly at right angles to earh other, with the ends cut off square, must then lave a line drawn on both its faces, as shown at P P. The pattern is then laid on the timber, the top line heing made to correspond with the lower line on the pattern. From this lower line, the second chalk line on the side of the timber should be struck. The end of the pattern forms a square, and if the timber is cut off on the lines of the end of the patterm, that end will be at right angles with the axis of the timber.

Mortises and tenons may be laid off from the chalk lines by measurements as may readily be seen. Lines drawn across the mortises by aid of the pattern will be at right angles to their sides; the tenons may be laid off in the same manner, and by correct measurement made so as to fit into the mortises snug and tight. If it is desirable to "draw-bore" this work, it may be done by a proper use of the pattern by pinking a hole through it where the draw pin is to pass through the mortise and tenon. If a square bearing is required for the shonlders at the tenons, it may be readily done by stpraring across the mortise, using the pattern for the purpose.

This, perhaps, is all the information on the subject of round timbers the ordinary workman will ever require, but should he require more he should have no tromble in getting through with his work, as the foregoing contains the whole principle of working round timber. First, the board pattern as described, then line up the timber with straight chalk lines, and the whole system is opened up, so that any wideawake workman cim manage the rest.

In working square timber, it is always necessary to have all points of junction square and "out of wind," or out of "twist" as some workmen call it. To take timber out of wind is quite a simple process-when you know how-and to "know how' is a matter only of a few moments' thought and experience. The tools required to do this depend very nuch on the amount of "wind" or "twist" the timber may have. If a large quantity has to be taken off, as shown at Fig. 212, it will require an ordinary chopping axe and a broad axe;

Fig. 212.
the first to lightly score or chip, and the last to finislı the work snoothly. Sometimes a jack plane is used to finish the timber nicely when good clean work is required. The minding sticks or "batts" are placed on the timber as shown at Fig. 213,

Fis. 213.
which gives an idea of the amount of wood that must be removed before the timber will have a fair plane surface. The manner of using the "batts" or winding stieks is shown at Fig. 214, where by sighting across the tops of the sticks the amount of winding can be casily detected.
The winding "batts," which are parallel in width, are placed across the wood (see Fig. 213),
and has the effect of multiplying the error to the length of the sticks. For this reason it is as well to make the sticks 1 ft .6 in . to 1 ft .8 in . long. To insure alemrate in long pieces of wood, the winding "batts" should be moved to two or three different positions down the length of the wood and the straight-ciger used lengthwise.

Fig. 214.

It is not necessary to use the winding "batts" on either of the other surfaces of the wood, as the face edge is made at right angles to the face side, bringing into use the try-square and straight-edge. The other two surfaces are planed true to the gauge lines, which are put on parallel to the first two surfaces. The writer has two of these winding "laths" which he made for himself over fifty years ago; they were made for bridge work and are made of black cherry, and are as true to-day as when they were first made.

In preparing timber for framing, it is not necessary that the whole timber be made to line, as this often entails a great deal of extra labor. The timber may be "spotted" or "plumbed" or "squared"' at the points where girts, braces, studs or other timbers join the main timber. The object of this is to make a proper surface for the shoulders of tenons to sit against. This, however, may be very much assisted by adopting the following rules and making winding "batts" io suit the

Fig. 215.

The method, in full, may be described as follows: Referring to the illustrations, Fig. 215, shows what is called the wind batt. In taking the wind out of a timber, two wind batts are required. This wind batt consists of a piece of board $1 \div-3$ by 4 in. and about 18 in . long. The edges of the batt must be made parallel to each other. Then a line is drawn down the center, leaving 2 inches on each side of the line, as shown in the sketch. The brad arl is then stuck through the bottom half for the purpose of fastening to the end of the timber. The wind batts are then stuck on the ends of the piece of timber as shown in Fig. 217 of the sketches, half the batt projecting above the timber. The
operator then sights over the upper edges of the batts and moves either end until the edges coincide. He then takes the sriatel awl and marks across the bottom edge of the batts at earh end of the timber, as shown in Fig. 218. This completes one side. The rest is easy, as in the other side the

Fif. : $\because(t)$

Wind is taken out by means of a steel square, as indicated in Fig. 217. Place the inside edge of the tongue of the square even with the line made by the wind batt, the outside edge of the blade being even with the smallest place on the outside of the

Fig. 21 .
timber. Mark with a scrateh awl down inside of the hlade. Nove the square up 2 inches on the timber and mark througl to the top of the timber. The latter is then out of mind and the operator will proceed to line it, as shown in Fig. 216, which represents a stick of timber with the mind taken
out and lined. Stick the scratch awl in the end of the timber at the point where the plumb lines cross each other, the awl being through the small loop in the line. All four sides of the timber may be lined without moving the scratch awl. In taking the wind out of timber in this manner considerable time is saved, as one man can take it out of wind and line it without other help.

Fig. 218.

\&. 210

From another source (Carpentry and Building) I get the following directions for preparing timber for framing from the pen of a practical framer who seems to know pretty well of what he is talking and starts off be saying: "The first step in the process is to seaffold your timber so that it will lie straight and as nearly level as possible, and so that you and your men who follow may work over it in a comfortable position. That done, suppose, as in Fig. 200, we have a corner post to lay out which is $81 / 2$ by $81 / 2$ by 16 feet, and from
shoulder to shombler of tomons is 15 feet. I would selert the two best facos that give nearest a straight eomer, taking a eorner that is hollow rather than one that is full. 'Then I set ome sthare on aress the best face, far enongh from the end for at tenon, and measure lof fort towards the wother end, making an irregular matk aross the fare at this point with a heary pencil as I did at the other end. Then set my serombl spmate on this mark and look over the spuares. Inst here comes in the nice point in murinding timber. If at the first glance over the spuares they shond be very much in wind. then adjust the diffremee at each end by

Fig. :20.
dividing. But this rule does not always work, for the wind may all be in the last two or three feet of the stick-more likely than not at the butt end. You will soon learn by looking over the faces of the timber to locate the cause or place of the wind. You will soon learn also that it requires but a slight change to adjust the squares so that there may be little cutting necessary in making the plumb spot. But to go on: With your adze or chisel (I mostly used a 3-inch slick) level off
across the face of the timber as much as you think will be necessary to bring the lines right in the end. While at this end of the timber spot the side face, then go to the other end and unwind with the spot already completed. After making the plamb spot on the side face take your scratel awl and point with 2 -in. lace each way from your !lumb spot, going around the four faces of the timber: Line through these points and work from the lines in laving out.

Suphose we have a cap sill to frame, full length, say 10 by 10 by 46 feet long and with the same bearings, bays each $1+$ feet and the floor 18 feet wide, all as represented by Fig. ํ,21; I start at one end ind measure through, making at the prineipal points (14 phes 15 phes $1+$ feet) with irregular pencil lines, selecting, of course, the best face for the ontside. Then I test the timber through from end to end, looking orer the squares before starting to minwiud. If the siuares line np well at first glance, then I go to work at one end and unwind through. If not then I try through at the other points. - Niter deciding how and where to start, the process is similar to that of the post, and in like manner would I go abont moninding all the timbers of a frame.

From what I have just said yon will observe that my rule for spotting timber was, at thr shonlders of posts and at principal bearing of long timbers. Following this rule you will have true
points where the most particular framing is to be done.

Sometimes, howerer. When I rome to thr short posts in the under frame, wheres several wonld

be of the same length, including tenons, and a man at each end with square and pencil, as in Fig. 222, would unwind them, marking along the square
arross the chas of post, allowiner \because in. for lat . Square from this line on the same hand at atela end with e-inch face. I inine from thes ponat 4.. have the posha rea bo for layin": ont, ats shown in Fig. No:。

Fig. :2:-:。
Some framers think that time is saved by this mothon, hat I voubt it, for usually there is one side extra at earh tenon to size, and I am inclined to advise that spoting in the manner first explaned is the better way.

Fís. 224.

Fig. :2e5.

The two figmes here given explain what I have just salid ahont the extra sizing. Fig. 22t is the end of a post framed, where the plumb spot was made at the shoulder. Fig. 2.5 that of a post where the wind was taken ont by the last process desoribed, in which case, unless the timber was exceptionally well dressed, there was overwood and sizing as shown.

In ordinary framing it was not necessary to cut the plumb spot fully across the face of the tim-ber-just far enough for the bearing to steady the square-2 or 3 incles. If, however, you are required to do a very nice job of framing, and are paid for doing it, then cut your plumb spot fully across the face of the timber and choose the full instead of the hollow side for face. Line the overwood on both corners and counter hew. If the timber requires two faces, as for a post or wall plate, then turn the new face up, line and counter her the other side. That done, mark your points, and line for laying out.

What do I use for lining? Chalk is good, but chalk washes off, and in the showery spring time, the barn builder's season, I generally used Venetian red and water in an old tin, the "boss" holding the tin and line reel with a crotelied stick over the line, while one of the "boys" car ried the line to the other end of the timber as it paid out. Under favorable circumstances, with one wetting, I was able to line the timber around on all sides.

There is one point wortly of notice, and in favor of the method of locating the plumb spot as given above: It serves as a check against mistakes in measurements. The process of laying out, as practiced by myself, was to mowind the timber as I lave shown. Then starting at one end, scribe the extreme point and lay off the
work there and work back again on the intermediate work. Cr,ming out right was almost proof that the work was correct, for, as you will readily see, the timber had then been measured three times."

These are excellent directions and are equally applicable to sawn as to hewn timbers. The workman will, now, I trust, be fully able to understand the importance of taking his timber out of Find, and the proper way to do it.

Fig. 226.

The next thing to be considered are as what are known as "witness marks." These marks are iniended to inform the men who beat out the mortises, saw the tenons and clean up the gains, and finish up the work generally after it has been set
out by the boss framer. There are several methods of witnessing work by aid of the scratch awl which I slicw herewith, in Fig. 226; but, besides these, the work is sometimes witnessed with a pencil-blue, blaek or red; the black being used for mortises, the blue for tenons, and the red for Gains or squared surfaces.

The end of the mortises and shoulders of tenons may be witnesses in the same manner, as shown in Fig. 226, using the pencil in lieu of seratel awl.

Flg. 227.

In this diagram the letter G represents a gain, M is a mortise and T is a tenon, the short diagonal marks π in the upper piece being the witness marks. The sketch shows four different methods of witness marking which are employed by most workmen, while numerous combinations of these four methods are also often used.

The best of these witness marks arn those used on the timber marked F, though it has the $d ;$ advantage of heing cut away when the mortise is beaten or the tenon cut, so that should a blunder
be made in the length of mortise or shoulder of tenon, it will be difficult to place the fault on the right person.

Fig. 2:
Another method of witnessing, and a very good one too, is shown in Fig. $2 \cdot 2$. T shows the tenon, II a mortise, A a gain, and II a halving. In this case it will be almost impossible to get astray if the workmen following the boss framer will only make himself acquainted with the system.

Fig. 229.

In Fig. nus I show a method of witnessing a splice, and this, I think, will be readily understood. Another splice, with the manner of making it, is shown at Fig. Del?, also the points where holes may be bored to receive bolts when such are to be bolted together for strength. The direction of the bolts is also shown. At Fig. a bo I show how
to make witness mark to cut a shoulder on a brace. This brace shows two bevels, simply to indicate that no matter what the bevels may be the marks show the shoulders. The letter C is the shorter bevel. The lines A A marked off the sketch, Fig. 231, show how a line or scrateh made by mistake may be marked so that it may be known as a line not to be used.

Fig. 230.

These witness marks are ample to instruct the workman in their uses, and though the examples given do not nearly cover the whole ground where such marks are required, they show the system and the keen workman will apply them in their proper places whenever it is necessary.

Fig. 231.

Mortises and tenons are usnally laid out with the steel square, but it is not the best or speediest way, though the square is always at hand and
ready for use, and without a knowledge of its use for this purpose the workman will not be fully equipped for laying out a frame. Folloring an authority on the subject of laying out work by the steel square "the ends of the mortise are first struck as indicated at A and B, Fig. 232, and while the square is in the position indicated the mark C is made for the working side of the mortise, which is always the narrower side unless the

Fig. 232.
tro are equal. In practice it $\mathrm{i}_{\text {s }}$ best to mark the cut off at the end of the timber first, or if it does not need cutting off, place the square orer the end of the stick, and mark back along the blade the $11 \therefore .2$ or 3 inches required for the shoulder. This makes sure that there is no projecting corners to give trouble later on.

If a tenon is heing struck the same method is followed. going entirely around the stick but working in both directions frum the face corner. The
ends of the mortise or shonlder of the tenon being thus treated, the sides are marked her reversing the \therefore ware. placing the inside of the blade at E, Fig. olis, fair with the mark (previously made, and taking the same distanore-in this rase 2 incheson the tongne of the sinare, as shown at B. Now by holding the squame firmly with the thumb and fingers of the left hamd both sides of the tenon can ler marked, hut ereat care is necessary to pre-

Fig. 233.
vent the slipping of the squatre. If there is any Wane on the stick it is hard to tell when the mark I) is exarelly in line with the vertieal finere of the timber, and this matter must be detemmined by sighting down the side of the stick. It is also necessary to drop the hade of the spane a little further, as at P , when squaring across a "wany stick.'

In every heary timber franing a bridge fram-

a blade three inches wide and a tongue one and a half inches wide. The blade is used to lay out mortises and tenons of three-inch dimensions. There is a slot one inch wide cut down the ecenter of the lhate, the slot is twontr-one inches long and it may be used on one inside edge to make a two-inch mortise or tenon; this is done by using one outside edge and one inside edge. These squares are made by Sargent \mathbb{d} Co., of New York, and cost from so to to are very handy for bridge builders and for framing all kinds of heary timber.

A Bind of ternulet or andidre is made use of sometinte. for lariner ont work, it is marh hamlier. and easier to work with than the erguare and will aid in laying nut work marh more raplil! - These templets are made in hotl: woon and metal. They are linged at the ancle at shown in the shetobes herewith ao they may work easily over wany erleses or em herefded together and siowed away in a irol cinest.

Where there is much framing of a like character to do, it is always best to make a sheet iron templet, as the rubbing of the seratel awh against the working edges of a wooden brass bound one will wear away the surface and the temons and mortises will not be the corred sizes.

Mr. Hobart, in Carpentry and Buiding, deseribes these templets-the wooden ones-and adus a fair description of them and the way to use them, and I reprodure in !rief a portion of his article on the subject: "The tool may be seen in two positions on the spuared timber at Figs. .a34 and $2: 3$. The tool is made of well seasoned wood ${ }^{1}$ i in. thick, three thicknesses lieing glued up to form a board 8 inches wide he et inches long. The hoards are then mitred together lengthwise, as shown, and a pair of ormamemal brass hinges put on, these being clearly indimated in the sketcles. Each part of the board is Simen motehed into four steps of 6 inches each, being made $1 \frac{1}{2}$, 3, 6 and 8 inches respertively. The other side of the tool is divided into 4,6 and 8 inch siteps, each 6 inches long. If much heary work is in be lated out it will pay to make one sine 1 ind wider, thus securing $1 \frac{1}{2}, 3,6$ and 9 inch steps on that side. The notched edges of the board ane finisited with a great deal of exactnes., amiafter cutting a little somt the edge is boond with a heary strip of sheet brass, which is shaneed and scremed to the maring edge The marking oder, and the
end as well, is marked off in inches and quarters, the same as a framing square, and this proves a great convenience when using the tool.

In order to lay out a mortise, slide the tool along until the end comes flush with the lonsust corner; then mark the end of the mortise, as at F of Fig. 234 . At the same time mark the other end of the mortise, F, Fig. 23t; then slide back the marker and strike that line after laving first struck the line E. Sext reverse the tool and selcet

Fig. 235.
the willth of shoulder required-2 inches in this case-and mark alongside the board on the timber. This: fies one side of the mortise or tenon, ard a mark alongside the right width of tool, If, Fig. 2.5 , finisles tint mortise in very puick time." Apart from thw deseription, the workman will find in making use this tool many places where it can be employed to dvantage. If the whole tool was ronsiracted of metal, it would not cost any nore than if made of rood, as described in
the foregoing, and it wonld be neater, lighter, much more compact, and would last for all time.

While it is true that this templet is a great help in rapid framing and while in some cases where the timber is wany or lacking on the arrises something of the kind is necessary. Where the writer has met with rany timber lie las often tacked a planed board on the side of the timber to be worked keeping the upper edge even with the top of the timber, then the square can be used for making over as the board forms a good surfice to work the square from. When the templet is used, the necessity of the board is done away with, as the vertical portion of it takes the place of the board. The metliod of using the square for cutting rafters, braces, and other angular work, has been shown and described elsewhere, so I drop the matter of the square for the present.

There is one matter in framing that I do not think has ever been deseribed or properly illustrated, and that is the question of "boxing." Nonframer may not know what the term "boxing"' means; but every "old hand'" at the business has, no doubt, a vivid recollection of the term and its uses. "Boxing" in framing may be described as preparing a true real square with the jaws of the mortise for the shoulders of the tenon to butt solidly against. To accomplish this often requires the removal of portions of the timber before a flat square surface is found, and this may reduce
the thickness of the timber operated upon. If we suppose four or five posts on the side of a building, and these posts are supposed to be 12 x 12 inches in section and in preparing these posts to receive the tenons it is necessary to remuve over the face of each mortise one-quarter of an inch or more, and the girts or connecting timbers have their shoulders cut to suit the 12 -inch posts, it will be seen that the length of the building at the line of girts will be less than intended. If forced into mortises made the proper distance apart in the sills, the outside posts will not be plumb and it will be found impossible to make the plates fit in place, as the mortises on the ends will be found too far apart, and this would lead to all sorts of trouble and vexation. In boxing. we suppose the posts to be, say $11 \frac{2}{2}$ inclies instead of 12 inches. This allows half an inch for boxing, and this necessitates the girt between each set of posts, to be ent one inch longer between shoulders than if no boxing was prepared. In cases where posts are pierced on both faces and boxed, the post Where the tenons enter, if directly opposite, may have to be reduced to 11 inches and must be accounted for on that basis. The young framer must be particular about the boxing and the necessary reduction of timbers when laying off his lengtlis of girts or bracing timbers, if not he will be sure to get into trouble or botch the job.

MICROCOPY RESOLUTION TEST CHART

(ANSI and ISO TEST CHART No. 2)

APPLIED MMAGE Inc

1653 East Moin Street
Rochester. New York 14609 USA
(716) $482-0300-$ Phone
(716) $288-5989$ - Fax

Fig. 236.

I show, at Fig. 236, how the boxing is done, and how to lengthen the timber between shoulders to meet the requirements of the case. G shows the girt where it is boxed into the post P, and

F S shows the sill and plate with the tenons T T relished for the shorter mortises. The brace B shows how it is butted at hoth ends against the boxing in the post and girt. The points, or "toes,"
of the brace are squared off so as to rest against the half inch shoulder which is caused by the boxing.
At Fig. 237 I show a post boxed on both sides for oraces; also a scarfing which ties two beams together, the joints of the beams being directly over the center of the post. It will be noticed the

Fig. 238.
scarfing block grapples both beams and is bolted at both ends. The braces and post are draw-bored and pinned as shown by the round dots on the diagrain. The scarfing block or bolster, in cases of this kind where there is a heary weight above to carry, should be of hardwood, oak, maple or other suitable strong wood.

The next illustration, Fig. 238, shows a double boxed post with braces carrying a scarfed beam.

The tenon on the top of the post passes through the splice holding the two beams together. It is drawbored and pinned together through both splices.

Fig. 239 exhibits another boxed post, braces, splice and beams. The post is double pinned to both beams, which are bolted together. These two illustrations, Figs. 238 and 239, are good examples

Fig. 229.
of spliced beam support, and are often made use of in warehonses, barns and other similar structures.
At F:g. 240 I show the usual manner of framing a barn about 30×40 feet, and 16 or 18 feet high. Fig. 241 exhibits a portion of the end of the building, with rafters, purlins and collar beam. The center post shown is supposed to be boxed on

Fig. 240.
both sides, but the drawing is of too small a cale to show the hoxing on either post, sill or plate. The timbers for a building like this are usually about the following dimensions: Sills, $12 \mathrm{in} . \times 12$

Fig. 241.
in.; posts and large girders, 10 in. x 10 in.; plates and girder over drive doors, $8 \div \mathrm{n}$. x 10 in .; purlin plates, $6 \mathrm{in} . \times 6 \mathrm{in}$.; purlin posts and small girders, 6 in. x 8 in.; braces, 4 in. x 4 in.; rafters, collar
beams, etc., 2 in. x 6 in. These dimensions may, of course, be changed to suit circumstances and conditions. All mortises in the heavy timber may be three inches and of such length as the sizes of the timber will allow. Draw-bore holes for pine may be from 1 in. to $1 \frac{2}{2}$. in diameter, but should never exceed the latter size. Two draw pins may be used in mortise and tenons when the tenon is 8 inches or more wide. Less than that width, one pin will be quite enough. In laring out draw-bore holes have them two inches from the side of the mortise, then on the tenons they should be an eighth or a quarter of an inch less than two inches from the shoulder, then if they are just two inches from the boxing or the face of the mortise, the pins, when driven in, will draw the shoulders snug up to the bearing. In making draw-bore holes care must be taken not to maike a mistake and place the hole where, when the sin is driven home, the joint will be forced $c \quad$ tead of drawn closer. A little thought wl 'oles are laid out will prevent the hole frol \quad ag a "ushbore instead of a draw-bore.

The braces are framed on a regular 3 -foot run; that is, the brace mortise in the girder is 3 feet from the shoulder of the girder, and the brace mortise in the post is 3 feet below the girder mortise.

In this building the roof is designed to have a third pitch; that is, the peak of the roof would be
one-third the width of the building higher than the top of the plates, provided the rafters were elosely fitted to the plates at their outer surfaces.

In order to give strength to the mortises for the upper end girders, these girders are framed into the corner post several inches below the shoulders of the post, say 4 inches; the thickness of the plates being 8 inches it will be perceived that the dotted line, $A B$, drawn from the outer and upper corner of one plate to the onter and upper corner of the other is just 1 ft . higher than the upper surface of the girder.

The purlin plates should always be placed under the middle of the rafters, and the purlin posts, loning always frimed square with the purlin plates, the bevel at the foot of the a posts will almays be the same as the upper end bevel of the rafters; also, the bevel at each end of the gable-end girder will be the same, since the tro girders being parallel, and the purlin post intersecting them, the length of the gable-end girder will be equal to half the width of the bnilding, less 18 incines; 6 inches being allowed for half the thickness of the purlin posts, and 6 inches more at each end for bringing it down below the shoulders of the posts.

In order to obtain the proper length of the purlin posts, examine Fig. ©41. Let the point P represent the middle point of the rafter, and let the dotted line $P O$ be drawn square with $A B$; then will AC be the $1 / 4$ of $A B$, or 71% feet, and PC, half
the rise of the roof, will be 5 feet, and PO 6 feet. The purlin post being square with the rafter, and I'O heing square with AB, we can assume that PR would be the rafter of anether roof of the same piteh as this one, provided PO were half its width, and ON its rise. This demonstration determines also the pare of the purtin post mortise in the girder: for 10 being $7!2$ feet, and OR being 4 feet. hy adding these together, we find the point R, the midulle of the mortise, to be $11, \frac{2}{2}$ feet from the ont.ide of the building ; and the length of the mortise being 71 inches, the distance of the end of the mortise, next the center of the building, is 11 feet 9.5 inches from the outside of the building.

The hrace of the purlin post must neat be framed, and also the mortise for it, one in the purlin post and the other in the girder. The length of the brace of the lower end el of it will be the same as in a regular three wet run; and the mper end hevel would also be the same, provided the pmrlin post were to stand perpendicular to the girder ; but, being square with the rafter, it departs further and further from a perpendicular, as the rafter approaches neater and nearev towards a perpendicular; and the upper end bevel of the brace varies accordingly, approaching nearer and nearer to a right angle as the bevels at the foot of the post, or, what is the same thing, the upper end bevel of the rafter departs further and further from a right angle. Hence, the bevel
at the top of this hrace is a compound bevel, found by adding the lower end bevel of the brace to the upper (and hevel of the rafter.

In framing the mortises for the purlin post braces, it is to be ohserved, also, that if the purlin post wias perpendienlar to the girder, the mortises would each of them he :? feet from the heel of the poost and the sharper the piteh of the roof, the greater this distance will be. Hence the true distance on the girder for the purlin post brace mortise is found by arlding to : $:$ feet the rise of the roof in romming 3 feet; which, in this pitch of 8 inches to the foot, is two feet more, mikking 5 feet, the trine distance of the inthest ent of the mortise fyom the lieel of the purlin post.

The place in the purlin post for the mortise for the npper end of the brace may be fonmed fro the rafter table, hy assmminer that Rx wo bhl ha the rafter of amother roof of the same 1 theh as this one, if xy were half the width, and yR the rise. For then, since xy eyaals :3 feet, we should have width of building equal 6 feet, rise of rafter, one-third pitch, gives sTi equal 2 feet; and hence XR would equal $: 3$ feet $7: 2(6$ inches, the true distance of the upper end of the mortise from the heel of the purlin post.

Figs. $2+2$ and $24: 3$ are designed to illustrate the manner of furding the upper end bevel of purlin post hrames. to whinh reference is made from the preceding eximples.
 of the brace from toe to toe, the bevel at the foot having been already cut at the proper angle of 45

Fig. 242.
degrees. Draw BC at the top of the brace, at the same bevel; then set a bevel square to the bevel of the upper end of the rafter, and add that bevel to BC by placing the handle of the square upon

BC and drawing BD on the tongue. This is the bevel required.
Fig. : 43 shows another method of obtaining the same' vel. Let the line $A B$ represent the bevel at the sot of the brace, $d r \cdots 1$ at an angle of 45 degrees. Draw BD at rig` Imles with AB , and draw BC perpendicular to .as, making two rightangled triangles. Then divide the base of the

Fig. 23.
*iner ofe: of these triangles into 12 equal parts for the rise of the roof. Then place the bevel square upon the bevel ΛB at B and set it to the figure on the line C D, which corresponds with the pitch of the roof. This will set the square to the bevel required for the top of the brace. In this figure the bevel is not marked upon the brar ?, but the square is properly set for a pitch of \& aches to the 'sot, or a onc-third pitch. The square can now be placed upon the top of the hrace, and the
bevel marked. These examples are taken from "Bell's Carpentry," an excellent work that was very popular forty or fifty years ago because of its reliability and exhaustiveness. There have been many improvements in framing, however, since this book was made, still it contains some things that have never been improved on.

Fig. : 41.

One strle of mortise and tenon must not be overlooked, which is often employed in framing girts or girders, and that is the "bareface stub tenon," which I show at Λ in the illustration Fig. $\underline{2}_{4} 4$, where it will be seen that at one side of the tenon there is a shoulder. The other side not having a shoulder is thus said to be barefaced. Since it does not pass right through the post, it is known as a stub tenon. This form of tenon is used where one surface of the girt is to be flush with that of a post, the other side of the girt being set back from that of the post (as shown).

In Figs. 245 and 246 I show a couple of examples of mixed, heary and light framing. These will

Fig. 245.
show how that style of work is done, and will, 1 am sure, prove of value to the learner.

It may not be out of place to say a few words on timbering floors, as the framer is often called upon to cut, frame and place all the necessary tim-

Fig. 246.
bers for the purpose, and to give him some idea of how the work should be done the following few illustrations and instructions are offered. In the first part of this work I gave a number of illus-
trations and methods of preparing timber for floors, so I will not now enter at much length into this subject, but briefly give a few examples of such work, as I know from experience will prove of the greatest value to the general workman:

Fig. 247.
A general system of floor framing in timber alone is shown in Fig. 247, the whole floor being of wood. Fig. 248 exhibits a timber floor intended for a double surface. The upper series carry the ceiling joists. At Fig. 249 I show how a framed floor,
partly of wood and partly of irom, is usmally put together in many Tocalities. In Chicago and other places there is often a departure firom this method, which is not ahways for the best. A domble iron

Fig. $24 S$.
and timber floor is shown in Fig. 250, while a coal breeze or concrete floor with necessary steel girders is shown at Fig. 251. Fig. 252 chows a strongly reinfored concrete fireproof floor, capable of bearing great weights.

HE.IVY TIMHEIR FRAMING
201

A few hints here regarding timbering floors, over and above what has been said, may not be sut of place:

Fig. 251.

When ceilings are fixed direct to bridging joists that are thicker than $21 / 2$ in., brandering fillets should be nailed on their bottom edges to fix the lathing to.

Ceiling joists in framed fioors should be fixed to the binders. Notching or mortising the binder weakens it considerably.

Keep the ceiling joists $1 / 2 \mathrm{in}$. below the binder and counter lath the edge of the latter to afford key for plaster.

When the heigit is not sufficient to allors of the use of ceiling joists, notch the bridging joists 1

Fig. 252.
in. down on the binders, and lath and plaster direct. Also put in a row of plasterers' nails in the sides of the binder to form a key for the plaster, and plane and mould the visible portion of binder.

Every fonrth or fifth bridge joist is well made 2 in . deeper than the rest, and the ceiling joists fixed thereto.

Pine is better than oak for ceiling joists.
To find the depth of ceiling joists, \because in. thick, for any span, halve the bearing in feet; the result will be the depth in inches.

Ceiling joists shonld never exceed 211 in. in thickness, nor be less than 1:4 in. They shonld be spaced not more tham 16 in. ipart, center to center.

Ceiling joists should be thoroughly dry, or they will indicate their position first hy dark and later by light stripes on the ceiling.

A flitehed girder consists of a wrouglit iron plate placed between two timber flitches, and the three bolted together. The plate should be $1 / 4 \mathrm{in}$. within each edge of the wood, s? that the weight shall not he all thrown on it when the wood has shrunk.

When pine or spruce plates are fixed to the sides of iron girders for the purpose of carrying the ends of joists, they may be secured with straps in place of bolts with advantage in points of strength and eronomy.

Scantlings for girders of Baltic fir; distance apart, 10 ft., center to center:
$10 \mathrm{ft}$. mat: $=9 \mathrm{in} . \times 7 \mathrm{~F} . \begin{aligned} & \text { and add an inch in each } \\ & \text { direction (breadth and }\end{aligned}$ 12 ft span= $=10 \mathrm{in} . \mathrm{x} 8 \mathrm{in} .\left\{\begin{array}{l}\text { depthi) for every addi- } \\ \text { tional } 2 \mathrm{ft} \text { of span. }\end{array}\right.$

It is worse than useless to truss girders in their own deptl.

Wood heams, when used as girders, should be cut down the middle, one of the fliteles being reversed and the two then bolted together. This equalizes, if it does not increase, the strength, and at the same time affords an opportunity of seeing whether the heart is lefective. The bolts slould be placed mainly above the center line, and any placed below should be near the ends.

Wood gire? : for warehouses, factories, and similar buildings, are better unwrought. If it is desired to paint them, they shomld be cased with worked pine linings, fixed to $1 \cong$ in. firring pieces.

The formula for the strength of timber girders

$$
\text { is } W=C \frac{b}{1} \frac{d^{2}}{1}
$$

Where $W=$ breaking weight in cwts. $\mathrm{L}=$ span in feet
$b=$ breadtl in inches
$d=$ depth of girder in inches
$\mathrm{C}=$ constant $=\overline{\mathrm{j}}$ for oak, piteh pine, and birch $= \pm$ for southern pine.

Load at center and beam smpported only.
The maximum strength of a timber beam is ohtained when the breadth is to the depth as 5 is to 7.

The illustration shown at Fig. 253 makes plain the method of constructing a donble floor. The hinder rests on a wall or posts. This makes a fine floor, and is in a measure somd proof.

Fig. 253.

Fig: 254, 255, 256 and 257 , which are !orrowed from Architecture and Building-old series-will conver to the reader a number of excellent ideas as to the combination of iron and wood in floor framing.

Fig. 2.5s shows the manner usually adonted in preparing the floor timbers around a hearth, chimnev breast, stair well hole, or openings for trap doors or similar work. The trimmers and headers are made with heavier timbers than the joists, and
the tail beams are let into the healers with either ,lain or tusk-tenons. Tusk-tenons, of course, are the best, but cutail murla labor and care. A tusktenon with a run-over ton, is shown in Fig. 259.

Fig. 254.
This makes a good cleall joint for running over a girt or bearing timber, and com he nailed together r \therefore joint as shown, thus holding the work so t. . camnot spread. The tenon is shown at Λ.

There are varions shapes of tusk-tenons, some of which are shown in the foregoing examples. I give below herewith a brief description of what I think makes the best kind of a tenon:

The usual role for cutting a common tenon is to make it one-third the width of the timber and

Fic. 2ins
this rule slould be followed as far as possible in designing a tusk-tenon. The projection of the tenon from the beam out of which it is cut is called its root, and the surfaces immediately adjacent to its root on the sides are called the shoulders.

Fig. 257.

The tusk-tenon was devised in order to give the tenon a deep bearing at the root, without greatly increasing the size of the mortise. Making the

Fig. 258.
mortise unduly large would, of course, weaken the girder. The desired deep bearing is secured by

adding helow the tenon a tusk having a shoulder which in trimmer work penetrates to a depth about one-sixth the thickness of the joist. Above the
tenon is formed what is called a "horn," the lower end of which penetrates to the same extent as the tusk. By this arrangement the strength of the tenon is greatly increased as compared with the common form, while the mortise is not made very much larger. In order to hold the marts together the tenon is projected through the girder and pinned on the outside as shown in the sketches.

So much for a description of the tusk-tenon, as it is theoretically, and as illustrated in Fig. 261. Many times, however, the tusk-tenon is attempted upon the lines shown in Fig. 260. For example, if the beams are 10 inches deep, it is placed so as to leave 6 in . beneath. This does not secure the maximum of strength. The tenon is made square on the shoulder, which is not the best that might be done and has below the root the bearing indicated by A in the sketch.

The object in view with this joint, where applied to small timbers, as, for example, headers in floor beams, as well as in heavy framing, is to secure a perfect bearing at all points. In the application of it to floor heams the special object is to weaken the trimmer as little as possible.
It is scarcely necessary to remind the readers that a beam weighed and supported like a trimmer has the fibers on the bottom in tension, while those at the top are in compression. If this is conceded, then it hecomes evident that whatever is to be cut out of the beam ought to be cut out as near the
center as possible. The root of the tenon should pieree the beam at a point as nearly on the noutral axis as may be. The nearer it is placed to the bottom of the beam, that is to be comnected with the trimmer, the less likely the tenon is to split off, and as near the middle of the beam from top to bottom as possible, is the proper point for the tenon. There is some liahility of t'e tenon splitting off, however, wherever it is plated, and it is

Fig. 260.
for this reason that the shonlder D, as shown in Fig. 261, is introduced. The bearing lis also helps to strengthen the construction.

Fig. 260 is not an ideal tenon, so in practice it is always better to employ tenon shown at 261.

One very important featmre in heary framing is the construction of wood eenters for turning over turek of stone arehes, ant I purpose wiving at this point some examples of centers most in common
use, and a few suitable for bridge and other large works.

Before deseribing the types of renter in common nse it will he well to consider the points that must be wherred in their construction. The principles that are enumeiated below apply to most temporary structures, hat are here intended to apply chiefly to centeriag. (1) Absolite rigidity of the struc-

Fig. 261.
ture is required. (ㅇ) I wide margin of safety in the resiatance of the matrorial and fastemings of joints. (3) Fastenings should le casy of application and removal, and pro perfertly reliable. (4) The struture must be eronomically designed, which does not mem always to use as little material as posible, hat rather that it shall shstain the mininum amount of lamage in jointing and framing. so as to allorr of re-use for similar purposes when the sizes are suitable, or conversion iuto timber for other purposes. (5) Joints must be so
arranged as to transmit stresses directly with the least possible tendeney to slide when under compression, and where necessary the fastenings of the joints monst be sach as to allow of the stresses being severed without movement of such joints during the loading of the center. Thus, when an arch is being erected, if of a semi-cireular or semielliptical outline, the first few stones or bricks will produre no stress in the center, for the tendency of the blocks to slide $\mathrm{S}_{\text {a }}$ resisted by the friction between the surfaces until the angle of repose of the material is reached. After passing this point, the center becomes quickly loaded and the compression at the havenches is severe, and being loated symmetrically from the two sides, prodnces a strong tendency to lift at the crown, which the center has to resist. What is required is an arrangement of trussing the ribs, or separate vertical frames supporting the lagging, that will resist this deformation, and further, that of the continued loading up to the insertion of the key clock. To attain resistance and rigidity so as to overcome these difficulties reguires carefnl consideration in large centers. The center as a whole consists of the supports, the curred trussed ribs, and the cover or lagging which the ribs support.

First, as regards the ribs, these shonld be trussed frames of the repuired outline placed at 3,4 or bert renters, according to the weight of the areh, strength of lagging and t : s; each
rib or bent receiving direct support. The construction oi the rib inay be accomplished in one of three ways: (a) It may have the curve built up in two or more thicknesses; (b) it may be of solid material, comecting the struts, its onter surface cut to the curve; or (c) the frame nay be trussed to the outline very approximately, and the curve formed by shaped packings natiled to the other members. The general practice appeats to be to use (a) in two thicknesses, for suall centers, simply nailing or screwing the sections together; (b) for large civil engineering structures ; and (c) also for the latter work and for arches of moderate span that are near the semicircular outline. We may consider (c) as a noodification of (b). But there is a great advantage in using the huilt-up curve for centers of comparatively large size, especially where the whole rib can be built up and thon raised into position, because of the fact that if 'e joints between the logeths of material are

I (normal) to the curve, the rib, apart from trlosing, is in a great measure self-sustaining, its form being that of an arch, and, therefore, capable of sustaining a lo.... The writer knows of some cases where built-up curved ribs (withont trussing), merely lagged and braced, have been successfully used to build segmental arcles of small rise over moderate spans. This advantage of the buitt-up rib is increased if three thicknesses of material are used, and $1 / 2 \mathrm{in}$. bolts instead of spikes
employ 1 at the joints. Moreover, the ribs are then very easily taken to pieros, the bolts used again for any suitable purpose, and the lengths of enrve aither reront for similar purposes or eonperted to other mses.

The following rules and definitions regarding eenters and dentering will he found quite usefnl to the workman and are inserted here for his gnidanme and ronsideration:
"Centers are temporiry Wooden structures upon which arehes are built.

For eonvenience of reforeme they may be elassified aboording to constrmetion, as thoning pieces, rib) renters, laminated, or "built up,'" framed and troseal, close-linged, and sumbry special varieties designated in eomention with the purpose for which they are nsed, such as dome, cirele on eirele, groin, and sheoting eenters.
('enters being repuired purely for temporary purposes should be designed so ats to injure the material as little as posible, with a view to its subserpuent use for other purposes.

This romblition often neressitates the emplorment of harere timbers than are arotnally required to meet the stresses oreasioned by the load.

Put it is a good fanlt in centering to have the timber "too heavy", as in extensive works such as railway arches or harge valults, stresses sometimes levelop in mexpeded directions.

Frery effort. should be made to tramsmit the
load to the ground, direotly, by vertioal supports; and if the distance is ereat these shond be hrated.

Inclined smbports, as sometines nomp to give clear way for traffir, are atst to shrink and become loose, riding on the dogs, and so throw thennselves ont of imating if not watelerd.

The above does not aplly to arehos whose abontments are piers. In this case it is betore to thow the weight of the centering umon the foutinge, of some part of the pier, otherwise when the renter is struck, and the extra wright of the arohes thrown on them, they mas settle untaplath.

They must he constructorl in surd manmer that their shape will not be altered her the streses induced hy the load, which, of rourse are romintially altering in amount and diecotion as the work pro. ceeds. This requinement is leert met beg brar aig and counter-hracing.

It is inadrisable, except in the rat-o of fror harary centers, to emplore mortiso and trano joint- in the constroction, as, alart from the expern there it is requisite, in order to obtain good ran'i - . That the timbers should be "true," and as thi- "rnmition is not esemtial for ant other fmorere in the ronstrmetions. it is umwise to -o deaten it when other and simpler joints will answor the furpese equally well.

Large ernters should he so eonstrureted that thes maty be readily set up, and it is better to build them on the site, piecoly piece, having previou-ly
fitted and marked them, than to build them complete on the ground, and sling them into position with a crane. This slinging will often disarrange the braces and distont the ribs. This refers to "Builders' Centers" only. Engineers centers, usually more elaborately braced and tied with iron rods, being not affected thereby.

Centers should also be capable of easy striking and ready readjustment. These requirements are usually met by introducing pairs of folding wedges between the supports and the lower bearings of the center. There is always a danger of these wedges, whilst being driven back, suddenly shooting away and leaving the center unsupported. This may he avoided by using three wedges as shown at Fig. 286. Then if either the t pp or bottom one is driven out, a pair still remain to take the bearing, and "set up", again if required. An elaboration of this method is slown in Fig. 287, a continuous wedge, used sometimes for heary centers. It is impossible for this form to slip, and it can be locked in position when set up by a key driven in one of the slots.

Screw jacks may also be employed to obtain regular easing in douitful cases of vaulting or restorative work.

Another point to remember in designing centers, is that there may be projections below the springing, such as cap or neck moldings, that will prevent the lowering of the center if due allow-
ance is not made for them; an example of this is given in Figs. 268 and 277. The tie-piece should be made a little s' orter than the clear distance between the projections, and raised above the springing to a point where it will cut the intrados of the arch.

The tail-pieces, completing the center down to the springing, are made up separately and inserted after the body is set up. These tail-pieces would not be required for a masonry arch, as the haunch voussoirs do not take a bearing on the center until their bed joints exceed an angle of 32 degrees with the horizontal. This is due to the friction of thie stone on its bed preventing its sliding, unless the angle of the bed is in excess of that mentioned.

It may also be noted that the whole weight of any arch stone is not taken by the centering until the stone is in such a position on that a vertical line drawn through its center of gravity would pass on the outside of its bed.

It follows that during the construction of the arch, the load gradually increases from the springing to the crown; and that in a semi-circular arch, when about half way up between springing and crown, the load will have a tendency to force the haunches in and spring the crown up. This demonstrates the necessity (a) of making the center stronger in the middle than at the haunches, as a greater reight will have to be carried by that part; and (b) either that the stress from the haunches
be taken direct to the ground hy su ports at the feet of the braces, an in Figs. 971 and 275 , or where no support is avialable from below, at the middle of the span hy froming the feet of the haunchbraces into the foot of a king post, which will counteract the tendency of the latter to rise, and then to meet the stress at the erow: that will come later ly taking braces from the head of the king post to the end se the tie-piere, directing the stress to the supports at the springing as slown in lig. 27.2.

Fig. 20.

Tt is safer to increase the mmber of ribs than the thickness of the lagging. It is dificult to lay down any rule for the spacing of the ribs, as the conditions vary in almost every case, but they must be close enough to prevent any individual lag
rielding under the load, and so crippling the surface of the ard

It mast he remembered that the hribklaver requires to pass his phanb role and lines arooss the face of the work, and over the openings, so that the ends of the laggiug should be kept within the line of the finished work.

Fig. 263.

It is a comvenience to let the lags imn over the ribs ahont $11 \underline{2}$ in., so that they can be trimmed as required.

Lagoings for briekwork shonld be spaced not more than $1^{1} \underline{i n}$. apart. For masomry they ean he spaced aceording to the length of the vonssoirs nsod. I bearing at each edge is sufficient. Freghently where the voussoirs exceed two feet in length. lagging is dispensed with altogether, the
stones leing supported by bocks or wedges arranged as the work proceds. This method is shown in Fig. 르․

Wak is often used for wedges, but maple is a better wood, being much less likel! to split; it is also naturally smooth and slips well. If oak is used, its sulfiace should he somped or hark-leaded. The wood should be dry, and if machine cont, a fine tooth saw shonld be nsed, or if cut with a coarse saw, the faces should be planed. The thin end should not he less than :s in. thick, and the corners of both ends "dubbed" off, as shown in Fig. 286, to prevent splitting.

Wedges should be driven parallel to the abutments, i. e., arross the ribs and have a hlock nailed helhind twin to perent rmuring hack.

The turning piece, Fig. 262 , is cut ont of a piece 2 in . $\mathrm{l}, 4 \mathrm{in}$.; it is used for the outside arches of door and window openings, of sligh , rise, and half a brick thick. For thicker walls the rib center, Fig. 263 , is used. This is formed by shaping two boards, about 1 in . thick, to the curve, keeping them at a proper distance apart by stretchers, S. natiled on their lower edges, and covering the curved edges with lagging pieces, L, about $11 / 2$ in. by 3 in., at intervals of $\%$ in. for orthary work.

When the rise of a center is small in comparison to its span, it is inconvenient to describe its curve with a radius rod, amd the method shown in Fig. 264 may be adopted. Take a piece of hoand of con- oak is leaded. - a fille coarse in end orners g. 286,
abutnailed
a piece hes of del half center, ng two ecping ers, S, ig the $11 / 2 \mathrm{in}$. ork.
arison curve n Fig. of con-
venient size and draw a line across it from edge to edge, equal in length to the span of the atch required; at the center of this line draw a perpendicular equal in length to the rise, draw a line from this point, b, to the springing point, at, and cont the ends off leyond the line; the portion cut off is shown by dotted lines in the sketch. Two nails are driven into the piece from which the segment is to be eut, at a distance apart equal to the span, ass at a-e, and the templet placed in the position shown in Fig. offt, with a pencil led at point b: if the

board is now moved aronnd towards a, keeping it wressed against the nails, one-half the curve will be described, and on turning over and repeating the process the other half may he rompleted.

An alternative method is shown in Fig. 26t, suitable for vory flat arches. Lay off the rise, and span, perpendicular to earh other, as a, b and e, upon any convenient surface; draw the cord line a e, lay the board from which the templet is to be cut in a suitable position over these lines. and reproduce the line a c upon it; also dran the line ed parallel to $a \mathrm{~b}$; next cut the board to this triangu-
lar shape, as shown by the shaded portion; the: if nails are driven in the board to be cut at poir :a and r, and the templet moved around again ? then, the eurve will be described by a pencil hed at point e, as shown by the dotted line.

When the rise is more than the width of a board will accommodate, a variation of this method may be used. Into the hoard or hourds from which the rib is to be cut three nails are driven, as at a, b, c, Fig. : 6.5 , arranged so that a-c shall equal the span and b the rise, then place two strips of wood against the mails as shown, crossing at the erown, and fix them togrether; a third piece nailed across to form a triangle will keep them in position, if the mal at the apex is withdrawn and a peneil suhstituted; when the triangle is moved aronnd as before deseribed, the enrve will be produced. One of the legs of the triangle should be twice the length from a to h.

A huilt-np center is shown in Figs.266 and 267 ; the ribs in this variety are formed in two thickmesses, the laminae being maled together in short lengths, the abutting joints of each layer meeting in the center of the other. 'These abutment joints should not be less than 4 in . long, and should radiate from the center of the curre. The length of the segments is determined by the amount of the curve that can be cut ont of a 9 in . board. The two longer havers of the rib at the springing are cut off at the top edge of the tie-pieces, and form with the
upper layer, which runs down to its bottom edge, a rebate, in which the tie rests. The layer running down is mailed to the tie. The tie-piece may be

from 1 in . by 7 in . to 11 in. by 9 in , according to the span. The braces, of similar scantling, should radiate from the center, and be shoukdered slighty upon the same side of the tie-piece that the ribs
run over; their upper ends are nailed on the side of the layer of the rio, and take a bearing under

the edges of the other. This form of center may be safely used for spans up to 12 ft ., but although sometimes used for greater, they are not to be
recommended owing to the numerous joints, and the possibility of splitting the segments in nailing.

The framed center, Fig. 268 , is better adapted for spans between 12 ft . and 20 ft . The ribs are solid, out of 2 in . or 3 in . by 9 in ., as the span is less or more, and if this is not wide enough to get

Fig. 269.
the curve out, in four or five lengths, must be made up to the required width, with similar pieces spiked on the back. The ends near the springing are shonldered out $1 \underset{1}{ }$ in. on each side to sit on the tie-pieces, which are in pairs; the upper ends have slot mortises cut in them to receive the tenons on the braces (see Figs. 269 and 270). The lower
ends of the brames are shomblered in a mamer similar to the ribs. The ents in the ties are fixed with eoarch serews, the upper emds by dogs.

A frused enter of eronomional construetion is shown in Fig. 은, comsisting of a triangnated frame of quartering, used as a support to the ribs. The fomdation frame may take the form of either a king or gueen post truss, as the span and number of braces requided may indicate; but whaterer the form, as previonsly mentioned, the streses shonld be directed to the points of support, in this rase threre.

The joints are formed by notching the ends of the hares. into the ties, and keeping them in position ly means of dogs. No tenons are used, as from the construction all the members will be in compression; short pumeheons should be used under the joints of the ribs, as shown at PP. This form mar be used safely for brick arches up to 25 ft . span, but mast be supported in the middle. When this course is not possible a trussed and framed center, similar to Fig. 272 , may lee emiployed. This is a very strong construction, espe-
cially suitable for masonry arches in which considerable ross strains, due to the slower manipnlation of the load, lave to be met. Here it will be seen that the hamel loads are directed to the foot of the king post, and not to the tie; from that point it is chrect d by way of the struts I) to the supports at the end of the tie. These same strints, D, also take the crown load. The king post, tie piece and struts D) are all made solid, the latter

Fig. 273.

Flg. 274.

Fig. 275.

Flg. 2-\% passing between the struts E , into which ther are notched slightly; to stiffen them (see detail, Fig. 275). Packing pieces are used at the upper ends of the struts E , to bring the ribs u^{\prime}, to the bearing (see Fig. 276), the whole fastened together with spikes or coach screws. The ends of the ribs at cromn and springing are smok in ahout $3^{\prime} \mathrm{in}$. (see Fig. 274), the lower ends being spiked through the back. The lags are 2 in . by 3 in ., spaced ac-

cording to requirements, about two-thirds of the length of the stone from the bed joint of each voussoir will be found the best position. The ribs are spaced at 3 ft .6 in . apart. The lags in the example are shown notched into the backs of the ribs $1 \underset{2}{2}$ in.; this method is often adopted when the conter is huilt in situ, and the length of the arch is such as to require several ribs. The two end ribs should have a radius rod fixed on the tiepiece, to be swept round the circumference, and the lags can be brought into the line of curve by adjusting the depth of notch. When the end pair art correct, a line sprung through, or a straight edge applied, will give the depth of the intermediate notching.

A trussed center 10 r a large span is illustrated by Figs. 277 and 283. Figs. $28: 3$ and 284 are details of the construction.

Centers of the above description are generally constructed as follows: a chalk line diagram, complete, and full size, is laid down on a suitable platform or floor, the timber from which the segments of the ribs are to be cut are laid in position over the curve alternately, and the joints marked with a straight edge, radiating from the center; or, in the case of elliptic or parabolic arches, drawn normal to the curve at the points where the joints ocenr (see n, Fig. 2S2). When the joints are cut the segments are laid down and nailed together, a radius rod is then swept round
to mark the rurve, or in segmental arches the triangle, Fig. :s.s. mat be used; the pieces are then separated and ent, aghin laid down with spikes driven temporarily around their periphery to keep them in place; the struts and ties are then laid over them in position, and the lines for the shouldering and notching drawn on; each joint should have a chisel mark made on the pieces to identify them, and the joints being made, the whole can be fitted together, mailed up and bolted, then taken to pieces realy for re-eredion in situ.

Fin. 2ss.

Fig. 29.

Close ligged centers for virions purposes are shown in Figs. 278 and 250 and 284. The surface of these is required to be finished more accurately than in the ordinary center, becanse the bricklayer sets out the plams of his courses thereon, and thus obtains the shane of the voussoirs. The lagging is nailed closely round the rins, and brought into the chre afterwards, with the plane.

The profile line being obtained either hy radius rod or templet. In the case of Dome or Niche
eenters, a reverse templet affords the readiest gride for shaping the surface.

A rircle on circle center, when semi-cireular in alevation, may be constructed as shown in Figs. 274 to 278 . Two ribs are ent to the plan curve, and upon each edge of these narrow vertical laggings, rather closely spaced, and thin enough to bend casily to the curve, are nailed. The bottom rib is phared at the springing, the other ahont half was between it and the crown, when

Fig. 250.
this side lagging is fixel, a radius rod shaped as in Fig. ${ }^{-17}$, and set out so that the distance between the pirot A and the middle of the V notch is equal to the radius of the required arch, less the thickness of the soffit lagging; is mounted on a temporary stretcher, C, at the middle of the springing; this is swept round the lagging on each side, it pencil being held loosely in the V notch, thus obtaining the outline of the elevation
 immer radins wombl he shortor, hat strond from the simbe lexe as the onter.) The hoates ato rent synitre throngh to tho lines and tho eross lagering natiled to their ends, as shown in the seetion.
 in a barow opening in a latere circolarr wall, the rertioal laggeng maty he omitted and thr center
 ribs being employed, and the lige allowint to oworhames suftiodently to lom the plan emoes. 'lhey require to he rather stomter tham msal to emsme stiffues.

There are two wiles in wheh centering for interseeting vanlts maly be constructed: first, when the rimbt is wot of great span, a "hamrel" or eontimmons center is made for the main vantt, fong enomgh to mom abont two feet beyond eath side of the intersorting vinlt. The centers of the smaller vaults are then male with the lagging overhanging the rib at one end, the two eenters are then placed on a level surface and brought together in their rorroct relative positions, and the loose ends of lagrings seribed to fit the contour of the main center, and then nailed thereto.

This method, howerer, is unsuitable for vaults of large span, as the lagging would be liable to sink at the intersection through the absence of support. The second method, shown in Figs. 281 and 283 , is then adopted; a rectangular frame is
first ronstrunted equal in lemeth to the proposed center，and in width to the vean span b．tween the walls；this frame is halved togother at the angles， as shown at li，fig．：－ $8: \%$ ，and forms a firm base for fixing the ribs to；a similan frame is made and fixed undermoath for the cosos vant，and ribs of the remisite comatme are set up）at the four ends，also at the intersereting line or groin，being secured firmly at the hase．

Fif． $2 \boldsymbol{s} 1$.

ドig．シー․

The groin ribs are mate in two thinknesses for convenience of heveling，the angle of the seating being a re－entrant one．

The method of producing the bevel is explained elsewhere．The lagging of the relindrie center should be fixed first and worked of true with the
aid of a plante and straighteredge; a thin straight lath shond then bre bent romm wer the eronter of the grom rib, and a permil lime drawn down its edge: the embs wi the lasging beimg trimmed off to it with at chisel hold phmbs this will give the proper intersestion for the main lags, amd when these latter are rat to lit their trme ontline at the intervection may be ohtamed by marking on their ends with a pernoil drawn down the smrtane e: \because eglimder. I temphet, obtamed as desmibed heiow. applied at the emds will give the potite at the extremities, and and late van be plated to fit hefore mailing ons.

To limal the sate of a wrom rib when the shape of permetating vanlt is wivell frirst, hy means of

 perpemtionlans fom these for the springing line x, and prodnce the lines to cat the plan of the ernter
 at these points to the plam line, d-f, and mark ofi on them heights to correspond with the similarly manked heishts in the section, Fir. os: ; these will give point: in the ebrve, which may he drawn hy driviner in mats at the points and bemding a thin lath round them. The ance mat, however, be drawn quicker bẹ a trammel, taking the height, xfor the minor axis, and the length, d-x, for the major axis. When a properly eonstructed trammel is not at hand, its priveiple may be utilized in the
following manner：To draw an aline without a
 upon which it is desired to draw a sminerelligue． joint the edge．．．B，straights．draw a lias e in the center．spare with the ever at 1 ，prombexe it arose another piece of hoard feting against the first．to l）；then math oft，on a－trajoghtath from one enl，the semi－majom and ermi－minor apo－：in other words，the rive and halionhin of the arch． Keeping these two points who the line．－b，Jo，add （ ${ }^{\text {．I }}$ ，arrange the lath in rariou－for－jtionto．ats Sown he dotted line：in Fir．－－t．and juno！lines made at it send will give bust－on thor curve．

 Craw the outline of the rib）＋hounds therms．as at Co fig．ことす。

To find joint line and direction for braces in elliptic centers, see Fig. 284. First find the focal points, with radius equal to half the span a b . Describe an are from center c, cutting the major axis a b in ff ; these are the foci. To find the joint line or normal from any point in the curve as n (fixed conveniently for length of stuff), draw straight lines to the foci; bisect the contained angle, as shown by a line drawn through the point n and the center of the constructive arc. This line is a normal or perpendicular to the curve at the point in question, and indicates the direction of joint and braces.

Fig. 28 .
The metlood of bevelling a groin rib for the purpose of obtaining a level seating for the lagging is shown in Fig. 283. Let e, d, b represent the plan of one-half of a groin rib similar to H, x, Fig. 281, and C, d^{\prime}, the elevation, which may also represent the mould or templet; $\mathrm{a}, \mathrm{e}, \mathrm{f}, \mathrm{g}$ is the piece of hoard from which the rib is to be rut, on the face side of the board draw the full line, $\mathrm{C}, \mathrm{d}^{\prime}$, by aid
of the mould, cut the ends square with each other, as a, e, and d, g, then apply the bevel as found at d in plan from point d^{\prime} across the bottom edge, square a line across the top end at C, and apply the mould on the other side of the board, as shown by the dotted line with its lower end at the bevel line and its upper end to the level line from point C. If the rib is cut to these two lines, and a similar one made the reverse hand and nailed together, as shown in Fig. 281, its edge will lie in the planes of the directions of the intersecting vaults.

Fig. 28.
The methods shown in the following descriptions and illustrations further affords very convenient means of jointing, for the struts can always be made to meet at points such as A or B in Fig. 289, making possible either a moitise-andtenon or a bridle joint, without cutting into the rib; for taking either of the two positions given,
the crossing of the sections of the curve provided the necessary untering or receiving portion of the joint, leaving only one-half of the joint to be worked on the strut. In the solid-rib type, the curve is made up of lengths of solid material, with the joints between each part of the strut connections, thereby becoming separate members to the frame. The curve itself has no resistance apart from its connection with the struts. The jointing in this case is more of a permanent nature.

Fig. 290.
The arrangement of the members of the rib, so as to give intermal support to the curve, depends on conditions that will be readily noted as the diagrams are perused. If the span and outline be such that the rise is not great, the struts may all be brought directly on to the tie, and concentrated on the intermediate supports, as shown in Fig. 290. This type should have solid ribs jointed at the points $\mathrm{A}, \mathrm{B}, \mathrm{C}$, etc., as shown (for details
of which see Figs. 290 and 291). If, however, the rise be great, either a flat member must be bolted across the face of the rib so as to shorten the struts effectively, or, better, the type shown in

Fig. 291.

Fig. 202.

Tig. 293 can be adopted, which shows the method of arranging the ${ }^{r}$ embers more suitably. The struts are much shorter, and can therefore be

Fig. 293.
lighter. A great resistance to lifting at the crown is obtained, and if necessary the intermediate supports can be dispensed with. Further, the direct supports to the curve may be all normais,
or their equivalent, for this latter condition is satisfied if a pair of struts meet at an equal incli-

nation (Fig. 292). Fig. 293 gives the elevation in line diagram, and Fig. 294 gives the full details of the construction, span 30 ft . The rib is here
built up in three one and a half inches stuff. In both Figs. 289 and 293 the tie is double, of $2 x^{0}$ in. material. Fig. 293 fulfills the requirement of a good center, and therefore this form may with advantage be generally adopted and modified in the internal trussing as the span increases.

Elliptical arches of long spans are somewhat more difficult to deal with, and I present the following merely to enable workmen to deal with centers of this kind, having a span from 30 to 100 feet.

Fig. 295.
Large centers for civil engincering structures, such as bridges crossing rivers in several spans, are scarcely within our scope, these requiring special treatment according to circumstances. But we may with advantage just note on the general forms of centers that are adopted for comparatively flat elliptical arches, together with a modification for a greater rise. Fig. 295 is the general form. It has many points of support, there-
fore little tendency to give at the crown. The whole of the material is of large size, 6 in . by 6 in. being the minimum, and for the platform whole

Fig. 296.

Fig. 297.
timbers 12 in . by 12 in . receive the vertical posts. For heavier work and wider spans, the construction given in Fig. 298 is well adapted. Details in

Figs. 296 to 300 show the construction of joints which applies throughout. This is built in two tiers, keeping the struts comparative!y short, and effectively distributes pressure to the points of support. The secondary horizontal member is large enough to clasp the curved rib at the ends (see Fig. 301), and the whole oif the joints are housed or tenoned and strapped where necessary, and as shown in details. Transverse and longitudinal bracing is freely used in the manner pre-

Fig. 290.

Fig. 300.
viously described, and by careful arrangement and sufficient bracing in vertical planes the necessity for strap connections can be reduced to a minimum. For heary arches such as these the centers are struck by the introduction of lifting jacks or sand boxes, the latter being especially suited to the purpose. They are arranged to contain fine dry sand, with means of escape for the sand as needed, so that the center may be lowered easily and gradually, and to any required amount within the provided limits.

I show at Figs. 302, 303, 304 and 305 four examples of centers in situ, carrying the brick or stone

Fig. 301.
work, as the case may be: Fig. 302 shows a center for a small span. It consists of a trussed frame, of which A is the tie, B the principal, or,

Fig. 30٪.
as its outer edge is curved to the contour of the arch, it is called the felloe, C the post or puncheon,
and F a strut. The center is carried by the piles D, on the top of which is a capping piece E , extending across the opening ; and the wedge blocks are interposed betwixt it and the tie-beam.

Fig. so:3 shows center for a small span for an elliptical arch.

Fig. 303.

Fig. 304 shows a center with intermediate supports and simple framing, consisting of two trusses formed on the puncheons over the intermediate supports as king-posts, and subsidiary trusses for the haunches, with struts from their center parallel to the main struts. This is an excellent design for a center carrying a segmental flat arch having a large span.

Fig. 305 shows a system of supporting a large semi-elliptical center arch rib from the intermediate supports by radiating struts, which, with
modifications to suit the circumstances of the case, have been very extensively adopted in many large works connected with railroads in this country

and Europe. The struts abut at their upper end on straining pieces, or apron pieces, as they are sometimes called, which are bolted to the rib, and
serve to strengthen it. The ends of the transverse braces are seen at a a.

The examples and details of centers siven in the foregoing are cuit suffi cut to enable the foreman to lay-out, and exumte any job of building a cen-
ter that may confront him; and at this point we leave the smbject of eenters, and take np another important ane, namely, that of timber roof framing. While I propose diseussing timber roofs and trusses.in general in this department, it is not intended to deal with roof coverings further than may be neres m? to make the instructions and sugerestions given herewith intelligible and so that the may be understood y every workman who can read.

There are a frow gencral rules governag timber roof framing the workm os should always have in mind when buikling or designing a roof of any kind, : few of which I sur it; and which I hope will prove -ufficient in rance to be rememberud:

1. E or than - - fong ongh."
2. Row - shot I weither be too heary nor too - irht: the: Hemes should be rigorously avoidfid.
lat-pitched roofs are not so strong as high(1) i: leod ones.
3. Suitable pitches of roofs for virious cover1 IE wh: Copper. leat. ol zinc. B degrees; corrutrater inon. degrees; tles and slates, 33 degre is 4 larees.

- Broximate weiglit of roofs per square imber framing, $)^{\prime}-$ cwt.; Countess slato 61 _ 1 t. : ald for 1 in. pinc or lembeck loardin;

2112 cwt ; plain tiles, 14 cwt ; 7 lb . lead, 6 cwt .; 1-32 in. zinc, $11 / 2$ cwt.
6. The construction should be able to withstand an additional weight of 30 cwt . per square for wind pressure.
7. When the carpentry forming the roof of a building is of great extent, instead of being injurious to the stability of the walls or points of support, it should be so designed that it will strengthen and keep them together.
8. Forms of roofs for various spans shiculd couple, up to 11 ft .; couple close, to 14 ft .; collar, to 17 ft .; king post, to 30 ft .; queen post, to 46 ft .; queen and princess, to 75 ft .
9. Roof trusses should be prepared from sound, dry timber, white or red pine, free from large knots, sap, and shakes, all parts to hold sizes shown in figured dimensions, and all joints to be stub-tenoned and to fit square to shoulders. Tiebeam should be cambered $1 / 2 \mathrm{in}$. in 10 ft ., and straps and bolts be of best wrought-iron. No spikes should be used in the construction except for fixing cleats.
10. Tie beams should be supported nvery 15 ft .
11. Struts should be taken as nearly as possible under bearing of purlin.
12. The straining beams in spans of 50 ft . and upwards require support, and a king bolt or post should be introduced.
13. To find the thickness of king post trusses,
divide the span by five and call the quotient inclıes. Assume 9 in . and 5 in . as the standard depth of tie beams and principal rafter respectively for 20 ft . span; add 1 in . to each for every additional 5 ft . of span. King posts and struts to be square.
14. To find the thickness of queen post trusses, divide the span by eight and call the quotient inches; if odd parts result, add 1 in . for tiles, and for slates take off the fraction. Taking the standard depth of tie beam and principal for 32 ft . span to be 11 in . and 6 in . respectivelr, add 1 in . to each for every 5 ft . of additional span. The struts and body of the queens to be made square.
15. Wall plates are used to distribute the weight of roof timbers, and also to act as ties to the walls. For this reason tie-beams should be cogged to the plates, the latter dove-tail-halved at the angle, and dove-tail-searfed in longitudinal joints. Wall plates in roofs should be creosoted or otherwise protected against rot, and bedded in cement knocked up stiff.
16. Purlins should be cogged or notched on to principal rafters and not framed between them. When cogged or notched they will carry nearly twice as much as when framed.
17. The available strength of tie beams is that of the uncut fibres, and, therefore, mortises should be shallow, and all notching be avoided.
18. Scarfs in tie beams should be made between the points of support, and not directly un-
der them, as any mortises or bolt-holes at these points reduce the strength of the beam.
19. Dragon ties shonld be provided at the angles of hipped roofs to take the thrust of the hips and to tie in the ends of wall plates. It is best that the hip should be deep enough to birdsmoutin over the angle brace.
20. Wind braces, which are diagonal ties in roofs open at the ends, as in railway stations, to withstand the overturning or racking pressure of the wind, may be of timber framed between the purlins, or iron rods running from the head of one truss to the foot of the next.
21. Hip rafters, being deeper than the common rafters, are visible inside when the roof is ceiled, and should be covered with a casing.
2.2. Hips should stand perfectly at an angle of 45 degrees with the plates on plan, as by this arrangement the rafters on either side are equal in length, inclination, and bevel at the ends, making the construction both symmetrical and economical.
23. When the span is of such extent that the end purlin is longer than those of the side bays, a half truss should be introduced at the center of the end, with its tie-beam trimmed into the end transverse truss.
24. All the abutment joints in a framed truss should be at right angles with the direction of thrust, and when this is parallel with the edges of
the member, the shoulders may be cut square with the back of such member.
25. To resist the racking movement in roofs, an effectual plan consists in the employment of wind ties of iron. These extend usually from the head of one principal to the foot of the next principal, but one on the same side of the roof, and again from the head of this latter principal to the foot of the first one, so that the tie rods cross one another in the form of an X . It is difficult to estimate the stress which will come upon these ties; but very small sections, say from $5 / 8 \mathrm{in}$. to $3 / 4 \mathrm{in}$, will generally suffice for the purpose.
26. The amount of horizontal thrust at the foot of a principal rafter depends partly upon the weight of the truss and the loads or stresses which it has to sustain, and partly upon the inclination of the rafter. The lower the pitch of the roof, the greater is the proportion of thrust to weight, so that for roofs flatter than quarter pitch stronger tie beams will be necessary.
27. In queen post trusses the position of the queen posts may vary. Generalls, however, when there are no rooms in the roof, they are placed at one-third of the span from the wall.
28. When rooms are formed in queen post roofs, the distance between the queens may conveniently be half the span or more, but in such instances the depth of tie-heam should be increased.
29. The best form of roof truss to be used in
any situation may be determined by the following considerations: (1) The parts of the truss between the points of support should not be so long as to have any tendency to bend under the thrust -therefore, the lengths of the parts under compression should not exceed twenty times their smallest dimeusions; (2) The distance apart of the purlins should not be so great as to necessitate the use of either purlins or rafters too large for convenience or ceonomy; (3) The tie-beam should be supported at such small intervals that it need not be too large for economy.
30. It has been found by experience that these objects can be attained by limiting the distance betreen the points of support on the principal rafter to 8 ft ., and upon the tie-beam to 15 ft .
31. To determine the form of roof truss for any given span, it is, therefore necessary first to decide the pitch, then roughly to draw the principal rafters in position, ascertain their length, diride them into portions 8 ft . long, and place a strut muder each point of division. By this it will be seen that a king post truss is adapted for a roof, with principal rafters 16 ft . long-i. e., those having a span of 30 ft .
32. A queen post truss would be adapted to a roof with principals 24 ft . long-i. e., about 45 ft . span. For greater spans, with longer principals, compound roofs are required.
33. In the case of a roof with three spans, sub-
ject to the effects of lateral wind pressure, when supported on side walls with intermediate columns, where the situation does not permit either the addition of buttresses or of anchorage in these side walls, the horizontal reaction of the wind pressure may be taken by bracing the intermediate columns to a conerete foundation.
34. The shoulders at the foot of king and queen post trusses should be cut short when framed, to prevent the tie-beam sagging when the truss has settled, the usual allowance being $1 / 2 \mathrm{in}$. for each 10 ft . of span.
35. Scarfing requires great accuracy in execution, because if the indents do not bear equally, the greater part of the strength will be lost; hence it is improper to use very complicated forms.
36. The simplest form of joint is, as a rule, the strongest; complicated joints are to be admired more for the ingenuity a 1 skill of the carpenter in contriving and fitting than for their strength of construction.
37. In scarfing, when bolts are used, about four times the depth of the timber is the usual length for a scarf.
38. Scarfed tension joints should be fitted with folding wedges, so as to admit of their being tightened up. The wedges should be of oak or other suitable hard wood.
39. Galvanized iron bolts do not act upon oak,
either in sea or in fresh water, when care has been taken not to remove the zinc in driving them.
40. In calculating the weight of roof coverings, about 10 per cent should be added to weight of tiles for moisture.
41. Valley boards are used sometimes on small roofs in place of valley rafters. The main roof is continued through in the usual way, and a 1 in . by 9 in . board is nailed up the rafters on each side at the intersection of the two roofs to receive the feet of the jack rafters.
42. To carry ridge boards, the purlins, ridge, and wall-plates should oversail gable ends 12 in . or 15 in., and short purlin pieces should be cogged on the principals every 3 ft . for additional fixings mhen the barges are very wide and heary.
43. Finals are fixed on the end of the ridge board with stub tenons, drawbore pinned, paint being applied to the tenon.
44. All openings in a roof slould be trimmed; that is, cross-pieces should be framed betreen the two rafters bounding the opening to carry the ends of the intermediate ones cut away.
45. The trimmer, as the cross bearer is called, is fixed square with the pitch of the roof, tusktenoned and wedged at the ends, and the stopped rafters are stub-tenoned into it.
46. When the opening is for a chimney, provision must be made for a gutter at the top. Bearers, 3 in. by 2 in., are nailed to the sides of the
rafters, level, with their ends abutting against the chimney stack; a 1 in . gutter board is nailed on these, and a 9 in . lear board at the side on the rafters. About 3 in . up the slope a $3 / 4 \mathrm{in}$. tilting fillet is fixed, and over this the lead is dressed, the other side being taken up the back of the climney for 6 in., and covered with an apron flashing.
47. Other openings, such as those for skylights and trapdoors, are trimmed in the same way, and covered with wrought linings or stout frames, dove-tailed at the angles, called curbs.
48. Sizes of wall plates for 20 ft . span, $41 / 2 \mathrm{in}$. by 3 in.; for 30 ft ., 6 in . by 4 in .; for 40 ft ., $71 / 2 \mathrm{in}$. by 5 in.
49. Ground floor wall plates are best of oak, and a damp course should be put under them.
50. The wall plates to upper floors can be kept clear of the walls on 3 in . rough quarried stone corbling built into the wall and projecting over $41 / 2 \mathrm{in}$., and supported by two courses of brick oversailing, roughly splayed off to the shape of the plaster cornice which will cover them. The floor joists are thus kept clear of the wall and can be strengthened by solid strutting between the ends.
51. All wall-plates should be bolted down to the wall, and the bolts should be built into the wall as shown in Fig. 306, and should be fitted with nut on top to bind down the plate.
52. Beams or roof trusses should not rest over
openings. They should be placed with their ends in pockets in the wall, and resting on stone templates.
53. They should frame into girders with stub tusk tenons and oak pins, or, better, should hang in iron stirrups.

Fig. 306.
54. Binders should not be more than 6 ft ., nor girders more than 10 It . apart.

These general rules should be followed as closely as possible in the making of heary timber roofs, but of course, must be changed or adapted to suit the many various conditions that are sure to arise.

There are many kinds or forms of roofs, a few of which I show in the sketches submitted which are original types. When these are crossed, mixed, modified or combined in one building or group of buildings, the results are not only beyond all computation, but are not unfrequently fearful and wonderful to behold.
To diminish the excessive height of roofs, their sharp summit is sometimes suppressed and replaced by a roof of a lower slope. These roofs have the advantage of giving ample attic space with a smaller height than would be required by a V-roof. They are variously known as "curb" or "gambrel" roofs, and "Mansard" roofs, the latter name being usually confined to those roofs in which the lower slopes form angles of not less than 60 degrees with the lorizontal plane, while roofs of smaller pitch are known as "curb" or "gambrel" roofs.
The Mansard roof may be described in several ways: (See Fig. 307.)
The triangle a d b, represents the profile of a high-pitched roof, the height being equal to the base, and the basal angles being therefore 60 de grees each. At the point e, in the middle of the height c d, draw a line horizontally hei, paralle? to the base a b, to represent the upper side of the tie-beam, and make e f equal to the half of e d; then ahfibwill be the profile of the Mansard roof.

Make ce, the height of the lower roof, equal to half the widtl $a b$, and construct the two squares a dec, c e glo; also make d h, ef, aud gi each equal to one-third of the side of either square; then will a h fib, be the profile required.

Fig. 307.

On the base a b draw the semicircle a d b, and divide it into four equal parts, a e, e $d, d f, f b$; join the points of division, and the resulting semioctagon is the profile required. The slopes of the upper roof form angles of only $221 / 2$ degrees, and this roof is therefore considerably less than "quarter-pitch," and mould be unsuitable for covering with slates, tiles, shingles, etc.

Whatever be the height of the Mansard ce, or b g , or g i , equal to the half of that height, and the height $e f$ of the false roof equal to the half of $\in i$.

The upper roof, therefore, is exactly "quarterpitch."
The form of the Mansard roof, it will be seen, may be infinitely varied, according to the fancy of the designer, the purposes for which the roofspace is required, and the nature of the roof-covering. In many cases the lower slopes are made of curved outline, as may be seen later on, or as shown in No. 6, in the sketches.

It is now in order to give a few examples of a practical nature, and I will endeavor to do this without confusing the workman with a network of figures or mathematical formula: Like floors, roofs may be divided into three kinds, according to the arrangement of their timbering, as follows:

> 1. Single-Rafter Roofs.
> 2. Double-Rafter Roofs.
> 3. Triple-Rafter Roofs.

1. Single-Rafter Roofs are such that one roof covering is supported upon a single system of rafters not yreater than two feet from center to center apart. It should be used only when the span is wot greater than 26 feet. A number of examples of this kind of a roof are shown in Fig. 308. Other similar examples will be shown later on.

Lean-to roofs are found in a ingle slope, as shown at A, the upper end of the rafters being spiked to a mall-plate or bond timber supported
sil a corbel, and the lower end bird's-mouthed to a mall-plate on the lower wall. This roof should not be used for a span greater than 14 feet, unless the rafters are braced or otherwise supported near their centers. When a wall occurs conveniently near the center of the building, the roof may slope down towards the center, where a gutter or trough may be placed to carry off the rain or snow water. A double lean-to roof of this kind is sometimes called a V-roof, on account of the shape of its section.

Couple or span roofs are formed as shown at B, the upper ends of the rafturs being abutted against and spiked to a ridge board, while the lower ends are either bird's-mouth d over' and spiked to a wall-plate, or crow-footed over the outside of the plate and left projecting beyond the rall to form an eave for coraice. This form of roof should only be used on short spans unless the walls are thick and firm, or the rafters are tied at the bottom to keep from spreading, as an outward thrust is exerted by the feet of the rafters.

Couple close roofs are similar to the previous one, but have the feet of the rafters tied together by means of tie-beams fastened io the rafters, as shown at C Fig. 308. The soundest roof is procured by tying the feet of every pair of rafters, and indeed, this is necessary when a ceiling is to be attached to the ties; but when a roof is open a tie is rarely used more frequently than one for

The Pent or Shed Roop.

Double Piteh or Cable Roof.

French or Naneard Roof.

Pyramidal Turret.

Hip Roos with Broken Rafters.

Onnamenter Cable in the English Style.

Dable wilh Ornamentod Verge-Boards.

Queen Anne (or Mongrel!)

Plate No. 1.

Moresgue Turret.

$$
\text { Plata Nn } 2 .
$$

every third or fourth pair of rafters. This roof may be employed for spans up to 30 ft . At C, a roof is shown over a span of 26 feet, but if larger

Fig. 308.
roofs are to be constructed in this form the ridgeboard should be one inch deeper for every foot additional to the span. See Plates 1 and 2 , "Types of Roofs."

When the span is unusually great, it is more economical to suspend the ties to rafters every six or eight feet. The ties between the bolts ar? housed into and spiked to a horizontal timber which is suspended by the bolts, as shown at D. When suspension bolts are used the depth of the ties may be half of that given in the foregoing rule.

Collar-beam roofs are formid like couple roofs with a beam or joist spiked or bolted to the rafters as shown at E. This type of roof is employed when a greater amount of head room is required than can be obtained in a couple-close roof, but it is not a sound roof, as it always exerts a thrust upon the walls. The collars being used to prevent the rafters from sagging, are in a state of compression, and do not tie the rafters together. as they are generally supposed to do.

Double or Purlin roofs are composed of two series of timbers, as shown in Fig. 309, in which it will be seen that the roofs are composed of common rafters supported by means of purlins, for which reason this kind of roof is often called a purlin roof.

This sort of roof may be used for any span whatever when the gable walls are not too far apart, or when the rafters can be supported by studding from floor or central wall.

The outline of this roof, Fig. 309, shows it up as a "Mansard roof," the upper portion being
practically a "couple-close" roof, the rafters resting upon purlins which are tied together by the ceiling joists, by bolts or heavy spikes. The lower rafters are practically independent of the upper portion of the roof, being merely bearers for the roof covering, and are secured by spiking them to the upper end of the purlin, and at the lower end to the wall-plate. The feet of these lower rafters do not need tying, as their inclination to the vertical is so small.

Fig. 309.
A couple of good purlin roofs suitable for many places, are shown in Figs. 310 and 311.

The one shown at Fig. 310 is known as a queen post truss, but having queen rods instead of posts. Two additional braces and one rod have been added to the members of the truss so as to talie up the half load between the points F and H . According to the conditions of loading it has been
formed sufficiently strong to bear all the load it may ordinarily be called upon to resist.

Fig. 311.
Taking the roof load first and assuming 40 pounds per square foot, including wind, snow and weight of roof itself, it is found that a load of
about 7980 pounds will be concentrated at or near the points E and C. This load will cause a stress of about 13,500 pounds compression in each of the rafters A E and CB ; also a compression strain of 11,300 pounds in the straining beam $E C$, as well as a tensile strain of about 11,300 pounds in the tie beam A 3. In computing the strains due to the floor load, 200 pounds per square foot of floor area liave been taken, including the weight of the flooring and the weight of the truss itself. The following table gives the strain on all the members of the tiviss due to both loads:

> Pounds.

Main rafters A E and C B 65,450
Straining beam E C. 41,800
Tie beam A B. 55,050
Suspension rod D G 16,800
Braces D F or I) H. 15,700
Rods E F or C II. 28,000
These figures are, of course, only approximate, owing to the assumptions which have been made and the smallness of the diagram submitted, but they are of sufficient accuracy to draw the following conclusions: First, that the truss as shown in Fig. 310, is sufficiently strong to carry with entire safety the assumed loads liere quoted, provided, however, the points of supports at A and B are sufficiently strong. From the diagram it appears as if the tie beam was tenoned into an upright post at each end and the parts pimed together. Con-
sidering the heavy load liable to be placed on a truss of this kind, it would seem doubtful whether this point is strong enough. In Fig. ${ }^{11} 1$ I present a view of a truss in which an attempt has been made to improve on Fig. 310, using the same amount of material. It will be seen that the depth has been increased somewhat, whiclı insures greater rigidity, and also gives the rafters less in-

Fig. 312.
clination to the horizontal, thus causing the strain to become less under the same load. It also affords better facilities for passing through the space between the members from one portion of the floor to the other. Again, the purlins rest directly on the trusses, thus doing away with the long 4×5 inch braces and also the short 7×7 inch posts. The smali 4×4 inch braces shown in Fig. 310 , can be dispensed with, as they receive no strains whatever.

The following diagram, Fig. 312, shows the elevation of a king-post roof suitable for a span of 35 or 40 feet.

By the rules for calculating the sizes of timbers the dimensions will be found to be as follows:
A, Tie-beam 13x5 inches.
B, Principal rafters $81 / 2 x 5$ inches.
C, Struts $4 \times 21 / 2$ inches.
D, King-post $71 / 2 x 5$ inches.

Fig. 313 is the design for a king-post roof, for a span of from 40 to 45 feet.

The purlins bere are shown framed into the principals, a mode of construction to be aroided, unless rendered absolutely necessary by particular circumstances.

The scantling, as determined by the rules, is as follows:

Principal rafters	10x5
Tie-beam	d
King-post	$73 / 4 \times 0$
Struts	
Purlins	.10x6

The principals being 10 feet apart.
Fig. 314 shows a compound roof for a span oí 40 feet. It is composed of a curred rib c c, formed of two thicknesses of 2-inch plank bolted together. Its ends are let into the tie-bean; and it is also firmly braced to the tie-beam by the ling-post and
suspending pieces BB , which are each in two thicknesses, one on each side of the rib and tiebeam, and by the straps a a. A is the rafter; d,

the gutter-bearer; cand l, the straps of the kingpost. The second purtirs, it will he observed, are carried by the unper end of the suspending piece: B B.

Fig. 315 shows a queen-post roof for a span of 60 feet. This irnss is designed on the same principle as Fig. :311, that in, with queen-posts B, and additionally strengthened by suspension post A. These are strapped mi, to the die-hean? by wroughtiron straps, made of 3 by B-incle iron, bolted to the posts. The pitch of the priucipal miter is less somewhat than over Fig. 311.

Fig. 314
The seantlings are as follows:
Principal raftirs 11
Tie-beam $121 \div \times 6$
inches
Queen-put 13 incues
Surnes 0 inches
Suspending-post $\therefore \ldots . .$.

Strut: (small) 312 x $21 / 2$ incles
Tigs. 316 and 31 ? show the use and appliention of wrought iron in those portions acting as ties, These trusses are suitable for railroad sheds, or

where it is desirable to have the tie-rods raised from a level line so as to give greater height in the center. The sizes of timber for design 316 are as follows:
Principal rafters 12
Struts
Purlins
Common rafters The timbers for design 317 are as follows: Principals Collar-pieces (One on each side of rafter.)
Purlins Tie-rods and suspending-rod. . $13 / 4$ in. diameter.

The span of truss, Fig. 316, is 36, and that of Fig. $31 \overline{7}, 4 \bar{j}$ feet.
Fig. 318 shows a platform roof of 35 feet span. The tie-beam in this example is scarfed at a and b, and the center portion of the truss has counterbraces, c c. The longitudinal pieces, e e, are secured to the heads of the queen-posts, and the pieces d carry the platform rafters A. In this connection it may be of importance to the better understanding of the principles of strength entering into combination roof trusses to give Tredgold's rules for finding the proper dimensions of the timbers forming king and queen-post trusses, which are quite simple.

MICROCOPY RESOLUTION TEST CHART

(ANSI and ISO TEST CHART No. 2)

Rule.-Multiply the square of the length in feet by the span in feet, and divide the product by the cube of the thickness in inches; then multiply the quotient by 0.96 to obtain the depth in inches.

Mr. Tredgold gives also the following rule for the rafters, as more general and reliable:

Multiply the square of the span in feet by the distance between the principals in feet, and divide the product by 60 times the rise in feet; the quotient will be the area of the section of the rafter in inches.

If the rise is one-fourtl of the span, multiply the span by the distance between the principals, and divide by 15 for the area of section.

When the distance between the principals is 10 feet, the area of section is two-thirds of the span. To find the dimensions of the tie-beam, when it has to support a ceiling only:

Rule.-Divide the length of the longest unsupported part by the cube root of the breadth, and the (fuotient multiplied by 1.47 will give depth in inches.

To find the dimensions of the king-post:
Rule.- Multiply the length of the post in feet by the span in feet; multiply the product by 0.12, which will give the area of the section of the post in incles. Divide this by the breadth for the thicisness, or by the thickness for the breadth.

To find the dimensions of struts:
Rule.-Multiply the square root of the length supported in feet by the length of the strut in feet, and the square root of the product multiplied by 0.8 will give the depth, which, multiplied by 0.6 , will give the thickness.

In a queen-post roof. To find the dimensions of the principal rafters:

Rule.-Multiply the square of the length in feet by the span in feet, and divide the product by the cube of the thickness in inches; the quotient multiplied by 0.155 will give the depth.

Tho find the dimensions of the tie-beam:
Rule.-Divide the length of the longest unsupported part by the cube root of the breadth, and the quotient multiplied by $1.4 l$ will give the depth.

To find the dimensions of the queen-posts:
Rule.-Multiply the length in feet of that part of the tie-beam it supports; the product, multiplied by 0.27 , will give the area of the post in inches; and the breadth and thickness can be found as in the king-post.

The dimensions of the struts are found as before.

To find the dimensions of a straining-beam:
Rule.-Multiply the square root of the span in feet by the length of the straining-beam in feet, and extract the square root of the product; multiply the result by 0.9 , which will give the depth in inches. The beam, to have the greatest strength, should have its depth to its breadth in the ratio of 10 to 7; therefore, to find the breadth, multiply the depth by 0.7.

To find the dimensions of purlins:
Rule.-Multiply the cube of the length of tine purlin in feet by the distance the purlins are apart in feet, and the fourth root of the product will give the depth in inches, and the depth multiplied by 0.6 will give the thickness.

To find the dimensions of common rafters, when they are placed 12 inches apart:

Rule.-Divide the length of bearing in feet by the cube root of the breadth in inches, and the quotient multiplied by 0.72 will give the depth in inches.
It may be well to note some practical memor-
anda of construction which cannot be too closely kept in mind in designing roofs.

Beams acting as struts should not be cut into or mortised on one side, so as to cause laterai yielding.

Purlins should never be framed into the principal rafters, but should be notched. When notched they will carry nearly twice as much as when framed.

Fig. 319.
Purlins should be in as long pieces as possible. Horizontal rafters are good in construction, and cost less than purlins and common rafters.

At Fig. 319 I show one of the principals of the roof of a chusch. The following are tie dimensions of the timbers:
There are five principal trusses, placed 14 feet apart.

A, tic-beam, in two thicknesses, 14×10 inches. Principal rafters, 13 inches deef $\mathrm{\varepsilon t}$ bottom, $111 / 2$
inches at top and $101 / 2$ inches thick. Tue rafters bear on oak abutment pieces $11 \times 71 / 2$ inches, bolted between the ties and to each other.

D, collar-beam, in two thicknesses, one on each side of the rafter, and notched and bolted, $12 \times$ $51 / 2$ inches each.
E, purlins. The tro lower, $13 \times 61 / 2$ inches; the upper, $111 / 2 \times 81 / 2$ inches; notched on the rafters and bolted.
F, common rafters, $51 / 2 \times 21 / 2$ inches, and 13 in ${ }^{-}$is apart.
ine discharging posts between the bracket pieces and the stone corbel are of oak, 6 inches square.

The dimensions of the ironwork are as follows: King-1 $1,13 / 4$ in. square, with a cast-iron key piece at top.
Queen-rods, $11 / 2 \mathrm{jn}$. square, having solid heads at rafters and secured at foot by being passed through solid oak pieces k , placed between flitches of the tie-beam and securely bolted, and there fastened with cast-iron washers and nuts.
Four holts at abutment end of ties.... $71 / 2 \mathrm{in}$. sq. Two bolts at each oak piece, for suspending rods $7 / 8 \mathrm{in}$. sq. Two bolts at écib end of collar-beam. . $7 / 8 \mathrm{in}$. sq. Purlin bolts $3 / 4$ in. sq.

The following example, Fig. 320 , is taken from Bell's Carpentry, and shows a strong roof, ale
that will suit admirably for a factory or machineshop where there is likely to be jars or shakes caused by the machines in motion, or the rolling in of heavy freight. This roof may have a span of fifty feet, or even more if necessary. The principal rafter is set back a foot from the end of the tie-beam to give room for the wall-plate; the rise of the roof is 5 inches to the foot. In framing roofs of this kind the supporting rods should be furnished before commencing the frame; for then

5. 320.
the length of the short principal rafters and that of the straining beam can be regulated or proportioned according to the length of the rods. It is best, however, for the middle rod to be trice the length of the short ones, reckoning from the upper surface of the beam to the upper surface of the principal rafters, and allowing one foot more to each rod for the thickness of the beam, and the nut and washer. For example, the middle rod is 11 feet long and the short ones 6 feet each; which, after allowing 1 foot, as above mentioned, makes
the length of the long one, above the work side of the beam, twice that of the short ones.

The length of the rod above the beam is the rise of the rafter, and the distance from the center of the rod to the foot of the rafter is the run of the rafter; the length of the rafter can, therefore, be found by the usual way.

To find the length of the straining beam, add the run of the short principal rafter to the lower end bevel of the long one; substract this rin from the run of the long principal, and the difference will be half the length of the straining beam.

Fig. 321.

The bolsters under the ends of the tie-beams are of the same thickness as that, and about 5 feet long.

Figs. 321 and 322 exhibit designs of roofs in an improved style, particularly adapted to those of a great span, as they may be safely extended to a very considerable width, with less increase of weight, and less proportionate expense, than any of the older styles. The principle on which they
are constructed is essentially the sam n as that of the Howe Bridge. The braces are square at the ends, the hardwood blocks between them being beveled and placed as shown in the diagrams. Each truss of this frame supports a purlin post, and plate, as represented.

These roofs are easily made nearly flat, and thereby adapted to metallic covering, by carrying the walls above the tie beams to any desired lieight, without altering the pitch of the principal rafters,

Fig. 322.
Which ought to have a rise of at least t inches to the foot, to give sufficient brace to the upper chord or straining beam.

Fig. 321 is represented with counter-braces: and Fig. 329 without them. The counter-braces do not add anything to the m re support of the roof, and are entirely unnecessary in frames of churches, or other puolic buildings, where there is no jar; but they may very properly be used in mill frames, or other buildings designed for heavy machinery.

The illustrations do not show the whole length of the roof, but enough of the construction is shown to enable the workman to design the whole truss.
Figs. 323, 324 and 325 exhibit three steep or gothic roofs suitable for small churches, chapels or similar buildings having from 40 to 45 feet

spin. Fig. 323 is built entire' of wow
$32 t$ is of wood strengthened with iron. 5 . holts. Fig. 325 contains less wood than, ind of the two preceding examples, but is suppor ' by iron rods and is decidedly the stronger in of the three. Fig. 323 makes a neat, cheap and T simple plan, and is sufficiently strong enough efficient service on any ordinary building ilavins span of not more than 35 or 45 feet.

Flg. 324.

Fig. 325.

Fig. 320, which shows an arched ceiling, may be formed of 2 -inch planks from 6 to 10 inches wide, which should be planed to a regular thickness and then wrought to the proper curve on the edges as shown. Th t rms thus made are laid one over the other, $1 \cdots$.ing all joints, and may be in two or more thicknesses, and then spiked or bolted together as may be desired. Intermediate forms

Fig. 326.
of lighter and rougher material must be made to be placed between the finished arches to carry lath and plaster, and should be spaced so that their centers would be 16 inches apart. In Fig. 327 the arch should be formed from planks 3 inches thick and 12 inches wide and in three courses; have all joints b.oken or spliced and then well spiked or bolted together and may be fastened to the roof braces as shown. Inter-
mediate arches or ribs will be required to carry lath and plaster, same as in Fig. 326. Either of these roofs will answer quite well for a span from 65 to 70 feet between the supporting column.

Fig. 327.

Fig. 328.
Fig. 328 shows a cheaply made roof, and one that is suitable for small spans. This is sometines called a scissor roof, because of the two main

HEAVY TIMBER FRAMING

braces which tie the feet, collar beam and rafters together, cross in the center.

A different roof, and a very strong one, if the workmanship is good, is shown at Fig. 329. In this A A represents the wall plates, which are 4 by 8 inches. B B is the bottom cord of truss, 6 by

Fig. 330.

8 inches in section. C C are truss rafters, also 6 by 8 inches in section. D is the top cord of trusof the same dimensions. E E shows the position of the second plates, which are 6 by 6 in . in size and are notched on to the truss rafters. F F are braces framed at the top into C C. G G G are iron rods used in strengthening the truss. Each truss rafter is bolted at the foot to the cord. The trusses should be placed about 10 feet apart. The roof rafters should be about 22 inches between centers.

I show a very good truss in Fig. 330. This is not a costly roof, but is very strong if rell made. D shows the king-post, A the principal, C the cross-beabm, B the brace and R a supporting post.
Another king-post truss is shown at Fig. 331. This truss is quite easy to make and easy to understand. A is the principal, D the king-post and C the tie beam. This is suitable for a span of from 30 to 35 feet.

Fig. 332 shows a truss that may safely be used where the span does not exceed 50 or 55 feet.

The truss shown at Fig. 333 is quite suitable for a light structure of about 30 feet span. The purlin posts are dovetailed into the bearn and keyed.

This makes it a very solid and stiff roof, and on that may be depended upon to do good service. Fig. 334 shows a little more than half of a composite roof. The rafters and struts may be made
of pitchpine, and the king-bolt and ties of iron. The roof is to carry ordinary slating, and the trusses will be spaced 10 feet apmrt. No holes are

Fig. 335.
bored in struts or rafters; and all the ironwork is such as can be forged from the har and fitted by a country blacksmith. The foot rests on a stone template.

The hammer-beam truss is a type of open tinber roof, and it is shown in Fig. 335, the letters in which liave the following references: $\mathrm{P} R$, principal rafters; $K P$, king-post; C, collar; $S ~ S$, struts; II P, hammer beam; U B, upper bracket or compass piece; J B, lower bracket; S T, stnd. A hammer heam truss exerts considerable thunst, and, therefore, substantial walls and also buttrusses must be provided. A thickness of 18 inches is little enough for sound work with a span of 33 feet, but possibly the walls may be somewhat lightened by setting the window openings in 14 -in. panels and adding buttresses outside the piers.

Fig. 336 shows the finished hammer bearn roof. It may be used in public buildings or for small churches or chapels, the trusses being placed 10 or 12 fe t apart. A A A show the finishing on the timbers and $B B$ the drop crnament. The two details, A and B, show the sections on a large scale.

The example shown at Fig. 337 is an illustration of the hammer beam roof over Westminster Hall, London, and is said to be the finest of its kind in the world.

Westminster Hall is sixty-eight feet wide between the walls, and two-hundred and thirty-eight fe t long. It is forty-two feet high to the top of the walls, and ninety feet to the ridge of the roof. It is divided into twelve bays, which will accordingly average nineteen feet ten inches each. Con-

Fig. 236.
sequently each truss has to span sixty-eight feet, and to carry, in addition to its own weight, the weight of slates, timbers, ete., necessin! to roof

Irig. 337.
in 5,684 feet of floor. The piteh or angle the slope of the roof makes with the hor. 52 degrees. The material employed wats at one
time believed to be chestmot, but is really English oak. The appearance of the two woods is se much alike that some uncertainty may well ha pardoned. The date of the roof is λ. 1). $13^{\prime \prime}$ that it is now over five hundred years old. timber is in good preservation and of lange s. ling; that is to say, large sectional area. workmanship throughont is of great heauty accuracy, and no extensive repair, so far a he seen, has ever been found necessary. he principal rafter of each truss is of conside wale strengtl. The collar is placed just half $w: \quad u$ the rafter. The hammer beams receive the fornt of the rafters at their extremity, and eall m. $^{\prime}$ jects rather more than a quarter of the sp fion the wall, and has its ends beautifully car I wit the figure of an angle carrying a crown. I stronge post is carried ur from the end of the hammes beam to the point where the collar and the prin cipal rafters join. A timber, which may be called a wall-post, rises from a corbel far down the wall, and supports the under side of the hammer beam at the point where it leaves the wall, and a second post vertically above this supports the principal rafter. There is a strong and richly molded rib which ate as a bracket or strut, springing from the corbel just referred to, and framed into the hammer beam, near its fiee end. A second similar rih. rising from the hammer beam, supports the mirllle of the collar. All these pieces, except
the principal rafter, are knit together by a magnificent arched rib springing from the corlel trom which the lowest carved rib starts, and framed to the hammer beam, the post on the back of that beam, the collan, and both the curved ribs. Above the collar a serond collir is introduced, and a post comeeting the two is added, while at the middle of the truss, a central post, something like a short fing-post ocurs. Between all these timbers there is a and of a filling-in of mullions or small posts, the space between having ormanents at the heads. These, no doult, perform quite as much the important structural duty of comeding every member of the great framework together, as thee do the artistie daty of filling up the great outline with subordinate features which give sale to it, enable it vastness to be appreciated, and bring out the variety of it, lines by their contrast with the miformity of the filling-in.

The nenal dongitmbinal purlins, ruaning from truse to truss, are cmplosed here, and furnish support to the roof raiters. The purlins are themselves smported hongthays from the great trusses be braces. The midde purim is supported by a beantiful arched rib springing from the posi on the hammer hean. The upper purlin has a curved hrace springing fron the principal rafter. The lower putin has a moved brace springing from the back of the grat wured rib. Below this purlin occur the openings of the roof covering,
which correspond with the great dormer wimlows, from which the hat receives a considerabhe portion of its light, but which are said not to have been part of the original design.

The fineness of the workmanship shows that every ormamental part is equally well wronght,
 most honest work possible was expended on its construction.

A hammer beam queen-post truss is shown at Fig. 338. This roof is quite effective, both as to design and construction and would answer admir-

Fig. 339.
ably for any building not more than 45 feet span. A cheaply formed roof, and one well suited for country churches, is shown at Fig. 339 ; where the finish also for the Apse of the church is shown.

For small churches in the country, having a seating capacity of from 150 to 400 , this lind of a roof and finish is well adapted. White it shows a lammer beam roof, it is simply neither more nor less than a scissor constructed roof.

Fig. 340.

The examples given, I take it, are quite sufficient to enable any smart workman to design and construct almost any kind of an ordinary roof of the class shown, so I leave the subject of hammer beam roofs, and, as promised in earlier pages, to show and explain some forms of Mansard, curb or gambrel roofs.

The roof shown in Fig. 340 is a true Mansard, and one of the best designed roofs of the lind. It is suitable for a span of 35 or 40 feet.

The three sketches, Λ, B, C, shown at 341 , give some idea as to the rule governing the designing of Mansard roufs. It will be seen that in each case a semi-citcle, drawn from the middle of the hase line touches the five main points of the truss. There are cases, however, where the rule cannot alwars be applied. A noted authority on timberwork ohjects to this style of roof as being ungraceful in form and causing loss of room as compared

with the original roofs of ligh pitch; and further, on account of the difficulty of freeing the grutters from snow. It is also dangerous on account of its inflammabilits.

Fig. :3: shows a Mansard roof, having a parapet mall. This roof is suitable for a span of :3n feet, and owing to the sethack from the coping on the parapet wall, has a good appearance.

For a span of from 16 to 20 feet, the roof shown at Fig. 34:3 would answer vers well and prove quite economical, hoth as to material and labor.

A self-supporting curb roof is shown at Fig. 344 , which is intended for a long span extending 50 feet or more. This shows how a flat curb roof may be constructed. For a less span, a king-post

Fig. 312.
may be used and the two queen-posts left out. Braces could run from the foot of the king-post to the bleak in the principals at B and shaped with iron as shown. As roller skating rinks are
again coming in use, this truss might in some cases be used for covering same. Huwever, I now

Fig. 343.
leave Mansard
; and will tive an example or two of roofs shatable for shating rinks or fo: similar purposes.

The roof shown at Fig. 345 is one that has been employed over a rink having a floor space of $60 x$ 150 feet, and dressing rooms and galleries on the sides. The trusses are placed 14 feet apart. The purlins are 2×6, and are set two feet apart. The rafters over the galleries are 2×4 inches, set 2 feet apart, and at the upper ends are spiked into the lower purlin which lies at the foot of the trusses. The tie-beam is spliced in the middle by bolting a ? x 8 timber on each side. The braces

Fig. 341
at the foot of the truss are spiked on both sides. The roof is sheeted with ${ }^{\prime}$-inch pine boards, mailed on to the purlins parallel with the rafters and covered with No. 26 iron roofing. The dimen--ions of the timbers are marked on the sketch.
A roof more pretentions is shown at Fig. 346 , which has been in use for somb time. It is a very economical structure and not difficult to construct: The biniang is sio x 172 feet, outside measurements. affording a skating surface of 64×154 feet.

The sills are of solid timber, 8×8 inches, Norway pine. The foundation consists of stone piers 14 x 14 inches, 24 inches deep, and 18 inches in the ground. These are in eight rows, extending the

Fig. 345.

Fig. : $4 t$.
entire length of the building, 6 feet apart. The piers under the arches are 24×24 inches in size, and are 36 inches deep. The joists of the skating floor are 2×10 inches in size, placed 16 inches
between centers. They are 14 feet long, and lapped together and thoroughir spiked. The cords running from arch to arch on eatch side of the building the entire length to support the roof are of 4×10 timber properly gained into the principal rafters. From each arch to the outside studding a 2×8 inch tie is spiked. The building is covered with drop siding, from 6 inch C strips. The roof projects 6 inches, and is finished with a plain barge board and facia. The skating surface is covered with an under floor of common pine boards, surfaced and laid diagonally. These are nailed to the joists and are covered with felt. The skating floor is of dry, matched, clear maple floor. 2g, 7's inch thick and 21/2 incles wide, blind-nailed on bearings and smooth-planed and sand-papered after laying. The maple floor was laid with mitered joints at the corners, and with a rectangular space 14 feet wide in the eenter. The floors in the galleries and of the platiorms are of common pine matched. The roof is hipped back from the end walls, which are 26 feet 9 inches high we first arch. The entire roof is covered with cement roofing. The building has nine arches, located as shown on plans. These are $331 / 2$ feet high and measure in section 10×15 inches. The arches are built of 1×10 inch boards, planed and jointed, and fastened together with 10 d . and 20 d . nails. The feet of the arches are gained 2 inches into
the cross-sills. The opposite cross-sills are connected together by 2×10 tie-joists.

A lattice truss may often be used over short spans, or even for greater spans if the timbers and lattice strips are made in proportion. The truss shown at Fig. 347 will do nicely for a 27 feet span. The lattice trusses may have a rise of 3 feet and radius of 36 feet and be placed 7 feet apart. The top and bottom members may be made up by

Fig. 347.

two separate thicknesses of 7 -in. by $11 / 4-\mathrm{in}$. breaking joint. The lattice bars may be about $21 / 2$ in.. 11,1 in. and 3 feet apart, radiating as shown. The purlins should be 3 in . hy 2 in . at 3 feet centers, and covered with \bar{s} sin. boarding and tarred felt. Cross bracing $t^{\prime} \underline{2}$ in. by 3_{i} in. between trusses as slown. The following is the rule for obtaining the radius of roof principals of the wood lattion pattern. If the rise be made one-tenth of the span, the radius will be thirteen-tenths of the sparl.

Thus, $85-\mathrm{ft}$. span equals 8 -ft. 6 - in . rise and $110-$ ft. 6 -in. radius, but this would be a large roof for such a system. The lattices may be arranged so that center lines through the top and bottom apices are radial to the external curve, as shown in Fig. 340, or the lattices themselves may be drawn towards two points equal to span apart and half span below tie-beam, as shown in Fig. 349. The former has the better appearance, but the

Fig. 349
latter has more crossings where the lattices can be secured to each other to help in stiffem.. them. Galvanized corrugated iron forms a good covering for these roofs.

Sometimes this lind of a truss is used in bridge building, but since steel has lecome such a factor in structural work, the lattice bridge or roof is very seldom employed.

Wooden spires, turrets and towers of various kinds are still erected in many parts of the country, and a book of this kind would scarcely be complete if these framings were not mentioned: Fig. 350 shows the construction of a spire 85 feet high above the tie-beam, or cross-timber of the roof. This is framed square as far as the top of the second section, above which it is octagonal. It will be fomd most concenient to frame and raise the square portion first; then to frame the octagonal portion, or spire proper, before raising it; in the first place letting the feet of the 8 hip rafters of the spire, each of which is 48 feet long, rest upon the tie-beam and joists of the main building. The top of the spire can, in that situation, be conveniently finished and painted, after which it may be raised half way to its place, when the lower portion can be finished as far down as the top of the third section. The spire should then be raised and bolted to its place, by bolts at the top of the second section at $A \mathrm{~B}$, and also at the feet of the hip rafters at CD. The third section can then be bui't arourd the base of the spire proper; or the spire call be finished, as such, to the top of the second sections, dispensing with the third. just as the taste or ability of the parties shall determine.

No. \because presents a horizontal view of the top of the first section.

HE.SVY TIMHSHE FRSMMNO

No. 3 is a horizontal view of the top of the second seetion, after the spire is bolted to its place.

The lateral braces in the spire are halved together at their intersection with each other, and beveled and spiked to the hip rafte at the ends. These braces may be dispensed with on a low spire.

A conical finish can be given to the spire above the sections, by making the outside edges of the cross-timbers cirenlar.

The bevels of the hip rafters are obtained in the usual manner for octagonal roofs, as described in other pages.

In most eases the side of ant ortagon is given as the basis of calculation in tumbing the width and other dimensions; but in spires like this, where the low ar portion is square, we are required to find tha side from a given width. The second section in this steeple, within which the octagonal spire is to be bolted, is supposed to be 12 feet square outside; and the posts being S inches square, the width of the octagon at the top of thisection, as represented in No. $: 3$, is 10 feet S inches. and its side is 4 feet 5.0 : inches.

The side of any other octagon mar be fouml from this by proportion, since all regular octa gons are similar figures, and their sides are to each other as their widths, and conversely their widths are to each other as their sides.

Another (xample of high spire is shomn at Fi .

351, in a completed state. This is taken from "Architecture and Buiding," published by W'm. Cumstock, New York, and is a good eximple of a tall slim spire.

This spire is 111 feet 6 inches high above the plate, and the latter is 69 feet above the sidewalk. The total height from sidewalk to top of finial is 190 feet. The tower is of stone, 19 feet square, with hintresses as shown. The spire is a true octagon in section, and each of the eight sides is braced in the same way, with the exception of the lower panel, in whic! the brasing is omitted on four sides back of the dormers. Besides the bracing shown in Fig. 352 the spire was braced across horizontally at cach purlin to prevent distortion in the octagon. It the top the eight hips are cut against a ten-inch octagon pole and bolted to it in pairs. This pole is 82 feet long and is secured at the bottom by bolting to $4 x 6$ cross pieces, which are securely spiked to the hips. In the center of this pole is a 11 -inch iron rod, which forms the center of the wrought iron finial.

The lower end of each hip is seeured to the masonry by 11 -inch bolts, 6 feet long. The plate extends the full length of each side of the tower and is bolted together and to the walls at the cornérs. A short picee of 6×6 timber is placed on top of the plate, across the comers, to receive the ralters on the corner sides of the octagon. The beaces and morlins are set in t inches from

Fig. 351.
the outer face of the hips to allow for placing 2 x 4 jack rafters outside of them. These rafters are not shown in the figure; they were placed up and lown, 16 inches on centers, and spiked to the purlins and braces.

As may be seen from Fig. 351, the top of the tower is rather light for supporting such a high framework, and is moreover weakened by large openings in each side. It was, therefore, determined to transfer the thrust due to the wind pressure on the spire to the corner of the tower at a point just below the sill of the large openings. The manner in which this was done is shown by Fig. 353, which is a diagonal section through top of tower. The purlins C, C, Fig. 351, were made 6×10 inches, set on edge and securely bolted to the hips. From the center of these purlins on each of the four corner sides 6×10-inch posts were carried down into the tower, as shown in Fig. 353. These posts were secured at the bottom to 10×10-inch timbers, which were placed across the tower diagonally and solidly built into the corners. The bracing shown was used merely to prevent the posts from bucking. Only one pair of posts is shown in the figure. The effect of these posts is to transmit the entire wind pressure on the leeward side of the tower from the purlins C , C to the corners of the tower at the bottom of the posts. The tension on the windward side is resisted by the hip rafters and the bolts by which

Fig. 302.

Fig. 354.

Eluation of Framing of Tower of the Town hall. Miluord, Mrass:

Fif 35E they are anchored to the wall. This spire has stood for five years, and no cracks have as yet appeared in the tower, although the $11 / 2$-inch rod in the wrought iron finial was slightly bent during a severe gale.

The elevation and plans of the framework of a French spire are shown at Fig. 35t, the whole is so plain that a further description of it is unnecessary. This is a fine specimen of Frencl timber work and is mortly of study.
The torer shown at Fig. 355 is an old example of New England timber work-the plans are shorn at No. 2 and No. 3. The illust $1:$ ion shows clearly enough the construction as to render description unnecessary.
Fig. 356 shows the elevation of a round tower, and Fig. 357 the plan and framework of same. As this example is somewhat different to the foregoing ones, some explanations are required to make the drawings clear and understandable.

Referring to Fig. 357, let it be supposed that 1, $2,3,4$, etc., represent the plan of the tower and M P its rise. Strike the plan full size or to a scale as may be most convenient.
For laying out the plan or line of the plate, draw lines for the rafters, as $15,26,37$ and 48 . Directly above the plan draw the elevation, beginning with a straight line, as K O , to represent the plate, and make it the same length as 37 of the plan. Raise the center line MP the height of

Fig. 356.

Fig. 35%.
the tower and join O P and K P , which will be the lengtlo for all the rafters. To obtain the horizontal pieces A, B, C, D, etc., to which the sheeting is nailed in the manner represented in Figs. 1 and 2, proceed as follows: Divide the leight into as many parts as desired-in this case six, which requires five horizontal pieces between each pair of rafters. The exact length and cut will be given by striking out the sweeps shown on the plan. A better idea of the manner in which the roof is constructed will be gained from inspection of Fig . $3 \overline{5} 6$, which shows each stud, plate, rafter and sweep in proper position, also the covering boards nailed on half way round. Te obtain the exact shape, length and bevel for the covering boards the following method is employed: Take P of $\mathrm{Fig}, 357$ as a center, with K as a radius, and descrike the are $K \mathrm{R}$. The distance from K to R represents one-half of the circle or plan of the tower. The distance from K to R. may be livided into as many parts as desired. In this case it is divided into fifteen parts, thus giving 15 tapering boards, which cover one-half the tower. Lines drawn from P to the are $K R$ are the inside lines of the joints. To obtain the bevel of the jointed edges of the boards set a bevel at V, as shown in Fig. 356. In the plan shown the rafters are cut so as to fit against a block, I , shaped to suit the plan of the roof. This manner of butting the rafters against the block X

Fig. 358.
saves the time and labor of cutting the side bevels on the rafters which would be necessary if the block was not employed.
A turret roof is shown at Fig. 358, and explana-
tions are given on the drawing in connection with the framing and coustruction of the whole work, all of which should be readily understood by the workman.

Fic. 350.
I show two examples of towers in Figs. 359 and 360 , and as the timbers shown are figured it would be waste of space to len , inen our description.

With these examples I conclude on spires, towers and turrets, and will now andeavor to show and describe some examples of timber barns, and work of a similar kind. The illustrations shown are sufficiently clear to render lengthy description unnecessary. The sketch shown at Fig. 361 is intended to represent the end of a barn about 55 feet

wide. The open space under the main floor may be left as a shelter for cattle, or it may be built in an excavation in a bank, forming what is known as a "bank barn."

Fig. 362 shows another sketch of barn which is slightly different from the previous one. This may be used as a bank barn or otherwise.

The sketch shown in Fig. 303 will answer for a center bent in either of the previous examples, as it forms a good truss in assisting the swing beam in carrying the upper structure.

Fig. 364 shows the side of a barn 65 feet long. This framing will suit any length of barn, and
may be covered by any kind of a framed roof of the usual style. The openings may be filled in with studs and braces, or may be covered in with heavy rolling doors.

The sketches shown at Figs. 365 and 366 are intended to apply to roofs having a span of not more than 40 feet. The roof shown at Fig. 365 is

nicely adapted for using a "hay fork," as the timber in the ridge will accommodate the fork and its appliances.
I show a number of designs for framing barns with gambrel roofs at Figs. 367, 368, 369, 370, 371
and 372. These will, I think, be ample to meet almost any requirement in this class of roofs. Figs. 369 and 370 appear to be favorites with framers in some parts of the west where there are barns that have been built on these lines over thirty years ago, and which are still doing good service after "braving the battle and the breezes and cyclones" so long, and they still give promise of doing business at the old stands for many years yet to come.

Fig. 365.
Temporary seats, or "grand stands," for fairs, exhibitions, outside conventions or similar occasions, are often called for, and the man who knows how best and most economically to build same will be the man to secure the contract for such work.

While I do not intend to go deeply into this phase of timber framing, I deem it due to my

Fig. 366.

Fig. 367.

Fig. 368.

Fif. 369.
readers that I should submit something to them that may be of use should they ever be called upon to erect structures of this kind.

Fig. 370.

FIg. 371.

To build a temporary lot of seats where the space is limited between walls, the proposition is rather a simple one, as the framing may easily be
erected and slightly attached to the walls, or, if the walls permit of it, timbers may be laid so that their ends may rest in the walls, and they may be

Fig. 372.
supported through the center by a triangular framework, such as shown at Fig. 373, and the seating may be built on as shown in Fig. 374.

Fig. 373.
This shows the principles on which all stands of this kind are built. Sometimes the timber and planking are all spiked or nailed together. This
is objectionable as' in that case all the bearing strength of the frame must be on the nails or spikes, something that should not be. A much

Fig. 374.
better way would be to put the frame together with large screws or bolts, then the framework can be taken down without much injury to the

Fig. 375.
material. If the seats are to have benches on them, and to be raised above the ground at the lower end the steps must be made wider to suit
these conditions, as shown at Fig. 375. If chairs are to be used on the platform the steps should not be less than 2 feet 4 inches wide, each having the proper rise. The diagram shows how such steps can be formed with a minimum of both materials and labor.

Another manner of constructing these galleries is shown in Fig. 3i6. In this case the upper platform is left about 5 feet 4 incles wide, which

Fig. 376.
leaves room enough for seating on the step and for people to pass to and fro between the wall and the rear of the people on the seat. The diagram shown at Fig. 377 has a much steeper pitch, and is built over a series of trusses. This admits of the lower portion of the truss being arched, which gives more headroom to the floor below. The treads or steps in this series are much narrower than those shown in previous examples.

Fig. 378 shows a portion of a gallery having an

Fig. 3^{7-7}.

Fig. 378.
arched ceiling and an ornamented panel in the angle which relieves the work and makes a good finish. Another scheme is shown in Fig. 379.

This is figured on the plan so there is no need of further explanation.

Two other examples are shown at Fig. 380. The principal B is notched on the wall-plate G, and also on the beam E ; the tie is secured on the wallplate II and bolted to the principal. F is a beam

FIg. 379.
serving the office of a purlin to carry the gallery joists; D is a strut; bb are the floors of the pews or seats; and cec tine partitions; C is a hammerpiece or bracket resting on the beam E and bolted to the principal B; its outer extremity carries the piece I, which supports tie gallery front.

No. 2, Fig. 380, is another example of the trussed principal A D C E, resting on the wall-
plate H, and front beam E supports the beam K, which carries the gallery joists B; a a and b b are the floors and partitions of the seats.

Fig. 380.
In building stands of this kind, or designing same, nothing should be let go as "good enough" if there be anyting at hand better, All timbers should be of the very best and the rorkmanship beyond suspicion. In no other structure is hon-
est work and faithful adherence to good and strong construction more needful than in the buiding of temporary structures of this kind.

Fig. 382.
if at a lerrible thing it wid be if, he a- of your carelessness, incompe! cy, or defect in "arials used in the stand or galler. the wh le
structure loaded with young children and lady teachers, was to give way and throw every one to the ground or next floor, cansing, perhaps, the 'ass of many young lives and many bone fractures. See that the timber is sound, that every joint fits sulug and tight. Be sure of your foundation; have the building well braced, and your sleep will not be listurbed by fear of the tumbling down of your framed wor :

The framing (is bridges fur short and medium s_{l} us, particularly in country, villages and towns, will generally fall to the lot of the expert framer. The lesigning of these bridses will also he execut ' by the carpenter and framer; and knowing this, I would not be ding my duty to the country carpenter if I did not summit a number of diagrams herewith for his guidance.

The design for a simple cheaply made bridge, shown at Fig. :381, is quite saitable for at road bridge having a span of ahout 30 ft . The timbers shown under the main chard tend to strensthen the whole work. 'T' e long timbers running acro-s the creck will requise to he as lone as the chort the trass; they will rest on 11
-hould be bolted down tn placed not more than 6 f
The deck of the bridge : sound 3 inch plank. The should be not less than st . लich .s. .. u it dimmeter.

SPAN 50 FEET.
Fig. 384.

Another truss bridge is shown at Fig. 382, which is a trifle easier to build than the one just shown. This is for from 18 to 22 feet span. Sizes of timber are figured out on the diagram.

The design shown at Fig. 383 is a most excellent one for a span of about 20 feet. This bridge will carry an enormous load if skillfully built. The timbers are all marked with figures, giving sizes of stuff required. This bridge, with plenty of stringers in it, would carry a railroad train. For foot bridges, either of the designs shown would answer very well, with about half the timbers in them as described on the diagram.

A very strong truss is shown at Fig. 384, that is suitable for a span of 50 feet, or even a little more. A part of the deck floor is shown at B B, and the cross timbers appear at A, A, A. This makes a good substantial bridge for a roadway and is very popular in many country places.

The design shown at Fig. 385 is made for a span of 40 feet. This is also a good design for a general roadray.

Another good truss is shown in Fig. 386 and one which is intended for a span of 75 feet. The bridge is 12 feet wide between trusses. The stringers rest on the cross-ties or beams A. The floor consists of 2-inch plank nailed on the stringers. The braces butt against a block which is bolted to the chord with two bolts $3 / 4$-inch in diameter. The heel of the brace is also fastened to the chord with two

bolts of the same size. At the point B there are two pieces 6×12 inches, notched and bolted with

two bolts at the top and bottom. There is only a common key splice in the center of the chord. I do not think this to be a very strong bridge for
this span, but I would suggest that in making use of it, it should be limited to a span of not more than 65 feet.

The trussed bridge shown at Fig. 386 $1 / 2$, is heavy enough for a railway bridge, though it is not intended for that purpose, having been designed for a roadway where much heary traffic passes over it. The illustrations, Figs. 387 and 388, clearly show the construction and sizes of the different parts. Where strength and stability are desired I would not recommend that the parts be made lighter than indicated. In addition to the elevation of the truss, a plan is shown of the roadway, including the cross-braces, floor beams and planking. The cross-braces are 3×12, the floor beams 6×12, and the planking 2×12, laid diagonally. Other necessary particulars are furnished by the drawings, as Fig. 338 shows a portion of the deck r platform.

Tho truss shown at Fig. 388 is for a span of about 72 feet. The illustration showing the construction requires no explanation other than to say that the rods and plates should be provided with cast-iron washers of such shape that all the nuts will fit square with the bolts. The washers at the angles of the main braces and upper curves are made to take both rods and to extend over the joint sufficiently to hold the brace. The bridge shown is 72 feet span, or 75 feet extreme length. It has a roadway 14 feet wide. This, on a much-

traveled highway would be better 16 feet wide. The bridge should be constructed with about 6 inch spring. If oak timber is used in the construction of the bridge, the dimensions of the pieces may be somewhat reduced from what is shown on the drawing.

The bridge slown at Fig. 389, is a double strut bridge, and is a very strong one; would answer for a roadway where heary traffic crossel. The two struts, CC, on each side of the center show how it is braced, as also do the struts DD, which add much to the stiffness of the work. A shows the stringer, while B shows the timber for abutting the long struts against.

Another bridge of nearly the same span is shown at Fig. 390. This is a simple example with one strut on each side of the center of each beam; A is the chord or beam, B the strut, and C the strainingpiece bolted to the beam. The rail above the beam is for protection only, and is not intended to bear any part of the load, althongh, if properly framed, it will be of service in this respect.

When the spans are too great to be bridged in this simple manner, some method of trussing must be adopted. With scarcely an exception, the examples of trussed bridges may be resolved into the following groups (391):

1. Trusses below the roadway, and exerting a lateral thrust on the abutments.
2. Trusses above the roadway, and exerting only vertical pressure on the supports.

Fig. 391.
3. Trusses below the roadway, composed of timber arches with ties and braces, but dependent on the abutments for resistance to lateral thrust.
4. Trusses below or above the roadway, composed of timber arches with ties and braces, and exerting only vertical pressure on the supports.
5. Lattice trusses above the roadway.

I show a bridge at Fig. 392, having a span of over 100 feet, that is not, properly speaking, a truss bridge, and which is not very difficult of construction. This bridge was built more than fifty years ago by the celebrated Thomas Telford, C. E., and it is still doing good service; and may continue to do so for many years yet, if it gets good care.

I slow at Fig. 393 a 100 -feet span trussed bridge constructed on the lines of the Howe Truss. I also give some data for figuring on the strengtin of this bridge and the loads it will carry. The bridge is, of course, a compound structure of steel rods and timber beams, which will probably be best. The dead load may be taken for trial at 7 cwt . per foot run, and the live load will be, say 7 crt . per foot run, making a total load of $\frac{100(7+7)}{20} 70$ tons, or 35 tons on each truss. Assume the elevation to be as shown in No. 1, then the frame diagram will be as shown in No. 2, and the stress diagram as shown in No. 3. It will be necessary also to ascertain the stresses when the first three bays only are loaded, as this puts the fourth bay under a diagonal compressive stress when there is no compression mem-

Fig. 392.
ber in the required direction, which is met by the compression member 19-20 undergoing 2.2 tons tension. The frame diagram for this will be as shown in No. 4, and the stress diagram as shown

Fig. 393.
in No. 5. The stresses may be measured off the diagrams, and the bridge will then want careful designing to suit the material employed.

In the nlustration shown in Fig. 394 is represented an ordinary lattice bridge winich may have any ordinary span from 50 to 125 feet. No. 8 is

the elevation of the common lattice bringe; Nu. 9, a section of the same when the roadway is above the latticed sides: a ${ }^{\text {d }}$ No. 10 , a section wilm the roadway is supported on the under smir of the lattice. No. 11, plan of one of the latticed side

Although when first introduced the latice construction at once obtained great fave from its simplicity, economy, and elegant lightness of appearance, yet experience has shown that it is only adapted for small spans and light loads, unless fortified by arches or arch braces. When well constructed, however, it is useful for ordinary road bridges where the transport is not heary.

A lattice-truss is composed of thin plank, and its cuis:- . cen in in every respect such as to render this iilsistration appropriate. Torsion is the direct effect of the action of any weight, however small, upon the single lattice.

Fig. 395 exhibits an elevation and details for an improved "Steele" lattice and trussed bridge, which is intended for long spans. The example shown was built over a span of more than 200 feet. The arch shown in the work adds to the stability of the work very materially.

The details shown are self-evident and hardly require explanation.
In building a Howe truss, it is quite essential that the chords be ar lied or cambered. There are several ways of getting this camber, but the one recommended by Prof. De Volson Wood of Ste-
vens' Institute, Hoboken, N. J., is perhaps, about the best. He says: "Camber may be accomplished in various ways. Having determined the length of the main braces for straight chords, if their length be slightly increased, beginning with nothing in the center and increasing gradually towards the ends, any desired camber may be secured. This will give an arch form." The result, in an exaggerated form, is shown in Fig. 396. The bolts shown are all supposed to radiate to the center of the arch.

Fig. 396.

The object of cambering a truss is to allow for any settlement which may occur after completion, and also to prevent the truss from deflecting below a horizontal line when taxed to its maximum capacity. Some engineers allow 1 -inch camber for a span of 50 feet; 2 inches for 100 feet, etc., while some, depending on the accuracy of their work, allow only one-lialf this amount. By cambering the horizontal timbers it is manifest that they mast be made longer than the straight line which joins
their ends. The increase in length of the lower chords due to cambering would be so trifling that in ordinary practice it could be entirely disregarded. Not so, however, with the upper chord; the increase in length of this member would be quite an appreciable quantity, because the top chord is cambered to a curve which is concentric to the curve of the lower one.

Trautwine and other authorities give a rule for determining this increase when the depth, the camber, and the span are given, providing, however, that the camber does not exceed one-fiftieth of the span,

$$
\text { Increase }=\frac{\text { depth } \times \text { camher } \times 8}{\text { span }}
$$

using either feet or inches in the calculations. By cambering the truss the distance between the suspension rods on the upper chords will necessarily be greater than the distance between the rods on the lower chords. The panels are not strictly parallelograms, the rods converging somewhat. By dividing the total increase in length of the upper chord by the number of panels in the truss we obtain the increase per panel. This, of course, will effect the length of the braces, and great care should be taken to cut these to the proper length. Trautrine als gives a method for finding the length of the braces in cambered trusses, but while the method shown is practically correct, in so far
as lines are concerned, yet it could not be applied very reell in a timber truss, at least, not so well as the method shown previously.

It must be remembered, that in calculating strains in trusses, skeleton diagrams are used, and the lines composing these diagrams are generally taken or drawn tinrough the axes of the various members. These lines usually meet at a common point of intersection as will be seen from the dotted lines in Fig. 397. But in practice these lines

Fig. 397.
do not always thus meet. The method shown by Trautwine is that of finding the length of the hypothenuse AC of the right angled triangle ABC ; and even were these axial lines to meet at a common point of intersection the rule would not apply on account of the angle blocks taking up part of the distance. The best way to get the length would be to lay out one panel full size.

I show, at Fig. 398, a diagram of a Howe truss complete. This will give an idea of the way in
which these trusses are constructed. A theoretical description of these styles of truss would scarcely be in place in this treatise, because of the fact that the carpenter who does the framing has but little to do with the theory, and because of the other fact that there are a number of excellent treatises in the market.

Another branch of timber framing is that of "shoring and needling," which may be analyzed as follows:

Fig. 398.

A system of raking shores, Fig. 399, consists of from one to four inclined timbers ranged vertically over each other, their lower ends springing from a stout sole-piece bedded in the ground, and their upper ends abutting partly against a vertical plank secured to the face of the wall and partly against the "needles"-horizontal projections that penetrate the wall-plate and the wall for a short distance.

The needles are generally cut out of 3-inch by $41 / 2$-inch stuff, the entering end reduced to 3 -inch

TIMBER FRAMING

Fig. 399.
by 3 -inch for convenience in entering an aperture formed by removing a header from the wall. The shouldered side is placed upwards, and cleats are fixed above them into the wall-plate to strengthen their resistance to the sliding tendency of the

shore. They are preferably sunk into the plate at the top end as indicated by the dotted lines in Fig. 400.

The head of the raker should be notched slightly over the needle, as shown in the detail sketch, Fig. 400 , to prevent its being knocked aside, or moving
out of pusition in the event of the wall settling back.
The top shore in a system is frequently made in two lengths for convenience of handling, and the upper one is known as the "rider," the supporting shore being termed the "back shore."

The rider is usually set up to its bearing with a pair of folding wedges introduced between the ends of the two shores. (See Fig. 399.)

Fig. 401.
Braces are nailed on the sides of the rakers and edges of wall-plate to stiffen the former.

The sole-piece is bedded slightly out of square with the rakers, so that the latter may tighteu as they are driven up.

The shores should be secured to the sole-piece with timber dogs; and, when in roadways or other public places, it is wise precaution to fix several turns of hoop-iron around their lower ends, fixing these with wrought nails.

A system of flying shores, see Figs. 401 and 402, consists of one or more horizontal timbers, called

Fig. 402.
"dog shores," wedged tightly between two wallplates, secured to the surfaces of adjacent walls. The middle of the shore is supported by braces springins from needles fixed to the lower ends of the plates, and are usually counteracted by corresponding inclined brates raking from the upper ends of the: , bates.

An angle of 45 degrees is the best for these braces, and abutments for their ends are supplied by straining or "crown" pieces secured to the beam.

Wedges are inserted between the straining pieces and the brace to bring all up tight.

When one shoie only is used, the best general position to fix it is about three-quarters the height of the wall, but much depends upon the state of the walls, and the nature or position of abutments behind them.

Where opportunity offers, a complete system of horizontal sloores framed and braced to each other, as shown in Fig. 402, is a much safer way to prevent any movement of walls than is a serics of isolated shores, which, being erected by different gangs of men, and necessarily under a more divided supervision by the foreman, are likely to display considerable differences in their thrust or resistance to the walls.

Approximate rules and scantlings for raking sl:ores:

Walls 15 ft . to 30 ft . high, 2 shores each system. Walls 30 ft . to 40 ft . high, 3 shores each system. Wails 40 ft . and higher, 4 shores each serstem. The angle of the shores 60 degrees to 75 dregrecs -not more than than 15 ft apart.

Walls 15 ft . to 20 ft . high, 4 in . x 4 in . or 5 in . x 5 in.

Walls 20 ft . to 30 ft . high, $9 \mathrm{in} . \mathrm{x} 41 / 2 \mathrm{in}$. or 6 in . $x 6$ in.

Walls 30 ft . to 35 ft . high, $7 \mathrm{in} . \mathrm{x} 7 \mathrm{in}$.
Walls 35 ft . to 40 ft . high, $6 \mathrm{in} . \mathrm{x} 12 \mathrm{in}$. or 8 in . x 8 in .

Walls 40 ft . to 50 ft . high, 9 in x 9 in ., 50 ft and upwards, 12 in x 9 in .

Horizontal slaring: Spans not exceeding 15 ft.-principal strut 6 in. $x 4$ in. and raking struts 4 in. $x 4$ in.

Spans from 15 ft . to 33 ft .-principal strut 6 in . x 6 in. to 9 in. $\times 9$ in.; raking struts from 6 in . x 4 in. to 9 in. $x 6$ in.

The manner of shoring the upper part of a building is shown in Fig. 40:3. Particulars are given on the illustration, rendering further explanation unnecessary.

Another class of framing I have not yet touched upor is that where a timber structure. such as a tank frame, or a frame for a windmill, is required, and where the fom comers lean in tow: rels the center: and I will now endeavor to supply this deficiene: A structme of this kind mar be called a "truncated !! ramid," that \mathfrak{i}, a wramid with its top end cut awn at some ome in its height leaving a platform leve! with the horizon, but of course less in area than the bare. Thus, if we suppose it timber structure having a base $\because 0 \times 20$ feet square, and a deck or plationt 12xi2 feet square there will be a difference wi S ft. between

$$
\text { Fig. } 403 .
$$

the base and platform, or the platform will be 4 feet less on every side than the base, but the center of the base area must be directly under the center point of the phatform area. If the structure is 15
feet high, or any other height that may be determined on, the four corner-posts will act as four lips, and will be subject to the same constructional rules as hip rafters, with some modifications and additions to suit changed conditions.

Of the many methods employed of obtaining bevels for oblique cuts on the feet and tops of posts having two inclinations, (and there are many), I

F\& 405.
know of none so simple as the one I am about to describe, and which can be applied in nearly every case where timbers meet at or on an angle, as in the case of struts under purlins, or the junction of purlins under hip or valley roofs. It is extremely handy for finding the bevels required for odd shaped tapered structures.

Let Figs. 404 and 405 , slow respectively an elevation and a plan of a raking timber meeting at

MICROCOPY RESOLUTION TEST CHART

(ANSI and ISO TEST CHART No. 2)

APPLIED IMAGE Inc
(716) 288-5989 - Fox
an angle with a vertical timber. To obtain the bevel shown in the elevation Fig. 404 from the point B, set out a line square with the raking timber and draw the rectangle equal in width to AB , in the plan. Fig. 405, the angle of the diagonal of this rectangle with the pitch of the raking timbers marked F, is the bevel of the bird's mouth

Fig. 407 .
with the side. To obtain the bevel from the plan Fig. 405 , draw the line CD, and through B, draw CE, equal to BC, in Fig. 404; join CE, and the required angle, which is the same as shown in Fig. 404 , is obtained. The bevel required for the side of the strut is the angle made by the pitch of the strut marked C, in Fig. 404, which needs no explanation. Figs. 406 and 407 , show respectively an elevation and a plan of a raking timber butting at an
angle against a plank, the section of the raking timber being shown by the dotted lines $A B C D$, in the same figure; the line $A D$, being the required bevel, that is, the angle it makes with a line parallel to the edge of the raking part indicated in the figure by the bevel. To obtain the bevel from the plan, draw the dotted line CD, Fig. 406, at right angles to the upright edge of the timber, making the line CG, in the plon Fig. 407, equal to CD, in Fig. 406; draw the dotted line CD, Fig. 40^{-}, and at right angles to it draw X, Y, and project the front G, to E, making the distance of E, from $X Y$, equal to the distance DE , in the elevation, Fig. 406 ; with D as a center, and E as radius, describe the dotted arc until it meets the line XY , and continue it down at right angles to meet a line from G , drawn parallel to NY , in H ; then join CHD , and the angle obtained is the bevel required.

Fig. 408, and 409, show respectively an elevation and a plan of timbers both meeting angleways, one of them raking. To obtain the bevel from the elevation, draw the line EF, at right angles to the edge DB , and passing through A, making the distance EF equal to one side of the section AB indicated by the dotted lines in Fig. 408. Draw the line BF and the angle this line makes with a line parallel to the edge is the required bevel for the top surfaces of the raking part which is indicated in Fig. 408, by J.

A similar method is adopted in obtaining the lower bevel, marked K, Fig. 408. The bevels are obtained from the plan Fig. 409, in a similar manner to those in Fig. 407. Make the line HG, Fig. 409, equal to HB in Fig. 408, and continue it down to E at right angles to the side. Join EB and draw XY at right angles; at right ancles to XY , project the point A to D, making the height of D, above

Fig. 409.
XY equal to the height of A above HB in Fig. 408. With B as a center, and D as radius, inscribe the dotted arc down to XY, and continue it on at right angles to meet the line AF drawn parallel to XY; the angle EFB is the bevel for the two upper surfaces, and the same as the bevel J in Fig. 408. To
avoid confusion, the bevel for the lower surfaces is not shown in Fig. 409, but is found in the manner already explained.

Fig. 410 , is a section of a purlin, showing the pitch of the roof X , and the level line Y. Fig. 411 is a plan of Fig. 410, with a portion of a hip or valley rafter, making an angle of 45 degrees added, which occurs when the pitch of both sides of the roof is the same. When the pitches are different, bevels for the purlin on both sides of the hip or

Fig. 411.
Fig. 410.
valley must be found; the angle that it makes with the pitch in the roof in plan being the only angular. datum required. The method of finding the cuts is as follows: After drawing the purlin as shown in Fig. 410, draw the plan as in Fig. 411, and through the Point A, draw line FG at right angles to the edge of the purlin; make FG equal in lengtl to AC , Fig. 410, and join CG, which will give the bevel for the wide side of the purlin. The bevel for the narrow side is found in a similar manner
by drawing DE through B , making it equal to AB , Fig. 410, and joining $A \%$.

Fig. 411 shows all the lines necessary for obtaining the bevels in Figs. 410 and 411, the indices corresponding.

The methods shown herewith for obtaining the bevels and cuts for raking timbers of various kinds are quite simple compared with some methods taught. They are not new, nor are they original, as they have been in use many years among expert framers and millrights, and have been published, once before now at all events; the present method of rendering, however, I am persuaded, will be found simple and easily understood.

In connection with obtaining bevels of timbers that are set with an inclination, having one end resting on a floor and the other end cut to fit against a ceiling, the timber lying with two of its angles in the direction of its inclination and the otiler two at right angles to them.

In that case the upper end of the timber would require to be cut with the same bevels as the lower end, only reversing the bevels as betli top and bottom bevels are alike.

If we consider the corner post as a prism, having four sides at right angles to each other, then when we cut the foot of it so obliquely a bevel as at ABC , Fig. 412, as to p.tch it at the required inclination, the section resulting will not be square but lozenge shaped, as shown at Fig. 412, and this, of course,
would not stand over a square corner and have its sides to correspond with the face of the sills or plates, so make the post . rism so that its sides will conform to the face of the sills in the "backing" of the post. The lines to shape the post correctly to meet this condition may be obtained in several ways, but by far the simplest is shown at Fig. 413, where the square is emplryed to show the amount of overwood to be removed. Let us sup-

Fig. 412.

Fig. 413.

Fig. 414.
pose the sills to be halved together as shown at Fig. 414, taking no notice of the tenou and mortise which are shown in this diagram, and this will give us as a ground plan of the sills, Fig. 415, KK, showing the ends of the sills which project past the frame. The point E in Fig. 413 will correspond with the point E Fig. 415 when the post is in position, and the points C aad D will correspond with C and D in the same figliee. To get the lines for the "backing" draw the diagonal line AR, on Fig.

413 then place the heel of the square on the line AB , near the long corner, and adjust the square on the timber so that the blade just coincides with the corner C, then mark along the blade and tongue of the square, continuing to G and H , and these points will be the gange points sought, showing the slabs to be removed-1 1 G and HC .

In laring off the bevels at the foot or top of the post, it must be remembered that the outside corners of the post, AA, Fig. 413 and 415 , is the working edge from which the bevels must first be taken, so when the proper bevel is obtained, either by the square or by an ordinary bevel, we must proceed as follows: Bevel over from the comer A, first on one face of the post, then on the other; then turn the timber over and contime the line across the next face to the corner, and perform the same operation on the fourth face. The lines are now complete for cutting the shoulders, but should there be a tenor on the post and a toed shoulder as shown at Fig. 414, then provision must be made for same, a matter the intelligent workman will find no difficulty in dealing with.

We wili now deal with the bevels of the girts that are usually framed in between the posts of tapering structures. When the post only inclines in one direction, the problem of getting the bevels is a very simple one, as only the angle of inclination is required for the down cuis, the cross cuts all being square. With posts having two inclinations, how-
ever, the case is more complex and requires a different treatment, as all the cuts are bevels. While it is always-or nearly so-necessary to "back" the post on the outside, it is hardly ever necessary to perform a similar process on the inside corners of the post, therefore provision must be minde on the shoulder of the girt to meet the condition, and this is done by cutting the shoulder on a bevel on both down and cross cuts. Let us suppose EF in Fig. 416 to be the down cut, or the angle of inclination, marked on the girt ABCD, just as the

line would appear in elevation. Then from E to G , on F , set off a distance e_{i} ual to the width of timber used in the girt, which would be equal to DC. Square down from the point G as shown to H, connect EH, and this line will be the bevel for the face end of the girt. This line being obtained carry a line across the top of the girt corresponding with the inside face of the corner post, and to find this line we must operate as follows: Let Fig. 417 be a reproduction of Fig. 416, then we lay the blade of the square on the line EF, and supposing the
girt to be 8 inches square, we move the square along until the point S on the tongue coincides with the corner of the timber, when the heel of the square will define the point G. From G square up, obtaining the point K. Sipare aross from K to the point I, which is on the inner corner of the girt. From L, set off a distance back from the post equal to the thickness of the slah that would have been removed from thr post, if backed inside, which mark off at M, and from this point draw a line to E ; then ME will be the berel of the cross cut over the girt.

I have dwelled on this subject at some length becanse of some of the difficulties that surround it, and which in these pages I have endeavored to simplify and explain. Trapered structnres of the kind disenssed, whether on a sqnare or pe gon plan, are always troublesome to deal with unless the director of the work is well rersed in a knowledge of the principles that underlie the construction of such structures and this means, almost, an education in itself. I have not tomed on the rules for obtaining the lengths and hevels of diagonal braces in structures of this kind, as I am persuaded the sharp workinan, who masters the rules given herewith. will be able to wrestle successfully with the dingonal regular tapered work.

Sometimes an irregular tapered frame is built to serve the purpose of a regular tank frame, then some changes from the foregoing take place.

If we build two frames same as shown at rig. 418 , and st .n! them plumb, with thei: faces as the illustration shows, any distance apart, there need be no tromble in framing them or in ticing them together with girts, as the latter may be framed

Flg. 41 s.
into th:~ posts square, and the cuts or bevels for the posis and cross timber may readily be obtained from the di grant: of the work. Should the two bents, however, be made to incline towards each other, new conditions arise, that make it more difficult te get the joints for the girts, and backing for
the posts. When the beats draw or lean into each: other the posts have a double bevel or pitch making it take the form of a hip and as the posts are slanted over to form the pitch on the other side, we find that the face side, No. 2, Fig. 419 will draw in from the face of the sill on the corner B . The

Fif. 419.
amount the post will draw in can be determined by cutting the r rer bevels on bottom of post and placing side No. 1 Fig. 419, flush with the bent sill, then square out B to A on side No. 2. The distance $A B$ is the amount the post will draw towards the center as the bents are slanted towards each other. This distance is nothing more or less
than the backing of the hip, but the bents being framed one side on the principal of a common rafter and then leaned towards each other, forming hips at the corners, causf he backing to come all on one side as shown in $F^{5}, 4 \geq 0$. Side No. \because is the side that has to be backed in order to stan' flush with sill, and the amount to take off the out side corner is the distance AB. For the hevel across the 1 ; of girts and braces on side No. 2 ,

Fig. 420.

419, square across the post as $A C$, set off $A B$ same as is shown at bottom of post, and connect BC. A hevel set with stock on line of post and blade on line BC will give the required bevel: blade gives
cut. The backing is perhaps nore easily explained by Fig. 420. Cut a section of post to required bevels on the bottom and place a steel square flush with side No. 1 and it will show plainly the amount of backing to be taken from outside corner as $A B C$. These lines will not do to set the bevel by for cutting the top and bottom sides of girts and braces because AC in Fig. 420 is on the bevel of the bottom cut of hip and therefore is greater than the thickness of the post. The cut for girts and braces is the thickness of post and the backing applied as shown in Fig. 419.

INDEX TO TIMBER FRAMING

ALIHABETICALLY ARRANGED

A
Adhesion of nails 47
A general system of floor framing. 199
Angular framing 371
Angular joints 43
Approximate weight of roofs 251
Arched centers 217
Arched roof 275
B
Backing tapering corner posts 384
Balloon framing 51
Bare-face stub tenon 196
Barn framing 188
Barn building 330
Barrel centering 234
Bay-windows 133
Beams and roof trusses 259
Bolts for walls 260
Bond timber 75
Bow-lattice bridges 359
Boxing 182
Boxing for shoulders 184
Box sills 54
386

INDEX

Braces for purlins 193
Bracing 74 53
Bracing corner 78
Brick clad wall
Brick clad wall Brick clad wall 249
Bridge centers 345
Bridges 357
Bridge stresses 75
Bridging 218
Builders' centers 93
Building 29
Built-up beams 224
Built-up centers
C
Ceiling joists 203
Centers 216 226
Ccnters for large spans
223
223
Centers for small openings 172
Chalk lining 89
Chimney stack 105
Circular towers 17
Classification according to size of timber (table)
Classification according to size of timber (table) 23
Classification of fastenings in carpentry
22
Classification of joints in carpentry
10
10
jassification of timbers. 49
Coach screws 268
Collar-beam roof 316
Conical spires 10
Coniferous trees 64
Corner studs 137
Cornice
Cornices 144
Couple close roofs 264
Cross bridging 76
Cupola roofs 132
Curbed frame barns 335
Curb roofs 261
Curved cornices 147
Curved Mansard roof 269
Curving a truss bridge 360
Cutting curved rafters 124
Cutting-off marks 176
Cutting ribs for roofs 123
D
Detail of centers 229
Detail of timber frame 197
Details of elliptical centers 247
Details of groins 241
Details of heavy centers $2+2$
Diagrams of joists and studs 62
Dome roofs 116
Door trimming 72
Double boxing 186
Double braeed 187
Double flooring 206
Double-rake framing 374
Double shoring 366
Double stands 339
Double-tapered framing 383
Dovetailed joints 44
Draw boring 185

\mathbf{E}

198
Elevation of frame
243
243
Elliptical arches
250
250
Elliptical centers for bridges
Elliptical centers for bridges
187
187
End of barn 219
Fngineer's centers 8
Exogens, endogens, ecrogens
F
Fished beams and scarfed beams 25
Fishplates and fished joints 24
Flat centering
80, 208
80, 208
Floor framing 83
Flue trimming 344
Foot bridges
252
252
Forms of roofs 1:35
Foundations 37
Fox tail tenons 331
Frame barns
$5 S$
$5 S$ 94
Framed sills and joists
Framed sills and joists
Framed wall 73
Framing
136
136
Framing bay windows
117
117
Framing of dome roofs
120
120
Framing of ogee roof
Framing of ogee roof
371
371
Framing on the rake
53
53
Framing scantling 36
Furring pieces
INDEX 389
G
Gains and scarfs 30
Gambrel rcofs 261
General framing 77
General trimming 87
Getting curves 237
Girders 88
Gothic spire 321
Grand stands-for public oceasions 346
Groins 235
Gutters 1.41
H
Halving joints 5 ?
Hanmer-beam roof (for country chureh) 304
Hammer-beam roofs (ornamented) 299
Hanmer-beam rouf (plain) 297
Haunched tenons 40
Heary timber bridge: 351
Hip rafters 254
Hip roofs 254
IIip spans £54
Honse plans 90
House walls 91
Howe framed roofs 286
I
Introdnctory 7
Introduction to Part II. 151
Iron angles. 209
Is heavy timber framing a lost art? 152

J

258Jack-rafters
7
7
Joints, in woodwork 85
Joist hangers
K
Keyed tusk tenon 212
Keyed-up timbers 272
King post roof
L275
Laminated roof
118
118
Lantern roof 296
Large centers 245
Large elliptical center
355
355
Lattice bridges
312
312
Latice roofs 178
Laying out marks
161
161 263
Laying out round timbers
Laying out round timbers
Lean-to roofs
26
26
Lengthening piles 170
Lining-up timber 154
List of tools
358
Long lattice bridges 353
Long span bridges 140
Look-outs
INDEX391
M
Making mortices and tenons 167
Mansard roofs 127, 262
Mansard self-supporting roofs 307
Method of carving eurbed roofs 104
Mothod of framing joists 60
Method of framing ogee roofs 101
Method of putting in sill 61
Molded roof 112
Mixed framing, iron and ${ }^{1}$:moer 200
N
Nails 46
Non-eoniferous trees 10
0
Oetagon spires and steeples. 316
Odd eorner 65
Ogee roof 99
One-hundred feet span-truss bridges 355
Ornamental corniees 150
P
Plan of tower roof 109
Platform and raking shores 370
Preface 1
Projecting cornices 143
Public stands 338
Purlin plates 191
Purlins 102
Q
Quality of trees 8
Queen post roofs 275
Queen posts 255
Queen post trusses 255
R
Rafter cuds 142
Raking curves 126
Raking shores 364
Road bridges 359
Roof coverings 251
Roof framing 99
Roofs 251
Roof trusses 252
Rubbeted joints 43
Rule for cutting braces 195
Rules for roofs 280
S
Scarfed beams 25
Scarf marks 175
Scissors roof 131
Seasoning of timber 11Section dome roof121
Section of centers 227
Section of dormer window. 95
Section of wall 57, 68
Seetion ogee roof 120
Sections-Mansard roofs 128
Sections of corners 66
Sections of timber 13
Segments for centers 295
Self-supporting roofs 129
Shoring and needling 363
Short span bridges 347
Shrinkage 11
Sills-boxed 54
Silver grain 9
Single rafter roof 263
Skating rink roofs 310
Solid sills 5%
Spire 97
Squaring over 177
Stair-healers 81
Stair trimming 82
Steel beams 207
Strains on roofs 271
Strength of timber 205
Stub tenon 196
Studding 76
Suitabie pitches 2.31
Supported arehed roofs 289
Suspended roofs 278
T
Table for nails and serews 47
Taking timber out of wind 163
Tapered framing 382
Templet framing 180
Temporary grandstands 343
Tenoned juists 59
Tenons 171
The various strains on timber 21
Timbered roofs 107
Timbering floors 202
Timber towers 329
Toggle joints 33
'Towers 97
Tredgold on joint fasteninus 19
Trimming windows 71
Trussed bridges 348
Trussed roofs 129, 282
Tusk tenons 34
U
Use of glue 50
V
Valley boards 258
Valley rafters 258
Various scarfs 27INDEX395
Vault centering 234
Vertical joints 28
V-roofs 261
W
Wall plates 259
Wall section 68
Wedges for centers 222
Well-holes 82
Winding sticks 164
Window trimming 70
Witness marks 173
Wooden spires, turrets and towers 314
Working square timber 162

